
ASM386 Macro Assembler
Operating Instructions

Order Number: 469165-003

2

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:
Literature Distribution Center
Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

Or you can call the following toll-free number: 1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local
Intel sales office. For your convenience, international sales office addresses are printed on the last page of
this document. Contact your local sales office to obtain the latest specifications before placing your order.

Intel Corporation (Intel) makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel assumes no
responsibility for any errors that may appear in this document. Intel makes no commitment to update nor to
keep current the information contained in this document. No part of this document may be copied or
reproduced in any form or by any means without prior written consent of Intel. Intel retains the right to make
changes to these specifications at any time, without notice.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's Software License Agreement.
U.S. GOVERNMENT RESTRICTED RIGHTS: These software products and documentation were
developed at private expense and are provided with "RESTRICTED RIGHTS." Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in FAR 52.227-14 and
DFAR 252.227-7013 et seq. or its successor.

The Intel logo, i960, Pentium, and iRMX are registered trademarks of Intel Corporation, registered in the
United States of America and other countries. Above, i287, i386, i387, i486, Intel287, Intel386, Intel387,
Intel486, Intel487 and EtherExpress are trademarks of Intel Corporation.

Adaptec is a registered trademark of Adaptec, Inc. AT, IBM and PS/2 are registered trademarks and PC/XT
is a trademark of International Business Machines Corporation. All Borland products are trademarks or
registered trademarks of Borland International, Inc. CodeView, Microsoft, MS, MS-DOS and XENIX are
registered trademarks of Microsoft Corporation. Comtrol is a registered trademark and HOSTESS is a
trademark of Comtrol Corporation. DT2806 is a trademark of Data Translation, Inc. Ethernet is a registered
trademark of Xerox Corporation. Hayes is a registered trademark of Hayes Microcomputer Products.
Hazeltine and Executive 80 are trademarks of Hazeltine Corporation. Hewlett-Packard is a registered
trademark of Hewlett-Packard Co. MIX is a registered trademark of MIX Software, Incorporated. MIX is an
acronym for Modular Interface eXtension. MPI is a trademark of Centralp Automatismes (S.A.). NetWare
and Novell are registered trademarks of Novell Corp. NFS is a trademark of Sun Microsystems, Inc. Phar
Lap is a trademark of Phar Lap Software, Inc. Soft-Scope is a registered trademark of Concurrent Sciences,
inc. TeleVideo is a trademark of TeleVideo Systems, Inc. UNIX is a registered trademark in the United
States and other countries, licensed exclusively through X/Open Company Limited. VAX is a registered
trademark and VMS is a trademark of Digital Equipment Corporation. Visual Basic and Visual C++ are
trademarks of Microsoft Corporation. All Watcom products are trademarks or registered trademarks of
Watcom International Corp. Windows, Windows 95 and Windows for Workgroups are registered trademarks
and Windows NT is a trademark of Microsoft in the U.S. and other countries. Wyse is a registered trademark
of Wyse Technology. Zentec is a trademark of Zentec Corporation. Other trademarks and brands are the
property of their respective owners.

Copyright © 1991 - 1995 Intel Corporation, All Rights Reserved

REVISION HISTORY DATE
-001 Original Issue 12/91
-002 Update for Release 2.0 of the OS 08/92
-003 Update for Release 2.2 of the OS 11/95

ASM386 Macro Assembler Operating Instructions 3

Quick Contents

Chapter 1. Introduction
Introduces the manual, and the assembler and its related utilities.

Chapter 2. Using the Assembler
An overview of the two methods by which the assembler's actions can be controlled
in the host environment: the command-line syntax and the standard assembler
controls that may be embedded in program sources.

Chapter 3. Assembler Control Reference
A complete annotated list of the assembler-control switches.

Chapter 4. The Listing (Print File)
A description of the assembly listing's contents.

Appendix A. Error Messages
A descriptive list of error and warning messages issued by the assembler.

Appendix B. System Hardware and Software Requirements
A description of the hardware and software requirements, and the procedure for
making required modifications to the operating system.

Index

Service Information

4

Notational Conventions
The notational conventions described below are used throughout this manual:

italics Indicate a metasymbol that must be replaced with an item that fulfills
the rules for that symbol.

system-id Is a generic label placed on sample listings where an operating
system-dependent name would actually be printed.

Vx.y Is a generic label placed on sample listings where the version number
of the product that produced the listing would actually be printed.

[] Brackets indicate optional arguments or parameters.

| The vertical bar separates options within brackets [] or braces { }.

... Ellipses indicate that the preceding argument or parameter may be
repeated.

punctuation Punctuation other than ellipses, braces, and brackets must be entered
as shown. For example, the equal sign in the following statement
must be entered as shown:

PAGEWIDTH=78

<ENTER> Indicates a carriage return.

file-spec Is the device name, the filename, and the file extension, if any.

Related Publications
These manuals contain information on system utilities:

• Intel386™ Family Utilities User's Guide

• Intel386™ Family System Builder User's Guide

These additional Intel manuals may be of interest to users of the assembler and
utilities in the DOS environment:

• iC-386 Compiler User's Guide

• PL/M-386 Programmer's Guide

■■ ■■ ■■

ASM386 Macro Assembler Operating Instructions Contents 5

Contents

1 Introduction
About This Manual ... 9
About This Chapter... 9
The Macro Assembler ... 9
The System Utilities.. 11
Inter-tool Consistency ... 12
Inter-host Portability ... 12

2 Using the Assembler
Command Syntax.. 13

Using Controls on the Command Line.. 14
Sample Invocation Commands ... 15
Interrupting the Assembler ... 16

Controls.. 16
Primary Controls .. 16
General Controls .. 19

Using Controls in the Source File.. 20
Using Controls within Macros... 22
File Usage... 24

Source Program Restrictions .. 24
Output Files.. 26
Work Files ... 27

Messages... 28
Automation of Program Invocation and Execution 29

DOS Batch Files... 29
Passing Parameters to Batch Files.. 29
Using Batch Commands .. 30

DOS Command Files.. 30
Redirection of Command Input to Batch Files...................................... 31

6 Contents

3 Assembler Control Reference
DATE .. 34
DEBUG.. 35
EJECT.. 36
ERRORPRINT... 37
GEN/NOGEN/GENONLY... 39
INCLUDE.. 42
LIST... 43
MACRO... 44
MOD386/MOD376/MOD486... 45
N387/N287... 47
OBJECT... 48
PAGELENGTH... 49
PAGEWIDTH.. 50
PAGING.. 51
PRINT.. 52
SAVE/RESTORE... 53
SYMBOLS... 55
TITLE.. 56
TYPE... 58
USE32/USE16.. 59
WORKFILES... 61
XREF... 62

4 The Listing (Print File)
The Default Print File... 63
Print File Headers... 67
Location Counter (LOC) .. 68

Equated Symbols (EQU Directive) .. 68
Floating-point Stack Elements (ST)... 69
COMM Variables and Labels .. 69

Object Code (OBJ) ... 70
Relocatable or External Code (R, E).. 70
Include Nesting Indicator (=)... 70

Line Numbers (LINE) .. 71
Macro Expansion Indicator (+) .. 71

Source Statements (SOURCE).. 71

ASM386 Macro Assembler Operating Instructions Contents 7

The Symbol Table... 72
Symbol Table Fields... 74

Code macros (C MACRO)... 74
Public and External Symbols (PUBLIC, EXTRN) 74
Floating-point Stack Elements (F STACK).................................... 75
Instruction ... 75
Keyword.. 75
Labels (L NEAR, L FAR).. 75
Numbers (NUMBER).. 75
Procedures (P NEAR, P FAR)... 75
Records and Record Fields (RECORD, R FIELD)......................... 75
Registers (REG) .. 76
Segments (SEGMENT)... 76
Stack Segments (STACK) ... 76
Structures and Structure Fields (STRUC, S FIELD)....................... 76
Undefined Symbols (--------).. 76
Variables (V BIT . . . V n) ... 77

A Error Messages
Fatal Errors ... 79

Invocation Control Errors... 79
I/O Errors... 80
Internal Errors .. 80

Nonfatal Errors and Warnings ... 81
Syntax Errors ... 81
Warnings.. 82
Macro Errors .. 83
Control Errors .. 83

Source File Error and Warning Messages.. 84

B System Hardware and Software Requirements
Hardware and Software Requirements... 113
Modifying the System Configuration... 114

Index 115

Service Information Inside Back Cover

8 Contents

Tables
2-1. Assembler Primary Controls... 18
2-2. Assembler General Controls... 19
2-3. Assembler Program Restrictions... 25

Figures
1-1. Processor Translation System... 10
2-1. Macro Assembler Logical File ... 27
3-1. Sample Listing for GEN/NOGEN/GENONLY... 41
3-2. Sample Listing for SAVE/RESTORE... 54
4-1. Sample Print File Page ... 64
4-2. Sample Symbol Table .. 73

ASM386 Macro Assembler Operating Instructions Chapter 1 9

Introduction 1
About This Manual

This manual describes how to use the Macro Assembler on DOS and iRMX® host
systems. The information contained in this manual supplements the manual set for
the ASM386 assembler and its associated utilities.

ASM386 supports the Intel386™, Intel486™, and Pentium® microprocessors as well
as floating-point coprocessors. Throughout this manual, the word "processor"
refers to any of the above microprocessors and the words "floating-point
coprocessor" refer to any of the related math coprocessors, as well as the Intel486
and Pentium processor's built-in floating-point functions.

Bound with this manual is the ASM386 Assembly Language Reference. This is the
basic reference for the assembler language, and contains information that is
independent of the host operating system (e.g., the complete instruction set).

About This Chapter
This chapter introduces the assembler and its related utilities. The assembler
generates code for target systems based on the Intel386, Intel486, and Pentium
microprocessors. The utilities are tools that prepare loadable and executable
modules for execution on the target system. Figure 1-1 illustrates the development
process using Intel translators and utilities.

The Macro Assembler
The assembly language translator has the following characteristics:

• Translates files written in assembly language into linkable object modules

• Produces object modules (OMF-386) that can be assembled separately and
linked to programs written in ASM286 assembly language

The assembler supports the full processor and floating-point coprocessor instruction
sets. The instruction set and assembler mnemonics are compatible with ASM286,
the assembly language for the 286 processor.

10 Chapter 1 Introduction

Program modules may be debugged with Intel debuggers or in-circuit emulators
such as the ICE™-386 system.

C386

ASM386

PL/M386

C-386

ASM386/286
Source Code

Files

PL/M-386

W-3418

LIB386

Activity Program Tool File

Create
Source

Files

Translate
Source

Link
Object

Modules

Configure

System
Software

Map

Execute
Program

Object
Modules

BND386

Library

Linked
Module

Relocatable
Program

BLD386

Absolute
Program

MAP386

Map
File

User
System

NOBOOTLOAD

BOOTLOAD

NOLOADLOAD

Figure 1-1. Processor Translation System

ASM386 Macro Assembler Operating Instructions Chapter 1 11

The System Utilities
The system utilities are a set of software development tools that:

• Combine modules produced by the assembler, by compilers generating
OMF-386 code, and by the Librarian (LIB386) into executable programs

• Support incremental linking

• Assign addresses to code in the processor's 4-gigabyte physical address space

• Generate print files containing system cross-reference listings, error and
warning messages

Object files created by the assembler must be processed by the binder (BND386)
and/or the system builder (BLD386) before they can be loaded and executed.
BND386 creates an executable, relocatable program from separately translated
modules. The librarian (LIB386) organizes linkable modules into a library. The
mapper (MAP386) produces a listing describing the features of linkable or
executable object files. All three are considered linking tools.

BLD386 is not a linking tool. It configures system software for the processor
operating in protected mode and using virtual addressing. BLD386 may be used to
perform the following tasks:

• Creating and modifying descriptor tables, segment and system descriptors
(including gates), and task state segments

• Creating page tables and directories for use in paged memory systems

• Assigning physical addresses to segments and descriptor tables

• Configuring system interface files for use in developing application programs

See also: Intel386 Family Utilities User's Guide
Intel386 Family System Builder User's Guide

12 Chapter 1 Introduction

Inter-tool Consistency
Whether or not you have previous experience using Intel software development
tools, such as language translators like the assembler and related system utility
programs, you will find broad consistency among the tools described in this
manual. Most Intel language processors, for example, have similar invocation
syntax, message formats, and features.

The various Intel assemblers and compilers for any particular target generate the
same object module format. Therefore you can use the appropriate mix of
assembly and higher-level language modules to develop your application system.

Inter-host Portability
The user interfaces of the various tools within a family are also consistent across
host environments. This means that if you can operate an assembler or a compiler
on a DOS system, for example, you already know most of what is required to
operate the iRMX-hosted version of that tool.

■■ ■■ ■■

ASM386 Macro Assembler Operating Instructions Chapter 2 13

Using the Assembler 2
This chapter explains how to anticipate and control the input and output of the
assembler. It contains full textual explanations for new users and tabular
summaries for those already familiar with the assembler.

Command Syntax
Assembler invocation syntax is as follows:

ASM386 file-spec [control ...| %macro-string]

Where:

ASM386 is the command.

file-spec represents the name and extension (optional) of the source
file to be processed.

control represents a switch that controls the process, such as DEBUG,
NOOBJECT, PRINT and others. You may abbreviate them as
shown in Chapter 3.

%macro-string directs the assembler to include the specified macro. The
macro string is a legal statement of up to 212 characters in
the assembler macro processing language. This macro is
processed before reading the source files. The macro
metacharacter % must precede the macro-string, as follows:

ASM386 MYPROG "%set(a,1)"

Only one macro may be specified in each command.

See also: Using Controls with Macros, in this chapter

14 Chapter 2 Using the Assembler

Using Controls on the Command Line
A set of assembler-control switches govern the format, processing, and content of
both the input source and the output files. These switches are called controls and
they also may be embedded in source files and included files. Controls are widely
used among Intel language translators.

Most controls allow you to regulate the form and/or content of assembler output
files. For example, the USE16 control directs the assembler to generate 16-bit
addresses and offsets for the current module. Some controls are in pairs that
specify on/off conditions. The off condition is indicated by the word NO at the
beginning of the name. For example, use PRINT to create a source listing or
NOPRINT to suppress the listing.

Not all controls are used in commands. The EJECT and SAVE/RESTORE controls
cannot be specified on the command line.

Control use is optional. If you use no controls in your invocation commands, the
assembler and utilities function according to default settings described in Chapter 3
and in the other supplied publications.

For the following command example, a source module named PROG1.SRC is
assembled using default control settings. The assembler writes the object and
listing file to predetermined file specifications, using the source file name with the
extensions OBJ and LST.

ASM386 PROG1.SRC

The object file is PROG1.OBJ and the listing is named PROG1.LST; both are placed
in the current working directory.

Some controls take one or more parameters. Use parentheses to indicate the
parameter delimiters. Separate multiple parameters by commas and enclose the
entire group in parentheses.

Enclose a control's parameter in quotation characters if it contains any of the
following characters:

, () = # ! ' '' ~ + - & | < >

For example:

ASM386 MYPROG.SRC TITLE("Joe's Program")

ASM386 Macro Assembler Operating Instructions Chapter 2 15

If the control's parameter contains quotation characters, enclose it in apostrophes.
This allows the assembler to distinguish parameter strings from strings to be
parsed. For this reason, a macro or title statement in the command must also be
enclosed in quotation characters.

See also: Using Controls in the Source File, in this chapter
assembler controls, Chapter 3
listing file, Chapter 4

Sample Invocation Commands
The following invocation examples show general guidelines for control usage.

1. Assume that a source file named MYPROG.SRC is in the working directory. In
its simplest form, the command line is:

ASM386 MYPROG.SRC

The assembler uses the default values of the control settings to write the object
module to the file MYPROG.OBJ and the listing to MYPROG.LST.

2. Assume that the source file is again named MYPROG.SRC and the command
line is:

ASM386 MYPROG.SRC PRINT(PROG1.LST) TITLE(PLANS)
PAGEWIDTH(78)

The results are:

• The object file is named MYPROG.OBJ (the default) and the listing file is
named PROG1.LST, as specified by the PRINT control.

• TITLE places PLANS in the header of each page in the listing.

• The pages are 78 characters wide, as specified, and 60 lines long, the
default value for PAGELENGTH.

16 Chapter 2 Using the Assembler

3. Assume that the source file is named MYPROG.SRC and the command is:

ASM386 MYPROG.SRC XREF DEBUG TYPE

This invocation results in the following:

• By default, the object file is named MYPROG.OBJ and the listing is named
MYPROG.LST.

• The object file contains local symbol information (DEBUG) and type
information (TYPE) for variables and labels. This information is useful for
symbolic debugging.

• The listing has the default format: width of 120 characters and length of
60 characters.

• The cross-referenced symbol table listing is included at the end of the
listing (XREF).

Interrupting the Assembler
Use <Ctrl-Break> to interrupt or abort the assembler. <Ctrl-C> does not work as
the interrupt character like <Ctrl-Break>.

Controls
The assembler recognizes two kinds of controls, primary and general, which affect
the assembly of a program as explained in Primary Controls or General Controls.
Assembler control names can be abbreviated as shown in Table 2-1 and Table 2-2.

See also: Using Controls in the Source File, in this chapter

Primary Controls
Primary controls set conditions that apply throughout the entire assembly of a
module. For example, the DEBUG primary control causes all local symbol
information from the source module to be included in the object file. Table 2-1
lists the primary controls. The actions of the NO controls are the opposite of the
descriptions of their companion control.

Place primary controls in the first line in the source file. Such lines are called
primary control lines. Blank lines and comment lines are considered noncontrol
lines.

ASM386 Macro Assembler Operating Instructions Chapter 2 17

If you specify the same primary control in a source file as you've entered on the
command line, the command-line control's specification takes effect. If you
specify a primary control in multiple primary control lines, the condition specified
last takes effect.

For example, assume that the source file contains the following primary control
lines:

$DEBUG NOPAGING
$PRINT(MYLIST)
$PAGING

Assume the invocation line is as follows:

ASM386 MYFILE.ASM PRINT NODEBUG

The assembly proceeds as follows:

• The source listing is sent to a file named MYFILE.LST . The default file name
is the source module name with the LST extension. PRINT in a command
overrides PRINT in the control line, so that the listing appears as MYFILE.LST
instead of MYLIST.

• No debug information is included in the object file because NODEBUG in the
command line has precedence over DEBUG in the control line.

• The listing is paged because PAGING in the third control line cancels out
NOPAGING in the first control line.

18 Chapter 2 Using the Assembler

Table 2-1. Assembler Primary Controls

Controls Abbr.* Default Action by Assembler

DATE (date) DA System time No effect; provided for compatibility
with ASM86.

DEBUG
NODEBUG

DB
NODB

NODB Places local symbol information in the
object file.

ERRORPRINT[(file-spec)]
NOERRORPRINT

EP
NOEP

NOEP Creates a file containing error or
warning messages.

MACRO(parameter)
NOMACRO

MR
NOMR

MR Specifies that macros are processed
during assembly.

MOD386
MOD376
MOD486

-- MOD386 Verifies that the input file meets
Intel386, 376, or Intel486 requirements,
respectively.

N387
N287

-- N387 Generates code for Intel387™ or
Intel287™ coprocessors.

OBJECT[(file-spec)]
NOOBJECT

OJ
NOOJ

OJ Creates an object module.

PAGELENGTH(length)
PAGEWIDTH(width)

PL
PW

PL(60)
PW(120)

Specifies lines/page in the listing.
Specifies characters/line in the listing.

PAGING
NOPAGING

PI
NOPI

PI Formats the listing in pages.

PRINT[(file-spec)] PR PR(source-
file.LST)

Creates a source listing to be printed or
displayed.

NOPRINT NOPR

SYMBOLS
NOSYMBOLS

SB
NOSB

NOSB Places a symbol table in the listing.

TYPE
NOTYPE

TY
NOTY

NOTY Places type information for public
symbols in the object file.

USE32
USE16

U32
U16

U32 Generates 16- or 32-bit addresses and
offsets for the current module.

WORKFILES(dir[,...]) WF WF(:WORK:) Names directory to contain
intermediate files.

XREF
NOXREF

XR
NOXR

NOXR Places a cross-referenced symbol table
in the listing.

* Abbreviations may be used only in control files or in source files, not in invocation commands.

ASM386 Macro Assembler Operating Instructions Chapter 2 19

General Controls
A general control causes an immediate action and takes effect with the next source
line. For example, EJECT places the next line of the source file listing on a new
page, and LIST specifies that the source listing resumes with the next source line
read. Table 2-2 lists the general controls.

You can specify general controls many times within a source file to set conditions
during assembly. For example, you can selectively include portions of the source
code in the listing by starting it with LIST and stopping it with NOLIST as desired.
As another example, you can specify INCLUDE at selected locations in order to
insert the contents of files.

The command-line equivalents of general controls take effect before the first
source line is read, but have no precedence over general controls in the source file.
The last setting specified is in effect.

Table 2-2. Assembler General Controls

Control Abbr.* Default Assembler Function

EJECT EJ --- Starts a new page in the listing (print file).

GEN
GENONLY
NOGEN
INCLUDE

GE
GO
NOGE
IC

GENONLY

Controls the listing of macros in the listing
(print file).

Inserts the specified file in the source input.

LIST
NOLIST
SAVE

LI
NOLI
SA

LIST

Turns the source listing on.
Turns the source listing off.
Saves settings of affected controls on the
stack.

RESTORE RS --- Restores settings of affected controls from
the stack.

TITLE TT Determines the page header for the listing
(print file).

* Abbreviations may be used only in control files or in source files, not in invocation commands.

20 Chapter 2 Using the Assembler

Using Controls in the Source File
You can place assembler controls directly in the source file, giving you selective
control over sections of the program. For example, you can suppress certain
sections of the source listing with the NOLIST control. Placing controls within a
source module can also save time because you do not need to retype them each
time you invoke the assembler for a particular module.

To temporarily change a condition specified in a control line, you need not edit the
source. You can simply specify the new condition using a primary control on the
command line, and it takes effect because a primary control in a command has
precedence over the same primary control within the source file. This technique
cannot be used with general controls.

Source file lines containing controls are called control lines. They begin with the
dollar sign ($) and contain any number of controls and their parameters, up to the
host operating system's limit for characters in a source line. Control lines do not
contain other types of assembly language statements. If you do not specify a
control, its default value is in effect. Table 2-1 and Table 2-2 give the default
value of each control.

See also: Control defaults, Chapter 3

Control lines are recognized and processed immediately when they appear in the
source file except when included in macro definitions. The guidelines for
specifying controls given earlier in this chapter apply to control lines with the
following additions and exceptions:

• Begin the control line with a dollar sign ($) in column one. The first control
must follow the dollar sign immediately, as follows:

$PAGEWIDTH(132)

• Terminate control lines with a carriage return (CR).

• Separate each control with a space.

• Primary controls must be placed before any general controls or source code in
a source file.

• Specify multiple controls on a single line but, unlike other assembly language
statements, do not continue control lines.

• Control lines may end with comments. A comment begins with a semicolon
(;) and continues for the remainder of the line. For example:

$TITLE (Section2) EJECT; next section

ASM386 Macro Assembler Operating Instructions Chapter 2 21

• A control with a parameter uses parentheses to indicate the parameter.
Multiple parameters are separated by commas and the entire group is enclosed
in parentheses.

• No blanks are required between controls and parameters because the
parentheses around the parameters act as separators. For example, the
following two lines are equivalent:

$PRINT (MYPROG.PRT) PAGEWIDTH(78) NOPAGING
$PRINT(MYPROG.PRT)PAGEWIDTH(78)NOPAGING

However, you must enter blanks between controls where no parentheses act as
separators. For example:

$XREF NOPAGING

• Enclose names of included, listing, errorprint, and object files specified within
either single or double quotation marks if they contain spaces or any of the
following characters:

' , () = # ! $ % \ ~ + - & | < > []

For example:

$INCLUDE ("Clude(s).INC")

See also: Specifying controls, in this chapter
Using Controls within Macros, in this chapter

In the following example, controls specified at invocation can override controls
within the source file.

Example

Assume that the source file MYPROG.ASM contains the following control line:

$SYMBOLS PAGEWIDTH(60)

The command is:

ASM386 MYPROG.SRC NOPRINT

In this case, the control lines do not produce the usual results. Normally, SYMBOLS
adds a symbol table to the listing and PAGEWIDTH sets the width of lines in the
listing. Placing NOPRINT on the command line causes SYMBOLS and PAGEWIDTH
to be ignored because no listing is generated.

The following section explains some of the considerations for specifying controls
within macro definitions.

22 Chapter 2 Using the Assembler

Using Controls within Macros
The assembler usually recognizes and processes control lines as soon as they
appear in a source file. However, the assembler can conditionally generate control
lines if you place them within macro definitions or the body of a statement
containing the IF , WHILE, or REPEAT predefined macros. The assembler then
delays recognition and execution of the control line until the macro is called or the
IF , WHILE, or REPEAT is expanded.

The assembler macro processor has two scanning modes: normal and literal. In
normal scanning mode, the assembler recognizes and expands all macros. In literal
scanning mode, the assembler treats nested macro calls as ordinary text strings.

Literal mode is selected by placing an asterisk (*) after the macro metacharacter,
which is % by default, as in the following example:

%*DEFINE(AB) (%EVAL(%TOM))

Literal mode is also in effect by default for THEN and ELSE clauses, because these
clauses are conditional in nature. The examples at the end of this section also
illustrate these concepts.

See also: Macro processing language and scanning modes, ASM386 Assembly
Language Reference

The scanning mode in effect when the control line indicator $ is scanned
determines how the assembler processes a control line. If the $ is encountered
when the macro processor is in normal mode, the assembler treats the rest of the
line as a control line and processes it immediately. If the $ is scanned in literal
mode, the $ and the rest of the line are treated as ordinary text.

The following criteria apply to the way control lines are scanned:

• The line feed (LF) at the end of a control line must be at the same nesting level
as the opening $. Parentheses must be used in pairs.

• A control line in a macro adds one level to the macro nesting.

• If a macro error occurs inside a control line, the traceback of macro nesting
information includes an item for the control, as a ''call'' to the $.

ASM386 Macro Assembler Operating Instructions Chapter 2 23

The following examples illustrate the use of controls in macros.

Examples

1. This example shows a macro whose definition is included from another file:

%DEFINE(MAC) (
$INCLUDE(FILE1)
)

Because DEFINE is called normally, with % instead of %*, the body of the
definition is scanned in normal mode. Consequently, the INCLUDE control line
is recognized immediately and MAC is defined as the contents of the INCLUDE
file. In other words, the contents of FILE1 are stored as the value of MAC.

2. The following example shows the definition of a macro that includes a file
when it is called:

 %*DEFINE(MAC) (
$INCLUDE(FILE2)
)

MAC is scanned in literal mode because of the %* notation preceding the
DEFINE function. Consequently, the INCLUDE control line itself is the
definition of MAC, not the contents of FILE2 , as would have been the case in
normal mode (refer to the previous example). When MAC is called, FILE2 is
read.

3. The following example illustrates how to conditionally include one of two files
using IF..THEN..ELSE clauses:

%IF(condition) THEN (
$INCLUDE(FILE3)
)ELSE(
$INCLUDE(FILE4)
)FI

This example demonstrates how scanning modes are combined. Even though
IF is not preceded by %*, both the THEN and ELSE clauses are scanned in
literal mode because they are conditional statements. However, because %*IF
was not used, the selected THEN or ELSE clause is scanned in normal mode and
FILE3 or FILE4 is immediately included. In this situation, %*IF would not be
useful. IF must always be closed by an FI after the last parenthesis.

24 Chapter 2 Using the Assembler

4. The following example shows the definition of a macro that generates either
the LIST or NOLIST control:

%*DEFINE(PRINT(X)) (
$%X%()LIST
)

The macro call

%PRINT()

would produce the control line

$LIST

while the call

%PRINT(NO)

would produce the control line

$NOLIST

File Usage
File sharing conflicts may occur when using an Intel translator or Relocation and
Linkage (R&L) tool in a DOS network environment. Before invoking an Intel
translator or R & L tool (with network support from DOS), invoke the DOS V3.0 or
later SHARE command. It is recommended that you invoke the SHARE command
in your AUTOEXEC.BAT file.

After successful assembly, the assembler can produce an object file, a listing, and
an errorprint file. Each of these files is optional; certain assembler controls allow
you to specify them. Other assembler controls allow you to regulate their contents.

Source Program Restrictions
The assembler places quantitative restrictions on certain items within source
programs, such as the number of characters in a source line. Most of these
restrictions are listed in Table 2-3.

If your program exceeds a limit, the assembler returns an error. Most quantities in
Table 2-3 are upper limits, but some items show both upper and lower limits. The
table also points out some items for which there are no limits.

ASM386 Macro Assembler Operating Instructions Chapter 2 25

Table 2-3. Assembler Program Restrictions

Item Limit

Source lines/programs No limit

Characters per line
Characters per identifier

255 including CR/LF and nonprinting characters
31 unique, up to 255 total

Symbols per module 2700 standard
3200 with Intel Above™ Board

Continued lines per statement No limit

Characters per string 255 including enclosing quotation marks

Segment size 64K bytes (USE16 segments) 4 gigabytes (USE32
segments)

Number of bytes Size cannot exceed 1K that can be duplicated

Procedure nesting 20 levels per segment

Items in each PUBLIC, EXTRN,
 and PURGE directive Limited by the number of symbols

Parameters in all macro calls 255

Combined total of macro calls,
 active macro expansions,
 and nested INCLUDEs 64 levels

Items per storage initialization list No limit

Fields per record 32

Record size 32 bits

Structure size 64K - 1 bytes (USE16)
4 gigabytes -1 (USE32)

Fields per structure 255

Parameters per codemacro definition 15

Bytes generated by each codemacro 255

26 Chapter 2 Using the Assembler

Output Files
There are three possible output files: the object file, the listing or print file, and the
errorprint file.

The object file contains assembled processor machine code, data initializations,
symbol and type information, and the information necessary for combining the
object module with other modules. After processing by the processor system
utilities, the object file for a source module becomes part of an executable program.
The assembler produces the object file by default unless you specify the NOOBJECT
control.

The object file can optionally contain symbol and type information that is useful
for symbolic debugging and inter-module type checking. The information is
included if you specify the assembler's DEBUG and TYPE controls.

The listing file (or print file) contains the source lines, expanded macro source
code, object code, and any source file error or warning messages produced by the
assembler. Several assembler controls determine the format and content of the file.
For example, the SYMBOLS control directs the assembler to include an optional list
of symbols defined in the source program, called the symbol table. The assembler
produces the listing by default unless you specify the NOPRINT control. 4.

The errorprint file is a summary of the errors and warnings encountered during
assembly. It contains the source lines in which the errors occurred and the error
messages. By default, this summary goes to the console output with the logical
name :CO: . If the ERRORPRINT file has not been assigned to another file, it is
directed to the screen. The assembler does not produce an errorprint file unless you
specify the ERRORPRINT control. Figure 2-1 shows the assembler's logical files.

See also: NOOBJECT, DEBUG, TYPE, SYMBOLS, NOPRINT, and ERRORPRINT
controls, Chapter 3
listing file, Chapter 4

The DOS manual indicates that the maximum number of characters in a pathname
is 63, but in practice various products seem to restrict pathnames to less than 63
characters. To ensure compatibility with all products, make sure that all output
pathnames do not exceed 43 characters. A fatal error is generated if your output
pathname is too long, and the translator or R & L tool aborts.

In iRMX systems, you can use the attachfile command to assign a logical name to
a long pathname. For example:

af /directory/subdirectory/subdirectory as f

You can then use the logical name as follows:

asm386 :f:file.asm

ASM386 Macro Assembler Operating Instructions Chapter 2 27

W-3419

ASM386
Macro

Assembler

Errorprint
File

Listing
File

Object
File

Source
File

Figure 2-1. Macro Assembler Logical File

Work Files
The assembler creates temporary work files while processing the source and deletes
them when the assembly is completed. These files are allocated to the :WORK:
logical device and they do not conflict with any other files.

Under DOS, you may use the SET command to select the drive on which work files
are placed. For example, this command places them in the root directory on
drive D:

C>SET :work:=D:\

This capability is useful when a virtual disk in memory has been created with the
DOS VDISK.SYS device driver.

Confusion may occur on user-defined logical names. The default assignments for
:F0: through :F9: and :WORK: are not in the user manuals. If these logical devices
are not defined with the SET command, the default assignments for :F0: through
:F9: are to devices A through J. The default assignment for :WORK: is the current
default disk. Use the SET command to assign the desired logical devices.

Under iRMX, :work: is defined by the operating system as the :SD:work directory.
The user can establish other logical names (such as :F0:, :F1:, etc) using the
attachfile command.

28 Chapter 2 Using the Assembler

Files consisting of an 8-digit hexadecimal number with no extension may be left in
the current :WORK: directory after you type CTRL-BREAK to abort an Intel
translator or R & L tool or a user program converted to DOS with UDI2DOS.EXE.
These are temporary files created by these programs to store intermediate data.
They are normally deleted at the end of a program's normal execution. Delete or
ignore the files. No important information is contained in them.

Messages
After invocation, the macro processor within the assembler scans the source file for
macros and processes them. In the next phase, referred to as pass 1, the assembler
constructs the symbol table. Lastly, during pass 2, the assembler completes the
actual translation. Most assembler errors are detected during pass 1. If the
assembler detects an error in pass 2, the error message contains ''(PASS 2) ''.

Immediately after invocation, the assembler displays the following sign-on
message:

system-id Intel386 MACRO ASSEMBLER V x.y
Copyright year(s) Intel Corporation

Where:

system-id is the string returned by the operating system.

x.y is the version number.

year(s) lists the copyright year(s).

If the assembler did not detect any fatal errors during assembly, it displays the
following sign-off message:

ASSEMBLY COMPLETE, n WARNINGS m ERRORS

where n and m represent the number of warning and nonfatal error conditions,
respectively, that occurred during processing.

When the assembler detects certain severe errors, it stops processing the source file
and exits to the operating system without producing an object or listing. It
produces an error message ending with ''ASM386 TERMINATED''.

See also: Assembler error messages, Appendix A

ASM386 Macro Assembler Operating Instructions Chapter 2 29

Automation of Program Invocation and Execution
DOS allows you to invoke and execute multiple programs either by using batch
files or command files. The following sections provide examples that demonstrate
how to use these files with the assembler and the binder, BND386.

See also: For details on BND386 and the other utilities, Intel386 Family
Utilities User's Guide.

DOS Batch Files
A batch file contains one or more invocation commands or DOS batch commands
that DOS executes one at a time. All batch files must have the extension BAT.
This section explains how to create batch files that invoke several programs at once
and that can operate on different sets of input files.

See also: DOS batch files, in your DOS manual

✏ Note
DOS batch files cannot be nested. If a batch file references
another batch file, control passes directly to the other batch file,
but control does not return to the referring batch file.

Passing Parameters to Batch Files

It is possible to pass parameters to a DOS batch file when the file executes. The
batch file can do similar work on a different program or set of data each time the
batch file is executed. The following example illustrates this use of a batch file.

In the following example, the batch file ASM.BAT contains the command sequence
that invokes the assembler and BND386 for two modules. Any assembler source
file with the extension ASM can be passed as a parameter to ASM.BAT. Each
percent sign and its accompanying digit in the batch file is replaced with the
parameters specified on the command line that invokes the batch file. For instance:

ASM386 %1.ASM
ASM386 %2.ASM
BND386 %1.OBJ, %2.OBJ

Invoke the batch file by typing the name of the batch file without the BAT
extension, followed by the names of the source files to be translated, without the
ASM source file extension, as follows:

C>ASM PROG1 PROG2

30 Chapter 2 Using the Assembler

ASM.BAT invokes the assembler to assemble PROG1.ASM and PROG2.ASM and
passes the resulting files PROG1.OBJ and PROG2.OBJ to BND386. BND386 then
links the two files and, by default, produces one executable file named PROG1.

Using Batch Commands

In addition to program invocation commands, batch files can contain DOS batch
commands (or subcommands) such as FOR, IF , and GOTO. Such commands enable
you to write a batch file that executes programs conditionally or repeatedly.

See also: Batch file commands, in your DOS manual

DOS Command Files
Under DOS version 2.0 or later, it is possible to invoke the DOS command-line
interpreter program, COMMAND.COM, with input that is redirected from a file (called
a command file). This file can contain DOS commands and invocation commands
for programs such as the assembler. A command file must contain the DOS EXIT
command.

For example, assume you created a command file named MAKEPROG.CMD that
contained the following information:

ASM386 MAIN.ASM
ASM386 IO.ASM
PLM386 UTIL.PLM
BND386 MAIN.OBJ,IO.OBJ,UTIL.OBJ
EXIT

You can redirect the commands in this file to COMMAND.COM by entering the
following:

C>COMMAND <MAKEPROG.CMD

COMMAND.COM then invokes all commands listed in the file MAKEPROG.CMD.

The following considerations apply when invoking COMMAND.COM with input that
is redirected from a command file:

• Command files can only contain fixed sequences of commands; you cannot
pass parameters to COMMAND.COM.

• Command files cannot support conditional DOS batch commands such as IF
and GOTO; commands are always executed sequentially.

ASM386 Macro Assembler Operating Instructions Chapter 2 31

• Command files can be nested by reinvoking COMMAND.COM from the primary
command file with input redirected from a secondary command file. The
secondary command file must contain an EXIT command as its final line.
When the EXIT command is executed, control returns to the point in the
primary file immediately following the point from which the secondary file
was invoked.

• Command files, unlike DOS batch files, can contain continuation lines. For
example, the following is a valid command file:

BND386 FILE1.OBJ,FILE2.OBJ,FILE3.OBJ,&
NOTYPE OJ(PROG1.OBJ)
EXIT

The ampersand is the line continuation character.

• Output from a command file may be redirected to another file in order to
obtain a complete log of all console output created during the command file's
execution, including the invocation line for each program executed in the
command file. For example, the following command invokes the command
file MAKEPROG.CMD and creates a log file named MAKEPROG.LOG.

C>COMMAND <MAKEPROG.CMD>MAKEPROG.LOG

Redirection of Command Input to Batch Files
DOS batch files can contain multiple invocation lines, but each invocation line
must fit on a single line. No line continuation characters (such as the ampersand)
are allowed within batch files. To process continuation lines in batch files, you
must redirect the input from a file that contains continuation lines to a batch file.
The following example shows how to do this.

In this example, two files are created: the batch file LINKBIG.BAT and
LINKBIG.CON , which contains continuation lines. LINKBIG.CON is redirected to
LINKBIG.BAT upon execution.

LINKBIG.BAT contains the line:

BND386 MODULE1.OBJ,MODULE2.OBJ <LINKBIG.CON

LINKBIG.CON contains the continuation line:

 MODULE3.OBJ,MODULE4.OBJ FASTLOAD NODEBUG NOEP & NOPR NOTYPE

When LINKBIG.BAT is executed, BND386 is invoked, linking the four modules
with the specified set of BND386 controls.

32 Chapter 2 Using the Assembler

The sample file, LINKBIG.CON could also be redirected to a batch file that
contains multiple invocation lines, as long as this batch file contains no
continuation lines. For example, the batch file that follows, GENBIG.BAT, contains
several invocation lines:

ASM386 MODULE1.ASM
ASM386 MODULE2.ASM
ASM386 MODULE3.ASM
ASM386 MODULE4.ASM
BND386 MODULE1.OBJ,MODULE2.OBJ,& <LINKBIG.CON

At execution, all of the modules in GENBIG.BAT are assembled and then linked
with the set of BND386 controls specified in LINKBIG.CON .

■■ ■■ ■■

ASM386 Macro Assembler Operating Instructions Chapter 3 33

Assembler Control Reference 3
This chapter contains a detailed description of each assembler control, listed in
alphabetical order. Each description contains the syntax, default value, type
(primary or general), abbreviation, and an explanation of its usage. Syntax
descriptions include a command-line form and a source-file form. In many cases,
the same syntax is used for both forms.

Certain controls override others, causing them to be ignored by the assembler. For
example, if the NOPRINT control is in effect, the assembler ignores a SYMBOLS
control because it cannot create a symbol table if it does not create a print file.
Each control description explains the overrides for the control, if any.

See also: Command-line syntax, Chapter 2

DATE

34 Chapter 3 Assembler Control Reference

DATE

Syntax

Command Line DATE(date)

Source File DATE(date)

Abbreviation DA

Default

System time

Type

Primary

Discussion

The DATE control is supplied for compatibility with ASM86. The control is
processed but the date parameter is ignored. The date that appears in the print file
is obtained through a call to the operating system.

DEBUG

ASM386 Macro Assembler Operating Instructions Chapter 3 35

DEBUG

Syntax

Command Line DEBUG
NODEBUG

Source File DEBUG
NODEBUG

Abbreviation DB
NODB

Default
NODEBUG

Type

Primary

Discussion

DEBUG directs the assembler to include local symbol information for variables and
labels in the object file for use in symbolic debugging. In addition, with the DEBUG
control in effect, the assembler includes LINES and SRCLINES information for
debugger support. NODEBUG directs the assembler to omit debugging information
from the object file.

Depending on the contents of your source file, DEBUG can significantly increase the
size of the object file produced.

The NOOBJECT control overrides the DEBUG and NODEBUG controls.

In ASM386 V4.0, the DEBUG primary control generates debug information in the
object module necessary to support source-level display by debuggers.

If the source level debug support is not desired, the size of the loadable object file
may be reduced by specifying the default NODEBUG control.

If symbolic debug information is desired without source level debug support, the
SRCLINES and LINES debug information may be purged from a loadable object
module using MAP386.

See also: MAP386 and the OBJECTCONTROLS option, Intel386 Family Utilities
User's Guide

EJECT

36 Chapter 3 Assembler Control Reference

EJECT

Syntax

Source File EJECT

Abbreviation EJ

Type

General

Discussion

EJECT directs the assembler to create a new page in the source listing, beginning
with the next source line. Additional EJECT controls on a single control line are
ignored. The EJECT control is not allowed on the command line.

The following is a list of interactions between EJECT and other assembler controls:

• If EJECT appears in a line suppressed by an earlier NOLIST control, a new
page begins when the listing is started again by the appearance of LIST .

• If the NOPRINT control is in effect, EJECT is ignored.

• The NOPAGING control overrides any EJECT controls.

ERRORPRINT

ASM386 Macro Assembler Operating Instructions Chapter 3 37

ERRORPRINT

Syntax

Command Line ERRORPRINT[(file-spec)]
NOERRORPRINT

Source File ERRORPRINT[(file-spe c)]
NOERRORPRINT

Abbreviation EP
NOEP

Default
NOERRORPRINT

Type

Primary

Discussion

ERRORPRINT directs the assembler to create a file containing only error messages
and their corresponding source lines or to print such a summary on the terminal
screen. Each line and error message summary has the same form as in the full
listing. For example:

system-id Intel386
MACRO ASSEMBLER x.y ASSEMBLY OF MODULE MYPROG
OBJECT MODULE PLACED IN MYPROG.OBJ
ASSEMBLER INVOKED BY: ASM386 ERRORPRINT MYPROG.ERR MYPROG.ASM
LOC OBJ LINE SOURCE
------- 31 DATA ENDS
*** WARNING #354 IN 31, SEGMENT CONTENTS DO NOT AGREE WITH ACCESS-TYPE

If you do not supply a file specification, the assembler prints an error summary
similar to the above on the terminal screen, followed by the standard assembler
sign-off message.

See also: Error message formats, Appendix A

NOERRORPRINT directs the assembler not to create the error summary file.

ERRORPRINT and NOPRINT can be specified for the same assembly because the
assembler can generate an errorprint file without generating a print file.

ERRORPRINT

38 Chapter 3 Assembler Control Reference

Place quotation marks around errorprint file names that are specified in the source
file if they contain spaces or any of the following characters:

' , () = # ! $ % \ ~ + - & | < > [] ;

For example:

$ERRORPRINT("ERROR(s).OUT")

Errorprint files that do not contain any of the characters above should appear as
follows:

$ERRORPRINT(ERROR.OUT)

GEN/NOGEN/GENONLY

ASM386 Macro Assembler Operating Instructions Chapter 3 39

GEN/NOGEN/GENONLY

Syntax

Command Line GEN
NOGEN
GENONLY

Source File GEN
NOGEN
GENONLY

Abbreviation GE
NOGE
GO

Default
GENONLY

Type

General

Discussion

The GEN, GENONLY, and NOGEN controls determine the mode of listing assembly
source text, macro calls, and macro expansion text in the print file, as follows:

• GEN produces a listing that contains all source text, all macro calls, all macro
expansions (i.e., the macro text), and object code.

• GENONLY produces a listing that contains source file nonmacro text and the
final resulting text of all macros called, but omits the actual macro calls.
Object code generated inside any macro calls is listed.

• NOGEN produces a listing that contains only the source file text (macro
definitions and calls), not the macro expansions. Object code, if any, is listed
after the line containing the macro call.

GEN produces the most complete and continuous source listing because it provides
a trace of the entire macro call and expansion process. Expansions appear on the
line below the call, indented to the same column as the call. (Horizontal tabs in
macro calls or expansion lines are not expanded.)

GEN/NOGEN/GENONLY

40 Chapter 3 Assembler Control Reference

This makes the GEN listing useful for debugging macros. However, GEN may
produce an inconveniently large print file for programs that contain many macro
calls.

Both the NOMACRO and NOPRINT controls override the GEN, GENONLY, and NOGEN
controls. When any combination of the three controls -- GEN, NOGEN, and
GENONLY -- appears on the same control line within the source file, the last setting
takes effect.

Example

Only one of the GEN, GENONLY, or NOGEN controls can be in effect at one time in
the source listing, although you can specify the controls at selected points to
change the listing mode. The following example shows how the macro MAC is
called in each of the three modes:

• In GEN mode, line 8, the listing includes the macro call and its expansion.

• In GENONLY mode, line 17, the call to MAC (%MAC(4,5,6)) is suppressed, but
the resultant text is listed.

• In NOGEN mode, line 22, only the call to MAC is listed. The expansion lines are
skipped.

GEN/NOGEN/GENONLY

ASM386 Macro Assembler Operating Instructions Chapter 3 41

LOC OBJ LINE SOURCE
 1 NAME XXX
 2 $NOGEN
 3 %*DEFINE(MAC(A,B,C)) (DW %A
 4 DW %B
 5 DW %C
 6)
 7 DATA SEGMENT RW
-------- 8 +1 $GEN
 9 %MAC (1,2,3)
00000000 0100 10 +1 DW %A
 11 +2 1
00000002 0200 12 +1 DW %B
 13 +2 2
00000004 0300 14 +1 DW %C
 15 +2 3
 16 +1
 17 +1 $GENONLY
00000006 0400 18 +2 DW 4
00000008 0500 19 +2 DW 5
0000000A 0600 20 +2 DW 6
 21 +1
 22 $NOGEN
 23 %MAC (7,8,9)
0000000C 0700
0000000E 0800
00000010 0900
-------- 24 DATA ENDS
 25 END

Figure 3-1. Sample Listing for GEN/NOGEN/GENONLY

INCLUDE

42 Chapter 3 Assembler Control Reference

INCLUDE

Syntax

Command Line INCLUDE(file-spec)

Source File INCLUDE(file-spec)

Abbreviation IC

Type

General

Discussion

INCLUDE directs the assembler to insert the contents of a file into the source file.
If INCLUDE appears in the invocation line, the contents of the include file are
inserted before the contents of the main source file. If INCLUDE appears in a
control line, input from the include file begins following the control line and
continues until the end of the include file is reached. At that time, input resumes
from the file that was being processed when the INCLUDE control was encountered.

INCLUDE need not be the last command in a control line; however, it does not take
effect until the end of the control line is reached. The following restrictions govern
the use of INCLUDE:

• Only one INCLUDE control is allowed per line.

• No more than 64 combinations of macro calls and INCLUDE controls can be in
effect at the same time in any one module.

• The maximum nesting level for included files is nine.

• An included file can contain lines specifying primary controls.

Included files specified in the source file must be enclosed within quotation marks
if they contain spaces or any of the following characters:

' , () = # ! $ % \ ~ + - & | < > []

For example:

$INCLUDE("Clude(s).INC")
$INCLUDE("Lot#4.Inc")

LIST

ASM386 Macro Assembler Operating Instructions Chapter 3 43

LIST

Syntax

Command Line LIST
NOLIST

Source File LIST
NOLIST

Abbreviation LI
NOLI

Default
LIST

Type

General

Discussion

LIST directs the assembler to resume the source listing in the print file with the
next source line read. NOLIST suppresses the listing, beginning with the next line
read, until the next occurrence (if any) of LIST . Specifying NOLIST at invocation
suppresses the listing, beginning with the first line.

The following is a list of interactions between LIST/NOLIST and other assembler
controls:

• NOPRINT, XREF, and SYMBOLS override the LIST/NOLIST controls.

• PRINT does not override NOLIST. If both NOLIST and PRINT are in effect,
only the assembler messages for source lines containing errors appear in the
print file. Otherwise, the file contains only a header (assuming SYMBOLS or
XREF is not in effect).

• If an EJECT control appears in a line suppressed by NOLIST, a new page
begins when the listing is started again by LIST .

• NOLIST affects the setting of the PAGELENGTH control only if NOLIST is still
in effect when the end of the source listing is reached. If NOLIST suspends the
listing in the middle of a page and a subsequent LIST begins the listing again,
source lines are added to the page until it reaches the specified length.

MACRO

44 Chapter 3 Assembler Control Reference

MACRO

Syntax

Command Line MACRO
NOMACRO control

Source File MACRO[(parameter)]
NOMACRO

Abbreviation MR
NOMR

Default
MACRO

Type

Primary

Discussion

The MACRO control directs the assembler to recognize and process macros.

Macros can appear anywhere in the source file, including control lines. Refer to
Chapter 2 for an example of a macro call within a control line. In effect, any
occurrence of the macro metacharacter (% by default) in the source is considered a
macro call. The parameter has no effect for the assembler but is allowed for
compatibility with existing ASM286 files.

Macros can also appear in the invocation line. Use the %macro-string
statement.

See also: The %macro-string statement, Chapter 2
macro processing language, ASM386 Assembly Language Reference

NOMACRO directs the assembler to scan macros only as normal assembly language
text, which usually causes assembler errors. It may speed up the assembly if no
macros are used and the NOMACRO control is in effect.

NOMACRO overrides the GEN/GENONLY/NOGEN controls.

MOD386/MOD376/MOD486

ASM386 Macro Assembler Operating Instructions Chapter 3 45

MOD386/MOD376/MOD486

Syntax

Command Line MOD386
MOD376
MOD486

Source File MOD386
MOD376
MOD486

Default
MOD386

Type

Primary

Discussion

The MOD386, MOD376, and MOD486 controls direct the assembler to ensure that the
input file meets the requirements of the Intel386, 376, and Intel486 processors,
respectively. By default, the assembler accepts assembly language source code that
executes on the Intel386 processor.

The Intel486 or Pentium processor architecture is fully compatible with the
Intel386 processor architecture. All Intel386 processor modes are available to the
Intel486 or Pentium processor. The Intel486 processor also has an expanded
instruction set and additional registers which are supported by the assembler with
the MOD486 control specified.

The MOD486 primary control provides the following support for Intel486
microprocessor software development using ASM386 V4.0:

• Enables the test registers TR3, TR4, and TR5 which are defined on the
Intel486 microprocessor.

• Enables the forms of the MOV instruction to load and store the TR3, TR4, and
TR5 registers.

• Generates machine code for all forms of the Intel486 microprocessor
instructions.

See also: Differences between Intel386 and Intel486 processors, ASM386
Assembly Language Reference

MOD386/MOD376/MOD486

46 Chapter 3 Assembler Control Reference

The 376 processor architecture is a subset of the Intel386 processor architecture:
the 32-bit protected mode is available, but real address mode, virtual 8086 mode,
and paging are not available. The segmentation-based memory management and
protection features are available on the 376 processor. 286 processor call,
interrupt, or trap gates or 286 processor TSSs are not supported on the 376
processor.

See also: Differences between the 376 and Intel386 processors, ASM386
Assembly Language Reference

When assembling for the 376 processor, make sure the input file contains only
USE32 code or stack segments. USE16 code segments are not executable on the
376 processor. The assembler issues an error message if the USE16 segment
directive is in effect for a code or a stack segment; USE16 data segments may be
included in the input file. An error is also issued if the USE16 keyword is used in
an EXTRN directive of type NEAR or FAR.

Because the 376 processor has a 24-bit address bus, a segment must be no larger
than 16 megabytes. The assembler issues a warning when you specify MOD376 and
the source file contains a segment exceeding 16 megabytes.

See also: Errors and warnings, Appendix A

N387/N287

ASM386 Macro Assembler Operating Instructions Chapter 3 47

N387/N287

Syntax

Command Line N387
N287

Source File N387
N287

Default
N387

Type

Primary

Discussion

By default, the assembler generates code for Intel387 floating-point coprocessor
instructions. The Intel387 floating-point coprocessor includes all the instructions
for the Intel287 plus FSINCOS, FSIN , FCOS, FUCOMPP, FUCOM, FUCOMP, and
FPREM1.

N287 directs the assembler to detect the instructions not supported on the Intel287
and to issue an error message for each line that contains an instruction unique to the
Intel387 floating-point coprocessor.

See also: Instructions for the Intel387 floating-point coprocessor, ASM386
Assembly Language Reference

OBJECT

48 Chapter 3 Assembler Control Reference

OBJECT

Syntax

Command Line OBJECT[(file-spec)]
NOOBJECT

Source File OBJECT[(file-spec)]
NOOBJECT

Abbreviation OJ
NOOJ

Default
NOOBJECT

Type

Primary

Discussion

OBJECT directs the assembler to create an object file during assembly of the
specified source file. If severe errors are found, the object file is not produced.

See also: Errors that affect the creation of an object file, Appendix A

If you do not specify NOOBJECT or you specify OBJECT without the object-file
parameter, the assembler creates an object file with the same file name as the
source file and the extension OBJ.

NOOBJECT directs the assembler not to create an object file.

NOOBJECT overrides the DEBUG/NODEBUG and TYPE/NOTYPE controls.

Object file names specified in the source file must be enclosed within quotation
marks if they contain spaces or any of the following characters:

' , () = # ! $ % \ ~ + - & [< > [] ;

For example:

$OBJECT("TOP(s).OBJ")

PAGELENGTH

ASM386 Macro Assembler Operating Instructions Chapter 3 49

PAGELENGTH

Syntax

Command Line PAGELENGTH(length)

Source File PAGELENGTH(length)

Abbreviation PL

Default
PAGELENGTH(60)

Type

Primary

Discussion

PAGELENGTH directs the assembler to create print file pages of a specified length.
The value of length may be an unsigned decimal integer from 10 to 65535
representing the number of lines per page of the print file. The total number of
lines per page includes any header lines on the page. The minimum page length is
10 lines.

PAGELENGTH is ignored if the NOPRINT or NOPAGING control is in effect.

NOLIST affects the setting of PAGELENGTH only if NOLIST is in effect when the
end of the source listing is reached. If NOLIST suspends the listing in the middle of
a page and a subsequent LIST begins the listing again, source lines are added to
that page until it reaches the specified length.

PAGEWIDTH

50 Chapter 3 Assembler Control Reference

PAGEWIDTH

Syntax

Command Line PAGEWIDTH(width)

Source File PAGEWIDTH(width)

Abbreviation PW

Default
PAGEWIDTH(120)

Type

Primary

Discussion

PAGEWIDTH directs the assembler to create print and errorprint file pages of a
specified width. The value of width may be an unsigned decimal integer that
specifies the number of characters on a line of the print and errorprint files.

The minimum page width is 60 characters; the maximum is 132.

The NOPRINT control overrides PAGEWIDTH.

PAGING

ASM386 Macro Assembler Operating Instructions Chapter 3 51

PAGING

Syntax

Command Line PAGING
NOPAGING

Source File PAGING
NOPAGING

Abbreviation PI
NOPI

Default
PAGING

Type

Primary

Discussion

PAGING directs the assembler to format the print file into pages, as follows:

• Every page is initiated with a form feed character.

• Each page begins with a header containing the assembler name, title, date, and
page number.

• The symbol table listing, if present, begins on a new page, following the source
listing.

The length of the page depends on the setting of the PAGELENGTH control.

NOPAGING prevents the print file from being paged. Instead, a single header is
printed at the beginning of the file and the listing is continuous until the symbol
table (if any), which is separated from the source listing by four blank lines.

The following is a list of interactions between PAGING/NOPAGING and other
assembler controls:

• NOPRINT overrides PAGING and NOPAGING.

• NOPAGING overrides PAGELENGTH.

• NOPAGING overrides EJECT.

PRINT

52 Chapter 3 Assembler Control Reference

PRINT

Syntax

Command Line PRINT[(file-spec)]
NOPRINT

Source File PRINT[(file-spec)]
NOPRINT

Abbreviation PR
NOPR

Default
PRINT source-file .LST

Type

Primary

Discussion

PRINT directs the assembler to create a source listing during assembly and write it
to the listing file or to the screen. If you do not specify NOPRINT or you specify
PRINT without the file-spec parameter, the source listing appears in a file with the
same file specification as the source file with the LST extension.

NOPRINT directs the assembler not to create a source listing.

NOPRINT overrides all controls affecting the print file (EJECT, SYMBOLS, etc.), but
does not affect controls related to the object file (DEBUG, TYPE, etc.).

If NOLIST is used while PRINT is in effect, the listing contains only the header,
error messages, and those source lines containing errors. Correct source lines do
not appear unless the listing is begun again by the LIST control.

Print files specified in the source file must be enclosed within quotation characters
if they contain spaces or any of the following characters:

' , () = # ! $ % \ ~ + - & | < > [] ;

For example:

$PRINT("New(s).LST")

SAVE/RESTORE

ASM386 Macro Assembler Operating Instructions Chapter 3 53

SAVE/RESTORE

Syntax

Source File SAVE
RESTORE

Abbreviation SA
RS

Type

General

Discussion

SAVE directs the assembler to save the current settings of the LIST/NOLIST and
GEN/GENONLY/NOGEN controls on a stack. The current setting is the setting in
effect at the beginning of the SAVE control line. RESTORE specifies that the most
recently saved settings on the stack become the current settings of those controls.
SAVE and RESTORE are not allowed on the command line. The maximum nesting
level of SAVEs is eight.

The SAVE and RESTORE controls do not function correctly when used under the
following conditions:

• Fewer than two lines exist between the SAVE followed by RESTORE.

• The control lines containing SAVE/RESTORE are in an include file.

• SAVE or RESTORE is combined with either the GEN or NOGEN control.

Example

SAVE and RESTORE can be used to regulate the listing of macros. For example,
you may want a listing that contains both macro calls and their results. This listing
would be comparable to a combination of the results of the NOGEN and GEN
controls. The call line is listed in NOGEN mode; both the call line and the
expansion are listed in GEN mode. The following example shows the use of
SAVE/RESTORE to regulate the listing of a macro MAC for two calls.

SAVE/RESTORE

54 Chapter 3 Assembler Control Reference

LOC OBJ LINE SOURCE
 1 NAME SAVE_TEST
 2
 3 +1 $GEN
 4 +1 $SAVE ;SAVES GEN'S SETTING ON STACK
 5 %*DEFINE(MAC(A, B))(
 6 MOV AX, %A
 7 MOV BX, %B
 8)
-------- 9 DATA SEGMENT RW
00000000 0400 10 D1 DW 4
-------- 11 DATA ENDS
-------- 12 CODE SEGMENT EO
 13 ASSUME DS:DATA
 14 $NOGEN
 15 ;NOGEN SETTING IS IN EFFECT
 FOR NEXT MACRO CALL
 16 %MAC (40H, 50H)
00000000 66B84000
00000004 66B85000
 17 $RESTORE ;GEN SETTING FROM STACK
 IS IN EFFECT FOR NEXT CALL
 18 %MAC (70H, 80H)
 19
00000008 66B8700C
 20 MOV AX, %A
 21 70H
0000000C 66BB8000
 22 MOV BX, %8
 23 80H
 24

 25 CODE ENDS
 26 END
ASSEMBLY COMPLETE, NO WARNINGS, NO ERRORS.

Figure 3-2. Sample Listing for SAVE/RESTORE

SYMBOLS

ASM386 Macro Assembler Operating Instructions Chapter 3 55

SYMBOLS

Syntax

Command Line SYMBOLS
NOSYMBOLS

Source File SYMBOLS
NOSYMBOLS

Abbreviation SB
NOSB

Default
NOSYMBOLS

Type

Primary

Discussion

SYMBOLS directs the assembler to append a symbol table to the source listing in the
print file. The symbol table is an alphabetical list of all assembler identifiers
defined within the source, with their attributes. Assembler identifiers do not
include macro identifiers.

See also: Symbol table, Chapter 4

NOSYMBOLS directs the assembler to suppress the symbol table.

NOPRINT overrides SYMBOLS; XREF overrides NOSYMBOLS.

TITLE

56 Chapter 3 Assembler Control Reference

TITLE

Syntax

Command Line TITLE(title)

Source File TITLE(title)

Abbreviation TT

Default
TITLE(module-name)

Type

General (source file)
Primary (command line)

Discussion

TITLE directs the assembler to place a character string in the header on the first
line of each page of the print file.

In the command line, TITLE functions as a primary control and sets the title for
each page of the file. When specified in a control line, TITLE functions as a
general control. The specified title appears on the page where the TITLE control
line occurs and on all subsequent pages until changed by another TITLE control.

TITLE does not cause a new page to start. The EJECT control or normal paging
determine the start of a new page.

The maximum title length is 60 printable ASCII characters. If the title does not fit
within the specified page width, the assembler truncates the title on the right. No
error message is generated for titles up to 80 characters. Titles over 80 characters
long generate incorrect error messages:

ERROR #520: BAD CONTROL PARAMETER
ERROR #612: EXPECTED A RIGHT PARENTHESIS

Titles specified in control lines must be enclosed within quotation marks if they
contain spaces or any of the following special characters:

' , () = # ! $ % \ ~ + - & | < > []

TITLE

ASM386 Macro Assembler Operating Instructions Chapter 3 57

For example:

$TITLE("Section 2")

If the title itself contains a quotation character or apostrophe, enclose the title in the
other type of quote mark. For example:

$TITLE('Nancy"s')
$TITLE("Nancy's")

In the absence of any TITLE controls, the assembler uses the module name
specified with the NAME directive as the title.

NOPRINT overrides TITLE . The NOPAGING control overrides TITLE controls that
appear after the primary control lines, because no new pages are created.

Use of the TITLE control on the command line overrides use of the TITLE control
on the primary control line in the source file.

TYPE

58 Chapter 3 Assembler Control Reference

TYPE

Syntax

Command Line TYPE
NOTYPE

Source File TYPE
NOTYPE

Abbreviation TY
NOTY

Default
NOTYPE

Type

Primary

Discussion

TYPE directs the assembler to include type information about the PUBLIC variables
and labels in the symbol records of the object module. NOTYPE directs the
assembler to omit type information from the object module. The NOOBJECT
control overrides TYPE.

Type information for variables declared PUBLIC is used primarily to assist
debuggers in displaying symbols. Although the type produced for a variable may
not exactly correspond to the intended contents of that memory location, the type is
sufficient to specify the number of bytes to be displayed for the variable. Also, in
the case of an array or structure, the format and size associated with the symbol are
included.

The type information produced by the assembler can also be used for inter-module
type checking by BND386, the binder for processor modules. BND386 compares
the use of variables in different modules to ensure that every use of a variable is
consistent with its type. However, the utility of TYPE is limited because the
assembler does not produce type information for external symbols, nor does it
support perfect type matching with high-level languages.

See also: Assembler data types, ASM386 Assembly Language Reference

USE32/USE16

ASM386 Macro Assembler Operating Instructions Chapter 3 59

USE32/USE16

Syntax

Command Line USE32
USE16

Source File USE32
USE16

Abbreviation U32
U16

Default
USE32

Type

Primary

Discussion

USE16 directs the assembler to generate 16-bit addresses and offsets, as well as the
appropriate operand sizes and address mode override prefixes. In this mode, which
is compatible with ASM286, the assembler supports a maximum segment size of
64K. If USE16 is in effect, the assembler can translate ASM286 assembly language
modules without source modification.

ASM386 performs 32-bit arithmetic even when you specify USE16. ASM386 does
not support register expressions that use scale with USE16.

USE32, the default, directs the assembler to generate 32-bit addresses and offsets,
as well as the appropriate operand sizes and address mode override prefixes. In this
context, the assembler supports a maximum segment size of 4 gigabytes.

The assembly language includes the USE16 and USE32 segment USE attributes that
perform the same functions as the USE16 and USE32 controls, respectively. USE32
is the default.

USE32/USE16

60 Chapter 3 Assembler Control Reference

The following rules also apply:

• Only one member of the control pair USE32 and USE16 can be specified in the
invocation line, that is, if USE16 is specified USE32 cannot be specified.

• If both USE16 and USE32 are specified in source control lines, the last one
specified is in effect.

See also: Segment USE attributes, ASM386 Assembly Language Reference

WORKFILES

ASM386 Macro Assembler Operating Instructions Chapter 3 61

WORKFILES

Syntax

Command Line WORKFILES(dir1 [, dir2])

Source File WORKFILES(dir1 [, dir2])

Abbreviation WF

Default
WORKFILES(:WORK:,:WORK:)

Type

Primary

Discussion

WORKFILES specifies logical names for devices or directories for storage of
assembler-created temporary files. These intermediate files are deleted at the end
of assembly. A single name may be specified as the parameter; this is equivalent to
specifying that name twice.

This is provided for compatibility with earlier assemblers.

See also: Work Files, Chapter 2

XREF

62 Chapter 3 Assembler Control Reference

XREF

Syntax

Command Line XREF
NOXREF

Source File XREF
NOXREF

Abbreviation XR
NOXR

Default
NOXREF

Type

Primary

Discussion

XREF directs the assembler to append a symbol table listing, including cross-
reference line numbers, to the source listing in the print file. This table has the
same format as the table produced by the SYMBOLS control, with an additional field
entitled XREFS. The XREFS field contains the numbers of the lines in which a
symbol is defined, referenced, or purged.

See also: Symbol table, Chapter 4

NOXREF directs the assembler to omit the cross-referenced field from the print file.

XREF overrides the SYMBOLS and NOSYMBOLS controls. NOPRINT overrides XREF.

■■ ■■ ■■

ASM386 Macro Assembler Operating Instructions Chapter 4 63

The Listing (Print File) 4
The listing, sometimes referred to as the print file, provides information on the
assembly of a module, such as a listing of the source code and object code, and any
errors or warnings produced by the assembler. This chapter describes the fields of
information in the print file and the file's optional symbol table listing.

Figure 4-1 is a sample listing for an assembler module named MYPROG, which
contains errors to illustrate the assembler error reporting. The four main fields of
information in the print file are LOC (location counter), OBJ (object code), LINE
(line number), and SOURCE (source text). Other kinds of information may appear
in a print file, depending on the nature of the source program. In general,
information generated by the assembler appears to the left of the line number and
source code appears to the right of the line number.

The Default Print File
If you do not specify any assembler controls that govern the format of the print file,
the file has the following characteristics:

• The file specification is the source file's name with LST extension.

• The file is divided into pages 60 lines long and 120 characters wide. The first
line of each page contains the assembler name, the title (the module name
specified with the NAME directive), the time and date, and the page number.

For macros, the file contains the source file's text and the final resulting text of all
macros, but not the actual macro calls. All object code generated inside macro
calls is listed.

64 Chapter 4 The Listing (Print File)

Intel386 MACRO ASSEMBLER MYPROG time mm/dd/yy PAGE 1

system-id Intel386 MACRO ASSEMBLER Vx.y ASSEMBLY OF MODULE MYPROG
OBJECT MODULE PLACED IN MYPROG.OBJ
ASSEMBLER INVOKED BY: ASM386 SYMBOLS PAGEWIDTH 73 MYPROG.ASM

LOC OBJ LINE SOURCE
 1 NAME MYPROG
 2
REG 3 COUNT EQU CX
-0800 4 IVAL EQU -800H
0100 5 AR_SIZE EQU 100H
 # 6 R17 RECORD SIGN:1, LOW7:7
 7
 8 EXTRN SYSTEM:FAR
 9 PUBLIC INIT
------- 10 FLOAT STRUC
0000000 11 EXPONENT DB 0
0000001 12 MANTISSA DD 0
------- 13 FLOAT ENDS
 14
C MACRO 15 CODEMACRO D7 VALUE:D
 # 16 R17 <0, VALUE>
 # 17 ENDM
 18
------- 19 STSEG STACKSEG 100
 20
------- 21 DATA SEGMENT RW USE32
00000000 03 22 INITIAL FLOAT <3,5>
00000001 05000000
00000005 03 23 TOP DB 3, 10
00000006 0A
 24 WOMBAT
***---------------------------------------^
*** ERROR #1 IN 24, SYNTAX ERROR

Figure 4-1. Sample Print File Page

ASM386 Macro Assembler Operating Instructions Chapter 4 65

00000007 414243 25 STRNG DB 'ABC'
0000000A (10 26 DW 10 DUP (1,3,44H)
 0100
 0300
 4400
)
00000046 05000000 R 27 ITOP DW TOP
0000004A 46000000 R 28 IITOP DD ITOP
0000004E 07 29 D7 07H
0000004F ---- R 30 ES_SEL DW EXTRA
-------- 31 DATA ENDS
 32
-------- 33 EXTRA SEGMENT RW USE32
AAAAAAAA 34 ORG 0AAAAAAAAH
AAAAAAAA (256 35 ARRAY DD AR_SIZE DUP (?)
 ????????
)
-------- 36 EXTRA ENDS
 37
AAAAAAB4:[] 38 AR1BX EQU ES:ARRAY1
 [EBX+10]
 39
-------- 40 CODE SEGMENT ER
 41 ASSUME DS:DATA
 42
00000000 ---- R 43 DS_SEL DW DATA
 44
00000002 45 INIT PROC FAR
00000002 66B9F600 46 MOV COUNT,AR_SIZE - 10

Figure 4-1. Sample Print File Page (continued)

66 Chapter 4 The Listing (Print File)

00000006 6689CB 47 MOV BX, COUNT
00000009 48 INITLOOP:
00000009 26C783B4AAAAAAO00F8FF
 R 49 MOV AR1BX, IVAL FF
00000014 E2F3 50 LOOP INITLOOP
00000016 CB 51 RET
00000017 52 INIT ENDP
 53
00000017 2E8E1D00000000 R 54 START: MOV DS, DS_SEL
0000001E 8E054F000000 R 55 MOV ES, ES_SEL
00000024 9A02000000---- R 56 CALL INIT
0000002B 9A00000000---- E 57 CALL SYSTEM
-------- 58 CODE ENDS
 59
 ---- 60 CODE_16 SEGMENT EO
 USE16
 0000 B8---- R 61 MOV AX, EXTRA
 0003 8ECO 62 MOV ES, AX
 0005 666726C7843BAAAAAAAA
 R 63 MOV ES:ARRAY1[EBX][EDI],
 0FFFFFFFFH FFFFFFFF
 ---- 64 CODE_16 ENDS
 65
 66 +1 $INCLUDE
 (WOMBAT.INC)
 =1 67 WOMBAT
*** ------------------------------------^
*** ERROR #1 IN (WOMBAT.INC, LINE 67), SYNTAX ERROR
 68 END START, DS:DATA, SS:STSEG
 69

Figure 4-1. Sample Print File Page (continued)

ASM386 Macro Assembler Operating Instructions Chapter 4 67

Print File Headers
The first line of each page of the print file contains the assembler name, the title
(either the module name or the name you specified with the TITLE control), the
time and date determined by the operating system, and the page number. The first
page contains an additional header in the following form:

system-id Intel386 MACRO ASSEMBLER V x.y
ASSEMBLY OF MODULE module-name
OBJECT MODULE PLACED IN object-file
ASSEMBLER INVOKED BY: ASM386 [controls] source-file

If no object file is requested or if errors prevent an object module from being
created, the second line of the header contains a message NO OBJECT FILE
REQUESTED or NO OBJECT MODULE CREATED. The last header line lists the
controls used in the assembler invocation.

See also: Command Syntax, Chapter 2

68 Chapter 4 The Listing (Print File)

Location Counter (LOC)
The program location counters track the current offset within the segment being
assembled. The LOC field contains the location counter. For code in USE32
segments, the location counter is an eight-digit hexadecimal number. For code in
USE16 segments, the upper four digits are blank and the location counter appears in
the last four columns.

For source lines that generate object code and for labels (LABEL or PROC), the LOC
field contains the location counter value effective at the beginning of the line.

For source lines containing the ORG directive, the LOC field contains the new value
specified by the ORG statement.

The LOC field is blank for lines containing comments, directives, controls, macro
definitions, or record definitions. If the object code for a source statement appears
on more than one line, all other fields of the continued lines are blank, including
the location counter.

For record definitions, a pound sign (#) appears in the rightmost column of the LOC
field to signal that assembly is not taking place. For example:

 # 6 R17 RECORDSIGN:1, LOW7:7

When a STRUC, SEGMENT, STACKSEG, or ENDS line has been coded, the LOC field
contains the notation --------. For a USE16 SEGMENT, the notation is ----. The
notation signals a break in the flow of the location counter. For example:

-------- 21 DATA SEGMENT RW USE32

Equated Symbols (EQU Directive)
Equated symbols are on the left-hand side of a statement containing the EQU
directive. Information about equated symbols appears in the last half of the LOC
field and the first half of the OBJ field, starting in column three.

If the symbol is equated to a variable or label, this area contains the hexadecimal
offset of the symbol. Variable or label equates can have segment override and
indexing attributes. A colon (:) after the offset indicates an override attribute;
brackets ([]) indicate an indexing attribute, as in the following example:

AAAAAAB4:[] 38 AR1BX EQU ES:ARRAY1 [EBX+10]

ASM386 Macro Assembler Operating Instructions Chapter 4 69

If the symbol is equated to a number, this area contains the hexadecimal value of
the number. If the symbol is equated to one of the following, the item's identifier
appears in this area:

Item Identifier
register REG
macro MACRO
codemacro C MACRO
segment SEGMENT
external variable EXTRN
record RECORD
record field RFIELD
structure STRUC
structure field SFIELD
instruction INSTRUCTION
keyword KEYWORD

For example, the LOC field contents for a symbol equated to a register are shown in
this line:

REG 3 COUNT EQU CX

Floating-point Stack Elements (ST)
A floating-point stack element is indicated by ST(i) , where i is the numerical
index value beginning in column 3 if the element is indexed, or by ST if the index
is 0.

COMM Variables and Labels
The word COMM appears in columns 3 through 6 for each line of a data definition
given the COMM attribute with the COMM statement.

70 Chapter 4 The Listing (Print File)

Object Code (OBJ)
The object code is displayed as hexadecimal starting in column 10 and is filled as
follows:

• The maximum size of an instruction is 15 bytes, even if all five prefix bytes
are present.

• The field contains the notation ---- if segment selector values were assembled.

If an assembler statement spans several lines, object code produced for completed
constructs on a continued line prints with the continued line. The assembler does
not wait until a statement is completed to display all the object code.

Whenever a DUP field begins, a left parenthesis appears in the left column of the
OBJ field, followed by the count in decimal numbers. The content bytes are left
justified on the lines that follow, ending with a right parenthesis in the leftmost
column. For example:

0000000A (10 25 DW 10 DUP (1,3,44H)
 0100
 0300
 4400
)

For nested DUPs, the left parenthesis, number, and the right parenthesis are
indented one column for each nesting level, but the content bytes are never
indented.

Relocatable or External Code (R, E)
The object code can be followed by a relocation indicator, which is the letter R if
relocatable object code is generated on the current line, or the letter E if external
code is generated. The E appears on lines containing code that is both external and
relocatable. For example:

00000019 9A02000000---- R 55 CALL INIT
00000020 9A00000000---- E 56 CALL SYSTEM

Include Nesting Indicator (=)
An equal sign (=) followed by a number from 1 to 9 appears between the object
code and the line number for all source lines that come from include files. The
number indicates the level of nesting. An asterisk (*) appears if the include nesting
level exceeds 9.

 66 $INCLUDE (WOMBAT.INC)
=1 67 WOMBAT

ASM386 Macro Assembler Operating Instructions Chapter 4 71

Line Numbers (LINE)
The LINE field is five characters long. The line numbers begin with 1 and are
incremented for every source or macro expansion line listed.

Macro Expansion Indicator (+)
The first column following the line number field of a macro expansion line
contains a plus (+). The next two columns contain a number that indicates the
nesting level of the macro, except for expansions, in which case these two columns
are blank.

=1 85 %INC1(EXAMPLE,SIMPLE)
=1 86 +1
=1 87 +1 ;THIS %NOUN
=1 88 +2 EXAMPLE IS %ADJ
=1 89 +2 SIMPLE

Source Statements (SOURCE)
The source text is a copy of the source line of macro-generated text (as determined
by the setting of the GEN/NOGEN/GENONLY controls).

Tabs in your source are reproduced so that the source text looks the same in the
listing. If the GEN control is in effect, tabs are not expanded in lines containing
macro calls (or parts of calls) or in macro expansion lines; instead, tabs appear as
single spaces.

If a source statement exceeds the specified page width, it continues on the next line
and the continued lines contain only source text, as shown:

00000009 6626C783B4AAAAA00F850 INITLOOP:MOV ES:ARRAY1
 [EBX+10],IVAL

An error or warning message appears immediately after an erroneous line. The
message contains an error or warning number, a listing line number, a pass number
(if other than the first pass), and a brief description.

See also: Interpreting and correcting errors, Appendix A

72 Chapter 4 The Listing (Print File)

The Symbol Table
The DOS symbol table capacity is approximately 4500 seven-character symbols
when expanded memory and at least 568K conventional memory are available.

If the SYMBOLS or XREF control is in effect, the symbol table follows the source
listing. SYMBOLS generates the standard table; XREF generates the same table with
the addition of the numbers of each line in which a particular symbol was
referenced. The example in Figure 4-2 was generated with SYMBOLS.

The symbols are in alphabetical order using the ASCII character order, except for
the underscore (_), which comes first. Reserved names are not included unless they
have been redefined or purged.

If the PAGING control is in effect, the symbol table begins on a new page;
otherwise, it is separated from the source listing by four blank lines. The final
message of the print file, which signals the end of assembly and shows the number
of warnings and errors, appears after the symbol table.

See also: Symbol table fields and examples, Chapter 4

ASM386 Macro Assembler Operating Instructions Chapter 4 73

Intel386 MACRO ASSEMBLER MYPROG time mm/dd/yy PAGE 1

SYMBOL TABLE LISTING
- - - - - - - - - -
NAME TYPE VALUE ATTRIBUTES
AR1BX......V DWORD AAAAAAB4H ES:[EBX]
ARRAY1.....V DWORD AAAAAAAAH (256) EXTRA ES:
AR_SIZE....NUMBER 0100H
CODE.......SEGMENT SIZE=00000032H ER USE32
CODE_16....SEGMENT SIZE-00000013H E0 USE32
COUNT......REG CX
D7.........C MACRO DEFS=1
DATA.......SEGMENT SIZE=00000051H RW USE32
DS_SELV WORD 00000000H CODE
ES_SELV WORD 0000004FH DATA
EXPONENT...V BYTE 00000000H SFIELD
EXTRA......SEGMENT SIZE=AAAAAEAAH RW USE32
FLOAT......STRUC SIZE=00000005H #FIELDS=2
IITOP......V DWORD 0000004AH DATA
INIT.......P FAR 00000002H CODE WC=0 PUBLIC
INITIAL....V STRUC 00000000H DATA
INITLOOP...L NEAR 00000009H
ITOP.......V DWORD 00000046H DATA
IVAL.......NUMBER FFFFF800H
LOW7.......R FIELD 00000000H WIDTH=7
MANTISSA...V DWORD 00000000H SFIELD
R17........RECORD SIZE=1 WIDTH=8 DEFAULT=00H
SIGN.......RFIELD 00000007H WIDTH=1
START......L NEAR 00000017H
STRNG......V BYTE 00000007H (3) DATA
STSEG......STACK SIZE=00000064H RW PUBLIC USE32
SYSTEM.....L FAR 00000000H EXTRN
TOP........V BYTE 00000005H (2) DATA
VALUE......------ --UNDEFINED--
WOMBAT.....------ --UNDEFINED--

END OF SYMBOL TABLE LISTING
ASSEMBLY COMPLETE, NO WARNINGS, 2 ERRORS

Figure 4-2. Sample Symbol Table

74 Chapter 4 The Listing (Print File)

Symbol Table Fields
The fields of the symbol table are NAME, TYPE, VALUE, ATTRIBUTES. The XREF
field occurs when the table is generated by the XREF control.

In the NAME field, the name of the symbol appears as it was entered. The width of
the field depends on the size of the longest name in the table, up to a maximum of
31 unique characters. Spaces and periods are added to fill out the field for short
names.

The TYPE field appears after the NAME field. The possible types are described in
the following sections.

The VALUE field contains the symbol's value, which is eight hexadecimal digits
long for symbols within USE32 segments or four digits for symbols within USE16
segments. Not every type of symbol has a value displayed. Except for floating-
point stack elements and register names, all displayed values are in hexadecimal.

The ATTRIBUTES field contains other pertinent information about the symbol,
depending on its type. For example, the ATTRIBUTES field for a codemacro
contains the number of its definitions.

The last part of the ATTRIBUTES field contains cross-reference information if the
XREF control is in effect. The field contains one line number for each appearance
of the symbol in the program. A pound sign (#) follows the number if the line
contains a definition of the symbol. A P follows the number if the symbol was
purged on that line. If the ATTRIBUTES/XREF field overflows a line, the field
continues on subsequent lines.

The assembler lists as many cross-references as available memory allows. If
memory is exhausted while the assembler is sorting cross-references, an error
message appears at the beginning of the symbol table.

Code macros (C MACRO)

C MACRO in the TYPE field indicates a codemacro. The VALUE field is blank. The
ATTRIBUTES field contains the notation DEFS=n, where n is the number of the
codemacro's definitions.

Public and External Symbols (PUBLIC, EXTRN)

Public symbols have the PUBLIC attribute after all other attributes.

The TYPE field for external symbols contains the type that appears in the EXTRN
statement. The VALUE field always contains 00000000H and the ATTRIBUTES
field contains EXTRN.

ASM386 Macro Assembler Operating Instructions Chapter 4 75

Floating-point Stack Elements (F STACK)

F STACK in the TYPE field indicates a floating-point stack element. The VALUE
field contains ST(i) if the element is indexed, where i is the numeric index value,
or ST if the element is not indexed. The ATTRIBUTES field is blank.

Instruction

INSTRUCTION in the TYPE field indicates an instruction. The VALUE field contains
the name of the instruction. The ATTRIBUTE field is blank.

Keyword

KEYWORD in the TYPE field indicates a keyword. The VALUE field contains the
name of the keyword. The ATTRIBUTE field is blank.

Labels (L NEAR, L FAR)

L FAR and L NEAR in the TYPE field indicate labels. The VALUE field contains the
label's offset. The ATTRIBUTES field contains the segment name, if known.

Numbers (NUMBER)

NUMBER in the TYPE field indicates a number. The VALUE field contains a
hexadecimal number, which can be negative only for an integer. The ATTRIBUTES
field contains RELOC for symbols equated to relocatable numbers and REAL for
symbols equated to floating point numbers.

Procedures (P NEAR, P FAR)

Procedures are identified by P NEAR or P FAR in the TYPE field. The
ATTRIBUTES field contains its size in bytes, the segment name, and the word
count, if one was specified.

Records and Record Fields (RECORD, R FIELD)

RECORD and R FIELD indicate records and record fields, respectively.

The VALUE field for a record is blank. The ATTRIBUTES field contains the size of
the record in bytes, the number of bits (width) required for that record, and its
default value.

The VALUE field for a record field contains its shift count. The ATTRIBUTES field
contains the name of the record containing the field and the field's bit width.

76 Chapter 4 The Listing (Print File)

Registers (REG)

REG in the TYPE field indicates a register. The VALUE field contains the register
name and the ATTRIBUTES field is blank.

Segments (SEGMENT)

SEGMENT in the TYPE field indicates a code or data segment. The VALUE field is
blank. The first entry in the ATTRIBUTES field is the segment size. The remaining
attributes duplicate the attributes declared in the segment definition line, including
the defaults.

Stack Segments (STACK)

STACK in the TYPE field indicates a stack segment. The VALUE field is blank. The
ATTRIBUTES field contains the segment size and information about the attributes,
such as whether they are read-write (RW) or PUBLIC. The remaining attributes
duplicate the attributes declared in the segment definition line, including the
defaults.

Structures and Structure Fields (STRUC, S FIELD)

STRUC in the TYPE field indicates a structure. The VALUE field is blank. The
ATTRIBUTES field contains the structure size in bytes, and the number of its fields.

If a symbol is a structure field, its type appears in the TYPE field and SFIELD
appears in the ATTRIBUTES field. The VALUE field contains the hexadecimal
offset from the start of the structure in which the field was defined.

Undefined Symbols (--------)

A symbol that was never defined, or was purged and then referenced without
definition, is indicated by -------- in the TYPE field. The VALUE field is blank
and the ATTRIBUTES field contains --UNDEFINED-- .

ASM386 Macro Assembler Operating Instructions Chapter 4 77

Variables (V BIT . . . V n)

The types for variables are V BIT , V BYTE, V WORD, V DWORD, V PWORD, V
QWORD, VTBYTE, V STRUC, and V n (where n is the type value).

The VALUE field shows the variable's offset. The ATTRIBUTES field contains the
segment name, if known, and PUBLIC or EXTRN, if appropriate. Variable names
defined in an EQU statement can have indexing and segment override attributes.
The override is displayed as the segment register name. Any indices are indicated
by the index register name. If the variable is defined as an array, the item count
appears in the ATTRIBUTES field as a decimal number in parentheses.

V ABS in the TYPE field indicates an external absolute number. The VALUE field
contains a zero and the ATTRIBUTES field contains EXTRN.

■■ ■■ ■■

ASM386 Macro Assembler Operating Instructions Appendix A 79

Error Messages A
This appendix begins with a description of the types of assembler errors and their
error message formats. Following the descriptions is a numerical list of the
assembler source file error and warning messages and their explanations.

Fatal Errors
Fatal errors cause the assembler to stop processing the source file, display an error
message, and return control to the operating system. There are three types of fatal
errors: invocation control errors, I/O errors, and internal errors. These errors cause
the assembler to stop processing the source module without producing an object
module. The following sections explain the types of fatal errors and their message
formats.

Invocation Control Errors
Invocation control errors occur when controls or their parameters are specified
incorrectly on the invocation line. The error messages have the following basic
format:

ASM386 CONTROL ERROR
 CONTROL: control
 PARAMETER: parameter
 DELIMITER: character
 ERROR: description
ASM386 TERMINATED

The parameter and delimiter lines appear if you specify an incorrect delimiter
or control parameter.

The error descriptions are the same as source file nonfatal errors. They are
explained at the end of this appendix in numerical order.

80 Appendix A Error Messages

I/O Errors
I/O errors indicate problems in using external files or devices. I/O error messages
have the following format:

ASM386 I/O ERROR
 FILENAME = filename
 ERROR = error number and description
ASM386 TERMINATED

Where:

filename is the name of the file containing the error.

error number is the operating system error number.

Internal Errors
An assembler internal error indicates that an internal consistency check has failed.
If an internal error occurs, contact Intel, following the instructions on the inside
back cover of this manual. Please save the exact text of the error message, which
has the following form:

*** ASM386 INTERNAL ERROR : description

ASM386 Macro Assembler Operating Instructions Appendix A 81

Nonfatal Errors and Warnings
The remaining errors are nonfatal and occur within the source file itself. When a
nonfatal error occurs, the error line assembly is usually wrong; subsequent lines,
however, can still be assembled correctly.

The basic nonfatal error message contains an error number, a source line number,
and a brief description. No line number is given if the assembler detected the error
before the first source line. The message appears in the print and errorprint files
after the line on which the error was detected.

The following are the message formats:

*** ERROR n IN l, description
*** ERROR n IN l, type description
*** ERROR n IN l, (LINE m) description

Where:

n is a decimal number.

l is the number of the listing line in which the error occurred.

type is one of the following:

(PASS 2) indicates an error in pass 2 of the
assembler.

(MACRO) indicates a macro error.

(CONTROL) indicates an assembler control error.

(LINE m) is the line number of an error.

See also: Assembler passes, Chapter 1

Syntax Errors
A syntax error indicates that the program does not conform to the assembly
language's grammar rules.

The syntax error message has this form:

*** ------------/\
*** ERROR 1 IN l, SYNTAX ERROR

The assembler usually discards the remainder of the line following the syntax error.
If the error occurs within a codemacro definition, the assembler exits definition
mode, causing the ENDM statement to produce another syntax error, which is
eliminated when the first error is corrected.

82 Appendix A Error Messages

The pointer normally indicates the location of the syntax error. For example:

ASSUME ES

produces a syntax error after ES, indicating that the line is missing a colon followed
by a segment name at the end. However, the assembler may not detect the error
until one or more characters later. For example:

AAA DB 0

produces a syntax error at DB although AAA, already defined as an instruction
(ASCII adjust for addition), is the actual error. The assembler interprets the line as
an AAA instruction with DB 0 as the operand field, and because the keyword DB is
not a legal parameter, the assembler flags it as the error.

The assembler treats codemacro, register, and record names as unique syntactic
entities. If you use these kinds of names improperly, you often receive a syntax
error. For example:

ES EQU 7

is a syntax error because ES is a register name and is therefore syntactically distinct
from an undefined symbol.

Syntax errors can occur for lines that by themselves are syntactically correct, but
are misplaced within the program. For example, if the following statement is
appropriately placed, it is syntactically correct:

FOO ENDS

However, if it were placed as follows:

DATA SEGMENT
 .
 .
FOO ENDS

it would produce an error, because a syntax error occurs if a SEGMENT or PROC
statement does not have a corresponding ENDS or ENDP statement.

Warnings
Warnings occur when the assembler has assembled a source line without producing
an assembler error, but in a way that could later cause errors during object module
processing or execution. The warning message format is basically the same as the
nonfatal error message format:

*** WARNING # n IN l, description

ASM386 Macro Assembler Operating Instructions Appendix A 83

Macro Errors
When assembling source files, the assembler processes macros first if the MACRO
control (the default) is in effect. Macro errors are errors detected during this macro
pass. An example of a macro error is

UNDEFINED MACRO NAME

which indicates that the text following a metacharacter (% by default) is not a
recognized user function name or built-in macro function.

Macro errors are followed by a trace of the macro call, which is a series of lines
containing the names of the primary source file and currently nested include files,
and every pending or active macro call.

Control Errors
A control error occurs in a source file control line (or in the invocation line, as
discussed earlier). One example is

UNKNOWN CONTROL

which indicates that a specified control is not legal.

84 Appendix A Error Messages

Source File Error and Warning Messages
The remainder of this appendix is a numerical list of the assembler source file error
and warning messages and their explanations.

*** ERROR #1 SYNTAX ERROR

Your program does not conform to the assembly language's grammar rules.

*** ERROR #2 TOKEN TOO LONG

The maximum token length is 255 characters.

*** ERROR #3 ORDINAL NUMBER TOO LARGE

Some 64-bit integer values cannot be represented in packed-decimal form. The
approximate range of 64-bit binary numbers is -1.8 x 1019 to 1.8 x 1019, where the
range of values that can be represented by the packed-decimal format is -1018 -1 to
1018 -1.

*** ERROR #4 BAD ASM386 CHARACTER

The assembler found an illegal character in the input file. An unprintable ASCII
character (which is shown as an up arrow) may cause this error. If the unprintable
character is in a string or comment, the string or comment is terminated, and
processing continues with the next character; a syntax error may occur.

A printable character that has no function in the assembly language can also cause
this error. This often occurs when macro calls, beginning with the macro
metacharacter, appear in a file that is assembled with the NOMACRO control.

*** ERROR #5 REAL NUMBER TOO LARGE

The hexadecimal real number specified does not fit the size of the defined variable.

See also: Ranges of variables, ASM386 Assembly Language Reference

*** ERROR #6 DECIMAL CONVERSION ERROR

A precision underflow or overflow occurred when converting decimal to extended
precision real.

See also: Ranges of variables, ASM386 Assembly Language Reference

ASM386 Macro Assembler Operating Instructions Appendix A 85

*** ERROR #7 ARITHMETIC OVERFLOW IN EXPRESSION OR LOCATION
COUNTER

This error occurs when an answer to a calculation does not fit the corresponding
storage (for example, not between -128 and 127 or 0 to 255). Such instances
include:

• Expressions with large answers or intermediate values

• Division by zero

• Oversize constants

The error also occurs when the evaluation of the location counter gives a result
greater than the maximum value (64K for USE16 segments or four gigabytes for
USE32 segments).

For example, X DW 80000001H DUP (0) means duplicate 2G+1 times, a word
whose content is 0. The length of a word is 2, therefore the location counter must
be incremented by 2 x 80000001H or 4G+2. This is not a valid 32-bit number and
error #7 is issued.

Certain floating-point values incorrectly elicit an arithmetic overflow message.
These hexadecimal real values are:

SINGLE PRECISION REALS (DD):

07FFFFFFFR, 07F800001R, 07F800000R, 0007FFFFFR, 000000001R,
000000000R, 080000000R, 080000001R, 0807FFFFFR, 0FF800000R,
0FF800001R, 0FFC00000R, 0FFFFFFFFR

DOUBLE PRECISION REALS (DQ):

07FF0000000000001R, 07FF0000000000000R, 0000FFFFFFFFFFFFFR,

00000000000000001R, 00000000000000000R, 08000000000000000R,

08000000000000001R, 0800FFFFFFFFFFFFFR, 0FFF0000000000000R,

0FFF0000000000001R, 0FFF8000000000000R, 0FFFFFFFFFFFFFFFFR

*** ERROR #8 STACK OVERFLOW; STATEMENT TOO COMPLEX

The assembly statement is too complex for the assembler to process. Simplify your
statement.

*** ERROR #9 STACK OVERFLOW; STATEMENT TOO LONG

The assembly statement is too long for the assembler to process. Simplify your
statement.

86 Appendix A Error Messages

*** ERROR #10 BAD OPERANDS FOR RELATIONAL OR SUBTRACTION
OPERATION

Subtraction and relational operations are legal only if the right side is an absolute
number, or if both sides are relocatable. If both sides are relocatable, they must
both be declared within the same segment, and neither can be external.

*** ERROR #11 UNDEFINED SYMBOL; ZERO USED

An undefined symbol has occurred in an expression. Zero is used in its place,
which may cause other errors.

*** ERROR #12 STORAGE INITIALIZATION EXPRESSION IS OF THE WRONG
TYPE

The only kinds of expressions allowed in initialization lists are variables, labels,
strings, formals, and numbers. This error also occurs when the expression's value is
too large for the allocated storage.

*** ERROR #13 ABSOLUTE OPERAND REQUIRED IN THIS EXPRESSION

Certain expression operators require their operands to be absolute numbers. These
operators include unary minus, divide, multiply, AND, MOD, NEG, OR, SHL,
SHR, XOR, LOW, HIGH, LOWW, HIGHW .

*** ERROR #14 SIZE OF STACK SEGMENT HAS INCREASED PAST 64K

A USE16 stack segment has been specified more than once using the STACKSEG
directive with the same stack name. The stack sizes given for each specification
are added together to form a total stack size for that particular stack segment. The
latest specification has caused the total stack size to exceed 64K.

*** ERROR #15 SIZE OF STACK SEGMENT HAS INCREASED PAST FOUR
GIGABYTES

A USE32 stack segment has been specified more than once using the STACKSEG
directive with the same stack name. The stack sizes given for each specification
are added together to form a total stack size for that particular stack segment. The
latest specification has caused the total stack size to exceed 4 gigabytes.

*** ERROR #16 SEGMENT USED TO INITIALIZE CS MUST BE TYPE EO OR ER

The segment containing the label used to initialize the CS register in the END
statement must be executable. Therefore, the segment must have an access-type of
EO or ER.

ASM386 Macro Assembler Operating Instructions Appendix A 87

*** ERROR #17 COMBINE-TYPE DOES NOT MATCH ORIGINAL SEGMENT
DEFINITION

If more than one SEGMENT-ENDS pair exists for the same segment in the program,
they must have the same combine-type. For example, you cannot specify the first
one without a combine-type (private), and declare a subsequent one to be PUBLIC.
Leaving the combine-type blank for subsequent SEGMENT declaratives in the same
module is acceptable; the combine-type given in the first declarative is used.

*** ERROR #18 SEGMENT CANNOT BE TYPE EO

The segment used to initialize the DS register in the END statement, or the DS or ES
register in the ASSUME statement cannot have access-type EO.

*** ERROR #19 SEGMENT USED TO INITIALIZE SS MUST BE TYPE RW

The segment used to initialize the SS register in the END or ASSUME statement must
be writable, and therefore have access-type RW.

*** ERROR #20 SEGMENT ACCESS-TYPE TO RW

The segment has been declared to have a data part (SEGMENT directive) and a stack
part (STACKSEG directive). Because the stack part is always RW, the data part must
also be RW.

*** ERROR #21 --- FILE DOES NOT EXIST

In DOS systems, this message may be issued even though the file does exist. The
PC/DOS Operating System is installed incorrectly. Re-install the Operating
System and make sure that it is DOS V3.0 or later. DOS V3.0 or greater has a
different COMMAND.COM file.

*** WARNING #21 CS-(E)IP AND/OR SS-SP AND/OR DS NOT INITIALIZED;
REQUIRED FOR MAIN MODULE

The END statement has no CS and/or SS and/or DS register initialization. All three
of these initializations are necessary for a main module.

*** ERROR #22 MISSING END OF SEGMENT STATEMENT

A segment definition must end with a statement in the form:

name ENDS

Where:

name is the segment name given in the corresponding SEGMENT directive.

*** ERROR #23 MISSING END OF MODULE STATEMENT

The END directive is required as the last statement in all the assembler modules.

88 Appendix A Error Messages

*** ERROR #24 MISSING NAME STATEMENT; DEFAULT MODULE NAME USED

Every module must contain the NAME directive to include a name on the list file
header and in the object module. If the NAME directive is omitted, the name
''ANONYMOUS'' is used.

*** ERROR #25 MISSING END OF STRUCTURE STATEMENT

A structure definition must end with a statement in the form:

name ENDS

Where:

name is the structure name given in the corresponding STRUC directive.

*** ERROR #26 MISSING END OF CODEMACRO STATEMENT

The definition of a codemacro must end with the ENDM statement.

*** ERROR #27 UNDEFINED SEGMENT IN INITIALIZATION

All segment references within an initialization must be to a defined segment.

*** ERROR #28 NO DEFINITION FOR PUBLIC SYMBOL

A public symbol must be defined within the module.

*** ERROR #29 ILLEGAL OPERAND TO THIS OPERATOR

The THIS operator accepts only a type specifier or a small-integer absolute number
as an operand.

*** ERROR #30 IDENTIFIER MUST BE A LABEL FOR A CS-(E)IP
INITIALIZATION

The identifier used in the CS-IP or CS-EIP initialization must be a label. Check
the definition of the indicated identifier.

*** ERROR #31 SEGMENT WITH SAME NAME AS STACK MUST BE PUBLIC AND
TYPE RW

The segment has been declared to have a data part (via the SEGMENT directive) and
a stack part (via the STACKSEG directive). Because the stack part is always
PUBLIC and has access-type RW, the data part must also be PUBLIC and RW.

*** ERROR #32 VARIABLES NOT ALLOWED IN REGISTER INITIALIZATION

Variables cannot be used to initialize the DS or SS segment registers in the END
statement. Only segment names can initialize segment registers in this context. A
label is required to initialize the CS segment registers.

*** ERROR #33 OPERANDS TO LOGICAL OPERATORS MUST BE ABSOLUTE
NUMBERS

Other types of operands are not allowed.

ASM386 Macro Assembler Operating Instructions Appendix A 89

*** ERROR #34 OPERAND TO BITOFFSET OPERATOR MUST BE A VARIABLE OR
STRUCTURE FIELD

BITOFFSET allows you to convert variables or structure fields to numbers. If you
receive this error message, you probably already have a number.

*** ERROR #35 NO DEFINITION FOR COMM SYMBOL

A COMM symbol must be defined within the module.

*** ERROR #36 OPERAND TO TYPE OPERATOR MUST BE A VARIABLE,
STRUCTURE FIELD, OR LABEL

TYPE can only be used with a variable, structure field, or label. Any other
parameter is illegal.

*** ERROR #37 OPERAND TO LENGTH OPERATOR MUST BE A VARIABLE OR
STRUCTURE FIELD

LENGTH can be used only with a variable or a structure field. Any other parameter
is illegal.

*** ERROR #38 OPERAND TO SIZE OPERATOR MUST BE A VARIABLE OR
STRUCTURE FIELD

SIZE can be used only with a variable or a structure field. Any other parameter is
illegal.

*** ERROR #39 OPERAND TO WIDTH OPERATOR MUST BE A RECORD

You cannot obtain the width of anything else.

*** ERROR #40 OPERAND TO MASK OPERATOR MUST BE A RECORD FIELD
NAME

MASK of anything else has no meaning.

*** ERROR #41 OPERAND TO STACKSTART OPERATOR MUST BE A STACK
SEGMENT

The operand to STACKSTART must be defined with the STACKSEG directive.

*** ERROR #42 OPERAND TO OFFSET OPERATOR MUST BE A VARIABLE OR
LABEL

The OFFSET operator allows you to convert variables or labels to numbers. If you
receive this error message, you probably already have a number.

*** ERROR #43 OPERANDS DO NOT MATCH THIS INSTRUCTION

This error usually indicates that the type of one of the operands is inappropriate for
the instruction. For example, the following sequence generates this error:

VAR DT 0
PUSH VAR

Because VAR is a TBYTE variable, it cannot be pushed on the stack with PUSH.

90 Appendix A Error Messages

*** ERROR #44 OPERAND NOT REACHABLE FROM SEGMENT REGISTERS

This error occurs when the ASSUME statement is used incorrectly. For every code
segment reference to a variable that is not defined in the current segment, the
segment in which that variable is defined must be assumed to be accessible from
one of the segment registers. For most programs, a single ASSUME statement at the
top of the program for segment registers DS, ES, FS, GS, and SS is sufficient.

*** ERROR #45 BAD SCALE FACTOR; MUST EVALUATE TO THE ORDINAL
VALUE 1, 2, 4, OR 8

The only values allowed for index scaling are 1, 2, 4, or 8.

*** ERROR #46 PWORD IS A BAD SCALE FACTOR; MUST EVALUATE TO THE
ORDINAL VALUE

A pword is not allowed as an index scale value.

*** ERROR #47 TBYTE IS A BAD SCALE FACTOR; MUST EVALUATE TO THE
ORDINAL VALUE

A tbyte is not allowed as an index scale value.

*** ERROR #48 32-BIT AND 16-BIT ADDRESSING CANNOT BE COMBINED

The address expression has both 32-bit and 16-bit elements. For example:

MOV AX, [EAX BX]

is not legal.

*** ERROR #49 SYMBOL ALREADY DEFINED; CURRENT DEFINITION IGNORED

A symbol has an illegal multiple definition.

*** ERROR #50 ILLEGAL CIRCULAR EQU CHAIN

The following is an example of a circular chain of EQU statements:

VAR_1 EQU MYVAR
MYVAR EQU VAR_1

*** ERROR #51 EQU EXPRESSION CANNOT CONTAIN A FORWARD REFERENCE

You cannot equate to expressions containing forward references.

*** ERROR #52 BAD EQU EXPRESSION

An illegal expression occurred in an EQU statement. For example, the following
statement causes this error:

VAR EQU [BX - SI]

ASM386 Macro Assembler Operating Instructions Appendix A 91

*** ERROR #53 EQU FORWARD REFERENCE CAN ONLY BE A VARIABLE,
LABEL, OR EQU SYMBOL

You can equate to simple forward-reference names, but not to an expression
containing forward references.

*** ERROR #54 COMBINING BIT OFFSET AND BYTE DISPLACEMENT EXCEEDS
MAXIMUM SEGMENT SIZE

The result from adding the bit offset and the byte displacement is greater than the
64K limit for USE16 segments or the 4 gigabytes allowed for USE32 segments.
The following example shows this case:

BT VAR, 0FFFFH

where VAR is at offset 0FFFFH in a USE16 segment.

*** ERROR #55 STRING CONSTANT CANNOT EXCEED EIGHT CHARACTERS

A string constant used to initialize a dword can contain at most eight characters.

*** ERROR #56 RELATIVE DISPLACEMENT TOO LARGE FOR A USE16 SEGMENT

A relative displacement greater than 16K is not allowed in a USE16 segment. The
target would not be reachable using a 16-bit relative displacement.

*** ERROR #57 RELATIVE DISPLACEMENT TOO LARGE FOR A USE32 SEGMENT

A relative displacement greater than 4 gigabytes is not allowed in a USE32
segment. The target would not be reachable using a 32-bit relative displacement.

*** ERROR #58 ADDITION OF DISPLACEMENT CAUSED OVERFLOW

The result of the displacement evaluation is either greater than 64K in a USE16
segment, or greater than 4 gigabytes in a USE32 segment.

*** ERROR #59 IMMEDIATE DWORD OVERFLOW

An expression has a value that is out of range for storage in a dword.

*** ERROR #60 IMMEDIATE WORD OVERFLOW

An expression has a value that is out of range for storage in a word.

*** ERROR #61 DISPLACEMENT TOO LARGE FOR A USE16 SEGMENT

The displacement computed by the assembler is greater than 64K.

*** ERROR #62 DISPLACEMENT TOO LARGE FOR A USE32 SEGMENT

The displacement computed by the assembler is greater than 4 gigabytes.

92 Appendix A Error Messages

*** ERROR #63 INVALID SYMBOL TYPE

The symbol type does not match the required operand type for the given
instruction. For example, if F1 is a structure field, then the following statement is
an invalid specification:

PUSH F1

*** ERROR #64 LABEL DECLARED NEAR IS NOT IN THE CURRENT SEGMENT

A label referenced in the current segment is not local to that segment; it was
declared in another segment. Change the label type to FAR.

*** ERROR #65 TWO REPEAT PREFIXES ARE ILLEGAL

Delete one REPEAT prefix.

*** ERROR #66 TWO LOCK PREFIXES ARE ILLEGAL

Delete one LOCK prefix.

*** ERROR #67 SEGMENT SIZE EXCEEDED

The location counter has become greater than 64K for a USE16 segment or greater
than 4 gigabytes for a USE32 segment. Split the segment into smaller segments.

*** ERROR #68 PASS TWO INSTRUCTION SIZE EXCEEDED PASS ONE
ESTIMATE

This error occurs when the instruction contains a forward reference and the
assembler overestimates the amount of code the forward reference causes the
instruction to generate. Overestimating usually occurs when:

• The forward reference is a variable that requires a segment override prefix.
For forward references, explicitly code the override if the operand is in a
different segment:

MOV CX, ES:FWD_REF

• Otherwise, the assembler assumes that it is not needed.

• The forward reference is a FAR label. Explicitly provide the type in this case:

JMP FAR PTR FWD_LABEL

Otherwise, the assembler assumes NEAR.

• SHORT is indicated, or an instruction is used that takes only SHORT
displacements. Change the code so that it does not use a SHORT jump.

*** ERROR #69 BAD OPERAND TO MONADIC INSTRUCTION

Monadic means an instruction with one operand. The type of the operand does not
match the type required for this instruction.

ASM386 Macro Assembler Operating Instructions Appendix A 93

*** ERROR #70 CURRENT SEGMENT NOT EXECUTABLE

You cannot include instructions in a non-executable segment. Change the segment
attribute in the SEGMENT declarative.

*** ERROR #71 FIRST OPERAND IS ILLEGAL

The type of the first operand does not match the type required for this instruction.

*** ERROR #72 FIRST OPERAND CONTAINS AN UNDEFINED SYMBOL

An undefined symbol was included in the expression used as the first operand for
this instruction.

*** ERROR #73 SECOND OPERAND IS ILLEGAL

The type of the second operand does not match the type required for this
instruction.

*** ERROR #74 SECOND OPERAND CONTAINS AN UNDEFINED SYMBOL

An undefined symbol was included in the expression used as the second operand
for this instruction.

*** ERROR #75 ILLEGAL OPERAND COMBINATION

The type of one of the operands to the instruction does not match the type required
for the other operands. For example, the following sequence generates this error:

VAR DW 0
MOV BL, VAR

Because VAR is a WORD variable, it cannot be moved into the register BL.

*** ERROR #76 IMMEDIATE EXCEEDS 31; ONLY THE LOWER FIVE BITS WILL
BE USED

The number or expression used as an immediate value is greater than 31, which is
illegal in this context.

*** ERROR #77 IMMEDIATE EXCEEDS LIMITS IN THIS CONTEXT

The number or expression used as an immediate value is greater than the legal
value for this context.

*** ERROR #79 SECOND OPERAND MUST BE CL

The second operand for this instruction cannot be anything other than the 8-bit
general register CL.

*** ERROR #80 FIRST OPERAND MUST BE DX OR EDX

The first operand to this instruction cannot be anything other than the DX or the EDX
register.

94 Appendix A Error Messages

*** ERROR #81 THIS INSTRUCTION REQUIRES AT LEAST ONE OPERAND

This instruction must be specified with one or more operands. Some instructions
such as RET accept one or no operands; others, such as ADD, require two operands.

*** ERROR #82 THIS INSTRUCTION DOES NOT ACCEPT ONE OPERAND

Check the description of this instruction in the ASM386 Assembly Language
Reference.

*** ERROR #83 THIS INSTRUCTION DOES NOT ACCEPT TWO OPERANDS

Check the description of this instruction in the ASM386 Assembly Language
Reference.

*** ERROR #84 THIS INSTRUCTION DOES NOT ACCEPT THREE OPERANDS

Check the description of the instruction in the ASM386 Assembly Language
Reference.

*** ERROR #85 UNDEFINED SYMBOL

The symbol used has not been defined. Add a declaration for the symbol or check
for a misspelling of the symbol.

*** ERROR #86 SECOND OPERAND MUST BE AX

The second operand for this instruction cannot be anything other than the AX
register.

*** ERROR #87 SECOND OPERAND MUST BE EAX

The second operand for this instruction cannot be anything other than the EAX
register.

*** ERROR #88 THIRD OPERAND IS ILLEGAL

The third operand for this instruction is of an incorrect type.

*** ERROR #89 THIRD OPERAND CONTAINS AN UNDEFINED SYMBOL

An undefined symbol is included in the expression used as the third operand for
this instruction.

*** ERROR #96 STATEMENT NOT ALLOWED OUTSIDE SEGMENT BOUNDARIES

The statement must be included within a SEGMENT/ENDS pair. Otherwise, it is
ignored by the assembler.

*** ERROR #97 EIGHT-BIT REGISTER IS ILLEGAL IN A REGISTER
EXPRESSION

8-bit registers are not allowed in a register expression.

ASM386 Macro Assembler Operating Instructions Appendix A 95

*** ERROR #98 ILLEGAL REGISTER EXPRESSION

The register expression contains some illegal operations. For example, the
following is an illegal register expression:

PUSH WORD PTR DS:[BX] + AX

*** ERROR #99 NO MORE THAN TWO REGISTERS ALLOWED IN A REGISTER
EXPRESSION

Up to two registers can be specified in a register expression.

*** ERROR #100 ILLEGAL SYMBOLIC REFERENCE IN A REGISTER
EXPRESSION

You cannot mix a symbolic reference within a register expression.

*** ERROR #101 ILLEGAL OPERATION ON SYMBOLIC REFERENCE WITHIN
SQUARE BRACKETS

Symbols cannot be specified within bracketed register expressions. For example,
the following is an illegal operation:

PUSH WORD PTR[EBX + VAR]

*** ERROR #102 SCALED INDEX REGISTER MUST BE IN SQUARE BRACKETS

Index registers used with scale specifications must be within square brackets.

*** ERROR #103 OPERAND TO DOT OPERATOR MUST BE A STRUCTURE FIELD

The dot operator used outside a codemacro is legal only if the left operand is an
address expression and the right operand is a structure field.

*** ERROR #104 ILLEGAL FLOATING POINT STACK ELEMENT VALUE; ZERO
USED

Stack elements can be specified only as ST or ST(i) , where i is in the range
of 0 to 7.

*** ERROR #105 REGISTER EXPRESSION ILLEGAL OUTSIDE OF SQUARE
BRACKETS

A register can undergo arithmetic inside square brackets; the operations are
performed on the memory address represented by the bracketed expression. The
arithmetic makes no sense outside the brackets, and is flagged. For example, the
following is illegal:

JMP BX + 3

but the following is legal:

JMP [BX + 3]
JMP [BX] + 3

96 Appendix A Error Messages

*** ERROR #106 ESP CANNOT BE USED AS AN INDEX REGISTER

Any general register except ESP can be used as an index register.

*** ERROR #107 EXPRESSION CANNOT BE USED AS A FLOATING POINT
STACK ELEMENT; ZERO USED

The expression cannot be used as a stack element index.

*** ERROR #108 ILLEGAL OPERAND TO SEG OPERATOR

The operand to SEG as it appears in an ASSUME statement must be a variable or a
label (i.e., it must have a segment associated with it).

*** ERROR #109 ILLEGAL OPERAND SEGMENT ASSUMPTION TO OTHER THAN
ES

The destination operand of a string instruction must be accessible through the ES
register.

*** ERROR #110 DEFAULT ES SEGMENT REGISTER CANNOT BE OVERRIDDEN

The string imperatives that involve the EDI register do not allow for an override of
the default ES register; thus, the assembler requires the operand to the instruction to
be accessible from the ES register.

*** WARNING #111 USE OF THE EVEN DIRECTIVE IN THIS CONTEXT
DISABLES CODE OPTIMIZATION

The assembler does not attempt to optimize instructions containing forward
references after specification of the EVEN directive.

*** ERROR #112 ILLEGAL INDEX REGISTER USED IN SECOND OPERAND;
MUST BE EDI OR DI

Only the general registers EDI or DI are allowed as index registers for the second
operand of this instruction.

*** ERROR #113 ILLEGAL INDEX REGISTER USED IN SECOND OPERAND;
MUST BE ESI OR SI

Only the general registers ESI or SI are allowed as index registers for the second
operand of this instruction.

*** ERROR #114 ILLEGAL INDEX REGISTER USED IN FIRST OPERAND; MUST
BE ESI OR SI

Only the general registers ESI or SI are allowed as index registers for the first
operand of this instruction.

*** ERROR #115 ILLEGAL INDEX REGISTER USED IN FIRST OPERAND; MUST
BE EDI OR DI

Only the general registers EDI or DI are allowed as index registers for the first
operand of this instruction.

ASM386 Macro Assembler Operating Instructions Appendix A 97

*** ERROR #116 ILLEGAL INDEX REGISTER USED; MUST BE EDI OR DI

Only the general registers EDI or DI are allowed as index registers in this context.

*** ERROR #117 ILLEGAL INDEX REGISTER USED; MUST BE ESI OR SI

Only the general registers ESI or SI are allowed as index registers in this context.

*** ERROR #118 NEAR USE16 CALL OR JUMP ILLEGAL IN A USE32 CONTEXT

In a USE32 segment, you cannot specify JMP [AX] because a NEAR USE16 jump
uses only the lower 16 bits of EIP .

*** ERROR #119 EXCEEDED NUMBER OF OPERANDS ALLOWED FOR CODEMACROS

The maximum number of operands for a codemacro is 15.

*** ERROR #120 NO IMPERATIVE OR CODEMACRO DEFINED WITH THIS NAME

You have coded an undefined instruction.

*** ERROR #121 OPERANDS DO NOT MATCH ANY IMPERATIVE OR CODEMACRO

The number of operands specified for the instruction does not match the number
required for any known imperatives or codemacros.

*** ERROR #122 INSIDE A CODEMACRO, THE OPERAND TO THE DOT
OPERATOR MUST BE A RECORD FIELD

You have used the DOT operator with a variable of a type other than RECORD.

*** ERROR #123 FORWARD REFERENCE INSIDE A CODEMACRO IS NOT
ALLOWED

Forward references cannot be included within codemacros.

*** ERROR #124 CANNOT SHIFT A RELOCATABLE VALUE

This error results when a relocatable value is passed as an operand to an instruction
which shifts the operand. Shifting a relocatable value is not allowed.

*** ERROR #125 NUMBER OF BYTES GENERATED BY A CODEMACRO IS
LIMITED TO 255

The codemacro is too long; the maximum is 255 bytes.

*** ERROR #126 RELATIVE DISPLACEMENT WILL NOT FIT IN A BYTE

This instruction expects a relative displacement within the range of -128 to +127.

*** ERROR #127 RELATIVE DISPLACEMENT WILL NOT FIT IN A WORD

This instruction expects a relative displacement within the range of -32768 to
+32767.

*** ERROR #128 RELATIVE DISPLACEMENT WILL NOT FIT IN A DWORD

This instruction expects a relative displacement within the range of -231 and
+231 -1.

98 Appendix A Error Messages

*** ERROR #129 ILLEGAL OPERAND SEGMENT ASSUMPTION TO OTHER THAN S

*** ERROR #130 ILLEGAL OPERAND SEGMENT ASSUMPTION TO OTHER THAN
DS

*** ERROR #131 ILLEGAL OPERAND SEGMENT ASSUMPTION TO OTHER THAN
GS

*** ERROR #132 ILLEGAL OPERAND SEGMENT ASSUMPTION TO OTHER THAN
FS

*** ERROR #133 ILLEGAL OPERAND SEGMENT ASSUMPTION TO OTHER THAN
SS

For errors #129-133, the assembler requires that the operand for the instruction be
reachable through the register indicated in the error message. These errors are
generated when conditions specified in a user-defined codemacro using the
NOSEGFIX statement have been violated.

*** ERROR #134 INSTRUCTION WAS PURGED

A purged symbol remains undefined until it is redefined.

*** ERROR #135 ILLEGAL OPERANDS INSIDE OF SQUARE BRACKETS

The only kind of expression allowed in square brackets is an expression involving
registers and/or numbers. Address expressions and other constructs (e.g., record
names) are not allowed.

*** ERROR #136 CANNOT ADD TWO RELOCATABLE NUMBERS

Only absolute numbers can be added.

*** ERROR #137 CANNOT SUBTRACT TWO RELOCATABLE NUMBERS IN
DIFFERENT SEGMENTS

Two relocatable numbers can be subtracted only if they have been defined in the
current module and in the same segment.

*** ERROR #138 CANNOT HAVE TWO INDEX REGISTERS IN A REGISTER
EXPRESSION

Two-register expressions are legal only with one base register and one index
register (and an optional displacement).

*** ERROR #139 CANNOT HAVE TWO BASE REGISTERS IN A REGISTER
EXPRESSION

Two-register expressions are legal only with one base register and one index
register (and an optional displacement).

*** WARNING #140 ILLEGAL USE OF THE CS REGISTER IN AN ASSUME

Unlike ASM86, the assembler automatically assumes that the selector of the
current segment is in the CS register. CS is allowed in the ASSUME statement only
if followed by NOTHING.

ASM386 Macro Assembler Operating Instructions Appendix A 99

*** ERROR #141 N287 CONTROL SPECIFIED: 80387 INSTRUCTION IS
ILLEGAL

When the N287 primary control is specified, any source code lines that contain
Intel387 floating-point coprocessor instructions, not supported on the Intel287
coprocessor, are flagged as errors.

*** ERROR #142 INVALID OPERAND TO THE SHORT OPERATOR

The short operator cannot be used in address expressions which represent memory
references. The short operator is used in LABEL expressions to indicate that jump
is going to be (+127 bytes to -128 bytes) from the end of the current instruction.

*** ERROR #143 SEGMENT OVERRIDE NOT VALID IN A LABEL EXPRESSION

A segment override cannot be used in a label expression where the label type is
NEAR or FAR. A segment override is used in an operand which represents a
reference to memory.

*** ERROR #144 OPERAND TO LOW MUST BE A NUMBER OR ABS EXTRN

The LOW operator requires as an operand a constant expression that evaluates to a
16-bit number. Other types of operands (e.g., variables, labels, segment names,
structure names, or record names) are not allowed.

*** ERROR #145 CANNOT USE SEGMENT OVERIDE WITH A REGISTER

Segment override may only be used with a variable name, a label that is not of type
NEAR or FAR, or an address expression.

*** WARNING #146 MORE THAN ONE FORWARD REFERENCE SYMBOL IN AN
EXPRESSION

More than one reference in an expression has been made to symbols declared after
the expression. Declare the symbol before the reference is made.

*** ERROR #200 80376 DOES NOT SUPPORT USE16 CODE OR STACK
SEGMENTS

When the MOD376 control is specified, a USE16 segment directive cannot be used
for a code or stack segment in the input file. Nor can a USE16 keyword be used in
an EXTRN directive of type NEAR or FAR. USE16 data segments may be included in
the input file. The assembler continues processing after detecting this error, but the
object file will be invalid.

*** ERROR #201 80376 PHYSICAL ADDRESS SIZE EXCEEDED

The 376 processor has a 24-bit address bus. Thus, a segment must be no larger
than 16 megabytes. When the MOD376 control is used, the assembler detects any
segments that are too large and issues this error. The assembler continues
processing, but the segment wraps to low memory, possibly overwriting segments
that are in low memory.

100 Appendix A Error Messages

*** ERROR #202 RELOCATABLE CONSTANT EXPRESSIONS NOT ALLOWED

The instruction or operator requires an expression that takes only absolute constants
as a value.

*** ERROR #203 VALUE LARGER THAN 256 BYTES NOT ALLOWED

The instruction or operator requires an expression that evaluates to a number in the
range of 1 to 256.

*** ERROR #204 TEST REGISTER IS NOT VALID UNLESS MOD486 IS
SPECIFIED

The test registers TR3, TR4, and TR5 are only valid when the MOD486 control is
specified.

*** ERROR #205 INSTRUCTION IS NOT VALID UNLESS MOD486 IS
SPECIFIED

The instructions BSWAP, CMPXCHG, INVD, INVLPG, WBINVD, and XADD are only
valid when the MOD486 control is specified.

*** WARNING #206 NO SOURCE DEBUG INFORMATION FOR CODE SEGMENT

There should only be one code segment in a module when the DEBUG control is
specified. Source debug information is only generated for one code segment per
module.

*** ERROR #207 LOCK PREFIX IS NOT VALID WITH THIS INSTRUCTION

The LOCK prefix is only valid with the memory forms of the following instructions:
ADD, ADC, AND, BT, BTC, BTR, BTS, CMPXCHG, DEC, INC, NEG,
NOT, OR, SBB, SUB, XADD, XCHG, XOR .

*** ERROR #300 BINARY ORDINAL REQUIRED IN A DBIT; ZERO USED

For a DBIT initialization, the values must be specified in binary format.

*** ERROR #301 SYMBOL ALREADY DEFINED; THIS DEFINITION IGNORED

This error message appears when a symbol is given an illegal multiple definition.

*** ERROR #302 STORAGE INITIALIZATIONS NOT ALLOWED OUTSIDE OF
USER-DEFINED SEGMENT

All storage initializations (DBIT , DB, DW, DD, DP, DQ, DT, structure allocation, and
record allocation) must appear within a user-defined segment (a SEGMENT/ENDS
pair) or a codemacro definition.

ASM386 Macro Assembler Operating Instructions Appendix A 101

*** ERROR #303 CANNOT HAVE A VARIABLE OR A LABEL IN A DBIT, DB,
DQ, OR DT; ZERO USED

The variable or label used has the wrong type for the context. Although conversion
to the offset number automatically occurs for variables of type DW, DD, and DP, it
does not occur for those of type DBIT , DB, DQ, or DT. You must explicitly provide
the OFFSET operator and be sure that the resulting number is absolute. In the case
of a DB variable, the resulting number must also be small enough to fit in a byte.

*** ERROR #304 EXTERNAL NOT ALLOWED FOR INITIALIZATION

Because the value of the external symbol cannot be known at assembly-time, the
initialization cannot be completed.

*** ERROR #305 MISMATCHED LABEL ON ENDS

ENDS requires a label that matches the corresponding SEGMENT or STRUCTURE
declarative. If this error occurs, one of several things could be wrong. You could
have a typographical error, a missing ENDS for a nested segment, or an error in the
corresponding SEGMENT or STRUCTURE statement, in which case, this error is
eliminated when the other is fixed.

*** ERROR #306 IDENTIFIER IS NOT A STRUCTURE OR RECORD NAME

In this form of data initialization, only structures or records are allowed.

*** ERROR #307 UNDEFINED STRUCTURE OR RECORD IDENTIFIER

You probably used the DOT operator with a structure or record whose name has not
yet been defined. Alternately, you could have tried to initialize an undefined
structure or record.

102 Appendix A Error Messages

*** ERROR #308 TOO MANY OVERRIDING INITIALIZATIONS

When using a structure to allocate and initialize storage, the number of overriding
expressions between angle brackets exceeded the number of fields in the structure.
All extra values at the right end of the list are ignored. For example:

S STRUC
a DB 0
b DB 3
c DW 999H
S ENDS
foo S<1,4,0AAAH ; This is correct.
baz S<2,5,0BBBH,93> ; This is incorrect. It has
 ; four overriding values and
 ; only three fields.
abc S<, , , 88> ; This is also bad.
 ; Although only one value
 ; appears, the commas force
 ; it into the fourth
 ; position --- but
 ; the structure has no
 ; fourth field.

*** ERROR #309 STRUCTURE FIELD CANNOT BE OVERRIDDEN

Only structure fields initialized with a single expression, a single question mark, or
a single string can be overridden.

*** ERROR #310 OVERRIDING STRING TOO LARGE FOR FIELD

If a structure field is initialized with a single string, the field can be overridden
with a string that is less than or equal to it in length. If the overriding string is too
long, it is truncated so that it fits into the field. (If it is too short, it is padded by the
necessary last characters from the initializing string.)

*** ERROR #311 ILLEGAL USE OF STRUCTURE NAME

A structure name can appear as a storage initialization operator, as an operand of
the size operator, or as a type in an EXTRN or LABEL statement. Any other use of a
structure name is illegal.

*** ERROR #312 RELOCATABLE VALUE DOES NOT FIT IN ONE BYTE

Relocatable numbers cannot be operands for the DB directive.

*** ERROR #313 CANNOT USE A RELOCATABLE NUMBER FOR THIS
INITIALIZATION

Relocatable numbers cannot be used in this initialization because it is impossible to
determine at assembly-time how to sign-extend the number into the high-order
bytes.

ASM386 Macro Assembler Operating Instructions Appendix A 103

*** ERROR #314 STRING LONGER THAN FIELD SIZE ALLOWED ONLY IN DB

All strings outside the DB context are treated as absolute numbers; therefore, strings
longer than the field size are overflow quantities.

*** ERROR #315 IDENTIFIER MUST BE A LABEL OR AN EQUATE

In this context, only a label or equate is allowed.

*** ERROR #316 CANNOT HAVE NESTED STRUCTURE DEFINITIONS

Structures cannot be nested.

*** ERROR #317 CANNOT USE A REAL NUMBER FOR DB, DW, OR DP
INITIALIZATION

The DB, DW, and DP data initialization directives do not accept real numbers as
operands.

*** ERROR #318 CANNOT USE A NEGATIVE DUP FACTOR; ONE USED

The repetition count of a DUP directive must be a positive number, greater than
zero. The value 1 is used if the specified value is a negative number.

*** ERROR #320 DUP COUNT MUST BE GREATER THAN ZERO; ONE USED

The repetition count of a DUP directive must be a positive number, greater than
zero. The value 1 is used if the specified value is zero.

*** ERROR #350 WORDCOUNT MAY ONLY BE USED WITH FAR PROCEDURES;
IGNORED

A wordcount has meaning only for FAR procedures and therefore cannot be
specified for NEAR procedures.

*** ERROR #351 WORDCOUNT MAY NOT BE GREATER THAN 31; IGNORED

If the specified wordcount is greater than 31, it is ignored. The procedure is
considered to have a wordcount of 0.

*** ERROR #352 DOES NOT MATCH CURRENT PROC NAME IDENTIFIER

ENDP requires a label that matches the corresponding PROC declarative. One of
several things could be wrong: a typographical error, a missing ENDP for a nested
procedure, or an error in the corresponding PROC line, in which case this error is
eliminated when the other is fixed.

*** ERROR #353 CANNOT HAVE MORE THAN ONE NAME DECLARATIVE

The first NAME declarative is honored and this one is ignored.

*** ERROR #354 SEGMENT CONTENTS DO NOT AGREE WITH ACCESS-TYPE

Either the segment contains executable code and has an access-type of RO or RW, or
the segment contains data and has an access-type of EO.

104 Appendix A Error Messages

*** ERROR #355 ACCESS-TYPE SET ACCORDING TO SEGMENT CONTENTS

After a SEGMENT declarative is processed, the assembler keeps track of whether
code and/or data is contained in the segment. If the segment's access-type has not
been set by the time the first ENDS is encountered, the information about the
segment's contents is used to set the access-type.

*** ERROR #356 MISSING END OF PROCEDURE STATEMENT

A labelled ENDP statement was expected. You probably have specified an ENDS
(end of segment) or an END (end of module) statement before closing the procedure
definition.

*** ERROR #357 CODEMACRO NAME WAS PREVIOUSLY DEFINED AS A NON-
CODEMACRO

Having non-codemacro definitions of a codemacro identifier is illegal. If a
codemacro name has already been defined as something other than a codemacro,
however, all definitions of the symbol must be codemacro definitions. If the
symbol has been defined as anything else, it cannot be redefined as a codemacro
unless it is first purged.

*** ERROR #358 TWO CODEMACRO FORMALS HAVE THE SAME NAME

All formals must have different names within a given codemacro definition.

*** ERROR #359 CANNOT HAVE MORE THAN 15 FORMAL PARAMETERS

This limitation is imposed by the internal codemacro coding formats.

*** ERROR #360 ILLEGAL SPECIFIER/MODIFIER FOR A CODEMACRO FORMAL

The only specifier letters allowed are A, C, D, E, F, M, R, S, T, and X . The only
modifier letters allowed are B, BIT, D, DN, P, Q, T, and W (or none may be
specified).

*** ERROR #361 SECOND PARAMETER MUST BE A FORMAL

The MODRM statement requires that the second parameter must be a formal
parameter in the required format for this codemacro. For example, the following is
in error:

CODEMACRO USR_MODRM FORMAL1:X

MODRM 0,0
ENDM

See also: Codemacro reference, ASM386 Language Reference

See Section 9.2 of the for details.

ASM386 Macro Assembler Operating Instructions Appendix A 105

*** ERROR #362 ILLEGAL NESTED CODEMACRO DEFINITIONS

Nested codemacro definitions are not allowed.

*** ERROR #363 ILLEGAL CODEMACRO SPECIFIER RANGE VALUE

Range checking for codemacro matching is done only for parameters that are
numbers or registers.

*** ERROR #364 FORMAL PARAMETER EXPECTED BUT NOT SEEN

In certain contexts in codemacros (i.e., RELB, RELW, SEGFIX, NOSEGFIX, and
MODRM), the only construct allowed is a formal parameter. If the assembler
encounters something other than a formal parameter, this error message appears.

*** ERROR #365 STATEMENT MAY NOT APPEAR OUTSIDE A CODEMACRO
DEFINITION

The directive used (RELB, WARNING, etc.) can be specified only within a macro
definition.

*** ERROR #366 CODEMACRO NAME MUST BE AN IDENTIFIER

A codemacro name must follow the same rules as any other assembler identifier.
For example, it cannot begin with a digit.

*** ERROR #367 FIRST PARAMETER MUST BE A FORMAL OR A NUMBER

MODRM requires the first parameter to be the name of a formal parameter or an
absolute number. For example, in the following, the first parameter AX to the
MODRM statement is illegal:

CODEMACRO USER-MODRM FORMAL1:X
MODRM AX, FORMAL1
ENDM

*** ERROR #368 PARAMETER MUST BE A FORMAL WITH AN E, M, OR X
SPECIFIER

This message signals an incompatibility between the type of a formal parameter
and its usage.

*** ERROR #369 SECOND PARAMETER MUST BE A FORMAL WITH AN M OR X
SPECIFIER

This message signals an incompatibility between the type of a formal parameter
and its usage.

*** ERROR #370 FIRST PARAMETER MUST BE A SEGMENT REGISTER

NOSEGFIX requires the first parameter to be a segment register.

106 Appendix A Error Messages

*** ERROR #371 PARAMETER MUST BE A FORMAL WITH CB, CW, CD, OR CDN
SPECIFIER

A relative displacement statement in a codemacro definition requires the parameter
to be a formal parameter list with the corresponding specifiers.

*** ERROR #372 FORMAL PARAMETER HAS ILLEGAL SPECIFIER TYPE

Specifiers can have only certain types. For example, a PREFIX67 statement could
not use a formal with an A specifier.

*** ERROR #373 PARAMETER MUST BE A FORMAL

The parameter to this codemacro statement must be a formal. For example:

PREFIX67 0

is illegal.

*** ERROR #374 ACTUAL PARAMETER HAS ILLEGAL TYPE

The type of the actual parameter does not match that of the formal definition.

*** ERROR #375 NEGATIVE NUMBER NOT ALLOWED IN THIS CONTEXT

Negative numbers are not allowed in certain contexts, such as STACKSEG
declaratives and DUP counts.

*** ERROR #376 MEMORY REFERENCE CANNOT BE REACHED WITH GIVEN
SEGMENT REGISTER

The code is probably missing an ASSUME statement, so that the assembler cannot
determine the segment base.

*** ERROR #377 SEGMENT CONTAINS PRIVILEGED INSTRUCTION(S)

The assembler has encountered one or more privileged instructions in the segment.
There are two types of privileged instructions: instructions that can be executed
only at privilege level 0, and instructions whose execution is restricted to IOPL
level or more trusted.

The instructions that can be executed only at level 0 are LGDT, LLDT, LIDT , LTR,
LMSW, CLTS, and HLT. The instructions whose execution is restricted to IOPL level
or more trusted are INSB, INSW, OUTSB, INS , OUTS, IN , OUT, CLI , and STI .

Additional instructions that can be executed only at level 0 include MOV to or from
CR0, CR2, CR3, DR0-3 , DR6, DR7, TR3, TR4, TR5, TR6, and TR7.

The lowest privilege level that can execute these instructions is indicated by the I/O
privilege level value in the flag register.

*** ERROR #378 ILLEGAL COMM VARIABLE TYPE

Only variables or labels can be declared as COMM and they cannot be initialized.

ASM386 Macro Assembler Operating Instructions Appendix A 107

*** ERROR #379 CANNOT PURGE PUBLIC OR EXTRN VARIABLE

PUBLIC or EXTRN symbols cannot be purged.

*** ERROR #380 CANNOT PURGE UNDEFINED SYMBOL

The symbol you attempted to purge is undefined. (It may already have been
purged.)

*** ERROR #381 CANNOT LIST MORE THAN 255 EXTERNALS IN A SINGLE
STATEMENT

A single assembler statement may not contain more than 255 symbols declared to
be EXTRN.

*** ERROR #383 SEGMENT ACCESS-TYPE HAS BEEN CHANGED

This message is a reminder that you have reopened a segment with a different
access-type, which is legal as long as the access-types are compatible.

*** ERROR #384 SEGMENT REOPENED WITH CONFLICTING ACCESS OR USE
ATTRIBUTE

The compatible sets of access-types are RO and RW, with a resulting type of RW, or
any combination of RO, EO, and ER with a resulting type of ER. The USE attribute
of a segment cannot be changed.

*** ERROR #385 SYSTEM ERROR CAUSED BY ACCESS TO OBJECT MODULE

An error occurred while the object module was being output. It could be an
internal error or an I/O error.

*** ERROR #500 UNDEFINED MACRO NAME

The text following a metacharacter (%) is not a recognized user macro name or
built-in macro function. The reference is ignored and processing continues with
the character following the name.

*** ERROR #501 ILLEGAL EXIT MACRO

The built-in macro function EXIT is not valid in this context. The call has been
ignored. A call to EXIT must allow an exit through a user function or the WHILE or
REPEAT built-in functions.

*** ERROR #502 FATAL SYSTEM ERROR

The macro processor discovered a loss of hardware and/or software integrity.
Contact Intel, following the instructions on the inside back cover of this manual.

*** ERROR #503 ILLEGAL EXPRESSION

A numeric expression was required as a parameter to one of the built-in macro
functions. The function call has been terminated and processing continued with the
character following the illegal expression.

108 Appendix A Error Messages

*** ERROR #504 MISSING "FI"

The IF built-in function did not end with FI .

*** ERROR #505 MISSING "THEN"

A call to the IF macro function requires a THEN statement following the IF
conditional expression clause. The call to IF has been aborted and processing
continued at the point in the string at which the error was discovered.

*** ERROR #506 ILLEGAL ATTEMPT TO REDEFINE A MACRO

You cannot redefine a built-in macro function or parameter name. A user-defined
macro cannot be redefined inside an expansion of itself.

*** ERROR #507 MISSING IDENTIFIER IN DEFINE PATTERN

In a DEFINE statement, the occurrence of an at sign (@) indicates that an identifier
type delimiter follows. No such delimiter existed and the DEFINE was aborted.
Scanning continued from the point at which the error was detected.

*** ERROR #508 MISSING BALANCED STRING

The macro processor expected a balanced-text string. The macro call was aborted
and scanning continued from the point at which the error was detected.

*** ERROR #509 MISSING LIST ITEM

In a built-in macro function, a parenthesized parameter is missing. The call was
aborted and scanning continued from the point at which the error was detected.

*** ERROR #510 MISSING DELIMITER

A required delimiter was not present. The macro call was aborted and scanning
continued from the point at which the error was detected. This error occurs only if
a user macro was defined with a call-pattern containing two adjacent delimiters. If
the first delimiter was scanned but was not immediately followed by the second,
this error occurs.

*** ERROR #511 PREMATURE EOF

The end of the input file occurred while the call to the macro was being scanned.
This usually occurs when a delimiter to a macro call was omitted, causing the
macro processor to scan to the end of the file searching for the missing delimiter.
This error can occur even if the closing delimiter of a macro call was given (and
any preceding delimiters were not given) because the macro processor searches for
delimiters one at a time.

*** ERROR #512 DYNAMIC STORAGE (MACROS OR ARGUMENTS) OVERFLOW

Either a macro argument was too long (possibly because of a missing delimiter) or
enough space is not available because of the number and size of the macro
definitions. All pending and active macros and include control lines are popped
and scanning continues in the primary source file.

ASM386 Macro Assembler Operating Instructions Appendix A 109

*** ERROR #513 MACRO STACK OVERFLOW

Excessive recursion in macro calls, expansions, or include control lines has caused
the macro stack to overflow. All active macro calls (macros whose values are
currently being read, as well as various temporary strings used during the
expansion of some built-in macro functions), all pending macro calls (calls to
macros whose arguments are still being scanned), and all includes are popped, and
scanning continues in the primary source file.

*** ERROR #514 INPUT STACK OVERFLOW

The input stack is used in conjunction with the macro stack to save pointers to
strings under analysis. The cause and recovery is the same as that for ERROR #513
MACRO STACK OVERFLOW.

*** ERROR #516 LONG PATTERN

An element of a pattern -- an identifier or delimiter -- is longer than 31 characters,
or else the total pattern is longer than 255 characters. The DEFINE function is
aborted and scanning continues from the point at which the error was detected.

*** ERROR #517 ILLEGAL METACHARACTER

You attempted to change the macro processing metacharacter to an illegal
character (a blank, letter, numeral, parenthesis, or asterisk). The current
metacharacter remains unchanged.

*** ERROR #518 UNBALANCED ")" IN ARGUMENT TO USER-DEFINED MACRO

The macro processor encountered an unmatched right parenthesis while scanning a
user-defined macro. The macro call is aborted and scanning continues from the
point at which the error was detected.

*** ERROR #519 ILLEGAL ASCENDING CALL

A macro call beginning inside the body of a user-defined macro or built-in macro
function was incompletely contained inside that body (possibly because of a
missing delimiter for the macro call). The call is aborted.

*** ERROR #520 BAD CONTROL PARAMETER

A control parameter is out of bounds, of the wrong type, or missing. Check for
typographical errors.

See also: Control descriptions, Chapter 3

*** ERROR #521 MULTIPLE INCLUDE

Only one INCLUDE control is allowed on a single line. Only the first (leftmost)
INCLUDE is processed; the rest are ignored.

110 Appendix A Error Messages

*** ERROR #600 ASM386 INTERNAL ERROR

An internal consistency check has failed. Contact Intel, following the instructions
on the inside back cover of this manual.

*** WARNING #601 TOO MANY ERRORS; FURTHER ERROR MESSAGES
SUPPRESSED

After the twentieth error on a given source line, this message is given, and no more
errors are reported for the line. Normal reporting resumes on the next source line.

*** ERROR #602 MISSING INPUT FILE

The assembler found the end of the invocation line before a source file
specification was scanned.

*** ERROR #603 INVALID SYNTAX

Check the manual syntax description for this control.

*** ERROR #604 ILLEGAL DELIMITER

The assembler found a character in a control line or the invocation line that is not a
legal delimiter. Check to see that the correct characters were used and that all the
parameters were correctly entered.

*** ERROR #605 MISPLACED PRIMARY CONTROL

Primary controls must appear at the start of the source file before all comments and
blank lines.

*** ERROR #606 UNKNOWN CONTROL

The indicated control is not recognized as an assembler control in this context. It
may be misspelled, mistyped, or incorrectly abbreviated.

*** ERROR #607 EXPECTED LEFT PARENTHESIS

The assembler expected a left parenthesis as the delimiter for a control parameter.

*** ERROR #608 RESTORE WITHOUT SAVE

A RESTORE control was encountered without a corresponding SAVE control.

*** ERROR #609 INVALID NUMERIC VALUE

An invalid number was used as a parameter for a control.

*** ERROR #610 PAGE WIDTH OUT OF RANGE

The parameter for PAGEWIDTH control must be a decimal integer from 60 to 132.

ASM386 Macro Assembler Operating Instructions Appendix A 111

*** ERROR #611 PAGE LENGTH OUT OF RANGE

The parameter for the PAGELENGTH control must be a decimal integer from 10 to
65535.

*** ERROR #612 EXPECTED RIGHT PARENTHESIS

The assembler expected a right parenthesis as the delimiter for a control parameter.

■■ ■■ ■■

ASM386 Macro Assembler Operating Instructions Appendix B 113

System Hardware and
Software Requirements B

This chapter describes the hardware and software requirements, and the procedure
for making required modifications to the operating system.

Hardware and Software Requirements
• Hardware -- IBM PC XT or IBM PC AT or fully equivalent system

• Operating system -- DOS Version 3.0 or later

• Fixed disk storage capacity -- sufficient for the size of the product (360K
bytes)

• System memory requirements -- 512K bytes minimum RAM for ASM386
v3.0, 357K bytes for ASM386 v4.0

114 Appendix B System Hardware and Software Requirements

Modifying the System Configuration
Before using Intel Software Development Tools from DOS, the system
configuration file CONFIG.SYS must be created or modified to include the FILES
and BUFFERS commands. The FILES command specifies the maximum number of
the files that can be opened at the same time. The BUFFERS command specifies
the number of disk buffers allocated in memory. To use Intel Software
Development Tools, set the value of FILES to 12 (or greater) and set the value of
BUFFERS to 10 (or greater).

Follow these steps to create the CONFIG.SYS file using the DOS COPY command:

1. Type:

copy con \config.sys <CR>

2. Enter the commands:

FILES=12 (or greater) <CR>
BUFFERS=10 (or greater) <CR>

3. To save the file, press the F6 key and then press <ENTER>.

4. Reboot the system.

If this file already exists on the system, use an editor to add or modify the existing
file by including the commands FILES=12 (or greater) and BUFFERS=10 (or
greater).

■■ ■■ ■■

ASM386 Macro Assembler Operating Instructions Index 115

Index

A
addresses and offsets, 59
assembler errors, 79
attributes, 68
ATTRIBUTES field, 74

B
binder (BND386), 11
blank lines, 16
builder (BLD386), 11

C
codemacro, 74
COMM attribute, 69
command, 13
command files, 30
command lines, 14
comment lines, 16
control

errors, 83
line indicator ($), 22
lines, 16, 20, 22
parameter delimiters, 14
parameters, 20
precedence, 19, 20

controls, 13, 14, 16, 19, 20
general, 16
in commands, 14
in macros, 23
within macros, 22

D
DEBUG control, 35
debuggers, 58
descriptor tables, 11
DOS batch files, 29

E
EJECT control, 36
equated symbols, 68
ERRORPRINT control, 37
errorprint file, 26, 50
external symbols, 74

F
fatal errors, 79
floating-point coprocessor, 47
floating-point stack element, 69, 75

G
GEN control, 39
general controls, 19
GENONLY control, 39

H
hardware/software requirements, 113
header, 43, 49, 51, 56, 67

116 Index

I
I/O errors, 79, 80
in-circuit emulators, 10
INCLUDE control, 42
indexing attribute, 68
input source, 14
instruction, 75
internal errors, 79, 80
invocation, 29

commands, 14
examples, 15
syntax, 13

invocation control errors, 79

K
keyword, 75

L
labels, 75
librarian (LIB386), 11
limits, 25
line numbers, 63, 71
LIST control, 43
listing, 43, 52, 55, 62, 63
listing file, 26
location counter, 63, 68
logical files, 26
logical names, 61

M
macro, 26, 63

call, 83
calls, 39, 42, 44
definitions, 20, 21
errors, 83
expansion, 39, 71
metacharacter (%), 13
nesting, 22
processor, 22, 28
string, 13

MACRO control, 44
mapper (MAP386), 11

maximum
nesting level, 42
nesting level of SAVEs, 53
page width, 50
segment size, 59
title length, 56

minimum page width, 50
MOD376 control, 45
MOD386 control, 45
MOD486 control, 45
multiple controls, 20

N
N287 control, 47
N387 control, 47
NAME field, 74
nesting indicator, 70
NODEBUG control, 35
NOERRORPRINT control, 37
NOGEN control, 39
NOLIST control, 43
NOMACRO control, 44
nonfatal errors, 81
NOOBJECT control, 48
NOPAGING control, 51
NOPRINT control, 52
NOSYMBOLS control, 55
NOTYPE control, 58
NOXREF control, 62
numbers, 75

O
object code, 26, 63, 70
OBJECT control, 48
object file, 26, 35, 48
object files, 11
object module, 58
object modules, 9
OMF-386, 11
operand sizes, 59
output file, 14, 26
output files, pathname limitations, 26
override attribute, 68
override prefixes, 59

ASM386 Macro Assembler Operating Instructions Index 117

P
page tables, 11
PAGELENGTH control, 49
PAGEWIDTH control, 50
PAGING control, 51
parameters, 14
pathnames, limitations, 26
primary controls, 16, 18
PRINT control, 52
print file, 26, 43, 49, 50, 51, 52, 55, 62, 63
procedures, 75
program restrictions, 25
public symbols, 74

R
record definitions, 68
records and record fields, 75
registers, 76
relocation indicator, 70
RESTORE control, 53

S
SAVE control, 53
scanning modes, 22
segment and system descriptors, 11
segments, 76
severe errors, 28
sign-off message, 28
sign-on message, 28
source code, 63
source file, 13, 16, 28, 42
source file controls, 20
source lines, 26, 37
source statements, 71
source text, 39, 63
stack, 53
stack segments, 76
structures and structure fields, 76
symbol table, 28, 55, 62, 72
symbol table fields, 74
symbolic debugging, 35
SYMBOLS control, 55
syntax errors, 81, 82
system utilities, 11

T
task state segments, 11
temporary files, 61
temporary work files, 27
TITLE control, 56
TYPE control, 58
TYPE field, 74

U
undefined symbols, 76
USE16 control, 59
USE32 control, 59
utilities, 9

V
VALUE field, 74
variables, 77

W
warnings, 81, 82
WORKFILES control, 61

X
XREF control, 62

If you need to contact Intel Customer Support
Contacting us is easy. Be sure that you have the following information available:

• Your phone and FAX numbers ready • Your product’s product code
• Complete description of your hardware • Current version of all software you use

or software configuration(s) • Complete problem description

Type of Service How to contact us
FaxBACK*
fax-on-demand system

24 hrs a day, 7 days a week

Using any touch-tone phone,
have technical documents sent to
your fax machine. Know your
fax number before calling.

U.S. and Canada: (800) 628-2283
(916) 356-3105

Europe: +44-1793-496646
Intel PC and LAN
Enhancement Support
BBS

24 hrs a day, 7 days a week

Information on products,
documentation, software drivers,
firmware upgrades, tools,
presentations, troubleshooting.

U.S and Canada: (503) 264-7999
Europe: +44-1793-432955

Autobaud detect
8 data bits, no parity, 1 stop

CompuServe*
Information Service

24 hrs a day, 7 days a week

Worldwide customer support:
information and technical
support for designers, engineers,
and users of 32-bit iRMX OS
and Multibus product families.

Worldwide Locations:
(check your local listing)

Type: GO INTELC once online.

Customer Support Intel Multibus Support engineers
offering technical advice and
troubleshooting information on
the latest Multibus products.

U.S. and Canada: (800) 257-5404
(503) 696-5025

FAX: (503) 681-8497
Hrs: M-F; 8-5 PST

Europe: +44-1793-641469
FAX: +44-1793-496385

Hrs: M-F; 9-5:30 GMT
Hardware Repair Multibus board and system

repair.
U.S. and Canada: (800) 628-8686

(602) 554-4904
FAX: (602) 554-6653

Hrs: M-F; 7-5 PST
Europe: +44-1793-403520

FAX: +44-1793-496156
Hrs: M-F; 9-5:30 GMT

Sales Intel Sales engineers offering
information on the latest iRMX
and Multibus products and their
availability.

Worldwide: Contact your local Intel
office or distributor

U.S. and Canada: (800) 438-4769
(503) 696-5025

FAX: (503) 681-8497
Hrs: M-F; 8-5 PST

Correspondence
Mail letters to:

Worldwide:

Intel Customer Support
Mailstop HF3-55
5200 NE Elam Young Parkway
Hillsboro, Oregon 97124-6497

Europe:

European Application Support
Intel Corporation (UK) Ltd.
Pipers Way
Swindon, Wiltshire
England SN3 1RJ

* Third-party trademarks are the property of their respective owners.

	Other iRMX Manuals
	ASM386 Macro Assembler Operating Instructions
	Quick Contents
	Contents
	1. Introduction
	About This Manual
	About This Chapter
	The Macro Assembler
	The System Utilities
	Inter-tool Consistency
	Inter-host Portability

	2. Using the Assembler
	Command Syntax
	Using Controls on the Command Line
	Sample Invocation Commands
	Interrupting the Assembler

	Controls
	Primary Controls
	General Controls

	Using Controls in the Source File
	Using Controls within Macros
	File Usage
	Source Program Restrictions
	Output Files
	Work Files

	Messages
	Automation of Program Invocation and Execution
	DOS Batch Files
	DOS Command Files
	Redirection of Command Input to Batch Files

	3. Assembler Control Reference
	DATE
	DEBUG
	EJECT
	ERRORPRINT
	GEN/NOGEN/GENONLY
	INCLUDE
	LIST
	MACRO
	MOD386/MOD376/MOD486
	N387/N287
	OBJECT
	PAGELENGTH
	PAGEWIDTH
	PAGING
	PRINT
	SAVE/RESTORE
	SYMBOLS
	TITLE
	TYPE
	USE32/USE16
	WORKFILES
	XREF

	4. The Listing (Print File)
	The Default Print File
	Print File Headers
	Location Counter (LOC)
	Equated Symbols (EQU Directive)
	Floating-point Stack Elements (ST)
	COMM Variables and Labels

	Object Code (OBJ)
	Relocatable or External Code (R, E)
	Include Nesting Indicator (=)

	Line Numbers (LINE)
	Macro Expansion Indicator (+)

	Source Statements (SOURCE)
	The Symbol Table
	Symbol Table Fields

	A. Error Messages
	Fatal Errors
	Invocation Control Errors
	I/O Errors
	Internal Errors

	Nonfatal Errors and Warnings
	Syntax Errors
	Warnings
	Macro Errors
	Control Errors

	Source File Error and Warning Messages

	B. System Hardware and Software Requirements
	Hardware and Software Requirements
	Modifying the System Configuration

	Index
	Service Information

