
iRMX®

System Call Reference

Order Number: 469157-004

2

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:
Literature Distribution Center
Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

Or you can call the following toll-free number: 1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local
Intel sales office. For your convenience, international sales office addresses are printed on the last page of
this document. Contact your local sales office to obtain the latest specifications before placing your order.

Intel Corporation (Intel) makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel assumes no
responsibility for any errors that may appear in this document. Intel makes no commitment to update nor to
keep current the information contained in this document. No part of this document may be copied or
reproduced in any form or by any means without prior written consent of Intel. Intel retains the right to make
changes to these specifications at any time, without notice.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's Software License Agreement.
U.S. GOVERNMENT RESTRICTED RIGHTS: These software products and documentation were
developed at private expense and are provided with "RESTRICTED RIGHTS." Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in FAR 52.227-14 and
DFAR 252.227-7013 et seq. or its successor.

The Intel logo, i960, Pentium, and iRMX are registered trademarks of Intel Corporation, registered in the
United States of America and other countries. Above, i287, i386, i387, i486, Intel287, Intel386, Intel387,
Intel486, Intel487 and EtherExpress are trademarks of Intel Corporation.

Adaptec is a registered trademark of Adaptec, Inc. AT, IBM and PS/2 are registered trademarks and PC/XT
is a trademark of International Business Machines Corporation. All Borland products are trademarks or
registered trademarks of Borland International, Inc. CodeView, Microsoft, MS, MS-DOS and XENIX are
registered trademarks of Microsoft Corporation. Comtrol is a registered trademark and HOSTESS is a
trademark of Comtrol Corporation. DT2806 is a trademark of Data Translation, Inc. Ethernet is a registered
trademark of Xerox Corporation. Hayes is a registered trademark of Hayes Microcomputer Products.
Hazeltine and Executive 80 are trademarks of Hazeltine Corporation. Hewlett-Packard is a registered
trademark of Hewlett-Packard Co. Maxtor is a registered trademark of Maxtor Corporation. MIX is a
registered trademark of MIX Software, Incorporated. MIX is an acronym for Modular Interface eXtension.
MPI is a trademark of Centralp Automatismes (S.A.). NetWare and Novell are registered trademarks of
Novell Corp. NFS is a trademark of Sun Microsystems, Inc. Phar Lap is a trademark of Phar Lap Software,
Inc. Soft-Scope is a registered trademark of Concurrent Sciences, inc. TeleVideo is a trademark of
TeleVideo Systems, Inc. UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited. VAX is a registered trademark and VMS is a trademark of
Digital Equipment Corporation. Visual Basic and Visual C++ are trademarks of Microsoft Corporation. All
Watcom products are trademarks or registered trademarks of Watcom International Corp. Windows,
Windows 95 and Windows for Workgroups are registered trademarks and Windows NT is a trademark of
Microsoft in the U.S. and other countries. Wyse is a registered trademark of Wyse Technology. Zentec is a
trademark of Zentec Corporation. Other trademarks and brands are the property of their respective owners.

Copyright © 1991, 1992, 1993 and 1995 Intel Corporation, All Rights Reserved

REVISION HISTORY DATE
-001 Original Issue 12/91
-002 Revision One 08/92
-003 Update for Release 2.1 of the OS 12/93
-004 Update for Release 2.2 of the OS 11/95

System Call Reference 3

Quick Contents

Chapter 1. Introduction

Chapter 2. Application Loader System Calls

Chapter 3. Basic I/O System Calls

Chapter 4. Extended I/O System Calls

Chapter 5. Human Interface System Calls

Chapter 6. Nucleus System Calls

Chapter 7. UDI System Calls

Chapter 8. Windows- and DOS-Specific System Calls

Chapter 9. Kernel System Calls and Handlers

Chapter 10. Virtual Memory System Calls

Appendix A. Application Loader Examples

Appendix B. Nucleus Examples

Appendix C. UDI Examples

Appendix D. Condition Codes

Index

Service Information

4

Notational Conventions
Most of the references to system calls in the text and graphics use C syntax instead
of PL/M (for example, the system call send_message instead of send$message). If
you are working in C, you must use the C header files, rmx_c.h, udi_c.h and
rmx_err.h. If you are working in PL/M, you must use dollar signs ($) and use the
rmxplm.ext and error.lit header files.

This manual uses the following conventions:

• Syntax strings, data types, and data structures are provided for PL/M and C
respectively.

• All numbers are decimal unless otherwise stated. Hexadecimal numbers
include the H radix character (for example, 0FFH). Binary numbers include the
B radix character (for example, 11011000B).

• Bit 0 is the low-order bit. If a bit is set to 1, the associated description is true
unless otherwise stated.

• Data structures and syntax strings appear in this font.

• System call names and command names appear in this font.

• PL/M data types such as BYTE and SELECTOR, and iRMX data types such as
STRING and SOCKET are capitalized. All C data types are lower case except
those that represent data structures.

• The following OS layer abbreviations are used. The Nucleus layer is
unabbreviated.

AL Application Loader
BIOS Basic I/O System
EIOS Extended I/O System
HI Human Interface
UDI Universal Development Interface

• Whenever this manual describes I/O operations, it assumes that tasks use BIOS
calls (such as rq_a_read, rq_a_write, and rq_a_special). Although not
mentioned, tasks can also use the equivalent EIOS calls (such as rq_s_read,
rq_s_write, and rq_s_special) or UDI calls (dq_read or dq_write) to do the
same operations.

System Call Reference Contents 5

Contents

1 Introduction
Reader Level... 17
Call Prefixes For Various Layers... 18

Modified Alphabetical Listing of Calls... 18
Condition Codes.. 18
Data Types.. 20

Constants.. 22
SOCKET Definition ... 22

Strings and String Table Format.. 22
STRING Definition .. 23
String Table Definition... 24

Underscores in Calls, Structures, and Data Types.. 25
Header Files to Include for System Calls... 26
Interface Libraries for System Calls and C Library...................................... 27
Layer-specific Information.. 29

Application Loader Layer-specific Information.................................... 29
Condition Codes For Synchronous System Calls............................ 29
Condition Codes For Asynchronous System Calls 29
File Access Requirements.. 30
Mailboxes and Loader Result Segments .. 30

BIOS Layer-specific Information ... 30
File Types ... 31
System Call Types... 31
Sequential and Concurrent Condition Codes.................................. 31
I/O Request/Result Segments... 32

EIOS Layer-specific Information.. 34
System Call Types... 34
I/O Request/Result Segments... 35

iRMK Kernel-specific Information... 35
Syntax ... 35
Data Types .. 36
Scheduling Category ... 36
Parameters... 37
Kn_Task_State Structure ... 38
Configuring the Kernel Tick Interval... 38

6 Contents

Getting System Information ... 39
System Call Summary Tables... 41

Application Loader System Calls Summary... 41
BIOS System Calls Summary .. 42
EIOS System Calls Summary .. 45
Human Interface System Calls Summary... 47
Nucleus System Calls Summary .. 49
UDI System Calls Summary .. 55
Windows- and DOS-Specific System Calls Summary.......................... 57
Kernel System Calls Summary .. 58
Virtual Memory System Calls Summary.. 59
Networking System Calls Summary .. 60

2 Application Loader System Calls
a_load .. 61
a_load_io_job... 67
rqe_a_load_io_job.. 68
s_load_io_job... 77
rqe_s_load_io_job .. 78
s_overlay.. 83

3 Basic I/O System Calls
a_attach_file... 85
a_change_access .. 90
a_close ... 97
a_create_directory.. 99
a_create_file... 105
create_user ... 112
a_delete_connection... 114
a_delete_file... 116
delete_user ... 121
encrypt ... 122
a_get_connection_status... 124
get_default_prefix .. 128
get_default_user ... 130
a_get_directory_entry... 132
a_get_extension_data ... 135
get_file_driver_status ... 138
a_get_file_status... 142
get_global_time.. 151
a_get_path_component... 153

System Call Reference Contents 7

inspect_user .. 156
rq_install_duibs... 158
install_file_driver.. 165
a_open .. 171
a_physical_attach_device.. 175
a_physical_detach_device ... 179
a_read ... 181
a_rename_file ... 184
a_seek... 190
set_default_prefix ... 193
set_default_user .. 195
a_set_extension_data... 196
a_set_file_status.. 199
set_global_time... 203
a_special ... 205
a_truncate ... 241
a_update.. 244
wait_io.. 247
wait_iors ... 251
a_write.. 253

4 Extended I/O System Calls
s_attach_file.. 257
s_catalog_connection .. 261
s_change_access ... 264
s_close.. 270
s_create_directory ... 273
s_create_file.. 278
create_io_job .. 284
rqe_create_io_job.. 285
s_delete_connection .. 292
s_delete_file.. 294
exit_io_job.. 299
s_get_connection_status.. 302
s_get_directory_entry.. 307
s_get_file_status.. 309
get_logical_device_status.. 320
s_get_path_component.. 323
get_user_ids.. 325
hybrid_detach_device ... 329
logical_attach_device.. 331
logical_detach_device... 334

8 Contents

s_lookup_connection.. 336
s_open.. 338
s_read_move .. 342
s_rename_file... 346
s_seek.. 352
s_set_file_status ... 355
s_special... 360
start_io_job .. 376
s_truncate_file.. 377
s_uncatalog_connection ... 380
verify_user ... 382
s_write_move... 386

5 Human Interface System Calls
c_backup_char ... 391
c_create_command_connection.. 392
c_delete_command_connection.. 396
c_format_exception.. 397
c_get_char.. 399
c_get_command_name... 401
c_get_input_connection.. 403
c_get_input_pathname.. 408
c_get_output_connection.. 414
c_get_output_pathname.. 420
c_get_parameter... 423
c_send_command... 427
c_send_co_response... 434
c_send_eo_response... 437
c_set_control_c .. 440
c_set_parse_buffer ... 442

6 Nucleus System Calls
accept_control .. 445
add_reconfig_mailbox.. 447
alter_composite .. 449
attach_buffer_pool ... 451
attach_port ... 453
broadcast.. 455
cancel... 457
catalog_object .. 459
rqe_change_descriptor.. 461

System Call Reference Contents 9

rqe_change_object_access... 463
connect ... 465
create_buffer_pool .. 467
create_composite .. 469
rqe_create_descriptor .. 472
create_extension.. 474
create_job ... 476
rqe_create_job... 477
create_mailbox.. 483
create_port .. 485
create_region .. 489
create_segment ... 491
create_semaphore.. 493
create_task .. 495
delete_buffer_pool .. 498
delete_composite .. 499
rqe_delete_descriptor .. 500
delete_extension.. 502
delete_job ... 504
delete_mailbox.. 506
delete_port .. 508
delete_region .. 509
delete_segment ... 511
delete_semaphore.. 513
delete_task .. 515
detach_buffer_pool ... 517
detach_port ... 519
disable... 520
disable_deletion .. 522
enable ... 524
enable_deletion ... 526
end_init_task... 527
enter_interrupt... 528
exit_interrupt .. 530
rqe_exit_interrupt.. 532
force_delete .. 533
rqe_get_address... 535
get_buffer_limit .. 537
get_exception_handler .. 539
rqe_get_exception_handler.. 541
get_host_id.. 544
get_interconnect.. 545
get_level ... 547

10 Contents

6 Nucleus System Calls (continued)
rqe_get_object_access .. 548
get_pool_attrib ... 551
rqe_get_pool_attrib .. 553
get_port_attributes.. 556
get_priority .. 559
get_size .. 560
get_task_accounting ... 562
get_task_info.. 565
get_task_state... 569
get_task_tokens.. 574
get_time ... 576
get_type ... 577
inspect_composite .. 579
lookup_object... 581
move_data.. 584
offspring... 586
rqe_offspring.. 588
receive ... 590
receive_control... 594
receive_data ... 596
receive_fragment.. 599
receive_message... 601
receive_reply.. 604
receive_signal .. 608
receive_units .. 610
release_buffer... 612
request_buffer .. 614
reset_interrupt .. 616
resume_task ... 618
send.. 619
send_control... 622
send_data ... 624
send_message... 626
send_reply.. 628
send_rsvp... 631
send_signal... 635
send_units.. 636
set_exception_handler .. 638
rqe_set_exception_handler ... 640
set_interconnect ... 644
set_interrupt ... 646
rqe_set_max_priority.. 649

System Call Reference Contents 11

rqe_set_os_extension .. 651
set_pool_min... 653
set_priority.. 654
set_time .. 656
signal_exception ... 657
signal_interrupt ... 659
sleep.. 661
suspend_task... 663
system_accounting .. 665
rqe_timed_interrupt... 666
uncatalog_object ... 668
validate_buffer.. 670
wait_interrupt.. 672

7 UDI System Calls
dq_allocate.. 675
dq_attach .. 677
dq_change_access ... 679
dq_change_extension .. 681
dq_close.. 683
dq_create .. 684
dq_decode_exception.. 686
dq_decode_time.. 687
dq_delete .. 689
dq_detach.. 690
dq_exit .. 691
dq_file_info .. 692
dq_free.. 695
dq_get_argument... 696
dq_get_connection_status.. 699
dq_get_exception_handler... 701
dq_get_msize .. 702
dq_get_size ... 703
dq_get_system_id.. 704
dq_get_time .. 705
dq_mallocate... 706
dq_mfree... 708
dq_open.. 709
dq_overlay .. 711
dq_read ... 712
dq_rename .. 714
dq_reserve_io_memory ... 716

12 Contents

dq_seek.. 718
dq_special .. 720
dq_switch_buffer.. 723
dq_trap_cc.. 724
dq_trap_exception .. 725
dq_truncate .. 726
dq_write ... 727

8 Windows- and DOS-Specific System Calls
rqe_read_segment iRMX for Windows only... 729
rqe_write_segment ... 731
rqe_set_vm86_extension .. 733
rqe_dos_request.. 737
RQEGetRmxStatus... 745

9 Kernel System Calls and Handlers
KN_create_alarm ... 747
KN_create_area.. 750
KN_create_mailbox ... 752
KN_create_pool ... 755
KN_create_semaphore ... 757
create_task_handler.. 759
KN_delete_alarm ... 760
KN_delete_area.. 761
KN_delete_mailbox ... 762
KN_delete_pool ... 763
KN_delete_semaphore ... 764
delete_task_handler.. 765
KN_get_pool_attributes.. 766
KN_get_time.. 767
KNE_get_time ... 768
KN_receive_data.. 769
KN_receive_unit .. 771
KN_reset_alarm ... 773
KN_reset_handler... 774
KN_send_data.. 775
KN_send_priority_data .. 777
KN_send_unit.. 779
KN_set_handler.. 780
KN_set_time .. 782
KNE_set_time.. 783

System Call Reference Contents 13

KN_sleep.. 784
KN_start_scheduling... 785
KN_stop_scheduling... 786
task_switch_handler.. 787

10 Virtual Memory System Calls
rqv_allocate .. 789
rqv_allocate_at.. 791
rqv_change_access.. 793
rqv_create_segment .. 795
rqv_free .. 797
rqv_map_physical ... 799

A Application Loader Examples
rqe_a_load_io_job and rqe_s_load_io_job example 801

B Nucleus Examples
rqe_create_descriptor example .. 808
rq_create_extension example .. 810
rqe_create_job example .. 812
rq_create_mailbox example .. 815
rq_create_region example ... 817
rq_create_segment example .. 819
rq_create_semaphore example .. 821
rq_create_task example... 823
rq_delete_job example .. 828
rq_force_delete example ... 829
rqe_get_address example .. 831
rq_get_exception_handler example ... 833
rqe_get_pool_attrib example ... 835
rq_get_pool_attrib example... 836
rq_get_task_tokens example.. 837
rq_get_type example ... 839
rqe_offspring example... 841
rq_offspring example .. 842
rq_receive_data example... 843
rq_receive_message example .. 846
rq_receive_units example.. 849
rqe_set_os_extension example .. 852
rq_set_pool_min example ... 853

14 Contents

C UDI Examples
dq_create example.. 855

D Condition Codes
Environmental Conditions.. 865

Nucleus Environmental Conditions.. 865
I/O System Environmental Conditions... 866
Application Loader Environmental Conditions 870
Human Interface Environmental Conditions .. 870
UDI Environmental Conditions ... 871
Nucleus Communications Service Environmental Conditions.............. 872
Paging Subsystem Environmental Conditions...................................... 872

Programmer Errors... 873
Nucleus Programmer Errors... 873
I/O System Programmer Errors.. 874
Application Loader Programmer Error .. 874
Human Interface Programmer Errors ... 874
UDI Programmer Errors .. 874
Communication System Programmer Errors .. 875
Paging Subsystem Programmer Errors... 875

Index 877

Service Information Inside Back Cover

System Call Reference Contents 15

Tables
1-1. Data Types in System Calls... 20
1-2. Include Files for System Calls and Data Types.. 26
1-3. Interface Libraries for All Calls Except UDI ... 27
1-4. Interface Libraries for UDI Calls... 28
1-5. Interface Libraries for C Library Functions ... 28
1-6. Application Loader System Calls .. 41
1-7. BIOS System Calls.. 42
1-8. EIOS System Calls.. 45
1-9. Human Interface System Calls .. 47
1-10. Nucleus System Calls.. 49
1-11. UDI System Calls.. 55
1-12. Windows- and DOS-Specific System Calls ... 57
1-13. Kernel System Calls and Handlers .. 58
1-14. Virtual Memory System Calls ... 59
1-15. System Calls that Access iNA 960 Network Software 60

Figures
1-1. String Table Format .. 23

System Call Reference Chapter 1 17

Introduction 1
This manual is a reference to the system calls for the iRMX III Operating System,
iRMX for PCs, and iRMX for Windows. It provides a detailed description of each
system call and syntax in both PL/M and C languages. System calls can also be
invoked from other languages.

See also: Specific language information, Programming Techniques

This chapter provides general information that applies to the system calls:

• Definitions of data types for PL/M and C

• Header files (include files)

• Interface libraries for system calls and the C library functions

• Layer-specific information for the Application Loader, BIOS, EIOS, and
Kernel

• Tables summarizing the calls in each Operating System (OS) layer

Reader Level
This manual assumes that you are familiar with:

• Terms and concepts of the iRMX OS

See also: Introducing the iRMX Operating Systems,
System Concepts

• The PL/M or C programming language

See also: PL/M 386 Programmer's Guide,
iC-386 Compiler User's Guide

The Human Interface chapter also assumes that you are familiar with:

• Human Interface command parsing

See also: System Concepts

• Human Interface command format

See also: Command Reference

18 Chapter 1 Introduction

Call Prefixes For Various Layers
A number of prefixes are used with iRMX system calls to designate functions or
OS layers. This list presents the prefix designations, examples of system call
names using those prefixes, and the use of the prefix.

Prefix Example Prefix Usage
rq_ rq_delete_job Basic label for Nucleus, BIOS, EIOS, AL
rqe_ rqe_offspring Basic label for extended system calls
rqv_ rqv_allocate Basic label for virtual memory system calls
a_ rq_a_load Label for asynchronous (rq_a, rqe_a) calls
s_ rq_s_overlay Label for synchronous (rq_s, rqe_s) calls
c_ rq_c_get_char Label for Human Interface (rq_c) calls
dq_ dq_allocate Basic label for UDI system calls
cq_ cq_comm_rb Basic label for iNA 960 network calls
KN_ KN_delete_alarm Basic label for Kernel calls
KNE_ KNE_get_time Basic label for extended Kernel calls

Modified Alphabetical Listing of Calls
This manual uses a shorthand notation that omits the basic rq_ prefix. For
example, the call rq_s_create_file is shown as s_create_file. You must use the
full name in application programs.

Extended system calls begin with the prefix rqe. For extended calls, this manual
spells out the complete names, including the rqe prefix, for example
rqe_create_io_job. The dq, cq, KN , and KNE prefixes are also spelled out.

Within their OS layer, system call descriptions are presented in alphabetical order
according to their basic names, without regard to the standard rq_ prefix. For
example, rq_create_io_job is listed alphabetically as create_io_job. Extended
system calls are also arranged by their basic names but the rqe prefix is retained for
uniqueness. For example, rqe_create_io_job (including the rqe prefix) follows
create_io_job. The same is true for the dq, cq, KN , and KNE prefixes.

Condition Codes
Except for Kernel calls, which do not perform error checking, each system call
returns a condition code whenever it is invoked. If the call executes without error,
it returns the condition code E_OK. (Some iNA 960 cq_* calls can return a value
other than E_OK to indicate success.) If an error occurs, the call returns a
condition code that describes the error. Your application can handle the condition
code directly (in-line) or with an exception handler.

See also: Condition codes, exception handlers, System Concepts

System Call Reference Chapter 1 19

The typical condition codes returned by each call are listed in each system call
description. However, be aware that:

• PL/M programs use a $ instead of an _ (underscore) in the condition code
mnemonic.

• Condition codes can percolate up to outer layers of the OS from inner layers.
For example, an HI call can produce exception codes from the BIOS or EIOS.
In that case, the condition code is not listed in the HI call description.

See also: Condition code master list, Appendix D

20 Chapter 1 Introduction

Data Types
Except for Kernel calls, each system call description lists PL/M and C data types
for each call parameter. The data types, unless otherwise stated, define the
acceptable range of values for a parameter. Table 1-1 lists the data types used in
this manual. Data types such as WORD_16, WORD_32, and NATIVE_WORD are
iRMX data types, not native to PL/M or C; they are defined in the include files
provided with the OS.

See also: rmxtypes.h and rmx_c.h files in the intel/include directory

▲▲! CAUTION
Compiler controls (such as long64 in iC-386) allow certain data
types to be larger than specified here. Use only the compiler
option that provides data types conforming with the table below.

See also: long64 , iC-386 Compiler User's Guide

Table 1-1. Data Types in System Calls

C Data Type PL/M Description

UINT_8 BYTE An unsigned 8-bit binary number or character in the range of
0 to 255, contained in 1 byte of memory.

UINT_16 WORD_16 An unsigned 16-bit binary number in the range of 0 to 65535,
contained in 2 contiguous bytes of memory.

UINT_32 WORD_32 An unsigned 32-bit binary number in the range of 0 to
4,294,967,295, contained in four contiguous bytes of memory.

SELECTOR SELECTOR A 16-bit index identifying a particular memory segment in a
descriptor table (segmented application) or page tables (flat
model). The selector is the data type for a token, which is a
value that the OS assigns to an object.

data_type far * POINTER In C, the data_type can be any data type in this table, or a
data structure defined in the call description, or void. The
asterisk (*) is part of the name. Pointer types and sizes are:

Compiler Type Pointer Type Pointer Size

16-bit compact/large
segmented

segment:offset 16:16
(32 bits total length)

32-bit compact segmented
(e.g., PL/M-386, iC-386)

segment:offset 16:32
(48 bits total length)

32-bit flat
(non-Intel C compilers)

offset only 32 bits (near pointer
even if declared far)

continued

System Call Reference Chapter 1 21

Table 1-1. Data Types in System Calls (continued)

C Data Type PL/M Data Type Description

SOCKET_STRUCT SOCKET$STRUCT Combination of a host ID and
port ID for use in message
passing.

RMX_STRING or
PLM_STRING_STRUCT

PLM_STRING_STRUCT An array of consecutive characters
with the first character defining the
length of the string.

STRING_TABLE_STRUCT PLM_STRINGTABLE_STRUCT An array of consecutive
RMX_STRINGs or
PLM_STRING_STRUCTs.

BOOLEAN BYTE This data type corresponds to
BOOLEAN logic (true or false). It is
an unsigned 8-bit binary number
that can take on the values FALSE
(0) and TRUE (not 0 or any value
greater than 0). In PL/M, TRUE
must have bit 0 set to 1.

KN_TOKEN WORD_32 An unsigned 32-bit binary number
in the range of 0 to 4,294,967,295,
contained in four contiguous bytes
of memory.

KN_STATUS WORD_32 An unsigned 32-bit binary number
in the range of 0 to 4,294,967,295,
contained in four contiguous bytes
of memory.

KN_FLAGS WORD_32 An unsigned 32-bit binary number
in the range 0 to 4,294,967,295,
contained in four contiguous bytes
of memory.

NATIVE_WORD (no equivalent) In C, expands type definitions of
variables from 16 bits to 32 bits
when using 32-bit code. The
NATIVE_WORD type can be either
an unsigned 16-bit or unsigned 32-
bit binary number. In PL/M, you
include either the 16-bit or 32-bit
version of header (.ext and .lit) files
to get the correct data type.

22 Chapter 1 Introduction

Constants
Among others, these constant values are defined:

Value Defined as
0 FALSE
0FFH TRUE

SOCKET Definition
The SOCKET$STRUCT data type is defined in PL/M as:

DECLARE SOCKET$STRUCTURE(
host_id WORD_16,
port_id WORD_16);

For C, it is structured as:

struct {
UINT_16 host_id;
UINT_16 port_id;

} SOCKET_STRUCT;

Where:

host_id A number from 0 to 19, which is the slot number of a Multibus II
board, identifying a message-passing host.

port_id A number that uniquely identifies a port on the host.

See also: Nucleus call create_port, in this manual,
Sockets and ports, System Concepts

Strings and String Table Format
The iRMX OS uses structures called strings to store groups of ASCII characters,
such as pathnames. The OS assumes a string to be a series of consecutive bytes
broken into two portions: a count byte and text bytes. The first byte in the string is
the count byte; its value is set to the number of bytes in the text portion of the
string. The text bytes contain the substance of the string. The maximum number
of characters in the STRING data type is 255.

✏ Note
When you call C functions, as in the C Library or the TCP/IP
socket calls, you use the null-terminated string that is typical of
the C language. When you make iRMX system calls from C (or
any language), you must use the OS string type described here.

System Call Reference Chapter 1 23

The OS also uses another structure called a string table. A string table consists of a
count byte and a series of consecutive strings. As with the string, the first byte in
the string table is the count byte; its value is set to the number of strings in the
string table. Figure 1-1 shows the string table format.

W-0890

BYTE: number of entries (n)

STRING: string 1

STRING: string 2

STRING: string 3

Extra space, if any

STRING: string n

Figure 1-1. String Table Format

STRING Definition
The iRMX OS STRING data type is not the same as the null-terminated string
commonly used in C programs. The STRING data type is defined in PL/M as:

STRING LITERALLY 'STRUCTURE(
length BYTE,
char (STRING$MAX) BYTE)';

DECLARE PLM_STRING_STRUCT(
length BYTE,
char(*) BYTE);

or in C:

typedef struct {
UINT_8 length;
UINT_8 text [_MAX_STRING];

} RMX_STRING;

24 Chapter 1 Introduction

Where:

length Specifies the length of the string. This equals the index of the
character array. 0 specifies a null string.

text [_MAX_STRING]
The character array. In C, adjust the index for _MAX_STRING from
255 to fit the maximum value of length in actual use (≤ 255).

String Table Definition
The STRINGTABLE data type is defined in PL/M as:

DECLARE STRINGTABLE STRUCTURE(
count BYTE,
strings(_NUM_STRINGS) STRING)

Where:

count Specifies the number of entries in the STRINGTABLE.

strings[_NUM_STRINGS]
The number of strings in the table.

or in C:

typedef struct {
UINT_8 numentry;
PLM_STRING_STRUCT strings[_NUM_STRING];

} STRING_TABLE_STRUCT;

Where:

numentry Specifies the number of entries in the STRINGTABLE.

strings[_NUM_STRING]
The number of strings (of type PLM_STRING_STRUCT) in the table.

System Call Reference Chapter 1 25

Underscores in Calls, Structures, and Data Types
This manual refers to all calls and data types such as structure definitions with
names that include underscores (_) separating the parts of the name. (In PL/M,
dollar signs ($) separate the parts of system call names.) In some cases, you can
refer to the same system call or structure definition with or without the underscore
separator. For example, you can call rq_send_message or rqsendmessage,
depending on the include file. The OS defines such calls and data types both ways;
the versions without underscores are provided for backwards compatibility with
existing code.

As a general rule, the data types with underscores are defined in header files that
have underscores in the names. For example, rmx_c.h defines system calls with
underscores; it also includes rmxc.h, which defines system calls without
underscores. Similarly, rmx_err.h defines condition code names with underscores,
while rmxerr.h defines the same names without underscores. (The header files, or
include files, are described later in this chapter.)

However, some of the latest OS type definitions are defined only with underscore
separators, as shown in this manual. In your application program, include the
underscore version of include files and use the underscores as shown in this
manual.

▲▲! CAUTION
Not all type definitions that include underscores are exactly the
same as their counterparts that don’t include underscores. For
example, the STRING_TABLE_STRUCT structure (see page 24) is
not defined the same way as its counterpart,
STRINGTABLESTRUCT.

Furthermore, not all of the PL/M structure definitions listed in
this manual are actually defined in PL/M header files (.lit and .ext
files). If you program in C and include the correct header files,
you can use the type definitions listed in this manual without
defining them yourself. But if you program in PL/M, you may
need to declare some of the literal structures listed here.

26 Chapter 1 Introduction

Header Files to Include for System Calls
The header files to include in your application programs are located in the
directories listed below. These files define the prototypes for system calls, data
types shown in this manual, and mnemonics for condition codes.

Compiler Type Directory
C /intel/include
PL/M 32-bit /rmx386/inc
PL/M 16-bit /rmx386/inc16

Most references to system calls in this manual use C syntax instead of PL/M (for
example, the system call rq_send_message instead of rq$send$message). The
header file you include determines whether system calls and data types are defined
with an underscore (_) as shown in this manual. In PL/M, use dollar signs ($) in
system calls and condition code mnemonics.

Table 1-2 lists the general include files and files that are specific to layers of the
OS. The general include files include most of the layer-specific files, so you don't
have to specifically include all these files in your application.

Table 1-2. Include Files for System Calls and Data Types

General Include Files C, Underscores C, No Underscores PL/M
Most layers rmx_c.h rmxc.h rmxplm.ext

rmxplm.lit
Condition codes rmx_err.h rmxerr.h error.lit
Layer-Specific Files C, Underscores C, No Underscores PL/M
OS data types, constants common.h common.h common.lit
Application Loader loader.ext
BIOS bios.ext
EIOS eios.ext
Human Interface hi.ext
Nucleus nucleus.h nucleus.h nuclus.ext
Kernel 1 rmk.h rmk_base.ext

rmk_base.lit
UDI 1 udi_c.h udi.h udi.ext
iNA 960 cq_ calls 1 cqcomm.h

cq*.h
cqcomm.h cqcomm.ext 2

cq*.lit 2

1 Most layer-specific files are already included in the general include files, but you must specifically
include these files.

2 These PL/M files are for 16-bit applications only; they are in the /rmx386/inc16 directory but not in
/rmx386/inc.

The directories listed above contain other include files for specific purposes. The
include files for C Library functions are in the /intel/include directory.

See also: Header files, C Library Reference

System Call Reference Chapter 1 27

Interface Libraries for System Calls and C Library
Libraries supplied with the OS provide a standard interface to the system calls.
These are the libraries to which you bind (link) your application. Procedures in the
interface libraries perform the operations needed to invoke the actual system call,
depending on the compiler you use.

Tables 1-3 and 1-4 list the system call interface libraries for the various supported
compiler models. These interface libraries are located in the /rmx386/lib directory.
The libraries in Table 1-3 are interfaces to these layers of the OS:

Application Loader Human Interface iNA 960 cq_* calls
BIOS Nucleus Kernel
EIOS Paging Subsystem

▲▲! CAUTION
Interfaces to the iNA 960 calls were formerly in separate
libraries: /rmx386/rmxnet/cq*.lib. As of release 2.2 of the OS,
interfaces for iNA 960 calls are defined in the libraries listed in
Table 1-3. The old libraries and the directory they were in no
longer exist. You must relink your existing applications that
make cq_ calls to one of the libraries in Table 1-3.

The libraries in Table 1-3 for non-Intel compilers include an
interface for Kernel calls. For 32-bit compact applications that
make Kernel calls using Intel compilers, you must also link to the
kn_call.lib library.

Table 1-3. Interface Libraries for All Calls Except UDI

Interface Type Intel iC-386
and PL/M

Borland C
Compiler

Microsoft C
Compiler

Watcom C
Compiler

16-bit compact rmxifc.lib 1 rmxifcb.lib rmxifcm.lib

16-bit large rmxifl.lib 1 rmxiflb.lib rmxiflm.lib

32-bit compact rmxifc32.lib 2

kn_call.lib
rmxifc3w.lib

32-bit flat rmxiff3b.lib rmxiff3m.lib N/A

1 These libraries do not include an interface to Kernel calls.
2 This library does not include an interface to Kernel calls. You must also link to kn_call.lib,

which supports only 32-bit compact applications.

28 Chapter 1 Introduction

Table 1-4. Interface Libraries for UDI Calls

Interface Type Intel iC386
and PL/M

Borland C
Compiler

Microsoft C
Compiler

Watcom C
Compiler

16-bit compact udiifc.lib udiifcb.lib udiifcm.lib

16-bit large udiifl.lib udiiflb.lib udiiflm.lib

32-bit compact udiifc32.lib udiifc3w.lib

32-bit flat udiiff3b.lib udiiff3m.lib

Table 1-5 lists the interface libraries for C library functions. These libraries are
located in the \intel\lib directory Link your application to the appropriate library
according the compiler you use. There is also a PL/M-specific library,
/intel/lib/plm386.lib, for any application written in PL/M.

See also: C Library Reference for information on the C functions

Table 1-5. Interface Libraries for C Library Functions

Interface Type Intel iC386
Compiler

Borland C
Compiler

Microsoft C
Compiler

Watcom C
Compiler

16-bit compact cifcb.lib cifcm.lib

16-bit large ciflb.lib ciflm.lib

32-bit compact cifc32.lib cifc32w.lib

32-bit large cifl32.lib

32-bit flat ciff3b.lib ciff3m.lib

System Call Reference Chapter 1 29

Layer-specific Information
This section presents information that applies specifically to the AL, BIOS, EIOS,
and Kernel layers:

• AL-specific information relates to synchronous and asynchronous condition
codes, file access requirements, mailboxes, and Loader Result Segments

• BIOS-specific information relates to call types, sequential and concurrent
condition codes, and I/O Request/Result Segments

• EIOS-specific information relates to file and call types

• Kernel-specific information relates to syntax, description types, and parameters

Application Loader Layer-specific Information
There are three types of AL calls, as indicated by these prefixes:

Prefix Meaning
rq_a_ Asynchronous call. The calling task continues running while the loading

operation is in process.

rq_s_ Synchronous call. The calling task is suspended during the loading
operation.

rqe_ Extended call. This call involves addressability of more than 1 Mbyte.
It can be designated with the asynchronous or synchronous prefix.

Condition Codes For Synchronous System Calls

For system calls that are synchronous (s_load_io_job, rqe_s_load_io_job, and
s_overlay), the AL returns a single condition code each time the call is invoked.
Your system's exception handler receives this code when an exceptional condition
occurs.

Condition Codes For Asynchronous System Calls

For system calls that are asynchronous (a_load, a_load_io_job,
rqe_a_load_io_job), the AL returns two condition codes each time the call is
invoked. Your task must process these two condition codes separately:

• One code is returned after the sequential part of the system call is executed.

• The other code is returned after the concurrent part of the call is executed.

See also: Sequential and concurrent portions of asynchronous system calls,
System Concepts

30 Chapter 1 Introduction

File Access Requirements

The AL does not need exclusive access to the file being loaded. However, other
tasks sharing the file are affected:

• The other tasks must not share the connection passed to the AL, but must
obtain their own connections to the file.

• The AL specifies share with readers only when opening the connection; during
the loading operation, other tasks can access the file only for reading.

Mailboxes and Loader Result Segments

Your task must specify a mailbox when invoking an asynchronous system call in
order to receive a Loader Result Segment (LRS). Three AL system calls described
in this manual are asynchronous: a_load, a_load_io_job, and rqe_a_load_io_job.

Do not use the same response mailbox for more than one concurrent invocation of
asynchronous system calls, because the AL can return LRSs in an order different
from the order of invocation. It is safe to use the same mailbox for multiple
invocations of asynchronous system calls if only one task invokes the calls and that
task always obtains the result of one call (using the receive_message Nucleus call)
before making the next call.

The LRS indicates the result of the loading operation, but the LRS format depends
on which system call was invoked and whether the calling task is 16 or 32 bit.
Individual system calls contain LRS details.

The AL uses memory from the pool of the calling task's job to create the LRS. The
calling task should delete the segment after it is no longer needed. Creating
multiple segments without deleting them can result in an E_MEM or E_SLOT
condition code.

See also: AL calls a_load, a_load_io_job, and rqe_a_load_io_job

BIOS Layer-specific Information
The case-sensitivity of filenames and pathnames in the BIOS depends on the file
driver. For example, iRMX file names are not case sensitive; file xyz is equal to
file XYZ. However, files accessed through NFS may be case-sensitive.

System Call Reference Chapter 1 31

File Types

Each BIOS system call may be used with one or more of these types of files, as
specified in the call descriptions:

File Type Description
Physical Enables the OS to access an entire I/O device as single file.

This is useful for accessing devices such as line printers,
formatting secondary storage devices, and accessing backup
volumes.

Stream Enables two programs to communicate with each other: One
program writes to the stream file while the other program reads
from it.

Named Divides data on storage devices into a hierarchical file structure
specific to the iRMX OS. Named files include data files and
directory files.

DOS Provides access to standard DOS-formatted media from the
iRMX III OS and iRMX For PCs.

EDOS Encapsulated DOS (EDOS) makes DOS files accessible to
iRMX for Windows applications using EIOS, BIOS, and UDI
system calls.

Remote Refers to iRMX named files accessed through the Remote File
Driver of iRMX-NET or to files on any OS accessed through the
NFS file driver.

System Call Types

There are two types of BIOS calls indicated by these prefixes:

Prefix Meaning
rq_ Synchronous system calls. These calls begin running as soon as your

application invokes them, continue running until they detect an error or
finish their task, and then return control to your application.

rq_a Asynchronous system calls. These calls run concurrently with your
application, which can continue working while the BIOS deals with
devices such as disk drives and tape drives.

Sequential and Concurrent Condition Codes

The asynchronous system calls return condition codes at two different times:

• Sequential codes return immediately after invocation of the system call

• Concurrent codes return as a result of asynchronous processing

See also: Sequential and concurrent parts of system calls, condition codes,
System Concepts

32 Chapter 1 Introduction

I/O Request/Result Segments

Certain asynchronous BIOS calls return a data structure called an I/O
Request/Result Segment (IORS).

See also: EIOS Layer-specific Information for the EIOS IORS structure

The synchronous portion of the I/O system creates an IORS when an application
task requests an I/O operation. The IORS contains information about the request
and about the unit on which the operation is to be performed. The asynchronous
portion of the I/O system processes the request. After performing the requested
operation, the I/O system modifies the IORS to indicate the results of what it has
done. It then sends the IORS back to the mailbox specified by the resp_mbox
parameter of the system call.

These system calls can return an IORS:

a_attach_file a_change_access
a_close a_create_directory
a_create_file a_delete_connection
a_delete_file a_open
a_physical_attach_device a_physical_detach_device
a_read a_rename_file
a_seek a_set_file_status
a_special a_truncate
a_update a_write

Before waiting at the response mailbox to receive the IORS, your application task
should examine the condition code indicated by the except_ptr parameter of any
call listed above. If this code is E_OK, the task can wait at the mailbox. However,
if the code is not E_OK, an exceptional condition exists and nothing is sent to the
mailbox.

Immediately after receiving the IORS, the task should examine the status field.
This field contains an E_OK if the system call was completed successfully, or an
exceptional condition code if an error occurred. The IORS also contains the actual
number of bytes read or written, if appropriate.

See also: Accessing the IORS, Programming Techniques

The fields of general interest in the IORS have this structure. The IORS also
contains other fields which are of interest only to the designer of a device driver.

See also: IORS, Driver Programming Concepts

System Call Reference Chapter 1 33

DECLARE IORS STRUCTURE(
status WORD_16,
unit_status WORD_16,
actual WORD_32);

or

typedef struct {
UINT_16 status;
UINT_16 unit_status;
NATIVE_WORD actual;

} IORS;

Where:

status Condition code indicating the outcome of the call.

unit _status
The lower four bits of this field contain device-dependent error code
information that is meaningful only if the status is E_IO. Certain
devices also use the upper 12 bits of unit_status to provide more
information about the error. These are the codes, meanings, and
associated mnemonics for the lower four bits:
Code Mnemonic Meaning
0 IO_UNCLASS An error occurred but it was

impossible to ascertain the cause.
1 IO_SOFT Soft error; the I/O system has retried

the operation and failed; another
retry is not possible.

2 IO_HARD Hard error; a retry is not possible.
3 IO_OPRINT Operator intervention is required.
4 IO_WRPROT Write-protected volume.
5 IO_NO_DATA No data on the next tape record.
6 IO_MODE A read (or write) was attempted

before the previous write (or read)
completed.

7 IO_NO_SPARES An I/O error occurred during disk
formatting; no alternate tracks were
available.

8 IO_ALT_ASSIGNED An I/O error occurred during disk
formatting; an alternate track was
assigned

actual The actual number of bytes transferred.

34 Chapter 1 Introduction

EIOS Layer-specific Information
The case-sensitivity of filenames and pathnames in the EIOS depends on the file
driver. For example, iRMX file names are not case sensitive; file xyz is equal to
file XYZ. However, files accessed through NFS may be case-sensitive.

Colon characters are required in logical names such as :sd: when used in EIOS
pathnames.

See also: Logical names, System Concepts,
Logical Names screen, ICU User's Guide and Quick Reference

Several EIOS system calls may be used with one or more types of files, as specified
in the call descriptions.

See also: File types, BIOS Layer-specific Information for file type definitions

System Call Types

There are three types of EIOS calls, as indicated by these prefixes:

Prefix Meaning
rq_s Synchronous system calls that have asynchronous equivalents in the

BIOS.
rq_ Synchronous system calls that do not have asynchronous equivalents in

the BIOS.
rqe_ System calls that involve addressability of greater than 1 Mbyte.

System Call Reference Chapter 1 35

I/O Request/Result Segments

Some EIOS calls return an abbreviated version of an IORS:

typedef struct {
NATIVE_WORD actual;

#ifdef __INT16__
UINT_16 actualfill;

#endif
UINT_16 device;
UINT_8 unit;
UINT_8 funct;
UINT_16 subfunct;
UINT_32 deviceloc;
UINT_8 far * buff;
NATIVE_WORD count;

#ifdef __INT16__
UINT_16 countfill;

#endif
void far * aux;

} IORS_DATA_STRUCT;

iRMK Kernel-specific Information
The iRMX OS includes the iRMK Kernel embedded within the iRMX Nucleus.
This Kernel and its associated user interfaces give additional capabilities to the
iRMX OS. Unless otherwise specified, when this manual refers to the Kernel, it
means the iRMK Kernel.

See also: System Concepts for more information on Kernel capabilities

Syntax

In the call descriptions, the system calls, data structures, and data types are
specified using the C language syntax. If you write your programs in C, you can
access the system calls using this syntax.

The Kernel also provides support for PL/M and assembly language programs. The
PL/M interface requires that you use a different set of include files in the
compilation of your programs and possibly linking to a different interface library.
The assembly language interface is a register interface; you must set up a group of
registers with parameter values before calling the system calls.

See also: Developing Applications in Assembly Language, Programming
Techniques

36 Chapter 1 Introduction

Data Types

The Kernel defines the UINT 64 type as a long integer type for use in some system
calls. Write modules that use these system calls in PL/M or Assembly language.
In iC-386, the default long is 32 bits. Keep 64-bit operations isolated in a separate
module where the long64 switch is enabled. This is necessary because long64
changes the definition of long.

Scheduling Category

The descriptions of Kernel calls contain a scheduling category. This category
indicates what effect a system call may have on task scheduling and whether a
scheduling lock changes that effect. It also indicates whether the system call can
be safely used by interrupt handlers, which should not lose control of the CPU
when they run. There are four types:

Non-scheduling (Safe)
The system call does not cause rescheduling, and interrupt handlers
can safely use it.

Signalling The system call could put other tasks in the ready state. If those tasks
are higher priority, rescheduling would occur, pre-empting the calling
task. If this system call is called from an interrupt handler, the
handler could lose control. A scheduling lock will prevent
rescheduling when using such a system call. Any task state change
caused by a signalling system call takes place immediately, but the
running task is not switched until scheduling is started again.

Blocking The system call could put the running task to sleep causing
rescheduling. An interrupt handler should not call this system call
unless it knows that the running task will not be put to sleep as a
result; the system call will complete its operation without blocking the
calling task. A scheduling lock does not prevent a blocking system
call from causing rescheduling.

Rescheduling (Unsafe)
This system call always causes rescheduling. An interrupt handler
should never call this system call. A scheduling lock does not prevent
rescheduling for this system call.

See also: Chapter 6 for Nucleus calls that can be made from interrupt handlers

System Call Reference Chapter 1 37

Parameters

The Kernel header files declare literal values to define many of the data structures
and parameter values needed in programming the system calls. To use the Kernel-
defined values when setting up data structures and calling the system calls, include
the appropriate header files in your programs.

✏ Note
Some system calls include parameters that are actually status
return values. Those system calls will include a Return Value
subsection.

Flags Parameters

Masks typically refer to a single bit field in the flag. A mask is used to isolate a
value in the flags field when you examine a flag. To set a flag, choose one literal
value for each mask listed. Then OR the values together to form the flags value.

For example, these are the masks for the flags parameter of the
KN_create_semaphore system call.

KN_EXCH_TYPE_MASK
Specifies the type of semaphore. Choose one of these literals:

Literal Meaning
KN_FIFO_QUEUEING The semaphore uses FIFO queueing
KN_PRIORITY_QUEUEING The semaphore uses priority

queueing
KN_REGION The exchange is a single-unit region

KN_INITIAL_SEM_STATE_MASK
Specifies the number of initial units the semaphore receives. Choose
one of these literals:

Literal Meaning
KN_ZERO_UNITS The semaphore is created with no

units
KN_ONE_UNIT The semaphore is created with one

unit

To set up a semaphore that uses FIFO queueing and has one unit, specify these
literal values for the flags parameter:

KN_FIFO_QUEUEING | KN_ONE_UNIT

38 Chapter 1 Introduction

Kn_Task_State Structure

KN_TASK_STATE is a structure describing the state of a task. It is used in the
Kernel handler procedures create_task_handler, delete_task_handler, and
task_switch_handler. Only some parts of this structure are visible. None of it
should be modified.

typedef struct {
UINT_8 reserved1 [112];
UINT_16 dynamic_priority;
UINT_16 static_priority;
UINT_8 reserved2 [116];
UINT_16 rmx_task_token;

} KN_TASK_STATE;

Where:

reserved1 Private to the Kernel.

dynamic_priority
The current dynamic priority of the task. This field is equal to the
static priority field unless the task's priority has been adjusted because
of region ownership, in which case it is equal to the adjusted priority.
The dynamic priority of tasks is used in scheduling the processor.

static_priority
The current static priority of the task. This field gives the priority of
the task if priority adjustment due to regions is ignored.

reserved2 Private to the Kernel.

rmx_task_token
This is the iRMX token corresponding to this task.

Configuring the Kernel Tick Interval

You can specify the Kernel Tick Ratio (KTR) in the rmx.ini file or by using the
ICU, but do not assume that a Nucleus tick is equivalent to a Kernel tick, especially
for KTR values that are less than the 10 millisecond default. You should write
code that adapts to the KTR values.

See also: Getting System Information, in this chapter
KTR, System Configuration and Administration,
KTR, ICU User's Guide and Quick Reference

System Call Reference Chapter 1 39

Getting System Information
The OS catalogs several items of information about the system, including the
Kernel Tick Ratio (KTR), in an abject called RQSYSINFO. To get the
information, first invoke the Nucleus rq_get_task_tokens system call to get the
token for the root job (where the RQSYSINFO object is cataloged). Then call
rq_lookup_object, specifying the token for the root job and the string
RQSYSINFO.

The token returned by rq_lookup_object is a SELECTOR for a memory segment
where the information is stored. Use a structure such as the following to get the
information at that segment, in PL/M:

DECLARE sysinfo_type STRUCTURE(
boot_dev(15) BYTE,
file_driver BYTE,
boot_file(30) BYTE,
reserved1(11) BYTE,
nuc_tick_interval WORD_16,
kn_tick_ratio WORD_16,
reserved2(29) BYTE,
bustype BYTE,
reserved3(6) BYTE,
physical_memory WORD_32,
reserved4(27) BYTE,
user_reserved(32) BYTE);

or in C:

struct sysinfo_type {
UINT_8 boot_dev[15];
UINT_8 file_driver;
UINT_8 boot_file[30];
UINT_8 reserved1[11];
UINT_16 nuc_tick_interval;
UINT_16 kn_tick_ratio;
UINT_8 reserved2[29];
UINT_8 bustype;
UINT_8 reserved3[6];
UINT_32 physical_memory;
UINT_8 reserved4[27];
UINT_8 user_reserved[32];

};

40 Chapter 1 Introduction

Where:

boot_dev[15]
An RMX_STRING containing the name of the boot device.

file_driver
The file driver type used by the boot device:
Value File Driver
3 DOS
4 Named
5 Remote
6 EDOS

boot_file[30]
An RMX_STRING containing the name of the boot file.

nuc_tick_interval
The number of milliseconds from one Nucleus clock tick to the next.

kn_tick_ratio
The KTR value. Divide nuc_tick_interval by this value to get
the number of milliseconds in the Kernel tick interval.

bustype 1 is Multibus I, 2 is Multibus II, 3 is PC.

physical_memory
The top of physical memory as known by the iRMX Free Space
Manager.

user_reserved[32]
Available for your application’s use.

System Call Reference Chapter 1 41

System Call Summary Tables
The following tables summarize the iRMX system calls by OS layer and by
functional group within each layer. The calls are listed alphabetically within each
functional group, without regard to their various prefixes (rq_, rqe_, etc.).

Application Loader System Calls Summary
This table summarizes the AL system calls by functional groups.

Table 1-6. Application Loader System Calls

FILE AND MODULE LOADING

Call Name Description

a_load Loads an object file from secondary storage into
memory.

s_overlay Loads an overlay module into memory.

JOB AND TASK CREATION WITH FILE LOADING

a_load_io_job obsolete; it is provided for compatibility with older
versions of the iRMX OS.

rqe_a_load_io_job Creates an I/O job with a memory pool of up to
4 Gbytes, loads a specified object file, and creates a
task to execute the loaded code.

s_load_io_job obsolete; it is provided for compatibility with older
versions of the iRMX OS.

rqe_s_load_io_job Creates an I/O job with a memory pool of up to
4 Gbytes, loads a specified object file, and creates a
task to execute the loaded code.

42 Chapter 1 Introduction

BIOS System Calls Summary
This table summarizes the BIOS calls by functional groups.

Table 1-7. BIOS System Calls

JOB-LEVEL SYSTEM CALLS

Call Name Description

encrypt Encrypts a specified string of characters.

get_default_prefix Returns the default prefix of a specified job.

get_default_user Returns the default user object of a specified job.

set_default_prefix Sets the default prefix for a specified existing job.

set_default_user Sets the default user object for a specified existing job.

DEVICE-LEVEL SYSTEM CALLS

a_physical_attach_device Attaches the specified device to the BIOS.

a_physical_detach_device Detaches a device that was attached using
a_physical_attach_device .

rq_install_duibs Installs a cluster of Device Unit Information Blocks
(DUIBs) into the BIOS.

a_special Enables tasks to perform a variety of device-level
functions.

FILE/CONNECTION-LEVEL SYSTEM CALLS

a_attach_file Creates a connection to an existing file of any type.

a_create_directory Creates a directory file.

a_create_file Creates a file and returns a token for the new file
connection.

a_delete_connection Deletes a file connection created by a_create_file ,
a_create_directory , or a_attach_file .

a_delete_file Marks a stream, named data or named directory file for
deletion.

install_file_driver Installs a loadable file driver into the BIOS.
continued

System Call Reference Chapter 1 43

Table 1-7. BIOS System Calls (continued)

FILE-MODIFICATION SYSTEM CALLS

Call Name Description

a_change_access Changes the access rights to a named data or directory
file.

a_rename_file Changes the pathname of a named data or directory file.

a_set_file_status Changes the owner and/or time stamps of a file.

a_truncate Truncates a named data file at the current setting of the
file pointer.

FILE INPUT/OUTPUT SYSTEM CALLS

a_close Closes an open file connection for any type of file.

a_open Opens an asynchronous file connection for I/O operations
for any type of file.

a_read Reads the requested number of bytes on an open
connection for any type of file.

a_seek Moves the file pointer of an open file connection.

a_update Updates a device by writing all buffered partial sectors.

wait_io Returns the concurrent condition code for the prior call to
the calling task.

wait_iors Waits for an IORS and copies it to a user-provided buffer.

a_write Writes data from the calling task's buffer to a connected
physical, stream, or named data file.

GET STATUS/ATTRIBUTE SYSTEM CALLS

a_get_connection_status Returns information about the connection status of a
specified file.

a_get_directory_entry Returns the filename associated with an entry number in a
named, DOS, or EDOS directory.

get_file_driver_status Returns information on a specified file driver.

a_get_file_status Returns status and attribute information about a specified
file.

a_get_path_component Returns the name of a data or directory file, as cataloged
in its parent directory.

continued

44 Chapter 1 Introduction

Table 1-7. BIOS System Calls (continued)

USER OBJECT SYSTEM CALLS

create_user Creates a user object, accepts a list of IDs, and returns a
token for the new object.

delete_user Deletes a user object.

inspect_user Accepts a token for a user object and returns a list of the
IDs contained in the user object.

EXTENSION DATA SYSTEM CALLS

a_get_extension_data Writes the extension data for a named data or directory
file; not valid for DOS files.

a_set_extension_data Stores a named file's extension data; not valid for DOS
files.

TIME/DATE SYSTEM CALLS

get_global_time Reads the time of day from the battery-backed-up
hardware clock.

set_global_time Sets the battery-backed-up hardware clock to a specified
time.

System Call Reference Chapter 1 45

EIOS System Calls Summary
This table summarizes the EIOS calls by functional groups.

Table 1-8. EIOS System Calls

I/O JOBS

Call Name Description

create_io_job Obsolete; it is provided for compatibility with earlier
versions of the OS.

rqe_create_io_job Creates an I/O job containing one task with a memory
pool of up to 4 Gbytes.

exit_io_job Sends a message to a previously designated mailbox and
deletes the calling task.

start_io_job Starts the initial task in an I/O job.

LOGICAL NAMES

s_catalog_connection Creates a logical name for a connection by cataloging the
connection in the object directory of a job.

s_get_directory_entry Returns a directory entry filename to the caller.

s_get_path_component Returns the name of a named file as the file is known in
its parent directory.

hybrid_detach_device Temporarily removes the correspondence between a
logical name and a physical device.

logical_attach_device Assigns a logical name to a physical device.

logical_detach_device Removes the correspondence between a logical name
and a physical device, and removes the logical name from
the root object directory.

s_lookup_connection Returns a token for the connection associated with the
specified logical name.

s_uncatalog_connection Deletes a logical name from the object directory of a job.

FILES AND CONNECTIONS

s_attach_file Creates a connection to an existing file.

s_create_directory Creates a new directory file and automatically adds a new
entry to the parent directory.

s_create_file Creates a new physical, stream, or named data file.

s_change_access Changes the access list for a named file.

s_rename_file Changes the pathname of a directory or data file.
continued

46 Chapter 1 Introduction

Table 1-8. EIOS System Calls (continued)

FILES AND CONNECTIONS (continued)

Call Name Description

s_close Closes an open connection to a named, physical, or
stream file.

s_open Opens a file connection.

s_read_move Reads a number of contiguous bytes from a file
associated with a connection to a buffer specified by the
calling task.

s_seek Moves the file pointer for any open physical or named file
connection.

s_truncate_file Removes information from the end of a named data file.

s_write_move Writes a collection of bytes from a buffer to a file.

s_delete_connection Deletes a file connection, not a device connection.

s_delete_file Deletes a stream, named data, or named directory file
created by the BIOS or the EIOS.

DEVICES

s_special Enables tasks to communicate with devices, device
drivers, and the stream file driver to perform various
operations.

OBTAINING OR CHANGING STATUS

s_get_connection_status Provides status information about file and device
connections that were created by the BIOS or the EIOS.

s_get_file_status Obtains information about a physical, stream, or named
file created by the BIOS or the EIOS.

get_logical_device_status Provides status information about logical names that
represent devices.

s_set_file_status Changes the owner and/or time stamps of a file.

USERS

get_user_ids Returns the user ID(s) associated with a user defined in
the User Definition File (UDF).

verify_user Verifies a user's name and password.

System Call Reference Chapter 1 47

Human Interface System Calls Summary
This table summarizes the HI calls by functional groups.

Table 1-9. Human Interface System Calls

Call Name Description

c_get_input_connection Returns an EIOS connection object for the specified input
file.

c_get_output_connection Returns an EIOS connection object for the specified
output file.

COMMAND PARSING

c_backup_char Moves the parsing buffer pointer back one character for
each occurrence of the call.

c_get_char Gets a character from the parsing buffer and moves the
parsing buffer pointer to the next character.

c_get_input_pathname Gets a pathname from the list of input pathnames in the
parsing buffer.

c_get_output_pathname Gets a pathname from the list of output pathnames in the
parsing buffer.

c_get_parameter Retrieves one parameter from the parsing buffer and
moves the parsing pointer to the next parameter.

c_set_parse_buffer Permits parsing the contents of a buffer other than the
command line buffer whenever the parsing system calls
are used.

c_get_command_name Obtains the pathname of the command entered by the
operator.

MESSAGE PROCESSING

c_format_exception Creates a default message for a given exception code
and writes that message into a user-provided string.

c_send_co_response Sends a message to :co: and reads a response from :ci:.

c_send_eo_response Sends a message to and reads a response from the
operator's terminal.

continued

48 Chapter 1 Introduction

Table 1-9. Human Interface System Calls (continued)

COMMAND PROCESSING

Call Name Description

c_create_command_connection Returns a token for a command connection object
required to invoke commands programmatically instead of
interactively.

c_delete_command_connection Deletes a command connection object previously defined
in a c_create_command_connection call and frees the
memory used by the command connection's data
structures.

c_send_command Stores a command line in the command connection
created by the c_create_command_connection call,
concatenates the command line with any others already
stored there, and (if the command invocation is complete)
invokes the command.

PROGRAM CONTROL

c_set_control_c Changes the default response to a <Ctrl-C> entry to a
response that meets the needs of your task.

System Call Reference Chapter 1 49

Nucleus System Calls Summary
This table summarizes the Nucleus system calls by functional group.

Table 1-10. Nucleus System Calls

JOBS

Call Name Description

create_job Obsolete; provided for compatibility.

rqe_create_job Creates a job containing one task with a memory pool of
up to 4 Gbytes and returns a token for the job.

delete_job Deletes a specific job.

offspring Returns a token for the segment containing tokens of the
child jobs of the specified job.

rqe_offspring Fills the specified data structure with tokens of the child
jobs of the specified job.

rqe_set_max_priority Dynamically changes the maximum priority of tasks in a
job.

TASKS

create_task Creates a task and returns a token for it.

delete_task Deletes a specific non-interrupt task.

get_priority Returns the static priority of a specific task.

get_task_accounting Returns task creation time and amount of execution time.

get_task_info Returns high-level information about a task, including
priority and execution state.

get_task_state Returns low-level information about a task, including state
of the CPU registers for ready tasks.

get_task_tokens Returns a token for either itself, its job, its job's parameter
object, or the root job.

resume_task Decreases a task's suspension depth by one.

set_priority Changes the priority of a non-interrupt task.

sleep Places the calling task in the asleep state for a specified
amount of time.

suspend_task Increases a task's suspension depth by one.

system_accounting Enables or disables tracking of CPU use for task
accounting

continued

50 Chapter 1 Introduction

Table 1-10. Nucleus System Calls (continued)

INTERRUPT LEVELS, INTERRUPT HANDLERS, and INTERRUPT TASKS

Call Name Description

disable Disables a specific interrupt level.

enable Enables a specific interrupt level.

end_init_task Informs the root task that a synchronous initialization
process has completed. Will not affect loaded jobs.

enter_interrupt Sets up a previously-specified data segment base
address for the calling interrupt handler.

exit_interrupt Used by interrupt handlers to send an end-of-interrupt
(EOI) to hardware.

rqe_exit_interrupt A high performance version of the exit_interrupt call.

get_level Returns the interrupt level of the highest priority interrupt
that an interrupt handler is currently processing.

reset_interrupt Cancels the assignment of an interrupt handler to a level.

set_interrupt Assigns an interrupt handler and, if desired, an interrupt
task to an interrupt level.

signal_interrupt Used by interrupt handlers to invoke interrupt tasks.

rqe_timed_interrupt Puts the calling interrupt task to sleep until either it is
called into service by an interrupt handler or a specified
time period elapses.

wait_interrupt Puts the calling interrupt task to sleep until it is called into
service by an interrupt handler.

MAILBOXES

add_reconfig_mailbox Specifies a mailbox that will receive failure and reset
messages generated by the Multibus II watchdog timer.

create_mailbox Creates a mailbox and returns a token for it.

delete_mailbox Deletes a specific mailbox.

receive_data Receives a data message from a data mailbox.

receive_message Receives a signal message from an object mailbox.

send_data Sends a data message of up to 80H characters to a data
mailbox.

send_message Sends a signal object to an object mailbox.
continued

System Call Reference Chapter 1 51

Table 1-10. Nucleus System Calls (continued)

SEMAPHORES

Call Name Description

create_semaphore Creates a semaphore and returns a token for it.

delete_semaphore Deletes a specific semaphore.

receive_units Requests a specific number of units from a semaphore.

send_units Sends a specific number of units to a semaphore.

REGIONS

accept_control Provides access to data protected by a region only if
access is immediately available.

create_region Creates a region and returns a token for it.

delete_region Deletes a specific region.

receive_control Enables the calling task to gain access to data protected
by a region.

send_control Relinquishes control to the next task waiting at the region.

SEGMENTS and MEMORY POOLS

create_segment Creates a segment and returns a token for it.

delete_segment Returns a segment to the memory pool from which it was
allocated or deletes a descriptor from the Global
Descriptor Table (GDT).

get_buffer_limit Returns the maximum size of a buffer starting from a
pointer within a regular or virtual iRMX segment.

get_pool_attrib Returns the memory pool attributes of the calling task's
job.

get_size Returns the size, in bytes, of a regular or virtual iRMX
segment.

move_data Copies bytes from one buffer to another.

rqe_get_pool_attrib Returns the same information as get_pool_attributes for
any job, plus the amount of memory borrowed and the
token of the parent job.

set_pool_min Sets the minimum attribute of the memory pool of the
caller's job.

validate_buffer Verifies that a buffer pointer is a valid pointer to physical
memory and that it has access rights to the memory.

continued

52 Chapter 1 Introduction

Table 1-10. Nucleus System Calls (continued)

Call Name Description

DELETION CONTROL

disable_deletion Makes an object immune to ordinary deletion.

enable_deletion Makes an object susceptible to ordinary deletion.

force_delete Deletes objects whose disabling depths are 0 or 1.

BUFFER POOLS

create_buffer_pool Creates a buffer pool object that can be associated with
one or more ports.

delete_buffer_pool Deletes a buffer pool object.

release_buffer Returns previously allocated buffer space to the specified
buffer pool.

request_buffer Gets a buffer from an existing buffer pool.

OBJECTS

catalog_object Places an entry for an object in an object directory.

rqe_change_object_access Changes the access rights of iRMX segments or
composite objects.

rqe_get_address Returns the physical address of an object.

rqe_get_object_access Returns the access type of an object whose token is
specified.

get_type Returns the type code for the specified object.

lookup_object Returns a token for the specified cataloged object name.

uncatalog_object Removes an entry for an object from an object directory.

DESCRIPTORS

rqe_change_descriptor Changes the base physical address and size of a
descriptor in the GDT.

rqe_create_descriptor Builds a descriptor for a memory segment, places the
descriptor in the GDT, and returns a token for that
descriptor.

rqe_delete_descriptor Removes a descriptor entry from the GDT.
continued

System Call Reference Chapter 1 53

Table 1-10. Nucleus System Calls (continued)

EXCEPTION HANDLERS

Call Name Description

get_exception_handler Returns the address and exception mode of the calling
task's exception handler.

rqe_get_exception_handler Returns the address and exception mode of the exception
handler for the current task or job, for the system default,
or for the system hardware trap handler.

set_exception_handler Assigns an exception handler and exception mode
attributes for the calling task.

rqe set_exception_handler Assigns an exception handler and exception mode
attributes for the calling task, its job, or the system
default; or sets values for hardware trap handlers.

COMPOSITE OBJECTS

alter_composite Replaces components of composite objects.

create_composite Creates a composite object and returns a token for it.

delete_composite Deletes a composite object but not its component objects.

inspect_composite Returns a list of the component tokens contained in a
composite object.

EXTENSION OBJECTS

create_extension Creates a new object type and returns a token for it.

delete_extension Deletes an extension object and all composites of that
type.

OS EXTENSIONS

rqe_set_os_extension Attaches or deletes the entry-point address of a user-
written OS extension to a call gate.

signal_exception Used by OS extensions to signal the occurrence of an
exceptional condition.

MULTIBUS II INTERCONNECT CALLS

get_interconnect Retrieves the contents of the specified interconnect
register.

set_interconnect Alters the contents of an interconnect register to a
specified value.

continued

54 Chapter 1 Introduction

Table 1-10. Nucleus System Calls (continued)

COMMUNICATION SERVICE CALLS

Call Name Description

attach_buffer_pool Associates a buffer pool with one or more ports.

attach_port Forwards all messages sent to the port that issued the call
to a sink port.

broadcast Sends a control message to every message passing host.

cancel Performs synchronous cancellation of RSVP message
transmission.

connect Creates a connection between the sending task and a
remote task.

create_port Creates a port object that can be used in message
passing.

delete_port Deletes a specific port.

detach_buffer_pool Ends the association between a buffer pool and a port.

detach_port Ends message forwarding from the source port to the sink
port.

get_host_id Returns the host ID of the board that the task is running
on.

get_port_attributes Returns information about the specified port.

receive Accepts a message at a port.

receive_fragment Accepts a fragment of an RSVP data message.

receive_reply Accepts a message that is a reply to an earlier request.

receive_signal Receives a signal from a remote host at a specified port.

send Sends a data message from a port to a port on another
board.

send_reply Sent in response to the rq_send_rsvp system call.

send_rsvp Initiates a request/response message exchange.

send_signal Sends a signal message to a remote host through the
specified port.

TIME/DATE CALLS

get_time Returns the date and time from the local Nucleus clock.

set_time Sets the local Nucleus clock to a specified time.

System Call Reference Chapter 1 55

UDI System Calls Summary
This table summarizes the UDI system calls by functional group.

Table 1-11. UDI System Calls

PROGRAM CONTROL CALLS

Call Name Description

dq_exit Exits from the current application job.

dq_overlay Loads an overlay module.

dq_trap_cc Designates an interrupt procedure that takes control when
<Ctrl-C> is entered.

FILE-HANDLING CALLS

dq_attach Creates a connection to a file.

dq_change_access Changes access rights to a file or directory.

dq_change_extension Changes the extension of a file name in memory.

dq_close Closes the specified file connection.

dq_create Creates a file.

dq_delete Deletes a file.

dq_detach Closes a file and deletes its connection.

dq_file_info Returns data about directory and data files.

dq_get_connection_status Returns information about a file connection.

dq_open Opens a file for a particular type of access.

dq_read Reads bytes from a file.

dq_rename Renames a file.

dq_seek Moves the file pointer of a file.

dq_special Sets the mode of a console input device.

dq_truncate Truncates a file at the position specified by the file pointer.

dq_write Writes data to a file.
continued

56 Chapter 1 Introduction

Table 1-11. UDI System Calls (continued)

MEMORY MANAGEMENT CALLS

Call Name Description

dq_allocate Requests a memory segment.

dq_free Returns a memory segment to the system.

dq_get_msize Returns the size of a segment allocated by
dq_mallocate .

dq_get_size Returns the size of a specified segment.

dq_mallocate Requests a logically contiguous memory segment of
a specified size.

dq_mfree Returns memory allocated by dq_mallocate to the Free
Space Pool.

dq_reserve_io_memory Sets aside memory for I/O operations.

EXCEPTION-HANDLING CALLS

dq_decode_exception Converts a condition code into its equivalent mnemonic.

dq_get_exception_handler Returns the address of the current exception handler.

dq_trap_exception Substitutes an alternate exception handler.

UTILITY AND COMMAND PARSING

dq_decode_time Decodes the specified binary date/time value to ASCII
characters.

dq_get_argument Returns an argument from the command line.

dq_get_system_id Returns the identity of the OS environment.

dq_get_time Obsolete: included for compatibility.

dq_switch_buffer Selects a new command line buffer.

System Call Reference Chapter 1 57

Windows- and DOS-Specific System Calls Summary
This table summarizes the Windows- and DOS-specific system calls. The first two
calls are used by DOS applications only; they are not supported in the iRMX OS.

Table 1-12. Windows- and DOS-Specific System Calls

DATA TRANSFER

Call Name Description

rqe_read_segment Enables a DOS application program to transfer data from
a Protected Virtual Address Mode (PVAM) segment to a
Real Mode segment.

rqe_write_segment Enables a DOS application program to transfer data from
a Real Mode segment to a PVAM segment.

EXTENSIONS AND INTERRUPTS

rqe_set_vm86_extension Installs and removes a Virtual 8086 Mode (VM86)
extension at the specified interrupt level.

rqe_dos_request Makes DOS/ROM BIOS requests and other software
interrupts handled by DOS applications.

iRMX STATUS

RqeGetRmxStatus Gets the current status of the iRMX environment.

58 Chapter 1 Introduction

Kernel System Calls Summary
This table summarizes the Kernel system calls.

▲▲! CAUTION
iRMK functions do not validate objects or object areas. Be
careful to pass correct values.

Table 1-13. Kernel System Calls and Handlers

COMMUNICATION AND SYNCHRONIZATION

Call Name Description

KN_create_mailbox Creates a mailbox.

KN_create_semaphore Creates a semaphore.

KN_delete_mailbox Deletes a mailbox.

KN_delete_semaphore Deletes a semaphore.

KN_receive_data Requests a message from a mailbox.

KN_receive_unit Requests a unit from a semaphore.

KN_send_data Sends data to a mailbox.

KN_send_priority_data Places a priority message at head of mailbox queue.

KN_send_unit Adds a unit to a semaphore.

MEMORY MANAGEMENT

KN_create_area Allocates memory from a pool.

KN_create_pool Creates a memory pool.

KN_delete_area Returns a memory area to the memory pool.

KN_delete_pool Deletes a memory pool.

KN_get_pool_attributes Gets a memory pool's attributes.

TASK MANAGEMENT

KN_reset_handler * Removes previously set task handler.

KN_set_handler * Dynamically sets task handler.

KN_start_scheduling Cancels one scheduling lock.

KN_stop_scheduling Temporarily locks the scheduling mechanism.
* You cannot make these calls in a flat model application continued

System Call Reference Chapter 1 59

Table 1-13. Kernel System Calls and Handlers (continued)

TIME MANAGEMENT

Call Name Description

KN_create_alarm * Creates and starts a virtual alarm clock.

KN_delete_alarm * Deletes an alarm.

KN_get_time Gets the current value of the Kernel clock timer.

KNE_get_time Gets the current value of the Kernel clock timer from a
structure that allows the use of 32-bit data types.

KN_reset_alarm * Resets an existing alarm.

KN_set_time Sets the Kernel clock timer.

KNE_set_time Sets the Kernel clock timer in a structure that allows the
use of 32-bit data types.

KN_sleep Puts the calling task to sleep.

HANDLERS

create_task_handler * Creates a task.

delete_task_handler * Deletes a task.

task_switch_handler * Executes when a task switch occurs.
* You cannot make these calls or write these handlers in a flat model application

Virtual Memory System Calls Summary
This table summarizes the virtual memory system calls.

Table 1-14. Virtual Memory System Calls

Call Name Description

rqv_allocate Allocates physical memory to a virtual segment.

rqv_allocate_at Allocates physical memory to a virtual segment at a
specific offset.

rqv_change_access Changes the access rights for physical memory within a
virtual segment.

rqv_create_segment Creates a virtual segment with no physical memory
allocated to it.

rqv_free Frees physical memory associated with a virtual segment.

rqv_map_physical Maps physical memory into the address space within a
virtual segment.

60 Chapter 1 Introduction

Networking System Calls Summary
This table summarizes the system calls you can use to communicate with iNA 960
and the Name Server. The network system calls begin with a cq_ prefix rather than
rq_. This manual does not describe these calls.

See also: Network User's Guide and Reference for the full description of these
calls

Table 1-15. System Calls that Access iNA 960 Network Software

ADDRESS/POINTER CONVERSION

Call Name Description

cq_comm_ptr_to_dword Converts a pointer to the corresponding 32-bit absolute
address.

PROCESSING

cq_comm_rb Delivers a request block to iNA or to the Name Server for
processing.

STATUS

cq_comm_multi_status Returns NIC and iNA 960 status information from a
specified NIC.

cq_comm_status Returns NIC and iNA 960 status information.

USERS

cq_create_comm_user Creates a user ID for programmatic access to iNA 960.

cq_create_multi_comm_user Creates a unique user ID for programmatic access to a
specified NIC and iNA 960 job.

cq_delete_comm_user Releases all resources and returns all request blocks held
on behalf of a specified user ID.

■■ ■■ ■■

System Call Reference Chapter 2 AL Calls 61

Application Loader System Calls 2
a_load

Asynchronously loads an object file from secondary storage into memory.

Syntax, PL/M and C

CALL rqaload (connection, response_mbox, except_ptr);

rq_a_load (connection, response_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
response_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for a connection to the file to be loaded. The user object specified when
the connection was created must have had read access. The connection must have
been created in the calling task's job, be to a named file, and be closed.

response_mbox
A token for the mailbox to which the AL sends the Loader Result Segment (LRS)
after the concurrent part of the system call runs.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

rq_a_load

62 AL Calls Chapter 2 Application Loader System Calls

Additional Information

The object code to be loaded must be of the Single Task Loadable (STL) type with
LODFIX records.

A_load cannot automatically cause the code to be executed as a task; the calling
task must explicitly do this using the Nucleus call create_task.

Once the loaded program has finished, delete all the segments allocated for this
program to free the memory for use by other tasks or jobs. To find tokens for the
segments to delete, check the token array in more_slots .

Loader Result Segment

This call returns this LRS. Use the contents of the LRS to create a task or job to
start the loaded code. The LRS provides the values to specify for the initial
address, stack pointer, stack size, and data segment.

DECLARE a_load_lrs STRUCTURE(
except_code WORD_16,
reserved_word1 WORD_16,
reserved_byte BYTE,
reserved_word2 WORD_16,
code_seg_offset WORD_32,
code_seg_base SELECTOR,
stack_offset WORD_32,
stack_seg_base SELECTOR,
stack_size WORD_32,
data_seg_base SELECTOR,
num_more_slots BYTE,
more_slots(*) SELECTOR);

or

rq_a_load

System Call Reference Chapter 2 AL Calls 63

typedef struct {
UINT_16 except_code;
UINT_16 reserved_1;
UINT_8 reserved_2;
UINT_16 reserved_3;
NATIVE_WORD code_seg_offset;
SELECTOR code_seg_base;
NATIVE_WORD stack_offset;
SELECTOR stack_seg_base;
NATIVE_WORD stack_size;
SELECTOR data_seg_base;
UINT_8 num_more_slots;
SELECTOR more_slots[255];

/* adjust 255 as necessary */
} A_LOAD_LRS_STRUCT

Where:

except_code
The condition code for the concurrent part of the system call.

code_seg_offset
The initial value for the loaded program's instruction pointer (IP)
register taken from the Task State Segment (TSS) of the object file.

code_seg_base
A token for the initial value of the code segment selector.

stack_offset
The initial value of the stack pointer, taken from the TSS of the object
file.

stack_seg_base
A token for the initial value of the stack segment selector.

stack_size
Specifies the number of bytes required for the loaded program's stack.
The AL sets this value to 0 whenever stack_offset is 0 and
stack_seg_base is a null selector.

data_seg_base
A token for the initial value of the data segment selector taken from
the TSS of the object file. The AL sets this value to a null selector if
the target file contains no initial data segment selector.

rq_a_load

64 AL Calls Chapter 2 Application Loader System Calls

num_more_slots
Indicates how many Global Descriptor Table (GDT) or Local
Descriptor Table (LDT) slots were allocated (from 0 to 255),
including the initial code, data, and stack segments. If greater than
255, the value returned is set to 255.

more_slots
A token array that lists the selectors of all the segments that were
allocated for the loaded program. The length of this array is
contained in num_more_slots .

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_BAD_HEADER 0062H The object file contains an invalid header record.

E_CONN_NOT_OPEN 0034H The AL opened the connection but some other
task closed the connection before the loading
operation began.

E_CONN_OPEN 0035H The calling task specified a connection that was
already open.

E_DEV_DETACHING 0039H The device containing the specified file is being
detached. If the device is remote, a retry may
succeed.

E_EOF 0065H The AL encountered an unexpected EOF while
reading a record.

E_EXIST 0006H Either the connection or msg_mbox parameter
did not refer to an existing object.

E_FACCESS 0026H The specified connection did not have read
access to the file.

E_FLUSHING 002CH The device containing the target file is being
detached.

E_IO_HARD 0052H A hard I/O error occurred. A retry is probably
useless because secondary storage is not
functioning.

E_IO_OPRINT 0053H The device containing the target file was off-
line. Operator intervention is required.

rq_a_load

System Call Reference Chapter 2 AL Calls 65

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation and failed; a retry may
succeed.

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_LIMIT 0004H At least one of these is true:
• The calling task's job has already reached its

object limit.
• Either the calling task's job, or the job's

default user object, is already involved in
255 I/O operations.

E_LOADER_SUPPORT 006FH Loading the target file requires capabilities not
configured into the AL.

E_MEM 0002H The memory available to the calling task's job or
the BIOS is not sufficient to complete the call.

E_NOT_FILE_CONN 0032H The calling task specified a connection to a
device rather than to a named file.

E_SHARE 0028H The calling task tried to open a connection to a
file already being used by some other task, and
the file's sharing attribute is not compatible with
the open request.

E_SUPPORT 0023H The specified connection was not created by the
calling task's job.

E_TYPE 8002H The connection parameter is not a token for a
connection.

Concurrent Condition Codes: returned to except_code in the LRS after
loading attempt

E_OK 0000H No exceptional conditions occurred.

E_DEV_DETACHING 0039H The device containing the specified file is being
detached. If the device is a remote device, a
retry may succeed.

E_EOF 0065H The call encountered an unexpected EOF.

rq_a_load

66 AL Calls Chapter 2 Application Loader System Calls

E_EXIST 0006H At least one of these is true:
• The specified mailbox was deleted before

the loading operation completed.
• The device containing the file to be loaded

was detached before the loading operation
completed.

E_FLUSHING 002CH The device containing the target file is being
detached.

E_IO_HARD 0052H A hard I/O error occurred. A retry is probably
useless.

E_IO_OPRINT 0053H The device containing the target file was off-
line. Operator intervention is required.

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation and failed; a retry may
succeed.

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_LIMIT 0004H The calling task's job has already reached its
object limit.

E_NO_LOADER_MEM 0067H The memory pool of the newly created I/O job
does not currently have a block of memory large
enough to allow the AL to run.

E_PARAM 8004H The target file has a stack smaller than 16 bytes.

rq_a_load_io_job

System Call Reference Chapter 2 AL Calls 67

a_load_io_job
Obsolete. Asynchronously creates an I/O job with a memory pool of up to 1
Mbyte, loads a specified object file, and creates a task to execute the loaded code.
Only tasks running within I/O jobs should invoke this call. It is provided for
compatibility with earlier versions of the OS.

See also: rqe_a_load_io_job

Syntax, PL/M and C

job = rqaloadiojob (connection, pool_min, pool_max,
except_handler, job_flags, task_priority, task_flags,
msg_mbox, except_ptr);

job = rq_a_load_io_job (connection, pool_min, pool_max,
except_handler, job_flags, task_priority, task_flags,
msg_mbox, except_ptr);

rqe_a_load_io_job

68 AL Calls Chapter 2 Application Loader System Calls

rqe_a_load_io_job
Asynchronously creates an I/O job with a memory pool of up to 4 Gbytes, loads a
specified object file, and creates a task to execute the loaded code. For segmented
applications, only tasks running within I/O jobs should invoke this call. However,
you must use this call to load standalone, linked flat model applications instead of
creating an I/O job in flat model.

Syntax, PL/M and C

job = rqealoadiojob (connection, pool_min, pool_max,
except_handler, job_flags, task_priority, task_flags,
msg_mbox, except_ptr);

job = rqe_a_load_io_job (connection, pool_min, pool_max,
except_handler, job_flags, task_priority, task_flags,
msg_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
job SELECTOR SELECTOR
connection SELECTOR SELECTOR
pool_min WORD_32 UINT_32
pool_max WORD_32 UINT_32
except_handler POINTER EXCEPTION_STRUCT far *
job_flags WORD_16 UINT_16
task_priority BYTE UINT_8
task_flags WORD_16 UINT_16
msg_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value

job A token for the newly created I/O job, only valid if E_OK returns.

Parameters
connection

A token for a connection to the file to be loaded. The user object specified when
the connection was created must have had read access. The connection must have
been created in the calling task's job, be to a named file, and be closed.

pool_min
Specifies the minimum size of the new job's memory pool in 16-byte paragraphs.
The upper limit is 4 Gbytes.

rqe_a_load_io_job

System Call Reference Chapter 2 AL Calls 69

pool_max
Specifies the maximum allowable size of the new job's memory pool in 16-byte
paragraphs. The upper limit is 4 Gbytes.

except_handler
A pointer to this structure:

DECLARE exception STRUCTURE (
exception_handler_ptr POINTER,
exception_mode BYTE);

or

typedef struct exception_struct {
void far * exception_handler_ptr;
UINT_8 exception_mode;

} EXCEPTION_STRUCT;

Where:

exception_handler_ptr
If not null, references the first instruction of the new job's own
exception handler. If null, the new job's exception handler is the
system default exception handler. The exception handler for the new
task becomes the default exception handler for the job.

exception_mode
Indicates when control is to be passed to the exception handler. It is
encoded as:

Value When Control Passes To Exception Handler
0 Never
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

See also: Exception handlers, exception mode, System Concepts

job_flags
Specifies whether the Nucleus checks the validity of objects used as parameters in
system calls.

Bits Meaning
15-2 Must be set to 0
1 If 0, the Nucleus checks the validity of objects
0 Must be set to 0

rqe_a_load_io_job

70 AL Calls Chapter 2 Application Loader System Calls

task_priority
Specifies the priority of the new job's initial task.

Value Meaning
0 Priority equals the maximum priority of the EIOS initial job.
not 0 The priority of the new job's initial task. If this priority is higher

(numerically lower) than the maximum priority of the EIOS initial job,
an E_PARAM error occurs.

task_flags
Indicates:

Bits Value Meaning
15-2 0 Reserved, set to 0
1 0 The task starts immediately.

1 The task is suspended until start_io_job occurs.

0 0 The task does not use floating point instructions.
1 The task uses floating-point instructions

msg_mbox
A token for a mailbox that receives the LRS after the loading operation completes.
Each call to rqe_a_load_io_job requires a unique and valid mailbox; do not use a
null selector.

This parameter also receives an exit message from the newly created I/O job.

See also: msg_mbox parameter, EIOS call rqe_create_io_job

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

rqe_a_load_io_job

System Call Reference Chapter 2 AL Calls 71

Additional Information

Rqe_a_load_io_job creates a new job using rqe_create_io_job and loads the
specified object file. The loaded file's code becomes the initial task of the new job.
The calling task continues to run during the loading operation. If the task_flags
parameter specifies delayed start, use start_io_job to start the new task.
Otherwise, the task becomes ready at the end of the loading operation.

During the sequential part of this call the AL:

• Checks the validity of the target file's header record.

• Creates an I/O job. This I/O job is a child of the calling task's job.

• Returns a condition code reflecting the success or failure of the first phase.

The concurrent part of this call runs as the initial task in the new job, and:

• Loads the file designated by the connection parameter from secondary
storage into main memory.

• Creates the initial task. If there are no errors while the file is loaded, the task
can start running.

• Sends an LRS to the mailbox specified by the msg_mbox parameter.

• Deletes itself.

See also: Sequential and concurrent parts of an asynchronous system call,
System Concepts

rqe_a_load_io_job

72 AL Calls Chapter 2 Application Loader System Calls

Loader Result Segment

The LRS has this structure:

DECLARE io_job_lrs STRUCTURE(
termination_code WORD_16,
except_code WORD_16,
job_token SELECTOR,
return_data_len BYTE,
reserved_word1 WORD_16,
reserved_byte BYTE,
reserved_word2 WORD_16,
mem_requested WORD_16,
mem_received WORD_16);

or

typedef struct {
UINT_16 termination_code;
UINT_16 except_code;
SELECTOR job_token;
UINT_8 return_data_len;
UINT_16 reserved_word1;
UINT_8 reserved_byte;
UINT_16 reserved_word2;
UINT_16 mem_requested;
UINT_16 mem_received;

} IO_JOB_LRS_STRUCT

Where:

termination_code
Indicates the success or failure of the loading operation. If failure is
shown, delete the newly created I/O job; the AL doesn't do so.

Value Meaning
100H Success
002H Failure

except_code
The concurrent condition code.

job_token A token for the newly created I/O job.

return_data_len
Indicates the length of the remainder of the data structure, minus 13
bytes.

rqe_a_load_io_job

System Call Reference Chapter 2 AL Calls 73

mem_requested
Indicates the number of 16-byte paragraphs the target file requested
for the new job, including the memory needed for all segments and
the job's memory pool. If more than 1 megabyte was requested, this
field will contain 0FFFFH.

mem_received
Indicates the number of 16-byte paragraphs actually allocated to the
new job. If more than 1 megabyte was allocated, this field will
contain 0FFFFH.

See also: Exit messages, Systems Concepts

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_CONN_NOT_OPEN 0034H The AL opened the connection, but some other
task closed the connection before the loading
operation began.

E_CONN_OPEN 0035H The specified connection was already open.

E_CONTEXT 0005H The calling task's job is not an I/O job.

E_DEV_DETACHING 0039H The device containing the specified file is being
detached. If the device is a remote device, a
retry may succeed.

E_EXIST 0006H At least one of these is true:
• The connection parameter is not a token

for an existing object.
• The calling task's job has no global job.

See also: Global job, System Concepts
• The msg_mbox parameter does not refer to

an existing object.

E_FACCESS 0026H The specified connection does not have read
access to the file.

E_FLUSHING 002CH The device containing the target file is being
detached.

E_IO_HARD 0052H A hard I/O error occurred. A retry is probably
useless.

rqe_a_load_io_job

74 AL Calls Chapter 2 Application Loader System Calls

E_IO_OPRINT 0053H The device containing the target file is off-line.
Operator intervention is required.

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation and failed; a retry may
succeed.

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_JOB_PARAM 8060H The pool_max parameter is both non-0 and
smaller than the pool_min parameter.

E_JOB_SIZE 006DH The pool_max parameter is non-0 and too small
for the target file.

E_LOADER_SUPPORT 006FH The target file requires capabilities not
configured into the AL.

E_MEM 0002H The memory available to the calling task's job or
the BIOS is not sufficient to complete the call.

E_NO_LOADER_MEM 0067H The memory pool of the newly created I/O job
does not currently have a block of memory large
enough to allow the AL to run.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_FILE_CONN 0032H The specified connection is to a device rather
than to a named file.

E_PARAM 8004H Either the task_priority is invalid (higher than
the maximum priority of the EIOS initial job) or
the value of the exception_mode field in the
exception handler structure is outside the range
0-3.

E_SHARE 0028H The calling task tried to open a connection to a
file already being used by some other task, and
the file's sharing attribute is not compatible with
the open request.

E_SUPPORT 0023H The specified connection was not created in this
job.

rqe_a_load_io_job

System Call Reference Chapter 2 AL Calls 75

E_TIME 0001H The calling task's job is not an I/O job.

E_TYPE 8002H The connection parameter is not a token for a
connection.

E_SLOT 000CH The GDT has no available slots.

Concurrent Condition Codes: returned to except_code in the LRS after
loading attempt

E_OK 0000H No exceptional conditions occurred.

E_DEV_DETACHING 0039H The device containing the specified file is being
detached. If the device is a remote device, a
retry may succeed.

E_EOF 0065H The call encountered an unexpected EOF.

E_EXIST 0006H At least one of these is true:
• The mailbox specified was deleted before

the loading operation completed.
• The device containing the target file was

detached before the loading operation
completed.

E_FACCESS 0026H The default user of the newly created I/O job
does not have read access to the target file.

E_FLUSHING 002CH The device containing the target file is being
detached.

E_IO_HARD 0052H A hard I/O error occurred. A retry is probably
useless.

E_IO_OPRINT 0053H The device containing the target file is off-line.
Operator intervention is required.

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation and failed; a retry may
succeed.

E_IO_UNCLASS 0050H An unknown I/O error occurred.

rqe_a_load_io_job

76 AL Calls Chapter 2 Application Loader System Calls

E_LIMIT 0004H At least one of these is true:
• The task_priority parameter is higher

(numerically lower) than the newly created
I/O job's maximum priority.
See also: For ICU-configurable systems, I/O

jobs, ICU User's Guide and Quick
Reference

• Either the newly created I/O job, or its
default user, is already involved in 255 I/O
operations.

• The calling task's object directory is full.
• The root object directory is full.

E_NO_LOADER_MEM 0067H There is not enough memory available to the
newly created I/O job or the BIOS to allow the
AL to run.

E_NO_START 006CH The target file does not specify the entry point
for the program being loaded.

E_PARAM 8004H The target file has a stack smaller than 16 bytes.

rq_s_load_io_job

System Call Reference Chapter 2 AL Calls 77

s_load_io_job
Obsolete. Synchronously loads an object file and creates an I/O job for it. This
call description is identical to rqe_s_load_io_job; s_load_io_job is provided for
compatibility with older versions of the iRMX OS.

See also: rqe_s_load_io_job

Syntax, PL/M and C

job = rqsloadiojob (path_ptr, pool_min, pool_max,
except_handler, job_flags, task_priority, task_flags,
msg_mbox, except_ptr);

job = rq_s_load_io_job (path_ptr, pool_min, pool_max,
except_handler, job_flags, task_priority, task_flags,
msg_mbox, except_ptr);

rqe_s_load_io_job

78 AL Calls Chapter 2 Application Loader System Calls

rqe_s_load_io_job
Synchronously creates an I/O job containing the AL task, which loads the code for
the user task from secondary storage. For segmented applications, only tasks
running within I/O jobs should invoke this call. However, you must use this call to
load standalone, linked flat model applications instead of creating an I/O job in flat
model.

Syntax, PL/M and C

job = rqesloadiojob (path_ptr, pool_min, pool_max,
except_handler, job_flags, task_priority, task_flags,
msg_mbox, except_ptr);

job = rqe_s_load_io_job (path_ptr, pool_min, pool_max,
except_handler, job_flags, task_priority, task_flags,
msg_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
job SELECTOR SELECTOR
path_ptr POINTER STRING far *
pool_min WORD_32 UINT_32
pool_max WORD_32 UINT_32
except_handler POINTER EXCEPTION_STRUCT far *
job_flags WORD_16 UINT_16
task_priority BYTE UINT_8
task_flags WORD_16 UINT_16
msg_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value

job A token for the newly created I/O job, only valid if E_OK returns.

Parameters
path_ptr

A pointer to a STRING containing a pathname for the named file with the object
code to be loaded. The pathname must conform to the EIOS pathname syntax for
named files.

See also: Pathname syntax, System Concepts

rqe_s_load_io_job

System Call Reference Chapter 2 AL Calls 79

pool_min
Specifies the minimum size of the new job's memory pool in 16-byte paragraphs.
The upper limit is 4 Gbytes.

pool_max
Specifies the maximum allowable size of the new job's memory pool in 16-byte
paragraphs. The upper limit is 4 Gbytes.

except_handler
A pointer to this structure:

DECLARE exception STRUCTURE (
exception_handler_ptr POINTER,
exception_mode BYTE);

or

typedef struct {
void far * exception_handler_ptr;
UINT_8 exception_mode;

} EXCEPTION_STRUCT;

Where:

exception_handler_ptr
If not null, references the first instruction of the new job's own
exception handler. If null, the new job's exception handler is the
system default exception handler. The exception handler for the new
task becomes the default exception handler for the job.

exception_mode
Indicates when control is to be passed to the exception handler. It is
encoded as:

Value When Control Passes To Exception Handler
0 Never
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

See also: Exception handlers, exception mode, System Concepts

job_flags
Specifies whether the Nucleus checks the validity of objects used as parameters in
system calls.

Bits Meaning
15-2 Must be set to 0
1 If 0, the Nucleus checks the validity of objects
0 Must be set to 0

rqe_s_load_io_job

80 AL Calls Chapter 2 Application Loader System Calls

task_priority
Specifies the priority of the new job's initial task.

Value Meaning
0 Priority equals the maximum priority of the EIOS initial job.
not 0 The priority of the new job's initial task. If this priority is higher

(numerically lower) than the maximum priority of the EIOS initial job,
an E_PARAM error occurs.

task_flags
Indicates:

Bits Value Meaning
15-2 0 Reserved, set to 0
1 0 The task starts immediately.

1 The task is suspended until start_io_job occurs.

0 0 The task does not use floating point instructions.
1 The task uses floating-point instructions

msg_mbox
A token for a mailbox that receives an exit message from the newly created I/O
job. Each call to rqe_s_load_io_job requires a unique and valid mailbox; do not
use a null selector.

See also: msg_mbox parameter, EIOS call create_io_job

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The calling task's job is not an I/O job.

E_DEV_DETACHING 0039H The device containing the specified file is being
detached. If the device is a remote device, a
retry may succeed.

E_EOF 0065H The call encountered an unexpected EOF.

E_EXIST 0006H At least one of these is true:
• The msg_mbox parameter is not a token for

an existing object.
• The calling task's job has no global job.

See also: Global job, System Concepts
• The device containing the target file was

detached.

rqe_s_load_io_job

System Call Reference Chapter 2 AL Calls 81

E_FACCESS 0026H The default user object for the new I/O job does
not have read access to the specified file.

E_FNEXIST 0021H The specified target file, or some file in the
specified path, does not exist or is marked for
deletion.

E_FLUSHING 002CH The device containing the target file is being
detached.

E_INVALID_FNODE 003DH The fnode for the specified file is invalid, so the
file must be deleted.

E_IO_HARD 0052H A hard I/O error occurred. A retry is probably
useless.

E_IO_JOB 0047H The EIOS could not create an I/O job because
the default directory size (DDS) configuration
parameter is too small.

E_IO_OPRINT 0053H The device containing the target file is off-line.
Operator intervention is required.

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation and failed; a retry may
succeed.

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_JOB_PARAM 8060H The pool_max parameter is not 0 and smaller
than the pool_min parameter.

E_JOB_SIZE 006DH The pool_max parameter is not 0 and too small
for the target file.

E_LIMIT 0004H At least one of these is true:
• The task_priority parameter is higher

(numerically lower) than the newly created
I/O job's maximum priority.
See also: For ICU-configurable systems, I/O

jobs, ICU User's Guide and Quick
Reference

• Either the newly created I/O job or its
default user object is already involved in
255 I/O operations.

E_LOADER_SUPPORT 006FH The target file requires capabilities not
configured into the AL.

rqe_s_load_io_job

82 AL Calls Chapter 2 Application Loader System Calls

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NO_LOADER_MEM 0067H The memory pool of the newly created I/O job
does not currently have a block of memory large
enough to run the AL.

E_SLOT 000CH The GDT has no available slots.

E_NO_START 006CH The target file does not specify the entry point
for the program being loaded.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H At least one of these is true:
• The value of the exception_mode field in

the except_handler structure is outside
the range of 0 to 3.

• The task_priority is higher than the
maximum priority of the EIOS initial job.

• The target file requested a stack smaller than
16 bytes.

E_PATHNAME_SYNTAX 003EH The specified pathname contains one or more
invalid characters.

E_SUPPORT 0023H The specified connection is not in this job.

E_TIME 0001H The calling task's job is not an I/O job.

E_TYPE 8002H The connection parameter is not a token for a
connection.

rq_s_overlay

System Call Reference Chapter 2 AL Calls 83

s_overlay
Synchronously loads overlay modules for 16-bit (OMF286) programs. Not valid
for 32-bit programs.

Syntax, PL/M and C

CALL rqsoverlay (name_ptr, except_ptr);

rq_s_overlay (name_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
name_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
name_ptr

A pointer to a STRING containing the name of an overlay. Use only uppercase
letters, both here and in the overlay definition file.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Root modules issue this system call when they want to load an overlay module.
The root module must be loaded using one of the system calls that create an I/O
job.

The condition code is returned to the calling task.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_DEV_DETACHING 0039H The device containing the specified file is being
detached. If the device is a remote device, a
retry may succeed.

E_EOF 0065H The call encountered an unexpected EOF.

E_EXIST 0006H The specified device does not exist.

E_FLUSHING 002CH The device containing the target file is being
detached.

rq_s_overlay

84 AL Calls Chapter 2 Application Loader System Calls

E_IO_HARD 0052H A hard I/O error occurred. A retry is probably
useless.

E_IO_OPRINT 0053H The device containing the target overlay is off-
line. Operator intervention is required.

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation and failed; a retry may
succeed.

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_LIMIT 0004H Either the calling task's job, or its default user
object, is already involved in 255 I/O operations.

E_NOMEM 0068H The memory pool of the new I/O job does not
have a block of memory large enough for the AL
to load the overlay module.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_OVERLAY 006EH The overlay name indicated by the name_ptr
parameter does not match any overlay module
name in the overlay definition file.

E_SUPPORT 0023H At least one of these is true:
• The specified connection is not in this job.
• The calling task is a 16-bit task attempting

to load a 32-bit object which contains either
a code or stack offset larger than 64 Kbytes.

■■ ■■ ■■

System Call Reference Chapter 3 BIOS Calls 85

Basic I/O System Calls 3
a_attach_file

Creates a connection to an existing file of any type.

Syntax, PL/M and C

CALL rqaattach$file (user, prefix, subpath_ptr, resp_mbox,
except_ptr);

rq_a_attach_file (user, prefix, subpath_ptr, resp_mbox,
except_ptr);

Parameter PL/M Data Type C Data Type
user SELECTOR SELECTOR
prefix SELECTOR SELECTOR
subpath_ptr POINTER STRING far *
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

user A token for the user object to be inspected during access checking of named files.
A null selector specifies the default user object. The BIOS ignores this parameter
when you attach physical, stream, or DOS files because the user is always World.

prefix
A token for the connection object to be used as the path prefix. A null selector
specifies the default prefix.

subpath_ptr
A pointer to a STRING containing the subpath of the named file to be attached. A
null STRING indicates that the new connection is to the file designated by the
prefix. The new connection will not be open, regardless of the open mode of the
prefix. The BIOS ignores the subpath_ptr parameter for physical and stream
files.

rq_a_attach_file

86 BIOS Calls Chapter 3 BIOS System Calls

resp_mbox
A token for the mailbox where the BIOS places the result object of the call. This
result object is a token for a new file connection if the call succeeds, or an I/O
Result Segment (IORS). To determine the type of object returned, use the Nucleus
system call get_type.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

Once the connection is established, it remains in effect until the program deletes
the connection object or the creating job. Once attached, the file can be opened,
closed, read, or written to multiple times. A_attach_file has no effect on the owner
ID or the access list for the file.

The BIOS does not check the access rights of an iRMX-NET remote file when you
create a connection to the file, but checks during operations on the connection.
This won't affect your programs if you do this:

• Open, delete, and rename files prior to changing their access lists.

• Establish connections to files after changing their access lists.

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_DEV_OFFLINE 002EH The prefix parameter references a logical
connection to a device. One of these is true of
this device:
• It has been physically attached but is now

off-line.
• It has been logically attached but never

physically attached.
See also: Connections, System Concepts

• An unspecified DOS error occurred.

rq_a_attach_file

System Call Reference Chapter 3 BIOS Calls 87

E_EXIST 0006H One of these is true:
• One or more of the user , prefix , or

resp_mbox parameters is not a token for an
existing object.

• The prefix connection is being deleted.
• The connection to a remote driver is no

longer active.

E_LIMIT 0004H Processing this call would exceed one or more of
these limits:
• The object limit for this job
• 255 outstanding I/O operations for the

specified user object
• 255 outstanding I/O operations for the

caller's job
• The number of outstanding I/O operations

for a remote connection

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOPREFIX 8022H The calling task specified a default prefix using a
null selector, but a default prefix cannot be found
for one of these reasons:
• When this job was created, a 0 was specified

for its object directory, so the job cannot
catalog a default prefix.

• The job's directory can have entries but a
default prefix is not cataloged there.

E_NOUSER 8021H The user parameter is not a null selector, and is
not a token for a user object. Otherwise, it
specifies a default user, but no default user can
be found for one of these reasons:
• When this job was created, a 0 was specified

for its object directory, so the job cannot
catalog a default user.

• The job's directory can have entries but a
default user is not cataloged there.

• The cataloged object r?iouser is not a user
object. Treat r?iouser as a reserved word.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_a_attach_file

88 BIOS Calls Chapter 3 BIOS System Calls

E_PATHNAME_SYNTAX 003EH One or more of these is true:
• The specified pathname contains invalid

characters or has 0 length.
• The subpath of the specified remote file

exceeds 127 bytes.

E_TYPE 8002H Either the prefix parameter is not a connection or
logical device object created by the EIOS, or the
resp_mbox parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_DEV_DETACHING 0039H The file specified is on a device that the system
is detaching.

E_FNEXIST 0021H A file in the specified path, or the target file
itself, does not exist or is marked for deletion.

E_FTYPE 0027H The STRING pointed to by subpath_ptr contains
a filename that is not the name of a directory.
Except for the last file, each file in a path must
be a named directory.

E_INVALID_FNODE 003DH The fnode for the specified file is invalid. The
file cannot be accessed; delete it or fix it with
diskverify .

See also: diskverify , Command Reference

E_IO 002BH An I/O error occurred, which might have
prevented the operation from completing.
Examine the unit_status field of the IORS for
more information.

See also: IORS, Chapter 1,
Accessing the IORS, Programming
Techniques

E_IO_MEM 0042H The memory available to the BIOS job is not
sufficient to complete the call.

E_LIMIT 0004H Processing this call would deplete the remote
server's resources.

E_NAMEN_EXIST 0049H The user object is not for a verified user or is not
in the remote server's User Definition File
(UDF).

rq_a_attach_file

System Call Reference Chapter 3 BIOS Calls 89

E_PASSWORD_MISMATCH 004BH The user object password does not match the
password of the user defined on the remote
server.

E_PATHNAME_SYNTAX 003EH The syntax of the specified remote file pathname
is illegal; it must follow the naming conventions
of the server.

E_UDF_IO 02D0H An error occurred while accessing the remote
server's UDF.

rq_a_change_access

90 BIOS Calls Chapter 3 BIOS System Calls

a_change_access
Changes the access rights to a named data or directory file.

Syntax, PL/M and C

CALL rqachange$access (user, prefix, subpath_ptr, ID, access,
resp_mbox, except_ptr);

rq_a_change_access (user, prefix, subpath_ptr, ID, access,
resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
user SELECTOR SELECTOR
prefix SELECTOR SELECTOR
subpath_ptr POINTER STRING far *
ID WORD_16 UINT_16
access BYTE UINT_8
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

user A token for the user object to be inspected in access checking. A null selector
specifies the default user object. For DOS files, the BIOS ignores this parameter
because the user is always World.

prefix
A token for the connection object to be used as the path prefix. A null selector
specifies the default prefix.

subpath _ptr
A pointer to a STRING giving the subpath of the file whose access is to be
changed. A null STRING indicates that the prefix designates the desired file.

ID The ID number of the user whose access is to be changed. If this ID does not
already exist in the ID-access mask list, it is added. This list may contain up to
three ID-access pairs. For DOS files and directories, since the user is always
World, no IDs can be added or deleted. For NFS files, user IDs may be mapped
differently between different OSs.

See also: Accessing NFS Files, Chapter 17, System Concepts

rq_a_change_access

System Call Reference Chapter 3 BIOS Calls 91

access
The new access rights for the ID. Setting all the bits to 0 removes the specified ID
from the access list of the file. If not 0, the meaning of the various bit settings
depends upon whether the file is a data file or a directory file. The following tables
show the access rights for data and directory files. Setting a bit to 1 enables access,
0 denies access. For NFS files, access rights may be mapped differently between
different OSs. The World user always has read (list) access to DOS files and
directories; write (delete, append, and update) access is optional.

Bits Data File Access Rights
7-4 Reserved; set to 0.
3 Update: permission to write over any information in the file by using

a_write or s_write_move, and permission to truncate the file using
a_truncate or s_truncate_file. This does not include permission to add
information to the EOF. Set to the same value as bit 2 for remote files.

2 Append: permission to write information only at the EOF by using
a_write or s_write_move. Set to the same value as bit 3 for remote
files.

1 Read: permission to read data from the file by using a_read or
s_read_move.

0 Delete: permission to delete the entire file by using a_delete_file or
s_delete_file. Also enables changing the name of the file by using
a_rename_file or s_rename_file. The BIOS ignores this bit for remote
files.

Bits Directory File Access Rights
7-4 Reserved; set to 0.
3 Change entry: permission to change the access list associated with a file

in the directory, using a_change_access or s_change_access. This does
not include permission to change the access list of the directory itself.
The BIOS ignores this bit for remote directories.

2 Add-entry: permission to add files to the directory by using
a_create_file, a_create_directory, a_rename_file, s_create_file,
s_create_directory, or s_rename_file. This does not include
permission to change existing files in the directory.

1 List: permission to read information from the directory by using a_read,
a_get_directory_entry, or s_read_move.

0 Delete: permission to delete the directory by using s_delete_file or
a_delete_file. Also enables changing the name of the directory by using
s_rename_file or a_rename_file. The BIOS ignores this bit for remote
directories.

rq_a_change_access

92 BIOS Calls Chapter 3 BIOS System Calls

resp_mbox
A token for the mailbox that receives an IORS indicating the result of the call. A
null selector means that you do not want to receive an IORS.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

If the owner is World (0FFFFH), any task may change the access mask of the file.
Otherwise, the caller must be the owner of the file or must have change-entry
access to the file's parent directory. If this system has system manager support
configured by the ICU, user 0 may change the access rights of any file regardless of
which user is the owner.

See also: System manager ID, ICU User's Guide and Quick Reference

This call has no effect on existing connections to the file. Depending on the
contents of the ID and access parameters, users may be added to or deleted from
an iRMX file's ID-access mask list, or the access privileges granted to a particular
user may be changed.

You cannot change the access rights of a virtual root directory, because a virtual
root directory has no assigned owner. Otherwise, an E_FACCESS condition code
returns.

For DOS files, the World user cannot be changed, and list (read) access is
automatic. Only write access is optional.

For NFS files on DOS or Unix, access rights are mapped differently than on iRMX
systems.

See also: Accessing NFS files, Chapter 17, System Concepts

rq_a_change_access

System Call Reference Chapter 3 BIOS Calls 93

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_DEV_OFFLINE 002EH The prefix parameter references a logical
connection to a device. One of these is true of
this device:
• It has been physically attached but is off-

line.
• It has been logically attached but never

physically attached.
• An unspecified DOS error occurred.

E_EXIST 0006H At least one of these is true:
• One or more of the user, prefix, or

resp_mbox parameters is not a token for an
existing object.

• The prefix connection is being deleted.
• The remote driver connection is no longer

active.

E_IFDR 002FH The prefix and subpath_ptr parameters specify a
type of file other than a named file.

E_LIMIT 0004H Processing this call would exceed one or more of
these limits:
• The object limit for this job
• 255 outstanding I/O operations for the

specified user object
• 255 outstanding I/O operations for the

caller's job
• The number of outstanding I/O operations

for a remote file

E_MEM 0002H The memory available to the calling task's job is
insufficient to complete this call.

rq_a_change_access

94 BIOS Calls Chapter 3 BIOS System Calls

E_NOPREFIX 8022H The calling task specified a default prefix using a
null selector, but a default prefix cannot be found
for one of these reasons:
• When this job was created, a 0 was specified

for its object directory, so the job cannot
catalog a default prefix.

• The job's directory can have entries but no
default prefix is cataloged there.

E_NOUSER 8021H If the user parameter is not a null selector, the
parameter is not a token for a user object.
Otherwise it specifies a default user, but no
default user can be found for one of these
reasons:
• When this job was created, a 0 was specified

for its object directory, so the job cannot
catalog a default user.

• The job's directory can have entries but no
default user is cataloged there.

• The object which is cataloged with the name
r?iouser is not a user object. Treat r?iouser
as a reserved word.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PATHNAME_SYNTAX 003EH One or more of these is true:
• The specified pathname contains invalid

characters.
• The subpath of the specified remote file

exceeds 127 bytes.

E_SUPPORT 0023H The connection was not created by this job.

E_TYPE 8002H One or more of these is true:
• The user token designates a connection of

the wrong type.
• The prefix parameter is not a token for a

connection object or a logical device object
created by the EIOS.

• The resp_mbox parameter is not a mailbox
token.

rq_a_change_access

System Call Reference Chapter 3 BIOS Calls 95

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_DEV_DETACHING 0039H The file specified is on a device that the system
is detaching.

E_FACCESS 0026H The user object in the parameter list is not the
owner of the specified file, nor does it have
change-entry access to the parent directory.

E_FNEXIST 0021H A file in the specified path, or the target file
itself, does not exist or is marked for deletion.

E_FTYPE 0027H The STRING pointed to by the subpath_ptr
parameter contains a filename that is not a
directory. Except for the last file, each file in a
path must be a named directory.

E_INVALID_FNODE 003DH The fnode for the specified file is invalid. The
file cannot be accessed; delete it or fix it with
diskverify .

See also: diskverify , Command Reference

E_IO 002BH An I/O error occurred which might have
prevented the operation from completing.
Examine the unit_status field of the IORS for
more information.

See also: IORS, Chapter 1,
Accessing the IORS, Programming
Techniques

E_IO_MEM 0042H The memory available is not sufficient to
complete this call.

E_LIMIT 0004H Processing this call would deplete the remote
server's resources.

E_NAME_NEXIST 0049H The user object does not represent a verified user
or is not properly defined in the remote server's
UDF.

E_NOT_FILE_CONN 0032H The subpath_ptr parameter = NIL and the prefix
parameter is not a file connection.

E_PASSWORD_MISMATCH 004BH The user object password does not match the
password of the user defined on the remote
server.

rq_a_change_access

96 BIOS Calls Chapter 3 BIOS System Calls

E_PATHNAME_SYNTAX 003EH The syntax of the specified remote file pathname
is illegal; it must follow the naming conventions
of the server.

E_SUPPORT 0023H The call attempted to add another access ID to
the list of access IDs that already contained the
limit of three IDs.

E_UDF_IO 02D0H An error occurred while accessing the remote
server's UDF.

rq_a_close

System Call Reference Chapter 3 BIOS Calls 97

a_close
Closes an open file connection for any type of file.

Syntax, PL/M and C

CALL rqaclose (connection, resp_mbox, except_ptr);

rq_a_close (connection, resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for the file connection to be closed.

resp_mbox
A token for the mailbox that receives an IORS. A null selector means that you do
not want to receive an IORS.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

Use this call when the application needs to change the open or share mode of the
connection. The BIOS will not close the connection until all existing I/O requests
for the connection have been satisfied. In addition, the BIOS will not send a
response to the response mailbox until the file is closed.

rq_a_close

98 BIOS Calls Chapter 3 BIOS System Calls

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H At least one of these is true:
• One or more of the connection or

resp_mbox parameters is not a token for an
existing object.

• The connection is being deleted.
• The connection for a remote driver is no

longer active.

E_LIMIT 0004H At least one of these is true:
• The calling task's job has already reached its

object limit.
• The number of outstanding I/O operations

for a remote connection has been exceeded.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete this call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H The connection was not created by this job.

E_TYPE 8002H Either the connection parameter is not a token
for a connection object, or the resp_mbox
parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_CONN_NOT_OPEN 0034H The specified connection is not open.

E_IO 002BH An I/O error occurred, but the operation was
successful anyway.

rq_a_create_directory

System Call Reference Chapter 3 BIOS Calls 99

a_create_directory
Creates a named directory file and returns a token for the new file connection.

Syntax, PL/M and C

CALL rqacreate$directory (user, prefix, subpath_ptr, access,
resp_mbox, except_ptr);

rq_a_create_directory (user, prefix, subpath_ptr, access,
resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
user SELECTOR SELECTOR
prefix SELECTOR SELECTOR
subpath_ptr POINTER STRING far *
access BYTE UINT_8
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

user A token for the user object of the new directory's owner. The BIOS makes sure the
caller has add-entry access to the parent of the new directory. A null selector
specifies the default user object. For DOS files, the BIOS ignores this parameter
because the user is always World.

prefix
A token for the connection to be used as the path prefix. A null selector specifies
the default prefix.

subpath_ptr
A pointer to a STRING containing the subpath of the directory to be created. The
subpath STRING must not be null, and it must reference an unused location in the
directory tree.

rq_a_create_directory

100 BIOS Calls Chapter 3 BIOS System Calls

access
The owner's initial access rights to the directory. For each bit, a 1 grants access
and a 0 denies it.

Bits Data File Directory File
7-4 Reserved (0) Reserved (0)
3 Update Change-entry
2 Append Add-entry
1 Read List
0 Delete Delete

The DOS World user always has read (list) access to DOS files and directories;
write access is optional.

See also: a_change_access, EIOS call s_change_access

resp_mbox
A token for the mailbox that receives a directory file connection if the call
succeeded, otherwise an IORS. To determine the type of object returned, use the
Nucleus system call get_type.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

This call cannot create a connection to an existing directory; use a_attach_file.

You cannot create an iRMX-NET remote directory with a virtual root directory as
its parent because a virtual root directory has no assigned owner. Otherwise, an
E_FACCESS condition code returns.

rq_a_create_directory

System Call Reference Chapter 3 BIOS Calls 101

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_DEV_OFF_LINE 002EH The prefix parameter references a logical
connection to a device. One of these is true of
the device:
• It has been physically attached but is now

off-line.
• It has been logically attached but never

physically attached.
See also: attachdevice, System Concepts

E_EXIST 0006H At least one of these is true:
• One or more of the user , prefix , or

resp_mbox parameters is not a token for an
existing object.

• The prefix connection is being deleted.
• The connection for a remote driver is no

longer active.

E_IFDR 002FH This system call applies only to named directory
files, but the prefix and subpath parameters
specify some other type of file.

E_LIMIT 0004H Processing this call would exceed one or more of
these limits:
• The object limit for this job
• 255 outstanding I/O operations for the

specified user object
• 255 outstanding I/O operations for the

caller's job
• The number of outstanding I/O operations

for a remote connection

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete this call.

rq_a_create_directory

102 BIOS Calls Chapter 3 BIOS System Calls

E_NOPREFIX 8022H The task specified a default prefix using a null
selector, but a default prefix cannot be found
because of one or more of these reasons:
• When this job was created, a 0 was specified

for its object directory, so the job cannot
catalog a default prefix.

• The job's directory can have entries but no
default prefix is cataloged there.

E_NOUSER 8021H If the user parameter is not a null selector, the
parameter is not a user object. Otherwise, it
specifies a default user, but no default user can
be found for one of these reasons:
• When this job was created, a 0 was specified

for its object directory, so the job cannot
catalog a default user.

• The job's directory can have entries but no
default user is cataloged there.

• The cataloged object r?iouser is not a user
object. Treat r?iouser as a reserved word.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PATHNAME_SYNTAX 003EH One or more of these is true:
• The specified pathname contains invalid

characters or has 0 length.
• The subpath of the specified remote file

exceeds 127 bytes.

E_TYPE 8002H Either the prefix parameter is not a token for a
connection object or a logical device object
created by the EIOS, or the resp_mbox
parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_DEV_DETACHING 0039H The file specified is on a device that the system
is detaching.

E_FACCESS 0026H The user object in the parameter list does not
have add-entry access to the parent directory.

E_FEXIST 0020H A file with the specified pathname already
exists.

rq_a_create_directory

System Call Reference Chapter 3 BIOS Calls 103

E_FNEXIST 0021H A file in the specified path does not exist or is
marked for deletion.

E_FNODE_LIMIT 003FH The volume already contains the maximum
number of files; no more fnodes are available.

E_FTYPE 0027H The STRING pointed to by the subpath_ptr
parameter contains a filename which should be
the name of a directory, but is not. Except for
the last file, each file in a path must be a named
directory.

E_INVALID_FNODE 003DH The fnode for the specified file (or for a
directory in the file's path) is invalid. The file
cannot be accessed; delete it or fix it with
diskverify .

See also: diskverify , Command Reference

E_IO 002BH An I/O error occurred which might have
prevented the operation from completing.
Examine the unit_status field of the IORS for
more information.

See also: IORS, Chapter 1,
Accessing the IORS, Programming
Techniques

E_IO_MEM 0042H The memory available to the BIOS job is not
sufficient to complete this call.

E_LIMIT 0004H Processing this call would deplete the remote
server's resources.

E_NAME_NEXIST 0049H The user object does not represent a verified
user, or the user object is not properly defined in
the remote server's UDF.

E_PASSWORD_MISMATCH 004BH The user object password does not match the
password of the user defined on the remote
server.

E_PATHNAME_SYNTAX 003EH The syntax of the specified remote file pathname
is illegal; it must follow the naming conventions
of the server.

rq_a_create_directory

104 BIOS Calls Chapter 3 BIOS System Calls

E_SPACE 0029H At least one of these is true:
• The volume is full.
• No more files can be created on the remote

server's volume. The remote file driver
cannot distinguish between an
E_FNODE_LIMIT and an E_SPACE
condition code.

E_SUPPORT 0023H The BIOS is not configured to support space
allocation.

E_UDF_IO 02D0H An error occurred while accessing the remote
server's UDF.

rq_a_create_file

System Call Reference Chapter 3 BIOS Calls 105

a_create_file
Creates a physical, stream, or named data file and returns a token for the new file
connection.

Syntax, PL/M and C

CALL rqacreate$file (user, prefix, subpath_ptr, access,
granularity, size, must_create, resp_mbox, except_ptr);

rq_a_create_file (user, prefix, subpath_ptr, access,
granularity, size, must_create, resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
user SELECTOR SELECTOR
prefix SELECTOR SELECTOR
subpath_ptr POINTER STRING far *
access BYTE UINT_8
granularity WORD_16 UINT_16
size WORD_32 UINT_32
must_create BYTE UINT_8
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

user A token for the user object of the new file's owner, which provides the user ID for
access checking. A null selector specifies the default user object. The caller must
have add-entry access to the parent of the new directory. The BIOS ignores this
parameter for physical, stream, or DOS files because the user is always World.

prefix
A token for a device or file connection. A null selector specifies the default prefix.
The file created by this call is of the type that is associated with this parameter.
For stream files, if the prefix is a device connection, a new stream file is created. If
the prefix is a file connection, a new file connection to the same stream file is
created. For named files and DOS files, the prefix acts as the starting point in a
directory tree scan.

subpath_ptr
A pointer to a STRING containing the subpath for the named file being created.
This parameter does not apply to physical and stream files. Entering a null pointer,
when using a named, DOS, or EDOS file driver, creates an unnamed temporary
file. The BIOS automatically deletes this file when the last connection to it is
deleted.

rq_a_create_file

106 BIOS Calls Chapter 3 BIOS System Calls

access
The owner's initial access rights to the new file. This parameter does not apply to
physical or stream files. For each bit, a 1 grants access and a 0 denies it.

Bits Meaning
7-4 Reserved, set to 0
3 Update
2 Append
1 Read
0 Delete

The DOS World user always has read (list) access to DOS files and directories;
write access is optional.

See also: a_change_access

granularity
The size of each logical block of space to be allocated to the file. The BIOS
ignores this parameter for physical, stream, remote, and DOS files. If necessary,
this parameter is rounded up to a multiple of the volume granularity.

Value Meaning
0 Same as volume granularity
1-0FFFEH Number of bytes per allocation
0FFFFH The file must be contiguous

When a contiguous file is extended, space is allocated in volume-granularity units.
A contiguous file can become noncontiguous when it is extended.

size
The number of bytes initially reserved for the file. For stream files and existing
remote files, this value must equal 0. If you make this value greater than 0 for
stream files, the reserved space may contain unknown data. The BIOS ignores this
parameter for physical files and non-existent remote files.

rq_a_create_file

System Call Reference Chapter 3 BIOS Calls 107

must_create
Determines the handling of an existing file. This parameter applies to named files
and DOS files. Only the least significant bit is checked.

See also: For ICU-configurable systems, Ability to create existing files, ICU
User's Guide and Quick Reference

Value Meaning
0 If a data file exists, it will be truncated or expanded based on the size

parameter. The file's owner ID and access list are unchanged.
If a directory or device file exists, a temporary file is created. The BIOS
automatically deletes this file when the last connection to it is deleted.
Because this file is created without a path, it can be accessed only
through a connection.

1 If a file exists, an E_FEXIST condition code returns.

resp_mbox
A token for the mailbox that receives a new file connection if the call succeeds,
otherwise an IORS. To determine the type of object returned, use the Nucleus
system call get_type.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

Any task can create a temporary file in any directory because temporary files are
not listed as ordinary entries in the directory. No add-entry access is required.

When you create a remote file, the remote temporary file is entered in the directory
in which you are creating the remote file. Therefore, the task creating the remote
file must have write access to this directory. Tasks can access this remote
temporary file through its pathname, as well as through connections to the file.

You cannot create an iRMX-NET remote file with a virtual root directory as its
parent because a virtual root directory has no owner and you cannot write to it. An
attempt to do so returns an E_FACCESS condition code.

rq_a_create_file

108 BIOS Calls Chapter 3 BIOS System Calls

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_DEV_OFF_LINE 002EH The prefix parameter in this system call
references a logical connection to a device. One
of these is true of this device:
• It has been physically attached but is now

off-line.
• It has been logically attached but never

physically attached.

See also: attachdevice, Command Reference

E_EXIST 0006H At least one of these is true:
• One or more of the user , prefix , or

resp_mbox parameters is not a token for an
existing object.

• The prefix connection is being deleted.
• The connection for a remote driver is no

longer active.

E_LIMIT 0004H Processing this call would cause one or both of
these limits to be exceeded:
• The object limit for this job
• The number of outstanding I/O operations

for a remote connection

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete this call.

E_NOPREFIX 8022H The call specified a default prefix using a null
selector, but it cannot be found for one of these
reasons:
• When the job was created, a 0 was specified

for its object directory.
• No default prefix is cataloged in the job's

directory.

rq_a_create_file

System Call Reference Chapter 3 BIOS Calls 109

E_NOUSER 8021H If the user parameter is not a null selector, the
parameter is not a token for a user object.
Otherwise, it specifies a default user, but no
default user can be found for one of these
reasons:
• When this job was created, a 0 was specified

for its object directory, so the job cannot
catalog a default user.

• The job's directory can have entries but a
default user is not cataloged there.

• The cataloged object r?iouser is not a user
object. Another task cataloged an object
(not a user object) under the name r?iouser.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PATHNAME_SYNTAX 003EH At least one of these is true:
• The specified pathname contains invalid

characters or has 0 length.
• The subpath of the specified remote file

exceeds 127 bytes.

E_TYPE 8002H At least one of these is true:
• The prefix parameter is not a token for a

connection object or a logical device object
created by the EIOS.

• The resp_mbox parameter is not a mailbox
token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_DEV_DETACHING 0039H The file specified is on a device that the system
is detaching.

E_FACCESS 0026H One of these is true:
• No file with the specified pathname exists,

and the specified user object does not have
add-entry access to the parent directory.

• A file with the specified pathname exists,
but the specified user object does not have
update access to the file.

E_FEXIST 0020H The must_create parameter is 1, and the file
already exists.

rq_a_create_file

110 BIOS Calls Chapter 3 BIOS System Calls

E_FNEXIST 0021H A file in the specified path does not exist or is
marked for deletion.

E_FNODE_LIMIT 003FH The file cannot be created or extended to this
size because it has reached the maximum
number of volume blocks.

See also: File driver limitations, System
Concepts manual.

E_FRAGMENTATION 0030H The disk is too fragmented to extend the file.

E_FTYPE 0027H The STRING pointed to by the subpath_ptr
parameter contains a filename which should be
the name of a directory, but is not. Except for
the last file, each file in a path must be a named
directory.

E_INVALID_FNODE 003DH The fnode for the specified file (or for a
directory in the file's path) is invalid. The file
cannot be accessed; delete it or fix it with
diskverify .

See also: diskverify , Command Reference

E_IO 002BH An I/O error occurred which might have
prevented the operation from completing.
Examine the unit_status field of the IORS for
more information.

See also: IORS, Chapter 1,
Accessing the IORS, Programming
Techniques

E_IO_MEM 0042H The memory available to the BIOS job is not
sufficient to complete this call.

E_LIMIT 0004H Processing this call would deplete the remote
server's resources.

E_NAME_NEXIST 0049H The user object does not represent a verified
user, or the user object is not properly defined in
the remote server's UDF.

E_PASSWORD_MISMATCH 004BH The user object password does not match the
password of the user defined on the remote
server.

rq_a_create_file

System Call Reference Chapter 3 BIOS Calls 111

E_PATHNAME_SYNTAX 003EH The syntax of the specified remote file pathname
is illegal; it must follow the naming conventions
of the server.

E_SHARE 0028H The file this call is attempting to create already
exists and is open. It was opened with share-
with-readers-only share mode.

E_SPACE 0029H At least one of these is true:
• The volume is full.
• No more files can be created on the remote

server's volume. The remote file driver
cannot distinguish between an
E_FNODE_LIMIT and an E_SPACE
condition code.

E_SUPPORT 0023H One of these is true:
• The BIOS is not configured to allow

truncation of files to 0 size.
• The BIOS is not configured to allow space

allocation on volumes.
• The remote file driver does not support

creation of a contiguous file.
• The remote file driver does not support

truncating existing remote files to 0 size.

E_UDF_IO 02D0H An error occurred while accessing the remote
server's UDF.

rq_create_user

112 BIOS Calls Chapter 3 BIOS System Calls

create_user
Creates a user object, accepts a list of IDs, and returns a token for the new object.

Syntax, PL/M and C

user = rq$create$user (IDs_ptr, except_ptr);

user = rq_create_user (IDs_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
user SELECTOR SELECTOR
IDs_ptr POINTER IDS_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value

user The new user object token.

Parameters
IDs_ptr

A pointer to this structure:

DECLARE IDs STRUCTURE(
length WORD_16,
count WORD_16,
IDs(*) WORD_16);

or

typedef struct {
UINT_16 length;
UINT_16 count;
UINT_16 ids[2]; /* adjust to count value */

} IDS_STRUCT;

Where:

length Number of elements in the ID array.

count Number ranging from 1 to length of IDs to be included in the user
object.

IDs Array of IDs, each of which is included in the user object. The first
ID is the owner of any file created with reference to this user object.

rq_create_user

System Call Reference Chapter 3 BIOS Calls 113

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If the number of ID slots specified by the length field is greater than the number
of IDs specified by the count field, length is adjusted to equal count .

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_LIMIT 0004H The calling task's job has already reached its
object limit.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_PARAM 8004H The count field in the IDs structure is either 0 or
is greater than the length field.

rq_a_delete_connection

114 BIOS Calls Chapter 3 BIOS System Calls

a_delete_connection
Deletes a file connection created by a_create_file, a_create_directory, or
a_attach_file. Use with any type of file..

Syntax, PL/M and C

CALL rqadelete$connection (connection, resp_mbox,
except_ptr);

rq_a_delete_connection (connection, resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for the file connection to be deleted.

resp_mbox
A token for the mailbox that receives an IORS. A null selector means that you do
not want to receive an IORS.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

Delete connections when they are no longer needed. This call deletes a connection
object and deletes the associated file if both of these are true:

• The file is already marked for deletion by a previous a_delete_file call or is a
temporary file.

• The specified connection is the only connection to the file.

If a connection is open when a_delete_connection is called, it is closed before
being deleted.

See also: a_create_file, a_create_directory, a_attach_file

rq_a_delete_connection

System Call Reference Chapter 3 BIOS Calls 115

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H At least one of these is true:
• One or more of the connection or

resp_mbox parameters is not a token for an
existing object.

• The connection is being deleted.
• The connection for a remote driver is no

longer active.

E_LIMIT 0004H The calling task's job has already reached its
object limit, or DOS has run out of file handles.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete this call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_FILE_CONN 0032H The specified connection is a device connection,
not a file connection.

E_SUPPORT 0023H The specified connection was not created by this
job.

E_TYPE 8002H Either the connection parameter is not a token
for a connection object, or the resp_mbox
parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_IO 002BH An I/O error occurred, but the connection was
still deleted.

rq_a_delete_file

116 BIOS Calls Chapter 3 BIOS System Calls

a_delete_file
Marks a file for deletion and deletes it. The file type may be stream, named data,
named directory, DOS data, or DOS directory.

Syntax, PL/M and C

CALL rqadelete$file (user, prefix, subpath_ptr, resp_mbox,
except_ptr);

rq_a_delete_file (user, prefix, subpath_ptr, resp_mbox,
except_ptr);

Parameter PL/M Data Type C Data Type
user SELECTOR SELECTOR
prefix SELECTOR SELECTOR
subpath_ptr POINTER STRING far *
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

user A token for the user object to be inspected in access checking. A null selector
specifies the default user object. This parameter does not apply to stream files.
For DOS files, the BIOS ignores this parameter because the user is always World.

prefix
A token for the connection object to be used as the path prefix. A null selector
specifies the default prefix.

subpath_ptr
A pointer to a STRING giving the subpath for the file being deleted. A null
STRING indicates that the prefix itself designates the desired file. In this instance,
the user parameter is ignored, since access checking was already performed when
the file was attached. This parameter does not apply to stream files.

resp_mbox
A token for a mailbox that receives an IORS when the file is marked for deletion.
The file will not actually be deleted until all connections to the file are deleted. A
null selector means that you do not want to receive an IORS.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

rq_a_delete_file

System Call Reference Chapter 3 BIOS Calls 117

Additional Information

For iRMX files, the caller must have delete access to the file. For DOS files, the
caller must have write access to the file.

See also: a_change_access, s_change_access

Use this call to mark the designated file for deletion and remove the file's entry
from the parent directory. The entry is removed immediately, but the file is not
actually deleted until all connections to the file have been severed by
a_delete_connection calls. Directory files cannot be deleted unless they are
empty.

See also: a_delete_connection

You cannot delete an iRMX-NET remote file with a virtual root directory as its
parent because a virtual root directory has no owner and you cannot write to it. An
attempt to do so returns an E_FACCESS condition code.

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_DEV_OFF_LINE 002EH The prefix parameter references a logical
connection to a device. One of these is true of
this device:
• It has been physically attached but is now

off-line.
• It has been logically attached but never

physically attached.

See also: attachdevice, Command Reference

E_EXIST 0006H At least one of these is true:
• One or more of the user , prefix , or

resp_mbox parameters is not a token for an
existing object.

• The prefix connection is being deleted.
• The connection for a remote driver is no

longer active.

E_IFDR 002FH This system call applies only to named or stream
files, but the prefix and subpath parameters
specified a physical file.

rq_a_delete_file

118 BIOS Calls Chapter 3 BIOS System Calls

E_LIMIT 0004H Processing this call would exceed one or more of
these limits:
• The object limit for this job
• 255 outstanding I/O operations for the

specified user object
• 255 outstanding I/O operations for the

caller's job
• The number of outstanding I/O operations

for a remote connection

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete this call.

E_NOPREFIX 8022H The call specified a default prefix using a null
selector, but a default prefix cannot be found for
one of these reasons:
• When this job was created, a 0 was specified

for its object directory, so the job cannot
catalog a default prefix.

• The job's directory can have entries but no
default prefix is cataloged there.

E_NOUSER 8021H If the user parameter is not a null selector, the
parameter is not a token for a user object.
Otherwise, it specifies a default user, but no
default user can be found for one of these
reasons:
• When this job was created, a 0 was specified

for its object directory, so the job cannot
catalog a default user.

• The job's directory can have entries but no
default user is cataloged there.

• The cataloged object r?iouser is not a user
object. Treat r?iouser as a reserved word.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PATHNAME_SYNTAX 003EH At least one of these is true:
• The specified pathname contains invalid

characters or has 0 length.
• The subpath of the specified remote file

exceeds 127 bytes.

rq_a_delete_file

System Call Reference Chapter 3 BIOS Calls 119

E_SUPPORT 0023H The specified connection was not created by this
job.

E_TYPE 8002H At least one of these is true:
• The prefix parameter is not a token for a

connection object or a logical device object
created by the EIOS.

• The resp_mbox parameter is not a mailbox
token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_DEV_DETACHING 0039H The specified file is on a device that the system
is detaching.

E_DIR_NOT_EMPTY 0031H The call is attempting to delete a directory
containing entries.

E_FACCESS 0026H At least one of these is true:
• The user object does not have delete access

to the file.
• The call attempted to delete the root

directory or a bit-map file.

E_FNEXIST 0021H A file in the specified path, or the target file
itself, does not exist or is marked for deletion.

E_FTYPE 0027H The STRING pointed to by the subpath_ptr
parameter contains a STRING that should be the
name of a directory, but is not. Except for the
last file, each file in a pathname must be a
named directory.

E_IO 002BH An I/O error occurred which might have
prevented the operation from completing.
Examine the unit_status field of the IORS for
more information.

See also: IORS, Chapter 1,
Accessing the IORS, Programming
Techniques

E_IO_MEM 0042H The memory available to the BIOS is not
sufficient to complete the call.

rq_a_delete_file

120 BIOS Calls Chapter 3 BIOS System Calls

E_LIMIT 0004H Processing this call would deplete the remote
server's resources.

E_NAME_NEXIST 0049H The user object does not represent a valid user,
or the user object is not properly defined in the
remote server's UDF.

E_NOT_FILE_CONN 0032H The subpath_ptr parameter is a null pointer and
the prefix parameter is not a file connection.

E_PASSWORD_MISMATCH 004BH The user object password does not match the
password of the user defined on the remote
server.

E_PATHNAME_SYNTAX 003EH The syntax of the specified remote file pathname
is illegal; it must follow the naming conventions
of the server.

E_UDF_IO 02D0H An error occurred while accessing the remote
server's UDF.

rq_delete_user

System Call Reference Chapter 3 BIOS Calls 121

delete_user
Deletes a user object.

Syntax, PL/M and C

CALL rq$delete$user (user, except_ptr);

rq_delete_user (user, except_ptr);

Parameter PL/M Data Type C Data Type
user SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

user A token for the user object to be deleted.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Deleting a user object has no effect on connections created with the user object.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The user parameter is not a token for an existing
object.

E_LIMIT 0004H Processing the call would exceed the limit of 255
outstanding I/O operations.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H The user parameter is a token that is not a user
object.

rq_encrypt

122 BIOS Calls Chapter 3 BIOS System Calls

encrypt
Encodes a STRING pointed to by the password_ptr parameter. There is no way
to decrypt the encrypted STRING with any iRMX system call.

Syntax, PL/M and C

CALL rq$encrypt (password_ptr, key_ptr, encryption_ptr,
except_ptr);

rq_encrypt (password_ptr, key_ptr, encryption_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
password_ptr POINTER STRING far *
key_ptr POINTER UINT_8 far *
encryption_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
password_ptr

A pointer to an 8-character STRING containing the data to be encrypted.

key_ptr
A pointer to two ASCII characters that serve as an encryption key. These two
characters become the second and third characters of the STRING pointed to by
encryption_ptr . The two characters must be used in subsequent encryptions of
the same unencrypted password to yield the same encryption.

encryption_ptr
A pointer to a 15-character STRING where the encrypted password will be placed.
The first character is the length of the string. The second and third characters are
the key used to encrypt the password. The next 11 characters are the encrypted
password. The last character is a null character.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_encrypt

System Call Reference Chapter 3 BIOS Calls 123

Additional Information

This system call is typically used to encrypt a password supplied by a user during
logon or other system access verification. The key_ptr parameter enables the
input parameter to be encrypted to the same string each time encrypt is called,
provided the key_ptr parameter is identical. Using any other key will cause the
input parameter to be encrypted differently. When a string is initially encrypted,
the key should be randomly generated.

See also: Data Encryption Standard (DES) algorithm, Federal Information
Processing Standard Publication #46, January 15, 1977

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_LIMIT 0004H The calling task's job object limit is too small.

E_MEM 0002H The memory of the calling task's job is
exhausted.

E_NOT_CONFIGURED 0008H This call is not part of the present configuration.

rq_a_get_connection_status

124 BIOS Calls Chapter 3 BIOS System Calls

a_get_connection_status
Returns information about the connection status of any type of file.

Syntax, PL/M and C

CALL rqaget$connection$status (connection, resp_mbox,
except_ptr);

rq_a_get_connection_status (connection, resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for the file connection whose status is to be returned.

resp_mbox
A token for the mailbox that is to receive a token for this segment. The calling task
is responsible for deleting the segment after examining it.

DECLARE conn_status STRUCTURE(
status WORD_16,
file_driver BYTE,
flags BYTE,
open_mode BYTE,
share_mode BYTE,
file_ptr WORD_32,
access BYTE);

or

typedef struct {
UINT_16 status;
UINT_8 file_driver;
UINT_8 flags;
UINT_8 open_mode;
UINT_8 share_mode;
UINT_32 file_ptr;
UINT_8 access;

} CONN_STATUS_STRUCT

rq_a_get_connection_status

System Call Reference Chapter 3 BIOS Calls 125

Where:

status A condition code giving the outcome of the operation. If this code is
not E_OK, consider the remaining fields invalid.

file_driver
Specifies the type of file driver to which this connection is attached.

Value Type
1 Physical
2 Stream
3 DOS
4 Named
5 Remote File Driver (iRMX-NET)
6 EDOS
7-max Loadable file drivers, including NFS. The ID for these

drivers can vary; it is assigned in the order the driver is
loaded.

flags Contains two flag bits that when set, indicate:

Bits Meaning
7-3 Reserved, set to 0.
2 This is a device connection.
1 The connection is active and can be opened.
0 Reserved, set to 0.

open_mode The mode established when this connection was opened:

Value Meaning
0 Connection is closed
1 Open for reading
2 Open for writing
3 Open for reading and writing

share_mode
The share mode established when this connection was opened:

Value Meaning
0 Private use only
1 Share with readers only
2 Share with writers only
3 Share with all users

file_ptr The current byte location of the file pointer for this connection.

rq_a_get_connection_status

126 BIOS Calls Chapter 3 BIOS System Calls

access The access rights for this connection. For each bit, 1 grants access
and 0 denies it.

Bits Data File Directory File
7-4 Reserved Reserved
3 Update Change Entry
2 Append Add Entry
1 Read List
0 Delete Delete

For remote iRMX-NET files, the access bits are interpreted as:

Bits Data File Directory File
7-4 Reserved Reserved
3 Write Ignored; set the same as bit 2
2 Write Write; set the same as bit 3
1 Read List
0 Ignored Ignored

For NFS files, access bits can be mapped differently for different OSs.

See also: Accessing NFS files, Chapter 17, System Concepts

The DOS World user always has read (list) access to DOS files and
directories; write access is optional.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

When the status of a file connection to a virtual root directory is requested, list
permission is granted and write permission is denied. As a result, bit 1 of the
access field is set to 1 and bit 2 is set to 0.

The BIOS does not check the access rights of an iRMX-NET remote file when you
create a connection to the file, but checks during operations on the connection.
This won't affect your programs if you follow these guidelines:

• Open, delete, and rename files prior to changing their access lists.

• Establish connections to files after changing their access lists.

rq_a_get_connection_status

System Call Reference Chapter 3 BIOS Calls 127

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H At least one of these is true:
• One or more of the connection or

resp_mbox parameters is not a token for an
existing object.

• The connection is being deleted.
• The connection for a remote driver is no

longer active.

E_LIMIT 0004H At least one of these is true:
• The calling task's job has already reached its

object limit.
• The number of outstanding I/O operations

for a remote connection has been exceeded.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H The specified connection parameter is not valid
in this system call because the connection was
not created by this job.

E_TYPE 8002H Either the connection parameter is not a token
for a connection object, or the resp_mbox
parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_IO 002BH An I/O error occurred, which might have
prevented the operation from being completed.
Examine the unit_status field of the IORS for
more information.
See also: IORS, Chapter 1,

Accessing the IORS, Programming
Techniques

E_NOT_FILE_CONN 0032H For remote files, the connection parameter must
be a file connection, not a device connection.

rq_get_default_prefix

128 BIOS Calls Chapter 3 BIOS System Calls

get_default_prefix
Returns the default prefix of a specified job.

Syntax, PL/M and C

connection = rqgetdefault$prefix (job, except_ptr);

connection = rq_get_default_prefix (job, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
job SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
connection

A token for the connection object that is the default prefix for the designated job.

Parameters

job A token for the job whose default prefix is sought. A null selector specifies the
calling task's job.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_get_default_prefix

System Call Reference Chapter 3 BIOS Calls 129

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOPREFIX 8022H A default prefix was requested, but cannot be
found for one of these reasons:
• When this job was created, a 0 was specified

for its object directory, so the job cannot
catalog a default prefix.

• The job's directory can have entries but a
default prefix is not cataloged there.

• The job parameter is not a token for an
existing object.

• The prefix that is cataloged is of the wrong
type. The default prefix must be a
connection object or logical device object
created by the EIOS.

• The job parameter is not a job token.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_get_default_user

130 BIOS Calls Chapter 3 BIOS System Calls

get_default_user
Returns the default user object of a specified job.

Syntax, PL/M and C

user_ID = rqgetdefault$user (job, except_ptr);

user_ID = rq_get_default_user (job, except_ptr);

Parameter PL/M Data Type C Data Type
user_ID SELECTOR SELECTOR
job SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
user_ID

A token for the user object that is the default user for the designated job.

Parameters

job A token for the job whose default user object is sought. A null selector specifies
the calling task's job.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_get_default_user

System Call Reference Chapter 3 BIOS Calls 131

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOUSER 8021H A default user cannot be found for one of these
reasons:
• When this job was created, a 0 was specified

for its object directory, so the job cannot
catalog a default user.

• The job's directory can have entries but a
default user is not cataloged there.

• The object which is cataloged with the name
r?iouser is not a user object. Treat r?iouser
as a reserved word.

• The job parameter is not a job token.
• The job parameter is not a token for an

existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_a_get_directory_entry

132 BIOS Calls Chapter 3 BIOS System Calls

a_get_directory_entry
Returns the filename associated with an entry number in a named or DOS
directory.

Syntax, PL/M and C

CALL rqaget$directory$entry (connection, entry_num,
resp_mbox, except_ptr);

rq_a_get_directory_entry (connection, entry_num, resp_mbox,
except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
entry_num WORD_16 UINT_16
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for a named or DOS directory only.

entry_num
The entry number of the desired filename. Entries within a directory are numbered
sequentially starting from 0. The E_EMPTY_ENTRY condition code returns if
there is no entry associated with this number.

resp_mbox
The mailbox that receives a token for this segment. The calling task is responsible
for deleting this segment after examining it.

DECLARE dir_entry_info STRUCTURE(
status WORD_16,
name (14) BYTE);

or

typedef struct {
UINT_16 status;
UINT_8 name[14]

 } DIR_ENTRY_INFO_STRUCT;

rq_a_get_directory_entry

System Call Reference Chapter 3 BIOS Calls 133

Where:

status Indicates how the operation was completed. E_OK,
E_EMPTY_ENTRY, and E_DIR_END condition codes all indicate
successful completion.

name The filename contained in the specified entry. The filename is left-
justified and padded with blanks to the right. This field is valid only
if status is E_OK.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

The caller must have list access to the designated directory. DOS World users
always have read (list) access.

See also: a_change_access, s_change_access

As an alternative to using this system call, an application task can open and read a
directory file.

The a_get_directory_entry system call is not supported for iRMX-NET remote
directories. Use a_open and a_read, or s_open and s_read_move, to read remote
directories.

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H At least one of these is true:
• One or more of the connection or

resp_mbox parameters is not a token for an
existing object.

• The connection is being deleted.

E_IFDR 002FH At least one of these is true:
• This system call applies only to named

directories, but the connection parameter
specifies another type of file.

• The connection parameter specifies a remote
directory, but the remote file driver does not
support this system call.

rq_a_get_directory_entry

134 BIOS Calls Chapter 3 BIOS System Calls

E_LIMIT 0004H The calling task's job has already reached its
object limit.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete this call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H The specified connection was not created by this
job.

E_TYPE 8002H Either the connection parameter is not a token
for a connection object, or the resp_mbox
parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_DIR_END 0025H The entry_num parameter is greater than the
number of entries in the directory.

E_EMPTY_ENTRY 0024H The file entry designated in the call is empty.

E_FACCESS 0026H The specified connection does not have list
access to the directory.

E_FTYPE 0027H The specified connection does not refer to a
directory.

E_IO 002BH An I/O error occurred which might have
prevented the operation from completing.

rq_a_get_extension_data

System Call Reference Chapter 3 BIOS Calls 135

a_get_extension_data
Returns extension data stored with a BIOS named data or directory file. This call
is not valid for DOS files or for files accessed through NFS.

Syntax, PL/M and C

CALL rqaget$extension$data (connection, resp_mbox,
except_ptr);

rq_a_get_extension_data (connection, resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for a file connection whose extension data is to returned.

resp_mbox
The mailbox that receives a token for this segment. The calling task is responsible
for deleting this segment after examining it.

DECLARE file_status STRUCTURE (
status WORD_16,
count BYTE,
info(*) BYTE);

or

typedef struct {
UINT_16 status;
UINT_8 count;
UINT_8 info[_NUM_FILE_INFO];

 /* adjust to fit count */
 } FILE_STATUS_STRUCT;

rq_a_get_extension_data

136 BIOS Calls Chapter 3 BIOS System Calls

Where:

status A condition code indicating the outcome of the operation. If this code
is not E_OK, consider the remaining fields invalid.

count The number from 0 to 255 of bytes returned; set to 0 for remote files.

info The extension data.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

A_get_extension_data can only be applied to connections created using the named
file driver.

A file descriptor is associated with each file created through the BIOS. Some of
the information in the descriptor is used by the BIOS and can be accessed through
a_get_file_status. Up to 255 additional bytes of the file descriptor, known as
extension data, are available for use by OS extensions.

The first three bytes of extension data are reserved for use by the BIOS. OS
extensions can write extension data by using a_set_extension_data and they can
read extension data by using a_get_extension_data.

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H At least one of these is true:
• One or more of the connection or

resp_mbox parameters is not a token for an
existing object.

• The connection is being deleted.
• The connection for a remote driver is no

longer active.

E_IFDR 002FH This system call applies only to named files, but
the connection parameter specifies another type
of file.

rq_a_get_extension_data

System Call Reference Chapter 3 BIOS Calls 137

E_LIMIT 0004H At least one of these is true:
• The calling task's job has already reached its

object limit.
• The number of outstanding I/O operations

for a remote connection has been exceeded.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H The specified connection was not created by this
job.

E_TYPE 8002H Either the connection parameter is not a token
for a connection object, or the resp_mbox
parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_IO 002BH An I/O error occurred which might have
prevented the operation from completing.

rq_get_file_driver_status

138 BIOS Calls Chapter 3 BIOS System Calls

get_file_driver_status
Returns information on a specified file driver. Use this call to build a table of all
available file drivers (resident and loadable) currently available in the system.

Syntax, PL/M and C

CALL rqgetfile$driver$status (file_driver, ret_data_ptr,
except_ptr);

rq_get_file_driver_status (file_driver, ret_data_ptr,
except_ptr);

Parameter PL/M Data Type C Data Type
file_driver BYTE UINT_8
ret_data_ptr POINTER FD_STATUS_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
file_driver

Specifies the file driver ID. These are some of the typical file driver IDs:

ID Description
0 Reserved; not a valid file driver ID
1 Physical file driver, always present
2 Stream file driver, always present
3 Native DOS file driver, ICU-configurable or loadable
4 Named file driver, ICU-configurable or loadable
5 Remote file driver, ICU-configurable or loadable
6 EDOS file driver, ICU-configurable or loadable
7-max Loadable file drivers, including NFS. The ID for these drivers can vary;

it is assigned in the order the driver is loaded. The maximum number is
ICU-configurable.

rq_get_file_driver_status

System Call Reference Chapter 3 BIOS Calls 139

ret_data_ptr
A pointer to this structure:

DECLARE fd_status_struct STRUCTURE(
max_file_drivers BYTE,
num_file_drivers BYTE
flags BYTE,
buffer_size WORD_16,
filesystem BYTE,
io_task_priority BYTE,
name_length BYTE,
name(14) BYTE,
reserved(19) BYTE);

or

typedef struct {
UINT_8 max_file_drivers;
UINT_8 num_file_drivers;
UINT_16 flags;
UINT_16 buffer_size;
UINT_8 file_system;
UINT_8 io_task_priority;
UINT_8 name_length;
UINT_8 name[14];
UINT_8 reserved[19];

} FD_STATUS_STRUCT;

Where:

max_file_drivers
Largest possible file driver ID value. The number of loadable file
drivers is ICU-configurable (default = 16).

num_file_drivers
Number of file drivers currently available in the system, including
loadable and resident drivers.

rq_get_file_driver_status

140 BIOS Calls Chapter 3 BIOS System Calls

flags Encoded as:

Bit(s) Meaning
15 File driver present at this ID; all other fields in the structure

are invalid unless this bit is set.
14 1 = loaded file driver

0 = resident file driver
3-13 Reserved, set to 0
2 Convert filenames to lower case
1 DUIBs required
0 User object required

buffer_size
Default size for EIOS buffers.

file_system
File system supported by this file driver (only meaningful if bit 1 of
the flags field is set). Indicates:

Bit(s) File System Type
6-7 Reserved, set to 0
5 EDOS
4 Remote (including Remote File Driver and NFS)
3 iRMX Named (or other hierarchical)
2 DOS
1 Stream
0 Physical

io_task_priority
Default priority for I/O tasks associated with this file driver. Should
normally be 0 (uses task priority field in the DUIB as default).

name_length
Actual length of the name field (excluding blanks).

name Unique file driver identifier of up to 14 bytes (padded with blanks).

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

To build a table of all available file drivers, first make this call with a
file_driver number of 1 to obtain the value of max_file_drivers from
FD_STATUS_STRUCT. Then, loop max_file_drivers times to obtain
information on each file driver. A file driver is present at a given file driver ID if
bit 15 of the flags field is set.

rq_get_file_driver_status

System Call Reference Chapter 3 BIOS Calls 141

Condition Codes

E_PARAM 8004H One of these is true:
• The file driver ID is 0 or larger than the

maximum allowable value.
• The structure referenced by ret_data_ptr is

not writable or large enough to hold the
return data.

rq_a_get_file_status

142 BIOS Calls Chapter 3 BIOS System Calls

a_get_file_status
Returns device-dependent status and attribute information about a specified file of
any type. Additional information returns for named files.

Syntax, PL/M and C

CALL rqaget$file$status (connection, resp_mbox, except_ptr);

rq_a_get_file_status (connection, resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for a connection to the file whose status is sought.

resp_mbox
The mailbox that receives a token for this segment. The information returned
depends on the file type specified. For all types of files, the first part of this
structure through the dev_conn field returns. If the contents of the named_file
field indicate a named, remote, or DOS file, the second part (from file_ID on)
returns also.

rq_a_get_file_status

System Call Reference Chapter 3 BIOS Calls 143

DECLARE file_info STRUCTURE(
status WORD_16,
num_conn WORD_16,
num_reader WORD_16,
num_writer WORD_16,
share BYTE,
named_file BYTE,
dev_name(14) BYTE,
file_drivers WORD_16,
functs BYTE,
flags BYTE,
dev_gran WORD_16,
dev_size WORD_32,
dev_conn WORD_16,
file_ID WORD_16,
file_type BYTE,
file_gran BYTE,
owner_ID WORD_16,
create_time WORD_32,
access_time WORD_32,
modify_time WORD_32,
file_size WORD_32,
file_blocks WORD_32,
vol_name(6) BYTE,
vol_gran WORD_16,
vol_size WORD_32,
accessor_count WORD_16,
first_access BYTE,
first_ID WORD_16,
second_access BYTE,
second_ID WORD_16,
third_access BYTE,
third_ID WORD_16,
vol_flags BYTE);

rq_a_get_file_status

144 BIOS Calls Chapter 3 BIOS System Calls

or

typedef struct {
UINT_16 status;
UINT_16 num_conn;
UINT_16 num_reader;
UINT_16 num_writer;
UINT_8 share;
UINT_8 named_file;
UINT_8 dev_name[14];
UINT_16 file_drivers;
UINT_8 functs;
UINT_8 flags;
UINT_16 dev_gran;
UINT_32 dev_size;
UINT_16 dev_conn;
UINT_16 file_ID;
UINT_8 file_type;
UINT_8 file_gran;
UINT_16 owner_ID;
UINT_32 create_time;
UINT_32 access_time;
UINT_32 modify_time;
UINT_32 file_size;
UINT_32 file_blocks;
UINT_8 vol_name[6];
UINT_16 vol_gran;
UINT_32 vol_size;
UINT_16 accessor_count;
UINT_8 first_access;
UINT_16 first_ID;
UINT_8 second_access;
UINT_16 second_ID;
UINT_8 third_access;
UINT_16 third_ID;
UINT_8 vol_flags;

} FILE_INFO_STRUCT;

rq_a_get_file_status

System Call Reference Chapter 3 BIOS Calls 145

Where:

status Indicates how the get_file_status operation was completed. If this
condition code is not E_OK, consider the remaining fields invalid.

num_conn The number of connections to the file. For remote and NFS files, this
field indicates the number of connections between the calling job and
the file.

num_reader
The number of connections currently open for reading. For remote
and NFS files a 0 indicates either no connection or a connection open
for writing only, and a 1 indicates an open readable or read/writable
connection.

num_writer
The number of connections currently open for writing. For remote
and NFS files a 0 indicates either no connection or a connection open
for reading only, and a 1 indicates an open writable or read/writable
connection.

share Indicates the current share mode of the file.

Value Meaning
0 Private use only
1 Share with readers only
2 Share with writers only
3 Share with all users

If a remote or NFS file is open, the share mode used to open the
connection is returned, but if the file connection is not open, share
mode 3 is indicated.

named_file
Tells whether this structure contains any information beyond the
dev_conn field.

Value Meaning
0 No
0FFH Yes, fields beyond dev_conn are valid

dev_name The name of the physical device where this file resides. This name is
left-justified and padded with blanks to the right.

For remote files, this is the name of the remote server on which the
file resides. For NFS files, this is the host name and path used when
the device was attached.

rq_a_get_file_status

146 BIOS Calls Chapter 3 BIOS System Calls

file_drivers
Indicates what kinds of files can reside on this device.

File Type Bit File Type
7-6 Reserved
5 EDOS file
4 Remote (iRMX-NET) or NFS file
3 Named file
2 DOS
1 Stream file
0 Physical file

functs Describes the functions supported by the device where this file
resides. A bit set to 1 indicates the corresponding function is
supported.

Bit Function
7 FCLOSE
6 FOPEN
5 FDETACHDEV
4 FATTACHDEV
3 FSPECIAL
2 FSEEK
1 FWRITE
0 FREAD

This field is not supported by the iRMX-NET remote file driver; 0
returns for remote files.

flags Meaningful only for diskette drives. This field is not supported by
iRMX-NET or the NFS file driver; 0 returns for such remote files.
Bits Value Function
7-5 Reserved; set to 0

4 0 Standard diskette, for MBI only; track 0 is
single-density, 128-byte sectors

1 Uniform diskette or not a diskette

3 0 High (quad) density
1 Low (double) density

For 8" diskettes, set to 0

2 0 Single sided
1 Double sided

rq_a_get_file_status

System Call Reference Chapter 3 BIOS Calls 147

Bits Value Function
1 0 Single density

1 Not single density
Disk Size Bit 1 Bit 3
3.5D 1 1
3.5Q 1 0
5.25D 1 1
5.25Q 1 0
8S 0 0
8D 1 0

0 0 This field is undefined
1 Bits 7-1 are valid

See also: Supporting the standard diskette format, Driver
Programming Concepts

dev_gran The device granularity, in bytes, of the device where this file resides.
For remote files, this field indicates the buffer size of the server
associated with the remote file.

dev_size The storage capacity of the device, in bytes. For remote files, this
field indicates the total storage capacity of all server devices
containing public files. The total capacity includes the portions of
those devices that contain private files.

dev_conn The number of connections to the device. For remote and NFS files,
this field contains the number of connections that local users have to
files on the remote server.

file_ID A number that distinguishes this file from all other files on the same
device. The Disk Verification Utility refers to this number as an
fnode.

See also: diskverify , Command Reference

file_type Indicates the type of the file:

Value Meaning
6 Directory file
8 Data file

file_gran The file granularity, as a multiple of vol_gran . For example, if
file_gran is 2 and vol_gran is 256, the file's granularity is 512.
For remote, NFS, and DOS files, 1 is returned.

owner_ID The first ID in the user object that was specified when the file was
created.

rq_a_get_file_status

148 BIOS Calls Chapter 3 BIOS System Calls

create_time, access_time, modify_time
The date and time when the file was created, last accessed, or last
modified. The date/time value is the number of seconds since
midnight, January 1, 1978. For ICU-configurable systems, an ICU
option determines whether the OS maintains these fields.

See also: Timing facilities required, ICU User's Guide and Quick
Reference

file_size The total size of the file, in bytes.

file_blocks
The number of volume blocks allocated to this file. A volume block
is a contiguous area of storage that contains vol_gran bytes of data.

vol_name The left-adjusted, null-padded ASCII name for the volume containing
this file.

vol_gran The volume granularity, in bytes.

vol_size The storage capacity, in bytes, of the volume on which this file is
stored.

accessor_count
The number of IDs in the file's accessor list. This is always one for
DOS files. For iRMX files, this list may have been added to after the
file was created; you get the current value.

first_access, second_access, third_access
Access masks for as many IDs as are indicated by accessor_count .
The only DOS accessor is World. DOS access options are limited to
either read-only or full access. The bits of the access masks are
defined in this table. For each bit, 1 grants access. Access rights for
NFS files may be mapped differently for different OSs.

Bits Data File Directory File
7-4 Reserved Reserved
3 Update Change Entry
2 Append Add Entry
1 Read List
0 Delete Delete

first_ID, second_ID, third_ID
ID values for the accessors. User IDs for NFS files may be mapped
differently for different OSs.

See also: Accessing NFS files, Chapter 17, System Concepts

rq_a_get_file_status

System Call Reference Chapter 3 BIOS Calls 149

vol_flags The vf_integrity flag:

Bits Value Meaning
7-1 Reserved.
0 0 Volume properly shut down.

1 Possible disk corruption (volume was attached
but was not subsequently shut down).

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H At least one of these is true:
• The resp _mbox parameter is not a mailbox

token.
• The connection is being deleted.
• The connection for a remote driver is no

longer active.

E_LIMIT 0004H At least one of these is true:
• The calling task's job has already reached its

object limit.
• The number of outstanding I/O operations

for a remote connection has been exceeded.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H The specified connection was not created by this
job.

E_TYPE 8002H One or more of the connection or resp_mbox
parameters is a token for an object of the wrong
type.

rq_a_get_file_status

150 BIOS Calls Chapter 3 BIOS System Calls

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_IO 002BH An I/O error occurred which might have
prevented the operation from completing.

E_NOT_FILE_CONN 0032H For remote files, the connection parameter must
be a file connection, not a device connection.

E_UDF_IO 02D0H An error occurred while accessing the remote
server's UDF.

rq_get_global_time

System Call Reference Chapter 3 BIOS Calls 151

get_global_time
Reads the time of day from the battery-backed-up hardware clock.

Syntax, PL/M and C

CALL rqgetglobal$time (date_time_ptr, except_ptr);

rq_get_global_time (date_time_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
date_time_ptr POINTER SET_TIME_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
date_time_ptr

A pointer to this structure:

DECLARE set_time STRUCTURE (
seconds BYTE,
minutes BYTE,
hours BYTE,
days BYTE,
months BYTE,
years WORD_16);

or

typedef struct {
UINT_8 seconds;
UINT_8 minutes;
UINT_8 hours;
UINT_8 days;
UINT_8 months;
UINT_16 years;

} SET_TIME_STRUCT;

rq_get_global_time

152 BIOS Calls Chapter 3 BIOS System Calls

Where:

seconds The current value of the seconds count.

minutes The current value of the minutes count.

hours The current value of the hours count.

days The current value of the days count.

months The current value of the month count.

years The current value of the year count.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The BIOS accesses the appropriate registers on the hardware clock to read the
global date and time values.

This system call supports the Time-of-Day Clock on the Multibus I SBC 546 and
549 Terminal Communications Controller boards, the Multibus II CSM, the
Multibus I SBC 86C38 board, and PC Bus Systems.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H This call was made from an environment that did
not contain a hardware clock.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SHARE 0028H The hardware clock was busy because another
task was accessing it.

E_SUPPORT 0023H The clock type is not supported.

rq_a_get_path_component

System Call Reference Chapter 3 BIOS Calls 153

a_get_path_component
Returns the name of a data or directory file, as cataloged in its parent directory.

Syntax, PL/M and C

CALL rqaget$path$component (connection, resp_mbox,
except_ptr);

rq_a_get_path_component (connection, resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for the file connection whose name is sought.

resp_mbox
The mailbox that receives a token for this segment. The calling task is responsible
for deleting this segment after examining it.

DECLARE filename STRUCTURE(
status WORD_16,
name STRING);

or

typedef struct {
UINT_16 status;
STRING name[14];

} FILENAME_STRUCT;

Where:

status A condition code indicating the outcome of the operation.

name A STRING giving the desired filename. This name is the same as the
last item in the subpath string specified when the file was created or
renamed.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

rq_a_get_path_component

154 BIOS Calls Chapter 3 BIOS System Calls

Additional Information

A caller who knows the token for a connection to a file can invoke this system call
and receive the name of the file in return. A null string returns if:

• The connection is to the root directory of a volume

• The file is marked for deletion or is a temporary file

• A connection to a physical or stream file is specified

A_get_path_component can be used in combination with a_attach_file to derive
all of the components of a pathname. Suppose, for example, that a file has the path
name A/B/C, and that your task has only a token for the file. This sequence of calls
will reveal all of the components for the path:

1. Call a_get_path_component to obtain the file name C.

2. Call a_attach_file with the prefix parameter equal to the token for file C and
the subpath equal to a circumflex (^). This call will return a token for a
connection to directory file B.

3. After calling get_type to verify that the token is indeed for a connection, call
a_get_path_component to obtain the file name B.

4. Call a_attach_file with the prefix parameter equal to the token for file B and
the subpath equal to a circumflex (^). This call will return a token for a
connection to directory file A.

5. After calling get_type to verify that the token is indeed for a connection, call
a_get_path_component to obtain the file name A.

6. Call a_attach_file with the prefix parameter equal to the token for file A and
the subpath equal to a circumflex (^). This call will return a token for a
connection to the root of the file tree.

7. After calling get_type to verify that the token is indeed for a connection, call
a_get_path_component again. This time, the null string will be returned, and
this tells you that you now have all of the components of the desired path
name.

See also: a_attach_file

rq_a_get_path_component

System Call Reference Chapter 3 BIOS Calls 155

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H At least one of these is true:
• One or more of the connection or

resp_mbox parameters is not a token for an
existing object.

• The connection is being deleted.

E_LIMIT 0004H The calling task's job has already reached its
object limit.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete this call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_FILE_CONN 0032H For remote files, the connection parameter must
be a file connection, not a device connection.

E_SUPPORT 0023H The specified connection was not created by this
job.

E_TYPE 8002H Either the connection parameter is not a token
for a connection object, or the resp_mbox
parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_FNEXIST 0021H The file is marked for deletion, so the name
string is undefined.

E_INVALID_FNODE 003DH The fnode for the specified file is invalid. The
file cannot be accessed; delete it or fix it with
diskverify .

See also: diskverify , Command Reference

E_IO 002BH An I/O error occurred which might have
prevented the operation from completing.

E_IO_MEM 0042H The memory available to the BIOS job is not
sufficient to complete the call.

rq_inspect_user

156 BIOS Calls Chapter 3 BIOS System Calls

inspect_user
Accepts a token for a user object and returns a list of the IDs contained in the user
object.

Syntax, PL/M and C

CALL rq$inspect$user (user, IDs_ptr, except_ptr);

rq_inspect_user (user, IDs_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
user SELECTOR SELECTOR
IDs_ptr POINTER IDS_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

user A token for the user object being inspected.

IDs_ptr
A pointer to this structure:

DECLARE IDs STRUCTURE(
length WORD_16,
count WORD_16,
IDs(*) WORD_16);

or

typedef struct {
UINT_16 length;
UINT_16 count;
UINT_16 ids[2]; /* adjust to fit count */

 } IDS_STRUCT;

Where:

length The upper limit on the number of IDs to return. The calling task must
supply this value; 0 values are not permitted.

count Actual number of IDs that the BIOS returns.

IDs The IDs the BIOS returns.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_inspect_user

System Call Reference Chapter 3 BIOS Calls 157

Additional Information

If the length value is smaller than the actual number of IDs in the user object,
only the specified number of IDs returns.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The user parameter is not a token for an existing
object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The length field contains a 0 value.

E_TYPE 8002H The user parameter is a token for an object of the
wrong type.

rq_install_duibs

158 BIOS Calls Chapter 3 BIOS System Calls

rq_install_duibs
Installs a cluster of Device Unit Information Blocks (DUIBs) for loadable device
drivers into the BIOS. These DUIBs, and the physical devices they represent, can
then be attached with the a_physical_attach_device system call. Use this system
call for device drivers you write.

Syntax, PL/M and C

CALL rq$install$duibs (num_duibs, duibs_ptr, aux_ptr,
except_ptr);

rq_install_duibs (num_duibs, duibs_ptr, aux_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
num_duibs WORD_16 UINT_16
duibs_ptr POINTER DUIB_TABLE_STRUCT far *
aux_ptr POINTER void far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
num_duibs

The number of DUIBs pointed to by duibs_ptr .

duibs_ptr
A pointer to a cluster of DUIBs to be installed into the BIOS.

DECLARE DUIB_TABLE_STRUCT STRUCTURE(
duibs (_NUM_DUIBS) DUIB_STRUCT);

or

typedef struct {
DUIB_STRUCT duibs [_NUM_DUIBS];

} DUIB_TABLE_STRUCT

rq_install_duibs

System Call Reference Chapter 3 BIOS Calls 159

DECLARE DUIB_STRUCT STRUCTURE(
name (14) BYTE,
file_drivers WORD_16,
functs BYTE,
flags BYTE,
dev_gran WORD_16,
dev_size WORD_32,
device BYTE,
unit BYTE,
dev_unit WORD_16,
init_io WORD_32,
finish_io WORD_32,
queue_io WORD_32,
cancel_io WORD_32,
device_info_ptr POINTER,
unit_info_ptr POINTER,
update_timeout WORD_16,
num_buffers WORD_16,
priority BYTE,
fixed_update BYTE,
max_buffers BYTE,
reserved BYTE);

or

rq_install_duibs

160 BIOS Calls Chapter 3 BIOS System Calls

typedef struct {
UINT_8 name [14];
UINT_16 file_drivers;
UINT_8 functs;
UINT_8 flags;
UINT_16 dev_gran;
UINT_32 dev_size;
UINT_8 device;
UINT_8 unit;
UINT_16 dev_unit;
UINT_32 init_io;
UINT_32 finish_io;
UINT_32 queue_io;
UINT_32 cancel_io;
void far * device_info_p;
void far * unit_info_p;
UINT_16 update_timeout;
UINT_16 num_buffers;
UINT_8 priority;
UINT_8 fixed_update;
UINT_8 max_buffers;
UINT_8 reserved;

} DUIB_STRUCT;

Where:

name The DUIB name. This name uniquely identifies the device-unit to the
I/O System. Use only the first 13 bytes. The fourteenth is used by the
I/O System. Names with less than 14 characters are extended with
spaces.

The name is assigned as part of the driver configuration process. You
specify the DUIB name when attaching a unit using the
a_physical_attach_device system call. Device drivers do not read or
write this field.

file_drivers
Specifies which file driver(s) can attach this device-unit:

Bit Driver No. Driver
5 6 EDOS
4 5 Remote
3 4 Named
2 3 DOS
1 2 Stream
0 1 Physical

rq_install_duibs

System Call Reference Chapter 3 BIOS Calls 161

functs Specifies the valid I/O function(s) for this device-unit:

Bit Function
7 close
6 open
5 detach device (always set)
4 attach device (always set)
3 special
2 seek
1 write
0 read

To provide accurate status information, this field should indicate the
device's ability to perform the I/O functions. Each device driver must
be able to either perform the function or return a condition code
indicating the inability to perform that function. Device drivers do
not read or write this field.

flags This field does not apply to PC-AT ROM BIOS-based diskette driver.
Specifies characteristics of diskette devices:

Bits Value Meaning
7-5 0 Reserved; set to 0.

4 0 Standard diskette, for MB I only
1 Uniform diskette or not a diskette

3 0 Quad density
1 Double density

For 8 inch diskettes, set to 0

2 0 Single-sided
1 Double-sided

1 0 Single density
1 Not single density

Disk
Size Bit 1 Bit 3
3.5D 1 1t
3.5Q 1 0
5.25D 1 1
5.25Q 1 0
8S 0 0
8D 1 0

0 0 This field is undefined
1 Bits 7-1 are valid

rq_install_duibs

162 BIOS Calls Chapter 3 BIOS System Calls

dev_gran Specifies the device granularity in bytes. This field applies to random
access devices, and to some common devices such as tape drives. It
specifies the minimum number of bytes of information the device
reads or writes in one operation. If the device is a disk or tape drive,
set to the sector size for the device. Otherwise, set to 0.

dev_size Specifies the number of bytes of information the device-unit can store.

device Specifies the device number of the device with which this device-unit
is associated. Device drivers do not access this field.

unit The unit number of this device-unit. This distinguishes the unit from
the other units of the device.

dev_unit The device-unit number. This number distinguishes the device-unit
from the other units in the entire hardware system. Device drivers can
ignore this field.

init_io Specifies the offset address of the init_io procedure associated with
this unit (the base portion is the driver code segment). Custom device
drivers must supply this procedure and the finish_io, queue_io, and
cancel_io procedures. For common, random access, and terminal
drivers, the procedures are supplied with the I/O System. For
loadable device drivers, this field specifies the driver type. Device
drivers do not access this field.

finish_io Specifies the offset address of the finish_io procedure associated with
this unit (the base portion is the driver code segment). Device drivers
do not access this field. For loadable drivers, this field specifies the
driver type.

queue_io Specifies the offset address of the queue_io procedure associated with
this unit (the base portion is the driver code segment). Device drivers
do not access this field. For loadable drivers, this field specifies the
driver type.

cancel_io Specifies the offset address of the cancel_io procedure associated with
this unit (the base portion is the driver code segment). Device drivers
do not access this field. For loadable drivers, this field specifies the
driver type.

rq_install_duibs

System Call Reference Chapter 3 BIOS Calls 163

device_info_ptr
Pointer to a structure containing additional information about the
device: the DINFO table. Each common, random access, and
terminal device driver requires a DINFO table in a particular format.

When writing a custom driver, you can place information in the
DINFO table according to the needs of the driver. Specify a 0 for this
parameter if the associated device driver does not use this field.

For flat model applications only, treat this parameter as two separate
fields in the structure. The first field has the name listed above and is
a near pointer. The second field has the same name with _seg
appended at the end. It is a segment selector for the pointer.

unit_info_ptr
Pointer to a structure containing more information about the unit: the
UINFO table. Random access and terminal device drivers require a
UINFO table in a particular format.

When writing a custom device driver, place information in this
structure according to the needs of the driver. Specify a 0 if the
associated device driver does not use this field.

For flat model applications only, treat this parameter as two separate
fields in the structure. The first field has the name listed above and is
a near pointer. The second field has the same name with _seg
appended at the end. It is a segment selector for the pointer.

update_timeout
Specifies the number of system clock ticks the I/O System must wait
before writing a partial sector after processing a write request for a
disk device. Except for disk device drivers, set to 0FFFFH. This field
applies only to the device-unit specified by this DUIB; the field is
independent of updating done either because of the value in the
fixed_update field of the DUIB or the a_update system call.
Device drivers do not access this field.

num_buffers
A 0 indicates the device is not a random access device. Otherwise,
the number of buffers of dev_gran size that the I/O System allocates.
The I/O System uses the buffers for data blocking and deblocking, so
that data is read or written beginning on sector boundaries. The
random access high-level device driver procedures guarantee that no
data is written or read across track boundaries in a single request.
Device drivers do not access this field.

priority Specifies the priority of the I/O System service task for the device.
Device drivers do not access this field.

rq_install_duibs

164 BIOS Calls Chapter 3 BIOS System Calls

fixed_update
TRUE indicates that the fixed update option was selected for the
device-unit when the driver was configured, FALSE indicates
otherwise. This option causes the I/O System to finish any write
requests that had not been finished earlier because less than a full
sector remained to be written. Fixed updates are performed
throughout the entire system whenever a time interval (specified
during configuration) elapses. This is independent of the updating
indicated for a particular device by the update_timeout field of the
DUIB or the updating of a particular device indicated by the
a_update system call of the I/O System. Device drivers do not access
this field.

max_buffers
Specifies the maximum number of buffers the EIOS can allocate for a
connection to this device-unit when the connection is opened by a call
to s_open. The value in this field is specified during driver
configuration. Device drivers do not access this field.

See also: DUIBs, Driver Programming Concepts

aux_ptr
Reserved. Set to null.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The maximum number of clusters that can exist in the system is a configuration
option.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_LIMIT 0004H The maximum number of clusters in the system
has been reached.

rq_install_file_driver

System Call Reference Chapter 3 BIOS Calls 165

install_file_driver
Installs a loadable file driver into the BIOS.

Syntax, PL/M and C

file_driver = rq$install$file$driver (data_ptr, config_ptr,
ret_info_ptr, except_ptr);

file_driver = rq_install_file_driver (data_ptr, config_ptr,
ret_info_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
file_driver BYTE UINT_8
data_ptr POINTER LOADABLE_FD_DATA_STRUCT far *
config_ptr POINTER LOADABLE_FD_CONFIG_STRUCT far *
ret_info_ptr POINTER LOADABLE_FD_INFO_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
file_driver

The file driver ID for the loaded driver. These are the possible values:

ID Description
0 Reserved; not a valid file driver ID
1 Physical file driver (non-loadable)
2 Stream file driver (non-loadable)
3 Native DOS file driver
4 Named file driver
5 Remote file driver
6 EDOS file driver
7-max Available for loadable file drivers; the maximum value is ICU-

configurable

rq_install_file_driver

166 BIOS Calls Chapter 3 BIOS System Calls

Parameters
data_ptr

If not null, a pointer to this structure. A null pointer uninstalls the file driver (see
Additional Information).

DECLARE loadable_fd_data_struct STRUCTURE(
conn_entries WORD_16,
att_dev_stack_size WORD_16,
dev_desc_size WORD_16,
xface_mbox SELECTOR,
flags WORD_16,
buffer_size WORD_16,
filesystem BYTE,
io_task_prio BYTE,
name_length BYTE,
name(14) BYTE,
reserved(19) BYTE);

or

typedef struct {
UINT_16 conn_entries;
UINT_16 att_dev_stack_size;
UINT_16 dev_desc_size;
SELECTOR xface_mbox;
UINT_16 flags;
UINT_16 buffer_size;
UINT_8 file_system;
UINT_8 io_task_prio;
UINT_8 name_length;
UINT_8 name[14];
UINT_8 reserved[19];

} LOADABLE_FD_DATA_STRUCT

Where:

conn_entries
Specifies the size of the connection object for this file driver.

att_dev_stack_size
Specifies the size of the attach_device task's stack.

dev_desc_size
Specifies the size of the device descriptor for devices attached to this
file driver.

rq_install_file_driver

System Call Reference Chapter 3 BIOS Calls 167

xface_mbox
A token for a mailbox to be used if the default device attach task is
not used for this file driver. If 0, the standard attach_device task and
its mailbox are used.

flags Control bits defined as:

Bit(s) Meaning
0 User object required
1 DUIBs required
2 Convert filenames to lower case
3-5 Reserved, set to 0

buffer_size
Default buffer size for EIOS buffers.

file_system
Defines the type of file system supported by this file driver, specifying
the DUIBs that can be used with this file driver (only meaningful if bit
1 is set in the flags field). Encoded as:

Bit(s) File System Type
0 Physical
1 Stream
2 DOS
3 iRMX Named (or other hierarchical)
4 Remote
5 EDOS
6-7 Reserved, set to 0

io_task_priority
Default priority for I/O tasks associated with this file driver. If not 0,
this field overrides the task priority field in the DUIBs. Should
normally be 0.

name_length
Actual length of the name field (excluding blanks).

name Unique file driver identifier of up to 4 bytes (padded with blanks).

config_ptr
A pointer to this structure:

DECLARE loadable_fd_config_struct STRUCTURE(
initialize POINTER,
io_task POINTER,
update POINTER,
attach_funct(4) POINTER,
io_funct(21) POINTER,
valid_request(21) BYTE);

rq_install_file_driver

168 BIOS Calls Chapter 3 BIOS System Calls

or

typedef struct {
void far * initialize;
void far * iotask;
void far * update;
void far * attach_funct[4];
void far * io_funct[21];
UINT_8 valid_request[21];

} LOADABLE_FD_CONFIG_STRUCT;

Where:

initialize
A pointer to the file driver initialization procedure. A null pointer
indicates that no initialization is required.

io_task A pointer to the I/O task used with the file driver. A null pointer
specifies the BIOS common I/O task.

update A pointer to the file driver update procedure.

attach_funct
An array of pointers to the 4 file driver attach functions.

io_funct An array of pointers to the 21 file driver I/O interfaces.

valid_request
Each byte specifies whether the corresponding driver I/O interface is
valid for this file driver.

See also: Driver Programming Concepts for more information on these
elements

✏ Note

For flat model applications only, treat the initialize ,
io_task , and update parameters as two separate fields each in
the structure. The first field has the name listed above and is a
near pointer. The second field has the same name with _seg
appended at the end. It is a segment selector for the pointer.

ret_info_ptr
A pointer to this structure. It provides access to several BIOS objects and
procedures which may be required for correct file driver operation. To use the
objects within this structure, copy them all into global variables of the same name.

rq_install_file_driver

System Call Reference Chapter 3 BIOS Calls 169

DECLARE loadable_fd_info_struct STRUCTURE(
conn_region SELECTOR,
conn_ext SELECTOR,
detach_device POINTER,
cancel_dev_io POINTER,
device_io POINTER);

or

typedef struct {
SELECTOR conn_region;
SELECTOR conn_ext;
void far * detach_device;
void far * cancel_dev_io;
void far * device_io;

} LOADABLE_FD_INFO_STRUCT

Where:

conn_region
A token for the global BIOS connection region. This region is used
for mutual exclusion around all connection management operations.

conn_ext A token for the global BIOS connection extension object.

detach_device
A pointer to the common BIOS detach_device procedure. This
procedure must be called from the file driver's detach_device
procedure when a device is physically detached.

cancel_dev_io
A pointer to the common BIOS cancel_io procedure. This procedure
calls the device driver's cancel_io procedure.

device_io
A pointer to the common BIOS device_io procedure. This procedure
calls the device driver queue_io procedure. It should be called to
perform all I/O from the file driver.

✏ Note

For flat model applications only, treat the detach_device ,
cancel_dev_io , and device_io parameters as two separate
fields each in the structure. The first field has the name listed
above and is a near pointer. The second field has the same name
with _seg appended at the end. It is a segment selector for the
pointer.

rq_install_file_driver

170 BIOS Calls Chapter 3 BIOS System Calls

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If the ret_info_ptr is a null pointer, the file driver is installed, but no file driver
information is returned.

A file driver can only be installed once, even with a different file driver ID. This is
enforced by comparing the file driver name with all other file driver names in the
system.

See also: Driver Programming Concepts for more information on file drivers

Condition Codes

E_FEXIST 0006H A file driver with the same ASCII name has
already been installed in the system.

E_PARAM 8004H One of these conditions is true:
• The file driver ID is 0 or larger than the

maximum allowable value.
• The structure referenced by config_ptr is

not readable.
• The structure referenced by config_ptr is

not large enough.
• The structure referenced by data_ptr is

not readable (if not a null pointer).
• The structure referenced by data_ptr is

not large enough.
• The structure referenced by ret_info_ptr

is not writable (if not a null pointer).
• The structure referenced by ret_info_ptr is

not large enough.

rq_a_open

System Call Reference Chapter 3 BIOS Calls 171

a_open
Opens an asynchronous file connection for I/O operations, for any type of file.

Syntax, PL/M and C

CALL rqaopen (connection, mode, share, resp_mbox,
except_ptr);

rq_a_open (connection, mode, share, resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
mode BYTE UINT_8
share BYTE UINT_8
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for the connection to be opened.

mode The mode desired for the open connection; set to 1 to open directories.

Value Meaning
1 Open for reading
2 Open for writing
3 Open for both reading and writing

share Specifies the share mode for the file to which you are opening a connection:

Value Meaning
0 Private use only
1 Share with readers only
2 Share with writers only
3 Share with all users

resp_mbox
The mailbox that receives a token for an IORS. A null selector means that you do
not want to receive an IORS.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

rq_a_open

172 BIOS Calls Chapter 3 BIOS System Calls

Additional Information

The connection must be opened before reading, writing, and seeking can be
performed on the associated file.

Directory files can be opened and read, but only by specifying a 1 (read) for the
mode parameter and a 3 (share all) for the share parameter. Any other combination
will return an error.

A_open also initializes the file pointer to byte-position 0. Subsequent BIOS calls,
such as a_seek, a_read, and a_write, will move this pointer.

The mode and share parameters are compared to the current share mode of the
file, which may have been set by a previous a_open system call. If they are not
compatible, an E_SHARE condition code returns. No deadlock occurs, however,
because open calls are not queued. The system does not automatically notify
callers when the share mode of the file changes.

If the file is attached by multiple connections, the file might be open for reading by
some connections and open for writing by others at the same time. Any
modification of the file by a writer will be seen by readers that subsequently read
the modified part of the file.

See also: a_seek, a_read, a_write

The BIOS does not check the access rights of an iRMX-NET remote file when you
create a connection to the file, but does check during operations on the connection.
This won't affect your programs if you:

• Open, delete, and rename files prior to changing their access lists.

• Establish connections to files after changing their access lists.

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H At least one of these is true:
• One or more of the connection or

resp_mbox parameters is not a token for an
existing object.

• The connection is being deleted.
• The connection for a remote driver is no

longer active.

rq_a_open

System Call Reference Chapter 3 BIOS Calls 173

E_LIMIT 0004H At least one of these is true:
• The calling task's job has already reached its

object limit.
• The number of outstanding I/O operations

for a remote connection has been exceeded.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The mode or share parameter is outside the range
1-3, or 0-3 respectively.

E_SUPPORT 0023H The specified connection was not created by this
job.

E_TYPE 8002H Either the connection parameter is not a token
for a connection object, or the resp_mbox
parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_CONN_OPEN 0035H The connection is a file or directory connection
that is already open.

E_NOT_FILE_CONN 0032H The connection is a device connection, not a file
connection.

E_SHARE 0028H At least one of these is true:
• The file's current share mode is not

compatible with the mode or the share
parameter.

• This call is attempting to open a directory
for some operation other than read or share
with all users.

E_FACCESS 0026H The connection does not have access compatible
with the mode specified.

rq_a_open

174 BIOS Calls Chapter 3 BIOS System Calls

E_IO 002BH An I/O error occurred which might have
prevented the operation from completing.
Examine the unit_status field of the IORS for
more information.

See also: IORS, Chapter 1,
Accessing the IORS, Programming
Techniques

E_LIMIT 0004H Processing this call would deplete the remote
server's resources.

E_FTYPE 0027H The requested operation is not valid for this file
type.

rq_a_physical_attach_device

System Call Reference Chapter 3 BIOS Calls 175

a_physical_attach_device
Attaches the specified device to the BIOS.

▲▲! CAUTION

Any task that uses this call loses its device independence. When
the containing job is deleted, any attached devices are
automatically detached, and connections to files on the device are
automatically deleted. To prevent this, use the EIOS call
logical_attach_device.

Syntax, PL/M and C

CALL rqaphysical$attach$device (dev_name_ptr, file_driver,
resp_mbox, except_ptr);

rq_a_physical_attach_device (dev_name_ptr, file_driver,
resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
dev_name_ptr POINTER STRING far *
file_driver BYTE UINT_8
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
dev_name_ptr

A pointer to a STRING containing the logical name of the remote disk, the physical
device name. The maximum length is 14 characters. For all file types except NFS
(NFS supports extended device names of up to 256 characters), the BIOS truncates
the name to 14 characters if it is longer . To prevent possible duplication of names,
do not use device names longer than 14 characters. For devices accessed through
the Remote File Driver, specify the name of the server to be attached. For NFS
devices, specify the name as host:/shared_directory.

See also: For ICU-configurable systems, DEV parameter, ICU User's Guide
and Quick Reference

rq_a_physical_attach_device

176 BIOS Calls Chapter 3 BIOS System Calls

file_driver
Specifies the kind of files that the device will create when the returned device
connection is used in subsequent calls to a_create_file.

Value File Driver
1 Physical
2 Stream
3 DOS
4 Named
5 Remote
6 EDOS
7-max Loadable file drivers, including NFS. The IDs can vary, depending on

which driver is loaded first. To find what ID is currently assigned to a
specific loadable driver, first call rq_get_file_driver_status.

resp_mbox
The mailbox that receives a token for a new connection if the call succeed,
otherwise an IORS. The returned connection object can be used as a prefix in other
system calls. It can be deleted only by calling a_physical_detach_device. To
determine the type of object returned, use the Nucleus system call get_type.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

Only a few selected tasks should perform all device attaching and detaching,
passing tokens for the devices to other tasks as necessary.

In the case of a connection to a disk device, where the file_driver parameter
specifies named files for the device, the connection is actually to a volume
mounted on the disk hardware. Such volumes must be properly formatted.
Otherwise, an E_ILLVOL condition code returns.

See also: a_create_file,
EIOS call logical_attach_device,
Nucleus call get_type,
Formatting disks, Command Reference

rq_a_physical_attach_device

System Call Reference Chapter 3 BIOS Calls 177

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The resp_mbox parameter is not a token for an
existing object.

E_LIMIT 0004H Processing this call would exceed one or more of
these limits:
• The object limit for this job
• 255 outstanding I/O operations for the

caller's job

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The number representing the file driver is not
valid or a null selector was specified for the
response mailbox.

E_TYPE 8002H The resp_mbox parameter is not a mailbox
token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_ALREADY_ATTACHED 0038H The specified device is already attached.

E_DEVFD 0022H The specified device is not compatible with the
specified file driver.

E_FNEXIST 0021H The specified device does not exist.

E_ILLVOL 002DH At least one of these is true:
• The specified disk volume is not properly

formatted for use with the named file driver.
• The device could not be attached because

the fnode for the root directory of the device
is invalid.

rq_a_physical_attach_device

178 BIOS Calls Chapter 3 BIOS System Calls

E_IO 002BH An I/O error occurred which might have
prevented the operation from completing.
Examine the unit_status field of the IORS for
more information.

See also: IORS, Chapter 1,
Accessing the IORS, Programming
Techniques

E_IO_MEM 0042H The memory available to the BIOS job is not
sufficient to complete the call.

E_LIMIT 0004H Processing this call would deplete the remote
server's resources.

E_PROTOCOL 02E9H The iNA 960 version on the local system does
not have the iNA R.0 to R3.0 compatibility code
and the server to be attached has iNA R.0
loaded.

rq_a_physical_detach_device

System Call Reference Chapter 3 BIOS Calls 179

a_physical_detach_device
Detaches a device that was attached using a_physical_attach_device.

Syntax, PL/M and C

CALL rqaphysical$detach$device (connection, hard, resp_mbox,
except_ptr);

rq_a_physical_detach_device (connection, hard, resp_mbox,
except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
hard BYTE UINT_8
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for the connection object for the device that is to be detached.

hard Specifies whether or not you want a hard detach of the device.

Value Meaning
0 No
0FFH Yes

resp_mbox
A token for the mailbox that receives an IORS. A null selector means that you do
not want to receive an IORS.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

This call deletes the file connection objects associated with the device connections.
A device that is detached with this call must be reattached before any files can be
attached or reattached to the device.

A hard detach automatically deletes the connection objects for all files attached to
the device. If you do not specify a hard detach, first detach all files from the
device using a_delete_connection; otherwise, the condition code
E_OUTSTANDING_CONNS returns.

rq_a_physical_detach_device

180 BIOS Calls Chapter 3 BIOS System Calls

Whether you specify a hard detach or not, there will be no attached files on the
device after using a_physical_detach_device.

See also: a_physical_attach_device, a_delete_connection

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H One or more of the connection or resp_mbox
parameters is not a token for an existing object.

E_LIMIT 0004H The calling task's job has already reached its
object limit.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_DEVICE_CONN 0033H The specified connection is not a device
connection.

E_SUPPORT 0023H The specified connection was not created by this
job.

E_TYPE 8002H Either the connection parameter is not a token
for a connection object, or the resp_mbox
parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_FNEXIST 0021H The specified device is already being detached.

E_IO 002BH An I/O error occurred during the operation, but
the operation was successful anyway.

E_OUTSTANDING_CONNS 0037H The call attempted a soft detach, but connections
to the device still existed.

rq_a_read

System Call Reference Chapter 3 BIOS Calls 181

a_read
Reads the requested number of bytes on an open connection; use with any type of
file.

Syntax, PL/M and C

CALL rqaread (connection, buff_ptr, count, resp_mbox,
except_ptr);

rq_a_read (connection, buff_ptr, count, resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
buff_ptr POINTER UINT_8 far *
count WORD_32 NATIVE_WORD
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for the open file connection to be read.

buff_ptr
A pointer to the buffer that receives the data. The specified buffer can be in a
segment allocated by the Nucleus, but this is not a requirement.

count The number of bytes to be read.

resp_mbox
A token for the mailbox that receives the IORS indicating the status of the read
operation. A null selector means that you do not want to receive the IORS.

The number of bytes read is in the actual field of the IORS. If a read operation is
requested with the file pointer set at or beyond the EOF, 0 returns.

See also: IORS, Chapter 1,
Accessing the IORS, Programming Techniques

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

rq_a_read

182 BIOS Calls Chapter 3 BIOS System Calls

Additional Information

A call to a_read will not be successful unless the mode of the open connection
permits reading.

See also: a_open, a_change_access, s_change_access

The data is read as a string of bytes, starting at the current position of the
connection's file pointer. Any number of bytes can be requested. It is more
efficient to start reads on device block boundaries. After the read operation is
finished, the file pointer points just past the last byte read.

DOS directory files can only be read a multiple of 6 bytes at a time, on 6-byte
boundaries. This corresponds directly to the Named File Driver structure.
Otherwise, E_SUPPORT returns.

Because segments have a maximum length of 4 Gbytes, data transfers of this size
can be requested.

If all the connections to a stream file are requesting read operations, 0 returns along
with an E_FLUSHING condition code.

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_BAD_BUFF 8023H At least one of these is true:
• The target memory buffer is not a writable

segment.
• The target memory buffer crosses a segment

boundary.

E_BUFFERED_CONN 0036H The specified connection was opened with an
EIOS call. Use the EIOS s_read_move rather
than the BIOS a_read.

E_EXIST 0006H At least one of these is true:
• One or more of the connection or

resp_mbox parameters is not a token for an
existing object.

• The connection is being deleted.

E_LIMIT 0004H The calling task's job has already reached its
object limit.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

rq_a_read

System Call Reference Chapter 3 BIOS Calls 183

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H At least one of these is true:
• The specified connection was not created by

this job.
• The request involved a DOS directory but

did not follow the 6-byte boundary, multiple
of 6-byte restriction.

E_TYPE 8002H Either the connection parameter is not a token
for a connection object, or the resp_mbox
parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_CONN_NOT_OPEN 0034H This connection is not open for reading or
updating.

E_FLUSHING 002CH At least one of these is true:
• The specified connection was closed before

the read operation was completed.
• The file is a stream file and all other

connections to the file are also attempting to
read the file.

E_IDDR 002AH This request is invalid for the device driver. For
example, it is not valid to use this call with a line
printer.

E_IO 002BH An I/O error occurred which might have
prevented the operation from completing.
Examine the unit_status field of the IORS for
more information.

See also: IORS, Chapter 1,
Accessing the IORS, Programming
Techniques

rq_a_rename_file

184 BIOS Calls Chapter 3 BIOS System Calls

a_rename_file
Changes the pathname of a named (including DOS and remote) data or directory
file.

Syntax, PL/M and C

CALL rqarename$file (connection, user, prefix, subpath_ptr,
resp_mbox, except_ptr);

rq_a_rename_file (connection, user, prefix, subpath_ptr,
resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
user SELECTOR SELECTOR
prefix SELECTOR SELECTOR
subpath_ptr POINTER STRING far *
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for a connection to the file being renamed. This connection and all other
connections to the file will remain in effect after the file is renamed.

user A token for the user object to be inspected in access checking. A null selector
specifies the default user object.

For DOS files, the BIOS ignores this parameter because the user is always World.

prefix
A token for the connection to be used as the starting point in a path scan. A null
selector specifies the default prefix.

subpath_ptr
A pointer to a STRING containing the new subpath for the file. Prefix and
subpath must not lead to an already-existing file. The STRING pointed to by the
subpath_ptr parameter cannot be a null STRING.

resp_mbox
The mailbox that receives a token for an IORS. A null selector means that you do
not want to receive an IORS.

rq_a_rename_file

System Call Reference Chapter 3 BIOS Calls 185

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

Renaming a directory changes the paths of any files contained in the directory.

In order to rename a file, the caller must have delete access to the file and must
have add-entry access to the file's parent directory. All DOS users may rename
files as long as the World user has write access to the file.

See also: a_change_access, s_change_access

For named data or directory files, this call can be used to recatalog files in different
parent directories, as long as the new directory is on the same volume as the file's
original parent directory.

Restrictions are:

• DOS users cannot rename a file or a directory to a different subdirectory.

• Any attempt to rename a directory as its own parent causes the BIOS to return
an exception code.

• You cannot simultaneously rename a file and move it to another device.

The a_rename_file system call cannot rename an iRMX-NET virtual root
directory, a file in a virtual root directory, or a public directory on a remote server.
Otherwise, an E_FACCESS condition code returns.

The BIOS does not check the access rights of an iRMX-NET remote named file
when you create a connection to the file, but checks during operations on the
connection. This won't affect your programs if you:

• Open, delete, and rename files prior to changing their access lists.

• Establish connections to files after changing their access lists.

rq_a_rename_file

186 BIOS Calls Chapter 3 BIOS System Calls

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_DEV_OFF_LINE 002EH The prefix parameter in this system call refers to
a logical connection to a device. One of these is
true of the device:
• It has been physically attached but is now

off-line.
• It has been logically attached but never

physically attached.

See also: attachdevice, Command Reference

E_EXIST 0006H At least one of these is true:
• One or more of the connection, user ,

prefix , or resp_mbox parameters is not a
token for an existing object.

• The connection specified by the prefix
and/or connection parameters is being
deleted.

• The connection for a remote driver is no
longer active.

E_IFDR 002FH This system call applies only to named or DOS
files, but the connection parameter specifies
some other type of file.

E_LIMIT 0004H Processing this call would cause one or more of
these limits to be exceeded:
• The object limit for this job
• 255 outstanding I/O operations for the

specified user object
• The number of outstanding I/O operations

for a remote connection

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

rq_a_rename_file

System Call Reference Chapter 3 BIOS Calls 187

E_NOPREFIX 8022H The call specified a default prefix using a null
selector, but a default prefix cannot be found for
one of these reasons:
• When this job was created, a 0 was specified

for its object directory, so the job cannot
catalog a default prefix.

• The job's directory can have entries but a
default prefix is not cataloged there.

E_NOUSER 8021H If the user parameter is not a null selector, it is
not a user object. Otherwise, it specifies a
default user object, but no default user object can
be found for one of these reasons:
• When this job was created, a 0 was specified

for its object directory, so the job cannot
catalog a default user object.

• The job's directory can have entries but a
default user object is not cataloged there.

• The cataloged object r?iouser is not a user
object. Treat r?iouser as a reserved word.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_SAME_DEVICE 003AH One or more of these is true:
• The connection and the prefix

parameters refer to different devices.
• An attempt was made to rename a file across

volumes.

E_PATHNAME_SYNTAX 003EH One or more of these is true:
• The specified pathname contains invalid

characters or has 0 length.
• The subpath of the specified remote file

exceeds 27 bytes.

E_SUPPORT 0023H The specified connection was not created by this
job.

rq_a_rename_file

188 BIOS Calls Chapter 3 BIOS System Calls

E_TYPE 8002H At least one of these is true:
• The connection parameter is not a token

for a connection object.
• The prefix parameter is a token for an

object of the wrong type. It must be either a
connection object or a logical device object
created by the EIOS.

• The resp_mbox parameter is not a mailbox
token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_DEV_DETACHING 0039H The file specified is on a device that the system
is detaching.

E_FACCESS 0026H At least one of these is true:
• The specified file does not have add-entry

access to the parent directory.
• The specified connection does not have

delete access to the file.
• The call is attempting to rename the root

directory or a bit-map file.

E_FEXIST 0020H A file with the specified pathname already
exists.

E_FNEXIST 0021H A file in the specified path does not exist or is
marked for deletion.

E_FTYPE 0027H The STRING pointed to by the subpath_ptr
parameter contains a file that should be the name
of a directory, but is not. Except for the last file,
each file listed in a pathname must be a named
directory.

E_ILLOGICAL_RENAME 003BH The call is attempting to rename the directory to
a new path containing itself.

E_INVALID_FNODE 003DH The fnode for the specified file (or for a
directory in the file's path) is invalid. The file
cannot be accessed; delete it or fix it with
diskverify .

See also: diskverify , Command Reference

rq_a_rename_file

System Call Reference Chapter 3 BIOS Calls 189

E_IO 002BH An I/O error occurred which might have
prevented the operation from completing.
Examine the unit_status field of the IORS for
more information.

See also: IORS, Chapter 1,
Accessing the IORS, Programming
Techniques

E_IO_MEM 0042H The memory available to the BIOS job is not
sufficient to complete the call.

E_LIMIT 0004H Processing this call would deplete the remote
server's resources.

E_NAME_NEXIST 0049H The user object does not represent a verified
user, or the user object is not properly defined in
the remote server's UDF.

E_NOT_FILE_CONN 0032H The subpath_ptr parameter is a null pointer and
the prefix parameter is not a file connection.

E_PASSWORD_MISMATCH 004BH The user object password does not match the
password of the user defined on the remote
server.

E_PATHNAME_SYNTAX 003EH The syntax of the specified remote file pathname
is illegal; it must follow the naming conventions
of the server.

E_UDF_IO 02D0H An error occurred while accessing the remote
server's UDF.

E_SPACE 0029H At least one of these is true:
• The volume is full.
• No more files can be created on the remote

server's volume. The remote file driver
cannot distinguish between an
E_FNODE_LIMIT and an E_SPACE
condition code.

E_SUPPORT 0023H A DOS user attempted to rename a directory as a
subdirectory.

rq_a_seek

190 BIOS Calls Chapter 3 BIOS System Calls

a_seek
Moves the file pointer of an open connection, for physical and named (including
DOS and remote) data or directory files.

Syntax, PL/M and C

CALL rqaseek (connection, mode, move_size, resp_mbox,
except_ptr);

rq_a_seek (connection, mode, move_size, resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
mode BYTE UINT_8
move_size WORD_32 UINT_32
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for the open file connection whose file pointer is to be moved.

mode Describes the movement of the file pointer:

Value File Pointer Movement
1 Back by move_size bytes; if the pointer moves past the beginning of the

file, it is set to 0 (first byte).
2 Set to the location specified by move_size.
3 Forward by move_size bytes.
4 Move to the EOF, then back by move_size bytes; if the pointer moves

past the beginning of the file, it is set to 0 (first byte). This option is not
supported for DOS directories; E_SUPPORT returns.

move_size
The number of bytes involved in the seek. The interpretation of move_size
depends on the mode setting.

resp_mbox
The mailbox that receives a token for an IORS. A null selector means that you do
not want to receive an IORS.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

rq_a_seek

System Call Reference Chapter 3 BIOS Calls 191

Additional Information

Use this call for random access to file contents. The file pointer can be moved to
any byte position in the file; the first byte is byte 0.

For named files, you can use a_seek to position the file pointer beyond the EOF. If
you then invoke a_write, the BIOS extends the file to accommodate the writing
operation. The file will contain random data between the old EOF and the pointer,
where the write begins.

You can also invoke a_read with the file pointer beyond the EOF, but the BIOS
returns 0 in the actual field of the IORS, signifying the EOF.

See also: a_write, a_read in this chapter,
IORS, Chapter 1,
Accessing the IORS, Programming Techniques

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_BUFFERED_CONN 0036H The connection parameter was produced by the
EIOS.

E_EXIST 0006H At least one of these is true:
• One or more of the connection or

resp_mbox parameters is not a token for an
existing object.

• The connection is being deleted.
• The connection for a remote driver is no

longer active.

E_IFDR 002FH This system call applies only to named and
physical files, but the connection is to a stream
file.

E_LIMIT 0004H At least one of these is true:
• The calling task's job has already reached its

object limit.
• The number of outstanding I/O operations

for a remote connection has been exceeded.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

rq_a_seek

192 BIOS Calls Chapter 3 BIOS System Calls

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The mode parameter value is outside the range
1-4.

E_SUPPORT 0023H Either the specified connection was not created
by this job or the file is a directory file.

E_TYPE 8002H Either the connection parameter is not a token
for a connection object, or the resp_mbox
parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_CONN_NOT_OPEN 0034H The connection is not open.

E_FLUSHING 002CH The specified connection was closed before the
seek operation could complete.

E_IDDR 002AH This request is invalid for the device driver. For
example, it is not valid to use this call with a line
printer.

E_IO 002BH An I/O error occurred which might have
prevented the operation from completing.
Examine the unit_status field of the IORS for
more information.

See also: IORS, Chapter 1,
Accessing the IORS, Programming
Techniques

E_PARAM 8004H This call attempted to seek beyond the end of the
physical device. This applies only to physical
files.

rq_set_default_prefix

System Call Reference Chapter 3 BIOS Calls 193

set_default_prefix
Sets the default prefix for an existing job.

Syntax, PL/M and C

CALL rqsetdefault$prefix (job, prefix, except_ptr);

rq_set_default_prefix (job, prefix, except_ptr);

Parameter PL/M Data Type C Data Type
job SELECTOR SELECTOR
prefix SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

job A token for the job whose default prefix is to be set. A null selector specifies the
current job.

prefix
A token for the connection that is to become the default prefix.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

This system call catalogs the connection supplied as the prefix parameter in the
object directory of the job supplied as the job parameter. The BIOS catalogs the
prefix under the name $. If an object is already cataloged under the name $, the
BIOS uncatalogs that object before cataloging the new prefix.

rq_set_default_prefix

194 BIOS Calls Chapter 3 BIOS System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H When this job was created, a 0 was specified for
the object directory, so a default prefix cannot be
cataloged.

E_EXIST 0006H One or more of the job or prefix parameters is
not a token for an existing object.

E_LIMIT 0004H The prefix parameter cannot be cataloged
because the calling job's object directory is full.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H At least one of these is true:
• The job parameter is not a job token.
• The prefix parameter is not a token for a

connection object or a logical device object
created by the EIOS.

rq_set_default_user

System Call Reference Chapter 3 BIOS Calls 195

set_default_user
Sets the default user object for an existing job.

See also: Default user object, System Concepts

Syntax, PL/M and C

CALL rqsetdefault$user (job, user, except_ptr);

rq_set_default_user (job, user, except_ptr);

Parameter PL/M Data Type C Data Type
job SELECTOR SELECTOR
user SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

job A token for the job whose default user object is to be set. A null selector
designates the calling task's job.

user
A token for the user object that is to become the default user.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H When this job was created, a 0 was specified for
the object directory, so a default prefix cannot be
cataloged.

E_EXIST 0006H One or more of the job or user parameters is not
a token for an existing object.

E_LIMIT 0004H The user object cannot be cataloged because the
calling job's object directory is full.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H The job or user parameter is a token for an object
of the wrong type.

rq_a_set_extension_data

196 BIOS Calls Chapter 3 BIOS System Calls

a_set_extension_data
Writes the extension data for a BIOS named data or directory file. This call is not
valid for DOS files or for files accessed through NFS. For DOS files the call is
ignored.

Syntax, PL/M and C

CALL rqaset$extension$data (connection, data_ptr, resp_mbox,
except_ptr);

rq_a_set_extension_data (connection, data_ptr, resp_mbox,
except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
data_ptr POINTER EXT_DATA_STRUCT far *
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for a connection to a file whose extension data is to be set.

data_ptr
A pointer to this structure:

DECLARE ext_data STRUCTURE(
count BYTE,
info(*) BYTE);

or

typedef struct {
UINT_8 count;
UINT_8 info[_NUM_EXT_INFO];

 /* adjust to fit count */
} EXT_DATA_STRUCT;

Where:

count Number of bytes up to 255 of extension data being written. For
remote files, set to 0.

info The extension data.

rq_a_set_extension_data

System Call Reference Chapter 3 BIOS Calls 197

resp_mbox
The mailbox that receives a token for an IORS. A null selector means that you do
not want to receive an IORS.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

Each file created through the BIOS has an associated file descriptor containing
information about the file. Some of that information is used by the BIOS and can
be accessed by tasks through a_get_file_status. Up to 255 additional bytes of the
file descriptor, known as extension data, are available for use by OS extensions,
depending upon how the volumes were formatted. For named volumes, the first
three bytes of this extension data are reserved for use by the BIOS.

OS extensions can write extension data by using a_set_extension_data, and they
can read extension data by using a_get_extension_data. The maximum number of
bytes of extension data may be less than 255 since the limit is specified when the
secondary storage devices are formatted.

After the new extension data is set, an IORS returns to the response mailbox.

A_set_extension_data can only be applied to asynchronous connections created
using the named file driver.

See also: a_get_extension_data, a_get_file_status

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H At least one of these is true:
• One or more of the connection or

resp_mbox parameters is not a token for an
existing object.

• The connection is being deleted.

E_IFDR 002FH This system call applies only to named files, but
the connection parameter specifies another type
of file.

E_LIMIT 0004H The calling task's job has already reached its
object limit.

rq_a_set_extension_data

198 BIOS Calls Chapter 3 BIOS System Calls

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This call is not part of the present configuration.

E_SUPPORT 0023H The specified connection was not created by this
job.

E_TYPE 8002H Either the connection parameter is not a token
for a connection object, or the resp_mbox
parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_IO 002BH An I/O error occurred which might have
prevented the operation from completing.
Examine the unit_status field of the IORS for
more information.

See also: IORS, Chapter 1,
Accessing the IORS, Programming
Techniques

E_PARAM 8004H At least one of these is true:
• The count field in the ext _data structure

contains a value greater than the value
specified when the disk was formatted.

• The connection parameter references a
remote file and the count field does not
contain a 0.

rq_a_set_file_status

System Call Reference Chapter 3 BIOS Calls 199

a_set_file_status
Changes the owner and/or time stamps of a file.

Syntax, PL/M and C

CALL rqaset$file$status (connection, set_info_ptr, resp_mbox,
except_ptr);

rq_a_set_file_status (connection, resp_mbox, set_info_ptr,
except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
set_info_ptr POINTER SET_FILE_STATUS_STRUCT far *
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for a connection to the file.

set_info_ptr
A pointer to this structure:

DECLARE set_file_status_struct STRUCTURE(
select WORD_16,
owner WORD_16,
create_time WORD_32,
modify_time WORD_32,
access_time WORD_32);

or

typedef struct set_file_status_struct {
UINT_16 select;
UINT_16 owner;
UINT_32 create_time;
UINT_32 modify_time;
UINT_32 access_time;

} SET_FILE_STATUS_STRUCT

rq_a_set_file_status

200 BIOS Calls Chapter 3 BIOS System Calls

Where:

select Specifies the file attributes to set; encoded as:

Bit Meaning
0 Change owner
1 Set creation time
2 Set last modified time
3 Set last access time
4-5: Reserved, must be 0

owner File owner ID

create_time
The date and time the file was created.

modify_time
The date and time the file was last modified.

access_time
The date and time the file was last accessed.

resp_mbox
A token for a mailbox that receives the IORS. A null selector indicates no IORS
desired.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

When setting a file's time stamps, use care if you're using other I/O operations on
the open connection. Write connections (such as rq_a_write, rq_a_truncate, etc.)
will cause the last modified and last access time stamps to be set to the current
time. Read operations (such as rq_a_read, rq_a_get_file_status, etc.) will cause
the last access time stamp to be set to the current time. In addition, write
operations may cause a buffer flush when the connection is closed, overriding this
system call and updating the time stamps to the current time.

See also: rq_a_write, rq_a_truncate, rq_a_read, rq_a_get_file_status

rq_a_set_file_status

System Call Reference Chapter 3 BIOS Calls 201

Not all file drivers support this system call due to file system limitations. This is
the level of support provided by each standard file driver:

File Driver Support
Physical Not supported
Stream Not supported
DOS Only last modified time
Named Full support
Remote Local full support, remote support is system-dependent
EDOS Only last modified time
NFS Fully supported except you cannot change the owner

On file drivers that support the setting the time stamp(s) but not changing the file
owner (for example, DOS and EDOS) E_SUPPORT is always returned if the
change_owner bit is set in the select word, and no other action is performed. In
general, make the application file-driver independent, and make separate calls to
change the file owner and the file time stamps.

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H At least one of these is true:
• The resp _mbox parameter is not a mailbox

token.
• The connection is being deleted.
• The connection for a remote driver is no

longer active.

E_LIMIT 0004H At least one of these is true:
• The calling task's job has already reached its

object limit.
• The number of outstanding I/O operations

for a remote connection has been exceeded.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_a_set_file_status

202 BIOS Calls Chapter 3 BIOS System Calls

E_SUPPORT 0023H The file driver associated with the specified
connection does not support this system call.

E_TYPE 8002H One or more of the connection or resp_mbox
parameters is a token for an object of the wrong
type.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_CONN_NOT_OPEN 0034H The connection is either not open, or is not open
with write access.

E_FACCESS 0026H The specified connection does not have update
or append access to the file.

E_IO 002BH An I/O error occurred which might have
prevented the operation from completing.

E_NOT_FILE_CONN 0032H For remote and NFS files, the connection
parameter must be a file connection, not a device
connection.

E_UDF_IO 02D0H An error occurred while accessing the remote
server's UDF.

rq_set_global_time

System Call Reference Chapter 3 BIOS Calls 203

set_global_time
Sets the battery-backed-up hardware clock to a specified time.

Syntax, PL/M and C

CALL rqsetglobal$time (date_time_ptr, except_ptr);

rq_set_global_time (date_time_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
date_time_ptr POINTER SET_TIME_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
date_time_ptr

A pointer to a structure that contains the date and time information to which the
hardware clock is set. The structure must have this form:

DECLARE set_time STRUCTURE (
seconds BYTE,
minutes BYTE,
hours BYTE,
days BYTE,
months BYTE,
years WORD_16);

or

typedef struct {
UINT_8 seconds;
UINT_8 minutes;
UINT_8 hours;
UINT_8 days;
UINT_8 months;
UINT_16 years;

} SET_TIME_STRUCT;

rq_set_global_time

204 BIOS Calls Chapter 3 BIOS System Calls

Where:

seconds The value to which the seconds counter is set. Do not exceed 59.

minutes The value to which the minutes counter is set. Do not exceed 59.

hours The value to which the hours counter is set. Do not exceed 23.

days The value to which the days counter is set. Do not exceed 3.

months The value to which the months counter is set. Do not exceed 2.

years The value to which the years counter is set.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The BIOS writes the new values into the appropriate registers on the clock
hardware.

This system call supports the Time-of-Day clock on the Multibus I SBC 546
Terminal Communications Controller board, the Multibus II CSM, the Multibus I
SBC 86C38 board, and PC systems.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H This call was made from an environment that did
not contain a hardware clock.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H One or more of the values specified in the
set_time structure is illegal.

E_SHARE 0028H The global time-of-day clock was busy because
another entity was accessing it.

E_SUPPORT 0023H The configured clock type is not a supported
type.

rq_a_special

System Call Reference Chapter 3 BIOS Calls 205

a_special
Enables tasks to perform a variety of device-level functions. This call is not valid
for DOS files or for devices accessed through NFS. For DOS files, the call returns
an E_IFDR exception.

Syntax, PL/M and C

CALL rqaspecial (connection, spec_func, ioparm_ptr,
resp_mbox, except_ptr);

rq_a_special (connection, spec_func, ioparm_ptr, resp_mbox,
except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
spec_func WORD_16 UINT_16
ioparm_ptr POINTER void far *
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for a connection to the file or device for which the special function is to be
performed. To access a remote server, this parameter must be a connection to the
server's virtual root directory.

spec_func
Specifies the function being requested when combined with the file driver
associated with the connection parameter. Each function is described in detail
after the Additional Information heading.

✏ Note
Bits 8 and 12 of the spec_func field are reserved; do not use
values that manipulate these bits in your applications or device
drivers. Mask bits 8 and 12 when your device driver receives a
function code from the I/O system.

rq_a_special

206 BIOS Calls Chapter 3 BIOS System Calls

This table summarizes the values you can assign to the spec_func parameter:

Function Code File Driver Description

0 Physical Format track

0 Stream Query

1 Stream Satisfy

2 Physical/Named Notify (The only function supported for
remote servers.)

3 Physical Get disk data

3 Physical Get tape data

4 Physical Get terminal data

5 Physical Set terminal data

6 Physical Set signal

7 Physical Rewind tape

8 Physical Read tape file mark

9 Physical Write tape file mark

10 Physical Retension tape

11 Physical Reserved for Intel

12 Physical Set bad track/sector information

13 Physical Get bad track/sector information

14, 15 Reserved

16 Physical Get terminal status

17 Physical Cancel terminal I/O

18 Physical Resume terminal I/O

19 Physical/Named Perform Disk Mirroring

20 Named/DOS/EDOS Get device free space data

21-32767 Reserved

32768-65535 Available for user devices, except for
values that use bits 8 or 12.

ioparm_ptr
A pointer to a parameter block whose contents depends upon the special function
being requested. Enter a null value if the special function you request does not
require a parameter block.

resp_mbox
The mailbox that receives a token for an IORS. A null selector means that you do
not want to receive an IORS.

rq_a_special

System Call Reference Chapter 3 BIOS Calls 207

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

The special functions (specified with the spec_func parameter) are described
below, in numerical order.

Format a Track (Function Code 0)

Call a_special with an open file connection, spec_func equal to 0, and
ioparm_ptr pointing to this structure:

DECLARE format_track STRUCTURE(
track_number WORD_16,
interleave WORD_16,
track_offset WORD_16,
fill_char WORD_16);

or

typedef struct {
UINT_16 track_number;
UINT_16 interleave;
UINT_16 track_offset;
UINT_8 fill_char;

} FORMAT_TRACK_STRUCT;

Where:

track_number
The number of the track to be formatted: from 0 to 1 less than the
number of tracks on the volume. Other values cause an E_SPACE
condition code. When formatting a RAM-disk or a tape, use 0.

interleave
The interleave factor for the track: the number of physical sectors to
advance when locating the next logical sector. 0 or 1 skips no
physical sectors between logical sectors. If the specified interleave
factor is greater than the number of physical sectors on a track, the OS
divides the specified value by the number of physical sectors and uses
the remainder as interleave . This field does not apply to tapes.

track_offset
The number of physical sectors to advance when locating the first
logical sector (index mark). This field does not apply to tapes.

rq_a_special

208 BIOS Calls Chapter 3 BIOS System Calls

fill_char A character with which each sector is written. Some drivers ignore
this value and fill the sector with a character they establish.

Query Stream File Operations (Function Code 0)

Call a_special, using the connection for a stream file, with spec_func set to 0.
The ioparm_ptr parameter is ignored. Use this function to find out what is being
requested by another task using the same stream file. For example, the task doing a
read operation on a stream file might need to know how many bytes are being sent
by the task doing a write operation on the same file.

If a read or write request is queued at the file, the information requested returns in
the IORS; the actual field contains the number of bytes being sent, the count
field contains the number of bytes still remaining in the buffer, and the buff_p
field points to the buffer.

See also: IORS, Chapter 1,
Accessing the IORS, Programming Techniques,
IORS fields, Driver Programming Concepts

If no read or write request is occurring on the file, the calling task's request for
information is queued at the file. If a second request for information is made
before the first is satisfied, the IORSs for both requests return with
E_STREAM_SPECIAL in the status field.

Satisfy Stream File Transactions (Function Code 1)

Call a_special, with a stream file connection and spec_func set to 1; the

ioparm_ptr is ignored. Use this function to force the data transfer request to be
satisfied, even though the reading task is requesting more bytes than the writing
task is providing. After the transfer, the tasks can determine the number of bytes
sent by checking the actual field in their respective IORSs. An
E_STREAM_SPECIAL condition code returns if no request is queued at the
stream file or if a request for information is queued.

See also: IORS, Chapter 1,
Accessing the IORS, Programming Techniques

Usually, when task tries to read or write to a stream file, the request is not satisfied
until the other task makes a request that matches the first request. For example, if
Task A requests to read 52 bytes, but Task B only writes 256 bytes, only 256 bytes
are transferred. Task A continues to wait for the other 256 bytes, even though Task
B may never write them.

rq_a_special

System Call Reference Chapter 3 BIOS Calls 209

Request Notification that a Volume is Unavailable (Function Code 2)

Use this function to be notified when a volume becomes unavailable because a
person has opened a door to a diskette drive or pressed the online/offline button on
other mass storage drives. Call a_special with a token for a device connection,
with spec_func set to 2, and with ioparm_ptr pointing to this structure:

DECLARE notify STRUCTURE(
mailbox TOKEN,
object TOKEN);

or

typedef struct notify_struct {
SELECTOR mailbox;
SELECTOR object;

} NOTIFY_STRUCT;

Where:

mailbox A token for a mailbox. Some task should be dedicated to waiting at
the mailbox.

object A token for an object. When the BIOS detects that the volume is
unavailable or is detached by a_physical_detach_device, this object
is sent to the mailbox.

For most drives, notification occurs immediately. For some 5.25" diskette drives,
notification occurs when the BIOS first tries to perform an operation on the
unavailable volume. On those drives, use this sequence of events when changing
volumes:

▲▲! CAUTION

Whenever you change a volume without first detaching the
device and then reattaching it, the BIOS accesses the device using
the directory information from the old volume. Unless the new
volume is write-protected, this process corrupts the entire volume,
rendering it useless.

1. Detach the unit, using a_physical_detach_device.

2. Remove the old volume.

3. Install the new volume.

4. Reattach the unit, using a_physical_attach_device.

rq_a_special

210 BIOS Calls Chapter 3 BIOS System Calls

If the volume is unavailable, the BIOS will not execute I/O requests to the device
on which the volume was mounted. Such requests return with the status field of
the IORS set to E_IO and the unit_status field set to IO_OPRINT, meaning that
operator intervention is required.

See also: IORS, Chapter 1,
Accessing the IORS, Programming Techniques

If any task issues a subsequent notification request for the same device connection,
the BIOS replaces the old mailbox and object values with the new s specified.
It does not return an exception code.

To restore the availability of a volume, perform these steps:

1. Close the door of the diskette drive or restart the hard disk drive.

2. Call a_physical_detach_device. It may be necessary to do a hard detach of
the device.

3. Call a_physical_attach_device and reattach the device.

4. Create a new file connection.

To cancel a request for notification, make a dummy request using the same
connection with a null selector value in the mailbox parameter.

For iRMX-NET remote servers, the calling task is notified of a communication
failure immediately after an unsuccessful attempt to access a remote file or if the
device connection to the remote server is physically detached. Communication
failures can result from resetting the server, faults in the client or server, or line
transmission errors. The remote file driver returns E_IO to the status field and
IO_OPRINT to the unit_status field of the IORS.

See also: IORS, Chapter 1,
Accessing the IORS, Programming Techniques

To restore the availability of a remote server, perform these steps:

1. Fix the communication problem.

2. Call a_physical_detach_device to detach the server's device connection.

3. Call a_physical_attach_device to reattach the server.

rq_a_special

System Call Reference Chapter 3 BIOS Calls 211

Get Disk Data (Function Code 3)

Use this function to obtain specification information about a Winchester drive with
an SBC 214/215G/221(S) disk controller or a drive with an SBC 220 SMD
controller.

Call a_special with a token for a device connection, spec_func set to 3, and
ioparm_ptr pointing to this structure:

DECLARE disk_drive_data STRUCTURE(
cylinders WORD_16,
fixed BYTE,
removable BYTE,
sectors BYTE,
sector_size WORD_16,
alternates BYTE);

or

typedef struct {
UINT_16 cylinders;
UINT_8 fixed;
UINT_8 removable;
UINT_8 sectors;
UINT_16 sector_size;
UINT_8 alternates;

} DISK_DRIVE_DATA_STRUCT;

Where:

cylinders The total number of cylinders on the drive.

fixed The number of heads on the fixed disk drive.

removable The number of heads on the floppy disk drive.

sectors The number of sectors in a track.

sector_size
The number of bytes in a sector.

alternates
The number of alternate cylinders on the drive.

rq_a_special

212 BIOS Calls Chapter 3 BIOS System Calls

Get Tape Data (Function Code 3)

Use this function to obtain specification information about a tape drive connected
to an SBC 214 controller, an SBC 212 controller, or an SBX 217C board mounted
on an SBC 215G controller.

Call a_special with a token for the device connection, with spec_func set to 3,
and with ioparm_ptr pointing to this structure:

DECLARE tape_drive_data STRUCTURE(
tape BYTE,
reserved(7) BYTE);

or

typedef struct {
UINT_8 tape;
UINT_8 reserved[7];

} TAPE_DRIVE_DATA_STRUCT;

Where:

tape Receives information encoded as:

Bits Meaning
7-4 Number of tracks on the tape
3-1 Reserved
0 Indicates whether the unit is present

0 = Unit not present
1 = Unit present

Get Terminal Data (Function Code 4)
Set Terminal Data (Function Code 5)

Terms unique to terminal devices, such as line editing, translation, OS Command
(OSC) sequences, and the Terminal Support Code (TSC), appear in this description.
Terminal attributes relate with OSC characters and sequences. Where this applies,
the label OSC x:y appears in parentheses, where x and y are upper-case characters.
You can use the OSC Query sequence when debugging, to ensure that your tasks
invoked a_special correctly.

See also: OSC sequences, translation, line editing, raw input and type-ahead
buffers, Driver Programming Concepts

rq_a_special

System Call Reference Chapter 3 BIOS Calls 213

Call a_special with a token for a connection to a terminal device driver; get or set
the terminal attributes with spec_func equal to 4 or 5. Ioparm_ptr points to a
structure of this form. If any of the first five parameters (connection_flags
through scroll _lines) is 0, the BIOS leaves the parameter at its previous
setting. In this way, you can set some parameters without affecting others.

DECLARE term_attrib STRUCTURE(
num_words WORD_16,
num_used WORD_16,
connection_flags WORD_16,
terminal_flags WORD_16,
in_baud_rate WORD_32,
out_baud_rate WORD_32,
scroll_lines WORD_16,
page_width BYTE,
page_length BYTE,
cursor_offset BYTE,
overflow_offset BYTE,
special_modes WORD_16,
high_water_mark WORD_16,
low_water_mark WORD_16,
fc_on_char WORD_16,
fc_off_char WORD_16,
link_parameter WORD_16,
spc_hi_water_mark WORD_16,
special_char(4) BYTE);

rq_a_special

214 BIOS Calls Chapter 3 BIOS System Calls

or

typedef struct term_attrib_struct {
UINT_16 num_words;
UINT_16 num_used;
UINT_16 connection_flags;
UINT_16 terminal_flags;
NATIVE_WORD in_baud_rate;
NATIVE_WORD out_baud_rate;
UINT_16 scroll_lines;
UINT_8 page_width;
UINT_8 page_length;
UINT_8 cursor_offset;
UINT_8 overflow_offset;
UINT_16 special_modes;
UINT_16 high_water_mark;
UINT_16 low_water_mark;
UINT_16 fc_on_char;
UINT_16 fc_off_char;
UINT_16 link_parameter;
UINT_16 spc_hi_water_mark;
UINT_8 special_char[4];

} TERM_ATTRIB_STRUCT;

Where:

num_words The number of 16-bit words, beyond the num_words and num_used
fields, containing the terminal data. To access all of the information,
set this field to at least 18. This field does not refer to the number of
parameters, since the NATIVE_WORD parameters can be 32 bits, and
other parameters are only one byte long.

num_used The number of 16-bit words of valid parameter data. For Get Data
function, a_special fills in the structure with up to num_words of the
current values and sets num_used to the number of 16-bit words
actually returned.

connection_flags
Attributes that apply only to this terminal connection. Changes made
with connection_flags take effect after a read operation. If 0, all
bits are ignored. After changing the connection attributes,
immediately read the connection to ensure that the changes are in
effect. If not in flush mode, set the connection to flush mode, then
read 255 characters from the connection. The read returns
immediately with the available characters.

rq_a_special

System Call Reference Chapter 3 BIOS Calls 215

Bits Value Meaning

15-10 0 Reserved, set to 0.

9 0 Characters move from raw-input buffer to type-ahead
buffer.

1 Bypass the type-ahead and line-edit buffers. This
disables all TSC features.

8 0 The interrupt task moves characters from the raw input
buffer to the type-ahead buffer.

1 The service task does it.

7-6 0 Act upon OSC sequences in the input or output stream
(OSC C:C).

1 Input stream only.
2 Output stream only.
3 Do not act upon any OSC sequences.

5 0 Accept output control characters (OSC C:O).
1 Ignore output control characters.

4 0 Set character parity bit to 0 (OSC C:W).
1 Do not alter parity bit.

3 0 Set parity bit to 0 (OSC C:R).
1 Do not alter parity bit.

2 0 Echo characters to the screen (OSC C:E).
1 Do not echo.

1-0 0 Invalid Entry, E$PARAM returned.
1 Transparent mode, no line editing. Input is transmitted

to a requesting task exactly as entered at the terminal
except for control characters. Data is buffered until
the requested number of characters has been entered.

2 Normal mode, line editing. Edited data accumulates
in a buffer until a <CR> is entered (OSC C:T) except
for control characters.

3 Flush mode, no line editing. Input is transmitted to the
requesting task exactly as in transparent mode. Data is
buffered until an input request is received. Then the
contents of the buffer (or the number of characters
requested, if the buffer contains more than that
number) are transmitted to the requesting task. Any
characters remaining in the buffer are saved for the
next input request except for control characters.

rq_a_special

216 BIOS Calls Chapter 3 BIOS System Calls

terminal_flags
Attributes that apply to the terminal and therefore to all connections to
the terminal.

Bits Value Meaning

15-13 Reserved, set to 0

12 0 The vertical axis coordinates increase from top
to bottom on the screen (OSC T:F)

1 They decrease

11 0 The horizontal axis coordinates increase from
left to right across the screen (OSC T:F)

1 They decrease

10 0 Horizontal coordinate listed or entered first
(OSC T:F)

1 Vertical coordinate first

9 0 Disable control character translation
1 Enable translation (OSC T:T)

8-6 0 Output parity bit always 0 (OSC T:W)
1 Output parity bit always
2 Even parity
3 Odd parity
4 No output parity
5-7 Invalid values

5-4 0 Input parity bit always 0 (OSC T:R)
1 Input parity bit unchanged
2 Even parity, parity bit indicates the presence ()

or absence (0) of an error on input
3 Odd parity, parity bit indicates the presence ()

or absence (0) of an error on input

3 0 No modem
1 Used with a modem (OSC T:M)

2 0 VDT output medium (OSC T:H)
1 Printed hard copy

1 0 Full duplex line protocol (OSC T:L)
1 Half duplex

0 Reserved, set to 1

rq_a_special

System Call Reference Chapter 3 BIOS Calls 217

in_baud_rate
The input baud rate indicator (OSC T:I).

Value Meaning
0 Ignore
1 Perform an automatic baud rate search
Other Actual input baud rate, such as 9600

out_baud_rate
The output baud rate indicator (OSC T:O).

Value Meaning
0 - 1 Use the input baud rate for output
Other Actual output baud rate, such as 9600

Most applications require the input and output baud rates to be equal;
use in_baud_rate to set the baud rate and specify a 1 for
out_baud_rate .

scroll_lines
The maximum number of lines sent each time the operator enters the
control character when ready for terminal display (OSC T:S); the
default is <Ctrl-W>.

page_width
The number of character positions on each line of the terminal's
screen (OSC T:X).

page_length The number of lines on the terminal's screen (OSC T:Y).

cursor_offset
The value that starts the numbering sequence of both the X and Y
axes (OSC T:U).

overflow_offset
The value to which the numbering of the axes must fall back after
reaching 27 (OSC T:V).

rq_a_special

218 BIOS Calls Chapter 3 BIOS System Calls

special_modes
The remainder of the terminal attributes apply only to buffered
devices, such as the SBC 548 and the SBC 88/56 boards. These
devices maintain their own input and output buffers separately from
those managed by the BIOS's TSC. If you aren't sure whether you can
set these fields, check bit 5 of this parameter; if set, your board is a
buffered device. The Hostess 550 does not support these fields.

Bits Value Meaning

15 0 Not a buffered device.
1 Buffered device.

14-2 Reserved, set to 0.

1 0 Disable Special Character Mode. Send special
characters through the normal input stream.

1 Enable Special Character Mode (OSC T:D).
Send an interrupt whenever a special character
defined in the special_char array is typed. This
feature is used in conjunction with the
spc_hi_water_mark field to indicate the number
of characters to buffer before the interrupt is
sent. If the characters are signal characters, the
TSC sends units to the appropriate semaphores
when the characters reach the line-edit buffer.

0 0 Disable flow control.
1 Enable flow control (OSC T:G).

high_water_mark
When the communication board's buffer fills to contain the number of
bytes represented by this field, the board's firmware sends the flow
control OFF character to stop input (OSC T:J).

low_water_mark
When the number of bytes in the communication board's buffer drops
to the number represented by this field, the board's firmware sends the
flow control ON character to start input (OSC T:K.).

fc_on_char
An ASCII character that the communication board sends to the
connecting device when the number of bytes in its buffer drops to
low_water_mark . Normally this character tells the connecting
device to resume sending data (OSC T:P).

rq_a_special

System Call Reference Chapter 3 BIOS Calls 219

fc_off_char
An ASCII character that the communication board sends to the
connecting device when the number of characters in its buffer rises to
the high-water mark. Normally this character tells the connecting
device to stop sending data (OSC T:Q).

link_parameter
Specifies the characteristics of the physical link between the terminal
and a device (OSC T:N). Not all device drivers support
link_parameter . This field is supported by those boards using the
TCC driver and ATCS driver. You cannot change link_parameter
values for a COM port on a PC.

See also: Supplied device drivers, Command Reference

If parity is already enabled, an additional bit position beyond those
specified in the character length control is added to the transmitted
data and expected in the received data. The received parity bit is
transferred as part of the data unless 8 bits/character is selected. If a
parity error is detected on input, the character is discarded.

Bits Value Meaning

15 0 Link_parameter field is not used; the
terminal_flags field is used instead.

1 Link_parameter is used. The driver passes the
low-order byte to the controller, which sets the
parity, character length, and stop bits.

14-6 Reserved

5-4 0 1 stop bit
1 1 1/2 stop bits
2 2 stop bits
3 Invalid value

3-2 0 6 bits/character. Unused bit positions are
ignored in transmit data, set to 1 in receive data.

1 7 bits/character. Unused bit position is ignored
in transmit data, set to 1 in receive data.

2 8 bits/character.
3 Invalid value.

1-0 0-1 Invalid value.
2 Even parity.
3 Odd parity.

rq_a_special

220 BIOS Calls Chapter 3 BIOS System Calls

spc_hi_water_mark
This field is used in conjunction with the Special Character Mode
field. If Special Character Mode is enabled in the special_modes
field, the device's input buffer fills to contain this number of special
characters before an interrupt is sent (OSC T:A).

special_char(4)
Holds special characters (OSC T:Z). If you define less than 4 special
characters, fill the remaining slots in the array with duplicates of the
last one.

Set Signal Characters (Function Code 6)

This function associates a keyboard character with a semaphore, so that whenever
the character is entered into the terminal, the BIOS automatically sends a unit to
the semaphore. Character-semaphore pairs are called signals. Up to 2 signal
characters, each character being associated with a different semaphore, are
allowed. Call a_special with a device connection, spec_func equal to 6, and
ioparm_ptr pointing to this structure:

DECLARE signal_pair STRUCTURE(
semaphore TOKEN,
character BYTE);

or

typedef struct {
SELECTOR semaphore;
UINT_8 character;

} SIGNAL_PAIR_STRUCT;

rq_a_special

System Call Reference Chapter 3 BIOS Calls 221

Where:

semaphore A token for the semaphore to be associated with the character. To
delete a signal character, use a null selector.

character The signal character.

Value Meaning
20H-40H Type-ahead buffer (and input buffer if a

buffered device) is cleared and a unit is
sent to the associated semaphore when it
receives a character in the 0 to FH range
(add 20H to desired control character).

0-1FH, 7FH TSC sends a unit to the associated
semaphore when it receives this ASCII
value

Tape Drive Functions (Function Codes 7, 8, 9 and 10)

Use these functions to perform 4 different operations on tape drives only:

Code Meaning
7 The tape drive rewinds a tape to its load point. This function also

terminates tape read and write operations. If a write operation, the tape
drive writes a file mark before rewinding the tape.

8 The tape drive moves the tape to the next file mark. This function also
terminates tape read operations. The value of the search field in the
read_file_mark structure (see below) determines the direction of the
search.

9 The tape drive writes a file mark at the current position. This function
also terminates tape write operations.

10 The tape drive fast-forwards the tape to the end and then rewinds it to
the load point.

If using Function Code 8, ioparm_ptr points to this structure:

DECLARE read_file_mark STRUCTURE (search BYTE);

or

typedef struct {
UINT_8 search;

} READ_FILE_MARK_STRUCT;

rq_a_special

222 BIOS Calls Chapter 3 BIOS System Calls

Where:

search A value indicating the direction of the search:

Value Meaning
00 search forward
0FFH search backward (for start/stop drives only)

Set and Get Bad Track/Sector Information (Function Codes 12 and 13)

Use these functions to set (write) or get (read) the bad track information of a
volume. When writing, bad track information already on the volume will be
overwritten. If you wish to change existing information, get, modify, then set it.
The ioparm_ptr parameter must point to this structure:

DECLARE bad_track_info STRUCTURE(
reserved WORD_16,
count WORD_16,
bad_tracks(1024) WORD_32),
badtracks(1024) STRUCTURE(
cylinder WORD_16,
head BYTE,
sector BYTE)
AT (@bad_track_info.bad_tracks);

or

typedef struct {
UINT_16 cylinder;
UINT_8 head;
UINT_8 sector;

} BAD_TRACK_STRUCT;

typedef struct {
UINT_16 reserved;
UINT_16 count;
BAD_TRACK_STRUCT bad_tracks[1024];

} BAD_TRACK_INFO_STRUCT;

rq_a_special

System Call Reference Chapter 3 BIOS Calls 223

Where:

reserved Reserved for use by the device driver.

count The number of bad tracks/sectors listed in the bad_tracks structure,
up to the maximum of 1024. A 0 in the count field indicates that no
valid information is available (get) or that there are no bad tracks
(set).

bad_tracks
A structure used to store the bad track/sector list. For each entry, a
sub-structure defines the cylinder, head, and sector for each bad track.
List bad tracks in ascending order.

Get Terminal Status (Function Code 16)

See also: Function Code 4, a_special,
Line editing, OSC sequences, translation, Driver Programming
Concepts

Call a_special with a connection for the terminal, spec_func equal to 16, and
ioparm_ptr pointing to this structure:

DECLARE term_status STRUCTURE(
terminal_flags WORD_16,
input_conn_flags WORD_16,
input_state WORD_16,
input_conn TOKEN,
input_count WORD_32,
input_actual WORD_32,
raw_buf_count WORD_16,
type_ahead_count BYTE,
num_input_requests BYTE,
output_conn_flags WORD_16,
output_state WORD_16,
output_conn TOKEN,
output_count WORD_32,
output_actual WORD_32,
out_buf_count WORD_16,
num_output_requests BYTE);

rq_a_special

224 BIOS Calls Chapter 3 BIOS System Calls

or

typedef struct {
UINT_16 terminal_flags;
UINT_16 input_conn_flags;
UINT_16 input_state;
SELECTOR input_conn;
NATIVE_WORD input_count;
NATIVE_WORD input_actual;
UINT_16 raw_buf_count;
UINT_8 type_ahead_count;
UINT_8 num_input_requests;
UINT_16 output_conn_flags;
UINT_16 output_state;
SELECTOR output_conn;
NATIVE_WORD output_count;
NATIVE_WORD output_actual;
UINT_16 out_buf_count;
UINT_8 num_output_requests;

} TERM_STATUS_STRUCT;

Where:
terminal_flags

The current attributes associated with the terminal. For bit encoding
information, see the terminal_flags parameter in the description
of function codes 4 and 5.

input_conn_flags
The current attributes associated with the terminal's active input
connection. For bit encoding information, see the
connection_flags parameter in the description of function codes 4
and 5.

input_state
The internal state of this terminal's input connection. Encoded as:

Bits Value Meaning
15 0 Type-ahead buffer not full

1 Full

14 0 In line-edit mode, current line not canceled
1 Canceled

13, 12 Reserved

11 0 No modem query pending
1 Modem query pending

rq_a_special

System Call Reference Chapter 3 BIOS Calls 225

Bits Value Meaning
10 0 Terminal not waiting for a carrier

1 Waiting; must be configured for a modem

9 0 Terminal not waiting for a ring interrupt
1 Waiting; must be configured for a modem

8 0 Terminal configured for a modem not available
1 Available

7 0 In line-edit mode, last line not recalled
1 Recalled with <Ctrl-R>

6 0 Escape sequence is not being processed
1 Escape sequence is being processed

5 0 Current character not preceded by a <Ctrl-P>
1 Preceded by a <Ctrl-P>; interpreted as data, not

as a line editing character

4 0 Complete line not processed
1 Processed and ready for transfer from the line-

edit buffer to the application task's buffer

3 0 OSC sequence is not being processed
1 OSC sequence is being processed

2 Reserved

1 0 Current input request not completed
1 Completed

0 0 Input request has not been set up
1 Set up

input_conn
A token for the most recently used input connection associated with
this terminal.

input_count
The number of characters requested by the latest input request.

input_actual
The number of characters moved from the raw input or type-ahead
buffer to the application task's buffer during the latest request.

raw_buf_count
The number of characters available in the raw input buffer.

type_ahead_count
The number of characters available in the type-ahead buffer.

rq_a_special

226 BIOS Calls Chapter 3 BIOS System Calls

num_input_requests
The number of input requests in the input queue for this terminal.

output_conn_flags
The current attributes associated with the terminal's active output
connection. For bit encoding information, see the
connection_flags parameter in the description of function codes 4
and 5.

output_state
The internal state of this terminal's output connection. Use this value
to determine if a terminal's output is hindered in some way (for
example, because an XOFF was received). If the logical-and of
output_state and E0H is not 0, output is hindered. Resume
terminal output by invoking a_special with function code 18. The bit
encoding is:

Bits Value Meaning
15-10 Reserved.

9 0 Terminal's current output request not canceled.
1 Canceled and is being flushed.

8 0 Output not blocked by XOFF.
1 Output blocked.

7 0 Not in scroll mode.
1 In scroll mode.

6 0 Output not blocked.
1 Blocked.

5 0 Not discarding terminal output.
1 In discarding mode.

4 Reserved

3 0 Transmitting characters on an interrupt-driven
basis.

1 Ready to transmit a character once the next
output request arrives.

2 0 Output request has not been set up.
1 Set up.

rq_a_special

System Call Reference Chapter 3 BIOS Calls 227

Bits Value Meaning

1-0 0 Output character processing is occurring
normally.

1 An ESC character has been encountered in the
output stream requiring special handling; it may
be part of an escape or OSC sequence or require
translation.

2 The previously encountered escape character is
part of an OSC sequence that is being
processed.

3 The previously encountered escape character is
part of an escape sequence that is being
translated.

output_conn
A token for the most recently used output connection associated with
this terminal.

output_count
The number of characters requested by the latest output request.

output_actual
The number of characters moved from the application task's buffer
into the output buffer during the latest output request.

out_buf_count
The number of characters still awaiting output from the output buffer
of the TSC or the buffered device.

num_output_requests
The number of output requests in the output queue for this terminal.

Cancel Terminal I/O (Function Code 17)

This function cancels all requests associated with a specified connection to a
terminal. It does not flush the outstanding input from the terminal.

Unless you have a reason to do otherwise, each task using a particular terminal
device should have its own connection to the device. Then the requests associated
with a private connection can be canceled without affecting other input requests on
the same terminal device.

rq_a_special

228 BIOS Calls Chapter 3 BIOS System Calls

Call a_special with a connection for the terminal, with spec_func equal to 17,
and with ioparm_ptr pointing to this structure:

DECLARE cancel_io STRUCTURE (cancel_conn_t TOKEN);

or

typedef struct {
SELECTOR cancel_conn_t;

} CANCEL_IO_STRUCT;

Where:

cancel_conn_t
A token for the connection whose requests are to be canceled. Setting
cancel_conn_t to a null selector cancels all input requests
associated with the specified connection. To determine which
connection is active and can be canceled, invoke a_special with
spec_func equal to 16 and check the token returned in the
input_conn parameter.

Resume Terminal I/O (Function Code 18)

This function enables a program to resume an output request that is blocked
because an output control character was entered at the terminal. Call a_special
with any connection for the blocked terminal and with spec_func equal to 18.
The ioparm_ptr parameter is ignored.

Perform Disk Mirroring (Function Code 19)

✏ Note

The two hard disks must have the same formatted capacity,
device granularity and should be the same model number to
ensure the same formatted capacity.

This function performs disk mirroring operations on the primary hard disk of the
mirror set. The iRMX PCI device driver implements the actual mirroring, error
detection and rollover, and on-line resynchronization.

See also: The mirror.lit and mirror.h files for the literal definitions for this
subfunction

rq_a_special

System Call Reference Chapter 3 BIOS Calls 229

Each mirrored disk contains a structure located in the Volume Label at a byte offset
of 896. When the first attach is performed on a hard disk, the device driver uses
this structure to detect whether this hard disk was part of a mirror set and, if it was,
to identify the name of the mirror. The format of this structure is:

DECLARE mirr_state_struct STRUCTURE(
other_name(4) BYTE,
valid_flg WORD_32,
incarnation WORD_32,
prim_flg BYTE,
good_flg BYTE);

or

typedef struct {
UINT_8 other_name[4];
UINT_32 valid_flg;
UINT_32 incarnation;
UINT_8 prim_flg;
UINT_8 good_flg;

} MIRR_STATE_STRUCT;

Where:

other_name
Specifies the null-terminated DUIB name of the other hard disk of the
mirror set. The DUIB name must be in capital letters, be null
terminated, and be a maximum of 14 characters, not including the
null.

valid_flg Specifies if the mirror set is valid. A valid set has the value
600DD5CH (looks like gooddisc) on both disks; an invalid set has the
value deadbeef . If the mirror set is valid, the device driver
automatically re-enables mirroring. The valid flag is set at the end of
a normal detach, if no I/O errors have occurred. The device driver
clears the flag on each disk when it reads the disk so that mirroring
would not be automatically enabled if the system crashes.

incarnation
A pattern that is written on the disks to uniquely identify the correct
instance of a mirror set.

prim_flg Specifies if this hard disk is the primary unit of a mirror set.

Value Meaning
1 Primary
2 Secondary

rq_a_special

230 BIOS Calls Chapter 3 BIOS System Calls

good_flg Indicates whether this disk was good when it was detached.

Value Meaning
0AAH Disk was good
055H Not good

To perform disk mirroring operations, call a_special with a token for a connection
and spec_func set to 19. Ioparm_ptr must point to a data structure which
contains a command byte followed by other fields that are dependent on the
subfunction being performed. These are the subfunctions:

Value Meaning
1 Create mirror set
2 Enable mirroring with resync
3 Disable mirroring
4 Request mirror event notification
5 Get mirror status
6 Get mirror attach status
7 Set mirror options
8-0FFH Reserved

Subfunction 1 creates the mirror set with the specified secondary hard disk. The
primary and secondary hard disk must have the same capacity and device
granularity.

DECLARE mirr_create_struct STRUCTURE(
cmd BYTE,
sec_name(6) BYTE);

or

typedef struct {
UINT_8 cmd;
UINT_8 sec_name[6];

} MIRR_CREATE_STRUCT;

Where:

cmd Has a value of 1.

sec_name The DUIB name of the secondary hard disk.

rq_a_special

System Call Reference Chapter 3 BIOS Calls 231

Subfunction 2 enables mirroring with resynchronization. Use this function only
after a mirror set has been created or if the mirror set has rolled over. Specify the
direction of the resynchronization in the structure. The device driver ensures that
the destination hard disk of the resynchronization operation is not the good hard
disk. The subfunction returns immediately; resynchronization is performed in the
background, one track at a time. I/O System read and write operations are allowed
on the mirror set while the resynchronization is in progress. If a write is directed at
the disk being resynchronized, the device driver delays the write operation until the
resynchronization is complete. The device driver signals resynchronization
completion or abort using the Request Mirror Event Notification subfunction.

DECLARE mirr_resync_struct STRUCTURE (
cmd BYTE,
resync_dir BYTE);

or

typedef struct {
UINT_8 cmd;
UINT_8 resync_dir;

} MIRR_RESYNC_STRUCT;

Where:

cmd Has a value of 2.

resync _dir
Has one of these valid values:

Value Meaning
1 Data is copied from the primary to the secondary.
2 Data is copied from the secondary to the primary.

Subfunction 3 disables the mirroring operation and is valid only after the mirror set
has been created. If a resynchronization is in progress, the resynchronization is
aborted. All pending I/O operations on the mirror set are completed before
mirroring is disabled. The call returns an error if the mirror set does not exist.

DECLARE mirr_disable_struct STRUCTURE (
cmd BYTE);

or

typedef struct {
UINT_8 cmd;

} MIRR_DISABLE_STRUCT;

rq_a_special

232 BIOS Calls Chapter 3 BIOS System Calls

Where:

cmd Has a value of 3.

Subfunction 4 requests the device driver to notify the task of a mirror event and
provides a data mailbox to the device driver for reporting the event. Once a
message has been sent to the mailbox, the application must issue a new request for
mirror event notification. The device driver saves one event per mirror set if a
request for event notification for the mirror set has not been issued.

DECLARE mirr_notify_struct STRUCTURE (
cmd BYTE,
reserved BYTE,
mailbox TOKEN);

or

typedef struct {
UINT_8 cmd;
UINT_8 reserved;
SELECTOR mailbox;

} MIRR_NOTIFY_STRUCT;

Where:

cmd Has a value of 4.

mailbox The token for a data mailbox, not a message mailbox. The device
driver sends a 1 byte message to the mailbox after a mirror event has
occurred. These are valid event codes:

Value Meaning
1 Resync complete
2 Resync aborted
3 Rollover

rq_a_special

System Call Reference Chapter 3 BIOS Calls 233

Subfunction 5 gets the status of the mirror set and returns it in this structure:

DECLARE mirr_stat_struct STRUCTURE (
cmd BYTE,
mirr_set_state BYTE,
err_flg BYTE,
last_scsi_err(3) BYTE,
last_pci_error BYTE,
read_policy BYTE,
primary_unit(16) BYTE,
sec_unit(16) BYTE,
src_good_unit(16) BYTE,
last_err_unit(16) BYTE,
last_rmx_err WORD_16,
last_err_addr WORD_32,
resync_percent BYTE);

or

typedef struct {
UINT_8 cmd;
UINT_8 mirr_set_state;
UINT_8 err_flg;
UINT_8 last_scsi_err[3];
UINT_8 last_pci_error;
UINT_8 read_policy;
UINT_8 primary_unit[16];
UINT_8 sec_unit[16];
UINT_8 src_good_unit[16];
UINT_8 last_err_unit[16];
UINT_16 last_rmx_err;
UINT_32 last_err_addr;
UINT_8 resync_percent;

} MIRR_STAT_STRUCT;

Where:

cmd Has a value of 5.

rq_a_special

234 BIOS Calls Chapter 3 BIOS System Calls

mirr_set_state
The state of the mirror set. These values are possible:

Value Meaning
0 Not part of a mirror set
1 Mirror set created
2 Mirroring enabled
3 Resync in progress
4 Rollover

err_flg Indicates whether the error status returned is valid.

Value Meaning
0FFH Valid
0 Invalid

last_scsi_err
Contains 3 bytes of SCSI error status of the last error that occurred on
the mirror set.

See also: Errors, in your SCSI documentation

last_pci_err
The PCI error status of the last error that occurred on the mirror set.

See also: Error messages, How to Use the Peripheral Controller
Interface Server

read_policy
Indicates:

Value Meaning
1 Reads are performed from the primary.
2 Reads are performed from the secondary.
3 Reads are performed alternately.

primary_unit
The DUIB name of the primary unit.

sec_unit The DUIB name of the secondary unit.

src_good_unit
The DUIB name of the source unit if a resync is in progress, or of the
good unit if the mirror set has rolled over.

last_err_unit
The DUIB name of the unit on which an error occurred.

last_rmx_err
The iRMX condition code of the last error that occurred on the mirror
set.

rq_a_special

System Call Reference Chapter 3 BIOS Calls 235

last_err_addr
The block address of the last error that occurred on the mirror set.

resync_percent
The amount of resynchronization that is complete, shown in a
percentage value. For example, 25% complete means that there is
75% more to go before the resynchronization is complete.

Subfunction 6 returns the status of a hard disk that is controlled by a device driver.
This call may be directed at any attached disk hard disk controlled by the device
driver. The hard disk need not be part of any mirror set.

DECLARE mirr_attach_struct STRUCTURE (
cmd BYTE,
attach_status BYTE,
other_name(16) BYTE,
incarnation WORD_32,
good_flg BYTE);

or

typedef struct {
UINT_8 cmd;
UINT_8 attach_status;
UINT_8 other_name[16];
UINT_32 incarnation;
UINT_8 good_flg;

} MIRR_ATTACH_STRUCT;

Where:

cmd Has a value of 6.

attach_status
The mirroring status when the device is attached.

Value Meaning
0 No mirroring information is available.
1 Mirror set is valid.
2 Mirror set is not valid.
3 This device is not the primary unit.
4 An error occurred on the secondary during attach.
5 The secondary is inconsistent.

other_name
The DUIB name of the other unit of the mirror set.

incarnation
The pattern that is written on the disks when the mirror set was
detached, to uniquely identify the correct instance of a mirror set.

rq_a_special

236 BIOS Calls Chapter 3 BIOS System Calls

good_flg Specifies whether this disk was marked good when it was detached:

0AAH Disk was good
055H Disk was not good

Subfunction 7 dynamically changes some parameters associated with a mirror set.

DECLARE mirr_opt_struct STRUCTURE(
cmd BYTE,
read_policy BYTE);

or

typedef struct {
UINT_8 cmd;
UINT_8 read_policy;

} MIRR_OPT_STRUCT;

Where:

cmd Has a value of 7.

read_policy
Indicates:

Value Meaning
1 Reads are performed from the primary.
2 Reads are performed from the secondary.
3 Reads are performed alternately.

The read policies are in effect only when mirroring is enabled. At
other states, the reads are performed from one hard disk. During
resynchronization, that hard disk is the source hard disk. During
rollover, that hard disk is the surviving hard disk.

Get Device Free Space Data (Function Code 20)

This function returns information about the free space available on the specified
device.

Call a_special with a device or file connection, function set to 20, and
ioparm_ptr pointing to a structure of this form. Set resp_mbox to null.

DECLARE device_free_struct STRUCTURE(
sector_size WORD_16
device_size WORD_32
bytes_free WORD_32
files_free WORD_32
reserved(2) WORD_32);

rq_a_special

System Call Reference Chapter 3 BIOS Calls 237

or

typedef struct {
UINT_16 sector_size;
UINT_32 device_size;
UINT_32 bytes_free;
UINT_32 files_free
UINT_32 reserved[2];

}DEVICE_FREE_STRUCT;

Where:

sector_size
The minimum I/O transfer size for the device.

device_size
The total number of bytes available on the device (when empty).

bytes_free
The number of bytes available in the device file system.

files_free
The number of files available in the device filesystem. A returned
value of 0FFFFFFFFH indicates that this field does not apply; the
number of files in the file system is limited only by the space on the
device (DOS and EDOS file drivers).

rq_a_special

238 BIOS Calls Chapter 3 BIOS System Calls

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_BUFFERED_CONN 0036H The connection parameter was opened with an
EIOS call.

E_EXIST 0006H At least one of these is true:
• One or more of the connection ,

resp_mbox , mailbox , object , or
semaphore parameters or fields is not a
token for an existing object.

• The connection is being deleted.
• The connection for a remote driver is no

longer active.
• The mirror set secondary hard disk's DUIB

is not configured.

E_IO 002BH An error occurred while initializing the mirror
set's secondary hard disk.

E_IFDR 002FH The spec_func requested is not valid for the file
type specified by the connection parameter.

E_LIMIT 0004H The calling task's job has already reached its
object limit.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_a_special

System Call Reference Chapter 3 BIOS Calls 239

E_PARAM 8004H At least one of these is true:
• The spec_func parameter was greater than

20 but less than 32K.
• The entire user-provided structure does not

have the correct read/write accesses as
described below:
Not Readable Not Writable
format track get disk/tape date
notify get terminal data
set terminal data get bad track info
set signal
set bad track info

• The ioparm_ptr pointer is invalid.
• The auxiliary pointer is invalid.
• The mirror set's secondary hard disk does

not have the same device capacity or device
granularity as the primary hard disk.

• The mirror disk resynchronization direction
value is out of range, or the resync
destination unit is the same as the good unit.

• The mirror disk read policy value is out of
range.

E_STATE 0007H One of these is true:
• The mirror set has not been created.
• Resynchronization is already in progress.
• Mirroring is already enabled.
• The mirror set already exists.

E_SUPPORT 0023H The specified connection was not created by this
job.

E_TYPE 8002H One or more of the connection, resp_mbox,
mailbox, or semaphore parameters or fields is a
token for an existing object of the wrong type.

rq_a_special

240 BIOS Calls Chapter 3 BIOS System Calls

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_CONN_NOT_OPEN 0034H The specified connection is not open. This
applies only to stream and physical files.

E_FLUSHING 002CH The specified connection was closed before the
function could be completed.

E_IDDR 002AH The specified function is not supported by the
device containing the file.

E_IO 002BH An I/O error occurred that might have prevented
the operation from completing. Examine the
unit_status field of the IORS for more
information.

See also: IORS, Chapter 1,
Accessing the IORS, Programming
Techniques

E_IO_ALT_ASSIGNED 0058H An alternate has already been assigned for a bad
track.

E_IO_MEM 0042H The memory pool of the BIOS on the server does
not have enough memory for the system call to
finish.

E_IO_NO_SPARES 0057H No more alternate tracks are available.

E_NOT_DEVICE_CONN 0033H The function code is 2 (notify), but the specified
connection is not a device connection. This
applies only to named and physical files.

E_SPACE 0029H This call attempted to format a track of a
physical file beyond the end of the volume, or of
a RAM disk other than track 0.

E_STREAM_SPECIAL 003CH This applies only to stream files. One of these is
true:
• This is a query request, but another query is

already queued.
• This is a satisfy request, but either a query

request is queued, or no requests are queued.

rq_a_truncate

System Call Reference Chapter 3 BIOS Calls 241

a_truncate
Truncates a named (including DOS and remote) data file at the current setting of
the file pointer, freeing all allocated space beyond the pointer. Directory files
cannot be truncated; an attempt returns E_SUPPORT.

Syntax, PL/M and C

CALL rqatruncate (connection, resp_mbox, except_ptr);

rq_a_truncate (connection, resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for an open connection to the file being truncated.

resp_mbox
The mailbox that receives a token for an IORS. A null selector means that you do
not want to receive an IORS.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

Use a_seek to position the pointer before calling a_truncate. If the file pointer is
at or beyond the EOF, no operation is performed.

For iRMX files, the designated file connection must be open for writing and the
user must have update access to the file. For DOS files, the World user must have
write access to the file.

See also: a_change_access, EIOS call s_change_access

Truncation is performed immediately, rather than waiting until connections to the
file are deleted.

rq_a_truncate

242 BIOS Calls Chapter 3 BIOS System Calls

File pointers for connections to the file are not adjusted by the truncation operation,
and may be invalid or beyond the new EOF. If you then invoke a_write, the BIOS
extends the file to accommodate the writing operation. The file will contain
random data between the old EOF and the pointer to where the write begins.

You can also invoke a_read with the file pointer beyond the EOF, but the BIOS
will return the actual field of the IORS as 0, signifying the EOF.

See also: a_seek, a_write, a_read

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_BUFFERED_CONN 0036H The connection was produced by the EIOS. You
cannot use it with BIOS calls.

E_EXIST 0006H At least one of these is true:
• One or more of the connection or

resp_mbox parameters is not a token for an
existing object.

• The connection is being deleted.
• The connection for a remote driver is no

longer active.

E_IFDR 002FH This system call applies only to named files
(including DOS and remote), but the connection
parameter specified some other type of file.

E_LIMIT 0004H At least one of these is true:
• The calling task's job has already reached its

object limit.
• The number of outstanding I/O operations

for a remote connection has been exceeded.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H At least one of these is true:
• The specified connection was not created by

this job.
• The file is a directory file.

rq_a_truncate

System Call Reference Chapter 3 BIOS Calls 243

E_TYPE 8002H Either the connection parameter is not a token
for a connection object, or the resp_mbox
parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_CONN_NOT_OPEN 0034H The specified file is not open for writing or
updating.

E_FACCESS 0026H An attempt was made to truncate a file that was
created with no update access.

E_IO 002BH An I/O error occurred which might have
prevented the operation from completing.
Examine the unit_status field of the IORS for
more information.

See also: IORS, Chapter 1,
Accessing the IORS, Programming
Techniques

rq_a_update

244 BIOS Calls Chapter 3 BIOS System Calls

a_update
Updates all physical, named, remote, and DOS data or directory files on a device
by writing all partial sectors that remain buffered in the BIOS.

Syntax, PL/M and C

CALL rqaupdate (connection, resp_mbox, except_ptr);

rq_a_update (connection, resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for a file or device connection.

resp_mbox
The mailbox that receives a token for an IORS. A null selector means that you do
not want to receive an IORS.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

When the BIOS performs an a_write operation, it writes only entire sectors. If a
partial sector remains to be written, the BIOS usually leaves the data in an output
buffer. The next time a_write is called, the BIOS combines the leftover data in the
buffer with the data in the new request and again begins writing entire sectors.
A_update forces the BIOS to finish the writing operation for a device by writing
all buffers pertaining to files on a particular device. This ensures that files on
removable volumes such as diskettes are updated before removal.

A_update has no effect on buffers that the EIOS manages.

See also: a_write

rq_a_update

System Call Reference Chapter 3 BIOS Calls 245

Three different events can cause the BIOS to update a device:

• Calling a_update

• Fixed updating

• Timeout updating

Fixed updating and timeout updating are triggered by the passing of possibly
different amounts of time.

See also: Fixed updating and timeout updating, Introducing the iRMX
Operating Systems

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H At least one of these is true:
• One or more of the connection or resp_mbox

parameters is not a token for an existing
object.

• The connection is being deleted.
• The connection for a remote driver is no

longer active.

E_IFDR 002FH An attempt was made to update a stream file
connection.

E_LIMIT 0004H At least one of these is true:
• The calling task's job has already reached its

object limit.
• The number of outstanding I/O operations

for a remote connection has been exceeded.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H The specified connection was not created by this
job.

E_TYPE 8002H Either the connection parameter is not a token
for a connection object, or the resp_mbox
parameter is not a mailbox token.

rq_a_update

246 BIOS Calls Chapter 3 BIOS System Calls

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_IO 002BH An I/O error occurred which might have
prevented the operation from completing.
Examine the unit_status field of the IORS for
more information.

See also: IORS, Chapter 1,
Accessing the IORS, Programming
Techniques

E_NOT_FILE_CONN 0032H The connection parameter is a device
connection, not a file connection.

rq_wait_io

System Call Reference Chapter 3 BIOS Calls 247

wait_io
Returns the concurrent condition code for the prior call to the calling task. Use
with any type of file.

Syntax, PL/M and C

actual = rq$wait$io (connection, resp_mbox, time_limit,
except_ptr);

actual = rq_wait_io (connection, resp_mbox, time_limit,
except_ptr);

Parameter PL/M Data Type C Data Type
actual WORD_32 NATIVE_WORD
connection SELECTOR SELECTOR
resp_mbox SELECTOR SELECTOR
time_limit WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
actual

Returns the number of bytes read or written in the prior asynchronous system call.
This value is undefined if the prior call was to a_seek, or if the exception value is
other than E_OK.

Parameters
connection

A token for the connection specified in the prior asynchronous system call.

resp_mbox
A token for the response mailbox specified in the prior asynchronous system call.

time_limit
Specifies how long the task calling wait_io is willing to wait for the IORS to arrive
at the response mailbox.

Value Meaning
0 Do not wait.
1-65534 Wait this number of Nucleus clock intervals.
65535 Wait forever.

rq_wait_io

248 BIOS Calls Chapter 3 BIOS System Calls

except_ptr
A pointer to a variable declared by the application where either the concurrent
condition code for the prior asynchronous system call or the sequential condition
code for wait_io returns.

Additional Information

Use wait_io following a call to a_read, a_write, or a_seek. If applicable, wait_io
also returns the number of bytes read or written.

There are two ways in which a task calling a_read, a_write, or a_seek can receive
the information in the IORS. One way is for the task to wait at the response
mailbox, receive the IORS there, extract the information, and delete the segment.

See also: IORS, Chapter 1,
Accessing the IORS, Programming Techniques

The other way is to call wait_io. After the asynchronous portion of the previous
I/O call has been completed, wait_io returns the result of that call as follows:

• To actual , the number of bytes read for a_read or written for a_write. If the
previous call was to a_seek, the value in actual is undefined.

• To the location pointed to by the except_ptr parameter, the concurrent
condition code from the previous I/O call or the sequential condition code from
the wait_io call. If either of these is not E_OK, the previous call's concurrent
code returns; if both of the condition codes are not E_OK, the wait_io
sequential code returns.

Wait_io does not return E_LIMIT, E_MEM, and E_SUPPORT, so if one of these
returns, it came from the previous I/O call. If the previous I/O call caused an E_IO
condition code, wait_io does not return this code. In this case only, wait_io returns
these condition codes for that call (see descriptions under Condition Codes):

Value Mnemonic
50H E_IO_UNCLASS
51H E_IO_SOFT
52H E_IO_HARD
53H E_IO_OPRINT
54H E_IO_WRPROT
55H E_IO_NO_DATA
56H E_IO_MODE
57H E_IO_N_OSPARES
58H E_IO_ALT_ASSIGNED

When wait_io is used with EIOS calls, and an exception code is returned, the
actual field in the IORS is invalid.

rq_wait_io

System Call Reference Chapter 3 BIOS Calls 249

For applications using wait_io, tasks do not have to deal with and delete the IORS.
The BIOS maintains its own supply of IORSs that can be used repeatedly. This
enhances performance because the BIOS does not have to create a segment every
time an IORS is needed. This provides a significant advantage with the frequently-
used calls a_read, a_write, and a_seek.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H At least one of these is true:
• One or more of the connection or

resp_mbox parameters is not a token for an
existing object.

• The specified connection and/or response
mailbox was deleted.

• The token returned to the specified mailbox
was for an object that had been deleted.

E_IO_HARD 0052H A hard I/O error occurred. Another retry is
probably useless.

E_IO_MODE 0055H At least one of these is true:
• A tape drive attempted to perform a read

operation before the previous write
operation completed.

• A tape drive attempted to perform a write
operation before the previous read operation
completed.

E_IO_NO_DATA 0056H A tape drive attempted to read the next record,
but it found no data.

E_IO_OPRINT 0053H The device was off-line. Operator intervention is
required.

E_IO_SOFT 0051H A soft I/O error occurred. The BIOS tried to
perform the operation the configured number of
times. All attempts failed. Another retry
probably won't be successful.

E_IO_UNCLASS 0050H An unknown type of I/O error occurred.

E_IO_WRPROT 0054H The asynchronous operation was a_write and the
volume was write-protected.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_wait_io

250 BIOS Calls Chapter 3 BIOS System Calls

E_TIME 0001H One of these is true:
• The calling task was not willing to wait, and

there was no IORS at the specified mailbox.
• The specified waiting period elapsed before

the response mailbox received an IORS.

E_TYPE 8002H At least one of these is true:
• The connection parameter is not a token

for a connection object.
• The resp _mbox parameter is not a mailbox

token.
• The object received at the response mailbox

is not a segment or is a segment that is not
an IORS.

rq_wait_iors

System Call Reference Chapter 3 BIOS Calls 251

wait_iors
Waits for an IORS and copies it to a user-provided buffer.

Syntax, PL/M and C

CALL rq$wait$iors (conn, mbox, time, iors_ptr, except_ptr);

rq_wait_iors (conn, mbox, time, iors_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
conn SELECTOR SELECTOR
mbox SELECTOR SELECTOR
time WORD_16 UINT_16
iors_ptr POINTER void *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

conn A token for the connection specified in the prior asynchronous system call.

mbox A token for the response mailbox specified in the prior asynchronous system call.

time Specifies how long the calling task is willing to wait.

Value Meaning
0 Do not wait.
1-65534 Wait this number of Nucleus clock intervals.
65535 Wait forever.

iors_ptr
A pointer to a buffer declared by the application where the IORS will be placed.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Wait_iors can be called after any BIOS asynchronous system call. It returns an
IORS in the preallocated buffer provided in the call. Internally, the IORS segment
is copied to the buffer and then either recycled (for read/write/seek) or deleted.
This call simplifies I/O for a flat model application since the application cannot
access an IORS segment directly without a far pointer. Wait_iors can be used by
both segmented and flat model applications.

rq_wait_iors

252 BIOS Calls Chapter 3 BIOS System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H The conn parameter is not a connection token or
the mbox parameter is not a mailbox token.

E_PARAM 8004H The iors_ptr parameter is not writable.

E_TIME 0001H No IORS was received in the time specified or
the caller was not willing to wait and there was
no IORS at the mailbox.

rq_a_write

System Call Reference Chapter 3 BIOS Calls 253

a_write
Writes data from the calling task's buffer to a connected physical, stream, named,
remote, or DOS file. You cannot write to directory files; an attempt returns
E_SUPPORT.

▲▲! CAUTION
The buffer supplying the data to be written should not be
modified until the write request has been acknowledged at the
response mailbox.

Syntax, PL/M and C

CALL rqawrite (connection, buff_ptr, count, resp_mbox,
except_ptr);

rq_a_write (connection, buff_ptr, count, resp_mbox,
except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
buff_ptr POINTER UINT_8 far *
count WORD_32 NATIVE_WORD
resp_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for the open connection through which the write operation is to take place.

buff_ptr
A pointer to the buffer that contains the data to be written.

count
The number of bytes to be written.

resp_mbox
The mailbox that receives a token for an IORS. A null selector means that you do
not want to receive an IORS.

except _ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

rq_a_write

254 BIOS Calls Chapter 3 BIOS System Calls

Additional Information

The designated file connection must be open for writing, and it must have append
or update access to the file.

See also: a_change_access, s_change_access

A_write starts writing at the current location of the connection's file pointer. After
the write operation, the file pointer is positioned just after the last byte written. It
may be more efficient to start writes on device block boundaries and write an
integral number of device blocks.

Segments have a maximum length of 4 Gbytes, and data transfers of this size can
be requested.

For named files, use a_seek to position the file pointer beyond the EOF. If you
then invoke a_write, the BIOS extends the file to accommodate the writing
operation. The file will contain random data between the old EOF and the pointer
to where the write begins.

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.

E_BAD_BUFF 8023H At least one of these is true:
• The user-provided memory buffer is not

readable or crosses memory boundaries.
• The target memory buffer crosses a segment

boundary.

E_BUFFERED_CONN 0036H The connection parameter was opened with an
EIOS call. You cannot use it with a_read.

E_EXIST 0006H At least one of these is true:
• One or more of the connection or

resp_mbox parameters is not a token for an
existing object.

• The connection is being deleted.

E_LIMIT 0004H The calling task's job has already reached its
object limit.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_a_write

System Call Reference Chapter 3 BIOS Calls 255

E_SUPPORT 0023H At least one of these is true:
• The specified connection was not created by

this job.
• The file is a directory file.

E_TYPE 8002H Either the connection parameter is not a token
for a connection object, or the resp_mbox
parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_CONN_NOT_OPEN 0034H The connection is not open for writing or
updating.

E_FACCESS 0026H The specified connection does not have update
or append access to the file.

E_FLUSHING 002CH At least one of these is true:
• The specified connection was closed before

the write operation could be performed.
• The specified file is a stream file, and all

other connections are also requesting to
write to the file.

E_FNODE_LIMIT 003FH The file cannot be created or extended to this
size because it has reached the maximum
number of volume blocks.

See also: File driver limitations, System
Concepts manual

E_FRAGMENTATION 0030H The disk is too fragmented to extend the file.
Try copying the file to a temporary file, deleting
the original file, and renaming the temporary file
to the original name.

E_IO 002BH An I/O error occurred which might have
prevented the operation from completing.
Examine the unit_status field of the IORS for
more information.

See also: IORS, Chapter 1,
Accessing the IORS, Programming
Techniques

rq_a_write

256 BIOS Calls Chapter 3 BIOS System Calls

E_SPACE 0029H
At least one of these is true:
• The volume is full.
• The operation attempted to write beyond the

end of the device. This applies only to
physical files.

E_SUPPORT 0023H If carried out, the write operation would extend
the file, but the BIOS is not configured to allow
file extension.

■■ ■■ ■■

System Call Reference Chapter 4 EIOS Calls 257

Extended I/O System Calls 4
s_attach_file

Creates a connection to an existing name DOS, remote, physical, or stream file.

Syntax, PL/M and C

connection = rqsattach$file (path_ptr, except_ptr);

connection = rq_s_attach_file (path_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
path_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
connection

The token for the new connection to the file.

Parameters
path_ptr

A pointer to a STRING containing the pathname of the file to be attached.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

For a named file (including DOS), the EIOS computes access rights for the
connection, which are based on the file's access list and the user IDs in the default
user object of the calling task's job. If the file's access list enables no access to the
users listed in the default user object, the call creates the connection, but enables no
access.

rq_s_attach_file

258 EIOS Calls Chapter 4 EIOS System Calls

See also: Access rights, System Concepts

The iRMX-NET remote file's access rights are checked during operations on the
connection. This won't affect your programs if you do this:

• Open, delete, and rename files prior to changing their access lists.

• Establish connections to files after changing their access lists.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_ALREADY_ATTACHED 0038H The EIOS cannot attach the device containing
the file because the BIOS has done so.

E_CONTEXT 0005H The calling task's job is not an I/O job.

E_DEV_DETACHING 0039H The device containing the specified file is being
detached.

E_DEVFD 0022H The EIOS attempted to physically attach a
device that had formerly been only logically
attached. It found that the device and the device
driver specified in the logical attachment were
incompatible.

E_EXIST 0006H The connection parameter references a file on an
invalid device. The BIOS generates this code.

E_FACCESS 0026H The default user object is not allowed access to
the file.

E_FNEXIST 0021H A file in the specified path, or the target file
itself, does not exist or is marked for deletion.

E_FTYPE 0027H The path_ptr parameter specifies a data file as a
directory.

E_ILLVOL 002DH The EIOS attempted to physically attach a
device that had formerly been only logically
attached. It found that the volume does not
contain named files. The named file driver was
requested during logical attachment.

E_INVALID_FNODE 003DH The fnode for the specified file is invalid. The
file cannot be accessed; delete it or fix it with
diskverify .

See also:diskverify , Command Reference

rq_s_attach_file

System Call Reference Chapter 4 EIOS Calls 259

E_IO_HARD 0052H A hard error occurred; the BIOS cannot retry the
request.

E_IO_MEM 0042H The BIOS job did not have enough memory to
perform the requested function.

E_IO_OPRINT 0053H The device was off-line. Operator intervention is
required.

E_IO_SOFT 0051H A soft I/O error occurred. The BIOS tried to
perform the operation a number of times and
failed. The number of retries is a configuration
parameter. Another retry might be successful.

See also: For ICU-configurable systems, RPA
parameter, ICU User's Guide and
Quick Reference

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_LIMIT 0004H At least one of these is true:
• The calling task reached the object limit.
• DOS has run out of file handles.
• The user object or the calling task's job is

involved in 255 I/O operations.
• The calling task's job is not an I/O job.
• Processing this call would deplete the

remote server's resources.

E_LOG_NAME_NEXIST 0045H The specified path contains a logical name, but
the call was unable to find this name in the
object directories of the calling task's local job,
the global job, or the root job.

E_LOG_NAME_SYNTAX 0040H The specified logical name contains at least one
of these syntax errors:
• DOS has run out of file handles.
• The logical name is missing matching

colons.
• The specified path contains a logical name

that exceeds 12 characters, has no
characters, or contains invalid characters.

E_MEDIA 0044H The device containing the specified file is
off-line.

rq_s_attach_file

260 EIOS Calls Chapter 4 EIOS System Calls

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NAME_NEXIST 0049H The user object does not represent a verified user
or is not properly defined in the remote server's
UDF. Only dynamic logon creates verified
users.

E_NOPREFIX 8022H The default prefix for the calling task's job is
undefined, or is not a valid device or file
connection.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_LOG_NAME 8040H The specified path contains a logical name that
represents an object that is not a device
connection or a file connection.

E_NOUSER 8021H The calling task's job does not have a default
user, or is not a user object.

E_PARAM 8004H The EIOS attempted to physically attach a
device that had formerly been only logically
attached. The logical attachment referred to a
file driver (named, physical, or stream) that is
not configured into your system.

See also: For ICU-configurable systems, DFD
parameter, ICU User's Guide and
Quick Reference

E_PASSWORD_MISMATCH 004BH The password of the default user object does not
match the password of the corresponding user
defined on the remote server.

E_PATHNAME_SYNTAX 003EH The specified pathname contains invalid
characters.

E_UDF_IO 02D0H An error occurred while accessing the remote
server's UDF. The server's UDF must have
World read permission.

rq_s_catalog_connection

System Call Reference Chapter 4 EIOS Calls 261

s_catalog_connection
Creates a logical name for a connection by cataloging the connection in the object
directory of a specific job.

Syntax, PL/M and C

CALL rqscatalog$connection (job, connection, log_name_ptr,
except_ptr);

rq_s_catalog_connection (job, connection, log_name_ptr,
except_ptr);

Parameter PL/M Data Type C Data Type
job SELECTOR SELECTOR
connection SELECTOR SELECTOR
log_name_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

job A token for the job in whose object directory the logical name is cataloged. If a
null selector, the EIOS catalogs the connection in the object directory of the calling
task's job.

connection
A token for the connection to be assigned the logical name. If a null selector, the
EIOS looks up the name in the object directory of the calling task's job.

log_name_ptr
A pointer to a STRING of 12 or fewer characters, possibly delimited with colons,
containing the logical name. The OS removes the colons so that a logical name
with colons is the same as one without; :F0: is the same as F0. Colons do not
count in the length of the name. To use this logical name in other EIOS calls, use
colons.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_s_catalog_connection

262 EIOS Calls Chapter 4 EIOS System Calls

Additional Information

The EIOS converts the characters in the log_name_ptr STRING to uppercase and
catalogs the connection in the object directory of the specified job. Two situations
affect the outcome of this system call:

• If the job's object directory contains the logical name, the new connection
replaces the existing object in the directory.

• If the connection parameter is a null selector, the system copies the logical
name and its definition from the calling task's job into the object directory of
the specified job.

Do not delete a task while it is using this system call.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The job in which the task is attempting to
catalog the connection has an object directory
that is 0 bytes long.

E_EXIST 0006H The job or connection parameter is not a token
for an existing object.

E_LIMIT 0004H At least one of these is true:
• The object directory for the specified job is

full.
• The calling task's job is not an I/O job.

E_LOG_NAME_NEXIST 0045H The EIOS was unable to find the specified
logical name in the object directory of the
calling task's job.

E_LOG_NAME_SYNTAX 0040H The specified logical name contains at least one
of these syntax errors:
• The logical name was missing matching

colons.
• The specified path contains a logical name

that exceeds 12 characters, has no
characters, or contains invalid characters.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_s_catalog_connection

System Call Reference Chapter 4 EIOS Calls 263

E_NOT_CONNECTION 8042H The connection parameter is not a connection
object token.

E_TYPE 8002H The job parameter is a not a job token.

rq_s_change_access

264 EIOS Calls Chapter 4 EIOS System Calls

s_change_access
Changes the access list for a named file (including remote and DOS). This system
call can be used for data or directory files, including those created by the BIOS.

Syntax, PL/M and C

CALL rqschange$access (path_ptr, id, access, except_ptr);

rq_s_change_access (path_ptr, id, access, except_ptr);

Parameter PL/M Data Type C Data Type
path_ptr POINTER STRING far *
id WORD_16 UINT_16
access BYTE UINT_8
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
path_ptr

A pointer to a STRING containing a path to the file whose access is changed.

id The ID of the user whose access to the file is changed, not necessarily the owner's
ID. If the file's access list contains the ID, the EIOS changes the ID's current
access. If not, the EIOS adds the ID to the file's access list, unless the list is full
(contains three entries). For DOS files, no IDs can be added or deleted since the
user is World. For NFS files, user IDs may be mapped differently between
different OSs.

access
Defines the new access rights to be assigned to the specified user. If 0, the EIOS
removes the specified ID (for iRMX files only) from the access list. If not 0, the
meaning of the various bit settings vary if the file is a data file or a directory file.
The following tables show the access rights for data and directory files. Setting a
bit to 1 enables access, 0 denies access. For NFS files, access rights may be
mapped differently between different OSs.

See also: Accessing NFS Files, Chapter 17, System Concepts

rq_s_change_access

System Call Reference Chapter 4 EIOS Calls 265

Bits Data File Access Rights
7-4 Reserved. Set to 0.
3 Update: Permission to write over any information in the file using

s_write_move or a_write, and permission to truncate the file using
s_truncate_file or a_truncate. Does not include permission to add
information to the end of the file. Set this bit to the same value as bit 2
(Append) for remote files.

2 Append: Permission to write information at the end of the file using
s_write_move or a_write. Does not include permission to write over
information in the file or permission to truncate the file. Set this bit to
the same value as bit 3 (Update) for remote files.

1 Read: Permission to read data from the file using s_read_move or
a_read.

0 Delete: Permission to delete the entire file using s_delete_file or
a_delete_file. Enable changing the filename using s_rename_file or
a_rename_file. This bit is ignored for remote files.

Bits Directory File Access Rights
7-4 Reserved. Set to 0.
3 Change entry: Permission to change the access list associated with a file

contained in the directory using a_change_access or s_change_access.
This does not include permission to add new entries or change the access
list of the directory where the file is cataloged. This bit is ignored for
remote directories.

2 Add entry: Permission to add files to the directory using a_create_file,
a_create_directory, a_rename_file, s_create_file, s_create_directory,
or s_rename_file. This does not include permission to change existing
entries.

1 List: Permission to read information from the directory using a_read,
a_get_directory_entry, or s_read_move.

0 Delete: Permission to delete the directory using a_delete_file or
s_delete_file. Enable changing the directory name by using
a_rename_file or s_rename_file. This bit is ignored for remote
directories.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_s_change_access

266 EIOS Calls Chapter 4 EIOS System Calls

Additional Information

To change the access rights associated with a file, one of the IDs in the job's default
user object must be the owner of the file, have change-entry access to the parent
directory of the file, or be the system manager.

See also: Owners, access rights, default user objects, System Concepts

The DOS World user always has read (list) access to DOS files and directories;
write (delete, append, update, add-entry and change-entry) access is optional.

You cannot change the access rights of an iRMX-NET virtual root directory,
because a virtual root directory has no assigned owner; an E_FACCESS condition
code returns.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_ALREADY_ATTACHED 0038H The EIOS cannot attach the device containing
the file because the BIOS has done so.

E_CONTEXT 0005H The calling task's job is not an I/O job.

E_DEV_DETACHING 0039H The device containing the specified file is being
detached.

E_DEVFD 0022H The EIOS attempted to physically attach a
device that had formerly been only logically
attached. It found that the device and the device
driver specified in the logical attachment were
incompatible.

E_FACCESS 0026H The job containing the calling task meets none of
the prerequisites for using this system call. None
of the IDs in the job's default user object is the
owner of the file, nor does any have change-
entry access to the file's parent directory.

rq_s_change_access

System Call Reference Chapter 4 EIOS Calls 267

E_FNEXIST 0021H One of these is true:
• A file in the specified path, or the target file

itself, does not exist or is marked for
deletion.

• The physical device was not found. The
device was specified by the original call to
a_physical_attach_device and is indicated
in this call by the path_ptr parameter.
See also: BIOS call

a_physical_attach_device

E_FTYPE 0027H The path_ptr parameter specifies a data file as a
directory.

E_IFDR 002FH The file driver associated with this connection is
the physical or stream file driver.

E_ILLVOL 002DH The EIOS attempted to physically attach a
device that had formerly been only logically
attached. It found that the volume does not
contain named files. The named file driver was
requested during logical attachment.

E_INVALID_FNODE 003DH The fnode for the specified file is invalid. The
file cannot be accessed; delete it or fix it with
diskverify .

See also:diskverify , Command Reference

E_IO_HARD 0052H A hard error occurred; the BIOS cannot retry the
request.

E_IO_OPRINT 0053H The device was off-line. Operator intervention is
required.

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation a number of times and
failed. The number of retries is a configuration
parameter. Another retry might be successful.

See also: For ICU-configurable systems, RPA
parameter, ICU User's Guide and
Quick Reference

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_IO_WRPROT 0054H The volume is write-protected.

rq_s_change_access

268 EIOS Calls Chapter 4 EIOS System Calls

E_IO_MEM 0042H The BIOS job does not currently have a block of
memory large enough to allow this system call to
complete.

E_LIMIT 0004H At least one of these is true:
• The user object or the calling task's job is

involved in 255 I/O operations.
• The calling task's job is not an I/O job.
• Processing this call would deplete the

remote server's resources.

E_LOG_NAME_NEXIST 0045H The specified path contains a logical name, but
the call was unable to find this name in the
object directories of the calling task's local job,
the global job, or the root job.

E_LOG_NAME_SYNTAX 0040H The specified logical name contains at least one
of these syntax errors:
• The logical name was missing matching

colons.
• The specified path contains a logical name

that exceeds 12 characters, has no
characters, or contains invalid characters.

E_MEDIA 0044H The device containing the specified file is off-
line.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NAME_NEXIST 0049H The user object does not represent a verified user
or is not properly defined in the remote server's
UDF. Only dynamic logon creates verified
users.

E_NOPREFIX 8022H The default prefix for the calling task's job is
undefined, or is not a valid device or file
connection.

E_NOT_FILE_CONN 0032H The path_ptr parameter specifies a path in which
the prefix portion is not a file connection.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_s_change_access

System Call Reference Chapter 4 EIOS Calls 269

E_NOT_LOG_NAME 8040H The specified path contains a logical name that
refers to an object that is not a device connection
or a file connection.

E_NOUSER 8021H The calling task's job does not have a default
user, or is not a user object.

E_PARAM 8004H The EIOS attempted to physically attach a
device that had formerly been only logically
attached. The logical attachment referred to a
file driver (named, physical, or stream) that is
not configured into the system.

See also: For ICU-configurable systems, DFD
parameter, ICU User's Guide and
Quick Reference

E_PASSWORD_MISMATCH 004BH The password of the user object does not match
the password of the corresponding user defined
on the remote server.

E_PATHNAME_SYNTAX 003EH The specified pathname contains invalid
characters.

E_SUPPORT 0023H At least one of these is true:
• The calling task attempted to change access

for a file other than a named file.
• The calling task attempted to add another

user ID to the file's access list, but the list
contains three entries. Delete an entry
before adding another.

• The connection specified in the call is not
contained in the job making the call.

• For NFS files, the group ID could not be
changed. This occurs if the iRMX ID is not
World or does not map to the user ID or
group ID on the remote system.

E_UDF_IO 02D0H An error occurred while accessing the remote
server's UDF. The server's UDF must have
World read permission.

rq_s_close

270 EIOS Calls Chapter 4 EIOS System Calls

s_close
Closes an open file connection for any type of file. This system call cannot be used
to close connections that were opened by the BIOS.

Syntax, PL/M and C

CALL rqsclose (connection, except_ptr);

rq_s_close (connection, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for an open file connection that was opened by s_open.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

S_close closes a connection using this protocol:

1. Wait until all currently running I/O operations for the file are completed.

2. Ensure that any information in a partially filled output buffer is written to the
file.

3. Release any buffers associated with the file.

4. Close the connection to the file, deleting neither the file nor the connection.

The EIOS performs no access checking before closing the connection.

Do not delete a task while it is using this system call.

rq_s_close

System Call Reference Chapter 4 EIOS Calls 271

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CANNOT_CLOSE 0041H An error occurred while flushing data from EIOS
buffers to an output device.

E_CONN_NOT_OPEN 0034H One of these is true:
• The connection is not open.
• The connection was opened by a_open

rather than s_open.

E_EXIST 0006H The connection parameter is not a token for an
existing object.

E_IO_HARD 0052H A hard error occurred; the BIOS cannot retry the
request.

E_IO_MODE 0056H A tape drive attempted a read (write) before the
previous write (read) completed.

E_IO_NO_DATA 0055H A tape drive attempted to read the next record,
but it found no data.

E_IO_OPRINT 0053H The device was off-line. Operator intervention is
required.

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation a number of times and
failed. The number of retries is a configuration
parameter. Another retry might be successful.

See also: For ICU-configurable systems, RPA
parameter, ICU User's Guide and
Quick Reference

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_IO_WRPROT 0054H The volume is write-protected.

E_LIMIT 0004H At least one of these is true:
• The calling task's job is not an I/O job.
• The calling task's job is involved in 255 I/O

operations.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_s_close

272 EIOS Calls Chapter 4 EIOS System Calls

E_NOT_CONNECTION 8042H The connection parameter is not a connection
object token.

E_SUPPORT 0023H The specified connection was not created by a
task in the calling task's job.

rq_s_create_directory

System Call Reference Chapter 4 EIOS Calls 273

s_create_directory
Creates a new directory file and automatically adds a new entry to the parent
directory. The new directory is compatible with those created by the BIOS. This
system call cannot be used to obtain connections to existing directories.

Syntax, PL/M and C

connection = rqscreate$directory (path_ptr, except_ptr);

connection = rq_s_create_directory (path_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
path_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
connection

A token that represents a connection to the new directory. Use this token as a
parameter in other system calls that access the directory.

Parameters
path_ptr

A pointer to a STRING containing the pathname of the new directory.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

After creation, the new directory contains no entries. The first ID in the job's
default user object becomes the owner of the directory. The default user object for
the calling task's job must have add-entry access to the parent of the new directory.

See also: s_change_access, BIOS call a_change_access

The DOS World user always has read (list) access to DOS files and directories;
write (delete, append, update, add-entry and change-entry) access is optional.

The calling task must use the path_ptr parameter to specify the location of the
new directory within the named file structure (including remote and DOS files).
The entry in the parent directory provides the owner of the new directory with full
access to the new directory.

rq_s_create_directory

274 EIOS Calls Chapter 4 EIOS System Calls

You cannot create a remote directory with an iRMX-NET virtual root directory as
the parent, because a virtual root directory has no assigned owner and cannot be
written to; an E_FACCESS condition code returns.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_ALREADY_ATTACHED 0038H The EIOS cannot attach the device containing
the file because the BIOS has done so.

E_CONTEXT 0005H The calling task's job is not an I/O job.

E_DEV_DETACHING 0039H The device containing the specified file is being
detached.

E_DEVFD 0022H The EIOS attempted to physically attach a
device that had formerly been only logically
attached. It found that the device and the device
driver specified in the logical attachment were
incompatible.

E_FACCESS 0026H The user object associated with the calling task's
job does not have add-entry access to the parent
directory.

E_FEXIST 0020H The file already exists.

E_FNEXIST 0021H At least one of these is true:
• A file in the specified path does not exist or

is marked for deletion.
• The specified device is not part of the

current configuration.

E_FNODE_LIMIT 003FH The volume contains the maximum number of
files. No more fnodes are available for new
files.

E_FTYPE 0027H The path_ptr parameter specifies a data file as a
directory.

E_ILLVOL 002DH The EIOS attempted to physically attach a
device that had formerly been only logically
attached, and found that the volume does not
contain named files. The named file driver was
requested during logical attachment.

rq_s_create_directory

System Call Reference Chapter 4 EIOS Calls 275

E_INVALID_FNODE 003DH The fnode for a directory in the specified
pathname is invalid. The file cannot be
accessed; delete it or fix it with diskverify .

See also:diskverify , Command Reference

E_IO_HARD 0052H A hard error occurred; the BIOS cannot retry the
request.

E_IO_OPRINT 0053H The device was off-line. Operator intervention is
required.

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation a number of times and
failed; The number of retries is a configuration
parameter. Another retry might be successful.

See also: For ICU-configurable systems, RPA
parameter, ICU User's Guide and
Quick Reference

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_IO_WRPROT 0054H The volume is write-protected.

E_IO_MEM 0042H The BIOS job does not currently have a block of
memory large enough to allow this system call to
complete.

E_LIMIT 0004H At least one of these is true:
• The user object or the calling task's job is

involved in 255 I/O operations.
• The calling task's job is not an I/O job.
• Processing this call would deplete the

remote server's resources.

E_LOG_NAME_NEXIST 0045H The specified path contains a logical name, but
the call was unable to find this name in the
object directories of the calling task's local job,
the global job, or the root job.

E_LOG_NAME_SYNTAX 0040H The specified logical name contains at least one
of these syntax errors:
• The logical name was missing matching

colons.
• The specified path contains a logical name

that exceeds 12 characters, has a length of 0
characters, or contains invalid characters.

rq_s_create_directory

276 EIOS Calls Chapter 4 EIOS System Calls

E_MEDIA 0044H The device containing the specified file is off-
line.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NAME_NEXIST 0049H The user object does not represent a verified user
or is not properly defined in the remote server's
UDF. Only dynamic logon creates verified
users.

E_NOPREFIX 8022H The default prefix for the calling task's job is
undefined, or is not a valid device or file
connection.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_LOG_NAME 8040H The specified path contains a logical name that
refers to an object that is not a device connection
or a file connection.

E_NOUSER 8021H The calling task's job does not have a default
user, or is not a user object.

E_PASSWORD_MISMATCH 004BH The password of the user object does not match
the password of the corresponding user defined
on the remote server.

E_PARAM 8004H The EIOS attempted to physically attach a
device that had formerly been only logically
attached. The logical attachment referred to a
file driver that is not configured into your
system.

See also: For ICU-configurable systems, DFD
parameter, ICU User's Guide and
Quick Reference

E_PATHNAME_SYNTAX 003EH The specified pathname contains invalid
characters.

E_SUPPORT 0023H You cannot create any directories on this
volume.

rq_s_create_directory

System Call Reference Chapter 4 EIOS Calls 277

E_SPACE 0029H At least one of these is true:
• The volume is full.
• No more files can be created on the remote

server's volume. The remote file driver
cannot distinguish between an
E_FNODE_LIMIT and an E_SPACE
condition code.

E_UDF_IO 02D0H An error occurred while accessing the remote
server's UDF. The server's UDF must have
World read permission.

rq_s_create_file

278 EIOS Calls Chapter 4 EIOS System Calls

s_create_file
Creates a new physical, stream, or named data file (including DOS and remote),
not a named directory file. The created file is compatible with files created by the
BIOS.

Syntax, PL/M and C

connection = rqscreate$file (path_ptr, except_ptr);

connection = rq_s_create_file (path_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
path_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
connection

The token that represents the connection to the new file.

Parameters
path_ptr

A pointer to a STRING that contains the pathname of the file to be created. This
parameter also indicates what kind of file (stream, physical, or named data) to
create.

See also: Named, remote, physical, and stream file paths, System Concepts

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If the file specified by the path_ptr parameter exists, the EIOS attempts to
truncate the file to 0 length and return a connection to the empty file. The owner
and the accessor list for the file remain unchanged. The call succeeds only if both
of these are true:

• The file exists and all open connections to the file allow sharing with writers.

• For named files, an ID in the default user object of the calling task's job has
update access to the existing file.

rq_s_create_file

System Call Reference Chapter 4 EIOS Calls 279

The DOS World user always has read (list) access to DOS files and directories;
write (delete, append, update, add-entry and change-entry) access is optional.

To prevent the file from being truncated accidentally, use s_attach_file; if the call
to s_attach_file returns a condition code indicating the file does not exist, use
s_create_file.

See also: s_attach_file

You cannot create an iRMX-NET remote file with a virtual root directory as its
parent because a virtual root directory has no owner and no write access; an
E_FACCESS condition code returns.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_ALREADY_ATTACHED 0038H The EIOS cannot attach the device containing
the file because the BIOS has done so.

E_CONTEXT 0005H The calling task's job is not an I/O job.

E_DEV_DETACHING 0039H The device containing the specified file is being
detached.

E_DEVFD 0022H The EIOS attempted to physically attach a
device that had formerly been only logically
attached, and found that the device and the
device driver specified in the logical attachment
were incompatible.

E_FACCESS 0026H At least one of these is true:
• The default user object associated with the

calling task's job does not have add-entry
access to the parent directory.

• The default user object associated with the
calling task's job does not have update
access to the existing file with the specified
pathname.

E_FNEXIST 0021H At least one of these is true:
• A file in the specified path does not exist or

is marked for deletion.
• The specified physical device was not found.

rq_s_create_file

280 EIOS Calls Chapter 4 EIOS System Calls

E_FNODE_LIMIT 003FH The file cannot be created or extended to this
size because it has reached the maximum
number of volume blocks.

See also: File driver limitations, System
Concepts manual

E_FTYPE 0027H The path_ptr parameter specifies a data file as a
directory.

E_ILLVOL 002DH The EIOS attempted to physically attach a
device that had formerly been only logically
attached, and found that the volume does not
contain named files. This prevented the call
from completing physical attachment.

E_INVALID_FNODE 003DH The fnode for a directory in the specified
pathname is invalid. The file cannot be
accessed; delete it or fix it with diskverify .

See also:diskverify , Command Reference

E_IO_HARD 0052H A hard error occurred; the BIOS cannot retry the
request.

E_IO_OPRINT 0053H The device was off-line. Operator intervention is
required.

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation a number of times and
failed. The number of retries is a configuration
parameter. Another retry might be successful.

See also: For ICU-configurable systems, RPA
parameter, ICU User's Guide and
Quick Reference

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_IO_WRPROT 0054H The volume is write-protected.

E_IO_MEM 0042H The BIOS job does not currently have a block of
memory large enough to allow this system call to
complete.

rq_s_create_file

System Call Reference Chapter 4 EIOS Calls 281

E_LIMIT 0004H At least one of these is true:
• The calling task has reached the object's

limit.
• The user object or the calling task's job is

involved in 255 I/O operations.
• The calling task's job is not an I/O job.
• Processing this call would deplete the

remote server's resources.

E_LOG_NAME_NEXIST 0045H The specified path contains a logical name, but
the call was unable to find this name in the
object directories of the calling task's local job,
the global job, or the root job.

E_LOG_NAME_SYNTAX 0040H The specified logical name contains at least one
of these syntax errors:
• The logical name was missing matching

colons.
• The specified path contains a logical name

that exceeds 12 characters, does not contain
at least one character, or contains invalid
characters.

E_MEDIA 0044H The device containing the specified file is off-
line. The media may be inserted incorrectly.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NAME_NEXIST 0049H The user object does not represent a verified user
or is not properly defined in the remote server's
UDF. Only dynamic logon creates verified
users.

E_NOPREFIX 8022H The default prefix for the calling task's job is
undefined, or is not a valid device or file
connection.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_LOG_NAME 8040H The specified path contains a logical name that
refers to an object that is not a device connection
or a file connection.

rq_s_create_file

282 EIOS Calls Chapter 4 EIOS System Calls

E_NOUSER 8021H The calling task's job does not have a default
user object, or the object cataloged in r?iouser is
not a user object.

E_PASSWORD_MISMATCH 004BH The password of the user object does not match
the password of the corresponding user defined
on the remote server.

E_PARAM 8004H The EIOS attempted to physically attach a
device that had formerly been only logically
attached. The logical attachment referred to a
file driver that is not configured into your
system, so the physical attachment is not
possible.

See also: For ICU-configurable systems, DFD
parameter, ICU User's Guide and
Quick Reference

E_PATHNAME_SYNTAX 003EH The specified pathname contains invalid
characters.

E_SHARE 0028H You are trying to create a file that exists. The
EIOS must truncate the existing file to 0 length
to do the create. Truncation failed for one or
more of these reasons:
• Another open connection does not allow

sharing with writers.
• The default user for the calling task's job

does not have update access to the file.

E_SPACE 0029H At least one of these is true:
• The volume is full.
• No more files can be created on the remote

server's volume. The remote file driver
cannot distinguish between an
E_FNODE_LIMIT and an E_SPACE
condition code.

E_SUPPORT 0023H The BIOS configuration does not allow the
truncation of an existing file to 0 length.

See also: For ICU-configurable systems, ACE
parameter, ICU User's Guide and
Quick Reference

rq_s_create_file

System Call Reference Chapter 4 EIOS Calls 283

E_UDF_IO 02D0H An error occurred while accessing the remote
server's UDF. The server's UDF must have
World read permission.

create_io_job

284 EIOS Calls Chapter 4 EIOS System Calls

create_io_job
Obsolete, but provided for compatibility. Creates an I/O job containing one task of
up to 1 Mbyte. You can call rq_create_io_job only from another I/O job. This
call is not supported for flat model applications.

See also: rqe_create_io_job

Syntax, PL/M and C

io_job = rq$create$io$job (pool_min, pool_max, except_handler,
job_flags, task_priority, start_address, data_seg,
stack_ptr, stack_size, task_flags, msg_mbox, except_ptr);

io_job = rq_create_io_job (pool_min, pool_max, except_handler,
job_flags, task_priority, start_address, data_seg,
stack_ptr, stack_size, task_flags, msg_mbox, except_ptr);

See also: rqe_create_io_job

rqe_create_io_job

System Call Reference Chapter 4 EIOS Calls 285

rqe_create_io_job
Creates an I/O job containing one task. Rqe_create_io_job can be called only
from another I/O job. This system call is not supported for flat model applications.

See also: Application Loader calls rqe_a_load_io_job and rqe_s_load_io_job
for flat model applications

Syntax, PL/M and C

io_job = rqe$create$io$job (pool_min, pool_max, except_handler,
job_flags, task_priority, start_address, data_seg,
stack_ptr, stack_size, task_flags, msg_mbox, except_ptr);

io_job = rqe_create_io_job (pool_min, pool_max, except_handler,
job_flags, task_priority, start_address, data_seg,
stack_ptr, stack_size, task_flags, msg_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
io_job SELECTOR SELECTOR
pool_min WORD_32 UINT_32
pool_max WORD_32 UINT_32
except_handler POINTER EXCEPTION_STRUCT far *
job_flags WORD_16 UINT_16
task_priority BYTE UINT_8
start_address POINTER void (far *) (void)
data_seg SELECTOR SELECTOR
stack_ptr POINTER UINT_16 far *
stack_size WORD_32 NATIVE_WORD
task_flags WORD_16 UINT_16
msg_mbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
io_job

The token that represents the newly created job; valid if an E_OK condition code
returns.

rqe_create_io_job

286 EIOS Calls Chapter 4 EIOS System Calls

Parameters
pool_min

Specifies the initial and minimum allowable size of the new job's memory pool in
16-byte paragraphs. The memory initially allocated is always contiguous.
Additional memory is not necessarily contiguous. If the base of the stack_ptr
parameter is 0, ensure that pool_min is no less than 32 plus the number of 16-byte
paragraphs required to contain the stack. Otherwise, the E_PARAM condition
code returns.

pool_max
Specifies the maximum allowable size of the new job's memory pool in 16-byte
paragraphs, up to 4 Gbytes. If pool_max is less than pool_min , the E_PARAM
condition code returns.

See also: Memory pools, System Concepts

except_handler
A pointer to a structure of this form:

DECLARE except_handler STRUCTURE(
exception_handler_ptr POINTER,
exception_mode BYTE);

or

typedef struct {
void far * exception_handler_ptr;
UINT_8 exception_mode;

} EXCEPTION_STRUCT;

Where:

exception_handler_ptr
Designates the new job's default exception handler by pointing to the
first instruction of your exception handler. To designate the system
default exception handler, use a null pointer.

exception_mode
Indicates when to pass control to the new task's exception handler as
follows:

Value Pass Control To Exception Handler
0 Never
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

See also: Exception handlers, exception modes, System Concepts

rqe_create_io_job

System Call Reference Chapter 4 EIOS Calls 287

job_flags
Indicates whether to check the validity of objects used as parameters in system
calls. If bit 1 is 0, the Nucleus will validate objects. All other bits must be set to 0.

See also: Nucleus call rqe_create_job

task_priority
Establishes the priority of the new job's initial task.

Value Meaning
0 Priority equals the maximum priority of the EIOS initial job.
not 0 The specified priority value.

See also: For ICU-configurable systems, TP parameter, ICU User's Guide and
Quick Reference

start_address
A pointer to the first instruction of the new job's initial task.

data_seg
Specifies:

Value Meaning
Null selector The new job's initial task uses no data segment, or it creates one

for itself.
Valid selector The base address of the data segment of the new job's initial task.

See also: Nucleus call rqe_create_job

stack_ptr
Specifies:

Value Meaning
Null pointer The Nucleus allocates a stack for the new job's initial task, of

length specified by the stack_size parameter.
Valid pointer References the base of the stack for the new job's initial task.

Your program must allocate the stack during run-time unless it
was allocated during ICU system configuration. The base of the
stack must be an iRMX segment object.

See also: For ICU-configurable systems, SSA parameter, ICU User's Guide and
Quick Reference

stack_size
Specifies the size in bytes of the stack for the new job's initial task. The minimum
size is 400h. The Nucleus allocates enough additional bytes to make the stack
occupy whole 16-byte paragraphs. Otherwise the stack is the size specified here.

See also: Stack, Programming Techniques

rqe_create_io_job

288 EIOS Calls Chapter 4 EIOS System Calls

task_flags
Indicates whether the new job's initial task uses floating-point instructions, and
whether the initial task in the job should run immediately or wait until start_io_job
is issued.

Bits Value Meaning
15-2 0 Reserved, set to 0
1 0 Task runs immediately

1 Task waits
0 0 No floating-point instructions

1 Floating-point instructions

msg_mbox
A token for a mailbox. When a task exits by invoking exit_io_job, the EIOS sends
a message to this mailbox. This message can be received by the task's job. To
send no message, assign a null selector to msg_mbox. The format of the message is
as follows.

DECLARE message STRUCTURE(
termination_code WORD_16,
user_fault_code WORD_16,
job_token TOKEN,
return_data_len BYTE,
return_data(*) BYTE);

or

typedef struct {
UINT_16 termination_code;
UINT_16 user_fault_code;
SELECTOR job_token;
UINT_8 return_data_len;
UINT_8 return_data[_NUM_RETURN_DATA];

/* Adjust to fit return_data_len */
} MESSAGE_STRUCT;

rqe_create_io_job

System Call Reference Chapter 4 EIOS Calls 289

Where:

termination_code
Indicates why an I/O job terminated as follows.

Value Meaning
0 A task invoked exit_io_job, and no problem occurred.

The job has not yet been deleted, and some of its tasks
might still be ready.

1 The job was deleted because some task invoked
delete_job.

Other A task invoked exit_io_job because some problem
occurred. The job has not yet been deleted and some of
its tasks might still be ready.

user_fault_code
If termination_code is not 0 or 1, this field contains a user-
encoded reason for task termination. The meaning of this field is
provided by the terminating task, not by the OS.

job_token A token for the terminated job.

return_data_len
Specifies the length in bytes of the return_data parameter. The
maximum length is 89 bytes.

return_data
An array that contains data specified by the terminating task when it
invoked exit_io_job.

See also: start_io_job, exit_io_job,
Nucleus call delete_job

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rqe_create_io_job

290 EIOS Calls Chapter 4 EIOS System Calls

Additional Information

I/O jobs differ from other jobs in these ways:

• Some default job parameters are specified at system configuration time.

• Create_io_job provides default values for the global_job , default_user ,
and default_prefix attributes. These values are set during system
configuration and are passed from parent job to child job.

• The EIOS can send a termination message to a mailbox whenever a task in the
I/O job calls exit_io_job. Specify the mailbox by using the msg_mbox

parameter.

Do not delete a task in an I/O job if the connection has not been deleted. If you do
so, the connection will not be available to any other task.

For ICU-configurable systems, initial I/O jobs are set up at system configuration
time.

See also: Parent job and child job, System Concepts,
I/O Jobs screen, ICU User's Guide and Quick Reference

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The calling task's job is not an I/O job.

E_EXIST 0006H At least one of these is true:
• The token cataloged under the name

RQGLOBAL (the global job) is not a token
for an existing object.

See also: Global object directory, System
Concepts

• The msg_mbox parameter is not a token for
an existing mailbox.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOUSER 8021H The calling task's job does not have a default
user, or the object cataloged under the logical
name r?iouser is not a user object.

See also:r?iouser, System Concepts

rqe_create_io_job

System Call Reference Chapter 4 EIOS Calls 291

E_PARAM 8004H At least one of these is true:
• The pool_min parameter is less than 32, or

greater than pool_max .
• Task_priority is not 0 and is greater than

(numerically less than) the maximum
priority of the calling I/O job.

• The exception_mode parameter is outside
the range 0-3.

E_IO_JOB 0047H The EIOS could not create an I/O job because
the default directory size (DDS) configuration
parameter is too small.

rq_s_delete_connection

292 EIOS Calls Chapter 4 EIOS System Calls

s_delete_connection
Deletes a file connection, but not a device connection. You must meet special
requirements to use this system call with connections created by the BIOS.

See also: Connections, System Concepts

Syntax, PL/M and C

CALL rqsdelete$connection (connection, except_ptr);

rq_s_delete_connection (connection, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for the file connection to be deleted.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If the connection is open, s_delete_connection automatically closes it before
deleting it. The EIOS does not check access before deleting a connection.

If the file has been marked for deletion by a previous system call and there are no
more connections to the file, s_delete_connection deletes the file.

Do not delete a task while it is using this system call.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The connection parameter is not a token for an
existing object.

E_IO_HARD 0052H A hard error occurred; the BIOS cannot retry the
request.

E_IO_MODE 0056H A tape drive attempted a read (write) before the
previous write (read) completed.

rq_s_delete_connection

System Call Reference Chapter 4 EIOS Calls 293

E_IO_NO_DATA 0055H A tape drive attempted to read the next record,
but it found no data.

E_IO_OPRINT 0053H The device was off-line. Operator intervention is
required.

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation a number of times and
failed. The number of retries is a configuration
parameter. Another retry might be successful.

See also: For ICU-configurable systems, RPA
parameter, ICU User's Guide and
Quick Reference

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_IO_WRPROT 0054H The volume is write-protected.

E_LIMIT 0004H At least one of these is true:
• The associated job or the job's default user

object is involved in 255 I/O operations.
• The calling task's job is not an I/O job.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_CONNECTION 8042H The connection parameter is not a connection
object token.

E_SUPPORT 0023H The specified connection was not created by a
task in this job.

rq_s_delete_file

294 EIOS Calls Chapter 4 EIOS System Calls

s_delete_file
Marks and deletes a stream, named data (including DOS and remote), or named
directory file, but not a physical file. This system call can also delete files created
by the BIOS.

Syntax, PL/M and C

CALL rqsdelete$file (path_ptr, except_ptr);

rq_s_delete_file (path_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
path_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
path_ptr

A pointer to a STRING that specifies the path for the file to be deleted. The form
of the path depends on the kind of file.

See also: Path syntax, System Concepts

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

This system call marks the specified file for deletion, but the EIOS postpones
deletion until these criteria are met:

• For stream and named data files, the deletion occurs as soon as no connections
to the file remain. Use s_delete_connection to delete connections.

• For named directories, the directory must be empty, and no connections to the
directory can remain. Otherwise, an E_DIR_NOT_EMPTY condition code
returns.

rq_s_delete_file

System Call Reference Chapter 4 EIOS Calls 295

For iRMX files, the caller must have delete access to the file; for DOS files, the
caller must have write access to the file. The DOS World user always has read
(list) access to DOS files and directories; write (delete, append, update, add-entry
and change-entry) access is optional.

See also: s_change_access, BIOS call a_change_access

You cannot delete an iRMX-NET remote file that has a virtual root directory as its
parent, because a virtual root directory has no assigned owner and no write access;
an E_FACCESS condition code returns.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_ALREADY_ATTACHED 0038H The specified device is attached.

E_CONTEXT 0005H The calling task's job is not an I/O job.

E_DEV_DETACHING 0039H The device containing the specified file is being
detached.

E_DEVFD 0022H The EIOS attempted to physically attach a
device that had formerly been only logically
attached, and found that the device and the
device driver specified in the logical attachment
were incompatible.

E_DIR_NOT_EMPTY 0031H The calling task is attempting to delete a
directory that is not empty.

E_FACCESS 0026H At least one of these is true:
• The default user object associated with the

calling task's job does not have delete access
to the specified file.

• The call is attempting to delete a bit map
file or the root directory.

E_FNEXIST 0021H At least one of these is true:
• A file in the specified path, or the target file

itself, does not exist or is marked for
deletion.

• The physical device was not found. The
device was specified by the original call to
a_physical_attach_device and is indicated
in this call by the path_ptr parameter.

E_FTYPE 0027H A path component is not a directory file.

rq_s_delete_file

296 EIOS Calls Chapter 4 EIOS System Calls

E_ILLVOL 002DH The EIOS attempted to physically attach a
device that had formerly been only logically
attached, and found that the volume does not
contain named files. The named file driver was
requested during logical attachment.

E_IFDR 002FH The specified file is a physical file.

E_INVALID_FNODE 003DH The fnode associated with a file is marked not
allocated, or the fnode number is out of range.

E_IO_HARD 0052H A hard error occurred; the BIOS cannot retry the
request.

E_IO_OPRINT 0053H The device was off-line. Operator intervention is
required.

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation a number of times and
failed. The number of retries is a configuration
parameter. Another retry might be successful.

See also: For ICU-configurable systems, RPA
parameter, ICU User's Guide and
Quick Reference

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_IO_WRPROT 0054H The volume is write-protected.

E_IO_MEM 0042H The BIOS job does not currently have a block of
memory large enough to allow this system call to
complete.

E_LIMIT 0004H At least one of these is true:
• Either the user object or the calling task's

job is involved in 255 I/O operations.
• The calling task's job is not an I/O job.
• Processing this call would deplete the

remote server's resources.

E_LOG_NAME_NEXIST 0045H The specified path contains a logical name, but
the call was unable to find this name in the
object directories of the calling task's local job,
global job, or the root job.

rq_s_delete_file

System Call Reference Chapter 4 EIOS Calls 297

E_LOG_NAME_SYNTAX 0040H The specified logical name contains at least one
of these syntax errors:
• The logical name was missing matching

colons.
• The specified path contains a logical name

that exceeds 12 characters, contains no
characters, or contains invalid characters.

E_MEDIA 0044H The device containing the specified file is off-
line.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NAME_NEXIST 0049H The user object does not represent a verified user
or is not properly defined in the remote server's
UDF. Only dynamic logon creates verified
users.

E_NOPREFIX 8022H The default prefix for the calling task's job is
undefined, or is not a valid device or file
connection.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_FILE_CONN 0032H In the specified path, the subpath portion is null
and the prefix portion is not a file connection.

E_NOT_LOG_NAME 8040H The specified path contains a logical name that
refers to an object that is not a device connection
or a file connection.

E_NOUSER 8021H The calling task's job does not have a default
user object, or the object cataloged in r?iouser is
not a user object.

E_PASSWORD_MISMATCH 004BH The password of the user object does not match
the password of the corresponding user defined
on the remote server.

rq_s_delete_file

298 EIOS Calls Chapter 4 EIOS System Calls

E_PARAM 8004H The EIOS attempted to physically attach a
device that is logically attached. That logical
attachment refers to a file driver that is not
configured into your system.

See also: For ICU-configurable systems, DFD
parameter, ICU User's Guide and
Quick Reference

E_PATHNAME_SYNTAX 003EH The specified pathname contains invalid
characters.

E_SUPPORT 0023H The task is attempting to delete a physical file.

E_UDF_IO 02D0H An error occurred while accessing the remote
server's UDF. The server's UDF must have
World read permission.

rq_exit_io_job

System Call Reference Chapter 4 EIOS Calls 299

exit_io_job
Sends a message to a previously designated mailbox and deletes the calling task.

Syntax, PL/M and C

CALL rq$exit$io$job (user_fault_code, return_data_ptr,
except_ptr);

rq_exit_io_job (user_fault_code, return_data_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
user_fault_code WORD_16 UINT_16
return_data_ptr POINTER UINT_8 far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
user_fault_code

The encoded reason for terminating the job. To terminate the job under normal
circumstances, use 0. To terminate the job because of a problem, use a condition
code that identifies the problem. The EIOS sends a structure containing this value
to the mailbox specified in create_io_job.

✏ Note

If you set this parameter to return any status code other than
E_OK, Soft-Scope will report an error condition.

See also: create_io_job, UDI call dq_exit

return_data_ptr
A pointer to a buffer for return data provided by the calling task. This data returns
to the message mailbox specified in create_io_job. A null pointer indicates no
data returns. If the data is longer than 89 bytes, only the first 89 bytes are returned.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Use this system call to bring about an orderly deletion of an I/O job. It enables a
task to delete itself and have the EIOS notify the parent job of the deletion.

rq_exit_io_job

300 EIOS Calls Chapter 4 EIOS System Calls

✏ Note

Before an I/O job exits, it must uncatalog any objects it cataloged
in other directories (global or root). Otherwise, the objects
remain even though the connection is deleted. From then on, an
error occurs if you use the connection or refer to the logical
name.

When a task in an I/O job created by create_io_job invokes exit_io_job, this
occurs:

1. The EIOS deletes the task (not the job) that invoked exit_io_job.

2. The EIOS sends a termination message to the mailbox specified in
create_io_job.

Under certain circumstances, this system call does not delete the calling task; the
EIOS returns control to the calling task and issues a condition code to indicate the
nature of the problem:

• If delete_task, which the EIOS calls, returns an exceptional condition code to
the EIOS

• If the calling task is an interrupt task

See also: delete_task, Nucleus call

The termination message is not sent in these circumstances:

• If the msg_mbox parameter of the create_io_job was set to a null selector

• If the mailbox specified in the msg_mbox parameter of create_io_job no
longer exists

If the return_data_ptr is not a valid pointer or is not readable, no exception is
returned to the task that calls exit_io_job. Instead, return_data_ptr is treated
as a null pointer, and termination of the job continues. In this case, a termination
message is still sent to the message mailbox, but the return data string is of zero
length.

To detect this condition, your application should check for a zero-length
termination message received at the mailbox specified in create_io_job. Such a
message means one of two things:

• The exiting job sent a NULL pointer for return_data_ptr .

• The return_data_ptr was invalid or unreadable.

rq_exit_io_job

System Call Reference Chapter 4 EIOS Calls 301

Condition Codes

E_CONTEXT 0005H The task invoking exit_io_job is an interrupt
task and cannot be deleted.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_s_get_connection_status

302 EIOS Calls Chapter 4 EIOS System Calls

s_get_connection_status
Provides status information about file and device connections created by the BIOS
or the EIOS. You must meet special requirements to use this system call with
connections created by the BIOS.

See also: Connections, System Concepts

Syntax, PL/M and C

CALL rqsget$connection$status (connection, info_ptr,
except_ptr);

rq_s_get_connection_status (connection, info_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
info_ptr POINTER CONNECTION_INFO_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for the connection whose status is sought.

info_ptr
A pointer to this structure:

DECLARE connection_info STRUCTURE(
file_drivers BYTE,
flags BYTE,
open_mode BYTE,
share_mode BYTE,
file_ptr WORD_32,
access BYTE,
number_buffers BYTE,
buffer_size WORD_16,
seek BYTE)

or

rq_s_get_connection_status

System Call Reference Chapter 4 EIOS Calls 303

typedef struct {
UINT_8 file_driver;
UINT_8 flags;
UINT_8 open_mode;
UINT_8 share_mode;
UINT_32 file_ptr;
UINT_8 access;
UINT_8 number_buffers;
UINT_16 buffer_size;
UINT_8 seek;

} CONNECTION_INFO_STRUCT;

Where:

file_drivers
Identifies the type of file driver associated with the connection.

Value File Driver
1 Physical
2 Stream
3 DOS
4 Named
5 Remote
6 EDOS
7-max Loadable file drivers, including NFS. The ID for these

drivers can vary; it is assigned in the order the driver is
loaded.

flags Indicates the kind of connection this is.

Bits Meaning
7-3 Reserved
2 If 1, the connection is a device connection
1 If 1, the connection can be opened
0 Reserved

open_mode
Indicates how the connection was opened. This applies only to file
connections.

Value Meaning
0 Closed
1 Open for reading only
2 Open for writing only
3 Open for both reading and writing

rq_s_get_connection_status

304 EIOS Calls Chapter 4 EIOS System Calls

share_mode
Indicates who can share the device or file connection.

Value Meaning
0 Cannot be shared
1 Share with readers only
2 Share with writers only
3 Share with all

file_ptr A 32-bit offset from the beginning of the file to where the next I/O
operation is performed.

access The access rights for the connection. This applies only to connections
for named files (including remote and DOS), and the interpretation of
this field depends upon whether the file is a data file or a directory.
Access is represented as a bit mask shown in these tables; access is
granted if a bit is set to 1:

Bits Data File Directory
7-4 Reserved Reserved
3 Update Change Entry
2 Append Add Entry
1 Read List
0 Delete Delete

For remote iRMX-NET files, access is interpreted as follows:

Bits Data File Directory
7-4 Reserved Reserved
3 Write Ignored (set same as bit 2)
2 Write Write (set same as bit 3)
1 Read Display
0 Ignored Ignored

For NFS files, access bits can be mapped differently for different OSs.

See also: Accessing NFS files, Chapter 17, System Concepts

number_buffers
The number of buffers used with this connection.

buffer_size
The size, in bytes, of each buffer used with the connection.

seek Indicates whether the seek function can be used with this connection.
0 means no; 0FFH means yes.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_s_get_connection_status

System Call Reference Chapter 4 EIOS Calls 305

Additional Information

For DOS files, the World user always has read (list) access to DOS files and
directories; write (delete, append, update, add-entry and change-entry) access is
optional. The EIOS does not check access rights before returning status
information.

When the status of a file connection to an iRMX-NET virtual root directory is
requested, display permission is granted and write permission is denied. As a
result, bit 1 of the access field is set to 1 and bit 2 is set to 0. The remote file's
access rights are checked during operations on the connection. This won't affect
your programs if you follow these guidelines:

• Open, delete, and rename files prior to changing their access lists.

• Establish connections to files after changing their access lists.

Do not delete a task while it is using this system call.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONN_NOT_OPEN 0034H The connection was opened by a_open, not
s_open.

E_EXIST 0006H The connection parameter is not a token for an
existing job.

E_IFDR 002FH An invalid file driver request occurred.

E_LIMIT 0004H At least one of these is true:
• The calling task has reached its object limit.
• Either the calling task's job, or the job's

default user object, is involved in 255 I/O
operations.

• The calling task's job is not an I/O job.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_s_get_connection_status

306 EIOS Calls Chapter 4 EIOS System Calls

E_NOT_CONNECTION 8042H The connection parameter is not a connection
object token.

E_NOT_FILE_CONN 0032H For remote files, the connection parameter must
be a file connection, not a device connection.

E_SUPPORT 0023H The specified connection was not created by a
task in the calling task's job.

rq_s_get_directory_entry

System Call Reference Chapter 4 EIOS Calls 307

s_get_directory_entry
Returns a filename (or subdirectory) entry from a specified named or DOS
directory.

Syntax, PL/M and C

CALL rqsget$directory$entry (dir_name_ptr, entry_num,
name_ptr, except_ptr);

rq_s_get_directory_entry (dir_name_ptr, entry_num, name_ptr,
except_ptr);

Parameter PL/M Data Type C Data Type
dir_name_ptr POINTER STRING far *
entry_num WORD_16 UINT_16
name_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
dir_name_ptr

A pointer to a STRING containing the directory pathname. This pathname can be
up to 255 characters long.

entry_num
The entry number of the desired filename. Entries are numbered sequentially
starting from 0. The E_EMPTY_ENTRY condition code returns if there is no
directory entry associated with the number.

name_ptr
A pointer to a STRING locating the entry name specified by entry_num . This
name has a maximum length of 14 bytes. The filename is left-justified and padded
with blanks to the right.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_s_get_directory_entry

308 EIOS Calls Chapter 4 EIOS System Calls

Additional Information

The calling task must have list (read) access to the designated directory. The DOS
World user always has read (list) access to DOS files and directories; write (delete,
append, update, add-entry and change-entry) access is optional.

The alternative to this call is to open and read a directory file.

S_get_directory_entry is not supported for iRMX-NET remote directories. Use
BIOS calls a_open, a_read, or s_open, and s_read_move.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_DIR_END 0025H The entry_num parameter is greater than the
number of entries in the directory.

E_EMPTY_ENTRY 0024H The file entry designated in the call is empty.

E_FACCESS 0026H The caller's default user object is not qualified
for list access to the directory.

E_FTYPE 0027H The specified connection does not refer to a
directory.

E_IFDR 002FH One of these is true:
• This system call applies only to named and

DOS directories, but the STRING pointed to
by dir_name_ptr specifies another type of
file.

• This system call is not supported for remote
files.

E_IO 002BH An I/O error occurred that might have prevented
the operation from completing.

E_LIMIT 0004H The calling task's job has reached its object limit.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete this call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_s_get_file_status

System Call Reference Chapter 4 EIOS Calls 309

s_get_file_status
Obtains information about a file of any type. This call can be used with any file,
including those created by the BIOS.

Syntax, PL/M and C

CALL rqsget$file$status (path_ptr, info_ptr, except_ptr);

rq_s_get_file_status (path_ptr, info_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
path_ptr POINTER STRING far *
info_ptr POINTER S_FILE_STATUS_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameter
path_ptr

A pointer to a STRING that contains the path for the file. The format of this path
varies depending on the file type.

See also: Path syntax, System Concepts

info_ptr
A pointer to this structure where the EIOS returns file status information. The
information returned depends on the type of file specified. For all types of files,
the first part of this structure through the device_connection field returns. If
the contents of the named_file field indicate a named file, the second part (from
file_ID on) returns. The create_time , access_time , modify_time , and
owner_access elements have different meaning for DOS files.

rq_s_get_file_status

310 EIOS Calls Chapter 4 EIOS System Calls

DECLARE file_info STRUCTURE(
device_share WORD_16,
number_connections WORD_16,
number_readers WORD_16,
number_writers WORD_16,
share BYTE,
named_file BYTE,
device_name(14) BYTE,
file_drivers WORD_16,
functions BYTE,
flags BYTE,
device_granularity WORD_16,
device_size WORD_32,
device_connections WORD_16,
file_id WORD_16,
file_type BYTE,
file_granularity BYTE,
owner_id WORD_16,
create_time WORD_32,
access_time WORD_32,
modify_time WORD_32
file_size WORD_32,
file_blocks WORD_32,
volume_name(6) BYTE,
volume_granularity WORD_16,
volume_size WORD_32,
accessor_count WORD_16,
owner_access BYTE);

or

rq_s_get_file_status

System Call Reference Chapter 4 EIOS Calls 311

typedef struct {
UINT_16 device_share;
UINT_16 number_connections;
UINT_16 number_readers;
UINT_16 number_writers;
UINT_8 share;
UINT_8 named_file;
UINT_8 device_name[14];
UINT_16 file_drivers;
UINT_8 functions;
UINT_8 flags;
UINT_16 device_granularity;
UINT_32 device_size;
UINT_16 device_connections;
UINT_16 file_id;
UINT_8 file_type;
UINT_8 file_granularity;
UINT_16 owner_id;
UINT_32 creation_time;
UINT_32 access_time;
UINT_32 modify_time;
UINT_32 file_size;
UINT_32 file_blocks;
UINT_8 volume_name[6];
UINT_16 volume_granularity;
UINT_32 volume_size;
UINT_16 accessor_count;
UINT_8 owner_access;

} S_FILE_STATUS_STRUCT;

rq_s_get_file_status

312 EIOS Calls Chapter 4 EIOS System Calls

Where:

device_share
This is always set to 1, indicating that all devices can be shared.

number_connections
The number of connections to the file. For remote and NFS files, this
field indicates the number of connections the calling job has to the
file.

number_readers
The number of connections currently open for reading. For remote
and NFS files a 0 indicates either no connection or a connection open
for writing only, and a 1 indicates an open readable or read/writable
connection.

number_writers
The number of connections currently open for writing. For remote
files a 0 indicates either no connection or a connection open for
reading only, and a 1 indicates an open writable or read/writable
connection.

share The current shared status of the file; possible values are

Value Meaning
0 Private use only
1 Share with readers only
2 Share with writers only
3 Share with all users

If a remote or NFS file is open, the share mode used to open the
connection is returned, but if the file connection is not open, share
mode 3 is indicated.

named_file
Indicates if this structure contains any information beyond the
device_connections field.

Value Meaning
0 No
0FFH Yes

device_name
The physical device name where this file resides. This name is
padded with blanks. Device names should not exceed 14 characters in
length.

For remote files, this is the name of the remote server on which the
file resides. For NFS files, this is the host name and path used when
the device was attached.

rq_s_get_file_status

System Call Reference Chapter 4 EIOS Calls 313

file_drivers
Indicates what kinds of files can reside on this device. When the
device is formatted, this value is copied into the device volume label.

File Type Bit File Type
7-6 Reserved
5 EDOS file
4 Remote (iRMX-NET) or NFS file
3 Named file
2 DOS
1 Stream file
0 Physical file

functions Describes the functions supported by the device where this file
resides. A bit set to 1 indicates the corresponding function is
supported. This field is not supported by the remote file driver; 0 is
always returned for remote files.

Bit Function
7 F_CLOSE
6 Reserved
5 F_DETACH_DEV
4 Reserved
3 F_ATTACH_DEV
2 F_SEEK
1 F_WRITE
0 F_READ

rq_s_get_file_status

314 EIOS Calls Chapter 4 EIOS System Calls

flags Meaningful only for diskette drives. This field is not supported by
iRMX-NET or the NFS file driver; 0 returns for such remote files.

Bits Value Function
7-5 Reserved; set to 0

4 0 Standard diskette, for MBI only; track 0 is
single-density, 128-byte sectors

1 Uniform diskette or not a diskette

3 0 High (quad) density
1 Low (double) density

For 8" diskettes, set to 0

2 0 Single sided
1 Double sided

1 0 Single density
1 Not single density

Disk Size Bit 1 Bit 3
3.5D 1 1
3.5Q 1 0
5.25D 1 1
5.25Q 1 0
8S 0 0
8D 1 0

0 0 This field is undefined
1 Bits 7-1 are valid

See also: Supporting the standard diskette format, Driver
Programming Concepts

device_granularity
The granularity, in bytes, of the device where this file resides.

device_size
The storage capacity of the device, in bytes.

device_connections
The number of connections to the device. For remote and NFS files,
this field contains the number of connections that local users have to
files on the remote server.

file_id An fnode number that distinguishes this file from all other files on the
same device.

rq_s_get_file_status

System Call Reference Chapter 4 EIOS Calls 315

file_type The file type.

Value Meaning
6 Directory file
8 Data file

file_granularity
The file granularity as a multiple of volume_granularity . For
remote and NFS files, 1 is always returned.

owner_id The first ID in the creating task's default user object.

create_time, access_time, modify_time
The time and date when the file was created, accessed, or modified.
For DOS files, only creation_time or modify_time returns. For
ICU-configurable systems, an ICU option determines whether the OS
maintains these fields.

See also: TF parameter, ICU User's Guide and Quick Reference

file_size The total size of the file, in bytes.

file_blocks
The number of volume blocks allocated to this file. A volume block
is a contiguous area of storage that contains volume_granularity
bytes of data.

volume_name
The left-adjusted, null-padded ASCII name for the volume containing
this file.

volume_granularity
The volume granularity, in bytes.

volume_size
The storage capacity, in bytes, of the volume on which this file is
stored.

accessor_count
The number of IDs in the file's accessor list. User IDs for NFS files
may be mapped differently for different OSs.

rq_s_get_file_status

316 EIOS Calls Chapter 4 EIOS System Calls

owner_access
The access rights to this file that are currently held by the owner. In
this table, access is granted if a bit is set to 1. Access rights for NFS
files may be mapped differently for different OSs:

Bits Data File Directory File
7-4 Reserved Reserved
3 Update Change Entry
2 Append Add Entry
1 Read List
0 Delete Delete

See also: Accessing NFS files, Chapter 17, System Concepts

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

For asynchronous BIOS calls, some returned information might be inaccurate. For
instance, if the application invokes s_get_file_status while the BIOS is processing
an a_write call for the same file, the values returned in the file size fields might be
incorrect. The EIOS cannot check such values and does not check access before
returning file status information.

See also: BIOS call a_write

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_ALREADY_ATTACHED 0038H The EIOS is unable to attach the device
containing the file because the BIOS has done
so.

E_CONTEXT 0005H The calling task's job is not an I/O job.

E_DEV_DETACHING 0039H The device containing the specified file is being
detached.

E_DEVFD 0022H The EIOS attempted to physically attach a
device that had formerly been only logically
attached. It found that the device and the device
driver specified in the logical attachment were
incompatible.

rq_s_get_file_status

System Call Reference Chapter 4 EIOS Calls 317

E_FNEXIST 0021H At least one of these is true:
• A file in the specified path, or the target file

itself, does not exist or is marked for
deletion.

• The physical device specified in the call was
not found.

E_FTYPE 0027H A path component is not a directory file.

E_ILLVOL 002DH The EIOS attempted to physically attach a
device that had formerly been only logically
attached. It found that the volume does not
contain named files. The named, remote, DOS,
or EDOS file driver was requested during logical
attachment.

E_INVALID_FNODE 003DH The fnode for the specified file is invalid. The
file cannot be accessed; delete it or fix it with
diskverify .

See also:diskverify , Command Reference

E_IO_HARD 0052H A hard error occurred; the BIOS cannot retry the
request.

E_IO_MODE 0056H A tape drive attempted a read (write) before the
previous write (read) completed.

E_IO_NO_DATA 0055H A tape drive attempted to read the next record,
but it found no data.

E_IO_OPRINT 0053H The device was off-line. Operator intervention is
required.

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation a number of times and
failed (the number of retries is a configuration
parameter). Another retry might be successful.

See also: For ICU-configurable systems, RPA
parameter, ICU User's Guide and
Quick Reference

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_IO_MEM 0042H The BIOS job does not currently have a block of
memory large enough to allow this system call to
complete.

rq_s_get_file_status

318 EIOS Calls Chapter 4 EIOS System Calls

E_LIMIT 0004H At least one of these is true:
• The user object or the calling task's job is

involved in 255 I/O operations.
• The calling task's job is not an I/O job.
• The calling task's object limit has been

reached.

E_LOG_NAME_NEXIST 0045H The specified path contains a logical name, but
the call was unable to find this name in the
object directories of the calling task's local job,
the global job, or the root job.

E_LOG_NAME_SYNTAX 0040H The specified logical name contains at least one
of these syntax errors:
• The logical name was missing matching

colons.
• Contains a logical name that exceeds 12

characters, has no characters, or contains
invalid characters.

E_MEDIA 0044H The device containing the specified file is off-
line.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOPREFIX 8022H The default prefix for the calling task's job is
undefined, or is not a valid device or file
connection.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_FILE_CONN 0032H For remote files, the connection parameter must
be a file connection, not a device connection.

E_NOT_LOG_NAME 8040H The specified path contains a logical name that
refers to an object that is not a device connection
or a file connection.

E_NOUSER 8021H The calling task's job does not have a default
user, or is not a user object.

rq_s_get_file_status

System Call Reference Chapter 4 EIOS Calls 319

E_PARAM 8004H The EIOS attempted to physically attach a
device that had formerly been only logically
attached. It found that the logical attachment
referred to a file driver that is not configured into
your system.

See also: For ICU-configurable systems, DFD
parameter, ICU User's Guide and
Quick Reference

E_PATHNAME_SYNTAX 003EH The specified pathname contains invalid
characters.

E_UDF_IO 02D0H An error occurred while accessing the remote
server's UDF. The server's UDF must have
World read permission.

rq_get_logical_device_status

320 EIOS Calls Chapter 4 EIOS System Calls

get_logical_device_status
Provides status information about logical names that represent devices. The EIOS
does not check access before returning status information.

Syntax, PL/M and C

CALL rqgetlogical$device$status (log_name_ptr, dev_info_ptr,
except_ptr);

rq_get_logical_device_status (log_name_ptr, dev_info_ptr,
except_ptr);

Parameter PL/M Data Type C Data Type
log_name_ptr POINTER STRING far *
dev_info_ptr POINTER DEVICE_INFO_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
log_name_ptr

A pointer to a STRING of 12 or fewer characters, optionally delimited with colons,
containing the logical name under which the logical device object is cataloged in
the root object directory.

dev_info_ptr
A pointer to a structure, where status information returns, of this form:

DECLARE device_info STRUCTURE(
device_name(15) BYTE,
file_driver BYTE,
num_conns WORD_16,
owner_id WORD_16);

or

typedef struct {
UINT_8 device_name[15];
UINT_8 file_driver;
UINT_16 num_conns;
UINT_16 owner_id;

} DEVICE_INFO_STRUCT;

rq_get_logical_device_status

System Call Reference Chapter 4 EIOS Calls 321

Where:

device_name
The physical name associated with the device. The first byte is the
length of the field, the second is a colon, then up to 12 bytes for the
name, followed by a colon. For ICU-configurable systems, this name
is established during system configuration.

See also: attachdevice, Command Reference,
DPN parameter, ICU User's Guide and Quick Reference

file_driver
The type of file driver associated with the device. Possible values
include:

Value File Driver
1 Physical
2 Stream
3 DOS
4 Named
5 Remote
6 EDOS
7-max Loadable file drivers, including NFS. The IDs can vary,

depending on which driver is loaded first.

num_conns The current number of connections to the device.

owner_id The owner ID for this device. This ID is the first ID listed in the
default user object of the attaching task's job.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The device connection corresponding to the
logical name is being deleted.

E_LIMIT 0004H Either the user object or the calling task's job is
involved in 255 I/O operations.

E_LOG_NAME_NEXIST 0045H The logical name was not found in the root
object directory.

rq_get_logical_device_status

322 EIOS Calls Chapter 4 EIOS System Calls

E_LOG_NAME_SYNTAX 0040H The syntax of the specified logical name is
incorrect. At least one of these is true:
• The logical name was missing matching

colons.
• The STRING pointed to by the

log_name_ptr parameter has a length of 0
or greater than 12.

• The logical name contains invalid
characters.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_DEVICE 8041H The specified logical name does not represent a
valid device connection.

rq_s_get_path_component

System Call Reference Chapter 4 EIOS Calls 323

s_get_path_component
Returns the name of a named file (including remote and DOS), as cataloged in its
parent directory.

Syntax, PL/M and C

CALL rqsget$path$component (connection, name_ptr,
except_ptr);

rq_s_get_path_component (connection, name_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
name_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for the file connection whose name is sought.

name_ptr
A pointer to a STRING where the OS returns the path component. The maximum
length of the STRING is 14 bytes.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

A null STRING returns if a stream or physical file, or the root directory of a named
or remote file is referenced.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The name_ptr parameter is a null pointer.

E_FNEXIST 0021H The file is marked for deletion. The STRING is
undefined.

rq_s_get_path_component

324 EIOS Calls Chapter 4 EIOS System Calls

E_INVALID_FNODE 003DH The fnode for the specified file is invalid. The
file cannot be accessed; delete it or fix it with
diskverify .

See also:diskverify , Command Reference

E_IO 002BH An I/O error might have prevented completion of
the operation.

E_IO_MEM 0042H Memory available to the EIOS is not sufficient to
complete the call.

E_NOT_FILE_CONN 0032H For remote files, the connection parameter must
be a file connection, not a device connection.

rq_get_user_ids

System Call Reference Chapter 4 EIOS Calls 325

get_user_ids
Returns the user ID(s) associated with a user defined in the UDF.

Syntax, PL/M and C

CALL rqgetuser$ids (name_ptr, ids_ptr, except_ptr);

rq_get_user_ids (name_ptr, ids_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
name_ptr POINTER STRING far *
ids_ptr POINTER IDS_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
name_ptr

A pointer to a STRING containing the user name. Only the first 8 characters are
significant.

ids_ptr
A pointer to this structure where the ID(s) associated with the user name is placed:

DECLARE ids STRUCTURE (
length WORD_16,
count BYTE,
IDs(*) BYTE);

or

typedef struct {
UINT_16 length;
UINT_16 count;
UINT_16 ids[_NUM_IDS]; /* adjust to count value */

 } IDS_STRUCT;

rq_get_user_ids

326 EIOS Calls Chapter 4 EIOS System Calls

Where:

length Should be set by the caller to the maximum number of ID(s) desired.

count The number of valid IDs in the ID array after get_user_ids returns to
the caller. This value will never be greater than the length
parameter. The calling task does not need to initialize this value.

IDs An array of IDs obtained from the UDF. The length of this array is
contained in count . The calling task does not need to initialize this
array.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

This system call searches the user definition file :config:udf for the user name
pointed to by the name_ptr parameter and if found, returns that user's ID(s).

See also: :config:udf file, Command Reference,
for ICU-configurable systems, I/O Users screen and CD parameter,
ICU User's Guide and Quick Reference

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_CALL 8005H A task wrote over the interface library or the
EIOS job.

E_CONTEXT 0005H The calling job is not an I/O job.

E_DEV_DETACHING 0039H An I/O operation could not be performed on the
device :sd: because it was being detached.

E_DEVFD 0022H The device :sd: cannot be used with the file
driver as specified in the preceding logical attach
operation.

E_UDF_FORMAT 0048H The UDF is not in the correct format.

E_FACCESS 0026H User does not have access rights for the
requested operation.

E_FLUSHING 002CH The device :sd: is being detached.

rq_get_user_ids

System Call Reference Chapter 4 EIOS Calls 327

E_FNEXIST 0021H At least one of these is true:

• The UDF or a file in :config: does not exist.
• The specified physical device containing

:config:udf was not found.

E_FTYPE 0027H A path component is not a directory file.

E_ILLVOL 002DH The file driver in the volume label conflicts with
the file driver specified in the preceding logical
attach operation.

E_INVALID_FNODE 003DH The fnode for the specified file is invalid. The
file cannot be accessed; delete it or fix it with
diskverify .

See also:diskverify , Command Reference

E_IO_HARD 0052H A hard error occurred; the BIOS cannot retry the
request.

E_IO_MEM 0042H The BIOS job did not have enough memory to
perform the requested function.

E_IO_OPRINT 0053H The device is off-line; operator intervention is
required.

E_IO_SOFT 0051H A soft error occurred. The BIOS has retried the
operation and failed; a retry is not possible.

E_IO_UNCLASS 0050H An unclassified I/O error occurred.

E_IO_WR_PROT 0054H The volume specified in this call is write
protected.

E_LIMIT 0004H The root job object directory is full.

E_LOG_NAME_NEXIST 0045H The logical name was not found in the caller's
object directory, the global job object directory,
or the root job object directory.

E_MEDIA 0044H The device associated with the system call is off-
line.

E_NAME_NEXIST 0049H The name specified in this call is not defined.
Only dynamic logon creates verified users.

E_NOPREFIX 8022H The caller's job does not have a default prefix, or
is invalid.

rq_get_user_ids

328 EIOS Calls Chapter 4 EIOS System Calls

E_NOUSER 8021H The caller's job does not have a default user, or
is invalid.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H At least one of these is true:
• The name_ptr parameter is a null pointer.
• The length field of the ids structure is 0.
• The name contains invalid characters.

E_SHARE 0028H The file is not sharable with the requested
access.

rq_hybrid_detach_device

System Call Reference Chapter 4 EIOS Calls 329

hybrid_detach_device
Temporarily removes the correspondence between a logical name and a physical
device established with logical_attach_device. This system call does not remove
the logical name from the root object directory.

Syntax, PL/M and C

CALL rq$hybrid$detach$device (log_name_ptr, except_ptr);

rq_hybrid_detach_device (log_name_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
log_name_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
log_name_ptr

A pointer to a STRING of 12 or fewer characters, optionally delimited with colons,
containing the logical name under which the logical device object is cataloged in
the root object directory.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The EIOS detaches the device by issuing the BIOS a_physical_detach_device call.
The EIOS specifies the hard detach option which deletes all connections to files on
the device.

Reattach a device in one of two ways.

• A task can issue the BIOS call a_physical_attach_device.

• A task can use the device's logical name as the prefix portion of a pathname
when issuing an EIOS call. The EIOS physically attaches the device using the
parameters originally specified when the logical name was established in
logical_attach_device.

A task cannot use logical_attach_device to reattach a device that
hybrid_detach_device detached until it issues logical_detach_device.

rq_hybrid_detach_device

330 EIOS Calls Chapter 4 EIOS System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The device connection corresponding to the
logical name is being deleted.

E_LIMIT 0004H Either the user object or the calling task's job is
involved in 255 I/O operations.

E_LOG_NAME_NEXIST 0045H The logical name was not found in the root
object directory.

E_LOG_NAME_SYNTAX 0040H The syntax of the specified logical name is
incorrect. At least one of these is true:
• The STRING pointed to by the

log_name_ptr parameter is of length 0 or
greater than 12 characters, or is missing
matching colons.

• The logical name contains invalid
characters.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_DEVICE 8041H The specified logical name does not represent a
valid device connection.

E_NOT_OWNER 0046H The user specified by the default user object is
not the user that attached the device.

rq_logical_attach_device

System Call Reference Chapter 4 EIOS Calls 331

logical_attach_device
Assigns a logical name to a physical device. Any task that uses this system call
loses its device independence. Only a few selected tasks should perform all device
attaching and detaching.

Syntax, PL/M and C

CALL rq$logical$attach$device (log_name_ptr, dev_name,
file_driver, except_ptr);

rq_logical_attach_device (log_name_ptr, dev_name, file_driver,
except_ptr);

Parameter PL/M Data Type C Data Type
log_name_ptr POINTER STRING far *
dev_name POINTER STRING far *
file_driver BYTE UINT_8
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
log_name_ptr

A pointer to a STRING of 12 or fewer characters, possibly delimited with colons,
that contains the logical name to be assigned to a device. The OS removes the
colons so that a logical name with colons is the same as one without; :F0: is the
same as F0. Colons do not count in the length of the name. When you
subsequently use this name in other system calls, specify colons.

dev_name
A pointer to a STRING containing the device name to which the logical name is
assigned. This is the name of a Device-Unit Information Block (DUIB) specified
during system configuration. For all file types except NFS, device names longer
than 14 characters are truncated by the call to 14 characters.

See also: attachdevice, Command Reference,
for ICU-configurable systems, Logical Names screen, ICU User's
Guide and Quick Reference

rq_logical_attach_device

332 EIOS Calls Chapter 4 EIOS System Calls

file_driver
Specifies which type of BIOS file driver to use with the device:

Value File Driver
1 Physical
2 Stream
3 DOS
4 Named
5 Remote
6 EDOS
7-max Loadable file drivers, including NFS. The IDs can vary, depending on

which driver is loaded first. To find what ID is currently assigned to a
specific loadable driver, first call rq_get_file_driver_status.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

This system call creates a logical device object that corresponds to a physical
device. This logical device object is cataloged in the root object directory under
the logical name pointed to by log_name_ptr . The logical device object must be
cataloged before the EIOS can make connections to files on the device.

The first EIOS call that uses the logical name as a prefix in a pathname causes the
physical device to be attached. The logical name can be used as a prefix in other
system calls and can be deleted by logical_detach_device.

The EIOS uses the BIOS call a_physical_attach_device. Some condition codes
that result because of errors in logical_attach_device are not returned until the
EIOS tries to attach the device with a_physical_attach_device.

Depending on your system configuration, if the first attempt to attach the device
fails, the EIOS will try again. The EIOS will continue trying to attach the device
until the device is attached successfully or the configured number of retries has
been reached.

See also: BIOS call a_physical_attach_device,
For ICU-configurable systems, RPA parameter, ICU User's Guide and
Quick Reference

rq_logical_attach_device

System Call Reference Chapter 4 EIOS Calls 333

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The root object directory already contains an
entry with the name pointed to by the
log_name_ptr parameter.

E_LIMIT 0004H At least one of these is true:
• The calling task's job object directory is full.
• The root object directory is full.
• The calling task's job is not an I/O job.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete this call.

E_LOG_NAME_SYNTAX 0040H The specified logical name is incorrect. At least
one of these is true:
• The STRING pointed to by the

log_name_ptr parameter is length 0 or
greater than 12 characters.

• The logical name contains invalid
characters.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_logical_detach_device

334 EIOS Calls Chapter 4 EIOS System Calls

logical_detach_device
Removes the correspondence between a logical name and a physical device, and
removes the logical name from the root object directory.

Syntax, PL/M and C

CALL rq$logical$detach_device (log_name_ptr, except_ptr);

rq_logical_detach_device (log_name_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
log_name_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
log_name_ptr

A pointer to a STRING of 12 or fewer characters, optionally delimited with colons,
containing the logical name under which the logical device object is cataloged in
the root object directory.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Logical_detach_device is issued by the task that used logical_attach_device to
create the logical name, some other task in the same job as the attaching task,
another job having the same owner ID in its default user object, or the system
manager.

After logical_detach_device is issued, users cannot create new connections using
the logical name as a prefix. When the last file connection on the physical device
is deleted, the EIOS detaches the device by issuing the BIOS call
a_physical_detach_device.

Logical_detach_device closes all open file connections but does not flush the
associated EIOS file buffers. These buffers will be flushed by issuing s_close
before logical_detach_device.

rq_logical_detach_device

System Call Reference Chapter 4 EIOS Calls 335

▲▲! CAUTION

Data will be lost if you do not flush the buffers. If a job with
open file connections and active EIOS file buffers is deleted, the
EIOS buffers will be flushed as part of the job deletion process.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The device connection corresponding to this
logical name is being deleted.

E_LIMIT 0004H One of these is true:
• The job has reached the object limit of the

calling task's object directory.
• Either the user object or the calling task's

job is involved in 255 I/O operations.
• The calling task's job is not an I/O job.

E_LOG_NAME_NEXIST 0045H The logical name was not found in the root
object directory.

E_LOG_NAME_SYNTAX 0040H The syntax of the specified logical name is
incorrect. At least one of these is true:
• The STRING pointed to by the

log_name_ptr parameter is length 0 or
greater than 12.

• The logical name contains invalid
characters.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_DEVICE 8041H The specified logical name does not represent a
valid device connection.

E_NOT_OWNER 0046H The default user object is not the user that
originally attached the device.

rq_s_lookup_connection

336 EIOS Calls Chapter 4 EIOS System Calls

s_lookup_connection
Accepts a logical name from the calling task and returns a token for the associated
connection.

Syntax, PL/M and C

connection = rqslookup$connection (log_name_ptr, except_ptr);

connection = rq_s_lookup_connection (log_name_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
log_name_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
connection

The token that represents the connection associated with the logical name.

Parameters
log_name_ptr

A pointer to a STRING of 12 or fewer characters, optionally delimited with colons,
containing the logical name to be looked up. The OS removes the colons so that a
logical name with colons is the same as one without; :F0: is the same as F0.
Colons do not count in the length of the name.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

After converting any lowercase letters in the logical name to uppercase, the EIOS
searches for the logical name. It first checks the object directory of the local job,
the global job, and finally the root job.

This system call can look up logical names created by catalog_object. However,
catalog_object does not convert from lowercase to uppercase. For compatibility,
use uppercase characters with catalog_object.

See also: Nucleus call catalog_object,
Search sequence, System Concepts

rq_s_lookup_connection

System Call Reference Chapter 4 EIOS Calls 337

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The calling task's job is not an I/O job.

E_LIMIT 0004H The job has reached the object limit of the
calling task's object directory.

E_LOG_NAME_NEXIST 0045H The specified path contains a logical name, but
the call was unable to find this name in the
object directories of the calling task's local job,
the global job, or the root job.

E_LOG_NAME_SYNTAX 0040H The specified logical name contains at least one
of these syntax errors:
• The logical name was missing matching

colons.
• The specified path contains a logical name

that exceeds 12 characters, has no
characters, or contains invalid characters.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_CONNECTION 8042H The logical name does not refer to a connection
object.

E_TIME 0001H The calling task's job is not an I/O job.

rq_s_open

338 EIOS Calls Chapter 4 EIOS System Calls

s_open
Opens a file connection for any file type.

Syntax, PL/M and C

CALL rqsopen (connection, mode, number_buffers, except_ptr);

rq_s_open (connection, mode, number_buffers, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
mode BYTE UINT_8
number_buffers BYTE UINT_8
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for the file connection to be opened. The connection must have been
created in the calling task's job. If the connection was created in a different job,
use s_attach_file to obtain a new connection.

mode
Indicates the access and share states of the connection. Use one for remote
directories.

Value Meaning
01H Read only; share with all.
02H Write only; share with all.
03H Read and write; share with all.
04H Read only; private use.
05H Write only; private use.
06H Read and write; private use.
07H Read only; share with readers.
08H Write only; share with readers.
09H Read and write; share with readers.
0AH Read only; share with writers.
0BH Write only; share with writers.
0CH Read and write; share with writers.

rq_s_open

System Call Reference Chapter 4 EIOS Calls 339

number_buffers
Specifies the number of buffers that the EIOS should allocate for this connection.
This number must be between 0 and the maximum configured value.

See also: For ICU-configurable systems, Driver screens, ICU User's Guide and
Quick Reference

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

This system call creates the number of buffers requested, sets the connection's file
pointer to 0, and starts reading ahead if the number of buffers is greater than 0 and
the mode parameter includes reading.

Do not delete a task while it is using this system call.

If you don't know how the connection is used, specify both reading and writing.

The DOS World user always has read (list) access to DOS files and directories;
write (delete, append, update, add-entry and change-entry) access is optional.

See also: s_attach_file

The iRMX-NET remote file's access rights are checked only during operations on
the connection. This won't affect your programs if you:

• Open, delete, and rename files prior to changing their access lists.

• Establish connections to files after changing their access lists.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONN_OPEN 0035H The connection is open.

E_DEV_OFF_LINE 002EH The device is off-line or an unspecified DOS
error occurred.

E_EXIST 0006H The connection parameter is not a token for an
existing object.

E_FACCESS 0026H The access rights prohibit opening the file in the
specified mode. If a named (including remote
and DOS) file, the mode value does not match
the connection's access rights when it was
created.

rq_s_open

340 EIOS Calls Chapter 4 EIOS System Calls

E_IO_HARD 0052H A hard error occurred; the BIOS cannot retry the
request.

E_IO_MODE 0056H A tape drive attempted a read (write) before the
previous write (read) completed.

E_IO_NO_DATA 0055H A tape drive attempted to read the next record,
but found no data.

E_IO_OPRINT 0053H The device was off-line. Operator intervention is
required.

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation a number of times and
failed (the number of retries is a configuration
parameter). Another retry might be successful.

See also: For ICU-configurable systems, RPA
parameter, ICU User's Guide and
Quick Reference

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_IO_WRPROT 0054H The volume is write-protected.

E_LIMIT 0004H At least one of these is true:
• DOS has run out of file handles.
• The calling task's job is not an I/O job.
• The calling task's job, or the job's default

user object, is involved in 255 I/O
operations.

• Processing this call would deplete the
remote server's resources.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_CONNECTION 8042H The connection parameter is not a connection
object token.

E_NOT_FILE_CONN 0032H The connection is a device connection.

E_PARAM 8004H The mode parameter is set to other than 1
through 0CH.

rq_s_open

System Call Reference Chapter 4 EIOS Calls 341

E_SHARE 0028H At least one of these is true:
• The call attempted to open a directory file or

a bit-map file for writing.
• The file's share state is not compatible with

the mode specified in this call.
• The call attempted to open a remote

directory with the mode parameter set to
other than 1.

E_SUPPORT 0023H The specified connection was not created by a
task in the calling task's job.

rq_s_read_move

342 EIOS Calls Chapter 4 EIOS System Calls

s_read_move
Reads a number of contiguous bytes from a file to a buffer specified by the calling
task.

Syntax, PL/M and C

bytes_read = rqsread$move (connection, buffer_ptr,
bytes_desired, except_ptr);

bytes_read = rq_s_read_move (connection, buffer_ptr,
bytes_desire, except_ptr);

Parameter PL/M Data Type C Data Type
bytes_read WORD_32 NATIVE_WORD
connection SELECTOR SELECTOR
buffer_ptr POINTER UINT_8 far *
bytes_desired WORD_32 NATIVE_WORD
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
bytes_read

Indicates the actual number of bytes read from the file.

Parameters
connection

A token for the connection to the file. This connection must be open for reading or
for reading and writing, and the file pointer of the connection must point to the first
byte to read.

See also: s_change_access, BIOS call a_change_access

buffer_ptr
A pointer to a user-supplied buffer that receives the information read from the file.
Up to 4 Gbytes can be read.

bytes_desired
Specifies the maximum number of bytes to read from the file. If the EIOS detects
an EOF before reading the number of bytes requested, it returns only those bytes
preceding the EOF.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_s_read_move

System Call Reference Chapter 4 EIOS Calls 343

Additional Information

DOS directory files can only be read a multiple of 16 bytes at a time, on 16-byte
boundaries. Otherwise, E_SUPPORT returns.

Do not delete a task while it is using this system call.

If a condition code other than E_OK returns, the information in the buffer and the
bytes_read parameter are meaningless.

If your task performs random-access reads of the file, it must identify which bytes
to read. Use s_seek to position the connection's file pointer to the first byte to read.
If your task reads from the file sequentially, the EIOS maintains the connection's
file pointer automatically.

See also: s_seek

For better performance, the priority of the invoking task should be equal to or
lower (numerically greater) than 130. If the priority of the calling task is greater
than 130, the OS cannot overlap the read with computation or with other I/O
operations.

See also: Setting priorities, System Concepts

iRMX-NET's remote file driver does not perform fragmentation and reassembly.
For optimal performance, reading and writing should begin at offsets that are
integral multiples of the remote server's buffer size. The device_granularity
parameter returned by s_get_file_status indicates the buffer size of a remote
server.

If you use an iRMX segment as your buffer, the OS will detect when a task
attempts to write beyond a buffer. If you create a buffer at compilation time, the
information immediately following the buffer could be overwritten.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_BUFF 8023H One of these is true:
• The specified memory buffer is not writable.
• The specified memory buffer crosses a

segment boundary.

E_CONN_NOT_OPEN 0034H At least one of these is true:
• The connection is not open for reading or for

reading and writing.
• The connection is closed.
• The connection was opened by a_open, not

s_open.

rq_s_read_move

344 EIOS Calls Chapter 4 EIOS System Calls

E_EXIST 0006H The connection is not a token for an existing
object.

E_FLUSHING 002CH The specified device is being detached.

E_IDDR 002AH This request is invalid for the specified device
driver.

E_IO_HARD 0052H A hard error occurred; the BIOS cannot retry the
request.

E_IO_MODE 0056H A tape drive attempted a read (write) before the
previous write (read) completed.

E_IO_NO_DATA 0055H A tape drive attempted to read the next record,
but it found no data.

E_IO_OPRINT 0053H The device was off-line. Operator intervention is
required.

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation a number of times and
failed. The number of retries is a configuration
parameter. Another retry might be successful.

See also: For ICU-configurable systems, RPA
parameter, ICU User's Guide and
Quick Reference

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_LIMIT 0004H At least one of these is true:
• The calling task's job, or the job's default

user object, is involved in 255 I/O
operations.

• The calling task's job is not an I/O job.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_CONNECTION 8042H The connection parameter is not a token for a
file connection.

rq_s_read_move

System Call Reference Chapter 4 EIOS Calls 345

E_SPACE 0029H At least one of these is true:
• This call attempted to read beyond the end

of the volume.
• Another task is writing to the file using the

same connection and is attempting to write
beyond the end of the volume or the end of
the available space on the volume.

E_SUPPORT 0023H The connection parameter was not created by a
task in the calling task's job, or the request
involved a DOS directory but the byte and
boundary restrictions were not adhered to.

rq_s_rename_file

346 EIOS Calls Chapter 4 EIOS System Calls

s_rename_file
Changes the pathname of a named directory or data file, including remote and
DOS. It cannot be used for stream or physical files.

✏ Note
When you rename a directory, you change the paths for all files
and other directories contained in the directory.

Syntax, PL/M and C

CALL rqsrename$file (path_ptr, new_path_ptr, except_ptr);

rq_s_rename_file (path_ptr, new_path_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
path_ptr POINTER STRING far *
new_path_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
path_ptr

A pointer to a STRING that specifies the current path for an existing file or
directory to be renamed.

new_path_ptr
A pointer to a STRING that specifies the new path for the file. This path must
comply with the syntax and semantics of paths for named files. This path cannot
refer to an existing file.

See also: Paths, System Concepts

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_s_rename_file

System Call Reference Chapter 4 EIOS Calls 347

Additional Information

A task can change any aspect of a directory's or file's path so long as it remains on
the same volume.

DOS users cannot rename a directory as a subdirectory. The DOS World user must
have write access to the file to rename it; write (delete, append, update, add-entry,
and change-entry) access is optional.

The iRMX default user object of the calling task's job must have deletion access to
the original file and add-entry access to the file's new parent directory.

See also: s_change_access, BIOS call a_change_access

S_rename_file cannot rename these iRMX-NET entries:

• A file in a virtual root directory

• A virtual root directory

• A public directory

The remote directory's or file's access rights are checked during operations on the
connection. This won't affect your programs if you:

• Open, delete, and rename prior to changing access lists.

• Establish connections after changing access lists.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_ALREADY_ATTACHED 0038H The EIOS is unable to attach the device
containing the file because the BIOS has done
so.

E_CONTEXT 0005H The calling task's job is not an I/O job.

E_DEV_DETACHING 0039H The device containing the specified file is being
detached.

E_DEVFD 0022H The EIOS attempted to physically attach a
device that had been only logically attached, and
found that the device and the device driver
specified in the logical attachment were
incompatible.

rq_s_rename_file

348 EIOS Calls Chapter 4 EIOS System Calls

E_FACCESS 0026H At least one of these is true:
• The call is trying to rename a bit-map file or

the root directory.
• The default user object associated with the

calling task's job does not have add-entry
access to the parent directory of the
new_path_ptr file.

• The default user object associated with the
calling task's job does not have delete access
to the file being renamed.

E_FEXIST 0020H The new_path_ptr parameter refers to a file that
already exists.

E_FNEXIST 0021H A file in the specified path, or the file being
renamed, does not exist or is marked for
deletion.

E_FTYPE 0027H A path component is not a directory file.

E_IFDR 002FH The specified file is a stream or physical file.

E_ILLOGICAL_RENAME 003BH The call attempted to rename a directory to a
new path containing itself.

E_ILLVOL 002DH The EIOS attempted to physically attach a
device that had formerly been only logically
attached. It found that the volume does not
contain named files. The named file driver was
requested during logical attachment.

E_INVALID_FNODE 003DH The fnode for the specified file is invalid. The
file cannot be accessed; delete it or fix it with
diskverify .

See also:diskverify , Command Reference

E_IO_HARD 0052H A hard error occurred; the BIOS cannot retry the
request.

E_IO_OPRINT 0053H The device was off-line. Operator intervention is
required.

rq_s_rename_file

System Call Reference Chapter 4 EIOS Calls 349

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation a number of times and
failed (the number of retries is a configuration
parameter). Another retry might be successful.

See also: For ICU-configurable systems, RPA
parameter, ICU User's Guide and
Quick Reference

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_IO_WRPROT 0054H The volume is write-protected.

E_IO_MEM 0042H The BIOS job does not currently have a block of
memory large enough to allow this system call to
complete.

E_LIMIT 0004H At least one of these is true:
• The user object or the calling task's job is

involved in 255 I/O operations.
• The calling task's job is not an I/O job.
• The calling task's object limit has been

reached.
• Processing this call would deplete the

remote server's resources.

E_LOG_NAME_NEXIST 0045H At least one of the specified paths contains a
logical name, but the call was unable to find this
name in the object directories of the calling
task's local job, the global job, or the root job.

E_LOG_NAME_SYNTAX 0040H At least one of the specified paths contain one or
more of these logical name syntax errors:
• The logical name was missing matching

colons.
• A path contains a logical name that exceeds

12 characters, has no characters, or contains
invalid characters.

E_MEDIA 0044H The device containing the specified file is off-
line.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

rq_s_rename_file

350 EIOS Calls Chapter 4 EIOS System Calls

E_NAME_NEXIST 0049H The user object does not represent a verified user
or is not properly defined in the remote server's
UDF. Only dynamic logon creates verified
users.

E_NOPREFIX 8022H The default prefix for the calling task's job is
undefined, or is not a valid device or file
connection.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_FILE_CONN 0032H In the specified path, the subpath portion is null
and the prefix portion is not a file connection.

E_NOT_LOG_NAME 8040H At least one of the specified paths contains a
logical name that refers to an object that is not a
device connection or a file connection.

E_NOT_SAME_DEV 003AH The two paths refer to different devices.

E_NOUSER 8021H The calling task's job does not have a default
user object, or the object cataloged in r?iouser is
not a user object.

E_PASSWORD_MISMATCH 004BH The password of the user object does not match
the password of the corresponding user defined
on the remote server.

E_PATHNAME_SYNTAX 003EH One or both of the specified pathnames contain
invalid characters.

E_PARAM 8004H The specified task_priority for an I/O job is
unequal to 0 and is greater than the max_priority
of the I/O job.

E_SPACE 0029H At least one of these is true:
• The volume is full.
• No more files can be created on the remote

server's volume. The remote file driver
cannot distinguish between an
E_FNODE_LIMIT and an E_SPACE
condition code.

rq_s_rename_file

System Call Reference Chapter 4 EIOS Calls 351

E_UDF_IO 02D0H An error occurred while accessing the remote
server's UDF. The server's UDF must have
World read permission.

E_SUPPORT 0023H The task attempted to rename a physical or
stream file.

rq_s_seek

352 EIOS Calls Chapter 4 EIOS System Calls

s_seek
Moves the file pointer for any open physical or named file (including remote and
DOS) connection. This system call cannot be used with stream files.

Syntax, PL/M and C

CALL rqsseek (connection, mode, move_count, except_ptr);

rq_s_seek (connection, mode, move_count, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
mode BYTE UINT_8
move_count WORD_32 UINT_32
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for an open connection whose file pointer you wish to move.

mode
Describes the movement of the file pointer:

Value File Pointer Movement
1 Back by move_count bytes; if the pointer moves past the beginning of

the file, it is set to 0 (first byte).
2 Set to the position specified by move_count . Moving beyond the EOF

is valid for named files only.
3 Forward by move_count bytes. Moving beyond the EOF is valid for

named files only.
4 Move to the EOF and then back by move_count bytes; if the pointer

moves beyond the beginning of the file, it is set to 0 (first byte). This
option is not supported for DOS directories; E_SUPPORT returns.

move_count
Specifies how far, in bytes, to move the file pointer.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_s_seek

System Call Reference Chapter 4 EIOS Calls 353

Additional Information

If your tasks are performing sequential I/O on a file, they do not need to use this
system call. Otherwise, when performing random I/O, use this system call to
position the file pointer before using s_read_move, s_truncate_file, or
s_write_move. It is possible to position the file pointer beyond the EOF for a
named file.

Do not delete a task while it is using this system call.

The connection must be open for reading only, writing only, or reading and writing.
If not, use s_open to open the file. The DOS World user always has read (list)
access to DOS files and directories; write (delete, append, update, add-entry and
change-entry) access is optional.

The connection must have been created by a task within the calling task's job. If
not, use the existing connection as a prefix, and have the calling task obtain a new
connection by invoking s_attach_file.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_BUFF 8023H One of these is true:
• The specified memory buffer is not writable.
• The specified memory buffer crosses a

segment boundary.

E_CONN_NOT_OPEN 0034H At least one of these is true:
• The connection is not open.
• The connection was opened by a_open, not

s_open.

E_EXIST 0006H The connection parameter is not a token for an
existing object.

E_FLUSHING 002CH The specified device is being detached.

E_IDDR 002AH This request is invalid for the specified device
driver.

E_IFDR 002FH S_seek cannot be used with stream files.

E_IO_HARD 0052H A hard error occurred; the BIOS cannot retry the
request.

E_IO_MODE 0056H A tape drive attempted a read (write) before the
previous write (read) completed.

rq_s_seek

354 EIOS Calls Chapter 4 EIOS System Calls

E_IO_NO_DATA 0055H A tape drive attempted to read the next record,
but it found no data.

E_IO_OPRINT 0053H The device was off-line. Operator intervention is
required.

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation a number of times and
failed (the number of retries is a configured
option). Another retry might be successful.

See also: For ICU-configurable systems, RPA
parameter, ICU User's Guide and
Quick Reference

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_LIMIT 0004H At least one of these is true:
• Either the calling task's job, or the job's

default user object, is involved in 255 I/O
operations.

• The calling task's job is not an I/O job.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_CONNECTION 8042H The connection parameter is not a token for a
file connection.

E_PARAM 8004H At least one of these is true:
• The mode parameter is not in the range 1-4.
• The calling task was attempting to seek past

the end of a physical file.

E_SPACE 0029H This seek forced the EIOS to attempt to empty
the connection's buffer(s) by writing their
contents to the volume. However, the volume is
full.

E_SUPPORT 0023H The connection parameter refers to a connection
that was created by a task outside of the calling
task's job.

rq_s_set_file_status

System Call Reference Chapter 4 EIOS Calls 355

s_set_file_status
Changes the owner and/or time stamps of a file.

Syntax, PL/M and C

CALL rqsset$file$status (path_ptr, set_info_ptr, except_ptr);

rq_s_set_file_status (path_ptr, set_info_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
path_ptr POINTER STRING far *
set_info_ptr POINTER SET_FILE_STATUS_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
path_ptr

A pointer to a STRING that contains the path for the file.

set_info_ptr
A pointer to this structure:

DECLARE set_file_status_struct STRUCTURE(
select WORD_16,
owner WORD_16,
create_time WORD_32,
modify_time WORD_32,
access_time WORD_32);

or

typedef struct {
UINT_16 select;
UINT_16 owner;
UINT_32 create_time;
UINT_32 modify_time;
UINT_32 access_time;

} SET_FILE_STATUS_STRUCT

rq_s_set_file_status

356 EIOS Calls Chapter 4 EIOS System Calls

Where:

select Specifies the file attributes to set; encoded as follows:

Bit Meaning
0 Change owner
1 Set creation time
2 Set last modified time
3 Set last access time
bits 4-15 Reserved, must be 0

owner File owner ID

create_time
The date and time the file was created.

modify_time
The date and time the file was last modified.

access_time
The date and time the file was last accessed.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

You must have write access to the specified file, since s_set_file_status attaches
the file and opens it for writing. If the file is currently open and share privileges
have not been granted, s_set_file_status fails and returns E_SHARE.

Not all file drivers support this system call due to file system limitations. This is
the level of support provided by each standard file driver:

File Driver Support
Physical None
Stream None
DOS Only last modified time
Named Full support
Remote Local full support, remote support is system-dependent
EDOS Only last modified time
NFS Fully supported except you cannot change the owner

Condition Codes

E_OK 0000H No exceptional conditions occurred.

rq_s_set_file_status

System Call Reference Chapter 4 EIOS Calls 357

E_ALREADY_ATTACHED 0038H The EIOS is unable to attach the device
containing the file because the BIOS has done
so.

E_CONTEXT 0005H The calling task's job is not an I/O job.

E_DEV_DETACHING 0039H The device containing the specified file is being
detached.

E_DEVFD 0022H The EIOS attempted to physically attach a
device that had formerly been only logically
attached. It found that the device and the device
driver specified in the logical attachment were
incompatible.

E_FACCESS 0026H The default user does not have write access to
the file.

E_SHARE 0028H The file's current share mode will not allow a
connection to be opened with write access.

E_SUPPORT 0023H The file driver associated with the specified
connection does not support this system call.

E_FNEXIST 0021H At least one of these is true:
• A file in the specified path, or the target file

itself, does not exist or is marked for
deletion.

• The physical device specified in the call
was not found.

E_FTYPE 0027H A path component is not a directory file.

E_ILLVOL 002DH The EIOS attempted to physically attach a
device that had formerly been only logically
attached. It found that the volume does not
contain named files. The named, remote, NFS,
DOS, or EDOS file driver was requested during
logical attachment.

E_INVALID_FNODE 003DH The fnode for the specified file is invalid. The
file cannot be accessed; delete it or fix it with
diskverify .

See also:diskverify , Command Reference

E_IO_HARD 0052H A hard error occurred; the BIOS cannot retry the
request.

rq_s_set_file_status

358 EIOS Calls Chapter 4 EIOS System Calls

E_IO_MODE 0056H A tape drive attempted a read (write) before the
previous write (read) completed.

E_IO_NO_DATA 0055H A tape drive attempted to read the next record,
but it found no data.

E_IO_OPRINT 0053H The device was off-line. Operator intervention
is required.

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation a number of times and
failed (the number of retries is a configuration
parameter). Another retry might be successful.

See also: For ICU-configurable systems, RPA
parameter, ICU User's Guide and
Quick Reference

E_IO_MEM 0042H The BIOS job does not currently have a block of
memory large enough to allow this system call
to complete.

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_IO_WRPROT 0054H The volume is write-protected.

E_LIMIT 0004H At least one of these is true:
• The user object or the calling task's job is

involved in 255 I/O operations.
• The calling task's job is not an I/O job.
• The calling task's object limit has been

reached.

E_LOG_NAME_NEXIST 0045H The specified path contains a logical name, but
the call was unable to find this name in the
object directories of the calling task's local job,
the global job, or the root job.

E_LOG_NAME_SYNTAX 0040H The specified logical name contains at least one
of these syntax errors:
• The logical name was missing matching

colons.
• Contains a logical name that exceeds 12

characters, has no characters, or contains
invalid characters.

E_MEDIA 0044H The device containing the specified file is off-
line.

rq_s_set_file_status

System Call Reference Chapter 4 EIOS Calls 359

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOPREFIX 8022H The default prefix for the calling task's job is
undefined, or is not a valid device or file
connection.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_FILE_CONN 0032H For remote and NFS files, the connection
parameter must be a file connection, not a
device connection.

E_NOT_LOG_NAME 8040H The specified path contains a logical name that
refers to an object that is not a device
connection or a file connection.

E_NOUSER 8021H The calling task's job does not have a default
user, or is not a user object.

E_PARAM 8004H The EIOS attempted to physically attach a
device that had formerly been only logically
attached. It found that the logical attachment
referred to a file driver that is not configured
into your system.

See also: For ICU-configurable systems, DFD
parameter, ICU User's Guide and
Quick Reference

E_PATHNAME_SYNTAX 003EH The specified pathname contains invalid
characters.

E_UDF_IO 02D0H An error occurred while accessing the remote
server's UDF. The server's UDF must have
World read permission.

rq_s_special

360 EIOS Calls Chapter 4 EIOS System Calls

s_special
Enables tasks to communicate with devices, device drivers, and the stream file
driver to perform operations that are less device-independent than other EIOS
operations. This call is not valid for devices accessed through NFS.

Syntax, PL/M and C

CALL rqsspecial (connection, function, data_ptr, iors_ptr,
except_ptr);

rq_s_special (connection, function, data_ptr, iors_ptr,
except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
function WORD_16 UINT_16
data_ptr POINTER void far *
iors_ptr POINTER IORS_DATA_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for a connection to the file for which the special function is performed. To
access a remote server, this parameter must be a connection to the server's virtual
root directory.

function
Specifies the special function being requested. Each function is described in detail
after the Additional Information section.

✏ Notes
Bits 8 and 12 of the function field are reserved; do not use
values that manipulate these bits in your applications or device
drivers. Mask bits 8 and 12 when your device driver receives a
function code from the I/O system.

Only function code 2 (Notify) is supported for remote servers and
the DOS or EDOS file driver.

rq_s_special

System Call Reference Chapter 4 EIOS Calls 361

This table summarizes the values assigned to this parameter:

Function Code File Type Description
0 Physical Format track
0 Stream Query
1 Stream Satisfy
2 Physical/Named Notify (The only function supported for

remote servers.)
3 Physical Get disk data
4 Physical Get terminal data
5 Physical Set terminal data
6 Physical Set signal
7 Physical Rewind tape
8 Physical Read tape file mark
9 Physical Write tape file mark
10 Physical Retension tape
11 Reserved
12 Physical Set bad track/sector information
13 Physical Get bad track/sector information
14-15 Reserved
16 Physical Get terminal status
17-19 Reserved
20 Named/DOS/EDOS Get device free space data
21-32767 Reserved
32768-65535 Available for user devices, except for

values that use bits 8 or 12.
17 Physical Cancel terminal I/O: Use BIOS call

a_special, function code 17
18 Physical Resume terminal I/O: Use a_special,

function code 17
19 Physical Perform disk mirroring: Use BIOS call

a_special, function code 19

See also: BIOS call a_special

data_ptr
A pointer to a parameter block that your task uses to exchange information with the
EIOS. The contents and form of the parameter block depend on the function being
requested. Many of these data structures are identical to those in the BIOS call
a_special; refer to the corresponding a_special function code for a complete
description of the structure. If the function requires no parameter block, set
data_ptr to null.

rq_s_special

362 EIOS Calls Chapter 4 EIOS System Calls

iors_ptr
A pointer to a structure described below. The EIOS uses this structure to return
information to the calling task. If you set this pointer to null, the EIOS does not
return the information. Most applications do not need this information.

DECLARE iors_data STRUCTURE(
actual WORD_32,
device WORD_16,
unit BYTE,
funct BYTE,
subfunct WORD_16,
device_loc WORD_32,
buf_ptr POINTER,
count WORD_32,
aux_ptr POINTER)

or

typedef struct {
NATIVE_WORD actual;
UINT_16 device;
UINT_8 unit;
UINT_8 funct;
UINT_16 subfunct;
UINT_32 device_loc;
UINT_8 far * buf_ptr;
NATIVE_WORD count;
void far * aux_ptr;

} IORS_DATA_STRUCT;

Where:

actual Number of bytes transferred during the function, if any.

device Device number identifying the device.

See also: For ICU-configurable systems, Device Driver screens,
ICU User's Guide and Quick Reference

unit Number of the unit that contains the file on which the special function
is being performed.

funct Code recognized by the driver, usually meaning that this is a special
operation.

subfunct User-provided function code.

device_loc
Location on the device where the operation was performed.

rq_s_special

System Call Reference Chapter 4 EIOS Calls 363

buf_ptr Pointer to a buffer used for this operation, if any. For flat model
applications only, treat this parameter as two separate fields in the
structure. The first field has the name listed above and is a near
pointer. The second field has the same name with _seg appended at
the end. It is a segment selector for the pointer.

count Number of bytes transferred, if any.

aux_ptr Same as the call parameter data_ptr .

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Do not delete a task while it is using this system call.

Only function code 2 (Notify) is supported for remote servers. When a task
invokes s_special with a connection to a remote server and function 2, the calling
task is notified of a communication failure immediately after an unsuccessful
attempt to access the remote server, or when the device connection to the remote
server is physically detached. Communication failures can result from resetting the
server, faults in the consumer or server, or line transmission errors.

To restore the availability of a remote server, perform these steps:

1. Fix the communication problem.

2. Call a_physical_detach_device to detach the server's device connection.

3. Call a_physical_attach_device to reattach the server.

Each of the special functions is described below. Descriptions appear in numerical
order of the function parameter.

Format a Track (Function Code 0)

Call s_special with an open physical file connection, function set to 0, and
data_ptr pointing to a structure of the form:

DECLARE format_track STRUCTURE(
track_number WORD_16,
interleave WORD_16,
track_offset WORD_16,
fill_char BYTE)

rq_s_special

364 EIOS Calls Chapter 4 EIOS System Calls

or

typedef struct {
UINT_16 track_number;
UINT_16 interleave;
UINT_16 track_offset;
UINT_8 fill_char;

} FORMAT_TRACK_STRUCT;

Where:

track_number
The number of the track to be formatted: from 0 to 1 less than the
number of tracks on the volume. When formatting a tape or a RAM-
disk, set to 0.

interleave
The interleave factor for the track: the number of physical sectors to
skip when locating the next logical sector. 0 or 1 skips no physical
sectors between logical sectors. If the specified interleave factor is
greater than the number of physical sectors on a track, the OS divides
the specified value by the number of physical sectors and uses the
remainder as interleave . This field does not apply to tapes or
RAM-disks.

track_offset
The number of physical sectors to skip between the index mark and
the first logical sector. This does not apply to tapes or to RAM-disks.

fill_char A character with which each sector is written. Some drivers ignore
this value and fill the sector with a character they establish.

See also: Function Code 3, Get Special Disk Data

Query For Information About Stream File Operation
(Function Code 0)

Call s_special with a token for the connection to a stream file, function set to 0,
and data_ptr set to null. Use this function to find out what is being requested by
another task using the same stream file. For example, the task reading a stream file
might need to know how many bytes are being sent by a task writing to the same
file.

If a task is reading from or writing to the stream file, the EIOS returns this
information to the IORS_DATA_STRUCT structure referenced by the iors_ptr
parameter:

actual Number of bytes already transferred.

rq_s_special

System Call Reference Chapter 4 EIOS Calls 365

count Number of bytes remaining to be transferred.

buf_ptr A pointer to the memory location to be used for the next byte to be
transferred.

funct Indicates the purpose of the queued request. 0 means read; 1 means
write.

If no task is reading or writing, the EIOS queues this request. It remains queued
until a task issues a read or write. If another arrives, the EIOS cancels both
requests and returns E_STREAM_SPECIAL condition code to the calling tasks.

Satisfy Stream File Transactions (Function Code 1)

Call s_special, with a stream file connection, function set to 1, data_ptr and
iors_ptr set to null. The only information that your task can obtain is the
condition code. Use this function to force a stream file transaction to complete,
even if the number of bytes written does not match the number of bytes read.

When one task tries to read or write a stream file, the task does not ordinarily run
again until the complementary task issues a matching request. For example,
suppose that Task A wants to read 512 bytes, but Task B writes only 256 bytes.
Task A stops running until Task B supplies at least 256 more bytes.

Request Notification That Volume Is Unavailable (Function Code 2)

A volume mounted on a drive becomes unavailable because an operator opens a
flexible disk drive door or presses the STOP button on other mass storage drives.
A task can use s_special to request notification of this event. For most drives,
notification occurs immediately. This function applies to named and physical files
only. The data_ptr parameter points to this structure:

DECLARE notify STRUCTURE(
mailbox SELECTOR,
object SELECTOR);

or

typedef struct {
SELECTOR mailbox;
SELECTOR object;

} NOTIFY_STRUCT;

Where:

mailbox A token for a mailbox.

rq_s_special

366 EIOS Calls Chapter 4 EIOS System Calls

object A token for an object. When the BIOS detects that the volume is
unavailable, the object is sent to the mailbox. To cancel a request for
notification, make a dummy request using the same connection with a
null selector value in the mailbox parameter.

After a task has made a request for notification, the BIOS remembers the object
and mailbox tokens until the volume is detected as being unavailable or until the
device is detached by a_physical_detach_device. A task should be dedicated to
waiting at the mailbox. If the volume is detected as being unavailable, the BIOS
will not execute I/O requests to the volume's device. Such requests return with the
IORS status field set to E_IO and the unit_status field set to IO_OPRINT;
operator intervention is required.

See also: IORS, Chapter 1,
Accessing the IORS, Programming Techniques

If a task issues a subsequent notification request for the same device connection,
the BIOS replaces the old mailbox and object values with the new ones. It does not
return a condition code.

To restore the availability of a volume, perform these steps:

1. Close the door or restart the drive.

2. Call a_physical_detach_device to do a hard detach of the device.

3. Call a_physical_attach_device to reattach the device.

4. Create a new file connection.

See also: a_physical_detach_device, a_physical_attach_device

Get Disk Data (Function Code 3)

When a disk is formatted, you may place some special device data into the iRMX
volume label. To get this data, call s_special with a token for a device connection,
function set to 3, and data_ptr pointing to this structure:

DECLARE disk_label_data STRUCTURE(
label_data(8) BYTE);

or

typedef struct {
UINT_8 label_data[8];

} DISK_LABEL_DATA_STRUCT;

Where:

label_data The last eight bytes of the label on the iRMX named volume.

rq_s_special

System Call Reference Chapter 4 EIOS Calls 367

Get Terminal Characteristics (Function Code 4)
Set Terminal Characteristics (Function Code 5)

Use function code 4 to get the current characteristics before setting the terminal
characteristics. Modify the returned structure to reflect the changes. Then use
function code 5 to set the characteristics, using the modified structure as input.

Some attributes in this function can also be set with OSC sequences. You can use
the OSC Query sequence when debugging, to ensure that your tasks invoked
s_special correctly.

See also: Line editing, OSC sequences, translation, Driver Programming
Concepts

Call s_special with a token for a connection to a terminal; get or set the terminal
characteristics with function set to 4 or 5. Data_ptr points to this structure.
Zero for any of the connection_flags through scroll_lines fields causes the
I/O System to skip over the zeroed field, leaving it at its previous setting.

DECLARE terminal_attributes STRUCTURE(
num_words WORD_16,
num_used WORD_16,
connection_flags WORD_16,
terminal_flags WORD_16,
in_baud_rate WORD_32,
out_baud_rate WORD_32,
scroll_lines WORD_16,
page_width BYTE,
page_length BYTE,
cursor_offset BYTE,
overflow_offset BYTE,
special_modes WORD_16,
high_water_mark WORD_16,
low_water_mark WORD_16,
fc_on_char WORD_16,
fc_off_char WORD_16,
link_parameter WORD_16,
spc_hi_water_mark WORD_16,
special_char(4) BYTE);

rq_s_special

368 EIOS Calls Chapter 4 EIOS System Calls

or

typedef struct {
UINT_16 num_words;
UINT_16 num_used;
UINT_16 connection_flags;
UINT_16 terminal_flags;
NATIVE_WORD in_baud_rate;
NATIVE_WORD out_baud_rate;
UINT_16 scroll_lines;
UINT_8 page_width;
UINT_8 page_length;
UINT_8 cursor_offset;
UINT_8 overflow_offset;
UINT_16 special_modes;
UINT_16 high_water_mark;
UINT_16 low_water_mark;
UINT_16 fc_on_char;
UINT_16 fc_off_char;
UINT_16 link_parameter;
UINT_16 spc_hi_water_mark;
UINT_8 special_char[4];

} TERM_ATTRIB_STRUCT;

See also: Function codes 4 and 5 of BIOS call a_special for a description of the
fields in this data structure

Set Signal Characters for Signaling from Terminal Keyboard (Function Code 6)

This function associates a keyboard character with a semaphore, so that whenever
the character is entered at the terminal, the BIOS automatically sends a unit to the
semaphore. Character-semaphore pairs are called signals. Up to 12 signal
characters, each character being associated with a different semaphore, are
allowed. Call s_special with a device connection, function set to 6, and
data_ptr pointing to this structure:

DECLARE signal_pair STRUCTURE(
semaphore TOKEN,
character BYTE);

or

typedef struct {
SELECTOR semaphore;
UINT_8 character;

} SIGNAL_PAIR_STRUCT;

rq_s_special

System Call Reference Chapter 4 EIOS Calls 369

Where:

semaphore A token for the semaphore to be associated with the character. To
delete a signal character, use a null selector.

character The signal character.

Value Meaning
0-1FH, 7FH TSC sends a unit to the associated semaphore

when it receives this ASCII value.
20H-40H Type-ahead buffer (and input buffer if a buffered

device) is cleared and a unit is sent to the
associated semaphore when it receives a character
in the 0 to 1FH range (add 20H to desired control
character).

Tape Drive Functions (Function Codes 7, 8, 9, and 10)

Call s_special with a physical file connection, using these function codes and
data_ptr values to perform four different operations on tape drives only:

Code data_ptr Function
7 Nil The tape drive rewinds a tape to its load point. This

function also terminates tape read and write operations. If a
write operation, the tape drive writes a file mark before
rewinding the tape.

8 Valid The tape drive moves the tape to the next file mark. This
function also terminates tape read operations. The value of
the search byte in the read_file_mark structure (see below)
determines the direction of the search.

9 Nil The tape drive writes a file mark at the current position.
This function also terminates tape write operations.

10 Nil The tape drive fast-forwards to the end of the tape and then
rewinds to the load point (retensioning).

If using Function Code 8, data_ptr points to this structure:

DECLARE read_file_mark STRUCTURE (search BYTE);

or

typedef struct {
UINT_8 search;

} READ_FILE_MARK_STRUCT;

rq_s_special

370 EIOS Calls Chapter 4 EIOS System Calls

Where:

search A value indicating the direction of the search:

Value Meaning
00 search forward
0FFH search backward (for start/stop drives only)

Set and Get Bad Track/Sector Information (Function Codes 12 and 13)

Use these functions to set (write) or get (read) the bad track/sector information of a
volume. Any information already existing in the volume's Bad Track/Sector
Information Block will be overwritten. If you wish to modify existing information,
get, modify, then set the Bad Track/Sector Information. The data_ptr parameter
must point to this structure:

DECLARE bad_track_info STRUCTURE(
reserved WORD_16,
count WORD_16,
bad_tracks(1024) WORD_32),
badtracks(1024) STRUCTURE (
cylinder WORD_16,
head BYTE,
sector BYTE)
AT (@bad_track_info.bad_tracks);

or

typedef struct {
UINT_16 cylinder;
UINT_8 head;
UINT_8 sector;

} BAD_TRACK_STRUCT;

typedef struct {
UINT_16 reserved;
UINT_16 count;
BAD_TRACK_STRUCT bad_tracks[1024];

} BAD_TRACK_INFO_STRUCT;

Where:

reserved Reserved for use by the device driver.

rq_s_special

System Call Reference Chapter 4 EIOS Calls 371

count The number of bad tracks/sectors listed in the bad_tracks structure,
up to the maximum of 1024. A 0 in the count field indicates that no
valid information is available (get) or that there are no bad tracks
(set).

bad_tracks
A structure used to store the bad track/sector list. For each entry, a
sub-structure defines the cylinder, head, and sector for each bad track.
List bad tracks in ascending order.

Get Terminal Status (Function Code 16)

This function gets the status of a terminal that is being driven by a terminal device
driver. Call s_special with a physical connection to terminal, function set to 16,
and data_ptr pointing to this structure:

DECLARE term_status STRUCTURE(
terminal_flags WORD_16,
input_conn_flags WORD_16,
input_state WORD_16,
input_conn TOKEN,
input_count WORD_32,
input_actual WORD_32,
raw_buf_count WORD_16,
type_ahead_count BYTE,
num_input_requests BYTE,
output_conn_flags WORD_16,
output_state WORD_16,
output_conn TOKEN,
output_count WORD_32,
output_actual WORD_32,
out_buf_count WORD_16,
num_output_requests BYTE);

rq_s_special

372 EIOS Calls Chapter 4 EIOS System Calls

or

typedef struct {
UINT_16 terminal_flags;
UINT_16 input_conn_flags;
UINT_16 input_state;
SELECTOR input_conn;
NATIVE_WORD input_count;
NATIVE_WORD input_actual;
UINT_16 raw_buf_count;
UINT_8 type_ahead_count;
UINT_8 num_input_requests;
UINT_16 output_conn_flags;
UINT_16 output_state;
SELECTOR output_conn;
NATIVE_WORD output_count;
NATIVE_WORD output_actual;
UINT_16 out_buf_count;
UINT_8 num_output_requests;

} TERM_STATUS_STRUCT;

See also: Function code 16, BIOS call a_special, for descriptions of the fields
in this data structure

Get Device Free Space Data (Function Code 20)

This function returns information about the free space available on the specified
device.

Call s_special with an open file connection, function a WORD_16 set to 20, and
data_ptr pointing to a structure of this form. Set iors_ptr to null.

DECLARE device_free_struct STRUCTURE(
sector_size WORD_16
device_size WORD_32
bytes_free WORD_32
files_free WORD_32
reserved(2) WORD_32);

rq_s_special

System Call Reference Chapter 4 EIOS Calls 373

or

typedef struct {
UINT_16 sector_size;
UINT_32 device_size;
UINT_32 bytes_free;
UINT_32 files_free
UINT_32 reserved[2];

}DEVICE_FREE_STRUCT;

Where:

sector_size
The minimum I/O transfer size for the device.

device_size
The total number of bytes available on the device (when empty).

bytes_free
The number of bytes available in the device file system.

files_free
The number of files available in the device file system. A returned
value of 0FFFFFFFFH indicates that this file does not apply the
number of files in the file system is limited only by the space on the
device (DOS and EDOS file drivers).

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONN_NOT_OPEN 0034H At least one of these is true:

• The connection is not open.
• The connection was opened by a_open, not

s_open.

E_EXIST 0006H The connection parameter is not a token for an
existing object.

E_FLUSHING 002CH The specified device is being detached.

E_IDDR 002AH The requested function is not supported by the
device containing the specified file.

E_IFDR 002FH The EIOS does not support the requested
function for the file driver associated with the
connection.

E_IO_HARD 0052H A hard error occurred; the BIOS cannot retry the
request.

rq_s_special

374 EIOS Calls Chapter 4 EIOS System Calls

E_IO_MEM 0042H The BIOS memory pool on the remote server
does not have a block of memory large enough
to allow the system call to complete.

E_IO_MODE 0056H A tape drive attempted a read (write) before the
previous write (read) completed.

E_IO_NO_DATA 0055H The tape drive attempted to read the next record,
but it found no data.

E_IO_OPRINT 0053H The device was off-line. Operator intervention is
required.

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation a number of times and
failed (the number of retries is a configuration
parameter). Another retry might be successful.

See also: For ICU-configurable systems, RPA
parameter, ICU User's Guide and
Quick Reference

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_IO_WRPROT 0054H The volume is write-protected.

E_LIMIT 0004H At least one of these is true:
• Either the calling task's job or the job's

default user object is involved in 255 I/O
operations.

• The calling task's job is not an I/O job.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This call is not part of the present configuration.

E_NOT_CONNECTION 8042H The connection parameter is not a file
connection token.

E_PARAM 8004H The function code is not a legitimate value.

E_SPACE 0029H At least one of these is true:
• The call attempted to format a track that is

beyond the end of the volume.
• When formatting a RAM-disk or a tape, the

call attempted to format a track other than
track 0.

rq_s_special

System Call Reference Chapter 4 EIOS Calls 375

E_STREAM_SPECIAL 003CH At least one of these is true:
• The calling task is attempting to satisfy a

stream file request, but there is no request
queued at the stream file.

• The calling task is attempting to satisfy a
stream file request, but the only queued
request is a query.

• The calling task is querying a stream file,
but the only request queued at the file is
another query. The EIOS removes both
queries from the queue.

E_SUPPORT 0023H The specified connection was created by a task
outside of the calling task's job.

rq_start_io_job

376 EIOS Calls Chapter 4 EIOS System Calls

start_io_job
Starts the execution of the initial task in an I/O job. The task was not started when
the I/O job was created.

Syntax, PL/M and C

CALL rq$start$io$job (io_job, except_ptr);

rq_start_io_job (io_job, except_ptr);

Parameter PL/M Data Type C Data Type
io_job SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
io_job

A token for the I/O job to be started. This is the same token that was returned to
create_io_job.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

When you call create_io_job, use the task_flags parameter to specify that the
task in the new job not run until start_io_job is issued. Then initialize any items
that need to be set before the initial task runs. For example, you can create a job,
catalog a logical name in the new job's object directory, and then issue
start_io_job.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TIME 0001H The job cannot be started yet, probably because
the OS has not finished processing
create_io_job.

rq_s_truncate_file

System Call Reference Chapter 4 EIOS Calls 377

s_truncate_file
Removes information from the end of a named (including DOS and remote) data
file.

Syntax, PL/M and C

CALL rqstruncate$file (connection, except_ptr);

rq_s_truncate_file (connection, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection

A token for a connection to the named data file which is to be truncated. The
current file pointer for this connection indicates where to truncate the file. The
byte indicated by the pointer is the first byte to be dropped from the file.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Use s_seek to position the pointer before using s_truncate_file.

Truncation will occur immediately, regardless of the status of other connections to
the same file unless the pointer is at or beyond the EOF.

File pointers for other connections to the file are not adjusted by the truncation and
may be beyond the new EOF after s_truncate_file. If a task invokes a_read or
s_read_move in this case, the BIOS behaves as though the read began at the EOF.

Do not delete a task while it is using this system call.

The connection must be open for writing only or for both reading and writing. If
not, use s_open to open the connection.

The connection must have update access to the file. The EIOS computes a
connection's access when the connection is created.

See also: s_change_access, BIOS call a_change_access

rq_s_truncate_file

378 EIOS Calls Chapter 4 EIOS System Calls

The DOS World user always has read (list) access to DOS files and directories;
write (delete, append, update, add-entry and change-entry) access is optional.

The connection must have been created by a task within the calling task's job. If
not, use the existing connection as a prefix, and invoke s_attach_file.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONN_NOT_OPEN 0034H At least one of these is true:
• The connection is open in the wrong mode.

It must be open for writing or for both
reading and writing.

• The connection is not open.
• The connection was opened by a_open, not

s_open.

E_FACCESS 0026H The connection does not have update access to
the file.

E_EXIST 0006H The connection parameter is not a token for an
existing object.

E_IFDR 002FH S_truncate_file can be used only on named
files, not stream or physical files.

E_IO_HARD 0052H A hard error occurred; the BIOS cannot retry the
request.

E_IO_OPRINT 0053H The device was off-line. Operator intervention is
required.

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation a number of times and
failed (the number of retries is a configuration
parameter). Another retry might be successful.

See also: For ICU-configurable systems, RPA
parameter, ICU User's Guide and
Quick Reference

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_IO_WRPROT 0054H The volume is write-protected.

rq_s_truncate_file

System Call Reference Chapter 4 EIOS Calls 379

E_LIMIT 0004H At least one of these is true:
• The calling task's job is not an I/O job.
• Either the calling task's job, or the job's

default user object, is involved in 255 I/O
operations.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_CONNECTION 8042H The connection parameter is not a token for a
file connection.

E_SPACE 0029H The truncation required writing the contents of a
buffer to the file, but the volume was full.

E_SUPPORT 0023H The connection was created by a task outside the
calling task's job.

rq_s_uncatalog_connection

380 EIOS Calls Chapter 4 EIOS System Calls

s_uncatalog_connection
Deletes a logical name that was added by s_catalog_connection from the object
directory of a job. Do not delete a task while it is using this system call.

Syntax, PL/M and C

CALL rqsuncatalog$connection (job, log_name_ptr, except_ptr);

rq_s_uncatalog_connection (job, log_name_pt, except_ptr);

Parameter PL/M Data Type C Data Type
job SELECTOR SELECTOR
log_name_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

job A token for a job. Setting this parameter to a null selector specifies the calling
task's job.

log_name_ptr
A pointer to a STRING of 12 or fewer characters, optionally delimited with colons,
containing the logical name to uncatalog. The OS removes the colons so that a
logical name with colons is the same as one without; :F0: is the same as F0.
Colons do not count in the length of the name.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The job parameter is not a token for an existing
object.

E_LIMIT 0004H The calling task's job is not an I/O job.

E_LOG_NAME_NEXIST 0045H The call could not find the logical name in the
job's object directory.

rq_s_uncatalog_connection

System Call Reference Chapter 4 EIOS Calls 381

E_LOG_NAME_SYNTAX 0040H The syntax of the specified logical name is
incorrect because at least one of these is true:
• The STRING pointed to by the

log_name_ptr parameter is length 0 or
greater than 12.

• The logical name contains invalid
characters.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H The job parameter is not a token for a job object.

rq_verify_user

382 EIOS Calls Chapter 4 EIOS System Calls

verify_user
Validates a user's name and password, then modifies the user object to indicate
verification.

Syntax, PL/M and C

CALL rq$verify$user (user_t, name_ptr, password_ptr,
except_ptr);

rq_verify_user (user_t, name_ptr, password_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
user_t SELECTOR SELECTOR
name_ptr POINTER STRING far *
password_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
user_t

A token for the user object to be verified. For DOS files, the EIOS ignores this
parameter because the user is always World.

name_ptr
A pointer to a STRING containing the user name. This name is typically entered
from the console during dynamic logon. Only the first eight characters are used;
any additional characters are ignored.

password_ptr
A pointer to a STRING containing the unencrypted user password. This password
is typically entered from the console at the same time as the name_ptr parameter.
Only the first eight characters are used.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_verify_user

System Call Reference Chapter 4 EIOS Calls 383

Additional Information

This system call searches the :config:udf file for a matching user name and
password. The name must be the same as it appears in the UDF. The password
parameter is encrypted and then compared to the encrypted version in the UDF.
The ID defined in the UDF is also compared with the ID contained in the user
object.

If a matching name, password, and ID are found, the user object is modified to
indicate the user has been verified. Otherwise, an exceptional condition code
returns and the user object is not modified.

See also: For ICU-configurable systems, I/O Users screen and CD parameter,
ICU User's Guide and Quick Reference,
:config:udf file, Command Reference

If iRMX-NET is configured into your system and the verify_user call succeeds,
the user also gains access to iRMX-NET remote files.

✏ Note
The iRMX-NET remote file driver will reject all user tokens
created by create_user unless verify_user is used to verify the
user tokens created.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_CALL 8005H A task wrote over the interface library or over
the EIOS job.

E_CONTEXT 0005H The user token has been verified.

E_DEVFD 0022H The device cannot be used with the file driver as
specified in the preceding logical attach
operation.

E_DEVICE_DETACHING 0039H An I/O operation could not be performed on the
device because it was being detached.

E_EXIST 0006H The user token parameter is not valid.

E_FACCESS 0026H The user does not have the proper access rights
for the requested operation.

E_FLUSHING 002CH The device is being detached.

rq_verify_user

384 EIOS Calls Chapter 4 EIOS System Calls

E_FNEXIST 0021H One of these is true:
• The file or a file in its path does not exist.
• The specified physical device was not found.

E_FTYPE 0027H A path component is not a directory file.

E_ILLVOL 002DH The file driver in the volume label conflicts with
the file driver specified in the preceding logical
attach operation.

E_INVALID_FNODE 003DH The fnode for the specified file is invalid. The
file cannot be accessed; delete it or fix it with
diskverify .

See also:diskverify , Command Reference

E_IO_HARD 0052H A hard error occurred; the BIOS cannot retry the
request.

E_IO_MEM 0042H The BIOS job did not have enough memory to
perform the requested function.

E_IO_OPRINT 0053H The device is off-line; operator intervention is
required.

E_IO_SOFT 0051H A soft error occurred and the BIOS has retried
the operation and failed; a retry is not possible.

E_IO_UNCLASS 0050H An unclassified I/O error occurred.

E_IO_WR_PROT 0054H The volume is write protected.

E_LIMIT 0004H The caller's job is not an I/O job.

E_LOG_NAME_NEXIST 0045H The logical name was not found in the caller's
object directory, the global job object directory,
or the root job object directory.

E_LOG_NAME_SYNTAX 0040H One of these was true:
• The logical name was missing matching

colons.
• The logical name STRING has a length of 0

or more than 12 characters.
• The logical name STRING contains invalid

characters.

E_MEDIA 0044H The device associated with the system call is off-
line.

rq_verify_user

System Call Reference Chapter 4 EIOS Calls 385

E_MEM 0002H The caller's job does not have enough memory to
perform the requested operation.

E_NAME_NEXIST 0049H The name specified in this call is not defined.
Only dynamic logon creates verified users.

E_NOPREFIX 8022H The caller's job does not have a default prefix, or
it is invalid.

E_NOT_CONFIGURED 0008H This call is not part of the present configuration.

E_NOT_LOG_NAME 8040H The token referred to by the logical name
supplied does not refer to a valid device or file
connection.

E_NOUSER 8021H The caller's job does not have a default user, or
is invalid.

E_PARAM 8004H The name or the password contain invalid
characters or the name length is 0.

E_PASSWORD_MISMATCH 004BH The password is incorrect.

E_SHARE 0028H The file cannot be shared using the requested
access.

E_TYPE 8002H The user_t parameter is not a user object token.

E_UDF_FORMAT 0048H The UDF is not in the correct format.

E_UID_NEXIST 004AH The user ID present in the user token does not
match that specified in the UDF.

rq_s_write_move

386 EIOS Calls Chapter 4 EIOS System Calls

s_write_move
Writes a collection of bytes from a buffer to a file.

Syntax, PL/M and C

bytes_written = rqswrite$move (connection, buf_ptr, count,
except_ptr);

bytes_written = rq_s_write_move (connection, buf_ptr, count,
except_ptr);

Parameter PL/M Data Type C Data Type
bytes_written WORD_32 NATIVE_WORD
connection SELECTOR SELECTOR
buf_ptr POINTER UINT_8 far *
count WORD_32 NATIVE_WORD
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
bytes_written

Indicates the number of bytes that were actually written to the file. This number is
always less than or equal to the number specified in the count parameter.

Parameters
connection

A token for the connection to the file where the information is written.

buf_ptr
A pointer to a contiguous buffer of up to 4 Gbytes that is to be written to the
specified file.

count
Specifies the number of bytes to be written from the buffer to the file.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_s_write_move

System Call Reference Chapter 4 EIOS Calls 387

Additional Information

To write information into a file, the connection must have been created by a task
within the calling task's job and be open for writing or for both reading and writing.
The connection may also have access rights for updating, appending, or both.

See also: s_change_access, BIOS call a_change_access

The DOS World user always has read (list) access to DOS files and directories;
write (delete, append, update, add-entry and change-entry) access is optional.

The EIOS returns a condition code and writes fewer bytes than requested by the
task (on return from the call, bytes_written is less than count) under two
circumstances.

• When the EIOS encounters an I/O error

• When the volume to which your task is writing becomes full

The EIOS writes the first byte starting at the byte pointed to by the file pointer and
updates the pointer. After the write is complete, the file pointer points to the byte
immediately following the last byte written. Use s_seek to position the file pointer
if you are performing random-access operations.

If your task is using a connection that has append access, the task can start a write
beyond, rather than at, the EOF. The EIOS extends the file and performs the write.
If the file is extended, the extended section contains unknown, random information.
You can write data into this area later.

For better performance, the priority of the invoking task should be equal to or
lower than (numerically greater than) 130. If the priority of the calling task is
greater than 130, the OS cannot overlap the write with computation or with other
I/O operations.

Do not delete a task while it is using this system call.

See also: s_attach_file, s_seek, s_create_file,
Setting priorities, System Concepts

iRMX-NET's remote file driver does not perform fragmentation and reassembly.
For optimal performance, reading and writing should begin at offsets that are
integral multiples of the remote server's buffer size. The device_granularity
parameter returned by s_get_file_status indicates the buffer size of a remote
server.

rq_s_write_move

388 EIOS Calls Chapter 4 EIOS System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_BUFF 8023H One of these is true:
• The specified source memory buffer is not

readable.
• The specified source memory buffer crosses

segment boundaries.

E_CONN_NOT_OPEN 0034H At least one of these is true:
• The connection is not open or not open for

writing.
• The connection was opened with a_open,

not s_open.

E_EXIST 0006H The connection parameter is not a token for an
existing object.

E_FACCESS 0026H The call tried to write beyond the EOF, but the
connection specified does not have append
access to the file.

E_FLUSHING 002CH The specified device is being detached.

E_FNODE_LIMIT 003FH The file cannot be created or extended to this
size because it has reached the maximum
number of volume blocks.

See also: File driver limitations, System
Concepts manual

E_FRAGMENTATION 0030H The disk is too fragmented to extend the file.

E_IO_HARD 0052H A hard error occurred; the BIOS cannot retry
the request.

E_IO_MODE 0056H A tape drive attempted a read (write) before the
previous write (read) completed.

E_IO_OPRINT 0053H The device was off-line. Operator intervention
is required.

rq_s_write_move

System Call Reference Chapter 4 EIOS Calls 389

E_IO_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation a number of times and
failed. The number of retries is a configuration
parameter. Another retry might be successful.

See also: For ICU-configurable systems, RPA
parameter, ICU User's Guide and
Quick Reference

E_IO_UNCLASS 0050H An unknown I/O error occurred.

E_IO_WRPROT 0054H The volume is write-protected.

E_LIMIT 0004H At least one of these is true:
• The calling task's job is not an I/O job.
• The calling task's job, or the job's default

user object, is involved in 255 I/O
operations.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NOT_CONNECTION 8042H The connection parameter is not a token for a
file connection.

E_PARAM 8004H The calling task is attempting to write beyond
the end of a physical file.

E_SPACE 0029H The volume is full.

E_SUPPORT 0023H The connection parameter refers to a connection
that was created by a task outside of the calling
task's job.

■■ ■■ ■■

System Call Reference Chapter 5 HI Calls 391

Human Interface System Calls 5
c_backup_char

Moves the parsing buffer pointer back one character (byte) for each occurrence of
the call. The parsing buffer receives the call's parameters when the operator
invokes an HI command.

Syntax, PL/M and C

CALL rqcbackup$char (except_ptr);

rq_c_backup_char (except_ptr);

Parameter PL/M Data Type C Data Type
except_ptr POINTER to WORD_16 UINT_16 far *

Parameter
except_ptr

A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_LIMIT 0004H The parsing buffer's pointer is at the start of the
command.

E_CONTEXT 0005H The calling job is not an I/O job.

rq_c_create_command_connection

392 HI Calls Chapter 5 Human Interface System Calls

c_create_command_connection
Returns a token for an iRMX command connection object. This object is required
in order to invoke commands from a program using the c_send_command system
call.

See also: c_send_command

Syntax, PL/M and C

command_conn = rqccreate$command$connection (default_ci,
default_co, flags, except_ptr);

command_conn = rq_c_create_command_connection (default_ci,
default_co, flags, except_ptr);

Parameter PL/M Data Type C Data Type
command_conn SELECTOR SELECTOR
default_ci SELECTOR SELECTOR
default_co SELECTOR SELECTOR
flags WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
command_conn

A token for the new command connection.

Parameters
default_ci

A token for a connection used as the :ci: (console input) for any commands
invoked using this command connection.

default_co
A token for a connection used as the :co: (console output) for any commands
invoked using this command connection.

rq_c_create_command_connection

System Call Reference Chapter 5 HI Calls 393

flags
Indicates if the HI should return an E_ERROR_OUTPUT condition code if the
system call c_send_eo_response is used by any task.

Value Meaning
0 Do not return a code.
1 Return the condition code.

See also: HI CLI, System Concepts

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Although a job can contain multiple command connections, the tasks in a job
cannot create command connections simultaneously. Attempts to do this result in
an E_CONTEXT condition code. Only one task should create the command
connections for all tasks in the job.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_ALREADY_ATTACHED 0038H While creating a stream file, the EIOS was
unable to attach the :stream: device because
another task in the same job had already invoked
a BIOS call to attach the device.

E_CONTEXT 0005H At least one of these is true:
• Two command connections were being

created simultaneously by two tasks in the
same job.

• The calling task's job was not created by the
HI.

See also: I/O jobs, System Concepts

E_DEV_DETACHING 0039H The :stream: device, the default_ci device, or the
default_co device was being detached.

E_DEVFD 0022H The EIOS attempted the physical attachment of
the :stream: device. This device had formerly
been only logically attached. The EIOS found
that the device and the device driver specified in
the logical attachment are incompatible. The
:stream: device is not properly configured.

rq_c_create_command_connection

394 HI Calls Chapter 5 Human Interface System Calls

E_EXIST 0006H The default_ci or default_co parameter is not a
token for an existing object.

E_FNEXIST 0021H The :stream: file does not exist or is marked for
deletion.

E_IFDR 002FH The EIOS attempted to obtain information about
the default_ci or default_co connection. This
resulted in an invalid file driver request.

E_INVALID_FNODE 003DH The fnode associated with the file being used for
the redirected :ci: or :co: information is invalid.

E_IO_MEM 0042H The BIOS job does not currently have a block of
memory large enough to allow the HI to create a
stream file.

E_LIMIT 0004H At least one of these is true:
• The object directory of the calling task's job

has already reached the maximum size.
• The calling task's job has exceeded its object

limit.
• The calling task's job or that job's default

user object is already involved in 255 I/O
operations.

• The calling task's job was not created by the
HI.

See also: I/O jobs, System Concepts

E_LOG_NAME_NEXIST 0045H The call was unable to find the logical name
:stream: in the object directories of the local job,
the global job, or the root job.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOPREFIX 8022H The calling task's job does not have a valid
default prefix.

E_NOT_CONNECTION 8042H The default_ci or default_co parameter is a token
for an object that is not a connection to a file.

E_NOT_LOG_NAME 8040H The logical name :stream: refers to an object
that is not a file or device connection.

E_NOUSER 8021H The calling task's job does not have a valid
default user object.

rq_c_create_command_connection

System Call Reference Chapter 5 HI Calls 395

E_PARAM 8004H The system call forced the EIOS to attempt the
physical attachment of the :stream: device,
which had formerly been only logically attached.
The physical attachment is not possible; the
stream file driver is not properly configured.

E_SUPPORT 0023H The default_ci or default_co device connection
was not created by this job.

rq_c_delete_command_connection

396 HI Calls Chapter 5 Human Interface System Calls

c_delete_command_connection
Deletes a command connection object from a previous
c_create_command_connection call and frees the memory used by the
connection.

Syntax, PL/M and C

CALL rqcdelete$command$connection (command_conn, except_ptr);

rq_c_delete_command_connection (command_conn, except_ptr);

Parameter PL/M Data Type C Data Type
command_conn SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
command_conn

A token for a valid command connection.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The command_conn parameter is not a token for
an existing object.

E_TYPE 8002H The command_conn parameter is a not token for
a command connection object.

rq_c_format_exception

System Call Reference Chapter 5 HI Calls 397

c_format_exception
Creates a default message for a given condition code and writes that message into a
user-provided STRING.

Syntax, PL/M and C

CALL rqcformat$exception (buff_ptr, buff_max, exception_code,
reserved_byte, except_ptr);

rq_c_format_exception (buff_ptr, buff_max, exception_code,
reserved_byte, except_ptr);

Parameter PL/M Data Type C Data Type
buff_ptr POINTER STRING far *
buff_max WORD_16 UINT_16
exception_code WORD_16 UINT_16
reserved_byte BYTE UINT_8
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
buff_ptr

A pointer to a STRING where the HI concatenates the formatted exception
message.

buff_max
Specifies the maximum number of bytes that may be contained in the STRING
pointed to by buff_ptr .

exception_code
The condition code value for which a message is to be created.

reserved_byte
Reserved. Set to 1.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_c_format_exception

398 HI Calls Chapter 5 Human Interface System Calls

Additional Information

The call concatenates the message to the end of the STRING pointed to by the
buff_ptr pointer and updates the count byte to reflect the addition. If a STRING
is not already present in the buffer, the first byte of the buffer must be 0. The
message added by c_format_exception will not be longer than 30 characters, not
including the length byte.

The condition code message created by c_format_exception consists of the
condition code value and condition code mnemonic in this format:

value : mnemonic

The mnemonics are provided by the HI from an internal table.

See also: Internal table, Command Reference

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_PARAM 8004H An undefined condition code value was
specified.

E_STRING 8084H The message to be returned exceeds the length
limit of 255 characters.

E_STRING_BUFFER 0081H The buffer pointed to by the buff_ptr parameter
is not large enough to contain the exception
message.

rq_c_get_char

System Call Reference Chapter 5 HI Calls 399

c_get_char
Gets a character from the parsing buffer and moves the pointer to the next
character. Consecutive calls to c_get_char return consecutive characters.

Syntax, PL/M and C

gchar = rqcget$char (except_ptr);

gchar = rq_c_get_char (except_ptr);

Parameter PL/M Data Type C Data Type
char BYTE UINT_8
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value

gchar The next character from the parsing buffer. A null character returns when the end
of the buffer is reached.

Parameter
except_ptr

A pointer to a variable declared by the application where the call returns a
condition code.

rq_c_get_char

400 HI Calls Chapter 5 Human Interface System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The calling task's job was not created by the HI.

See also: I/O jobs, System Concepts

E_LIMIT 0004H At least one of these occurred:
• The object directory of the calling task's job

has already reached the maximum size.
• The calling task's job has exceeded its object

limit.
• The calling task's job was not created by the

HI.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

rq_c_get_command_name

System Call Reference Chapter 5 HI Calls 401

c_get_command_name
Obtains the pathname of the command entered by the operator. This information is
available to each command and is stored in a separate buffer from the parsing
buffer. This call does not obtain information from the parsing buffer, nor does it
move the parsing buffer pointer.

Syntax, PL/M and C

CALL rqcget$command$name (path_name_ptr, name_max,
except_ptr);

rq_c_get_command_name (path_name_ptr, name_max, except_ptr);

Parameter PL/M Data Type C Data Type
path_name_ptr POINTER STRING far *
name_max WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
path_name_ptr

A pointer to a STRING that receives the pathname of the current command.

name_max
Specifies the maximum length in bytes, including the length byte, of the STRING
pointed to path_name_ptr .

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If the operator invokes the c_get_command_name command without specifying a
logical name, the HI automatically searches a configured number of directories for
the command. In such cases, the value returned by this command also includes the
directory name (such as :system: , :prog: , or :$:) as a prefix to the command
name.

See also: For ICU-configurable systems, HI Logical Names screen, ICU User's
Guide and Quick Reference

rq_c_get_command_name

402 HI Calls Chapter 5 Human Interface System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_LIMIT 0004H The calling task's job was not created by the HI.

E_PATHNAME_SYNTAX 003EH The specified pathname contains invalid
characters.

E_STRING_BUFFER 0081H The buffer pointed to by the path_name_ptr
parameter is not large enough to contain the
command name.

E_TIME 0001H The calling task's job was not created by the HI.

rq_c_get_input_connection

System Call Reference Chapter 5 HI Calls 403

c_get_input_connection
Returns an EIOS connection to the specified input file. This call causes an error
message to appear at the operator's terminal (:co:) whenever the OS encounters an
exceptional condition. This condition can be one of those listed for this call or the
EIOS calls s_attach_file and s_open.

Syntax, PL/M and C

connection = rqcget$input$connection (path_name_ptr,
except_ptr);

connection = rq_c_get_input_connection (path_name_ptr,
except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
path_name_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
connection

The token for the connection to the specified file.

Parameters
path_name_ptr

A pointer to a STRING that specifies the path and filename.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_c_get_input_connection

404 HI Calls Chapter 5 Human Interface System Calls

Additional Information

The connection obtained by c_get_input_connection has these attributes: read
only, accessible to all users, and has two 1024-byte buffers (default size).

These messages can be displayed by this call:

pathname , file does not exist
The input file does not exist.

pathname , invalid file type
The input file was a data file and a directory was required, or vice
versa.

pathname , invalid logical name
The input pathname contains a logical name longer than 12
characters, or contains unmatched colons, invalid characters, or 0
characters.

pathname , logical name does not exist
The input pathname contains a logical name that does not exist.

pathname , READ access required
The user does not have read access to the input file.

pathname , exception value : exception mnemonic
If an exceptional condition occurs when c_get_input_connection
attempts to obtain the input connection, the exception value and
exception mnemonic portions of the message indicate the condition
code encountered.

See also: Condition Codes in EIOS calls s_attach_file and s_open

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_ALREADY_ATTACHED 0038H The device containing the file specified in the
path_name_ptr parameter is already attached.

E_CONTEXT 0005H The calling task's job was not created by the HI.

See also: I/O jobs, System Concepts

E_DEV_DETACHING 0039H The device specified in the path_name_ptr
parameter is being detached.

E_DEVFD 0022H The call attempted the physical attachment of a
device that had formerly been only logically
attached and the device and the device driver
specified in the logical attachment were
incompatible.

rq_c_get_input_connection

System Call Reference Chapter 5 HI Calls 405

E_EXIST 0006H The specified device does not exist.

E_FACCESS 0026H The specified connection does not have read
access to the file.

E_FNEXIST 0021H At least one of these is true:
• The target file does not exist or is marked

for deletion.
• While attaching the file pointed to by the

path_name_ptr parameter, the call attempted
the physical attachment of the device as a
named device. The device specified when
the logical attachment was made was not
properly configured.

E_FTYPE 0027H The path pointed to by the path_name_ptr
parameter contained a file name that should have
been the name of a directory, but is not.

E_ILLVOL 002DH The call attempted the physical attachment of the
specified device as a named device. This device
had formerly been only logically attached and
the volume did not contain named files.

E_INVALID_FNODE 003DH The fnode associated with the file being used for
the redirected :ci: or :co: information is invalid.

E_IO_HARD 0052H While attempting to access the parent directory
of the file pointed to by the path_name_ptr
parameter, the call detected a hard I/O error. A
retry is probably useless.

E_IO_MEM 0042H The BIOS job does not currently have a block of
memory large enough to allow this call to
complete.

E_IO_NOT_READY 0053H At least one of these is true:
• While attempting to access the file specified

in the path_name_ptr parameter, the call
found that the device was off-line. Operator
intervention is required.

• Communication failed between the local
system and the remote server. Operator
intervention is required.

rq_c_get_input_connection

406 HI Calls Chapter 5 Human Interface System Calls

E_IO_SOFT 0051H While attempting to access the file specified in
the path_name_ptr parameter, the call detected a
soft I/O error. Another try might be successful.

E_IO_UNCLASS 0050H An unknown I/O error occurred while this call
tried to access the file given in the
path_name_ptr parameter.

E_LIMIT 0004H At least one of these is true:
• The calling task's job or the job's default

user object is already involved in 255 I/O
operations.

• The calling task's job was not created by the
HI.

• The object limit of the calling job has been
reached.

• Processing this call would deplete the
remote server's resources.

E_LOG_NAME_NEXIST 0045H The pathname for the specified device contains
an explicit logical name. The call was unable to
find this name in the object directories of the
local job, the global job, or the root job.

E_LOG_NAME_SYNTAX 0040H The pathname pointed to by the path_name_ptr
parameter contains a logical name. This logical
name contains an unmatched colon, is longer
than 12 characters, has 0 characters, or contains
invalid characters.

E_MEDIA 0044H The specified device was off-line or removable
media were not in place.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOPREFIX 8022H The calling task's job does not have a valid
default prefix.

E_NOT_LOG_NAME 8040H The logical name specified by the
path_name_ptr parameter does not refer to a file
or device connection.

E_NOUSER 8021H The calling task's job does not have a valid
default user.

rq_c_get_input_connection

System Call Reference Chapter 5 HI Calls 407

E_PARAM 8004H At least one of these is true:
• The system call forced the EIOS to attempt

the physical attachment of the device
referenced by the path_name_ptr
parameter. This device had formerly been
only logically attached. The physical
attachment is not possible; the file driver is
not properly configured.

• The connection to the specified file cannot
be opened for reading.

E_PASSWORD_MISMATCH 004BH The password of the user object does not match
the password of the corresponding user defined
on the remote server.

E_PATHNAME_SYNTAX 003EH The specified pathname contains invalid
characters.

E_SHARE 0028H The file sharing attribute currently does not
allow new connections to the file to be opened
for reading.

E_STREAM_SPECIAL 003CH The call attempted to attach a stream file with an
invalid stream file request.

E_UDF_IO 02D0H An error occurred while accessing the remote
server's UDF. The server's UDF must have
World read permission.

rq_c_get_input_pathname

408 HI Calls Chapter 5 Human Interface System Calls

c_get_input_pathname
Gets a pathname from the list of input pathnames in the parsing buffer.

Syntax, PL/M and C

CALL rqcget$input$pathname (path_name_ptr, path_name_max,
except_ptr);

rq_c_get_input_pathname (path_name_ptr, path_name_max,
except_ptr);

Parameter PL/M Data Type C Data Type
path_name_ptr POINTER STRING far *
path_name_max WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
path_name_ptr

A pointer to a STRING that receives the next pathname in parsing buffer. A zero-
length STRING indicates that there are no more pathnames.

path_name_max
Specifies the maximum length, up to 256 bytes including the length byte, of the
STRING pointed to by the path_name_ptr parameter.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_c_get_input_pathname

System Call Reference Chapter 5 HI Calls 409

Additional Information

The first call to c_get_input_pathname retrieves the entire input pathname list and
moves the parsing buffer pointer to the next parameter. C_get_input_pathname
stores the list in an internal buffer and returns the first pathname in the STRING
pointed to by the path_name_ptr parameter. Succeeding calls to
c_get_input_pathname return additional pathnames from the input pathname list
but do not move the parsing buffer pointer.

C_get_input_pathname accepts wildcard characters in the last component of a
pathname; it treats such a pathname as a list of pathnames. To obtain each
pathname, it searches in the parent directory of the component containing the
wildcard, comparing the wildcard name with the names of all files in the directory.
It returns the next pathname that matches.

The pathname returned by c_get_input_pathname can be used for any purpose. It
is most often used in a call to c_get_input_connection, to obtain a connection.

See also: c_get_input_connection

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_ALREADY_ATTACHED 0038H The device containing the file pointed to by the
path_name_ptr parameter is already attached.

E_CONTEXT 0005H At least one of these is true:
• The calling task's job was not created by the

HI.
See also: I/O jobs, System Concepts

• The task called c_get_output_pathname
before calling c_get_input_pathname.
See also:c_get_output_pathname

E_DEV_DETACHING 0039H The device pointed to by the path_name_ptr
parameter is being detached.

E_DEVFD 0022H The EIOS attempted the physical attachment of a
device that had formerly been only logically
attached. The EIOS found that the device and
the device driver specified in the logical
attachment were incompatible.

rq_c_get_input_pathname

410 HI Calls Chapter 5 Human Interface System Calls

E_EXIST 0006H At least one of these is true:
• The connection to the parent directory of the

file pointed to by the path_name_ptr
parameter is not a token for the existing job.

• The calling task's job was not created by the
HI.

E_FACCESS 0026H The connection used to open the directory does
not have read access to the directory.

E_FLUSHING 002CH The device containing the directory was being
detached.

E_FNEXIST 0021H At least one of these is true:
• The target file does not exist or is marked

for deletion.
• While attaching the parent directory of the

file pointed to by the path_name_ptr
parameter, the I/O System attempted the
physical attachment of the device as a
named device. The device specified when
the logical attachment was made was not
properly configured.

E_FTYPE 0027H The path pointed to by the path_name_ptr
parameter contained a file name that should have
been the name of a directory, but is not.

E_IFDR 002FH The specified file is a stream or physical file.

E_ILLVOL 002DH The call attempted the physical attachment of the
specified device as a named device. This device
had formerly been only logically attached and
the volume did not contain named files.

E_INVALID_FNODE 003DH The fnode associated with the file being used for
the redirected :ci: or :co: information is invalid.

E_IO_HARD 0052H While attempting to access the parent directory
of the file pointed to by the path_name_ptr
parameter, the call detected a hard I/O error. A
retry is probably useless.

E_IO_MEM 0042H The BIOS job does not currently have a block of
memory large enough to allow this call to
complete.

rq_c_get_input_pathname

System Call Reference Chapter 5 HI Calls 411

E_IO_NOT_READY 0053H At least one of these is true:
• While attempting to access the file specified

in the path_name_ptr parameter, the call
found that the device was off-line. Operator
intervention is required.

• Communication failed between the local
system and the remote server. Operator
intervention is required.

E_IO_SOFT 0051H While attempting to access the file specified in
the path_name_ptr parameter, the call detected a
soft I/O error. Another try might be successful.

E_IO_UNCLASS 0050H An unknown I/O error occurred while this call
tried to access the parent directory of the file
pointed to by the path_name_ptr parameter.

E_LIMIT 0004H At least one of these is true:
• The calling task's job has already reached its

object limit.
• The calling task's job or the job's default

user object is already involved in 255 I/O
operations.

• The calling task's job was not created by the
HI.

• Processing this call would deplete the
remote server's resources.

E_LIST 0085H The last value of the input pathname list is
missing. For example: able,baker, has no value
following the second comma.

E_LOG_NAME_NEXIST 0045H The pathname for the specified device contains
an explicit logical name. The call was unable to
find this name in the object directory of the local
job, the global job, or the root job.

E_LOG_NAME_SYNTAX 0040H The pathname pointed to by the path_name_ptr
parameter contains a logical name that has an
unmatched colon, is longer than 12 characters,
has 0 characters, or contains invalid characters.

E_MEDIA 0044H The specified device was off-line or removable
media were not in place.

rq_c_get_input_pathname

412 HI Calls Chapter 5 Human Interface System Calls

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOPREFIX 8022H The calling task's job does not have a valid
default prefix.

E_NOT_LOG_NAME 8040H The logical name specified by the
path_name_ptr parameter does not refer to a file
or device connection.

E_NOUSER 8021H The calling task's job does not have a valid
default user object.

E_PARAM 8004H At least one of these is true:
• The EIOS attempted the physical attachment

of the device pointed to by the
path_name_ptr parameter. This device
had formerly been only logically attached.
The physical attachment is not possible; the
file driver is not properly configured.

• The connection to the parent directory
cannot be opened for reading.

E_PARSE_TABLES 8080H The call detected an error in an internal table
used by the HI.

E_PASSWORD_MISMATCH 004BH The password of the user object does not match
the password of the corresponding user defined
on the remote server.

E_PATHNAME_SYNTAX 003EH The specified pathname contains invalid
characters.

E_SHARE 0028H The connection to the parent directory cannot be
opened for reading.

E_STREAM_SPECIAL 003CH The EIOS issued an invalid stream file request
when an attempt to attach a stream file failed.

E_STRING 8084H The pathname to be returned exceeds the length
limit of 255 characters.

E_STRING_BUFFER 0081H The buffer pointed to by the path_name_ptr
parameter was not large enough for the
pathname to return.

rq_c_get_input_pathname

System Call Reference Chapter 5 HI Calls 413

E_SUPPORT 0023H This call attempted to read the parent directory
of the pathname pointed to by the path_name_ptr
parameter. The file driver corresponding to that
directory does not support this operation.

E_WILDCARD 0086H The pathname to be returned contains an invalid
wildcard specification.

E_UDF_IO 02D0H An error occurred while accessing the remote
server's UDF. The server's UDF must have
World read permission.

rq_c_get_output_connection

414 HI Calls Chapter 5 Human Interface System Calls

c_get_output_connection
Parses the command line and returns an EIOS connection to the requested output
file.

Syntax, PL/M and C

connection = rqcget$output$connection (path_name_ptr,
preposition, except_ptr);

connection = rq_c_get_output_connection (path_name_ptr,
preposition, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
path_name_ptr POINTER STRING far *
preposition BYTE UINT_8
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
connection

A connection to the output file.

Parameters
path_name_ptr

A pointer to a STRING containing the pathname of the file to be accessed.

preposition
Defines which preposition to use to create the output file. Use these values to
specify the preposition mode:

Value Meaning
0 Use the preposition returned by the last c_get_output_pathname call
1 TO
2 OVER
3 AFTER
4-255 Reserved, results in an error

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_c_get_output_connection

System Call Reference Chapter 5 HI Calls 415

Additional Information

The connection obtained by c_get_output_connection is open for writing and has
these attributes: write only, accessible to all, and has 2 1024-byte buffers.

If the call to c_get_output_connection specifies the TO preposition and the output
file already exists, c_get_output_connection issues this message to the terminal
(:co:):

pathname , already exists, OVERWRITE?

If the operator enters Y, y , R, or r , c_get_output_connection returns a connection
to the existing file, enabling the command to write over the file. Any other
response causes c_get_output_connection to return an E_FACCESS condition
code.

C_get_output_connection causes an error message to appear at the operator's
terminal (:co:) whenever an exceptional condition occurs. The exceptional
condition that causes the error message can be one of those listed below or one
associated with an EIOS call. These messages can occur:

pathname , DELETE access required
The user does not have delete access to an existing file.

pathname , directory ADD entry access required
The user does not have add entry access to the parent directory.

pathname , file does not exist
The output file does not exist.

pathname , invalid file type
The output file was a data file and a directory was required, or vice
versa.

pathname , invalid logical name
The output pathname contains a logical name longer than 12
characters, contains unmatched colons, contains invalid characters, or
0 characters.

pathname , logical name does not exist
The output pathname contains a logical name that does not exist.

pathname , exception value : exception mnemonic
If an exceptional condition occurs when c_get_output_connection
attempts to obtain the output connection, the exception value and
exception mnemonic portions of the message indicate the condition
code encountered.

rq_c_get_output_connection

416 HI Calls Chapter 5 Human Interface System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_ALREADY_ATTACHED 0038H The EIOS was unable to attach the device
containing the file because the BIOS has already
attached the device.

E_CONTEXT 0005H The calling task's job was not created by the HI.

E_DEV_DETACHING 0039H The device referred to by the path_name_ptr
parameter was being detached.

E_DEVFD 0022H The call attempted the physical attachment of a
device that had formerly been only logically
attached and the device and the device driver
specified in the logical attachment were
incompatible.

E_EXIST 0006H The connection parameter for the device
containing that file is not a token for an existing
object.

E_FACCESS 0026H At least one of these is true:
• The default user for the calling task's job did

not have update access to an existing file
and/or add-entry access to the parent
directory.

• The TO or OVER preposition was specified
and the default user for the calling task's job
could not truncate the file.

E_FNEXIST 0021H At least one of these is true:
• The target file does not exist or is marked

for deletion.
• While attaching the file pointed to by the

path_name_ptr parameter, the EIOS
attempted the physical attachment of the
device as a named device. The device
specified when the logical attachment was
made was not properly configured.

E_FTYPE 0027H The path pointed to by the path_name_ptr
parameter contained a file name that should have
been the name of a directory, but is not.

rq_c_get_output_connection

System Call Reference Chapter 5 HI Calls 417

E_IFDR 002FH The call requested information about the
specified file, but the request was an invalid file
driver request.

E_ILLVOL 002DH The call attempted the physical attachment of the
specified device as a named device. This device
had formerly been only logically attached and
the volume did not contain named files.

E_INVALID_FNODE 003DH The fnode associated with the file being used for
the redirected :ci: or :co: information is invalid.

E_IO_HARD 0052H While attempting to access the file specified in
the path_name_ptr parameter, the call detected a
hard I/O error. A retry is probably useless.

E_IO_MEM 0042H The BIOS job does not currently have a block of
memory large enough to allow this call to
complete.

E_IO_NOT_READY 0053H At least one of these is true:
• While attempting to access the file specified

in the path_name_ptr parameter, the call
found that the device was off-line. Operator
intervention is required.

• Communication failed between the local
system and the remote server. Operator
intervention is required.

E_IO_SOFT 0051H While attempting to access the file specified in
the path_name_ptr parameter, the call detected a
soft I/O error. Another try might be successful.

E_IO_UNCLASS 0050H An unknown I/O error occurred while this call
tried to access the file given in the
path_name_ptr parameter.

rq_c_get_output_connection

418 HI Calls Chapter 5 Human Interface System Calls

E_IO_WRPROT 0054H While attempting to obtain an input connection
to the file specified in the path_name_ptr
parameter, this call found that the volume
containing the file is write-protected.
• The calling task's job or the job's default

user object is already involved in 255 I/O
operations.

• The calling task's job was not created by the
HI.

• The calling task's job has reached its object
limit.
See also: I/O jobs, System Concepts

• Processing this call would deplete the
remote server's resources.

E_LOG_NAME_NEXIST 0045H The specified pathname contains an explicit
logical name. The call was unable to find this
name in the object directory of the local job, the
global job, or the root job.

E_LOG_NAME_SYNTAX 0040H The pathname pointed to by the path_name_ptr
parameter contains a logical name. The logical
name contains unmatched colons, is longer than
12 characters, contains invalid characters, or
contains 0 characters.

E_MEDIA 0044H The specified device was off-line or removable
media were not in place.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOPREFIX 8022H The calling task's job does not have a valid
default prefix.

E_NOT_LOG_NAME 8040H The logical name specified by the
path_name_ptr parameter does not refer to a file
or device connection.

E_NOUSER 8021H The calling task's job does not have a valid
default user object.

rq_c_get_output_connection

System Call Reference Chapter 5 HI Calls 419

E_PARAM 8004H The system call forced the EIOS to attempt the
physical attachment of the device referenced by
the path_name_ptr parameter. The device had
formerly been only logically attached. The
physical attachment is not possible; the file
driver is not properly configured.

E_PASSWORD_MISMATCH 004BH The password of the user object does not match
the password of the corresponding user defined
on the remote server.

E_PATHNAME_SYNTAX 003EH The specified pathname contains invalid
characters.

E_PREPOSITION 0087H One of these is true:
• The command line contained a preposition

value greater than 3.
• The command line contained a 0 as the

preposition value. This indicated that the
same preposition was to be used as in the
last call to c_get_output_connection. This
is the first call to c_get_output_connection.

E_SHARE 0028H The new connection cannot be opened for
writing.

E_SPACE 0029H One of these is true:
• The volume is full.
• The volume already contains the maximum

number of files.

E_STREAM_SPECIAL 003CH The EIOS issued an invalid stream file request
when an attempt to attach a stream file failed.

E_UDF_IO 02D0H An error occurred while accessing the remote
server's UDF. The server's UDF must have
World read permission.

rq_c_get_output_pathname

420 HI Calls Chapter 5 Human Interface System Calls

c_get_output_pathname
Gets a pathname from the list of output pathnames in the parsing buffer.

Syntax, PL/M and C

preposition = rqcget$output$pathname (path_name_ptr,
path_name_max, default_output_ptr, except_ptr);

preposition = rq_c_get_output_pathname (path_name_ptr,
path_name_max, default_output_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
preposition BYTE UINT_8
path_name_ptr POINTER STRING far *
path_name_max WORD_16 UINT_16
default_output_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
preposition

One of these preposition type values. You can pass this value to
c_get_output_connection when obtaining an output connection to the file.

Value Meaning
0 The preposition returned by the last c_get_output_pathname call
1 TO
2 OVER
3 AFTER
4-255 Reserved

Parameters
path_name_ptr

A pointer to a STRING that receives the next pathname in the pathname list. A
null STRING indicates that there are no more pathnames.

path_name_max
Specifies the maximum length, up to 256 bytes including the length byte, of the
STRING pointed to by the path_name_ptr parameter.

default_output_ptr
A pointer to a STRING containing the command's default standard output. The
text must specify TO, OVER, or AFTER for the output mode.
For example: TO :co: or TO :lp:

rq_c_get_output_pathname

System Call Reference Chapter 5 HI Calls 421

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Do not call c_get_output_pathname before first calling c_get_input_pathname.

The first call to c_get_output_pathname retrieves the preposition
(TO/OVER/AFTER) and the entire output pathname list; it then moves the parsing
buffer pointer to the next parameter. If the parsing buffer does not contain a
preposition and pathname list, c_get_output_pathname uses the default pointed to
by the default_output_ptr parameter and does not move the parsing buffer
pointer.

After retrieving the pathname list, c_get_output_pathname stores it in an internal
buffer, returns the first pathname in the STRING pointed to by the
path_name_ptr parameter, and returns the preposition in the preposition
parameter. Succeeding calls to c_get_output_pathname return additional
pathnames from the output pathname list as well as the preposition, but they do not
move the parsing buffer pointer.

C_get_output_pathname accepts characters with a wildcard as the last component
of a pathname. It generates each output pathname based on this pathname and
wildcard, the corresponding pathname and wildcard that was input to
c_get_input_pathname, and the most recent input pathname returned by
c_get_input_pathname.

The pathname returned by c_get_output_pathname can be used for any purpose.
It is most often used in a call to c_get_output_connection to obtain a connection
to the file. In such a case, c_get_output_connection processes the
TO/OVER/AFTER preposition. If the pathname is used as input to a system call
other than c_get_output_connection, the interpretation of the TO/OVER/AFTER
preposition is the user's responsibility.

See also: c_get_input_pathname, c_get_output_connection

rq_c_get_output_pathname

422 HI Calls Chapter 5 Human Interface System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The calling task's job was not created by the HI.

E_DEFAULT_SO 8083H The default output STRING pointed to by
default_output_ptr contained an invalid
preposition or pathname.

E_LIMIT 0004H At least one of these is true:
• The calling task's job has already reached its

object limit.
• The calling task's job was not created by the

HI.
• The calling task's job or the job's default

user object is already involved in 255 I/O
operations.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_PATHNAME_SYNTAX 003EH The specified pathname contains invalid
characters.

E_STRING 8084H The pathname to be returned exceeds the length
limit of 255 characters.

E_STRING_BUFFER 0081H The buffer pointed to by the path_name_ptr
parameter was not large enough for the
pathname to return.

E_UNMATCHED_LISTS 008BH The numbers of files in the input and output lists
are not the same.

E_WILDCARD 0086H The output pathname contains an invalid
wildcard specification.

rq_c_get_parameter

System Call Reference Chapter 5 HI Calls 423

c_get_parameter
Retrieves one parameter from the parsing buffer and moves the parsing buffer
pointer to the next parameter.

Syntax, PL/M and C

more = rqcget$parameter (name_ptr, name_max, value_ptr,
value_max, index_ptr, predict_list_ptr, except_ptr);

more = rq_c_get_parameter (name_ptr, name_max, value_ptr,
value_max, index_ptr, predict_list_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
more BYTE UINT_8
name_ptr POINTER STRING far *
name_max WORD_16 UINT_16
value_ptr POINTER STRING_TABLE_STRUCT far *
value_max WORD_16 UINT_16
index_ptr POINTER UINT_8 far *
predict_list_ptr POINTER STRING_TABLE_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value

more Indicates whether or not the current call to c_get_parameter returned a parameter.

Value Meaning
00H Indicates that there are no more parameters and no parameter returned
0FFH Indicates that a parameter returned.

Parameters
name_ptr

A pointer to a STRING that receives the keyword portion of the parameter. If this
parameter does not contain a keyword portion, the HI returns a null STRING.

name_max
Specifies the maximum length, up to 256 bytes including the length byte, of the
STRING pointed to by the name_ptr parameter.

rq_c_get_parameter

424 HI Calls Chapter 5 Human Interface System Calls

value_ptr
A pointer to a STRINGTABLE that receives the value portion of the parameter. If
the value portion contains a list of values separated by commas, the HI returns the
values to the STRINGTABLE one value per string.

See also: Data types, STRINGTABLE, in this manual

value_max
Specifies the maximum length in bytes of the STRINGTABLE pointed to by the
value_ptr parameter. The maximum length is 65535 bytes.

index_ptr
A pointer to location that receives an index into the STRINGTABLE pointed to by
predict_list_ptr . This index identifies the name_ptr keyword as a
preposition from the list of possible prepositions. If the STRINGTABLE is empty,
or if the keyword name is not in the list, the system call returns 0 for the index.

predict_list_ptr
A pointer to a STRINGTABLE that specifies the acceptable preposition values. A
null pointer indicates that you do not intend to retrieve parameters that use
prepositions. Without this list, c_get_parameter cannot determine whether groups
of characters separated by spaces are separate parameters or a single parameter that
uses a preposition.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The parameter retrieved by c_get_parameter can be one of these:

• Keyword/value-list parameter using parentheses

• Keyword/value-list parameter using an equal sign

• Keyword/value-list parameter with the keyword as a preposition

• Value-list without a keyword

See also: Types, format, and syntax of parameters, System Concepts

When c_get_parameter retrieves a parameter from the parsing buffer, it obtains
the next group of characters that are separated by spaces. These characters are
checked against those in the predict_list_ptr list. If the characters match a
value in the list, c_get_parameter realizes that the characters represent a
preposition and not an entire parameter; it then obtains the next group of characters
separated by spaces as the value portion of the parameter.

rq_c_get_parameter

System Call Reference Chapter 5 HI Calls 425

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The calling task's job was not an I/O job.

See also: I/O jobs, System Concepts

E_CONTINUED 0083H The call found a continuation character in the
parsing buffer. Command lines should not
contain continuation characters.

E_LIMIT 0004H At least one of these is true:
• The calling task's job has already reached its

object limit.
• The calling task's job was not an I/O job.

See also: I/O jobs, System Concepts

E_LIST 0085H At least one of these is true:
• The parameter contains an unmatched

parenthesis.
• A value in the value list is missing or an

improper value was entered, for example
Value Comments
A,B, No value following second

comma.
A,B=C,D The equal sign must be

between quotes. 'B=C' is valid.
A,B(C,E),F The parentheses must be

between quotes or set off by
commas. A,B,(C,E),F is valid.

E_LITERAL 0080H The call found a literal (quoted string) in the
parsing buffer with no closing quote.

E_MEM 0002H The memory available to the calling task's job
is not sufficient to complete the call.

E_PARAM 8004H The predict_list_ptr parameter pointed to a
STRINGTABLE, but the index_ptr parameter
was set to 0.

E_PARSE_TABLES 8080H The call found an error in an internal table used
by the HI.

E_SEPARATOR 0082H The call found an invalid command separator
in the parsing buffer. These are invalid
command separators: ><, <>, ||, |, [, and].

rq_c_get_parameter

426 HI Calls Chapter 5 Human Interface System Calls

E_STRING 8084H The STRING returned as the parameter name
or one of the parameter values exceeds 255
characters.

E_STRING_BUFFER 0081H The STRING returned as the parameter name
or one of the parameter values exceeds the
buffer size provided in the call.

rq_c_send_command

System Call Reference Chapter 5 HI Calls 427

c_send_command
Stores a command line in the command connection created by the
c_create_command_connection call, concatenates the command line with any
others already stored there, and (if the command invocation is complete) invokes
the command. The command can be any standard HI command or a command that
you create. Use this system call to invoke a command from a program.

See also: c_create_command_connection

Syntax, PL/M and C

CALL rqcsend$command (command_conn, line_ptr,
command_except_ptr, except_ptr);

rq_c_send_command (command_conn, line_ptr, command_except_ptr,
except_ptr);

Parameter PL/M Data Type C Data Type
command_conn SELECTOR SELECTOR
line_ptr POINTER STRING far *
command_except_ptr POINTER UINT_16 far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
command_conn

A token for the command connection that receives the command line.

line_ptr
A pointer to a STRING containing a command line to execute.

command_except_ptr
A pointer to a location where the condition code indicating the status of the
invoked command returns. This parameter is undefined if an E_OK condition code
is not returned to the location pointed to by except_ptr .

except_ptr
A pointer to a variable declared by the application where the call returns the
condition code indicating the status of the c_send_command.

rq_c_send_command

428 HI Calls Chapter 5 Human Interface System Calls

Additional Information

A command invocation can contain several & (continuation marks), indicating that
the command line is continued on the next line. In this case, the HI returns an
E_CONTINUED condition code and does not invoke the command. Call
c_send_command as often as needed to send the continuation lines.

C_send_command concatenates the original command line and all continuation
lines into a single command line in the command connection. It removes all
continuation marks and comments from this command line.

See also: Continuing input lines and comments, Command Reference

When the command invocation is complete, the HI parses the command pathname
from the command line. If no exception conditions occur, the HI requests the AL
to load and execute the command.

NOTE When a c_send_command call is made, the HI sets the <Ctrl-C>
semaphore to the default HI <Ctrl-C> handler. If you previously set
the <Ctrl-C> handler, it must be set again after making this call.

See also: rq_c_set_control_c system call,
<Ctrl-C>, System Concepts

▲▲! CAUTION
Do not use this system call to launch any commands that require
user input. The request for input does not get redirected to the
user. See the list below for commands that you cannot launch, or
cannot launch if you use a form of the command that requires
input.

For example, you can use the copy command with the over
parameter, because it will copy over any existing files without
question. But you cannot use the copy command with the to
parameter, because if a file exists with the same name, the
command prompts the user whether to overwrite the file. The
user will not receive the prompt when the command is launched
from rq_c_send_command, so the command never completes.

Never launch these commands Launch only forms that do not require input
backup accounting deletedir locdata
pause addloc dir permit
restore copy diskverify remini
psh (without any parameter) copydir format rename
telnet date ftp time
rlogin delete help
tftp

rq_c_send_command

System Call Reference Chapter 5 HI Calls 429

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_ALREADY_ATTACHED 0038H The EIOS was unable to attach the device
containing the object file because the BIOS has
already attached the device.

E_BAD_GROUP 0061H The object file represented by the command's
pathname contained an invalid group definition
record.

E_BAD_HEADER 0062H The object file represented by the command's
pathname does not begin with a header record
for a loadable object module.

E_BAD_SEGDEF 0063H The object file represented by the command's
pathname contains an invalid segment definition
record.

E_CHECKSUM 0064H At least one record of the object file represented
by the command's pathname contains a
checksum error. This can occur if the
CHECKSUM amount calculated during the read
operation did not match the CHECKSUM field
of the record being read.

E_CONTEXT 0005H The calling task's job was not created by the HI.

E_CONTINUED 0083H The OS detected a continuation character while
scanning the command line pointed to by the
line_ptr parameter. C_send_command must be
invoked again to send the next portion of the
command.

E_DEV_DETACHING 0039H The device containing the object file was being
detached.

E_DEVFD 0022H The EIOS attempted the physical attachment of a
device that had formerly been only logically
attached. The EIOS found that the device and
the device driver specified in the logical
attachment were incompatible.

E_EOF 0065H The AL encountered an unexpected EOF on the
object file represented by the command's
pathname.

rq_c_send_command

430 HI Calls Chapter 5 Human Interface System Calls

E_EXIST 0006H At least one of these is true:
• The call detached the device containing the

object file before completing the loading
operation.

• The command_conn parameter is not a
token for a command connection.

E_FACCESS 0026H The default user for the calling task's job does
not have read access to the object file.

E_FLUSHING 002CH The device containing the object file was being
detached.

E_FNEXIST 0021H At least one of these is true:
• The file in the command's pathname is

either marked for deletion or does not exist.
• While attaching the file specified in the

line_ptr parameter, the EIOS attempted the
physical attachment of the device as a
named device. The device specified when
the logical attachment was made was not
properly configured.

E_FTYPE 0027H The path pointed to by the line_ptr parameter
contained a file name that should have been the
name of a directory, but is not. Except for the
last component, each file in a pathname must be
a named directory.

E_ILLVOL 002DH The call attempted the physical attachment of the
specified device as a named device. This device
had formerly been only logically attached and
the volume did not contain named files.

E_INVALID_FNODE 003DH The fnode associated with the file being used for
the redirected :ci: or :co: information is invalid.

E_IO_HARD 0052H While attempting to access the object file, this
call detected a hard I/O error.

E_IO_MEM 0042H The BIOS job does not currently have a block of
memory large enough to allow this call to
complete.

E_IO_NOT_READY 0053H While attempting to access the object file, this
call found that the device was off-line. Operator
intervention is required.

rq_c_send_command

System Call Reference Chapter 5 HI Calls 431

E_IO_SOFT 0051H While attempting to access the file specified in
the line_ptr parameter, the call detected a soft
I/O error. Another try might be successful.

E_IO_UNCLASS 0050H An unknown I/O error occurred while this call
tried to access the object file.

E_LIMIT 0004H At least one of these is true:
• The calling task's job has already reached its

object limit.
• The calling task's job, or the job's default

user object, is already involved in 255 I/O
operations.

• The new I/O job, or its default user, is
already involved in 255 I/O operations.

• The calling task's job was not created by the
HI.
See also: I/O jobs, System Concepts

E_LITERAL 0080H The call found a literal (quoted string) with no
closing quote while scanning the contents of the
command line pointed to by the line_ptr
parameter.

E_LOG_NAME_NEXIST 0045H The command's pathname contains an explicit
logical name, but the call was unable to find this
name in the object directory of the local job, the
global job, or the root job.

E_LOG_NAME_SYNTAX 0040H The pathname pointed to by the line_ptr
parameter contains a logical name. The logical
name contains an unmatched colon, is longer
than 12 characters, has 0 characters, or contains
invalid characters.

E_MEDIA 0044H The specified device was off-line or removable
media were not in place.

E_MEM 0002H The memory available to the calling task's job,
the new I/O job, or the BIOS job is not sufficient
to complete the call.

rq_c_send_command

432 HI Calls Chapter 5 Human Interface System Calls

E_NO_LOADER_MEM 0067H At least one of these is true:
• The memory pool of the newly created I/O

job does not currently have a block of
memory large enough to allow the AL to
run.

• The memory pool of the BIOS' job does not
currently have a block of memory large
enough to allow the AL to run.

E_NOPREFIX 8022H The calling task's job does not have a valid
default prefix.

E_NO_START 006CH The object file represented by the command
pathname does not specify the entry point for the
program being loaded.

E_NOT_CONNECTION 8042H The default_ci or default_co parameter is a token
for an object that is not a file connection.

E_NOT_LOG_NAME 8040H The command pathname contains a logical name
of an object that is neither a device connection
nor a file connection.

E_NOUSER 8021H The calling task's job does not have a valid
default user.

E_PARAM 8004H The EIOS attempted the physical attachment of a
device containing the object file. This device
had formerly been only logically attached. The
physical attachment is not possible; the file
driver is not properly configured.

E_PARSE_TABLES 8080H The call found an error in an internal table.

E_PATHNAME_SYNTAX 003EH The command's pathname contains invalid
characters.

E_REC_FORMAT 0069H At least one record in the object file contains a
record format error.

E_REC_LENGTH 006AH The object file contains a record longer than the
AL's configured maximum record length.

E_REC_TYPE 006BH At least one of these is true:
• At least one record in the file being loaded is

of a type that the AL cannot process.
• The AL has encountered records in a

sequence that it cannot process.

rq_c_send_command

System Call Reference Chapter 5 HI Calls 433

E_SEG_BOUNDS 0070H The AL created multiple segments in which to
load information. One of the data records in the
object file specified a load address outside of the
created segments.

E_SEPARATOR 0082H The call found an invalid separator while
scanning the command line. The invalid
command separators are: ><, <>, ||, |, [, and].

E_STRING 8084H The STRING returned as the parameter name or
one of the parameter values exceeds 255
characters.

E_STRING_BUFFER 0081H The size of the command's pathname exceeds the
size of the command name buffer specified
during HI configuration.

E_TIME 0001H The calling task's job was not created by the HI.

E_TYPE 8002H The command_conn parameter is a token for an
object that is not a command connection.

rq_c_send_co_response

434 HI Calls Chapter 5 Human Interface System Calls

c_send_co_response
Sends messages to :co: and receives messages from :ci: ; commands such as submit
can redirect this input from :ci: and output to :co: to a file.

Syntax, PL/M and C

CALL rqcsendcoresponse (response_ptr, response_max,
message_ptr, except_ptr);

rq_c_send_co_response (response_ptr, response_max, message_ptr,
except_ptr);

Parameter PL/M Data Type C Data Type
response_ptr POINTER STRING far *
response_max WORD_16 UINT_16
message_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
response_ptr

A pointer to a STRING that receives the operator's response from :ci: .

response_max
Specifies the maximum length in bytes of the STRING pointed to by the
response_ptr parameter. The value in response_max must be equal to the
length of the STRING plus 1. If response_max is 0 or 1, no response from :ci:
will be requested; control returns to the calling task immediately.

message_ptr
A pointer to a STRING containing the message to be sent to :co:. If null, no
message is sent.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_c_send_co_response

System Call Reference Chapter 5 HI Calls 435

Additional Information

The operations performed by c_send_co_response depend on the values of the
message_ptr and response_max parameters, as follows:

message_ptr response_max Action
null 0 Perform no I/O
null not 0 Send no message, wait for input
NOT null not 0 Send message, wait for input
NOT null 0 Send message, don't wait

If c_send_co_response requests a response from :ci: , output from other tasks can
appear at :co: while the system waits for a response from :ci: .

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The calling task's job was not created by the HI.

E_CONN_OPEN 0035H At least one of these is true:
• The connection to :ci: was not open for

reading or the connection to :co: was not
open for writing.

• The connection to :ci: or :co: was not open.
• The connection to :ci: or :co: was opened

with a_open, not s_open.
See also: BIOS call a_open, EIOS call

s_open

E_EXIST 0006H The token for :ci: or :co: is not a token for an
existing object.

E_FLUSHING 002CH The device containing the :ci: and :co: files was
being detached.

E_IO_HARD 0052H While attempting to access the :ci: or :co: file,
the OS detected a hard I/O error.

E_IO_NOT_READY 0053H While attempting to access the :ci: or :co: file,
this call found that the device was off-line.
Operator intervention is required.

E_IO_SOFT 0051H While attempting to access the :ci: or :co: file,
this call detected a soft I/O error. Another try
might be successful.

rq_c_send_co_response

436 HI Calls Chapter 5 Human Interface System Calls

E_IO_UNCLASS 0050H An unknown I/O error occurred while this call
tried to access the :ci: or :co: file.

E_IO_WRPROT 0054H While attempting to obtain a connection to the
:co: file, this call found that the volume
containing the file is write-protected.

E_LIMIT 0004H At least one of these is true:
• The calling task's job has already reached its

object limit.
• The calling task's job, or the job's default

user object, is already involved in 255 I/O
operations.

• The calling task's job was not created by the
HI.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONNECTION 8042H The call obtained a token for an object that
should have been a connection to :ci: or :co:, but
was not a file connection.

E_PARAM 8004H The call attempted to write beyond the end of a
physical file.

E_SPACE 0029H One of these is true:
• The output volume is full.
• The call attempted to write beyond the end

of a physical file.

E_STREAM_SPECIAL 003CH When attempting to read or write to :ci: or :co:,
the EIOS issued an invalid stream file request.

E_SUPPORT 0023H The connection to :ci: or :co: was not created by
this job.

E_TIME 0001H The calling task's job was not created by the HI.

rq_c_send_eo_response

System Call Reference Chapter 5 HI Calls 437

c_send_eo_response
Sends messages to and receives messages from the operator's terminal; input and
output cannot be redirected to another device.

Syntax, PL/M and C

CALL rqcsendeoresponse (response_ptr, response_max,
message_ptr, except_ptr);

rq_c_send_eo_response (response_ptr, response_max, message_ptr,
except_ptr);

Parameter PL/M Data Type C Data Type
response_ptr POINTER STRING far *
response_max WORD_16 UINT_16
message_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
response_ptr

A pointer to a STRING that receives the operator's response from the terminal.

response_max
Specifies the maximum length in bytes of the STRING pointed to by the
response_ptr parameter. The value must equal the STRING length plus 1. If
response_max is 0 or 1, no response from the operator's terminal will be
requested; control returns to the calling task immediately.

message_ptr
A pointer to a buffer containing the message to be sent to the operator's terminal.
If null, no message is sent.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_c_send_eo_response

438 HI Calls Chapter 5 Human Interface System Calls

Additional Information

The operations performed by c_send_eo_response depend on the values of the
message_ptr and response_max parameters:

message_ptr response_max Action
null 0 Perform no I/O
null not 0 Send no message, wait for input
NOT null not 0 Send message, wait for input
NOT null 0 Send message, don't wait

If c_send_eo_response requests a response from the terminal, no other output can
appear at the terminal until c_send_eo_response receives a line terminator from
the operator. The operator can choose to ignore the displayed message by entering
a line terminator only.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONN_OPEN 0035H At least one of these is true:
• Either the connection to the operator's

terminal was not open for reading or it was
not open for writing.

• The connection to the operator's terminal
was not open.

• The connection to the operator's terminal
was opened with a_open not s_open.

E_CONTEXT 0005H The calling task's job was not created by the HI.

E_ERROR_OUTPUT 8085H The method used to call send_eo_response was
invalid.

E_EXIST 0006H The token values for the operator's terminal are
not for existing objects.

E_FLUSHING 002CH The operator's terminal was being detached.

E_IO_NOT_READY 0053H While attempting to access the terminal, this call
found that the device was off-line. Operator
intervention is required.

rq_c_send_eo_response

System Call Reference Chapter 5 HI Calls 439

E_LIMIT 0004H At least one of these is true:
• The calling task's job has already reached its

object limit.
• The calling task's job or the job's default

user object is already involved in 255 I/O
operations.

• The calling task's job was not created by the
HI.

E_MEM 0002H The memory pool of the calling task's job does
not currently have a block of memory large
enough to allow this system call to complete.

E_NOT_CONNECTION 8042H The call obtained a token for an object that
should have been a connection to the operator's
terminal, but was not.

E_PARAM 8004H The call attempted to write beyond the end of a
physical file.

E_STREAM_SPECIAL 003CH When attempting to read or write to the
operator's terminal, the EIOS issued an invalid
stream file request.

E_SUPPORT 0023H The connection to the terminal was not created
by this job.

E_TIME 0001H The calling task's job was not created by the HI.

rq_c_set_control_c

440 HI Calls Chapter 5 Human Interface System Calls

c_set_control_c
Changes the default response to <Ctrl-C> entered at the keyboard to a response that
meets the needs of the calling task.

Syntax, PL/M and C

CALL rqcset$control$c (control_c_semaphore, except_ptr);

rq_c_set_control_c (control_c_semaphore, except_ptr);

Parameter PL/M Data Type C Data Type
control_c_semaphore SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
control_c_semaphore

A token for a user-created semaphore that will receive units when a <Ctrl-C> is
typed on the console keyboard.

✏ Note
When a c_send_command call is made, the HI sets the <Ctrl-C>
semaphore to the default HI <Ctrl-C> handler. If you previously
set the <Ctrl-C> handler, it must be set again after making this
call.

See also: <Ctrl-C>, System Concepts

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The HI's default <Ctrl-C> action is to delete the acting job, for example, any HI
command.

One unit is sent to the semaphore specified by control_c_semaphore each time
a <Ctrl-C> is typed. Any units sent to the semaphore that exceed the maximum
allowable number are ignored.

A job running in background mode cannot set <Ctrl-C>.

If you use rq_c_set_control_c to establish a <Ctrl-C> semaphore before making
UDI calls such as dq_attach, handling reverts to the UDI default <Ctrl-C> handler.
To establish a <Ctrl-C> handler from within a UDI program, use dq_trap_cc.

rq_c_set_control_c

System Call Reference Chapter 5 HI Calls 441

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The calling task's job was not an I/O job.

See also: I/O jobs, System Concepts

E_LIMIT 0004H At least one of these is true:
• The calling task's job has already reached its

limit.
• The calling task's job was not created by the

HI.
• The calling task's job or the job's default

user object is already involved in 255 I/O
operations.

E_TYPE 8002H The token given in the parameter
control_c_semaphore is not a token for a
semaphore.

rq_c_set_parse_buffer

442 HI Calls Chapter 5 Human Interface System Calls

c_set_parse_buffer
Parses the contents of a buffer other than the command line buffer whenever the
parsing system calls are used.

Syntax, PL/M and C

off_set = rqcset$parse$buffer (buff_ptr, buff_max,
except_ptr);

off_set = rq_c_set_parse_buffer (buff_ptr, buff_max,
except_ptr);

Parameter PL/M Data Type C Data Type
off_set WORD_16 UINT_16
buff_ptr POINTER STRING far *
buff_max WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
off_set

The offset into the previous parsing buffer that identifies the last byte parsed.

Parameters
buff_ptr

A pointer to a STRING containing the text to be parsed. If a null pointer, the
buffer used for parsing reverts to the command line buffer and the buff_max
parameter is ignored.

buff_max
Specifies the length in bytes of the STRING pointed to by the buff_ptr
parameter.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_c_set_parse_buffer

System Call Reference Chapter 5 HI Calls 443

Additional Information

Only one parsing buffer per job can be active at any given time.

This call sets the parsing buffer pointer to the beginning of the specified buffer and
identifies the last byte parsed in the previous parsing buffer. This gives you the
ability to change buffers at will after successive calls to c_get_char.

C_set_parse_buffer does not affect the buffer from which c_get_input_pathname
and c_get_output_pathname retrieve pathnames. These system calls always
obtain their pathnames from the command line.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The calling task's job was not created by the HI.

See also: I/O jobs, System Concepts

E_LIMIT 0004H At least one of these is true:
• The calling task's job has already reached its

object limit.
• The calling task's job was not created by the

HI.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

■■ ■■ ■■

System Call Reference Chapter 6 NUC Calls 445

Nucleus System Calls 6
accept_control

Provides control of a region only if access is immediately available.

Syntax, PL/M and C

CALL rq$accept$control (region, except_ptr);

rq_accept_control (region, except_ptr);

Parameter PL/M Data Type C Data Type
region SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
region

A token for the target region.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If access is not immediately available, the E_BUSY condition code returns and the
calling task remains ready.

Tasks that use regions cannot be deleted while they control the region. Once a task
is in control of a region, it should not suspend or delete itself. Doing so locks the
region and prevents other tasks from gaining access. Relinquish control by
invoking send_control.

See also: create_region,
create_region example, Nucleus examples,
Regions, mutual exclusion, deadlock in System Concepts

rq_accept_control

446 NUC Calls Chapter 6 Nucleus System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BUSY 0003H Another task currently has access to the
protected data.

E_CONTEXT 0005H The calling task currently has access to the
region in question.

E_EXIST 0006H The region parameter is not a token for an
existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration. This code is returned if you make
this call as an RTE call from Windows instead of
from DOS.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

E_TYPE 8002H The region parameter is not a token for a region.

rq_add_reconfig_mailbox

System Call Reference Chapter 6 NUC Calls 447

add_reconfig_mailbox
Specifies a mailbox that will receive failure messages generated by the watchdog
timer, so that the task can be notified of board failures in a Multibus II system.

Syntax, PL/M and C

CALL rqaddreconfig$mailbox (mailbox, except_ptr);

rq_add_reconfig_mailbox (mailbox, except_ptr);

Parameter PL/M Data Type C Data Type
mailbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
mailbox

A token for a data mailbox created by the application, which will receive
notification if another board fails in the system. The notification message sent to
the mailbox has this structure:

DECLARE WD_MAILBOX_MESSAGE_STRUC STRUCTURE (
host_incar WORD_16,
type BYTE);

or

typedef struct {
UINT_16 host_incar;
UINT_8 type;

} WD_MAILBOX_MESSAGE_STRUC;

Where:

host_incar
The lower 12 bits of this value is the slot ID of the host to which this
message applies (range 0-20). The upper 4 bits is the incarnation
number of the host’s latest existence message. See the type field to
determine whether the incarnation number is for a failed host or is the
new incarnation of a reset host.

rq_add_reconfig_mailbox

448 NUC Calls Chapter 6 Nucleus System Calls

type One of the following values indicates whether the message is a remote
host failure or remote host reset:
Value Meaning
WD_HOST_FAILURE The watchdog timer expired without

receiving an existence message from this
host. This incarnation has failed.

WD_HOST_RESET The incarnation number in the received
existence message is not the same as
previously received from this host,
indicating that the host was reset. This
incarnation is new.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

This call takes advantage of the iRMX watchdog timer mechanism in a Multibus II
system. Before making this call the application must create the mailbox with an
rq_create_mailbox call. Set the flags to create a data mailbox that will use the
send_data and receive_data system calls.

Configure parameters for the watchdog timer on the MBII screen of the ICU.
Specify the maximum number of reconfiguration mailboxes that will be used on
this board in the WDP parameter of that screen. In addition to reconfiguration
mailboxes used by your application, the ARC server and each offboard client of the
ARC server use one mailbox each.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_LIMIT 0004H The maximum configured number of
reconfiguration mailboxes is already in use.
Increase the limit in the WDP parameter of the
MBII screen.

E_TYPE 8002H The mailbox is not a data mailbox.

rq_alter_composite

System Call Reference Chapter 6 NUC Calls 449

alter_composite
Replaces components of composite objects.

Syntax, PL/M and C

CALL rq$alter$composite (extension, composite, component_index,
replacing_obj, except_ptr);

rq_alter_composite (extension, composite, component_index,
replacing_obj, except_ptr);

Parameter PL/M Data Type C Data Type
extension SELECTOR SELECTOR
composite SELECTOR SELECTOR
component_index WORD_16 UINT_16
replacing_obj SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
extension

A token for the extension type object used by the composite object being altered.

composite
A token for the composite object being altered.

component_index
The position of the target token in the list of components. Values start with
location 1.

replacing_obj
A token for the replacement component object or a null selector.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Any component in a composite object can be replaced either with a token for
another object or with a place holding null selector that represents no object.

See also: CAUTION in create_composite, Component objects, composite
objects, extension objects, and type manager in System Concepts

rq_alter_composite

450 NUC Calls Chapter 6 Nucleus System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The composite parameter is not compatible with
the extension parameter.

E_EXIST 0006H The extension, composite, or replacing_obj
parameter(s) is not a token for an existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H One or both of the extension or composite
parameters is not a token for an object of the
correct type.

E_PARAM 8004H The component_index parameter refers to a
nonexistent position in the component object list.

rq_attach_buffer_pool

System Call Reference Chapter 6 NUC Calls 451

attach_buffer_pool
Makes a buffer pool's memory resources available to one or more ports.

Syntax, PL/M and C

CALL rq$attach$buffer$pool (buffer_pool_tkn, port_tkn,
except_ptr);

rq_attach_buffer_pool (buffer_pool_tkn, port_tkn, except_ptr);

Parameter PL/M Data Type C Data Type
buffer_pool_tkn SELECTOR SELECTOR
port_tkn SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
buffer_pool_tkn

A token identifying the buffer pool to be attached to the port.

port_tkn
A token identifying the port that will use the buffer pool.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The Nucleus allocates buffers from this buffer pool for receive operations on
associated ports. The application must return these buffers to the buffer pool when
they are no longer needed using the release_buffer system call.

See also: Ports, buffer pools, System Concepts

rq_attach_buffer_pool

452 NUC Calls Chapter 6 Nucleus System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The port and the buffer pool tokens refer to
objects that are not in the same job.

E_EXIST 0006H Either the port_tkn or the buffer_pool_tkn
parameter does not refer to an existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_STATE 0007H The specified port already has a buffer pool
attached.

E_TYPE 8002H Either buffer_pool_tkn or the port_tkn parameter
refers to an object that is not the correct type.

E_PROTOCOL 80E0H The port specified in the port_tkn parameter was
created as a signal type. It needs to be a data
transport type.

rq_attach_port

System Call Reference Chapter 6 NUC Calls 453

attach_port
Enables an application to monitor several ports simultaneously. After attachment,
any message sent to the port specified as the source port is automatically forwarded
to the port specified as the sink port. Both sink and source ports must be of the
same type.

Syntax, PL/M and C

CALL rq$attach$port (port_tkn, sink_port, except_ptr);

rq_attach_port (port_tkn, sink_port, except_ptr);

Parameter PL/M Data Type C Data Type
port_tkn SELECTOR SELECTOR
sink_port SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
port_tkn

A token for the source port that forwards its messages.

sink_port
A token for the sink port that receives the forwarded messages.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_attach_port

454 NUC Calls Chapter 6 Nucleus System Calls

Additional Information

Messages already queued at the source port are not forwarded, only messages that
are received after attach_port is invoked.

Only one level of forwarding is supported. If a source port sends a request using
the send_rsvp system call with the flags set to use the receive_reply option,
the RSVP message is not forwarded to the sink port.

A port remains attached until either detach_port is invoked or the sink port is
deleted.

See also: create_port, send_rsvp, detach_port,
Message forwarding, System Concepts

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H Either the port_tkn parameter or the sink_port
parameter refers to an object that is not a port.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PROTOCOL 80E0H The port specified in the port_tkn or sink_port
parameter must be of the data communication
type, not the signal type.

E_STATE 0007H The source port is already attached to a sink port.

E_TYPE 8002H Either port_tkn or sink_port is not an existing
object.

rq_broadcast

System Call Reference Chapter 6 NUC Calls 455

broadcast
Sends a control message to every message-passing host.

Syntax, PL/M and C

CALL rq$broadcast (port_tkn, socket, control_ptr, except_ptr);

rq_broadcast (port_tkn, socket, control_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
port_tkn SELECTOR SELECTOR
socket WORD_32 UINT_32
control_ptr POINTER UINT_8 far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
port_tkn

A token for the sending port.

socket
Identifies the receiving port with a host_ID and port_ID pair. Since this is a
broadcast, the host ID is ignored; you do not need to fill it in. If you are using
iRMX for Windows in short-circuit mode (local message-passing only), specify 31
for the local host ID.

control_ptr
A pointer to a control message.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

This call can broadcast a message to one port on each host in a system.

See also: Broadcasting a message, System Concepts

rq_broadcast

456 NUC Calls Chapter 6 Nucleus System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The port_tkn parameter does not refer to an
existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NUC_BAD_BUF 80E2H One or more of these is true:
• Control_ptr is not a valid pointer to a

buffer.
• The buffer pointed to by control_ptr is not

large enough to hold the message.

E_PROTOCOL 80E0H The specified destination port is a signal type
port.

E_TRANSMISSION 000BH A negative acknowledgment (NACK), timeout,
bus or host error, or retry expiration occurred
during the transmission of the message.

E_TYPE 8002H The port_tkn parameter refers to an object that
is not a port.

rq_cancel

System Call Reference Chapter 6 NUC Calls 457

cancel
Performs synchronous cancellation of RSVP message transmission..

Syntax, PL/M and C

CALL rq$cancel (port_tkn, trans_id, except_ptr);

rq_cancel (port_tkn, trans_id, except_ptr);

Parameter PL/M Data Type C Data Type
port_tkn SELECTOR SELECTOR
trans_id WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
port_tkn

A token for the port that was specified in a previous send_rsvp operation.

trans_id
The transaction ID of the message transmission to be canceled.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The RSVP is canceled whether or not the receiving task has called the receive or
receive_reply system call. Canceling a send_rsvp disassociates the RSVP buffer,
if any, from the port.

See also: send_rsvp,
Canceling an exchange, transaction ID, System Concepts

rq_cancel

458 NUC Calls Chapter 6 Nucleus System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The port_tkn parameter does not refer to an
existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PROTOCOL 80E0H The specified destination port was created as a
signal type.

E_TRANS_ID 00E8H Either the trans_id parameter is invalid, or the
entire transaction is already complete. The
transaction is complete if the Nucleus has
received a response.

E_TYPE 8002H The port_tkn parameter refers to an object that
is not a port.

rq_catalog_object

System Call Reference Chapter 6 NUC Calls 459

catalog_object
Places an entry for an object in the object directory of a specific job. The entry
consists of both the object's name and token.

Syntax, PL/M and C

CALL rq$catalog$object (job, object, name, except_ptr);

rq_catalog_object (job, object, name, except_ptr);

Parameter PL/M Data Type C Data Type
job SELECTOR SELECTOR
object SELECTOR SELECTOR
name POINTER void far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

job A token identifying the job in whose object directory the object is to be cataloged.

Selector Value Meaning
Null Specifies the job to which the calling task belongs.
Valid Specifies the token for the job requested.

object
A token for the object to be cataloged. A null token is allowed.

name A pointer to a STRING containing the name under which the object is to be
cataloged. The name must not be over 12 characters long. Each character can be a
byte consisting of any value from 0 to 0FFH.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_catalog_object

460 NUC Calls Chapter 6 Nucleus System Calls

Additional Information

There may be several entries for a single object in a directory, because the object
may have several names. However, in a given object directory, only one object
may be cataloged under a given name. If another task is waiting, using
lookup_object, for the object to be cataloged, that task is awakened when the entry
is cataloged.

See also: create_task example, Nucleus examples

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH The pointer to the name is invalid. Either the
selector does not refer to a valid segment, or the
offset is outside the segment boundaries. This
code is not returned by the DOS Real-time
Extension (RTE).

E_CONTEXT 0005H At least one of these is true:
• The name being cataloged is already in the

designated object directory.
• The directory's maximum allowable size is 0

E_EXIST 0006H Either the job parameter or the object parameter
is not a token for an existing object.

E_LIMIT 0004H The designated object directory is full.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The length of the STRING pointed to by the
parameter is 0 or greater than 12.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

E_TYPE 8002H The job parameter is a not a token for a job.

rqe_change_descriptor

System Call Reference Chapter 6 NUC Calls 461

rqe_change_descriptor
Changes the base physical address and size of descriptors in the Global Descriptor
Table (GDT).

▲▲! CAUTION
This system call can change a descriptor's address to refer to any
area of physical memory, even if other descriptors already refer to
that memory. Although this may be useful for aliasing purposes,
do not overlap memory accidentally.

Syntax, PL/M and C

CALL rqe$change$descriptor (descriptor, abs_addr, seg_size,
except_ptr);

rqe_change_descriptor (descriptor, abs_addr, seg_size,
except_ptr);

Parameter PL/M Data Type C Data Type
descriptor SELECTOR SELECTOR
abs_addr WORD_32 UINT_32
seg_size NATIVE_WORD NATIVE_WORD
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
descriptor

A token for the descriptor to be changed.

abs_addr
Specifies a full, 32-bit address. This is the address where you want the segment
represented by this descriptor to start. If 0, the segment retains its current starting
address.

seg_size
Specifies the size of the segment. If 0, the size is 64 Kbytes. If greater than 1
Mbyte, the size is rounded up to the nearest multiple of 4 Kbytes.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rqe_change_descriptor

462 NUC Calls Chapter 6 Nucleus System Calls

Additional Information

You can only adjust those GDT entries that were created with
rqe_create_descriptor. You cannot change descriptors that represent segments,
tasks, mailboxes, call gates, or other iRMX objects.

See also: rqe_create_descriptor example, Nucleus examples

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The descriptor parameter is not a token for an
existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

E_TYPE 8002H The descriptor parameter is not a token for an
iRMX descriptor.

rqe_change_object_access

System Call Reference Chapter 6 NUC Calls 463

rqe_change_object_access
Changes the access rights of iRMX segments.

Syntax, PL/M and C

CALL rqe$change$object$access (object, access, limit_mode,
except_ptr);

rqe_change_object_access (object, access, limit_mode,
except_ptr);

Parameter PL/M Data Type C Data Type
object SELECTOR SELECTOR
access BYTE UINT_8
limit_mode BYTE UINT_8
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
object

A token for an object whose access rights are being changed. This token must
represent a segment.

access
Specifies the new access rights for the object. These values are valid for iRMX
objects:
Data Segments Binary Value Hex Value
Read-only 10010000B 90H
Read/write 10010010B 92H
Code Segments Binary Value Hex Value
Execute-only 10011000B 98H
Execute/read 10011010B 9AH
Execute-only
(conforming)

10011100B 9CH

Execute/read
(conforming)

10011110B 9EH

rqe_change_object_access

464 NUC Calls Chapter 6 Nucleus System Calls

limit_mode
Specifies information on segment granularity and type for use by the processor in
limit checking.

Binary Hexadecimal Meaning
00000000B 0H 1 byte granularity, 16-bit segment
01000000B 40H 1 byte granularity, 32-bit segment
10000000B 80H 4 K-byte granularity, 16-bit segment
11000000B 0C0H 4 K-byte granularity, 32-bit segment

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The access field specifies a variety of information about an object. Only the
segment type and access rights can be modified with this call.

If you are changing only one field (either access or limit_mode), first call
rqe_get_object_access to get access or limit_mode , change the field, then call
rq_change_object access to specify the changed field.

See also: rqe_get_object_access,
Descriptors, composite objects, System Concepts,
create_segment example, Nucleus examples

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The object whose access is to be changed does
not exist or is not a valid iRMX object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H The object parameter refers to an object that is
neither a segment nor a composite object.

rq_connect

System Call Reference Chapter 6 NUC Calls 465

connect
Creates a connection between a port owned by the calling task and a remote port.

Syntax, PL/M and C

CALL rq$connect (port_tkn, socket, except_ptr);

rq_connect (port_tkn, socket, except_ptr);

Parameter PL/M Data Type C Data Type
port_tkn SELECTOR SELECTOR
socket WORD_32 UINT_32
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
port_tkn

A token for a port object.

socket
Identifies the remote port with a host_ID and port_ID value.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

While connected, a port can only exchange messages with the port specified in
socket .

Invoking connect with socket = 0 disconnects the calling task's port.

See also: Connecting a port, System Concepts

rq_connect

466 NUC Calls Chapter 6 Nucleus System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The port_tkn parameter does not refer to an
existing object.

E_HOST_ID 00E2H The host_id portion of the socket does not refer
to a board that is currently in message space.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PROTOCOL 80E0H The port specified in the port_tkn parameter was
created as a signal type. It needs to be a data
transport type.

E_STATE 0007H The port specified in the port_tkn parameter is
already the sink port of a forwarded port. Only
one level of port forwarding is supported.

E_TYPE 8002H The port_tkn parameter refers to an object that is
not a port.

rq_create_buffer_pool

System Call Reference Chapter 6 NUC Calls 467

create_buffer_pool
Establishes and returns a token for a buffer pool.

Syntax, PL/M and C

buffer_pool = rq$create$buffer$pool (maximum_buffs, flags,
except_ptr);

buffer_pool = rq_create_buffer_pool (maximum_buffs, flags,
except_ptr);

Parameter PL/M Data Type C Data Type
buffer_pool SELECTOR SELECTOR
maximum_buffs WORD_16 UINT_16
flags WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
buffer_pool

The new buffer pool token.

Parameters
maximum_buffs

The maximum number of buffers that can exist in the buffer pool at one time. The
maximum size of the buffer pool is controlled by this parameter.

flags
Defines the attributes of the buffer pool:
Bits Value Meaning
15-2 0 Reserved, set to 0.
1 0 Only contiguous buffers (segments) are used.

1 Data chains are supported (iRMX III OS only).
0 0 Reserved, set to 0.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_create_buffer_pool

468 NUC Calls Chapter 6 Nucleus System Calls

Additional Information

Once a buffer pool has been established, tasks can request segments of memory
from the buffer pool using request_buffer instead of creating the segments directly
using create_segment each time memory space is needed.

When a task finishes with a buffer, it can release the buffer back to the buffer pool
using release_buffer for later use by other tasks.

Each buffer pool can manage as many as 8192 segments that can be of 8 different
sizes.

When creating data chains, the largest available buffer will be used for the first
portion of the data chain, then the next buffer and so on. These available buffers
may be larger than the data actually stored in them. Therefore, a data chain may
use more physical space than the data would actually require.

✏ Note
You can use data chains only in the iRMX III OS. The
configuration of iRMX for Windows and iRMX for PCs does not
allow the use of data chains.

See also: request_buffer, release_buffer,
Using buffer pools, memory allocation, buffer pools, data chaining,
System Concepts

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_MEM 0002H There isn't enough memory to create the
requested buffer pool.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The maximum_buffs parameter has a value
greater than 8192.

E_SLOT 000CH There is no room in the GDT for the buffer
pool's descriptor.

rq_create_composite

System Call Reference Chapter 6 NUC Calls 469

create_composite
Creates a composite object of the specified extension type. The call accepts a list
of tokens that specify the component objects and returns a token for the new
composite object. Composite objects require the creation of extension objects.
Jobs that create extension objects cannot be deleted until all the extension objects
are deleted.

▲▲! CAUTION
Avoid creating composite objects in HI applications. If an HI
application creates extension objects, the application cannot be
deleted asynchronously with <Ctrl-C> entered at the keyboard.
The system must be rebooted to recover.

Syntax, PL/M and C

composite = rq$create$composite (extension, token_list,
except_ptr);

composite = rq_create_composite (extension, token_list,
except_ptr);

Parameter PL/M Data Type C Data Type
composite SELECTOR SELECTOR
extension SELECTOR SELECTOR
token_list POINTER TOKEN_LIST_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
composite

The new composite token.

rq_create_composite

470 NUC Calls Chapter 6 Nucleus System Calls

Parameters
extension

A token for an extension type representing a license to create a composite object.

token_list
A pointer to this structure:

DECLARE token_list STRUCTURE (
num_slots WORD_16,
num_used WORD_16,
tokens(*) SELECTOR);

or

typedef struct {
UINT_16 num_slots;
UINT_16 num_used;
SELECTOR tokens[_NUM_TOKENS];

/* adjust to fit
num_used */

} TOKEN_LIST_STRUCT;

Where:

num_slots
Maximum number of slots for component objects that the composite
object can contain.

num_used Number of token elements to include in the composite.

tokens An array of tokens that will actually constitute the composite object.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Create_composite selects included tokens beginning with the first token in the
token list. If the number of token elements (num_used) is less than the number of
component slots (num_slots), create_composite fills the remaining slots with the
a null selector value. If num_slots is less than num_used , create_composite
ignores the remaining tokens in the token list.

See also: Component objects, composite objects, extension objects, type
manager, System Concepts

rq_create_composite

System Call Reference Chapter 6 NUC Calls 471

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH The token_list pointer is invalid. Either the
selector does not refer to a valid segment, or the
offset is outside the segment boundaries.

E_EXIST 0006H The extension parameter or one or more of the
not 0 token_list parameters is not a token for an
existing object.

E_LIMIT 0004H The calling task's job has already reached its
object limit.

E_MEM 0002H The memory available to the calling task's job is
insufficient to create a composite.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The specified number of components is 0.

E_SLOT 000CH There is no room in the GDT for the composite
object's descriptor.

E_TYPE 8002H The extension parameter is not a token for an
extension object.

rqe_create_descriptor

472 NUC Calls Chapter 6 Nucleus System Calls

rqe_create_descriptor
Builds a descriptor for an Intel386, Intel486 or Pentium memory segment, places
the descriptor in the GDT, and returns a token for that descriptor.

▲▲! CAUTION
This system call can set up a segment descriptor to refer to any
area of physical memory, even if other descriptors already refer to
that memory. Although this may be useful for aliasing purposes,
do not overlap memory accidentally.

Syntax, PL/M and C

descriptor = rqe$create$descriptor (abs_addr, seg_size,
except_ptr);

descriptor = rqe_create_descriptor (abs_addr, seg_size,
except_ptr);

Parameter PL/M Data Type C Data Type
descriptor SELECTOR SELECTOR
abs_addr WORD_32 UINT_32
seg_size NATIVE_WORD NATIVE_WORD
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
descriptor

The new descriptor token.

Parameters
abs_addr

Specifies a full, 32-bit physical address. This is the address where you want the
segment represented by this descriptor to start.

seg_size
Specifies the size of the segment. If 0, the size is 64 Kbytes. If greater than 1
Mbyte, the size is rounded up to the nearest multiple of 4 Kbytes.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rqe_create_descriptor

System Call Reference Chapter 6 NUC Calls 473

Additional Information

Before the microprocessor can access an area of memory in Protected Mode, a
descriptor for the memory segment must exist in one of the descriptor tables: the
GDT or LDT. For iRMX objects such as jobs, tasks, segments, and mailboxes, the
OS automatically creates descriptors as necessary. Rqe_create_descriptor lets
you add your own descriptors to the GDT.

A segment created with this system call can be deleted by calling either
rqe_delete_descriptor or delete_segment. However, segments created with
rqe_create_descriptor are marked as descriptors, not iRMX segments. Unlike
ordinary iRMX segments set up with create_segment, the memory associated with
these segments does not return to the iRMX memory pool for reallocation when the
segments are deleted. Rather, the GDT slot is returned to the memory manager for
reassignment.

See also: Descriptors, System Concepts,
rqe_create_descriptor example, Nucleus examples

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_LIMIT 0004H Creating the requested descriptor would exceed
the job's object limit.

E_MEM 0002H The memory available to the calling task's job is
insufficient to create the descriptor.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_RESOURCE_LIMIT 00E6H An internal table limit has been reached. This
table keeps track of the number of objects
created by each DOS process and is a configured
value. This is a DOS RTE error only.

E_SLOT 000CH There is no room in the GDT for the new
descriptor.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

rq_create_extension

474 NUC Calls Chapter 6 Nucleus System Calls

create_extension
Creates a new object type and returns a token for it.

▲▲! CAUTION
Avoid creating extension objects in HI applications. If an HI
application creates extension objects, the application cannot be
deleted asynchronously with a <Ctrl-C> entered at the keyboard.
The system must be rebooted to recover.

Syntax, PL/M and C

extension = rq$create$extension (type_code, deletion_mailbox,
except_ptr);

extension = rq_create_extension (type_code, deletion_mailbox,
except_ptr);

Parameter PL/M Data Type C Data Type
extension SELECTOR SELECTOR
type_code WORD_16 UINT_16
deletion_mailbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
extension

The new type token.

Parameters
type_code

Specifies a type code for the new object.

Value Meaning
0-7FFFH Reserved
8000-0FFFFH Valid type codes for user-created composites.

See also: get_type

deletion_mailbox
A token for the mailbox where objects of the new type are sent whenever the
extension type or their containing job is deleted. A null selector value indicates no
deletion mailbox is desired.

rq_create_extension

System Call Reference Chapter 6 NUC Calls 475

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If you specify a deletion mailbox, a task in your type manager must wait there for
the tokens of objects that are to be deleted. Tokens are sent to the deletion mailbox
either when their extension type or containing job is deleted; they are not sent there
when being deleted by delete_composite. The task servicing the deletion mailbox
may do anything with the composite objects sent to it, but it must delete them. If
you do not specify a deletion mailbox, composite objects of that type are deleted
automatically and the type manager is not informed.

A job containing a task that creates an extension object cannot be deleted until the
extension object is deleted.

See also: create_extension example, Nucleus examples

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The calling task's job is being deleted.

E_EXIST 0006H The deletion_mailbox parameter is not a token
for an existing object.

E_LIMIT 0004H The calling task's job has reached its object limit.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to create an extension.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SLOT 000CH There is no room in the GDT for the extension's
descriptor.

E_PARAM 8004H The type_code parameter is invalid.

E_TYPE 8002H The deletion_mailbox parameter is not a token
for a mailbox.

rq_create_job

476 NUC Calls Chapter 6 Nucleus System Calls

create_job
Obsolete. Creates a job with a single task and returns a token for the job. This call
is identical to rqe_create_job. It is only used in applications written for earlier
versions of the iRMX OS. This system call is not supported for flat model
applications.

Syntax, PL/M and C

job = rq$create$job (directory_size, param_obj, pool_min,
pool_max, max_objects, max_tasks, max_priority,
except_handler, job_flags, task_priority, start_address,
data_seg, stack_ptr, stack_size, task_flags, except_ptr);

job = rq_create_job (directory_size, param_obj, pool_min,
pool_max, max_objects, max_tasks, max_priority,
except_handler, job_flags, task_priority, start_address,
data_seg, stack_ptr, stack_size, task_flags, except_ptr);

See also: rqe_create_job

rqe_create_job

System Call Reference Chapter 6 NUC Calls 477

rqe_create_job
Creates a job with an initial task and returns a token for the job. This system call is
not supported for flat model applications.

Syntax, PL/M and C

job = rqe$create$job (directory_size, param_obj, pool_min,
pool_max, max_objects, max_tasks, max_priority,
except_handler, job_flags, task_priority, start_address,
data_seg, stack_ptr, stack_size, task_flags, except_ptr);

job = rqe_create_job (directory_size, param_obj, pool_min,
pool_max, max_objects, max_tasks, max_priority,
except_handler, job_flags, task_priority, start_address,
data_seg, stack_ptr, stack_size, task_flags, except_ptr);

Parameter PL/M Data Type C Data Type
job SELECTOR SELECTOR
directory_size WORD_16 UINT_16
param_obj SELECTOR SELECTOR
pool_min WORD_32 UINT_32
pool_max WORD_32 UINT_32
max_objects WORD_16 UINT_16
max_tasks WORD_16 UINT_16
max_priority BYTE UINT_8
except_handler POINTER EXCEPTION_STRUCT far *
job_flags WORD_16 UINT_16
task_priority BYTE UINT_8
start_address POINTER void (far *)(void)
data_seg SELECTOR SELECTOR
stack_ptr POINTER void far *
stack_size WORD_32 NATIVE_WORD
task_flags WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value

job The new job token.

rqe_create_job

478 NUC Calls Chapter 6 Nucleus System Calls

Parameters
directory_size

Specifies the maximum allowable number of entries a job can have in its object
directory. The value 0 indicates that no object directory is desired. The maximum
value is 0F00H.

param_obj
A token for one of these:

Value Meaning
null selector Indicates that the new job has no parameter object.
valid selector The token for the new job's parameter object.

See also: Parameter objects, System Concepts

pool_min
Specifies the minimum size of the new job's memory pool in 16-byte paragraphs.
The upper limit is 4 Gbytes. The lower limit is 32 + x +y, where x and y are
calculated as follows:

IF task_flags indicates an initial task that uses floating point
instructions

x = 6
ELSE

x = 0
IF stack_ptr = NIL

y = stack_size / 16
ELSE

y = 0

pool_max
Specifies the maximum allowable size of the new job's memory pool in 16-byte
paragraphs. The upper limit is 4 Gbytes.

max_objects
Specifies one of these:

Value Meaning
0-0FFFEH The maximum number of objects, created by tasks in the new job,

that can exist at one time.
0FFFFH Unlimited number of objects

rqe_create_job

System Call Reference Chapter 6 NUC Calls 479

max_tasks
Specifies these:

Value Meaning
0 Produces the E_LIMIT exception.
1-0FFFEH The maximum number of tasks that can exist simultaneously in the

new job.
0FFFFH Unlimited number of tasks

max_priority
Specifies one of these:

Value Meaning
0 Tasks in the new job have the maximum priority of the parent job.
1-255 The maximum allowable priority of tasks in the new job; if

max_priority exceeds the maximum priority of the parent job, an
E_LIMIT error is returned.

except_handler
A pointer to this structure:

DECLARE exception STRUCTURE (
exception_handler_ptr POINTER,
exception_mode BYTE);

or

typedef struct {
void far * exception_handler_ptr;
UINT_8 exception_mode;

} EXCEPTION_STRUCT;

Where:

exception_handler_ptr
If not null, references the first instruction of the new job's own
exception handler. If null, the new job's exception handler is the
system default exception handler. The exception handler for the new
task becomes the default exception handler for the job.

exception_mode
Indicates when control is to be passed to the exception handler. It is
encoded:

Value When Control Passes To Exception Handler
0 Never
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

rqe_create_job

480 NUC Calls Chapter 6 Nucleus System Calls

job_flags
Specifies information that the Nucleus needs to create and maintain the job.

Bits Value Meaning
15-2 0 Reserved, set to 0.
1 0 Nucleus checks call parameters for validity whenever a task in

the new job or any of its offspring makes a system call.
1 Nucleus will not check parameters unless an ancestor of the

new job has been created with this bit set to 0.
0 0 Reserved, set to 0.

task_priority
Controls task priority:

Value Meaning
0 The new job's initial task priority is equal to the new job's maximum

priority.
1-255 The priority of the new job's initial task; if the task_priority

parameter is greater (numerically smaller) than the new job's
maximum priority, an E_PARAM error is returned.

start_address
A pointer to the first instruction of the new job's initial task, which is the task
created with the job.

data_seg
A token for the data segment the new job's initial task is to use.

Value Meaning
Valid selector The base selector of the data segment of the new job's initial

task.
Null selector The new job's initial task assigns its own data segment.

stack_ptr
A pointer that specifies the location of the stack for the new job's initial task.

Value Meaning
Valid pointer References the base of the user-provided stack.
Null pointer Nucleus allocates a stack for the new job's initial task; the length

of the allocated segment is equal to the value of the stack_size
parameter.

stack_size
Specifies the size of the stack for the created job. Stack_size must be at least 16
bytes but should be at least 1024 bytes if the new task is going to make Nucleus
system calls.

See also: Stack, Programming Techniques

rqe_create_job

System Call Reference Chapter 6 NUC Calls 481

task_flags
Specifies whether the initial task contains floating-point instructions.

Bits Value Meaning
15-1 0 Reserved, set to 0.
0 0 The initial task does not contain floating-point instructions.

1 The initial task contains floating-point instructions; this
requires a math coprocessor or FPU.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The new job's parent is the calling task's job. The new job and initial task each
deduct an object from the parent job's object limit.

See also: Maximum tasks, maximum objects, System Concepts,
rqe_create_job example, Nucleus examples

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH At least one of the except_handler, data_seg, or
stack_ptr parameters is invalid. Either a selector
does not refer to a valid segment, or an offset is
outside the segment boundaries.

E_CONTEXT 0005H The job containing the calling task is being
deleted.

E_EXIST 0006H The param_obj parameter is not a null selector
and is not a token for an existing object.

rqe_create_job

482 NUC Calls Chapter 6 Nucleus System Calls

E_LIMIT 0004H At least one of these is true:
• max_objects is larger than the unused

portion of the object allotment in the calling
task's job.

• max_tasks is larger than the unused
portion of the task allotment in the calling
task's job.

• max_priority is greater (numerically
smaller) than the maximum allowable task
priority in the calling task's job.

• directory_size is larger than 0FF0H.
• The initial task would exceed the object

limit in the new job because the
max_objects parameter is set to 0.

• The initial task would exceed the task limit
in the new job. The max_tasks parameter is
set to 0.

E_MEM 0002H At least one of these is true:
• The memory available to the new job is not

sufficient to create a job descriptor and the
object directory.

• The memory available to the new job is not
sufficient to satisfy the pool_min
parameter.

• The memory available to the new job is not
sufficient to create the task as specified.

E_PARAM 8004H At least one of these is true:
• pool_min is less than 16 + (number of

paragraphs needed for the initial task and a
system-allocated stack) + 5 if the task uses
the math coprocessor.

• pool_min is greater than pool_max .
• task_priority is unequal to 0 and greater

(numerically smaller) than max_priority .
• stack_size is less than 16 (applies to 32-

bit applications only; the OS automatically
adds enough to the stack for 16-bit
applications that this error cannot occur).

• The exception handler mode is not valid.

E_SLOT 000CH There isn't enough room in the GDT for the new
job and task descriptors.

rq_create_mailbox

System Call Reference Chapter 6 NUC Calls 483

create_mailbox
Creates a mailbox and returns a token for the object.

See also: Mailboxes, System Concepts,
create_mailbox example, Nucleus examples

Syntax, PL/M and C

mailbox = rq$create$mailbox (mailbox_flags, except_ptr);

mailbox = rq_create_mailbox (mailbox_flags, except_ptr);

Parameter PL/M Data Type C Data Type
mailbox SELECTOR SELECTOR
mailbox_flags WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
mailbox

The new mailbox token.

Parameters
mailbox_flags

Indicates:

Bits Value Meaning
15-6 0 Reserved, set to 0.
5 0 This mailbox passes iRMX objects (signal type messages);

use the send_message and receive_message calls.
1 This mailbox passes up to 128 bytes of data per message

(data type messages); use the send_data and receive_data
calls.

4-1 If bit 5 is 0, the value placed here multiplied by 4 sets the
number of message objects that can be queued on the high
performance object queue (minimum size of 8 objects).
Otherwise, the OS creates a data queue for three 128-byte
messages, ignoring these bits.

0 0 FIFO task queuing
1 Priority-based task queue

rq_create_mailbox

484 NUC Calls Chapter 6 Nucleus System Calls

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

When you set up a mailbox to pass objects (not data) you can also set up a high-
performance queue. This queue is a block of memory that stores objects waiting to
be sent or received. It is permanently assigned to the mailbox, and the unused
portion of the queue is unavailable for other uses. If the queue overflows, the
Nucleus temporarily allocates another 200-object queue.

To get the best tradeoff between memory and performance, choose a size for your
high-performance queue that is large enough for normal operations, and let the
overflow queue handle unusual circumstances.

When you create a mailbox to pass data, you do not specify the size of the message
queue. The OS automatically sets up a queue of 400 bytes.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_LIMIT 0004H The calling task's job has already reached its
object limit.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to create a mailbox.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_RESOURCE_LIMIT 00E6H An internal table limit has been reached. This
table keeps track of the number of objects
created by each DOS process and is a configured
value. This is a DOS RTE error only.

E_SLOT 000CH There isn't enough room in the GDT for the new
job and task descriptors

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

rq_create_port

System Call Reference Chapter 6 NUC Calls 485

create_port
Creates a port object that can be used in message passing.

Syntax, PL/M and C

port_tk = rq$create$port (num_trans, info_ptr, except_ptr);

port_tkn = rq_create_port (num_trans, info_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
port_tkn SELECTOR SELECTOR
num_trans WORD_16 UINT_16
info_ptr POINTER void far *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
port_tkn

A token for the new port.

Parameters
num_trans

Specifies the number of simultaneous transactions allowed at this port.

info_ptr
A pointer to a structure of a form that is protocol-dependent.

For signal protocol, the structure has this form:

DECLARE signal_port_creation_info STRUCTURE (
message_id BYTE,
reserved_a BYTE,
type BYTE,
reserved_b BYTE
flags WORD_16);

or

typedef strut {
UINT_8 message_id;
UINT_8 reserved_a;
UINT_8 type;
UINT_8 reserved_b;
UINT_16 flags;

} SIGNAL_PORT_CREATION_INFO_STRUCT;

rq_create_port

486 NUC Calls Chapter 6 Nucleus System Calls

Where:

message_id
The slot ID of the remote host (equivalent to the host_id portion of
the socket). This must be in the range of 0 to 19.

reserved Reserved, set to 0.

type The message protocol of the port as specified by:

Value Meaning
0-1 Reserved for the Nucleus
2 Data Transport protocol
3 Signal protocol (specify here)
4-0FFH Reserved, set to 0.

flags Defines the port's task queuing scheme.

Bits Meaning
15-2 Reserved, set to 0.
1 Task queueing scheme:

0 = FIFO
1 = priority

0 Reserved, set to 0.

For transport protocol, the structure takes this form. A null pointer to this structure
selects default values.

DECLARE data_port_creation_info STRUCTURE (
port_id WORD_16,
type BYTE,
reserved BYTE,
flags WORD_16);

or

typedef struct {
UINT_16 port_id;
UINT_8 type;
UINT_8 reserved;
UINT_16 flags;

} DATA_PORT_CREATION_INFO_STRUCT;

rq_create_port

System Call Reference Chapter 6 NUC Calls 487

Where:

port_id Identifies the port. Port ID values are:

ID Range Explanation
0 The Nucleus assigns the port ID (default)
1-7FFH Reserved
800H-0FFFH Available to users
1000H-0FFFFH Reserved

type The message protocol of the port.

Value Meaning
0-1 Reserved for the Nucleus
2 Data transport protocol (default)
3 Signal protocol
4-0FFH Reserved

flags Defines fragmentation control and task queuing scheme.

Bits Meaning
15-3 Reserved, set to 0.
2 Message fragmentation:

0 = enabled (default)
1 = disabled

1 Task queueing scheme:
0 = FIFO (default)
1 = priority

0 Reserved, set to 0.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The new port counts against the object limit for the calling task's job. Tasks
created within the same job can send and receive messages or signals through the
same port, depending on the application.

For ports using signal protocol, only one connection can be established between
any two hosts. Attempting to connect more than one port to the same host results
in an E_CONTEXT condition code.

rq_create_port

488 NUC Calls Chapter 6 Nucleus System Calls

✏ Note
Ports using signal protocol receive messages before ports using
data transport protocol. Therefore, if you create both types of
ports on one host, the ports using data transport protocol will not
receive messages.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H Signal protocol was specified with a message_id
already associated with a port.

E_LIMIT 0004H The calling task's job has already reached its
object limit.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to create a port.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NUC_BAD_BUF 80E2H The info_ptr is invalid or points to a buffer that
is not large enough.

E_PARAM 8004H The message_id was greater than 19.

E_PORT_ID_USED 80E1H The port_id specified is in use.

E_SLOT 000CH There isn't enough room in the GDT for another
descriptor.

rq_create_region

System Call Reference Chapter 6 NUC Calls 489

create_region
Creates a region and returns a token for it.

▲▲! CAUTION
Avoid using regions in HI applications. You cannot stop the
application asynchronously with <Ctrl-C> entered at the
keyboard while a task is in the region. To do so will require
rebooting.

Syntax, PL/M and C

region = rq$create$region (region_flags, except_ptr);

region = rq_create_region (region_flags, except_ptr);

Parameter PL/M Data Type C Data Type
region SELECTOR SELECTOR
region_flags WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
region

A token for the new region.

Parameters
region_flags

The value of bit 0 specifies the queuing scheme of the new region:

Value Protocol
0 FIFO
1 Priority based

The other bits are reserved; set to 0

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_create_region

490 NUC Calls Chapter 6 Nucleus System Calls

Additional Information

Tasks that use regions cannot be deleted while they are in control of the region.

See also: accept_control, receive_control,
Regions, System Concepts,
create_region example, Nucleus examples

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_LIMIT 0004H The calling task's job has reached its object limit.

E_MEM 0002H The memory pool of the calling task's job is too
small to satisfy the request.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration. This code is returned if you make
this call as an RTE call from Windows instead of
from DOS.

E_RESOURCE_LIMIT 00E6H An internal table limit has been reached. This
table keeps track of the number of objects
created by each DOS process and is a configured
value. This is a DOS RTE error only.

E_SLOT 000CH There is not enough room in the GDT for another
descriptor.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

rq_create_segment

System Call Reference Chapter 6 NUC Calls 491

create_segment
Creates a segment and returns the token for it.

Syntax, PL/M and C

segment = rq$create$segment (seg_size, except_ptr);

segment = rq_create_segment (seg_size, except_ptr);

Parameter PL/M Data Type C Data Type
segment SELECTOR SELECTOR
seg_size NATIVE_WORD NATIVE_WORD
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
segment

A token for the new segment.

Parameters
seg_size

Specifies the size of the segment. If 0, the size is 64 Kbytes. If greater than 1
Mbyte, the created segment is rounded up to the nearest multiple of 4 Kbytes.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The memory for the segment is taken from the portion of the free space memory
pool belonging to the calling task's job, unless borrowing from the parent job is
both necessary and possible. The new segment counts against the object limit for
the calling task's job.

When setting up the descriptor for the new segment, the Nucleus assigns the
segment as a data segment, with read/write access, at privilege level 0.

For iRMX for Windows, if you create a segment from DOS RTE, you must also
delete the segment from DOS RTE. Otherwise, you will eventually receive an
E_RESOURCE_LIMIT condition code.

See also: create_segment example, Nucleus examples

rq_create_segment

492 NUC Calls Chapter 6 Nucleus System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_LIMIT 0004H The calling task's job has already reached its
object limit.

E_MEM 0002H The memory available to the calling task's job is
too small to create a segment of the specified
size.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_RESOURCE_LIMIT 00E6H An internal table limit has been reached. This
table keeps track of the number of objects
created by each DOS process and is a configured
value. This is a DOS RTE error only.

E_SLOT 000CH There isn't enough room in the GDT for another
descriptor.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

rq_create_semaphore

System Call Reference Chapter 6 NUC Calls 493

create_semaphore
Creates a semaphore and returns a token for it.

Syntax, PL/M and C

semaphore = rq$create$semaphore (initial_value, max_value,
semaphore_flags, except_ptr);

semaphore = rq_create_semaphore (initial_value, max_value,
semaphore_flags, except_ptr);

Parameter PL/M Data Type C Data Type
semaphore SELECTOR SELECTOR
initial_value WORD_16 UINT_16
max_value WORD_16 UINT_16
semaphore_flags WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
semaphore

A token for the new semaphore.

Parameters
initial_value

The initial number of units to be in the custody of the new semaphore.

max_value
The maximum number of units over which the new semaphore is to have custody at
any given time. If max_value is 0, an E_PARAM error is returned.

semaphore_flags
Bit 0 specifies the queuing scheme for the new semaphore's task queue; the
remaining bits are reserved and should be set to 0.

Value Meaning
0 FIFO task queue
1 Priority-based queue

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_create_semaphore

494 NUC Calls Chapter 6 Nucleus System Calls

Additional Information

The created semaphore counts against the object limit for the calling task's job.

See also: send_units,
Semaphores, System Concepts,
create_semaphore example, Nucleus examples

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_LIMIT 0004H The calling task's job has already reached its
object limit.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to create a semaphore.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H At least one of these is true:
• The initial_value parameter is larger

than the max_value parameter.
• The max_value parameter is 0.

E_RESOURCE_LIMIT 00E6H An internal table limit has been reached. This
table keeps track of the number of objects
created by each DOS process and is a configured
value. This is a DOS RTE error only.

E_SLOT 000CH There is not enough room in the GDT for another
descriptor.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

rq_create_task

System Call Reference Chapter 6 NUC Calls 495

create_task
Creates a task and returns a token for it.

Syntax, PL/M and C

task = rq$create$task (priority, start_address, data_seg,
stack_ptr, stack_size, task_flags, except_ptr);

task = rq_create_task (priority, start_address, data_seg,
stack_ptr, stack_size, task_flags, except_ptr);

Parameter PL/M Data Type C Data Type
task SELECTOR SELECTOR
priority BYTE UINT_8
start_address POINTER void (far *)(void)
data_seg SELECTOR SELECTOR
stack_ptr POINTER void far *
stack_size NATIVE_WORD NATIVE_WORD
task_flags WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value

task A token for the new task.

Parameters
priority

Specifies the priority of the new task.

Value Meaning
0 Priority is the maximum allowable priority of the calling task's job.
1-255 The priority of the new task; this must not exceed the maximum

allowable priority of the calling task's job.

start_address
A pointer to the first instruction of the new task.

data_seg
A token that specifies the new task's data segment.

Value Meaning
Null selector New task assigns its own data segment. When you create a flat

model task, this parameter must be non-zero.
Valid selector Token for the base address of the data segment.

rq_create_task

496 NUC Calls Chapter 6 Nucleus System Calls

stack_ptr
A pointer that specifies the location of the stack for the new task.

Value Meaning
Null pointer Nucleus allocates a stack to the new task; the length of the stack

is equal to the value of the stack_size parameter.
Valid selector Nucleus places the sum of the offset portion and the stack_size

parameter in SP (stack pointer) register.

stack_size
Specifies the size of the stack area for the created task. Stack_size must be at
least 16 bytes but at least 1024 bytes if the new task is going to make Nucleus
system calls. The maximum stack size can be 4 Gbytes.

See also: Stack, Programming Techniques

task_flags
Indicates:

Bits Value Meaning
15-1 0 Reserved, set to 0.
0 0 The task does not contain floating-point instructions.

1 The task contains floating-point instructions; this requires a
math coprocessor or FPU.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The new task counts against the object limit for the calling task's job.

Attributes of the new task are initialized upon creation:

Attribute Initial Value
Priority As specified in the call
Execution state Ready
Suspension depth 0
Containing job Calling task's job
Exception handler Containing job's exception handler
Exception mode The exception mode of the containing job

See also: create_task example, Nucleus examples

rq_create_task

System Call Reference Chapter 6 NUC Calls 497

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH Either the data_seg selector does not refer to a
valid segment, or the offset of the stack_ptr
parameter is outside the segment boundaries.

E_LIMIT 0004H At least one of these is true:
• The calling task's job has already reached its

object limit or task limit.
• The priority parameter is not 0 and greater

(numerically smaller) than the maximum
allowable priority for tasks in the calling
task's job.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to create a task as specified.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The stack_size parameter is less than 16.

E_SLOT 000CH There isn't enough room in the GDT for another
descriptor.

rq_delete_buffer_pool

498 NUC Calls Chapter 6 Nucleus System Calls

delete_buffer_pool
Deletes a buffer pool and any segments that it may contain; data in those segments
will be lost. A buffer pool cannot be deleted while it is attached to a port.

Syntax, PL/M and C

CALL rq$delete$buffer$pool (buffer_pool, except_ptr);

rq_delete_buffer_pool (buffer_pool, except_ptr);

Parameter PL/M Data Type C Data Type
buffer_pool SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
buffer_pool

A token for the buffer pool to be deleted. This buffer pool must have been created
with create_buffer_pool.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BUSY 0003H The buffer pool is attached to a port.

E_EXIST 0006H The buffer_pool parameter is not a token for an
existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H The buffer_pool parameter is the token for an
object that is not a buffer pool.

rq_delete_composite

System Call Reference Chapter 6 NUC Calls 499

delete_composite
Deletes the specified composite object, but not its component objects.

See also: create_composite

Syntax, PL/M and C

CALL rq$delete$composite (extension, composite, except_ptr);

rq_delete_composite (extension, composite, except_ptr);

Parameter PL/M Data Type C Data Type
extension SELECTOR SELECTOR
composite SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
extension

A token for the extension type of the composite object to be deleted.

composite
A token for the composite object to be deleted.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The extension type does not match the composite
parameter.

E_EXIST 0006H One or both of the extension or composite
parameters is not a token for an existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H One or both of the extension or composite
parameters is not a token for an object of the
correct type.

rqe_delete_descriptor

500 NUC Calls Chapter 6 Nucleus System Calls

rqe_delete_descriptor
Removes an entry defined with rqe_create_descriptor from the GDT.

Syntax, PL/M and C

CALL rqe$delete$descriptor (descriptor, except_ptr);

rqe_delete_descriptor (descriptor, except_ptr);

Parameter PL/M Data Type C Data Type
descriptor SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
descriptor

A token for the descriptor to be deleted.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Memory that was addressed by the descriptor is not returned to the memory pool.
The GDT slot is returned to the memory manager for reassignment.

See also: rqe_create_descriptor example, Nucleus examples

rqe_delete_descriptor

System Call Reference Chapter 6 NUC Calls 501

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H Either the descriptor parameter is not a token for
an existing object, or it represents a descriptor
for a job being deleted.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

E_TYPE 8002H The descriptor parameter is not a token for a
descriptor.

rq_delete_extension

502 NUC Calls Chapter 6 Nucleus System Calls

delete_extension
Deletes the specified extension object and all composites of that type, making the
corresponding type code available for reuse.

Syntax, PL/M and C

CALL rq$delete$extension (extension, except_ptr);

rq_delete_extension (extension, except_ptr);

Parameter PL/M Data Type C Data Type
extension SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
extension

A token for the extension object to be deleted.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Delete_extension is not completed until all of the composite objects have been
deleted. If an extension has no deletion mailbox, composite objects created by
create_extension are deleted without informing the type manager. The job
containing the task that created the extension object cannot be deleted until the
extension object is deleted.

See also: create_extension,
Type manager, System Concepts,
create_extension example, Nucleus examples

rq_delete_extension

System Call Reference Chapter 6 NUC Calls 503

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The extension parameter is not a token for an
existing object.

E_MEM 0002H The memory available to the calling task's job is
too small to complete this operation.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H The extension parameter is not a token for an
extension object.

rq_delete_job

504 NUC Calls Chapter 6 Nucleus System Calls

delete_job
Deletes the specified job, all of the job's tasks, and all objects created by the tasks.

Syntax, PL/M and C

CALL rq$delete$job (job, except_ptr);

rq_delete_job (job, except_ptr);

Parameter PL/M Data Type C Data Type
job SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

job A token for the job to be deleted. A null selector specifies the calling task's job.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

During the deletion of any interrupt tasks owned by the job, the interrupt levels
associated with those tasks are reset. The levels that do not have interrupt tasks
associated with them will not be reset during a delete_job call.

During deletion, all resources that the target job had borrowed from its parent are
returned. Deleting a job counts toward the object limit for the parent job.

Jobs that have created extension objects cannot be deleted until all the extension
objects are deleted.

See also: offspring, delete_composite, delete_extension,
Job deletion, extension objects, System Concepts,
delete_job example, Nucleus examples

rq_delete_job

System Call Reference Chapter 6 NUC Calls 505

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H At least one of these is true:
• There are undeleted jobs or extension

objects which have been created by tasks in
the target job.

• The deleting task has access to data guarded
by a region contained in the job to be
deleted.

E_EXIST 0006H The job parameter is not a token for an existing
object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H The job parameter is not a token for a job.

rq_delete_mailbox

506 NUC Calls Chapter 6 Nucleus System Calls

delete_mailbox
Deletes the specified mailbox.

Syntax, PL/M and C

CALL rq$delete$mailbox (mailbox, except_ptr);

rq_delete_mailbox (mailbox, except_ptr);

Parameter PL/M Data Type C Data Type
mailbox SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
mailbox

A token for the mailbox to be deleted.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If any tasks are queued at the mailbox at deletion time, they are awakened with an
E_EXIST exceptional condition. If there is a queue of object tokens or data
messages, the queue is discarded. Deleting the mailbox counts toward the object
limit for the containing job.

See also: create_mailbox example, Nucleus examples

rq_delete_mailbox

System Call Reference Chapter 6 NUC Calls 507

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H Either the mailbox parameter is not a token for
an existing object or it represents a mailbox for a
job being deleted.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H The mailbox parameter is not a token for a
mailbox.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

rq_delete_port

508 NUC Calls Chapter 6 Nucleus System Calls

delete_port
Deletes the specified port.

Syntax, PL/M and C

CALL rq$delete$port (port_tkn, except_ptr);

rq_delete_port (port_tkn, except_ptr);

Parameter PL/M Data Type C Data Type
port_tkn SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
port_tkn

A token for the port to be deleted.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If any tasks are in the port's receive task queue at deletion time, they are awakened
with an E_EXIST exceptional condition. Deleting the port counts toward the
object limit for the containing job. Any messages queued at the port are discarded
and, if the port is forwarded, forwarding is severed.

Deleting a sink port automatically detaches it from its source port.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H Either the port_tkn parameter is not a token for
an existing object or it represents a port for a job
being deleted.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H The port_tkn parameter is not a token for a port.

rq_delete_region

System Call Reference Chapter 6 NUC Calls 509

delete_region
Deletes the specified region.

Syntax, PL/M and C

CALL rq$delete$region (region, except_ptr);

rq_delete_region (region, except_ptr);

Parameter PL/M Data Type C Data Type
region SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
region

A token for the region to be deleted.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If a task that has access to the region requests that the region be deleted, the task
receives an E_CONTEXT condition code. If a task requests deletion while another
task has access, deletion is delayed until access is surrendered.

A deadlock can occur when two or more tasks request deletion of a region that
another task has access to, or when a task attempts to delete another task that is
trying to delete an occupied region. When the region is deleted, any waiting tasks
awaken with an E_EXIST exceptional condition.

See also: create_region, accept_control,
Regions, mutual exclusion, deadlock, System Concepts,
create_region example, Nucleus examples

rq_delete_region

510 NUC Calls Chapter 6 Nucleus System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The deletion is being requested by a task that
currently holds access to data protected by the
region.

E_EXIST 0006H The region parameter is not a token for an
existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration. This code is returned if you make
this call as an RTE call from Windows instead of
from DOS.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

E_TYPE 8002H The region parameter is not a token for a region.

rq_delete_segment

System Call Reference Chapter 6 NUC Calls 511

delete_segment
Deletes segments created with create_segment, rqe_create_descriptor, and
rqv_create_segment.

Syntax, PL/M and C

CALL rq$delete$segment (segment, except_ptr);

rq_delete_segment (segment, except_ptr);

Parameter PL/M Data Type C Data Type
segment SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
segment

A token for the segment or descriptor to be deleted.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

This system call returns the deleted segment to the memory pool from which it was
allocated. The deleted segment counts toward the object limit for the containing
job.

When deleting a descriptor, this system call does not return any memory to the
memory pool. It clears the descriptor slot in the GDT and returns that slot to the
memory manager for reassignment.

When deleting a virtual segment created with rqv_create_segment, both the
virtual address space and all physical pages within the virtual segment are
deallocated.

See also: create_segment example, Nucleus examples

rq_delete_segment

512 NUC Calls Chapter 6 Nucleus System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H At least one of these is true:
• The segment parameter is not a token for

an existing object.
• The segment parameter represents a

segment or descriptor for a job being
deleted.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

E_TYPE 8002H The segment parameter is not a token for a
segment or a descriptor.

rq_delete_semaphore

System Call Reference Chapter 6 NUC Calls 513

delete_semaphore
Deletes the specified semaphore.

Syntax, PL/M and C

CALL rq$delete$semaphore (semaphore, except_ptr);

rq_delete_semaphore (semaphore, except_ptr);

Parameter PL/M Data Type C Data Type
semaphore SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
semaphore

A token for the semaphore to be deleted.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If there are tasks in the semaphore's queue at deletion time, they are awakened with
an E_EXIST exceptional condition. The deleted semaphore counts toward the
object limit for the containing job.

See also: create_semaphore example, Nucleus examples

rq_delete_semaphore

514 NUC Calls Chapter 6 Nucleus System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H One of these is true:
• The semaphore parameter is not a token for

an existing object
• The semaphore parameter represents a

semaphore for a job being deleted.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

E_TYPE 8002H The semaphore parameter is not a token for a
semaphore.

rq_delete_task

System Call Reference Chapter 6 NUC Calls 515

delete_task
Deletes the specified task from the system and from any queues in which the task
was waiting.

Syntax, PL/M and C

CALL rq$delete$task (task, except_ptr);

rq_delete_task (task, except_ptr);

Parameter PL/M Data Type C Data Type
task SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

task A token identifying the task to be deleted.

Value Meaning
Null selector Delete the calling task
Valid selector Token for the task to be deleted

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Delete_task enables any task currently within a region, or waiting in a queue for a
region, to exit the region before being deleted. Deleting the task counts toward
both the object and task limits for the containing job.

Any attempt to delete an interrupt task results in an E_CONTEXT condition code.
Use the reset_interrupt system call instead.

See also: create_task example, Nucleus examples

✏ Note
Deleting a task does not delete the C resources allocated to it.
Applications that delete C tasks should call suspend_task, then
_cstop, before deleting the task in order to delete these resources.

See also: _cstop function, C Library Reference

rq_delete_task

516 NUC Calls Chapter 6 Nucleus System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The task parameter is a token for an interrupt
task.

E_EXIST 0006H One of these conditions has occurred:
• The task parameter is not a token for an

existing object.
• The task parameter represents a task for a

job that is being deleted.
• More than one task is trying to delete a task

which is in a region.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H The task parameter is a token for an object which
is not a task.

rq_detach_buffer_pool

System Call Reference Chapter 6 NUC Calls 517

detach_buffer_pool
Ends the association between a buffer pool and a port.

Syntax, PL/M and C

buffer_pool_tkn = rq$detach$buffer$pool (port_tkn, except_ptr);

buffer_pool_tkn = rq_detach_buffer_pool (port_tkn, except_ptr);

Parameter PL/M Data Type C Data Type
buffer_pool_tkn SELECTOR SELECTOR
port_tkn SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
buffer_pool_tkn

A token for the buffer pool that was detached.

Parameters
port_tkn

A token identifying the port to be detached from the buffer pool.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

This call does not delete the buffer pool. The token received as a result of this call
can be used to attach the buffer pool to a different port, or to reattach it to the same
port.

rq_detach_buffer_pool

518 NUC Calls Chapter 6 Nucleus System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The port_tkn parameter is not a token for an
existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PROTOCOL 80E0H The port specified in the port_tkn parameter was
created as a signal type. It needs to be a data
transport type.

E_STATE 0007H No port is associated with the specified port.

E_TYPE 8002H The port_tkn parameter refers to an object that is
not a port.

rq_detach_port

System Call Reference Chapter 6 NUC Calls 519

detach_port
Ends message forwarding from the specified port.

Syntax, PL/M and C

CALL rq$detach$port (port_tkn, except_ptr);

rq_detach_port (port_tkn, except_ptr);

Parameter PL/M Data Type C Data Type
port_tkn SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
port_tkn

A token for the source port to detach.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If detach_port is invoked with messages queued at the sink port, they remain at the
sink port until removed with a receive operation.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The port_tkn parameter does not refer to an
existing port.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PROTOCOL 80E0H The port specified in the port_tkn parameter was
created as a signal type. It needs to be a data
transport type.

E_STATE 0007H The port issuing the call does not have a sink
port attached.

E_TYPE 8002H The port_tkn parameter refers to an object that is
not a port.

rq_disable

520 NUC Calls Chapter 6 Nucleus System Calls

disable
Disables the specified interrupt level. It has no effect on other levels. You must
not disable the level reserved for the system clock at system configuration.

See also: For ICU-configurable systems, CIL parameter, ICU User's Guide and
Quick Reference

Syntax, PL/M and C

CALL rq$disable (level, except_ptr);

rq_disable (level, except_ptr);

Parameter PL/M Data Type C Data Type
level WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

level The interrupt level encoded:

Bits Value Meaning
15-7 0 Reserved, set to 0
6-4 0-7 First digit of the interrupt level
3 0 Bits 2-0 specify the second digit (slave)

1 Bits 6-4 specify the entire level number (master)
2-0 0-7 Second digit of the interrupt level

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code. All condition codes must be processed in-line. Control does not
pass to an exception handler.

Additional Information

To be disabled, a level must have an interrupt handler assigned to it. Otherwise,
the Nucleus returns an E_CONTEXT condition code.

See also: enable example, Nucleus examples

rq_disable

System Call Reference Chapter 6 NUC Calls 521

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The level indicated by the level parameter is
already disabled or has no interrupt handler
assigned to it.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The level parameter is invalid.

rq_disable_deletion

522 NUC Calls Chapter 6 Nucleus System Calls

disable_deletion
Increases by one the disabling depth of an object, making it immune to ordinary
deletion.

▲▲! CAUTION
Do not use disable_deletion (consequently there is no need to use
enable_deletion or force_delete) in HI applications. If an HI
application contains objects whose disabling depths are greater
than one, the application cannot be deleted asynchronously with
<Ctrl-C> entered at the keyboard. Your system will have to be
rebooted.

Syntax, PL/M and C

CALL rq$disable$deletion (object, except_ptr);

rq_disable_deletion (object, except_ptr);

Parameter PL/M Data Type C Data Type
object SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
object

A token for the object whose deletion is to be disabled.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If an object's disabling depth is two or greater, it is also immune to forced deletion.
If a task attempts to delete the object while it is immune, the task sleeps until the
immunity is removed. At that time, the object is deleted and the task is awakened.

If an object has had its deletion disabled, the containing job cannot be deleted until
that object has had its deletion reenabled.

Disabling deletion of a suspended task causes the calling task to sleep until the
suspended task is resumed.

See also: enable_deletion example, force_delete example, Nucleus examples

rq_disable_deletion

System Call Reference Chapter 6 NUC Calls 523

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The object parameter is not a token for an
existing object.

E_LIMIT 0004H The object's disabling depth is already 255.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_enable

524 NUC Calls Chapter 6 Nucleus System Calls

enable
Enables a specific interrupt level which must have an interrupt handler assigned to
it.

See also: set_interrupt, enable example, Nucleus examples

Syntax, PL/M and C

CALL rq$enable (level, except_ptr);

rq_enable (level, except_ptr);

Parameter PL/M Data Type C Data Type
level WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
level

Specifies the interrupt level:

Bits Value Meaning
15-7 0 Reserved, set to 0
6-4 0-7 First digit of the interrupt level
3 0 Bits 2-0 specify the second digit (slave)

1 Bits 6-4 specify the entire level number (master)
2-0 0-7 Second digit of the interrupt level

A task must not enable the level associated with the system clock.

See also: For ICU-configurable systems, CIL parameter, ICU User's Guide and
Quick Reference

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_enable

System Call Reference Chapter 6 NUC Calls 525

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H At least one of these is true:
• A non-interrupt task tried to enable a level

that was already enabled.
• There is not an interrupt handler assigned to

the specified level.
• There has been an interrupt overflow on the

specified level.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The level parameter is invalid.

rq_enable_deletion

526 NUC Calls Chapter 6 Nucleus System Calls

enable_deletion
Enables the deletion of objects that have had deletion disabled.

Syntax, PL/M and C

CALL rq$enable$deletion (object, except_ptr);

rq_enable_deletion (object, except_ptr);

Parameter PL/M Data Type C Data Type
object SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
object

A token for the object whose deletion is to be enabled.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Enable_deletion decreases by one the disabling depth of an object. If a deletion
request is pending against the object, and the enable_deletion call makes the object
eligible for deletion, the object is deleted and the task that made the deletion
request is awakened.

See also: CAUTION in disable_deletion

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The object's deletion is not disabled.

E_EXIST 0006H The object parameter is not a token for an
existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_end_init_task

System Call Reference Chapter 6 NUC Calls 527

end_init_task
Used by an initialization task of a first-level job to inform the root task that it has
completed its synchronous initialization process.

Syntax, PL/M and C

CALL rqendinit$task;

rq_end_init_task();

Additional Information

The initialization task of a first-level job must use end_init_task to inform the root
task that it is finished. This enables the root task to resume execution, creating the
next first-level job. You must include this system call in the initialization task of
each first-level job, even if the jobs require no synchronous initialization.

For loadable jobs, this system call is ignored.

See also: For ICU-configurable systems, User Jobs screens, ICU User's Guide
and Quick Reference

rq_enter_interrupt

528 NUC Calls Chapter 6 Nucleus System Calls

enter_interrupt
Used by interrupt handlers to load a previously-specified segment base address into
the DS register.

Syntax, PL/M and C

CALL rq$enter$interrupt (level, except_ptr);

rq_enter_interrupt (level, except_ptr);

Parameter PL/M Data Type C Data Type
level WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

level Specifies the interrupt level:

Bits Value Meaning
15-7 0 Reserved, set to 0
6-4 0-7 First digit of the interrupt level
3 0 Bits 2-0 specify the second digit (slave)

1 Bits 6-4 specify the entire level number (master)
2-0 0-7 Second digit of the interrupt level

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code. For this system call, all condition codes must be processed in-line.
Control does not pass to an exception handler.

Additional Information

Enter_interrupt , on behalf of the calling interrupt handler, loads a base address
value into the DS register. This value was specified when the interrupt handler was
set up by an earlier call to set_interrupt.

If the handler is going to call an interrupt task, enter_interrupt enables the handler
to place data in the CPU data segment used by the interrupt task. This enables the
interrupt handler to pass data to the interrupt task.

See also: Interrupt management, System Concepts,
:rmx:demo/c/interrupt directory for demo using rq_signal_interrupt

rq_enter_interrupt

System Call Reference Chapter 6 NUC Calls 529

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H No segment base value has previously been
specified in the call to set_interrupt.

E_NOT_CONFIGURED 0008H This system call is not included in the present
configuration.

E_PARAM 8004H The level parameter is invalid.

rq_exit_interrupt

530 NUC Calls Chapter 6 Nucleus System Calls

exit_interrupt
Used by interrupt handlers to send an end-of-interrupt (EOI) signal to the hardware.

Syntax, PL/M and C

CALL rq$exit$interrupt (level except_ptr);

rq_exit_interrupt (level, except_ptr);

Parameter PL/M Data Type C Data Type
level WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

level Specifies the interrupt level:

Bits Value Meaning
15-7 0 Reserved, set to 0
6-4 0-7 First digit of the interrupt level
3 0 Bits 2-0 specify the second digit (slave)

1 Bits 6-4 specify the entire level number (master)
2-0 0-7 Second digit of the interrupt level

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code. All condition codes must be processed in-line, as control does not
pass to an exception handler.

Additional Information

This call prepares for re-enabling of interrupts. The re-enabling actually occurs
when control passes from the interrupt handler to an application task.

See also: :rmx:demo/c/interrupt directory for demo using rq_signal_interrupt

rq_exit_interrupt

System Call Reference Chapter 6 NUC Calls 531

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The set_interrupt system call has not been
invoked for the specified level.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The level parameter is invalid.

rqe_exit_interrupt

532 NUC Calls Chapter 6 Nucleus System Calls

rqe_exit_interrupt
Used by interrupt handlers to send an end-of-interrupt (EOI) signal to the hardware.

Syntax, PL/M and C

CALL rqe$exit$interrupt (level, master_base, slave_base);

rqe_exit_interrupt (level, master_base, slave_base);

Parameter PL/M Data Type C Data Type
level BYTE UINT_8
master_base WORD_16 UINT_16
slave_base WORD_16 UINT_16

Parameters

level Specifies the interrupt level:

Bits Value Meaning
7 0 Reserved, set to 0
6-4 0-7 First digit of the interrupt level
3 0 Bits 2-0 specify the second digit (slave)

1 Bits 6-4 specify the entire level number (master)
2-0 0-7 Second digit of the interrupt level

master_base
The base port address of the master PIC.

slave_base
The base port address of the slave PIC whose interrupt is being serviced.

Additional Information

This call is a high performance version of the exit_interrupt call. To use it you
must know the level of the interrupt being serviced, the base port address of the
master PIC, and, if the interrupt level is on a slave PIC, the base port address of the
slave PIC.

This system call does not have an except_ptr parameter; it does not return status.

rq_force_delete

System Call Reference Chapter 6 NUC Calls 533

force_delete
Deletes objects whose disabling depths are 0 or 1.

Syntax, PL/M and C

CALL rq$force$delete (extension, object, except_ptr);

rq_force_delete (extension, object, except_ptr);

Parameter PL/M Data Type C Data Type
extension SELECTOR SELECTOR
object SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
extension

If the object to be deleted is a composite object, this parameter is a token for the
extension type associated with that composite object. Otherwise, this parameter is
ignored.

object
A token for the object to be deleted.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If an object has a deletion depth of 2 or more, the calling task is put to sleep until
the deletion depth is decreased to 1. At that time, the object is deleted and the task
is awakened. If the wrong extension parameter is specified when deleting a
composite, force_delete issues an E_CONTEXT condition code and returns
without deleting the composite.

See also: CAUTION in disable_deletion,
OS extensions, System Concepts,
force_delete example, Nucleus examples

rq_force_delete

534 NUC Calls Chapter 6 Nucleus System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The wrong extension type was used in the
extension parameter.

E_EXIST 0006H One or both of the object or extension
parameters is not a token for an existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H The extension parameter is not a token for an
extension object.

rqe_get_address

System Call Reference Chapter 6 NUC Calls 535

rqe_get_address
Returns the 32-bit physical address of a logical pointer into regular and virtual
segments.

Syntax, PL/M and C

phys_addr = rqegetaddress (log_addr, except_ptr);

phys_addr = rqe_get_address (log_addr, except_ptr);

Parameter PL/M Data Type C Data Type
phys_addr WORD_32 UINT_32
log_addr POINTER void far *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
phys_addr

The 32-bit physical address of the log_addr parameter.

Parameters
log_addr

A pointer containing the segmented address of the physical address. The
segmented address must be in the form selector:offset .

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

In Protected Virtual Address Mode (PVAM), the base portion of an address (a
selector) does not specify the physical location of the address. Rather, it points to a
descriptor table, where the 32-bit physical address is found. This system call
retrieves the 32-bit physical address for the selector portion of a pointer, adds the
offset part of the pointer to that value, and returns the resulting physical address.

For virtual segments, this call retrieves the physical address from the page tables.

See also: rqe_get_address example, Nucleus examples

rqe_get_address

536 NUC Calls Chapter 6 Nucleus System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH The segmented address is invalid. Either the
selector does not refer to a valid segment, or the
offset is outside the segment boundaries.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

E_NOT_ALLOCATED 00F2H The offset part of the logical address does not
point to a part of the virtual segment that
contains physical memory.

rq_get_buffer_limit

System Call Reference Chapter 6 NUC Calls 537

get_buffer_limit
Gets the maximum size of a buffer starting from a pointer within a segment.
Get_buffer_limit works with both regular segments and virtual segments. For
virtual segments, get_buffer_limit returns the size of either virtual contiguous
memory or contiguous physical memory.

Syntax, PL/M and C

count = rqgetbuffer$limit (seg, offset, flags_ptr,
except_ptr);

count = rq_get_buffer_limit (seg, offset, flags_ptr
except_ptr);

Parameter PL/M Data Type C Data Type
count WORD_32 UINT_32
seg SELECTOR SELECTOR
offset WORD_32 UINT_32
flags_ptr POINTER UINT_32 *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
count

The number of contiguous bytes of memory (either physical or virtual, according to
the returned flags).

Parameters

seg A token for the segment containing the buffer. The segment can be a normal
segment or a virtual segment. If seg is null and the application is flat model, the
parameter indicates the application’s virtual segment. For a segmented model
application, a null value causes an exception.

offset The offset in seg where the buffer begins.

flags_ptr
A pointer to a variable declared by the application where information about the
buffer is returned:
Bit Meaning
0 0 = normal segment

1 = virtual segment
1 0 = return value is the amount of contiguous physical memory

1 = return value is the amount of contiguous virtual memory

rq_get_buffer_limit

538 NUC Calls Chapter 6 Nucleus System Calls

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Get_buffer_limit returns the number of contiguous bytes of memory, starting at
seg:offset , that are contained within the segment limit. Status information is
returned at flags_ptr . Bit 0 of the flag indicates the type of segment. Bit 1 of
the flag indicates the type of memory found at the seg:offset pointer. For normal
segments, bit 1 is always set to 0 (physical memory); for virtual segments, bit 1
indicates whether the returned value represents the amount of contiguous physical
memory (0) or contiguous virtual memory (1).

The buffer itself is split into the seg and offset parameters to provide maximum
flexibility, especially for flat model applications that cannot build a far pointer.

You can use get_buffer_limit to determine the size of a buffer or to map the
presence of all physical memory within a virtual segment. Use validate_buffer to
simply validate a buffer.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH The offset parameter is beyond the end of the
virtual segment.

E_EXIST 0006H The seg parameter represents a segment that is
being deleted, or seg is a null token and the
caller is not a flat model application

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The flags_ptr parameter is not valid or is not
writable.

E_TYPE 8002H The seg parameter is not a token for a segment.

rq_get_exception_handler

System Call Reference Chapter 6 NUC Calls 539

get_exception_handler
Returns both the address of the calling task's exception handler and the current
value of the task's exception mode.

See also: rqe_get_exception_handler system call
get_exception_handler example, set_exception_handler example,
Nucleus examples

Syntax, PL/M and C

CALL rqgetexception$handler (except_info_ptr, except_ptr);

rq_get_exception_handler (except_info_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
except_info_ptr POINTER EXCEPTION_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
except_info_ptr

For PL/M, a pointer to this structure:

DECLARE exception STRUCTURE (
exception_handler_ptr POINTER,
exception_mode BYTE);

or for C segmented compilers:

typedef struct {
void far * exception_handler_ptr;
UINT_8 exception_mode;

} EXCEPTION_STRUCT;

For C flat model compilers only, a pointer to this structure:

typedef struct {
void * exception_handler_ptr;
SELECTOR exception_handler_ptr_seg;
UINT_8 exception_mode;

} EXCEPTION_STRUCT;

rq_get_exception_handler

540 NUC Calls Chapter 6 Nucleus System Calls

Where:

exception_handler_ptr
If not null, references the first instruction of the current exception
handler. If null, the exception handler is the system default exception
handler.

exception_handler_ptr_seg
For flat model compilers only, the selector for the pointer.

exception_mode
Indicates:

Value When Control Passes To Exception Handler
0 Never, exceptions must be handled in-line
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH The pointer is invalid. Either the selector does
not refer to a valid segment, or the offset is
outside the segment boundaries.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rqe_get_exception_handler

System Call Reference Chapter 6 NUC Calls 541

rqe_get_exception_handler
Returns the address and exception-handling mode for any of the following:

• Current task’s exception handler
• Current job’s exception handler
• System-wide exception handler
• System-wide hardware exception handler (trap handler)

Syntax, PL/M and C

CALL rqegetexception$handler (handler_id, info_ptr,
except_ptr);

rqe_get_exception_handler (handler_id, info_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
handler_ID BYTE UINT_8
info_ptr POINTER EXCEPTION_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
handler_id

Specify the exception handler whose address and mode is to be returned, using one
of the following values:

Value Meaning
0 Task’s exception handler
1 Job’s default exception handler.
2 System-wide exception handler.
3 System-wide hardware exception handler.

info_ptr
For PL/M, a pointer to this structure declared by the application where the call
returns information:

DECLARE exception STRUCTURE (
exception_handler_ptr POINTER,
exception_mode BYTE);

or for C segmented compilers:

typedef struct {
void far * exception_handler_ptr;
UINT_8 exception_mode;

} EXCEPTION_STRUCT;

rqe_get_exception_handler

542 NUC Calls Chapter 6 Nucleus System Calls

For C flat model compilers only, a pointer to this structure:

typedef struct {
void * exception_handler_ptr;
SELECTOR exception_handler_ptr_seg;
UINT_8 exception_mode;

} EXCEPTION_STRUCT;

Where:

exception_handler_ptr
References the first instruction of the exception handler specified by
the handler_id parameter.

exception_handler_ptr_seg
For flat model compilers only, the selector for the pointer.

exception_mode
Interpret the mode according to the following table.

Value Meaning
0 Handler receives control only on hardware exceptions,

programmer and environmental exceptions must be handled
in-line

1 Handler receives control only on programmer errors and
hardware exceptions

2 Handler receives control only on environmental conditions
and hardware exceptions

3 Handler receives control on all exceptional conditions
12 Hardware exception handler deletes the offending job
13 Hardware exception handler deletes the offending task
14 Hardware exception handler suspends the offending task
15 Hardware exception handler breaks to the SDM debug

monitor

Modes 12 and higher apply only to the default system-wide hardware
exception handler. If you have specified your own handler for the
task, it receives control on a hardware exception for modes 12 - 14,
but can return to the default hardware exception handler on exit. If
the default hardware exception handler is set to mode 15, your
exception handler does not receive control on a hardware exception.

See also Exception Handlers, System Concepts

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rqe_get_exception_handler

System Call Reference Chapter 6 NUC Calls 543

Additional Information

The system-wide exception handler refers to the root job's exception handler.
When you change the system-wide exception handler, it changes only the default
exception handler that is inherited by first-level jobs created by the root job.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

rq_get_host_id

544 NUC Calls Chapter 6 Nucleus System Calls

get_host_id
Returns the host ID of the board on which the calling task is running.

Syntax, PL/M and C

host_id = rqgethost$id (except_ptr);

host_id = rq_get_host_id (except_ptr);

Parameter PL/M Data Type C Data Type
host_id WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
host_id

A number that identifies the board as a message passing host.

Parameters
except_ptr

A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Use this system call to construct sockets to be used as return addresses for
messages.

See also: Host ID, socket, System Concepts

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_get_interconnect

System Call Reference Chapter 6 NUC Calls 545

get_interconnect
Returns the contents of the specified Multibus II interconnect register.

Syntax, PL/M and C

value = rqgetinterconnect (slot_number, reg_number,
except_ptr);

value = rq_get_interconnect (slot_number, reg_number,
except_ptr);

Parameter PL/M Data Type C Data Type
value BYTE UINT_8
slot_number BYTE UINT_8
reg_number WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
value

The contents of the interconnect register. If the cardslot is empty, 0 returns for
PSB cardslots and 0FFH for Local Bus Extension (iLBX II) cardslots.

Parameters
slot_number

Specifies the Multibus II cardslot number of the board on which the specified
interconnect register is located:

Value Meaning
0-19 PSB slot numbers 0 to 19
20-23 Reserved, do not specify these values
24-29 iLBX II cardslot numbers 0 to 5
30 Reserved
31 Retrieve the contents of a local interconnect register (from the board

where the calling task is running)

reg_number
Specifies the interconnect register to read. This value must be in the range 0000H
to 01FFH. Refer to the hardware manual for your Multibus II board for definitions
of its interconnect registers.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_get_interconnect

546 NUC Calls Chapter 6 Nucleus System Calls

Additional Information

The Nucleus performs range-checking of the cardslot and register numbers
specified in the call, but does not verify the existence of a board in any specific
cardslot. Nor does it assign any meaning to the register being accessed.

See also: Interconnect space example, Programming Techniques

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H One or more of the parameters has an illegal
value.

rq_get_level

System Call Reference Chapter 6 NUC Calls 547

get_level
Returns to the calling task the highest (numerically lowest) level that an interrupt
handler has started servicing but has not yet finished. Get_level can only be called
by a handler.

See also: :rmx:demo/c/interrupt directory for demo using rq_signal_interrupt

Syntax, PL/M and C

level = rqgetlevel (except_ptr);

level = rq_get_level (except_ptr);

Parameter PL/M Data Type C Data Type
level WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
level

The interrupt level indicates:

Bits Value Meaning
15-8 0 Reserved, set to 0
7 0 Bits 6-0 are significant (service in progress)

1 Bits 6-0 are not significant (no service is in progress)
6-4 0-7 First digit of the interrupt level
3 0 Bits 2-0 specify the second digit (slave)

1 Bits 6-4 specify the entire level number (master)
2-0 0-7 Second digit of the interrupt level

Parameter
except_ptr

A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rqe_get_object_access

548 NUC Calls Chapter 6 Nucleus System Calls

rqe_get_object_access
Returns the access type of an object whose token is specified.

Syntax, PL/M and C

CALL rqegetobject$access (object, access_ptr, except_ptr);

rqe_get_object_access (object, access_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
object SELECTOR selector
access_ptr POINTER ACCESS_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
object

A token for an object whose access rights you want to see.

access_ptr
A pointer to this structure:

DECLARE access_struct STRUCTURE (
access BYTE ,
limit_mode BYTE);

or

typedef struct {
UINT_8 access;
UINT_8 limit_mode;

} ACCESS_STRUCT;

rqe_get_object_access

System Call Reference Chapter 6 NUC Calls 549

Where:

access Gives the access rights for the object. These values are typical:

Data Segments Binary Value Hex Value
Read-only 10010000B 90H
Read/write 10010010B 92H
Code Segments Binary Value Hex Value
Execute-only 10011000B 98H
Execute/read 10011010B 9AH
Execute only
(conforming)

10011100B 9CH

Execute/read
(conforming)

10011110B 9EH

The bits are defined as:

Bits Meaning
7 Present bit, 1 = valid descriptor, normally set to 1.
6-5 Descriptor privilege level (DPL), normally set to 0.
4 1 = segment descriptor.
3 0 = data segment.

1 = code segment.
2 For data segments, 1 = expand down (ED) bit. Normally set

to 0.
For code segments, 1 = conforming segment.

1 0 = read-only.
1 = write access.

0 Must be set to 0.

limit_mode
Specifies information on segment granularity and type for use by the
processor in limit checking. These values are typical:

Binary Hex Meaning
00000000B 0 1 byte granularity, 16-bit segment
01000000B 40H 1 byte granularity, 32-bit segment
10000000B 80H 4 Kbyte granularity, 16-bit segment
11000000B C0H 4 Kbyte granularity, 32-bit segment

rqe_get_object_access

550 NUC Calls Chapter 6 Nucleus System Calls

The bits are defined as:

Bits Meaning
7 0 = one byte segment granularity.

1 = 4 Kbyte granularity
6 0 = 16-bit segment.

1 = 32-bit segment
5 Set to 0.
4 Available for programmer use.
3-0 Set to 0.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Rqe_get_object_access lets you view an object descriptor's access rights. You can
use rqe_change_object_access to change this information.

See also: Descriptors, composite objects, System Concepts,
create_segment example, Nucleus examples

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH The access_ptr pointer is invalid. Either the
selector does not refer to a valid segment, or the
offset is outside the segment boundaries.

E_EXIST 0006H The object whose access is requested does not
exist or is not a valid iRMX object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_get_pool_attrib

System Call Reference Chapter 6 NUC Calls 551

get_pool_attrib
Obsolete. Returns information about the memory pool of the calling task's job.
This system call can report pool sizes no larger than 1 Mbyte. Provided for
compatibility. Use rqe_get_pool_attrib.

Syntax, PL/M and C

CALL rqgetpool$attrib (attrib_ptr, except_ptr);

rq_get_pool_attrib (attrib_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
attrib_ptr POINTER POOL_ATTRIB_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
attrib_ptr

A pointer to this structure:

DECLARE pool_attrib STRUCTURE (
pool_max WORD_16,
pool_min WORD_16,
initial_size WORD_16,
allocated WORD_16,
available WORD_16);

or

typedef struct {
UINT_16 pool_max;
UINT_16 pool_min;
UINT_16 initial_size;
UINT_16 allocated;
UINT_16 available;

} POOL_ATTRIB_STRUCT;

Where:

pool_max The maximum allowable size of the memory pool in 16-byte
paragraphs.

pool_min The minimum allowable size of the memory pool in 16-byte
paragraphs.

rq_get_pool_attrib

552 NUC Calls Chapter 6 Nucleus System Calls

initial_size
The original value of the pool_min attribute.

allocated The number of 16-byte paragraphs currently allocated from the
memory pool.

available The number of 16-byte paragraphs currently available in the memory
pool. It does not include memory that could be borrowed from the
parent job. The memory indicated may be fragmented and thus not
allocatable as a single segment.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

This system call cannot return accurate size information about memory pools that
are larger than 1 Mbyte. To get accurate information concerning memory pools
over 1 Mbyte, use the rqe_get_pool_attrib system call.

See also: get_pool_attrib example, Nucleus examples

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH The attrib_ptr pointer is invalid. Either the
selector does not refer to a valid segment, or the
offset is outside the segment boundaries.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rqe_get_pool_attrib

System Call Reference Chapter 6 NUC Calls 553

rqe_get_pool_attrib
Returns information about the memory pool of any job you specify.

Syntax, PL/M and C

CALL rqegetpool$attrib (attrib_ptr, except_ptr);

rqe_get_pool_attrib (attrib_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
attrib_ptr POINTER E_POOL_ATTRIB_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
attrib_ptr

A pointer to this structure. The calling task specifies the target_job field; all
other fields are filled in by the call.

DECLARE e_pool_attrib STRUCTURE (
target_job SELECTOR,
parent_job SELECTOR,
pool_max WORD_32,
pool_min WORD_32,
initial_size WORD_32,
allocated WORD_32,
available WORD_32,
borrowed WORD_32);

or

typedef struct {
SELECTOR target_job;
SELECTOR parent_job;
UINT_32 pool_max;
UINT_32 pool_min;
UINT_32 initial_size;
UINT_32 allocated;
UINT_32 available;
UINT_32 borrowed;

} E_POOL_ATTRIB_STRUCT;

rqe_get_pool_attrib

554 NUC Calls Chapter 6 Nucleus System Calls

Where:

target_job
The token for the job whose memory pool you want to examine. A
null selector indicates the calling task's job.

parent_job
A token for the parent job of the specified target job.

pool_max The maximum allowable size of the target job's memory pool in 16-
byte paragraphs.

pool_min The minimum allowable size of the target job's memory pool in 16-
byte paragraphs.

initial_size
The original value of the pool_min attribute when the job was
created.

allocated The number of 16-byte paragraphs currently allocated from the target
job's memory pool.

available The number of 16-byte paragraphs currently available in the target
job's memory pool. It does not include memory that could be
borrowed from the parent job.

✏ Note
The memory indicated might be fragmented and thus not
allocatable as a single segment.

borrowed The amount of memory that the target job has borrowed from the
parent job in 16-byte paragraphs.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

This call is similar to get_pool_attrib, except that it handles pool sizes larger than
1 Mbyte, returns the amount of memory borrowed from the parent job, and can
return information about any job.

See also: rqe_get_pool_attributes example, Nucleus examples

rqe_get_pool_attrib

System Call Reference Chapter 6 NUC Calls 555

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH The attrib_ptr pointer is invalid. Either the
selector does not refer to a valid segment, or the
offset is outside the segment boundaries.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The target_job field, of
E_POOL_ATTRIB_STRUCT is not a valid
token.

E_TYPE 8002H The token for the target job is not a job token.

rq_get_port_attributes

556 NUC Calls Chapter 6 Nucleus System Calls

get_port_attributes
Returns information about how the specified port is set up.

Syntax, PL/M and C

CALL rqgetport$attributes (port_tkn, info_ptr, except_ptr);

rq_get_port_attributes (port_tkn, info_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
port_tkn SELECTOR SELECTOR
info_ptr POINTER PORT_ATTRIB_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
port_tkn

A token for the port about which you need information.

info_ptr
A pointer to this structure:

DECLARE port_attrib STRUCTURE (
port_id WORD_16,
type BYTE,
reserved_a BYTE,
num_trans WORD_16,
reserved (2) WORD_16,
sink_port SELECTOR,
default_remote_socket WORD_32,
buffer_pool SELECTOR,
flags WORD_16,
reserved_b BYTE);

or

rq_get_port_attributes

System Call Reference Chapter 6 NUC Calls 557

typedef struct {
UINT_16 port_id;
UINT_8 type;
UINT_8 reserved_a;
UINT_16 num_trans;
UINT_16 reserved[2];
SELECTOR sink_port;
UINT_32 default_remote_socket;
SELECTOR buffer_pool;
UINT_16 flags;
UINT_8 reserved_b;

} PORT_ATTRIB_STRUCT;

Where:

port_id Uniquely identifies the port.

type Specifies the type of messages that can be sent to and from this port:

Value Meaning
0-1 Reserved
2 Data messages
3 Signal messages
4-0FFH Reserved

reserved_a
Reserved, set to 0.

num_trans Specifies the number of simultaneous transactions that can be
outstanding at this port.

reserved[2]
Reserved, set to 0.

sink_port If not 0, a token for the port that receives forwarded messages from
the port you are examining. This indicates that the attach_port call
has been invoked.

default_remote_socket
If not 0, specifies the default destination/source for all message
exchanges at this port. This indicates that the connect call has been
invoked.

buffer_pool
If not 0, a token for the buffer pool attached to this port. This
indicates that the attach_buffer_pool system call has been invoked.

See also: attach_port, connect, attach_buffer_pool

rq_get_port_attributes

558 NUC Calls Chapter 6 Nucleus System Calls

flags A value indicates:

Bits Meaning
15-3 Reserved
2 0 = RSVP request message fragmentation enabled

1 = fragmentation disabled
1 0 = FIFO message queue

1 = priority message queue
0 Reserved

reserved_b
Reserved, set to 0.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The port_tkn parameter does not refer to an
existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NUC_BAD_BUF 80E2H The info_ptr parameter is invalid or points to a
buffer that is not large enough.

E_TYPE 8002H The port_tkn parameter refers to an object that is
not a port.

rq_get_priority

System Call Reference Chapter 6 NUC Calls 559

get_priority
Returns the priority of the specified task.

Syntax, PL/M and C

priority = rqgetpriority (task, except_ptr);

priority = rq_get_priority (task, except_ptr);

Parameter PL/M Data Type C Data Type
priority BYTE UINT_8
task SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
priority

The priority of the task indicated by the task parameter.

Parameters

task One of these:

Value Meaning
Null selector Calling task is asking for its own priority.
Valid selector Token for the task whose priority is being requested

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The task parameter is not a token for an existing
object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H The task parameter is not a token for a task.

rq_get_size

560 NUC Calls Chapter 6 Nucleus System Calls

get_size
Returns the size, in bytes, of a regular or virtual iRMX segment.

Syntax, PL/M and C

seg_size = rqgetsize (segment, except_ptr);

seg_size = rq_get_size (segment, except_ptr);

Parameter PL/M Data Type C Data Type
seg_size NATIVE_WORD NATIVE_WORD
segment SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
seg_size

Indicates:

Value Meaning
0 For 16-bit tasks only, 64 Kbyte segment size
1-0FFFFH Actual segment size in bytes
10000H For 32-bit tasks only, 64-Kbyte segment size
10001H-0FFFFFFFFH Actual segment size rounded up to the nearest multiple of

4 Kbytes

Parameters
segment

A token for a segment whose size is desired.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information
Segments can be a maximum length of 4 Gbytes for 32-bit tasks and 16 Mbytes
(less 1 byte) for 16-bit tasks.

See also: create_segment example, Nucleus examples

For virtual segments only, the size returned by this call has no relationship to the
actual amount of physical memory allocated to the virtual segment. It is simply the
size of the virtual address space encompassed by the virtual segment. Use the
rq_validate_buffer and rq_get_buffer_limit calls to obtain the size of physical
memory allocated to a virtual segment.

rq_get_size

System Call Reference Chapter 6 NUC Calls 561

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The segment parameter is not a token for an
existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

E_TYPE 8002H The segment parameter is not a token for a
segment.

rq_get_task_accounting

562 NUC Calls Chapter 6 Nucleus System Calls

get_task_accounting
Returns information about when a task was created and the amount of time the task
has run.

See also: rq_system accounting to enable tracking of such information

Syntax, PL/M and C

CALL rq_get_task_accounting (target_task, info_ptr, reset_opt,
except_ptr);

rq_get_task_accounting (target_task, info_ptr, reset_opt,
except_ptr);

Parameter PL/M Data Type C Data Type
target_task SELECTOR SELECTOR
info_ptr POINTER TASK_ACCOUNTING_STRUCT far *
reset_opt BYTE UINT_8
except_ptr POINTER to WORD_16 UINT_16 *

Parameters
target_task

The token for the task for which to return accounting information.

info_ptr
A pointer to the following structure declared by the application, where the call
returns information.

DECLARE task_accounting_struct STRUCTURE (
owner_job SELECTOR,
next_task SELECTOR,
accounting_state WORD_16,
usecs_per_tick WORD_16,
create_time_lo WORD_32,
create_time_hi WORD_32,
elapsed_time_lo WORD_32,
elapsed_time_hi WORD_32,
total_ticks_since_call_lo WORD_32,
running_ticks_since_call_lo WORD_32,
total_running_ticks_lo WORD_32,
total_running_ticks_hi WORD_32);

or

rq_get_task_accounting

System Call Reference Chapter 6 NUC Calls 563

typedef struct {
SELECTOR owner_job;
SELECTOR next_task;
UINT_16 accounting_state;
UINT_16 usecs_per_tick;
UINT_32 create_time_lo;
UINT_32 create_time_hi;
UINT_32 elapsed_time_lo;
UINT_32 elapsed_time_hi;
UINT_32 total_ticks_since_call_lo;
UINT_32 running_ticks_since_call_lo;
UINT_32 total_running_ticks_lo;
UINT_32 total_running_ticks_hi;
} TASK_ACCOUNTING_STRUCT;

Where:

owner_job Token for the job containing the target task.

next_task Next task on the system task list, which allows easy scanning of all
the tasks in the system.

accounting_state
If 0, only the fields up through usecs_per_tick are valid. If non-
zero, all fields in the structure are valid.

usecs_per_tick
The number of microseconds that each Kernel tick represents.

create_time_lo
The low 32 bits of the target task’s creation time.

create_time_hi
The high 32 bits of the target task’s creation time.

elapsed_time_lo
The low 32 bits of the time that has elapsed since the target task was
created.

elapsed_time_hi
The high 32 bits of the time that has elapsed since the target task was
created.

total_ticks_since_call _lo
The low 32 bits of the elapsed time since the last call to
rq_get_task_accounting for this task, as measured in Kernel ticks.

rq_get_task_accounting

564 NUC Calls Chapter 6 Nucleus System Calls

running_ticks_since_call _lo
The low 32 bits of the amount of time the task has run since the last
call to rq_get_task_accounting for this task, as measured in Kernel
ticks.

total_running_ticks_lo
The low 32 bits of the amount of time the task has run since its
creation, as measured in Kernel ticks.

total_running_ticks_hi
The high 32 bits of the amount of time the task has run since its
creation, as measured in Kernel ticks.

reset_opt
Specifies whether to reset this task’s accounting information as part of this call or
to accumulate information since the last call.

Value Meaning
0 Accumulate information since the last call
0FFH Reset the information with this call

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Although the time since the last call to rq_get_task_accounting is kept internally
as a 64 bit value, it is only returned in the call as a 32 bit quantity. Therefore, you
must either call often enough to avoid overrunning the
total_ticks_since_call and running_ticks_since_call fields (which
are only the lower 32 bits) or use the total_running_ticks fields to derive the
appropriate information.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

rq_get_task_info

System Call Reference Chapter 6 NUC Calls 565

get_task_info
Returns information about a task, including such items as priority, exception
handler, containing job, and execution state.

See also: rq_get_task_accounting and rq_get_task_state for other information

Syntax, PL/M and C

CALL rq_get_task_info (target_task, info_ptr, except_ptr);

rq_get_task_info (target_task, info_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
target_task SELECTOR SELECTOR
info_ptr POINTER TASK_INFO_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 *

Parameters
target_task

The token for the task for which to return information.

info_ptr
A pointer to the following structure declared by the application, where the call
returns information.

DECLARE task_info_struct STRUCTURE (
owner_job SELECTOR,
next_task SELECTOR,
exception_handler POINTER,
exception_mode BYTE,
fill0 BYTE,
static_priority BYTE,
dynamic_priority BYTE,
task_flags BYTE,
interrupt_task BYTE,
pending_interrupts BYTE,
max_interrupts BYTE,
int_level WORD_16,
task_state BYTE,
suspend_depth BYTE,
delay_request WORD_16,
last_exchange SELECTOR);

or

rq_get_task_info

566 NUC Calls Chapter 6 Nucleus System Calls

typedef struct {
SELECTOR owner_job;
SELECTOR next_task;
void far * exception_handler;
UINT_8 exception_mode;
UINT_8 fill0;
UINT_8 static_priority;
UINT_8 dynamic_priority;
UINT_8 task_flags;
UINT_8 interrupt_task;
UINT_8 pending_interrupts;
UINT_8 max_interrupts;
UINT_16 int_level;
UINT_8 task_state;
UINT_8 suspend_depth;
UINT_16 delay_request;
SELECTOR last_exchange;
} TASK_INFO_STRUCT;

Where:

owner_job Token for the job containing the target task.

next_task Next task on the system task list, which allows easy scanning of all
the tasks in the system.

exception_handler
Pointer to the task’s current exception handler. For flat model
applications only, treat this parameter as two separate fields in the
structure. The first field has the name listed above and is a near
pointer. The second field has the same name with _seg appended at
the end. It is a segment selector for the pointer.

fill1 Reserved

static_priority
The task’s assigned priority when it was created.

dynamic_priority
The task’s current priority, which can be dynamically raised by
accessing a region.

task_flags
The task flags specified when the task was created.

interrupt_task
If non-zero, the task is an interrupt task and the next three fields are
valid. If 0, the task is not an interrupt task; ignore the next three
fields.

rq_get_task_info

System Call Reference Chapter 6 NUC Calls 567

pending_interrupts
Number of interrupts currently pending at the interrupt level
associated with this interrupt task.

max_interrupts
Maximum number of interrupts that can be pending at the interrupt
level associated with this interrupt task.

int_level
Interrupt level associated with this interrupt task.

task_state
One of the following indicates the task’s current state:

Value Meaning
0H Ready and running
1H Ready and not running
2H Asleep
3H Waiting at an exchange object
4H Waiting at a region
5H Waiting at an object directory
6H Waiting at a port
7H Being deleted
10H Suspended
12H Asleep/Suspended
13H Waiting at an exchange and Suspended
14H Waiting at a region and Suspended
15H Waiting at an object directory and Suspended
16H Waiting at a port and Suspended
17H Being deleted and Suspended
0FFH Task state unknown

suspend_depth
Suspension depth of the task, which is non-zero only if the task has
been overtly suspended (as opposed to being suspended by the OS).

delay_request
Amount of time the task has been waiting at an exchange. This field
is zero if the task has been waiting at any other type of object.

last_exchange
The token for an exchange object (e.g., mailbox or semaphore) at
which the task is waiting. This field is zero if the task is not waiting
at an exchange.

rq_get_task_info

568 NUC Calls Chapter 6 Nucleus System Calls

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

rq_get_task_state

System Call Reference Chapter 6 NUC Calls 569

get_task_state
Returns information about the state of any task in the system, including such items
as the execution state and the CPU registers for that task’s execution context.
Since the full task context is preserved only when the task has been pre-empted, the
CPU register information is available only for tasks in the ready state or the
suspended state where the task has not suspended itself. Thus the primary purpose
for this call is to examine a task that has received an exception with its exception
handler mode set to suspend the faulting task.

See also: rq_get_task_accounting and rq_get_task_state for other information

Syntax, PL/M and C

CALL rq_get_task_state (target_task, info_ptr, except_ptr);

rq_get_task_state (target_task, info_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
target_task SELECTOR SELECTOR
info_ptr POINTER TASK_STATE_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 *

Parameters
target_task

The token for the task for which to return information.

info_ptr
A pointer to the following structure declared by the application, where the call
returns information.

DECLARE task_state_struct STRUCTURE (
owner_job SELECTOR,
next_task SELECTOR,
task_state BYTE,
suspend_depth BYTE,
delay_request WORD_16,
last_exchange SELECTOR,
cpu_frame CPU_FRAME_STRUCT);

or

rq_get_task_state

570 NUC Calls Chapter 6 Nucleus System Calls

typedef struct {
SELECTOR owner_job;
SELECTOR next_task;
UINT_8 task_state;
UINT_8 suspend_depth;
UINT_16 delay_request;
SELECTOR last_exchange;
CPU_FRAME_STRUCT cpu_frame
} TASK_STATE_STRUCT;

Where:

owner_job Token for the job containing the target task.

next_task Next task on the system task list, which allows easy scanning of all
the tasks in the system.

task_state
One of the following indicates the task’s current state:

Value Meaning
0H Ready and running
1H Ready and not running
2H Asleep
3H Waiting at an exchange object
4H Waiting at a region
5H Waiting at an object directory
6H Waiting at a port
7H Being deleted
10H Suspended
12H Asleep/Suspended
13H Waiting at an exchange and suspended
14H Waiting at a region and suspended
15H Waiting at an object directory and suspended
16H Waiting at a port and suspended
17H Being deleted and suspended
0FFH Task state unknown

suspend_depth
Suspension depth of the task, which is non-zero only if the task has
been overtly suspended (as opposed to being suspended by the OS).

delay_request
Amount of time the task has been waiting at an exchange. This field
is zero if the task has been waiting at any other type of object.

rq_get_task_state

System Call Reference Chapter 6 NUC Calls 571

last_exchange
Token for an exchange object (e.g., mailbox or semaphore) at which
the task is waiting. This field is zero if the task is not waiting at an
exchange.

cpu_frame
The CPU register context for the task. This information is available
only for tasks in the ready state or the suspended state when the task
has not suspended itself. The information is returned in the following
structure:

DECLARE cpu_frame_struct STRUCTURE (
running_task SELECTOR,
fill0 UINT_16,
reg_cr2 WORD_32,
reg_gs SELECTOR,
fill1 WORD_16,
reg_fs SELECTOR,
fill2 WORD_16,
reg_es SELECTOR,
fill3 WORD_16,
reg_ds SELECTOR,
fill4 WORD_16,
reg_ldt SELECTOR,
fill5 WORD_16,
reg_eax WORD_32,
reg_ecx WORD_32,
reg_edx WORD_32,
reg_ebx WORD_32,
reg_esp WORD_32,
reg_ebp WORD_32,
reg_esi WORD_32,
reg_edi WORD_32,
error_code WORD_32,
ret_eip WORD_32,
ret_cs SELECTOR,
fill6 WORD_16,
eflags WORD_32,
ret_esp WORD_32,
ret_ss SELECTOR,
fill7 WORD_16);

or

rq_get_task_state

572 NUC Calls Chapter 6 Nucleus System Calls

typedef struct {
SELECTOR running_task;
UINT_16 fill0;
UINT_32 reg_cr2;
SELECTOR reg_gs;
UINT_16 fill1;
SELECTOR reg_fs;
UINT_16 fill2;
SELECTOR reg_es;
UINT_16 fill3;
SELECTOR reg_ds;
UINT_16 fill4;
SELECTOR reg_ldt;
UINT_16 fill5;
UINT_32 reg_eax;
UINT_32 reg_ecx;
UINT_32 reg_edx;
UINT_32 reg_ebx;
UINT_32 reg_esp;
UINT_32 reg_ebp;
UINT_32 reg_esi;
UINT_32 reg_edi;
UINT_32 error_code;
UINT_32 ret_eip;
SELECTOR ret_cs;
UINT_16 fill6;
UINT_32 eflags;
UINT_32 ret_esp;
SELECTOR ret_ss;
UINT_16 fill7;

} CPU_FRAME_STRUCT;

Where:

running_task Token for the task whose CPU registers are
provided.

fill0 Reserved.

reg_gs The GS register.

fill1 Reserved.

reg_fs The FS register.

fill2 Reserved.

reg_es The ES register.

rq_get_task_state

System Call Reference Chapter 6 NUC Calls 573

fill3 Reserved.

reg_ds The DS register.

fill4 Reserved.

reg_ldt The LDTR register.

fill5 Reserved.

reg_eax The EAX register.

reg_ecx The ECX register.

reg_edx The EDX register.

reg_ebx The EBX register.

reg_esp The ESP register.

reg_ebp The EBP register.

reg_esi The ESI register.

reg_edi The EDI register.

reg_cr2 The CR2 register. This field is only valid in the
context of an exception handler.

error_code Error code returned by the processor. This field is
only valid in the context of an exception handler.

ret_eip The EIP register.

ret_cs The CS register.

fill6 Reserved.

eflags The EFLAGS register.

ret_esp The ESP register.

ret_ss The SS register.

fill7 Reserved.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

rq_get_task_tokens

574 NUC Calls Chapter 6 Nucleus System Calls

get_task_tokens
Returns a token for either the calling task, the calling task's job, the parameter
object of the calling task's job, the root job, or the parent job of the calling task's
job, depending on the encoded request.

See also: get_task_tokens example,
create_task example, Nucleus examples

Syntax, PL/M and C

object = rqgettask$tokens (selection, except_ptr);

object = rq_get_task_tokens (selection, except_ptr);

Parameter PL/M Data Type C Data Type
object SELECTOR SELECTOR
selection BYTE UINT_8
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
object

The requested token.

Parameters
selection

Selects the type of token to be returned.

Value Token Returned
0 Calling task
1 Calling task's job
2 Parameter object of the calling task's job
3 Root job
4 Parent job of the calling task's job

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_get_task_tokens

System Call Reference Chapter 6 NUC Calls 575

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_PARAM 8004H The selection parameter is outside the range 0-4.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

rq_get_time

576 NUC Calls Chapter 6 Nucleus System Calls

get_time
Returns the date/time value from the BIOS's local clock.

Syntax, PL/M and C

date_time = rqgettime (except_ptr);

date_time = rq_get_time (except_ptr);

Parameter PL/M Data Type C Data Type
date_time WORD_32 UINT_32
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
date_time

Contains a date/time value expressed as the number of seconds since midnight,
January 1, 1978.

Parameters
except_ptr

A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The UDI and HI follow the convention that January 1, 1978 is equal to 0 seconds.
When the date_time value reaches its maximum of 0FFFFFFFFH, it will stop
incrementing and will not roll over to start again from 0.

See also: UDI call dq_decode_time

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_get_type

System Call Reference Chapter 6 NUC Calls 577

get_type
Returns the type code for an object.

See also: get_type example, Nucleus examples

Syntax, PL/M and C

type_code = rqgettype (object, except_ptr);

type_code = rq_get_type (object, except_ptr);

Parameter PL/M Data Type C Data Type
type_code WORD_16 UINT_16
object SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
type_code

The encoded type of the specified object.

Value Type
001H job
002H task
003H mailbox
004H semaphore
005H region
006H segment
007H extension
009H port
00AH buffer pool
100H user composite
101H connection composite
300H I/O job composite
301H logical device composite
8000H-0FFFFH user-created composites

See also: Composites, I/O jobs, System Concepts

rq_get_type

578 NUC Calls Chapter 6 Nucleus System Calls

Parameters
object

A token for an object whose type is to be returned.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The object parameter is not a token for an
existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

rq_inspect_composite

System Call Reference Chapter 6 NUC Calls 579

inspect_composite
Accepts a token for a composite object and returns a list of tokens for the
components of the composite object.

Syntax, PL/M and C

CALL rq$inspect$composite (extension, composite,
token_list_ptr, except_ptr);

rq_inspect_composite (extension, composite, token_list_ptr,
except_ptr);

Parameter PL/M Data Type C Data Type
extension SELECTOR SELECTOR
composite SELECTOR SELECTOR
token_list_ptr POINTER TOKEN_LIST_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
extension

A token for the extension object used by the composite object being inspected.

composite
A token for the composite object being inspected.

token_list_ptr
A pointer to this structure:

DECLARE token_list STRUCTURE (
num_slots WORD_16,
num_used WORD_16,
tokens(*) SELECTOR);

or

typedef struct {
UINT_16 num_slots;
UINT_16 num_used;
SELECTOR tokens[_NUM_TOKENS];

 /* adjust # of tokens */
} TOKEN_LIST_STRUCT;

rq_inspect_composite

580 NUC Calls Chapter 6 Nucleus System Calls

Where:

num_slots A field where the calling task specifies the number of positions
available for tokens in the token list.

num_used The actual number of component tokens making up the composite
object.

tokens An array of tokens that constitute the composite object.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The calling task must supply the num_slots value in the data structure pointed to
by token_list_ptr . The Nucleus fills in the remaining fields. If num_slots is
set to 0, the Nucleus fills in only the num_used field.

If the num_slots value is smaller than the actual number of component tokens,
only that number (num_slots) of tokens will be returned.

See also: CAUTION in create_composite,
Component objects, composite objects, extension objects, type
manager, System Concepts

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH The pointer to the token_list_ptr structure is
invalid. Either the selector does not refer to a
valid segment, or the offset is outside the
segment boundaries.

E_CONTEXT 0005H The composite parameter is not compatible with
the extension parameter.

E_EXIST 0006H The composite and/or extension parameter(s) is
not a token for an existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H One or both of the extension or composite
parameters is not a token for an object of the
correct type.

rq_lookup_object

System Call Reference Chapter 6 NUC Calls 581

lookup_object
Returns the token for an object after searching for its name in the specified object
directory.

See also: get_type example, Nucleus examples

Syntax, PL/M and C

object = rq$lookup$object (job, name_ptr, time_limit,
except_ptr);

object = rq_lookup_object (job, name_ptr, time_limit,
except_ptr);

Parameter PL/M Data Type C Data Type
object SELECTOR SELECTOR
job SELECTOR SELECTOR
name_ptr POINTER void far *
time_limit WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
object

The requested object token.

Parameters

job One of these:

Value Meaning
Null selector Search the calling task's object directory.
Valid selector Token for the job whose object directory is to be searched.

name_ptr
A pointer to a STRING containing the name under which the object is cataloged.
The lookup operation is case sensitive.

rq_lookup_object

582 NUC Calls Chapter 6 Nucleus System Calls

time_limit
Specifies the task's willingness to wait. If the object is not yet cataloged, the
calling task has the option of waiting for another task to catalog the object.

Value Meaning
0 Do not wait.
1-65534 Wait this number of clock intervals.
65535 Wait forever.

See also: For ICU-configurable systems, CIN parameter, ICU User's Guide and
Quick Reference

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH The pointer to the name string is invalid. Either
the selector does not refer to a valid segment, or
the offset is outside the segment boundaries.
This code is not returned by the DOS RTE.

E_CONTEXT 0005H The specified job has an object directory of
size 0.

E_EXIST 0006H At least one of these is true:
• The job parameter (if not a null selector) is

not a token for an existing object.
• The name was found, but the cataloged

object has a null token.

E_LIMIT 0004H The specified object directory is full and the
object being looked up has not yet been
cataloged. This code (rather than E_TIME) is
returned when a full object directory does not
contain the requested object and the calling task
is not willing to wait.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_lookup_object

System Call Reference Chapter 6 NUC Calls 583

E_PARAM 8004H One of these:
• The first byte of the STRING pointed to by

the name_ptr parameter has a value outside
the range 1-12.

• The call was made as an RTE call from
Windows, with a time_limit parameter
greater than 1. This limitation does not
apply to RTE calls made from DOS.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause
the DOS task state to be indeterminate. This is
a DOS RTE error only.

E_TIME 0001H One of these is true:
• The calling task was willing to wait a

certain amount of time, but the waiting
period elapsed before the object became
available.

• The task was not willing to wait, the entry
indicated by the name_ptr parameter is not
in the specified object directory, and the
object directory is not full.

E_TYPE 8002H The job parameter is not a token for a job.

rq_move_data

584 NUC Calls Chapter 6 Nucleus System Calls

move_data
Copies bytes from one buffer to another.

Syntax, PL/M and C

actual = rq$move$data (src_seg, src_offset, dest_seg,
dest_offset, count, except_ptr);

actual = rq_move_data (src_seg, src_offset, dest_seg,
dest_offset, count, except_ptr);

Parameter PL/M Data Type C Data Type
actual WORD_32 UINT_32
src_seg SELECTOR SELECTOR
src_offset WORD_32 void near *
dest_seg SELECTOR SELECTOR
dest_offset WORD_32 void near *
count WORD_32 UINT_32
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value

actual The number of bytes actually copied.

Parameters
src_seg

A token for the source segment. If this parameter is null and the application is flat
model, the parameter indicates the application’s virtual segment. For segmented
model applications, a null value is an error.

src_offset
The location within the source segment where copying is to begin.

dest_seg
A token for the destination segment. If this parameter is null and the application is
flat model, the parameter indicates the application’s virtual segment. For
segmented model applications, a null value is an error.

dest_offset
The location within the destination segment where copying is to begin.

count The number of bytes to copy.

rq_move_data

System Call Reference Chapter 6 NUC Calls 585

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Move_data moves count bytes at src_seg:src_offset to a buffer starting at
dest_seg:dest_offset and returns the actual number of bytes copied. This
call can be used by a flat model application to move data to and from normal
iRMX segments since flat model applications cannot build a far pointer to iRMX
segments. Move_data fails if either offset is beyond the end of its segment. It also
fails if either iRMX segment token is invalid or dest_seg is not writable. If the
returned value is less than the requested count, the end of one of the segments was
encountered.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH One of src_seg or dest_seg is an invalid
token, or the dest_seg:dest_offset pair is
not writable for some or all of its length, or one
of the offset parameters is beyond the length
or its respective segment.

E_EXIST 0006H One of the src_seg or dest_seg parameters
represents a segment that is being deleted, or one
of them is a null token and the caller is not a flat
model application

E_NOT_ALLOCATED 00F2H The segment given by src_seg or dest_seg is
a virtual segment that does not have physical
memory allocated to somewhere between the
offset and the offset plus the count .

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H Either the src_seg or the dest_seg parameter
is not a token for a segment.

rq_offspring

586 NUC Calls Chapter 6 Nucleus System Calls

offspring
Returns tokens for the child jobs of the specified job.

Syntax, PL/M and C

token_list = rq$offspring (job, except_ptr);

token_list = rq_offspring (job, except_ptr);

Parameter PL/M Data Type C Data Type
token_list SELECTOR SELECTOR
job SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
token_list

A null selector indicates that the specified job has no children. If a valid selector, a
token for a segment structure:

DECLARE child_jobs STRUCTURE (
actual WORD_16,
children(*) SELECTOR);

or

typedef struct {
UINT_16 actual;
SELECTOR children[_NUM_CHILDREN];

 /* adjust to actual */
} CHILD_JOBS_STRUCT;

Where:

actual The actual number of child job tokens.

children The child job token list.

rq_offspring

System Call Reference Chapter 6 NUC Calls 587

Parameters

job A token for the job whose offspring are desired. A null selector specifies the
calling task's job.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

By repeated use of this call, you can obtain tokens for all descendants of a job; this
information is needed by a task which is attempting to delete a job that has
offspring. The return segment is created in the calling task's job and counts against
its object limit.

See also: offspring example, Nucleus examples

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The job parameter is not a token for an existing
object.

E_LIMIT 0004H The calling task's job has already reached its
object limit and a return segment could not be
created.

E_MEM 0002H The memory available to the specified job is not
sufficient to complete this call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SLOT 000CH There isn't enough room in the GDT for another
descriptor.

E_TYPE 8002H The job parameter is not a token for a job.

rqe_offspring

588 NUC Calls Chapter 6 Nucleus System Calls

rqe_offspring
Returns tokens for the child jobs of the specified job. Unlike the offspring system
call, rqe_offspring returns the list of child job tokens in a user-supplied structure
rather than in a segment.

Syntax, PL/M and C

CALL rqe$offspring (job, list_ptr, except_ptr);

rqe_offspring (job, list_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
job SELECTOR SELECTOR
list_ptr POINTER OFFSPRING_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

job A token for the job whose offspring are desired. A null selector specifies the
calling task's job.

list_ptr
A pointer to this structure:

DECLARE offspring STRUCTURE (
max_num WORD_16,
actual WORD_16,
children(*) SELECTOR);

or

typedef struct {
UINT_16 max_num;
UINT_16 actual;
SELECTOR children[_NUM_CHILDREN];

 /* adjust to max_num */
} OFFSPRING_STRUCT;

rqe_offspring

System Call Reference Chapter 6 NUC Calls 589

Where:

max_num Specifies the maximum number of slots in this data structure for child
job tokens. Before invoking the system call, set this field to greater
than 0.

actual The actual number of tokens returned in this structure. This number
will never be larger than max_num. If there are more tokens than slots
available, the system call returns only the amount specified by
max_num.

children The returned array of child job tokens.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

By repeated use of this call, you can obtain tokens for all descendants of a job.
This information is needed by a task that is attempting to delete a job that has
offspring.

See also: rqe_offspring example, Nucleus examples

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH The list_ptr parameter is invalid. Either the
selector is invalid or the offset is too small to
allow room for the max_num and actual
variables.

E_EXIST 0006H The job parameter is not a token for an existing
object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The value of max_num is 0 or the list_ptr offset
is too small to allow room for max_num, actual,
and max_num child job token variables.

E_TYPE 8002H The job parameter is not a token for a job.

rq_receive

590 NUC Calls Chapter 6 Nucleus System Calls

receive
Accepts a message at a port.

Syntax, PL/M and C

data_ptr = rq$receive (port_tkn, time_limit, info_ptr,
except_ptr);

data_ptr = rq_receive (port_tkn, time_limit, info_ptr,
except_ptr);

Parameter PL/M Data Type C Data Type
data_ptr POINTER UINT_8 far *
port_tkn SELECTOR SELECTOR
time_limit WORD_16 UINT_16
info_ptr POINTER RECEIVE_INFO_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
data_ptr

A pointer that indicates the starting address of the data portion (if any) of the
message after it has been received.

Parameters
port_tkn

A token for the port that is to receive the message.

time_limit
Specifies the maximum time the task will wait for the message to arrive.

Value Meaning
0 Do not wait.
1-65534 Wait this number of clock intervals.
65535 Wait forever

rq_receive

System Call Reference Chapter 6 NUC Calls 591

info_ptr
A pointer to this structure:

DECLARE receive_info STRUCTURE (
flags WORD_16,
status WORD_16,
trans_id WORD_16,
data_length WORD_32,
forwarding_port SELECTOR,
remote_socket WORD_32,
control_msg(20) BYTE,
reserved(4) BYTE);

or

typedef struct {
UINT_16 flags;
UINT_16 status;
UINT_16 trans_id;
UINT_32 data_length;
SELECTOR forwarding_port;
UINT_32 remote_socket;
UINT_8 control_msg[20];
UINT_8 reserved[4];

} RECEIVE_INFO_STRUCT;

Where:

flags This field has meaning dependent upon certain bit patterns. All others
not shown are reserved:

Bits Value Meaning
7-4 0000B Transactionless message (send or similar call).

0001B Transmission or system status message.
0010B Transaction request message (send_rsvp or

similar call).
0100B Transaction response message (send_reply or

similar call).
3-0 0000B The data_ptr parameter points to a single buffer

(signal message type).
0001B The data_ptr parameter points to a data message

buffer.

rq_receive

592 NUC Calls Chapter 6 Nucleus System Calls

status The send message status. The status codes are:
Value Meaning
0000H E_OK A new message has been successfully received.
000BH E_TRANSMISSION

A NACK, timeout, bus or host error, or retry
expiration occurred during the transmission of
the message.

00E1H E_CANCELLED
A send_rsvp transaction has been remotely
canceled.

00E3H E_NO_LOCAL_BUFFER
If the flags parameter indicates a transaction
request message, the local port's buffer pool
does not contain a buffer large enough to hold
the message so the receive_fragment system
call is required (message fragmentation).
If the flags parameter indicates a transaction
response message, the RSVP buffer supplied in
the send_rsvp system call is not large enough
to hold the response.

00E4H E_NO_REMOTE_BUFFER
The remote port's buffer pool does not have a
buffer large enough to hold the message and
message fragmentation is disabled.

trans_id The transaction ID for this message.
Value Meaning
0 A new transactionless message has been received.
not 0 Indicates a transaction request or response message has

been received, or a transmission status message has been
received.

data_length
Indicates the length of the data message received.

If the flags parameter indicates a newly received message, the
data_length parameter contains the length of the successfully
received message.

If the flags and status parameters indicate request message
fragmentation, the data_length parameter contains the length of
all the message fragments that will be received using
receive_fragment.

rq_receive

System Call Reference Chapter 6 NUC Calls 593

forwarding_port
A token identifying a port that is the source port for the port that is
actually receiving the message.

remote_socket
A socket (host_ID and port_ID) that indicates the remote message
source.

control_msg
The 20 byte control part of a data message.

See also: Control_ptr, send

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If the message contains a data portion, a pointer to the buffer used to store the data
portion is returned. When the buffer is no longer required, the application should
return it to the buffer pool using the release_buffer system call. If there is not
enough buffer space, the message is rejected by the receiving host.

This system call supports short-circuit transmissions.

See also: Ports, System Concepts

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The port_tkn parameter does not refer to an
existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the current
configuration.

E_NUC_BAD_BUF 80E2H The info_ptr parameter points to a buffer that
either does not exist, or is not large enough.

E_PROTOCOL 80E0H The port specified in the port_tkn parameter was
created as a signal type.

E_TIME 0001H Time_limit expired before a message was
received.

E_TYPE 8002H The port_tkn parameter is not a token for a port.

rq_receive_control

594 NUC Calls Chapter 6 Nucleus System Calls

receive_control
Enables the calling task to gain access to a region.

Syntax, PL/M and C

CALL rq$receive$control (region, except_ptr);

rq_receive_control (region, except_ptr);

Parameter PL/M Data Type C Data Type
region SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
region

A token for the region to which the calling task wants access.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If no task currently has access, entry is immediate. If another task currently has
access, the calling task enters the region's task queue and goes to sleep. The task
remains asleep until it can access the data.

If the region has a priority-based task queue, the priority of the task currently
having access is temporarily boosted, if necessary, to match that of the task at the
head of the queue.

See also: Region_flags , CAUTION in create_region,
Regions, mutual exclusion, deadlock, System Concepts,
create_region example, Nucleus examples

rq_receive_control

System Call Reference Chapter 6 NUC Calls 595

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The region parameter refers to a region already
accessed by the calling task.

E_EXIST 0006H The region parameter is not a token for an
existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration. This code is returned if you make
this call as an RTE call from Windows instead of
from DOS.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

E_TYPE 8002H The region parameter is not a token for a region.

rq_receive_data

596 NUC Calls Chapter 6 Nucleus System Calls

receive_data
Receives messages from mailboxes that have been set up to pass data, not tokens.
It causes the calling task either to receive the data message or to wait for the data in
the task queue of the specified mailbox.

Syntax, PL/M and C

actual = rq$receive$data (mailbox, message_ptr, time_limit,
except_ptr);

actual = rq_receive_data (mailbox, message_ptr, time_limit,
except_ptr);

Parameter PL/M Data Type C Data Type
actual WORD_16 UINT_16
mailbox SELECTOR SELECTOR
message_ptr POINTER void far *
time_limit WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
actual

The number of bytes actually received.

Parameters
mailbox

A token for the mailbox from which the calling task expects to receive a message.

message_ptr
A pointer to a buffer where the message data is placed. The maximum message
length is 128 bytes; the buffer must be at least 128 bytes long.

time_limit
Specifies how long the task will wait to receive the data message.

Value Meaning
0 Do not wait.
1-65534 Wait this number of clock intervals.
65535 Wait forever.

See also: For ICU-configurable systems, CIN parameter, ICU User's Guide and
Quick Reference

rq_receive_data

System Call Reference Chapter 6 NUC Calls 597

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Always use a buffer which is at least 128 bytes long, the maximum message size of
the rq_send_data call.

If the calling task is not willing to wait, or if the task's waiting period elapses
without a data message arriving, the task is awakened with an E_TIME exceptional
condition.

When you create a mailbox with create_mailbox, you specify whether the mailbox
will pass object tokens or data. Receive_data functions only with those mailboxes
that have been set up to pass data.

See also: receive_data example, Nucleus examples

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH The message_ptr pointer is invalid. Either the
selector does not refer to a valid segment, or the
offset is outside the segment boundaries.

E_EXIST 0006H The mailbox parameter is not a token for an
existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The call was made as an RTE call from
Windows, with a time_limit greater than 1.
This limitation does not apply to RTE calls made
from DOS.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

rq_receive_data

598 NUC Calls Chapter 6 Nucleus System Calls

E_TIME 0001H Either the calling task was not willing to wait
and there was no message available, or the task
waited in the task queue and its designated
waiting period elapsed before the message
arrived.

E_TYPE 8002H Either the mailbox parameter is not a token for a
mailbox or the mailbox is not a data mailbox.

rq_receive_fragment

System Call Reference Chapter 6 NUC Calls 599

receive_fragment
Accepts a message fragment of an RSVP data message. Use this call with the
receive system call to receive a message that is sent from a remote host using a
send_rsvp system call.

See also: receive, send_rsvp

Syntax, PL/M and C

CALL rq$receive$fragment (port_tkn, socket, rsvp_trans_id,
fragment_ptr, fragment_length, flags, except_ptr);

rq_receive_fragment (port_tkn, socket, rsvp_trans_id,
fragment_ptr, fragment_length, flags, except_ptr);

Parameter PL/M Data Type C Data Type
port_tkn SELECTOR SELECTOR
socket WORD_32 UINT_32
rsvp_trans_id WORD_16 UINT_16
fragment_ptr POINTER UINT_8 far *
fragment_length WORD_32 UINT_32
flags WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
port_tkn

A token for the port receiving the fragment.

socket
A host_ID and port_ID value specifying the port from which the original RSVP
message was sent. If the port issuing receive_fragment is connected, this
parameter is ignored.

rsvp_trans_id
Identifies this particular message transaction. A transaction ID is generated each
time send_rsvp is invoked.

fragment_ptr
A pointer to a buffer into which the message fragment is placed. If this pointer is
null, reception of message fragments is terminated.

rq_receive_fragment

600 NUC Calls Chapter 6 Nucleus System Calls

fragment_length
Specifies the length of the fragment. If 0, fragmented transmission of a request
message is terminated. This value is obtained from the receive system call.

See also: receive_info structure, receive

flags
Specifies the type of message fragment and buffer that fragment_ptr points to.

Value Meaning
0 Signal message, single buffer
1 Data message, data chain buffer

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CANCELLED 00E1H The remote site canceled the transaction.

E_DISCONNECTED 00E9H The socket parameter is equal to 0 and the port is
not connected.

E_EXIST 0006H The port_tkn parameter does not refer to an
existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the current
configuration.

E_NUC_BAD_BUF 80E2H The fragment_ptr parameter points to a buffer
that either does not exist, or is not large enough.

E_PROTOCOL 80E0H The port specified in the port_tkn parameter was
created as a signal type.

E_TIME 0001H The configured timeout value expired before the
fragment was received

See also: For ICU-configurable systems, RFT
parameter, ICU User's Guide and
Quick Reference

E_TRANS_ID 00E8H The rsvp_trans_id parameter does not specify a
currently valid transaction.

E_TYPE 8002H The port_tkn parameter is not a token for a port.

rq_receive_message

System Call Reference Chapter 6 NUC Calls 601

receive_message
Receives an object token from the specified mailbox. This mailbox must be set up
to pass objects (signal message type).

Syntax, PL/M and C

object = rq$receive$message (mailbox, time_limit, response_ptr,
except_ptr);

object = rq_receive_message (mailbox, time_limit, response_ptr,
except_ptr);

Parameter PL/M Data Type C Data Type
object SELECTOR SELECTOR
mailbox SELECTOR SELECTOR
time_limit WORD_16 UINT_16
response_ptr POINTER SELECTOR far *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
object

An object token.

Parameters
mailbox

A token for the mailbox at which the calling task expects to receive an object
token.

time_limit
Specifies the maximum time the task will wait to receive the token.

Value Meaning
0 Do not wait.
1-65534 Wait this number of clock intervals.
65535 Wait forever.

See also: For ICU-configurable systems, CIN parameter, ICU User's Guide and
Quick Reference

response_ptr
If a valid pointer, points to a token for the mailbox to which the receiving task is to
send a response. If null, indicates that no response is expected by the sending task.

rq_receive_message

602 NUC Calls Chapter 6 Nucleus System Calls

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If the object queue at the mailbox is not empty, the calling task immediately gets
the token at the head of the queue and remains ready. Otherwise, the calling task
goes into the task queue of the mailbox and goes to sleep, unless the task is not
willing to wait. In the latter case, or if the task's waiting period elapses without a
token arriving, the task is awakened with an E_TIME condition code.

It is possible that the token returned by receive_message is a token for an object
that has already been deleted. To verify that the token is valid, the receiving task
can invoke the get_type system call. However, tasks can avoid this situation by
adhering to proper programming practices. One such practice is for the sending
task to request a response from the receiving task and not delete the object until it
gets a response. When the receiving task finishes with the object, it sends a
response, the nature of which must be determined by the writers of the two tasks, to
the response mailbox. When the sending task gets this response, it can then delete
the original object, if it so desires.

See also: receive_message example, Nucleus examples

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The mailbox parameter is not a token for an
existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The call was made as an RTE call from
Windows, with a time_limit greater than 1.
This limitation does not apply to RTE calls made
from DOS.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

rq_receive_message

System Call Reference Chapter 6 NUC Calls 603

E_TIME 0001H One of these is true:
• The calling task was not willing to wait and

there was not a token available.
• The task waited in the task queue and its

designated waiting period elapsed before the
task got the desired token.

E_TYPE 8002H One of these is true:
• The mailbox parameter is not a token for a

mailbox.
• The mailbox was set up to pass data

messages, not objects.

rq_receive_reply

604 NUC Calls Chapter 6 Nucleus System Calls

receive_reply
Waits for a reply to an RSVP message sent previously by the calling task.

Syntax, PL/M and C

data_ptr = rq$receive$reply (port_tkn, rsvp_trans_id,
time_limit, info_ptr, except_ptr);

data_ptr = rq_receive_reply (port_tkn, rsvp_trans_id,
time_limit, info_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
data_ptr POINTER UINT_8 far *
port_tkn SELECTOR SELECTOR
rsvp_trans_id WORD_16 UINT_16
time_limit WORD_16 UINT_16
info_ptr POINTER REPLY_INFO_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
data_ptr

A pointer to the data portion (if any) of the message after it has been received. The
data portion is always a contiguous block.

Parameters
port_tkn

A token for the port object that is to receive the reply. This port must not be a sink
port.

rsvp_trans_id
The transaction ID returned from the associated send_rsvp system call.

time_limit
Specifies how long the task is willing to wait for the reply.

Value Meaning
0 Do not wait.
1-65534 Wait this number of clock intervals.
65535 Wait forever.

rq_receive_reply

System Call Reference Chapter 6 NUC Calls 605

info_ptr
A pointer to this structure:

DECLARE reply_info STRUCTURE (
flags WORD_16,
status WORD_16,
trans_id WORD_16,
data_length WORD_32,
forwarding_port SELECTOR,
remote_socket SOCKET,
control_msg(20) BYTE,
reserved(4) BYTE);

or

typedef struct {
UINT_16 flags;
UINT_16 status;
UINT_16 trans_id;
UINT_32 data_length;
SELECTOR forwarding_port;
UINT_32 remote_socket;
UINT_8 control_msg[20];
UINT_8 reserved[4];

} REPLY_INFO_STRUCT;

Where:

flags This field has meaning dependent upon certain bit patterns. All others
not listed below are reserved:

Bits Value Meaning
7-4 0001B Transmission or system status message.

0100B Transaction response message.

3-0 0000B The data_ptr parameter points to a single buffer
(signal message type).

0001B The data_ptr parameter points to a data block
(data message type).

rq_receive_reply

606 NUC Calls Chapter 6 Nucleus System Calls

status The send message status. The status codes are:

Value Meaning
0000H E_OK A new message has been successfully received.
000BH E_TRANSMISSION

A NACK, timeout, bus or host error, or retry
expiration occurred during the transmission of
the message.

00E1H E_CANCELLED
A send_rsvp transaction has been remotely
canceled.

00E3H E_NO_LOCAL_BUFFER
If the flags parameter indicates a transaction
response message, the RSVP buffer supplied in
the send_rsvp system call is not large enough
to hold the response.

00E4H E_NO_REMOTE_BUFFER
The remote port's buffer pool was not large
enough to hold the message and message
fragmentation is disabled.

trans_id The transaction ID for this message. If a valid value, the trans_id
parameter indicates a response message has been received.
Otherwise, a transmission status message has been received.

data_length
If the flags parameter indicates a newly received message,
data_length contains the length of that message.

forwarding_port
This field does not apply to the receive_reply system call.

remote_socket
A socket for the remote message source.

control_msg
The 20-byte control part of a data message.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_receive_reply

System Call Reference Chapter 6 NUC Calls 607

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The port_tkn parameter does not refer to an
existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the current
configuration.

E_NUC_BAD_BUF 80E2H The info_ptr parameter points to a buffer that is
non-existent or too small.

E_PROTOCOL 80E0H The port specified in the port_tkn parameter was
created as a signal type.

E_TIME 0001H The time the task is willing to wait, specified in
the time_limit parameter, expired before a
message was received.

E_TRANS_ID 00E8H Either an invalid transaction ID has been
supplied, or the transaction was canceled before
the response was received.

E_TYPE 8002H The port_tkn parameter is not a token for a port.

rq_receive_signal

608 NUC Calls Chapter 6 Nucleus System Calls

receive_signal
Receives a signal from the specified port.

Syntax, PL/M and C

CALL rq$receive$signal (port_tkn, wait_time, except_ptr);

rq_receive_signal (port_tkn, wait_time, except_ptr);

Parameter PL/M Data Type C Data Type
port_tkn SELECTOR SELECTOR
wait_time WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
port_tkn

A token for the port where the signal is expected to arrive.

wait_time
Specifies how long the task is willing to wait for the signal.

Value Meaning
0 Do not wait.
1-65534 Wait this number of clock intervals.
65535 Wait forever.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If a signal is already queued at the port, the calling task receives the signal.
Otherwise, the task goes to the end of the receive task queue to wait a specified
amount of time. If the task is not willing to wait, or if the task's waiting period
elapses without a signal arriving, an E_TIME condition code returns.

When a signal arrives and there are tasks waiting in the receive task queue, the task
at the head of the queue receives the signal. If the receive queue is empty, the
signal is queued at the port. The next task to invoke receive_signal receives one of
the queued signals.

rq_receive_signal

System Call Reference Chapter 6 NUC Calls 609

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The port_tkn parameter does not refer to an
existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PROTOCOL 80E0H The port specified in the port_tkn parameter was
created as a data transport type. It needs to be a
signal type.

E_TIME 0001H One of these is true:
• The calling task was not willing to wait and

no signal was queued at the port.
• The task's designated waiting period elapsed

before the desired signal arrived.

E_TYPE 8002H The port_tkn parameter refers to an object that is
not a port.

rq_receive_units

610 NUC Calls Chapter 6 Nucleus System Calls

receive_units
Requests a specified number of units from a semaphore.

Syntax, PL/M and C

value = rq$receive$units (semaphore, units, time_limit,
except_ptr);

value = rq_receive_units (semaphore, units, time_limit,
except_ptr);

Parameter PL/M Data Type C Data Type
value WORD_16 UINT_16
semaphore SELECTOR SELECTOR
units WORD_16 UINT_16
time_limit WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
value

The number of units remaining in the semaphore after the calling task's request is
satisfied.

Parameters
semaphore

A token for the semaphore from which the calling task wants to receive units.

units
The number of units that the calling task is requesting.

time_limit
Specifies how long the task is willing to wait in the semaphore's task queue.

Value Meaning
0 Do not wait.
1-65534 Wait this number of clock intervals.
65535 Wait forever.

See also: For ICU-configurable systems, CIN parameter, ICU User's Guide and
Quick Reference

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_receive_units

System Call Reference Chapter 6 NUC Calls 611

Additional Information

If the units are available and the task is at the front of the queue, the task receives
the units and remains ready. Otherwise, the task is placed in the semaphore's task
queue and goes to sleep. If the task is not willing to wait, or if the task's waiting
period elapses before the requested units are available, the task is awakened with
an E_TIME condition code.

See also: receive_units example, Nucleus examples

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The semaphore parameter is not a token for an
existing object.

E_LIMIT 0004H The units parameter is greater than the maximum
value specified for the semaphore when it was
created.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The call was made as an RTE call from
Windows, with a time_limit greater than 1.
This limitation does not apply to RTE calls made
from DOS.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

E_TIME 0001H One of these is true:
• The calling task was not willing to wait and

the requested units were not available.
• The time_limit expired while waiting in the

task queue before the requested units were
available.

E_TYPE 8002H The semaphore parameter is not a token for a
semaphore.

rq_release_buffer

612 NUC Calls Chapter 6 Nucleus System Calls

release_buffer
Returns previously allocated buffer space to the specified buffer pool.

Syntax, PL/M and C

CALL rq$release$buffer (buffer_pool, buffer_tkn, flags,
except_ptr);

rq_release_buffer (buffer_pool, buffer_tkn, flags, except_ptr);

Parameter PL/M Data Type C Data Type
buffer_pool SELECTOR SELECTOR
buffer_tkn SELECTOR SELECTOR
flags WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
buffer_pool

A token for the buffer pool that is to receive the released buffer.

buffer_tkn
A token for the buffer to be released.

flags Indicates:

Bits Value Meaning
15-2 0 Reserved, set to 0.
1 0 Return the buffer to the Free Space Manager.

1 Do not return the buffer. This is for the case where the number
of buffers has reached the maximum (from
create_buffer_pool).

0 0 The buffer_tkn parameter refers to a contiguous buffer.
1 The buffer_tkn parameter refers to a data chain (iRMX III OS

only).

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_release_buffer

System Call Reference Chapter 6 NUC Calls 613

Additional Information

If the flags bit 1 is set and you try to release a buffer to a full pool, the call will
delete the segment and return E_OK. If the flags bit 1 is 0 and you try to release
a buffer to a full pool, the call will not delete the segment and will return
E_LIMIT.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H Either or both of the buffer_tkn and buffer_pool
parameters do not refer to an existing object.

E_LIMIT 0004H The calling task's job has already reached its
object limit.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H Either buffer_pool does not refer to a buffer
pool, or buffer_tkn does not refer to a segment.

rq_request_buffer

614 NUC Calls Chapter 6 Nucleus System Calls

request_buffer
Gets a buffer from a buffer pool created by create_buffer_pool. This call does not
create a segment if none are available in the pool.

Syntax, PL/M and C

buffer_token = rq$request$buffer (buffer_pool, size,
except_ptr);

buffer_token = rq_request_buffer (buffer_pool, size,
except_ptr);

Parameter PL/M Data Type C Data Type
buffer_token SELECTOR SELECTOR
buffer_pool SELECTOR SELECTOR
size WORD_32 UINT_32
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
buffer_token

A token identifying the buffer that fills the request. This buffer is either a single
segment or a data chain block, as specified when the buffer pool was created.

See also: create_buffer_pool

Parameters
buffer_pool

A token for an existing buffer pool.

size Specifies the desired size of the requested buffer in bytes. This value must be in
the range of 1 through 0FFFFFFFEH.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_request_buffer

System Call Reference Chapter 6 NUC Calls 615

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_DATA_CHAIN 000DH A data chain has been returned. The token
points to the beginning of the data chain block.

E_EXIST 0006H The buffer_pool parameter does not refer to an
existing object.

E_LIMIT 0004H The size parameter requests a buffer size large
enough to require a data chain whose number of
elements exceeds the configured value for the
maximum data chain elements.

E_MEM 0002H The system could not locate enough memory to
return the requested buffer from the buffer pool,
either as a segment or a data chain. This error is
returned if no segments are currently available in
the buffer pool.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The size parameter is equal to 0, or is larger than
0FFFFFFFEH.

E_SLOT 000CH The GDT is full.

E_TYPE 8002H The buffer_pool parameter refers to an object
that is not a buffer pool.

rq_reset_interrupt

616 NUC Calls Chapter 6 Nucleus System Calls

reset_interrupt
Cancels the assignment of the current interrupt handler to the specified interrupt
level, and disables the level.

Syntax, PL/M and C

CALL rq$reset$interrupt (level, except_ptr);

rq_reset_interrupt (level, except_ptr);

Parameter PL/M Data Type C Data Type
level WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

level Specifies the interrupt level:

Bits Value Meaning
15-7 0 Reserved, set to 0
6-4 0-7 First digit of the interrupt level
3 0 Bits 2-0 specify the second digit (slave)

1 Bits 6-4 specify the entire level number (master)
2-0 0-7 Second digit of the interrupt level

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If an interrupt task has also been assigned to the level, the interrupt task is deleted.

The level reserved for the system clock should not be reset and is considered
invalid for this call.

See also: For ICU-configurable systems, CIN parameter, ICU User's Guide and
Quick Reference,
:rmx:demo/c/interrupt directory for demo using rq_reset_interrupt

rq_reset_interrupt

System Call Reference Chapter 6 NUC Calls 617

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H There is no interrupt handler assigned to the
specified level.

E_LIMIT 0004H The task priority associated with the specified
interrupt level exceeds the job's maximum
priority.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The level parameter is invalid.

rq_resume_task

618 NUC Calls Chapter 6 Nucleus System Calls

resume_task
Decreases by one the suspension depth of the specified non-interrupt task.

Syntax, PL/M and C

CALL rq$resume$task (task, except_ptr);

rq_resume_task (task, except_ptr);

Parameter PL/M Data Type C Data Type
task SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

task A token for the task whose suspension depth is to be decreased.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If the specified task is suspended or asleep-suspended, its suspension depth should
be at least 1. If the suspension depth is still positive after the resume_task call, the
task state remains unchanged. If the suspension depth goes to 0, the task is placed
in the ready state (if suspended) or the asleep state (if asleep-suspended).

See also: create_task example, Nucleus examples

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The task indicated by the task parameter is an
interrupt task.

E_EXIST 0006H The task parameter is not a token for an existing
object.

E_STATE 0007H The task indicated by the task parameter was not
suspended when the call was made.

E_TYPE 8002H The task parameter is not a token for a task.

rq_send

System Call Reference Chapter 6 NUC Calls 619

send
Sends a data message from a port to a port on another host.

Syntax, PL/M and C

trans_id = rq$send (port_tkn, socket, control_ptr, data_ptr,
data_length, flags, except_ptr);

trans_id = rq_send (port_tkn, socket, control_ptr, data_ptr,
data_length, flags, except_ptr);

Parameter PL/M Data Type C Data Type
trans_id WORD_16 UINT_16
port_tkn SELECTOR SELECTOR
socket WORD_32 UINT_32
control_ptr POINTER UINT_8 far *
data_ptr POINTER UINT_8 far *
data_length WORD_32 UINT_32
flags WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
trans_id

Identifies this particular message transmission. If no data is being sent (data_ptr
is null), the value returned is 0.

Parameters
port_tkn

A token for the port to which a message is to be sent.

socket
Specifies a unique host_ID:port_ID combination that identifies the message
destination. If the sending port has been connected using a connect system call it
has a default socket and this parameter is ignored.

control_ptr
A pointer to the control portion of a message. If the data_ptr parameter is null or
the data_length parameter is 0, the control message is 20 bytes long. Otherwise,
the control message is 16 bytes.

rq_send

620 NUC Calls Chapter 6 Nucleus System Calls

data_ptr
A pointer to a data message.

Value Meaning
Null pointer There is no optional data portion for this message; send a control

message.
Valid pointer Points to either a contiguous buffer or a data chain, depending

on the flags parameter.

data_length
Specifies the length of the data message.

flags A bit pattern encoded as:

Bits Value Meaning
15-8 0 Reserved, set to 0.
7-4 0000B Transmission is synchronous.

0001B Transaction is asynchronous.
3-0 0000B The data_ptr parameter points to a contiguous buffer.

0001B The data_ptr parameter points to a data chain (iRMX III OS
only).

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If the remote port to which the message is sent does not have adequate buffer space
to receive the message an E_NO_REMOTE_BUFFER condition code will be
returned. This call does not support fragmentation.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_DISCONNECTED 00E9H The socket parameter is 0 and the port is not
connected.

E_EXIST 0006H The port_tkn parameter does not point to an
existing object.

E_HOST_ID 00E2H The host_id portion of the socket parameter does
not refer to a board that is currently in the
message space. This error is not produced for
host_id values in the range of 21 to 255.

E_NO_REMOTE_BUFFER 00E4H The receiving host could not allocate a buffer to
hold the message.

rq_send

System Call Reference Chapter 6 NUC Calls 621

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NUC_BAD_BUF 80E2H Either the control_ptr or data_ptr parameter is
invalid or points to a buffer that is not large
enough.

E_PROTOCOL 80E0H The port specified in the port_tkn parameter was
created as a signal type. It needs to be a data
type.

E_RESOURCE_LIMIT 00E6H The configured number of simultaneous
messages has been reached.

See also: For ICU-configurable systems, MSM
parameter, ICU User's Guide and
Quick Reference

E_TRANS_LIMIT 00EAH A transmission resource limitation has been
encountered. An insufficient number of
transaction buffers was specified during system
configuration.

See also: For ICU-configurable systems, MST
parameter, ICU User's Guide and
Quick Reference

E_TRANSMISSION 000BH A NACK, timeout, bus or host error, or retry
expiration occurred during the transmission of
the message.

E_TYPE 8002H The port_tkn parameter refers to an object that is
not a port.

rq_send_control

622 NUC Calls Chapter 6 Nucleus System Calls

send_control
Releases the calling task's control of a region. Tasks cannot be deleted while they
have control of the region.

Syntax, PL/M and C

CALL rq$send$control (except_ptr);

rq_send_control (except_ptr);

Parameter PL/M Data Type C Data Type
except_ptr POINTER to WORD_16 UINT_16 far *

Parameter
except_ptr

A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If the task is in control of more than one region, send_control releases control of
the most recently accessed region. Once control is released, the OS enables the
next task in line to gain access.

If the calling task has had its priority boosted through access to a region, its priority
is restored only when it gives up control of the last region. It is not sufficient to
give up control of the region that raised the priority, if the task controls other
regions.

See also: create_region, accept_control, receive_control,
Regions, System Concepts, create_region example, Nucleus examples

rq_send_control

System Call Reference Chapter 6 NUC Calls 623

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The calling task does not have control of a
region.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration. This code is returned if you make
this call as an RTE call from Windows instead of
from DOS.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

rq_send_data

624 NUC Calls Chapter 6 Nucleus System Calls

send_data
Sends messages up to 128 bytes in length to mailboxes that have been set up to
pass data.

Syntax, PL/M and C

CALL rq$send$data (mailbox, message_ptr, actual_length,
except_ptr);

rq_send_data (mailbox, message_ptr, actual_length, except_ptr);

Parameter PL/M Data Type C Data Type
mailbox SELECTOR SELECTOR
message_ptr POINTER void far *
actual_length WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
mailbox

A token for the data mailbox to which the message is to be sent.

See also: create_mailbox

message_ptr
A pointer to a buffer containing the message.

actual_length
Specifies the length of the message between 0 and 0FFFFH. Messages are limited
to 128 bytes, so any value over 128 causes only 128 bytes to be sent.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The buffer which receives the message must be at least 128 bytes long.

If there are tasks in the task queue at the mailbox, the task at the head of the queue
is awakened and is given the data. Otherwise, the message data is placed at the tail
of the mailbox's message queue.

See also: receive_data example, Nucleus examples

rq_send_data

System Call Reference Chapter 6 NUC Calls 625

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH The pointer to the message is invalid. Either the
selector does not refer to a valid segment, or the
offset is outside the segment boundaries. This
code is not returned when using the DOS RTE.

E_EXIST 0006H The mailbox token is not a token for an existing
object.

E_MEM 0002H The data message queue is full and the system
does not have enough memory to create another.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

E_TYPE 8002H Either one of these is true:
• The mailbox parameter is not a token for a

mailbox.
• The specified mailbox was set up to pass

tokens, not data.

rq_send_message

626 NUC Calls Chapter 6 Nucleus System Calls

send_message
Sends a message to a mailbox that has been set up to pass objects.

Syntax, PL/M and C

CALL rq$send$message (mailbox, object, response, except_ptr);

rq_send_message (mailbox, object, response, except_ptr);

Parameter PL/M Data Type C Data Type
mailbox SELECTOR SELECTOR
object SELECTOR SELECTOR
response SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
mailbox

A token for the mailbox to which an object token is to be sent.

See also: create_mailbox
object

A token identifying the object which is to be sent.
response

The token for the mailbox or semaphore at which the sending task waits for a
response. A null selector indicates that no response is requested.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If there are tasks in the task queue at that mailbox, the task at the head of the queue
is awakened and is given the token. Otherwise, the token is placed at the tail of the
object queue of the mailbox.

The sending task has the option of specifying a mailbox or semaphore at which to
wait for a response from the receiving task. The receiving task must be aware of
whether the response token is for a semaphore or mailbox.

See also: receive_message example, Nucleus examples

rq_send_message

System Call Reference Chapter 6 NUC Calls 627

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H One or more of the parameters is not a token for
an existing object.

E_MEM 0002H The high performance queue is full and the
calling task's job does not contain sufficient
memory to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

E_TYPE 8002H At least one of these is true:
• The mailbox parameter is not a token for a

mailbox.
• The response parameter is a token for an

object that is neither a mailbox nor a
semaphore.

• The specified mailbox was set up to pass
data, not tokens.

rq_send_reply

628 NUC Calls Chapter 6 Nucleus System Calls

send_reply
Sends responses to the send_rsvp system call. The reply message may be sent as
a single message or as a series of message fragments.

Syntax, PL/M and C

trans_id = rq$send$reply (port_tkn, socket, rsvp_trans_id,
control_ptr, data_ptr, data_length, flags, except_ptr);

trans_id = rq_send_reply (port_tkn, socket, rsvp_trans_id,
control_ptr, data_ptr, data_length, flags, except_ptr);

Parameter PL/M Data Type C Data Type
trans_id WORD_16 UINT_16
port_tkn SELECTOR SELECTOR
socket WORD_32 UINT_32
rsvp_trans_id WORD_16 UINT_16
control_ptr POINTER UINT_8 far *
data_ptr POINTER UINT_8 far *
data_length WORD_32 UINT_32
flags WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
trans_id

Identifies this particular message transmission. If no data is being sent (the
data_ptr parameter is null), the value returned is 0.

Parameters
port_tkn

The token identifying the port from which the request is sent.

socket
Identifies the remote destination. If the sending port has a default socket, this
parameter is ignored.

rsvp_trans_id

This is the trans_id parameter from the send_rsvp call that is being answered.
This is used at the destination to identify the transaction.

rq_send_reply

System Call Reference Chapter 6 NUC Calls 629

control_ptr
A pointer to the control portion of the message. If the data_ptr parameter is null
or the data_length parameter is zero, the control message is 20 bytes long.
Otherwise, the control message is 16 bytes.

data_ptr
A pointer to a data message.

Value Meaning
Null pointer There is no optional data portion for this message; send a control

message.
Valid pointer Points to either a contiguous buffer or a data chain, depending

on the flags parameter.

data_length
Specifies the length of the data message.

flags A bit pattern indicates:

Bits Value Meaning
15-10 0 Reserved, set to 0.
9 0 This message is the last fragment of a response (EOT flag).

1 Send more fragments.
8 0 Reserved, set to 0.
7-4 0000B Transmission is synchronous.

0001B Transaction is asynchronous.
3-0 0000B The data_ptr parameter points to a contiguous buffer.

0001B The data_ptr parameter points to a data chain (iRMX III OS
only).

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_DISCONNECTED 00E9H The board that initiated the send_rsvp has been
reset.

E_EXIST 0006H The port_tkn parameter does not point to an
existing object.

E_HOST_ID 00E2H The host_id portion of the socket parameter does
not refer to a host that is currently in message
space. This error is not produced for host_id
values in the range of 21 to 255.

rq_send_reply

630 NUC Calls Chapter 6 Nucleus System Calls

E_NO_REMOTE_BUFFER 00E4H The receiving host could not allocate a message
buffer.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NUC_BAD_BUF 80E2H Either the control_ptr or data_ptr parameter is
invalid or points to a buffer that is not large
enough.

E_PROTOCOL 80E0H The port specified in port_tkn is not a data
transport type.

E_RESOURCE_LIMIT 00E6H The configured number of simultaneous
messages or simultaneous transactions has been
reached.

See also: For ICU-configurable systems,
MSM/MST parameters, ICU User's
Guide and Quick Reference

E_TRANSMISSION 000BH A NACK, timeout, bus or host error, or retry
expiration occurred during the transmission of
the message.

E_TRANS_LIMIT 00EAH A transmission resource limitation has been
encountered.

See also: For ICU-configurable systems, MST
parameter, ICU User's Guide and
Quick Reference

E_TYPE 8002H The port_tkn parameter refers to an object that is
not a port.

rq_send_rsvp

System Call Reference Chapter 6 NUC Calls 631

send_rsvp
Initiates a request message transaction that has an implied response (RSVP
message transmission).

Syntax, PL/M and C

trans_id = rq$send$rsvp (port_tkn, socket, control_ptr,
data_ptr, data_length, rsvp_data_ptr, rsvp_data_length,
flags, except_ptr);

trans_id = rq_send_rsvp (port_tkn, socket, control_ptr,
data_ptr, data_length, rsvp_data_ptr, rsvp_data_length,
flags, except_ptr);

Parameter PL/M Data Type C Data Type
trans_id WORD_16 UINT_16
port_tkn SELECTOR SELECTOR
socket WORD_32 UINT_32
control_ptr POINTER UINT_8 far *
data_ptr POINTER UINT_8 far *
data_length WORD_32 UINT_32
rsvp_data_ptr POINTER UINT_8 far *
rsvp_data_length WORD_32 UINT_32
flags WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
trans_id

Identifies this particular message transmission. If no data is being sent
(data_ptr is null), 0 returns.

Parameters
port_tkn

The token identifying the port that sends the RSVP message.

socket
Identifies the host_id and port_id . If the sending port is connected, it has a
default socket and this parameter is ignored.

rq_send_rsvp

632 NUC Calls Chapter 6 Nucleus System Calls

control_ptr
A pointer to a control message. If the data_ptr parameter is null or the
data_length parameter is 0, this message is 20 bytes long. Otherwise, it is 16
bytes.

data_ptr
A pointer to a data message.

Value Meaning
Null pointer There is no optional data portion for this message; send a control

message
Valid pointer Points to either a contiguous buffer or a data chain, depending

on the flags parameter

data_length
Specifies the length of the data message.

rsvp_data_ptr
A pointer to a buffer into which the RSVP message is to be placed. This buffer
must be a contiguous block.

rsvp_data_length
Defines the length of the RSVP message buffer.

flags A bit pattern encoded as:

Bits Value Meaning
15-9 0 Reserved, set to 0.
8 0 Use receive_reply system call for RSVP.

1 Use receive system call for RSVP.

7-4 0000B Transmission is synchronous.
0001B Transaction is asynchronous.

3-0 0000B The data_ptr parameter points to a contiguous buffer.
0001B The data_ptr parameter points to a data chain (iRMX III OS

only).

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Typically you use RSVP message transactions to transfer data from one host to
another.

When the message cannot be delivered no action is required by the receiver and the
receiving task/port is not notified of the transaction.

rq_send_rsvp

System Call Reference Chapter 6 NUC Calls 633

✏ Note
If the specified port was created with message fragmentation
enabled and the RSVP message requires fragmentation, the
application at the destination must be able to handle the message
fragments. If not, send_rsvp will sleep indefinitely.

See also: create_port, receive, receive_fragment

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CANCELLED 00E1H At least one of these is true:
• The remote host canceled the transaction.
• Receiver's port is non-existent or is being

deleted.
• Receiver's port has been connected to a

socket other than the sender's (with
rq_connect).

• Receiver has insufficient transaction buffers
(set at configuration time) or port
transactions (set at rq_create_port time).

• Receiver has terminated the fragmented
request transaction via
rq_receive_fragment.

E_DISCONNECTED 00E9H 0 was specified for the socket parameter with the
port having no default socket.

E_EXIST 0006H One of the port_tkn, control_ptr, or data_ptr
parameters does not point to an existing object.

E_HOST_ID 00E2H The host_id portion of the socket parameter does
not refer to an existing host. This error is not
produced for host_id values in the range of 21 to
255.

E_NO_REMOTE_BUFFER 00E4H The receiving host could not allocate a message
buffer.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_NUC_BAD_BUF 80E2H The data_ptr parameter is invalid or points to a
buffer that is not large enough, or the control_ptr
parameter is null.

rq_send_rsvp

634 NUC Calls Chapter 6 Nucleus System Calls

E_PROTOCOL 80E0H The port specified in the port_tkn parameter is
not a data transport type.

E_RESOURCE_LIMIT 00E6H The configured number of simultaneous
messages or simultaneous transactions has been
reached.

See also: For ICU-configurable systems, MSM,
MST parameters, ICU User's Guide
and Quick Reference

E_TRANSMISSION 000BH A NACK, timeout, bus or host error, or retry
expiration occurred during the transmission of
the message.

E_TRANS_LIMIT 00EAH A transmission resource limitation has been
encountered. An insufficient number of
transaction buffers was specified during system
configuration.

See also: For ICU-configurable systems, MST
parameter, ICU User's Guide and
Quick Reference

E_TYPE 8002H The port_tkn parameter refers to an object that is
not a port.

rq_send_signal

System Call Reference Chapter 6 NUC Calls 635

send_signal
Sends a signal message to a remote host through the specified port.

Syntax, PL/M and C

CALL rq$send$signal (port_tkn, except_ptr);

rq_send_signal (port_tkn, except_ptr);

Parameter PL/M Data Type C Data Type
port_tkn SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
port_tkn

A token for the port through which the signal is sent.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If a bus timeout or other bus error occurs, the calling task receives an
E_TRANSMISSION condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The port_tkn parameter is not a token for an
existing object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PROTOCOL 80E0H The port specified in the port_tkn parameter is
not a signal type.

E_TRANSMISSION 000BH A NACK, timeout, bus or host error, or retry
expiration occurred during the transmission of
the signal.

E_TYPE 8002H The port_tkn parameter is a token for an object
that is not a port.

rq_send_units

636 NUC Calls Chapter 6 Nucleus System Calls

send_units
Sends the specified number of units to the specified semaphore.

Syntax, PL/M and C

CALL rq$send$units (semaphore, units, except_ptr);

rq_send_units (semaphore, units, except_ptr);

Parameter PL/M Data Type C Data Type
semaphore SELECTOR SELECTOR
units WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
semaphore

A token for the semaphore to which the units are to be sent.

units
The number of units to be sent.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If the transmission would cause the semaphore to exceed its maximum allowable
supply, an E_LIMIT condition code occurs. Otherwise, the transmission is
successful and the Nucleus attempts to satisfy the requests of the tasks in the
semaphore's task queue, beginning at the head of the queue.

See also: create_semaphore, receive_units example, Nucleus examples

rq_send_units

System Call Reference Chapter 6 NUC Calls 637

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The semaphore parameter is not a token for an
existing object.

E_LIMIT 0004H The number of units that the calling task is trying
to send would cause the semaphore to exceed its
maximum allowable supply of units.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

E_TYPE 8002H The semaphore parameter is not a token for a
semaphore.

rq_set_exception_handler

638 NUC Calls Chapter 6 Nucleus System Calls

set_exception_handler
Assigns an exception handler and exception mode attributes to the calling task.

See also: rqe_create_job to set the exception handler for the job
rqe_set_exception_handler to set any of the task, job, or system
exception handlers

Syntax, PL/M and C

CALL rqsetexception$handler (exception_info_ptr, except_ptr);

rq_set_exception_handler (exception_info_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
exception_info_ptr POINTER EXCEPTION_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
exception_info_ptr

For PL/M, a pointer to this structure:

DECLARE exception STRUCTURE (
exception_handler_ptr POINTER,
exception_mode BYTE);

or for C segmented compilers:

typedef struct {
void far * exception_handler_ptr;
UINT_8 exception_mode;

} EXCEPTION_STRUCT;

For C flat model compilers only, a pointer to this structure:

typedef struct {
void * exception_handler_ptr;
SELECTOR exception_handler_ptr_seg;
UINT_8 exception_mode;

} EXCEPTION_STRUCT;

Where:

exception_handler_ptr
Points to the first instruction of the exception handler. If null, the
exception handler of the calling task's parent job is assigned.

rq_set_exception_handler

System Call Reference Chapter 6 NUC Calls 639

exception_handler_ptr_seg
For flat model compilers only, the selector for the pointer.

exception_mode
Indicates:

Value When Control Passes To Exception Handler
0 Never
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH Either the exception_info_ptr or
exception_handler_ptr is invalid, or the
offset part of one of the pointers is outside the
segment boundaries.

E_NOT_ALLOCATED 00F2H The base part of the exception_info_ptr or
exception_handler_ptr parameter is a
descriptor or virtual segment, and the offset part
does not point to an area of the segment that
contains physical memory.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The exception_mode field is greater than 3.

rqe_set_exception_handler

640 NUC Calls Chapter 6 Nucleus System Calls

rqe_set_exception_handler
Assigns an exception handler and exception mode or changes the current mode for
any of the following:

• Current task exception handler
• Current job exception handler
• System-wide exception handler

Syntax, PL/M and C

CALL rqesetexception$handler (info_ptr, except_ptr);

rq_set_exception_handler (info_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
info_ptr POINTER EXCEPTION_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
info_ptr

For PL/M, a pointer to this structure where you specify the exception handler and
mode:

DECLARE exception STRUCTURE (
exception_handler_ptr POINTER,
exception_mode BYTE);

or for C segmented compilers:

typedef struct {
void far * exception_handler_ptr;
UINT_8 exception_mode;

} EXCEPTION_STRUCT;

For C flat model compilers only, a pointer to this structure:

typedef struct {
void * exception_handler_ptr;
SELECTOR exception_handler_ptr_seg;
UINT_8 exception_mode;

} EXCEPTION_STRUCT;

rqe_set_exception_handler

System Call Reference Chapter 6 NUC Calls 641

Where:

exception_handler_ptr
Either points to the first instruction of your exception handler or a null
pointer to use an already established handler; see the table below.

exception_handler_ptr_seg
For flat model compilers only, the selector for the pointer.

exception_mode
Indicates the exception-handling mode according to the table below.

Task Settings
Mode Valid Pointer Null Pointer
0 Task will handle all

exceptions in-line except
hardware exceptions, which
are returned to the last valid
exception handler

ignored ignored

1 Task’s exception handler
receives programmer errors
and hardware exceptions
only

Your exception
handler assigned
to this task

Job’s current
exception
handler assigned
to this task

2 Task’s exception handler
receives environmental
errors and hardware
exceptions only

3 Task’s exception handler
receives all exceptions

Job Settings
Mode Valid Pointer Null Pointer
4 Job default exception mode

returns exceptions to the
offending task to handle in-
line; hardware exceptions
are returned to the last valid
exception handler.

ignored ignored

5 Job’s exception handler
receives programmer errors
and hardware exceptions
only

Your exception
handler assigned
as default for
this job

Returns
E_CONTEXT
exception

6 Job’s exception handler
receives environmental
errors and hardware
exceptions only

7 Job’s exception handler
receives all exceptions

rqe_set_exception_handler

642 NUC Calls Chapter 6 Nucleus System Calls

System Settings
Mode Valid Pointer Null Pointer
8 System default exception

mode returns exceptions to
the offending task to handle
in-line; hardware exceptions
are returned to the last valid
exception handler

ignored ignored

9 System exception handler
receives programmer errors
and hardware exceptions
only

Your exception
handler assigned
as default for the
system

Returns
E_CONTEXT
exception

10 System exception handler
receives environmental
errors and hardware
exceptions only

11 System exception handler
receives all exceptions

System Hardware Trap Settings
Mode Valid Pointer Null Pointer
12 Change system-wide

hardware trap handlers to
Delete_Offending_Job
(same effect as setting
DEH=0FFH in rmx.ini file)

ignored ignored

13 Change system-wide
hardware trap handlers to
Delete_Offending_Task

14 Change system-wide
hardware trap handlers to
Suspend_Offending_Task

15 Change system-wide
hardware trap handlers to
Break_to_Monitor (same
effect as setting DEH=00H
in rmx.ini file)

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rqe_set_exception_handler

System Call Reference Chapter 6 NUC Calls 643

Additional Information

The system-wide exception handler refers to the root job's exception handler.
When you change the system-wide exception handler, it changes only the default
exception handler that is inherited by first-level jobs created by the root job.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH Either the info_ptr or
exception_handler_ptr is invalid, or the
offset part of one of the pointers is outside the
segment boundaries.

E_NOT_ALLOCATED 00F2H The base (segment) part of the info_ptr or
exception_handler_ptr parameter is a
descriptor or virtual segment, and the offset part
does not point to an area of the segment that
contains physical memory.

rq_set_interconnect

644 NUC Calls Chapter 6 Nucleus System Calls

set_interconnect
Changes the contents of a Multibus II interconnect register to a specified value.

▲▲! CAUTION
It is possible to corrupt the operation of the board or system by
specifying incorrect values in interconnect registers.

Syntax, PL/M and C

CALL rqsetinterconnect (value, slot_number, reg_number,
except_ptr);

rq_set_interconnect (value, slot_number, reg_number,
except_ptr);

Parameter PL/M Data Type C Data Type
value BYTE UINT_8
slot_number BYTE UINT_8
reg_number WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
value

The value to which the specified interconnect register is to be changed.

slot_number
The Multibus II cardslot number of the board on which the specified interconnect
register is located:

Value Meaning
0-19 PSB slot numbers 0 to 19
20-23 Reserved, do not specify these values
24-29 iLBX II cardslot numbers 0 to 5
30 Reserved
31 Program the contents of a local interconnect register (on the board where

the calling task is running)

reg_number
The interconnect register to which a value is to be written. This value must be in
the range 0000H to 01FFH. Refer to the Multibus II board's hardware reference
manual for an exact definition of its interconnect space.

rq_set_interconnect

System Call Reference Chapter 6 NUC Calls 645

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The Nucleus checks the range validity of the cardslot and register numbers
specified in the call. It does not verify the existence of a board in the specified
cardslot nor does it check the read/write permission of the register before it
attempts to access the register.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H One or more of the parameters has an illegal
value.

rq_set_interrupt

646 NUC Calls Chapter 6 Nucleus System Calls

set_interrupt
Assigns an interrupt handler to an interrupt level and, optionally, makes the calling
task the interrupt task for that level.

Syntax, PL/M and C

CALL rqsetinterrupt (level, interrupt_task_flag,
interrupt_handler, interrupt_handler_ds, except_ptr);

rq_set_interrupt (level, interrupt_task_flag,
interrupt_handler, interrupt_handler_ds, except_ptr);

Parameter PL/M Data Type C Data Type
level WORD_16 UINT_16
interrupt_task_flag BYTE UINT_8
interrupt_handler POINTER void (far *)(void)
interrupt_handler_ds SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
level

Specifies the interrupt level:

Bits Value Meaning
15-7 0 Reserved, set to 0
6-4 0-7 First digit of the interrupt level (master PIC level)
3 0 Bits 2-0 specify the second digit (slave)

1 Bits 6-4 specify the entire level number (master)
2-0 0-7 Second digit of the interrupt level (slave PIC level)

See also: Interrupts, System Concepts, Programming Techniques, and
Programming Concepts for DOS and Windows

rq_set_interrupt

System Call Reference Chapter 6 NUC Calls 647

interrupt_task_flag
Specifies:

Value Meaning
0 No interrupt task is to be associated with this level (the new interrupt

handler will not call signal_interrupt).
not 0 The number of outstanding signal_interrupt requests that can exist;

when this limit is reached, the associated interrupt level is disabled. The
maximum value is 255 decimal. Also, indicates that the calling task
becomes the interrupt task.

▲▲! CAUTION
Do not set interrupt_task_flag to 0 if the designated
interrupt handler is part of an HI application. If the application is
stopped using a <Ctrl-C> entered at the keyboard, subsequent
interrupts could cause unpredictable results.

See also: Interrupts, System Concepts

interrupt_handler
A pointer to the first instruction of the interrupt handler.

interrupt_handler_ds
A token identifying the interrupt handler's data segment.

Value Meaning
Null selector The interrupt handler loads its own data segment and may not

invoke enter_interrupt .
Valid selector The base of the interrupt handler's data segment.

See also: enter_interrupt

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The number of outstanding signal_interrupt requests that the handler can make
before the associated interrupt level is disabled generally corresponds to the
number of buffers used by the handler and interrupt task.

If there is an interrupt task, the calling task is that interrupt task. If there is no
interrupt task, set_interrupt also enables the specified level, which must be
disabled at the time of the call.

rq_set_interrupt

648 NUC Calls Chapter 6 Nucleus System Calls

You may want an interrupt handler to pass information to the interrupt task that it
calls. These PL/M statements, when included in the interrupt task's code (with the
first statement listed here being the first statement in the task's code), will extract
the DS register value used by the interrupt task and make it available to the
interrupt handler, which in turn can access it by calling enter_interrupt :

DECLARE begin WORD_16; /* A DUMMY VARIABLE */
CALL rqsetinterrupt (...,SELECTOR$OF(@begin),...);

See also: Interrupts, System Concepts
:rmx:demo/c/int directory for demos using rq_signal_interrupt ,
rq_reset_interrupt , rqe_timed_interrupt , and rq_set_interrupt

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH The pointer to the interrupt handler or the
selector for the data segment is invalid. Either
one of the selectors does not refer to a valid
segment, or the offset is outside the segment
boundaries.

E_CONTEXT 0005H One of these is true:
• The task is already an interrupt task.
• The specified level already has an interrupt

handler assigned to it.
• The job containing the calling task or the

calling task itself is being deleted.

E_LIMIT 0004H The priority parameter is not 0 and greater
(numerically smaller) than the maximum
allowable priority for tasks in the calling task's
job.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration

E_PARAM 8004H One of these is true:
• The level parameter is invalid or would

cause the task to have a priority not allowed
by its job.

• The PIC for the specified level is not part of
the hardware configuration.

rqe_set_max_priority

System Call Reference Chapter 6 NUC Calls 649

rqe_set_max_priority
Dynamically changes the maximum priority of tasks in a job.

▲▲! CAUTION
Enables tasks of priority greater than tasks in system jobs to be
created from a user/application job. Thus, some system tasks and
real-time performance of the iRMX OS can be degraded.

Syntax, PL/M and C

CALL rqesetmax$priority (job_token, max_priority,
except_ptr);

rqe_set_max_priority (job_token, max_priority, except_ptr);

Parameter PL/M Data Type C Data Type
job_token SELECTOR SELECTOR
max_priority BYTE UINT_8
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
job_token

A token for the job whose max_priority parameter is to be changed. A null
selector specifies the calling task's job.

max_priority
The job's new maximum priority.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Max_priority must not be lower (numerically greater) than the current value of
the job's maximum priority.

This call is typically used by HI applications which include interrupt tasks.

See also: create_task example, Nucleus examples

rqe_set_max_priority

650 NUC Calls Chapter 6 Nucleus System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The specified job_token parameter is not a valid
job token.

E_EXIST 0006H The job_token parameter is not a token for an
existing object.

E_LIMIT 0004H The max_priority parameter contains a priority
value that is lower (numerically greater) than the
max_priority of the specified job.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rqe_set_os_extension

System Call Reference Chapter 6 NUC Calls 651

rqe_set_os_extension
Dynamically associates an entry point of a user-written OS extension with a call
gate. It can also clear that association.

Syntax, PL/M and C

CALL rqesetos$extension (gate_number, start_address,
except_ptr);

rqe_set_os_extension (gate_number, start_address, except_ptr);

Parameter PL/M Data Type C Data Type
gate_number WORD_16 UINT_16
start_address POINTER void (far *)(void)
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
gate_number

Specifies the entry number in the GDT of the call gate to be associated with the OS
extension. The call gate must have been reserved for this purpose during system
configuration.

See also: GSN parameter, ICU User's Guide and Quick Reference,
for iRMX for PCs and iRMX for Windows, see OSN in System
Configuration and Administration

start_address
A pointer to the first instruction of the OS extension. A null value disables the OS
extension previously associated with the call gate.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

If you use the same call gate for multiple OS extensions, you must use
rqe_set_os_extension to terminate the association before establishing an
association with another. If a task attempts to invoke an OS extension that has
been disabled in this manner, a null operation occurs.

See also: OS extensions, System Concepts

rqe_set_os_extension

652 NUC Calls Chapter 6 Nucleus System Calls

To allow multiple calls to rqe_set_os_extension for the same gate during debug
operations, be sure to first make the call with a null start_address parameter
followed by a call with the correct start_address parameter. Otherwise an
E_CONTEXT exception will occur.

▲▲! CAUTION
When writing OS extensions, always reset the OS extension with
a null value in the start_address . Then, issue the call again
with the desired start_address . Otherwise, the system will
not initialize on a warm reset. In this case, an E_CONTEXT
(0005H) initialization error will occur.

See also: rqe_set_os_extension example, Nucleus examples

A flat model application can install itself as an OS extension. However, since these
applications run in the ring three protection level, only other ring three applications
will be able to access the extension. If you want to create a general-purpose OS
extension, use a segmented memory model that runs in the ring zero protection
level.

When writing a flat model OS extension, remember that the extension exit code
must make a FAR return back through the call gate to the caller. This cannot be
done from a high level language in flat model, it must be done in assembly code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH The pointer to the start address is invalid. Either
the selector doesn't refer to a valid segment, or
the offset is outside the segment boundaries.

E_CONTEXT 0005H The specified call gate is already associated with
an OS extension.

E_EXIST 0006H The gate_number parameter specifies an
uninitialized GDT slot.

E_NOT_ALLOCATED 00F2H The base part of the start_address parameter
is a descriptor or virtual segment, and the offset
part does not point to an area of the segment that
contains physical memory.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H The gate_number parameter specifies an
initialized GDT slot which is not a call gate.

rq_set_pool_min

System Call Reference Chapter 6 NUC Calls 653

set_pool_min
Sets the pool_min parameter of the calling task's job. The new value must not
exceed that job's pool_max parameter.

Syntax, PL/M and C

CALL rqsetpool$min (new_min, except_ptr);

rq_set_pool_min (new_min, except_ptr);

Parameter PL/M Data Type C Data Type
new_min WORD_32 NATIVE_WORD
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
new_min

Specifies the new pool_min parameter of the calling task's job.

Value Meaning
0FFFFH Set the pool_min parameter equal to the pool_max parameter.
Not 0FFFFH The new value of the pool_min parameter.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

When the pool_min parameter is made larger than the current pool size, the pool
is not enlarged until the additional memory is needed. An iRMX job can have a
memory pool of up to 4 Gbytes in length.

See also: rqe_create_job, set_pool_min example, Nucleus examples

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_LIMIT 0004H The new_min parameter is not 0FFFFH, but it is
greater than the pool_max parameter of the
calling task's job.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_set_priority

654 NUC Calls Chapter 6 Nucleus System Calls

set_priority
Dynamically changes the priority of a non-interrupt task. The new value must not
exceed the containing job's maximum priority.

▲▲! CAUTION
Tasks can be put to sleep for long periods of time, and real-time
performance of the iRMX OS is degraded when a task uses this
system call to lower its own priority.

See also:create_task example, Nucleus examples

Syntax, PL/M and C

CALL rqsetpriority (task, priority, except_ptr);

rq_set_priority (task, priority, except_ptr);

Parameter PL/M Data Type C Data Type
task SELECTOR SELECTOR
priority BYTE UINT_8
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
task

A token for the task whose priority is to be changed. A null selector specifies the
calling task.

priority
The task's new priority. The value 0 specifies the maximum priority of the
specified task's containing job.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_set_priority

System Call Reference Chapter 6 NUC Calls 655

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The specified task is an interrupt task. You
cannot set the priority of an interrupt task
dynamically.

E_EXIST 0006H The task parameter is not a token for an existing
object.

E_LIMIT 0004H The priority parameter contains a priority value
that is higher (numerically less) than the
maximum priority of the specified task's
containing job.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H The task parameter is not a token for a task.

rq_set_time

656 NUC Calls Chapter 6 Nucleus System Calls

set_time
Sets the date and time for the BIOS's local clock.

Syntax, PL/M and C

CALL rqsettime (date_time, except_ptr);

rq_set_time (date_time, except_ptr);

Parameter PL/M Data Type C Data Type
date_time WORD_32 UINT_32
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
date_time

Contains a date/time value expressed as the number of seconds since a fixed, user-
determined point in time.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Any time in the past can be used as the beginning of time; the iRMX OS uses 2:00
AM, January 1, 1978 as the default; PC Systems running DOS use 2:00 AM,
January 1, 1980. The iRMX OS convention is used by the UDI and the HI, so it is
recommended. When the date_time value reaches its maximum of
0FFFFFFFFH, it will stop incrementing and will not roll over to start again from 0.

See also: UDI call dq_decode_time

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

rq_signal_exception

System Call Reference Chapter 6 NUC Calls 657

signal_exception
Used with OS extensions to signal the occurrence of an exceptional condition.

Syntax, PL/M and C

CALL rq$signal$exception (exception_code, param_num, stack_ptr,
reserved_1, reserved_2, except_ptr);

rq_signal_exception (exception_code, param_num, stack_ptr,
reserved_1, reserved_2, except_ptr);

Parameter PL/M Data Type C Data Type
exception_code WORD_16 UINT_16
param_num BYTE UINT_8
stack_ptr NATIVE_WORD NATIVE_WORD
reserved_1 WORD_16 UINT_16
reserved_2 WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
exception_code

The condition code for the exceptional condition detected.

See also: Condition codes, Programming Techniques

param_num
The number of the parameter that caused the exceptional condition. If no
parameter is at fault, this parameter equals 0.

stack_ptr
If not 0, this parameter must contain the value of the stack pointer (ESP) saved on
entry to the OS extension. The top 5 elements (for 16-bit or 32-bit tasks) in the
stack (where EBP is at the top of the stack) must be:

16-bit 32-bit Comments
FLAGS EFLAGS None
CS CS Saved by call gate to OS extension
IP EIP None
DS CS Saved by OS extension
BP EBP Saved on entry

rq_signal_exception

658 NUC Calls Chapter 6 Nucleus System Calls

Upon completion of signal_exception, control is returned to either of two
instructions. If the stack_ptr parameter is null, control returns to the
instruction following the call to signal_exception. Otherwise, control returns to
the instruction identified in EIP.

See also: Entry procedure, System Concepts

reserved_1, reserved_2
Reserved, set to 0.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Depending on the exceptional condition and the calling task's exception mode,
control may or may not pass directly to the task's exception handler. If the
exception handler does not get control, the condition code is returned to the calling
task.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

rq_signal_interrupt

System Call Reference Chapter 6 NUC Calls 659

signal_interrupt
Used by an interrupt handler to send an end-of-interrupt (EOI) signal to the
hardware and then start up an interrupt task associated with the specified level by
set_interrupt.

See also: :rmx:demo/c/interrupt directory for demo using rq_signal_interrupt

Syntax, PL/M and C

CALL rq$signal$interrupt (level, except_ptr);

rq_signal_interrupt (level, except_ptr);

Parameter PL/M Data Type C Data Type
level WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

level Specifies the interrupt level:

Bits Value Meaning
15-7 0 Reserved, set to 0
6-4 0-7 First digit of the interrupt level
3 0 Bits 2-0 specify the second digit (slave)

1 Bits 6-4 specify the entire level number (master)
2-0 0-7 Second digit of the interrupt level

See also: Interrupts, System Concepts

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code. All condition codes must be processed in-line, as control does not
pass to an exception handler.

rq_signal_interrupt

660 NUC Calls Chapter 6 Nucleus System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H No interrupt task is assigned to the specified
level.

E_INTERRUPT_OVERFLOW 000AH The interrupt task has accumulated more than the
maximum allowable number of signal_interrupt
requests (as specified by the interrupt_task_flag
parameter in set_interrupt).

See also: Interrupts, System Concepts

E_INT_SATURATION 0009H This is an informative message only and does not
indicate an error.

See also: Interrupts, System Concepts

E_LIMIT 0004H An overflow has occurred because the interrupt
task has received more than 255
signal_interrupt requests.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The level parameter is invalid.

rq_sleep

System Call Reference Chapter 6 NUC Calls 661

sleep
Places the calling task in the asleep state for a specific amount of time.

Syntax, PL/M and C

CALL rq$sleep (time_limit, except_ptr);

rq_sleep (time_limit, except_ptr);

Parameter PL/M Data Type C Data Type
time_limit WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
time_limit

Specifies:

Value Meaning
0 Calling task is placed on the ready list, immediately behind all tasks of

equal priority. If there are no such tasks, the calling task continues to
run with no effect.

1-65534 Calling task goes to sleep for this many clock intervals, after which it
will awake.

65535 An error is returned.

See also: For ICU-configurable systems, CIN parameter, ICU User's Guide and
Quick Reference

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The actual time expired from execution of this call to the end of the time_limit
parameter varies depending upon how much time remains until the next system
clock interval.

See also: create_task example, Nucleus examples

rq_sleep

662 NUC Calls Chapter 6 Nucleus System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration. This code is returned if you make
this call as an RTE call from Windows instead of
from DOS.

E_PARAM 8004H The time_limit parameter contains the invalid
value 65535.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

rq_suspend_task

System Call Reference Chapter 6 NUC Calls 663

suspend_task
Increases by one the suspension depth of a specified task.

Syntax, PL/M and C

CALL rq$suspend$task (task, except_ptr);

rq_suspend_task (task, except_ptr);

Parameter PL/M Data Type C Data Type
task SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

task Specifies:

Value Meaning
Null selector Suspend the calling task
Valid selector Token for the task whose suspension depth is to be incremented

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

✏ Note
To synchronize tasks, use mailboxes or semaphores rather than
using suspend_task to suspend another task.

If the specified task is already in either the suspended or asleep-suspended state, its
state is not changed. If the task is in the ready or running state, it enters the
suspended state. If the task is in the asleep state, it enters the asleep-suspended
state.

Suspend_task cannot be used to suspend interrupt tasks. Also, a task should not
attempt to suspend itself while accessing a region, because this will lock up the
region and the memory the task is using, and the task will never run again.

See also: create_task example, Nucleus examples
regions and tasks, System Concepts

rq_suspend_task

664 NUC Calls Chapter 6 Nucleus System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The specified task is an interrupt task.

E_EXIST 0006H The task parameter is not a token for an existing
object.

E_LIMIT 0004H The suspension depth for the specified task is
already at the maximum of 255.

E_TYPE 8002H The task parameter is not a token for a task.

rq_system_accounting

System Call Reference Chapter 6 NUC Calls 665

system_accounting
Enables or disables tracking of CPU use by the operating system.

See also: rq_get_task_accounting to receive the tracking information

Syntax, PL/M and C

CALL rq_system_accounting (mode, except_ptr);

rq_system_accounting (mode, except_ptr);

Parameter PL/M Data Type C Data Type
Mode BYTE UINT_8
except_ptr POINTER to WORD_16 UINT_16 *

Parameters

mode One of the following. If you specify the same mode that is already in effect, the
call returns an E_CONTEXT exception.

Value Meaning
0 Disables tracking of CPU use
0FFH Enables tracking of CPU use

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Since an error will be returned if the CPU utilization mode specified in the call is
already in effect, first use the rq_get_task_accounting call with the reset_opt
parameter set to 0 to determine the current mode.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The tracking mode specified in the call is already
in effect.

rqe_timed_interrupt

666 NUC Calls Chapter 6 Nucleus System Calls

rqe_timed_interrupt
Used by an interrupt task to signal its readiness to wait a specified period of time
for an interrupt.

Syntax, PL/M and C

CALL rqe$timed$interrupt (level, time, except_ptr);

rqe_timed_interrupt (level, time, except_ptr);

Parameter PL/M Data Type C Data Type
level WORD_16 UINT_16
time WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

level Specifies the interrupt level:

Bits Value Meaning
15-7 0 Reserved, set to 0
6-4 0-7 First digit of the interrupt level
3 0 Bits 2-0 specify the second digit (slave)

1 Bits 6-4 specify the entire level number (master)
2-0 0-7 Second digit of the interrupt level

time Specifies the number of clock intervals the interrupt task is willing to wait for the
interrupt to occur. 0FFFFH means to wait forever.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Rqe_timed_interrupt is similar to wait_interrupt except that
rqe_timed_interrupt permits the interrupt task to limit the time that it waits. If
the time limit expires before an interrupt occurs, the interrupt task is resumed
without servicing an interrupt.

See also: Interrupts, System Concepts
:rmx:demo/c/interrupt directory for demo using rqe_timed_interrupt

rqe_timed_interrupt

System Call Reference Chapter 6 NUC Calls 667

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The calling task is not the interrupt task for the
given level.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The level parameter is invalid.

E_TIME 0001H The time limit expired before an interrupt
occurred.

rq_uncatalog_object

668 NUC Calls Chapter 6 Nucleus System Calls

uncatalog_object
Removes an entry from the object directory of the specified job.

See also: create_task example, Nucleus examples

Syntax, PL/M and C

CALL rq$uncatalog$object (job, name, except_ptr);

rq_uncatalog_object (job, name, except_ptr);

Parameter PL/M Data Type C Data Type
job SELECTOR SELECTOR
name POINTER void far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

job Specifies:

Value Meaning
Null selector Delete entry from the object directory of the calling task's job.
Valid selector Token identifying the job of the object directory from which an

entry is to be deleted.

name A pointer to a STRING containing the name of the object whose entry is to be
deleted.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH The pointer to the STRING is invalid. Either the
selector doesn't refer to a valid segment, or the
offset is outside the segment boundaries. This
code is not returned when using the DOS RTE.

E_CONTEXT 0005H The specified object directory does not contain
an entry with the designated name.

E_EXIST 0006H The job parameter is neither null nor a token for
an existing object.

rq_uncatalog_object

System Call Reference Chapter 6 NUC Calls 669

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The first byte of the STRING pointed to by the
name parameter contains a value greater than 12
or equal to 0.

E_STATE 0007H This request was made in the context of a
hardware interrupt handler which could cause the
DOS task state to be indeterminate. This is a
DOS RTE error only.

E_TYPE 8002H The job parameter is not a token for a job.

rq_validate_buffer

670 NUC Calls Chapter 6 Nucleus System Calls

validate_buffer
Verifies that a buffer pointer is a valid pointer to physical memory and has access
rights to the memory. You can call validate_buffer for both normal and virtual
segments.

Syntax, PL/M and C

CALL rq$validate$buffer (seg, offset, length, flags,
except_ptr);

rq_validate_buffer (seg, offset, length, flags, except_ptr);

Parameter PL/M Data Type C Data Type
seg SELECTOR SELECTOR
offset WORD_32 UINT_32
length WORD_32 UINT_32
flags WORD_32 UINT_32
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

seg A token for the segment containing the buffer. The segment can be a normal or
virtual segment. If seg is null and the application is flat model, the parameter
indicates the application’s virtual segment. For segmented model applications, a
null value is an error.

offset
The offset in seg where the buffer begins.

length
The size of the buffer in bytes.

flags Flags set by the calling task that have the following meaning:

Bit Meaning
0 0 = read/write access

1 = read-only access
1-31 Reserved, set to 0

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rq_validate_buffer

System Call Reference Chapter 6 NUC Calls 671

Additional Information

The validate_buffer call can be used to quickly validate a buffer without knowing
what type of segment (normal or virtual) it is in. This call verifies the entire buffer
pointed to by seg:offset of length length with the access rights specified in
flags . Validate_buffer fails if seg:offset does not point to a valid segment or
if any part of the physical memory within the buffer does not have the access rights
specified.

The buffer itself is split into the seg and offset parameters to provide maximum
flexibility, especially for flat model applications that cannot build a far pointer.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH The offset parameter is beyond the end of
seg , or the call specified write access, but the
segment itself or one or more page frames within
the buffer are read-only.

E_EXIST 0006H The seg parameter represents a segment that is
being deleted, or seg is a null token and the
caller is not a flat model application

E_NOT_ALLOCATED 00F2H The virtual segment give by seg does not have
physical memory allocated to it somewhere
between the offset and the offset plus the
length .

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H The seg parameter is not a token for a segment.

rq_wait_interrupt

672 NUC Calls Chapter 6 Nucleus System Calls

wait_interrupt
Used by an interrupt task to signal its readiness to service an interrupt and
willingness to wait forever.

CALL rq$wait$interrupt (level, except_ptr);

rq_wait_interrupt (level, except_ptr);

Parameter PL/M Data Type C Data Type
level WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

level Specifies the interrupt level:

Bits Value Meaning
15-7 0 Reserved, set to 0
6-4 0-7 First digit of the interrupt level
3 0 Bits 2-0 specify the second digit (slave)

1 Bits 6-4 specify the entire level number (master)
2-0 0-7 Second digit of the interrupt level

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Wait_interrupt is used by interrupt tasks immediately after initializing and
immediately after servicing interrupts. Such a call suspends an interrupt task until
the interrupt handler for the same level resumes it by invoking signal_interrupt .

See also: Interrupts, System Concepts
:rmx:demo/c/interrupt directory for demo using rq_reset_interrupt

rq_wait_interrupt

System Call Reference Chapter 6 NUC Calls 673

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_CONTEXT 0005H The calling task is not the interrupt task for the
given level.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The level parameter is invalid.

■■ ■■ ■■

System Call Reference Chapter 7 UDI Calls 675

UDI System Calls 7
dq_allocate

Requests additional memory from the free space pool which tasks may use for any
purpose.

Syntax, PL/M and C

seg_t = dq$allocate (size, except_ptr);

seg_t = dq_allocate (size, except_ptr);

Parameter PL/M Data Type C Data Type
seg_t SELECTOR SELECTOR
size WORD_32 NATIVE_WORD
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value

seg_t A token for a memory segment. If the request fails, an E_MEM condition code
returns.

Parameters

size Defines the size of the segment:

Value Meaning
0 64 Kbytes
Not 0 The size, in bytes, of the requested segment

See also: create_segment

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

dq_allocate

676 UDI Calls Chapter 7 UDI System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

Dq_allocate can also return condition codes generated by the get_pool_attrib and
create_segment calls.

dq_attach

System Call Reference Chapter 7 UDI Calls 677

dq_attach
Obtains a connection to a file. This call does not affect existing connections.

Syntax, PL/M and C

connection_t = dq$attach (path_ptr, except_ptr);

connection_t = dq_attach (path_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
connection_t SELECTOR SELECTOR
path_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
connection_t

A token for the connection to the file.

Parameters
path_ptr

A pointer to a STRING containing the pathname of the file to be attached.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Use the dq_reserve_io_memory call to reserve memory before making a
dq_attach call. This reserves enough memory for UDI internal data structures and
buffers. Insufficient memory can cause a dq_attach call to fail.

See also: dq_reserve_io_memory

When a task makes its first UDI call, a UDI environment is set up for the task.
This includes the UDI default <Ctrl-C> handler, which is the same as the HI
default, and overrides any previously set up <Ctrl-C> handler.

dq_attach

678 UDI Calls Chapter 7 UDI System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_FNEXIST 0021H The specified file does not exist.

E_MEM 0002H Insufficient memory exists for the requested
operation.

E_SUPPORT 0023H An unsupported operation was attempted.

Dq_attach can also generate condition codes returned by the EIOS call
s_attach_file.

dq_change_access

System Call Reference Chapter 7 UDI Calls 679

dq_change_access
Changes the owner or World user access rights to a file or directory. This call
cannot change the read permissions for the Super user.

Syntax, PL/M and C

CALL dq$change$access (path_ptr, user, access, except_ptr);

dq_change_access (path_ptr, user, access, except_ptr);

Parameter PL/M Data Type C Data Type
path_ptr POINTER STRING far *
user BYTE UINT_8
access BYTE UINT_8
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
path_ptr

A pointer to a STRING containing the file's pathname.

user Specifies the user whose access is to be changed. Use these numeric values.
Specify DOS files as World.

Value User
0 Owner of the file
1 World (all users on the system)
2 Group (ignored by the iRMX OS)
other If used, an E_SUPPORT condition code returns.

dq_change_access

680 UDI Calls Chapter 7 UDI System Calls

access
Specifies the access to be granted the user. The user always has read access (bit 1)
to DOS files and directories. Optionally select read/write access by setting bits 3,
2, or 0.

Bit Meaning
7-5 Reserved. If used, an E_SUPPORT exception returns.
4 Execute the file. Set to the same value as bit 1 for compatibility with

other OSs. Does not apply to iRMX OS files. iRMX OS users with write
access may execute files.

3 Update (read and write) the file or change the directory access.
2 Append to the file or add an entry to the directory
1 Read the file or list the directory
0 Delete the file or directory

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Changing the access rights for a user ID does not effect a program's existing
connections. But, dq_change_access changes the access granted when the
program makes subsequent calls to dq_attach.

See also: User IDs, default users, access masks, World, access rights, owner IDs
and connections, System Concepts

Condition Codes

E_OK 000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H The value specified for the user parameter is
greater than 2. You tried to set bits 7-5 of the
access parameter.

E_FACCESS 0026H Access to the specified file is denied.

Dq_change_access can also return condition codes generated by the
s_change_access.

dq_change_extension

System Call Reference Chapter 7 UDI Calls 681

dq_change_extension
Changes the filename extension as stored in memory, not on the mass storage
volume. Filename extensions consist of the 3 characters that follow the last period
of a filename.

Syntax, PL/M and C

CALL dq$change$extension (path_ptr, extension_ptr, except_ptr);

dq_change_extension (path_ptr, extension_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
path_ptr POINTER STRING far *
extension_ptr POINTER UINT_8 far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
path_ptr

A pointer to a STRING that contains the existing pathname for the file.

extension_ptr
A pointer to a series of three bytes containing the filename extension. This is not a
STRING. Include 3 bytes, even if some bytes are blank.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Dq_change_extension changes or adds filename extensions of no more than 3
characters. For example, a compiler can use dq_change_extension to create the
name of an object file (:afd1:file.obj) from a source file (:afd1:file.src).

The three-character filename extension may not contain delimiters recognized by
dq_get_argument but may contain trailing blanks. If the first character pointed to
by extension_ptr is a space, dq_change_extension deletes the existing extension.

See also: Delimiters, dq_get_argument

dq_change_extension

682 UDI Calls Chapter 7 UDI System Calls

Condition Codes

E_OK 000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_STRING_BUFFER 0081H The filename is more than 14 characters,
including the period and extension.

dq_close

System Call Reference Chapter 7 UDI Calls 683

dq_close
Closes a file connection that was opened by the dq_open system call.

Syntax, PL/M and C

CALL dq$close (connection_t, except_ptr);

dq_close (connection_t, except_ptr);

Parameter PL/M Data Type C Data Type
connection_t SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection_t

A token for an open file connection.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Dq_close functions are:

1. Waits until all currently running I/O operations for the connection are
completed.

2. Ensures that any information in a partially-filled output buffer is written to the
file.

3. Releases all buffers associated with the connection.

4. Closes the connection. The connection is still valid, and can be re-opened if
necessary.

Condition Codes

E_OK 000H This call returns E_OK if the connection is
already closed. No exceptional conditions
occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

Dq_close can also return condition codes generated by s_close.

dq_create

684 UDI Calls Chapter 7 UDI System Calls

dq_create
Creates a new file with the specified name and returns a connection for it. If a file
exists with the same name, the existing file is truncated to 0 length and the data is
destroyed.

▲▲! CAUTION
To prevent accidentally destroying a file, call dq_attach before
calling dq_create.

See also: dq_create example, UDI example

Syntax, PL/M and C

connection$t = dq_create (path_ptr, except_ptr);

connection_t = dq_create (path_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
connection_t SELECTOR SELECTOR
path_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
connection_t

A token for the connection to the file.

Parameters
path_ptr

A pointer to a STRING containing a pathname for the file to be created.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

dq_create

System Call Reference Chapter 7 UDI Calls 685

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_MEM 0002H Insufficient memory remains to complete the
call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SPACE 0029H Insufficient space exists on a direct-access
device.

E_SUPPORT 0023H An unsupported operation was attempted.

Dq_create can also return condition codes generated by s_create_file and
s_delete_file.

dq_decode_exception

686 UDI Calls Chapter 7 UDI System Calls

dq_decode_exception
Returns the hexadecimal equivalent and mnemonic of the specified numeric
condition code.

Syntax, PL/M and C

CALL dq$decode$exception (exception_code, buff_ptr,
except_ptr);

dq_decode_exception (exception_code, buff_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
exception_code WORD_16 UINT_16
buff_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
exception_code

A location containing the numeric condition code that is to be translated.

buff_ptr
A pointer to a STRING where the hexadecimal value and mnemonic returns. This
STRING should be at least 81 bytes long to accept the maximum size returned. For
example, if you specify 2 in the exception_code parameter, the system returns:

0002H: E_MEM

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

Dq_decode_exception can also return condition codes generated by
c_format_exception.

dq_decode_time

System Call Reference Chapter 7 UDI Calls 687

dq_decode_time
Returns the indicated date and time, each as a series of ASCII bytes. (Note that
they are not strings.) You can also use dq_decode_time to decode the specified
binary date/time value to ASCII characters.

Syntax, PL/M and C

CALL dq$decode$time (date_time_ptr, except_ptr);

dq_decode_time (date_time_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
date_time_ptr POINTER DATE_TIME_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
date_time_ptr

A pointer to this structure:

DECLARE date _time STRUCTURE(
system_time WORD_32,
date(8) BYTE,
time(8) BYTE);

or

typedef struct {
UINT_32 system_time;
UINT_8 date[8];
UINT_8 time[8];

} DATE_TIME_STRUCT;

Where:

system_time
Specifies the date and time value to be decoded.

Value Meaning
0 Requests the current date and time be returned
not 0 The number of seconds since midnight, January 1, 1978

date The returned date in ASCII characters of the form MM/DD/YY for
month, day, and year. The slashes (/) are in the third and sixth bytes.

time The returned time in ASCII characters of the form HH:MM:SS for
hours, minutes, and seconds, with separating (:) colons.

dq_decode_time

688 UDI Calls Chapter 7 UDI System Calls

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H An unsupported operation was attempted.

Dq_decode_time may also return condition codes generated by get_time.

dq_delete

System Call Reference Chapter 7 UDI Calls 689

dq_delete
Marks a file for deletion and disallows new connections. The file is finally deleted
only when all open connections are removed.

See also: dq_detach

Syntax, PL/M and C

CALL dq$delete (path_ptr, except_ptr);

dq_delete (path_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
path_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
path_ptr

A pointer to a STRING containing a pathname of the file to be deleted.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_FNEXIST 0021H The specified file does not exist.

E_FACCESS 0026H Access to the specified file is denied.

Dq_delete may also return condition codes generated by s_delete_file.

dq_detach

690 UDI Calls Chapter 7 UDI System Calls

dq_detach
Deletes a file connection established by dq_attach or dq_create. If the connection
is open, this call invokes dq_close first. If the file has been marked for deletion,
dq_detach also deletes the file.

Syntax, PL/M and C

CALL dq$detach (connection_t, except_ptr);

dq_detach (connection_t, except_ptr);

Parameter PL/M Data Type C Data Type
connection_t SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection_t

A token for a file connection.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

Dq_detach may also return condition codes generated by dq_close and
s_delete_connection.

dq_exit

System Call Reference Chapter 7 UDI Calls 691

dq_exit
Terminates a program, closing and detaching all open connections, and returning
all allocated memory to the memory pool. No condition codes return to this call.

Syntax, PL/M and C

CALL dq$exit (completion_code);

dq_exit (completion_code);

Parameter PL/M Data Type C Data Type
completion_code WORD_16 UINT_16

Parameter
completion_code

An encoded reason for termination. Dq_exit converts the completion_code

value into a condition code.

Value
Condition
Code Mnemonic Meaning

0 0000H E_OK Termination was normal.
1 0C1H E_WARNING_EXIT Warning messages were issued.
2 0C2H E_ERROR_EXIT Errors were detected.
3 0C3H E_FATAL_EXIT Fatal errors were detected.
4 0C4H E_ABORT_EXIT The job was aborted.
5-65535 0C0H E_UNKNOWN_EXIT Cause for exit not known.

Additional Information

Typically the calling task is running in an I/O job. The job's response mailbox
receives one of the condition codes described above. Dq_exit invokes exit_io_job,
placing the condition code in the user_fault_code parameter. Exit_io_job
places the code in a structure that is sent to the response mailbox. The calling task
may then invoke dq_decode_exception to convert the condition code into its
associated mnemonic.

See also: create_io_job and exit_io_job

dq_file_info

692 UDI Calls Chapter 7 UDI System Calls

dq_file_info
Returns information about the specified directory or data file.

Syntax, PL/M and C

CALL dq$file$info (connection_t, mode, file_info_ptr,
except_ptr);

dq_file_info (connection_t, mode, file_info_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
connection_t SELECTOR SELECTOR
mode BYTE UINT_8
file_info_ptr POINTER U_FILE_INFO_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection_t

A token for a file connection.

mode Specifies this:

Value Meaning
0 Do not return the file owner's user ID.
1 Return the owner's user ID.
2-255 Return E_SUPPORT condition code.

file_info_ptr
A pointer to this structure:

DECLARE u_file_info STRUCTURE(
owner(15) BYTE,
length WORD_32,
type BYTE,
owner_access BYTE,
world_access BYTE,
create_time WORD_32,
last_mod_time WORD_32,
group_access BYTE,
reserved(19) BYTE);

or

dq_file_info

System Call Reference Chapter 7 UDI Calls 693

typedef struct {
UINT_8 owner[15];
UINT_32 length;
UINT_8 type;
UINT_8 owner_access;
UINT_8 world_access;
UINT_32 create_time;
UINT_32 last_mod_time;
UINT_8 group_access;
UINT_8 reserved[19];

} U_FILE_INFO_STRUCT;

Where:

owner The user ID of the file's owner if it is requested.

length The size of the file in bytes.

type Indicates the file type.

Value File Type
0 Data file
1 Directory file
2 System-specific file
3-255 Reserved

owner_access
Indicates this:

Bits Meaning
7-5 Reserved
4 Execute the file. This bit is always set to 0.
3 Update a file or change access to the directory.
2 Append to a data file or add entry to the directory.
1 Read a data file or display a directory.
0 Delete.

dq_file_info

694 UDI Calls Chapter 7 UDI System Calls

world_access
Indicates the access granted to the World user.

Bit Associated Access Type
7-5 Reserved.
4 Execute the file. Set to the same value as bit 1 for

compatibility with other OSs.
3 Update a file or change access to the directory.
2 Append to a data file or add entry to the directory.
1 Read a data file or display a directory.
0 Delete.

✏ Note
DOS does not make distinctions between types of access. For
DOS files, owner_access and world_access are the same.

create_time
The date and time that the file or directory was created, expressed as
the number of seconds since midnight, January 1, 1978. Convert this
date/time to ASCII characters by calling dq_decode_time.

last_mod_time
The date and time that the file or directory was last modified. For
data files, modified means written to or truncated; for directories,
modified means an entry was changed or an entry was added.
Convert this date/time to ASCII characters by calling
dq_decode_time.

group_access
Always set to the value of the world_access field.

reserved Reserved.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H The mode parameter has a value greater than 1.

Dq_file_info can also return condition codes generated by create_mailbox and
receive_message and a_get_file_status.

dq_free

System Call Reference Chapter 7 UDI Calls 695

dq_free
Frees a segment by returning its allocated memory to the memory pool from which
it was allocated using dq_allocate. Subsequent attempts to use a deleted segment
may cause errors or unexpected results, because the memory may be reallocated.

See also: dq_allocate

Syntax, PL/M and C

CALL dq$free (seg_t, except_ptr);

dq_free (seg_t, except_ptr);

Parameter PL/M Data Type C Data Type
seg_t SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

seg_t A token for segment. When the segment is freed, this token is no longer valid.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

Dq_free can also return condition codes generated by delete_segment.

dq_get_argument

696 UDI Calls Chapter 7 UDI System Calls

dq_get_argument
Gets arguments, one at a time, from a command line entered at the system console.
This command line is either the one that invoked the program containing the
dq_get_argument call or a command line entered while the program is running.

Syntax, PL/M and C

delimit_char = dqgetargument (argument_ptr, except_ptr);

delimit_char = dq_get_argument (argument_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
delimit_char BYTE UINT_8
argument_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
delimit_char

Receives the delimiter character. A delimiter returns only if the condition code is
E_OK. The OS recognizes these delimiters:

,) (= # ! % + - & ; < > [] \ ' | ~

The OS also recognizes the ASCII character values ranging from 1 through 20H
and between 7FH and 0FFH as delimiters; this includes the space and carriage
return <CR>.

See also: Delimiters, System Concepts

Parameters
argument_ptr

A pointer to a STRING that receives the argument. This STRING should be at
least 81 bytes long to accept the maximum size returned.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

dq_get_argument

System Call Reference Chapter 7 UDI Calls 697

Additional Information

There are two buffering methods for command line arguments:

• For invocation command lines that invoke a program from the console, there is
a default command line buffer.

• For arguments entered in response to requests within a program, a program
must create a buffer and read the command line into a buffer using dq_read.

Before returning argument STRINGs, dq_get_argument edits the STRINGs in the
argument buffer.

• Ampersands (&) and semicolons (;) are deleted.

• Multiple spaces between arguments are replaced with a single space. Tabs are
treated as spaces.

• Lowercase characters are converted to uppercase, unless they are contained in
quotes.

• The command line and the argument buffer, after a dq_switch_buffer system
call, are preceded by a null delimiter.

Dq_get_argument returns characters enclosed in matching pairs of single or
double quotes as literals. Enclosing quotes are not returned as part of the
argument.

Example

This example shows the arguments and delimiters returned by successive calls to
dq_get_argument. The example buffer contains this command line:

PLM386 LINKER.PLM PRINT(:LP:) NOLIST

Calling dq_get_argument five times returns this output:

Call Delimiter Argument Returned
1 space (06H)PLM386
2 space (0AH)LINKER.PLM
3 space ((05H)PRINT
4) (04H):LP:
5 CR (06H)NOLIST

dq_get_argument

698 UDI Calls Chapter 7 UDI System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_STRING_BUFFER 0081H The argument exceeds 80 characters. Issue
another call to dq_get_argument to obtain the
rest of the argument.

dq_get_connection_status

System Call Reference Chapter 7 UDI Calls 699

dq_get_connection_status
Returns information about a file connection. Use this system call to determine the
file pointer location after a program performs several read or write operations.

Syntax, PL/M and C

CALL dqgetconnection$status (connection_t, info_ptr,
except_ptr);

dq_get_connection_status (connection_t, info_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
connection_t SELECTOR SELECTOR
info_ptr POINTER U_CONN_STATUS_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection_t

A token for a connection.

info_ptr
A pointer to this structure:

DECLARE u_conn_status STRUCTURE(
open BYTE,
access BYTE,
seek BYTE,
file_ptr WORD_32);

or

typedef struct {
UINT_8 open;
UINT_8 access;
UINT_8 seek;
UINT_32 file_ptr;

} U_CONN_STATUS_STRUCT;

dq_get_connection_status

700 UDI Calls Chapter 7 UDI System Calls

Where:

open Indicates this:

Value Meaning
0 The connection is not open.
0FFH The connection is open.

access Indicates user access to the connection. The user always has read
access to DOS files and directories. Read/write access is optional.

Bit Meaning
7-5 Reserved.
4 Execute the file. Set to the value of bit 1 for compatibility

with other OSs. This bit does not apply to iRMX III files.
iRMX III OS users with write access may execute files.

3 Update the file or change access to the directory.
2 Append to the file or add entry to the directory.
1 Read the file or list the directory.
0 Delete the file or directory.

seek Indicates the types of seek supported.

Value Meaning
0 No seek allowed
3 Seek forward and backward

file_ptr The current position of the file pointer, expressed as the number of
bytes from the beginning of the file. Byte 0 is the first byte. This
field is undefined if the file is not open or if seek is not supported by
the device. For example, seek operations are not valid for a line
printer.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H An unsupported operation was attempted.

Dq_get_connection_status can also return condition codes generated by
s_get_connection_status.

dq_get_exception_handler

System Call Reference Chapter 7 UDI Calls 701

dq_get_exception_handler
Returns the address of the current exception handler.

Syntax, PL/M and C

CALL dqgetexception$handler (current_handler_ptr,
except_ptr);

dq_get_exception_handler (current_handler_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
current_handler_ptr POINTER HANDLER_PTR_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
current_handler_ptr

A pointer to the entry point of the current exception handler. Dq_trap_exception
specifies this entry point if it is called.

typedef struct {
NATIVE_WORD offset;
SELECTOR base;

} HANDLER_PTR_STRUCT;

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

This call returns the address specified in the most recent call to
dq_trap_exception, if any. Otherwise, the value returned is the address of the
system default exception handler.

See also: dq_trap_exception, dq_decode_exception

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

Dq_get_exception_handler can also return condition codes generated by
get_exception_handler.

dq_get_msize

702 UDI Calls Chapter 7 UDI System Calls

dq_get_msize
Returns the size of a segment allocated by the dq_mallocate system call.

Syntax, PL/M and C

size = dqgetmsize (seg_ptr, exception_ptr);

size = dq_get_msize (seg_ptr, exception_ptr);

Parameter PL/M Data Type C Data Type
size WORD_32 UINT_32
seg_ptr POINTER UINT_8 far *
exception_ptr POINTER UINT_16 far *

Return Value

size The size in bytes of the memory block previously allocated by dq_mallocate.
Since, for flat model applications dq_mallocate rounds up the request to the next 4
Kbyte boundary, the size returned in this call is the rounded-up size, not necessarily
the original requested size.

Parameters
seg_ptr

A pointer to the memory block.

exception_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H An unsupported operation was attempted.

Dq_get_msize can also return condition codes generated by get_size.

dq_get_size

System Call Reference Chapter 7 UDI Calls 703

dq_get_size
Returns the size of a previously allocated memory segment.

Syntax, PL/M and C

size = dqgetsize (seg_t, except_ptr);

size = dq_get_size (seg_t, except_ptr);

Parameter PL/M Data Type C Data Type
size WORD_32 NATIVE_WORD
seg_t SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value

size Indicates this:

Value Meaning
0 For 16-bit applications only, this value indicates that the segment size is

64 Kbytes.
not 0 The size in bytes of the segment.

Parameters

seg_t A token for a segment of memory allocated by the dq_allocate call.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

Dq_get_msize can also return condition codes generated by get_size.

dq_get_system_id

704 UDI Calls Chapter 7 UDI System Calls

dq_get_system_id
Returns the version number of the iRMX OS.

Syntax, PL/M and C

CALL dqgetsystem$id (id_ptr, except_ptr);

dq_get_system_id (id_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
id_ptr POINTER UINT_8 far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
id_ptr

A pointer to a 21-byte buffer where the identity of the OS returns.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

dq_get_time

System Call Reference Chapter 7 UDI Calls 705

dq_get_time
Obsolete. Use the more general dq_decode_time system call for this function.

dq_mallocate

706 UDI Calls Chapter 7 UDI System Calls

dq_mallocate
Requests that a specific amount of logically contiguous memory be added to the
memory pool of the calling program. If successful, the call returns a pointer to the
first byte of the acquired memory. Multiple calls to dq_mallocate result in
multiple segments being allocated. For a flat model application, this call allocates
physical memory into the flat address space of the application, instead of creating
an iRMX segment.

Syntax, PL/M and C

seg_ptr = dq$mallocate (size, except_ptr);

seg_ptr = dq_mallocate (size, except_ptr);

Parameter PL/M Data Type C Data Type
seg_ptr POINTER UINT_8 far *
size WORD_32 UINT_32
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
seg_ptr

A pointer to the first byte of the acquired block of memory.

Parameters

size Requests the number of bytes of memory. If you specify a size of 0, the call
allocates 64 Kbytes (10000H). For flat model applications only, the minimum
amount of memory returned is 4 Kbytes, and all requests are rounded up to the next
4 Kbyte boundary.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

For flat model applications only, this call invokes the paging subsystem call
rqv_allocate.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

dq_mallocate

System Call Reference Chapter 7 UDI Calls 707

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H An unsupported operation was attempted.

Dq_mallocate can also return condition codes generated by get_pool_attrib,
create_segment, or rqv_allocate.

dq_mfree

708 UDI Calls Chapter 7 UDI System Calls

dq_mfree
Releases an entire block of block of memory, previously acquired using
dq_mallocate, to the memory pool. The freed memory is no longer available to
the calling program and may be reallocated to another process. You cannot release
just a portion of the memory.

Syntax, PL/M and C

CALL dq$mfree (seg_ptr, exception_ptr);

dq_mfree (seg_ptr, exception_ptr);

Parameter PL/M Data Type C Data Type
seg_ptr POINTER UINT_8 far *
exception_ptr POINTER UINT_16 far *

Parameters
seg_ptr

A pointer to a block of memory.

exception_ptr
A pointer to a location where the condition code returns.

Additional Information

For flat model applications only, this call invokes the paging subsystem call
rqv_free.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H For flat model applications only, the seg_ptr
parameter does not point to valid allocated
physical memory within the caller's virtual
segment.

Dq_mfree may also return condition codes generated by delete_segment or
rqv_free.

dq_open

System Call Reference Chapter 7 UDI Calls 709

dq_open
Opens a file for I/O operations. Dq_open prepares a connection for use with
dq_read, dq_write, dq_seek, and dq_truncate.

Syntax, PL/M and C

CALL dq$open (connection_t, mode, num_buf, except_ptr);

dq_open (connection_t, mode, num_buf, except_ptr);

Parameter PL/M Data Type C Data Type
connection_t SELECTOR SELECTOR
mode BYTE UINT_8
num_buf BYTE UINT_8
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection_t

A token for the file connection to be opened.

mode Specifies the file access mode.

Value Meaning
1 Read only
2 Write only
3 Update
4 Reserved
5-7 Available for UNIX systems; ignored for the iRMX OS
8-255 Reserved

num_buf
Specifies the kind of buffering needed for this connection.

Value Meaning.
0 No buffering required.
1-2 Requests double buffering which automatically performs read-ahead

and/or write-behind buffering
3-255 The E_SUPPORT condition code returns.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

dq_open

710 UDI Calls Chapter 7 UDI System Calls

Additional Information

Dq_open does this:

1. Creates the requested buffers.

2. Sets the connection's file pointer to the beginning of the file.

3. Starts reading ahead if num_buf is greater than 0 and the access parameter is
read only or update.

Use the dq_reserve_io_memory call to reserve memory before making a dq_open
call. This reserves enough memory for UDI internal data structures and buffers.
Insufficient memory can cause a dq_open call to fail.

See also: dq_reserve_io_memory

The amount of buffers that you choose affects system performance. These
performance guidelines are true of every system:

• Request at least two buffers to overlap I/O with computation.

• Request no buffers if memory is more important than performance.

• Request no buffers for interactive programs when opening :ci: and :co:.

• Request one buffer if your program normally calls dq_seek before calling
dq_read or dq_write.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H At least one of these is true:
• The mode parameter is set to a reserved

value.
• The num_buffs parameter is greater than 2.

E_FACCESS 0026H Access to the specified file is denied.

E_SHARE 0028H The specified file may not be shared.

E_MEM 0002H Insufficient memory remains to complete the
call.

Dq_open can also return condition codes generated by s_open.

dq_overlay

System Call Reference Chapter 7 UDI Calls 711

dq_overlay
Loads an overlay module. The root module calls this system call. Overlay code is
16-bit code that runs in PVAM.

See also: Overlays, System Concepts

Syntax, PL/M and C

CALL dq$overlay (name_ptr, except_ptr);

dq_overlay (name_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
name_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
name_ptr

A pointer to a STRING containing the name of an overlay module. The name must
be in uppercase.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

To maintain portability to other OSs that support the UDI, call no more than one
level of overlay from the root module.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H An supported operation was attempted.

Dq_overlay can also return condition codes generated by s_overlay.

dq_read

712 UDI Calls Chapter 7 UDI System Calls

dq_read
Reads contiguous bytes from a file and places them in the specified buffer. The
connection must be open for reading and updating.

Syntax, PL/M and C

bytes_read = dq$read (connection_t, buff_ptr, count,
except_ptr);

bytes_read = dq_read (connection_t, buff_ptr, count,
except_ptr);

Parameter PL/M Data Type C Data Type
bytes_read WORD_32 NATIVE_WORD
connection_t SELECTOR SELECTOR
buff_ptr POINTER UINT_8 far *
count WORD_32 NATIVE_WORD
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
bytes_read

The number of bytes actually read. This number is always equal to or less than the
count parameter.

Parameters
connection_t

A token for the connection to the file. The file pointer must point to the first byte
to be read.

See also: dq_seek

buff_ptr
A pointer to a STRING that receives the data from the file. The STRING must be
at least as large as the count parameter.

count
The number of bytes to be read from the file.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

dq_read

System Call Reference Chapter 7 UDI Calls 713

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H An unsupported operation was attempted.

Dq_read can also return condition codes generated by s_read_move, with the
exception of E_FLUSHING.

dq_rename

714 UDI Calls Chapter 7 UDI System Calls

dq_rename
Changes a directory or data file's pathname. Renaming a directory changes the
pathnames of all files contained in the directory. Existing connections to a
renamed file remain established.

Syntax, PL/M and C

CALL dq$rename (path_ptr, new_path_ptr, except_ptr);

dq_rename (path_ptr, new_path_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
path_ptr POINTER STRING far *
new_path_ptr POINTER STRING far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
path_ptr

A pointer to a STRING for the file's existing pathname.

new_path_ptr
A pointer to a STRING for the file's new pathname. This pathname must not be an
existing pathname.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Successfully renaming a file without appropriate access permission depends on the
OS.

DOS users cannot rename a file or a directory to a different subdirectory.
Otherwise, a file's pathname can be changed in any way, if the file or directory
remains on the same volume. If an OS does not allow renaming a file to another
volume or storage device, an E_SUPPORT exception returns.

dq_rename

System Call Reference Chapter 7 UDI Calls 715

Condition Codes

E_OK 000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_FEXIST 0020H The file represented by new_path_ptr already
exists.

E_SUPPORT 0023H The file represented by new_path_ptr exists on
another volume.

E_FNEXIST 0021H The file represented by path_ptr does not exist.

Dq_rename can also return condition codes generated by s_rename_file.

dq_reserve_io_memory

716 UDI Calls Chapter 7 UDI System Calls

dq_reserve_io_memory
Reserves enough memory to ensure that your program can open and attach the
files. Use this call only if your program exclusively uses UDI system calls to
communicate with the OS.

Syntax, PL/M and C

CALL dq$reserve$io$memory (number_files, number_buffers,
except_ptr);

dq_reserve_io_memory (number_files, number_buffers,
except_ptr);

Parameter PL/M Data Type C Data Type
number_files WORD_16 UINT_16
number_buffers WORD_16 UINT_16
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
number_files

Specifies the maximum number of files, up to 12, the program will attach. No
more than 6 files may be open simultaneously.

number_buffers
Specifies the total number of buffers, up to 12, that will be needed at one time. For
example, if your program has 2 files open at the same time and each of them has 2
buffers, number_files should be 2 and number_buffers should be 4.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Memory reserved with this call cannot be allocated by dq_allocate or
dq_mallocate.

If you specify a 0 for both number_files and number_buffers , the memory
reserved returns to the memory pool.

Use this call to reserve memory before using dq_attach and dq_open. Otherwise,
the memory used by those calls counts against the file and buffer counts specified
in this call. This can exhaust the memory supply.

dq_reserve_io_memory

System Call Reference Chapter 7 UDI Calls 717

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_MEM 0002H Insufficient memory remains to complete the
call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H At least one of these is true:
• The value specified for number_files is

greater than 12.
• The value specified for number_buffers is

greater than 12.

dq_seek

718 UDI Calls Chapter 7 UDI System Calls

dq_seek
Positions the file pointer to a location where a non-sequential I/O operation using
the dq_read, dq_truncate, or dq_write calls begins. Do not use this call for
applications performing stream I/O operations.

Syntax, PL/M and C

CALL dq$seek (connection_t, mode, off_set, except_ptr)

dq_seek (connection_t, mode, off_set, except_ptr)

Parameter PL/M Data Type C Data Type
connection_t SELECTOR SELECTOR
mode BYTE UINT_8
off_set WORD_32 UINT_32
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection_t

A token for an open file connection.

mode Specifies the file pointer movement.

Value File Pointer Movement
1 Back by off_set bytes; if the pointer moves past the beginning of the file,

it is set to 0 (first byte).
2 Set to the position specified by the off_set parameter. Moving the

beyond the EOF is permitted.
3 Forward by off_set bytes. Moving beyond the EOF is permitted.
4 Move to the EOF and then back by off_set bytes; if the pointer moves

beyond the beginning of the file, it is set to 0 (first byte). This option is
not supported for EDOS directories; E_SUPPORT returns.

off_set
Specifies how far, in bytes, to move the file pointer.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

dq_seek

System Call Reference Chapter 7 UDI Calls 719

Additional Information

When the file pointer is positioned beyond the EOF, this happens:

• Dq_read behaves as though the read operation began at the EOF. A
subsequent read returns an indication of an EOF.

• Dq_write extends the file and the data is written as requested. Attempting a
seek past the end of a file without performing an explicit dq_write call
produces undetermined results.

See also: a_seek

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 0023H The mode parameter was set outside the range
1-4.

Dq_seek can also return condition codes generated by the EIOS call s_seek.

dq_special

720 UDI Calls Chapter 7 UDI System Calls

dq_special
Changes the operating mode for a terminal input device.

Syntax, PL/M and C

CALL dq$special (mode, parameter_ptr, except_ptr);

dq_special (mode, parameter_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
mode BYTE UINT_8
parameter_ptr POINTER void far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

mode Specifies the options to be set or the actions to be performed .

Value Mode Description.
1 Transparent Enables interactive applications to obtain characters from

the console exactly as typed. Two exceptions to this are
(1) signal characters (e.g., the HI <Ctrl-C>) set by
specifying "set signal" in the spec_func parameter of
a_special or s_special, and (2) any enabled output control
characters or OSC sequences

2 Line Editing Use this option to correct typing errors by using special
keys before the program receives the characters that are
typed. Characters used for editing are OS-dependent. The
carriage return <CR> character is always converted to
carriage return-line feed <CRLF>. This is the default
mode when the system starts to run.

3 Polling This mode is almost the same as Transparent mode except
that characters typed between successive calls to read the
terminal are held in the type-ahead buffer.

4-5 Reserved E_SUPPORT returns.
6 Baud Rate Specifies baud rate selection through the structure pointed

to by parameter_ptr.

dq_special

System Call Reference Chapter 7 UDI Calls 721

parameter_ptr
A pointer to this structure:

DECLARE line STRUCTURE (
conn SELECTOR,
in_baud_rate BYTE,
out_baud_rate BYTE);

or

typedef struct {
SELECTOR conn;
UINT_8 in_baud_rate;
UINT_8 out_baud_rate

} LINE_STRUCT;

Where:

conn A token for a connection previously established using dq_attach.

in_baud_rate
The input baud rate encoded.

Value Baud Rate
0 Unspecified
1 300
2 600
3 1200
4 2400
5 4800
6 9600
7 19200
8-255 Reserved

out_baud_rate
The output baud rate encoded as above.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

dq_special

722 UDI Calls Chapter 7 UDI System Calls

Additional Information

In transparent mode, normal input characters are placed in the buffer specified by
the call to dq_read. Dq_read returns control to the calling program when the
number of characters entered equals the number of characters specified in the read
request.

In polling mode, dq_read returns control to your program immediately after it is
called, regardless of whether any characters were typed since the last call to
dq_read. If no characters have been typed, this is indicated by the bytes_read
parameter of the dq_read call.

See also: dq_read

Condition Codes

E_OK 000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H The mode parameter represents an unsupported
mode.

Dq_special can also return the codes generated by the EIOS call s_special.

dq_switch_buffer

System Call Reference Chapter 7 UDI Calls 723

dq_switch_buffer
Substitutes the specified command line buffer for the existing buffer.

Syntax, PL/M and C

char_offset = dq$switch$buffer (buff_ptr, except_ptr);

char_offset = dq_switch_buffer (buff_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
char_offset WORD_32 NATIVE_WORD
buff_ptr POINTER UINT_8 far *
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
char_offset

The offset location in bytes from the beginning of the command line to the last
character of the last argument retrieved by dq_get_argument. Use this offset to
determine the current argument pointer location in the command line.

Parameters
buff_ptr

A pointer to a STRING containing a new command line buffer. The buffer must
not exceed 32 Kbytes in length.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

Dq_switch_buffer can also return condition codes generated by
c_set_parse_buffer.

dq_trap_cc

724 UDI Calls Chapter 7 UDI System Calls

dq_trap_cc
Substitutes an alternate interrupt procedure that will receive control when you enter
an interrupt character such as <Ctrl-C> on the console.

Syntax, PL/M and C

CALL dq$trap$cc (cc_routine_ptr, except_ptr);

dq_trap_cc (cc_routine_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
cc_routine_ptr POINTER HANDLER_PTR_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
cc_routine_ptr

A pointer to the entry point of the alternate interrupt procedure.

typedef struct {
NATIVE_WORD offset
SELECTOR base;

} HANDLER_PTR_STRUCT;

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The OS saves a program's execution context when dq_trap_cc is invoked. Due to
the context switch when the interrupt procedure receives control, the contents of
the CPU registers at that time may not be those associated with your program. For
example, the CPU registers may contain values for an internal task that was
executing when the interrupt character was entered.

See also: Interrupt routines and characters, System Concepts

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

dq_trap_exception

System Call Reference Chapter 7 UDI Calls 725

dq_trap_exception
Designates an alternate exception handler.

Syntax, PL/M and C

CALL dq$trap$exception (handler_ptr, except_ptr);

dq_trap_exception (handler_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
handler_ptr POINTER HANDLER_PTR_STRUCT far *
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
handler_ptr

A pointer to this structure containing the entry point of the alternate exception
handler.

typedef struct {
NATIVE_WORD offset
SELECTOR base;

} HANDLER_PTR_STRUCT;

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

The dq_trap_exception routine should restore the default exception handler before
it terminates. Therefore, a program should call dq_get_exception_handler before
calling dq_trap_exception to get the default exception handler address.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

Dq_trap_exception can also return condition codes generated by
set_exception_handler.

dq_truncate

726 UDI Calls Chapter 7 UDI System Calls

dq_truncate
Truncates a file at the current position of the file pointer and releases file space
beyond the pointer to other files. If the pointer is at or beyond the EOF, no
truncation is performed. Use the dq_seek system call to position the pointer before
calling dq_truncate.

Syntax, PL/M and C

CALL dq$truncate (connection_t, except_ptr);

dq_truncate (connection_t, except_ptr);

Parameter PL/M Data Type C Data Type
connection_t SELECTOR SELECTOR
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection_t

A token for a connection to a named or DOS data file. The byte indicated by the
file pointer is the first byte to be dropped from the file. The connection should
have write, or read/write access rights.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H An unsupported operation was attempted.

Dq_truncate can also return condition codes generated by s_truncate_file.

dq_write

System Call Reference Chapter 7 UDI Calls 727

dq_write
Writes a number of bytes from a buffer to a file. Use dq_seek to position the file
pointer.

Syntax, PL/M and C

CALL dq$write (connection_t, buff_ptr, count, except_ptr);

dq_write (connection_t, buff_ptr, count, except_ptr);

Parameter PL/M Data Type C Data Type
connection_t SELECTOR SELECTOR
buff_ptr POINTER UINT_8 far *
count WORD_32 NATIVE_WORD
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
connection_t

A token for a connection to the file being written to.

buff_ptr
A pointer to a buffer containing the data to be written to the specified file.

count The number of bytes to be written from the buffer to the file.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Dq_write may write fewer bytes than requested by the calling program. This
happens under these circumstances:

• When dq_write encounters an I/O error

• When the volume to which a program is writing becomes full

After the writing operation is completed, the file pointer points to the byte
immediately following the last byte written.

dq_write

728 UDI Calls Chapter 7 UDI System Calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H An unsupported operation was attempted.

E_SPACE 0029H Inadequate memory space remains to complete
the write.

Dq_write can also generate condition codes from s_write_move.

■■ ■■ ■■

System Call Reference Chapter 8 WIN & DOS Calls 729

Windows- and DOS-Specific
System Calls 8

rqe_read_segment iRMX for Windows only

Enables a DOS application program to transfer data from a PVAM segment to a
Real Mode segment. The maximum size of the transfer is limited to 65535 bytes,
the length of a Real Mode segment.

✏ Note
This system call is used by DOS applications only; it is not
supported in the iRMX OS.

Syntax, PL/M and C

CALL rqe$read$segment (pvam_seg, pvam_offset, realmode_ptr,
size, status_ptr);

rqe_read_segment (pvam_seg, pvam_offset, realmode_ptr, size,
status_ptr);

Parameter PL/M Data Type C Data Type
pvam_seg SELECTOR SELECTOR
pvam_offset WORD_32 UINT_32
realmode_ptr POINTER void far *
size WORD_16 UINT_16
status_ptr POINTER to WORD_16 UINT_16 far *

Parameters
pvam_seg

Specifies the PVAM source segment. This must be a valid selector, such as the
token for a segment that was received from a mailbox.

pvam_offset
The offset into the source segment where the transfer starts.

realmode_ptr
A pointer to the destination segment.

rqe_read_segment iRMX for Windows only

730 WIN & DOS Calls Chapter 8 Windows- and DOS-Specific System Calls

size Specifies the amount of data being transferred. If the size of the transfer is greater
than the limit of the source segment, an exceptional condition code returns and no
transfer takes place.

▲▲! CAUTION
If the size of the destination segment is less than the requested
size, the transfer takes place anyway and corrupts the DOS
application program's memory.

status_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information
The DOS application program calling sequence is shown here. See your compiler
documentation for guidance in constructing an assembly language routine to do
this:

1. Push the pvam_seg parameter onto the stack.

2. Push the pvam_offset parameter onto the stack.

3. Push the realmode_ptr parameter onto the stack.

4. Push the size parameter onto the stack.

5. Push the status_ptr parameter onto the stack.

6. Put the function code 30 into the AX CPU register.

7. Put the offset of the status_ptr parameter into the SI CPU register.

8. Cause a software interrupt number B8H.

9. Clear the stack.

Condition Codes
E_OK 0000H Data transfer successful.

E_NUC_BAD_BUF 80E2H Indicates one of these:
• Pvam_seg does not refer to a valid segment.
• Pvam_offset is outside the segment

boundaries.
• The specified size would cause the data

transfer to exceed the pvam_seg limit.

iRMX for Windows only rqe_write_segment

System Call Reference Chapter 8 WIN & DOS Calls 731

rqe_write_segment
Enables a DOS application program to transfer data from a Real Mode segment to a
PVAM segment. The maximum size of the transfer is limited to 65535 bytes, the
length of a Real Mode segment.

✏ Note
This system call is used by DOS applications only; it is not
supported in the iRMX OS.

Syntax, PL/M and C

CALL rqe$write$segment (realmode_ptr, pvam_seg, pvam_offset,
size, status);

rqe_write_segment (realmode_ptr, pvam_seg, pvam_offset, size,
status_ptr);

Parameter PL/M Data Type C Data Type
realmode_ptr POINTER void far *
pvam_seg SELECTOR SELECTOR
pvam_offset WORD_32 UINT-32
size WORD_16 UINT_16
status_ptr POINTER to WORD_16 UINT_16 far *

Parameters
realmode_ptr

A pointer to the Real Mode source segment.

pvam_seg
Specifies the PVAM destination segment. This must be a valid selector, such as
the token for a data mailbox in an rq_receive Nucleus system call.

pvam_offset
The offset into the destination segment where the transfer starts.

size Specifies the amount of data being transferred. If the size of the transfer is greater
than the length of the destination segment, an exceptional condition code returns
and no transfer takes place.

status_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rqe_write_segment iRMX for Windows only

732 WIN & DOS Calls Chapter 8 Windows- and DOS-Specific System Calls

Additional Information
The DOS application program calling sequence is shown here. See your compiler
documentation for guidance in constructing an assembly language routine to do
this:

1. Push the realmode_ptr parameter onto the stack.

2. Push the pvam_seg parameter onto the stack.

3. Push the pvam_offset parameter onto the stack.

4. Push the size parameter onto the stack.

5. Push the status_ptr parameter onto the stack.

6. Put the function code 31 into the AX CPU register.

7. Put the offset of the status_ptr parameter into the SI CPU register.

8. Cause a software interrupt number B8H.

9. Clear the stack.

Condition Codes
E_OK 0000H Data transfer successful.

E_NUC_BAD_BUF 80E2H Indicates one of these:
• The pvam_seg does not refer to a valid

segment.
• The pvam_offset is outside the segment

boundaries.
• The specified size would cause the data

transfer to exceed the pvam_seg limit.

iRMX for Windows only rqe_set_vm86_extension

System Call Reference Chapter 8 WIN & DOS Calls 733

rqe_set_vm86_extension
Installs and removes a Virtual 8086 Mode (VM86) extension at the specified
interrupt level.

Syntax, PL/M and C

CALL rqesetvm86$extension (int_level, entry_ptr,
deletion_handler_ptr, status_ptr);

rqe_set_vm86_extension (int_level, entry_ptr,
deletion_handler_ptr, status_ptr);

Parameter PL/M Data Type C Data Type
int_level BYTE UINT_8
entry_ptr POINTER void (far *)(void)
deletion_handler_ptr POINTER void (far *)(void)
status_ptr POINTER to WORD_16 UINT_16 far *

Parameters
int_level

Specifies the interrupt level at which the extension is installed. These interrupt
levels are used; beware of conflicts from interrupt levels already in use in your
system:

Level Use
00H-10H CPU traps and DOS hardware vectors
11H-20H ROM BIOS services
21H-2FH DOS services
38H-3FH iRMX hardware vectors for master PIC
50H-57H iRMX hardware vectors for slave PIC
5BH Network redirector
80H Used by the VM86 dispatcher
82H Used then released by the TSR
85H iRMX For Windows interface TSR
B8H DOS Real-time Extensions (DOS RTE)
C3H UDI
Others Available for user extensions

entry_ptr
A pointer to the start of the VM86 Extension code. This pointer must reference a
valid USE32 PVAM executable segment. The VM86 dispatcher calls the extension
whenever a software interrupt at int_level occurs in VM86. A null pointer
removes a previously installed extension at the specified level.

rqe_set_vm86_extension iRMX for Windows only

734 WIN & DOS Calls Chapter 8 Windows- and DOS-Specific System Calls

deletion_handler_ptr
A pointer to a deletion handler procedure that is called whenever a DOS program
terminates or when DOS alone is restarted. This procedure cleans up the iRMX
environment by removing any iRMX objects created by the VM86 Extension. This
pointer must reference a valid USE32 PVAM executable segment. If a deletion
handler is not necessary, use a null pointer.

status_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

VM86 Dispatcher and VM86 Extension

The calling syntax for the VM86 Extension and Deletion Handler is described here.
The VM86 Dispatcher calls the VM86 Extension as follows:

done = entry_procedure (state_ptr,flags);

Where:

done A byte returned to the VM86 Dispatcher by the VM86 Extension that
indicates this:

Value Meaning
0 The request needs further processing. The VM86

Dispatcher will reflect the interrupt into the real-mode
interrupt handler. The real-mode interrupt handler will
eventually return to the DOS application program.

0FFH The request has been processed completely. The VM86
Dispatcher will restore all CPU registers from the dos_state
structure, and then return to the DOS application program.

state_ptr A pointer to this structure. This structure must contain the current
contents of the CPU registers indicated.

iRMX for Windows only rqe_set_vm86_extension

System Call Reference Chapter 8 WIN & DOS Calls 735

DECLARE dos_state STRUCTURE(
edi WORD_32,
esi WORD_32,
ebp WORD_32,
res1 WORD_32,
ebx WORD_32,
edx WORD_32,
ecx WORD_32,
eax WORD_32,
res2 WORD_32,
eip WORD_32,
cs WORD_32,
eflags WORD_32,
esp WORD_32,
ss WORD_32,
es WORD_32,
ds WORD_32,
fs WORD_32,
gs WORD_32);

or

typedef struct {
UINT_32 edi;
UINT_32 esi;
UINT_32 ebp;
UINT_32 res1;
UINT_32 ebx;
UINT_32 edx;
UINT_32 ecx;
UINT_32 eax;
UINT_32 res2;
UINT_32 eip;
UINT_32 cs;
UINT_32 eflags;
UINT_32 esp;
UINT_32 ss;
UINT_32 es;
UINT_32 ds;
UINT_32 fs;
UINT_32 gs;

} DOS_STATE_STRUCT;

rqe_set_vm86_extension iRMX for Windows only

736 WIN & DOS Calls Chapter 8 Windows- and DOS-Specific System Calls

flags Indicates this:

Bits Value Meaning
31-1 Reserved

0 0 The interrupt did not occur within the context of
a DOS hardware interrupt handler.

1 The interrupt occurred in the context of a DOS
hardware interrupt handler.

The VM86 Dispatcher calls the Deletion Handler as follows:

deletion_handler (flags);

Where:

flags Indicates this:

Bits Value Meaning
31-1 Reserved

0 0 The current DOS program is being deleted.
1 All DOS programs are being deleted. DOS is

being restarted.

Additional Information
This system call can be made from any iRMX task running in Protected Mode.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_PARAM 8004H At least one of these is true:
• The deletion_handler_ptr parameter

does not point to a valid USE32 PVAM
executable segment.

• The entry_ptr parameter does not point to
a valid USE32 PVAM executable segment.

• The int_level parameter does not specify a
valid interrupt level.

iRMX for PCs and iRMX for Windows only rqe_dos_request

System Call Reference Chapter 8 WIN & DOS Calls 737

rqe_dos_request
Makes DOS/ROM BIOS requests and other software interrupts handled by DOS
applications.

Syntax, PL/M and C

CALL rqedosrequest (register_ptr, wait_time, status_ptr)

rqe_dos_request (register_ptr, wait_time, status_ptr)

Parameter PL/M Data Type C Data Type
register_ptr POINTER DOS_DATA_STRUCT far *
wait_time WORD_16 UINT_16
status_ptr POINTER to WORD_16 UINT_16 far *

Parameters
register_ptr

A pointer to this structure. This structure holds all the information DOS needs to
execute the requested system call. This includes the values passed in the CPU
registers, and additional information to allow data transfer to and from the iRMX
OS. The iRMX for Windows TSR (rmxtsr) moves this data into the CPU registers
and initiates the required DOS/ROM BIOS software interrupt. This system call can
also return rmxtsr error messages.

rqe_dos_request iRMX for PCs and iRMX for Windows only

738 WIN & DOS Calls Chapter 8 Windows- and DOS-Specific System Calls

DECLARE dos_data STRUCTURE(
status WORD_16,
flags WORD_16,
int_num BYTE,
tsr_flags BYTE,
reg_al BYTE,
reg_ah BYTE,
reg_bl BYTE,
reg_bh BYTE,
reg_cl BYTE,
reg_ch BYTE,
reg_dl BYTE,
reg_dh BYTE,
reg_di WORD_16,
reg_si WORD_16,
reg_ds WORD_16,
reg_es WORD_16,
reg_bp WORD_16,
xfer_data BYTE,
src1_xfer_pair BYTE,
src2_xfer_pair BYTE,
dest1_xfer_pair BYTE,
dest2_xfer_pair BYTE,
src_ptr_1 POINTER,
src_count_1 WORD_16,
src_ptr_2 POINTER,
src_count_2 WORD_16,
dest_ptr_1 POINTER,
dest_count_1 WORD_16,
dest_ptr_2 POINTER,
dest_count_2 WORD_16)

or

iRMX for PCs and iRMX for Windows only rqe_dos_request

System Call Reference Chapter 8 WIN & DOS Calls 739

struct DOSBYTEREGS {
UINT_16 status;
UINT_16 flags;
UINT_8 int_num;
UINT_8 tsr_flags;
UINT_8 reg_al;
UINT_8 reg_ah;
UINT_8 reg_bl;
UINT_8 reg_bh;
UINT_8 reg_cl;
UINT_8 reg_ch;
UINT_8 reg_dl;
UINT_8 reg_dh;
UINT_16 reg_di;
UINT_16 reg_si;
UINT_16 reg_ds;
UINT_16 reg_es;
UINT_16 reg_bp;
UINT_8 xfer_data;
UINT_8 src1_xfer_pair;
UINT_8 src2_xfer_pair;
UINT_8 dest1_xfer_pair;
UINT_8 dest2_xfer_pair;
void far * src_ptr_1;
UINT_16 src_count_1;
void far * src_ptr_2;
UINT_16 src_count_2;
void far * dest_ptr_1;
UINT_16 dest_count_1;
void far * dest_ptr_2;
UINT_16 dest_count_2;

} ;

rqe_dos_request iRMX for PCs and iRMX for Windows only

740 WIN & DOS Calls Chapter 8 Windows- and DOS-Specific System Calls

struct DOSWORDREGS {
UINT_16 status;
UINT_16 flags;
UINT_8 int_num;
UINT_8 tsr_flags;
UINT_16 reg_ax;
UINT_16 reg_bx;
UINT_16 reg_cx;
UINT_16 reg_dx;
UINT_16 reg_di;
UINT_16 reg_si;
UINT_16 reg_ds;
UINT_16 reg_es;
UINT_16 reg_bp;
UINT_8 xfer_data;
UINT_8 src1_xfer_pair;
UINT_8 src2_xfer_pair;
UINT_8 dest1_xfer_pair;
UINT_8 dest2_xfer_pair;
void far * src_ptr_1;
UINT_16 src_count_1;
void far * src_ptr_2;
UINT_16 src_count_2;
void far * dest_ptr_1;
UINT_16 dest_count_1;
void far * dest_ptr_2;
UINT_16 dest_count_2;

} ;

typedef union {
struct DOSWORDREGS x;
struct DOSBYTEREGS h;

} DOS_DATA_STRUCT;

Where:

status Indicates this:

Value Meaning
0 The TSR was able to perform the request
not 0 The TSR was not able to perform the request.

flags The contents of the 16-bit CPU FLAGS register during DOS/ROM
BIOS calls.

iRMX for PCs and iRMX for Windows only rqe_dos_request

System Call Reference Chapter 8 WIN & DOS Calls 741

int_num The DOS/ROM BIOS interrupt number. These functions are not
supported.

DOS Functions not Supported

Int
Function/
Subfunction Description

21h 18 Reserved for DOS
1D Reserved for DOS
1E Reserved for DOS
1F Get default disk parameter block
20 Reserved for DOS
31 Terminate and stay resident
32 Get drive parameter block
34 Get address of IN-DOS flag
37 Get/set switch character
48 Allocate memory block
4B 00 Execute program

03 Load overlay
4C Terminate with return code
4D Get return code
50 Set PSP
52 Get disk list
53 Translate PBP
54 Get verify flag
55 Create PSP
5D 06 Get critical error flag address
60 Reserved for DOS
61 Reserved for DOS
64 Reserved for DOS

27h Terminate and stay resident
28h Keyboard busy loop
29h Fast put char
2Eh Execute command

rqe_dos_request iRMX for PCs and iRMX for Windows only

742 WIN & DOS Calls Chapter 8 Windows- and DOS-Specific System Calls

ROM BIOS Functions not Supported

Int Function Description
15h 00 Cassette

01 Cassette
02 Cassette
03 Cassette
0F Format unit
21 Error log
4F Keyboard intercept
80 Device open
81 Device close
82 Program termination
83 Event wait
85 System-Request key pressed
86 Wait
87 Move data to/from protected mode memory
89 Switch processor to protected mode
90 device busy
91 Interrupt complete
C3 Enable/Disable watchdog timeout
C4 Programmable Option (PS/2)

16h 00 Read keyboard character
01 Read keyboard status

18h ROM Basic
19h System warm boot
1Ch timer tick interrupt
1Dh Video initialization data
1Eh disk controller initialization data
1Fh Graphics Bit-map table
70h Real-Time clock

tsr_flag s Indicates this:

Bits Value Meaning
7-4 Reserved

3 1 If int_num is a graphics function.
0 Otherwise (if not a graphics function).

2-1 Reserved

0 1 Execute the requested function in the current
DOS program, not switching to the TSR context.

0 Execute the requested DOS/ROM BIOS call,
switching to the context of the TSR. This is the
typical value.

iRMX for PCs and iRMX for Windows only rqe_dos_request

System Call Reference Chapter 8 WIN & DOS Calls 743

reg_al through reg_bp
CPU registers (corresponding to AL through BP) used to pass
parameters for DOS/ROM BIOS requests. You must set reg_ah ; you
set any other registers as required by the DOS/ROM BIOS call being
accessed, and the xfer_data field.

If there are pointer values required by the DOS/ROM BIOS, you do
not need to transfer these values. The OS automatically sets the
appropriate registers using transfer buffers in a reserved area of low
memory.

xfer_data Indicates whether or not input or output data is associated with the
request. It is possible to specify two complete data transfers, each
with its own source and destination buffers. The combined maximum
amount of data is 32 Kbytes.

Value Meaning
0 The remaining fields and their contents are ignored.
0FFH The remaining fields are valid. These values are set as

required by the data transfer.

src1_xfer_pair through dest2_xfer_pair
Each of these specify which CPU register pair holds its associated
data pointer. Initialize these pairs to 0, even if you are not using
them.

Value Meaning
0 No data is passed
1 DS:BX
2 DS:DX
3 DS:DI
4 DS:SI
5 DS:BP
6 ES:BX
7 ES:DX
8 ES:DI
9 ES:SI
10 ES:BP

The _xfer_pair parameters relate to the remaining fields as follows:

Register Pair Data Pointer Byte Count
src1_xfer_pair src_ptr_1 src_count_1
src2_xfer_pair src_ptr_2 src_count_2
dest1_xfer_pair dest_ptr_1 dest_count_1;
dest2_xfer_pair dest_ptr_2 dest_count_2.

rqe_dos_request iRMX for PCs and iRMX for Windows only

744 WIN & DOS Calls Chapter 8 Windows- and DOS-Specific System Calls

src_ptr_1 through dest_ptr_2
Pointers to source and destination buffers.

✏ Note
For flat model applications only, treat the pointer parameters
src_ptr_1 through dest_ptr_2 as two separate fields each in
the structure. The first field has the name listed above and is a
near pointer. The second field has the same name with _seg
appended at the end. It is a segment selector for the pointer.

src_count_1 through dest_count_2
Specifies the number of bytes transferred.

wait_time
Specifies the time the caller is willing to wait for the requested service to start.

Value Meaning
0 Do not wait.
1-65534 Wait this number of clock intervals.
65535 Wait forever.

status_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Because the register values in the dos_data structure are changed by the
DOS/ROM BIOS call, the application must supply the values each time an
rqe_dos_request is made.

See also: Making DOS and ROM BIOS Calls from iRMX Tasks, Programming
Concepts for DOS and Windows

iRMX for PCs and iRMX for Windows only rqe_dos_request

System Call Reference Chapter 8 WIN & DOS Calls 745

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_TIME 0001H The specified timeout occurred before the
request could be started.

E_PARAM 8004H One of these:
• deletion_handler_ptr or entry_ptr do not

point to a valid executable segment.
• int_level is not valid.
• One or more of the srcn_xfer_pair,

destn_xfer_pair, src_ptr_n, dest_ptr_n,
src_count_n, or dest_count_n parameters
contains an invalid value.

• xfer_data < > 0 and all the srcn_xfer_pair
and destn_xfer_pair parameters are set to 0.

RQEGetRmxStatus iRMX for Windows only

746 WIN & DOS Calls Chapter 8 Windows- and DOS-Specific System Calls

RQEGetRmxStatus
Obtains the current status of the iRMX environment.

✏ Note
Use the syntax exactly as shown. Do not use underscores or
dollar signs ($) in this system call.

Syntax, PL/M and C

Status = RQEGetRmxStatus;

Status = RQEGetRmxStatus();

Parameter PL/M Data Type C Data Type
status WORD_32 UINT_32

Return Value
status Indicates the operational state of iRMX.

Additional Information
Issue this call from DOS applications before calling any other RTE primitive to
ensure that RTE services are available. Unpredictable results will occur if RTE
primitives are called when iRMX is not present.

Condition Codes

E_OK 0000H iRMX OS is loaded and running.

E_EXIST 0006H iRMX OS is not present (or unavailable).

■■ ■■ ■■

System Call Reference Chapter 9 Kernel Calls 747

Kernel System Calls
and Handlers 9

KN_create_alarm
Creates and starts a virtual alarm clock. You cannot make this call in a flat model
application.

Syntax, PL/M and C

alarm = KN_create_alarm (area_ptr, handler_ptr, time_limit,
flags);

alarm = KN_create_alarm (area_ptr, handler_ptr, time_limit,
flags);

Parameter Kernel Data Type
alarm KN_TOKEN
area_ptr UINT_32 far *
handler_ptr void far *
time_limit UINT_32
flags KN_FLAGS

Return Value

alarm A token for the newly created alarm.

Parameters
area_ptr

A pointer to an area that holds the alarm's state. The area must be at least
KN_ALARM_SIZE bytes long.

KN_create_alarm

748 Kernel Calls Chapter 9 Kernel System Calls and Handlers

handler_ptr
A pointer to a procedure to be executed when the time period elapses. The
mapping of the handler_ptr parameter to physical memory must remain constant
until either the alarm is deleted or until a single-shot alarm handler is invoked.
Write the entry point for an alarm interrupt handler:

alarm_handler (alarm_ptr);

Where:

alarm_ptr A pointer to the area holding the alarm state. If additional
information is associated with the alarm, use this pointer to access it.

time_limit
Specifies the number of Kernel clock ticks that must elapse before invoking the
handler:

Value Meaning
0 or 1 The alarm handler is called on the next clock tick, and for repetitive

alarms, on every clock tick. Only the remainder of the current clock tick
elapses, not necessarily one full clock tick. (The value 0 is treated the
same as 1.)

>1 The handler is called after (t - 1) + (remainder of current clock tick) ticks.
If you set the value 5 and only half a tick currently remains, the alarm is
called after 4-1/2 clock ticks.

flags Specifies the attributes of the alarm:

KN_ALARM_REPETITION_MASK
Specifies whether the alarm generates a single interrupt or repeated
interrupts. Choose one of these literals:

Literal Meaning
KN_SINGLE_SHOT The alarm object generates a single

interrupt. This alarm becomes inactive
after its initial time interval elapses, and
its memory becomes available for reuse.

KN_REPEATER The alarm object generates repeated
interrupts. This alarm resets after each
invocation of the handler so that the
handler is called again after the next
interval elapses. Repetitive alarms
generate periodic interrupts until you
explicitly delete them.

KN_create_alarm

System Call Reference Chapter 9 Kernel Calls 749

KN_HANDLER_CONVENTION_MASK
Use this literal:

Literal Meaning
KN_CALL_FAR The alarm handler is in a different

subsystem than the Kernel code and,
therefore, must make a far call to it. This
flag must be set.

Additional Information

Always specify a time limit and a handler. When the time limit elapses, the Kernel
invokes the handler, thereby simulating a timer interrupt. When the alarm handler
is invoked, interrupts are disabled and scheduling is locked. Since this call is non-
scheduling, it is safe for use by interrupt handlers.

See also: Kernel time management, System Concepts

KN_create_area

750 Kernel Calls Chapter 9 Kernel System Calls and Handlers

KN_create_area
Allocates an area of memory of the specified size from the specified memory pool.

Syntax, PL/M and C

area = KN_create_area (pool, size);

area = KN_create_area (pool, size);

Parameter Kernel Data Type
area void *
pool KN_TOKEN
size UINT_32

Return Value

area A pointer to an area of the desired size. If no area can be allocated, the Kernel
returns a null pointer.

Parameters

pool A token for the memory pool from which the area is allocated. This is the token
returned from a KN_create_pool system call.

size Specifies the size of the requested area in bytes. This value can range from
KN_MINIMUM_AREA_SIZE to the pool_largest value returned by the
KN_get_pool_attributes system call. If you specify a value smaller than
KN_MINIMUM_AREA_SIZE, the Kernel rounds the request upward to the
minimum size.

KN_create_area

System Call Reference Chapter 9 Kernel Calls 751

Additional Information

If the memory pool was created from memory aligned on a 4-byte boundary, the
area assigned with this system call will also be aligned on a 4-byte boundary. If
there is insufficient contiguous memory in the pool to satisfy the request, a null
pointer is returned.

To allocate an area of size X, an available area of size
X + KN_AREA_OVERHEAD

must exist within the pool. KN_AREA_OVERHEAD is the number of bytes of
overhead associated with each area allocated from the pool.

✏ Note
This call is blocking; use it with caution in interrupt handlers.

See also: Kernel memory management, pool and area overhead, System
Concepts

KN_create_mailbox

752 Kernel Calls Chapter 9 Kernel System Calls and Handlers

KN_create_mailbox
Creates a mailbox in a specified area of memory.

Syntax, PL/M and C

mailbox = KN_create_mailbox (area_ptr, message_size,
queue_size, flags);

mailbox = KN_create_mailbox (area_ptr, message_size,
queue_size, flags);

Parameter Kernel Data Type
mailbox KN_TOKEN
area_ptr UINT_32 far *
message_size UINT_32
queue_size UINT_32
flags KN_FLAGS

Return Value
mailbox

A token for the newly created mailbox.

Parameters
area_ptr

A pointer to the area where the mailbox is created. For better performance, align
this area on a 4-byte boundary. The size of this area must be:

KN_MAILBOX_SIZE + (message_size + KN_MAILBOX_MSG_OVERHEAD) * queue_size

Literal Meaning
KN_MAILBOX_SIZE The number of bytes required for a mailbox object,

excluding the message queue.
KN_MAILBOX_MSG
_OVERHEAD

The number of bytes of overhead for each message in the
message queue of a mailbox.

message_size
Specifies the maximum size in bytes of the messages to be exchanged through this
mailbox. Never send messages larger than the maximum message size specified
for the mailbox; if you do, the results are unpredictable. Keep messages as small as
possible. Transferring large messages can degrade the interrupt latency of the
system.

KN_create_mailbox

System Call Reference Chapter 9 Kernel Calls 753

queue_size
Specifies the maximum number of messages that can be stored in the mailbox.
Add 1 to queue_size to specify that 1 of the slots in the mailbox queue is
reserved for a high-priority message. The reserved slot ensures that at least 1 high-
priority message is accepted even when the mailbox queue is full. If the message
queue is full when a high-priority message arrives, the Kernel puts the high-priority
message into the reserved slot instead. If that reserved slot is also taken, an
E_LIMIT_EXCEEDED exception is returned. This is the same exception code that
is returned when a non-priority message cannot be sent because the mailbox queue
is full.

If you set KN_RESERVE_PRIORITY_DATA, then 1 is automatically taken away
from queue_size . When the Kernel assigns messages to the mailbox, it assigns
them in a circular fashion, assuming that the number of message slots is equal to
queue_size and the size of each message is equal to message_size .

Even if the number of messages queued at the mailbox never reaches
queue_size , the circular queuing means that all the memory allocated for
messages will be accessed at one time or another. The amount of memory you
assign to the mailbox must match the values you specify for message_size and
queue_size .

flags Specifies the type of mailbox to be created.

KN_EXCH_TYPE_MASK
Specifies whether the mailbox uses FIFO or Priority queueing.
Choose one of these literals:

Literal Meaning
KN_FIFO_QUEUEING Tasks are queued in the order that

they arrive at the mailbox.
KN_PRIORITY_QUEUEING Tasks are queued based on their task

priority.

KN_RESERVE_PRIORITY_DATA_MASK
Specifies whether the mailbox queue has a slot reserved for a high-
priority message. Choose one of these literals:

Literal Meaning
KN_DONT_RESERVE_PRIORITY
_DATA

Do not reserve a slot for a
high-priority message

KN_RESERVE_PRIORITY_DATA Reserve a slot for a high-
priority message

KN_create_mailbox

754 Kernel Calls Chapter 9 Kernel System Calls and Handlers

Additional Information

The Kernel attempts to place high-priority messages ahead of all other messages in
the regular queue. If the message queue is full, the Kernel puts the high-priority
message into the reserved slot (if you specified 1).

The purpose of the reserved slot is to ensure at least 1 high-priority message is
accepted even when the mailbox queue is full.

This call is non-scheduling and is safe for use by interrupt handlers.

KN_create_pool

System Call Reference Chapter 9 Kernel Calls 755

KN_create_pool
Creates a memory pool in a specified range of memory.

Syntax, PL/M and C

pool = KN_create_pool (pool_ptr, size);

pool = KN_create_pool (pool_ptr, size);

Parameter Kernel Data Type
pool KN_TOKEN
pool_ptr void far *
size UINT_32

Return Value

pool A token for the newly created memory pool.

Parameters
pool_ptr

A pointer to the first location in memory to be included in the new memory pool.

size Specifies the number of bytes to include in the new memory pool.

To determine the total number of bytes, consider the number and size of each area
that could conceivably be allocated at the same time. For many applications, all
areas allocated from a memory pool are of the same size. Therefore, to create a
pool that can exactly allocate N areas all of size M, an area of this size is required
for the pool. M must be greater than or equal to KN_MINIMUM_AREA_SIZE:

N * (M + KN_AREA_OVERHEAD) + KN_POOL_OVERHEAD

KN_create_pool

756 Kernel Calls Chapter 9 Kernel System Calls and Handlers

Literal Meaning
KN_AREA_OVERHEAD The number of bytes of overhead associated with

each area allocated from the pool.
KN_POOL_OVERHEAD The number of bytes of overhead in a new pool.

For a pool of X bytes, request a pool of
X + KN_POOL_OVERHEAD using the
create_pool system call. The smallest pool size
is: KN_MINIMUM_POOL_SIZE +
KN_POOL_OVERHEAD

KN_MINIMUM_POOL_SIZE The minimum number of bytes necessary for a
pool object

KN_MINIMUM_AREA_SIZE The smallest area which can be allocated from a
memory pool.

Additional Information

Only access the memory pool with the KN_create_area system call. If the
memory used to contain the pool is aligned on a 4-byte boundary, all areas
allocated from the pool are also aligned on 4-byte boundaries.

Provide the memory area for the pool by either declaring it as a program variable
or by allocating it using rq_create_segment. Using this system call will also
ensure that memory is 4-byte aligned. This call is non-scheduling and is safe for
use by interrupt handlers.

See also: Kernel memory management, pool and area overhead, System
Concepts

KN_create_semaphore

System Call Reference Chapter 9 Kernel Calls 757

KN_create_semaphore
Creates 1 of 3 kinds of semaphores with 0 or 1 initial units.

Syntax, PL/M and C

semaphore = KN_create_semaphore (area_ptr, flags);

semaphore = KN_create_semaphore (area_ptr, flags);

Parameter Kernel Data Type
semaphore KN_TOKEN
area_ptr UINT_32 far *
flags KN_FLAGS

Return Value
semaphore

A token for the newly created semaphore.

Parameters
area_ptr

A pointer to the area where the semaphore is to be created. This area must be at
least KN_SEMAPHORE_SIZE bytes long. For better performance, align the area
on a 4-byte boundary.

flags Specifies the attributes of the semaphore:

KN_EXCH_TYPE_MASK
Specifies the type of semaphore. Choose one of these literals:

Literal Meaning
KN_FIFO_QUEUEING The semaphore uses FIFO

queueing.
KN_PRIORITY_QUEUEING The semaphore uses priority

queueing.
KN_REGION The exchange is a 1 (or single) unit

region.

KN_INITIAL_SEM_STATE_MASK
Specifies the number of initial units the semaphore receives. Choose
one of these literals:

Literal Meaning
KN_ZERO_UNITS The semaphore is created with no units.
KN_ONE_UNIT The semaphore is created with 1 unit.

KN_create_semaphore

758 Kernel Calls Chapter 9 Kernel System Calls and Handlers

Additional Information

FIFO and priority semaphores can contain as many as 65,535 units, which are
placed in the semaphore by using multiple KN_send_unit calls, 1 for each unit.

If a region is created with 0 units, the creating task holds the region's unit and is
therefore the owning task. If a region is created with 1 unit, no task owns the
region until it invokes KN_receive_unit for that region. This call is non-
scheduling and is safe for use by interrupt handlers.

create_task_handler

System Call Reference Chapter 9 Kernel Calls 759

create_task_handler
Creates a task. You cannot write this handler in a flat model application.

Syntax, C

void create_task_handler (task_ptr);

Parameter Kernel Data Type
task_ptr KN_TASK_STATE far *

Parameter
task_ptr

A pointer to the area containing the state of the new task. This area can be
dereferenced using the structure KN_TASK_STATE. Do not change this structure.

See also: create_task in this manual,
KN_TASK_STATE structure in Chapter 1

Additional Information

The create_task_handler is a user-supplied procedure that the Kernel invokes
whenever it creates a task. During task creation, the Kernel invokes
create_task_handler after it initializes the new task but before the task is allowed
to execute. The handler will typically perform additional initialization to any
additional task state maintained by the application.

Set up the create_task_handler using the KN_set_handler system call.

Task creation handlers are invoked with interrupts disabled and scheduling locked.

See also: KN_set_handler

KN_delete_alarm

760 Kernel Calls Chapter 9 Kernel System Calls and Handlers

KN_delete_alarm
Deletes a previously created alarm. You cannot make this call in a flat model
application.

Syntax, PL/M and C

CALL KN_delete_alarm (alarm);

void KN_delete_alarm (alarm);

Parameter Kernel Data Type
alarm KN_TOKEN

Parameters

alarm A token for the alarm to be deleted.

Additional Information

As a result of this call, the handler associated with the alarm will not be invoked.
The area occupied by the alarm is available for reuse.

Single-shot alarms are detected when they are invoked; it is acceptable to delete
these alarms even if they have already been deleted when they executed. This
prevents race conditions in which task execution speed is responsible for error
conditions.

✏ Note
Since the Kernel does not perform parameter validation, do not
delete an alarm that has not yet been created.

See also: Kernel time management, System Concepts

KN_delete_area

System Call Reference Chapter 9 Kernel Calls 761

KN_delete_area
Returns an area of memory to the memory pool from which it was allocated.

Syntax, PL/M and C

CALL KN_delete_area (area, pool);

void KN_delete_area (area, pool);

Parameter Kernel Data Type
area void far *
pool KN_TOKEN

Parameters

area A pointer to the area to be deleted.

pool A token for the memory pool from which the area was allocated.

Additional Information

After this call, the memory assigned to the mailbox is available for reuse, and
should no longer be accessed directly by the application.

✏ Note
This call is blocking and is unsafe for use by interrupt handlers.

KN_delete_mailbox

762 Kernel Calls Chapter 9 Kernel System Calls and Handlers

KN_delete_mailbox
Deletes the specified mailbox.

Syntax, PL/M and C

CALL KN_delete_mailbox (mailbox);

void KN_delete_mailbox (mailbox);

Parameter Kernel Data Type
mailbox KN_TOKEN

Parameters
mailbox

A token for the mailbox to be deleted.

Additional Information

All tasks waiting at the mailbox are awakened and given an E_NONEXIST status,
and all messages queued at the mailbox are lost. After this call, the memory
assigned to the mailbox is available for reuse.

✏ Note
This is a signaling call. Use the KN_stop_scheduling system
call in interrupt handlers.

See also: KN_stop_scheduling

KN_delete_pool

System Call Reference Chapter 9 Kernel Calls 763

KN_delete_pool
Deletes a memory pool.

Syntax, PL/M and C

CALL KN_delete_pool (pool);

void KN_delete_pool (pool);

Parameter Kernel Data Type
pool KN_TOKEN

Parameters
pool

A KN_TOKEN for the memory pool to be deleted.

Additional Information

This system call makes the entire address range of the memory pool available for
reuse. Do not invoke any system call that uses the pool (such as KN_create_area
and KN_delete area) after the pool has been deleted.

Memory pools can be deleted even if the tasks currently have access to areas of
memory allocated from those pools. The tasks accessing the areas will still have
access to them. However, the Kernel does not prevent other tasks from accessing
these in-use areas after the pool is deleted.

This call is non-scheduling and is safe for use by interrupt handlers.

KN_delete_semaphore

764 Kernel Calls Chapter 9 Kernel System Calls and Handlers

KN_delete_semaphore
Deletes the specified semaphore.

Syntax, PL/M and C

CALL KN_delete_semaphore (semaphore);

void KN_delete_semaphore (semaphore);

Parameter Kernel Data Type
semaphore KN_TOKEN

Parameters
semaphore

A token for the semaphore to be deleted.

Additional Information

All tasks waiting at the semaphore are awakened with the E_NONEXIST status
code.

Do not delete a region semaphore while a task has access to the region or the task is
no longer guarded by a region. Any dynamic adjustments that were made to that
task's priority as a result of accessing the region are nullified, the task resumes its
static priority, and may be preempted. Because the region no longer exists, the task
must not send the region's unit back to the region.

✏ Note
This is a signaling call. Use KN_stop_scheduling in interrupt
handlers.

See also: Kernel semaphores, System Concepts

delete_task_handler

System Call Reference Chapter 9 Kernel Calls 765

delete_task_handler
The Kernel invokes this procedure when it deletes a task. You cannot write this
handler in a flat model application.

Syntax, C

void delete_task_handler (task_ptr);

Parameter Data Type
task_ptr KN_TASK_STATE far *

Parameter
task_ptr

A pointer to the area containing the state of the task to be deleted. This area can be
dereferenced using the structure KN_TASK_STATE. Do not change this structure.

See also: create_task_handler, create_task, delete_task
KN_TASK_STATE structure in Chapter 1

Additional Information

The delete_task_handler is a user-supplied procedure that the Kernel invokes
whenever it deletes a task.

Se up the delete_task_handler using the KN_set_handler system call. The
Kernel invokes the task deletion handler after the task is removed from any
scheduling queues (to prevent it from executing), but before the task state is
destroyed. The deletion handler should perform additional task cleanup to any
additional task state maintained by the application.

Task deletion handlers are invoked with interrupts disabled and with scheduling
locked.

See also: KN_set_handler

KN_get_pool_attributes

766 Kernel Calls Chapter 9 Kernel System Calls and Handlers

KN_get_pool_attributes
Provides information about the specified memory pool.

Syntax, PL/M and C

CALL KN_get_pool_attributes (pool, attributes_ptr);

void KN_get_pool_attributes (pool, attributes_ptr);

Parameter Kernel Data Type
pool KN_TOKEN
attributes_ptr KN_POOL_ATTRIBUTES_STRUC far *

Parameters

pool A token for the memory pool whose attributes are requested.

attributes_ptr
A pointer to KN_POOL_ATTRIBUTES_STRUC where the Kernel returns the
attributes of the specified memory pool. This is the format of this structure:

typedef struct {
UINT_32 pool_size;
UINT_32 pool_available;
UINT_32 pool_largest;

} KN_POOL_ATTRIBUTES_STRUC;

Where:

pool_size The total number of bytes in the memory pool; the size of the memory
supplied when the memory pool was created.

pool_available
The total number of bytes of available space in the memory pool.

pool_largest
The number of bytes in the largest contiguous available space in the
memory pool.

Additional Information

The memory pool must previously be established with the KN_create_pool system
call. This call is non-scheduling and is safe for use by interrupt handlers.

KN_get_time

System Call Reference Chapter 9 Kernel Calls 767

KN_get_time
Returns the current value of the counter that the Kernel uses to keep track of the
number of clock ticks that have occurred.

Syntax, PL/M and C

time = KN_get_time ();

time = KN_get_time ();

Parameter Kernel Data Type
time UINT_64

Parameters

time Contains the current value of the system clock.

Additional Information

The Kernel defines the UINT 64 type as a long integer type for use in some system
calls. Write modules that use these system calls in PL/M or Assembly language.
Keep 64-bit operations isolated in a separate module where the long64 switch is
enabled. For C applications where the compiler does not support 64-bit data types,
use the KNE_get_time call.

When the Kernel is initialized, the count is set to 0. You can set the count to any
value with the KN_set_time system call.

This call is non-scheduling and is safe for use by interrupt handlers.

See also: Kernel time management, System Concepts

KNE_get_time

768 Kernel Calls Chapter 9 Kernel System Calls and Handlers

KNE_get_time
Returns the current value of the counter that the Kernel uses to keep track of the
number of clock ticks that have occurred. Unlike KN_get_time, the value is
returned in a structure that allows use of 32-bit data types.

Syntax, PL/M and C

CALL KNE_get_time (time_struct);

KNE_get_time (time_struct);

Parameter Kernel Data Type
time_struct KN_TIME_STRUCT far *

Parameters
time_struct

A pointer to the following structure that contains the current value of the system
clock.

typedef struct {
UINT_32 lo;
UINT_32 hi;
} KN_TIME_STRUCT;

Where:

lo Specifies the lower 32-bits of the 64-bit time value kept by the kernel.

hi Specifies the upper 32-bits of the 64-bit time value kept by the kernel.

Additional Information

When the Kernel is initialized, the count is set to 0. You can set the count to any
value with the KNE_set_time system call.

This call is non-scheduling and is safe for use by interrupt handlers.

See also: Kernel time management, System Concepts

KN_receive_data

System Call Reference Chapter 9 Kernel Calls 769

KN_receive_data
Requests a message from the specified mailbox.

Syntax, PL/M and C

status = KN_receive_data (mailbox, data_ptr, length_ptr,
time_limit);

status = KN_receive_data (mailbox, data_ptr, length_ptr,
time_limit);

Parameter Kernel Data Type
status KN_STATUS
mailbox KN_TOKEN
data_ptr void far *
length_ptr UINT_32 far *
time_limit UINT_32

Return Value

status Indicates the result of the call. Values are:

Literal Meaning
E_OK The task received a message.
E_TIME_OUT The time limit expired.
E_NONEXIST The mailbox was deleted while the task was waiting.

✏ Note
If the mailbox is deleted before the task begins waiting, the call
will not return the E_NONEXIST message. Do not delete the
mailbox before a task begins waiting.

KN_receive_data

770 Kernel Calls Chapter 9 Kernel System Calls and Handlers

Parameters
mailbox

A token for the mailbox from which the message is requested.

data_ptr
A pointer to an area where the message is placed. The area size must be equal to
the message_size parameter specified when the mailbox was created.

length_ptr
A pointer to where the Kernel specifies the length (in bytes) of the message it
returns.

time_limit
Specifies the number of clock ticks the caller is willing to wait for a message.
Values are:

Literal Meaning
KN_DONT_WAIT The task will not wait at all.
KN_WAIT_FOREVER The task is willing to wait indefinitely.
UINT_32 value The task will wait for the specified number of clock

ticks.

Additional Information

If the mailbox currently contains at least 1 message, the oldest message or the latest
high-priority message is removed from the message queue and returned to the
calling task. If there are no messages queued at the mailbox and the task is willing
to wait, it is put to sleep and queued at the mailbox for the amount of time it is
willing to wait. The task is queued at the mailbox in either FIFO or priority-based
order, depending on the type of mailbox. The task will be awakened by 1 of 3
events:

• The task is at the head of the mailbox queue and another task invokes
KN_send_data on the mailbox.

• The number of clock ticks specified by the task expires.

• The mailbox is deleted.

✏ Note
When receiving (using the KN_receive_data system call) and
sending (using the KN_send_data system call) mailbox
messages, interrupts are disabled for the time it takes to copy the
message. A large data transfer using mailboxes may affect
interrupt latency.

This is a blocking call; use it with caution in interrupt handlers.

KN_receive_unit

System Call Reference Chapter 9 Kernel Calls 771

KN_receive_unit
Requests a unit from the specified semaphore.

Syntax, PL/M and C

status = KN_receive_unit (semaphore, time_limit);

status = KN_receive_unit (semaphore, time_limit);

Parameter Kernel Data Type
status KN_STATUS
semaphore KN_TOKEN
time_limit UINT_32

Return Value

status Indicates the result of the call. Values are:

Literal Meaning
E_OK The task received the requested unit.
E_TIME_OUT The time limit expired.
E_NONEXIST The semaphore was deleted while the task was waiting.

✏ Note
If the semaphore is deleted before the task begins waiting, the call
will not return the E_NONEXIST message. Do not delete the
semaphore before a task begins waiting.

Parameters
semaphore

A token for the semaphore from which a unit is requested.

time_limit
Specifies the number of clock ticks the calling task is willing to wait for the unit.
Choose one of these literals (or enter a value):

Literal Meaning
KN_DONT_WAIT The task will not wait at all.
KN_WAIT_FOREVER The task is willing to wait indefinitely.
UINT_32 value The task will wait for the specified number of clock

ticks.

KN_receive_unit

772 Kernel Calls Chapter 9 Kernel System Calls and Handlers

Additional Information

If the semaphore currently contains units, the number of units is reduced by 1 and
the task proceeds. If the semaphore has no units and the task is willing to wait, the
task is put to sleep and placed into the semaphore's task queue. The task will be
awakened by 1 of 3 events:

• The task is at the head of the semaphore queue and another task invokes
KN_send_unit on this semaphore.

• The number of clock ticks specified by the task expires.

• The semaphore is deleted.

✏ Note
This is a blocking call; use it with caution in interrupt handlers.

KN_reset_alarm

System Call Reference Chapter 9 Kernel Calls 773

KN_reset_alarm
Returns a previously created alarm to its creation state. You cannot make this call
in a flat model application.

Syntax, PL/M and C

CALL KN_reset_alarm (alarm);

void KN_reset_alarm (alarm);

Parameter Kernel Data Type
alarm KN_TOKEN

Parameters

alarm A token for the alarm to be reset.

Additional Information

This operation is equivalent to invoking the KN_delete_alarm system call, then
invoking the KN_create_alarm system call.

Because KN_reset_alarm may be invoked on single-shot alarms even if the alarm
has gone off, it is not necessary to synchronize between an alarm reset and the
expiration of the alarm time interval. This call is non-scheduling and is safe for use
by interrupt handlers.

See also: Kernel time management, System Concepts

KN_reset_handler

774 Kernel Calls Chapter 9 Kernel System Calls and Handlers

KN_reset_handler
Dynamically removes an application-supplied task handler. You cannot make this
call in a flat model application.

Syntax, PL/M and C

CALL KN_reset_handler (hdlr_area);

void KN_reset_handler (hdlr_area);

Parameter Kernel Data Type
hdlr_area KN_HDLR_STRUC far *

Parameters
hdlr_area

A pointer to a KN_HDLR_STRUC that sets and resets the task creation, task
deletion, task switch, and task change priority handlers dynamically.

See also: KN_set_handler system call for the format of this structure

Additional Information

This call resets the handler previously set by the KN_set_handler system call.
This call is non-scheduling and is safe for use by interrupt handlers.

KN_send_data

System Call Reference Chapter 9 Kernel Calls 775

KN_send_data
Sends a message to the specified mailbox.

Syntax, PL/M and C

status = KN_send_data (mailbox, data_ptr, length):

status = KN_send_data (mailbox, data_ptr, length):

Parameter Kernel Data Type
status KN_STATUS
mailbox KN_TOKEN
data_ptr void far *
length UINT_32

Return Value

status Indicates the result of the call. Values are:

Literal Meaning
E_OK The mailbox accepted the message.
E_LIMIT_EXCEEDED The message was rejected because the mailbox was

full.

Parameters
mailbox

A token for the mailbox where the message is sent.

data_ptr
A pointer to an area containing the message to be sent.

length
Specifies the number of bytes in the message to be sent. Its maximum allowable
value is the maximum message size specified when the mailbox was created.

KN_send_data

776 Kernel Calls Chapter 9 Kernel System Calls and Handlers

Additional Information

If a task is waiting at the mailbox, it receives the message; otherwise, the message
is queued. If the mailbox is full, an exception returns. When receiving (using the
KN_receive_data system call) and sending (using the KN_send_data system call)
mailbox messages, interrupts are disabled for the time it takes to copy the message.
A large data transfer using mailboxes may affect interrupt latency.

✏ Note
Since this is a signaling call, call KN_stop_scheduling.

See also: KN_create_mailbox

KN_send_priority_data

System Call Reference Chapter 9 Kernel Calls 777

KN_send_priority_data
Sends a high-priority message to the specified mailbox and places it at the head of
the queue.

Syntax, PL/M and C

status = KN_send_priority_data (mailbox, data_ptr, length);

status = KN_send_priority_data (mailbox, data_ptr, length);

Parameter Kernel Data Type
status KN_STATUS
mailbox KN_TOKEN
data_ptr void far *
length UINT_32

Return Value
status

Indicates the result of the call. Values are:

Literal Meaning
E_OK The mailbox accepted the message.
E_LIMIT_EXCEEDED The message was rejected because the mailbox was

full.

Parameters
mailbox

A token for the mailbox where the message is sent.

data_ptr
A pointer to an area containing the message to be sent.

length
The number of bytes in the message to be sent. This value can be no greater than
the maximum message size specified when the mailbox was created.

KN_send_priority_data

778 Kernel Calls Chapter 9 Kernel System Calls and Handlers

Additional Information

If a task is waiting at the mailbox, it receives the message; otherwise, the message
is queued. If the mailbox is full, an exception returns.

Mailboxes normally store messages in a FIFO queue. A series of
KN_send_priority_data calls results in messages being queued in LIFO order.

When you create a mailbox with KN_create_mailbox, you can specify 1 of the
slots in its queue as reserved for a high-priority message. KN_send_priority_data
can then use that slot.

See also: KN_create_mailbox

✏ Note
This is a signaling call; use KN_stop_scheduling.

KN_send_unit

System Call Reference Chapter 9 Kernel Calls 779

KN_send_unit
Adds a unit to a specified semaphore.

Syntax, PL/M and C

CALL KN_send_unit (semaphore);

void KN_send_unit (semaphore);

Parameter Kernel Data Type
semaphore KN_TOKEN

Parameters
semaphore

A token for the semaphore where the unit is sent.

Additional Information

If tasks are waiting at the semaphore, the task at the head of the queue is awakened
and given the unit.

If KN_send_unit is invoked on a semaphore that contains the maximum of 65,535
units, the number of units in the semaphore is not incremented, and the results will
be unpredictable.

✏ Note
This is a signaling call; call KN_stop_scheduling.

KN_set_handler

780 Kernel Calls Chapter 9 Kernel System Calls and Handlers

KN_set_handler
Dynamically installs a user-supplied task handler. You cannot make this call in a
flat model application.

Syntax, PL/M and C

CALL KN_set_handler (hdlr_area);

void KN_set_handler (hdlr_area);

Parameter Kernel Data Type
hdlr_area KN_HDLR_STRUC far *

Parameters
hdlr_area

A pointer to a KN_HDLR_STRUC that sets and resets the task creation, task
deletion, and task switch handlers dynamically. Its format is:

typedef struct {
UINT_32 reserved[2];
KN_FLAGS hdlr_flags;
void * hdlr_ptr;
KN_HDLR_TYPE hdlr_type;
UINT_8 hdlr_res[3];

} KN_HDLR_STRUC;

Where:

reserved Do not use.

hdlr_flags
Use this literal:

Literal Meaning
KN_CALL_FAR Should be set.

hdlr_ptr A pointer to the task handler.

hdlr_type A KN_HDLR_TYPE. Choose one:

KN_TASK_CREATION_HANDLER
KN_TASK_DELETION_HANDLER
KN_TASK_SWITCH_HANDLER

hdlr_res Do not use.

KN_set_handler

System Call Reference Chapter 9 Kernel Calls 781

✏ Note
Preserve this structure until the associated handler is reset using
the KN_reset_handler system call. Include the structure passed
to the handlers, but do not reuse the handler structure.

Additional Information

You can install multiple task handlers for creation, deletion, and task switching by
invoking KN_set_handler multiple times. This call is non-scheduling and is safe
for use by interrupt handlers.

See also: Kernel task handlers, System Concepts

KN_set_time

782 Kernel Calls Chapter 9 Kernel System Calls and Handlers

KN_set_time
Sets the value of the counter that the Kernel uses to keep track of the number of
clock ticks that have occurred.

Syntax, PL/M and C

CALL KN_set_time (time);

void KN_set_time (time);

Parameter Kernel Data Type
time UINT_64

Parameters

time Specifies the new value of the system clock.

Additional Information

The Kernel defines the UINT_64 type as a long integer type for use in some system
calls. Write modules that use these system calls in PL/M or Assembly language.
Keep 64-bit operations isolated in a separate module where the long64 switch is
enabled. For C applications where the compiler does not support 64-bit data types,
use the KNE_set_time call.

When the Kernel is initialized, the count is set to 0. You can determine the current
value of the clock by calling the KN_get_time system call.

This call is non-scheduling and is safe for use by interrupt handlers.

KNE_set_time

System Call Reference Chapter 9 Kernel Calls 783

KNE_set_time
Sets the value of the counter that the Kernel uses to keep track of the number of
clock ticks that have occurred. Unlike KN_set_time, you set the value in a
structure that allows use of 32-bit data types.

Syntax, PL/M and C

CALL KNE_set_time (time_struct);

void KNE_set_time (time_struct);

Parameter Kernel Data Type
time_struct KN_TIME_STRUCT far *

Parameters
time_struct

A pointer to the following structure that contains a value for the system clock.

typedef struct {
UINT_32 lo;
UINT_32 hi;

} KN_TIME_STRUCT;

Where:

lo Specifies the lower 32-bits of the 64-bit time value kept by the
Kernel.

hi Specifies the upper 32-bits of the 64-bit time value kept by the
Kernel.

Additional Information

When the Kernel is initialized, the count is set to 0. You can determine the current
value of the clock with the KNE_get_time system call.

This call is non-scheduling and is safe for use by interrupt handlers.

See also: Kernel time management, System Concepts

KN_sleep

784 Kernel Calls Chapter 9 Kernel System Calls and Handlers

KN_sleep
Puts the calling task to sleep for the specified number of clock ticks.

Syntax, PL/M and C

CALL KN_sleep (time_limit);

void KN_sleep (time_limit);

Parameter Kernel Data Type
time_limit UINT_32

Parameter
time_limit

Specifies the number of clock ticks for which the task is to sleep, or one of these
literals:

Literal Meaning
KN_DONT_WAIT The task will not wait at all.
KN_WAIT_FOREVER The task is willing to wait indefinitely.

KN_DONT_WAIT does not cause the running task to go to sleep. It has an effect
only if there are other ready tasks of equal priority. In that case, the running task is
made ready and put in the ready queue after all other ready tasks of equal priority.
If there are no other ready tasks of equal priority, the current task remains running.

KN_WAIT_FOREVER causes the task to sleep forever. This effectively deletes
the task but the task's memory is not released.

Additional Information

✏ Note
This is a rescheduling call and is unsafe for use by interrupt
handlers.

KN_start_scheduling

System Call Reference Chapter 9 Kernel Calls 785

KN_start_scheduling
Cancels one scheduling lock imposed by KN_stop_scheduling.

Syntax, PL/M and C

CALL KN_start_scheduling ();

void KN_start_scheduling ();

Additional Information

If the lock that is canceled is the last outstanding scheduling lock, all task state
transitions that were temporarily delayed are carried out, and the highest priority
ready task begins executing.

✏ Note
This call is in the signaling scheduling category. Call
KN_stop_scheduling in the interrupt handlers.

The Kernel sometimes stops scheduling internally, so that scheduling might not
restart immediately even though the application has canceled all the scheduling
locks that it established.

If KN_start_scheduling is invoked when scheduling is not stopped, the results are
undefined.

KN_stop_scheduling

786 Kernel Calls Chapter 9 Kernel System Calls and Handlers

KN_stop_scheduling
Temporarily locks the scheduling mechanism or places an additional lock on the
mechanism for the running task.

Syntax, PL/M and C

CALL KN_stop_scheduling ();

void KN_stop_scheduling ();

Additional Information

Any task state transitions that would move the task from the running state to the
ready state are delayed until scheduling is resumed. For example, with scheduling
stopped, if the running task sends a message to a mailbox at which a higher-priority
task is waiting, that waiting task becomes ready, but it would not become the
running task until scheduling is resumed.

The KN_stop_scheduling system call does not necessarily halt task switching. If
the running task invokes a blocking system call (such as KN_receive_data or
KN_sleep) while scheduling is stopped, the task enters the asleep or suspended
state immediately and the highest priority ready task becomes the running task.
The new task is restored with all its scheduling locks in place. When the first task
is again restored to the running state, its scheduling locks are also restored to the
level they were at the time of the block.

You can invoke stop_scheduling repeatedly when scheduling is locked.
Scheduling is resumed only when all scheduling locks are canceled. This call is
non-scheduling and is safe for use by interrupt handlers.

task_switch_handler

System Call Reference Chapter 9 Kernel Calls 787

task_switch_handler
This procedure executes whenever a task switch occurs. You cannot write this
handler in a flat model application.

Syntax, PL/M and C

void task_switch_handler (new_task_ptr);

Parameter Data Type
*new_task_ptr void

Parameter
new_task_ptr

A pointer to the area containing the state of the task that will be the next running
task. Part of this area can be dereferenced using the structure KN_TASK_STATE.
Do not change this structure.

See also: KN_TASK_STATE structure, in Chapter 1

Additional Information

The task_switch_handler is a user-supplied procedure that the Kernel invokes
whenever a task switch occurs. You can set it up using the KN_set_handler
system call.

Whenever the Kernel switches the running task, it invokes the task switch handler.
The handler is invoked in the context of the old task (the task giving up the
processor). A pointer to the new running task is supplied as a parameter to the
handler.

Task switch handlers are invoked with interrupts disabled and with scheduling
locked.

See also: KN_set_handler

■■ ■■ ■■

System Call Reference Chapter 10 Virtual Memory System Calls 789

Virtual Memory System Calls 10
rqv_allocate

Allocates physical memory to a virtual segment.

Syntax, PL/M and C

offset = rqv$allocate (vseg, size, except_ptr);

offset = rqv_allocate (vseg, size, except_ptr);

Parameter PL/M Data Type C Data Type
offset POINTER void near *
vseg TOKEN SELECTOR
size DWORD UINT_32
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value

offset A near pointer to the allocated physical memory within the virtual segment.

Parameters

vseg A token for the virtual segment. If this parameter is null and the application is flat
model, the parameter indicates the application’s virtual segment. For segmented
model applications, a null value is an error.

size The amount, in bytes, of contiguous physical memory to be allocated.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rqv_allocate

790 Virtual Memory Calls Chapter 10 Virtual Memory System Calls

Additional Information
This call is primarily used in flat model application programs. The calling task
must belong to the same job that created the virtual segment. The call
automatically rounds up size (in bytes) to a multiple of 4K. The allocated pages
are contiguous; they start and end on 4K boundaries.

The virtual segment manager finds an available space within the virtual segment
and returns a near pointer to the allocated physical memory. The call fails if size
bytes of contiguous physical memory are not available, if size exceeds the
segment size, or if there is not enough virtual address space available in the virtual
segment. The memory required for page tables is charged to the calling job's
memory pool. The first allocation to a virtual segment incurs a 4K (minimum)
overhead for at least one page table.

If vseg is a null selector (0) and the application is flat model, the application’s
virtual segment is assumed; otherwise, a null selector is an error.

Condition Codes
E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H The vseg parameter represents a segment that is
being deleted, or vseg is a null token and the
caller is not a flat model application

E_MEM 0002H There is insufficient physical memory available
to satisfy this request.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The size parameter is larger than the virtual
segment or is zero.

E_SLOT 000CH There is no room in the GDT for another
descriptor.

E_TYPE 8002H The vseg parameter is not a token for a virtual
segment.

E_VMEM 00F0H There is insufficient virtual memory available in
the virtual segment to satisfy this request.

E_VSEG 80F0H The calling task does not belong to the same job
that created the virtual segment.

rqv_allocate_at

System Call Reference Chapter 10 Virtual Memory System Calls 791

rqv_allocate_at
Allocates physical memory to a virtual segment at a specific offset.

Syntax, PL/M and C

CALL rqv$allocate$at (vseg, offset, size, except_ptr);

rqv_allocate_at (vseg, offset, size, except_ptr);

Parameter PL/M Data Type C Data Type
vseg TOKEN SELECTOR
offset POINTER void near *
size DWORD UINT_32
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters
vseg A token for the virtual segment. If this parameter is null and the application is flat

model, the parameter indicates the application’s virtual segment. For segmented
model applications, a null value is an error.

offset The location within the virtual segment where the allocated physical memory is to
begin. The offset must be on a 4 Kbyte boundary.

size The amount, in bytes, of contiguous physical memory to be allocated. If not a
multiple of 4 Kbytes, the size will be rounded up to the next 4 Kbyte boundary.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information
This call is typically used by system utilities such as the Application Loader, not by
an application. The calling task must belong to the same job that created the
virtual segment. Allocation starts within the virtual segment at offset for size
bytes (the size is rounded up to 4K pages by the call). The allocated pages are
contiguous; they start and end on 4K boundaries.

The call fails if size of contiguous physical memory are not available, if size
bytes exceeds the segment size, or if there is a collision with previously allocated
space. The memory required for page tables is charged to the calling job's memory
pool. The first allocation to a virtual segment incurs a 4K (minimum) overhead for
at least one page table.

rqv_allocate_at

792 Virtual Memory Calls Chapter 10 Virtual Memory System Calls

If vseg is a null selector (0) and the application is flat model, the application’s
virtual segment is assumed; otherwise, a null selector is an error.

Condition Codes
E_OK 0000H No exceptional conditions occurred.

E_ALIGNMENT 80F1H The offset parameter is not on a 4K boundary.

E_ALLOCATED 00F1H The requested area of the virtual segment already
has physical memory allocated to it.

E_BAD_ADDR 800FH The offset parameter is beyond the end of the
virtual segment.

E_EXIST 0006H The vseg parameter represents a segment that is
being deleted, or vseg is a null token and the
caller is not a flat model application

E_MEM 0002H There is insufficient physical memory available
to satisfy this request.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The size parameter is zero or is larger than the
virtual segment, or the size + offset is
beyond the end of the virtual segment.

E_SLOT 000CH There is no room in the GDT for another
descriptor.

E_TYPE 8002H The vseg parameter is not a token for a virtual
segment.

E_VMEM 00F0H There is insufficient virtual memory available in
the virtual segment to satisfy this request.

E_VSEG 80F0H The calling task does not belong to the same job
that created the virtual segment.

rqv_change_access

System Call Reference Chapter 10 Virtual Memory System Calls 793

rqv_change_access
Changes the access rights for physical memory within a virtual segment.

Syntax, PL/M and C

CALL rqv$change$access (vseg, offset, size, access,
except_ptr,);

rqv_change_access (vseg, offset, size, access, except_ptr);

Parameter PL/M Data Type C Data Type
vseg TOKEN SELECTOR
offset POINTER void near *
size DWORD UINT_32
access DWORD UINT_32
except_ptr POINTER to WORD_16 UINT_16 far *

Parameters

vseg A token for the virtual segment. If this parameter is null and the application is flat
model, the parameter indicates the application’s virtual segment. For segmented
model applications, a null value is an error.

offset A pointer to the location within the virtual segment where the physical memory
begins for which access rights will be changed.

size The amount, in bytes, of contiguous physical memory for which access rights will
be changed.

access
The new access rights of the memory, encoded as follows:

Bit Description
0 0 = Pages will be read/write

1 = Pages will be read-only
1-31 Reserved, set to zero.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rqv_change_access

794 Virtual Memory Calls Chapter 10 Virtual Memory System Calls

Additional Information
Rqv_change_access changes the access rights associated with the physical
memory pages within vseg starting at offset , for size number of bytes (the call
rounds both offset and size up to a 4K boundary). The call sets the attributes of
every page within this area to access . Rqv_change_access fails if offset +
size is beyond the end of the virtual segment or if there are no allocated pages at
offset .

The calling task must belong to the same job that created the virtual segment. If
vseg is a null selector (0) and the application is flat model, the application’s
virtual segment is assumed; otherwise, a null selector is an error.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH The offset parameter is beyond the end of the
virtual segment.

E_EXIST 0006H The vseg parameter represents a segment that is
being deleted, or vseg is a null token and the
caller is not a flat model application

E_NOT_ALLOCATED 00F2H There is no physical memory allocated at the
requested area of the virtual segment.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PARAM 8004H The size parameter is larger than the virtual
segment, or size is 0.

E_TYPE 8002H The vseg parameter is not a token for a virtual
segment.

E_VSEG 80F0H The calling task does not belong to the same job
that created the virtual segment.

rqv_create_segment

System Call Reference Chapter 10 Virtual Memory System Calls 795

rqv_create_segment
Creates a virtual segment with no physical memory allocated to it.

Syntax, PL/M and C

vseg_t = rqv$create$segment (vseg_size, except_ptr);

vseg_t = rqv_create_segment (vseg_size, except_ptr);

Parameter PL/M Data Type C Data Type
vseg_t TOKEN SELECTOR
vseg_size DWORD UINT_32
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value
vseg_t

A token for the newly created virtual segment.

Parameters
vseg_size

Specifies the size, in bytes, of the virtual segment.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Rqv_create_segment creates a segment where vseg_size virtual address space is
allocated but physical memory is not. Virtual memory is allocated on a 4 Mbyte
boundary, in 4 Mbyte units. Therefore, the call rounds up the vseg_size
parameter to the nearest 4 Mbyte boundary. This allows a system-wide total of up
to 1K virtual segments (minus the physical memory in the system). Use the
rq_delete_segment call to delete the virtual segment.

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_LIMIT 0004H The calling task’s job has already reached its
object limit.

rqv_create_segment

796 Virtual Memory Calls Chapter 10 Virtual Memory System Calls

E_MEM 0002H There is insufficient physical memory available
to create a virtual segment object.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SLOT 000CH There is no room in the GDT for another
descriptor.

E_VMEM 00F0H There is insufficient virtual memory available in
the system to create a virtual segment of the
specified size.

rqv_free

System Call Reference Chapter 10 Virtual Memory System Calls 797

rqv_free
Frees physical memory associated with a virtual segment.

Syntax, PL/M and C

actual = rqv$free (vseg, offset, size, except_ptr,);

actual = rqv_free (vseg, offset, size, except_ptr);

Parameter PL/M Data Type C Data Type
actual DWORD UINT_32
vseg TOKEN SELECTOR
offset POINTER void near *
size DWORD UINT_32
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value

actual The number of bytes of physical memory that were freed.

Parameters

vseg A token for the virtual segment. If this parameter is null and the application is flat
model, the parameter indicates the application’s virtual segment. For segmented
model applications, a null value is an error.

offset The location within the virtual segment where the physical memory is to be freed.

size Must be set to 0FFFFFFFFH (or -1), meaning delete all contiguous physical
memory found at offset .

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information
The deallocation deletes all contiguous physical memory that is found at offset ,
even if the contiguous block begins before offset . In other words, rqv_free
deletes all memory previously allocated from a single call to rqv_allocate or
rqv_allocate_at. All memory allocation and deallocation is performed in
contiguous memory blocks, maintaining the physically contiguous memory model
required by iRMX OS device drivers.

rqv_free

798 Virtual Memory Calls Chapter 10 Virtual Memory System Calls

If the physical memory pointed to by offset was mapped by a previous call to
rqv_map_physical, the mapping is deleted and the associated virtual memory is
freed.

The relationship between rqv_allocate and rqv_free corresponds to the
relationship between rq_create_segment and rq_delete_segment. However, you
can use rq_delete_segment instead to automatically free all physical memory
within a virtual segment. A page table is automatically freed to the calling job's
memory pool when all pages within the page are freed.

The calling task must belong to the same job that created the virtual segment. If
vseg is a null selector (0) and the application is flat model, the application’s
virtual segment is assumed; otherwise, a null selector is an error.

See also: rq_create_segment and rq_delete_segment Nucleus calls

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_BAD_ADDR 800FH The offset parameter is beyond the end of the
virtual segment.

E_EXIST 0006H The vseg parameter represents a segment that is
being deleted, or vseg is a null token and the
caller is not a flat model application

E_NOT_ALLOCATED 00F2H There is no physical memory allocated at the
requested area of the virtual segment.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H The size parameter was not set to 0FFFFFFFFH
(-1).

E_TYPE 8002H The vseg parameter is not a token for a virtual
segment.

E_VSEG 80F0H The calling task does not belong to the same job
that created the virtual segment.

rqv_map_physical

System Call Reference Chapter 10 Virtual Memory System Calls 799

rqv_map_physical
Maps physical memory into the address space within a virtual segment. This call is
the flat model equivalent of the rqe_create_descriptor call.

▲▲! CAUTION
This system call can set up an address space to refer to any area
of physical memory, even if other descriptors already refer to that
memory. Although this may be useful for aliasing purposes, do
not overlap memory accidentally.

See also: rqv_free and Nucleus call rqe_create_descriptor

Syntax, PL/M and C

offset = rqvmapphysical (vseg, abs_addr, size, except_ptr);

offset = rqv_map_physical (vseg, abs_addr, size, except_ptr);

Parameter PL/M Data Type C Data Type
offset POINTER void near *
vseg TOKEN SELECTOR
abs_addr DWORD UINT_32
size DWORD UINT_32
except_ptr POINTER to WORD_16 UINT_16 far *

Return Value

offset A near pointer to the mapped physical memory within the virtual segment.

Parameters

vseg A token for the virtual segment. If this parameter is null and the application is flat
model, the parameter indicates the application’s virtual segment. For segmented
model applications, a null value is an error.

abs_addr
Specifies a full, 32-bit physical address. This is the address where the mapping
will start. The address must be aligned on a 4K boundary.

size The amount, in bytes, of contiguous physical memory to be mapped. The amount
of memory must be a multiple of 4K.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

rqv_map_physical

800 Virtual Memory Calls Chapter 10 Virtual Memory System Calls

Additional Information
The map_physical call maps physical memory starting at abs_addr for size
bytes into the virtual segment specified by vseg . Because of hardware alignment
restrictions, abs_addr must be on a 4K boundary and size must be a multiple of
4K. Due to the critical nature of this call, the abs_addr and size parameters are
not rounded up by the call.

If vseg is a null selector (0) and the application is flat model, the application’s
virtual segment is assumed; otherwise, a null selector is an error.

Use rqv_free to delete the mapping created by this call and to free the virtual
memory associated with it. This is similar to the use of delete_segment to delete a
descriptor created with rqe_create_descriptor.

See also: rqv_free, and Nucleus calls delete_segment and
rqe_create_descriptor

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_ALIGNMENT 80F1H The abs_addr parameter is not on a 4K
boundary or size is not a multiple of 4K.

E_BAD_ADDR 800FH The offset parameter is beyond the end of the
virtual segment.

E_EXIST 0006H The vseg parameter represents a segment that is
being deleted, or vseg is a null token and the
caller is not a flat model application

E_MEM 0002H There is insufficient physical memory available
to create page table(s) for this request.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_TYPE 8002H The vseg parameter is not a token for a virtual
segment.

E_VMEM 00F0H There is insufficient virtual memory available in
the virtual segment to satisfy this request.

■■ ■■ ■■

System Call Reference Appendix A AL Examples 801

Application Loader Examples A
rqe_a_load_io_job and rqe_s_load_io_job example

/*
 * "C" examples for
 * rqe_a_load_io_job
 * rqe_s_load_io_job
 */

 /*
 * prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>
#include <rmx_def.h>

#define UNLIMITED 0xFFFFF
#define NO_DELAY 0
#define DELAY_REQ 2
#define TERMINATION_OK 0x100

 /*
 * This module is an example using two Application Loader system
 * calls: rqe_a_load_io_job and rqe_s_load_io_job. The calling
 * task's priority is the maximum allowed for its job.
 */

802 AL Examples Appendix A Application Loader Examples

main ()
{

 SELECTOR conn;
 SELECTOR aload_mbox;
 SELECTOR sload_mbox;
 SELECTOR aload_job;
 SELECTOR sload_job;
 SELECTOR aload_res_t;
 SELECTOR exit_seg_t;
 UINT_32 pool_min;
 UINT_32 pool_max;
 UINT_8 priority;
 UINT_16 status;
 UINT_16 job_flags;
 UINT_16 task_flags;
 char my_name [] = {7,"my_prog"};

 A_LOAD_LRS_STRUCT far * aload_res_seg;
 EXCEPTION_STRUCT except_handler;

 /*
 * Initialize exception handler structure and create
 * mailboxes for two Application Loader calls.
 */

 except_handler.exception_handler_ptr = NULL;
 except_handler.exception_mode = 0;

 sload_mbox= rq_create_mailbox ((UINT_16) FIFO_QUEUING, &status);
 if (status != E_OK) goto exit;

 /*
 * Rqe_a_load_io_job. Obtain a connection to the file, then
 * prepare the input parameters. Let the Application Loader
 * decide the memory pool size for the job. Do not allow the
 * new job to borrow memory from its parent; set max = to
 * min. The loaded code starts execution as soon as it is in
 * memory and has the maximum priority of its parent.
 */

System Call Reference Appendix A AL Examples 803

 conn = rq_s_attach_file (my_name, &status);
 if (status != E_OK) goto exit;

 pool_min = 0;
 pool_max = 0;
 priority = 0;
 job_flags = 0;
 task_flags = NO_DELAY;

 aload_job = rqe_a_load_io_job (conn,
 pool_min,
 pool_max,
 (EXCEPTIONSTRUCT far *) &except_handler,
 job_flags,
 priority,
 task_flags,
 aload_mbox,
 &status);
 if (status != E_OK) goto exit;

 /*
 * Rqe_a_load_io_job is asynchronous, so only its sequential
 * part is is executed and loading is still in progress.
 * Prepare the parameters for rqe_s_load_io_job and call it.
 * Let the Application Loader decide memory pool size, but
 * let the job borrow memory from its parent. Specify delay
 * to control execution of the code. The Application Loader
 * calls will probably load the same file concurrently.
 */

 pool_max = UNLIMITED;
 task_flags = DELAY_REQ;

 aload_job = rqe_s_load_io_job (my_name,
 pool_min,
 pool_max,
 (EXCEPTIONSTRUCT far *) &except_handler,
 job_flags,
 priority,
 task_flags,
 sload_mbox,
 &status);
 if (status != E_OK) goto exit;

804 AL Examples Appendix A Application Loader Examples

 /*
 * Rqe_s_load_io_job has completed. Wait at the specified
 * mailbox for results about rqe_a_load_io_job.
 */

 aload_res_t = rq_receive_message (aload_mbox,
 (UINT_16) WAIT_FOREVER,
 NULL,
 &status);
 if (status != E_OK) goto exit;

 /*
 * Inspect the the Loader Result Segment to determine the
 * allocated memory pool size, or if an error occurred, see
 * its nature.
 */

 aload_res_seg = buildptr(aload_res_t,(void near*) 0);

 if (aload_res_seg->except_code != TERMINATION_OK) goto exit;

 /*
 * Rqe_a_load_io_job completed successfully, and the loaded
 * program is waiting for the CPU since no delay was
 * requested. The second copy of the program is waiting in
 * memory for permission to start. Let it start.
 */

 rq_start_io_job (sload_job, &status);

 /*
 * The two loaded programs are running. Wait for them to
 * terminate using rq_exit_io_job, then kill them.
 */

 exit_seg_t = rq_receive_message (aload_mbox,
 (UINT_16) WAIT_FOREVER,
 NULL,
 &status);
 if (status != E_OK) goto exit;

System Call Reference Appendix A AL Examples 805

 /*
 * Examine the exit message.
 */

 rq_delete_job (aload_job, &status);
 if (status != E_OK) goto exit;
 exit_seg_t = rq_receive_message (sload_mbox,
 (UINT_16) WAIT_FOREVER,
 NULL,
 &status);
 if (status != E_OK) goto exit;

 rq_delete_job (sload_job, &status);
 if (status != E_OK) goto exit;

 /*
 * Exit of program.
 */

exit:
 rq_exit_io_job ((UINT_16) 0, NULL, &status);
 if (status != E_OK) {}

 /*
 * The end. If an error was detected in this module,
 * recovery can be attempted, a message can be printed to
 * the terminal, or the program can just terminate.
 */

}

■■ ■■ ■■

System Call Reference Appendix B NUC Examples 807

Nucleus Examples B
Examples using these calls are included here:

rqe_create_descriptor
rq_create_extension
rqe_create_job
rq_create_mailbox
rq_create_region
rq_create_segment
rq_create_semaphore
rq_create_task
rq_delete_job
rq_force_delete
rqe_get_address
rq_get_exception_handler
rqe_get_pool_attrib
rq_get_pool_attrib
rq_get_task_tokens
rq_get_type
rqe_offspring
rq_offspring
rq_receive_data
rq_receive_message
rq_receive_units
rqe_set_os_extension
rq_set_pool_min

See also: :rmx:demo/c/interrupt directory for demos using
rq_signal_interrupt , rq_reset_interrupt , rqe_timed_interrupt , and
rq_set_interrupt

NUC Examples Appendix B Nucleus Examples808

rqe_create_descriptor example

/*
 * "C" example for
 * rqe_create_descriptor
 * rqe_change_descriptor
 * rqe_delete_descriptor
 *
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>

main ()
{

 SELECTOR desc_token;
 UINT_32 abs_addr;
 UINT_32 seg_size;
 UINT_16 status;

 /*
 * The absolute address of the memory area being given an
 * address is 2M bytes.
 */

 abs_addr = 0x200000;

 /*
 * The size of the block is 256 bytes.
 */

 seg_size = 256;

System Call Reference Appendix B NUC Examples 809

 /*
 * The token desc_token is returned when the calling task
 * invokes create_descriptor.
 */

 desc_token = rqe_create_descriptor (abs_addr,
 seg_size,
 &status);

 /*
 * The absolute address of the memory area is changed
 * to 10M bytes.
 */

 abs_addr = 0xA00000;

 /*
 * The size of the requested descriptor is 512 bytes.
 */

 seg_size = 512;

 /*
 * Change the position of the descriptor.
 */

 rqe_change_descriptor (desc_token,
 abs_addr,
 seg_size,
 &status);

 /*
 * When the descriptor is no longer needed, it may be
 * deleted by a task that knows the descriptor token.
 */

 rqe_delete_descriptor (desc_token, &status);

}

NUC Examples Appendix B Nucleus Examples810

rq_create_extension example

/*
 * "C" example for
 * rq_create_extension
 * rq_delete_extension
 *
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>

main ()
{

 SELECTOR extension;
 UINT_16 type_code;
 SELECTOR deletion_mailbox;
 UINT_16 status;

 /*
 * Supply a valid value for a new type.
 */

 type_code = 0x8000;

 /*
 * No deletion mailbox is desired for this new type.
 */

 deletion_mailbox = (SELECTOR)NULL;

System Call Reference Appendix B NUC Examples 811

 /*
 * To delete an extension, a task must have the token
 * for that extension. In this example, the needed token
 * is known because the calling task creates the extension.
 */

 extension = rq_create_extension (type_code,
 deletion_mailbox,
 &status);

 /*
 * When the extension is no longer needed, it may be deleted
 * by any task that knows the token for the extension.
 */

 rq_delete_extension (extension, &status);

}

NUC Examples Appendix B Nucleus Examples812

rqe_create_job example

/*
 * "C" example for rqe_create_job
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>
#include <rmx_def.h>

 /*
 * Dummy task for job creation.
 */

void initial_task (void)
{}

 /*
 * Main task to create the job.
 */

main ()
{

 SELECTOR job;
 UINT_16 directory_size;
 SELECTOR param_obj;
 UINT_32 pool_min;
 UINT_32 pool_max;
 UINT_16 max_objects;
 UINT_16 max_tasks;
 UINT_8 max_priority;
 UINT_16 job_flags;
 UINT_8 task_priority;
 SELECTOR data_seg;
 UINT_16 far * stack_ptr;
 UINT_32 stack_size;
 UINT_16 task_flags;
 UINT_16 status;

System Call Reference Appendix B NUC Examples 813

 EXCEPTIONSTRUCT far * except_handler;
 void (far *start_address);

 /*
 * Set up the create job parameters using the following
 * characteristics: 10 entries in object directory, new job
 * has no parameter object, min 0x1ff, max 0xffff, 16-byte
 * paragraphs in job pool, no limit to number of objects, 10
 * tasks can exist simultaneously, inherit max priority of
 * parent, use system default except handler, parameter
 * validation is on, set init task to max priority, points
 * to first instruction of initial task, init task sets up
 * own data segment, Nucleus allocates stack, 1024 bytes in
 * stack of initial task, no floating-point instructions.
 */

 directory_size = 10;
 param_obj = NULL_TOKEN;
 pool_min = 0x1FF;
 pool_max = 0xFFFFF;
 max_objects = 0xFFFF;
 max_tasks = 10;
 max_priority = 0;
 except_handler = NULL;
 job_flags = 0;
 task_priority = 0;
 start_address = &initial_task;
 data_seg = NULL_TOKEN;
 stack_ptr = NULL;
 stack_size = 1024;
 task_flags = 0;

 /*
 * Create the job.
 */

NUC Examples Appendix B Nucleus Examples814

 job = rqe_create_job (directory_size,
 param_obj,
 pool_min,
 pool_max,
 max_objects,
 max_tasks,
 max_priority,
 except_handler,
 job_flags,
 task_priority,
 start_address,
 data_seg,
 stack_ptr,
 stack_size,
 task_flags,
 &status);

}

System Call Reference Appendix B NUC Examples 815

rq_create_mailbox example

/*
 * "C" examples for
 * rq_create_mailbox
 * rq_delete_mailbox
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>
#include <rmx_def.h>

 /*
 * Main task to create, delete the mailbox.
 */

main ()
{

 SELECTOR mailbox;
 UINT_16 mailbox_flags;
 UINT_16 status;

 /*
 * Designates a high performance object queue
 * of eight objects, first-in/first-out task queue.
 */

 mailbox_flags = FIFO_QUEUING;

 /*
 * The token is returned when the calling task invokes
 * create_mailbox.
 */

 mailbox = rq_create_mailbox (mailbox_flags, &status);

NUC Examples Appendix B Nucleus Examples816

 /*
 * To delete a mailbox, a task must have the token for that
 * mailbox. In this example, the needed token is known
 * because the calling task creates the mailbox. When the
 * mailbox is not needed, it may be deleted.
 */

 rq_delete_mailbox (mailbox, &status);

}

System Call Reference Appendix B NUC Examples 817

rq_create_region example

/*
 * "C" examples for
 * rq_create_region
 * rq_accept_control
 * rq_send_control
 * rq_receive_control
 * rq_delete_region
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>
#include <rmx_def.h>

 /*
 * Main task to create the region.
 */

main ()
{

 SELECTOR region;
 UINT_16 region_flags;
 UINT_16 status;

 /*
 * To access the data within a region, a task must have the
 * token for that region. In this example, the needed token
 * is known because the calling task creates the region.
 * This is created to use the priority based queuing scheme.
 */

 region_flags = PRIOR_QUEUING;

 region = rq_create_region (region_flags, &status);

NUC Examples Appendix B Nucleus Examples818

 /*
 * At some point in the task, access is needed to the data
 * protected by the region. The calling task invokes
 * accept_control and obtains access to the data.
 */

 rq_accept_control (region, &status);

 /*
 * When the task is ready to relinquish access to the data
 * protected by the region, it invokes send_control.
 */

 rq_send_control (&status);

 /*
 * When access to the data protected by a region is needed
 * and the calling task is willing to wait, it may invoke
 * receive_control.
 */

 rq_receive_control (region, &status);

 /*
 * When the task is ready, it invokes send_control.
 */

 rq_send_control (&status);

 /*
 * When the region is no longer needed, it may be deleted by
 * any task that knows the token for the region.
 */

 rq_delete_region (region, &status);

}

System Call Reference Appendix B NUC Examples 819

rq_create_segment example

/*
 * "C" examples for
 * rq_create_segment
 * rqe_change_object_access
 * rq_delete_segment
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>

 /*
 * Main task to create, change access, and delete segment.
 */

main ()
{

 SELECTOR segment;
 UINT_32 seg_size;
 UINT_8 access;
 UINT_8 limit_mode;
 UINT_16 status;

 /*
 * The size of the requested segment is 256 bytes.
 */

 seg_size = 256;

 /*
 * The token is returned when the calling task invokes
 * create segment.
 */

 segment = rq_create_segment (seg_size, &status);

NUC Examples Appendix B Nucleus Examples820

 /*
 * The access rights are changed to make a writable data
 * segment present in memory, and not accessed. Single byte
 * granularity.
 */

 access = 0x92;
 limit_mode = 0;

 rqe_change_object_access (segment,
 access,
 limit_mode,
 &status);

 /*
 * When the segment is no longer needed, it may be deleted
 * by any task that knows the token for the segment.
 */

 rq_delete_segment (segment, &status);

}

System Call Reference Appendix B NUC Examples 821

rq_create_semaphore example

/*
 * "C" examples for
 * rq_create_semaphore
 * rq_delete_semaphore
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>

 /*
 * Main task to create and delete semaphore.
 */

main ()
{

 SELECTOR semaphore;
 UINT_16 semaphore_flags;
 UINT_16 initial_value;
 UINT_16 max_value;
 UINT_16 status;

 /*
 * The new semaphore has one initial unit,
 * and can have a maximum of 16 units,
 * and is designated as a first-in/first-out task queue.
 */

 initial_value = 1;
 max_value = 0x10;
 semaphore_flags = 0;

NUC Examples Appendix B Nucleus Examples822

 /*
 * The token is returned when the calling task
 * invokes create_semaphore.
 */

 semaphore = rq_create_semaphore (initial_value,
 max_value,
 semaphore_flags,
 &status);

 /*
 * To delete a semaphore, a task must have the token for
 * that semaphore. In this example, the needed token is
 * known because the calling task creates the semaphore.
 */

 rq_delete_semaphore (semaphore, &status);

}

System Call Reference Appendix B NUC Examples 823

rq_create_task example

/*
 * "C" examples for
 * rq_create_task
 * rq_suspend_task
 * rq_resume_task
 * rq_catalog_object
 * rq_uncatalog_object
 * rq_set_priority
 * rqe_set_max_priority
 * rq_get_priority
 * rq_sleep
 * rq_delete_task
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>
#include <rmx_def.h>

 /*
 * Bind your taskcode to this demo.
 */

extern void taskcode (void);

 /*
 * Main task to create and delete task.
 */

NUC Examples Appendix B Nucleus Examples824

main ()
{

 SELECTOR task;
 SELECTOR job;
 SELECTOR calling_task_job;
 UINT_8 priority;
 UINT_8 selection;
 void far * start_address;
 SELECTOR data_seg;
 UINT_16 far * stack_ptr;
 UINT_32 stack_size;
 UINT_16 task_flags;
 UINT_16 status;
 char taskname [] = {9,"TASKCODE"};

 /*
 * Parameters for the create task.
 * Task sets up own data seg, automatic stack allocation,
 * no floating point instructions.
 */

 start_address = taskcode;
 data_seg = NULL_TOKEN;
 stack_ptr = NULL;
 task_flags = 0;
 priority = 200;
 stack_size = 512;

 /*
 * Create a non-interrupt task whose code is
 * labeled TASKCODE.
 */

 task = rq_create_task (priority,
 start_address,
 data_seg,
 stack_ptr,
 stack_size,
 task_flags,
 &status);

System Call Reference Appendix B NUC Examples 825

 /*
 * To use suspend_task, a task must know the token for that
 * task. In this example, the needed token is known because
 * the calling task creates the new task. Suspend_task
 * increases by one the suspension depth of the new task.
 */

 rq_suspend_task (task, &status);

 /*
 * Using the token for the suspended task (whose code is
 * labeled TASKCODE), the calling task invokes resume_task
 * to decrease by one the suspension depth of the suspended
 * task.
 */

 rq_resume_task (task, &status);

 /*
 * The calling task in this example does not need to invoke
 * catalog_object to ensure the successful use of
 * set_priority. To allow other tasks access to the new
 * task, however, requires that the task's object token be
 * cataloged.
 */

 job = NULL_TOKEN;
 rq_catalog_object (job, task, taskname, &status);

 /*
 * The new task (whose code is labeled TASKCODE) is not an
 * interrupt task, so its priority may be changed
 * dynamically by invoking set_priority.
 */

 priority = 166;
 rq_set_priority (task, priority, &status);

NUC Examples Appendix B Nucleus Examples826

 /*
 * If the need for the higher priority is no longer present,
 * invoke set_priority a second time to change the priority
 * back to its original priority.
 */

 priority = 200;
 rq_set_priority (task, priority, &status);

 /*
 * Try to set the task priority to more than the job's max
 * priority. This will cause an E_LIMIT exception.
 */

 priority = 128 - 10;
 rq_set_priority (task, priority, &status);

 /*
 * If the rq_set_priority call causes an E_LIMIT condition,
 * use rqe_set_max_priority to raise the job's maximum
 * priority.
 */

 if (status == E_LIMIT)
 {
 priority = 128 - 20;
 calling_task_job = NULL_TOKEN;
 rqe_set_max_priority (calling_task_job, priority, &status);
 priority = 128 - 10;
 rq_set_priority (task, priority, &status);
 }

 /*
 * Get_priority returns the priority of the calling task.
 */

 calling_task_job = NULL_TOKEN;
 priority = rq_get_priority (calling_task_job, &status);

System Call Reference Appendix B NUC Examples 827

 /*
 * Invoke sleep to put the calling task in the asleep
 * state for 100 (1 second) clock ticks.
 */

 rq_sleep ((UINT_16) 100, &status);

 /*
 * Remove the task token from the object directory.
 */

 rq_uncatalog_object (job, taskname, &status);

 /*
 * To use delete_task, a task must know the token for the
 * task to be deleted. In this example, the needed token
 * is known because the calling task creates the new task.
 * Any task that knows this task's token may delete the
 * task.
 */

 rq_delete_task (task, &status);

}

NUC Examples Appendix B Nucleus Examples828

rq_delete_job example

/*
 * "C" examples for rq_delete_job
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>
#include <rmx_def.h>

 /*
 * Main task to delete job.
 */

main ()
{

 SELECTOR job;
 UINT_16 status;

 /*
 * Set job to calling task's job.
 */

 job = NULL_TOKEN;

 /*
 * If you set the job parameter to (SELECTOR)NULL,
 * delete_job will delete the calling task's job.
 */

 rq_delete_job (job, &status);

}

System Call Reference Appendix B NUC Examples 829

rq_force_delete example

/*
 * "C" examples for
 * rq_force_delete
 * rq_create_semaphore
 * rq_disable_deletion
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>
#include <rmx_def.h>

 /*
 * Main task to force deletion.
 */

main ()
{

 SELECTOR semaphore;
 SELECTOR extension;
 UINT_16 semaphore_flags;
 UINT_16 initial_value;
 UINT_16 max_value;
 UINT_16 status;

 /*
 * The new semaphore has one initial unit,
 * and can have a maximum of 16 units,
 * and is designated as a first-in/first-out task queue.
 */

 initial_value = 1;
 max_value = 0x10;
 semaphore_flags = 0;

NUC Examples Appendix B Nucleus Examples830

 /*
 * In this example, the calling task creates the object
 * to become immune to deletion. Create_semaphore is
 * invoked by the calling task to create a semaphore.
 */

 semaphore = rq_create_semaphore (initial_value,
 max_value,
 semaphore_flags,
 &status);

 /*
 * Using the semaphore token, the calling task invokes
 * disable_deletion to increase the disabling depth by
 * one. This makes the semaphore immune to ordinary
 * deletion.
 */

 rq_disable_deletion (semaphore, &status);

 /*
 * To delete the semaphore, the calling task invokes
 * force_delete. This call deletes the semaphore even
 * though the disabling depth of the semaphore is one.
 * There is no extension object, so set the extension
 * parameter to NULL.
 */

 extension = NULL_TOKEN;
 rq_force_delete (extension, semaphore, &status);

}

System Call Reference Appendix B NUC Examples 831

rqe_get_address example

/*
 * "C" examples for
 * rqe_get_address
 * rq_create_segment
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>

 /*
 * Main task using rqe_get_address to create a segment,
 * convert the segment's SELECTOR to a pointer, and
 * return the physical address of the segment.
 */

main ()
{

 SELECTOR segment;
 UINT_32 seg_size;
 void far * log_addr;
 UINT_32 phys_addr;
 UINT_16 status;

 /*
 * The size of the requested segment is 256 bytes.
 */

 seg_size = 0256;

 /*
 * The token is returned when the calling task invokes
 * create segment.
 */

NUC Examples Appendix B Nucleus Examples832

segment = rq_create_segment (seg_size, &status);

 /*
 * The segment SELECTOR is converted to a pointer.
 */

 log_addr = buildptr (segment, (void near*) 0);

 /*
 * The pointer with the logical address is used to
 * get the physical address.
 */

 phys_addr = rqe_get_address (log_addr, &status);

}

System Call Reference Appendix B NUC Examples 833

rq_get_exception_handler example

/*
 * "C" examples for
 * rq_get_exception_handler
 * rq_set_except_handler
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>

 /*
 * Bind your exception_handler to this demo.
 */

extern void exception_handler ();

 /*
 * Main task to use get and set exception handler.
 */

main ()
{

 EXCEPTIONSTRUCT new_x_handler;
 EXCEPTIONSTRUCT x_handler;
 UINT_16 status;

 /*
 * The address of the calling task's exception handler and
 * the value of the task's exception mode (when to pass
 * control to the exception handler) are both returned when
 * the calling task invokes get_exception_handler.
 */

 rq_get_exception_handler (&x_handler, &status);

NUC Examples Appendix B Nucleus Examples834

/*
 * Set up the parameters for new exception handler,
 * all exceptions.
 */

 new_x_handler.exceptionhandlerptr = exception_handler;
 new_x_handler.exceptionmode = 3;

 /*
 * The calling task may invoke set_exception_handler to
 * first set a new exception handler and then to later reset
 * the old exception handler.
 */

 rq_set_exception_handler (&new_x_handler, &status);

 /*
 * No longer needing the new exception handler, the calling
 * task uses the address and mode of the old exception
 * handler to return exception handling to its original
 * exception handler.
 */

 rq_set_exception_handler (&x_handler, &status);

}

System Call Reference Appendix B NUC Examples 835

rqe_get_pool_attrib example

/*
 * "C" examples for rqe_get_pool_attrib
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>
#include <rmx_def.h>

 /*
 * Main task to use rqe_get_pool_attrib.
 */

main ()
{

 UINT_16 status;
 EPOOLATTRIBSTRUCT mem_pool;

 /*
 * Set the calling task's job as the calling job.
 */

 mem_pool.targetjob = NULL_TOKEN;

 /*
 * The parent job's token, the maximum and minimum size
 * of the memory pool, the original value of mem_pool_min,
 * and the amount of allocated, available, and borrowed
 * memory in the memory pool of the calling task's job are
 * all returned when the task invokes rqe_get_pool_attrib.
 */

 rqe_get_pool_attrib (&mem_pool, &status);

}

NUC Examples Appendix B Nucleus Examples836

rq_get_pool_attrib example

/*
 * "C" examples for rq_get_pool_attrib
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>

 /*
 * Main task to use rq_get_pool_attrib.
 */

main ()
{

 UINT_16 status;
 POOLATTRIBSTRUCT mem_pool;

 /*
 * The maximum and minimum size of the memory pool,
 * the original value of the minimum pool size, and
 * the allocated and available number of 16-byte
 * paragraphs in the memory pool of the calling
 * task's job are all returned when the calling task
 * invokes get_pool_attrib.
 */

 rq_get_pool_attrib (&mem_pool, &status);

}

System Call Reference Appendix B NUC Examples 837

rq_get_task_tokens example

/*
 * "C" examples for
 * rq_get_task_tokens
 * rq_disable_deletion
 * rq_enable_deletion
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>

 /*
 * Main task to disable and enable deletion.
 */

main ()
{

 SELECTOR task;
 UINT_16 status;
 UINT_8 selection;

 /*
 * In this example, the calling task will be the object
 * to become immune to deletion. Get_task_token is invoked
 * by the calling task to obtain its own token.
 */

 selection = 0;
 task = rq_get_task_tokens (selection, &status);

 /*
 * Using its own token, the calling task invokes
 * disable_deletion to increase its own disabling depth by
 * one. This makes the calling task immune to ordinary
 * deletion.
 */

NUC Examples Appendix B Nucleus Examples838

 rq_disable_deletion (task, &status);

 /*
 * In order to allow itself to be deleted, the calling task
 * invokes enable_deletion. This call decreases by one the
 * disabling depth of an object. In this example, the
 * object is the calling task.
 */

 rq_enable_deletion (task, &status);

}

System Call Reference Appendix B NUC Examples 839

rq_get_type example

/*
 * "C" examples for
 * rq_get_type
 * rq_lookup_object
 * rq_receive_message
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>
#include <rmx_def.h>

 /*
 * Main task to use rq_get_type.
 */

main ()
{

 UINT_16 type_code;
 SELECTOR object;
 SELECTOR job;
 SELECTOR mailbox;
 char name[] = {3,"MBX"};
 UINT_16 time_limit;
 SELECTOR response;
 UINT_16 status;

 /*
 * To invoke get_type, the calling task must have the
 * token for an object. In this example, the calling
 * task invokes lookup_object and then receive_message
 * to receive the token for an object of unknown type
 * (object_token).
 */

NUC Examples Appendix B Nucleus Examples840

 job = NULL_TOKEN;
 time_limit = WAIT_FOREVER;
 mailbox = rq_lookup_object (job, name, time_limit, &status);

 /*
 * Receive_message returns object_token to the calling
 * task after the calling task invoked lookup_object to
 * receive the token for the mailbox named 'MBX'. 'MBX'
 * had been designated as the mailbox another task would
 * use to send an object.
 */

 object = rq_receive_message (mailbox,
 time_limit,
 (SELECTOR far *)&response,
 &status);

 /*
 * Using the type code returned by get_type, the calling
 * task can find out if the object is a job, task, mailbox,
 * region, segment, semaphore, extension, or composite.
 */

 type_code = rq_get_type (object, &status);

}

System Call Reference Appendix B NUC Examples 841

rqe_offspring example

/*
 * "C" examples for rqe_offspring
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>
#include <rmx_def.h>

 /*
 * Main task to use rqe_offspring.
 */

main ()
{

 SELECTOR job;
 OFFSPRINGSTRUCT list;
 UINT_16 status;

 /*
 * In this example, the calling task invokes
 * rqe_offspring to obtain a list of up to 20
 * tokens for the jobs that are the immediate
 * children of the calling task's job.
 */

 job = NULL_TOKEN;
 list.maxnum = 20;
 rqe_offspring (job, &list, &status);

}

NUC Examples Appendix B Nucleus Examples842

rq_offspring example

/*
 * "C" examples for rq_offspring
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>
#include <rmx_def.h>

 /*
 * Main task to use rq_offspring.
 */

main ()
{

 SELECTOR job;
 SELECTOR token_list;
 UINT_16 status;

 /*
 * In this example, the calling task invokes offspring to
 * obtain a token for a segment. This segment contains the
 * tokens for jobs that are immediate children of the
 * calling task's job.
 */

 job = NULL_TOKEN;
 token_list = rq_offspring (job, &status);

}

System Call Reference Appendix B NUC Examples 843

rq_receive_data example

/*
 * "C" examples for
 * rq_receive_data
 * rq_send_data
 * rq_lookup_object
 * rq_catolog_object
 * rq_create_mailbox
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>
#include <rmx_def.h>

#define BUF_SIZE 128

 /*
 * Procedure to create, catolog, and send data to mailbox.
 */

start_mail ()
{

 UINT_16 actual;
 UINT_16 mailbox_flags;
 SELECTOR job;
 SELECTOR mailbox;
 char name[] = {3,"MBX"};
 UINT_16 time_limit;
 char send_message[BUF_SIZE];
 UINT_16 status;

 /*
 * Create and catalog a data mailbox.
 */

 mailbox_flags = 0x20;
 job = NULL_TOKEN;

NUC Examples Appendix B Nucleus Examples844

 /*
 * The calling task creates a mailbox and catalogs the
 * mailbox token. The calling task then sends message
 * data to the mailbox.
 */

 mailbox = rq_create_mailbox (mailbox_flags, &status);

 /*
 * It is not mandatory for the calling task to catalog
 * the mailbox token to send a message. It is necessary,
 * however, to catalog (or communicate) the mailbox
 * token if another task is to receive the message.
 */

 rq_catalog_object (job, mailbox, name, &status);

 /*
 * The calling task invokes send_data to send a message
 * to the specified mailbox.
 */

 rq_send_data (mailbox, &send_message, (UINT_16) 18, &status);

}

 /*
 * In this example, the calling task looks up the token
 * for the mailbox prior to invoking receive_data.
 */

receive_mail ()
{

 UINT_16 actual;
 SELECTOR job;
 SELECTOR mailbox;
 char name[] = {3,"MBX"};
 UINT_16 time_limit;
 char receive_message[BUF_SIZE];
 UINT_16 status;

System Call Reference Appendix B NUC Examples 845

 /*
 * Set up the parameters for look up.
 */

 job = NULL_TOKEN;
 time_limit = WAIT_FOREVER;
 mailbox = rq_lookup_object (job, name, time_limit, &status);

 /*
 * Knowing the token for the mailbox, the calling task
 * can wait for a message from this mailbox by invoking
 * receive_data.
 */

 actual = rq_receive_data (mailbox,
 &receive_message,
 time_limit,
 &status);

}

main ()
{

 start_mail ();

}

NUC Examples Appendix B Nucleus Examples846

rq_receive_message example

/*
 * "C" examples for
 * rq_receive_message
 * rq_send_message
 * rq_lookup_object
 * rq_catolog_object
 * rq_create_segment
 * rq_create_mailbox
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>
#include <rmx_def.h>

 /*
 * Task to use rq_send_message.
 */

send ()
{

 UINT_16 mailbox_flags;
 UINT_32 seg_size;
 SELECTOR job;
 SELECTOR mailbox;
 SELECTOR segment;
 SELECTOR no_response;
 char name[] = {3,"MBX"};
 UINT_16 time_limit;
 UINT_16 status;

System Call Reference Appendix B NUC Examples 847

 /*
 * The calling task creates a segment and a mailbox
 * and catalogs the mailbox token. The calling task then
 * uses the tokens for both objects to send a message.
 */

 seg_size = 64;
 mailbox_flags = FIFO_QUEUING;
 no_response = NULL_TOKEN;
 job = NULL_TOKEN;

 segment = rq_create_segment (seg_size, &status);
 mailbox = rq_create_mailbox (mailbox_flags, &status);

 /*
 * It is not mandatory for the calling task to catalog
 * the mailbox token to send a message. It is necessary,
 * however, to catalog (or communicate) the mailbox
 * token if another task is to receive the message.
 */

 rq_catalog_object (job, mailbox, name, &status);

 /*
 * The calling task invokes send_message to send the
 * token for the segment to the specified mailbox.
 */

 rq_send_message (mailbox, segment, no_response, &status);
}

NUC Examples Appendix B Nucleus Examples848

 /*
 * In this example the calling task looks up the token
 * for the mailbox prior to invoking receive_message.
 */

receive ()
{

 SELECTOR job;
 SELECTOR mailbox;
 SELECTOR object;
 SELECTOR response;
 char name[] = {3,"MBX"};
 UINT_16 time_limit;
 UINT_16 status;

 /*
 * The calling task creates a segment and a mailbox
 * and catalogs the mailbox token. The calling task then
 * uses the tokens for both objects to send a message.
 */

 job = NULL_TOKEN;
 mailbox = rq_lookup_object (job, name, time_limit, &status);

 /*
 * Knowing the token for the mailbox, the calling task
 * can wait for a message from this mailbox by invoking
 * receive_message.
 */

 object = rq_receive_message (mailbox,
 time_limit,
 (SELECTOR far *)&response,
 &status);

}

main ()
{

 send ();
}

System Call Reference Appendix B NUC Examples 849

rq_receive_units example

/*
 * "C" examples for
 * rq_receive_units
 * rq_send_units
 * rq_lookup_object
 * rq_catolog_object
 * rq_create_semaphore
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>
#include <rmx_def.h>

 /*
 * Send semaphore units.
 */

send_sema ()
{

 UINT_16 units;
 UINT_16 semaphore_flags;
 UINT_16 initial_value;
 UINT_16 max_value;
 SELECTOR job;
 SELECTOR semaphore;
 char name[] = {5,"SEMA4"};
 UINT_16 time_limit;
 UINT_16 status;

 /*
 * The calling task creates a semaphore and catalogs the
 * semaphore token. The calling task then uses the token
 * to send a unit.
 */

NUC Examples Appendix B Nucleus Examples850

 initial_value = 1;
 max_value = 0x10;
 semaphore_flags = 0;
 semaphore = rq_create_semaphore (initial_value,
 max_value,
 semaphore_flags,
 &status);

 /*
 * It is not mandatory to catalog the semaphore token in
 * order to send units. It is necessary, however, to
 * catalog (or communicate) the semaphore token
 * if another task is to receive the units.
 */

 job = NULL_TOKEN;
 rq_catalog_object (job, semaphore, name, &status);

 /*
 * The calling task invokes send_units to send the units
 * to the semaphore just created (sem_token.)
 */

 units = 3;
 rq_send_units (semaphore, units, &status);

}

 /*
 * In this example, the calling task looks up the token
 * for the semaphore prior to invoking receive_units.
 */

System Call Reference Appendix B NUC Examples 851

receive_sema ()
{

 UINT_16 units;
 UINT_16 value;
 SELECTOR job;
 SELECTOR semaphore;
 char name[] = {5,"SEMA4"};
 UINT_16 time_limit;
 UINT_16 status;

 /*
 * The calling task creates a semaphore and catalogs the
 * semaphore token. The calling task then uses the token
 * to send a unit.
 */

 job = NULL_TOKEN;
 time_limit = WAIT_FOREVER;
 semaphore = rq_lookup_object (job, name, time_limit,
 &status);

 /*
 * Knowing the token for the semaphore, the calling task
 * can wait for units at this semaphore by invoking
 * receive_units.
 */

 units = 4;
 value = rq_receive_units (semaphore, units, time_limit,
 &status);

}

main ()
{

 send_sema ();
 receive_sema ();

}

NUC Examples Appendix B Nucleus Examples852

rqe_set_os_extension example

/*
 * "C" examples for rq_set_os_extension
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>

 /*
 * Bind your entry_440 to this demo.
 */

extern void entry_440 ();

 /*
 * Main task to use set os extension.
 */

main ()
{

 UINT_16 gate_number;
 UINT_16 status;

 /*
 * Rqe_set_os_extension sets the call gate used by
 * an OS extension. The example assumes the gate number
 * was reserved.
 * The calling task invokes rqe_set_os_extension to set
 * the call gate at entry 440 in the GDT. The entry point
 * address is also specified.
 */

 gate_number = 440;
 rqe_set_os_extension (gate_number,
 (void (far*)(void)) entry_440,
 &status);
}

System Call Reference Appendix B NUC Examples 853

rq_set_pool_min example

/*
 * "C" examples for rq_set_pool_min
 */

 /*
 * nucleus prototype defines
 */

#include <rmx_c.h>
#include <rmx_err.h>

 /*
 * Main task to use set pool minimum.
 */

main ()
{

 UINT_16 new_min;
 UINT_16 status;

 /*
 * Sets pool_min attribute of calling task's job equal
 * to job's pool_max attribute.
 */

 new_min = 0xffff;

 /*
 * In this example the pool_min attribute of the
 * calling task's job is to be set equal to that job's
 * pool_max attribute.
 */

 rq_set_pool_min ((UINT_32) new_min, &status);

}

■■ ■■ ■■

System Call Reference Appendix C UDI Example 855

UDI Examples C
dq_create example

/*
 * "C" examples for
 * dq_create
 * dq_open
 * dq_read
 * dq_switch_buffer
 * dq_get_argument
 * dq_exit
 *
 */

 /*
 * prototype defines
 */

#include <udi_c.h>
#include <rmx_err.h>
#include <rmx_def.h>

#define SINGLE_BUFFER 0

 /*
 * Main routine to use dq_switch_buffer to check the
 * buffer location of the current argument.
 */

856 UDI Examples Appendix C UDI Examples

main ()
{

 char buffer[1024];
 char * buff_ptr;
 char arg[1024];
 SELECTOR co_conn;
 SELECTOR ci_conn;
 char delimit_char;
 UINT_16 bytes_read;
 UINT_16 next_arg_pos;
 UINT_16 char_offset;
 char ci_name [] = {4,":CI:"};
 UINT_16 status;

 /*
 * Intialize variables and buffer pointer.
 */

 next_arg_pos = 0;

 /*
 * Open input and read the command line from the console.
 */

 ci_conn = dq_create (ci_name, &status);
 dq_open (ci_conn,
 (UINT_8) READ_ONLY,
 (UINT_8) SINGLE_BUFFER,
 &status);
 bytes_read = dq_read (ci_conn,
 (UINT_8 far *) buffer,
 (NATIVE_WORD) 80,
 &status);

 /*
 * Switch command line buffers and get arguments from a
 * buffer.
 */

System Call Reference Appendix C UDI Examples 857

 char_offset = dq_switch_buffer ((UINT_8 far*) buffer,
 &status);
 if (status != E_OK)
 dq_exit ((UINT_16) E_FATAL_EXIT);

 delimit_char = dq_get_argument ((STRING far *) &arg, &status);
 if (status != E_OK)
 dq_exit ((UINT_16) E_FATAL_EXIT);

 /*
 * Determine where next argument starts.
 */

 char_offset = dq_switch_buffer ((UINT_8 far *) buffer,
 &status);
 if (status != E_OK)
 dq_exit ((UINT_16) E_FATAL_EXIT);

 next_arg_pos = char_offset + next_arg_pos;

 /*
 * Return to desired point in buffer.
 */

 buff_ptr = buffer;
 buff_ptr += char_offset;
 char_offset = dq_switch_buffer ((UINT_8 far *) buff_ptr,
 &status);

 /*
 * Continue processing arguments.
 */

 delimit_char = dq_get_argument ((STRING far *) &arg,
 &status);
 if (status != E_OK)
 dq_exit ((UINT_16) E_FATAL_EXIT);

 dq_exit((UINT_16) E_OK);

}

858 UDI Examples Appendix C UDI Examples

/*
 * UPPER - UDI2.C
 *
 * This program demonstrates the use of UDI file-handling and
 * command-line-parsing system calls. The program reads an input
 * file of characters and converts all lowercase alphabetic
 * characters to uppercase. The converted data are written to a
 * second file. UPPER expects the command line that invokes it to
 * be of the form: UPPER infile [TO outfile] (If "TO outfile" is
 * not specified, :CO: is assumed.)
 */

 /*
 * prototype defines
 */

#include <udi.h>
#include <rmx_err.h>

#define BUF_SIZE 1024

SELECTOR co_conn;

 /*
 * Procedure to check an exception code. If the exception
 * code is not E_OK, print a message and exit.
 */

check_exception (UINT_16 exception, char * info_ptr)
{

 UINT_16 check_status;
 char exc_buf[90];
 char colon [] = {2,": "};
 char crlf [] = {2, CR, LF};
 UINT_32 count;
 char * buf_ptr;

 if (exception != E_OK)
 {
 dq_decode_exception (exception, exc_buf, &check_status);

System Call Reference Appendix C UDI Examples 859

 count = (UINT_32) exc_buf[0];
 buf_ptr = &exc_buf[1];
 dq_write (co_conn,
 (UINT_8 far*) buf_ptr,
 count,
 &check_status);

 count = 2;
 buf_ptr = colon;
 dq_write (co_conn,
 (UINT_8 far*) buf_ptr,
 count,
 &check_status);

 count = (UINT_32) (info_ptr[0]);
 buf_ptr = &info_ptr[1];
 dq_write (co_conn,
 (UINT_8 far*) buf_ptr,
 count,
 &check_status);

 count = 2;
 buf_ptr = crlf;
 dq_write (co_conn,
 (UINT_8 far*) buf_ptr,
 count,
 &check_status);

 dq_exit ((UINT_16) E_FATAL_EXIT);
 }
}

#define SINGLE_BUFFER 0
#define DOUBLE_BUFFER 1

860 UDI Examples Appendix C UDI Examples

 /*
 * The main routine to demo file handling
 * and command line parsing.
 */

main ()
{

 UINT_16 status;
 UINT_16 delim;
 UINT_16 in_count;
 UINT_16 i;
 UINT_16 not_done;
 char in_name[50];
 char out_name[50];
 char buffer[BUF_SIZE];
 UINT_32 count;
 SELECTOR in_conn;
 SELECTOR out_conn;
 char co_name [] = {4,":CO:"};
 char invalid_msg [] = {"Invalid output file",CR, LF};

 /*
 * Create a connection to :CO: (console output).
 */

 co_conn = dq_create (co_name, &status);
 dq_open (co_conn,
 (UINT_8) WRITE_ONLY,
 (UINT_8) SINGLE_BUFFER,
 &status);

 /*
 * Ignore the name of the program (the first argument).
 */

 delim = dq_get_argument (buffer, &status);
 check_exception (status, NULL);
 if (delim == CR) dq_exit ((UINT_16) E_OK);

System Call Reference Appendix C UDI Examples 861

 /*
 * Attach the input file, and open it. Get the name of the
 * input file from the next comand line.
 */

 delim = dq_get_argument (in_name, &status);
 check_exception (status, NULL);

 in_conn = dq_attach (in_name, &status);
 check_exception (status, in_name);

 dq_open (in_conn,
 (UINT_8) READ_ONLY,
 (UINT_8) DOUBLE_BUFFER,
 &status);
 check_exception (status, in_name);

 /*
 * Find out if there is an output file specified. If so,
 * attach and open it. If not, use :CO: for output.
 */

 if (delim != CR)
 {
 delim = dq_get_argument (buffer, &status);
 check_exception (status, NULL);

 if ((delim == CR) || (buffer[0] != 2) ||
 (buffer[1] != 'T') || (buffer[2] != 'O'))
 {
 count = 21;
 dq_write (co_conn,
 (UINT_8 far *) invalid_msg,
 count,
 &status);
 dq_exit ((UINT_16) E_FATAL_EXIT);
 }

 delim = dq_get_argument (out_name, &status);
 check_exception (status, NULL);

 out_conn = dq_create (out_name, &status);
 check_exception (status, out_name);

862 UDI Examples Appendix C UDI Examples

 dq_open (out_conn,
 (UINT_8) WRITE_ONLY,
 (UINT_8) DOUBLE_BUFFER,
 &status);
 check_exception (status, out_name);
 }

 /*
 * Write to :CO: if no file specified.
 */

 else out_conn = co_conn;

 /*
 * Read from input, convert, and write to output.
 */

 not_done = TRUE;
 while (not_done)
 {
 in_count = dq_read (in_conn,
 (UINT_8 far *) buffer,
 BUF_SIZE,
 &status);
 check_exception (status, in_name);

 /*
 * If no characters are in the file,
 * then fail next test.
 */

 if (in_count == 0) not_done = FALSE;

 /*
 * If characters are in the file, then process them.
 */

System Call Reference Appendix C UDI Examples 863

 if (not_done == TRUE)

 {
 for (i=0; i < in_count; i++)
 {
 if ((buffer[i] >= 'a') && (buffer[i] <= 'z'))
 {
 buffer[i] = buffer[i] - 0x20;
 }
 }
 }

 dq_write (out_conn,
 (UINT_8 far *) buffer,
 (NATIVE_WORD) in_count,
 &status);
 check_exception (status, out_name);
 }

 /*
 * Close input and output files, and exit.
 */

 dq_close (in_conn, &status);
 check_exception (status, in_name);

 dq_close (out_conn, &status);
 check_exception (status, out_name);

 dq_exit ((UINT_16) E_OK);
}

■■ ■■ ■■

System Call Reference Appendix D 865

Condition Codes D
This appendix provides a list of the iRMX condition codes that can be returned
from iRMX system calls. The condition codes are divided into two categories:

• Programmer errors

• Environmental conditions

A programmer error is a condition, such as a syntax error, that can be changed in
the application code. An environmental condition is an operating system problem
over which you do not have direct control.

This appendix lists the condition codes by operating system layer and by ascending
numeric values. Each entry includes the condition code mnemonic, the numeric
value, and a brief description.

See also: Individual call descriptions in this manual
Network User’s Guide and Reference for condition codes returned by
iNA 960 cq_ calls

Environmental Conditions
E_OK 0H The last system call that returned a status

was successful.

Nucleus Environmental Conditions
E_TIME 01H A time limit (possibly 0) expired without a

task's request being satisfied.

E_MEM 02H There is not sufficient memory available to
satisfy a task's request.

E_BUSY 03H Another task currently has access to the data
protected by a region.

E_LIMIT 04H A task attempted an operation which, if
successful, would have violated a Nucleus-
enforced limit.

866 Appendix D Condition Codes

E_CONTEXT 05H A system call was issued out of context or
the operating system was asked to perform an
impossible operation.

E_EXIST 06H A token parameter has a value which is not a
valid token.

E_STATE 07H A task attempted an operation which would
have caused an impossible transition of a
task's state.

E_NOT_CONFIGURED 08H This system call is not part of the present
configuration.

E_INTERRUPT_SATURATION 09H An interrupt task has accumulated the
maximum allowable number of
signal_interrupt requests.

E_INTERRUPT_OVERFLOW 0AH An interrupt task has accumulated more than
the maximum allowable amount of
signal_interrupt requests.

E_TRANSMISSION 0BH A NACK, timeout, or bus error occurred.

E_SLOT 0CH There are no available GDT slots.

E_DATA_CHAIN 0DH A data chain has been returned. The token
points to the beginning of the data chain
block.

I/O System Environmental Conditions
E_FEXIST 20H The specified file already exists.

E_FNEXIST 21H The specified file does not exist.

E_DEVFD 22H The device driver and file driver are
incompatible.

E_SUPPORT 23H The combination of parameters entered is not
supported.

E_EMPTY_ENTRY 24H The specified entry in a directory file is
empty.

E_DIR_END 25H The specified directory entry index is beyond
the end of the directory file.

System Call Reference Appendix D 867

E_FACCESS 26H The connection does not have the correct
access to the file.

E_FTYPE 27H The requested operation is not valid for this
file type.

E_SHARE 28H The requested operation attempted an
improper kind of file sharing, or the file does
not allow sharing.

E_SPACE 29H There is no space left on the volume.

E_IDDR 2AH An invalid device driver request occurred.

E_IO 2BH An I/O error occurred.

E_FLUSHING 2CH The connection specified in the call was
deleted before the operation completed.

E_ILLVOL 2DH The device contains an invalid or improperly
formatted volume.

E_DEV_OFFLINE 2EH The device being accessed is now offline.

E_IFDR 2FH An invalid file driver request occurred.

E_FRAGMENTATION 30H The volume is too fragmented for a file to be
extended.

E_DIR_NOT_EMPTY 31H The call is attempting to delete a directory
that is not empty.

E_NOT_FILE_CONN 32H The specified connection is not a file
connection.

E_NOT_DEVICE_CONN 33H The specified connection is not a device
connection.

E_CONN_NOT_OPEN 34H The connection is not open for reading,
writing, or updating.

E_CONN_OPEN 35H The task attempted to open a connection that
is already open.

E_BUFFERED_CONN 36H The specified connection was opened by the
EIOS and used by the BIOS, which is not
allowed.

E_OUTSTANDING_CONNS 37H A soft detach was specified, but connections
to the device still exist.

E_ALREADY_ATTACHED 38H The specified device is already attached.

868 Appendix D Condition Codes

E_DEV_DETACHING 39H The file specified is on a device that the
operating system is in the process of
detaching.

E_NOT_SAME_DEVICE 3AH The existing pathname and the new
pathname refer to different devices. You
cannot simultaneously rename a file and
move it to another device.

E_ILLOGICAL_RENAME 3BH The call is attempting to rename a directory
to a new path containing itself.

E_STREAM_SPECIAL 3CH A stream file request is out of context.
Either it is a query request and another query
request is already queued, or it is a satisfy
request and the request queue is empty or a
query request is queued.

E_INVALID_FNODE 3DH The connection refers to a file with an
invalid fnode. Delete this file.

E_PATHNAME_SYNTAX 3EH The specified pathname contains invalid
characters.

E_FNODE_LIMIT 3FH One of these:
The volume already contains the maximum
number of files and no more fnodes are
available for new files. or
The file cannot be created or extended to this
size because it has reached the maximum
number of volume blocks available for a file.

E_LOG_NAME_SYNTAX 40H The specified pathname starts with a colon
(:), but it does not contain a second,
matching colon; or the specified logical has
more than 12 characters or contains invalid
characters.

E_CANNOT_CLOSE 41H The buffers cannot be written to the device to
complete the I/O request.

E_IOMEM 42H The BIOS has insufficient memory to process
a request.

E_MEDIA 44H The device containing a specified file is not
on line.

System Call Reference Appendix D 869

E_LOG_NAME_NEXIST 45H The specified path contains an explicit
logical name, but the EIOS was unable to
find the name in the object directories of the
local job, the global job, or the root job.

E_NOT_OWNER 46H The user who attempted to detach the device
is not the owner of the device.

E_IO_JOB 47H The EIOS could not create an I/O job
because the default directory size (DDS)
configuration parameter is too small.

E_UDF_FORMAT 48H The user definition file (UDF) is not in the
right format.

E_NAME_NEXIST 49H The user name specified in the call is not
listed in the UDF.

E_UID_NEXIST 4AH The user ID in the specified user object does
not match the ID listed in the UDF for the
corresponding user name.

E_PASSWORD_MISMATCH 4BH The password specified in the call does not
match the one listed in the UDF for the
corresponding user name.

E_UDF_IO 4CH The UDF specified cannot be found. An
error code came from a remote UDF and not
another remote file.

E_IO_UNCLASS 50H An unknown type of I/O error occurred.

E_IO_SOFT 51H A soft I/O error occurred. A retry might be
successful.

E_IO_HARD 52H A hard I/O error occurred. A retry is
probably useless.

E_IO_OPRINT 53H The device was off-line. Operator
intervention is required.

E_IO_WRPROT 54H The volume is write-protected.

E_IO_NO_DATA 55H A tape drive attempted to read the next
record, but it found no data.

E_IO_MODE 56H A tape drive attempted a read (write)
operation before the previous write (read)
completed.

870 Appendix D Condition Codes

E_IO_NO_SPARES 57H No spare tracks/sectors.

E_IO_ALT_ASSIGNED 58H Alternate track/sector was assigned.

Application Loader Environmental Conditions
E_BAD_HEADER 62H The object file contains an invalid header

record.

E_EOF 65H The Application Loader encountered an
unexpected EOF file while reading a record.

E_NO_LOADER_MEM 67H There is insufficient memory to satisfy the
memory requirements of the AL.

E_NO_START 6CH The AL could not find the start address.

E_JOB_SIZE 6DH The maximum memory-pool size of the job
being loaded is smaller than the amount of
memory required to load its object file.

E_OVERLAY 6EH The overlay name does not match any of the
overlay module names.

E_LOADER_SUPPORT 6FH The file requires features not supported by
the AL as configured.

Human Interface Environmental Conditions
E_LITERAL 80H The parsing buffer contains a literal with no

closing quote.

E_STRING_BUFFER 81H The string to be returned exceeds the size of
the buffer the user provided in the call.

E_SEPARATOR 82H The parsing buffer contains a command
separator.

E_CONTINUED 83H The parsing buffer contains a continuation
character.

E_INVALID_NUMERIC 84H A numeric value contains non-numeric
characters.

E_LIST 85H A value in the value list is missing.

E_WILDCARD 86H A wild-card character appears in an invalid
context, such as in an intermediate
component of a pathname.

System Call Reference Appendix D 871

E_PREPOSITION 87H The command line contains an invalid
preposition.

E_PATH 88H The command line contains an invalid
pathname.

E_CONTROL_C 89H The user typed a <Ctrl-C> to abort the
command.

E_CONTROL 8AH The command line contains an invalid
control character.

E_UNMATCHED_LISTS 8BH The number of files in the input and output
pathname lists is not the same.

E_INVALID_DATE 8CH The operator entered an invalid date.

E_NO_PARAMETERS 8DH A command expected parameters, but the
operator didn't supply any.

E_VERSION 8EH The HI is not compatible with the version of
the command the operator invoked.

E_GET_PATH_ORDER 8FH A command called c_get_output_pathname
before calling c_get_input_pathname.

E_PERMISSION 90H The user does not have permission to access
the requested resource.

E_INVALID_TIME 91H The operator entered an invalid time.

UDI Environmental Conditions
E_UNKNOWN_EXIT 0C0H The program exited normally.

E_WARNING_EXIT 0C1H The program issued warning messages.

E_ERROR_EXIT 0C2H The program detected errors.

E_FATAL_EXIT 0C3H A fatal error occurred in the program.

E_ABORT_EXIT 0C4H The operating system aborted the program.

E_UDI_INTERNAL 0C5H A UDI internal error occurred.

872 Appendix D Condition Codes

Nucleus Communications Service Environmental Conditions
E_CANCELLED 0E1H A send_rsvp transaction has been remotely

canceled.

E_HOST_ID 0E2H The specified host ID does not refer to a
board that is currently in message space.

E_NO_LOCAL_BUFFER 0E3H The buffer pool does not contain a buffer
large enough to hold the message.

E_NO_REMOTE_BUFFER 0E4H The remote port's buffer pool does not have a
buffer large enough to hold the message and
message fragmentation is turned off.

E_RESOURCE_LIMIT 0E6H Either the number of simultaneous messages
or simultaneous transactions has been
reached. These fields are set during system
configuration.

E_TRANS_ID 0E8H The specified transaction ID is not valid.

E_DISCONNECTED 0E9H The port sending the message has previously
issued an rq_connect to a remote port. The
board on which the remote port is located has
been reset.

E_TRANS_LIMIT 0EAH A transmission resource limitation has been
encountered.

Paging Subsystem Environmental Conditions
E_VMEM 0F0H Insufficient virtual memory available in the

virtual segment to satisfy this request.

E_ALLOCATED 0F1H Physical memory is already allocated to this
area of the virtual segment.

E_NOT_ALLOCATED 0F2H No physical memory is allocated to this area
of the virtual segment.

System Call Reference Appendix D 873

Programmer Errors

Nucleus Programmer Errors
E_ZERO_DIVIDE 8000H A task attempted a divide by zero.

E_OVERFLOW 8001H An overflow interrupt occurred.

E_TYPE 8002H A token referred to an existing object that is
not of the required type.

EBOUNDS 8003H A 16-bit address (offset) exceeds the 64 KB
boundary.

E_PARAM 8004H A parameter that is neither a token nor an
offset has an invalid value.

E_BAD_CALL 8005H An OS extension received an invalid function
code.

E_ARRAY_BOUNDS 8006H Hardware or software has detected an array
overflow.

E_NDP_ERROR 8007H An NPX error occurred. OS extensions can
return the status of the NPX to the exception
handler.

E_ILLEGAL_OPCODE 8008H The processor tried to execute an invalid
instruction.

E_EMULATOR_TRAP 8009H An ESC instruction was encountered with the
emulator bit set in the machine status word.

E_CHECK_EXCEPTION 800AH A task has exceeded the bounds of a CASE
statement.

E_CPU_XFER_DATA_LIMIT 800BH The NPX tried to access an address that is
out of segment boundaries.

E_PROTECTION 800DH A general protection error occurred.

E_NOT_PRESENT 800EH A request has been made to load a segment
register whose segment is not present.

E_BAD_ADDR 800FH The logical address is illegal. Either the
selector does not point to a valid segment, or
the offset is not within the segment
boundaries.

874 Appendix D Condition Codes

I/O System Programmer Errors
E_NOUSER 8021H No default user is defined.

E_NOPREFIX 8022H No default prefix is defined.

E_BAD_BUFF 8023H Illegal usage of memory buffers in read or
write requests occurred.

E_NOT_LOG_NAME 8040H The specified object is not a device
connection or file connection.

E_NOT_DEVICE 8041H A token referred to an existing object that is
not, but should be, a device connection.

E_NOT_CONNECTION 8042H A token referred to an existing object that is
not, but should be, a file connection.

Application Loader Programmer Error
E_JOB_PARAM 8060H The maximum memory pool size specified

for the job is less than the minimum pool size
specified.

Human Interface Programmer Errors
E_PARSE_TABLES 8080H There is an error in the internal parsing

tables.

E_JOB_TABLES 8081H An internal HI table was overwritten, causing
it to contain an invalid value.

E_DEFAULT_SO 8083H The default output name string is invalid.

E_STRING 8084H The pathname to be returned exceeds 255
characters in length.

E_ERROR_OUTPUT 8085H The command invoked by c_send_command
includes a call to c_send_eo_response, but
the command connection does not permit
c_send_eo_response calls.

UDI Programmer Errors
E_RESERVE_PARAM 80C6H The calling program tried to reserve memory

for more than 12 files or buffers.

System Call Reference Appendix D 875

E_OPEN_PARAM 80C7H The calling program requested more than two
buffers when opening a file.

Communication System Programmer Errors
E_PROTOCOL 80E0H A signal port was specified instead of a data

port, or vice versa.

E_PORT_ID_USED 80E1H The port ID specifies a port that is in use.

E_NUC_BAD_BUF 80E2H The specified pointer is invalid, or points to a
buffer that is not large enough.

Paging Subsystem Programmer Errors
E_VSEG 80F0H The calling task does not belong to the same

job that created the virtual segment.

E_ALIGNMENT 80F1H The address is not properly aligned, typically
on a 4 Kbyte boundary.

■■ ■■ ■■

System Call Reference Index 877

Index

<Ctrl-C>
handler, changing, 440, 724
handler, setting, 428, 440

A
a_attach_file call, 85
a_change_access call, 90
a_close call, 97
a_create_directory call, 99
a_create_file call, 105
a_delete_connection call, 114
a_delete_file call, 116
a_get_connection_status call, 124
a_get_directory_entry call, 132
a_get_extension_data call, 135
a_get_file_status call, 142, 146
a_get_path_component call, 153
a_load call, 30, 61
a_load_io_job call, 30, 67
a_open call, 171
a_physical_attach_device call, 175
a_physical_detach_device call, 179
a_read call, 181
a_rename_file call, 184
a_seek call, 190
a_set_extension_data call, 196
a_set_file_status call, 199
a_special call, 205

changing volumes, 209
connection flags for terminal

attributes, 214
hard disk information structure, 211
signal semaphore structure, 220
tape information structure, 212
TCC-supported device fields, 219
terminal information structure, 213

terminal status structure, 223
volume unavailable structure, 209

a_truncate call, 241
a_update call, 244
a_write call, 253
accept_control call, 445
access rights, 257, 316

owner_access field, 693
to data segments, 463
to file, changing, 90, 264, 679
to objects, changing, 463
to objects, getting, 548

accessing, regions, 594
add_reconfig_mailbox call, 447
adding

DUIBs to BIOS, 158
file extension data, 196
reconfiguration mailbox, 447

AL (Application Loader)
condition codes, 29
file access requirements, 30
system call types, 29
system calls summary table, 41

alarms
alarm handler pointer, 748
alarm handler, when invoked, 749
clock ticks until handler invocation, 748
creating, 747
deleting, 760
repetitive and single-shot alarms, 749
resetting, 773

allocating
contiguous memory, 706
memory from free space pool, 675

alter_composite call, 449
assigning

interrupt handler to level, 646
logical name to device, 331

878 Index

asynchronous system calls
concurrent part, 29
definition, 31
sequential part, 29

attach_buffer_pool call, 451
attach_port call, 453
attaching

buffer pool to port, 451
files, 677
physical device, 175
ports, 453

B
backing up, file pointer, 190, 352
bad track information, getting and setting, 370
BIOS (Basic I/O System)

adding DUIBs to, 158
condition codes, 31
file types, 31
IORS, 32
system call types, 31

BIOS clock
getting time, 576
setting time, 656

blocking task, 661
blocking tasks, 36
BOOLEAN, definition, 20
broadcast call, 455
buffer pools

attaching to port, 451
creating, 467
deleting, 498
detaching from port, 517
requesting buffers from, 614
returning buffers to, 612
setting maximum size, 467

buffers
EIOS maximum number, 164
getting from buffer pool, 614
getting size of, 537
moving data between, 584
number of, 163
returning to buffer pool, 612
RSVP, cancelling, 457
validating pointers to, 670
writing to disk, 244

BYTE, definition, 20
bytes, reading, 181, 342, 712

C
C, interface libraries, 28
C language

data types, 20
syntax, 26

c_backup_char call, 391
c_create_command_connection call, 392
c_delete_command_connection call, 396
c_format_exception call, 397
c_get_char call, 399
c_get_command_name call, 401
c_get_input_connection call, 403
c_get_input_pathname call, 408
c_get_output_connection call, 414
c_get_output_pathname call, 420
c_get_parameter call, 423
c_send_co_response call, 434
c_send_command call, 427
c_send_eo_response call, 437
c_set_control_c call, 440
c_set_parse_buffer call, 442
call gate, associating with entry point, 651
cancel call, 457
cancel_io procedure, 162
cancelling

interrupt level, 616
terminal I/O, 227

case sensitivity, 30, 34
catalog_object call, 459
cataloging, connections, 261
changing

file owner, 199, 355
time stamps, 199, 355

child jobs, listing, 586, 588
cifc32.lib file, 28
cifc32w.lib file, 28
cifcb.lib file, 28
cifcm.lib file, 28
ciff3b.lib file, 28
ciff3m.lib file, 28
cifl32.lib file, 28
ciflb.lib file, 28
ciflm.lib file, 28

System Call Reference Index 879

clock
BIOS, getting time, 576
BIOS, setting time, 656
global, 152
hardware, getting time, 151
hardware, setting time, 203
initial count, 782
ticks, 748

closing, file connection, 97, 270, 683
commands

getting arguments from terminal, 696
getting name, 401
invoking programmatically, 427

common device drivers, 163
supplied procedures, 162

compatibility, between operating systems, 700
composite objects

changing, 449
creating, 469
deleting, 499
listing components, 579

concurrent condition codes, definition, 31
concurrent part, of calls, 29, 71
condition codes

application loader, programmer
errors, 874

categories, 865
concurrent, definition, 31
concurrent, getting, 247
creating mnemonic, 397
for asynchronous calls, 31
format of, 398
general information, 18
getting mnemonic, 686
human interface, programmer errors, 874
I/O system, environmental, 866
I/O system, programmer errors, 874
nucleus communication system,

environmental, 872
nucleus communication system,

programmer errors, 875
nucleus, environmental, 865
nucleus, programmer errors, 873
numeric values and mnemonics, 865
paging subsystem, environmental, 872
paging subsystem, programmer

errors, 875

sequential, definition, 31
table of, 865
UDI, environmental, 871
UDI, programmer errors, 874

connect call, 465
connection, closing, 97
connections, 86, 92, 97, 100, 107, 117, 154,

172, 241
access byte, 126
AL requirements, 30
attributes, 404, 415
cataloging, 165, 261
closing, 270
command, returning, 392
creating, 85, 257
creating, to remote port, 465
deleting, 114, 292
device, 176
getting for file, 403, 414
looking up from logical name, 336
mode values, 125
open status, 700
opening, 338
opening asynchronously, 171
status, getting, 124, 302

control message, sending, 455
controlling

device, 205, 360
region, release of, 622
regions, 445, 594

CPU registers
current contents, 734
values passed in, 737

cq_comm_multi_status call, see Network
User's Guide and Reference

cq_comm_ptr_to_dword call, see Network
User's Guide and Reference

cq_comm_rb call, see Network User's Guide
and Reference

cq_comm_status call, see Network User's
Guide and Reference

cq_create_comm_user call, see Network User's
Guide and Reference

cq_create_multi_comm_user call, see Network
User's Guide and Reference

cq_delete_comm_user call, see Network User's
Guide and Reference

880 Index

create_buffer_pool call, 467
create_composite call, 469
create_extension call, 474
create_io_job call, 284
create_job call, 476
create_mailbox call, 483
create_port call, 485
create_region call, 489
create_segment call, 491
create_semaphore call, 493
create_task call, 495
create_task_handler, 759
create_user call, 112
creating

buffer pools, 467
command connections, 393
composite objects, 469
condition code mnemonic, 397
connection to remote port, 465
data segment, 491
descriptor for memory segment, 472
extension object type, 474
file connections, 85, 257, 677
files, 105, 278, 684
I/O jobs, 68, 71, 77, 78, 284, 285
jobs, 476
logical name, 261
mailboxes, 483
memory pools, 755
new directory, 99, 273
ports, 485
regions, 489
semaphores, 493
tasks, 71, 495
user object, 112

custom device drivers
and UINFO table, 163
necessary procedures, 162
writing and DINFO table, 163

D
data

copying between buffers, 584
receiving from mailbox, 596
sending to mailbox, 624
transferring between PVAM and Real

Mode Segments, 729, 731
Data Encryption Standard (DES), 123
data segments

changing access rights, 463
creating, 491
deleting, 511
getting size, 560
length, 254

data types, definitions, 20
date, changing binary to ASCII, 687
deadlock, from deleting region, 509
decoding binary time to ASCII, 687
decreasing

disabling depth of object, 526
suspension depth of task, 618

default
prefix for job, 193
user for job, 195

delete_buffer_pool call, 498
delete_composite call, 499
delete_extension call, 502
delete_job call, 504
delete_mailbox call, 506
delete_port call, 508
delete_region call, 509
delete_segment call, 511
delete_semaphore call, 513
delete_task call, 515
delete_task_handler, 765
delete_user call, 121

System Call Reference Index 881

deleting
buffer pools, 498
composite objects, 499
descriptor for memory segment, 500
extension objects, 502
file connections, 114, 292, 690
files, 116, 294, 689
I/O jobs, 299
interrupt tasks, 616
jobs, tasks, objects, 504
logical names, 380
mailboxes, 506
memory area, 761
memory segments, 511
objects, 526, 533
objects, disabling, 522
objects, enabling, 526
ports, 508
regions, 509
semaphores, 513
tasks, 515
user objects, 121

descriptor
changing in GDT, 461
for memory segment, creating, 472
for memory segment, deleting, 500
returning GDT slot, 511

detach_buffer_pool call, 517
detach_port call, 519
detaching

buffer pool from port, 517
file connection, 690
logical device, temporarily, 329
logical name to device, 334
physical device, 179
ports, 519

device drivers
common, 162, 163
random access, 162, 163
terminal, 162, 163

device granularity, 162
device information (DINFO) table, 163
devices

assigning logical name, 331
controlling, 205, 360
detaching logical name, 334
getting free space data, 236, 372

logical, detaching temporarily, 329
logical, getting status, 320
logical, removing name, 334
offline notification, 209, 365
physical, attaching, 175
physical, detaching, 179
physical, removing, 179

directories, 107, 117, 133, 154, 172
access rights to, 91, 100, 265
creating, 99, 100, 273
entry segment structure, 132
getting filename from, 132, 307
remote, 133

disable call, 520
disable_deletion call, 522
disabling

deletion of object, 522
interrupt levels, 520, 616
message fragmentation, 487
OS extension, 651
RSVP message fragmentation, 558

disk drive, getting information about, 211, 366
disk mirroring, 228
diskettes, characteristics, 161
DOS

calling sequence, 730, 732
corrupting application memory, 730
deletion handler procedure, 734
deletion handler procedure for

program, 734
program calling sequence, 730, 732
requests, making, 737
requests, passing parameters, 743
ROM BIOS requests, making, 737
system calls, summary table, 57

DOS files
definition, 31
reading, 182
renaming, 185

dq_allocate call, 675
dq_attach call, 677
dq_change_access call, 679
dq_change_extension call, 681
dq_close call, 683
dq_create call, 684
dq_decode_exception call, 686
dq_decode_time call, 687

882 Index

dq_delete call, 689
dq_detach call, 690
dq_exit call, 691
dq_file_info call, 692
dq_free call, 695
dq_get_argument call, 696
dq_get_connection_status call, 699
dq_get_exception_handler call, 701
dq_get_msize call, 702
dq_get_size call, 703
dq_get_system_id call, 704
dq_get_time call, 705
dq_mallocate call, 706
dq_mfree call, 708
dq_open call, 709
dq_overlay call, 711
dq_read call, 712
dq_rename call, 714
dq_reserve_io_memory call, 716
dq_seek call, 718
dq_special call, 720
dq_switch_buffer call, 723
dq_trap_cc call, 724
dq_trap_exception call, 725
dq_truncate call, 726
dq_write call, 727
DUIB (Device-unit Information Block)

adding to BIOS, 158

E
EIOS (Extended I/O System)

logical names, 34
system calls summary table, 45
types of calls, 34

enable call, 524
enable_deletion call, 526
enabling

deletion of object, 526
interrupt level, 524, 647
interrupts, 530, 532
message fragmentation, 487
RSVP message fragmentation, 558

encoded interrupt level, 520
encrypt call, 122
encryption standards, 123
end_init_task call, 527

enter_interrupt call, 528
entry point, associating with call gate, 651
environmental conditions, see condition codes

defined, 865
error conditions, see condition codes
error messages, sending to the operator, 415
examples

dq_create call, 855
dq_get_argument call, 697
rq_create_extension call, 810
rq_create_mailbox call, 815
rq_create_region call, 817
rq_create_segment call, 819
rq_create_semaphore call, 821
rq_create_task call, 823
rq_delete_job call, 828
rq_force_delete call, 829
rq_get_exception_handler call, 833
rq_get_pool_attrib call, 836
rq_get_task_tokens call, 837
rq_get_type call, 839
rq_offspring call, 842
rq_receive_data call, 843
rq_receive_message call, 846
rq_receive_units call, 849
rq_set_pool_min call, 853
rqe_a_load_io_job call, 801
rqe_create_descriptor call, 808
rqe_create_job call, 812
rqe_get_address call, 831
rqe_get_pool_attrib call, 835
rqe_offspring call, 841
rqe_s_load_io_job call, 801
rqe_set_os_extension call, 852
tasks transition from running to ready

state, 786
exception handlers, 29

assigning, 638, 640
changing, 725
getting address, 701
getting address of, 539, 541

exit messages, 70
exit_interrupt call, 530
exit_io_job call, 299
exiting

I/O jobs, 299
program, 691

System Call Reference Index 883

extension data, getting, 135
extension objects

creating, 469, 474
deleting, 502

extensions, see OS extensions

F
FALSE, value for, 22
fast-forwarding tape, 221, 369
Federal Information Processing Standard

Publication #46, 123
file connections

attributes, 404
closing, 97, 270, 683
creating, 85, 257, 677
deleting, 114, 292, 690
getting, 403, 414
getting status, 699

file drivers, 160
remote, 210
status, getting, 138
values, 125

file extension data, 242
getting, 135
writing, 196

file pointers, 172
determining location, 699
moving, 190, 352, 718

files
access rights to, 86, 92, 107, 117, 133,

172, 182, 185
changing, 90, 264, 679
mask, 106

changing extension, 681
changing name of, 184, 346
creating, 105, 278, 684
deleting, 154, 689
extending, 191, 254
file owner, changing, 199, 355
getting connection status of, 699
getting name from directory, 132, 307
getting name from parent

directory, 153, 323
information about, 142, 309, 692
length of, 693
loading object files, 61, 71, 77, 78

marking and deleting, 116, 294
name extension of, changing, 681
opening, 338, 709
opening asynchronously, 171
pathnames of, 185
reading, 181, 182, 342
renaming, 346, 714
status, checking, 142
status, getting, 309
stream, 154
temporary, 107, 154
truncating, 241, 377, 726
types of, 31

as supported on a device, 146
writing to disk, 244, 253, 386, 727

finish_io procedure, 162
flat model, 789

loading jobs, 68, 78
flush mode, definition, 215
force_delete call, 533
forcing stream file request

completion, 208, 365
formatting, track, 207, 363
forwarding, message, 453, 519
free space data, getting for device, 236, 372
freeing, memory, 396

G
GDT (Global Descriptor Table) descriptor

changing, 461
creating, 472
deleting, 500
returning slot to memory manager, 511

get_buffer_limit call, 537
get_default_prefix call, 128
get_default_user call, 130
get_exception_handler call, 539
get_file_driver_status call, 138
get_global_time call, 151
get_host_id call, 544
get_interconnect call, 545
get_level call, 547
get_logical_device_status call, 320
get_pool_attrib call, 551
get_port_attributes call, 556
get_priority call, 559

884 Index

get_size call, 560
get_task_accounting call, 562
get_task_info call, 565
get_task_state call, 569
get_task_tokens call, 574
get_time call, 576
get_type call, 577
get_user_ids call, 325
global time

clock, 204
getting, 151
setting, 203

granularity, device, 162

H
hardware clock

getting time, 151
setting time, 203

HDLR_STRUC, definition, 780
header files, 26
header record, validity, 71
HI (Human Interface), system calls, summary

table, 47
hybrid_detach_device call, 329

I
I/O jobs

creating, 62, 67, 68, 71, 77, 78, 284, 285
exiting and deleting, 299
initial task, 71
maximum priority, 76, 81
starting, 376

I/O Request/Result Segment, see IORS
ID, user, see user ID
include files, 26
init_io procedure, 162
initial task

creating for job, 477
deleting for job, 504
starting, 376

initialization, indicating completion of, 527
input buffer, 221
input mode, for terminal, changing, 720
input pathname, invalid, 404
inspect_composite call, 579

inspect_user call, 156
install_file_driver call, 165
installing

DUIBs in BIOS, 158
loadable file driver, 165
VM86 extension, 733

interactive applications, getting characters from
the console, 720

interconnect register
changing, 644
getting contents, 545

interface libraries, 27, 28
interrupt handler

assigning level, 646
cancelling, 616
end-of-interrupt, 530, 532
in-line, 528
safe and unsafe system call categories, 36

interrupt level
assigning to handler, 646
disabling, 520, 616
enabling, 524
encoded, 520
getting current level, 547
loading, 528
valid VM86, 733

interrupt task
changing job priority, 649
deleting, 616
signalling readiness, 666, 672
starting, 659

interrupts, 734
disabled during mailbox messages, 770
DOS and iRMX for Windows, 733
DOS/ROM BIOS, 741

invalid command separators, 425
invoking, command from program, 427
IORS

fixed_update field, 164
num_buffers field, 163
update_timeout field, 163

IORS (I/O Request/Result Segment), 86
calls that return, 32
getting the, 251
in BIOS, 32
status field, 32
structure, 32

System Call Reference Index 885

IORS_DATA_STRUCT, 35, 362
iRMX-NET, and devices, 146

J
job object directory, cataloging in, 261
job prefix, getting default, 128
job user object, getting default, 130
jobs

cataloging object, 459
changing priority dynamically, 649
creating, 284, 285, 476, 477
creating I/O jobs, 67, 68, 77, 78
deleting, 504
getting memory pool attributes, 551, 553
getting task token, 574
listing child jobs, 586, 588
readiness, 71
setting default prefix for, 193
setting default user for, 195
setting pool maximum, 478
setting pool minimum, 653
uncataloging object, 668

K
Kernel, system calls, summary table, 58
Kernel Tick Ratio, 38, 39
KN_create_alarm call, 747
KN_create_area call, 750
KN_create_mailbox call, 752
KN_create_pool call, 755
KN_create_semaphore call, 757
KN_delete_alarm call, 760
KN_delete_area call, 761
KN_delete_mailbox call, 762
KN_delete_pool call, 763
KN_delete_semaphore call, 764
KN_FLAGS, definition, 20
KN_get_pool_attributes call, 766
KN_get_time call, 767
KN_HDLR_STRUC, definition, 780
KN_POOL_ATTRIBUTES_STRUC,

definition, 766
KN_receive_data call, 769
KN_receive_unit call, 771
KN_reset_alarm call, 773

KN_reset_handler call, 774
KN_send_data call, 775
KN_send_priority_data call, 777
KN_send_unit call, 779
KN_set_handler call, 780
KN_set_time call, 782
KN_sleep call, 784
KN_start_scheduling call, 785
KN_STATUS, definition, 20
KN_stop_scheduling call, 786
KN_TIME_STRUC, definition, 768, 783
KN_TOKEN, definition, 20
KNE_get_time call, 768
KNE_set_time call, 783
KTR, 38, 39

L
libraries

C interface, 28
system call interface, 27

limitations, EIOS maximum number of
buffers, 164

line-edit buffer, 215
loadable file driver, installing, 165
Loader Result Segment, see LRS
loading

object files, 61, 71, 77, 78
overlay modules, 83, 711

LODFIX records, 62
logical device

assigning name, 331
detaching name, 334
detaching temporarily, 329
getting status, 320
removing name, 334

logical names, 34
assigning to device, 331
creating, 261
deleting, 380
detaching, 334
looking up connection, 336
removing, 334

logical pointer address, getting, 535
logical_attach_device call, 331
logical_detach_device call, 334
long64 compiler control, 20

886 Index

lookup_object call, 581
LRS (Loader Result Segment), 30

for a_load, 62
for rqe_a_load_io_job, 72

M
mailbox, for watchdog timer, 447
mailbox_flags, information for creating, 483
mailboxes

creating, 483, 752
data, receiving, 596
data, sending, 624
deleting, 506, 762
message size, 770, 775
object, receiving, 601
object, sending, 626
priority data, sending, 777
priority messages, 753, 754
reserved slot, 753, 754
sending data, 775
time a task will wait, specifying, 770
wakeup events at a mailbox, 769

marking file for deletion, 116, 294
memory

alignment, 750
allocating contiguous, 706
allocating from free space pool, 675
attaching buffer pool to port, 451
buffer pools instead of segments, 467
corrupting DOS application, 730
creating memory area, 750
deleting memory area, 761
detaching from port, 517
freeing, 396
getting size of allocated segment, 703
minimum area size, 750
reserving for UDI calls, 716
returning segment to pool, 511
returning to pool, 695, 708

memory pools
calculating overhead, 756
creating, 755
deleting, 763
getting attributes, 551, 553, 766
setting maximum size, 478
setting minimum size, 653

memory segments
creating descriptor for, 472
deleting, 511
deleting descriptor for, 500
getting size, 560, 702

message
addressing, 544
control, sending, 455
creating port for passing, 485
deleting port for passing, 508
forwarding, 453, 519
receiving at port, 590
receiving from terminal, 434, 437
receiving object from mailbox, 601
RSVP data, receiving, 599
RSVP, cancelling synchronously, 457
RSVP, receiving reply, 604
sending data to a mailbox, 624
sending data to a port, 619
sending to terminal, 434, 437
sending token to a mailbox, 626

mirroring, see disk mirroring
mnemonic, for condition code, getting, 686
mode

and file pointer movement, 718
for passing control to an exception

handler, 286
move_data call, 584
moving

file pointer, 190, 352, 718
parsing buffer pointer, 391
tape filemark, 221, 369

N
named files, definition, 31
NATIVE_WORD, definition, 20
networking, system calls, summary table, 60
non-scheduling system calls, 36
normal mode, definition, 215
Nucleus, system calls summary table, 49

System Call Reference Index 887

O
object directories

cataloging, 261, 459
searching for name, 581
uncataloging object, 668

object files, 681
loading, 61, 77, 78

objects
cataloging, 459
composite, changing, 449
composite, creating, 469
composite, deleting, 499
composite, listing components, 579
creating new type, 474
creating user, 112
deleting, 504, 526, 533
deleting user, 121
extension, deleting, 502
getting access rights, 548
getting type, 577
receiving from mailbox, 601
sending to mailbox, 626
token, getting, 581
uncataloging, 668

off-line device notification, 209, 365
offspring call, 586
opening

connection, 338
connection asynchronously, 171
files, 338, 709
files, asynchronously, 171

OS compatibility, 700
OS extensions

signal exceptional condition, 657
VM86, installing, removing,

valid levels, 733
OSC sequences, 214
output pathnames, getting, 420
overlay modules, 83

loading, 83, 711
owner ID, 86

P
parameters

for DOS/ROM BIOS requests, 743

getting from parsing buffer, 423
parsing buffers

changing, 442, 723
getting character, 399
getting input pathnames, 408
getting output pathnames, 420
getting parameter from, 423
pointer moving, 391

password
encrypting, 122
verifying, 382

pathnames
components, 154
getting, 408
using wildcards in, 409, 421

physical device
assigning name, 331
attaching, 175
detaching, 179
detaching name, 334
removing, 179
removing name, 334

physical files, definition, 31
PL/M, data types, 20
PL/M data types, 20
PLM_STRING_STRUCT, definition, 20
PLM_STRINGTABLE_STRUCT,

definition, 20
plm386.lib file, 28
POINTER, definition, 20
pointers, logical, getting address, 535
POOL_ATTRIBUTES_STRUC,

definition, 766
ports

attaching, 453
creating, 485
deleting, 508
deleting buffer pool, 498
detaching, 519
getting attributes, 556
receiving message at, 590
receiving signal from, 608
remote, creating connection to, 465
sending data to, 619

prefix
getting default for job, 128
setting default for job, 193

888 Index

preposition parameters
values, using, 414

priority
getting for task, 559
of job, changing dynamically, 649

priority messages, 754
priority queues, 754
procedures

cancel_io, 162
finish_io, 162
init_io, 162
queue_io, 162

program, exiting, 691
programmer errors, see condition codes

defined, 865
PVAM, transferring to Real Mode

segment, 729

Q
queue_io procedure, 162
queuing scheme of a semaphore, 493

R
random access, to file, 190, 352
random access device driver, 163

and UINFO table, 163
random access device drivers

supplied procedures, 162
raw-input buffer, 215
read-ahead, 339, 709
reading, bytes from file, 181, 342, 712
real mode

segment, 729
transferring to PVAM segment, 731

receive call, 590
receive_control call, 594
receive_data call, 596
receive_fragment call, 599
receive_message call, 601
receive_reply call, 604
receive_signal call, 608
receive_units call, 610

receiving
data from mailbox, 596
message at port, 590
message from terminal, 434, 437
object from mailbox, 601
reply to RSVP message, 604
RSVP data message, 599
signal from port, 608
units from semaphore, 610

regions
accessing, 594
controlling, 445, 594
creating, 489
deleting and deadlock, 509
releasing control, 622

registers, CPU
current contents, 734
values passed in, 737

release_buffer call, 612
remote directory, 100
remote files, definition, 31
remote host, sending signal to, 635
removing

GDT descriptor, 500
logical name to device, 334
physical device, 179
VM86 extension, 733

renaming files, 184, 346, 714
repetitive alarms, 749
replacing, components of composite

objects, 449
reply, to transaction, getting, 631
request_buffer call, 614
requesting

buffer from buffer pool, 614
units from semaphore, 610

reserved mailbox slot, 754
reserving, memory for UDI calls, 716
reset_interrupt call, 616
restoring, volume availability, 210
resume terminal I/O, 228
resume_task call, 618
retrieving

BIOS clock time, 576
command name, 401
connection status, 124, 302
extension data, 135

System Call Reference Index 889

file information, 142, 309
filename, 132, 153, 307, 323
hardware clock time, 151
job prefix, 128
job user object, 130
status of logical device, 320
terminal characteristics, 367
user IDs, 156

returning
command connection, 392
memory to pool, 695, 708

rewinding tape, 221, 369
RMX_STRING, definition, 20
rmxifc.lib file, 27
rmxifc32.lib file, 27
rmxifc3w.lib file, 27
rmxifcb.lib file, 27
rmxifcm.lib file, 27
rmxiff3b.lib file, 27
rmxiff3m.lib file, 27
rmxifl.lib file, 27
rmxiflb.lib file, 27
rmxiflm.lib file, 27
ROM BIOS requests

making, 737
passing parameters, 743

root module, 83
rq_a_attach_file call, 85
rq_a_change_access call, 90
rq_a_close call, 97
rq_a_create_directory call, 99
rq_a_create_file call, 105
rq_a_delete_connection call, 114
rq_a_delete_file call, 116
rq_a_get_connection_status call, 124
rq_a_get_directory_entry, 132
rq_a_get_extension_data call, 135
rq_a_get_file_status call, 142, 146
rq_a_get_path_component call, 153
rq_a_load call, 30, 61
rq_a_load_io_job call, 30, 67
rq_a_open call, 171
rq_a_physical_attach_device call, 175
rq_a_physical_detach_device call, 179
rq_a_read call, 181
rq_a_rename_file, 184
rq_a_seek call, 190

rq_a_set_extension_data call, 196
rq_a_set_file_status call, 199
rq_a_special call, 205

changing volumes, 209
connection flags for terminal

attributes, 214
hard disk information structure, 211
signal semaphore structure, 220
tape information structure, 212
TCC-supported device fields, 219
terminal information structure, 213
terminal status structure, 223
volume unavailable structure, 209

rq_a_truncate call, 241
rq_a_update call, 244
rq_a_write call, 253
rq_accept_control call, 445
rq_add_reconfig_mailbox call, 447
rq_alter_composite call, 449
rq_attach_buffer_pool call, 451
rq_attach_port call, 453
rq_broadcast call, 455
rq_c_backup_char call, 391
rq_c_create_command_connection call, 392
rq_c_delete_command_connection call, 396
rq_c_format_exception call, 397
rq_c_get_char call, 399
rq_c_get_command_name call, 401
rq_c_get_input_connection call, 403
rq_c_get_input_pathname call, 408
rq_c_get_output_connection call, 414
rq_c_get_output_pathname call, 420
rq_c_get_parameter call, 423
rq_c_send_co_response call, 434
rq_c_send_command call, 427
rq_c_send_eo_response call, 437
rq_c_set_control_c call, 440
rq_c_set_parse_buffer call, 442
rq_cancel call, 457
rq_catalog_object call, 459
rq_connect call, 465
rq_create_buffer_pool call, 467
rq_create_composite call, 469
rq_create_extension call, 474
rq_create_io_job call, 284
rq_create_job call, 476
rq_create_mailbox call, 483

890 Index

rq_create_port call, 485
rq_create_region call, 489
rq_create_segment call, 491
rq_create_semaphore call, 493
rq_create_task call, 495
rq_create_user call, 112
rq_delete_buffer_pool call, 498
rq_delete_composite call, 499
rq_delete_extension call, 502
rq_delete_job call, 504
rq_delete_mailbox call, 506
rq_delete_port call, 508
rq_delete_region call, 509
rq_delete_segment call, 511
rq_delete_semaphore call, 513
rq_delete_task call, 515
rq_delete_user call, 121
rq_detach_buffer_pool call, 517
rq_detach_port call, 519
rq_disable call, 520
rq_disable_deletion call, 522
rq_enable call, 524
rq_enable_deletion call, 526
rq_encrypt call, 122
rq_end_init_task call, 527
rq_enter_interrupt call, 528
rq_exit_interrupt call, 530
rq_exit_io_job call, 299
rq_force_delete call, 533
rq_get_buffer_limit call, 537
rq_get_default_prefix call, 128
rq_get_default_user call, 130
rq_get_exception_handler call, 539
rq_get_file_driver_status call, 138
rq_get_global_time call, 151
rq_get_host_id call, 544
rq_get_interconnect call, 545
rq_get_level call, 547
rq_get_logical_device_status call, 320
rq_get_pool_attrib call, 551
rq_get_port_attributes call, 556
rq_get_priority call, 559
rq_get_size call, 560
rq_get_task_accounting call, 562
rq_get_task_info call, 565
rq_get_task_state call, 569
rq_get_task_tokens call, 574

rq_get_time call, 576
rq_get_type call, 577
rq_get_user_ids call, 325
rq_hybrid_detach_device call, 329
rq_inspect_composite call, 579
rq_inspect_user call, 156
rq_install_duibs call, 158
rq_install_file_driver call, 165
rq_logical_attach_device call, 331
rq_logical_detach_device call, 334
rq_lookup_object call, 39, 581
rq_move_data call, 584
rq_offspring call, 586
rq_receive call, 590
rq_receive_control call, 594
rq_receive_data call, 596
rq_receive_fragment call, 599
rq_receive_message call, 601
rq_receive_reply call, 604
rq_receive_signal call, 608
rq_receive_units call, 610
rq_release_buffer call, 612
rq_request_buffer call, 614
rq_reset_interrupt call, 616
rq_resume_task call, 618
rq_s_attach_file call, 257
rq_s_catalog_connection call, 261
rq_s_change_access call, 264
rq_s_close call, 270
rq_s_create_directory call, 273
rq_s_create_file call, 278
rq_s_delete_connection call, 292
rq_s_delete_file call, 294
rq_s_get_connection_status call, 302
rq_s_get_directory_entry call, 307
rq_s_get_file_status call, 309
rq_s_get_path_component call, 323
rq_s_load_io_job call, 77
rq_s_lookup_connection call, 336
rq_s_open call, 164, 338
rq_s_overlay call, 83
rq_s_read_move call, 342
rq_s_rename_file call, 346
rq_s_seek call, 352
rq_s_set_file_status call, 355
rq_s_special call, 360
rq_s_truncate_file call, 377

System Call Reference Index 891

rq_s_uncatalog_connection call, 380
rq_s_write_move call, 386
rq_send call, 619
rq_send_control call, 622
rq_send_data call, 624
rq_send_message call, 626
rq_send_reply call, 628
rq_send_rsvp call, 631
rq_send_signal call, 635
rq_send_units call, 636
rq_set_default_prefix call, 193
rq_set_default_user call, 195
rq_set_exception_handler call, 638
rq_set_global_time call, 203
rq_set_interconnect call, 644
rq_set_interrupt call, 646
rq_set_pool_min call, 653
rq_set_priority call, 654
rq_set_time call, 656
rq_signal_exception call, 657
rq_signal_interrupt call, 659
rq_sleep call, 661
rq_start_io_job call, 376
rq_suspend_task call, 663
rq_uncatalog_object call, 668
rq_validate_buffer call, 670
rq_verify_user call, 382
rq_wait_interrupt call, 672
rq_wait_io call, 247
rq_wait_iors call, 251
rqe_a_load_io_job call, 68
rqe_change_descriptor call, 461
rqe_change_object_access call, 463
rqe_create_descriptor call, 472
rqe_create_io_job call, 285
rqe_create_job call, 477
rqe_delete_descriptor call, 500
rqe_dos_request call (DOS only), 737
rqe_exit_interrupt call, 532
rqe_get_address call, 535
rqe_get_exception_handler call, 541
rqe_get_object_access call, 548
rqe_get_pool_attrib call, 553
rqe_offspring call, 588
rqe_read_segment call (DOS only), 729
rqe_s_load_io_job call, 78
rqe_set_exception_handler call, 640

rqe_set_max_priority call, 649
rqe_set_os_extension call, 651
rqe_set_vm86_extension call (DOS only), 733
rqe_timed_interrupt call, 666
rqe_write_segment call (DOS only), 731
RQEGetRmxStatus call, 746
RQSYSINFO, 39
rqv_allocate call, 789
rqv_allocate_at call, 791
rqv_change_access call, 793
rqv_create_segment call, 795
rqv_free call, 797
rqv_map_physical call, 799
RSVP buffer, cancelling, 457
RSVP message

cancelling synchronously, 457
disabling fragmentation, 558
enabling fragmentation, 558
receiving, 599
receiving reply, 604
requesting, 631
sending, 628

S
s_attach_file call, 257
s_catalog_connection call, 261
s_change_access call, 264
s_close call, 270
s_create_directory call, 273
s_create_file call, 278
s_delete_connection call, 292
s_delete_file call, 294
s_get_connection_status call, 302
s_get_directory_entry call, 307
s_get_file_status call, 309
s_get_path_component call, 323
s_load_io_job call, 77
s_lookup_connection call, 336
s_open call, 338
s_overlay call, 83
s_read_move call, 342
s_rename_file call, 346
s_seek call, 352
s_set_file_status call, 355
s_special call, 360
s_truncate_file call, 377

892 Index

s_uncatalog_connection call, 380
s_write_move call, 386
scheduling, 36

cancelling lock, 785
categories of system calls, 36
effects of lock on tasks, 786
locked with alarm handler, 749
locking, 786

segments, data, see data segments
segments, memory, see memory segments
SELECTOR, definition, 20
semaphores

available units, 758
creating, 493, 757
deleting, 513, 764
deleting iRMK regions, 764
iRMK regions, 758
receiving units from, 771
requesting units from, 610
resuming static priority, 764
sending units to, 636, 779
specifying wait time, 771
wakeup events, 771

send call, 619
send_control call, 622
send_data call, 624
send_message call, 626
send_reply call, 628
send_rsvp call, 631
send_signal call, 635
send_units call, 636
sending

control message, 455
data message to mailbox, 624
message to terminal, 434, 437
object message to mailbox, 626
RSVP, 628
signal to remote host, 635
units to semaphore, 636

sequential condition codes
definition, 31

sequential part, of calls, 71
sequential part of calls, 29
server, remote, 210
set_default_prefix call, 193
set_default_user call, 195
set_exception_handler call, 638

set_global_time call, 203
set_interconnect call, 644
set_interrupt call, 646
set_pool_min call, 653
set_priority call, 654
set_time call, 656
setting

<Ctrl-C> handler, 428, 440
bad track information, 370
BIOS clock time, 656
default prefix for job, 193
default user for job, 195
file extension data, 196
file pointer, 190, 352
hardware clock time, 203
information about devices, 360
maximum size of memory pool, 478
minimum size of memory pool, 653
signal characters, 220
signal characters for signaling from

terminal keyboard, 368
terminal characteristics, 367
terminal data, 212
world_access, 693, 694

share mode values, 125
signal

characters, setting, 220
interrupt task readiness, 666
readiness to service interrupt, 672
receiving from port, 608
sending to remote host, 635

signal_exception call, 657
signal_interrupt call, 659
Single Task Loadable (STL) file, see STL
single-shot alarms, 749
sink port, receiving forwarded message, 453
sleep call, 661
SOCKET$STRUCT, definition, 20
SOCKET, definition, 22
SOCKET_STRUCT, definition, 20
source port, forwarding message to

sink port, 453
special character mode

definition, 218
start_io_job call, 376

System Call Reference Index 893

starting
I/O jobs, 376
initial task, 376
interrupt task, 659
task, 71

static priority, after semaphore deletion, 764
status

getting for connection, 124, 302
getting for stream file, 364
getting for terminal, 371

STL (Single Task Loadable) file, 62
stream files

definition, 31
forcing request completion, 208, 365
getting status, 208, 364
satisfying request, 208, 365

string table, format, 22
STRING, definition, 23
STRING_TABLE_STRUCT, definition, 20, 24
STRINGTABLE, definition, 24
structures

bad track or sector information, 222, 370
cancel_io, 228
conn_status, 124
connection information, 302
date and time for get_global_time, 151
date and time for set_global_time, 203
device free space, 236, 372
device information, 320
dir_entry_info, 132
directory entry segment, 132
disk_drive_data, 211
exception_handler, 286, 479, 638
extension data, 196
file status information, 142
file_info, 142
file_info for get_file_status, 310
file_status, 135
filename segment, 153
for accepting a reply message, 605
formatting a track, 207, 363
hard disk information, 211
IORS, 32
IORS_DATA_STRUCT, 362
KN_HDLR, definition, 780
KN_POOL_ATTRIBUTES,

definition, 766

mirr_create, 230
mirr_disable, 231
mirr_resync, 231
mirr_state_struct, 229
named file portion of status structure, 143
pool attributes for rqe_get_pool_

attributes, 553
set_time, 151, 203
signal protocol port creation

information, 485
signal semaphore for keyboard

characters, 220
terminal information, 213
terminal status, 223
user ID, 112
user name IDs, 325
user object for inspect_user, 156
volume unavailable, 209

suspend_task call, 663
suspension depth

decreasing, 618
increasing, 663

switching, volumes, procedure, 209
synchronous system calls

definition, 31
system calls

asynchronous, 31
interface libraries, 27
list of error/condition codes, 865
naming conventions, 18
prefixes for, 18, 31, 34
scheduling categories, 36
synchronous, 31
syntax, 26
tables of, 41, 42, 43, 44, 45, 46, 47, 48,

49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60

types of, 29, 31, 34
system clock, interrupt level, 524

T
tape drive

functions, 221, 369
getting information about, 212

894 Index

task handlers, iRMK
create_task_handler procedure, 759
delete_task_handler procedure, 765
task_switch_handler procedure, 787

task management, scheduling categories
listed, 36

task priority, changing, 654
tasks

accessing region, 594
asleep state, length of time, 784
cancelling scheduling lock, 785
changing priority, 654
creating, 71, 495
decreasing suspension depth, 618
deleting, 504, 515
dynamically installing handlers, 780
execution state transitions, 785, 786
getting creation time and run time, 562
getting environment information, 565
getting execution state, 569
getting priority for, 559
getting task token, 574
locking scheduling mechanism, 786
putting to sleep, 661, 784
resetting handler, 774
scheduling lock effects, 786
scheduling lock, cancelling, 785
scheduling lock, creating, 786
scheduling lock, multiple, 786
scheduling restart, 785
sleep limit values, 784
starting, 71
suspending, 663
wakeup events at a mailbox, 769

terminal characteristics
getting, 367
setting, 367

terminal device drivers, 163
and UINFO table, 163
supplied procedures, 162

terminal I/O
cancelling, 227
resuming, 228

terminal status, getting, 371

terminals
getting command arguments from, 696
getting information about, 212
input mode, changing, 720
sending and receiving message, 434, 437
setting information about, 212
status, getting, 223

terminating, program, 691
time

alarms, 748
beginning convention, 656
changing binary to ASCII, 687
getting, 151
getting current time, 767, 768
initial clock count, 782
setting, 203, 782
setting current time, 783

time stamps, changing, 199, 355
timer, watchdog, 447
tokens, 154

getting for object, 581
returned by call, 99, 105, 112, 273, 278,

336
track, formatting, 207, 363
transactions

replying to RSVP, 628
requesting RSVP, 631

transferring
data between DOS and iRMX OS, 737
data between PVAM and Real Mode

Segments, 729, 731
transparent mode, 720

definition, 215
TRUE, value for, 22
truncating, files, 241, 377, 726
type encodings for message fragments, 600
type-ahead buffer, 215, 221, 224, 225,

369, 720

U
UDF (User Definition File)

getting user IDs from, 325
UDI (Universal Development Interface)

system calls summary table, 55
udiifc.lib file, 28
udiifc32.lib file, 28

System Call Reference Index 895

udiifc3w.lib file, 28
udiifcb.lib file, 28
udiifcm.lib file, 28
udiiff3b.lib file, 28
udiiff3m.lib file, 28
udiifl.lib file, 28
udiiflb.lib file, 28
udiiflm.lib file, 28
UINFO (unit information) table, 163
UINT_16, definition, 20
UINT_32, definition, 20
UINT_8, definition, 20
uncatalog_object call, 668
uncataloging, object from job, 668
unit information table see UINFO:, 163
updating file buffers, 244
USE32 PVAM segment, 733
user

default, setting for job, 195
verifying, 382

user ID, 92, 113, 157
getting, 156
getting from UDF, 325

user object
creating, 112
deleting, 121
getting default for job, 130

V
validate_buffer call, 670
values

for FALSE, 22
for TRUE, 22

verify_user call, 382
verifying, user and password, 382
version, iRMX OS, getting, 704

virtual memory, system calls, summary
table, 59

virtual root directory, 92, 100, 107
virtual segments, validating, 670
VM86, valid interrupt levels, 733
VM86 extension

installing, 733
removing, 733

volumes
changing procedure, 209
unavailability notification, 209, 365

W
wait_interrupt call, 672
wait_io call, 247
wait_iors call, 251
watchdog timer, 447
wildcards

in pathnames, 408, 420
using, 409, 421

Windows, system calls, summary table, 57
WORD_16, definition, 20
WORD_32, definition, 20
World user, 92, 133, 185

access granted to, 694
write-behind, 709
writing

custom device driver and
DINFO table, 163

file buffers to disk, 244
file extension data, 196
file to disk, 253, 386, 727
tape filemark, 221, 369

WE'D LIKE YOUR OPINION

Please rate the following: Excellent Good Fair Poor

■ Manual organization ❒ ❒ ❒ ❒

■ Technical accuracy ❒ ❒ ❒ ❒

■ Completeness ❒ ❒ ❒ ❒

■ Clarity of concepts and wording ❒ ❒ ❒ ❒

■ Quality of examples and illustrations ❒ ❒ ❒ ❒

■ Overall ease of use ❒ ❒ ❒ ❒

Comments: __

__

__

__

__

__

Please list any errors you found (include page number): ________________________________

__

__

__

__

__

Name __

Company Name __

Address ___

May we contact you? ______________________ Phone _______________________________

Thank you for taking the time to fill out this form.

iRMX® System Call Reference
469157-004

Please fold here and close the card with tape. Do not staple.

POSTAGE WILL BE PAID BY ADDRESSEE

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

WE'D LIKE YOUR COMMENTS....

This document is one of a series describing Intel products. Your
comments on the other side of this form will help us produce better
manuals. Each reply will be reviewed. All comments and suggestions
become the property of Intel Corporation.

If you are in the United States and are sending only this card, postage
is prepaid.

If you are sending additional material or if you are outside the United
States, please insert this card and any enclosures in an envelope. Send
the envelope to the above address, adding "United States of America" if
you are outside the United States.

Thanks for your comments.

BUSINESS REPLY MAIL

OPD Technical Publications, HF2-72
Intel Corporation
5200 NE Elam Young Parkway
Hillsboro, OR 97124-9978

FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

International Sales Offices

AUSTRALIA
Intel Australia Pty. Ltd.
Unit 1A
2 Aquatic Drive
Frenchs Forest, NSW, 2086
Sydney

Intel Australia Pty. Ltd.
711 High Street
1st Floor
East Kw. Vic., 3102
Melbourne

BRAZIL
Intel Semiconductores do Brazil LTDA
Avenida Paulista, 1159-CJS 404/405
CEP 01311-Sao Paulo - S.P.

CANADA
Intel Semiconductor of Canada, Ltd.
999 Canada Place
Suite 404, #11
Vancouver V6C 3E2
British Columbia

Intel Semiconductor of Canada, Ltd.
2650 Queensview Drive
Suite 250
Ottawa K2B 8H6
Ontario

Intel Semiconductor of Canada, Ltd.
190 Attwell Drive
Suite 500
Rexdale M9W 6H8
Ontario

Intel Semiconductor of Canada, Ltd.
1 Rue Holiday
Suite 115
Tour East
Pt. Claire H9R 5N3
Quebec

CHINA/HONG KONG
Intel PRC Corporation
China World Tower, Room 517-518
1 Jian Guo Men Wai Avenue
Beijing, 100004
Republic of China

Intel Semiconductor Ltd.
32/F Two Pacific Place
88 Queensway
Central
Hong Kong

FINLAND
Intel Finland OY
Ruosilantie 2
00390 Helsinki

FRANCE
Intel Corporation S.A.R.L.
1, Rue Edison-BP 303
78054 St. Quentin-en-Yvelines
Cedex

GERMANY
Intel GmbH
Dornacher Strasse 1
85622 Feldkirchen bei Muenchen
Germany

INDIA
Intel Asia Electronics, Inc.
4/2, Samrah Plaza
St. Mark's Road
Bangalore 560001

ISRAEL
Intel Semiconductor Ltd.
Atidim Industrial Park-Neve Sharet
P.O. Box 43202
Tel-Aviv 61430

ITALY
Intel Corporation Italia S.p.A.
Milanofiori Palazzo E
20094 Assago
Milano

JAPAN
Intel Japan K.K.
5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

Intel Japan K.K.
Hachioji ON Bldg.
4-7-14 Myojin-machi
Hachioji-shi, Tokyo 192

Intel Japan K.K.
Bldg. Kumagaya
2-69 Hon-cho
Kumagaya-shi, Saitama 360

Intel Japan K.K.
Kawa-asa Bldg.
2-11-5 Shin-Yokohama
Kohoku-ku, Yokohama-shi
Kanagawa, 222

Intel Japan K.K.
Ryokuchi-Eki Bldg.
2-4-1 Terauchi
Toyonaka-shi, Osaka 560

Intel Japan K.K.
Shinmaru Bldg.
1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100

Intel Japan K.K.
Green Bldg.
1-16-20 Nishiki
Naka-ku, Nagoya-shi
Aichi 460

KOREA
Intel Korea, Ltd.
16th Floor, Life Bldg.
61 Yoido-dong, Youngdeungpo-
Ku
Seoul 150-010

MEXICO
Intel Technologica de Mexico
S.A. de C.V.
Av. Mexico No. 2798-9B, S.H.
44620 Guadalajara, Jal.,

NETHERLANDS
Intel Semiconductor B.V.
Postbus 84130
3009 CC Rotterdam

RUSSIA
Intel Technologies, Inc.
Kremenchugskaya 6/7
121357 Moscow

SINGAPORE
Intel Singapore Technology, Ltd.
101 Thomson Road #08-03/06
United Square
Singapore 1130

SPAIN
Intel Iberia S.A.
Zurbaran, 28
28010 Madrid

SWEDEN
Intel Sweden A.B.
Dalvagen 24
171 36 Solna

TAIWAN
Intel Technology Far East Ltd.
Taiwan Branch Office
8th Floor, No. 205
Bank Tower Bldg.
Tung Hua N. Road
Taipei

UNITED KINGDOM
Intel Corporation (U.K.) Ltd.
Pipers Way
Swindon, Wiltshire SN3 1RJ

If you need to contact Intel Customer Support
Contacting us is easy. Be sure that you have the following information available:

• Your phone and FAX numbers ready • Your product’s product code
• Complete description of your hardware • Current version of all software you use

or software configuration(s) • Complete problem description

Type of Service How to contact us
FaxBACK*
fax-on-demand system

24 hrs a day, 7 days a week

Using any touch-tone phone,
have technical documents sent to
your fax machine. Know your
fax number before calling.

U.S. and Canada: (800) 628-2283
(916) 356-3105

Europe: +44-1793-496646
Intel PC and LAN
Enhancement Support
BBS

24 hrs a day, 7 days a week

Information on products,
documentation, software drivers,
firmware upgrades, tools,
presentations, troubleshooting.

U.S and Canada: (503) 264-7999
Europe: +44-1793-432955

Autobaud detect
8 data bits, no parity, 1 stop

CompuServe*
Information Service

24 hrs a day, 7 days a week

Worldwide customer support:
information and technical
support for designers, engineers,
and users of 32-bit iRMX OS
and Multibus product families.

Worldwide Locations:
(check your local listing)

Type: GO INTELC once online.

Customer Support Intel Multibus Support engineers
offering technical advice and
troubleshooting information on
the latest Multibus products.

U.S. and Canada: (800) 257-5404
(503) 696-5025

FAX: (503) 681-8497
Hrs: M-F; 8-5 PST

Europe: +44-1793-641469
FAX: +44-1793-496385

Hrs: M-F; 9-5:30 GMT
Hardware Repair Multibus board and system

repair.
U.S. and Canada: (800) 628-8686

(602) 554-4904
FAX: (602) 554-6653

Hrs: M-F; 7-5 PST
Europe: +44-1793-403520

FAX: +44-1793-496156
Hrs: M-F; 9-5:30 GMT

Sales Intel Sales engineers offering
information on the latest iRMX
and Multibus products and their
availability.

Worldwide: Contact your local Intel
office or distributor

U.S. and Canada: (800) 438-4769
(503) 696-5025

FAX: (503) 681-8497
Hrs: M-F; 8-5 PST

Correspondence
Mail letters to:

Worldwide:

Intel Customer Support
Mailstop HF3-55
5200 NE Elam Young Parkway
Hillsboro, Oregon 97124-6497

Europe:

European Application Support
Intel Corporation (UK) Ltd.
Pipers Way
Swindon, Wiltshire
England SN3 1RJ

* Third-party trademarks are the property of their respective owners.

	Other iRMX Manuals
	iRMX® System Call Reference
	Quick Contents
	Contents
	1. Introduction
	Reader Level
	Call Prefixes For Various Layers
	Modified Alphabetical Listing of Calls

	Condition Codes
	Data Types
	Constants
	SOCKET Definition

	Strings and String Table Format
	STRING Definition
	String Table Definition

	Underscores in Calls, Structures, and Data Types
	Header Files to Include for System Calls
	Interface Libraries for System Calls and C Library
	Layer-specific Information
	Application Loader Layer-specific Information
	BIOS Layer-specific Information
	I/O Request/Result Segments

	EIOS Layer-specific Information
	iRMK Kernel-specific Information

	Getting System Information
	System Call Summary Tables
	Application Loader System Calls Summary
	BIOS System Calls Summary
	EIOS System Calls Summary
	Human Interface System Calls Summary
	Nucleus System Calls Summary
	UDI System Calls Summary
	Windows- and DOS-Specific System Calls Summary
	Kernel System Calls Summary
	Virtual Memory System Calls Summary
	Networking System Calls Summary

	2. Application Loader System Calls
	rq_a_load
	rq_a_load_io_job
	rqe_a_load_io_job
	rq_s_load_io_job
	rqe_s_load_io_job
	rq_s_overlay

	3. Basic I/O System Calls
	rq_a_attach_file
	rq_a_change_access
	rq_a_close
	rq_a_create_directory
	rq_a_create_file
	rq_create_user
	rq_a_delete_connection
	rq_a_delete_file
	rq_delete_user
	rq_encrypt
	rq_a_get_connection_status
	rq_get_default_prefix
	rq_get_default_user
	rq_a_get_directory_entry
	rq_a_get_extension_data
	rq_get_file_driver_status
	rq_a_get_file_status
	rq_get_global_time
	rq_a_get_path_component
	rq_inspect_user
	rq_install_duibs
	rq_install_file_driver
	rq_a_open
	rq_a_physical_attach_device
	rq_a_physical_detach_device
	rq_a_read
	rq_a_rename_file
	rq_a_seek
	rq_set_default_prefix
	rq_set_default_user
	rq_a_set_extension_data
	rq_a_set_file_status
	rq_set_global_time
	rq_a_special
	Format a Track (Function Code 0)
	Query Stream File Operations (Function Code 0)
	Satisfy Stream File Transactions (Function Code 1)
	Request Notification that a Volume is Unavailable (Function Code 2)
	Get Disk Data (Function Code 3)
	Get Tape Data (Function Code 3)
	Get Terminal Data (Function Code 4)
	Set Terminal Data (Function Code 5)
	Set Signal Characters (Function Code 6)
	Tape Drive Functions (Function Codes 7, 8, 9 and 10)
	Set and Get Bad Track/Sector Information (Function Codes 12 and 13)
	Get Terminal Status (Function Code 16)
	Cancel Terminal I/O (Function Code 17)
	Resume Terminal I/O (Function Code 18)
	Perform Disk Mirroring (Function Code 19)

	rq_a_truncate
	rq_a_update
	rq_wait_io
	rq_wait_iors
	rq_a_write

	4. Extended I/O System Calls
	rq_s_attach_file
	rq_s_catalog_connection
	rq_s_change_access
	rq_s_close
	rq_s_create_directory
	rq_s_create_file
	rq_create_io_job
	rqe_create_io_job
	rq_s_delete_connection
	rq_s_delete_file
	rq_exit_io_job
	rq_s_get_connection_status
	rq_s_get_directory_entry
	rq_s_get_file_status
	rq_get_logical_device_status
	rq_s_get_path_component
	rq_get_user_ids
	rq_hybrid_detach_device
	rq_logical_attach_device
	rq_logical_detach_device
	rq_s_lookup_connection
	rq_s_open
	rq_s_read_move
	rq_s_rename_file
	rq_s_seek
	rq_s_set_file_status
	rq_s_special
	Format a Track (Function Code 0)
	Query For Information About Stream File Operation (Function Code 0)
	Satisfy Stream File Transactions (Function Code 1)
	Request Notification That Volume Is Unavailable (Function Code 2)
	Get Disk Data (Function Code 3)
	Get Terminal Characteristics (Function Code 4)
	Set Terminal Characteristics (Function Code 5)
	Set Signal Characters for Signaling from Terminal Keyboard (Function Code 6)
	Tape Drive Functions (Function Codes 7, 8, 9, and 10)
	Set and Get Bad Track/Sector Information (Function Codes 12 and 13)
	Get Terminal Status (Function Code 16)
	Get Device Free Space Data (Function Code 20)

	rq_start_io_job
	rq_s_truncate_file
	rq_s_uncatalog_connection
	rq_verify_user
	rq_s_write_move

	5. Human Interface System Calls
	rq_c_backup_char
	rq_c_create_command_connection
	rq_c_delete_command_connection
	rq_c_format_exception
	rq_c_get_char
	rq_c_get_command_name
	rq_c_get_input_connection
	rq_c_get_input_pathname
	rq_c_get_output_connection
	rq_c_get_output_pathname
	rq_c_get_parameter
	rq_c_send_command
	rq_c_send_co_response
	rq_c_send_eo_response
	rq_c_set_control_c
	rq_c_set_parse_buffer

	6. Nucleus System Calls
	rq_accept_control
	rq_add_reconfig_mailbox
	rq_alter_composite
	rq_attach_buffer_pool
	rq_attach_port
	rq_broadcast
	rq_cancel
	rq_catalog_object
	rqe_change_descriptor
	rqe_change_object_access
	rq_connect
	rq_create_buffer_pool
	rq_create_composite
	rqe_create_descriptor
	rq_create_extension
	rq_create_job
	rqe_create_job
	rq_create_mailbox
	rq_create_port
	rq_create_region
	rq_create_segment
	rq_create_semaphore
	rq_create_task
	rq_delete_buffer_pool
	rq_delete_composite
	rqe_delete_descriptor
	rq_delete_extension
	rq_delete_job
	rq_delete_mailbox
	rq_delete_port
	rq_delete_region
	rq_delete_segment
	rq_delete_semaphore
	rq_delete_task
	rq_detach_buffer_pool
	rq_detach_port
	rq_disable
	rq_disable_deletion
	rq_enable
	rq_enable_deletion
	rq_end_init_task
	rq_enter_interrupt
	rq_exit_interrupt
	rqe_exit_interrupt
	rq_force_delete
	rqe_get_address
	rq_get_buffer_limit
	rq_get_exception_handler
	rqe_get_exception_handler
	rq_get_host_id
	rq_get_interconnect
	rq_get_level
	rqe_get_object_access
	rq_get_pool_attrib
	rqe_get_pool_attrib
	rq_get_port_attributes
	rq_get_priority
	rq_get_size
	rq_get_task_accounting
	rq_get_task_info
	rq_get_task_state
	rq_get_task_tokens
	rq_get_time
	rq_get_type
	rq_inspect_composite
	rq_lookup_object
	rq_move_data
	rq_offspring
	rqe_offspring
	rq_receive
	rq_receive_control
	rq_receive_data
	rq_receive_fragment
	rq_receive_message
	rq_receive_reply
	rq_receive_signal
	rq_receive_units
	rq_release_buffer
	rq_request_buffer
	rq_reset_interrupt
	rq_resume_task
	rq_send
	rq_send_control
	rq_send_data
	rq_send_message
	rq_send_reply
	rq_send_rsvp
	rq_send_signal
	rq_send_units
	rq_set_exception_handler
	rqe_set_exception_handler
	rq_set_interconnect
	rq_set_interrupt
	rqe_set_max_priority
	rqe_set_os_extension
	rq_set_pool_min
	rq_set_priority
	rq_set_time
	rq_signal_exception
	rq_signal_interrupt
	rq_sleep
	rq_suspend_task
	rq_system_accounting
	rqe_timed_interrupt
	rq_uncatalog_object
	rq_validate_buffer
	rq_wait_interrupt

	7. UDI System Calls
	dq_allocate
	dq_attach
	dq_change_access
	dq_change_extension
	dq_close
	dq_create
	dq_decode_exception
	dq_decode_time
	dq_delete
	dq_detach
	dq_exit
	dq_file_info
	dq_free
	dq_get_argument
	dq_get_connection_status
	dq_get_exception_handler
	dq_get_msize
	dq_get_size
	dq_get_system_id
	dq_get_time
	dq_mallocate
	dq_mfree
	dq_open
	dq_overlay
	dq_read
	dq_rename
	dq_reserve_io_memory
	dq_seek
	dq_special
	dq_switch_buffer
	dq_trap_cc
	dq_trap_exception
	dq_truncate
	dq_write

	8. Windows- and DOS-Specific System Calls
	rqe_read_segment
	rqe_write_segment
	rqe_set_vm86_extension
	rqe_dos_request
	RQEGetRmxStatus

	9. Kernel System Calls and Handlers
	KN_create_alarm
	KN_create_area
	KN_create_mailbox
	KN_create_pool
	KN_create_semaphore
	create_task_handler
	KN_delete_alarm
	KN_delete_area
	KN_delete_mailbox
	KN_delete_pool
	KN_delete_semaphore
	delete_task_handler
	KN_get_pool_attributes
	KN_get_time
	KNE_get_time
	KN_receive_data
	KN_receive_unit
	KN_reset_alarm
	KN_reset_handler
	KN_send_data
	KN_send_priority_data
	KN_send_unit
	KN_set_handler
	KN_set_time
	KNE_set_time
	KN_sleep
	KN_start_scheduling
	KN_stop_scheduling
	task_switch_handler

	10. Virtual Memory System Calls
	rqv_allocate
	rqv_allocate_at
	rqv_change_access
	rqv_create_segment
	rqv_free
	rqv_map_physical

	A. Application Loader Examples
	rqe_a_load_io_job and rqe_s_load_io_job example

	B. Nucleus Examples
	rqe_create_descriptor example
	rq_create_extension example
	rqe_create_job example
	rq_create_mailbox example
	rq_create_region example
	rq_create_segment example
	rq_create_semaphore example
	rq_create_task example
	rq_delete_job example
	rq_force_delete example
	rqe_get_address example
	rq_get_exception_handler example
	rqe_get_pool_attrib example
	rq_get_pool_attrib example
	rq_get_task_tokens example
	rq_get_type example
	rqe_offspring example
	rq_offspring example
	rq_receive_data example
	rq_receive_message example
	rq_receive_units example
	rqe_set_os_extension example
	rq_set_pool_min example

	C. UDI Examples
	dq_create example

	D. Condition Codes
	Environmental Conditions
	Nucleus Environmental Conditions
	I/O System Environmental Conditions
	Application Loader Environmental Conditions
	Human Interface Environmental Conditions
	UDI Environmental Conditions
	Nucleus Communications Service Environmental Conditions
	Paging Subsystem Environmental Conditions

	Programmer Errors
	Nucleus Programmer Errors
	I/O System Programmer Errors
	Application Loader Programmer Error
	Human Interface Programmer Errors
	UDI Programmer Errors
	Communication System Programmer Errors
	Paging Subsystem Programmer Errors

	Index
	Service Information

