iRMX®
System Call Reference

Order Number: 469157-004

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:
Literature Distribution Center
Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641
Or you can call the following toll-free number: 1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local
Intel sales office. For your convenience, international sales office addresses are printed on the last page of
this document. Contact your local sales office to obtain the latest specifications before placing your order.

Intel Corporation (Intel) makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel assumes no
responsibility for any errors that may appear in this document. Intel makes no commitment to update nor to
keep current the information contained in this document. No part of this document may be copied or
reproduced in any form or by any means without prior written consent of Intel. Intel retains the right to make
changes to these specifications at any time, without notice.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's Software License Agreement.
U.S. GOVERNMENT RESTRICTED RIGHTS: These software products and documentation were
developed at private expense and are provided with "RESTRICTED RIGHTS." Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in FAR 52.227-14 and

DFAR 252.227-7013 et seq. or its successor.

The Intel logo, i960, Pentium, and iRMX are registered trademarks of Intel Corporation, registered in the
United States of America and other countries. Above, i287, i386, i387, i486, Intel287, Intel386, Intel387,
Intel486, Intel487 and EtherExpress are trademarks of Intel Corporation.

Adaptec is a registered trademark of Adaptec, Inc. AT, IBM and PS/2 are registered trademarks and PC/XT
is a trademark of International Business Machines Corporation. All Borland products are trademarks or
registered trademarks of Borland International, Inc. CodeView, Microsoft, MS, MS-DOS and XENIX are
registered trademarks of Microsoft Corporation. Comtrol is a registered trademark and HOSTESS is a
trademark of Comtrol Corporation. DT2806 is a trademark of Data Translation, Inc. Ethernet is a registered
trademark of Xerox Corporation. Hayes is a registered trademark of Hayes Microcomputer Products.
Hazeltine and Executive 80 are trademarks of Hazeltine Corporation. Hewlett-Packard is a registered
trademark of Hewlett-Packard Co. Maxtor is a registered trademark of Maxtor Corporation. MIXO is a
registered trademark of MIX Software, Incorporated. MIX is an acronym for Modular Interface eXtension.
MPI is a trademark of Centralp Automatismes (S.A.). NetWare and Novell are registered trademarks of
Novell Corp. NFS is a trademark of Sun Microsystems, Inc. Phar Lap is a trademark of Phar Lap Software,
Inc. Soft-Scope is a registered trademark of Concurrent Sciences, inc. TeleVideo is a trademark of
TeleVideo Systems, Inc. UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited. VAX is a registered trademark and VMS is a trademark of
Digital Equipment Corporation. Visual Basic and Visual C++ are trademarks of Microsoft Corporation. All
Watcom products are trademarks or registered trademarks of Watcom International Corp. Windows,
Windows 95 and Windows for Workgroups are registered trademarks and Windows NT is a trademark of
Microsoft in the U.S. and other countries. Wyse is a registered trademark of Wyse Technology. Zentec is a
trademark of Zentec Corporation. Other trademarks and brands are the property of their respective owners.

Copyright © 1991, 1992, 1993 and 1995 Intel Corporation, All Rights Reserved

REVISION HISTORY DATE
-001 Original Issue 12/91
-002 Revision One 08/92
-003 Update for Release 2.1 of the OS 12/93
-004 Update for Release 2.2 of the OS 11/95

Quick Contents

Chapter 1. Introduction

Chapter 2. Application Loader System Calls
Chapter 3. Basic I/0O System Calls

Chapter 4. Extended I/O System Calls
Chapter 5. Human Interface System Calls
Chapter 6. Nucleus System Calls

Chapter 7. UDI System Calls

Chapter 8. Windows- and DOS-Specific System Calls
Chapter 9. Kernel System Calls and Handlers
Chapter 10. Virtual Memory System Calls
Appendix A. Application Loader Examples
Appendix B. Nucleus Examples

Appendix C. UDI Examples

Appendix D. Condition Codes

Index

Service Information

System Call Reference

Notational Conventions

Most of the references to system calls in the text and graphics use C syntax insteac
of PL/M (for example, the system caktnd_messagimstead osend$message If

you are working in C, you must use the C header fifes, c.h udi_c.hand

rmx_err.h If you are working in PL/M, you must use dollar signs ($) and use the
rmxplm.ext@anderror.lit header files.

This manual uses the following conventions:

Syntax strings, data types, and data structures are provided for PL/M and C
respectively.

All numbers are decimal unless otherwise stated. Hexadecimal numbers
include theH radix character (for examplef-FH). Binary numbers include the
B radix character (for exampl#10110008B).

Bit O is the low-order bit. If a bit is set to 1, the associated description is true
unless otherwise stated.

Data structures and syntax strings appear in this font.
System call names and command names appear in this font.

PL/M data types such as BYTE and SELECTOR, and iRMX data types such as
STRING and SOCKET are capitalized. All C data types are lower case except
those that represent data structures.

The following OS layer abbreviations are used. The Nucleus layer is
unabbreviated.

AL Application Loader

BIOS Basic 1/0 System

EIOS Extended I/O System

HI Human Interface

uDI Universal Development Interface

Whenever this manual describes 1/0 operations, it assumes that tasks use BIO.
calls (such asq_a_read, rq_a_write, andrq_a_specia). Although not

mentioned, tasks can also use the equivalent EIOS calls (stghsasead
rq_s_write, andrq_s_specia) or UDI calls €g_read or dgq_write) to do the

same operations.

Introduction
ReEAAEN LEVEL...... e e 17
Call Prefixes FOr Various LayersS. ..o 18
Modified Alphabetical Listing of CallS............cccvvvvviiiiiiiiiiiiiiiiiiiiiiininnns 18
(0] a0 [1110] o I @Fo o L= T TP 18
(D1 = R B 01T SOOI 20
CONSTANTS. ...ttt e e et e et e et e e e e e e e eae 22
SOCKET Definitioncccooviiiiiiiiiiiiiiiii e 22
Strings and String Table FOrMat............uuueiiiiiiiiree e 22
STRING DefiNitiON ..uuveiiiiiiiieeeeeeeee e 23
String Table Definition.............oooiiiiiiii e 24
Underscores in Calls, Structures, and Data TYPES.......cccvvvvvvviiiiiiiiiiiieiiiennnnn, 25
Header Files to Include for System Calls..........coooveiiiiiiii, 26
Interface Libraries for System Calls and C Library..............ccococeeeiiiiinnn, 27
Layer-specific INformation................uuuviiiiiiie s 29
Application Loader Layer-specific Information...............cccccevvvvvnnnnn. 29
Condition Codes For Synchronous System Calls............cccceeeeeennnnn. 29
Condition Codes For Asynchronous System Callscccce...... 29
File Access ReqUIrEMENTS..........coveeiiiiiiiiiee e e 30
Mailboxes and Loader Result Segmentsc..ccevvvvvvviiiiiineeeneennn, 30
BIOS Layer-specific Informationcccccceeii i, 30
1T I8/ o1 P 31
SYStEM Call TYPES .. iiiiiiiiii et 31
Sequential and Concurrent Condition Codes.........ccccceevvveevvveennnnnnn. 31
I/0 Request/Result SEgMENTS........uuiiii i 32
EIOS Layer-specific Information................cccevviiiiii i, 34
SYStEM Call TYPES. .. iiiiiiiii i e e eees 34
I/0 Request/Result SEgMENTS.......ccuiiiieiiiieiie e 35
iIRMK Kernel-specific Information............cccooveeviiiiiiii e 35
Y11= G 35
DaAtA TYPES ettt 36
Scheduling Categoryoooovveeiiiii 36
o L= 10 4[] (= TP 37
Kn_Task_State StrUCIUIeoooeiiiiiiiiiiiiiiiiiiiii e 38
Configuring the Kernel Tick Interval.............ccccooe, 38

System Call Reference

Contents

Contents 5

Getting System INfOrmationoooviiiiiiiiiiiii e
System Call SumMmMary TableS.........uuuiiiiiiiiiii e e 41
Application Loader System Calls SUMMary.........cccccuvevveennenennnnnnnnnnnn
BIOS System CallS SUMMAIYuvvviiiiiiiiiiiiiiiiiiiiiise e
EIOS System Calls SUMMArYcooovviiiiiieee

Human Interface System Calls Summary..........ccccoeeieeiiii,

Nucleus Syste

M Calls SUMMAIY ..o,

UDI System CallS SUMMATYuuuiuiiiiiiiiiieeeeeeeieee e

Windows- and
Kernel System

DOS-Specific System Calls Summary........ccccvevveeeeennn.
CallS SUMMATYcoviiiiiiiiiiiiiiiie e

Virtual Memory System Calls Summary.........cccccceeeeeiiii,

Networking Sy

stem Calls SUMMANYoooviiiiiiiiiiieieeeeeeeeeeeeieees

Application Loader System Calls
= U (o = T P

a_load_io_job.......

rge_a_load 0 _JOD......cooiiiiiice e

s_load_io_job.......
rqe_s_load_io_job
s_overlay.............

Basic I/0O System Calls

a_attach_file.........
a_change_access
a close................

A _Create _dIrECLOMY ...ciiiiiiieieiitiie ettt e e e e e e e e e e e e e e eeeeeeeaeees

a_create_file.........

create_user..........

a_delete CONNECTIONciiiiiie e e e e e e eaaaas

a_delete file.........
delete_user..........
encrypt................

A_get_CONNECHION_STATUS.......ciuvieieieectieeteeete et e ete et e et et eerae e e

get_default_prefix
get_default_user..

g€t _dIrECLONY NIV .oiiiiiiiiiiiiii e e e e e e e e e e e e e e eeeeaeaene
a_get_extenNSION _datacoeeeiiiiiiiii e
get_file_driver_StatusS........cccooeoiiiiiii i

a_get file_status..
get_global_time....

a_get_path_COMPONENT........c..coiuiiiirieiieie ettt

Contents

1T o 1Tt A U Y= USRS 156

FO_INSTAIL_AUIDS.....oeieeeiiiiiie e 158
INStall_file _ArIVET ... e 165

= 0] 1= o PP UPPP 171
a_physical_attaCh_deVICE.......ccooiiiiiiiii e 175
a_physical_detaCh_devVviCe ... 179
= (== Lo IR 181
a rename _file .o 184
B SBK it 190
Set_default_PrefiX ..o 193
S _dEfAUIL USEI c.vvii i 195
a_Set exXteNSION _data..........cccevuiiiiiieiiiii e 196
A_Set file STAtUS.....iiiiiiiii i 199
Set_global _timMe.......oui 203
B SPECIAL...ceii i 205
= O (0 o= = P 241
= U] 0o = | = 244
17172z UL S o TSP 247
11Tz UL L0 £ 251

= LT (= 253

4 Extended I/0O System Calls

S_AttaCh _file. ... 257
S ex- 121 (oo [l oo o] s [=Tox 1 o o ISP 261
S_ChaNQE_ACCESS ...vuviiiiiiii e 264
S ClOS .. e e 270
I (=T LEc I e [= Tox (o] oY SRR 273
S _Create file. ..o 278
Create 10 _JOD oo 284
rge_create_i0_JOD.......oooiiiiiiiiiii e 285
S_delete _CONNECHIONoi i e 292
S eIt _fil@.uuunn i 294
EXIT_ 10 JOD ettt e e e e aaaee 299
S_get_CONNECHION_STAUSiiii ittt e e e 302
S_get _dIrECIONY _BNIIY ..ttt 307
S_get file STAtUS.....ccciiiii i 309
get_logical_device StatUsS.........ccoeceiiiiiiiiii i e 320
S_get_path_ COMPONENT........ci i e re e e e e anes 323
Lo 1= AT £1= T G o £ 325
hybrid_detach _deviCe ..o 329
logical_attaCh _deVICE........covviiiii i 331
logical_detaCh _deViCe.........coiiiiiiiiii e 334

System Call Reference Contents 7

S_l0OKUP_CONNECHIONuuiiiiiiii i 336

S 0] 1= o I TP PPN 338
S (1= 10 I 1110 1V/= TSP UPPPPPPRS 34
S _reNAME_FilE ... 34¢
S S e 352
S_Set file StAtUS ...coiiiiiii i 35¢
S_SPECIAL ..ce i e et e ————————— 360

StArt_10_JOD ..o 376
S_ITUNCALE _filE . i 377
S_uncatalog_CONNECLIONcevvviiiiiiiiiiiiiieeiiie e e e e e e e e e e e e e e e eeeeeeeeeeeaeeene 38(
VY USEI Lottt e e e e e e e e e e e e e e eeees 382
LT LT 1 0 (0 Y 386

Human Interface System Calls

C_DACKUP _Char ... e 391
Cc_create_command_CONNECLION...........cceeeiiiiiiiiii e 39:
c_delete_command_CONNECHION..........coiiiiiiiie e 39¢
C_fOrmat_EXCEPLIONuuiii ittt 397
oo [Ao o I- | PSS URPPPPUPPPRRRRRRIN 39¢
C_get_CoMMAaNT_NAIMEoiiiiiiiiiieiiiee e e e e e e e e e e 40:
C_get_INPUL_CONNECLION. .. .uuiiiiiiiii e e e e e e 403
C_get_INPUL_PathName..........ouuuiiiiiiiiie e 40¢
(oo =1 ae 1011010} A oo 0] g [=Tex 1 o] o D 414
C_get_output_pathname..........coooo i 42(
C_geL PAIAMETEI ...ttt e et e e e e b s 42.
(og=Y=1 (o o0 1 01210 = 5 o [P 42
C_SENU_CO_FESPONSE . .uu it eeeeeeeeeeeeittt e e e e e e e et e eeattb s a e e e e aeeeeeeeeaeesnnnes 434
C_SENU_BO _TBSPONSE. ...u it ieeeeeeeeeeetittt st e e e e e e e et e eeaatb s s e e e aaeeeeeeeeeeesnnnes 437
(oY= A 0 111 {0 [oS 44(C
C_set_parse_DBUffer ... 442

Nucleus System Calls

ACCEPE_CONTION ...ttt e et eeeeaaan s 445
add_reconfig_MailboX........ccoiiiiiiiiiiiii e 447
oYL g oo] 0 1] 010 1]) (= P UUSUURR 44c¢
attach_bUffer_Pool ... 451
== ol o [010) AT PPUPRPRR 452
DrOAACASEt 455

(o= 1 (o] FU TP PUPUPPUPPPPPRRRTPPR 457
CAtAlog_ODJECT ... 45¢
rQe_Change _deSCriPLOr. .. coiii i e e e e e e e e e e 46’

Contents

r4e_ChanQge_ODJECE _ACCESS....uuuiiiiiiiiiii it 463

(o7 0T g T=T o1 ST UPUPPTT SRR 465
create _buffer_PO0l ... 467
(o = L oo 0] oo] 1 (= PSR 469
(o[=T (= o L= T o] o] o] SRR 472
(o =T LY =) =] 41T (o) o PR 474
o =T\ L= o] o IS USRI 476
o [I e ==\ (=T o P 477
Ccreate_MailbOX......couuuiiiii e 483
(ol gt LE ST oL] ¢ ST UPP PP 485
o (=T L= = To [To] o KOS 489
CrEALE _SEOIMENT .ottt ettt e ettt e e et e e e e eraa e eaaeees 491
Create _SEMAPNOIE. . ..ottt e e e 493
(o =T (Y -] S 495
delete BUffer _POO0L ... 498
(o 1Ty (ot] 1 0] o L0 E] 1 (= 499
rge_delete _deSCriPLOr....ccoviii e e 500
Lo =T o L= =] 0] o o 502
elete OB i 504
delete MaIIDOX......u i 506
(o =T =1 L= o o] 508
(o 1= o (T (=T | (] o I 509
delete SEOMENT ... 511
delete SEMAPNOIE........i i 513
elete taSK ...ciiiei i 515
detach_buffer_Po0l ... 517
(o =7 = Tod o o o] A 519
ISADIE. ... 520
disable_deletioncooo oo 522
=T = 1 =S 524
enable_deletionuuiiiii 526
ENA_INIT_TASK....ci it 527
ENTET _INMTEITUDT. ..eeiei ettt e e e 528
EXIT_INTEITUPT e e e e e e e e e e eeaeaaaene 530
FOE_EXIt INTEITUPL. ..o e 532
FOICE _IBLE ..o e 533
FOE_JEL AUUIESS. ..ttt et 535
get_DUfEr_lIMIt..... ..o 537
get_exception_handler ... 539
rge_get_exception_handler............ooooiiiiiiiii e 541
OO NOST I, ... e 544
gt INTEICONNECT. ...t e e e 545
GO IBVEI e 547

System Call Reference Contents 9

10

Nucleus System

Calls (continued)

FE_get ODJECE BCCESS ... it

get_pool_attrib.........
rqe_get_pool_attrib ..

get_POrt_attribDULES. ..o

get_priority

o= T4 PSSP

get_task_accounting
get_task_info............
get_task_state..........
get_task_tokens.......
get_time..........ccoeee

get_type ..ocovvveieennnns

INSPECE_COMPOSITEceiiiiiiieeiieiiiii et a e e e e e e e e e eeeeeeee

lookup_object...........

[T0)Y /ST F- | - WS

offspring...................
rqe_offspring.............
reCeiveccevvvvvvnnnnn,
receive_control.........

(Yo TN V7= o = L - P

receive_fragment......

TECEIVE _IMESSAGE. . .eeeviietieeitieeetteeetteeteeateeateeeteesteeebeeateesaseeesteesraeeaseeeans

receive_reply............
receive_signal
receive_units............

SENA_CONTIOL. ..ttt ettt e e e

send_data................

SENU_IMESSAGE ...ceeieiiettttttiee e e et ettt e e e e e e e e et e e et e e b e bbb s

SENA_TEPIY e
=] 00 I 653/ « ISP

send_signal..............

SENA_UNIES. ¢ttt e e et
set_exception_handIer.............ouuiiiiiiiii e
rge_set_exception_handler ...

set_interconnect......
set_interrupt.............
rqe_set_max_priority

Contents

54
551
553
55¢
559
56(
56:
565
56
57:
57¢€
571
57¢
581
58/
586
588
59(
594
59¢
59¢

604
60¢&
61C
61-
614
616

61¢
619
622

62

62¢
631
63"
636
63¢
64(
644
64¢
649

FOE_SEL_0S_EXLENSION ...eevvvvviiiiiiiiiiiiiiee s ee e e e e e e e e e e e e e e e s snennnnne e e e 651

£ A o To Yo | I 12110 PO SO PPPPUPRPRT 653
= A o] (0] {1 U 654
S LI e 656
Lo g Fo =2 (eT =] o] 1o] o [P 657
SIGNAL_INTEITUPT ... e s 659
£ =T =T o PP 661
SUSPENA_TASK ..t 663
SYSEEM_ACCOUNTING ...eteiiieiiiiiiiiiie e ee e e e e e e e e e e e e e e e et e eeae bt s a e e e e eeeaeeeaeeeeeeeeesrenees 665
o TSI o g =T BT Y (=T U o) S PPURUPR 666
(B gTor=1 =1 (oo o] o =Tt A SSUSPPP 668
validate DUfEr ..o 670
(V= UL 1 (=T U]) ST 672

7 UDI System Calls

AQ_AIIOCALE..... e et e e 675
o (o -V -] o 1SS SUPPPPPIPRRRN 677
Jg_CRANGE _ACCESS ...ciiiie it a e e e e e e e e e aees 679
dg_Change _EXIENSIONuuuiiiiii it a e e e e e e e e e 681
o (o T o] (0 1= = SO USPPPPPPR 683

(o (o T o] £ =T =SSR 684

o [o Jo [=ToloTo L= =) (o =T o 1 o o HO S SSSSRP 686
o (o Jo [=ToloTo L= {1 4 1= T 687
o (o o [=1 1= = PSS SUPPPPPPIPRRRN 689

(o (o 0 121 =Y o 1SR 690

o (o T = SRR 691
Lo (o I {1 L= T T) (o IS SUPPPPPPRPPPRRIN 692
OB e ——————— 695

o (o o 1= A=V (o [N] 4= o | SO PSSP 696
dg_get_conNECHiON _StAtUS.........iiieiiiiiiie e e e 699
dg_get_exception_handler...........coouiiiiiiiiiiiiie e 701
(o [o [o =] A 10 1574 TN 702
(o (o T o =] A= 4 2 703
o [o T o =1 A=) Y251 (= . 1 o P 704
Lo o TR o 1= A 1] 1= 705
(o [o T 14 = 11T 1= £ TSP 706
O MITE e ———— 708

Lo o T o o= o 709
Lo o T) V=1 - S 711
o o TR == Lo 712

(o o T (= 1 =0 =P 714
(o (o I (=21 V=T [T 11T 2T 2 716

System Call Reference Contents 11

o (o T o 1= o3 - OSSR 72C
dg_SWILCh_BUFEE....cce i 723
Lo (o T (= o T o oSS 724
Lo Lo I A= T o =) (o1=1 1 [0 ISR 725
Lo (o T (0 T = PSSR 72¢€
o (o T 1 (= USRS 727

8 Windows- and DOS-Specific System Calls
rqge_read_segment iRMX for Windows only............cccoiiiiiiiiiiiiiiiiicnn. 729
o TR L I T=Te | 1 0=) SRR 73!
rge_set_VMB6_EXIENSIONcvvvviiiiiiiiiiiiiiiiiiiiiiin e e 733
o= o (o1 = To [V o= P SSSUPPPPPPPIN 737
ROEGEIRMXSIATUS. . ..uiiviiiie e e s e 745

9 Kernel System Calls and Handlers

12

KN _Create _alarmmccouuiiii e e e e e e eeas 747
N o ST UL - LT VPN 75(
KN_create mailboXuiiiiiiiiiii e 752
(S e =T= 11 o To Lo 1 SRS 755
KN_create_SemaphOreooviiiiiiiiiiiiiiiiiiir e e e e e e e e e e e e e e e e e eeeeeanee 757
create_task NandIer........cooouiiiii e 75
KN _delete_alarmooooiiiiii e 760
KN _deIBIE _Ara.......uiiiiiiiiiie e 76]
KN_delete_ mMailboXoooeiiiiiiiicc e 762
KN_delete_POO0L.....ccooiiieieeeeee e a e 763
KN_delete_Semaphiore oo s 764
delete_task handler..........cccoooiiiiiii i 76!
KN_get_pool_attribUtes............uuuuviiiiiiiiiiiiiiiiiiis e eemmmmmmm e 766

S o 1= A 101U 767
S| S0 = A 111 0= 768
SO I (1oL =TAVZ= o = L= 769
SO I (1oL =11 2= T | 771
S I (= 1ST= A= 1= 1 2 773
S I (= 1ST= A = U Lo | = 774
[NV IIE=T=T o o - - VA 775
KN_send_priofity_dataccccceeieeeiiiiiiiii e emeeeee 777

[I =T=1 T 1 779
(VIS = A 4= T 1= P 780
[T A 111 = S 782
L | ST A €] 4= 783

Contents

System Call Reference Contents 13

V] LTS o SRS 784
KN_start_sCheduling...........cooiiiiiiiiiiie e 785
KN_StOp_SChedUIING.......uuviiiiiieieec e 786
task_switch_handler.........ccccooeiiiiiiii e, 787

10 Virtual Memory System Calls
FOV_BHOCALE .. 789
0 |V 1[0 Tor= Y L= | SRR 791
FAV_CRANQE _ACCESS...ciiiiiiiiiiieeeeete ettt e ettt e e e e e e e e e e e aes 793
FOQV_Create_SEOMENT ...ttt e et e et e e e e e eaa e aeeas 795
L0 | 1= TSRS RRPPPPRPRTPUPPRN 797
FAQV_MAP_PRYSICAl....coi i 799

A Application Loader Examples
rqe_a_load_io_job and rge_s_load_io_job exampleccoooeiiiiiicammnnnnn. 801

B Nucleus Examples
rge_create_descriptor eXample 808
rg_create_extension EXaMPIEcooiiiiiiie e 810
rge_create_job eXamPleuuueiiiiiiii e 812
rg_create_mailboX eXample ... 815
rg_create_region eXampPleuuiuiiiiiiiii e 817
rg_create_Segment @XAMPIE ... oo 819
rg_create_semaphore exampleceoiiiiiiiiiieiee e 821
ra_create_task eXamPle.......uuueeiiiiiiie e 823
ra_delete_job eXampleoovviiiiiiiii e 828
ra_force_delete exampleoooiiiiiiiiiiii 829
rge_get_addreSs @XamMPIEoooiiiiiiiiiiiiiiiiii e 831
rg_get_exception_handler eXample ..o 833
rqe_get_pool_attrib eXample ... 835
ra_get_pool_attrib eXample. ... 836
rg_get_task tokens example..........ccoiviiiiiiiiiiiiiiii e 837
rg_get type EXAMPIEccceiii e 839
rge_offSpring eXample.......cccooiviiiiii i 841
rg_OffSPring €Xamplecoeiiiiiii e 842
rg_receive_data EXampPle.......coovuuii i 843
rg_receive_message EXamPIe ... 846
rQ_reCeive_UNItS EXamMPIE.......ui i e 849
rge_set_0S_extension eXamplecoooviviiiiiie e 852
rg_set_pool_Min €XampPlecoovvuiiiii e e 853

C UDI Examples
dg_Create eXampPle..... ..o 85!
D Condition Codes
Environmental CoNditioNS...........oouuuiiiiiiiii e 865
Nucleus Environmental Conditions...............cccoevviviiiiiiiieeeeeeeeeeeeeeeeeas 865
I/0 System Environmental ConditionS...........cccccvvvvvviiiiiiiiiiiiiiiieee, 866
Application Loader Environmental Conditions..............ccceeeee et 870
Human Interface Environmental ConditionS................evvvvvvvvivvivivieeenn.. 870
UDI Environmental ConditionScoooiviiiiiiiiiiiiiieceeeeceeeeeeeeeiiiens 871
Nucleus Communications Service Environmental Conditions.............. 872
Paging Subsystem Environmental Conditions..............ccccvvvvmmmmee. 872
Programmer EFTOIS........i oo eeee e e e 873
NUCIEUS Programmer EFTOrS..... ... e i eeeee e e e 873
I/O System Programmer ErTOrS..........uuueuevuueuuieiiiiiiiiiiiiiiiiiniinnnns 874
Application Loader Programmer EITOrueeeeeeiiinnnnnnninanennnnnnneens 874
Human Interface Programmer ErTOrSuuuuveeeeeeiiiiiiiiinniiineeseneeneeneens 874
UDI Programmer EITOISoovieiieiiiieeei e e e e 874
Communication System Programmer EIrors.........cccccceeeeeeeceeenennns 875
Paging Subsystem Programmer Errors.........cccooooeeeees ommeneneeeeeenn 875
Index 877

Service Information

14

Contents

Inside Back Cover

Tables

1-1. Data Types in System CallS........oooiiiiiiiii e 20
1-2. Include Files for System Calls and Data TYPES.........uuvvvvverereevvevrieiiieeeeeeeeeen 26
1-3. Interface Libraries for All Calls EXCePt UDIcccvvvvviiviiiiiiiiiiiiiiiiiieeeeeee 27
1-4. Interface Libraries for UDI CallS.........ccuuviiiiiiiiiiiiieieeeeeee e 28
1-5. Interface Libraries for C Library FUNCLIONSccooiiiiiiiiiiiiiiiciiiiiiiis 28
1-6. Application Loader System CallS............couvviiiiiiiieiiiiiiiiiiiiiiiiiiiiiieies 41
1-7. BIOS SyStem CallS.......ccoeeiiiiiiiiieeeeeeee e e e e e 42
1-8. EIOS SYSEM CallS....oeiiiiiiiiiiiiiiei e 45
1-9. Human Interface System CallS ... 47

1-10. NucCleus SYStem CallS.........uuuuuuuiiiiiiiiiiiie e 49
1-11. UDI SYStemM CallS.....uuuiiiiiiiiiiiiieeeee e 55
1-12. Windows- and DOS-Specific System CallSccvvvviiiiiiiiieineeacinnnnn. 57

1-13. Kernel System Calls and Handlerscccceeeiiii 58
1-14. Virtual Memory System CallScoooiiiiiiiiii e 59

1-15. System Calls that Access iINA 960 Network Software............cccevvvvveeennnn. 60
Figures

1-1. StriNg Table FOrMALcooiiiiiii e 23

System Call Reference Contents 15

Introduction

This manual is a reference to the system calls for the iRMXOperating System,
iIRMX for PCs, and iRMX for Windows. It provides a detailed description of each
system call and syntax in both PL/M and C languages. System calls can also be
invoked from other languages.

See also: Specific language informati®npgramming Techniques

This chapter provides general information that applies to the system calls:

Definitions of data types for PL/M and C
Header files (include files)
Interface libraries for system calls and the C library functions

Layer-specific information for the Application Loader, BIOS, EIOS, and
Kernel

Tables summarizing the calls in each Operating System (OS) layer

Reader Level

This manual assumes that you are familiar with:

Terms and concepts of the iRMX OS

See also: Introducing the IRMX Operating Systems,
System Concepts

The PL/M or C programming language

See also: PL/M 386 Programmer's Guide
iC-386 Compiler User's Guide

The Human Interface chapter also assumes that you are familiar with:

Human Interface command parsing
See also: System Concepts
Human Interface command format
See also: Command Reference

System Call Reference Chapter 1 17

Call Prefixes For Various Layers

A number of prefixes are used with iRMX system calls to designate functions or
OS layers. This list presents the prefix designations, examples of system call
names using those prefixes, and the use of the prefix.

Prefix Example Prefix Usage

rq_ rq_delete_job Basic label for Nucleus, BIOS, EIOS, AL
rqe_ rge_offspring Basic label for extended system calls

rqv_ rqv_allocate Basic label for virtual memory system calls
a_ rq_a load Label for asynchronous (rg_a, rqe_a) calls
S rq_s_overlay Label for synchronous (rq_s, rge_s) calls
c_ rq_c_get _char Label for Human Interface (rq_c) calls
dg_ dg_allocate Basic label for UDI system calls

cq_ cq_comm_rb Basic label for iNA 960 network calls

KN_ KN_delete alarm Basic label for Kernel calls

KNE_ KNE_get_time Basic label for extended Kernel calls

Modified Alphabetical Listing of Calls

This manual uses a shorthand notation that omits the topsprefix. For
example, the calig_s_create_fileis shown as_create_file You must use the
full name in application programs.

Extended system calls begin with the prefr. For extended calls, this manual
spells out the complete names, includingripe prefix, for example
rqe_create_io_job Thedq, cqg, KN, andKNE prefixes are also spelled out.

Within their OS layer, system call descriptions are presented in alphabetical order
according to their basic names, without regard to the stanglanorefix. For
examplerg_create_io_jobis listed alphabetically ageate_io_joh Extended

system calls are also arranged by their basic names hujetipeefix is retained for
unigueness. For examplge_create_io_job(including therge prefix) follows
create_io_joh The same is true for thig, cq, KN, andKNE prefixes.

Condition Codes

18

Except for Kernel calls, which do not perform error checking, each system call
returns a condition code whenever it is invoked. If the call executes without error,
it returns the condition code E_OK. (Some iNA 960 cq_* calls can return a value
other than E_OK to indicate success.) If an error occurs, the call returns a
condition code that describes the error. Your application can handle the condition
code directly (in-line) or with an exception handler.

See also: Condition codes, exception handigystem Concepts

Chapter 1 Introduction

The typical condition codes returned by each call are listed in each system call
description. However, be aware that:

* PL/M programs use a $ instead of an _ (underscore) in the condition code
mnemonic.

« Condition codes can percolate up to outer layers of the OS from inner layers.
For example, an HI call can produce exception codes from the BIOS or EIOS.
In that case, the condition code is not listed in the HI call description.

See also: Condition code master list, Appendix D

System Call Reference Chapter 1 19

Data Types

Except for Kernel calls, each system call description lists PL/M and C data types
for each call parameter. The data types, unless otherwise stated, define the
acceptable range of values for a parameter. Table 1-1 lists the data types used in
this manual. Data types such as WORD_16, WORD_32, and NATIVE_WORD are
iIRMX data types, not native to PL/M or C; they are defined in the include files
provided with the OS.

See also: rmxtypes.tandrmx_c.hfiles in theintel/includedirectory
A CAUTION
Compiler controls (such &sng64 in iC-386) allow certain data

types to be larger than specified here. Use only the compiler
option that provides data types conforming with the table below.

See also:ilong64 , iC-386 Compiler User's Guide

Table 1-1. Data Types in System Calls

C Data Type PL/M Description

UINT_8 BYTE An unsigned 8-bit binary number or character in the range of
0 to 255, contained in 1 byte of memory.

UINT_16 WORD_16 An unsigned 16-bit binary number in the range of 0 to 65535,
contained in 2 contiguous bytes of memory.

UINT_32 WORD_32 An unsigned 32-bit binary number in the range of 0 to
4,294,967,295, contained in four contiguous bytes of memory.

SELECTOR SELECTOR A 16-bit index identifying a particular memory segment in a
descriptor table (segmented application) or page tables (flat
model). The selector is the data type for a token, which is a
value that the OS assigns to an object.

data_type far * POINTER In C, the data_type can be any data type in this table, or a
data structure defined in the call description, or void. The
asterisk (*) is part of the name. Pointer types and sizes are:

Compiler Type Pointer Type Pointer Size

16-bit compact/large segment:offset 16:16

segmented (32 bits total length)
32-bit compact segmented segment:offset 16:32

(e.g., PL/M-386, iC-386) (48 bits total length)
32-bit flat offset only 32 bits (near pointer
(non-Intel C compilers) even if declared far)

continued

20 Chapter 1 Introduction

Table 1-1. Data Types in System Calls (continued)

C Data Type

PL/M Data Type

Description

SOCKET_STRUCT

SOCKET$STRUCT

Combination of a host ID and
port ID for use in message
passing.

RMX_STRING or
PLM_STRING_STRUCT

PLM_STRING_STRUCT

An array of consecutive characters
with the first character defining the
length of the string.

STRING_TABLE_STRUCT

PLM_STRINGTABLE_STRUCT

An array of consecutive
RMX_STRINGS or
PLM_STRING_STRUCTSs.

BOOLEAN

BYTE

This data type corresponds to
BOOLEAN logic (true or false). ltis
an unsigned 8-bit binary number
that can take on the values FALSE
(0) and TRUE (not 0 or any value
greater than 0). In PL/M, TRUE
must have bit O set to 1.

KN_TOKEN

WORD_32

An unsigned 32-bit binary number
in the range of 0 to 4,294,967,295,
contained in four contiguous bytes
of memory.

KN_STATUS

WORD_32

An unsigned 32-bit binary number
in the range of 0 to 4,294,967,295,
contained in four contiguous bytes
of memory.

KN_FLAGS

WORD_32

An unsigned 32-bit binary number
in the range 0 to 4,294,967,295,
contained in four contiguous bytes
of memory.

NATIVE_WORD

(no equivalent)

In C, expands type definitions of
variables from 16 bits to 32 bits
when using 32-bit code. The
NATIVE_WORD type can be either
an unsigned 16-bit or unsigned 32-
bit binary number. In PL/M, you
include either the 16-bit or 32-bit
version of header (.ext and .lit) files
to get the correct data type.

System Call Reference

Chapter 1

21

Constants

Among others, these constant values are defined:

Value Defined as
0 FALSE
OFFH TRUE

SOCKET Definition

The SOCKET$STRUCT data type is defined in PL/M as:

DECLARE SOCKET$STRUCTURE(
host_id WORD_16,
port_id WORD_16);

For C, it is structured as:

struct {
UINT_16 host_id;
UINT_16 port_id;
} SOCKET_STRUCT;

Where:

host_id A number from 0 to 19, which is the slot number of a Multibus I
board, identifying a message-passing host.

port_id A number that uniquely identifies a port on the host.

See also: Nucleus calteate port in this manual,
Sockets and port§ystem Concepts

Strings and String Table Format

22

The iIRMX OS uses structures called strings to store groups of ASCII characters,
such as pathnames. The OS assumes a string to be a series of consecutive bytes
broken into two portions: a count byte and text bytes. The first byte in the string is
the count byte; its value is set to the number of bytes in the text portion of the
string. The text bytes contain the substance of the string. The maximum number
of characters in the STRING data type is 255.

|:| Note

When you call C functions, as in the C Library or the TCP/IP
socket calls, you use the null-terminated string that is typical of
the C language. When you make iRMX system calls from C (or
any language), you must use the OS string type described here.

Chapter 1 Introduction

The OS also uses another structure called a string table. A string table consists of a
count byte and a series of consecutive strings. As with the string, the first byte in
the string table is the count byte; its value is set to the number of strings in the
string table. Figure 1-1 shows the string table format.

BYTE: number of entries (n)

STRING: string 1

STRING: string 2

STRING: string 3

STRING: string n

Extra space, if any

W-0890

Figure 1-1. String Table Format

STRING Definition

The IRMX OS STRING data type is not the same as the null-terminated string
commonly used in C programs. The STRING data type is defined in PL/M as:

STRING LITERALLY 'STRUCTURE(
length BYTE,
char (STRING$SMAX) BYTE)'
DECLARE PLM_STRING_STRUCT(
length BYTE,
char(*) BYTE);
orinC:

typedef struct {

UINT_8 length;

UINT_8 text [MAX_STRING];
} RMX_STRING;

System Call Reference Chapter 1 23

Where:

length Specifies the length of the string. This equals the index of the
character array. 0 specifies a null string.

text [MAX_STRING]
The character array. In C, adjust the index for _MAX_STRING from
255 to fit the maximum value ¢dngth in actual use<(255).

String Table Definition
The STRINGTABLE data type is defined in PL/M as:
DECLARE STRINGTABLE STRUCTURE(

count BYTE,
strings(_ NUM_STRINGS) STRING)
Where:
count Specifies the number of entries in the STRINGTABLE.

strings|_ NUM_STRINGS]
The number of strings in the table.

orinC:

typedef struct {

UINT_8 numentry;
PLM_STRING_STRUCT strings[_NUM_STRING];
} STRING_TABLE_STRUCT;
Where:

numentry Specifies the number of entries in the STRINGTABLE.

strings|_ NUM_STRING]
The number of strings (of tyg&M_STRING_STRUC]Tin the table.

24 Chapter 1 Introduction

Underscores in Calls, Structures, and Data Types

This manual refers to all calls and data types such as structure definitions with
names that include underscores (_) separating the parts of the name. (In PL/M,
dollar signs ($) separate the parts of system call names.) In some cases, you can
refer to the same system call or structure definition with or without the underscore
separator. For example, you can cgllsend_messager rqsendmessage

depending on the include file. The OS defines such calls and data types both ways;
the versions without underscores are provided for backwards compatibility with
existing code.

As a general rule, the data types with underscores are defined in header files that
have underscores in the names. For exampbe, c.hdefines system calls with
underscores; it also includesxc.h which defines system calls without

underscores. Similarlymx_err.hdefines condition code names with underscores,
while rmxerr.hdefines the same names without underscores. (The header files, or
include files, are described later in this chapter.)

However, some of the latest OS type definitions are defined only with underscore
separators, as shown in this manual. In your application program, include the
underscore version of include files and use the underscores as shown in this
manual.

A CAUTION
Not all type definitions that include underscores are exactly the
same as their counterparts that don’t include underscores. For
example, th&sTRING_TABLE_STRUCTtructure (see page 24) is
not defined the same way as its counterpart,
STRINGTABLESTRUCT

Furthermore, not all of the PL/M structure definitions listed in

this manual are actually defined in PL/M header files (.lit and .ext
files). If you program in C and include the correct header files,
you can use the type definitions listed in this manual without
defining them yourself. But if you program in PL/M, you may
need to declare some of the literal structures listed here.

System Call Reference Chapter 1 25

Header Files to Include for System Calls

The header files to include in your application programs are located in the
directories listed below. These files define the prototypes for system calls, data
types shown in this manual, and mnemonics for condition codes.

Compiler Type Directory

(o /intel/include
PL/M 32-bit /rmx386/inc
PL/M 16-bit /rmx386/inc16

Most references to system calls in this manual use C syntax instead of PL/M (for
example, the system cat]_send_messagistead ofq$send$message The

header file you include determines whether system calls and data types are definec
with an underscore (_) as shown in this manual. In PL/M, use dollar signs ($) in
system calls and condition code mnemonics.

Table 1-2 lists the general include files and files that are specific to layers of the
OS. The general include files include most of the layer-specific files, so you don't

have to specifically include all these files in your application.

Table 1-2. Include Files for System Calls and Data Types
General Include Files C, Underscores {, No Underscores PL/M
Most layers rmx_c.h rmxc.h rmxplm.ext
rmxplm.lit
Condition codes rmx_err.h rmxerr.h error.lit
Layer-Specific Files C, Underscores C, No Underscores PL/M
OS data types, constants | common.h common.h common.lit
Application Loader loader.ext
BIOS bios.ext
EIOS eios.ext
Human Interface hi.ext
Nucleus nucleus.h nucleus.h nuclus.ext
Kernel * rmk.h rmk_base.ext
rmk_base.lit
uDnI* udi_c.h udi.h udi.ext
iNA 960 cq_ calls * cqcomm.h cqcomm.h cqcomm.ext
cq*.h cq*.lit?

1 Most layer-specific files are already included in the general include files, but you must specifically

include these files.

2 These PL/M files are for 16-bit applications only; they are in the /rmx386/inc16 directory but not in

/rmx386/inc.

The directories listed above contain other include files for specific purposes. The

include files for C Library functions are in thatel/includedirectory.

See also:

26 Chapter 1

Header file€, Library Reference

Introduction

Interface Libraries for System Calls and C Library

Libraries supplied with the OS provide a standard interface to the system calls.
These are the libraries to which you bind (link) your application. Procedures in the
interface libraries perform the operations needed to invoke the actual system call,
depending on the compiler you use.

Tables 1-3 and 1-4 list the system call interface libraries for the various supported
compiler models. These interface libraries are located iffrthe386/libdirectory.
The libraries in Table 1-3 are interfaces to these layers of the OS:

Application Loader Human Interface iNA 960 cq_* calls
BIOS Nucleus Kernel
EIOS Paging Subsystem

A CAUTION
Interfaces to the iINA 960 calls were formerly in separate
libraries: /rmx386/rmxnet/cq*.lib As of release 2.2 of the OS,
interfaces for iINA 960 calls are defined in the libraries listed in
Table 1-3. The old libraries and the directory they were in no
longer exist. You must relink your existing applications that
make cq__ calls to one of the libraries in Table 1-3.

The libraries in Table 1-3 for non-Intel compilers include an
interface for Kernel calls. For 32-bit compact applications that
make Kernel calls using Intel compilers, you must also link to the
kn_call.liblibrary.

Table 1-3. Interface Libraries for All Calls Except UDI

Interface Type Intel iC-386 Borland C Microsoft C Watcom C
and PL/M Compiler Compiler Compiler

16-bit compact rmxifc.lib * rmxifcb.lib rmxifcm.lib

16-bit large rmxifl.lib * rmxiflb.lib rmxiflm.lib

32-bit compact rmxifc32.lib * rmxifc3w.lib
kn_call.lib

32-bit flat rmxiff3b.lib rmxiff3m.lib N/A

1 These libraries do not include an interface to Kernel calls.
2 This library does not include an interface to Kernel calls. You must also link to kn_call.lib,
which supports only 32-bit compact applications.

System Call Reference Chapter 1 27

28

Table 1-4. Interface Libraries for UDI Calls

Interface Type Intel iC386 Borland C Microsoft C Watcom C
and PL/M Compiler Compiler Compiler

16-bit compact udiifc.lib udiifcb.lib udiifcm.lib

16-bit large udiifl.lib udiiflb.lib udiiflm.lib

32-bit compact udiifc32.lib udiifc3w.lib

32-bit flat udiiff3b.lib udiiff3m.lib

Table 1-5 lists the interface libraries for C library functions. These libraries are
located in theiltel\lib directory Link your application to the appropriate library

according the compiler you use. There is also a PL/M-specific library,
/intel/lib/plm386.li for any application written in PL/M.

See also:

C Library Referencéor information on the C functions

Table 1-5. Interface Libraries for C Library Functions

Interface Type Intel iC386 Borland C Microsoft C Watcom C
Compiler Compiler Compiler Compiler

16-bit compact cifcb.lib cifcm.lib
16-bit large ciflb.lib ciflm.lib
32-bit compact cifc32.lib cifc32w.lib
32-bit large cifl32.lib
32-bit flat ciff3b.lib ciff3m.lib

Chapter 1 Introduction

Layer-specific Information

This section presents information that applies specifically to the AL, BIOS, EIOS,
and Kernel layers:

» AlL-specific information relates to synchronous and asynchronous condition
codes, file access requirements, mailboxes, and Loader Result Segments

» BIOS-specific information relates to call types, sequential and concurrent
condition codes, and I/O Request/Result Segments

» EIOS-specific information relates to file and call types

« Kernel-specific information relates to syntax, description types, and parameters

Application Loader Layer-specific Information
There are three types of AL calls, as indicated by these prefixes:

Prefix ~ Meaning
rq_a_ Asynchronous call. The calling task continues running while the loading
operation is in process.

rq_s_ Synchronous call. The calling task is suspended during the loading
operation.
rqe_ Extended call. This call involves addressability of more than 1 Mbyte.

It can be designated with the asynchronous or synchronous prefix.

Condition Codes For Synchronous System Calls

For system calls that are synchronasiddad_io_joh rge_s_load_io_joh and
s_overlay), the AL returns a single condition code each time the call is invoked.
Your system's exception handler receives this code when an exceptional condition
occurs.

Condition Codes For Asynchronous System Calls

For system calls that are asynchronauddad a_load_io_joh
rqe_a_load_io_joh, the AL returns two condition codes each time the call is
invoked. Your task must process these two condition codes separately:

» One code is returned after the sequential part of the system call is executed.
« The other code is returned after the concurrent part of the call is executed.

See also: Sequential and concurrent portions of asynchronous system calls,
System Concepts

System Call Reference Chapter 1 29

File Access Requirements

The AL does not need exclusive access to the file being loaded. However, other
tasks sharing the file are affected:

e The other tasks must not share the connection passed to the AL, but must
obtain their own connections to the file.

« The AL specifies share with readers only when opening the connection; during
the loading operation, other tasks can access the file only for reading.

Mailboxes and Loader Result Segments

Your task must specify a mailbox when invoking an asynchronous system call in
order to receive a Loader Result Segment (LRS). Three AL system calls described
in this manual are asynchronows:load a_load_io_joh andrge_a_load_io_job

Do not use the same response mailbox for more than one concurrent invocation of
asynchronous system calls, because the AL can return LRSs in an order different
from the order of invocation. It is safe to use the same mailbox for multiple
invocations of asynchronous system calls if only one task invokes the calls and that
task always obtains the result of one call (usingédlseive_messagblucleus call)
before making the next call.

The LRS indicates the result of the loading operation, but the LRS format depends
on which system call was invoked and whether the calling task is 16 or 32 bit.
Individual system calls contain LRS details.

The AL uses memory from the pool of the calling task's job to create the LRS. The
calling task should delete the segment after it is no longer needed. Creating
multiple segments without deleting them can result in an E_MEM or E_SLOT
condition code.

See also: AL calls_load a_load_io_joh andrge_a_load_io_job

BIOS Layer-specific Information

The case-sensitivity of filenames and pathnames in the BIOS depends on the file
driver. For example, iRMX file names are not case sensitivexyfilés equal to
file XYZ However, files accessed through NFS may be case-sensitive.

30 Chapter 1 Introduction

File Types

Each BIOS system call may be used with one or more of these types of files, as
specified in the call descriptions:

File Type Description

Physical Enables the OS to access an entire 1/0 device as single file.
This is useful for accessing devices such as line printers,
formatting secondary storage devices, and accessing backup

volumes.

Stream Enables two programs to communicate with each other: One
program writes to the stream file while the other program reads
from it.

Named Divides data on storage devices into a hierarchical file structure

specific to the IRMX OS. Named files include data files and
directory files.

DOS Provides access to standard DOS-formatted media from the
iIRMX Il OS and iRMX For PCs.

EDOS Encapsulated DOS (EDOS) makes DOS files accessible to
iIRMX for Windows applications using EIOS, BIOS, and UDI
system calls.

Remote Refers to iRMX named files accessed through the Remote File

Driver of IRMX-NET or to files on any OS accessed through the
NFS file driver.

System Call Types
There are two types of BIOS calls indicated by these prefixes:

Prefix Meaning

rq_ Synchronous system calls. These calls begin running as soon as your
application invokes them, continue running until they detect an error or
finish their task, and then return control to your application.

rq_a Asynchronous system calls. These calls run concurrently with your
application, which can continue working while the BIOS deals with
devices such as disk drives and tape drives.

Sequential and Concurrent Condition Codes
The asynchronous system calls return condition codes at two different times:
e Sequential codes return immediately after invocation of the system call
e Concurrent codes return as a result of asynchronous processing

See also: Sequential and concurrent parts of system calls, condition codes,
System Concepts

System Call Reference Chapter 1 31

I/O Request/Result Segments

32

Certain asynchronous BIOS calls return a data structure called an 1/0
Request/Result Segment (IORS).

See also: EIOS Layer-specific Information for the EIOS IORS structure

The synchronous portion of the I/O system creates an IORS when an application
task requests an I/0O operation. The IORS contains information about the request
and about the unit on which the operation is to be performed. The asynchronous
portion of the 1/O system processes the request. After performing the requested
operation, the 1/0 system modifies the IORS to indicate the results of what it has
done. It then sends the IORS back to the mailbox specified bgsihenbox
parameter of the system call.

These system calls can return an IORS:

a_attach_file a_change_access

a_close a_create_directory
a_create_file a_delete_connection
a_delete_file a_open
a_physical_attach_device a_physical_detach_device
a_read a_rename_file

a_seek a_set file_status

a_special a_truncate

a_update a_write

Before waiting at the response mailbox to receive the IORS, your application task
should examine the condition code indicated byettoept_ptr parameter of any

call listed above. If this code is E_OK, the task can wait at the mailbox. However,
if the code is not E_OK, an exceptional condition exists and nothing is sent to the

mailbox.

Immediately after receiving the IORS, the task should examingdhes field.

This field contains an E_OK if the system call was completed successfully, or an
exceptional condition code if an error occurred. The IORS also contains the actual
number of bytes read or written, if appropriate.

See also: Accessing the IORSpgramming Techniques

The fields of general interest in the IORS have this structure. The IORS also
contains other fields which are of interest only to the designer of a device driver.

See also: IORDriver Programming Concepts

Chapter 1 Introduction

DECLARE IORS STRUCTURE(

status WORD_186,
unit_status WORD_16,
actual WORD_32);

or

typedef struct {
UINT_16 status;
UINT_16 unit_status;
NATIVE_WORD actual;

} IORS;

Where:

status Condition code indicating the outcome of the call.

unit _status

The lower four bits of this field contain device-dependent error code
information that is meaningful only if the status is E_IO. Certain
devices also use the upper 12 bitsiaif_status to provide more
information about the error. These are the codes, meanings, and
associated mnemonics for the lower four bits:

Code Mnemonic Meaning

0 IO_UNCLASS An error occurred but it was
impossible to ascertain the cause.

1 IO_SOFT Soft error; the 1/0 system has retried
the operation and failed; another
retry is not possible.

2 IO_HARD Hard error; a retry is not possible.

3 IO_OPRINT Operator intervention is required.

4 IO_WRPROT Write-protected volume.

5 IO_NO_DATA No data on the next tape record.

6 IO_MODE A read (or write) was attempted
before the previous write (or read)
completed.

7 IO_NO_SPARES An 1/0 error occurred during disk
formatting; no alternate tracks were
available.

8 IO_ALT_ASSIGNED An 1/0 error occurred during disk
formatting; an alternate track was
assigned

actual The actual number of bytes transferred.

System Call Reference

Chapter 1 33

EIOS Layer-specific Information

The case-sensitivity of filenames and pathnames in the EIOS depends on the file
driver. For example, iRMX file names are not case sensitivexyfilés equal to
file XYZ However, files accessed through NFS may be case-sensitive.

Colon characters are required in logical names such as :sd: when used in EIOS
pathnames.

See also: Logical nameSystem Concepts
Logical Names screefCU User's Guide and Quick Reference

Several EIOS system calls may be used with one or more types of files, as specifie
in the call descriptions.

See also: File types, BIOS Layer-specific Information for file type definitions

System Call Types

34

There are three types of EIOS calls, as indicated by these prefixes:

Prefix ~ Meaning

rq_s Synchronous system calls that have asynchronous equivalents in the
BIOS.

rq_ Synchronous system calls that do not have asynchronous equivalents in
the BIOS.

rqe_ System calls that involve addressability of greater than 1 Mbyte.

Chapter 1 Introduction

I/O Request/Result Segments
Some EIOS calls return an abbreviated version of an IORS:

typedef struct {

NATIVE_WORD actual;
#ifdef __INT16__

UINT_16 actualfill;
#endif

UINT_16 device;

UINT_8 unit;

UINT_8 funct;

UINT_16 subfunct;

UINT_32 deviceloc;

UINT_8 far * buff;

NATIVE_WORD count;
#ifdef __INT16__

UINT_16 countfill;
#endif

void far * aux;

} IORS_DATA_STRUCT,

IRMK Kernel-specific Information

The iRMX OS includes the iRMK Kernel embedded within the iRMX Nucleus.
This Kernel and its associated user interfaces give additional capabilities to the
iIRMX OS. Unless otherwise specified, when this manual refers to the Kernel, it
means the iIRMK Kernel.

See also: System Concepfsr more information on Kernel capabilities

Syntax

In the call descriptions, the system calls, data structures, and data types are
specified using the C language syntax. If you write your programs in C, you can
access the system calls using this syntax.

The Kernel also provides support for PL/M and assembly language programs. The
PL/M interface requires that you use a different set of include files in the
compilation of your programs and possibly linking to a different interface library.
The assembly language interface is a register interface; you must set up a group of
registers with parameter values before calling the system calls.

See also: Developing Applications in Assembly Langu&gegramming
Techniques

System Call Reference Chapter 1 35

Data Types

The Kernel defines the UINT 64 type as a long integer type for use in some system
calls. Write modules that use these system calls in PL/M or Assembly language.
In iC-386, the default long is 32 bits. Keep 64-bit operations isolated in a separate
module where thiong64 switch is enabled. This is necessary becaug®4

changes the definition of long.

Scheduling Category

The descriptions of Kernel calls contain a scheduling category. This category
indicates what effect a system call may have on task scheduling and whether a
scheduling lock changes that effect. It also indicates whether the system call can
be safely used by interrupt handlers, which should not lose control of the CPU
when they run. There are four types:

Non-scheduling (Safe)
The system call does not cause rescheduling, and interrupt handlers
can safely use it.

Signalling The system call could put other tasks in the ready state. If those tasks
are higher priority, rescheduling would occur, pre-empting the calling
task. If this system call is called from an interrupt handler, the
handler could lose control. A scheduling lock will prevent
rescheduling when using such a system call. Any task state change
caused by a signalling system call takes place immediately, but the
running task is not switched until scheduling is started again.

Blocking The system call could put the running task to sleep causing
rescheduling. An interrupt handler should not call this system call
unless it knows that the running task will not be put to sleep as a
result; the system call will complete its operation without blocking the
calling task. A scheduling lock does not prevent a blocking system
call from causing rescheduling.

Rescheduling (Unsafe)
This system call always causes rescheduling. An interrupt handler
should never call this system call. A scheduling lock does not prevent
rescheduling for this system call.

See also: Chapter 6 for Nucleus calls that can be made from interrupt handlers

36 Chapter 1 Introduction

Parameters

The Kernel header files declare literal values to define many of the data structures
and parameter values needed in programming the system calls. To use the Kernel-
defined values when setting up data structures and calling the system calls, include
the appropriate header files in your programs.

|:| Note

Some system calls include parameters that are actually status
return values. Those system calls will include a Return Value
subsection.

Flags Parameters

Masks typically refer to a single bit field in the flag. A mask is used to isolate a
value in the flags field when you examine a flag. To set a flag, choose one literal
value for each mask listed. Then OR the values together to form the flags value.

For example, these are the masks forfldgs parameter of the
KN_create_semaphoresystem call.

KN_EXCH_TYPE_MASK
Specifies the type of semaphore. Choose one of these literals:

Literal Meaning

KN_FIFO_QUEUEING The semaphore uses FIFO queueing

KN_PRIORITY_QUEUEING The semaphore uses priority
gueueing

KN_REGION The exchange is a single-unit region

KN_INITIAL_SEM_STATE_MASK

Specifies the number of initial units the semaphore receives. Choose
one of these literals:

Literal Meaning

KN_ZERO_UNITS The semaphore is created with no
units

KN_ONE_UNIT The semaphore is created with one
unit

To set up a semaphore that uses FIFO queueing and has one unit, specify these
literal values for thélags parameter:

KN_FIFO_QUEUEING | KN_ONE_UNIT

System Call Reference Chapter 1 37

Kn_Task_State Structure

KN_TASK_STATE is a structure describing the state of a task. Itis used in the
Kernel handler procedureseate_task handler delete_task_handler and
task_switch_handler Only some parts of this structure are visible. None of it
should be modified.

typedef struct {

UINT_8 reservedl [112];
UINT_16 dynamic_priority;
UINT_16 static_priority;
UINT_8 reserved2 [116];
UINT_16 rmx_task_token;
} KN_TASK_STATE;
Where:

reservedl Private to the Kernel.

dynamic_priority
The current dynamic priority of the task. This field is equal to the
static priority field unless the task's priority has been adjusted because
of region ownership, in which case it is equal to the adjusted priority.
The dynamic priority of tasks is used in scheduling the processor.

static_priority
The current static priority of the task. This field gives the priority of
the task if priority adjustment due to regions is ignored.

reserved2 Private to the Kernel.

rmx_task_token
This is the iRMX token corresponding to this task.

Configuring the Kernel Tick Interval

38

You can specify the Kernel Tick Ratio (KTR) in thax.ini file or by using the

ICU, but do not assume that a Nucleus tick is equivalent to a Kernel tick, especially
for KTR values that are less than the 10 millisecond default. You should write
code that adapts to the KTR values.

See also: Getting System Information, in this chapter
KTR, System Configuration and Administratjon
KTR, ICU User's Guide and Quick Reference

Chapter 1 Introduction

Getting System Information

The OS catalogs several items of information about the system, including the

Kernel Tick Ratio (KTR), in an abject called RQSYSINFO. To get the
information, first invoke the Nucleusg_get_task tokenssystem call to get the

token for the root job (where the RQSYSINFO object is cataloged). Then call

rq_lookup_object, specifying the token for the root job and the string

RQSYSINFO.

The token returned kry_lookup_objectis a SELECTOR for a memory segment
where the information is stored. Use a structure such as the following to get the

information at that segment, in PL/M:

DECLARE sysinfo_type STRUCTURE(

boot_dev(15) BYTE,
file_driver BYTE,
boot_file(30) BYTE,
reserved1(11) BYTE,
nuc_tick_interval WORD_16,
kn_tick_ratio WORD_16,
reserved2(29) BYTE,
bustype BYTE,
reserved3(6) BYTE,
physical_memory WORD_32,
reserved4(27) BYTE,

user_reserved(32) BYTE);
orin C:

struct sysinfo_type {

UINT_8 boot_dev[15];
UINT_8 file_driver;
UINT_8 boot_file[30];
UINT_8 reserved1[11];
UINT_16 nuc_tick_interval;
UINT_16 kn_tick_ratio;
UINT_8 reserved2[29];
UINT_8 bustype;

UINT_8 reserved3[6];
UINT_32 physical_memory;
UINT_8 reserved4[27];
UINT_8 user_reserved[32];

System Call Reference

39

40

Where:

boot_dev[15]
An RMX_STRING containing the name of the boot device.

file_driver
The file driver type used by the boot device:
Value File Driver
3 DOS
4 Named
5 Remote
6 EDOS
boot_file[30]

An RMX_STRING containing the name of the boot file.

nuc_tick_interval

The number of milliseconds from one Nucleus clock tick to the next.
kn_tick_ratio

The KTR value. Dividewuc_tick_interval by this value to get

the number of milliseconds in the Kernel tick interval.

bustype 1 is Multibus I, 2 is Multibus I, 3 is PC.

physical_memory
The top of physical memory as known by the iRMX Free Space
Manager.

user_reserved[32]
Available for your application’s use.

Chapter 1 Introduction

System Call Summary Tables

The following tables summarize the iRMX system calls by OS layer and by
functional group within each layer. The calls are listed alphabetically within each

functional group, without regard to their various prefixes (rq_, rge_, etc.).

Application Loader System Calls Summary

This table summarizes the AL system calls by functional groups.

Table 1-6. Application Loader System Calls

FILE AND MODULE LOADING

Call Name Description

a_load Loads an object file from secondary storage into
memory.

s_overlay Loads an overlay module into memory.

JOB AND TASK CREATION WITH FILE LOADING

a_load_io_job

obsolete; it is provided for compatibility with older
versions of the iRMX OS.

rge_a_load_io_job

Creates an 1/O job with a memory pool of up to
4 Gbytes, loads a specified object file, and creates a
task to execute the loaded code.

s_load_io_job

obsolete; it is provided for compatibility with older
versions of the iRMX OS.

rge_s_load_io_job

Creates an 1/O job with a memory pool of up to
4 Gbytes, loads a specified object file, and creates a
task to execute the loaded code.

System Call Reference

Chapter 1

41

BIOS System Calls Summary

This table summarizes the BIOS calls by functional groups.

Table 1-7. BIOS System Calls

JOB-LEVEL SYSTEM CALLS

Call Name

Description

encrypt

Encrypts a specified string of characters.

get_default_prefix

Returns the default prefix of a specified job.

get_default_user

Returns the default user object of a specified job.

set_default_prefix

Sets the default prefix for a specified existing job.

set_default_user

Sets the default user object for a specified existing job.

DEVICE-LEVEL SYSTEM CALLS

a_physical_attach_device

Attaches the specified device to the BIOS.

a_physical_detach_device

Detaches a device that was attached using
a_physical_attach_device

rg_install_duibs

Installs a cluster of Device Unit Information Blocks
(DUIBSs) into the BIOS.

a_special

Enables tasks to perform a variety of device-level
functions.

FILE/CONNECTION-LEVEL SYSTEM CALLS

a_attach_file

Creates a connection to an existing file of any type.

a_create_directory

Creates a directory file.

a_create_file

Creates a file and returns a token for the new file
connection.

a_delete_connection

Deletes a file connection created by a_create_file ,
a_create_directory , or a_attach_file .

a_delete_file

Marks a stream, named data or named directory file for
deletion.

install_file_driver

Installs a loadable file driver into the BIOS.

42 Chapter 1

continued

Introduction

Table 1-7. BIOS System Calls (continued)

FILE-MODIFICATION SYSTEM CALLS

Call Name

Description

a_change_access

Changes the access rights to a named data or directory
file.

a_rename_file

Changes the pathname of a named data or directory file.

a_set_file_status

Changes the owner and/or time stamps of a file.

a_truncate Truncates a named data file at the current setting of the
file pointer.
FILE INPUT/OUTPUT SYSTEM CALLS
a_close Closes an open file connection for any type of file.
a_open Opens an asynchronous file connection for I/0 operations
for any type of file.
a_read Reads the requested number of bytes on an open
connection for any type of file.
a_seek Moves the file pointer of an open file connection.
a_update Updates a device by writing all buffered partial sectors.
wait_io Returns the concurrent condition code for the prior call to
the calling task.
wait_iors Waits for an IORS and copies it to a user-provided buffer.
a_write Writes data from the calling task's buffer to a connected
physical, stream, or named data file.
GET STATUS/ATTRIBUTE SYSTEM CALLS
a_get_connection_status Returns information about the connection status of a

specified file.

a_get_directory_entry

Returns the filename associated with an entry number in g
named, DOS, or EDOS directory.

get_file_driver_status

Returns information on a specified file driver.

a_get_file_status

Returns status and attribute information about a specified
file.

a_get_path_component Returns the name of a data or directory file, as cataloged

in its parent directory.

continued

System Call Reference Chapter 1 43

Table 1-7. BIOS System Calls (continued)

USER OBJECT SYSTEM CALLS

create_user Creates a user object, accepts a list of IDs, and returns a
token for the new object.

delete_user Deletes a user object.

inspect_user Accepts a token for a user object and returns a list of the
IDs contained in the user object.

EXTENSION DATA SYSTEM CALLS

a_get_extension_data Writes the extension data for a named data or directory
file; not valid for DOS files.

a_set_extension_data Stores a named file's extension data; not valid for DOS
files.
TIME/DATE SYSTEM CALLS
get_global_time Reads the time of day from the battery-backed-up
hardware clock.
set_global_time Sets the battery-backed-up hardware clock to a specified
time.

44 Chapter 1 Introduction

EIOS System Calls Summary

This table summarizes the EIOS calls by functional groups.

Table 1-8. EIOS System Calls

I/0 JOBS

Call Name

Description

create_io_job

Obsolete; it is provided for compatibility with earlier
versions of the OS.

rge_create_io_job

Creates an /O job containing one task with a memory
pool of up to 4 Gbytes.

exit_io_job Sends a message to a previously designated mailbox and
deletes the calling task.
start_io_job Starts the initial task in an I/O job.

LOGICAL NAMES

s_catalog_connection

Creates a logical name for a connection by cataloging the
connection in the object directory of a job.

s_get_directory_entry

Returns a directory entry filename to the caller.

s_get_path_component

Returns the name of a named file as the file is known in
its parent directory.

hybrid_detach_device

Temporarily removes the correspondence between a
logical name and a physical device.

logical_attach_device

Assigns a logical name to a physical device.

logical_detach_device

Removes the correspondence between a logical name
and a physical device, and removes the logical name from
the root object directory.

s_lookup_connection

Returns a token for the connection associated with the
specified logical name.

s_uncatalog_connection

Deletes a logical name from the object directory of a job.

FILES AND CONNECTIONS

s_attach_file

Creates a connection to an existing file.

s_create_directory

Creates a new directory file and automatically adds a new
entry to the parent directory.

s_create_file

Creates a new physical, stream, or named data file.

s_change_access

Changes the access list for a named file.

s_rename_file

Changes the pathname of a directory or data file.

System Call Reference

continued

Chapter 1 45

Table 1-8. EIOS System Calls (continued)

FILES AND CONNECTIONS (continued)

Call Name Description

s_close Closes an open connection to a named, physical, or
stream file.

s_open Opens a file connection.

s_read_move Reads a number of contiguous bytes from a file
associated with a connection to a buffer specified by the
calling task.

s_seek Moves the file pointer for any open physical or named file
connection.

s_truncate_file Removes information from the end of a named data file.

S_write_move Writes a collection of bytes from a buffer to a file.

s_delete_connection Deletes a file connection, not a device connection.

s_delete_file Deletes a stream, named data, or named directory file
created by the BIOS or the EIOS.

DEVICES

s_special Enables tasks to communicate with devices, device
drivers, and the stream file driver to perform various
operations.

OBTAINING OR CHANGING STATUS

s_get_connection_status Provides status information about file and device
connections that were created by the BIOS or the EIOS.

s_get_file_status Obtains information about a physical, stream, or named
file created by the BIOS or the EIOS.

get_logical_device_status Provides status information about logical names that
represent devices.

s_set file_status Changes the owner and/or time stamps of a file.

USERS

get_user_ids Returns the user ID(s) associated with a user defined in
the User Definition File (UDF).

verify_user Verifies a user's name and password.

46 Chapter 1 Introduction

Human Interface System Calls Summary

This table summarizes the HI calls by functional groups.

Table 1-9. Human Interface System Calls

Call Name

Description

C_get_input_connection

Returns an EIOS connection object for the specified input
file.

C_get_output_connection

Returns an EIOS connection object for the specified
output file.

COMMAND PARSING

¢_backup_char

Moves the parsing buffer pointer back one character for
each occurrence of the call.

c_get_char

Gets a character from the parsing buffer and moves the
parsing buffer pointer to the next character.

c_get_input_pathname

Gets a pathname from the list of input pathnames in the
parsing buffer.

c_get_output_pathname

Gets a pathname from the list of output pathnames in the
parsing buffer.

c_get_parameter

Retrieves one parameter from the parsing buffer and
moves the parsing pointer to the next parameter.

c_set_parse_buffer

Permits parsing the contents of a buffer other than the
command line buffer whenever the parsing system calls
are used.

c_get_command_name

Obtains the pathname of the command entered by the
operator.

MESSAGE PROCESSING

c_format_exception

Creates a default message for a given exception code
and writes that message into a user-provided string.

c_send_co_response

Sends a message to :co: and reads a response from :ci:.

c_send_eo_response

Sends a message to and reads a response from the
operator's terminal.

System Call Reference

continued

Chapter 1 a7

Table 1-9. Human Interface System Calls (continued)

COMMAND PROCESSING

Call Name

Description

c_create_command_connection

Returns a token for a command connection object
required to invoke commands programmatically instead of
interactively.

c_delete_command_connection

Deletes a command connection object previously defined
in a c_create_command_connection call and frees the
memory used by the command connection's data
structures.

¢_send_command

Stores a command line in the command connection
created by the c¢_create_command_connection call,
concatenates the command line with any others already
stored there, and (if the command invocation is complete)
invokes the command.

PROGRAM CONTROL

c_set_control_c

Changes the default response to a <Ctrl-C> entry to a
response that meets the needs of your task.

48

Chapter 1

Introduction

Nucleus System Calls Summary

This table summarizes the Nucleus system calls by functional group.

Table 1-10. Nucleus System Calls

JOBS
Call Name Description
create_job Obsolete; provided for compatibility.

rge_create_job

Creates a job containing one task with a memory pool of
up to 4 Gbytes and returns a token for the job.

delete_job

Deletes a specific job.

offspring

Returns a token for the segment containing tokens of the
child jobs of the specified job.

rge_offspring

Fills the specified data structure with tokens of the child
jobs of the specified job.

rge_set_max_priority

Dynamically changes the maximum priority of tasks in a
job.

TASKS

create_task

Creates a task and returns a token for it.

delete_task

Deletes a specific non-interrupt task.

get_priority

Returns the static priority of a specific task.

get_task_accounting

Returns task creation time and amount of execution time.

get_task_info

Returns high-level information about a task, including
priority and execution state.

get_task_state

Returns low-level information about a task, including state
of the CPU registers for ready tasks.

get_task_tokens

Returns a token for either itself, its job, its job's parameter
object, or the root job.

resume_task

Decreases a task's suspension depth by one.

set_priority

Changes the priority of a non-interrupt task.

sleep

Places the calling task in the asleep state for a specified
amount of time.

suspend_task

Increases a task's suspension depth by one.

system_accounting

Enables or disables tracking of CPU use for task
accounting

System Call Reference

continued

Chapter 1 49

Table 1-10. Nucleus System Calls (continued)

INTERRUPT LEVELS, INTERRUPT HANDLERS, and INTERRUPT TASKS

Call Name Description
disable Disables a specific interrupt level.
enable Enables a specific interrupt level.

end_init_task

Informs the root task that a synchronous initialization
process has completed. Will not affect loaded jobs.

enter_interrupt

Sets up a previously-specified data segment base
address for the calling interrupt handler.

exit_interrupt

Used by interrupt handlers to send an end-of-interrupt
(EQI) to hardware.

rge_exit_interrupt

A high performance version of the exit_interrupt call.

get_level

Returns the interrupt level of the highest priority interrupt
that an interrupt handler is currently processing.

reset_interrupt

Cancels the assignment of an interrupt handler to a level.

set_interrupt

Assigns an interrupt handler and, if desired, an interrupt
task to an interrupt level.

signal_interrupt

Used by interrupt handlers to invoke interrupt tasks.

rge_timed_interrupt

Puts the calling interrupt task to sleep until either it is
called into service by an interrupt handler or a specified
time period elapses.

wait_interrupt

Puts the calling interrupt task to sleep until it is called into
service by an interrupt handler.

MAILBOXES

add_reconfig_mailbox

Specifies a mailbox that will receive failure and reset
messages generated by the Multibus 1l watchdog timer.

create_mailbox

Creates a mailbox and returns a token for it.

delete_mailbox

Deletes a specific mailbox.

receive_data

Receives a data message from a data mailbox.

receive_message

Receives a signal message from an object mailbox.

send_data

Sends a data message of up to 80H characters to a data
mailbox.

send_message

Sends a signal object to an object mailbox.

50 Chapter 1

continued

Introduction

Table 1-10. Nucleus System Calls (continued)

SEMAPHORES

Call Name

Description

create_semaphore

Creates a semaphore and returns a token for it.

delete_semaphore

Deletes a specific semaphore.

receive_units

Requests a specific number of units from a semaphore.

send_units

Sends a specific number of units to a semaphore.

REGIONS

accept_control

Provides access to data protected by a region only if
access is immediately available.

create_region

Creates a region and returns a token for it.

delete_region

Deletes a specific region.

receive_control

Enables the calling task to gain access to data protected
by a region.

send_control

Relinquishes control to the next task waiting at the region.

SEGMENTS and MEMORY POOLS

create_segment

Creates a segment and returns a token for it.

delete_segment

Returns a segment to the memory pool from which it was
allocated or deletes a descriptor from the Global
Descriptor Table (GDT).

get_buffer_limit

Returns the maximum size of a buffer starting from a
pointer within a regular or virtual iRMX segment.

get_pool_attrib

Returns the memory pool attributes of the calling task's
job.

get_size Returns the size, in bytes, of a regular or virtual iRMX
segment.
move_data Copies bytes from one buffer to another.

rge_get_pool_attrib

Returns the same information as get_pool_attributes for
any job, plus the amount of memory borrowed and the
token of the parent job.

set_pool_min

Sets the minimum attribute of the memory pool of the
caller's job.

validate_buffer

Verifies that a buffer pointer is a valid pointer to physical
memory and that it has access rights to the memory.

System Call Reference

continued

Chapter 1 51

Table 1-10. Nucleus System Calls (continued)

Call Name

Description

DELETION CONTROL

disable_deletion

Makes an object immune to ordinary deletion.

enable_deletion

Makes an object susceptible to ordinary deletion.

force_delete

Deletes objects whose disabling depths are 0 or 1.

BUFFER POOLS

create_buffer_pool

Creates a buffer pool object that can be associated with
one or more ports.

delete_buffer_pool

Deletes a buffer pool object.

release_buffer

Returns previously allocated buffer space to the specified
buffer pool.

request_buffer

Gets a buffer from an existing buffer pool.

OBJECTS

catalog_object

Places an entry for an object in an object directory.

rge_change_object_access

Changes the access rights of iRMX segments or
composite objects.

rge_get_address

Returns the physical address of an object.

rge_get_object_access

Returns the access type of an object whose token is
specified.

get_type

Returns the type code for the specified object.

lookup_object

Returns a token for the specified cataloged object name.

uncatalog_object

Removes an entry for an object from an object directory.

DESCRIPTORS

rge_change_descriptor

Changes the base physical address and size of a
descriptor in the GDT.

rge_create_descriptor

Builds a descriptor for a memory segment, places the
descriptor in the GDT, and returns a token for that
descriptor.

rge_delete_descriptor

Removes a descriptor entry from the GDT.

52 Chapter 1

continued

Introduction

Table 1-10. Nucleus System Calls (continued)

EXCEPTION HANDLERS

Call Name

Description

get_exception_handler

Returns the address and exception mode of the calling
task's exception handler.

rge_get_exception_handler

Returns the address and exception mode of the exception
handler for the current task or job, for the system default,
or for the system hardware trap handler.

set_exception_handler

Assigns an exception handler and exception mode
attributes for the calling task.

rge set_exception_handler

Assigns an exception handler and exception mode
attributes for the calling task, its job, or the system
default; or sets values for hardware trap handlers.

COMPOSITE OBJECTS

alter_composite

Replaces components of composite objects.

create_composite

Creates a composite object and returns a token for it.

delete_composite

Deletes a composite object but not its component objects.

inspect_composite

Returns a list of the component tokens contained in a
composite object.

EXTENSION OBJECTS

create_extension

Creates a new object type and returns a token for it.

delete_extension

Deletes an extension object and all composites of that
type.

OS EXTENSIONS

rge_set_os_extension

Attaches or deletes the entry-point address of a user-
written OS extension to a call gate.

signal_exception

Used by OS extensions to signal the occurrence of an
exceptional condition.

MULTIBUS Il INTERCONNECT CALLS

get_interconnect

Retrieves the contents of the specified interconnect
register.

set_interconnect

Alters the contents of an interconnect register to a
specified value.

System Call Reference

continued

Chapter 1

53

Table 1-10. Nucleus System Calls (continued)

COMMUNICATION SERVICE CALLS

Call Name

Description

attach_buffer_pool

Associates a buffer pool with one or more ports.

attach_port

Forwards all messages sent to the port that issued the cal
to a sink port.

broadcast Sends a control message to every message passing host.

cancel Performs synchronous cancellation of RSVP message
transmission.

connect Creates a connection between the sending task and a

remote task.

create_port

Creates a port object that can be used in message
passing.

delete_port

Deletes a specific port.

detach_buffer_pool

Ends the association between a buffer pool and a port.

detach_port

Ends message forwarding from the source port to the sink
port.

get_host_id

Returns the host ID of the board that the task is running
on.

get_port_attributes

Returns information about the specified port.

receive

Accepts a message at a port.

receive_fragment

Accepts a fragment of an RSVP data message.

receive_reply

Accepts a message that is a reply to an earlier request.

receive_signal

Receives a signal from a remote host at a specified port.

send Sends a data message from a port to a port on another
board.
send_reply Sent in response to the rg_send_rsvp system call.
send_rsvp Initiates a request/response message exchange.
send_signal Sends a signal message to a remote host through the
specified port.
TIME/DATE CALLS
get_time Returns the date and time from the local Nucleus clock.
set_time Sets the local Nucleus clock to a specified time.

54 Chapter 1

Introduction

UDI System Calls Summary

This table summarizes the UDI system calls by functional group.

Table 1-11. UDI System Calls

PROGRAM CONTROL CALLS

Call Name Description

dg_exit Exits from the current application job.

dg_overlay Loads an overlay module.

dg_trap_cc Designates an interrupt procedure that takes control when
<Ctrl-C> is entered.
FILE-HANDLING CALLS

dg_attach Creates a connection to a file.

dg_change_access

Changes access rights to a file or directory.

dg_change_extension

Changes the extension of a file name in memory.

dg_close Closes the specified file connection.
dg_create Creates a file.

dg_delete Deletes a file.

dg_detach Closes a file and deletes its connection.
dg_file_info Returns data about directory and data files.

dg_get_connection_status

Returns information about a file connection.

dg_open Opens a file for a particular type of access.
dg_read Reads bytes from a file.

dg_rename Renames a file.

dg_seek Moves the file pointer of a file.

dg_special Sets the mode of a console input device.

dg_truncate

Truncates a file at the position specified by the file pointer.

dg_write

Writes data to a file.

System Call Reference

continued

Chapter 1 55

Table 1-11. UDI System Calls (continued)

MEMORY MANAGEMENT CALLS

Call Name Description
dg_allocate Requests a memory segment.
dg_free Returns a memory segment to the system.

dg_get_msize

Returns the size of a segment allocated by
dg_mallocate .

dg_get_size

Returns the size of a specified segment.

dg_mallocate

Requests a logically contiguous memory segment of
a specified size.

dg_mfree

Returns memory allocated by dq_mallocate to the Free
Space Pool.

dg_reserve_io_memory

Sets aside memory for 1/O operations.

EXCEPTION-HANDLING CALLS

dg_decode_exception

Converts a condition code into its equivalent mnemonic.

dg_get_exception_handler

Returns the address of the current exception handler.

dg_trap_exception

Substitutes an alternate exception handler.

UTILITY AND COMMAND PARSING

dg_decode_time

Decodes the specified binary date/time value to ASCII
characters.

dg_get_argument

Returns an argument from the command line.

dg_get_system_id

Returns the identity of the OS environment.

dg_get_time

Obsolete: included for compatibility.

dg_switch_buffer

Selects a new command line buffer.

56 Chapter 1

Introduction

Windows- and DOS-Specific System Calls Summary

This table summarizes the Windows- and DOS-specific system calls. The first two
calls are used by DOS applications only; they are not supported in the iRMX OS.

Table 1-12. Windows- and DOS-Specific System Calls

DATA TRANSFER
Call Name Description
rge_read_segment Enables a DOS application program to transfer data from

a Protected Virtual Address Mode (PVAM) segment to a
Real Mode segment.

rge_write_segment Enables a DOS application program to transfer data from
a Real Mode segment to a PVAM segment.

EXTENSIONS AND INTERRUPTS

rge_set_vm86_extension Installs and removes a Virtual 8086 Mode (VM86)
extension at the specified interrupt level.
rge_dos_request Makes DOS/ROM BIOS requests and other software
interrupts handled by DOS applications.
iIRMX STATUS
RgeGetRmxStatus Gets the current status of the iIRMX environment.

System Call Reference Chapter 1 57

Kernel System Calls Summary

This table summarizes the Kernel system calls.

A CAUTION

iIRMK functions do not validate objects or object areas. Be
careful to pass correct values.

Table 1-13. Kernel System Calls and Handlers

COMMUNICATION AND SYNCHRONIZATION

Call Name

Description

KN_create_mailbox

Creates a mailbox.

KN_create_semaphore

Creates a semaphore.

KN_delete_mailbox

Deletes a mailbox.

KN_delete_semaphore

Deletes a semaphore.

KN_receive_data

Requests a message from a mailbox.

KN_receive_unit

Requests a unit from a semaphore.

KN_send_data

Sends data to a mailbox.

KN_send_priority_data

Places a priority message at head of mailbox queue.

KN_send_unit

Adds a unit to a semaphore.

MEMORY MANAGEMENT

KN_create_area

Allocates memory from a pool.

KN_create_pool

Creates a memory pool.

KN_delete_area

Returns a memory area to the memory pool.

KN_delete_pool

Deletes a memory pool.

KN_get_pool_attributes

Gets a memory pool's attributes.

TASK MANAGEMENT

KN_reset_handler *

Removes previously set task handler.

KN_set_handler *

Dynamically sets task handler.

KN_start_scheduling

Cancels one scheduling lock.

KN_stop_scheduling

Temporarily locks the scheduling mechanism.

* You cannot make these calls in a flat model application continued

58 Chapter 1

Introduction

Table 1-13. Kernel System Calls and Handlers (continued)

TIME MANAGEMENT

Call Name

Description

KN_create_alarm *

Creates and starts a virtual alarm clock.

KN_delete_alarm *

Deletes an alarm.

KN_get_time

Gets the current value of the Kernel clock timer.

KNE_get_time

Gets the current value of the Kernel clock timer from a
structure that allows the use of 32-bit data types.

KN_reset_alarm *

Resets an existing alarm.

KN_set_time Sets the Kernel clock timer.

KNE_set_time Sets the Kernel clock timer in a structure that allows the
use of 32-bit data types.

KN_sleep Puts the calling task to sleep.

HANDLERS

create_task_handler *

Creates a task.

delete_task_handler *

Deletes a task.

task_switch_handler *

Executes when a task switch occurs.

* You cannot make these calls or write these handlers in a flat model application

Virtual Memory System Calls Summary

This table summarizes the virtual memory system calls.

Table 1-14. Virtual Memory System Calls

Call Name

Description

rqv_allocate

Allocates physical memory to a virtual segment.

rqv_allocate_at

Allocates physical memory to a virtual segment at a
specific offset.

rqv_change_access

Changes the access rights for physical memory within a
virtual segment.

rqv_create_segment

Creates a virtual segment with no physical memory
allocated to it.

rqv_free

Frees physical memory associated with a virtual segment.

rqv_map_physical

Maps physical memory into the address space within a
virtual segment.

System Call Reference

Chapter 1 59

Networking System Calls Summary

This table summarizes the system calls you can use to communicate with iNA 960
and the Name Server. The network system calls begin wigh prefix rather than
rq_. This manual does not describe these calls.

See also: Network User's Guide and Refererioethe full description of these
calls

Table 1-15. System Calls that Access iNA 960 Network Software

ADDRESS/POINTER CONVERSION
Call Name Description
cq_comm_ptr_to_dword Converts a pointer to the corresponding 32-bit absolute
address.
PROCESSING
cq_comm_rb Delivers a request block to iNA or to the Name Server for
processing.
STATUS
cq_comm_multi_status Returns NIC and iNA 960 status information from a
specified NIC.
cg_comm_status Returns NIC and iNA 960 status information.
USERS
cq_create_comm_user Creates a user ID for programmatic access to iNA 960.
cg_create_multi_comm_user Creates a unique user ID for programmatic access to a
specified NIC and iNA 960 job.
cq_delete_comm_user Releases all resources and returns all request blocks held
on behalf of a specified user ID.

60 Chapter 1 Introduction

Application Loader System Calls

a_load

Asynchronously loads an object file from secondary storage into memory.

Syntax, PL/M and C
CALL rgaload (connection, response_mbox, except_ptr);

rq_a_load (connection, response_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
response_mbox SELECTOR SELECTOR
except_ptr POINTER towORD_16 UINT_16 far *
Parameters
connection

A token for a connection to the file to be loaded. The user object specified when
the connection was created must have had read access. The connection must ha
been created in the calling task's job, be to a named file, and be closed.
response_mbox
A token for the mailbox to which the AL sends the Loader Result Segment (LRS)
after the concurrent part of the system call runs.
except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

System Call Reference Chapter 2 AL Calls 61

rq_a load

Additional Information

The object code to be loaded must be of the Single Task Loadable (STL) type with
LODFIX records.

A_load cannot automatically cause the code to be executed as a task; the calling
task must explicitly do this using the Nucleus callate_task

Once the loaded program has finished, delete all the segments allocated for this
program to free the memory for use by other tasks or jobs. To find tokens for the
segments to delete, check the token arraydre_slots

Loader Result Segment

This call returns this LRS. Use the contents of the LRS to create a task or job to
start the loaded code. The LRS provides the values to specify for the initial
address, stack pointer, stack size, and data segment.

DECLARE a_load_Irs STRUCTURE(

except_code WORD_16,
reserved_word1 WORD_16,
reserved_byte BYTE,
reserved_word2 WORD_16,
code_seg_offset WORD_32,
code_seg_base SELECTOR,
stack_offset WORD_32,
stack_seg_base SELECTOR,
stack_size WORD_32,
data_seg_base SELECTOR,
num_more_slots BYTE,
more_slots(*) SELECTOR);

or

62 AL Calls Chapter 2 Application Loader System Calls

rq_a load

typedef struct {
UINT_16
UINT_16
UINT_8
UINT_16
NATIVE_WORD
SELECTOR
NATIVE_WORD
SELECTOR
NATIVE_WORD
SELECTOR
UINT_8
SELECTOR

}A_LOAD_LRS_STRUCT

Where:

except_code

except_code;
reserved_1;
reserved_2;
reserved_3;
code_seg_offset;
code_seg_base;
stack_offset;
stack_seg_base;
stack_size;
data_seg_base;
num_more_slots;
more_slots[255];
[* adjust 255 as necessary */

The condition code for the concurrent part of the system call.

code_seg_offset

The initial value for the loaded program's instruction pointer (IP)
register taken from the Task State Segment (TSS) of the object file.

code_seg_base

A token for the initial value of the code segment selector.

stack_offset

The initial value of the stack pointer, taken from the TSS of the object

file.

stack_seg_base

A token for the initial value of the stack segment selector.

stack_size

Specifies the number of bytes required for the loaded program's stack.
The AL sets this value to 0 whenewgaick_offset is 0 and
stack_seg_base is a null selector.

data_seg_base
A token for the initial value of the data segment selector taken from
the TSS of the object file. The AL sets this value to a null selector if
the target file contains no initial data segment selector.

System Call Reference Chapter 2 AL Calls 63

rq_a load

num_more_slots
Indicates how many Global Descriptor Table (GDT) or Local
Descriptor Table (LDT) slots were allocated (from 0 to 255),
including the initial code, data, and stack segments. If greater than
255, the value returned is set to 255.

more_slots
A token array that lists the selectors of all the segments that were
allocated for the loaded program. The length of this array is
contained imum_more_slots

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK 0000H No exceptional conditions occurred.
E_BAD_ HEADER 0062H The object file contains an invalid header record.
E_CONN_NOT_OPEN 0034H The AL opened the connection but some other

task closed the connection before the loading
operation began.

E_CONN_OPEN 0035H The calling task specified a connection that was
already open.

E_DEV_DETACHING 0039H The device containing the specified file is being
detached. If the device is remote, a retry may
succeed.

E_EOF 0065H The AL encountered an unexpected EOF while
reading a record.

E_EXIST 0006H Either the connection or msg_mbox parameter
did not refer to an existing object.

E_FACCESS 0026H The specified connection did not have read
access to the file.

E_FLUSHING 002CH The device containing the target file is being
detached.

E_IO_HARD 0052H A hard I/O error occurred. A retry is probably
useless because secondary storage is not
functioning.

E_IO_OPRINT 0053H The device containing the target file was off-

line. Operator intervention is required.

64 AL Calls Chapter 2 Application Loader System Calls

rq_a load

E_IO_SOFT

E_IO_UNCLASS
E_LIMIT

E_LOADER_SUPPORT

E_MEM

E_NOT_FILE_CONN

E_SHARE

E_SUPPORT

E_TYPE

0051H

0050H
0004H

006FH

0002H

0032H

0028H

0023H

8002H

A soft I/O error occurred. The I/O System tried
to perform the operation and failed; a retry may
succeed.

An unknown 1/O error occurred.

At least one of these is true:

e The calling task's job has already reached its
object limit.

» Either the calling task's job, or the job's
default user object, is already involved in
255 1/0O operations.

Loading the target file requires capabilities not
configured into the AL.

The memory available to the calling task's job or
the BIOS is not sufficient to complete the call.

The calling task specified a connection to a
device rather than to a named file.

The calling task tried to open a connection to a
file already being used by some other task, and
the file's sharing attribute is not compatible with
the open request.

The specified connection was not created by the
calling task's job.

The connection parameter is not a token for a
connection.

Concurrent Condition Codes: returned to except_code in the LRS after

loading attempt
E_OK
E_DEV_DETACHING

E_EOF

System Call Reference

0000H
0039H

0065H

No exceptional conditions occurred.

The device containing the specified file is being
detached. If the device is a remote device, a
retry may succeed.

The call encountered an unexpected EOF.

Chapter 2 AL Calls 65

rq_a load

E_EXIST

E_FLUSHING

E_IO_HARD

E_IO_OPRINT

E_IO_SOFT

E_IO_UNCLASS

E_LIMIT

E_NO_LOADER_MEM

E_PARAM

66 AL Calls

0006H

002CH

0052H

0053H

0051H

0050H

0004H

0067H

8004H

Chapter 2

At least one of these is true:

e The specified mailbox was deleted before
the loading operation completed.

e The device containing the file to be loaded
was detached before the loading operation
completed.

The device containing the target file is being
detached.

A hard I/O error occurred. A retry is probably
useless.

The device containing the target file was off-
line. Operator intervention is required.

A soft I/O error occurred. The I/O System tried
to perform the operation and failed; a retry may
succeed.

An unknown 1/O error occurred.

The calling task's job has already reached its
object limit.

The memory pool of the newly created 1/O job
does not currently have a block of memory large
enough to allow the AL to run.

The target file has a stack smaller than 16 bytes.

Application Loader System Calls

rq_a _load _io_job

a _load _io_job

Obsolete. Asynchronously creates an 1/O job with a memory pool of up to 1
Mbyte, loads a specified object file, and creates a task to execute the loaded code.
Only tasks running within 1/O jobs should invoke this call. It is provided for
compatibility with earlier versions of the OS.

See also: rge_a load_io_job

Syntax, PL/M and C

job = rqaloadiojob (connection, pool_min, pool_max,
except_handler, job_flags, task_priority, task_flags,
msg_mbox, except_ptr);

job =rg_a_load_io_job (connection, pool_min, pool_max,
except_handler, job_flags, task_priority, task_flags,
msg_mbox, except_ptr);

System Call Reference Chapter 2 AL Calls 67

rqge_a _load_io_job

rqe_a load io_job

Asynchronously creates an 1/O job with a memory pool of up to 4 Gbytes, loads a
specified object file, and creates a task to execute the loaded code. For segmente
applications, only tasks running within I/O jobs should invoke this call. However,
you must use this call to load standalone, linked flat model applications instead of
creating an 1/O job in flat model.

Syntax, PL/M and C

job = rqealoadiojob (connection, pool_min, pool_max,
except_handler, job_flags, task_priority, task_flags,
msg_mbox, except_ptr);

job =rge_a_load_io_job (connection, pool_min, pool_max,
except_handler, job_flags, task_priority, task_flags,
msg_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
job SELECTOR SELECTOR
connection SELECTOR SELECTOR
pool_min WORD_32 UINT_32
pool_max WORD_32 UINT_32
except_handler POINTER EXCEPTION_STRUCT far *
job_flags WORD_16 UINT_16
task_priority BYTE UINT_8
task_flags WORD_16 UINT_16
msg_mbox SELECTOR SELECTOR
except_ptr POINTER towORD_16 UINT_16 far *

Return Value
job A token for the newly created I/O job, only valid if E_OK returns.

Parameters

connection
A token for a connection to the file to be loaded. The user object specified when
the connection was created must have had read access. The connection must hav
been created in the calling task's job, be to a named file, and be closed.

pool_min
Specifies the minimum size of the new job's memory pool in 16-byte paragraphs.
The upper limit is 4 Gbytes.

68 AL Calls Chapter 2 Application Loader System Calls

rqge_a load _io_job

pool_max
Specifies the maximum allowable size of the new job's memory pool in 16-byte
paragraphs. The upper limit is 4 Ghytes.

except_handler
A pointer to this structure:

DECLAREexception STRUCTURE (
exception_handler_ptr POINTER,
exception_mode BYTE);

or

typedef struct exception_struct {

void far * exception_handler_ptr;
UINT_8 exception_mode;

} EXCEPTION_STRUCT;

Where:

exception_handler_ptr
If not null, references the first instruction of the new job's own
exception handler. If null, the new job's exception handler is the
system default exception handler. The exception handler for the new
task becomes the default exception handler for the job.

exception_mode
Indicates when control is to be passed to the exception handler. Itis

encoded as:

Value When Control Passes To Exception Handler
0 Never

1 On programmer errors only

2 On environmental conditions only

3 On all exceptional conditions

See also: Exception handlers, exception m&ystem Concepts

job_flags
Specifies whether the Nucleus checks the validity of objects used as parameters in
system calls.
Bits Meaning
15-2 Must be set to 0
1 If 0, the Nucleus checks the validity of objects
0 Must be setto 0

System Call Reference Chapter 2 AL Calls 69

rqge_a _load_io_job

task_priority
Specifies the priority of the new job's initial task.

Value Meaning

0 Priority equals the maximum priority of the EIOS initial job.

not 0 The priority of the new job's initial task. If this priority is higher
(numerically lower) than the maximum priority of the EIOS initial job,
an E_PARAM error occurs.

task_flags
Indicates:
Bits Value Meaning
15-2 0 Reserved, setto O
1 0 The task starts immediately.
1 The task is suspended urstiart_io_job occurs.
0 0 The task does not use floating point instructions.
1 The task uses floating-point instructions
msg_mbox

A token for a mailbox that receives the LRS after the loading operation completes.
Each call taqe_a_load_io_jobrequires a unique and valid mailbox; do not use a
null selector.

This parameter also receives an exit message from the newly created 1/O job.
See also: msg_mbox parameter, EIOS calfie_create_io_job

except_ptr
A pointer to a variable declared by the application where the sequential part of the

call returns a condition code.

70 AL Calls Chapter 2 Application Loader System Calls

rqge_a load _io_job

Additional Information

Rge_a _load_io_jobcreates a new job usimge_create_io_joband loads the

specified object file. The loaded file's code becomes the initial task of the new job.
The calling task continues to run during the loading operation. thtkeflags
parameter specifies delayed start, stset_io_job to start the new task.

Otherwise, the task becomes ready at the end of the loading operation.

During the sequential part of this call the AL:

* Checks the validity of the target file's header record.

* Creates an I/O job. This I/O job is a child of the calling task’s job.

* Returns a condition code reflecting the success or failure of the first phase.
The concurrent part of this call runs as the initial task in the new job, and:

* Loads the file designated by tbennection = parameter from secondary
storage into main memory.

* Creates the initial task. If there are no errors while the file is loaded, the task
can start running.

e Sends an LRS to the mailbox specified byrttsg_mbox parameter.
* Deletes itself.

See also: Sequential and concurrent parts of an asynchronous system call,
System Concepts

System Call Reference Chapter 2 AL Calls 71

rqge_a _load_io_job

Loader Result Segment
The LRS has this structure:
DECLARE io_job_Irs STRUCTURE(

termination_code WORD_16,
except_code WORD_16,
job_token SELECTOR,
return_data_len BYTE,
reserved_word1 WORD_16,
reserved_byte BYTE,
reserved_word2 WORD_16,
mem_requested WORD_16,
mem_received WORD_16);

or

typedef struct {

UINT_16 termination_code;
UINT_16 except_code;
SELECTOR job_token;
UINT_8 return_data_len;
UINT_16 reserved_word1;
UINT_8 reserved_byte;
UINT_16 reserved_word2;
UINT_16 mem_requested;
UINT_16 mem_received;

}10_JOB_LRS_STRUCT

Where:

termination_code
Indicates the success or failure of the loading operation. If failure is
shown, delete the newly created I/O job; the AL doesn't do so.

Value Meaning
100H Success
002H Failure

except_code
The concurrent condition code.
job_token A token for the newly created 1/O job.

return_data_len
Indicates the length of the remainder of the data structure, minus 13
bytes.

72 AL Calls Chapter 2 Application Loader System Calls

rqge_a load _io_job

mem_requested

Indicates the number of 16-byte paragraphs the target file requested
for the new job, including the memory needed for all segments and
the job's memory pool. If more than 1 megabyte was requested, this
field will contain OFFFFH.

mem_received

Indicates the number of 16-byte paragraphs actually allocated to the
new job. If more than 1 megabyte was allocated, this field will
contain OFFFFH.

See also: Exit message&®ystems Concepts

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK
E_CONN_NOT_OPEN

E_CONN_OPEN
E_CONTEXT
E_DEV_DETACHING

E_EXIST

E_FACCESS

E_FLUSHING

E_IO_HARD

System Call Reference

0O0C0H
0034H

0035H
0005H
0039H

0006H

0026H

002CH

0052H

No exceptional conditions occurred.

The AL opened the connection, but some other
task closed the connection before the loading
operation began.

The specified connection was already open.
The calling task's job is not an I/O job.

The device containing the specified file is being
detached. If the device is a remote device, a
retry may succeed.

At least one of these is true:
e Theconnection parameter is not a token
for an existing object.
e The calling task's job has no global job.
See also: Global jotsystem Concepts
e The msg_mbox parameter does not refer to
an existing object.

The specified connection does not have read
access to the file.

The device containing the target file is being
detached.

A hard I/O error occurred. A retry is probably
useless.

Chapter 2 AL Calls 73

rqge_a _load_io_job

E_IO_OPRINT

E_IO_SOFT

E_IO_UNCLASS

E_JOB_PARAM

E_JOB_SIZE

E_LOADER_SUPPORT

E_MEM

E_NO_LOADER_MEM

E_NOT_CONFIGURED

E_NOT_FILE_CONN

E_PARAM

E_SHARE

E_SUPPORT

74 AL Calls

0053H

0051H

0050H

8060H

006DH

006FH

0002H

0067H

0008H

0032H

8004H

0028H

0023H

Chapter 2

The device containing the target file is off-line.
Operator intervention is required.

A soft I/O error occurred. The I/O System tried
to perform the operation and failed; a retry may
succeed.

An unknown 1/O error occurred.

The pool_max parameter is both non-0 and
smaller than the pool_min parameter.

The pool_max parameter is non-0 and too small
for the target file.

The target file requires capabilities not
configured into the AL.

The memory available to the calling task's job or
the BIOS is not sufficient to complete the call.

The memory pool of the newly created 1/O job
does not currently have a block of memory large
enough to allow the AL to run.

This system call is not part of the present
configuration.

The specified connection is to a device rather
than to a named file.

Either the task_priority is invalid (higher than
the maximum priority of the EIOS initial job) or
the value of the exception_mode field in the
exception handler structure is outside the range
0-3.

The calling task tried to open a connection to a
file already being used by some other task, and
the file's sharing attribute is not compatible with
the open request.

The specified connection was not created in this
job.

Application Loader System Calls

rqge_a load _io_job

E_TIME 0001H The calling task's job is not an 1/O job.

E_TYPE 8002H The connection parameter is not a token for a
connection.

E SLOT 000CH The GDT has no available slots.

Concurrent Condition Codes: returned to except_code in the LRS after
loading attempt

E_OK 0000H No exceptional conditions occurred.

E_DEV_DETACHING 0039H The device containing the specified file is being
detached. If the device is a remote device, a
retry may succeed.

E_EOF 0065H The call encountered an unexpected EOF.

E_EXIST 0006H At least one of these is true:
« The mailbox specified was deleted before
the loading operation completed.
e The device containing the target file was
detached before the loading operation

completed.

E_FACCESS 0026H The default user of the newly created I/O job
does not have read access to the target file.

E_FLUSHING 002CH The device containing the target file is being
detached.

E_IO_HARD 0052H A hard I/O error occurred. A retry is probably
useless.

E_IO_OPRINT 0053H The device containing the target file is off-line.
Operator intervention is required.

E_10_SOFT 0051H A soft I/O error occurred. The I/O System tried
to perform the operation and failed; a retry may
succeed.

E_10_UNCLASS 0050H An unknown I/O error occurred.

System Call Reference Chapter 2 AL Calls 75

rqge_a _load_io_job

E_LIMIT 0004H At least one of these is true:
* Thetask_priority parameter is higher
(numerically lower) than the newly created
I/O job's maximum priority.
See also: For ICU-configurable systems, 1/0
jobs,ICU User's Guide and Quick
Reference
» Either the newly created /O job, or its
default user, is already involved in 255 I/O
operations.
e The calling task's object directory is full.
e The root object directory is full.

E_NO_LOADER_MEM 0067H There is not enough memory available to the
newly created I/O job or the BIOS to allow the
AL to run.

E_NO_START 006CH The target file does not specify the entry point

for the program being loaded.

E_PARAM 8004H The target file has a stack smaller than 16 bytes.

76 AL Calls Chapter 2 Application Loader System Calls

rq_s_load io_job

s _load _io_job

Obsolete. Synchronously loads an object file and creates an 1/O job for it. This
call description is identical tage_s_load_io_job s_load_io_jobis provided for
compatibility with older versions of the iRMX OS.

See also: rge_s_load_io_job

Syntax, PL/M and C

job = rqsload$iosjob (path_ptr, pool_min, pool_max,
except_handler, job_flags, task_priority, task_flags,
msg_mbox, except_ptr);

job =rg_s_load_io_job (path_ptr, pool_min, pool_max,
except_handler, job_flags, task_priority, task_flags,
msg_mbox, except_ptr);

System Call Reference Chapter 2 AL Calls 77

rqge_s_load _io_job

rqe_s_load io_job

Synchronously creates an /O job containing the AL task, which loads the code for
the user task from secondary storage. For segmented applications, only tasks
running within 1/O jobs should invoke this call. However, you must use this call to
load standalone, linked flat model applications instead of creating an 1/O job in flat
model.

Syntax, PL/M and C
job = rqesloadiojob (path_ptr, pool_min, pool_max,

except_handler, job_flags, task_priority, task_flags,
msg_mbox, except_ptr);

job =rge_s_load_io_job (path_ptr, pool_min, pool_max,

except_handler, job_flags, task_priority, task_flags,
msg_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
job SELECTOR SELECTOR
path_ptr POINTER STRING far *
pool_min WORD_32 UINT_32
pool_max WORD_32 UINT_32
except_handler POINTER EXCEPTION_STRUCT far *
job_flags WORD_16 UINT_16
task_priority BYTE UINT_8
task_flags WORD_16 UINT_16
msg_mbox SELECTOR SELECTOR
except_ptr POINTER towORD_16 UINT_16 far *

Return Value

job A token for the newly created I/O job, only valid if E_OK returns.

Parameters

path_ptr
A pointer to a STRING containing a pathname for the named file with the object
code to be loaded. The pathname must conform to the EIOS pathname syntax for
named files.
See also: Pathname synt&ystem Concepts

78 AL Calls Chapter 2 Application Loader System Calls

rqge_s_load_io_job

pool_min
Specifies the minimum size of the new job's memory pool in 16-byte paragraphs.
The upper limit is 4 Gbytes.

pool_max
Specifies the maximum allowable size of the new job's memory pool in 16-byte
paragraphs. The upper limit is 4 Ghytes.

except_handler
A pointer to this structure:

DECLAREexception STRUCTURE (
exception_handler_ptr POINTER,
exception_mode BYTE);

or

typedef struct {

void far * exception_handler_ptr;
UINT_8 exception_mode;

} EXCEPTION_STRUCT;

Where:

exception_handler_ptr
If not null, references the first instruction of the new job's own
exception handler. If null, the new job's exception handler is the
system default exception handler. The exception handler for the new
task becomes the default exception handler for the job.

exception_mode
Indicates when control is to be passed to the exception handler. Itis

encoded as:

Value When Control Passes To Exception Handler
0 Never

1 On programmer errors only

2 On environmental conditions only

3 On all exceptional conditions

See also: Exception handlers, exception m&ystem Concepts

job_flags
Specifies whether the Nucleus checks the validity of objects used as parameters in
system calls.
Bits Meaning
15-2 Must be set to 0
1 If 0, the Nucleus checks the validity of objects
0 Must be setto O

System Call Reference Chapter 2 AL Calls 79

rqge_s_load _io_job

task_priority
Specifies the priority of the new job's initial task.

Value Meaning

0 Priority equals the maximum priority of the EIOS initial job.

not 0 The priority of the new job's initial task. If this priority is higher
(numerically lower) than the maximum priority of the EIOS initial job,
an E_PARAM error occurs.

task_flags
Indicates:
Bits Value Meaning
15-2 0 Reserved, setto O
1 0 The task starts immediately.
1 The task is suspended urstiart_io_job occurs.
0 0 The task does not use floating point instructions.
1 The task uses floating-point instructions
msg_mbox

A token for a mailbox that receives an exit message from the newly created I/O
job. Each call toéqe_s_load_io_jobrequires a unique and valid mailbox; do not
use a null selector.

See also: msg_mbox parameter, EIOS catireate_io_job

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Condition Codes

E_OK 0000H No exceptional conditions occurred.
E_CONTEXT 0005H The calling task's job is not an 1/O job.
E_DEV_DETACHING 0039H The device containing the specified file is being

detached. If the device is a remote device, a
retry may succeed.

E_EOF 0065H The call encountered an unexpected EOF.

E_EXIST 0006H At least one of these is true:
e Themsg_mbox parameter is not a token for
an existing object.
e The calling task's job has no global job.
See also: Global jotsystem Concepts
e The device containing the target file was
detached.

80 AL Calls Chapter 2 Application Loader System Calls

rqge_s_load_io_job

E_FACCESS

E_FNEXIST

E_FLUSHING

E_INVALID_FNODE

E_IO_HARD

E_IO_JOB

E_IO_OPRINT

E_IO_SOFT

E_IO_UNCLASS
E_JOB_PARAM

E_JOB_SIZE

E_LIMIT

E_LOADER_SUPPORT

System Call Reference

0026H

0021H

002CH

003DH

0052H

0047H

0053H

0051H

0050H

8060H

006DH

0004H

006FH

The default user object for the new I/O job does
not have read access to the specified file.

The specified target file, or some file in the
specified path, does not exist or is marked for
deletion.

The device containing the target file is being
detached.

The fnode for the specified file is invalid, so the
file must be deleted.

A hard I/O error occurred. A retry is probably
useless.

The EIOS could not create an I/O job because
the default directory size (DDS) configuration
parameter is too small.

The device containing the target file is off-line.
Operator intervention is required.

A soft I/O error occurred. The I/O System tried
to perform the operation and failed; a retry may
succeed.

An unknown 1/O error occurred.

The pool_max parameter is not 0 and smaller
than the pool_min parameter.

The pool_max parameter is not 0 and too small
for the target file.

At least one of these is true:
e Thetask_priority parameter is higher
(numerically lower) than the newly created
I/O job's maximum priority.
See also: For ICU-configurable systems, 1/0
jobs,ICU User's Guide and Quick
Reference
» Either the newly created /O job or its
default user object is already involved in
255 1/0O operations.

The target file requires capabilities not
configured into the AL.

Chapter 2 AL Calls 81

rqge_s_load _io_job

E_MEM

E_NO_LOADER_MEM

E_SLOT

E_NO_START

E_NOT_CONFIGURED

E_PARAM

E_PATHNAME_SYNTAX

E_SUPPORT
E_TIME
E_TYPE

0002H

0067H

000CH

006CH

0008H

8004H

003EH

0023H
0001H
8002H

82 AL Calls Chapter 2

The memory available to the calling task's job is
not sufficient to complete the call.

The memory pool of the newly created I/O job
does not currently have a block of memory large
enough to run the AL.

The GDT has no available slots.

The target file does not specify the entry point
for the program being loaded.

This system call is not part of the present
configuration.

At least one of these is true:

e The value of thexception_mode field in
theexcept_handler structure is outside
the range of 0 to 3.

e The task_priority is higher than the
maximum priority of the EIOS initial job.

e The target file requested a stack smaller than
16 bytes.

The specified pathname contains one or more
invalid characters.

The specified connection is not in this job.
The calling task's job is not an I/O job.

The connection parameter is not a token for a
connection.

Application Loader System Calls

rq_s_overlay

s_overlay

Synchronously loads overlay modules for 16-bit (OMF286) programs. Not valid
for 32-bit programs.

Syntax, PL/M and C
CALL rgsoverlay (name_ptr, except_ptr);

rq_s_overlay (name_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
name_ptr POINTER STRING far *
except_ptr POINTER towORD_16 UINT_16 far *
Parameters
name_ptr

A pointer to a STRING containing the name of an overlay. Use only uppercase
letters, both here and in the overlay definition file.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information

Root modules issue this system call when they want to load an overlay module.
The root module must be loaded using one of the system calls that create an I/O
job.

The condition code is returned to the calling task.

Condition Codes
E_OK 0000H No exceptional conditions occurred.

E_DEV_DETACHING 0039H The device containing the specified file is being
detached. If the device is a remote device, a
retry may succeed.

E_EOF 0065H The call encountered an unexpected EOF.

E_EXIST 0006H The specified device does not exist.

E_FLUSHING 002CH The device containing the target file is being
detached.

System Call Reference Chapter 2 AL Calls 83

rq_s_overlay

E_IO_HARD

E_IO_OPRINT

E_IO_SOFT

E_IO_UNCLASS
E_LIMIT

E_NOMEM

E_NOT_CONFIGURED

E_OVERLAY

E_SUPPORT

84 AL Calls

0052H

0053H

0051H

0050H
0004H

0068H

0008H

006EH

0023H

Chapter 2

A hard I/O error occurred. A retry is probably
useless.

The device containing the target overlay is off-
line. Operator intervention is required.

A soft I/O error occurred. The I/O System tried
to perform the operation and failed; a retry may
succeed.

An unknown 1/O error occurred.

Either the calling task's job, or its default user
object, is already involved in 255 I/O operations.

The memory pool of the new I/O job does not
have a block of memory large enough for the AL
to load the overlay module.

This system call is not part of the present
configuration.

The overlay name indicated by the name_ptr
parameter does not match any overlay module
name in the overlay definition file.

At least one of these is true:
e The specified connection is not in this job.
e The calling task is a 16-bit task attempting
to load a 32-bit object which contains either
a code or stack offset larger than 64 Kbytes.

Uou

Application Loader System Calls

Basic 1/0 System Calls

a_attach_file

Creates a connection to an existing file of any type.

Syntax, PL/M and C

CALL rg$asattachsfile (user, prefix, subpath_ptr, resp_mbox,
except_ptr);

rq_a_attach_file (user, prefix, subpath_ptr, resp_mbox,
except_ptr);

Parameter PL/M Data Type C Data Type

user SELECTOR SELECTOR

prefix SELECTOR SELECTOR

subpath_ptr POINTER STRING far *

resp_mbox SELECTOR SELECTOR

except_ptr POINTER towORD_16 UINT_16 far *
Parameters

user A token for the user object to be inspected during access checking of named files.
A null selector specifies the default user object. The BIOS ignores this parameter
when you attach physical, stream, or DOS files because the user is always World.
prefix
A token for the connection object to be used as the path prefix. A null selector
specifies the default prefix.

subpath_ptr
A pointer to a STRING containing the subpath of the named file to be attached. A
null STRING indicates that the new connection is to the file designated by the
prefix. The new connection will not be open, regardless of the open mode of the

prefix. The BIOS ignores theubpath_ptr parameter for physical and stream
files.

System Call Reference Chapter 3 BIOS Calls 85

rq_a_attach_file

resp_mbox
A token for the mailbox where the BIOS places the result object of the call. This
result object is a token for a new file connection if the call succeeds, or an 1/O
Result Segment (IORS). To determine the type of object returned, use the Nucleus
system calpet_type

except_ptr

A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

Once the connection is established, it remains in effect until the program deletes
the connection object or the creating job. Once attached, the file can be opened,
closed, read, or written to multiple timeA. attach_file has no effect on the owner
ID or the access list for the file.

The BIOS does not check the access rights of an iIRMX-NET remote file when you
create a connection to the file, but checks during operations on the connection.
This won't affect your programs if you do this:

* Open, delete, and rename files prior to changing their access lists.

« Establish connections to files after changing their access lists.

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr
E_OK 0000H No exceptional conditions occurred.

E_DEV_OFFLINE 002EH The prefix parameter references a logical
connection to a device. One of these is true of
this device:

e It has been physically attached but is now
off-line.

« It has been logically attached but never
physically attached.
See also: ConnectionSystem Concepts

* An unspecified DOS error occurred.

86 BIOS Calls Chapter 3 BIOS System Calls

rq_a_attach_file

E_EXIST

E_LIMIT

E_MEM

E_NOPREFIX

E_NOUSER

E_NOT_CONFIGURED

System Call Reference

0006H

0004H

0002H

8022H

8021H

0008H

One of these is true:

e One or more of thaser , prefix , or
resp_mbox parameters is not a token for an
existing object.

e Theprefix connection is being deleted.

e The connection to a remote driver is no
longer active.

Processing this call would exceed one or more of

these limits:

e The object limit for this job

e 255 outstanding I/O operations for the
specified user object

e 255 outstanding I/O operations for the
caller's job

e The number of outstanding I/O operations
for a remote connection

The memory available to the calling task's job is
not sufficient to complete the call.

The calling task specified a default prefix using a
null selector, but a default prefix cannot be found
for one of these reasons:

* When this job was created, a 0 was specified
for its object directory, so the job cannot
catalog a default prefix.

e The job's directory can have entries but a
default prefix is not cataloged there.

The user parameter is not a null selector, and is
not a token for a user object. Otherwise, it
specifies a default user, but no default user can
be found for one of these reasons:

* When this job was created, a 0 was specified
for its object directory, so the job cannot
catalog a default user.

e The job's directory can have entries but a
default user is not cataloged there.

e The cataloged objec®iouseris not a user
object. Treat?iouseras a reserved word.

This system call is not part of the present
configuration.

Chapter 3 BIOS Calls 87

rq_a_attach_file

E_PATHNAME_SYNTAX 003EH One or more of these is true:
e The specified pathname contains invalid
characters or has 0 length.
e The subpath of the specified remote file
exceeds 127 bytes.

E_TYPE 8002H Either the prefix parameter is not a connection or
logical device object created by the EIOS, or the
resp_mbox parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_DEV_DETACHING 0039H The file specified is on a device that the system
is detaching.

E_FNEXIST 0021H Afile in the specified path, or the target file
itself, does not exist or is marked for deletion.

E_FTYPE 0027H The STRING pointed to by subpath_ptr contains

a filename that is not the name of a directory.
Except for the last file, each file in a path must
be a named directory.

E_INVALID_FNODE 003DH The fnode for the specified file is invalid. The
file cannot be accessed; delete it or fix it with
diskverify.

See also: diskverify, Command Reference

E_IO 002BH An /O error occurred, which might have

prevented the operation from completing.
Examine the unit_status field of the IORS for
more information.

See also: IORS, Chapter 1,
Accessing the IORSrogramming
Techniques

E_10_MEM 0042H The memory available to the BIOS job is not
sufficient to complete the call.

E_LIMIT 0004H Processing this call would deplete the remote
server's resources.

E_NAMEN_EXIST 0049H The user object is not for a verified user or is not
in the remote server's User Definition File
(UDF).

88 BIOS Calls Chapter 3 BIOS System Calls

rq_a_attach_file

E_PASSWORD_MISMATCH 004BH The user object password does not match the

E_PATHNAME_SYNTAX

E_UDF_IO

System Call Reference

003EH

02DOH

password of the user defined on the remote
server.

The syntax of the specified remote file pathname
is illegal; it must follow the naming conventions
of the server.

An error occurred while accessing the remote
server's UDF.

Chapter 3 BIOS Calls 89

rq_a_change_access

a_change_access

Changes the access rights to a named data or directory file.

Syntax, PL/M and C

CALL rgachange$access (user, prefix, subpath_ptr, ID, access,

resp_mbox, except_ptr);

rq_a_change_access (user, prefix, subpath_ptr, ID, access,

resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
user SELECTOR SELECTOR
prefix SELECTOR SELECTOR
subpath_ptr POINTER STRING far *
1D WORD_16 UINT_16
access BYTE UINT_8
resp_mbox SELECTOR SELECTOR
except_ptr POINTER toWORD_16 UINT_16 far *
Parameters

user

prefix

A token for the user object to be inspected in access checking. A null selector
specifies the default user object. For DOS files, the BIOS ignores this parameter
because the user is always World.

A token for the connection object to be used as the path prefix. A null selector
specifies the default prefix.

subpath _ptr

90

A pointer to a STRING giving the subpath of the file whose access is to be
changed. A null STRING indicates that the prefix designates the desired file.

The ID number of the user whose access is to be changed. If this ID does not
already exist in the ID-access mask list, it is added. This list may contain up to
three ID-access pairs. For DOS files and directories, since the user is always
World, no IDs can be added or deleted. For NFS files, user IDs may be mapped
differently between different OSs.

See also: Accessing NFS Files, ChapterSystem Concepts

BIOS Calls Chapter 3 BIOS System Calls

rq_a_change_access

access

The new access rights for the ID. Setting all the bits to 0 removes the specified ID
from the access list of the file. If not 0, the meaning of the various bit settings
depends upon whether the file is a data file or a directory file. The following tables
show the access rights for data and directory files. Setting a bit to 1 enables access,
0 denies access. For NFS files, access rights may be mapped differently between
different OSs. The World user always has read (list) access to DOS files and
directories; write (delete, append, and update) access is optional.

Bits
7-4
3

Bits
7-4

Data File Access Rights

Reserved; set to 0.

Update: permission to write over any information in the file by using
a_write ors_write_move and permission to truncate the file using
a_truncate or s_truncate_file This does not include permission to add
information to the EOF. Set to the same value as bit 2 for remote files.
Append: permission to write information only at the EOF by using
a_write ors_write_move Set to the same value as bit 3 for remote
files.

Read: permission to read data from the file by uairrgad or
s_read_move

Delete: permission to delete the entire file by usindelete_fileor
s_delete_file Also enables changing the name of the file by using
a_rename_fileors_rename_file The BIOS ignores this bit for remote
files.

Directory File Access Rights

Reserved; set to 0.

Change entry: permission to change the access list associated with a file
in the directory, using_change_accessr s_change_accessThis does

not include permission to change the access list of the directory itself.
The BIOS ignores this bit for remote directories.

Add-entry: permission to add files to the directory by using
a_create_file, a_create_directory, a_rename_file, s_create_file,
s_create_directory ors_rename_file This does not include

permission to change existing files in the directory.

List: permission to read information from the directory by usingad
a_get_directory_entry, ors_read_move

Delete: permission to delete the directory by usiriglete_fileor
a_delete_file Also enables changing the name of the directory by using
s_rename_fileora_rename_file The BIOS ignores this bit for remote
directories.

System Call Reference Chapter 3 BIOS Calls 91

rq_a_change_access

resp_mbox
A token for the mailbox that receives an IORS indicating the result of the call. A
null selector means that you do not want to receive an IORS.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

If the owner is World (OFFFFH), any task may change the access mask of the file.
Otherwise, the caller must be the owner of the file or must have change-entry
access to the file's parent directory. If this system has system manager support
configured by the ICU, user 0 may change the access rights of any file regardless ©
which user is the owner.

See also: System manager IBU User's Guide and Quick Reference

This call has no effect on existing connections to the file. Depending on the
contents of théD andaccess parameters, users may be added to or deleted from
an iRMX file's ID-access mask list, or the access privileges granted to a particular
user may be changed.

You cannot change the access rights of a virtual root directory, because a virtual
root directory has no assigned owner. Otherwise, an E_FACCESS condition code
returns.

For DOS files, the World user cannot be changed, and list (read) access is
automatic. Only write access is optional.

For NFS files on DOS or Unix, access rights are mapped differently than on iRMX
systems.

See also: Accessing NFS files, Chapter 17, System Concepts

92 BIOS Calls Chapter 3 BIOS System Calls

rq_a_change_access

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK
E_DEV_OFFLINE

E_EXIST

E_IFDR

E_LIMIT

E_MEM

System Call Reference

0O0C0H

No exceptional conditions occurred.

002EH The prefix parameter references a logical

0006H

002FH

0004H

0002H

connection to a device. One of these is true of

this device:

« It has been physically attached but is off-
line.

« It has been logically attached but never
physically attached.

e An unspecified DOS error occurred.

At least one of these is true:

e One or more of the user, prefix, or
resp_mbox parameters is not a token for an
existing object.

* The prefix connection is being deleted.

e The remote driver connection is no longer
active.

The prefix and subpath_ptr parameters specify a
type of file other than a named file.

Processing this call would exceed one or more of

these limits:

e The object limit for this job

e 255 outstanding I/O operations for the
specified user object

e 255 outstanding I/O operations for the
caller's job

e The number of outstanding I/O operations
for a remote file

The memory available to the calling task's job is
insufficient to complete this call.

Chapter 3 BIOS Calls 93

rq_a_change_access

E_NOPREFIX

E_NOUSER

E_NOT_CONFIGURED

E_PATHNAME_SYNTAX

E_SUPPORT
E_TYPE
94 BIOS Calls

8022H

8021H

0008H

003EH

0023H
8002H

Chapter 3

The calling task specified a default prefix using a
null selector, but a default prefix cannot be found
for one of these reasons:

* When this job was created, a 0 was specified
for its object directory, so the job cannot
catalog a default prefix.

e The job's directory can have entries but no
default prefix is cataloged there.

If the user parameter is not a null selector, the
parameter is not a token for a user object.
Otherwise it specifies a default user, but no
default user can be found for one of these
reasons:

* When this job was created, a 0 was specified
for its object directory, so the job cannot
catalog a default user.

e The job's directory can have entries but no
default user is cataloged there.

e The object which is cataloged with the name
r?iouseris not a user object. Tregiouser
as a reserved word.

This system call is not part of the present
configuration.

One or more of these is true:
e The specified pathname contains invalid
characters.
e The subpath of the specified remote file
exceeds 127 bytes.

The connection was not created by this job.

One or more of these is true:

e The user token designates a connection of
the wrong type.

e Theprefix parameter is not a token for a
connection object or a logical device object
created by the EIOS.

e The resp_mbox parameter is not a mailbox
token.

BIOS System Calls

rq_a_change_access

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_DEV_DETACHING 0039H The file specified is on a device that the system
is detaching.

E_FACCESS 0026H The user object in the parameter list is not the

owner of the specified file, nor does it have
change-entry access to the parent directory.

E_FNEXIST 0021H Afile in the specified path, or the target file
itself, does not exist or is marked for deletion.
E_FTYPE 0027H The STRING pointed to by the subpath_ptr

parameter contains a filename that is not a
directory. Except for the last file, each file in a
path must be a named directory.

E_INVALID_FNODE 003DH The fnode for the specified file is invalid. The
file cannot be accessed; delete it or fix it with
diskverify.

See also: diskverify, Command Reference

E_IO 002BH An I/O error occurred which might have

prevented the operation from completing.
Examine the unit_status field of the IORS for
more information.

See also: IORS, Chapter 1,
Accessing the IORSrogramming

Techniques

E_10_MEM 0042H The memory available is not sufficient to
complete this call.

E_LIMIT 0004H Processing this call would deplete the remote
server's resources.

E_NAME_NEXIST 0049H The user object does not represent a verified user
or is not properly defined in the remote server's
UDF.

E_NOT_FILE_CONN 0032H The subpath_ptr parameter = NIL and the prefix

parameter is not a file connection.

E_PASSWORD_MISMATCH 004BH The user object password does not match the
password of the user defined on the remote
server.

System Call Reference Chapter 3 BIOS Calls 95

rq_a_change_access

E_PATHNAME_SYNTAX 003EH The syntax of the specified remote file pathname
is illegal; it must follow the naming conventions
of the server.

E_SUPPORT 0023H The call attempted to add another access ID to
the list of access IDs that already contained the
limit of three IDs.

E_UDF_IO 02DOH An error occurred while accessing the remote
server's UDF.

96 BIOS Calls Chapter 3 BIOS System Calls

rq_a_close

a_close

Closes an open file connection for any type of file.

Syntax, PL/M and C
CALL rgaclose (connection, resp_mbox, except_ptr);

rq_a_close (connection, resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
resp_mbox SELECTOR SELECTOR
except_ptr POINTER towORD_16 UINT_16 far *
Parameters
connection

A token for the file connection to be closed.

resp_mbox
A token for the mailbox that receives an IORS. A null selector means that you do
not want to receive an IORS.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

Use this call when the application needs to change the open or share mode of the
connection. The BIOS will not close the connection until all existing 1/0 requests
for the connection have been satisfied. In addition, the BIOS will not send a
response to the response mailbox until the file is closed.

System Call Reference Chapter 3 BIOS Calls 97

rq_a_close

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK
E_EXIST

E_LIMIT

E_MEM

E_NOT_CONFIGURED

E_SUPPORT
E_TYPE

0000H No exceptional conditions occurred.

0006H At least one of these is true:
¢ One or more of theonnection or
resp_mbox parameters is not a token for an
existing object.
e The connection is being deleted.
e The connection for a remote driver is no
longer active.

0004H At least one of these is true:
e The calling task's job has already reached its
object limit.
e The number of outstanding I/O operations
for a remote connection has been exceeded.

0002H The memory available to the calling task's job is
not sufficient to complete this call.

0008H This system call is not part of the present
configuration.

0023H The connection was not created by this job.

8002H Either the connection parameter is not a token
for a connection object, or the resp_mbox
parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK
E_CONN_NOT_OPEN
E_IO

98 BIOS Calls

0000H No exceptional conditions occurred.
0034H The specified connection is not open.

002BH An /O error occurred, but the operation was
successful anyway.

Chapter 3 BIOS System Calls

rq_a_create_directory

a_create_directory

Creates a named directory file and returns a token for the new file connection.

Syntax, PL/M and C

CALL rgacreate$directory (user, prefix, subpath_ptr, access,
resp_mbox, except_ptr);

rq_a_create_directory (user, prefix, subpath_ptr, access,
resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
user SELECTOR SELECTOR
prefix SELECTOR SELECTOR
subpath_ptr POINTER STRING far *
access BYTE UINT_8
resp_mbox SELECTOR SELECTOR
except_ptr POINTER towORD_16 UINT_16 far *
Parameters

user A token for the user object of the new directory's owner. The BIOS makes sure the
caller has add-entry access to the parent of the new directory. A null selector
specifies the default user object. For DOS files, the BIOS ignores this parameter
because the user is always World.

prefix
A token for the connection to be used as the path prefix. A null selector specifies
the default prefix.

subpath_ptr
A pointer to a STRING containing the subpath of the directory to be created. The
subpath STRING must not be null, and it must reference an unused location in the

directory tree.

System Call Reference Chapter 3 BIOS Calls 99

rq_a_create_directory

access
The owner's initial access rights to the directory. For each bit, a 1 grants access
and a 0 denies it.
Bits Data File Directory File
7-4 Reserved (0) Reserved (0)
3 Update Change-entry
2 Append Add-entry
1 Read List
0 Delete Delete
The DOS World user always has read (list) access to DOS files and directories;
write access is optional.
See also: a_change_acces&l0S calls_change_access
resp_mbox
A token for the mailbox that receives a directory file connection if the call
succeeded, otherwise an IORS. To determine the type of object returned, use the
Nucleus system cafjet_type
except_ptr

A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

100

This call cannot create a connection to an existing directoryg_wetéach_file

You cannot create an iRMX-NET remote directory with a virtual root directory as
its parent because a virtual root directory has no assigned owner. Otherwise, an
E_FACCESS condition code returns.

BIOS Calls Chapter 3 BIOS System Calls

rq_a_create_directory

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr
E_OK 0000H No exceptional conditions occurred.

E_DEV_OFF_LINE 002EH The prefix parameter references a logical
connection to a device. One of these is true of
the device:

« It has been physically attached but is now
off-line.

« It has been logically attached but never
physically attached.
See also: attachdevice System Concepts

E_EXIST 0006H At least one of these is true:

e One or more of thaser , prefix , or
resp_mbox parameters is not a token for an
existing object.

e Theprefix connection is being deleted.

e The connection for a remote driver is no
longer active.

E_IFDR 002FH This system call applies only to named directory
files, but the prefix and subpath parameters
specify some other type of file.

E_LIMIT 0004H Processing this call would exceed one or more of

these limits:

e The object limit for this job

e 255 outstanding I/O operations for the
specified user object

» 255 outstanding I/O operations for the
caller's job

e The number of outstanding I/O operations
for a remote connection

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete this call.

System Call Reference Chapter 3 BIOS Calls 101

rq_a_create_directory

E_NOPREFIX

E_NOUSER

E_NOT_CONFIGURED

E_PATHNAME_SYNTAX

E_TYPE

8022H The task specified a default prefix using a null
selector, but a default prefix cannot be found
because of one or more of these reasons:

* When this job was created, a 0 was specified
for its object directory, so the job cannot
catalog a default prefix.

e The job's directory can have entries but no
default prefix is cataloged there.

8021H If the user parameter is not a null selector, the
parameter is not a user object. Otherwise, it
specifies a default user, but no default user can
be found for one of these reasons:

* When this job was created, a 0 was specified
for its object directory, so the job cannot
catalog a default user.

e The job's directory can have entries but no
default user is cataloged there.

e The cataloged objec®iouseris not a user
object. Treat?iouseras a reserved word.

0008H This system call is not part of the present
configuration.

003EH One or more of these is true:
* The specified pathname contains invalid
characters or has 0 length.
e The subpath of the specified remote file
exceeds 127 bytes.

8002H Either the prefix parameter is not a token for a
connection object or a logical device object
created by the EIOS, or the resp_mbox
parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_DEV_DETACHING

E_FACCESS

E_FEXIST

102 BIOS Calls

0039H The file specified is on a device that the system
is detaching.

0026H The user object in the parameter list does not
have add-entry access to the parent directory.

0020H A file with the specified pathname already
exists.

Chapter 3 BIOS System Calls

rq_a_create_directory

E_FNEXIST

E_FNODE_LIMIT

E_FTYPE

E_INVALID_FNODE

E_IO_MEM

E_LIMIT

E_NAME_NEXIST

E_PASSWORD_MISMATCH 004BH

E_PATHNAME_SYNTAX

System Call Reference

0021H

003FH

0027H

003DH

002BH

0042H

0004H

0049H

003EH

A file in the specified path does not exist or is
marked for deletion.

The volume already contains the maximum
number of files; no more fnodes are available.

The STRING pointed to by the subpath_ptr
parameter contains a filename which should be
the name of a directory, but is not. Except for
the last file, each file in a path must be a named
directory.

The fnode for the specified file (or for a
directory in the file's path) is invalid. The file
cannot be accessed; delete it or fix it with
diskverify.

See also: diskverify, Command Reference

An 1/O error occurred which might have
prevented the operation from completing.
Examine the unit_status field of the IORS for
more information.

See also: IORS, Chapter 1,
Accessing the IORSrogramming
Techniques

The memory available to the BIOS job is not
sufficient to complete this call.

Processing this call would deplete the remote
server's resources.

The user object does not represent a verified
user, or the user object is not properly defined in
the remote server's UDF.

The user object password does not match the
password of the user defined on the remote
server.

The syntax of the specified remote file pathname
is illegal; it must follow the naming conventions
of the server.

Chapter 3 BIOS Calls 103

rq_a_create_directory

E_SPACE 0029H At least one of these is true:

* The volume is full.

* No more files can be created on the remote
server's volume. The remote file driver
cannot distinguish between an
E_FNODE_LIMIT and an E_SPACE
condition code.

E_SUPPORT 0023H The BIOS is not configured to support space
allocation.
E_UDF_IO 02DOH An error occurred while accessing the remote

server's UDF.

104 BIOS Calls Chapter 3 BIOS System Calls

rq_a_create file

a_create_file

Creates a physical, stream, or named data file and returns a token for the new file
connection.

Syntax, PL/M and C
CALL rgacreate$file (user, prefix, subpath_ptr, access,

granularity, size, must_create, resp_mbox, except_ptr);

rq_a_create_file (user, prefix, subpath_ptr, access,

granularity, size, must_create, resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
user SELECTOR SELECTOR
prefix SELECTOR SELECTOR
subpath_ptr POINTER STRING far *
access BYTE UINT_8
granularity WORD_16 UINT_16
size WORD_32 UINT 32
must_create BYTE UINT 8
resp_mbox SELECTOR SELECTOR
except_ptr POINTER toWORD_16 UINT_16 far *
Parameters

user

prefix

A token for the user object of the new file's owner, which provides the user ID for
access checking. A null selector specifies the default user object. The caller must
have add-entry access to the parent of the new directory. The BIOS ignores this
parameter for physical, stream, or DOS files because the user is always World.

A token for a device or file connection. A null selector specifies the default prefix.
The file created by this call is of the type that is associated with this parameter.

For stream files, if the prefix is a device connection, a new stream file is created. If
the prefix is a file connection, a new file connection to the same stream file is
created. For named files and DOS files, the prefix acts as the starting point in a
directory tree scan.

subpath_ptr

A pointer to a STRING containing the subpath for the named file being created.
This parameter does not apply to physical and stream files. Entering a null pointer,
when using a named, DOS, or EDOS file driver, creates an unnamed temporary
file. The BIOS automatically deletes this file when the last connection to it is
deleted.

System Call Reference Chapter 3 BIOS Calls 105

rq_a_create file

access

The owner's initial access rights to the new file. This parameter does not apply to
physical or stream files. For each bit, a 1 grants access and a 0 denies it.

Bits Meaning

7-4 Reserved, setto 0
3 Update

2 Append

1 Read

0 Delete

The DOS World user always has read (list) access to DOS files and directories;
write access is optional.

See also: a_change_access

granularity

size

106

The size of each logical block of space to be allocated to the file. The BIOS
ignores this parameter for physical, stream, remote, and DOS files. If necessary,
this parameter is rounded up to a multiple of the volume granularity.

Value Meaning

0 Same as volume granularity
1-OFFFEH Number of bytes per allocation
OFFFFH The file must be contiguous

When a contiguous file is extended, space is allocated in volume-granularity units.
A contiguous file can become noncontiguous when it is extended.

The number of bytes initially reserved for the file. For stream files and existing
remote files, this value must equal 0. If you make this value greater than O for
stream files, the reserved space may contain unknown data. The BIOS ignores this
parameter for physical files and non-existent remote files.

BIOS Calls Chapter 3 BIOS System Calls

rq_a_create file

must_create
Determines the handling of an existing file. This parameter applies to named files
and DOS files. Only the least significant bit is checked.

See also: For ICU-configurable systems, Ability to create existing fl&s,
User's Guide and Quick Reference

Value Meaning

0 If a data file exists, it will be truncated or expanded based on the size
parameter. The file's owner ID and access list are unchanged.
If a directory or device file exists, a temporary file is created. The BIOS
automatically deletes this file when the last connection to it is deleted.
Because this file is created without a path, it can be accessed only
through a connection.

1 If a file exists, an E_FEXIST condition code returns.

resp_mbox
A token for the mailbox that receives a new file connection if the call succeeds,
otherwise an IORS. To determine the type of object returned, use the Nucleus
system calpet_type

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

Any task can create a temporary file in any directory because temporary files are
not listed as ordinary entries in the directory. No add-entry access is required.

When you create a remote file, the remote temporary file is entered in the directory
in which you are creating the remote file. Therefore, the task creating the remote
file must have write access to this directory. Tasks can access this remote
temporary file through its pathname, as well as through connections to the file.

You cannot create an iRMX-NET remote file with a virtual root directory as its
parent because a virtual root directory has no owner and you cannot write to it. An
attempt to do so returns an E_FACCESS condition code.

System Call Reference Chapter 3 BIOS Calls 107

rq_a_create file

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr
E_OK 0000H No exceptional conditions occurred.

E_DEV_OFF_LINE 002EH The prefix parameter in this system call
references a logical connection to a device. One
of these is true of this device:

« It has been physically attached but is now
off-line.

« It has been logically attached but never
physically attached.

See also: attachdevice Command Reference

E_EXIST 0006H At least one of these is true:

e One or more of theser , prefix , or
resp_mbox parameters is not a token for an
existing object.

e Theprefix connection is being deleted.

e The connection for a remote driver is no
longer active.

E_LIMIT 0004H Processing this call would cause one or both of
these limits to be exceeded:
e The object limit for this job
e The number of outstanding I/O operations
for a remote connection

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete this call.

E_NOPREFIX 8022H The call specified a default prefix using a null
selector, but it cannot be found for one of these
reasons:

* When the job was created, a 0 was specified
for its object directory.

» No default prefix is cataloged in the job's
directory.

108 BIOS Calls Chapter 3 BIOS System Calls

rq_a_create file

E_NOUSER 8021H If the user parameter is not a null selector, the
parameter is not a token for a user object.
Otherwise, it specifies a default user, but no
default user can be found for one of these
reasons:

* When this job was created, a 0 was specified
for its object directory, so the job cannot
catalog a default user.

e The job's directory can have entries but a
default user is not cataloged there.

e The cataloged objecPiouseris not a user
object. Another task cataloged an object
(not a user object) under the narf®user.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_PATHNAME_SYNTAX 003EH At least one of these is true:
* The specified pathname contains invalid
characters or has 0 length.
« The subpath of the specified remote file
exceeds 127 bytes.

E_TYPE 8002H At least one of these is true:

e Theprefix parameter is not a token for a
connection object or a logical device object
created by the EIOS.

e The resp_mbox parameter is not a mailbox
token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_DEV_DETACHING 0039H The file specified is on a device that the system
is detaching.
E_FACCESS 0026H One of these is true:

« No file with the specified pathname exists,
and the specified user object does not have
add-entry access to the parent directory.

« Afile with the specified pathname exists,
but the specified user object does not have
update access to the file.

E_FEXIST 0020H The must_create parameter is 1, and the file
already exists.

System Call Reference Chapter 3 BIOS Calls 109

rq_a_create file

E_FNEXIST

E_FNODE_LIMIT

E_FRAGMENTATION
E_FTYPE

E_INVALID_FNODE

E_IO_MEM

E_LIMIT

E_NAME_NEXIST

E_PASSWORD_MISMATCH 004BH

0021H

003FH

0030H
0027H

003DH

002BH

0042H

0004H

0049H

110 BIOS Calls Chapter 3

A file in the specified path does not exist or is
marked for deletion.

The file cannot be created or extended to this
size because it has reached the maximum
number of volume blocks.

See also: File driver limitation§ystem
Conceptsnanual.

The disk is too fragmented to extend the file.

The STRING pointed to by the subpath_ptr
parameter contains a filename which should be
the name of a directory, but is not. Except for
the last file, each file in a path must be a named
directory.

The fnode for the specified file (or for a
directory in the file's path) is invalid. The file
cannot be accessed; delete it or fix it with
diskverify.

See also: diskverify, Command Reference

An 1/O error occurred which might have
prevented the operation from completing.
Examine the unit_status field of the IORS for
more information.

See also: IORS, Chapter 1,
Accessing the IORSrogramming
Techniques

The memory available to the BIOS job is not
sufficient to complete this call.

Processing this call would deplete the remote
server's resources.

The user object does not represent a verified
user, or the user object is not properly defined in
the remote server's UDF.

The user object password does not match the
password of the user defined on the remote
server.

BIOS System Calls

rq_a_create file

E_PATHNAME_SYNTAX

E_SHARE

E_SPACE

E_SUPPORT

E_UDF_IO

System Call Reference

003EH

0028H

0029H

0023H

02DOH

The syntax of the specified remote file pathname
is illegal; it must follow the naming conventions
of the server.

The file this call is attempting to create already
exists and is open. It was opened with share-
with-readers-only share mode.

At least one of these is true:

* The volume is full.

* No more files can be created on the remote
server's volume. The remote file driver
cannot distinguish between an
E_FNODE_LIMIT and an E_SPACE
condition code.

One of these is true:

e The BIOS is not configured to allow
truncation of files to O size.

e The BIOS is not configured to allow space
allocation on volumes.

e The remote file driver does not support
creation of a contiguous file.

e The remote file driver does not support
truncating existing remote files to 0 size.

An error occurred while accessing the remote
server's UDF.

Chapter 3 BIOS Calls 111

rq_create_user

create_user

Creates a user object, accepts a list of IDs, and returns a token for the new object.

Syntax, PL/M and C
user = rq$create$user (IDs_ptr, except_ptr);

user = rg_create_user (IDs_ptr, except_ptr);

Parameter PL/M Data Type C Data Type

user SELECTOR SELECTOR
IDs_ptr POINTER IDS_STRUCT far *
except_ptr POINTER towORD_16 UINT_16 far *

Return Value

user The new user object token.

Parameters

IDs_ptr
A pointer to this structure:

DECLARE IDs STRUCTURE(

length WORD_16,
count WORD_16,
IDs(*) WORD_16);
or
typedef struct {
UINT_16 length;
UINT_16 count;
UINT_16 ids[2]; /* adjust to count value */
}IDS_STRUCT;
Where:
length Number of elements in the ID array.
count Number ranging from 1 tength of IDs to be included in the user
object.
IDs Array of IDs, each of which is included in the user object. The first

ID is the owner of any file created with reference to this user object.

112 BIOS Calls Chapter 3 BIOS System Calls

rq_create_user

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

Additional Information
If the number of ID slots specified by tleagth field is greater than the number
of IDs specified by theount field, length is adjusted to equabunt .

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_LIMIT 0004H The calling task's job has already reached its
object limit.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_PARAM 8004H The count field in the IDs structure is either 0 or

is greater than the length field.

System Call Reference Chapter 3 BIOS Calls 113

rq_a_delete_connection

a_delete_connection
Deletes a file connection createddycreate file a_create_directory, or
a_attach_file Use with any type of file..

Syntax, PL/M and C

CALL rgadelete$connection (connection, resp_mbox,
except_ptr);

rq_a_delete_connection (connection, resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
resp_mbox SELECTOR SELECTOR
except_ptr POINTER towORD_16 UINT_16 far *
Parameters
connection

A token for the file connection to be deleted.

resp_mbox
A token for the mailbox that receives an IORS. A null selector means that you do
not want to receive an IORS.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

Delete connections when they are no longer needed. This call deletes a connectiol
object and deletes the associated file if both of these are true:

* Thefile is already marked for deletion by a previaudelete_filecall or is a
temporary file.

* The specified connection is the only connection to the file.

If a connection is open when delete_connections called, it is closed before
being deleted.

See also: a_create_file a_create_directory a_attach_file

114 BIOS Calls Chapter 3 BIOS System Calls

rq_a_delete_connection

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr

E_OK
E_EXIST

E_LIMIT

E_MEM

E_NOT_CONFIGURED

E_NOT_FILE_CONN

E_SUPPORT

E_TYPE

0O0C0H
0006H

0004H

0002H

0008H

0032H

0023H

8002H

No exceptional conditions occurred.

At least one of these is true:
¢ One or more of theonnection or
resp_mbox parameters is not a token for an
existing object.
e The connection is being deleted.
e The connection for a remote driver is no
longer active.

The calling task's job has already reached its
object limit, or DOS has run out of file handles.

The memory available to the calling task's job is
not sufficient to complete this call.

This system call is not part of the present
configuration.

The specified connection is a device connection,
not a file connection.

The specified connection was not created by this
job.

Either the connection parameter is not a token
for a connection object, or the resp_mbox
parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK
E_IO

System Call Reference

0O0C0H
002BH

No exceptional conditions occurred.

An 1/O error occurred, but the connection was
still deleted.

Chapter 3 BIOS Calls 115

rq_a_delete_file

a_delete_file

Marks a file for deletion and deletes it. The file type may be stream, named data,
named directory, DOS data, or DOS directory.

Syntax, PL/M and C

CALL rgasdeletesfile (user, prefix, subpath_ptr, resp_mbox,
except_ptr);

rq_a_delete_file (user, prefix, subpath_ptr, resp_mbox,
except_ptr);

Parameter PL/M Data Type C Data Type

user SELECTOR SELECTOR

prefix SELECTOR SELECTOR

subpath_ptr POINTER STRING far *

resp_mbox SELECTOR SELECTOR

except_ptr POINTER towORD_16 UINT_16 far *
Parameters

user A token for the user object to be inspected in access checking. A null selector
specifies the default user object. This parameter does not apply to stream files.
For DOS files, the BIOS ignores this parameter because the user is always World.

prefix
A token for the connection object to be used as the path prefix. A null selector
specifies the default prefix.

subpath_ptr
A pointer to a STRING giving the subpath for the file being deleted. A null
STRING indicates that the prefix itself designates the desired file. In this instance,
theuser parameter is ignored, since access checking was already performed when
the file was attached. This parameter does not apply to stream files.

resp_mbox
A token for a mailbox that receives an IORS when the file is marked for deletion.
The file will not actually be deleted until all connections to the file are deleted. A
null selector means that you do not want to receive an IORS.

except_ptr
A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

116 BIOS Calls Chapter 3 BIOS System Calls

rq_a_delete_file

Additional Information

For iIRMX files, the caller must have delete access to the file. For DOS files, the
caller must have write access to the file.

See also: a_change_access_change_access

Use this call to mark the designated file for deletion and remove the file's entry
from the parent directory. The entry is removed immediately, but the file is not
actually deleted until all connections to the file have been severed by
a_delete_connectiortalls. Directory files cannot be deleted unless they are
empty.

See also: a_delete_connection

You cannot delete an iRMX-NET remote file with a virtual root directory as its
parent because a virtual root directory has no owner and you cannot write to it. An
attempt to do so returns an E_FACCESS condition code.

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr
E_OK 0000H No exceptional conditions occurred.

E_DEV_OFF_LINE 002EH The prefix parameter references a logical
connection to a device. One of these is true of
this device:

e It has been physically attached but is now
off-line.

« It has been logically attached but never
physically attached.

See also: attachdevice Command Reference

E_EXIST 0006H At least one of these is true:

e One or more of thaser , prefix , or
resp_mbox parameters is not a token for an
existing object.

e Theprefix connection is being deleted.

e The connection for a remote driver is no
longer active.

E_IFDR 002FH This system call applies only to named or stream
files, but the prefix and subpath parameters
specified a physical file.

System Call Reference Chapter 3 BIOS Calls 117

rq_a_delete_file

E_LIMIT 0004H
E_MEM 0002H
E_NOPREFIX 8022H
E_NOUSER 8021H
E_NOT_CONFIGURED 0008H

E_PATHNAME_SYNTAX 003EH

118

BIOS Calls Chapter 3

Processing this call would exceed one or more of

these limits:

e The object limit for this job

e 255 outstanding I/O operations for the
specified user object

e 255 outstanding I/O operations for the
caller's job

e The number of outstanding I/O operations
for a remote connection

The memory available to the calling task's job is
not sufficient to complete this call.

The call specified a default prefix using a null
selector, but a default prefix cannot be found for
one of these reasons:

* When this job was created, a 0 was specified
for its object directory, so the job cannot
catalog a default prefix.

e The job's directory can have entries but no
default prefix is cataloged there.

If the user parameter is not a null selector, the
parameter is not a token for a user object.
Otherwise, it specifies a default user, but no
default user can be found for one of these
reasons:

* When this job was created, a 0 was specified
for its object directory, so the job cannot
catalog a default user.

e The job's directory can have entries but no
default user is cataloged there.

e The cataloged objec®iouseris not a user
object. Treat?iouseras a reserved word.

This system call is not part of the present
configuration.

At least one of these is true:

e The specified pathname contains invalid
characters or has 0 length.

e The subpath of the specified remote file
exceeds 127 bytes.

BIOS System Calls

rq_a_delete_file

E_SUPPORT 0023H The specified connection was not created by this
job.
E TYPE 8002H At least one of these is true:

e Theprefix parameter is not a token for a
connection object or a logical device object
created by the EIOS.

e The resp_mbox parameter is not a mailbox
token.

Concurrent Condition Codes: returned asynchronously to resp_mbox

E_OK 0000H No exceptional conditions occurred.

E_DEV_DETACHING 0039H The specified file is on a device that the system
is detaching.

E_DIR_NOT_EMPTY 0031H The call is attempting to delete a directory
containing entries.

E_FACCESS 0026H At least one of these is true:
e The user object does not have delete access

to the file.

e The call attempted to delete the root
directory or a bit-map file.

E_FNEXIST 0021H Afile in the specified path, or the target file
itself, does not exist or is marked for deletion.
E_FTYPE 0027H The STRING pointed to by the subpath_ptr

parameter contains a STRING that should be the
name of a directory, but is not. Except for the
last file, each file in a pathname must be a
named directory.

E_IO 002BH An /O error occurred which might have
prevented the operation from completing.
Examine the unit_status field of the IORS for
more information.

See also: IORS, Chapter 1,
Accessing the IORSrogramming
Techniques

E_10_MEM 0042H The memory available to the BIOS is not
sufficient to complete the call.

System Call Reference Chapter 3 BIOS Calls 119

rq_a_delete_file

E_LIMIT 0004H
E_NAME_NEXIST 0049H
E_NOT_FILE_CONN 0032H

E_PASSWORD_MISMATCH 004BH

E_PATHNAME_SYNTAX 003EH

E_UDF_IO

120

02DOH

BIOS Calls Chapter 3

Processing this call would deplete the remote
server's resources.

The user object does not represent a valid user,
or the user object is not properly defined in the
remote server's UDF.

The subpath_ptr parameter is a null pointer and
the prefix parameter is not a file connection.

The user object password does not match the
password of the user defined on the remote
server.

The syntax of the specified remote file pathname
is illegal; it must follow the naming conventions
of the server.

An error occurred while accessing the remote
server's UDF.

BIOS System Calls

rq_delete user

delete user

Deletes a user object.

Syntax, PL/M and C

CALL rg$delete$user (user, except_ptr);

rq_delete_user (user, except_ptr);

Parameter
user

except_ptr

Parameters

PL/M Data Type C Data Type
SELECTOR SELECTOR
POINTER towORD_16 UINT_16 far *

user A token for the user object to be deleted.

except_ptr

A pointer to a variable declared by the application where the call returns a

condition code.

Additional Information

Deleting a user object has no effect on connections created with the user object.

Condition Codes
E_OK
E_EXIST

E_LIMIT

E_NOT_CONFIGURED

E_TYPE

System Call Reference

0000H No exceptional conditions occurred.

0006H The user parameter is not a token for an existing
object.

0004H Processing the call would exceed the limit of 255
outstanding 1/O operations.

0008H This system call is not part of the present
configuration.

8002H The user parameter is a token that is not a user
object.

Chapter 3 BIOS Calls 121

rg_encrypt

encrypt

Encodes a STRING pointed to by thessword_ptr parameter. There is no way
to decrypt the encrypted STRING with any iRMX system call.

Syntax, PL/M and C

CALL rg$encrypt (password_ptr, key_ptr, encryption_ptr,
except_ptr);

rq_encrypt (password_ptr, key_ptr, encryption_ptr, except_ptr);

Parameter PL/M Data Type C Data Type

password_ptr POINTER STRING far *

key_ptr POINTER UINT_8 far *

encryption_ptr POINTER STRING far *

except_ptr POINTER towORD_16 UINT_16 far *
Parameters

password_ptr
A pointer to an 8-character STRING containing the data to be encrypted.

key_ptr
A pointer to two ASCII characters that serve as an encryption key. These two
characters become the second and third characters of the STRING pointed to by
encryption_ptr . The two characters must be used in subsequent encryptions of
the same unencrypted password to yield the same encryption.

encryption_ptr
A pointer to a 15-character STRIN@&here the encrypted password will be placed.
The first character is the length of the string. The second and third characters are
the key used to encrypt the password. The next 11 characters are the encrypted
password. The last character is a null character.

except_ptr
A pointer to a variable declared by the application where the call returns a
condition code.

122 BIOS Calls Chapter 3 BIOS System Calls

rg_encrypt

Additional Information

This system call is typically used to encrypt a password supplied by a user during
logon or other system access verification. e ptr parameter enables the

input parameter to be encrypted to the same string eacletiongpt is called,
provided thekey_ptr parameter is identical. Using any other key will cause the
input parameter to be encrypted differently. When a string is initially encrypted,
the key should be randomly generated.

See also: Data Encryption Standard (DES) algorithm, Federal Information
Processing Standard Publication #46, January 15, 1977

Condition Codes

E_OK 0000H No exceptional conditions occurred.

E_LIMIT 0004H The calling task’s job object limit is too small.

E_MEM 0002H The memory of the calling task's job is
exhausted.

E_NOT_CONFIGURED 0008H This call is not part of the present configuration.

System Call Reference Chapter 3 BIOS Calls 123

rq_a_get _connection_status

a_get_connection_status

Returns information about the connection status of any type of file.

Syntax, PL/M and C

CALL rgasgetSconnection$status (connection, resp_mbox,
except_ptr);

rq_a_get_connection_status (connection, resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
resp_mbox SELECTOR SELECTOR
except_ptr POINTER towORD_16 UINT_16 far *
Parameters
connection

A token for the file connection whose status is to be returned.

resp_mbox
A token for the mailbox that is to receive a token for this segment. The calling task
is responsible for deleting the segment after examining it.

DECLARE conn_status STRUCTURE(

status WORD_186,
file_driver BYTE,
flags BYTE,
open_mode BYTE,
share_mode BYTE,
file_ptr WORD_32,
access BYTE);

or

typedef struct {
UINT_16 status;
UINT_8 file_driver;
UINT_8 flags;
UINT_8 open_mode;
UINT_8 share_mode;
UINT_32 file_ptr;
UINT_8 access;

} CONN_STATUS_STRUCT

124 BIOS Calls Chapter 3 BIOS System Calls

rq_a_get _connection_status

Where:
status A condition code giving the outcome of the operation. If this code is
not E_OK, consider the remaining fields invalid.
file_driver
Specifies the type of file driver to which this connection is attached.
Value Type
1 Physical
2 Stream
3 DOS
4 Named
5 Remote File Driver (IRMX-NET)
6 EDOS
7-max Loadable file drivers, including NFS. The ID for these
drivers can vary; it is assigned in the order the driver is
loaded.
flags Contains two flag bits that when set, indicate:
Bits Meaning
7-3 Reserved, set to 0.
2 This is a device connection.
1 The connection is active and can be opened.
0 Reserved, set to 0.

open_mode The mode established when this connection was opened:

Value Meaning

0 Connection is closed

1 Open for reading

2 Open for writing

3 Open for reading and writing

share_mode
The share mode established when this connection was opened:

Value Meaning
0 Private use only
1 Share with readers only
2 Share with writers only
3 Share with all users
file_ptr The current byte location of the file pointer for this connection.

System Call Reference Chapter 3 BIOS Calls 125

rq_a_get _connection_status

The access rights for this connection. For each bit, 1 grants access

Directory File

Reserved
Change Entry
Add Entry
List
Delete

For remote iIRMX-NET files, the access bits are interpreted as:

Directory File

Reserved

Ignored; set the same as bit 2
Write; set the same as bit 3

List
Ignored

For NFS files, access bits can be mapped differently for different OSs.

Accessing NFS files, Chapter3ystem Concepts

The DOS World user always has read (list) access to DOS files and
directories; write access is optional.

access

and O denies it.
Bits Data File
7-4 Reserved
3 Update
2 Append
1 Read
0 Delete
Bits Data File
7-4 Reserved
3 Write
2 Write
1 Read
0 Ignored
See also:

except_ptr

A pointer to a variable declared by the application where the sequential part of the

call returns a condition code.

Additional Information

When the status of a file connection to a virtual root directory is requested, list
permission is granted and write permission is denied. As a result, bit 1 of the
access field is set to 1 and bit 2 is set to O.

The BIOS does not check the access rights of an iIRMX-NET remote file when you
create a connection to the file, but checks during operations on the connection.
This won't affect your programs if you follow these guidelines:

« Open, delete, and rename files prior to changing their access lists.

« Establish connections to files after changing their access lists.

126 BIOS Calls Chapter 3

BIOS System Calls

rq_a_get _connection_status

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr
E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H At least one of these is true:

e One or more of theonnection or
resp_mbox parameters is not a token for an
existing object.

e The connection is being deleted.

e The connection for a remote driver is no
longer active.

E_LIMIT 0004H At least one of these is true:
e The calling task's job has already reached its
object limit.

e The number of outstanding I/O operations
for a remote connection has been exceeded.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.
E_NOT_CONFIGURED 0008H This system call is not part of the present

configuration.

E_SUPPORT 0023H The specified connection parameter is not valid
in this system call because the connection was
not created by this job.

E_TYPE 8002H Either the connection parameter is not a token
for a connection object, or the resp_mbox
parameter is not a mailbox token.

Concurrent Condition Codes: returned asynchronously to resp_mbox
E_OK 0000H No exceptional conditions occurred.

E_IO 002BH An /O error occurred, which might have
prevented the operation from being completed.
Examine the unit_status field of the IORS for
more information.
See also: IORS, Chapter 1,
Accessing the IORSrogramming
Techniques

E_NOT_FILE_CONN 0032H For remote files, the connection parameter must
be a file connection, not a device connection.

System Call Reference Chapter 3 BIOS Calls 127

rq_get_default_prefix

get_default_prefix

Returns the default prefix of a specified job.

Syntax, PL/M and C
connection = rqgetdefaultSprefix (job, except_ptr);

connection = rg_get_default_prefix (job, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
job SELECTOR SELECTOR
except_ptr POINTER towORD_16 UINT_16 far *

Return Value

connection
A token for the connection object that is the default prefix for the designated job.

Parameters

job A token for the job whose default prefix is sought. A null selector specifies the
calling task's job.

except_ptr
A pointer to a variable declared by the application where the call returns a

condition code.

128 BIOS Calls Chapter 3 BIOS System Calls

rq_get_default_prefix

Condition Codes
E_OK
E_NOPREFIX

E_NOT_CONFIGURED

System Call Reference

0O0C0H
8022H

0008H

No exceptional conditions occurred.

A default prefix was requested, but cannot be

found for one of these reasons:

When this job was created, a 0 was specified
for its object directory, so the job cannot
catalog a default prefix.

The job's directory can have entries but a
default prefix is not cataloged there.
Thejob parameter is not a token for an
existing object.

The prefix that is cataloged is of the wrong
type. The default prefix must be a
connection object or logical device object
created by the EIOS.

The job parameter is not a job token.

This system call is not part of the present

configuration.

Chapter 3 BIOS Calls 129

rq_get_default_user

get_default_user

Returns the default user object of a specified job.

Syntax, PL/M and C
user_ID = rggetdefault$user (job, except_ptr);

user_ID =rqg_get_default_user (job, except_ptr);

Parameter PL/M Data Type C Data Type
user_ID SELECTOR SELECTOR
job SELECTOR SELECTOR
except_ptr POINTER toWORD_16 UINT_16 far *

Return Value

user_ID
A token for the user object that is the default user for the designated job.

Parameters

job A token for the job whose default user object is sought. A null selector specifies
the calling task's job.

except_ptr
A pointer to a variable declared by the application where the call returns a

condition code.

130 BIOS Calls Chapter 3 BIOS System Calls

rq_get_default_user

Condition Codes
E_OK
E_NOUSER

E_NOT_CONFIGURED

System Call Reference

0O0C0H
8021H

0008H

No exceptional conditions occurred.

A default user cannot be found for one of these

reasons:

When this job was created, a 0 was specified
for its object directory, so the job cannot
catalog a default user.

The job's directory can have entries but a
default user is not cataloged there.

The object which is cataloged with the name
r?iouseris not a user object. Tre&tiouser

as a reserved word.

Thejob parameter is not a job token.

The job parameter is not a token for an
existing object.

This system call is not part of the present

configuration.

Chapter 3 BIOS Calls 131

rq_a_get_directory_entry

a_get _directory_entry

Returns the filename associated with an entry number in a named or DOS
directory.

Syntax, PL/M and C

CALL rgaget$directory$entry (connection, entry_num,
resp_mbox, except_ptr);

rq_a_get_directory_entry (connection, entry_num, resp_mbox,
except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
entry_num WORD_16 UINT_16
resp_mbox SELECTOR SELECTOR
except_ptr POINTER towORD_16 UINT_16 far *
Parameters
connection

A token for a named or DOS directory only.

entry_num
The entry number of the desired filename. Entries within a directory are numbered
sequentially starting from 0. The E_EMPTY_ENTRY condition code returns if
there is no entry associated with this number.

resp_mbox
The mailbox that receives a token for this segment. The calling task is responsible
for deleting this segment after examining it.

DECLARE dir_entry_info STRUCTURE(

status WORD_186,
name (14) BYTE);

or

typedef struct {
UINT_16 status;
UINT_8 name[14]

} DIR_ENTRY_INFO_STRUCT;

132 BIOS Calls Chapter 3 BIOS System Calls

rq_a_get_directory_entry

Where:

status Indicates how the operation was completed. E_OK,
E_EMPTY_ENTRY, and E_DIR_END condition codes all indicate
successful completion.

name The filename contained in the specified entry. The filename is left-
justified and padded with blanks to the right. This field is valid only
if status is E_OK.

except_ptr

A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

The caller must have list access to the designated directory. DOS World users
always have read (list) access.

See also: a_change_access_change_access

As an alternative to using this system call, an application task can open and read a
directory file.

Thea_get_directory_entrysystem call is not supported for iIRMX-NET remote
directories. Usa_openanda_read ors_openands_read_moveto read remote
directories.

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr
E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H At least one of these is true:

e One or more of theonnection or
resp_mbox parameters is not a token for an
existing object.

e The connection is being deleted.

E_IFDR 002FH At least one of these is true:

e This system call applies only to named
directories, but theonnection parameter
specifies another type of file.

e The connection parameter specifies a remote
directory, but the remote file driver does not
support this system call.

System Call Reference Chapter 3 BIOS Calls 133

rq_a_get_directory_entry

E_LIMIT

E_MEM

E_NOT_CONFIGURED

E_SUPPORT

E_TYPE

Concurrent Condition Codes:

E_OK

E_DIR_END

E_EMPTY_ENTRY
E_FACCESS

E_FTYPE

E_IO

134

BIOS Calls

0004H

0002H

0008H

0023H

8002H

0O0C0H
0025H

0024H
0026H

0027H

002BH

Chapter 3

The calling task's job has already reached its
object limit.

The memory available to the calling task's job is
not sufficient to complete this call.

This system call is not part of the present
configuration.

The specified connection was not created by this
job.

Either the connection parameter is not a token
for a connection object, or the resp_mbox
parameter is not a mailbox token.

returned asynchronously to resp_mbox

No exceptional conditions occurred.

The entry_num parameter is greater than the
number of entries in the directory.

The file entry designated in the call is empty.

The specified connection does not have list
access to the directory.

The specified connection does not refer to a
directory.

An 1/O error occurred which might have
prevented the operation from completing.

BIOS System Calls

rq_a_get_extension_data

a_get extension_data
Returns extension data stored with a BIOS named data or directory file. This call
is not valid for DOS files or for files accessed through NFS.

Syntax, PL/M and C

CALL rgasget$extension$data (connection, resp_mbox,
except_ptr);

rq_a_get_extension_data (connection, resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
resp_mbox SELECTOR SELECTOR
except_ptr POINTER towORD_16 UINT_16 far *
Parameters
connection

A token for a file connection whose extension data is to returned.

resp_mbox
The mailbox that receives a token for this segment. The calling task is responsible
for deleting this segment after examining it.

DECLARE file_status STRUCTURE (

status WORD_186,
count BYTE,
info(*) BYTE);
or
typedef struct {
UINT_16 status;
UINT_8 count;
UINT_8 info_NUM_FILE_INFO];

/* adjust to fit count */
} FILE_STATUS_STRUCT;

System Call Reference Chapter 3 BIOS Calls 135

rq_a_get_extension_data

Where:
status A condition code indicating the outcome of the operation. If this code
is not E_OK, consider the remaining fields invalid.
count The number from 0 to 255 of bytes returned; set to 0 for remote files.
info The extension data.
except_ptr

A pointer to a variable declared by the application where the sequential part of the
call returns a condition code.

Additional Information

A_get_extension_datacan only be applied to connections created using the named
file driver.

A file descriptor is associated with each file created through the BIOS. Some of
the information in the descriptor is used by the BIOS and can be accessed through
a_get file_status Up to 255 additional bytes of the file descriptor, known as
extension data, are available for use by OS extensions.

The first three bytes of extension data are reserved for use by the BIOS. OS
extensions can write extension data by usinget_extension_datand they can
read extension data by usiagget_extension_data

Condition Codes

Sequential Condition Codes: returned immediately to except_ptr
E_OK 0000H No exceptional conditions occurred.

E_EXIST 0006H At least one of these is true:

e One or more of theonnection or
resp_mbox parameters is not a token for an
existing object.

e The connection is being deleted.

e The connection for a remote driver is no
longer active.

E_IFDR 002FH This system call applies only to named files, but
the connection parameter specifies another type
of file.

136 BIOS Calls Chapter 3 BIOS System Calls

rq_a_get_extension_data

E_LIMIT 0004H At least one of these is true:
e The calling task's job has already reached its
object limit.

e The number of outstanding I/O operations
for a remote connection has been exceeded.

E_MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E_NOT_CONFIGURED 0008H This system call is not part of the present
configuration.

E_SUPPORT 0023H The specified connection was not created by this
job.

E_TYPE 8002H Either the connection parameter is not a token

for a connection object, or the resp_mbox
parameter is not a mailbox token.
Concurrent Condition Codes: returned asynchronously to resp_mbox
E_OK 0000H No exceptional conditions occurred.

E_IO 002BH An /O error occurred which might have
prevented the operation from completing.

System Call Reference Chapter 3 BIOS Calls 137

rq_get_file_driver_status

get_file_driver_status

Returns information on a specified file driver. Use this call to build a table of all
available file drivers (resident and loadable) currently available in the system.

Syntax, PL/M and C

CALL rggetfilesdriver$status (file_driver, ret_data_ptr,
except_ptr);

rq_get _file_driver_status (file_driver, ret_data_ptr,
except_ptr);

Parameter PL/M Data Type C Data Type
file_driver BYTE UINT 8
ret_data_ptr POINTER FD_STATUS_STRUCT far *
except_ptr POINTER towORD_16 UINT_16 far *
Parameters
file_driver

Specifies the file driver ID. These are some of the typical file driver IDs:

ID Description

0 Reserved; not a valid file driver ID

1 Physical file driver, always present

2 Stream file driver, always present

3 Native DOS file driver, ICU-configurable or loadable

4 Named file driver, ICU-configurable or loadable

5 Remote file driver, ICU-configurable or loadable

6 EDOS file driver, ICU-configurable or loadable

7-max Loadable file drivers, including NFS. The ID for these drivers can vary;

it is assigned in the order the driver is loaded. The maximum number is
ICU-configurable.

138 BIOS Calls Chapter 3 BIOS System Calls

rq_get_file_driver_status

ret_data_ptr

A pointer to this structure:

DECLARE fd_status_struct STRUCTURE(

max_file_drivers BYTE,
num_file_drivers BYTE

flags BYTE,
buffer_size WORD_16,
filesystem BYTE,
io_task_priority BYTE,
name_length BYTE,
name(14) BYTE,
reserved(19) BYTE);

or

typedef struct {

UINT_8 max_file_drivers;
UINT_8 num_file_drivers;
UINT_16 flags;

UINT_16 buffer_size;
UINT_8 file_system;
UINT_8 io_task_priority;
UINT_8 name_length;
UINT_8 name[14];
UINT_8 reserved[19];

} FD_STATUS_STRUCT;

Where:

max_file_drivers

Largest possible file driver ID value
drivers is ICU-configurable (default

num_file_drivers
Number of file drivers currently available in the system, including

System Call Reference

loadable and resident drivers.

Chapter 3 BIOS Calls

. The number of loadable file
= 16).

139

rq_get_file_driver_status

flags Encoded as:

Bit(s) Meaning

15 File driver present at this ID; all other fields in the structure
are invalid unless this bit is set.

14 1 = loaded file driver
0 = resident file driver

3-13 Reserved, setto 0

2 Convert filenames to lower case

1 DUIBs required

0 User object required

buffer_size

Default size for EIOS buffers.

file_system

File system supported by this file driver (only meaningful if bit 1 of

theflags

Bit(s)
6-7
5

4
3
2
1

o

io_task_priority

field is set). Indicates:

File System Type

Reserved, setto 0

EDOS

Remote (including Remote File Driver and NFS)
iIRMX Named (or other hierarchical)

DOS

Stream

Physical

Default priority for 1/O tasks associated with this file driver. Should
normally be O (uses task priority field in the DUIB as default).

name_length

Actual length of the name field (excluding blanks).

name Unique file driver identifier of up to 14 bytes (padded with blanks).

except_ptr
A pointer to a variable declared by the application where the call returns a

condition code.

Additional Information

140

To build a table of all available file drivers, first make this call with a

file_driver number of 1 to obtain the valuerafx_file_drivers from
FD_STATUS_STRUCT Then, loopmax_file_drivers times to obtain
information on each file driver. A file driver is present at a given file driver ID if
bit 15 of the flags field is set.

BIOS Calls Chapter 3 BIOS System Calls

rq_get_file_driver_status

Condition Codes

E_PARAM 8004H One of these is true:
e The file driver ID is O or larger than the
maximum allowable value.
e The structure referenced by ret_data_ptr is
not writable or large enough to hold the
return data.

System Call Reference Chapter 3 BIOS Calls 141

rq_a_get file_status

a_get file_status

Returns device-dependent status and attribute information about a specified file of
any type. Additional information returns for named files.

Syntax, PL/M and C
CALL rgasget$file$status (connection, resp_mbox, except_ptr);

rq_a_get file_status (connection, resp_mbox, except_ptr);

Parameter PL/M Data Type C Data Type
connection SELECTOR SELECTOR
resp_mbox SELECTOR SELECTOR
except_ptr POINTER towORD_16 UINT_16 far *
Parameters
connection

A token for a connection to the file whose status is sought.

resp_mbox
The mailbox that receives a token for this segment. The information returned
depends on the file type specified. For all types of files, the first part of this
structure through théev_conn field returns. If the contents of thamed_file
field indicate a named, remote, or DOS file, the second part (fieod on)
returns also.

142 BIOS Calls Chapter 3 BIOS System Calls

rq_a_get file_status

DECLARE file_info STRUCTURE(

status
num_conn
num_reader
num_writer
share
named_file
dev_name(14)
file_drivers
functs

flags
dev_gran
dev_size
dev_conn
file_ID
file_type
file_gran
owner_|D
create_time
access_time
modify_time
file_size
file_blocks
vol_name(6)
vol_gran
vol_size
accessor_count
first_access
first_ID
second_access
second_ID
third_access
third_ID
vol_flags

System Call Reference

WORD_ 16,
WORD_ 16,
WORD_16,
WORD_16,
BYTE,
BYTE,
BYTE,
WORD_ 16,
BYTE,
BYTE,
WORD_16,
WORD_32,
WORD_16,
WORD_16,
BYTE,
BYTE,
WORD_ 16,
WORD_32,
WORD_32,
WORD_32,
WORD_32,
WORD_32,
BYTE,
WORD_ 16,
WORD_32,
WORD_ 16,
BYTE,
WORD_16,
BYTE,
WORD_16,
BYTE,
WORD_ 16,
BYTE);

Chapter 3 BIOS Calls

143

rq_a_get file_status

or

typedef struct {

UINT_16 status;
UINT_16 num_conn;
UINT_16 num_reader;
UINT_16 num_writer;
UINT_8 share;
UINT_8 named_file;
UINT_8 dev_name[14];
UINT_16 file_drivers;
UINT_8 functs;
UINT_8 flags;
UINT_16 dev_gran;
UINT_32 dev_size;
UINT_16 dev_conn;
UINT_16 file_ID;
UINT_8 file_type;
UINT_8 file_gran;
UINT_16 owner_ID;
UINT_32 create_time;
UINT_32 access_time;
UINT_32 modify_time;
UINT_32 file_size;
UINT_32 file_blocks;
UINT_8 vol_namel6];
UINT_16 vol_gran;
UINT_32 vol_size;
UINT_16 accessor_count;
UINT_8 first_access;
UINT_16 first_ID;
UINT_8 second_access;
UINT_16 second_ID;
UINT_8 third_access;
UINT_16 third_ID;
UINT_8 vol_flags;

} FILE_INFO_STRUCT;

144 BIOS Calls Chapter 3 BIOS System Calls

rq_a_get file_status

Where:

status Indicates how thget_file_statusoperation was completed. If this
condition code is not E_OK, consider the remaining fields invalid.

num_conn The number of connections to the file. For remote and NFS files, this
field indicates the number of connections between the calling job and
the file.

num_reader
The number of connections currently o