
iRMX® Programming Concepts
for DOS and Windows

Order Number: 469154-003

2

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:
Literature Distribution Center
Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

Or you can call the following toll-free number: 1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local
Intel sales office. For your convenience, international sales office addresses are printed on the last page of
this document. Contact your local sales office to obtain the latest specifications before placing your order.

Intel Corporation (Intel) makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel assumes no
responsibility for any errors that may appear in this document. Intel makes no commitment to update nor to
keep current the information contained in this document. No part of this document may be copied or
reproduced in any form or by any means without prior written consent of Intel. Intel retains the right to make
changes to these specifications at any time, without notice.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's Software License Agreement.
U.S. GOVERNMENT RESTRICTED RIGHTS: These software products and documentation were
developed at private expense and are provided with "RESTRICTED RIGHTS." Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in FAR 52.227-14 and
DFAR 252.227-7013 et seq. or its successor.

The Intel logo, i960, Pentium, and iRMX are registered trademarks of Intel Corporation, registered in the
United States of America and other countries. Above, i287, i386, i387, i486, Intel287, Intel386, Intel387,
Intel486, Intel487 and EtherExpress are trademarks of Intel Corporation.

Adaptec is a registered trademark of Adaptec, Inc. AT, IBM and PS/2 are registered trademarks and PC/XT
is a trademark of International Business Machines Corporation. All Borland products are trademarks or
registered trademarks of Borland International, Inc. CodeView, Microsoft, MS, MS-DOS and XENIX are
registered trademarks of Microsoft Corporation. Comtrol is a registered trademark and HOSTESS is a
trademark of Comtrol Corporation. DT2806 is a trademark of Data Translation, Inc. Ethernet is a registered
trademark of Xerox Corporation. Hayes is a registered trademark of Hayes Microcomputer Products.
Hazeltine and Executive 80 are trademarks of Hazeltine Corporation. Hewlett-Packard is a registered
trademark of Hewlett-Packard Co. Maxtor is a registered trademark of Maxtor Corporation. MIX is a
registered trademark of MIX Software, Incorporated. MIX is an acronym for Modular Interface eXtension.
MPI is a trademark of Centralp Automatismes (S.A.). NetWare and Novell are registered trademarks of
Novell Corp. NFS is a trademark of Sun Microsystems, Inc. Phar Lap is a trademark of Phar Lap Software,
Inc. Soft-Scope is a registered trademark of Concurrent Sciences, inc. TeleVideo is a trademark of
TeleVideo Systems, Inc. UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited. VAX is a registered trademark and VMS is a trademark of
Digital Equipment Corporation. Visual Basic and Visual C++ are trademarks of Microsoft Corporation. All
Watcom products are trademarks or registered trademarks of Watcom International Corp. Windows,
Windows 95 and Windows for Workgroups are registered trademarks and Windows NT is a trademark of
Microsoft in the U.S. and other countries. Wyse is a registered trademark of Wyse Technology. Zentec is a
trademark of Zentec Corporation. Other trademarks and brands are the property of their respective owners.

Copyright © 1991, 1993 and 1995 Intel Corporation, All Rights Reserved

REVISION HISTORY DATE
-001 Original Issue 12/91
-002 Revision One 11/93
-003 Revision Two. Added new DDE information and re-titled manual from

iRMX for Windows Programming Concepts
11/95

Programming Concepts for DOS and Windows 3

Quick Contents

Chapter 1. Introduction

Chapter 2. DOS Real-time Extension

Chapter 3. VM86 Protected Mode Extensions

Chapter 4. Making DOS and ROM BIOS System Calls

Chapter 5. General Information

Chapter 6. Remote Launch

Chapter 7. Using DDE

Appendix A. Default Configuration

Index

Service Information

4

Notational Conventions
Most of the references to system calls in the text and graphics use C syntax instead
of PL/M (for example, the system call send_message instead of send$message). If
you are working in C, you must use the C header files, rmx_c.h, udi_c.h and
rmx_err.h. If you are working in PL/M, you must use dollar signs ($) and use the
rmxplm.ext and error.lit header files.

This manual uses the following conventions:

• Syntax strings, data types, and data structures are provided for PL/M and C
respectively.

• All numbers are decimal unless otherwise stated. Hexadecimal numbers
include the H radix character (for example, 0FFH). Binary numbers include the
B radix character (for example, 11011000B).

• Bit 0 is the low-order bit. If a bit is set to 1, the associated description is true
unless otherwise stated.

• Data structures and syntax strings appear in this font.

• System call names and command names appear in this font.

• PL/M data types such as BYTE and SELECTOR, and iRMX data types such as
STRING and SOCKET are capitalized. All C data types are lower case except
those that represent data structures.

• The following OS layer abbreviations are used. The Nucleus layer is
unabbreviated.

AL Application Loader
BIOS Basic I/O System
EIOS Extended I/O System
HI Human Interface
UDI Universal Development Interface

• Whenever this manual describes I/O operations, it assumes that tasks use BIOS
calls (such as rq_a_read, rq_a_write, and rq_a_special). Although not
mentioned, tasks can also use the equivalent EIOS calls (such as rq_s_read,
rq_s_write, and rq_s_special) or UDI calls (dq_read or dq_write) to do the
same operations.

Programming Concepts for DOS and Windows Contents 5

Contents

1 Introduction
Understanding the Environments... 12
Running DOS and the iRMX® OS on the Same System 13

VM86 Dispatcher ... 14
VM86 Protected Mode Extensions ... 14

Real-time Extension .. 15
Windows Support.. 16
Making DOS/ROM BIOS System Calls from the iRMX OS........................ 17
File Access.. 18

EDOS File Driver... 20
Networking.. 21

File and Device Drivers... 22
Loadable File and Device Drivers .. 22

System Configuration.. 22

2 DOS Real-Time Extension
RTE System Calls ... 23

RQEGetRmxStatus Call ... 25
DLL for RTE Interfaces ... 25
RTE Files... 26

RTE Objects Limitation .. 26
Making an RTE System Call ... 27

Using RTE Functions ... 28
DOS RTE Demonstration.. 28

Example: Running the Demonstration Program................................... 30
Mailboxes (Objects) Functions .. 31
Mailboxes (Data) Functions... 32
Semaphore Functions .. 33
PVAM Segment Functions.. 34
Descriptor Functions.. 35
Data Transfer Functions .. 36

Example: WTERM Demonstration Program .. 36

6 Contents

3 VM86 Protected Mode Extensions
Installing VM86 Protected Mode Extensions.. 37

iRMX Interrupt Levels .. 38
Extension Procedure Operation: DOS Interrupt Handling 39
Deletion Handler Operation... 40
Extension System Call Restrictions ... 40
Extension Installation Examples.. 41

Installing an Extension from the iRMX Operating System............ 41
Initiating an Extension from DOS... 41

4 Making DOS and ROM BIOS System Calls
Making DOS and ROM BIOS Calls from an iRMX Application................ 43

Example: Get Free Disk Space ... 44
Get Redirection List Entry Example .. 46

Setting the DOS Data Structure .. 46

5 General Information
Interrupt Virtualization and Determinism ... 49
Real-time Fence ... 50
iRMX-NET Access From a DOS Server... 50

6 Remote Launch
Invoking iRMX Programs from DOS or Windows...................................... 51
Using the iRMX Load Server with iRMX for Windows.............................. 53
Using MS-NET with the PCLINK2.. 54
Using RLS.JOB.. 55

Running RLS.JOB... 55
Using DLC.EXE .. 56
Using WLC.EXE.. 56

Creating the WLC Icon... 56
Running WLC.EXE.. 57

Programming Concepts for DOS and Windows Contents 7

7 Using DDE
Real-time DDE Capabilities.. 59

DDE Terminology.. 60
Communications Protocols... 61
iRMX DDE Capabilities... 64
iRMX DDE Restrictions... 64

DDE Router Internal Configuration Limits.................................... 65
Configuring the Windows DDE Routers.. 65

Enabling DDE Routing on the Windows System 66
Preparing the Windows Environment for NetDDE 67
Preparing the iRMX Environment for NetDDE ... 68
DDE Programming.. 69

DDE Messages... 69
iRMX Client to Windows Server Conversations................................... 70

Initiating Conversations... 72
Transferring Single Items .. 73
Submitting Commands to the Server.. 74
Using Warm Links .. 77

Windows Client to iRMX Server Conversations................................... 79
Establishing Conversations.. 81
Responding to Data Item Requests .. 82
Responding to Hot Links ... 83
Handling Termination Requests... 85

DDE Library ... 86
Summary of DDE Library Functions .. 86
Error Codes.. 88
DDE Library Functions .. 88

client_dde_close_link.. 89
client_dde_execute.. 90
client_dde_initiate... 91
client_dde_open_hot_link ... 93
client_dde_open_warm_link ... 94
client_dde_poke.. 95
client_dde_request .. 96
client_dde_run_application ... 97
client_dde_terminate... 98
client_link_callback .. 99
dde_library_init... 100
server_conversation_callback.. 101
server_data_callback... 102
server_dde_register ... 104
server_dde_terminate .. 105

8 Contents

server_dde_update_link.. 106
Establishing DDE Communications Between Windows

and iRMX Applications .. 107
DC Motor Example ... 107
DC Motor Description ... 109
DDE Client Supervisor / DDE Server Controller Implementation........ 110
Visual Basic Supervisor Implemented as DDE Client.......................... 110
iRMX Controller Implemented as a DDE Server 110

Running the Example ... 111
DDE Server Supervisor/DDE Client Controller Implementation.......... 112

Visual Basic Supervisor Implemented as a DDE Server................ 112
iRMX Controller Implemented as a DDE Client........................... 112

Running the Example .. 113

A iRMX for Windows Default Configuration
Sub-System Configuration.. 116
Memory Configuration... 116
Human Interface Configuration .. 117
Application Loader Configuration .. 117
Extended I/O System Configuration ... 118
Basic I/O System Configuration ... 118
Device Drivers Configuration... 119
System Debug Monitor Configuration .. 120
Nucleus Configuration.. 120
Nucleus Communication Service Configuration ... 121
VM86 Dispatcher Reserved Interrupts Configuration 121

Index 123

Service Information Inside Back Cover

Programming Concepts for DOS and Windows Contents 9

Tables
1-1. Facilities for Supporting Various iRMX OS and

Windows Configurations ... 13
2-1. RTE System Calls ... 24
3-1. iRMX Interrupt Levels .. 38
7-1. DDE Library Client Functions... 71
7-2. DDE Library Server Functions .. 80
7-3. DDE Library Summary ... 86
7-4. Error Codes... 88
A-1. Sub-Systems Options.. 116
A-2. Memory Options ... 116
A-3. Human Interface Options .. 117
A-4. Application Loader Options .. 117
A-5. EIOS Options.. 118
A-6. BIOS Options.. 118
A-7. Device Drivers Options ... 119
A-8. System Debug Monitor Options .. 120
A-9. Nucleus Options.. 120
A-10. Nucleus Communication Service Options... 121
A-11. DOS Extender Reserved Interrupts.. 121

Figures
1-1. Making Nucleus System Calls with the DOS Real-time Extension 15
1-2. Making DOS and ROM BIOS Requests from an iRMX Application........... 17
1-3. Using Networking to Access Files on the iRMX File System 19
1-4. Accessing DOS Files with the EDOS File Driver .. 20
6-1. Launching Commands from Multiple Clients to a Single Server 52
6-2. Launching Commands within a Single System Client and Server................ 52
6-3. DOS-only System Accessing an iRMX System ... 54
7-1. RTE Communication between iRMX and Windows

within the Same System... 62
7-2. NetBIOS Communication between iRMX and Windows

within the Same System... 62
7-3. NetBIOS Communication between iRMX and Windows on

Different Systems .. 63
7-4. TCP/IP Communication between iRMX and Windows on

Different Systems .. 63
7-5. iRMX to Windows DDE Conversations .. 70
7-6. Windows to iRMX Conversations ... 79
7-7. Supervisor/Controller Communications... 108
7-8. The Visual Basic Supervisor ... 109

Programming Concepts for DOS and Windows Chapter 1 11

Introduction 1
This manual discusses the programming concepts necessary to produce real-time
applications for an environment that includes DOS, Microsoft Windows and the
iRMX ® OS. While its primary focus is on the iRMX for Windows OS (which runs
concurrently with DOS/Windows on the same system), certain items in this manual
apply to networked systems running DOS/Windows and any iRMX OS.

✏ Note
The iRMX for Windows OS is supported only for Windows 3.1
and Windows 3.11.

This manual is for programmers who are familiar with:

• Applications programming in the DOS and Windows environment

• Terms and concepts for the iRMX OS

See also: Introducing the iRMX Operating Systems,
System Concepts

• C or PL/M programming language

See also: iC-386 Compiler User's Guide,
PL/M-386 Programmer's Guide

The iRMX for Windows OS provides a set of powerful extensions to DOS and
Windows. With it you can develop DOS and Windows applications that
incorporate the preemptive, priority-based multitasking and real-time response of
the iRMX OS.

iRMX for Windows enables:

• MS-DOS or PC-DOS OSs to run concurrently with the iRMX OS on the same
microprocessor and to share the same console

• Existing DOS Real Mode application programs, including most off-the-shelf
applications, to run under DOS with no modification

12 Chapter 1 Introduction

• Standard and Real Mode Windows applications to run under DOS

• Existing iRMX application programs to run under iRMX for Windows with no
modification, while maintaining real-time performance

• DOS application programs to make iRMX Nucleus system calls and to
communicate directly with 32-bit Protected Mode iRMX application programs

• iRMX application programs to make DOS and ROM BIOS system calls from
within an iRMX task

• DOS programs to access iRMX files and iRMX programs to access DOS files

• Preconfigured and loadable file and device drivers and system jobs

• Simultaneous access to network services from DOS and the iRMX OS

• DOS applications to access expanded memory using an Intel Above™ Board or
an equivalent board

Understanding the Environments
Some of the facilities discussed in this manual can be used in two environments.
One environment consists of iRMX for Windows and DOS/Windows within a
single system. The other environment consists of networked systems where one
system can be any iRMX OS communicating with a system running
DOS/Windows. These facilities include:

• Network Dynamic Data Exchange (DDE). You can use DDE communications
based upon either the TCP/IP or OpenNET networking protocols to
communicate between iRMX and Windows applications running on separate
systems. Similarly, you can use DDE communications based upon either the
OpenNET networking protocol or the DOS Real-time Extension (RTE) facility
to communicate between iRMX and Windows applications running on the
same system.

• Remote File Access. Using the NetBIOS interface to the OpenNET
networking protocol and a standard DOS Network Redirector, DOS and
Windows applications can access the iRMX file systems on a local iRMX for
Windows system or remote systems running any iRMX OS.

• Remote Launch Facility. Using the NetBIOS interface to the OpenNET
networking protocol, both the DOS Load Client (DLC) and the Windows Load
Client (WLC) allow the launching of iRMX programs on either local or remote
iRMX for Windows systems.

Programming Concepts for DOS and Windows Chapter 1 13

✏ Note
When running DOS/Windows on a stand-alone system, the
PCLINK2 Networking Adapter facilitates access to the OpenNET
networking protocol. This access is restricted to systems running
only Windows 3.1 or 3.11. The access is based upon a NetBIOS
interface, which is built into Windows for Workgroups, Windows
95, and Windows NT.

Table 1-1 shows the facilities required to perform certain operations between the
iRMX OS and Windows.

Table 1-1. Facilities for Supporting Various iRMX OS and Windows Configurations

Windows PC,
iRMX System,
TCP/IP network

Windows PC,
iRMX System,
ISO network

iRMX for
Windows,
one PC

File
Access

NFS*, FTP* NetBIOS
(iRMX-NET)

NetBIOS
(iRMX-NET)

Remote
Command
Execution

RCP*, RSH* Windows Load
Client (RLS)

Windows Load
Client (RLS)

Network
DDE
Facility

TCP/IP* NetBIOS NetBIOS, RTE

Virtual
Terminal
Support

Telnet*, Rlogin* Windows Load
Client (RLS)

Windows Load
Client (RLS),
Wterm

*See also: TCP/IP and NFS for the iRMX Operating System

Running DOS and the iRMX ® OS on the Same
System

By itself, DOS does not use the advanced features of the Intel386 , Intel486 and
Pentium® microprocessors such as Protected Mode Addressing.

The iRMX OS exploits more of the features of these microprocessors, allowing
tasks to run concurrently and to reside in up to 4 Gbytes of memory. Under the
iRMX OS, these microprocessors also run in 32-bit Protected Mode.

14 Chapter 1 Introduction

iRMX for Windows encapsulates DOS as an iRMX task and runs that task in
Virtual 86 Mode (VM86). The encapsulated DOS task (DOS and its application
programs) runs in the first 1 Mbyte of memory, and the iRMX OS runs in the
remaining memory.

A terminate and stay resident (TSR) program, rmxtsr.exe, provides a small buffer in
DOS memory which enables DOS and the iRMX OS to exchange data. Two
loadable jobs, himem.job and smw.job, provide DOS access to extended memory
and allow Standard Mode Windows to run. These jobs are located in the
\rmx386\jobs\ directory.

See also: Loadable system jobs, System Configuration and Administration,
Windows Support, in this chapter

VM86 Dispatcher
The VM86 Dispatcher enables DOS to run as a task under iRMX for Windows by:

• Switching the microprocessor addressing mode, depending on which OS is
running

• Ensuring that interrupts are handled by the appropriate OS

• Providing file sharing between the OSs

• Preventing hardware resource conflicts between the OSs

The VM86 Dispatcher is preconfigured into iRMX for Windows as an iRMX
first-level system job.

See also: System jobs, System Concepts

DOS is not supplied with iRMX for Windows; you must install PC-DOS or
MS-DOS OS before you can run iRMX for Windows. You can install compatible
off-the-shelf DOS applications before you run iRMX for Windows.

VM86 Protected Mode Extensions
The VM86 Protected Mode extensions allow you to use Protected Mode services
provided by the iRMX OS. Using these extensions, DOS or Windows application
programs running in VM86 mode can access Protected Mode services such as
4 Gbyte addressing, as well as the iRMX system calls.

Programming Concepts for DOS and Windows Chapter 1 15

The Intel-supplied VM86 Protected Mode extensions provided by the VM86
Dispatcher include:

• DOS Real-time extension (RTE)

• Network Redirector (NETRDR)

You can also write your own VM86 Protected Mode extensions.

See also: rqe_set_vm86_extension, in this manual and System Call Reference

Real-time Extension

The DOS Real-time Extension (RTE) enables you to call some of the iRMX
Nucleus system calls from within a DOS application program. By using the RTE, a
DOS application program can communicate with a concurrently-running iRMX
application program using standard iRMX techniques. The RTE includes system
calls that create and delete iRMX objects and descriptors, read and write segments,
and catalog and look up objects.

Figure 1-1 illustrates how a DOS application makes a Nucleus system call.

DOS Application

VM86 Dispatcher

W-2787

Real-time Extension

Nucleus Request

iRMX® Nucleus

DOS RTE Request (Software Interrupt)

Figure 1-1. Making Nucleus System Calls with the DOS Real-time Extension

16 Chapter 1 Introduction

For example, the DOS application program may send or receive messages or data
using a mailbox created by an iRMX application program. Similarly, an iRMX
program may send or receive messages using a mailbox created by the DOS
application program.

See also: DOS RTE, in this manual,
Windows- and DOS-specific system calls, System Call Reference

Windows Support
iRMX for Windows supports the graphical environment of Windows. Windows
can be used as an operator interface for real-time iRMX tasks. Use the DOS RTE
to call iRMX Nucleus system calls from a Windows application.

Windows provides a powerful interface and development facility for iRMX
real-time applications.

Standard Mode Windows applications are supported. These loadable system jobs
provide this support:

• himem.job provides DOS extended memory and HMA services required by
Standard Mode Windows.

• smw.job provides support for Standard Mode Windows by encapsulating the
DOSX subsystem of Standard Mode Windows and running it in the context of
the DOS task.

See also: Loadable Jobs, System Configuration and Administration

Applications using the iRMX DDE Library functions can pass data between
Windows applications and real-time iRMX tasks. iRMX applications participate in
Windows DDE communications using the iRMX OS's network communications
facility. Therefore, Windows DDE applications can communicate over a network
with these iRMX applications:

• iRMX for Windows applications on the same system

• Applications on any networked iRMX OS

• Applications on a different board in a Multibus II system

iRMX applications that use the DOS RTE for Windows DDE communications are
restricted to communications within the local machine.

iRMX applications act as DDE clients or servers depending upon the application.

Programming Concepts for DOS and Windows Chapter 1 17

Making DOS/ROM BIOS System Calls from the
iRMX OS

iRMX for Windows enables iRMX programs to use the DOS and ROM BIOS
software interrupt services, including any special ROM BIOS functions provided
by add-in adapters, rather than implementing the same function as iRMX system
calls.

Figure 1-2 illustrates how iRMX programs can make a DOS/ROM BIOS call.

VM86 Dispatcher

W-2788

iRMX Application

DOS/ROM BIOS Request

DOS

Int 21H

Software Interrupt

RMX TSR

Figure 1-2. Making DOS and ROM BIOS Requests from an iRMX Application

For example, your iRMX application program can use the DOS Get Free Disk
Space example to check available space on a network disk drive.

See also: Get Free Disk Space Example, Chapter 4,
rqe_dos_request, System Call Reference

18 Chapter 1 Introduction

File Access
The DOS and iRMX file systems are inherently different. However, a file driver
provided with the iRMX OS allows DOS and iRMX application programs to share
files.

The Encapsulated DOS (EDOS) file driver enables iRMX application programs to
access files on a DOS partition, storage device, or network drive that has a drive
letter mapped to it. EDOS allows both DOS and iRMX partitions to store both
DOS and iRMX files.

Applications on a DOS partition can also access files on an iRMX partition by
using a network job and these configuration files:

• The PCNET NetBIOS driver, pcnet.exe (installed on the DOS partition).

• The network redirector job, netrdr.job (loaded on the iRMX partition).

• The iNA 960 networking job, i* .job, appropriate to your OS and the
iRMX-NET client and server jobs (remotefd.job and rnetserv.job).

See also: Using iRMX-NET in a DOS Environment, System Configuration
and Administration

Under iRMX for Windows, you can choose whether to use only the DOS file
system, or a partitioned file system including a DOS partition and one or more
iRMX partitions. At least one DOS drive is required in an iRMX for Windows
system.

See also: File access, Command Reference,
Installing iRMX for Windows, Installation and Startup

Programming Concepts for DOS and Windows Chapter 1 19

Figure 1-3 illustrates how DOS file requests are carried out by the I/O System.

DOS Application

VM86 Dispatcher

OM02490

DOS Network Redirector

iRMX® Network Redirector

DOS File Request

File Request

iRMX I/O System

iRMX I/O Request

Figure 1-3. Using Networking to Access Files on the iRMX File System

The iRMX file system could be a separate drive or an iRMX partition on a drive
containing both DOS and iRMX partitions, or even a remote drive accessed
through iRMX-NET.

See also: File types, System Concepts

20 Chapter 1 Introduction

EDOS File Driver
The EDOS file driver uses DOS as a file server to access DOS files. It maps iRMX
file driver interfaces to DOS system calls. Therefore, files on the DOS drives
appear to the iRMX application just as they would on an iRMX drive.

See also: attachdevice command, Command Reference

Figure 1-4 illustrates how iRMX applications make DOS file requests.

iRMX Application

EDOS File Driver

iRMX BIOS

I/O Request

DOS

Int 21H

W-2790

DOS File Request

VM86 Dispatcher

Software Interrupt

RMX TSR

Figure 1-4. Accessing DOS Files with the EDOS File Driver

Programming Concepts for DOS and Windows Chapter 1 21

Networking
iRMX for Windows supports both DOS and iRMX networking. This support
provides a variety of capabilities:

• DOS and iRMX applications that communicate on the network run unchanged
when they run within the same system.

• DOS files can be accessed from a remote file consumer without a dedicated
file server.

• DOS and iRMX OSs running within the same system can share a single
network controller.

• OpenNET networking support provides connections to computers running the
DOS and UNIX OSs.

• DOS networking applications can use the network controller in a Multibus I or
Multibus II system.

• iRMX applications can be remotely invoked from a DOS or Windows
environment.

A PC running iRMX for Windows can run this network software:

• MS-Net client or server

• IBM PC LAN client or server

• Novell NetWare client

• Combinations of MS-Net and NetWare on one computer

PCs running iRMX for Windows can also run this iRMX network software:

• iRMX-NET consumer and server for remote file access, which can coexist
with DOS network software

• iNA 960 jobs for a programmatic interface, but which cannot coexist with
DOS network software.

• Null data link network jobs that allow DOS to access the iRMX file system
without an Network Interface Controller (NIC).

See also: Network jobs, i*.job , System Configuration and Administration,
Introduction, Network User's Guide and Reference

22 Chapter 1 Introduction

File and Device Drivers
The iRMX for Windows software includes preconfigured file drivers and device
drivers that can be loaded dynamically.

Loadable File and Device Drivers
These driver allow you to write procedures to invoke and interface to additional
custom, random access, and terminal hardware.

See also: Loadable file and device drivers, Driver Programming Concepts
and System Configuration and Administration

System Configuration
iRMX for Windows is preconfigured to run in the DOS and Windows environment,
however you may change some aspects of the OS for a particular application.

Certain parts of the OS are loadable, including loadable file and device drivers and
loadable jobs.

You load these elements into the system with the sysload command in the
:config:loadinfo file. Loadable device drivers allow you to write procedures to
invoke and interface to additional custom, random access, and terminal hardware.
Loadable file drivers enable you to include custom file drivers.

The OS includes an rmx.ini file for load-time configuration. As layers of the OS
boot, they read entries from this file. The rmx.ini file contains entries that match
settings preconfigured into iRMX for Windows. You can modify the existing
entries to fine-tune your use of the OS.

You can also use the Interactive Configuration Utility (ICU) to change the
configuration of the iRMX for Windows or iRMX for PCs OSs.

See also: Loadable jobs and drivers, System Configuration and Administration,
Loadable device drivers, Driver Programming Concepts,
Physical device names, Command Reference,
ICU Quick Reference, ICU User’s Guide and Quick Reference

■■ ■■ ■■

Programming Concepts for DOS and Windows Chapter 2 23

DOS Real-Time Extension 2
The DOS Real-time Extension (RTE) enables DOS and Windows application
programs to use the real-time protected mode features of the iRMX Nucleus. Not
all iRMX Nucleus system calls are supported by the RTE.

RTE System Calls
A complete list of calls that are supported by both DOS and the iRMX OS is given
in Table 2-1, which also lists the function code value for each RTE system call.

There are two additional calls that are only available from DOS. These calls,
rqe_read_segment and rqe_write_segment, allow the application program to
transfer data between DOS in VM86 memory and the iRMX OS in Protected
Memory.

See also: rqe_read_segment and rqe_write_segment calls, System Call
Reference

▲▲! CAUTION
Some RTE calls are available from DOS, but not from Windows
(and not from a DOS window in Windows). These include
rq_sleep and all calls that support regions. Also, calls that block
can only set a time_limit value of 0 or 1 when Windows is
present. See the footnotes to Table 2-1 for details on calls that
block.

Chapter 2 DOS Real-time Extension24

Table 2-1. RTE System Calls

Code Call Name
Windows
Limitation Description

0 create_mailbox Create an object or data mailbox
1 delete_mailbox Delete an object or data mailbox
2 send_message Send an object to a mailbox
3 send_data Send data to a mailbox
4 receive_message blocking Receive an object
5 receive_data blocking Receive data
6 create_semaphore Create a semaphore
7 delete_semaphore Delete a semaphore
8 send_units Send a unit to a semaphore
9 receive units blocking Receive a unit from a semaphore
10 create_region N/A Create a region
11 delete_region N/A Delete a region
12 send_control N/A Release control of a region
13 receive_control N/A Receive control of a region
14 accept_control N/A Accept control of a region
15 create_segment Create a segment
16 delete_segment Delete a segment
17 get_size Get the size of a segment
18 rqe_get_address Get the physical address of a segment
19 rqe_create_descriptor Create a PVAM descriptor
20 rqe_delete_descriptor Delete a PVAM descriptor
21 rqe_change_descriptor Change a PVAM descriptor
22 catalog_object Catalog an object
23 uncatalog_object Uncatalog an object
24 lookup_object blocking Lookup an object
26 get_task_tokens Get task or job token
27 get_type Get the type of an object
28 sleep N/A Sleep for a specified time
30 rqe_read_segment Read from PVAM to a Real Mode

segment
31 rqe_write_segment Write to a PVAM segment from a real

mode segment
blocking: These calls can only have a time_limit value of 1 or 0 when Windows is present. Otherwise they

return an E_PARAM condition code.
N/A: These calls are only available from DOS, not when Windows is present. If invoked from Windows,

they return an E_NOT_CONFIGURED condition code.

Programming Concepts for DOS and Windows Chapter 2 25

Generally, the RTE system calls allow the DOS application program to manipulate
iRMX objects, semaphores, mailboxes, regions, segments and Protected Virtual
Address Mode (PVAM) descriptors, and to communicate with iRMX tasks.

See also: VM86 Protected Mode Extensions, Chapter 3

If the DOS application program invokes an RTE system call that creates an iRMX
object (such as a mailbox or PVAM descriptor), it must delete the iRMX object
with the corresponding DOS RTE delete call from DOS. If the DOS application
program does not explicitly delete the object, the object will be deleted upon
termination of the DOS application program, or upon DOS being restarted.

The syntax and the semantics of the parameters for RTE system calls 0 to 28 are
the same as the iRMX Nucleus system calls of the same name except for pointer
parameters. The RTE system calls can return condition codes not returned by their
Nucleus counterparts.

See also: System call descriptions, System Call Reference

All pointers parameters in these calls must be Real Mode pointers. Real Mode
pointers consist of two 16-bit WORDs where the high WORD contains the base
address of a 64 Kbyte segment and the low WORD contains the offset that points
into the segment.

RTE is implemented by the VM86 Dispatcher in the DOS RTE system job. The
DOS RTE job installs itself as a VM86 Protected Mode Extension at interrupt
vector B8H. DOS RTE converts Real Mode pointers to PVAM pointers.

RQEGetRmxStatus Call
Use the RQEGetRmxStatus RTE call to check if the iRMX OS is loaded. Use
this call before any other RTE calls to insure RTE services are available.
Unpredictable results occur if RTE calls are called when iRMX is not present.

See also: RQEGetRmxStatus, System Call Reference

The call returns E_OK if iRMX is loaded and running, or E_EXIST if iRMX is not
present or unavailable. The call is provided in binary form as a linkable module in
the file \rmx386\demo\rte\lib\rmxfuncs.obj.

DLL for RTE Interfaces
iRMX for Windows includes a Dynamic Link Library (DLL), rmx4win.dll, which
provides streamlined RTE interfaces to Windows programs. You must use the
DLL with compilers such as Visual Basic in order to access the RTE calls. The
RTE source and object code are installed with the iRMX for Windows software.
You can modify this code and compile it.

Chapter 2 DOS Real-time Extension26

RTE Files
The C header file \rmx386\demo\rte\lib\rmxintfc.c contains all the declarations for
the RTE functions.

When developing model DOS/Windows applications which make RTE calls,
include the file rmxintfc.h and compile with the /AL switch (for Microsoft C). Use
this file rmxintfc.h with all models of compilation. The file rmxc.h is specific to
the RTE demo; do not use it in other applications.

There are three versions of the DOS RTE libraries: dosrtec.lib for compact model
compilations, dosrtes.lib for small model compilations, and dosrtel.lib for large
model compilations. The \rmx386\demo\rte\lib directory contains source for the
libraries.

See also: \rmx386\demo\rte\lib\readme.txt file, for more information about the
source code, header files, and libraries

RTE Objects Limitation
The RTE job in iRMX for Windows maintains a table of all objects created by it on
behalf of DOS/Windows applications. It handles up to 512 RTE-created iRMX
objects, which is sufficient for most applications. However, this limit may be
reached accidentally. When an RTE-created object is deleted in an iRMX task, the
entry from the RTE table still remains. This causes the table to fill up with deleted
objects.

The solution is to create a mailbox and send to it the tokens of objects to delete.
Then have code in your DOS/Windows application which, when waiting for an
iRMX event, queries the iRMX mailbox for objects to be deleted. If you delete all
RTE objects that occur (which means iRMX applications receiving RTE-created
objects need to send them to this mailbox for deletion), the RTE object table does
not fill up and should then be able to handle all the active RTE objects needed by
an application.

Programming Concepts for DOS and Windows Chapter 2 27

Making an RTE System Call
All RTE system calls are accessed using a single software interrupt. The
microprocessor registers and the Real Mode stack are used for passing the
parameters of the RTE system call. One of the parameters passed is the RTE
function code.

To invoke an RTE system call, the DOS application program must perform these
actions:

1. Push all the parameters required by the RTE system call onto the Real Mode
stack using the PL/M-286 convention. That is, the first parameter is pushed
onto the stack, followed by the second and subsequent parameters.

2. Load the SI register to point to the last parameter pushed onto the Real Mode
stack.

3. Load the AX register with the desired RTE function code.

4. Generate the RTE software interrupt request number, B8H.

This causes the RTE system call to execute and return control to DOS. When the
DOS application program resumes, it must clear the parameters used by the RTE
system call from the Real Mode stack.

If the DOS RTE system call returns a WORD (16-bit), it will be placed in the AX
register. If it returns a DWORD, the high WORD will be placed in the DX register
and the low WORD will be placed in the AX register.

DOS and its application programs run as an iRMX task under iRMX for Windows.
If the application programs invoke RTE functions, they must obey the normal
iRMX rules of not invoking the RTE from a hardware interrupt handler. In
particular, the DOS TSR programs that typically hook themselves onto the
hardware clock or keyboard interrupts must not issue RTE calls.

Chapter 2 DOS Real-time Extension28

Using RTE Functions
This example illustrates how a DOS application program can invoke one of the
RTE functions. This example uses rq_create_mailbox. The example was
compiled using Microsoft's assembler, MASM.

mov ax,fifombx
push ax ; PUSH 1st parameter - flags
mov ax, SEG exception ; Get 2nd parameter into ES:AX
mov es, ax ;
mov ax, OFFSET exception ;
push es ; PUSH 2nd parameter -
push ax ; pointer to exception
mov si,sp ; point si to last parameter
mov ax,rqcreatembx ; setup AX with FUNCTION CODE
int 0B8H ; CALL DOSRTE
add sp,6 ; remove parameters from stack
mov mbx_tk,ax ; save token
mov ax,exception ;
cmp ax,eok ; check for validity
jne error_p ;

DOS RTE Demonstration
The DOS RTE demonstration program is menu-driven and enables you to exercise
the RTE system calls at the DOS console. Two executable versions of the program
are supplied: one runs as an iRMX application program, and the other runs as a
DOS application program.

The source code and the executable for the demonstration programs are in the
\rmx386\demo\rte\obj\ directory. The executable has two parts:

• demo is the iRMX part

• demo.exe is the DOS part

✏ Note
The DOS RTE demonstration program was compiled using
Microsoft C, Version 7.0, compact model. If you are using the
same compiler and model you can use the source as it is.
Otherwise, compile the source using your compiler, make any
necessary changes, and then recompile.

Programming Concepts for DOS and Windows Chapter 2 29

Both programs create, send, and delete iRMX objects, data, etc. The iRMX
program makes iRMX system calls; the DOS program makes calls to the RTE
system calls. Examine the demonstration program source code to see how the RTE
system calls are invoked.

With one exception, the iRMX and DOS programs share the same source code,
which has been compiled conditionally. This demonstrates how you can create
your own application programs to run under either the DOS or the iRMX OS, and
subsequently port them between the OSs.

The RTE system calls rqe_read_segment and rqe_write_segment are
demonstrated by the Data Transfer (Real Mode/PVAM) functions of two different
demonstration programs. The DOS version performs these functions by making
RTE system calls; the iRMX program has code written specifically for this
operation. This is necessary since the rqe_read_segment and rqe_write_segment
system calls provided by the RTE are not required for the iRMX OS.

See also: rqe_read_segment and rqe_write_segment, System Call Reference

Chapter 2 DOS Real-time Extension30

Example: Running the Demonstration Program
To start the demonstration, change to the \rmx386\demo\rte\obj\ directory. If you
are at an iRMX prompt, run the iRMX demo program. If you are at a DOS prompt,
run the DOS demo.exe program. Both programs display this menu:

DOS/iRMX Real Time Extensions Demo Program
======================================

1. Mailboxes (Objects) Functions
2. Mailboxes (data) Functions
3. Semaphore Functions
4. Segment Functions
5. Descriptor Functions
6. Data Transfer Functions
7. Display Help on above functions
8. Exit (terminate program)

Enter option (1 to 8) :-

Press the <Alt +> and <Alt -> keys (using the plus and minus keys on the numeric
keypad) to change the background and foreground colors for the iRMX version of
the demonstration. Since the appearance of the menus is identical, you can use
color to tell you whether you are in the DOS or the iRMX version.

See also: Changing iRMX Console Color, Installation and Startup

You may invoke six different types of functions: mailboxes for data and objects,
semaphores, PVAM segments, descriptors, and data display. The functions are
described in the following sections.

Programming Concepts for DOS and Windows Chapter 2 31

Mailboxes (Objects) Functions

To invoke any of the Object Mailbox functions, enter:

 1<CR>

in response to the Main Menu prompt. A menu similar to the Object Mailbox
menu appears.

Object Mailbox Functions
========================

1. Send object to mailbox
2. Receive object from mailbox
3. RETURN to previous menu

Enter option (1 to 3) :-

These functions allow you to send and receive objects (segments or descriptors) to
or from a named mailbox. The mailbox may be created by either the DOS or
iRMX version of the demonstration program.

Send Object to Mailbox

If the mailbox does not exist, it is created; if the named object does not exist, a
segment is created for the object.

Receive Object from Mailbox

If the received object is a segment, its name is displayed. Otherwise, the iRMX
token for the object is displayed, or if there are no objects, an E_TIME condition
code is displayed.

If the mailbox does not exist, an error message appears.

Chapter 2 DOS Real-time Extension32

Mailboxes (Data) Functions

To invoke any of the Data Mailbox functions, enter:

 2<CR>

in response to the Main Menu prompt. A menu similar to the Object Mailbox
appears.

Data mailbox functions send and receive a string of text (up to a maximum of 127
characters) to and from a data type mailbox. The mailbox may be created by the
DOS or iRMX version of this program.

Send Data to Mailbox

Enter the string at the prompt. The text entry must be terminated by a <CR>. If
the requested data mailbox does not exist, one will be created.

Receive Data from Mailbox

This option receives a string of text from the specified data mailbox and displays
the text and the size of the text string on the screen. If the specified mailbox does
not exist, an error message appears.

Programming Concepts for DOS and Windows Chapter 2 33

Semaphore Functions

To invoke any of the Semaphore functions, enter:

 3<CR>

in response to the Main Menu prompt. A menu similar to the Object Mailbox
appears.

Semaphore functions send and receive units to and from a semaphore. The
semaphore may be created by either the DOS or the iRMX version of this program.

Send Units to Semaphore

The semaphore will accept a maximum of 10 units. When prompted, enter the
number of units to send.

Receive Units from a Semaphore

This option receives a requested number of units from a named semaphore and
displays the remaining number of units at the semaphore. If the semaphore does
not exist, an error message appears.

Chapter 2 DOS Real-time Extension34

PVAM Segment Functions

To invoke any of the PVAM Segment functions, enter:

 4<CR>

in response to the Main Menu prompt. This menu appears:

PVAM Segment Functions
======================

1. Create PVAM Segment
2. Delete PVAM Segment
3. Display PVAM Segment
4. RETURN to previous menu

 Enter option (1 to 4) :-

If you are not creating a segment, you can delete or display a segment created
previously by either the DOS or the iRMX version of this program.

Create PVAM Segment

This option creates a named PVAM segment of any size. You can use this segment
as either the source or destination of a copy operation to or from Real Mode
memory. You can also pass the PVAM Segment to object mailboxes as well as
display them by the Display PVAM Segment function.

Delete PVAM Segment

This option deletes a named PVAM segment or named descriptor. If you created
the segment from DOS, delete it from DOS.

Display PVAM Segment

This option displays a PVAM segment or descriptor in blocks of 160 bytes
maximum. The PVAM segment or descriptor displays in lines of 16 bytes,
followed by the printable ASCII characters for each byte. If a byte is not a
printable ASCII character, a . (period) is displayed instead. You are prompted for
input to continue (any key) or quit (Q or q).

Programming Concepts for DOS and Windows Chapter 2 35

Descriptor Functions

To invoke any of the Descriptor functions, enter:

 5<CR>

in response to the Main Menu prompt. A menu similar to the PVAM Segment
menu appears.

If you are not creating a descriptor, you can delete or display a descriptor created
previously by either the DOS or iRMX version of this program.

Create Descriptor

This option creates a named descriptor of any size and absolute address.

Delete Descriptor

If you created the descriptor from DOS, delete it from DOS.

Display Descriptor

This option displays a PVAM segment or descriptor in blocks of 160 bytes
maximum. The PVAM segment or descriptor is displayed in lines of 16 bytes,
followed by the printable ASCII characters for each byte. If a byte is not a
printable ASCII character, a . (period) is displayed instead. You are prompted for
input to continue (any key) or quit (Q or q).

The segment or descriptor is looked up under its user name.

Chapter 2 DOS Real-time Extension36

Data Transfer Functions

To invoke any of the Data Transfer (Real Mode/PVAM) functions, enter:

 6<CR>

in response to the Main Menu prompt. This menu appears:

REAL MODE/PVAM Copy Functions
=============================

1. Copy PVAM segment to real mode address
2. Copy Real mode address to PVAM segment
3. RETURN to previous menu

Enter option (1 to 3) :-

Copy PVAM Segment to Real Mode Address

You are prompted for the Real Mode segment and offset.

▲▲! CAUTION
Do not copy data over vital DOS system or application memory,
or to memory mapped out to I/O devices. Otherwise, your system
could develop problems.

Copy Real Mode Address to PVAM Segment

This option copies a specified Real Mode address to a specified PVAM Segment.
You are prompted for the Real Mode Segment and Offset and also the PVAM
Segment and Offset.

Example: WTERM Demonstration Program
WTERM is a demonstration terminal emulator Windows program. This program
uses DOS RTE to display the iRMX command line within a window. You can
invoke any iRMX commands while this demonstration program is running.

The \rmx386\demo\wterm directory contains source code for the program and the
\dosrmx directory contains the executable code.

See also: Running WTERM, Installation and Startup

■■ ■■ ■■

Programming Concepts for DOS and Windows Chapter 3 37

VM86 Protected
Mode Extensions 3

The VM86 Dispatcher enables you to write Protected Virtual Address Mode
(PVAM) extensions for DOS. These extensions are also known as VM86 Protected
Mode Extensions. These extensions allow DOS application programs running in
VM86 Mode to change to Protected Mode, obtain Protected Mode services, and
then return to VM86 Mode.

All VM86 Protected Mode Extensions are implemented as software interrupt
handlers using the software interrupt instruction. The VM86 Dispatcher in
Protected Mode intercepts all software interrupt requests. To run a VM86
Protected Mode Extension, the VM86 Dispatcher calls the required interrupt
handler to service the particular request, and then returns to DOS in VM86 Mode.
If the VM86 Dispatcher intercepts an interrupt request which is not a VM86
Protected Mode Extension request, that interrupt request is reflected back to DOS.

The RTE described in the previous chapter is an example of a VM86 Protected
Mode Extension.

Installing VM86 Protected Mode Extensions
Each VM86 Protected Mode Extension you write, though implemented as an iRMX
program, is invoked when a DOS application program issues an appropriate
software interrupt. Each extension must be installed at a unique interrupt level and
an extension may contain a number of subfunctions, as does the RTE. You can
choose the method of passing the extension's subfunction. The RTE uses the AX
register to hold the function's code.

Install the extension at its desired interrupt level using the
rqe_set_vm86_extension system call.

See also: rqe_set_vm86_extension, System Call Reference

✏ Note
VM86 Protected Mode Extension cannot be used from within
Windows running in Standard Mode.

38 Chapter 3 VM86 Protected Mode Extensions

iRMX Interrupt Levels
Table 3-1 lists the interrupt levels in the Interrupt Descriptor Table (IDT) used by
the iRMX for Windows OS.

Table 3-1. iRMX Interrupt Levels

Interrupt Function

Hex Decimal

00H-10H

11H-20H

21H-2FH

38H-3FH

50H-57H

5BH

80H

85H

B8H

C3H

0-16

17-32

33-47

56-63

80-87

91

128

133

184

195

Microprocessor traps and DOS
hardware vectors

*ROM BIOS services

DOS services

iRMX hardware vectors for
Master PIC

iRMX hardware vectors for Slave
PIC

Network Redirector

Used by the VM86 Dispatcher

iRMX Interface TSR, supports
chaining however

DOS RTE

UDI

 * You may install extensions to monitor or evaluate these calls.

Interrupts and ranges not listed in Table 3-1 are available for user-written
extensions.

To install an extension, call rqe_set_vm86_extension and pass it these parameters:

1. The desired interrupt level for the extension.

2. The entry point for the extension itself. This entry point defines where the
extension is located in system memory so that it may be invoked when DOS
makes the appropriate interrupt request.

Programming Concepts for DOS and Windows Chapter 3 39

3. The entry point for the extension's deletion handler. The deletion handler is
not mandatory, but each extension can have one. Any extension which is used
by DOS to create iRMX objects should have a deletion handler to delete those
objects when the DOS program terminates.

4. A pointer to a WORD (16-bit) in system memory which the VM86 Dispatcher
uses to return a status code for this call.

Once an extension has been installed, it remains active until it is deactivated with
the rqe_set_vm86_extension system call. Call rqe_set_vm86_extension again
and pass it the same parameters, but with the VM86 Extension Entry pointer set to
null.

Extension Procedure Operation: DOS Interrupt Handling
Interrupts generated by DOS in VM86 mode are vectored to the PVAM handler
referenced in the processor's IDT. The VM86 Dispatcher invokes a particular
extension in response to an interrupt received at the int_level specified in the
rqe_set_vm86_extension system call.

All DOS interrupts are intercepted by the VM86 Dispatcher and are processed as
follows:

1. If an interrupt requires a Real Mode handler installed by DOS, the VM86
Dispatcher deflects the interrupt back to that Real Mode interrupt handler.

2. If the interrupt requires a PVAM interrupt handler, the Dispatcher enables the
interrupt handler to run; the DOS application program is running in VM86
mode and all VM86 Mode-generated interrupts naturally vector to the PVAM
interrupt handler in the IDT. The interrupt handler returns control back to the
DOS application program upon termination.

3. If the interrupt requires a VM86 Extension, the VM86 Dispatcher calls the
entry point of the extension. The extension then executes and returns to the
VM86 Dispatcher, which then returns control back to the DOS application
program that made the interrupt. The VM86 Dispatcher calls the VM86
Extension, and passes to it a pointer to a structure defining the DOS machine
state and a value defining the context of the DOS interrupt handler. The
VM86 Dispatcher expects the extension to return a byte indicating that the
request has been processed completely.

See also: rqe_set_vm86_extension, System Call Reference

40 Chapter 3 VM86 Protected Mode Extensions

Deletion Handler Operation
The VM86 Dispatcher calls all extension deletion handlers when any DOS program
is deleted. Any of these conditions can delete a DOS program:

• When a DOS application program terminates using DOS system calls INT 20H
or INT 21H

• When a <Ctrl-C> is typed in the middle of a DOS program, and the program
has not changed the default <Ctrl-C> handler in DOS

All installed deletion handlers are called sequentially by the VM86 Dispatcher.
The VM86 Dispatcher calls the deletion handler with a flag that indicates:

• If the current DOS program is being deleted

• If all DOS programs are being deleted

This helps the VM86 Dispatcher perform the appropriate cleanup. For example, if
the VM86 extension has created iRMX objects, the deletion handler will know
which objects to delete.

✏ Note
Every DOS program has a unique identifier: the address of its
Program Segment Prefix (PSP). The VM86 extension can use
rqe_dos_request to obtain the current PSP. This enables the
VM86 extension to track which resources are allocated to which
DOS program.

To ensure that the PSP address obtained is the PSP of the current
DOS program, rather than that of the RMX TSR program, set the
tsr_flag parameter to 1 in the rqe_dos_request call.

Extension System Call Restrictions
The extensions called by the VM86 Dispatcher can use only system calls in the
BIOS and Nucleus subsystems of the iRMX OS. Extensions run in the context of
the VM86 Dispatcher Job, and can only make the same system calls as the
Dispatcher Job.

Programming Concepts for DOS and Windows Chapter 3 41

Extension Installation Examples
This section discusses three code segments which illustrate:

• Installing an extension from the iRMX OS

• Two ways of initiating an extension from DOS

Installing an Extension from the iRMX Operating System

An iRMX program \rmx386\demo\c\vm86ext\rmxext.c illustrates how to install an
extension. It also gives example code for both the VM86 Extension entry
procedure and the deletion handler.

In the example, main() creates a mailbox, prints an installation message, and
installs the extension for interrupt level 0B9H (185 decimal). It then waits to
receive a message at the mailbox. At this point, main() waits until the DOS part of
the example issues INT 0B9H.

When the DOS part issues INT 0B9H, main() calls the extension procedure. The
entry_procedure extension procedure sends a message to the mailbox created in
main() , where main() is waiting. Main() receives the message, prints it out,
and deletes in order, the segment described by segtoken , the mailbox, and the
extension.

The example was compiled and bound using Intel's iC-386 compiler and BND386
binder. The mailbox token, mbxtoken , is an iRMX object.

Initiating an Extension from DOS

The DOS part of the example uses two programs. The C program is in
\rmx386\demo\c\vm86ext\dosext.c, and the assembly language program is in
\rmx386\demo\c\vm86ext\dosext.asm. These two programs issue INT 0B9H (185
decimal). Both examples have the same functionality.

The DOS application C program illustrates one way the previously installed
extension can be initiated. The example was compiled and linked using the
Microsoft Version 7.0 C compiler.

The DOS application assembly program illustrates one way the previously installed
extension can be initiated. The example was created using the Microsoft Version
5.1 assembler.

■■ ■■ ■■

Programming Concepts for DOS and Windows Chapter 4 43

Making DOS and
ROM BIOS System Calls 4

This chapter describes how to make DOS and ROM BIOS system calls from iRMX
application programs.

Making DOS and ROM BIOS Calls
from an iRMX Application

The rqe_dos_request system call enables the iRMX OS to make ROM BIOS and
DOS requests in much the same way as the RTE system calls allow a DOS
application program to make iRMX system calls.

Using rqe_dos_request, a DOS application program can be ported to an iRMX
environment to take advantage of the Protected Mode features without changing all
DOS and ROM BIOS calls to iRMX system calls.

The application program can also use the rqe_dos_request system call to access a
DOS device driver which may be running in VM86 Mode. However, the
application program must not use a DOS system call that conflicts with the file
server.

The DOS data structure represents the microprocessor registers, and the
rqe_dos_request system call passes a pointer to this structure.

See also: rqe_dos_request and DOS data structure, System Call Reference

To make DOS/ROM BIOS calls, the application program must set the appropriate
register values in the structure pointed to by register_ptr , set the int_num
parameter with the required DOS interrupt level, and set the xfer_data byte, the
source and destination transfer pairs, pointers, and counts based on the data being
transferred. The rqe_dos_request system call can then be invoked and the
required DOS system call will be made. The WORD pointed to by the
status_ptr parameter contains the condition code generated by the
rqe_dos_request. If the call was successful, the structure pointed to by the
register_ptr parameter reflects the register values returned by the DOS system
call.

44 Chapter 4 Making DOS and ROM BIOS System Calls

Many DOS system calls pass data. This can be done by passing the segment base
and offset of the source or destination address, where data is located in one or more
register pairs. Other registers sometimes specify the length of data located at the
address specified by the register pair.

The DOS system call Get Redirection List Entry, Interrupt 21H, Function 5FH,
Subfunction 02H, uses the DS:SI register pair to point to a 16-byte (maximum)
character string containing a device name in the redirection list. The ES:DI
register pair points to a 128-byte (maximum) character string containing the
network name of the device. The data transfers from the system call to the calling
application program.

To make a similar call using the rqe_dos_request system call, you use four
separate sets of structure elements to control the data transfer. These structure
elements indicate the appropriate registers, but are ignored if the xfer_data
structure element is set to 0.

See also: rqe_dos_request, System Call Reference

Example: Get Free Disk Space
The Get Free Disk Space DOS system call transfers data only in microprocessor
registers. To make the DOS system call Get Free Disk Space (of a DOS drive)
Interrupt 21H, Function 36H, the iRMX application would:

1. Set int_num (DOS system call interrupt number) to 21H.

2. Set reg_ah (Interrupt 21H subfunction code) to 36H.

3. Set reg_dl (Drive code) to the required drive code level where 1 = drive A,
2 = Drive B, etc.

4. Set xfer_data to 0, as no data is transferred with this system call except
directly using the microprocessor registers.

5. Set status_ptr to point to a WORD variable, which the rqe_dos_request
system call sets with a condition code before returning to the iRMX
application program.

6. Make the rqe_dos_request system call.

See also: rqe_dos_request, System Call Reference

Programming Concepts for DOS and Windows Chapter 4 45

To determine the result of the requested DOS system call, the application program
would then:

7. Determine the value of the WORD variable pointed to by status_ptr . If the
rqe_dos_request call did not succeed (condition code not equal to E_OK), the
application program terminates with an appropriate error message.

8. If the condition code returned was 0, the application program could proceed.

9. The values stored in reg_al and reg_ah , on return from the call, hold these
values:

reg_ah = FFH
reg_al = FFH

DOS determined that the drive code specified by
reg_dl was not valid.

 or

reg_ah <>FFH
reg_al <>FFH

reg_ah , reg_al specifies the sectors per cluster
of the specified drive.

10. If the drive code was valid, the other register values are set as:

reg_bh ,
reg_bl

Specifies the number of available clusters on the
specified drive.

reg_ch ,
reg_cl

Specifies the number of bytes per sector on the
specified drive.

reg_dh ,
reg_dl

Specifies the number of clusters (used or available)
on the specified drive.

46 Chapter 4 Making DOS and ROM BIOS System Calls

Get Redirection List Entry Example
The example \demo\c\vm86ext\dosdevs.c uses the DOS system call Get
Redirection List Entry . The first part shows to set registers in the DOS data
structure prior to making the rqe_dos_request system call. The second part shows
how to make the rqe_dos_request system call. The example was compiled and
bound using Intel's iC-386 compiler and BND386 Binder.

Setting the DOS Data Structure

The DOS system call Get Redirection List Entry, Interrupt 21H, Function 5FH,
Subfunction 02H, uses the DS:SI register pair to point to an ASCIIZ
(null-terminated) character string defining the local device name found in the list,
and uses the ES:DI register pair to point to the ASCIIZ character string defining the
network name for that local device.

For this example, though no source data is transferred, two character strings are
created by the DOS system call destination data parameter, which are pointed to by
the two register pairs.

Set the DOS data structure as follows:

1. Set int_num (DOS system call interrupt number) to 21H.

2. Set tsr_flag to 0.

3. Set reg_ah (Interrupt 21H function code) to 5FH.

4. Set reg_al (Function 5FH subfunction code) to 02H.

5. Set reg_bx to the required redirection list index.

6. Set xfer_data to 0FFH since data is transferred with this system call.

7. Set src1_xfer_pair and src2_xfer_pair to 0 since no source data
transfer is required.

8. Set up the destination data control parameters for the local device name as
follows:
dest_p_1 &local_device_name

(local_device_name is a character array)
dest1_xfer_pair 4 (to specify the DS:SI register pair)
dest_count_1 16 (to specify a maximum size of 16 characters)

Programming Concepts for DOS and Windows Chapter 4 47

9. Set up the destination data control parameters for the network name as follows:
dest_ptr_2 &network_name (network_name is a character

array)

dest2_xfer_pair 8 (to specify the ES:DI register pair)

dest_count_2 128 (to specify a maximum size of 128 characters)

10. Set status_ptr to point to a WORD variable which the rqe_dos_request
system call will set with a condition code before returning to the iRMX
application.

11. Make the rqe_dos_request system call.

The rqe_dos_request system call returns a value in the WORD variable
pointed to by status_ptr . The meanings of the values are:

Value Meaning

Not 0 The call encountered an error, as specified by the error
code. The iRMX application needs to evaluate the error to
see if a retry is possible.

0 Since no errors were encountered by the iRMX OS, the
application can proceed.

For certain DOS system calls, including this example, the carry flag is set to
one of two values.

Value Meaning

1 The DOS system call failed. If the call failed, reg_al will
contain the DOS error code.

0 The DOS system call was successful.

In this example, if the DOS system call is successful, these parameters return
to the caller from the DOS system call:
reg_bh Device status flag
reg_bl Device type
reg_cx Stored parameter value

■■ ■■ ■■

Programming Concepts for DOS and Windows Chapter 5 49

General Information 5
This chapter describes various information related to iRMX for Windows. The
information includes such areas as programming techniques, use of iRMX objects,
and network concepts. This information does not apply to the iRMX III or iRMX
for PCs OSs.

Interrupt Virtualization and Determinism
iRMX for Windows has two interrupts modes in which DOS and Windows can
operate. You can configure the mode by changing the appropriate setting in the
\rmx386\config\rmx.ini file. These modes are Interrupt Virtualization Enabled
(VIE=0FFH) and Interrupt Virtualization Disabled (VIE=00H). The default is
Interrupt Virtualization Disabled.

With Interrupt Virtualization disabled, DOS executes all real mode instructions
supported by the microprocessor, including ENABLE and DISABLE
INTERRUPTs. This affects system performance in interrupt latency and
determinism by enabling DOS and ROM BIOS-based disk I/O to operate at near
optimum DOS performance levels. In this mode, the iRMX OS has little
interaction with DOS and Windows.

With Interrupt Virtualization enabled, the iRMX OS traps all DOS and Windows
access of privileged instructions (CLI, STI, INT, POPF, etc) as well as attempts to
access the Programmable Interrupt Clock and Programmable Interrupt Timer. The
iRMX OS can virtualize interrupts with respect to DOS/Windows, while keeping
interrupts disabled for the iRMX OS for as short a time as possible. This increases
interrupt response time and decreases interrupt latency for iRMX-owned interrupt
levels, such as non-DOS levels. However, this frequent intervention by the iRMX
OS into DOS/Windows operations also affects DOS and ROM BIOS-based I/O
performance. Small transfers slow down dramatically while larger transfers
(4 Kbytes or larger) experience relatively little degradation.

50 Chapter 5 General Information

Based on the needs of the application, iRMX for Windows can be optimized for
either higher performance DOS/ROM BIOS-based I/O with less than ideal
determinism or for solid determinism with less than ideal DOS/ROM BIOS-based
I/O performance. To get both solid determinism and high performance I/O, first
add an iRMX-owned disk controller such as the Adaptec 1542, then use the PCI
loadable driver provided in the product, and finally set VIE=0FFH in the rmx.ini
file.

See also: rmx.ini file, System Configuration and Administration

Real-time Fence
The real time fence is set at priority level 127. All active DOS-owned interrupts
are temporarily masked when tasks are running at or above (numerically lower
than) priority level 127. The real-time fence here is different from the real-time
fence used with round robin scheduling. This preserves the real time aspect on the
iRMX OS side of an iRMX for Windows application system. If you make an
rqe_dos_request call from an iRMX task running at a priority above or equal to
this real-time fence, you will receive an E_TIME condition.

See also: Real-time fence, System Configuration and Administration

iRMX-NET Access From a DOS Server
You can access a DOS server indirectly from the iRMX for Windows side using the
EDOS File Driver. For example:

From the DOS side of iRMX for Windows, do this:

net use r: \\<dos-server>
dir r:

Then, from the iRMX side of iRMX for Windows, do this:

ad r_dos as :r: e
dir :r:

See also: Using iRMX-NET in a DOS Environment, System Configuration and
Administration

If you try to directly access a DOS server from the iRMX OS, such as with the
attachdevice command, you may encounter a General Protection fault or similar
failure.

■■ ■■ ■■

Programming Concepts for DOS and Windows Chapter 6 51

Remote Launch 6
In addition to discussing the Remote Launch facility, this chapter also describes
network information related to iRMX for Windows. This information covers such
areas as file exchange, loading sequences, and network support.

Invoking iRMX Programs from DOS or Windows
An iRMX OS can launch (invoke) iRMX applications on a remote system from
either a local DOS-running or Windows-running system. The files to do this are:

rls.job - iRMX Remote Load Server (RLS) job (in the \rmx386\jobs directory)

dlc.exe - DOS Load Client (in the \dosrmx directory)

wlc.exe - Windows 3.1 Load Client (in the \dosrmx directory)

Load rls.job from the iRMX OS. This system can be physically remote, such as a
networked Multibus II system, or can be the same system that runs DOS/Windows.

The files dlc.exe or wlc.exe invoke iRMX applications on an iRMX partition or
system from a DOS or Windows system, respectively.

Figure 6-1 shows a network configuration where PC clients can launch an iRMX
application on a remote Multibus system. Figure 6-2 shows how a DOS application
can launch an iRMX application in the same system.

52 Chapter 6 Remote Launch

Network job

Windows

WLC.EXE

iRMX OS

PC System Client B

Network job

DOS

DLC.EXE

iRMX OS

PC System Client A

Multibus System

iRMX
Server

command
execution

OM02559

Network job

RLS.JOB

command

command

Figure 6-1. Launching Commands from Multiple Clients to a Single Server

DOS
Network job

DLC.EXE

iRMX OS

RLS.JOB

PC System

OM02560

command execution

command

DOS
Client

iRMX
Server

Figure 6-2. Launching Commands within a Single System Client and Server

Programming Concepts for DOS and Windows Chapter 6 53

Using the iRMX Load Server with iRMX for Windows
For DOS Load Clients (DLC) and Windows Load Clients (WLC) to communicate
with the iNA 960 networking, the iRMX Load Server's system must be have an
RLS network name established. In iRMX for Windows systems (Figure 6-2), the
iRMX network redirector job is required as well.

Use the setname command to establish the RLS property type for the server if you
do not have a network card. Use the loadname command and the setname
command to establish the RLS property type for the server if you have a network
card. The loadname command does not establish the RLS property type if a MIP
job is loaded.

See also: loadname, setname commands, Command Reference,
Loadable Jobs and Drivers, System Configuration and Administration

Use this procedure to load the iNA 960 files (in addition to these, you can also load
iRMX-NET jobs):

1. Load and log on to the iRMX OS.

2. Load the appropriate network job using the sysload command. This example
uses the network job for a PC system without a network card.

- sysload /rmx386/jobs/inl*n.job <CR>

See also: i*.job , System Configuration and Administration,
sysload command, Command Reference

3. Load the netrdr.job as follows:

- sysload /rmx386/jobs/netrdr.job <CR>

4. Load the rls.job file as follows:

- sysload /rmx386/jobs/rls.job <CR>

5. Using the setname command, assign a remote server name. This example
assigns a name of “remote”.

- setname remote <CR>

6. Toggle to the DOS prompt using <Alt>-<SysReq>.

7. Run pcnet.exe at the DOS prompt.

The DOS and iRMX systems are now initialized for remote launching. Refer to the
section on the dlc.exe file to launch applications from the DOS prompt or refer to
the section on wlc.exe to launch applications from the Windows prompt.

54 Chapter 6 Remote Launch

Using MS-NET with the PCLINK2
For DOS Load and Windows Load Clients to communicate with the iRMX Load
Server, the iRMX Load Server's system must be running one of the iNA 960
networking jobs with an RLS network name established. The clients must be
running MS-NET (netbios.exe). Figure 6-3 shows an example of these systems.

Network job

Windows

WLC.EXE

PC System Client B

Network job

DOS

DLC.EXE

PCLINK2

PC System Client A

Multibus System

iRMX
Server

command
execution

OM04421

Network job

RLS.JOB

command

command

PCLINK2

Figure 6-3. DOS-only System Accessing an iRMX System

To access an iRMX Load Server from a DOS client using netbios.exe with a
PCLINK(2) communication board, you must modify the config.nia file. Use this
procedure:

1. At the DOS prompt, change to the directory where the PCLINK software is
loaded. This directory should contain the config.nia for MS-NET netbios.exe.
If this directory does not exist, change to the \pclr3 directory.

2. Invoke admin.exe.

3. Choose menu item 3, Modify Socket Type Table.

A. Press the <Up arrow> twice to move the cursor to the "Type PgDn..."
prompt.

B. Press the <PgDn> key until socket 52H appears. Use the <Up arrow> key
to move into the field to edit it.

C. Change the type value for socket 52H to 0006.

D. Use the <PgDn> key and change the type value for socket 72H to 0006.

Programming Concepts for DOS and Windows Chapter 6 55

4. Use the <PgUp> key to move to the "Update File" option. Update the
config.nia file with a "Y".

5. Exit the admin.exe program using the <Esc> key.

The remote and local systems are now initialized for remote launching. Refer to
the section on the dlc.exe file to launch applications from the DOS prompt or refer
to the section on wlc.exe to launch applications from the Windows prompt.

See also: Loadable Jobs and Drivers, System Configuration and Administration

Using RLS.JOB
The rls.job file, in the /rmx386/jobs directory, acts as a Remote Load Server. It lets
you launch iRMX applications remotely for execution on the Remote Load Server's
system.

✏ Note
The Network Redirector job will also need to be loaded if you
wish to launch iRMX programs from DOS or Windows on the
same system. It is not required if programs are only to be
launched from remote clients.

See also: i*.job , Loadable Jobs and Drivers,
System Configuration and Administration

Running RLS.JOB
By default, the sysload invocation of this job is commented-out in the file
:config:loadinfo. To automatically load rls.job, uncomment (remove the
semicolon) from the rls.job entry in the file :config:loadinfo. You can also
manually load rls.job by using the sysload command from the iRMX prompt as
follows:

- sysload /rmx386/jobs/rls.job [MAX_DIALOGS=nnn] [MAX_MESSAGES=mmm]

Where:

MAX_DIALOGS (MD) is an optional parameter that specifies the maximum
number of simultaneous client dialogs supported by this server (1 to 255; default
is 16)

MAX_MESSAGES (MM) is an optional parameter that specifies the maximum
number of simultaneous outstanding terminal output messages supported by this
server (default is 256).

56 Chapter 6 Remote Launch

Using DLC.EXE
The file dlc.exe is a DOS executable installed in your \dosrmx directory. Use it to
launch iRMX programs from the DOS command line. The dlc.exe file requires
MS-NET or the iRMX-NET network redirector.

After starting MS-NET or the iRMX-NET network redirector, invoke dlc.exe with
this syntax:

C:\> dlc [-B] [-F filename] server [dirpath] command

-B Batch mode to support output redirection;
i.e., dlc -B srvr plm386 prog.plm > logfile

-F filename
Initial Esubmit file name (executed before command)

server iRMX Load Server network name (RLS property type)

dirpath iRMX directory path to the executable command (use forward slashes
i.e., /rmx386/demo/c/intro/demo)

command iRMX command (and any parameters) to be executed

Using WLC.EXE
The file wlc.exe is a Windows executable installed in your \dosrmx directory. Use
wlc.exe to launch iRMX programs from Windows. The dlc.exe file requires
MS-NET or the iRMX Network Redirector.

Creating the WLC Icon

To add a Windows icon for wlc.exe, do this:

1. Run Windows.

2. Pull down the FILE menu and select the NEW option.

3. Select PROGRAM ITEM and click OK. A Program Item Properties box
appears.

4. In the Description field, enter “WLC” or some other descriptor.

Programming Concepts for DOS and Windows Chapter 6 57

5. In the Command Line field, enter “\DOSRMX\WLC.EXE”.

6. Click OK. An icon should appear in your Windows Application Group
window.

Running WLC.EXE

To run wlc.exe, do this:

1. Start MS-NET or the iRMX-NET network redirector and then start Windows.

2. Start wlc.exe by double-clicking on the WLC icon. When the application starts
to run, a window will appear. From this window, pull down the PROGRAM
menu and select the LOAD option.

3. A dialog box will pop up asking for the server name, the initial Esubmit file
name, and the command name.

A. Enter the iRMX-NET network name (RLS property type) for the iRMX
Load Server.

B. Optionally, enter the name of an Esubmit file that is to be executed before
the command is.

C. Enter the directory path and the file name of the iRMX application to be
executed.

4. Click the OK button.

To pre-configure any of these parameters in wlc.exe, do this:

1. Single click on the WLC icon.

2. Pull down the File menu and select the Properties option. Edit the Command
Line as follows:

 wlc [-A] [-F filename] [-H nnn] [-W nnn] [-X nnn] [-Y nnn] [-E]

 [server [dirpath command]]

Where:

-A Aborts on exit instead of leaving a completed window

-Ffilename
Initial Esubmit file name (executed before
command)

-H nnn the height of window

-Wnnn Width of window

-Xnnn X position of upper left-hand corner of window

58 Chapter 6 Remote Launch

-Ynnn Y position of upper left-hand corner of window

-E Enables support for the IBM-extended ASCII character set. This
support includes multiple-byte scan codes, such as <Alt>-<F1>,
and the display of special graphics characters

server iRMX Load Server network name (RLS property type)

dirpath iRMX directory path to the executable command (use forward
slashes)

command iRMX command (and any parameters) to be executed

If the server and the command are not both specified on the invocation line, specify
them in the dialog box for the Program Load menu option.

▲▲! CAUTION
The Esubmit file must not include an invocation of the iRMX
CLI command. Including the CLI command in the Esubmit file
causes unpredictable results. To invoke the iRMX CLI command
from WLC, specify it as the command.

By loading the iRMX CLI command from DLC or WLC, an iRMX user session is
created. You can create multiple iRMX user sessions by multiple invocations of
WLC.

■■ ■■ ■■

Programming Concepts for DOS and Windows Chapter 7 59

Using DDE 7
This chapter describes how to use the iRMX Dynamic Data Exchange (DDE)
facility to communicate between Windows-based graphical user interfaces (GUIs)
and iRMX real-time applications. It is organized into conceptual information,
reference information, and examples. This chapter is written for the programmer
who already understands DDE concepts.

See also: Your Windows programming manual for more information on DDE
messages

Real-time DDE Capabilities
Dynamic Data Exchange (DDE) is a standard inter-process communications
protocol for Windows. DDE enables programs to easily and freely exchange data
on a one-time or continuous report-by-exception basis. Network DDE, or NetDDE
as it is better known, is a class of facilities that extends the Windows DDE
capabilities transparently across networks and other communications facilities. It is
accomplished by adding one or more DDE Message Routers to the Windows
product. The Message Routers function as proxy agents for remote clients and
servers.

The iRMX NetDDE facilities are based upon a set of custom DDE Message
Routers that route DDE messages between Windows and iRMX systems using
various networking and communications protocols. On the Windows system, a
Router is a stand-alone executable program that can be invoked either as part of the
Windows automated start-up procedure or manually when its facilities are needed.
On the iRMX system, the Router is a library of routines that, when bound with a
real-time application, provides it with the necessary routing capabilities.

60 Chapter 7 Using DDE

DDE Terminology
These DDE terms are used extensively in the rest of this chapter, especially when
discussing DDE interaction between applications.

client An entity that establishes communications with one or more
servers and requests data from, or sends data to, a server. An
iRMX application can be a server for one conversation and a
client for another.

server An entity that maintains a set of data and can make this data
available to one or more clients.

conversation A link between a client and a server that the client uses to obtain
access to a specific subset of the data. The data is specified by a
topic name at the time the conversation is established.

application
name

The name of the server application. For example, if the server
application is the Excel spreadsheet program, the application
name is Excel. The application name is also known as the service
name.

string types Strings in DDE messages are null-terminated (ASCIIZ) strings.
They are different from iRMX strings, where the first byte is the
string length.

topic name The general classification of data items that can be exchanged
during a DDE conversation. This is usually either a filename if
the conversing applications exchange files, or an
application-specific name.

data item The actual information related to the topic name. Values for data
items are exchanged during conversations.

cold link The client routinely polls the server to obtain the value of a data
item. The value can change at any time but the server does not
notify the client of the change.

warm link The server notifies the client when the value of a data item
changes. The server sends the new value only when the client
requests it.

hot link The server notifies the client when the value of a data item
changes and immediately sends the new value to the client.

Programming Concepts for DOS and Windows Chapter 7 61

Communications Protocols
The iRMX NetDDE facility supports these communications protocols:

• TCP/IP (routetcp.exe and tcpdde.lib) - Use this networking protocol between
iRMX systems and any version of Windows that supports the Winsock
interface (using winsock.dll) and provides Ethernet or SLIP network access.
These capabilities are built into Windows NT, Windows 95 and Windows for
Workgroups (when the Microsoft TCP/IP for Windows for Workgroups add-on
package is present). You can also use Windows 3.1 or 3.11 if you add a
compatible TCP/IP add-on package.

• OpenNET (routenb.exe and inadde.lib) - You can use this networking protocol
in any of the following environments:

− Between iRMX systems and PCs running Windows 3.1 or 3.11 which have
OpenNET network access (available via the PCLINK2 networking
adapter).

− Between iRMX systems and PCs running Windows 3.1 or 3.11 on top of
the iRMX for Windows OS.

− Between iRMX and Windows 3.1 or 3.11 running simultaneously within
the same system using the iRMX for Windows OS.

Both the PCLINK2 network adapter and the iRMX for Windows OS
provide DOS and Windows with OpenNET network access using a
NetBIOS interface. As a result, we refer to this version of the DDE Router
as the NetBIOS DDE Router.

• RTE (routerte.exe and rtedde.lib) - You can use this communications protocol
between iRMX and Windows applications running simultaneously within the
same system (using the iRMX for Windows OS). Because this facility uses the
DOS Real-Time Extension (RTE) facility, you are not required to load
networking support on either the iRMX OS or DOS/Windows.

62 Chapter 7 Using DDE

iRMX for Windows

Windows

GUI
Application

RTE
DDE

Router

Real-time
Application

RTE DDE Library

RTE

iRMX

DOS

OM04174

Figure 7-1. RTE Communication between iRMX and Windows within the Same System

iRMX for Windows

Windows

GUI
Application

NETBIOS
DDE

Router

NETBIOS I/F
(PCNET.EXE)

iRMX

DOS

OM04175

Real-time
Application

iNA 960 DDE
Library

NETRDR JOB

iNA 960

OpenNet (ISO) Network

Figure 7-2. NetBIOS Communication between iRMX and Windows
within the Same System

Programming Concepts for DOS and Windows Chapter 7 63

Windows

GUI
Application

NETBIOS
DDE

Router

NETBIOS I/F
(NETBIOS.EXE)

PCLINK2 NIC

DOS

OM04176

Real-time
Application

iNA 960 DDE
Library

iRMX
iNA 960

iNA 960

OpenNet (ISO) Network

Figure 7-3. NetBIOS Communication between iRMX and
Windows on Different Systems

Windows

GUI
Application

TCP/IP DDE
Router

TCP/IP Services
(Winsock)

Any NIC (Not PCLINK2)

OM04177

Real-time
Application

TCP/IP DDE
Library

iRMX

TCP/IP Network

iNA 960

TCP/IP

Figure 7-4. TCP/IP Communication between iRMX and
Windows on Different Systems

64 Chapter 7 Using DDE

iRMX DDE Capabilities
A single DDE-aware iRMX application is capable of the following:

• It can only communicate with Windows-based DDE clients and servers. It
cannot communicate with other DDE-aware iRMX applications.

• It can only use a single communications protocol to communicate with
Windows-based DDE clients and servers. For example, if an iRMX
application is bound to the DDE Library supporting TCP/IP-based
communications, it cannot also be bound to the library supporting OpenNET
communications.

• As a DDE client, it can communicate with any number of Windows-based
servers running on any number of Windows-based systems. Further, it can
have any number of conversations established with each of these servers.

• As a DDE server, it can offer only a single service to Windows-based clients.
Therefore, it can invoke the server_dde_register function only once.

• As a DDE server, it can accept and support communications with any number
of Windows-based clients. Further, it may support any number of
conversations with each of these clients.

Windows-based DDE applications do not have the above restrictions. Each
application can be implemented independent of the communications protocol and
can use more than one protocol. Additionally, Windows-based DDE servers can
offer any number of services and can support any number of clients accessing each
of these services.

iRMX DDE Restrictions
There are certain restrictions to be aware of when using the iRMX DDE facility:

• You can only use the iC-386 C compiler to create DDE-aware iRMX
applications. You cannot use third-party compilers. In addition, each
DDE-aware iRMX application must bind to its own copy of the appropriate
DDE Library. Therefore, two or more applications cannot share the same copy
of a library.

 DDE is a low-performance communications protocol. This is not due to the
underlying networking protocols or its usage with iRMX. It is a result of the
way messages are passed within Windows. The messages passed between
Windows processes can contain only two data items, a long (32-bit) word and a
short (16-bit) word. This is not sufficient to pass all of the information
necessary to a DDE transaction.

Programming Concepts for DOS and Windows Chapter 7 65

 To pass this information, which includes application, topic, item and data
strings, the sending process must establish global atoms, which provide unique
references for the strings. Since atoms are themselves referenced using name
strings, establishing and referencing them require additional system overhead.

• The iRMX DDE implementation supports only the CF_TEXT data type. There
is no support for any type of binary data.

DDE Router Internal Configuration Limits

The internal configuration limits of the DDE Router are:

• Only the CF_TEXT ASCIIZ string data type is supported.

• The size of CF_TEXT ASCIIZ strings (including the terminating null) cannot
exceed 512 bytes in length.

• The size of the command string in the client_dde_execute function (including
the terminating null) cannot exceed 512 bytes in length.

• Data item names, application names and topic names (including the
terminating null) cannot exceed 32 bytes in length.

Configuring the Windows DDE Routers
The standard Windows configuration file, win.ini, contains the configuration
parameters for the DDE Routers in the [DDERouter] section.

A DDE Router needs these three pieces of information in order to support a DDE
conversation: a network name, a separator character, and an application name.

A DDE Router must recognize that a request to establish a conversation (a
DDE_INITIATE message) is for a remote server. Client applications indicate this
by filling the application name string with the network name for the system on
which the application is executing as well as the name associated with that
application.

The DDE Router recognizes that both pieces of information are present by
searching for the special character that separates them in the string. By default,
this separator character is “%”. If you use a different character, for example the “|”
character, add a statement, such as “Separator=|” to the [DDE Router] section of
the win.ini file.

66 Chapter 7 Using DDE

When you use the OpenNET protocol, the NetBIOS DDE Router must establish a
unique name for itself on the network. This name must not conflict with any
names in use on the network. To specify this name, add a statement of the form
“PCName=name” in the win.ini file. If you do not specify a name, the default
name is “WINDOWS”.

✏ Note
If you use the TCP/IP protocol, the TCP/IP DDE Router does not
require this statement and ignores it if present. In all cases, the
TCP/IP protocol uses the name established for the machine during
the installation/configuration of the TCP/IP facility. Similarly,
the RTE protocol does not require a name because
communication is between entities within the same system

When you use the RTE protocol in an isolated iRMX for Windows system, the
RTE DDE Router must know which network name indicates that the target (server)
is an iRMX application running within the same system. To specify this name, add
the statement “RMXName=name” to the win.ini file. If you do not specify a name,
the default name is “RFW”.

Enabling DDE Routing on the Windows System
You can start a DDE Router automatically when you start Windows or manually
from within Windows.

To start a DDE Router automatically after invoking Windows, add the following
line to the [Windows] section of the win.ini file.

load= router_name

where router_name is either routerte.exe (RTE), routetcp.exe (TCP/IP), or
routenb.exe (OpenNET).

To start a DDE Router manually from within Windows:

1. If necessary, create a new Windows group. In the Program Manager, go to the
File menu. Select NEW, select the PROGRAM ITEM button, select the
PROGRAM GROUP button and then click the OK button. Enter “iRMX
DDE” as the Description Name and then click the OK button again.

2. Now create an icon for the DDE Router. In the Program Manager window, go
to the File menu and select “New”.

3. Click the Program Item button and then click the OK button.

Programming Concepts for DOS and Windows Chapter 7 67

4. In the Description box, enter a description for the desired router. For example,
“TCP/IP DDE Router”. In the Command Line box, enter the pathname for the
desired router. On iRMX for Windows systems, these files are located in the
\dosrmx directory. For Windows-only systems, you must copy the executables
from your iRMX system.

5. The icon for the DDE Router appears. Double-click on this icon to start DDE
Router.

You can also start more than one DDE Router. To do this when loading a DDE
Router automatically, you can add multiple load statements. If you are loading a
DDE Router manually, repeat the steps to get a startup icon for each DDE Router
you will use.

✏ Note
You can also start DDE Routers automatically when Windows
initializes by placing icons for the DDE Routers in the “Startup”
Program Group.

Preparing the Windows Environment for NetDDE
To use the OpenNET protocol, you must start the appropriate NetBIOS service
before starting Windows.

• For standalone Windows machines which utilize the PCLINK2 Network
Interface Card (NIC), you must load the networking software onto the NIC and
start up the NetBIOS service. Use the command:

net start rdr pc_name

where pc_name specifies a unique network name for the DOS machine.

• For machines running iRMX for Windows, you must initialize the iRMX OS,
iRMX networking, the DOS networking redirector, and the iRMX NetBIOS
interface for DOS before starting up Windows.

1. In file :config:loadinfo, uncomment the sysload commands for the
iNA 960 networking job required by your networking adapter or service,
the iRMX-NET jobs, and the netrdr job.

 See also: Network Jobs, System Configuration and Administration

68 Chapter 7 Using DDE

2. After starting iRMX, initialize the DOS NetBIOS interface using the
command at the DOS prompt:

 net start netrdr pc_name

where pc_name specifies a unique network name for the DOS machine.
pc_name must not be the same name assigned to iRMX-NET server or
client in the /net/data file.

To use the TCP/IP protocol, you must perform certain steps to install and configure
the TCP/IP service:

• For Windows 95 and Windows NT, the Windows installation process installs
and configures the TCP/IP service.

• For Windows for Workgroups, the TCP/IP service is a separate package called
“TCP/IP-32 For Windows For Workgroups.” You can obtain this package
from an on-line service, such as Microsoft’s Internet server. After obtaining
this package, follow the package’s instructions for installing and configuring.

• For Windows 3.1, the procedure for installing the TCP/IP package you have
chosen is described in the included documentation. The package you choose
must provide a version of winsock.dll compliant to Winsock Specification 1.1.

To use the RTE protocol with iRMX for Windows, you must ensure that the
dosrmx directory is included in the DOS PATH statement. You must also ensure
the RTE DDE Router running under Windows before you start any DDE-aware
iRMX applications.

Preparing the iRMX Environment for NetDDE
In order to use NetDDE from iRMX, you must properly initialize the appropriate
networking support.

• For the OpenNET protocol, load and configure the appropriate iNA 960
network job required by your network adapter. You must uncomment the
associated sysload command in the :config:loadinfo file.

See also: i*.job, System Configuration and Administration

• For the TCP/IP protocol, load and configure the TCP/IP kernel. You must also
sysload the special DDE TCP/IP support job, tcpdde.job.

See also: TCP/IP and NFS for the iRMX Operating System,
i*.job, System Configuration and Administration

• For the RTE protocol, no special preparation is required. You must run the
RTE DDE Router before you start any DDE-aware iRMX applications.

Programming Concepts for DOS and Windows Chapter 7 69

DDE Programming
The following sections describe the different types of interaction that can take
place between the iRMX OS and Windows. These interactions fall into two
categories: iRMX client to Windows server or Windows client to iRMX server.

DDE Messages
All DDE conversations are conducted by passing certain defined DDE messages
between server and client applications. Since the DDE Router is the interface
between the iRMX OS and Windows, these messages are passed between the
Router and Windows.

See also: iRMX Client to Windows server Conversations,
Windows Client to iRMX server Conversations, in this chapter

DDE Message Description

WM_DDE_ACK Sent in response to a received message. Provides a
positive or negative acknowledgment of the message
receipt.

WM_DDE_ADVISE Requests the server application to supply a notice for a
data item whenever it changes, such as during hot or
warm links.

WM_DDE_DATA Sends a data-item value to the client application.

WM_DDE_EXECUTE Sends a string to the server application, which parses it
into a series of commands.

WM_DDE_INITIATE Initiates a conversation between the client and server
applications.

WM_DDE_POKE Sends a data-item value to the server application.

WM_DDE_REQUEST Requests the server application to provide the data-
item value.

WM_DDE_TERMINATE Terminates a conversation.

WM_DDE_UNADVISE Terminates a permanent data link.

70 Chapter 7 Using DDE

iRMX Client to Windows Server Conversations
Figure 7-5 illustrates an iRMX client application communicating with a Windows
server application using DDE messages. As far as the server application is
concerned, the client is just another local Windows application.

Figure 7-5. iRMX to Windows DDE Conversations

W-3334

Communications Link

DDE Communications

DDE Router

Server Application

iRMX DDE Library

iRMX Client
Application

Programming Concepts for DOS and Windows Chapter 7 71

An iRMX client application uses the functions listed in Table 7-1.

Table 7-1. DDE Library Client Functions

Functions Action

dde_library_init Initialize the local DDE library

client_dde_initiate Request the start of a DDE conversation

client_dde_request Ask server to provide data

client_dde_poke Ask server to accept unsolicited data

client_dde_execute Send a command string to server

client_dde_run_application Start a Windows application

client_dde_terminate Halt a conversation

client_link_callback Accept linked data

client_dde_open_hot_link Ask server to update data whenever it changes

client_dde_close_link Tell server that a data item should no longer be
updated

client_dde_open_warm_link Ask server to notify client whenever data changes

✏ Note
Only the DDE-specific parameters of the iRMX DDE library
functions are described in these figures. The rmxdde.h header file
and the DDE Library section of this chapter completely describe
the syntax of all the iRMX DDE library functions.

72 Chapter 7 Using DDE

Initiating Conversations

This section describes how a DDE client application running in an iRMX OS
establishes a conversation with a Windows server application.

Before any conversation can be initiated by an iRMX client, the client must ensure
that the DDE library has been initialized. If not, the client can initialize it with the
dde_library_init function.

See also: dde_library_init function

The iRMX client invokes the client_dde_initiate function to initiate the
conversation. The iRMX DDE library responds to this function by sending a
message to the appropriate router. The DDE Router broadcasts the request as a
WM_DDE_INITIATE message if the win.ini file on its system contains the same
machine name. If the server application on the specified machine acknowledges
the initiate request, a conversation_id is returned to the client. Other functions
use this conversation_id to identify this specific conversation between client
and server.

W-3339

(machine_name_p,
service_name_p,
topic_name_p)

DDE
Library

DDE
Router (application, topic)

Windows
Server

client_dde_initiate WM_DDE_INITIATE

(conversation_id) WM_DDE_ACK

iRMX
Client

Programming Concepts for DOS and Windows Chapter 7 73

Transferring Single Items

Once a client has established a conversation with a server, the client can request
data items from the server or submit data items to the server.

Requesting Data Items from the Server

To request data items, the iRMX client invokes the client_dde_request function.
The DDE library passes this request on to the appropriate the DDE Router. The
router then acts for the remote iRMX client and sends a WM_DDE_REQUEST
message to the specified server. After the server application supplies the requested
item, the DDE library puts its contents into the data buffer specified by the client in
the client_dde_request function.

W-3340

(data_item_name_p,
data_buf_p)

DDE
Library

DDE
Router (item)

client_dde_request WM_DDE_REQUEST

(data_item_value) WM_DDE_DATA
(item)

Windows
Server

iRMX
Client

data
buffer

Submitting Data Items to the Server

To submit data items to the server, the iRMX client invokes the client_dde_poke
function. The DDE library passes this request on to the appropriate DDE Router.
The router then acts for the remote iRMX client and sends a WM_DDE_POKE
message to the specified server.

W-3341

(data_item_name_p,
data_value_p)

DDE
Library

DDE
Router (item)

client_dde_poke WM_DDE_POKE
Windows
Server

iRMX
Client

74 Chapter 7 Using DDE

Submitting Commands to the Server

To submit a string of commands to the server, the iRMX client invokes the
client_dde_execute function. The DDE library passes this request on to the
appropriate DDE Router. The router then acts for the remote iRMX client and
sends a WM_DDE_EXECUTE message to the specified server.

Running a DDE Windows Application

To run a Windows application, the iRMX client invokes the
client_dde_run_application function. The DDE library passes this request on to
the appropriate DDE Router. The router then starts the Windows application.

OM04419

(command_p,)

DDE
Library

DDE
Router (command)

client_dde_execute WM_DDE_EXECUTEiRMX
Client

WIN_DDE_ACK

Windows
Server

WIN_DDE_ACK

OM04420

(machine_name_p,
command_p,)

DDE
Library

DDE
Router

run command.execlient_dde_run_applicationiRMX
Client

Windows
Server

Programming Concepts for DOS and Windows Chapter 7 75

Terminating a Conversation

To terminate a conversation, the iRMX client invokes the client_dde_terminate
function. The DDE Router, acting for the client, sends a
WM_DDE_TERMINATE message to the appropriate server. The server responds
with a WM_DDE_TERMINATE message of its own and the conversation is
ended.

Using Hot Links

After calling client_dde_initiate, (making available a link callback function to the
DDE library), an iRMX client can establish a hot link. To do so, the iRMX client
invokes the client_dde_open_hot_link function. The DDE library passes this
request to the DDE Router. The router then acts for the remote iRMX client and
sends a WM_DDE_ADVISE message to the specified server. The server responds
by sending a WM_DDE_ACK message indicating that it has access to the
requested data item.

W-3344

DDE
Library

DDE
Router

client_dde_terminate WM_DDE_TERMINATE

WM_DDE_TERMINATE

Windows
Server

iRMX
Client

W-3345

(data_item_name_p)

DDE
Library

DDE
Router (item)

WM_DDE_ADVISE

WM_DDE_ACK

client_dde_open_hot_link
Windows
Server

iRMX
Client

link callback
function

76 Chapter 7 Using DDE

Acting for the Windows server, the DDE Router passes any WM_DDE_DATA
messages on to the DDE library. The DDE library, having been given the pointer
to the client's link callback function when the client invoked client_dde_initiate,
now invokes that callback function.

When the client no longer needs updates to the specified data item, it invokes the
client_dde_close_link function. The DDE library passes this request on to the
DDE Router. The router then sends a WM_DDE_UNADVISE message to the
server.

W-3347

(data_item_name_p)

DDE
Library

DDE
Router (item)

WM_DDE_UNADVISE

WM_DDE_ACK

client_dde_close_link Windows
Server

iRMX
Client

link callback
function

To initiate messages that a server would respond to in a DDE hot link transaction,
the iRMX client uses the functions listed in Table 7-1.

W-3346

(data_item_value)

DDE
Library

DDE
Router

(item)
WM_DDE_DATA

Windows
Server

iRMX
Client

link callback
function

Programming Concepts for DOS and Windows Chapter 7 77

Using Warm Links

After calling client_dde_initiate, (making available a link callback function to the
DDE library), an iRMX client can establish a warm link by invoking the
client_dde_open_warm_link function. The DDE library passes this request to the
DDE Router. The router then acts for the remote iRMX client and sends a
WM_DDE_ADVISE message to the specified server. The router passes a flag
with the message indicating that a warm link is requested rather than a hot link.

Similar to a hot link conversation, the DDE Router and the DDE library process
any WM_DDE_DATA messages, and the client's link callback function is
invoked. The callback function signals the iRMX client application, which must
then issue a client_dde_request.

W-3348

(data_item_name_p)

DDE
Library

DDE
Router (item)

WM_DDE_ADVISE

WM_DDE_ACK

client_dde_open_warm_link Windows
Server

iRMX
Client

link callback
function

W-3349

DDE
Library

DDE
Router

(data_item
with NULL value)

WM_DDE_DATA
(NULL item)

Windows
Server

iRMX
Client

link callback
function

78 Chapter 7 Using DDE

The client invokes a client_dde_request function whenever it wants the actual data
item. The callback function cannot invoke the client_dde_request function.

To end the warm link, the iRMX client invokes the client_dde_close_link function
as it does in a hot link conversation.

W-3350

(data_item_name_p,
data_buf_p)

DDE
Library

DDE
Router (item)

client_dde_request WM_DDE_REQUEST

(data_item_value) WM_DDE_DATA
(item)

Windows
Server

iRMX
Client

data
buffer

W-3351

(data_item_name_p)
DDE

Library
DDE

Router (item)

WM_DDE_UNADVISE

WM_DDE_ACK

client_dde_close_link Windows
Server

iRMX
Client

link callback
function

Programming Concepts for DOS and Windows Chapter 7 79

Windows Client to iRMX Server Conversations
Figure 7-6 illustrates a Windows client application communicating with an iRMX
server application using DDE messages. As far as the client application is
concerned, the server is just another local Windows application.

Figure 7-6. Windows to iRMX Conversations

W-3335

Communications Link

DDE Communications

Client Application

DDE Router

iRMX DDE Library

iRMX Server
Application

80 Chapter 7 Using DDE

An iRMX server uses the functions listed in Table 7-2.

Table 7-2. DDE Library Server Functions

Functions Action

dde_library_init Initialize the local DDE library

server_dde_register Notify the DDE library that the application is a
server

server_dde_update_link Notifies the DDE library that a linked data item is
ready to be sent

server_data_callback Respond to a client's poke, request, or execute
message

server_conversation_callback Respond to client's request to start or halt a
conversation

server_dde_terminate Halt a conversation that the client cannot halt

Programming Concepts for DOS and Windows Chapter 7 81

Establishing Conversations

This section describes how a DDE server application running on an iRMX OS
responds to a Windows client application that wants to establish a conversation.

Before any conversation can be accepted by an iRMX server, the server must
initialize the DDE library using the dde_library_init function and register itself
with the library using the server_dde_register function.

In the registration process, the server posts this information with the library:

• Local machine name

• Service name of server application

• Server conversation callback function

• Server data callback function

server_dde_register

W-3308

dde_library_init

conv callback
function

(local_name_p,
service_name_p,
conv_callback_p,
data_callback_p)

DDE
Library

data callback
function

iRMX
Server

The library invokes the callback functions when appropriate. These sections
describe the appropriate conditions.

82 Chapter 7 Using DDE

In response to a WM_DDE_INITIATE message, the DDE Router sends a message
to the appropriate iRMX machine. The DDE library associated with the requested
server invokes the server's conversation callback function. The conversation
callback function then accepts or rejects the initiate request. For a positive
response, the DDE Router returns a positive WM_DDE_ACK message to the
client application. At this point a conversation has been established.

Responding to Data Item Requests

In response to a WM_DDE_REQUEST message, the DDE Router forwards the
request to the appropriate DDE library. The library then invokes the
server_data_callback function that the server had previously posted. The server's
callback function is responsible for acknowledging the request and copying the
requested data item to a data buffer. Receiving a positive response, the DDE
Router takes the information in the data buffer and creates a WM_DDE_DATA
message to return to the client application.

W-3352

DDE
Library

DDE
Router

WM_DDE_INITIATE

WM_DDE_ACK (positive)

server_conversation_callback
(conversation_id)

(machine%app,
topic))

Windows
Client

iRMX
Server

conv callback
function

W-3353

DDE
Library

DDE
Router(item)

WM_DDE_REQUEST

WM_DDE_DATA

(item)

server_data_callback
(data_item_name_
function_code)

(positive)

Windows
Client

iRMX
Server

data buffer

data callback
function

Programming Concepts for DOS and Windows Chapter 7 83

Responding to Hot Links

In response to a WM_DDE_ADVISE message, the DDE Router forwards the
request to the appropriate DDE library. The library then invokes the
server_data_callback function that the server had previously posted. The library
uses the function_code parameter to tell the server that it needs to respond to a
DDE hot link. The callback function is responsible for acknowledging the request.
Receiving a positive response, the DDE Router returns a WM_DDE_ACK
message to the client application.

W-3354

DDE
Library

DDE
Router

WM_DDE_ADVISE

WM_DDE_ACK (positive)

server_data_callback
(data_item_name,
function_code)

(item)
Windows

Client
iRMX
Server

data callback
function

If the iRMX server responds negatively to a WM_DDE_ADVISE message, the
DDE Router returns a WM_DDE_ACK negative message to the client application.

84 Chapter 7 Using DDE

Whenever the value of the hot-linked data item changes, the iRMX server can
invoke the server_dde_update_link function to pass notification and data back to
the client using the DDE library. The DDE library passes the data_value_p
information on to the DDE Router. In turn, the DDE Router sends a
WM_DDE_DATA message to the client application. If the client responds with a
WM_DDE_ACK message, the DDE Router has no response.

W-3355

DDE
Library

DDE
Router

WM_DDE_ACK

server_dde_update_link
(data_value_p)

WM_DDE_DATA
(item)

Windows
Client

iRMX
Server

In response to a WM_DDE_UNADVISE message, the DDE Router forwards the
request to the appropriate DDE library. The library then invokes the
server_data_callback function for the server, using the function_code

parameter to indicate that a DDE close link action is requested. The DDE Router
returns a WM_DDE_ACK message for the client after it receives a positive
acknowledgment from the server's data callback function.

W-3356

DDE
Library

DDE
Router

WM_DDE_UNADVISE

WM_DDE_ACK (positive)

server_data_callback
(data_item_name,
function_code)

(item)

Windows
Client

iRMX
Server

data callback
function

Programming Concepts for DOS and Windows Chapter 7 85

Handling Termination Requests

In response to a WM_DDE_TERMINATE message, the DDE Router forwards the
request to the appropriate DDE library. The library then invokes the conversation
callback function for the server identified by the specified conversation_id .
The DDE Router generates a WM_DDE_TERMINATE message for the client
after it receives a positive acknowledgment from the conversation callback
function. If for some reason the server suspects that the client cannot send a
WM_DDE_TERMINATE message due to some error, the server can invoke the
server_dde_terminate function to terminate the conversation.

W-3357

DDE
Library

DDE
Router

WM_DDE_TERMINATE

(positive)

server_conversation_callback
(conversation_id)

WM_DDE_TERMINATE

Windows
Client

iRMX
Server

conv callback
function

86 Chapter 7 Using DDE

DDE Library
This section contains reference information about the iRMX DDE Library.

Summary of DDE Library Functions
Any iRMX applications that want to act as a DDE server or client must use the
DDE library functions described in this section. Table 7-3 lists the functions by
operation type. The functions are described in alphabetical order.

Table 7-3. DDE Library Summary

Operations Function Description

Mandatory dde_library_init Initializes the iRMX DDE Library

Simple
Client

client_dde_initiate Initiates a DDE conversation with a DDE server
application on a specified machine

client_dde_terminate Terminates an established DDE conversation

client_dde_poke Pokes a data item value in a DDE server
application

client_dde_request Obtains a data item value from the DDE server

client_dde_execute Submits a string of commands to a DDE server

Client Link client_dde_open_hot_link Requests the DDE server to send a specified
data item value whenever it changes

client_dde_open_warm_link Requests the DDE server to send notification
whenever a specified data item value changes

client_dde_close_link Terminates the link (hot or warm) to the DDE
server

client_link_callback Response to a server_dde_update_link function

Misc. Client client_dde_run_application Starts a Windows program

Server server_dde_register Notifies the DDE library that the application
invoking this function is a DDE server

server_dde_update_link Notifies the DDE library that a linked data item is
ready to be sent

server_dde_terminate Terminates a DDE conversation established with
it by a specified client

server_conversation_
callback

Response to a DDE client's attempts to initiate
or terminate a conversation

server_data_callback Response to an attempt to poke, request, or
execute data or attempts to initiate or close a
link

Programming Concepts for DOS and Windows Chapter 7 87

✏ Note
This example bind order applies only to the iRMX make utility:

bnd386 & BND386 bind invocation
:sd:intel/lib/cstart32.obj, & C startup code
(objects), & application code
:sd:rmx386/lib/ router .lib, & DDE libraries
:sd:intel/lib/cifc32.lib, & shared C library
:sd:rmx386/lib/udiifc32.lib, & udi interface library
:sd:rmx386/lib/rmxifc32.lib & system call interface
(bind controls) & library

Where router .lib is:

The tcpdde.lib library if you are using TCP/IP. You must also
include the :sd:intel/lib/net3c.lib and :sd:intel/lib/socket3c.lib
support libraries.

The inadde.lib library if you are using OpenNET.

The rtedde.lib library if you are using RTE.

88 Chapter 7 Using DDE

Error Codes
Many of the DDE library functions take an argument which is a pointer to a status
word set by the DDE library. The status word may return any standard iRMX error
code or a special error status returned by the library. Error codes returned by the
library are encoded as shown in Table 7-4.

Table 7-4. Error Codes

Error Value Meaning

E_OK 0H No error occurred

E_EXIST 6H A link parameter is wrong. For example, a
machine name in client_dde_initiate does not
answer, or the machine name in
server_dde_register is already in use.

E_TRANSMISSION 0BH A message cannot be delivered to the network.
For example, a hardware error occurred or
Windows is not listening, etc.

DDE_NOT_OK 0FFFFH A table is full or a bad parameter was passed.

(other codes) iRMX exception codes may also be returned.
For example, a DDE library call might internally
use a semaphore, and if that fails, the resulting
condition code is returned as status.

See also: Condition codes, System Call
Reference

DDE Library Functions
These pages contain descriptions of all the DDE library functions. The DDE
library functions rely upon the DDE header file, rmxdde.h, located in the
\intel\include\ directory.

client_dde_close_link

Programming Concepts for DOS and Windows Chapter 7 89

client_dde_close_link
Cancels the request for asynchronous notification of changes in the value of a data
item established on either a warm link or a hot link.

See also: client_dde_open_hot_link function
client_dde_open_warm_link function

Syntax

void client_dde_close_link (WORD conversation_id,

char *data_item_name_p, WORD *status_p);

Parameters
conversation_id

Identifies the conversation that involves the data item that is no longer needed.
The conversation was established by the client_dde_initiate function.

data_item_name_p
Points to a string that contains the data item name.

status_p
Points to a value that contains the DDE status.

client_dde_execute

90 Chapter 7 Using DDE

client_dde_execute
Requests that a string of commands be submitted to a DDE server for execution.
This is a synchronous function.

Syntax

void client_dde_execute (WORD conversation_id, char *command_p,

WORD *status_p);

Parameters
conversation_id

Identifies the DDE server that will receive the string of commands. The
conversation was established by the client_dde_initiate function.

command_p
Points to a string that contains the commands to be executed by the DDE server.

status_p
Points to a value that contains the DDE status.

client_dde_initiate

Programming Concepts for DOS and Windows Chapter 7 91

client_dde_initiate
Initiates a DDE conversation on a specific topic with a DDE server application on a
specified machine. This is a synchronous operation.

Syntax

conversation_id = client_dde_initiate (char *machine_name_p,

char *service_name_p, char *topic_name_p,

LINKFUNCPTR link_callback_p, WORD *status_p);

Return Value
conversation_id

A unique conversation identifier for one instance of a conversation on a particular
machine. This identifier is used in subsequent calls.

Parameters
machine_name_p

Points to a string specifying the name for the remote machine. When using the
NetBIOS DDE Transport, the name must match that assigned to the Windows
machine using the pcname parameter (in win.ini). When using the TCP/IP DDE
Transport, the name must be the Internet name assigned to the machine you want to
talk to. Names are case-insensitive when using either the NetBIOS or TCP/IP DDE
Transports. When using the RTE DDE Transport, the name is not important. In
this case, the DDE library can only communicate with the RTE DDE Router
running under Windows on the same machine.

service_name_p
Points to a string containing the service name of the DDE server application.

topic_name_p
Points to a string containing the topic name for the DDE conversation.

link_callback_p
Points to a client's link notification callback function. This may be null if no links
will be established.

status_p
Points to a value that contains the DDE status.

client_dde_initiate

92 Chapter 7 Using DDE

Additional Information

The client application may establish multiple conversations with the same DDE
server application.

See also: client_dde_open_hot_link function and
client_dde_open_warm_link function

client_dde_open_hot_link

Programming Concepts for DOS and Windows Chapter 7 93

client_dde_open_hot_link
This function requests the DDE server to send the updated value of a specified data
item whenever it changes.

Syntax

void client_dde_open_hot_link (WORD conversation_id,

char *data_item_name_p, WORD *status_p);

Parameters
conversation_id

A word that identifies the conversation whose topic contains the requested data
item. The conversation was established by the client_dde_initiate function.

data_item_name_p
Points to a string that contains a data item name. The client wants the server to
return the value of this data item each time the value changes.

status_p
Points to a value that contains the DDE status.

Additional Information

The client application is notified of changes in the specified data item using a
callback function that it provided to the DDE library with the client_dde_initiate
function. The library invokes the callback function and provides the function with
the new value of the data item that it received from the server.

If the DDE server is an iRMX application, it uses the server_dde_link function to
send the new value to the library.

client_dde_open_warm_link

94 Chapter 7 Using DDE

client_dde_open_warm_link
This function requests the DDE server to send notification whenever the value of a
specified data item changes.

Syntax

void client_dde_open_warm_link (WORD conversation_id,

char *data_item_name_p, WORD *status_p);

Parameters
conversation_id

A word that identifies the conversation whose topic contains the requested data
item. The conversation was established by the client_dde_initiate function.

data_item_name_p
Points to a string that contains a data item name. The client wants notification
from the server each time the value of this data item changes.

status_p
Points to a value that contains the DDE status.

Additional Information

The client application is notified of changes in the specified data item using a
callback function that it provided to the DDE library with the client_dde_initiate
function. The library invokes the callback function but it does not give the
function the new value of the data item. Instead, the client must issue a
client_dde_request function if it requires the new value of the data item. The
client_dde_request function call may not be made in the callback function.

If the DDE server is an iRMX application, it uses the server_dde_link function to
notify the library when the value changes.

client_dde_poke

Programming Concepts for DOS and Windows Chapter 7 95

client_dde_poke
This function pokes a data item value in a DDE server application. This is a
synchronous operation.

See also: client_dde_initiate function

Syntax

void client_dde_poke (WORD conversation_id,

char *data_item_name_p, char *data_value_p,

WORD *status_p);

Parameters
conversation_id

A word that identifies the conversation whose topic contains the data item to be
poked. The conversation was established by the client_dde_initiate function.

data_item_name_p
Points to a string that contains a data item name of the server. The client wants to
poke a value into this data item.

data_value_p
Points to a string that contains the value to be poked into the specified data item.

status_p
Points to a value that contains the DDE status.

client_dde_request

96 Chapter 7 Using DDE

client_dde_request
This function obtains the value of a data item from the DDE server. This is a
synchronous operation.

Syntax

void client_dde_request (WORD conversation_id,

char *data_item_name_p, char *data_buf_p,

WORD data_buf_size, WORD *status_p);

Parameters
conversation_id

A word that identifies the conversation whose topic contains the data item
requested. The conversation was established by the client_dde_initiate function.

data_item_name_p
Points to a string that contains a data item name of the server. The client wants the
value of this data item.

data_buf_p
A client application buffer area. The DDE library copies the retrieved data item
value into this buffer area.

data_buf_size
The maximum size of the data item value that may be retrieved. An error is
returned if the data item value including the terminating null character does not fit
in the buffer.

status_p
Points to a value that contains the DDE status.

Additional Information

An iRMX server uses the server_data_callback function to respond to a
client_dde_request function.

client_dde_run_application

Programming Concepts for DOS and Windows Chapter 7 97

client_dde_run_application
This function enables an iRMX application to start a Windows program. This is a
synchronous operation.

Syntax

void client_dde_run_application (char *machine_name_p,

char *command_p, WORD flags, WORD *status_p);

Parameters
machine_name_p

Points to a string specifying the name for the remote machine. When using the
NetBIOS DDE Transport, the name must match that assigned to the Windows
machine using the pcname parameter (in win.ini). When using the TCP/IP DDE
Transport, the name must be the Internet name assigned to the machine you want to
talk to. Names are case-insensitive when using either the NetBIOS or TCP/IP DDE
Transports. When using the RTE DDE Transport, the name is not important. In
this case, the DDE library can only communicate with the RTE DDE Router
running under Windows on the same machine.

command_p
Points to a string containing the command line to be executed.

flags A word containing one of these: DDE_NORMAL, DDE_MAXIMIZED,
DDE_MINIMIZED to determine the initial state of the application's window.

status_p
Points to a value that contains the DDE status.

client_dde_terminate

98 Chapter 7 Using DDE

client_dde_terminate
This function terminates a previously established DDE conversation.

Syntax

void client_dde_terminate (WORD conversation_id,

WORD *status_p);

Parameters
conversation_id

A word that identifies the conversation to be terminated. The conversation was
established by the client_dde_initiate function.

status_p
Points to a value that contains the DDE status.

client_link_callback

Programming Concepts for DOS and Windows Chapter 7 99

client_link_callback
The DDE library invokes this function after being notified using a
server_dde_update_link function that a linked data item is ready to be sent.

Syntax

void client_link_callback (WORD conversation_id,

char *topic_name_p char *dde_data_item_p,

char *dde_data_value_p);

Parameters
conversation_id

A word that identifies the conversation whose topic contains the data item to send.
The client specified this identifier in a previous dde_open_warm_link or
dde_open_hot_link function.

topic_name_p
Points to a string containing the topic name for the DDE conversation.

dde_data_item_p
Points to a string containing the data item name. The pointer to this string points to
a DDE library buffer and must not be retained and used by the application after the
callback function returns.

dde_data_value_p
Points to a string containing the data item value. The pointer to this string points to
a DDE library buffer and must not be retained and used by the application after the
callback function returns. This parameter is undefined in callbacks for warm links.

Additional Information

The client application makes this function available to the DDE library using the
client_dde_initiate function.

This function is of type LINKFUNCPTR, as defined in rmxdde.h.

dde_library_init

100 Chapter 7 Using DDE

dde_library_init
This function initializes the local instance of the iRMX DDE library.

Syntax

void dde_library_init (CONFIGBUF *config_buf_p,

WORD *status_p);

Parameters
config_buf_p

Reserved.

status_p
Points to a value that contains the DDE status.

Additional Information

An iRMX application must invoke this function before an iRMX client application
makes any calls or before an iRMX server application makes or responds to any
calls. Invoke this function only once.

✏ Note
When using the RTE communications protocol, the initialization
fails if the RTE DDE Router is not running under Windows.

server_conversation_callback

Programming Concepts for DOS and Windows Chapter 7 101

server_conversation_callback
The DDE library invokes this function when a DDE client attempts to initiate or
terminate a conversation.

Syntax

status = server_conversation_callback (char *client_name_p,

char *service_name_p, char *topic_name_p,

WORD conversation_id, WORD function_code);

Return Value
status

The application must return a WORD value of 0 if the conversation is accepted or a
value of 0XFFFFH if not accepted.

Parameters
client_name_p

Points to a string containing the client machine name. The pointer to this string
points into a DDE library buffer and must not be retained and used by the
application after the callback function returns.

service_name_p
Points to a string containing the requested service name. The pointer to this string
points into a DDE library buffer and must not be retained and used by the
application after the callback function returns.

topic_name_p
Points to a string containing the requested topic name. The pointer to this string
points into a DDE library buffer and must not be retained and used by the
application after the callback functions returns.

conversation_id
A word identifying this DDE conversation. The application must save this for use
in subsequent calls.

function_code
Set to DDE_INITIATE or DDE_TERMINATE to specify the requested action.

Additional Information

The server application makes this function available to the DDE library using the
server_dde_register function, defined as type LINKFUNCPTR in rmxdde.h.

server_data_callback

102 Chapter 7 Using DDE

server_data_callback
The DDE library invokes this function when a DDE client attempts to poke,
request, or execute data or attempts to initiate or close a link.

Syntax

status = server_data_callback (char *client_name_p,

char *service_name_p, char *topic_name_p,

WORD conversation_id, char *data_item_name_p,

char *data_buf_p, WORD data_buf_size,

WORD function_code);

Return Value
status

The application must return a WORD value of 0 if the conversation is accepted or a
value of 0XFFFFH if not accepted.

Parameters
client_name_p

Points to a string containing the client machine name. The pointer to this string
points to a DDE library buffer and must not be retained and used by the application
after the callback function returns.

service_name_p
Points to a string containing the requested service name. The pointer to this string
points to a DDE library buffer and must not be retained and used by the application
after the callback function returns.

topic_name_p
Points to a string containing the requested topic name. The pointer to this string
points into a DDE library buffer and must not be retained and used by the
application after the callback function returns.

conversation_id
A word identifying this DDE conversation. The conversation was allocated in an
earlier invocation of the server conversation callback.

data_item_name_p
Points to a string containing the data item name.

server_data_callback

Programming Concepts for DOS and Windows Chapter 7 103

data_buf_p
A buffer area that contains the value of the specified data item if the client is
attempting to write a data item. If the client is attempting to read a data item, the
server must fill in the requested data in this buffer.

data_buf_size
The size in bytes of the buffer specified by data_buffer_p . This value is only
valid and relevant when a client is attempting to read a data item value. For a
DDE_REQUEST, the string placed into the data buffer must not exceed this value.

function_code
Set to DDE_POKE, DDE_REQUEST, DDE_EXECUTE, DDE_WARM_LINK,
DDE_HOT_LINK, or DDE_CLOSE_LINK to specify the requested action.

Additional Information

For convenience, the application is given the client machine name, service name
and topic name. All of these are uniquely identified by the conversation identifier
and are redundant.

The server application makes this function available to the DDE library using the
server_dde_register function.

server_dde_register

104 Chapter 7 Using DDE

server_dde_register
This function notifies the DDE library that the application invoking this function is
a DDE server.

Syntax

void server_dde_register (char *local_machine_p,

char *service_name_p, CONVFUNCPTR conv_callback_p,

DATAFUNCPTR data_callback_p, WORD *status_p);

Parameters
local_machine_p

Points to a string specifying the local machine name. This parameter is important
only when using the NetBIOS DDE Transport, where the library can track a unique
machine name for each server.

service_name_p
Points to a string containing the service name of the server application.

conv_callback_p
Points to a server conversation callback function.

data_callback_p
Points to a server data callback function.

status_p
Points to a value that contains the DDE status.

Additional Information

The server application is notified of requests to open a conversation using a
conversation callback function. The server is notified of requests to read and write
data items and to create hot links and warm links using a data callback function.

✏ Note
When using the TCP/IP Transport, the registration fails if the
special DDE TCP/IP support job (tcpdde.job) is not loaded before
the registration attempt.

server_dde_terminate

Programming Concepts for DOS and Windows Chapter 7 105

server_dde_terminate
This function enables an iRMX application acting as a DDE server to terminate a
DDE conversation established to it by a specified client. This is a synchronous
operation.

Syntax

void server_dde_terminate (WORD conversation_id,

WORD *status_p);

Parameters
conversation_id

A word that identifies a conversation that the server needs to terminate. The
conversation was returned to the server in an earlier invocation of the conversation
callback.

status_p
Points to a value that contains the DDE status.

Additional Information

This function is not necessary in normal operation since clients normally terminate
conversations. However, servers can also use this command to terminate
conversations if errors occur.

server_dde_update_link

106 Chapter 7 Using DDE

server_dde_update_link
This function enables an iRMX application that has registered itself as a DDE
server and accepted a hot link or a warm link from some DDE client, to notify the
DDE library that a linked data item is ready to be sent. This is a synchronous
operation.

Syntax

void server_dde_update_link (WORD conversation_id,

char *data_item_name_p, char *data_value_p,

WORD *status_p);

Parameters
conversation_id

A word that identifies the conversation whose topic contains the data item to be
sent. The identifier was returned to the server in an earlier invocation of the
conversation callback.

data_item_name_p
Points to a string that contains the data item name.

data_value_p
Points to a string that contains the value to be sent to the DDE server. This must be
null if the link is a warm link.

status_p
Points to a value that contains the DDE status.

Programming Concepts for DOS and Windows Chapter 7 107

Establishing DDE Communications Between
Windows and iRMX Applications

This section describes iRMX and Windows example applications that communicate
with one another using the DDE protocol. They can run on either the same system
or on two separate systems over a network. The iRMX applications are built using
the iC-386 compiler and the iRMX DDE Library. The \rmx386\demo\dde directory
contains the examples and the make files for creating their executables. The
readme.txt file in this directory contains a description of the examples.

DC Motor Example
The example uses DC motor control to illustrate the use of DDE software. As
shown in Figure 7-7, a DC motor is one of the devices participating in Process A
that resides on some local or remote PC, Multibus I, or Multibus II system. The
object is to provide an operator interface that enables high-level monitoring, and
control of the motor through supervisory commands. This example is restricted to
the motor although the operator might also be interested in monitoring and
controlling other devices.

108 Chapter 7 Using DDE

Figure 7-7. Supervisor/Controller Communications

These DDE data items are defined for the motor:

• Powerswitch - On/off state of the motor. Valid values are on and off .

• Desiredspeed - Desired motor speed.

• Actualspeed - Actual speed of the motor. During normal operating
conditions, actualspeed should equal desiredspeed .

• Motortemp - Temperature of the motor.

• Bearingtemp - Temperature of the bearings.

• Motorload - Load on the motor, in amps.

• Msg - Textual information indicating alarm or out-of-range conditions, or any
other special information to be conveyed to the supervisor.

W-3338

Terminal

Keyboard

DDE
Communications

ControllerSupervisor

DC Motor

Process A

Motor Speed

Motor Temp

1170

23 C

Motor Control

iRMX® for Windows
based CPU host +

DDE Library
controlling motor

PC AT
+ DOS/Windows
+ Visual Basic

Programming Concepts for DOS and Windows Chapter 7 109

DC Motor Description
The supervisor determines the values for powerswitch and desiredspeed . The
values are sent to the controller whenever they change. The controller locally
monitors the values of actualspeed , motortemp , bearingtemp , and
motorload . These values are sent to the supervisor whenever they change
(however, how often they are actually reported is an implementation detail, since
there could be high overhead in reporting, say, each slight change in
motorspeed). Lastly, the controller monitors the value of msg and reports the
value to the supervisor.

Figure 7-8 shows the general appearance of the Visual Basic supervisor window.

Figure 7-8. The Visual Basic Supervisor

W-3315

desiredspeed
actualspeed

DC Motor #1 - C

Motor Speed

Motor Temp

Bearing Temp

Load

Messages

ON

OFF

RPM0

100 1450

Clear Msg.

motortemp

bearingtemp

motorload

ClearMsgCmd

ONCmd

OFFCmd

RPMScroll

DDEText

Msg

Desired Motor Speed

110 Chapter 7 Using DDE

DDE Client Supervisor / DDE Server Controller
Implementation

In this example, the iRMX-based controller is implemented as a DDE server and
the Visual Basic Windows-based supervisor is implemented as a DDE client. The
supervisor initiates all conversations with the controller. All control parameters,
such as powerswitch state and desiredspeed , are poked from the supervisor
whenever they change. Status information, such as the actual motor speed, is
received by the supervisor through hot links whenever these values change.

Start with this model (iRMX DDE Server) for your own applications, since it
affords the most decoupling between your iRMX application and the particular
implementation of the Window-based supervisor.

Visual Basic Supervisor Implemented as DDE Client
The \rmx386\demo\dde\vb directory contains the Visual Basic files for the
client-supervisor, cmotor.*. There is no main code. The implementation is entirely
event-oriented, with a function or subroutine defined for each control present on
the form. The first event that occurs is the loading of the form. Subsequent events
occur when controls are activated and messages are received.

✏ Note
Only the make file and the source file are provided for the Visual
Basic application. The Visual Basic software must be purchased
separately.

iRMX Controller Implemented as a DDE Server
The controller is a loadable iRMX program that simulates direct motor control. In
the DDE server model of the controller, the supervisor pokes the powerswitch
and desiredspeed values to the controller. Whenever one of these values
changes, a new value is poked and printed to the server screen. To simulate
changing status values on the controller, a prompt enables you to enter new values
for actualspeed , motortemp , bearingtemp , motorload , and msg. These new
values are then sent as link data to the supervisor, causing the window to be
updated.

The \rmx386\demo\dde directory contains the C source code and smotor generation
files for the server-controller.

Programming Concepts for DOS and Windows Chapter 7 111

Running the Example

The Visual Basic example, cmotor.exe, is located in the \rmx386\demo\dde\vb
directory.

Run the example by performing these steps:

1. On the iRMX system:

A. Start the iRMX OS.

B. Start all networking/communications jobs necessary to support DDE
transport requirements.

See also: Preparing the iRMX Environment for NetDDE,
 in this chapter

C. To start the iRMX DDE application, enter:

smotor n etwork_name <CR>

where the network_name parameter, necessary only if using the
OpenNET protocol, specifies the name of the server which is to be used
across the network.

2. On the Windows system:

A. If using OpenNET, start the appropriate NetBIOS service.

See also: Preparing the Windows Environment for NetDDE,
 in this chapter

B. Start Windows.

C. If the appropriate DDE Router has not been started, start it by clicking on
its icon.

3. To start the Visual Basic application, enter:

cmotor.exe machine_name <CR>

where machine_name depends on the network communications protocol:

OpenNET Same name specified above for the server

TCP/IP Internet name of the machine executing the server

RTE iRMX machine specified in rmx.ini using the rmxname parameter

112 Chapter 7 Using DDE

DDE Server Supervisor/DDE Client Controller Implementation
In this example, the iRMX-based controller is implemented as a DDE client and
the Visual Basic Windows-based supervisor is implemented as a DDE server. The
controller initiates all conversations with the supervisor. All control parameters,
such as the powerswitch and desiredspeed , are obtained from the supervisor
by hot-linking the associated data items with the supervisor so that the controller
receives the new values whenever they change. Status information, such as the
actual motor speed, is poked to the supervisor whenever the controller needs to
inform the supervisor of changes.

Visual Basic Supervisor Implemented as a DDE Server

The \rmx386\demo\dde\vb directory contains the Visual Basic files for the
server-supervisor, smotor.*. There is no main code. The implementation is
entirely event-oriented, with a function or subroutine defined for each control
present on the form. The first event that occurs is the loading of the form.
Subsequent events occur when controls are activated and messages are received.

iRMX Controller Implemented as a DDE Client

The controller is a loadable iRMX program that simulates direct motor control. In
the DDE client model of the controller, powerswitch and desiredspeed values
are obtained by establishing hot links with the supervisor. Whenever one of these
values changes, the client callback function is invoked, and the new value is
printed to the screen. To simulate changing status values on the controller, a
prompt enables you to enter new values for actualspeed , motortemp ,
bearingtemp , motorload , and msg. These new values are then poked to the
supervisor, causing the window to be updated.

The \rmx386\demo\dde directory contains the C source code and cmotor generation
files for the client-controller.

Programming Concepts for DOS and Windows Chapter 7 113

Running the Example
Run the example by performing these steps:

1. On the Windows system:

A. If using OpenNET, start the appropriate NetBIOS service.

See also: Preparing the Windows Environment for NetDDE
 in this chapter

2. Start Windows.

3. If the appropriate DDE Router was not automatically started, start it by
clicking on its icon.

4. Start the Visual Basic DDE server application, smotor.exe.

5. To start the iRMX DDE client enter:

cmotor pc_name smotor motor <CR>

where pc_name depends on the network communications protocol:

OpenNET Use the name specified in the Windows system’s
pc_name parameter of the [DDERouter] section of the
win.ini file.

TCP/IP Use the Internet name assigned to the Windows system

RTE Use any name since the field is ignored.

6. To exit the iRMX DDE client application, enter:

exit <CR>

■■ ■■ ■■

Programming Concepts for DOS and Windows Appendix A 115

iRMX for Windows
Default Configuration A

This appendix lists the pre-configured options in the software definition file, used
to generate the iRMX for Windows boot image. If you ported an existing
application to iRMX for Windows, you may need to alter it to run within the
pre-configured software. If your application is incompatible with this
configuration, use the Interactive Configuration Utility to change it.

See also: Definition files, ICU User’s Guide and Quick Reference, for a listing
of the definition files you can customize.

Tables of pre-configured options are provided for these system requirements and
sub-systems:

• Sub-Systems

• Memory

• Human Interface

• Application Loader

• Extended I/O System

• Basic I/O System

• Device Drivers

• System Debug Monitor

• Nucleus

• Nucleus Communication Service

• VM86 Dispatcher Reserved Interrupts

116 Appendix A Default Configuration

Sub-System Configuration

Table A-1. Sub-Systems Options

Sub-Systems Default

Universal Development Interface
Shared C Libraries
Human Interface
Application Loader
Network Access
Extended I/O System
Basic I/O System
System Debug Monitor
System Debugger
OS Extension

Yes
No
Yes
Yes
No
Yes
Yes
Yes
No
Yes

Memory Configuration

Table A-2. Memory Options

Memory for System Default

Start Address
End Address

110000H
1FFFFFH

Memory for Free Space Default

Start Address
End Address

0200000H
0FFFFFFFFH

Programming Concepts for DOS and Windows Appendix A 117

Human Interface Configuration

Table A-3. Human Interface Options

HI Jobs Default

Jobs Minimum Memory
Jobs Maximum Memory
Numeric Processor Extension Used

0H
0FFFFFFFH
Yes

Prefixes Default

Prefix :
Prefix :
Prefix :
Prefix :
Prefix :
Prefix :

:PROG:
:UTILS:
:UTIL286:
:SYSTEM:
:LANG:
:$:

HI Logical Names Default

Name = WORK
Name = UTILS
Name = UTIL286
Name = LANG
Name = RMX
Name = INCLUDE

:SD:WORK
:SD:UTIL386
:SD:UTIL286
:SD:LANG286
:SD:RMX386
:SD:INTEL/INCLUDE

Application Loader Configuration

Table A-4. Application Loader Options

Application Loader Default

All System Calls
Default Memory Pool Size
Read Buffer Size

Yes
0500H
01000H

118 Appendix A Default Configuration

Extended I/O System Configuration

Table A-5. EIOS Options

EIOS Default

Retries on Physical Attachdevice
Default IO Job Directory Size

0H
200

Automatic Boot Device Recognition Default

Default System Device Physical Name C_RMX

Logical Names Default
(Device Name, File Driver, Owner's ID)

Logical Name = BB
Logical Name = Stream

BB, PHYSICAL, 0H
STREAM, STREAM, 0H

Basic I/O System Configuration

Table A-6. BIOS Options

BIOS Default

Attach Device Task Priority
Timing Facilities Required
Timer Task Priority
Connection Job Delete Priority
Ability to Create Existing Files
System Manager ID
Common Update Timeout
Terminal Support Code
Control-Sequence Translation
Terminal OSC Controls
Tape Support
BIOS Pool Minimum
BIOS Pool Maximum
Global Clock
Global Clock Name*

129
Yes
129
130
Yes
Yes
1000
Yes
Yes
Yes
No
0800H
0FFFFFH
ATRT

* The Global Clock Name has a blank string as a default.

Programming Concepts for DOS and Windows Appendix A 119

Device Drivers Configuration

Table A-7. Device Drivers Options

Driver Default

AT Serial Driver
 DUIB Name
 Interrupt Level
 Base Port Address
 Reset Character
 Interrupt Character
 DUIB Name
 Interrupt Level
 Base Port Address
 Reset Character
 Interrupt Character

ROM-BIOS Based Hard Disk Driver
 DUIB Name

 Base I/O Port Address
 Control/Status Port Address

ROM-BIOS Based Diskette Driver
 DUIB Name

 Interrupt Timeout

EDOS File Driver
 DUIB Name

DOS File Driver
 DUIB Name

COM1
048H
03F8H
0H
0H
COM2
038H
02F8H
0H
0H

C_RMX and D_RMX (first iRMX partition)
C_RMX0 and D_RMX0 (whole physical drive)
C_RMX1 through C RMX4 and D_RMX1
 through D_RMX4
01F0H
03F6H

A and B (5.25 inch format, 360 Kbyte)
AH and BH (5.25 inch format, 1.2 Mbyte)
AM and BM (3.5 inch format, 720 Kbyte)
AMH and BMH (3.5 inch, 1.44 Mbyte)
AMO and BMO (3.5 inch, 2.88 Mbyte)
01770H

A_DOS, ... ,Z_DOS

C_DOS, ... ,Z_DOS

120 Appendix A Default Configuration

System Debug Monitor Configuration

Table A-8. System Debug Monitor Options

System Debug Monitor Default

Console Port System Console Primary

Nucleus Configuration

Table A-9. Nucleus Options

Nucleus Default

Number of GDT Entries
Number of IDT Entries
Parameter Validation
Root Object Directory Size
Default Exception Handler
NMI Exception Handler
NMI Enable Byte
Exception Handler for Stack Exception
Name of Ex Handler Object Module
Exception Mode
Low GDT/LDT Slot Excluded from FSM
High GDT/LDT Slot Excluded from FSM
Round Robin Priority Threshold
Round Robin Time Quota
Report Initialization Errors
Maximum Data Chain Elements
Nucleus Communication Service

8000
256
Yes
200
SDB
IGNORE
4
SDB

NEVER
0
0
140
5
YES
0
YES

Programming Concepts for DOS and Windows Appendix A 121

Nucleus Communication Service Configuration

Table A-10. Nucleus Communication Service Options

Nucleus Communication Service Default

Message Task Priority
Deletion Task Priority
Default Number of Port Transactions
Default Host ID
Validate Buffer Parameters
Max. No. of Simultaneous Transactions
Max. No. of Simultaneous Messages
Receive Fragment Failsafe Timeout
Number of Trace Messages

128
128
16
0
Yes
080H
0100H
0400H
255

VM86 Dispatcher Reserved Interrupts Configuration

Table A-11. DOS Extender Reserved Interrupts

DOS Extender
Reserved Interrupts Default

Master Level 0
Master Level 2

Clock
Slave PIC

■■ ■■ ■■

Programming Concepts for DOS and Windows Index 123

Index

A
Above Board, Intel, 12
admin.exe file, 54
ASCIIZ string type, 60
automatic DDE startup, 66

C
callback function

conversation callback, 82, 85, 101
data callback, 82
link callback, 77, 91, 99
registering, 104

cmotor.exe file, 111
cold link, 60
cold link conversation

initiating, 72
responding to, 81

config, loadinfo file, 55
config.nia file, 54
conversations, 60
CPU registers, 27

D
data, structure, DOS, 43
data buffer, 103
data transfer, 23
DDE

client functions, 71
compiler selection, 64
data buffer, 73, 103
data item name, 102
error codes, 88
library, 81
library summary, 86
message routers, 59

restrictions, 64
server functions, 80
terminology, 60

DDE conversations, 101
cold link, 72, 81
iRMX to Windows applications, 70
warm link, 77
Windows to iRMX applications, 79

DDE data buffer, 82
size, 96, 103

DDE flag
DDE_MAXIMIZED, 97
DDE_MINIMIZED, 97
DDE_NORMAL, 97

DDE function code
DDE_CLOSE_LINK, 103
DDE_EXECUTE, 103
DDE_HOT_LINK, 103
DDE_INITIATE, 101
DDE_POKE, 103
DDE_REQUEST, 103
DDE_TERMINATE, 101
DDE_WARM_LINK, 103

DDE library, buffer, 101
copying retrieved data, 96
initializing, 100
invoking conversation callback

function, 101
invoking data callback function, 102
invoking link callback function, 99
notifying, 106

DDE library functions
client_dde_close_link function, 76, 78, 89
client_dde_execute function, 74, 90
client_dde_initiate function, 72, 91
client_dde_open_hot_link function, 75, 93
client_dde_open_warm_link

function, 77, 94
client_dde_poke function, 73, 95
client_dde_request function, 73, 96

124 Index

client_dde_run_application
function, 74, 97

client_dde_terminate function, 75, 98
client_link_callback function, 99
dde_library_init function, 81, 100
server_conversation_callback

function, 101
server_data_callback function, 82, 102
server_dde_register function, 81, 104
server_dde_terminate function, 85, 105
server_dde_update_link function, 106

DDE message
WM_DDE_ACK, 75, 82, 83, 84
WM_DDE_ADVISE, 75, 77, 83
WM_DDE_DATA, 76, 82
WM_DDE_EXECUTE, 74
WM_DDE_INITIATE, 82
WM_DDE_POKE, 73
WM_DDE_REQUEST, 82
WM_DDE_TERMINATE, 85
WM_DDE_UNADVISE, 76, 84

DDE router
automatic startup, 66
manual startup, 66

DDE Windows application, running, 97
default configuration, 115
deleting, DOS programs, 40
deleting objects, 25
deletion handler, 40

extension, 39
demo\c\vm86ext\ directory, 41, 46
device driver, iRMX OS using DOS, 43
dispatcher job restrictions, 40
dlc.exe file, 51, 56
DOS

and iRMX file access, 18
data structure, 43
deleting programs, 40
encapsulated file driver, 18
encapsulated task, 14
interrupt handling, 39
interrupts masked, 50
iRMX OS making requests, 43
iRMX OS using device driver, 43
real-time extensions, 15

DOS RTE jobs, 25
dosdevs.c file, 46

dosext.asm file, 41

dosext.c file, 41

dosrmx directory, 51

dosrtec.lib file, 26

dosrtel.lib file, 26

dosrtes.lib file, 26

dynamic data exchange, See DDE

data type, 65

network names, 65

router configuration, 65

E
EDOS file driver, 18

error codes, 88

examples
DDE server, 107
DOS RTE, 28
installing an extension, 41
making rqe_dos_request call, 47
setting DOS data structure, 46

extensions
deactivating, 39
deletion handler, 39, 40
entry point, 38
restrictions, 40
writing, 37

F
function code, RTE, 27
function_code, 103

H
himem.job job, 14
hot link, 60
hot link conversation

closing, 89
initiating, 75
notifying DDE library, 106
opening, 93

Programming Concepts for DOS and Windows Index 125

I
i*.job, 21
i*.job file, 68
IDT, 38
iNA 960 network job, 68
inadde.lib file, 61, 87
initializing the DDE library, 100
installing a VM86 extension, 38
intel\include\ directory, 88
interrupt, levels, 37
Interrupt Descriptor Table, 38
interrupt handler

software, 37
VM86 Mode-generated, 39

interrupts
DOS, description of handling, 38
masked, DOS, 50
response time, 49
RTE, 27
vectored to PVAM handler, 39

L
loadinfo file, 22, 67
loadname command, 53

M
machine name, 81, 101
manual DDE router startup, 66
message routers, 59
MS-DOS, 11

N
net3c.lib file, 87
netrdr.job job, 18, 53
NULL data_value_p parameter, 106

O
objects, deleting, 25
OpenNET protocol, 61

P
partitions, DOS and iRMX OS, 18
PC-DOS, 11
pcnet.exe file, 18, 53
PL/M 286 convention, 27
pointer

parameter, 25
real mode, 25

pre-configured options, 115
application loader, 117
BIOS, 118
device drivers, 119
EIOS, 118
human interface, 117
memory, 116
Nucleus, 120
Nucleus Communication Service, 121
sub-systems, 116
System Debug Monitor, 120
VM86 Dispatcher reserved interrupts, 121

protected mode, 14, 37
PVAM, 37

interrupt handler, 39

R
real mode

pointer, 25
stack, 27

real-time extensions, 15
registering iRMX DDE server, 104
restrictions, extension, 40
rls.job job, 51, 53, 55
rmx.ini file, 22
rmx386\demo\dde\vb directory, 111
rmx386\demo\rte\lib\ directory, 25
rmx386\demo\rte\obj\ directory, 28
rmx386\demo\wterm directory, 36
rmx386\jobs\ directory, 14
rmx4win.dll file, 25
rmxc.h file, 26
rmxdde.h file, 71, 99, 101
rmxext.c file, 41
rmxfuncs.obj file, 25
rmxintfc.h file, 26
rmxtsr.exe file, 14

126 Index

ROM BIOS, iRMX OS making requests, 43
routenb.exe file, 61
router.exe file, 67
routetcp.exe file, 61
rqe_dos_request call, 40, 43
rqe_read_segment call, 23
rqe_set_vm86_extension call, 37
rqe_write_segment call, 23
rqegetrmxstatus call, 25
RTE, 15

calls, 25
function code, 27
functions, 28
invoking, 27
relation to Nucleus system calls, 25
restrictions, 27
software interrupt request, 27

rtedde.lib file, 87

S
separator character, 65
service information, inside back cover
service name, 81, 101, 102
setname command, 53
smotor.* file, 112
smw.job job, 14
socket3c file, 87
stack, real mode, 27
string types, 60
system calls

BIOS restrictions, 40
Nucleus restrictions, 40

T
tcp/ip protocol, 61
tcpdde.job file, 104
tcpdde.lib file, 61, 87
topic name, 60, 101, 102
transferring data, 23

V
Virtual 86 Mode, 14
Visual Basic DDE application, 113
VM86 dispatcher, 37
VM86 extension, installing, 38

W
warm link, 60
warm link conversation

closing, 89
notifying the DDE library, 106
opening, 94

win.ini file, 72
winsock.dll file, 68
wlc.exe file, 51, 56
writing extensions, 37
wterm file, 36

WE'D LIKE YOUR OPINION

Please rate the following: Excellent Good Fair Poor

■ Manual organization ❒ ❒ ❒ ❒

■ Technical accuracy ❒ ❒ ❒ ❒

■ Completeness ❒ ❒ ❒ ❒

■ Clarity of concepts and wording ❒ ❒ ❒ ❒

■ Quality of examples and illustrations ❒ ❒ ❒ ❒

■ Overall ease of use ❒ ❒ ❒ ❒

Comments: __

__

__

__

__

__

Please list any errors you found (include page number): ________________________________

__

__

__

__

__

Name __

Company Name __

Address ___

May we contact you? ______________________ Phone _______________________________

Thank you for taking the time to fill out this form.

iRMX® Programming Concepts
for DOS and Windows

469154-003

Please fold here and close the card with tape. Do not staple.

POSTAGE WILL BE PAID BY ADDRESSEE

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

WE'D LIKE YOUR COMMENTS....

This document is one of a series describing Intel products. Your
comments on the other side of this form will help us produce better
manuals. Each reply will be reviewed. All comments and suggestions
become the property of Intel Corporation.

If you are in the United States and are sending only this card, postage
is prepaid.

If you are sending additional material or if you are outside the United
States, please insert this card and any enclosures in an envelope. Send
the envelope to the above address, adding "United States of America" if
you are outside the United States.

Thanks for your comments.

BUSINESS REPLY MAIL

OPD Technical Publications, HF2-72
Intel Corporation
5200 NE Elam Young Parkway
Hillsboro, OR 97124-9978

FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

International Sales Offices

AUSTRALIA
Intel Australia Pty. Ltd.
Unit 1A
2 Aquatic Drive
Frenchs Forest, NSW, 2086
Sydney

Intel Australia Pty. Ltd.
711 High Street
1st Floor
East Kw. Vic., 3102
Melbourne

BRAZIL
Intel Semiconductores do Brazil LTDA
Avenida Paulista, 1159-CJS 404/405
CEP 01311-Sao Paulo - S.P.

CANADA
Intel Semiconductor of Canada, Ltd.
999 Canada Place
Suite 404, #11
Vancouver V6C 3E2
British Columbia

Intel Semiconductor of Canada, Ltd.
2650 Queensview Drive
Suite 250
Ottawa K2B 8H6
Ontario

Intel Semiconductor of Canada, Ltd.
190 Attwell Drive
Suite 500
Rexdale M9W 6H8
Ontario

Intel Semiconductor of Canada, Ltd.
1 Rue Holiday
Suite 115
Tour East
Pt. Claire H9R 5N3
Quebec

CHINA/HONG KONG
Intel PRC Corporation
China World Tower, Room 517-518
1 Jian Guo Men Wai Avenue
Beijing, 100004
Republic of China

Intel Semiconductor Ltd.
32/F Two Pacific Place
88 Queensway
Central
Hong Kong

FINLAND
Intel Finland OY
Ruosilantie 2
00390 Helsinki

FRANCE
Intel Corporation S.A.R.L.
1, Rue Edison-BP 303
78054 St. Quentin-en-Yvelines
Cedex

GERMANY
Intel GmbH
Dornacher Strasse 1
85622 Feldkirchen bei Muenchen
Germany

INDIA
Intel Asia Electronics, Inc.
4/2, Samrah Plaza
St. Mark's Road
Bangalore 560001

ISRAEL
Intel Semiconductor Ltd.
Atidim Industrial Park-Neve Sharet
P.O. Box 43202
Tel-Aviv 61430

ITALY
Intel Corporation Italia S.p.A.
Milanofiori Palazzo E
20094 Assago
Milano

JAPAN
Intel Japan K.K.
5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

Intel Japan K.K.
Hachioji ON Bldg.
4-7-14 Myojin-machi
Hachioji-shi, Tokyo 192

Intel Japan K.K.
Bldg. Kumagaya
2-69 Hon-cho
Kumagaya-shi, Saitama 360

Intel Japan K.K.
Kawa-asa Bldg.
2-11-5 Shin-Yokohama
Kohoku-ku, Yokohama-shi
Kanagawa, 222

Intel Japan K.K.
Ryokuchi-Eki Bldg.
2-4-1 Terauchi
Toyonaka-shi, Osaka 560

Intel Japan K.K.
Shinmaru Bldg.
1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100

Intel Japan K.K.
Green Bldg.
1-16-20 Nishiki
Naka-ku, Nagoya-shi
Aichi 460

KOREA
Intel Korea, Ltd.
16th Floor, Life Bldg.
61 Yoido-dong, Youngdeungpo-
Ku
Seoul 150-010

MEXICO
Intel Technologica de Mexico
S.A. de C.V.
Av. Mexico No. 2798-9B, S.H.
44620 Guadalajara, Jal.,

NETHERLANDS
Intel Semiconductor B.V.
Postbus 84130
3009 CC Rotterdam

RUSSIA
Intel Technologies, Inc.
Kremenchugskaya 6/7
121357 Moscow

SINGAPORE
Intel Singapore Technology, Ltd.
101 Thomson Road #08-03/06
United Square
Singapore 1130

SPAIN
Intel Iberia S.A.
Zurbaran, 28
28010 Madrid

SWEDEN
Intel Sweden A.B.
Dalvagen 24
171 36 Solna

TAIWAN
Intel Technology Far East Ltd.
Taiwan Branch Office
8th Floor, No. 205
Bank Tower Bldg.
Tung Hua N. Road
Taipei

UNITED KINGDOM
Intel Corporation (U.K.) Ltd.
Pipers Way
Swindon, Wiltshire SN3 1RJ

If you need to contact Intel Customer Support
Contacting us is easy. Be sure that you have the following information available:

• Your phone and FAX numbers ready • Your product’s product code
• Complete description of your hardware • Current version of all software you use

or software configuration(s) • Complete problem description

Type of Service How to contact us
FaxBACK*
fax-on-demand system

24 hrs a day, 7 days a week

Using any touch-tone phone,
have technical documents sent to
your fax machine. Know your
fax number before calling.

U.S. and Canada: (800) 628-2283
(916) 356-3105

Europe: +44-1793-496646
Intel PC and LAN
Enhancement Support
BBS

24 hrs a day, 7 days a week

Information on products,
documentation, software drivers,
firmware upgrades, tools,
presentations, troubleshooting.

U.S and Canada: (503) 264-7999
Europe: +44-1793-432955

Autobaud detect
8 data bits, no parity, 1 stop

CompuServe*
Information Service

24 hrs a day, 7 days a week

Worldwide customer support:
information and technical
support for designers, engineers,
and users of 32-bit iRMX OS
and Multibus product families.

Worldwide Locations:
(check your local listing)

Type: GO INTELC once online.

Customer Support Intel Multibus Support engineers
offering technical advice and
troubleshooting information on
the latest Multibus products.

U.S. and Canada: (800) 257-5404
(503) 696-5025

FAX: (503) 681-8497
Hrs: M-F; 8-5 PST

Europe: +44-1793-641469
FAX: +44-1793-496385

Hrs: M-F; 9-5:30 GMT
Hardware Repair Multibus board and system

repair.
U.S. and Canada: (800) 628-8686

(602) 554-4904
FAX: (602) 554-6653

Hrs: M-F; 7-5 PST
Europe: +44-1793-403520

FAX: +44-1793-496156
Hrs: M-F; 9-5:30 GMT

Sales Intel Sales engineers offering
information on the latest iRMX
and Multibus products and their
availability.

Worldwide: Contact your local Intel
office or distributor

U.S. and Canada: (800) 438-4769
(503) 696-5025

FAX: (503) 681-8497
Hrs: M-F; 8-5 PST

Correspondence
Mail letters to:

Worldwide:

Intel Customer Support
Mailstop HF3-55
5200 NE Elam Young Parkway
Hillsboro, Oregon 97124-6497

Europe:

European Application Support
Intel Corporation (UK) Ltd.
Pipers Way
Swindon, Wiltshire
England SN3 1RJ

* Third-party trademarks are the property of their respective owners.

	Other iRMX Manuals
	iRMX® Programming Concepts for DOS and Windows
	Quick Contents
	Contents
	1. Introduction
	Understanding the Environments
	Running DOS and the iRMX® OS on the Same System
	VM86 Dispatcher
	VM86 Protected Mode Extensions

	Windows Support
	Making DOS/ROM BIOS System Calls from the iRMX OS
	File Access
	EDOS File Driver
	Networking

	File and Device Drivers
	Loadable File and Device Drivers

	System Configuration

	2. DOS Real-Time Extension
	RTE System Calls
	RQEGetRmxStatus Call
	DLL for RTE Interfaces
	RTE Files

	RTE Objects Limitation
	Making an RTE System Call
	Using RTE Functions

	DOS RTE Demonstration
	Example: Running the Demonstration Program

	Example: WTERM Demonstration Program

	3. VM86 Protected Mode Extensions
	Installing VM86 Protected Mode Extensions
	iRMX Interrupt Levels
	Extension Procedure Operation: DOS Interrupt Handling
	Deletion Handler Operation
	Extension System Call Restrictions
	Extension Installation Examples

	4. Making DOS and ROM BIOS System Calls
	Making DOS and ROM BIOS Calls from an iRMX Application
	Example: Get Free Disk Space
	Get Redirection List Entry Example

	5. General Information
	Interrupt Virtualization and Determinism
	Real-time Fence
	iRMX-NET Access From a DOS Server

	6. Remote Launch
	Invoking iRMX Programs from DOS or Windows
	Using the iRMX Load Server with iRMX for Windows
	Using MS-NET with the PCLINK2
	Using RLS.JOB
	Running RLS.JOB

	Using DLC.EXE
	Using WLC.EXE

	7. Using DDE
	Real-time DDE Capabilities
	DDE Terminology
	Communications Protocols
	iRMX DDE Capabilities
	iRMX DDE Restrictions

	Configuring the Windows DDE Routers
	Enabling DDE Routing on the Windows System

	Preparing the Windows Environment for NetDDE
	Preparing the iRMX Environment for NetDDE
	DDE Programming
	DDE Messages
	iRMX Client to Windows Server Conversations
	Windows Client to iRMX Server Conversations

	DDE Library
	Summary of DDE Library Functions
	Error Codes
	DDE Library Functions

	client_dde_close_line
	client_dde_execute
	client_dde_initiate
	client_dde_open_hot_link
	client_dde_open_warm_link
	client_dde_poke
	client_dde_request
	client_dde_run_application
	client_dde_terminate
	client_link_callback
	dde_library_init
	server_conversation_callback
	server_data_callback
	server_dde_register
	server_dde_terminate
	server_dde_update_link
	Establishing DDE Communications Between Windows and iRMX Applications
	DC Motor Example
	DC Motor Description
	DDE Client Supervisor/DDE Server Controller Implementation
	Visual Basic Supervisor Implemented as DDE Client
	iRMX Controller Implemented as a DDE Server
	DDE Server Supervisor/DDE Client Controller Implementation
	Running the Example

	A. iRMX for Windows Default Configuration
	Sub-System Configuration
	Memory Configuration
	Human Interface Configuration
	Application Loader Configuration
	Extended I/O System Configuration
	Basic I/O System Configuration
	Device Drivers Configuraton
	System Debug Monitor Configuration
	Nucleus Configuration
	Nucleus Communication Service Configuration
	VM86 Dispatcher Reserved Interrupts Configuration

	Index
	Service Information

