
.... "_ ... -... ~ .. , ... -'" _ .. · co ... " <."""... r>....... _". , ... "... ..._'n "'''I>

....... ,. -"'<1, _".' * ,.. _._ <000 __

<-,., ..., -_.

Real-Time and
Systems Programming

for pes

Real-Time and
Systems Programming

for pes

TAB Books

Using the iRMX® for
Windows® Operating System

Christopher Vickery

Division of McGraw-Hill, Inc.
Blue Ridge Summit, PA 17294-0850

Intel386 trademarks of Intel
Intel486

iRMX registered trademark of Intel

Windows registered trademark of Microsoft Corp.

Library of Congress Cataloging-in-Publication Data

Vickery, Christopher.
Real-time systems programming for PCs : using the iRMX for Windows

operating system / by Christopher Vickery.
p. cm.

Includes index.
ISBN 0-07-067466-3 (pbk.)

1. Real-time programming. 2. Operating systems (Computers)
3. iRMX for Windows. 4. Microcomputers - programming. I. Title.
QA 76.54.V53 1993
005.4'469 - dc20 92-42856

CIP

Copyright © 1993, by McGraw-Hill, Inc. Printed in the United States
of America. Except as permitted under the United States Copyright Act
of 1976, no part of this publication may be reproduced or distributed in
any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publishers.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 9 9 8 7 6 5 4 3

ISBN 0-07-067466-3

The editors for this book were Gerald Papke and Marianne Krcma, and
the production supervisor was Katherine G. Brown. This book was set in
ITS Century Light.

Printed and bound by R.R. Donnelley, Crawfordsvile, Va.

Information contained in this work has been obtained by
McGraw-Hill, Inc. from sources believed to be reliable. However,
neither McGraw-Hill nor its authors guarantees the accuracy or
completeness of any information published herein and neither
McGraw-Hill nor its authors shall be responsible for any errors,
omissions, or damages arising out of use of this information. This
work is published with the understanding that McGraw-Hill and
its authors are supplying information but are not attempting to
render engineering or other professional services. If such services
are required, the assistance of an appropriate professional should
be sought.

For more information about other McGraw-Hill materials,
call1-800-MCGRA W in the United States. In other
countries, call your nearest McGraw-Hill office.

Acknowledgments xv
Introduction xi

Contents

Part 1 Basics 1

Chapter 1. Introduction to Real-Time and Systems Programming 3

1.1 Overview 3
1.2 Systems Programming 3

1.2.1 Constructing an Operating System 4
1.2.2 Developing Development Tools and Utilities 6

1.3 Real-Time Systems 1
1.3.1 Real-Time and Embedded Systems 8
1.3.2 The Structure of Real-Time and Embedded Systems 9
1.3.3 Factors Affecting Real-Time Performance 11
1.3.4 The Scheduling Problem 14

1.4 iRMX in Perspective 11
1.4.1 History and Versions of iRMX 18
1.4.2 MS-DOS, OS-2, and Unix 19
1.4.3 POSIX 22

Chapter 2. Using an iRMX System 27

2.1 Overview 21

2.2 iRMX Platforms 28
2.3 Logging on to an iRMX System 30
2.4 Entering Commands 31

2.4.1 HI Commands 32
2.4.2 CLI Commands 35

2.5 File Management
2.5.1 File Protection
2.5.2 The File Driver Concept
2.5.3 Named Files
2.5.4 Using Floppy Disks
2.5.5 Accessing Network Files

2.6 Printing Files
2.7 Remote Login
2.8 Error Conditions

41
41
43
43
51
53

56

56

51

Chapter 3. Developing an Application 61

3.1 Overview 61
3.1.1 Program Modules 62
3.1.2 Development and Target Environments 65
3.1.3 Development Steps 66
3.1.4 Development Tools 67

3.2 A Sample Application 67
3.3 Text Editing 70

3.3.1 Aedit Usage Summary 71
3.4 Compiling 73

3.4.1 Source Modules and Source Files 74
3.4.2 Include Files 74
3.4.3 Listing Files 77
3.4.4 Object Files and Object Modules 78

3.5 Segmentation Models 79
3.6 Binding an HI Command 80

3.6.1 Input Files: Object Files and Libraries 80
3.6.2 Output Files: The Map and Load Files 85
3.6.3 Binder Controls 88

3.7 Automating the Process 89
3.7.1 Command Files 89
3.7.2 The make Command 91

3.8 Debugging HI Commands 94
3.8.1 Using Only the Application Loader 94
3.8.2 Using the Debug Monitor 95
3.8.3 Using the System Debugger 96
3.8.4 Using SoftScope 96

3.9 Producing Linkable and Bootstrap-Loadable Modules 99
3.9.1 Binder Controls for Linkable Modules 99
3.9.2 Adding a Linkable Module to the OS 100

3.10 Debugging First-Level Jobs 101

Chapter 4. Development Languages 103

4.1 Overview 103
4.2 Source Language Issues 104

4.2.1 Include Files 106
4.2.2 Macro Preprocessing 108
4.2.3 I/O Support 109
4.2.4 Floating Point Support 110
4.2.5 16- and 32-bit Targets 113
4.2.6 Scoping Rules 115
4.2.7 Function Prototypes 116

4.3 Run-time Considerations 117
4.4 Congruence with iRMX 123

4.4.1 Character Strings 123
4.4.2 Parameter Passing 124
4.4.3 Pointers 131
4.4.4 I/O Connections 133
4.4.5 Multitasking and Multiple Jobs for C Programs 134

4.5 Debugging 136
4.5.1 Exception Handling 136
4.5.2 SoftScope Debugging 136

Chapter 5. The Intel x86 Architecture 139

5.1 Overview 139
5.1.1 CPU Registers 139

5.2 Memory Segmentation 141
5.2.1 iRMX Segmentation Rationale 145
5.2.2 Procedure Calls and Stack Segments 146
5.2.3 Memory Protection 151
5.2.4 Other Types of Descriptors 152
5.2.5 Privilege Levels 154
5.2.6 Paging 155

5.3 Interrupt Processing 159

5.4 Call, Task, Interrupt, and Trap Gates 162

5.5 Virtual 8086 Mode 164

5.6 I/O Processing 165

Part 2 iRMX Concepts and Features 173

Chapter 6. Fundamental iRMX Objects and Structures 175

6.1 Overview 175
6.2 Object·Based Systems 176

6.3 Object-Oriented Systems 179
6.3.1 Polymorphism 179
6.3.2 Derived Classes, Inheritance, and Code Reusability 180
6.3.3 Message PaSSing 180

6.4 Survey of iRMX Layers 181
6.4.1 The Nucleus 182
6.4.2 The Basic I/O System 183
6.4.3 The Extended I/O System 185
6.4.4 The Application Loader 186
6.4.5 The Human Interface 186
6.4.6 Universal Development Interface 187

6.5 iRMX Fundamental Objects 188
6.5.1 Memory Segments 188
6.5.2 Jobs 191
6.5.3 Tasks 198
6.5.4 Examining iRMX Objects 200

6.6 More about the Nucleus 202
6.6.1 Job Management 202
6.6.2 Task Management 207

6.7 Exception Handling 212
6.7.1 Types of Exceptions 212
6.7.2 Handling Exceptions and Faults 214
6.7.3 The Default Exception Handler for a Job 220

6.8 The iRMX System Call Mechanism 221

Chapter 7. Basic iRMX System Calls 225

7.1 Overview 225

7.2 Task Synchronization and Communication 237
7.2.1 Semaphores 242
7.2.2 Mailboxes 243

7.2.3 Regions 246
7.2.4 Deadlock 248

7.3 Buffer Pools 249
7.4 Job Management 251

7.4.1 Creating a Nucleus Job 252
7.4.2 Creating an I/O Job 254
7.4.3 Using the AL 259
7.4.4 HI Offspring Jobs 261

Chapter 8. 1/0 Management 265

8.1 Overview 265
8.2 Data Operations 266

8.2.1 An I/O Model 266
8.2.2 Sample I/O Programs 270
8.2.3 Synchronous and Asynchronous I/O Operations 273
8.2.4 10RSs and DUIBs 278
8.2.5 I/O Connection Objects 279
8.2.6 System Calls for Managing Connection Objects 280
8.2.7 System Calls for Data Transfers 289
8.2.8 Seek and Truncate Operations 291

8.3 Special Functions 295
8.3.1 Format Track 297
8.3.2 Get/Set Terminal Data 298
8.3.3 Set Signal Character 302

8.4 File System Structure and Management 303
8.4.1 Files and Directories 304
8.4.2 Fnodes 307
8.4.3 Housekeeping Files 309

8.5 Time-of-Day Management 314

8.6 Logical Name Reprise 316

Chapter 9. Extending iRMX: Adding Device Drivers 319

9.1 Overview 319
9.2 I/O Terminology 320
9.3 Logical Structure of a Device Driver 321

9.3.1 Interface with the Device Controller 321
9.3.2 Interface with the BIOS 327
9.3.3 The Driver Task 331
9.3.4 Driver Task and Interrupt Task Interactions 334

9.4 Common, Random, and Terminal Drivers 343
9.4.1 Common Drivers 346
9.4.2 Random Drivers 349
9.4.3 Housekeeping and Utility Routines for Common and

Random Drivers 349
9.4.4 Terminal Drivers 351

9.5 Adding a Device Driver to the System 355
9.5.1 Loadable Device Drivers 356
9.5.2 Using the Interactive Configuration Utility 357
9.5.3 Dynamic Device Drivers 358
9.5.4 Debugging Strategies for Device Drivers 360

Chapter 10. Extending iRMX: Adding System Calls and
Type Managers 363

10.1 Overview 363

10.2 A Sample Type Manager 365

10.3 Adding a System Call to iRMX 386
10.3.1 Installing the Call Gate 388
10.3.2 The Interface Procedure 389
10.3.3 Receiving Parameters in the System Call Procedure 394
10.3.4 Design of a System Call Procedure 396
10.3.5 Exit Procedures 397

10.4 Adding a Type Manager 399
10.4.1 Creating an Extension 399
10.4.2 Managing Composite Objects 401
10.4.3 Deleting Composites and Extensions 403

Chapter 11. iRMX Network Programming

11.1 Overview
11.2 A Network Model
11.3 The iRMX Networking Context

11.3.1 iRMX-Net
11.3.2 MS-Net

11.4 Network Mechanisms
11.4.1 Packets and Messages
11.4.2 Network Connections

11.5 Transport Address Buffers
11.5.1 Nul12 Network Addresses
11.5.2 Static and Dynamic Internetwork Addresses

11.6 The Request Block Interface to iNA
11.6.1 The Request Block Header
11.6.2 Function Prototypes for RB Operations
11.6.3 Alternative Interfaces to iNA

11.7 A Datagram Example
11.8 Virtual Circuit Operations
11.9 Name Server Operations

11.9.1 The RB Interface to the Name Server
11.10 The Network Management Facility
11.11 Data Link Operations

Chapter 12. iRMX for Windows

409

409

409

412
413
416

417
418
420

421
423
425

425
427
428
429

430

443

445
446

459

466

469

12.1 Overview 469

12.2 Console Ownership 470

12.3 File System Compatibility 473

12.3.1 Accessing a DOS Volume from iRMX 475
12.3.2 AcceSSing an iRMX Volume from DOS 476

12.4 Interrupt Management 477
12.5 System Call Compatibility 478

12.5.1 iRMX Access to DOS System Calls 479
12.5.2 The DOS Real-Time Extension: Making iRMX System

Calls from DOS 481
12.5.3 Invoking RTE Functions from DOS Programs 483

12.6 Memory Management
12.6.1 Accessing iRMX Memory from DOS
12.6.2 Coexisting with Other Memory Managers
12.6.3 DOS Expanded Memory and Extended Memory

Managers
12.6.4 The DOS Protected Mode Interface
12.6.5 Memory Management Summary

12.7 PME: VM86 Protected Mode Extensions
12.8 DOE: Communication with Windows Applications
12.9 Network Compatibility

12.10 Run-time Configuration
12.11 Summary

Appendix A. SoftScope III Command Summary

Appendix B. Terminal Support Code

Appendix c. Stream 1/0

Appendix D. iRMX System Calls

Glossary
References
Index

490
490
491

494
495
497
498
503
508

511
513

515

529

535

551

567
581
583

Introduction

Historically, little support and little discipline existed for either real-time
or systems programming on the PC platform. With the advent of more
powerful PC computers, however, PCs have become the development tar
get for increasingly ambitious applications. With the arrival of iRMX for
Windows, large real-time systems integrated with DOS and/or Microsoft
Windows are included in the set of possible applications that can be devel
oped for PCs, the most ubiquitous computing platform available.

There is still little support or discipline for DOS systems programmers,
but the situation is much better for iRMX. As a real-time operating sys
tem, iRMX has traditionally provided its application developers with a set
of coordinated resources that systems programmers have traditionally
needed, but had to do without. These resources include the management of
memory, concurrency, interrupts, and peripheral devices. As an object
based operating system, iRMX provides these resources in an integrated
and protected fashion that allows programmers to develop fast, robust sys
tems. The reason a single book can cover both real-time and systems pro
gramming is that iRMX provides real-time developers with the same facil
ities the systems programmers used at Intel to develop iRMX itself.

Although most readers of this book will undoubtedly be real-time devel
opers, specifically those who work with iRMX, this book's origin is actually
academic. Computer science curricula at both the undergraduate and grad
uate levels typically include a course on operating systems principles. Such
a course is often a reading course that covers the traditional topics of re
source management and concurrency. Actual software development, if
any, is often limited to simulations due to the lack of suitable laboratory
facilities for true systems programming. For several years, I have taught
operating systems laboratory courses that use relatively inexpensive com
puter systems running iRMX. The courses, which are offered to upper
level undergraduates or graduate-level students, have a traditional operat
ing systems principles course that used texts such as Deitel (1990) or
Milenkovic (1992) as a prerequisite. The goal ofthe laboratory courses has
been to use hands-on experience to provide solid mastery of the principles
covered in other operating systems courses.

xi

xii Introduction

Two other approaches could be taken to obtain this laboratory experi
ence. One would be to develop systems code from scratch. For example,
Wirth's first Modula programming language provided all the constructs
needed to build a complete operating system with the addition of only a 98-
byte runtime kernel. This approach certainly allows the student to deal
with all the fundamental issues of systems programming, but it makes it
very difficult to deal with the levels of complexity encountered in real sys
tems.

The second approach is to study and modify an existing operating sys
tem. The Mt. Xinu (Comer & Fossum, 1988) and Minix (Tannenbaum,
1987) projects take this approach by providing the source code for Unix®
like systems for students to work with. Another way to use this approach is
to let the student modify and extend a real operating system. Unfortu
nately, "real" systems are synonymous with "proprietary" systems, which
means that source code and the tools for working at the systems program
ming level are not normally available to students. Although Unix is a pro
prietary system, it is often used as a basis for operating system laboratory
courses because AT&T has made source code licenses relatively accessible
to universities. The list of books that can be used for Unix laboratory
courses is extensive, and includes Andleigh (1990), Bach (1986), Ker
nighan and Pike (1984), Leffler et al. (1989), and Rochkind (1985), among
others.

Enter real-time systems, the category of applications that must be both
logically and temporally correct. Real-time applications are event driven:
asynchronous external events trigger computation sequences, which must
be completed before temporal deadlines pass in order for the application to
operate correctly. Real-time application programs must deal explicitly
with exactly the same issues as systems programs, namely concurrency and
resource management.

The premise of this book is that a commercially available development
environment for real-time applications provides an excellent laboratory
vehicle for studying systems programming. Of course, using such an envi
ronment also provides the student with a working knowledge ofreal-time
systems in general and with the chosen development environment in par
ticular. In addition, Real-Time and Systems Programming for PCs is a
practical laboratory guide to systems programming concepts and tech
niques.

A number of real-time systems are available commercially. These fall
into the two broad categories of kernels and operating systems. Kernels
provide support for concurrency control and resource management, but do
not provide complete operating system functionality such as a full I/O sys
tem, networking functions, and the like. To use a real-time system to study
systems programming, it is better to choose a real-time operating system
over a kernel not only because an operating system provides a complete set

Introduction xiii

of operating system facilities to investigate, but also because a single plat
form can be used for both development and testing.

From an academic viewpoint, Intel's iRMX for Windows operating sys
tem is a particularly attractive vehicle for an operating system laboratory.
One reason is that the operating system runs on relatively inexpensive PC
platforms. Another reason is that Intel has historically provided very good
support for universities choosing to use iRMX in their courses.

A number of alternative real-time systems can be chosen for an operat
ing systems laboratory. Particularly interesting are several systems that
run on different manufacturers' processors (not just Intel's), and some
newly emerging systems based on the POSIX 1003.4 real-time standard.

Real Time System Programming for PCs is based on my experience using
iRMX to teach semester-long laboratory courses on systems programming
at the graduate and advanced undergraduate level at Queens College. The
backbone of the course has been a sequence of projects designed to illumi
nate various features of the operating system (OS). My students are al
ready familiar with the principles of systems programming, so little time is
spent explaining concepts of memory management, process scheduling, or
concurrency control. Rather, the first project is usually a simple applica
tion designed to familiarize students with the iRMX development environ
ment' which is significantly different from the sheltered environments
used to provide instruction in computer science principles and applica
tions programming. A second project typically involves developing a utility
program that exposes the students to most of the resources and facilities of
the as. A third project concentrates on concurrency by developing either a
program to demonstrate or exercise the multitasking features of the sys
tem or a device driver, including interrupt handlers and request block man
agement. Other projects have involved networking utilities, library man
agement, and source code preprocessing.

The book is logically divided into two parts. Part I is an overview of real
time and systems programming concepts, the use of an iRMX system and
its development tools, and the architecture oflntel microprocessors. Chap
ter 1 introduces the fundamental concepts of real-time systems: determi
nacy, speed, and robustness. Chapter 2 is a guide to iRMX from a user's
perspective: how to log on, how to use the file system, how to use develop
ment tools, and the like. Chapter 3 discusses the development process for
iRMX applications. If the reader is familiar only with student compilers or
fully integrated development environments, the material in this chapter is
particularly important; otherwise you may need only to skim through the
chapter to get some iRMX-specific details. The traditional development
languages for iRMX have been assembler and PLM, a PL/I-like language
developed by Intel specifically for use with its own microprocessors. With
the emergence of C as the most commonly used language for both applica
tion and systems programming in other environments, C is rapidly replac-

xiv Introduction

ing PLM as the standard high-level language for iRMX programming.
Chapter 4 investigates the language issues in developing iRMX code. An
assumption throughout the remainder of the book is that the reader will be
able to follow code written in either PLM or C.

The first part ofthe book ends with a chapter on the architecture of the
Intel x86 microprocessor. This chapter on hardware is included in a book
on software development simply because of the nature of both real-time
and systems programs: their software comes in the most direct contact
with the processor itself. Programmers must understand the underlying
processor well in order to develop efficient and fast real-time or operating
systems. It is not necessary to program in assembly language to do most
real-time and systems programming tasks because both C and PLM can be
used as effective high-level System Implementation Languages (SILs).
This book, however, does include some assembly language code and many
references to assembly language concepts. Chapter 5 is designed to prepare
the reader to understand that material without actually covering assembly
language programming.

The second part of the book covers the iRMX operating system itself.
Although the book features the iRMX for Windows operating system,
most of the material covered applies to other versions of the operating sys
tem as well. Readers interested in iRMX I, however, which operates in the
processor's real mode, must remember that the book assumes a protected
mode version of the operating system (iRMX II, iRMX III, or iRMX for
Windows) in much of the material presented in the second part. Some of
the sample code also assumes a 32-bit version of the OS (iRMX III or
iRMX for Windows). Finally, the sample code presented in the book has
been tested only on an iRMX for Windows system. It may well work on
other versions of the operating system, but is not guaranteed to do so.

Part II begins by introducing some fundamental concepts about iRMX
in chapter 6. These concepts include the object-based nature of the system
and a description of the three fundamental types of iRMX objects: jobs,
tasks, and memory segments. Chapter 7 surveys many basic iRMX system
calls, and chapter 8 deals specifically with the system calls used for I/O pro
gramming. Chapters 9 and 10 introduce two important facilities that
iRMX provides for extending the operating system. Chapter 9 discusses
the issue of adding device drivers, and chapter 10 covers the facilities avail
able for adding new object types and system calls to the operating system
itself.

Chapter 11 introduces the networking facilities provided with iRMX.
The use of a network is integrated with the rest ofthe book, but this chap
ter specifically discusses the programming issues involved in interacting
with the various parts of an iRMX network.

Finally, chapter 12 is devoted to those aspects of iRMX for Windows
that are not present in other versions of the operating system. Some of
these features, like console sharing, interrupt management, and file shar-

Introduction xv

ing, are necessary to allow iRMX, DOS, and Windows to operate in an in
tegrated, reliable fashion. Other features, such as run-time configuration
and loadable operating system layers, are conveniences that were intro
duced with iRMX for Windows, but which may well be integrated with
other versions of the operating system as well. Still other features, such as
DDE networking support in particular, combine the individual features of
iRMX and Windows in ways that extend well beyond the simple sum of
two parts.

Acknowledgments

Intel supported the development of this book in a number of ways. Materi
ally, Intel provided me with current versions of the software and documen
tation throughout the book's gestation period, as well as with an email ac
count so that I could interact with people within the company. Intel also
provided two technical reviewers for the manuscript, Krishnan Rajamani
and Steve Snyder. Their comments were extremely valuable and construc
tive. More than one sentence in the book now says exactly the opposite of
what it said before Krishnan or Steve saw it. The errors that remain, of
course, are my own. There are others at Intel who provided help to me in
various ways. Janet Brownstone coordinated the interactions between
Intel and McGraw-Hill for this series of books. Rick Gerber provided an
swers to many of my questions. Bill Corwin provided me with some of the
POSIX material. My thanks to all.

Then there is Paul Cohen. He first suggested this book to me, he brought
the idea for the book to Intel, and he explained the merit of the book to
McGraw-Hill as well. But Paul's contributions go far beyond the role offa
cilitator. Paul has been the chief guru to many iRMX users for years:
always enthusiastic about iRMX, always patient with our questions (he
gets excited sometimes, but he answers even dumb questions anyway), and
always generous with first-rate technical information. I wrote the book,
but it wouldn't have happened without Paul.

Real-Time and
Systems Programming

for pes

Part

1
Basics

Chapter

1
Introduction to Real-Time and

Systems Programming

1.1 Overview

iRMX, Intel's real-time operating system, is an excellent vehicle for study
ing systems programming. In fact, it is virtually impossible to develop a
real-time system without doing systems programming. In turn, many cru
cial parts of a systems programmer's job deal with real-time issues.

This chapter introduces systems programming, real-time systems, and
the iRMX operating system (OS) to provide a context for the remainder of
the book, as well as to support the argument that real-time systems and
systems programming have much in common. The first part ofthe chapter
looks at the conventional view of systems programming, and the second
part looks at real-time systems, including some of the features of iRMX
that make it a real-time OS. Finally, we look at how iRMX compares with
conventional operating systems such as MS-DOS and Unix, as well as al
ternatives to iRMX for real-time systems.

1.2 Systems Programming

To help put systems programming in perspective, consider the following
hierarchy of programming classes: user, application, and systems. Real
time programming is included here as a parallel entity, spanning the range
of both application and systems programming. The reason the left side is
shown as a hierarchy is that each type of programming builds upon re
sources provided by the level below.

User Programming

Application Programming Real-Time

Systems Programming Programming

3

4 Basics

User programming. User Programming refers to the types of things an end
user might do to customize a particular application. Examples include
spreadsheet and word processing macros and simple command files (batch
files). The programming language used could be fairly primitive, perhaps
just a matter of recording a sequence of keystrokes. Nevertheless, the pro
grams implement some sort of algorithm and, thus, qualify as program
ming by almost any definition of the term, even if the user does not realize
it. This category of programming can require a good amount of sophistica
tion, and there are people who do user programming professionally.

Application programming. Application Programming is what most people
think of when the term programming is used. It refers to the development
of programs used by end users to perform tasks or sets of related tasks. Ap
plication programs range from spreadsheet and word processor programs
to graphical modeling or scientific data analysis packages. These programs
rely on an operating system to perform certain functions, such as control
ling input/output (I/O) devices, but high-level programming languages,
such as C and FORTRAN, often interpose a layer of software called a run
time library between applications and the OS to make applications porta
ble across operating systems. Run-time libraries for two high-level lan
guages commonly used for application programming with the iRMX
operating system, PLM and C, are discussed in chapter 3.

Systems programming. There are really two types of programming that
qualify as systems programming. One type is the construction of the oper
ating system itself, and the other is the development of systems programs,
which provides the tools that application programmers use in their work.
In turn, system programs fall into two categories: development tools and
utilities.

1.2.1 Constructing an operating system

An operating system serves two major functions. The first function is to
provide application programmers with an abstract machine, a computer
that is easier to program than the actual processor on which the OS is im
plemented. This function is normally provided through a set of subroutines
referred to as system calls that any application program can invoke as
needed. Although they are actually software routines, system calls serve
conceptually as extensions to the hardware instruction set of the central
processing unit (CPU).

The second function of the OS, which is normally closely integrated with
the first, is to manage resources in a controlled way for the various applica
tions running on the system. Resources that must be managed include pri
mary memory, use of the CPU, and control of I/O devices. Resource man
agement is integrated with the abstract machine in the sense that

Introduction to Real-Time and Systems Programming 5

application programs make system calls to access the resources managed
by the as.

The system calls provided by the as relieve application programmers of
the burden of rewriting the code for functions needed by many different
applications. The code is written once by the systems programmer and is
either always resident in primary memory as part of the as, or is supplied
as part of a library linked with just those applications that need it. Func
tions performed by system calls include allocating memory segments into
which applications can store dynamically created data structures and rou
tines to read and write data between an application's data buffers and pe
ripheral devices. Both of these examples stress the necessity of functions
incorporating resource management as an as system call: two applications
running at the same time must not interfere with each other's use of system
resources, and the as must provide the mechanisms for coordinating their
activities. Furthermore, when exceptional conditions occur (such as one
application attempting to access another application's private data seg
ment), the as also provides the code that responds to these conditions.

A major feature that distinguishes programming an operating system
from most application programming is the need to manage concurrent
threads of execution. In a single CPU system, the processor can execute
only a single instruction at a time, but hardware devices (such as I/O con
trollers and the device that keeps track of the time) generate interrupt re
quests that are not generally synchronized with the processor's execution.
The as must manage the switch of CPU control to the routine that ser
vices an interrupt and then back to the application that was running when
the interrupt occurred. It must also switch among the various applications
that are ready to run at any particular moment. As you will see, managing
concurrency is also a hallmark of real-time applications. This common
feature of the two types of programming is the main reason this book
claims to discuss both systems programming and real-time programming
as it covers the iRMX real-time as.

In addition to the issues of developing an abstract machine, managing
resources, and dealing with concurrent threads of execution, an as devel
oper must decide how the code for the as is to be structured. It is possible
to create an as as a single, monolithic piece of code, but this is not nor
mally done except in the case of very simple systems. More likely, various
subsystems, such as the memory manager, I/O system, or user interface,
are coded as separate modules and linked together to build the as itself.
Adding parts to the as or changing existing parts involves developing or
altering the code for a module and then rebuilding the as to include the
changes.

The iRMX for Windows version of iRMX has the ability to change the
OS's configuration while the as is initializing and, to a lesser extent, while
the as is running. The features of iRMX for Windows that support this
configuration process are covered in chapters 9 and 12. Another iRMX fa-

6 Basics

cility for building customized versions of the OS is called the Interactive
Configuration Utility (lCU), which is also introduced in chapter 9. The lCU
is not used with iRMX for Windows.

1.2.2 Developing development tools and utilities

Development tools include the compilers, linkers, loaders, and debugging
programs that application programmers use to code and test their pro
grams. Development tools are coded much like application programs
themselves. That is, compilers, linkers, loaders, and debugging programs
are developed using compilers, linkers, loaders, and debugging pro
grams. What differentiates development tools from application programs
is that development tools must be compatible with both each other and the
operating system to generate other programs that can be executed. As a re
sult, systems programmers producing development tools must generally
know more about the structure of the underlying operating system than
application programmers. Also, developers of development tools have his
torically not been as concerned with portability as application program
mers. I

Utility programs are routines that make an application programmer's
job easier but can also be useful to end users. Examples of utilities include
basic file maintenance programs (list, copy, move, and delete files), text ed
itors, and anything else someone deems useful. Examples of utilities for
Unix are particularly numerous (grep, sort, more, etc.), and versions of
many Unix tools have been ported to iRMX, DOS, and other operating
systems. As this process suggests, many utilities either are, or can be made
to be, portable across operating systems.

Although portability is not a general concern in this book for reasons
that should be clear by the end of the chapter, be aware that it is a matter of
utmost concern to many software consumers, and thus is extremely im
portant to many software producers. Portable utility programs that fall
into the systems program category must provide specific code for the dif
ferent systems on which they will run. Which code will actually be executed
must be selected at compile time, link time, or run time. These terms are
discussed in more detail in chapter 3, which reviews the entire software de
velopment process.

The programming hierarchy shown at the beginning of this chapter
shows real-time programming as a separate entity from user, application,
and systems programming, one that parallels both the application and sys-

1 For perspective, consider the Portable C Compiler available for early Unix systems. This
compiler was written mostly in the C language and could be easily ported to different systems,
thus providing a convenient tool for porting Unix itself to new systems. The availability of
this portable development tool was partly responsible for the early rise in the popularity of
Unix. However, the Portable C Compiler could never be as efficient as a compiler built specifi
cally for a particular processor, and it was therefore replaced with more efficient, non-porta
ble versions as soon as practical.

Introduction to Real-Time and Systems Programming 7

tems levels. Real-time systems are applications in the sense that there are
end users for real-time systems just as there are end users for conventional
applications like word processing and spreadsheet programs. In addition,
developing real-time applications requires the use of systems program
ming techniques that go beyond those used to develop conventional appli
cations. These techniques include explicitly managing resources such as
the I/O system, primary memory, and the use ofthe CPU, and might go so
far as to involve modifying or replacing OS modules or adding new system
calls to the OS. The next section describes some of the important features
of real-time systems that lead to this state of affairs.

1.3 Real-Time Systems

The defining characteristic of real-time systems is their need to meet
deadlines, which are constraints on the amount of time the system is al
lowed for completing a computation or set of computations. Although real
time systems connote high speed, there is nothing preventing real-time
systems from operating with deadlines measured in hours rather than
fractions of a second.

To develop the concept of real-time systems more fully, you must look at
the environment in which real-time systems normally operate and the
structure of many real-time systems that operate in these environments.
Section 1.3.4 discusses deadlines specifically in the context of task sched
uling algorithms. Before looking at real-time applications, however, you
should know that there are three ways in which the software for real-time
systems can be structured: monolithic, kernel-based, and OS-based.

Monolithic systems. Monolithic systems include all software for the sys
tem as a single block of code. This structure is usually practical only for
very simple systems.

Kernel-based systems. Kernel-based systems use a real-time kernel, avail
able from a vendor or developed in-house, to manage such real-time enti
ties as tasks and interrupts. The logic for the real-time application is coded
separately from the kernel, and then linked with it to form the complete
real-time system.

OS-based systems. OS-based systems differ from kernel-based systems
only in the range of functions provided by an OS compared to a kernel. A
real-time OS provides normal OS functions (file system, user interface,
etc.) in addition to the real-time functions supplied by a kernel. Some ver
sions of iRMX, for example, are based on an internal real-time kernel
called iRMK. Some versions of iRMX, including iRMX for Windows,
allow real-time applications to access iRMK functions directly. This fea
ture was added to the OS too late to be covered in this volume.

Although this book is concerned with a real-time OS (iRMX), the dis
cussion of real-time concepts in this section generally applies to all three

8 Basics

types of real-time systems and includes some hardware topics that go
beyond the scope of software structure as well.

1.3.1 Real-time and embedded systems

Real-time and embedded systems are practically identical. The choice of
terms has more to do with what aspect ofthe system is being stressed than
with different classes of systems. Embedded systems abound in everyday
life, although the end users who come in contact with them seldom use the
term. Just about any modern equipment has some form of automatic con
trol, usually depending on a computer embedded within it to perform its
control functions. Robots and sophisticated military weapons are obvious
examples of devices with embedded systems, but many microwave ovens,
automobiles, manufacturing tools, and laboratory instruments also use
embedded microprocessors. Conventional computer systems often include
embedded systems in addition to the main CPU to perform high-perfor
mance graphics processing or smart disk caching.

What characterizes embedded systems is that the end user does not in
teract with the system as a computer but as something else. The user inter
face to the embedded computer is perceived as the interface to the equip
ment being controlled rather than as a computer itself. Although a
conventional keyboard, CRT, and pointing device might be used as the
user interface for embedded systems, these interfaces often feature knobs,
buttons, lights, and panel displays instead. Further, many embedded sys
tems are self-contained and do not need any user interface other than a
switch to turn them on or off.

Another feature of embedded systems is that they are typically dedicated
systems. For example, the computer that controls your car's ignition does
just that. It does not do word processing, spreadsheets, or games. The pro
cessor itself is often a general-purpose CPU, but the only code available to
it is for the application at hand. There is no connection between your Nin
tendo's embedded computer and your microwave oven (yet!).

Embedded systems almost always operate with real-time constraints.
They must meet deadlines and, thus, are real-time systems by definition.
As in real life, a deadline is simply the time at which a piece of work must be
completed. Also as in real life, the contingency for missing a deadline might
range from minor inconvenience (for example, stay late at work to finish
the job in real life; achieve slightly less than optimal fuel efficiency in an
automotive embedded system) to major catastrophe (lose your job for not
completing a report; stall the engine in the middle of avoiding a collision).

The term soft real-time refers to systems that can operate at a satisfac
tory level even if some deadlines are missed. The term hard real-time refers
to systems that are considered to have failed if a deadline is missed. An ex
ample of a soft real-time embedded system might be a program that deter
mines the amount of fuel to be delivered each time a cylinder fires in an en-

Introduction to Real-Time and Systems Programming 9

gine, but will use the value from the previous cycle if it misses its deadline.
As long as too many deadlines are not missed, the engine will operate, but
at less than its optimum performance. An example of a hard real-time sys
tem might be a robot that will walk off a cliff if its control system does not
tell it to turn around soon enough.

1.3.2 The structure of real-time and
embedded systems

To help you understand the nature of real-time systems, consider Figure
1.1, which represents the general structure ofthe software for an embedded
application. Each block represents a separate thread of execution called a
task, which are called processes in the general as literature. Each task typi
cally executes code that is structured like Figure 1.2: after some initializa
tion, the task enters an endless loop in which it waits for an event to occur,
processes the event when it does occur, and then returns to the top ofthe
loop to await the next event. This type of processing is called an event loop,
and is not unique to real-time systems. For example, graphical window
systems are typically based on an event loop structure, where the events to
be processed include keyboard presses, mouse clicks, and mouse motion
reports.

As a task computes its response to an event, it might generate additional
events to be processed by other tasks in the system. For example, a mouse
motion report might result in a mouse-entered window event in a graphics
system. These internal events are shown in Figure 1.1 as lines connecting
the input tasks to the processing tasks and connecting the processing tasks
to the output tasks. The figure shows the most general case, but a single
task might very well combine input, processing, and output functions
without using any internal events.

Input Tasks Processing Tasks Output Tasks

Figure 1.1 Task structure of embedded application.

10 Basics

I Initialization J

Wait for an Event

Process the Event

I

Figure 1.2 Code structure for a task.

The input events to an embedded system might come from conventional
input devices but, as Figure 1.1 indicates, they might also come from sen
sors. Keyboards and mice are sensor input devices (they sense finger and
hand movements), but embedded systems often receive their input from
other types of sensors, such as a robot's visual sensors, or an automobile's
air and engine temperature sensors. Another example of a real-time system
that receives input events from a nonstandard input device is a stock
broker's program-trading system, which receives prices directly from the
stock exchange and generates buy or sell orders in response.

Figure 1.1 also indicates that embedded systems can generate nontradi
tional outputs, such as the control signals that operate actuators, the
motors to move the parts of a robot, or the valves to control a manufactur
ing process.

Nonstandard I/O devices are easily interfaced to computers so that they
can be sensed and controlled in the same ways as traditional peripherals.
On the other hand, real-time operating systems such as iRMX need to in
corporate provisions for interfacing application software to these non
standard devices while maintaining real-time performance. Techniques
for doing this with iRMX are covered in chapter 9.

1.3.3 Factors affecting real-time
performance

At one level, you can summarize the performance of a real-time system
with one Boolean variable: either it meets its deadlines or it doesn't. Other
important measures of a real-time system's performance are not discussed
here, namely cost, fault-tolerance, and robustness. Rather, let us look at
some of the secondary measures that contribute to the ability of a particu-

Introduction to Real-Time and Systems Programming 11

lar computer to meet real-time deadlines. These include determinism,
speed, context switch time, and interrupt response time.

Up to now, I have used the terms real-time system and embedded system
without making much distinction between the hardware and software that
compose the system. This lack of distinction is appropriate, because a sys
tem as a whole relies on both hardware and software for successful opera
tion. In fact, many functions can be implemented using hardware, firm
ware (microcode), or software techniques, whatever is most appropriate for
the situation.

Hardware and firmware modules are typically faster than equivalent
software routines but cost more to produce. Another way of looking at this
issue is to remember that one crucial role of an operating system is to im
plement an abstract machine architecture on top of the real hardware, an
abstract architecture that provides functions that match the needs of the
system's applications more closely than the actual microprocessor's ma
chine instructions. This abstract machine can conceptually be imple
mented in software, firmware, or hardware, or any combination.

A controversy in computer architecture exists that is relevant here. The
controversy hinges on what level of abstraction is implemented in the pro
cessor's hardware or firmware. It is axiomatic that a more complex logic
system must take more time to operate than a simpler one that uses the
same circuit technology. The controversy is based on the notion that a sys
tem as a whole can execute faster by providing a very simple but very fast
abstract machine in hardware, with software providing a more powerful
abstract machine to the operating system user. Such processors are called
reduced instruction set computers, or RISC processors. Processors that
provide a more powerful abstract machine in hardware and firmware, such
as the Intel microprocessors that are used to run iRMX, are called complex
instruction set computers, or CISC processors. RISC processors presently
enjoy a reputation for better performance than CISC processors using
comparable fabrication technologies.

The RISC/CISC issue is relevant to the present discussion because a
processor's average speed is often considered an important measure of how
well-suited it is for real-time applications. As mentioned earlier, however,
nothing prevents real-time systems from operating with deadlines mea
sured in hours rather than fractions of a second. It's simply the existence of
the deadlines that makes a system real-time. Nonetheless, it would seem
likely that one processor that executes instructions faster than another
would be more suitable for real-time systems. However, instruction execu
tion rate is not necessarily a good measure of a processor's speed for two
reasons.

Comparing the speeds of two processors with different instruction sets is
an extremely difficult job to do, despite the variety of standard benchmark
programs that claim to do so. The problem is that you must compare both
the rate at which instructions are executed and the amount of useful work

12 Basics

done by each instruction. If a RISC processor executes its instructions
twice as fast as a CISC processor, it must use no more than twice as many of
those instructions to provide users with an abstract machine that is equiv
alent to the one provided by the CISC processor.

More important than raw computing speed for real-time performance is
a computing system's determinacy, meaning how much variability exists in
the time it takes a given computation to be performed. As an example, con
sider a real-time application that imposes a I-millisecond deadline on the
time a task is allowed to compute its response to some event. If Computer A
can perform the computation in an average of 500 microseconds (half a
millisecond) and Computer B requires an average of 550 microseconds to
perform the same task, it is tempting to think that Computer A has a better
real-time performance. But what if that 500-microsecond average con
sisted of 10 times that took 50 microseconds (Wow, look at that speed!) and
one time that took 5000 microseconds (oops!) because the system's virtual
memory manager had to swap in a page from disk for the task to complete?
That 1 case in 11 trials is a missed real-time deadline, and Computer A
could not be used for the real-time application. As long as Computer B's
average is not based on any values greater than the I-millisecond deadline,
one would have to say that it is the better one (indeed, the only one) for the
application.

Thus, the number of instructions executed per second and the average
time to perform a computation are not the best measures of a processor's
suitability for real-time applications. Two other measures of a processor's
speed are often crucial in determining real-time performance, however. To
complicate matters, these two measures are not purely dependent on the
hardware being used but also on policies the as uses in managing various
resources.

The two measures are context switch time (CST) and interrupt response
time (IRT). Context switch time is the time it takes the CPU to stop exe
cuting code for one task and start executing code for another task. This in
terval consists of three phases:

1. Recognizing the need to perform a context switch and selecting the next
task to execute. This is the scheduling problem discussed in the next
section.

2. Saving the state of the CPU's registers so that the current task can be
resumed at a later time.

3. Loading the CPU's registers with the values needed to start execution of
the new task.

The first phase is the responsibility of the OS's task scheduling software,
and the other two phases depend, in part, on the microprocessor instruc
tions that are available for saving and restoring CPU registers to and from
primary memory. It is debatable whether the scheduling phase is really

Introduction to Real-Time and Systems Programming 13

part of a system's CST or a separate (important) measure of a real-time
system's performance. The iRMX techniques for keeping CSTs small are
covered in chapters 5 and 6, which discuss hardware and software issues re
spectively.

Interrupt response time is a measure of how much time elapses from the
moment an I/O device indicates that it is ready to generate an event until
the processor actually starts executing code in response to that event. At
the hardware level, IRTs are limited by the constraint that processors rec
ognize interrupt requests only between the execution of machine instruc
tions. Many CISC processors include complex instructions that can take a
long time to execute (a ratio of about 100: 1 execution time for the slowest
and fastest 8086 instructions exists, for example), which can significantly
impact hard real-time designs, which must be based on worst-case values.
(A dedicated hard real-time system would be coded to avoid use of the slow
est instructions of the processor's repertoire.) However, IRT hardware
considerations can easily be outweighed by the interrupt management pol
icy of the operating system, because OS routines can totally disable the
CPU's response to interrupts for arbitrarily long periods of time. Real-time
operating systems minimize the time that interrupts are disabled as much
as possible, even at the expense of a longer IRT average (or other measures
of average system performance).

Most operating systems that support multiple threads of execution (not
just real-time operating systems) reduce IRT by providing for two levels of
software to be invoked by interrupts. For iRMX, these are called interrupt
handlers, which execute in the same context as the currently running task
(no CST), and interrupt tasks, which are scheduled for execution in com
petition with all other tasks in the system. Various interrupt hardware
mechanisms are discussed in chapter 5, and iRMX interrupt handlers and
interrupt tasks are covered in chapter 9. Rick Gerber ofIntel has developed
two programs that can be used to determine the IRT (inttest) and the CST
(switch) of an iRMX system. They are available, along with all the code
presented in this book, from the author.2

1.3.4 The scheduling problem

The scheduling problem refers to the issue of which task is selected to use
the CPU at a particular moment. The scheduling problem is fundamen
tally different for real-time systems than for other systems, such as time
sharing systems. Real-time systems must schedule tasks so that they all
meet their execution deadlines. Generally, the number of context switches
should be minimized for real-time systems so that more CPU time is avail
able for tasks working toward their deadlines. Timesharing systems, how
ever, often interrupt a running task (incurring an extra CST) to provide

2 Anonymous ftp to ipcl. cs. qc. edu.

14 Basics

other tasks with their fair share of CPU time. This section looks at some of
the variables of real-time task scheduling. The iRMX task scheduling algo
rithm is covered in more detail in chapter 6.

A common feature of real-time task schedulers is their use of an algo
rithm called preemptive priority-based scheduling. This scheduling scheme
simply assigns a numerical priority to each task in the system, the system
keeps track of the scheduling state for each task, and the highest priority
task that is in the "ready" state is always the one selected to run. The run
ning task continues to execute indefinitely. The only way for the running
task to stop is for either of the two conditions that caused it to be selected
for execution in the first place to become false. Either the task enters a
scheduling state other than ready, or another task of higher priority enters
the ready state. In the first case, the task relinquishes the CPU, either be
cause it has completed processing an event and met its deadline or because
the task was blocked and cannot use the CPU until resources become avail
able. IIi the second case, the task has been preempted by another task.

This simple scheduling algorithm can lead to very complex sequences of
task selection, and by itself, might not provide an optimal solution to the
scheduling problem for a particular application. The following examples
illustrate these two points.

Suppose, for example, that Ti represents the ith task in the system, and
Ei represents the events to be processed by Ti. Assume that events Ei arrive
for processing at a rate of Ai per second, that each Ei requires "Ci seconds of
processing by T i , and that those "Ci seconds of processing time must be
completed within bi seconds of real time to meet T/s deadline. Finally, Pi

represents the scheduling priority ofTi (0 = highest priority). If two tasks
with unequal priorities are ready to run at the same time, the one with the
higher priority is the one that executes.

Table 1.1 shows the results of simulating the behavior of three tasks
using a preemptive priority-based scheduler. The values chosen for the pa
rameters were the following:

Ti Ai Ti en Pi

1 1.00 0.25 1.00 5

2 0.67 0.30 1.50 10

3 0.50 1.00 1.90 15

These values cause the same sequence of events to repeat every 6 seconds,
so the simulation was allowed to run for that amount of simulated time.
The priorities ofthe three tasks were made proportional to the arrival rates
of events for each task. That is, the higher the value of Ai, the lower the nu
merical value of Pi' This positive relationship between a task's priority and
the arrival rate of the task's events (remember, numerically low means

Introduction to Real-TIme and Systems Programming 15

TABLE 1.1 Scheduling Simulation of Three
Tasks Running for a Six Second Period
Using a Preemptive Priority-based Sched-
uling Algorithm.

Task Balances
Current Running (seconds)

Time Task
(seconds) (T;) 1 2 3

0.00 1 0.25 0.30 1.00
0.25 2 0.00 0.30 1.00
0.55 3 0.00 0.00 1.00
1.00 1 0.25 0.00 0.55
1.25 3 0.00 0.00 0.55
1.50 2 0.00 0.30 0.30
1.80 3 0.00 0.00 0.30

Deadline Missed for Task 3 by 0.20 seconds.
1.90 3 0.00 0.00 0.20

Error: Missed Event for Task 3 when
balance = 0.10 seconds.

2.00 1 0.25 0.00 0.10
2.25 3 0.00 0.00 0.10
2.35 none 0.00 0.00 0.00
3.00 1 0.25 0.30 0.00
3.25 2 0.00 0.30 0.00
3.55 none 0.00 0.00 0.00
4.00 1 0.25 0.00 1.00
4.25 3 0.00 0.00 1.00
4.50 2 0.00 0.30 0.75
4.80 3 0.00 0.00 0.75
5.00 1 0.25 0.00 0.55
5.25 3 0.00 0.00 0.55
5.80 none 0.00 0.00 0.00

There were 1.30 seconds of idle time, and
17 context switches

high priority) is known as the rate-monotonic scheduling algorithm, which
is commonly used in real-time systems.

Note that the sequence in which the tasks execute does not follow a sim
ple pattern, despite the small number of scheduling parameters involved.
Also note that this set of parameters leads to a missed deadline and a lost
event for T3 • The simulation program assumed that an event that arrives
for a task while that task is still processing a previous event will be dis
carded rather than queued for later execution.

If the lost event in Table 1.1 had been queued instead of discarded, T 3

would have executed for one additional second of CPU time (the value of
'[3)' reducing the idle time for the simulation from 1.3 to 0.3 seconds. (An
other version ofthis example showed that there would have been no addi
tional missed deadlines in this case.) Because it appears that there would
have been 0.3 seconds of idle CPU time even if T 3 had processed all of the

16 Basics

required events, the question arises of whether a different scheduling algo
rithm could have avoided the missed deadline.

Table 1.2 shows that an adaptive scheduling algorithm could, indeed,
have achieved the desired result by changing some of the values of Pi dy
namically rather than maintaining fixed values at all times. In particular,
at time 1.50 seconds, the adaptive scheduler would see that the processing
balance for Ta plus the balance for T2 is greater than the time until Ta's
deadline, and would temporarily raise Ta's priority above T2's.

It is possible to create a working real-time system without carefully con
sidering the scheduling problem. Just build the system and see if it works.
But in cases where the system must not fail, the scheduling issue must be
addressed. The actual values of Ai, Ti , and Ji for each task must be either
measured or computed and the corresponding scheduling algorithm must
be determined, possibly using a simulator such as the one that generated
Tables 1.1 and 1.2. Furthermore, ifthe system requires an adaptive sched
uling policy, there must be a means for communicating each task's Ti and Ji

to the scheduler, which must monitor each task's progress towards its

TABLE 1.2 Scheduling Simulation of
Three Tasks Running for a Six-Second
Period Using an Adaptive Scheduling
Algorithm.

Task Balances
Current Running (seconds)

Time Task
(seconds) (TJ 1 2 3

0.00 1 0.25 0.30 1.00
0.25 2 0.00 0.30 1.00
0.55 3 0.00 0.00 1.00
1.00 1 0.25 0.00 0.55
1.25 3 0.00 0.00 0.55
1.50 3 0.00 0.30 0.30
1.80 2 0.00 0.30 0.00
2.00 1 0.25 0.10 1.00
2.25 2 0.00 0.10 1.00
2.35 3 0.00 0.00 1.00
3.00 1 0.25 0.30 0.35
3.25 2 0.00 0.30 0.35
3.55 3 0.00 0.00 0.35
3.90 none 0.00 0.00 0.00
4.00 1 0.25 0.00 1.00
4.25 3 0.00 0.00 1.00
4.50 2 0.00 0.30 0.75
4.80 3 0.00 0.00 0.75
5.00 1 0.25 0.00 0.55
5.25 3 0.00 0.00 0.55
5.80 none 0.00 0.00 0.00

There were 0.30 seconds of idle time and 18
context switches.

Introduction to Real-Time and Systems Programming 17

deadline. Real-time kernels and operating systems do not generally sup
port adaptive scheduling, so it would have to be implemented by the appli
cation itself.

1.4 iRMX in Perspective

iRMX is actually the name of a family of operating systems developed by
Intel to run on the microprocessors they manufacture. It is a proprietary
OS rather than an open system. iRMX, as most operating systems today, is
developed and marketed by the same company that makes the processors
that run it. Examples of other proprietary operating systems include VMS
for VAX computers and VM for IBM mainframe computers. MS-DOS for
PCs and MacOS for Macintosh computers are also proprietary operating
systems, even though the companies that make the computer and OS are
not the company that makes the microprocessor inside the computer.
(MS-DOS runs on the same Intel microprocessors as iRMX, and the Mac
intosh currently uses Motorola microprocessors.)

One characteristic of proprietary operating systems is that they gener
ally are not portable. That is, they are designed to run on one processor's
architecture, or a family of compatible architectures from one company,
and cannot be implemented on different processors. In the case of real
time systems where execution speed is usually very important, this means
that the OS can be built to take advantage of special features of the pro
cessor on which it runs. As a consequence, it executes very efficiently
compared to an OS that must be coded to work with some lowest common
denominator of many processors' features.

Some of the reasons for using a proprietary OS have more to do with
marketing decisions than with system performance. If software is devel
oped to run on a proprietary system, customers are unlikely to switch to
another vendor's computer because of the expense of porting existing
applications to the new OS and processor. An open operating system,
however, can run on a variety of different processor architectures, usually
because the companies that make the different processors have underwrit
ten the cost of porting the OS to their machines. Customers are less locked
into one vendor's computers.

Unix is the primary example of an open system today. Originally devel
oped at AT&T for internal use, Unix has been licensed to dozens of differ
ent companies for use on their computers. There are, however, incompati
bilities among the many versions of Unix that exist today. BSD Unix from
the University of California Berkeley, Unix System V from an organiza
tion called Uniforum that includes AT&T as a member, and OSF-l from
an organization called the Open Software Foundation that includes IBM
as a member. See the POSIX section later in the chapter for how all this
relates to iRMX.

18 Basics

1.4.1 History and versions of iRMX

The iRMX operating systems for the x86 family of microprocessors date
back to 1978 when Intel introduced RMX-86 for use with 8086 and 8088
microprocessors. An earlier operating system from Intel had existed with
the RMX name and ran on the company's 8080 and 8085 microprocessors.
Intel's goal had been to encourage engineers to develop new products based
on the 8080 by providing them with the basic software needed to get var
ious projects started and to market as quickly as possible. RMX-86 was de
signed in the same tradition as RMX -80, and an early version of RMX -86
even shared some code with its predecessor.

Early microprocessors like the 8080 were not powerful enough to provide
users with general-purpose computing, but were typically embedded into
other equipment to control it. RMX for the 8080 was originally designed to
be embedded into ROM along with the microprocessor, and current ver
sions of the OS still support this important feature. The actual develop
ment of a real-time application and the combination of the application
with the OS were done on a separate computer system, also available from
Intel, called a microcomputer development system (MDS).

When developing applications, the MDS is known as the host, and the
system that actually runs the application is called the target system. The
MDS and its OS (iSIS) are no longer used. Instead, the host for developing
real-time applications is now a PC running DOS, a workstation running
Unix, or the target system running iRMX itself. Some of the features of
iRMX that make it good for real-time systems, however, make it less de
sirable as a development system. The iRMX for Windows version ofiRMX
allows developers to run both iRMX and MS-DOS on the same PC at the
same time, thus providing the advantages of both environments, which is
the standard configuration for running iRMX used in this book.

As Intel introduced microprocessors with different architectures, it also
introduced versions of iRMX tailored to those architectures. Today, three
versions ofthe operating system correspond to the 8086 (iRMX I), 80286
(iRMX II), and 80386 (iRMX III) architectures. Chapter 5 covers the ar
chitectures of these microprocessors and how they influence each version
ofiRMX. In 1991, Intel introduced iRMX for Windows, which is compati
ble with Microsoft's MS-DOS and Windows products. iRMX for Windows
includes all the features of normal iRMX III plus additional features that
allow a single application to include real-time components that are man
aged by iRMX and conventional components that run "on the DOS side."
DOS programs can make iRMX system calls, and iRMX programs can
make DOS calls. Both sides can communicate with each other directly and
with the user through Microsoft Windows. If desired, the user can switch
control ofthe PC's keyboard and monitor from DOS to iRMX or vice versa
using the hot-key combination <Alt/SysRq>. Chapter 12 explores in
some detail how this version of iRMX works, including the features that
this version of iRMX adds to normal iRMX III.

Introduction to Real-Time and Systems Programming 19

1.4.2 MS-DOS, OS-2, and Unix

This section compares iRMX directly with a few other operating systems.
The goal is to make it clear why each serves a different role in computer
systems rather than to find one that is "better" or "worse" than another.

MS-DOS. MS-DOS was developed to run on a microprocessor (the Intel
80863) that can address, at most, 1 megabyte (MB) of primary memory and
includes no hardware mechanism for controlling memory accesses, such as
accidentally attempting to execute data instead of instructions. As an OS
for the 8086 architecture, DOS was designed (properly) to support a single
user running a single application on one personal computer.

The OS includes no provision for multiple threads of execution, essen
tially no file system security mechanism (why protect the user from ac
cessing the files on his or her own computer?), and allows programs to
freely modify the system's memory, device controllers, and registers. The
tremendous popularity of the PC has invited a wealth of creative code to be
written for DOS systems, including some real-time applications.

The main disadvantages of DOS for real-time applications are its lack of
support for multiple threads of execution; its lack of support for
asynchronous I/O; the design of many of its device drivers, which disable
interrupts for very long periods of time; and the difficulty of incorporating
support for nonstandard I/O devices. Device driver software can be devel
oped and then loaded into the system when it is bootstrap loaded, but the
OS itself does not provide support for the development process the way a
real-time OS such as iRMX does.

DOS allows a degree of systems programming. The command line pro
cessor is a separate piece of code from the rest of the OS, so substitute ver
sions can be developed. Custom device drivers can be loaded when a system
is initialized. Utility programs and development tools can be built for DOS
because the system's interface to such programs is well documented. But as
far as programming the OS itself, DOS is closed to systems programmers.

OS/2. When Intel developed the 80286 microprocessor that overcame the
8086 architecture's memory addressing and protection limits, Microsoft
and IBM developed OS/2 to provide an OS that is compatible with DOS,
but which takes advantage of the 80286 architecture to add new features
that would be competitive with Unix, the preferred OS for workstations.
Although no one has really pinned this marketing term down, a worksta
tion generally connotes a single-user system that is more powerful than a
PC.

The three most important features of OS/2 for us are its support for mul
tiple threads of execution, its memory management facilities, and its sup-

3The Intel 8088 and 8086 sh~e the same processor architecture except for the number of
bits that can be read or written per memory access.

20 Basics

port for interrupt management. Like time-sharing and real-time systems,
OS/2 provides users with multiple threads of execution, and, like time
sharing systems, the user's control over these threads is more primitive
than in real-time systems.

For example, a primary objective of OS/2 is overall system performance,
and to this end, the OS can manipulate the scheduling priority for threads
(tasks) without informing the applications being run. Actually, there are
three classes of priority (with 32 levels within each class), and tasks with a
priority in the class, called time-critical, never have their levels changed by
the OS. But threads that are designated regular or idle-time are subject to
hidden priority changes. These hidden priority changes might seem remi
niscent of adaptive real-time scheduling mentioned earlier, but in OS/2
scheduling, adaptations are made to improve overall average performance,
not so that threads can meet deadlines.

OS/2 provides a protected memory environment for applications. This
feature uses hardware mechanisms in the 80286 and later microprocessors
to ensure that different applications do not access each other's memory ei
ther inadvertently or maliciously. This feature is critical for the integrity of
timesharing systems. A protected memory environment is valuable in sin
gle-user systems as well because it guarantees that applications that run
concurrently will not interfere with each other. Protected memory is par
ticularly valuable during the development phase of any type of application,
conventional or real-time. Without memory protection, a program error
that causes information to be stored in the wrong part of memory (perhaps
in the resident part of the operating system itself) might not be detected
until much later, when the corrupted memory is accessed and causes the
system to crash. With memory protection, such errors are detected as soon
as they occur (even before the damage is done), and can be localized and
debugged relatively easily.

The protection features of OS/2 also provide a controlled interface be
tween application programs and the OS itself, including the restriction
that application programs cannot perform certain privileged operations,
such as I/O transfers. The 80286 protection mechanisms also make it pos
sible for the OS to manage access to hardware interrupts. In OS/2, each in
terrupt service routine must register itself with the OS to have a chance to
respond to the interrupt signals.

A popular DOS programming technique is to load a Terminate and Stay
Resident (TSR) program that replaces the normal routine for responding
to a particular interrupt. When an interrupt occurs, say from the keyboard,
the TSR decides whether it will process the interrupt itself, such as if the
interrupt was the user pressing a hot key (a special combination of keys) on
the keyboard or not. If not, the new routine simply calls the original inter
rupt service routine to process the event normally.

The OS/2 technique of registering interrupt handlers provides a more
robust and orderly way to manage such chains of handlers than DOS,

Introduction to Real-Time and Systems Programming 21

which cannot monitor application programs' access to the memory con
taining the table of interrupt service routine addresses.

Because DOS and OS/2 are based on corresponding processor architec
tures, they have a similar relationship to each other as iRMX I and iRMX
II do. An obvious difference is that iRMX I supports multitasking, while
DOS does not. Also, version 1.2 of OS/2 runs on any 80286 microprocessor
or better, and version 2.0 runs only on 80386 microprocessors or better.
These two versions of OS/2 correspond to the differences between iRMX
II and iRMX III, notably the support for very large memory segments with
the 80386 architecture. These architectural matters are covered in greater
detail in chapter 5.

Unix. I mentioned earlier that Unix is the preferred OS for workstations.
In the context mentioned earlier, Unix and OS/2 are competitors for the
single-user, high-performance computer system market. Indeed, Unix was
first designed as a single-user version of the Multics OS that was running
on large mainframe computers at the time Unix was developed. Unix soon
became a time-sharing system in its own right, and today, it is imple
mented on a broad range of processors. This would, however, include pro
cessors from single-user workstations to supercomputers and mainframes
supporting many users simultaneously. In addition to the wide range of
available implementations, Unix is popular because it provides a flexible
and powerful environment for the technical user.

Unix is generally perceived as more difficult to use for casual users than
DOS or even OS/2. This difference is becoming less of an issue, however,
because Microsoft Windows for DOS, Presentation Manager for OS/2,
and Motif for Unix's X Window system all provide similar graphical user
interfaces. What makes Unix an important consideration is that efforts
are being made to develop real-time versions of it, as you will see in the next
section. To produce a real-time Unix OS, however, several issues must first
be considered:

• Unix processes cannot be preempted while they are in kernel mode.

• Unix processes are expensive .

• Unix use of interprocess communication for real-time applications.

Unix processes cannot be preempted while they are in kernel mode (making
system calls). This means that even a high-priority process might have to
wait arbitrarily long after becoming ready before being scheduled to use the
CPU. The logic for Unix kernel code is thus less prone to error, but it can be
intolerable in real-time situations. Because this code is owned by whatever
company owns Unix, the solution has been for other vendors to rewrite the
kernel themselves to include what are called preemption points, places
where processes executing kernel code will relinquish control of the CPU
to higher-priority processes.

22 Basics

Unix processes are very expensive compared to tasks in a typical real-time sys
tem. Processes take a long time to create and context switches are slow
because different processes are generally associated with different users. In
a time-sharing environment, this means that each process must be pro
tected from other users' processes that might be running at the same time.
Process scheduling must be more complex and thus slower than task
scheduling.

Another way to look at this issue is to say that Unix processes compete
with each other for the use ofthe CPU, whereas real-time tasks typically
cooperate with each other to meet deadlines. One way that some real-time
Unix systems deal with this problem is to introduce lightweight processes.
Lightweight processes are similar to real-time tasks in that they can be cre
ated quickly and, because they execute in the context of a single process,
can be scheduled quickly without the security overhead associated with
regular process scheduling.

Interprocess communication. Another issue for developers of a real-time
version of Unix is interprocess communication, or IPC. Unix provides a
rich and flexible set of IPC mechanisms, including shared memory, ker
nel-mediated signals, pipes that carry the output of one process through a
disk file to the input of another process, and sockets that allow processes to
communicate with each other across networks using the same syntax as
reading and writing disk files. The problem is that these mechanisms, in
order to provide their rich functionality and flexibility, are much too slow
to be used for intertask communication in many real-time applications.
Even where attempts have been made to provide IPC functions typical of
real-time systems, the Unix versions generally involve too much overhead
for real-time use. The Unix System V semaphore, for example, is very
complex and less efficient to use for synchronizing tasks compared to the
equivalent mechanisms for iRMX or other real-time operating systems.

1.4.3 POSIX

Unix is the prototypical open system, but various incompatible versions of
U nix are common on different computing platforms. To promote Unix as a
portable OS, the IEEE Computer Society is developing a portable version
of Unix, called Portable Operating System Interface for Computer Environ
ments (POSIX). The idea is that an application coded to meet the POSIX
standard can be compiled and run without change on any system that is
POSIX compliant. Vendors are free to add their own features of Unix and
still claim POSIX compliance, provided their added features do not inter
fere with the POSIX functions. Thus, System V Release 4 (SVR4) and
OSF -1 might be POSIX compliant, but incompatible with each other in
various ways.

Introduction to Real-Time and Systems Programming 23

Standards take several different forms, such as industry standards, na
tional standards, and international standards. An industry standard is
simply something that almost everyone in a particular industry does the
same way. For example, the PC bus was developed by IBM, but IBM made
its specifications public and encouraged other companies to build compati
ble products, thus making the bus an industry standard. National stan
dards such as those of the American National Standards Institute (ANSI)
and International Standards Organization (ISO) are developed by com
mittees that include representatives of the companies or countries inter
ested in the standard. Formal standards are based on current common
practice rather than creating new rules for doing things. There is a rich po
litical process involved in developing and approving new formal standards.

The Institute of Electrical and Electronic Engineers (IEEE) is a profes
sional organization that is developing POSIX under its own initiative. One
might expect IEEE to submit POSIX to ANSI or ISO for adoption but not
necessarily.4 The only reason this would be of concern is if some other orga
nization produced a competing standard and submitted it to ANSI or ISO.

The IEEE formed several subcommittees to develop different parts of
the POSIX standard, and each has a name in the form PI003.x, where x in
dicates the area of concern. The standards developed by these subcommit
tees are often referred to with names like POSIX.I for the standard devel
oped by subcommittee PIO03.I.

POSIX is an important consideration because it is a potential alterna
tive to iRMX as a target for real-time systems. Which system should be
used depends on the proper trade-off level between portability and per
formance for a particular application. A real-time application that is devel
oped for iRMX can only be run on systems based on Intel's x86 family of
microprocessors and cannot be expected to be portable to other processors;
iRMX is not available for other types of CPUs. The huge number of sys
tems that run Intel x86 microprocessors mayor may not be relevant for a
particular application. On the other hand, Unix is a very large OS com
pared to iRMX, with process, memory, and security management features
that go far beyond those needed for most real-time applications.

POSIX real-time and threads standards are added to basic Unix func
tionality. The result is, almost inevitably, a system with more overhead
and poorer real-time performance than an iRMX system. There are four
POSIX standards potentially related to iRMX. Currently only POSIX.I
has been formally adopted by the IEEE. POSIX.4 should be approved in
the near future, and other parts of the POSIX standard are still being de
veloped.

'For example, the System Application Program Interface (API) [C Language] part of the
standard (IEEE Standard 1003.1) has been adopted as ISO standard ISO/lEe 9945-1.

24 Basics

POSIX.1. System application program interface [C language]. This standard
specifies a §!tandard application programming interface (API) to the OS.
The Intel C compilers provide a POSIX.l interface to iRMX. Chapter 4
explains in more detail how this is accomplished and the implications of
how it is implemented. As a practical matter, POSIX.l compliance means
that many utility programs for Unix for which there is publicly available
source code run on iRMX systems.5

POSIX.4. IEEE Realtime Extension for Portable Operating Systems. The fol
lowing material stating the scope of this standard is taken from a draft ver
sion of the standards document:

The key elements of defining the scope are a) defining a sufficient set of func
tionality to cover a significant part of the realtime application program do
main, and b) defining sufficient performance constraints and performance re
lated functions to allow a realtime application to achieve deterministic
response from the system. . . . The specific functional areas included in this
standard and their scope includes:

• Binary semaphores: the minimum synchronism primitive to serve as the
basis for more complex synchronization mechanisms to be defined by the
application program.

• Process memory locking: a performance improvement facility to bind appli
cation programs into a computer system's high performance random access
memory to avoid potential latencies introduced by operating system storage
of not recently referenced parts of a program on secondary memory devices.

• Shared memory: a performance improvement facility to allow separate ap
plication programs to have portions of their program image comonly acces
sible to them.

• Priority scheduling: a performance and determinism improvement facility
to allow applications to determine the order in which processes that are
ready to run are granted access to CPU resources.

• Real-time signal extension: a determinism improvement facility, augment
ing the signals mechanism of POSIX.l to enable asynchronous signal noti
fications to an application to be queued without impacting compatibility
with the existing signals interface.

• Timers: a functionality and determinism improvement facility to increase
the resolution and capabilities of the time-base interface.

• Interprocess communication: a functionality enhancement to add a high
performance, deterministic interprocess communication facility for local
communication. Network transparency is beyond the scope of this inter
face .

• Synchronized input and output: a determinism and robustness improve
ment mechanism to enhance the data input and output mechanisms so that

5 A rich source of such utilities is the Free Software Foundation of Cambridge, Massachu
setts.

Introduction to Real-Time and Systems Programming 25

an application can insure that the data being manipulated is physically
present on secondary mass storage devices.

• Asynchronous input and output: a functionality enhancement to allow an
application process to queue data input and output commands with
asynchronous notification of completion. This facility includes in its scope
the requirements of supercomputer applications.

• Real-time files: a performance and determinism improvement facility to
allow an application program to pre-allocate mass storage resources and de
termine characteristics that will enhance the performance of data transfer
to and from mass storage.

• Extensions to POSIX.l: those changes needed to complete the definition of
the facilities defined by this standard.

• Performance metrics: each facility includes a set of performance metrics to
allow a uniform treatment ofthe measurement of performance between dif
ferent conforming implementations.6

iRMX either already conforms to many of these functional areas of
POSIXA or can easily be made to do so. If you are interested, you can refer
back to the preceding list as various iRMX topics are covered in the chap
ters ahead and consider what the impact of making iRMX POSIXA com
pliant would be on the OS's design and efficiency of implementation. For
example, the complex semaphore mechanism of Unix System V is the basis
for the POSIXA binary semaphore mechanism, and you might want to
consider the issue of providing this function in iRMX after reading the
discussion of the iRMX semaphore mechanism in chapter 7.

POSIX.4a. Threads Extension to POSIX. The focus of POSIXAa is to add
lightweight processes, called threads, to POSIXA, which is based on the
standard (POSIX.l) process model. The relationship between POSIX
processes and threads is approximately analogous to the relationship be
tween iRMX jobs and tasks, which is discussed in chapter 6.

In addition to introducing threads themselves, POSIXAa also intro
duces features for synchronization between threads, control over thread
scheduling, and extension of the POSIX.l signal mechanism to cover
threads. The two synchronization primitives introduced by POSIXAa are
mutexes and conditions. The mutex mechanism is closely related to the
iRMX region introduced in chapter 7, but conditions have no direct analog
in iRMX. The iRMX facility for creating composite objects, also intro
duced in chapter 7, could be used to create the equivalent of conditions.

lIThe indented information contained on pages 24 - 25 is copyrighted information of the
IEEE, extracted from IEEE 8td PlOO3.4/DlO-1991, copyright ©1991 by the Institute of
Electrical and Electronics Engineers, Inc. This information was written within the context of
the IEEE 8td PI003.4/DIO-1991. The IEEE takes no responsibility or liability for and will
assume no liability for any damages resulting from reader's misinterpretation of said infor
mation resulting from the placement and context in this publication. Information is repro
duced with the permission of the IEEE.

26 Basics

POSIX.4a dictates that compliant implementations are to support at
least two scheduling algorithms, priority based and round-robin, and pro
vides functions to assign these algorithms to individual threads. iRMX
supports both priority and round-robin scheduling algorithms, although
not with as rich a function set as POSIX.4a. iRMX task scheduling is de
scribed in chapter 6.

POSIX signals are closely related to a process, which is only approxi
mately the same as an iRMX job. As a result, the signal mechanisms of
POSIX.l and their extensions in POSIX.4a map only roughly onto iRMX
systems. Actually, the proposed POSIX.4a extensions to signals were not
well enough developed at the time of this writing to say much about them.
Two iRMX features provide the functions for the situations that Unix sig
nals are meant to deal with: exception handlers, described in chapter 6, and
signal characters, described in chapter 8.

POSIX.16. Multiprocessing. PI003.16 is the name of the group working on
multiprocessing extensions to POSIX. Some of the issues involved in de
veloping POSIX.4a were purposely deferred until POSIX.16 becomes es
tablished because of an overlap between certain multitasking and multi
processing concepts.

All the computer systems considered in this book are based on com
puters with only one CPU, or CPUs operating independently of each other
except for passing messages to one another. That is, one CPU runs all the
code executed by all the tasks of all the applications that might be in pri
mary memory at one time, as well as all code executed on behalf of the OS
itself. Conceptually, several tasks could be executing at the same time, but
this is a case of virtual concurrency because a single CPU can actually exe
cute an instruction for only one task at any particular moment. The situa
tion is radically different if there are multiple CPUs to which different
threads of execution can be assigned, because the concurrency between
tasks becomes real rather than virtual.

From a real-time application programmer's point of view, an application
runs correctly on one CPU because the program manages task priorities
and intertask synchronization to guarantee logical correctness without re
gard to the actual rate at which the processor executes the code for a partic
ular task. If two tasks of the same priority are ready to run at the same time,
it should not matter whether they run one after the other or, by using mul
tiple CPU s, at the same time. You can expect some interesting issues to be
raised as the POSIX.4a and POSIX.16 committees interact. Meanwhile,
we can examine the iRMX operating system, confident that the multi
tasking features it supplies will bear at least conceptually on multiprocess
ing systems as well.

Chapter

2
Using an iRMX System

2.1 Overview

Most programs developed for iRMX are real-time applications, and many
ofthose applications interact with human users through nonstandard I/O
devices - if at all. Such applications are often programmed on a non
iRMX computer, called a development system, which can also be used to
help debug and integrate the application on an iRMX computer, called the
target system.

iRMX does, however, include a software layer called the Human Inter
face (HI) that allows you to use the as as a conventional time-sharing sys
tem, one that can be used as a development system in its own right. This
chapter introduces you to the features of the HI that a user encounters
while using iRMX as a time-sharing system, and the next chapter covers
using an iRMX system as a development system.

In addition to the HI layer, other layers ofthe as are referenced. These
are the Nucleus, the Basic I/O System (BIOS), the Extended I/O System
(EIOS), the Application Loader (AL), the Universal Development Inter
face (UDI), and the C run-time library.1 These other layers are covered in
more detail in chapter 6 and beyond. Even if your iRMX applications do
not use the iRMX HI, and you do your coding on a separate development
system, you should become familiar with the topics covered in this chapter
because they include concepts about the iRMX I/O system that will be im
portant later on.

iRMX is not the first computer system most people work with, so brief
references to DOS and Unix are included in the material that follows.
These references serve two purposes: (1) They might clarify an iRMX

1 Versions of iRMX can be configured that omit some of these layers. Such a configuration
would be built for a system that has memory constraints or that does not need the functions
supplied by certain layers. All configurations of iRMX include the Nucleus layer, however.

27

28 Basics

function to DOS and Unix users, and (2) they might warn DOS or Unix
users that something that seems to be the same in iRMX is actually differ
ent. If any particular reference to DOS or Unix does not help you, simply
ignore it.

Like the rest of iRMX, the HI is very well documented in the manuals
that accompany the system. The manuals, however, serve as reference doc
uments rather than tutorials; thus, the manuals often include references to
somewhat obscure features of the system to be completely accurate. This
book, on the other hand, tries to guide you in mastering iRMX. Keeping a
topic clear while you are learning iRMX means being selective about what
is included about that topic at any particular point in this book. If the sys
tem does not do what you expect it to, it may very well be that you have
stumbled onto something that was only glossed over or is covered later in
the book. So, when in doubt, RTM! (Read The Manual!). Of course, RTM
only works if you know which manual to read, so do look through the com
plete documentation set for your version ofthe as to find out where to look
things up later on. In this book, various volumes in the iRMX for Windows
documentation set are referenced. These references are correct for iRMX
for Windows version 2.0, but might be different for other releases of the
operating system.

2.2 iRMX Platforms

Before using iRMX, you need to understand some background about the
different platforms available for running iRMX. A platform is a type of
computer system that can run iRMX software. Different platforms require
different steps in the procedures. Conceptually, the various versions of
iRMX (I, II, and III) can run on any computer that uses the appropriate
Intel microprocessor. In practice, iRMX has built-in support for applica
tion development on just three platforms: the AT Bus, Multibus I, and
Multibus II.

The A T Bus platform refers to any industry-standard PC compatible
with the IBM AT or later computer. Although the term A T Bus is used, the
computer can use just about any bus at all, including the following:

• The AT bus itself, which is also called the ISA bus.

• The EISA bus, an extended version of the AT bus .

• IBM's Micro Channel Adapter bus (MCA).

• One ofthe buses used in PCs outside of the United States, such as those
used by NEC and Fujitsu in Japan.

The important feature of the platform for iRMX for Windows is simply
that the computer contain code in an IBM or compatible ROM-BIOS for
performing standard I/O operations. ISA, EISA, and MCA circuit boards
cannot be intermixed within one computer system, but they are all pro
grammed the same way using subroutines supplied in the ROM BIOS.

Using an iRMX System 29

Two versions of iRMX III were available for the AT platform: one ver
sion ran as a typical PC operating system, requiring its own disk partition
from which the OS had to be bootstrap loaded and providing no interaction
with the DOS operating system. This version of iRMX III for the AT plat
form was sometimes called the System 120 configuration. iRMX for Win
dows is the other version of iRMX III, and is the only version that Intel
now supports for the AT platform.2a iRMX for Windows runs at the same
time as DOS (a DOS command is used to bootstrap load iRMX for Win
dows), with a hot key, <alt/SysRq>, used to switch between the two
operating systems. In addition to running concurrently with DOS, iRMX
for Windows can use both the DOS disk partition for its files as well as an
optional, separate iRMX partition for users who prefer the advantages of
multi-user protection and longer file names offered by the iRMX file sys
tem.

Note that you can edit and compile iRMX code on any PC platform that
runs DOS because the iRMX software development tools (described in
chapter 3) run under DOS as well as under iRMX. Normally, a program
that is built to run under one OS will not run under a different OS. The de
velopment tools for iRMX, however, are an exception; an iRMX program
called run86, coupled with their internal use of a software layer called the
Universal Development Interface (UDI) allow Intel's DOS-hosted develop
ment tools to run under iRMX. You must, however, be running iRMX it
self on a PC to actually run and test an iRMX application, but the rest of
the development cycle can be conducted under DOS without running
iRMX.

Multibus I and Multibus II were initially developed by Intel as designs
for system buses. The designs have been adopted as open standards by the
IEEE and are used by a number of vendors in the design of computer sys
tems. Like the various PC buses, the designs of these buses specify both the
physical dimensions of the circuit boards that can be used with them and
the mechanical and electrical parameters that must be matched for differ
ent circuit boards to interact properly in an integrated computer system.
There is no standard ROM -BIOS for these two platforms, but to use iRMX
with them as a development system, the circuit board containing the CPU
must include code in ROM for bootstrap loading the OS from disk or a net
work.2

2ISA, EISA, and MCA bus systems have the CPU, some memory, and various other circuits
on a motherboard, which also holds bus connectors for the other circuit boards that can be
installed in the system. Multibus I and Multibus II systems use a passive backplane to hold
the connectors for all the circuit boards, including the one that holds the equivalent of a
motherboard, which is called a Single Board Computer (SBC). With a passive backplane you
can change CPUs by exchanging SBCs, and you can even have more than one SBC in the sys
tem. Processors in a multi-SBC system can share memory, and with Mulltibus II they can
pass messages among themselves efficiently. Each processor in a multi-SBC system runs its
own OS.

2alntel introduced a version of iRMX too late to be included in this book that runs on an AT
platform without requiring DOS to be present.

30 Basics

2.3 Logging on to an iRMX System

Actually logging on to an iRMX systems is easy: just enter your user name
at the login: prompt and your password at the password: prompt. Get
ting those prompts to appear, however, might not be as simple as on other
time-sharing systems with which you are familiar!

If you are running iRMX for Windows on a PC, you must run rmxtsr and
loadrmx, either from the DOS prompt or from a batch file such as
autoexec. bat. Then, press <al t/SysRq> to bring up the login screen
from the DOS prompt. This hot-key technique for accessing iRMX works
only from text screens on the DOS side. To access iRMX from Windows,
which is a graphics application, start the wterm application that comes
with iRMX for Windows (by double-clicking the icon), and select the
[Wterm, connect] menu options. Note that some early versions ofwterm
require you to click a few "OK" buttons to get to the iRMX login screen.
Winterm a commercially available terminal emulator from Marketfield
Software, Oyster Bay, N.Y., can be used in place ofwterm. Winterm offers
more features and generally performs better than wterm.

If you are working with a Multibus I or II platform rather than Windows,
just powering up the system should produce the login screen on all the ter
minals attached to the system.

If a terminal attached to the computer doesn't invite you to log in, there
are two possibilities:

First, the system might not be configured to recognize the terminal as a
login terminal. For example, it is often convenient to have a terminal at
tached to a system reserved specifically for debugging programs inter
actively. SoftScope, the interactive debugger, allows a developer to use
such a terminal for its own interactions with the user so that debugging
commands and responses do not interfere with the appearance of the pro
gram being debugged, which continues to interact with the user's login ter
minal.

Second, the system might be configured to recognize the terminal as a
static login device, which means that a user gets automatically logged in to
the system on that terminal at power up. For iRMX for Windows, a "termi
nal" might be either a separate terminal attached to the system through a
serial port or the PC's own keyboard and monitor, referred to collectively
as the system console.

If you do not have an account on the system yet, you can probably log in
with the user name "world," which is normally valid on all iRMX systems.
There is usually no password for "world," so just press <Enter> when
prompted for the password.3

3 iRMX does not distinguish between uppercase and lowercase letters in commands and file
names, similar to DOS, but unlike Unix. You can log in as "WORLD," "world," or "World,"
and it's all the same on iRMX. The one exception to this rule is your password, which must be
entered using exactly the same alphabetic case(s) as when you set it up.

Using an iRMX System 31

2.4 Entering Commands

When you first log in, some commands will probably be executed automati
cally by a mechanism like the DOS autoexec. bat file or the Unix
. login file. You will then interact with a program called the Command
Line Interpreter (CLI, pronounced "klee"), which reads your commands
from the keyboard and runs them. The CLI is equivalent to the DOS
and Unix shell programs, command. com andjbinjsh, respectively. The de
fault CLI prompt string is a hyphen, but iRMX> is used in the examples
throughout the book. A reference number that would not be typed by the
user is also used at the end of command lines in the examples. For example,
command line [1] represents a simple dir command entered by a user in re
sponse to a CLI prompt. (The dir command lists the names of the files and
directories in the current directory.)

iRMX> dir [I]

You can correct typing mistakes on a command line before you press
<Enter> by using the typical editing keys:

• <backspace>, <delete>, or <rubout> (depending on your key
board), which erases the character to the left of the cursor.

• The left and right arrow keys, which move the cursor within the com-
mand line so you can edit it.

• <A F>, which erases the character under the cursor.

• < A A>, which erases all characters from the cursor to the end of the line.

• <esc>, which enters the command exactly as it appears on the screen.

• <Return>, which erases from the cursor to the end ofthe line and then
enters the command.

• <&> at the end of the line, which continues long commands on more
than one line. If you use < &>, you will see two asterisks as the prompt for
continuation lines.

The CLI command history mechanism allows you to recall previous
commands for editing and entering. Press the up and down arrow keys to
move up and down through the list of previous commands. Alternatively,
you can type < ! > followed by the first few letters ofthe command you want
to recall, and the CLI will search back for the last command that started
with those letters. This mechanism is very similar to the Unix tcsh com
mand history mechanism, and similar in concept to the DOS 5.0 doskey
facility.

There are several other special keys, some of which can cause problems if
pressed inadvertently. For example, < A S> is used to stop all output (so it
doesn't scroll off the screen), and you have to type < A Q> to allow output to

32 Basics

resume. < A w> causes console output to stop every 20 lines or so. Press
< A W> to display the next 20 lines. If your terminal seems frozen, it's possi
ble you pressed < A S> or < A W>. Pressing < A Q> twice will clear most such
problems. The iRMX Command Reference, volume 10 of the iRMX for
Windows documentation set, includes a list of all the special key combina
tions you can use in its first chapter. The corresponding manual for other
versions of iRMX is called the iRMX Operator's Guide.

The CLI can process two types of commands: CLI commands and HI
commands. CLI commands are those recognized and processed by the CLI
itself. HI commands are loaded into memory for execution from files.

2.4.1 HI commands

HI commands are the more commonly used commands. These commands
come from a variety of sources. Many are supplied with the system and are
known as system commands. A set of commands known as utilities, or
Commonly Used System Programs (CUSPs) comes from Intel, the iRMX
user's group called iRUG, and others." The distinction between system
commands and Intel-supplied utilities can sometimes be obscure, with a
command distributed as a utility at one time being promoted to system
command status in a later release. A third set of commands is placed in the
category of development tools, which includes compilers, linkers, debug
gers, and the like. Finally, HI commands also include those programs that
you have developed.

The HI commands are fully documented in the iRMX Command Sum
mary or iRMX User's Guide manual depending on the iRMX version. In
addition, an iRMX help command displays information about most HI
commands. (The DOS rmxhelp command can help you when you are using
iRMX system calls, which is a different matter.)

For a quick look at most of the names of the HI commands available on
your system, type the following commands:

iRMX> dir :system:
iRMX> dir :utils:
iRMX> dir :lang:

[2]
[3]
[4]

Command line [2] lists the names ofthe system commands, line [3] lists
the names of the utilities, and line [4] lists the names of the development
tools. Note that since dir is itself a system command, you should see its
name in the first list of files.

4iRUG originally began as the iRMX user's group but has expanded its purview to "all real
time systems based on Intel microprocessors." iRUG can be contacted by calling (800) 255-
!RUG (255-4784).

Using an iRMX System 33

When you enter an HI command line, the CLI passes it on to the part of the
as called the Human Interface (that's why they are called "HI Com
mands"), which, in turn, searches standard parts of the disk until it finds the
file that contains the program, loads the program into RAM (using a part of
the as called the Application Loader), and causes it to start executing.

iRMX command lines have a standard format, consisting, from left to
right, of the command name (the name of the file containing the program to
run),aninputpathlist, 5apreposition,anoutputpathlist,andasetofparame
ters. If parts of a command line are omitted, default values are usually as
sumed, which often provide a single command with a number of different,
but related, functions. Consider the system command, copy, for example.

iRMX> copy filel to file2 [5]

Here, the input path list is the name of one file, file 1, the preposition is
to, and the output path list is the single file named file 2. No parameters
are specified in this example. As you would expect, the command will create a
new file, named f i le2, by copying f i lel. If f i le2 already exists, the user
will be prompted whether to replace it or not. Changing the preposition from
to to over suppresses that prompt, and any existing file named f ile2 is re
placed automatically. The only other prepositions used by iRMX com
mands besides to and over are after and as. Changing to to after in the
example would cause filel to be appended to the end of file2. The as
preposition cannot be used with the copy command. (In fact, purists claim
that as is not a true iRMX preposition because it is not recognizedautomati
cally by the normal iRMX command line parsing routines.)

Now let's experiment with input and output path lists. The items in a path
list are separated by commas, so the input and output path lists in the follow
ing example consist of three file names each:

iRMX> copy filel, file2, file3 to filea, fileb, filec [6]

For this example, filel is copied to filea, file2 is copied to fileb,
and file 3 is copied to f ilee. It is possible to not match the number of input
and output lists evenly, provided the command makes sense. For example,
the command

iRMX> copy filel, file2, file3 to filea [7]

5 A distinction exists between file names and path names. See the section on file manage
ment later in this chapter for more information.

34 Basics

would copy filel to filea, then copy file2 afterfilea,and file3 after
that, resulting in the concatenation ofthe three input files in the single out
put file. The HI shifts the preposition from to to after automatically.

If you omit the preposition and output file list, when using the copy
command the input files are copied to the terminal screen. (You cannot
omit the input file list from a copy command, but you can for many
other commands.)

For an example of a command line parameter, consider the following:

iRMX> copy filel, file2 to filea, fileb query [8]

You can tell that query is a parameter because there is no comma between
it and f ileb. Commas separate items in the input and output path lists,
while spaces separate path lists from the preposition, the output path list
from the parameters, and the parameters from each other. The queryparam
eter causes copy to prompt you for permission before copying each file.

Wildcards are supported for input and output path lists. An < * > substi
tutes for any zero or more characters in a file name, and a <? > substitutes
for any single character. Examples of wildcards are shown in Section 2.5,
File Management, below.

The CLI also supports redirection of console input and output using the
'<' and '>' characters, respectively. iRMX uses the terms console input and
console output as well as these redirection characters the same way that
DOS and Unix manipulate what they call standard input and standard
output. Commands that normally accept input from the keyboard and pro
duce output on the screen can have files substituted for these devices using
'<' and '>'. Console input redirection cannot be illustrated using copy be
cause it does not take input from the keyboard, but you have already seen
that copy uses the screen as the default output device if no preposition and
output path list are specified. Thus,

iRMX> copy fUel> fUe2 [9]

has the same effect as line [5]. If you understand that the input path list
and console input are different, and that the output path list and console
output are also different, you should see that lines [5] and [9] are accom
plishing the same command two totally different ways. For instance, you
could not substitute '>' for to in line [6] (copying three files to three other
files) because it makes sense only for a single file name to follow the '>'
character.

Although a standard format exists for iRMX command lines, this format
is not always followed. Processing the command line according to the stan
dard format is something that must be done by the program itself, and not
all commands need all parts of the standard line. The HI provides system

Using an iRMX System 35

calls to do most of the parsing for a program, but some programs prefer not
to use the HI routines but rather work with another syntax for the com
mand line for one reason or another. In particular, programs written in the
C language normally treat the command line as a list of words separated by
spaces rather than commas, and no notion of input list, preposition, output
list, or wildcards exists. For example, a standard C program would read the
command line

iRMX> mycommand filel, file2, file3 [10)

as a line with three command line arguments after the command name
(each one a character string that has a comma at the end), but it would read

iRMX> mycommand filel, file2, file3 [11)

as a command name followed by a single argument, because there are no
spaces following the commas. A standard iRMX program using the HI
parsing routines would read both as lists of three file names because the HI
parser ignores the spaces after the commas in line [10].

2.4.2 CLI commands

CLI commands are executed directly by the command line interpreter.
These commands support eight different features: history, CLI parame
ters, aliases, background processing, command files, super, and log off.
This section describes these classes ofCLI commands. They are fully docu
mented in volume 10 of the iRMX for Windows documentation set, the
iRMX Command Reference (called the iRMX Operator's Guide for some
other versions of iRMX).

History commands. As you type in commands at the iRMX> prompt, the
CLI stores them in an internal list so that you can reuse them later. You
can see this list by typing the history command, and you can recall previous
commands by either using the up and down arrows to scroll through the
history list, or using the <! > character to recall previous commands. A
command line that starts with < ! > followed by either a number or a few
characters causes the CLI to recall either the command with the matching
number (the history list provides the numbers) or the most recently en
tered command that started with the same few characters.

CLI parameters. The CLI maintains a number of parameters about the
user's session. These parameters include the user's prompt string, how
much space to reserve for the alias table (described next), and what type of
terminal is being used. You can add special features to the CLI, such as

36 Basics

automatically timing the execution of all HI commands, and the eLI will
display parameters for these added features, if they are present, as well.
The set command is used to modify the eLI's parameters, and if no argu
ments are used, set displays the current values of all its parameters.

Aliases. Aliases let you define abbreviations for commands. This can be
useful for either reducing typing time (some ofthe iRMX command names
are very long), or for customizing the iRMX system to recognize the com
mands you are accustomed to using on another system. For a combined ex
ample, consider using the alias cd for the name of the iRMX attachfile
command, which is roughly the same as cd in both Unix and DOS. iRMX
aliases can take arguments, as this example illustrates:

iRMX> alias cp = copy #0 to #1 query [12]

After entering this alias, the following command could be used to copy
two files, with a prompt for confirmation before each one is copied:

iRMX> cp filel, file2 filea, fileb [13]

As you might infer, #0 and #1 in the alias are place holders for the argu
ments that are specified on the command line when the alias is actually
used. Note that there are no spaces between the file names on the cp com
mand line. The significance of this is that alias substitution uses spaces to
separate the command line into the parameters, #0 and #1, so the entire
string, filel, file2 is substituted for #0, and the string filea, fileb is
substituted for #1. The embedded commas in these strings then signify
lists of file names for the copy command.

Background processing. The eLI lets you run more than one program at a
time. Any HI command line can be preceded by the eLI command back
ground, and the eLI will start the command running and return with a
prompt for another command to be run at the same time as the first. The
jobs command lists all background commands currently running, and the
kill command aborts background commands. There is a standard alias for
background, which is bk.

The subject of background processing raises the issue of iRMX's mem
ory management policies. Like DOS but unlike Unix, iRMX does not in
clude support for virtual memory. Therefore, all programs you want to run
simultaneously must be loaded into memory in their entirety at the same
time. This strategy is good for real-time systems that cannot afford the un
certainty in execution time associated with demand-paging algorithms.
However, this strategy can become a problem when you run certain pro
grams in the background, such as compilers, that ask the OS to allocate as
much memory as possible to themselves when they first start running. The

Using an iRMX System 37

more memory a compiler can get, the faster it can run, but the less memory
is then left for running other commands at the same time.

The background command lets you specify both the minimum and maxi
mum amount of memory a program can have available as it runs in the
background. You might set the minimum high enough to get just accept
able performance from a program, and set the maximum low enough to en
sure the program does not occupy too much memory and leave you without
enough memory to do anything else. For example, the command

iRMX> background(450,1024) plm386 myprog .plm [14)

specifies that the PLM compiler is to run with a minimum of 450 kilobytes
(KB) of memory and a maximum of 1 MB (1024 KB). Because the compiler
can run with as little as 380 KB, the command guarantees that the com
piler will not start unless enough memory exists to give the compiler what
the user considers to be acceptable performance. At the same time, the
compiler is not allowed to use more than 1 MB, presumably because the
user knows that enough memory is available beyond 1 MB to allow other
commands to be run at the same time.

If you entered line [14] as shown, the system would ask you for the name
of a log file. Background commands cannot read or write from or to the op
erator's console because doing so would interfere with the use of the con
sole for normal commands read by the CLI. The CLI thus asks for the name
of a log file to which all console output will automatically be sent as the pro
gram runs in the background. You can view the contents of the log file as
the background command is running if you want to track the progress of
the command. The skim utility is a convenient way to display text files on
the screen.

If a background command tries to read from the console input device
(the keyboard), the command will be aborted. You can use '<' and '>' on
the command line to redirect console input and output from and to files. If
you redirect console output, you will not be prompted for the name of the
log file. Below is an example of an interactive program named interact that
runs in the background. The input the program reads comes from a file
named input. data, and the output is redirected to interact . log:

iRMX> bk interact < input.data > interact. log [15)

Command files. Command aliases can reduce the typing needed to enter
a single command; command files can extend this concept to sequences of
commands. Use an editor to put the commands to be executed into a text
file, and issue the CLI's submit command with the file name as an
argument.6 If the command file name ends in . CSD you can omit that

6Command files are often called submit files because they use the submit command.

38 Basics

part of the file name. You can supply arguments to the command file by
enclosing a parameter list in parentheses on the command line and
referring to them as %0, %1, ... %9 inside the file. For example, sup
pose the file doit. esd contains the following text:

copy %0 to %1
delete %0 query

This command file might be invoked using the following command line:

iRMX> submit doit(filel, file2) [16]

In this case, filel would be copied to file2 and then would be deleted
after the user confirms the file deletion.

Command files can contain CLI commands, including other submit
commands, alias commands, background commands, and the like. A useful
strategy is to make submit the object of a background command. Chapter 3
provides such an example after some of the program development tools
have been introduced.

iRMX command files are different from DOS batch files and Unix shell
scripts primarily in the way they are invoked. DOS knows that a file is a
command file by its . BAT extension, and Unix knows the same thing by
looking at the state ofthe file's execute permission bit. iRMX lets you use
any file as a command file, but you need to type submit (or a brief alias for
submit, such as s) on the command line.

Below is an alias for a command called do that will submit the command
file named makei t. esd and pass three arguments to it:

iRMX> alias do = submit make it (#0, #1, #3) [17]

With this alias in place, you can save typing by entering the command

iRMX> do myprog compact debug [18]

which would be equivalent to the command

iRMX> submit make it (myprog, compact, debug) [19]

Although submit is a CLI command, there is also an HI command by the
same name that comes with the system. The HI submit command operates
the same as the CLI version, except that it does not recognize CLI com
mands within the command file. The HI command version of submit is
useful to use from within the editor or debugger. These programs allow you
to run HI commands without exiting the program; however, they use their

Using an iRMX System 39

own command line interpreters, which can run only HI commands, and not
eLi commands.

Another HI command, called esubmit, is also supplied with iRMX. It not
only supports the standard eLi commands within command files, but also
supports conditional execution of commands based on the results of earlier
commands. An example of an esubmit command file is shown in chapter 3.

When you first log on to an iRMX system, a command file named
: prog: r? logon is automatically submitted. (File names, and the file sys
tem in general, are described in the next section.) You can edit this file to
contain any commands you want. Most users' r? logon files contain sub
mit commands for files consisting of alias commands that set up shorthand
command names. There are usually two of these alias files submitted, one
that is the same for all users on a system, and one that is unique to each
user.

In addition, whenever an iRMX system is first started, the file : can -
fig:r?init is automatically submitted as a command file. The com
mands in this file usually establish system-wide values, such as the sys
tem's network node name. A particularly important file submitted from
: config: r?init is: config: load info, which loads programs that run
while the operating system is running, including layers of the operating
system itself. 7

Super. Every user of an iRMX system is assigned a unique ID number be
tween 0 and 65,535. The file system uses these ID numbers to provide a
basic protection mechanism for controlling one user's access to other
users' files (discussed in the next subsection). The ID number 0 belongs to
the Super user, who can read or change the access rights for any file on the
system. The eLI's super command permits a user to gain Super user status.
There is also a super HI command for use when commands are processed
by a nonstandard command line interpreter, such as from within the editor
or debugger. Both the eLI and the HI super commands use the command
exit to leave Super-user mode.

Logging off. Use the eLI's logoff command to end a time-sharing session.
The file : prog: r? logof f, if it exists, will be submitted as a command
file, and the logon: prompt for the next user will appear. If the terminal is
configured for static logon rather than the usual dynamic logon, the static
user will automatically be logged back on after submitting r?logoff.

Table 2.1 lists all the iRMX files accessed when the system starts run
ning and when users log on and off. The files that have names beginning

7 At the time of publication, loadinfo is used only with iRMX for Windows and iRMX III
systems.

40 Basics

TABLE 2.1 Text Files Accessed When an iRMX System Starts Running,
When Individual Users Log On or Off, and When the C Language getenv()
Function is Called.

File name Purpose

: config: rmx. ini iRMX for Windows systems only. Contains operating system
configuration parameters.

: conf ig: r? ini t Contains HI commands that are automatically executed when
the system starts running.

: conf ig: loadinfo iRMX for Windows systems only. Invoked by a command in
:config:r?init. Contains commands to instaliloadable
parts of the operating system, such as device drivers.

: conf ig: terminals A list of devices to which terminals are connected for accessing
the system. The first line lists how many terminals I/O lines
exist, and the succeeding lines list, for each line, the device
name of the terminal, an optional user name who is to be
logged onto the terminal automatically (static logon user), a
reserved field, and the type of terminal connected to the I/O
line. If no static logon user exists, the line is used for dynamic
logins in which users must supply their name and password to
access the system. If no initial program exists, the CLI is used.

: config: logon.msg Contains the text of the message displayed on a terminal while
the system waits for a dynamic logon user to log on.

: config: udf User Definition File. User names, their encrypted passwords,
and their user ID numbers are contained here. Used to validate
login attempts. This file uses exactly the sallie format as the
Unix /etc/passwd file, so it can be shared among iRMX and
Unix systems in a networked environment.

: config: user/* The * represents a set of files, one per authorized user. The file
names match the user names in :config:udf. For each user,
the corresponding file in this directory tells the minimum and
maximum amount of memory the user is allowed to use, the
maximum priority for user programs, the pathname of the
user's home directory, and an optional initial program name.

: conf ig: termcap Contains information used by the CLI, the editor, the
SoftScope debugger (version III) and other programs to
determine how a particular user's terminal handles moving the
cursor, clearing the screen, and other such control operations.
The CLI's set terminal command is used to select an entry
from this file that can then be accessed by all programs.

: conf ig: alias. csd A set of CLI alias commands that are to be established for all
users who log onto the system. See : prog: r? logon below.

: conf igilang3 8 6. als A set of aliases for running development tools. Submitted by
:config:alias.csd.

: config: r?env One oftwo files that are accessed by C programs to determine
the value of environment variables using that language's
getenv() function.

: sd: user/* The home directories for users. The * normally matches the
user's login name, but the actual path is determined by the
contents of the user's :config: user/* file. The home
directory contains another directory named prog that is
referenced using the logical name : prog: in the following
entries.

Using an iRMX System 41

TABLE 2.1 Text Files Accessed When an iRMX System Starts Running,
When Individual Users Log On or Off, and When the C Language getenvO
Function is Called. (Continued)

File name

:prog:r?logon

:prog:alias.csd

:prog:r?logoff

:prog:r?env

Purpose

Contains commands that are automatically executed when a
user first logs on to the system. This file normally contains
commands to submit :config:alias .csd and
: prog: alias. csd as well as other commands to tailor the
environment to the user's preferences.
The other set of alias commands in addition to
: conf ig: alias. csd that are usually set up by a submit
command in prog:r?logon.

Contains whatever commands a user wants executed
automatically each time he or she logs off the system.
The second file that is used to resolve references to
environment variables using the C language getenv() function.

with : conf ig: are normally managed by a system administrator, while
the files with names that begin with : prog: can be edited by individual
users to tailor the system to their own needs. Note that file names that
begin with r? (or R?) are invisible for normal directory listings. Use the
invisible (abbreviated i) parameter on the dir command line to see
these files. For example, the command line

iRMX> dir :prog: i [20]

lists the names of all files in the user's: prog: directory, including invisi
ble ones.

2.5 File Management

All I/O facilities of iRMX are provided by a layer of as software called the
Basic I/O System, or BIOS. This BIOS is not the same as the ROM-BIOS
in a PC, although the iRMX for Windows BIOS makes some use of a PC's
ROM-BIOS when accessing standard PC peripherals. More information
about the iRMX BIOS, and the related EIOS, is provided in chapter 8. For
now, just remember that BIOS is a software layer of the iRMX as.

2.5.1 File protection

Each iRMX file or directory has four protection attributes associated with
it. They are called delete, read, append, and update for files. For directories,
read is called list and update is called change to reflect the semantics of di
rectories more accurately. The BIOS keeps the protection attributes for

42 Basics

three different users of each file in a data structure called the file's accessor
list. The three users are the file's owner (the user who created the file), and
up to two others. User 0 (Super) has read access to all files, but to perform
other operations on a file, even Super must be either the owner or one of the
other two users identified in the file's accessor list.

Your access rights to files can be displayed using the L (Long) parameter
of the dir command, or the E (Extended) parameter, which allows you to
look at the entire accessor list for the files. For example, to see the accessor
lists for all files in the: system: directory, type:

iRMX> dir :system: e 12l)

A lot of output is generated from this command, including four or five
lines of output for each file. The first line for each file includes the name of
the file and the name of the owner of the file. The accessor list will appear
toward the right side of the output, in a section that might look like this:

ACCESSORS ACC
o DRAU
65535 -R--

This list is from a file owned by the Super user, so the first accessor in the
list is 0, with ACCess rights of DR AU, which means delete, read, append,
and update. The second user in this list is 65,535 (OxFFFF), which is the
World user, who has only read access to this file. There is no third user.

Everyone who logs on to an iRMX system is given at least two user IDs,
one of which is unique to the individual and the other of which is always
OxFFFF. By giving read access rights for this file to user OxFFFF, everyone
who logs on to the system can read the file without being added to its acces
sor list. iRMX, by the way, does not distinguish between reading a file to
copy it somewhere and reading it into memory for execution. Since the
sample accessor list is for a file that contains a system command, all users
must have read access to the file to be able to run it.

The reason accessor lists allow three user IDs is based on the Unix file
protection mechanism that provides independent access control for the
owner of a file, a named group of users, and all other users. iRMX does not
implement the notion of a named group of users, but users are assigned a
group ID number when they log in if one has been established for them in
the: config: udf file (see Table 2.1). The accessor list entries other than
the first can contain any user IDs the file owner desires, or can be unused.
There is no iRMX equivalent to the Unix clwwn command for changing
the first ID in the accessor list for a file or directory.

The entire notion of an accessor list applies only to native-mode iRMX
file systems. When iRMX is used to access the files on a DOS disk, it must
work within the constraints imposed by DOS itself, which does not support

Using an iRMX System 43

a file protection mechanism based on user IDs. Instet ad, iRMX for Win
dows just accepts all iRMX commands concerning the iRMX protection
mechanism, such as permit, but treats all user IDs as iRMX's World user.
The issue arises again in the context of network access to file systems
managed by another operating system. For example, a Unix file system
does not differentiate between the iRMX append and update privileges
(Unix has a single privilege called write), and iRMX does not differentiate
between the Unix read and execute privileges (iRMX has a single read priv
ilege). These disparities are handled as transparently as possible, but the
result is not always exactly what the user expected.

2.5.2 The file driver concept

A design feature of the iRMX BIOS is that all I/O devices look like files to
application programs. This is true whether the I/O device is a disk con
taining real files, non -file devices such as terminals and printers, or devices
and files accessed over a network. We have already seen how this feature
provides good flexibility for application programs in the example that
showed input and output redirection using the CLI '<' and '>' characters.
A program that normally reads input from the console keyboard and writes
its output to the console screen does so in the same way it reads and writes
files, so that substituting disk files for both the keyboard and the screen
devices is easy for the CLI to do without changing the program that does
the I/O itself.

To accomplish this device independence, the BIOS uses a mechanism
known as a file driver. The iRMX file drivers are called physical, named,
stream, remote, and (for iRMX for Windows) EDOS. When the BIOS is
first informed that a particular device is to be used, the BIOS is also told
which file driver to use for that device. After that, all operations involving
that device are automatically filtered by the appropriate file driver. If you
attempt something that does not make sense for a particular file driver,
such as accessing a named file on a printer, the file driver will reject the re
quest, after examining it, with an error message, E $ I FDR, which stands for
"Illegal file driver function." (iRMX error-handling is introduced later in
this chapter.)

On the other hand, if you try to access a file located on another computer
system, the remote file driver will recognize the situation and automati
cally negotiate with the remote system to read and write the file over the
network for you. More discussion on file drivers is provided in chapter 8.

2.5.3 Named files

The BIOS supports access to disk files by name using the named, remote,
and EDOS file drivers. The named file driver supports the native-mode
iRMX file system, the remote file driver supports any type of file system
that can be accessed over the network (iRMX, DOS, V AX/VMS, or Unix

44 Basics

file systems), and the EDOS file driver supports MS-DOS file systems for
iRMX for Windows. In all three cases, the file system is a way of organizing
a disk volume to support a tree-structured hierarchy of directories and
files. The root ofthe tree is the root directory, which contains the names of
other directories and files. A particular file in the tree is uniquely identified
by its full path name, which consists of the names of all directories, starting
at the root, that must be accessed to locate the file. The <I> character sep
arates each directory level in a path name, so the path name /dirl/
dir2/filel refers to a file named filel in directory dir2, which is
listed in directory dirl, which is in the root directory. The character <A >
can be used in a path name to indicate going up in the tree rather than
down, as is indicated with <I>. For the tree structure shown in Figure 2.1,
the file file2 could be accessed using either the path name /dl/d2/
file2 or /d3 Adl/d2/file2 (among others). Both DOS and Unix use
< .. > to represent the same thing as iRMX's <A>.

An iRMX directory is simply a file that contains a list of file and direc
tory names along with an internal pointer to all the information known
about the file for each file name. The actual information about the file,
such as its size, its location on disk, and its accessor list, is kept in a sepa
rate file (called the {node file) rather the directory itself.

File names. iRMX file names and directory names can consist of up to 14
characters. No distinction is made between upper- and lowercase letters.
You can use just about any characters you want in file and directory names,
such as multiple dots, spaces, and the like. If you want to put wildcard char
acters or special symbols inside a name, enclose the name, or the part con
taining the special characters, in quotation marks.

For example, <?> is a special character in a file name because it nor
mally acts as a wildcard substituting for any single character. To copy a file
named: prog: r? logon (the <?> is part of the file name) to another file

<root>

d1 d3

file4
file3

file1 file2

Figure 2.1 Sample file system tree structure.

Using an iRMX System 45

named my logon file (note the two embedded spaces), you could enter
one of the following commands:

iRMX> copy : prog : r' , ? ' , logon to ' 'my logon file' ,
iRMX> copy' ':prog:r?' 'logon to my" "logon" "file

[22]
[23]

iRMX file names might or might not include an extension, which is a set
of characters following the last dot in the file name. However, several de
velopment tools do create names of new files by changing the extension
part of a file name. For example, the editor normally saves the original
contents of an edited file in a file with the extension part of the name
changed to . bak. Editing a file named myf i Ie. text results in the origi
nal file being preserved as myf i Ie. bak and the edited version of the file
being saved in myf i Ie. text.

Because dots are part of the file name, * . * is different from * as a wild
card specification. The former consists of all files that have names with
zero or more characters, followed by a dot, followed by zero or more charac
ters. The latter refers to all files regardless of their names.

Hidden files are those that do not appear in normal directory listings.
This feature is normally used to reduce the clutter of directory listings
rather than for any particular security reasons. iRMX hidden files have
names that start with r? or, equivalently, R? You can always view hidden
file names by using the i or invisible parameter to the dir command, as
mentioned earlier. The file named : prog: r? logon is an example of a
hidden file because : prog: is actually the path name for a directory (dis
cussed in the next section), and the name of the file itself starts with r?
DOS supports hidden files with its hidden file attribute, and Unix hides file
names that start with a dot.

Similar to file attributes, iRMX file naming rules only apply to iRMX
file systems. If you access files from another OS over a network or use the
iRMX for Windows EDOS file driver to access MS-DOS files on a PC,
some sort of mapping must exist between the file names of the two systems,
which is never perfect. For example, MS-DOS file names cannot have <?>
in them, so the EDOS file driver drops the r? from hidden file names and
sets the MS-DOS hidden attribute for them. The EDOS file driver also
forces file names to conform to the DOS 8.3 rule (a maximum of 8 charac
ters in the base plus a maximum of 3 characters in the extension) by short
ening the base and extension parts of the file name as necessary. The
EDOS file driver totally rejects iRMX file names that contain illegal DOS
characters, such as multiple dots.

Logical names. A logical name is an identifier for a device, remote com
puter system, file, or directory. For now, our focus is on logical names for
directories. Logical names are normally written with colons around them
to distinguish them from regular file, directory, or device names, but the

46 Basics

colons can sometimes be omitted when no ambiguity exists, for example,
when the only type of file that would appear somewhere is a logical name.
Logical names follow the same rules as file and directory names except that
they are limited to 12 characters between the colons, so that even with the
two colons they are never longer than file or directory names.

Two major reasons exist for having logical names. First they can save a
lot of typing. If you want to reference the files in the directory /user/
jones/proj ectl/source many times, for example, you could assign the
logical name : s: to the directory and refer to a file in it as : s : main
prog . c instead of /user/ jones/proj ectl/ source/mainprog. c.
The command to set up logical names for files and directories is attachfile,
so the command to create : s: would be:

iRMX> attachfile /user/jones/projectl/source as : s: [24]

This is a case, by the way, where the colons around the logical name can
be left off. The identifier after the as in an attachfile command is always a
logical name, so the colons around s are optional.

Logical names are much more than just a convenience to save users typ
ing time. They also contribute to increasing the speed at which disk files
are accessed. To locate a file with a long pathname, the BIOS must read
each directory in the path from disk into memory to find the location on the
disk of the next directory in the path. The BIOS then repeats the process
for each directory in the path until it locates where the file is stored. Each
disk access involved in processing a path name requires time, but the BIOS
saves the information about the disk location of the last item in the path
(either a directory or a file) when you set up a logical name, so the BIOS
does not need to repeat the search process again when the logical name is
used instead of the full path name.

Logical names for directories can always be used as the first part of a
path name. For example, the logical name : s: defined above could be used
to access a file named /users/jones/projectl/source/old/
first_try. c by using the path name: s: old/first_try. c. The sec
ond form eliminates the time needed for disk accesses to the root directory,
to the users directory, to the jones directory, to the projectl directory,
and to the source directory when the file is first accessed. Furthermore, the
same overhead would be eliminated for accesses to all other files in
source.

Logical names for devices look just like logical names for files or directo
ries, and the two are generally interchangeable. In fact, the logical name for
a disk device with a named file system on it can be used as a logical name for
the root directory of the file system. For example, : sd: is the logical name
for the system disk, the disk from which the as was bootstrap loaded, so
:sd:dl/d2/filel is generally the same as /dl/d2/filel. The two

Using an iRMX System 47

forms do not always have identical meanings, however, which brings us to
the next topic.

Current and home directories. The current directory is that directory
which serves as the default when you specify a file name only without an
explicit path name before it. The logical name : $: always refers to the
current directory, and the current directory is changed with the HI com
mand, attachfile. For example, to change the current directory to /user/
jones/projectl, enter the command:

iRMX> attachfile /user/jones/projectl as : $: (25)

This form of the attachfile command is so commonly used that as : $: is
the default for the preposition and output file list if nothing else is specified
on the attachfile command line. Most iRMX users set up the alias cd for
attachfile so that the same effect as [25] is obtained by:

iRMX> cd /user/jones/projectl (26)

The colons around < $> are almost always optional, since it is impossible
to start a file name with the <$> character. As a result, the names
: $: filel, $filel, filel, and even "$filel' , all refer to exactly the
same file. The HI path command displays the current path name of : $:.8

When you first log on to an iRMX system, the current directory is the
home directory that was assigned to you when your account was first set
up. The logical name for your home directory is : home: , and its position in
the file tree can never be changed. Thus, : $: and : home: are both logical
names for the same node in the file tree when you first log on. No matter
where you go with your current directory, you can always return it to your
home directory with the command:

iRMX> attachfile :horne: as :$: (27)

This operation is so commonly done that the attachfile defaults to this
command when it is entered without command line arguments. Command
[27] is similar to the cd command in Unix, but not to the cd command for
DOS (which does what the iRMX path command does!).

The difference between the two path names used previously, : sd: dl/
d2/first and/dl/d2/first, is based on the meaningofthe <I> at the
beginning of a path name, which always refers to the root directory of the

BDOS and Unix users should note that the iRMX path command is not the same as the
DOS and Unix path commands, and no corresponding iRMX command exists for the Unix
and DOS path commands.

48 Basics

file system that holds : $: . If you use the attachfile command to move : $:
to another disk, <I> becomes the root directory of that other disk, but
: sd: remains the root directory ofthe system disk, normally the one from
which the OS was bootstrap loaded.

Other standard logical names. So far, I have mentioned the logical names
: sd:, : home:, and : $:. An essential difference between : sd: and the
other two is that every user who is logged on to a particular system is refer
ring to the same location with : sd :, but each user has separate copies of
the logical names : home: and : $: . Logical names that are the same for
everybody, like : sd :, are called system logical names, and logical names
that are different for each user on the system, like : home: and : $:, are
called user logical names. Examples of system logical names include the fol
lowing:

sd:

:system:

:utils:

:uti1286:

:lang:

:config:

:rmx:

:bb:

The system device or the root directory of the system device.

The directory that contains the HI system commands.

The directory that contains utility programs.

On iRMX for Windows and iRMX III systems, the directory
that contains utility programs that run under iRMX II, iRMX
III, or iRMX for Windows.

The directory that contains the development tools.

The directory that contains certain configuration information
needed by the HI, including the User Definition File (UDF) that
contains users' passwords, the terminals file that identifies
static and dynamic logon terminals, and the r? ini t file that is
submitted when the system is initialized. This directory also
contains the loadinfo and rmx. ini system initialization
files on iRMX for Windows and iRMX III systems.

A directory that contains operating system-dependent files.
For iRMX III and iRMX for Windows, this directory is
:sd:rmx386.

A pseudo-device that discards all information written to it and
that always returns an end-of-file indication when read from.
The name is an abbreviation for byte bucket. The device is sim
ilar to Unix /dev/null and DOS nul devices.

The standard user logical names are the following:

:home:

: $:

:prog:

The user's home directory, which can never change.

The current working directory. It can be changed with the attach
file command.

The same as : home: prog. The directory containing the user's
r?logon and r?logoff command files. The name is meant to
suggest that this is the proper directory for keeping executable

lei:

leo:

:term:

Using an iRMX System 49

copies of utility or application programs that the user has devel
oped.

The user's console input device. Normally the terminal or com
puter keyboard, but can be redirected to a file or other device using
'<'.
The user's console output device. Normally, this is the terminal or
computer screen but can be redirected to a file or other device using
'>'.
The user's error output device. Same as : eo:, but cannot be redi
rected.

Use the logicalnames command to display all the logical names defined on a sys
tem. Include the long option on the command to see what each logical name repre
sents. The alias logs is normally defined for the logicalnames command to save typ
ing.

Search path list. The search path list is the list of directories that the HI
searches to find a file containing a command to be executed. This list is es
tablished when the system is set up, and it cannot be changed by users.
Thus, all users on an iRMX system must use the same search path. The
normal search path list for iRMX for Windows is the sequence of logical
names:

:prog:

:utils:

:uti1286:

:system:

:lang:

: $:

:rmx:

The search path list mechanism can be both convenient and disconcert
ing. It is convenient, for example, if you develop a program named copy and
place it in your : prog: directory. You can run it by typing

iRMX> copy a to b [28]

The HI will find your version of copy to execute before it finds the normal
iRMX copy command because :prog: comes earlier than: system: in
the search path list. A system administrator could achieve the same result
for all the users on a system by putting a local version of a system command
in the :utils: or :uti1286: directory.

The HI uses the search path list only for command lines that do not in
clude an explicit path name for the file containing the command to be run.

50 Basics

For example, if you have your own version of copy in : prog: but want to
use the standard version that is in : system:, use a command line like the
following:

iRMX> : system: copy a to b [29)

If the first character of a command line is < : >, </>, < A >, or < $>, the
HI recognizes that an explicit path name is being used and ignores its
search path list and goes immediately to the specified file to get the com
mand to be executed. You can use an alias to make an HI command start a
little faster by specifying an explicit path name in the alias. For example,

iRMX> alias cd = :system:attachfile [30)

The search path list mechanism can be disconcerting, however, if a file
with the same name as a command that you want to execute is in one of
the directories in the HI search path. For example, if you create a text
file named copy in your : prog: directory and then issue a copy command,
the HI would find your text file in : prog : copy and try to execute it. The
command would "mysteriously" fail because the text file named copy is
not an executable program. The error message you would get would be:
E$BAD_HEADER, while loading command, which means that the first
part of the file (the header) was not in the proper format to be treated as an
executable file.

Another disconcerting phenomenon occurs when an installation uses a
different search path from the one previously given.9 For example, consider
what happens if : uti is: comes before: prog: in your system's search
path list and you develop a program that happens to have the same name as
a utility command that you didn't know about. The first time you test your
program you will actually run the utility with the same name. You can lose
a lot of time trying to understand why your program is doing things you
never coded into it!

One last point while we are discussing the HI command search mecha
nism: there is no rule about naming executable files differently from other
files. If you put an executable program in a file named myprog . exe, then
the name ofthe command is myprog.exe, not myprog, or anything else. The
HI always looks for an exact match between the name of a command and a
file name.

9iRMX for Windows does not support a search path other than the one given above. A dif
ferent search path can only be set up for systems that can be reconfigured using the ICU.

Using an iRMX System 51

2.5.4 Using floppy disks

Floppy disks are good for saving copies of your work and distributing files
to other people, so learning how to use them with iRMX has practical ad
vantages. Using floppy disks also introduces you to some fundamental I/O
concepts that are developed further in chapter 8.

Before any device can be used with an iRMX system, someone must
create a device connection that gives a logical name to the device. Many
device connections are automatically created when a system is first
started, such as : sd: mentioned above. The attachdevice and detachdevice
commands can be used to create and delete device connections and are the
usual technique for handling the device connections for floppy disks.

The attachdevice command requires you to specify the name of the de
vice, the associated logical name, and the name of the file driver to be used
with the device. Device names are sometimes called physical names, or
DUIBs (pronounced "doo-ib"), because they are the names of BIOS struc
tures called Device Unit Information Blocks. iRMX for Windows and
iRMX III support a command called physnames that can be used to obtain
information about the DUIBs available on a system.

To use DOS diskettes from iRMX for Windows, you must use the ED OS
file driver and the device names a _ dos and b _ dos to refer to the PC's A:

and B: drives. If you booted DOS from the c: drive, c _ dos would have
been attached as : s d: when iRMX started running. A typical attachdevice
command would be

iRMX> attachdevice a_dos as :a: edos [31]

If you are running iRMX for Windows and only using DOS-formatted
diskettes in your system, this command needs to be issued just once, from
either a user's r? logon file or from the system's: conf ig: r? ini t file. A
diskette must be in the drive when this command is issued for the com
mand to work.

iRMX has its own way of formatting diskettes, however, that are advan
tageous for users who want longer file names and the security of the file
protection mechanism that DOS cannot provide. These are the same ad
vantages that might prompt you to install an iRMX-formatted partition
on the hard drive of an iRMX for Windows system, by the way. Of course,
pure iRMX systems must rely on the native iRMX file system, although
that system is flexible enough to allow iRMX users to import and export
DOS diskettes by using some utility programs.

Using iRMX diskettes is a more involved process than using DOS disk
ettes under iRMX for Windows, but understanding the process helps lay
the groundwork for a deeper understanding of how the entire I/O system
works.

52 Basics

First, there are dozens of floppy disk DUIB names to choose from when
doing an attachdevice for an iRMX floppy diskette, depending on the size,
density, and format of the diskette, as well as on which particular hardware
controller (and thus, which computer platform) is being used for the drive
itself. Knowing which device name to use can be a bit of a challenge. You
can use the physname command to list the DUIBs on a system, but you
have to know the meanings of the fields in a DUm to decide which one is
correct for your needs. For iRMX for Windows, the list is in Appendix A of
the iRMX for Windows iRMX Command Reference. For other versions of
iRMX, the list is in the documentation for the attachdevice command it
self, which is in the iRMX Operator's Guide. Below is an example of an
attachdevice command for a 3.5" 1.44 MB floppy disk located in the A:

drive of a PC:

iRMX> attachdevice amh as f named [32)

After line [32] has been entered, both the device connection and the root
directory of the iRMX file system on the floppy disk will be known as : f : .
You could type

iRMX> dir : f: [33)

to list the names (files or directories) in the root directory ofthe floppy, or

iRMX> copy * to : f : [34)

to copy all the files in the current directory to the root directory of the
floppy. Line [34] might not do exactly what you want, though, because copy
will treat any subdirectories in the current directory as files. You will end
up with a file rather than a subdirectory on the floppy with the same name
as the subdirectory, but without the contents of the subdirectory on the
floppy. The file with the name of your subdirectory will be a data file that
contains the names and fnode pointers for the files in your original subdi
rectory. If you want to copy directories and subdirectories, you must use
the copydir command instead of copy.

To delete a device connection, use the detachdevice command, which
simply needs the logical name, with or without colons, as an argument. For
example:

iRMX> detachdevice f [35)

Now for the messy part. Every time you remove an iRMX-formatted
diskette from a drive and insert another one, you must do a detachdevice
command and another attachdevice command, even if the two diskettes are
formatted exactly alike and even if all the files on the first diskette were

Using an iRMX System 53

properly closed before removing it. If you don't do this, all the information
on the second diskette will be destroyed the first time you write to it. The ex
planation for this unusual (to put it mildly) behavior illuminates a design
philosophy of iRMX nicely.

The iRMX BIOS improves diskette performance by keeping certain
housekeeping information about the file system in RAM rather than going
to the disk to get the information each time the diskette is read or written.
It continues to use this information from memory until the device is de
tached. Thus, accessing the second diskette without detaching the first
causes the BIOS to update basic file system information for the second one
incorrectly. If the second diskette is write-protected, it will not be dam
aged, but you will not be able to read from it correctly until you detach and
reattach the device.

You do not have to do this procedure with DOS diskettes, even if they are
accessed from the iRMX side of iRMX for Windows, because DOS always
assumes a diskette has been changed when you access it and re-reads its
housekeeping information from the diskette every time it is accessed.
iRMX for Windows users will encounter the same overhead when access
ing DOS disks because the EDOS file driver uses DOS I/O routines to do
the actual disk I/O.

It is not always this way for iRMX. All8-inch diskette drives and most
early 5.25-inch diskette drives had a contact switch in the door that sent a
signal to the processor whenever someone opened the drive door to change
diskettes. When this switch is present, iRMX detaches and attaches the
device automatically. Most 5.25-inch and 3.5-inch drives today, however,
don't generate this signal, so the process must be done manually when
using the drives. Rather than degrade the speed of the system's floppy disk
system, the designers ofthe iRMX I/O system placed the burden on the op
erator to use the system correctly. Other systems are willing to sacrifice
performance to provide a more user-friendly environment.

The flexibility of the iRMX I/O system should not be overlooked in this
context. One reason there are so many DUIBs for floppy disks, for exam
ple, is that they are easy to create. Adding a new DUIB to a system, such as
to support a different number of sectors per track, simply involves loading
a device driver with the correct parameter values when an iRMX for Win
dows or iRMX III system initializes. For systems that support configura
tion using the ICU, the process consists of filling in a few menu screens and
then building a new copy of the OS. The entire ICU configuration process
can be completed in 15 minutes.

2.5.5 Accessing network files

This section assumes you have access to a local area network that supports
ISO transport layer connectivity. Examples include Intel's OpenNet for
iRMX, Xenix, Unix System V, VAX/VMS, and DOS. OpenNet uses ISO

54 Basics

standard protocols to pass messages among file servers and consumers.
The messages themselves follow Microsoft's Server Message Block (SMB)
format, so the list of compatible systems might expand if other vendors
choose to follow these standards for their networking products. Internet
working with Transmission Control Protocol/Internet Protocol (TCP /IP)
can be accomplished by connecting through Unix systems, and direct sup
port for TCP /IP under iRMX is being developed by Intel at the time of this
writing.

Because the iRMX for Windows EDOS file driver allows iRMX users
and programs to access DOS peripherals, users running a Novell network
on a PC with iRMX for Windows can access network drives from the
iRMX side the same as they access local DOS disks. Chapters 11 and 12
provide information about network programming, as well as more infor
mation about internetworking with TCP /IP and Novell networks from
iRMX systems. The following material applies to the use of the OpenNet
networking facilities for iRMX, called iRMX-Net.

The remote file driver makes it as easy to access files across a network as
on the system you are logged in to. It may be a bit slower, but it is just as
easy. The process is just like using a floppy disk: issue an attachdevice com
mand to create a device connection to a remote system and to give that
connection a logical name. Then, use that logical name just like any other
logical name as the first part of a path name.

To issue the attachdevice command, you need to know the name of the
remote system to which you want to connect, just as you had to know the
device name of the floppy disk in the previous section. The difference be
tween DUIB names and network names is that you can see a list of avail
able network names by using the netstat utility program, available from the
user's group iRUG. You use the remote file driver for attaching over the
network:

iRMX> attachdevice systeml as 1 remote [36]

Assuming there is a computer currently up on the network that has set
its network name to systeml, line [36] will create the logical name: l:.
You can see what public directories that system has offered to the network
by giving a dir command

iRMX> dir : 1: [37]

The directory you will see is analogous to the root directory of a disk vol
ume. This directory is called a virtual root, and important differences exist
between a virtual root and the root of a disk volume. The first difference is
that you can never write anything to a virtual root directory over the net
work. Only users logged on to the local system can change the contents of
that system's virtual root directory, which is done by using the offer and

Using an iRMX System 55

remove commands. You can use the publicdir command to see your local
system's virtual root directory.

The other difference between the two directories is that a virtual root di
rectory can contain names for both devices and disk directories, and the
disk directories can come from different disk volumes or from different di
rectory levels in a single volume. Assume that the following offer com
mands have been executed on systeml:

iRMX> offer: f: as floppy
iRMX>offer : sd: user/jones/projectl as proj 1
iRMX>offer :sd:user as usr

[38)
[39)
[40)

Assuming that a floppy disk has been attached with the logical name
: f :, line [38] lets remote users access the root directory of the floppy by
using the public directory name floppy. For example, the user who ac
cessed systeml with the logical name: 1: (line [37]) could copy a file to
the floppy with the command:

iRMX> copy myf He to : 1: floppy /myf He. backup [4lpo

Line [39] demonstrates the use of a subdirectory as a public directory.
Creating a public directory can be done either to save remote users the
trouble of typing long pathnames, or to restrict remote users to accessing
only parts of a disk's file system. A remote user would not be able to access
the j ones directory, for example, by referring to : 1: proj 1 A. That is, you
can't go up from an entry in a remote system's virtual root directory. Line
[40] illustrates that there might be different directories from the same disk
in a virtual root, and, in this case, the path name: 1: usr/jones would
refer to the jones directory.

OpenNet distinguishes between file consumers and file servers. In the
above examples, systeml was a file server, and the computer from which
the user issued the attachdevice command was a file consumer. In practice,
most OpenNet systems are configured as both servers and consumers
simultaneously, with the exception of pure DOS systems, which cannot be
servers without shutting out command processing for the local user. Net
works like OpenNet that are based on systems acting as both file servers
and file consumers are called peer-based systems.

The flexibility of peer-based systems can be seen using an example. As
sume that systeml and systemu are remote iRMX and Unix computers
that have been attached with the logical names : 1: and : u: by a user on a
local system running iRMX for Windows. The following command could

10 Assuming that myf i le. backup is not the name of a directory, this is the first example of
a copy command that creates a file with a different name from the original file.

56 Basics

be issued by the iRMX for Windows user to copy files from the iRMX sys
tem to the Unix system:

iRMX> copy ,l,user/srnith/*.txt to ,u,usr/jones/*.bak [42]"

Of course, this example works only if the iRMX for Windows user has
proper access rights to the directories and files on the two systems.

2.6 Printing Files

Printer support for iRMX ranges from rudimentary to modestly rich. On a
single-user system with a local printer, you can print files by using copy
with the printer device as the destination. Of course, the device must be at
tached first. On a network or multiuser system the situation must be more
complex to prevent multiple users from writing to the same printer at the
same time. Unix systems provide good print spooling facilities for control
ling this situation. Thus, a Unix system on the network can be a good re
source for managing shared printers. Some DOS systems support print
spooling as well. A print spooler for iRMX is also available from iRUG,
along with an rprint command used to send files to that spooler or to
Unix or DOS systems.

2.7 Remote Login

OpenNet supports logging on to a remote system through a mechanism
called Virtual Terminals (VT) available from Intersoft, Inc. in Lake Os
wego, Oregon. An iRMX system must be explicitly configured as a VT
server to allow remote users to log on. Unix OpenNet systems, however,
normally act as virtual terminal servers by default. iRMX for Windows
systems are not configured to be VT servers, but a VT server can be started
after the system is loaded.

The vt utility command is used to gain login access to a remote virtual
terminal server. The only argument to the command is the network name
of the remote computer. When the access is successful, you will see the
logon: prompt from the remote computer, and you can log on as usual.
Logging off returns you to the remote system's logon: prompt. To
break the connection and return to your local system, type the sequence of
characters, <cr><-><.><cr>. (That's "tilde-dot" at the beginning of a
line.) Breaking the connection also logs you off the remote system if you
have not done so already.

The difference between working by remote login and using remote file
access is a matter of which computer runs your commands. Using remote

11 This is the first example of a copy command that shows the input path list and output
path list matching through wildcards. The example copies all of smith's. txt files to files
with the same base name in jones directory, but with the extensions changed to .bak.

Using an iRMX System 57

file access, you could change your current directory to a directory on an
other computer's disk using the attachfile command, and copy, delete, and
otherwise manipulate files just as if they were on your own computer disk.
A copy command, however, is run on the local computer, and the files being
copied pass over the network to your computer on the way to their destina
tion. That is, to copy a file from one remote computer to another remote
computer, as in the iRMX to Unix example in line [42], you must copy
the file over the network twice, once from the remote computer to the local
computer's memory and again from the local computer to the remote com
puter's file system.

With remote login, commands are executed by the remote system. If you
do a remote login to a Unix system, for example, you must use cp, the name
of the Unix copy command, to copy files. If you were to copy files across
directories on the Unix system itself, the only information to travel over
the network would be the characters you type and the messages that appear
on your screen, not the actual files.

2.8 Error Conditions

Many things can go wrong when you run a command. iRMX provides a
mechanism called an exception handler to deal with these situations. An
exception handler is a subroutine that is called automatically whenever an
error is detected by either the hardware or the operating system. Errors the
hardware detects include arithmetic faults, such as division by zero, and
general protection (GP) faults caused by illegal memory accesses on the
80286 and above processors. Errors the OS detects are always associated
with system calls (subroutines in the OS called by application programs to
perform OS functions).

Whenever a system call detects an error, it generates a numeric condi
tion code, also called an exception code, to identify the cause ofthe error.
The operating system passes that code to the subroutine set up as the ex
ception handler. Application programs have complete control over which
routine handles exceptions, but the OS supplies a default handler, the sys
tem exception handler, in case no other routine has been specified. For ex
ample, the HI sets up its own exception handler for the commands it runs,
which is in effect unless the application overrides it with its own exception
handler. The HI exception handler always aborts any command that
causes an error after displaying a message on the console output device.

The term exception is used instead of error because it more accurately
reflects what is being detected rather than out of some need to use delicate
terminology. Some exceptions really are errors, such as passing an illegal
value as a parameter to a system call. But some exceptions are beyond the
control of the programmer, such as trying to write to a printer that is out of
paper. The exception handler mechanism lets programs deal with these
two classes of exceptions differently.

58 Basics

Some configurations of iRMX are set up to use a monitor program as the
exception handler for errors detected by the hardware. A monitor is a de
bugging facility that allows you to examine and modify registers and mem
ory and to execute individual machine instructions. Some monitors are
implemented as software loaded with the OS or shortly afterward, while
other monitors are stored in ROM so that they are available as soon as
power is supplied to the computer. Using a monitor program as an excep
tion handler can be valuable when you are debugging an application, but
for now it's more likely that you will simply want to abandon the program
that caused the error and return to the eLI's iRMX> prompt. You will
know when you are in the monitor program because it prompts for com
mands with two dot characters (..), usually after displaying a message
about what the error was and the memory address of the machine instruc
tion that caused the problem.

The command to exit the monitor is g, followed by an address. For iRMX
III and iRMX for Windows, use g284: Ie, while for iRMX II, g284: 14
should work. iRMX I is a real-mode operating system (see chapter 5 for an
explanation or real and protected modes), so there are no hardware traps
that will take you into the monitor. iRMX for Windows can be set up to
either break to a monitor or abort a program that encounters hardware
faults. The choice is made by setting a parameter called DEH in the system's
:eonfig:rmx.ini file to true (OFFh) if faulting programs are to be
aborted, or to false (OOOh) if faulting programs are to cause a break to the
monitor.

A third type of error should be included here: those errors detected by an
HI command because of invalid input data. For example, if you provide a
compiler with a source program that contains syntax errors, the compiler
(which is an HI command) will detect the problem itself and issue a diag
nostic message.

The question remains what an iRMX user can do when faced with an
error message from an exception handler, such as the HI's, that contains
some cryptic string, such as 0021: E$FNEXIST. The number is the condi
tion code in hexadecimal generated by a system call, and the E $ string is a
mnemonic name for that code. In this case, a File does Not EXIST. A com
plete list of exception codes, their E $ names, and a brief statement of what
each one generally means is available to iRMX for Windows users through
the DOS rmxhelp command supplied with that system. All the information
available with rmxhelp is also contained in the iRMX System Call Refer
ence manual, Volume 9 of the iRMX for Windows documentation set, if
you prefer to work from hard copy documentation.

If you get an error message when you run a command that someone else
programmed, it usually means you did something wrong. If you do not
know what the problem is from the exception code (and by reading the doc-

Using an iRMX System 59

umentation for the command!), you can only write down the message and
find someone who can help you. When running your own code during
iRMX programming, such messages will tell you that your application is
not yet fully debugged, and you will need to determine which system call in
your program generated the exception and then fix the problem.

Chapter

3
Developing an Application

3.1 Overview

Developing a real-time application involves two processes. The first is to
design the application to match the requirements of the project using the
resources available to implement it. The second is to construct the execut
able code.

For an iRMX application, the design process includes deciding what
tasks are needed for the application and how the tasks will synchronize and
communicate with each other and the external environment. Later chap
ters in this book present the resources that are available for implementing
real-time applications on iRMX systems. Formal or structured methodol
ogies for designing real-time applications are outside the scope of this
book; the assumption is the design will be completed using either formal or
informal techniques and proceed from there.

Once the design of a real-time application has been completed, the sec
ond goal of constructing executable code can begin, which is the subject of
this chapter. The executable code might be a Human Interface (HI) com
mand that is loaded into memory from a disk file each time it's run, it might
be a device driver that enables the as to work with a new peripheral device,
or it might be a new set of system subroutines that will be built into the as
and loaded with it when the system is initially bootstrap loaded.

Development is done in a cycle that includes editing, compiling, linking,
and testing stages. Errors can be detected at any stage in the cycle, at which
point the cycle returns to the beginning, the editing stage. At each stage a
development tool is used to transform a disk file in some way. These devel
opment tools include text editors, compilers, linkers or binders (I do not
distinguish between these two terms), and symbolic debuggers.

Central to understanding the development process is the subject of pro
gram modules, and an overview of the types of modules involved in the de-

61

62 Basics

velopment cycle is presented below. The chapter proceeds with a discus
sion covering types of modules and disk files involved in developing code.

3.1.1 Program modules

The types of modules used in developing applications are called source, ob
ject, and loadable modules. A source module is an ASCII text file produced
by a text editor. An object module is the machine language representation
of a source module that a compiler or assembler produces. Each run of a
compiler accepts exactly one source module as input and produces exactly
one object module for output. Most compilers allow pieces of source code,
called include files, to be inserted into a source module during the compila
tion process. An object module must be processed by a linker or binder be
fore it is in a format suitable for execution. The linker or binder normally
combines several object modules to produce a single loadable module. This
book describes two types of loadable modules, although other types exist.
One loadable module is called a single task loadable (STL) module, which is
the type of module found in an executable disk file, such as an iRMX HI
command. The other loadable module is called a bootstrap-loadable mod
ule, which is loaded for execution without any assistance from the as,
often because it is the as itself.

The generic term linkable module refers to any module that can be
processed by a linker or binder. A linkable module can be a single object
module produced by a compiler or assembler, or it can be constructed from
several individual object modules by a previous execution of the linker or
binder. A linkable module is not ready to be loaded into memory for execu
tion; it must be converted to an STL or bootstrap module first. A major
difference between a bootstrap-Ioadable module and an STL module is
that a bootstrap-Ioadable module must be loaded into a fixed part ofmem
ory for it to run, but an STL module is relocatable; it can be loaded into any
part of memory for execution.

Figure 3.1 shows the steps in the development process for an STL mod
ule, and Figure 3.2 shows the steps in the development process for a boot
strap-Ioadable module. Both figures show the process in terms of the files
and development tools involved, with files represented by circles and
development tools by rectangles. Source modules and include files are
prepared using a text editor, an object module is generated from a source
module by a compiler (or assembler), and both STL and linkable modules
can be produced by a linker or binder. Figure 3.1 shows the binder being
used to produce an STL module that can be run as an HI command, and
Figure 3.2 shows the binder producing a linkable module, which is then
combined with other linkable modules by a special binder, called the sys
tem builder, to produce a bootstrap-Ioadable module.

The structure of a source module is determined by the programming lan
guage being used, and the structure of all other types of modules is deter-

(backup

(backup

)~
~

Application

----~> Loader or

Debugger

Developing an Application 63

)

)

> iRMXJob

Figure 3.1 Development steps for an STL module, such as an HI command file.

mined by a formal specification called the Object Module Format (OMF).
Intel publishes different OMF specifications, depending on the architec
ture of the target-system microprocessor. Although iRMX I and MS-DOS
both run on the same microprocessors, the 8086, and compatible architec
tures, Microsoft chose to use a slightly different OMF from Intel's for both

64 Basics

(backup

(backup

>E
)~
~

)

)

1 .--')@)ap -1
~ ----.J . File

---4)~ J ~ Linkable

-------....~~
----4) System ~

Builder I BootstrcW
'----------' L-7 Loadable

File

Figure 3.2 Development steps for a bootstrap-loadable module, such as an operating system
image file.

Developing an Application 65

object modules and loadable modules. The iRMX I linker will accept object
modules produced by DOS compilers, but the iRMX program loader will
not accept loadable files that are in Microsoft's OMF. Because almost all
programs must make system calls to a particular OS to perform such tasks
as I/O and memory management, the inability to load DOS programs
under iRMX is not really an issue because a DOS program would fail as
soon as it tried to make a DOS system call.

To iRMX users, this means you cannot run your favorite DOS spread
sheet or word processing program on iRMX, just as you cannot run them
under any other operating system installed on your PC, such as Unix. With
iRMX for Windows, however, you can run your DOS applications on DOS
while running your iRMX applications on iRMX because both operating
systems are in the PC at the same time.

3.1.2 Development and target environments

Before you can develop any program, you must decide on your development
and target environments. The most popular development environment for
iRMX applications is a PC running MS-DOS and, optionally, Microsoft
Windows. The PC can be used with DOS to run all iRMX development
tools, regardless of the target platform and version of iRMX (I, II, or III).
Alternatively, an iRMX system can be used as the development system.
iRMX I can be used only to run the development tools for iRMX I targets,
but both iRMX II and III can be used to develop applications targeted for
any of the three versions of the OS. With iRMX for Windows, the DOS and
iRMX III development environments are just a keystroke away from each
other, so a mixed development strategy can be chosen.

Development tools that run under DOS are sometimes called DHDT,
which stands for DOS-Hosted Development Tool. Likewise, tools that run
on iRMX are calledRHDT (RMX-Hosted Development Tool), which are
also sometimes called native-mode tools. Virtually all of Intel's DHDTs
can be run on iRMX II or III as well if they are invoked under the control of
a special utility program called run86. A bit of legerdemain is required to
accomplish this feat, which relies on the development tools internally
using the special set of system calls, the Universal Development Interface
(UDI). The run86 program provides a special UDI-to-iRMX system call
translator that is invoked as the development tool runs. Although run86
enables you to run DHDTs on iRMX, remember that you still cannot run
normal DOS applications from the iRMX prompt, because normal DOS
applications make DOS system calls, not UDI system calls.

The choice of a target system depends on the application. Small embed
ded applications (less than 1 MB, including the operating system) that can
operate effectively without the benefits of hardware memory protection
can be targeted for iRMX I systems. iRMX I applications are called real
mode programs in reference to the name for emulating the 8086 architec-

66 Basics

ture with an 80286 or greater microprocessor. (The architecture of Intel
microprocessors is reviewed in chapter 5.) Relatively small protected
mode applications (less than 16 MB, including the operating system) can
be run effectively on iRMX II systems. However, performance degrades if
the code or data for the application exceeds 64 kilobytes (KB) because of a
16-bit limit on memory segment offset values for the 80286 architecture.
Choosing an iRMX III target system can significantly improve perform
ance of large applications because the 80386 architecture allows 32-bit seg
ment address offsets (4-GB segment sizes), which essentially removes any
size limitations on code and data. Protected-mode applications are called
16-bit or 32-bit, depending on if they were developed for iRMX II or III.

A valuable feature of iRMX III is that it runs 16-bit applications without
any changes. If your target is an iRMX III system (including iRMX for
Windows), you can choose to develop and run either 16-bit or 32-bit code.
The tradeoff for 16-bit code is that the same loadable module can be used
on iRMX II, iRMX III, or iRMX for Windows, but it will generally run
slower than 32-bit code.

3.1.3 Development steps

Independent of the target system decision is whether your application will
be run as an HI command or configured into the OS itself. HI commands
are loaded into memory when the user enters the command name at the
keyboard, and the memory they use is then freed when the commands ter
minate. Resident programs, on the other hand, never terminate and con
tinue to occupy memory until the system is rebooted or shut down.

The distinction is primarily whether the application executes under user
control or executes under the control of external events. This distinction is
closely related to the difference between conventional and real-time appli
cations, but there are many exceptions. First, it is very convenient to run
real-time applications as HI commands while they are being developed.
When an error is found, the command can be aborted, repaired, and re-run
without reloading or rebuilding the OS. The application can finally be con
figured into the OS after it has been debugged. Another possibility is a hy
brid application, in which part of the application acts as an extension to the
OS and is made resident, providing functions that can be invoked by dy
namically run HI commands. A device driver is an example of this sort of
code, and there are many others as well.

Resident programs can be either incorporated into the loadable module
that contains the operating system image itself or loaded into memory
after iRMX starts running. The latter option requires the use of a special
program called sysload that is available only for iRMX III and iRMX for
Windows systems.

Most of the steps used to develop HI commands and resident applica
tions are identical. Each step in the process consists of running a develop
ment tool that reads files as input and generates new files as output. As

Developing an Application 67

Figure 3.1 shows, the steps to develop HI commands are editing, compil
ing, and binding. The STL file containing the resulting program can
then be loaded into memory for execution either by a debugging program
or by a part of the as called the Application Loader (AL). A resident ap
plication that is to be loaded by sysload is built in exactly the same way
as an HI command, so Figure 3.1 applies to the development of both HI
commands and some resident commands.

A resident application that is to be configured into the operating system,
as Figure 3.2 shows, includes an additional step in which the linkable mod
ules produced by the binder use another development tool, the system
builder, to incorporate the application into an image of the as that is
loaded into memory when the system is bootstrap loaded. Although the
ICU (mentioned in chapter 2) is used specifically to generate a new copy of
the iRMX operating system, the system builder is a general-purpose devel
opment tool that can build a bootstrap-Ioadable module for any operating
system, or even a standalone application that runs without an as.
3.1.4 Development tools

The development tools must be able to run on the development system,
must all be compatible with each other (since the files output by one tool
are used as input to the next tool), and must generate a program that can
run on the target system. Let's use the development of a C language appli
cation as a concrete example. Depending on whether you want to develop a
real-mode, 16-bit, or 32-bit application, you need to use the iC86, iC286, or
iC386 compiler, respectively . Versions ofthese three compilers are avail
able that run on DOS, iRMX II, and iRMX III systems. There is also a
C-86 compiler that runs on iRMX I. The files produced by these compilers
use different OMFs, so the appropriate linker or binder must be chosen to
be compatible with the chosen compiler. Link86 can process the output of
the C-86 compilers, bnd286 can process the output ofthe C-286 compilers,
and bnd386 can process the output of both C-286 and C-386 compilers.
There are versions of the linker and binders that run on different types of
development systems, so the possibility for mismatching development
tools may seem likely. In practice, you select your development and target
systems, get the one set of tools you need, and go to work.

3.2 A Sample Application

To make the material in this chapter more concrete, the following sections
will use the sample PLM program in Figures 3.3* (the main program) and

*The first comment line of all sample code in this book includes the name of the file
(hellormx. plm in this example) containing the code. The files are available by anonymous
ftto ipcl. cs .qc. edv. Readers can also obtain the files by mailing a diskette to the author:
Dr. Christopher Vickery, Computer Science Dept., Queens College of CUNY, Flushing, NY,
11367-0909.

68 Basics

Figure 3.3 Source code for the sample PLM main program.

/***> hellorrnx.plm <**

*
* sample PLM program for iRMX
* -- main program

*
**/

$title ('Sample PLM Main Program')
hellorrnx: DO;
$include (hellorrnx.ext)
DECLARE

prompt (*) BYTE PUBLIC INITIAL (0, 'Type something: '),
reply (81) BYTE,
Status WORD_16;

dosub: PROCEDURE (response$ptr, response$max) EXTERNAL;
DECLARE

response$ptr
response$max

END dosub;

/*

POINTER,
WORD_16;

* Execution Starts Here
*/

prompt (0) size (prompt) - 1;
CALL dosub (@reply, size (reply) - 1);

CALL rqc$send$co$response (NIL, 0, @(11, 'You typed: .), @Status);
CALL rqc$send$co$response (NIL, 0, @reply, @Status);
CALL rq$exit$io$job (0, NIL, @Status);

END hel1ormx;

3.4 (a subroutine) as an example of an application to be developed into an
iRMX HI command. Examples of resident applications are shown in later
chapters when you have a better understanding of iRMX. This program is
written in Programming Language for Microcomputers (PLM) and will
run equally well under any version of iRMX. PLM was developed by Intel
specifically to generate code for its microprocessors, and is the traditional
systems programming language for iRMX systems.

The C language, however, is quickly supplanting PLM as the language of
choice for much of the work being conducted with iRMX, and will be the
primary expository language in this book. PLM is used for the sample code
in this chapter, however, because it illustrates the concepts of interest here
a bit more clearly than the equivalent C program. If you have trouble fol
lowing the PLM code, you can refer to the equivalent ANSI eversion of the
same program provided in chapter 4. The two languages are compared in
some detail in that chapter.

The main program and subroutine for the sample program are in differ
ent files (hellormx.plm and hellosub.plm). Each file contains vari-

Developing an Application 69

abIes referenced by the code in the other file. This structure for the sample
program was chosen to illustrate some concepts in the binding step better
than if the entire program was in a single file. It is not intended to illustrate
an optimal design for the program, nor even to illustrate a typical iRMX
application.

The following discussion is quite detailed, so you might wish to refer to
Figure 3.5 first to see the complete sequence of iRMX commands that
could be used to build the sample program and run it. Lines [1] and [2] of
the figure use the editor to create two source files, he 110rrnx . p1rn and
hellosub. p1rn. Lines [3] and [4] compile the two source files to create two
object module files, hellorrnx.obj and hellosub.obj. Line [5] binds
the object module files with the necessary library module producing an ex
ecutable file named hellorrnx, and line [6] runs the program.

Figure 3.4 Source code for the sample PLM subroutine.

/***> hellosub.plrn <***

Sample PLM program for iRMX
-- subroutine

**/
$title ('Sample PLM Subroutine')
hellosub: DO;
$include (hellosub.ext)
DECLARE

prompt (*) BYTE EXTERNAL,
Status WORD_16;

dosub: PROCEDURE (resp$ptr, resp$max) PUBLIC;
DECLARE

resp$ptr
resp$max

POINTER,
WORD_16 ;

CALL rqc$send$co$response (resp$ptr, resp$max, @prompt, @Status);
RETURN;

END dosub;
END hellosub;

Figure 3.5 A sequence of iRMX commands that could be used to build the sample program in
this chapter.

iRMX> aedit hellormx.plm [lJ
iRMX> aedit hellosub.plm [2J
iRMX> plm386 hellormx.plm compact debug [3J
iRMX> plm386 hellosub.plm compact debug [4J
iRMX> bnd386 hellorrnx.obj, hellosub.obj, &
** /rrnx386/1ib/rrnxifc32.1ib, :lang:plm386.1ib rc(dm(O,OFFFFFFFFh» &
** ss (stack(8192» rn(code32 to code) oj (hellorrnx) [5J
iRMX> hellorrnx [6 J

70 Basics

3.3 Text Editing

At the top of Figure 3.1, a source file is processed by an editor to produce a
new source file. The original source file is optionally saved as a backup file
in case the user wants to undo an entire editing session.

Any text editor can be used to prepare files for use with iRMX but there
is just one text editor that runs on both DOS and iRMX development
systems-aedit. Aedit is a good, full-screen editor designed for use with
terminals connected to the system through a serial communication link. As
such, it does not support colors or mouse menus; however, it is very easy to
use, very powerful, and, because it is available for both iRMX and MS
DOS (using either the PC's console or a terminal connected to a serial
port), it can provide a useful consistency in editing as you switch between
the two operating systems. Even if you will not be using aedit, you should
still read the following paragraphs, but then skip the Aedit Usage Sum
mary section.

The end of each line in an iRMX text file ends with the ASCII
<cr><lf> (carriage return, line feed, OxOD, OxOA) sequence.1 There is no
end-of-file character in text files. Aedit handles these conventions auto
matically, but using files developed on other systems or exporting iRMX
text files to other systems might require minor adjustments. In particular,
Unix systems terminate lines with just the <If> character, and Unix
refers to that character as a "newline" «nl».

To understand the difference between these two methods of ending
lines, let's review the roles that the ASCII control codes <cr> and <1£>
played on mechanical terminals: the <cr> character initiated the move
ment ofthe printing head to the left margin, an operation that took consid
erable time to complete, and the <1£> character advanced the paper up
one line. By sending <cr> and <If> to mechanical terminals in that se
quence, the paper-up movement could occur while the carriage was moving
left, and the terminal would be ready to print the next character when it
arrived. That is, a new line operation required two characters, and these
characters had to be received in the proper sequence for some terminals to
work properly.

CRT displays still use the same two ASCII codes to move the cursor left
and down as independent operations, but the order is irrelevant because
there are no mechanical timing constraints. Unix systems save file space
by storing just the <1£> code at the end-of-text-file lines, but they must
also generate the <cr> character whenever text is displayed to make it
look right. Just to confuse matters a little bit, there will be places where you

1 Items in <> represent single keys. The name of an ASCII code, a letter, the normal name
on the keycap, or a letter with a modifier might appear inside the angle brackets. The modi
fiers used are alt- for the Alt key, and A for the control key. Modifier keys work like shift
keys.

Developing an Application 71

will see aedit refer to the <cr><lf> combination as <nl>, the same
notation that Unix uses for the ASCII <If> character.

The result of all this is that when you look at a Unix file on iRMX, the
lines might walk across the page

something like this
because

iRMX systems expect the file to contain the <cr> characters that tell
when to return to the left margin. Most development tools for both iRMX
and Unix are indifferent to the presence or absence of <cr> characters in
practice, but you can always convert an entire Unix file to an iRMX file
in aedit with the command sequence, <j><s></><r><AR><O>
<a> <esc> <Enter> <esc>. An English translation is "Jump to Start
of file, Replace all OxOA characters with <cr><lf>.2

The other text file compatibility issue is the MS-DOS convention of in
serting a < A Z> character (Ox1A) at the end of text files. Most software for
both iRMX and DOS is indifferent to the presence or absence ofthis char
acter as well. In aedit it looks like a <?> on the screen and can be deleted
just like any other character in the file.

3.3.1 Aec:lit usage summary

If you will not be using aedit as your editor, you can skip this section.
This summary of aedit operations is not a tutorial, simply a guide to the

features of the editor to speed learning it. The Aedit User's Guide that ac
companies the system explains all the details. (The manual is Volume 12 of
the iRMX for Windows documentation set.)

When aedit starts, it reads an initial set of commands from a file called
aedi t . mac. That file is in the same directory as aedit by default, but users
can keep a personal copy in : home: . Aedi t . mac can contain commands
that you would type at the keyboard as well as macro definitions.

Intel supplies a set of macro definitions in a file called useful.mac that
you can copy into your aedi t . mac file. These macros really are useful if
you use aedit very much, and they are documented in the Aedit User's
Guide. The following discussion assumes that none of the aedit defaults
have been changed by commands in your aedi t . mac file.

Aedit is always in one of three modes: insert, exchange, or command. In
sert and exchange are standard insert and overstrike modes for entering
text. Use the arrow keys as usual. To go as far as possible horizontally or
vertically, press an arrow key followed by the <Home> key. As far as possi
ble horizontally is to the left or right end of the line; the maximum verti
cally is forward or backward one screen length. <Backspace> erases the

2If you export an iRMX file to Unix, vi will show < A M> at the end of each line «cr> is the
same as control-M in ASCII). The vi command: 1, $8/ A VM/ / removes all the <cr> char
acters in the file.

72 Basics

character to the left of the cursor, or <AF> erases the character
under the cursor. < A Z> erases the current line, and < A A> erases from the
cursor to the end of the line. < A R> allows you to insert characters by giving
their numeric values in hexadecimal (used in the carriage return example
above). Note that aedit and the Command Line Interpreter (CLI) both use
the same keys for editing a single line, except for aedi t' s <AA>, which is
accomplished by <cr> in the CLI.

In command mode, a menu of commands is shown at the bottom of the
screen, and <tab> is used to scroll through the menu. (One of the
useful. mac macros lets you use the spacebar in place of <tab>.) Typing
the first letter of a command either executes the command, brings up a
submenu, or produces a prompt for more information, such as text to be
searched for or the name of a file to retrieve. Commands are terminated
with the <esc> key, but for terminals without an <esc> key, aedi t can
be configured to recognize some seldomly used character, such as <, >
(backquote) for <esc>. Commands can be canceled by typing <AC>.

Of course, the first command to learn is the last one, the one to exit the
editor. For aedi t, that command is qui t, achieved by typing <Q> in com
mand mode. The <Q> command leads to a submenu with the following
choices:

• <A>, Abort the editing session without changing any disk files.

• <E>, Exit the program, writing the newly edited file to disk. The original
file being edited, if there was one, is also saved with the extension .BAK.

• <w>, Write the file to disk, but stay in aedit.

• <r>, Begin editing a new file without leaving aedi t.

• <u> Same as Exit, but stay in aedi t.

Aedit supports editing two files at once. The <0> (Other) command
switches between the two. This feature is particularly well suited for edit
ing a source file and a listing file for the same program during the compila
tion stage (discussed in the next section). The <W> (Window) command
splits the screen into top and bottom portions so you can view and edit two
parts of one file or two different files at the same time. After splitting the
screen into two windows, the <W> command is used to switch the cursor
between the two, and <K> (Kill) returns the screen to a single window. The
make utility (discussed in section 3.7.2) uses these commands to invoke an
aedit session whenever syntax errors are discovered during compilation.
The top part ofthe screen shows the statement in error with the compiler's
error or warning message, and the lower part of the screen shows the source
code with the cursor placed on the line that caused the error. The user can
step through a sequence of syntax errors by typing the aedit command se
quence <E><esc>.

To copy a block of text while in command mode, move the cursor to one

Developing an Application 73

end ofthe block of characters you want to copy, type a , and the cursor
will become an <@>. Move the <@> cursor to the other end of the block you
want to copy, and type again to copy the block into an internal aedi t
buffer. Now move the cursor to where you want the text copied, and type
<G><En ter > or < A B> to insert a copy of the internal buffer into the file.
To move a block instead of copying it, just use <D> instead of in the
above description. The <G> command used to insert the internal text
buffer can also be used to insert the entire contents of a file into the one you
are editing. Simply type the name of the file you want between the <G> and
the <Enter>.

The feature of aedit that you most want to carefully study is the macro
facility. With a bit of practice, macros become very easy to define and use.
Just to give a quick example, try typing the following sequence when
aedit is in command mode:

<M><C><PgUp><Enter><up arrow><Home><M>

Those seven keystrokes create a macro named <PgUp> that will scroll up a
screenful at a time every time you press the <PgUp> key. If you want to
save the macro in your aedi t • mac file so it is automatically defined in
each editing session, select aedi t . mac for editing, create the macro defi
nition' and type <M><s><PgUp><Enter>. The macro is saved as a se
quence of codes that the editor interprets as keyboard characters when it
reads aedi t . mac. (A edit for DOS recognizes the <PgUp> and <PgDn>
commands directly, so this example works only in aedit for iRMX.)

3.4 Compiling

The same command line can be used to run a compiler regardless of the de
velopment environment, although an alias might be required for the com
mand name on some systems, and certain logical names or environment
variables might need to be established before a tool will run. Such details,
however, are normally handled automatically by the installation process.

The iRMX> prompt is used for the examples, even though users of the
DOS-hosted compilers will see c> at the beginning of the line (and will be
using <\> instead of <J>in path names). Assume that our sample PLM
program is going to run as a 32-bit application on an iRMX III or iRMX for
Windows target. That means that you must use the PLM -386 compiler,
and the command line would look like line [3] presented in Figure 3.5:

iRMX> plm386 hellormx.plm compact debug [3)

The compact and debug parameters are compiler controls, and could al
ternatively be placed inside the source code file by using $compact debug
as the first line of the file. The compact control is explained more in the

74 Basics

section on memory segmentation models later in this chapter, and the
debug control is discussed in the section on debugging below.

3.4.1 Source modules and source files

The sample program is split into two source modules, contained in the two
source files hellormx. plm and hellosub. plm. Inside each source file is
a DO block with a label that is the same as the base part of the source file
name. For example, hellormx.plm contains:

hellorrnx: DO;

END hellormx;

A source module is defined as all the PLM statements inside the outer
most labeled DO block in the source file. Each file that is to be processed by
the PLM compiler must contain exactly one source module. The $ti tIe
statements in the sample source files are directives to the compiler rather
than source code statements, so they do not need to be inside the DO block.
The compact and debug controls tell the compiler how to compile the
source module, so they must appear before the labeled DO block if they ap
pear inside the file. The label on the DO statement is the name of the source
module. Generally, you use the same name for the source module as the
base part of the source code file name so that you are compatible with the
SoftScope debugger (discussed below).

The C language does not have any syntactic structure that delimits a
source module the way PLM does, but there is a C compiler control called
modulename (abbreviated mn) that can be used to set the name of a mod
ule. If the mn control is not used, the compiler uses the base part of the
source code file name as the source module name.

3.4.2 Include files

The code in a source module can come from more than one file by using the
include directive provided by both C and PLM. The sample source files
both contain include controls, one for the file hellormx. ext and the
other for the file hellosub. ext. Before the compiler actually compiles a
file, it creates a temporary file that contains all the statements from the
source file with the code from any include files inserted in the appropriate
location. Strictly speaking, this temporary file is the source module that is
compiled, not just the contents of the source file itself. Include files for C
programs typically have an extension of . h, and are called header files.
They are discussed more in chapter 4.

An important function of include files is to provide code that declares the
names and argument types for subroutines that are not otherwise defined
within the source module being compiled. An example of this type of decla-

Developing an Application 75

ration appears for the subroutine dosub(J in the code for hellorrnx .plrn.
That same source module contains references to two other external sub
routines, the system calls rqcsendcoresponse(J and rqexitiojob(J. Note that
the PLM compiler ignores the dollar sign character in symbolic names.

The iRMX operating system provides text files with the external proce
dure declarations for every iRMX system call for each of the various pro
gramming languages used for iRMX development. For PLM, the file is
called Irrnx386/inc/rrnxplrn. ext, and for C the corresponding header
file is called: include: rrnxc .h. Some versions ofiRMX, notably iRMX
for Windows versions 2.0 and later, come with an additional header file for
C programs called: include: rrnx_c. h. This header file provides aliases
for system call names that insert underscore characters for improved legi
bility, analogous to the dollar sign in PLM names. For example, rrnx_c.h
changes rqcsendcoresponse(J and rqexitiojob(J to rq_ c _send_co Jesponse(J
and rLexit_io.Job().

The appropriate include file should be included in every source file that
contains iRMX system calls, but because these files contain the declara
tions for every system call supported by the OS, compiling all this included
source code takes quite a bit of time. It can be worthwhile to build custom
ized include files that contain just the declarations for those system calls
actually referenced by a particular source module. The utility program
extgen, available from iRUG, generates such customized include files
automatically for PLM programs. It was used to generate the files
hellorrnx.ext and hellosub.ext by the command

iRMX> extgen hellermx, hellesub (7)

The code for hellorrnx. ext and hellosub. ext is listed in Figure 3.6
and 3.7, respectively. These files include some boilerplate code that de
clares new data type names as literal substitutions for some of the data

Figure 3.6 Included file, hellormx. ext, for the sample PLM main program.

$save nelist
/* This file was generated by EXTGEN */
DECLARE TOKEN LITERALLY 'SELECTOR',

BOOLEAN LITERALLY 'BYTE',
TRUE LITERALLY 'OFFh',
FALSE LITERALLY 'OOOh';

$if WORDl6
DECLARE WORD_16 LITERALLY 'WORD';
$else
DECLARE WORD_16 LITERALLY 'HWORD';
$endif

RQ$ExitIOJob:
PROCEDURE (

76 Basics

Figure 3.6 (Continued)

user$fault$code,
return$data$ptr,
except$ptr) EXTERNAL;

DECLARE
user$fault$code WORD_16,
return$data$ptr POINTER,
except$ptr POINTER;

END RQ$ExitIOJob;

RQCSendCoResponse:
PROCEDURE (

response$ptr,
response$max,
message$ptr,
except$ptr) EXTERNAL;

DECLARE
response$ptr POINTER,
response$max WORD_16,
message$ptr POINTER,
except$ptr POINTER;

END RQCSendCoResponse;

$restore

Figure 3.7 Included file, hello5ub. ext, for sample PLM subroutine.

$save nolist
/* This file was generated by EXTGEN */
DECLARE TOKEN LITERALLY 'SELECTOR',

BOOLEAN LITERALLY 'BYTE',
TRUE LITERALLY 'OFFh',
FALSE LITERALLY 'OOOh';

$if WORD16
DECLARE WORD_16 LITERALLY 'WORD';
$else
DECLARE WORD_16 LITERALLY 'HWORD';
$ end if

RQCSendCoResponse:
PROCEDURE (

response$ptr,
response$max,
message$ptr,
except$ptr) EXTERNAL;

DECLARE
response$ptr POINTER,
response$max WORD_16,
message$ptr POINTER,
except$ptr POINTER;

END RQCSendCoResponse;

$restore

Developing an Application 77

types recognized by the compiler. The data types WORD_16 and WORD_32
are conditionally defined depending on the setting of the WORD16 or
WORD32 control for the PLM-386 compiler. The PLM-386 compiler uses
different data type names for 16- and 32-bit values, depending on which
compiler control is in effect. The WORD16 control is used for PLM-286
compatibility. All PLM programs in this book use $inc1ude to include a
declaration file that was generated by extgen.

3.4.3 Listing files

As indicated in Figure 3.1, the compiler produces a listing file and an object
file. These two files have the same base name as the source file, with an ex
tension of . LST for the listing file and. OBJ for the object file. For example,
the two sample source files are he11ormx.1st, and he11ormx. obj. The
object file is the one carried on to the binding stage of the development pro
cess, but the listing file is important now, before the object file is ready for
use, because the listing file is where the compiler puts error messages indi
cating problems it had compiling the source file.

When you get errors from the compiler, you must re-edit the source file
to correct them while consulting the listing file to see what the errors were.
Aedit's two editing buffers are very useful for this, because you can use the
window command to view both the source and listing files at the same time.
For convenience, you could use the following aedi t command line to load
he110rmx .1st into aedi t's main editing buffer andhe11ormx. p1minto
the other editing buffer at the same time.

iRMX> aedit hellorrnx.lst-plrn (3]

Aedit running on DOS versions prior to 5.0 does not support this form of
command line. If you try it, only hello .1st will be loaded for editing and
you will have to use the command sequence other, quit, ini t to load
hello. p1m into the other buffer for editing. Keep in mind the following
hints:

• All error messages and warnings from the compilers start with three or
four asterisks followed by a blank. If you remember not to use that se
quence of characters in your programs' comments or character strings, it
is a convenient string to search for in the listing file as you look for error
lines to fix. The angle brackets in the first line of each sample program in
this book are there to prevent the line from containing the" * * * " string,
for example.

• Be careful to edit the source file, not the listing file, as you make your
corrections!

The listing file tells the lexical level for each source statement, which can
be helpful when tracking down error messages from the compiler about il-

78 Basics

legal nesting or mismatched block identifiers. In addition, the listing file
can be augmented with information useful for debugging binder and run
time errors. Look up the symbols and code compiler controls in your lan
guage's Users Guide for more information.

At the end ofthe listing file is a summary of how much memory is needed
for each part of program: code, data, and stack. This information can be
particularly valuable for real-mode and I6-bit applications that must keep
track of segment sizes, as well as any other application with memory-size
constraints.

Finally, the listing file is designed for maintaining hard copy program
documentation. For example, the ti tle directive (and for PLM, the sub
ti tle directive) generates a new page in the listing with header informa
tion that can make it easier for readers to follow the code.

C programmers accustomed to the traditional Unix environment or to
an integrated development environment will probably already have devel
oped work habits that do not include using listing files because Unix com
pilers traditionally do not produce them, and development environments
provide error and source windows automatically linked to each other.
Aedit's double file editing using the compiler's listing file is the closest
thing available for development on iRMX systems. With Windows, you
can keep multiple windows open for the editor and compiler, but you must
keep their contents synchronized manually.

3.4.4 Object files and object modules

The compiler translates the source module into an object module and then
places it into an object file. The compiler names the object module using
the name ofthe source module, and it names the object file using the source
file's base name plus the extension .OBJ. For C, the base name of the
source file, the base name ofthe object file, the name ofthe source module,
and the name of the object module are always the same unless you use the
modulename compiler control. The same is also true for PLM programs,
provided you explicitly name the source module the same as the base part
of the source file's name. Thus, the source file hellormx. plm contains
a source module named hellormx, and compilation produces an object
file named hellormx. obj, which contains the object module named
hellormx.

If you compile using PLM386, the object module will adhere to the
OMF -386 specification, which is compatible with the BND386 binder. For
an iRMX I target, PLM86 would generate an OMF -86 format object mod
ule, which would be processed by the LINK86 linker. As you might expect,
PLM286 generates OMF-286 object modules, and the corresponding
binder is BND286 for iRMX II. In addition, however, BND386 can process
OMF-286 object modules, and iRMX III can run OMF-286 STL modules.

Developing an Application 79

3.5 Segmentation Models

Each program that runs on a processor with an x86 architecture consists of
three types of memory segments, called code, data, and stack.3 Code
segments contain executable machine instructions, data segments contain
data variables, and stack segments contain memory for parameters, return
addresses, and local variables for subroutines. Data constants can be
stored in either code or data segments. This segmented memory architec
ture is discussed more thoroughly in chapter 5.

The compiler generates machine code for exactly one code, one data, and
one stack segment for each object module that it produces. When the com
piler generates machine language instructions, it must use different types
of memory pointers depending on how the segments from the object mod
ules that compose the program will be combined by the binder. The differ
ent rules the binder can use to combine separate object modules are called
either memory segmentation models or models of compilation, and all object
modules that will be linked by the binder must use the same model. The
compiler must be told which segmentation model the binder will use so the
compiler can generate the correct types of pointers in the object module.

iRMX I and II programs use one of two different segmentation models,
compact or large, while iRMX III and iRMX for Windows programs almost
always use the compact model. The compilers, on the other hand, can gen
erate modules using models called small or medium as well as compact or
large. For 32-bit bootstrap-loaded applications, another model called fiat is
also available. You must explicitly tell the compiler which model to use be
cause both the PLM386 and C386 compilers default to the small model,
which will not work for iRMX systems. The compact model was specified
when compiling the source files for the sample program.

The different models are described further in the next section on the
binding stage of the development process, but a full understanding must
wait until chapter 5, which describes the relevant features of x86 micro
processor architectures further. The whole subject is even more compli
cated because compilers support a facility called extended segmentation,
which allows the careful programmer essentially to mix compilation
models within a program.

The most commonly used segmentation model is compact, which uses
less memory for addresses and runs faster than the large model for real
mode and I6-bit applications. The large model must be used for real mode

3PLM-86 programs might have another segment called memory that serves somewhat the
same function as blank common does for Fortran programs. All PLM programs that reference
a built-in array named memory refer to locations within this segment.

80 Basics

and I6-bit applications that need more than 64 KB of code or data. For 32-
bit applications, the PLM-386 and iC-386 compilers treat large and com
pact models the same because each code and data segment can contain up
to 4 GB.4 Thus, our example, which was compiled using the PLM -386 com
piler, would have produced the same object module if it had been compiled
with the large model.

When combining modules compiled using the compact model, the binder
will produce a single code segment that contains all the code from all of the
object modules it processes, plus one data segment containing all the data
from all of the object modules it processes, plus one stack segment that is
shared across all modules. For I6-bit applications, the large model still has
a single stack segment, but the binder maintains separate code and data
segments for each object module processed.

Readers familiar with the segmentation models used for Microsoft and
Borland C compilers will find that some of the Microsoft and Borland
names for various models are the same as Intel's, but that the actual defini
tions of the models are different. Intel compilers, however, do not provide
models named tiny or huge. The following list of corresponding names for
segmentation models is only relatively accurate, but you can get an idea of
how the segmentation model names do not match up across vendors.

Intel Borland Microsoft
small tiny
compact small small
medium compact compact
medium medium
large large large
huge huge

3.6 Binding an HI Command

Once all the source modules for an application have been compiled without
errors, the resulting object modules must be combined with other object
modules to construct the program. Since our sample program is going to be
a 32-bit application, we will use BND386 to do the binding.

3.6.1 Input files: object files and libraries

The format of a BND386 command line consists of an input file list fol
lowed by a number of parameters known as binder controls. For the sample
program, the command line might be:

4 Although the iC-386 and PLM-386 compilers seem to treat large and compact models the
same, they set the combine-types of segments differently for the two modules. The binder
then combines segments differently. It is also sometimes necessary to differentiate between
near and far procedures and pointers. As described in chapter 5, the distinction involves
whether selectors are involved in accessing a memory location or not. The C language pro
vides the key words near and far for dealing with this issue. Both PLM-386 and iC-386 can
also handle such situations using extended segmentation controls.

Developing an Application 81

iRMX> bnd386 hellorrnx.obj, hellosub.obj, &

•• /rmx386/1ib/rmxifc32.1ib, :lang:plm386.1ib &
•• rc (dm(0, OFFFFFFFFh)) ss (stack (8192)) &

•• rn (code32 to code) oj (helloplm) [4]

Note that this is the same [4] in Figure 3.5. Remember, <&> tells the
iRMX CLI that a command is continued on the next line and "* *" is the
normal iRMX prompt for continuation lines. Long command lines such as
this can also be put into a file referenced with the cf (command file) binder
control, like this:

iRMX< bnd386 cf(bnd386.cf)

The command file bnd3 8 6 . cf would contain:

hellormx. obj, hellosub. obj, &

/rmx386/1ib/rmxifc32.1ib, :lang:plm386.1ib &
rc (dm(0, OFFFFFFFFh)) ss (stack(8192)) &

rn (code32 to code) oj (helloplm)

[s)

[4)

This technique can be particularly useful for DOS-hosted development
tools because DOS does not support continued command lines. Note that
everything starting with rc (dm (.•. is a list of binder controls, which are
described in the next section. For now, the focus is on the input file list.

The input file list consists of all the file names that the binder will com
bine to build the executable program. For the sample program, the list con
sists of the two object files plus two library files called /rmx386/lib/
rmxifc32 . lib and: lang: plm3 86 . lib . The name of the first library
file tells a bit about what it contains. I I rmxif I I indicates that this library
contains iRMX interface procedures. That is, this file contains the sub
routines to allow programs to access the system call subroutines that are
part of iRMX. Chapter 6 introduces the iRMX system call mechanism,
and chapter 10 explains the mechanism in some detail. The next part of the
file name, "c32," indicates that this library can be used with 32-bit appli
cations that are compiled using the compact segmentation model. As the
sample source modules were both compiled using the compact control,
and all modules processed by the binder must be compiled using the same
model, the compact library must be used. For 16-bit applications, there are
two other interface libraries, /rmx386/lib/rmxifc . lib for compact
model programs and /rmx386/lib/rmxifl.lib for large model pro
grams, that would be used instead. The other input file is the PLM run
time library, which is described further in chapter 4. It is not actually
needed for most iRMX application (including this one).

Libraries are simply files that contain more than one object module. A
special code in the first byte of the file, not the name of the file, tells the
binder whether the file contains one object module or a library of object
modules. The OMF -386 (or -286 or -86) specification describes the internal
structure that both libraries and object modules must use. You can create a

82 Basics

library and add your own object modules to it (or remove or replace them)
using the lib386, lib286, or lib86 librarian that comes with the system. The
librarians can work interactively and have a good built-in help command.

Selecting object modules to combine. The binder uses the object modules
from every object file named in the input path list as it constructs a pro
gram, but it is selective about modules it uses from libraries. The reason for
being selective is to save memory and binding time. There is no need to in
clude every object module from a big library just to get the few that are
needed for a particular application.

To understand how object modules are selected from libraries, first con
sider the process the binder uses to deal with the variables and procedures
generally declared public and external in object modules.5 In the sample
program, the procedure dosub is declared external in hellormx. plm
and is declared public in hellosub. plm. Figure 3.8 represents the hel
lormx object module.

When the compiler encounters the CALL dosub statement, it generates
part of a machine language call instruction, but it cannot fill in the ad
dress of dosub needed to complete the instruction. Instead, the compiler
leaves space for the address in the instruction's code, indicated by a box
with a question mark in the figure. The compiler includes the ASCII name
dosub in the Fixup List that is part of the object module, along with a link
from the ASCII name to the incomplete address in the code segment.6

There will be one entry in the Fixup List for each external symbol refer
enced by the module. When the binder processes the hellormx object
module, it copies the information from the Fixup List into an internal
symbol table that it builds, and marks the symbol dosub as unresolved.
The symbol prompt has been declared public, so it appears in the Public
Symbols List that is also part of the object module. The names of such
public symbols are also entered into the binder's internal symbol table,
along with the address of where in the module's data segment the symbol is
defined. This address is said to be the value of the symbol, and it is this
value that will be used to fix up incomplete instructions that reference the
symbol. The binder will also find the external names rqcsendcore
sponse and rqexitiojob in the hellormx object module and enter

5C programs are not as explicit about declaring things to be public or external as PLM pro
grams. Chapter 4 provides more information on this topic.

6The terms address, pointer, and link are imprecise at this point. Chapter 5 will deal with
the nature of pointers and memory addresses in more detail. There are two parts to a pointer
(selector or base and offset). An address may consist of either a selector (or base) and an off
set, or just an offset. Fixups sometimes have to be applied to the selector or base and some
times to the offset. We use the term link to refer to pointers that the binder needs for its own
housekeeping, to distinguish them from the pointers or addresses that will become part of the
code that is output by the binder.

Module hellormx (file hellormx.obj)

Code Segment

calli ? 1<
calli ? I(
calli ? I(

Data Segment

I "Type Something:" I <

Public Symbols

I "prompt" I ~I

Fixup List

I "dosub" I ~I

I "rqcsendcoresponse" I ~I

I "rqexitiojob" I W"I

Figure 3.8 Structure of object module for sample
PLM main program.

Developing an Application 83

them into its symbol table as well. Thus, after processing the first object
module, the binder will have constructed a symbol table that looks some
thing like this:

Symbol Name
dosub
rqcsendcoresponse
rqexitiojob
prompt

Symbol Value
unresolved
unresolved
unresolved
address in data segment

When the binder processes the next file in its input path list, hello-
5 ub . ob j, it combines the code segments from the two object modules into
a single module, and does the same for the data segments as well (see
below). The binder finds that the compiler has left the ASCII name dosub
in the hellosub module's Definition List (the list of public symbols de-

84 Basics

fined within the module), along with a pointer to the place in that module's
code segment where the dosub subroutine begins. The binder now can fix
the call instruction that referenced dosub so that dosub points to the sub
routine, and the binder resolves the value of dos ub in its symbol table to be
the address of the subroutine in case the binder needs the value again dur
ing the binding sequence. When the compiler built the hellosub object
module, it was unable to generate the complete data address of prompt in
the call to rqcsendcoresponse because of the external declaration.
When the binder processes the hellosub object module, it resolves this
symbol (prompt), and can fix the instruction that referenced prompt (an
instruction to push the address onto the stack) immediately. The binder's
symbol table now looks something like this:

Symbol Name

dosub
rqcsendcoresponse
rqexitiojob
prompt

Symbol Value

address in code segment
unresolved
unresolved
address in data segment

At this point, the loadable module that is being built looks like Figure 3.9.
The question marks represent links to the unresolved external symbols.7

With all this background about the binding process, it is quite simple to
tell which modules the binder will include from a library: those modules
with public declarations for symbols marked unresolved in the binder's
symbol table. To make this process efficient, each library contains a mas
ter dictionary of all the public symbols that are defined in it along with
links to the object modules that contain them.

The binder's symbol table is very dynamic. Including one object module
to satisfy an unresolved symbol can result in new unresolved symbols that
are referenced by the newly included module. The binder resolves these
second-level references from the same library, using the master dictionary,
if possible, and then moves on to the next file in its input list for processing.

It is possible to construct libraries that make circular references to each
other, such as libraryl containing a reference to a module in library2,
which contains a reference to another module in libraryl. The binder
does not automatically go back to a file once it has processed it, so for a cir
cular reference, you must list the same library file (in this case, libraryl)

7The subroutines in the rmxifc32 • lib library do not actually perform the functions
of rqc$send$co$response, which is to issue a prompt and read a reply, and
rq$exit$io$job, which is to terminate the program. Rather, they act as interface proce·
dures to the actual subroutines that are part of the OS itself. (The letters if in the file names of
the libraries stand for interface.) These interface procedures are covered in detail in chapter
10, when we cover the techniques for adding system calls to the OS. The system calls them·
selves are covered in chapter 7.

Developing an Application 85

Code Segment

(from module hellormx)

call [dosub] I ~I

call [rqcsendcoresponse] I ? I
call [rqexitiojob] I ? I

(from module hellosub)

4 ...
push [prompt] I ~I

· ..
call [rqcsendcoresponse] I ? I
· ..

Data Segment

(from module hellormx)

4 "Type Something: "

...

(from module hellosub)

· ..

Figure 3.9 STL module (executable file) for sample PLM program. Note
that the binder has linked modules hellorrnx and hellosub, but has
not yet linked any of the libraries.

multiple times on the binder's input list. Alternatively, you could force the
binder to include modules from library 1 even though they have not been
referenced yet. You can accomplish this using the syntax 1 ibr ary 1 (mod
ulel, module2), which would force the binder to include modules named
modulel and module2 from the file libraryl.

3.6.2 Output files: the map and load files

As Figure 3.1 indicates, the binder produces two files, a map file and a load
able file. The map file, which normally has the same base name as the first
object file on the binder's command line and an extension of .mpl, con
tains any error messages generated by the binder, the sizes ofthe various
segments generated, a list of the object modules included, and a list of any

86 Basics

external symbols left unresolved at the end of the binder's execution. For
example, hellormx.mpl includes these lines:

SEGMENT MAP

LIMIT
0000018DH
0000007AH
FFFFDFFFH

ACCESS
ER
RW
RW

INPUT MODULES INCLUDED:

HELLORMX (HELLORMX. OBJ)
HELLOSUB (HELLOSUB.OBJ)

ALIGN
DWORD
DWORD
DWORD

HXSNCR (:SD:RMX386!LIB!RMXIFC32.LIB)
EXJEXJ (:SD:RMX386!LIB!RMXIFC32.LIB)
ERT14N (:SD:RMX386!LIB!RMXIFC32.LIB)
HRTICN (:SD:RMX386!LIB!RMXIFC32.LIB)
RQCERR (:SD:RMX386!LIB!RMXIFC32.LIB)
RQCSEX (:SD:RMX386!LIB!RMXIFC32.LIB)
NRTICE (:SD:RMX386!LIB!RMXIFC32.LIB)
NUCLER (:SD:RMX386!LIB!RMXIFC32.LIB)

USE
USE32
USE32
USE32

COMBINE
TYPE
NORMAL
NORMAL
STACK

COMBINE
NAME
CODE
DATA
STACK

The first line of the segment map is for a segment that is Ox018D bytes
long, has executable and readable memory protection attributes (ER),
starts on a doubleword memory boundary (DWORD), was generated by a 32-
bit compiler (USE32), and is the result of combining all segments named
code in the typical method (i.e., according to the rules for the compact seg
mentation model).8 The size ofthe stack segment looks strange with a deci
mal value of -8193 (OxFFFFDFFF); this value is negative because a stack
segment grows downward in memory as data is pushed onto the stack.

The second part of this . MP 1 file shows the names of the object modules
and the files from which they come. The first two modules are from the ob
ject files the compiler generated from the source files. The next two mod
ules contain the subroutines rqcsendcoresponse and rqexitiojob,
respectively. All other modules listed were included because they are mod
ules that satisfied external declarations made by some module earlier in
the list. In particular, they were included to support the OS's exception
handling mechanism for system calls, mentioned in chapter 2.

The most common message in a .MPl file is "unresolved external sym
bol." This message is considered a warning, rather than an error, by the
binder because of the possibility that the output file will later be bound
with other object modules that will provide public declarations for the
unresolved symbols (discussed further below). It should be considered an
error when you are producing a file intended to be executed, as in the

8For segment size, hexadecimal constants end with the letter <h> in PLM, and this con
vention carries over into numerical parameters for several iRMX commands, including the
binder. The C language format is used for hexadecimal consants in the text of this book.

Developing an Application 87

present example. Trying to run an HI command that generated this warn
ing when bound will almost certainly result in a hardware fault.

The second file generated by the binder is its output file, which can be
either in the STL format suitable for loading into memory for execution as
an HI command, or a linkable module, which can be used later as input to
another run of the binder or as input to the system builder (BLD386), as
described below.

The first part of an STL file is a header that tells the minimum amount
of memory the program will need to be loaded, the maximum amount of
memory the program will need during execution, the types and sizes of all
the memory segments that compose the program (see chapter 5 for infor
mation on memory segmentation), and information needed to initialize the
CPU's registers when the program is loaded for execution, such as the ad
dress of the first instruction to be executed. After the header comes infor
mation explaining which information goes into which memory segments.

The information in an STL file is just what iRMX needs to load a pro
gram into memory and start it executing, but the same file could be run by
any OS that recognizes OMF-386 structures. Although iRMX is a multi
tasking operating system, all iRMX programs start execution with a single
task, or thread of execution, but might create additional tasks during exe
cution as needed. However, iRMX tasks are not hardware tasks in the
sense intended by the term single task laadable, and the STL format is per
fectly suited for loading iRMX multitasking applications. Chapter 5 dis
cusses hardware tasks further, and chapter 6 discusses the nature of iRMX
tasks.

Instead of an STL module, the binder can produce a file that contains a
linkable module. By default, such files are given file names ending in . Ink,
although it is the content of the file rather than its name that determines
its nature. For all practical purposes, a linkable file looks like the output of
a compiler, especially if the linkable file uses the compact segmentation
model. In this case, the linkable module contains one combined code seg
ment and one combined data segment, just as if all the object modules that
were linked together had originally come from one big source module. The
situation is a bit different for the large segmentation model, however, be
cause in this case the linkable module will contain multiple code and data
segments, one from each of the linked object modules. Compilers never
generate multiple code or data segments.

There are three reasons for generating a linkable module. The first rea
son is that this format is used for input to the system builder, bld386 (or
bld2 86 or loc86). The operating system is constructed from relatively in
dependent layers that do not share code or data with one another through
public or external variables. Each layer can be independently bound into a
linkable module without concern for any public or external symbol names
that might clash with such symbols used in another layer. The resulting

88 Basics

link files are then processed by the system builder to construct a bootstrap
loadable file on disk, the process summarized in Figure 3.2.

A second reason for generating a linkable file is to control public and ex
ternal symbols when building a single HI command. For example, if it is
necessary to bind a program with two different libraries that both contain
public symbols for subroutines with the same names, the application can
be bound first with the library containing the desired version of the sub
routine, and that public symbol can be purged from the resulti~g linkable
file using the publics except binder control. (See the section Producing
Linkable and Bootloadable Modules below for more information on this
process.) The linkable file can then be bound to the second library without
any "duplicate public symbol" messages from the binder.

A third reason for working with linkable files is for applications that mix
16-bit and 32-bit code. The binder combines all segments with the same
name (such as code32), but it is an error to combine segments with differ
ent attributes (16-bit and 32-bit, for example). Separate linkable files
could pe built, one containing only 16-bit segments and the other contain
ing only 32-bit segments. The combined segments can then be given differ
ent names using the rn control (described below), and the linkable mod
ules can be bound together without error.

3.6.3 Binder controls

This section provides a summary of the four binder controls included on
the sample bnd386 command line. For further details, consult the binder
section in the Inte1386 Family Utilities User's Guide, volume 17 of the
iRMX for Windows documentation set.

rc (dm (0 , 0 FFFFFFFFh)). This control identifies how much memory the
program will need when it is loaded and executed. rc originally stood for
RMX Configure, but the documentation for BND386 generalizes this to
"an 80386 operating system." dIn stands for dynamic memory. The first of
the two hexadecimal values represents the minimum amount of memory
that must be free to load the program, and the second value limits how
much memory the program can allocate from the OS during execution.9

The values specified here (0 and 4 GB) are synonyms for no limits, but
could be adjusted eith~r to ensure there is enough memory for the program
to complete once it is loaded, or to limit the amount of memory the program
will use as it runs. If you omit this control, bnd386 will still generate an
STL module, but it will set both the minimum and maximum values to
zero, and the system will substitute reasonable values when the program is

9These two values correspond to the minipool and maxpool arguments to the eLI's back
ground command mentioned in section 2.4.2. The background command arguments can be
used to override the rc(dm()) arguments to the binder.

Developing an Application 89

run. If you omit this control for bnd286 you will generate a linkable module
rather than an STL module.

55 (stack (8192)). The ss control manipulates the size of segments in the
load module. In this case, the size of the stack segment is set to 8 KB. Com
pilers place information in object modules identifying how much stack space
is needed for the code in each module for calling subroutines and allocating
local variables, but the compilers cannot know how much stack space will be
needed for nested subroutine calls, such as recursive subroutines or OS sys
tem calls. The figure 8K is very generous, and allows enough stack space for
use by both system calls and the SoftScope debugger.

Note that SoftScope uses the same stack as the application program that
it is debugging in iRMX I and II. SoftScope for iRMX III and iRMX for
Windows runs with its own separate stack, so the application's stack may
not need to be so large.

rn (code32 to code). This control renames segments with the name
code32 to code. The binder will only combine segments that have the
same name, and will issue error messages if the same symbol appears in
different segments that it cannot combine. Since the compiler names the
code segment code32 but the library functions have code segments called
code, this rename operation must be performed for a successful bind.

oj (hellop1m). This control specifies the name for the file that receives
the load module produced by the binder. The full name for this control is
ob j ect, which does not relate well to our terminology for types of modules.
By default, the binder places the load module in a file that has the same
name as the base part ofthe first file name in the input list, and no exten
sion. That is, oj (helloplm) was superfluous in our example. It will be
crucial for some C programs, however, so it was used here to establish a
good precedent.

3.7 Automating the Process

Typing and retyping long command lines as you iterate through the steps
of the development process can be tedious, and there are ways to improve
the situation. The CLI's alias command and command history buffer facil
ity, discussed in chapter 2, can do much to improve the situation, but for
real production work, stronger solutions are needed.

3.7.1 Command files

Sequences of commands can be typed into command files for invocation by
the submit command, and the parameter substitution feature of both

90 Basics

alias and submit can help in the construction of general purpose tools. For
example, here is a command file that will compile, bind, and execute a sin
gle-source-module PLM program:

plm386 %0 .plm compact debug
bnd386 %0 .obj ./rmx386/lib/rmxifc32 • lib &

rc(dm(O.OFFFFFFFFh» ss(stack(8192» &

rn(code32 to code) oj(%O)
%0

Expanding a bit on the "doit" example from chapter 2, assume the pre
ceding lines were entered into a text file named cbe • csd, and the following
alias is defined:

iRMX> alias g=submi t cbe(#) [6]

Now, a PLM program, say myprog. plm, can be compiled, bound, and exe
cuted with the single command line:

iRMX> g myprog [7]

Two problems exist for automating the development process with this
approach. One, it does not account for the possibility that the compilation
might fail due to syntax errors, thus making the binding step inappropriate
(or binding might fail, thus making execution inappropriate). Two, no pro
vision exists for different numbers of source modules contributing to dif
ferent load modules, making the file a somewhat inflexible tool.

The first problem can be handled by the HI command esubmit, which is
an extended version of submit that supports testing the results of one step
before continuing to the next step in the command file. Below is an esubmit
command file that performs the same function as the submit file above, but
skips the binding step if compilation fails and skips execution if binding
fails. It also includes a crude mechanism for handling either one or two
source files.

$reset eok
$reset quit

run86 -fixplm :lang:plm386 %O.plm compact debug
$if not commandexcep = eok
$set quit
$endif
$ifexist %1.plm
run86 - fixplm : lang:plm386 %1.plm compact debug
$if not commandexcep = eok
$set quit
$endif
$endif

$if not quit

run86 :lang:bnd386 %O.obj, &

$ifexist %l.obj
%l.obj, &

l$endif
:sd:rmx386/1ib/rmxifc32.1ib &
rc(dm(O,OFFFFFFFFh» ss(stack(8192» &
rn(code32 to code)
$if commandexcep = eok

%0
$endif
$endif

Developing an Application 91

One of the reasons this file looks so complex is, as an HI command, esub
mit does not have access to the CLI's aliases, so the invocation of the com
piler and binder must be explicit. Until now, the sample command lines
have assumed an alias exists, which conceals the fact that the plm386 com
mand actually involves invoking the compiler using the run86 utility.

3.7.2 The make command

The esubmit command is a relatively recent addition to iRMX, and future
versions might make this a stronger tool. Meanwhile, a version ofthe Unix
make command for iRMX is available that works very well for automating
the development process.10 The basic idea of make is that you specify the
name of a file to be created on the command line and make invokes exactly
those HI commands needed to create the file. The file to be created is called
the target, and make is supplied with a set of rules that identify which com
mands to run to build targets based on their file names.

For example, if you tell make to create a file calledmyfile. obj, it would
look for a source file to compile. If, on the other hand, you told make to
create a file called simply myf ile, it would invoke the binder. The two
powerful features of make are that it performs only those operations actu
ally necessary, based on the time and date ofthe last modification the OS
stores with each file, and its macro capability, which gives it a great deal of
flexibility.

The rules that make follows are stored in two text files, called
: lang: buil tins. mk and: $: makef ile. Both files contain the same in
formation, but ifthere is any conflict between them, makefile takes pre
cedence over bui 1 tins. mk. For a single-source-module program written
in either C or PLM and a properly set-up builtins .mk, you should be
able to just type a make command with the name of the program as an ar
gument to compile and bind the program, even without a makefile
present. If the compilation stage fails, edit the source file to fix the prob
lem, and issue the same make command again.

If more than one source file constitutes a program, make proves to be

lOThe command is called mk in some versions of iRMX.

92 Basics

very powerful, but it does have to be told by statements in makef i Ie which
modules compose the program. The technique is to enter a line in the rna -
kefile, which takes the general form

<target> : <dependencies>

The <target> is the name of the file to be built. After the colon is a list of
files (separated by spaces, not commas) that must be older than the target.
For example, a possible makef i Ie for our sample program is the following:

hello: hellormx.obj hellosub.obj
<tab>$(BND) hellormx.obj,hellosub.obj, &

<tab>:SD:rmx386/1ib/rmxifc32.1ib &
<tab>rn(code32 to code) &

<tab>ss (stack(4096» rc(dm(0, OFFFFFFFFh» oj (hello)

The first line of the file says that the target hello depends on the two
object files listed after the colon. If the . ob j files are not older than he 110,
make treats them as targets themselves and consults the rules in
builtins .mk to learn how to compile the corresponding source files if
necessary. Then, if either object file is newer than the target file hello, all
the lines that start with a <tab> character will be executed to create a new
version of the target. In this case, there is just one command, an invocation
of bnd386. Thus, with this makefile, the command line

iRMX> make hello [8)

would cause the following sequence of events to occur, depending on the
relative ages of the files involved:

• Ifhellormx. plmisyoungerthan hellormx. obj, or ifhellormx .obj
does not exist, compile hellormx.plm.

• Ifhellosub . plm is younger than hellosub .obj,orifhellosub .obj
does not exist, compile hellosub .plm.

• If hellormx. obj or hellosub. obj is younger than hello, or if
hello does not exist, execute the commands following the dependency
line that start with <tab>.

It is possible that make will find nothing to do (the object files are older
than the target file, and the source files are older than the object files), and
will issue a message saying that hello is "up to date," and exit without
doing anything. Make will try to execute the first target it encounters in
makefile if no argument is given on the command line, so line [8] could
simply be entered as

iRMX> make [9)

Developing an Application 93

An example of a make macro in this makefile is $ (BND) , which is a refer
ence to a macro named BND. That macro was defined in bui 1 tins. mk to
be the command to invoke the binder. This use of make macros is similar to
the use of the CLI's alias feature, but it is not limited to redefining com
mand names at the beginning of a line. For example, consider using a
macro named MODEL to determine the segmentation model to be used
when compiling. You can give a value to a macro four different ways, which
make uses in the following sequence:

1. Put the macro definition in builtins.mk.

2. Put the definition in makefile.

3. Define the macro name as an environment variable.

4. Define the macro on the make command line.

As an admittedly far-fetched example that demonstrates all four cases,
consider the following hypothetical file contents:

:lang:builtins.mk
MODEL = small

:$:makefile
MODEL = medi urn

:prog:r?env
MODEL = large

The last file demonstrates the technique used by iRMX to set up envi
ronment variables. With these three files in place, the following command
line could be used to invoke make with the actual value of MODEL ulti
mately being equal to compact:

iRMX> make MODEL = compact hello [101

That is, the command line definition of MODEL is "compact," which
overrides the setting of the environment variable MODEL to "large,"
which in turn overrides the makefile definition of the macro to be "me
dium," which overrides the buil tins. mk definition of the macro to be
"small." Assuming that the rule telling make to invoke the compiler con
tained a reference to $ (MODEL) on its command line, the compiler would
be invoked with the compact control in this example.

Full details on how to use make are given in the help file provided with
the program. Compatible versions of make are also available for both DOS
and Unix. For example, the sample code for this chapter has been success
fully built using the DOS-hosted development tools for iRMX and the ver
sion of make provided with the Borland C++ development system.

94 Basics

3.8 Debugging HI Commands

Once the binder has produced a file containing an STL module, it can be
executed by simply typing the name of the file on the command line. The
HI will locate the file either by examining the directories in its search path
list or by following an explicit path name, and will pass the file to the Ap
plication Loader (AL), resident in iRMX, to load into memory for execu
tion. It is the AL that detects the errors such as "bad header" or "not
enough memory while loading command" that occasionally show up at this
stage.

In addition to loading the command through the AL, two other com
mands can be used to load HI commands specifically for aiding program
debugging. These commands are the system command debug and the util
ity debugging program, ss (SoftScope). The following subsections intro
duce all three of these techniques used for debugging HI commands.

3.8.1 Using only the application loader

The simplest way to debug a programisjust to run it. If the program causes an
exception, the default exception handler will manage the situation, hope
fully by providing you with enough information to fix the problem. The de
fault exception handler is the one supplied by the HI, which issues an error
message and terminates the program that encounters an exception.

Whether an incorrect program causes an exception or simply produces
the wrong results, the only tool available for debugging when running solely
under the application loader (AL) is to add output statements to the source
code to display values of key variables or execution flow information. This
technique is a very primitive and appropriate only for small programs.

The highest form of this lowly technique is to provide either compile
time or run-time switches for turning debugging output on or off. A run
time debugging switch can be valuable for helping users unfamiliar with a
program figure out what they are doing wrong when they run it. Otherwise,
the technique has two significant problems associated with it: (1) Each de
bugging run involves the time-consuming process of modifying source files,
recompiling, and rebinding, and (2) The debugging statements must later
be removed from the program after it is debugged.

Any change to source code raises the possibility of introducing new
errors, and nothing is more frustrating than having to fix errors introduced
by taking out debugging statements, except perhaps having to fix errors
introduced by putting in comments.l1

11 My advice: Write the comments first. If you know what you are doing, they will always
be right and won't need to be changed. Ignore those who suggest that the solution is to leave
out the comments!

Developing an Application 95

3.8.2 Using the debug monitor

The system debug monitor enables you to examine the state of your pro
gram as it is executing without modifying the code. Several versions of this
monitor are available, and they all have different names, depending on the
platform being used. The version you most likely will encounter is called
SDM. It either resides in ROM or is loaded with the operating system.
iRMX for Windows loads the SDM into RAM by means of a sysload com
mand when the system initializes.

There are three ways to enter the debug monitor. On some systems, there
is a front-panel interrupt button (not the reset button) that causes an im
mediate break to the monitor. iRMX for Windows achieves the same effect
on a PC by using the <AaltABreak> key combination (Press and hold
<Cntrl>, then press and hold <Alt>, then press <break>. This tech
nique can be useful for interrupting programs that enter an endless loop,
rather than simply typing <AC> to abort the program completely.

The second technique of breaking to the monitor involves modifying the
source code. For this technique, you insert a statement that will be com
piled into a machine language int 3 instruction. This instruction is the one
that debugging programs use to set execution breakpoints in code. The
debug monitor is normally configured as the default debugging program
that receives control when an int 3 instruction is executed, so you would
place the int 3 instruction wherever you want the program to break to the
monitor. Both PLM and C allow you to insert an int 3 instruction with the
same statement causeinterrupt (3) i

This technique, of course, inherits all the disadvantages of putting out
put statements in the source code, but it can be valuable when the code to
be debugged is not accessible to SoftScope, such as resident code in iRMX I
and II systems.

The third technique associated with the debug monitor is the debug
system command, which loads the command file, displays information
about where memory segments have been loaded, and then breaks to the
debug monitor. This technique incurs the overhead of loading debug into
memory with the application, but it requires no modification of the pro
gram to accommodate debugging and requires less memory than
SoftScope.

The command prompt from the debug monitor is one dot (.) if the pro
cessor is in real mode (iRMX I systems), or two dots (..) ifthe processor is
in protected mode (iRMX II and III systems). You can enter commands to
display the processor's registers and memory, set breakpoints, and step
through your code one machine instruction at a time. This tool can there
fore be very useful for debugging code written in assembly language. Our
focus, however, is on developing applications using high-level languages,
and those readers interested in using a debug monitor can work from the
appropriate manual.

96 Basics

3.8.3 Using the system debugger

The system debugger (SDB) is an extension to the debug monitor loaded
into memory along with the OS. It can provide extremely valuable informa"
tion for iRMX developers, including those working with high-level lan
guages. You can access the SDB the same way as the debug monitor, and you
can enter SDB commands at the same prompt as the monitor (. or ..). Fur
thermore, you can issue SDB commands from the SoftScope debugger while
doing source code debugging of programs written in a high-level language.

The full value of the SDB will not be clear until chapter 6, which explains
the design of iRMX as an object-based operating system. For now, note
that the SDB allows you to view iRMX objects, both those created by your
application and those created by the OS for its own use. All SDB com
mands start with the letter v (for view) and are fully documented in the
iRMX System Debugger Reference Manual. They are also documented in
chapter 9 of the SoftScope III Debugger User's Guide, volume 13 of the
iRMX for Windows documentation set.

3.8.4 Using SoftScope

By far the most effective tool for debugging iRMX applications is the Soft
Scope source code debugger. The basic debugging features are all keyed to
the source code: source statements can be displayed as they are executed,
execution breakpoint addresses are specified in terms of source code
functions or line numbers, and variables are displayed by name, with full
recognition of data types, structures, and source language scope rules.
In addition, SoftScope provides debug monitor-like access to the proces
sor's memory and registers, as well as access to the SDB commands for
viewing iRMX objects.

What sets SoftScope apart from other source code debuggers is its sup
port for multitask application debugging and multiuser debugging. These
two features are available only with SoftScope III. The versions of Soft
Scope for iRMX I and II are somewhat more limited in this regard.

Debuggers insert an execution breakpoint into code being executed by
substituting a machine language interrupt instruction (the int 3 instruc
tion mentioned earlier) for one of the instructions originally in the code,12
When execution reaches the interrupt instruction, the CPU branches to
the code designated as the interrupt handler for this class of interrupt.
When SoftScope starts running, it takes over this role from the resident
debug monitor. The breakpoint handler determines where the interrupt
occurred in case there were multiple breakpoints set, then issues a message

12SoftScope III uses the 80386 microprocessor's hardware trap feature to accomplish the
same objective without modifying the code being debugged. This technique allows break
points to be set in ROM and allows for efficient breaking on data accesses as well.

Developing an Application 97

and waits for the user to enter commands. What makes Soft Scope III an
excellent debugger is that it properly handles the situation in which more
than one task executes the same breakpoint interrupt. It not only tells the
user if an interrupt has been reached by more than one task (SoftScope I
and II do that as well), but SoftScope III also tells the user exactly which
tasks have reached the breakpoint, and then gives the user the ability to
control further execution by each task independently.

When SoftScope starts running, it connects to certain software hooks in
the OS, a process that can occur only once. In a multiuser environment,
only one person can run SoftScope at a time for versions I and II. For Soft
Scope III (used with iRMX III and iRMX for Windows systems), a pro
gram called sskernel connects to the OS hooks. Sskernel is run just once, as
a background job or by the sysload mechanism. After that, multiple users
can invoke SoftScope independently at the same time to debug different
applications.

The DHDTversion of Soft Scope III can debug iRMX applications run
ning on a separate target system connected to the PC by a serial link. In
this configuration, the monitor, called iM, must reside in ROM on the re
mote target system. The DHDT version of SoftScope III features a nicer
screen display and better use of the PC's keyboard and mouse than the
iRMX -hosted version. Currently, a "WHDT" (Windows-Hosted Develop
ment Tool) version of SoftScope III is being developed for iRMX for Win
dows. This version will provide users with full debugging access to iRMX
applications from Windows, using the standard Windows user interface of
mouse, pulldown menus, and the like.

To use Soft Scope, it is first necessary to tell the compiler to insert de
bugging information into the object module. This information, which is
specified by the debug compiler control (see the section on compiling
above), consists essentially of the entire symbol table that the compiler
builds while compiling the program. That is, this information includes the
name, data type, and address of every variable (including field names and
data types of structures) as well as the address of every function and source
statement line number. Unlike some debugging systems, the debugging in
formation is totally separate from the code and data segments that the
compiler generates. In terms of the OMF specification, it goes in a debug
segment (called debug records in OMF-86).

The significance of this fact is that the impact of including debugging
information is minimized. During binding, you can choose to retain the
debug segments in the load module or not (the default is to retain them),
and, if they are retained, they remain associated by name with the object
modules from which they were derived. When the load module is loaded by
the AL or by debug, any debug segments are simply discarded, and the pro
gram loaded into memory is exactly the same as the one that would have
been loaded if the debug segments had never been created. The penalties
for including the debug segments in these cases are the extra disk space re-

98 Basics

quired to hold the additional information in the object modules and the
load module, and the extra time to extract the program's code and data
segments from the file and load them into memory. When a program is run
under control of SoftScope, the debugger first loads the program treating
the code, data, and stack segments in exactly the same way as the AL or
debugP After the program is loaded, when the user refers to the code or
data in a particular object module, SoftScope uses the information in the
debug segment of the module to provide a symbolic interface for the user.

Thus, only when a program is running under SoftScope does the debug
information actually occupy any space in primary memory. Of course, at
that time, the program being debugged is also sharing memory with Soft
Scope itself, and the development system must supply enough extra RAM
to accommodate these extra requirements.

A useful concept to understand is how SoftScope displays source state
ments while stepping through a program being debugged. The actual
source file is not a part of the object module or load module. Instead, Soft
Scope uses the listing file produced by the compiler for displaying source
code statements. It uses the listing file instead of the source code file be
cause the listing file contains line numbers that can be matched against the
line number addresses in the debug segment of the module. SoftScope
makes two assumptions about the path name of any listing file it needs: (1)
The file is in the same directory as the load module file being debugged, and
(2) The name ofthe listing file has the same base name and object module
name, with an extension of .LST.

The second assumption is automatically matched by C language pro
grams, as described earlier, but PLM programmers must ensure their
source module name matches the base part of the source file name for Soft
Scope to work. If SoftScope cannot find a listing module it needs, it will
prompt the user to type in the proper file name.

To debug a program using SoftScope I or II, just enter the command
name (usually sscope) followed by the command line normally used to run
the program. For example, to debug a program called myprog that takes
three command line arguments, the command might be

iRMX> sscope myprog argl arg2 arg3 [11]

If the program uses HI command line parsing, Soft Scope I or II must be
informed of this by entering option parse =rrnx as the first SoftScope
command after the program is loaded. If the program uses C language
command line parsing, the option parse command can be omitted be
cause the default option will work. In both cases, the situation is a bit messy

13 SoftScope I and II load the program themselves, and SoftScope III uses the iRMX AL to
load the program.

Developing an Application 99

because the parsers will see sscope as the first item on the command line,
not myprog.

For SoftScope III, the SoftScope kernel must be running to use the de
bugger. The usual technique is to run the kernel as a background command
or with the sysload:

iRMX> background sskerne1 > :bb: [12]

or use sysload:

iRMX> sys10ad :uti1s:ss [13]

After entering either line [121 or [131 once, you can invoke the debugger
by a command such as the following:

iRMX> ss myprog arg1 arg2 arg3 [14]

SoftScope III has no option parse command, and programs that use C
language parsing will run correctly with myprog as the first command line
argument (argr[Q]). The version of SoftScope III that is current at the time
of this writing, however, does not support HI command line parsing at all.

Each version of SoftScope comes with complete documentation, includ
ing sample tutorial sessions, and there is an interactive help command as
well. A summary of SoftScope III commands is provided in Appendix A.

3.9 Producing Linkable and
Bootstrap-Loadable Modules

This section reviews some of the controls for bnd386 typically used when
generating a linkable file, and gives a brief overview of the steps used to
build a standalone application - one that can be loaded for execution by a
bootstrap loader.

3.9.1 Binder controls for linkable modules

The first binder control to discuss is rc, which must be omitted to produce
a linkable module. In its place, the noload control is used, which can be
abbreviated nolo, to tell the binder that the resulting module will not be
loaded for execution under the control of an operating system.

To control which public symbols are carried forward into the linkable
module, use the nopublics except or publics except binder controls,
which are abbreviated noply ec and ply ec, respectively. After ec,
put a comma-separated list of public symbols enclosed in parentheses in
the command. For example, to bind myprog . ob j with an interface library

100 Basics

to produce a linkable module that excludes all public symbols except
main_task and main_data, use this command:

iRMX>bnd386 myprog.obj, Irmx386/lib/rmxifc32.lib &

**nolo nopl ec (main_task, main_data) (15)

The linkable module will be placed in a file named myprog . Ink. The name
of the file could be changed using the oj control described earlier.

3.9.2 Adding a linkable module to the OS

Two types of code can be added to the iRMX as: device drivers and resi
dent applications. A device driver provides new DUIBs (which were dis
cussed in the section on using floppy disks in chapter 2) and the code to
handle the associated I/O device. A resident application is one that is
loaded with the as and starts executing when the as initializes. This type
of code is properly called a first-level job, which is explained further in
chapter 6. One significant feature of both device drivers and first-level jobs
is that they do not run as HI commands, are not associated with any partic
ular logged on user, and thus have no access to a user's console input or
console output device.

There are two techniques for adding code to the as, depending on the
version of iRMX being used. For iRMX III and iRMX for Windows, a
command called sysload is used to load STL modules that are to remain
resident in memory after control returns to the CLI. The differences be
tween using sysload and the CLI's background command are the following:

• Programs that run from sysload cannot do console I/O, even through
command line redirection.

• Programs that run from sysload cannot terminate by calling rqexitiojob()
as the sample program did. They can terminate by making another sys
tem call, rqdeletejob(), or they can be terminated by means of a user
written HI command, somewhat like the CLI's kill command for termi
nating background programs.14

• Background programs have the same privileges as the user who issued
the background command, but sysload-ed programs always have the priv
ileges of the super user. This distinction is important for programs that
access disk files, which involves checking a user's access rights.

The other technique for adding code to the as is called system configura
tion. A special program called the Interactive Configuration Utility (ICU)

14iRMX for Windows 2 .Oc introduced a version of sysload that can unload programs using
the -u switch.

Developing an Application 101

is used to edit a series of screens that describe various features of the oper
ating system, including the pathnames of any linkable modules the user
wants to add to the as. The leu generates a number of files, including
source code files that must be assembled or compiled and linked into new
linkable modules; a control file that tells bld386, the system builder, how to
construct a bootstrap-Ioadable file; and a command file. The command file
contains all the commands needed to compile the generated source files; to
bind the new object modules, linkable modules supplied by the user, and
configuration libraries supplied with the as; and to build a new bootload
able copy of the as in a disk file.

At the time of publication, sysload is available only for iRMX for Win
dows and iRMX III, and the leu can be used only with configurable ver
sions of the as, which does not include iRMX for Windows. Many of the
configuration parameters normally set by the leu can be specified when
an iRMX for Windows system is loaded into a file called : con -
fig:rmx.ini.

3.10 Debugging First-Level Jobs

The difficulty with debugging first-level jobs and device drivers is that the
program is loaded by sysload or by the bootstrap loader rather than by the
debugger. For iRMX I and iRMX II, this means that the only way to debug
the code is to use the debug monitor and system debugger. The usual way to
handle this situation is to insert a causeinterrupt (3) statement in the
code so that the system will break to the monitor when the code is executed.
The user is then left with the rather tedious process of debugging the code
at the machine-language level.

For iRMX III and iRMX for Windows, SoftScope III can be used to
debug first-level jobs and device drivers symbolically. Because the code to
be debugged already has been loaded when SoftScope is started, the ss
command, load symbols, is used to get the symbolic debugging informa
tion from the boot-Ioadable file. You may find that the leU strips de
bugging information from the linkable or bootstrap-Ioadable module
by inserting the nodebug control on the bnd386 or bld386 statements in
the command file it generates. That control must be removed from the
command file manually before submitting it for SoftScope to support sym
bolic debugging.

Chapter

4
Development Languages

Choosing the programming language for implementing an iRMX applica
tion or systems program profoundly affects how easy it is to develop the
code and how efficiently the code performs when executing.

4.1 Overview

This chapter examines how a programming language affects a program
mer's productivity through features ofthe source code language itself, how
a programming language affects the run-time efficiency of a program via
the run-time environment provided by the language, and how languages
interact with the operating system. This chapter also mentions how the
need to interact with the iRMX operating system affects the programming
techniques used to implement algorithms, which can differ from the
method of coding an algorithm using the same language, but a different
operating system.

The three most commonly used languages for developing iRMX appli
cations are assembler, PLM, and C. FORTRAN compilers are also avail
able for all versions of iRMX, and Pascal compilers are available for some
versions of iRMX, but these two are not as widely used as assembler, PLM,
and C, so the focus is on these three.

The following table shows how the three languages can be ranked ac
cording to the criteria of programmer productivity, run-time efficiency,
and ease of mastery, with rank of 1 being best:

Programmer Run-Time Ease
Rank Productivity Efficiency of Mastery

1 C assembler PLM
2 PLM PLM C
3 assembler C assembler

103

104 Basics

This table makes some assumptions in the rankings for run-time effi
ciency and ease of mastery that should be mentioned, even though the as
sumptions do not affect the discussion that follows. The assumption for
run-time efficiency is that code for both PLM and assembler is written by
programmers who are experts in both languages. The average assembly
language programmer, however, does not generate code as efficiently as the
PLM compiler running with all optimizations enabled. Assembly language
programs are ranked as more efficient, however, because of the possibility
of hand-tuning by an assembly-language expert. The assumption about
ease of mastery is that the programmer does not already know any of the
languages listed. Obviously, this assumption is often inappropriate, invali
dating that part of the ranking.

Many people develop iRMX applications in assembly language, and a
rudimentary knowledge of assembly language is just about essential for de
bugging iRMX applications. Regardless ofthese two facts, assembly lan
guage is dropped from consideration now for two reaSons. First, assembler,
as a rule, provides very little advantage over PLM and C in terms of which
functions can be implemented. Note that the one exception to this rule is
the direct manipulation of a processor's registers, which can be done only
in assembler. Assembler is used in chapter 10 to perform some register
operations, but otherwise, PLM and C provide all the functions needed to
develop iRMX code, including device drivers. The second reason for leav
ing assembler aside is that the run -time efficiency benefits of assembly lan
guage programming are typically so small compared to the productivity
benefits of programming in PLM or C that it is better to pursue high-level
programming techniques instead.

The compilers and assemblers available for iRMX are all compatible
with one another, so it is common to code different parts of an application
using different languages. We focus on PLM and C separately in this chap
ter, looking at the technical issues involved in using the languages rather
than on trying to decide which language is better than another. Note that
this chapter is not a tutorial on the syntax for either PLM or C.

4.2 Source Language Issues

The sample program in chapter 3 used the iRMX system call rqcsend
coresponse () to perform console I/O, as well as another iRMX system
call, rqexitiojob(), to terminate the program's execution. Instead of
coding that program in PLM and using iRMX system calls, the same pro
gram could have been coded in C using the standard C library functions
printf() and gets() for console I/O, and a return statement from main() to
terminate the program. The code for such a C program is given in Figures
4.1 and 4.2. These two figures provide some interesting comparisons with
Figures 3.3 and 3.4, which is considered in the material that follows. Before

Development Languages 105

Figure 4.1 C version of hellormx main program using C library functions.

/***> hellorrnx.c <***

Sample C program for iRMX
-- main program using C library functions

**/

#include <stdio.h>

char *prompt = "Type something: ".

int
main (int argc, char *argv[])

char reply[80];

dosub (&reply);
printf ("You typed: %s\n", &reply);
return 0;

Figure 4.2 C version of hellormx subroutine using C library functions.

/***> hellosub.c <***

*
Sample C program for iRMX
-- subroutine using C library functions

*
**/

#include <stdio.h>

extern char *prompt;

void
dosub (char * inbuff) {

printf ("%s", prompt);
gets (inbuff);
return;
}

launching that comparison, however, it is important to note that these two
pairs of source code files represent just 2 of 16 ways in which our sample
application might have been constructed.

The 16 ways to construct the application are derived from the fact that
the following four Boolean decisions could be made independently of one
another. l The:

1. Main program could have been written in PLM or in C.

lLater in this chapter two versions of the C library (shared or non-shared) are discussed,
both of which can be used, adding at least 12 more ways in which the sample program could be
constructed.

106 Basics

2. Subroutine could have been written in PLM or in C.

3. Main program could have used either iRMX system calls or C library
functions.

4. Subroutine could have used either iRMX system calls or C library func
tions.

In particular, consider Figures 4.3 and 4.4, which are C versions of the
main program and subroutine that use the same iRMX system calls as Fig
ures 3.3 and 3.4. Later in this chapter you will see two PLM versions ofthe
program that call functions from the standard C library instead of making
direct iRMX system calls. With three sets of sample programs (Figures 3.3
and 3.4,4.1 and 4.2,4.3 and 4.4), you are now ready to consider the first of
the language issues, that of include files.

4.2.1 Include files

Both PLM and C include files are used to insert prototypes for external
functions into a source module. Function prototypes tell the compiler how
many parameters should be passed to a function or procedure, what the
data types of those parameters should be, and what type of value, if any,
will be returned. With this information available, the compiler can verify
that references to these functions are coded correctly. Without function
prototypes, the compiler would have to accept references to functions that
are syntactically correct (balanced parentheses, etc.) but error inducing

Figure 4.3 C version of hellormx main program using iRMX system calls.

/***> hellormx.c <***

*
sample C program for iRMX
-- main program using iRMX system calls

***/

#include <rmxc.h>
#include <string.h>

/* Header file for iRMX system calls. */
/* Header file for udistr(), etc. */

char *prompt = "Type something: ";

int
main (int argc, char *argv[]) (

char reply[80], *youTyped "You typed: ".
WORD Status;

dosub (&reply);
rqcsendcoresponse (NULL, 0, udistr (youTyped, youTyped), &Status);
rqcsendcoresponse (NULL, 0, reply, &Status);
rqexitiojob (0, NULL, &Status);
}

Development Languages 107

Figure 4.4 C version of hellormx subroutine using iRMX system calls.

/***> hellosub.c <***

*
Sample C program for iRMX

* -- subroutine using iRMX system calls
*
**/

#include <rmxc.h>
#include <string.h>

extern char *prompt;

void
dosub (char * inbuff)

WORD Status;

/* header file for iRMX system calls */

rqcsendcoresponse (inbuff, 80, udistr (prompt, prompt), &Status};
return;

when the code the compiler generates is finally executed. A general princi
ple in software development is that the earlier errors are detected in the de
velopment process, the easier they are to correct.

Traditionally, C compilers allow function prototypes to be omitted,
making assumptions about functions referenced but not defined. ANSI C
compilers, such as those used for iRMX development, provide for careful
type checking through function prototypes. C programs should always
code function prototypes explicitly to develop the most robust applications
possible. PLM compilers always insist on a function prototype for every
external procedure referenced by a source module.

For both languages, the issue is to know which header file to include to
obtain the proper set of function prototypes for the functions actually
called by the program. The PLM language supplies no standard header
files, but the iRMX operating system provides a single file (lrmx386/
inc/rmxplm. ext) that provides function prototypes for all iRMX
system calls. For C, iRMX provides an equivalent header file,
: include: rmxc. h, which is included in Figures 4.3 and 4.4. (Intel C com
pilers look in the: include: directory to find the include files, which are
named inside angle brackets, such as <rmxc. h>.) The traditional C pro
gram shown in Figures 4.1 and 4.2, uses the standard I/O functions,
printf() and gets(), to perform input and output operations, so these pro
grams include the standard I/O header file, : include: stdio. h, instead.
The prototypes for various C functions are kept in a number of different
header files, and the documentation for each function tells which header
file to include to obtain the corresponding prototype. Documentation for
virtually all functions used for iRMX applications can be found in one of
four places, described as follows.

108 Basics

Any book that documents the ANSI standard library for C programs,
such as Harbison and Steele (1991) or Plauger (1992) provides documenta
tion on C functions. Programs that use only those functions defined by the
American National Standards Institute (ANSI) standard are most easily
ported from one operating system to another.

The library reference manual that accompanies the compiler also de
scribes these functions. For example, Intel C compilers for DOS and iRMX
provide a number of functions for use with those operating systems that
are not part of the ANSI standard. An example of such a function is
udistr(), which is used in Figures 4.3 and 4.4 and is discussed in the section
on character strings later in this chapter. The manual that documents
these functions is the iC-86/286/386 Library Supplement, volume 15 of the
iRMX for Windows documentation set.

The functions that provide access to iRMX operating system services
(iRMX system calls) are documented in the iRMX System Call Reference,
volume 9 of the iRMX for Windows documentation set. The same docu
mentation is available in hypertext format as a DOS command, rmxhelp,
which is part of iRMX for Windows. The iRMX system calls are intro
duced in chapter 6 and beyond in this book. This book also provides C lan
guage function prototypes for the iRMX system calls discussed here.

The functions that provide access to iRMX networking services are doc
umented in the iRMX Network Programmer's Reference. Network pro
gramming is introduced in chapter 11 of this book. This book also provides
function prototypes for both the PLM and C languages.

In addition to function prototypes, both C and PLM allow include files
to contain arbitrary pieces of source code, such as boilerplate comments or
data structure declarations that are shared across several source modules.
It is possible to include executable code in header or include files in both
languages, but this option should be avoided if you plan to use a source
level debugger, such as SoftScope, which cannot trace such code. This re
striction does not apply to macro definitions in C header files (see the next
section for information on macros).

C header files are usually not displayed in the listing file produced by the
compiler, but this default can be overridden by the lis t inc I ude compiler
control, abbreviated as Ie. PLM include files do appear in the listing file by
default, but most PLM include files, including those produced by extgen,
start with the save and nolist compiler controls to suppress the listing,
and end with the restore compiler control to resume listing of the source
code. Extgen is the utility program introduced in chapter 3 that generates
small include files for PLM programs based on the actual system calls the
programs reference.

4.2.2 Macro preprocessing

Both C and PLM provide a text substitution facility, but the C macro capa
bility is much more powerful than that available for PLM. PLM's macro

Development Languages 109

facility is provided by the LITERALLY clause, which does not make any
provision for arguments and is restricted to a maximum of 255 bytes of text
per macro. The include files for the sample PLM program in chapter 3
(Figures 3.6 and 3.7) illustrate typical uses for PLM's LITERALLY clause,
such as providing symbolic names for commonly used data constants
(TRUE and FALSE) and giving alternative names to data types (TOKEN and
WORD_16). The operating system supplies PLM include files that provide
symbolic names for commonly used data type and constant declarations
(/rmx386/inc/common.lit, for system call condition codes /rmx386/
inc/ error. Ii t, and for various other constants useful in PLM programs
for iRMX).

The C language macro facility provides for parameter substitution
within a macro body and uses a declaration and invocation syntax that
makes macro invocations look like function calls. This feature lets the de
signer of a C function decide whether to optimize for either memory usage
or execution speed. Functions use less memory because the machine code
for a function is generated only once regardless of from how many places it
is called, whereas machine code for a macro is inserted into a program each
place the macro is referenced. Macros execute faster because they avoid the
overhead of passing parameters and manipulating return addresses. Pro
grammers might not know whether they are using a macro or calling a
function when the macro definition or function prototype is part of a
header file and not displayed in the source code listing.

4.2.3 1/0 support

The most significant difference between the two languages is I/O process
ing. The C language is well-known for its standard library ofl/O functions,
codified by the ANSI and adopted by POSIX.l. C programs that use these
functions are automatically portable across all operating systems that
support ANSI C. This standardization of I/O functions by no means im
plies that the I/O functions are implemented equivalently on different sys
tems. For example, the reference to stdin in the sample C program is actu
ally a macro reference, which is defined in : include: stdio. h for iRMX
as:

When the program is run under DOS using Borland C, the corresponding
stdio. h file contains the definition:

#define stdin (&_streams[O])

A corresponding Unix header file contains:

#define stdin (&iob[O])

110 Basics

Thus, ANSI C programs are portable with respect to I/O operations at the
source code level, provided the header files provided with the compiler are
not considered part of the source code.

The contrast with PLM could not be greater. The PLM language does not
support I/O at all, except for very primitive operations used for coding de
vice drivers. There is nothing like C's printf(), nothing like Pascal's wri
teln, nothing. So what is rqcsendcoresponse(), which was used in the sample
PLM program in chapter 3? It is a system call provided by iRMX, not part
of the PLM language.

At this point, the difference between the two languages regarding I/O
might still appear to be minor. In the sample programs, the PLM program
used one system call, rqcsendcoresponse() to accomplish what the C pro
gram in Figures 4.1 and 4.2 did with two of its standard I/O functions,
printf() andgets(). The difference between the two seems even more trivial
when you see that C programs can make iRMX system calls directly just as
PLM programs can, and that PLM programs can call all the standard C li
brary functions as well. A PLM version of the sample program that calls
functions from the C run-time library is given in Figures 4.10 and 4.11, for
example.

The sample programs blur the distinctions between the I/O facilities of
C and PLM because they happen to do only character string I/O. Consider
instead a program that operates with floating point data.

4.2.4 Floating point support

Both languages support floating-point data types and computations using
an x87 numeric hardware coprocessor, which should be initialized before
being used, or an emulator. PLM programs explicitly initialize the co
processor by calling the built-in procedure initrealmathunit(). Severalop
tions can be set when using the coprocessor, such as its rounding mode and
error reporting. The PLM built-in procedure setrealmode() can be called to
change these options for particular applications, and there are other built
in procedures for testing, saving, and restoring the status of the coproces
sor.

Although Intel numeric coprocessors implement the IEEE-754 standard
for floating-point computations, ANSI C does not specify a standard
method for controlling the options to control floating-point operations.
Thus, for ANSI C programs, the coprocessor is automatically initialized,
and the various options cannot be changed. The Intel C compilers,
however, provide the same built-in functions as the PLM compilers for
initializing the coprocessor, changing its options, and managing its status,
if desired.

At this point, a significant difference between the I/O processes of the
languages emerges: C programs can read in and output floating-point
values easily using the %f conversion format with standard I/O functions

Development Languages 111

such as printf() and scanf(), but no such conversions exist for PLM. This
point is made in the context of floating-point conversions, but the situa
tion is the same for integers as well: PLM programs can make system calls
to do 110, but the only data type that can be input or output is an array of
bytes, the equivalent of C's unsigned char[]. This issue is obscured for
the sample programs, because they only do 110 with character strings,
which map fairly directly onto arrays of characters (bytes) in both lan
guages.

PLM programs that use numbers to communicate with human users
must provide routines to convert the numbers from their external repre
sentation as character strings to their internal representation as integers
or reals and back. These conversion routines are either written by the ap
plication developer or drawn from a library of such routines. Such a library
is designed for use with assembly language programs, but it can be accessed
from PLMprograms as well, in/lib/ndp387 /dc387f .lib. Figure 4.5 is
a listing of a PLM program that uses two of the routines from this library to
input two floating point numbers and display their sum. As you can see, it
takes quite a bit of code to convert between character and floating-point
representations of real numbers. The code that performs equivalent con
versions generally adds quite a bit of overhead to C programs that work
with float or double data.

Figure 4.5 Sample PLM program that illustrates floating-point I/O using conversion rou
tines from /lib/ndp387/dc387f.lib.

/***> floatest.plm <**

* Sample PLM program to illustrate floating-point I/O
* .This code illustrates the use of the routines mqcdec_bin and
* mqcbin_declow from the library /lib/ndp387/dc387f.lib.

***/
$title ('Sample Program to Illustrate Floating-Point I/O')
$compact (exports mqcdec_bin, mqcbin_declow)

floatest: DO;
$include (floatest.ext)
DECLARE cr LITERALLY

If LITERALLY
DECLARE Status WORD_16,

(x,y, z)
index
prompt1 (*)
prompt2 (*)
answer (*)
outbuf (81)
string (21)

REAL,
BYTE,
BYTE
BYTE
BYTE
BYTE
BYTE;

INITIAL
INITIAL
INITIAL
INITIAL

'ODh' ,
'OAh' ;

(' Enter first value: '),
(' Enter second value: '),
(, +zzzzzz .E+zz', cr ,If) ,
(' The sum of '),

/* External Procedure Declarations
*/

mqcdec_bin: PROCEDURE (dcb$ptr) EXTERNAL;

112 Basics

Figure 4.5 (Continued)

DECLARE dcb$ptr
END mqcdec_bin;

POINTER;

mqcbin_declow: PROCEDURE (adcb$ptr) EXTERNAL;
DECLARE adcb$ptr POINTER;
END mqcbin_declow;

/* Data Structures Used by Conversion Routines
*/

DECLARE dcb STRUCTURE (/*
b_buffer POINTER,
precision BYTE,
d_Iength BYTE,
d_buffer POINTER) ;

DECLARE adcb STRUCTURE (/*
b_buffer POINTER,
precision BYTE,
d_Iength BYTE,
d_buffer POINTER,

Decimal Conversion Block
/* Binary Buffer */

*/

/* Decimal Character Buffer
Augmented Decimal Conversion
/* Binary Buffer */

/* Decimal Character Buffer

*/

Block

*/

scale SHORTINT, /* True Decimal Exponent */

sign BYTE) ; /* plus or minus character
DECLARE single LITERALLY '0 I, /* Codes for precision

double LITERALLY 12 I,

extended LITERALLY 13' ;

$subtitle ('Main Program')
/* Coprocessor Initialization.
* No need to use INIT87 or INITFP with PLM.
*/

CALL init$real$math$unit;

/* Get the external representation of the first value ...
*/

prompt 1 (0) = length (promptl) - 1;
CALL rqcsendcoresponse (@string, 20, @promptl, @status);

/* ... and convert it to floating-point format.
*/

index = skipb (@string(1), ' " string(O));
dcb.b_buffer = @x;
dcb.precision = single;
dCb.d_length = string(O) - index - 2;
dcb.d_buffer = @string(index + 1);
CALL mqcdec_bin (@dcb);

CALL movb (dcb.d_buffer, @outbuf(12), dcb.d_Iength);
CALL movb (@(' and '), @outbuf(12 + dcb.d_length), 5);
outbuf(O) = 17 + dcb.d_length;

/* Get the external representation of the second value ...
*/

prompt2(0) = length (prompt2) - 1;
CALL rqcsendcoresponse (@string, 20, @prompt2, @status);

/* ... and convert it to floating-point format.
*/

index = skipb (@string(1), ' " string(O));
dcb.b_buffer = @y;

*/

*/

*/

Development Languages 113

Figure 4.5 (Continued)
dcb.precision = single;

dCb.d_length = string(O) - index - 2;
dCb.d_buffer = @string(index + 1);
CALL mqcdec-pin (@dcb);

CALL movb '(dcb.~buffer, @outbuf(outbuf(O)), dcb.d_length);
outbuf(O) = outbuf(O) + dcb.d_length;
CALL movb (@(' is '), @outbuf(outbuf(O)), 4);
outbuf(O) = outbuf(O) + 4;

/* Computation section
*/

z = x + y;

/* Generate the result string
*/

adcb.b_buffer = @z;
adcb.precision = single;
adcb.d_length = 6;
adcb.d-puffer = @answer(1);
CALL mqcbin_declow (@adcb);
answer(O) = adcb.sign;
IF adcb.scale < 0 THEN DO;

answer (length (answer) - 5) '-'I
adcb.scale = -adcb.scale;
END;

answer (length (answer) - 3) = BYTE(adcb.scale mod 10 + '0');
answer (length (answer) - 4) = BYTE(adcb.scale / 10 + '0');

/* Display the result and exit
*/

CALL movb (@answer, @outbuf(outbuf(D)), length(answer));
outbuf(D) = outbuf(D) + length(answer);
CALL rqcsendcoresponse (nil, 0, @outbuf, @Status);
CALL rqexitiojob (0, nil, @Status);

END floatest;

4.2.5 16- and 32-bit targets

Recall from earlier chapters that there are three versions of iRMX:
iRMX I, which runs in real mode on microprocessors with 16-bit words;
iRMX II, which runs in protected mode on microprocessors with 16-bit
words; and iRMX III, which runs in protected mode on microprocessors
with 32-bit words. iRMX for Windows is iRMX III with added software to
support concurrent operation of iRMX III, DOS, and Windows.

Chapter 5 discusses the architectural significance of different word sizes
and processor modes. Chapter 12 describes the features that iRMX for
Windows adds to iRMX III. The focus of this section is how different word
sizes affect code written in PLM or C for the different versions of the oper
ating system. For present purposes, there is no need to differentiate be
tween iRMX III and iRMX for Windows.

Different compilers allocate different amounts of memory for variables
declared identically. For example, a variable declared to be of type WORD in

114 Basics

PLM -86 or PLM -286 is 16 bits of memory, but a variable declared the same
way in PLM-386 is allocated 32 bits. Likewise, an int is 16 bits in iC-86
and iC-286, but 32 bits in iC-386. The problem of variable sizes depending
on the word size of the target computer is a general one, and not restricted
to the compilers used to develop code for iRMX. If source code is being de
veloped for use with only a single target architecture, the problem is mini
mal, except for ensuring that the correct parameter types are passed to li
brary or system call functions.

If source code is designed to run on different versions of iRMX, the
problem is more significant, but can still be dealt with using straightfor
ward techniques. Regardless of how many different architectures are to be
the target of code being developed, several options exist for dealing with
target word size. C programmers have the following options:

• The C data types short and long are always 16 and 32 bits long, respec
tively, regardless ofthe version ofthe compiler. This consistency is part
of the ANSI standard for the C language, so all programs can rely on it.

• The Intel C compilers provide a predefined macro called _ ARCHITEC
TuRE_ that returns values of 86, 286, and 386 for iC-86, iC-286, and
iC-386, respectively. Conditional compilation (using the preprocessor
directive #if) can be used to cause different code to be compiled de
pending on the architecture of the target processor.

• The header file for iRMX system calls, :include:rrnxc.h, includes
definitions for certain PLM data types. The term PLM data types is a bit
of a misnomer, as will be seen directly. Nonetheless, the data types
BYTE, WORD, and DWORD can always be used for 8-, 16-, and 32-bit
unsigned integers respectively. Other PLM data types are declared in
: inc 1 ude : rrnxc . h, but the three listed here work specifically with dif
ferent sizes of unsigned values, and appear frequently in the sample code
in this book.

• The rrnxc. h header file also defines a data type called NATIVE_WORD,
which is a 16-bit unsigned integer for iC-86 and iC-286, or a 32-bit un
signed integer for iC-386.

In PLM, a variable declared to be oftype WORD will be allocated 16 bits by
the PLM-86 or PLM-286 compiler, but is allocated 32 bits of memory by
the PLM-386 compiler. When using the PLM-386 compiler, there are two
ways to allocate 16 bits to a variable: either declare the variable to be of type
HWORD, or use the WORDl6 compiler control, which causes the compiler to
use 16 bits for all WORD variables in the program. When you use the WORDl6
compiler control, you can test a compiler variable, also named WORDl6,
with a $if compiler control, as seen in the boilerplate code generated by
extgen in chapter 3. The sample PLM code in this book uses the data types

Development Languages 115

WORD_16 and WORD_32 established by extgen to declare variables with
proper word sizes.

Programs that make iRMX system calls must know the word size of the
target processor, whether the code is intended to run on a single version
of the operating system or on different versions. Fortunately, including the
proper header files in the program allows the compiler to verify that the
proper data types are being passed to the operating system functions. A
properly coded program can be compiled to run without any syntax errors
for any version of iRMX using the techniques previously listed. Certain
system calls are unique to specific versions of the OS, so a program de
signed to run on different versions of iRMX must also take this factor into
account.

The relationship between iRMX II and iRMX III applications deserves
special note. Loadable iRMX II modules (16-bit code developed using
PLM-286 or iC-286 and BND286) execute under iRMX III without any
need to recompile or rebind. The secret to this binary compatibility lies in
the libraries linked to 32-bit applications that make iRMX system calls.
All parameters are passed to subroutines on a pushdown stack in memory,
which uses I6-bit words or 32-bit words, depending on the development
tools and libraries used to construct the application. The 32-bit libraries
include code that passes a flag variable to the operating system to indicate
the use of a 32-bit stack segment. If an iRMX III operating system function
does not find this flag variable on the stack, it automatically adjusts to
work with a I6-bit stack. One reason 32-bit code can't be run on iRMX II is
that iRMX II does not adjust to the 32-bit stack size. More important, the
iRMX II Application Loader (AL) does not recognize the 80386 Object
Module Format generated by bnd386.

4.2.6 Scoping rules

In PLM, all data and procedure names declared within a source module are
private to the module unless explicitly declared to be public. In addition,
the only way a PLM program can reference data or procedures declared in a
different source module is to declare the symbolic name to be external. Of
all the object modules combined by the binder, exactly one can contain a
public declaration of a symbol, and any number of other modules can refer
to the symbol as an external.

PLM variables are allocated storage in the data segment of the module.
Although variables declared inside a procedure cannot be accessed from
outside the procedure, the values of the variables are retained between calls
to the procedure by default. The exception to this rule is any procedure de
clared to be reentrant. In this case, local variables are allocated storage on
the run-time stack when the procedure is entered, and when the procedure

116 Basics

returns, the storage is freed, so the values of local variables are not pre
served across calls.

The C language essentially operates in a complementary fashion to
PLM. For C, all data declared outside any function and all functions them
selves are automatically either public or external unless explicitly re
stricted to a single module by being declared static. Whether a non-static
symbol is public or external depends on whether the symbol is being de
fined (public) or referenced (external). To complete the complementary
pattern, all C functions are reentrant by default, which means that all vari
abIes declared local to the function are allocated storage on the run-time
stack unless declared to be static.

The character string prompt is declared and defined in the main module
of our sample C program (Figures 4.1 and 4.3), thus being a public symbol
in that object module. It is declared with the extern storage class in the
subroutine module (Figures 4.2 and 4.4). If prompt had not been declared
extern here, it would have been considered a defining declaration, and
bnd386 would have issued a warning about duplicate public declarations.

4.2.7 Function prototypes

In the sample C program, no function prototype for the function dosub()
exists in the main module (Figures 4.1 and 4.3). In this situation, the com
piler provides the function with a prototype based on the form of the refer
ence to dosub() in the code. For the sample program, the ANSI standard
specifies that the function be prototyped as returning an int, even though
the function actually returns nothing, as established by its declaration as
type void in the second module. This inconsistency results in a conflict be
tween the two declarations in the object modules hellormx and hello
sub. Technically, the binder should issue a warning for this type mis
match, even though the code will run without error because the main
program does not actually try to use any return value from the function.
Current versions of bnd386 do not issue any warning or error for this spe
cific type mismatch, probably because it is a benign problem characteristic
of many C programs.2

If this type of symbolic mismatch is a problem, a development tool called
map386 can be useful. The tool was not previously mentioned in chapter 3
because it is not a required step in the development process. Map386 pro
duces a complete symbolic map for a load module. The command

iRMX> rnap386 hellorrnx [1]

generates a file named hellormx. map, which lists information about

2The current ie-3S6 compiler issues a "remark" about the missing function prototype when
it compiles hellorrnx. c.

Development Languages 117

every public symbol for all linkable modules combined to produce a load
module. This map file can be very useful for tracking down linking errors
that are not clear from the binder's. mpl file. For example, the. map file for
the sample program includes a warning for the symbol type mismatch of
dosub(), even though the • mpl file produced by bnd386 does not.

This description of e declarations omits some details. See chapter 4 in
Harbison and Steele (1991) for more information. The main issue here is to
point out some of the differences between PLM and e that can lead to un
expected problems during the binding stage if they are not understood.

4.3 Run-time Considerations

This section discusses the run -time environments provided bye and PLM.
(Other run-time considerations specifically relating to iRMX are covered
in the next section.)

Run-time efficiency can be optimized for either speed or memory re
quirements. Both e and PLM compilers allow the developer to select the
level of optimization for generating object code, using a value from 0 (no
optimization) to 3 (maximum optimization). Most object code optimiza
tions improve the speed of the program, often by eliminating superfluous
instructions, which improves the memory requirements of the program as
well. Both compilers are expected to produce object code of equivalent size
and speed when working at the same optimization levels.

The two languages differ most in the size of the code that must be bound
together to produce an executable program. Figure 4.6 represents the mem-
0ry structure of a loadable iRMX application, such as an HI command.
The lower part of the figure is the as itself, which is always completely res
ident in memory. The upper part of the figure represents one loadable ap
plication. Systems with multiple users or users running multiple programs
simultaneously (using the eLI's background command or the HI sysload

Application-Specific Code

Language-Specific iRMX Interface
Run-Time Code Procedures

Resident iRMX as Code

Figure 4.6 Main memory structure for a loadable iRMX appli
cation program.

118 Basics

command) might have multiple loadable applications in memory at the
same time. Each application consists of three parts: application-specific
code, language-specific code, and interface procedures.

Application -specific code is derived from the source code written by the
application programmer and compiled into object modules by the com
piler. This code is made part of an application by listing the object module
files for the application first in the input path list of a bnd386 command
line. The application -specific code for all versions of the sample program is
in the files hellorrnx.obj and hellosub.obj.

Interface procedures are used to access system calls, which are sub
routines located in the resident part of the as. The interface procedures
come from a library, such as /rrnx386/lib/rrnxifc32 .lib for our sam
ple program, which is supplied as part of the as. The library of interface
procedures for system calls is language independent, and must be bound
with all application programs, whether written in PLM, C, or assembler. It
will be necessary to understand the internal logic of interface procedures in
chapter 10 when adding new system calls to the operating system are dis
cussed, but consider these interface procedures to be black boxes for now.

Currently, you should pay attention to the language-specific run-time
libraries that must be bound with programs written in high-level lan
guages. These libraries contain functions and procedures that are called by
the application-specific code explicitly, implicitly, or indirectly.

Explicit functions. Explicit functions are routines called by an application
but considered part of the programming language. The entire standard C
library consists of explicit functions, including printf() and gets() for the
sample program in Figures 4.1 and 4.2. The PLM-386 language includes
very few explicit functions, only a few routines for manipulating bit arrays.

Implicit functions. Implicit functions are routines that do not appear by
name in an application's source code but for which the compiler inserts
machine language call instructions to invoke them. These functions pro
vide operations supported by the language but implemented as subroutines
by the compiler rather than with in -line code. For example, both PLM and
C support multiplication and division of doubleword integers, but both
compilers use implicit functions to perform these particular computations.

Indirect functions. Indirect functions are routines that are called by func
tions called by the application's code. A language-independent example of
an indirect function is rqerror(), which is referenced by the interface pro
cedures for all iRMX system calls. rqerror() is called by an interface proce
dure if the system call returns an error condition. The PLM language does
not use any indirect functions, but the C language explicit functions make
many indirect function references. For example, the printf() function indi
reetly calls other functions to format the characters for output and then

Development Languages 119

perform the actual printing. The presence of indirect function references
helps determine the order in which library files are listed on the binder's
command line. For example, ifthe C run-time library makes indirect refer
ences to the iRMX system call interface library, the C library must appear
before the iRMX interface library so the binder can resolve the indirect
references successfully.

The run-time routines for the implicit functions referenced by the PLM
and C compilers are found in the library files lintel/lib/plm386 . lib
(: lang: plm3 86 . lib for iRMX versions other than iRMX for Windows)
and: lang: ic386 . lib for PLM and C, respectively.3 These run-time li
braries are not only very small, but are actually used only for applications
that perform 64-bit multiply and divide operations. For example, although
it was included in the input file list for binding the sample PLM program in
chapter 3, no modules from plm386 . lib were actually included in the
loadable file produced by the binder. The same is true of i c 386 . lib for
the sample programs in this chapter. Implicit functions never make indi
rect function references, so the language-specific run-time libraries are
always listed last in the input file list for the binder.

No library of explicit functions for PLM programs exists other than the
library of interface procedures for iRMX system calls, so the following dis
cussion is specific only to C-Ianguage programs or PLM programs that call
routines in the C run-time library.

The explicit and indirect functions called by a C program come from two
different files. The first is a single object module called the C start-off code,
and the second is the C run-time library itself. The C language does not
provides a method to generate an execution starting point as PLM and as
sembler do. PLM programs start executing at the first executable state
ment that appears outside of any procedure; there must be only one such
statement among all the object modules bound together to create an exe
cutable program. Assembler programs use the END directive to specify the
execution starting point.

The C compiler never specifies an execution starting point in the object
modules it produces. Rather, the convention is for execution to begin at the
function named main(), which must be called by an assembly language or
PLM program known as the start-off program. The code in the start-off
module performs a number of initializations (described as follows), and
then calls main(), passing command-line arguments in the traditional
argc and argv parameters. If main() returns to the start-off module, it
will encounter an indirect call to cq_ exit(), which in turn will make an indi
rect call to the iRMX system call rqexitiojob() to terminate execution.

3The implicit library for C is in the interface library for the shared C library for those sys
tems, including iRMX for Windows, that support that library. The shared C library, also
called the C layer, is described later in this section.

120 Basics

There are two ways to handle the run-time library for C programs. Each
C program can be bound to the necessary parts of the library, or the entire
library can be loaded with the operating system so that C programs can in
voke any library function the same way they call iRMX system calls - by
calling interface procedures. Figure 4.6 represents the case in which each
application is linked to the C library, and Figure 4.7 represents the case in
which a single resident copy of the run-time library is shared among all C
applications. The shared copy ofthe C run-time library is pre-linked to the
iRMX system call interface procedures that actually perform operating
system functions such as I/O and program termination, so those interface
procedures are shown as part of the resident OS. If an application program
made iRMX system calls in addition to C run-time library calls, interface
procedures for those system calls would need to be included in the applica
tion program's memory in the upper part of the figure.

Because Figures 4.6 and 4.7 are not drawn to scale, the major difference
between the two techniques is not immediately obvious: The shared resi
dent version ofthe library results in much smaller application programs at
the expense of more memory dedicated to the resident portion of the OS. In
the current version ofiRMX for Windows, the resident C library adds 107
KB to the memory requirements of the operating system.

The size of the C nonshared run-time library is measured in the
hundreds of thousands of bytes, and virtually all C programs extensively
use the routines it provides. The C version of the hellormx program that
calls gets() and printf() in Figures 4.1 and 4.2, for example, binds to 75
modules directly or indirectly from the C run -time library crmxnf 3 c . lib.
Furthermore, the functions in these modules reference an additional 51
modules from rmxif c 32 . lib, resulting in a loadable command file of over
80 KB.

Application-Specific Code

Language-Specific
Interface Procedures

Resident iRMX Interface
Run-Time Code Procedures

Resident iRMX as Code

Figure 4.7 Main memory structure for a loadable iRMX applica
tion using the resident C run-time library.

Development Languages 121

If the same program is bound to the library of interface procedures for
the resident version of the library instead, only 11 modules are included
from that library, and no indirect references are made to the iRMX inter
face procedure library. The loadable command file is only about 10 KB.
The PLM version ofthe same program (Figures 3.3 and 3.4), incidentally,
is less than 7 KB after binding to the iRMX interface procedure library.

Table 4.1 summarizes the size requirements for the PLM and eversions
of the hellormx program presented in this chapter and chapter 3, including
the PLM programs that use C library functions, which are examined later
in this section. For the programs, I/O and program termination were coded
either to make iRMX system calls directly or to call functions in the C run
time library. Programs that call functions in the C run-time library were
linked to either the shared or the non-shared version of the library. The
number of object modules linked from the C library is given as 1 + n for
those programs that require the C start-off code, and as n otherwise. The
Loadable columns give the sizes ofthe loadable files (executable STL files)
with and without debugging information retained. The Code + Data col
umn gives the sum of the code and data memory segments for each pro
gram, but does not include memory requirements for the program's stack
segment, nor for data segments created as the program executes. All com
pilations were performed using the compiler's compact and debug con
trols. All C programs were compiled using the compiler's nosrclines
control.

The table points out the ambiguity involved in citing the size of a pro
gram. As can be seen, the sizes of the loadable files vary greatly, depending
on whether they include debugging information. As discussed in chapter 3,
this debugging information is discarded by the iRMX AL, but is used by
source language debuggers such as SoftScope. The actual amount ofmem
ory used by a program is more accurately given by the Code + Data column
of the table, which shows the actual amount of memory occupied by the
code and data segments of the programs. Even this column is not a totally
accurate representation of a program's memory requirements, however,
because both iRMX system calls and C run-time library functions create
additional data memory segments as a program executes.

TABLE 4.1 Sizes of Various Versions of the Hellormx Program

Source C C iRMX Loadable Loadable Code +
Language Functions Library Modules Modules w/Debug w/o Debug Data

PLM iRMX none 0 7 6,873 4,380 455
C C shared 1 + 11 0 10,791 8,787 5,161
C C not shared 1 + 75 51 80,821 46,912 52,369
C iRMX shared 1 + 10 7 12,025 9,062 5,430
C iRMX not shared 1 + 72 53 75,900 42,916 48,369
PLM C shared 6 0 6,355 4,386 376
PLM C not shared 1 + 75 51 81,478 46,907 52,449

122 Basics

The following two command lines illustrate the two ways to build the
version of hellormx that uses the C run-time library:

iRMX> bnd386 &

•• :lib:cstrmx3c.obj, hellormx.obj, hellosub.obj, &
•• :lib:crrnxnf3c.lib, /rrnx386/1ib/rrnxifc32.1ib, &
•• rn(code to code32) ss (stack(B192»
rc(dm(O,OFFFFFFh» &

··oj(hellormx)

iRMX> bnd386 &

•• :lib:cstart32.obj, hellorrnx.obj, hellosub.obj, &
•• : lib: clibxf32 • lib &

•• rn (code to code32) ss(stack(8192»
rc(dm(O,OFFFFFFh)) &
** oj (hellormx)

[2]

[3]

Command line [2] illustrates the use of the non-shared version of the li
brary, and command line [3] illustrates the use of the shared version. The
logical name : lib: in both command lines should not be taken literally
because the locations of the various libraries sometimes change positions
from one release of iRMX to another, or across versions of the OS. For
iRMX for Windows 2.0a, :lib: refers to the directory Irmx386/newl
intel/lib in command line [2] and refers to the directory lintel/lib
in command line [3].4

The two command lines reference different start-off files as well as dif
ferent run-time libraries. The start-off code for the non-shared version of
the library in line [2] (cstrmx3. obj) performs much more initialization,
to be described in the section on multitasking, than the start-off code for
the shared version ofthe library in line [3] (cstart32. obj). Note that the
binder normally generates its output in an STL file that has the same name
as the first file of its input file list with the extension of the file name
dropped. If the 0 j () control had not been used on the command lines,
the binder would have produced its output in a file in the : lib: di
rectory. Aside from not wanting the executable program to be named
: lib: cstrmx3 or : lib: cstart32, the bind commands would probably
fail on any iRMX file systems where most users do not have write permis
sion for the : lib: directory.

Several versions of non-shared run-time libraries are supplied with the C
compilers for iRMX. The name ofthe one used in command line [2] indi
cates that it is used to interface C programs to iRMX (crmx .••), that it

4The names and directories for library files have changed several times during the evolution
of the iRMX for Windows operating system. For example, the command to build the hellormx
program using the shared C library in iRMX for Windows version 2.0c is:

iRMX> bnd386 &

** /intel/lib/cstart32.obj, hellormx.obj, hellosub.obj, &
** /intel/lib/cifc32.1ib &
** rn(code32 to code) ss(stack(8192» &

** rc(dm(O, OFFFFFFFFh» oj (hellormx)

Development Languages 123

provides no floating-point support (... nf ...), that it is for iRMX III
(... 3 ...) and that it is used for programs compiled using the compact
segmentation model (... c . lib). At the time of this writing there is just
one version ofthe shared run-time library available. It is found in the file
/rmx386/jobs/clib. job, which can be called from any iRMX III ap
plication regardless of its model of compilation, and which includes float
ing point support. There is presently no library of interface procedures to
this library for 16-bit applications.

4.4 Congruence with iRMX

This section discusses issues that must be handled properly to make iRMX
system calls from C and PLM programs. The issues mainly involve passing
arguments to system calls and receiving results back from the as, but
there are also considerations that focus specifically on multiple tasks and
multiple jobs for C programs.

4.4.1 Character strings

iRMX system calls that receive character string arguments or return char
acter string values, such as rqcsendcoresponse () in the sample PLM
program, expect the character string to be represented as an array of bytes.
The first element of the array contains an unsigned binary number specify
ing the number of characters in the string, and the next bytes in memory
contain the ASCII codes for the characters in the string. For example, if a
user of the PLM version of hellormx typed ABC<cr> in response to the
Type something: prompt, the first six bytes ofthe array Reply would be
filled with the following sequence of values, given in hexadecimal:

05 41 42 43 OD OA • • •

The first byte contains the length of the string, which is five characters
long. The next three bytes contain the ASCII codes for the letters A, B, and
C, and the next two bytes contain the ASCII codes for carriage return
(OxOD) and line feed (OxOA). The remainder of the bytes in the array would
not be affected by this call to rqcsendcoresponse(). PLM has no character
string data type, so arrays of bytes are used for all iRMX strings. PLM pro
grams must explicitly set the length of strings that will be passed to iRMX
system calls, by using the built-in length() function, for example, to com
pute the length to be stored in array element zero, as shown in the state
ment: Prompt (0) = length (Prompt) -1; in the PLM version of hel
lormx.

The C language does have a character string data type, which is repre
sented in memory as an array of bytes terminated by a byte containing bi
nary zeros (known as null-terminated string). This representation of
strings can be used as long as the C run-time library only is involved in any
string operations, such as in the C version of hellormx in Figures 4.1 and
4.2. When iRMX system calls are made from C programs, however, C

124 Basics

strings must be converted to iRMX strings and vice versa. The C run-time
library supplied with Intel C compilers provides functions named udistr()
and cstr() for these conversions. The function prototypes for these func
tions are given in : include: string. h, along with the function proto
types for the ANSI string-handling functions. The code in Figures 4.3 and
4.4 illustrates using udistr() to convert C strings to iRMX strings. (The
name udistr() refers to the Universal Development Interface (UDI) layer
ofiRMX, but all layers of the OS use the same representation for strings.)

iRMX strings cannot be longer than 255 bytes because of the limitation
of storing the length of the string in a single byte, but each byte ofthe string
can contain an arbitrary bit pattern, including all zeros. C strings can be
longer, but cannot contain any bytes with all zeros within the string. C pro
grammers must remember these differences when using strings with
iRMX system calls.

The C language allows strings to include control characters using an
escape mechanism. For example, the C string' 'hello \n' , uses <\n> to
insert a new-line (ASCII linefeed) character into the string. PLM strings
do not support such an escape mechanism. Rather, arbitrary values can be
used to initialize byte arrays by simply placing their value in the initializa
tion list. The PLM initialization list, ('he 110 ' , OAh, 0) is equivalent to
the preceding C string. Note that the byte of zeros at the end of this list
must be given explicitly in PLM, but is automatically appended to the end
of all C-Ianguage strings.

One final issue concerning strings that C programmers need to be aware
of is the difference between signed and unsigned characters. By default, the
char data type is a signed data type, according to the ANSI standard for
the C language. (Watch for a sign extension when a char value greater
than Ox7F is promoted to an int.) The function prototypes for the ANSI
string manipulation functions all specify signed characters (or pointers to
them) for their arguments. iRMX system calls that take string arguments,
however, are prototyped to take unsigned char arguments. The PLM
BYTE data type defined in : include: rrnxc. h is for unsigned characters,
and it is sometimes necessary to be aware of the difference between the
two data types when mixing iRMX system calls and C string operations.
The: include: rrnxc. h header file defines the STRING data type to be
signed characters and can be used for C applications that need signed
characters.

4.4.2 Parameter passing

When establishing protocols for passing parameters to subroutines and
receiving returned values, you must consider the specific architecture of
the CPU being used, the programming languages involved, and the operat
ing system. An early example of treating all these issues uniformly was the
IBM S/360 architecture introduced in the 1960s. IBM specified that all
programming languages and all operating systems that ran on the S/360

Deve~mentLanguages 125

architecture would use the general purpose registers ofthe CPU in a stan
dard way when calling and returning from subroutines.6

iRMX, C, and PLM all use the stack system of the x86 architecture for
managing parameters, return addresses; and return values for subroutine
calls. Differences exist, however, between how C uses the stack and how
iRMX and PLM use the stack, and these differences must be taken into
consideration. Readers familiar with making system calls to other operat
ing systems such as DOS or OS/2 should remember that those two systems
use a register-based scheme for passing parameters to system calls rather
than the stack scheme used by iRMX. Also, Unix programmers have not
dealt with this issue at all because Unix and the implementations of C on
Unix always use a single calling convention, which is stack-based on those
processors that support it.

On stack-based systems, each subroutine call results in a data structure
called a stack frame put on the top of the pushdown stack kept in memory.
A CPU register called the stack pointer (sp) always points to the top of this
stack, and another register called the bCL$e pointer (bp) keeps track of
nested stack frames. Figure 4.8 shows the general structure of a stack frame
during a subroutine call. Note that stacks grow d()wnward; sp always has
the lowest memory address occupied by the stack. The three parts of a
stack frame are constructed in three separate steps:

1. A sequence of machine language push instructions pushes the argu
ments to be passed to the subroutine onto the stack.

2. A machine language call instruction pushes the return address onto the
stack. The return address is the address of the next machine language
instruction in the calling program after the call instruction.

3. Finally, for re-entrant subroutines, space is reserved on the stack for the
local variables of the subroutine by li'Iubtracting the numb~r of bytes
needed for local variables from the sp register. Subroutines address in
coming parameters by specifying positive offsets relative to the bp reg
ister and local variables using negative offsets relative to bp.

The difference between PLM and C is that both the PLM compiler and
all iRMX system call subroutines assume that parameters are pushed onto
the stack in a left-to-right sequence, whereas C compilers normally push
parameters onto the stack in a right-to-Ieft sequence. The C technique
always puts the first parameter, which sometimes specifies the number of
actual parameters there are for the call, at a fixed location in the stack next
to the return address.

6For the 8/360 architecture, register 14 contained the return address, register 1 contained
the address of a parameter list in memory if the arguments could not be passed in registers,
and register 13 was used as the link field in a linked list of register save areas for nested sub
routine calls. There was no hardware support for pushdown stacks in memory, 80 stackS were
not an issue. The same conventions were retained in the 8/370 architecture.

126 Basics

Arguments

Return
Address

Link to D-

Previous
Stack Frame

bp~
Local
Variables

sp~

f-

-

..c:
-'i 00
c:
O(!;j
~..x
Uu
~co Boo

1
Figure 4.8 Structure of a stack frame during a subroutine call.

For example, the first parameter to printf()is a string that contains for
matting codes; the number of formatting codes in the string tells the func
tion how many additional parameters it should expect to find on the stack.
The PLM technique makes it impossible to implement variable-length ar
gument lists to subroutines, but executes more efficiently on the x86 archi
tecture because the fixed number of arguments allows the subroutine to
update the stack frame pointer, return to the calling program, and drop the
incoming parameters from the stack in one or two machine instructions
(leave count, or pop bp; return count). This method is opposed to the
variable argument list technique, which requires the parameters to be
dropped as a separate instruction by the calling program after the sub
routine returns.

Intel C and PLM compilers can each use the other's calling convention.
This feature allows the C run-time library to use the more efficient PLM
model wherever possible, allows C programs to make iRMX system calls
(which require the PLM argument passing model), and makes it possible to
develop mixed-language applications as well. Intel C compilers recognize a
pair ofpragmas, fixedparams and varparams to identify which calling
convention is to be used for individual functions. PLM compilers provide

Development Languages 127

the interface control for forcing routines to be called using the C con
vention.

Figure 4.9 shows a sample PLM program that calls routines from the C
run-time library. Note that the program is coded as a procedure named
main{), which will be called from the C start-off code. This construction is
necessary when linking to the non-shared version of the C run-time library
because the start-off code must complete certain initializations before any
function in the library is called. When using the shared version of the li-

Figure 4.9 PLM version of Iwllormx main program using non-shared C library functions.

1***> hellorrnx.plm <**

Sample PLM program for iRMX
-- main program using non-shared C library functions

**/

$title ('Sample PLM Main Program')
$interface (C = printf)

hellormx: DO;
DECLARE

prompt (*) BYTE PUBLIC INITIAL ('Type something: ',0),
reply (81) BYTE;

$if WORD16
DECLARE WORD_16 LITERALLY 'WORD';
$else
DECLARE WORD_16 LITERALLY 'HWORD';
$endif

printf: PROCEDURE (ptr) EXTERNAL;
DECLARE ptr POINTER;
END printf;

dosub: PROCEDURE (response$ptr, response$max) EXTERNAL;
DECLARE

response$ptr
response$max

END dosub;

/*

POINTER,
WORD_16 ;

Execution Starts Here
*/

main: PROCEDURE (argc, argv) WORD_16 PUBLIC;
DECLARE

argc
argv

WORD_16,
POINTER;

CALL dosub (@reply, size (reply) - 1);

CALL printf (@('You typed: %s', ODh, OAh 0), @reply);
RETURN 0;

END main;
END hellormx;

128 Basics

brary, this initialization is automatically performed when the first call to
any function in the run-time library is called, and the equivalent PLM pro
gram can be coded as shown in Figure 4.10. Either version of the main pro
gram, using the appropriate version of the run-time library, could be linked
to a single version of the subroutine, which is shown in Figure 4.11.

Figure 4.12 provides the bnd386 command that will build the program
under iRMX. This command involves linking the same files as any C pro-

Figure 4.10 PLM version of hellormx main program using shared C library functions.

/***> hellormx.plm <**

* Sample PLM program for iRMX
-- main program using shared C library functions

**/

$title ('Sample PLM Main Program')
$interface (C = printf, exit)

hellormx: DO;
DECLARE

promptStr (*)
prompt
reply (81)

$if WORD16

BYTE INITIAL (, Type something: ',0),
POINTER PUBLIC INITIAL (@promptStr),
BYTE;

DECLARE WORD_16 LITERALLY 'WORD';
$else
DECLARE WORD_16 LITERALLY 'HWORD';
$ end if

printf: PROCEDURE (ptr) EXTERNAL;
DECLARE ptr POINTER;
END printf;

exit: PROCEDURE (code) EXTERNAL;
DECLARE code WORD_16;
END exit;

dosub: PROCEDURE (response$ptr, response$max) EXTERNAL;
DECLARE

response$ptr
response$max

END dosub;

/*

POINTER,
WORD_16;

* Execution Starts Here
*/

CALL dosub (@reply, size (reply) - 1);

CALL printf (@('You typed: %s', ODh, OAh, 0), @reply);
CALL exit (0);

END hellormx;

Development Languages 129

Figure 4.11 PLM version of hellormx subroutine using C library functions.

/***> hellosub.plrn <***

*
sample PLM program for iRMX
-- subroutine using C library functions

**/

$title ('Sample PLM Subroutine')
$interface (C ; printf, gets)

hellosub: 00;

$if WORD16
DECLARE WORD_16 LITERALLY 'WORD';
$else
DECLARE WORD_16 LITERALLY 'HWORD';
$endif

printf: PROCEDURE (ptr) EXTERNAL;
DECLARE ptr POINTER;
END printf;

gets: PROCEDURE (ptr) EXTERNAL;
DECLARE ptr POINTER;
END gets;

DECLARE prompt POINTER EXTERNAL;

dosub: PROCEDURE (resp$ptr, resp$max) PUBLIC;
DECLARE

resp$ptr
resp$max

POINTER,
WORD_16 ;

CALL printf (@('%s', 0), prompt);
CALL gets (resp$ptr);
RETURN;

END dosub;
END hellosub;

Figure 4.12 The command to bind the PLM version of hellormx using the non-shared
C library.

iRMX> /rrnx386/new/intel/lib/cstrrnx3c.obj, hellormx.obj, hellosub.obj, &
** /rmx386/new/intel/lib/crrnxnf3c.lib, /rmx386/1ib/rrnxifc32.1ib &
** rn (code32 to code) ss(stack(8182)) oj (hellorrnx) rc(dm(O,OFFFFFFh))

gram. The resulting loadable file is approximately 81 KB. Using the
bnd386 command shown in Figure 4.13 to link with the interface proce
dures for the shared library (and the object module for Figure 4.10) reduces
the size of the load module file to approximately 6 KB. Table 4.1 compares
the actual sizes for these two versions of the program in terms of files and
actual memory usage.

Finally, note that PLM and C programs can build compatible stack
frames with the codes shown in Figures 4.14 and 4.15. Figure 4.14 is a C

130 Basics

Figure 4.13 The command to bind the PLM version of hellormx using the shared C library.

iRMX> hellorrnx.obj, hellosub.obj, &
** /intel/lib/clibxf32.1ib, /rmx386/1ib/rrnxifc32.1ib &
** rn (code32 to code) ss(stack(8182)) oj (hellorrnx) rc(dm(O,OFFFFFFh))

Figure 4.14 C version of hellormx main program that can call the PLM version ofthe sub
routine given in Fig. 4.11.

/***> hellormx.c <***

*
*
*

Sample C program for iRMX
main program using C library functions

-- calls subroutine using PLM calling conventions
*
**/

#include <stdio.h>

unsigned char *prompt (unsigned char *) "Type something: ";

#pragma noalign (dosub)
void dosub (unsigned char * unsigned short);

int
main (int argc, char *argv[])

unsigned char reply[80] ;

do sub (&reply[O] , 80);
printf ("You typed: %s\n", &reply);
return 0;

Figure 4.15 C version of hellormx subroutine that can be called from the PLM main program
given in Fig. 4.10.

/***> hellosub.c <***

* Sample C program for iRMX
* subroutine using C library functions
* -- subroutine is called using PLM calling conventions

*
**/

#include <stdio.h>

extern unsigned char *prompt;

#pragma noalign (dosub)
void
dosub (unsigned char * inbuff, unsigned short limit) {

printf ('%s·, prompt);
gets ((char *) inbuff);
return;
}

Development Languages 131

main program that can call a PLM version of dosub(J. The fixedparams
pragma tells the compiler to use the PLM calling convention for that rou
tine. The subroutine in Figure 4.15 can be called from a PLM program,
such as the one in Figure 4.10 or from a matching C main program, such as
the one in Figure 4.14.

4.4.3 Pointers

Memory address pointers can take four different forms in iRMX envi
ronments. Depending on the memory segmentation model, pointers are
classified as near or far. Depending on the architecture of the processor
running the application and the as, pointers reference 16- or 32-bit seg
ments. Thus, the four types of pointers are 16-bit near, 16-bit far, 32-bit
near, and 32-bit far. Near pointers are used when the item being addressed
is in one of the memory segments directly accessible by the CPU, and con
sist of a 16-bit or 32-bit offset value for identifying a location in the seg
ment. Far pointers are used when an item being addressed is not in one of
the memory segments directly addressed by the CPU. They consist of a 16-
bit segment identifier, plus a 16-bit or 32-bit offset. Pointers and memory
addressing in general are discussed further in chapter 5.

Both PLM and C support parameter passing by value only, but both lan
guages accomplish the equivalent of reference parameters by passing
pointers as values. Parameters passed by value cannot be modified by a
subroutine because only a copy of the argument is actually available to the
subroutine. For C and PLM, a copy of the parameter value is pushed onto
the stack in this instance. Passing a pointer, on the other hand, enables the
subroutine to modify variables in the calling program's memory by indirect
addressing. The PLM language supports indirect addressing through its
based-variables mechanism. Indirect addressing is accomplished in C by
declaring a variable to be a pointer, either by using the asterisk declarator
or by declaring the variable to be array.

Although it is not an iRMX issue, you should note that a major differ
ence between pointers in C and PLM is the type checking performed by the
compiler. All PLM pointers are generic in the sense that the language in
cludes no mechanism for specifying the data type of the memory location
addressed by a pointer. The C language, however, requires the data types of
the variables addressed by pointers to be declared explicitly, and the com
piler performs full type checking for all uses of pointers.

The distinction between 16- and 32-bit pointers is not as significant
when making iRMX system calls as one might expect. All programs that
run on iRMX I and iRMX II must use 16-bit code just to run, so there is no
question about 32-bit pointers for those operating systems. For iRMX III,
we have already noted that the as can accept either 16- or 32-bit pointers
because it can determine the word size ofthe stack segment at run time (the
interface procedure pushes a flag for 32-bit stacks). As long as a program

132 Basics

uses all 16-bit code or all 32-bit code, PLM386 and iC386 will cause all seg
ments, including the stack, to use the same word size, and pointers will au
tomatically match that chosen word size.

The rule for passing near or far pointers to iRMX system calls is simple:
all pointers must be far pointers because the operating system occupies
separate memory segments from applications. For PLM programs, simply
use that language's @ operator, which always generates far pointers. In cer
tain circumstances, the PLM compiler will issue a warning message if you
create a far pointer to information normally accessed through a near
pointer, such as a pointer to a subroutine when using the compact memory
segmentation model. This warning can be eliminated by using an extended
segmentation model to force the compiler to use the large model for access
ing particular subprograms. The fioatest application in Figure 4.5 illus
trated the use ofthis extended segmentation technique for the mqcbin _ de
clow() and mqcdec_bin() functions.

For C, the situation is somewhat more complicated. The & operator will
generate either a near or far pointer, depending on the memory segmenta
tion model being used and whether the referenced item is in the program's
code or data, as summarized in this table:

Segmentation Model

Compact
Large

Code Reference

near
far

Data Reference

far
far

Furthermore, the C compiler will generate a pointer without use of the &

operator when arrays or functions are passed as arguments to functions.
For example, the C compiler generates exactly the same code for the fol
lowing two function calls without issuing any warning or error messages:

char a_string[20J;
foo (a_string);
foo (&a_string);

In summary, C generally produces far pointers, which is what is required
for passing pointers to iRMX system calls. The one exception is a pointer
to code when using the compact segmentation model. For this situation,
use the compiler's far type qualifier when declaring a function, use afar
cast on the pointer to the function, or use extended segmentation to make
the function far. The far type qualifier is only recognized by the compiler
when the extend compiler control is used.

PLM-like extended segmentation for C programs uses the exact same
syntax as for PLM programs, but the segmentation definition must be in a
separate file from the source module, and that file must be named using the
subsys compiler control. The following is an example of two files that il
lustrate all three techniques. Note that this example is triply redundant;
only one of the three techniques is needed:

Development Languages 133

File foo. sys:

$compact (exports bar)

File foo.c:

#pragma subsys (foo. sys)

#pragma extend

void far bar (void) ;

main{) (

foo ({far *) bar);

Because the subsys and extend compiler controls are specified with
pragmas in the source module file (faa. c), and the segmentation model is
specified in the subsystem declaration file (faa. sys), this example could
be compiled with the simple command line:

iRMX> ic386 foo.c [4)

Because ofthe triple redundancy in declaring bar() to be a far procedure,
this example would be unchanged if the far keyword were omitted from the
function prototype for bar(), ifthe (far *) cast were omitted from the call
to foo(), or if the subsys pragma were omitted entirely. The subsys
pragma is particularly useful for mixed-language applications, which can
maintain a single set of subsystem definitions used by all parts of the ap
plication, regardless of language.

4.4.4 I/O connections for C programs

C programs have three choices for identifying I/O channels: file descrip
tors, streams, and iRMX connections. The first technique uses small in
tegers to identify different channels: the value 0 is used for the standard
input channel, 1 for the standard output channel, and 2 for the standard
error channel. File descriptors historically have been used for Unix and
DOS programs, but should be avoided for new applications because they
are not part of ANSI C, and thus, are not portable. Streams, which are de
fined as part of ANSI C, are referenced by a variable declared as a pointer
to the data type FILE, which is a typedef for a data structure declared in
stdio.h.

The iRMX C run-time library provides a function called fdopen() for
converting file descriptors to stream file pointers and a function /ileno() for
converting file pointers to ints that can be used as file descriptors. The C

134 Basics

run -time library internally translates both file descriptors and file pointers
into iRMX objects called connections so that the library can implement
I/O operations using the iRMX I/O system. iRMX connections are identi
fied to the OS by variables of type TOKEN, which is a typedef declared in the
header file rmxc. h. This header file contains all typedefs and function
prototypes needed by any C program that makes iRMX system calls. The
functions ~et_rmx_conn() and yut_rmx30nn(), which are also proto
typed in rmxc. h, can be used to convert C file descriptors to iRMX con
nections and vice versa. The use of iRMX connections for I/O is discussed
in chapter 8.

4.4.5 Multitasking and multiple jobs for
C programs

Even though this section pertains only to C programs, it might also be of
interest to programmers familiar with Unix systems programming because
a rough correspondence exists between iRMXjobs and Unix processes and
between iRMX tasks and POSIXA threads. (iRMX jobs and tasks are de
scribed more thoroughly in chapter 6. POSIXA is the IEEE standard for
real-time Unix introduced in chapter 1.)

A Unix process has a defined part of memory that it can access (its "ad
dress space") and a single thread of execution. A Unix thread is a thread of
execution that shares an address space with a process. Both processes and
threads inherit all open I/O connections from their parent process, but can
create their own private I/O connections as well. A major distinction be
tween iRMX and Unix is that iRMX jobs do not inherit any I/O connec
tions from their parents, although they can create their own connections
based on those of their parent or any other job. For example, when the HI
creates a job to run a command, the HI provides the job with connections
corresponding to stdin, stdout, and stderr (connections with iRMX
logical names : C i :, : co : ,and: term: , respectively). Since these connec
tions belong to the job that created the command rather than to the com
mand itself, the command must create its own connections based on these
connections before using them. The creation of I/O connections for: ci :
and: co: is handled automatically by the rqcsendcoresponse() system calls
in our sample programs, and the process is demonstrated explicitly when
we examine I/O programming in detail in chapter 8. Although I/O connec
tions cannot be shared across jobs, all tasks within an iRMX job can share
I/O connections.

The iRMX C run-time library follows the POSIX.l model of providing
separate environments for jobs and tasks created by C programs. The
shared version of the C library sets up this environment the first time a
task makes a call to one ofthe library functions. The non-shared version of
the library intercepts any iRMX system calls that create or delete iRMX

Development Languages 135

jobs and tasks so that it can cause the start-up code within the library to be
executed before passing control to the actual code for the job or task speci
fied by the application program. This start-up code is a subset of the start
off code that is executed for all e programs running as iRMX HI com
mands. For most e programs, this behavior is invisible and provides a very
clean way to implement applications with multiple jobs or tasks in e, but is
less efficient than the shared library implementation.

e applications not run as HI commands must be aware of this behavior
on the part of the nonshared run-time library, however. Such applications
include those resident applications configured into the as using the leu
described in chapter 9. Such applications must be bound with a version of
the cstrmx. obj file, which has been modified to eliminate any calls to
routines that initialize command line parsing (there is no command line to
parse) and to set up stdin, stdout, and stderr (there is no default ter
minal associated with such applications).

Furthermore, such applications cannot have their system calls for cre
ating jobs and tasks intercepted by the e run-time library, or those same
initialization routines will be called and will then fail for the reasons
indicated. One approach to solve this problem is to use the non-shared e
run-time library and do an incremental bind, first binding the application
with the iRMX interface library (lrmx386/lib/rmxifc32 . lib) so that
system calls that create and delete jobs and tasks will call the as directly
without going through the e run -time library. The resulting linkable module
can then be bound with the e run -time library to link in other routines from
that library that the application might call. Such applications must not call
run-time routines that do 1/0 using stdin, stdout, or stderr, however,
because these 1/0 streams cannot be set up for resident applications.

The assembly language source code for generating cstrmx. obj is
provided with the compiler in a file named /lib/ic386/cstart.asm.
The release notes provided with the compiler give instructions for reas
sembling this file to produce a version of the start-up code tailored to the
needs of resident applications.

The situation is simpler for resident iRMX III and iRMX for Windows
applications that use the shared run-time library. These programs are
loaded by sysload rather than as part of the as itself. They still do not have
access to a user's login terminal, but they can do command-line argument
processing. Since the shared run-time library initializes access to the
s tdin, stdout, and s tdout I/O connections when first referenced rather
than from within the start-off code, there is no need to create a special ver
sion of cstart. obj for these applications. Furthermore, the shared run
time library does not intercept the iRMX system calls to create and delete
iRMX tasks and jobs, so there is no need to perform an incremental bind of
applications that make these calls.

136 Basics

4.5 Debugging

This section considers two ways in which the choice oflanguage affects the
debugging process: exception handling and compatibility with the Soft
Scope debugger.

4.5.1 Exception handling

System call condition codes and the exception handler procedure are cov
ered in detail in chapter 6. Basically, abnormal conditions detected by the
OS during system calls either cause a procedure called the exception handler
to be called or cause a nonzero condition code value to be returned to a vari
able passed to the system call as a reference parameter. The sample pro
grams in this book generally use a 16-bit unsigned integer variable named
Status to receive this condition code value. Every iRMX task has its own
exception handler procedure and sets its own mode for handling exceptions,
either by testing the condition code variable after each system call (referred
to as in-line handling), or by having the exception handler procedure called
automatically when exceptions occur. A default exception handler and
mode setup exists for each iRMXjob, which is used for each task within the
job. Two system calls are available for determining and changing the current
mode and procedure for individual tasks as they execute.

Most iRMX systems are configured with either the System Debugger
(SDB) or the HI's exception handler as the default handler, and the excep
tion handling mode is set to call the handler whenever exceptions occur.
This behavior is what C and PLM programs typically encounter when they
run. For exceptions that occur during functions provided by the C run-time
library, the iRMX condition code is mapped into a numeric value for the
errno variable provIded for each task. Portable C programs can test for
standard error conditions by comparing errno to the symbolic constants
defined in <errno.h>.

4.5.2 SoftScope debugging

Under iRMX I and II, SoftScope sets the default exception handler for a
job to a routine that it supplies. Although applications can still use system
calls to change the handler for any task, the default behavior for both C and
PLM programs is for iRMX applications to break to SoftScope whenever
an exception occurs. Version 1;0 of SoftScope III operates in the opposite
manner: all exceptions must be handled in-line, regardless of whether the
program is coded in PLM or C. A later version of SoftScope III is supposed
to change this behavior to match the iRMX I and II versions.

SoftScope III operates differently from SoftScope for iRMX I and II for
command-line processing as well. Under iRMX I and II, all programs that
process command line arguments work properly even though the actual

Development Languages 137

command line given to start the debugging session has the sscope command
name as the first part of the command line. A C program that refers to the
string at argv[O], for example, will find the command's name, not Soft
Scope's. For Soft Scope III, C programs have their command lines parsed
the same way (properly) whether they are run under SoftScope or directly
as HI commands. Version 1 of SoftScope III does not support HI command
line parsing at all. In fact, Version 1 of SoftScope III does not support sev
eral critical system calls to the HI layer of iRMX, such as rqcsendcore
sponse(), which was used in the sample programs in chapter 3 and this
chapter. To support these system calls would require SoftScope III to im
plement some of the functionality of the HI itself. One way to resolve this
issue is to add system calls to the HI that Soft Scope itself could call to per
form the necessary functions. This approach is superior to the alternative
of having SoftScope implement these functions itself, because changes in
the internal logic of the HI in future versions ofthe OS would not require
parallel changes in SoftScope.

Chapter

5
The Intel x86 Architecture

5.1 Overview

Ideally, it would be possible to develop systems programs and real-time ap
plications using a high-level language such as C or PLM without consider
ing the computer architecture. A computer's architecture consists ofthose
features ofthe processor's design visible to the machine- or assembly-lan
guage programmer.

High-level language programmers should not have to be concerned with
architectural issues such as CPU registers, memory addressing and pro
tection, or interrupt handling. Real-time and systems programmers do not
live in an ideal world, however, and an understanding of the architecture of
the processor used is necessary to producing efficient applications or even
functional code. In chapter 4, for example, we already considered the var
ious formats that memory pointers can take.

This chapter presents those microprocessor architectural features rele
vant to iRMX applications development. This discussion is not a complete
survey of the Intel x86 architecture, and it does not claim to include enough
information to program in assembly language. The chapter should, how
ever, provide the necessary background for understanding some key con
cepts ofthe iRMX operating system, which has been specifically designed
to take advantage of x86 architectural features to provide reliable and effi
cient real-time performance.

5.1.1 CPU Registers

The architecture of a processor is its appearance to the machine- or assem
bly-language programmer. Thus, it includes the processor's instruction
set, data formats, addressing mechanism, interrupt mechanism, I/O mech
anism, and register set. The goal of this chapter is to discuss those parts of
the architecture that a systems programmer, working in a high-level sys-

139

140 Basics

tems implementation language such as C or PLM, must work with, but not
those parts of the architecture specific to assembly language programming.
Very little about the processor's instruction set is discussed, for example,
except the names of a few instructions. High-level language programmers
do not need to work with processor registers either, but, some register
names are mentioned. It is worthwhile to show the entire set of registers to
provide context for the ones discussed.

Figure 5.1 shows the processor registers visible to the machine- or as
sembly-language programmer for 80386 and 80486 microprocessors.! All
registers, except the segment registers, include subregisters that can be
manipulated independently. For example, Register eax is a 32-bit register,
but bits 0 through 15 can be modified by referencing Register ax without
affecting bits 16 through 31 of Register eax. Furthermore, bits 8 through
15 of eax can be manipulated as an independent register by referencing
Register ah.

The registers shown in Figure 5.1 are the same as the 80286 registers and
earlier processor registers, with the following exceptions:

31

31

I

I

General Purpose Registers
241 23 16 15 81 7 0

AH AX AL EAX

BH BX BL EBX

CH CX CL ECX

DH OX DL EDX

SI ESI

DI EDI

BP EBP

SP ESP

Segment Registers
15 0

CS Code Segment

SS Stack Segment

00] ES
Data Segments

FS

GS

Instruction POinter
16 15 0

I IP I EIP

Flags Register

I FLAGS I EFLAGS

Figure 5.1 Processor registers for
the 80386 microprocessor. (From
the i486'" Microprocessor Hand
book, Intel order number 240440-
001. Reprinted by permission of
Intel Corporation, © Intel Corp.
1989.)

IVarious Intel microprocessors also provide additional registers: CRn for control functions,
DRn for debug functions, and TRn for test functions.

The Intel x86 Architecture 141

• All registers on the 80286 and earlier processors are 16 bits. The 32-bit
registers, such as eax, eip, etc., do not exist on those processors, only
their 16-bit parts, ax, ip, etc.

• The fs and gs segment registers do not exist on the 80286 and earlier
processor.

5.2 Memory Segmentation

The x86 microprocessors all provide access to memory with a segmented
architecture. The actual memory attached to an x86 processor consists of a
linear array of bytes, which are accessed by the microprocessor for reading
and writing using a physical memory address.2 Segmentation allows the
programmer to generate controlled references to this linear array that can
be checked for basic correctness by the processor. Segmentation, however,
does not affect the basic linear nature of the memory system connected to
the processor.

An anology might be to think of physical memory as a large piece of
graph paper with each box, representing one byte, containing one value.
The bytes are accessed by specifying their position (linear address) on the
graph paper. Segments would be like boundary lines drawn on a clear piece
of plastic set on top of the graph paper. Programs specify memory ad
dresses for instructions and data relative to these segment boundary lines,
and the processor transparently transforms these segmented addresses
into linear addresses for accessing the actual memory location.

Each memory segment is identified to the CPU by a 16-bit quantity
called a selector. At the least, a selector is a value used by the CPU to com
pute the starting address of a segment in the physical RAM attached to the
processor, and some x86 processors use the selector to determine other
segment characteristics as well. The CPU can access information in a seg
ment only if that segment's selector has been loaded into one of the CPU
registers specifically intended to hold selectors. The segments that have
their selectors loaded into one of the CPU selector registers at any particu
lar moment are called the currently accessible segments, or just the current
segments. All members of the x86 family provide segment registers for ad
dressing one code, one stack, and one data segment at a time. These regis
ters are named cs, ss, and ds, respectively. The data segment selected by
the ds register is the default data segment, and various x86 microproces
sors provide additional segment registers for accessing extra data seg
ments, with names like e s, f s, and gs. Any time the processor must access
a code, stack, or default data segment different from the current data seg-

2For now, the terms physical memory address and linear address are used interchangeably.
There is a difference between the two when paging is used, which is discussed later in this
chapter.

142 Basics

ments, the processor must load a new selector into the corresponding CPU
segment register. The processor can access extra data segments without
reloading ds, however, by using a selector from es, f s, or gs. Loading seg
ment registers requires time and should, therefore, be avoided whenever
possible.

Figure 5.2 shows how an x86 processor accesses physical memory. The
first step is to develop a logical address that consists of a selector register
and an effective address. The various components of an effective address
are not always used. For example, a far pointer is a logical address that
consists of just a selector and a displacement, with no base register or
index. The segmentation unit combines the two parts of a logical address to
produce a linear address, which is transformed into a physical memory ad
dress by the paging unit. If the paging unit is not used or is not present (for
instance, on processors earlier than the 80386), the linear address is the
same as the physical address. On 80386 processors and later, the effective
address, the linear address, and the physical address are all 32 bits wide. A
separate data path exists for transferring information between the mem
ory location specified bya physical address and the registers inside the pro
cessor, as shown in the lower part of Figure 5.2.

I Scale
1,2,4,8

I..-.------l '-------'

Index

Base 1~0~ Displacement '--------'- -1
'---------7) 0 ~(___ ---I
Effective Address 1
Logical Address 1

Segmentation Unit

Linear Address ~

Paging Unit

Physical Address

16-bit Selector

Data. Instruction

Registers

~ ~
I

Physical Memory I
Figure 5.2 Protected-mode address calculation.

The Intel x86 Architecture 143

A linear address is the sum of a segment base address and an effective
address. The segmentation unit computes the segment base address from
the segment selector in one of two ways, depending on the operating mode
of the processor. In real mode, which is supported by all x86 processors, the
segment base address is 16 multiplied by the value of the selector. That is, it
is computed by shifting the selector 4 bits to the left and filling in on the
right with zeros. Thus, the real-mode base addresses are constrained to be
16 + 4 = 20 bits wide, which places a limit of 220 = 1 MB of memory that
can be accessed in real mode.3

In protected mode, which is supported by 80286 and later processors, the
base address of a segment is taken from a data structure called a segment
descriptor, and the selector is used to select the appropriate descriptor
from a table of descriptors. (Hence the name selector.) For the 80286 mi
croprocessor operating in protected mode, segment descriptors provide 24-
bit base addresses, allowing the CPU to address up to 16 MB of memory.
Descriptors for 80386 and later microprocessors can contain 32-bit base
addresses, allowing access to as much as 4 gigabytes (GB) of memory when
operating in protected mode. A descriptor must be loaded into the CPU
every time a segment register is changed in protected mode, which is why
the penalty for changing segments is so great in iRMX II. The problem is
not as severe for iRMX III applications, simply because the segment regis
ters do not need to be changed as often (discussed later in the chapter).

The maximum effective address (offset) that can be added to a segment's
base address is 16 bits wide, except for the 80386 or later microprocessors.
The 80386 and later microprocessors operating in protected mode might
have a particular bit of the current code segment descriptor (called the D

bit) set to 1, in which case the offsets are 32 bits wide.4 Thus, the maximum
size of a memory segment is 64 KB for all x86 processors before the 80386,
and 4 GB for the 80386 microprocessor and after. iRMX I and II applica
tions always have 64K segments, and iRMX III applications can have ei
ther 64K or 4G segments, depending on the D bit setting, which will be set
to 1 if compiled with the PLM-386 or iC-386 compiler and bound with
bnd386.

The x86 architecture allows segments to overlap each other in memory.
For example, for the small memory segmentation model, the cs, s s, and ds
registers are all loaded with the same selector, constraining such programs
to work with a total of 64 KB of memory for code, data, and stack in real and
80286 protected modes. A special case of the small memory segmentation

3The actual limit is OxOFFFFO plus the maximum value of an offset, OxOFFFF (i.e.,
OxOlOFFEF = 1M + 64 KB). However, on processors below the 80286, addresses above 1MB
(OxOl00000) wrap around to low memory for a limit of 1M. On the 80286 and later, the addi
tional 64 KB above 1M is accessible in real mode and the amount of memory available is
1M + 64 KB. The 64 KB above 1M is called the High Memory Area (HMA).

4D stands for Default Operation Size; 1 = 32 bits, 0 = 16 bits.

144 Basics

model is the flat model. For flat memory addressing, all segment registers of
an 80386 or later operating in protected mode are loaded with a single selec
tor for a 4-GB segment that starts at physical memory location O. In this case,
the entire notion of memory segmentation essentially disappears because
any location throughout physical memory can be accessed using any seg
ment register and an offset value equal to the desired physical memory ad
dress. The problem with overlapping segments is that they circumvent the
hardware's memory protection mechanism by allowing multiple methods of
accessing the same memory location, possibly using different access rights.
This override feature is essential for such situations as loading code into
memory for execution (the code must be treated as data while being loaded),
but the override feature can cause error conditions to go undetected. The
80386 microprocessor's paging mechanism offers an alternate way to pro
vide memory protection when segmentation is not used.

The iRMX operating system maintains separate, non-overlapping seg
ments for an application's code, data, and stack segments. That is, iRMX
supports only the compact and large models and does not support the small
or flat segmentation models. This approach to using memory allows iRMX
to take full advantage of the memory protection facilities provided by the
segmentation hardware of protected-mode processors, and real-mode ap
plications are automatically upwardly compatible with protected-mode
versions. The main advantage of operating in protected mode for real-time
systems is that protected mode automatically detects coding errors early in
the development process, leading to more robust systems.

To summarize, all memory is accessed using the segmentation mecha
nisms of the x86 architecture under the iRMX operating system. Various
versions of the operating system operate with different segment imple
mentation as follows:

The iRMX I operating system operates in real mode. A maximum of 1 MB of
addressable memory exists and segments can be up to 64 KB. Addresses
within the current set of addressable segments can be referenced with near
pointers consisting of I6-bit offset values, and addresses outside the cur
rent set of addressable segments are referenced with far pointers that con
sist of a I6-bit offset value and a 16-bit segment base address expanded to
20 bits by multiplying by 16.

The iRMX II operating system operates in protected mode. A maximum of 16
MB of addressable memory exists, and segments can be up to 64 KB. Near
pointers consist of I6-bit offsets, and far pointers consist of a I6-bit offset
and a I6-bit selector that identifies a descriptor containing a 24-bit seg
ment base address.

The Intel x86 Arc;hitecture 145

The iRMX III operating system and iRMX for Windows operates in either 16-bit or
32-bit protected mode. In the latter case, there is a maximum of 4 GB of
addressable memory, segments can be up to 4 GB, near pointers consist
of 32-bit offsets, and far pointers consist of a 32-bit offset and a I6-bit se
lector that identifies a descriptor containing a 32-bit segment base
address.

From a programming perspective, near pointers are always 16 bits, and
far pointers are always 32 bits for iRMX I and II as well as for iRMX III
code that operates in I6-bit mode. Near pointers are 32 bits, and far
pointers are 48 bits (I6-bit selector plus 32-bit offset) for iRMX III code
that operates in 32-bit mode.

5.2.1 iRMX segmentation rationale

It may seem contradictory that an operating system developed by Intel to
exploit the x86 architecture would support only the compact and large
models. Indeed, this chapter introduces additional architectural features
of the x86 architecture not used by the iRMX operating system, so the
issue is not limited to memory segmentation.

The explanation for this apparent anomaly lies in the design goals for a
real-time operating system: deterministic behavior, robustness, and effi
ciency. For memory segmentation models, the small and flat models are
not robust in the sense that overlapping segments defeat the ability of the
hardware to detect memory-protection violations. In this case, either an
application must check for such violations in software, an undesirable per
formance penalty, or applications are subject to failure due to unchecked
invalid memory access errors, an undesirable compromise to a system's ro
bustness.

Another explanation hinges on what it means to say that the operating
system supports (or does not support) a particular segmentation model.
The issue is simply a matter of what types of pointers (near or far) must be
used for pointer arguments to system calls and what types of machine
language call and return instructions are used for system calls. All iRMX
system calls require far pointers for arguments, regardless of the segmen
tation model being used by the code, but both near and far calls and returns
are supported for system calls. Programs can be compiled using any seg
mentation model, provided only that the programs adhere to these require
ments when making system calls. Naturally, the development tools used to
build iRMX applications, the compiler and binder, must support the seg
mentation model used by the operating system. A fuller understanding of
the issues involved here is developed in chapter 6, where the iRMX system
call mechanism is presented.

146 Basics

5.2.2 Procedure calls and stack segments

Procedures, functions, subprograms, and subroutines are all terms used to
refer to code invoked by a machine language call instruction, and which can
resume execution at the next instruction after the call by executing a ma
chine language return instruction. The semantic differences among the
four terms listed above, if any, are imposed by high -level programming lan
guages and concern such matters as whether the procedure returns a value
to the calling program or not. In this section, the architectural support
provided by the x86 architecture for calling and returning from procedures
is presented without regard to high-level language constructs. The mate
rial in this section is useful both for developing the iRMX system call
mechanism in Chapter 6 and for understanding the rationale behind the
x86 segmentation mechanism.

The processor uses a register called the Instruction Pointer (i p) to hold
the offset into the current code segment of the next instruction to be exe
cuted.5 As one instruction is fetched, the processor automatically incre
ments ip by the length ofthe instruction so that it always contains the ad
dress of the next instruction. The common way to represent the selector
and offset parts of an x86 pointer is to separate them by a colon; cs: ip
refers to the address formed from the selector in the cs register and the
offset in the ip register. A machine language call instruction must preserve
the value of cs: ip when the call is made, and the CPU restores this pre
served value when a procedure executes a return instruction so that the
processor can execute the instruction following the call.

The x86 architecture uses a memory stack segment for holding preserved
values of cs: ip as well as for passing parameters to procedures and allo
cating memory to local variables defined only within the scope of a proce
dure. The s 8 register is used to hold the selector for the stack segment, and
two more registers, the sp and bp, are used to mark distinguished positions
within the stack segment. The 8p register is called the Stack Pointer, and
always contains the offset ofthe current top ofthe pushdown stack main
tained in the stack segment. Initially, the pushdown stack is empty, and sp
contains the offset of the end of the stack segment. As information is
pushed onto the pushdown stack, sp is used as the offset for storing the in
formation in the stack segment, and is then decremented to point to the
new top of the stack. If sp ever reaches zero, it means that the pushdown
stack has overflowed its stack segment, and the processor raises a protec
tion fault (interrupt level 12).

The processor automatically uses S8: sp as the address for storing
cs : ip in memory whenever a call instruction is executed, and again when

5For 80386 microprocessors and above, the corresponding 32-bit register is called eip. The
naming convention of prefixing 32-bit register names with e holds for all the registers men
tioned in this chapter.

The Intel x86 Architecture 147

the processor restores cs: ip during execution of a return instruction. By
using a pushdown stack for the cs : ip values, the processor automatically
accommodates nested subroutine calls and returns.

Of course, both cs and ip do not need to be saved and restored if the
procedure called is in the current code segment, as is the case for the com
pact memory model of compilation. In this case, only the ip register must
be preserved and restored, which reduces the time for protected mode calls
and returns considerably (see the next section for more information). Two
different machine language call instructions and corresponding return in
structions must be used, depending on whether the full c s : i p value or just
the i p value is to be pushed onto the stack and restored. These instruction
pairs are referred to as far call and far return for far calls or near call and
near return, for near calls. Compilers for PLM and C generate the proper
call and return instructions automatically, provided that the segmentation
models and function prototypes used in the modules to be linked together
are declared consistently.

Data operands. A procedure can access data operands from one of four lo
cations in memory:

• Static global data

• Local data

• Procedure parameters

• Pointers

Static global data are variables and constants located in the current data
segment. For PLM and C, these data are declared outside ofthe body of any
procedure or function, which is sometimes referred to as the module level.

Local data are variables and constants that exist when a procedure or
function is called and cease to exist when the procedure returns. The data
can be either static or dynamic.

Static local data occupies memory permanently allocated from the cur
rent data segment. The data cannot be referenced by code outside the pro
cedure that contains the data declarations because it is semantically incor
rect for a compiler to generate code to do so.

For dynamic local data, storage is allocated on the stack when the proce
dure starts executing. This allocation occurs by decrementing the sp regis
ter by an amount equal to the total size of the local variables for the proce
dure. The sp register is incremented by an equal amount when the
procedure returns, so the data can no longer be accessed by any code. In
fact, its memory will be overwritten by the local variables of the next pro
cedure called after the first procedure returns. The C language refers to this
type of data as auto storage data.

In C, variables and constants declared inside a function are dynamic
local data unless their declarations include the static modifier. For PLM,

148 Basics

variables declared inside a procedure are static unless the procedure is de
clared to be reentrant. In this instance, the C language is more flexible than
PLM; C allows individual variables declared within a function to be either
static or dynamic, but PLM requires local variables for a procedure to be
either all static or all dynamic.

Arguments to a procedure are pushed onto the stack before the proce
dure is called, and procedure parameters can be accessed from within the
procedure by accessing memory locations with the appropriate stack seg
ment offsets. The bp register is used to facilitate access to these values, as
described next.

Pointers, often passed as parameters to procedures, can be used to access
data through indirect addressing. The selector part of the pointer is loaded
into one of the extra segment registers, and the offset is used to complete
the effective memory address. Near pointers consist only of the offset part
of a logical address; the selector is automatically taken from the current
value of the ds register. Pointers can be used to access any of the other
three types of data, or even to reference memory areas not occupied by the
program being executed.

Stack frames. With the aid of the x86 architecture, compilers construct a
standard data structure in the stack segment for each procedure, called an
activation record or stack frame. Figure 5.3 shows how a stack frame is de
veloped as a procedure is called.

In Figure 5.3a, the bp register holds the offset of the calling procedure's
stack frame, and the s p register holds the offset of the current top of the
pushdown stack. (Don't let the term top of stack confuse you; it refers to the
offset of the last item pushed onto the stack and takes on numerically lower
values as the stack grows downward within the stack segment.)

When a compiler translates a procedure call (function reference), it gen
erates a series of machine language push instructions to push the proce
dure's arguments onto the top of the stack. These arguments can be either
copies of data values or pointers to data values. After these push instruc
tions have executed, the situation looks like Figure 5.3b.

The next instruction the compiler generates is either a near call or a far
call, and the stack looks like Figure 5.3c when the processor starts execut
ing code inside the procedure. The return address in (c) is either just an ip
value or a full cs: ip pointer, depending on the type of call instruction
used.

The compiler generates machine instructions, called the procedure pro
logue, at the beginning of each procedure which completes the construction
ofthe activation record for the procedure. For most x86 processors, the ac
tivation record can be done in a single machine instruction called enter, but
early processors, such as the 8086 and 8088, require a few separate instruc
tions. The procedure prologue performs three functions: (1) it pushes a

bP-7

sp -7

ss -7

bP-7

sp -7

Stack Segment:

(a)

Stack Segment:

(c)

The Intel x86 Architecture 149

Stack Segment:

bp.-7

sp -7

ss -7
(b)

Figure 5.3 Development of an activation record (stack frame) for a procedure call. (a) The
stack segment before the call. The selector in the 55 register is used to derive the base address
of the stack segment. The sp register contains the offset of the top of the pushdown stack, and
the bp register contains the offset of a known position in the current procedure's activation
record. (b) The situation just before the call instruction is executed. The arguments to be
passed to the procedure have been pushed onto the stack, and the sp register has been decre
mented accordingly. (c) Just after the call instruction is executed, but before the procedure's
prologue code. The return address has been pushed onto the stack, and sp has been decre
mented. (d) After the procedure's prologue code has been executed. The previous value of the
bp register has been saved on the stack, and the bp register has been set to the offset of that
stack position. The sp register has been decremented to allocate memory for the procedure's
dynamic local variables. From within the procedure, parameter!! can now be accessed using
positive offsets from bp_ Local dynamic variables can be accessed using negative offsets from
bp. When the procedure returns to the caller, the stack must be restored to the condition
shown in (a).

150 Basics

Figure 5.3 (Continued)
Stack Segment:

procedure arguments

bp -7 1----'-----'--------1

local dynamic variables

(d)

activation record
(stack frame)

copy of the bp register onto the top ofthe stack, (2) it copies the value in the
sp register into the bp register, and (3) it decrements the sp register by the
amount of storage needed for the procedure's local dynamic variables. The
situation after the prologue code has executed looks like Fig. 5.3d.

With the activation record complete, a procedure can access the various
parameters passed to it by adding various constants to the value in the bp
register. The procedure can access its local variables using stack segment
offsets computed by subtracting various constants from the value in the bp
register.

To support nested procedure calls, a procedure's activation record must
be removed from the stack when the procedure returns to the caller. To do
this, the compiler generates code called the procedure epilogue that is exe
cuted before a procedure returns to a caller. The epilogue code increments
the s p register to drop the local variables, pops the value now at the top of
the stack into the bp register, thereby restoring the caller's stack frame
pointer, and returns to the caller (using a near or far return instruction as
appropriate), which increments the sp register to an offset just above the
return address pushed by the caller.

To complete the removal of an activation record, the parameters that
were passed to the procedure must also be dropped from the stack by incre
menting the sp register by the appropriate amount. If a procedure is always
called with the same number and types of arguments (such as C functions
named in a fixedparams pragma and PLM procedures not listed in an
interface control), the value to be added to sp can be specified as part of
the return instruction so that the parameters are dropped as part ofthe ex
ecution of that instruction. If the compiler cannot tell how many bytes
might be passed as arguments to a procedure (such as for normal C func
tions like printf()), the return instruction cannot drop the arguments, and

The Intel x86 Architecture 151

the calling program must include the code to do so as a separate instruction
after the procedure returns.

Threads of execution. At this point something can be said about what in
formation an operating system must maintain to support independently
scheduled threads of execution, such as iRMX tasks or Unix processes. For
each thread, a separate cs: ip value must exist, as well as a separate stack
segment.

When one thread is to assume control of the processor from another, the
address of the next instruction to be executed by the first thread (its
cs: ip) must be saved and then restored when that thread is scheduled to
use the processor again. We call this address the thread's continuation ad
dress because it tells where the thread is to continue its execution when al
lowed to use the CPU again. A pushdown stack cannot be used to hold con
tinuation addresses unless the different threads of execution are always
scheduled in a nested fashion, like procedure calls. Since this condition
does not generally hold for multi-threaded operating systems, it is not pos
sible to share a single pushdown stack for continuation addresses across
threads. (iRMX task scheduling is discussed in chapter 6.) By similar rea
soning, threads cannot share a pushdown stack for their activation records
either. Each thread of execution must have its own cs: ip and its own
stack segment.

5.2.3 Memory protection

The segment descriptors used in protected-mode addressing contain in
formation to provide for hardware memory protection as well as the seg
ment base address. Figure 5.4 shows the format of descriptors for code and
data segments in the 80386 and 80486 processors. The format is the same
for 80286 microprocessors, except that the 16 bits labeled base
31 ... 24, G, D, and limi t 19 ... 16 are all zeros for the 80286. The
two items to notice in the descriptor format for now are the 20-bit limit
field constructed by concatenating LIMIT 19 ••• 16 and SEGMENT LIMIT
15 ... 0) and the access-rights byte.

The limit field of a descriptor tells how large the segment is. If an offset
used to access information in the segment exceeds this value, it signifies
that an attempt has been made to access memory outside the segment, and
the hardware then raises a general protection violation. As indicated ear
lier, allowing segments to overlap can defeat this protection mechanism,
and overlapping segments are not normally used for iRMX applications.
Protected mode versions of iRMX do, however, provide system calls that
allow users to create descriptors for segments that occupy arbitrary parts
of physical memory, including overlap with other segments, and to allow
users to set their access-rights bytes in arbitrary ways.

To accommodate 4-GB segments with a 20-bit limit field, the G (granu
larity) bit is set to 1, and the processor internally appends twelve Is to the

152 Basics

31 0

SEGMENT BASE 15 . .. 0 SEGMENT LIMIT 15 ... 0 0

BASE 31 ... 24 1 G 1 D 1 0 1 AVL 1 LIMIT

ACCESS
1 BASE

RIGHTS
23 ... 16

+4
19 ... 16

BYTE

DIS 1 = Default Instruction Attributes are 32·Bits
a = Default Instruction Attributes are 16-8its

AVL Available field for user or as
G Granularity Bit 1 = Segment length is page granular

0= Segment length IS byte granular

I 0 Bit must be zero (0) for compatibility with future processors

Figure 5.4 Descriptor format for code and data segments. Reprinted by permission of Intel
Corporation, © Intel Corp. 1989.

right ofthe limit value from the descriptor, for a total of 32 bits, which im
plies that the size of segments larger than 1 MB must be a multiple of
212 = 4 KB in size.

The access-rights byte tells the processor whether a descriptor is for
code, a stack, a data segment, or one of the other types of segments dis
cussed later in this chapter. For code segments, the access-rights byte also
signifies whether read accesses are allowed in addition to instruction fetch
accesses, and, for data segments, whether write accesses are allowed in ad
dition to data read accesses. For protected-mode versions of iRMX, the
memory management software always makes code segments both execut
able and readable and data segments both readable and writeable.

5.2.4 Other types of descriptors

The x86 protected-mode architecture uses descriptors for more than just
describing code, data, and stack segments. There are also system segment
descriptors and gate descriptors. System segments are memory segments
used by the microprocessor itself. Typically, these segments are initialized
by the operating system and then accessed and updated by the micropro
cessor as it runs. Gates are special descriptors used to provide controlled
access to system calls and interrupt handlers in protected mode.

System segments. There are four types of system segments: the global de
scriptor table (GDT), local descriptor tables (LDTs), the interrupt descrip
tor table (IDT), and task state segments (TSS).

Only one global descriptor table exists, but there can be many local de
scriptor tables. Each descriptor table contains up to 8,192 descriptors. Two
CPU registers hold the physical memory addresses of the global and current
local descriptor tables. Each time a segment register is loaded with a selector ,
bit 2 of the selector (third from the right) is used to indicate whether the cor
responding descriptor is in the global or local descriptor table, and another 13

The Intel x86 Architecture 153

bits are used to index into the proper table to obtain the correct descriptor.6

The descriptor is then loaded into a CPU register associated with the selector
(code, stack, data, extra) and is not changed until the segment register is
loaded again. Performance of the 80286, 80386, and 80486 microprocessors
suffers a bit because these processes do not contain actual registers to hold
the current segment selectors - reloading the same selector results in load
ingthe same segment descriptor from the descriptor table again. This behav
ior is logically necessary in case the contents of a descriptor table in memory
changes between loads of a selector. An on -chip cache of recently used selec
tors and their descriptors could improve performance significantly.

The memory management software ofthe OS builds descriptors and in
serts them into the appropriate table in memory. To accomplish this rou
tine, the OS keeps a descriptor for a write able data segment that overlaps
the descriptor table segment, allowing the operating system to modify the
descriptor table memory.

Although the x86 protected-mode architecture provides direct support
for multitasking applications, such as the provision for local descriptor
tables, iRMX II and III do not currently use these features to implement its
multitasking operations. It is more efficient for the operating system to
perform a subset of the architecture's multitasking operations in software
than to let the CPU do full multitasking in hardware. At this point, the rel
evant issue is that current implementations of iRMX II and III use the
global descriptor table for all code, data, and stack segments.

Task state segments (TSS) are also associated with hardware support
for multitasking. Each TSS contains all the information the CPU needs to
interrupt and resume a thread of execution. This information includes the
state of all CPU registers, such as the e5, ip, 55, 5P, andbp registers men
tioned above in the discussion of procedure calls and multithreading. TSSs
also provide space for any housekeeping information an operating system
might want to maintain about a thread, such as its priority and scheduling
state. Although iRMX II and III do not use CPU management for multi
tasking, they do maintain similar data structures to hold the information
needed for iRMX tasks.

Gate descriptors. As indicated above, the three types of descriptor tables,
(global, local, and interrupt) contain special descriptors known as gates.
There are call gates, trap gates, interrupt gates, and task gates. The struc
ture of these gates is given in Figure 5.5. Except for task gates, gate de
scriptors contain a pointer to a routine that will receive control when the

6 These uses account for 14 of the 16 bits in a selector. The right-most two bits are a privilege
level (valve 0 to 3), mentioned below.

154 Basics

31 24 16 8 5 0

SELECTOR OFFSET 15 ... 0 0

OFFSET 31 .. . 16 plDPLIOI TYPE IOIOIOI~~; +4

Gate DeSCriptor Fields
Name Value Description
Type 4 80286 caU gale

5 Task gate (for 80286 or 486TM CPU task)
6 80286 interrupt gale
7 80286 trap gate
C 486 TM CPU call gate
E 486™ CPU interrupt gate
F 48S™ CPU trap gate

p 0 Descriptor conlents are not valid
1 Descriptor contents are valid

OPL-Ieasl pnvileged level at which a task may access the gate. WOAD COUNT 0-31-the number of parameters to copy from caller's stack
to the called procedure's stack. The parameters are 32·M quantities for 486TM CPU gates, and 16·bit quantities for 80286 gales.

DESTINATION 16-bIt Selector to the target code segment
SELECTOR selector or

Selector to the target task state segment for task gate

DESTINATION offset Entry pomt wlthm the target code segment
OFFSET IS-bit 80286

32-bIt 486n .. CPU

Figure 5.5 Descriptor format for call, trap, and interrupt gates.

gate is referenced. The pointer consists of a selector for the code segment
that contains the routine, and the field that would contain the limit for
segment descriptors is used as the offset part of the pointer. The use of
these gate descriptors is described further in section 5.4.

5.2.5 Privilege levels

The x86 protected -mode architectures support rings of privilege, which are
used to provide controlled access to OS functions from applications. The
code being executed at any moment has a privilege level associated with it
(held in the low-order two bits of the cs selector register), and every de
scriptor has a 2-bit descriptor privilege level used to determine whether or
not the currently executing code is allowed to access the item referenced by
the descriptor.

A separate 2-bit privilege level is loaded into a CPU register to control
the use of machine language instructions that perform I/O operations.
This privilege level is known as the I/O Privilege Level (IOPL) field ofthe
Flags register. The current code selector's privilege level is compared to the
I/O privilege level to check whether a program is allowed to execute I/O in
structions or not. These instructions are described in section 5.6.

Current versions of iRMX II and iRMX III do not use the privilege levels
provided by the processor. They effectively turn this feature off by setting
the privilege levels for all code segments to 0 (the most privileged ring) and
the I/O privilege level ofthe CPU to 3 (I/O instructions can be executed by

The Intel x86 Architecture 155

any code regardless of privilege). This design decision makes sense because
iRMX is not intended as a timesharing system where tasks compete for ac
cess to CPU resources in an uncontrolled manner, or where there is the
possibility that malicious processes might try to compromise the system.
Rather, iRMX is designed as a real-time system where tasks cooperate to
complete jobs, and the overhead of managing privilege levels could inter
fere with real-time performance.7

5.2.6 Paging

The x86 architecture supports memory paging for 80386 and later proces
sors. Paging is a mechanism whereby the memory addresses generated by a
program, called virtual memory addresses, are mapped by memory manage
ment hardware in the processor to different physical memory addresses.
To accomplish this mapping, the physical memory is divided into fixed
size blocks (4KB for x86 processors) called page frames. Memory manage
ment hardware includes a memory map, which contains a list of page frame
numbers. Virtual memory addresses are conceptually divided into two
parts, a logical page number (the leftmost 20 bits of the address) and an
offset into the logical page (the rightmost 12 bits ofthe address). The logi
cal page number is used as an index into the memory map to obtain a page
frame number, which is concatenated with the offset part of the address to
generate the physical memory address that is actually used for reading or
writing memory. Figure 5.2 illustrated this simplified description of pag
ing.

Paging for the x86 architecture is performed by the processor after the
segmentation processing, as was shown in Figure 5.2. This implementation
is sometimes referred to as paging under segmentation. Like segmentation,
paging does not require any particular features of the memory system it
self,just access through linear physical addresses. The clear sheet of plastic
analogy used earlier for describing segmentation could be extended to pag
ing by imagining a series of optical fibers connecting the graph sheet cells
with arbitrary locations on the clear plastic segmentation overlay. By look
ing at a location on the segmentation sheet, one might actually see any lo
cation in physical memory. The analogy, however, is perhaps a bit over
burdened to be useful. For example, paging can map two different virtual
memory locations to the same physical memory location, which does not
correspond well to a plastic sheet and fiber optics model.

The actual x86 memory map is implemented using memory-resident
tables called page tables and page directories. The issue involved is the need

7 iRMX for Windows does use privilege rings to help isolate the DOS and Windows environ
ments from the iRMX environment. Refer to the discussion of interrupt virtualization in
Chapter 12 for more information on how this is implemented.

156 Basics

to manage 220 or 1M of virtual pages for 32-bit virtual addresses and 4 KB
pages. Such a large memory map cannot be implemented on the CPU chip
itself using current technology. Even if a single such map could be accom
modated, many paging systems require separate memory map images for
different processes or threads of execution, all of which would have to be
held in primary memory (or disk) anyway.

Paging is enabled by turning on the pg bit of the processor's control reg
ister 0 and loading control register 3 with the physical base address for a
page directory table. The page directory table contains 1,024 entries, each
of which has the physical address of a page table. Each page table then
contains 1,024 entries for page frames. When paging is enabled, the proces
sor uses the 32-bit virtual address computed by the effective address and
segmentation units to access the paging mechanism. The high-order 10
bits of the virtual address index into the page directory, which contains the
base address of a page table. The second 10 bits of the virtual address (bits
12 through 21) index into this page table, which contains the base address
of a page frame in memory. The remaining 12 bits of the virtual address are
added to the page-frame base address to obtain the physical address of the
memory location to be accessed.

To reduce the overhead associated with paging, the processor maintains
a cache of the most recently computed virtual-to-physical page address
mappings in its translation lookaside buffer. Access to locations in these
pages are made without accessing either the page directory or a page table
in primary memory.

Both the page directory entries and the page table entries contain a bit
(the p bit) that signifies whether the corresponding information (page
table or page frame) is actually present in primary memory. If this bit is off
when an access is made through the entry, the processor generates an in
terrupt number 14, which must be connected to the page fault handler to
handle the condition. Usually the handler reads a copy of the referenced
information in from disk to replace some other directory or frame. Other
bits in the page table entries control whether a page is readable, writeable,
or executable. Systems that use hardware tasking can easily assign differ
ent page directories and page tables to different programs to implement
hardware-enforced memory protection across tasks.

It is the responsibility of the operating system, or possibly the applica
tion program in the case of iRMX, to allocate memory for the page directo
ries and tables, to initialize their p bits appropriately, to initialize the
read/write/execute bits as desired, and to load control register 3 with the
address of the page directory. After that, the operating system (or iRMX
application) must handle page faults as they occur by supplying the proper
code to handle interrupt number 14s. Both PLM and C provide statements
for loading control registers. In PLM -386, loading the control registers
is performed by referencing the built-in array of words named

The Intel x86 Architecture 157

control$register. iC-386 provides functions named getcontrolregis
ter() and setcontrolregister().

Paging is a powerful tool for memory management. Although not used in
any versions of iRMX at the time of this writing, paging might be incorpo
rated in iRMX III or iRMX for Windows at some future time. Consider the
following three situations and how they could be handled for iRMX III and
iRMX for Windows:

1. Virtual memory smaller than physical memory.

2. Virtual memory and physical memory are the same size.

3. Physical memory is smaller than virtual memory.

Virtual memory smaller than physical memory. An inevitable process in the
evolution of computer systems seems to be the appearance of the small
memory problem. This problem refers to the inability of a computer archi
tecture to address as much primary memory as people would like to attach
to the processor.

For example, the small memory problem manifests itself in the x86 ar
chitecture in the 20-bit limit placed on real-mode memory addresses and,
to a lesser extent, on the 24-bit limit for 80286 protected-mode addresses.
As DOS applications were developed that needed to use more than 1MB of
memory (DOS runs in real mode only), the small memory problem became
acute. The solution was a software implementation of paging called Ex
panded Memory Management (EMM). For x86 microprocessors that do
not include paging support (i.e., the 80286 and below), one or more pages
are reserved in the upper area of memory between 640K (the official top of
DOS's memory) and 1M + 64K (the top of real-mode addressing). Appli
cations make special system calls to signify what physical page frame
they want mapped to a particular upper memory page. The system calls
then interface with an expanded memory board to map the desired page
frame to the selected upper memory page, and the application can then ac
cess the expanded memory through the addresses in the upper memory
page.

With processors that support paging (80386 and later), EMM can be im
plemented more efficiently using what is called extended memory and pag
ing. Extended memory is simply memory that can handle 24-bit or larger
addresses, but contains no address mapping mechanism of its own. In this
situation, software called EMM386 puts the processor into protected mode
(so it can generate addresses greater than 1M + 64K) and enables the pro
cessor's paging mechanism. When an application needs to reference ex
panded memory, it makes the same system calls it would have made for
conventional expanded memory, but EMM386 receives the calls and uses
the information to update the processor's page tables. Subsequent accesses

158 Basics

to the upper memory pages are then mapped to the appropriate page
frames above 1M.

iRMX for Windows supports expanded memory provided it is imple
mented using expanded memory hardware. iRMX for Windows does not
support expanded memory using paged extended memory because it can
not start if the processor has already been put in protected mode by
EMM386.

Virtual memory and physical memory are the same size. Sometimes, it is in
convenient or impossible for the operating system to allow an application
to reference physical memory most naturally. Paging allows the operating
system to establish an arbitrary mapping between an application's mem
ory references and the actual physical memory it uses.

For example, memory segments by definition are physically contiguous
in main memory. The problem is that an application might try to create a
large memory segment for which there is enough free memory, but which is
fragmented due to earlier patterns of allocating and freeing managed mem-
0ry space. (Chapter 6 covers the iRMX memory management policies.)
iRMX III and iRMX for Windows could handle the allocation of large
memory segments by using the paging mechanism to map a noncontiguous
set of physical pages to a contiguous memory space within a segment. Since
paging is done under segmentation, the mapping would be transparent to
the application; segments would appear to be contiguous, as expected.
There would be problems for DMA device controllers, however, which ac
cess memory without going through the processor's paging unit. The oper
ating system would need to provide device drivers for such controllers with
the virtual-to-physical mapping information.

Large segments are defined as those over 1 MB in size. Segmentation
granularity must be used for segments this large anyway, making them
multiples of 4 KB in size and thus conforming nicely with the x86 page size.
This desirable feature may be incorporated in a future version of iRMX for
Windows.

PhYSical memory is smaller than virtual memory. This situation is closely as
sociated with the notion of virtual machines that has given logical memory
its alternate name of virtual memory. In this situation, an application pro
gram can be as large as necessary, even larger than the amount of physical
memory available for execution. An initial set of pages that compose the
application is loaded into memory, and execution begins. When the pro
gram references a page not currently available in primary memory, the
operating system intervenes to bring the desired page into memory from
disk, a process called demand paging.

Demand paging is a very effective technique for improving multipro
gramming performance in time-sharing systems in addition to its value for

The Intel x86 Architecture 159

managing memory use by programs larger than available physical memory.
An operating system can keep the active pages of several different pro
grams in primary memory at the same time if the OS uses a reasonable page
replacement policy.s By keeping just the active pages of several programs
in memory, the operating system can readily schedule another process to
use the CPU when the running process blocks for an I/O operation. With
out demand paging, primary memory holds fewer programs at once, and
the operating system must go to disk to find code that the CPU could exe
cute when a running process is blocked.

The discussion in chapter 1 on the importance of deterministic response
times in real-time systems should make it clear why demand paging is not
implemented in iRMX. Some real-time operating systems deal with the
indeterminacy arising from unpredictable page fault patterns by allowing
real-time processes to have their pages locked in memory, which excludes
these processes from consideration for replacement by the operating sys
tem's page replacement algorithm, while allowing non-real-time processes
to be paged. iRMX assumes that all processes are real-time and not paged,
while allowing the application developer the option of adding paging for
non-real-time processes.

For example, DOS running with Windows is an application program as
far as iRMX for Windows is concerned.9 Windows running in enhanced
mode conducts a form of demand paging among the programs it runs using
the paging mechanism of the 80386 and later microprocessors. This use of
demand paging by an application program is allowed by iRMX, but re
quires some type of coordination by Windows and iRMX in the use of page
tables before iRMX for Windows will be able to support enhanced-mode
Windows.

5.3 Interrupt Processing

The interrupt processing mechanism of the x86 architecture has already
been mentioned several times. This section describes the mechanism from
the CPU's perspective. Chapter 9 provides more details on implementing
the software used to interface with interrupts in iRMX systems.

Interrupt requests can be initiated either by hardware external to the
CPU or by software using the machine language int instruction. There are
two types of hardware interrupts, non-maskable (NMI) and maskable.
The NMI is used for abnormal situations, such as impending loss of elec-

8The page replacement policy is the algorithm the operating system uses to decide which
page to remove from primary memory when the running process references one of its pages
not currently in memory.

9The proper terminology is that DOS is an iRMX task, as discussed in chapter 6.

160 Basics

trical power, and is not considered further here. In the case of maskable in
terrupts' external circuitry called a programmable interrupt controller
(PIC) arbitrates among the various devices causing interrupts, manages
priorities and sequencing in the case of simultaneous requests, and informs
the CPU of the interrupt level (a number between 0 and 255) when an in
terrupt occurs. Software interrupts appear to be of the same type as mask
able interrupts, but the int instruction supplies the interrupt level number
rather than the PIC.

Software and hardware interrupts are handled differently by the CPU.
Hardware interrupts are acknowledged only when the processor is between
machine instructions and has its interrupt enable bit (one of the bits in the
CPU's Flags register) set to 1, but software interrupts can never be dis
abled.

The PIC used with x86 processors can receive interrupt signals from
eight different wires, which are normally connected to different device
controllers. (Device controllers are described below.) When one or more
interrupt signals arrives at the PIC, it sends a signal to the CPU on the
INTR (interrupt request) wire to indicate the condition. When interrupts
are enabled in the CPU and the CPU is between machine instructions, it
acknowledges the interrupt by sending a signal called INT A (interrupt ac
knowledge) to the PIC and reading the interrupt level of the highest prior
ity interrupting device back from the PIC.lO Before interrupt processing
begins, the processor must program the PIC by sending it commands sig
nifying which interrupt level to associate with each of its eight interrupt
sources. The PIC decides which level number to send to the processor by
evaluating the relative priorities of the sources requesting interrupts at the
time it receives the CPU's INTA signal.

A single master PIC can have up to seven slave PICs connected to it in
cascade fashion as shown in Figure 5.6, for a total of up to 57 external in
terrupt sources. l1

Once the processor acknowledges an interrupt request and determines
the interrupt number, it pushes its flags register plus the cs: ip ofthe next
instruction to be executed onto the stack of whatever program is running,
disables further interrupts, and branches to the interrupt handler asso
ciated with the interrupt number. Every task or process in a multithreaded
system must have a stack segment large enough to accommodate the infor
mation that might be pushed onto it by an interrupt, in addition to its own
stack requirements for activation records.

In real mode, as for DOS or iRMX I, an array of 256 pointers is kept in
the first 1,024 bytes of memory, and the address of the appropriate inter-

IOCertain instructions that take a long time to execute, such as instructions that perform an
operation on an entire array of bytes, can be interrupted during their execution and resumed
later from where they left off.

11 Input number 0 of a master PIC cannot be connected to a slave PIC.

F
r
o
m

D
e
v
i
c
e

C
o
n
t
r
o
I
I
e
r
s

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

The Intel x86 Architecture 161

Slave
PIC

INTR INTA

0

Slave 1 Master
PIC 2 PIC 3

• 4 • • 5
6
7

•
•
•

Slave
PIC

Figure 5.6 Connections between Programmable Interrupt Controllers (PICs) and the cpu.

rupt handler is determined by indexing into this array with the interrupt
number. In protected mode, this array of pointers is replaced by a structure
called the interrupt descriptor table (IDT), and the interrupt number is
used as an index into the IDT. The IDT contains task, interrupt, or trap
gates, described in the next section. Typically, the IDT contains interrupt
descriptors, which consist of a pointer to the interrupt handler plus a type
code telling the CPU that the CPU should disable interrupts before jump
ing to the interrupt handler code.

When an interrupt handler procedure starts executing, it does so in the
context of the program running at the time of the interrupt. Since this
activity is transparent to the interrupted program, it is important for
interrupt handlers not to disturb the state of the CPU as they do their
work. To accomplish this, all processor registers that an interrupt handler
modifies must be saved by pushing them onto the stack of the interrupted
program, and then they must be restored when the interrupt handler fin
ishes its work and is ready to let the interrupted program resume. The pro
cessor's flags, cs, and ip registers are automatically pushed onto the stack
by the CPU's interrupt mechanism, but any other registers must be pushed
explicitly.

162 Basics

Finally, when an interrupt handler completes its processing, it must re
store the contents of any registers it has modified to their original values.
By including the cs and ip registers in this process, the interrupt handler
effectively branches back to the interrupted program. The cleaning up is
done in two stages: first, any register values that were pushed onto the
stack when the interrupt handler started executing are popped back into
their original registers. Then, the cs, ip, and flags registers are popped
from the stack by a special form of return instruction called iret (interrupt
return). Both the PLM and Intel C compilers generate all the special code
for interrupt handlers if they are declared to be interrupt procedures or
functions. In PLM, this is done by specifying the interrupt keyword in
the procedure declaration, and in C it is done using the interrupt pragma
or compiler control.

5.4 Call, Task, Interrupt, and Trap Gates

Gates are protected-mode descriptors used to provide controlled access
from application programs to operating system software, such as system
calls and interrupt handlers. The four types of gates, call, task, interrupt,
and trap, can be found in either the GDT or LDT, and all but call gates can
be found in the IDT.

Gates are accessed from the IDT when an external interrupt is acknowl
edged, when a software int instruction is executed, when a trap occurs
(such as division by zero), when a fault is detected (such as a memory pro
tection violation), or when an abort occurs (when a fault occurs while pro
cessing a fault). Table 5.1 shows the interrupt levels automatically used by
the microprocessor for various types of events. I/O interrupts use interrupt
levels above 32.

Gates are accessed from the GDT or LDT when a program executes a far
call machine instruction. A far call is one that uses a far pointer (selector
and offset) as the address of a subroutine. Normally, a far call causes the
selector part ofthe pointer to be loaded into the processor's cs (code seg
ment) register, and the corresponding descriptor to be loaded into the code
segment descriptor register. The offset part ofthe pointer is then added to
the base address found in the descriptor to calculate the linear address of
the next instruction to be executed. If the selector part of the pointer se
lects a descriptor for a gate (determined by the type code in the descriptor),
however, the offset part ofthe instruction's pointer is discarded, and a far
pointer to the actual code is obtained from the gate itself. The far pointer
from the gate is then used as just described for operating with the pointer
part of a regular far call instruction.

Call gates are normally used to make system calls. Two properties of call
gates support the rings-of-privilege feature of the processor mentioned
earlier. The first property is an automatic, but controlled, shift in CPU
privilege between the application and the OS. The gate contains a privilege

The Intel x86 Architecture 163

TABLE 5.1 Interrupt Vector Assignments.

Return Address
Instruction Which Points to

Interrupt Can Cause Faulting
Function Number Exception Instruction Type

Divide Error 0 DlV,IDlV YES FAULT
Debug Exception 1 Any instruction YES TRAP*
NMI Interrupt 2 INT 2 or NMI NO NMI
One Byte Interrupt 3 INT NO TRAP
Interrupt on Overflow 4 INTO NO TRAP
Array Bounds Check 5 BOUND YES FAULT
Invalid OP-Code 6 Any illegal instruction YES FAULT
Device Not Available 7 ESC, WAIT YES FAULT
Double Fault 8 Any Instruction That Can ABORT

Generate an Exception
Intel Reserved 9
Invalid TSS 10 JMP, CALL, IRET, INT YES FAULT
Segment Not Present 11 Segment Register YES FAULT

Instructions
Stack Fault 12 Stack References YES FAULT
General Protection 13 Any Memory Reference YES FAULT

Fault
Page Fault 14 Any Memory Access or YES FAULT

Code Fetch
Intel Reserved 15
Floating Point Error 16 Floating Point, WAIT YES FAULT
Alignment Check 17 Unaligned Memory Access YES FAULT

Interrupt
Intel Reserved 18-32
Two Byte Interrupt 0-255 INTn NO TRAP

*Some debug exceptions may report both traps on the previous instruction, and faults on the
next instruction. Reprinted by permission of Intel CorP.

level that must be matched or exceeded by the privilege level of the code
being executed. A gate with a privilege level of zero could be called only by
code running at ring zero (determined by the privilege level of the current
code descriptor), but a gate with a privilege level of three could be called by
any code, for example. If a program is allowed to call a gate, the selector
part of the gate is used to access a new code segment. The CPU shifts to the
privilege level of this new segment (typically level zero) when it starts exe
cuting the OS code, and automatically reverts to the original privilege level
when the OS returns to the application.

The second property of call gates is the provision for separate stacks for
different privilege levels. A 5-bit field in a call gate descriptor signifies how
many words (parameters) to copy from the application's stack to the called
routine's stack before transferring to the called routine. The performance
overhead incurred by parameter copying across stacks is one ofthe main
reasons that iRMX II and III do not use the privilege-rings feature of the

164 Basics

x86 protected-mode architecture.12 iRMX II and III do, however, use call
gates for accessing sytem calls from application programs, as seen in Chap
ter 6.

Traps are essentially interrupts that occur because of the execution of
certain instructions. Examples of traps include division by zero, invalid
operation codes, memory protection violations, and the like. In fact, the
CPU treats software interrupt instructions as traps. Both trap and inter
rupt gates contain pointers to interrupt service routines and are normally
found in the IDT. Unlike call gates, neither trap nor interrupt gates cause
any parameters to be copied from the interrupted program's stack to the
operating system's stack. The difference between trap and interrupt gates
is that an interrupt gate resets the CPU's interrupt enable flag, but trap
gates do not.

Hardware tasking, activated by calls to task gate descriptors, is a partic
ularly intriguing feature ofthe x86 protected-mode architecture for a mul
titasking operating system such as iRMX. A hardware task is a complete
execution context including the address for a thread of execution (cs and
i p registers), stack registers for all privilege levels, plus data and extra data
segment registers, and a pointer to an LDT table for providing a memory
context. All this information is kept in the Task State Segment (TSS)
memory segment. A task gate contains a selector for a TSS; a far call that
references a task gate causes the processor to save the current state of the
processor in the current TSS (a CPU register has the current TSS's selec
tor in it) and to load all the CPU registers from the new TSS.

Although iRMX II and III use a data structure that has the same format
as a TSS to hold the states of the tasks it manages, current implementa
tions of II and III do not use task gates, and the entire operating system and
all applications run as a single machine task. The i486 data book claims
that that processor can completely switch from one hardware task to an
other in just 17 microseconds, but iRMX engineers have found that system
performance is even better if they switch task contexts in software rather
than if the operating system uses multiple hardware tasks. By using a data
structure similar to the TSS structure for iRMX tasks, however, the option
remains to change the operating system relatively painlessly to use multi
ple hardware tasks at some time in the future.

5.5 Virtual 8086 Mode

The x86 protected-mode architecture provides a feature called virtual BOB6
mode (VM86) to allow real-mode programs, including operating systems
such as DOS, to run while the processor is in protected mode. To the pro
gram running in VM86 mode, the processor appears in every way to be

12The other reason is the overhead of loading the descriptor for a new stack segment and
restoring it again when the call completes.

The Intel x86 Architecture 165

operating in real mode. The CPU appears to use base and offset pointers
rather than selectors and offsets, memory is limited to 1M + 64K bytes,
interrupts appear to be vectored through pointers in the first 256 double
words of memory, and so on.

In reality, a VM86 program runs as a privilege-level 3 (the lowest privi
lege ring) machine task in protected mode. A protected-mode operating
system (such as iRMX for Windows) must provide the software glue to
make the VM86 real-mode illusion work. All interrupts and traps, includ
ing the software int instructions typically used to make system calls from
real-mode operating systems, cause the processor to generate a general
protection (GP) fault (protected-mode interrupt number 13) when the
CPU is operating in VM86 mode. The GP faults are handled by the pro
tected-mode operating system, and one ofthe bits in the CPU's flags regis
ter (the vrn bit) tells whether or not the interrupt was generated while the
processor was in VM86 mode. If the processor was in VM86 mode, the pro
tected -mode operating system can choose either to handle the interrupt or
trap on behalf of the VM86 program or to pass control back to the VM86
program to handle the interrupt itself, whichever is appropriate. Chapter
12 describes the operation of the iRMX for Windows code that handles
VM86 mode interrupts, called the VM86 Dispatcher.

If paging is enabled, the protected-mode operating system can transpar
ently map the VM86 program's 1 MB of memory into any part of available
RAM, including memory above the first 1 MB of real memory. Thus, for
example, multiple copies of DOS could be running simultaneously in dif
ferent parts of RAM as different simultaneous VM886 programs. (iRMX
for Windows does not enable paging.)

The VM86 architecture also provides flexible control over I/O process
ing. The protected-mode operating system can selectively allow a VM86
task to access I/O ports (see Section 5.6) directly, or can program the pro
cessor to cause a GP fault whenever an I/O port is accessed. The selection
of which port accesses cause GP faults is based on the I/O permission bit
map in the TSS of the VM86 program. The bitmap has one bit for each I/O
port that tells whether the VM86 program is allowed direct access to the
port or if accessing the port will cause a GP fault. For example, iRMX for
Windows, which runs DOS programs in VM86 mode, uses the I/O permis
sion bitmap to control access to the computer's PIC, timer, and serial
ports. More details on the implementation and features of iRMX for Win
dows is covered in chapter 12.

5.6 I/O Processing

CPU accesses to memory and I/O devices are closely related, so this section
begins with an overview of how the microprocessor reads and writes all
types of information, and then examines the specifics of how I/O opera
tions occur. This section is of particular interest to those who will be devel-

166 Basics

oping device drivers, the software that interacts with device controllers.
Although the concepts presented in this section focus on hardware issues
and the corresponding machine-language constructs, PLM and C com
pilers provide full access to these resources from a high-level language. The
actual design of iRMX device driver software is covered in chapter 9.

The microprocessor is connected to both memory systems and I/O de
vice controllers by means of a bus, which consists of address, data, and
control wires. Various systems provide different buses, called the CPU bus,
the local bus, or the system bus. The CPU bus refers to the wires attached
directly to the electrical contacts on the microprocessor's housing and pro
vides the highest speeds for moving information into and out of the CPU.
(The electrical contacts are normally called pins.) The CPU bus is limited,
however, in terms of the lengths of wires that can be used for it and the
number of memories or device controllers that can be connected to it.

The system bus is logically similar to the CPU bus, but includes addi
tional circuitry so that it can be reliably connected to a larger number of
memories or device controllers over greater distances. A system bus also
normally includes additional signal wires compared to the CPU bus so that
the system bus is suitable for connecting different CPU types to device
controllers and memories in a standard way. Examples of system buses in
clude the ISA, EISA, Microchannel, Multibus I, and Multibus II buses
mentioned in chapter 2.

A local bus is either a synonym for the CPU bus or a third level of wires
intermediate between the CPU bus and the system bus in terms of electri
cal loading and speed characteristics. The distinctions among the three
types of buses are not really important for our purposes, and the material
here is presented in terms of just one bus, which will be treated as if it were
the CPU bus without any real loss of generality.

The CPU must perform six different types of information transfers
using the bus: (1) read an instruction from memory, (2) read data from
memory, (3) write data to memory, (4) read data from a device controller,
(5) write data to a device controller, and (6) read an interrupt level number
from an interrupt controller.

For the i486, the CPU has three pins used to identify which type of bus
operation it is performing, called M/IO#, D/C#, and W /R#P M/IO# is
true if the microprocessor is reading or writing memory data or code, and
false ifthe microprocessor is reading or writing I/O data. l4 D/C# is true if
the information being read or written is data, and false if the information is
a machine instruction or an interrupt vector. W /R# is true if the micropro-

13These particular pin names and their meanings are unique to the i486, but other proces
sors use similar pins with similar functions.

14This section describes conventional I/O operations. An alternative is called memory
mapped I/O, in which M/IO# is always true, and device controllers respond to particular
memory addresses as if they were I/O addresses.

The Intel x86 Architecture 167

cessor is writing (sending information from itself to a memory or device
controller), and false if the microprocessor is reading. There are 23 or 8,
ways these three bits can be set, of which we are concerned with the six
combinations that correspond to the six types of bus transfers mentioned
above. The following table is a summary of the six types of bus operations.

M/IO# D/C# W/R# Type of Bus Transfer

0 0 0 Get Interrupt Vector
0 1 0 I/O Read
0 1 1 I/O Write
1 0 0 Instruction Read
1 1 0 Memory Read
1 1 1 Memory Write

These three pins of the microprocessor are connected to three of the
wires that constitute the control part of the bus. They tell all the device
controllers, memories, and the interrupt controller what the CPU wants to
do with the bus at all times. Two other pins of the microprocessor con
nected to the bus are called ADS (address status), which is true whenever
the microprocessor wants to start a bus transfer, and RDY, which is used
by the memories and device controllers to let the microprocessor know
when a bus transfer is complete. One other pin of the microprocessor that
connects to a wire in the control portion of the bus is INTR, which is used
by the interrupt controller to send a signal to the microprocessor telling it
that there is a request for an interrupt.

The number of address and data wires in the bus depend on the particu
lar microprocessor. The i486 can access up to 4 GB of memory, and can
access 1, 2, or 4 bytes of information per bus transfer. To do this, it has 30
address pins (A31 through A2) that can select any of IG 4-byte words, plus
four additional pins (BE3 through BEo) for specifying which byte(s) within
the word are involved in the transfer.

Another way to look at this would be as if there were 32 address pins plus
two more pins to tell how many bytes are to be transferred. The 80286 mi
croprocessor has 24 address pins, and the 8086 microprocessor has 20 ad
dress pins, corresponding to the maximum memory capacities of 16 MB
and 1 MB ofthose two CPUs, respectively. Likewise, each microprocessor
has a number of pins devoted to carrying the information to be read or
written, called data pins, even though instructions and interrupt vector
numbers are transferred through these pins in addition to data. The i386
and i486 have 32 data pins; the 8086 and 80286 have 16. The address and
data pins of the microprocessor are connected directly to the address and
data wires of the bus.

For memory read and write operations, the microprocessor calculates a
32-bit physical address using the segmentation, and possibly paging,
mechanisms as shown in Figure 5.2. This 32-bit physical address is sent out

168 Basics

over the address wires ofthe bus at the same time that the M/IOH, D/CH,
and W /R# wires are set to their appropriate values, and ADS is asserted
(made true) to signal the start of a bus cycle. Every device controller and
memory attached to the bus examines the address wires simultaneously,
and one memory unit will recognize the address as belonging to itself. That
memory unit will then either store the data that the microprocessor sup
plies on the data wires into the proper place (a memory-write operation) or
will supply the data from the proper memory location on the data wires (a
memory-read operation). The memory unit signals the completion of ei
ther type of bus transfer by asserting RDY. A crucial concept here is that
everything connected to the bus includes logic circuitry for comparing an
address on the bus to the addresses to which it will respond, and for com
paring M/IOH, D/CH, and W /R# to the combination of bits that signals its
own type of device. Those controllers or memories that do not match an
address value for a particular bus cycle simply ignore all further activity on
the bus until ADS becomes true again.

From this discussion of how a memory cycle operates, it should be clear
that there are similarly structured addresses for both memory and for de
vice controllers. The significant differences between device controller ad
dresses and memory addresses are the following:

• The CPU computes memory addresses by using the segmentation and
paging mechanisms described earlier whenever it fetches instructions, as
well as when it uses the effective address of a machine instruction to ac
cess an operand from data or stack memory. Device controller addresses
are generated directly from special I/O machine language instructions
that never involve paging or segmentation .

• Device controller addresses are limited to 16 bits for all x86 architec
tures, whereas memory addresses are 20, 24, or 32 bits, depending on the
CPU model. Thus, there is always a maximum of 64K device controller
addresses.

The question arises of what it is that device controller addresses refer to.
The answer is that each device controller contains a number of registers
that can be read or written by the CPU, using exactly the same technique
for reading and writing individual memory locations, but with the M/IO#
pin set to false. These registers fall into three categories: data buffers,
command registers, and status registers. Each of these registers is assigned
a 16-bit I/O port address used by the CPU for reading or writing the regis
ter. By the way, the term I/O port can be used to refer to an entire device
controller, such as a serial I/O port. Such a device controller could use sev
eral I/O port addresses for the registers and buffers the CPU can access.

To understand this issue, first look at Figure 5.7, which shows the con
nections between the CPU, bus, memory units, device controllers, and de
vice units. Device unit is the iRMX term for an individual I/O device, such

CPU

device
controller

memory

The Intel x86 Architecture 169

device
controller

memory

CPU bus

Figure 5.7 Connections between the CPU, bus, memory, device controllers, and device units.

as one terminal or one disk drive. Figure 5.8 focuses on a single device con
troller, showing the command and status registers and some data buffers.
Each ofthese registers uses a single I/O port address, although some device
controllers might share one I/O port address for two registers. For exam
ple, writing to an address might store a command in a device controller's
command register, but reading from the same address might read the con
tents ofthe status register. Figure 5.8 shows only the connections between
the data wires of the CPU bus and the registers and buffers in the device
controller. The address and control wires are implicit in that diagram.

A command register is used for receiving commands written from the
CPU to a device controller. Each device controller has its own set of com
mands that it can process, analogous to the operation codes ofthe CPU's
machine language. Before using a device controller, a CPU program must
write one or more ofthese commands to the controller's command register
to set the various options available for it, such as whether to generate in
terrupts or not.

The data buffers accommodate the vast difference between the speed
with which the CPU can read and write information using its bus compared
to the time it takes to transfer information to or from typical I/O devices
themselves. To output data to a device unit, the CPU first writes the data to
a device controller's data buffer, and the device controller then transmits
the data to the device unit in the appropriate manner for the particular de
vice. The transfer of data from the CPU to the device controller can be just
as fast as storing information in memory (the same bus is used), but trans
ferring data from the device controller to the device unit is a very slow pro-

170 Basics

CPU Bus

/~ /~

~V 'v
I Control I I Status I I

Input
I I Output I Register Register Buffer Buffer

Device Controller T
~V

[Device Unit

Figure 5.8 Device controller.

cess in comparison. For example, to write a character to a terminal operat
ing at 9600 baud might take less than 100 nanoseconds for the transfer
from CPU to device controller, but it would take approximately 1 millise
cond (10,000 times as long) for the transfer from the device controller to
the terminal. Some device controllers, however, operate at significantly
slower clock rates than the CPU and thus mitigate this speed difference.

The CPU continues to execute other code while a device controller per
forms data transfers to or from a device unit, and there are two methods for
the CPU to find out when such a transfer is completed. The first method is
called polling, in which the CPU periodically reads a device controller's
status register. The device controller dynamically changes the setting of
one or more bits in the status register to indicate when data transfers are
complete. The CPU can read this status register at any time and then test
the transfer-complete bit(s) to know when more data can be written to the
device controller or when data has arrived at the device controller that can
now be read into the processor. The device controller also sets bits in the
status register that the CPU can test to determine if any errors occurred as
the device controller transferred information to or from its device unit.

The second way for the CPU to know when a data transfer is complete is
through the interrupt mechanism. Device controllers can be programmed
to generate an interrupt request every time one of their transfer-complete
bits becomes true. In this case, the software that responds to the interrupt
reads the device controller's status register and tests whatever bits are nec
essary to verify that the interrupt indicates a data transfer completed nor-

The Intel x86 Architecture 171

mally rather than because of an error condition. The software can then
read or write more data to or from one of the device controller's data
buffers.

A direct memory access (DMA) device controller is able to compete with
the CPU for use of the system bus. To perform a long data transfer, regis
ters on the DMA controller are initialized with the physical addresses of
the beginning and end of the memory buffer to be read or written, and the
controller then proceeds to complete the data transfer between the device
unit and the buffer, generating a single interrupt to the CPU (or setting a
status bit that can be polled) only when the transfer is complete. The con
troller's address registers are initialized by the CPU using normal I/O in
structions. Although the CPU and DMA controller compete with each
other for use of the system bus during a DMA data transfer, the technique
can be particularly attractive if the CPU has an on -chip code or data cache
that reduces its demands on the bus.

The choice between polled and interrupt-driven I/O can be a critical one
for high performance real-time systems. Chapter 1 introduced interrupt
response time (IRT) as a critical parameter affecting a real-time system's
performance. Perhaps surprisingly, the best IRTs are obtained if you don't
use interrupts at all! A system that uses polling can respond to the change
in a device controller's status register most rapidly by executing a tight
loop that continuously reads the status register and tests the bit or bits that
indicate an I/O operation has completed. The system responds to the event
that would normally give rise to an interrupt request by the device con
troller without incurring the overhead of saving and restoring the CPU's
state.

Of course, polling is not limited to a single device controller. A polling
loop can be constructed that tests the status registers of a number of device
controllers in succession, branching off to a processing routine each time
an event is found to process.

The problem with a polled sytem, however, is that the entire CPU is de
voted to the polling loop, so it can do no other useful work while waiting for
events to process. An interrupt-driven system can perform time-critical
operations in response to interrupts, and defer less critical processing to
those times when no interrupt handling routines are active. For systems of
even moderate complexity, the overhead associated with saving and restor
ing CPU state in response to interrupts is offset by the improved manage
ability afforded by the ability to partition the code executed in response to
events by means of separate tasks with different scheduling priorities. Of
course, if a single CPU is to be used for both real-time and non-real-time
processing, as when DOS and/or Windows is used to provide the user in
terface to a real-time process using iRMX for Windows, there is no choice
but to use an interrupt-driven system.

172 Basics

There is no direct support for polling in iRMX. Polling can be done, but
it would interfere with all the task management functions central to the
design of iRMX, and will not be considered further in this book.

The programmable interrupt controller mentioned earlier is an example
of a special-purpose device controller. It is programmed by writing encoded
binary values to its command port addresses, and it outputs the 8-bit in
terrupt level number onto the data wires of the bus when the CPU initiates
a get-interrupt vector bus cycle (M/IO#, D/C#, and W /R# equal to 0, 0, 0).

Intel's PLM and C compilers all support I/O port operations. In PLM,
byte output to ports occurs by assigning values to a built-in 64K element
array called output. There are corresponding arrays for outputting 16-bit
and, in PLM-386, 32-bit values as well. Port input of 8- or 16-bit data
occurs by invoking built-in functions named input and inword, respec
tively, which take port addresses as arguments and return input data as
their result. Again, PLM -386 provides for 8-, 16-, and 32-bit data transfers.
In C, both input and output occur via functions. The outbyte() function
takes a port number and a data value as arguments and returns nothing.
The inbyteO function takes a port number as an argument and returns a
byte of input data. Again, additional functions exist for doing 16-bit and, in
iC-386, 32-bit transfers as well. There are also machine-language con
structs that allow a single instruction to input or output an entire array of
bytes, and corresponding C and PLM constructs as well: the blockinbyteO
function and its cousins for C and the blockinputO procedure and its
cousins for PLM.

Part

2
iRMX Concepts and Features

6.1 Overview

Chapter

6
Fundamental iRMX Objects

and Structures

You can look at the design of an operating system (OS) in various ways: the
functions and relationships among the units that constitute the as, the
layout of memory when the as is running, the different interfaces the as
presents to the application programmer or the user, and other ways as well.
This chapter discusses the first three of these views: the software layers
that constitute the structure of the as, memory organization and manage
ment, and the system call mechanism used by application programmers to
access iRMX services. The common thread across all of these topics, the
object-based nature of the operating system, is also discussed.

The Nucleus layer of iRMX is the particular focus of this chapter. The
Nucleus is the one required layer of all iRMX systems. A process called
system configuration can be used to build a copy of iRMX that omits other
layers of the system if they are not needed for a particular situation, but
every configuration must include the Nucleus layer. A crucial feature of the
Nucleus is that it provides the basis for the object-based nature of iRMX.
All of the optional layers of the as build on the resources provided by the
Nucleus in ways that preserve this object-based design philosophy.

The chapter begins with a discussion of object-based and object-oriented
systems, providing a background for the terminology and concepts used to
characterize iRMX. It then presents the three fundamental iRMX object
types managed by the Nucleus (jobs, tasks, and segments), and introduces
the memory management and system call facilities provided by the Nu
cleus. The chapter ends with a description ofthe iRMX system call mecha
nism that relates both to the object-based nature of the operating system
and to the features of the x86 architecture introduced in chapter 5.

175

176 iRMX Concepts and Features

6.2 Object-Based Systems

The ideas of object-oriented and object-based systems date back to the
1960s, when the programming language Simula provided programmers
with the means to create entities called classes. A class is a programmer
defined data type and set of operations that may be applied to items de
clared to be instances of the type. Examples of other languages that support
the same concept of classes include Ada (the concept is referred to as pack
ages), C++ (referred to as classes), and Smalltalk (also referred to as
classes). Note that the C-Ianguage typedef facility is not an example of an
object-oriented system because the language provides no built-in mecha
nism to associate typedefs with the functions that operate on variables of
the defined type.

iRMX described itself as object-oriented before that term evolved and
became more restricted than would properly apply to iRMX. Following the
lead of Finlayson (1991),1 the term object-based is used for iRMX, which
refers to a subset of the features of a true object-oriented system.

An object is defined as a data structure combined with a set of functions
that provide access to the data structure. An object type is the format ofthe
data structure, and an object instance is an occurrence of an object type in
the computer's memory. For each type of object in an object-based system,
the set of procedures for managing individual objects of that type is called a
type manager. Each object type has its own type manager. All type man
agers include two procedures: one for allocating memory to hold the data
structure that represents an instance of the object type and for initializing
the data structure, and another for deleting the object instance and freeing
the memory that instance occupied. In addition, each type manager pro
vides a set of functions to appropriately manipulate the objects the type
manager manages according to the object type. In a pure object-based sys
tem, an application program cannot access the memory occupied by an ob
ject except by calling type-manager functions. The set of function defini
tions provided by the type manager is known as the Application Program
Interface (API) for the type.2

Figure 6.1 shows the relationship between application programs, type
managers, and objects for object-based systems. The application programs
at the top of the figure can access the objects at the bottom of the figure
only by calling the functions provided by the type managers shown in the
middle of the figure. In the figure, arrows indicate allowed accesses, either
through function calls or direct memory manipulation. Each type manager
provides its own set of functions and manages its own separate set of ob-

l"To parallel Wegner's definition of an object-oriented programming language (Wegner,
1987), we say that in order for an operating system to be object-oriented rather than object
based, it must also support some form of inheritance."

2The term API is also used in other contexts besid~s object-based programming.

Fundamental iRMX Objects and Structures 177

Application
Program - 1

Application
Program - 2

CreateA() !DeleteA() ! FooA() I BarA()

Type Manager - A

\ Object A1 \ \ ObjectA2 \

• • • Application
Program - n

CreateB() !DeleteB() ! FooB()

Type Manager - 8

\ Object 81 \\ Object 82 \\ Object 83\

Figure 6.1 Relationships among application programs, type managers, and objects in an
object-based system.

jects. The API for Type Manager A consists of the four functions Crea
teA{}, DeleteA{}, FooA{}, and BarA{}.

You should note two important features of object-based systems. The
first is that object-based systems simplify the work of application program
mers, who work only with an API rather than the internal data structures
of objects. The second important feature is that object-based systems allow
the developer of the type manager the flexibility to implement objects in a
variety of ways, provided only that the implementation is consistent with
the API. Thus, the implementation can be changed, for whatever reason,
without affecting any of the applications that use the type manager, as long
as the API specification does not change.

Sometimes, especially when an object's data structure is quite rich, the
API does not provide all of the functionality needed by some application
programs for dealing with objects of a particular type. This situation re
sults in cheating, which is defined as an application program directly ac
cessing the data structure for an object rather than going through the type
manager's API. Although cheating might seem innocuous when accom
plishing the goal of getting something to work, it is just as iniquitous in
software development as it is in real life. Once an application is coded to
cheat, it is doomed to work properly only as long as the underlying object
implementation does not change. If the object is managed by an operating
system, for example, the application might need to be recoded every time
the operating system is updated by the vendor.

The only proper solution to the need to cheat is to augment the type
manager with additional functions to provide controlled access to the de
sired information. When done correctly, the new functions do not affect

178 iRMX Concepts and Features

existing applications that do not use them, and are designed so that they
provide a consistent interface to applications despite possible future
changes in the internal representation of objects.

Any object-based system needs some mechanism to allow a type man
ager to discriminate among the various object instances that it has created
at one time. In Figure 6.1, how is function FooA() to know whether it is
supposed to deal with object Al or object A2 when called? The answer is
that the type manager's create() function returns an identifier, called a
token in iRMX, to the application. Thereafter, when the application wants
to perform an operation on a particular object, it calls the appropriate type
manager function using the token as one of its arguments.

Internally, the type-manager functions use these tokens to identify the
part of memory that contains a particular instance of the object. The token
could be an index into an array of data structures, a pointer to a data struc
ture in memory, an index into a table of data structure descriptors, or what
ever the type manager deems appropriate. In iRMX, all tokens are memory
segment selectors (or segment bases in iRMX I) which are used to access
memory segments through the Global Descriptor Table (GDT) described
in chapter 53. In PLM programs, iRMX tokens are stored in variables de
clared to be of type SELECTOR, for which TOKEN is usually declared to be a
literal equivalent. The Intel C compilers also provide a selector data
type, provided you include anyone of a number of different header files
(rrnxc.h, i486.h, i386.h, i286.h, il86.h, i8086.h, or i86.h).
The rrnxc. h header file provides the selector data type as well as literal
equivalence among selector, SELECTOR, and TOKEN.

To summarize, in an object-based system, objects are data structures
that occupy memory. A type manager exists for each class of object sup
ported by the system. Each type manager provides functions to allocate
memory for a new object, to free memory for objects no longer needed, and
perform any other functions needed to support the class of objects repre
sented by the type. Individual objects are said to be encapsulated, which
means that the memory of these objects cannot be examined directly or
modified by application programs, only by functions provided by the type
manager.

iRMX is an object-based system. When an iRMX object is created, a
memory segment and a slot in the GDT are allocated to the object, and the
selector for that segment becomes the token for the object. Because iRMX
II and III applications operate at privilege ring 0, object encapsulation
cannot be enforced by the hardware; given a token for an object, it is possi
ble for a program to directly access the object memory without resulting in
a hardware trap. But to do so is cheating, of course. Several iRMX object
types and associated type managers exist, with each type manager consist-

3Future versions of iRMX might change to allow LDT -based objects.

Fundamental iRMX Objects and Structures 179

ing of a set of system calls for creating, deleting, manipulating, and obtain
ing information about objects of its particular type.

There are also iRMX system calls that have nothing to do with objects.
That is, iRMX does not coerce all operating system functions into the ob
ject-based model. For example, there are system calls for obtaining or
changing the system's time-of-day clock, but the clock is not treated as an
object instance or type of object because it does not make sense to create or
delete instances of the time.

6.3 Object-Oriented Systems

As the terminology has evolved, the term object-oriented has come to be
applied only to systems that include certain features in addition to those of
object-based systems like iRMX. Because iRMX is not object-oriented ac
cording to present usage of the term, this section describes some of the dif
ferences between object-based and object-oriented systems to help keep
iRMX in proper perspective. Although the features described in this sec
tion are not built into iRMX itself, iRMX could easily be used as the
basis for an efficient implementation of any of these features by iRMX
applications.

6.3.1 Polymorphism

Polymorphism, also known as operator overloading, refers to using a single
function name to provide different functionality, depending on the type of
object passed to the function for manipulation. A standard example is the
plus operator in most programming languages.4 If the objects to be summed
are real numbers, the plus operator invokes the processor's floating-point
unit to perform the operation, but if the objects are integers, plus invokes
the processor's fixed-point hardware instead. In most programming lan
guages, the overloading of the plus operator is handled by the compiler
when it translates the source code into machine language. In an object-ori
ented system that supports the mechanism called late binding, overloaded
functions can determine the types of objects during program execution
rather than when the program is compiled because the objects themselves
are not created until run-time.

The main advantage of polymorphism is that it provides the application
programmer with a convenient and consistent way to handle objects that
have logically equivalent functionality but different implementations. Ad
dition of real numbers and addition of integer numbers are logically equiv
alent, but have different implementations.

iRMX does not provide polymorphism. Each function provided by each

'Syntax is the only significant difference between an infix operator such as + and a fllllC

tion such as plus(), so plus can be thought of as a function that is provided as part of the type
manager for a data type.

180 iRMX Concepts and Features

type manager has a unique name, and tokens are validated when system
calls are made to ensure that each function deals only with objects of its
own proper type. Although polymorphism is a convenient mechanism for
the programmer, its greatest advantage comes when it is coupled with late
binding, which implies a level of overhead inconsistent with high -perform
ance real-time systems.

6.3.2 Derived classes, inheritance, and
code reusability

One of the most appealing features of object-oriented systems is their pro
vision for using existing object types (classes) as the basis for defining new
types. Either existing functions in the API are redefined to meet the needs
of the new type, or new functions are added to the set provided by the origi
nal type. In both cases, all of the functions provided by the original type
manager remain available in name, but with possibly altered semantics.
Using standard terminology, one says that the derived class (new type) in
herits the function set of the base class (original type).

Inheritance is appealing because it promises developers the Holy Grail
of code reusability. If you build a good set of type managers for one applica
tion' you can use the same code in other applications, yet be able to extend
them to match the new application's needs.

This concept is simply not present in iRMX. Instead, iRMX provides
users with the ability to create new objects composed of aggregates of ex
isting objects. In addition, the same mechanisms used by OS type man
agers for interacting with the operating system are also available for user
written type managers. Each type manager, however, must define its own
set of system calls (the API), and it must make explicit calls to the appro
priate type managers to manipulate its object's subobjects. An object that
consists of other objects is called a composite object in iRMX terminology.
A type manager for composite objects reuses code in the sense that it makes
calls to the type manager functions for component objects to manipulate
those component objects, but it does not inherit those functions in the ob
ject-oriented sense of the term.

6.3.3 Message passing

A scheme commonly used by object-oriented systems, but not unique to
them, is the inversion ofthe relationship between objects and their API to
produce what is called a message-passing system. In a message-passing sys
tem, the application sends a message to an object telling it what operation
to perform, rather than calling a function provided by an object type's API
to manipulate the object. The object itself is no less encapsulated by this
approach; it simply provides a convenient mechanism for finding the code
to perform an operation in the case of derived classes. The Objective Clan-

Fundamental iRMX Objects and Structures 181

guage is an example of an object-oriented language based on this message
passing model, and the documentation provided with NeXT computers
provides a good description of its implementation.

iRMX supports message passing as an important mechanism for tasks
that share information and synchronize execution with each other. How
ever, no relationship exists between this feature of the operating system
and the message-passing mechanism of some object-oriented systems. All
operations on an iRMX object are performed by passing the object (a token
for the object) to a type manager function rather than by passing some sort
of function, in the form of a message, to an object.

6.4 Survey of iRMX Layers

Before discussing the Nucleus layer in more detail, it is useful to have an
overview of all of the iRMX layers. These OS layers are the following;

• Nucleus

• Basic I/O System (BIOS)

• Extended I/O System (EIOS)

• Application Loader (AL)

• Human Interface (HI)

• Universal Development Interface (UDI)

• Shared run-time library for C (introduced in chapter 4)

Each layer provides one or more type managers (object types and asso
ciated system calls) and, possibly, other system calls that provide services
not part of any type manager. All of a layer's system calls are implemented
as subroutines that occupy the area of primary memory called system
memory. The code for the system calls is loaded into system memory when
iRMX first runs and remains resident as long as the operating system runs,
i.e., until the computer is turned off or rebooted.s

The idea of the entire operating system always being resident in memory
contrasts with many other operating systems, which reduce demands on
primary memory space by making certain parts of the operating system
transient. That is, parts of the operating system in RAM can be overwrit
ten by application programs or other parts of the operating system, and
then reloaded from disk when needed again. This strategy can be very ef-

5System memory can be implemented as read-only memory. In this case, the code for the
system calls is burned into ROM chips once and does not need to be loaded when power is ap
plied to the system. In many embedded systems, the application's code is loaded into memory
at the same time as the OS. These systems also encompass the case of application code burned
into ROM.

182 iRMX Concepts and Features

fective for improving overall throughput for many types of systems, but it
is generally inappropriate for a real-time system such as iRMX. The rea
son this strategy is inappropriate is because of the time required to bring
parts of the operating system into memory introduces an indeterminacy
into the response time of the system that would be unacceptable for real
time work.

6.4.1 The Nucleus

The Nucleus layer provides the system calls that

• Support the fundamental object-based nature of the operating system.

• Provide object types for intertask synchronization and communication.

• Manage the connections between the hardware and software of the in
terrupt system.

• Create new object types.

• Add new system calls to the system.

These features of the Nucleus are described later in this chapter. The
ability to create new object types and to add system calls are particularly
relevant to this survey of iRMX layers because those functions are used by
all the other parts of the operating system to establish themselves as iRMX
layers. Because system calls are available to application programmers as
well as the layers supplied with the operating system, application program
mers can easily add their own layers to the operating system or replace
layers that do not match their requirements with custom versions that do.
Chapter 10 tells how to use these facilities to add customized layers to
iRMX.

The discussion of the Nucleus layer later in this chapter will include a
description of the three fundamental iRMX object types: memory seg
ments, jobs, and tasks. The other types of objects managed by the Nucleus
include mailboxes, semaphores, regions, extensions, and composites,
which are discussed in chapter 7. Nucleus functions for interrupt manage
ment are covered in chapter 9 when the topic of adding I/O device drivers
to an iRMX system is explained.

Nucleus operations must meet both speed and robustness criteria to
provide a sound basis for real-time applications. The iRMX III and iRMX
for Windows Nucleus layer is implemented using the iRMK real-time ker
nel for some of its fundamental operations. iRMK functions can be called
directly by applications that need to do so for performance reasons. Such
applications, however, lose some of the robustness provided by the Nu
cleus' object-based design. iRMK is also an object-based system, but it is
easier for errors in applications that use iRMK functions to compromise
the system's integrity than for those that restrict themselves to Nucleus

Fundamental iRMX Objects and Structures 183

functions. The iRMK functions available to iRMX applications are in the
following categories:

• Task management.

• Time management.

• Mailboxes and semaphores.

Task management. Applications can use iRMK functions to provide the
explicit control over task scheduling that cannot be achieved using the
Nucleus task management functions described in Section 6.5.3. iRMK
functions exist to turn task scheduling on and off and to notify procedures
every time a task switch occurs. Nucleus task objects are iRMK task ob
jects, which is not exactly true for other iRMK object types.

Time management. iRMK functions can provide applications with milli
second-granularity timing functions, whereas the standard Nucleus gran
ularity is 0.01 second. In addition to a sleep() function analogous to the one
provided by the Nucleus, iRMK provides functions for elapsed-time mea
surement and alarms, which are user-written routines called at specified
times.

Mailboxes and semaphores. These objects are used for intertask commu
nication and synchronization. These iRMK objects provide only subsets of
the functionality provided by the corresponding Nucleus objects, as well as
the Nucleus' region object type, but the iRMK functions operate faster.
The Nucleus' task synchronization and communication functions are cov
ered in section 7.2.

The iRMK functions available to iRMX applications are documented in
the manual iRMK Kernel for the iRMX Operating System.

6.4.2 The Basic I/O System

The services provided by the Basic I/O System (BIOS) system calls fall
into the categories of time-of-day management, data operations, and file
system management. The inclusion of time-of-day management in the
BIOS layer rather than the Nucleus, where task scheduling is based on
real-time clock interrupts, is based on the fact that time-of-day clocks are
typically implemented as I/O devices. If there is a battery-backed clock in a
system, the BIOS obtains the current time of day by reading that device
when the system initializes, and then maintains its record of the current
time based on real-time scheduling of a BIOS task by the Nucleus. The
BIOS system calls for setting and reading the battery-backed clock are
called rqsetglobaltime() and rqgetglobaltime(), while the system calls for
setting and reading the time of day maintained by the BIOS time-of-day

184 iRN!X Concepts and Featu~s

task (often called the local time) are called rqsettime() and rqgettime(). If
no battery-backed clock exists in the system, the BIOS initializes the local
time from the time and date at which the computer's file system was last
accessed.

This section introduces some of the key concepts of the BIOS's data
operations and file system management, which are covered in detail in
chapter 8. In addition to code invoked directly by system calls, the BIOS
includes the code for device drivers (software that acts as an intermediary
between hardware device controllers and the remainder of the software
that constitutes the system), and data tables that describe I/O device char
acteristics. These features of the BIOS are described in more detail in
chapter 9. Some of the important features of the BIOS layer include those
described in the following subsections.

The BIOS presents a device-independent interface to the code that calls its
functions. The same system calls are used whether an I/O operation in
volves a disk, a tape drive, a file on a network, a terminal, a printer, or a
custom device that has been incorporated into the system. Programs do not
need to be changed to work with different devices.

I/O operations can be invoked from !lpplication programs or from any layer of
the Qperating system. In all cases, however, actual I/O operations are per
formed by code in the BIOS layer of the operating system. For example, the
system call rqcsendcoresponse() used in the sa,mple programs in chapters 3
and 4 is part of the HI layer of iRMX, but the HI implements the call by
making calls to the EIOS layer, which in turn implements its functions by
making system calls to the BIOS.

BIOS operations are generally performed asynchronously with respect to the
program that invokes them. This means that a program can use a BIOS
system call to add an item to the BIOS's queue of I/O operations to be per
formed without waiting for the operation itself to complete. At some later
time the program makes another system call to determine if the operation
has completed and its outcome. This feature allows a program to enter sev
eral operations into the BIOS's various work queues simultaneously and to
overlap computation with I/O operations in general.

You can build a copy of iRMX that does not include the BIOS. Although all
system calls that involve I/O operations require the BIOS layer for their
operation, it is possible to build a copy of iRMX that does not include the
BIOS or any other layer that depends on it, In this case, the application
program itself must supply all the code for I/O operations.

The BIOS implements an iRMX object type called an I/O user obje~. This ob
ject type is used to help determine the access rights that programs have to

Fundamental iRMX Objects and Structures 185

individual files and I/O devices, based on the identity of the user who in
voked the program.

The BIOS implements a second iRMX object type called an 1/0 connection that is
used for all 110 operations. BIOS I/O connections are analogous to file han
dIes in DOS systems and file descriptors in Unix systems. The C run-time
library maps file descriptors and I/O streams to iRMX connections for
programs that use standard C functions for I/O. Two special library func
tions, ~et_rmx_conn() and yut_rmx_conn(), in the C run-time library
can be used by C programs to translate between file descriptors and iRMX
connections if needed.

6.4.3 The Extended 1/0 System

Essentially, the Extended I/O System (EIOS) is a synchronous interface to
the BIOS. Almost every BIOS system call has a corresponding EIOS sys
tem call that performs the same function, but the EIOS version provides a
simpler interface to the application program. The simplification some
times involves supplying default or built-in values for certain system call
parameters, but the primary simplification is the synchronous interface.

When a program makes an EIOS system call, code in the EIOS initiates
the I/O operation by making the corresponding BIOS system call. The
EIOS code then waits for the BIOS operation to complete, checks the re
sult of the operation for exceptional conditions, and only then returns to
the calling program. That is, when control returns to a program that made
an EIOS system call, all activity associated with the operation has com
pleted. This means, for example, that any data buffer involved in a data
transfer either contains new data (in the case of a read operation) or can
safely be overwritten with other information (in the case of a write opera
tion).

This fact might not seem remarkable because it is the normal mode of
operation for programs that use the standard I/O facilities of most high
level languages, but it is important in the context of the asynchronous in
terface provided by the BIOS for iRMX. The problem with synchronous
I/O is that EIOS calls constrain the degree of throughput that can be
achieved by a single thread of execution. Those applications that must
overlap computation with I/O or need to schedule concurrent I/O opera
tions would use BIOS functions instead of EIOS functions. Where these
features are not important, however, an application can benefit by using
the simpler EIOS calls instead. Furthermore, EIOS system calls can be
used to implement automatic overlap of I/O operations with application
execution using techniques called read-ahead and write behind. If an appli
cation processes files sequentially, it can tell the EIOS to use its own
buffers to implement this feature as described in chapter 8, providing the
advantages of asynchronous BIOS interface along with the simpler form of
synchronous EIOS calls.

186 iRMX Concepts and Features

The EIOS manages a type of iRMX object called an I/O job. An I/O job is
a normal iRMXjob as implemented by the Nucleus (discussed in Section
6.5.2) that has been augmented to have an I/O user object associated with
it, along with certain other details. The EIOS also manages its own type of
connection object based on BIOS connection objects that have been aug
mented with housekeeping information. The EIOS needs this housekeep
ing information to support its simplified interface to application programs.
Section 7.4 covers I/O jobs in greater detail.

6.4.4 The Application Loader

As its name implies, the Application Loader (AL) loads application pro
grams into primary memory for execution. One system call provided by the
AL simply loads code into memory but does not start its execution. This
system call requires only the BIOS layer of the operating system for its im
plementation. Other AL system calls create an I/O job for the program
being loaded and start the program running; they require the EIOS layer of
the operating system to create I/O jobs.

There are both asynchronous and synchronous versions of the AL sys
tem calls to create I/O jobs, which operate in ways analogous to the
asynchronous and synchronous versions of I/O system calls. In the case of
the AL, the asynchronous version of the call returns to the calling program
before the application program is actually loaded into memory, and the
synchronous version returns to the caller only after the new program has
been loaded successfully. Both versions, however, return before the loaded
program completes its execution, and a mechanism is provided for deter
mining when the loaded program has completed and for checking its final
status.

The files loaded into memory by the AL must be in standard STL object
module format, as prepared by the binder (discussed in chapter 3), and can
include either memory overlays or monolithic program images. The AL
layer does not provide a type manager for any iRMX object types.

6.4.5 The Human Interface

Three types of system calls are provided by the Human Interface (HI) layer
of iRMX: (1) command invocation, (2) command-line parsing, and (3)
console I/O.

When an iRMX system starts running, the HI determines how many
terminals are available for user access to the system by reading the : con -
fig: terminals file. For those terminals with static logon users, the HI
logs a particular user onto the system automatically, creates an I/O job for
the user, and has that job start running the Command Line Interpreter
(CLI).6 For terminals with dynamic logon users, the HI issues a prompt for

6Although the eLI is typically loaded into system memory with the resident layers of the
system, it is not considered a layer itself because it does not provide any system calls to the
system, which the other layers do.

Fundamental iRMX Objects and Structures 187

a user's name and password, and then creates an I/O job for the user when
the logon process is successful.

When the HI creates an I/O job for a user, it augments that job with in
formation that allows the job to use HI system calls to perform console I/O
and command line parsing. An I/O job that has been augmented in this way
is called an HI job, although this is not standard iRMX terminology. An ex
ample of the HI's console I/O system calls was rqcsendcoresponse(), seen in
the sample programs in chapters 3 and 4. The command-line-parsing sys
tem calls allow an application program to determine what the user typed on
the command line that started the program running and to interpret that
information in the standard way outlined in chapter 2 (input file list, pre
position, output file list, parameters).

Like the AL, the HI layer does not provide a type manager for any iRMX
object types.

6.4.6 Universal Development Interface

The Universal Development Interface (UDI) layer provides a way of im
plementing portable application programs. This same layer of software has
been implemented for iRMX, DOS, VAX/VMS, and Unix System V, so
programs that make no system calls except those supplied by this layer can
be run unchanged on all of the operating systems for which the UDI pro
gramming interface is available. Intel has used this interface in imple
menting all of its x86 software development tools so that just a single copy
of each tool runs on all the different supported development platforms. For
VAX/VMS, the development tools had to be built to execute using DEC's
VAX machine language instructions, but for operating systems that run on
the x86 architecture, the same binary file can run under the different oper
ating systems. The UDI is the mechanism used to implement the common
DOS-hosted and iRMX-hosted editors, compilers, and binders mentioned
in chapter 3.

Two things are of particular note in the UDI. First, most iRMX applica
tions are not intended to be portable. The main reason for developing them
to run under iRMX is to take advantage of the specific real-time features
of this operating system. Thus, the UDI is not used for real-time applica
tions, but rather is reserved for use with utility programs and develop
ment tools.

Second, there are alternatives to the UDI for portable applications. A
primary example is the use of a standard high-level language with its own
run-time library, such as C using the POSIX.llibrary, which was intro
duced in chapter 1. POSIXA even offers the hope for portable real-time
applications at the source-code level. Presently, the advantages ofthe UDI
are that it provides a simpler interface to the I/O system than the EIOS,
and it provides a mechanism by which a single binary file can run on both
DOS and on iRMX.

188 iRMX Concepts and Features

6.5 iRMX Fundamental Objects

The previous survey of iRMX layers has suffered from the use of some
vague and as-yet-undefined terms. In particular, just what is a job, and
what does it mean to augment it to make it into an I/O job or an HI job?
Also, how is a BIOS I/O connection object augmented to become an EIOS
connection object? This section presents the background information
needed to solidify these concepts.

Three fundamental object types are provided by the iRMX operating
system: memory segments, jobs, and tasks. These object types could be
presented here in the manner appropriate to ail object types, by describing
the set of procedures available for working with these objects (the API for
the objects). For these three types of objects, however, it is important first
to see how they relate to all the other object types managed by the operat
ing system, and that is the primary focus in this section. These object
types, as well as the remainder of the object types managed by the Nucleus,
are covered from the application programmer's viewpoint in chapter 7,
which surveys some of the system calls provided by the various layers of the
operating system.

For an iRMX system to function, there must be objects, and there must
be operations performed on those objects. There are computations that
applications and the operating system itself perform that have nothing to
do with objects, but without objects these other computations would oper
ate in a vacuum and thus serve little or no useful purpose.

To have objects, memory must exist to hold the information about the
objects, a mechanism must exist to allocate the memory used by objects in
an orderly way, and an execution entity must exist that can cause objects to
be created, manipulated, and disposed of. In iRMX, the memory segment
object type provides the memory that holds objects, the job object type pro
vides the basis for allocating memory for objects (jobs are said to own the
memory occupied by objects), and the task object type provides the execu
tion entities of the system. These three object types are described next.

6.5.1 Memory segments

There are only two type manager functions (system calls) for memory seg
ments. One function creates a segment, and the other deletes a segment.
Assuming myseg has been declared to be of type TOKEN, and Status has
been declared to be of type WORD, the following statement makes an iRMX
system call to create a segment:

myseg= rqcreatesegment (5280, &Status);

This is a C statement, but it would be the same in PLM ifthe & was changed
to @. The first argument is the size of the segment, in bytes. For iRMX I and

Fundamental iRMX Objects and Structures 189

II, the maximum size is 64K, but for iRMX III, it is 4G. The second argu
ment is a pointer to a 16-bit unsigned value that will be set to a completion
code for the system call. A value of 0 means the call completed success
fully.7

Unlike any other type of iRMX object, memory segments are completely
unstructured as far as the operating system is concerned, and there are no
restrictions on what an application does with the memory contents. For
this one type of object, the only reason for creating an object is, in the ob
ject-based sense of the term, to cheat with it!

Figures 6.2 and 6.3 present equivalent PLM and C programs that illus
trate a possible use of an iRMX segment object. The main program creates
a segment, reads characters into it from the keyboard, and passes it to a
subroutine that displays the characters on the screen. The subroutines ac
cess the information in the segment by either explicitly or implicitly using
the token received from rqcreatesegment() as the selector part of a pointer
to the information. The code seems a bit messy in the subroutines because
of the logic to check that the message to be displayed will actually fit into
the memory reserved for an output buffer. These programs should be
viewed only as demonstrations of how segments can be created and ac
cessed rather than as illustrations of proper programming style for iRMX.
There are certainly much more efficient ways to share information be
tween a main program and a subroutine than to incur the overhead of
creating an iRMX memory segment object!

Fundamental about memory segment objects is that all other iRMX ob
jects are constructed from them. For example, if a program creates a job
object, the type manager for jobs creates a memory segment to hold the
data structures that it maintains about the job, initializes the data struc
tures in the segment, and returns the selector for the segment as the token
for the job. Likewise, if a program creates a task object (or a mailbox, a
semaphore, or any other type of iRMX object), the type manager for tasks
(or mailboxes, semaphores, or whatever) calls rqcreatesegment() to obtain
the memory in which the type manager places information about the task
(or mailbox, semaphore, or whatever), and returns the selector for the seg
ment as the token for the new object.

When an application needs to do something with one of its objects, it
passes the token for the object to the appropriate type manager function,
and the type manager's code uses the fact that the token is a selector to ac
cess the data structure for the object in much the same way that mySub()
accessed the contents ofthe input buffer segment in Figures 6.2 or 6.3. It is

7For more information on how to code this and all other system calls, you should consult
either the on-line help facility provided with iRMX for Windows, or the reference manual for
the appropriate part of the operating system, such as the iRMX System Call Reference, vol
ume 9 of the iRMX for Windows documentation set.

190 iRMX Concepts and Features

Figure 6.2 Sample PLM program illustrating the use of an iRMX segment.

/***> segexamp.plm <*************************************

*
Sample program to illustrate the use of an iRMX segment

***/

$title "Sample Program Illustrating Use of an iRMX Segment')

segexamp: DO;
$include (segexamp.ext)
DECLARE

SEGSIZE LITERALLY '81' ,
myseg TOKEN,
Status

/*
Subroutine to display an iRMX string contained in a segment.

*/

segsub: PROCEDURE (theSeg);
DECLARE

theSeg TOKEN,
theBuf BASED theSeg (1) BYTE,
outBuf (81) BYTE;

CALL movb (@ (11, 'You typed: '), @outBuf, 12);
CALL movb (@theBuf(l), @outBuf(12), theBuf(O));
IF (outBuf(O) + theBuf(O)) < size (outBuf) - 1 THEN

outBuf(O) outBuf(O) + theBuf(O);
ELSE

outbuf(O) size (outBuf) -1;
CALL rqcsendcoresponse (NIL, 0, @outBuf, @Status);
RETURN;

END segsub;

/* Main program starts here

*

*/

Read a string from the keyboard into a segment, and pass it
to a subroutine for display. Assume that system call errors
are checked by the default exception handler.

myseg = rqcreatesegment (SEGSIZE, @Status);
CALL rqcsendcoresponse (buildptr (myseg, 0) , SEGSIZE - 1,

@(16,'Type something: '), @Status);
CALL segsub (myseg);
CALL rqexitiojob (0, NIL, @Status);
END segexamp;

not cheating for the type manager to access the memory for an object in
this way; rather, that is its purpose. Such accesses correspond to the lower
set of arrows in Figure 6-l.

At this point, what an application might want to do with an object has
not yet been covered, but that is because other types of iRMX objects have
not yet been considered. As each object type is introduced, the functions
that can be performed with objects of that type need to be presented as well.

Fundamental iRMX Objects and Structures 191

Figure 6.3 Sample C program illustrating the use of an iRMX segment.

/***> segexamp.c <**

sample program illustrating the use of an iRMX segment

***/

#pragma title (" Sample Program Illustrating Use of an iRMX Segment··)
#include <rmxc.h>
#include <string.h>

#define SEGSIZE 81

TOKEN
WORD

mySeg;
Status;

/* Main program starts here

*/

int

Read a string from the keyboard into a segment, and pass it
to a subroutine for display. Assume that system call errors
are checked by the default exception handler.

main (int argc, char * argv[]) {

mySeg = rqcreatesegment (SEGSIZE, &Status);
rqcsendcoresponse (mySeg, SEGSIZE - 1,

udistr ("Type something: ", "Type something: "), &Status);
mySub (mySeg);
rqexitiojob (0, NULL, &Status);
}

/*
Subroutine to display an iRMX string contained in a segment.

*/
void
mySub (TOKEN theSeg)
char outBuf[81] "You typed: ".
char *theBuf;

theBuf = theSeg;
strncat (outBuf, &theBuf[l] ,

(sizeof (outBuf) > (strlen(outBuf) + theBuf[O]))
theBuf[O] : sizeof (outBuf));

udistr (outBuf, outBuf);
rqcsendcoresponse (NULL, 0, outBuf, &Status);
}

6.5.2 Jobs

Each object in an iRMX system is owned by some job. This relationship
has three important ramifications.

1. Each job has a memory pool. The iRMX memory management policy is
to allocate a contiguous block of free space memory to a job when it is cre
ated. Free space is an area of RAM that has not yet been turned into seg-

192 iRMX Concepts and Features

ments in the sense that there are no descriptors in the GDT or LDTs that
could be used to access this memory. When a memory segment or other ob
ject belonging to a job is created, a new descriptor is constructed that de
fines a piece of this memory pool as a segment, and the record of the job's
memory pool (one of the data structures in the job object itself) is updated
to reflect that this piece has been taken from its pool.

2. Objects cease to exist when their owning job is deleted. Because the
memory for an object is allocated from the memory pool for the job that
owns the object, and because deleting a job implies deleting its memory
pool, all objects that belong to a job are automaticaliy deleted when the job
is deleted.

3. There is a tree-structured hierarchy of jobs. All objects are owned by jobs
and jobs themselves are objects, implying that jobs are also owned by jobs,
which is true. Each job has one parent job and zero or more child jobs.
There is one distinguished job, called the root job, that has no parent. This
parent-child relationship with a root node gives rise to the treecstructured
hierarchy of jobs in an iRMX system. The form of an iRMXjob tree can be
very dynamic as jobs are created and deleted during the time a system is
running. In practice, however, much of the job tree is quite static.

A corollary of the tree-structured hierarchy of jobs is that there is a tree
structured hierarchy of memory pools. Because jobs are owned by other
jobs, it makes sense that the memory pools for jobs should be allocated
from the memory pools of their parent jobs; however, this is only partially
correct. There are two memory pool values associated with each job, called
the minimum and maximum memory pools. When a job is created, a con
tiguous block of memory equal to the size of the job's minimum pool is allo
cated from its parent jobs' pool. During the job's lifetime, it can request ad
ditional memory by means of the rqcreatesegment() system call or by
creating other objects whose type managers call rqcreatesegment(). These
segments will be taken from the job's minimum memory pool if possible,
but, if the job's minimum memory pool is either exhausted or simply too
fragmented to provide a contiguous block of memory to satisfy the request,
the segment can be allocated from the memory pool of the job's parent by a
process called borrowing.

If the parent job's memory pool is too small or too fragmented, the seg
ment can be allocated from the grandparent job's pool, and so on up the job
tree to the root job. A job's maximum memory pool is the limit for how
much memory can be borrowed from ajob's ancestors. A significant differ
ence between ajob's minimum pool and its maximum is that the former is
always contiguous, but the latter can be scattered among several ancestor's
pools.

Memory segments must always be internally contiguous, but this re
quirement might be impossible to meet for very large segments when jobs'
memory pools become fragmented, even thoughthe total number of bytes

Fundamental iRMX Objects and Structures 193

needed for a large segment might be available. As mentioned in chapter 5,
iRMX III could use the paging facilities of the 80386 and later micropro
cessors to map disjoint pages into contiguous segments to accommodate
applications' needs for very large segments, but this feature has not been
implemented at the time of this writing. Recall that paging is done by the
microprocessor after segmentation, which would make it transparent to an
application that references the contents of a segment through the standard
selector and offset pointer mechanism (logical addresses). Recall also that
segments larger than 1 MB must be multiples of 4 KB in size.s Thus, a
proper match always exists between the size oflarge segments and the page
size used by the processor, which is also 4 KB, and no additional memory
fragmentation or wastage occurs due to the use of the paging mechanism in
this context.

It might help to consider the sequence of events that occurs when an
iRMX system starts running. First, a copy of the entire operating system is
loaded into an area of memory known as system memory. This loading pro
cess can be done by a bootstrap loader that reads the operating system from
a local or network disk file, or the operating system can be burned into
PROMs so that it is available as soon as electrical power is applied to the
system. The code loaded into system memory consists of all the type man
agers initially defined (others can be added as the system is running), a
GDT that includes call gates for all the type-manager functions that have
been loaded, plus initialization code that starts executing as soon as con
trol passes to the operating system.

In addition to system memory, there must be some RAM that can be
used for the dynamic memory requirements of the various jobs in the sys
tem. This RAM is known as the free-space memory, and it is managed by a
software module in the Nucleus called the Free Space Manager (FSM).
Free-space memory cannot be accessed initially because no descriptors for
segments in this part of memory exist yet.

The initialization code first calls the FSM to create a segment that will
contain the root job object, and it fills in that segment with the information
about the job. The job information of concern here is the memory pool in
formation for the root job, which is set up to have a small minimum mem-
0ry pool as well as a maximum memory pool limited only by the amount of
physical memory available. In essence, the root job owns the entire free
space memory, and it is conceptually equivalent if its pool minimum is set
to be equal to the size of the entire free space area. The situation at this
point is shown in Figure 6.4. The root job has been created, and its maxi
mum memory pool encompasses all of FSM. The root job object occupies a
memory segment that has been allocated from free space memory and
charged against its own maximum memory pool.

SOnly 20 bits are available in descriptors for the segment size, so 12 zeros are appended to
the 20-bit limit field in the descriptor for such large segments.

194 iRMX Concepts and Features

(- . '\
Root Job
Memory
Pool

Root Job
Object

FREE SPACE MEMORY

SYSTEM MEMORY

Figure 6.4 Primary memory during system initialization.

The lower part of memory is shown containing system memory, and the
upper part is free-space memory, all of which belongs to the root job. A
piece of the free-space memory has been allocated as the root job's mini
mum memory pool, and a segment has been created in the root job's mini
mum memory pool to hold the root job object itself. The memory for an ob
ject is normally allocated from the owning job's memory pool, but this one
object must be treated specially because of the distinguished nature of the
root job itself; it has no parent, so it owns itself.

After the root job has been created, initialization continues with the cre
ation of a set of jobs that are the immediate children of the root job. These
jobs are called first-level jobs, and their memory pool requirements are de
fined when the operating system is configured. These first-level jobs con
sist of jobs needed by the various layers of the operating system as well as
application-specific jobs. These jobs are created in a well-defined se
quence, which is also defined when the operating system is configured, so
that any job that depends on another job's existence will be created only
after that other job has been created and has completed execution of its in
itialization code.

Each first-level job is given a minimum memory pool which is taken from
the root job's pool. Figure 6.5 represents the situation in which there are

Fundamental iRMX Objects 195

FREE SPACE MEMORY Job N
Memory
Pool

Job N
Object

Root Job Job B Job A Job E Job H
Memory Memory Memory Memory Memory
Pool Pool Pool Pool Pool

Root Job Job B Job A Job E Job H
Object Object Object Object Object

SYSTEM MEMORY

Figure 6.5 Primary memory after the root job has created first-level jobs B, A, E, and H.

four first-level jobs, named B, A, E, and H, in the figure. To make matters
interesting, Job E is shown having created a child job of its own (Job N),
which has taken some of Job E's minimum pool. Jobs B, A, E, and H have
been allocated memory pools from the root job's maximum pool (FSM).
Job N has had its memory pool allocated from job E's pool. Jobs B, A, E,
and H can all borrow memory from the root job's maximum pool, and job N
can borrow memory from either its parent (job E), or its grandparent (the
root job).The letters used to name the jobs in this figure are meant to be
suggestive of the jobs' natures, which is explained next. The relative sizes
of the boxes, however, do not indicate the relative sizes of the memory
pools or job objects in the figure.

Among the first-level jobs created are jobs for some, but not all, of the
layers of iRMX. In Figure 6.5, jobs B, E, and H represent jobs created for
the BIOS, EIOS, and HI layers ofthe operating system. Job A represents
an application-specific job created after the BIOS job and before the EIOS
job. One might assume that this particular application needs to be able to
make Nucleus and BIOS system calls, but not EIOS or HI calls, based on
the order in which it was created relative to the other jobs. Job N, the child
job of the EIOS, is an example of a job created by a first-level job during

196 iRMX Concepts and Features

system initialization. An example of a job like this on some systems is the
iRMX-Net job, which is why it was named N in this example.9

In a typical iRMX system, each first-level job is given an unlimited
maximum memory pool. The effect of this is to allow the root job and all
first-level jobs to compete equally for use offree space memory. First-level
jobs need to draw on the resources of free-space memory for two different
reasons. One regards the unique requirements of the HI, and the other is
based on the relationship between first-level jobs and iRMX layers. These
two matters are discussed next.

The HI job's memory pool. For those configurations that include the HI
layer of the operating system, the section of the job tree rooted at the Hljob
is the most dynamic segment of the tree. The HI creates a new job each
time a user logs on to an iRMX system, and another job is created every
time a user runs an HI command or certain eLI commands (such as back
ground). All of these jobs endure only during execution of the specified
command or, in the case of a logon job, until the user logs off.

All of these descendant jobs of the HI compete for resources within the
free-space memory, since the HI job's minimum memory pool is not large
enough to meet any but the smallest attempts to borrow from it. To provide
some degree of fairness in multi-user systems, the HI is normally config
ured to supply each logon user job with a memory pool large enough to run
most commands and development tools, and a maximum memory pool
small enough to ensure that some free memory will be available for other
users who log on later. These memory pool settings are established by the
files in the: conf ig: users directory. For each user, there is a file in this
directory that specifies the user's minimum and maximum memory pool,
as well as other information, such as the pathname to the user's home di
rectory. For example, a system with 4 MB offree space memory might set
each user's minimum memory pool to 512K and maximum memory pool to
2M. This way, there would always be enough memory for at least two users
to log on without any problem, and a system with light memory demands
could support as many as eight users simultaneously.

The relationship between first-level jobs and layers. The second type of de
mand on free-space memory is made directly by other first-level jobs be
sides the HI. To understand these demands, first consider the implications
of the hierarchical nature of the job tree and memory pools on the lifetimes
of iRMX objects.

A crucial concept for understanding the iRMX operating system is the
following: when a job is deleted, all of its memory pool is returned to the

!Vfhe iRMX-Net layer of the operating system is described in chapter 11.

Fundamental iRMX Objects and Structures 197

job(s) from which it was obtained, and all memory segments that had been
established within that memory pool are deleted from the GDT. This
means, without exception, that all objects owned by ajob cease to exist when
the job terminates. A corollary to this rule follows from the fact that it is
possible for one job to obtain a token for an object that belongs to another
job. In general, objects can be shared across jobs, but if the job that owns an
object terminates, any further attempt to use the token for that object from
another job will result in an error10•

So, what does this have to do with first-level jobs for OS layers, and why
do some layers have first-level jobs, and other layers do not? The answer is
that some layers need to create permanent dynamic objects, and others
(the AL and UDI, in particular) do not. The AL and UDI provide system
calls that might result in the creation of objects, but those objects are allo
cated from the memory pool of the application program that made the sys
tem call. The other layers, however, create objects that must continue to
exist after the job that triggered their creation terminates. There is a first
level job for each of these other layers so that they can act as the owners for
these more-permanent objects.

It might not make much sense to discuss these permanent objects be
cause you do not know what each ofthe layers does yet, but a few of the ob
jects are described briefly here to explain the rationale for first-level jobs.

The BIOS layer creates system-wide objects every time a device is at
tached. Even though the action of attaching a device is invoked from a par
ticular job, such as the job spawned by the HI when the user enters an at
tachdevice command, the attachment itself must exist beyond the lifetime
of the creating job (the job that runs the attachdevice command). Thus, the
objects associated with a device attachment (which include an object called
a device connection, a task for communicating with the device driver soft
ware for the device, and perhaps some memory segments for sharing infor
mation between the BIOS and the device driver) must be created dynami
cally, but must continue to exist after the job that calls the BIOS
terminates. The solution is for the attachment to be performed by, and
hence to be owned by, a permanent job, namely the BIOS job.

Some layers of the operating system create type managers for new object
types beyond those provided by the Nucleus. For example, the BIOS layer
supplies the type manager for an iRMX object type called a user object. (A
user object is simply a memory segment containing a list of ID numbers to
be associated with a particular user of the 1/0 system. This list of user IDs
is used by the BIOS to determine access rights to files that a program tries
to open. You can see a display of your user object by typing the whoami
command at the eLI's prompt.)

lONot all objects can be shared across jobs. Objects called connections, which are managed
by the BIOS and EIOS layers of iRMX, may not be shared across jobs. This restriction may
well extend to other types of objects as the operating system evolves.

198 iRMX Concepts and Features

The idea introduced here is that type managers can be added to iRMX by
other layers ofthe operating system besides the Nucleus. An example is the
type manager of the BIOS for user objects. Application programs can add
their own type managers to the system that will operate the same as the
type managers supplied by the operating system itself. The mechanism for
adding a type manager involves creating a type of iRMX object called an
operating system extension (OSE). When a program (either an as layer or
an application program) creates an OSE object, it specifies a type code for
the new object type and, optionally, a deletion mailbox for objects of the
new type. The new type manager also creates new system calls for manag
ing objects of the new type so that programs can create, delete, and manip
ulate objects of the new type. Other parts of the Nucleus use the informa
tion specified when the OSE was created to provide an orderly mechanism
for deleting a job's objects when the job is deleted.

Thus, a second rationale for having a job associated with an operating
system layer is to provide an owner for the OSE objects that a layer needs if
it provides type managers. The code for the type managers (the code for the
system calls that can be used to create and manipulate object instances of
the new type) occupies system memory, but the as extension object asso
ciated with each type manager is created dynamically and owned by the
layer's job. The reason the AL and UDI do not need jobs is that they do not
provide type managers.

The EIOS layer, on the other hand, needs a job to own the two object
types that it creates, logical names for devices (introduced in chapter 3)
and a composite object type called I/O jobs. An I/O job consists of ajob ob
ject, a user object, and some other objects not important here. What is im
portant at this point is that it follows immediately from the existence of
these type managers that the EIOS layer needs a corresponding job to own
the OSE objects for these types.

There are two reasons for having a job for the HI. One reason is for man
aging the memory pools for users and their applications already presented.
The other is to provide an owner for the tasks that the HI provides. The HI
job owns a task for each terminal on which users can log on to the system.
When a user logs on, the task associated with the terminal creates a child
job of the HI that acts as the unique parent for all jobs created by the user's
commands. In addition, a task is used to implement the sysload command
that allows programs to be loaded and to continue running after the user
who issued the sysload command logs off the system. Commands run by
sysload are run as child jobs of the HI job rather than as child jobs of the
user's logon job. That is, there is an HI job to act as a permanent owner for
the sysload task and the logon tasks.

6.5.3 Tasks

Tasks are threads of execution. They are a fundamental object type in
iRMX simply because without them no code can be executed. Without

Fundamental iRMX Objects and Structures 199

them, the type managers provided by the operating system or its exten
sions could not be called, and no objects could be created, manipulated, or
deleted. Without them, nothing would happen.

Until now, the discussion of jobs and programs had to be a bit imprecise.
Although jobs own objects, they do not create objects. An object is created
when a task executes a system call that executes a type manager's function
to create the object. So how does a job own an object that a task creates?
The job that owns the task that creates the object owns the object. How
does a job get to own a task? An initial task is automatically created for
every job created. Except for being the first task created for the job, this one
task is indistinguishable from all other tasks that the job might own during
its existence. As mentioned in chapter 5, the iRMX II and III task man
agers allocate a memory segment structured as a protected-mode Task
State Segment (TSS) for every task in the system.

No hierarchy exists among iRMX tasks. All objects created by a task be
long to the job that owns the task rather than to the task itself. If one task
creates another task the two tasks are siblings: they are both owned by the
same job and have no other particular relationship to each other. If a sec
ond task creates a third task, that task is equivalent to both the initial task
and the task that created it. If a task creates ajob, that job is owned by the
creating task's job, and the new job's initial task is owned by the created
job. The creating and created task in this case simply have the relationship
to each other of "do not belong to the same job," and there is nothing dis
tinctive about the fact that one belongs to a job that is the parent of the
other's job.

An important distinction to make is the difference between a task and a
procedure. A task is a thread of execution; a procedure is a piece of execut
able code. The proper terminology is to say that a task enters a procedure,
executes the procedure's code, and exits. (Of course, a procedure might
contain an endless loop, in which case the task would never exit.) More
than one task can enter a procedure at the same time, in which case the
procedure must be re-entrant-it must allocate separate copies of all in
coming parameters, return addresses, and local variables for each task that
enters. This allocation is accomplished by giving each task its own stack
segment in memory, and allocating memory for parameters, return ad
dresses, and local variables on the calling task's stackll.

All functions in the C language are re-entrant by default, but PLM pro
cedures and functions must explicitly be declared re-entrant if they are to
be used in this way. Both languages use the stack for passing parameters
and holding return addresses; the issue is whether local variables are part
of the stack frame (activation record) or stored in a static data segment.

URefer to chapter 5 for a description of how the x86 uses a stack segment for subroutine
activation records containing this information.

200 iRMX Concepts and Features

When a job or task is created, one of the parameters for the call to the
type manager's create function is the address in memory where the task
(the initial task in the case of a job) is to begin execution. Unlike other
operating systems that require tasks to execute within the address space of
the parent process, iRMX places no restriction on what memory can con
tain the procedures to be executed by a job's tasks. In particular, no re
quirement exists for any task to start executing at an address within its
job's memory pool. In fact, this would be impossible to arrange for a job's
initial task because the creating task cannot know the address of a job's
memory pool before the job is created. For example, the initial task for an
HI command starts executing an AL procedure that loads the command's
code and data from a file into the job's memory, and then branches to the
initial instruction in the newly loaded code segment.

Once a task has been created, it can execute procedures any place in
memory that contains code. Unlike other operating systems that require
some type of context switch when a thread of execution makes a system
call, iRMX tasks execute system call procedures directly without any con
text switch at all. The one exception to this principle is asynchronous pro
cessing by the BIOS, which is described in chapter 8. The mechanism for
branching to the proper location in system memory to execute system calls
will be discussed later in this chapter.

6.5.4 Examining iRMX objects

As mentioned in chapter 3, iRMX provides an extension to the debug
monitor called the system debugger (SDB) that can be used to examine
iRMX objects interactively. The SDB is code placed in system memory
with the rest of the operating system when the OS is first loaded. The SDB
code is connected to the same command interpreter as the debug monitor
(the code that allows interactive examination of hardware facilities), so it
can be accessed from either the same prompt as the monitor ("." or " .. ",
depending on whether you are using iRMX I or a protected-mode version
of the operating system) or from the SoftScope command line. Several
SDB commands exist for examining objects and certain other data struc
tures maintained by the operating system. They are fully documented in
the iRMX System Debugger Reference Manual. The SoftScope III Debug
ger User's Guide (volume 13 ofthe iRMX for Windows documentation set)
tells how to use them from a Soft Scope session.

SDB commands help application programmers know about the objects
created by their program so they can debug effectively, but the program
mers should not have to cheat to do so. One of the most commonly used
SDB commands is vt, which stands for view token. Given a token for an ob
ject (either the numerical value of the selector for the object or, in Soft
Scope, the name of a variable that holds a token), vt will display all of the

Fundamental iRMX Objects and Structures 201

essential information about the object in a format suitable for human ex
amination, but without compromising the encapsulation principle of an
object-based system. Think of vt as an interface to the type managers for
all iRMX object types. It follows from the material presented previously on
object-based systems that any changes to the internal representation of an
object type by the as designers must include parallel changes to the rou
tines in the SDB that display information about that type of object.

SD B commands can also be very instructive for people interested in bet
ter understanding how iRMX works. If you want to know what informa
tion is maintained by the as for jobs, give a vt command with a token for
any job object. If you want to know what is known about tasks, give a vt
command with a token for a task object. For example, Figure 6.6 is the out
put of a vt command for a job, discussed more fully in the next section.

Some SDB commands that might be useful to try out at this time include
the following:

vj View Jobs. The hexadecimal value of the token for every job in the
current iRMX job tree is displayed with indentation showing the tree
structure. You can limit the display to one branch of the tree by giving
the token for a particular job as an argument. Within a level, jobs are
displayed from the top down in the reverse order of creation (HI job
on top, BIOS job on bottom for first-level jobs, for example).

vo View Objects. Given a token for a job, this SDB command displays a
list of all the objects owned by that job, arranged by object type.

vh View Help. This command lists SDB command names and syntax.

Figure 6.6 Display produced by the SDB vt command, given the token for the root job of a
system running iRMX for Windows.

Object type = 1 Job1

Current tasks 0003 Max tasks ffff Max priority 00
Current objects 0005 Max objects ffff Parameter obj 0000
Directory size 00c8 Entries used 0018 Job flags 0000
Except handler 0280:00008850 Except mode 00 Parent job 0000
Pool min 0002lfff Pool max 0002lfff
Initial size 0002lfff Borrowed 00000000

Byte range I Number chunks I Largest chunk Total memory

22-44H 00000001 00000030 00000030
44-84H 00000000 00000000 00000000
84-200H 00000000 00000000 00000000
200H-1K 00000000 00000000 00000000
1K-2K 00000000 00000000 00000000
2K-4K 00000000 00000000 00000000
4K-8K 00000000 00000000 00000000
8K-32K 00000000 00000000 00000000
+ 32K 00000002 00035760 00044ddO

202 iRMX Concepts and Features

6.6 More about the Nucleus

With the fundamental nature of memory segments, jobs, and tasks having
been introduced, we now further examine some other fundamental fea
tures of the Nucleus layer, starting with more information about job and
task management.

6.6.1 Job management

This section provides more information about how a job's memory pool is
managed by the FSM and how a data structure called an object directory
can be used for sharing access to objects across tasks or jobs.

Memory management. The basic principles of memory management were
already introduced in the previous discussion of jobs and memory seg
ments, but a few details can be elaborated on here.

The FSM uses data structures within ajob object as it manages the job's
memory pools. Without knowing the actual organization of these data
structures or the actual algorithms used by the FSM (in keeping with the
encapsulation principle of object-based design), it is nonetheless possible
to deduce some useful information about management of a job's memory
based on documentation and a bit of experimentation with the SDB. Fig
ure 6.6 is the display produced by the SDB vt command for the root job of a
system running iRMX for Windows.

The lower portion of Figure 6.6 shows some of the information that the
FSM uses. The Pool min, Pool max, Initial size, and Borrowed all refer to
the job's memory pool, with values given as numbers of I6-byte units called
paragraphs12• The three columns at the bottom of the display show how the
FSM keeps track of the memory in a job's pool. It keeps a list for each of
several chunk sizes. (You can find out that the lists are implemented as
doubly linked lists by consulting the SDB manual, but that kind of knowl
edge comes close to cheating!) For each chunk size, there is a list of contigu
ous bytes of memory that are ofthat size range. Presumably, although not
shown by the vt display, the FSM stores the actual starting address and
length for each chunk on the list. Note that all the values shown in the
chunk-management part of the display are in bytes rather than para
graphs.

The algorithm actually used for allocating memory segments is not pub
lished by Intel, but what follows should be a reasonable approximation:

1. Search for the first nonempty list that might contain a chunk large
enough to accommodate a segment of the desired size. Start with the list

12Paragraphs have no architectural significance in protected mode, but a paragraph in real
mode is the minimum spacing between segment base addresses because of the way base ad
dresses are calculated. This topic is discussed in chapter 5.

Fundamental iRMX Objects and Structures 203

for the chunk size range that includes the requested segment size, and
continue to the lists for larger chunks until either a nonempty list is
found or the set of lists is exhausted.

2. If no list is found in the current job, repeat step 1 for the parent job as
long as the current job's pool max has not yet been reached and as long
as there is a parent job. If unable to continue, return the condition code
E MEM to the caller.

3. Search the selected list of chunks for one large enough to hold the seg
ment, skipping over chunks within the range of the list but too small to
hold the segment. This step could use either a first-fit or best-fit rule.
The former would use the first chunk on the list that is large enough,
and would execute somewhat faster, whereas the latter would search the
entire list for the smallest chunk that would hold the segment, and thus
could reduce memory pool fragmentation.

4. If step 3 fails, return to step 1, starting with the list for the next larger
range of chunk sizes in the current job.

5. Delete the selected chunk from its list.

6. Subtract the number of bytes needed for the segment from the size of
the selected chunk, resulting in a new chunk size. Add the size of the
segment to the base address of the selected chunk, resulting in a new
chunk base address. Add the new chunk to the appropriate list for the
job.

7. Create a descriptor for the new memory segment. Use the base address
of the selected chunk as the base address field in the descriptor, and use
the requested segment size as the limit field of the descriptor. Set the
descriptor type bits to be writeable data.

8. Allocate a slot in the GDT for the new descriptor. Ifthis cannot be done,
return E_SLOT to the caller, and restore the job's chunk list to its origi
nal condition.

9. Store the descriptor in that slot. Create a selector for the descriptor and
return its value as the token for the new segment object.

Two observations about this algorithm are worth noting. First, it is
bounded, but nondeterministic. That is, creating segments can lead to
variable response times from the system, depending on the current dy
namics of the job tree and memory pools. Second, the algorithm does not
guarantee to eliminate fragmentation. It is possible for there to be enough
free bytes in a job's memory pool to meet the needs of a rqcreatesegment()
request, but no contiguous chunk that is large enough, which leads to bor
rowing if possible, or leads to a possible failure to create the segment. The
current FSM will not move segments around within a memory pool to elim
inate fragmentation, but a future version of the iRMX III FSM might use

204 iRMX Concepts and Features

paging to map noncontiguous pages within a memory pool into an appar
ently contiguous segment.

Both indeterminacy and fragmentation can be minimized by creating as
many of the necessary memory segments as possible when the job first
starts running, rather than incrementally throughout the job's existence.
Furthermore, creating these segments in decreasing order of size can re
duce fragmentation and the possible need for borrowing. Because all ob
jects occupy memory segments, the strategy applies equally well to mem
ory segments themselves as well as all other types of objects that the job
will need. Figure 1.2 implicitly recognized this strategy when it showed the
code structure for a typical real-time task: the task first performs initiali
zation (creates the objects it will need), then begins its real-time mission by
entering an endless event loop.

Object directories. Job objects contain another data structure called an
object directory used to facilitate sharing objects among jobs. Various parts
of the operating system use object directories extensively for their own
purposes, such as EIOS logical names, but the mechanism is equally avail
able for use by application programs. You can look at the object directory
for a job with the SDB vd command.

An object directory consists of a list of tokens and corresponding names
for them. The number of entries that can be made in ajob's object directory
is a fixed number determined at the time the job is created, and can be as
small as zero and as large as several thousand. A typical object directory
has room for 50 entries.

To help explain the notion of an object directory, as well as some of the
derived concepts that follow, the three system calls related to object direc
tories are introduced. In the context of the discussion of object-based de
sign, these system calls are part of the iRMX job type manager. An object
directory is actually implemented as a hash table occupying one ofthe data
structures of a job object, but the system calls you are about to see make the
actual implementation irrelevant to the application program.

First, two notes on iRMX system calls. A system call is a procedure re
siding in system memory executed by a task that belongs to some job. The
task that makes a system call is normally assumed to belong to a job asso
ciated with an application, although tasks belonging to first-level jobs and
other operating system jobs make system calls as well.

Second, C function prototypes are used to introduce iRMX system calls.
ANSI C allows, but does not require, variable names in the parameter list
of a function prototype. Such variable names are used to facilitate talking
about the different parameters, even though they are normally omitted in
actual practice. PLM programmers can refer to the on-line help accompa
nying iRMX for Windows or to the iRMX System Call Reference manual
(volume 9 of the iRMX for Windows documentation set) for the equivalent
information expressed using that language's syntax.

void
rqcatalogobject (TOKEN

TOKEN
char far *
WORD far *

Fundamental iRMX Objects and Structures 205

job,
object,
namePtr,
exceptPtr) ;

This system call causes the token stored in variable object to be cata
loged in the object directory for the job whose token is stored in the vari
able job, using the name stored in the character array name. If the system
call succeeds, the word pointed to by exceptPtr will be set to a value of
zero (often referred to symbolically as E _OK). If the call fails, either the
word at exceptPtr will be set to an exception code or the exception
handler for the task that made the system call will receive control, depend
ing on how the task handles exceptions. (Exception handling is discussed
in more detail in the following section).

For the system call to succeed, job must be a token for a valid job object,
enough memory must exist in that job's object directory to hold the new
entry, the obj ect token must be for an existing iRMX object (of any type),
the length of the iRMX string at name must be between 1 and 12 bytes, and
the string must not match any of the entries already cataloged in the job's
object directory13.

At this point, a number of facts about object directories should be stated
explicitly, and are outlined here. First, a program can catalog tokens in any
job's object directory, not just its own, provided only that it can obtain a
token for the job. For example, the system call rqgettasktokens() can be
used to get the token for such key jobs as the root job.

Second, the same token can be cataloged multiple times either within a
single job or across multiple jobs. The only requirement is that every entry
in a particular job's object directory have a unique name within that direc
tory. The same name can be used in different job directories for the same or
different tokens.

Third, not all objects are cataloged in object directories, only those that
need to use the directory mechanism for sharing. For example, if two tasks
can access a shared variable, that variable can be used for sharing the value
of a token, and no object directory needs to be used to do the sharing. Gen
erally, object directories are used for sharing tokens between tasks that be
long to jobs loaded into memory separately and that do not share global
variables.

Finally, whenever tokens are shared, whether through object directories
or by global variables, a token can become invalid. For example, if a token
for an object belonging to Job 1 is cataloged in Job 2' s object directory, and

13 An iRMX string consists of one byte containing the length of the string as an unsigned
value between 0 and 255, followed by a sequence of values occupying the specified number of
bytes. The byte values are often ASCII codes, but ASCII is not a requirement. Any 8-bit
values can be used.

206 iRMX Concepts and Features

Job 1 terminates, all the objects belonging to Job 1 are deleted. The token
in Job 2's object directory, however, is not automatically deleted. iRMX
will not let an invalid token be placed into a job's object directory, but it
does not guarantee that all cataloged tokens are still valid at some later
time.

TOKEN
rqlookupobject (TOKEN

char far *
WORD
WORD far *

job,
name,
timeLimit,
exceptPtr) ;

Given a token for job and a match between name and one of the names
in the object directory for job, this function returns a copy of the token ca
taloged under that name. timeLimi t specifies the amount of time the
calling task is willing to wait if the name is not in the job's object directory
when the system call is made. If a value of zero is specified and the name is
not found, the call completes immediately with an exception code of
OxOOOl (E _TIME), either returning to the caller with the word pointed to
by exceptPtr set to OxOOOl or to the caller's exception handing routine,
depending on the setup. If timeLimi t is set to OxOFFFF, the calling task
will block until the name appears in the job's directory (placed there by an
other task) or the program is terminated. (Task scheduling states are dis
cussed in the next section.)

If timeLimi t is between 0 and OxOFFFE and name does not match an
entry in the object directory, the calling task will block until either the
entry appears in the object directory or the time limit expires. The time
limit is specified in O.Ol-second intervals for almost all iRMX systems.
That is, the task may block for 0 to 655.34 seconds waiting for another task
to catalog an object that uses the matching name.

Because a time limit is associated with this call, the call can be used to
synchronize concurrently executing tasks. The synchronization provided
by this call is normally used only when an application is initializing and
cataloging objects that are to remain in place for the duration of the appli
cation. More dynamic synchronization is usually accomplished using other
system calls that involve less overhead.

void
rquncatalogobject (TOKEN

char far *
WORD far *

job,
name,
exceptPtr);

This function is used for housekeeping. As its name implies, it removes
an entry from a job's object directory. It is good programming practice to
uncatalog tokens for objects about to be deleted to avoid the invalid token
problem mentioned previously. Also, uncataloging objects ensures that a
job's object directory does not fill up over a period of time.

Fundamental iRMX Objects and Structures 207

A common use for this call is when an application catalogs an object in
another job's directory, terminates unexpectedly (Le., without uncatalog
ing the object), and is restarted. It must uncatalog the entry from the first
time the program executed before it can catalog a new token using the same
name the second time it runs.

The following are a few summary points about object directories, which
are necessary before discussing tasks.

Object directories are an optional property of jobs. It would be absolutely
possible to build a complete iRMX system with all object directories for all
jobs empty and of length o. Methods other than object directories can be
used for sharing objects among tasks or jobs.

The iRMX job tree and object directories are not related at all to the tree-struc
tured file system or the directory nodes in a file system.14 Think about it. For
example, you could not have a file tree without directory nodes, but you can
have a job tree without object directories. Files and directories reside on
disks. Jobs and object directories occupy primary memory (RAM). The job
tree is based on a parent-owns-child relationship. File directories do not
own the files listed in them - users (people) own files and file directories.
No analogies exist between jobs and files. The fact that there are both job
trees and file system trees says something about the ubiquitous nature of
tree structures in computer science, but does not imply any relationship
between jobs and files.

There is an SOB command to view the object directory for a job. View direc
tory, or vd, (available from the SoftScope prompt or by typing <alt
Break> under iRMX for Windows16) takes a token for the job as its argu
ment. As various layers of iRMX that use the object directory facility are
discussed, it can be very instructive for you to poke around in the system
you are using to see the actual entries that have been cataloged in various
job's object directories.

6.6.2 Task management

The essence of task management is scheduling. Task creation and deletion
are part oftask management too, but the heart of the matter is scheduling.

In a single-CPU environment, such as the computers on which iRMX
runs, exactly one task can be executing at any particular moment. Task
scheduling ultimately boils down to a matter of selecting which single task
is to execute at any time. In iRMX, tasks can use a rich set of functions for
synchronization and communication among themselves. All of these func-

14Certain objects that the BIOS or EIOS use in managing a file system do show up in object
directories (logical names), but the basic statement that the two have nothing to do with each
other is correct.

llType <g> to exit the SDB if you enter it using <alt-Break>.

208 iRMX Concepts and Features

tions should be thought of as extensions to the task scheduler procedure in
the Nucleus. When any system call that involves communication or
synchronization changes the state of a task, it does not return directly to
the code from which it was called (the application program). Instead, it
exists to the task scheduler, which determines whether that task or some
other task is to execute next.

Two concepts are central to task scheduling. First, every task has a pri
ority number between 0 and 255 assigned to it, with 0 being the highest.
The basic scheduling rule used by the iRMX task scheduler is called pre
emptive, priority-based scheduling. This rule says that of all the tasks ready
to execute at any moment, the one task with the highest priority will be se
lected to execute, and it will continue to execute until it either blocks (waits
for an event of some sort) or is preempted by another task of higher priority
that becomes ready. If two tasks of equal priority are ready at the same
time, the first one that became ready is selected for execution.

This first-come-first-served algorithm can be augmented by a round
robin policy in which ready tasks with equal priority are given time quanta
of CPU time, and the running task is put at the end of its priority queue
when its quantum expires. Round-robin scheduling is optional and most
commonly used when an iRMX system is being used as a time-sharing sys
tem for development work rather than for real-time applications. The de
fault configuration of iRMX enables round-robin scheduling for tasks with
priorities between 140 and 255, with a time quantum of 50 milliseconds.
Note that if two ready tasks have different priorities, even if both priorities
are in the round-robin range, the higher-priority task is always the one that
runs. Round-robin applies only to tasks of equal priority. (Round-robin
scheduling is ignored in the description of scheduling that follows, but that
does not affect the essence of the discussion.)

Note that all tasks are treated uniformly by the task scheduler, without
regard to the jobs to which the tasks belong. The only interaction between
jobs and task scheduling is that every job has a maximum task priority as
sociated with it (one is shown, for example, in the upper right corner of Fig
ure 6.6). Thus, no task belonging to a job can be created with a priority
higher (numerically lower) than this value. Tasks can change their own or
other tasks' priorities during execution (using rqsetpriority(), but each
job's priority limit always applies to all the tasks that it owns.16

The second concept central to task scheduling is the notion ofthe sched
uling state. At any moment, every task in the system is in one of several
states. Figure 6.7 is the standard diagram for iRMX task scheduling states.
Exactly one task is always in the running state, and any number of tasks

16Ifyou still are not clear about the difference between time-sharing and real-time systems,
consider this: If you are using an iRMX system for timesharing and you do not like the impact
of the other users on your work, just run a program that calls rqsetpriority() to change all the
other users' task priorities to 255!

Fundamental iRMX Objects and Structures 209

Ready

Running

Asleep /
Suspended

Figure 6.7 State diagram showing possible state transitions for iRMX tasks.

are in each of the other states. The ready state holds all tasks not blocked
but with priorities less than or equal to the task in the running state. The
asleep state is used for most cases of blocked tasks, with suspended and
asleep-suspended used for a special form of blocking described in the fol
lowing sections.

Once a task enters the running state, it stays there and continues to have
total control of the CPU until one of the following things happens.

The task calls rqs/eep(). This system call causes the task to block (enter
the asleep state) for a specified time interval. At the end of the interval, the
task wakes up, enters the ready state, and runs again if its priority is higher
than the running task's.

The task calls rqsuspendtask() and specifies itself as the task to be sus
pended. The task then moves to the suspended state and stays there until
another task in the running state calls rqresumetask(), and then this task
enters the ready state and runs again when it has the highest priority.

The task calls rqresumetask() and the task being resumed has a higher priority
than the running task. The resumed task enters the ready state, is seen to
have a higher priority than the running task, and preempts it. The running
task enters the ready state, and the resumed task becomes the running task.

The task makes one of the system calls listed in Table 6.1, which blocks be
cause the specified request cannot be satisfied.. If the task blocks, the call
ing task will remain blocked until either the blocking event occurs or a time

210 iRMX Concepts and Features

TABlE 6.1 Nucleus System Calls That Might cause a Task to Block

System call Event that will end the block

rqforcedelete Another task calls rqenabledeletion() for the object to be deleted.
No time limit.

rqlookupobject A task calls rqcatalogobject() for a token with a matching name.

rqreceivecontrol A task calls rqsendcontrol() for the region. No time limit.

rqreceivedata A task calls rqsenddata() for the data mailbox.

rqreceivemessage A task calls rqsendmessage() for the object mailbox.

rqreceiveunits A task calls rqsendunits() for the semaphore.

rqsleep None. Time limit only.

rqsuspendtask Another task calls rqresumetask() for this task. No time limit.

rqetimedinterrupt An interrupt of the proper level occurs.

rqwaitinterrupt An interrupt of the proper level occurs. No time limit.

rqreceive A task on another processor of a Multibus II system sends a
message to the specified port.

rqreceivereply A task on another processor of a Multibus II system replies to an
RSVP message.

rqreceivesignal A task on another processor of a Multibus II system sends a signal.

limit completes, except as noted in the table. The table also lists the event
that can release the block. Most of these system calls include a time-limit
parameter, as we saw earlier for rqlookupobject(). The task enters the
asleep state and remains there until (1) the request can be satisfied, (2) the
specified time limit expires, or (3) another task suspends the asleep task,
putting it into the asleep-suspended state,17 Whichever event-(1) or (2)
- occurs next, the task then enters the ready state and preempts the run
ning task if it has a higher priority. The task must examine the condition
code returned for the system call to determine whether the call completed
because the event occurred (E_ OK) or because the time limit expired (E_
TIME). A task can enter the asleep state only by making a system call it
self. Unlike the suspended state, one task cannot put another task into the
asleep state.

The task makes one of the system calls listed in Table 6.2, which satisfies a re
quest that had caused another task to block. The blocked task moves to the
ready state and preempts the running task if the blocked task has higher
priority.

17 A task that enters the asleep-suspended state returns to the asleep state if it is resumed
before its time limit expires, or enters the suspended state ifits time limit expires before being
resumed.

Fundamental iRMX Objects and Structures 211

TABLE 6.2 Nucleus System Calls That Can Cause Another Task to Enter the Ready State

System Call Task that might preempt the running task

rqcatalogobject A task that has called rqlookupobject().

rqcreatejob The initial task of the created job.

rqecreatejob The initial task of the created job.

rqcreatetask The newly-created task.

rqenable The interrupt task for the enabled interrupt level.

rqenabledeletion A task that has called rqforcedelete() for the object.

rqendinittask The initial task in the next first-level job to be created.

rqresumetask The resumed task.

rqsendcontrol A task that has called rqreceivecontrolO for the region.

rqsenddata A task that has called rqreceivedata() for the data mailbox.

rqsendmessage A task that has called rqreceivemessage() for the object mailbox.

rqsendunits A task that has called rqreceiveunits() for the semaphore.

The task calls rqsetpriority(). With this command, the task might either
raise the priority of another task or lower its own priority so that it no
longer has a higher priority than all the tasks in the ready state.

For each case listed so far, the running task makes a system call that
causes itself to exit the running state. Each of these system calls is part of
the Nucleus layer of iRMX, and each of them finishes its work by calling
the iRMX task scheduler, which is the procedure in the Nucleus that se
lects the next task to run.

Some scheduling state transitions occur without the running task mak
ing a system call. These cases are initiated by hardware interrupts. When a
hardware interrupt request occurs, the CPU's interrupt logic, described in
chapter 5, saves the state of the currently running program (which for
iRMX is the task in the running state) and activates a procedure called an
interrupt handler. It can be said that the interrupt handler is then running
in the context of the currently scheduled iRMX task. All iRMX tasks must
have a stack large enough to accommodate the CPU state saved during in
terrupt processing. The stack is restored to its original condition when the
interrupt handler terminates. The following items illustrate the general
scheduling issues related to interrupt processing.

There is a clock circuit that causes a hardware interrupt, typically 100 times per
second for iRMX systems. The clock interrupt handler uses a counter vari
able to keep track of current time of day. When the clock interrupt handler
increments the time-of-day counter to the time limit of a task in the asleep
state, the task scheduler is activated, which moves the asleep task to the

212 iRMX Concepts and Features

ready state, and causes that task to preempt the running task if its priority
is higher. Versions of the Nucleus that support iRMK operations (iRMX
III and iRMX for Windows) can be based on a finer-granularity clock (typ
ically, 1 millisecond), but the behavior of the system for applications that
do not make iRMK calls is the same as described here.

When a hardware I/O device controller causes an interrupt, an interrupt handler
is provided as part of the software device driver for that device con
troller. Neither the iRMX task scheduler nor the task running when the
interrupt occurs can know when an interrupt handler is activated. I/O in
terrupt handlers, however, are allowed to make a special Nucleus system
call named rqsignalinterrupt(), which tells the task scheduler to move a
task associated with the interrupt into the ready state. This interrupt task
thus preempts the running task ifthe interrupt task has a higher priority.

6.7 Exception Handling

The last (or only) parameter of every iRMX system call is a pointer to a
word set to the condition code, sometimes called the exception code, for the
call. If the call completes normally, this word is set to a value of zero
(OxOOOO). If an abnormal condition occurs during execution ofthe call, the
iRMX exception handling mechanism is called. A mnemonic is associated
with each condition code value, such as E _OK for OxOOOO. Header files are
available so that programs can refer to these values by name rather than by
number.1s This section gives an overview ofthe exception-handling mech
anism, and the next section describes how it is implemented in more detail.

6.7.1 Types of exceptions

Before discussing the types of exceptions, let's distinguish among environ
mental exceptions, programmer exceptions, and faults.

Environmental exceptions. These are abnormal conditions that arise dur
ing the execution of a system call but which do not necessarily represent
programming errors. Examples include attempting to write to a printer
that is out of paper or having the time limit of a call to rqlookupobject() ex
pire without the requested object being cataloged. The first example is
clearly not an error, and the second example might or might not be an error
condition, depending on the nature of the application program.

Programmer exceptions. These are also conditions that occur during the
execution of system calls, but which simply should not happen. They are
caused by bugs in the program that makes the call. An example would be

18 For example, :includeirmx_err.h on iRMX for Windows system.

Fundamental iRMX Objects and Structures 213

passing something other than a token for a valid iRMXjob as the first pa
rameter of a call to rqcatalogobject().

Faults. Faults are conditions detected by the microprocessor hardware
operating in protected mode, as described in chapter 5. The most common
fault that programmers encounter is probably the general protection fault
(GP fault), which has a fault code of 13.

The other common type of fault is the stack fault, code number 12, which
occurs when the current stack segment overflows (for instance, because of
an infinite loop that includes a function call that keeps creating new stack
frames) or when a re-entrant function (such as any C function not declared
to be static) makes an out-of-bounds reference to a local array variable, and
thus located in the stack segment rather than a data segment.

If an application program faults while executing its own code, it is be
cause the programmer has coded an illegal memory reference (array out of
bounds, attempt to execute data, etc.). If an application program faults
while executing a system call, the fault should be handled by the operating
system itself. (Otherwise, it would represent a bug in the operating sys
tem.) Faults in a user's code and exceptions, which occur only during exe
cution of a system call, are handled a little differently from each other, as
you will see in the next section.

Returning to exception handling, every system call has associated with it
a set of condition code values that it can generate to indicate exceptions.
These values are documented with each call, and that documentation
should be consulted when designing and debugging applications that en
counter exceptions.1s The same exception-code value can provide you with
subtly different information, depending on what system call caused it to
occur.

The decision about what to do if an exception or fault does occur depends
on the stage of development of the application and the nature ofthe partic
ular exception. Some conditions should cause the application to terminate
or break to a debugging program, while others might alter the logic flow in
the program. Programmers accustomed to developing software in a non
protected environment such as DOS might consider faults and exceptions
to be a nuisance at first, but they are actually extremely significant time
savers during development. Without faults and exceptions, debugging can
involve working from the side effects of an error that occurred thousands of
instructions earlier than the point at which the problem became apparent.
A fault or exception, on the other hand, generally occUrs at the moment the
error occurs, making localization of the problem much easier.

l"iRMX for Windows users will find the exception codes associated with each system call
listed in the help system provided with that version of iRMX.

214 iRMX Concepts and Features

6.7.2 Handling exceptions and faults

You can handle exceptions in two ways. One is to have the application task
examine the condition -code value after the system call completes, which is
called in-line exception handling. The other is to establish an exception
handling procedure that automatically receives control when a system call
completes with a nonzero condition code value.

Figure 6.8 is a C program that demonstrates in-line exception handling.
The two values explicitly tested for Status in this program are OxOOOO,
which is also known as E_OK (no error), and Ox0002, also known as
E _ MEM, which means there is not enough memory to satisfy the request.
Other condition codes that might be returned include Ox0004 (E_LIMIT)
if the job has already created all of the objects it is allowed to, and OxOOOC
(E_SLOT) if there are no more slots available in the GDT to hold the de
scriptor for the segment.

Figure 6.8 Sample code illustrating in-line exception handling.

/***> inline.c <***

Demonstrate in-line exception handling

***'

#include <stdio.h>
#include <stdlib.h>
#include <rmxc.h>

/* Execution starts here
*/

int
main (int argc, char *argv[])

DWORD
WORD

Size; 100;
Status;

TOKEN Segment;
EXCEPTIONSTRUCT eh;

/* Default segment size */

/* Set up for in-line exception handling
*/
rqgetexceptionhandler
eh.exceptionmode ; 0;
rqsetexceptionhandler

(&eh, &Status);
/* Never call the exception handler

(&eh, &Status);

/* Get the size of a segment to create from the command line
*/
if (argc ;; 2) Size; atol (argv[l]);

*/

/* Create a memory segment object and test to see if the system call
* was successful or not.
*/
Segment; rqcreatesegment (Size, &Status);
switch (Status) {

case OxOOOO: printf ("Created a %d-byte segment successfully.\n',
Size) ;

exit (0);
case Ox0002: printf ("Not Enough Memory for a segment of size %ld.\n",

Size) ;
exit (1);

default: printf ("Unable to create segment of size %ld.\n"
"Exception code is %4X\n", Size, Status);

exit (1);

Fundamental iRMX Objects and Structures 215

This program explicitly checks for the two most common values for the
condition code after calling rqcreatesegment() (normal completion and not
enough memory), and lets all the other possible values that the call might
return be handled as the default case in the switch statement.

Every iRMX task has an exception handler, and there are several ways
to select which procedure is to be the exception handler for a particular
task. The most accessible way to associate an exception handler with a task
is for the task to use the rqsetexceptionhandler() system call. This same call
is also used to select between in-line exception handling and use of an ex
ception handler. The C function prototype is the following:

void
rqsetexceptionhandler (ehstruct *

WORD far *
eh,
exceptPtr);

ehstruct is a structure consisting of a far pointer to the routine to serve
as the handler procedure and a mode byte that tells under what conditions
the handler procedure should be called. Values for the mode byte follow:

o Never. The application must handle all exceptions in-line.
1 Programmer Errors. The exception handler is called if a programmer

error occurs, but other exceptions are handled in-line.
2 Environmental Conditions. The exception handler is called if an envi

ronmental condition occurs, but programmer errors are handled in
line.

3 Always. All system calls that result in a nonzero condition code setting
cause the exception handler to be called.

Every job has an exception handler and mode associated with it; a
pointer to an ehstruct is one of the parameters of the rqcreatejob() or
rqecreatejob() system call (see chapter 7 for a summary of many system
calls that have not been introduced yet). Each task created for the job auto
matically inherits that job's default exception handler and mode, and each
task can then change its handler and mode by calling rqsetexception
handler().

Sometimes, a task needs to switch between in-line exception processing
and the use of its default exception-handler procedure. To do this, the task
calls rqgetexceptionhandler(), which fills in an ehstruct structure with
the current exception handler pointer and mode byte. The task can then
change the value of the mode byte in this structure and call rqsetexception
handler() to achieve the desired effect. For example, Figure 6.9 is a PLM
program that does in-line exception handling for a call to rqcreateseg
ment() and uses the job's default exception handler to handle any excep
tions that occur when it calls rqexitiojob(). Examining this code, you might
wonder why some system calls are followed by tests of the variable Sta tus
and others are not. Let's consider each call in sequence.

216 iRMX Concepts and Features

Figure 6.9 PLM program illustrating both in-line exception handling and use of the default
exception handler for the job.

1***> handle.plm <***

*

*

PLM Program demonstrating switch between in-line and default
exception handling

***/

handle: DO;
$include (handle.ext)

DECLARE
E$OK LITERALLY '0' ,
NEVER LITERALLY '0' ,
PROGRAMMER LITERALLY '1' ,
ENVIRONMENT LITERALLY '2' ,
ALWAYS LITERALLY '3' ,
CR LITERALLY 'ODh' ,
LF LITERALLY 'OAh' ,
ehstruct STRUCTURE

handler POINTER,
mode BYTE) ,

Segment TOKEN,
Status WORD;

/* Get the default exception handler and mode for the job, and
change the mode to 0 -- handle exceptions in-line.

*/

CALL rqgetexceptionhandler (@ehstruct, @Status);
ehstruct.mode = NEVER;
CALL rqsetexceptionhandler (@ehstruct, @Status);

/* Create a segment and check for exceptions.
*/

Segment = rqcreatesegment (5280000, @Status);
IF Status <> 0 THEN

DO;
CALL rqcsendcoresponse (NIL, 0, @(15, 'Create Failed', cr, lf),
@Status) ;
IF Status <> 0 THEN

END;

CALL rqcsendcoresponse (NIL, 0, @(23, 'SendCOResponse Failed',
cr, lf), @Status);

/* Let default exception handler manage anything that goes wrong now
*/

ehstruct.mode = ALWAYS;
CALL rqsetexceptionhandler (@ehstruct, @Status);
IF Status <> 0 THEN

CALL rqcsendcoresponse (NIL, 0, @(20, 'Set Handler Failed'. cr.
If). @Status);

CALL rqexitiojob (0. NIL. @Status);

END handle;

Fundamental iRMX Objects and Structures 217

When the program starts running, the default exception handler will de
lete the job if any exception occurs (described in the following section), and
the mode is initially set to 3 (also described). The first system call is to
rqgetexceptionhandler(), and Sta tus is not checked after the call. Status
is not checked because if the call fails, the default handler will abort the job,
so any code following the call will either find Sta tus to be 0 or will never be
reached. The second call is to rqsetexceptionhandler{}. Again, the condi
tion code is not checked. If the call fails, it means the mode did not change,
the default handler will be invoked to handle the condition, and the job will
be aborted. If the call succeeds, there is no need to check the condition
code - it is o.

The call to rqcreatesegment() is followed by an in-line check of Status,
and the code handles any error condition by displaying a message. Since
the call to rqcsendcoresponse() might fail, Status is again checked after
that call. Chances are, trying another rqcsendcoresponse() to display a
message about the failure of call to the same routine will also fail, but the
code is included anyway, and the potentially infinite regress is arbitrarily
terminated at that point. (This piece of code has not been fully tested; it is
hard to get rqcsendcoresponse() to fail!)

Before exiting the job, the default exception-handling mode is changed
back to 3, and rqexitiojob() is called. The condition code is checked after
rqsetexceptionhandler(), as failure means that in-line checking is still in
effect, but the code is not checked after rqexitiojob(), because mode 3 is in
effect for that call and will cause the job to abort if the call fails.

Figure 6.10 illustrates the use of a user-written procedure as a task's ex
ception handler. The procedure takes four parameters: the condition code
for the system call that caused an exception, the number of the parameter
that was in error (numbered left to right in the system call's argument list,
starting with 1), an unused parameter, and a word containing the numeric
coprocessor's status word if the condition code is E_NDP _ERROR
(Ox8007). There is no standard header file that contains a function proto
type for exception handler procedures. The iRMX Nucleus Programming
Concepts manual (volume 3 of the iRMX for Windows documentation set)
gives the information needed to code this procedure.

The sample handler simply displays the values of the first two parame
ters passed to it and returns to the program that caused the exception to
occur. The function main() installs the exception handler and then tests it
by calling rqlookupobject() with a value for the first parameter of the call
taken from a command-line argument. Three interesting cases can be
tested with this program, as described as follows.

The command line argument is 0 or omitted. The rqlookupobject() system
call interprets a job token with the value of 0 as a reference to the calling

218 iRMX Concepts and Features

Figure 6.10 Sample user-written exception handler, installed and tested by main{}.

/***> handler.c <**
*
*
*

user-written exception handler example

***********.**/
iinclude <stdio.h>
iinclude <stdlib.h>
iinclude <rmxc.h>

/* The Exception Handler Procedure
*
*/

void far
myHandler (WORD code, WORD param, WORD reserved, WORD npxStatus) {

printf ("ExCeption Ox%04X occurred in parameter %d.\n", code, param);
return;
}

/*

*
*/

int

Code to test the handler starts here

main (int argc. char *argv[))

EXCEPTIONSTRUCT
TOKEN

eStruct;
dUIlUllY;
Status; WORD

/* Establish handler() as this task's exception handler
*/

eStruct.offset = (NATIVE_WORD) (void near *) myHandler;
eStruct.base = (selector) myHandler;
eStruct.exceptionmode = 3;
rqsetexceptionhandler (&eStruct, &Status);

/* Force an exception to test the handler
*/

if (argc == 2) dUIIUIIY = (TOKEN) atoi (argv[l]);
else dUIIUIIY = (TOKEN) NULL;
rqlookupobject (dUIlUllY, "\x006INARDY", (WORD) 0, &Status);
printf ("exit from main\n");
exit (0);

task's job. (No real iRMX object has a token value of 0; GDT slot 0 holds
the descriptor for the GDT segment itself.) Because the program does not
have anything cataloged in its job's object directory using the name "IN
ARDY" the system call fails with an E _TIME exception because the object
cannot be found within the time limit specified. The messages issued by the
program are the following:

Exception OxOOOI occurred in parameter 3.
exit from main

Fundamental iRMX Objects and Structures 219

The numeric code for the E_TIME exception is Ox0001, and the system
call reports that the error occurred because of the value ofthe third param
eter (the time limit). The second message demonstrates that the exception
handler returns to main() successfully.

The command line argument is 1. No iRMX object has the token value
of 1, so the call to rqlookupobject() fails with an exception code of
E_EXIST (token does not exist), which has a numeric code of Ox0006.
Since the job parameter is the first argument to the system call, the pro
gram issues the following messages:

Exception Ox0006 occurred in parameter 1.
exi t from main

The command argument is 600. Telling you this is cheating, but 600
(Ox258) has always been the numeric value of the token for the root job of
iRMX systems, and will probably continue to be so for some time.2O If your
system is running with iRMX networking installed (discussed in chapter
11), there will indeed be a token cataloged in the root job's object directory
using the name INARDY, and the exception handler will not be called if you
run the program with 600 on the command line. Only the exi t from main
message will be displayed.

Fault handling also involves passing control to an exception handler
routine when the fault is detected by the hardware. iRMX for Windows
systems allow two choices for the fault handler. In the rmx. ini configura
tion file, there is a parameter called DEH (Default Exception Handler) in
the [Nucleus] section. If this parameter is set to OOOH (the file uses PLM
syntax for hexadecimal values), faults cause a break to the System Debug
Monitor (SDB), which the programmer can use to debug the problem. If
DEH is 0 FFH, faults cause the job that owns the faulted task to be deleted.

You cannot cause a program's own exception handler to be invoked
when a fault occurs in iRMX for Windows systems, but iRMX systems
that support the Interactive Configuration Utility (ICU) can do so. (The
ICU is introduced in chapter 9.) When a user's exception handler is config
ured to receive control on faults, the exception code will be Ox800C for
stack faults and Ox800D for general protection faults. That is, the code is
Ox8000, plus the interrupt level of the fault. As faults are not associated
with system calls, the parameter-number argument passed to the handler
is zero for faults.

20It will probably change as soon as someone in the iRMX development group at Intel reads
this! The proper way to determine the token for the root job is to use the gettasktokensO sys
tem call.

220 iRMX Concepts and Features

6.7.3 The default exception handler for a job

Every job created has an exception handler and mode assigned to it, either
by default (a default system exception handler and mode is configured into
every iRMX system) or by setting a parameter in the system call that cre
ated the job. (The system calls to create jobs are covered in chapter 7.) Any
task can change its own exception handler and mode using the rqsetexcep
tionhandler() system call; doing so does not affect exception handling for
other tasks belonging to the same job. This section considers the options
available for establishing the default exception handler for a job, which is
the handler in effect for each task belonging to the job until the task
changes the exception handler.

The examples in Figures 6.8 and 6.9 demonstrate the difference between
C and PLM programs with regard to which default exception handler is in
place when execution begins. The difference is only superficial: all pro
grams that run as HI commands start with a default exception handler that
deletes the job in the event of any exception and a mode of 3 (signifying
that the handler is always invoked). C programs, however, do not start ex
ecuting at main(), they start executing in a start-off routine that performs
initialization and then calls main(). This initialization code sets the ex
ception handling mode to ° before calling main(), so C programs do in-line
exception handling by default.21 Programs run under SoftScope III also
have their exception handling mode set to 0, whether they are coded in
PLM or C. Earlier versions of Soft Scope leave the default mode at 3.

As mentioned earlier, a pointer to an ehstruct is one ofthe parameters
of the rqcreatejob() system call. If this parameter is coded as a null pointer,
the job inherits the default exception handler procedure and mode for the
system. For systems that support the ICU, the system default is chosen at
the time the system is configured, with the choices being:

• A handler that deletes the task that encounters an exception.

• A handler that suspends the task.

• A handler that deletes the job that owns the task.

• The system debugger.

• A procedure supplied by the system administrator when the system is
configured.

In addition to the default handler procedure, the default mode can be
configured to any of the four values (always, never, environment, program
mer) using the ICU as well.

21This behavior changed with iRMX for Windows 2.0c. With this release, the initialization
code does not change the exception handling mode. The code in Figure 6.10 is coded to work
regardless of the version of the operating system.

Fundamental iRMX Objects and Structures 221

Programs run as HI commands have their job's default handler set to the
system default procedure and mode, so the preceding statement about the
default handler for HI commands is true only if the system default is set to
delete the task's owning job and the default mode is Always.

6.8 The iRMX System Call Mechanism

Chapter 5 introduced the machine-language conventions used for making
function calls with the x86 architecture and described the call gate and
software mechanisms that can be used for accessing as functions with
protected-mode and real-mode operating systems. In addition, chapters 3
and 4 introduced interface procedures, to which an application must be
linked to make system calls. This section describes the internal logic of in
terface procedures in more detail.

When an application includes iRMX system calls, its object module
must be linked with a library that contains an interface procedure for each
system call referenced by the application. The interface procedure library
contains small assembly-language functions that act as the intermediary
between the application's code and the actual system call procedures resi
dent in system memory. Although these interface procedures have system
call names like rqcsendcoresponse() or rqcreatesegment(), they do not per
form the actual work of a system call. They pass parameters from the ap
plication to the actual system call, branch to the proper place in system
memory for the actual system call, and return result and condition code
values from the actual system call to the application task.

The code for making a system call from an application is just like the
code for calling any other type of function: the parameters are pushed onto
the calling task's stack (in left to right order for iRMX system calls), and a
machine language call instruction is then used to push a return address
onto the stack and branch to the prologue code in the interface procedure,
which completes a normal x86 stack frame by pushing the bp register and
saving the sp register in bp. Depending on whether the application was
compiled using the compact or large model, the call instruction will have
pushed either a near or far return address onto the stack (offset only or off
set plus selector).

Because the actual system call will access the parameters by referring to
fixed offsets from the top of the stack, there are two libraries of interface
procedures. The interface procedures in the library for compact-model
programming include an extra push instruction (of a dummy value) before
sp is copied into bp to put the parameters at the same relative positions in
the stack as for large model programs. The interface procedures in the large
model library are the same as the compact model except for this extra push
instruction and a corresponding difference at the end of the interface pro
cedure, where the compact model must delete the extra word on the stack
before returning to the application. The overhead for these extra two in-

222 iRMX Concepts and Features

structions in the compact-model interface procedures, by the way, is insig
nificant compared to the overhead that large model programs incur as they
load and restore the es and ds segment registers (and descriptors in pro
tected mode) when calling and returning from their interface procedures.

With the incoming parameters at a fixed location on the stack, the inter
face procedure now calls the actual system subroutine to do the system
call's work. In real mode, this is done by loading a value into a register to
indicate which particular system call is being made and executing a ma
chine-language int instruction to enter the operating system. A different
interrupt number exists for each layer ofthe OS, so the interface procedure
executes the int for the appropriate layer, the interrupt vector contains a
pointer to an entry routine for the layer in system memory, and the entry
routine examines the register value to determine which system call sub
routine to jump to.

For protected-mode versions of the OS, the interface procedure uses a
far call instruction to enter the appropriate system subroutine directly.
The offset part of this call instruction is ignored, because the selector part
always goes to a slot in the GDT that contains a call gate. From chapter 5
you might recall that call gates are special descriptors that contain com
plete pointers to subroutines, along with information used to change privi
lege levels and copy parameters from the application's stack to the stack
for the new privilege level. The call gates for current versions of iRMX do
not invoke privilege shifts for system calls. Both applications and the OS
routines operate at privilege level 0 (most privileged level) at all times, so
there is no parameter copying involved for iRMX.

Note that the interface procedures do not need to know the actual ad
dress of the system subroutines they call. In real mode, only an interrupt
number for the OS layer and a code value for the particular system call are
needed. In protected mode, only a slot number in the GDT is needed. Thus,
the operating system can be reconfigured, revised, or rewritten, and appli
cations bound to interface procedures do not need to be changed as long as
this information remains constant.

At this point, the system subroutine executes and returns certain values
to the application. The iRMX convention is to return these values in regis
ters, but most system calls are written in a high-level language (usually
PLM or C), so they typically call one of several assembly-language proce
dures called exit routines, passing the appropriate values on the stack. The
exit routines put the values into the proper registers and return to the in
terface procedure.

The interface procedure now stores the register that holds the condition
code for the system call (the ex register) in the word pointed to by the last
parameter of the application's system call and examines its value. If the
value is OxOOOO, meaning the system call completed normally, the interface
procedure now cleans up the stack frame and returns to the application in
the usual way.

Fundamental iRMX Objects and Structures 223

If, however, the condition-code value is not zero, the interface procedure
calls the rqerror() procedure, which determines what the exception -han
dling mode is for the application task. If the mode is 0 (handle exceptions
in-line), rqerror() returns to the interface procedure, which returns to the
application, which must test the word pointed to by its last parameter to
determine the result of the system call. If, however, the application task is
not doing in-line handling of the type of exception that occurred, rqerror()
calls the task's exception handler. A user-written exception handler could
return to rqerror(), which will return to the interface procedure, which will
then return to the application, but none of the exception handlers supplied
with the operating system return.

The foregoing description is slightly simplified with respect to rqerror().
The interface procedures for Nucleus-layer system calls under protected
mode versions of iRMX (II, III, and iRMX for Windows) call nucerror()
instead of rqerror(). The difference is that nucerror() checks the exception
mode and (conditionally) calls the exception handler directly, but rqerror()
uses the Nucleus-layer system call, rqsignaiexception(), to do the same
function.

The use of rqerror() or nucerror() procedures to test for and possibly in
voke a task's exception handler provides an alternative mechanism for ex
ception management for iRMX applications. The code for these proce
dures comes from the interface procedure libraries, so applications can
provide procedures with the same names to substitute for those supplied by
Intel. As long as a module containing the substitute procedures has been
linked by the binder before the interface library, the interface procedure
calls to these routines will be linked to the substitute versions, and the
standard versions will not be used. If this technique is used, and if the sub
stitute version of rqerror() does not call rqsignalexception(), the setting of
the individual tasks' exception handler and mode become irrelevant. Once
the code for an application is linked to the substitute version of rqerror(),
all tasks that execute that application's code, regardless of their calls to
rqsetexceptionhandier() and their jobs' default exception handler, have
their exceptions handled as coded in the substitute rqerror() procedure.

The purpose of this section has been to clarify the steps involved in
making any iRMX system call. Readers who plan to code their own system
calls (and thus their own interface procedures as well) will have to do some
assembly language programming. That code is covered in more detail in
chapter 10, which covers techniques for adding system calls and type man
agers to the operating system.

As a summary, Figure 6.11 is a pseudocode diagram for an application
program that makes a system call. Execution begins in the application pro
gram, enters the interface procedure, transfers to the code in system mem
ory, returns to the interface procedure, where rqerror() is called if the
condition code set by the system call is not zero. Rqerror() calls
rqsignalexception(), which invokes the task's exception handler unless ex-

224

LOADABLE MODULE:

Application Program:

/* Start Here */
Push parameters onto stack
Call interface procedure
Test condition code
/* Continue application program */

Interface Procedure:

Adjust stack pointer for compact model
Update stack frame pointer
Call the system subroutine in system memory
/* system subroutine returns here */
Test the condition code in register cx

not zero: Call rqerror() /* might not return */
zero: continue

Clean up stack, store condition code for application
Return to the application program

rqerror():

Call rqsignalexception() /* might not return */
Return to the interface procedure

RESIDENT OPERATING SYSTEM (System Memory)

System Subroutine:

Get parameters from stack
Perform the system call operation
Load return value and condition code into registers
Return to interface procedure

Figure 6.11 Pseudocode for an application program that makes a system call.

ceptions are being handled in line. If they are handled in line, rqsignalex
ception() returns to rqerror(), which returns to the interface procedure,
which returns to the application. If no exception occurs, the interface pro
cedure returns directly to the application without calling rqerror().

Chapter

7
Basic iRMX System Calls

7.1 Overview

So many system calls are available for use with iRMX that it is often diffi
cult to know how to begin developing a real-time application for the sys
tem. This chapter presents the system calls associated with the key con
cepts of task, memory, and job management used in developing basic
real-time applications for iRMX.l

System calls for Human Interface (HI) command processing are briefly
introduced, but they are not covered in detail because applications devel
oped in C generally do not use them. System calls used for device drivers
and interrupt management are covered in chapter 9, and system calls for
managing composite objects and for creating new system calls are pre
sented in chapter 10.

For complete information on all the system calls for iRMX II and III,
consult the iRMX System Call Reference manual, volume 9 ofthe iRMX for
Windows documentation set, or the corresponding volume for other ver
sions of the operating system. The entire text of the iRMX for Windows
version of this volume is available in hypertext format from the DOS
rmxhelp command provided with iRMX for Windows. iRMX I users might
prefer to consult the System Calls volume of the iRMX I documentation
set, which omits material specific to iRMX II and III.

Intel provides system call documentation using both PLM and C syntax.
This book presents system calls using C-Ianguage function prototypes
based on the: include: rmxc. h header file provided with the iC386 com-

IThis chapter omits the calls for deleting objects. For every type of iRMX object there is a
system call to delete an object of that type that simply takes a token for the object to be deleted
as its first parameter. The names of those calls always take the form ofrqdeletexxxO with xxx
equal to the name of the object type.

225

226 iRMX Concepts and Features

piler, with descriptive names added for the parameter type specifications.
The rationale for using C prototypes rather than PLM prototypes is that C
prototypes are more complete; C pointer declarations include the type of
variable to which they point, unlike PLM pointers. PLM programmers can
easily derive their prototypes from the ones given here, or can consult
either the iRMX for Windows on-line help or the system calls refer
ence manual for the PLM prototypes. The C function prototypes use type
definitions for various data structures and data types defined in
: include: rmxc. h or in one of the header files included from there. Most
of these typedefs are self-explanatory, but those concerning word sizes and
pointer types deserve special attention here.

iRMX I and iRMX II run on microprocessors with I6-bit words, while
iRMX III runs on microprocessors with 32-bit words. For the function
prototypes given in this book, however, a parameter declared to be oftype
WORD is always 16 bits long, regardless of the operating system and micro
processor being used. Likewise, parameters of type DWORD are always 32
bits long. There are, however, some system calls that take certain are 16-bit
parameters for iRMX I and II, but 32-bit parameters for iRMX III. These
parameters are declared to be of type NATIVE_WORD, which is predefined to
the appropriate value by the different Intel C compilers.

The preceding situation is handled for PLM by the WORDl6 or WORD32
compiler-defined symbols and appropriate code in the rmxplm. ext in
clude file provided with the system. Coding problems arise when using the
PLM386 compiler, however, because it uses 32-bit values for variables de
clared to be of type WORD. All of the sample PLM code in this book uses
header files that declare data types called WORD_l6 and WORD_32, which
are used to generate variables of the correct sizes.

The figures for this chapter include sample programs illustrating the use
of some of the system calls discussed in the chapter. You might skip over
them for now, and refer back to them to see examples of system calls as
they are introduced. Figures 7.1 and 7.2 are equivalent PLM and C pro
grams that illustrate creating a new task within ajob. Figure 7.3 illustrates
creating an I/O job whose initial task executes a procedure loaded into
memory with the application itself. Figure 7.4 is a program that loads an
I/O job from a disk file, and Figure 7.5 is a sample program that could be
loaded by the program in Figure 7.4. The C programs equivalent to Figures
7.3 through 7.5 are left as exercises for the reader.

Figure 7.1 is a PLM program that displays some information about the
job created to run an HI command, creates a new task for that job, synchro
nizes execution between the initial task and the created task using a binary
semaphore, and exits. The output from running this program might look
like the following: (The numerical values for the tokens will change from
run to run of the program.)

Basic iRMX System Calls 227

Figure 7.1 PLM program to demonstrate iRMX multitasking.

/***> plmtask.plm <***

* Sample program illustrating multitasking in PLM.

**/

$compact (exports my task)
$title ('Sample Program Illustrating Task Creation')

plmtask: DO;

$include (plmtask.ext)

/* Global Variables

*/
DECLARE

mess (*)

CR
LF

LITERALLY
LITERALLY

'ODh' ,
'OAh' ,

BYTE INITIAL (0, 'This is the initial task: xxxx.', CR, LF,
I belong to job xxxx. " CR, LF,
My priority is xxxx.', CR, LF,
My maximum priority is xxxx.·, CR, LF,
Now I will create a new task.', CR, LF),

taskmess (*) BYTE INITIAL (0, CR, LF, 'This is the new task: xxxx.',
CR, LF, My priority is xxxx.', CR, LF,

Now I will send a unit to the semaphore
'and delete myself.', CR, LF),

waitmess (*)BYTE INITIAL (0, CR, LF, 'This is the initial task again.',
CR, LF, I created task xxxx.', CR, LF,

Now I will wait for a unit from
'the semaphore.', CR, LF),

hextab (*) BYTE INITIAL ('0123456789ABCDEF'),
(my job, my token , newtask) TOKEN,
syncSem
myprio
maxprioptr
maxprio BASED maxprioptr
(unitsLeft, Status)

TOKEN,
BYTE,
POINTER,
BYTE,
WORD;

/* Procedure to Convert a Hexadecimal Value to ASCII Characters

*/

word2hex: PROCEDURE (value, where);
DECLARE

value WORD,
i INTEGER,
where POINTER,
xxxx BASED where (1) BYTE;

DO i = 3 TO 0 BY -1;
xxxx(i) = hextab(value AND OFh);
value = shr (value, 4);

END;
END word2hex;

228 iRMX Concepts and Features

figure 7.1 (Continued)

/* Procedure to be Executed b¥ the New Task

*/
my task: PROCEDURE PUBLIC;
DECLARE

my token TOKEN,
mypriority BYTE,
Status WORD;

my token = rqgettasktokens (0, @Status);
mypriority = rqgetpriority (selector$of(NIL) , @Status);
CALL word2hex (WORD (my token) , @taskmess(25));
CALL word2hex (mypriority, @taskmess(49));
CALL rqcsendcoresponse (NIL, 0, @taskmess, @Status);

CALL rqsendunits (syncSem, 1, @Status);
CALL rqdeletetask (selector$of(NIL) , @Status);

END my task;

/* Initial Task Starts Here

*/
mess(O) = length (mess) -1;
taskmess(O) length (taskmess) -1;
waitmess(O) = length (waitmess) -1;

my token = rqgettasktokens (0, @Status);
my job = rqgettasktokens (1, @Status);
myprio = rqgetpriority (selector$of(NIL) , @Status);
CALL word2hex (WORD (my token) , @mess(27));
CALL word2hex (WORD (my job) , @mess(52));
CALL word2hex (myprio, @mess(76));
maxprioptr = buildptr (my job, 018h); /* Illustrate cheating */
CALL word2hex (maxprio, @mess(108));
CALL rqcsendcoresponse (NIL, 0, @mess, @Status);

syncSem
newt ask

rqcreatesemaphore (0, 1, 0, @Status);
rqcreatetask (myprio, @mytask,

selector$of(NIL) , NIL, 4096, 0, @Status);

CALL word2hex (WORD (newtask), @waitmess(53));
CALL rqcsendcoresponse (NIL, 0, @waitmess, @Status);

unitsLeft = rqreceiveunits (syncSem, 1, OFFFFh, @Status);
CALL rqcsendcoresponse (NIL, 0, @(46, CR, LF,

'Unit received b¥ initial task.', CR, LF,' Exiting.', CR, LF),
@Status);

CALL rqexitiojob (0, NIL, @Status);

END plmtask;

Basic iRMX System Calls 229

Figure 7.~ C program equivalent to Fig. 7.1.

/***> ctask.c <**

*
*
*

Sample C program to demonstrate iRMX multitasking

**/

#include <rmxc.h>
#include <string.h>

#define MYTASK 0
#define MYJOB 1

char

TOKEN

hextab[] "0123456789ABCDEF',
xxxx[] = "xxxx";
syncSem;

/*

*
Utility to Generate ASCII Representation of a Hex Value

*/
void
word2hex (WORD a_word) {
int i;

for (i=3; i >= 0; i--) {

/*

*
*/

xxxx[i] = hextab [a_word & OxOf];
a_word = a_word » 4;
}

Sample Procedure to be Used as a Task

void far
my task (void)
WORD Status;
BYTE
TOKEN

char

myprio = rqgetpriority «selector) NULL, &Status);
mytoke~ = rqgettasktokens (MYTASK, &Status),
my job = rqgettasktokens (MYJOB, &Status);
mess[256];

strcpy (mess, 'This is a new task: ");
word2hex «WORD) my token) ;
s;trcat (mess, xxxx);
strcat (mess, ".\r\n I belong to job 0);
word2hex «WORD) my job) ;
strcat (mess, xxxx);
strcat (mess, ".\r\n My priority is H);
word2hex «WORD) myprio);
strcat (mess, xxxx);
strcat (mess, ".\r\n Now I will send a unit to the semaphore \

and delete myself.\r\n\n");
udistr (mess, mess); .
rqcsendcoresponse (NUL.L, 0, mess, &Status);
rqsendunits (syncSem, 1, &Status);
rqdeletetask «selector) NULL, &Status);
}

/* Main Task Starts Here

230 iRMX Concepts and Features

Figunt 7.2 (Continued)

*
*/

int
main (int argc, char *argv[]) (

Status; WORD
BYTE
TOKEN

myprio = rqgetpriority «selector) NULL, &Status), maxprio;
my token = rqgettasktokens (MYTASK, &Status),
my job = rqgettasktokens (MYJOB, &Status),
newtask;

char mess[256];

syncSem = rqcreatesemaphore (0, 1, 0, &Status);

strcpy (mess, "This is the initial task: ");
word2hex «WORD) my token);
strcat (mess, xxxx);
strcat (mess, ". \r\n I belong to job");
word2hex «WORD) my job) ;
strcat (mess, xxxx);
strcat (mess, ".\r\n My priority is ");
word2hex «WORD) myprio);
strcat (mess, xxxx);
strcat (mess, ". \r\n My maximum priority is .);
rqsetpriority «selector) NULL, 0, &Status);
maxprio = rqgetpriority «selector) NULL, &Status};
rqsetpriority «selector) NULL, myprio, &Status);
word2hex «WORD) maxprio);
strcat (mess, xxxx);
strcat (mess, ".\r\n Now I will create a new task.\r\n\n");
udistr (mess, mess);
rqcsendcoresponse (NULL, 0, mess, &Status);

newtask = rqcreatetask (0,
my task, (selector) NULL,
NULL, 4096, 0, &Status);

strcpy (mess, "This is the initial task again.\r\n I created task ");
word2hex «WORD) newtask);
strcat (mess, xxxx);
strcat

(mess, ".\r\n Now I will wait for a unit from the semaphore.\r\n");
udistr (mess, mess);
rqcsendcoresponse (NULL, 0, mess, &Status);

rqreceiveunits (syncSem, 1, OxFFFF, &Status);
strcpy (mess, ·unit received by initial task.\r\n Exiting.\r\n");
udistr (mess, mess);
rqcsendcoresponse (NULL, 0, mess, &Status);
rqexitiojob (0, NULL, &Status);

return 0;

Basic IRMX System Calls 231

FIgIn 7.a Sample program demonstrating the creation of an I/O job, and receiving a termi
nation meIIII8P from the child job using a mailbox.

/.**> IOJOB.PLM <***

*
*
*
*
*

This is an HI command that demonstrates creation of a child I/O job
and passing information from the child to the parent through the job
completion mailbox.

***/
$compact (exports my task)
$title ('Sample Program to Create an I/O Job')

iojob: DO;
$include (iojob.ext)

/* Global variables

*/
DECLARE

CR
LF

LITERALLY
LITERALLY

'OOh' ,
'OAh' ,

mess (*) BYTE INITIAL (0, 'This is the initial task: xxxx.', CR, LF,
I belong to job xxxx.', CR, LF,
My priority is xxxx.', CR, LF,
My maximum priority is xxxx.', CR, LF,
Now I will create a new I/O job.', CR, LF),

exitrness (*)BYTE INITIAL (0, CR, LF, 'This is the initial task again.',
CR, LF, ' I created I/O job xxxx.', CR, LF,

It' 's exit code was xxxx.', CR, LF,
Now I will print its exit message '

'and exit myself.',
CR, LF),

taskrness (*)BYTE INITIAL (0, CR, LF, 'I/O job: xxxx.', CR, LF,
Task: xxxx.', CR, LF,
Priority: xxxx.', CR, LF,
Max priority: xxxx.', CR, LF, LF),

hextab (*) BYTE INITIAL ('0123456789ABCDEF'),
(my job, my token ,
newjob, jobrnbx, exittok) TOKEN,
exitstruct BASED exittok STRUCTURE

terrnination$code WORD_16,
user$fault$code WORD_16,
job$token TOKEN,
return$data$len BYTE,
return$data (1) BYTE) ,

myprio BYTE,
maxprio
Status

/* Procedure to Convert a Hexadecimal Value to ASCII Characters

*/
word2hex: PROCEDURE (value, where);
DECLARE

value

232 iRMX Concepts and Features

Figure 7.3 (Continued)

i INTEGER,
where POINTER,
xxxx BASED where (1) BYTE;

DO i = 3 TO 0 BY -1;
xxxx(i) = hextab(value AND OFh);
value = shr (value, 4);

END;
END word2hex;

/* Procedure to be Executed by the Initial Task of the I/O Job

*/
my task: PROCEDURE PUBLIC;
DECLARE

(mytasktoken, myjobtok)
mypriority
maxpriority
Status

TOKEN,
BYTE,
BYTE,
WORD_16;

taskmess(O) = length (taskmess) -1;
mytasktoken = rqgettasktokens (0, @Status);
myjobtok = rqgettasktokens (I, @Status);
mypriority = rqgetpriority (selector$of(NIL) , @Status);
CALL rqsetpriority (selector$of(NIL) , 0, @Status);
maxpriority = rqgetpriority (selector$of(NIL) , @Status);
CALL word2hex (WORD (myjobtok), @taskmess(12));
CALL wbrd2hex (WORD (mytasktoken), @taskmess(27));
CALL word2hex (mypriority, @taskmess(46));
CALL word2hex (maxpriority, @taskmess(69));

CALL rqexitiojob (01234h, @taskmess, @Status);

END my task;

/*

*/

Initial Task of the Parent Job Starts Here

mess(O) = length (mess) -1;
exitmess(O) = length (exitmess) -1;

my token = rqgettasktokens (0, @Status);
my job = rqgettasktokens (I, @Status);
myprio = rqgetpriority (selector$of(NIL) , @Status);
CALL word2hex (WORD (my token) , @mess(27));
CALL word2hex (WORD (my job) , @mess(52));
CALL word2hex (myprio, @mess(76));
CALL rqsetpriority (selector$of(NIL) , 0, @Status);
maxprio = rqgetpriority (selector$of(NIL) , @Status);
CALL word2hex (maxprio, @mess(108));
CALL rqcsendcoresponse (NIL, 0, @mess, @Status);
jobmbx rqcreatemailbox (0, @Status);
newjob = rqcreateiojob (1024, OFFFFFFFFh, NIL, 0, 0, @mytask,

selector$of(NIL) , NIL, 4096, 0, jobmbx, @Status);
exittok = rqreceivemessage (jobmbx, OFFFFh, NIL, @Status);

CALL word2hex (WORD (newjob), @exitmess(56));

Basic iRMX System Calls 233

Figure 7.3 (Continued)

CALL word2hex (exitstruct.user$fault$code, @exitmess(84));
CALL rqcsendcoresponse (NIL, 0, @exitmess, @Status);
CALL rqcsendcoresponse (NIL, 0, @exitstruct.return$data$len, @Status);

CALL rqexitiojob (0, NIL, @Status);

END iojob;

Figure 7.4 Sample program that uses the AL to create a child job and load it from a disk file.
/***> loadjob.plm <**

*
* sample PLM program to load an I/O job from file 'newjob'

***/

$title ('Sample Program to Load an I/O Job')

loadjob: DO;
$include (loadjob.ext)

/* Global Variables

*/
DECLARE

CR
LF

LITERALLY
LITERALLY

'ODh' ,
'OAh' ,

mess (*) BYTE INITIAL (0, 'This is the initial task: xxxx.', CR, LF,
I belong to job xxxx.', CR, LF,
My priority is xxxx.', CR, LF,
My maximum priority is xxxx.', CR, LF,
Now I will create a new I/O job.', CR, LF),

exitmess (*)BYTE INITIAL (0, CR, LF, 'This is the initial task again.',
CR, LF, I created I/O job xxxx.', CR, LF,

It' 's exit code was xxxx.', CR, LF,
Now I will print its message and exit.',

CR, LF),
hextab (*) BYTE INITIAL ('Ol23456789ABCDEF'),

(my job, my token,
newjob, jobmbx, exittok) TOKEN,
exitstruct BASED exittok STRUCTURE

termination$code WORD_16,
user$fault$code WORD_16,
job$token TOKEN,
return$data$len BYTE,
return$data (1) BYTE) ,

myprio
maxprio
Status

BYTE,
BYTE,
WORD_16;

/* Procedure to Convert a Hexadecimal Word to 4 ASCII Characters

*/
word2hex: PROCEDURE (value, where);
DECLARE

value

234 iRMX Concepts and Features

Figure 7.4 (Continued)

i INTEGER,
where POINTER,
xxxx BASED where (1) BYTE;

DO i = 3 TO 0 BY -1;
xxxx(i) = hextab(value AND OFh);
value = shr (value, 4);

END;
END word2hex;

/* Initial Task of Parent Job Starts Here

*/
mess(O) = length (mess) -1;
exitmess(O) = length (exitmess) -1;

my token = rqgettasktokens (0, @Status);
my job = rqgettasktokens (1, @Status);
myprio = rqgetpriority (selector$of(NIL) , @Status);
CALL word2hex (WORD (my token) , @mess(27));
CALL word2hex (WORD (my job) , @mess(52));
CALL word2hex (rnyprio, @mess(76));
CALL rqsetpriority (selector$of(NIL) , 0, @Status);
maxprio = rqgetpriority (selector$of(NIL) , @Status);
CALL word2hex (maxprio, @mess(108));
CALL rqcsendcoresponse (NIL, 0, @mess, @Status);

jobmbx
newjob

rqcreatemailbox (0, @Status);
rqsloadiojob (@(6, 'newjob'), 0, 0, NIL, D, D,

0, jobmbx, @Status);
exittok = rqreceivemessage (jobmbx, DFFFFh, NIL, @Status);

CALL word2hex (WORD (newjob), @exitmess(56));
CALL word2hex (exitstruct.user$fault$code, @exitmess(84));
CALL rqcsendcoresponse (NIL, D, @exitmess, @Status);
CALL rqcsendcoresponse (NIL, 0, @exitstruct.returndatalen, @Status);

CALL rqexitiojob (D, NIL, @Status);

END loadjob;

Figure 7.5 Sample program that could be loaded as an I/O job by the program in Fig. 7.4.

/***> newjob.plm <**

*
* Sample program to be used as a child I/O job for the loadjob program
*
**/

$title ('Sample Program to Serve as a Child I/O Job')

newjob: DO;
$include (newjob.ext)

/* Global Variables

*/

Basic iRMX System Calls 235

Figure 7.5 (Continued)

DECLARE
CR
LF

LITERALLY
LITERALLY

'ODh' ,
'OAh' ,

taskmess (*)BYTE INITIAL (0, CR, LF,
'Job: xxxx.', CR, LF,

Task: xxxx.', CR, LF,
priority: xxxx.', CR, LF,
Max priority: xxxx.', CR, LF,
Exi t. " CR, LF),

hextab (*) BYTE INITIAL ('0123456789ABCDEF'),
(my token, myjobtok) TOKEN,
mypriority
maxpriority
Status

BYTE,
BYTE,
WORD_16;

/* Routine to Convert a Binary Word to 4 Characters Representing
its Hexadecimal Value

*/
word2hex: PROCEDURE (value, where);
DECLARE

value
i INTEGER,
where POINTER,
xxxx BASED where (1) BYTE;

DO i = 3 TO 0 BY -1;
xxxx(i) = hextab(value AND OFh);
value = shr (value, 4);

END;
END word2hex;

/* Initial Task of the I/O Job Starts Here

*/
taskmess(O) = length (taskmess) -1;
my token = rqgettasktokens (0, @Status);
myjobtok = rqgettasktokens (1, @Status);
mypriority = rqgetpriority (selector$of(NIL) , @Status);
CALL rqsetpriority (selector$of(NIL) , 0, @Status);
maxpriority = rqgetpriority (selector$of(NIL) , @Status);
CALL word2hex (WORD (myjobtok), @taskmess(8»;
CALL word2hex (WORD (my token) , @taskmess(23»;
CALL word2hex (mypriority, @taskmess(42»;
CALL word2hex (maxpriority, @taskmess(65»;

CALL rqexitiojob (01234h, @taskmess, @Status);

END newjob;

236 iRMX Concepts and Features

This is the initial task. 0018.
I belong to job AFBO.
My priority is OOSE.
My maximum priority is OOSO.
Now I will create a new task.

This is the initial task again.
I created task 004 S.
Now I will wait for a unit from the semaphore.

This is the new task. 004S.
My priority is OOSE.
Now I will send a unit to the semaphore and delete myself.

Unit received by initial task.
Exiting.

Figure 7.1 also illustrates cheating as defined in chapter 6. To determine
the maximum task priority for the job, the program examines a location
within the job object's data structure. Although the code works for current
versions of iRMX III and iRMX for Windows, it does not work for current
versions of iRMX I and iRMX II. Furthermore, it may very well fail to
work in future versions of iRMX III and iRMX for Windows. Thus, the
program illustrates the "wrong" way to code an iRMX application. It is
coded this way simply to illustrate the fact that the internal data structure
of an iRMX object really is accessible to application programs. Such
cheating should never be done in actual iRMX applications.

The eversion ofthe program in Figure 7.2 illustrates the proper way to
code this application. It uses the rqsetpriority() system call to set the initial
task's priority to o. The value 0 for the new priority is interpreted by this
system call to mean the maximum priority allowed for the task. The task
then calls rqsetpriority() to determine what priority it has, and thus deter
mines what the maximum priority is for the job. The output from running
this program might look like this:

This is the initial task. E040.
I belong to job BA2S.
My priority is OOSE.
My maximum priority is OOSO.
Now I will create a new task.

This is a new task. F310.
I belong to job BA2S.
My priority is OOSO.
Now I will send a unit to the semaphore and delete myself.

This is the initial task again.
I created task F310.
Now I will wait for a unit from the semaphore.

Unit received by initial task.
Exiting.

The output from running the program in Figure 7.3 might look like this:

This is the initial task. BOlO.
I belong to job AEOS.
My priority is OOSE.
My maximum priority is OOSO.
Now I will create a new 1/0 job.

This is the initial task again.
I created I/O job B040.
It's exit code was 1234.

Basic iRMX System Calls 237

Now I will print its exit message and exit myself.
I/O job: B040.

Task: B058.
Priority: 008D.
Max priority: 008D.

The internal logic of some of the system calls given in this chapter and
elsewhere should be described here. The descriptions are based on the pub
lished documentation for the system calls, augmented by a bit of sleuthing
with the System Debugger's u- commands that display information about
iRMX objects. They are not based on examination of the operating sys
tem's source code nor on disassembly of any part ofthe operating system's
memory. Thus, these descriptions do not necessarily describe how the OS
is actually implemented, but rather how it could be implemented. The idea
is to build a realistic model of how iRMX works rather than simply present
a set of rules that you apply by rote when writing iRMX programs. The
model should help you develop iRMX code more effectively without com
promising the encapsulation provided by the operating system's object
based design.

7.2 Task Synchronization and Communication

Real-time systems need efficient and powerful multitasking facilities to
support programs that use separate threads of execution to manage the
different classes of events that drive the logic of most real-time applica
tiolls. Of course, many nonreal-time applications are event-driven too, no
tably those with graphical user interfaces. Thus, the multitasking features
described in this section make iRMX appealing for both real-time and gen
eral application development.

Before you can see how iRMX supports task synchronization and com
munication, you need to see how tasks are created, explicitly placed into
certain scheduling states, and deleted. The following is the function proto
type for the Nucleus call to create a task:

extern TOKEN
rqcreatetask (BYTE

far *
TOKEN
WORD far *
NATIVE WORD
WORD
WORD far *

priority,
startAddress,
dataSeg,
stackPtr,
stackSize,
taskFlags,
exceptPtr) ;

This function returns a token for a new task object. The new task is a sib
ling of the task that made the system call in the sense that both belong to
the same job. No ownership or parent-child relationship exists among the
tasks of an iRMX system.

238 iRMX Concepts and Features

taskPr ior i ty specifies the initial priority for the task. A value of °
gives the task the maximum priority for the job that owns the task that
made the call to rqcreatetask(). Unless it is 0, the value ofthis parameter
must not be less than the maximum priority for the job. Ifthis parameter is
0, the new task is given a priority equal to the highest allowed priority (nu
merically lowest value) allowed for the current job. If the new task has a
higher priority than the task that creates it, the new task will preempt the
creating task. If the new task has a priority less than or equal to the task
that creates it, the new task is made ready and executes when it becomes
the task with the highest priority on the ready queue.

The startAddress parameter is a pointer to the first instruction to be
executed by the new task. This parameter is normally coded as a pointer to
a function or procedure, but this is not strictly necessary. (See the follow
ing description of the da taSeg parameter for one reason for using a
pointer to a procedure, though.) Note that there is no restriction on where
in memory the new task must start executing. It can start in the same code
segment as the creating task (as in Figures 7.1 and 7.2), or in a different
code segment. If it starts in a different code segment, there is no require
ment for that segment to belong to the current job, although it usually does.

The da taSeg parameter is a selector for the data segment to be used for
the new task. There are two different ways to handle this parameter. One
way is to supply the token for an iRMX memory segment that is to serve as
the new task's data segment. This approach is most often used when the
task is going to execute code in the same module as the creating task, and
the compact model of compilation is being used. In this case, the value to
use for the dataSeg parameter is obtained by extracting the selector part
of a far pointer to any static variable in the application. For PLM pro
grams, this might be coded as selector$of (@Status), and for C pro
grams as (selector) &Status, assuming Status is a static variable
(i.e., not in the calling task's stack segment).

The second way to handle this parameter is to have the new task execute
code that initializes the ds register itself and to code this parameter as the
selector part of a null pointer (16 bits of zeros). Far procedures always in
clude this initialization code in their prologues, so this technique works in
any of the following situations:

• If the startAddres s parameter is a pointer to a procedure or function
that was declared public using the large model of compilation (either
PLM or C).

• If the startAddress parameter was explicitly declared to be a far func
tion in C.

• If the s tartAddre s s parameter was made a far function by exporting it
from a compact subsystem using the compilers' extended segmentation
features.

Basic iRMX System Calls 239

The stackPtr and stackSize parameters are needed because every
iRMX task has its own stack segment, as described in chapter 6. If
stackPtr is a valid pointer (not a null pointer), the new task will be given
a stack in the memory segment specified by the selector part of the pointer,
and the sp (top of stack pointer) register will be set to the sum of the offset
part of the pointer and the value of the stackS i ze parameter. This option
is useful for applications that want the new task to use part of an existing
segment for its stack. For example, an application could declare an array of
words to be used as the stack for a task and pass a pointer to the beginning
of the array as stackPtr and the size of the array (in bytes) as the stack
Size. The problem with this technique is that the new task can easily
overwrite other information in its stack segment without the microproces
sor detecting an error, even in protected-mode systems. On the other hand,
this technique could be used to pass parameters to a new task. Doing so
would require some tricky coding.

The other way to handle the new task's stack is to code stackPtr as a
null pointer. In this case, the Nucleus creates a segment for the new task's
stack with a size equal to the stackS i ze parameter. The advantage of this
technique is that the new task will cause a stack fault (fault number 12) if it
overflows its stack segment, which is trapped by the hardware. Remember,
hardware traps like this are good: they let you know as soon as a bug occurs
so it can be located easily and fixed.

Except for programs that use the stack for recursion, the size of a stack
segment that a task needs depends on the following:

• The procedure calls it makes itself (this quantity is given at the end of the
listing file produced by the compiler).

• Space for additional stack frames for nested calls.

• Space to store the state of the processor if an interrupt occurs.

For example, a call to an EIOS function requires stack space for the ini
tial stack frame, plus one for the corresponding BIOS call that the EIOS
makes, plus another level of frames for calls to the Nucleus from the BIOS.
iRMX Programming Techniques and Examples (volume 11 of the iRMX
for Windows documentation set) includes an appendix that can be used to
determine how much stack space a task actually needs. In practice, tuning
this parameter is important only for applications with a large number of
tasks and a limited amount of memory. Creating a few 8 kilobytes (KB) or
16 KB stacks (which are generous values) is insignificant in a system with
multiple megabytes of RAM.

The taskFlags parameter contains only one bit of information. The
value should be set to 1 if the task contains floating-point instructions, and
set to 0 otherwise. The setting of this bit affects the time the system needs
to perform a context switch involving the task because of the separate set
of registers for floating-point operations (found in the CPU for 80486 pro-

240 iRMX Concepts and Features

cessors, and in the coprocessor for other CPUs). If the task does not per
form floating-point operations, these registers do not need to be saved in
memory when the task is preempted, and they do not need to be reloaded
when the task runs again. The time savings can be significant for real-time
applications.

The exceptPtr parameter is the ubiquitous last parameter of every
iRMX system call, as described in the exception handling section of chap
ter 6.

A task can put itself into the asleep scheduling state by calling rqsleep{}:

extern void
rqsleep (WORD

WORD far *
tirneLirnit,
exceptPtr);

The timeLimi t parameter is the amount of time the calling task is
placed in the asleep scheduling state. When the time limit expires, the task
is placed on the ready queue, and is then scheduled to run again when it has
the highest priority of all ready tasks. (The various scheduling states were
described in chapter 6.)

The amount of time the task spends asleep is equal to the product of
timeLimi t and the resolution of the system's real-time clock, normally
10 milliseconds (0.01 sec). There are two exceptions, however.

First, a value of 0 simply moves the running task to the end ofthe portion
ofthe ready queue for its own priority. That is, all tasks on the ready queue
with the same priority are arranged in first-in, first-out (FIFO) order, and a
timeLimi t of 0 puts the task at the end of its portion of the queue. If no
other tasks have the same priority on the ready queue, the running task just
continues to run.

Second, a value of OxFFFF is illegal for this system call. For system calls
that include a time limit parameter, such as rqlookupobject() presented in
chapter 6, a value of OxFFFF means "indefinitely" or "forever." Since the
only way a task completes a call to rqsleep() is for its time limit to expire, it
makes no sense for it to sleep forever. If a task does not want to execute any
more, it should delete or suspend itself. A task can suspend itself or any
other task by calling rqsuspendtask():

void
rqsuspendtask (TOKEN

WORD far *
task,
exceptPtr) ;

A task can suspend itself by using the selector part of a null pointer for the
task parameter. This strategy is just a convenience: the task would have to
call rqgettasktokens() to get the token for itself otherwise. The only way a
suspended task can execute again is for another task to call rqresume
task():

void
rqresurnetask (TOKEN

WORD far *
task,
exceptPtr) ;

Basic iRMX System Calls 241

If a task is suspended multiple times, it must be resumed an equal num
ber of times to become ready again. This feat can be accomplished in a sce
nario in which one task, called the lead task, partitions chunks of work into
subchunks that are assigned to other tasks for processing. The lead task is
suspended once for each subchunk of work and resumed once by each task
that completes processing a subchunk. When the lead task runs again, it
partitions the next chunk of work into another set of subchunks, and so on.

Another fundamental way to change a task's scheduling state is to
change its priority:

void
rqsetpriority (TOKEN

BYTE
WORD far *

task,
priority,
exceptPtr) ;

Again, the selector part of a null pointer causes the calling task's priority to
change, subject to the limits for its job. A value of 0 sets the task's priority
to the maximum allowed for its job. Note that any task can change the pri
ority for any other task for which it can obtain a token, including tasks that
belong to other jobs.

As a rule, tasks do not change their priorities dynamically to control ex
ecution sequences. The synchronization mechanisms described in the fol
lowing sections (semaphores, mailboxes, and regions) are used for that
purpose. In fact, there is surprisingly little use for this call by most applica
tions, and misuse of it can negatively impact overall system performance.

There are two situations in which the Nucleus changes the priority of a
task automatically. One is a dynamic priority change related to regions
(described later in the chapter). The other is a static change for tasks that
become interrupt tasks by calling rqsetinterrupt(). Interrupt tasks take on
a priority associated with the particular interrupt level that are associated
with, as described in chapter 9. This priority change is a static change be
cause the task's priority is never changed again (unless it enters a region).

To handle situations in which a task must to have a higher priority than
allowed for its job, there is a system call to change the maximum priority
for a job:

void
rqesetmaxpriority (TOKEN

BYTE
WORD far *

job;
priority,
exceptPtr) ;

Setting the maximum task priority for a job does not change the actual
priority of any tasks, it simply makes it possible for tasks belonging to the
job to have higher priorities than otherwise possible. This call cannot be
used to lower the maximum task priority for a job. It was added to the oper
ating system to support loadable device drivers. Normally, jobs loaded
while the system is running do not have high enough maximum task prior-

242 iRMX Concepts and Features

ities to allow them to own interrupt tasks, but this call makes it possible for
them to do so. See chapter 9 for more information on this topic.

7.2.1 Semaphores

Semaphores are the first of the task synchronization and communication
objects to be examined. They, along with mailboxes and regions, fall into
the generic category of exchanges in the iRMX documentation. Exchanges
are mechanisms managed by the Nucleus that enable tasks to synchronize
with each other and/or pass information from one to another. Because
these mechanisms are managed by the Nucleus, tasks that use them do not
need polling loops, which would overload the CPU, to test when other
threads of execution have triggered events.

Semaphore objects include a counter of the number of units that reside
in the semaphore. Tasks can send units to a semaphore and request to re
ceive units from it. A task that asks to receive more units than are available
at the semaphore blocks (enters the asleep state) until either enough units
accumulate at the semaphore to satisfy the request or until the time limit
specified with the request expires. While a task is asleep, it makes no de
mands on the CPU. If enough units exist at the semaphore to satisfy a re
quest when it is made, the counter is simply reduced by the number of units
requested, and the calling task continues running.

Classically, there are two types of semaphores, binary and counting. All
iRMX semaphores are counting semaphores, but the application can place
an upper limit on the number of units the semaphore can hold at one time
when it is created. With a limit of 1, a counting semaphore is the same as a
binary semaphore.

Like other iRMX objects, no intrinsic limit is placed on the number of
semaphores ajob can own other than a possible limit on the total number of
objects the job can own. This limit is specified at the time the job is created
(see below). Semaphores can be shared across jobs, provided you can com
municate the token for the semaphore between jobs. When it is necessary
to share a semaphore this way, the usual technique is to catalog the token
for the semaphore using an agreed-upon name in an agreed-upon job's ob
ject directory.

The following are the system calls for semaphores:

Extern TOKEN
rqcreatesemaphore (WORD

WORD
WORD
WORD far *

initialValue,
maxValue,
semaphoreFlags,
exceptPtr) ;

The initial Value and maxValue semaphores initialize the sema
phore counter and its upper limit, respectively. The proper settings for
these parameters depend on how the application will use the semaphore.
For a binary semaphore used to protect a shared-memory variable, for ex-

Basic iRMX System Calls 243

ample, the values would both be set to 1, indicating that the variable is
available to the first task that wants to access it. A different example is
shown in Figures 7.1 and 7.2, where a semaphore with initial and maximum
values of 0 and 1 is used so the creating task will sleep until the created task
signals when it has completed its initialization phase.

The semaphoreFlags controls the order of multiple tasks queued at
the semaphore. A value of 0 means by FIFO, regardless of priority, and a
value of 1 means by priority, with tasks of equal priority arranged in FIFO
order. The task at the head of the queue always has its request satisfied
first, even if enough units exist at the semaphore to satisfy a request for
fewer units, but made by a task further down the queue.

extern void
rqsenduni ts (TOKEN semaphore,

WORD units,
WORD far * exceptptr) ;

extern WORD
rqrecei veuni ts (TOKEN semaphore,

WORD units,
WORD timeLimit,
WORD far * exceptPtr) ;

The first parameter for these two calls is the token for a semaphore re
turned by an earlier call to rqcreatesemaphore(). The number of units sent
to a semaphore must never make the semaphore's counter exceed its
maxValue, or rqsendunits() will fail with the condition code set to Ox0004
(E_LIMIT).

The value returned by rqreceiveunits() signifies how many units remain
in the semaphore after removing the units requested. An application that
wants to test a semaphore without blocking and without encountering an
exception can ask to receive 0 units from a semaphore.

The timeLimi t parameter is the standard time-limit parameter for
many Nucleus system calls. It specifies the number of O.OI-second clock
ticks the task is willing to wait for the requested units to arrive at the sema
phore. A value of OxFFFF means the task is to sleep for as long as necessary
for the units to arrive.

7.2.2 Mailboxes

Mailboxes provide an efficient mechanism for tasks both to synchronize
their execution and exchange data. Tasks send messages (consisting of
iRMX tokens) or data (up to 128 bytes of arbitrary data) to a mailbox.
Other tasks can then receive the messages or data at a later time. Each
mailbox has a queue, which is one of the following:

• Empty .

• A list of messages or data items sent to the mailbox but not yet received.

244 iRMX Concepts and Features

• A list of tasks that have attempted to receive a message or data but have
been put to sleep because there is nothing to receive yet.

The availability of an efficient message-passing mechanism fundamen
tally impacts the design of iRMX multitasking applications compared to,
for example, process synchronization in Unix systems. Consider an event
driven program that waits for input from any of several devices, processes
whichever device generates data first, and then waits for the next input. In
BSD Unix, this is accomplished using the select(J system call, which allows
one process to block until the kernel determines that one of the selected
channels is ready for I/O. The process then tests the value returned by
select(J, reads from the proper channel, processes the input, and returns to
select(J.

An iRMX application handles the equivalent situation by having a set of
tasks monitor the various I/O connections. Each monitoring task sends a
message to a single mailbox when it completes a data transfer. The event
processing task waits at this mailbox for messages, and processes each
event when it arrives. If additional messages arrive while the event-pro
cessing task is busy with an event, these messages are automatically
queued at the mailbox. The efficiency of mailbox operations and the low
overhead associated with iRMX multitasking make it possible to achieve
very high processing throughput using this technique.

Each mailbox can handle either messages or data, but not both. The
choice is determined by a parameter when the mailbox object is created.
Data mailboxes provide no new functionality compared to message mail
boxes because a message mailbox can always be used for exchanging mem-
0ry segment objects that contain data. So why are there two types of mail
boxes? Generally, message mailboxes are more efficient to use than data
mailboxes even when they are used for sending memory segments. The
message bytes are not copied to and from a message mailbox as they are for
data mailboxes (only the two-byte token is copied), and no limit exists on
the size of message segments that can be sent to a message mailbox. (There
is a limit of 128 bytes on data items.)

On the other hand, data mailboxes are useful for applications that per
form a lot of one-way message passing. A significant amount of overhead
exists, especially for protected-mode versions of the operating system, if a
memory segment must be created for each message sent and ifthe receiving
task must then delete each segment it receives to avoid depleting the send
ing job's memory pool. For such applications, a buffer pool for managing
message segments provides a good way to mitigate this problem, but data
mailboxes provide a simpler solution for cases where the data traffic is rela
tively low and the messages are small. Buffer pools are described later in
this chapter. The following are the iRMX system calls for mailboxes:

extern TOKEN
rqcreatemailbox (WORD

WORD far *

Basic iRMX System Calls 245

mailboxFlags
exceptPtr) ;

mai lboxFlags determine three features about the mailbox being created:

1. The queuing rule to be used when tasks are queued at the mailbox.

2. Whether the mailbox is to be used for sending and receiving messages
(tokens for iRMX objects) or data (byte arrays).

3. The size of the high-performance queue to be created for the mailbox.

The value for the mai lboxFlags is the sum of three values: 0 for a mes
sage mailbox or 32 for a data mailbox, plus 0 for a FIFO task queue or 1 for a
priority-base task queue, plus a value for the size of the high-priority mes
sage queue. The high-priority queue applies only to message mailboxes and
signifies how much memory to reserve for the queue of messages waiting
for tasks to receive them.

iRMX always reserves room for at least eight messages, but you can in
crease the size (thereby saving the time needed to create a memory segment
if the queue overflows) by adding to this parameter a value that is one-half
the number of objects you want the queue to hold. Note that the value you
add must be an even number. Data mailboxes are always created with room
to queue three 128-byte data items, but the queue is automatically ex
panded if necessary. To send a token to an object mailbox, use rqsendmes
sager):

extern void
rqsendmessage (TOKEN

TOKEN
TOKEN
WORD far *

mailbox,
object,
response,
exceptPtr) ;

The token passed as object is sent to the message mailbox, mailbox.
iRMX provides a return-receipt mechanism for message mailboxes
through the response parameter of this call and a correspondingparame
ter for rqreceivemessage(). The sending task specifies a token for an iRMX
semaphore, mailbox, or region (usually a semaphore) for this parameter,
and this token is delivered to the receiving task, along with the token
passed using the obj ect parameter. The tasks must adopt the convention
that the receiving task will send something back to the response ex
change (typically one unit to the semaphore) to let the sender know when
the message has been delivered.

The response mechanism can also be used as a simple alternative to the
buffer pool mechanism described later in this chapter. In this case, re
sponse is a token for another mailbox to which segment tokens received at
this mailbox are sent for recycling when the receiving task finishes with

246 iRMX Concepts and Features

them. Applications that do not want to use this feature of message mail
boxes code this parameter as the selector of a null pointer.

extern TOKEN
rqreceivemessage (TOKEN

WORD
TOKEN far *
WORD far *

mailbox,
timeLimit,
responsePtr,
exceptPtr) ;

The preceding function returns the next token available on the message
queue of the indicated mailbox. timeLimi t indicates how long the task
is willing to wait for a message, in O.Ol-second units, if no message is
present when the call is made. A value of OxFFFF indicates no time limit. If
the sender specified a token for a response exchange, and if this call is
coded with a valid pointer for responsePtr, the token for the exchange
will be stored in the location pointed to by responsePtr.

extern void
rqsenddata (TOKEN

BYTE far *
WORD
WORD far *

mailbox,
dataPtr,
actualLength,
exceptPtr) ;

The array of bytes pointed to by dataptr is sent to the data mailbox,
mailbox. The number of bytes sent is specified by actualLength, which
is automatically limited to 128 if a greater value is specified. The data item
is not interpreted as an iRMX string, so the first byte at da taPtr is not
interpreted as the length of the item being sent. (It is not interpreted as
a null-terminated C string either, for that matter.) Only the value of
actualLength determines how many bytes are sent to the mailbox. No
provision exists for a response mechanism for data mailboxes.

extern WORD
rqreceivedata (TOKEN

BYTE far *
WORD
WORD far *

mailbox,
dataPtr,
timeLimit,
exceptPtr) ;

The preceding call retrieves a data item from the data mailbox, mail
box. The message is copied into the array of bytes pointed to by da taPtr,
and the actual number of bytes copied is returned as the value of the func
tion. t imeL imi t specifies the amount of time the receiving task is willing
to wait for data in O.Ol-second units, with OxFFFF signifying no limit.

Note: This call fails if less than 128 bytes of memory can be accessed
starting at da taPtr, so you should reserve 128 bytes for received data even
if you know that all calls to rqsenddata() will send fewer bytes.

7.2.3 Regions

The iRMX region object type deals with a problem associated with sema
phores, called priority inversion, that can occur when semaphores are used
to implement mutual-exclusion algorithms.

Basic iRMX System Calls 247

To see the problem, consider three tasks with relatively low, medium,
and high priorities. Assume that the tasks called low and high both need to
manipulate a shared resource of some type, and use a semaphore to ensure
mutually exclusive access to it. If low receives a unit from a binary sema
phore, high will block if high now attempts to also receive a unit. This situ
ation is normal; high should not access the resource protected by the sema
phore until low finishes the operation it has begun on the resource and
sends a unit back to the semaphore. The inversion occurs if medium be
comes ready while low is running and high is blocked. Medium will preempt
low and high will now be waiting for medium to execute even though
medium has nothing to do with high's access to the shared resource.

An iRMX priority region object can be used instead of a semaphore to
solve this problem. The priority of a task that controls access to a resource
protected by a priority region object automatically has its priority raised to
match that of any higher-priority task that tries to obtain control ofthe re
gion at the same time. Using this mechanism in the previous example, task
medium would be prevented from preempting low because low's priority
would have been raised to match high's. When low relinquishes control of
the region, low's priority reverts to its normal level, and high receives con
trol of the region and executes without ever waiting for medium.

All regions have a property that makes it important to use them care
fully: a task that holds a region cannot be suspended or deleted, which also
means that the job that owns the task cannot be deleted. For this reason,
regions can be particularly troublesome when debugging HI commands
because an error could cause a task to take control of the region and fail to
release it, making it impossible to terminate the command with the usual
< A C> mechanism from the console. The entire system must be rebooted
when this situation occurs. The following are the system calls for regions:

extern TOKEN
rqcreateregion (WORD

WORD far *
regionFlags,
exceptPtr) ;

This call creates the equivalent of a binary semaphore, with an optional
provision for avoiding priority inversion as just described. The reg ion
Flags parameter is set to 0 if the queue of tasks waiting at the region uses
FIFO order, or set to 1 if it uses priority-based order. Note that FIFO re
gions do not deal with the priority-inversion problem. Only priority re
gions can cause a shift in priority for the task that occupies the region.

extern void
rqrecei vecontrol (TOKEN

WORD far *
region,
exceptPtr);

If region is available, the calling task takes control of the region and
proceeds to execute. If the region is not available, the calling task goes to

248 iRMX Concepts and Features

sleep until it is at the head ofthe region's queue and the region is released.
Note that there is no time-limit parameter associated with this call. Tasks
that try to enter a region using this call must be willing to sleep indefinitely.
(If a task is not willing to wait, it might instead call rqacceptcontrol():)

extern void
rqacceptcontrol (TOKEN

WORD far *
region,
exceptPtr);

The preceding call is almost the same as rqreceivecontrol(), but the call re
turns immediately if the region is not free, rather than putting the calling
task to sleep. The condition code is set to Ox0003 (E _BUSY) ifthe region is
occupied when this call is made, rather than the usual OxOOOl (E_TIME)
that is returned when a time limit of 0 results in the failure of a system call
such as rqreceiveunits() or rqreceivemessage().

extern void
rqsendcontrol (TOKEN

WORD far *
region,
exceptPtr) ;

This call allows another task to obtain control of a region. It can only be
made by the task currently in control of region. If the calling task's prior
ity has been temporarily raised while it occupied the region, this is the time
at which it resumes its normal value. If a task has entered two or more re
gions, this call causes it to exit the most-recently entered region. A task
that has had its priority raised while occupying regions has its priority re
stored only when it has exited all of the regions it entered.

7.2.4 Deadlock

Deadlock, the situation in which tasks are permanently stopped from exe
cuting because of their interactions with other tasks, is a potential problem
in any system that allows multiple threads of execution to compete for a
common set of resources. The resources can be anything, such as files,
memory segments, or whatever. The problem occurs when an exchange
mechanism, such as a region or semaphore, is used to enforce mutually ex
clusive access to individual resources. In its simplest case, deadlock can
occur if two tasks each need exclusive access to the same two resources at
the same time. Call the tasks 1 and 2, and the resources A and B. Deadlock
occurs if Task 1 acquires Resource A, is preempted by Task 2, which ac
quires Resource B. Now Task 2 cannot proceed because it cannot acquire
Resource A, and Task 1 cannot proceed because it cannot acquire Re
source B.

The use of any iRMX exchange object can result in deadlock, although
deadlock can be broken manually for semaphores and mailboxes by delet
ing the tasks involved, or broken automatically if at least one of the tasks

Basic iRMX System Calls 249

uses a finite time limit for the call that tries to obtain a resource and the
time limit expires. The problem is particularly pernicious when tasks use
rqreceivecontrol() to obtain control of regions that control access to re
sources because there is no way to break an ensuing deadlock. No time limit
is associated with rqreceivecontrol(), you cannot delete a task that owns a
region, and no other task can call rqsendcontrol() for any of the regions in
volved because that can only be performed by the tasks that obtained con
trol of the regions themselves.

Deadlock need not be a concern because it is easily avoided. The proce
dure is to have all tasks that acquire mutually exclusive access to multiple
resources do so in a fixed sequence when they obtain elements from the set
of resources and to then use the reverse sequence when the tasks release
the resources. For example, if a set of resources are protected by regions
named with different letters of the alphabet, deadlock can be avoided if all
tasks that access any subset of the resources always attempt to receive
control from the regions in alphabetical order and release control ofthose
regions in reverse alphabetical order. It does not matter how the letter
names are assigned to the regions, as long as all tasks that access any of
them use the same alphabetic assignment.

7.3 Buffer Pools

In the discussion of message mailboxes, it was noted that a considerable
amount of overhead is associated with creating and deleting memory seg
ments, especially for protected-mode versions of the operating system. The
system calls to create and delete segments are simple enough to code, but
the Free Space Manager (FSM) must be invoked to manage the calling
job's memory pool, to borrow and return pieces of memory from ancestor
jobs, and to manage the descriptor table slots for the segments. A common
strategy for dealing with this overhead is for an application to create all the
memory segments it needs when it first starts running. This strategy
moves the overhead of creating segments into the initialization phase of
the application and out of the event loop portion of the code, which must
concern itself with real-time constraints.

A common problem with this strategy arises because memory segments
are often used to pass information in a single direction, from a source task
to a destination task. The destination task must be able to recycle seg
ments when it finishes processing the information in them. If the destina
tion task does not do anything with the segments it receives, the applica
tion soon runs out of memory. If the task deletes the segments, the source
task must create more segments to replace them. A technique to do this re
cycling is to set up a mailbox that acts as a place for destination tasks to
send tokens for the segments they are ready to recycle. Buffer pools provide
another method to do the same thing, and offer the advantage of making it
easy to work with segments of different sizes. Buffer pools, however, are

250 iRMX Concepts and Features

less efficient than segment recycling if all segments are the same size.2 Al
though the name buffer pool implies that buffer pools were developed for
the management of memory segments to be used as I/O buffers (they were),
the mechanism is perfectly general and can be used effectively to manage
any set of memory segments.

A task creates first a buffer pool object, and then a number of memory
segments that it releases to the pool. Additional segments can be released
to the pool at any time, but the usual practice is to give the pool most, if not
all, of the segments it is to manage as the application initializes itself. One
of the internal design features of the buffer pool type manager is visible to
users of buffer pool objects: the segments released to a buffer pool are en
tered onto internal lists according to segment size, and no more than 16
different sizes of segments can be released to a single buffer pool object.

Data chaining is an option that can be enabled for a buffer pool when it is
created. With this option, an application can request a buffer larger than
any ofthe segments residing in the pool, and the buffer pool type manager
satisfies the request by giving the task as many segments as it needs to sat
isfy the request. In this case, it will return a data structure called a chain
block that contains a list of pointers and sizes of the segments returned.
When this option is used, the application must acknowledge that a single
buffer from the buffer pool does not necessarily occupy a single contiguous
segment in memory.

The following is a description of the basic system calls for buffer-pool
use. Additional calls for buffer pools exist but are not listed here. Those
calls support the use of buffer pools for message passing in iRMX systems
that run on Multibus II platforms. The Multibus II system bus provides a
hardware mechanism with which multiple processors can send messages to
each other very rapidly. That mechanism is fully supported by iRMX, and
buffer pool management is closely integrated with that support, but our at
tention here is on the system calls for basic buffer-pool management.

extern TOKEN
rqcreatebufferpool (WORD

WORD
WORD far *

maximumBuffers,
poolFlags,
exceptPtr);

maximumBuffers limits the number of memory segments that can be
released to the buffer pool at one time. The upper limit for this parameter is
8,192, the maximum number of slots in a descriptor table.

poolFlags signifies whether or not to support data chaining for this
buffer pool. A value of 0 means no, and a value of 2 means yes.

2The iRMK kernel, available with iRMX III and iRMX for Windows systems, provides an
other memory management system even more efficient than recycling segments.

extern void
rqreleasebuffer(TOKEN

TOKEN
WORD
WORD far *

Basic iRMX System Calls 251

bufferPool
bufferSegrnent,
bufferFlags,
exceptPtr) ;

bufferSegment is added to the list of segments occupying buffer
Pool in this example. Problems that can occur include the buffer pool
being full (the maximumBuffers specified in rqcreatebufferpool() already
reached), or the size of the segment that is released to the segment is not
one of 16 different segment sizes already released to the pool.

bufferFlags contains two pieces of information: whether the buf
ferSegment being released is a single memory segment or a data chain
and how to handle the buffer pool full condition for this system call. If the
bufferSegment token is for a memory segment to be released, add 0 to
the value of this parameter. If the bufferSegment token is for a chain
block, add 1 to this parameter. If you want the segment being released to be
deleted if the buffer pool is full when this call is made, add 0 to this parame
ter. If you want the segment to be retained in this situation and have
the condition code set to Ox0004 (E _LIMIT), add 2 to the value of this
parameter.

extern TOKEN
rqrequestbuffer(TOKEN

DWORD
WORD far *

buffer Pool
bufferSize,
exceptPtr) ;

bufferSize must have a value between 1 and OxFFFFFFFE. If a single
segment is available that can satisfy the request, its token is returned, and
the condition code is set to E _ OK. If data chaining is allowed for the buffer
pool and the buffer pool manager is able to satisfy the request only by
creating a data chain, the token returned is for a segment containing a
chain block, and the condition code is set to OxOOOD (E _DAT ACHAIN). If
the buffer pool does not have a segment that can satisfy the request (and
data chaining is disabled), or if the pool does not have the segments that
could satisfy the request (even though data chaining is enabled), the call
fails and the condition code is set to Ox0002 (E_MEM).

7.4 Job Management

One recurring theme in understanding the iRMX operating system is that
there seems to be different types of jobs. We have already used terms like
Nucleus Job, I/O Job, and HI Command Job. In reality, all jobs are equiva
lent in the sense that they are originally created by one oftwo Nucleus sys-

252 iRMX Concepts and Features

tem calls, rqcreatejob() and rqecreatejob(), that differ from each other only
in the values that can be specified for the memory pool parameters.3

7.4.1 Creating a Nucleus Job

The following are function prototypes for creating a Nucleus job:

extern TOKEN
rqcreatejob (

extern TOKEN
rqecreatejob (

WORD
TOKEN
NATIVE WORD
NATIVE WORD
WORD
WORD
BYTE
EXCEPTIONSTRUCT far *
WORD
BYTE
far *
TOKEN
WORD far *
NATIVE_WORD
WORD
WORD far *

WORD
TOKEN
DWORD
DWORD
WORD
WORD
BYTE
EXCEPTIONSTRUCT far *
WORD
BYTE
far *
TOKEN
WORD far *
NATIVE WORD
WORD
WORD far *

directorySize,
paramObj,
poolMin,
poolMax,
maxObjects,
maxTasks,
maxPriority,
exceptHandler,
jobFlags,
taskPriority,
startAddress,
dataSeg,
stackPtr,
stackSize,
taskFlags,
exceptPtr) ;

directorySize,
paramObj,
poolMin,
poolMax,
maxObjects,
maxTasks,
maxPriority,
exceptHandler,
jobFlags,
taskPriority,
startAddress,
dataSeg,
stackPtr,
stackSize,
taskFlags,
exceptPtr);

directorySize signifies the number of entries to reserve for the job's
object directory. The value of this parameter determines in part how much
memory will be used for the segment containing the job object itself. The
object directory is implemented as a hash table within the job object.

paramObject is a token for any iRMX object to be passed to the job.
The object is normally a memory segment that contains data specific to
one particular job out of a set of jobs that are otherwise identical. Applica-

3 All Nucleus system calls have names that start with rq, and those calls that take advantage
of the extended features of the 80286 microprocessor or later start with rqe. Of course, the rqe
calls are not available for iRMX 1.

Basic iRMX System Calls 253

tions that do not use this feature set this parameter to the selector of a null
pointer (i.e., 16 bits of zeros). Any task belonging to a job can retrieve a
copy of this token by calling rqgettasktokens(). I/O jobs and HI command
jobs have a parameter object passed to them, which is the token for a seg
ment returned to the parent job when the child job calls rqexitiojob()4. This
segment does not seem to contain any useful information when the job is
created.

poolMin and poolMax were discussed in chapter 6. For rqcreatejob(),
these values cannot be greater than 1M, and for rqecreatejob(), which is not
available for iRMX I, the values cannot be greater than 16M for iRMX II
or 4G for iRMX III. In all cases, the values specified are given in units of
16-byte paragraphs. Thus, if you want a maximum memory pool of 512,000
bytes for a job, specify a value of 32,000 for poolMax.5

maxObj ects and maxTasks place a limit on the number of objects ajob
can own in general, and on the number of task objects in particular. Values
of OxFFFF indicate no limit. These limits cannot be set to zero because
every job must own at least one object: its initial task. Values less than
OxFFFF are subtracted from the corresponding limits for the parent job
immediately, even before the child job creates any new objects.

maxPriori ty is the numerically lowest scheduling priority (0 to 255)
that any task belonging to the new job can take. If you specify a value of 0
for this parameter, the job's maximum priority is set equal to its parent's
maximum priority. A child job cannot have a higher maximum priority
than its parent's, unless it is explicitly changed using the rqesetmaxprior
ity() system call after the job has been created.

exceptHandler is a pointer to the exception handler structure de
scribed in chapter 6. A null pointer gives the job the system default handler
and mode.

j obFlags contains just one bit that might affect the job. If this parame
ter is set to 1, and neither the calling job nor any of its ancestor jobs has
selected parameter checking, the system will not check the validity ofpa
rameter values passed to system calls by the tasks of the child job. A speed
advantage can be obtained for time-critical applications by using this fea
ture for perfectly debugged applications. However, iRMX for Windows, as
well as most other configurations of iRMX, have this bit turned off for the
root job, so the argument is almost always ignored.

The remaining parameters for these two calls are all concerned with the
new job's initial task. Basically, they have the same values and interpreta-

'Phrases to the effect that "some job executes some code" is shorthand for saying "a task
belonging to some job executes some code."

552,000 is Ox7DOOO and 32,000 is Ox7DOO. The term paragraph is a holdover from real-mode
addressing in which segments are always a multiple of 16 bytes in size because the l6-bit base
address is shifted 4 bits left before adding the offset.

254 iRMX Concepts and Features

tions as the corresponding parameters to rqcreatetask(), (section 7.2) but
there are a few differences to consider.

taskPriori ty is the initial priority for the initial task. Its value is lim
ited by the maxPr ior i ty parameter for the job being created, not the call
ing task's job.

s tartAddres s is interpreted the same as rqcreatetask(), but there is an
important implication of the logic of this call: because this is a parameter
being passed to the system subroutine that will create the memory pool for
the new job, it is impossible for this pointer to point to an address within
the new job's memory. That is, the initial task for every iRMXjob starts ex
ecuting code that resides in some other job's memory (or in system memory,
which does not belong to any job).6

An example of how this process might work is an application that con
tains separate procedures to be executed by the initial tasks ofthe applica
tion's various child jobs. All the procedures would be loaded as part of the
application, and then, rather than call the procedures as subroutines, child
jobs are created with their initial tasks set to execute the various proce
dures. Another example is the Application Loader (AL), which creates jobs
with initial tasks set to start executing a loader procedure that loads a pro
gram into the new job's memory from a disk file, and then branches to it.

The AL system calls are described in section 7.4.3.
If stackPtr is a null pointer, the Nucleus will use the stackSize pa

rameter to create a segment for the task's stack, taking the memory for the
stack from the new job's memory pool. If stackPtr is not null, the speci
fied segment will be used instead (normally a segment belonging to the
creating job, but not necessarily), and the child job's memory pool will not
be reduced by the size of the stack.

7.4.2 Creating an 1/0 job

Any task that makes calls to the Extended I/O System (EIOS) must belong
to an I/O job. The reason for this requirement is the way I/O processing is
performed, especially the file-protection mechanism, discussed in chapter
8. Our focus at this point is to examine the rqcreateiojob() and rqecreateio
job() system calls provided by the EIOS to see how they relate to the corre
sponding Nucleus calls for creating jobs. The following are the function
prototypes: -

extern TOKEN
rqcreateiojob (NATIVE WORD

NATIVE_WORD
EXCEPTIONSTRUCT far *
WORD

poolMin,
poolMax,
exceptHandler,
jobFlaqs,

8Unix aficionados might contrast this behavior to that system's fork() call that copies or
maps the parent process's code into the child process's memory.

extern TOKEN
rqecreateiojob (

Basic iRMX System Calls 255

BYTE
far *
TOKEN
WORD far *
NATIVE WORD
WORD
TOKEN
WORD far *

DWORD
DWORD
EXCEPTIONSTRUCT far *
WORD
BYTE
far *
TOKEN
WORD far *
NATIVE WORD
WORD
TOKEN
WORD far *

taskPriority,
startAddress,
dataSeg,
stackPtr,
stackSize,
taskFlags,
msgMbox,
exceptPtr);

poolMin,
poolMax,
exceptHandler,
jobFlags,
taskPriority,
startAddress,
dataSeg,
stackPtr,
stackSize,
taskFlags,
msgMbox,
exceptPtr};

Most of the arguments to these two calls are exactly the same as the ar
guments to rqcreatejob() and rqecreatejob(), with the same interpretations
for all values. The exception is the taskFlags parameter, which includes
a bit to indicate if the initial task ofthe 1/0 job is to start executing imme
diately or not. If not, the task is suspended until some other task calls
rqstartiojob() with a token for the new job as its argument. This feature is
used, for example, by the HI to allow it to alter the new job's object direc
tory before letting it start executing, as described in section 7.4.4.

One additional parameter to these calls compared to the Nucleus calls is
the msgMbox token (located in the second from the last position). This
token is for a mailbox object to which a message will be sent when the new
job terminates. (The use of iRMX mailbox objects was described earlier in
this chapter.) The message sent to this mailbox is a segment that contains
the following:

• The token for the terminating job (useful if a parent job wants to monitor
the completion of several child jobs by using a single mailbox for all ter
mination messages).

• A fault code equal to the first parameter of tbe terminating job's call to
rqexitiojob().

• A message string (up to 89 bytes long) supplied as the second parameter
of the terminating job's call to rqexitiojob().

• A termination code that states whether the terminating job called
rqexitiojob() itself or was deleted for some other reason, such as by an ex
ception handler. This same segment is used internally by the EIOS as it
sets up the object directory for the child job, and is used as the job's pa
rameter object for this reason.

256 iRMX Concepts and Features

I/O jobs provide a case history in the way iRMX can be extended to pro
vide type managers for new object types. The rules for making EIOS sys
tem calls from I/O jobs are well specified in the iRMX documentation, and
explanations of how I/O jobs differ from Nucleus jobs are provided. There
is also an explanation to deal with the catch-22 ofI/O jobs: I/O jobs can
only be created by other I/O jobs. (One or more I/O jobs are "automati
cally" created when an iRMX system is initialized, provided the configura
tion includes the EIOS layer.)

But what is an I/O job, really? How does it come into existence? Why is
it necessary to have this second type of job? The answers cannot be com
plete at this point because all the necessary concepts have not been covered
yet, but following are some of the answers.

I/O jobs are composite objects. That is, they consist of other iRMX ob
jects. This new object type is defined by the EIOS job when it starts run
ning at system initialization time. The Nucleus calls involved with creat
ing a new object type and managing individual objects of that type are
covered in chapter 10. The two points to know now are that composite ob
jects are implemented as lists oftokens for other objects, and that there is
the provision for a type manager to supply a deletion mailbox for objects of
the composite type. Composite objects can be deleted by calling a routine
supplied by the type manager for the object type, or automatically by the
Nucleus as it deletes all objects belonging to a terminating job. The dele
tion mailbox provides a mechanism for the type manager to find out if one
ofthe composite objects it is managing is being deleted without a call to the
manager's deletion routine.

In the case of I/O jobs, the deletion routine provided by the type manager
is the rqexitiojob() system call. By using a deletion mailbox, the EIOS can
also be informed if an I/O job is deleted by some other means, such as by an
exception handler (any job can be deleted by any task that knows the token
for the job), or by the user typing < A C> if the job is being run as an HI
command job. When ajob calls rqexitiojob(), or when a token for an I/O job
arrives at the type manager's deletion mailbox, the type manager formats
the job's termination message and sends it to the mailbox that was speci
fied in the IUsgMbox parameter when the job was created.

How does the type manager know what mailbox to send the message to?
The token from the IUS gMbox parameter was stored as one of the items in
the list of objects for the I/O job object type. How does the Nucleus know
enough to send the token for an I/O job to the type manager's deletion
mailbox if the job is deleted by a call to rqdeletejob() (by an exception
handler, for example) instead of by a call to rqexitiojob()? How does the I/O
job type manager know which I/O job is calling its rqexitiojob() routine?

The answer to the first question is that the Nucleus keeps a list of all ob
jects owned by each job so that it can delete the proper objects when ajob is
deleted. When a job being deleted owns a composite object, rqdeletejob()
automatically sends the token for the composite object to the proper dele-

Basic iRMX System Calls 257

tion mailbox if there is one (and there is one for I/O jobs). That is, an I/O
job is a composite object owned by a Nucleus job. When a Nucleus job is
deleted, the composite object is sent to the deletion mailbox being moni
tored by the I/O job type manager in the EIOS. There is nothing circular
nor even tricky happening here. Just a little complex.

The secret is to reconstruct the logic of the rqcreateiojob() system call.
When an application task calls rqcreateiojob(), it executes code in the
EIOS that calls rqcreatejob() with the same parameters as were passed to
itself except for two: the msgMbox is not passed because there is no way to
do so, and the startAddress parameter is changed to point to a proce
dure within the EIOS. When the initial task ofthe new job starts executing
this procedure, it executes the code to create an I/O job composite object.
The tokens it places in this composite object are the following:

1. A token for its own job (available in shared memory with the rest of the
EIOS or by calling rqgettasktokens().

2. The token for the msgMbox that was passed to rqcreateiojob() (available
in memory shared with the rest of the EIOS).

3. A token for the memory segment to hold the exit message sent to
msgMbox when the job exits. (The segment is created by the task that
called rqcreateiojob() so that it belongs to the parent job and will not be
deleted when the child job exits.)

The procedure being executed by the initial task then performs a bit
more housekeeping and jumps to the code pointed to by the start
Address parameter of the rqcreateiojob() system call. If the taskFlags
parameter for the job specifies suspending the initial task until rqstartio
job() is called, the task suspends itself before jumping to startAddress.

That "bit more housekeeping" that the new job's initial task does before
jumping to the startAddress provides the answer to the second ques
tion, which can be made a bit more general: How does the EIOS know what
I/O job owns the task that makes any ofthe EIOS system calls that can be
executed only by I/O jobs and not by Nucleus jobs? The secret lies in the
use of an I/O job's object directory. Before jumping to s tartAddre s s, the
initial task executes code to catalog four items into its own job's object di
rectory using the following names:

R?IOJOB.7 This is the object directory name for the token for the I/O job
composite object. The EIOS can call rqlookupobject(), described in chapter
6, for a token with this name to find out if the calling job is an I/O job or

7The choice of object directory entry names that start with RQ and R? was probably made to
avoid conflicts with names used by application developers. They have nothing to do with the
rq prefix used for all system call names (also chosen to avoid conflicts with application func
tion names) and nothing to do with the r? prefix used to name hidden files in the file system.

258 iRMX Concepts and Features

not.8 The EIOS' rqexitiojob() routine, in particular, looks up this object and
extracts the token for the segment to hold the termination message and the
token for the mailbox to which the message is sent.

R?IOUSER. The token cataloged with this directory name is for another
composite object type called an I/O user object. It consists of a memory
segment containing a list of I6-bit user ID numbers (OxOOOO for the Super
user, OxFFFF for the World user, and other values for individual users or
groups defined in the User Definition File). A token for one of these objects
is one of the parameters for the BIOS calls that perform user access check
ing, notably rqaopen(), described in chapter 8. When an application task
calls the corresponding EIOS function rqsopen(), the EIOS uses this token
as one of the parameters when it makes the call to rqaopen().

$. This name is a token for an I/O connection to the application task's
current working directory. I/O connections are another composite object
type. Like I/O user objects, they are managed by type manager code in the
BIOS. The EIOS needs this to pass on to the BIOS when the application
attaches to a file and does not supply a full pathname. Again, chapter 8
provides more details about how I/O system calls work.

RQGLOBAL. The EIOS maintains the concept of a global job for I/O jobs.
One specific example of a global job is the one created when a user logs on to
an iRMX system, which becomes the global job for all jobs created by that
user. (Every HI command executed by the user is run as a child of this
global job, and any I/O jobs created by those HI command jobs have the
same global job.) The EIOS uses the global job's object directory as one of
the places it searches for logical names during rqslookupconnection().
(Once again, refer to chapter 8 for more information about logical names
and their associated system calls.)

The last three of the preceding items are copied into the new I/O job's
object directory from its parent job's object directory. Without worrying
about why that should be done for now, consider how it could be done from
a job management point of view. The parent job is the one that owns the
task that called rqcreateiojob(), so the calling task could execute the calls to
rqlookupobject() to get these tokens from its ownjob's object directory. The
values of these tokens should be stored in memory locations accessible by
the procedure executed by the initial task of the child job. The new job's
task then catalogs the tokens using the same names in its own job's object

SYou already know that "the calling job" means the job that owns the task that made the
call. Now, add the shorthand of "the EIOS calls rqlookupobjectO" to mean that the task mak
ing an EIOS system call enters a procedure in the EIOS' part of system memory which con
tains the code to call rqlookupobject(). From this fact follows the important point that the ob
ject directory searched for the R?IOJOB entry is the one for the job that owns the task that
makes the call, not the object directory for the EIOS job itself.

Basic iRMX System Calls 259

directory and then jumps to startAddress. Alternatively, the new job's
task could look up the tokens in its parent job's object directory and then
catalog them.

The net result of this exercise is that you can see that an I/O job really is
just a Nucleus job after all, but that it has had a particular set of objects ca
taloged in its object directory - objects that make it possible for the EIOS
to obtain information it needs when the job makes EIOS system calls. "I/O
job" is actually something else as well: it is the name of a composite object
type whose type manager is provided by the EIOS, and the token for an in
stance of this object type is one of the items cataloged in the object direc
tory of every I/O job.

7.4.3 Using the AL

Many iRMX applications run in dedicated systems with both the as and
the application jobs loaded into memory when the system is initialized.
Chapter 3 introduced the sysload command that can be used to load such
resident application jobs for iRMX for Windows systems. Traditional
iRMX systems would use the Interactive Configuration Utility, described
briefly in chapters 9 and 10 to incorporate applications into the as image.
It is also possible to load application code into memory as the system is
running by using the AL layer of the operating system9 • This section de
scribes the use of the AL to load an I/O job into memory from a disk file.
The next section shows how this call can be used by the HI to create some
of its offspring jobs. Sample code illustrating this technique is given in Fig
ures 7.4 and 7.5. The output from running the first program might look like
this:

This is the initial task: B9ES.
I belong to job BSBO.
My priority is OOSE.
My maximum priority is OOSO.
Now I will create a new I/O job.

This is the initial task again.
I created I/O job BASO.
Its exit code was 1234.
Now I will print its message and exit.

Job: BASO.
Task: BB5S.
Priority: OOSO.
Max priority: OOSo.
Exit.

9The sysload command uses the AL to load programs into memory.

260 iRMX Concepts and Features

The system call described here (rqsloadiojob() is one of several calls
provided by the AL for loading code into memory. For example, rqaload()
loads a program into memory but does not create a new job for it. The
segments for the program's code, data, and stack segments are taken from
the calling job's memory pool, and no task is created to execute the code.
The call returns selectors for all the segments, and a far pointer to the exe
cution start address for the program. Another call, rqsoverlay(), is used to
load different parts of a program into memory dynamically to reduce over
all memory requirements for the program at the expense of a run-time
delay as the overlay is read in from the disk. Since these two calls do not
create an I/O job, they can be used in configurations of iRMX that do not
include the EIOS layer of the operating system.

There is also an asynchronous version of rqsloadiojob() called rqaloadio
job() that allows the calling program to continue executing while the new
job is being loaded from disk. The calling program must then check that the
loading operation was successful using a technique analogous to that used
for asynchronous I/O processing with the BIOS.

The following is the function prototype for rqesloadiojob().

extern TOKEN
rqesloadiojob (STRING far *

DWORD
DWORD
EXCEPTIONSTRUCT far *
WORD
BYTE
WORD
TOKEN
WORD far *

pathPtr,
poolMin,
poolMax,
exceptHandler,
jobFlags,
taskPriority,
taskFlags,
msgMbox,
exceptPtr);

The first parameter is a pointer to an iRMX string (an array of bytes
containing the length of the string in the first byte) that gives the iRMX
pathname for the program to be loaded. Use the same rules for the path
name as when typing pathnames on a command line: if the pathname
starts with /, :, or A, it is a full pathname; otherwise, the first element must
be the name of a file or directory in the current working directory.

The poolMin and poolMax parameters are normally coded as 0 for
these calls, which means that the AL determines the appropriate values for
these parameters before calling rqcreateiojob(). Recall from chapter 3 that
an STL file begins with a header portion that tells the program's minimum
and maximum memory pool requirements as specified on the bndX86
command line, as well as the types and sizes of all the segments that make
up the program. The AL reads in this header part of the file before it creates
the I/O job and uses the information it finds there about the program's
memory pool requirements to set those values for its call to rqcreateiojob(),
unless the call to rqesloadiojob() provides nonzero values for these parame
ters, which would be used instead.

Basic iRMX System Calls 261

To solve the problem of loading a program into a job that has not yet
been created, the AL has the new I/O job load itself into memory.
You might be able to figure out how this is done by now. The AL sets the
startAddress parameter of its own call to rqcreateiojob() to point to a
procedure that it supplies for loading the program. That procedure ends
with a call to create a new task that starts execution at the first instruction
in the loaded program. The task that loaded the program (the real initial
task of the child job) is used for loading overlays for the childjob if it needs
them, or deletes itself if the program does not contain overlays. As far as
the application is concerned, the second task created for the job is its initial
task. Since all tasks belonging to a job are equivalent siblings, there is no
significance whether the real initial task or some other task executes the
job's code.

The procedure that does the actual loading needs a certain minimum
amount of memory for I/O buffers and its own housekeeping operations. If
necessary, the mi nPoo 1 parameter for the call to rqcreateiojob() is adjusted
to override the minimum memory pool specified in the loaded file's header
to take this memory requirement into account. The segments created by
this procedure are deleted when the loading operation finishes if the pro
gram does not contain overlays.

7.4.4 HI offspring jobs

The HI job is the first-level job created for the HI layer of the operating
system when it initializes. The HI job creates a task for each terminal de
fined in :config:terminals, and each of these tasks displays a login
prompt on its terminal's screen.lO When a user logs in, this task reads in
formation about the user from the :config:udf (User Definition File)
and from a file that has the user's login name in the: conf ig: users di
rectory, and then creates a job that provides the environment for that
user's work on the system. This job is referred to either as a eLI job, be
cause it includes the task that executes the command line interpreter for
the user, or as a terminal job, because it is associated with a particular login
terminal. As mentioned earlier, this job is an I/O job that acts as the global
job for all other I/O jobs spawned from the user's login session. The HI
creates this job using rqcreateiojob() with a value for the taskFlags pa
rameter that causes the initial task to wait before executing.l1 The HI then
catalogs into the job's object directory tokens for those objects that it will
need to perform its operations for the user. Some of these tokens replace

l<Vfhe : conf i g : termi na 1 s file might specify a static logon user for the terminal, in which
case the task automatically performs the login process for the user on that terminal.

llBecause the HI job is not an I/O job (there is no R? rOJOB entry in its object directory),
there seems to be a bit of forgery going on in the operating system to circumvent the rule that
only I/O jobs can create I/O jobs.

262 iRMX Concepts and Features

objects already cataloged in the job's object directory by the EroS during
the call to rqcreateiojob(). The following is a list of the objects cataloged in a
CLI job's object directory by the HI.

R?IOJOB. This is the normal I/O job object cataloged by the EroS and
unchanged by the Human Interface.

R? roUSER. Each user logged onto an iRMX system is checked against the
entries in the: conf ig: udf file, where group and individual user ID num
bers are stored. These ID numbers are used to build a new user object for
the individual who logs in. This user object replaces the one copied into the
job's object directory from its parent, the HI job.

RQGLOBAL. This job is a global job itself, so the token cataloged under this
name is changed from the copy inherited from the HI job into a token for
itself.

HOME. The user's pathname to the home directory of the file system is
found in :config:users/<username> when the user logs in, and a
token for an I/O connection to this directory is cataloged using this name.

$. The I/O connection token inherited from the HI job for the current
working directory in the file system is changed to match the token cata
loged with the name HOME when the user logs in. No command changes the
token cataloged with the name HOME, but $ changes when the user runs the
attachfile command.

PROG. This directory entry is cataloged with the token for an I/O connec
tion to the file system directory that has the pathname : home: prog. The
CLI gets the r? logon and r? logoff files from this directory and submits
them when the user logs on and off, respectively.

TERM, cr, CO. The same token is cataloged with these three different
names. The token is for an I/O connection to the user's console input and
output devices. The same connection is used for all three because the key
board and CRT are parts of the same device, but the potential exists for
separating CO and cr from TERM through command-line redirection using
the > and < characters.

As seen in chapter 8, HOME, $, PROG, TERM, cr, and CO are all logical
names for I/O connections. To steal the thunder from that chapter a bit, all
logical names are implemented by cataloging a token for an I/O connection

Basic iRMX System Calls 263

object in the root, global, or local job's object directory. (A local job is sim
ply whatever job owns the task that references the logical name.)

The eLI procedure adds more entries to the eLi job's object directory
beyond those placed there by the HI. These objects are used internally by
the eLi, and include the following.

R?CRT. A token for a segment that contains an iRMX string with the
name for the type of terminal used for logging into the system. Applica
tions that need to do full-screen operations can find this name in the
: conf ig: termcap file, along with the codes that a particular type of ter
minal recognizes for controlling the screen, and the keyboard codes the ter
minal generates for special keys such as the cursor arrow keys. The eLI,
SoftScope, and Aedit use this information to adapt to different types of ter
minals.

R? ALIAS. A token for a segment that contains all the command aliases the
user has defined.

R?BACKPOOL. A token for a segment that contains the default values for
the minimum and maximum memory pool parameters that the eLi will
use when creating a child job to run a background command.

R?ERROR. A token for a segment that contains the termination code for
the most recent HI command run by the user. At least some versions of the
eLi do not update the contents of this segment.

R?CURR$APP. A token for the HI command job that the user is running at
the time. This token is not cataloged except when a command is actually
running.

To create the actual jobs used for the commands, a user types at a termi
nal (HI commandjobs), the eLIjob reads the command line from the key
board, and then sends the string typed by the user to the HI by calling
rqcsendcommand(). The HI parses the command line, and searches a par
ticular set of directories in the file system for a file name that matches the
beginning of the command line. It then passes the full pathname of this file
as the first argument of a call to rqsloadiojob(), with the job's taskFlags
parameter set to suspend execution. The HI then updates the new job's ob
ject directory with the entries it will need if the job makes any system calls
to the HI layer (system calls with names that begin with rqc, such as
rqcsendcoresponse() and rqcsendcommand()). It then calls rqstartiojob()
and waits at the termination mailbox for the command job to exit. It then
sets the condition code for the call to rqcsendcommand() to indicate the
exit status of the job. Of course, all the code executed in the HI by rqcsend-

264 iRMX Concepts and Features

command() is actually executed by a task in the CLI job, so the new HI
command job is created as a child of the CLI job, and it is the CLI job task
that actually waits at the termination mailbox for the command job to
complete.

The CLI is not the only command line interpreter in iRMX systems. The
HI commands super, subniit, and esubmit all act as command line inter
preters. A simple command line interpreter is relatively easy to construct,
and one is included in appendix C. .

Chapter

8
I/O Management

8.1 Overview

The Basic I/O System (BIOS), Extended I/O System (EIOS), Human In
terface (HI), and User Development Interface (UDI) layers of an iRMX
system provide system calls that application programs can use to perform
input and output with peripheral devices connected to a computer system.

The terms input and output can have different meanings in different
contexts. This chapter discusses I/O between the memory of a processor
running iRMX and either the peripherals attached to that computer di
rectly or the peripherals attached to a remote computer system running the
networking software OpenNet.

Access to remote peripherals is possible if the local iRMX system is con
figured to include a job called iRMX-Net. iRMX-Net uses ISO-standard
communication protocols provided by a software module called iNA -960 to
communicate with complementary software running on remote computer
systems. The messages that iRMX-Net exchanges with remote systems
are in Microsoft's Server Message Block (SMB) format.

iRMX applications can also access any DOS device through the EDOS
file driver described in this chapter. If the DOS side of an iRMX for Win
dows system has mapped remote devices to DOS drives using a Novell net
work, for example, those mapped devices are available to iRMX applica
tions through EDOS. What unifies all these ways of accessing I/O devices
is that the same iRMX system calls, the ones described in this chapter, are
used in all cases.

Other types of information transfers are sometimes placed under the
headings of input and output operations. For example, iRMX supports
passing data from a task running on one computer to a task running on an
other. This form of I/O is called either message passing or inter process com
munication (IPC). The latter is a term borrowed from Unix, where threads
of execution are called processes. iRMX supports message passing between

265

266 iRMX Concepts and Features

computers running iRMX as well as other operating systems. The two
techniques available for this are Nucleus Communications Service for
communications between tasks (processes) running on two computers
connected by a Multibus II system bus, and the ISO Transport Layer ser
vices provided by iNA -960. IPC mechanisms based on iNA -960 are covered
in chapter 11.

This chapter is divided into three parts. The first part presents the sys
tem calls that the BIOS and EIOS provide for performing data operations,
which involves developing a model for talking about I/O operations and an
introduction to how files are maintained on an iRMX file system. The sec
ond part covers some of the other services provided by the BIOS, such as
special device-dependent functions, user authentication, and time-of-day
management. The third part of the chapter describes the disk structure of a
native-mode iRMX file system and the utility program called diskverify
that can examine and modify that structure.

8.2 Data Operations

One byword of the iRMX I/O system is device independence. No matter
what type of actual device a program works with, whether a disk drive,
printer, terminal, or robot, the program uses the same two system calls for
data transfers, rqaread() and rqawrite(), which are provided by the BIOS
layer. Other system calls for data transfers are provided by the EIOS, HI,
and UDI layers, but all those calls ultimately interface to these two BIOS
calls that actually do the work.

To accomplish this degree of device independence, the BIOS must be
able to use mechanisms to transform a device-independent system call like
rqaread() into the very specific and device-dependent actions that must be
invoked to perform a particular data transfer. Whether an application pro
grammer is fully aware of these mechanisms or not, applications must per
form a number of steps to prepare the BIOS for the device-independent
calls to rqaread() or rqawrite(). Some of these calls are device dependent,
but most are device independent. This section looks at those steps and ex
plains how they relate to the structure of the BIOS.

8.2.1 An 1/0 model

One problem with learning any new system is mastering the terminology
used to describe it. The iRMX I/O system uses consistent terminology for
various concepts relating to data -transfer operations. The terms are based
on a model situation in which a task does data transfers to and from named
files located on a disk drive. The same terms are then expanded to encom
pass how to access generalized peripheral devices in a device-independent
way. The model situation is described first.

I/O Management 267

Consider the structure of an actual iRMX file found on a disk device for
matted to hold an iRMX file system. iRMX can work with disks that have
been formatted with other file systems, notably the MS-DOS file system,
but the iRMX file system provides a somewhat more general model than
DOS. Details about the internal structure of an iRMX disk volume are
presented in the last section of this chapter, while the DOS file system is
described in a number of different sources, such as the Disk Explorer man
ual provided with the Norton Utilities software package for DOS. For now,
some general characteristics of how files are stored and accessed are dis
cussed.

A disk file is always organized as an unstructured sequence of bytes. The
operating system does not add any control characters like record marks or
end-of-file marks to the contents of a file. Instead, it maintains a separate
data structure for each file that tells what disk blocks the file occupies, the
total size of the file, and housekeeping information (discussed later). An
iRMX disk block and a DOS file cluster are conceptually similar con
structs. They refer to the smallest amount of space on a disk that can be
allocated to a file, and they cannot be shared by more than one file. The size
of disk blocks is fixed for a particular disk volume and is always an integral
multiple of the sector size for the volume. The size requirement is because
of the hardware restriction that one sector is the smallest amount of data
that can be transferred to or from the disk at a time. A disk volume means
one hard disk drive, one partition on a disk drive, or one diskette.

The housekeeping information that the I/O system maintains for disk
files allows the disk files to occupy noncontiguous blocks of the disk. This
fragmentation leads to efficiently using the space on a disk volume, but can
result in performance problems because the disk heads can be forced to
move to widely different locations on the disk to access different parts of a
file. If you are familiar with the DOS file system, you probably already
know that this same problem exists there too, and that DOS utility pro
grams can reorganize a disk to make files contiguous. The problem is par
ticularly serious for real-time systems which need to work with determin
istic response times to meet their deadlines. The iRMX technique for deal
ing with the problem is given in the description of rqacreatefile(), section
8.2.6.

An iRMX application must create an open connection to a file before it
can read or write to it. Since many files can exist on a single volume, it fol
lows that the system supports multiple simultaneous connections to files
on a single disk device. In fact, the system allows multiple simultaneous
connections even to a single file on the disk, provided that the different ap
plications that have open connections to the file agree about how they will
share the file with one another.

Sharing refers to the possible combinations of exclusive or shared access
to a file for reading and/or writing. When an application opens its connec
tion to a file, it indicates the operations it intends to perform {read and/or

268 iRMX Concepts and Features

write) and tells which operations it is willing to allow other applications to
perform simultaneously. The I/O system checks the logical consistency be
tween this application's request and all other open connections to the same
file. An application closes its connection to the file when it no longer needs
to access it, and the I/O system then updates its record of sharing con
straints for the file.

Creating a connection to a file is a two-step process. First, the applica
tion must either create an I/O connection to the device that holds the file or
reference an existing I/O connection to the device. It then creates its con
nection to the file based on the connection to the device. Only one connec
tion can exist to a device at one time, so that connection is normally made
readily available for sharing among the various applications that might
want to use it as the basis for creating connections to files on the device.
Creating an I/O connection to a device initializes a software module called
a device driver that acts as the interface between the OS and the hardware
device controller used to operate the device. (Device drivers are the topic of
chapter 9.) Creating a connection to a device also associates another soft
ware module, a file driver, with the connection and all file connections
based on it.

Following is a list of the steps that must be taken to perform data
transfers on an iRMX system, along with the names of the system calls
that might be used at each step. The calls that begin rqa are provided by the
BIOS layer, the others are provided by the EIOS layer. Only steps 2
through 5 are normally performed from with an application program.

1. Connect to the device. (This step can also be done by the HI command,
attachdevice.)
rqaphysicalattachdevice()
rqlogicalattachdevice()

2. Connect to the file. (This step can also be done by the HI command, at
tachfile.)
rqaattachfile()
rqacreatefile()
rqacreatedirectory()
rqsattachfile()
rqscreatefile()
rqscreatedirectory()

3. Open the file.
rqaopen()
rqsopen()

4. Read and/or write.
rqaread()
rqawrite()
rqaseek()

rqatruncate()
rqsreadmove()
rqswritemove()
rqsseek()
rqstruncatefile()

5. Close the file.
rqaclose()
rqsclose()

I/O Management 269

6. Disconnect from the file. (This step can also be done by the HI com
mand, detachfile.)
rqadeleteconnection()
rqsdeleteconnection()

7. Disconnect from the device. (This step can also be done by the HI com
mand, detachdevice.)
rqaphysicaldetachdevice()
rqlogicaldetachdevice()
rqhybriddetachdevice()

The iRMX I/O system uses this same model and its terminology for all
data transfer operations, not just disk file I/O. Even if an application is
writing to a printer, it first obtains a connection to the device and then uses
that connection as the basis for creating a connection to a file on the device,
even though printers do not actually have files on (or in) them, according to
the traditional use of the word file.

The device independence that arises from using the connect-to-a-file
model for all I/O operations produces two "Big Wins," one for application
developers and one for system programmers.

Application programs are easily written to be device independent. Because
the same system call is used to write to a printer, a terminal screen, or a file,
the actual device involved can be changed without changing the program.
This, of course is the idea of command-line redirection using the '>' and
'<' symbols, but redirection is used in less obvious situations as well. For
example, a program that reads from the console input device normally re
ceives its input from a keyboard, but the source is automatically changed to
come from a disk file when the command is run from a submit file.

System programmers benefit from device independence. This indepen
dence is achieved by partitioning the I/O system into modules with well
defined interfaces between them. System developers can thus extend the
functionality of the I/O system without interfering with existing applica
tions and with minimal changes to existing portions ofthe I/O system it
self. For example, support for network operations and the DOS file system
have been added to iRMX without adding any new system calls or chang-

270 iRMX Concepts and Features

ing the logic of most existing I/O system calls. About the only change, aside
from the added functionality, was the addition of new condition-code
values returned by existing system calls. This modular organization with
well-defined interfaces between modules also makes the addition of user
written device drivers to the system a relatively straightforward operation,
as seen in chapter 9.

8.2.2 Sample I/O programs

Figures 8.1 and 8.2 are equivalent PLM and C programs that illustrate the
steps a program takes to perform I/O transfers on an iRMX system. These
programs are not typical device-independent applications. They are coded
to illustrate all the steps in the model, rather than just usual program steps.
Device-independent programs would not call rqlogicalattachdevice()
themselves. Rather, a user would make the connection to a particular de
vice outside the program, such as by issuing the HI attachdevice command

. before running the program.
The programs read from the console input device device - inde

pendently (input can be redirected by using the '<' character on the
command line), but write to a file on a particular device, calledb_dos. The
programs will run on an iRMX for Windows system running on an AT
platform with a DOS-formatted diskette in drive B:, but if you do run
them, be sure there is not a file named type on • txt that you care about on
the diskette you have in drive B:. The program will overwrite it.

The programs begin· by creating a connection to the b _ dos device by
calling rqlogicalattachdevice(). They then obtain connections to two files.
For the output, a true named file on the diskette is used, but for the input,
the connection is to the console keyboard device. The rqscreatefile() sys
tem call is used to connect to the output file and create it if it does not yet
exist. The rqsattachfile() call is used to connect to the console input device
as a file, using the logical name: ci: to identify the connection to the de
vice that serves as the basis for the connection to the file.1 This rqsattach
file() system call can also be used to connect to disk files that already exist.

Once the connections to files have been created, they are opened, and the
reading/writing loop proceeds until the user types a null line at the key
board (By pressing < A Z > at the beginning of aline) or until the end of file
is reached in the case where the input has been redirected to come from a
file. The program calls for the use of an I/O system buffer for the output
connection (the third parameter of the call to rqsopen(), which means that
output accumulates in the buffer until it fills, at which point it is written to
the disk, and a new buffer is begun. If the buffer is partially full after the

1 Actually, : ci: is already a connection to a file at this point. It was originally a connection
to a device, and the I/O system builds on this device information to create a connection to a
file.

1/0 Management 271

Figure 8.1 Sample PLM program illustrating I/O using EIOS system calls; the program reads
from the console keyboard and writes to a disk file named type on • txt on the B: disk of an
AT computer.

/***> typeon.plm <**

Sample PLM program to illustrate EIOS I/O
The program reads lines from the keyboard and writes them to a
file named typeon.txt on the B: drive of a PC.

**/

$title ('Sample program to illustrate EIOS 1/0'1
typeon: DO;
$include (typeon.extl

DECLARE
EDOS
READALL
WRITENONE

LITERALLY
LITERALLY
LITERALLY

(console, filel
(bytesRead, bytesWrittenl
buffer (801
Status

'6' ,

'5' ,

TOKEN,
WORD_32,
BYTE,
WORD_16 ;

/* Execution Starts Here

*/
/* Establish a connection to the b_dos device with the logical

name :B:. This is equivalent to the HI command,
ATTACHDEVICE B_DOS AS B EDOS

*/

CALL rqlogicalattachdevice (@(1, 'b'l, @(5, 'b_dos' I , EDOS, @Statusl;

/* Create connections to two files, the console input device and
a file on the disk, and open them appropriately.

*/

console = rqsattachfile (@(4,':ci:'I, @Statusl;
file = rqscreatefile (@(13,':b:typeon.txt'l, @Statusl;
CALL rqsopen (console, READALL, 0, @Statusl;
CALL rqsopen (file, WRITENONE, 1, @Statusl:

/* Read from console, write to file -- until done

*/
bytesRead = rqsreadmove (console, @buffer, size(bufferl, @Statusl:
DO WHILE bytesRead <> 0;

bytesWritten = rqswritemove (file, @buffer, bytesRead, @Statusl;
bytesRead = rqsreadmove (console, @buffer, size(bufferl, @Statusl;

END;

/* Close file, detach device, and exit

*/
CALL rqsclose (file, @Statusl:
CALL rqlogicaldetachdevice (@(l, 'b'l, @Statusl;
CALL rqexitiojob (0, NIL, @Statusl;

END typeon;

272 iRMX Concepts and Features

Figure 8.2 C program equivalent to Fig. 8.1.

/***> typeon.c <**

* Sample C program to illustrate EIOS I/O
The program reads lines from the keyboard and writes them to a
file named typeon.txt on the B: drive of a PC.

**/

#include <rmxc.h>
#include <string.h>

#define ALWAYS 3
#define EDOS 6
#define READALL I
#define WRITENONE 5

main (int argc, char *argv[J)

EXCEPTIONSTRUCT ehStruct;
TOKEN
DWORD
BYTE
STRING

console, file;
bytesRead, bytesWritten;
buffer [80J;
b[J = "b", b_dos[J = "b_dos" , ci[J
pathName [J = ": b: typeon. txt" ;

WORD Status;

/* Convert C strings to iRMX strings

*/
udistr (b, b);
udistr (b_dos, b_dos);
udistr (ci, ci);
udistr (pathName, pathName);

/* Let exception handler take care of errors

*/
rqgetexceptionhandier (&ehStruct, &Status);
ehStruct.exceptionmode = ALWAYS;
rqsetexceptionhandler (&ehStruct, &Status);

II :ci: II I

/* Establish a connection to the b_dos device with the logical
name :B:. This is equivalent to the HI command,

ATTACHDEVICE B_DOS AS B EDOS

*/
rqlogicalattachdevice (b, b_dos, EDOS, &Status);

/* Create connections to two files, the console input device and
a file on the disk, and open them appropriately.

*/
console = rqsattachfile (ci, &Status);
file = rqscreatefile (pathName, &Status);
rqsopen (console, READALL, 0, &Status);
rqsopen (file, WRITENONE, 1, &Status);

/* Read from console, write to file -- until done.

Figure 8.2 (Continued)

*/

I/O Management 273

bytesRead = rqsreadmove (console, buffer, sizeof (buffer), &Status);
while (bytesRead != 0) {

bytesWritten = rqswritemove (file, buffer, bytesRead, &Status);
bytesRead = rqsreadmove (console, buffer, sizeof (buffer),

&Status) ;
}

/* Close file, detach device, and exit.

*/
rqsclose (file, &Status);
rqlogicaldetachdevice (b, &Status);
rqexitiojob (0, NULL, &Status);

last write operation to the file, the partially full buffer is written when the
connection is closed. The file is closed automatically when the application
exits, but the file must be closed explicitly for this program because the
program deletes the connection to the device containing the file before ex
iting by calling rqlogicaldetachdevice(). That system call does not flush the
EIOS's buffers for file connections based on the device connection before
deleting the device connection. The issue is not important for the input
side because that connection is opened with no buffering and the connec
tion to the device is not deleted by the program.2

8.2.3 Synchronous and asynchronous
I/O operations

Most system calls for most operating systems are synchronous. A task
makes a system call, and does not return to the calling program until all
operations associated with the system call are complete. That is, the re
sumption of the calling program is automatically synchronized with the
completion of the system call. For an I/O system call, this means that the
calling task could be delayed for relatively long periods of time. Waiting
several dozen milliseconds for a disk transfer to occur is a very long wait for
an application that measures the time it takes to process a real-time event
in microseconds. (Imagine reading from a terminal's keyboard when the
operator decides it's time for a coffee break!)

If a task returns from a system call before the logic of the call completes,
the system call is said to be asynchronous. Asynchronous system calls allow
a task to be more productive; the task can perform other computations
while another task executes the logic of the system call concurrently. A

2If there were input buffering, the application's call to rqsreadmove() would not complete
until the user typed 1,024 characters. This is not an issue for the sample programs, but it could
wreak havoc with the "user-friendliness" of an interactive program!

274 iRMX Concepts and Features

mechanism must exist then by which a task can determine when the con
current part of the call has actually completed. That is, there must be a way
for the calling task and the task executing the system call to resynchronize.

A major distinction between the BIOS and EIOS layers of iRMX is that
the BIOS layer supports asynchronous operation for most of the system
calls it provides, but the EIOS supports only synchronous operations. The
resynchronization mechanism is this: when the calling task makes an
asynchronous system call, it supplies a token for a mailbox as one of the pa
rameters. (This parameter is referred to as responseMbx in the system
calls that follow.) The BIOS does some initial processing ofthe system call
to ensure that the parameters for the system call make sense, and returns
to the calling task. If the condition code returned for this synchronous part
ofthe system call is 0 (E_OK), it means that a task in the BIOS has been
dispatched to process the concurrent part ofthe call. When that task com
pletes, it sends the token for a memory segment to responseMbx, having
placed information in that segment to indicate whether the asynchronous
part of the system call completed successfully or not. When the calling task
is ready to resynchronize, it can use either oftwo system calls. The task can
call rqreceivemessage() to obtain the token for the segment sent to the
mailbox, in which case the task must examine the contents of the memory
segment to determine the result of the call. Alternatively, the task can call
a BI as function, rqwaitio(), which receives the segment at the mailbox, ex
amines the contents of the mailbox to determine how the asynchronous
part of the call fared, and sets its own condition code to indicate the result.
For both rqreceivemessage() and rqwaitio(), the normal rules for iRMX
mailboxes apply. If a token is at the mailbox when the call is made, the call
completes immediately; if a token is not at the mailbox, the calling task is
put to sleep until either a token arrives or until a time limit, specified as the
value of a parameter to the system call, expires.

Figure 8.3 is a PLM program that performs the same function as the pro
grams in Figures 8.1 and 8.2, but uses BIOS calls instead of EIOS calls to
demonstrate asynchronous coding. If nothing else, this program should
make it clear to you how much easier it is to use EIOS calls! The C program
to do the same thing has generously been left as an exercise for you to do.

The EIOS implements a second form of synchronization important to
recognize. All I/O operations performed through the EIOS using an I/O
connection are serialized. That is, once any task issues a call to rqsread
move(), for example, using a particular I/O connection, the EIOS will not
release to the BIOS any I/O requests made by other tasks that use the same
connection object. If different tasks have different connections to the same
file, the EIOS will allow them to access the file concurrently (provided the
connections are opened for sharing), but tasks cannot perform concurrent
I/O operations using a single connection. The BIOS does not implement
any such serialization of I/O requests.

I/O Management 275

Figure 8.3 PLM program equivalent to Fig. 8.1, using BIOS (asynchronous) system calls.

/***> atypeon.plm <**

* PLM program to illustrate asynchronous (BIOS) I/O

*
The program reads from the keyboard and writes to a disk file
called typeon.txt on the B: drive of a PC.

*
**/

$title ('Sample program to illustrate BIOS I/O')
atypeon: DO;
$include (atypeon.ext)

DECLARE

$ELSE

$ENDIF

$ELSE

$ENDIF

EDOS LITERALLY '6' ,
SEGMENT LITERALLY '6' ,
READ LITERALLY '1' ,
WRITE LITERALLY '2' ,
SHARENONE LITERALLY '0' ,
SHAREALL LITERALLY '3' ,
HARD LITERALLY 'OFFh' ,

(console, file, inMbx, iorsTkn,
outMbx, b_dos) TOKEN,
(bytesRead, bytesWritten)
(ibuffer, obuffer) (80)
(ioStatus, Status)

iors BASED iorsTkn STRUCTURE
status WORD_16,
unit$status WORD_16,

actual

actual
actual$fill

device

WORD_16,
WORD_16,

unit BYTE,
function BYTE,
sub$function WORD_16,
device$location WORD_32,
buffer$p POINTER,

count

count
count$fill

auxilary$p
link$for
link$back
resp$mbox
done
iors$fill
cancel$id
conn$t

WORD_16,
WORD_16,

POINTER,
POINTER,
POINTER,
TOKEN,
BYTE,
BYTE,
TOKEN,
TOKEN) ;

DWORD,
BYTE,
WORD_16,

276 iRMX Concepts and Features

Figure 8.3 (Continued)

/* Execution Starts Here

*/

Set up response mailboxes for asynchronous operations
Strategy will be to initiate operation on one connection before
waiting for previous operation on other connection to complete

inMbx = rqcreatemailbox (0, @Status);
outMbx = rqcreatemailbox (0, @Status);

/* Establish a connection to the b_dos' device with no logical name

*/
CALL rqaphysicalattachdevice (@(5,'b_dos'), EDOS, outMbx, @Status);

/* Create connection to the console input device as a file

*/
CALL rqaattachfile (selectorof(NIL) ,

rqslookupconnection (@(4,':CI:'), @Status),
NIL, inMbx, @Status);

/* Wait for output attachdevice to complete; create output file

*/
iorsTkn = rqreceivemessage (outMbx, DFFFFh, NIL, @Status);
IF rqgettype (iorsTkn, @Status) = SEGMENT THEN

CALL rqexitiojob (iors.Status, @(20, 'Attach Device Failed'),
@Status) ;

b_dos = iorsTkn;
CALL rqacreatefile (selector$of(NIL) , b_dos, @(10, 'typeon.txt'),

Illlb, 0, 0, 0, outMbx, @Status);

/* Wait for input attachfile to complete; open input for reading,
share with all

*/

iorsTkn = rqreceivemessage (inMbx, OFFFFh, NIL, @Status);
IF rqgettype (iorsTkn, @Status) = SEGMENT THEN

CALL rqexitiojob (iors.Status, @(18,'Attach File Failed'),
@Status) ;

console = iorsTkn;
CALL rqaopen (console, READ, SHAREALL, inMbx, @Status);

/* Wait for output createfile to complete; open output for writing,
share wi th all

*/
iorsTkn = rqreceivemessage (outMbx, DFFFFh, NIL, @Status);
IF rqgettype (iorsTkn, @Status) = SEGMENT THEN

CALL rqexitiojob (iors.Status, @(18, 'Create File Failed'),
@Status) ;

file iorsTkn;
CALL rqaopen (file, WRITE, SHARE NONE , outMbx, @Status);

1/0 Management 277

Figure 8.3 (Continued)

/* Set up for main loop: Be sure both connections opened all right,
and initiate first read from console

*/

iorsTkn = rqreceivemessage (inMbx, OFFFFh, NIL, @Status);
IF iors.Status <> 0 THEN

CALL rqexitiojob (iors.Status, @(17, 'Open Input Failed'),
@Status) ;

CALL rqaread (console, @ibuffer, size(ibuffer), inMbx, @Status);
iorsTkn = rqreceivemessage (outMbx, OFFFFh, NIL, @Status);
if iors.Status <> 0 THEN

CALL rqexitiojob (iors.Status, @(20, 'Open Output Failed'),
@Status) ;

/* Wait for first read to complete and initiate first write

*/
bytesRead = rqwaitio (console, inMbx, OFFFFh, @Status);
if Status <> 0 THEN

CALL rqexitiojob (Status, @(11, 'Read Failed'), @Status);
CALL movb(@ibuffer, @obuffer, bytesRead);
CALL rqawrite (file, @obuffer, bytesRead, outMbx, @Status);
CALL rqaread (console, @ibuffer, size(ibuffer), inMbx, @Status);

/* Read from console, write to file -- until done

*/
DO WHILE bytesRead <> 0;

bytesRead = rqwaitio (console, inMbx, OFFFFh, @Status);
if Status <> 0 THEN

CALL rqexitiojob (Status, @(ll, 'Read Failed'), @Status);
bytesWritten = rqwaitio (file, outMbx, OFFFFh, @Status);
if Status <> 0 THEN

CALL rqexitiojob (Status, @(12, 'Write Failed'), @Status);
CALL movb(@ibuffer, @obuffer, bytesRead);
CALL rqawrite (file, @obuffer, bytesRead, outMbx, @Status);
CALL rqaread (console, @ibuffer, size(ibuffer), inMbx, @Status);

END;

/* Detach device and exit

*/
CALL rqaphysicaldetachdevice (b_dos, HARD, selectorof(NIL) ,

@Status) ;
CALL rqexitiojob (0, @(11, 'Normal Exit'), @Status);

END atypeon;

Asynchronous system calls have names that begin with rqa, and equiva
lent synchronous call have names that begin with rqs. When a function
that is available through both asynchronous and synchronous system calls
is discussed, the name will start with rq {as J to indicate both calls.

278 iRMX Concepts and Features

8.2.4 IORSs and DUIBs

To describe the logic of certain I/O operations, you need to know the names
of two data structures associated with the I/O system and what they are
used for. The actual contents of each data structure are covered in some
detail in chapter 9, where their roles in the operation of I/O device drivers
are discussed.

The first data structure is called a Device Unit Information Block, or
DUIB. This data structure contains the information the I/O system needs
to work with a particular I/O device unit, such as a certain disk drive or ter
minal. A list of DUIBs is kept in memory at all times, and a unique ASCII
name exists for each possible device to which an application could connect.
These DUIB names are also known as physical device names, and they were
mentioned in chapter 2 when the attachdevice HI command was intro
duced. You can use the physnames command to list the DUIBs on a system.

The D UIB named b _ dos was used in the sample programs in Figures 8.1
and 8.2. If you know the name for a DUIB, you can see what the I/O system
knows about it by using the system debugger (or SoftScope) vb command.
The structure of aD UIB is not of concern here, but the fields are discussed in
chapter 9, and a typedef for this data structure is presented.

The other data structure is called an Input/Output Request/Result Seg
ment, or 10RS. (At any moment it is either a request segment or a result
segment, so it gets only one R in its acronym.) IORS is the segment that is
sent to responseMbx when the asynchronous part of a BIOS system call
completes. It is created when the synchronous part of the call is made,
when it gets filled with information supplied by the parameters to the sys
tem call and then sent to the proper device driver to perform the work of
the system call. When the device driver task completes its work for the
operation, it puts a result code and other information, such as the actual
number of bytes that were read or written, into other fields of the same
IORS, and sends the token for the 10RS to the response mailbox. The fol
lowing is the typedef for an IORS.

#pragma noalign (iorsStruct)
typedef struct iorsStruct (

WORD
WORD
NATIVE WORD

#if _ARCHITECTURE_ < 386
WORD

#endif
WORD
BYTE
BYTE
WORD
DWORD
BYTE far *

status;
unitStatus;
actual;

actualfill;

device;
unit;
funct;
subfunct;
deviceloc;
buff;

NATIVE WORD
Hif _ARCHITECTURE_ < 386

WORD
Hendif

void far *
iorsStruct far

*
iorsStruct far

*
TOKEN
BYTE
BYTE
TOKEN
TOKEN

} IORSSTRUCT;

count;

countfill;

aux;

linkForward;

linkBackward;
responseMbx;
done;
fill;
cancelID;
connection;

1/0 Management 279

The first word, status, gives the concurrent condition code for
asynchronous system calls, with E_OK (zero) signifying normal comple
tion. Most of the other fields in this structure will make more sense as you
read more of this chapter, so you might want to refer back to the structure
from time to time.

8.2.5 1/0 connection objects

Our model for iRMX I/O has an application connect to a device first and
then to a file on the device. In keeping with the object-based nature of
iRMX, the I/O system provides an object type, called an I/O connection, to
manage the connections that applications make. The sample programs
used variables named console and file to hold tokens for I/O connec
tion objects. The structure of the information inside a connection object
varies, depending on what type of device it connects to and whether it rep
resents a connection to the device itself or a connection to a file on the de
vice. You can talk about a device connection or a file connection, but both
terms refer to the same object type, except with different internal data
structures.

To make an application device independent, the application should in
clude the code for connecting to a file, but not the code for connecting to a
particular device. You can use logical names to accomplish this. To con
nect to a file, the application must specify an existing device-connection
object. Tokens for a number of device-connection objects can be cataloged
into the object directory of a well-known job (normally the root job of the
system or the global job for the application) using well-known directory
entry names. Applications then obtain device-connection tokens by refer
encing these well-known names rather than the actual device names. This
way, the same application can work with different devices by transparently
changing the device connection object that has been cataloged with the
well-known name.

280 iRMX Concepts and Features

The well-known names in the object directories are called logical names,
The EIOS conveniently provides system calls for setting up these logical
names and searching the proper object directories for them for the applica
tion programs. The HI commands attachdevice and attach file introduced in
chapter 2 allow users to set up logical names from the command line.

Connections to devices can be shared across jobs, but connections to files
cannot. Each job must obtain its own connection objects to files. It's not
that two jobs cannot access the Same file simultaneously, it's just that tasks
in different jobs cannot use the same connection object to do so. The issue
is one of system integrity. If two jobs share an open file connection and the
job that owns the connection terminates, the other job is left with a token
for a connection object that does not exist. This type of problem exists
whenever jobs share objects, but for file connections, the memory protec
tion faults and issues of file integrity that could ensue are too serious to
allow the situation to occur at all. If a job can access a token for a file con
nection that belongs to another job, the BIOS system calls rqaattachfileO
or rqacreatefileO can be used to copy the existing connection object, but
this copy belongs to the calling job so that the job can have its own cQnnec
tion to the file.

8.2.6 System calls for managing
connection objects

The BIOS and EIOS each supply a system call to create a connection object
for a device. The following is the BIOS version.

extern void
rqaphysicalattachde~ice (STRING far *

BYTE
TOKEN
WORD far *

deviceNamePtr,
fileDriver,
responseMbx,
exceptPtr);

deviceNamePtr is a pointer to an iRMX string (which consist of a byte
containing the length of the string followed by the bytes that constitute the
actual string) that names the DUIB for the device to be attached. The type
of device is specified by the fileDriver parameter, with the following
possible values.

Physical. The physical file driver is used for devices such as printers and
terminals that do not support named file systems, It is also used for disks to
be accessed on a block-by-block basis rather than by named files. The
terms physical file driver and physical attachdevice have nothing to do with
each other. Physical file driver identifies one of the five file drivers in this
list. Physical attachdevice differentiates this system call from the EIOS
system call logical attachdevice.

1/0 Management 281

Stream. An iRMX stream is not really a peripheral device. Tasks can
communicate with each other by writing to and reading from streams. The
data that is read or written is transferred using memory buffers managed
by the stream file driver.

Named. The named file driver is used for disks formatted to use the iRMX
file system structure described later in this chapter. Name is the type of file
system described in chapter 2.

Remote. The remote file driver is used for remote computer systems con
nected to the local computer by a network that supports Intel's OpenNet
protocols. OpenNet uses ISO protocols to connect computers running
iRMX, XENIX, UNIX System V, DOS, and V AX/VMS. The messages
that OpenNet passes over the network adhere to Microsoft's Server Mes
sage Block (SMB) protocol.

EDOS. This acronym stands for Encapsulated DOS, and is used with disks
formatted under Microsoft DOS. EDOS file systems are simpler but have
fewer capabilities compared to iRMX Named file systems. This file driver
allows access to DOS disks using the same syntax as for accessing iRMX
files. For example, EDOS uses the forward slash character to separate
components of a path name rather than the backslash used by DOS.

Not all iRMX configurations support all five device types. As the name
for this parameter implies, each type of device is supported by a software
module called a file driver. Device driver might seem more appropriate, but
file driver makes sense if you think of this module as the one that trans
forms file-oriented system calls into device-specific operations. Thus, ap
plication tasks, file drivers, and device drivers are related as shown, with
the file driver layer named for the interface it presents to the application
tasks above it.

Application Task

File Driver

Device Driver

Because rqaphysicalattachdevice() is an asynchronous system call (note
the rqa prefix to the system call name), the token for the new connection
object is not returned immediately. Rather, the token is sent to the
responseMbx mailbox after the asynchronous part ofthe call completes.
This process is an exception to the general procedure for asynchronous
BIOS calls. An IORS is sent to responseMbx only ifthis call fails, with the
reason for failure given in a status field within the IORS.

282 iRMX Concepts and Features

This feature thus raises the question of how a task can know whether a
token it receives at a message mailbox is for an IORS or an I/O connection
object. The answer is that each iRMX object type has an associated type
code, which can be determined by passing the token as a parameter to the
system call rqgettype(), which will return a word containing one ofthe fol
lowing values:

OxOOOl
Ox0002
Ox0003
Ox0004
Ox0005
Ox0006
Ox0007
Ox0009
OxOOOA
Ox0100
Ox010l
Ox0300
Ox030l
Ox8000·0xFFFF

Job
Task
Mailbox
Semaphore
Region
Segment
Extension
Multibus II Port
Buffer Pool
Composite (I/O User)
Composite (I/O Connection)
Composite (I/O Job)
Composite (Logical Device)
User-Created Composites

Thus, the type code for the token that arrives at responseMbx is Ox010l if
the connection was created successfully, but Ox0006 ifthe call failed and an
IORS is returned instead, as illustrated several times in Figure 8.3.

A critical concept here is that the I/O connection object created by rqa
physicalattachdevice() belongs to the job that created it, and is automati
cally deleted when the job that created it terminates. Since device connec
tions are normally shared across jobs, they should continue to exist after
the job that creates them terminates. For example, the attachdevice HI
command allows users to create a device connection and associated
logical name that persist after the HI attachdevice command job exits. To
achieve this permanence, the EIOS provides the rqlogicalattachdevice()
system call, which causes a task owned by the EIOS to call rqaphysical
attachdevice(). This way, the device connection is owned by the EIOS
job, and remains in place after the job for the attachdevice command
exits.

Very few applications call rqaphysicalattachdevice() to create connec
tions that they use themselves. In addition to the problem of non perman
ent connection objects, applications that call rqaphysicalattachdevice() or
rqlogicalattachdevice() lose their device independence. Rather, jobs usually
catalog the token for the connection to a device in an object directory where
other jobs can access it. This concept is the heart ofthe EIOS logical name
construct.

The EIOS manages a composite object type called a logical connection
(object type Ox0301) for this purpose. When an application calls rqlogi
calattachdevice(), the EIOS creates a type Ox0301 object and catalogs the
token for it in the root job's object directory. Later, when the first file con-

1/0 Management 283

nection based on this logical name is made, the EIOS calls rqaphysicalat
tachdevice() to create the type OxOlOl object, waits at responseMbx for
the asynchronous part of that call to complete, and updates the type
Ox0301 object to include the token for the type OxOlOl object. Thus, a logi
cal name is the name of an object cataloged in the root job's object directory
that can be used to find the token for a connection to a device. The EIOS
handles logical names for connections to files a little differently, as you will
soon see.

If you could enter an HI logicalnames command during the execution of
the sample I/O programs, you would see the logical name B in the list
displayed by the command. If you build the program and omit the call to
rqlogicaldetachdevice(), the logical name would still be in place after the
program stops running. If you look in the object directory of the root job
while the program is running (using SoftScope), you will find a token for a
type Ox0301 object cataloged with the name B. If you dump the memory
segment for the type Ox0301 object before the call to rqscreatefile(), and
then again after that call, you would find that a token for a type OxOlOl ob
ject appears in the segment as the result of the call. The following is the
function prototype for rqlogicalattachdevice().

extern void
rqlogicalattachdevice (STRING far *

STRING far *
BYTE
WORD far *

logicalNamePtr,
deviceNamePtr,
fileDriver,
exceptPtr);

logicalNamePtr points to an iRMX string for the logical name to be
created. The type Ox0301 object will be cataloged in the root job's object di
rectory using this name. Colons around the name are optional, and letter
case does not matter. The EIOS strips off any colons and converts all let
ters to uppercase before it calls rqcatalogobject(). EIOS also converts logi
cal names into this canonical form before it calls rqlookupobject(), such as
when an application task calls the EIOS system call rqlookupconnection().
The colons around a logical name are needed only when a pathname is
supplied to the EIOS, so EIOS can recognize whether the pathname begins
with a logical name or not.

deviceNameptr and fileDriver are coded exactly the same as the
corresponding parameters to rqaphysicalattachdevice(). The EIOS simply
stores them in the new type Ox0301 object until the logical name is used for
connecting to a file, at which time they are used as parameters in a call to
rqaphysicalattachdevice().

Once a device connection has been created, it can then be used to create a
file connection using one of two BIOS calls. The first one is rqaattachfile(),
which can be used regardless of which file driver was used when the I/O
connection to the device was created.

284 iRMX Concepts and Features

extern void
rqaattachfile (TOKEN

TOKEN
STRING far *
TOKEN
WORD far *

user,
prefix,
subpathPtr,
responseMbx,
exceptPtr);

A token for either a new I/O connection object (type OxOIOI) or an 10RS,
in case of an error, is returned to responseMbx when the asynchronous
part of this call completes.

user is a token for an 1/0 user object (composite object type OxOlOO)
that consists of a list of user ID numbers. This user object is used only for
files that reside on devices attached with the named or remote file driver.
You can omit this parameter by coding a selector for a null pointer (a word
of zeros). If you omit this parameter for a file that resides on a device at
tached with the named or remote file driver, the BIOS will use the default
user object for the job, which is the one cataloged in the job's object direc
tory under the name R?IOUSER. In general, the user object is not used
when the file is attached, it is simply added to the I/O connection object at
this time and used later., when the file is opened, to check for a user's access
rights to the file. For remote files, the user object is used immediately, along
with the user's name and encrypted password from the: conf ig: udf file,
to verify that the person who logged on to the local system is a legitimate
user on the remote system, with the same password on both systems3•

prefix and subpathPtr are used together to identify the file to be at
tached. Various combinations of these two parameters are possible, de
pending on the file driver being used. These combinations are:

File Driver Prefix

Physical or Stream Either a token for a connec
tion to the device, or a null
selector.

Named, Remote, or ED OS Either a token for a connec
tion to the device, or a null
selector.

Subpath

Null pointer. Always ig
nored.

Either a pointer to a path
name string or a null pointer.

If pref ix is a null selector (a I6-bit word of zeros), a default prefix must
exist for the job, which is a token for a connection object cataloged in the
job's object directory using the name $. The prefix itself can be a token for a
connection to either a device or a file, because connections to files imply a

3iRMX is not a secure time-sharing system because any user who can execute a program
can create a user object that includes the superuser's ID, giving the user super-user privileges
for at least for the duration of the user's program. On the other hand, the operating system
does not extend this laissez-faire attitude to computer systems with which it shares a network.
iRMX systems do not allow users to break security mechanisms of remote systems through
their own security loopholes.

1/0 Management 285

unique device to the I/O system. In an apparent inversion of the normal
relationship between the BIOS and the EIOS, you can specify a type
Ox0301 connection object as the prefix (a token for a logical name created
by the EIOS), and the BIOS will extract the embedded OxOlOl connection
object from it automatically, provided the connection has been physically
attached through a previous EIOS system call.

subpathPtr points to a string that actually names the file to be ac
cessed. It is always a null pointer for physical and stream devices because
those devices do not support named files. For the Named, Remote, and
EDOS file drivers, the pathname string identifies a file or directory that
can be located by starting at the file or directory specified by the prefix and
then following <A> and <I> characters in the string to determine what
directory contains the file being attached. If the pathname string starts
with <I>, the search for the file always starts at the root directory of the
device specified or implied by the prefix.

Although the rules about the prefix token and the subpathPtr string
are complex, they need not be too confusing. One point to remember is that
the prefix can specify a connection to either a device or a file. A second
point is that the named, remote, and EDOS file drivers do not distinguish
between files and directories at this point, so the token returned by the
asynchronous part of the call can be for an I/O connection object to either a
file or a directory. Finally, the relationships between the prefix and the
subpath should become more intuitive when you look at the corresponding
EIOS call, rqsattachfile(), used in the sample I/O programs:

extern TOKEN
rqsattachfile (STRING far *

WORD far *
pathPtr,
exceptPtr);

The token returned by this system call is for a type OxOlOl connection ob
ject, not for a type Ox0301 object. The latter are used only for logical device
connections.

The EIOS code for this call generates a call to rqaattachfile(). How does
the EIOS have values for all the parameters for the call to rqaattachfile()
when it receives only two parameters for a call to rqsattachfile()? First, the
user parameter is always set to a null selector so that the BIOS will use the
default user object, which is always cataloged in the object directory of an
I/O job. Second, the EIOS has its own mailbox it uses for responseMbx, so
that leaves only the prefix and subpathPtr parameters. Clearly, the
EIOS creates the values for these two parameters from the pathPtr it re
ceives.

The syntax rules for constructing the string pointed to by pa thPtr are
the same introduced in chapter 2 for typing pathnames in commands en
tered at the iRMX> prompt. The key to parsing a pathname string lies in
the value of the first character in the string.

286 iRMX Concepts and Features

Rule First Character at pathPtr prefix subpathPtr

1 $ Null selector. Pointer to second char-
acter at pathPtr if
there is one, otherwise
null selector.

2 : Look up the logical Pointer to the first char-
name. If the type Ox0301 acter after the second :
object does not yet con- in the path if there is
tain a type OxOlOl ob- one, otherwise, null se-
ject, call rqaphysicalat- lector.
tachdevice () to get one.
Use the token for the
type OxOlOl object.

3 I Null selector. pathPtr.

4 A Null selector pathPtr.

5 Other character Null selector pathPtr.

Rule 1 includes four subcases:

1. The string following the $ character is empty. The application obtains a
second connection to the same device or file that $ represents. Useful for
an application that changes $ temporarily.

2. The character following the $ is a /. Same as Rule 3.

3. The character following the $ is a A. Same as Rule 4.

4. Any other character follows the $. Same as Rule 5.

Rule 2 is used when the pathname starts with a logical name. The file or
device represented by the logical name is the prefix, and anything that fol
lows the logical name is the subpath. This use of a logical name to specify
the prefix can save a lot of time compared to a full pathname starting at the
root ofthe file system because the directories that lead from the root to the
point of the logical name do not need to be searched.

In the case of Rule 3, a full pathname is specified from the root directory
of the volume that contains the default prefix file.

Rule 4 is used for a pathname that is specified relative to the default pre
fix file, and Rule 5 is the same as Rule 4 as far as the EIOS is concerned.
The BIOS, however, starts at different parts of the file system tree for
Rules 4 and 5.

The other calls for creating connections to files are used only with de
vices that actually support named file systems (devices connected using
the Named, Remote, or EDOS file drivers). These two calls, rqacreatefile()
and rqscreatefile(), as their names imply, create a file on the disk if one does
not already exist. If the file does already exist, the application can specify
what to do with the current contents of the file for rqacreatefile(), but the

1/0 Management 287

contents are always discarded for rqscreatefile(). The following is the more
complicated BIOS version first:

extern void
rqacreatefile (TOKEN

TOKEN
STRING far *
BYTE
WORD
DWORD
BYTE
TOKEN
WORD far *

user,
prefix,
subpathPtr,
access,
granularity,
size,
mustCreate,
responseMbx,
exceptPtr) ;

The parameters with the same names as the corresponding rqaattachfile()
parameters have the same interpretations here as for that call.

access specifies the access rights with which the file is to be created.
Four possible values tell whether the owner of the file can perform delete,
read, append (write to the end) or update (write anywhere) operations on
the file. The rq[asJchangeaccess() system calls can set the access rights for
other users. The EDOS file driver creates all files with read access enabled
for the World user because of the nature of the DOS file system. The Re
mote file driver must map these access rights to those of the remote oper
ating system as best it can. The value for this parameter can be computed
by adding the values one, two, four, and eight for delete, read, append, and
update access rights, respectively.

The next three parameters, granularity, size, and mustCreate,
work together to produce various effects. They control whether existing
files are truncated or not, and they allow you to create three different types
of new files: normal, real-time, and temporary.

Truncating existing files. Existing files are truncated when the size pa
rameter has a value of O. For new files, a size of 0 simply means that the file
will not have any disk blocks allocated to it until an application opens and
writes to the file. If you specify a value greater than 0 for s i z e, enough disk
blocks to accommodate the number of bytes specified will be allocated to
the file, but not initialized with data in any way. If the file already exists, its
current size will be either extended or shortened to match the size speci
fied. Again, bytes added to a file this way are not initialized.

Normal iRMX file. A normal file is one that is allocated space on the disk
volume on a demand basis. Normal files are likely to be fragmented because
no particular constraint is placed on the locations of the disk blocks allo
cated to the file. A file's granularity is the number of disk blocks allocated
to the file when it becomes too large for its current allocation, or freed when
it becomes smaller. The expected size and growth dynamics of the new file
determine the best value for this parameter. A large value can improve per
formance if a file is going to grow quickly, since the overhead of allocating
new blocks to the file does not occur as often. On the other hand, a large file

288 iRMX Concepts and Features

granularity might result in wasted disk space. If a file needs just a few bytes
beyond the end of its current last block, it is still allocated the number of
bytes given by granulari ty. Most ofthose bytes are wasted until the file
grows to occupy them. The granulari ty parameter is specified in bytes
so that applications do not need to know what the block size of the disks
being worked with are, but 1,024 is the most commonly used block size for
iRMX disks. This parameter is automatically rounded up by the BIOS to
be a multiple of the disk block size if necessary.

Real-time file. A real-time file is a contiguous file. To create a real-time
file, you must specify the size of the file using the size parameter and use a
value of OxFFFF for the file granularity. The file is allocated a contiguous
set of disk blocks if possible. The system allows a real-time file to be ex
tended beyond its initial size, but any blocks added to the file after it is cre
ated are not necessarily contiguous. The EDOS file driver does not support
real-time files.

Temporary file. A temporary file is an unnamed file automatically deleted
when the connection to it is deleted, which is normally when the job that
created it terminates. The BIOS actually deletes the file when the last con
nection to it is deleted in case the connection is shared across jobs. To
create a temporary file, the prefix/subpath combination must identify an
existing directory (not a file) and the mustCreate parameter is set to false
(0). A connection to a named or EDOS disk device can be used as a connec~
tion to the root directory of that device, providing a convenient place to put
temporary files.

A user can create a temporary file in any directory, whether that user has
write access to the directory or not, because no directory entry is actually
created for the temporary file. The exception to this case is for a temporary
file created on a remote computer's disk. The temporary file is actually en
tered into the directory of the remote system, which requires the user to
have write permission on the remote system.

The mustCrea te parameter can also be used to ensure the file being cre
ated does not yet exist. If the parameter is true and the prefix/subpath does
identify an existing file rather than a directory, the system call fails with a
condition code of E_FEXIST (Ox0020). Unix users might think this fea
ture is important, as it is the basis for an important type of Unix IPC, file
locks. File locks are not normally used on iRMX systems because of the
more efficient mechanisms for IPC supplied by the Nucleus.

In contrast to the BIOS version, the rqscreatefile() system call provided
by the EIOS is simplicity itself. The price paid for this simplicity is loss of
functionality, however. The following is the prototype.

extern TOKEN
rqscreatefile (STRING far *

WORD far *
pathPtr,
exceptPtr) ;

You can create normal and temporary files with this system call, but not
real-time (contiguous) files. If the file already exists, this call always tries

1/0 Management 289

to truncate the file length to O. The prefix/subpath parameters for the
EIOS call to rqacreatefile() are created using the same rules as for rqsat
tachfile().

The reasons for using rqacreatefile() insteadofthe.rqsattachfile() call are
for the following reasons:

• To obtain asynchronous processing of the system call. Several disk ac
cesses are involved in each level ofthe file system tree that must be tra
versed to access a file or directory, so this call can take a relatively long
time to execute.

• To create the file with the owner's initial access rights set to something
other than delete, read, update and append.

• To pre-allocate disk blocks to a normal file or to set the size of an existing
file to a value other than zero.

• To create a real-time (contiguous) file.

8.2.7 System calls for data transfers

Once a connection to a file has been created, whether the file is a disk file or
simply a physical or stream device that is to be treated as a file, the connec
tion must be opened before reading or writing with it. Three issues must be
resolved when a connection is opened: sharing (all connections), access
rights (connections based on the Named, Remote, and EDOS file drivers
only), and buffering (rqsopen() only). The following is the BIOS call for
opening a connection.

extern void
rqaopen (TOKEN

BYTE
BYTE
TOKEN
WORD far *

connection,
mode,
share,
responseMbx,
exceptPtr) ;

connection is a token for a connection to a file (not a device) that could
have been created by a BIOS or EIOS attachfile or createfile system call.
The connection object cannot be open at the time this call is made, al
though it can be closed and reopened any number of times.

mode is a value to indicate whether the connection will be used for read
ing (a value of 1), writing (a value of 2), or both (a value of 3). share is a
value to indicate whether the application is willing to share the file with
other readers (a value of 1), other writers (a value of 2), both readers and
writers (a value of3), or no other readers or writers (a value of 0). Ifa file is a
directory, it must be opened for reading only, share with all. Special system
calls exist for reading and writing directories. This call always returns an
IORS to the response mailbox, and the application can use either the
rqwaitio() or rqreceivemessage() system call to check for the result of the
asynchronous part of this system call.

To take advantage of the automatic buffering facilities available with
the EIOS, use rqsopen() instead:

290 iRMX Concepts and Features

extern void
rqsopen (TOKEN

BYTE
BYTE
WORD far *

connection,
mode,
numBuffers,
exceptPtr);

The value of mode is set to a single value that combines the mode and
share parameters of rqaopen(J. The value is a number between 1 and 12 as
follows:

Share Share Share Share
with None with Readers with Writers with Both

Open for reading 4 7 10 1
Open for writing 5 8 11 2
Open for both 6 9 12 3

Mode number 1 is used for reading and share with all, which is the value
that must be used for opening connections to directory files.

numBuffers is used to invoke automatic ErOS buffering of I/O data
transfers, if desired. The EIOS maintains a pool of 1,024 byte buffers that
it can use for managing data transfers. If you specify a value of 0 for this
parameter, the EIOS will not buffer data for this connection. Whatever is
written from an application program's buffer is transferred immediately to
the device, and whatever is read from the device is copied immediately into
a buffer supplied by the application. As mentioned previously, a value of 0
is particularly appropriate for terminals, for which buffering can lead to
confusing interactions for a terminal user.

When the EIOS does buffering, it attempts to optimize data transfers to
and from the device. If the program is reading from a file, the EIOS will
start reading from the next sequential location in the file as soon as it has
finished reading from the current location. It will continue reading ahead
until it exhausts the number of buffers specified in the call to rqsopenO.
Likewise, when a program writes to a file using buffering, the EIOS does
not actually write information to the file until a buffer is filled, which is
then written to the device while the application proceeds to write more in
formation into another EIOS buffer. If an application opens two files, one
for reading and one for writing, each with two buffers, the EIOS allows the
application to copy one file to the other with full overlap of reading and
writing operations, but without the application handling asynchronous
I/O at the BIOS level.

EIOS buffering is not always a good idea for disk file I/O. If an applica
tion uses rqsseek(J (described in section 8.2.8) to read from nonconsecutive
locations within a file, the reading ahead that the EIOS does results in
extra disk accesses that interfere with the actual disk operations the appli
cation needs to perform. Also, large transfers might be performed more ef
ficiently by using larger buffers than the ones used by the EIOS. The EIOS
uses a fixed size for all of its internal buffers, normally 1,024 bytes. This

1/0 Management 291

buffer size can be set for the Named, EDOS, and Remote file drivers in the
rrnx. ini file or can be set using the ICU (discussed in chapter 9) for sys
tems that do not support the ICU.

The BIOS calls for reading and writing are:
extern void
rqaread (

extern void
rqawrite (

TOKEN
BYTE far *
DWORD
TOKEN
WORD far *

TOKEN
BYTE far *
DWORD
TOKEN
WORD far *

For the EIOS, the calls are:

extern NATIVE WORD
rqsreadmove (

extern NATIVE WORD
rqswritemove (

TOKEN
BYTE far *
DWORD
WORD far *

TOKEN
BYTE far *
DWORD
WORD far *

connection,
bufferPtr,
count,
responseMbx,
exceptPtr);

connection,
bufferPtr,
count,
responseMbx,
exceptPtr) ;

connection,
bufferPtr,
count,
exceptPtr);

connection,
bufferPtr,
count,
exceptPtr);

For all of these calls, the number of coun t bytes are read or written using
the open file connection object specified by connection. The bytes are
written from or read into the memory location pointed to by bufferPtr.
The actual number of bytes read or written is normally equal to the value of
coun t, but will be less if an attempt is made to read past the end of the file,
to write to a full disk, or if a memory protection violation occurs while ac
cessing the buffer pointed to by bufferptr. The actual number of bytes
transferred is the returned value for the EIOS functions. For the BIOS
calls, the actual number of bytes transferred is returned in the laRS when
the asynchronous part of the call completes. The word move in the names
of the EIOS functions refer to the fact that these functions move data be
tween the application program's buffer and one ofthe EIOS's buffers, with
the actual read or write operation occurring according to the buffering
technique in place for the connection.

The BIOS rejects calls to rqaread() and rqawrite() for connections
opened by the EIOS with a condition code value ofE_BUFFEREDCONN
(Ox0036), so the EIOS record of what buffers contain what information for
a file do not become invalid by circumventing the EIOS calls.

8.2.8 Seek and truncate operations

Two other system calls fall into the data operations category, seeking to a
particular position in a file, and truncating a file. Both of these system calls

292 iRMX Concepts and Features

are executed in the BIOS by updating housekeeping information in mem
ory, and they complete their execution very rapidly. Both operations might
also initiate more time-consuming operations, however, that take place
after the system call completes. The potentially time-consuming opera
tions are discussed first, then the system calls that are used to initiate
them.

Disk access. Disk access time is the time it takes to transfer data to or
from a disk device. The four components to this time interval, are seek, se
lect, search, and transfer times. To understand these components, the
structure of a disk must first be reviewed.

Information is recorded on a disk by rotating a rigid or flexible surface
under a read/write head. The read/write head assembly can be positioned
at a number of discrete positions on the recording surface, defining a num
ber of concentric circles where data can be stored, called tracks.

Each track is divided into a fixed number of segments called sectors, with
one sector being the smallest amount of information that can be written to
or read from a disk at one time. Typically, between 256 and 1,024 bytes are
stored per sector, and between 9 and 63 or more sectors exist per track.

Flexible disks normally have two recording surfaces, one on each side of
the rotating material, and two read/write heads linked together so that ei
ther of two tracks, one on either side of the diskette, can be accessed from
one read/write head position. Hard disks often have several rotating plat
ters linked together, with a linked set of read/write heads (two per platter)
that can be positioned simultaneously. The tracks that can be accessed
from a single position of the read/write heads are called a cylinder. For a
floppy disk, there are two tracks per cylinder, and for a hard disk, there are
two times the number of platters for each cylinder. Hard disks typically
have 200 to 400 or more cylinders and anywhere from two to 50 platters.

Seek time is the time it takes to move the read/write heads from their
current position to the cylinder that contains the next data to be read or
written. The term track-to-track positioning time is generally used to refer
to the time it takes to move the read/write heads from one cylinder to an
adjacent cylinder, which is usually a few milliseconds for hard drives.
Because of the inertia involved in starting and stopping head movements,
less time is required to move the heads as a group across a set of adjacent
cylinders than to move across the same set one at a time. For a truly ran
dom set of disk accesses, the average seek time should be one half the time
to move the read/write heads across all the cylinders on the disk, or half
a second for a 200 cylinder drive with a track-to-track positioning time
of 5 msec.

Select time is the time it takes to select the read/write head that will be
used for accessing one of the tracks in the cylinder. This operation is done
electronically and is normally overlapped in time with one ofthe mechani
cal operations involved in accessing the disk.

1/0 Management 293

Search time, sometimes called rotational delay, is the amount of time it
takes for the desired sector to start passing under the read/write heads (
once the heads have been positioned on the proper track. Sometimes, the
proper sector arrives almost immediately, other times the sector has just
gone past the head. The average search time equals half the time it takes
the disk to make one complete revolution. Hard disks typically rotate at
3,600 RPM, leading to average search times of 8 msec.

Data transfer time is the time it takes to copy information from the sur
face of the disk into the computer's memory, or vice versa, which usually
expressed as its reciprocal, data transfer rate. More factors are involved
here than just the time it takes for a sector to pass under the read/write
head, including the speed of the bus connecting the disk to the system's
memory. Values range from 1 KB to 8 MB per second.

One factor that can effect average search time for those cases in which
several sectors are to be read or written sequentially is the order in which
consecutively numbered sectors are stored on a track, which does not have
to be in consecutive positions. The sectors on a track can be interleaved.
For example, if nine sectors are stored in the sequence 1,6,2,7,3,8,4,9,5, the
track is said to be 2-way interleaved because logically consecutive sectors
are physically 2 sectors apart on the track. Interleaving can reduce average
search time for computers that need to read consecutive sectors, but that
cannot issue the commands to read successive sectors as fast as the sectors
arrive at the read/write heads. Interleaving can be done easily because the
logical number of each sector is stored on the disk at the beginning of the
sector. The term search time refers to the fact that the disk controller
searches a track for a sector with the logical number requested by the soft
ware driver, which makes the order ofthe logical sectors on the disk arbi
trary, as far as the disk controller is concerned.

High-performance disks typically provide a cache on the disk controller
capable of holding all the data for a complete track. By starting to read into
this cache as soon as the heads reach the proper cylinder, the effects ofro
tational delay can be minimized and the need for interleaving eliminated.
Three conclusions can be drawn from disk access time:

1. Disk access time is a composite value that depends on the physical
characteristics of the disk, the organization of the information on the
disk, and the pattern of accesses made to the data on the disk.

2. Seek time is just one component of the time it takes to read or write disk
data.

3. Beware of anyone who tries to use the value of just one component of
disk access time to tell you how fast a disk is, especially if that person is
trying to sell you a disk!

The BIOS and EIOS system calls for controlling the position of disk ac
cesses within a file are as follows:

294 iRMX Concepts and Features

extern void
rqaseek (

extern void
rqsseek (

TOKEN
BYTE
DWORD
TOKEN
WORD far *

TOKEN
BYTE
DWORD
WORD far *

connection,
mode,
seekAmount,
responseMbx,
exceptPtr) ;

connection,
mOde,
seekAmount,
exceptPtr);

The BIOS maintains a DWORD in the data structure for an open con
nection to a disk file that signifies the next position in the file for reading or
writing. This value is often called a file pointer but it is not a memory
pointer (selector and offset), just an unsigned integer that starts at 0 when
the file is opened and is incremented by the number of bytes actually
transferred each time the file is read or written. For the Named file driver,
the seek system calls simply assign a new value to this variable so that the
next read or write operation occurs at the desired location within the file.
In this instance, the system call executes very quickly, but it can affect the
amount of time it takes to perform the next disk transfer for the file. For
the physical file driver, seek calls are passed to the device driver immedi
ately. Thus, the name seek for these calls is only loosely linked to the actual
hardware seek operation performed during a disk access.

Seeking can affect the allocation of disk blocks to a file. If you seek to the
end of a file and then write data to the file, the new data goes into whatever
space is still available in the last data block allocated to the file, and causes
a new block to be allocated if the last one fills up. If you seek beyond the
current end of a file, additional disk blocks are allocated to the file for the
space between the current end of file and the new end of file, but the bytes
in that unused part of the file are not initialized.

These two system calls are interchangeable except the BIOS will not
work with buffered EIOS connections mode tells one of four ways to inter
pret seekAmount:

• The new file position is to be the current file position minus seekA
mount (mode-i).

• The new file position is to be the value of seekAmount (mode - 2) .

• The new file position is to be the current file position plus seekAmount
(mode-3).

• The new file position is to be the end of the file minus seekAmount
(mode-4).

Seek operations can be performed with connections built on the physical
file driver as well as the Named, Remote, and EDOS if it makes sense to do
so. You cannot seek with a terminal, but you can seek on a disk that was
attached with the physical file driver. Such disks are just one big file as far
as iRMX is concerned.

1/0 Management 295

File truncation. File truncation is very similar to seeking. The following
are the calls:

extern void
rqatruncate (

extern void
rqstruncatefile (

TOKEN
TOKEN
WORD far *

TOKEN
WORD far *

connection,
responseMbx,
exceptPtr);

connection,
exceptPtr);

These calls set the end of file to the current file position. Truncating is
normally viewed as a way to remove all or part of a file, but by preceding a
truncate call with a seek call beyond the end of the file, this call actually
enlarges a file. Any disk blocks between the new end-of-file and the old
end-of-file are released to the disk's free space immediately by this call if
this call shrinks the file, or allocated immediately if the call enlarges the
file. This call cannot be used with file connections based on the physical
file driver because there is no known software technique for making a phys
ical disk drive change its size.

8.3 Special Functions

Device-independent system calls are great, but they do not format disk
drives or control character echoing on a terminal. Rather than add a new
system call to the EIOS and BIOS for every device-dependent operation
that an application might need to perform, one system call provides access
to whatever special functions might be provided by a particular device
driver. These system calls, appropriately enough, are called rqaspecial()
and rqsspecial(J. Each device driver in the system supports its own (possi
bly empty) set of special functions. The functions for formatting a disk
drive and basic terminal operations are used as examples; If you are inter
ested you can find out more from the documentation available for the var
ious device drivers4. The following are the two system calls for special
operations:

extern void
rqaspecial (TOKEN

WORD
void far *
TOKEN
WORD far *

connection,
functionCode,
parameterPtr,
responseMbx,
exceptPtr);

4'fhe device drivers provided with the operating system are documented in the iRMX De
vice Driver Programming Concepts manual, volume 7 of the iRMX for Windows documenta
tion set.

296 iRMX Concepts and Features

extern void
rqsspecial (TOKEN

WORD
void far *
IORSSTRUCT far *
WORD far *

connection,
functionCode,
parameterPtr,
iorsPtr,
exceptPtr) ;

Here is a case where the EIOS user can work with the IORS that is nor
mally returned to responseMbx for BIOS calls. Most EIOS users do not
need this information, and code iorsptr as a null pointer. If iorsPtr is
not null, the EIOS receives the IORS at its own mailbox and copies part of
it to the data structure the caller has reserved at the address pointed to by
iorsPtr. The typedef rORSSTRUCT in: include: rrnxc .hdefinestheac
tual fields returned for rqsspecial().
iorsPtr. The typedef rORSSTRUCT in : inlcude: rrnxc. h defines the ac
tual fields returned for rqsspecial().

The functionCode parameter specifies which of several special opera
tions the device driver is to perform. Each device driver can interpret the
function code differently, but the device drivers supplied with the operat
ing system all interpret the values listed in Table 8.1 uniformly. The File
Driver column in the figure lists the file drivers that can be used to connect
to device drivers that support the functions listed. The functions are im
plemented by device drivers, not file drivers. If you add your own device
driver and want it to support special functions other than those listed in
the figure, use values from Ox8000 to OxFFFF to ensure no conflict occurs
with any additional standard codes that might be added to the system.

TABLE 8.1 Function Codes for rqaspec/al(} and rqspec/al(}.

Code

o
o
1
2
3
4
5
6
7
8
9
10
11
12
13
14,15
16
17
18
19-0x7FFF
Ox8000-0xFFF

Function

Format track
Query
Satisfy
Notify
Get disk/tape data
Get terminal data
Set terminal data
Set signal
Rewind tape
Read tape file mark
Write tape file mark
Retension tape
Set character font
Set bad track/sector information
Get bad track/sector information
Reserved
Get terminal status
Cancel terminal I/O
Resume terminal. I/O
Reserved for other Intel drivers
Available for user-written drivers

File Driver

Physical
Stream
Stream
Physical or Named
Physical
Physical
Physical
Physical
Physical
Physical
Physical
Physical
Physical
Physical
Physical

Physical
Physical
Physical

I/O Management 297

The parameterPtr argument is a pointer to one of several data struc
tures. The specific data structure depends on the value of functionCode.
Strict C pedants would argue that this argument be prototyped as a pointer
to a union of the different data structures, but a pointer to void suffices.

All the special functions not discussed in the following subsections are
fully covered in the documentation for the rqaspecial() system call. The
ones discussed in section 8.3.1 through 8.3.3 provide an idea of how the
rq[asJspecial() system calls work and introduce particularly useful termi
nal operations, such as setting up hot keys and controlling character echo
ing and line editing for the keyboard. Appendix C illustrates the use oftwo
other rq[asJspecial() functions, the query and satisfy functions for
streams.

8.3.1 Format track

The first example is the function used to perform low-level formatting of a
disk volume. The device drivers for some tape drives use this function to
layout tape blocks as well, but the disk operation is used as our model. As
mentioned earlier, each track on a disk consists of a number of sectors,
which might or might not be in consecutive order. Low-level formatting
puts the binary framework on a track to set up sectors and identify each
one with its logical position on the track. The HI format command does a
low-level format of each track on the volume, and then creates a file system
on the volume in a process called high -level formatting. High -level format
ting initializes certain data blocks on the disk to act as the root directory
and perform other housekeeping operations, such as setting up the fnodes
for an iRMX volume or the File Allocation Table (FAT) for DOS volumes.
The last section of this chapter describes the high -level format of an iRMX
named disk. A disk volume accessed using the physical file driver is as
sumed only to have been low-level formatted. (It might have been high
level formatted by another OS, such as Unix.) The following is the data
structure that parameterPtr points to for formatting a disk.

#pragma noalign (formatTrack)
struct formatTrack {

WORD
WORD
WORD
WORD

trackNumber;
interleave;
trackOffset;
fillCharacter;

trackNumber is the number ofthe track to be formatted. Rather than
the application determining the physical organization of the disk, the de
vice driver accepts a number between 0 and 1 less than the total number of
tracks on the disk as the value of this field. The driver then translates this
relative track number into the proper cylinder and read/write head num
ber for the seek operation.

298 iRMX Concepts and Features

A value of 0 or 1 for interleave causes the track to be formatted with
the sectors numbered sequentially on the track. Other values cause sector
numbering to skip by the units specified, as described earlier. In the exam
ple given earlier, a sector sequence of 1,6,2,7,3,8,4,9,5 is obtained by speci
fying a value of 2 for this parameter. This parameter is ignored for devices
that do not need to do interleaving.

An indicator marks the beginning of each track on a disk. If the mark
goes past the read/write head twice without finding the sector number
specified in a seek operation, the controller knows something is wrong with
the track. Sector number 1 can be placed any number of actual sectors past
the beginning-of-track mark by specifying a nonzero value for the track
Offset field.

When the controller formats the track, it fills all the data bytes in each
sector with a single data value. Some controllers allow this character to be
specified by the fillCharacter field, but others always use a built-in
character.

8.3.2 Get/set terminal data

Treating a terminal as two sequential files, one for input and one for out
put, is good unless an application wants to treat a terminal as a terminal.
Using the get and set terminal data functions of the rq[as] special() system
calls, an application can control a large number of terminal operating
characteristics. The idea behind this pair of functions is that the terminal
device driver maintains a data structure for each I/O connection to a termi
nal. The data structure contains values specifying how line editing and
character echoing are to be handled for the terminal. To change a setting in
the data structure, an application first gets a copy of the current values for
the data structure (using function 4), modifies the copy to make the desired
changes, and then sends the copy back to the device driver (using function
5) to change the actual data structure maintained internally. The data
structure used for these two functions looks like:

#pragrna noalign (terminalAttributes)
struct terminalAttributes {

WORD numWords;
WORD
WORD
WORD
NATIVE WORD
NATIVE WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD

numUsed;
connectionFlags;
terminalFlags;
inBaudRate;
outBaudRate;
scrollLines;
xySize;
xyOffset;
specialModes;
highwaterMark;
lowWaterMark;
fcOnChar;

WORD
WORD
WORD
BYTE
)

fcOffChar;
linkPararneter;
spcHiWaterMark;
specialChar [4]

1/0 Management 299

The distinction between the items defined in connectionFlags and
those defined in terrninalFlags is important. The items in connec
tionFlags, which include the echo-character function illustrated in
Figures 8.4 and 8.5 apply only to the connection specified by the first pa
rameter to rqaspecial() or rqsspecial(). Since I/O operations can only be
performed using connections that belong to the calling job, it follows that
one job cannot affect the connectionFlags options for another job. The
sample programs and the CLI run as different jobs, so they have their own
connections to the console device. When the sample programs exit, their
connections are deleted, and their echo-suppression operation has no ef
fect on the CLI's I/O to the same device. A corollary of this relationship
with regard to console I/O, incidentally, is that a program cannot change
the behavior of rqcsendcoresponse() by setting connectionFlags be
cause there is no way for an application program to modify the connections
to : CI: and: co: used for that system call.

As its name implies, the terrninalFlags field is used to control fea
tures that affect all connections to a terminal, such as the use of modem
control functions. A utility program called term can be used to change
many of these functions from the command line.

The PLM program in Figure 8.4 illustrates control of character echoing.
It uses the standard EIOS system calls seen earlier in this chapter to create
a file connection to the terminal based on the connections already estab
lished for the job with the logical names : C I: and : co : . The calls to rqsat
tachfile() could have been replaced with calls to rqlookupconnection() with
the same effect. The connections are opened, and the connection to : CI: is
then modified by turning bit number 2 ofthe connectionFlags word for
the console connection on to suppress character echoing. Once the user's
password has been carefully read in without echoing to the screen, it is re
turned to the main program, which promptly displays it for all to see.

The C program, Figure 8.5, shows that you can modify connection
Flags for the I/O connections that the C run-time library uses for stan
dard I/O. To do so, you need to know which iRMX connection object is
being used by the run-time library for the particular I/O stream to be modi
fied. The iCx86 run-time libraries provide a function, -'5etJmx_conn()
which returns a token for the proper iRMX connection object, given the
file descriptor for the I/O stream. In the figure, this token is the file de
scriptor for the standard input device. The sample program uses the stan
dard library function fileno() to convert the FILE pointer stdin to a file
descriptor, although the value of 0 for the file descriptor could have been

300 iRMX Concepts and Features

Figure 8.4 PLM program to read a user's password from the console input device (: CI:)
without displaying it on the screen.

/***> passwd.plm <**

* PLM Program to read from :CI: without echo
The program prompts for a password, which does not echo as the

* user types it.

**/

passwd: DO;
$include (passwd.ext)

/* Procedure to prompt for password and read it without echo

*/

getpassword: PROCEDURE (replyPtr);
DECLARE

replyPtr POINTER,
password BASED replyPtr (1) BYTE,
(ciToken, coToken) TOKEN,
terminalData STRUCTURE

numWords WORD_16,
numUsed WORD_16,
connectionFlags WORD_16) ,

(BytesRead, BytesWritten) WORD_32,
Status WORD_16;

/* Create and open connections

*/

ciToken = rqsattachfile (@(4, ':CI: '), @Status);
CALL rqsopen (ciToken, 1, 0, @Status);
coToken = rqsattachfile (@(4, ':CO: '), @Status);
CALL rqsopen (coToken, 2, 0, @Status);

/* Suppress echo for :CI: connection

*/

terminalData.numWords = 1;
terminalData.numUsed = 1;
CALL rqsspecial (ciToken, 4, @terminalData, NIL, @Status);
terminalData.connectionFlags = terminalData.connectionFlags OR 4;
CALL rqsspecial (ciToken, 5, @terminalData, NIL, @Status);

/* Read the password and return

*/

bytesWritten = rqswritemove (coToken, @('Enter password: ,), 16,
@Status);
bytesRead = rqsreadmove (ciToken, @password(l), 16, @Status);
password(O) = BYTE (bytesRead) ;
RETURN;

END getpassword;

/* Execution Starts Here

*/

DECLARE

1/0 Management 301

Figure 8.4 (Continued)

newline LITERALLY 'ODh,OAh',
Message (*) BYTE

INITIAL (19, newline, 'Your password is **************** I),
Reply (81) BYTE,
Status 'WORD_16;

CALL getpassword (@Reply);
CALL movb (@Reply(l), @Message(20), Reply(O»; /* strcat in PLM */
Message(O) = 19 + Reply(O);
CALL rqcsendcoresponse (NIL, 0, @Message, @Status);
CALL rqexitiojob (0, NIL, @Status);

END passwd;

Figure 8.5 C program illustrating the use of rqsspecial() to suppress character echoing for the
standard C function, gets().

/***> passwd.c <**

*

*

C program to illustrate reading from stdin without echo
The program prompts the user to enter a password. which is read from
the standard input device without echoing the characters typed.
The program determines the iRMX connection being used for stdin and
modifies the character echo attribute of the connection.

**/

#include <stdio.h>
#include <rmxc.h>

#define get Terminal Data 4
#define setTerminalData 5

/* Prompt for password. and read it without echoing to screen

*/
void
getpasswd (char *reply) {
#pragma noalign (terminalAttributes)
struct terminalAttributes {

WORD numWords;
WORD numUsed;
WORD connectionFlags;
WORD terminalFlags;
} stdinAttributes;

TOKEN stdinConnection;
WORD Status;

stdinConnection = _get_rmx_conn (fileno(stdin»;
stdinAttributes.numWords = 1;
stdinAttributes.numUsed = 1;
rqsspecial (stdinConnection, getTerminalData, &stdinAttributes,

NULL, &Status);
stdinAttributes.connectionFlags 1= 4;
rqsspecial (stdinConnection, setTerminalData, &stdinAttributes,

NULL, &Status);

302 iRMX Concepts and Features

Figure 8~5 (Continued)

printf ("Enter password: ");
gets (reply);
return;
}

/* main(): get password and display it.

*/
int
main (int argc, char *argv[])
char password[16];

getpasswd (password);
printf (" \nYour password is %s\n", password);
}

hard -coded5• Character echoing is suppressed by setting bit 2 of the con -
nectionFlags for this connection to 1.

One final word. Note that the iRMX Terminal Support Code (TSC, a
software module available to all terminal device drivers) allows terminal
attributes to be set by embedding escape sequences in the character stream
being written to or read from a terminal. For example, Appendix B shows
how the TSC can be used to get the iRMX for Windows console driver to
respond to ANSI X3.64 escape sequences, the same function provided by
the ANSLSYS device driver for DOS.

8.3.3 Set signal character

The last special function to be discussed is a function that allows an appli
cation to set up the equivalent of hot keys. The difference between these
iRMX signal characters and true hot keys is that signal characters operate
only in the context of a single application, whereas true hot keys, such as
the <al t -SysRq> key used by iRMX for Windows, operate no matter
which job is running.

The idea behind signal characters is very straightforward. A call to
rqsspecial() or rqaspecial() with function code 6 is used to tell the terminal
device driver which character code is to be treated as a signal character and
to associate a semaphore with that character. From then until the connec
tion is deleted (or the signal character is reset by another special call), the
device driver examines each incoming character to determine if it is a sig
nal character. If the character is a signal character, the driver sends a unit
to the corresponding semaphore and discards the character. Otherwise, the

5The standard input, standard output, and standard error streams always correspond to file
descriptors 0, 1, and 2 respectively.

1/0 Management 303

driver simply passes the character on to the application. Up to 12 different
signal characters can exist for a connection at one time.

A problem can arise when establishing signal characters for terminals
connected to the system through buffered device controllers. In this situa
tion, a user might type a signal character, but the device driver will not see
it until the controller's buffer fills with other characters typed by the user
after the signal character. This delayed effect of signal characters can be
overcome for up to four special characters. The preceding terminal-attri
butes data structure includes an array (specialChar[4]) for characters
that are to be forwarded to the device controller as soon as they are typed.
(The spcHi Wa terMark field can be used to cause a specific number of spe
cial characters, more than one, to be typed before being sent to the device
driver.)

All HI command jobs have a signal character automatically set up for
< A c>, along with a task that waits at the < A C> semaphore, ready to abort
the job if the character is pressed. The HI layer of the OS provides a system
call for changing the semaphore associated with this one signal character
(rqcsetcontrolc()} , but an application can also do so itself by calling
rq [as J special(). The UD I layer also provides a system call, dqtrapcc(), that
can be used to cause a user-written procedure to be called when < A c>is
typed.

The signal characters, in general, must be control characters « A A>
through <A Z> have ASCII codes Ox01 through Ox1A), but <rub> (Ox7F)
as well as all characters with ASCII codes between OxOO and Ox1F are valid.
The device driver discards any characters that have been typed ahead (en
tered by the user but not yet read by an application) ifOx20 is added to the
value of the character code given for this call.

The data structure pointed to by parameterPtr for setting a signal
character is the token for the semaphore and the code for the character:

#pragma noalign (s ignalPair)
typedef struct signalPair {

TOKEN
BYTE
} SIGNALPAIR;

Semaphore;
Character;

8.4 File System Structure and Management

This section introduces the data structures the BIOS maintains on a disk
volume formatted with an iRMX Named file system. Note the distinction
between the Named file system, which is the iRMX native-mode organiza
tion for supplying a tree-structured volume of named files and directories,
and the generic uncapitalized term, named file system. The latter could be
an iRMX, DOS, Unix, or VAX/VMS file system, all of which support tree
structured volumes with named files and directories. A Named volume

304 iRMX Concepts and Features

connected to the local computer is accessed using the Named file driver; a
DOS volume connected to the local computer is accessed using the EDOS
file driver. All four types of named volumes attached to remote computers
can be accessed using the Remote file driver as long as OpenNet software is
running on both the local and remote systems.

An HI command called diskverify can be used to examine and modify the
data structures described in this section. In addition to the documentation
on the command-line options for diskverify in the first part of the iRMX
Command Reference (volume 10 ofthe iRMX for Windows documentation
set), an appendix in that manual explains how to use diskverify interacti
vely to examine and modify the data structures that the iRMX BIOS
maintains on a disk volume. Another appendix provides complete infor
mation about the data structures introduced in this section. Diskverify is to
iRMX Named file systems as Norton Utilities or PC Tools are to DOS file
systems. Diskverify does not work with DOS file systems, but the system
calls mentioned in this section work with any named file system.

8.4.1 Files and directories

Each file or directory on an iRMX Named volume consists of a set of vol
ume blocks on the disk. A volume block is simply the smallest amount of
disk space that can be allocated to a file, which is always a multiple ofthe
disk's sector size. Volume blocks are numbered sequentially from zero to
one less than the maximum number of blocks on the disk, analogous to
how tracks are numbered when they are formatted with rq[asJspeciaIO.
Files can contain any type of information using any structure appropriate
to the application; to the OS a file consists of an ordered sequence of
bytes.

Certain special files exist on a Named volume, however. One-of-a-kind
housekeeping files are created when the volume is formatted (see section
8.4.3), and a distinction exists between normal files and directories. Direc
tories are stored the same as normal files on the disk, but the BIOS imposes
restrictions on how their contents can be accessed, and enforces an inter
nal structure on their contents. The distinction between normal files,
sometimes called data files, and directory files is not always important, and
the generic term file refers to both types of files. The structure imposed on
the contents of a directory is a sequence of I6-byte entries. Each entry has
the following format:

#pragma noalign (directoryEntry)
struct directoryEntry {

WORD fnode;
BYTE pathComponent[14];
}

The bytes in pa thComponent (the name of a file) are arbitrary characters,
not necessarily printable, that can include spaces and punctuation marks

I/O Management 305

(except: or $ at the beginning or :, $, I, or A anywhere, including the be
ginning), as well as normal ASCII characters. Uppercase and lowercase
letters are stored as specified in rq[asJcreatefile(), but there is no case sen
sitivity for any system call that references files by name. No intrinsic sig
nificance is attributed to periods in a file name, although iRMX develop
ment tools impose a name-and-extension structure on file names by using
periods. The pa thComponen t field is padded on the right with OxOO for file
names less than 14 characters long.

Directory entries do not contain any information about the file other
than its name, not even an indication of whether the entry is for a data file
or another type of directory. That information, along with just about ev
erything else the BIOS knows about the file or directory, is kept in a data
structure called an {node. The fnode field of a directory entry is a I6-bit
value that uniquely identifies the fnode for the entry.

Fnodes are discussed in the next section, but first, the system calls that
can be used to create and access directories are presented. The following
are the BIOS and EIOS calls to create a directory:

extern void
rqacreatedirectory (TOKEN

TOKEN
STRING far *
BYTE
TOKEN
WORD far *

user,
prefix,
subpathPtr,
access,
responseMbx,
exceptPtr) :

The parameters to this call are the same as those to rqacreatefile(), with the
omission of that call's granularity, mustCreate, and size parame
ters. Directories are always created with size of 0, granularity of 1 (theyex
pand by one volume block each time they expand beyond their current al
location). Also, a file or directory cannot already exist with the same name
as specified by this call's prefix and subpathPtr. The EIOS call to
create a directory is rqscreatedirectory():

extern TOKEN
rqscreatedirectory (STRING far *

WORD far *
pathPtr,
exceptPtr) :

You can write to a directory only by creating a file in the directory using
rq [as] createfile() or rq [as] createdirectory(). You cannot write directly to a
directory. You can, however, examine the contents of a directory either by
reading it as a normal data file (it must be opened for reading and share
with all), or with the rq[asJgetdirectoryentry() system calls:

extern void
rqagetdirectoryentry (TOKEN

WORD
TOKEN
WORD far *

connection,
entryNumber,
responseMbx,
exceptPtr):

306 iRMX Concepts and Features

connection is a token for a connection to the directory, normally ob
tained by rq [as] attachfile(). The connection does not need to be open. The
entries in a directory are numbered sequentially, and entryNumber iden
tifies which entry in the directory the caller is interested in. When an ap
plication wants to search a directory, it normally makes the call from
within a loop, with the value ofthis parameter starting at 0 and increment
ing by 1 each time through the loop. This call does not return an IORS to
responseMbx; it returns a segment containing a data structure that looks
deceptively similar to the actual data structure of a directory entry on the
disk:

#pragma noalign (directoryEntryInfo)
struct directoryEntryInfo {

WORD Status;
BYTE Narne[14J;
} ;

Two differences exist between this structure and the structure ofthe di
rectory entries on the disk. The more obvious difference is that the first
word ofthis structure is a condition code value, not the entry's fnode num
ber. The other difference is that the Name field is padded on the right with
blanks (Ox20) in this structure, rather than with OxOOs as on the disk.

Status has three interesting values. As usual, a value of 0 indicates nor
mal completion of the system call, with a valid file or directory name in
Name. A value ofOx0024 (E_EMPTYENTRY) indicates that the directory
entry specified by the entryNumber parameter once held a valid entry, but
does not now. This situation is normal, and occurs whenever a file or direc
tory is deleted from the system.

Rather than rearrange the entire directory file from which the deletion is
being made, the BIOS simply changes the fnode field ofthe entry to o. No
data file or directory has an fnode number of 0, so this value always marks
empty entries, which are reused the next time a new file or directory is cre
ated in this directory.

Changing the fnode field of the entry to 0 is like the OxE5 at the begin
ning of a file name that DOS uses to mark deleted directory entries. The
difference between the DOS and iRMX file systems is that iRMX cannot
recover deleted files because the fnode number, rather than part of the
file name, is lost. A program searching a directory simply increments the
entryNumber and repeats the system call if this value is returned for
Status.

The other interesting value that might be returned in the Status field is
Ox0025 (E_DIREND) which, as its name implies, indicates that entry
Number is beyond the end of the directory.

extern void (
rqsgetdirectoryentry (STRING far *

WORD
dirNarnePtr,
entryNurnber,

STRING far *
WORD far *

I/O Management 307

entryNamePtr,
exceptPtr);

As usual, the EIOS version of the call is a bit simpler to use. In this case, the
user supplies a buffer to hold the entry name, passing a pointer to this
buffer as entryNamePtr. Otherwise, this version operates the same as the
asynchronous version.

8.4.2 Fnodes

An iRMX file system uses a data structure called an fnode (file node) to
hold the information it needs for each file on a volume. Fnodes are stored
on the disk in a special file named R?FNODE. Don't bother to try to read (or
write!) this file yourself; it can only be accessed by the BIOS. You can, how
ever, see much of the information in an fnode by using the extended option
on the dir command. From the listing that command produces, you can see
that the system knows the name of the file (obtained from the directory
entry for the file), your currently allowed access rights for the file (com
puted from your default user object and the accessor list for the file), and
the following information taken from the fnode:

• Whether it is a file or directory.

• The size of the file in bytes.

• The number of volume blocks it occupies.

• The times at which the file was created, last modified, and last accessed.

• The complete accessor list for the file.

You might notice that the dir command takes considerably longer to ex
ecute' especially over a network, if you specify the long, short, or extended
options rather than the fast (default) option. The reason for this difference
in execution times is that the fast option lists just the names of the files in
the directory, which can be obtained by simply reading the directory itself
or calling rq[asJgetdirectoryentry(). Generating the other listings requires
additional disk accesses to obtain the information contained in the fnode
for each entry.

An application can call rq[asJgetfilestatus() to obtain a copy of most of
the information about a file's fnode, along with some additional informa
tion maintained in memory by the Named file driver:

extern void
rqagetfilestatus (

extern void
rqsgetfilestatus (

TOKEN
TOKEN
WORD far *

STRING far *
SFILESTATUSSTRUCT far *
WORD far *

connection,
responseMbx
exceptPtr);

pathPtr,
fileStatusPtr,
exceptPtr);

308 iRMX Concepts and Features

These calls can be used to obtain information from the EDOS, Remote,
and Physical file drivers as well as the Named file driver. In the case of the
Physical file driver, only the first part of the following data structure is re
turned to the program.

#pragma noalign (sfilestatusstruct)
typedef struct sfilestatusstruct {

WORD deviceshare;
WORD numberconnections;
WORD numberreaders;
WORD numberwriters;
BYTE share;
BYTE namedfile;
BYTE devicename[14J;
WORD filedrivers;
BYTE functions;
BYTE flags;
WORD devicegranularity;
DWORD devicesize;
WORD deviceconnections;

/* The remainder of this structure is returned only for files accessed using
the Named, EDOS, and Remote file drivers. */

WORD fileid;
/* fnode number */

BYTE filetype;
/ * See text */

BYTE filegranularity;
WORD ownerid;
DWORD creationtime;
DWORD accesstime;
DWORD modifytime;
DWORD filesize;
DWORD fileblocks;
BYTE volumename[6J;
WORD volumegranularity;
DWORD volumesize;
WORD accessorcount;
BYTE owneraccess;

/* The following fields are returned only for the asynchronous version of the
call, and are not declared in rmxc.h. */

WORD ownerid;
BYTE secondaccess;
WORD secondid;
BYTE thirdaccess;
WORD thirdid;
BYTE volumeFlags;

/* See text * /
} SFILESTATUSSTRUCT;

The information in the second part of this data structure is largely what
you find in the fnode of an iRMX named file, modified as necessary to ac
commodate the different information available to different file systems.
For example, the DOS file system has no concept of different users, so the
EDOS file driver makes the owner of all DOS files the iRMX World user.
Furthermore, DOS files are either read-only or totally accessible, so the
EDOS file driver does not differentiate among delete, append, and update
access rights. (If you have one right, you get all three.)

I/O Management 309

Clearly, some of the information in the second part of this structure ap
plies to the disk volume containing the file and not to the file itself (volume
name, granularity, size, and Flags). The name of the volume is similar to
the label of a DOS disk, but the EDOS file driver can fit only the first 6 of an
ll-character DOS label into the volumename field. Volume granularity
was mentioned earlier in defining a volume block, and volume size is the
unformatted storage capacity of the volume. The volumeFlags field,
which is not available for iRMX I disks, tells whether the volume was prop
erly shut down the last time it was used (value 0) or not (value 1). The
filetype field tells whether the file is a directory (value 6), a data file
(value 8), or one of the housekeeping files for the volume, which are de
scribed next.

8.4.3 Housekeeping files

Formatting an iRMX Named volume consists of performing a low-level
format operation on every track of the volume, followed by writing house
keeping information onto the disk in the form of a set of files. Although
these housekeeping files might appear to be normal disk files in the sense
that their names are visible in the root directory of the disk, these files can
be read and written only by low-level routines within the BIOS. Each of
these files has a unique file type, which is the same as the number of the
fnode used for the file itself. This section describes each of these files in
file-type order.

File type O. The file with fnode number 0 is the file that contains the
fnodes themselves. When the volume is formatted, the format command
takes a command line argument, files = n, to determine how many
fnodes the fnode file is to hold. If the argument is not given, format uses a
default value for n based on the capacity of the volume. Each fnode occu
pies a fixed number of bytes in the fnode file, so the file can be viewed as an
array of fnode structures. The fnode numbers are used as indices into this
array. To make accesses to this important file as efficient as possible, the
file is created as contiguous, as are the other housekeeping files. Unlike
normal files, the fnode file can never expand after it has been created.
Thus, the file can never become noncontiguous, but the maximum number
of files and directories on an iRMX volume is fixed at the time the volume
is formatted, and can never be changed. It is perfectly possible to use up all
the fnodes on a volume without exhausting the supply of disk blocks that
can be allocated to files.

To understand fnodes better, the following is a display offnode number 0
(the fnode for the fnode file) of a 1.2 MB diskette, as generated by the disk
verify utility.

Fnode number = 0
flags : 0005 => short file
type : 00 => fnode file

310 iRMX Concepts and Features

file gran/vol gran : 01
owner :

create, access ,mod times :
total size,total blocks:

block pointer (1)
block pointer (2)
block pointer (3)

block pointer (4)
block pointer (5)
block pointer (6)

block pointer (7)
block pointer (8)

this size:
id count:

accessor (1) :
accessor (2) :
accessor (3) :

parent, checksum :
aux (*) :

0000
lA79lF88, lA79lF88, lA79lF88
000048C6, 00000025
0025, 00049F
0000, 000000
0000, 000000
0000, 000000
0000, 000000
0000, 000000
0000, 000000
0000, 000000
00004AOO
0001
00, 0000
00, 0000
00, 0000
0006, 0000
000000

The fields in this structure, from top to bottom, are:

flags. The bits in this field describe the status of the fnode itself as well
as the file it describes. Bit position 0 tells whether this fnode is actually in
use or not. (Remember, the entire fnode file is created when the disk is for
matted.) When a file is added to the volume, an unused fnode must be allo
cated for it from the pool of unused fnodes in the fnode file. Bit 0 tells if the
fnode is available or not. Bit 1 tells if the file is long or short. (See the de
scription of the block pointers that follows for more information.) Bit 2 is
always set to one, bit 5 identifies if the file has been modified or not, and bit
6 tells ifthe file is marked for deletion. All other bits are zero. The Bags for
this fnode have bits 0 and 2 on (Ox0005), so you can conclude that this
fnode is allocated for a short file not marked for deletion that has not been
modified.

type. This byte will have a value of 6 for a directory, 8 for a normal file,
and a value equal to the fnode ofthe file for housekeeping files. Fnode num
ber 0 is the fnode in the example, which is the fnode for the fnode file itself,
so its type is o.

file gran/vol gran. This field is the file granularity specified when the
file was created. The notation here is a reminder that this value is specified
as a multiple of the volume granularity.

owner. This field is the ID of the owner of the file, which in this case is the
Super user. You might think that the Super user could do something with
the fnode file, but it's not true. The normal rules for file access do not apply
to housekeeping files.

create, access, mod times. These three 32-bit words give the number
of seconds since January 1, 1978, when the file was created, last accessed,

1/0 Management 311

and last modified. All three of these files are the same for the fnode file, be
cause you cannot access or modify this file in the normal sense of the terms.

total size, total blocks. Total size is the size of the file in bytes, and
total blocks is the number of volume blocks allocated to the file. For the
fnode file, these values never change. (See this size.)

block pointer (1) through block pointer (8). These eight fields tell
where the file is actually stored on the disk. A file can occupy up to eight
extents on a disk volume. The blocks within an extent are contiguous, but
the extents may be noncontiguous with respect to one another. Block
pointer number 1 shows that this fnode file occupies Ox25 blocks, starting
at volume block Ox49F (i.e., volume blocks Ox49F through Ox4C3). Because
the fnode file is always contiguous, it never occupies more than one extent,
so block pointers 2 through 8 are always unused for the fnode file. If a file
needs more than eight extents, the file becomes a long file by treating each
of the block pointers in the fnode as indirect references to data blocks that
contain the actual block pointers for the file.

This change from short to long happens automatically when the need
arises, and is reflected in bit 1 of the flags word for the fnode described ear
lier. Long files can become extremely large (each indirect block can hold
100 to 200 block pointers, depending on the volume granularity, and there
can be 64K block pointers per extent of a long file), but performance de
grades sharply as extra disk accesses are required just to locate parts of the
file on the disk.

Long and short do not necessarily indicate relative sizes of disk files. A
long file could consist of as few as nine volume blocks if they are all non
contiguous, and a short file could consist of 512K volume blocks made up
of eight extents of 64K blocks each. At 1,024 bytes per volume block, that
is a half-gigabyte short file and a 9,216 byte long file. The terms short and
long really refer to the degree of fragmentation of the file, rather than its
size.

this size. this size is obtained by multiplying the number of blocks
allocated to the file by the volume granularity. The difference between
this size and total size represents space that has been allocated to
the file but is not in use. A few more fnodes could have been allocated for
this diskette when initially formatted without making the fnode file any
larger.

id count and accessor (1) through accessor (3). These fields are the
accessor list for the file. The id count tells how many ofthe three entries
are actually used, with the first entry always used for the file's owner. Each
entry consists of a byte specifying the access rights to the file (only the
low-order four bits of the byte are used) and the user's access rights. For

312 iRMX Concepts and Features

this file, there is only one accessor, the Super user (an ID of 0), who has no
access rights to the file.

parent, checksum. The parent is the fnode of the directory that con
tains this file. As you will soon see, fnode 6 is always used for the root direc
tory of a volume. The fnode file does not actually appear in any directory,
but if it did, it would be in the root directory. Remember, fnode number 0 in
a directory entry means that the entry is empty. The checksum is a check
sum on the fnode itself, used to help detect file system corruption. Appar
ently, it is not computed for the fnode file, but is updated for other fnodes
every time they are modified.

aux(*). These three bytes are called the extension data for the fnode, and
can be used for any purpose. The format command adds a three-byte ex
tension to every fnode by default (making the total fnode size 88 bytes), but
the number of bytes can be any number from 3 to 255. Anyone can examine
or modify these bytes for a file's fnode by using the rqagetextensiondata()
and rqasetextensiondata() system calls. The idea is that you could add your
own layer to the iRMX operating system (perhaps replacing the HI or
EIOS layer, for example), and use this field to store whatever information
you want with each file of your customized operating system.

File type 1. The file with fnode 1 is the volume free-space map and appears
in the root directory with the name R? SPACEMAP. Remember, you must use
the invisible option on the dir command to see files that have names begin
ningwith R? or r? This file is owned by the World user, who has read ac
cess to it. The contents of the file is a bitmap, with each bit representing
one volume block on the disk. A bit equal to 1 means the corresponding
block is free to be allocated to a file; a bit equal to 0 means the correspond
ing block has been allocated.

File type 2. The file with fnode 2 is the free fnode bitmap file. If a bit in this
map is 1, the corresponding fnode is free to be used for a new file or direc
tory. If a bit is 0, the corresponding fnode is already in use. The redundancy
between the bits in this file and bit number 0 in each fnode's flags field
provides a basis for one of the consistency checks that diskverify can do for
a disk volume. This file is in the root directory of the volume with the name
R ? FNODEMAP and can be read by anyone.

File type 3. fnode number 3 is used for an empty file that is called the Ac
counting File. The file is not presently used, cannot be accessed by any
users, and does not appear in any directory. An accounting command can
be used to cause the HI to keep a record of every login to an iRMX system,
but that command does not use this file.

1/0 Management 313

File type 4. fnode number 4 is used for the volume's bad-blocks bitmap. A 1
bit means that the corresponding volume block has a defect and cannot be
used. This bitmap is initialized by format from the defect list supplied by
the drive manufacturer if possible. The defect list can be supplied to format
from a file if desired, and the map can be updated using diskverify interac
tively if new bad blocks are encountered as the file system is used. This file
can be read by anyone; its name is R?BADBLOCKMAP in the root directory.

A distinction exists between volume blocks and physical blocks. Most
controllers can make a disk appear to be perfect by using spare tracks as
replacements for physically bad blocks. Physically bad blocks do not show
up in the bad blocks bitmap unless the controller is unable to substitute a
spare or the user forces blocks to be marked bad using diskverify.

File type 5. fnode 5 is used for the volume-label file, which always occupies
the first 3,328 bytes of any iRMX Named volume. It can be read by anyone,
using the file R?VOLUMELABEL in the root directory. The volume label
consist of six parts:

• Space reserved for a bootstrap loader.

• An iRMX volume label.

• A bootloader location table.

• An ISO volume label.

• Reserved space for future ISO standardization.

• More reserved space for bootstrap loaders.

ISO standardization provides the potential for automatic recognition of
floppy disk characteristics despite differences in their physical and logical
structure on the rest of the disk. The iRMX volume label holds such infor
mation as the following:

• Volume name.

• Volume granularity.

• Where the fnode file starts on the disk (fnode 0 tells where the fnode file
is too, but that does not help if you cannot find the fnode file to read
fnode 0 from it).

• How large each fnode is (which depends on the size of the extension data
field in each fnode).

• The volume flags byte, which tells whether the volume was shut down
properly or not.

The bootstrap loader part of the volume label contains the code executed to
start the bootstrap-loading process for the operating system. The boot-

314 iRMX Concepts and Features

loader location table is specifically used by Multibus II systems to find the
special bootstrap-loader code used with that platform.

File type 6. All directories on the disk have a type field of 6 in their fnodes.
The root directory for the volume actually uses fnode number 6. This direc
tory is created by the format command and initially contains entries for
some of the other housekeeping files. Except for being set up by format
rather than by a call to rq[aslcreatedirectory() and the fact that the direc
tory cannot be deleted, this directory is just like any other directory on the
volume. The owner of the root directory is the user who formatted the vol
ume, not necessarily the super user.

File type 8. All other files on the disk have a file type of 8, meaning a nor
mal file (not a directory). Two housekeeping files might also be written by
format that are created as type 8 files. If they are present, they use fnode
numbers 7 and 8. One file is the second stage of the Multibus II bootrap
loader, which appears in the root directory as R?SECONDSTAGE. The other
file is a copy of the fnode file, which appears in the root directory as
R? SAVE. The file is created if you specify the reserve option on the format
command, and is updated from the fnode file if you specify the backup op
tion on the shutdown command. If the master fnode file is damaged, you
can replace it with the copy in R?SAVE by using the diskverify command
interactively and giving its backupodes subcommand.

The data recovery mechanisms available for iRMX Named volumes are
not as slick as the utilities available for DOS disks, but they are very power
ful and easy to use once you understand the structure of a disk. Experi
menting with diskverify and a spare floppy disk can be good preparation for
dealing with a hard disk disaster.

Applications that demand highly reliable disk systems should consider
using a technique called disk mirroring, which operates two disk drives in
parallel for automatic redundancy and recovery in case one drive fails. The
HI mirror command is not currently available for iRMX for Windows, but
it is available for iRMX III systems, which suggests that it will become
available for iRMX for Windows also.

8.5 Time-ot-Day Management

The BIOS layer of iRMX supplies routines to track the date and time.
Time-of-day management refers to maintaining a record of the current
time and date with one-second granularity. When an iRMX system initial
izes, the BIOS obtains the current time and date from either a battery
backed clock, if one is available, or from the time at which the system disk
(the one the OS was bootstrap loaded from) was last shut down. This time
and date value is converted into a count of the number of seconds that have
elapsed since midnight, January 1, 1978. A BIOS task repeatedly sleeps for

1/0 Management 315

one second, adds one to the current time counter, and goes back to sleep
again. At any time, an application can determine the current value of this
counter or set it to a new value using the system calls rqgettime() and rqset
time(). The HI commands time and date allow users to look at or change
the setting of the counter using meaningful character strings to represent
times and dates.

The time maintained by the BIOS can easily be inaccurate, either be
cause the initial setting of the time and date when the system initializes
was inaccurate or because the BIOS task that updates the time and date at
one-second intervals might be preempted by other tasks during, for exam
ple, periods of intense I/O activity. If inaccuracy is a problem, a system
could introduce a task that periodically obtains the correct time and date
from an external source (or from an on-board battery-backed clock) and
updates the time and date counter from that source.

This problem of time-of-day drift raises the matter of real-time accuracy
of iRMX, but that is a totally separate issue. The Nucleus manages the
real-time clock interrupts that occur at O.OI-second intervals on most
iRMX systems. iRMX for Windows reprograms the host system's Pro
grammable Interrupt Timer to generate interrupts at this higher rate, and
then emulates the lower clock rate normally generated on AT platforms for
DOS. These interrupts are normally connected to the highest-priority in
terrupt request lines of the system's master Programmable Interrupt Con
troller (See chapter 5).

C programmers might be aware that the ANSI standard specifies a dif
ferent starting date for the time and date functions in the standard C run
time library, namely midnight January 1, 1970. This difference in starting
time (called the epoch in ANSI parlance) between the ANSI standard and
the iRMX value is handled automatically by the Intel version ofthe C run
time library. The following are the function prototypes for the two BIOS
calls to manage the time of day.

extern WORD
rqgettime (

extern void
rqsettime (

WORD *

DWORD
WORD *excer) ;

excer) ;

dateTime,

The DWORDs in these two function prototypes are declared as time_t in
: INCLUDE: rmxc. h, which is a typedef for an unsigned long (the same as
a DWORD) in the time. h header file that rmxc. h includes. If a battery
backed clock is available on the system, its time and date can be set or ex
amined using the following two system calls.

extern SETTIMESTRUCT
rqgetglobaltime (WORD • exceptpr) ;

316 iRMX Concepts and Features

extern void
rqsetqlobaltime (SETTIMESTRUCT •

WORD •

The typedef for SETTIMESTRUCT is:

#praqrna noaliqn (settimestruct)
typedef struct settimestruct {

BYTE seconds;
BYTE minutes;
BYTE hours;
BYTE days;
BYTE months;
WORD years;
} SETTIMESTRUCT;

8.6 Logical Name Reprise

dateTimeptr,
exceptPr) ;

Now that you have seen how an iRMX volume is organized on the disk,
consider the operations to read from a file on a Named volume. You will see
some of the logic that must be performed by the file driver along the way,
but the real idea here is to look at the disk accesses involved in doing read
operations. You will see how logical names for directories, or even files, can
impact real-time perfoance by encapsulating as many time-consuming
disk accesses as possible in the initialization phase of an application.

To make things concrete, assume that a floppy disk has the file structure
shown in Figure 2.1, and that an application is going to read from f ilel on
the diskette. The complete path name would be /dl/d2/filel. For this
example, assume the diskette is a 3.5" floppy mounted in the A: drive of an
AT platform system running iRMX for Windows. The logic for the exam
pIe would be the same for a hard disk, except for the issue of the partition
table on the hard drive of an AT platforms that would have to be negotiated
to get to the iRMX file system. Here is the scenario:

1. The user attaches the device using the command
iRMX>attachdevice amh as a named

2. The user makes d2 the current directory by using the command

[1]

iRMX>attachfile :a:dl/d2 as $ [2]

3. The application starts running and makes the following system calls:
fileConn= rqsattachfile ("filel", &Status);
rqsopen (fileConn, 1, 0, &Status);
for (;;) {
rqsreadmove (fileConn, buffer, size (buffer), &Status);

}

The following is a list of the number of the disk accesses involved here,
and when they occur relative to the loop, which you can assume is where
the bulk of the work done by the application occurs. When the device is at
tached (command [1]), the Named file driver must invoke the following
disk accesses:

I/O Management 317

1. Read the volume label to find the location of the fnode file and the size
of the fnodes.

2. Read fnode 0 from the fnode file to find its extent on the disk.

At this point the connection object for the device can be built and its
token cataloged in the root job's object directory using the logical name
: A:. When the attachfile command is run (command [2]), the following
additional disk accesses must take place:

3. Read fnode 6, the fnode for the root directory, from the fnode file. This
fnode can be kept in memory, and the: A: connection object is updated
to incorporate the information from the fnode. (An fnode memory
pointer appears in the debugger's vt display for the connection.)

4. Use the block pointers in the root directory's fnode to find the first disk
block that contains directory entries of the root directory and search
for the first element of the pathname, dl. Since the sample file system
has only two entries in the root directory (dl and d3) plus entries for
four or five housekeeping files, only one disk block must be read. For a
very large directory, several additional disk accesses would be required
to read in additional blocks of the directory and search them.

5. From the directory entry for dl, determine its fnode number. Compute
the offset of the fnode into the fnode file (fnode number multiplied by
fnode size), call rqaseek() to that position in the fnode file (no disk ac
cess required), and call rqaread() to read the fnode for dl. If the fnode
crosses a disk block boundary, two disk accesses are needed to read in
the fnode. People who worry about this extra disk access sometimes
format their disks with additional extension data to make the size of
fnodes a multiple or divisor of the volume's block size. (Make the ex
tension size 43 instead of the default of three, and each fnode will oc
cupy 128 bytes).

6. Read directory entry blocks from dl until an entry for d2 is found. For
the sample file system, the entry for d2 will be found in the first block
of the directory.

7. Read the fnode for d2 into memory and create a new connection object
that includes a pointer to this fnode as part of its internal structure.
The copy ofthe fnode for dl in memory can be discarded at this time.
The new connection object is cataloged in the global job's object direc
tory using the logical name : $:, and becomes the default prefix for
subsequent calls to rqsattachfile().

Now the application program starts running and makes its call to rqsat
tachfileO. The EIOS recognizes from the syntax of the pathname (filel
does not start with /, A, or :) that it is to use the default prefix to locate the
file.

318 iRMX Concepts and Features

8. The fnode for the default prefix tells what disk blocks to read in the
search for a directory entry named filel. Again, the sample file sys
tem will require reading just one block to find the entry, but a larger
directory could require additional accesses at this point.

9. Read the fnode for filel into memory, and create a new connection
object that includes a pointer to the fnode.

The call to rqsopen() requires no disk accesses. The accessor list
from the fnode is already in memory and the default user object was
cataloged in the application job's object directory when the job was cre
ated, so access rights and sharing can be validated using information
already available without going to the disk. If the application had spec
ified EIOS buffering, reading the first blocks of data from the file
would be initiated at this time, but the example specified zero EIOS
buffers.
Finally, the program enters its main processing loop.

10. Each call to rqsreadmove(), depending on the number of bytes being
read and their position in the file, might require a disk access. Even
without EIOS buffering, the BIOS must read an entire block into
memory at a time, so it is possible that read requests will be satisfied
from data already in memory. On the other hand, a single cal1to rqar
ead() can request bytes from the file not aligned with disk blocks, re
quiring multiple disk accesses so that the BIOS can perform de-block
ing at either end of the user's buffer. Our tenth disk access simply
represents a typical case.

Consider now the following two alternative scenarios, which summarize
how logical names can be used to control when disk accesses occur.

The first alternative is if the application had used a full pathname,
:A: dl/d2/filel. In this case, the EIOS would use the token for :A: ca
taloged in the root job's object directory as the prefix, and dl/ d2/ f ilel as
the subpath. The BIOS would have to repeat disk accesses 4 through 7 to
get ready to search for f ilel Disk access 3 would still have been done for
the attachfile(), so the fnode for the root directory would already be avail
able.) The application would have incurred four additional disk accesses
during its initialization phase.

For the second alternative, assume that the user had given the following
command before entering the program, and used the pathname : x: in the
call to rqsattachfile():

iRMX>attachfile :a:dl/d2/filel as x [3]

In this case, the connection to the file would have been established before
the application started running, with the logical name : x: representing
the token for this connection object cataloged in the application's global
job. In this case, all of disk accesses 1 through 9 would have occurred before
the application started running, and the only accesses the application
would encounter would be those involved in actually reading from the file.

Chapter

9
Extending iRMX:

Adding Device Drivers

9.1 Overview

Although iRMX is a proprietary operating system with regard to the ar
chitecture ofthe processor on which it runs, it has always been very much
an open system with regard to its support for peripheral devices. Intel's
operating system has always supported the hardware devices that Intel
manufactures, of course, and it has also always supported commonly used
devices not manufactured by Intel. But what is truly open about iRMX is
the provision it makes for anyone to add their own support for nonstandard
devices, and to incorporate that user-written code into the operating sys
tem on an equal footing with the code supplied by Intel.

This chapter looks at the structure of iRMX device drivers. Device
drivers are especially interesting because they must interface with all of the
following:

• The hardware of a device controller attached to the computer's system
bus.

• The microprocessor's interrupt logic.

• The software of the operating system.

• The code of the application program that invokes I/O operations
through system calls (indirectly).

It is not surprising, perhaps, that this chapter builds on concepts intro
duced in chapters 5 through 8. The primary source of information for this
chapter is the iRMX Device Driver Programming Concepts manual, volume
7 of the iRMX for Windows documentation set. The manual includes how
to use the device drivers supplied with the operating system, as well as how
to write new device drivers. Only the latter topic is covered in this chapter.

319

320 iRMX Concepts and Features

9.2 I/O Terminology

A mini-glossary is necessary before starting to discuss device driver con
cepts. The following three terms are used when speaking about the iRMX
I/O system:

device unit The iRMX name for an actual I/O device, such as a termi
nal' printer, or disk drive.

device controller The hardware interface that connects a device unit
to the microprocessor's I/O bus. (Device controllers on PCs are called
adapters.) More than one device unit can be connected to a single device
controller. For example, a single device controller for disks might have
several drives attached to it.

device driver The software that actually interacts with a device con
troller. Device drivers are considered part of the BIOS itself. A single de
vice driver would be used for all the device units attached to one device
controller, and it is even possible for one device driver to manage several
different device controllers at the same time.

Readers familiar with device drivers for DOS will find that the iRMX
use of the term device driver is much more restricted than DOS's. An iRMX
device driver interacts directly with the iRMX BIOS using well-defined
interfaces described in this chapter. Application tasks can interact with an
iRMX device driver only through the standard I/O system calls described
in chapter 8. DOS uses the term much more loosely to describe almost any
program that remains resident in memory while other applications run.
Unlike iRMX device drivers, DOS device drivers often provide their own
system calls that applications can call. In this regard, DOS device drivers
are more akin to iRMX operating system extensions, described in chap
ter 10.

Four types of device drivers are supported by the BIOS. The simplest
type to understand is called a custom driver, used in this chapter in the pre
sentation of device driver concepts. The other three types of device drivers
are actually custom drivers for which iRMX provides boilerplate code to
permit developers to concentrate on the special characteristics of their own
device controllers without writing a considerable amount of standard code
over again. After the structure of a custom driver is discussed, the features
of the other three types are examined as well. The names for these other
three are common, random, and terminal. These names are quite descrip
tive: common drivers are used for relatively simple devices, such as a
printer or tape drive; random drivers are used for random-access devices
such as disks; and terminal drivers are used for terminals.

Extending iRMX: Adding Device Drivers 321

9.3 Logical Structure of a Device Driver

A device driver consists of three major components, which are related to
each other as shown in Figure 9.1. Figure 9.1 also shows the relationships
between the device driver components, a device controller, the BIOS, and
an application task. The system bus in Figure 9.1 divides the hardware and
software sides of the I/O system.

The module labeled Interface with the Device Controller is responsible
for managing most of the device driver hardware interactions, which are
interrupt handling and the actual transfer of data between the device con
troller and the processor's memory. The Interface with BIOS module con
sists of a set of procedures called by one ofthe file drivers within the BIOS
when it needs to interact with the device driver. The driver task module is
the code that acts as the intermediary between the other two modules. It
receives 10RSs from the BIOS, processes the functions requested in the
10RSs by preparing data operations for the hardware interface, and re
turns each 10RS to its responseMbx when the function is complete.

9.3.1 Interface with the device controller

Chapter 5 introduced the hardware side of the x86 microprocessor's I/O
interface. To review, data, control, and status information are written to
and read from a device controller by writing and reading I/O port addresses
in much the same way as memory locations are written and read using nor
mal memory addresses. The device controller signals the completion of
data transfers between itself and a device unit by generating an Interrupt
Request (lNTR) signal to the microprocessor through a Programmable
Interrupt Controller (PIC) that manages simultaneous interrupt requests
from multiple device controllers. When the microprocessor acknowledges
an INTR, the PIC presents it with an 8-bit interrupt-level number that in
dicates the source of the interrupt request. The CPU uses the interrupt
level number to index into a table of descriptors for software routines
called interrupt handlers (or interrupt service routines in DOS), and forces
the equivalent of a call instruction to the appropriate handler. When the
handler starts executing, further interrupts are blocked from occurring in
two ways.

First, the PIC will not generate any more interrupt requests until it re
ceives a command byte, called an end-of-interrupt (EOn command, from
the processor. One ofthe responsibilities of an interrupt handler is to out
put the EO! byte to the PIC's command register either directly or by using
a system call.

Second, the interrupt enable (IE) bit in the processor's flags register is
turned off when the handler is called, preventing the processor from recog
nizing interrupt requests even ifthe INTR signal line is asserted by the PIC
again. As the CPU forces the call to an interrupt handler, it pushes the cur-

Interrupt
Requests

Data DEVICE

CONTROLLER ~ <

/""
ro:::'\
~

Control
Codes

<
Status
Information

SYSTEM
BUS

) INTERFACE

)
WITH THE

DEVICE

CONTROLLER

)

Input
Queue

Output
Queue

./

"

7'

Figure 9.1 Three software units that constitute a custom device driver.

DRIVER

TASK

in/tID()
./

" INTERFACE

queue/or)

<-- WITH THE

(cancel/O()
BIOS

finish/OO

~

IORS to responseMbx

FILE

DRIVER

~I~

)

APPUCAnON

TASK

./

"

i:1

:a
3:
><
~
~

~
I
DI

So

i
i

Extending iRMX: Adding Device Drivers 323

rent state of the flags register (which must have the IE bit on to recognize
the interrupt) onto the stack, along with the return address for the inter
rupted task. The special return instruction executed by interrupt handlers
(iret) pops the flags register and the return address when the handler exits,
thus turning the IE bit back on.

iRMX places severe limits on the processing interrupt handlers can do
because they execute in the context of whatever iRMX task happens to be
running at the time of the interrupt. The interrupt handler performs a
small amount of processing in response to the interrupt and calls the Nu
cleus to schedule execution for a task associated with the given interrupt
level.

Each iRMX task priority level has a set of interrupt levels associated
with it that are prevented from occurring when a task ofthat level is run
ning. For tasks with priorities 129 through 255, the set of interrupt levels is
the empty set, but for higher priority tasks, the Nucleus programs the PIC
to prevent certain interrupt levels from occurring as part of the process of
scheduling a task for execution. An interrupt task for a given interrupt
level automatically has a priority assigned to it that prevents all interrupt
levels lower than its own from interrupting the CPU while the task is run
ning. The task priorities and associated set of disabled interrupt levels are
given in a table in the manual iRMX Nucleus Programming Concepts, vol
ume 3 of the iRMX for Windows documentation set.

Assuming a device controller that performs both input and output data
transfers, our Interface with Device Controller module consists of two in
terrupt handlers and two interrupt tasks. The first priority is to see how to
code an interrupt handler procedure, then how to create an interrupt task,
and finally how to get the two to communicate with one another.

An interrupt handler is a normal procedure (a void function) declared as
an interrupt handler when it is compiled. The following fragments show
how to do this for a handler named myhandler() coded in either C:

#pragrna interrupt (rnyhandler)
void rnyhandler () ;

or PLM:

rnyhandler: PROCEDURE PUBLIC INTERRUPT;

The compilers generate special code for interrupt procedures. The pro
logue code for interrupt handlers includes machine instructions to save a
copy of all the processor's registers on the stack. The epilogue code in
cludes the instructions to restore the registers, and the procedure ends with
the special iret instruction that restores the processor's flags register and
return address from the stack. In short, the code is generated so that the
procedure can be executed in the context of any thread of execution with
out interfering with the interrupted thread.

324 iRMX Concepts and Features

The next two steps are to enter the address of the interrupt handler into
the proper slot of the processor's Interrupt Descriptor Table (IDT) and
establish an interrupt task for the interrupt level. It is possible to have an
interrupt handler without having an interrupt task, but assume the need
for both for now. Both steps are accomplished with a single system call,
rqsetinterrupt() .

extern void
rqsetinterrupt (WORD

BYTE
void far •
TOKEN
WORD far·

level,
interruptTaskFlag,
interruptHandler,
interruptHandlerDS,
exceptPtr);

level is an encoded value that identifies which interrupt level is being
configured. Rather than enter a number between 0 and 255 that would
serve as the index into the Interrupt Descriptor Table (IDT), iRMX works
with encoded levels that identify interrupt sources by their connections to
PICs. One PIC, called the master, is always connected to the microproces
sor and up to seven slave PICs can then be connected to the master, as
shown in Figure 5.6. The value of level takes the form OxOOMS, where M
is the number ofthe interrupt request line for the master PIC that gener
ated the request, and S is the interrupt request line on the slave PIC, which
is 8 ifthe interrupt request line is connected directly to the master PIC. For
example, a handler for interrupt requests from a device controller con
nected to interrupt request line 3 of the master PIC has a value of Ox0038
for level, and a handler for interrupt requests from a device controller
connected to interrupt request line 4 of the slave PIC, which in turn is con
nected to interrupt request line 7 ofthe master PIC, has an encoded level of
Ox0074.

Encoded values of level are mapped to two different numbers by the
Nucleus. One mapping is to the 8-bit index into the IDT for the level. IDT
slots 56 through 127 are used for interrupt handlers, with slots 56 through
63 used for master levels, and 64 through 127 used for slaves. This mapping
is important to know about if you want to invoke an interrupt handler by
means of a software interrupt instruction, such as when developing a de
vice driver before an actual device controller is available.

The second mapping is to the priority of the interrupt task for the level
mentioned previously. Priorities increase in a monotonic sequence from 4
to 128 as level varies from OxOO to Ox77. iRMX application tasks always
run with priorities numerically greater than 128 so that they do not inter
fere with the interrupt response mechanism of the system.

interruptTaskFlag indicates whether there is to be an interrupt task
for the interrupt level or not. If the value is 0, there is to be no interrupt
task, and all interrupt processing for the level must be done by the inter-

Extending iRMX: Adding Device Drivers 325

rupt handler. The focus here is on the situation that does involve an inter
rupt task.

If interruptTaskFlag is not zero, the calling task immediately
becomes the interrupt task for the level. No separate system call creates an
interrupt task, only this call, which transforms a normal task into an
interrupt task and associates it with a particular level. If the calling task is
to become an interrupt task, it immediately assumes the priority asso
ciated with level. Thus, the maximum priority for the job that owns the
calling task must be high enough to accommodate this priority shift. This
requirement can be a problem for loadable device drivers, and the solution
to this problem is to use the rqesetmaxpriority() system call to raise the
maximum priority for the job. This parameter is more than just a Boolean
flag. It also indicates how many times the interrupt handler can be acti
vated without the interrupt task indicating readiness to process new inter
rupts. (See the next subsection on Handler-Task synchronization.) If the
limit indicated by the value of interruptTaskFlag is reached, the inter
rupt level is automatically disabled.

interruptHandler is a pointer to the interrupt handler procedure.
The procedure must have been coded as an interrupt procedure, cannot re
ceive any arguments nor return any value, must handle exceptions in-line,
and it must remain in memory as long as the interrupt level is set. Remain
ing in memory is of particular concern for loadable device drivers because
there is the possibility that the job owning the handler's code and/or mem
ory data segments might be deleted, and its memory segments returned to
the Free Space Manager (FSM). This problem does not exist for device
drivers loaded by sysload because they are owned by the Human Interface
(HI) job, which will not terminate until the system is reset. The dynamic
device driver mechanism described later in this chapter tries to minimize
this concern, but cannot eliminate it entirely.

interruptHandlerDS is a selector for a memory segment to be used as
the data segment when the interrupt handler executes. The interrupt
handler can have this selector loaded into its ds register when it executes
by calling rqenterinterrupt(). This feature could be used if the handler and
the task wanted to use the same data segment but normally run with dif
ferent data segments. This situation would only occur if the handler and
the task were compiled in separate modules using the large segmentation
model. Since this condition is uncommon, this parameter is normally
coded as a null selector, and the handler's prologue code loads the ds auto
matically.

Handler-task synchronization. The CPU disables all interrupts and gener
ates a call to the interrupt handler each time it acknowledges an interrupt
for the appropriate level. The PIC does not make any additional interrupt

326 iRMX Concepts and Features

requests to the processor until it receives an EOI command byte. When the
handler is called, it performs whatever processing is appropriate (as little
as none), and then makes the Nucleus call rqsignaiinterrupt().l The Nu
cleus does three things when rqsignaiinterrupt() is called:

1. Sends the EO! byte to the PIC.

2. Moves the interrupt task for the level to the ready queue. By definition,
the interrupt task has higher priority than the task running at the time
of the interrupt and will preempt it.

3. As part of the scheduling process for the interrupt task, the Nucleus
programs the PIC to ignore interrupt requests for lower interrupt levels,
and turns on the CPU's interrupt enable bit.

Interrupt handlers that do not call rqsignalinterrupt() to signal an inter
rupt task must either call rqexitinterrupt() to get the EOI command sent,
or output the EO! byte to the PIC's control port directly, which is more ef
ficient than making the system call. By calling rqsignalinterrupt(), the
handler is preempted and does not run again until the interrupt task relin
quishes the CPU.2 When the handler runs again, it executes its epilogue
code, which restores all registers to the values they had when the handler
was called and executes the special iret instruction that restores the CPU
flags register from the stack. Interrupt handlers, then, are procedures that
act like normal procedures in that they return after they are called. In con
trast, the procedure executed by any task, including interrupt tasks, typi
cally contains an endless loop that never returns.

The procedure executed by an interrupt task follows the normal model
for event-processing tasks. After doing some initialization, including the
call to rqsetinterrupt() that makes the task an interrupt task, the code con
sists of an endless loop that begins with a call to either rqwaitinterrupt() or
rqetimedinterrupt(). These calls enable interrupts for the particular level if
they are disabled, and cause the interrupt task to sleep until the interrupt
handler calls rqsignalinterrupt().3 The difference between rqwaitinter
rupt() and rqetimedinterrupt() is that rqetimedinterrupt() includes a
standard iRMX time-limit parameter, a WORD that tells the maximum
number of real-time clock ticks (normally in O.Ol-second units) that the
task is willing to wait for the handler to call rqsignaiinterrupt(). Both calls
include an encoded level parameter, which allows several interrupt tasks
to use a single procedure for their code.

IThe interrupt level is the only parameter for this call other than exceptPtr.

2Higher-priority interrupts can occur while the interrupt task is running but their nested
processing is invisible to the process being described here.

aIf a handler has called rqsignalinterrupt() more times than the value of interruptTaskFlag
in the rqsetinterrupt() system call without the interrupt task calling rqwaitinterrupt() or
rqetimedinterrupt(), the Nucleus programs the PIC to disable interrupts for that level.

Extending iRMX: Adding Device Drivers 327

Interrupt handlers run with all interrupts disabled because the proces
sor's interrupt mechanism disables the interrupts automatically. Because
interrupts are disabled when interrupt handlers execute, good system de
sign dictates that they should perform their work as quickly as possible.
Also, because the handler is running in the context of an arbitrary iRMX
task, the Nucleus restricts interrupt handlers to making only those system
calls directly concerning interrupt processing.

An interrupt task, on the other hand, runs with interrupts disabled only
for lower priority levels (because the Nucleus programs the PIC to do this
when it schedules the task) and operates in its own context. As a result,
much less concern exists about reducing the computation time for inter
rupt tasks and no constraints exist on which system calls an interrupt task
can make. If the response to an interrupt requires a significant amount of
processing time, however, the interrupt task should pass control to an ap
plication task (one that runs at a priority that does not disable any inter
rupt levels) using a semaphore or mailbox. The application task can then
complete its processing without interfering with the system's response to
any interrupt levels.

9.3.2 Interface with the BIOS

The interface between a device driver and the BIOS consists of two data
structures and four procedures that the device driver provides. The two
data structures are the IORS, introduced in chapter 8, and the DUIB
(device unit information block), mentioned briefly before and shown
here:

#pragma noalign (duibStruct)
typedef struct duibStruct (

BYTE name[14);
WORD fileDrivers;
BYTE functions;
BYTE flags;
WORD deviceGranularity;
DWORD deviceSize;
BYTE device;
BYTE unit;
WORD deviceUnit;
void (near * initializeIO)
void (near * finishIO) ();

void (near * queueIO) ();

void (near * cancelIO) ();

void far * devicelnfoPtr;
void far * unitlnfoPtr;
WORD updateTimeout;
WORD numBuffers;
BYTE priority;
BYTE fixedUpdate;
BYTE maxBuffers;
BYTE reserved;

();

328 iRMX Concepts and Features

Most DUIBs for an iRMX system are loaded into system memory at the
time the as is initialized, but the rqinstallduibs() system call can be used to
load additional D UIBs at run -time. The ability to add D UIBs to the system
at run-time is a relatively recent addition to iRMX, and is particularly
valuable for developing loadable device drivers, a technique described later
in this chapter.

At this point, just a few fields in the DUIB data structure need to be
mentioned. The name field is a blank -padded array of bytes containing the
device name for the DUIB. When a task calls rqphysicalattachdevice(), the
BIOS searches through all the DUIBs in memory to find a match between
this field and the string pointed to by the devNameptr parameter of the
call. There must be at least one blank at the end of this field, effectively
limiting the name to 13 characters.

The fileDrivers field is a bit array that identifies which file drivers
can be used when performing an attach-device operation with this DUIB
(Physical, Named, Stream, Remote, or EDOS). functions is another bit
array and identifies which functions the device driver will support for the
device unit referenced by the DUIB. These functions are covered in the
Driver Task section that follows. The first four ofthe pointers in the mid
dle ofthe structure point to four procedures, described next, that the BIOS
will call to communicate with the device driver. The other two pointers are
to data structures used by the common, random, and terminal device
drivers. Custom drivers can use these two pointers, for anything they like,
or code them as null pointers.

Just four procedures serve as the interface between the BIOS and a de
vice driver. In the case of common, random access, and terminal drivers,
the BIOS provides other routines called by these four procedures, but for
custom drivers, these routines are the complete procedural interface to a
driver. Although the BIOS calls the procedures by referencing their
pointers rather than their names, it is convenient to give generic names to
the procedures, initializeIO(), finishIO(), queueIO(), and cancelIO().

void
initializeIO (DUIBSTRUCT far *

TOKEN far *
WORD far *

duibPtr,
deviceDataPtr,
exceptPtr);

As its name implies, initializeIO() is called to initialize the device driver
to work with a particular device controller. If a device controller is con
nected to more than one device unit, this function is called only if no other
device units connected to the controller are already attached. The function
is called when an application task calls rqaphysicalattachdevice(), such as
through an EIOS system call, but, like the other three procedures in this
set, is actually called by a task that belongs to the BIOS job rather than di
rectly by the application task. The implication of this indirect call is that
the objects that this procedure creates belong to the BIOS job, not to the

Extending iRMX: Adding Device Drivers 329

application task that initiated the operation. Typically, this procedure
creates a task for the device controller being attached (the driver task de
scribed in the next section) and sets up the queue for passing IORSs to the
driver task.

The duibPtr parameter points to the DUIB that contains the pointer to
this procedure. This pointer is passed to the driver's initializeIO() proce
dure to accommodate the case of several D UIBs containing pointers to the
same driver. A single, generalized device driver can serve a number of dif
ferent device controllers and units by having the deviceInfoptr and
uni tInfoptr fields of the DUIBs point to data structures that describe
the particular controller and unit to be used.

A device driver might want to have a memory segment to hold informa
tion about the device units connected to a particular controller. To do so, it
can create such a segment when initializeIO() is called, and place a token
for the segment in the variable pointed to by deviceDataptr. This token
will then be passed back to the device driver as one of the parameters to
each of the other three procedures that compose the driver's procedural in
terface to the BIOS (queueIO(), cancelIO(), andfinishIO(). This mecha
nism allows a single device driver's code to be used to service multiple de
vice controllers. If a driver does not need such a data segment, it should
place a null selector in the variable pointed to by this parameter.

Although this procedure is not a system call, the last parameter looks
strikingly familiar: a pointer to a word containing a condition code. In this
case, the BIOS task that calls this procedure supplies the pointer and the
word to which it points. It is the responsibility of the initializeIO() proce
dure to store an appropriate condition code value in the word, which is
returned as the condition code for the application's call to rqphysicalat
tachdevice(). It is important to set the value of this variable properly.

void
finishIO (DUIBSTRUCT far •

TOKEN
duibPtr,
deviceDataTkn) ;

The finishIO() procedure is called when a device unit is detached and no
other device units are still attached for the device controller. Its job is to
delete all the resources created when the device was first attached, such as
the driver task, interrupt tasks, and 10 RS queue. If this housekeeping were
not performed, repeatedly attaching and detaching a device would lead to
unused objects accumulating in the system, thus resulting in wasted mem
ory. This routine can also perform any final processing necessary to allow
the device controller to be attached again at a later time. The two parame
ters are a pointer to the DUIB for the device unit being detached and a
token for the data segment created for this device when initializeIO() was
called the first time the device was attached. Deleting this segment is one of
the housekeeping operations this function performs.

330 iRMX Concepts and Features

void
queueIO (TOKEN

DUIBSTRUCT far *
TOKEN

iorsTkn,
duibPtr,
deviceDataTkn);

The queueIO() procedure is the workhorse of the interface between the
BIOS and a device driver. It is called for every I/O operation invoked by
every application task that uses the driver. Its function is actually quite
simple: it places the token for an 10RS, its first parameter, onto the queue
of IORSs maintained for work to be performed by the driver task. A device
driver that supports multiple device controllers might have multiple driver
tasks and 10RS queues, in which case the deviceOataTkn is normally the
selector for the memory segment holding the head of the IORS queue for all
the device units attached to a particular controller. This segment is the one
that would have been created when initializeIO() was called at the time the
first device unit was attached. Each IORS includes fields to set up a doubly
linked list of 10RSs on a queue that can be usedby queueIO(), but a
rudimentary device driver could use as simple a mechanism as an object
mailbox to implement its 10RS queue. The only requirement is that this
procedure act as a producer of 10RSs that can be consumed by a
driver task.

queueIO() performs the synchronous portion of a BIOS system call.
Once the IORS has been queued, this procedure returns to the file driver
that made the queueIO() call, which in turn allows the application task
that made the system call to continue execution. The driver task then pro
cesses the 10RS asynchronously, ultimately returning it to responseMbx
when processing is complete.

void
cancelIO (WORD

DUIBSTRUCT far *
TOKEN

cancelID,
duibPtr,
deviceDataTkn);

cancelIO() is a housekeeping procedure that the BIOS calls to remove
10RSs from a queue. It undoes the effects of previous calls to queueIO().
Thus, this procedure removes those 10RSs whose cancelIO fields match
the cancel IO parameter of this call. This procedure is called, for example,
when a connection is closed to ensure that no I/O operations are performed
using a closed connection. Device drivers that process all 10RSs sequen
tially can often skip the functionality of this procedure, at the risk of per
forming some I/O operations queued by ajob that terminates abnormally.
Note that proper implementation of this procedure precludes use of the
simple mailbox mechanism for the 10RS queue mentioned previously,
since a mailbox queue of 10RS tokens cannot be searched like a linked list
of IORSs themselves.

Extending iRMX: Adding Device Drivers 331

9.3.3 The Driver Task

In our model of a device driver, the Driver Task is the heart of a device
driver; witness its central position among the software units in Figure 9.1.
The task is created by initializeIO(), and begins its processing by complet
ing any initialization not already performed. Typically, this initialization
includes programming the device controller as necessary (to tell it to start
generating interrupts and to set the baud rate, for example), and creating
the interrupt tasks and handlers for the controller. The driver task then
enters an endless loop in which it receives 10RSs from its 10RS queue and
manages whatever work must be done to process each I/O request. This
model is particularly convenient for drivers that must service separate in
terrupt levels for input and output with a device controller. This model is
not the only one that will work, however. For example, the drivers supplied
by Intel accomplish the work the example assigns to the driver task either
in the BIOS task that calls queueIO() or the driver's interrupt task. The
following is the structure declaration for an 10RS, previously given in
chapter 8, for easy reference.

#pragrna noalign (iorsStruct)
typedef struct iorsStruct {

WORD
WORD
NATIVE_WORD

#if ARCHITECTURE < 386 - -
WORD

#endif
WORD
BYTE
BYTE
WORD
DWORD
BYTE far •
NATIVE_WORD

#if ARCHITECTURE < 386 - -
WORD

#endif
void far •
iorsStruct far •
iorsStruct far •
TOKEN
BYTE
BYTE
TOKEN
TOKEN

} IORSSTRUCT;

status;
unitStatus;
actual;

actualfill;

device;
unit;
funct;
subfunct;
deviceloc;
buff;
count;

countfill;

aux;
linkForward;
linkBackward;
responseMbx;
done;
fill;
cancelID;
connection;

The funct field of an 10RS is a function code. Values for funct sym
bolic names and a summary of driver task processing are:

o fRead The driver task reads the number of count bytes
from the device controller into the application's
buffer, pointed to by buff. If appropriate for the de
vice, deviceloc tells from where on the device the
data are to be read, such as a sector number on a disk.

332 iRMX Concepts and Features

1 fWrite

2 fSeek

3 fSpecial

4 fAttach-
Device

5 fDetach-
Device

The driver writes the number of count bytes from
the application's buffer, pointed to by buff, to
the device controller. If appropriate for the device,
deviceloc tells where on the device the data are to
be written. (Reading and writing are described in
more detail in the following section.)
For disks, the device driver positions the read/write
head where specified by the deviceloc field.
This function is used when a task calls rq[asJspe
cial(). The subfunct field ofthe IORS contains the
value of the functionCode parameter to those calls,
so the device driver will know whether to format
a track, set a signal character, or whatever device
specific operation is needed by the application. The
aux pointer of the IORS is the same as the parame
terPtr argument ofthe call to rq[asJspecial(). That
is, it points to whatever data structure is appropriate
for the particular operation to be performed. For ex
ample, for the signal character function described in
chapter 8, aux points to a structure that contains a
byte code and a semaphore token.
The device driver performs whatever initialization
necessary for attaching a particular device unit. ini
tializeIO() is called when a device is attached only if
no other device units for the device are already at
tached. An fAtta~hDevice IORS, however, is sent
to queueIO() for every device unit attached. A device
driver that supports multiple device units connected
to a single controller might be structured with a main
driver task, created by initializeIO(), which receives
all IORSs. When this main driver task receives an
fAttachDevice IORS, it could create a new driver
task for the device unit being attached and forward
all future IORSs for that device unit to its proper
task, based on the device and unit fields of the
10 RSs (which match the corresponding fields of the
DUIB used to attach the device unit).
An fDetachDevice IORS is sent by the BIOS for
each device unit to be detached. The device driver de
letes whatever resources were allocated to the device
unit and does whatever is necessary to shut the unit
down so that it can be attached again at a later time.
If no other device units for this device controller are
attached at the time, the BIOS calls the driver's

6 fOpen

7 fClose

Extending iRMX: Adding Device Drivers 333

finishIO() routine immediately after queuing this
IORS.
Most of the logic associated with opening a connec
tionto a file is performed by the file driver in the
BIOS, including checks for access rights, sharing
mode consistency, and connection data structure up
dating to show that the connection is indeed open. An
fOpen IORS notifies a device driver that a connec
tion is open. A driver for a local device normally does
very little, if any, processing for this function, but it is
very important for network drivers, which use this
function to trigger checking of remote access rights.
Like fOpen, this function is mostly a courtesy call for
drivers, managing local devices, but is used by net
work drivers to get the remote server to close its con
nection to the file.

After processing an 10RS, the driver task must update the status and
uni tStatus fields of the IORS to indicate the result of the operation. (At
this point the meaning of IORS shifts from I/O Request Segment to I/O
Result Segment.) A value of 0 for status means the operation completed
normally, and a value ofOx2B (E_IO) signifies a typical I/O error. If the
driver sets status to E_IO, it should normally setuni tStatus to one of the
standard values listed:

0 iOUnclass An error other than one of the codes listed here oc-
curred.

1 ioSoft An error occurred that might correct itself by simply
retrying the operation.

2 ioHard Unrecoverable I/O error. Retry is useless.
3 ioOprint Operator intervention required. (No paper in the

printer, etc.)
4 ioWrprot Cannot write to a write-protected volume.
5 ioNoData For magnetic tape, no data exists in the next tape

record.
6 iOMode A read or write was attempted before the previous

read or write for the same device unit completed.
(This condition can occur for tape drive operations.)

7 ioNoSpares A disk needs an alternate track or sector to replace a
defective one, but no spares are available to make the
assignment.

S ioAlt- An alternate track or sector had to be assigned.
Assigned

334 iRMX Concepts and Features

In addition to setting the status and unitStatus fields, the driver
must also fill in the actual field to indicate the actual number of bytes
transferred for fRead and fWr i te functions. The value is normally equal
to the count field, unless an event occurs, such as a disk filling up on out
put or an end-of-file being encountered on input.

Finally, the device driver sends the token for the IORS to the mailbox
specified in the responseMbx field to indicate it has completed the opera
tion.

9.3.4 Driver task and interrupt
task interactions

When a device driver receives an IORS for a data transfer, it follows one of
several models described as follows for synchronizing device controller
operations with the CPU.

Polling. The driver task repeatedly reads the device controller's status
register to determine when an I/O transfer is complete. This technique
does not use the interrupt mechanism of the processor at all, and is seldom
used by iRMX device drivers. Ifthe task that polls the controller has a very
high priority, it can starve other time-critical tasks in the system. If the
driver task has a low priority, there is little or no advantage over using the
interrupt system.

No interrupts. This technique is used when the driver task calls another
procedure that handles the interrupt(s) for the data transfer. A primary ex
ample of this technique is used by some iRMX for Windows drivers run
ning on an AT platform that make ROM-BIOS procedure calls to perform
data transfers. The driver task calls the ROM-BIOS procedure, and does
not run again until that procedure completes the I/O transfer, including all
interrupt processing associated with the transfer. Since the driver polls for
a completion flag to be set by a ROM-BIOS interrupt handler, this tech
nique is really no better than straight polling.

One interrupt per IORS. D MA device controllers can perform an entire data
transfer given the information from the buff and count fields of an IORS.
The driver task sends this information to the device controller, along with
whatever control codes are needed to indicate whether the operation is a
read or a write. When the entire data transfer is complete (either success
fully or not), the device controller signals the processor with an interrupt
request. The driver task then reads status information from the controller
to test whether the operation completed normally or not. Once the inter
rupt is processed, the driver task can process the next IORS when it ar
rives. If the device driver processes I/O requests one at a time using this
technique, the driver task can serve as the interrupt task for the driver.

Extending iRMX: Adding Device Drivers 335

Multiple interrupts per IORS. This type of operation is used for device con
trollers that cannot complete an entire data transfer in a single step. The
situation arises in the case of an unbuffered serial port that generates an
interrupt for each byte of data it transmits or receives, or in the case of a
disk controller, that cannot perform data transfers that cross sector or
cylinder boundaries without additional seek operations.

A device driver for a Universal Asynchronous Receiver-Transmitter
(UART) provides a good example of a driver that must process multiple
interrupts per IORS, and the following discussion of this driver includes
concurrent processing of input and output operations as well. AU ART is a
single integrated circuit that operates as an almost complete device con
troller for an asynchronous serial communication line, such as an RS-232
or RS-422 serial port connected to a device unit such as a modem, terminal,
or another computer. All the UART needs to complete the controller is an
external clock circuit to set the baud rate and some buffers to provide and
buffer the proper transmission voltages.

A simplified diagram of a UART is shown in Figure 9.2. The UART pro
vides two on-chip data buffers, one for transmitting and one for receiving
characters. These buffers typically hold as little as a single byte of data
each. There are UARTs with large data buffers on chip, in which case they
are considered to be buffered controllers, and are typically handled using
the one-interrupt-per-IORS model.

For this discussion, the input buffer consists of a one-byte receiver regis
ter that receives serial data (one bit at a time) from the device unit and a
one-byte input data buffer that can be read in parallel (n bits at a time, with
n usually being 8) by the processor. The arrival of a character from the de
vice unit begins with a voltage transition on the input data wire called a
start bit. Using the baud rate clock for timing, the UART then shifts suc
cessive bits into the receiver register until the register has received the
proper number of data and parity bits. At that point, the receiver register
must receive a pulse opposite in polarity to the start bit, called a stop bit.

If the number of data bits and the value of the parity bit match the
UART's expectations, which are determined by a set of control codes sent
before transmission began, the UART dumps the receiver register into the
data buffer register and generates an interrupt request signal. This signal
goes to the processor through the mediation of a PIC as described in chap
ters 5 and 8. If an error occurs, such as an invalid parity bit value (a parity
error), failure to receive a stop bit at the expected time (a framing error), or
arrival of a character before the previous character has been read from the
input data buffer by the processor (a data overrun error), the UART sets an
appropriate error code value in an on -chip status register before generating
its interrupt request.

The output buffer is just the opposite of the input buffer. It consists of a
one-byte output data buffer that receives parallel data from the processor
and a transmitter register that sends serial data to the terminal, modem, or

336 iRMX Concepts and Features

/ > I Receiver

Device

Unit
I Input Buffer >

I Output Buffer I ~----7~/~------

f-I-- I Trahsmitter

1

Figure 9.2 DART registers.

Status -7
f------I

Command ~-

Processor

remote computer. The transmitting side of the DART generates an inter
rupt request every time the DART is ready to accept a new byte of data
from the processor. The first data byte it receives is immediately loaded
into the transmitter shift register so that the output data buffer can imme
diately receive another byte of output. The processor can monitor the
status of the output data buffer and the transmitter by examining the
status register of the DART, but the interrupt mechanism typically takes
care of this automatically.

The two sides ofthe DART can operate concurrently, and the device can
generate separate interrupt requests for the two sides independently. It is
electrically possible to merge the two interrupt request signals into one, but
the two interrupt requests are generally separate, so there are two interrupt
tasks. (A single task cannot act as an interrupt task for two interrupt
levels.)

A device driver for this type of device controller, then, requires two in
terrupt tasks, and can profitably be constructed with a third driver task for
managing lORSs. Figure 9.3 shows the relationships among the tasks for
such a device driver. The structure in Figure 9.3 could be established by in
itializeIDO as follows:

Step 1. Create the input and output buffer queues. The input buffer holds
input data that arrives from the DART before the driver task processes a
corresponding read lORS. For a terminal connected to a serial port, this
buffer is often called a typeahead buffer because it holds the characters that

Extending iRMX: Adding Device Drivers 337

a user types before they are read by a program:' The output buffer holds
outgoing data produced by the driver task in response to write IORSs, but
which have not yet been output to the UART by the output task. Logically,
this buffer could be eliminated if the driver task served as the output inter
rupt task, but such an arrangement would limit the amount of concurrent
input and output that could occur.

rTfTriiiUiI
-7~-7

Figure 9.3 Device driver tasks for concurrent input and output.

Driver
Task

Not shown in Figure 9.3 is the possibility that the output buffer queue
can be accessed by the input interrupt task for sending flow control charac
ters to the device unit. For example, if the input interrupt task finds that
the input buffer queue is filling up too rapidly, it could send an <xoff>
character to the device unit by inserting the character at the head of the
output buffer queue. The <xoff> character would tell the device unit to
stop sending data to the U ART until the device receives an <xon> charac
ter, which the input interrupt task would place in the output buffer queue
when the input buffer queue has sufficiently emptied. (The ASCII
<xoff> and <xon> characters are <AS> and <AQ>, respectively.) The
point at which the number of characters in the input queue triggers an
<xoff> character is called the high-water mark, and the point at which
the number of characters is low enough to generate an <xon> is called the
low-water mark.

Step 2. Once the input and output buffer queues have been initialized, the
two interrupt tasks can be created. The algorithms for these two tasks are
relatively straightforward. After calling rqsetinterrupt(), the input task
enters an endless loop in which it first calls rqwaitinterrupt(). The task will
block until the input interrupt handler calls rqsignalinterrupt(), which
might be the only thing that procedure does when it is activated in response

4Device drivers for terminals are not normally coded as custom drivers on iRMX. Terminal
drivers, introduced in section 9.4.4, handle the typeahead buffer somewhat differently.

338 iRMX Concepts and Features

to an interrupt request from the UART. The interrupt task then reads the
status byte from the UART to ensure that no error has occurred, and then
reads the contents of the UART's input data buffer, which also clears any
error conditions that have occurred. The interrupt task then adds the char
acter just read to the input buffer queue and returns to the top of its pro
cessing loop, where it calls rqwaitinterrupt() again.

A couple of details should be noted here. First, the interrupt task must
verify that space is available in the input buffer queue before it adds data to
it, and block and/or invoke a flow control mechanism if the queue is full.
Second, if an rq[asJspecial() system call has established signal characters
for the device, the interrupt task should recognize signal characters when
they arrive and process them by sending a unit to the signal character
semaphore and possibly flushing the input buffer queue instead of adding
them to the queue.

The output interrupt task really is simple: it waits for a character to ar
rive in the output buffer queue, writes it to the UART's output data buffer,
calls rqwaitinterrupt() to wait until the UART is ready to receive another
byte of data, and loops back to the top of its processing loop to await the
arrival of more data in the output buffer queue.

Step 3. After initiating steps 1 and 2, initializeIO() can now create the
IORS queue for the driver and the driver task itself. InitializeIO() sets the
status word passed to it to 0 and returns to the file driver that called it,
which will proceed to add IORSs to the IORS queue in response to system
calls by application tasks. The driver task now has the responsibility for
processing IORSs as they arrive at the queue. Essentially, this consists of
copying data from the application's buffer to the output buffer queue for
write IORSs, or copying data from the input buffer queue to the applica
tion's buffer for read IORSs.

iRMX device drivers for serial device controllers provide a number of
ancillary functions that can be added to the operations performed for read
IORS processing. Most of these operations are normally performed by rou
tines in a software module called the Terminal Support Code (TSC), de
scribed in the section on Terminal Drivers. A few of these operations are
described here to illustrate some of the interactions that could take place in
a three-task device driver, such as the one being considered here.

The first operation to be considered is character echoing. For computer
to-computer communication, the input and output data streams are
normally independent of one another, but for communication between a
terminal and a computer, the characters that a user types at the keyboard
must be echoed to the terminal's display device to be visible. The echoing
can also be done by the terminal itself, as is normal in half-duplex opera
tion, where the terminal and computer cannot both transmit data to each
other at the same time. But for a full-duplex connection, the computer
echoes the characters it receives to make them visible.

Extending iAMX: Adding Device Drivers 339

The echoing can be done by either the input interrupt task or the driver
task. The latter is preferable because the characters do not appear on the
user's screen until they are actually read by an application task. The user
thus receives positive acknowledgment that what was typed was actually
read by a program, and can tell exactly which program read them by where
they appear on the screen relative to output prompt messages. Echoing,
like the other operations discussed here, is controlled for iRMX terminal
drivers by a setterminalattributes call to rq[as]speciaIO. If echoing is en
abled for the three-task driver, characters taken from the input buffer
queue are simply copied to the output buffer queue as well as to the appli
cation's buffer.

A second operation is end-of-input recognition. For normal terminal
operation, iRMX drivers recognize <cr>, <If>, and <sub> (Ox lA, ob
tained by typing <A z» as end-of-message characters. Receiving one of
these characters from the input buffer queue completes processing of a
read IORS, even if the number of characters provided in iors. count have
not yet been transferred to the application's buffer. The driver task sets
iors . actual to indicate the number of characters actually transferred.
Most software treats an iors. actual value of 0, obtained when a user
types <A Z> at the beginning of an input line, as an end-of-file condition.
Without end-of-message recognition, the driver task cannot complete pro
cessing of a read IORS until it can obtain iors . count characters from the
input buffer queue. The three characters are treated differently:

• <A Z> is not echoed to the user's screen and is not placed in the applica
tion's buffer. iors. actual is not incremented.

• <cr> is placed in both the output buffer queue for echoing to the screen
and in the application's buffer. It also causes the driver to add a linefeed
character to both the application's buffer and the output buffer queue.
iors. actual is incremented by 2.

• <If> is simply put in the output buffer queue and the application's
buffer. iors. actual is incremented by 1.

Terminal drivers for buffered controllers must also manage special char
acters that trigger end-of-input recognition when they are typed. Special
characters are established by a setterminalattributes call to rq [as] special().

The third operation considered is line editing. Application tasks can
specify one of three line editing modes by calling rq [as] special() with func
tion code 5 (which is set terminal attributes). The line-editing mode is
specified by a two-bit value as follows:

o Not allowed
1 Transparent mode Signal characters received by the interrupt

handler are processed normally, but all other
characters are placed in the application's buffer

340 iRMX Concepts and Features

2 Normal mode

3 Flush mode

unchanged. A read operation completes only
when the number of characters in iors. count
are obtained from the input buffer queue. That
is, <cr>, <If>, and <sub> have no signifi
cance and are placed in the application's buffer
unchanged.
In addition to the message-ending significance
of the three characters mentioned previously, a
<rub> character typed by the user can be used
to delete characters from a line being typed. If
any characters have been placed in the applica
tion's buffer when this character is detected, the
driver task decrements iors. actual by one,
decrements its pointer into the application
buffer (if it is not using iors. actual as an
index into the buffer), and places a character se
quence in the output buffer queue to indicate
that a character has been erased. For a CRT, the
sequence is <bs> <sp> <bs>, which moves the
cursor left one position, writes a blank character,
and moves the cursor left again.
This mode is the same as transparent mode, ex
cept that the read operation completes immedi
ately with however many bytes are available in
the input buffer queue at the time the driver task
starts processing the read IORS.

For all three modes, it is possible that the input buffer queue will contain
more bytes than requested by the read IORS. In this case, the extra charac
ters simply accumulate in the queue until another read request arrives.

There are three more functions that a terminal device driver should
support, which are invoked by application calls to rq[as]speciaIO with
function codes 16, 17, and 18. Code 16 is used by applications to obtain
information about the state of a connection, such as the number of charac
ters present in the typeahead buffer. Code 17 is used to cancel outstanding
operations on a connection (the BIOS calls the driver's cancel/O() routine
for this function rather than queue/OO). Code 18 is used to resume I/O for
a terminal that has been blocked because the user entered a control charac
ter, such as <AS>.

As mentioned earlier, this discussion has not shown how Intel's iRMX
terminal drivers actually work, and it has not shown many of the control
functions that can be used with iRMX terminal drivers. Some of that ma
terial is presented in Section 9.4.4, and a full explanation of all the features
supplied to terminal drivers by the Terminal Support Code is given in the
manual iRMX Device Drivers Programming Concepts. What this section

Extending iRMX: Adding Device Drivers 341

has tried to do is show how a custom device driver could be designed to im
plement the functions described.

Bounded buffer implementation. The three tasks in the program provide a
classic example of the producer-consumer relationships common to con
current processing problems found in systems programming. Before mov
ing on to a discussion of other types of device drivers, this relationship is
examined, along with how standard iRMX programming techniques are
used to implement an efficient solution.

One example of a producer-consumer relationship is provided by the
input interrupt task and the driver task. The input interrupt task produces
information by placing data bytes in the input buffer queue, and the driver
task consumes the information by removing the data bytes from the same
queue at some later time. The queue is known as a bounded buffer simply
because its capacity is bounded by the amount of storage allocated to it
when it is created. (An unbounded buffer would be allowed to grow by allo
cating more memory to it if it fills up.) Each task must obey a simple con
straint: the consumer cannot remove data from the buffer when it is empty,
and the producer cannot add data to the buffer when it is full. A task that is
blocked by its constraint condition must wait until the condition is lifted
before proceeding to carry out its operation. An iRMX solution to this
problem can be implemented using the following data structure.

typedef struct boundedBuffer {
TOKEN critical;
TOKEN occupied;
TOKEN free;
WORD nextPut;
WORD nextGet;
BYTE bufferBytes [bufSize];
}

To create a bounded buffer using this typede f, a task could perform the
following sequence of steps:

1. Create a memory segment the size of this structure to hold the buffer
and its associated variables. The size would be 10 or 14 bytes, depending
on the size of a pointer for the processor's architecture, plus the length
of the bufferBytes array.

2. Set the values of nextPut and nextGet to O. These variables will be
used as indices into the bufferBytes array by the producer and con
sumer tasks, respectively.

3. Create a counting semaphore with an initial value of 0 and a maximum
value equal to bufSize. Place the token in occupied.

4. Create another counting semaphore with both its initial and maximum
values equal to bufSize. Place its token in free.

342 iRMX Concepts and Features

5. If there are to be multiple producer tasks or multiple consumer tasks,
create a region and place its token in critical. The region is used to
control access to next Put and nextGet, but is not needed if each vari
able is manipulated by only one task. The two variables could be pro
tected by two different regions, but accesses to these variables are so
brief a second region is probably not worth the overhead of creating it.

The producer uses the following algorithm to add a data byte to the
bounded buffer:

1. Receive a unit from the free semaphore. If no free space exists in the
buffer, the task will sleep until the consumer removes a data item and
signals that it has done so by sending a unit to this semaphore.

2. If multiple producer tasks might access the buffer, receive control of the
cri tical region.

3. Store a data byte at bufferBytes[nextPut]. Add one, modulo buf
Size, to nextPut. (The array acts as a circular buffer.)

4. Send control of critical if there are multiple producer tasks.

5. Send a unit to the occupied semaphore to indicate the availability of
the data.

Meanwhile, consumer tasks can execute the following algorithm:

1. Receive a unit from the occupied semaphore. If none is available, the
task sleeps until a producer task enters data into the buffer and sends a
unit to the semaphore indicating its availability.

2. If multiple consumer tasks might access the buffer, receive control of
the critical region.

3. Do whatever is desired with bufferBytes[nextGet], such as copy it
into a private variable. Add one, modulo bufSize to nextGet.

4. Send control of the region if there are multiple consumer tasks.

5. Send a unit to the free semaphore to indicate the availability of an un
used slot in the array.

In reviewing the logic of the three-task driver presented in this section, it
should be clear that the automatic synchronization provided by this mech
anism was implicitly relied upon when the algorithms were described, fol
lowed by all three tasks. A very attractive feature of iRMX is the relatively
low amount of overhead this mechanism places on the processor compared
to other operating systems or programming languages that incorporate
synchronization primitives in their semantics.

Extending iRMX: Adding Device Drivers 343

9.4 Common, Random, and Terminal Drivers

If a device controller operates with a single interrupt level, even if it gener
ates multiple interrupts per I/O transfer, a new device driver can usually be
developed for it without coding the procedures and tasks previously out
lined for a custom driver. The iRMX BIOS includes code for a standard in
terrupt task and standard versions of initializeIO(), finishIO(), queueIO(),
and cancelIO() that work for a wide variety of device controllers.

In the discussion that follows, terms such as system initializeIO() refer to
the versions ofthese procedures supplied with the operating system. Three
types of device drivers exist with built-in BIOS support, Common, Ran
dom, and Terminal. The term user driver refers to a Common, Random, or
Terminal driver developed by a user using system-supplied services. The
drivers supplied with iRMX are also Common, Random, and Terminal
drivers that use these same system-supplied services. They are usually
called Intel drivers.

To take advantage of these system-supplied services, the developer
needs only to supply procedures and data structures and link them into the
BIOS. Many techniques are available for adding such code to the operating
system, including dynamically adding them at run time. The remainder of
this chapter introduces the concepts involved in developing a user device
driver and adding it to the BIOS. For full details, consult the iRMX Device
Drivers User's Guide.

All user drivers rely on a data structure called a Device Information Table
(called a DIT here, but not in the iRMX documentation), that is pointed to
by the deviceInfoptr field of a DUIB. The format of a DIT varies for
Common, Random, and Terminal drivers, but in all cases the DIT contains
pointers to user-written procedures called by the system-supplied code to
perform device-specific operations.

A DIT contains information specific to a single device controller. As
Figure 9.4 shows, this information includes pointers to several user-sup
plied routines. For Common and Random drivers, there are five of these
pointers, and for Terminal drivers, there are seven.6 These procedures are
called by the system-supplied parts of the driver whenever it is time to per
form a device-specific operation. In addition, the system supplies utility
and housekeeping procedures that the user-supplied procedures can (utili
ties) or must (housekeeping) call at certain times.

5iRMX II and III, when running on a Multibus II platform, support a form of interaction
between a device controller and a processor known as message passing. The format of a DIT
and much of the material in the remainder of this chapter applies only to interrupt-driven
I/O, not to message passing. Message passing drivers are described in the iRMX Device
Driver Programming Concepts.

System-supplied

routines

initialize/OO

[fini;,o()-]

I queue/OO

[CanCeHO()]

housekeeping

utilities

/
"-

Figure 9.4 User-driver data structures.

DUIB r-7 Device ~
Information

Table (DIT)

I
~

'" /

User-supplied

routines

J
I

I

t
:ii
~
~
i
III a
i
iiJ
III

Extending iRMX: Adding Device Drivers 345

The following are descriptions of two system -supplied utility procedures
that can be called by any device driver. Other procedures are listed later for
the specific types of drivers that call them.

biosgetaddress() takes a far pointer as an argument and returns the cor
responding physical memory address in a doubleword. A second argument
is a pointer to a condition-code word set to a nonzero value if the pointer
contains either an invalid selector or offset. This routine performs the
same function as the rqegetaddress() system call, but executes faster be
cause it is a local procedure and does not involve the overhead ofthe system
call mechanism. Any type of device driver can use this procedure.

gdelay() takes two WORD parameters. The first is the number of 10-
microsecond intervals the driver would like to delay its execution, and the
second is a delay factor that depends on the type of CPU and its clock rate.
Device drivers sometimes need to invoke small time delays between device
controller operations, and this routine incurs less overhead and allows
finer time resolution than possible with rqsleep(). The delay factor for a
particular processor is found in the memory segment that is cataloged in
the root job's object directory using the name RQSYS INFO; the structure of
this segment, including the delay_const field, is given in /rmx386/
inc/ sys info . lit. By including the delay factor as a parameter, this
procedure can work accurately in different processing environments, un
like the similar built-in procedure, time(), available in PLM.

Figure 9.4 shows the relationships among the data structures involved in
developing a user driver. It does not show the logical relationships among
the procedures involved, which are shown in Figure 9.5. The sections that
follow provide a more detailed view of a user driver than the generic model
presented in these two figures.

9.4.1 Common drivers

Common drivers and random drivers are very similar. This section de
scribes common drivers, and the next section tells how random drivers
differ from them.

The procedures that must be supplied by a common driver are called
deviceInit(), deviceFinish(), deviceStart(), deviceStop(), and deviceInter
rupt(). These are generic names for the procedures. The actual access to
them is through pointers in the DIT, and are called as follows:

void
devicelnit (DUIBSTRUCT far •

void far •
WORD far *

duibPtr,
deviceDataPtr,
exceptPtr);

This procedure takes exactly the same arguments as initializeIO() de
scribed earlier, and is in fact called directly from the system version of that

346 iRMX Concepts and Features

initialize/OO)

finish/OO ,
/

I queue/OO) User-supplied

routines

cancel/OO)

housekeeping (

utilities (

Figure 9.5 User-driver logical structure.

procedure with the corresponding parameters passed to this routine. This
routine, however, does not have to create the IORS queue or an interrupt
task for the driver; those operations are done automatically by the system
version of initializeIO().

The deviceDataPtr parameter points to an area of memory that can
be used in any way the driver wishes. The same pointer will be passed to
each of the other procedures in this set when they are called. The size of
this data area is specified in the DIT. When the system initializeIO() pro
cedure is called, it creates a data segment large enough to hold the infor
mation it needs to support the driver (the head of the IORS queue and
other housekeeping information) plus the size of the device storage area
specified in the DIT. The pointer that deviceInit() receives points to the
first location in this segment after the housekeeping information, as shown
in Figure 9.6. This procedure only performs necessary initial programming
of the device controller when the controller is first attached.

void
deviceFinish (DUIBSTRUCT •

void far'
duibPtr,
deviceDataPtr) ;

The preceding procedure is called from the system finishIO() procedure.
This procedure performs any device controller programming needed to
allow the controller to be attached again in the future. All other housekeep-

Extending iRMX: Adding Device Drivers 347

ing operations associated with detaching the device are handled automati
cally by the system finishIO() procedure.

void
deviceStart (IORSSTRUCT far •

DUIBSTRUCT far •
void far •

iorsPtr,
duibPtr,
deviceDataPtr);

The deviceStart() procedure is called when a new IORS must be pro
cessed. Two different conditions can cause this procedure to be called. One
is when the system queueIO() procedure is called, and the IORS queue for
the driver is empty. The other is when the system interrupt task finishes
processing one IORS and there is already another IORS on the IORS
queue for this driver. In either event, the purpose of this routine is to start,
and possibly complete, processing an IORS. For data transfer operations
(reading, writing, and certain special functions), this routine normally
starts the operation and returns to its caller. Completion of these opera
tions is signaled by an interrupt from the device controller. For other oper
ations, this routine completes processing ofthe IORS immediately and re
turns to its caller.

Before returning to the caller, this procedure must set the done field of
the IORS to true (OxFF) or false (any even-numbered value) so the caller
knows whether to leave the IORS on the IORS queue or not.6 If the opera
tion is complete (done is true), this routine must also set the status field
of the IORS to indicate whether the operation completed normally or not.
In this case, the caller removes the IORS from the IORS queue and returns
it to the application's responseMbx.

Housekeeping Information Available for Device Driver

l'

L deviceDataTkn

l'

L deviceDataPtr

Figure 9.6 Relationship between the device data token and the device data pointer
for common and random drivers.

tVfhese conventions for true & false are based on the semantics of the PLM language. C pro
grammers must note the differences from that language's definition of true (any nonzero
value) and false (zero).

348 iRMX Concepts and Features

void
deviceStop (IORSSTRUCT far *

DUIBSTRUCT far *
void far *

iorsPtr,
duibPtr,
deviceDataPtr);

This procedure is called from the system cancel/O() function. Its job is to
do whatever is necessary to stop the device controller from completing an
operation that has been started but has not yet completed. This routine is
important for device controllers that might take a long time to complete
processing of a single IORS function, but is not as important for device
controllers that always operate quickly, in which case the procedure might
simply do nothing and return. Of course, "long time" and "quickly" are rel
ative terms, so the developer must decide whether this routine must actu
ally do anything or not.

void
device Interrupt (IORSSTRUCT far *

DUIBSTRUCT far *
void far *

iorsptr,
duibPtr,
deviceDataPtr);

This procedure is called from the interrupt task created for the driver by
the system initializeIO() procedure. It is called every time an interrupt
from the device controller is recognized by the processor. That is, the sys
tem-supplied interrupt handler calls rqsignalinterrupt() every time it is ac
tivated, and the system-supplied interrupt task calls this procedure every
time its own call to rqwaitinterrupt() completes.

In the case of multiple interrupts per IORS, this procedure sets the done
field of the IORS to false, and does whatever necessary to handle the
present interrupt and prepare itself and the device controller for the next
one. For example, this process could involve reading a byte of data from the
controller, putting it in the application's input buffer, and updating the
actual field of the IORS. If the interrupt marks the completion of
the work for an IORS, because actual reaches count in the IORS, for ex
ample, this routine sets the done field of the IORS to true and sets the
status field of the IORS to the proper completion code (0 means no
error).In this case, the interrupt task will de-queue the IORS and return it
to the application's responseMbx when this procedure returns.

It is possible that a device controller will generate a spurious interrupt
when there are no IORSs on the IORS queue. In this case, this routine will
receive a null pointer for iorsPtr, and it can simply return without doing
anything.

The housekeeping and utility functions that the system supplies for a
Common driver to call are described after Random drivers, since some of
these functions are designed specifically for use by those drivers.

Extending iRMX: Adding Device Drivers 349

9.4.2 Random drivers

Random drivers and Common drivers are implemented using exactly the
same system-supplied routines. They share the same copy ofinitializeIO(),
finishIO(), queueIO(), and cancelIO(). Their interrupt tasks and handlers
execute the same procedures, and the algorithms for calling user-supplied
procedures are also the same. Only two differences exist between the two
types of drivers, and they are discussed next.

First, common drivers have a value of 0 in the numBuffers field of their
DUIB, but Random drivers have a nonzero value. The file driver creates
sector-sized buffers (as many as this field specifies) when the device is at
tached so it can read and write entire disk sectors to service data transfer
requests not aligned with sectors on the disk. If an application task reads or
writes data that completely spans one or more disk sectors, each complete
sector of data is read or written directly to or from the application's buffer
without using the buffers reserved with the numBuffers field. Any data
transfer that does not begin and end on a sector boundary requires the
BIOS to read an entire sector into one of these buffers, transfer the proper
portion of the sector to or from the application's buffer, and, in the case of a
write operation, transfer the sector back to the disk drive. The file driver
layer of the BIOS manages the use of these buffers for this purpose auto
matically.

Second, random drivers must supply a valid pointer in the unit
InfoPtr field ofthe DUIB. This field must point to a data structure that
specifies the track and cylinder sizes of the disk, as well as a count of the
number of times an I/O request should be retried before returning an laRS
with an iosoft code in the uni tStatus field. The system-supplied
queueIO() and interrupt task handler retries automatically. The cylinder
size tells how many sectors there are per cylinder on the disk. If this value is
greater than zero, it tells the file driver when to initiate seek operations on
the disk drive, that is when a read or write is to be performed at a new posi
tion of the read/write heads.

9.4.3 Housekeeping and utility routines for
common and random drivers

The following is a list of the housekeeping and utility procedures provided
by the BIOS for use by Common and Random drivers.

notify(J. This procedure must be called when a driver finds that a disk de
vice unit is off line. For example, the deviceInterrrupt() procedure for a
floppy disk drive would call notify() if it received an interrupt from a drive
because the door to the drive is open. When this happens, the files on the

350 iRMX Concepts and Features

disk can no longer be accessed, and the file driver rejects I/O requests for
the device unit until the door is closed again. Very few (but some) of the
3.5" and 5.25" floppy drives found on PCs generate the door-open signal,
which is why it is necessary to detach and reattach diskette drives man
ually each time a diskette is changed on most PC platforms. The issue does
not arise for the EDOS file driver because it uses the processor's ROM
BIOS to access floppies instead of an iRMX Random or Common driver.
The ROM -BI OS assumes the diskette has been changed every time a drive
is accessed and does not buffer any information from the diskette between
accesses.

seekcomplete(). When the file driver encounters a data transfer that re
quires moving the disk's read/write heads, the file driver first sends an
10RS to the device driver for the seek operation. Once the seek operation
has successfully started, the driver returns the 10RS with its done field set
to true and then proceeds to allow I/O operations for other device units at
tached to the controller. When the device driver determines that the seek
operation has completed, it calls seekcomplete(), and the file driver then
generates the 10RS for the actual data transfer operation. This optimiza
tion is important when multiple disk drives are attached to a single con
troller because it allows concurrent disk operations during seeks, which
may take large fractions of a second to complete.

On the other hand, this optimization is not important when only one
disk unit is connected to a controller because the seek and data transfer
must be performed sequentially on a per-disk unit basis. The two argu
ments passed to this procedure are a byte identifying the unit number of
the drive and a pointer to the user portion ofthe device's data storage area
(the deviceDataPtr passed to the devicelnterrupt() procedure).

The seek operation being considered here refers to the physical move
ment ofthe device unit's read/write head assembly. The rq[asJseek() sys
tem calls do not invoke this sort of seek operation, they simply adjust the
byte offset into a file where the next read or write operation will occur. Only
when rqaread() or rqawrite() is actually called will the file driver determine
if physical movement of the heads is necessary. If multiple drives are at
tached to a single controller and an application issues concurrent read or
write operations for the different drives, the file driver issues all the physi
cal seeks concurrently and initiates the data transfers in the order in which
the seeks complete. Applications that wish to decouple seeks from data
transfers explicitly must use the fSeek function code in a call to rq[asJspe
cial() for the device unit.

beginlongtermopO and endlongtermopO. These two procedures, which
both take a unit number and a deviceDataPtr pointer as arguments, are
used for overlapping long-term operations other than seeks across device
units connected to a single device controller. When a device driver deter-

Extending iRMX: Adding Device Drivers 351

mines that it is to begin a long operation that will not interfere with access
to other device units through the same controller, such as rewinding a tape
drive, it marks the IORS done field to true and calls beginlongtermop().
When the operation completes, the driver calls endlongtermop(), just as it
would call seekcomplete() when a seek operation completes. These calls are
necessary because the file driver cannot automatically determine when
long-term operations other than seeks are being invoked.

getiorsO. When an interrupt marking the end of a long-term operation
occurs, the devicelnterruptO procedure is called with a null pointer for the
first parameter passed to it instead of a pointer to the IORS. If the driver
must access the IORS, to indicate an error condition for example, or per
haps to modify the IORS to indicate a linked operation that is to be per
formed (reading the beginning-of-tape mark after rewinding a tape is the
standard example), the driver can call getiorsO to get the token for the
IORS being processed. This call also takes a unit number and device
DataPtr as its arguments.

9.4.4 Terminal drivers

The general model for a Common or Random driver shown in Figures 9.4
and 9.5 holds for Terminal drivers in general too. The DUIB contains a
pointer to a DIT that points to user-supplied routines called by system
supplied versions of initializeIO(), finishIO(), queueIO(), and cancelIO().
The user-supplied routines in turn call system-supplied housekeeping rou
tines as they execute.

The first difference between Terminal drivers and Common or Random
drivers is that the system-supplied routines pointed to by the DUIB are
different, and have the names tsinitilizeIO(), tsfinishIO(), tsqueueIO(),
and tscancelIO(). The ts prefix stands for terminal support. The second dif
ference is that the DIT for a terminal driver includes pointers to eight dif
ferent user-supplied procedures. The unit information table pointed to by
the DUIB for a Terminal driver also has a different structure from the unit
information table pointed to by the DUIB for a Random driver. It contains
the connection flags, terminal flags, baud rate information, number of
lines on the screen, and any additional static information the driver might
want to maintain for an individual terminal device unit.

Before looking at the user-supplied routines for a Terminal driver, it is
important to understand the steps that terminal data takes as it moves be
tween the terminal device unit and the application task's buffer. Two
buffers are involved in addition to the application's buffer. Starting at the
device unit, the first step is for input characters to be entered into a raw
input buffer as they are typed by the operator. This buffer can reside in the
device controller itself or, using the Custom driver developed earlier as a
model, can be implemented as a bounded buffer for which the input inter-

352 iRMX Concepts and Features

rupt task acts as the producer and the driver task acts as consumer.
The second buffer is the Terminal Support Code (TSC) buffer. The TSC

is the system-supplied code that performs line editing and character echo
ing on terminal input. For both input and output operations, the TSC can
also recognize escape sequences embedded in the stream of characters
passing through its buffers and act on those sequences, either by modifying
the stream of characters or by setting terminal parameters such as the
connection flags or terminal flags.

Appendix B is an example of using TSC escape sequences so that the
TSC can translate ANSI escape sequences into control codes that a non
ANSI terminal will recognize. The ability to use one set of escape
sequences to get the TSC to recognize and act upon another set of escape
sequences illustrates the power of the TSC code, although it is a bit difficult
to master its use. For the Custom driver developed earlier, the buffering,
line editing, and escape sequence processing done by the TSC would all
have to be performed by logic in the driver task of that driver. The set
terminal-attributes function of the rq[aslspecialO system call can be used
to control or circumvent the TSC functions dynamically for Terminal
drivers.

Another item to clarify about Terminal drivers is the difference between
buffered and nonbuffered device controllers. Multibus II-hosted systems
can also use message-passing controllers that operate as buffered device
controllers. The DART presented in the development of a Custom driver
was an example of a nonbuffered controller. It generates a separate inter
rupt for every character read from or written to the controller, and the
characters are written one at a time. It is possible to have a nonbuffered ter
minal controller with multiple DARTs (multiple device units for one de
vice controller). In fact, there are single integrated circuits with multiple
DARTs on the chip.

A buffered controller includes both a DART and on-board memory for
holding input and output characters. A processor on the controller board
reads characters into on -board memory and generates an interrupt request
for the host processor when the buffer fills or when one of a set of special
characters is received. Likewise, the controller's processor manages the
character-by-character transmission from an on-board buffer through the
DART when writing and generates an interrupt request for the host when
it is ready to accept more data for output. The power of a buffered device
controller is the use of dual-ported memory for the controller's buffers.
The host processor reads and writes the controller's buffer memory as if it
were its own memory, normally using block move instructions that require
no program loops to move data between a controller's buffer and a driver's
or application's buffer. Message processing controllers simply use the
Multibus II message-passing mechanism to access the controller's buffer
memory rather than dual-ported memory. Buffered terminal device con
trollers almost always support multiple device units per controller.

Extending IRMX: Adding Device Drivers 353

The following is an overview of the eight user-supplied functions for a
Terminal driver.

void
terminit (TSCDATASTRUCT far * tscDataPtr);

This procedure is called from tsinitializeIO(), but the parameters passed
to that routine are not passed on to this routine as was the case for a Com
mon or Random drivers' deviceI nit() procedure when it was called from in
itializeIO(). Rather, this procedure is passed a pointer to a data structure
that the TSC maintains for the device connection. It is actually a pointer to
a device data segment created by tsinitializeIO() and then returned to the
file driver through the deviceDataPtr parameter passed to that routine.
The format of a TSCDATASTRUCT consists of a header used for all device
units connected to a single device controller and a set of separate data
structures maintained for each of the device units. See the iRMX Device
Drivers User's Guide, or look in /rmxx86/inc/xtsdtn.lit for the
structure definition.

For nonbuffered device controllers, this routine must create a memory
segment for the raw input buffer for the device unit and initialize the equiv
alent of nextGet and nextPut from our bounded buffer example to zero.
The routine must put the token for the segment and the indexes into fields
of the unit-specific part of the TSC data structure. Before returning to
tsinitializeIO(), the routine must set a status word in the header of the TSC
data structure to indicate its completion status, with 0 signifying no error.

void
termfinish (TSCDATASTRUCT far • tscDataPtr);

This routine is called from tsfinishIO() to allow the driver to do any pro
cessing necessary when the last device unit on the controller is detached to
prepare the unit for later reattachment.

void
terminalsetup (TSCUNITSTRUCT far • unitDataPtr);

This procedure is called when a terminal is attached and again if the baud
rate or parity checking values for the terminal change because of a call to
rq[asJspecialO. For buffered device controllers only, the procedure is
called again when the terminal is detached. The routine, as its name im
plies, is used to set up the terminal for operation: it sets the baud rate, sets
parity checking, asserts Data Terminal Ready if there is a modem, and en
abIes reading and writing through the controller. The uni tDataPtr
points to the unit-specific information within the TSC data segment for
the particular terminal unit being attached.

If the baud rate is not specified in the unit information table pointed to

354 iRMX Concepts and Features

by uni tDataPtr, this routine must initiate a baud-rate scan by trying to
read a character from the terminal. The user must type in an uppercase
letter U (ASCII code Ox55). The driver can then determine the baud rate at
which the terminal is operating by reading at a high baud rate and counting
the number of Is in the received character.

One piece of housekeeping must be done for nonbuffered device con
trollers. Since no data has been written yet to the device controller, and
since an output interrupt is generated only when the controller completes
transmission of an output character, the TSC must be told that the termi
nal unit is ready to receive its first output byte whenever an application
tries to write to it. The housekeeping procedure this routine must call is
named xtssetoutputwaiting(), which takes a copy of the uni tDataPtr as
its single argument.

void
termcheck (TSCDATASTRUCT far * tscDataPtr);

This routine is called from the interrupt task for a device every time the
controller generates an interrupt. Interrupts can signal the arrival of new
data at the controller, readiness to accept new output data, arrival of a spe
cial character at a buffered controller (the application can designate up to
four characters as special by calling rq [as J special(), or a change in modem
status.

If the terminal setup function initiated a baud rate scan, this routine
should read the character the user typed in and appropriately set the baud
rate in the unit-specific part of the TSC data segment. In all cases, this rou
tine must update a field in the TSC data segment to indicate the type of in
terrupt that occurred, move data into the raw input buffer for the unit ifthe
interrupt type indicates data is available from a nonbuffered controller,
and return to the interrupt task. What happens next significantly depends
on what type of interrupt this routine indicates occurred.

void
termout (

char
UNITDATASTRUCT far * unitDataPtr,

outputChar);

The TSC calls this routine to output a character to an nonbuffered device
controller. This routine must set the parity bit of outputChar if necessary
before writing it to the device controller. This routine will not be called for
buffered controllers.

void
termutility (UNITDATASTRUCT far * unitDataPtr);

This procedure must be able to perform about a dozen different operations
for a buffered terminal controller. When the TSC calls this procedure, it

Extending iRMX: Adding Device Drivers 355

first sets a function code field in the unit's data structure to indicate which
operation the routine is to perform. Functions include moving data from
the application task's output buffer to the controller's output buffer for the
proper terminal unit, responding to changes in the unit's modem status
and terminal attributes (such as specifying a new set of special characters
to be recognized by the controller or changes in flow control parameters),
and handling canceled input or output operations.

void
terminalanswer (

void
terminalhangup (

UNITDATASTRUCT far • unitDataPtr);

UNITDATASTRUCT far • unitDataPtr);

These two procedures are used only if the device unit is connected to a
modem. The TSC calls terminalanswer() when the terminalcheck() proce
dure sets the interrupt-type code to indicate that the modem reported a
telephone ring indication, and it calls the terminalhangup() procedure
when terminalcheckO sets the interrupt-type code to indicate that the
modem reported carrier loss. Escape sequences can also be embedded in ei
ther the input or output data stream for the terminal to tell the TSC to call
these procedures. In any event, the jobs of these two procedures are to set or
reset the DTR signal for the modem. If there is no modem, these proce
dures do nothing but return to the TSC.

9.5 Adding a Device Driver to the System

Several options are available for adding device drivers to an iRMX system.
The technique used with iRMX for Windows is to develop the driver as
loadable. To use this technique, the developer must write a front-end rou
tine for each device driver to install it while the system is running. This
technique installs the driver on a near-equal footing with the drivers sup
plied with the system. In fact, many of the device drivers supplied with
iRMX for Windows are installed this way.

For other versions of iRMX, there is a tool called the Interactive Configu
ration Utility (lCU) that is used to build a new copy ofthe operating system
tailored to a particular set of requirements. The ICU provides two ways of
incorporating user-written device drivers into a system, one of which is the
same technique used for building the iRMX-supplied drivers themselves.
A characteristic of both of these techniques is that once installed into the
system, a device driver cannot be removed or replaced, as would be desir
able during development of a new device driver.7

7The -u flag for the sysload command, introduced with iRMX for Windows 2.0c allows sys
loaded jobs to be unloaded.

356 iRMX Concepts and Features

The third technique for adding drivers to a system described here allows
drivers to be installed and removed dynamically. This technique is referred
to as the dynamic device driver mechanism to distinguish it from loadable
device drivers. Support for dynamic device drivers must be added to an
iRMX system using one of the previous two techniques.

For iRMX III and iRMX for Windows systems, SoftScope III provides
support for debugging user-developed device drivers (loadable or resident).
For other versions of iRMX, only the dynamic driver mechanism allows
symbolic debugging with SoftScope. The other techniques require the use
of machine-language debugging tools, such as the HI debug command.

9.5.1 Loadable device drivers

To build a loadable device driver, the programmer must create an STL file
(an executable program) that includes the DUIBs, DITs, and UITs the
driver needs, along with the code for all functions the driver uses. All load
able drivers must supply DITs, even Custom drivers for which DITs are
normally optional. The pointer fields in each DUIB used for initialize/O(),
finish/O(), queue/O(), and cancel/O() are all filled in with a constant value
indicating the type of driver being installed (OxFFFFFFFF = Custom,
OxFFFFFFFE = Common, OxFFFFFFFD = Random, OxFFFFFFFC =
Terminal, and OxFFFFFFFB = Message Passing), and the system fills in
the addresses of the actual system supplied routines for each driver type
when the DUIB is installed.

For Custom drivers, the user must supply a DIT that contains far
pointers to the four driver procedures for initialize/O(), et al. This step is
necessary for custom drivers because the user-supplied routines are in a
different code segment from the rest of the BIOS, but the DUIB provides
room only for near (offset-only) pointers.

For non-Custom drivers, the DIT and UIT have the normal formats re
quired for each type of driver, except that each pointer in the tables must be
a far pointer rather than a near pointer. The DIT and UIT must be initial
ized with the proper pointers and data values before a DUIB is installed.
This difference between near and far pointers is one item that was alluded
to previously when it was said that loadable device drivers are installed on
only a "near-equal footing" with drivers configured into the system.

A second difference between loadable device drivers and resident drivers
is that the binder cannot link either the user's code to the system-supplied
utility or housekeeping routines for Common, Random, and Terminal
drivers. Instead, iRMX supplies versions of these routines in a library,
/rrnx386/lib/ldd.lib, bound with the loadable driver's code.

A loadable driver, like normal HI commands, has an initial task that
must initialize any necessary data structures, such as fields in the DIT,
that install the DUIB(s) by calling rqeinstallduibs(), and then suspending
or deleting itself. The initial task must not call rqexitiojobO because that

Extending iRMX: Adding Device Drivers 357

would delete the job and return its memory to the free space manager. The
initial task for loadable device drivers supplied with iRMX all write a log
file in the directory from which they were run to indicate whether they were
loaded successfully or not, and several ofthem accept command-line argu
ments that can specify driver parameters to be initialized before the
DUIBs are installed. The function prototype for rqeinstallduibs() looks
like:

void
rqeinstallduibs (WORD

DUIBTABLESTRUCT far •
void far •
WORD far'

numDUIBs,
duibsPtr,
auxPtr,
exceptPtr) :

A duibstablestruct is simply a contiguous array of DUIBs, with num
DUIBs giving the number of elements in the array. The auxPtr is not used
in present versions of iRMX, and should be coded as a null pointer.

A loadable driver can be loaded two possible ways. The first would be to
run it as a normal HI command. Since the terminal from which the com
mand is issued becomes unusable (the program never exits), the command
must be run as a background command. This approach is really unsatisfac
tory, though, because of the possibility that the job will terminate (because
the user logs off or kills the job from the console) and leave pointers to in
terrupt handlers no longer resident in the system, as well as DUIBs con
taining DIT pointers that no longer point to valid DITs. Rather, loadable
drivers are run using the sysload command. When a command is run from
sysload, it is created as a child of the HI job rather than a child of the user's
terminal job, and never risks being deleted.

9.5.2 Using the interactive
configurl\ltion utility

The interactive configuration utility (leU) is really an editing and file
generating program that allows a user to edit a special-format file called a
system definition file that specifies what features and parameter values are
needed for a customized copy of the operating system. Once the definition
file has been constructed with the leu editor (icu86, icu286, or icu386), the
file generator segment of the leu produces a set of files - assembly lan
guage and PLM code, binder commands, build file information, and submit
files - that will assemble, compile, bind, and build a new copy of iRMX.
The editor works by presenting the user with a sequence of menu screens,
and the user enters values for the various menu items on each screen.

The leu can include a user driver in an iRMX configuration in two
ways. One way is to provide the leu with the pathnames to already-com
piled code of user-written driver procedures and to assembly language
source code for DUIBs, DITs, and UITs used by the driver. The leu in-

358 iRMX Concepts and Features

serts the source code into the assembly language that it generates for all the
data tables of the BIOS and includes the object code in the bind of the
BIOS layer. This technique is fairly easy to use, but it does require the user
to adjust the values coded into the device and deviceUni t fields of his or
her DUIBs after examining the source code in the DUIB file that the ICU
generates. These values must then be recoded every time the system is re
configured if the I/O configuration changes.

A more general way to incorporate a user-written driver is to have the
ICU include the driver in its menu screens, and have it generate the
DUIBs, DITs, and UITs automatically. This is done in two steps. First you
prepare a text file that describes the driver. The file includes a version
number, a driver name, an abbreviation for the driver (used by the ICU to
identify menu screens for this driver), and a driver type identifier. Driver
types allowed are Terminal drivers with 0, 1, or 2 interrupt levels; Common
or Random drivers; Message Passing drivers; and a General (i.e., Custom)
driver type. The file also includes descriptions of any additional DIT or
UIT values the driver requires beyond those always included for the partic
ular driver type being developed.

A program named uds is then run, which generates two new files based
on the user's text file, called a screen-master file and a template file. A listing
file is also generated by uds so the user can verify that the screen master
and template files were generated correctly. When they are correct, they
are merged into a new copy of the icu program by running the icumrg util
ity. When this version of icu is run, the operator can add instances of the
user-written driver using the same type of screen menus as are used for all
the device drivers supplied with iRMX. The only difference is that a user
running the customized version of icu must bring up the UDS Device
Drivers Module screen menu and give the pathname of the file containing
the object code for the user-written device driver procedures.

Device drivers added to iRMX using either of the ICU techniques de
scribed here operate on exactly the same footing as iRMX-supplied resi
dent device drivers. They are bound with the BIOS layer of the system,
loaded with the rest of the operating system, and are in every way indistin
guishable from device drivers supplied by Intel. The fact is, Intel uses ex
actly the same technique to incorporate the drivers it provides with iRMX.

9.5.3 Dynamic device drivers

The third method for adding device drivers to an iRMX system is some
what of a hybrid between the loadable device drivers technique and the
ICU technique. Its advantage is that it allows the user to load a device
driver, test it, remove it, and reload an improved version without reconfig
uring or even rebooting the system. This mechanism is not supplied by
Intel. Rather, it is described in a series of articles in the iRUG newsletter

Extending iRMX: Adding Device Drivers 359

(Vickery, 1991), and the source code to provide support for Custom drivers
using this technique is available from the iRUG library or the author. The
description that follows is for this Custom driver version; if you follow its
logic, you will realize that developing Common, Random, or Terminal ver
sions requires linking dynamic drivers with the ldd . lib library men
tioned previously to provide access to housekeeping and utility procedures.

AD UIB is added to the system either as a loadable driver or by using the
ICU. This DUIB, called dyndrvcu, remains resident in the system at all
times. This driver provides small procedures for initializeIO(), finishIO(),
queueIO(), and canceIIO() that detect the presence or absence of a dynamic
driver when they are called. If no dynamic driver is installed when one of
these procedures is called, the procedure completes the call with an appro
priate error indication, generally simulating reference to a nonexistent
DUIB. If, however, a valid dynamic driver is installed, these routines call
the corresponding device driver functions, passing their input parameters
on unchanged. When the dynamic driver routines return to dyndrvcu's
routines, they return control to the BIOS.

The secret to the success of dyndrvcu is its ability to handle unexpected
termination of a dynamic driver's job. This is accomplished by creating an
operating system extension that instantiates a type manager for a new ob
ject type called a driver interface object. The technique for creating this ex
tension is described in chapter 10. For a dynamic driver to install itself, it
must first make a system call to create an object of type driver interface.
The procedure is qccreatedynamicdriver():

TOKEN
qccreatedynarnicdriver (WORD

WORD
WORD
PROCSTRUCT far •
INTSSTRUCT far •
WORD far'

driverType,
fileDriver,
duibFunc tions,
procArray,
intsArray,
exceptPtr);

The system call takes one code value that signifies the type of the dy
namic driver (Custom, Common, Random, or Terminal), two values for
modifying fields in the DUIB that might be examined by the BIOS (a code
telling which file drivers the device driver supports and a code telling which
IORS functions the driver supports). The call also takes a pointer to an
array of pointers to the dynamic driver's queueIO(), et al. procedures
(procArray), plus a pointer to a data structure that tells how many inter
rupts the driver will use and their levels (intsArray). The system call re
turns a token for a driver interface object owned by the dynamic driver job,
so it will be deleted, along with all the other resources belonging to that job
when it terminates, either normally or abnormally.

There is also a qcdeletedynamicdriver() system call, but dynamic drivers
do not really need to use it. The Nucleus provides a facility, called a dele-

360 iRMX Concepts and Features

tion mailbox, for informing type managers when objects are deleted.
Dyndrvcu includes a task that waits at the deletion mailbox for driver in
terface objects and performs the critical operation of calling rqresetinter
rupt() for each of the interrupt levels indicated by the dynamic driver when
it created its driver interface object. Thus, even if a dynamic driver job is
terminated while the device is attached, dyndrvcu will know about it and
can recover completely. Of courSe, it is still possible f01" a dynamic driver to
crash the system, by failing to return a critical IORS for example, but that
is true of any driver not fully debugged.

9.5.4 Debugging strategies for device drivers

Speaking of debugging, the following are two strategies for debugging de
vice drivers. Debugging these device drivers poses several challenges for
the developer:

• Device drivers execute in the context of the BIOS job of the operating
system. It can be tricky to get output debugging information from them
because they do not have access to a user's logon terminal as an output
medium, as normal HI commands do.

• Device drivers configured into the OS are loaded into memory at the time
the system is initialized, so symbolic information about the driver is not
normally available to SoftScope. It is possible to include the symbolic
information that SoftScope needs for iRMX III systems by editing the
submit file generated by the leU, but it is not possible to provide this in
formation under iRMX for Windows.

• Device driver execution is inherently asynchronous with respect to other
tasks within the system. Drivers that incorporate tasks in their design
pose the problem of tracking the execution of these tasks within the
driver itself as well.

The first strategy is to use some of the special features available with
Soft Scope III, and thus this strategy is available only for iRMX III sys
tems, including iRMX for Windows. The second strategy involves adding
code to the driver so that it outputs its own debugging information. This
technique requires rebuilding the driver each time a bug is encountered for
which there is not yet suitable output information. The one advantage of
getting a driver to output its own debugging information is that the tech
nique can be used with either loada.ble drivers (iRMX III and iRMX for
Windows) or dynamic drivers (any version of iRMX).

SoftScope III provides full support for debugging both loadable and con
figured-in device drivers. While the normal process for using the leu to
configure a version of the OS eliminates all debugging information from
the file that is bootstrap loaded, the bld386 command generated by the leu

Extending iRMX: Adding Device Drivers 361

to build the system can easily be edited manually to change the notype
and nodebug controls to type and debug, respectively. Using the Soft
Scope load command to load the operating system image file that has been
bootstrap loaded and is already running causes SoftScope to extract the
debugging information from the file. All normal debugging techniques are
then available, such as setting breakpoints within the driver, examining its
variables and data structures, etc. SoftScope does not actually try to load
the operating system itself again, it just gathers the symbolic debugging
information. Since the system image file retains the information about the
modules that were combined to build the operating system, SoftScope can
recognize module names and locate the listing file for the driver thus dis
playing source statements when execution enters the driver's code.

The procedure for debugging a driver with Soft Scope includes develop
ing a normal HI command that exercises the driver's functions. In a single
SoftScope session, the user loads this program in the usual way and loads
the debugging information for the driver. The SoftScope task command
can then be used to display the status of all tasks being debugged, both the
driver and the test program's tasks. The task command also tells SoftScope
which listing file to work with, the driver's, or the test program's. (Soft
Scope can have just one listing file open at a time.)

SoftScope III can also be used to debug loadable device drivers. In this
case, the driver is loaded just like any other HI command to be debugged.
The driver code can be debugged just like any HI command, even though
some of the code in the module is executed by the HI command and some is
executed by tasks belonging to the BIOS. The problem with debugging a
loadable device driver from SoftScope is that there is no way to unload a
device driver when it is time to exit SoftScope. The driver job will be a child
of the SoftScope session job and will be deleted when SoftScope termi
nates, requiring a reboot of the system when the debugging session is com
plete. The only reason you need SoftScope III rather than an earlier ver
sion of SoftScope to debug loadable drivers is that loadable drivers are
supported only for iRMX III, and only SoftScope III runs under iRMX III.

For all drivers, dynamic, loadable, and configured-in, care must be taken
when setting breakpoints within interrupt handlers and tasks. To deter
mine when an interrupt handler has been executed, it is necessary to add
code to the handler so that it modifies a static variable (such as an interrupt
counter) that can be examined by SoftScope rather than to try to set a
breakpoint in the handler. Remember, all interrupts are disabled while an
interrupt handler is executing, so SoftScope will not be able to read or write
the operator's console from a breakpoint set within an interrupt handler.

Because loadable and dynamic drivers are installed by the initial task of
an HI command, which normally suspends or deletes itself after it has in
stalled the driver, another possibility exists for debugging these drivers.
This technique is to have the initial task create a mailbox, leaving the

362 iRMX Concepts and Features

token for it in a variable accessible from any procedure within the module.
After installing the driver, the initial task waits at the mailbox for mes
sages. Debugging code is added to the driver procedures to send messages to
this mailbox, which you can do even though the tasks executing the proce
dures belong to the BIOS job. The HI command's initial task then displays
these messages on its standard output device as they arrive.

Chapter

10
Extending iRMX: Adding System

Calls and Type Managers

10.1 Overview

iRMX is a layered operating system. A kernel layer is implemented by the
iRMK kernel on iRMX III and iRMX for Windows systems, which pro
vides primitive task scheduling and communication facilities. The iRMX
Nucleus is built on top of the kernel to provide a robust multitasking oper
ating system, including memory, task, and interrupt management facilities
described in earlier chapters. All layers of iRMX above the Nucleus are
implemented using the primitives supplied by the Nucleus to add new sys
tem calls to the operating system and to implement type managers for new
object types to the system.

This chapter examines the resources provided by the Nucleus for adding
new system calls and type managers to iRMX. Understanding the material
in this chapter can be important in several ways:

• An accurate model of how the operating system is built helps program
mers develop more robust and efficient programs to run on the system.

• The design considerations used to developing a new layer or system call
illuminate issues that real-time and systems programmers face in gen
eral, especially object and concurrency management .

• Developers may wish to add their own layer(s) to iRMX.

Sometimes, a new layer added by a developer is specific to the needs of a
particular application, but more often a new layer is added to provide some
set of utility functions that can be used by any number of applications. The
dynamic device driver mechanism described in chapter 9 is one example of
such a utility. Another example is the implementation ofthe Unix socket()

363

364 iRMX Concepts and Features

mechanism for interprocess communication over a network, described in
Vickery (1990).

The tools and techniques used by developers to add new system calls and
layers to an iRMX system are exactly the same as those used by the iRMX
developers at Intel to add the optional layers, such as the BIOS, to iRMX
itself. Two separate issues are involved in adding a layer to the system, new
system calls and new object types. The iRMX documentation uses some
what different terminology from that used in this chapter, which will be ex
plained as they are used. First, take a look at the following mini-glossary
for some terms used in this chapter:

System call. For this chapter, a system call is a procedure called through a
call gate. Thus, our discussion of adding new system calls to iRMX is fo
cused on iRMX II and iRMX III systems, since iRMX I does not use call
gates. iRMX I system calls are installed as interrupt handlers and invoked
by int machine language instructions. The x86 call gate mechanism was in
troduced in Section 5.4.

Operating system extension. (OSE or extension) An operating system ex
tension is any iRMX object type that is not one of the primitive object
types defined as part ofthe Nucleus. Most ofthe primitive Nucleus object
types were discussed in chapter 6. They are jobs, tasks, mailboxes, sema
phores, regions, memory segments, and buffer pools. OSE is also the name
of another primitive object type provided by the Nucleus, which is used to
implement new extensions.

Several iRMX layers of the operating system provide system calls but
not OSEs. These include the Application Loader (AL), the Human Inter
face (HI), and the Universal Development Interface (UDI). Thus, system
calls and OSEs are independent entities.

Type manager. A type manager is a combination of an OSE and a set of
system calls for creating, manipulating, and deleting instances of an OSE
object type. Although it is common to add system calls to iRMX without
adding an OSE, the reverse is much less common. For this chapter, assume
that every OSE is accompanied by at least two system calls, one to create
instances of the new object type and another to delete them.

Composite object. A composite object is an instance of an object type. To
illustrate, "I/O Job" is the name of an OSE managed by the BIOS, but a
particular I/O job created to run a single HI command, for example, is a
composite object - an instance of that object type. Here, the word compos
ite indicates that all objects of user-defined types are composed of other
objects.

Extending iRMX: Adding System Calls and Type Managers 365

Component object. Each composite object consists of a set (possibly the
empty set) of other objects. All of these other objects are called component
objects, which can be either primitive objects or other composite objects.

10.2 A Sample Type Manager

To provide a framework for this chapter, sample code is presented that im
plements part of a type manager for a new object type, the bounded buffer
introduced in section 9.3.4. The iRMX documentation also presents a type
manager for this object type (called a ring buffer) in the Nucleus User's
Guide or iRMX Nucleus Programming Concepts manual (volume 3 in the
iRMX for Windows documentation set), depending on the OS version.

The material presented here omits some of the system calls the type
manager would supply (the ones that actually add bytes to the buffer and
remove them), but includes more detailed descriptions of the assembly
language interfaces that must be used to implement system calls. Bounded
buffers could be called the koan of systems programming. Like the hello
world program that Kernighan and Ritchie (1978) used to introduce the C
language, successful implementation demonstrates basic mastery of the
situation.

The job that owns an OSE object and the memory segments containing
the procedures that implement system calls must exist as long as there are
applications that own composite objects of the OSE type or that might in
voke the system calls. This means that a user-supplied layer is normally ei
ther loaded by sysload when the system is initialized or is configured into
the system using the ICU. The Nucleus enforces the rule that a job that
owns an OSE cannot be deleted, and an OSE cannot be deleted as long as
there are composite objects of that OSE's type in existence. The Nucleus
cannot prevent a system call's memory from being released to the free
space manager, however.l Thus, it is not wise to use HI commands to run
jobs that create OSEs or system calls because such jobs could either be
come impossible to delete if there is a problem deleting the extension or a
composite object or be deleted accidentally, leaving behind call gates that
point to free memory rather than system call procedures.

IThe issue is efficiency. The Nucleus could keep a list of all the selectors that appear in in
terrupt or call gates and refuse to delete segments that appear on this list. The security that
would accrue to systems being used to develop user-written device drivers or system calls is
outweighed by the unnecessary overhead that each call to rqdeletesegment() would incur for
the vast majority of code for which the issue is not a problem. In contrast, the system must
maintain a separate list of composite objects for each aSE type for normal Nucleus opera
tions anyway, so checking if this list is empty or not during rqdeletejob() processing is trivial.

366 iRMX Concepts and Features

Of course, these two conditions are most likely to occur when a new OSE
or system call is being debugged, which is exactly the time when it would be
most convenient to load and test the code as an HI command. Currently
you cannot debug a program symbolically if it is loaded with sysload, and
developing either configured-in code or sysload-ed code requires rebooting
the operating system every time a change is made to the code. Accordingly,
in the spirit of the dynamic device driver mechanism discussed in section
9.5.3 to deal with similar considerations for user-written device drivers,
this chapter demonstrates the structure of an HI command that could be
used to develop an OSE and some system calls. Changes that would be
made when the code is ready to be configured into the system or loaded by
sysload are also presented.

The sample code consists of four source modules bound into one HI
command. The first module (bbmanage), which is given in equivalent and
interchangeable PLM and C versions in Figures 10.1 and 10.3, can be com
piled to run anyone of three ways. The PLM compiler control set or the
C compiler control def ine can be used to set one of the symbols first
level, sysload, or Hlcmd to select the environment for which the mod
ule is to be compiled. Exactly one of these three symbols should be defined
when this module is compiled.

Figure 10.1 PLM code for an HI command to install and test two user-written system calls,
qccreateboundedbutfer() and qcdeleteboundedbu/1er().

/**> BBMANAGE.PLM <******************.******* •• *** ••• **** •• **********
* Bounded Buffer Type Manager
* This module includes a main program that creates an os extension
* for Bounded Buffer objects and establishes call gates 440 and 441
* as the slots for calling qccreateboundedbuffer() and
* qcdeleteboundedbuffer().
.****** •• *.*************/

$compact (exports bbcreate. bbdelete. bbdeletetask)
bbmanage: DO;
$include (bbmanage.ext)

DECLARE BB_TYPE LITERALLY 'SOOOh';
DECLARE createGate LITERALLY '440';
DECLARE deleteGate LITERALLY '441';

/*
* The system call procedures
*/

bbCreate: PROCEDURE (bbSize. exceptPtr.
application_eip. application_ebp) EXTERNAL;

DECLARE bbSize WORD_32.
exceptPtr POINTER.
application_eip WORD_32.
application_ebp WORD_32;

END bbCreate;

bbDelete: PROCEDURE (thisBB. exceptPtr.
application_eip. application_ebp) EXTERNAL;

Extending iRMX: Adding System Calls and Type Managers 367

Figure 10.1 (Continued)

DECLARE thisBB
exceptPtr
application_eip
application_ebp

END bboelete;

/*
* The interface procedures
*/

TOKEN.
POINTER.
WORD_no
WORD_32;

qccreateboundedbuffer: PROCEDURE (bbSize. exceptPtr) TOKEN EXTERNAL;
DECLARE

bbSize
exceptPtr POINTER;

END qccreateboundedbuffer;
qcdeleteboundedbuffer: PROCEDURE (bbTkn. exceptPtr) EXTERNAL;
DECLARE

bbTkn TOKEN.
exceptPtr POINTER;

END qcdeleteboundedbuffer;

/*
* Static Variables and Constants
*/

DECLARE
hexTab(16)
coConn
bbDelTsk

BYTE DATA ('0123456789ABCDEF').
TOKEN.
TOKEN.

bbDelMbx TOKEN PUBLIC. /* Global used by bbDelete()
*/

bbOSE TOKEN PUBLIC; /* Global used by system calls
*/

$if HIcmd OR sysload
1*·**--***--*-*---***_·*_·· __ ··*-_·_-*-*_·_*·_·**-_··- ******************

*
* Utility Procedure to Convert a Hexadecimal Word
* to 4 ASCII Characters
*
**/

word2hex: PROCEDURE (value. where);
DECLARE

value WORD_16.
i INTEGER.
where POINTER.
xxxx BASED where (1) BYTE;

DO i = 3 TO 0 BY -1;
xxxx(i) = hextab(value AND OFh);
value = shr (value. 4);

END;
END word2hex;

/***

*
* Check Status utility
*
**/

388 iAMX ConCepts and Features

Figure 10.1 (Continued)

checkStatus: PROCEDURE (a_token, status_in, msgPtr);
DECLARE

a_token
status_in
msgptr
message based msgPtr(l)
valMess (6)
actual
Status

valMess(4) = ODh;
valMess(S) = OAh;

TOKEN,
WORD_l6,
POINTER,
BYTE,
BYTE,
WORD_32,
WORD_16;

actual = rqswritemove (coConn, @message(l), message (0) , @Status);
IF (status_in = 0) THEN DO;

actual = rqswritemove (coConn, @(' succeeded. Token = '), 21,
@Status) ;

CALL word2hex (WORD (a_token), @valMess);
END;

ELSE 00;
actual = rqswritemove (coConn, @(' failed. Status

@Status);
CALL word2hex (status_in, @valMess);
END;

actual

RETURN;

rqswritemove (coConn, @valMess, 6, @Status);

END checkStatus;
Sendif

'), 19,

/**************************** ••••• ******.**** •• *** •••• *.******.* ••••••••

* Procedure Executed by the Deletion Task
*
******************* •••• *.**** •••••••• ***.*.*.* ••• ***************** •••• /

bbDeleteTask: PROCEDURE PUBLIC;

DECLARE

/*

*
*/

thisBB TOKEN,
tokenList STRUCTURE (

numSlots WORD_16,
numUsed WORD_16,
tokens (S) TOKEN) ,

Status

Handle exceptions in-line

ehStruct.handler = NIL;
ehStruct.mode = 0;
CALL rqsetexceptionhandler (@ehStruct, @Status);

/* Wait at the deletion mailbox for BB objects to delete;
* delete the composite and, if possible, its components.

*/
DO WHILE 1;

thisBB = rqreceivemessage (bbDelMbx, OFFFFh, NIL, @Status);

Extending iRMX: Adding System Calls and Type Managers 369

Figure 10.1 (Continued)

/* Get the tokens for the component objects

*/
tokenList.numSlots = 5;
CALL rqinspectcomposite (bbOSE, thisBB, @tokenList, @Status);

/* Delete the composite to make the BB unavailable to applications
* and to unblock any task that called rqdeletejob() or
* rqdeleteextension().

*/
CALL rqdeletecomposite (bbOSE, thisBB, @Status);

/* Delete the region first. If there is a task using this BB, this

call will automatically block until the region is released.
*
*/

/*

*
*

CALL rqdeleteregion (tokenList.tokens(4) , @Status);

Now delete the other component objects.
Any or all of these calls may fail with no consequence.

*/
CALL rqdeletesegment (tokenList.tokens(O) , @Status);
CALL rqdeletesemaphore (tokenList.tokens(l) , @Status);
CALL rqdeletesemaphore (tokenList.tokens(2) , @Status);
CALL rqdeletesegment (tokenList.tokens(3) , @Status);

END;

END bbDeleteTask;

/***

*
Initial Task

***/

DECLARE
ehStruct STRUCTURE (

handler POINTER,
mode BYTE) ,

thisJob TOKEN,
a_Buf TOKEN,
b_Buf TOKEN,
actual WORD_32,
Status WORD_16;

/* Handle exceptions in-line

*/
ehStruct.handler = NIL;
ehStruct.mode = 0;
CALL rqsetexceptionhandler (@ehStruct, @Status);

370 iRMX Concepts and Features

Figure 10.1 (Continued)

/*

*
Create connection for writing messages

*/
$if HIcmd

cOConn rqsattachfile (@(4,':CI:'), @Status);
$endif
$if sysload

coConn = rqscreatefile (@(6,'bb.log'), @Status);
$endif
$if sysload or HIcmd

CALL rqsopen (coConn, 3, 0, @Status);
$endif
$if sysload

thisJob = rqgettasktokens (1, @Status);
CALL checkStatus (thisJob, Status, @(17, 'Start sysload job'»;

$endif

/*

*
*

Create the OS Extension.
Spawn a task to monitor the deletion mailbox.

*/
bbDelMbx = rqcreatemailbox (0, @Status);

$if HIcmd
CALL checkStatus (bbDelMbx, Status, @(23, 'Create deletion mailbox'»;

$endif

bbOSE rqcreateextension (BB_TYPE, bbDelMbx, @Status);

$if HIcmd OR sysload
CALL checkStatus (bbOSE, Status, @(16,'Create extension'»;

$endif
$if HIcmd

bbDelTsk = rqcreatetask (0, @bbDeleteTask, selectorof (@hexTab),
NIL, 8192, 0, @Status);

CALL checkStatus (bbDelTsk, Status, @(20,'Create deletion task'»;
$endif

/*

*
*

Install the type manager procedures.
Make sure slots are free first.

*/

/*

*

CALL rqesetosextension (createGate, NIL, @Status);
CALL rqesetosextension (deleteGate, NIL, @Status);
CALL rqesetosextension (createGate, @bbCreate, @Status);
CALL rqesetosextension (deleteGate, @bbDelete, @Status);

Type Manager is set up.

*/

$it first level
/* Signal the NUcleus and become the deletion task
* for the type manager.
*
*/

CALL rqendinittask;
CALL bbDeleteTask;

Extending iRMX: Adding System Calls and Type Managers 371

Figure 10.1 (Continued)

$endif

$if sysload OR HIcmd
Issue set up message • ..

*/
actual = rqswritemove (coConn.

@('Bounded Buffer Manager is Set Up', ODh, OAh) , 34, @Status);
$endif

$if sysload
/* Close the log file and become the deletion task

for the type manager.
*
*/

CALL rqsdeleteconnection (coConn, @Status);
CALL bbDeleteTask;

$endif

$it HIcmd
/* Test TYPe Manager functionality.
* Create two bounded buffers, delete one,
* and clean everything up so the HI command can exit.
*
*/

a_Buf = qccreateboundedbuffer (5280, @Status);
CALL checkStatus (a_Buf, Status, @(23,'Create a bounded buffer'»;
b_Buf = qccreateboundedbuffer (5280, @Status);
CALL checkStatus (b_Buf, Status, @(23,'Create a bounded buffer'»;

CALL qcdeleteboundedbuffer (b_buf, @Status);
CALL checkStatus (b_Buf, Status, @(23, 'Delete a bounded buffer'»;
CALL rqdeleteextension (bbOSE, @Status);
CALL checkStatus (bbOSE, Status, @(23, 'Delete the as extension'»;

CALL rqesetosextension (createGate, NIL, @Status);
CALL rqesetosextension (deleteGate, NIL, @Status);
CALL rqexitiojob (0, NIL, @Status);

$endif

END bbmanage;

If f irstlevel is defined, the module produces code for a first-level job,
suitable for inclusion in a configuration ofiRMX generated by the ICU, in
troduced in section 9.5.2. Jobs configured into the system using the ICU
can be run either as first-level jobs (immediate children of the root job) or
as child jobs of the EIOS. The difference between the two is that first-level
jobs are not I/O jobs, so they cannot make EIOS system calls, but child jobs
ofthe EIOS are I/O jobs, although they do not have a default prefix (default
directory, : $:).

If firstlevel is defined, no I/O code is compiled, and the program
calls rqendinittask() after it has set up the bounded buffer type manager.

372 iRMX Concepts and Features

This system call is used during system initialization to signal the Nucleus
each time a first-level job finishes initialization so that the next first-level
job in sequence can be created and initialized. Note that no error exists in
the code in Figures 10.1 and 10.3; rqendinittask() is the one iRMX system
call that does not take any arguments.

If sys load is defined, the code will be suitable for running from asysload
command. In this case, the job is run as a child of the HI and is allowed to per
form I/O. The convention is that jobs run from sysload create a log file to in
dicate they have been loaded and initialized successfully, so code to do so is
compiled if this option is chosen. The default directory for jobs run from sys
load is : config:, so the log file, bb . log, appears in that directory.2

If Hlcmd is defined, the program can run as an HI command from the
command line as a background job or under SoftScope. The code outputs
status messages as it initializes, and exercises the OSEbycreatinga bounded
buffer and then deleting it. Finally, it deletes the OSE and the system calls so
the HI command can terminate.

An alternative design for the program is to make the code that exercises
the OSE a separate command. In this case, it is necessary to implement a
mechanism for removing the OSE cleanly so it could be re-run after any
changes are added during development. The present design was chosen be
cause the OSE is automatically deleted as soon as testing completes.

If none of these three symbols is defined when the code is compiled, you
will get a program suitable for running from sysload, but which generates
no log file.

As a type manager, the initial task for this program creates the OSE for
bounded buffer objects and installs two new system calls for creating and
deleting bounded buffers. Looking at the code in Figures 10.1 and 10.3, you
will see that ifHlcmd is defined, the initial task also creates a second task
that executes a procedure to monitor a mailbox, called the deletion mailbox.
IfHlcmd is not defined, the initial task executes this procedure itself. The
role of this procedure is discussed in the section on deletion mailboxes,
section 10.4.3. At this point, however, note that this procedure is normally
executed by the job's initial task, but a separate task is needed to execute
this procedure when the initial task is being used to exercise the new sys
tem calls.

The second source module (bbsyscal) is also shown in equivalent and
interchangeable PLM and C versions in Figures 10.2 and 10.4, respec
tively. This module contains the actual system call procedures that create
and delete bounded buffer objects. Procedures for the other system calls
the type manager is to supply (to put bytes into a bounded buffer and to get
bytes out) would go in this module as well. Considerable care must be used

2Most jobs loaded by sysload specify an explicit pathname for the log file in case the default
directory changes in the future.

Extending iRMX: Adding System Calls and Type Managers 373

Figure 10.2 PLM procedures to implement the qccreateboundedbufferO and qcdeleteboun·
dedbufferO system calls.

1**> BBSYSCAL. PLM <*** *** *** *** * ** *** *-.- ** * * * * * * * *** * * * * * * * * * ********
• Bounded Buffer System Call Procedures

This module contains the procedures that implement type manager
* functions for the Bounded Buffer object type.
*
* A bounded buffer object is constructed from the following objects:
*

*

o - A segment containing the BB structure:
bufSize DWORD
nextGet DWORD
nextPut DWORD

* 1 - A counting semaphore containing one unit for each occupied slot
* 2 - A counting semaphore containing one unit for each free slot
* 3 - A segment to hold the buffer itself .

4 - A region for controlling concurrent accesses to the BB
*
* Tokens for these objects occupy tokenList.tokens positions zero
* through four, in sequence.
** ***************1

$compact (exports bbcreate, bbdelete)

bbsyscal: DO;

$include (bbsyscal.ext)
$include (:inc:error.lit)

DECLARE

/*

bbOSE
bbDelMbx

TOKEN EXTERNAL,
TOKEN EXTERNAL;

System Call exit procedures
*/

/* Extension Object */
/* Deletion Mailbox */

sys_exit_n: PROCEDURE EXTERNAL;
END sys_exit_n;

/* No return value */

sys_exit_v: PROCEDURE (value) EXTERNAL; /* Return 1-4 bytes */
DECLARE value WORD_16;
END sys_exit_v;

sys_exit_e: PROCEDURE (code, parameterNum) EXTERNAL; /* Error return
*/
DECLARE (code, parameterNum) WORD_16;
END sys_exit_e;

/***

*

*
System call procedure for qccreatedboundedbuffer()
Create a Bounded Buffer object

**/

bbCreate: PROCEDURE (bbSize, exceptPtr,
application_eip, application_ebp) REENTRANT PUBLIC;

DECLARE bbSize WORD_32,

exceptPtr POINTER,
application_eip WORD_32,

374 iRMX Concepts and Features

Figure 10.2 (Continued)

application_ebp WORD_32;

DECLARE tokenList STRUCTURE (
numSlots WORD_l6.
numUsed WORD_l6.
tokens (5) TOKEN);

DECLARE

/*
*

Get

bbStructTok TOKEN.
BBstruct based bbStructTok STRUCTURE (

bufSize WORD_32.
nextGet WORD_32.
nextPut WORD_32).

callersEH STRUCTURE (

handler POINTER.
mode BYTE) •

savedMode BYTE.
thisBB TOKEN.

Status WORD_l6.
StatusO WORD_l6.
Statusl WORD_l6.
Status2 WORD_l6.
Status3 WORD_l6.
Status4 WORD_l6.
Status5 WORD_l6;

the caller's exception handling mode and change to in-line

*/
CALL rqgetexceptionhandler (@callersEH. @Status);
savedMode = callersEH.mode;
callersEH.mode = 0;
CALL rqsetexceptionhandler (@callersEH. @Status);

/*
*

Create the objects that will make up the BB object

*/

/*
*
*

tokenList.numSlots = 5;
tokenList.numUsed = 5;
tokenList.tokens(O) rqcreatesegment (size(BBstruct). @StatusO);
tokenList.tokens(l) rqcreatesemaphore (0. bbSize. O. @Statusl);
tokenList.tokens(2) rqcreatesemaphore (bbSize. bbSize. O. @Status2);
tokenList.tokens(3) rqcreatesegment (bbSize. @Status3);
tokenList.tokens(4) rqcreateregion (0. @Status4);
thisBB = rqcreatecomposite (bbOSE. @tokenList. @Status5);

If any part of the initialization failed. delete all objects.
set the appropriate condition code. and return to the caller.

*/
IF (StatusO OR Statusl OR Status2 OR Status3 OR Status4
OR Status5) <> E$OK THEN DO;

CALL rqdeletesegment (tokenList.tokens(O). @Status);
CALL rqdeletesemaphore (tokenList.tokens(l). @Status);
CALL rqdeletesemaphore (tokenList.tokens(2). @Status);
CALL rqdeletesegment (tokenList.tokens(3). @Status);

Extending iAMX: Adding System Calls and Type Managers 375

Figure 10.2 (Continued)

CALL rqdeleteregion (tokenList.tokens(4) , @Status);
CALL rqdeletecomposite (bbOSE, thisBB, @Status);

/*

*
Restore calling task's exception handling mode and return

*/
callersEH.mode = savedMode;
CALL rqsetexceptionhandler (@callersEH, @Status);

IF (StatusO = E$MEM) OR (Status3 = E$MEM) THEN
CALL sys_exit_e (E$MEM, 1);

IF (StatusO E$LIMIT) OR (Statusl
(Status2 = E$LIMIT) OR (Status3
(Status4 = E$LIMIT) OR (StatusS

THEN CALL sys_exit_e (E$LIMIT, 0);

E$LIMIT) OR
E$LIMIT) OR
E$LIMIT)

ELSE CALL sys_exit_e (E$CONTEXT, 0); /* Default exception code */

END; /* if failure */

/* Set initial values for the housekeeping variables.

*/

/*

*
*

bbStructTok = tokenList.tokens(O);
BBstruct.bufSize bbSize;
BBstruct.nextGet 0;
BBstruct.nextPut 0;

Restore calling task's exception handling mode
and return the composite

*/
callersEH.mode = savedMode;
CALL rqsetexceptionhandler (@callersEH, @Status);

CALL sys_exit_v (WORD(thisBB»;
END bbCreate;

/**

*
*
*

System call procedure for qcdeleteboundedbuffer()
Delete a Bounded Buffer object.

*
***/

bbDelete:

DECLARE

PROCEDURE (thisBB, exceptPtr,
application_eip, applicatio~ebp) REENTRANT PUBLIC;

thisBB
exceptPtr
application_eip
applicatio~ebp

callersEH
handler
mode

savedMode

TOKEN,
POINTER,
WORD_32,
WORD_32,

STRUCTURE
POINTER,
BYTE),

BYTE,

378 iRMX ConceP'S and Features

figure 10.2 (Continued)

(Status, Status1)

/*

*
This call sends the token for the buffer to be deleted to the
deletio~ mailbox. ..

*/
/* Get the caller's exception handling mode and change to in-line
*
*/

CALL rqgetexceptionhandler (@callersEH, @Status);
savedMode = callersEH.mode;
callersEH.mode = 0;.
CALL rqsetexceptionhandler (@callersEH, @Status);

CALL rqsendmessage (bbDelMbx, thisBB, selectorof(NIL) , @Status1);

/*

*
Restore calling task's exception handling mode and return

*/
callersEH.mode = savedMode;
CALL rqsetexceptionhandler (@callersEH, @Status);

IF Statusl = E$OK THEN CALL sys_exit~;
CALL sys_exit_e (E$CONTEXT, 0);

END bbDelete;

END bbsyscal;

FIgUre 10.3 C code equivalent to Fig. 10.1.

/**> BBMANAGE.C <*~*************************~*************************

* Bounded Buffer Type Manager
* This module includes a main program that creates an os extension
* for Bounded Buffer objects and establishes call gates 440 and 441
* as the slots fOr calling qccreateboundedbuffer() and
* qcdeleteboundedbuffer(). .
******************.****~**~*************************~* ****************/

#include <stdio.h>
#include <fcntl.h>
#include <rmxc.h>
#incltide <common.h>
#include "boundbuf.h"

#pragma noalign (bbTOKENLISTSTRUCT)
typedef struct {

WORD numSlots, numUsed;
TOKEN tokens[5);
} bbTOKENLISTSTRUCT;

#define BB_TYPE OxBOOO
#define createGate 440
#define deleteGate 441

extern void far /* The system call procedures */

Extending iRMX: Adding System Calls and Type Managers 377

Figure 10.3 (Continued)
bbCreate ();
extern void far
bbDelete ();

static TOKEN
static FILE

TOKEN
TOKEN

#if HIcmd I I sysload

bbDelTsk;
*msgOut;

bbDelMbx; /* Global
bbOSE; /* Global

used by bbDelete() */
used by system calls */

/************** •• **.****.*******

*
* Check Status utility
*
. •• ****.*.********** •• **.*/

void
checkStatus (TOKEN a_token. WORD status. char *message) {

fprintf (msgOut. "%s". message);
if (status == E_OK)

fprintf (msgOut. "succeeded. Token = %4X\n". (WORD) a_token);
else fprintf (msgOut. "failed. Status = %4X\n". status);
}

#endif

/***

Procedure Executed by the Deletion Task

.** •• **************.**.* •• ****.*************.*******************/

void far
bbDeleteTask (void)

/* Task to monitor deletion mailbox */

TOKEN
bbTOKENLISTSTRUCT
EXCEPTIONSTRUCT
WORD

thisBB;
tokenList;
ehStruct;
Status;

/*

*
Handle exceptions in-line

*/

/*
*
*

ehStruct.offset = 0;
ehStruct.base = (selector) NULL;
ehStruct.exceptionmode = 0;
rqsetexceptionhandler (&ehStruct. &Status);

Wait at the deletion mailbox for BB objects to delete;
delete the composite and. if possible. its components.

*/
for (;;)

thisBB rqreceivemessage (bbDelMbx. OxFFFF. NULL. &Status);

/* Get the tokens for the component objects

*/
tokenList.numSlots = 5;

378 iRMX Concepts and Feature.

FIgunt 10.3 (Continued)

rqinspectcomposite (bbOSE. thisBB.

/*

*
*
*
*/

(TOKENLISTSTRUCT far *) 'tokenList. 'Status);

Delete the composite to make the BB unavailable to applications
and to unblock any task that called rqdeletejob() or
rqdeleteextension() .

rqdeletecomposite (bbOSE. thisBB. 'Status);

/*

*
*
*/

Delete the region first. If there is a task using this BB. this
call will automatically block until the region is released.

rqdeleteregion (tokenList.tokens[41. 'Status);

/*

*
*
*/

Now delete the other component objects.
Any or all of these calls may fail with no consequence.

rqdeletesegment (tokenList.tokens[Ol. 'Status);
rqdeletesemaphore (tokenList.tokens[11. 'Status);
rqdeletesemaphore (tokenList.tokens[21. &Status);
rqdeletesegment (tokenList.tokens[31. &Status);
}

/***

*
* Initial Task
*
.*************************/

int
main (int argc. char * argv[l)

EXCEPTIONSTRUCT ehStruct;
TOKEN iLBUf. b.J3uf;
WORD Status:

/*

*
Handle exceptions in-line

*/
ehStruct.offset = 0:
ehStruct.base = (selector) NULL:
ebStruct.exceptionmode = 0:
rqsetexceptionhandler (&ebStruct. &Status);

lifdef sysload
/* Redirect standard output for sysload-ed jobs
*
*/

msgOut = fopen ("bb.log". "w"):
fprintf (msgOut, "Tbis is job '4X\n", rqgettasktokens (I, &Status));

lelif HIcmci
msgOut = stdout:

lendif

/* Create tbe OS Extension.

Extending iRMX: Adding System Calls and Type Managers 379

Figure 10.3 (Continued)

* Spawn a task to monitor the deletion mailbox if necessary.
*
*/
bbDelMbx = rqcreatemailbox (FIFO_QUEUING. &Status);

lifdef HIcmd
checkStatus (bbDelMbx. Status. ·Create deletion mailbox");

iendif

bbOSE rqcreateextension (BB_TYPE. bbDelMbx. &Status);

lif HIcmd II sysload
checkStatus (bbOSE. Status. ·Create extension");

iendif
iifdef HIcmd

bbDelTsk = rqcreatetask (0. &bbDeleteTask. (selector) &bbDelMbx.
NULL, 8192. O. &Status);

checkStatus (bbDelTsk. Status. ·Create deletion task");
lendif

/*

*
*

Install the type manager procedures.
Make sure slots are free first.

*/

/*

*

rqesetosextension (createGate. NULL. &Status);
rqesetosextension (deleteGate. NULL. &Status);
rqesetosextension (createGate. &bbCreate. &Status);
rqesetosextension (deleteGate. &bbDelete. &Status);

Type Manager is set up.

*/
iif sysload I I HIcmd

fprintf(msgOut. "Bounded Buffer Manager is Set Up\n");
ielif first level
/* First level jobs signal the Nucleus and become the deletion task
*
*/
rqendinittask();
bbDeleteTask();

iendif

iif sysload
/* Sysloaded commands must delete the log file connection.
* then become the deletion task
*
*/
fclose (msgOut);
bbDeleteTask();

iendif

iif HIcmd
/*

*
*
*/

Test TYPe Manager functionality.
Create two bounded buffers. delete one.
and clean everything up so the HI command can exit.

a_Buf = qccreateboundedbuffer (5280. &Status);

380 iRMX Conc.pts and F.atu

figure 10.3 (Continued)

checkStatus (a_Buf. Status. 'Create a bounded buffer");
b_Buf = qccreateboundedbuffer (5280. &Status);
checkStatus (b_Buf. Status. "Create a bounded buffer");

qcdeleteboundedbuffer (b_Buf. &Status);
checkStatus (b_Buf. Status. "Delete a bounded buffer");
rqdeleteextension (bbOSE. &Status);
checkStatus (bbOSE. Status. "Delete the OS extension");

rqesetosextension (createGate. NULL. &Status);
rqesetosextension (deleteGate. NULL, &Status);
rqexitiojob (0, NULL. &Status);

#endif

bbDeleteTask () ;

Figure 10.4 C functions equivalent to Fig. 10.2.
/**> BBSYSCAL.C <**

* Bounded Buffer System Call Procedures
* This module contains the procedures that implement type manager
* functions for the Bounded Buffer object type.
*
*
*
*
*
*
*
*
*
*
*
*
*
*

A bounded buffer object is constructed from the following objects:

o - A segment containing the BB structure:
bufSize DWORD
nextGet DWORD
nextPUt DWORD

1 - A counting semaphore containing one unit for each occupied slot
2 - A counting semaphore containing one unit for each free slot
3 - A segment to hold the buffer itself.
4 - A region for controlling concurrent accesses to the BB

Tokens for these objects occupy tokenList.tokens positions zero
through four, in sequence.

***/

#include <rmxc.h>
#include <common.h>
#include <error.h> /* /rmx386/inc16/error.h with '$' changed to */

#pragma noalign (bbTOKENLISTSTRUCT)
typedef struct {

WORD numSlots, numUsed;
TOKEN tokens[5];
} bbTOKENLISTSTRUCT;

#pragma noalign (bbStruct)
typedef struct bbStruct {

DWORD bufSize, next Get , nextPUt;
} BBSTRUCT;

extern TOKEN
extern TOKEN

bbDelMbx;
bbOSE;

/* Declared and initialized in bbmanage.c */
/* Declared and initialized in bbmanage.c */

Extending iRMX: Adding System Calls and Type Managers 381

Figure 10.4 (Continued)

/*
System Call exit procedures

*/
void near
sys_exit_n (void); /* No return value */

void near
sys_exit_v (WORD); /* Return 1-4 bytes */

void near
sys_exit_e (WORD, WORD); /* Error return */

/**.******************

*
*

System call procedure for qccreatedboundedbuffer()
Create a Bounded Buffer object

~***.***** ************.***/

void far
bbCreate (DWORD bbSize, WORD far *exceptPtr,

DWORD application_eip, DWORD application_ebp)

bbTOKENLISTSTRUCT tokenList;
EXCEPTIONSTRUCT callersEH;
BYTE
BBSTRUCT
TOKEN
WORD

savedMode;
*thisBBstruct;
thisBB, bbStructSeg, occSem, freeSem, bbBufferSeg;
StatusO, Statusl, Status2, Status3, Status4,

Status5,
Status;

/* Get the caller's exception handling mode and change to in-line

*/
rqgetexceptionhandler (&callersEH, &Status);
savedMode = callersEH.exceptionmode;
callersEH.exceptionmode = 0;
rqsetexceptionhandler (&callersEH, &Status);

/* Create the objects that will make up the BB object

*/

/*

*
*

tokenList.numSlots = 5;
tokenList.numUsed = 5;

tokenList.tokens[O) = rqcreatesegment (sizeof (BBSTRUCT), &StatusO);
tokenList.tokens[l)

rqcreatesemaphore (0, bbSize, FIFO_QUEUING, &Statusl);
tokenList.tokens[2)

rqcreatesemaphore
tokenList.tokens[3)
tokenList.tokens[4)
thisBB =

(bbSize, bbSize, FIFO_QUEUING, &Status2);
rqcreatesegment (bbSize, &Status3);

= rqcreateregion (FIFO_QUEUING, &Status4);

rqcreatecomposite (bbOSE, (TOKENLISTSTRUCT *) &tokenList. &Status5);

If any part of the initialization failed, delete all objects,
set the appropriate condition code, and return to the caller.

382 iRMX Concepts and Features

FIgtn 10.4 (Continued)

*/
if (StatusO I I Statusl I I Status2 I I Status3 I I Status4 I I StatusS) {

rqdeletesegment (tokenList.tokens[Ol. &Status);

1*

*

rqdeletesemaphore (tokenList.tokens[ll. &Status);
rqdeletesemaphore (tokenList.tokens[21. &Status);
rqdeletesegment (tokenList.tokens[31. &Status);
rqdeleteregion (tokenList.tokens[41. &Status);
rqdeletecomposite (bbOSE. thisBB. &Status);

/* Restore calling task's exception handling mode and return
* ---
*/
callersEH.exceptionmode = savedMode;
rqsetexceptionhandler (&callersEH. &Status);

if «StatusO == E~EM) I I (Status3 == E_MEM» sys_exit_e (E~M. 1);
if «StatusO == E_LIMIT) I I (Status1 == E_LIMIT) II

(Status2 == E_LIMIT) I I (Status3 == E_LIMIT) I I

(Status4 == E_LIMIT) I I (StatusS == E_LIMIT»
sys_exit_e (E-LIMIT. 0);

sys_exit_e (E_CONTEXT. 0); 1* Default exception code */
}

thisBBstruct = buildptr (tokenList.tokens[Ol. 0);
thisBBstruct -> bufSize bbSize;
thisBBstruct -> nextGet 0;
thisBBstruct -> nextPut 0;

Restore calling task's exception handling mode
and return the composite

*1
callersEH.exceptionmode = savedMode;
rqsetexceptionhandler (&callersEH. &Status);

sys_exit_v «WORD) thisBB);
}

/***

*
*
*
*

System call procedure for qcdeleteboundedbuffer()
Delete a Bounded Buffer object

**/

void far
bbOelete (TOKEN thisBB. WORD far *exceptPtr.

DWORD application_eip. DWORD application_ebp)

EXCEPTIONSTRUCT
BYTE

callersEH;
savedMode;
Status. Statusl; WORD

1*
*
*
*/

1*

This call sends the token for the buffer to be deleted to the
deletion mailbox.

Get the caller's exception handling mode and change to in-line

Extending iAMX: Adding System Calls and Type Managers 383

figure 10.4 (Continued)

*
*/
rqgetexceptionhandler (&callersEH. &Status);
savedMode = callersEH.exceptionmode;
callersEH.exceptionmode = 0;
rqsetexceptionhandler (&callersEH. &Status);

rqsendmessage (bbDeIMbx. thisBB. (selector) NULL. &Statusl);

/* Restore calling task's exception handling mode and return
*
*/

callersEH.exceptionmode = savedMode;
rqsetexceptionhandler (&callersEH. &Status);

if (Status1 == E_OK) sys_exit_n();
sys_exit_e (E_CONTEXT. 0);
}

in the design of procedures that will be system calls in a multitasking sys
tem such as iRMX. These procedures are discussed more fully in the next
section.

The third module (sys_exit) is coded in assembly language, given in
Figure 10.5. The procedures in this module are general-purpose routines
that could be used by any system call to handle the conventions for return
ing condition code and function values to an application through the pro
cessor's registers3• This module, however, will work only for 32-bit appli
cations. Designing a comparable module that could accommodate both
16-bit and 32-bit applications is left as an exercise for the reader!

FIGure 10.5 Assembly language exit procedures for 32-bit system calls.

code

System Call Exit Routines

Bind these routines to a system call procedure to enable it to
return to an interface procedure properly. These routines are
for 32-bit code only.

segment er public

public sys_exit_n normal exit. no return value
public sys_exit_v normal exit. return 8. 1G. or 32-bit value
public sys_exit_d normal exit. return G4-bit value

3'fhe procedures for sys _exit _ d() and sys _exit y() are not actually used by the sample sys
tem calls but are included for completeness.

384 iRMX Concepts and Features

Figure 10.5 (Continued)
public
public

sys_exit-p
sys_exit_e

normal exit, return far (48-bit) pointer
error exit

The routines in this module must make FAR returns to the
interface procedure because they must complement the interface
procedure's call to a call gate, which is also a FAR call.

exits proc far

- - Procedure Exit - No Return Value - - - - - - - - - -
Calling sequence:

CALL sys_exit_n();

add sp,4 ;Drop sys call's near return
address

xor
leave
pop
ret

eX,ex

ds

;Make exception code E_OK
;Drop sys call's local variables
;Restore application's DS
;Far return to interface proc

- - - - Function Exit - Return Value up to 32 Bits -
Calling sequence:

CALL sys_exit_v (return_value);

near

add sp,4 ;Drop sys call's near return
address

pop eax ;Get return value
xor eX,ex ;Make exception code E_OK
leave ;Drop sys call's local variables
pop ds ;Restore application's DS
ret ;Far return to interface proc

; - - - - - - - Function Exit - Return doubleword or far pointer
value

Calling sequence:
CALL sys_exit_d (return_value);
CALL sys_exit-P (return value);

sys_exit_d label
sys_exit-p label

near
near

add sp,4
address

pop eax
value

pop edx
value

xor eX,ex
leave
pop ds
ret

; Drop sys call's near return

;Get low-order part of return

;Get high-order part of return

;Make exception code E_OK
;Drop sys call's local variables
;Restore application's DS
;Far return to interface proc

- - - - Error Exit - Return Code & Parameter # - - -
Calling sequence:

Extending iRMX: Adding System Calls and Type Managers 385

Figure 10.5 (Continued)
CALL sys_exit_e (error_code, parameter_number);

add sp,4
address

pop edx
pop ecx
mov eax,OFFFFFFFFh
leave
pop ds
ret

exits endp
code ends
end

;Drop sys call's near return

;Get parameter number
;Get exception code
;Forced value on error
;Drop sys call's local variables
;Restore application's DS
;Far return to interface proc

These first three modules are bound together to form the bounded buffer
type manager. If bbmanage is compiled for use as a first-level job,
the bnd386 command would omit the rc (dm (. . .» and s s
(stack (. . .» controls, and the resulting linkable file would normally
be called boundbuf .lnk using the binder's oj (boundbuf .lnk) control.
The leU screen for adding first-level jobs to an iRMX configuration, the
USERJ screen, obtains this information by asking for the values of the job's
memory pool and stack segment size.

The USERM screen is used to tell the leU the pathname to bound
buf .lnk. If the type manager is to be run as an HI command or by sysload,
the three modules would be bound just like any other loadable module, with
the compiler controls for the bbmanage module determining whether the
program will be configured to run from sysload or not. If the command is
configured to run as an HI command, the interface procedures for qccrea
teboundedbuffer() and qcdeleteboundedbuffer() must also be bound to the
program, which brings us to the fourth module.4

The fourth module (bbifc32) is the assembly language code for the in
terface procedures for these two system calls. The design of bbifc32 is
described in section 10.3.2. This module must be bound to every applica
tion program that uses the bounded buffer type manager. It is bound to the
program when configured to run as an HI command because the HI com
mand includes code to call the interface procedures after adding the system
calls to the system. Module bbi f c would not be bound to the program if it
is loaded using sysload or configured as a first-level job because those ver
sions of the program do not invoke either of the new system calls them
selves.

4If a separate HI command were written to exercise the OSE, the interface procedures for
qccreateboundedbufferO and qcdeleteboundedbuffer() would be bound only to this exerciser
command, not to the code that installs the OSE.

386 iRMX Concepts and Features

If there were several type managers or if the interface procedures for
each system call were to be assembled separately, various object modules
for interface procedures should be placed into a library file using lib386.
This step would be unnecessary overhead in the present case, where there
is only one object module that contains both of the interface procedures.
The code in this interface procedure module is discussed in the next
section. For now, like the sys_exit module, the code in this module
works only for 32-bit applications. The exercise mentioned previously to
develop a sys_exi t module that works for both I6-bit and 32-bit applica
tions includes the exercise to develop a set of interface procedures to
match!

10.3 Adding a System Call to iRMX

The iRMX system call mechanism was introduced in section 6.8, and the
material presented here is a continuation of that section. Five issues are
involved in adding a system call to an iRMX system:

1. Adding the call gate for the system call to the iRMX Global Descriptor
Table (GDT).

2. Coding the assembly language interface procedure that applications call
to gain access to the system call.

3. Passing parameters from the application task to the system call proce
dure.

4. Coding the system call procedure to work correctly in a multitasking en
vironment.

5. Returning values and error codes from the system call to an application
task.

10.3.1 Installing the call gate

A procedure can be connected to a call gate in two ways: by using the ICU to
add the procedure when the system is configured or by calling rqesetosex
tension{). The choice of name for this system call is unfortunate. The call is
used to add a system call to the operating system and its use might or might
not have anything to do with implementing an operating system extension.
As indicated in the preceding mini-glossary, it is quite common to add sys
tem calls to iRMX without adding an operating system extension. The
name should be something like rqesetsystemcall{) or rqesetcallgate{). The
prefix rqe would indicate that the system call is available only for iRMX II
and III, because, as you recall, iRMX I does not use call gates.

Before adding a system call to the operating system, you must select
which call gate the system call will use. A cluster of call gates starting at
GDT slot number 440 (in decimal) is available for user-defined system

Extending iRMX: Adding System Calls and Type Managers 387

calls. iRMX for Windows systems determine the size of this cluster
from the osx parameter of the : conf ig: rmx. ini file that is consulted
when the system is initialized.6 For systems configured using the leU, the
size of the cluster is determined by the number of OSEXT screens the user
incorporates in the definition file. Note that both osx and OSEXT signify
Operating System Extension, and perpetuate the failure to distinguish be
tween system calls and extension objects in the iRMX documentation.

A potential problem exists in managing the call gate numbers used by
user-supplied system calls. Interface procedures must be hard-coded with
the proper call-gate numbers, so any conflict between call-gate numbers or
any change to the call-gate number allocated to a particular system call
must be resolved by reassembling all the interface procedures involved and
rebinding all applications that use the call to the new interface procedures.
If this is a problem for developers who want to distribute their system calls
to a broad range of iRMX users, it is necessary to establish some sort of reg
istry for new system calls and their call gate numbers. Presently, the prob
lem has not extended beyond the scope of single development sites, and
local management of call-gate slot numbers has been satisfactory.

Adding system calls with the ICU. Any iRMX II or III system that supports
the reu must have a call gate cluster reserved when the system is config
ured if it is to allow user-written system calls. The user can link any subset
ofthe gates in the cluster (possibly none) to actual procedures when confi
guring the system. The relevant menu screens are Subsystems, OSEXT,
and USERM. The Subsystems screen includes an os Extension option
that must be set to yes to establish a GDT cluster. Once this option has
been selected, the leU presents OSEXT screens when the user steps to the
proper place in the definition file. For each GDT slot to be reserved, the
user enters a slot number (starting at 440) and an optional public proce
dure name to be linked to the slot. No procedure name needs to be specified
because the linkage can be made at run-time by calling rqesetosextension().
If any public procedures are specified on the OSEXT screens, the user must
supply the leu with the pathname to the file containing the object mod
ules on the USERM screen.

Adding system calls by calling rqesetosextension(). Whether the G DT clus
ter for user-written system calls is reserved at configuration time using the
leU or at system initialization time using the osx parameter of the
rmx. ini file, it is always possible to set up or to change the association be
tween a GDT slot and a system call procedure by calling rqesetosexten
sion().

5The default value is 20 at the time of publication.

388 iRMX Concepts and Features

void
rqesetosextension (WORD

void far *
WORD far *

callGate,
systemCallPtr,
exceptPtr) ;

The eallGate parameter specifies the number of the GDT slot to be
used, and the systernCallPtr is a pointer to the user-written procedure
to be bound to the gate. If systernCallPtr is a null pointer, the current
binding for the GDT slot is cleared. You might recall from section 5.4 that
a call gate is a descriptor that contains a far pointer to a procedure. When a
task makes a far call (supplying both the selector and offset as the address
of a procedure) and the selector provided with the call is found to reference
a GDT slot containing a call gate, the call instruction's offset value is ig
nored, and the complete far pointer to the procedure is taken from the call
gate. Clearly, the two parameters to this call are exactly what the operating
system needs to know to install a call gate into a particular slot of the GDT.
Figures 10.1 and 10.3 demonstrate the use of this call, first to clear any call
gates already using slots 440 and 441, and then to associate those gates with
the system call procedures shown in either Figure 10.2 or 10.4.

10.3.2 The interface procedure

As indicated in section 6.8, an assembly language interface procedure must
exist for every system call added to the operating system. This procedure
must:

1. Ensure that the stack frame is in the proper format for passing parame-
ters to the system call, considering the caller's model of compilation;

2. Make the far call to the proper GDT slot;

3. Check for exceptions; and

4. Pass the system call's return value and condition code back to the caller
as appropriate. The interface procedures for qccreateboundedbuffer()
and qcdeleteboundedbuffer() are in module bbife32, Figure 10.6.

The module name follows the iRMX library module naming convention:
- ife - stands for interface for the compact model, and 32 indicates that
the procedures are specific to 32-bit applications. iRMX supplies three in
terface procedure libraries for system calls supplied with the operating
system: rrnxife32.lib for 32-bit applications (iRMX III only),
rrnxife . lib for 16-bit compact model applications (iRMX I, II, or III),
and rrnxifl.lib for 16-bit large model applications (iRMX I, II, or III).
The versions of rrnxife . lib and rrnxifl.lib for iRMX I must be differ
ent from the versions for iRMX II and III because iRMX I runs in real
mode and cannot use call gates, but they use the same file names. The

Extending iRMX: Adding System Calls and Type Managers 389

sp + 24 : bufferSize

Sp + 20 I : : offset

exceptPtr

sp + 16 I>K: selector

sp + 12 1 : : Return address to calling task (eip)

sp + 8 1 : : base pointer (ebp)

sp + 4 1 : : offset Return address

to interface procedure --71%: sp selector

32-bit Stack

sp + 14 0 bufferSize

sp + 12 0 offset

0
exceptPtr

sp + 10 selector

sp + 8 0 offset Return address

sp + 6 0 selector to calling task
(or dummy)

sp + 4 0 base pointer (bp)

sp + 2 0 offset Return address

sp --70 selector to interface procedure

16-bit Stack

Figure 10.6 Stack frames for 32-bit and I6-bit applications upon entry to the system call
createBB() procedure.

390 iRMX Concepts and Features

iRMX II and iRMX III versions of rrnxifc . lib are identical to each
other, as are the iRMX II and iRMX III versions of rrnxifl.lib.

The names that applications use to access the example system calls are
determined by the names given to the procedures in this module, not by the
names of the procedures that actually implement the system calls. Thus,
the name of the new system call to create a bounded buffer is qccreateboun
ndedbuffer(), as defined in bbifc32.asrn (Figure 10.6), rather than
bbCreate(), as defined in bbsyscal. plrn or bbsyscal. c (Figure 10.2 or
lOA). iRMX-supplied system call names start with rq, often followed by a
letter indicating the layer of the operating system that supports the call. qc
was chosen to start the example system call names just to differentiate
them from the iRMX -supplied calls.

The first issue an interface procedure must deal with is to ensure the
stack frame appears identical, whether the application made a near call or
a far call to the system call. This issue is not applicable for 32-bit code
because the interface procedure is always reached from a near call.
(Remember that 32-bit compilers treat the compact and large models
identically.) For 16-bit code, the interface procedure for the compact model
must push a dummy 16-bit word onto the stack to take the place of the cs
register value that a far call would have placed there. Once this has been
done, the caller's parameters are at a fixed offset into the stack (four bytes),
regardless of the model of compilation. The procedure prologue generated
for 16-bit code would then push the current stack frame pointer register
(bp) onto the stack and load it with the current top of stack pointer (sp).
For the interface procedures presented here, the ebp and esp registers are
the corresponding 32-bit registers. A system call procedure that accepts
calls from either 16- or 32-bit applications must deal with the difference in
the number of bytes pushed onto the stack by the prologue for the two dif
ferent types of code, as discussed shortly.

The actual call to the system subroutine is then made using the appro
priate call gate number as the selector part of a far call instruction. The
instruction to call a call gate is the same as the instruction to call any far
procedure, except that the value of the offset part of the subroutine address
is irrelevant because the actual pointer to the subroutine's code is taken
from the call gate itself. The interface procedures in bbifc32 use a macro
named call_g() to generate a far call with an offset of 0 and a selector
formed by multiplying the gate number by 8.

Recall from chapter 5 that a selector has bits 3 through 15 (the left-most
13 bits) set to the index of the descriptor table slot to be accessed, bit 2 se
lects the GDT or the LDT, and bits 0 through 1 (the right-most two bits)
specify the requested privilege level for the gate access. Multiplying the
gate number by eight creates a selector in this format for the GDT with
privilege level o.

When the system call returns to the interface procedure, it must deal
with the condition code value returned. By convention, all iRMX system

Extending iRMX: Adding System Calls and Type Managers 391

calls return their condition code value in the ex register. If that register is
nonzero when the call returns to the interface procedure, it calls the proce
dure rqerror(), which makes another system call, rqsignalexception(),
which in turn either calls the exception handler for the task or returns to
the interface procedure ifthe task is handling exceptions in-line. The rqer
ror() procedure is in the interface libraries supplied with iRMX, although
users could substitute their own code for the system-supplied version sim
ply by listing an appropriate object module before the interface library on
the binder's input file list.

If the exception handler does not delete the job (because there was no
error and rqerror() was not called, or because rqerror() was called but ex
ceptions are being handled in-line, or because the application has provided
an exception handler that does not delete the job) the interface procedure
stores the condition code value from ex into the caller's condition code pa
rameter, cleans up the stack frame (16-bit, compact-model interface pro
cedures must drop the dummy es register that was pushed onto the stack
before the prologue), and returns to the caller. The iRMX system call con
ventions also specify that nonzero condition code values are accompanied
by an index of the parameter causing the problem in register dx if possible.
Parameters are numbered from left to right starting at 1 for this value. If
you decide to write your own exception handler procedure, it should be
coded to receive these two values, plus two more words, as arguments. This
information is also useful when debugging an application program. If you
single step into an interface procedure for a system call that is causing a
problem, you can examine the registers on the next instruction after the
call to the call gate to see the value in the Dx register.

If the value in the ex register is 0 (E_OK), the value is simply stored in
the word pointed to by the caller's last argument. The les instruction in the
sample interface procedures loads the selector portion of the caller's
exeeptPtr argument into the es register and the offset portion into the
ebx register, and the following instruction stores the condition code value.
Unlike their 16-bit counterparts, PLM-386 and iC-386 compilers assume
that the es and ds registers always contain the same values, and the sam
ple interface procedures make sure that this is the case before returning to
the caller.

Calculating the number of bytes to drop from the caller's stack on the ret
instruction must also be done differently for 16-bit and 32-bit interface
procedures. The calculation requires full understanding of how the com
pilers use the task's stack for passing parameters, which is covered in the
next section. You might refer back to the ret instructions in the sample in
terface procedures after reading the following material to verify that the
code matches your understanding of how the stack is used.

System call procedures that return function values will do so in the pro
cessor's registers, and interface procedures do not need to be concerned
with this issue other than to avoid destroying the value accidentally. For

392 iRMX Concepts and Features

32-bit code, a value is returned in the eax register and possibly the edx. For
16-bit code, the ax, bx, and dx registers can be used for return values. Set
ting these registers is the responsibility of the exit procedures for the sys
tem call, and is discussed further in section 10.3.5.

10.3.3 Receiving parameters in the system
call procedure

Although system call procedures, especially for user-written system calls,
are normally written in PLM or C, the system call programmer must have a
good understanding of the conventions used by the compilers for passing
arguments on the stack. First, the compilers enforce Ii notion of a 16-bit or
32-bit stack different from the microprocessor's rules for operating on the
stack. For a 16-bit stack, the microprocessor always pushes or pops 16-bit
values. You cannot push or pop a single byte, and pushing or popping a
pointer or a 32-bit value involves pushing or popping two 16-bit values.
The 16-bit compilers use this same model for passing and receiving param
eters, so this issue is minor.

For a 32-bit stack, however, the microprocessor and the compilers use
slightly different models. The microprocessor still works with 16-bit units.
You still cannot push or pop a single byte, and pushing a 16-bit value, a
32-bit value, or a 64-bit value pushes 2, 4, or 8 bytes, respectively. If you
push a segment register, the microprocessor pads it from 2 bytes to 4. The
compilers use a32-bit modulus for all values passed as parameters on a 32-
bit stack. Whether you pass a 1-, 2", or 4-byte value as an argument, it
occupies 4 bytes on the stack, and the compiled code in a subroutine auto
matically ignores the unused bytes of any value passed. Far pointers are
passed as a four-byte offset and a four-byte value containing the two-byte
selector and two unused bytes. .

Figure 10.7 shows the structure of a 16-bit stack and a 32-bit stack when
the interface procedure has executed its far call to createBB() through call
gate 440. As the figure shows, the caller's parameters, the stack frame
pointer pushed by the interface procedure, and the return address to the
interface procedure all occupy ,different amounts of stack space for the two
types of stack. The 16-bit stack is the same for both the compact and large
models of compilation, but is significantly different from the 32-bit stack.
Here, full credit is given to the Intel engineers who developed iRMX III
system call procedures that accept either 16-bit or 32-bit stacks, and pro
ceed to the simpler problem of developing system call procedures that work
only for 32-bit stacks.

The two procedures in this module are coded as far procedures even
though they are compiled using the compact memory segmentation model.
They are compiled using the compact model to not incur unnecessary code
segment changes when calling other procedures with which they are
bound. The exit procedures are such procedures in the example. The pro
cedures must he coded as far procedures so the compiler will generate code

Extending iRMX: Adding System Calls and Type Managers 393

Figure 10.7 Assembly language interface procedures for 32-bit implementation of qccreate
boundedbuffer() and qcdeleteboundedbuffer() called through call gates 440 and 441.

name bbifc32 ; 32-bit interface procedures for Bounded Buffer

This is the interface module for bounded buffer system calls.
The following system calls are supported:

TOKEN
qccreateboundedbuffer (DWORD bbSize, WORD far *exceptPtr);

void
qcdeleteboundedbuffer (TOKEN bbOSE, WORD far *exceptPtr);

First define a macro to generate call instructions that reference
call gates. The assembler does not provide a codemacro for this
instruction.

$genonly
%*define(call_g(arg))
(

code

db
dd
dw

9Ah
o
%arg*8)

Set up the code segment

segment er public

op code for far call
offset is ignored for call gates
for GDT, Privilege Level 0

extrn rqerror: near

qccreateboundedbuffer interface procedure

qccreateboundedbuffer
public

proc near
qccreateboundedbuffer

Procedure prologue and call to the system call procedure

push
mov

ebp
ebp, esp

Return here from sys_exit procedure - check for errors

and
jz

call rqerror

If rqerror returns, it means that
in-line, so we return to it after

;Test condition code
;Zero is E_OK

;Possible call to task's EH

the application is handling errors
storing the error code.

394 iRMX Concepts and Features

Figure 10.7 (Continued)

les
mov
mov
mov
pop
ret

ebx, [ebp+08h]
es: word ptr [ebx],cx

;Get app's last parameter
;Store condition code

di,ds
es,di
ebp
12

;Be sure es == ds
; for 32-bit code

; Epilogue code
;Drop one dword and one pointer

qccreateboundedbuffer endp

deleteboundedbuffer interface procedure

qcdeleteboundedbuffer
public

proc near
qcdeleteboundedbuffer

Procedure prologue and call to the system call procedure

push
mov

ebp
ebp,esp

Return here from sys_exit procedure - check for errors

and
jz

call rqerror

;Test error code
;Zero is E$OK

;Possible call to task's EH

If rqerror returns, it means that the application is handling errors
in-line, so return to it after storing the error code.

les ebx, [ebp+08h] ;Get app's last parameter
moves: word ptr [ebx],cx ;Store condition code
mov di,ds ;Be sure es == ds
mov es,di ; for 32-bit code
pop ebp ;Epilogue code
ret 12 ;Drop one token and one pointer

qcdeleteboundedbuffer endp

code ends
end

Extending iRMX: Adding System Calls and Type Managers 395

to load the procedures' ds register during the procedure prologue. In gen
eral, these procedures are not bound to the application task's code, so they
must use their own code and data segments. For the PLM version, the pro
cedures are made far by coding the $compact (exports createBB
deleteBB) compiler control before the first DO block. For C, it is done sim
ply by declaring the procedures to be far.

To refer to the parameters being passed to it by the application task, the
procedures must be coded to account for the values pushed onto the stack
by the interface procedure. The compiler automatically knows about the
far return address and the changes it makes to the stack during the proce
dure prologue, so it is just a matter of accounting for the base pointer value
and application task's return address, as shown by the two parameters,
application_eip and application_ebp, declared after the parame
ters of interest in the two procedures. With these declarations in place, the
compiler generates the proper offsets into the stack to access the applica
tion's parameters.

To put some perspective on the sample code, the following is a review of
how the different versions of the interface procedures available for iRMX
supplied system calls work to provide a consistent interface to the system
call procedures.

32-bit code (rrnxifc32 . lib). The interface procedure pushes a 32-bit flag
value (-1) onto the stack to signal a call from a 32-bit application before
pushing ebp and making the system call. The system call procedure con
tains an assembly language prologue that tests for the flag value on the
stack and branches to the code that references parameters from 32-bit ap
plications.

16-bit compact (rrnxifc • lib). The interface procedure creates a 16-bit
dummy offset value for the return address on the stack by pushing the bp
register, updates the stack frame pointer by pushing the bp register again,
and makes the system call. The system call's prologue finds two copies of
the bp register, which never have the value -1, in place of the flag value, and
knows to treat the application's part ofthe stack as 16-bit values. The sys
tem call code itself is 32-bit code, so the stack is assumed to contain 32-bit
values, but this assumption can be overridden by referencing 16-bit regis
ters and operands in the code. The system call, however, must use the
proper offsets into the stack to obtain the operands.

16-bitlarge (rrnxifl.lib). The caller's return address on the stack already
contains a 16-bit offset value, so the interface procedure just updates the
stack frame pointer and makes the system call. The system call procedure
does not need to know whether the application is using the compact or
large model, only that it is passing 16-bit values on the stack rather than
32-bit values.

396 iRMX Concepts and Features

Note that the interface procedures for 16-bit code are exactly the same
for iRMX II and III. Only the interface procedures for 32-bit applications
and the system call procedures themselves are different for iRMX III.

If you develop a system call to be used with 32-bit applications only
(which. implies running on iRMX III or iRMX for Windows only), the sam
pIe code provides a slightly more efficient protocol for passing parameters
to system call procedures. The sample code does not bother with the flag
value on the stack and thus eliminates the need for an assembly language
prologue for the system call procedure to test the flag value and determine
the word size of the caller's stack.

10.3.4 Design of a system call procedure

A procedure that will operate as a system call must deal with the following
issues:

• Operation in a multitasking environment.

• Memory and object management.

• Condition code and exception management.

All these concerns are examined in the sample code in the createBB()
and deleteBB() procedures of Figures 10.2 and 10.4, although memory and
object management are covered in section 10.4.2. Looking at the structure
of these procedures, it is important to remember that they are executed by
an application task, so they must take care to maintain that task's environ
ment and work properly, even if the calling task is preempted at any point
during the execution of the system call procedure.

Thus, the first consideration for a multitasking environment is to ensure
that the procedure maintains separate copies of each caller's local vari
ables so that different tasks can call the system call procedures concur
rently. For C programs, this is done automatically because local variables
are allocated on the caller's stack by default (unless declared static).
For PLM programs, however, it is necessary to declare the procedures
reentrant to achieve the same effect. Remember, each iRMX task has its
own stack segment.

A second consideration for operating in a multitasking environment is
not illustrated in the code being examined in this chapter. The issue
is managing global state information needed by the OSE. In this case, there
is no such information; each bounded buffer is created and operated inde
pendently of all others. Another OSE might need global state information,
however. For example, the BIOS allows only a single I/O connection to be
made to a device at a time, so it must maintain knowledge about what de
vices have I/O connections globally - across all the I/O connection objects
that it manages. In a multitasking operating system such as iRMX, more

Extending iRMX: Adding System Calls and Type Managers 397

than one task could make calls to an OSE that involve examining or modi
fying such global state information concurrently. It is crucial for this
information to be protected through standard mutual exclusion mecha
nisms, such as semaphores and regions, to ensure correct operation of the
OSE.

The other matter to address is how to handle exceptions that occur dur
ing execution of the system call procedures. One strategy is to not change
the calling task's exception handling mode within the system call. Leaving
exception handling unchanged, the system call procedure is aborted if an
exception is encountered and the application has elected to use an excep
tion handler that deletes the task or job when an exception occurs. How
ever, the system call must be coded to test the condition code after each
system call in case the application has elected the in-line mode for han
dling exceptions. In this case, each system call made from within a system
call procedure would be followed by a test for nonzero S ta t us, and a return
of that value to the caller through sys _exit _ e().

The strategy adopted in the sample code for bbCreate() is to force the
application to do in-line exception handling while it is in the system call,
restoring the original exception handling mode of the calling task before
exiting. This way, our system call procedure can complete successfully
even if an iRMX system call that is not essential to the operation of our
code fails. Our bbDelete() procedure, on the other hand, makes only one
iRMX system call (rqsendmessage() to send the token for the composite
object to the deletion mailbox}, which can fail only if the type manager is
not properly installed. So bbDelete() does not bother to check for an excep
tion when making this iRMX call; it just passes the status from rqsend
message() back to the caller as its own condition code value.

Forcing in-line exception handling also allows system call procedures to
recover cleanly if they encounter an iRMX exception in the middle of pro
cessing. For example, bbCreate() deletes all component objects if it is un
able to create anyone of them successfully. This technique also allows the
system call to pass back condition code values that might be more mean
ingful to an application than whatever condition code happens to be re
turned by a nested system call. For example, qccreateboundedbuffer() is
guaranteed to return one of only four condition code values, E_OK,
E_MEM if not enough memory exists to create the buffer object, E_LI
MIT if the calling task's job has reached its object limit, or E _ CO NTEXT
if any other error caused the call to fail.

10.3.5 Exit procedures

Once a system call procedure completes its work, it must return its condi
tion code to the application and, if it is a function, a return value as well.
The calling conventions for iRMX require that the condition code and pa-

398 iRMX Concepts and Features

rameter number causing an error, if any, are returned in registers ex and
dx, and that function values from 8 to 32 bits long are returned in register
eax.

If a function returns a pointer or a 64-bit doubleword, the selector part of
the pointer or the high-order half ofthe doubleword is returned in register
edx, and the offset or low-order half is returned in eax. The PLM-386
compiler returns function values using this convention automatically, as
does the C-386 compiler for functions declared with the fixedpararns
pragma, as all iRMX system call interface procedures are. Setting the ex
and dx registers, however, must be done in assembly language, and cannot
be done in PLM or C. Instead of returning directly to the interface proce
dure, system calls return to the interface procedure indirectly through one
of four exit procedures given in Figure 10.5. These exit procedures are:

• sys _exit_nO

• sys_exit_v()

• sys_exit_d()

• sys_exit_e()

sys _exit _ n() is called for a normal exit by a system call that returns no
value and completes normally. This procedure sets register ex to zero, the
E_OK condition code. This procedure is called from bbDelete() when no
error occurs.

sys _exit _ v() is called for a normal exit from a system call that returns a
value in register eax. This procedure loads the return value, which the sys
tem call passes to it on the stack, into register eax, and sets ex to zero. This
procedure is called from bbCreate() to return the token for a new bounded
buffer composite object.

sys _exit _ d() is called for a normal exit from a system call that returns a
far pointer or a doubleword in registers edx and eax. The same code is used
for returning far pointers as for returning doublewords, so the alias sys _ ex
it _p() is provided for this function. Neither procedure is actually used by
the code in this chapter.

sys_exit_e() is called to return a nonzero condition code value and pa
rameter number for system calls that fail. It is called from various places in
both system calls.

Exit procedures do not return to the system call procedures that call
them. After setting the processor's registers, exit procedures return to the
interface procedure that called the system call procedure. Thus, the exit
procedures first add 4 to the stack pointer to eliminate the near return ad
dress used to return to the system call procedure. They then pop the ds reg
ister to restore the interface procedures' data segment register, and then
use the leave instruction to drop any local variables the system call proce
dure left on the stack and to pop the ebp register value that was pushed by
the compiler-generated prologue code for the system call procedure. The

Extending iRMX: Adding System Calls and Type Managers 399

form of this code is predicated on knowing what code compilers insert as
the prologue for any far procedure. The various exit procedures then make
far returns to the interface procedure.

Exit procedures for 16-bit applications must be coded differently to re
flect the differences in calling conventions and stack usage compared to
32-bit code. A system call that serves both 16- and 32-bit applications must
use two different sets of exit procedures to accommodate these differences.
The register conventions for 16-bit and 32-bit applications are fairly easy
to summarize:

First, 32-bit functions return all 1-, 2-, or 4-byte values in register eax.
64-bit values are returned with the low-order half in eax and the high
order half in register edx. Pointers are returned with the offset part in eax
and the selector part in register dx.

Secondly, 16-bit functions return 8- and 16-bit values in register ax, and
use dx for the high-order half of 32 bit values. However, they return the
offset part of a pointer in bx instead of dx and return the selector part of a
far pointer in es instead of dx.

10.4 Adding a Type Manager

The good news about adding a type manager to an iRMX system is that it
doesn't involve any assembly language coding! Five system calls are in
volved in setting up a type manager and using it, and these are described in
this section. In chapter 6 you saw that one of the primitive object types
supported by the Nucleus is called an operating system extension, or aSE
object. An aSE object is a meta-object: it defines a new object type for the
system. Two of the five system calls described here are used to create and
delete an aSE object. The other three calls are used to create, modify, and
delete objects of the new aSE type, i.e., composite objects.

10.4.1 Creating an extension

Before looking at the system calls for creating and deleting new object
types, object type codes must be considered. Every type of iRMX object has
a unique type code. For example, the following object type codes are used
for the primitive objects managed by the Nucleus:

Type code

1
2
3
4
5
6
7
8

10

Primitive object type

Job
Task
Mailbox
Semaphore
Region
Memory Segment
OS Extension
Composite Object
Buffer Pool

400 iRMX Concepts and Features

These type codes are used by the Nucleus to verify that objects of the
correct types are passed to system calls. This object type checking adds
greatly to the robustness of the system and helps detect programming
errors early in the development process. The system simply will not let you
pass a token for a mailbox to rqsendunits(), for example. Object types 7 and
8 are of particular concern here. For every type of object beyond those
listed previously, a type manager must call rqcreateextension() to define
the new object type to the system. The following is the function prototype
for that call.

extern TOKEN
rqcreateextension (WORD

TOKEN
WORD far'

typeCode,
deletionMbx,
exceptPtr) ;

The first parameter to this call is a user-selected type code for the new
type being created. Intel reserves type codes 0 through Ox7FFF for the ex
tensions they add to iRMX, and users can use any type codes between
Ox8000 and OxFFFF. Similar to the allocation of call gates to user-written
system calls, a problem can arise in deciding which OSEs are to use which
type codes. Again, some sort of managed registry must be set up if this be
comes a problem. The deletionMbx parameter is discussed in section
10.4.3. For now, the concern is with type codes.

iRMX has a set of OSEs already defined by various layers of the system.
The ones defined at the time of this writing use the following type codes:

Type Code

Ox0009
OxOlOO
OxOlOl
Ox0300
Ox0301

Extension Object Type

Message Port
I/O User
I/O Connection
I/O Job
Logical Device

These five object types are managed by different layers of the operating
system: Message Port is defined as an extension type by the Nucleus itself
(message ports are used for Multibus II message passing), I/O Users and
I/O Connections are defined by the BIOS, while I/O Jobs and Logical De
vices are defined by the EIOS.

If you pass a valid token for any iRMX object to the rqgettype() system
call, you will get back the type code for either one of the primitive object
types, one ofthe extension object types listed previously, or the value ofthe
typeCode parameter ofthe rqcreateextension() system call that defined a
user-developed extension type. Objects created by a type manager for an
OSE actually have two type codes: the extension type code for the particu
lar extension and the primitive type code 8, indicating that the object is a
composite object. The Nucleus keeps the primitive type code for each ob-

Extending iRMX: Adding System Calls and Type Managers 401

ject in a hidden data structure known as the canonical part of the object.
When the Nucleus encounters a composite object (type code 8), it knows to
look for the actual type code in a data structure called the base segment for
the object. As shown in Figure 10.8, this base segment contains the exten
sion type code for the object and a list of tokens for the component objects
that constitute the composite object. The component objects that consti
tute a composite object can be either Nucleus objects or other composite
objects.

The token returned by rqcreateextension() is called a license for the new
object type in the iRMX documentation. The idea is that the value ofthis
token, bbOSE in the sample code, is made available to the routines that
compose the type manager, but is not available to other code. The iRMX
system calls used to create and manipulate composite objects all require
this token as one of their parameters. This strategy helps encapsulate com
posite objects by making it impossible for a task to use system calls to ex
amine or modify a composite object without a copy ofthe license to do SO.6

10.4.2 Managing composite objects

Once an extension has been created, applications can create composite ob
jects that are instances of the new type by calling rqcreatecomposite(). This
function is called from within the create system call provided by the type

Token for
Composite
Object

Base Segment of Composite Object

Type Code

Object

Object

Object

Object

Figure 10.8 Structure of a composite object.

6A task could cheat and examine or modify the contents of a composite's base segment di
rectly, but it could not use rqinspectcomposite() or rqaltercomposite() to do so.

402 iRMX Concepts and Features

manager. The sample code shows a call to this function in the system call
procedure for qccreateboundedbuffer(), procedure bbCreate() in Figure 10.2
or lOA. The function prototype is the following:

extern TOKEN
rqcreatecomposite (TOKEN

TOKENLISTSTRUCT far *
WORD far *

extensionTkn,
tokenListPtr,
exceptPtr);

The first parameter is the token returned by rqcreateextension() to iden
tify the object type of the composite object to be created. TOKENLIST
STRUCT consists of a count of the number of objects that the composite can
contain, followed by a counted list of tokens for objects that are to consti
tute the initial contents of the object. That is, it starts with a word telling
the maximum number of tokens the object can contain, followed by a count
of how many tokens are actually being initialized as the object is created.
The sample bbCreate() function creates composites that can contain five
objects and initializes all five of them: a segment for housekeeping infor
mation, a segment for the buffer itself, plus two semaphores and a region
for controlling access to the object. It is acceptable to initialize slots in
tokenList with null selectors to act as place holders, although this is not
shown in the sample code.

Once a composite object has been created, type manager functions can
change the object's token list by calling rqaltercomposite():

extern void
rqaltercomposite (TOKEN

TOKEN
WORD
TOKEN
WORD far *

extensionTkn,
compos iteTkn ,
component Index ,
replacingObject,
exceptionPtr);

In principle, the value ofthe extensionTkn parameter is implied by the
compositeTkn parameter to this call. Requiring both tokens helps en
force object encapsulation, as described previously. The other two parame
ters for this system call are the index into the tokenList for the token to
be changed, with one being the first element of the list, and the new token
to be stored in tokenList for the object. The value for replacing
Ob j ect can be a null selector if you need to delete a component object from
a composite.

When a composite has been created, applications can call type manager
procedures with the token for a composite as one of the parameters, nor
mally the first. The type manager procedure gets a copy ofthe tokenList
for the composite to be manipulated by calling rqinspectcomposite():

extern TOKEN
rqinspectcomposite (TOKEN

TOKEN
TOKENLISTSTRUCT far *
WORD far *

extensionTkn,
compositeTkn,
tokenList,
exceptPtr) ;

Extending iRMX: Adding System Calls and Type Managers 403

As with rqaltercomposite(), the caller must supply both the license for the
extension type and the token for the particular composite to be inspected.
For this call, the first word of the tokenList is a count of the number
of tokens the caller is willing to receive. You can elect to look at just the
first few tokens of a large composite object by controlling the value of
this word.

The sample code calls rqinspectcomposite() from within the deletion
task's procedure in the bbmanage module. The code illustrates how to ac
cess component objects that are part of a composite, in this case to delete
them. The system call to add bytes to a bounded buffer would use the fol
lowing algorithm:

1. Inspect the composite.

2. Receive a unit from tokenList[2], the free space counting semaphore.

3. Receive control from tokenList[4], the critical region for the buffer.

4. Store the byte in the tokenList[3] segment, indexed by the nextPut
value in the tokenList[O] segment.

5. Update nextPut by one, modulo bufSize.

6. Release the region.

7. Send a unit to tokenList[lj, the occupied space counting semaphore.

Similarly, the following algorithm would be used by the system call that
removes bytes from a bounded buffer:

1. Inspect the composite.

2. Receive a unit from tokenList[lj, the occupied space counting sema
phore.

3. Receive control from tokenList[4j, the critical region for the buffer.

4. Copy the byte in the tokenList[3j segment, indexed by the nextGet
value in the tokenList[Oj segment.

5. Update nextGet by one, modulo bufSize.

6. Release the region.

7. Send a unit to tokenList[2j, the free space counting semaphore.

These system calls modify the components of the composite object,
but do not modify a composite object itself. That is, they would not call
rqaltercomposite().

10.4.3 Deleting composites and extensions

There are three distinct situations in which a composite object is deleted,
as shown in Figure 10.9.

404 iRMX Concepts and Features

Nucleus

Delete Job

System Call

send all composite

objects belonging t

this job to their

extensions'

deletion mailboxes

11
ther extensions' to 0

mai Iboxes

Deletion Task

Nucleus

Delete Extension

System Call

send all composite

objects of this type

to the extension's

deletion mailbox

OSE

Delete Object

System Call

send the composite

object to the

extension's

deletion mailbox

Deletion Mailbox for the

I
Extension

I

,J,-

delete composites that arrive at the deletion mailbox

Figure 10.9 Three ways to delete a composite.

The first situation is if ajob that owns a composite object terminates. If
the type manager has established a deletion mailbox for the extension, the
Nucleus automatically sends tokens for such objects to the deletion mail
box as part of its processing of the rqdeletejob() system call. If no deletion
mailbox exists, the Nucleus deletes the object itself.

The second situation is if the type manager calls rqdeleteextension() to
delete an OSE. The Nucleus deletes all composites of the OSE type before
deleting the OSE. If there is a deletion mailbox, the composites are sent
there for deletion. Otherwise, they are simply deleted.

Third, the type manager for the extension can provide a system call for
deleting composites, and an application task makes this system call.

The second situation is uncommon. Normally, a type manager is in
stalled when the operating system initializes, and never deletes the OSE
object for the type it is managing. This case is important, however, when a
type manager is being developed and debugged as an HI command. For ex
ample, the sample type manager, when the bbmanage module is compiled
with the Hlcmd symbol set, creates two bounded buffer composite objects,
calls qcdeleteboundedbuffer() to delete one of them, then calls rqdeleteex
tensionO, and exits the job. When the task calls rqdeleteextension(), tokens

Extending iRMX: Adding System Calls and Type Managers 405

for all existing bounded buffer composites are automatically sent to the
deletion mailbox. One such object still has not yet been deleted, so that ob
ject is sent to the deletion mailbox at this time.

If the sample program had not called rqdeleteextension(), the same token
would have been sent to the deletion mailbox as part of the processing of
the rqexitiojob() system call, which calls rqdeletejob(). This situation would
have been an example of the second situation. The call to rqexitiojob()
would have failed in this case, however, because the job still owned an ex
tension object and thus could not be deleted.

When a task calls rqdeletejob() or rqdeleteextension(), it deletes compos
ite objects sequentially. That is, instead of just sending all the tokens for all
the composite objects to be deleted to their respective deletion mailboxes
and letting them queue up for the deletion tasks to process at their leisure,
these routines wait for positive acknowledgment that each composite ob
ject has actually been deleted before proceeding to delete the next object
belonging to the job or the extension. This strategy allows type managers
to delete composite objects that contain other composites. The Nucleus
guarantees that composites will be deleted in a most-recently created se
quence so that a deletion task can count on being able to access component
objects that constitute a composite even if those component objects are
slated for deletion during processing of the same delete system call.

The preceding rule deals with two different issues. First, the deletion
tasks for different type managers could be put into a race condition result
ing in indeterminate system behavior if two composite objects of different
types, each containing a component of the other type, are sent to their de
letion mailboxes at the same time by rqdeletejob(). The rule guarantees
that a deletion task will be able to access component objects of any type
provided they were created before the composite object itself. By exten
sion, a deletion task can safely access component objects of the same type
as the composite itself, provided such components are created before their
containing composite.

The code for rqdeletejob() also follows the rule of deleting all primitive
objects only after deleting all composite objects, regardless of when the
primitive objects were created. The considerations concerning which com
ponent objects can be accessed by a deletion task really do apply only to
composite components, not primitive components.

What should the deletion task do when it receives a token for an object to
be deleted? One essential piece of business is to call rqdeletecomposite():

extern void
rqdeletecomposite (TOKEN

TOKEN
WORD far *

extensionTkn,
compositeTkn,
exceptionPtr);

This call is essential if compos i teTkn was sent to the deletion mailbox by
rqdeletejob() or rqdeleteextension() because this call is what provides the

406 iRMX Concepts and Features

positive acknowledgment that allows the Nucleus to continue processing
the call to rqdeletejob() or rqdeleteextension().

But what if the composi teTkn was sent by the type manager's delete()
system call? Aside from the fact that there is no reason that a deletion task
would want to avoid making this call, there are three reasons for an applica
tion to delete an object: to make the object unavailable for access, to reclaim
the memory used by the object, and to free the GDTsiot used by the compos
ite. Calling rqdeletecomposite() satisfies all three requirements.

Deleting a composite object does not delete the component objects that
constitute the object. Doing so, which the sample deletion task does, is gen
erally important, but not universally so. Deleting the composite objects
prevents what are known as memory leaks, which can be a significant issue
for long-running applications that create and delete objects dynamically
during their lifetimes. For example, a network server job might create and
delete composite objects as client programs establish and break communi
cation channels. If the composites for each communication channel are not
deleted, the server job gradually consumes more and more of its memory
pool (and GDT slots) until it can no longer handle new client requests.

Sometimes, it is actually inappropriate to delete component objects,
namely when the same component object is contained in multiple compos
ite objects. The deletion task would need to be coded to handle such situa
tions appropriately, taking care to manage the global state information
implied by this situation properly. (See section 10.3.4.)

The Nucleus enforces its own rule in this regard: no object can be deleted
if it belongs to ajob for which rqdeletejob() is being processed. Our bounded
buffer type manager would encounter this situation if it is compiled with
HI cmd defined and if the call to rqdeleteextension() were omitted. In that
case, a_buf would be sent to the deletion mailbox when the initial task
called rqexitiojob(), and all the delete() system calls executed by the dele
tion task would fail. The example deletion task simply ignores any such
errors. There is no problem because the component objects are deleted au
tomatically as the rqdeletejob() system call proceeds.

The bounded buffer deletion task illustrates one more important con
cept in the design of robust system calls, which is the consideration of the
interactions among multiple tasks that might access a single composite
concurrently. It is possible that a token will arrive at the deletion mailbox
for a composite object already in use by some other task than the one that
called qcdeleteboundedbuffer(). No problem exists if another task has a
copy of the token for the object being deleted because, once the deletion
task calls rqdeletecomposite(), any task that presents the token for that
composite to a system call will fail with an E _EXIST condition code.

The problem is more subtle: if a task uses the token for a bounded buffer,
to get a byte from the buffer, for example, then enters the region for the
buffer, and is at that point preempted by another task that deletes the

Extending iRMX: Adding System Calls and Type Managers 407

buffer, what happens to the task trying to get a byte from the buffer? The
answer is that the task completes its call successfully because the deletion
task deletes the region for the buffer before deleting any of the other com
ponents of the buffer. Since rqdeleteregion() automatically waits for any
task that has entered the region to leave it (the task that is getting a byte
from the buffer in this case), the situation is handled correctly.

A decision was made in the design of the example type manager that
should be made explicit before leaving this topic. There seems to be two
equally reasonable ways to handle object deletion. The way the example
handled it was to have the deleteBB() system call send objects to the dele
tion task and have the deletion task perform the actual deletion process.
Another design might have been to have deleteBB() perform the deletion,
and have the deletion task call qcdeleteboundedbuffer() for each object that
arrives at the deletion mailbox. The difference between the two is that de
leteBB() would have to be designed to handle concurrent calls from differ
ent tasks, whereas the deletion task is a single thread of execution. A call to
rqdeleteregion() causes deadlock if it is called by two tasks for the same re
gion at the same time, so deleteBB() would have had to be coded to serialize
calls to rqdeleteregion() in the alternate design, probably by adding a bi
nary semaphore to the bounded buffer composite structure. This overhead
is circumvented by using the deletion task which, as a single thread of exe
cution, automatically serializes all delete operations.

Chapter

11
iRMX Network Programming

11.1 Overview

Networking support is an important feature of the iRMX operating sys
tem. Networking was introduced in chapter 2 where the system's support
for networked access to remote files was discussed from a user's perspec
tive. In this chapter, the nature of iRMX networking is covered in more
detail so you can develop programs that use the network directly. You will
also see how the BIOS' remote file driver uses the network to implement
access to networked file systems.

Networking is a key element of the iRMX for Windows support for the
Windows Dynamic Data Exchange (DDE) mechanism. The DDE is what
allows Windows applications to exchange data with one another, such as a
field in a word processing document containing a value extracted from a
cell of a spreadsheet. iRMX for Windows allows iRMX applications to use
the DDE mechanism to share data with Windows applications and, more
significantly, to extend the DDE to operate transparently over a network.
With the iRMX for Windows networking software in place on computers
running Windows, any mixture of iRMX and Windows applications run
ning on different computers can exchange data the same way that two con
ventional Windows applications use the DDE without iRMX. The DDE
mechanism is discussed in more detail in chapter 12.

11.2 A Network Model

No discussion of networking can begin without mention of the familiar
seven-layer reference model for networking known as the Open Systems
Interconnection (OSI) Reference Model and promulgated by the Interna
tional Standards Organization (ISO).1

IThere are those who believe that the ISO purposely chose the name OSI for their model to
confuse people with two acronyms that are anagrams of each other.

409

410 iRMX Concepts and Features

Application ~ ~ ~ - - - Application 7

Presentation - - - - - - - - - - - - Presentation 6

Session - - - - - - - - - - - - - - - Session 5

Transport - - - - - - - - - - - - - - Transport 4

Network - - - - - - - - - - Network 3

Data Link - - - - - - - - - - Data Link 2

Physical Link Physical Link 1

Figure 11.1 ISO seven-layer reference model.

Figure 11.1 shows two systems linked by a network in terms of the OSI
model. The physical layer is the medium that connects systems on the net
work, such as an Ethernet cable. The data link layer is very similar to the
hardware device controller that connects a computer to the physical me
dium, and the network layer can be thought of as the device driver software
that acts as the interface between the operating system and the device con
troller. This characterization ofthe lower three layers as structures should
already be familiar to you from the discussion of device drivers in chapter 9,
but is only approximately accurate. Nonetheless, it provides a useful start
ing point.

Above the network layer, software modules at the corresponding layers
on different systems can communicate with each other by passing requests
up and down the stack of layers on the local system. For example, an appli
cation on one computer that wants to communicate with an application on
another computer can do so by using the Presentation layer on the local
computer. The Presentation layer passes each request from the Applica
tion layer to the Session layer, and so on, until the Physical layer actually
transfers the request over the network to the remote system. At the remote
computer, the Physical layer receives the request, and passes it up to the
Data Link layer, which passes it on up the stack of layers, which repeats
until the request is delivered to the appropriate application.

The OSI model allows for a many-to-one relationship between software
modules at one layer and the next lower layer. For example, several appli
cations can simultaneously share the same Presentation layer software. At
the other end of the stack, a single Ethernet cable might carry packets for
Novell, Transmission Control Protocol/Internet Protocol (TCP lIP), and
ISO networks. They would all be processed equivalently by the Physical
layer, but the Data Link layer manages the differentiation among packet

iRMX Network Programming 411

types to support the three different Network layer modules concurrently.
The ISO has published standards for the interfaces among the OSI refer
ence model layers, but networks such as Novell and TCP lIP do not use
these standards. The implementations of the lowest layers, however, do
support the sharing of common Physical and Data Link hardware and soft
ware among these three as well as other types of networks.

Here, by the way, is an example of where the analogy between the lower
three layers and devices, device controllers, and device drivers breaks
down. One mechanism for supporting multiple networking protocols is
called a packet driver, which is a device driver that resides between the data
link and the network layer in the OSI model. When a Novell packet arrives
at the device controller, the packet driver passes it on to the Novell device
driver. When an Internet Protocol (lP) packet arrives, the packet driver
passes it on to the IP device driver. When an ISO packet arrives, the packet
driver passes it on to the ISO device driver. Another mechanism is for the
ISO device driver to receive all packets and pass the IP packets on to the IP
driver. Both mechanisms are used on iRMX systems, and neither fits per
fectly into the ISO model. The packet driver mechanism is used on PC
platforms, and the ISO-receives-all mechanism is used in a TCP lIP im
plementation for iRMX currently under development at Intel. The differ
ence between the two approaches is not terribly significant beyond noting
that it is possible for the Data Link layer to support higher-level protocols
that do not adhere to ISO standards.2 This topic is further discussed at the
end of this chapter when the Data Link layer services available to iRMX
programs are detailed.

A natural break exists in the OSI stack between the Transport layer and
the layers above it because the Transport layer is the lowest layer that pro
vides for the reliable exchange of packets between processes running on
separate computers. Applications such as file transfer, remote procedure
calls (RPC), and E-mail can be built directly on top of a Transport layer
implementation. The Internet uses the Transmission Control Protocol
(TCP) and IP to implement the layers at the Transport layer and below,
and applications such as FTP for file transfer and Telnet for remote login
are implemented on top of TCP/IP. Rose (1990) argues that the TCP/IP
protocols are more efficient than the corresponding ISO layers, and he has
implemented the ISO Development Environment (ISODE) for imple
menting upper-layer ISO modules on top of the TCP lIP Transport layer
interface. iRMX provides a Transport layer that is compatible with the
ISO standards, and there is an experimental implementation of TCP lIP
available as well, with a complete TCP lIP package, including FTP and
Telnet applications, expected to be available from Intel in 1993.

2To provide a consistent implementation of TCP lIP across various computing platforms,
the TCP lIP layer performs all its network processing by making calls to the ISO Data Link
layer. On the PC platform, the Data Link layer uses the Packet Driver to perform the actual
network data transfers.

412 iRMX Concepts and Features

11.3 THE iRMX Networking Context

iRMX provides networking support in two software modules. The Trans
port layer and below are encapsulated in one module, called iNA-960.3

Remote file access (the Session layer and above) is provided by a second
module, called iRMX-Net. In keeping with the OSI many-to-one relation
ship among layers, it is possible for other applications besides file access to
be built on top ofthe Transport layer, and the latter part ofthis chapter is
devoted to the concepts involved in developing such applications on top of
the Transport layer.

iNA-960 runs either as an iRMX job using the processor running the
iRMX operating system itself, or is downloaded to a network controller
board that supplies its own processor and memory. The version ofiNA-960
that runs in protected mode as an iRMX II or iRMX III job is called iTP-4.
(TP-O and TP-4 are the names of the most commonly used ISO standards
for the Transport layer; the digit in the names refers to increasing levels of
reliability.) The version of iNA-960 that is downloaded to a network con
troller board runs in real mode as standalone code and is called iNA-961.
(The name iNA will refer to either implementation.)

To provide a consistent interface to applications, all access to iNA is
achieved through software that implements the Message Interprocessing
Protocol (MIP). If iNA is running as an iRMXjob, the MIP software sim
ply passes messages back and forth between the application and iN A using
internal procedure calls. If, however, iNA has been downloaded to a sepa
rate network controller processor, a version of MIP is used that uses the
system bus to pass messages. Depending on the nature of the system bus,
this message passing involves using either the message passing facility of
the bus (Multibus II) or shared dual-ported memory (Multibus I and AT
bus). Although MIP is an interface to the Transport layer, it does not fit
into the OSI reference model as a Session layer implementation. Rather
than acting as one of several users of the Transport layer, the MIP is sim
ply the unique interface to the Transport layer for all upper-layer software
that works, regardless of the implementation of the Transport layer in a
particular configuration.

iRMX-Net uses iNA to provide interoperability between iRMX, DOS,
Unix, and VAX/VMS file systems. Basically, interoperability means that
computers running any of these operating systems can share files and
printers, provided they run ISO Transport layer software and Intel's
OpenNet software. OpenNet, in turn, acts as an interface between the local
computer's I/O system and the network. There are different versions of
OpenNet for different operating systems. OpenNet for iRMX is called
iRMX-Net, OpenNet for DOS is called MS-Net, OpenNet for VMS is

3iNA stands for Intel Network Architecture. The number 960 is an arbitrary part of the
name and has nothing to do with the i960 microprocessor.

iRMX Network Programming 413

called VMS-Net, OpenN et for Unix System V is called SV -Net, and Open
Net for Xenix is called Xenix -Net. You will see how iRMX -Net operates in
this chapter, which will provide some background for using iNA directly,
and you will also see how MS-Net operates in anticipation of the network
ing discussion under iRMX for Windows.

Before discussing iRMX-Net and MS-Net, you need to be aware of a
fundamental difference between typical PC networking systems and
iRMX or Unix networking. Because DOS is inherently single-threaded,
most PC networks run network servers on one computer and network
clients on separate computers. The server computer runs a special operat
ing system dedicated to satisfying network requests made by remote clients
for file or device access. When a user operating a client machine needs ac
cess to a remote file or printer, his or her local computer communicates
with the server computer to send or retrieve the proper data. While the
transfer is taking place, the client computer (running DOS) is dedicated to
processing the transfer, just as it is normally dedicated to servicing local
disk accesses when they occur. The server computer, on the other hand,
can normally process several client operations concurrently because ofthe
design of its networking operating system.

Unix and iRMX, however, are inherently multithreaded operating sys
tems. There is no problem for the same computer to simultaneously act as
both a server and a client for the network, except perhaps for the additional
computing load placed on the user's processor. (This overhead is less when
iNA is running on a separate processor located on the network controller
board.) Rather than dedicating an entire computer to server operations, all
computers on a Unix or iRMX network can concurrently operate as both
servers and clients in what is known as a peer-to-peer networking relation
ship. The OSI reference model fits a peer-to-peer network structure well,
but does not require that structure. Of course, some computers in a peer
to-peer network might be thought of primarily as servers because of the
particular peripherals attached to them, such as printers or large disks,
which these computers make available to the other computers on the net
work. Still, such servers are peers in the sense that they can also act as
clients in principle, if not in practice. Peer-to-peer networks such as Open
Net commonly allow systems running different operating systems to work
with each other, b~t they do not require a special operating system just for
server operations.

11.3.1 iRMX-Net

Figure 11.2 shows the structure of the networking components of an
iRMX-Net system. The iRMX-Net job is a resident program that acts as
the intermediary between the iRMX BIOS and the Transport layer inter
face to the network. When an application program uses an I/O connection
that was attached using the Remote file driver, it acts as a file consumer. In

414 iRMX Concepts and Features

Named File Driver

Physical File Driver

EDOS File Driver

Physical Link

Figure 11.2 Relationships among the networking components of an iRMX system.

this case, the iRMX -Net job acts as the device driver for all I/O operations.
It translates each I/O request into an appropriate network request, which
it sends to the transport layer software, iNA, using the MIP layer as the in
terface to iNA. The iRMX-Net (or VMS-Net, or whichever) job running
on the remote computer receives the request over the network and acts as
the file server for the request by making I/O calls on the remote computer
to perform the requested operations on behalf of the client. Figure 11.2 rep
resents this server feature of iRMX -N et by showing connections from
iRMX-Net to the other BIOS file drivers of an iRMX system-Physical,
Named, and EDOS. Figure 11.2 also shows that iRMX applications can
access iNA services directly to implement other data-link and transport
level operations besides file transfers. The direct interface between iRMX
applications and iNA is the focus of most of this chapter.

Implicit in the notion of an iRMX-Net file server or file consumer are
the issues of user security and network addressing. iRMX-Net builds on
the User Definition File (UDF)-based security mechanisms inherent in the
BIOS. (The UDF was introduced in the discussion of I/O user objects in
chapters 7 and 8.) Because iRMX itself is not designed as a secure operat
ing system, iRMX -Net can use either of two techniques to validate a user's
network requests.

The first technique is client-based protection, which can be used when
the security of an iRMX system can be trusted. In this case, the server as
sumes that the client machine has verified the authenticity of its users and
accepts all requests from a client machine, provided only that the client is
listed in the server's : conf i g : cdf file, the Consumer Definition File

iRMX Network Programming 415

(CDF) for the server. The command modcdf can be used to add the names
and passwords of client machines to the server's CDF. The CDF is similar
in function to the hosts .equiv file on Berkeley Unix systems.

Client-based protection uses the actual user name supplied when an in
dividuallogged into a system rather than a user's current ID at the time of a
remote file access to reduce the likelihood of problems due to forged user
objects. For example, this feature prevents a user from forging Super-user
status on an iRMX system and then using the forged identity to obtain un
warranted permissions for a remote system.

The second technique is server-based protection, which is used to provide
a more secure networking environment. In this scheme, there is no entry in
the server's CDF for a client. Every network access initiated by a client
(such as issuing an attachdevice to a remote system) is accompanied by the
name and password supplied when the user logged into the client system,
which must match the name and password for the user in the server sys
tem's UDF. (The user and group ID numbers do not need to match, but the
names and passwords must.)

Network addresses are rather complicated data structures that are dis
cussed later in this chapter. iRMX-Net provides a distributed database
that allows programs to obtain network addresses (and other information)
using simple names. The database is accessed through a software module
called the Name Server (NS). Although the NS is part ofiRMX-Net, it can
optionally be run either on the iRMX processor or downloaded to the LAN
board and accessed independently of the file services provided by iRMX
Net.

Chapter 2 described how to access a file on a remote computer from the
command line. That process began with an attachdevice command, such as
the following:

iRMX>attachdevice systeml as 1 remote [1]

This command establishes : 1: as the logical name for the virtual root
directory on a computer system called systeml. When this command is
issued (or the equivalent system call is executed), the remote file driver
routes the operation to the iRMX-Net job to act as the device driver for
operations that involve the connection created with the logical name : 1 : .
The iRMX-Net job uses the NS to query the network's database to deter
mine the network address of systeml, and stores that address (or a
pointer to it) as part of the connection's internal data structure.

For this operation to succeed, some computer on the network must pre
viously have loaded the network address of systeml into its portion of the
distributed database. For iRMX systems, each computer typically loads its
own name and network address into its own part ofthe database when the
operating system initializes. However, other OpenNet systems do not in
clude the NS provided by iRMX-Net. For those systems, one ofthe iRMX
computers can act as the spokesperson for the other computer. For exam-

416 iRMX Concepts and Features

pIe, systeml's portion ofthe database can include entries both for itself
and another machine called systemu that is running SV-Net (Unix Sys
tem V). In this case, systeml is said to act as the spokesperson for sys
temu.

11.3.2 MS-Net

From a user's point of view, the most significant difference between MS
Net and the other members ofthe OpenN etfamily is that MS-Net does not
support peer-to-peer networking. A computer running MS-Net can oper
ate as either a client or a server, but not as both simultaneously. When
MS-Net is running as a client, a user can issue DOS commands to access
remote disks and printers using the same command line syntax as that
used to access local devices. When MS-Net is running as a server, DOS
continues to run on the computer, but the local user is prevented from en
tering any DOS commands except for those that interact with the server
itself, such as to shut it down. The reason for this characteristic of MS-Net,
as mentioned earlier, is the single-threaded nature of the underlying DOS
operating system.

Two features ofthe implementation of MS-Net are important to men
tion here: NetBIOS and the Redirector. NetBIOS is a standard interface
for DOS software that performs network operations. The NetBIOS Appli
cation Programming Interface (API) is accessed by constructing a data
structure known as a Network Control Block (NCB) that contains infor
mation such as code for the network operation to be performed and values
for the parameters needed to perform the operation. A pointer to the NCB
is loaded into a register pair (es: bx), and the application issues a software
int 5C instruction to call the NetBIOS software. There is no single Net
BIOS software module for DOS. Rather, a user loads a Terminate and Stay
Resident (TSR) program that will implement the NetBIOS API as appro
priate for the particular network being accessed. For example, netbios.exe
is the name of a program supplied as part of MS-Net that installs itself as
the interrupt handler for level5C, translating the NetBIOS NCBs into re
quests to be carried out by iNA software running on the Network Interface
Adapter (NIA) installed in the user's PC.

The Redirector is built on the capability available in DOS to work with
what could be called virtual device names. For example, even without net
working software installed, a DOS user can make disk-drive letters, such as
A: or B : , represent something other than actual physical disk drives. The
DOS assign command can be used to tell DOS that all I/O operations that
name one disk are actually to be performed using a different disk, and the
DOS subst command lets the user reference arbitrary directories using
drive letters as well.

There are at least three ways to implement I/O redirection in DOS. The
first way DOS supports network redirection is through a set of system calls

iRMX Network Programming 417

(int 21, functions Ox5F02, Ox5F03, and Ox5F04) that allow device names for
printers and disk drives to be redirected to the network. Function code
Ox5F03 is used to establish such a redirection mapping, Ox5F02 is used to
find out what mappings are in effect, and Ox5F04 is used to cancel a redi
rection mapping.

The second method is for software to chain to the DOS int 21 vector. In
real mode, any program can access the interrupt vector in low memory. A
program can therefore install itself as the interrupt handler for interrupt
level 21, which is used for DOS system calls. Such a chained software mod
ule would examine each I/O request made to DOS to determine whether
the request references a device for which the program is providing redirec
tion. If such a request is detected, the program would service it itself; if not,
the program would pass the request back to DOS's original int 21 handler.
Novell's network redirector uses this technique to intercept I/O operations
that must be processed by its IPX network driver.

The third method is to use the internal DOS interrupt, level2A, to which
a network redirector can chain instead oflevel21. MS-Net chains to this
level, generating NetBIOS requests on level 5C when it detects network
accesses.

You will see in chapter 12 how the standard NetBIOS interface provides
support for the DDE mechanism in iRMX for Windows.'

You will also see how the notion of a network redirector is added to the
iRMX side ofthe network to provide network access for the Windows DDE
mechanism. At this point, the discussion focuses on programming iRMX
applications that interact directly with the iNA implementation ofthe ISO
Transport layer.

11.4 Network Mechanisms

Two processes communicate over a network by sending messages to each
other. Each message includes the data to be exchanged, along with address
ing information that tells each layer of the network stack where the mes
sage is to be delivered. This addressing information is prepended to each
message by each layer of software, so that a message sent over the network
might ultimately look like Figure 11.3. Each layer in the protocol stack
prepends its own addressing information as the message is sent down the
stack, and, at the other end, each layer of the stack uses the addressing at
the head of the message to direct it to the next layer above, removing its
own addressing information in the process.

4When running iNA on an iRMX for Windows system, a DOS program calledpcnet.exe in
tercepts NetBIOS requests on level5C, and generates equivalent requests on level5B. These
requests are received by an iRMX job called netrdr.job, which turns these requests into iNA
request blocks.

418 iRMX Concepts and Features

Data Link Network Transport Application Application
Address Address Address ... Address Data

Figure 11.3 Structure of a network message.

The ellipsis (...) in Figure 11.3 is more than a convenience to make the
figure more compact. Rather, it indicates that some layers of the protocol
stack might not actually be present. For example, you will see how applica
tions can communicate with each other through direct interaction with the
Transport layer without going through any Session or Presentation layer
at all. Also, note that there is no Physical layer address in the figure. Each
message is broadcast to all computers connected to the network, and logic
at the Data Link layer (the device controller) recognizes which messages
are to be accepted by that computer. The Data Link layer simply ignores all
other messages on the network.

iNA supports two types of network addresses, Null2 and ES-IS. The dif
ference is whether the Network layer is to be included in the system or not.
If all the computers that need to communicate are on the same subnetwork
(connected to the same Ethernet cable, for example), Network layer ad
dressing is not needed, and iNA can be set up to use Null2 addresses, which
omits the logic associated with the Network layer. On the other hand, if two
computers that need to communicate are on different subnetworks, they
can only communicate with the help of a third system connected to both
subnetworks. The two computers that need to communicate with each
other are called End Systems (ES), and the third computer is called an In
termediate System (IS), providing the name for the ES-IS address format.
The IS accepts packets from all subnetworks and sends the packets out on
the subnetwork so they will be delivered to the proper ES. Another name
for an IS is an internetwork router.

11.4.1 Packets and messages

Figure 11.3 is an abstraction of a network message form, and the actual
data structures used by the programmer to build a network message are
discussed shortly. First, two related concepts must be covered: packets and
connections. The terms packet and message have been used somewhat
loosely and interchangeably throughout this book. All information sent
over an Ethernet cable is sent a packet at a time, and the Ethernet specifi
cation (IEEE standard number 802.3) specifies the maximum number of
bytes (called octets by parts of the networking community) a packet can ac
commodate. If a single message is too large to fit in one packet, it must be
divided into smaller chunks that will fit into the packets. The packets are
transmitted separately over the network and reassembled into a single

iRMX Network Programming 419

message again at the other end of the network connection for delivery to
the receiving application.

The terms Transport Protocol Data Unit (TPDU) and Transport Service
Data Unit (TSDU) are used to distinguish between packets and messages.
A TSDU is a network message, and can be essentially any size, including
the size of an entire disk file. A TPDU is the part of a message sent in a sin
gle packet. Each TPDU is small enough to fit into a single Ethernet packet
along with the addressing information used by the lower network layers. A
TPDU also includes sequencing information so that the Transport layer
software at the receiving end can assemble the entire message in the cor
rect order, even if the individual packets are delivered across the network
out of sequence. Out-of-sequence delivery is a distinct possibility when al
ternate networking routes are available between a sending ES and a re
ceiving ES.

Applications do not need to be concerned with TPDUs, but they do deal
with TSDU (message) boundaries. If a fixed-length entity such as a file is
being sent as a message, an application could request that the Transport
layer send the entire message, or send the file in chunks whose sizes depend
on the buffer sizes the application uses to read the file from disk before writ
ing it to the network. The application uses two different commands for writ
ing the data, send_data and send_eorn_data. The former is used for
sending all but the last chunk, and the latter (eorn stands for end of message)
is used to send the last chunk in the message. The receiving application can
read the message in whatever chunk sizes are convenient for itself, indepen
dent of the chunk sizes used to send the message. The receiver receives a spe
cial condition code when it reads the end of the message. The Transport
layer software apportions the chunks being sent into TPDUs at the sending
end, divides TPDUs into the chunks requested by the receiving end, and
handles the end-of-message condition at both ends, automatically.

This ability to send and receive data over the network independent of
message boundaries is crucial for applications that work with stream data,
defined as a sequence of data that must be consumed by a receiver as it is
produced by a sender, without waiting for an end-of-message indicator. An
example would be an interactive remote login server, which must read and
echo each keystroke as it is typed by a remote user without waiting for the
user to type an end-of-line character.

Stream data is characterized by having fixed-length data units with in
ternal codes that indicate message boundaries. For the terminal server ex
ample, each octet is a data unit, and an ASCII <cr> could indicate the end
of a message. Another example is found in the X Window System protocol
in which network requests consist of request blocks containing various
numbers of bytes. The first part of each request block is a fixed-length
header that always includes a field identifying the total size of the request
block. The receiving application reads the header and then reads as many
additional bytes as necessary to read the rest of the block.

420 iRMX Concepts and Features

11.4.2 Network connections

The ISO standards provide for two types of communication over a net
wor k, connectionless and connection-oriented. Connectionless communica
tion' which is also called datagram service, treats each packet sent over the
network as a separate message, called a datagram. The network plays a
passive role for datagram service. Once the local machine's lower network
ing layers verify that a datagram has been sent out successfully, the local
machine's networking software is no longer involved with that datagram.

Because a network packet is received by any and all systems on the net
work that recognize the address in the packet's header, it is possible that no
remote systems (or, perhaps, several) will accept a datagram sent out by a
local system. In an ES-IS environment, a datagram might go through several
retransmissions before reaching its destination, leading to a degree of un
certainty on the part of a sending program about whether a datagram has ac
tually been delivered successfully or not. One solution to this uncertainty
problem is to have applications that want to communicate with each other
using datagrams establish their own protocol for reliable communication. A
datagram-based server, for example, could be programmed to send an ac
knowledgment packet to the sender of every packet it receives. If the sender
does not receive an acknowledgment in a reasonable amount oftime, it re
transmits the datagram. Individual datagrams could be given unique ID
numbers so that a server would ignore duplicate datagrams sent because an
acknowledgment datagram got lost or took too long to be delivered.

The need for this type of reliable delivery service is so common that it has
been built into the Transport layer itself. The mechanism involves setting
up a connection called a virtual circuit (VC) between the two programs that
want to communicate. The term connection in this context has nothing to
do with the iRMX BIOS's connection object type. You can think of a VC as
an object type defined by and managed by iNA software that is indepen
dent ofthe iRMX operating system.5 Connection-oriented communication
goes through several distinct phases, as described as follows:

Connection establishment. This phase sets up a virtual circuit, which can
involve a negotiation process between the Transport layer software on
both computers. When this process is complete, the programs at each end

5iRMX-NET creates an operating system extension (aSE) for VC objects, largely so that
iRMX -NET can be informed when a job that has created a VC terminates without deleting
the VC itself. (See the discussion of deletion mailboxes in Chapter 10 for more information on
the rationale behind this use ofaSEs.) When iNA is implemented on a controller board with
its own processor and memory, the data structure associated with a VC is allocated from the
controller board's memory, and the aSE provides a mechanism to help manage the memory
on the controller board.

iRMX Network Programming 421

both have a token used to identify the VC to their local Transport layer
software.

Data transfer. Either program can send messages of any length to the pro
gram at the other end. The Transport layer divides the messages into
TPDUs as necessary, verifies that individual packets are received by the
Transport layer software at the other end, and assembles arriving TPDUs
into messages for delivery to the local user of the VC on demand.

Connection termination This phase is supposed to provide for an orderly
shutdown of communication between programs at the two ends ofthe VC.
In practice, closing a VC is not like closing a BIOS or EIOS I/O connection.
In particular, any data queued for transmission but not yet sent is lost
when a VC is closed. Applications need to establish their own protocols to
tell each other when it is safe to close a VC between them.

11.5 Transport Address Buffers

Probably the most difficult part of network programming is the manage
ment of network addresses. Transport layer datagrams and virtual circuits
use a data structure called a ta_buffer, shown in Figure 11.4.

The buffer consists of four parts: the local Network Service Access Point
(NSAP), the local Transport Service Access Point (TSAP), the remote
NSAP, and the remote TSAP. The idea of a service-access point such as a
TSAP or NSAP is to support the many-to-one relationship between one
protocol layer and the software running one layer above it. For example,
each application that uses the Transport layer must specify a unique iden
tification number for itself (its TSAP) so the Transport layer can dis
tinguish one application from another. Likewise, an NSAP allows the
Network layer to tell which of possibly several Transport layer implemen
tations it is communicating with. Since iNA (the Transport layer) and the

Figure 11.4 Structure of a transport address buffer.

struct ta_buffer {
BYTE local_nsap_selector_length;
BYTE local_nsap_selector[LOCAL_NSAP_SELECTOR_LENGTH};
BYTE local_tsap_selector_length;
BYTE local_tsap_selector[LOCAL_TSAP_SELECTOR_LENGTH};
BYTE remote_address_length;
BYTE remote_address [REMOTE_ADDRESS_LENGTH} ;
BYTE remote_tsap_selector_length;
BYTE remote_tsap_selector[REMOTE_TSAP_SELECTOR_LENGTH] ;
}

422 iRMX Concepts and Features

Network layer are implemented as a unit on iRMX systems, it should be
clear that there is no real need for a local NSAP for iRMX networking,
and the ISO standards allow a value of zero for LOCAL NSAP ADDRESS
LENGTH.6 - - -

Selector (like connection) is another term that has different meanings in
iRMX and networking contexts. For networking, it is simply a name for an
identification number and has nothing to do with microprocessor pro
tected-mode memory addressing as described in chapter 5. Indeed, other
commonly used names for NSAP selectors (found in a remote_nsap
_address, described later) and TSAP selectors are NSAP IDs and TSAP
IDs. If two programs will communicate with each other using the Trans
port layer, they must specify matching TSAP ID values for the ta _ buf fer
used when connecting (or for each datagram for connectionless opera
tions). This requirement for matching TSAP IDs can be handled in one of
three ways:

1. The applications that want to communicate select any convenient
values for the TSAP IDs. This technique works provided two different
applications do not decide to use the same values for their TSAP IDs on
the same network.

2. The name server, described below, can be used by applications to publi
cize the TSAP IDs they are using. For example, a server could determine
a TSAP ID that is not being used and enter that value into the name
server database using some well-known name. Clients could query the
database by name to determine the TSAP ID value to use for connecting
with the server.

3. A central authority could be set up to assign TSAP IDs to application
protocols. For example, an organization could decide that a certain file
exchange protocol will have all file servers use a TSAP ID value of
OxlOOO and all file consumers use a TSAP ID value of OxllOO.

Readers familiar with the TCP lIP protocols used on the Internet might
recognize that TSAP IDs play the same role as port addresses in those pro
tocols. For example, all Internet File Transfer Protocol (FTP) servers ac
cept requests for service in the well-known TCP lIP port number 21. The
Internet Protocols, including port numbers used, are published in docu
ments called Request for Comments (RFCs), available from the Network
Information Center (NIC), which can be accessed using FTP at the Inter-

6The structure shown in Figure 11.4 should be considered pseudo-code because a value
of zero leads to a syntax error if you try to compile it; In particular, the local nsap se
lector length field is usually zero, so the local nsap selector array mustbe omitted
from the code for the structure. --

iRMX Network Programming 423

net address nic.ddn.mil. Thus, the NIC could be thought of as the central
authority for Internet Protocol port numbers.7

For another example of choosing TSAP IDs, the values provided in item
(3) are the actual port numbers used by OpenNet file servers and con
sumers. They are entered in the name server's database using the names
FSTSAP and FCTSAP, implying that it would be possible to develop Open
Net file servers and consumers that use different TSAP values. That might
actually be true, but there is no reason to do so, and it is not clear that ex
isting OpenNet software can adapt to different TSAP IDs in a meaningful
way. Rather, it is better to think of these TSAP IDs as being assigned by
another central authority, namely the OpenNet developers at Intel.

The REMOTE_NSAP _ADDRESS field of a ta_buffer provides the infor
mation that the network layers below the Transport layer will need to con
nect to a remote system. There are three forms this field may take, Nu1l2,
Static Internetwork, and ES-IS Network formats. These forms are dis
cussed in the following subsections.

11.5.1 Nul12 network addresses

Null2 addresses can be used if all the computers communicating with each
other are connected to the same network medium, such as a single Ether
net cable. In networking parlance, all the computers are said to be on the
same subnetwork. Thus, the Null2 format can be used when there is no
need for an IS to route packets from one subnetwork to another. The name
Null2 refers to the idea that Null2 addresses are used when iNA is config
ured with no (or null) network routing capabilities.

iRMX for Windows supports Transport layer communication using
N u1l2 addressing even when no network device controller is installed in the
computer. In this case, two applications running on a single computer can
use networking protocols to exchange data with each other whether they
are both Windows applications, both iRMX applications, or a combination
of the two. Furthermore, the applications can be ported transparently to
operate over a real network, as demonstrated in the discussion of the
iRMX for Windows DDE mechanism in chapter 12.

A C structure for a Nu1l2 address would be the following:

struct Nu1l2 (
BYTE AFI;
WORD subnet;
BYTE host_id[6);
BYTE lsap_selector;
BYTE nsap_selector;
}

7Comer (1988) presents a good summary of the IP addressing mechanism and provides a list
of many of the well-known port addresses used on the Internet. Stevens (1990) provides an
excellent guide to this and many other networking topics relevant to this chapter.

424 iRMX Concepts and Features

The AFI field is the Authority and Format Identifier. All iNA network
addresses use a value ofOx49 for this byte. If another ISO Network layer
were to use the same subnetwork as iNA, it could use a different value for
this byte, and the format of the remainder of the network address couid be
decoded according to the different AFI values encoded here. This feature is
useful in concept only, however, as the iNA implementation of the Net
work layer recognizes only this one value.

The subnet field is used for internetwork routing. For Ntill2 addresses
it is always set to a constant value, OxOOOl.

The host_id field, for Ethernet connections, is a unique identifier
associated with the network device controller. Every company iIi the world
that manufactures Ethernet device controllers is assigned a range ofthese
Ethernet addresses by a central authority, and every controller board
manufactured by a company is built with a different address within the
company's assigned range configured into it. The idea is to guarantee that
addressing conflicts do not exist among computers connected to an Ether
net, regardless of from where the Ethernet device controllers came. The
Ethernet address is also known as the Media Access Control (MAC) ad
dress for a computer.

The lsap_selector field is a Link Service Access Point identifier,
serving an analogous role for the Data Link layer to the TSAPand NSAP
IDs for the Transport and Network Layers. Since the Data Link layer is
implemented within iNA, this selector is always coded with the same value,
OxFE, for all iNA applications.

Finally, the nsap_selector field is an ID number used for network
routing. Since the Null2 address format does not support network routing,
this byte is always coded as OxOO. Technically, this byte can be omitted for
Null2 addresses, with the remote nsap address length field of the
ta_buffer indicating whether it is pres;nt (length~quals 11) or absent
(length equals 10). Standard practice is to include it.

How to fill in this data structure is discussed later in this chapter when
name server operations are covered in section 11.9 and when a small data
gram application is presented in section 11.7.

11.5.2 Static and dynamic internetwork addresses

Network routers (the ISs in our terminology) accomplish their job by
maintaining a set of tables to identify how to direct packets from one
subnetwork to another. These tables are nianaged by iNA for OpenNet
networks, and can either be set up when the network is configured, or
constructed and modified as the network is running. The former is less
flexible, but makes fewer demands on the network itself. The flexibility of
dynamic router tables also requires additional software to create and

iRMX Network Programming 425

maintain them. Static internetwork addresses look almost exactly like
Nu1l2 addresses:

struct Static {
BYTE AFI;
BYTE area_id[5]
BYTE subnet;
BYTE host_id[6J;
BYTE lsap_selector;
BYTE nsap_selector;

The difference is that the 2-byte subnet field has been replaced by 6
bytes that incorporate an area_id and a subnet number. The other
difference is that iNA interprets an address as a Nu1l2 address if the
nsap_selector field is 0, even if an area_id is included. The values for
AFI, host_id, and lsap_selector have the same interpretations as the
corresponding fields of a Nu1l2 address.

The format of internetwork addresses for networks that support dy
namic routing tables is basically the same as for Nu1l2 and static routing
(AFI, subnet, host_id, lsap_selector, and nsap_selector fields).
However, the interpretation of the subnet field depends on how the rout
ing tables are configured for the network, which is beyond the scope of this
chapter. Interested readers should consult the iNA 960 Programmer's Ref
erence manual (Intel, 1991a).8

11.6 The Request Block Interface to iNA

To communicate with the network, an iRMX application must communi
cate with iNA. To the application, communicating with iNA is similar to
the IORS interface to the BIOS, introduced in chapter 8. In networking,
the application creates a Request Block (RB), places a token for a response
mailbox in the RB, sends the RB to iNA, perhaps performs other process
ing while iNA processes the RB, and then waits at the response mailbox,
where the RB is returned with a completion status and other information.

The differences between iNA RB processing and BIOS IORS processing
are that the application constructs RBs itself, but the BIOS constructs
IORSs for applications automatically, and that the communication of
IORSs between the BIOS, the device driver, and the task that calls the

8This manual is being replaced by the Network Programmer's Reference manual. The Net
work Programmer's Reference manual and the iRMX Network Concepts manual, which re
places the one written in 1991 {Intel 1991b), are bound into a single volume and included with
the iRMX III documentation set.

426 iRMX Concepts and Features

BIOS is all managed directly by iRMX, whereas RBs are passed between
iRMX and iNA using the MIP protocol mentioned earlier. Using the MIP
often involves communication between two different microprocessors
(often including the processor on the device controller that is not running
iRMX) that communicate through shared memory or the message passing
features of a hardware bus.

Each RB includes a function code, room for status information, the
token for a response mailbox, and pointers to the buffers needed for the
particular function being requested. The exact nature of this information
is discussed shortly, but first, programmers must be aware of a basic prob
lem that must be dealt with, at least in most iNA implementations:
pointers that make sense for one microprocessor, such as the one running
iRMX, do not automatically make sense for another microprocessor, such
as the one running iN A, even if the pointers refer to the same shared physi
cal memory addresses.

For example, a protected-mode version of iRMX would use the selec
tor: offset form for pointers that refers to the microprocessor's private
Local Descriptor Table (LDT) or Global Descriptor Table (GDT) descrip
tor tables (see chapter 5), whereas iNA typically runs on a processor that
runs in real mode with base: of f set pointers. For the MIP to accomplish
the necessary pointer conversions in the various configurations in which it
must operate, all pointers in RBs are passed and returned as 32-bit values
put into the proper form for a particular environment using the function
cqcommptrtodword(). The matching function, cqcommdwordtoptr(), turns
a 32-bit address back into a protected-mode pointer. For cqcommdword
toptr() to function correctly in all situations, all of the buffers referenced
by an RB must be in the first 64 kilobytes (KB) ofthe same segment as the
RB. In addition, the selector (token) for the segment containing the RB
must be stored in the header portion of the RB itself.

At this point, you can see the general algorithm that tasks use for all in
teractions with iNA:

1. Obtain a segment to hold the RB data structure and all buffers that the
RB references.

2. Fill in the RB data structure, including the opcode, the token for a re
sponse mailbox, and whatever other information might be required.

3. If the RB includes pointers to buffers, use cqcommptrtodword() to con
vert those pointers to a form recognized by iNA. Put the token for the
segment containing the buffers in the proper field of the RB.

4. Use the function cqcommrb() to send the RB to iNA for processing, a
process called posting an RB. The RB is not necessarily moved any
where, but iNA receives access to it. The application must not alter the
contents of the RB until iNA finishes processing it.

iRMX Network Programming 427

5. Wait at the response mailbox for the RB token to be returned. A task
can post multiple RBs using the same response mailbox, if desired.

6. If necessary, the task can use cqcommdwordtoptr() to convert any physi
cal addresses in the RB back to protected mode pointers after it receives
the RB back from iNA.

11.6.1 The request block header

Every RB starts with the same data structure, called a Request Block
Header, shown in Figure 11.5. The fields are summarized as:

reserved. iNA uses this field internally to build a doubly linked list of
all the RBs being processed.

length. This field is the total length of the RB in bytes. This value in
cludes the length of the RB header, plus the length of any arguments that
follow the header. It does not include the lengths of any buffers pointed to
by the arguments. An incorrect value in this field can lead to errors that are
difficult to trace.

user_id. Before sending any RBs to iNA, an application must obtain a
user _id value by calling cqcreatecommuser(), and it must place this value
in the user_id field of every RB the application uses. (Function proto
types for all the cq system calls are given in the next section.)

response_port. This field is always coded as the constant OxFF.
response_mailbox. A token for an object mailbox is placed in this

field. The token for the RB segment is returned to this mailbox when iNA
has finished processing it.

segmentTkn. The token for the segment that contains the buffers
pointed to by the arguments in this RB goes in this field. The value is used
only by cqcommdwordtoptr(), as described previously.

subsystem. This code identifies the part of iNA that processes the RB.
The first nibble (high-order four bits) tells the OSI layer, using the num
bers in Figure 11.1. The Transport layer subsystems are Ox40 for virtual
circuits and Ox41 for datagrams. Non-OSI operations, such as the Network
Management Facility introduced in Section 11.10, use a value of 8 for the
first nibble.

Figure 11.5 Structure of a Request Block (RB) header.

struct rbHeader {
WORD reserved[21;
BYTE length;
WORD
BYTE
TOKEN
TOKEN
BYTE
BYTE
WORD
}

user_id;
response....port ;
response_mailbox;
segrnentTkn;
subsystem;
opcode;
response_code;

428 iRMX Concepts and Features

opcode. This field is the operation code for the specific function to be
performed.

response_code. Response code is a condition code value filled in when
the RB is returned to the response_mailbox if an error occurred. The
application should set this field to 0 before posting the RB. This field can
be set by either the MIP, if the problem occurred delivering the RB to iN A,
or by iNA to indicate the result of processing the RB. MIP response code
values are in the range OxFFOO to OxFFFF. Note that the standard iNA
"OK" response code is Ox0001, rather than the normal iRMX value of
OxOOOO. Programs that use literal names for response code values are more
reliable than those that use numeric constants; the values sometimes
change. Literal names for iNA response codes are given in the various
: include: cq* . hand: inc: cq* .li t files for C and PLM programs, re
spectively.

OK_RESPONSE is the standard name for the iNA response code OxOOO1.
Note also that the iRMX exception handling mechanism described in
chapter 6 does not apply to iNA or MIP exceptions.

The user_id field offers an interesting example of the use of an Oper
ating System Extension (OSE), described in chapter 10. A bit of poking
around with the System Debugger (SDB) or SoftScope indicates that the
value returned by cqcreatecommuser() is a token for an iRMX composite
object with type code Ox0165. The OSE for this object type is owned by the
iRMX -Net job, and the extension does have a deletion mailbox associated
with it. The idea is that if a job that owns a user_id object terminates
without first calling cqdeletecommuser{}, a copy ofthe user_id token is
sent to the deletion mailbox as the job is deleted, and the task that moni
tors that mailbox can notify iNA to free its resources that have been allo
cated to that user. If this mechanism were not in place, iNA's memory re
sources could easily become depleted over time, requiring an eventual
system reset to continue processing.

11.6.2 Function prototypes for RB operations

Only five functions exist in the API for the RB interface to iNA.9
The interface procedures are in library files called cqc .lib, cql.lib,

and cqc32 .lib for 16-bit compact, 16-bit large, and 32-bit applications,
respectively. These libraries are found in : SD : rmx3 8 6/ rmxnet for iRMX
for Windows; their directories vary for other versions of iRMX. The fol
lowing are their function prototypes.

extern TOKEN
cqcreatecommuser (WORD far * exceptPtr) ;

9The API for iNA is simply a programming interface to the network services supplied by
iNA. The API is independent of any network protocols used to exchange information over a
network.

iRMX Network Programming 429

The value returned is a user_id, as described previously. The exception
code returned is a normal iRMX exception code; any nonzero value means
the iRMX-Net software could not create the communication user object.

extern void
cqcommrb (TOKEN

WORD far *
rbTkn,
exceptptr) ;

This function is used to post an RB to iNA. The application should not
modify the memory used by the RB or its buffers until the token is returned
to the response_mailbox.

extern DWORD
cqcommptrtodword (void far *

WORD far *
Ptr,
exceptPtr) ;

The value of Ptr is converted into a 32-bit form understood by iNA. IfiNA
runs on a separate processor, the form can be a 32-bit physical memory ad
dress.1f iNA runs on the same processor as the application, the form can be
a l6-bit selector and l6-bit offset. For 32-bit code, the latter form restricts
the addresses referenced by RBs to the first 64 KB of a segment.

extern void far *
cqcommdwordtoptr (DWORD

WORD far *
dw,
exceptPtr) ;

The 32-bit address in dw is converted into a protected-mode pointer. For
this call to work properly, it requires dw to be an address within a segment
that begins with a valid RB header, as described previously.

11.6.3 Alternative interfaces to iNA

As the examples which follow show, programming the RB interface to iN A
can be a tedious process. Each field of each RB must be initialized with a
separate assignment statement, and a lot of repetitive work must occur to
create RBs, sending them to iN A, get them back, check for exceptions, and
the like. There are several ways to improve on the situation.

First, write a personal set of utility functions to perform common opera
tions such as creating an RB segment, filling in a ta_buffer, and the like.
The rprint command for network printing, available from the iRUG users
group, includes such a set offunctions developed by Fred Richter ofIntel's
Islandia, New York, office.

Second, use a programmatic interface to iNA instead of the RB inter
face. An excellent way to do this would be to implement a new type man
ager and set of system calls for network operations using the techniques
described in chapter 10.Finally, Vickery (1990) describes an interface that
makes iNA virtual circuits appear to implement the socket mechanism

430 iRMX Concepts and Features

available for BSD Unix systems. An alternate interface currently under
development at Intel is based on the Unix Transport Layer Interface
(TLI).

Readers interested in developing networking applications should con
sult the iNA 960 Programmer's Reference manual (Intel, 1991a) for de
tailed information on the RB interface to iNA.

11.7 A Datagram Example

At this point, you are ready to look at a sample networking application to
see the RB processing operation in action. The example is a time-of-day
server that could be used on a network in which some of the computers do
not have a battery backed-up time-of-day clock. A computer that does
maintain the correct time-of-day information is designated as a time-of
day server, and always runs a job, called timesrv, that accepts a datagram
from any other computer that wants to obtain the current time of day.
When such a request arrives, the server sends back another datagram con
taining the current time, using the standard iRMX representation for time
and date: a 32-bit integer giving the number of seconds since midnight
January 1, 1978.

Any computer on the network (including the one running timesrv) can
run the second program, gettime. This program sends a datagram to the
time server requesting the current time of day, receives a datagram con
taining the time in return, and uses the value in the returned datagram to
set the local computer's time of day. The datagram sent to the server nor
mally contains just one 32-bit word with a value ofO. If the useris the Super
user and specifies set on the gettime command line, the value sent in the
datagram is the local system's time of day, which the server uses to set its
own time-of-day clock.lo The C source code for timesrv is given in Figure
11.6. The algorithm implemented is the following:

1. Create a logfile, : sd: \ timesrv . log, and write a sign-on message to it.

2. Look up the iRMX object cataloged in the root job's object directory
with the name INARDY. The token obtained is of no interest, but the fact
that it is available is the signal that iNA is available. If the lookup oper
ation fails, it means either that the networking job failed to initialize for
some reason or that it was not included in the system configuration.

3. Call cqcreatecommuserO to obtain the user_id value that will be in
cluded in each RB posted to iNA.

IOThe sample server uses rqsettime() to set its time of day. This system call modifies only
the time of day maintained by the operating system. If this call were changed to rqsetglobal
time(), it would set the time on the computer's battery-backed clock.

iRMX Network Programming 431

Figure 11.6 Source code for the timesrv server program demonstrating the use of datagrams.

/***> timesrv.c <**

*
*
*

This program provides the current date and time when it receives
datagrarns at TSAP Ox0064.

*

*
*

*

The data portion of a received datagram must contain a four-byte
value. If the value is non-zero, this server will use it to set
the local system's time of day clock. Whether the received value
is zero or not, this server will return a datagram containing the
current time of day in iRMX format (number of seconds since
January 1, 1978).

*
**/

#include <stdio.h>
#include <time.h>
#include <string.h>

#include <rmxc.h>
include <cqcornm.h>
#include <cqcornmon.h>

/* POSIX time functions */

/* iNA Interface Function Prototypes
/* RB cornmon header structure

*/
*/

#include <cqtransprt.h> /* TL structs, opcodes, and response codes */

#include "tlrespcodes.h"

#define E_OK 0
#define NO_WAIT 0
#define ROOT_JOB 3

char logrnessage[80];
timeNow; /* POSIX date and time */

Status; WORD
TOKEN user_id, root_job, a_token, rb_segrnent,

responseMbx, coConn;

#pragrna noalign (Nul12)
struct Nul12 {

BYTE
WORD
BYTE
BYTE
BYTE
} ;

AFI;
subnet;
host_id[6] ;
Isap_selector;
remote_nsap_selector;

#pragrna noalign (ta_buffer)
typedef struct ta_buffer {

BYTE local_nsap_selector_length;
BYTE local_tsap_selector_length;
WORD local_tsap_selector;
BYTE remote_address_length;
struct Nul12
BYTE
WORD
} TA_BUFFER;

remote_address;
remote_tsap_selector_length;
remote_tsap_selector;

432 iRMX Concepts and Features

Figure 11.6 (Continued)

#pragma noalign (timesrv_dg_segment)
struct timesrv_dg_segment (

1*
*

DATAG~RB dg_rb;
T~BUFFER ta-Puf;
DWORD date_time; 1* iRMX date and time buffer *1
) *dgPtr;

*rbPtr;
*taPtr;

main() Starts Here

*1
int
main (int argc, char *argv[]) {

1*
*
*
*
*
*
*

*1

Initialization

Assume we are not able to write to a user's console (perhaps
because we are run by a sysload command), but that we are an
110 job and can write to a file. Create a logfile in the root
directory of the system device ... it's the only path we are sure
of.

coConn = rqscreatefile «STRING *)"\x010:sd:/timesr.v.log", &Status);
rqsopen (coConn, 2, 0, &Status);
timeNow = time (NULL); 1* POSIX time *1
sprintf (logmessage, "timesrv started -- %s", ctime (&timeNow»;
rqswritemove (coConn, (BYTE *)logmessage,

. strlen (logmessage), &Status);
if (Status != E_OK)

rqdeletejob «selector) NULL, &Status); 1* tragedy *1

1* Be sure iNA is available before continuing
*1

root~job = rqgettasktokens (ROOT_JOB, &Status);
a_token = rqlookupobject (root_job, " \ 6 INARDY " , NO_WAIT, &Status);
if (Status != E_OK) {

rqswritemove (coConn,
(BYTE *)"iNA not available, timesrv aborted.\r\n", 37, &Status);
rqdeletejob «selector) NULL, &Status);
}

1* Allocate all the resources this job will need
*
*
*
*
*
*/

These consist of:
collllil user ID
datagram RB segment
response mailbox for RBs

user_id = cqcreatecommuser (&Status);
if (Status != E_OK) {

rqswritemove (coConn,
(BYTE *)"Unable to create comm user, timesrv aborted. \r\n" , 46,
&Status) ;

rqdeletejob «selector) NULL, &Status);
}

iRMX Network Programming 433

Figure 11.6 (Continued)

rb_segment =
rqcreatesegment (sizeof (struct timesrv_dg_segment), &Status);

if (Status != E_OK) {
rqswritemove (coConn,

(BYTE *)"Unable to create RB segment, timesrv aborted.\r\n", 47,
&Status);

rqdeletejob «selector) NULL, &Status);
}

responseMbx = rqcreatemailbox (0, &Status);
if (Status != E_OK) {

rqswritemove {coConn,
(BYTE *)"Unable to create resp mbx, timesrv aborted.\r\n", 47,
&Status);

rqdeletejob «selector) NULL, &Status);
}

/* Initialize the contents of the single segment we will be using for
* all datagram request blocks in this program.

*
* First, the header portion declared as RB_COMMON in cqcommon.h
*/

rbPtr = (RB_COMMON *) buildptr (rb_segment, 0);
rbPtr->reserved[O] = 0;
rbPtr->reserved[1] = 0;
rbPtr->length = sizeof (DATAGRAM_RB);
rbPtr->user_id = user_id;
rbPtr->resp-port = OxFF;
rbPtr->resp_mbox = responseMbx;
rbPtr->rb_seg_tok = rb_segment;
rbPtr->subsystem = TL_DATAGRAM;
rbPtr->opcode = RECEIVE_DATAGRAM;
rbPtr->response = 0;

/* Now, the datagram arguments
* declared as DATAGRAM_RB in cqtransprt.h
*/

dgptr = (struct timesrv_dg_segment *) rbPtr;
dgPtr->dg_rb.reserved[O] 0;
dgptr->dg_rb.reserved[1] 0;
dgptr->dg_rb.reserved[2j 0;
dgPtr->dg_rb.reserved[3j 0;
dgptr->dg_rb.ta_buffer_addr

cqcommptrtodword «void *) & (dgptr->ta_buf), &Status);
if (Status != E_OK) {

rqswritemove (coConn,
(BYTE *)"cqcommptrtodword failed, timesrv aborted. \r\n" , 45,
&Status) ;

rqdeletejob «selector) NULL, &Status);
}

dgPtr->dg_rb.qos = 0; /* Quality of Service */

dgPtr->dg_rb.num_blks 1;
dgPtr->dg_rb.data_blk_list[O] . length = 4;
dgPtr->dg_rb.data_blk_list[O] .address =

cqcommptrtodword «void *) & (dgPtr->date_time) , &Status);

434 iRMX Concepts and Features

Figure 11.6 (Continued)

/*

*
*/

/*

*
*

*

*
*
*/

if (Status != E_OK) {
rqswritemove (coConn,

(BYTE *) "cqcommptrtodword failed, timesrv aborted. \r\n", 45,
&Status) ;

rqdeletejob ((selector) NULL, &Status);
)

Finally, the transport address buffer, declared as TA_BUFFER
in this program

taPtr = & (dgPtr->ta_buf) ;
taPtr->local_nsap_selector_length = 0;
taPtr->local_tsap_selector_length = 2;
taPtr->local_tsap_selector = Ox0064;
taPtr->remote_address_length = sizeof (struct Null2);
taPtr->remote_address.AFI = Ox49;
taPtr->remote_address.subnet = OxOOOO;
taPtr->remote_address.host_id[O] 0; /* -any */
taPtr->remote_address.host_id[l] 0;
taPtr->remote_address.host_id[2] 0;
taPtr->remote_address.host_id[3] 0;
taPtr->remote_address.host_id[4] 0;
taPtr->remote_address.host_id[5] 0;
taPtr->remote_address.lsap_selector = OxFE;
taPtr->remote_address.remote_nsap_selector 0;
taPtr->remote_tsap_selector_length = 2;
taPtr->remote_tsap_selector = OxOOOO; /* any */

rqsclose (coConn, &Status);

Main Loop

Here we post a RB to iNA that indicates we are interested in
all datagrams sent to our TSAP ID, Ox0064. As datagrams
arrive, we process them, send a datagram in return, and post
another RB to accept another datagram. This loop never exits.

for (;;)

/* Post a receive_datagram RB, and wait for it to return
*/

cqcommrb (rb_segment, &Status);
if (Status != E_OK) {

rqsopen (coConn, 2, 0, &Status);
rqswritemove (coConn,

(BYTE *) "cqcommrb rcv dgm failed, timesrvaborted.\r\n",
45, &Status);

rqdeletejob ((selector) NULL, &Status);
)

a token rqreceivemessage (responseMbx, OxFFFF, NULL, &Status);
if (rbPtr->response != OK_EOM_RESP) {

if (rbPtr->response > TL_RESP_CODES_MAX) rbPtr->response = 0;
strcpy (logmessage, tlResponseCodes[rbPtr->response]);
rqsopen (coConn, 2, 0, &Status);

iRMX Network Programming 435

Figure 11.6 (Continued)
rqswritemove (coConn,

(BYTE *) logmessage, strlen (logmessage), &Status);
rqsclose (coConn, &Status);
break;
)

if (dgPtr->dg_rb.buf_len != 4) { /* Sanity check */
rqsopen (coConn, 2, 0, &Status);
rqswritemove (coConn, (BYTE *) "Invalid datagram\r\n",

18, &Status);
rqsclose (coConn, &Status);
break;
}

/* We have a valid datagram. Set the local system's time if the
* data value is not zero. Then, put the local system's time in

the same data buffer, and send the datagram back to the sender.
*/

/*

*
*/

if (dgptr->date_time != 0)
rqsettime (dgPtr->date_time, &Status);

dgPtr->date_time = rqgettime (&Status);

rbPtr->opcode = SEND_DATAGRAM;
rbPtr->response = 0;
cqcommrb (rb_segment, &Status);
if (Status != E_OK) {

rqsopen (coConn, 2, 0, &Status);
rqswritemove (coConn,

(BYTE *) "cqcommrb snd dgm failed, timesrv aborted. \r\n",
45, &Status);

rqdeletejob ((selector) NULL, &Status);
}

a token rqreceivemessage (responseMbx, OxFFFF, NULL, &Status);
if (rbPtr->response != OK_RESPONSE) {

if (rbPtr->response > Ox24) rbPtr->response = 0;
strcpy (logmessage, tlResponseCodes[rbPtr->response]);
rqsopen (coConn, 2, 0, &Status);
rqswritemove (coConn,

(BYTE *) logmessage, strlen (logmessage), &Status);
rqsclose (coConn, &Status);
break;
}

Now reset the necessary parameters to again make our RB segment
into a receive datagram on TSAP 0064 from anyone.

rbPtr->opcode = RECEIVE_DATAGRAM;
rbPtr->response = 0;

dgPtr->dg_rb.num_blks = 1;
dgptr->dg_rb.data_blk_list[O] . length = 4;
dgptr->dg_rb.data_blk_list[O] . address =

cqcommptrtodword ((void *) & (dgptr->date_time), &Status);

taptr->local_nsap_selector_length 0;
taPtr->local_tsap_selector_length 2;

436 iRMX Concepts and Features

Figure 11.6 (Continued)
taPtr->local_tsap_selector = Ox0064;
taPtr->remote_address_length = sizeof (struct Nul12);
taPtr->remote_address.AFI = Ox49;
taPtr->remote_address.subnet = Ox0001;
taPtr->remote_address.host_id(O) 0;
taPtr->remote_address.host_id(l) 0;
taptr->remote_address.host_id(2) 0;
taPtr->remote_address.host_id(3) 0;
taPtr->remote_address.host_id(4) 0;
taPtr->remote_address.host_id(5) 0;
taPtr->remote_address.lsap_selector = OxFE;
taPtr->remote_address.remote_nsap_selector 0;
taPtr->remote_tsap_selector_length = 2;
taPtr->remote_tsap_selector = OxOOOO;

return 0; /* never reached */

4. Create an iRMX segment object to hold each RB and its· associated
buffers. This program uses just one RB for all its operations, so there is
just one segment.

5. Create a mailbox for iNA to return each RB as iNA finishes processing
the RB. Because this program makes only one request to iNA at a time,
the same token is always returned to the mailbox, so the mailbox serves
only as a synchronization mechanism.

6. Fill in the values for a receive_datagram RB. These values include
the header information that is the same for all iNA RBs, plus those
values specific to datagram RBs.

7. Fill in the transport address buffer and initialize the pointers for the da
tagram data buffers.

8. The program now enters an endless loop in which it:
a. Posts a receive_datagram RB.
b. Modifies the same RB is to serve as a send_datagram RB when a

datagram is received, and uses the RB to send a reply datagram con
taining the server's time back to the sender.

c Again modify the RB to act as a receive_datagram RB when the
reply has been sent.

d. Repeat Loop.

Let's look at the process in a bit more detail. The first step is to under
stand the data structures defined in the various header files included in the
program. The file cqcomm . h contains function prototypes for the four pre
ceding procedures (cqcreatecommuser(), cqcommrb(), and the two pointer
conversion routines}. The cqcommon. h file contains the data structure for

iRMX Network Programming 437

the header part of all iNA RBs described earlier. The fields in this header
are referenced using the rbPtr pointer variable in timesrv. c. The
header file cqtransp. h contains data structures and definitions used
with iNA's Transport layer functions' datagrams and virtual circuits.
This header file includes definitions of all the operation codes, such as
SEND_DATAGRAM and RECEIVE_DATAGRAM, as well as names for all the
response codes that might appear in the response field of the header
when a datagram or virtual circuit RB is returned by iNA. The typedef for a
DATAGRAM_RB is given in this file, as well as other structures used for vir
tual circuit operations.

The other header file used in this program, tlrespcodes . h, (the name
is truncated to tlrespco. h on DOS file systems) simply establishes an
array of string names for the various Transport layer response codes that
might be returned by iNA. It is used for formatting any error messages the
program writes to its log file.

Sending or receiving a datagram involves two buffers, a ta_buffer and
a data buffer. The sample program includes its own typedef for a ta_
buffer structure configured to use Nu1l2 addressing, as well as a single
4-byte data buffer. To illustrate placing the RB and its associated buf
fers in a single memory segment, the program declares a structure,
timesrv_dg_segment, that contains a DATAGRAM_RB structure, a
TA_BUFFER structure, and a 4-byte data buffer for sending or receiving a
date/time value. This structure is accessed in the program using the dgPtr
pointer. Although all these structures make the code fairly easy to write,
the logic can be a bit difficult to follow because there are several equivalent
ways to access the same part of the datagram segment. As Figure 11.7
shows, rb _ segmen t is a token (selector) for the segment that contains the
RB and the two buffers, and both rbPtr and dgPtr are pointers that point
to the beginning of this segment.

dgPtr -7 timesrv_dg_segment

DATAGRAM_RB

RB_COMMON rbPtr -7

llLSegment

I

I --V
I

I I TA_BUFFER

I

Figure 11.7 Structure of an RB segment used in timesrv. c.

I date_time

l'

438 iRMX Concepts and Features

Two important concepts regarding network addressing are illustrated by
timesrv. c. The first is that, as a server, the program does not know the
remote addresses of its potential clients. Thus, it fills in the ta_buffer
with its own TSAP ID, but uses a value of 0 for the remote TSAP ID and
remote host _ id (Ethernet address) fields. iNA interprets the value of 0 as
unspecified, and accepts any datagram from any client provided only that
the client's remote TSAP ID matches the server's local TSAP ID.

The second concept is that when iNA returns the RB to the server
because a datagram has arrived from a client, the server's data buffer is
filled with the data supplied by the client and, more importantly,
the ta_buffer is filled with the fully specified network address for the
client. Thus, all the server must do to send a datagram back to a client
as a reply is to supply the same ta_buffer it used when it posted the
receive_ datagram request. Before issuing another receive_data
gram RB to iNA, the server must restore the contents of the ta _buffer to
the unspecified (0) values for host_id and remote TSAP ID.

For completeness, a client for the timeserver gettime is given in Figure
11.8. This program first constructs a send_datagram RB with a remote
TSAP ID, matching the server's local TSAP ID, a local TSAP ID that does
not conflict with the server's, and an unspecified hos t _ id. It then issues a
receive_datagram request to receive the server's reply. Because data
gram transmission is not guaranteed to be successful, the client repeats its
request up to five times at five-second intervals if no server responds.ll

Figure 11.8 Source code for the gettime client program demonstrating the use of datagrams.

/***> gettime.plm <************~*************************************

*

*
This program is used to get the system time from a remote
system at TSAP 64h. Local TSAP is 63h.

*
***/

$compact
get time: DO;

$include (gettime.ext)
$include (cqopcode.lit)
$subtitle ('Declarations')

DECLARE
E$OK
E$TIME
super
cr

LITERALLY '0',
LITERALLY '1' ,
LITERALLY '0' ,
LITERALLY 'ODh' ,

lIThe host ID value consisting of 6 bytes of OFFH on the line marked (***) must be changed
tooA2h, OA4h, OA6h, OASh, OAAh, OACh iftimesrv andgettime are run on the same com
puter using ntp4at.job and no Ethernet controller.

Figure 11.8 (Continued)

lf
five$sec

date_time
outbuf(81)

LITERALLY
LITERALLY

iRMX Network Programming 439

'OAh' ,
'500',

INITIAL (0),
INITIAL

(0, 'HH:MM:SS
keyword

MM DDD YY - Time Set' ,cr, If),
STRUCTURE (

len
chars (80)

(retries,i,is_super)
atoken
comm_user_token
mailbox
rb_segment
user_token
except_info

Handler_Ptr
Mode

user_ids
length
count
id(5)

Status

DECLARE
RB BASED rb_segment

reserved(2)
length
user_id
response-port
return_mailbox
segment_token
subsystem
opcode
response_code

dg_args
reserved(4)
ta_buf_addr
qos
buf_len
num_blks
blocks(l)

addr
len

ta_buf
loc_nsap_sel_len
loc_tsap_sel_len
loc_tsap_sel
rem_nsap_addr_len

AFI
subnet
host_id(6)
lsap_selector
rem_nsap_sel

rem_tsap_sel_len
rem_tsap_sel

BYTE,
BYTE) ,

BYTE,
TOKEN,
WORD_16,
TOKEN,
TOKEN,
TOKEN,
STRUCTURE

POINTER,
BYTE) ,

STRUCTURE (
WORD_16,
WORD_16,
WORD_16) ,

WORD_16;

STRUCTURE (
WORD_16,
BYTE,
WORD_16,
BYTE,
TOKEN,
TOKEN,
BYTE,
BYTE,
WORD_16,

STRUCTURE (
BYTE,
WORD_32,
BYTE,
WORD_16,
BYTE,
STRUCTURE (

STRUCTURE (
BYTE,
BYTE,
WORD_16,
BYTE,

BYTE,
WORD_16,
BYTE,
BYTE,
BYTE,

WORD_32,
WORD_16))),

BYTE,
WORD_16) ;

440 iRMX Concepts and Features

Figure 11.8 (Continued)

$subtitle ('main task"s code')
/*

*
*/

Execution Starts Here

rb_segment = rqcreatesegment (128, @Status);

CALL rqgetexception$handler (@Except_Info, @Status);
except_info.mode = D;
CALL rqsetexception$handler (@Except_Info, @Status);

/* No point in doing anything until iNA is ready
*/

/*

•
*

*/

atoken = rqgettask$tokens (3, @Status); /* root job's token */
atoken = rq$lookup$object (atoken, @(6, 'INARDY'), 200, @Status);
IF (Status <> E$OK) THEN
DO;

END;

CALL rqcsendcoresponse (NIL, D,
@(24,'Network not responding', cr,lf), @Status);

CALL rq$exit$io$job (Status, NIL, @Status);

mailbox = rq$create$mailbox (D, @Status);
comm_user_token = cq$create$comm$user (@Status);
IF (Status <> E$OK) THEN

DO;
CALL rqcsendcoresponse (NIL, D,

@(29,'Unable to Create Comm. User',cr,lf), @Status);
CALL rq$exit$io$job (Status, NIL, @Status);

END;

The keyword ·set" on the command line causes us to send our
system's time to the server, which will use it to set its own
time.

CALL rqcget$input$pathname @keyword,
size (keyword.chars),
@Status);

IF keyword. len >= 3 THEN
00 i = 0 TO 2;

keyword. chars (i) = keyword.chars(i) OR 20h; /* to lower case */
END;

IF cmpb (@keyword, @(3,'set'), 4) = OFFFFFFFFh THEN
00;

user_token = rqgetdefault$user (SELECTOR$OF(NIL) , @Status);
user_ids.length = length (user_ids.id);
CALL rq$inspect$user (user_token, @user_ids, @Status);
is_super = FALSE;
00 i = 0 TO user_ids.count - 1;

IF user_ids.id(i) = super THEN is_super TRUE;
END;
IF NOT is_super THEN

00;
CALL rqcsendcoresponse (NIL, D,

@(50,
'You must be Super to set the time server"s clock',
cr,lf), @Status);

CALL rq$exit$io$job (0, NIL, @Status);
END;

iRMX Network Programming 441

Figure 11.8 (Continued)
END;

/***

Send a datagram to the time server at TSAP 64h in order to
* trigger a returned dg containing the date and time at our

TSAP 63h. Repeat up to 5 times if necessary.

**/

*/

retries = 0;
DO WHILE (retries < 5);

CALL movb (@(O,

2,
63h,O,

/* loc_tsap_sel_len
/* loc_tsap_sel

*/
*/

11, /* rem_nsap_addr_len (Nul12 format) */

049h, /* AFI */

0,0,
OFFh.OFFh.OFFh.

/* subnet */

OFFh,OFFh,OFFh, /* host_id (***)

OFEh. /* lsap_selector
0, /* rem_nsap_sel

2. 1* rem_tsap_sel_len
64h,O), /* rem_tsap_sel

@ta_buf, size (ta_buf));

RB.reserved(O) , RB.reserved(l) 0;
RB.length = size(RB);
RB.user_id = comm_user_token;
RB.response-port = Offh;
RB.return_mailbox = mailbox;
RB.segment_token = rb_segment;
RB.opcode = send_datagram;
RB.subsystem = 41h; /* Datagram */
RB.response_code = 0;

CALL setb (0. @RB.dg_args.reserved, 0);

*/
*/
*/

*/
*/

RB.dg_args.ta_buf_addr = cq$comm$ptrtodword (@ta_buf, @Status);
RB.dg_args.qos = 0;
RB.dg_args.buf_len = 4;
RB.dg_args.num_blks = 1;
RB.dg_args.blocks(O) .addr = cq$comm$ptrtodword (@date_time,

@Status) ;
RB.dg_args.blocks(O) .len = 4;

IF cmpb (@keyword, @(3, 'set'), 4) = OFFFFFFFFh THEN
DO;

date_time = rqgettime (@Status);
CALL rqcsendcoresponse (NIL, D,

@(23,'Setting Server' 's Time',cr,lf), @Status);
END;

ELSE
date_time 0;

CALL cq$comm$rb (rb_segment, @Status);
IF (Status <> E$OK) THEN

442 iRMX Concepts and Features

Figure 11.8 (Continued)
DO;

/*

CALL movb @(35,'cqcornrnrb for send_datagram failed: '),
@outbuf,
36) ;

CALL convert$hex (@outbuf, 80, Status, @Status);
CALL movb (@(cr,lf), @outbuf(outbuf(O) + 1), 2);
outbuf(O) = outbuf(O) + 2;
CALL rqcsendcoresponse (NIL, 0, @outbuf, @Status);
CALL rq$exit$io$job (0, NIL, @Status);

END;

atoken = rq$receive$message (mailbox, five$sec, nil, @Status);
IF (Status <> E$TIME) THEN rb_segrnent = atoken;
IF (RB.response_code <> ok_response) THEN

DO;
CALL movb (@(25,'dg to Time Server Failed '), @outbuf, 26);
CALL convert$hex (@outbuf, 80, RB.response_code,

@Status) ;
CALL movb (@(cr,lf), @outbuf(outbuf(O) + 1), 2);
outbuf(O) = outbuf(O) + 2;
CALL rqcsendcoresponse (NIL, 0, @outbuf, @Status);
CALL rq$exit$io$job (0, NIL, @Status);

END;

* Now wait for a returned datagram from the time server
*/

RB.reserved(O), RB.reserved(1) 0;
RB.opcode = receive_datagram;
RB.response_code = 0;
CALL setb (0, @ta_buf.host_id, 6);
CALL cq$cornrn$rb (rb_segrnent, @Status);
IF (Status <> E$OK) THEN

DO;
CALL movb @(35, 'cqcornrnrb for recv_datagram failed: '),

@outbuf,
36) ;

CALL convert$hex (@outbuf, 80, Status, @Status);
CALL movb (@(cr,lf), @outbuf(outbuf(O) + 1), 2);
outbuf(O) = outbuf(O) + 2;
CALL rqcsendcoresponse (NIL, 0, @outbuf, @Status);
CALL rq$exit$io$job (0, NIL, @Status);

END;

atoken = rq$receive$message (mailbox, five$sec, nil, @Status);
IF (Status <> E$TIME) THEN rb_segrnent = atoken;
IF (RB.response_code ok_response) OR

(RB.response_code = ok_eom_resp) THEN
DO;

IF (date_time = 0) THEN
DO;

CALL rqcsendcoresponse (NIL, 0,
@(47,'Date and Time not Received from Remote System',
cr, If),
@Status) ;

iRMX Network Programming 443

Figure 11.8 (Continued)

CALL rq$exit$io$job (0, NIL, @Status);
END;

CALL rqsettime (date_time, @Status);
CALL convert$secs$to$time (@outbuf, 32, date_time, @Status);
outbuf(O) = outbuf(O) + 2;
CALL convert$secs$to$date (@outbuf, 32, date_time, @Status);
outbuf(O) = outbuf(O) + 13;
CALL rqcsendcoresponse (nil, 0, @outbuf, @Status);
CALL rq$exit$io$job (0, NIL, @Status);

END;

retries = retries + 1;
CALL rqcsendcoresponse (NIL, 0,

@(21,'Gettime retrying ... ',cr,1f), @Status);

END; /* DO WHILE */

CALL rqcsendcoresponse (NIL, 0,
'@(30, 'No Response from Time Server',cr,lf) , @Status);

CALL rq$exit$io$job (0, NIL, @Status);
END get time;

The five-second interval is timed by placing a time limit on the rqrecei
vemessage() system call that receives the RB back from iNA. The program
uses the same RB segment for all five retries, which raises the potential for
confusion because it violates the rule that an application should not access
an RB from the time it is sent to iNA and the time iNA returns it. No prob
lem exists for this procedure though, because the client makes all five RBs
look identical, the client responds identically regardless of which RB is re
turned, and, with Nu1l2 addressing, datagram transmission is almost
always successful, unless there is a physical problem with the physical
link.12

11.8 Virtual Circuit Operations

Connection-oriented Transport layer operations are performed using the
virtual circuit mechanism. A virtual circuit server would typically use an
algorithm similar to the following:

1. Ensure iNA is running by looking up the INARDY object in the root job's
object directory.

2. Call cqcreatecommuser() to establish a link to iNA.

12 Another potential problem with the application is the race condition that exists between
the client and the server. If the server responds to the client's request before the client issues a
receive datagram RB, the reply will be missed and the client will go through a retry cycle
before receiving a response. Normally (meaning when separate RBs are used for sending and
receiving), a client would post its receive RBs before its send RB.

444 iRMX Concepts and Features

3. Use the iNA name server (see the next section) to enter the server's
host_id and local TSAP ID in the network database using a well
known name. Clients use this information to access the server.

4. Use an RB with an operation code of open to obtain a reference number
from iNA. This number is used internally by iNA to access the informa
tion it keeps for the new connection, called a connection database
(CDB). Once a virtual circuit has been established by connection with a
client, this reference number is used to identify the CDB to iNA without
using the addressing process (described next) again.

5. Issue an await_connect_request_xx RB. Two different opcodes
can be used here. If xx is TRAN (opcode 2), the Transport layer estab
lishes a virtual circuit whenever a matching send_connect_
request from a remote system arrives. If xx is CLIENT (opcode
3), iNA returns the RB when a remote system sends a matching
send_connect_request, but does not complete the virtual circuit
unless the application accepts the connection by issuing an ac
cept_connect_ request RB. If the application issues a close RB
instead, the virtual circuit is not established. Note that the term client in
this opcode name refers to the local application program (a client of the
Transport layer) and not to the remote application.

6. Once a virtual circuit has been established, the server supplies iNA with
data buffers to receive data from the client using receive_data RBs,
and uses send_data or send_earn_data to send data to the client.
Since the RB interface is inherently asynchronous, great flexibility
exists for how a particular server can manage its flow of data with a
client.

7. The close RB is used to terminate a virtual circuit (or to reject one as
mentioned previously). The close operation does not trigger the trans
mission of any previously queued output data the way that closing a disk
file does. Rather, the server and client must use a separate mechanism,
such as special data messages, ifthey are to provide an orderly term ina -
tion of their connection. The close operation causes iNA to delete its
CDB entry for the virtual circuit.

Several other features of virtual circuits deserve mention. One is that
clients and servers can exchange relatively small amounts of data with
each other when they establish and terminate a virtual circuit. For exam
ple, a server could use await_connect_request_client, and use a
password supplied by the remote client in its matching send_con
nect_request to decide whether to accept the connection or not. Like
wise, a server could provide up to 64 bytes of information when it closes a
virtual circuit, such as a text string explaining why it closed a circuit.

A second feature of virtual circuits important for some applications is
the provision for expedited data (called out-oj-band data in the comparable

i~MX Network Programming 445

Internet protocols). Normally, all data sent from one application to an
other over a virtual circuit is guaranteed to be received in the same order in
which it is was sent. Expedited data is sent ahead of any normal data that
might be in transit over the network. An example of using expedited data
would be a login server that receives single characters as they are typed by
the user and echoes them in response. A user might want to cancel text that
was typed before receiving the server's response. The user can do so by
typing a < 1\ c> character. That character could be sent as expedited data,
which the server might receive using a task waiting at a special mailbox set
up for receive_expedited_data RBs.

The other issue to mention is the management of data buffers. Because
iNA often runs on a 16-bit processor, the virtual circuit RB interface re
quires each data buffer to be used for sending or receiving data to be no
greater than 64 KB iq. length. Within this 64-KB limit, iNA supports
gather-write and scatter-read operations. That is, a single RB can refer
ence several disjoint locations in memory as a single data buffer. When
writing to the network, iNA gathers data from the locations into a single
internal buffer and transmits it as a unit. Likewise, iNA will distribute
(scatter) the parts of an incoming message into several locations if that is
how the user has defined the receive buffer.

11.9 Name Server Operations

Each entry in iNA's distributed database of network information takes the
form of a 4-tuple, {name, property type, uniqueness, property value}. For
example, a typical entry might be:

{MYHOSTID, Ox0004, FALSE, OxAOA2A4A6A8AAAC}

The name is any arbitrary string of up to 16 bytes, normally ASCII charac
ters. The property type is an unsigned 16-bit numerical value that can be
thought of as a modifier for the name. For example, iRMX-Net uses two
database entries for each system it services. Both have the same name (the
name used in an attachdevice command), but two different property types
for two pieces of information that iRMX-Net needs to maintain about the
system. The virtual terminal facility, which allows remote login to a sys
tem, uses the same name along with a third property value for information
it needs to know about the system.

The uniqueness database entry is a Boolean value that tells whether a
network can have more than one entry with the same {name, property
type} combination. For example, every machine on the network has an
entry for {MYHOST ID, OxO 0 0 4}, so that combination is not unique. On the
other hand, only one machine can have a particular name and property
type for a virtual terminal or file server. If you give a command such as at-

446 iRMX Concepts and Features

tachdevice systeml as 1 remote, no more than one computer can be
named systeml on the network, so that entry must be unique.

The value part of a database entry can be any sequence of bytes desired,
not necessarily ASCII characters. The property value for {MYHOSTID,

Ox0004}, for example, is the 6-byte Ethernet address for the computer.
iRMX-Net and the virtual terminal use the Nu1l2 network address as the
property value for the entries with the system's name and property types
Ox0003 and Ox0008, respectively. The listname command normally in
stalled in : utils: or : util286: displays the portion ofthe distributed
database that resides on the local system.

11.9.1 The RB interface to the name server

Eight opcodes are used in the RB interface to iNA's name server. These
functions are documented in the iRMX-Net User's Reference manual
(Intel, 1991b) rather than the iNA 960 programmer's Reference cited ear
lier in this chapter. RBs for name server operations include the RB header
structure used for all iNA RBs, followed by pointers to three buffers: a
name buffer, a property value buffer, and an extra buffer used for some of
the operations. The RB also has fields for property type and the unique
ness Boolean.

Figure 11.9 gives the source code for a utility program called namesrv
that allows a user to exercise the eight name-server commands interacti
vely. Each command takes some subset of a database 4tuple and might or
might not return information from the database, as described on page 458.

Figure 11.9 Source code for namesrv, a program that allows a user to exercise the eight name
server functions interactively.

/***> namesrv.c <**

*
*

*
*
*
*

This program allows users to query and update iNA's distributed
database.

The program accepts command lines consisting of a nameserver
operation code name followed by the appropriate arguments.

Names and values are entered as strings, and types are entered
* as integers. The get_* functions display the result returned

by the nameserver. The others simply perform their operations.

*

*
*

add_name
delete_name
get_value
change_value
deleteJlroperty
get_name
get_spokesman
list_table

Name Type Value
Name
Name Type
Name Type New Value
Name Type
Type Value
Name Type

***/

iRMX Network Programming 447

Figure 11.9 (Continued)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <rmxc.h>
#include <cqcomm.h> /* iNA Interface Function Prototypes */
#include <cqcommon.h> /* RB common header structure */
#include <cqname.h> /* NS structs, opcodes, and response codes */

#include ·nsrespcodes.h·

#define E_OK 0
#define NO_WAIT 0
#define E_TlME 1
#define ROOT_JOB 3
#define EXIT_PROGRAM 99

/*

*
Global variables shared with the various functions that
implement the operation codes.

*/
TOKEN user_id, root_job, a_token, rb_segment, responseMbx;

RB_COMMON *rbPtr;
NAME_SERVER_RB *nsPtr;

NAME_BUFFER *nameBuf;
VALUE_BUFFER *propValBuf;
EXTRA_BUFFER *extraBuf;

#pragma noalign (response_struct)
struct response_struct {

WORD
char
WORD
WORD
char
} response;

static struct {
char *name;
int len;
char *args;
} opcodes[] =

static int
static char
static char
static char
static WORD

opcode;
nameString[32} ;
propertyType;
valueLength;
valueString[256];

{·exit·, 1, •• }.
{·add_name·, 1, ·name type value·},
{·delete_name·, 8, ·name·}.
{·get_value·, 5, ·name type"},
{·change_value·, 1, ·name type value"},
{·delete-property·, 8, ·name type"},
{·get_name·, 5, ·type value·l,
{·get_spokesman·, 5, ·name type·},
{·list_table·, 1, •• }
I ;

i, j;
*nextPtr;
commandLine[80];
hextab[] = ·0123456789ABCDEF·;
Status;

448 iRMX Concepts and Features

Figure 11.9 (Continued)
static

void
char
WORD
} p;

union { /* Pointers for interpreting buffers returned by iNA */
*anyPtri
*charPtr;
*wordPtr;

/* getString ()

*
This is a utility routine to extract a string from the command
line. The string may be surrounded by single or double quotes.

*/

static void
getString (char *where) {
int length;

nextPtr += strspn (nextptr. " \t\n\r.");
if (*nextptr == '\") {

length = strcspn (++nextPtr. "\'");
}

else if(*nextPtr == '\"') {
length = strcspn (++nextPtr. "\"");
}

else {
length strcspn (nextPtr. " \r\n\t");

/*

*
addName()

/*

*
*

*where = '\0';
strncat (where. nextPtr, length);
nextPtr += length + 1;
return;

parseName ()

Get a string for a property name from a command line
*/

static void
parseName (void)

getString (response.nameString);
udistr (response.nameString. response.nameString);
return;

/*

*
*

}

parseType ()

Get a 16-bit property type from a command line.
The user may enter the value in either decimal or hex

*/

static void
parseType (void)

response.propertyType (WORD) strtoul (nextPtr, &nextPtr, 0);

Figure 11.9 (Continued)

/'*
'*
'*

return;

parseValue ()

iRMX Network Programming 449

'* Get a string for a property value from a command line
'*/

static void
parseValue (void)

getString (response.valueString);
response.valueLength = strlen (response.valueString);
return;

/ '* doCommand ()

'* Get a command line from the user and parse it
'*/

void
doCommand (void)

commandLine [0] , \ 0 ' ;
while (strlen (commandLine) == 0) {
printf ("\nEnter nameserver command: ");
gets (commandLine);
}

for (i = 0; i < 80; i++) {
if (commandLine[i] != ' ') break;
}

nextPtr = &commandLine[i];
response.opcode = -2;
for (i = 0; i < 9; i++) {

if (strnicmp (nextPtr, opcodes[i] .name, opcodes[i] .len) 0) {
response.opcode = i - 1;
break;
}

if (response.opcode == Oxffff) exit (0);
nextPtr += strcspn (nextPtr, , \r\n \ t \ "\ ' ") ;
switch (response.opcode) {

case ADD.-NAME:

case DELETE.-NAME:

case GET_VALUE:

case CHANGE_VALUE:

parseName(); parseType(); parseValue();
addName(); break;

parseName();
deleteName(); break;

parseName(); parseType();
getValue(); break;

parseName(); parseType(); parseValue();
changeValue(); break;

450 iRMX Concepts and Features

Figure 11.9 (Continued)

case DELETE_PROPERTY: parseName(); parseType();
deleteProperty(); break;

case GET-.NAME: parseType(); parseValue();
getName(); break;

case GET_SPOKESMAN: parseName(); parseType();
getSpokesman(); break;

case LIST_TABLE: listTable(); break;

default:
printf ("Valid op code names and arguments are:\n");
for (i 0; i < 9; i++)

printf (" %-16s %s\n", opcodes[i].name,
opcodes[i] .args);

return;
}

*/
int
addName () {

/*

*
Fix the Op Code field in the Request Block header for this function;
reset the value of rbPtr->response; post the RB to iNA

*/
rbPtr->opcode = ADD_NAME;
rbPtr->response = 0;
nsPtr->property_type = response.propertyType;

cqcommrb (rb_segment, &Status);
if (Status != 0) {

printf ('cqcommrb failed: %4X\n", Status);
exit (1);
}

/* Wait for iNA to return the RB, and make sure the operation completed
* without error.
*/

/*

*

rb_segment = rqreceivemessage (responseMbx, 1000, NULL, &Status);
if (Status != 0) {

if (Status == E_TIME) {
printf ("add_name failed: no response from iNA\n");
exit (1);

}

printf ("rqreceivemessage failed: %4X\n", Status);
exit (1);
}

if (rbPtr->response != OK_RESPONSE)
printf ("add_name request failed: %S",

nsResponseCodes[rbPtr->response]);

return;
}

deleteName ()

iRMX Network Programming 451

Figure 11.' (Continued)

*/
int
deleteName () (

/*
*

Fix the Op Code field in the Request Block header for this function;
reset the value of rbPtr->response; post the RB to iNA

*/
rbPtr->opcode = DELETE_NAME;
rbPtr->response = 0;
nsPtr->property_type = response.propertyType;

cqcommrb (rb_segment, &Status);
if (Status ! = 0) {

printf ("cqcommrb failed: %4X\n", Status);
exit (1);

/* Wait for iNA to return the RB, and make sure the operation completed
without error.

*/

/*
*

rb_segment = rqreceivemessage (responseMbx, 1000, NULL, &Status);
if (Status != 0) (

if (Status == E_TIME) (
printf ("deleteJlame failed: no response from iNA \n") ;
exit (1);
}

printf ("rqreceivemessage failed: %4X\n", Status);
exit (1);
}

if (rbPtr->response != OK_RESPONSE)
printf ("deleteJlame request failed: %s",
nsResponseCodes[rbPtr->response» ;

return;
}

getValue()

*/
int
getValue () {

/* Fix the Op Code field in the Request Block header for this function;
* reset the value of rbPtr->response; post the RB to iNA
*/

rbPtr->opcode = GET_VALUE;
rbPtr->response = 0;
nsPtr->property_type
response.valueLength

response.propertyType;
256;

cqcommrb (rb_segment, &Status);
if (Status != 0) {

printf ("cqcommrb failed: %4X\n", Status);
exit (1);
}

452 iRMX Concepts and Features

Figure 11.9 (Continued)

/* Wait for iNA to return the RB, and make sure the operation completed
* without error.
*/

/*

*
*/

int

rb_segment = rqreceivemessage (responseMbx, 1000, NULL, &Status);
if (Status != 0) {

if (Status == E_TIME) {
printf ("get_value failed: no response from iNA\n");
exit (1);
}

printf ("rqreceivemessage failed: %4X\n", Status);
exit (1);
}

if (rbPtr->response != OK_RESPONSE) {
printf ("get_value request failed: %s",

nsResponseCodes[rbPtr->response);
return;
}

printf ("The value for %s (assumed to be a unique name) is:\n",
cstr (response.nameString,response.nameString»;

for (i 0; i < response.valueLength; i++) (
printf ("%c%c ", hextab[(response.valueString[il » 4) & OxOf),

hextab[(response.valueString[i)) & OxOf);
if «(i % 20) == 19) printf ("\n");
}

changeValue ()

changevalue () {

/*

*
Fix the Op Code field in the Request Block header for this function;
reset the value of rbPtr->response; post the RB to iNA

*/
rbPtr->opcode = CHANGE_VALUE;
rbPtr->response = 0;
nsPtr->property_type = response.propertyType;

cqcommrb (rb_segment, &Status);
if (Status != 0) {

printf ("cqcommrb failed: %4X\n", Status);
exit (1);
}

/* Wait for iNA to return the RE, and make sure the operation completed
* without error.
*/

rb_segment = rqreceivemessage (responseMbx, 1000, NULL, &Status);
if (Status ! = 0) (

if (Status == E_TlME) {
printf ("change_value failed: no response from iNA\n");
exit (1);

printf ("rqreceivemessage failed: %4X\n", Status);

iRMX Network Programming 453

Figure 11.9 (Continued)

exit (1);

/*
*

}

if (rbPtr->response != OK_RESPONSE)
printf ("change_value request failed: %s",
nSResponseCodes[rbPtr->response]);

return;
}

deleteproperty()

*/
int
deleteproperty () {

/*
*

Fix the Op Code field in the Request Block header for this function;
reset the value of rbPtr->response; post the RB to iNA

*/
rbPtr->opcode = DELETE_PROPERTY;
rbPtr->response = 0;
nsPtr->property_type = response.propertyType;

cqcommrb (rb_segment, &Status);
if (Status != 0) {

printf ("cqcommrb failed: %4X\n", Status);
exit (1);
}

/* Wait for iNA to return the RB, and make sure the operation completed
* without error.
*/
rb_segment = rqreceivemessage (responseMbx, 1000, NULL, &Status);
if (Status != 0) {

if (Status == E_TlME) {
printf ("delete-property failed: no response from iNA\n");
exit (1);

printf ("rqreceivemessage failed: %4X\n", Status);
exit (1);
}

if (rbPtr->response != OK_RESPONSE)
printf ("delete-property request failed: %s",
nsResponseCodes[rbPtr->responsel);

return;
}

/* getName ()

*/
int
getName () {

/*

*
Fix the Op Code field in the Request Block header for this function;
reset the value of rbPtr->response; post the RB to iNA

454 iRMX Concepts and Features

Figure 11.9 (Continued)

*/
rbPtr->opcode = GET_NAME;
rbPtr->response = 0;
nsPtr->property_type = response.propertyType;

cqcommrb (rb_segment, &Status);
if (Status != 0) (

printf ("cqcommrb failed: %4X\n", Status);
exit (1);

/* Wait for iNA to return the RB, and make sure the operation completed
* without error.
*/
rb_segment = rqreceivemessage (responseMbx, 1000, NULL, &Status);
if (Status != 0) {

if (Status == E_TlME) {
printf ("get_name failed: no response from iNA\n");
exit (1);

printf ("rqreceivemessage failed: %4X\n", Status);
exit (1);

if (rbPtr->response != OK_RESPONSE) {
printf ("get_name request failed: %s",

nsResponseCodes[rbPtr->response]);
return;
}

printf ("The following names have property value type %4X:\n",
response.propertyType);

p.charPtr = (char *) &extraBuf->name_list[O];
for (i = 0; i < extraBuf->count; i++) {

printf ("%s\n", cstr (p.charPtr, p.charPtr));
p.charPtr += strlen (p.charPtr);
}

return;

/*

*

}

*/
int

get Spokesman ()

getSpokesman (). {

/* Fix the Op Code field in the Request Block header for this function;
reset the value of rbPtr->response; post the RB to iNA

*/
rbPtr->opcode = GET_SPOKESMAN;
rbPtr->response = 0;
nsPtr->property_type = response.propertyType;

cqcommrb (rb_segment, &Status);
if (Status != 0) {

printf ("cqcommrb failed: %4X\n", Status);
exit (1);

iRMX Network Programming 455

Figure 11.9 (Continued)

/* Wait for iNA to return the RB, and make sure the operation completed
wi thout error.

*/
rb_segment = rqreceivemessage (responseMbx, 1000, NULL, &Status);
if (Status != 0) {

if (Status == E_TIME) {
printf ("get_spokesman failed: no response from iNA \n") ;
exit (1);

printf ("rqreceivemessage failed: %4X\n", Status);
exit (1);

if (rbPtr->response != OK_RESPONSE) {
printf ("get_spokesman request failed: %s",

nsResponseCodes[rbPtr->responsel);
return;

printf ("The Ethernet address of the spokesman for %s is
cstr (response.nameString,response.nameString));

p.charPtr = (char *) extraBuf;
for (i = 0; i < 6; i++) {

printf ("%c%c hextab[(p.charptr[il» 4) & OxOfl,
hextab[(p.charPtr[il) & OxOfl);

printf ("\n");
nsPtr->extra_buffer_length
return;
}

/* listTable ()

*/
int
listTable () (

4096; /* clobbered by this function */

/* Fix the Op Code field in the Request Block header for this function;
reset the value of rbPtr->response; post the RB

*/
rbPtr->opcode = LIST_TABLE;
rbPtr->response = 0;

cqcommrb (rb_segment, &Status);
if (Status != 0) {

printf ("cqcommrb failed: %4X\n", Status);
exit (1);

/* Wait for iNA to return the RE, and make sure the operation completed
* without error.
*/
rb_segment = rqreceivemessage (responseMbx, 100, NULL, &Status);
if (Status != 0) {

if (Status == E_TIME)
printf ("list_table failed: no response from iNA\n");
exit (1);

456 iRMX Concepts and FeatUres

Figure 11.9 (Continued)
printf ("rqreceivemessage failed: %4X\n", Status);
exit (1);
}

if (rbPtr~>response == E_BUFF_SPACE)
printf ("Local portion of database. > 4 KB. OUtput truncated\n");

else if (rbPtr->response != OK_RESPONSE) {
printf ("list_table request failed: %s",

nsResponseCodes[rbPtr->response);
return;
}

if (extraBuf->count == 0) {
printf ("Local portion of database is empty\n");
return;
}

/* Interpret the contents of the returned table for display on the
* screen. Because the strings make the size of each object in the
* database unknown at compile time, each object has to be interpreted
* individually; Use anyPtr to keep track of where we are in the table.
*/
p.anYPtr = &(extraBuf->name_Iist[O);
printf ("NAME TYPE HEXADECIMAL VALUE\n") ;
for (i = 0 ; i <: extraBuf->count; i++) {
if «i % 24) == 23) {

printf ("more? 0); gets (commandLine);
if (*commandLine == 'q') {

return;
}

printf ("%-16s cstr (p.charPtr, p.charPtr»; /* property name */
p.charPtr += strlen (p.charPtr) + 2; /* skip unique flag too */
printf ("%4X ", *(p.wordPtr»; /* property type */
p.charPtr += sizeof (WORD) + 1; /* skip property value type too */
for (j = 0; j < *(p.wordPtr); j++) {

printf ("%c%c ", hextab[(*(p.charPtr + j + 2) » 4) & OxOf),
hextab[*(p.charPtr + j + 2) & OxOf);

if «j % 16) == 15) printf ("\n ");
}

printf ("\n");
p.charPtr += (*p.charPtr) + 2;
}

/* skip to next entry */

return;
}

/*

*
main()

*/
int
main (int argc, char *argv[) (

int
WORD

/*

*

*
*

i;
Status;

Initialization

Be sure iNA is available before continuing, then allocate
all the resources this job will need.

iRMX Network Programming 457

Figure 11.9 (Continued)

These consist of:
* corom user ID

*/

nameserver RB segment
response mailbox for RBs

root_job = rqgettasktokens (ROOT_JOB, &Status);
a_token = rqlookupobjeet (root_job, "\6INARDY", NO_WAIT, &Status);
if (Status != E_OK) {

printf ("iNA is not available\n");
return 1;

user_id = cqcreatecommuser (&Status);
if (Status != E_OK) {

printf ("cqereateeommuser failed: %4X\n", Status);
return 1;

rb_segment
rqcreatesegment (sizeof (struct name_server_rb), &Status);

if (Status != E_OK) {
printf {"rqcreatesegment failed: %4X\n", Status);
return 1;

responseMbx = rqcreatemailbox (0, &Status);
if (Status != E_OK) {

printf ("rqcreatemailbox failed: %4X\n", Status);
return 1;

/* Initialize the buffer pointers to be used for name server names
* and values.
*/

nameBuf = (NAME_BUFFER *) response.nameString;
propValBuf = (VALUE_BUFFER *) &response.valueLength;
if «extraBuf = (EXTRA_BUFFER *) malloc (4096) == NULL)

printf ("malloe failed\n");
return 1;

/* Initialize the contents of the single segment we will be using for
all request blocks in this program.

*/
First, the header portion declared as RB_COMMON in cqcommon.h

rbPtr = (RB_COMMON *) buildptr (rb_segment, 0);
rbPtr->reserved[O) = 0;
rbPtr->reserved[I) = 0;
rbPtr->length = sizeof (NAME_SERVER_RB);
rbPtr->user_id = user_id;
rbPtr->resp-port = OxFF;
rbPtr->rb_seg_tok = rb_segment;
rbPtr->resp_mbox = responseMbx;
rbPtr->subsystem = NAME_SERVER;
rbPtr->opcode = LIST_TABLE; /* first operation */
rbPtr->response = 0;

458 iRMX Concepts and Features

figure 11.' (Continued)

/*

*
*/

Now, the nameserver arguments, declared as NAME_SERVEILRB
in cqname.h

nsptr = (struct name_server_rb *) rbPtr;
for (i = 0; i < 6; i++) nsPtr->reservedlil = 0;
nsptr->name_buffer-ptr =

cqcommptrtodword «void *) nameBuf, &Status);
if (Status != 0) {

printf ("cqcommptrtodword failed: %4X\n", Status);
return 1;
}

nsptr->unique_IliI1IIELflag = Oxff; /* Unique for this program */
nsptr->property_value_type = 0; /* Only unstructured values */
nsptr->pv-Puffer-ptr =

cqcommptrtodword «void *) propvalBuf, &Status);
if (Status != 0) {

printf ("cqcommptrtodword failed: %4X\n", Status);
return 1;
}

nsptr->extr~buffer-Ptr =
cqcommptrtodword (void *)extraBuf, &Status);

if JStatus != 0) {
printf ("cqcommptrtodword failed: %4X\n", Status);
return 1;
}

nsPtr->extra-Puffer_length = 4096;

/* Greet the user with a list of the current contents of the database
*/

listTable () ;

/* Main Loop

*
*
* Get a string from the user, and dispatch it to the proper
* function, based on the opcode
*/

for (;;) {
doCommand () ;
}

return 0; /* never reached */

add_name. The user supplies a name, property type, and property value,
which are entered into the database. The namesrv program assumes the
entry is unique and accepts only a character ,string for the value, but these
restrictions are not imposed by iNA. No information is returned by iNA
except a response code telling if the operation was successful or not. If the
operation fails, namesrv displays a string indicating the reason for failure
using the mnemonics defined in cqname. h.

delete_name. The user supplies a name, and iNA deletes all entries
with a matching name, regardless of property type, from the database. No
data is returned by iNA, only a response code.

iRMX Network Programming 459

get_value. The user supplies a name and property type, and iNA re
turns the value for the property in the value buffer supplied in the RB. The
program sets the uniqueness Boolean to true, so iN A returns only the value
found on the local system. The option to specify a value of false is not sup
ported by the program, but if a value of false was specified, iNA would
query the entire network to find all matching entries in the distributed da
tabase and return a list of values to the user.

change_value. The user supplies the same information as for add_
name, and the value for the corresponding entry in the database is updated
accordingly. This operation fails if the name and property type are not al
ready entered in the database. No data is returned by iNA, only a response
code.

de lete _property. The user supplies both a name and a property type,
and the entry is deleted from the database. Contrast this with the dele
te _name operation described previously. No data is returned by iN A, only
a response code.

get_name. The user supplies a property type and a value, and iNA re
turns a list ofthe name portion of all matching entries in the database. The
list of names is returned in the extra buffer pointed to by the RB. If the
extra buffer is not large enough to hold the entire list, an error code is re
turned, but as much of the list as will fit is placed in the user's buffer.

get_spokesman. The user supplies a name and property type, and iNA
returns (in the extra buffer) the Ethernet address of the computer that
holds the corresponding entry. The spokesperson (spokesmachine?)
mechanism is used by iRMX-Net for accessing systems that run iNA but
for which there is no operating system software available to initialize the
database locally. The HI commands setname and loadname can be used to
make an iRMX system act as a spokesperson for other systems that do not
support the iNA nameserver.

list_table. The user supplies no arguments; iNA returns the entire
local portion ofthe database in the extra buffer. Using this option with the
namesrv program produces the same result as the iRMX-Net listname
command.

11.10 The Network Management Facility

Users have access to many of the parameters, statistics, and other infor
mation maintained by iNA through its Network Management Facility
(NMF). Services provided by the NMF include:

• Asynchronous event notification. For example, an RB can be returned
every time iNA encounters an invalid Transport layer addresses.

• Configuration information about iNA. Such as the maximum TPDU
size or the number of virtual circuits that can be open at a time.

460 iRMX Concepts and Features

• Statistical information, such as the total number of transmitted data
grams or the total number of expedited data bytes transmitted over vir
tual circuits.

• Connection information, such as a list of all current CDBs (see the pre
vious discussion of virtual circuits) or the local and remote TSAP IDs for
a virtual circuit.

• Routing information. This information includes routing tables, configu
ration parameters, and statistics.

• A dump ofiNA's memory. This option is useful to users who implement
their own configurations of iNA.

• Remote boot operation. A diskless workstation can obtain an operating
system image from a remote computer's disk file using this feature.

An HI command called inamon provides interactive access to many of
iNA's NMF facilities. A simpler command, called mynamon, (pardon the
pun) is given in Figure 11.10. mynamon prompts the user for an NMF ob
ject ID and displays the information that iNA returns about that object.
NMF object IDs are 4-digit hexadecimal values used to identify the infor
mation the user is interested in seeing. The first two digits identify which
part of iNA maintains the information, and the second two digits identify
the particular object. iNA recognizes about 200 different object IDs. Their
values are given in Appendix A of the iNA 960 Programmer's Reference
manual. Values for the first two digits are the following:

20, 21, 25
31

Various Data Link implementations
Network

38
39
40
41
80
81

Static Routing
ES-IS Routing
Transport layer virtual circuits
Transport layer datagrams
iNA NMF itself (system time and version number)
Boot Server

Figure 11.10 Source code for mynamon, a program that allows a user to examine Network
Management Function (NMF) objects interactively.

1***> ~namon.c <**

* This program allows users to examine Network Management objects
on the local system.

*
The user enters a network object ID in hex and gets back a

* hex dump of the returned object. Returned items that are

*

two or four bytes in length are assumed to be unsigned values
and are displayed in decimal as well as hex.

***/

iRMX Network Programming 461

Figure 11.10 (Continued)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

iNA Interface Function Prototypes *J
#include <rmxc.h>
#include <cqcomm.h>
iinclude <cqcommon.h>
#include <cqnmf.h>

/*
/*
/ .. RB common header structure *f

NMF structs. opcodes. and response codes *f

#include "nmfrespc.h" /* NMF response code strings

#define E_OK
#define NO_WAIT
#define E_TlME
#define ROOT_JOB

o
o
1
3

/* Static and global variables
*/

TOKEN

*rbPtr;
*nmfPtr;

COMMAND_BUFFER *commandPtr;
RESPONSE~UFFER *responsePtr;

union (

WORD
DWORD
char
BYTE
} p;

static
static
static
static

int
WORD
char
char

/* pointer aliases *f
*wordPtr;
*dwordPtr;
*charPtr;
*bytePtr;

i, n;
Status;
reply[81];
hextab[] "0123456789ABCDEF";

/*

*
showHexString ()

*
* Display count-many bytes in hex

*J
void
showHexString (unsigned char count. unsigned char *bytes) {
int i;

J*
*

for (i = 0; i < count; i++) {
printf ("%c%c " hextab[(bytes[i] » 4) & OxOF].

hextab[bytes[i] &OxOF]);
if (Ii % 16) == 15) printf ("'n");
}

printf ("'n");
return;

nmfString I)

*J

462 iRMX Concepts and Features

Figure 11.10 (Continued)

* Return a string from nmfResponseCodes for a response code value.
*/

char *
nmfString (WORD codeVal) {
struct nmf_codes *rcPtr = &nmfResponseCodes[O];

while (rcPtr->codeValue != Oxffff)
if (codeVal == rcPtr->codeValue) return rcPtr->codeString;
rcPtr++;
}

return ·Unknown NMF response code";

/* main()

*/
int
main

/*

*

*
*

*
*

*/

(int argc, char *argv[]) {

Initialization

Be sure iNA is available before continuing, then allocate
all the resources this job will need.

These consist of:
comm user ID
nameserver RB segment
response mailbox for RBs

root_job = rqgettasktokens (ROOT_JOB, &Status);
a_token = rqlookupobject (root_job, "\6INARDY", NO_WAIT, &Status);
if (Status != E_OK) {

printf ("iNA is not available\n");
return 1;
}

user_id = cqcreatecommuser (&Status);
if (Status != E_OK) {

printf ("cqcreatecommuser failed: %4X\n", Status);
return 1;

rb_segment
rqcreatesegment (sizeof (struct nmf_object_rb), &Status);

if (Status != E_OK) {
printf ("rqcreatesegment failed: %4X\n", Status);
return 1;
}

responseMbx = rqcreatemailbox (0, &Status);
if (Status != E_OK) {

printf ("rqcreatemailbox failed: %4X\n", Status);
return I:

/* Initialize the buffer pointers to be used for commands and replies
*/

iRMX Network Programming 463

Figure 11.10 (Continued)

/*

*
*/

if «cornmandPtr = (COMMAND_BUFFER *)

malloc (sizeof (COMMAND_BUFFER»)
printf ("malloc failed\n");
return 1;

NULL) {

if «responsePtr = (RESPONSE_BUFFER *)
malloc (sizeof (RESPONSE_BUFFER) + 512»
printf ("malloc failed\n");
return 1;

NULL) {

Initialize the contents of the segment we will be using for
all request blocks in this program.

First, the header portion declared as RB_COMMON in cqcommon.h

rbPtr = (RB_COMMON *) buildptr (rb_segment, 0);
rbPtr->reserved[O] = 0;
rbPtr->reserved[1] = 0;
rbPtr->length = sizeof (NMF_OBJECT_RB);
rbPtr->user_id = user_id;
rbPtr->resp-port = OxFF;
rbPtr->rb_seg_tok = rb_segment;
rbPtr->resp_mbox = responseMbx;
rbPtr->subsystem = NMF;
rbPtr->opcode = READ_OBJECT; /* always */

rbPtr->response = 0;

/* Now, the net management arguments,
declared as NMF_OBJECT_RB in cqnmf.h

*/
nmfPtr = (NMF_OBJECT_RB *) rbPtr;
nmfPtr->reference = 0; /* Local Agent Only */
nmfPtr->resp_buf-ptr =

cqcommptrtodword «void *) responsePtr, &Status);
if (Status != 0) {

printf ("cqcommptrtodword failed: %4X\n", Status);
return 1;
}

nmfPtr->resp_buf_length sizeof (RESPONSE_BUFFER) + 512;
nmfPtr->cmd_buf-ptr =

cqcommptrtodword «void *) commandPtr, &Status);
if (Status != 0) {

printf (·cqcommptrtodword failed: %4x\n", Status);
return 1;

nmfPtr->cmd_buf_length = sizeof (COMMAND_BUFFER);

/* Finally, the fixed fields of the command buffer
*/

commandPtr->num_obj = 1;
commandPtr->obj_info[O] .object Ox4001; /* conn. ID list */
commandPtr->obj_info[O] .modifier = 0;
commandPtr->obj_info[O] . length 0;

/* Main Loop

464 iRMX Concepts and Features

Figure 11.10 (Continued)

*

*/

Get a command string from the user. Exit, if requested.
Otherwise, accept an object id and, optionally, a VC id.

for (;;) {

if (argc > 1) {
printf ("\nEnter an object id in hexadecimal (%X): %s\n",

commandPtr->obj_info[O) .object, argv[l);
strcpy (reply, argv[l);
argc--; argv++;
)

else {
printf ("\nEnter an object id in hexadecimal (%X): "

commandPtr->obj_info[O) .object);
gets (reply);
)

if «*reply == 'e') II (*reply == 'q'» return 0;
if (strspn (reply, " 0123456789ABCOEFabcdef") != strlen (reply»

printf ("\nEnter q or e to exit,\nenter ");
printf ("an 10 from Appendix A of iNA Programmer\'s ");
printf ("Reference,\nor press <enter> to accept ");
printf ("the default value displayed\n");
continue;
}

if (strlen (reply»
commandPtr->obj_info[O).object = strtoul (reply, NULL, 16);

if «commandPtr->obj_info[O] .object > Ox4080) &&
(commandPtr->obj_info[O] .object < Ox4093»

printf ("Enter virtual circuit 10 (%X): ",
commandPtr->obj_info[O] .modifier);

gets (reply);
if (strlen (reply»

commandPtr->obj_info[O] .modifier strtoul (reply, NULL, 16);

/* Post the RB to iNA, wait for reply, check results.
*/

cqcomrnrb (rb_segrnent, &Status);
if (Status != 0) (

printf ("cqcommrb failed\n;");
return 1;

a_token rqreceivemessage (responseMbx, 500, NULL, &Status);
if (Status == E_T1ME) {

printf ("No response from iNA \n") ;
return 1;
}

if (Status != E_OK) {
printf ("rqreceivemessage failed\n");
return 1;

if (rbPtr->response != OK_RESPONSE) {
printf ("Request failed: %s\n", nmfString (rbPtr->response»;
continue;
)

iRMX Network Programming 465

Figure 11.10 (Continued)

if (responsePtr->obj_info[O] .status != E_OK_OBJ_CMND) {
printf ("Request failed: %s\n",

nmfString «WORD) responsePtr->obj_info[O] .status));
continue;

/* We have a valid response from iNA; display it
*/

p.byteptr = &responsePtr->obj_info[O] .value[O];
switch (commandPtr->obj_info[O] .object) {

case Ox4001: /* Connection ID vector */
if (responsePtr->obj_info[O] . length == 0) (

printf ("There can be no virtual circuit connection IDs\n");
break;
)

printf ("Virtual circuit connection IDs:\n");
n = 0;
for (i = 0; i < responseptr->obj_info[O] . length / 2; i++) {

if (*p.wordPtr) {
printf (" %4X\n", *p.wordPtr);
if «++n % 24) == 23) {
print f ("more? ");
gets (reply);
if «*reply == 'q') II (*reply 'n')) break;
)

p.wordPtr++;
)

if (n == 0) printf ("
break;

none\n");

case Ox4081: printf ("Local TSAP selector:\n ,,);
showHexString (responsePtr->obj_info[O] .value[O] ,

&responsePtr->obj_info[O] .value[l]);
break;

case Ox4082: printf ("Remote NSAP address: \n ,,);
showHexString (responsePtr->obj_info[O] .value[O],

&responsePtr->obj_info [0] . value [1]) ;
break;

case Ox4083: printf ("Remote TSAP selector:\n ");
showHexString (responsePtr->obj_info[O] .value[O],

&responsePtr->obj_info[O] .value[l]);
break;

case Ox8049: responsePtr->obj_info[O] .value
[responseptr->obj_info[O] . length]

printf (" System time is %s \n" ,
responseptr->obj_info[O] .value);

break;

default:
if (responsePtr->obj_info[O] . length 2)

printf ("The value is Ox%X (%d)\n",
*p.wordPtr, *p.wordPtr);

'\0' ;

466 iRMX Concepts and Features

Figure 11.10 (Continued)

else if (responseptr->obj_info[O] . length 4)
printf ("The value is Ox%lX (%ld)\n",

*p.dwordPtr, *p.dwordPtr);
else {

printf ("The value is: ");
if (responsePtr->obj_info[O] . length > 16) printf ("\n");
showHexString (responsePtr->obj_info[O] . length,

&responsePtr->obj_info[O] .value[O]);

return 0; /* never reached */

11.11 Data Link Operations

Like the other iN A modules, the Data Link layer can be accessed using the
RB interface. Normally, the Data Link layer is accessed only from within
iNA itself, but users are given direct access to this layer using a set of RB
commands collectively called the External Data Link (EDL) interface.
The EDL commands bypass the Transport and Network layers of iNA to
provide users with the ability to program functions that would otherwise be
impossible. You should note, however, that this increased functionality
comes at a price. You can send and receive datagrams using the ED L, but
you must code your application to handle the network protocols that might
be used by different packets and the problems of unreliable delivery asso
ciated with datagram service. Applications that access the network
through the Transport layer do not have to deal with these issues.

In addition to supporting the direct transmission and receipt of data
grams, the EDL provides RB functions for multicast filtering and raw
packet processing. To understand these two types of functions, you must
delve a bit into the Physical layer ofthe ISO diagram shown in Figure 11.1.
First, note that this book always assumes that a LAN is implemented using
Ethernet to connect the computers. Actually, iNA provides support for
both Ethernet connections (IEEE Standard 802.3) and Token bus connec
tions (IEEE Standard 802.4), using different device controllers, of
course.l3

Everything said so far applies equally to both types of network. Even the
information that follows is true conceptually for both Ethernet and Token
bus networks, but the details are given in Ethernet terms, just to be con
crete.

When a packet is transmitted over the Ethernet, it is sent simulta
neously to all device controllers connected to the cable, and all controllers

13iNA can also be configured to support other device controllers.

iRMX Network Programming 467

examine the packet header to see if the 6-byte address contained in the
packet matches the value embedded in that particular controller. Nor
mally, a controller simply ignores all packets for which the address is not
an exact match, but two mechanisms can be used that allow the device
controller to accept additional packets and make them available to the
Data Link layer. One is called the broadcast address mechanism, which uses
a special address, OxFFFFFFFFFFFF, that all Ethernet device controllers
accept if they are programmed to do so. The other mechanism, called
multicast addressing, causes the device controller to accept packets that
contain any of several addresses in their header field. A special case of
multicast processing, called promiscuous mode, causes the device con
troller to accept all packets that pass along the Ethernet cable. The crucial
concept here is that a single device controller is not restricted to accepting
only those packets specifically addressed to it.

The term multicast filtering refers to the ability of an application to de
termine which network packets are accepted by the local system and which
are ignored. For example, our transport layer datagram example timesrv
could invoke multicast filtering so that its unspecified NSAP address
would actually result in the receipt of datagrams from a selected set of re
mote client machines, rather than all remote machines that sent packets
using the proper TSAP ID. The EDL provides two ways to control multi
cast filtering. One, using the conf igure RB opcode, allows the user to add
addresses to (or remove address from) the device controller's list of recog
nized multicast addresses. The second method is to use the mc _add opcode
to set up a list of addresses used to perform multicast filtering by the Data
Link software.

Normally, all Data Link communication is controlled by matching Link
Service Access Point (LSAP) IDs between the sender and the receiver. You
have already seen that iNA's Network layer uses LSAP ID OxFE when you
looked at the remote NSAP structure within a ta_buffer. This same
LSAP ID is used by the nameserver, which operates as a Transport layer
application from within iNA. Another LSAP ID (Ox08) is used by iNA's
NMF module when it accesses information about remote systems to exam
ine or modify data maintained there. Users who wish to perform EDL da
tagram operations would choose their own LSAP IDs, ensuring that the
selected IDs do not conflict with others that might already be in use.

A special LSAP ID, Ox99, is reserved for a special Data Link service,
called the raw EDL (RA WEDL) interface. Use ofthis LSAP ID, along with
promiscuous-mode multicast filtering, allows an iRMX application to re
ceive all Ethernet packets not specifically addressed to another ISO LSAP
on the local machine. That is, an application can receive network packets
that are in the ISO format, but are not specifically addressed to the local
machine, and it can receive packets that do not follow the ISO format for
packet structure. Receiving packets addressed to other computers can be
used to develop a network analyzer program to look at network traffic

468 iRMX Concepts and Features

loads, isolate connectivity problems, and the like. Receiving non-ISO
packets means that an application can be written that will support multi
pIe protocol stacks concurrently.

No problems occur with having multiple types of network share a single
physical link, such as a single Ethernet cable. For one thing, each packet
sent over the Ethernet includes the address of the destination computer.
Two Novell network nodes can send Ethernet packets to each other, which
will simply be ignored by all the other computers connected to the same
cable simply because they do not have the same addresses. In addition,
every network protocol, whether it is ISO, TCP lIP, Novell, DECNET, or
any other, includes header information in each packet that it transmits
over the network.

When a packet arrives that survives multicast filtering, the Data Link
layer performs certain checks, such as a CRC computation, to verify that
the packet has not been corrupted and does indeed conform to the format
expected for that protocol. Packets that fail these protocol checks are sim
ply discarded. The idea is that a lost packet will result in some higher-level
software detecting a communication problem so that the packet will be
transmitted again.14

iNA's RAWEDL interface allows an application to receive Ethernet
packets that fail the Data Link's check for valid ISO protocol format. This
means that a single device controller, operating with a single Ethernet ad
dress, could be programmed to accept ISO, TCP/IP, and IPX network
traffic. Thus, ifthe Data Link receives a packet not in proper ISO format, it
sends it to an application that has posted a raw_post_recei ve RB with
an LSAP ID of Ox99. That application can then examine the packet to de
termine what protocol it does adhere to, and pass it on to the Networking
module for the proper protocol stack, or discard it if it cannot be recog
nized. A TCP lIP protocol stack for iRMX that coexists with the present
ISO functions provided by iNA is under development at Intel, as men
tioned earlier.

I'This action is the reason that datagram processing is considered unreliable: if a packet
somehow becomes corrupted, the sender is not notified. The different networking protocols in
use are designed so that a packet that is valid for one protocol will always appear to be invalid
for all other protocols. A Novell node using Novell's IPX network protocols would never ac
cept a TCP lIP packet, for example, even if it contained the proper 6-byte Ethernet address
for the node.

Chapter

12
iRMX for Windows

12.1 Overview

DOS, Windows, and iRMX all bring their own characteristics to iRMX for
Windows. DOS brings a simple operating system whose popularity has en
gendered a tremendous amount of application software, as well as a large
body of knowledgeable users and developers. DOS, however, is constrained
in the areas of memory management, multitasking, and user interface de
sign. Windows addresses all three of these DOS problems, and improves on
them as well. Windows also provides good facilities for sharing informa
tion among different applications. iRMX's list of contributions to the
equation is long, including true multitasking within applications, efficient
real-time task management, and good support for customizing the operat
ing system itself.

Two or three operating systems (depending on whether you want to call
Windows an operating system or not) that run concurrently on a single
computer extract penalties. Each of the three adds its own memory re
quirements to the system, and each draws on the processing power avail
able from the CPU. The payoff, however, is that the whole is greater than
the sum of its parts. By drawing on the strengths of each of the compo
nents, iRMX for Windows brings more than just real-time computing to
the DOS environment.

iRMX for Windows with DOS alone provides extended memory man
agement and access to iRMX's peer-to-peer networking capabilities, for
example. Adding Windows to the configuration provides real-time appli
cations with access to the Dynamic Data Exchange (DDE) mechanism for
sharing information among Windows and iRMX applications, and ex
tends the DDE mechanism to include network links among applications,
which Windows alone does not support.

Since the design of the iRMX operating system has already been dis
cussed in earlier chapters, this chapter presents iRMX for Windows in

469

470 iRMX Concepts and Features

terms ofthe features it adds to iRMX III. iRMX for Windows actually adds
features to DOS, Windows, and iRMX in an integrated fashion, so the dis
cussion does not always maintain the simple view of iRMX for Windows as
iRMX with some added features. Nevertheless, that view provides a conve
nient framework for this information, so this chapter is organized as a pre
sentation of features that fall into the following categories:

• Console management .

• File system compatibility.

• Interrupt management.

• System call compatibility.

• Memory management.

• VM86 protected mode extensions.

• Windows compatibility .

• Network compatibility.

• Run-time configuration.

Many of these topics have been considered tangentially in earlier chap
ters, and some of these features, such as run-time configuration, will no
longer be unique to iRMX for Windows when they are incorporated into
other versions of iRMX.

Note that Windows compatibility and network compatibility are in
cluded in the preceding list. Despite the name of the operating system,
Windows is not required to run iRMX for Windows. Likewise, you do not
need a network to run iRMX for Windows, but support for Windows and
support for networking is always available.

Instructions for using these facilities are well documented in the iRMX
for Windows documentation set. This chapter provides a guide to the facil
ities and some background on the issues involved in allowing DOS, Win
dows, networking, and iRMX to coexist on a single computer system.

12.2 Console Ownership

The first feature an iRMX for Windows user normally encounters is the
management of the console when DOS, iRMX, and possibly Windows are
all running concurrently. Console refers to the keyboard and monitor con
nected directly to the host computer, not terminals that might be con
nected to the computer over serial links, and not monitors that might be
connected to the system through additional display adapters beyond the
first. Ownership refers to what program is to receive characters typed on
the keyboard and what program is to display its output on the monitor at
any moment.

iRMX for Windows 471

Console ownership is switched between DOS and iRMX by entering
<alt-SysRq> from the keyboard. Switching the keyboard from the DOS
side to iRMX or back is relatively straightforward, but control ofthe mon
itor is a bit more complex. For one thing, the information displayed on the
screen should be preserved as control is switched back and forth between
the two operating systems, but this is subject to two limitations.

First, DOS programs that reset the video adapter destroy the image of
the iRMX screen. Before switching to iRMX, it is necessary to restore the
display adapter to text mode, and you must press <enter> on the iRMX
side to display a new prompt on the screen.

Second, graphics programs (such as Windows) are incompatible with
the iRMX use of the console, and <alt-SysRq> is not recognized when
these graphics programs are running. Note that this limitation is not in ef
fect when command. com is being run from Windows because com
mand.com runs with the display adapter set to text mode.

But what happens if an iRMX application tries to generate output while
DOS owns the console, or vice versa? The iRMX side will store the output
in a buffer and display it on the screen when control returns, but output by
DOS programs is discarded when iRMX owns the console.

The console switch between DOS and iRMX can be invoked from pro
grams as well as from the keyboard. For example, Figure 12.1 is an iRMX
program that makes a DOS system call to display a message on the screen
using the rqe _ dos Jequest() system call described in section 12.5.1. Before
calling rqedosrequest(), the code programmatically switches to the DOS
console by invoking the iRMX for Windows system call, rqealtsysreq(),
and then switches back to the iRMX prompt before exiting the program.
When the program is run from the iRMX prompt, the screen switches to
the DOS prompt for a fraction of a second, generates its output on the
screen, and returns to the iRMX prompt. Manually switching back to the
DOS prompt reveals the message on the DOS screen.

Figure 12.1 iRMX program to display a string by making a DOS system call. (This program
does not produce legible output when run under Windows.)

/ •• *> hel1odos.c <** •• **

*
* iRMX program to display "Hello, World!' by invoking a DOS system
* call to print a string.
*
.*.***/

#include <rmxc.h>

#define NULL (void far *) 0
#define TSRCONTEXT 0
#define NONE 0
#define TRUE 1
#define DS_DX 2
#define toRMX 3

412 iRMX Concepts and Features

Figure 12.1 (Continued)

#define
#define

extern BYTE

toDOS
threeSeconds

rqealtsysreq (BYTE, WORD far *);

int
main (int argc, char *argv[]) {

4
300

BYTE helloWorld[] = "Hello, World!\r\n$";
DOS_DATA_STRUCT dosRegisters;
BYTE consoleCode;
WORD Status;

dosRegisters.x.int_nurn = Ox21;
dosRegisters.x.tsr_flags = TSRCONTEXT;
dosRegisters.x.reg_ax = Ox0900;
dosRegisters.x.xfer_data = TRUE;
dosRegisters.x.srcl_xfer-pair = DS_DX;
dosRegisters.x.src2_xfer-pair = NONE;
dosRegisters.x.destl_xfer-pair = NONE;
dosRegisters.x.dest2_xfer-pair = NONE;
dosRegisters.x.src-ptr_l = helloWorld;
dosRegisters.x.src_count_l = sizeof (helloWorld);

consoleCode = rqealtsysreq (toDOS, &Status);
rqedosrequest (&dosRegisters, threeSeconds, &Status);
consoleCode rqealtsysreq (toRMX, &Status);
rqexitiojob (0, NULL, &Status);

The program can also be invoked directly from Windows by running the
wterm demonstration application provided with iRMX for Windows, or
the Win Term terminal emulator available from Markefield Software.
These programs allow users to interact with the iRMX console through a
Windows window. Running the sample program from wterm or Win Term
results in output to the screen, but the message and ASCII string cannot be
read because the screen is in graphics mode. Part of the Windows display
will be changed (the J1Pper left corner), but no text appears.

The rqealtsysreq() function is currently supplied in its own library,
: sd: rmx386/demo/altsys/altsys . lib. The function prototype is:

BYTE
rqeal tsysreq (BYTE

WORD far *

The possible values for functionCode are:

1 Acquire lock
2 Release lock

functionCode,
exceptionPtr);

iRMX for Windows 473

3 Switch to DOS
4 Switch to iRMX
5 Inquire ownership

The lock referenced for values 1 and 2 is a mutual exclusion mechanism
that can guarantee that only one program will attempt to change owner
ship of the console at one time. The lock was not used in the sample code
because the issue is not a crucial. Value 5 is used to determine which oper
ating system currently owns the console. The function returns a Boolean
value indicating the owner ofthe console (0 = DOS, OxFF = iRMX). For
functions 3 and 4, the value indicates the owner before the call was made.
For functions 1 and 5, it indicates the current owner. No return value is
defined for function 2.

12.3 File System Compatibility

The DOS file system is similar to the iRMX file system in three ways. They
both:

• Use a tree structure consisting of directories and files.

• Do not differentiate between uppercase and lowercase letters in file and
directory names.

• Allow files to be hidden and/or read-only.

There are, however, significant differences between the two file systems.
First, an iRMX file system incorporates the notion of file system users,
with different users having different access privileges for individual files
and directories. iRMX file attributes are also maintained separately for
different users, and the attributes (or permissions) include deletion, read
ing, appending to the end, and updating. Also, "hidden" is not an attribute
for iRMX files, but an effect of a file-naming convention. Hidden iRMX
files have names that begin with r? or R?

DOS file and directory names follow the 8.3 naming rule (eight charac
ters, an implied dot, and a three character extension), whereas an iRMX
file system allows up to 14 characters in virtually any combination for file
and directory names.

The two operating systems also use totally different data structures for
representing a file system on a disk volume. The iRMX file system struc
ture was introduced in section 8.4 and is documented in the iRMX Com
mand Reference, volume 10 ofthe iRMX for Windows documentation set.
The structure of the DOS file system is documented in a number of differ
ent places, including the Disk Explorer manual provided with the Norton
Utilities product for DOS, or the technical reference manuals available
from Microsoft for the various versions of DOS.

A DOS file system is required for running iRMX for Windows. The soft-

474 iRMX Concepts and Features

ware is installed in a DOS partition, and DOS commands are used to ini
tialize the iRMX operating system. Beyond that, you can choose to have
any iRMX volumes or not. An iRMX volume can take the form of an entire
hard disk drive, a partition on a hard drive, or a diskette. The issues in
volved in deciding whether to use iRMX volumes or not include conve
nience, performance, functionality, and security.

The convenience of an iRMX volume is the freedom to use 14-character
file and directory names rather than the 8.3 rule for DOS. On the other
hand, the DOS file system on a floppy is a convenient way to transfer files
from one platform to another. Because DOS is so pervasive, almost all
operating systems (including iRMX) can read and write DOS-formatted
diskettes.

The performance issue concerns the speed and predictability of the two
file system implementations. Data transfers using an iRMX file system are
generally faster than DOS, although there are a number of side issues here,
notably the hardware or software disk caching that is often done on DOS
systems. On the other hand, any caching scheme improves average per
formance at the expense of response time predictability because a cache
miss involves much more overhead than a cache hit. Many real-time sys
tems cannot tolerate such indeterminacy.

Presently, iRMX volumes on an AT platform do not provide any func
tions not available for DOS volumes other than access protection. One pos
sible difference in function deserves mention, however, in part to clarify
some confusing terminology.

Both iRMX III and DOS provide a command named mirror. Aside from
the fact that the command is not presently available for iRMX for Win
dows, the two operating systems use the terms in totally different ways.
The iRMX command is used to initiate a mode of operation in which every
thing written to one disk volume is also written to a second volume to en
sure high reliability in the face of possible disk failure. The two images of
the disk volume are continuously verified to ensure no discrepancies exist.
iRMX mirroring can also yield performance advantages if the user elects to
have alternate read operations directed to alternate volumes in the mirror
set because the system overlap pairs of operations in time. The DOS com
mand, however, is somewhat of a misnomer, since no copying of user data is
invoked by that command. Rather, the DOS mirror command saves a
snapshot of critical parts of a DOS file system (the file allocation table and
the partition table) that can be used to recover from a user accidentally
formatting a disk. iRMX provides similar functionality to DOS mirroring
by allowing the user to reserve space for a copy of the fnode file when for
matting a volume. The backup option of the shutdown command creates a
copy of the fnode file in this save area, which can be used to recover acci
dentally erased or physically damaged files using the diskverify utility.

The final issue that might make an iRMX disk volume desirable is sys
tem security. Because a DOS file system has no provision for user identifi-

iRMX for Windows 475

cation or access rights, iRMX must treat all files and directories on all DOS
volumes as having full access rights for the World user. iRMX does not
purport to be a secure time-sharing system (anyone with access to the de
velopment tools for the system could write a program to run with Super
user privileges), but the iRMX file system's protection features do prevent
accidental destruction of system files and casual unauthorized access to
other users' files. When an iRMX system is to be shared among several
users, the protected file system can, at the least, prevent unintended con
flicts in using the system. Even a system used only by a single individual
can benefit from the protected file system. Provided the individual makes a
habit of doing development work as a user other than Super and becomes
Super only for system administration chores, much inadvertent damage to
the file system can be avoided.

12.3.1 Accessing a DOS volume from iRMX

All iRMX for Windows installations must be able to access DOS files from
iRMX. This access is accomplished by the iRMX Encapsulated DOS file
driver, EDOS. The word encapsulated in the name of this driver refers to
the fact that it is used with the version of iRMX that encapsulates DOS as
a VM86 task. There is nothing encapsulated about the file driver itself.

When file drivers were introduced in chapter 8, it was noted that the file
driver acts as an intermediary between application tasks that make iRMX
BIOS system calls and a device driver that performs the actual I/O opera
tions involving interaction with the hardware device controller. No iRMX
device drivers for disks or other devices, however, directly access DOS disk
volumes. Rather, the EDOS file driver performs its I/O operations by
making calls to DOS itself, as described later. This technique ensures that
the two operating systems do not interfere with each other, but you gener
ally pay a performance penalty for accessing devices through EDOS com
pared to using a file driver that communicates directly with an iRMX de
vice driver.

Of course, EDOS cannot make a silk purse out of a sow's ear. For exam
ple, if you call rqsgetdirectoryentry() with a connection to a directory on a
DOS volume, you will get back a data structure that looks just like what you
get back from the same call for an iRMX volume. The contents of the
entry, however, will be limited to the DOS 8.3 format, with the period in the
file name explicitly present to match the iRMX file naming rules. Going
the other way, if you try to create a file or directory on a DOS volume using
a name too long for the DOS system, any extra characters are silently
dropped from the name, the same way DOS 5.0 'supports' long file names.
If you try to create a file or directory with an illegal DOS file name (two or
more periods, for example) the EDOS file driver will reject the request.

EDOS converts files that have names starting with R? or r? into DOS
hidden files, without the r? part of the name. Likewise, DOS hidden files

476 iRMX Concepts and Features

appear to the iRMX user as if they had r? at the beginning of their names.
The iRMX dir command displays invisible files if you include the inv is i -
ble (or just i) parameter. For example,

iRMX> dir $ invisible (1)

displays the names of all files in the current directory ($), including hidden
ones.

Finally, ED OS cannot add the iRMX file access protection mechanism
to a DOS file system. Commands like permi do not return error messages,
but all users are treated as the iRMX World user. The DOS system and
archi ve attributes are not supported at all by EDOS, but the read -only
attribute can be set for any file by using the permit command:

iRMX> permit a_file nr u=world [2]

This command is read, "Permit a_file to have no access but reading
for user world." Any numerical value between 0 and OxFFFF could have
been substituted for wor ld with the same effect because all iRMX user IDs
are treated as the World user (ID 65535). Giving permission for deletion,
reading, or update gives full access to the file for all users.

12.3.2 Accessing an iRMX volume from DOS

When iRMX for Windows is running, you can use sysload to install the
iRMX-Hosted DOS File Server (RHDFS) job.1 This iRMX job provides
support for the DOS command rmxuse. (How iRMX jobs and DOS pro
grams communicate with each other is discussed shortly.) The rmxuse
command is used to map iRMX logical names to DOS drive letters. The
command includes the option to perform an iRMX attachdevice to create
the iRMX logical name if it does not already exist. The following are exam
pIes that show how the command can be used. (Note the use of c : > as our
generic DOS prompt; rmxuse must be given as a DOS command, not
iRMX.)

c.> rmxuse F •• SD. [3]

The iRMX logical name: SD: (the root directory ofthe system device)
can now be referenced from DOS as drive F:.

c.> rmxuse G. :1. \p=systeml \r [4]

ty ou can load the RHDFS or Standard Mode Windows job, but not both.

iRMX for Windows 477

The device name systeml is attached as the iRMX logical name: 1:,
and can now be referenced from DOS as drive G: • The I r switch indicates
that systeml is the name of a remote computer system rather than the
name of a DUIB on the local system. You cannot do silly things with
RHDFS and rmxuse, like map a DOS device for which there is an iRMX
logical name onto another DOS drive letter:

c:> rrnxuse H: :b: \p=b_dos [5]

This command, if it worked, would let you refer to the DOS diskette in
drive B: as H: . DOS provides its own commands, subst and join, for doing
this sort of command directly without going through an iRMX job. For
more examples of rmxuse, see the iRMX Command Reference.

12.4 Interrupt Management

A common theme throughout the remainder of this chapter is how the pro
cessor responds to interrupts in the various contexts in which it may be
operating. This section provides an overview of how interrupts are han
dled. You may want to refer back to chapter 5 for background on the hard
ware features mentioned here.

An i386 or later processor can operate in real, protected, or VM86 mode.
When iRMX code is running, the processor is always in protected mode.
When Windows is running the processor is in protected mode, but it puts
the processor into real mode to run non-Windows (traditional DOS) appli
cations.2 iRMX for Windows puts the processor in VM86 mode whenever
DOS is running without Windows and whenever Windows tries to put the
processor in real mode to run a DOS application. Thus, any given hard
ware- or software-generated interrupt request could be destined for an
iRMX protected-mode interrupt handler, a Windows or Windows applica
tion protected-mode interrupt handler, or a DOS real-mode interrupt
handler.

In real mode, the processor gets the address of the handler for an
interrupt level from a vector of 256 pointers stored in the lowest 256
doublewords of memory. In protected mode, the address of a handler is de
termined from one of the 256 entries in the Interrupt Descriptor Table
(IDT). In VM86 mode, interrupts always vector into the IDT, and the
operating system can then either call the corresponding real-mode inter
rupt handler or process the interrupt itself.

2Windows has its own modes of operation, but it runs only in its standard mode with iRMX
for Windows, so its 386 enhanced mode is ignored in this discussion.

478 iRMX Concepts and Features

managed by DOS and DOS applications, the protected-mode IDT man
aged by Windows and Windows applications, and the protected-mode IDT
managed by iRMX. iRMX for Windows effectively merges the Windows
IDT into its own because the processor can support only one IDT. Manag
ing interrupts destined for DOS's real-mode interrupt vector or the Win
dows IDT is the job of a routine called the VM86 Dispatcher. When an in
terrupt destined for Windows occurs, the VM86 dispatcher (using a
program called smw.job) simply makes a far call to the interrupt handler
provided by Windows.

Handling interrupts destined for DOS's real-mode interrupt vector is
more complicated. In VM86 mode (DOS always runs in VM86 mode), the
processor causes a GP fault (interrupt level 13) if a program tries to execute
an "IOPL-sensitive" machine instruction, and the privilege level of the
current code segment is numerically greater than the I/O Privilege Level
(lOPL) of the processor.

IOPL-sensitive instructions include int instructions (used by DOS pro
grams to make system calls), as well as those instructions that enable or
disable interrupts or perform I/O transfers. GP faults that occur while the
processor is in VM86 mode can be either emulated or ignored by the VM86
dispatcher. For example, by controlling attempts by DOS programs to dis
able interrupts, the VM86 dispatcher can preserve real-time responsive
ness for iRMX tasks at the expense of DOS or Windows performance.

There are two choices for the processor's 10PL when DOS is running. If
the IOPL is 0, DOS interrupts cause GP faults, but if the IOPL is 3, the mi
croprocessor does not trap 10PL-sensitive instructions, and DOS pro
grams run with minimal interference from iRMX (at the expense of
iRMX's real-time responsiveness). A configuration option called interrupt
virtualization is selected when an iRMX for Windows system initializes to
determine the 10PL to be used when DOS is running. If the : con
fig: rrnx. ini file contains an entry, VIE=OOOh, in the [DISPJ] section,
then interrupt virtualization is disabled, the IOPL is set to 3 when DOS
runs, and iRMX interferes only minimally with DOS.

If the entry is VIE=OFFh, then interrupt virtualization is enabled, the
IOPL is set to ° when DOS runs, and DOS interferes only minimally with
iRMX. If I/O-intensive DOS applications need to run efficiently while
iRMX is maintaining real-time performance, the solution is to have iRMX
manage the I/O operations. For example, an iRMX SCSI device driver can
be loaded with iRMX for Windows to provide high-performance disk ac
cess to DOS applications even though interrupt virtualization is enabled.

12.5 System Call Compatibility

In chapters 9 and 10 you saw that iRMX application developers have ac
cess to the same mechanisms for adding device drivers, system calls, and
type managers as the engineers who developed iRMX itself. Thus, it

iRMX for Windows 479

should come as no surprise that the same mechanism used by the EDOS
file driver to make DOS system calls is also available to iRMX for Win
dows developers. In addition, DOS programs can invoke many (but not all)
iRMX system calls, and can use iRMX as a DOS extender (which is a pro
gram that allows a real-mode application to use protected-mode features of
an 80386 microprocessor). After all, the iRMX for Windows exists to pro
vide facilities for iRMX and DOS applications to interact with each other.
The facilities for iRMX-to-DOS and DOS-to-iRMX interactions are dis
cussed in the next two sections.

12.5.1 iRMX access to DOS system calls

DOS programs make DOS system calls by loading parameter values into
registers and executing an int21 instruction. For example, loading register
ax with Ox0900 and registers ds : dx with a pointer to a $-terminated string
causes the string to be displayed on the DOS console. The following is a
sample DOS program that uses in -line assembly code to display a message:

#include <stdio.h>
int
main (int argc, char * argv[]) (
char far *a'string=' 'hello, world'\n'\r$";

asm (
mov ax, Ox0900
Ids dx,a'string
int Ox21
}

return 0;

Most C compilers for DOS allow you to set up the registers and execute
the int instruction with a library call, as the following example shows:

#include <stdio.h>
#include <dos.h>

int
main (int argc, char * argv[]) (
char *a' string = n'\r$' , ;
union REGS regs;
struct SREGS sregs;

regs.x.ax= Ox0900;
regs.x. dx = FP _OFF (a' string);
sregs .ds = FP' sEG (a' string);
intdosx (®s, ®s, &sregs);

return 0;

Why not just run the equivalent program from iRMX? After all, the code
runs on the same processor as DOS, so the registers and interrupts must be

480 iRMX Concepts and Features

the same, right? Not exactly. Remember that DOS runs as a VM86 task
(see section 5.5) when iRMX for Windows is running. If this program were
compiled and bound using ie-386 and bnd386 to run under iRMX, execu
tion of the int 21 instruction would be vectored into the iRMX interrupt
descriptor table, not the DOS interrupt vector in low memory. Because
iRMX does not process DOS system calls, the program would fail.

Instead, iRMX for Windows programs can call rqe_dosJequest() to
make DOS system calls while running under iRMX. The mechanism to
support rqe_dosJequest() consists of two parts, an iRMX first-level job
that responds to the iRMX call and a DOS program that performs the DOS
system call on behalf of the iRMX application. This DOS program must
always be available when iRMX for Windows is running to provide this
support, so it is run as a DOS Terminate and Stay Resident (TSR) pro
gram, with the appropriate name of rmxtsr.

A TSR is a program run from the DOS command line but which executes
the DOS terminate and stay resident system call to return control to the
command processor while remaining in DOS memory. Since DOS is a sin
gle-threaded operating system, a TSR can execute only by responding to
interrupts. An analogy would be to run an iRMX command using the back
ground command or the sysload utility, but iRMX tasks do not have to be
interrupt-driven to run.

On the iRMX side, the first-level job that responds to rqe _ dos Jequest()
is called the VM86 Dispatcher, which acts as the manager for all DOS
VM86-mode operations. As such, it can send messages to rmxtsr by means

. of real-mode software interrupts. Similar to the intdosx() function of DOS,
rqe _ das Jequest() takes a data structure that contains the values of the
processor's registers as one of its arguments. This data structure must be
more elaborate than REGS and SREGS in the previous examples, however.
The concepts involved can be explained by examining how the "hello
world" program would be coded to invoke the DOS print string function
from iRMX. The code is given in Figure 12.1.

Looking at the sequence of assignments to fields in dosRegisters
(which includes the x specifier to select word-wide registers), the first field
of interest is int_num. This field tells rmxtsr which real-mode software
interrupt number to use to invoke the system call. Most DOS system calls
use interrupt-level Ox21, but DOS uses other levels as well. Furthermore,
this interrupt level can be set to values for invoking ROM-BIOS functions
directly, if desired.

The tsr _flags field is a binary variable. lfit is 0, as in the example, the
DOS function is executed using the context of rmxtsr. A value of 1 invokes
the function using the context of the currently running DOS application.3

3The context of a DOS program is stored in a 256-byte data structure called the Program
Segment Prefix (PSP). The PSP contains command line arguments, settings of environment
variables, a disk buffer, and other information.

iRMX for Windows 481

The register initialization for register ax is straightforward, but loading
the pointer to the string that is to be printed into the OS: ox register pair
illustrates a major issue in making DOS calls from iRMX. The iRMX ap
plication occupies memory above 1 MB using the processor's protected
mode addressing mechanism, but rmxtsr occupies memory below 1 MB and
uses the processor's real-mode addressing mechanism. Therefore, rmxtsr
(or DOS, for that matter) cannot access the string declared in the iRMX
program. It must be copied from iRMX memory to DOS memory, and
rmxtsr provides four buffers for just this purpose.

Two buffers are available for copying information from iRMX applica
tions to DOS, and two are available for copying information in the opposite
direction. The xfer data field is a Boolean variable that identifies
whether any ofthese buffers are to be used. In the sample code, src _ptr_1
was set to point to the dollar-terminated string to be used for the system
call, and src_count_1 was set to the length of the string so rmxtsr knows
how many bytes to copy into its internal real memory buffer. The
src1_xfer_pair is then set to the constant os_ox to tell rmxtsr that a
pointer to this buffer is to be loaded into the processor's ds: dx registers
before executing the int 21 instruction. By setting the other three xfer_
pair fields to NONE, rmxtsr knows that the other three transfer buffers are
not used for this call.

Note that rmxtsr knows nothing of DOS or ROM-BIOS calls to provide
its services to iRMX clients. By keeping the interface between it and
iRMX tasks fully general, it can accommodate the invocation of any func
tion that might be invoked by a software interrupt in the DOS environ
ment. The only restriction is that several DOS functions should not be in
voked from any TSR, including rmxtsr. These functions are listed as
unsupported in the iRMX System Call Reference manual documentation
for rqe _ das Jequest().

12.5.2 The DOS Real-Time Extension:
making iRMX system calls from DOS

A mechanism called the DOS Real-Time Extension (RTE) is used by DOS
programs to make iRMX system calls. Although the RTE interface to
iRMX system calls is always the same, push parameters onto the stack and
execute an int B8 instruction), there are several ways in which the int in
struction is actually handled, which are described in section 12.4.

The RTE code that handles int B8 instructions examines the arguments
on the caller's stack and a function code the caller placed in the processor's
ax register, then invokes the appropriate iRMX system call based on the
function code. The RTE recognizes codes for 28 different Nucleus system
calls, plus two special RTE functions that allow DOS programs to copy in
formation between iRMX protected-mode segments and DOS real-mode
segments. The 30 RTE calls are listed in Table 12.1.

As you should expect by now, the mechanism that iRMX for Windows

482 iRMX Concepts and Features

TABLE 12.1 iRMX System Calls That Can Be Made By DOS Programs Using the RTE Mechanism

RTE code

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
26
27
28
30
31

Corresponding
iRMX system call

rqcreatemailbox()
rqdeletemailbox()
rqsendmessage()
rqsenddataO
rqreceivemessage()
rqreceivedataO
rqcreatesemaphore()
rqdeletesemaphore()
rqsendunits()
rqreceiveunitsO
rqcreateregionO
rqdeleteregion()
rqsendcontrol()
rqreceivecontrolO
rqacceptcontrol()
rqcreatesegment()
rqdeletesegment()
rqgetsizeO
rqegetaddress()
rqecreatedescriptor()
rqedeletedescriptor()
rqechangedescriptor()
rqcatalogobject()
rquncatalogobject()
rqlookupobject()
rqgettasktokens()
rqgettype()
rqsleep()
rqereadsegment()
rqewritesegment()

uses to implement the RTE is also available for systems programmers to
use to develop their own protected-mode extensions (PMEs) to DOS, as
you will see in section 12.8. For example, a DOS program could invoke
other system calls besides those listed in Table 12.1 by invoking a PME
that recognized function codes for other iRMX calls. Because the VM86
job that owns the DOS task is a first-level job created after the BIOS, DOS
programs could, in principle, make any Nucleus or BIOS layer system calls
using a PME.

iRMX interrupt handlers are not allowed to make iRMX system calls
(see chapter 9), and neither can DOS interrupt handlers. This means that
DOS TSRs that connect themselves to hardware interrupts to check for
users typing special characters (hot keys, for example) cannot use the RTE
mechanism.

There is a nonissue involved in using the RTE mechanism. The objects
owned by an iRMX job are automatically deleted when the job terminates,

iRMX for Windows 483

but the VM86 job does not terminate until the iRMX system shuts down.
This would seem to imply that a DOS program could create iRMX objects
that would continue to exist after the DOS program terminates. Actually,
the VM86 job is able to tell when DOS programs terminate (there is always
an interrupt involved), and the RTE mechanism provides a procedure that
automatically deletes the appropriate iRMX objects any time any DOS
program terminates.

12.5.3 Invoking RTE functions from
DOS programs

Making an iRMX system call from DOS involves pushing parameters onto
the stack, setting up the processor's s i register to point to the last parame
ter, and issuing a software int instruction to call the RTE task. If the sys
tem call returns a value, it will be returned in the processor's ax register,
and must be obtained from there. The code to do all this work can be writ
ten in assembly language or C if your compiler supports either in-line as
sembly language or the int86() function, as Microsoft, Borland, and others
do. Certainly, the easiest way to invoke RTE functions from DOS
programs, however, is to use the interface library for RTE calls pro
vided with iRMX for Windows in the file \rmx386\demo\rte\lib\
rmxintfc.c. 4

Supplying the code in source form documents the calling convention
being used and provides developers with code that can be adapted to differ
ent vendors' development tools if necessary. A batch file, rmxintfc. cmd
is supplied that compiles the code three times to produce object libraries in
the small, compact, and large models using the Microsoft C compiler. The
object modules created by these compilations are also provided in the files
called dosrtes .lib, dosrtec .lib, and dosrtel.lib. Its not really an
issue here, but it is worth remembering that Microsoft and Borland DOS
development tools define the various memory segmentation models differ
ently from Intel's iRMX development tools, as mentioned in chapter 3.

The source code file is named rmxintfc. c in recognition ofthe analogy
between the functions in this file and the interface procedures used to
make iRMX system calls from iRMX programs, as discussed in chapters 6
and 10. The difference is that these interface procedures are two steps re
moved from the iRMX interface procedures. These procedures set up and
invoke real-mode software interrupt instructions that are intercepted by

'Watch the pathname syntax in this chapter. A / is used as the path component separator in
the iRMX context, and a '\ is used as the separator in the DOS context. The same files can be
accessed from either context for the files discussed in this chapter because they are normally
installed on a DOS partition. DOS, however, uses / to introduce command line switches, while
the iRMX eLI uses '\ as an escape character. The syntax difference helps keep track of which
operating system is accessing the files in this chapter.

484 iRMX Concepts and Features

the iRMX PVAM interrupt manager, which activates an iRMX task,
which then calls the iRMX interface procedure to make the system
call.

A header file in '\rmx386'\demo'\rte,\lib'\rmxintfc.h is used to
compile the interface libraries, but another header file in
'\rmx386\demo\rte\inc\rmxintfc.h should be included in C pro
grams that call the library routines. The ... '\inc\rmxintfc. h version in
cludes monocase, underscore format, and mixed case definitions for all the
RTE functions, so the create mailbox system call, for example, could be in
voked using rqcreatemailbox(), rq_ create _ mailbox(), or RQCreateM ail
box(), whichever you prefer. You might recall from chapter 3 that system
calls invoked from iRMX can be invoked using monocase names if you in
clude : include: rmxc. h, or using underscores if you include : in
clude: rmx_c. h. (There is currently no mixed-case header file for the
iRMX side.)

Before a DOS program generates an interrupt to call an RTE function, it
should first determine if iRMX for Windows is actually running. (Generat
ing an int B8 instruction with no interrupt handler installed is not a good
idea.) Two functions can be called from DOS to determine whether the
iRMX for Windows TSR has been loaded or not and, if the TSR is present,
whether iRMX has been loaded or not. The two functions, RMX_Inter
face_TSR_Present() and get_RMXjF_dseg() , are provided in DOS
object module format in the file \rmx386\demo\rte\lib\rmxu
tils. obj. Installing the TSR and loading iRMX are normally done to
gether by submitting the batch file '\dosrmx\rmx. bat, so a single func
tion that makes calls to both these utilities is normally used to determine if
RTE calls can be made or not. Such a function, named RQEGetRMX
Status(), is defined in rmxintfc. c.

Figure 12.2 illustrates the use of RQEGetRMXStatus() to determine
whether iRMX for Windows is available followed by two RTE calls to ob
tain tokens for the caller's task and job. The program uses the code in
\rmx386\demo\rte,\lib\rmxintfc. c as an interface library for the
system calls. This code is compiled using a DOS C compiler, and linked
with rmxutils .obj and dosrte? . lib (? = [slcll)) to produce an exe
cutable DOS program, with a name such as rtesamp. exe. When it runs,
the program displays the tokens for the DOS task and the VM86 job be
cause that is the context in which DOS programs run. The C program in
Figure 12.2 can be run as a Windows application rather than a DOS appli
cation by using the Borland development tools, which provide a version of
printf() that writes to a window instead of the DOS screen; the output is the
same:

This is iRMX task 10DO.
I belong to iRMX job 1040.

iRMX for Windows 485

Figure 12.2 DOS program to invoke iRMX system calls through the Real·Time Executive
(RTE) mechanism.

/***> rtesamp.c <***

*
This is a DOS program that makes iRMX system calls using
the iRMX for Windows RTE mechanism.

**/

#include <stdio.h>
#include "\rmx386\demo\rte\inc\rmxintfc.h"

#define

WORD Status;

int
main (int argc, char *argv[]) (
WORD task, job;

if (RQEGetRrnxStatus() != E_OK) {
printf ("This program will not run without iRMX for Windows\n");
exit (1);

task = rqgettasktokens (0, &Status);
if (Status != E_OK) (

printf ("rqgettasktokens() returned %X\n", Status);
return 1;

job = rqgettasktokens (1, &Status);
if (Status != E_OK) {

printf ("rqgettasktokens () returned %X\n", Status);
return 1;

printf
("This is iRMX task %X. \n", task);
printf

("r belong to iRMX job %X.\n", job);

return 0;

Figures 12.3 and 12.4 illustrate two other ways to implement RTE calls
from DOS programs with the same output as Figure 12.2. Figure 12.3 is an
other C program but uses in-line assembly language to set up and invoke
the RTE functions. Like Figure 12.2, this version of the program can also
be run as a Windows application, as long as the run-time library version of
printf() generates output to a Window instead of the DOS screen. Figure

486 iRMX Concepts and Features

Figure 12.3 DOS program equivalent to Fig. 12.3, but which uses in· line assembly language to
make its RTE calls.

1***> dorte.c <***

*
This is a DOS program that makes iRMX system calls using

* the iRMX for Windows RTE mechanism.

*
*
*
*

It uses in-line assembly code to set up the stack and to
invoke the RTE interrupt level, axBS.

**/

#include <stdio.h>
#include " \rmx3S6\demo\rte\inc\rmxintfc.h"

#define

WORD Status;

#pragma argsused
int
main (int argc, char *argv[]) (
WORD task, job;

if (RQEGetRrnxStatus() != E_OK) (
printf ("This program will not run without iRMX for Windows\n");
exit (1);

asm
mov
push
mov

ax,O /* get token for task */
ax
ax, SEG Status

moves, ax
mov
push
push
mov
mov
int
add
mov
mov

ax, OFFSET Status
es /* Far pointer to Status */
ax
si,sp
aX,26
axBS
sp, 6
task, ax
ax, Status

/* function code for rqgettasktokens() */
/* invoke the DOS RTE */

cmp ax, a
jne error

mov
push
mov
mov
mov
push
push
mov
mov
int
add
mov

aX,l /* get token for job */
ax
ax, SEG Status
es, ax
ax, OFFSET Status
es /* Far pointer to Status
ax

*/

si,sp
aX,26
OxBS

/* function code for rqgettasktokens() */

sp, 6
job, ax

/* invoke the DOS RTE */

mov ax, Status

iRMX for Windows 487

Figure 12.3 (Continued)
cmp ax, 0
jne error
}

printf
("This is iRMX task %X.\nI belong to iRMX job %x.\n", task, job);
return a;

error:
return 1;

Figure 12.4 Assembly language version of Fig. 12.3 (Assembled with Borland TASM 3.0).

;---> rteasm.asm <---

This is a DOS program that makes iRMX system calls using
the iRMX for Windows RTE mechanism.

It uses assembly code to set up the stack and to
invoke the RTE interrupt level, axB8 .

. _---,

NAME
PAGE
. MODEL
. STACK
. DATA

TRUE
FALSE

Status
Task
Job

emess

tmess
tmessx
jmess
jmessx
smess
smessx
hextab

.CODE

rteasm
58, 132
SMALL
10ah

EQU
EQU

DW
DW
DW

DB
DB

DB
DB
DB
DB
DB
DB
DB

aFFh
aaOh

?
?
?

'This program will not run without iRMX for windows'
ODh, DAh, '$'

'This is iRMX task '
'XXXX' , ODh, DAh
'I belong to iRMX job
'XXXX', DDh, DAh, '$'

'RQ_Get_Task_Tokens failed. Status is '
'XXXX' , ODh, OAh, '$'
'0123456789ABCDEF'

EXTRN _RMX_Interface_TSR_Present: FRoe
EXTRN _get_RMX_IF_dseg: FROC
PUBLIC _MAIN

TOHEX

488 iRMX Concepts and Features

Figure 12.4 (Continued)

TOHEX PROC
push

shr
mov
add
mov
mov
inc

pop
push
shr
and
mov
add
mov
mov
inc

pop
push
shr
and
mov
add
mov
mov
inc

pop
and
mov
add
mov
mov

ret

TOHEX ENDP

;---- MAIN

J1AIN PROC

mov
mov

call
cmp
jne
call
cmp
jne

not_ok:
mov
ritov

; Convert value in ax to 4 hex chars at ds:di
ax

ax, 12
si, OFFSET hextab
si, ax
ax, lsi)
[di), al
di

ax
ax
ax, 8
ax, OFh
si, OFFSET hextab
si, ax
ax, lsi]
[di), al
di

ax
ax
ax, 4
ax, OFh
si, OFFSET
si, ax
ax, lsi)
[di) , al
di

ax
ax, OFh
si, OFFSET
si, ax
ax, lsi)
[diJ, al

ax, @data
ds, ax

hextab

hextab

First char

Second char

Third char

Last char

Set up ds:

_RMX_Interface_TS~Present

ax, TRUE
Check for iRMX

not_ok
_get_RMX_IF_dseg
ax, 0
ok

ax, 0900h
dx, OFFSET emess

iRMX for Windows 489

Figure 12.4 (Continued)

ok:

int 21h
mov ax, 4COOh
int 21h

Get tokens for this task and this job

Got

mov
push

ax,O get token for task
ax
ax, SEG Status
es, ax
ax, OFFSET Status
es
ax

Far pointer to Status

mov
mov
mov
push
push
mov
mov
int
add
mov
mov
cmp

si, sp
aX,26
OB8h

function code for rqgettasktokens()
; invoke the DOS RTE

sp, 6
task, ax
ax, Status
ax, 0

jne error

mov
push
mov

aX,l get token for job
ax
ax, SEG Status

moves, ax
mov
push
push

ax, OFFSET Status
es
ax

mov si, sp

Far pointer to Status

mov
int
add

ax,26
OB8h
sp, 6

function code for rqgettasktokens()
; invoke the DOS RTE

mov job, ax
mov ax, Status
cmp ax, 0
jne error

tokens ok. Display them.

mov ax, task
mov di, OFFSET tmessx
call tohex

mov ax, job
mov di, OFFSET jmessx
call tohex

mov ax, 0900h
mov dx, OFFSET tmess
int 21h

mov ax, 4COOh
int 21h

Error: display status and exit.

490 iRMX Concepts and Features

Figure 12.4 (Continued)

error:
mov di, OFFSET smessx
call tohex
mov ax, 0900h
mov dx, OFFSET smess
int 21h

mov ax, 4COOh
int 21h

_MAIN ENDP

END _MAIN

12.4 is a straight assembly language version of the program that generates
exactly the same output as Figures 12.2 and 12.3. This program, however,
uses a DOS system call to write its output, and can be run only as a DOS
application. Running it under Windows generates similar behavior to the
code in Figure 12.1; the program writes to the screen, but the output cannot
be read because ASCII text is written when the screen is in graphics mode.

Although it would make sense to look now at the Protected-Mode Ex
tension mechanism that applications can use to develop functions that go
beyond the RTE mechanism, that topic is deferred until section 12.8. First,
memory management issues are examined, which provide a good back
ground for understanding the PME.

12.6 Memory Management

Two memory management issues are involved in iRMX for Windows. One
is to provide DOS, or Windows, programs with access to memory managed
by the iRMX operating system, and the second is to have iRMX for Win
dows coexist with various existing memory management systems that exist
for DOS and Windows.

12.6.1 Accessing iRMX memory from DOS

A DOS program can create, delete, and determine the size of iRMX mem-
0ry segment objects of any size (up to 4 G B) by using the RTE to make the
iRMX system calls rqcreatesegment(), rqdeletesegment(), and rqgetsize().
But the token returned by rqcreatesegment() cannot be used by a DOS
(real-mode) program to access iRMX (protected-mode) memory directly.
Instead, the RTE provides two functions, rqereadsegment() and rqewrite
segment(), that copy information between DOS real-mode segments and
iRMX protected -mode segments. Of course, only a maximum of 64 KB can
be transferred at a time because of the architectural limitation that real
mode addressing imposes on DOS programs.

iRMX for Windows 491

Because rqereadsegment() and rqewritesegment() are called from DOS
programs, the proper function prototypes for them can depend on the C
compiler being used for the DOS application. Like the RTE-supported
iRMX system calls, the source code for interface procedures that call these
routines is given in \rrnx386\derno\rte\lib\rrnxintfc.c, and the
header file with function prototypes suitable for use with Microsoft C and
compatible DOS compilers is given in \rrnx386\derno\rte\inc\
rrnxintfc. h.

12.6.2 Coexisting with other memory managers

DOS memory management started out fairly simple. The 8086 architec
ture allowed up to 1 MB of memory. It seemed that 640 KB, ten times the
amount of memory available with the previous generation of microproces
sors (the 8080 and its competitors), would be adequate to reserve for DOS
and the programs it runs. This memory area is often referred to as program
memory or conventional memory. The remaining 360 KB of the 1 MB ad
dress space, called the upper memory area, is reserved for ROM-resident
code and RAM used by various device controllers. Some of the ROM-resi
dent code, the ROM-BIOS, is supplied with the computer, and some of it is
supplied by the device controllers. Initially, both the program area below
640K (conventional memory) and the area above 640K (upper memory)
were lightly used.

Over time, programs and device controllers increased their demands on
the respective regions of the real-mode address space accessible to them. It
might seem that programs won the race to exhaust the amount of memory
available to them, but this is somewhat illusory. Device controllers for
video displays, for example, can require extremely large amounts of mem
ory. A 640 X 480 pixel display with 16 colors per pixel (the resolution of a
standard VGA adapter) requires more than 150,000 bytes of storage for a
screenful of graphical information. Expanding this to 256 colors per pixel
doubles the number of bytes needed; increasing the resolution to 768 X
512 pixels exceeds the 360K of memory space available to all device con
trollers. Seeing the inevitability of too little memory available to increase
graphical capabilities on a regular basis, graphics device controllers make
subsets of the entire display memory accessible to the microprocessor at
different times. As Figure 12.5 illustrates, only a portion of the actual dis
play memory managed by a display adapter is mapped to the memory ac
cessible to the microprocessor at a time.6 Other device controllers, such as
disk and network adapters, also make demands on the upper memory area
above 640K for Direct Memory Access (DMA) buffers.

5The term frame buffer is normally used in computer graphics to refer to what is called dis
play memory here.

492 iRMX Concepts and Features

1 M
Upper Memory

1 '::;:£1,
640 K

Display Memory

Program Memory

a
Main Memory

Figure 12.5 The microprocessor can access only part of a display adapter's video memory at a
time.

Two basic techniques exist for making additional memory available to
DOS programs. One technique, called expanded memory, can be used with
processors that can access no more than 1 MB of RAM (the 8086 architec
ture). The other technique, extended memory, can be used with any proces
sor that can access more than 1 MB of RAM. (The 80286 or i386 architec
tures provide access to 16 MB and 32 GB, respectively.)

!

Expanded memory. Expanded memory works very much like the video
memory technique just discussed. A special memory board is added to the
system that can map portions of its memory into part of the upper memory
area above 640K. To use an expanded memory board, the user must load a
software module called an expanded memory manager and then run appli
cation programs that make requests for access to various parts of expanded
memory by software interrupts. The expanded memory manager responds
to the software interrupts by setting registers in the expanded memory
board, mapping the desired part of expanded memory into an area of mem-
0ry above 640K where the application can access it. The RAM cannot be
accessed on an expanded memory board except by setting the registers the
way the expanded memory manager does.6

True expanded memory using an expanded memory board can be used to
make more memory available to any processor, including those that oper-

6Most expanded memory boards can be configured by changing hardware switches or
jumpers to provide extended memory instead of expanded memory. The statement is correct
for expanded memory boards configured for expanded memory use.

iRMX for Windows 493

ate only in real mode, such as the 8086. It is also possible to emulate ex
panded memory on a processor that can access more than 1 MB of RAM.
To perform the emulation, a software module intercepts the same software
interrupts as a true expanded memory manager, but, instead of setting
hardware registers to map memory from an expanded memory board into
the upper memory area, the emulator puts the processor into protected
mode. In this mode, the processor can address RAM above 1M, and copies
the emulated expanded memory pages between RAM in the upper memory
area and RAM above 1M, and then restores the processor to real mode be
fore returning to the application. The application can then access the
emulated expanded memory by addressing locations in the upper memory
area in the usual way. Naturally, switching the processor in and out of pro
tected mode and copying memory blocks back and forth is slower than
using an actual expanded memory board.

Another way to emulate expanded memory is to use the paging mecha
nism available on i386 processors and later. This technique requires the
processor to be in protected mode at all times and for DOS to run as a
VM86 task. In this situation, the expanded memory emulator responds to
expanded memory software interrupts by setting the processor's page
tables to map parts of memory above 1M to the upper memory area.

The software interface between application programs that want to use
expanded memory and an expanded memory manager is given in the LIM
4.0 expanded memory specification (Lotus et al., 1987).

Extended memory. Extended memory (XMS) is a generic term for mem
ory above 1M that can be accessed by processors operating in protected
mode. Thus, the expanded memory emulators just mentioned would be
said to copy or translate between extended memory pages and the upper
memory area. DOS programs that want to access extended memory do so
by executing an int 2F instruction to determine if an XMS manager is
available and the address of a routine to call to perform XMS functions.
The basic XMS functions are to allocate, free, and copy blocks of extended
memory. Extended memory blocks are allocated in 1 KB increments of up
to 16 MB on 80286 processors, or up to 64 MB on i386 processors and later.
Copying can be done between extended memory blocks or between an ex
tended memory block and a program memory (below 640K) block.

Extended memory managers provide three other types of service in ad
dition to management of extended memory blocks. These are High Mem
ory Area (HMA) support, A20 management, and UMB support. Recall
that real-mode addressing on an 80286 or greater processor can generate
addresses as large as Oxl0FFEF (OxFFFFO + OxFFFF). The memory
above 1 MB (addresses Oxl00000 through Oxl0FFEF) is available for use
by real-mode programs for both code and data. (Extended memory cannot
be used for code for a DOS program) DOS 5.0, for example, can be set to
load much of the operating system itself into the HMA. An extended mem-

494 iRMX Concepts and Features

ory manager can manage access to the HMA through functions that allow
programs to request and release use of the HMA area. Only one program
can occupy any part of the HMA at a time.

A20 management is closely related to HMA support. The address lines
connecting the processor to memory are numbered from right to left start
ing at AOO. Looking at the binary representation of memory addresses
below 1 MB compared to those in the HMA, you can see that low addresses
have address line A20 equal to 0 and addresses in the HMA have address
line A20 equal to 1. Since 8086 processors do not have an A20 line (only
lines AOO through AI9), any attempt to access the HMA on that processor
results in address wraparound. That is, accesses to the HMA result in ac
cesses to real memory locations OxOOOOO through OxOFFEF.

Because there are DOS programs that rely on this wraparound, most
computers that use an 80286 microprocessor or later provide a mechanism
for optionally disabling the A20 address line under software control to sim
ulate the 8086 processor's behavior. Extended memory managers provide
functions that can be used to enable or disable the A20 address line using
whatever technique is appropriate for a particular type of computer. For
example, the extended memory manager provided with DOS 5.0 can be
passed a parameter to tell it which of 14 different types of computer it must
deal with when manipulating A20. The general rule is to have only the pro
gram using the HMA, normally DOS itself, make calls to the extended
memory manager to change the state of the A20 line if necessary.

Finally, extended memory managers provide functions to manage access
to Upper Memory Blocks (UMBs). UMBs are parts of memory in the 640K
to 1M address range for which the computer physically provides RAM and
which is not used by the ROM-BIOS or any device controllers. Programs
can reserve and release portions ofthis RAM through two calls to the ex
tended memory manager. UMBs are always a multiple of 16 bytes in size,
and can be as large as one real-mode segment, 64 KB.

The Application Program Interface (API) for invoking extended mem
ory manager functions is called the XMS Specification, (Microsoft, 1988).
The API is summarized in Table 12.2. All functions are invoked from a
DOS program by loading the indicated function code into register ax and
executing an int 2f instruction.

12.6.3 DOS expanded memory and
extended memory managers

DOS 5.0 provides an expanded memory emulator for processors numbered
80386 and later, called emm386.exe, and an extended memory manager for
80286 processors and later, called himem.sys. Both programs are loaded,
like device drivers, when the user's config. sys file is processed.
emm386.exe uses himem.sys to provide access to the extended memory it
needs to emulate expanded memory, so himem.sys must be loaded before

iRMX for Windows 495

TABLE 12.2 Summary of the Version 2.0 Extended Memory Specification (XMS) for DOS.

Code Function

Ox43 Determine if an XMS driver is installed
OxOO Get XMS version number and internal revision number
OxOl Request High Memory Area (HMA)
Ox02 Release HMA
Ox03 Global Enable A20 (Used only by the program in the HMA.)
Ox04 Global Disable A20
Ox05 Local Enable A20 (Might be used by conventional DOS programs.)
Ox06 Local Disable A20
Ox07 Query A20
Ox08 Query Free Extended Memory
Ox09 Allocate Extended Memory Block (EMB)
OxOA Free EMB
OxOB Move EMB
OxOC Lock EMB (Prevent move operations.)
OxOD Unlock EMB
OxOE Get EMB Information (Locking count, block size)
OxOF Reallocate EMB (Change the size of a block.)
OxlO Request Upper Memory Block (UMB)
Oxll Release UMB

emm386.exe (that is, it must be listed before emm386.exe in conf ig. sys).
emm386.exe also manages the upper memory area for systems that want to
load device drivers and interrupt handlers into that part of memory.

12.6.4 The DOS Protected Mode Interface (DPMI)

What does all this information have to do with iRMX for Windows? Be
fore answering that question, you still have to look at one more set of func
tions that affect DOS memory management, the DOS Protected Mode In
terface Specification (DPMI, 1991).

The basic rationale of the DPMI Specification is to provide an orderly
manner in which DOS programs can take advantage ofthe protected-mode
features of the 80286 and later processors. A program, called the DPMI
host or DPMI server, responds to requests for protected-mode operations
from real-mode programs called DPMI clients. DPMI clients are DOS pro
grams that can enter protected mode, switch between real and protected
mode, and either terminate normally or terminate and stay resident in
protected mode to provide services to other protected-mode DPMI clients.
While in protected mode, DPMI clients can make a large number of re
quests ofthe DPMI host through int 31 function calls. These functions fall
into the following categories:

• Local descriptor table (LDT) management.

• Extended memory management.

496 iRMX Concepts and Features

• DOS memory management.

• Interrupt management.

• Page management (i386 and above only).

• Translation.

• Debug support.

• Miscellaneous.

Although DPMI hosts provide extended memory management services,
the DPMI functions are different from the XMS functions listed in Table
12.2. For example, rather than receive a handle for a new extended memory
block, a DPMI client receives the actual linear address of a block that it
allocates. The DPMI client must then allocate and initialize Local De
scriptor Table (LDT) descriptors to provide addressability to the block.
Because DPMI clients normally operate in protected mode, the client can
access the extended memory area directly, rather than be forced to use
XMS functions to copy information between extended and conventional
memory.

Noting the support for interrupt and memory management listed pre
viously, it would seem natural that iRMX for Windows should act as a
DPMI server, and that DOS applications that want to access protected
mode services using the D PMI API instead of the iRMX RTE mechanisms
should be able to do so. Such is not the case, however, and there seem to be
two reasons for this.

One reason is that the DPMI interface is large (81 functions) and would
require considerable overhead to implement a.nd ensure that DPMI clients
cannot interfere with the real-time requirements of iRMX. The second
reason is the crucial one, though. A key DOS application for iRMX for
Windows is Microsoft Windows itself, and Windows versions 3.0 and 3.1
do not operate as DPMI clients. Indeed, both versions of Windows provide
their own DPMI servers, albeit servers that adhere to an earlier DPMI
specification (version 0.9) rather than the current one (version 1.0).

The Windows DPMI server is available only when Windows is running
in enhanced mode (available only for i386 and later processors), and not
when it is running in standard mode (available for 80286 processors and
later). Simply stated, iRMX for Windows cannot operate with Windows
running in enhanced mode because to do so, it would have to operate as a
DPMI client, which would preclude its operation as a real-time operating
system. There is nothing inherent in the design of Windows, by the way,
that would prevent it from running as a DPMI client in enhanced mode. If
such a version of Windows were to be released, it would undoubtedly be
supported by iRMX for Windows. As it stands, iRMX for Windows can
run with Windows operating only in its standard mode.

iRMX for Windows 497

12.6.5 Memory management summary

We can now summarize the characteristics of the iRMX for Windows
memory management system. Each item in this summary is based on the
fact that iRMX for Windows takes over and uses all of the processor's ex
tended memory.

• Programs that emulate expanded memory, such as emm386.exe, cannot
be used with iRMX for Windows because they manage extended memory
to do their emulation.

• DOS cannot use UMBs for device drivers and TSRs when iRMX for
Windows is running because UMBs are managed by emm386.exe, and
emm386.exe is not compatible with iRMX for Windows.

• There is no problem using a true expanded memory board and its ex
panded memory manager with iRMX for Windows because they do not
involve extended memory.

• iRMX for Windows completely honors the state of the HMA as it existed
before iRMX was loaded. Thus, himem.sys can load DOS into the HMA,
for example, and iRMX will preserve the state of the HMA.

• If the HMA is not in use when iRMX is loaded, the iRMX extended
memory manager for DOS programs, himem.job, can be used to allocate
the HMA to any program that wants it. Unlike himem.sys, himem.job
has no mechanism for placing a limit on the minimum amount of mem-
0ry in the HMA that a program can request.

• Any extended memory blocks allocated by an extended memory man
ager before iRMX is loaded will become inaccessible; himem.sys must
put the DOS task into protected mode from VM86 mode, which iRMX
does not allow. If himemJob is run, it cannot honor requests for access to
already-allocated extended memory blocks because of the following:

1. himem.job has no way to associate the original extended memory
manager's handle values with actual extended memory regions.

2. The parts of extended memory allocated by the original extended
memory manager might have been overwritten by iRMX itself when
it was loaded.

• DPMI hosts, such as Windows running in enhanced mode, cannot be run
with iRMX for Windows because the DPMI extended memory manage
ment functions conflict with iRMX's management of extended memory.

• DPMlclients cannot be run with iRMX because iRMX does not provide
a DPMI host. The iRMX RTE does, however, provide real-mode pro
grams with access to extended memory, and iRMX's VM86 protected
mode extension mechanism allows users to build other DPMI-like func
tions as well.

498 iRMX Concepts and Features

12.7 PME: VM86 Protected Mode Extensions

A good way to understand the iRMX VM86 Protected Mode Extensions
(PME) mechanism is to compare the use ofthe PME with the operation of
a DPMI client. The idea in both cases is for a real-mode DOS program to
make use of the processor's protected-mode features. For DPMI, this ac
cess is provided by a DPMI host. For iRMX, it is provided by iRMX for
Windows itself. In both cases, the real-mode DOS program is actually run
ning with the processor in VM86 mode. In this mode, every software int in
struction (among others) passes control to its proper interrupt handler
using one of the mechanisms described in the earlier discussion of the
RTE.lfthe processor is running in VM86 mode with interrupt virtualiza
tion enabled, the transfer is managed by the VM86 dispatcher, which is
part of the VM86 job. For both the iRMX VM86 dispatcher and a DPMI
host, there are three basic ways to handle the interrupt:

1. Simulate the behavior that the real-mode operating system would per
form in response to the interrupt.

2. Reflect the interrupt back to the real-mode operating system's handler
for the interrupt.

3. Invoke a protected-mode routine to perform computations not nor
mally be available to real-mode programs.

Many interrupts that occur in the context of DOS programs evoke a re
sponse that is a combination of items (1) and (2). For example, every time a
DOS program running with iRMX for Windows invokes one of the DOS
terminate functions (int 21 with function code Ox4COO, for example) the
VM86 dispatcher notifies all iRMX programs that need to be informed
whenever DOS programs terminate, then causes the corresponding real
mode DOS interrupt handler to be called for normal DOS termination pro
cessing.

Item (3) is reminiscent ofthe iRMX RTE mechanism discussed earlier.
In fact, the RTE mechanism is itself implemented using the PME mecha
nism. For D PMI systems, the mechanism is known as a real-mode callback.
The idea is that a protected-mode program connects one of its procedures
to a real-mode interrupt level. When a real-mode program (actually, a
VM86-mode program) invokes the appropriate real-mode software inter
rupt, the VM86 dispatcher receives control, recognizes the interrupt level,
and calls the appropriate protected-mode procedure. When interrupt vir
tualization is not enabled, or when the DOS task is running in protected
mode (under Windows), the DOS task can call the protected-mode inter
rupt handler directly through the IDT without using the VM86 dispatcher.

iRMX for Windows 499

A sample PLM program to illustrate the PME mechanism is given in
Figure 12.6. The program first displays some information about its iRMX
environment using the same code as the I/O job program in Figure 7.3,
creates a task to terminate the program in an orderly fashion when the user
types <"C>, creates a PME by calling rqesetvmextension(), and then goes
into an endless loop in which it receives messages from the PME procedure
and displays them on the console.

Figure 12.8 PLM program that installs a Protected Mode Extension (PME).

/***> PME.PLM <**

*
*
*
*
*
*

This is an HI command that demonstrates the Protected Mode
Extension mechanism. The main task sets up the PME, then
displays messages that the PME sends to it. The PME is invoked
by a DOS int CO instruction.

***/

$compact (exports pmeproc, cntrlCtask)
$title (·'Sample Program to create a Protected Mode Extension.')

pme: DO;
$include (pme.ext)

/* Global Variables

*/
DECLARE

mess (*)

CR
LF

LITERALLY
LITERALLY

'DDh' ,
'OAh' ,

BYTE INITIAL (0, 'This is the initial task: xxxx.', CR, LF,
I belong to job xxxx.', CR, LF,
My priority is xxxx.', CR, LF,
MY maximum priority is xxxx.', CR, LF,
Now I will create a PME', CR, LF),

pmemess (*) BYTE INITIAL (0, CR, LF, 'PME job: xxxx.', CR, LF,
Task: xxxx.', CR, LF,
priority: xxxx.', CR, LF,
Max priority: xxxx.', CR, LF, LF),

buffer (128) BYTE,
hextab (*) BYTE INITIAL ('0123456789ABCDEF'),

(my job, my token ,
cntrlCtaskTkn, PMEmbx)
myprio
maxprio
actual
Status

TOKEN,
BYTE,
BYTE,
WORD_16,
WORD_16;

/* Procedure to Convert a Hexadecimal Value to ASCII Characters

500 iRMX Concepts and Features

F"l9ure 12.8 (Continued)

*/
word2hex: PROCEDURE (value, where);
DECLARE

value WORD_16,
i INTEGER,
where POINTER,
xxxx BASED where (1) BYTE;

DO i = 3 TO 0 BY -1;
xxxx(i) = hextab(value AND OFh);
value = shr (value, 4);

END;
END word2hex;

/*

*
*/

Procedure to be executed by the Control-C Task

cntrlCtask: PROCEDURE PUBLIC;
DECLARE

/*

*
*/

cntrlCsem
Status

TOKEN,
WORD_16;

cntrlCsem = rqcreatesemaphore (0, 1, D, @Status);
CALL rqcsetcontrolc (cntrlCsem, @Status);

Delete the PME when the user terminates the program

actual = rqreceiveunits (cntrlCsem, 1, OFFFFh, @Status);
CALL rqesetvm86extension (OCOh, NIL, NIL, @Status);
CALL rqcsendcoresponse (NIL, 0,

@ (13, 'PME removed', CR, LF),
@Status) ;

CALL rqexitiojob (0, NIL, @Status);

END cntrlCtask;

/*
*
*/

Procedure to be executed as the Protected Mode Extension

pmeproc: PROCEDURE (DOSState, Flags) BYTE PUBLIC;
DECLARE

/*
*
*/

DOSState
Flags

(mytasktoken, myjobtok)
mypriority
maxpriority
Status

POINTER,
DWORD,

TOKEN,
BYTE,
BYTE,
WORD_16;

Format a Message to send to the HI Command job

pmemess(O) = length (pmemess) -1;
mytasktoken = rqgettasktokens (0, @Status);

iRMX for Windows 501

Figure 12.6 (Continued)

myjobtok = rqgettasktokens (1, @Status);
mypriority = rqgetpriority (selector$of(NIL) , @Status);
CALL rqsetpriority (selector$of(NIL) , 0, @Status);
maxpriority = rqgetpriority (selector$of(NIL) , @Status);
CALL rqsetpriority (selector$of(NIL) , mypriority, @Status);
CALL word2hex (WORD (myjobtok) , @pmemess(12));
CALL word2hex (WORD (mytasktoken), @pmemess(27));
CALL word2hex (mypriority, @pmemess(46));
CALL word2hex (maxpriority, @pmemess(69));

/* Send it

*/
CALL rqsenddata (PMEmbx, @pmemess, length (pmemess), @Status);

RETURN OFFh; /* Notify DOS that processing is complete */

END pmeproc;

/*

*/

/*
*
*/

/*

*
*/

/*

*
*/

Initial Task Starts Here

mess(O) = length (mess) -1;

Format Initial Message and Display It

my token = rqgettasktokens (0, @Status);
my job = rqgettasktokens (1, @Status);
myprio = rqgetpriority (selector$of(NIL) , @Status);
CALL rqsetpriority (selector$of(NIL) , 0, @Status);
maxprio = rqgetpriority (selector$of(NIL) , @Status);
CALL word2hex (WORD (my token) , @mess(27));
CALL word2hex (WORD (my job) , @mess(52));
CALL word2hex (myprio, @mess(76));
CALL word2hex (maxprio, @mess(108));
CALL rqcsendcoresponse (NIL, 0, @mess, @Status);

Create a Task That will Delete the PME When This Job Terminates

cntrlCtaskTkn = rqcreatetask (0, @cntrlCtask, selectorof(@Status),
NIL, 8192, 0, @Status);

Create the Protected Mode Extension and Display Messages From It

PMEmbx = rqcreatemailbox (20h, @Status); /* Data Mailbox */
CALL rqesetvrn86extension (OCOh, @pmeproc, NIL, @Status);

DO WHILE 1;
actual = rqreceivedata (PMEmbx, @buffer, OFFFFh, @Status);
CALL rqcsendcoresponse (NIL, 0, @buffer, @Status);

END;

END pme;

502 iRMX Concepts and Features

When the program starts running, it displays some information about
its iRMX job and initial task that might look like this:

This is the initial task: BADS.
I belong to job B9AO.
My priority is OOSE.
My maximum priority is OOSD.
Now I will create a PME

It then sets up a task that runs when the iRMX user types < A C>, sets up a
procedure to be called as a PME, and goes into an endless loop waiting for
messages to arrive from the PME procedure. Each time a DOS program
issues an int OxCO instruction, the iRMX VM86 Dispatcher calls the PME
procedure, which formats a message with information about itself, sends it
to the mailbox that is being monitored by the job's initial task. A typical
message would look like:

PME job: 1040.
Task: 1000.
Priority: OOFE.
Max priority: 0000.

When the user types < A C> at the iRMX console, the control-C task wakes
up, deletes the PME so that further DOS int OxCO instructions will not be
recognized by the VM86 Dispatcher, and exits the iRMX job.

As the sample output indicates, the PME procedure is executed in
a totally different context from the initial task of the HI job. The PME
procedure's job is the VM86 job that owns the DOS task, and the PME
procedure's code is executed by (in the context of) that same DOS task. Its
task priority is 254, the level assigned to the DOS task in order to give
higher priority to real-time tasks running under iRMX.

Note that the PME procedure calls rqsetpriority() with a value of 0 as its
first parameter, which sets the task's priority to the maximum allowed for
its job, which is 0 in the case of the VM86 job. If the sample program were
coded to leave the DOS task's priority at 0, DOS (which constantly polls for
I/O) would prevent any iRMX code from running.

Because the VM86 job is a first-level job, there is no console associated
with it, so PMEs do not have access to console I/O functions. Most PMEs
are installed to provide DOS programs with services that do not involve in
teraction with an iRMX user. In a more typical application, the job that
sets up the PME is installed using sysload, and remains in effect for as long
as the iRMX operating system is running. Such jobs would not do any
iRMX console I/O and would not need a < A C> handler as the sample pro
gram does. Still, the sample code does illustrate an important point: the
PME procedure is not being executed by a task that belongs to the iRMX
job initiated by sysload, it is executed by a task that belongs to the job that
owns the VM86 dispatcher, the DOS task. Figure 12.7 gives the code for a

iRMX for Windows 503

DOS program that could be run to invoke the PME of Figure 12.6. It simply
ensures that iRMX is running and issues an int CO to invoke the PME.

Figure 12.7 DOS program that invokes the Protected Mode Extension set up by the code in
Fig. 12.6.

/***> dopme.c <**

*
*
*
*

This is a DOS program that generates an interrupt oxeo
It will trigger an iRMX Protected Mode Extension that
has been installed at that interrupt level.

***/

#include <stdio.h>
#include <dos.h>
#include "'rmx386\demo\rte\inc\rmxintfc.h"

#define

int
main (int argc, char *argv[])
union REGS regs;
struct SREGS sregs;

if (RQEGetRmxStatus() != E_OK) {
printf ("This program will not run without iRMX for Windows\n");
return 1;

for (;;) {
printf ("Invoking the iRMX PME with int OxeO\n");
int86x (OxeO, ®s, ®s, &sregs);
printf ("Done. Again? H);
if (getch() != 'y') break;
}

return 0;

The RTE is a PME that invokes a specific set of iRMX system calls on
behalf of DOS RTE clients. But DOS programs are not limited in their ac
cess to iRMX services by the design ofthe RTE. The PME mechanism can
be used to build an iRMX server that provides access to any iRMX func
tionality an application might require.

12.8 DOE: Communication with
Windows Applications

Windows provides three mechanisms programs can use to interact with
each other: Dynamic Link Libraries (DLLs), Dynamic Data Exchange
(DDE), and Object Linking and Embedding (OLE). DLLs are really a way
for Windows applications to share object code; they do not actually provide
a mechanism for programs to communicate or synchronize with one an-

504 iRMX Concepts and Features

other. DDE and OLE both allow Windows programs to share data and
communicate with each other. Because iRMX for Windows does not
presently provide support for OLE, the focus in this section is the DDE
mechanism.

Any Windows application can be programmed to act as a DDE server or
DDE client, and the Windows kernel acts as the switchboard for passing
messages between DDE servers and clients. iRMX for Windows provides a
program called the DDE Router that acts as a surrogate Windows applica
tion for iRMX progrllms that want to use the DDE mechanism, as either
servers or as clients. The DDE Router, normally installed as \ win
dows \rmx\router. exe, can be thought of as an extension to rmxtsr, de
scribed earlier, which acts a surrogate for iRMX programs that want to
make DOS system calls.

An interaction between Windows applications that use the DDE begins
when a client sends a message addressed to a particular {<application>,
<topic> } tuple, where <application> and <topic> are strings that specify
the pathnames of a particular Windows application and a particular
document with which the application is to work. The Windows kernel
broadcasts the message to all active Windows applications. When the ker
nel receives an acknowledgment from an application that recognizes the
tuple, it opens a channel by which the client and server can communicate
with each other using a set ofDDE commands. An example of a DDE ex
change between two Windows applications might be word processor macro
which, when run, establishes a conversation with a spreadsheet program
using a particular spreadsheet as the conversation topic. The macro might
obtain the value of a particular cell in the spreadsheet to supply a value to
use in the text of a report.

The DDE Router provides a significant extension to the Windows DDE
mechanism by recognizing an extended form for the <application> string,
which includes a machine-name component used to identify the network
node on which the DDE server resides. Since the machine name and the
application name are embedded in a single string, the mechanism is trans
parent to the Windows kernel. When the kernel broadcasts an extended
form <application> string, the DDE Router recognizes it by the presence
of a <%> character in the string, which is used to separate the machine
name from the application name,7 The DDE Router then redirects the re
quest to the appropriate network node, where a copy ofDDE Router must
be running to receive the request and pass it on to the proper DDE server
on the remote system.

7This means that the DDE Router also intercepts attempts to initiate conversations with
Windows DDE servers that have a <%> character in their names. If this is a problem, the sep,
arator character can be changed in the [DIiERouter 1 section ofthe system's win. ini config
uration file.

iRMX for Windows 505

To operate, the DDE Router requires iRMX for Windows to be running
with its networking software in place. You saw how iRMX used iNA 960 to
supply ISO-compatible network support to iRMX applications in chapter
11, and you will see how this support is integrated with various DOS net
working options in the next section. An example scenario for which the
iRMX DDE mechanism is useful might be the use of a PC to perform real
time control over a manufacturing process while running a task that acts as
DDE server. A remote user could monitor or even control that process
using a custom Windows application working as a DDE client.

Figure 12.8 is a sample iRMX DDE client, ddeinq, that illustrates the use
of the DDE mechanism. The program takes two command-line arguments,
a node name for a computer running the DDE router and the name of an
application program that can operate as a DDE server. The program first
tries to establish a conversation using the node and application name sup
plied on the command line using the client_dde_initiate() library call. If
this call succeeds, the program returns a 16-bit value called a conversation
ID, which is used as the first argument to other DDE calls the wayan
iRMX token is used to identify a particular object in iRMX system calls.

Figure 12.8 An iRMX DDE client.

/***> ddeinq.c <**

*
* Allows an iRMX user to determine topics available for a DDE server.

* Command line:

* ddeinq <node> <application>

*

*

The <node> must be the name of a computer running DDE Router
with the win.ini file containing a [DDERouter] section with a
line in the form pcname=<node>.

**/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <rmxdde.h>

static WORD
static char
static CONFIGBUF

conversation, Status;
topicsList[4096] , *this;
configBuf;

/* Status check utility

*
*/

void
chkStat (char *message)

if (Status) (
printf (O%s failed. Status is %X\n°, message, Status);
client_dde_terminate (conversation, &Status);
exit (1);

506 iRMX Concepts and Features

Figure 12.8 (Continued)

/*

*

return;

Main Program Starts Here

*/
int
main (int argc, char *argv[]) {

if (argc != 3) {
printf

("Give machine node and application name on command line.\n");
return 1;

dde_library_init (&configBuf, &Status);
chkStat ("dde_library_init");

/* Most DOE apps provide a "system" topic for housekeeping
*/

conversation = client_dde_initiate (argv[l],

chkStat ("client_dde_intiate");

/* Now ask for a list of topics
*/

argv[2] ,
"system" ,
(LINKFUNCPTR) 0,
&Status) ;

client_dde_request (conversation, "topics", topicsList, (WORD) sizeof
(topiCSList), &Status);
chkStat (. client_dde_request") ;

this = strtok (topiCSList, "\ t") ;
printf (. Application %s on machine %s has the following topics: \n",

argv[2], argv[l]);

while (this) {
printf (" %s\n", this);
this = strtok (NULL, "\t");
}

client_dde_terminate (conversation, &Status);
chkStat ("client_dde_terminate");

return 0;
}

The value returned is not actually an iRMX token, however. It is a small
integer used by the DDE library routines to index into an internal list of
active conversation data structures. If the call fails, the program receives
a nonzero exception code, which takes on one of the values given In

Table 12.3.

iRMX for Windows 507

TABLE 12.3 Exception Codes Returned by iRMX DDE Library Functions.

OxEOOO

OxDOOO

OxC800

OxCOXX

Value

OxOOOO through Ox3FFF

Name

dde_busy

dde_denied

dde _no_response

Meaning

Remote program is busy.

Remote program denied a request.

No response from the remote
program.

XX is an application-defined
exception code returned by the
remote application.

Standard iRMX exception codes.

The topic name used to establish the conversation is system. Many Win
dows applications able to operate as DDE servers recognize this special
topic name, which is used to supply general information without accessing
a particular document or worksheet. The sample program then makes a
call to client _ dde Jequest() with a data item name of topics. A more typical
type of data item name might be the name of a cell or range of cells in a
spreadsheet or a bookmark in a wordprocessing document, but ddeinq
takes advantage of the fact that many DDE servers return a list of cur
rently available topics (e.g., the currently open worksheets or currently
open documents) when a client uses the topics data item name for a conver
sation based on the system topic. The list is returned as a <tab>-sepa
rated list terminated by a <nul>. The sample program uses the ANSI
strtok() function to extract the individual topic names from the returned
list, and displays them. Three types ofDDE application programs might be
developed to run under iRMX:

Simple client. A simple client application can request information from a
server, as illustrated by ddeinq, tell the server to change the value of a data
item using the client_ddeyokeO function, or pass a set of commands for
the server to execute using the client_dde_execute() function.

Client link. Two types of links can be established between a client and
server. A hot link causes the server to send the value of a data item to the
client any time the value changes, whereas a warm link causes the server
simply to notify the client when a value changes The client can then obtain
the value using client _ dde Jequest() if it wants. The client is notified of the
new value or of the change in value by a callback mechanism. When the
client issues the call to dde _library _initiate() to establish a conversation
with the server, it can include a pointer to a function that will be called by
the library whenever a server updates a hot or warm link. (The ddeinq sam
pIe program coded the pointer as (LINKFUNCPTR) 0 because it does not use
links.)

508 iRMX Concepts and Features

Server. An iRMX server supplies pointers to two functions when it calls
server _ddeJegister{} to inform the DDE library that the application is
ready to act as a DDE server. The first pointer identifies a function known
as the server's conversation callback, which is called by the DDE library
any time a client attempts to initiate or terminate a new conversation with
the server. The second pointer identifies the server's data callback, which
is called by the DDE library whenever the client requests a data operation,
including to request data, poke data, or establish a hot or warm link.

There is nothing to prevent an application from acting in a mixed fash
ion with respect to these three modes. Because of the multitasking nature
of iRMX, there would be no problem, for example, in having an application
performing client operations with one task while the DDE library
asynchronously makes calls to conversation and data callback functions
declared previously by a call to server _ddeJegister{}.

The DDE functions supplied by the iRMX DDE library are not unique
to iRMX. Rather, they are functions provided by the library that allow
iRMX applications to access standard Windows DDE functions. The
Windows DDE protocol is discussed in some detail in Petzold (1992).

12.9 Network Compatibility

Two basic approaches can be taken for integrating iRMX and DOS net
working. The simpler but less powerful approach is simply to maintain an
existing DOS network and let iRMX applications access network drives
using the EDOS file driver from the iRMX side or the rmxuse command
from the DOS side. For example, if your computer is running a Novell net
work that gives you access to a networked disk as your DOS drive G:, you
can give the iRMX command:

iRMX> attachdevice 9_dos as 9 edos [6)

After this command, iRMX can access the networked drive using the
logical name : G: without regard to the fact that it is being accessed over
the network. This approach is easy to use, but requires quite a bit of over
head to access the networked disk, and no provision exists for operating as
anything but a network client or a dedicated network server.

The second approach is to provide the network access from the iRMX
side and let DOS and Windows applications make use of the iRMX net
working facilities. This approach is more efficient for iRMX applications
and provides the added benefit of allowing the computer to operate con
currently as a network server and client. This section explores the situa
tion when the network device controller is managed from the iRMX side.

Chapter 11 introduced the native iRMX networking environment: a
software module called iNA 960 provides (in addition to name-server and

iRMX for Windows 509

network-management functions) an ISO standard implementation of the
Transport, Network, and Data Link layers, which can be interfaced to
Ethernet (802.3) or Token Bus (802.4) network device controllers. iNA in
cludes support for multiple protocol stacks at the Data Link layer, which
means that the same device controller can be used to support concurrent
operation with different networking protocols, such as TCP /IP and No
vell, in addition to ISO protocols. Here, you will see how iRMX for Win
dows integrates the iRMX networking capabilities provided by iNA with
DOS networking. In the process, you will also see how this integration pro
vides for networked DDE communication, introduced in the previous sec
tion.

Figure 12.9 shows the structure of the software components that con
tribute to iRMX for Windows networking. In this figure, the box labeled
iNA 960 would normally include all the iRMX-Net components shown in
Figure 11.2. On an iRMX for Windows system, networking software is
loaded by a sysload command, normally when the system initializes. Dif
ferent versions of the network job are used, depending on what network
device controller and system bus iNA is configured to operate with. For ex
ample, the networking file netat.job contains iRMX-Net for PC/AT bus
systems. iRMX-Net loads iNA into the memory of the network device
controller as it initializes.

Another networking file that might be used instead is ntp4at.job, which
is a version of iNA that does not require any network device controller at

Windows

Kernel

1
Windows
Application(s)

~ L..1_D_D_E_R_o_u_te_r--l

PCNET

1
DOS
Application(s)

DOS
(

iRMX iRMX

DDE Library Application

iNM60 IJ
netrdr.job

iRMX
)

\
Network

Figure 12.9 Relationships among DDE servers and clients using the iRMX DDE Router.

510 iRMX Concepts and Features

all. When this job is loaded, iNA provides the ISO Transport layer inter
face, TP4, coupled with a null Data Link layer. Because no network con
troller is involved, ntp4at.job does not include any iRMX-Net support,
however. The significance of ntp4at.job is that the iRMX support for Win
dows' DDE mechanism is based on a networking model for its operation,
and ntp4at.job allows the DDE mechanism to be used on a standalone
computer system.

The use of ntp4at.job also allows programs to perform many ofthe iNA
functions described in chapter 11 on a non-networked computer; it just
does not support iRMX-Net and the Remote file driver. The timesrv, get
time, namesrv, and mynamon programs presented in chapter 11 all run
successfully on iRMX for Windows systems running ntp4at.job.

As Figure 12.9 shows, an iRMX application linked to the iRMX DDE
Library communicates with DOS through iNA, using the Request Block
interface described in chapter 11. The RB requests are intercepted by
netrdr.job, another job normally started by means of a sysload command
when the system initializes. The netrdr.job includes a PME that communi
cates with a DOS TSR supplied with iRMX for Windows named
pcnet.exe.8 When an iRMX application makes a DDE library call, the li
brary encapsulates the request as an iN A network request. iNA running on
the remote system receives the message over the network, where it is re
ceived by that system's copy of netrdr.job. If the DDE request is addressed
to the local computer, the local copy of netrdr.job receives the request di
rectly from iNA. In either case, local or remote DDE request, netrdr.job
transmits the request to pcnet.exe on the DOS side, which passes the re
quest to the DDE Router, the Windows application that acts as a surrogate
DDE client and server for iRMX DDE operations.

The reverse path is followed when a Windows application makes a DDE
protocol request using a conversation based on an extended application
name that includes a node name and <%> character, as introduced pre
viously. The DDE router intercepts the request and usespcnet.exe to send
it to netrdr.job, which sends it over the network where it is received by the
remote system's netrdr.job and passed up to the DDE Library code that in
teracts with the iRMX application.

Figure 12.9 also shows a direct connection between the iRMX applica
tion and iNA. This link represents the Request Block (RB) interface to
iNA described in chapter 11. This same RB interface is used by netrdr.job
for its interface to iNA, but the actual form it takes (datagrams or virtual
circuits) is invisible to the DDE user.

SYou must install the pcnet.exe TSR after loading netrdr.job and the iRMX iNA job. If you
loadiRMX from autoexec. bat and your iRMX : config: loadinfo loads the networking
jobs, you can put the pcnet statement in the au toexec • ba t file after the statements to load
iRMX.

iRMX for Windows 511

What remains to be examined is the connection between DOS applica
tions and the network, as managed by iRMX and shown by the connection
between pcnet.exe and DOS applications in Figure 12.9. One key to the suc
cess of this part lies in the fact that all DOS networking software, whether
MS-Net, TCP/IP, or Novell, uses a common interface to the network,
called NetBIOS, based on data structures called Network Control Blocks
(NCBs) sent to a networking device driver using int 5C instructions. The
pcnet.exe TSR intercepts these interrupts, transforms the NCBs into iNA
RBs, and passes them on to netrdr.job, which passes them to iNA for the
actual network operations.

The second key to the integration of non-ISO networks such as Novell
and TCP lIP with iRMX networking is the availability of the RA WEDL
interface to iNA described in section 11.11. By using RAWEDL RBs,pcnet
and netrdr are able to send and receive Novell and TCP lIP packets
through a single network device controller without interfering with each
other or with concurrent ISO operations.

Although this section has presented the conceptual structure of the
components involved in iRMX for Windows and DOS networking, many
procedural details must be followed to make the entire process work. In
particular, integration of Novell and TCP lIP networking on the DOS side
requires the installation of MS-Net software, available from Intel for use
with its PCL2(A) network device controller; Novell client software from
Novell (and a Novell server on the network); the PC/TCP Ethernet device
driver from FTP Software, Inc.; and a special Novell shell available from
Brigham Young University. Details for integrating all ofthis software are
given in the documentation supplied with MS-Net and in volume 8 ofthe
iRMX for Windows documentation set, iRMX Network Concepts.

12.1 0 Run-Time Configuration

System configuration refers to the process of tailoring the software struc
ture of iRMX to match the particular hardware present on a system and
the particular functional needs of a user. Adding a device driver to support
a particular device controller, or deleting unneeded software modules to
conserve system memory requirements, are both examples of system con
figuration. Before iRMX for Windows was introduced, configuration of an
iRMX system was always performed using the Interactive Configuration
Utility (ICU) described in chapter 9.

The ICU is a menu-based editing program used to modify a special file
called a definition file and then to generate a set of command files based on
the definition file that, when submitted, would assemble and compile var
ious tables of information, link everything together, and generate a new
operating system image file that could be bootstrap loaded. The process of
editing a definition file and generating a new image file might take only 15
to 20 minutes on a fast machine, and several image files can be kept on disk

512 iRMX Concepts and Features

so the desired features for the system can be selected by bootstrap loading
the proper image.

iRMX for Windows introduced the notion of selectively loading device
drivers and operating system software layers at system initialization time.
A text file, :config:loadinfo(:config: is normally :sd:/rrnx386/
config), contains sysload commands to install the desired set of device
drivers and software layers. Once the core part ofthe operating system has
been loaded (from DOS), the loadinfo file is automatically submitted for
execution, thereby running the set of sysload comIllands selected by the
user. Users do not need to deal with the ICU, which is a bit complicated to
learn to use, and there is no need to keep multiple images of the operating
system on disk. Each layer or driver is stored just once, and multiple ver
sions ofthe loadinfo file can be stored to select different configurations
selected by the user. A nice feature of using sysload to install software is
that it allows command-line arguments, such as device driver interrupt
numbers or I/O port addresses, to be passed to the module as it is being
loaded. With the ICU, it is necessary to change the definition file and re
build the system every time such a change is made. The ICU might give de
velopers the ability to change certain features of a system that cannot be
done with sysload, but, with the introduction of sysload and the loadinfo
file in iRMX III.2, it is clear that Intel's intention is to provide most of the
functionality users need without using the ICU. .

But what about the layers of the operating system always included in an
iRMX for Windows configuration, such as the Nucleus? Users need a way
to set configuration parameters for these parts of the operating system as
well. To deal with this problem, a second configuration file is used based on
the model used in Windows' win. ini file. The iRMX file, : con
fig: rrnx. ini, is divided into sections marked by bracketed names for the
various layers of the operating system, each of which contains a series of
lines in the form of <parameter>=<value>. For example, the file might
begin:

[Nue]
UML=FFFFFFFFH;
OSX=14H;

Upper Memory Limit
Number of user as Extensions

These lines cause the Nucleus layer to use of all memory available on the
system (OxFFFFFFFF is the same as no limit) and to reserve Ox14 de
scriptor table slots for user-installed system calls, described in chapter 10.
Volume 2 of the iRMX for Windows documentation set, System Configura
tion and Administration, contains detailed information on managing the
rrnx. ini file.

513

12.11 Summary

The iRMX operating system provides a rich set of resources for developing
robust real-time systems. iRMX for Windows adds to this by allowing
iRMX applications to coexist and interact with either DOS or Windows
applications in ways that build on the advantages that each operating envi
ronment has to offer. The primary contribution of DOS is its widespread
availability and familiarity. From our point of view, the primary contribu
tion of Windows is its DDE mechanism for exchanging information among
applications, although its graphical interface and task switching capabili
ties can also be useful in developing user interfaces to real-time systems.
iRMX contributes its real-time resources to the system. The major real
time feature, of course, is rapid, deterministic scheduling of real-time
tasks. In the tradition of real-time operating systems, however, iRMX also
provides developers with a great number of resources for customizing the
operating system to the needs of an application using the same facilities
used by the developers of the operating system itself.

iRMX for Windows, to take advantage of the DOS and Windows envi
ronments, adds several features to iRMX that cannot be provided in an
iRMX-only configuration. Features like console sharing, interrupt man
agement, extended memory management, and access to DOS file systems
are basic extensions necessary to enable DOS, Windows, and iRMX to
coexist successfully. Features like sysload, device drivers, and run-time
configuration that were introduced largely as convenience items in iRMX
for Windows do not need to be unique to the DOS environment and are
being incorporated into other versions of iRMX as well, most notably
iRMX III. Finally, incorporating iRMX's networking facilities into iRMX
for Windows has generated a facility that goes beyond what either system
could provide alone: networked DDE.

Appendix

A
SoftScope III Command Summary

NOTE: This Appendix is extracted from chapter 5 ofthe SoftScope III Ref
erence Manual, reprinted with permission of Concurrent Sciences, Inc.
The full manual is included as volume 13 ofthe iRMX for Windows docu
mentation set.

BPSCOPE

Syntax

BPSCOPE [TASK JOB I GLOBAL J

Description

TASK Sets the scope so only one task (as specified by the TASK
command) can trigger a breakpoint.

JOB Sets the scope so only the tasks in ajob (specified by the TASK
command) can trigger a breakpoint.

GLOBAL Sets the scope so any task can trigger a breakpoint.

BPSCOPE determines the scope of all breakpoints which are set after the BPSCOPE command
is issued. A breakpoint can be triggered within a task, within any task in a job, or within any
task in the system.

BPTIMEOUT

Syntax

BPTIMEOUT [decnumber32]

decnumber 32; A 32-bit unsigned integer.

515

516 Appendix A

Description

BPTIMEOUT sets or displays the maximum time Soft-Scope III will wait for a breakpoint to be
hit. If this time is exceeded, Soft-Scope III will report < Task running> and change the prompt
to a running prompt (an exclamation point (I) will precede the prompt).

BREAKPT

Syntax

BRBAKPT [-J [coderefJ [TASK I JOB I GLOBAL J
BRBAKPT [-J WRITE I ACCESS memref [TASK I JOB I GLOBAL J
Abbreviation: DR

Description

coderef

memref

address

modname

linenum

codesym

datasym

- (dash)
WRITE
ACCESS
TASK

JOB

GLOBAL

address
[:modnameJ #linenum
[:modnameJ . codesym
address
:modname
[:modnameJ [. codesymJ *. datasym
[: modname J • codesym
[:modnameJ#linenum

A logical, physical, or linear address, (eg. DS: 1000, 1000P, or
OFFFFL).
A module name.

A line number found in the current module or in modname.

The name of a procedure or label.

The name of a symbol.

Delete breakpoint.
Break when written to .
Break when read from or written to .
Sets the scope so only one task (as specified by the TASK
command) can trigger a breakpoint.
Sets the scope so only the tasks in a job (as specified by the TASK
command) can trigger a breakpoint.
Sets the scope so any task can trigger a breakpoint.

BREAKPT manages a list of static execution and data breakpoints. A breakpoint tells Soft
Scope III to stop execution when a condition is met.

CONSOLE

Syntax

CONSOLB devicename [termtype)

CONSOLB
devicename A host-system-dependent name for the device.
t ermtype = The physical type of the second terminal.

Appendix A 517

Description

You can redirect Soft-Scope III Qutput to a second terminal with the CONSOLE command.
CONSOLE with no parameters will direct Soft-Scope III output back to the original terminal.

DISASM

Syntax

[count] DISASM [ALL] [NOLINES] [coderef] [TO coderef]

Abbreviation: DIS

count
coderef

address

modname
linenum
codesym
ALL

NOLINES

An integer in the range 1 to 32,767.

address
:modname
[:modname]#linenum
[:modname] . codesym
A logical, physical, or linear address, (eg. OS: 1000, 1000P, or
OFFFFL).
A module name.

A line number.

A procedure name or label.

Display op-codes and comments.

Don't display source lines.

Description

DUMP

D1SASM disassembles the instructions found at the specified address, and if the corresponding
high-level lines can be determined, displays them.

Syntax

[count] DUMP [BYTE I WORD I DWORD] [memref]
DUMP [BYTE I WORD I DWORD] memref [TO memref]
count An integer in the range I to 32,767.

memref

address

modname
datasym
codesym
linenum
BYTE

address
[:modname] [.codesym]*.datasym
[:modname] .codesym
[:modname]#linenum
A logical, physical, or linear address, (eg. DS:IOOO, 1000P, or
OFFFFL).

A module name.

The name of a symbol.

A procedure name or label.

A line number from the current module, or from modname.

Display in BYTE fonnat (byte order: 1 2 3 4).

518 Appendix A

WORD

DWORD

Display in WORD format (byte order: 2 1 4 3).

Display in DWORD format (byte order: 4 3 2 1).

Description

EVAL

DUMP displays blocks of memory with a hexadecimal display on the left and the corresponding
ASCII field on the right. Memory dumps can be displayed in BYTE, WORD, or DWORD
format (BYTE is the default). WORD and DWORD formats display memory addresses in word
or dword-Iength groupings.

Syntax

EVAL [memref I coderefJ
memref

coderef

address

modname
datasym
codesym

linenum

address
[:modnameJ [.codesymJ*.datasym
[:modnameJ .codesym
[:modnameJ #linenum
address
:modname
[:modnameJ#linenum
[:modnameJ . codesym
A logical, physical, or linear address, (eg. DS: I 000, 1000P, or
OFFFFL).

A module name.

The name of a symbol.

A procedure name or label.

A line number from the current module, or from modname.

Description

EXIT

Evaluating a procedure displays the procedure's module name, line numbers, starting and ending
addresses, and length. Evaluating pointers displays the descriptor entry and physical address
associated with that pointer. Using EVAL on other kinds of symbols will produce the same
display as you would see if you entered the symbol name without EV AL.

Syntax

EXIT

Description

This command exits Soft-Scope 11I and returns you to system command level. You can also use
QUIT.

Appendix A 519

GO

Syntax

GO [WRITE I ACCESS] memref

GO coderef

GO RETURN

Abbreviation: G

coderef

memref

address

modname

datasym

codesym

linenum

WRITE

ACCESS

RETURN

address
[:modnamel#linenum
[:modnamel.codesym
address
[:modname] [.codesym]*.datasym
[:modname] .codesym
[:modname]#linenum

A logical, physical, or linear address, (eg. DS:IOOO, 1000P, or
OFFFFL).

A module name.

The name of a symbol.

A procedure name or label.

A line number from the current module, or from modname.

Go till coderef is written to.

Go till coderef is read or written to.

Go till return from the current procedure.

Description

HELP

GO tells Soft-Scope III to transfer execution to your application. The program will start
executing at the current execution point. GO coderef sets a temporary breakpoint at the desired
code reference -- a line number, label name, procedure name, or absolute address. Execution
then proceeds at full speed until that (or any other) breakpoint is hit.

Syntax

HELP [topic]

topic Soft-Scope III command name or Help topic.

Description

LINE

HELP provides on-line assistance with Soft-Scope III syntax and usage. Each Soft-Scope III
command has a HELP entry associated with it. HELP with no parameters displays the command
syntax summary, as well as a list of other topics for which help text is available.

Syntax

LINE [coderef]

Abbreviation: <carriage return>

520 Appendix A

coderef

address

modname

linenum

codesym

address
:modname
[:modname]#linenum
[:modname] .codesym
A logical, physical, or linear address, (eg. DS:IOOO, IOOOP. or
OFFFFL).

The name of a module from your program.

A line number from the current module, or the module given by
modname, if supplied.

The procedure name or label.

Description

LIST

LINE directs Soft-Scope IJI to display as much information as it can about the whereabouts of
the specified address. The display will include some or all of the following: line number,
module name, procedure name, and source line or assembly instruction.

Syntax

[count] LIST [lineref I TO lineref]

LIST lineref TO lineref
Abbreviation: L

count
lineref

modname
linenum
codesym

An integer in the range I to 32,767.

:modname
[:Ihodnamel#linenum
[:modname) . codesym
A module name.

A line number from the current module or from modname.

A procedure name or label.

Description

LOAD

Use LIST to display source lines from a module's listing, or find a specified string in a source
tile. Soft-Scope 1Il uses the lines from the compiler-generated listing tile.

Syntax

LOAD [SYMBOLS] filename

filename

SYMBOLS

Description

A host system dependent identifier for a disk tile. (eg.
ISRCIFILE).

Load only symbols.

The LOAD command loads symbols from the specified tile, and (with the exception of LOAD

Appendix A 521

SYMBOLS), loads the code and data into iRMX III free space, through the Application Loader.
This command is designed to be used with applications written to be run under the Human
Interface and generated by BND386 (or BND286). The application loaded under Soft-Scope III
will be automatically deleted upon exit from the debugger.

The LOAD SYMBOLS command allows you to load symbolics without disturbing the selected
application or changing register values. This command is appropriate for first-level jobs or
device drivers embedded in the iRMX III boot file.

LOADSEGS

Syntax

LOADSEGS [segtoken jobtoken filename]

segtoken hexnumber16

datasym

jobtoken hexnumber16

datasym

f i 1 ename a host system dependent identifier for a disk file.

hexnumber 16 A 16-bit hexidecimal number.

datasym A name ofasymbol.

Description

LOG

You may access and debug files loaded by your application through the iRMX system call
RQALOADO with the macro LOADSEGS. This macro will also load the symbolic information
for the file specified. You must follow the RQALOADO call with a RQECREATEIOJOBO.
The segfoken is the token returned to the caller of RQALOADO via a mailbox. The johtokell is
returned directly by the RQECREATEIOJOBO system call. Thefilename is the name of the file
passed to RQALOADO.

Syntax

LOG [devicename I filename]

LOG ON I OFF

Description

devicename A host-system-dependent name for the device.

filename A host-system-dependent identifier for a disk file. (eg.
/src!output.ss).

ON Log to device.

OFF Stop logging to device.

Use LOG filename to create or open a file and begin copying most Soft-Scope I/O to thaI file.

522 Appendix A

MACRO

Syntax

MACRO [LIST]

MACRO LOAD filename

MACRO DELETE [macroname]

MACRO STEP [macroname]

filename = A host-system-dependent identifier for a disk file. (eg.
/src/samp.mac).

macroname = The name of a macro from the currently-loaded macro tile.

Description

This command gives you the basic tools you will need to manipulate Soft-Scope III macros. For
information about how to create your own macros, see Macros (Chapter 7 of the full SoftScope
Manual.

MODULE

Syntax

MODULE [:modname = filename]

Description

modname The name of a module from your program.
modname A module name.

filename = A host-system-dependent identifier for a disk file. (eg.
/SRCIFILE.LST).

MODULE displays the current listing file assignments. MODULE :nu){/name = filename assigns
a listing file to a program module.

QUIT

Syntax

QUIT

Description

This command exits Soft-Scope III and returns you to system command level. You can also use
EXIT.

REG

Syntax

REG [ALL I FLOAT]

ALL

FLOAT

Show system registers.

Show Floating Point Registers.

Appendix A 523

Description

REG displays the contents of the CPU registers. When the 386 is running in protected mode,
REG ALL gives a fuller display.

RESUME

Syntax

RESUME tasktoken
tasktoken ~ hexnumber16

datasym
hexnumber16 A 16-bit hexidecimal number.

datasym A name of a symbol.

Description

SET

The RESUME macro allows you to restart a suspended task. This macro, in conjunction with
SUSPEND, is useful when you are trying to debug a task and its interaction with another task is
preventing you from determining the problem. You could suspend one task while you locate the
problem and resume the task once the problem is solved.

Syntax

SET [optionname [~ optionvaluell

Description

Soft-Scope III maintains a list of options for the Soft-Scope III environment and their associated
values. If you set up these values in the Soft-Scope 111 configuration file SS.SET, they will be
configured whenever you bring up Soft-Scope 111. Soft-Scope III uses these options for specitic
operations, but only looks at a value when it is needed, so it's possible to specify an invalid
option and not generate an error until that option is used by some other Soft-Scope III command.

The following options are available:

Option

sym.case

sym.pointer

sym.descriptor

src.path.ext

src.path

src.tab

Description

Consider case in searches.

Type of FAR pointer to use.

Descriptor Type Override type.

Pathname for source-file searches.

Pathname for all file searches.

Tab equivalence for any files.

524 Appendix A

cmd.history

cmd.macro

cmd.prompt

cmd.initial

cmd.silent

Number of commands available to recall.

Initial macro file(s) to load.

Soft-Scope III prompt to use.

Initial command or macro to execute when

Soft-Scope III is invoked.

Disable the bell.

STACK

Syntax

[count] STACK [TRACE] [LINES]
STACK USAGE I RESET

count Number oflevels to view.

TRACE

LINES

USAGE

RESET

Display calling statements.

Display source line.

Display current stack level.

Clear unused stack area.

Description

STEP

STACK TRACE shows procedure call nesting. It tells you what procedure called what
procedure, starting at the your current execution point and proceeding backwards. If the stack
display is longer than can fit on one screen, you will have the option to continue tracing
backwards along the stack. STACK LINES displays the source line that made each procedure
call.

Syntax

[count] STEP [ASM] [INTO]

Abbreviation: S

count number of source lines to execute.

ASM Step one assembly instruction at a time.

INTO Step into all calls.

Description

The STEP command executes source code one line at a time. Soft-Scope III displays the next
line to be executed. If the execution doesn't start at the beginning of a line, you will see the
"[Inside]" prompt, telling you that the first step began in the middle of the assembly code
generated for that line. STEP ASM displays disassembled instructions and steps in assembly
language increments. STEP steps over all calls. Specify STEP INTO to step into all calls.

Appendix A 525

SUSPEND

Syntax

SUSPEND tasktoken

tasktoken ~ hexnumber16

datasym

hexnumber16 A l6-bit hexidecimal number.

datasym A name of a symbol.

Description

The SUSPEND macro in conjunction with the RESUME macro allows you to suspend a task and
then restart it. This is useful when you are trying to debug a task and its interaction with another
task is preventing you from determining the problem. You could suspend one task while you
locate the problem and resume the task once the problem is solved. This macro corresponds
exactly to an iRMX RQSUSPENDO system call.

SYSTEM

Syntax

SYSTEM program

Abbreviation: SYS

program iRMX command to execute.

Description

TASK

SYSTEM allows you to execute operating system commands from inside Soft-Scope III. When
you are finished, you will return to the Soft-Scope \lJ command line.

Syntax

TASK [tasktoken] I [ALL]

Description

ALL All tasks from all Soft-Scope III sessions.

tasktoken ~ hexnumber16

datasym

hexnumber 16 A 16-bit hexidecimal number.

datasym A name ofa symbol.

The TASK macro allows you to determine the status of other tasks being debugged and to
change the current task context. TASK reports information on which tasks are at a breakpoint,
and will print source-level information about the breakpoint, if possible. The task whose

526 Appendix A

context Soft-Scope III is currently using is denoted by the asterisk in the left-most column.
TASK ALL lists all tasks at break from all Soft-Scope III sessions.

TYPE

Syntax

TYPE (memref I coderefl

Description

coderef

memref

address

modname
datasym
linenum

codesym

address
:modname
(:modnamel#linenum
(:modnamel.codesym
address
:modname
(:modnamel (.codesyml*.datasym
[:modnamel.codesym
(:modnamel#linenum
A logical, physical, or linear address, (eg. DS:IOOO, IOOOP, or
OFFFFL).

A module name.

The name of a symbol.

A line number from the current module, or from modname.

A procedure name or label.

TYPE displays all available information about a variable's data type. In addition to the type, the
display will show scope (global, module, or local), and storage class (static, stack-based,
parameter, or based). TYPE allows you to look at the composition of large, complex data
structures without looking at the contents of these variables. Use TYPE memref to see if a
variable is stack-based and only reachable from within the procedure where it is declared.

"V" MACROS (SOB)

Syntax

VT objtoken
VJ [jobtokenl
VO jobtoken
VD jobtoken
W tasktoken
VK
VS
vc segment:offest
VF
VB devicename
VR segtoken
VH
VMI [hexnumber16]
VMO [hexnumber16]
VMF

(view token)
(view jobs)
(view object)
(view directory)
(view unwind)
(view ready)
(view stack)
(view call)
(view free)
(viewduib)
(view iors)
(view help)
(view message input)*.
(view message output)
(view message failsafe)

* 'llie interactive mode of these commands (using a comma, ':) is not supported.

Description

objtoken

jobtoken

hexnumber16

datasym

hexnumber16

datasym

tasktoken = hexnumber16

segtoken

segment

offset

datasym

hexnumber16

datasym

hexnumber16

hexnumber16

hexnumber32

Appendix A 527

devicename A host-system-dependent name for the device.

hexnumber16 A 16-bit hexadecimal number.

hexnumber32 A 32-bit hexadecimal number.

datasym A name of a symbol.

You can access the iRMX III System Debugger (SDB) through a set of macros in SS.MAC.
Soft-Scope III provides information about iRMX system objects, such as mailboxes, tasks, jobs,
semaphores, segments, and regions. It also displays stack and system call information. If YOll

are using a Multibus II system, you can display the input or output message buffer of the
Message Passing Coprocessor (MPC), or toggle its fail-safe timeout feature.

VERSION

Syntax
VERSION

Description

VERSION displays Soft-Scope III's version number and information about its host operating
system.

Appendix

B
Terminal Support Code

This appendix describes the technique for adapting the iRMX for Win
dows console driver to work with ANSI X3.64 escape sequences. The tech
nique uses the translation feature of the Terminal Support Code (TSC), a
layer of software that acts as a programmable filter between terminal I/O
drivers and application programs. The material in this appendix is derived
from Appendix C of the Device Driver Programming Concepts manual of
the iRMX for Windows documentation set (Chapter 2 of the Device Driver
User's Guide in the documentation sets for other versions of iRMX), from
the Aedit Reference manual, and from experimentation.

When a program writes characters to the screen, they pass through the
TSC on their way to the driver. If the TSC has been told to, it will intercept
X3.64 sequences and translate them into character codes appropriate for
the specific type of non-ANSI terminal that is to receive the output. An ex
ample of a non-ANSI terminal is the iRMX console driver for the PC,
which has the DUIB name D _CONS. On input, the driver accepts keyboard
scan codes and puts the proper character codes in the application's input
buffer. On output, the driver accepts character codes from the application's
output buffer and determines what to place in the PC's video memory to
get the proper characters to appear on the screen.

The following table lists some X3.64 escape sequences and the corre
sponding D _CONS control codes.

Function X3.64 o CONS

Cursor Forward <esc> <OxI9>
Cursor Backward <esc> <OxlF>
Cursor Up <esc> <OxIE>
Cursor Down <esc> <OxIC>
Cursor Position <esc> see text
Clear Screen <esc> <OxOC>

529

530 Appendix B

In the table, <esc> is the ASCII escape character <OxIB>, and 99 rep
resents an arbitrary number which, if omitted, defaults to 1.1 D _CONS cur
sor positioning is performed with a sequence of bytes consisting of a lead
in character <Ox04> and two bytes giving the row and column as binary
numbers offset by Ox20. For example, the cursor could be positioned to row
12, column 34 by sending three bytes with the values Ox04, Ox2B, and Ox41
in that order. (Rowand column numbering start at zero.) Another way to
position the cursor using the D_CONS driver would be to clear the screen
and send a sequence of 11 cursor-down <OxIC> and 33 cursor-forward
<OxI9> characters. The file hellocon. cad illustrates the use first tech
nique (cursor addressing):

File hellocon. cad. <OxOC><Ox04><Ox2B><Ox41>Hello There I

The file hellocon. cmv illustrates accomplishing the same thing using
cursor movement codes:

File hellocon. cmv.

<OxOC><OxlC><OxlC><OxlC><OxlC><OxlC><OxlC><OxlC><OxlC><OxlC>
<OxlC><OxlC><Ox19><Ox19><Ox19><Ox19><Ox19><Ox19><Ox19><Ox19>
<Ox19><Ox19><Ox19><Ox19><Ox19><Ox19><Ox19><Ox19><Ox19><Ox19>
<Ox19><Ox19><ox19><Ox19><Ox19><Ox19><Ox19><Ox19><Ox19><Ox19>
<Ox19><Ox19><Ox19><Ox19><Ox19>Hello There I

To generate these files yourself, you must insert the indicated hexadeci
mal codes into the files using a text editor. With Aedit, you can use the HI
(hex insert) command from command mode or the < A IV command while
in insert mode. To use these files, just copy them to the screen using the
iRMX copy command. For example:

rmx> copy hellocon.cmv

When the D_CONS device driver receives the characters from the file
(because the copy command writes them to : co:), it inserts the proper
characters into the display adapter's video RAM to cause a message to ap
pear in the middle of the screen. The • cmv file contains a clear screen char
acter, followed by a sequence of cursor-down and cursor-forward charac
ters to do the positioning. The • cad file accomplishes the same thing using
direct cursor addressing.

If you try typing the hellocon. * files on a DOS console (with
ANSI.SYS installed) or copy them to the screen of a terminal that recog-

lSome of the codes in this appendix can be difficult to read. The symbols> and < never ap
pear in any of the codes being described; they are always used to delimit single character
codes. Where ASCII names like <esc> and <cr> are not available, the hexadecimal values
of the necessary character codes are given using C-Ianguage syntax inside the angle brackets.

Appendix B 531

nizes ANSI sequences, they will not accomplish the same thing because the
D _CONS control codes are not the same as the corresponding ANSI escape
sequences. The files helloans . cmv and helloans . cad are equivalent to
the hellocon files, but illustrate the use of X3.64 escape sequences. These
files can be copied to the screen of a DOS or ANSI terminal with the desired
effects, but they do not work on the iRMX for Windows console because
the D _CONS driver does not recognize them. These files will be looked at
after we solve problem of getting the D _CONS driver to accept ANSI escape
sequences.

The terminal support code saves the day. I programmed the TSC to
translate X3.64 escape sequences into D _CONS control codes. The TSC is
programmed by writing TSC control codes to the device. These control
codes begin <esc]> as opposed to ANSI codes that begin with <esc>[.
When the TSC receives the <esc>] sequence, it interprets everything
until it receives the sequence <esc>\ as information for its own use, and
does not pass on any of those characters to the device driver. Here is an ex
ample of a TSC escape sequence:

<esc>] T: E2=25 <esc>\

The T: part tells TSC that this sequence applies to the terminal as op
posed to an I/O connection, for example. E2=25 tells TSC that X3.64
escape sequence number 2 is equivalent to decimal code 25 for this termi
nal. Table C-5 in Device Driver Programming Concepts (Table 2-3 in De
vice Drivers User's Guide) must be consulted to determine that X3.64 se
quence number 2 is the cursor-forward sequence «esc> [99C). The value
25 is Ox19, which is the D _CONS code to move the cursor forward. Any num
ber of translations can be set up with a single TSC sequence:

<esc>] T: E2=25, E3=31, E4=30, E5=28, E6=4, E30=12 <esc>\

E2 through E5 correspond to the four cursor movement functions, E6 is
for cursor addressing, and E30 is the clear screen function. To perform
cursor addressing, TSC must also be told the order in which the row and
column are specified (row, then column, in the case of D_CONS), and the
offset value for row and column numbers (32 for D_CONS). This informa
tion can be specified by the following sequence:

<esc>] T: F=l, U=32 <esc>\

This string was determined by consulting Table C-4 in the Device Driver
Programming Concepts. (Table 2-2 in the Device Driver User's Guide.) The
field F=l tells the TSC that rows are specified before columns, and U=32
tells the offset value for converting encoded row and column numbers to
lines and column numbers on the screen. You can also view and set these

532 Appendix B

parameters with the HI term command. With no command-line argu
ments, term displays current settings. The command term yx over=32
will have the same effect as this TSC sequence.

The file ans i . os c contains a TSC string for all of the preceding plus a
few other translation values, such as for erasing a line or part of the screen.
I chose the . osc extension for the file name because Intel documentation
calls these strings for the TSC Operating System Command (OSC) strings.
There is another type of string that the TSC recognizes called an Applica
tion Program Command (APC) string, but that is not of concern here. Here
is ansi. osc:

File ansLosc
<esc>] T:F=l, U=32, E2=25, E3=31, E4=30, E5=28, E6=4,E26=05, E28=Ol,
E30=12, E31=03, E33=02, E35=06<esc>\

Just setting all the translation rules and cursor addressing information
is not enough. It is also necessary to turn on TSC translation to get the
TSC to intercept X3.64 sequences and pass the correct control codes on to
the device driver. This can also be done using the term command, but it is
usually done with a TSC string that looks like:

<esc>] T: T=l <esc>\

There is one more messy detail to handle before proceeding to show the
files for ANSI control of the D_CONS driver. Aedit and the CLI have their
own way of controlling the screen display and processing such keyboard
characters as the arrow keys. They access the : conf ig: termcap file to
find out which control codes to send to the device driver, assuming no TSC
translation is in effect. The termcap file contains strings such as AFMR=19,
which Aedit and the CLI interpret as "the character code to move the cur
sor to the right is <Ox19>." The point here is that TSC translation must
be off for Aedit and the CLI to work correctly. Either that, or you have to
provide a complete mapping of X3.64 codes to D _CONS codes, turn transla
tion on, and use the CLI's set term=vtlOO command to tell Aedit and the
CLI to use ANSI sequences rather than D _CONS codes. VT100 is the entry
in : conf ig: termcap that is the same as X3.64.

Finally, here are the files that use ANSI escape sequences to accomplish
the same thing as the files hellocon. cad and hellocon. cmv presented
previously.

File helloans. cad
<esc>] T: T=1<esc>\<esc>[2J<esc>[12;34HHello
There !<esc>[9; 9HAgainl I <cr><lf><esc>] T: T=O<esc>\

File helloans.cmv
<esc>] T: T=l <esc>\ <esc> [2 J<esc> [llB<esc> [3 3CHello
There I <cr><lf><esc>] T: T=O<esc>\

Appendix B 533

You can see that the files contain the TSe string to turn on translation,
followed by the ANSI sequences to clear the screen and positio~ the cursor
in the middle. Next comes the message text, including <cr)<lf>, fol
lowed by the TSe string to turn translation back off so that Aedit and the
eLi will still work after the file is copied to the screen. If you type this same
file on the DOS console, the message will still show up in the proper place,
but you will also see the TSe string on the screen because ANSI.SYS does
not know what to do with it.

Although all the examples in this appendix have shown the contents of
files, application programs can generate the same effects simply by writing
the same codes to the console output device. For example, you could have a
small program that writes the equivalent of ans i . osc to the terminal, and
include that program in your r?logon file (or your : config: r?initfile).
The TSe information only needs to be output once. After that, you could use
term to turn translation on and off as desired, and have your applications
generate ANSI escape sequences for all cursor control operations.

Appendix

C
Stream I/O

C.1 Overview

This appendix shows how to use the iRMX stream file driver to implement
intertask communication. Understanding streams helps explain two to
tally different features ofthe operating system: 10RS processing by device
drivers and command processing by a CLI. First, the structure of an appli
cation that uses streams for intertask communication will be reviewed.
The main issue in designing an application that uses streams is to under
stand how the streams device driver processes 10RSs. (Device drivers and
10RS processing are covered in chapter 9.) I then show how streams can be
used to implement I/O redirection by a CLI.

C.2 Stream IORS Processing

Two tasks communicate using a stream file by performing read and write
operations on the same stream file. One task writes to the file, and the
other task reads from it. The stream device driver copies data from the
writer's output buffer in RAM directly to the reader's input buffer. No ac
tual I/O device is involved in the process. Any number of tasks read or write
a given stream file, possibly even just one task does both the writing and
the reading.

As explained in chapter 8, the iRMX I/O model is based on the iRMX
object type called an I/O connection. I/O connections to devices encapsu
late information about the device driver and the file driver to be used for
performing I/O operations and are sometimes called device connections.
I/O connections to files identify the particular file to be accessed on a de
vice and are sometimes called file connections. Both device connections
and file connections are really just one (composite) type of object as far as
the iRMX Nucleus is concerned, but the BIOS differentiates between the

535

536 Appendix C

two in two important ways:

1. No more than one connection can exist to a particular device driver at
any time on an iRMX system. Any number of file connections can exist
based on a single device connection, however.

2. Any task can use a particular device connection, but only tasks that be
long to the same job can use the same file connection. The BIOS does,
however, allow a task to use a file connection belonging to another job to
create a new file connection, one that belongs to the calling task's own
ing job.

A stream device driver and a stream file driver are provided on virtually
all iRMX systems. (It would be possible to configure an iRMX system that
does not support streams by using the ICU.) Furthermore, an I/O connec
tion to the stream device is normally established automatically as the sys
tem initializes. The logical name for this device connection is : STREAM: .

As with I/O connections for other device drivers and file drivers, there is
just one I/O connection to the stream device, but there can be any number
of file connections based on the connection to the device. A sIngle file con
nection does not uniquely identify a particular file, however. For example,
a single disk file can be accessed concurrently by two different programs
using two different connections to the file (provided only that the two con
nections are opened with compatible file sharing modes). For disk files,
what uniquely identifies a file is the file's fnode data structure.

The fnode data structure is stored on the disk itself,and a copy is stored
in memory whenever connections to the file exist. There is an analogous
data structure to a disk file's fnode for each different stream file that exists,
called the stream file's file node. Thus, multiple sets of tasks can be
communicating by means of different stream files at the same time. The
different sets of tasks use file connecti<)Ds with different stream file node
numbers. Just as two tasks read or write the same disk file if their I/O con
nections specify the same fnode number, two tasks read or write the same
stream file if their I/O connections specify the same stream file node num
ber.

The BIOS creates a new stream file node number each time a file con
nection is created based on the device connection to the stream device
driver. Two ways to do this are the following:

1. Call rqacreatefile() or rqsattachfile() with the pref ix parameter set to
the token for the stream device connection and the subpathPtr set to
null.

2. Call rqscreatefile() or rqsattachfile() with the logical name for the
stream device (: STREAM:) as the pathname.

The two ways to create a new stream connection with a stream file num
ber that matches an existing one are:

Appendix C 537

1. Call rqacreatefile() or rqaattachfile() with the pref ix parameter set to a
token for an existing stream file connection.

2. Catalog a stream file connection in some job's object directory by calling
rqscatalogconnection() or rqcatalogobject() and use the resulting logical
name as the pathname argument to rqscreatefile() or rqsattachfile().

When a task reads or writes using a stream connection, the stream file
driver creates an 10RS for the operation and calls the device driver's
queueIO() procedure to enter the 10RS on the driver's queue of work to be
done. The device driver tries to match the new 10 RS with any others that it
has already received with the same stream fnode number. If a match exists,
the device driver copies data from the writer's buffer to the reader's buffer,
and returns both 10 RSs to their response mailboxes. If no match is found,
the new IORS is simply added to the driver's queue of work to be done. If
the number of bytes being read is different from the number of bytes being
written, the driver completes any I/O requests it can and leaves any extra
bytes pending until further IORSs arrive. Note that the mailbox used by
the sample device driver in chapter 9 does not work as the stream driver's
10RS queue because the stream device driver needs to be able to access
more than one 10RS at a time.

Figure C.l is a program that uses BIOS system calls to illustrate stream
10RS processing. The main task creates a new stream file connection and
then does a series of I/O transfers: a read of 12 bytes, two writes of 9 bytes
each, and a read of 6 bytes. The first read completes only after both write
operations are performed. The second write operation provides 6 more
bytes than the first read requested, so the driver uses those 6 bytes to sat
isfy the second read request. The sequence in which the read and write
operations are performed is arbitrary as far as correct operation of the pro
gram is concerned. The task that monitors the response mailbox termi
nates the program when no 10RSs arrive in a 2-second period.

Figure C.1 A program that performs a series of stream file transfers using BIOS
(asynchronous) system calls.

/***> rwwr.c <**

* One of a series of programs which performs asynchronous
stream I/O.

*
This program performs two reads and two writes in the
sequence r-w-w-r. The total number of bytes read and
written are equal (24).

**/
#include <stdio.h>
#include <stdlib.h>
#include <rmxc.h>

538 Appendix C

Figure C.1 (Continued)

#define chk(x) if (Status) printf ('%X %s\n', Status, x)

/*
Global variables

*/

TOKEN pipe, respMbx, iorsTkn, streamDev;
A_IORS_DATA_STRUCT *iorsPtr;

/*

*

*/

Task to monitor the response Mailbox and display
information about IORSs that arrive there during
reading and writing

void far taskl (void) {
WORD i, Status;
char *bufPtr, hexTab[] = 'Ol23456789ABCDEF';
char * funcNames [] = (' read' ,

'write' ,
"seek" ,
'special',
'attach device',
'detach device',
"open II ,

'close');

for (;;) {
iorsTkn = rqreceivemessage (respMbx, (unsigned short) 600, NULL,

&Status);
if (Status == OxOOOl) {

printf ('time out\n');
exit (0);
)

iorsptr = (A_IORS_DATA_STRUCT *) iorsTkn;
printf ("%8 transferred %ld bytes with status %4X\n',

funcNames[iorsPtr->funct] ,
iorsPtr->actual,
iorsPtr->status);

bufPtr = (char *) iorsPtr->buf-ptr - (int) iorsPtr->actual;
printf ("Data transferred:");
for (i = 0; i < iorsPtr->actual; i++) {

printf (" %c%c", hexTab [(*bufptr » 4) & OxOF] , hex Tab [*bufPtr &
OxOF]) ;

/*

*
*
*/

bufPtr++;
)

printf ("\n");
)

Main task - initializes everything and does the reading
and writing.

int main (int argc, char *argv[])
BYTE buffer[30];
BYTE myPrio;

Appendix C 539

Figure C.1 (Continued)

WORD Status;

/*
* Initialize
*/

myPrio = rqgetpriority ((selector) NULL, &Status);
streamDev = rqslookupconnection ("\x008:STREAM:", &Status);
respMbx = rqcreatemailbox ((unsigned short) 0, &Status);

rqacreatefile ((selector) NULL,
streamDev,
(selector) NULL,
(unsigned char) OxOF,
(unsigned short) OxOOOO,
(unsigned long) OxOOOOOOOO,
(unsigned char) OxOO,
respMbx, &Status);

/*
/*
/*
/*
/*
/*
/*

user */
prefix */

path */
access */
granularity
size */
must create

*/

*/

pipe rqreceivemessage (respMbx, (unsigned short) OxFFFF, NULL,
&Status) ;

chk ("main create");
iorsPtr = (A_IORS_DATA_STRUCT *) pipe;
rqaopen (pipe, (unsigned char) Ox03, (unsigned char) Ox03, respMbx,

&Status) ;
iorsTkn

&Status) ;
rqreceivemessage (respMbx, (unsigned short) OxFFFF, NULL,

/*

iorsptr (A_IORS_DATA_STRUCT *) iorsTkn;
chk ("main open");

rqcreatetask (myprio, &taskl, (selector) NULL, NULL,
(unsigned long) 8192, (unsigned short) 0, &Status);

Exercise the stream connection. Display a progress message
and delay for a second after each operation so the user may
observe when the other task blocks relative to this one.

*/
rqaread (pipe,

buffer,
(unsigned long) 12,
respMbx,
&Status) ;

chk ("main read");
printf ("read\n");
rqsleep ((unsigned short) 100, &Status);

rqawrite (pipe,
(unsigned char *) "Message 1",
(unsigned long) 9,
respMbx,
&Status) ;

chk ("main write 1");
printf ("write l\n");
rqsleep ((unsigned short) 100, &Status);

rqawrite (pipe,
(unsigned char *) "Message 2",
(unsigned long) 9,
respMbx,

540 Appendix C

Figure C.1 (Continued)

&Status);
chk ("main write 2");
printf ("write 2\n");
rqsleep ((unsigned short) 100, &Status);

rqaread (pipe,
buffer,
(unsigned long) 6,
respMbx,
&Status);

chk ('main read");
printf ("read\n");
rqsleep ((unsigned short) 100, &Status);

/* The other task exits the job
when it stops receiving IORSs.

*/

rqsuspendtask ((selector) NULL, &Status);

The code in Figure C.l uses a single task and a single I/O connection for
all reading and writing to illustrate basic stream I/O without having to deal
with the intricacies of steam I/O synchronization. There are two intrica
cies to consider: EIOS serialization of I/O operations on a connection, and
management of arbitrary data transfer sizes. These two issues are ad
dressed in the next two sections.

C.2.1 EIOS serialization

The EIOS serializes all I/O transfers performed using a single I/O connec
tion. It was mentioned earlier that EIOS transfers are synchronous in the
sense that they do not return to the caller until the data transfer completes.
In addition, the EIOS does not release a request for an I/O operation using
a connection until all previous operations using that same connection have
completed. If the main task in Figure C.l had used EIOS calls for reading
and writing, execution would never have proceeded past the first read
operation because it could not complete until another task performed a
matching write operation. The point being made here is that another task
could not perform the matching write operation using the same connection
object as the main task (the token pipe) because the EIOS would not actu
ally issue that other task's write request to the BIOS until the read request
using that same connection had completed. This deadlock can be avoided
by having the main task catalog its connection in some job's object direc
tory and have the second task call rqscreatefile() or rqsattachfile() using the
logical name specified by the initial task to obtain a second connection to
the same stream file node. Alternatively, the second task could use the
main task's token as the prefix parameter in a call to rqacreatefile() or

Appendix C 541

rqaattachfile(). In either case, the second task could use a second connec
tion to the same stream file to initiate a second I/O operation.

C.2.2 Managing arbitrary transfer sizes

iRMX streams are often used in situations where the reading or writing
task does not know how much data the other side of the stream is transfer
ring. A sample program shown later in this appendix, for example, shows a
task that reads an arbitrary number of characters from the user's console
and writes them to a stream that acts as the console input for an arbitrary
task that could be trying to read any number of bytes at a time.

The rq [as J special() system calls provide function codes 0 and 1 to handle
this problem for streams. Function code 0 is called query, and function
code 1 is called satisfy. A task uses the query function to find out how
many bytes have been requested by a read or write operation on a stream.
The call returns an IORS that the caller examines to determine the value of
the count field, which can then be used as the count operand for a match
ingwrite or read operation. The satisfy function is used to force another
task's read or write request to complete, with the actual number of bytes
transferred being equal to the number of bytes already matching the pend
ing request, even if that number is less than the number of bytes requested.
Examples of these calls being used are shown after the system calls pro
vided by the Human Interface (HI) for command-line processing are dis
cussed.

C.3 Command-Line Processing

The HI provides support for executing command lines programmatically
through the rqcsendcommand() system call. The function prototype for
this call is the following: .

void
rqcsendcoJlUlland (

STRING far •
WORD far'
WORD far *

TOKEN cOJlUllandConn,
conunandLine,
cOJlUllandExceptionPtr,
exceptionPtr);

The commandLine argument is simply an iRMX string (byte count fol
lowed by characters) that looks like a command line typed in by a user. In
fact, the iRMX CLI reads command lines typed by a user and uses just this
system call to pass them to the HI for processing. The buffer into which the
CLI reads command lines is pointed to by the CommandLine argument to
the call. Application programs can invoke any HI command programmati
cally by putting a pointer to any command string in this argument.

Two different condition codes are associated with this system call. The
code pointed to by exceptionPtr can be set to a nonzero value for two

542 Appendix C

different situations. One is when the commandLine is terminated with an
ampersand, which is the iRMX continuation mark for command lines. In
this case, the HI returns a condition code value ofOx0083 (E_CONTINUED),
and the program that called rqcsendcommand() should then repeat the
call, supplying additional parts of the command line. The HI assembles all
the parts of the command line into an internal buffer and runs the com
mand when a line with no continuation mark is received. The second case
in which the exceptionPtr condition code is nonzero is if an invalid
command line is entered that prevents the HI from launching a new HI
command job. Examples of this situation include naming a command that
the HI cannot find in the disk directories searched for command files, or
naming a command file that is not in valid STL load module format.

Once a command starts running, it might terminate with an error code.
The commandExceptionPtr argument points to a word that will be set to
the termination code specified by the value of the first parameter of the
command's call to rqexitiojob(). If the job terminates because the user
types < A C> or because the program encountered a processor fault, the
condition code for the command is set to Ox0080 (E_CONTROLC) or
Ox800X, where X is the fault code (OxOC for a stack fault, OxOD for a gen
eral protection fault, etc.). Note that a task's call to rqcsendcommand(), if
it does have a zero value for its normal condition code, does not complete
until the child job created by the command completes processing. That is,
this call is not an asynchronous call, even though it returns two different
condition codes at two different times.

Before making a call to rqcsendcommand(), a program must obtain a
token for an object called a command connection. This object is simply a
memory segment in which the HI stores information about the command
connection; it is not an iRMX composite object type. To create a command
connection, call rqccreatecommandconnection():

TOKEN
rqccreatecomrnandconnection (TOKEN

TOKEN
WORD
WORD far *

ciConnection,
coConnection,
connectionFlags,
exceptionPtr) ;

The first two parameters of this call are tokens for the connections that
the HI sets up as : CI: and: co: for the programs run programatically
based on the command connection returned by this call. For normal com
mands issued through the iRMX CLI, these two tokens are simply the
tokens for the CLI's own: CI : and: co: logical names. In the next section,
the use of stream files for these two connections is illustrated.

The connectionFlags parameter is a Boolean value. If it is true (any
odd value), calls to rqcsendcommand() return a condition code value of
Ox0085 (E_ERROROUTPUT) if a child command calls rqcsendeoresponse(),
that is, if it tries to write to its error output device instead of its console

Appendix C 543

output. At the time of this writing, the value of connectionFlags has no
effect on C programs that write to stdout.

C.4 1/0 Redirection Using Streams

A common use of the stream device and file drivers is to implement com
mand-line redirection and submit files by the CLI. A submit file can be
thought of as command input redirection applied to an entire set of com
mands rather than to a single command using the < character. Commands
invoked from a submit file read from the submit file itself when they read
from their: CI: device. The basis for this I/O redirection by a CLI is illus
trated in Figures C.2 through CA. The main task (Figure C.2) creates two
stream files and catalogs them in the local job's object directory using the
logical names: PIPE1: and: PIPE2:. It then creates two tasks. Task 1
reads from: CI: and writes to : PIPE1:, and Task2 reads from: PIPE2 :
and writes to : CO :. The main task then operates as a simple CLI: it creates
a command connection using the two streams as the connection's input
and output devices, and then enters an endless loop in which it reads com
mand lines from the console and sends them to the HI for processing by
calling rqcsendcommand(). The program exits when the user enters a quit
command or types a null line «\z at the beginning of a line).

Figure C.2 Main module for a stream-based command line interpreter (eLI).
/***> strmcli.plm <***

*
*
*
*

*

Stream I/O sample program
Creates three tasks and two pipes.

Task 1 copies :CI: to pipe 1
Task 2 copies pipe 2 to :CO:

*
*

The main task then acts as a CLI, using the pipes in place of
the console.

*
**/

$compact (exports taskl, task2)
strmcli: DO;
$include (strmcli.ext)

DECLARE
STREAM$QUERY
STREAM$SATISFY
E$CONTlNUED
LF
CR

ehstruct
handler POINTER,
mode BYTE}

LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY

(coConn, pl, p2, tl, t2)
(siConn, soConn, cmdConn)
buffer (8l)
(Status, cmdStatus)

'0' ,
'1' ,
'0083h' ,
'OAh' ,
'ODh' ,

STRUCTURE

INITIAL (NIL, O),
TOKEN,
TOKEN,
BYTE,
WORD_l6;

544 Appendix C

Figure C.2 (Continued)

1*
*
*1

Test Condition Code Utility

chkstat: PROCEDURE (StatusVal, MessagePtr, abortFlag) PUBLIC REENTRANT;
DECLARE

1*
*
*
*
*1

StatusVal
MessagePtr
Message BASED MessagePtr (1)
abortFlag
actual
Status

WORD_16,
POINTER,
BYTE,
BYTE,
WORD_32,
WORD_16;

If StausVal is non-zero, display its value and a
message; exit the job if the abortFlag is set.
Otherwise, simply return.

IF StatusVal <> 0 THEN DO;
CALL movb (MessagePtr, @buffer, Message(O) + 1);
CALL rqcformatexception (@buffer, 80, StatusVal, 0, @Status);
CALL movb (@(ODh, OAh) , @buffer(buffer(O) + I), 2),
buffer(O) = buffer(O) + 2;
actual = rqswritemove (coConn,

@buffer(l),
DWORD(buffer(O»,
@Status) ;

IF abortFlag THEN CALL rqexitiojob (0, NIL, @Status);
END;

RETURN;

END chkstat;

task1: PROCEDURE EXTERNAL;
END task1;

task2: PROCEDURE EXTERNAL;
END task2;

1* Main Program Starts Here

*

*1

1*

First, open connection to actual console for use by chkstat.

coConn = rqsattachfile (@(4,':CO:'), @Status);
CALL rqsopen (coConn, 2, 0, @Status);

* Set up: in-line exception handling,
* streams,
* 1/0 tasks.
*1

CALL rqsetexceptionhandler (@ehstruct, @Status);

p1 = rqscreatefile (@(8,':STREAM:'), @Status);
CALL chkstat (Status, @(6,'pipe1 '), TRUE);
CALL rqscatalogconnection (selectorof(NIL) , pI, @(7, ':PIPE1:'),

@Status) ,

Appendix C 545

Figure C.2 (Continued)

/*

*/

/*

*/

/*

*/

CALL chkstat (Status, @(5, 'cat1 '), TRUE);

p2 = rqscreatefile (@(8,':STREAM:'), @Status);
CALL chkstat (Status, @(6, 'pipe2 '), TRUE);
CALL rqscata10gconnection (selectorof(NIL) , p2, @(7,':PIPE2:'),

@Status) ;
CALL chkstat (Status, @(5, 'cat2 '), TRUE);

t1 = rqcreatetask (0,
@task1,
selectorof (@Status) ,
NIL,
8192,
0,
@Status) ;

CALL chkstat (Status, @(3, 't1 ,) , TRUE) ;
t2 = rqcreatetask (0,

@task2,
selectorof (@Status) ,
NIL,
8192,
0,
@Status);

CALL chkstat (Status, @ (3, 't2 ') , TRUE) ;

Set up command connection to use for CLI operations

siConn = rqsattachfile (@(7,':PIPE1:'), @Status);
CALL chkstat (Status, @(14, 'task3 attachl '), TRUE);
CALL rqsopen (siConn, 1, 0, @Status);
CALL chkstat (Status, @(12, 'task3 open1 '), TRUE);

soConn = rqsattachfile (@(7,':PIPE2:'), @Status);
CALL chkstat (Status, @(14, 'task3 attach2 '), TRUE);
CALL rqsopen (soConn, 2, 0, @Status);
CALL chkstat (Status, @(12, 'task3 open2 '), TRUE);

Create a command connection based on the pipes

cmdConn = rqccreatecommandconnection siConn, /* stream
soConn, /* stream
1. /* detect
@Status) ;

input
output
eo out

CALL chkstat (Status, @(23, 'task3 create cmd conn'), TRUE);

Prompt for a command line.
Exit on zero-length input or a quit command.

DO WHILE 1;

*/
*/
*/

CALL rqcsendcoresponse (@buffer, 80, @(9 ,'Command: '), @Status);
IF (buffer(buffer(O» <> If) THEN

CALL rqcsendcoresponse (NIL, 0, @(2, cr, If), @Status);
IF (buffer(O) = 0) OR

(cmpb (@buffer(l), @('quit'), buffer(O) -2) = OFFFFFFFFh) THEN
CALL rqexitiojob(O, NIL, @Status);

CALL rqcsendcommand (cmdConn, @Buffer, @cmdStatus, @Status);

546 Appendix C

Figure C.2 (Continued)

DO WHILE Status = E$CONTINUED;
CALL rqcsendcoresponse (@buffer, 80, @(lO, 'Continue: '),

@Status) ;
IF buffer(buffer(O)) <> If THEN

CALL rqcsendcoresponse (NIL, 0, @(2, cr, If), @Status);
CALL rqcsendcommand (cmdConn, @Buffer, @cmdStatus, @Status);
END;

CALL chkstat (Status, @(l3, 'send command '), FALSE);
CALL chkstat (cmdStatus, @(l5, 'command failed '), FALSE);
END;

END strmcli;

Figure C.3 Input task for the stream-based CLI. This task reads from the console (: CI:) and
writes to the stream named: PIPEl:.

/***> taskl.plm <**

*
* Read from :CI:, write to :PIPE1:

***/

$compact (exports taskl)
taskl: DO;
$include (taskl.ext)

DECLARE
STREAM$QUERY
STREAM$SATISFY
LF
CR

LITERALLY
LITERALLY
LITERALLY
LITERALLY

'0' ,
'l' ,
'OAh' ,
'ODh' ;

chkstat: PROCEDURE (StatusVal, MessagePtr, abortFlag) EXTERNAL;
DECLARE

StatusVal
MessagePtr
abortFlag

END chkstat;

/* taskl: Read from :CI:, write to :PIPEl:

*/

taskl: PROCEDURE PUBLIC;
DECLARE

buffer(80)
(actualr, actualw)
ehStruct STRUCTURE

handler
mode

(ciConn, pipeConn)
iors

actual
device
unit
funct
subfunct
device_loc
buf-ptr

POINTER,
BYTE) ,

WORD_32,
WORD_l6,
BYTE,
BYTE,
WORD_16,
WORD_32,
POINTER,

WORD_16,
POINTER,
BYTE;

TOKEN,
STRUCTURE

Appendix C 547

Figure C.3 (Continued)

/*

*/

/*

*
*/

*/

count
aUXJltr

Status

Handle Exceptions in-line

ehStruct.mode = 0;

WORD_32,
POINTER) ,

CALL rqsetexceptionhandler (@ehStruct, @Status);

Set up connections to :ci: and :pipel:

ciConn = rqsattachfile (@(4,' :CI:'), @Status);
CALL chkstat (Status, @(14, 'taskl attachl '), TRUE);
CALL rqsopen (ciConn, 1, 0, @Status);
CALL chkstat (Status, @(12, 'taskl openl '), TRUE);

pipeConn = rqsattachfile (@(7,':PIPEl: '), @Status);
CALL chkstat (Status, @(14, 'taskl attach3 ,), TRUE);
CALL rqsopen (pipeConn, 2, 0, @Status);
CALL chkstat (Status, @(12, 'taskl open3 '), TRUE);

When another task tries to read from the stream,
read input from keyboard and write it to the stream.

DO WHILE 1;
CALL rqsspecial (pipeConn, STREAM$QUERY, NIL, @iors, @Status);
CALL chkstat (Status, @ (12, 'taskl query '), TRUE);
actualr = rqsreadmove (ciConn, @buffer, 80, @Status);
CALL chkstat (Status, @(11, 'taskl read '), FALSE);

IF Status = ° THEN DO;
actualw = rqswritemove (pipeConn, @buffer, actualr, @Status);
CALL chkstat (Status, @(12,'taskl write '), TRUE);
IF actualr < iors.count THEN DO;

CALL rqsspecial (pipeConn, STREAM$SATISFY, NIL, NIL, @Status);
CALL chkstat (Status, @(14, 'taskl satisfy'), TRUE);
END;

END;
END;

END taskl; /* procedure */

END taskl; /* module */

Figure C.4 Output task for the stream-based eLI. This task reads from the stream named
: PIPE2: and writes to the user's screen (: co:).

/***> task2.plm <**

Read :PIPE2:, write to :CO:

***/

548 Appendix C

Figure C.4 (Continued)

$compact (exports task2)
task2: DO;
$include (task2.ext)

DECLARE
STREAM$QUERY
STREAM$SATISFY
LF
CR

LITERALLY
LITERALLY
LITERALLY
LITERALLY

. 0',
'1' ,
'~Ab' ,

'ODh' ;

chkstat: PROCEDURE (StatusVal, MessagePtr, abortFlag) EXTERNAL;
DECLARE

StatusVal
MessagePtr
abortFlag

WORD_16,
POINTER,
BYTE;

END chkstat;

/* task2: Read from :PIPE2:, write to :CO:

*/
task2: PROCEDURE PUBLIC;
DECLARE

/*

*/

/*

*/

buffer(80)
ehStruct STRUCTURE

handler
mode

(pipeConn, coConn)
iors

actual
device
unit
funct
subfunct
device_Ioc
buCptr
count
auxJltr

(actualr, actualw)
Status

Handle Exceptions in-line

ehStruct.mode = 0;

POINTER,
BYTE) ,

WORD_32,
WORD_16,
BYTE,
BYTE,
WORD_16,
WORD_32,
POINTER,
WORD_32,
POINTER) ,

BYTE,

TOKEN,
STRUCTURE

WORD_32,
WORD_16;

CALL rqsetexceptionhandler (@ehStruct, @Status);

Set up connections to :pipe2: and :co:

pipeConn = rqsattachfile (@(7,':PIPE2:'), @Status);
CALL chkstat (Status, @ (14, 'task2 attach1 '), TRUE);
CALL rqsopen (pipeConn, 1, 0, @Status);
CALL chkstat (Status, @(12, 'task2 open 1 '), TRUE);

coConn = rqsattachfile (@(4,':CO:'), @Status);
CALL chkstat (Status, @(14,'task2 attach2 '), TRUE);
CALL rqsopen (coConn, 2, 0, @Status);
CALL chkstat (Status, @(12,'task2 open2 '), TRUE);

Appendix C 549

Figure C.4 (Continued)

/*
* Read input from the stream, and echo it to the screen.
*/

DO WHILE 1;
CALL rqsspecial (pipeConn, STREAMS QUERY , NIL, @iors, @Status);
CALL chkstat (Status, @(12, 'task2 query '), TRUE);
actualr ; rqsreadrnove (pipeConn, @buffer, iors.count, @Status);
CALL chkstat (Status, @(11, 'task2 read '), TRUE);
actua1w ; rqswritemove (coConn, @buffer, actualr, @Status);
CALL chkstat (Status, @(12, 'task2 write '), TRUE);

END;

END task2; /* procedure */

END task2; /* module */

As it stands, the stream I/O performed by the sample eLI does not do
anything special. The command connection could just as well have been
created using tokens for : C I : and: co: instead of : PIPE 1 : and: PIPE 2 : .

However, this eLI does work, so it serves as an illustration of tasks that
communicate successfully using stream I/O. Furthermore, the sample eLI
could easily be extended by having Task 1 read from a disk file or some
other device rather than from: CI :, or by having Task 2 write to a disk file
or other device rather than to : co: , thereby implementing I/O redirection.
The logic of the eLI itself remains unchanged, and the commands exe
cuted by the calls to rqcsendcommand() never know the difference.

There is a significant difference between the environment in which
commands are run using the sample eLI and those run using the normal
iRMX eLI. Under the iRMX eLI, commands use actual connections to
: C I : and: co: unless the user invokes command line redirection using the
< and/or> characters or uses the submit command. I/O through: CI : and
: co: is processed by a terminal I/O device driver, which means that an ap
plication program can make rq [as J special() system calls specific to that
driver to perform such operations as changing the line edit mode, character
echoing, signal character recognition, and the like. The stream device
driver supports none of these operations. Because the sample eLI always
uses stream I/O, no command invoked from it can successfully make any
rq [as J special() system calls that change terminal or connection attributes.
To give a concrete example, aedit will not run properly in its interactive
mode using the sample eLI because aedit needs to control the terminal's
character-echoing and line-editing modes. This same restriction applies to
the iRMX eLI only in those situations where it uses stream I/O com
mand-line redirection and the submit command.

The sample eLI is intended only as a demonstration of the use of stream
I/O through the EIOS. It lacks many features of the iRMX eLI, such as
command history, aliases, background commands, and a super mode.

Appendix

D
iRMX System Calls

The following list of iRMX system call names is adapted from Tables 1-1
through 1-7 of the iRMX System Call Reference manual, volume 9 of the
iRMX for Windows documentation set. Refer to that manual for complete
documentation for each system call. The system calls to access iNA and the
Name Server at the end of this list are documented in the iRMX Network
Concepts and Network Programmer's Reference manual.

The names in this appendix are appropriate for C programs that include
the header file rrnxc . h, for PLM programs, and for assembly language pro
grams. C programs that include the header file rrnx _c. h use names with
embedded underscore characters for easier reading.

C programs that use the networking system calls listed here should in
clude the header file cqcomm. h; PLM programs that use networking sys
tem calls should include the file cqcomm. ext. C programs that use the
UDI system calls listed here should include the header file udi. h or
udi_c. h; PLM programs that use UDI system calls should include the
file udi. ext.

It might be necessary to link to three different libraries to use these sys
tem calls. Programs that use system calls with names beginning with rq or
rqe must be linked to the library rrnxif~ . lib, where ~ depends on the
model of compilation and word size C, C32, or L. Programs that use UDI
calls must link to udiif~ .lib, and programs that make use network sys
tem calls must link to cq~. lib.

Application Loader System Calls

rqaload

rqaloadiojob

Loads an object file from secondary stor
age into memory.

Creates an I/O job with a memory pool of
up to 1 Mbyte, loads a specified object

551

552 Appendix 0

rqealoadiojob

rqsloadiojob

rqesloadiojob

rqsoverlay

BIOS System Calls

BIOS job-level system calls

rqencrypt

rqgetdefaultprefix

rqgetdefaultuser

rqsetdefaultprefix

rqsetdefaultuser

BIOS device-level system calls

rqaphysicalattachdevice

rqaphysicaldetachdevice

rqeinstallduibs

rqaspecial

file, and creates a task to execute the
loaded code.

Creates an I/O job with a memory pool of
up to 4 GB, loads a specified object file,
and creates a task to execute the loaded
code.

Loads an object file and creates an I/O
job for it. This call is similar to rqesload
iojob; it is provided for compatibility
with older versions of the iRMX as.
Creates an I/O job with a memory pool of
up to 4 GB, loads a specified object file,
and creates a task to execute the loaded
code.

Loads an overlay module into memory.

Encrypts a specified string of characters.

Returns the default prefix of a specified
job.

Returns the default user object of a speci
fied job.

Sets the default prefix for a specified ex
isting job.

Sets the default tiser object for a specified
existing job.

Attaches the specified device to the
BIOS.

Detaches a device that was attached
using rqaphysicalattachdevice().

Installs a cluster of Device Unit Infor
mation Blocks (DUIBs) into the BIOS.

Enables tasks to perform a variety of de
vice-level functions.

Appendix D 553

BIOS file/connection-level system calls

rqaattachfile

rqacreatedirectory

rqacreatefile

rqadeleteconnection

rqadeletefile

Creates a connection to an existing file of
any type.

Creates a directory file.

Creates a file and returns a token for the
new file connection.

Deletes a file connection created by rqa
createfile(), rqacreatedirectory(), or
rqaattachfile().

Marks a stream, named data or named
directory file for deletion.

BIOS file-modification system calls

rqachangeaccess Changes the access rights to a named
data or directory file.

rqarenamefile

rqatruncate

Changes the pathname of a named data
or directory file.

Truncates a named data file at the cur
rent setting of the file pointer.

BIOS file input/output system calls

rqaclose

rqaopen

rqaread

rqaseek

rqaupdate

rqwaitio

rqawrite

Closes an open file connection for any
type of file.

Opens an asynchronous file connection
for I/O operations for any type of file.

Reads the requested number of bytes on
an open connection for any type of file.

Moves the file pointer of an open file
connection.

Updates a device by writing all buffered
partial sectors.

Returns the concurrent condition code
for the prior call to the calling task.

Writes data from the calling task's buffer
to a connected physical, stream, or
named data file.

554 Appendix 0

BIOS get status/attribute system calls

rqagetconnectionstatus

rqagetdirectoryentry

rqagetfilestatus

rqagetpathcomponent

BIOS user object system calls

rqcreateuser

rqdeleteuser

rqinspectuser

BIOS extension data system calls

rqagetextensiondata

rqasetextensiondata

BIOS time/date system calls

rqgettime

rqsettime

rqgetglobaltime

rqsetglobaltime

EIOS System Calls

EIOS I/O job calls

rqcreateiojob

Returns information about the connec
tion status of a specified file.

Returns the filename associated with an
entry number in a named or EDOS direc
tory.

Returns status and attribute informa
tion about a specified file.

Returns the name of a data or directory
file, as cataloged in its parent directory.

Creates a user object, accepts a list of
IDs, and returns a token for the new ob
ject.

Deletes a user object.

Accepts a token for a user object and re
turns a list of the IDs contained in the
user object.

Writes the extension data for a named
data or directory file; not valid for DOS
files.

Stores a named file's extension data; not
valid for DOS files.

Returns the date/time value from the
BIOS's local clock.

Sets the date and time for the BIOS's
local clock.

Reads the time of day from the battery
backed-up hardware clock.

Sets the battery-backed-up hardware
clock to a specified time.

Creates an I/O job containing one task
with a memory pool of up to 1 Mbyte.

rqecreateiojob

rqexitiojob

rqstartiojob

EIOS logical name calls

rqscatalogconnection

rqsgetdirectoryentry

rqsgetpathcomponent

rqhybriddetachdevice

rqlogicalattachdevice

rqlogicaldetachdevice

rqslookupconnection

rqsuncatalogconnection

EIOS file and connection calls

rqsattachfile
rqscreatedirectory

rqscreatefile

rqschangeaccess

rqsrenamefile

Appendix D 555

Creates an I/O job containing one task
with a memory pool of up to 4 Gbytes.

Sends a message to a previously desig
nated mailbox and deletes the calling
task.

Starts the initial task in an I/O job.

Creates a logical name for a connection
by cataloging the connection in the ob
ject directory of a job.

Returns a directory entry filename to the
caller.

Returns the name of a named file as the
file is known in its parent directory.

Temporarily removes the correspon
dence between a logical name and a phys
ical device.

Assigns a logical name to a physical de
vice.

Removes the correspondence between a
logical name and a physical device, and
removes the logical name from the root
object directory.

Returns a token for the connection asso
ciated with the specified logical name.

Deletes a logical name from the object di
rectory of a job.

Creates a connection to an existing file.

Creates a new directory file and automat
ically adds a new entry to the parent di
rectory.

Creates a new physical, stream, or named
data file.

Changes the access list for named file.

Changes the pathname of a directory or
data file.

556 Appendix 0

rqsclose

rqsopen

rqsreadmove

rqsseek

rqstruncatefile

rqswritemove

rqsdeleteconnection

rqsdeletefile

EIOS device call

rqsspecial

EIOS status calls

rqsgetconnectionstatus

rqsgetfilestatus

rqgetlogicaldevicestatus

EIOS user-related calls

rqgetuserids

rqverifyuser

Closes an open connection to a named,
physical, or stream file.

Opens a file connection.

Reads a number of contiguous bytes from
a file associated with a connection to a
buffer specified by the calling task.

Moves the file pointer for any open phys
ical or named file connection.

Removes information from the end of a
named data file.

Writes a collection of bytes from a buffer
to a file.

Deletes a file connection, not a device
connection.

Deletes a stream, named data, or named
directory file created by the BIOS or the
EIOS.

Allows tasks to communicate with de
vices, device drivers, and the stream file
driver to perform various operations.

Provides status information about file
and device connections that were created
by the BIOS or the EIOS.

Obtains information about a physical,
stream, or named file created by the
BIOS or the EIOS.

Provides status information about logi
cal names that represent devices.

Returns the user ID(s) associated with a
user defined in the User Definition File
(UDF).

Verifies a user's name and password.

Human Interface System Calls

HI I/O processing calls

rqcgetinputconnection

rqcgetoutputconnection

HI command parsing calls

rqcbackupchar

rqcgetchar

rqcgetinputpathname

rqcgetparameter

rqcgetoutputpathname

rqcsetparsebuffer

rqcgetc()mmandname

HI message processing calls

rqcformatexception

rqcsendcoresponse

rqcsendeoresponse

Appendix 0 557

Returns an EIOS connection object for
the specified input file.

Returns an EIOS connection object for
the specified output file.

Moves the parsing buffer pointer back
one character for each occurrence of the
call.

Gets a character from the parsing buffer
and moves the parsing buffer pointer to
the next character.

Gets a pathname from the list of input
pathnames in the parsing buffer.

Retrieves one parameter from the pars
ing buffer and moves the parsing pointer
to the next parameter.

Gets a pathname from the list of output
pathnames in the parsing buffer.

Permits parsing the contents of a buffer
other than the command line buffer
whenever the parsing system calls are
used.

Obtains the pathname of the command
entered by the operator.

Creates a default message for a given ex
ception code and writes that message
into a user-provided string.

Sends a message to : co: and reads a re
sponse from: ci:.

Sends a message to and reads a response
from the operator's terminal.

558 Appendix 0

HI command processing calls

rqccreatecommandconnec
tion Returns a token for a command connec

tion object required to invoke commands
programmatically instead of interacti
vely.

rqcdeletecommandconnection Deletes a command connection object
previously defined in a ccreatecom
mandconnection call and frees the mem
ory used by the command connection's
data structures.

rqcsendcommand

HI program control call

rqcsetcontrolc

Nucleus System Calls

Nucleus job calls

rqcreatejob

rqecreatejob

rqdeletejob

rqoffspring

rqeoffspring

Stores a command line in the command
connection created by the ccreatecom
mandconnection call, concatenates the
command line with any others already
stored there, and (if the command invo
cation is complete) invokes the com
mand.

Changes the default response to a
<Ctr 1 - c> entry to a response that
meets the needs of your task.

Creates a job containing one task with a
memory pool of up to 1 Mbyte and re
turns a token for the job.

Creates a job containing one task with a
memory pool of up to 4 Gbytes and re
turns a token for the job.

Deletes a specific job.

Returns a token for the a segment con
taining tokens of the child jobs of the
specified job.

Fills the specified data structure with
tokens of the child jobs of the specified
job.

Nucleus task calls

rqcreatetask
rqdeletetask
rqgetpriority

rqgettasktokens

rqresumetask

rqsetpriority

rqsleep

rqsuspendtask

Nucleus mailbox calls

rqcreatemailbox

rqdeletemailbox

rqreceivedata

rqreceivemessage

rqsenddata

rqsendmessage

Nucleus semaphore calls

rqcreatesemaphore

rqdeletesemaphore
rqreceiveunits

rqsendunits

Appendix D 559

Creates a task and returns a token for it.
Deletes a specific, non-interrupt task.
Returns the static priority of a specific
task.
Returns a token for either itself, its job,
its job's parameter object, or the root job.
Decreases a task's suspension depth by
one.
Changes the priority of a non-interrupt
task.
Places the calling task in the asleep state
for a specified amount of time.
Increases a task's suspension depth by
one.

Creates a mailbox and returns a token for
it.
Deletes a specific mailbox.
Receives a data message from a data
mailbox.
Receives a signal message from an object
mailbox.
Sends a data message of up to BOH char
acters to a mailbox.

Sends a signal object to a mailbox.

Creates a semaphore and returns a token
for it.
Deletes a specific semaphore.

Requests a specific number of units from
a semaphore.
Sends a specific number of units to a
semaphore.

560 Appendix 0

Nucleus segment and memory pool calls

rqcreatesegment

rqdeletesegment

rqgetpoolattributes

rqegetpoolattrib

rqgetsize

rqsetpoolmin

Nucleus buffer pool calls

rqcreatebufferpool

rqdeletebufferpool

rqreleasebuffer

rqrequestbuffer

Nucleus descriptor calls

rqechangedescriptor

rqecreatedescriptor

rqedeletedescriptor

Nucleus object calls

rqcatalogobject

rqechangeobjectaccess

Creates a segment and returns a token
for it.
Returns a segment to the memory pool
from which it was allocated or deletes a
descriptor from the Global Descriptor
Table (GDT).

Returns the memory pool attributes of
the calling task's job.

Returns the same information as getpoo
lattributes for any job, plus the amount
of memory borrowed and the token of the
parent job.

Returns the size, in bytes, of a segment.

Sets the minimum attribute of the mem
ory pool of the caller's job.

Creates a buffer pool object that can be
associated with one or more ports.
Deletes a buffer pool object.

Returns previously allocated buffer
space to the specified buffer pool.

Gets a buffer from an existing buffer
pool.

Changes the base physical address and
size of a descriptor in the G DT.

Builds a descriptor for a memory seg
ment, places the descriptor in the GDT,
and returns a token for that descriptor.

Removes a descriptor entry from the
GDT.

Places an entry for an object in an object
directory.

Changes the access rights of iRMX seg
ments or composite objects.

rqegetaddress

rqegetobjectaccess

rqgettype

rqlookupobject

rquncatalogobject

Nucleus exception handler calls

rqgetexceptionhandler

rqsetexceptionhandler

Appendix D 561

Returns the physical address of an ob
ject.

Returns the access type of an object
whose token is specified.

Returns the type code for the specified
object.

Returns a token for the specified cata
loged object name.

Removes an entry for an object from an
object directory.

Returns the address of the calling task's
exception handler and the current value
of the task's exception mode.
Assigns an exception handler and excep
tion mode attributes to the calling task.

Nucleus interrupt management calls

rqdisable Disables a specific interrupt level.
rqenable

rqendinittask

rqenterinterrupt

rqexitinterrupt

rqgetlevel

rqresetinterrupt

rqsetinterrupt

rqsignalinterrupt

rqetimedinterrupt

Enables a specific interrupt level.
Informs the root task that a synchronous
initialization process has completed. Not
available to iRMX For Windows users.
Sets up a previously-specified data seg
ment base address for the calling inter
rupt handler.

Used by interrupt handlers to send an
end-of-interrupt to hardware.

Returns the interrupt level of the highest
priority interrupt that an interrupt
handler is currently processing.
Cancels the assignment of an interrupt
handler to a level.

Assigns an interrupt handler and, if de
sired, an interrupt task to an interrupt
level.
Used by interrupt handlers to invoke in
terrupt tasks.
Puts the calling interrupt task to sleep

562 Appendix 0

rqwaitinterrupt

Nucleus composite object calls

rqaltercomposite

rqcreatecomposite

rqdeletecomposite

rqinspectcomposite

Nucleus extension object calls

rqcreateextension

rqdeleteextension

Nucleus deletion control call

rqdisabledeletion

rqenabledeletion

rqforcedelete

Nucleus OS extension calls

rqesetosextension

rqsetosextension

rqsignalexception

until either it is called into service by an
interrupt handler or a specified time pe
riod elapses.

Puts the calling interrupt task to sleep
until it is called into service by an inter
rupt handler.

Replaces components of composite ob
jects.

Creates a composite object and returns a
token for it.

Deletes a composite object but not its
component objects.

Returns a list of the component tokens
contained in a composite object.

Creates a new object type and returns a
token for it.

Deletes an extension object and all com
posites of that type.

Makes an object immune to ordinary de
letion.

Makes an object susceptible to ordinary
deletion.

Deletes objects whose disabling depths
are zero or one.

Attaches or deletes the entry-point ad
dress of a user-written as extension to a
call gate.

Supported by iRMX I only. Attaches or
deletes the entry-point address of a user
written as extension to a call gate.

D sed by as extensions to signal the oc
currence of an exceptional condition.

Nucleus region calls

rqacceptcontrol

rqcreateregion

rqdeleteregion

rqreceivecontrol

rqsendcontrol

Appendix D 563

Provides access to data protected by a re
gion only if access is immediately avail
able.

Creates a region and returns a token for
it.

Deletes a specific region.

Allows the calling task to gain access to
data protected by a region.

Relinquishes control to the next task
waiting at the region.

Nucleus communication service calls

rqattachbufferpool

rqattachport

rqbroadcast

rqcancel

rqconnect

rqcreateport

rqdeleteport

rqdetachbufferpool

rqdetachport

rqgethostid

rqgetportattributes

rqreceive

rqreceivefragment

rqreceivereply

Associates a buffer pool with one or more
ports.

Forwards all messages sent to the port
that issued the call to a sink port.

Sends a control message to every mes
sage passing host.

Performs synchronous cancellation of
RSVP message transmission.

Creates a connection between the send
ing task and a remote task.

Creates a port object that can be used in
message passing.

Deletes a specific port.

Ends the association between a buffer
pool and a port.

Ends message forwarding from the
source port to the sink port.

Returns the host ID of the board that the
task is running on.

Returns information about the specified
port.

Accepts a message at a port.

Accepts a fragment of an RSVP data
message.

Accepts a message that is a reply to an
earlier request.

584 Appendix D

rqreceivesignal

rqsend

rqsendrsvp

rqsendreply

rqsendsignal

Receives a signal from a remote host at a
specified port.
Sends a data message from a port to a
port on another board.

Initiates a request/response message ex
change.

Sent in response to the rqsendrsvp sys
tem call.
Sends a signal message to a remote host
through the specified port.

Nucleus multibus II interconnect calls

rqgetinterconnect Retrieves the contents of the specified
interconnect register.

rqsetinterconnect Alters the contents of an interconnect
register to a specified value.

UOI System Calls

UOI program control calls

dqexit
dqoverlay
dqtrapcc

UOI file-handling calls

dqattach
dqchangeaccess

dqchangeextension

dqclose
dqcreate
dqdelete
dqdetach
dqfileinfo

dqgetconnectionstatus

Exits from the current application job.
Loads an overlay module.

Designates an interrupt procedure that
takes control when <Ctrl-C> is en
tered.

Creates a connection to a file.
Changes access rights to a file or direc
tory.

Changes the extension of a file name in
memory.
Closes the specified file connection.
Creates a file.

Deletes a file.
Closes a file and deletes its connection.
Returns data about directory and data
files.
Returns information about a file connec
tion.

dqopen

dqread
dqrename

dqseek

dqspecial

dqtruncate

dqwrite

UOI memory management calls

dqallocate

dqfree

dqgetmsize

dqgetsize

dqmallocate

dqmfree

dqreserveiomemory

UOI exception-handling calls

dqdecodeexception

dqgetexceptionhandler

dqtrapexception

Appendix 0 565

Opens a file for a particular type of ac
cess.

Reads bytes from a file.
Renames a file.

Moves the file pointer of a file.

Sets the mode of a console input device.

Truncates a file at the position specified
by the file pointer.

Writes data to a file.

Requests a memory segment.

Returns a memory segment to the sys
tem.

Returns the size of a segment allocated
by dqmallocate.

Returns the size of a specified segment.

Requests a logically contiguous memory
segment of a specified size.
Returns memory allocated by dqmallo
cate to the Free Space Pool.

Sets aside memory for I/O operations.

Converts a condition code into its equiv
alent mnemonic.

Returns the address of the current ex
ception handler.

Substitutes an alternate exception
handler.

UOI utility and command parsing calls

dqdecodetime Decodes the specified binary date/time
value to ASCII characters.

dqgetargument

dqgetsystemid

dqgettime

Returns an argument from the command
line.

Returns the identity of the OS environ
ment.

Obsolete: included for compatibility.

566 Appendix 0

dqswitchbuffer Selects a new command line buffer.

Windows- and DOS-Specific System Calls

rqereadsegment

rqewritesegment

rqesetvm86extension

rqedosrequest

Allows a OOS application program to
transfer data from a Protected Virtual
Address Mode (PV AM) segment to a
Real Mode segment.
Allows a DOS application program to
transfer data from a Real Mode segment
to a PV AM segment.

Installs and removes a Virtual 8086
Mode (VM86) extension at the specified
interrupt level.

Makes DOS/ROM BIOS requests and
other software interrupts handled by
DOS applications.

System Calls for Access to iNA and the
Name Server

cqcommdwordtoptr

cqcommptrtodword

cqcommrb

cqcreatecommuser

Converts a 32-bit absolute address to the
corresponding pointer.

Converts a pointer to the corresponding
32-bit absolute address.

Delivers a request block to iNA or to the
Name Server for processing.

Creates a user ID for programmatic ac
cess to iNA.

Glossary

8.3 rule The DOS file naming rule that requires an eight-character base part, fol
lowed by a period, followed by a three-character extension part.

ACRONYM A Contrived Reduction of Nomenclature Yielding Mnemonics.

activation record A data structure consisting of a procedure's parameter values,
return address, and local dynamic variables.

AL Application Loader. The layer of an iRMX system that loads programs into
memory for execution, such as when a user enters a command at the console.

ANSI American National Standards Institute.

API Application Programming Interface application task. A task that runs at a
priority level that does not disable any interrupt levels.

ASCII American Standard Code for Information Interchange. A 7 -bit character
code specified in ANSI standard number X3.4.

AT bus The system bus architecture used in most PCs. Also known as the ISA
bus.

base address The address in physical or virtual memory at which a memory seg
ment begins. Derived from a selector when a processor is operating in real mode or
from a descriptor identified by a selector when a processor is operating in protected
mode.

base register A register that is added to an index and a displacement to compute
the effective memory address of an operand for a machine language instruction.

binary compatible An executable program that can run on different systems
without being recompiled or relinked.

BIOS Basic I/O System. The layer of an iRMX system that provides an
asynchronous interface to the input/output system. The same acronym is used in
the context of PCs for the code that resides in ROM to supply OS-independent ac
cess to the computer's I/O system.

bootstrap loader Unless the operating system resides in ROM, it must be loaded
into memory from a disk using a program called a bootstrap loader. For iRMX, the
disk may be either local or accessed over the network.

buffer pool An iRMX object type managed by the Nucleus layer. Buffer pools
provide a way to manage sets of memory segments efficiently.

567

568 Glossary

C start-off routine The initial code for a C program that calls mainO and which
receives control when main() returns.

callback A function that is called by another program in response to some event.

COB Connection Database. iNA maintains information about each virtual cir
cuit that it manages in a data structure called a CDB. It returns an unsigned integer
to identify the CDB when a program issues an open Request Block.

cheat To use knowledge about the internal representation of an encapsulated
object in an application program.

client On a network, a client is a computer which makes requests for a remote
system that acts as a server. For example, a client could request a remote server to
supply it with data from one of the server's disk files.

compile time The time at which source code is translated into an object module.
If the source code is assembly language rather than a high-level language, the pro
cess is called assembly rather than compilation, and is said to occur at assembly
time.

composite object An iRMX object that is made up of other objects. All applica
tion-defined object types use composite objects.

condition The name of a synchronization primitive introduced by POSIXAa.

connection A composite object type managed by the BIOS. Although there is
only one connection object type, the internal format of a connection object depends
on whether it was created by an attach device or an attach file system call.

consumer Another name for a network client.

conventional memory A DOS term used to refer to the portion of the real mode
address space below 640K.

CPU Central Processing Unit. In this book, the same as a microprocessor.

CRC Cyclic Redundancy Check. A parity-based mechanism for checking the in
tegrity of data retrieved from a memory or communication link.

CST Context switch time. The time it takes to get the CPU to stop executing code
for one task and start executing code for another one.

CUSP Commonly Used Systems Program.

datagram A message passed over a network on a best-effort basis. The network is
not guaranteed to deliver datagrams in the order in which they are sent, if at all.
Successful transmission of a datagram does not mean that it was actually received
anywhere.

DOE Dynamic Data Exchange. A technique for sharing information between
Windows applications, such a fields within word processing documents or cells
within spreadsheets. iRMX for Windows extends the DDE to allow applications to
communicate over a network.

deadline Time limit on when a task can complete processing an event.

default prefix An I/O connection, normally to a directory, that is used as the
starting point for locating a file or directory that does not include a complete path
in its name.

Glossary 569

descriptor An 8-byte data structure taken from a descriptor table in memory.
Descriptors provide about information memory segments, system call procedures,
interrupt and trap handling procedures, and hardware-supported tasks.

development system A computer system used to build application software that
will be debugged on, and ultimately, integrated with, another computer called the
target system.

device connection A BIOS connection object that was created by rqaphysi
calattachdevice () or rqlogicalattachdevice (). A device connection
identifies the DUIB, and hence the device driver, that will handle I/O requests for a
particular device.

device controller The hardware interface between the CPU or system bus and a
device unit.

device driver The software interface between the BIOS and a device controller.

device independence A feature of an OS that makes it possible for application
programs to do I/O to disk files or different physical devices without having to
change the program itself in any way.

device unit A single I/O device, such as a terminal or a disk drive.

DHDT DOS-Hosted Development Tool. A compiler, binder, or other develop
ment tool that runs under MS-DOS on a PC.

disk volume A single floppy diskette or hard disk drive that has been formatted
with a particular type of file system.

DMA Direct Memory Access. A device controller design in which the processor
provides the controller with the address of a memory buffer and receives only a sin
gle interrupt from the controller when it has completed the data transfer for the
entire buffer.

DOS Disk Operating System. In this book, the MS-DOS or PC-DOS operating
system of Microsoft or IBM.

DUIB Device Unit Information Block, also known as a device name or physical
device.

EDL External Data Link. The name for the collection of Data Link operations
that can be invoked directly by applications using the iNA RB interface.

EDOS Encapsulated DOS. The iRMX file driver for use with MS-DOS disks.

effective address The address of a memory operand referenced by a machine
language instruction. Computed as the sum of a displacement value, the contents of
an index register, and the contents of a base register.

EIOS Extended I/O System. The layer of an iRMX system that provides a syn
chronous interface to the BIOS layer.

EISA Extended ISA bus. A system bus architecture for PCs. Competes with
MCA.

embedded system Any device or piece of equipment that is controlled by one or
more microprocessors. Normally, users interact with an embedded computer only
through the instrument's controls, if at all.

570 Glossary

encapsulation A characteristic of object-based systems. The representation of
an object is hidden from the user of that object. Only the object's type manager can
manipulate an object. Users of an object can manipulate the object only by invok
ing type manager functions for the object.

EOI End of Interrupt. A command that is sent to a Programmable Interrupt
Controller to indicate that an interrupt handler has completed processing an inter
rupt.

event loop A code structure characterized by an endless loop in which a task is
idle while it waits for an event, performs some computation when an event occurs,
then returns to the waiting state until its next event occurs.

exception handler A program that receives control when an error is detected by
the operating system or by the hardware.

exchange Generic name for semaphores, mailboxes, and regions, which are ob
ject types managed by the Nucleus that allow tasks to synchronize and communi
cate with one another.

execution breakpoint An instruction in a program that causes a transfer of con
trol to a debugging program. Implemented by replacing the original machine lan
guage instruction at the break point with an interrupt 3 instruction.

exit procedure A procedure called by a system call procedure when it is ready to
return to an application that called it. The exit procedure performs the machine
language operations needed to set up the condition code and any return value for
the system call, and then returns to the interface procedure.

expedited data Virtual circuit data that can be transmitted and received ahead
of normal data already en-route over the circuit.

explicit function A function called by name from an application program.

FIFO First in, first out.

file driver Any of five software interfaces to the BIOS that provide a uniform,
file-oriented view of I/O devices. The four file drivers are the Named, Physical, Re
mote, Stream, and ED OS drivers.

flags register A CPU register used to hold status information resulting from
arithmetic operations, and some of the bits to control the operating mode of the
processor, such as the interrupt enable flag.

FSM Free Space Manager. The type manager provided by the Nucleus for creat
ing and reclaiming memory segment objects.

gather-write An output option that allows several discontinuous parts of mem
ory to supply the data to be written, rather than use a single contiguous buffer.

GOT Global Descriptor Table. A memory segment that contains descriptors for
code, data, and descriptor table segments. All processor tasks have access to a com
mon GDT.

GP fault General Protection fault. Protected mode processors generate interrupt
number 13 to indicate a GP fault whenever an attempt is made to violate the pro
cessor's protection mechanism. For example, invalid program addresses cause GP
faults.

Glossary 571

hardware task A thread of execution that can be managed directly by the proces
sor with little or no operating system intervention. A Task State Segment (TSS) is
used to save and restore the task's processor state for context switches.

help file A file with a name ending in . hlp and residing in one of the directories
normally searched by the help command.

HI Human Interface. The layer of an iRMX system responsible for interactions
with people who use the system.

high-water mark When the rate at which data arrives is too great for a serial de
vice driver to buffer, it sends a signal to the device unit telling it to cease transmis
sion temporarily. The amount of buffered data that triggers this action is called the
high-water mark.

HMA A DOS term for the High Memory Area, the part of the real-mode address
space between 1M and 1M + 64K.

hot key A special combination of keys that activates a software function that was
previously loaded into the computer's memory.

hot link In the context of the Windows DDE mechanism, a hot link causes a DDE
server to send the new value of a data item to a DDE client any time the value
changes.

I/O connection A composite iRMX object type managed by the BIOS layer.
There can be no more than one I/O connection to a device at a time. There can be
any number of I/O connections to a file on a device.

I/O job A composite iRMX object type managed by the EIOS layer. Only tasks
belonging to I/O jobs are allowed to make EIOS system calls.

I/O port A device controller that can connect to one serial device, such as a termi
nal, or parallel device, such as a printer.

I/O port address The l6-bit address used to reference registers and buffers in a
device controller.

I/O user A composite iRMX object type managed by the BIOS layer. An I/O user
object is a list of user ID values that are used for checking access rights to named or
remote files.

leu Interactive Configuration Utility. A tool for generating customized configu
rations of the iRMX operating system.

lOT Interrupt Descriptor Table. A memory segment containing call, trap, or in
terrupt gates. Used to vector interrupts to the proper handler when the processor is
in protected mode.

IEEE Institute of Electrical and Electronics Engineers, a professional organiza
tion that includes the Computer Society (lEEE-CS). The IEEE-CS Technical
Committee on Operating Systems (TCOS) is developing the POSIX standard.

implicit function A function that must be bound to an application to satisfy a ref
erence generated by the compiler, but which is not explicitly named in the applica
tion's source code.

iNA Intel Network Architecture. The software module that implements trans
port layer networking using OSI protocols.

572 Glossary

incremental bind Binding an application in two or more steps to control the se
lection of object modules that share common public symbol names.

indirect function A function that is not called by an application program, but
from a run-time function that is linked to the application.

interface procedure A procedure that is linked to an application so it can make
system calls. The interface procedure sets up the registers for the call, invokes the
proper call gate, and checks for errors on return.

interrupt handler Code that is executed in response to a hardware interrupt re
quest without incurring an operating system context switch.

interrupt response time The time between the moment that an I/O controller
makes an interrupt request until the CPU starts executing instructions to process
that request.

interrupt task A task that is scheduled for execution in response to an interrupt
event.

interrupt virtualization An iRMX for Windows configuration parameter set by
the VIE entry in the rmx. ini file. If virtualization is enabled, iRMX manages in
terrupts and DOS performance may suffer. If interrupt virtualization is disabled,
DOS I/O can interfere with iRMX real-time performance.

10PL I/O Privilege Level. When a processor is operating in protected or VM86
mode, the current IOPL in the flags register and the privilege level of the current
code selector determine the response of the processor to I/O instructions.

10RS Input/Output Request Segment or Input/Output Result Segment. The
data structure sent to a device driver by the BIOS to initiate an I/O operation.
When the operation is complete, the segment is returned to a mailbox that was
specified in the BIOS system call that initiated the operation.

IPC Inter-Process Communication. A Unix term for various mechanisms used for
information exchange between processes.

iRMK Intel's Real-time Multitasking Kernel. A software module that may be
used to implement small real-time systems. Some iRMX implementations use
iRMK as the basis for the Nucleus layer and allow applications to make direct calls
to some iRMK functions.

iRMX Intel's Real-time Multitasking eXecutive.

IRT Interrupt Response Time. The time that elapses form the moment a device
controller signals that an event has occurred until an interrupt handler starts exe
cuting in response to the event.

iRUG The Intel Real-Time User's Group. P.O. Box 91130, Portland, Oregon
97291, 800-255-IRUG (800-255-4784). Also manages real-time forum on Compu
Serve.

ISA Industry Standard Architecture. The name of the system bus used on most
PCs. Also known as the AT bus.

ISO International Standards Organization.

ISO-Latin-1 An 8-bit character code that includes ASCII as the first 128 codes
and international extensions in the upper 128 codes.

Glossary 573

job One ofthe fundamental iRMX object types. Jobs have memory pools and own
objects.

LAN Local Area Network. In this book, a LAN is assumed to be a set of computers
connected by an Ethernet cable. A different medium, such as a Token Ring, could
be substituted without affecting the concepts involved.

layer A part of the operating system that supplies a set of system calls. A single
layer can implement zero, one, or several type managers, and might or might not
have a corresponding job.

LOT Local Descriptor Table. A memory segment that contains code and data de
scriptors. Each processor task has its own LDT.

linear address A virtual memory address. Ifpagingis not being done, the same as
a physical memory address. If paging is being done, a linear address consists of
three fields: a page directory, page table, and an offset. Linear addresses are gener
ated by the segmentation unit.

link time The time at which an object module is combined with other object mod
ules to produce a load module.

load module The contents of a disk file that is in a suitable format to be loaded
into primary memory and executed. iRMX load modules are in a format called Sin
gle Task Loadable (STL) format. A load module contains executable code, data
constants, information needed to reserve memory for variables and a stack, and
initial values for key processor registers. A load module can also contain symbolic
information about all or parts of a program for use by an interactive debugging
program.

local On a network, the computer on which software is running is called the local
computer. The local computer may be either a client or a server, or both.

logical address The combination of a selector and an effective address that are
combined by the processor's segmentation unit to produce a linear address.

logical device A composite iRMX object type managed by the EIOS layer. A logi
cal device is an I/O connection to a device and an associated logical name.

logical name A name for a device or file connection. Up to 12 characters long,
plus surrounding colons. Logical names (without the colons) and the token for the
associated I/O connection object are cataloged in some job's object directory.

low-water mark The point at which a device driver for a serial device controller
generates a signal that allows the remote device unit to resume sending data. See
also high-water mark.

LSAP Link Service Access Point. The ID number that a Network layer imple
mentation uses to identify itself to the Data Link Layer in an ISO network.

MAC Media Access Control. The 6-byte Ethernet address for a computer node on
a network.

mailbox An iRMX object type managed by the Nucleus layer. Mailboxes are used
for intertask synchronization and communication.

MCA Microchannel Architecture. A proprietary system bus used in some IBM
personal computers.

574 Glollary

memory segment (1) The architectural device used by x86 processors to access
memory. Each segment is identified by a 16-bit value called a selector. In real mode,
the value ofthe selector is multiplied by 16 to give the base address of the segment
in memory. In protected mode, the selector contains an index into a table of de
scriptors which specify the segments base address, size, and access permissions.
(2) A fundamental iRMX object type managed by the Free Space Manager part of
the Nucleus layer. Implemented as hardware memory segments.

message port A composite iRMX object type managed by the Nucleus layer.
Used for interprocessor communication in Multibus II systems.

MIP Message Interprocessing Protocol. Originally a Multibus I standard for com
munication among processors over the Multibus I system bus, now used in several
configurations for message passing between iNA and applications.

mnemonics Mellifluous Notation Enabling Mastery Of Nomenclature in Con
catenate Sequence.

monitor A program used for debugging at the machine language level. A monitor
is often kept in ROM, but for iRMX for Windows, the iSDM III monitor is loaded
with the OS.

Multibus I, II System bus architectures. Multibus I uses a 16-bit data bus; Mul
tibus II uses a 32-bit data bus. iRMX II and III support message passing on Mul
tibus II systems.

multicast filtering The selection of network packets to be accepted by the net
work device controller or by the Data Link software layer.

mutex A mechanism for guaranteeing mutually exclusive access toa shared re
source by a set of cooperating tasks. The iRMX semaphore and region object types
can be used as mutex mechanisms. Also, the name of a specific mechanism for this
purpose defined in POSIXAa.

Named The file driver used to access disk volumes that have been formatted with
an iRMX file system.

NCB Network Control Block. The data structure, analogous to iNA Request
Blocks, used to invoke DOS networking functions using the NetBIOS interface.

NMF Network Management Facility. An iNA module that supplies statistics,
parameters, and data maintained internally by iNA. The information can be exam
ined, and in some cases altered as well.

NSAP Network Service Access Point. The ID number a Transport layer module
uses to identify itself to the Network layer in an ISO network.

object An instance of a data structure that can be accessed only through a set of
functions provided by a type manager.

object directory A data structure that is part of ajob object. Object directories are
used for sharing objects across jobs or tasks. An object directory is a list of tokens
and names for those tokens. The names are normally made of ASCII characters.

object module The contents of a disk file produced by the compilation of a single
source module. In addition to binary machine instructions and data constants, an
object module contains information about external and public symbols as well as

Glossary 575

memory requirements for variables and stack. The object module can also include
symbolic information (symbol names, data types, and locations) to be passed on to
a symbolic debugger.

octet Eight bits. This term is used by the networking community instead of byte
because there are some machines that define bytes in sizes other than eight.

offset A I6-bit quantity (32-bits for the i386 architecture) that is added to a seg
ment base address to obtain a physical or virtual memory address. The offset
can be part of a pointer or can be the effective address for a machine language in
struction.

OMF Object Module Format. The specification for how information is to be
stored in object modules, libraries, load modules, and bootstrap-Ioadable files.

operating system extension An object type added to the system by a user-sup
plied or iRMX-supplied layer.

OS Operating System.

OS/2 Registered trademark of International Business Machines Corporation.

OSE Operating System Extension. An iRMX object type managed by the Nu
cleus layer. OSEs are used to create new object types.

OSI Open Systems Interconnection. The ISO seven-layer reference model for
network communication.

out-ot-band data The Internet protocol term for out-of-band data.

path name The unique identification of a particular file on a file system that is
given by naming all the directories, starting with the root, that must be traversed to
locate the file.

PC Personal Computer. An IBM trademark, but used generically in this book.

peer-to-peer Networking in which computers can act as both servers and con
sumers (clients), rather than being dedicated to one or the other class of operation.

physical The file driver used to access disks on a block-by-block basis (rather
than as a file system), tapes, terminals, and other serial devices.

physical address If paging is not operating, a physical address is the same as the
linear address generated by the segmentation unit. Ifpaging is operating, the phys
ical address is the linear address transformed by the paging unit.

physical memory The primary memory accessed by the CPU when it accesses
machine instructions and operands.

PIC Programmable Interrupt Controller. An integrated circuit that can resolve
simultaneous interrupt requests and negotiate a sequence of CPU interrupt re
quests based on the priorities of the requesting device controllers.

PME VM86 Protected Mode Extension. DOS programs can trigger the execution
of an iRMX task by issuing a software interrupt instruction. The procedure to be
executed by the iRMX task is defined using the PME mechanism.

portable The ability of a single program to run on different computer systems.
The term is used to describe a variety of programs, ranging from those that require

576 Glossary

"minor" changes to the source code when moving from one system to another, to
those that require no changes to the executable code, even to run on systems with
different processor architectures.

POSIX Portable Operating System Interface for Computer Environments. A set
of Unix -based standards being developed by the IEEE Computer Society's Techni
cal Committee on Operating Systems.

POSIX.1 The IEEE Standards committee that defined the C Language API to
POSIX systems.

POSIX.16 The IEEE Standards committee concerned with multiprocessing ex
tensions to POSIX.

POSIX.4 The IEEE Standards committee concerned with real-time extensions to
POSIX.

POSIX.4a The IEEE Standards committee concerned with the threads extension
to POSIX.

primary memory The memory that holds programs as they are being executed by
the CPU. Can be either RAM (volatile, read-write memory) or ROM (nonvolatile,
read-only memory).

priority inversion A situation in which a high-priority task is effectively pre
vented from running by a lower-priority task even though the lower-priority task
has nothing to do with the higher-priority task. iRMX region objects eliminate this
problem.

process An independently scheduled thread of execution. In iRMX, a task. In
Unix, a thread of execution plus an address space.

protected mode A mode of operation of 80286 and later microprocessors in
which the processor checks the legitimacy of memory accesses.

PSP Program Segment Prefix. The data structure used by DOS to store informa
tion about a command that is loaded into memory.

PVAM See VM86.

RAM Random Access Memory. Strictly speaking, any type of memory in which
access time does not depend on the position (address) of the data to be read or writ
ten. Common usage reserves RAM for memory that can be both read and written
and which loses its stored information when electrical power is removed from the
circuit. (See ROM.)

RAWEDL Raw External Data Link. The Request Block interface to the Data
Link layer of iNA that allows an application to receive and send packets that do not
conform to ISO standards.

RB Request Block. The data structure that is used for communicating network
requests to iNA and receiving results in return.

real mode An operating mode available on all x86 processors. No memory access
checking is done by the processor.

region An iRMX object type managed by the Nucleus layer. Regions are used to
prevent priority inversions that might occur if semaphores are used for intertask
synchronization.

Glossary 577

Remote (1) The file driver that is used to access files or devices located on a re
mote computer. (2) Any computer that is accessed over a network. The remote
computer can act as either a client, a server, or both.

RHOT iRMX-Hosted Development Tools. Development Tools that run on
iRMX. See DHDT.

RISC/CISC Reduced Instruction Set Computer / Complex Instruction Set Com
puter. Two styles of computer architecture. RISC computers use many simple but
fast instructions to accomplish the same work as CISC computers do with a few
complex, but relatively slow, instructions. iRMX runs on Intel's CISC processors,
using the x86 architecture.

ROM Read Only Memory. A type of random access memory circuit that can be
read, but not written. An important feature of ROM is that it retains the informa
tion stored in it even after electrical power is removed from the circuit.

RPC Remote Procedure Call. A mechanism that allows a task on one computer to
invoke a system call (or other procedure) on another computer by passing an ap
propriate request over a network.

RTE Real-Time Extension. DOS programs can make certain iRMX system calls
by using the iRMX for Windows RTE mechanism.

run time The time at which a program is executed by the CPU. The code must
first be compiled, linked, and loaded.

run-time library A library of object modules supplied with a high-level program
ming language. Functions in the library can be called by an application explicitly,
such as the printif () function for C, implicitly, such as doubleword multiplica
tion and division for PLM and C, or indirectly, such as cq_exit for C.

scatter-read An input option in which arriving data is distributed to several dis
jointed parts of memory instead of into a single contiguous buffer.

segment A contiguous region of memory, up to 64 Kilobytes (KB) for 80286 pro
cessors and lower, but up to 4 Gigabytes (GB) for i386 processors and higher. Also,
a type of iRMX object which provides unstructured access to memory segments.

segment descriptor An 8-byte data structure that provides the physical base ad
dress, the size, and the access rights for a segment.

selector A 16-bit value used to identify a memory segment.

semaphore An iRMX object type managed by the Nucleus layer. Semaphores
are used for intertask synchronization.

server On a network, a server is any computer which responds to requests from
remote systems. A file or print server allows remote systems to access local disks or
printers, for example.

SIL System Implementation Language. A high-level language suitable for coding
a systems program or an operating system itself. PLM is a SIL, C can be used as a
SIL, Pascal is not a SIL.

5MB Server Message Block. A format for messages used to communicate be
tween network servers and clients. The message formats were defined by Microsoft
and are used by OpenNet software.

578 Glossary

source module The unit of compilation. For iC-x86 and PLM -x86, one disk file
contains the ASCII text for one source module plus optional compiler directives.
One of these directives, "include," allows additional text to be inserted into the
source module from other disk files at compile time.

spawn The phrase "all jobs spawned by a job" is used to refer to both the direct
children of the job as well as their descendants.

stack frame An activation record.

static login A terminal that automatically comes up with a particular user al
ready logged in when the system starts.

STL Single Task Loadable. The object module format (OMF) that is used for pro
grams loaded by the iRMX Application Loader.

stream The file driver that provides access to a pseudo-I/O device. Used for in
tertask communication by means of I/O system calls.

system call A subroutine supplied by the OS to provide some service, such as I/O
processing or memory allocation.

system definition file A file that can be edited by the ICU editor to build a speci
fication for a customized configuration of iRMX. Once the definition file is
complete, the ICU uses it to generate the files needed to build the new copy of the
operating system.

target system A computer that runs the iRMX OS and real-time applications, as
distinguished from a development system.

task An independently scheduled thread of execution. Same as a process in the
general OS literature. One of the fundamental object types in iRMX.

token A unique identifier for an object. In iRMX systems, a selector for the mem
ory segment containing the representation of the object.

TPOU Transport Protocol Data Unit. The size in bytes of the largest packet that
can be sent over the network by the Transport layer. Single messages larger than
the TPDU size are broken up by the Transport layer, sent over the net, and reas
sembled at the other end.

TSAP Transport Service Access Point. A number, sometimes called a selector,
used to identify an individual application to the Transport layer of an ISO network.

TSR A DOS program that terminates (allows DOS to return to the command in
terpreter), but stays resident in memory so that it can provide services for other
DOS programs or respond to interrupts. The equivalent iRMX mechanism uses
the sysload command to install a program.

type manager The set of procedures for manipulating objects belonging to a par
ticular object type.

UOI Universal Development Interface. A set of system calls that can be invoked
by programs running on different operating systems, including iRMX, MS-DOS,
and VAX/VMS.

UNIX Registered trademark of UNIX Systems Laboratories. Not an acronym.
Also known as Unix.

Glossary 579

upper memory A DOS term referring to the real-mode address space between
640K and 1M.

user 10 A 16-bit number used to identify an individual or group of users on iRMX
systems. User ID OxOOOO is the Super user, who can read all files and change their
permissions. User ID OxFFFF is the World user, which is a member of every indi
vidual's I/O user object by default.

virtual circuit A network connection managed by Transport layer software that
provides reliable end-to-end sequential transmission of data.

virtual memory Primary memory as addressed by machine language instructions
but subject to mapping into physical memory by paging hardware in the 80386 ar
chitecture. For iRMX, which does not use paging, virtual memory is the same as
physical memory.

virtual root The list of public directories and devices offered to the network by a
computer system.

VM86 Virtual 8086 Mode. A mode of operation for the i386 and later micropro
cessors in which a hardware task seems to be running in real mode.

VM86 dispatcher The iRMX for Windows code that receives control when a
VM86 task causes a software interrupt, issues an I/O instruction, or performs any
operation that the processor reserves for protected mode operations. The VM86
dispatcher can ignore the event, emulate it, or invoke the VM86 task's interrupt
handler, as appropriate.

volume block The smallest amount of storage that can be allocated or freed on a
disk. Equivalent to the volume's granularity, the size of a volume block is always a
multiple of the size of a disk sector.

volume granularity The smallest number of bytes that can be read from or writ
ten to a disk volume at one time. This value is often equal to the sector size of the
disk but it can be made to be a multiple ofthe disk sector size when the disk is for
matted.

VT Virtual Terminal. A mechanism for supporting remote login to a computer
using Open NET .

warm link In the context ofthe Windows DDE mechanism, a warm link causes a
DDE server to notify a DDE client any time the value of a data item changes.

x3.64 The ANSI standard for extended terminal control codes based on ASCII,
which in turn is ANSI standard number X3.4.

x86 Generic name for a family of microprocessors that are upwardly compatible
with the Intel 8086 CPU. These include the 8086, 80186, 80286, i386, and i486. Also
means "either 86,286, or 386" in names of programs for which there are versions
specific to different architectures, such as "iC-x86."

References

Andleigh, P. K. 1990. UNIX System Architecture. Englewood Cliffs, NJ: Prentice-Hall.
Bach, M. J. 1986. The Design of the UNIX Operating System. Englewood Cliffs, NJ: Prentice

Hall.
Comer, D. E. 1988. Internetworking with TCP/IP: Principles, Protocols, and Architecture. En

glewood Cliffs, NJ: Prentice-Hall.
Comer, D. E. and Fossom, T. 1988. Operating System Design. VoL I: The XinuApproach. En

glewood Cliffs, NJ: Prentice-Hall.
Deitel, H. M. 1990. Operating Systems, 2nd Ed. Reading, MA: Addison-Wesley.
DPMI Committee. 1991. DOS Protected Mode Interface (DPMI) Specification Version 1.0.

Order code 240977-001. Santa Clara, CA: Intel Corporation.
Harbison, S. P. and Steele, G. L. 1991. C: A Reference Manual, Third Edition. Englewood

Cliffs, NJ: Prentice-Hall.
IEEE Computer Scociety TCOS. 1990. Information Technology: Portable Operating System

Interface (POSIX), Part 1: System Application Program Interface (API) [C Language].
New York, NY: IEEE.

Intel Corportation. 1991. iNA 960 Programmer's Reference Manual. Order code 467686-001.
Santa Clara, CA: Intel Corporation.l

Intel Corporation. 1991. iRMX-Net User's Reference. Order code 467727-001. Santa Clara,
CA: Intel Corporation.2

Kernighan, B. and Pike, R. 1984. The UNIX Programming Environment. Englewood Cliffs,
NJ: Prentice-Hall.

Kernighan, B. and Ritchie, D. 1978. The C Programming Language. Englewood Cliffs, NJ:
Prentice-Hall.

Leffler, S. J., McKusick, M. K., Karels, M. J., and Quarterman, J. S. 1989. The Design and
Implementation of the 4.3BSD UNIX Operating System. Reading, MA: Addison-Wesley.

Lotus Development Corporation, Intel Corporation, Microsoft Corporation. 1987. Lotus/
Intel/Microsoft Expanded Memory Specification Version 4.0. Order code 300275-005.
Santa Clara, CA: Intel Corporation.

Microsoft Corporation. 1991. eXtended Memory Specification (XMS): Version 3.0 .. Red
mond, W A: Microsoft Corporation.

Milenkovic, M. 1992. Operating Systems Concepts and Design, 2nd Ed. New York, NY:
McGraw-Hill.

Petzold, C. 1992. Programming Windows, 3rd Edition. Redinond, W A: Microsoft Press.
Plauger, P. J. 1992. The Standard C Library. Englewood Cliffs, NJ: Prentice-Hall.
Rochkind, M. J. 1985. Advanced UNIX Programming. Englewood Cliffs, NJ: Prentice-Hall.
Rose, M. T. 1990. The Open Book. Englewood Cliffs, NJ: Prentice-Hall.
Snow, C. R. 1992. Concurrent Programming. Cambridge, MA: Cambridge University Press.
Stevens, W. R. 1990. Unix Network Programming. Englewood Cliffs, NJ: Prentice-Hall.

lA replacement for this manual is available in iRMX Network Concepts and Network Pro
grammer's Reference, Order Number 610489-001.

2A replacement for this manual is available in iRMX Network Concepts and Network Pro
grammer's Reference, Order Number 610489-001.

581

582 References

Stone, H. S. 1987. High Performance Computer Architecture. Reading, MA: Addison-Wesley.
Tanenbaum, A. Operating Systems Design and Implementation. Englewood Cliffs: Prentice

Hall, 1987.

Journal Articles
Feriozi, D. T. 1991. A C programming model for OS/2 device drivers. IBM Systems Journal 30

(3): 322-335.
Finlayson, R. S. 1991. Object-oriented operating systems. IEEE TCOS Newsletter 5 (1): 17-

21.
Gonzalez, M. J. 1977. Deterministic Processor Scheduling. ACM Computing Surveys 9 (3):

173-204.
Heller, M. 1990. Programming 32-bit OS/2. BYTE 15 (11): 97-104.
Kogan, M. S. and Rawson, F. L. III. 1988. The Design of Operating System/2. IBM Systems

Journal 27 (2): 90-104.
Liu, J. W. S. and Yang, A. T. 1973. Optimal Scheduling algorithms for multiprogramming in a

hard-real-time environment. J. ACM 20 (1): 46-61.
Mastriani, S. J. 1991. OS/2 device drivers. BYTE 16 (7): 241-350.
Vickery, C. 1991. Loadable device drivers for iRMX. iRUG Newsletter 2: 1-3.

Conference Proceedings

Vickery, C. 1990. Real-Time X Windows: the BSD Socket Mechanism. Proceedings of the
Seventh International iRUG Conference, St. Louis, MO.

Wegner, P. 1987. Dimensions of object-based language design. OOPSLA Conference Pro
ceedings. Cited in Finlayson, 1991.

$ argument, 258, 262
:: logical name symbols (see logical names)

A
access rights, 42-43

Intel x86 architecture (privilege levels), 154-
155

accessor lists, 42-43
adapters (see device drivers)
adaptive scheduling algorithm, 16
addressing

wraparound, 494
Aedit, 70-73

device drivers, terminal support code, 529,
530-531

alias command, 38, 39, 89
aliases, 36
ANSI X3.64 escape sequences, terminal

support code, 527-531
application development (see also languages for

development), 4, 61-101
alias command, 89
application loader (AL), 67, 94
automating the application development

process, 89-93
binder controls, 88-89
binding HI commands, 80-89
bootstrap-loadable modules, 62, 99-101
C language, 68
command files, 89
compilers and compiling, 73-78
compilers, iC86, iC286 or iC386, 67
cycle of development, 61
debugging

breakpoints, 96
first-level jobs, 101
HI command debugging, 94-99
monitor use, 95
SoftScope use, 96-99
system debugger (SDB) use, 96

designing applications, 61
device independence, 269-270

Index
environments, development and target

environments, 65-66
header files, 74
HI commands, binding, 80-89
HI-command application vs. OS-resident

application, 66-67
include files, 62

compiling, 74-77
input files: object files and libraries, binding,

80-85
linkable modules, 62, 88, 99-101
listing files, 77-78
loadable modules, 62
main program example, 68
make command, 91-93
modular programming, 61-65
object module format (OMF), 63
object modules, 62, 78

binding, 82-85
output files: map and load files, binding, 85-

88
programming language for microcomputers

(PLM) example, 68
protected-mode programs, 66
real-mode programs, 65-66
resident applications, 66-67
run-time library and portability of software,

4
sample application, 67-69
segmentation models, 79-80
single task loadable (STL) modules, 62, 87
source modules, 62

compiling, 74
steps in application development, 66-67
submit command, 89
subroutine example, 69
system builders, 62
target environments, 65-66
text editing with Aedit, 70-73
tools, development tools, 65, 67

application loader (AL), 27, 67, 181, 186
debugging HI commands, 94

583

584 Index

application loader (AL), cant.
job creation, program sample, 233-236
system caIls, 186,259-261, 549-550

application program command (APC), 531
application program interface (API)

object-based systems, 176
architectures

Intel network architecture (iNA), 412
Intel x86 (see Intel x86 architecture)
iRMX versional development vs. micropro

cessor progress, 18-19
real-time system performance vs., 11

arguments in command line, 34-35, 148
asleep state, 208
assembler language (see also languages), 103
assign command, 416
asynchronous device drivers, 273-277
AT Bus platforms for iRMX systems, 28-29
attachdevice, 51, 52, 54, 197,270,278,280,

282,445
attachfile, 36,46,47,48.57,262,280,289,

318
attributes

B

get, BI/OS systems caIls, 553
set, BIIOS system caIls, 553

background command, 36, 37, 38,100,117,
196

background processing, 36-37
backup files, 314
backupodes command, 314
bar(), 133
barA(), 176
base pointers, 125
bbCreate(), 397, 402
bbDelete(), 397
beginlongtermop(), 351
binder controls, 88-89

bootstrap-loadable and linkable modules, 99-
100

HI commands, 80-89
BIIOS, 27, 181, 183-185, 550-552

asynchronous performance, 184,274
AT and all PC compatible platforms, BI/OS

adaptability, 28
connection object management, 280-289
device drivers, 265, 320, 327-330
device-independence, 184
device-level system caIls, 551
extension data system calls, 553
file 110 system calls, 552
file-modification system calls, 552
file/connection-level system caIls, 552

get status/attribute system caIls, 553
invoking I/O operations, 184
110 connections, 185,280-289
110 user objects, 184-185
iRMX without BIIOS, 184
job-level system calls, 551
stream I10, system-call program example,

535-538
synchronous operation, 274
system caIls, 183-185, 550-552
time/date system calls, 553
user object system calls, 553

biosgetaddress(), 344
blockinput(), 172
bnd286 command, 89
bnd386, 88, 92, 101, 116-117, 128-129, 385
bootstrap-Ioadable modules, 62, 88, 99-101

binder controls, 99-100
borrowing from memory pools, 192
BPSCOPE, SoftScope, 514
BPTIMEOUT, SoftScope, 513-514
breakpoints, 96

scope, BPSCOPE SoftScope, 514
static execution/data, BREAKPT, 515
task status, TASK, SoftScope, 523-524
timeout (wait state), BPTIMEOUT, 513-514

BREAKPT, SoftScope, 515
broadcast address mechanism, networking, 467
buffer pools, 249-251

chain blocks, 250
buffers

c

bounded buffers, 341-343, 385
ring buffers, 365
transport address buffers, 421-425
type-ahead buffers, 336

C language (see also languages for develop-
ment),68

i/o connections, 133-134
multitasking, 134-135
run-time library use, 4, 27
system caIls, function prototypes, 225-230

call instructions, 118, 146, 148, 222, 162, 164
caIls (see also system calls)

far vs. near calls, 147
gates, caIl gates, 162-164,388
nested caIls, STACK, SoftScope, 523
parameter passing, 125
procedure caIls, 146-151

character strings, 123-124
null strings, 123

caIlg(), 392
canceIl/O(), 328, 329, 330, 343, 348, 349,

351,356,359
chain blocks, 250
character echoing, 339
cheating

object-based systems, 177-178
system calls, 236

CI, CO, 262
classes

object-based systems, 176
object-oriented systems, 180

clienLdde_poke(), 507
clienLdde_request(), 507
code

disassembly, DlSASM, SoftScope, 516
line numbers, LINE, SoftScope, 519
load code and data, LOAD, SoftScope, 518-

519
show source code, LIST, SoftScope, 519

command entry, 31-41
aliases, 36
arguments in command line, 34-35
background processing, 36-37
command line interpreter (CLI), 35-41
error conditions, 31, 57-59
exception handler, 57-59
files, command files, CLI, 37-39
format for command lines, 33-34
freeze screen, 31-32
history commands, 35
human interface (HI), binding HI commands,

80-89
keyboard and function keys, 31
parameters, CLI, 35-36
redirection ofI/ 0, 34
repeat command, <! >, 31
search path lists, 49-50
wildcards, 34

command files, 37-39, 89
command line interpreter (CLI), 31, 35-41

aliases, 36
background processing, 36-37
command files, 37-39
history commands, 35
jobs, CLI jobs, 261
logging off, 39-41
parameters, 35-36
stream I/O, 539-541
super command, 39
user ID, Super, 39

commonly used system programs (CUSP) (see
utilities)

communication service system calls, 561
compilers/compiling (see also languages for

development), 73-78

Index 585

binder controls, 88-89
compiler controls, compact and debug

parameters, 73
iC86, iC286 or iC386, 67
include files, 74-77, 106-108
languages (see languages for development)
listing files, 77-78
object files and object modules, 78
segmentation models, 79-80
source modules and source files, 74

complex instruction set computers (CICS), 11,
12

component objects, 365, 560
composite objects, 180, 364

type managers, 401-403
type managers, deleting, 403-407

concurrency of execution, xi, 5
configuring operating systems

interactive configuration utility (ICU), 100,
101

console ownership, Windows, 470-473
CONSOLE, SoftScope, 514-515
context switch time (CST), 12-13
controllers (see device drivers)
conventional(program) memory, Windows, 491
copy command, 33-34, 49, 52, 56, 529
copydir,52
cqcommdwordtoptr(), 425, 564
cqcommptrtodword(), 564
cqcommrb(), 437,564
cqcreatecommuser(), 425, 427, 436, 437, 564
cqdeletecommuser(),427
cq_exit(), 119
create(), 178
createA(), 176
createBB(), 394, 396
createfile command, 289
cstr(), 124
current directory, 47-48

D
data files, 304
data link operations, networking, 466-468
data operands, 147-148

arguments, 148
auto storage data, 147
dynamic local data, 147
local data, 147
pointers, 148
static global data, 147
static local data, 147

data transfer, 289-291, 293
networking, 421
step-by-step procedures, 268-269

586 Index

datagrams, 420, 430-443
DDEInitiate(), 508
ddeinq(), 507
ddclibrary_initiate(), 507
deadlock, 248-249
debug command, 95
debugging, 57-59, 94-99

breakpoints, 96
debug system command, 95
device drivers, 360-362
exception handling, 136
first-level job debugging, 101
HI command debugging, 94-99
languages, 136-137
LOADSEGS macro, SoftScope, 520
monitors, 58,95
SoftScope, 96-99
system debugger (SDB) use, 96
task status, TASK, SoftScope, 523-524
V macros and System Debugger, SoftScope,

524-525
definition illes, 512
delete(), 406
deleteA(), 176
deleteBB(), 396, 407
deletion control system calls, 560
deletion mailboxes, 372
descriptors, Intel x86 architecture, 152-154

gate descriptors, 152
system descriptors, 152

detachdevice, 51, 52
determinancy of systems, real-time systems,

12
development (see application development;

languages for development)
development systems, iRMX, 27
development tools, 6-7
devices and device drivers, xi, 268, 319-362

adapters, 320
adding device drivers to system, 355-362
asynchronous operation, 273-277
BIIOS, 265, 320, 327-330
bounded buffer implementation, 341-343
character echoing, 339
common drivers, 320, 343, 346-349

housekeeping routines, 349-351
utility routines, 349-351

connections and connection objects, 197,
268,279-280

controllers, 320, 321-327
buffered,335
interface, 321-327

custom drivers, 320
data files, 304

data operations, 266-295
data transfer, 268-269, 289-291
debugging strategies, 360-362
device-independence, 266, 269-270
device information table (DIT), 344
device unit, 168, 320
device unit information block (DUIB), 51,

278-279
directories and subdirectories, 304-307
disk access, 292-295
dynamic device drivers, 358-360
EIIOS, 265
encapsulated DOS (EDOS), 281
fattachdevice, 332
fclose, 333
fdetachdevice, 332
file-drivers, 43, 268
file structures, 267, 303-314
fnodes, 305, 307-309
fopen, 333
format track, 297-298
fread,331
fseek,332
fspecial, 332
fwrite, 332
get/set terminal data, 298-302
high-water mark, 338
housekeeping files, 309-314
human interface (HI), 265
input/output request/result segment (II

ORS), 278-279, 330-334
input/output, 266-270, 320

models, 1I0 model, 266-270
network I/O, 265
remote 1I0, 265
sample 1I0 programs, 270-273

Intel drivers, 343
interactive configuration utility (ICU), 355,

357-358
interfaces, 319

BIIOS, 327-330
controller, 321-327
objects, interface objects, 359

interprocess communication (IPC), 265
interrupts and interrupt handlers, 321-325

multiple, 335
single interrupt, 334
synchronization, 325-327
task interactions with driver, 334-343

iRMX-NET, 265
ISO transport layer services, 266
loadable device drivers, 356-357
logical names, 46-47, 280, 316-318
logical structure of device drivers, 321-343

low-water mark, 338
message passing, 265
named drivers, 51, 278, 281
network I/O, 265
normal iRMX files, 287-288
nucleus communications service, 266
physical devicesnames, 51, 278, 280
polling, 334
prefixes, 286
random drivers, 320, 343, 349

housekeeping routines, 349-351
utility routines, 349-351

real-time files, 288
remote devices, 281
screen-master files, 358
seek operations, 291-292, 350-351
sharing files, 267-268
signal characters, 302-303
special functions, 295-303
start and stop bits, 335
stream, 281
subpaths, 286
synchronous operation, 273-277
system calls, connection object manage-

ment, 280-289
system definition files, 357
tasks, 331-334
template files, 358
temporary files, 288-289
term utility, 299
terminal drivers, 320, 343, 351-355
terminal support code (TSC) buffer, 352,

527-531
time-of-day management, 314-316
truncating files, 287, 291-292
type-ahead buffers, 336
UARTs, 352
unit standard values, 333-334
user development interface (UDI), 265
user driver, 343

device independence, 269-270
device information table (DIT), 344
device unit information blocks (DDIBs), 51,

278-279
deviceFinish(), 346
devicelnit(), 346, 347, 353
devicelnterrupt(), 346, 350, 351
deviceStart(), 346, 347
deviceStop(), 346
dir, 31, 42, 54, 307
directories/subdirectories, 304-307

current directory, 47-48
home directory, 47-48
logical names, 45-47

naming conventions, 44-45
networked files, 54
object directories, 204-207
paths, path names, 47-48
search path lists, 49-50
virtual roots, 54

DISASM, SoftScope, 516
disk access, device drivers, 292

data transfer rate, 293
data transfer time, 293
file pointers, 294
rotational delay, 293
search time, 293
select time, 292

Index 587

track-to-track positioning time, 292
diskverify, 304, 313, 314,474
DOS operating systems, xi, 17, 19, 27-28

system calls specific to DOS operation, 564
DOS-hosted development tools (DHDT), 65
doskey facility, iRMX equivalent, 31
dosub(), 75, 116-117, 131
dqallocate(), 563
dqattach(), 562
dqchangeaccess(),562
dqchangeextension(), 562
dqclose (), 562
dqcreate(), 562
dqdecodeexception(),563
dqdecodetime(), 563
dqdelete(), 562
dqdetach(), 562
dqexit(), 562
dqfileinfo(), 562
dqfree(), 563
dqgetargument(), 563
dqgetconnectionstatus (), 562
dqgetexceptionhandler(), 563
dqgetmsize(), 563
dqgetsize(), 563
dqgetsystemid(), 563
dqgettime(), 563
dqmallocate(), 563
dqmfree(), 563
dqopen(), 563
dqoverlay(), 562
dqread(), 563
dqrename(), 563
dqreserveiomemory(), 563
dqseek(), 563
dqspecial(), 563
dqswitchbuffer(), 564
dqtrapcc(), 303, 562
dqtrapexception(), 563

588 Index

dqwrite(), 563
drivers

device drivers (see devices and device
drivers)

file drivers, 268, 281
DUMP, SoftScope, 515-516
dynamic data exchange (DDE), 409, 469

Windows, 503-508
dynamic link libraries (DLL), 503
D_CONS (see terminal support code)

E
echoing, character echoing, 339
EliaS, 27, 181, 185-186

asynchronous operation, 274
connection object management, 280-289
device call, 555
device drivers, 265
file and connection calls, 554
110

job calls, 552-553
job creation, 254
job objects, 186
stream 110 synchronization, 538-539

logical name calls, 554
read-ahead techniques, 185
status calls, 555
stream 110, serialization, 538-539
synchronous operation, 274
system calls, 185, 280-289, 552-554
user-related system calls, 555
write behind techniques, 185

EISA Bus platforms for iRMX systems, 28
embedded systems

real-time programming, 8-9
structure of embedded vs. real-time sys-

tems, 9-10
emm385.exe, 494
encapsulated DOS (EDOS) device, 43-44, 281
encapsulated files, 475-476
encapsulated objects, object-based systems,

178
end systems (ES), networking, 418
endlongtermop(), 351
environment

exceptions and errors, 212
set options, SET, SoftScope, 521-522

epilogue, procedure epilogue, 150
errors, error conditions, 57-59

compile errors, listing files, 77-78
error messages, 58-59
exception handlers, 57-59,212-221,223,

559
escape sequences

ANSI X3.64 to iRMX, terminal support
code, 527-531

esubmit command, 39, 90, 91, 264
Ethernet, 424
EVAL, SoftScope, 517
event loops, 9
exception handlers, 57-59, 136, 212-221

command line argument equals 0, 217-219
command line argument equals 1, 219
command line argument equals 600, 219
default exception handler for jobs, 220-221
environmental exceptions, 212
faults, 213
handling exceptions and faults, 214-219
in-line exception handling, 214-219
nucleus system calls, 559
programmer exceptions, 212-213
system calls, 223
types of exceptions, 212-213
UDI, system calls, 563

exchanges (see semaphores)
exit procedures, system calls, 397-399
exit routines, 222
EXIT, SoftScope, 517
expanded memory, 492-493, 494
explicit functions, 118-119
extended memory, 493-494
extended segmentation (see segmentation

models)
extensions

add data, BI/OS system calls, 553
creating extensions, type managers, 399-401
POSIX systems, 25
system calIs for extension objects, 560
type managers, deleting, 403-407

external data link (EDL), 466
extgen utility, 108, 114

F
far calls, 147
far memory pointer, 131-133
fattachdevice, 332
faults, 213
fclose, 333
fdetachdevice, 332
fdopen(), 133
file drivers (see also devices and device driv

ers), 43-44, 268, 281
file management, 41-56, 303-314

access rights, accessor lists, 42-43
backups, 314
BIIOS file 110 system calls, 552
connection-levels, BIIOS system calls, 268,

552

data files, 304
data transfer, 268-269
directories/subdirectories, 304-307

current, 47-48
home, 47-48

disk access, device drivers, 292-295
DOS, accessing from iRMX for Windows,

475-476
DOS, accessing iRMX volumes from DOS,

476-477
drivers, file driver concept, 43
EIIOS system calls, 554
encapsulated files, 475-476
extensions, add data, BIIOS system calls,

553
file structure, 267, 304-307
floppy disk storage, 51-53
fnodes, 305, 307-309
hidden files, 45
housekeeping files, 309-314
list files, MODULE, SoftScope, 521
logical names, 45-47

system vs. user logical names, 48-49
mirroring, 314, 474
modification data, BIIOS system calls, 552
named files, 43-44, 303
naming conventions

files and directories, 44-45
logical names, 45-47

networking, 53-56, 304
normal iRMX files,device drivers, 287-288
open file, LOG, SoftScope, 520
path names, 47-48
printing files, 56
protection for files, 41-43
real-time files, device drivers, 288
search path lists, 49-50
seek operations, device drivers, 291-292
sharing files, 267-268
structure of files, 267, 304-307
temporary files, device drivers, 288-289
text editing, Aedit, 70-73
time-of-day management, device drivers,

314-316
truncating files, device drivers, 287, 291-292
types, 310
UDI processing, system calls, 562-563
Windows, file system compatibility, 473-477

fileno(), 133, 299
finishIlO(), 328, 329, 330, 343, 347, 349,

351, 356, 359
floatest application, 132

Index 589

floppies and floppy disk drives, 51-53
flow control commands

evaluate procedure, EVAL, SoftScope, 517
procedure call nesting, STACK, SoftScope,

523
resume execution, RESUME, SoftScope,

522
step-by-step execution, STEP, SoftScope,

522-523
system-command use, SYSTEM, SoftScope,

524
transfer execution, GO, SoftScope, 518

fnodes, 305, 307-309
foat command, 313
foo(), 133
FooM), 176, 178
fopen, 333
format command, 309, 314
format track, device drivers, 297-298
formatting floppy disks, 51
FORTRAN language (see also languages), 103
frames

paging frames, 155
stack frames, 125, 148

fread, 331
free-space memory (see memory management)
freeze screen, 31-32
fseek,332
fspecial, 332
function prototypes, languages, 116-117
functions, 146

explicit functions, 118-119
implicit functions, 118-119
indirect functions, 118-119

fwrite, 332

G
gates

call gates, 388
descriptors, 152, 154
Intel x86 architecture, 162-164

gdelay(), 344
Gerber, Rick, 13
getcontrolregister(), 157
getiors(), 351
gets(), 104, 107, 110, 118
gettime, 430, 438
geLrIillLconn(), 185, 299
global descriptor tables (GDT), object-based

systems, 178
GO, SoftScope, 518

floating-point data types H
languages and floating-point support, 110-113 hard real-time, 9

590 Index

hardware
AT Bus (PC compatibles) platforms for

iRMX systems, 28-29
complex instruction set computers (CICS),

11,12
Intel x86 architecture (see Intel x86 architec

ture)
iRMX versional development vs, micropro

cessor progress, 18-19
real-time system performance vs., 11
reduced instruction set computers (RISC),

11,12
header files (see also include files), 74
hellorrnx.ext program sample, 75-76, 104-106
hellosub.ext program sample, 76, 104-106
help

HELP, SoftScope, 518
rmxhelp, 32

hidden files, 45
high-water mark, 338
himem.job,497
himem.sys, 494, 497
history commands, 35
HOME,262
home directory, 47-48
housekeeping files, 309-314
human interface (HI), 27, 28, 181, 186-187

application loader (AL) debugging, 94
arguments for command line, 34-35
binding commands, 80-89
command entry, 32-35
command parsing system calls, 556
command processing system calls, 557
command-line format, 33
debugging HI commands, 94
device drivers, 265
help, 32
HI jobs, I/O processing, 187
input/output path, 33
I/O processing calls, 556
list of commands, 32
memory pool HI jobs, 196
message processing system calls, 556
offspring jobs, 261-264
program control system calls, 557
redirection of I/O, 34
system calls, 186-187, 225, 555-556

command parsing system calls, 556
command processing system calls, 557
I/O processing calls, 556
message processing system calls, 556
program control system calls, 557

wildcards, 34

icumrg utility, 358
implicit functions, 118-119
in-line handling (see exception handler)
iNA, access via system calls, 564
inamon, 460
inbyte(), 172
include files, 62

compiling, 74-77
hellormx.ext program sample, 75-76
hellosub.ext program sample, 76
languages, 106-108

indirect functions, 118-119
indosx(), 480
inheritance, object-oriented systems, 180
initializeI/O(), 328, 329, 330, 336, 338, 343,

346,347,348,351,356,359
initrealmathunit(), 11 0
input/output (I/O) and input/output manage-

ment, 4, 165-172,265-318
basic IIO system (see BIIOS)
C language, i/o connections, 133-134
connections, BIIOS, 185
CONSOLE, SoftScope, 514-515
device units, 168
extended IIO system (see EIIOS), 27
HI jobs, 187
human interface (HI) processing system

calls, 556
Intel x86 architecture i/o processing, 165-

172
interrupt -driven processing, 171-172
iRMX systems, 27
job calls, EIIOS, 552-553
job creation, nucleus, 254-259
job objects, EIIOS, 186
languages and IIO support, 109-110
path format for command lines, 33
polling, 169-172
POSIX systems, 25
redirection, 34

CONSOLE, SoftScope, 514-515
stream IIO, 541-547

stream IIO, 534, 541-547
user objects, BlIOS, 184-185
wildcard use, 34

input/output request/result segment (lIORS),
278-279

device drivers, 330-334
stream IIO, 533-538

instances, object-based systems, 176
instruction pointer (IP), 146
int instructions, 160, 222

Intel network architecture (iNA), 412
Intel x86 architecture, 139-172

cali gates, 162-164
calis, far vs. near, 147
continuation addresses, 151
data operands, 147-148
frames, paging frames, 155
gate descriptors, 154
ilo processing, 165-172
instruction pointer (lP), 146
interrupt gates, 162-164
interrupt processing, 159-162
linear addresses, 143
memory segmentation, 141-159

currently accessible (current) segm, 141
data operands, 147
descriptors, 152-154
far vs. near calis, 147
irmx segmentation rationale, 145
procedure calis, 146-151
selectors, 141
stack segments, 146-151
paging, 155-159
privilege levels, 154-155
protected memory, 151-152
stack frames, 148
system segments, 153-154
threads of execution, 151

offset addresses, 143
overlapping segments, 143-144
physical memory access, 142
privilege levels, 154-155
procedure calis, 146-151
protected-mode operation, 144

16- or 32-bit, 145
protection of memory, 151-152
real-mode operation, 144
registers, CPU, 139-141
stack frames, 148
stack segments, 146-151
system segments, 153-154
task gates, 162-164
threads of execution, 151
trap gates, 162-164
virtual 8086 mode, 164-165
virtual memory addresses, 155
virtual vs. physical memory size, 157-159

interactive configuration utility (lCU), 6, 100,
101, 355, 357-358, 388-389

interfaces
human interface (HI) (see human interface)
system calis, interface procedures, 389-394
universal development interface (UDI), 27, 29

Index 591

intermediate systems (IS), networking, 418
internetwork routers, 418
interprocess communication (IPC)

device drivers, 265
POSIX, 25
UNIX systems, 22

interrupt response time (IRT) , 12-13
interrupts and interrupt handlers, xi

clock circuit for hardware interrupts, 211-
212

CST-determination program (switch), 13
gates, interrupt gates, Intel x86 architec

ture, 162-164
handlers, interrupt handlers, 13, 211, 321-

327
synchronization, 325-327

I/O processing, 171-172, 212
Intel x86 architecture interrupt processing,

159-162
IRT-determination program (inttest), 13
management, nucleus system calis, 559
response time (IRT), 12-13
tasks, interrupt tasks, 13
Windows, 477-478

inttest program, IRT determination, 13
iRMX, 17-22,27-59

application loader (AL), 27, 181, 186
El/OS, 27, 181, 183-185
command entry in iRMX, 31-41
command line interpreter (CLI), 31, 35-41
debugging, 57-59
development systems, 27
DOS vs., 19, 27-28
EI/OS, 27, 181, 185-186
error conditions, 57-59
exception handler, 57-59
file management, 41-56
history and development, 18-19
human interface (HI), 27, 28, 32-35, 181,

186-187
I/O devices, 27
layered OS structures, 27,196-198,363

relating jobs and layers, 196-198
logging on to iRMX, 30
microcomputer development system (MDS),

18
Multibus I and II platforms, 29
networks (see networking)
nucleus layer, 27, 181, 182-183,202-212
objects (see objects in iRMX)
OS-2 vs. iRMX, 19-21
passwords, 30
platforms, 28-29

592 Index

iRMX, cant.
POSIX vs., 22-26
printing files, 56
remote login, 56-57
run-time libraries, 27, 181
target systems, 27
universal development interface (UDI), 27,

29, 181, 187
UNIX vs., 21-22, 27-28
versional differences, 18-19
Windows use (see Windows)

iRMX-Net, networking, 265, 413-416

J
jobs command, 36
jobs in iRMX, 191-198

K

application loader (AL) use, 259-261
eLI job, 261
deleting jobs/deleting objects, 192
exception handling, default handler, 220-221
HI jobs in memory pool, 196
hierarchy, tree-structured job hierarchy, 192-

196
I/O job creation, 254-259
management, job management, system calls,

251-252
memory management, 202-204
memory pools, 191-196

borrowing, 192
minimum and maximum, 192

nucleus job creation, 252-264
nucleus management, 202-207
object directories, 204-207
offspring jobs, HI, 261-264
relationship between first-level jobs and

layers, 196-198
terminal jobs, 261
terminate joblterminate objects, 197

kernel-based systems, real-time, 7
operating systems vs., xii-xiii

kill command, 36

L
languages for development (see also application

development), 61, 103-137
16-bit targets, 113-115
32-bit targets, 113-115
assembler language, 103
background processing, 117
e language, 68, 103

i/o connections, 133-134
multitasking, 134-135

character strings, 123-124
compatibility of languages used in iRMX

systems, 104
congruence with irmx, 123-135
debugging, 136-137
exception handling, 136
explicit functions, 118-119
floating point support, 110-113
FORTRAN, 103
function prototypes, 108, 116-117
header files, 108
include files, 106-108
i/o connections for e programs, 133-134
I/O support, 109-110
implicit functions, 118-119
indirect functions, 118-119
macro preprocessing, 108-109
multitasking for e programs, 134-135
networking, 108
object-based systems support, 176
parameter passing, 124-131
Pascal, 103
pointers, 131
programming language for microcomputers

(PLM), 68, 103
PLM vs. e language in hellorrnx program

example, 104-106
run-time considerations, 117-123
scoping rules, 115-116
selection criteria: productivity, efficiency,

speed, 103
source language issues, 104-117
system calls, 108

leaks, memory leaks, 406
line numbers, LINE, SoftScope, 517-518
Link86 utility, 67
linkable modules, 62, 88, 99-101

binder controls, 99-100
operating systems using linkable modules,

100-101
LIST, SoftScope, 519
listing files, application development, 77-78
listname,459
load files, binding and compiling, 85-88
LOAD, SoftScope, 518-519
loadable modules, 62
loadname,459
loadrmx,30
LOADSEGS, SoftScope, 520
LOG, SoftScope, 520
logging in to iRMX systems, 30

remote login, 56-57
logging off iRMX systems, 39-41
logical names, 45-47, 48-49, 280, 316-318

prefixes, 286
subpaths, 286
system vs. user logical names, 48-49

logicaJnames command, 49
logoff command, 39-41
loops, event loops in real-time programming, 9
low-water mark, 338

M
MacOS operating system, 17
MACRO, SoftScope, 521
macros

Aedit macros, 71, 73
languages, preprocessing, 108-109
preprocessing, languages, 108-109
SoftScope, MACRO, 521

mailboxes, 243-246
deletion mailboxes, 372
nucleus, 183, 557

make command, 72, 91-93
map files, binding and compiling, 85-88
map386,116-117
media access control (MAC), 424
memory and memory management, xi, 4

access iRMX memory from DOS, 490-491
addressing

continuation addresses, 151
linear addresses, 143
offset addresses, 143
virtual memory addresses, 155

conventional (program) memory, 491
DOS protected mode interface, Windows,

495-496
dumps, DUMP, SoftScope, 515-516
expanded memory, 492-493, 494
extended memory, 493-494
free-space memory, 193
nucleus management, 202-204, 558
physical memory access, Intel x86 architec-

ture,142
pointers, memory pointers, near and far,

131-133
pools

buffer pools, 249-251
memory pools, 191-196
memory pools, borrowing from, 192
memory pools, HI jobs, 196
memory pools, system calls, 558

protected memory, Intel x86 architecture,
151-152

POSIX systems, 24
segmentation (see Intel x86 architecture)
segments, memory segments in iRMX, 188-

191

system calls, 558
system memory, 193

Index 593

UDI processing, system calls, 563
upper memory area, 491
Windows, 490-498

memory segmentation models (see segmenta
tion models)

message interprocessing protocol (MIP), 412
message passing, 265

object-oriented systems, 180-181
message processing

human interface (HI) system calls, 556
networking, 418-419

Micro Channel Adapter (MCA) bus platforms
for iRMX systems, 28

microcomputer development system (MDS) ,
18

mirror command, 474
mirroring disks and files, 314, 474
modeling

I/O model, 266-270
network model, 409-411
segmentation models, 79-80

models of compilation (see segmentation
models)

Modula programming, xii
modular programming, 61-65

bootstrap-loadable modules, 62, 88, 99-101
header files, 74
include files, 62, 74-77
linkable modules, 62, 88, 99-101
loadable modules, 62
object module format (OMF), 63
object modules, 62, 78, 82-85
single task loadable (STL) modules, 62, 87
source modules, 62, 74
system builders, 62

MODULE, SoftScope, 521
monitors, debugging, 58, 95
monolithic systems, real-time, 7
mqcbilLdeclow(), 132
mqcdec_binO, 132
MS-DOS (see DOS operating systems)
MS-Net use, networking, 416-417
Multibus I and 11,29,412

system interconnect calls, 562
multicast addressing/filtering, networking, 467
multiprocessing, POSIX systems, 26
multitasking, C language use, 134-135
mynamon, 460

N
name server
near calls, 147

594 Index

near memory pointer, 131-133
null strings, 123
netdr.job, 510
networking and network file management, 53-

56,304
accessing network files, 54
broadcast address mechanism, 467
connectionless vs. connection-oriented

systems, 420
connections, 420-421

establishment, 420-421
termination, 421

data link operations, 466-468
data transfer, 421
datagrams, 420, 430-443
device drivers, 265
dynamic data exchange (DDE), 409
end systems (ES), 418
ES-IS network format, 423
Ethernet, 424
external data link (EDL), 466
function prototypes, RB operations, 427-428
functions and languages, 108
Intel network architecture (iNA), 412
interfaces, alternative iNA interfaces, 429-

430
intermediate systems (IS), 418
internetwork address, static and dynamic,

425
internetwork routers, 418
iRMX networking context, 412-417
iRMX-Net use, 413-416
layers and modules, OSI, 410-411
logging in, remote login, 56-57
mechanisms for networking, 417-421
media access control (MAC), 424
message interprocessing protocol (MIP), 412
messages, 418-419
model, network model, 409-411
MS-Net use, 416-417
Multibus I and II, 412
multicast addressing, 467
multicast filtering, 467
name server operations, 445-459
network architectures supported by iRMX,

53-54
network management facility (NMF), 459-

466
network service access point (NSAP), 421-

425
null2 network addresses, 423-424
open systems interconnection (OSn refer

ence model, 409
OpenNet, 54-56, 412

out-of-band data, 445
packets, 418-419
peer-based systems, 55-56
peer-to-peer networks, 413
programming, 409-468
promiscuous mode, 467
relationships between OSI layers, 410-411
remote login, 56-57
request block interface to iNA, 425-430
router, internetwork routers, 418
server message block (SMB) format, 265
static internetwork format, 423
stream data, 419
subnetworks, 423
transport address buffers, 421-425
transport protocol data unit (TPDU), 419
transport service access point (TSAP), 421-

425
transport service data unit (TSDU), 419
UNIX vs. iRMX, 413
virtual circuit (VC), 420, 443-445
virtual terminals (VT), 56
Wmdows, compatibility issues, 508-511

network management facility (NMF), 459-466
network service access point (NSAP), 421-425
notify(), 350
nucerror(), 223
Nucleus layer, 27,175,181,182-183,202-212

blocked tasks, system calls that cause
blocks, 209-210

buffer pool calls, 558
communication service calls, 561
composite object calls, 560
deletion control calls, 560
descriptor calls, 558
exception handler calls, 559
extension object calls, 560
interrupt management calls, 559
110, job creation, 254-259
job creation, system calls, 252-264
job management, 202-207
mailboxes, 183
memory management, 202-204
multibus II interconnect calls, 562
object calls, 558-559
object directories, 204-207
OS extension calls, 560
region calls, 561
segment and memory pool calls, 558
semaphores, 183,557
system calls, 182, 558-561

buffer pool calls, 558
communication service calls, 561
composite object calls, 560

deletion control calls, 560
descriptor calls, 558
exception handler calls, 559
extension object calls, 560
interrupt management calls, 559
multibus II interconnect calls, 562
object calls, 558-559
OS extension calls, 560
region calls, 561
segment and memory pool calls, 558
semaphore calls, 557

task management, 183, 207-212
null2 network addresses, 423-424
null strings, 123

o
object directories, 204-207
object linking and embedding (OLE), 503
object module format (OMF), 63
object modules, 62

binding, 82-85
compiling, 78

object-based systems, xi, 175, 176-179
application program interface (API), 176
cheating, 177-178
classes, 176
encapsulated objects, 178
global descriptor tables (GDT) , 178
important features of object-based systems,

177
instances, 176
languages supporting object-based systems,

176
packages, 176
tokens, 178
type managers, 176
type, object type, 176

object-oriented systems, 175, 179-181
classes, derived, 180
composite objects, 180
inheritance, 180
polymorphism, 179-180
reusability of code, 180

objects in iRMX, 188-201
component objects, 365
composite objects, 364,401-403
connection objects, device drivers, 279-280
directories, object directories, 204-207
driver interface objects, 359
examining iRMX objects, 200-201
jobs, 191-198,202-207
memory segments, 188-191
operating system extension (OSE), 198
system debugger (SDB) to examine objects,

Index 595

200-201
tasks, 198-200, 207-212

offer command, 54, 55
offset addresses, 143
offspring jobs in HI, 261-264
open system interconnection (OSI) network

model,409
OpenNet, 55, 412
operating system command (OS C) , 531
operating system extension (OSE), 198, 364
operating systems, 3-26

calls, system calls, 4-5
component objects, 365
composite objects, 364
concurrency of execution, 5
constructing an operating system, 4-6
customization with iRMX, 5-6
DOS vs. iRMX, xi, 17, 19
extensions, operating system extension

(OSE), 198, 364
interactive configuration utility (lCU), 6,

100,101
iRMX, 17-22
kernels vs. , xii-xiii
layers in iRMX OS, 27
linkable modules added to OS, 100-101
MacOS vs. iRMX, 17
object-based systems, iRMX, xi
open systems, 17
OS-2 vs. iRMX, 19-21
POSIX vs. iRMX, xiii, 22-26
proprietary vs. open systems, 17
real-time programming, 7-8, 11
resource management, 4-5
run-time libraries and portability of software,

4
structure of code, 5
system calls, 4-5, 364
system configuration techniques, 100, 101
terminate-and-stay-resident (TSR) pro-

grams, 20-21
type managers, 364
UNIX vs. iRMX, xii, 17,21-22

OS-2 operating systems, 19-21
out-of-band data, 445
outbyte(), 172
output (see input! output)

P
packages, object-based systems, 176
packets, networking, 418-419
paging memory

Intel x86 architecture, 155-159
virtual memory addresses, 155

596 Index

paging memory, cont.
demand paging, 158-159
frames, 155
virtual vs. physical memory size, 157-158

tables and directories, 156
parameter passing, 124-131

base pointer, 125
call instructions, 125
push instructions, 125
stack frames, 125
stack pointers, 125
stack systems, 125

parsing
human interface (HI) command parsing

system calls, 556
UDI processing, system calls, 563

Pascal (see also languages), 103
passwords, 30
path command, 47-48
peer-based network systems, iRMX use, 55-

56
peer-to-peer networks, 413
peripheral devices (see devices and device

drivers)
permit command, 43
physical devices, 280
physical file drivers, 43
physical names, DUIBs, 51
physnames command, 51, 52, 278
platforms for iRMX systems, 28-29

AT Bus, 28-29
Multibus I and II, 29
System 120 configurations, 29
universal development interface (UDI), 29

plm386 command, 91
pointers

data pointers, 148
file pointers, 294
instruction pointer, 146
memory pointers, near and far, 131-133
stack pointers, 125

polling, 169-172, 334
polymorphism, object -oriented systems, 179-

180
pools, buffer pools, 249-251
pools, memory pools, 191-196

borrowing, 192
HI jobs, 196
minimum and maximum, 192

portability of software
run-time library use, 4
utility programs, 6

portable operating system interface for com
puter environments (POSIX), xiii, 22-26

C language interface, 24
developmental history, 23
IEEE real-time extension, real-time sys-

terns, 24-25
multiprocessing capabilities, 26
system application program interface, 24
threads extension to POSIX, 25-26

preemptive priority based scheduling, 14,208
prefixes, logical names, 286
printf(), 104, 107, 110, 111, 118, 126
printing files, 56
priority inversion, 246
priority of execution (see scheduling)
privilege levels, Intel x86 architecture, 154-

155
procedures, 146

arguments, 148
calls, nested, STACK, SoftScope, 523
epilogue, 150
evaluation, EVAL, SoftScope, 517
parameters, 148
procedure calls, 146-151
prologue, procedure prologue, 148
reentrant, 148

PROG,262
programming language for microcomputers

(PLM),68
run-time library use, 4
system calls, function prototypes, 225-230

prologue, procedure prologue, 148
promiscuous mode, networking, 467
protected mode extension (PME), Windows,

498-503
protecting files, 41-43
publicdir, 55
push instructions, 148

parameter passing, 125

puLrmlLconn(), 185

Q
qccreateboundedbuffer(), 385, 390, 397, 402
qccreatedynamicdriver(), 359
QUIT, SoftScope, 521

R
R?,263
R?ALIAS, 263
R?BACKPOOL, 263
R?CRT,263
R?CU@YRR$APP, 263
R?IlOJOB,262
R?IlOUSER, 258, 262
rate-monotonic scheduling algorithm, 15
read-ahead techniques, EIIOS, 185

ready state, 208
real-time programming, 6-7, 7-17

application development (see application
development)

architecture vs. performance, 11
complex- vs. reduced-instruction set com-

puters (CICS vs. RICS), 11, 12
concurrency of execution, 5
context switch time (CST), 12-13
determinancy of system, 12
embedded systems, 8-9
event loops, 9
hard real-time, 9
hardware vs. performance, 11
input-output techniques and devices, 10
interrupt handlers, 13
interrupt response time (lRT) , 12-13
interrupt tasks, 13
kernel-based systems, 7
monolithic systems, 7
operating system vs. performance, 11
OS-based systems, 7-8
performance factors, 11-13
POSIX operating system use, 24-25
scheduling, 14-17

adaptive scheduling algorithm, 16
preemptive priority-based, 14
rate-monotonic scheduling algorithm, 15

soft real-time, 9
software vs. performance, 11
structure of embedded systems, 9-10
structure of real-time systems, 9-10
systems classifications, 7-8
systems programming vs. (see systems

programming)
tasks, 9

redirection (see input/output, redirection)
reduced instruction set computers (RISC), 11,

12
reentrant procedures, 115, 148
reexitiofob(), 75
REG, SoftScope, 520-521
regions, 246-248
registers

CPU, Intel x86 architecture, 139-141
show contents, REG, SoftScope, 520-521

remote devices, 281
remote file drivers, 43
remote login, 56-57
remove command, 55
reqexitiojob(), 119
resident applications, 66-67
resource management, 4-5
RESUME, SoftScope, 522

Index 597

return command, 104, 146, 150
reusability of code, object-oriented systems,

180
Richter, Fred, 430
ring buffers, 365
RMX-hosted development tools (RHDT), 65
rmxhelp, 32, 58
rmxtsr, 30,480,481
rotational delay, 293
routers, internetwork routers, 418
rqaatachfile(), 552
rqacceptcontrol(), 248, 561
rqachangeaccess(),552
rqaciose(), 552
rqacreatedirectory(), 552
rqacreatefile(), 280, 286, 305

stream I/O, 534-535
rqadeleteconnection(), 552
rqadeletefile(), 552
rqagetconnectionstatus(), 553
rqagetdirectoryentry(), 553
rqagetextensiondata(), 312, 553
rqagetfilestatus(), 553
rqagetpathcomponent(), 553
rqaload(), 260, 550
rqaloadiojob(), 260, 550
rqalogicalattachdevice(), 282
rqaltercomposite(), 402, 403, 560
rqaopen(), 258, 552
rqaphysicalattachdevice(), 281, 282, 328, 551
rqaphysicaldetachdevice(), 551
rqaread(), 266, 291, 318, 350, 552
rqarenamefile(), 552
rqaseek(), 552
rqasetextensiondata(), 312, 553
rqaspecial(), 295, 299, 302, 551
rqatruncate(), 552
rqattachbufferpool(), 561
rqattachfile(), 280, 287
rqattachport(), 561
rqaupdate(), 552
rqawrite(), 266, 291, 350, 552
rqbroadcast(), 561
rqcancel(), 561
rqcatalogobject(), 213, 558
rqcbackupchar(), 556
rqccreatecommandconnection(), 557

stream I/O, 541
rqcdeletecommandconnection(), 557
rqcformatexception(), 556
rqcgetchar(), 556
rqcgetcommandname(), 556
rqcgetinputconnection(), 556
rqcgetinputpathname(), 556

598 Index

rqcgetoutputconnection(), 556
rqcgetoutputpathname(), 556
rqcgetparameter(), 556
rqconnect(), 561
rqcreatebufferpool(), 251, 558
rqcreatecomposite(), 401, 560
rqcreateextension(), 400-401, 402, 560
rqcreateiojob(), 257, 258, 261, 262, 553
rqcreatejob(), 215, 220, 252, 253, 255
rqcreatemailbox(), 557
rqcreateport(), 561
rqcreateregion(), 561
rqcreatesegment(), 192, 214, 215, 217, 221,

558
rqcreatesemaphore(), 557
rqcreatetask(), 238, 254, 557
rqcreateuser(), 553
rqcreatiojob(), 254
rqcsendcommand(),263

stream I/O, 530-540, 542, 548
rqcsendcoresponse(), 75, 104, 1l0, 123, 134,

137,184,187,217,221,263,556
rqcsetcontrolc(), 303
rqcsetparsebuffer(), 556
rqdeletebufferpool(), 558
rqdeletecomposite(), 406, 560
rqdeleteextension(), 404, 405, 406, 560
rqdeletejob(), 100,256,404,405,406
rqdeletemailbox(), 557
rqdeleteporty(), 561
rqdeleteregion(), 407, 561
rqdeletesegment(), 558
rqdeletesemaphore(), 557
rqdeletetask(), 557
rqdeleteuser(), 553
rqdetachbufferpool(), 561
rqdetachport(), 561
rqdisable(), 559
rqdisabledeletion(), 560
rqealoadiojob(), 551
rqechangedescriptor(), 558
rqechangeobjectaccess(), 558
rqecreatedescriptor(), 558
rqecreateiojob(), 254, 554
rqecreatejob(), 215, 252, 253, 255
rqedeletedescriptor(), 558
rqedosrequest(), 471, 564
rqegetaddress(), 344, 559
rqegetobjectaccess(), 559
rqegetpooiattrib(), 558
rqeinstallduibs(), 551
rqenable(), 559
rqenabledeletion(), 560
rqencrypt(), 551

rqendinittasjk(), 372
rqendinittask(), 371, 559
rqenterinterrupt(), 325, 559
rqereadsegment(), 564
rqerror(), 118, 223, 224, 392, 393
rqesetcallgate(), 388
rqesetmaxprioirty(), 253
rqesetosextension(), 388, 560
rqesetsystemcall(), 388
rqesetvm86extension(), 564
rqesioadiojob(), 551
rqetimedinterrupt(), 326, 559
rqewritesegment(), 564
rqexitinterrupt(), 326, 559
rqexitiojob(), 100, 104,215,217,253,255,

256,258,405,406,554
stream I/O, 541

rqe_dos_request(), 471, 480
rqforcedelete(), 560
rqgetdefaultprefix(), 551
rqgetdefaultuser(), 551
rqgetexceptionhandler(), 215, 217, 559
rqgetglobaltime(), 183, 553
rqgethostid(), 561
rqgetinterconnect(), 562
rqgetlevel(), 559
rqgetlogicaldevicestatus(), 555
rqgetpooiattributes(), 558
rqgetportattributes(), 561
rqgetpriority(), 557
rqgetsize(), 558
rqgettasktokens(), 240, 253, 257, 557
rqgettime(), 184,315, 553
rqgettype(), 282, 559
rqgetuserids(), 555
RQGLOBAL, 258, 262
rqhybriddetachdevice(), 554
rqinspectcomposite(), 402, 403, 560
rqinspectuser(), 553
rqinstallduibs(), 328
rqlogicalattachdevice(), 270, 282, 554
rqlogicaldetachdevice(), 273, 554
rqlookupconenction(), 299
rqiookupobject(), 210, 217, 219, 240, 257,

258,559
rqphysicalattachdevice(), 328
rqreceive(), 561
rqreceivecontrol(), 248, 249, 561
rqreceivedata(), 557
rqreceivefragment(), 561
rqreceivemessage(), 245, 248, 274, 289, 443,

557
rqreceivereply(), 561
rqreceivesignal(), 562

rqreceiveunits(), 243, 248, 557
rqrelease buffer(), 558
rqrequestbuffer(), 558
rqresetinterrupt(), 559
rqresumetask(), 208, 240, 557
rqsattachfile(), 270, 299, 318, 554

stream I/O, 539, 534-535
rqscatalogconnection(), 554

stream I/O, 536
rqscatalogobject(), stream I/O, 536
rqschangeaccess(), 554
rqsclose(), 555
rqscreatedirectory(), 305, 554
rqscreatefile(), 270, 554

stream I/O, 539
rqsdeleteconnection(), 555
rqsdeletefile(), 555
rqseek(), 290
rqsend(), 562
rqsendcontrol(), 249, 561
rqsenddata(), 557
rqsendmessage(), 397, 557
rqsendreply(), 562
rqsendrsvp(), 562
rqsendsignal(), 562
rqsendunits(), 243, 400, 557
rqsetdefaultuser(), 551
rqsetexceptionhandler(), 215, 217, 220, 223,

559
rqsetglobaltime(), 183, 553
rqsetinterconnect(), 562
rqsetinterrupt(), 241, 326, 338, 360, 559
rqsetosextension(), 389, 560
rqsetpoolmin(), 558
rqsetpriority(), 208, 211, 236,502,557
rqsettime(), 184, 315, 553
rqsgetconnectionstatus(), 555
rqsgetdirectoryentry(), 554
rqsgetfilestatus(), 555
rqsgetpathcomponent(), 554
rqsignalexception(), 223, 224, 392, 560
rqsignalinterrupt(), 212, 326, 348, 559
rqsleep(), 208, 240, 344, 557
rqsloadiojob(), 260, 261, 263, 551
rqslookupconnection(), 258, 554
rqsopen(),258, 270, 289, 318, 555
rqsoverlay(), 260, 551
rqsreadmove(), 274, 318, 555
rqsrenamefile(), 554
rqsseek(), 555
rqsspecial(), 295, 299, 302, 555
rqstartiojob(), 255, 257, 263, 554
rqstruncatefile(), 555
rqsuncatalogconnection(), 554

Index 599

rqsuspendtask(), 208, 240, 557
rqswritemove(), 555
rquncatalogobject(), 559
rqverifyuser(), 555
rqwaitinterrupt(), 326, 338, 348, 560
rqwaitio(), 274, 289, 552
rq[aslattachfile(), 306
rq[as]changeaccess(), 287
rq[aslcreatedirectory(), 314
rq[aslcreatefile(), 305
rq[aslgetdirectoryentry(), 305, 307
rq[aslgetfilestatus(), 307
rq[aslseek(), 350
rq[aslspecial(), 298, 303, 304, 338, 339-340,

350, 352, 353, 354
stream I/O, 540, 548

rq[as}createdirectory(),305
run-time libraries, 4, 181, 120-123

binding, 80-85
C language, 4
iRMX, 27
languages, 120-123
PLM language, 4
portability of software using, 4

run86 utility, 65, 91

S
scanf(), 111
scheduling

adaptive scheduling algorithm, 16
POSIX systems, 24
preemptive priority based scheduling, 14,

208
rate-monotonic scheduling algorithm, 15
real-time programming, 14-17

adaptive scheduling algorithm, 16
preemptive priority-based, 14

states, ready, asleep, asleep-suspended,
suspended,208

scoping rules, languages, 115-116
screen display, freeze scrolling, 31-32
screen-master file, 358
scrolling, freeze scrolling, 31-32
search path lists, 49-50
search time, 293
security issues

hidden files, 45
protected files, 41-43

seek operations, device drivers, 291-292
seek time, 292
seekcomplete(), 350-351
segmentation models, 79-80

compact models, 79
extended segmentation, 79

600 Index

segmentation models, cont.
flat models, 79
memory segments in iRMX, 188-191
nucleus system calls to segments, 558
small, medium, large models, 79

segmentation of memory (see Intel x86 archi-
tecture)

select time, 292
select(), 244
selectors, memory segmentation, 141
semaphores, 242-243

binary, 242
counting, 242
nucleus, 183, 557
POSIX systems, 24

serialization, stream IIO, EIIOS, 538-539
server message block (SMB) networking

format, 265
servecddeJ"egister(), 508
SET, SoftScope, 521-522
setcontrolregister(), 157
setname, 459
setrealmode(), 110
setterminalattributes, 339-340
shutdown command, 314,474
signal characters

device drivers, 302-303
POSIX systems, 24

single task loadable (STL) modules, 62, 87
skim utility, 37
sleep(), 183
soft real-time, 9
SoftScope III, 96-99, 513-525

breakpoints, 96
maximum timeout (wait), BPTIMEOUT,

513-514
scope, BPSCOPE, 514
static execution/data, BREAKPT, 515
task status, TASK, 523-524

call nesting, STACK, 523
code manipulation

line numbers and name, LINE, 517-518
show source code, LIST, 519

debugging
LOADSEGS, 520
task status, TASK, 523-524
V macros (SDB), 524-525

disassemble instructions, DISASM, 516
environment, set options, SET, 521-522
evaluate procedure, EVAL, 517
execution of program

resume, RESUME, 522
step-by-step, STEP, 522-523

exiting SoftScope

EXIT,517
QUIT, 521

file management
list files, MODULE, 521
open, LOG, 520

help, HELP, 518
languages, 136-137
load code and data, LOAD, 518-519
macros, MACRO, 521
memory, dump, DUMP, 515-516
output redirection, CONSOLE, 514-515
registers, contents of CPU, REG, 520-521
system commands, SYSTEM, 524
transfer execution, GO, 518
variables, show data type, TYPE, 525
version info, VERSIION, 526

software, real-time system performance vs.,
11

source modules, 62
compiling, 74

sskemel program, 97
STACK, SoftScope, 523
stack frames, 148
stack segments, 146-151
stack system, parameter passing, 125
start-off program, 119
start bit, 335
STEP, SoftScope, 522-523
stop bit, 335
stream IIO, 533-547

BIIOS system calls, program example, 535-
538

cataloging file connection, 536
command line interpreter (CLI) use

input task, 544-545
main module, 541-544
output task, 545-547

command-line processing, 539-541
connections between device and file drivers,

535
data, stream data and networking, 419
data structure of files, 535
devices and device drivers, 281
EIIOS serialization, 538-539
environmental differences, CLI vs. iRMX

CLI,548
file connections, 534
file creation in stream I/O, 535
file drivers, 43
IIORS processing, 533-538
queueI/O () procedure calls, 536
redirection using streams, 541-547
rqacreatefile(), 534-535
rqccreatecommandconnection(),541

rqcsendcommand(), 542, 548
rqcsendcommand(),539-540
rqexitiojob(), 541
rqsattachfile(), 534-535, 539
rqscatalogconnection (), 536
rqscatalogobject(), 536
rqscreatefile(), 539
rq[as]special() system cali, 540, 548
size of transfers, management techniques,

540
tokens, 541

submit command, 37, 38,39,89, 90, 196,264
subnetworks, 423
subpaths, 286
subprograms, 146
subroutines, 146
subst command, 416
super command, 39, 196,264
suspended state, 208
switch program, CST determination, 13
synchronous device drivers, 273-277
sysload, 66, 97, 100, 101, 198,365, 366, 372,

502, 512
System 120 configurations, platforms for

iRMX systems, 29
system builders, 62
system calis, 4-5, 221-224, 225-264, 363, 364,

385-399, 549-564
adding system calls to iRMX, 385-399
application loader (AL), 186, 259-261, 549-

550
job creation, program sample, 233-236

BIIOS, 183, 550-552
device-level calls, 551
extension data calis, 553
file I/O calls, 552
file-modification calls, 552
file/connection-level calis, 552
get status/attribute calis, 553
job-level calis, 551
time/date calls, 553
user object calls, 553

blocked tasks, 209-210
buffer pools, 249-251
C vs. PLM function prototypes, 225-230
cali gates, installation, 388
chain blocks, 250
cheating, 236
coding system calls from applications, 221
communication, 237-249
data transfer, 289-291
deadlock, 248-249
device drivers, connection object manage

ment, 280-289

DOS-specific calls, 564
EI/OS, 185, 552-554

device cali, 555

Index 601

file and connection calls, 554
I/O job calls, 552-553
logical name calls, 554
status calls, 555
user-related calls, 555

exception handling, 223
exit procedures, 222, 397-399
extension, DOS real-time extension, 481-

483
functions and languages, 108
human interface (HI), 186-187,225, 555-

556
command parsing calls, 556
command processing calis, 557
I/O processing calis, 556
message processing calis, 556
offspring jobs, 261-264
program control calls, 557

iNA access, 564
interactive configuration utility (ICU), 388-

389
interface procedures, 221-222, 389-394
intemallogic of system calis, 237
I/O job creation in nucleus, 254-259
I/O job creation program sample, 231-233
iRMX access to DOS calls, 479-481
issues involved in adding system calls to

iRMX, 385
job management, 251-252
mailboxes, 243-246
name server use, 564
Nucleus layer, 182

buffer pool calls, 558
communication service calls, 561
composite object calis, 560
deletion control calis, 560
descriptor calls, 558
exception handler calls, 559
extension object calls, 560
interrupt management calis, 559
I/O job creation, 254-259
job creation, 252-264
object calis, 558-559
OS extension calis, 560
region calls, 561
segment and memory pool calls, 558
semaphore calls, 557

parameters, receiving parameters, 394-396
priority setting, 236
procedure design, 396-397
pseudocode diagram sample, 223-224

602 Index

system calls, cont.
regions, 246-248
rqsetosextension(), 389
semaphores, 242-243
task synchronization , 237-249
tasks, 208
time limits, 210
UDI, 187, 562-564

exception handling calls, 563
file-handling calls, 562-563
memory management calls, 563
program control calls, 562
utility and command parsing calls, 563

Windows, 478-490, 564
system configuration, 100, 101
system debugger (SDB), 96

examining iRMX objects, 200-20l
object directory viewing, 207

system definition files, 357
system descriptors, 152
system logical names, 48-49
system memory (see memory and memory

management)
SYSTEM, SoftScope, 524
systeminitializeIlO(), 343
systems programming (see also real-time

programming), 3-26
application programming, 4
development tools development, 6-7
DOS vs. iRMX environments, xi
hierarchy of programming applications, 3
learning programming using iRMX, xi-xii
operating system construction, 4-6
operating systems variations, 3-26
operating systems vs. kernels, xii-xiii
POSIX vs. iRMX, xiii
real-time programming vs. (see real-time

programming)
system calls to reduce coding tasks, 5
UNIX vs. iRMX, xii
user programming, 4
utilities development, 6-7

sys_exiLe(), 397
sys_exiLn through sys_exiLe(), 398

T
target systems

iRMX,27
languages, 16- and 32-bit targets, 113-115

task gates, Intel x86 architecture, 162-164
tasks and task management, 198-200, 207-212

blocked tasks, 209-210
deadlock, 248-249
device drivers, 331-334

interactions of, 334-343
interrupt handler, 211
mailboxes, 243-246
nucleus, 183
preemptive priority based scheduling, 208
priority of tasks,

inversion of priority, 246
setting, 211, 241

real-time programming, 9
regions, 246-248
scheduling states: ready, asleep, asleep-

suspended, suspended, 208
semaphores, 242-243
suspended,240
synchronization, 237-249
system calls, 208
time limits, 210

TASK, SoftScope, 523-524
template files, 358
term utility, 299

device drivers, terminal support code, 531,
532

terminal jobs, 261
terminal support code, 527-531
terminalanswer(), 355
terminalcheck(), 355
terminalhangup(), 355
terminate and stay resident (TSR) programs,

20-21,480
text editing with Aedit, application develop-

ment, 70-73
command mode, 72
copy block of text, 73
cursor movement, 70-71
end-of-file markers, 71
end-of-Iine characters, 70
error handling, 72
K command, 72
macros for Aedit, 71, 73
make utility, 72
modes of Aedit: insert, exchange, etc., 71

o command, 72
Q command and options, 72
two-file simultaneous editing, 72
usage summary, 71-73
W command, 72

threads (see POSIX operating systems)
threads of execution, Intel x86 architecture,

151
time(),344
time-of-day management,

BIIOS system calls, 553
device drivers, 314-316
Nucleus layer, 183

timesrv, 430
tokens, object-based systems, 178
tools, development tools

compilers, iC86, iC286 or iC386, 67
DOS-hosted development tools (DHDT), 65
linking, Link86 utility, 67
native-mode tools, 65
RMX-hosted development tools (RHDT), 65
run86 utility, 65

track-to-track positioning time, 292
transport protocol data unit (TPDU), 419
transport service access point (TSAP), 421-

425
transport service data unit (TSDU), 419
trap gates, 162-164
tscancelI/O (), 351
tsfinishIlO(), 351
tsinitializeI/O(), 351, 353
tsqueueIlO(), 351
type command, device drivers, terminal sup

port code, 532
type managers, 176, 363, 364, 365-386, 399-

407
composite objects, 401-403

deleting, 403-407
deletion mailboxes, 372
extensions

creation, 399-401
deleting extensions, 403-407

memory leaks, 406
object-based systems, 176
ring buffers, 365
sample programs, 365-386

type, object type, object-based systems, 176
TYPE, SoftScope, 525
type-ahead buffers, 336

U
universal development interface (UDI), 27, 29,

181, 187
device drivers, 265
exception handling system calls, 563
file-handling calls, 562-563
memory management calls, 563
program control system calls, 562
system calls, 187, 562-564
utility and command parsing calls, 563

udistr(), 108, 124
UNIX operating systems, xii, 17, 21-22, 27-28

interprocess communication problems, 22
preemption of processes, 22
real-time system vs., 22

user ID, super command, 39
user interfaces (see human interface (HI))

Index 603

user logical names, 48-49
user objects, 197

BIIOS system calls, 553
user programming, 4
utilities, 32

development, 6-7
portability of utility software, 6

V
variables, show data type, TYPE, SoftScope,

525
verify utility, 309
version information

iRMX, versional development, 18-19
SoftScope III, VERSIION command, 526

virtual 8086 mode, Intel x86 architecture, 164-
165

virtual circuit (VC), networking, 420, 443-445
virtual memory addresses, 155
virtual terminals (VT), 56
VM86 dispatcher, 165
vt command, 56

W
warm links, 507
whomai command, 197
wildcards, 34
Windows, 469-513

address wraparound, 494
client, link, 507
client, simple, 507
console ownership, 470-473
definition files, 512
DOS real-time extension, iRMX system calls

from DOS, 481-483
DOS volumes, accessing from iRMX, 475-

476
DOS, accessing iRMX volumes from DOS,

476-477
dynamic data exchange (DDE), 469, 503-

508
dynamic link libraries (DLL), 503
features and operations, 470
file system compatibility, 473-477
interrupt management, 477-478
memory management, 490-498

access iRMX memory from DOS, 490-491
coexisting with other memory managers,
491-494

conventional (program) memory, 491
DOS protected mode interface, 495-496
expanded memory, 492-493, 494
extended memory, 493-494
upper memory area, 491

604 Index

Windows, cont.
mirroring files, 474
netdr.job, 510
network compatibility, 508-511
object linking and embedding (OLE), 503
protected mode extension (PME), 498-503
rmxtsr, 480-481
RTE functions invoked from DOS, 483-

490
run-time configuration, 511-513
server, 508
system calls

compatibility of system calls, 478-490

iRMX access to DOS system calls, 479-
481

Windows-specific, 564
terminate and stay resident (TSR) pro

grams, 480
wterm and WinTerm, 472

WinTerm, 30, 472
wraparound, address wraparound, 494
write-behind techniques, EIIOS, 185
wterm, 30,472

X
xtssetoutputwaiting(), 354

II: ~

~~,..:..-.~.;;.-~-".-~

$29.95 U.S.A.

Real-time systems programming made easy

REALTIME AND SYSTEMS
PROGRAMMING FOR peS

Real-time applications programming demands the same set of skills tradi
tionally required of systems programmers, namely careful management
of memory allocation, of concurrent threads of execution, of network
links, and of I/O devices. Whether you want to use a PC to build high
performance real-time systems or to learn first-hand how to do real-world
systems programming, this book will serve as an invaluable reference.

Now, Intel 's official guide to the iRMX® for Windows operating system
explains clearly and concisely all the ins and outs of iRMX for Windows,
which runs iRMX software concurrently with DOS or Windows software
on a single Pc. You'll learn how to perform common real-time and sys
tems programming operations, including resource allocation, concurrency
manageme~t, and I/O transfers. You will also find everything you need to
know abQHl device drivers , OS extensions, type managers, network pro
gramming, .. and DDE communication between iRMX and Windows appli
cations.

All the information you need to use the iRMX system effectively and
efficiently is contained in this one, easy-to-use guide. The book is equally
valuable for use as the text for a university-level laboratory course in
real-time or systems programming and as a self-study reference for pro
grammers and engineers designing critical real-time systems.

Cover Art Dan Mi.lndi :-. h

ISBN 0-07-067466-3

90000

9780070674660

McGraw-Hili, Inc.
Serving the Need for Knowledge

1221 Avenue of the Americas
New York, NY 10020

