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Introduction 

Historically, little support and little discipline existed for either real-time 
or systems programming on the PC platform. With the advent of more 
powerful PC computers, however, PCs have become the development tar
get for increasingly ambitious applications. With the arrival of iRMX for 
Windows, large real-time systems integrated with DOS and/or Microsoft 
Windows are included in the set of possible applications that can be devel
oped for PCs, the most ubiquitous computing platform available. 

There is still little support or discipline for DOS systems programmers, 
but the situation is much better for iRMX. As a real-time operating sys
tem, iRMX has traditionally provided its application developers with a set 
of coordinated resources that systems programmers have traditionally 
needed, but had to do without. These resources include the management of 
memory, concurrency, interrupts, and peripheral devices. As an object
based operating system, iRMX provides these resources in an integrated 
and protected fashion that allows programmers to develop fast, robust sys
tems. The reason a single book can cover both real-time and systems pro
gramming is that iRMX provides real-time developers with the same facil
ities the systems programmers used at Intel to develop iRMX itself. 

Although most readers of this book will undoubtedly be real-time devel
opers, specifically those who work with iRMX, this book's origin is actually 
academic. Computer science curricula at both the undergraduate and grad
uate levels typically include a course on operating systems principles. Such 
a course is often a reading course that covers the traditional topics of re
source management and concurrency. Actual software development, if 
any, is often limited to simulations due to the lack of suitable laboratory 
facilities for true systems programming. For several years, I have taught 
operating systems laboratory courses that use relatively inexpensive com
puter systems running iRMX. The courses, which are offered to upper
level undergraduates or graduate-level students, have a traditional operat
ing systems principles course that used texts such as Deitel (1990) or 
Milenkovic (1992) as a prerequisite. The goal ofthe laboratory courses has 
been to use hands-on experience to provide solid mastery of the principles 
covered in other operating systems courses. 

xi 
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Two other approaches could be taken to obtain this laboratory experi
ence. One would be to develop systems code from scratch. For example, 
Wirth's first Modula programming language provided all the constructs 
needed to build a complete operating system with the addition of only a 98-
byte runtime kernel. This approach certainly allows the student to deal 
with all the fundamental issues of systems programming, but it makes it 
very difficult to deal with the levels of complexity encountered in real sys
tems. 

The second approach is to study and modify an existing operating sys
tem. The Mt. Xinu (Comer & Fossum, 1988) and Minix (Tannenbaum, 
1987) projects take this approach by providing the source code for Unix®
like systems for students to work with. Another way to use this approach is 
to let the student modify and extend a real operating system. Unfortu
nately, "real" systems are synonymous with "proprietary" systems, which 
means that source code and the tools for working at the systems program
ming level are not normally available to students. Although Unix is a pro
prietary system, it is often used as a basis for operating system laboratory 
courses because AT&T has made source code licenses relatively accessible 
to universities. The list of books that can be used for Unix laboratory 
courses is extensive, and includes Andleigh (1990), Bach (1986), Ker
nighan and Pike (1984), Leffler et al. (1989), and Rochkind (1985), among 
others. 

Enter real-time systems, the category of applications that must be both 
logically and temporally correct. Real-time applications are event driven: 
asynchronous external events trigger computation sequences, which must 
be completed before temporal deadlines pass in order for the application to 
operate correctly. Real-time application programs must deal explicitly 
with exactly the same issues as systems programs, namely concurrency and 
resource management. 

The premise of this book is that a commercially available development 
environment for real-time applications provides an excellent laboratory 
vehicle for studying systems programming. Of course, using such an envi
ronment also provides the student with a working knowledge ofreal-time 
systems in general and with the chosen development environment in par
ticular. In addition, Real-Time and Systems Programming for PCs is a 
practical laboratory guide to systems programming concepts and tech
niques. 

A number of real-time systems are available commercially. These fall 
into the two broad categories of kernels and operating systems. Kernels 
provide support for concurrency control and resource management, but do 
not provide complete operating system functionality such as a full I/O sys
tem, networking functions, and the like. To use a real-time system to study 
systems programming, it is better to choose a real-time operating system 
over a kernel not only because an operating system provides a complete set 
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of operating system facilities to investigate, but also because a single plat
form can be used for both development and testing. 

From an academic viewpoint, Intel's iRMX for Windows operating sys
tem is a particularly attractive vehicle for an operating system laboratory. 
One reason is that the operating system runs on relatively inexpensive PC 
platforms. Another reason is that Intel has historically provided very good 
support for universities choosing to use iRMX in their courses. 

A number of alternative real-time systems can be chosen for an operat
ing systems laboratory. Particularly interesting are several systems that 
run on different manufacturers' processors (not just Intel's), and some 
newly emerging systems based on the POSIX 1003.4 real-time standard. 

Real Time System Programming for PCs is based on my experience using 
iRMX to teach semester-long laboratory courses on systems programming 
at the graduate and advanced undergraduate level at Queens College. The 
backbone of the course has been a sequence of projects designed to illumi
nate various features of the operating system (OS). My students are al
ready familiar with the principles of systems programming, so little time is 
spent explaining concepts of memory management, process scheduling, or 
concurrency control. Rather, the first project is usually a simple applica
tion designed to familiarize students with the iRMX development environ
ment' which is significantly different from the sheltered environments 
used to provide instruction in computer science principles and applica
tions programming. A second project typically involves developing a utility 
program that exposes the students to most of the resources and facilities of 
the as. A third project concentrates on concurrency by developing either a 
program to demonstrate or exercise the multitasking features of the sys
tem or a device driver, including interrupt handlers and request block man
agement. Other projects have involved networking utilities, library man
agement, and source code preprocessing. 

The book is logically divided into two parts. Part I is an overview of real
time and systems programming concepts, the use of an iRMX system and 
its development tools, and the architecture oflntel microprocessors. Chap
ter 1 introduces the fundamental concepts of real-time systems: determi
nacy, speed, and robustness. Chapter 2 is a guide to iRMX from a user's 
perspective: how to log on, how to use the file system, how to use develop
ment tools, and the like. Chapter 3 discusses the development process for 
iRMX applications. If the reader is familiar only with student compilers or 
fully integrated development environments, the material in this chapter is 
particularly important; otherwise you may need only to skim through the 
chapter to get some iRMX-specific details. The traditional development 
languages for iRMX have been assembler and PLM, a PL/I-like language 
developed by Intel specifically for use with its own microprocessors. With 
the emergence of C as the most commonly used language for both applica
tion and systems programming in other environments, C is rapidly replac-



xiv Introduction 

ing PLM as the standard high-level language for iRMX programming. 
Chapter 4 investigates the language issues in developing iRMX code. An 
assumption throughout the remainder of the book is that the reader will be 
able to follow code written in either PLM or C. 

The first part ofthe book ends with a chapter on the architecture of the 
Intel x86 microprocessor. This chapter on hardware is included in a book 
on software development simply because of the nature of both real-time 
and systems programs: their software comes in the most direct contact 
with the processor itself. Programmers must understand the underlying 
processor well in order to develop efficient and fast real-time or operating 
systems. It is not necessary to program in assembly language to do most 
real-time and systems programming tasks because both C and PLM can be 
used as effective high-level System Implementation Languages (SILs). 
This book, however, does include some assembly language code and many 
references to assembly language concepts. Chapter 5 is designed to prepare 
the reader to understand that material without actually covering assembly 
language programming. 

The second part of the book covers the iRMX operating system itself. 
Although the book features the iRMX for Windows operating system, 
most of the material covered applies to other versions of the operating sys
tem as well. Readers interested in iRMX I, however, which operates in the 
processor's real mode, must remember that the book assumes a protected
mode version of the operating system (iRMX II, iRMX III, or iRMX for 
Windows) in much of the material presented in the second part. Some of 
the sample code also assumes a 32-bit version of the OS (iRMX III or 
iRMX for Windows). Finally, the sample code presented in the book has 
been tested only on an iRMX for Windows system. It may well work on 
other versions of the operating system, but is not guaranteed to do so. 

Part II begins by introducing some fundamental concepts about iRMX 
in chapter 6. These concepts include the object-based nature of the system 
and a description of the three fundamental types of iRMX objects: jobs, 
tasks, and memory segments. Chapter 7 surveys many basic iRMX system 
calls, and chapter 8 deals specifically with the system calls used for I/O pro
gramming. Chapters 9 and 10 introduce two important facilities that 
iRMX provides for extending the operating system. Chapter 9 discusses 
the issue of adding device drivers, and chapter 10 covers the facilities avail
able for adding new object types and system calls to the operating system 
itself. 

Chapter 11 introduces the networking facilities provided with iRMX. 
The use of a network is integrated with the rest ofthe book, but this chap
ter specifically discusses the programming issues involved in interacting 
with the various parts of an iRMX network. 

Finally, chapter 12 is devoted to those aspects of iRMX for Windows 
that are not present in other versions of the operating system. Some of 
these features, like console sharing, interrupt management, and file shar-
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ing, are necessary to allow iRMX, DOS, and Windows to operate in an in
tegrated, reliable fashion. Other features, such as run-time configuration 
and loadable operating system layers, are conveniences that were intro
duced with iRMX for Windows, but which may well be integrated with 
other versions of the operating system as well. Still other features, such as 
DDE networking support in particular, combine the individual features of 
iRMX and Windows in ways that extend well beyond the simple sum of 
two parts. 
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1 
Introduction to Real-Time and 

Systems Programming 

1.1 Overview 

iRMX, Intel's real-time operating system, is an excellent vehicle for study
ing systems programming. In fact, it is virtually impossible to develop a 
real-time system without doing systems programming. In turn, many cru
cial parts of a systems programmer's job deal with real-time issues. 

This chapter introduces systems programming, real-time systems, and 
the iRMX operating system (OS) to provide a context for the remainder of 
the book, as well as to support the argument that real-time systems and 
systems programming have much in common. The first part ofthe chapter 
looks at the conventional view of systems programming, and the second 
part looks at real-time systems, including some of the features of iRMX 
that make it a real-time OS. Finally, we look at how iRMX compares with 
conventional operating systems such as MS-DOS and Unix, as well as al
ternatives to iRMX for real-time systems. 

1.2 Systems Programming 

To help put systems programming in perspective, consider the following 
hierarchy of programming classes: user, application, and systems. Real
time programming is included here as a parallel entity, spanning the range 
of both application and systems programming. The reason the left side is 
shown as a hierarchy is that each type of programming builds upon re
sources provided by the level below. 

User Programming 

Application Programming Real-Time 

Systems Programming Programming 

3 



4 Basics 

User programming. User Programming refers to the types of things an end 
user might do to customize a particular application. Examples include 
spreadsheet and word processing macros and simple command files (batch 
files). The programming language used could be fairly primitive, perhaps 
just a matter of recording a sequence of keystrokes. Nevertheless, the pro
grams implement some sort of algorithm and, thus, qualify as program
ming by almost any definition of the term, even if the user does not realize 
it. This category of programming can require a good amount of sophistica
tion, and there are people who do user programming professionally. 

Application programming. Application Programming is what most people 
think of when the term programming is used. It refers to the development 
of programs used by end users to perform tasks or sets of related tasks. Ap
plication programs range from spreadsheet and word processor programs 
to graphical modeling or scientific data analysis packages. These programs 
rely on an operating system to perform certain functions, such as control
ling input/output (I/O) devices, but high-level programming languages, 
such as C and FORTRAN, often interpose a layer of software called a run
time library between applications and the OS to make applications porta
ble across operating systems. Run-time libraries for two high-level lan
guages commonly used for application programming with the iRMX 
operating system, PLM and C, are discussed in chapter 3. 

Systems programming. There are really two types of programming that 
qualify as systems programming. One type is the construction of the oper
ating system itself, and the other is the development of systems programs, 
which provides the tools that application programmers use in their work. 
In turn, system programs fall into two categories: development tools and 
utilities. 

1.2.1 Constructing an operating system 

An operating system serves two major functions. The first function is to 
provide application programmers with an abstract machine, a computer 
that is easier to program than the actual processor on which the OS is im
plemented. This function is normally provided through a set of subroutines 
referred to as system calls that any application program can invoke as 
needed. Although they are actually software routines, system calls serve 
conceptually as extensions to the hardware instruction set of the central 
processing unit (CPU). 

The second function of the OS, which is normally closely integrated with 
the first, is to manage resources in a controlled way for the various applica
tions running on the system. Resources that must be managed include pri
mary memory, use of the CPU, and control of I/O devices. Resource man
agement is integrated with the abstract machine in the sense that 
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application programs make system calls to access the resources managed 
by the as. 

The system calls provided by the as relieve application programmers of 
the burden of rewriting the code for functions needed by many different 
applications. The code is written once by the systems programmer and is 
either always resident in primary memory as part of the as, or is supplied 
as part of a library linked with just those applications that need it. Func
tions performed by system calls include allocating memory segments into 
which applications can store dynamically created data structures and rou
tines to read and write data between an application's data buffers and pe
ripheral devices. Both of these examples stress the necessity of functions 
incorporating resource management as an as system call: two applications 
running at the same time must not interfere with each other's use of system 
resources, and the as must provide the mechanisms for coordinating their 
activities. Furthermore, when exceptional conditions occur (such as one 
application attempting to access another application's private data seg
ment), the as also provides the code that responds to these conditions. 

A major feature that distinguishes programming an operating system 
from most application programming is the need to manage concurrent 
threads of execution. In a single CPU system, the processor can execute 
only a single instruction at a time, but hardware devices (such as I/O con
trollers and the device that keeps track of the time) generate interrupt re
quests that are not generally synchronized with the processor's execution. 
The as must manage the switch of CPU control to the routine that ser
vices an interrupt and then back to the application that was running when 
the interrupt occurred. It must also switch among the various applications 
that are ready to run at any particular moment. As you will see, managing 
concurrency is also a hallmark of real-time applications. This common 
feature of the two types of programming is the main reason this book 
claims to discuss both systems programming and real-time programming 
as it covers the iRMX real-time as. 

In addition to the issues of developing an abstract machine, managing 
resources, and dealing with concurrent threads of execution, an as devel
oper must decide how the code for the as is to be structured. It is possible 
to create an as as a single, monolithic piece of code, but this is not nor
mally done except in the case of very simple systems. More likely, various 
subsystems, such as the memory manager, I/O system, or user interface, 
are coded as separate modules and linked together to build the as itself. 
Adding parts to the as or changing existing parts involves developing or 
altering the code for a module and then rebuilding the as to include the 
changes. 

The iRMX for Windows version of iRMX has the ability to change the 
OS's configuration while the as is initializing and, to a lesser extent, while 
the as is running. The features of iRMX for Windows that support this 
configuration process are covered in chapters 9 and 12. Another iRMX fa-
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cility for building customized versions of the OS is called the Interactive 
Configuration Utility (lCU), which is also introduced in chapter 9. The lCU 
is not used with iRMX for Windows. 

1.2.2 Developing development tools and utilities 

Development tools include the compilers, linkers, loaders, and debugging 
programs that application programmers use to code and test their pro
grams. Development tools are coded much like application programs 
themselves. That is, compilers, linkers, loaders, and debugging programs 
are developed using compilers, linkers, loaders, and debugging pro
grams. What differentiates development tools from application programs 
is that development tools must be compatible with both each other and the 
operating system to generate other programs that can be executed. As a re
sult, systems programmers producing development tools must generally 
know more about the structure of the underlying operating system than 
application programmers. Also, developers of development tools have his
torically not been as concerned with portability as application program
mers. I 

Utility programs are routines that make an application programmer's 
job easier but can also be useful to end users. Examples of utilities include 
basic file maintenance programs (list, copy, move, and delete files), text ed
itors, and anything else someone deems useful. Examples of utilities for 
Unix are particularly numerous (grep, sort, more, etc.), and versions of 
many Unix tools have been ported to iRMX, DOS, and other operating 
systems. As this process suggests, many utilities either are, or can be made 
to be, portable across operating systems. 

Although portability is not a general concern in this book for reasons 
that should be clear by the end of the chapter, be aware that it is a matter of 
utmost concern to many software consumers, and thus is extremely im
portant to many software producers. Portable utility programs that fall 
into the systems program category must provide specific code for the dif
ferent systems on which they will run. Which code will actually be executed 
must be selected at compile time, link time, or run time. These terms are 
discussed in more detail in chapter 3, which reviews the entire software de
velopment process. 

The programming hierarchy shown at the beginning of this chapter 
shows real-time programming as a separate entity from user, application, 
and systems programming, one that parallels both the application and sys-

1 For perspective, consider the Portable C Compiler available for early Unix systems. This 
compiler was written mostly in the C language and could be easily ported to different systems, 
thus providing a convenient tool for porting Unix itself to new systems. The availability of 
this portable development tool was partly responsible for the early rise in the popularity of 
Unix. However, the Portable C Compiler could never be as efficient as a compiler built specifi
cally for a particular processor, and it was therefore replaced with more efficient, non-porta
ble versions as soon as practical. 
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tems levels. Real-time systems are applications in the sense that there are 
end users for real-time systems just as there are end users for conventional 
applications like word processing and spreadsheet programs. In addition, 
developing real-time applications requires the use of systems program
ming techniques that go beyond those used to develop conventional appli
cations. These techniques include explicitly managing resources such as 
the I/O system, primary memory, and the use ofthe CPU, and might go so 
far as to involve modifying or replacing OS modules or adding new system 
calls to the OS. The next section describes some of the important features 
of real-time systems that lead to this state of affairs. 

1.3 Real-Time Systems 

The defining characteristic of real-time systems is their need to meet 
deadlines, which are constraints on the amount of time the system is al
lowed for completing a computation or set of computations. Although real
time systems connote high speed, there is nothing preventing real-time 
systems from operating with deadlines measured in hours rather than 
fractions of a second. 

To develop the concept of real-time systems more fully, you must look at 
the environment in which real-time systems normally operate and the 
structure of many real-time systems that operate in these environments. 
Section 1.3.4 discusses deadlines specifically in the context of task sched
uling algorithms. Before looking at real-time applications, however, you 
should know that there are three ways in which the software for real-time 
systems can be structured: monolithic, kernel-based, and OS-based. 

Monolithic systems. Monolithic systems include all software for the sys
tem as a single block of code. This structure is usually practical only for 
very simple systems. 

Kernel-based systems. Kernel-based systems use a real-time kernel, avail
able from a vendor or developed in-house, to manage such real-time enti
ties as tasks and interrupts. The logic for the real-time application is coded 
separately from the kernel, and then linked with it to form the complete 
real-time system. 

OS-based systems. OS-based systems differ from kernel-based systems 
only in the range of functions provided by an OS compared to a kernel. A 
real-time OS provides normal OS functions (file system, user interface, 
etc.) in addition to the real-time functions supplied by a kernel. Some ver
sions of iRMX, for example, are based on an internal real-time kernel 
called iRMK. Some versions of iRMX, including iRMX for Windows, 
allow real-time applications to access iRMK functions directly. This fea
ture was added to the OS too late to be covered in this volume. 

Although this book is concerned with a real-time OS (iRMX), the dis
cussion of real-time concepts in this section generally applies to all three 
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types of real-time systems and includes some hardware topics that go 
beyond the scope of software structure as well. 

1.3.1 Real-time and embedded systems 

Real-time and embedded systems are practically identical. The choice of 
terms has more to do with what aspect ofthe system is being stressed than 
with different classes of systems. Embedded systems abound in everyday 
life, although the end users who come in contact with them seldom use the 
term. Just about any modern equipment has some form of automatic con
trol, usually depending on a computer embedded within it to perform its 
control functions. Robots and sophisticated military weapons are obvious 
examples of devices with embedded systems, but many microwave ovens, 
automobiles, manufacturing tools, and laboratory instruments also use 
embedded microprocessors. Conventional computer systems often include 
embedded systems in addition to the main CPU to perform high-perfor
mance graphics processing or smart disk caching. 

What characterizes embedded systems is that the end user does not in
teract with the system as a computer but as something else. The user inter
face to the embedded computer is perceived as the interface to the equip
ment being controlled rather than as a computer itself. Although a 
conventional keyboard, CRT, and pointing device might be used as the 
user interface for embedded systems, these interfaces often feature knobs, 
buttons, lights, and panel displays instead. Further, many embedded sys
tems are self-contained and do not need any user interface other than a 
switch to turn them on or off. 

Another feature of embedded systems is that they are typically dedicated 
systems. For example, the computer that controls your car's ignition does 
just that. It does not do word processing, spreadsheets, or games. The pro
cessor itself is often a general-purpose CPU, but the only code available to 
it is for the application at hand. There is no connection between your Nin
tendo's embedded computer and your microwave oven (yet!). 

Embedded systems almost always operate with real-time constraints. 
They must meet deadlines and, thus, are real-time systems by definition. 
As in real life, a deadline is simply the time at which a piece of work must be 
completed. Also as in real life, the contingency for missing a deadline might 
range from minor inconvenience (for example, stay late at work to finish 
the job in real life; achieve slightly less than optimal fuel efficiency in an 
automotive embedded system) to major catastrophe (lose your job for not 
completing a report; stall the engine in the middle of avoiding a collision). 

The term soft real-time refers to systems that can operate at a satisfac
tory level even if some deadlines are missed. The term hard real-time refers 
to systems that are considered to have failed if a deadline is missed. An ex
ample of a soft real-time embedded system might be a program that deter
mines the amount of fuel to be delivered each time a cylinder fires in an en-
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gine, but will use the value from the previous cycle if it misses its deadline. 
As long as too many deadlines are not missed, the engine will operate, but 
at less than its optimum performance. An example of a hard real-time sys
tem might be a robot that will walk off a cliff if its control system does not 
tell it to turn around soon enough. 

1.3.2 The structure of real-time and 
embedded systems 

To help you understand the nature of real-time systems, consider Figure 
1.1, which represents the general structure ofthe software for an embedded 
application. Each block represents a separate thread of execution called a 
task, which are called processes in the general as literature. Each task typi
cally executes code that is structured like Figure 1.2: after some initializa
tion, the task enters an endless loop in which it waits for an event to occur, 
processes the event when it does occur, and then returns to the top ofthe 
loop to await the next event. This type of processing is called an event loop, 
and is not unique to real-time systems. For example, graphical window 
systems are typically based on an event loop structure, where the events to 
be processed include keyboard presses, mouse clicks, and mouse motion 
reports. 

As a task computes its response to an event, it might generate additional 
events to be processed by other tasks in the system. For example, a mouse 
motion report might result in a mouse-entered window event in a graphics 
system. These internal events are shown in Figure 1.1 as lines connecting 
the input tasks to the processing tasks and connecting the processing tasks 
to the output tasks. The figure shows the most general case, but a single 
task might very well combine input, processing, and output functions 
without using any internal events. 

Input Tasks Processing Tasks Output Tasks 

Figure 1.1 Task structure of embedded application. 
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I Initialization J 

Wait for an Event 

Process the Event 

I 

Figure 1.2 Code structure for a task. 

The input events to an embedded system might come from conventional 
input devices but, as Figure 1.1 indicates, they might also come from sen
sors. Keyboards and mice are sensor input devices (they sense finger and 
hand movements), but embedded systems often receive their input from 
other types of sensors, such as a robot's visual sensors, or an automobile's 
air and engine temperature sensors. Another example of a real-time system 
that receives input events from a nonstandard input device is a stock
broker's program-trading system, which receives prices directly from the 
stock exchange and generates buy or sell orders in response. 

Figure 1.1 also indicates that embedded systems can generate nontradi
tional outputs, such as the control signals that operate actuators, the 
motors to move the parts of a robot, or the valves to control a manufactur
ing process. 

Nonstandard I/O devices are easily interfaced to computers so that they 
can be sensed and controlled in the same ways as traditional peripherals. 
On the other hand, real-time operating systems such as iRMX need to in
corporate provisions for interfacing application software to these non
standard devices while maintaining real-time performance. Techniques 
for doing this with iRMX are covered in chapter 9. 

1.3.3 Factors affecting real-time 
performance 

At one level, you can summarize the performance of a real-time system 
with one Boolean variable: either it meets its deadlines or it doesn't. Other 
important measures of a real-time system's performance are not discussed 
here, namely cost, fault-tolerance, and robustness. Rather, let us look at 
some of the secondary measures that contribute to the ability of a particu-
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lar computer to meet real-time deadlines. These include determinism, 
speed, context switch time, and interrupt response time. 

Up to now, I have used the terms real-time system and embedded system 
without making much distinction between the hardware and software that 
compose the system. This lack of distinction is appropriate, because a sys
tem as a whole relies on both hardware and software for successful opera
tion. In fact, many functions can be implemented using hardware, firm
ware (microcode), or software techniques, whatever is most appropriate for 
the situation. 

Hardware and firmware modules are typically faster than equivalent 
software routines but cost more to produce. Another way of looking at this 
issue is to remember that one crucial role of an operating system is to im
plement an abstract machine architecture on top of the real hardware, an 
abstract architecture that provides functions that match the needs of the 
system's applications more closely than the actual microprocessor's ma
chine instructions. This abstract machine can conceptually be imple
mented in software, firmware, or hardware, or any combination. 

A controversy in computer architecture exists that is relevant here. The 
controversy hinges on what level of abstraction is implemented in the pro
cessor's hardware or firmware. It is axiomatic that a more complex logic 
system must take more time to operate than a simpler one that uses the 
same circuit technology. The controversy is based on the notion that a sys
tem as a whole can execute faster by providing a very simple but very fast 
abstract machine in hardware, with software providing a more powerful 
abstract machine to the operating system user. Such processors are called 
reduced instruction set computers, or RISC processors. Processors that 
provide a more powerful abstract machine in hardware and firmware, such 
as the Intel microprocessors that are used to run iRMX, are called complex 
instruction set computers, or CISC processors. RISC processors presently 
enjoy a reputation for better performance than CISC processors using 
comparable fabrication technologies. 

The RISC/CISC issue is relevant to the present discussion because a 
processor's average speed is often considered an important measure of how 
well-suited it is for real-time applications. As mentioned earlier, however, 
nothing prevents real-time systems from operating with deadlines mea
sured in hours rather than fractions of a second. It's simply the existence of 
the deadlines that makes a system real-time. Nonetheless, it would seem 
likely that one processor that executes instructions faster than another 
would be more suitable for real-time systems. However, instruction execu
tion rate is not necessarily a good measure of a processor's speed for two 
reasons. 

Comparing the speeds of two processors with different instruction sets is 
an extremely difficult job to do, despite the variety of standard benchmark 
programs that claim to do so. The problem is that you must compare both 
the rate at which instructions are executed and the amount of useful work 
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done by each instruction. If a RISC processor executes its instructions 
twice as fast as a CISC processor, it must use no more than twice as many of 
those instructions to provide users with an abstract machine that is equiv
alent to the one provided by the CISC processor. 

More important than raw computing speed for real-time performance is 
a computing system's determinacy, meaning how much variability exists in 
the time it takes a given computation to be performed. As an example, con
sider a real-time application that imposes a I-millisecond deadline on the 
time a task is allowed to compute its response to some event. If Computer A 
can perform the computation in an average of 500 microseconds (half a 
millisecond) and Computer B requires an average of 550 microseconds to 
perform the same task, it is tempting to think that Computer A has a better 
real-time performance. But what if that 500-microsecond average con
sisted of 10 times that took 50 microseconds (Wow, look at that speed!) and 
one time that took 5000 microseconds (oops!) because the system's virtual 
memory manager had to swap in a page from disk for the task to complete? 
That 1 case in 11 trials is a missed real-time deadline, and Computer A 
could not be used for the real-time application. As long as Computer B's 
average is not based on any values greater than the I-millisecond deadline, 
one would have to say that it is the better one (indeed, the only one) for the 
application. 

Thus, the number of instructions executed per second and the average 
time to perform a computation are not the best measures of a processor's 
suitability for real-time applications. Two other measures of a processor's 
speed are often crucial in determining real-time performance, however. To 
complicate matters, these two measures are not purely dependent on the 
hardware being used but also on policies the as uses in managing various 
resources. 

The two measures are context switch time (CST) and interrupt response 
time (IRT). Context switch time is the time it takes the CPU to stop exe
cuting code for one task and start executing code for another task. This in
terval consists of three phases: 

1. Recognizing the need to perform a context switch and selecting the next 
task to execute. This is the scheduling problem discussed in the next 
section. 

2. Saving the state of the CPU's registers so that the current task can be 
resumed at a later time. 

3. Loading the CPU's registers with the values needed to start execution of 
the new task. 

The first phase is the responsibility of the OS's task scheduling software, 
and the other two phases depend, in part, on the microprocessor instruc
tions that are available for saving and restoring CPU registers to and from 
primary memory. It is debatable whether the scheduling phase is really 
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part of a system's CST or a separate (important) measure of a real-time 
system's performance. The iRMX techniques for keeping CSTs small are 
covered in chapters 5 and 6, which discuss hardware and software issues re
spectively. 

Interrupt response time is a measure of how much time elapses from the 
moment an I/O device indicates that it is ready to generate an event until 
the processor actually starts executing code in response to that event. At 
the hardware level, IRTs are limited by the constraint that processors rec
ognize interrupt requests only between the execution of machine instruc
tions. Many CISC processors include complex instructions that can take a 
long time to execute (a ratio of about 100: 1 execution time for the slowest 
and fastest 8086 instructions exists, for example), which can significantly 
impact hard real-time designs, which must be based on worst-case values. 
(A dedicated hard real-time system would be coded to avoid use of the slow
est instructions of the processor's repertoire.) However, IRT hardware 
considerations can easily be outweighed by the interrupt management pol
icy of the operating system, because OS routines can totally disable the 
CPU's response to interrupts for arbitrarily long periods of time. Real-time 
operating systems minimize the time that interrupts are disabled as much 
as possible, even at the expense of a longer IRT average (or other measures 
of average system performance). 

Most operating systems that support multiple threads of execution (not 
just real-time operating systems) reduce IRT by providing for two levels of 
software to be invoked by interrupts. For iRMX, these are called interrupt 
handlers, which execute in the same context as the currently running task 
(no CST), and interrupt tasks, which are scheduled for execution in com
petition with all other tasks in the system. Various interrupt hardware 
mechanisms are discussed in chapter 5, and iRMX interrupt handlers and 
interrupt tasks are covered in chapter 9. Rick Gerber ofIntel has developed 
two programs that can be used to determine the IRT (inttest) and the CST 
(switch) of an iRMX system. They are available, along with all the code 
presented in this book, from the author.2 

1.3.4 The scheduling problem 

The scheduling problem refers to the issue of which task is selected to use 
the CPU at a particular moment. The scheduling problem is fundamen
tally different for real-time systems than for other systems, such as time
sharing systems. Real-time systems must schedule tasks so that they all 
meet their execution deadlines. Generally, the number of context switches 
should be minimized for real-time systems so that more CPU time is avail
able for tasks working toward their deadlines. Timesharing systems, how
ever, often interrupt a running task (incurring an extra CST) to provide 

2 Anonymous ftp to ipcl. cs. qc. edu. 
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other tasks with their fair share of CPU time. This section looks at some of 
the variables of real-time task scheduling. The iRMX task scheduling algo
rithm is covered in more detail in chapter 6. 

A common feature of real-time task schedulers is their use of an algo
rithm called preemptive priority-based scheduling. This scheduling scheme 
simply assigns a numerical priority to each task in the system, the system 
keeps track of the scheduling state for each task, and the highest priority 
task that is in the "ready" state is always the one selected to run. The run
ning task continues to execute indefinitely. The only way for the running 
task to stop is for either of the two conditions that caused it to be selected 
for execution in the first place to become false. Either the task enters a 
scheduling state other than ready, or another task of higher priority enters 
the ready state. In the first case, the task relinquishes the CPU, either be
cause it has completed processing an event and met its deadline or because 
the task was blocked and cannot use the CPU until resources become avail
able. IIi the second case, the task has been preempted by another task. 

This simple scheduling algorithm can lead to very complex sequences of 
task selection, and by itself, might not provide an optimal solution to the 
scheduling problem for a particular application. The following examples 
illustrate these two points. 

Suppose, for example, that Ti represents the ith task in the system, and 
Ei represents the events to be processed by Ti. Assume that events Ei arrive 
for processing at a rate of Ai per second, that each Ei requires "Ci seconds of 
processing by T i , and that those "Ci seconds of processing time must be 
completed within bi seconds of real time to meet T/s deadline. Finally, Pi 

represents the scheduling priority ofTi (0 = highest priority). If two tasks 
with unequal priorities are ready to run at the same time, the one with the 
higher priority is the one that executes. 

Table 1.1 shows the results of simulating the behavior of three tasks 
using a preemptive priority-based scheduler. The values chosen for the pa
rameters were the following: 

Ti Ai Ti en Pi 

1 1.00 0.25 1.00 5 

2 0.67 0.30 1.50 10 

3 0.50 1.00 1.90 15 

These values cause the same sequence of events to repeat every 6 seconds, 
so the simulation was allowed to run for that amount of simulated time. 
The priorities ofthe three tasks were made proportional to the arrival rates 
of events for each task. That is, the higher the value of Ai, the lower the nu
merical value of Pi' This positive relationship between a task's priority and 
the arrival rate of the task's events (remember, numerically low means 
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TABLE 1.1 Scheduling Simulation of Three 
Tasks Running for a Six Second Period 
Using a Preemptive Priority-based Sched-
uling Algorithm. 

Task Balances 
Current Running (seconds) 

Time Task 
(seconds) (T;) 1 2 3 

0.00 1 0.25 0.30 1.00 
0.25 2 0.00 0.30 1.00 
0.55 3 0.00 0.00 1.00 
1.00 1 0.25 0.00 0.55 
1.25 3 0.00 0.00 0.55 
1.50 2 0.00 0.30 0.30 
1.80 3 0.00 0.00 0.30 

Deadline Missed for Task 3 by 0.20 seconds. 
1.90 3 0.00 0.00 0.20 

Error: Missed Event for Task 3 when 
balance = 0.10 seconds. 

2.00 1 0.25 0.00 0.10 
2.25 3 0.00 0.00 0.10 
2.35 none 0.00 0.00 0.00 
3.00 1 0.25 0.30 0.00 
3.25 2 0.00 0.30 0.00 
3.55 none 0.00 0.00 0.00 
4.00 1 0.25 0.00 1.00 
4.25 3 0.00 0.00 1.00 
4.50 2 0.00 0.30 0.75 
4.80 3 0.00 0.00 0.75 
5.00 1 0.25 0.00 0.55 
5.25 3 0.00 0.00 0.55 
5.80 none 0.00 0.00 0.00 

There were 1.30 seconds of idle time, and 
17 context switches 

high priority) is known as the rate-monotonic scheduling algorithm, which 
is commonly used in real-time systems. 

Note that the sequence in which the tasks execute does not follow a sim
ple pattern, despite the small number of scheduling parameters involved. 
Also note that this set of parameters leads to a missed deadline and a lost 
event for T3 • The simulation program assumed that an event that arrives 
for a task while that task is still processing a previous event will be dis
carded rather than queued for later execution. 

If the lost event in Table 1.1 had been queued instead of discarded, T 3 

would have executed for one additional second of CPU time (the value of 
'[3)' reducing the idle time for the simulation from 1.3 to 0.3 seconds. (An
other version ofthis example showed that there would have been no addi
tional missed deadlines in this case.) Because it appears that there would 
have been 0.3 seconds of idle CPU time even if T 3 had processed all of the 
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required events, the question arises of whether a different scheduling algo
rithm could have avoided the missed deadline. 

Table 1.2 shows that an adaptive scheduling algorithm could, indeed, 
have achieved the desired result by changing some of the values of Pi dy
namically rather than maintaining fixed values at all times. In particular, 
at time 1.50 seconds, the adaptive scheduler would see that the processing 
balance for Ta plus the balance for T2 is greater than the time until Ta's 
deadline, and would temporarily raise Ta's priority above T2's. 

It is possible to create a working real-time system without carefully con
sidering the scheduling problem. Just build the system and see if it works. 
But in cases where the system must not fail, the scheduling issue must be 
addressed. The actual values of Ai, Ti , and Ji for each task must be either 
measured or computed and the corresponding scheduling algorithm must 
be determined, possibly using a simulator such as the one that generated 
Tables 1.1 and 1.2. Furthermore, ifthe system requires an adaptive sched
uling policy, there must be a means for communicating each task's Ti and Ji 

to the scheduler, which must monitor each task's progress towards its 

TABLE 1.2 Scheduling Simulation of 
Three Tasks Running for a Six-Second 
Period Using an Adaptive Scheduling 
Algorithm. 

Task Balances 
Current Running (seconds) 

Time Task 
(seconds) (TJ 1 2 3 

0.00 1 0.25 0.30 1.00 
0.25 2 0.00 0.30 1.00 
0.55 3 0.00 0.00 1.00 
1.00 1 0.25 0.00 0.55 
1.25 3 0.00 0.00 0.55 
1.50 3 0.00 0.30 0.30 
1.80 2 0.00 0.30 0.00 
2.00 1 0.25 0.10 1.00 
2.25 2 0.00 0.10 1.00 
2.35 3 0.00 0.00 1.00 
3.00 1 0.25 0.30 0.35 
3.25 2 0.00 0.30 0.35 
3.55 3 0.00 0.00 0.35 
3.90 none 0.00 0.00 0.00 
4.00 1 0.25 0.00 1.00 
4.25 3 0.00 0.00 1.00 
4.50 2 0.00 0.30 0.75 
4.80 3 0.00 0.00 0.75 
5.00 1 0.25 0.00 0.55 
5.25 3 0.00 0.00 0.55 
5.80 none 0.00 0.00 0.00 

There were 0.30 seconds of idle time and 18 
context switches. 
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deadline. Real-time kernels and operating systems do not generally sup
port adaptive scheduling, so it would have to be implemented by the appli
cation itself. 

1.4 iRMX in Perspective 

iRMX is actually the name of a family of operating systems developed by 
Intel to run on the microprocessors they manufacture. It is a proprietary 
OS rather than an open system. iRMX, as most operating systems today, is 
developed and marketed by the same company that makes the processors 
that run it. Examples of other proprietary operating systems include VMS 
for VAX computers and VM for IBM mainframe computers. MS-DOS for 
PCs and MacOS for Macintosh computers are also proprietary operating 
systems, even though the companies that make the computer and OS are 
not the company that makes the microprocessor inside the computer. 
(MS-DOS runs on the same Intel microprocessors as iRMX, and the Mac
intosh currently uses Motorola microprocessors.) 

One characteristic of proprietary operating systems is that they gener
ally are not portable. That is, they are designed to run on one processor's 
architecture, or a family of compatible architectures from one company, 
and cannot be implemented on different processors. In the case of real
time systems where execution speed is usually very important, this means 
that the OS can be built to take advantage of special features of the pro
cessor on which it runs. As a consequence, it executes very efficiently 
compared to an OS that must be coded to work with some lowest common 
denominator of many processors' features. 

Some of the reasons for using a proprietary OS have more to do with 
marketing decisions than with system performance. If software is devel
oped to run on a proprietary system, customers are unlikely to switch to 
another vendor's computer because of the expense of porting existing 
applications to the new OS and processor. An open operating system, 
however, can run on a variety of different processor architectures, usually 
because the companies that make the different processors have underwrit
ten the cost of porting the OS to their machines. Customers are less locked 
into one vendor's computers. 

Unix is the primary example of an open system today. Originally devel
oped at AT&T for internal use, Unix has been licensed to dozens of differ
ent companies for use on their computers. There are, however, incompati
bilities among the many versions of Unix that exist today. BSD Unix from 
the University of California Berkeley, Unix System V from an organiza
tion called Uniforum that includes AT&T as a member, and OSF-l from 
an organization called the Open Software Foundation that includes IBM 
as a member. See the POSIX section later in the chapter for how all this 
relates to iRMX. 
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1.4.1 History and versions of iRMX 

The iRMX operating systems for the x86 family of microprocessors date 
back to 1978 when Intel introduced RMX-86 for use with 8086 and 8088 
microprocessors. An earlier operating system from Intel had existed with 
the RMX name and ran on the company's 8080 and 8085 microprocessors. 
Intel's goal had been to encourage engineers to develop new products based 
on the 8080 by providing them with the basic software needed to get var
ious projects started and to market as quickly as possible. RMX-86 was de
signed in the same tradition as RMX -80, and an early version of RMX -86 
even shared some code with its predecessor. 

Early microprocessors like the 8080 were not powerful enough to provide 
users with general-purpose computing, but were typically embedded into 
other equipment to control it. RMX for the 8080 was originally designed to 
be embedded into ROM along with the microprocessor, and current ver
sions of the OS still support this important feature. The actual develop
ment of a real-time application and the combination of the application 
with the OS were done on a separate computer system, also available from 
Intel, called a microcomputer development system (MDS). 

When developing applications, the MDS is known as the host, and the 
system that actually runs the application is called the target system. The 
MDS and its OS (iSIS) are no longer used. Instead, the host for developing 
real-time applications is now a PC running DOS, a workstation running 
Unix, or the target system running iRMX itself. Some of the features of 
iRMX that make it good for real-time systems, however, make it less de
sirable as a development system. The iRMX for Windows version ofiRMX 
allows developers to run both iRMX and MS-DOS on the same PC at the 
same time, thus providing the advantages of both environments, which is 
the standard configuration for running iRMX used in this book. 

As Intel introduced microprocessors with different architectures, it also 
introduced versions of iRMX tailored to those architectures. Today, three 
versions ofthe operating system correspond to the 8086 (iRMX I), 80286 
(iRMX II), and 80386 (iRMX III) architectures. Chapter 5 covers the ar
chitectures of these microprocessors and how they influence each version 
ofiRMX. In 1991, Intel introduced iRMX for Windows, which is compati
ble with Microsoft's MS-DOS and Windows products. iRMX for Windows 
includes all the features of normal iRMX III plus additional features that 
allow a single application to include real-time components that are man
aged by iRMX and conventional components that run "on the DOS side." 
DOS programs can make iRMX system calls, and iRMX programs can 
make DOS calls. Both sides can communicate with each other directly and 
with the user through Microsoft Windows. If desired, the user can switch 
control ofthe PC's keyboard and monitor from DOS to iRMX or vice versa 
using the hot-key combination <Alt/SysRq>. Chapter 12 explores in 
some detail how this version of iRMX works, including the features that 
this version of iRMX adds to normal iRMX III. 
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1.4.2 MS-DOS, OS-2, and Unix 

This section compares iRMX directly with a few other operating systems. 
The goal is to make it clear why each serves a different role in computer 
systems rather than to find one that is "better" or "worse" than another. 

MS-DOS. MS-DOS was developed to run on a microprocessor (the Intel 
80863) that can address, at most, 1 megabyte (MB) of primary memory and 
includes no hardware mechanism for controlling memory accesses, such as 
accidentally attempting to execute data instead of instructions. As an OS 
for the 8086 architecture, DOS was designed (properly) to support a single 
user running a single application on one personal computer. 

The OS includes no provision for multiple threads of execution, essen
tially no file system security mechanism (why protect the user from ac
cessing the files on his or her own computer?), and allows programs to 
freely modify the system's memory, device controllers, and registers. The 
tremendous popularity of the PC has invited a wealth of creative code to be 
written for DOS systems, including some real-time applications. 

The main disadvantages of DOS for real-time applications are its lack of 
support for multiple threads of execution; its lack of support for 
asynchronous I/O; the design of many of its device drivers, which disable 
interrupts for very long periods of time; and the difficulty of incorporating 
support for nonstandard I/O devices. Device driver software can be devel
oped and then loaded into the system when it is bootstrap loaded, but the 
OS itself does not provide support for the development process the way a 
real-time OS such as iRMX does. 

DOS allows a degree of systems programming. The command line pro
cessor is a separate piece of code from the rest of the OS, so substitute ver
sions can be developed. Custom device drivers can be loaded when a system 
is initialized. Utility programs and development tools can be built for DOS 
because the system's interface to such programs is well documented. But as 
far as programming the OS itself, DOS is closed to systems programmers. 

OS/2. When Intel developed the 80286 microprocessor that overcame the 
8086 architecture's memory addressing and protection limits, Microsoft 
and IBM developed OS/2 to provide an OS that is compatible with DOS, 
but which takes advantage of the 80286 architecture to add new features 
that would be competitive with Unix, the preferred OS for workstations. 
Although no one has really pinned this marketing term down, a worksta
tion generally connotes a single-user system that is more powerful than a 
PC. 

The three most important features of OS/2 for us are its support for mul
tiple threads of execution, its memory management facilities, and its sup-

3The Intel 8088 and 8086 sh~e the same processor architecture except for the number of 
bits that can be read or written per memory access. 
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port for interrupt management. Like time-sharing and real-time systems, 
OS/2 provides users with multiple threads of execution, and, like time
sharing systems, the user's control over these threads is more primitive 
than in real-time systems. 

For example, a primary objective of OS/2 is overall system performance, 
and to this end, the OS can manipulate the scheduling priority for threads 
(tasks) without informing the applications being run. Actually, there are 
three classes of priority (with 32 levels within each class), and tasks with a 
priority in the class, called time-critical, never have their levels changed by 
the OS. But threads that are designated regular or idle-time are subject to 
hidden priority changes. These hidden priority changes might seem remi
niscent of adaptive real-time scheduling mentioned earlier, but in OS/2 
scheduling, adaptations are made to improve overall average performance, 
not so that threads can meet deadlines. 

OS/2 provides a protected memory environment for applications. This 
feature uses hardware mechanisms in the 80286 and later microprocessors 
to ensure that different applications do not access each other's memory ei
ther inadvertently or maliciously. This feature is critical for the integrity of 
timesharing systems. A protected memory environment is valuable in sin
gle-user systems as well because it guarantees that applications that run 
concurrently will not interfere with each other. Protected memory is par
ticularly valuable during the development phase of any type of application, 
conventional or real-time. Without memory protection, a program error 
that causes information to be stored in the wrong part of memory (perhaps 
in the resident part of the operating system itself) might not be detected 
until much later, when the corrupted memory is accessed and causes the 
system to crash. With memory protection, such errors are detected as soon 
as they occur (even before the damage is done), and can be localized and 
debugged relatively easily. 

The protection features of OS/2 also provide a controlled interface be
tween application programs and the OS itself, including the restriction 
that application programs cannot perform certain privileged operations, 
such as I/O transfers. The 80286 protection mechanisms also make it pos
sible for the OS to manage access to hardware interrupts. In OS/2, each in
terrupt service routine must register itself with the OS to have a chance to 
respond to the interrupt signals. 

A popular DOS programming technique is to load a Terminate and Stay 
Resident (TSR) program that replaces the normal routine for responding 
to a particular interrupt. When an interrupt occurs, say from the keyboard, 
the TSR decides whether it will process the interrupt itself, such as if the 
interrupt was the user pressing a hot key (a special combination of keys) on 
the keyboard or not. If not, the new routine simply calls the original inter
rupt service routine to process the event normally. 

The OS/2 technique of registering interrupt handlers provides a more 
robust and orderly way to manage such chains of handlers than DOS, 



Introduction to Real-Time and Systems Programming 21 

which cannot monitor application programs' access to the memory con
taining the table of interrupt service routine addresses. 

Because DOS and OS/2 are based on corresponding processor architec
tures, they have a similar relationship to each other as iRMX I and iRMX 
II do. An obvious difference is that iRMX I supports multitasking, while 
DOS does not. Also, version 1.2 of OS/2 runs on any 80286 microprocessor 
or better, and version 2.0 runs only on 80386 microprocessors or better. 
These two versions of OS/2 correspond to the differences between iRMX 
II and iRMX III, notably the support for very large memory segments with 
the 80386 architecture. These architectural matters are covered in greater 
detail in chapter 5. 

Unix. I mentioned earlier that Unix is the preferred OS for workstations. 
In the context mentioned earlier, Unix and OS/2 are competitors for the 
single-user, high-performance computer system market. Indeed, Unix was 
first designed as a single-user version of the Multics OS that was running 
on large mainframe computers at the time Unix was developed. Unix soon 
became a time-sharing system in its own right, and today, it is imple
mented on a broad range of processors. This would, however, include pro
cessors from single-user workstations to supercomputers and mainframes 
supporting many users simultaneously. In addition to the wide range of 
available implementations, Unix is popular because it provides a flexible 
and powerful environment for the technical user. 

Unix is generally perceived as more difficult to use for casual users than 
DOS or even OS/2. This difference is becoming less of an issue, however, 
because Microsoft Windows for DOS, Presentation Manager for OS/2, 
and Motif for Unix's X Window system all provide similar graphical user 
interfaces. What makes Unix an important consideration is that efforts 
are being made to develop real-time versions of it, as you will see in the next 
section. To produce a real-time Unix OS, however, several issues must first 
be considered: 

• Unix processes cannot be preempted while they are in kernel mode. 

• Unix processes are expensive . 

• Unix use of interprocess communication for real-time applications. 

Unix processes cannot be preempted while they are in kernel mode (making 
system calls). This means that even a high-priority process might have to 
wait arbitrarily long after becoming ready before being scheduled to use the 
CPU. The logic for Unix kernel code is thus less prone to error, but it can be 
intolerable in real-time situations. Because this code is owned by whatever 
company owns Unix, the solution has been for other vendors to rewrite the 
kernel themselves to include what are called preemption points, places 
where processes executing kernel code will relinquish control of the CPU 
to higher-priority processes. 
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Unix processes are very expensive compared to tasks in a typical real-time sys
tem. Processes take a long time to create and context switches are slow 
because different processes are generally associated with different users. In 
a time-sharing environment, this means that each process must be pro
tected from other users' processes that might be running at the same time. 
Process scheduling must be more complex and thus slower than task 
scheduling. 

Another way to look at this issue is to say that Unix processes compete 
with each other for the use ofthe CPU, whereas real-time tasks typically 
cooperate with each other to meet deadlines. One way that some real-time 
Unix systems deal with this problem is to introduce lightweight processes. 
Lightweight processes are similar to real-time tasks in that they can be cre
ated quickly and, because they execute in the context of a single process, 
can be scheduled quickly without the security overhead associated with 
regular process scheduling. 

Interprocess communication. Another issue for developers of a real-time 
version of Unix is interprocess communication, or IPC. Unix provides a 
rich and flexible set of IPC mechanisms, including shared memory, ker
nel-mediated signals, pipes that carry the output of one process through a 
disk file to the input of another process, and sockets that allow processes to 
communicate with each other across networks using the same syntax as 
reading and writing disk files. The problem is that these mechanisms, in 
order to provide their rich functionality and flexibility, are much too slow 
to be used for intertask communication in many real-time applications. 
Even where attempts have been made to provide IPC functions typical of 
real-time systems, the Unix versions generally involve too much overhead 
for real-time use. The Unix System V semaphore, for example, is very 
complex and less efficient to use for synchronizing tasks compared to the 
equivalent mechanisms for iRMX or other real-time operating systems. 

1.4.3 POSIX 

Unix is the prototypical open system, but various incompatible versions of 
U nix are common on different computing platforms. To promote Unix as a 
portable OS, the IEEE Computer Society is developing a portable version 
of Unix, called Portable Operating System Interface for Computer Environ
ments (POSIX). The idea is that an application coded to meet the POSIX 
standard can be compiled and run without change on any system that is 
POSIX compliant. Vendors are free to add their own features of Unix and 
still claim POSIX compliance, provided their added features do not inter
fere with the POSIX functions. Thus, System V Release 4 (SVR4) and 
OSF -1 might be POSIX compliant, but incompatible with each other in 
various ways. 
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Standards take several different forms, such as industry standards, na
tional standards, and international standards. An industry standard is 
simply something that almost everyone in a particular industry does the 
same way. For example, the PC bus was developed by IBM, but IBM made 
its specifications public and encouraged other companies to build compati
ble products, thus making the bus an industry standard. National stan
dards such as those of the American National Standards Institute (ANSI) 
and International Standards Organization (ISO) are developed by com
mittees that include representatives of the companies or countries inter
ested in the standard. Formal standards are based on current common 
practice rather than creating new rules for doing things. There is a rich po
litical process involved in developing and approving new formal standards. 

The Institute of Electrical and Electronic Engineers (IEEE) is a profes
sional organization that is developing POSIX under its own initiative. One 
might expect IEEE to submit POSIX to ANSI or ISO for adoption but not 
necessarily.4 The only reason this would be of concern is if some other orga
nization produced a competing standard and submitted it to ANSI or ISO. 

The IEEE formed several subcommittees to develop different parts of 
the POSIX standard, and each has a name in the form PI003.x, where x in
dicates the area of concern. The standards developed by these subcommit
tees are often referred to with names like POSIX.I for the standard devel
oped by subcommittee PIO03.I. 

POSIX is an important consideration because it is a potential alterna
tive to iRMX as a target for real-time systems. Which system should be 
used depends on the proper trade-off level between portability and per
formance for a particular application. A real-time application that is devel
oped for iRMX can only be run on systems based on Intel's x86 family of 
microprocessors and cannot be expected to be portable to other processors; 
iRMX is not available for other types of CPUs. The huge number of sys
tems that run Intel x86 microprocessors mayor may not be relevant for a 
particular application. On the other hand, Unix is a very large OS com
pared to iRMX, with process, memory, and security management features 
that go far beyond those needed for most real-time applications. 

POSIX real-time and threads standards are added to basic Unix func
tionality. The result is, almost inevitably, a system with more overhead 
and poorer real-time performance than an iRMX system. There are four 
POSIX standards potentially related to iRMX. Currently only POSIX.I 
has been formally adopted by the IEEE. POSIX.4 should be approved in 
the near future, and other parts of the POSIX standard are still being de
veloped. 

'For example, the System Application Program Interface (API) [C Language] part of the 
standard (IEEE Standard 1003.1) has been adopted as ISO standard ISO/lEe 9945-1. 
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POSIX.1. System application program interface [C language]. This standard 
specifies a §!tandard application programming interface (API) to the OS. 
The Intel C compilers provide a POSIX.l interface to iRMX. Chapter 4 
explains in more detail how this is accomplished and the implications of 
how it is implemented. As a practical matter, POSIX.l compliance means 
that many utility programs for Unix for which there is publicly available 
source code run on iRMX systems.5 

POSIX.4. IEEE Realtime Extension for Portable Operating Systems. The fol
lowing material stating the scope of this standard is taken from a draft ver
sion of the standards document: 

The key elements of defining the scope are a) defining a sufficient set of func
tionality to cover a significant part of the realtime application program do
main, and b) defining sufficient performance constraints and performance re
lated functions to allow a realtime application to achieve deterministic 
response from the system. . . . The specific functional areas included in this 
standard and their scope includes: 

• Binary semaphores: the minimum synchronism primitive to serve as the 
basis for more complex synchronization mechanisms to be defined by the 
application program. 

• Process memory locking: a performance improvement facility to bind appli
cation programs into a computer system's high performance random access 
memory to avoid potential latencies introduced by operating system storage 
of not recently referenced parts of a program on secondary memory devices. 

• Shared memory: a performance improvement facility to allow separate ap
plication programs to have portions of their program image comonly acces
sible to them. 

• Priority scheduling: a performance and determinism improvement facility 
to allow applications to determine the order in which processes that are 
ready to run are granted access to CPU resources. 

• Real-time signal extension: a determinism improvement facility, augment
ing the signals mechanism of POSIX.l to enable asynchronous signal noti
fications to an application to be queued without impacting compatibility 
with the existing signals interface. 

• Timers: a functionality and determinism improvement facility to increase 
the resolution and capabilities of the time-base interface. 

• Interprocess communication: a functionality enhancement to add a high 
performance, deterministic interprocess communication facility for local 
communication. Network transparency is beyond the scope of this inter
face . 

• Synchronized input and output: a determinism and robustness improve
ment mechanism to enhance the data input and output mechanisms so that 

5 A rich source of such utilities is the Free Software Foundation of Cambridge, Massachu
setts. 
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an application can insure that the data being manipulated is physically 
present on secondary mass storage devices. 

• Asynchronous input and output: a functionality enhancement to allow an 
application process to queue data input and output commands with 
asynchronous notification of completion. This facility includes in its scope 
the requirements of supercomputer applications. 

• Real-time files: a performance and determinism improvement facility to 
allow an application program to pre-allocate mass storage resources and de
termine characteristics that will enhance the performance of data transfer 
to and from mass storage. 

• Extensions to POSIX.l: those changes needed to complete the definition of 
the facilities defined by this standard. 

• Performance metrics: each facility includes a set of performance metrics to 
allow a uniform treatment ofthe measurement of performance between dif
ferent conforming implementations.6 

iRMX either already conforms to many of these functional areas of 
POSIXA or can easily be made to do so. If you are interested, you can refer 
back to the preceding list as various iRMX topics are covered in the chap
ters ahead and consider what the impact of making iRMX POSIXA com
pliant would be on the OS's design and efficiency of implementation. For 
example, the complex semaphore mechanism of Unix System V is the basis 
for the POSIXA binary semaphore mechanism, and you might want to 
consider the issue of providing this function in iRMX after reading the 
discussion of the iRMX semaphore mechanism in chapter 7. 

POSIX.4a. Threads Extension to POSIX. The focus of POSIXAa is to add 
lightweight processes, called threads, to POSIXA, which is based on the 
standard (POSIX.l) process model. The relationship between POSIX 
processes and threads is approximately analogous to the relationship be
tween iRMX jobs and tasks, which is discussed in chapter 6. 

In addition to introducing threads themselves, POSIXAa also intro
duces features for synchronization between threads, control over thread 
scheduling, and extension of the POSIX.l signal mechanism to cover 
threads. The two synchronization primitives introduced by POSIXAa are 
mutexes and conditions. The mutex mechanism is closely related to the 
iRMX region introduced in chapter 7, but conditions have no direct analog 
in iRMX. The iRMX facility for creating composite objects, also intro
duced in chapter 7, could be used to create the equivalent of conditions. 

lIThe indented information contained on pages 24 - 25 is copyrighted information of the 
IEEE, extracted from IEEE 8td PlOO3.4/DlO-1991, copyright ©1991 by the Institute of 
Electrical and Electronics Engineers, Inc. This information was written within the context of 
the IEEE 8td PI003.4/DIO-1991. The IEEE takes no responsibility or liability for and will 
assume no liability for any damages resulting from reader's misinterpretation of said infor
mation resulting from the placement and context in this publication. Information is repro
duced with the permission of the IEEE. 
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POSIX.4a dictates that compliant implementations are to support at 
least two scheduling algorithms, priority based and round-robin, and pro
vides functions to assign these algorithms to individual threads. iRMX 
supports both priority and round-robin scheduling algorithms, although 
not with as rich a function set as POSIX.4a. iRMX task scheduling is de
scribed in chapter 6. 

POSIX signals are closely related to a process, which is only approxi
mately the same as an iRMX job. As a result, the signal mechanisms of 
POSIX.l and their extensions in POSIX.4a map only roughly onto iRMX 
systems. Actually, the proposed POSIX.4a extensions to signals were not 
well enough developed at the time of this writing to say much about them. 
Two iRMX features provide the functions for the situations that Unix sig
nals are meant to deal with: exception handlers, described in chapter 6, and 
signal characters, described in chapter 8. 

POSIX.16. Multiprocessing. PI003.16 is the name of the group working on 
multiprocessing extensions to POSIX. Some of the issues involved in de
veloping POSIX.4a were purposely deferred until POSIX.16 becomes es
tablished because of an overlap between certain multitasking and multi
processing concepts. 

All the computer systems considered in this book are based on com
puters with only one CPU, or CPUs operating independently of each other 
except for passing messages to one another. That is, one CPU runs all the 
code executed by all the tasks of all the applications that might be in pri
mary memory at one time, as well as all code executed on behalf of the OS 
itself. Conceptually, several tasks could be executing at the same time, but 
this is a case of virtual concurrency because a single CPU can actually exe
cute an instruction for only one task at any particular moment. The situa
tion is radically different if there are multiple CPUs to which different 
threads of execution can be assigned, because the concurrency between 
tasks becomes real rather than virtual. 

From a real-time application programmer's point of view, an application 
runs correctly on one CPU because the program manages task priorities 
and intertask synchronization to guarantee logical correctness without re
gard to the actual rate at which the processor executes the code for a partic
ular task. If two tasks of the same priority are ready to run at the same time, 
it should not matter whether they run one after the other or, by using mul
tiple CPU s, at the same time. You can expect some interesting issues to be 
raised as the POSIX.4a and POSIX.16 committees interact. Meanwhile, 
we can examine the iRMX operating system, confident that the multi
tasking features it supplies will bear at least conceptually on multiprocess
ing systems as well. 



Chapter 

2 
Using an iRMX System 

2.1 Overview 

Most programs developed for iRMX are real-time applications, and many 
ofthose applications interact with human users through nonstandard I/O 
devices - if at all. Such applications are often programmed on a non
iRMX computer, called a development system, which can also be used to 
help debug and integrate the application on an iRMX computer, called the 
target system. 

iRMX does, however, include a software layer called the Human Inter
face (HI) that allows you to use the as as a conventional time-sharing sys
tem, one that can be used as a development system in its own right. This 
chapter introduces you to the features of the HI that a user encounters 
while using iRMX as a time-sharing system, and the next chapter covers 
using an iRMX system as a development system. 

In addition to the HI layer, other layers ofthe as are referenced. These 
are the Nucleus, the Basic I/O System (BIOS), the Extended I/O System 
(EIOS), the Application Loader (AL), the Universal Development Inter
face (UDI), and the C run-time library.1 These other layers are covered in 
more detail in chapter 6 and beyond. Even if your iRMX applications do 
not use the iRMX HI, and you do your coding on a separate development 
system, you should become familiar with the topics covered in this chapter 
because they include concepts about the iRMX I/O system that will be im
portant later on. 

iRMX is not the first computer system most people work with, so brief 
references to DOS and Unix are included in the material that follows. 
These references serve two purposes: (1) They might clarify an iRMX 

1 Versions of iRMX can be configured that omit some of these layers. Such a configuration 
would be built for a system that has memory constraints or that does not need the functions 
supplied by certain layers. All configurations of iRMX include the Nucleus layer, however. 
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function to DOS and Unix users, and (2) they might warn DOS or Unix 
users that something that seems to be the same in iRMX is actually differ
ent. If any particular reference to DOS or Unix does not help you, simply 
ignore it. 

Like the rest of iRMX, the HI is very well documented in the manuals 
that accompany the system. The manuals, however, serve as reference doc
uments rather than tutorials; thus, the manuals often include references to 
somewhat obscure features of the system to be completely accurate. This 
book, on the other hand, tries to guide you in mastering iRMX. Keeping a 
topic clear while you are learning iRMX means being selective about what 
is included about that topic at any particular point in this book. If the sys
tem does not do what you expect it to, it may very well be that you have 
stumbled onto something that was only glossed over or is covered later in 
the book. So, when in doubt, RTM! (Read The Manual!). Of course, RTM 
only works if you know which manual to read, so do look through the com
plete documentation set for your version ofthe as to find out where to look 
things up later on. In this book, various volumes in the iRMX for Windows 
documentation set are referenced. These references are correct for iRMX 
for Windows version 2.0, but might be different for other releases of the 
operating system. 

2.2 iRMX Platforms 

Before using iRMX, you need to understand some background about the 
different platforms available for running iRMX. A platform is a type of 
computer system that can run iRMX software. Different platforms require 
different steps in the procedures. Conceptually, the various versions of 
iRMX (I, II, and III) can run on any computer that uses the appropriate 
Intel microprocessor. In practice, iRMX has built-in support for applica
tion development on just three platforms: the AT Bus, Multibus I, and 
Multibus II. 

The A T Bus platform refers to any industry-standard PC compatible 
with the IBM AT or later computer. Although the term A T Bus is used, the 
computer can use just about any bus at all, including the following: 

• The AT bus itself, which is also called the ISA bus. 

• The EISA bus, an extended version of the AT bus . 

• IBM's Micro Channel Adapter bus (MCA). 

• One ofthe buses used in PCs outside of the United States, such as those 
used by NEC and Fujitsu in Japan. 

The important feature of the platform for iRMX for Windows is simply 
that the computer contain code in an IBM or compatible ROM-BIOS for 
performing standard I/O operations. ISA, EISA, and MCA circuit boards 
cannot be intermixed within one computer system, but they are all pro
grammed the same way using subroutines supplied in the ROM BIOS. 
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Two versions of iRMX III were available for the AT platform: one ver
sion ran as a typical PC operating system, requiring its own disk partition 
from which the OS had to be bootstrap loaded and providing no interaction 
with the DOS operating system. This version of iRMX III for the AT plat
form was sometimes called the System 120 configuration. iRMX for Win
dows is the other version of iRMX III, and is the only version that Intel 
now supports for the AT platform.2a iRMX for Windows runs at the same 
time as DOS (a DOS command is used to bootstrap load iRMX for Win
dows), with a hot key, <alt/SysRq>, used to switch between the two 
operating systems. In addition to running concurrently with DOS, iRMX 
for Windows can use both the DOS disk partition for its files as well as an 
optional, separate iRMX partition for users who prefer the advantages of 
multi-user protection and longer file names offered by the iRMX file sys
tem. 

Note that you can edit and compile iRMX code on any PC platform that 
runs DOS because the iRMX software development tools (described in 
chapter 3) run under DOS as well as under iRMX. Normally, a program 
that is built to run under one OS will not run under a different OS. The de
velopment tools for iRMX, however, are an exception; an iRMX program 
called run86, coupled with their internal use of a software layer called the 
Universal Development Interface (UDI) allow Intel's DOS-hosted develop
ment tools to run under iRMX. You must, however, be running iRMX it
self on a PC to actually run and test an iRMX application, but the rest of 
the development cycle can be conducted under DOS without running 
iRMX. 

Multibus I and Multibus II were initially developed by Intel as designs 
for system buses. The designs have been adopted as open standards by the 
IEEE and are used by a number of vendors in the design of computer sys
tems. Like the various PC buses, the designs of these buses specify both the 
physical dimensions of the circuit boards that can be used with them and 
the mechanical and electrical parameters that must be matched for differ
ent circuit boards to interact properly in an integrated computer system. 
There is no standard ROM -BIOS for these two platforms, but to use iRMX 
with them as a development system, the circuit board containing the CPU 
must include code in ROM for bootstrap loading the OS from disk or a net
work.2 

2ISA, EISA, and MCA bus systems have the CPU, some memory, and various other circuits 
on a motherboard, which also holds bus connectors for the other circuit boards that can be 
installed in the system. Multibus I and Multibus II systems use a passive backplane to hold 
the connectors for all the circuit boards, including the one that holds the equivalent of a 
motherboard, which is called a Single Board Computer (SBC). With a passive backplane you 
can change CPUs by exchanging SBCs, and you can even have more than one SBC in the sys
tem. Processors in a multi-SBC system can share memory, and with Mulltibus II they can 
pass messages among themselves efficiently. Each processor in a multi-SBC system runs its 
own OS. 

2alntel introduced a version of iRMX too late to be included in this book that runs on an AT 
platform without requiring DOS to be present. 
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2.3 Logging on to an iRMX System 

Actually logging on to an iRMX systems is easy: just enter your user name 
at the login: prompt and your password at the password: prompt. Get
ting those prompts to appear, however, might not be as simple as on other 
time-sharing systems with which you are familiar! 

If you are running iRMX for Windows on a PC, you must run rmxtsr and 
loadrmx, either from the DOS prompt or from a batch file such as 
autoexec. bat. Then, press <al t/SysRq> to bring up the login screen 
from the DOS prompt. This hot-key technique for accessing iRMX works 
only from text screens on the DOS side. To access iRMX from Windows, 
which is a graphics application, start the wterm application that comes 
with iRMX for Windows (by double-clicking the icon), and select the 
[Wterm, connect] menu options. Note that some early versions ofwterm 
require you to click a few "OK" buttons to get to the iRMX login screen. 
Winterm a commercially available terminal emulator from Marketfield 
Software, Oyster Bay, N.Y., can be used in place ofwterm. Winterm offers 
more features and generally performs better than wterm. 

If you are working with a Multibus I or II platform rather than Windows, 
just powering up the system should produce the login screen on all the ter
minals attached to the system. 

If a terminal attached to the computer doesn't invite you to log in, there 
are two possibilities: 

First, the system might not be configured to recognize the terminal as a 
login terminal. For example, it is often convenient to have a terminal at
tached to a system reserved specifically for debugging programs inter
actively. SoftScope, the interactive debugger, allows a developer to use 
such a terminal for its own interactions with the user so that debugging 
commands and responses do not interfere with the appearance of the pro
gram being debugged, which continues to interact with the user's login ter
minal. 

Second, the system might be configured to recognize the terminal as a 
static login device, which means that a user gets automatically logged in to 
the system on that terminal at power up. For iRMX for Windows, a "termi
nal" might be either a separate terminal attached to the system through a 
serial port or the PC's own keyboard and monitor, referred to collectively 
as the system console. 

If you do not have an account on the system yet, you can probably log in 
with the user name "world," which is normally valid on all iRMX systems. 
There is usually no password for "world," so just press <Enter> when 
prompted for the password.3 

3 iRMX does not distinguish between uppercase and lowercase letters in commands and file 
names, similar to DOS, but unlike Unix. You can log in as "WORLD," "world," or "World," 
and it's all the same on iRMX. The one exception to this rule is your password, which must be 
entered using exactly the same alphabetic case(s) as when you set it up. 
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2.4 Entering Commands 

When you first log in, some commands will probably be executed automati
cally by a mechanism like the DOS autoexec. bat file or the Unix 
. login file. You will then interact with a program called the Command 
Line Interpreter (CLI, pronounced "klee"), which reads your commands 
from the keyboard and runs them. The CLI is equivalent to the DOS 
and Unix shell programs, command. com andjbinjsh, respectively. The de
fault CLI prompt string is a hyphen, but iRMX> is used in the examples 
throughout the book. A reference number that would not be typed by the 
user is also used at the end of command lines in the examples. For example, 
command line [1] represents a simple dir command entered by a user in re
sponse to a CLI prompt. (The dir command lists the names of the files and 
directories in the current directory.) 

iRMX> dir [I] 

You can correct typing mistakes on a command line before you press 
<Enter> by using the typical editing keys: 

• <backspace>, <delete>, or <rubout> (depending on your key
board), which erases the character to the left of the cursor. 

• The left and right arrow keys, which move the cursor within the com-
mand line so you can edit it. 

• <A F>, which erases the character under the cursor. 

• < A A>, which erases all characters from the cursor to the end of the line. 

• <esc>, which enters the command exactly as it appears on the screen. 

• <Return>, which erases from the cursor to the end ofthe line and then 
enters the command. 

• <&> at the end of the line, which continues long commands on more 
than one line. If you use < &>, you will see two asterisks as the prompt for 
continuation lines. 

The CLI command history mechanism allows you to recall previous 
commands for editing and entering. Press the up and down arrow keys to 
move up and down through the list of previous commands. Alternatively, 
you can type < ! > followed by the first few letters ofthe command you want 
to recall, and the CLI will search back for the last command that started 
with those letters. This mechanism is very similar to the Unix tcsh com
mand history mechanism, and similar in concept to the DOS 5.0 doskey 
facility. 

There are several other special keys, some of which can cause problems if 
pressed inadvertently. For example, < A S> is used to stop all output (so it 
doesn't scroll off the screen), and you have to type < A Q> to allow output to 
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resume. < A w> causes console output to stop every 20 lines or so. Press 
< A W> to display the next 20 lines. If your terminal seems frozen, it's possi
ble you pressed < A S> or < A W>. Pressing < A Q> twice will clear most such 
problems. The iRMX Command Reference, volume 10 of the iRMX for 
Windows documentation set, includes a list of all the special key combina
tions you can use in its first chapter. The corresponding manual for other 
versions of iRMX is called the iRMX Operator's Guide. 

The CLI can process two types of commands: CLI commands and HI 
commands. CLI commands are those recognized and processed by the CLI 
itself. HI commands are loaded into memory for execution from files. 

2.4.1 HI commands 

HI commands are the more commonly used commands. These commands 
come from a variety of sources. Many are supplied with the system and are 
known as system commands. A set of commands known as utilities, or 
Commonly Used System Programs (CUSPs) comes from Intel, the iRMX 
user's group called iRUG, and others." The distinction between system 
commands and Intel-supplied utilities can sometimes be obscure, with a 
command distributed as a utility at one time being promoted to system 
command status in a later release. A third set of commands is placed in the 
category of development tools, which includes compilers, linkers, debug
gers, and the like. Finally, HI commands also include those programs that 
you have developed. 

The HI commands are fully documented in the iRMX Command Sum
mary or iRMX User's Guide manual depending on the iRMX version. In 
addition, an iRMX help command displays information about most HI 
commands. (The DOS rmxhelp command can help you when you are using 
iRMX system calls, which is a different matter.) 

For a quick look at most of the names of the HI commands available on 
your system, type the following commands: 

iRMX> dir :system: 
iRMX> dir :utils: 
iRMX> dir :lang: 

[2] 
[3] 
[4] 

Command line [2] lists the names ofthe system commands, line [3] lists 
the names of the utilities, and line [4] lists the names of the development 
tools. Note that since dir is itself a system command, you should see its 
name in the first list of files. 

4iRUG originally began as the iRMX user's group but has expanded its purview to "all real
time systems based on Intel microprocessors." iRUG can be contacted by calling (800) 255-
!RUG (255-4784). 
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When you enter an HI command line, the CLI passes it on to the part of the 
as called the Human Interface (that's why they are called "HI Com
mands"), which, in turn, searches standard parts of the disk until it finds the 
file that contains the program, loads the program into RAM (using a part of 
the as called the Application Loader), and causes it to start executing. 

iRMX command lines have a standard format, consisting, from left to 
right, of the command name (the name of the file containing the program to 
run),aninputpathlist, 5apreposition,anoutputpathlist,andasetofparame
ters. If parts of a command line are omitted, default values are usually as
sumed, which often provide a single command with a number of different, 
but related, functions. Consider the system command, copy, for example. 

iRMX> copy filel to file2 [5] 

Here, the input path list is the name of one file, file 1, the preposition is 
to, and the output path list is the single file named file 2. No parameters 
are specified in this example. As you would expect, the command will create a 
new file, named f i le2, by copying f i lel. If f i le2 already exists, the user 
will be prompted whether to replace it or not. Changing the preposition from 
to to over suppresses that prompt, and any existing file named f ile2 is re
placed automatically. The only other prepositions used by iRMX com
mands besides to and over are after and as. Changing to to after in the 
example would cause filel to be appended to the end of file2. The as 
preposition cannot be used with the copy command. (In fact, purists claim 
that as is not a true iRMX preposition because it is not recognizedautomati
cally by the normal iRMX command line parsing routines.) 

Now let's experiment with input and output path lists. The items in a path 
list are separated by commas, so the input and output path lists in the follow
ing example consist of three file names each: 

iRMX> copy filel, file2, file3 to filea, fileb, filec [6] 

For this example, filel is copied to filea, file2 is copied to fileb, 
and file 3 is copied to f ilee. It is possible to not match the number of input 
and output lists evenly, provided the command makes sense. For example, 
the command 

iRMX> copy filel, file2, file3 to filea [7] 

5 A distinction exists between file names and path names. See the section on file manage
ment later in this chapter for more information. 
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would copy filel to filea, then copy file2 afterfilea,and file3 after 
that, resulting in the concatenation ofthe three input files in the single out
put file. The HI shifts the preposition from to to after automatically. 

If you omit the preposition and output file list, when using the copy 
command the input files are copied to the terminal screen. (You cannot 
omit the input file list from a copy command, but you can for many 
other commands.) 

For an example of a command line parameter, consider the following: 

iRMX> copy filel, file2 to filea, fileb query [8] 

You can tell that query is a parameter because there is no comma between 
it and f ileb. Commas separate items in the input and output path lists, 
while spaces separate path lists from the preposition, the output path list 
from the parameters, and the parameters from each other. The queryparam
eter causes copy to prompt you for permission before copying each file. 

Wildcards are supported for input and output path lists. An < * > substi
tutes for any zero or more characters in a file name, and a <? > substitutes 
for any single character. Examples of wildcards are shown in Section 2.5, 
File Management, below. 

The CLI also supports redirection of console input and output using the 
'<' and '>' characters, respectively. iRMX uses the terms console input and 
console output as well as these redirection characters the same way that 
DOS and Unix manipulate what they call standard input and standard 
output. Commands that normally accept input from the keyboard and pro
duce output on the screen can have files substituted for these devices using 
'<' and '>'. Console input redirection cannot be illustrated using copy be
cause it does not take input from the keyboard, but you have already seen 
that copy uses the screen as the default output device if no preposition and 
output path list are specified. Thus, 

iRMX> copy fUel> fUe2 [9] 

has the same effect as line [5]. If you understand that the input path list 
and console input are different, and that the output path list and console 
output are also different, you should see that lines [5] and [9] are accom
plishing the same command two totally different ways. For instance, you 
could not substitute '>' for to in line [6] (copying three files to three other 
files) because it makes sense only for a single file name to follow the '>' 
character. 

Although a standard format exists for iRMX command lines, this format 
is not always followed. Processing the command line according to the stan
dard format is something that must be done by the program itself, and not 
all commands need all parts of the standard line. The HI provides system 
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calls to do most of the parsing for a program, but some programs prefer not 
to use the HI routines but rather work with another syntax for the com
mand line for one reason or another. In particular, programs written in the 
C language normally treat the command line as a list of words separated by 
spaces rather than commas, and no notion of input list, preposition, output 
list, or wildcards exists. For example, a standard C program would read the 
command line 

iRMX> mycommand filel, file2, file3 [10) 

as a line with three command line arguments after the command name 
(each one a character string that has a comma at the end), but it would read 

iRMX> mycommand filel, file2, file3 [11) 

as a command name followed by a single argument, because there are no 
spaces following the commas. A standard iRMX program using the HI 
parsing routines would read both as lists of three file names because the HI 
parser ignores the spaces after the commas in line [10]. 

2.4.2 CLI commands 

CLI commands are executed directly by the command line interpreter. 
These commands support eight different features: history, CLI parame
ters, aliases, background processing, command files, super, and log off. 
This section describes these classes ofCLI commands. They are fully docu
mented in volume 10 of the iRMX for Windows documentation set, the 
iRMX Command Reference (called the iRMX Operator's Guide for some 
other versions of iRMX). 

History commands. As you type in commands at the iRMX> prompt, the 
CLI stores them in an internal list so that you can reuse them later. You 
can see this list by typing the history command, and you can recall previous 
commands by either using the up and down arrows to scroll through the 
history list, or using the <! > character to recall previous commands. A 
command line that starts with < ! > followed by either a number or a few 
characters causes the CLI to recall either the command with the matching 
number (the history list provides the numbers) or the most recently en
tered command that started with the same few characters. 

CLI parameters. The CLI maintains a number of parameters about the 
user's session. These parameters include the user's prompt string, how 
much space to reserve for the alias table (described next), and what type of 
terminal is being used. You can add special features to the CLI, such as 
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automatically timing the execution of all HI commands, and the eLI will 
display parameters for these added features, if they are present, as well. 
The set command is used to modify the eLI's parameters, and if no argu
ments are used, set displays the current values of all its parameters. 

Aliases. Aliases let you define abbreviations for commands. This can be 
useful for either reducing typing time (some ofthe iRMX command names 
are very long), or for customizing the iRMX system to recognize the com
mands you are accustomed to using on another system. For a combined ex
ample, consider using the alias cd for the name of the iRMX attachfile 
command, which is roughly the same as cd in both Unix and DOS. iRMX 
aliases can take arguments, as this example illustrates: 

iRMX> alias cp = copy #0 to #1 query [12] 

After entering this alias, the following command could be used to copy 
two files, with a prompt for confirmation before each one is copied: 

iRMX> cp filel, file2 filea, fileb [13] 

As you might infer, #0 and #1 in the alias are place holders for the argu
ments that are specified on the command line when the alias is actually 
used. Note that there are no spaces between the file names on the cp com
mand line. The significance of this is that alias substitution uses spaces to 
separate the command line into the parameters, #0 and #1, so the entire 
string, filel, file2 is substituted for #0, and the string filea, fileb is 
substituted for #1. The embedded commas in these strings then signify 
lists of file names for the copy command. 

Background processing. The eLI lets you run more than one program at a 
time. Any HI command line can be preceded by the eLI command back
ground, and the eLI will start the command running and return with a 
prompt for another command to be run at the same time as the first. The 
jobs command lists all background commands currently running, and the 
kill command aborts background commands. There is a standard alias for 
background, which is bk. 

The subject of background processing raises the issue of iRMX's mem
ory management policies. Like DOS but unlike Unix, iRMX does not in
clude support for virtual memory. Therefore, all programs you want to run 
simultaneously must be loaded into memory in their entirety at the same 
time. This strategy is good for real-time systems that cannot afford the un
certainty in execution time associated with demand-paging algorithms. 
However, this strategy can become a problem when you run certain pro
grams in the background, such as compilers, that ask the OS to allocate as 
much memory as possible to themselves when they first start running. The 
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more memory a compiler can get, the faster it can run, but the less memory 
is then left for running other commands at the same time. 

The background command lets you specify both the minimum and maxi
mum amount of memory a program can have available as it runs in the 
background. You might set the minimum high enough to get just accept
able performance from a program, and set the maximum low enough to en
sure the program does not occupy too much memory and leave you without 
enough memory to do anything else. For example, the command 

iRMX> background( 450,1024) plm386 myprog .plm [14) 

specifies that the PLM compiler is to run with a minimum of 450 kilobytes 
(KB) of memory and a maximum of 1 MB (1024 KB). Because the compiler 
can run with as little as 380 KB, the command guarantees that the com
piler will not start unless enough memory exists to give the compiler what 
the user considers to be acceptable performance. At the same time, the 
compiler is not allowed to use more than 1 MB, presumably because the 
user knows that enough memory is available beyond 1 MB to allow other 
commands to be run at the same time. 

If you entered line [14] as shown, the system would ask you for the name 
of a log file. Background commands cannot read or write from or to the op
erator's console because doing so would interfere with the use of the con
sole for normal commands read by the CLI. The CLI thus asks for the name 
of a log file to which all console output will automatically be sent as the pro
gram runs in the background. You can view the contents of the log file as 
the background command is running if you want to track the progress of 
the command. The skim utility is a convenient way to display text files on 
the screen. 

If a background command tries to read from the console input device 
(the keyboard), the command will be aborted. You can use '<' and '>' on 
the command line to redirect console input and output from and to files. If 
you redirect console output, you will not be prompted for the name of the 
log file. Below is an example of an interactive program named interact that 
runs in the background. The input the program reads comes from a file 
named input. data, and the output is redirected to interact . log: 

iRMX> bk interact < input.data > interact. log [15) 

Command files. Command aliases can reduce the typing needed to enter 
a single command; command files can extend this concept to sequences of 
commands. Use an editor to put the commands to be executed into a text 
file, and issue the CLI's submit command with the file name as an 
argument.6 If the command file name ends in . CSD you can omit that 

6Command files are often called submit files because they use the submit command. 
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part of the file name. You can supply arguments to the command file by 
enclosing a parameter list in parentheses on the command line and 
referring to them as %0, %1, ... %9 inside the file. For example, sup
pose the file doit. esd contains the following text: 

copy %0 to %1 
delete %0 query 

This command file might be invoked using the following command line: 

iRMX> submit doit(filel, file2) [16] 

In this case, filel would be copied to file2 and then would be deleted 
after the user confirms the file deletion. 

Command files can contain CLI commands, including other submit 
commands, alias commands, background commands, and the like. A useful 
strategy is to make submit the object of a background command. Chapter 3 
provides such an example after some of the program development tools 
have been introduced. 

iRMX command files are different from DOS batch files and Unix shell 
scripts primarily in the way they are invoked. DOS knows that a file is a 
command file by its . BAT extension, and Unix knows the same thing by 
looking at the state ofthe file's execute permission bit. iRMX lets you use 
any file as a command file, but you need to type submit (or a brief alias for 
submit, such as s) on the command line. 

Below is an alias for a command called do that will submit the command 
file named makei t. esd and pass three arguments to it: 

iRMX> alias do = submit make it (#0, #1, #3) [17] 

With this alias in place, you can save typing by entering the command 

iRMX> do myprog compact debug [18] 

which would be equivalent to the command 

iRMX> submit make it (myprog, compact, debug) [19] 

Although submit is a CLI command, there is also an HI command by the 
same name that comes with the system. The HI submit command operates 
the same as the CLI version, except that it does not recognize CLI com
mands within the command file. The HI command version of submit is 
useful to use from within the editor or debugger. These programs allow you 
to run HI commands without exiting the program; however, they use their 
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own command line interpreters, which can run only HI commands, and not 
eLi commands. 

Another HI command, called esubmit, is also supplied with iRMX. It not 
only supports the standard eLi commands within command files, but also 
supports conditional execution of commands based on the results of earlier 
commands. An example of an esubmit command file is shown in chapter 3. 

When you first log on to an iRMX system, a command file named 
: prog: r? logon is automatically submitted. (File names, and the file sys
tem in general, are described in the next section.) You can edit this file to 
contain any commands you want. Most users' r? logon files contain sub
mit commands for files consisting of alias commands that set up shorthand 
command names. There are usually two of these alias files submitted, one 
that is the same for all users on a system, and one that is unique to each 
user. 

In addition, whenever an iRMX system is first started, the file : can -
fig:r?init is automatically submitted as a command file. The com
mands in this file usually establish system-wide values, such as the sys
tem's network node name. A particularly important file submitted from 
: config: r?init is: config: load info, which loads programs that run 
while the operating system is running, including layers of the operating 
system itself. 7 

Super. Every user of an iRMX system is assigned a unique ID number be
tween 0 and 65,535. The file system uses these ID numbers to provide a 
basic protection mechanism for controlling one user's access to other 
users' files (discussed in the next subsection). The ID number 0 belongs to 
the Super user, who can read or change the access rights for any file on the 
system. The eLI's super command permits a user to gain Super user status. 
There is also a super HI command for use when commands are processed 
by a nonstandard command line interpreter, such as from within the editor 
or debugger. Both the eLI and the HI super commands use the command 
exit to leave Super-user mode. 

Logging off. Use the eLI's logoff command to end a time-sharing session. 
The file : prog: r? logof f, if it exists, will be submitted as a command 
file, and the logon: prompt for the next user will appear. If the terminal is 
configured for static logon rather than the usual dynamic logon, the static 
user will automatically be logged back on after submitting r?logoff. 

Table 2.1 lists all the iRMX files accessed when the system starts run
ning and when users log on and off. The files that have names beginning 

7 At the time of publication, loadinfo is used only with iRMX for Windows and iRMX III 
systems. 
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TABLE 2.1 Text Files Accessed When an iRMX System Starts Running, 
When Individual Users Log On or Off, and When the C Language getenv() 
Function is Called. 

File name Purpose 

: config: rmx. ini iRMX for Windows systems only. Contains operating system 
configuration parameters. 

: conf ig: r? ini t Contains HI commands that are automatically executed when 
the system starts running. 

: conf ig: loadinfo iRMX for Windows systems only. Invoked by a command in 
:config:r?init. Contains commands to instaliloadable 
parts of the operating system, such as device drivers. 

: conf ig: terminals A list of devices to which terminals are connected for accessing 
the system. The first line lists how many terminals I/O lines 
exist, and the succeeding lines list, for each line, the device 
name of the terminal, an optional user name who is to be 
logged onto the terminal automatically (static logon user), a 
reserved field, and the type of terminal connected to the I/O 
line. If no static logon user exists, the line is used for dynamic 
logins in which users must supply their name and password to 
access the system. If no initial program exists, the CLI is used. 

: config: logon.msg Contains the text of the message displayed on a terminal while 
the system waits for a dynamic logon user to log on. 

: config: udf User Definition File. User names, their encrypted passwords, 
and their user ID numbers are contained here. Used to validate 
login attempts. This file uses exactly the sallie format as the 
Unix /etc/passwd file, so it can be shared among iRMX and 
Unix systems in a networked environment. 

: config: user/* The * represents a set of files, one per authorized user. The file 
names match the user names in :config:udf. For each user, 
the corresponding file in this directory tells the minimum and 
maximum amount of memory the user is allowed to use, the 
maximum priority for user programs, the pathname of the 
user's home directory, and an optional initial program name. 

: conf ig: termcap Contains information used by the CLI, the editor, the 
SoftScope debugger (version III) and other programs to 
determine how a particular user's terminal handles moving the 
cursor, clearing the screen, and other such control operations. 
The CLI's set terminal command is used to select an entry 
from this file that can then be accessed by all programs. 

: conf ig: alias. csd A set of CLI alias commands that are to be established for all 
users who log onto the system. See : prog: r? logon below. 

: conf igilang3 8 6. als A set of aliases for running development tools. Submitted by 
:config:alias.csd. 

: config: r?env One oftwo files that are accessed by C programs to determine 
the value of environment variables using that language's 
getenv() function. 

: sd: user/* The home directories for users. The * normally matches the 
user's login name, but the actual path is determined by the 
contents of the user's :config: user/* file. The home 
directory contains another directory named prog that is 
referenced using the logical name : prog: in the following 
entries. 
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TABLE 2.1 Text Files Accessed When an iRMX System Starts Running, 
When Individual Users Log On or Off, and When the C Language getenvO 
Function is Called. (Continued) 

File name 

:prog:r?logon 

:prog:alias.csd 

:prog:r?logoff 

:prog:r?env 

Purpose 

Contains commands that are automatically executed when a 
user first logs on to the system. This file normally contains 
commands to submit :config:alias .csd and 
: prog: alias. csd as well as other commands to tailor the 
environment to the user's preferences. 
The other set of alias commands in addition to 
: conf ig: alias. csd that are usually set up by a submit 
command in prog:r?logon. 

Contains whatever commands a user wants executed 
automatically each time he or she logs off the system. 
The second file that is used to resolve references to 
environment variables using the C language getenv() function. 

with : conf ig: are normally managed by a system administrator, while 
the files with names that begin with : prog: can be edited by individual 
users to tailor the system to their own needs. Note that file names that 
begin with r? (or R?) are invisible for normal directory listings. Use the 
invisible (abbreviated i) parameter on the dir command line to see 
these files. For example, the command line 

iRMX> dir :prog: i [20] 

lists the names of all files in the user's: prog: directory, including invisi
ble ones. 

2.5 File Management 

All I/O facilities of iRMX are provided by a layer of as software called the 
Basic I/O System, or BIOS. This BIOS is not the same as the ROM-BIOS 
in a PC, although the iRMX for Windows BIOS makes some use of a PC's 
ROM-BIOS when accessing standard PC peripherals. More information 
about the iRMX BIOS, and the related EIOS, is provided in chapter 8. For 
now, just remember that BIOS is a software layer of the iRMX as. 

2.5.1 File protection 

Each iRMX file or directory has four protection attributes associated with 
it. They are called delete, read, append, and update for files. For directories, 
read is called list and update is called change to reflect the semantics of di
rectories more accurately. The BIOS keeps the protection attributes for 
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three different users of each file in a data structure called the file's accessor 
list. The three users are the file's owner (the user who created the file), and 
up to two others. User 0 (Super) has read access to all files, but to perform 
other operations on a file, even Super must be either the owner or one of the 
other two users identified in the file's accessor list. 

Your access rights to files can be displayed using the L (Long) parameter 
of the dir command, or the E (Extended) parameter, which allows you to 
look at the entire accessor list for the files. For example, to see the accessor 
lists for all files in the: system: directory, type: 

iRMX> dir :system: e 12l) 

A lot of output is generated from this command, including four or five 
lines of output for each file. The first line for each file includes the name of 
the file and the name of the owner of the file. The accessor list will appear 
toward the right side of the output, in a section that might look like this: 

ACCESSORS ACC 
o DRAU 
65535 -R--

This list is from a file owned by the Super user, so the first accessor in the 
list is 0, with ACCess rights of DR AU, which means delete, read, append, 
and update. The second user in this list is 65,535 (OxFFFF), which is the 
World user, who has only read access to this file. There is no third user. 

Everyone who logs on to an iRMX system is given at least two user IDs, 
one of which is unique to the individual and the other of which is always 
OxFFFF. By giving read access rights for this file to user OxFFFF, everyone 
who logs on to the system can read the file without being added to its acces
sor list. iRMX, by the way, does not distinguish between reading a file to 
copy it somewhere and reading it into memory for execution. Since the 
sample accessor list is for a file that contains a system command, all users 
must have read access to the file to be able to run it. 

The reason accessor lists allow three user IDs is based on the Unix file 
protection mechanism that provides independent access control for the 
owner of a file, a named group of users, and all other users. iRMX does not 
implement the notion of a named group of users, but users are assigned a 
group ID number when they log in if one has been established for them in 
the: config: udf file (see Table 2.1). The accessor list entries other than 
the first can contain any user IDs the file owner desires, or can be unused. 
There is no iRMX equivalent to the Unix clwwn command for changing 
the first ID in the accessor list for a file or directory. 

The entire notion of an accessor list applies only to native-mode iRMX 
file systems. When iRMX is used to access the files on a DOS disk, it must 
work within the constraints imposed by DOS itself, which does not support 
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a file protection mechanism based on user IDs. Instet ad, iRMX for Win
dows just accepts all iRMX commands concerning the iRMX protection 
mechanism, such as permit, but treats all user IDs as iRMX's World user. 
The issue arises again in the context of network access to file systems 
managed by another operating system. For example, a Unix file system 
does not differentiate between the iRMX append and update privileges 
(Unix has a single privilege called write), and iRMX does not differentiate 
between the Unix read and execute privileges (iRMX has a single read priv
ilege). These disparities are handled as transparently as possible, but the 
result is not always exactly what the user expected. 

2.5.2 The file driver concept 

A design feature of the iRMX BIOS is that all I/O devices look like files to 
application programs. This is true whether the I/O device is a disk con
taining real files, non -file devices such as terminals and printers, or devices 
and files accessed over a network. We have already seen how this feature 
provides good flexibility for application programs in the example that 
showed input and output redirection using the CLI '<' and '>' characters. 
A program that normally reads input from the console keyboard and writes 
its output to the console screen does so in the same way it reads and writes 
files, so that substituting disk files for both the keyboard and the screen 
devices is easy for the CLI to do without changing the program that does 
the I/O itself. 

To accomplish this device independence, the BIOS uses a mechanism 
known as a file driver. The iRMX file drivers are called physical, named, 
stream, remote, and (for iRMX for Windows) EDOS. When the BIOS is 
first informed that a particular device is to be used, the BIOS is also told 
which file driver to use for that device. After that, all operations involving 
that device are automatically filtered by the appropriate file driver. If you 
attempt something that does not make sense for a particular file driver, 
such as accessing a named file on a printer, the file driver will reject the re
quest, after examining it, with an error message, E $ I FDR, which stands for 
"Illegal file driver function." (iRMX error-handling is introduced later in 
this chapter.) 

On the other hand, if you try to access a file located on another computer 
system, the remote file driver will recognize the situation and automati
cally negotiate with the remote system to read and write the file over the 
network for you. More discussion on file drivers is provided in chapter 8. 

2.5.3 Named files 

The BIOS supports access to disk files by name using the named, remote, 
and EDOS file drivers. The named file driver supports the native-mode 
iRMX file system, the remote file driver supports any type of file system 
that can be accessed over the network (iRMX, DOS, V AX/VMS, or Unix 
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file systems), and the EDOS file driver supports MS-DOS file systems for 
iRMX for Windows. In all three cases, the file system is a way of organizing 
a disk volume to support a tree-structured hierarchy of directories and 
files. The root ofthe tree is the root directory, which contains the names of 
other directories and files. A particular file in the tree is uniquely identified 
by its full path name, which consists of the names of all directories, starting 
at the root, that must be accessed to locate the file. The <I> character sep
arates each directory level in a path name, so the path name /dirl/ 
dir2/filel refers to a file named filel in directory dir2, which is 
listed in directory dirl, which is in the root directory. The character <A > 
can be used in a path name to indicate going up in the tree rather than 
down, as is indicated with <I>. For the tree structure shown in Figure 2.1, 
the file file2 could be accessed using either the path name /dl/d2/ 
file2 or /d3 Adl/d2/file2 (among others). Both DOS and Unix use 
< .. > to represent the same thing as iRMX's <A>. 

An iRMX directory is simply a file that contains a list of file and direc
tory names along with an internal pointer to all the information known 
about the file for each file name. The actual information about the file, 
such as its size, its location on disk, and its accessor list, is kept in a sepa
rate file (called the {node file) rather the directory itself. 

File names. iRMX file names and directory names can consist of up to 14 
characters. No distinction is made between upper- and lowercase letters. 
You can use just about any characters you want in file and directory names, 
such as multiple dots, spaces, and the like. If you want to put wildcard char
acters or special symbols inside a name, enclose the name, or the part con
taining the special characters, in quotation marks. 

For example, <?> is a special character in a file name because it nor
mally acts as a wildcard substituting for any single character. To copy a file 
named: prog: r? logon (the <?> is part of the file name) to another file 

<root> 

d1 d3 

file4 
file3 

file1 file2 

Figure 2.1 Sample file system tree structure. 
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named my logon file (note the two embedded spaces), you could enter 
one of the following commands: 

iRMX> copy : prog : r' , ? ' , logon to ' 'my logon file' , 
iRMX> copy' ':prog:r?' 'logon to my" "logon" "file 

[22] 
[23] 

iRMX file names might or might not include an extension, which is a set 
of characters following the last dot in the file name. However, several de
velopment tools do create names of new files by changing the extension 
part of a file name. For example, the editor normally saves the original 
contents of an edited file in a file with the extension part of the name 
changed to . bak. Editing a file named myf i Ie. text results in the origi
nal file being preserved as myf i Ie. bak and the edited version of the file 
being saved in myf i Ie. text. 

Because dots are part of the file name, * . * is different from * as a wild
card specification. The former consists of all files that have names with 
zero or more characters, followed by a dot, followed by zero or more charac
ters. The latter refers to all files regardless of their names. 

Hidden files are those that do not appear in normal directory listings. 
This feature is normally used to reduce the clutter of directory listings 
rather than for any particular security reasons. iRMX hidden files have 
names that start with r? or, equivalently, R? You can always view hidden 
file names by using the i or invisible parameter to the dir command, as 
mentioned earlier. The file named : prog: r? logon is an example of a 
hidden file because : prog: is actually the path name for a directory (dis
cussed in the next section), and the name of the file itself starts with r? 
DOS supports hidden files with its hidden file attribute, and Unix hides file 
names that start with a dot. 

Similar to file attributes, iRMX file naming rules only apply to iRMX 
file systems. If you access files from another OS over a network or use the 
iRMX for Windows EDOS file driver to access MS-DOS files on a PC, 
some sort of mapping must exist between the file names of the two systems, 
which is never perfect. For example, MS-DOS file names cannot have <?> 
in them, so the EDOS file driver drops the r? from hidden file names and 
sets the MS-DOS hidden attribute for them. The EDOS file driver also 
forces file names to conform to the DOS 8.3 rule (a maximum of 8 charac
ters in the base plus a maximum of 3 characters in the extension) by short
ening the base and extension parts of the file name as necessary. The 
EDOS file driver totally rejects iRMX file names that contain illegal DOS 
characters, such as multiple dots. 

Logical names. A logical name is an identifier for a device, remote com
puter system, file, or directory. For now, our focus is on logical names for 
directories. Logical names are normally written with colons around them 
to distinguish them from regular file, directory, or device names, but the 
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colons can sometimes be omitted when no ambiguity exists, for example, 
when the only type of file that would appear somewhere is a logical name. 
Logical names follow the same rules as file and directory names except that 
they are limited to 12 characters between the colons, so that even with the 
two colons they are never longer than file or directory names. 

Two major reasons exist for having logical names. First they can save a 
lot of typing. If you want to reference the files in the directory /user/ 
jones/proj ectl/source many times, for example, you could assign the 
logical name : s: to the directory and refer to a file in it as : s : main
prog . c instead of /user/ jones/proj ectl/ source/mainprog. c. 
The command to set up logical names for files and directories is attachfile, 
so the command to create : s: would be: 

iRMX> attachfile /user/jones/projectl/source as : s: [24] 

This is a case, by the way, where the colons around the logical name can 
be left off. The identifier after the as in an attachfile command is always a 
logical name, so the colons around s are optional. 

Logical names are much more than just a convenience to save users typ
ing time. They also contribute to increasing the speed at which disk files 
are accessed. To locate a file with a long pathname, the BIOS must read 
each directory in the path from disk into memory to find the location on the 
disk of the next directory in the path. The BIOS then repeats the process 
for each directory in the path until it locates where the file is stored. Each 
disk access involved in processing a path name requires time, but the BIOS 
saves the information about the disk location of the last item in the path 
(either a directory or a file) when you set up a logical name, so the BIOS 
does not need to repeat the search process again when the logical name is 
used instead of the full path name. 

Logical names for directories can always be used as the first part of a 
path name. For example, the logical name : s: defined above could be used 
to access a file named /users/jones/projectl/source/old/ 
first_try. c by using the path name: s: old/first_try. c. The sec
ond form eliminates the time needed for disk accesses to the root directory, 
to the users directory, to the jones directory, to the projectl directory, 
and to the source directory when the file is first accessed. Furthermore, the 
same overhead would be eliminated for accesses to all other files in 
source. 

Logical names for devices look just like logical names for files or directo
ries, and the two are generally interchangeable. In fact, the logical name for 
a disk device with a named file system on it can be used as a logical name for 
the root directory of the file system. For example, : sd: is the logical name 
for the system disk, the disk from which the as was bootstrap loaded, so 
:sd:dl/d2/filel is generally the same as /dl/d2/filel. The two 
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forms do not always have identical meanings, however, which brings us to 
the next topic. 

Current and home directories. The current directory is that directory 
which serves as the default when you specify a file name only without an 
explicit path name before it. The logical name : $: always refers to the 
current directory, and the current directory is changed with the HI com
mand, attachfile. For example, to change the current directory to /user/ 
jones/projectl, enter the command: 

iRMX> attachfile /user/jones/projectl as : $: (25) 

This form of the attachfile command is so commonly used that as : $: is 
the default for the preposition and output file list if nothing else is specified 
on the attachfile command line. Most iRMX users set up the alias cd for 
attachfile so that the same effect as [25] is obtained by: 

iRMX> cd /user/jones/projectl (26) 

The colons around < $> are almost always optional, since it is impossible 
to start a file name with the <$> character. As a result, the names 
: $: filel, $filel, filel, and even "$filel' , all refer to exactly the 
same file. The HI path command displays the current path name of : $ :.8 

When you first log on to an iRMX system, the current directory is the 
home directory that was assigned to you when your account was first set 
up. The logical name for your home directory is : home: , and its position in 
the file tree can never be changed. Thus, : $: and : home: are both logical 
names for the same node in the file tree when you first log on. No matter 
where you go with your current directory, you can always return it to your 
home directory with the command: 

iRMX> attachfile :horne: as :$: (27) 

This operation is so commonly done that the attachfile defaults to this 
command when it is entered without command line arguments. Command 
[27] is similar to the cd command in Unix, but not to the cd command for 
DOS (which does what the iRMX path command does!). 

The difference between the two path names used previously, : sd: dl/ 
d2/first and/dl/d2/first, is based on the meaningofthe <I> at the 
beginning of a path name, which always refers to the root directory of the 

BDOS and Unix users should note that the iRMX path command is not the same as the 
DOS and Unix path commands, and no corresponding iRMX command exists for the Unix 
and DOS path commands. 
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file system that holds : $ : . If you use the attachfile command to move : $ : 
to another disk, <I> becomes the root directory of that other disk, but 
: sd: remains the root directory ofthe system disk, normally the one from 
which the OS was bootstrap loaded. 

Other standard logical names. So far, I have mentioned the logical names 
: sd:, : home:, and : $ :. An essential difference between : sd: and the 
other two is that every user who is logged on to a particular system is refer
ring to the same location with : sd :, but each user has separate copies of 
the logical names : home: and : $ : . Logical names that are the same for 
everybody, like : sd :, are called system logical names, and logical names 
that are different for each user on the system, like : home: and : $ :, are 
called user logical names. Examples of system logical names include the fol
lowing: 

sd: 

:system: 

:utils: 

:uti1286: 

:lang: 

:config: 

:rmx: 

:bb: 

The system device or the root directory of the system device. 

The directory that contains the HI system commands. 

The directory that contains utility programs. 

On iRMX for Windows and iRMX III systems, the directory 
that contains utility programs that run under iRMX II, iRMX 
III, or iRMX for Windows. 

The directory that contains the development tools. 

The directory that contains certain configuration information 
needed by the HI, including the User Definition File (UDF) that 
contains users' passwords, the terminals file that identifies 
static and dynamic logon terminals, and the r? ini t file that is 
submitted when the system is initialized. This directory also 
contains the loadinfo and rmx. ini system initialization 
files on iRMX for Windows and iRMX III systems. 

A directory that contains operating system-dependent files. 
For iRMX III and iRMX for Windows, this directory is 
:sd:rmx386. 

A pseudo-device that discards all information written to it and 
that always returns an end-of-file indication when read from. 
The name is an abbreviation for byte bucket. The device is sim
ilar to Unix /dev/null and DOS nul devices. 

The standard user logical names are the following: 

:home: 

: $: 

:prog: 

The user's home directory, which can never change. 

The current working directory. It can be changed with the attach
file command. 

The same as : home: prog. The directory containing the user's 
r?logon and r?logoff command files. The name is meant to 
suggest that this is the proper directory for keeping executable 



lei: 

leo: 

:term: 
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copies of utility or application programs that the user has devel
oped. 

The user's console input device. Normally the terminal or com
puter keyboard, but can be redirected to a file or other device using 
'<'. 
The user's console output device. Normally, this is the terminal or 
computer screen but can be redirected to a file or other device using 
'>'. 
The user's error output device. Same as : eo:, but cannot be redi
rected. 

Use the logicalnames command to display all the logical names defined on a sys
tem. Include the long option on the command to see what each logical name repre
sents. The alias logs is normally defined for the logicalnames command to save typ
ing. 

Search path list. The search path list is the list of directories that the HI 
searches to find a file containing a command to be executed. This list is es
tablished when the system is set up, and it cannot be changed by users. 
Thus, all users on an iRMX system must use the same search path. The 
normal search path list for iRMX for Windows is the sequence of logical 
names: 

:prog: 

:utils: 

:uti1286: 

:system: 

:lang: 

: $: 

:rmx: 

The search path list mechanism can be both convenient and disconcert
ing. It is convenient, for example, if you develop a program named copy and 
place it in your : prog: directory. You can run it by typing 

iRMX> copy a to b [28] 

The HI will find your version of copy to execute before it finds the normal 
iRMX copy command because :prog: comes earlier than: system: in 
the search path list. A system administrator could achieve the same result 
for all the users on a system by putting a local version of a system command 
in the :utils: or :uti1286: directory. 

The HI uses the search path list only for command lines that do not in
clude an explicit path name for the file containing the command to be run. 
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For example, if you have your own version of copy in : prog: but want to 
use the standard version that is in : system:, use a command line like the 
following: 

iRMX> : system: copy a to b [29) 

If the first character of a command line is < : >, </>, < A >, or < $>, the 
HI recognizes that an explicit path name is being used and ignores its 
search path list and goes immediately to the specified file to get the com
mand to be executed. You can use an alias to make an HI command start a 
little faster by specifying an explicit path name in the alias. For example, 

iRMX> alias cd = :system:attachfile [30) 

The search path list mechanism can be disconcerting, however, if a file 
with the same name as a command that you want to execute is in one of 
the directories in the HI search path. For example, if you create a text 
file named copy in your : prog: directory and then issue a copy command, 
the HI would find your text file in : prog : copy and try to execute it. The 
command would "mysteriously" fail because the text file named copy is 
not an executable program. The error message you would get would be: 
E$BAD_HEADER, while loading command, which means that the first 
part of the file (the header) was not in the proper format to be treated as an 
executable file. 

Another disconcerting phenomenon occurs when an installation uses a 
different search path from the one previously given.9 For example, consider 
what happens if : uti is: comes before: prog: in your system's search 
path list and you develop a program that happens to have the same name as 
a utility command that you didn't know about. The first time you test your 
program you will actually run the utility with the same name. You can lose 
a lot of time trying to understand why your program is doing things you 
never coded into it! 

One last point while we are discussing the HI command search mecha
nism: there is no rule about naming executable files differently from other 
files. If you put an executable program in a file named myprog . exe, then 
the name ofthe command is myprog.exe, not myprog, or anything else. The 
HI always looks for an exact match between the name of a command and a 
file name. 

9iRMX for Windows does not support a search path other than the one given above. A dif
ferent search path can only be set up for systems that can be reconfigured using the ICU. 
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2.5.4 Using floppy disks 

Floppy disks are good for saving copies of your work and distributing files 
to other people, so learning how to use them with iRMX has practical ad
vantages. Using floppy disks also introduces you to some fundamental I/O 
concepts that are developed further in chapter 8. 

Before any device can be used with an iRMX system, someone must 
create a device connection that gives a logical name to the device. Many 
device connections are automatically created when a system is first 
started, such as : sd: mentioned above. The attachdevice and detachdevice 
commands can be used to create and delete device connections and are the 
usual technique for handling the device connections for floppy disks. 

The attachdevice command requires you to specify the name of the de
vice, the associated logical name, and the name of the file driver to be used 
with the device. Device names are sometimes called physical names, or 
DUIBs (pronounced "doo-ib"), because they are the names of BIOS struc
tures called Device Unit Information Blocks. iRMX for Windows and 
iRMX III support a command called physnames that can be used to obtain 
information about the DUIBs available on a system. 

To use DOS diskettes from iRMX for Windows, you must use the ED OS 
file driver and the device names a _ dos and b _ dos to refer to the PC's A: 

and B: drives. If you booted DOS from the c: drive, c _ dos would have 
been attached as : s d: when iRMX started running. A typical attachdevice 
command would be 

iRMX> attachdevice a_dos as :a: edos [31] 

If you are running iRMX for Windows and only using DOS-formatted 
diskettes in your system, this command needs to be issued just once, from 
either a user's r? logon file or from the system's: conf ig: r? ini t file. A 
diskette must be in the drive when this command is issued for the com
mand to work. 

iRMX has its own way of formatting diskettes, however, that are advan
tageous for users who want longer file names and the security of the file 
protection mechanism that DOS cannot provide. These are the same ad
vantages that might prompt you to install an iRMX-formatted partition 
on the hard drive of an iRMX for Windows system, by the way. Of course, 
pure iRMX systems must rely on the native iRMX file system, although 
that system is flexible enough to allow iRMX users to import and export 
DOS diskettes by using some utility programs. 

Using iRMX diskettes is a more involved process than using DOS disk
ettes under iRMX for Windows, but understanding the process helps lay 
the groundwork for a deeper understanding of how the entire I/O system 
works. 
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First, there are dozens of floppy disk DUIB names to choose from when 
doing an attachdevice for an iRMX floppy diskette, depending on the size, 
density, and format of the diskette, as well as on which particular hardware 
controller (and thus, which computer platform) is being used for the drive 
itself. Knowing which device name to use can be a bit of a challenge. You 
can use the physname command to list the DUIBs on a system, but you 
have to know the meanings of the fields in a DUm to decide which one is 
correct for your needs. For iRMX for Windows, the list is in Appendix A of 
the iRMX for Windows iRMX Command Reference. For other versions of 
iRMX, the list is in the documentation for the attachdevice command it
self, which is in the iRMX Operator's Guide. Below is an example of an 
attachdevice command for a 3.5" 1.44 MB floppy disk located in the A: 

drive of a PC: 

iRMX> attachdevice amh as f named [32) 

After line [32] has been entered, both the device connection and the root 
directory of the iRMX file system on the floppy disk will be known as : f : . 
You could type 

iRMX> dir : f: [33) 

to list the names (files or directories) in the root directory ofthe floppy, or 

iRMX> copy * to : f : [34) 

to copy all the files in the current directory to the root directory of the 
floppy. Line [34] might not do exactly what you want, though, because copy 
will treat any subdirectories in the current directory as files. You will end 
up with a file rather than a subdirectory on the floppy with the same name 
as the subdirectory, but without the contents of the subdirectory on the 
floppy. The file with the name of your subdirectory will be a data file that 
contains the names and fnode pointers for the files in your original subdi
rectory. If you want to copy directories and subdirectories, you must use 
the copydir command instead of copy. 

To delete a device connection, use the detachdevice command, which 
simply needs the logical name, with or without colons, as an argument. For 
example: 

iRMX> detachdevice f [35) 

Now for the messy part. Every time you remove an iRMX-formatted 
diskette from a drive and insert another one, you must do a detachdevice 
command and another attachdevice command, even if the two diskettes are 
formatted exactly alike and even if all the files on the first diskette were 
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properly closed before removing it. If you don't do this, all the information 
on the second diskette will be destroyed the first time you write to it. The ex
planation for this unusual (to put it mildly) behavior illuminates a design 
philosophy of iRMX nicely. 

The iRMX BIOS improves diskette performance by keeping certain 
housekeeping information about the file system in RAM rather than going 
to the disk to get the information each time the diskette is read or written. 
It continues to use this information from memory until the device is de
tached. Thus, accessing the second diskette without detaching the first 
causes the BIOS to update basic file system information for the second one 
incorrectly. If the second diskette is write-protected, it will not be dam
aged, but you will not be able to read from it correctly until you detach and 
reattach the device. 

You do not have to do this procedure with DOS diskettes, even if they are 
accessed from the iRMX side of iRMX for Windows, because DOS always 
assumes a diskette has been changed when you access it and re-reads its 
housekeeping information from the diskette every time it is accessed. 
iRMX for Windows users will encounter the same overhead when access
ing DOS disks because the EDOS file driver uses DOS I/O routines to do 
the actual disk I/O. 

It is not always this way for iRMX. All8-inch diskette drives and most 
early 5.25-inch diskette drives had a contact switch in the door that sent a 
signal to the processor whenever someone opened the drive door to change 
diskettes. When this switch is present, iRMX detaches and attaches the 
device automatically. Most 5.25-inch and 3.5-inch drives today, however, 
don't generate this signal, so the process must be done manually when 
using the drives. Rather than degrade the speed of the system's floppy disk 
system, the designers ofthe iRMX I/O system placed the burden on the op
erator to use the system correctly. Other systems are willing to sacrifice 
performance to provide a more user-friendly environment. 

The flexibility of the iRMX I/O system should not be overlooked in this 
context. One reason there are so many DUIBs for floppy disks, for exam
ple, is that they are easy to create. Adding a new DUIB to a system, such as 
to support a different number of sectors per track, simply involves loading 
a device driver with the correct parameter values when an iRMX for Win
dows or iRMX III system initializes. For systems that support configura
tion using the ICU, the process consists of filling in a few menu screens and 
then building a new copy of the OS. The entire ICU configuration process 
can be completed in 15 minutes. 

2.5.5 Accessing network files 

This section assumes you have access to a local area network that supports 
ISO transport layer connectivity. Examples include Intel's OpenNet for 
iRMX, Xenix, Unix System V, VAX/VMS, and DOS. OpenNet uses ISO 
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standard protocols to pass messages among file servers and consumers. 
The messages themselves follow Microsoft's Server Message Block (SMB) 
format, so the list of compatible systems might expand if other vendors 
choose to follow these standards for their networking products. Internet
working with Transmission Control Protocol/Internet Protocol (TCP /IP) 
can be accomplished by connecting through Unix systems, and direct sup
port for TCP /IP under iRMX is being developed by Intel at the time of this 
writing. 

Because the iRMX for Windows EDOS file driver allows iRMX users 
and programs to access DOS peripherals, users running a Novell network 
on a PC with iRMX for Windows can access network drives from the 
iRMX side the same as they access local DOS disks. Chapters 11 and 12 
provide information about network programming, as well as more infor
mation about internetworking with TCP /IP and Novell networks from 
iRMX systems. The following material applies to the use of the OpenNet 
networking facilities for iRMX, called iRMX-Net. 

The remote file driver makes it as easy to access files across a network as 
on the system you are logged in to. It may be a bit slower, but it is just as 
easy. The process is just like using a floppy disk: issue an attachdevice com
mand to create a device connection to a remote system and to give that 
connection a logical name. Then, use that logical name just like any other 
logical name as the first part of a path name. 

To issue the attachdevice command, you need to know the name of the 
remote system to which you want to connect, just as you had to know the 
device name of the floppy disk in the previous section. The difference be
tween DUIB names and network names is that you can see a list of avail
able network names by using the netstat utility program, available from the 
user's group iRUG. You use the remote file driver for attaching over the 
network: 

iRMX> attachdevice systeml as 1 remote [36] 

Assuming there is a computer currently up on the network that has set 
its network name to systeml, line [36] will create the logical name: l:. 
You can see what public directories that system has offered to the network 
by giving a dir command 

iRMX> dir : 1: [37] 

The directory you will see is analogous to the root directory of a disk vol
ume. This directory is called a virtual root, and important differences exist 
between a virtual root and the root of a disk volume. The first difference is 
that you can never write anything to a virtual root directory over the net
work. Only users logged on to the local system can change the contents of 
that system's virtual root directory, which is done by using the offer and 
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remove commands. You can use the publicdir command to see your local 
system's virtual root directory. 

The other difference between the two directories is that a virtual root di
rectory can contain names for both devices and disk directories, and the 
disk directories can come from different disk volumes or from different di
rectory levels in a single volume. Assume that the following offer com
mands have been executed on systeml: 

iRMX> offer: f: as floppy 
iRMX>offer : sd: user/jones/projectl as proj 1 
iRMX>offer :sd:user as usr 

[38) 
[39) 
[40) 

Assuming that a floppy disk has been attached with the logical name 
: f :, line [38] lets remote users access the root directory of the floppy by 
using the public directory name floppy. For example, the user who ac
cessed systeml with the logical name: 1: (line [37]) could copy a file to 
the floppy with the command: 

iRMX> copy myf He to : 1: floppy /myf He. backup [ 4lpo 

Line [39] demonstrates the use of a subdirectory as a public directory. 
Creating a public directory can be done either to save remote users the 
trouble of typing long pathnames, or to restrict remote users to accessing 
only parts of a disk's file system. A remote user would not be able to access 
the j ones directory, for example, by referring to : 1: proj 1 A. That is, you 
can't go up from an entry in a remote system's virtual root directory. Line 
[ 40] illustrates that there might be different directories from the same disk 
in a virtual root, and, in this case, the path name: 1: usr/jones would 
refer to the jones directory. 

OpenNet distinguishes between file consumers and file servers. In the 
above examples, systeml was a file server, and the computer from which 
the user issued the attachdevice command was a file consumer. In practice, 
most OpenNet systems are configured as both servers and consumers 
simultaneously, with the exception of pure DOS systems, which cannot be 
servers without shutting out command processing for the local user. Net
works like OpenNet that are based on systems acting as both file servers 
and file consumers are called peer-based systems. 

The flexibility of peer-based systems can be seen using an example. As
sume that systeml and systemu are remote iRMX and Unix computers 
that have been attached with the logical names : 1: and : u: by a user on a 
local system running iRMX for Windows. The following command could 

10 Assuming that myf i le. backup is not the name of a directory, this is the first example of 
a copy command that creates a file with a different name from the original file. 
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be issued by the iRMX for Windows user to copy files from the iRMX sys
tem to the Unix system: 

iRMX> copy ,l,user/srnith/*.txt to ,u,usr/jones/*.bak [ 42]" 

Of course, this example works only if the iRMX for Windows user has 
proper access rights to the directories and files on the two systems. 

2.6 Printing Files 

Printer support for iRMX ranges from rudimentary to modestly rich. On a 
single-user system with a local printer, you can print files by using copy 
with the printer device as the destination. Of course, the device must be at
tached first. On a network or multiuser system the situation must be more 
complex to prevent multiple users from writing to the same printer at the 
same time. Unix systems provide good print spooling facilities for control
ling this situation. Thus, a Unix system on the network can be a good re
source for managing shared printers. Some DOS systems support print 
spooling as well. A print spooler for iRMX is also available from iRUG, 
along with an rprint command used to send files to that spooler or to 
Unix or DOS systems. 

2.7 Remote Login 

OpenNet supports logging on to a remote system through a mechanism 
called Virtual Terminals (VT) available from Intersoft, Inc. in Lake Os
wego, Oregon. An iRMX system must be explicitly configured as a VT 
server to allow remote users to log on. Unix OpenNet systems, however, 
normally act as virtual terminal servers by default. iRMX for Windows 
systems are not configured to be VT servers, but a VT server can be started 
after the system is loaded. 

The vt utility command is used to gain login access to a remote virtual 
terminal server. The only argument to the command is the network name 
of the remote computer. When the access is successful, you will see the 
logon: prompt from the remote computer, and you can log on as usual. 
Logging off returns you to the remote system's logon: prompt. To 
break the connection and return to your local system, type the sequence of 
characters, <cr><-><.><cr>. (That's "tilde-dot" at the beginning of a 
line.) Breaking the connection also logs you off the remote system if you 
have not done so already. 

The difference between working by remote login and using remote file 
access is a matter of which computer runs your commands. Using remote 

11 This is the first example of a copy command that shows the input path list and output 
path list matching through wildcards. The example copies all of smith's. txt files to files 
with the same base name in jones directory, but with the extensions changed to .bak. 
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file access, you could change your current directory to a directory on an
other computer's disk using the attachfile command, and copy, delete, and 
otherwise manipulate files just as if they were on your own computer disk. 
A copy command, however, is run on the local computer, and the files being 
copied pass over the network to your computer on the way to their destina
tion. That is, to copy a file from one remote computer to another remote 
computer, as in the iRMX to Unix example in line [42], you must copy 
the file over the network twice, once from the remote computer to the local 
computer's memory and again from the local computer to the remote com
puter's file system. 

With remote login, commands are executed by the remote system. If you 
do a remote login to a Unix system, for example, you must use cp, the name 
of the Unix copy command, to copy files. If you were to copy files across 
directories on the Unix system itself, the only information to travel over 
the network would be the characters you type and the messages that appear 
on your screen, not the actual files. 

2.8 Error Conditions 

Many things can go wrong when you run a command. iRMX provides a 
mechanism called an exception handler to deal with these situations. An 
exception handler is a subroutine that is called automatically whenever an 
error is detected by either the hardware or the operating system. Errors the 
hardware detects include arithmetic faults, such as division by zero, and 
general protection (GP) faults caused by illegal memory accesses on the 
80286 and above processors. Errors the OS detects are always associated 
with system calls (subroutines in the OS called by application programs to 
perform OS functions). 

Whenever a system call detects an error, it generates a numeric condi
tion code, also called an exception code, to identify the cause ofthe error. 
The operating system passes that code to the subroutine set up as the ex
ception handler. Application programs have complete control over which 
routine handles exceptions, but the OS supplies a default handler, the sys
tem exception handler, in case no other routine has been specified. For ex
ample, the HI sets up its own exception handler for the commands it runs, 
which is in effect unless the application overrides it with its own exception 
handler. The HI exception handler always aborts any command that 
causes an error after displaying a message on the console output device. 

The term exception is used instead of error because it more accurately 
reflects what is being detected rather than out of some need to use delicate 
terminology. Some exceptions really are errors, such as passing an illegal 
value as a parameter to a system call. But some exceptions are beyond the 
control of the programmer, such as trying to write to a printer that is out of 
paper. The exception handler mechanism lets programs deal with these 
two classes of exceptions differently. 
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Some configurations of iRMX are set up to use a monitor program as the 
exception handler for errors detected by the hardware. A monitor is a de
bugging facility that allows you to examine and modify registers and mem
ory and to execute individual machine instructions. Some monitors are 
implemented as software loaded with the OS or shortly afterward, while 
other monitors are stored in ROM so that they are available as soon as 
power is supplied to the computer. Using a monitor program as an excep
tion handler can be valuable when you are debugging an application, but 
for now it's more likely that you will simply want to abandon the program 
that caused the error and return to the eLI's iRMX> prompt. You will 
know when you are in the monitor program because it prompts for com
mands with two dot characters ( .. ), usually after displaying a message 
about what the error was and the memory address of the machine instruc
tion that caused the problem. 

The command to exit the monitor is g, followed by an address. For iRMX 
III and iRMX for Windows, use g284: Ie, while for iRMX II, g284: 14 
should work. iRMX I is a real-mode operating system (see chapter 5 for an 
explanation or real and protected modes), so there are no hardware traps 
that will take you into the monitor. iRMX for Windows can be set up to 
either break to a monitor or abort a program that encounters hardware 
faults. The choice is made by setting a parameter called DEH in the system's 
:eonfig:rmx.ini file to true (OFFh) if faulting programs are to be 
aborted, or to false (OOOh) if faulting programs are to cause a break to the 
monitor. 

A third type of error should be included here: those errors detected by an 
HI command because of invalid input data. For example, if you provide a 
compiler with a source program that contains syntax errors, the compiler 
(which is an HI command) will detect the problem itself and issue a diag
nostic message. 

The question remains what an iRMX user can do when faced with an 
error message from an exception handler, such as the HI's, that contains 
some cryptic string, such as 0021: E$FNEXIST. The number is the condi
tion code in hexadecimal generated by a system call, and the E $ string is a 
mnemonic name for that code. In this case, a File does Not EXIST. A com
plete list of exception codes, their E $ names, and a brief statement of what 
each one generally means is available to iRMX for Windows users through 
the DOS rmxhelp command supplied with that system. All the information 
available with rmxhelp is also contained in the iRMX System Call Refer
ence manual, Volume 9 of the iRMX for Windows documentation set, if 
you prefer to work from hard copy documentation. 

If you get an error message when you run a command that someone else 
programmed, it usually means you did something wrong. If you do not 
know what the problem is from the exception code (and by reading the doc-
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umentation for the command!), you can only write down the message and 
find someone who can help you. When running your own code during 
iRMX programming, such messages will tell you that your application is 
not yet fully debugged, and you will need to determine which system call in 
your program generated the exception and then fix the problem. 





Chapter 

3 
Developing an Application 

3.1 Overview 

Developing a real-time application involves two processes. The first is to 
design the application to match the requirements of the project using the 
resources available to implement it. The second is to construct the execut
able code. 

For an iRMX application, the design process includes deciding what 
tasks are needed for the application and how the tasks will synchronize and 
communicate with each other and the external environment. Later chap
ters in this book present the resources that are available for implementing 
real-time applications on iRMX systems. Formal or structured methodol
ogies for designing real-time applications are outside the scope of this 
book; the assumption is the design will be completed using either formal or 
informal techniques and proceed from there. 

Once the design of a real-time application has been completed, the sec
ond goal of constructing executable code can begin, which is the subject of 
this chapter. The executable code might be a Human Interface (HI) com
mand that is loaded into memory from a disk file each time it's run, it might 
be a device driver that enables the as to work with a new peripheral device, 
or it might be a new set of system subroutines that will be built into the as 
and loaded with it when the system is initially bootstrap loaded. 

Development is done in a cycle that includes editing, compiling, linking, 
and testing stages. Errors can be detected at any stage in the cycle, at which 
point the cycle returns to the beginning, the editing stage. At each stage a 
development tool is used to transform a disk file in some way. These devel
opment tools include text editors, compilers, linkers or binders (I do not 
distinguish between these two terms), and symbolic debuggers. 

Central to understanding the development process is the subject of pro
gram modules, and an overview of the types of modules involved in the de-
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velopment cycle is presented below. The chapter proceeds with a discus
sion covering types of modules and disk files involved in developing code. 

3.1.1 Program modules 

The types of modules used in developing applications are called source, ob
ject, and loadable modules. A source module is an ASCII text file produced 
by a text editor. An object module is the machine language representation 
of a source module that a compiler or assembler produces. Each run of a 
compiler accepts exactly one source module as input and produces exactly 
one object module for output. Most compilers allow pieces of source code, 
called include files, to be inserted into a source module during the compila
tion process. An object module must be processed by a linker or binder be
fore it is in a format suitable for execution. The linker or binder normally 
combines several object modules to produce a single loadable module. This 
book describes two types of loadable modules, although other types exist. 
One loadable module is called a single task loadable (STL) module, which is 
the type of module found in an executable disk file, such as an iRMX HI 
command. The other loadable module is called a bootstrap-loadable mod
ule, which is loaded for execution without any assistance from the as, 
often because it is the as itself. 

The generic term linkable module refers to any module that can be 
processed by a linker or binder. A linkable module can be a single object 
module produced by a compiler or assembler, or it can be constructed from 
several individual object modules by a previous execution of the linker or 
binder. A linkable module is not ready to be loaded into memory for execu
tion; it must be converted to an STL or bootstrap module first. A major 
difference between a bootstrap-Ioadable module and an STL module is 
that a bootstrap-Ioadable module must be loaded into a fixed part ofmem
ory for it to run, but an STL module is relocatable; it can be loaded into any 
part of memory for execution. 

Figure 3.1 shows the steps in the development process for an STL mod
ule, and Figure 3.2 shows the steps in the development process for a boot
strap-Ioadable module. Both figures show the process in terms of the files 
and development tools involved, with files represented by circles and 
development tools by rectangles. Source modules and include files are 
prepared using a text editor, an object module is generated from a source 
module by a compiler (or assembler), and both STL and linkable modules 
can be produced by a linker or binder. Figure 3.1 shows the binder being 
used to produce an STL module that can be run as an HI command, and 
Figure 3.2 shows the binder producing a linkable module, which is then 
combined with other linkable modules by a special binder, called the sys
tem builder, to produce a bootstrap-Ioadable module. 

The structure of a source module is determined by the programming lan
guage being used, and the structure of all other types of modules is deter-
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Figure 3.1 Development steps for an STL module, such as an HI command file. 

mined by a formal specification called the Object Module Format (OMF). 
Intel publishes different OMF specifications, depending on the architec
ture of the target-system microprocessor. Although iRMX I and MS-DOS 
both run on the same microprocessors, the 8086, and compatible architec
tures, Microsoft chose to use a slightly different OMF from Intel's for both 
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Figure 3.2 Development steps for a bootstrap-loadable module, such as an operating system 
image file. 



Developing an Application 65 

object modules and loadable modules. The iRMX I linker will accept object 
modules produced by DOS compilers, but the iRMX program loader will 
not accept loadable files that are in Microsoft's OMF. Because almost all 
programs must make system calls to a particular OS to perform such tasks 
as I/O and memory management, the inability to load DOS programs 
under iRMX is not really an issue because a DOS program would fail as 
soon as it tried to make a DOS system call. 

To iRMX users, this means you cannot run your favorite DOS spread
sheet or word processing program on iRMX, just as you cannot run them 
under any other operating system installed on your PC, such as Unix. With 
iRMX for Windows, however, you can run your DOS applications on DOS 
while running your iRMX applications on iRMX because both operating 
systems are in the PC at the same time. 

3.1.2 Development and target environments 

Before you can develop any program, you must decide on your development 
and target environments. The most popular development environment for 
iRMX applications is a PC running MS-DOS and, optionally, Microsoft 
Windows. The PC can be used with DOS to run all iRMX development 
tools, regardless of the target platform and version of iRMX (I, II, or III). 
Alternatively, an iRMX system can be used as the development system. 
iRMX I can be used only to run the development tools for iRMX I targets, 
but both iRMX II and III can be used to develop applications targeted for 
any of the three versions of the OS. With iRMX for Windows, the DOS and 
iRMX III development environments are just a keystroke away from each 
other, so a mixed development strategy can be chosen. 

Development tools that run under DOS are sometimes called DHDT, 
which stands for DOS-Hosted Development Tool. Likewise, tools that run 
on iRMX are calledRHDT (RMX-Hosted Development Tool), which are 
also sometimes called native-mode tools. Virtually all of Intel's DHDTs 
can be run on iRMX II or III as well if they are invoked under the control of 
a special utility program called run86. A bit of legerdemain is required to 
accomplish this feat, which relies on the development tools internally 
using the special set of system calls, the Universal Development Interface 
(UDI). The run86 program provides a special UDI-to-iRMX system call 
translator that is invoked as the development tool runs. Although run86 
enables you to run DHDTs on iRMX, remember that you still cannot run 
normal DOS applications from the iRMX prompt, because normal DOS 
applications make DOS system calls, not UDI system calls. 

The choice of a target system depends on the application. Small embed
ded applications (less than 1 MB, including the operating system) that can 
operate effectively without the benefits of hardware memory protection 
can be targeted for iRMX I systems. iRMX I applications are called real
mode programs in reference to the name for emulating the 8086 architec-
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ture with an 80286 or greater microprocessor. (The architecture of Intel 
microprocessors is reviewed in chapter 5.) Relatively small protected
mode applications (less than 16 MB, including the operating system) can 
be run effectively on iRMX II systems. However, performance degrades if 
the code or data for the application exceeds 64 kilobytes (KB) because of a 
16-bit limit on memory segment offset values for the 80286 architecture. 
Choosing an iRMX III target system can significantly improve perform
ance of large applications because the 80386 architecture allows 32-bit seg
ment address offsets (4-GB segment sizes), which essentially removes any 
size limitations on code and data. Protected-mode applications are called 
16-bit or 32-bit, depending on if they were developed for iRMX II or III. 

A valuable feature of iRMX III is that it runs 16-bit applications without 
any changes. If your target is an iRMX III system (including iRMX for 
Windows), you can choose to develop and run either 16-bit or 32-bit code. 
The tradeoff for 16-bit code is that the same loadable module can be used 
on iRMX II, iRMX III, or iRMX for Windows, but it will generally run 
slower than 32-bit code. 

3.1.3 Development steps 

Independent of the target system decision is whether your application will 
be run as an HI command or configured into the OS itself. HI commands 
are loaded into memory when the user enters the command name at the 
keyboard, and the memory they use is then freed when the commands ter
minate. Resident programs, on the other hand, never terminate and con
tinue to occupy memory until the system is rebooted or shut down. 

The distinction is primarily whether the application executes under user 
control or executes under the control of external events. This distinction is 
closely related to the difference between conventional and real-time appli
cations, but there are many exceptions. First, it is very convenient to run 
real-time applications as HI commands while they are being developed. 
When an error is found, the command can be aborted, repaired, and re-run 
without reloading or rebuilding the OS. The application can finally be con
figured into the OS after it has been debugged. Another possibility is a hy
brid application, in which part of the application acts as an extension to the 
OS and is made resident, providing functions that can be invoked by dy
namically run HI commands. A device driver is an example of this sort of 
code, and there are many others as well. 

Resident programs can be either incorporated into the loadable module 
that contains the operating system image itself or loaded into memory 
after iRMX starts running. The latter option requires the use of a special 
program called sysload that is available only for iRMX III and iRMX for 
Windows systems. 

Most of the steps used to develop HI commands and resident applica
tions are identical. Each step in the process consists of running a develop
ment tool that reads files as input and generates new files as output. As 
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Figure 3.1 shows, the steps to develop HI commands are editing, compil
ing, and binding. The STL file containing the resulting program can 
then be loaded into memory for execution either by a debugging program 
or by a part of the as called the Application Loader (AL). A resident ap
plication that is to be loaded by sysload is built in exactly the same way 
as an HI command, so Figure 3.1 applies to the development of both HI 
commands and some resident commands. 

A resident application that is to be configured into the operating system, 
as Figure 3.2 shows, includes an additional step in which the linkable mod
ules produced by the binder use another development tool, the system 
builder, to incorporate the application into an image of the as that is 
loaded into memory when the system is bootstrap loaded. Although the 
ICU (mentioned in chapter 2) is used specifically to generate a new copy of 
the iRMX operating system, the system builder is a general-purpose devel
opment tool that can build a bootstrap-Ioadable module for any operating 
system, or even a standalone application that runs without an as. 
3.1.4 Development tools 

The development tools must be able to run on the development system, 
must all be compatible with each other (since the files output by one tool 
are used as input to the next tool), and must generate a program that can 
run on the target system. Let's use the development of a C language appli
cation as a concrete example. Depending on whether you want to develop a 
real-mode, 16-bit, or 32-bit application, you need to use the iC86, iC286, or 
iC386 compiler, respectively . Versions ofthese three compilers are avail
able that run on DOS, iRMX II, and iRMX III systems. There is also a 
C-86 compiler that runs on iRMX I. The files produced by these compilers 
use different OMFs, so the appropriate linker or binder must be chosen to 
be compatible with the chosen compiler. Link86 can process the output of 
the C-86 compilers, bnd286 can process the output ofthe C-286 compilers, 
and bnd386 can process the output of both C-286 and C-386 compilers. 
There are versions of the linker and binders that run on different types of 
development systems, so the possibility for mismatching development 
tools may seem likely. In practice, you select your development and target 
systems, get the one set of tools you need, and go to work. 

3.2 A Sample Application 

To make the material in this chapter more concrete, the following sections 
will use the sample PLM program in Figures 3.3* (the main program) and 

*The first comment line of all sample code in this book includes the name of the file 
(hellormx. plm in this example) containing the code. The files are available by anonymous 
ftto ipcl. cs .qc. edv. Readers can also obtain the files by mailing a diskette to the author: 
Dr. Christopher Vickery, Computer Science Dept., Queens College of CUNY, Flushing, NY, 
11367-0909. 
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Figure 3.3 Source code for the sample PLM main program. 

/***> hellorrnx.plm <************************************************** 

* 
* sample PLM program for iRMX 
* -- main program 

* 
**********************************************************************/ 

$title ('Sample PLM Main Program') 
hellorrnx: DO; 
$include (hellorrnx.ext) 
DECLARE 

prompt (*) BYTE PUBLIC INITIAL (0, 'Type something: '), 
reply (81) BYTE, 
Status WORD_16; 

dosub: PROCEDURE (response$ptr, response$max) EXTERNAL; 
DECLARE 

response$ptr 
response$max 

END dosub; 

/* 

POINTER, 
WORD_16; 

* Execution Starts Here 
*/ 

prompt (0) size (prompt) - 1; 
CALL dosub (@reply, size (reply) - 1); 

CALL rqc$send$co$response (NIL, 0, @(11, 'You typed: .), @Status); 
CALL rqc$send$co$response (NIL, 0, @reply, @Status); 
CALL rq$exit$io$job (0, NIL, @Status); 

END hel1ormx; 

3.4 (a subroutine) as an example of an application to be developed into an 
iRMX HI command. Examples of resident applications are shown in later 
chapters when you have a better understanding of iRMX. This program is 
written in Programming Language for Microcomputers (PLM) and will 
run equally well under any version of iRMX. PLM was developed by Intel 
specifically to generate code for its microprocessors, and is the traditional 
systems programming language for iRMX systems. 

The C language, however, is quickly supplanting PLM as the language of 
choice for much of the work being conducted with iRMX, and will be the 
primary expository language in this book. PLM is used for the sample code 
in this chapter, however, because it illustrates the concepts of interest here 
a bit more clearly than the equivalent C program. If you have trouble fol
lowing the PLM code, you can refer to the equivalent ANSI eversion of the 
same program provided in chapter 4. The two languages are compared in 
some detail in that chapter. 

The main program and subroutine for the sample program are in differ
ent files (hellormx.plm and hellosub.plm). Each file contains vari-
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abIes referenced by the code in the other file. This structure for the sample 
program was chosen to illustrate some concepts in the binding step better 
than if the entire program was in a single file. It is not intended to illustrate 
an optimal design for the program, nor even to illustrate a typical iRMX 
application. 

The following discussion is quite detailed, so you might wish to refer to 
Figure 3.5 first to see the complete sequence of iRMX commands that 
could be used to build the sample program and run it. Lines [1] and [2] of 
the figure use the editor to create two source files, he 110rrnx . p1rn and 
hellosub. p1rn. Lines [3] and [4] compile the two source files to create two 
object module files, hellorrnx.obj and hellosub.obj. Line [5] binds 
the object module files with the necessary library module producing an ex
ecutable file named hellorrnx, and line [6] runs the program. 

Figure 3.4 Source code for the sample PLM subroutine. 

/***> hellosub.plrn <************************************************* 

Sample PLM program for iRMX 
-- subroutine 

**********************************************************************/ 
$title ('Sample PLM Subroutine') 
hellosub: DO; 
$include (hellosub.ext) 
DECLARE 

prompt (*) BYTE EXTERNAL, 
Status WORD_16; 

dosub: PROCEDURE (resp$ptr, resp$max) PUBLIC; 
DECLARE 

resp$ptr 
resp$max 

POINTER, 
WORD_16 ; 

CALL rqc$send$co$response (resp$ptr, resp$max, @prompt, @Status); 
RETURN; 

END dosub; 
END hellosub; 

Figure 3.5 A sequence of iRMX commands that could be used to build the sample program in 
this chapter. 

iRMX> aedit hellormx.plm [lJ 
iRMX> aedit hellosub.plm [2J 
iRMX> plm386 hellormx.plm compact debug [3J 
iRMX> plm386 hellosub.plm compact debug [4J 
iRMX> bnd386 hellorrnx.obj, hellosub.obj, & 
** /rrnx386/1ib/rrnxifc32.1ib, :lang:plm386.1ib rc(dm(O,OFFFFFFFFh» & 
** ss (stack(8192» rn(code32 to code) oj (hellorrnx) [5J 
iRMX> hellorrnx [6 J 
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3.3 Text Editing 

At the top of Figure 3.1, a source file is processed by an editor to produce a 
new source file. The original source file is optionally saved as a backup file 
in case the user wants to undo an entire editing session. 

Any text editor can be used to prepare files for use with iRMX but there 
is just one text editor that runs on both DOS and iRMX development 
systems-aedit. Aedit is a good, full-screen editor designed for use with 
terminals connected to the system through a serial communication link. As 
such, it does not support colors or mouse menus; however, it is very easy to 
use, very powerful, and, because it is available for both iRMX and MS
DOS (using either the PC's console or a terminal connected to a serial 
port), it can provide a useful consistency in editing as you switch between 
the two operating systems. Even if you will not be using aedit, you should 
still read the following paragraphs, but then skip the Aedit Usage Sum
mary section. 

The end of each line in an iRMX text file ends with the ASCII 
<cr><lf> (carriage return, line feed, OxOD, OxOA) sequence.1 There is no 
end-of-file character in text files. Aedit handles these conventions auto
matically, but using files developed on other systems or exporting iRMX 
text files to other systems might require minor adjustments. In particular, 
Unix systems terminate lines with just the <If> character, and Unix 
refers to that character as a "newline" «nl». 

To understand the difference between these two methods of ending 
lines, let's review the roles that the ASCII control codes <cr> and <1£> 
played on mechanical terminals: the <cr> character initiated the move
ment ofthe printing head to the left margin, an operation that took consid
erable time to complete, and the <1£> character advanced the paper up 
one line. By sending <cr> and <If> to mechanical terminals in that se
quence, the paper-up movement could occur while the carriage was moving 
left, and the terminal would be ready to print the next character when it 
arrived. That is, a new line operation required two characters, and these 
characters had to be received in the proper sequence for some terminals to 
work properly. 

CRT displays still use the same two ASCII codes to move the cursor left 
and down as independent operations, but the order is irrelevant because 
there are no mechanical timing constraints. Unix systems save file space 
by storing just the <1£> code at the end-of-text-file lines, but they must 
also generate the <cr> character whenever text is displayed to make it 
look right. Just to confuse matters a little bit, there will be places where you 

1 Items in <> represent single keys. The name of an ASCII code, a letter, the normal name 
on the keycap, or a letter with a modifier might appear inside the angle brackets. The modi
fiers used are alt- for the Alt key, and A for the control key. Modifier keys work like shift 
keys. 
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will see aedit refer to the <cr><lf> combination as <nl>, the same 
notation that Unix uses for the ASCII <If> character. 

The result of all this is that when you look at a Unix file on iRMX, the 
lines might walk across the page 

something like this 
because 

iRMX systems expect the file to contain the <cr> characters that tell 
when to return to the left margin. Most development tools for both iRMX 
and Unix are indifferent to the presence or absence of <cr> characters in 
practice, but you can always convert an entire Unix file to an iRMX file 
in aedit with the command sequence, <j><s></><r><AR><O> 
<a> <esc> <Enter> <esc>. An English translation is "Jump to Start 
of file, Replace all OxOA characters with <cr><lf>.2 

The other text file compatibility issue is the MS-DOS convention of in
serting a < A Z> character (Ox1A) at the end of text files. Most software for 
both iRMX and DOS is indifferent to the presence or absence ofthis char
acter as well. In aedit it looks like a <?> on the screen and can be deleted 
just like any other character in the file. 

3.3.1 Aec:lit usage summary 

If you will not be using aedit as your editor, you can skip this section. 
This summary of aedit operations is not a tutorial, simply a guide to the 

features of the editor to speed learning it. The Aedit User's Guide that ac
companies the system explains all the details. (The manual is Volume 12 of 
the iRMX for Windows documentation set.) 

When aedit starts, it reads an initial set of commands from a file called 
aedi t . mac. That file is in the same directory as aedit by default, but users 
can keep a personal copy in : home: . Aedi t . mac can contain commands 
that you would type at the keyboard as well as macro definitions. 

Intel supplies a set of macro definitions in a file called useful.mac that 
you can copy into your aedi t . mac file. These macros really are useful if 
you use aedit very much, and they are documented in the Aedit User's 
Guide. The following discussion assumes that none of the aedit defaults 
have been changed by commands in your aedi t . mac file. 

Aedit is always in one of three modes: insert, exchange, or command. In
sert and exchange are standard insert and overstrike modes for entering 
text. Use the arrow keys as usual. To go as far as possible horizontally or 
vertically, press an arrow key followed by the <Home> key. As far as possi
ble horizontally is to the left or right end of the line; the maximum verti
cally is forward or backward one screen length. <Backspace> erases the 

2If you export an iRMX file to Unix, vi will show < A M> at the end of each line «cr> is the 
same as control-M in ASCII). The vi command: 1, $8/ A VM/ / removes all the <cr> char
acters in the file. 
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character to the left of the cursor, <Del> or <AF> erases the character 
under the cursor. < A Z> erases the current line, and < A A> erases from the 
cursor to the end of the line. < A R> allows you to insert characters by giving 
their numeric values in hexadecimal (used in the carriage return example 
above). Note that aedit and the Command Line Interpreter (CLI) both use 
the same keys for editing a single line, except for aedi t' s <AA>, which is 
accomplished by <cr> in the CLI. 

In command mode, a menu of commands is shown at the bottom of the 
screen, and <tab> is used to scroll through the menu. (One of the 
useful. mac macros lets you use the spacebar in place of <tab>.) Typing 
the first letter of a command either executes the command, brings up a 
submenu, or produces a prompt for more information, such as text to be 
searched for or the name of a file to retrieve. Commands are terminated 
with the <esc> key, but for terminals without an <esc> key, aedi t can 
be configured to recognize some seldomly used character, such as <, > 
(backquote) for <esc>. Commands can be canceled by typing <AC>. 

Of course, the first command to learn is the last one, the one to exit the 
editor. For aedi t, that command is qui t, achieved by typing <Q> in com
mand mode. The <Q> command leads to a submenu with the following 
choices: 

• <A>, Abort the editing session without changing any disk files. 

• <E>, Exit the program, writing the newly edited file to disk. The original 
file being edited, if there was one, is also saved with the extension .BAK. 

• <w>, Write the file to disk, but stay in aedit. 

• <r>, Begin editing a new file without leaving aedi t. 

• <u> Same as Exit, but stay in aedi t. 

Aedit supports editing two files at once. The <0> (Other) command 
switches between the two. This feature is particularly well suited for edit
ing a source file and a listing file for the same program during the compila
tion stage (discussed in the next section). The <W> (Window) command 
splits the screen into top and bottom portions so you can view and edit two 
parts of one file or two different files at the same time. After splitting the 
screen into two windows, the <W> command is used to switch the cursor 
between the two, and <K> (Kill) returns the screen to a single window. The 
make utility (discussed in section 3.7.2) uses these commands to invoke an 
aedit session whenever syntax errors are discovered during compilation. 
The top part ofthe screen shows the statement in error with the compiler's 
error or warning message, and the lower part of the screen shows the source 
code with the cursor placed on the line that caused the error. The user can 
step through a sequence of syntax errors by typing the aedit command se
quence <E><esc>. 

To copy a block of text while in command mode, move the cursor to one 
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end ofthe block of characters you want to copy, type a <B>, and the cursor 
will become an <@>. Move the <@> cursor to the other end of the block you 
want to copy, and type <B> again to copy the block into an internal aedi t 
buffer. Now move the cursor to where you want the text copied, and type 
<G><En ter > or < A B> to insert a copy of the internal buffer into the file. 
To move a block instead of copying it, just use <D> instead of <B> in the 
above description. The <G> command used to insert the internal text 
buffer can also be used to insert the entire contents of a file into the one you 
are editing. Simply type the name of the file you want between the <G> and 
the <Enter>. 

The feature of aedit that you most want to carefully study is the macro 
facility. With a bit of practice, macros become very easy to define and use. 
Just to give a quick example, try typing the following sequence when 
aedit is in command mode: 

<M><C><PgUp><Enter><up arrow><Home><M> 

Those seven keystrokes create a macro named <PgUp> that will scroll up a 
screenful at a time every time you press the <PgUp> key. If you want to 
save the macro in your aedi t • mac file so it is automatically defined in 
each editing session, select aedi t . mac for editing, create the macro defi
nition' and type <M><s><PgUp><Enter>. The macro is saved as a se
quence of codes that the editor interprets as keyboard characters when it 
reads aedi t . mac. (A edit for DOS recognizes the <PgUp> and <PgDn> 
commands directly, so this example works only in aedit for iRMX.) 

3.4 Compiling 

The same command line can be used to run a compiler regardless of the de
velopment environment, although an alias might be required for the com
mand name on some systems, and certain logical names or environment 
variables might need to be established before a tool will run. Such details, 
however, are normally handled automatically by the installation process. 

The iRMX> prompt is used for the examples, even though users of the 
DOS-hosted compilers will see c> at the beginning of the line (and will be 
using <\> instead of <J>in path names). Assume that our sample PLM 
program is going to run as a 32-bit application on an iRMX III or iRMX for 
Windows target. That means that you must use the PLM -386 compiler, 
and the command line would look like line [3] presented in Figure 3.5: 

iRMX> plm386 hellormx.plm compact debug [3) 

The compact and debug parameters are compiler controls, and could al
ternatively be placed inside the source code file by using $compact debug 
as the first line of the file. The compact control is explained more in the 
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section on memory segmentation models later in this chapter, and the 
debug control is discussed in the section on debugging below. 

3.4.1 Source modules and source files 

The sample program is split into two source modules, contained in the two 
source files hellormx. plm and hellosub. plm. Inside each source file is 
a DO block with a label that is the same as the base part of the source file 
name. For example, hellormx.plm contains: 

hellorrnx: DO; 

END hellormx; 

A source module is defined as all the PLM statements inside the outer
most labeled DO block in the source file. Each file that is to be processed by 
the PLM compiler must contain exactly one source module. The $ti tIe 
statements in the sample source files are directives to the compiler rather 
than source code statements, so they do not need to be inside the DO block. 
The compact and debug controls tell the compiler how to compile the 
source module, so they must appear before the labeled DO block if they ap
pear inside the file. The label on the DO statement is the name of the source 
module. Generally, you use the same name for the source module as the 
base part of the source code file name so that you are compatible with the 
SoftScope debugger (discussed below). 

The C language does not have any syntactic structure that delimits a 
source module the way PLM does, but there is a C compiler control called 
modulename (abbreviated mn) that can be used to set the name of a mod
ule. If the mn control is not used, the compiler uses the base part of the 
source code file name as the source module name. 

3.4.2 Include files 

The code in a source module can come from more than one file by using the 
include directive provided by both C and PLM. The sample source files 
both contain include controls, one for the file hellormx. ext and the 
other for the file hellosub. ext. Before the compiler actually compiles a 
file, it creates a temporary file that contains all the statements from the 
source file with the code from any include files inserted in the appropriate 
location. Strictly speaking, this temporary file is the source module that is 
compiled, not just the contents of the source file itself. Include files for C 
programs typically have an extension of . h, and are called header files. 
They are discussed more in chapter 4. 

An important function of include files is to provide code that declares the 
names and argument types for subroutines that are not otherwise defined 
within the source module being compiled. An example of this type of decla-
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ration appears for the subroutine dosub(J in the code for hellorrnx .plrn. 
That same source module contains references to two other external sub
routines, the system calls rqcsendcoresponse( J and rqexitiojob( J. Note that 
the PLM compiler ignores the dollar sign character in symbolic names. 

The iRMX operating system provides text files with the external proce
dure declarations for every iRMX system call for each of the various pro
gramming languages used for iRMX development. For PLM, the file is 
called Irrnx386/inc/rrnxplrn. ext, and for C the corresponding header 
file is called: include: rrnxc .h. Some versions ofiRMX, notably iRMX 
for Windows versions 2.0 and later, come with an additional header file for 
C programs called: include: rrnx_c. h. This header file provides aliases 
for system call names that insert underscore characters for improved legi
bility, analogous to the dollar sign in PLM names. For example, rrnx_c.h 
changes rqcsendcoresponse( J and rqexitiojob( J to rq_ c _send_co Jesponse( J 
and rLexit_io.Job(). 

The appropriate include file should be included in every source file that 
contains iRMX system calls, but because these files contain the declara
tions for every system call supported by the OS, compiling all this included 
source code takes quite a bit of time. It can be worthwhile to build custom
ized include files that contain just the declarations for those system calls 
actually referenced by a particular source module. The utility program 
extgen, available from iRUG, generates such customized include files 
automatically for PLM programs. It was used to generate the files 
hellorrnx.ext and hellosub.ext by the command 

iRMX> extgen hellermx, hellesub (7) 

The code for hellorrnx. ext and hellosub. ext is listed in Figure 3.6 
and 3.7, respectively. These files include some boilerplate code that de
clares new data type names as literal substitutions for some of the data 

Figure 3.6 Included file, hellormx. ext, for the sample PLM main program. 

$save nelist 
/* This file was generated by EXTGEN */ 
DECLARE TOKEN LITERALLY 'SELECTOR', 

BOOLEAN LITERALLY 'BYTE', 
TRUE LITERALLY 'OFFh', 
FALSE LITERALLY 'OOOh'; 

$if WORDl6 
DECLARE WORD_16 LITERALLY 'WORD'; 
$else 
DECLARE WORD_16 LITERALLY 'HWORD'; 
$endif 

RQ$ExitIOJob: 
PROCEDURE ( 
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Figure 3.6 ( Continued) 

user$fault$code, 
return$data$ptr, 
except$ptr) EXTERNAL; 

DECLARE 
user$fault$code WORD_16, 
return$data$ptr POINTER, 
except$ptr POINTER; 

END RQ$ExitIOJob; 

RQ$C$SendCoResponse: 
PROCEDURE ( 

response$ptr, 
response$max, 
message$ptr, 
except$ptr) EXTERNAL; 

DECLARE 
response$ptr POINTER, 
response$max WORD_16, 
message$ptr POINTER, 
except$ptr POINTER; 

END RQ$C$SendCoResponse; 

$restore 

Figure 3.7 Included file, hello5ub. ext, for sample PLM subroutine. 

$save nolist 
/* This file was generated by EXTGEN */ 
DECLARE TOKEN LITERALLY 'SELECTOR', 

BOOLEAN LITERALLY 'BYTE', 
TRUE LITERALLY 'OFFh', 
FALSE LITERALLY 'OOOh'; 

$if WORD16 
DECLARE WORD_16 LITERALLY 'WORD'; 
$else 
DECLARE WORD_16 LITERALLY 'HWORD'; 
$ end if 

RQ$C$SendCoResponse: 
PROCEDURE ( 

response$ptr, 
response$max, 
message$ptr, 
except$ptr) EXTERNAL; 

DECLARE 
response$ptr POINTER, 
response$max WORD_16, 
message$ptr POINTER, 
except$ptr POINTER; 

END RQ$C$SendCoResponse; 

$restore 
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types recognized by the compiler. The data types WORD_16 and WORD_32 
are conditionally defined depending on the setting of the WORD16 or 
WORD32 control for the PLM-386 compiler. The PLM-386 compiler uses 
different data type names for 16- and 32-bit values, depending on which 
compiler control is in effect. The WORD16 control is used for PLM-286 
compatibility. All PLM programs in this book use $inc1ude to include a 
declaration file that was generated by extgen. 

3.4.3 Listing files 

As indicated in Figure 3.1, the compiler produces a listing file and an object 
file. These two files have the same base name as the source file, with an ex
tension of . LST for the listing file and. OBJ for the object file. For example, 
the two sample source files are he11ormx.1st, and he11ormx. obj. The 
object file is the one carried on to the binding stage of the development pro
cess, but the listing file is important now, before the object file is ready for 
use, because the listing file is where the compiler puts error messages indi
cating problems it had compiling the source file. 

When you get errors from the compiler, you must re-edit the source file 
to correct them while consulting the listing file to see what the errors were. 
Aedit's two editing buffers are very useful for this, because you can use the 
window command to view both the source and listing files at the same time. 
For convenience, you could use the following aedi t command line to load 
he110rmx .1st into aedi t's main editing buffer andhe11ormx. p1minto 
the other editing buffer at the same time. 

iRMX> aedit hellorrnx.lst-plrn (3] 

Aedit running on DOS versions prior to 5.0 does not support this form of 
command line. If you try it, only hello .1st will be loaded for editing and 
you will have to use the command sequence other, quit, ini t to load 
hello. p1m into the other buffer for editing. Keep in mind the following 
hints: 

• All error messages and warnings from the compilers start with three or 
four asterisks followed by a blank. If you remember not to use that se
quence of characters in your programs' comments or character strings, it 
is a convenient string to search for in the listing file as you look for error 
lines to fix. The angle brackets in the first line of each sample program in 
this book are there to prevent the line from containing the" * * * " string, 
for example. 

• Be careful to edit the source file, not the listing file, as you make your 
corrections! 

The listing file tells the lexical level for each source statement, which can 
be helpful when tracking down error messages from the compiler about il-
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legal nesting or mismatched block identifiers. In addition, the listing file 
can be augmented with information useful for debugging binder and run
time errors. Look up the symbols and code compiler controls in your lan
guage's Users Guide for more information. 

At the end ofthe listing file is a summary of how much memory is needed 
for each part of program: code, data, and stack. This information can be 
particularly valuable for real-mode and I6-bit applications that must keep 
track of segment sizes, as well as any other application with memory-size 
constraints. 

Finally, the listing file is designed for maintaining hard copy program 
documentation. For example, the ti tle directive (and for PLM, the sub
ti tle directive) generates a new page in the listing with header informa
tion that can make it easier for readers to follow the code. 

C programmers accustomed to the traditional Unix environment or to 
an integrated development environment will probably already have devel
oped work habits that do not include using listing files because Unix com
pilers traditionally do not produce them, and development environments 
provide error and source windows automatically linked to each other. 
Aedit's double file editing using the compiler's listing file is the closest 
thing available for development on iRMX systems. With Windows, you 
can keep multiple windows open for the editor and compiler, but you must 
keep their contents synchronized manually. 

3.4.4 Object files and object modules 

The compiler translates the source module into an object module and then 
places it into an object file. The compiler names the object module using 
the name ofthe source module, and it names the object file using the source 
file's base name plus the extension .OBJ. For C, the base name of the 
source file, the base name ofthe object file, the name ofthe source module, 
and the name of the object module are always the same unless you use the 
modulename compiler control. The same is also true for PLM programs, 
provided you explicitly name the source module the same as the base part 
of the source file's name. Thus, the source file hellormx. plm contains 
a source module named hellormx, and compilation produces an object 
file named hellormx. obj, which contains the object module named 
hellormx. 

If you compile using PLM386, the object module will adhere to the 
OMF -386 specification, which is compatible with the BND386 binder. For 
an iRMX I target, PLM86 would generate an OMF -86 format object mod
ule, which would be processed by the LINK86 linker. As you might expect, 
PLM286 generates OMF-286 object modules, and the corresponding 
binder is BND286 for iRMX II. In addition, however, BND386 can process 
OMF-286 object modules, and iRMX III can run OMF-286 STL modules. 
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3.5 Segmentation Models 

Each program that runs on a processor with an x86 architecture consists of 
three types of memory segments, called code, data, and stack.3 Code 
segments contain executable machine instructions, data segments contain 
data variables, and stack segments contain memory for parameters, return 
addresses, and local variables for subroutines. Data constants can be 
stored in either code or data segments. This segmented memory architec
ture is discussed more thoroughly in chapter 5. 

The compiler generates machine code for exactly one code, one data, and 
one stack segment for each object module that it produces. When the com
piler generates machine language instructions, it must use different types 
of memory pointers depending on how the segments from the object mod
ules that compose the program will be combined by the binder. The differ
ent rules the binder can use to combine separate object modules are called 
either memory segmentation models or models of compilation, and all object 
modules that will be linked by the binder must use the same model. The 
compiler must be told which segmentation model the binder will use so the 
compiler can generate the correct types of pointers in the object module. 

iRMX I and II programs use one of two different segmentation models, 
compact or large, while iRMX III and iRMX for Windows programs almost 
always use the compact model. The compilers, on the other hand, can gen
erate modules using models called small or medium as well as compact or 
large. For 32-bit bootstrap-loaded applications, another model called fiat is 
also available. You must explicitly tell the compiler which model to use be
cause both the PLM386 and C386 compilers default to the small model, 
which will not work for iRMX systems. The compact model was specified 
when compiling the source files for the sample program. 

The different models are described further in the next section on the 
binding stage of the development process, but a full understanding must 
wait until chapter 5, which describes the relevant features of x86 micro
processor architectures further. The whole subject is even more compli
cated because compilers support a facility called extended segmentation, 
which allows the careful programmer essentially to mix compilation 
models within a program. 

The most commonly used segmentation model is compact, which uses 
less memory for addresses and runs faster than the large model for real 
mode and I6-bit applications. The large model must be used for real mode 

3PLM-86 programs might have another segment called memory that serves somewhat the 
same function as blank common does for Fortran programs. All PLM programs that reference 
a built-in array named memory refer to locations within this segment. 
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and I6-bit applications that need more than 64 KB of code or data. For 32-
bit applications, the PLM-386 and iC-386 compilers treat large and com
pact models the same because each code and data segment can contain up 
to 4 GB.4 Thus, our example, which was compiled using the PLM -386 com
piler, would have produced the same object module if it had been compiled 
with the large model. 

When combining modules compiled using the compact model, the binder 
will produce a single code segment that contains all the code from all of the 
object modules it processes, plus one data segment containing all the data 
from all of the object modules it processes, plus one stack segment that is 
shared across all modules. For I6-bit applications, the large model still has 
a single stack segment, but the binder maintains separate code and data 
segments for each object module processed. 

Readers familiar with the segmentation models used for Microsoft and 
Borland C compilers will find that some of the Microsoft and Borland 
names for various models are the same as Intel's, but that the actual defini
tions of the models are different. Intel compilers, however, do not provide 
models named tiny or huge. The following list of corresponding names for 
segmentation models is only relatively accurate, but you can get an idea of 
how the segmentation model names do not match up across vendors. 

Intel Borland Microsoft 
small tiny 
compact small small 
medium compact compact 
medium medium 
large large large 
huge huge 

3.6 Binding an HI Command 

Once all the source modules for an application have been compiled without 
errors, the resulting object modules must be combined with other object 
modules to construct the program. Since our sample program is going to be 
a 32-bit application, we will use BND386 to do the binding. 

3.6.1 Input files: object files and libraries 

The format of a BND386 command line consists of an input file list fol
lowed by a number of parameters known as binder controls. For the sample 
program, the command line might be: 

4 Although the iC-386 and PLM-386 compilers seem to treat large and compact models the 
same, they set the combine-types of segments differently for the two modules. The binder 
then combines segments differently. It is also sometimes necessary to differentiate between 
near and far procedures and pointers. As described in chapter 5, the distinction involves 
whether selectors are involved in accessing a memory location or not. The C language pro
vides the key words near and far for dealing with this issue. Both PLM-386 and iC-386 can 
also handle such situations using extended segmentation controls. 
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iRMX> bnd386 hellorrnx.obj, hellosub.obj, & 

•• /rmx386/1ib/rmxifc32.1ib, :lang:plm386.1ib & 
•• rc (dm( 0, OFFFFFFFFh)) ss (stack (8192)) & 

•• rn (code32 to code) oj (helloplm) [4] 

Note that this is the same [4] in Figure 3.5. Remember, <&> tells the 
iRMX CLI that a command is continued on the next line and "* *" is the 
normal iRMX prompt for continuation lines. Long command lines such as 
this can also be put into a file referenced with the cf (command file) binder 
control, like this: 

iRMX< bnd386 cf(bnd386.cf) 

The command file bnd3 8 6 . cf would contain: 

hellormx. obj, hellosub. obj, & 

/rmx386/1ib/rmxifc32.1ib, :lang:plm386.1ib & 
rc (dm( 0, OFFFFFFFFh)) ss (stack( 8192)) & 

rn (code32 to code) oj (helloplm) 

[s) 

[4) 

This technique can be particularly useful for DOS-hosted development 
tools because DOS does not support continued command lines. Note that 
everything starting with rc ( dm ( .•. is a list of binder controls, which are 
described in the next section. For now, the focus is on the input file list. 

The input file list consists of all the file names that the binder will com
bine to build the executable program. For the sample program, the list con
sists of the two object files plus two library files called /rmx386/lib/ 
rmxifc32 . lib and: lang: plm3 86 . lib . The name of the first library 
file tells a bit about what it contains. I I rmxif I I indicates that this library 
contains iRMX interface procedures. That is, this file contains the sub
routines to allow programs to access the system call subroutines that are 
part of iRMX. Chapter 6 introduces the iRMX system call mechanism, 
and chapter 10 explains the mechanism in some detail. The next part of the 
file name, "c32," indicates that this library can be used with 32-bit appli
cations that are compiled using the compact segmentation model. As the 
sample source modules were both compiled using the compact control, 
and all modules processed by the binder must be compiled using the same 
model, the compact library must be used. For 16-bit applications, there are 
two other interface libraries, /rmx386/lib/rmxifc . lib for compact 
model programs and /rmx386/lib/rmxifl.lib for large model pro
grams, that would be used instead. The other input file is the PLM run
time library, which is described further in chapter 4. It is not actually 
needed for most iRMX application (including this one). 

Libraries are simply files that contain more than one object module. A 
special code in the first byte of the file, not the name of the file, tells the 
binder whether the file contains one object module or a library of object 
modules. The OMF -386 (or -286 or -86) specification describes the internal 
structure that both libraries and object modules must use. You can create a 
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library and add your own object modules to it (or remove or replace them) 
using the lib386, lib286, or lib86 librarian that comes with the system. The 
librarians can work interactively and have a good built-in help command. 

Selecting object modules to combine. The binder uses the object modules 
from every object file named in the input path list as it constructs a pro
gram, but it is selective about modules it uses from libraries. The reason for 
being selective is to save memory and binding time. There is no need to in
clude every object module from a big library just to get the few that are 
needed for a particular application. 

To understand how object modules are selected from libraries, first con
sider the process the binder uses to deal with the variables and procedures 
generally declared public and external in object modules.5 In the sample 
program, the procedure dosub is declared external in hellormx. plm 
and is declared public in hellosub. plm. Figure 3.8 represents the hel
lormx object module. 

When the compiler encounters the CALL dosub statement, it generates 
part of a machine language call instruction, but it cannot fill in the ad
dress of dosub needed to complete the instruction. Instead, the compiler 
leaves space for the address in the instruction's code, indicated by a box 
with a question mark in the figure. The compiler includes the ASCII name 
dosub in the Fixup List that is part of the object module, along with a link 
from the ASCII name to the incomplete address in the code segment.6 

There will be one entry in the Fixup List for each external symbol refer
enced by the module. When the binder processes the hellormx object 
module, it copies the information from the Fixup List into an internal 
symbol table that it builds, and marks the symbol dosub as unresolved. 
The symbol prompt has been declared public, so it appears in the Public 
Symbols List that is also part of the object module. The names of such 
public symbols are also entered into the binder's internal symbol table, 
along with the address of where in the module's data segment the symbol is 
defined. This address is said to be the value of the symbol, and it is this 
value that will be used to fix up incomplete instructions that reference the 
symbol. The binder will also find the external names rqcsendcore
sponse and rqexitiojob in the hellormx object module and enter 

5C programs are not as explicit about declaring things to be public or external as PLM pro
grams. Chapter 4 provides more information on this topic. 

6The terms address, pointer, and link are imprecise at this point. Chapter 5 will deal with 
the nature of pointers and memory addresses in more detail. There are two parts to a pointer 
(selector or base and offset). An address may consist of either a selector (or base) and an off
set, or just an offset. Fixups sometimes have to be applied to the selector or base and some
times to the offset. We use the term link to refer to pointers that the binder needs for its own 
housekeeping, to distinguish them from the pointers or addresses that will become part of the 
code that is output by the binder. 



Module hellormx (file hellormx.obj) 

Code Segment 

calli ? 1< 
calli ? I( 
calli ? I( 

Data Segment 

I "Type Something:" I < 

Public Symbols 

I "prompt" I ~I 

Fixup List 

I "dosub" I ~I 

I "rqcsendcoresponse" I ~I 

I "rqexitiojob" I W"I 

Figure 3.8 Structure of object module for sample 
PLM main program. 
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them into its symbol table as well. Thus, after processing the first object 
module, the binder will have constructed a symbol table that looks some
thing like this: 

Symbol Name 
dosub 
rqcsendcoresponse 
rqexitiojob 
prompt 

Symbol Value 
unresolved 
unresolved 
unresolved 
address in data segment 

When the binder processes the next file in its input path list, hello-
5 ub . ob j, it combines the code segments from the two object modules into 
a single module, and does the same for the data segments as well (see 
below). The binder finds that the compiler has left the ASCII name dosub 
in the hellosub module's Definition List (the list of public symbols de-
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fined within the module), along with a pointer to the place in that module's 
code segment where the dosub subroutine begins. The binder now can fix 
the call instruction that referenced dosub so that dosub points to the sub
routine, and the binder resolves the value of dos ub in its symbol table to be 
the address of the subroutine in case the binder needs the value again dur
ing the binding sequence. When the compiler built the hellosub object 
module, it was unable to generate the complete data address of prompt in 
the call to rqcsendcoresponse because of the external declaration. 
When the binder processes the hellosub object module, it resolves this 
symbol (prompt), and can fix the instruction that referenced prompt (an 
instruction to push the address onto the stack) immediately. The binder's 
symbol table now looks something like this: 

Symbol Name 

dosub 
rqcsendcoresponse 
rqexitiojob 
prompt 

Symbol Value 

address in code segment 
unresolved 
unresolved 
address in data segment 

At this point, the loadable module that is being built looks like Figure 3.9. 
The question marks represent links to the unresolved external symbols.7 

With all this background about the binding process, it is quite simple to 
tell which modules the binder will include from a library: those modules 
with public declarations for symbols marked unresolved in the binder's 
symbol table. To make this process efficient, each library contains a mas
ter dictionary of all the public symbols that are defined in it along with 
links to the object modules that contain them. 

The binder's symbol table is very dynamic. Including one object module 
to satisfy an unresolved symbol can result in new unresolved symbols that 
are referenced by the newly included module. The binder resolves these 
second-level references from the same library, using the master dictionary, 
if possible, and then moves on to the next file in its input list for processing. 

It is possible to construct libraries that make circular references to each 
other, such as libraryl containing a reference to a module in library2, 
which contains a reference to another module in libraryl. The binder 
does not automatically go back to a file once it has processed it, so for a cir
cular reference, you must list the same library file (in this case, libraryl) 

7The subroutines in the rmxifc32 • lib library do not actually perform the functions 
of rqc$send$co$response, which is to issue a prompt and read a reply, and 
rq$exit$io$job, which is to terminate the program. Rather, they act as interface proce· 
dures to the actual subroutines that are part of the OS itself. (The letters if in the file names of 
the libraries stand for interface.) These interface procedures are covered in detail in chapter 
10, when we cover the techniques for adding system calls to the OS. The system calls them· 
selves are covered in chapter 7. 
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Code Segment 

(from module hellormx) 

call [dosub] I ~I 

call [rqcsendcoresponse] I ? I 
call [rqexitiojob] I ? I 

(from module hellosub) 

4 ... 
push [prompt] I ~I 

· .. 
call [rqcsendcoresponse] I ? I 
· .. 

Data Segment 

(from module hellormx) 

4 "Type Something: " 

... 

(from module hellosub) 

· .. 

Figure 3.9 STL module (executable file) for sample PLM program. Note 
that the binder has linked modules hellorrnx and hellosub, but has 
not yet linked any of the libraries. 

multiple times on the binder's input list. Alternatively, you could force the 
binder to include modules from library 1 even though they have not been 
referenced yet. You can accomplish this using the syntax 1 ibr ary 1 (mod
ulel, module2 ), which would force the binder to include modules named 
modulel and module2 from the file libraryl. 

3.6.2 Output files: the map and load files 

As Figure 3.1 indicates, the binder produces two files, a map file and a load
able file. The map file, which normally has the same base name as the first 
object file on the binder's command line and an extension of .mpl, con
tains any error messages generated by the binder, the sizes ofthe various 
segments generated, a list of the object modules included, and a list of any 
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external symbols left unresolved at the end of the binder's execution. For 
example, hellormx.mpl includes these lines: 

SEGMENT MAP 

LIMIT 
0000018DH 
0000007AH 
FFFFDFFFH 

ACCESS 
ER 
RW 
RW 

INPUT MODULES INCLUDED: 

HELLORMX (HELLORMX. OBJ ) 
HELLOSUB (HELLOSUB.OBJ) 

ALIGN 
DWORD 
DWORD 
DWORD 

HXSNCR (:SD:RMX386!LIB!RMXIFC32.LIB) 
EXJEXJ (:SD:RMX386!LIB!RMXIFC32.LIB) 
ERT14N (:SD:RMX386!LIB!RMXIFC32.LIB) 
HRTICN (:SD:RMX386!LIB!RMXIFC32.LIB) 
RQCERR (:SD:RMX386!LIB!RMXIFC32.LIB) 
RQCSEX (:SD:RMX386!LIB!RMXIFC32.LIB) 
NRTICE (:SD:RMX386!LIB!RMXIFC32.LIB) 
NUCLER (:SD:RMX386!LIB!RMXIFC32.LIB) 

USE 
USE32 
USE32 
USE32 

COMBINE 
TYPE 
NORMAL 
NORMAL 
STACK 

COMBINE 
NAME 
CODE 
DATA 
STACK 

The first line of the segment map is for a segment that is Ox018D bytes 
long, has executable and readable memory protection attributes (ER), 
starts on a doubleword memory boundary (DWORD), was generated by a 32-
bit compiler (USE32), and is the result of combining all segments named 
code in the typical method (i.e., according to the rules for the compact seg
mentation model).8 The size ofthe stack segment looks strange with a deci
mal value of -8193 (OxFFFFDFFF); this value is negative because a stack 
segment grows downward in memory as data is pushed onto the stack. 

The second part of this . MP 1 file shows the names of the object modules 
and the files from which they come. The first two modules are from the ob
ject files the compiler generated from the source files. The next two mod
ules contain the subroutines rqcsendcoresponse and rqexitiojob, 
respectively. All other modules listed were included because they are mod
ules that satisfied external declarations made by some module earlier in 
the list. In particular, they were included to support the OS's exception 
handling mechanism for system calls, mentioned in chapter 2. 

The most common message in a .MPl file is "unresolved external sym
bol." This message is considered a warning, rather than an error, by the 
binder because of the possibility that the output file will later be bound 
with other object modules that will provide public declarations for the 
unresolved symbols (discussed further below). It should be considered an 
error when you are producing a file intended to be executed, as in the 

8For segment size, hexadecimal constants end with the letter <h> in PLM, and this con
vention carries over into numerical parameters for several iRMX commands, including the 
binder. The C language format is used for hexadecimal consants in the text of this book. 
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present example. Trying to run an HI command that generated this warn
ing when bound will almost certainly result in a hardware fault. 

The second file generated by the binder is its output file, which can be 
either in the STL format suitable for loading into memory for execution as 
an HI command, or a linkable module, which can be used later as input to 
another run of the binder or as input to the system builder (BLD386), as 
described below. 

The first part of an STL file is a header that tells the minimum amount 
of memory the program will need to be loaded, the maximum amount of 
memory the program will need during execution, the types and sizes of all 
the memory segments that compose the program (see chapter 5 for infor
mation on memory segmentation), and information needed to initialize the 
CPU's registers when the program is loaded for execution, such as the ad
dress of the first instruction to be executed. After the header comes infor
mation explaining which information goes into which memory segments. 

The information in an STL file is just what iRMX needs to load a pro
gram into memory and start it executing, but the same file could be run by 
any OS that recognizes OMF-386 structures. Although iRMX is a multi
tasking operating system, all iRMX programs start execution with a single 
task, or thread of execution, but might create additional tasks during exe
cution as needed. However, iRMX tasks are not hardware tasks in the 
sense intended by the term single task laadable, and the STL format is per
fectly suited for loading iRMX multitasking applications. Chapter 5 dis
cusses hardware tasks further, and chapter 6 discusses the nature of iRMX 
tasks. 

Instead of an STL module, the binder can produce a file that contains a 
linkable module. By default, such files are given file names ending in . Ink, 
although it is the content of the file rather than its name that determines 
its nature. For all practical purposes, a linkable file looks like the output of 
a compiler, especially if the linkable file uses the compact segmentation 
model. In this case, the linkable module contains one combined code seg
ment and one combined data segment, just as if all the object modules that 
were linked together had originally come from one big source module. The 
situation is a bit different for the large segmentation model, however, be
cause in this case the linkable module will contain multiple code and data 
segments, one from each of the linked object modules. Compilers never 
generate multiple code or data segments. 

There are three reasons for generating a linkable module. The first rea
son is that this format is used for input to the system builder, bld386 (or 
bld2 86 or loc86). The operating system is constructed from relatively in
dependent layers that do not share code or data with one another through 
public or external variables. Each layer can be independently bound into a 
linkable module without concern for any public or external symbol names 
that might clash with such symbols used in another layer. The resulting 
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link files are then processed by the system builder to construct a bootstrap 
loadable file on disk, the process summarized in Figure 3.2. 

A second reason for generating a linkable file is to control public and ex
ternal symbols when building a single HI command. For example, if it is 
necessary to bind a program with two different libraries that both contain 
public symbols for subroutines with the same names, the application can 
be bound first with the library containing the desired version of the sub
routine, and that public symbol can be purged from the resulti~g linkable 
file using the publics except binder control. (See the section Producing 
Linkable and Bootloadable Modules below for more information on this 
process.) The linkable file can then be bound to the second library without 
any "duplicate public symbol" messages from the binder. 

A third reason for working with linkable files is for applications that mix 
16-bit and 32-bit code. The binder combines all segments with the same 
name (such as code32), but it is an error to combine segments with differ
ent attributes (16-bit and 32-bit, for example). Separate linkable files 
could pe built, one containing only 16-bit segments and the other contain
ing only 32-bit segments. The combined segments can then be given differ
ent names using the rn control (described below), and the linkable mod
ules can be bound together without error. 

3.6.3 Binder controls 

This section provides a summary of the four binder controls included on 
the sample bnd386 command line. For further details, consult the binder 
section in the Inte1386 Family Utilities User's Guide, volume 17 of the 
iRMX for Windows documentation set. 

rc (dm ( 0 , 0 FFFFFFFFh) ). This control identifies how much memory the 
program will need when it is loaded and executed. rc originally stood for 
RMX Configure, but the documentation for BND386 generalizes this to 
"an 80386 operating system." dIn stands for dynamic memory. The first of 
the two hexadecimal values represents the minimum amount of memory 
that must be free to load the program, and the second value limits how 
much memory the program can allocate from the OS during execution.9 

The values specified here (0 and 4 GB) are synonyms for no limits, but 
could be adjusted eith~r to ensure there is enough memory for the program 
to complete once it is loaded, or to limit the amount of memory the program 
will use as it runs. If you omit this control, bnd386 will still generate an 
STL module, but it will set both the minimum and maximum values to 
zero, and the system will substitute reasonable values when the program is 

9These two values correspond to the minipool and maxpool arguments to the eLI's back
ground command mentioned in section 2.4.2. The background command arguments can be 
used to override the rc(dm()) arguments to the binder. 
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run. If you omit this control for bnd286 you will generate a linkable module 
rather than an STL module. 

55 (stack (8192) ). The ss control manipulates the size of segments in the 
load module. In this case, the size of the stack segment is set to 8 KB. Com
pilers place information in object modules identifying how much stack space 
is needed for the code in each module for calling subroutines and allocating 
local variables, but the compilers cannot know how much stack space will be 
needed for nested subroutine calls, such as recursive subroutines or OS sys
tem calls. The figure 8K is very generous, and allows enough stack space for 
use by both system calls and the SoftScope debugger. 

Note that SoftScope uses the same stack as the application program that 
it is debugging in iRMX I and II. SoftScope for iRMX III and iRMX for 
Windows runs with its own separate stack, so the application's stack may 
not need to be so large. 

rn (code32 to code). This control renames segments with the name 
code32 to code. The binder will only combine segments that have the 
same name, and will issue error messages if the same symbol appears in 
different segments that it cannot combine. Since the compiler names the 
code segment code32 but the library functions have code segments called 
code, this rename operation must be performed for a successful bind. 

oj (hellop1m). This control specifies the name for the file that receives 
the load module produced by the binder. The full name for this control is 
ob j ect, which does not relate well to our terminology for types of modules. 
By default, the binder places the load module in a file that has the same 
name as the base part ofthe first file name in the input list, and no exten
sion. That is, oj (helloplm) was superfluous in our example. It will be 
crucial for some C programs, however, so it was used here to establish a 
good precedent. 

3.7 Automating the Process 

Typing and retyping long command lines as you iterate through the steps 
of the development process can be tedious, and there are ways to improve 
the situation. The CLI's alias command and command history buffer facil
ity, discussed in chapter 2, can do much to improve the situation, but for 
real production work, stronger solutions are needed. 

3.7.1 Command files 

Sequences of commands can be typed into command files for invocation by 
the submit command, and the parameter substitution feature of both 
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alias and submit can help in the construction of general purpose tools. For 
example, here is a command file that will compile, bind, and execute a sin
gle-source-module PLM program: 

plm386 %0 .plm compact debug 
bnd386 %0 .obj ./rmx386/lib/rmxifc32 • lib & 

rc(dm(O.OFFFFFFFFh» ss(stack(8192» & 

rn(code32 to code) oj(%O) 
%0 

Expanding a bit on the "doit" example from chapter 2, assume the pre
ceding lines were entered into a text file named cbe • csd, and the following 
alias is defined: 

iRMX> alias g=submi t cbe(#) [6] 

Now, a PLM program, say myprog. plm, can be compiled, bound, and exe
cuted with the single command line: 

iRMX> g myprog [7] 

Two problems exist for automating the development process with this 
approach. One, it does not account for the possibility that the compilation 
might fail due to syntax errors, thus making the binding step inappropriate 
(or binding might fail, thus making execution inappropriate). Two, no pro
vision exists for different numbers of source modules contributing to dif
ferent load modules, making the file a somewhat inflexible tool. 

The first problem can be handled by the HI command esubmit, which is 
an extended version of submit that supports testing the results of one step 
before continuing to the next step in the command file. Below is an esubmit 
command file that performs the same function as the submit file above, but 
skips the binding step if compilation fails and skips execution if binding 
fails. It also includes a crude mechanism for handling either one or two 
source files. 

$reset eok 
$reset quit 

run86 -fixplm :lang:plm386 %O.plm compact debug 
$if not commandexcep = eok 
$set quit 
$endif 
$ifexist %1.plm 
run86 - fixplm : lang:plm386 %1.plm compact debug 
$if not commandexcep = eok 
$set quit 
$endif 
$endif 

$if not quit 



run86 :lang:bnd386 %O.obj, & 

$ifexist %l.obj 
%l.obj, & 

l$endif 
:sd:rmx386/1ib/rmxifc32.1ib & 
rc(dm(O,OFFFFFFFFh» ss(stack(8192» & 
rn(code32 to code) 
$if commandexcep = eok 

%0 
$endif 
$endif 
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One of the reasons this file looks so complex is, as an HI command, esub
mit does not have access to the CLI's aliases, so the invocation of the com
piler and binder must be explicit. Until now, the sample command lines 
have assumed an alias exists, which conceals the fact that the plm386 com
mand actually involves invoking the compiler using the run86 utility. 

3.7.2 The make command 

The esubmit command is a relatively recent addition to iRMX, and future 
versions might make this a stronger tool. Meanwhile, a version ofthe Unix 
make command for iRMX is available that works very well for automating 
the development process.10 The basic idea of make is that you specify the 
name of a file to be created on the command line and make invokes exactly 
those HI commands needed to create the file. The file to be created is called 
the target, and make is supplied with a set of rules that identify which com
mands to run to build targets based on their file names. 

For example, if you tell make to create a file calledmyfile. obj, it would 
look for a source file to compile. If, on the other hand, you told make to 
create a file called simply myf ile, it would invoke the binder. The two 
powerful features of make are that it performs only those operations actu
ally necessary, based on the time and date ofthe last modification the OS 
stores with each file, and its macro capability, which gives it a great deal of 
flexibility. 

The rules that make follows are stored in two text files, called 
: lang: buil tins. mk and: $: makef ile. Both files contain the same in
formation, but ifthere is any conflict between them, makefile takes pre
cedence over bui 1 tins. mk. For a single-source-module program written 
in either C or PLM and a properly set-up builtins .mk, you should be 
able to just type a make command with the name of the program as an ar
gument to compile and bind the program, even without a makefile 
present. If the compilation stage fails, edit the source file to fix the prob
lem, and issue the same make command again. 

If more than one source file constitutes a program, make proves to be 

lOThe command is called mk in some versions of iRMX. 
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very powerful, but it does have to be told by statements in makef i Ie which 
modules compose the program. The technique is to enter a line in the rna -
kefile, which takes the general form 

<target> : <dependencies> 

The <target> is the name of the file to be built. After the colon is a list of 
files (separated by spaces, not commas) that must be older than the target. 
For example, a possible makef i Ie for our sample program is the following: 

hello: hellormx.obj hellosub.obj 
<tab>$(BND) hellormx.obj,hellosub.obj, & 

<tab>:SD:rmx386/1ib/rmxifc32.1ib & 
<tab>rn(code32 to code) & 

<tab>ss (stack( 4096» rc(dm( 0, OFFFFFFFFh» oj (hello) 

The first line of the file says that the target hello depends on the two 
object files listed after the colon. If the . ob j files are not older than he 110, 
make treats them as targets themselves and consults the rules in 
builtins .mk to learn how to compile the corresponding source files if 
necessary. Then, if either object file is newer than the target file hello, all 
the lines that start with a <tab> character will be executed to create a new 
version of the target. In this case, there is just one command, an invocation 
of bnd386. Thus, with this makefile, the command line 

iRMX> make hello [8) 

would cause the following sequence of events to occur, depending on the 
relative ages of the files involved: 

• Ifhellormx. plmisyoungerthan hellormx. obj, or ifhellormx .obj 
does not exist, compile hellormx.plm. 

• Ifhellosub . plm is younger than hellosub .obj,orifhellosub .obj 
does not exist, compile hellosub .plm. 

• If hellormx. obj or hellosub. obj is younger than hello, or if 
hello does not exist, execute the commands following the dependency 
line that start with <tab>. 

It is possible that make will find nothing to do (the object files are older 
than the target file, and the source files are older than the object files), and 
will issue a message saying that hello is "up to date," and exit without 
doing anything. Make will try to execute the first target it encounters in 
makefile if no argument is given on the command line, so line [8] could 
simply be entered as 

iRMX> make [9) 
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An example of a make macro in this makefile is $ (BND) , which is a refer
ence to a macro named BND. That macro was defined in bui 1 tins. mk to 
be the command to invoke the binder. This use of make macros is similar to 
the use of the CLI's alias feature, but it is not limited to redefining com
mand names at the beginning of a line. For example, consider using a 
macro named MODEL to determine the segmentation model to be used 
when compiling. You can give a value to a macro four different ways, which 
make uses in the following sequence: 

1. Put the macro definition in builtins.mk. 

2. Put the definition in makefile. 

3. Define the macro name as an environment variable. 

4. Define the macro on the make command line. 

As an admittedly far-fetched example that demonstrates all four cases, 
consider the following hypothetical file contents: 

:lang:builtins.mk 
MODEL = small 

:$:makefile 
MODEL = medi urn 

:prog:r?env 
MODEL = large 

The last file demonstrates the technique used by iRMX to set up envi
ronment variables. With these three files in place, the following command 
line could be used to invoke make with the actual value of MODEL ulti
mately being equal to compact: 

iRMX> make MODEL = compact hello [101 

That is, the command line definition of MODEL is "compact," which 
overrides the setting of the environment variable MODEL to "large," 
which in turn overrides the makefile definition of the macro to be "me
dium," which overrides the buil tins. mk definition of the macro to be 
"small." Assuming that the rule telling make to invoke the compiler con
tained a reference to $ (MODEL) on its command line, the compiler would 
be invoked with the compact control in this example. 

Full details on how to use make are given in the help file provided with 
the program. Compatible versions of make are also available for both DOS 
and Unix. For example, the sample code for this chapter has been success
fully built using the DOS-hosted development tools for iRMX and the ver
sion of make provided with the Borland C++ development system. 
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3.8 Debugging HI Commands 

Once the binder has produced a file containing an STL module, it can be 
executed by simply typing the name of the file on the command line. The 
HI will locate the file either by examining the directories in its search path 
list or by following an explicit path name, and will pass the file to the Ap
plication Loader (AL), resident in iRMX, to load into memory for execu
tion. It is the AL that detects the errors such as "bad header" or "not 
enough memory while loading command" that occasionally show up at this 
stage. 

In addition to loading the command through the AL, two other com
mands can be used to load HI commands specifically for aiding program 
debugging. These commands are the system command debug and the util
ity debugging program, ss (SoftScope). The following subsections intro
duce all three of these techniques used for debugging HI commands. 

3.8.1 Using only the application loader 

The simplest way to debug a programisjust to run it. If the program causes an 
exception, the default exception handler will manage the situation, hope
fully by providing you with enough information to fix the problem. The de
fault exception handler is the one supplied by the HI, which issues an error 
message and terminates the program that encounters an exception. 

Whether an incorrect program causes an exception or simply produces 
the wrong results, the only tool available for debugging when running solely 
under the application loader (AL) is to add output statements to the source 
code to display values of key variables or execution flow information. This 
technique is a very primitive and appropriate only for small programs. 

The highest form of this lowly technique is to provide either compile
time or run-time switches for turning debugging output on or off. A run
time debugging switch can be valuable for helping users unfamiliar with a 
program figure out what they are doing wrong when they run it. Otherwise, 
the technique has two significant problems associated with it: (1) Each de
bugging run involves the time-consuming process of modifying source files, 
recompiling, and rebinding, and (2) The debugging statements must later 
be removed from the program after it is debugged. 

Any change to source code raises the possibility of introducing new 
errors, and nothing is more frustrating than having to fix errors introduced 
by taking out debugging statements, except perhaps having to fix errors 
introduced by putting in comments.l1 

11 My advice: Write the comments first. If you know what you are doing, they will always 
be right and won't need to be changed. Ignore those who suggest that the solution is to leave 
out the comments! 
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3.8.2 Using the debug monitor 

The system debug monitor enables you to examine the state of your pro
gram as it is executing without modifying the code. Several versions of this 
monitor are available, and they all have different names, depending on the 
platform being used. The version you most likely will encounter is called 
SDM. It either resides in ROM or is loaded with the operating system. 
iRMX for Windows loads the SDM into RAM by means of a sysload com
mand when the system initializes. 

There are three ways to enter the debug monitor. On some systems, there 
is a front-panel interrupt button (not the reset button) that causes an im
mediate break to the monitor. iRMX for Windows achieves the same effect 
on a PC by using the <AaltABreak> key combination (Press and hold 
<Cntrl>, then press and hold <Alt>, then press <break>. This tech
nique can be useful for interrupting programs that enter an endless loop, 
rather than simply typing <AC> to abort the program completely. 

The second technique of breaking to the monitor involves modifying the 
source code. For this technique, you insert a statement that will be com
piled into a machine language int 3 instruction. This instruction is the one 
that debugging programs use to set execution breakpoints in code. The 
debug monitor is normally configured as the default debugging program 
that receives control when an int 3 instruction is executed, so you would 
place the int 3 instruction wherever you want the program to break to the 
monitor. Both PLM and C allow you to insert an int 3 instruction with the 
same statement causeinterrupt (3) i 

This technique, of course, inherits all the disadvantages of putting out
put statements in the source code, but it can be valuable when the code to 
be debugged is not accessible to SoftScope, such as resident code in iRMX I 
and II systems. 

The third technique associated with the debug monitor is the debug 
system command, which loads the command file, displays information 
about where memory segments have been loaded, and then breaks to the 
debug monitor. This technique incurs the overhead of loading debug into 
memory with the application, but it requires no modification of the pro
gram to accommodate debugging and requires less memory than 
SoftScope. 

The command prompt from the debug monitor is one dot (.) if the pro
cessor is in real mode (iRMX I systems), or two dots ( .. ) ifthe processor is 
in protected mode (iRMX II and III systems). You can enter commands to 
display the processor's registers and memory, set breakpoints, and step 
through your code one machine instruction at a time. This tool can there
fore be very useful for debugging code written in assembly language. Our 
focus, however, is on developing applications using high-level languages, 
and those readers interested in using a debug monitor can work from the 
appropriate manual. 
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3.8.3 Using the system debugger 

The system debugger (SDB) is an extension to the debug monitor loaded 
into memory along with the OS. It can provide extremely valuable informa" 
tion for iRMX developers, including those working with high-level lan
guages. You can access the SDB the same way as the debug monitor, and you 
can enter SDB commands at the same prompt as the monitor (. or .. ). Fur
thermore, you can issue SDB commands from the SoftScope debugger while 
doing source code debugging of programs written in a high-level language. 

The full value of the SDB will not be clear until chapter 6, which explains 
the design of iRMX as an object-based operating system. For now, note 
that the SDB allows you to view iRMX objects, both those created by your 
application and those created by the OS for its own use. All SDB com
mands start with the letter v (for view) and are fully documented in the 
iRMX System Debugger Reference Manual. They are also documented in 
chapter 9 of the SoftScope III Debugger User's Guide, volume 13 of the 
iRMX for Windows documentation set. 

3.8.4 Using SoftScope 

By far the most effective tool for debugging iRMX applications is the Soft
Scope source code debugger. The basic debugging features are all keyed to 
the source code: source statements can be displayed as they are executed, 
execution breakpoint addresses are specified in terms of source code 
functions or line numbers, and variables are displayed by name, with full 
recognition of data types, structures, and source language scope rules. 
In addition, SoftScope provides debug monitor-like access to the proces
sor's memory and registers, as well as access to the SDB commands for 
viewing iRMX objects. 

What sets SoftScope apart from other source code debuggers is its sup
port for multitask application debugging and multiuser debugging. These 
two features are available only with SoftScope III. The versions of Soft
Scope for iRMX I and II are somewhat more limited in this regard. 

Debuggers insert an execution breakpoint into code being executed by 
substituting a machine language interrupt instruction (the int 3 instruc
tion mentioned earlier) for one of the instructions originally in the code,12 
When execution reaches the interrupt instruction, the CPU branches to 
the code designated as the interrupt handler for this class of interrupt. 
When SoftScope starts running, it takes over this role from the resident 
debug monitor. The breakpoint handler determines where the interrupt 
occurred in case there were multiple breakpoints set, then issues a message 

12SoftScope III uses the 80386 microprocessor's hardware trap feature to accomplish the 
same objective without modifying the code being debugged. This technique allows break
points to be set in ROM and allows for efficient breaking on data accesses as well. 
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and waits for the user to enter commands. What makes Soft Scope III an 
excellent debugger is that it properly handles the situation in which more 
than one task executes the same breakpoint interrupt. It not only tells the 
user if an interrupt has been reached by more than one task (SoftScope I 
and II do that as well), but SoftScope III also tells the user exactly which 
tasks have reached the breakpoint, and then gives the user the ability to 
control further execution by each task independently. 

When SoftScope starts running, it connects to certain software hooks in 
the OS, a process that can occur only once. In a multiuser environment, 
only one person can run SoftScope at a time for versions I and II. For Soft
Scope III (used with iRMX III and iRMX for Windows systems), a pro
gram called sskernel connects to the OS hooks. Sskernel is run just once, as 
a background job or by the sysload mechanism. After that, multiple users 
can invoke SoftScope independently at the same time to debug different 
applications. 

The DHDTversion of Soft Scope III can debug iRMX applications run
ning on a separate target system connected to the PC by a serial link. In 
this configuration, the monitor, called iM, must reside in ROM on the re
mote target system. The DHDT version of SoftScope III features a nicer 
screen display and better use of the PC's keyboard and mouse than the 
iRMX -hosted version. Currently, a "WHDT" (Windows-Hosted Develop
ment Tool) version of SoftScope III is being developed for iRMX for Win
dows. This version will provide users with full debugging access to iRMX 
applications from Windows, using the standard Windows user interface of 
mouse, pulldown menus, and the like. 

To use Soft Scope, it is first necessary to tell the compiler to insert de
bugging information into the object module. This information, which is 
specified by the debug compiler control (see the section on compiling 
above), consists essentially of the entire symbol table that the compiler 
builds while compiling the program. That is, this information includes the 
name, data type, and address of every variable (including field names and 
data types of structures) as well as the address of every function and source 
statement line number. Unlike some debugging systems, the debugging in
formation is totally separate from the code and data segments that the 
compiler generates. In terms of the OMF specification, it goes in a debug 
segment (called debug records in OMF-86). 

The significance of this fact is that the impact of including debugging 
information is minimized. During binding, you can choose to retain the 
debug segments in the load module or not (the default is to retain them), 
and, if they are retained, they remain associated by name with the object 
modules from which they were derived. When the load module is loaded by 
the AL or by debug, any debug segments are simply discarded, and the pro
gram loaded into memory is exactly the same as the one that would have 
been loaded if the debug segments had never been created. The penalties 
for including the debug segments in these cases are the extra disk space re-
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quired to hold the additional information in the object modules and the 
load module, and the extra time to extract the program's code and data 
segments from the file and load them into memory. When a program is run 
under control of SoftScope, the debugger first loads the program treating 
the code, data, and stack segments in exactly the same way as the AL or 
debugP After the program is loaded, when the user refers to the code or 
data in a particular object module, SoftScope uses the information in the 
debug segment of the module to provide a symbolic interface for the user. 

Thus, only when a program is running under SoftScope does the debug 
information actually occupy any space in primary memory. Of course, at 
that time, the program being debugged is also sharing memory with Soft
Scope itself, and the development system must supply enough extra RAM 
to accommodate these extra requirements. 

A useful concept to understand is how SoftScope displays source state
ments while stepping through a program being debugged. The actual 
source file is not a part of the object module or load module. Instead, Soft
Scope uses the listing file produced by the compiler for displaying source 
code statements. It uses the listing file instead of the source code file be
cause the listing file contains line numbers that can be matched against the 
line number addresses in the debug segment of the module. SoftScope 
makes two assumptions about the path name of any listing file it needs: (1) 
The file is in the same directory as the load module file being debugged, and 
(2) The name ofthe listing file has the same base name and object module 
name, with an extension of .LST. 

The second assumption is automatically matched by C language pro
grams, as described earlier, but PLM programmers must ensure their 
source module name matches the base part of the source file name for Soft
Scope to work. If SoftScope cannot find a listing module it needs, it will 
prompt the user to type in the proper file name. 

To debug a program using SoftScope I or II, just enter the command 
name (usually sscope) followed by the command line normally used to run 
the program. For example, to debug a program called myprog that takes 
three command line arguments, the command might be 

iRMX> sscope myprog argl arg2 arg3 [11] 

If the program uses HI command line parsing, Soft Scope I or II must be 
informed of this by entering option parse =rrnx as the first SoftScope 
command after the program is loaded. If the program uses C language 
command line parsing, the option parse command can be omitted be
cause the default option will work. In both cases, the situation is a bit messy 

13 SoftScope I and II load the program themselves, and SoftScope III uses the iRMX AL to 
load the program. 
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because the parsers will see sscope as the first item on the command line, 
not myprog. 

For SoftScope III, the SoftScope kernel must be running to use the de
bugger. The usual technique is to run the kernel as a background command 
or with the sysload: 

iRMX> background sskerne1 > :bb: [12] 

or use sysload: 

iRMX> sys10ad :uti1s:ss [13] 

After entering either line [121 or [131 once, you can invoke the debugger 
by a command such as the following: 

iRMX> ss myprog arg1 arg2 arg3 [14] 

SoftScope III has no option parse command, and programs that use C 
language parsing will run correctly with myprog as the first command line 
argument (argr[ Q]). The version of SoftScope III that is current at the time 
of this writing, however, does not support HI command line parsing at all. 

Each version of SoftScope comes with complete documentation, includ
ing sample tutorial sessions, and there is an interactive help command as 
well. A summary of SoftScope III commands is provided in Appendix A. 

3.9 Producing Linkable and 
Bootstrap-Loadable Modules 

This section reviews some of the controls for bnd386 typically used when 
generating a linkable file, and gives a brief overview of the steps used to 
build a standalone application - one that can be loaded for execution by a 
bootstrap loader. 

3.9.1 Binder controls for linkable modules 

The first binder control to discuss is rc, which must be omitted to produce 
a linkable module. In its place, the noload control is used, which can be 
abbreviated nolo, to tell the binder that the resulting module will not be 
loaded for execution under the control of an operating system. 

To control which public symbols are carried forward into the linkable 
module, use the nopublics except or publics except binder controls, 
which are abbreviated noply ec and ply ec, respectively. After ec, 
put a comma-separated list of public symbols enclosed in parentheses in 
the command. For example, to bind myprog . ob j with an interface library 
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to produce a linkable module that excludes all public symbols except 
main_task and main_data, use this command: 

iRMX>bnd386 myprog.obj, Irmx386/lib/rmxifc32.lib & 

**nolo nopl ec (main_task, main_data) (15) 

The linkable module will be placed in a file named myprog . Ink. The name 
of the file could be changed using the oj control described earlier. 

3.9.2 Adding a linkable module to the OS 

Two types of code can be added to the iRMX as: device drivers and resi
dent applications. A device driver provides new DUIBs (which were dis
cussed in the section on using floppy disks in chapter 2) and the code to 
handle the associated I/O device. A resident application is one that is 
loaded with the as and starts executing when the as initializes. This type 
of code is properly called a first-level job, which is explained further in 
chapter 6. One significant feature of both device drivers and first-level jobs 
is that they do not run as HI commands, are not associated with any partic
ular logged on user, and thus have no access to a user's console input or 
console output device. 

There are two techniques for adding code to the as, depending on the 
version of iRMX being used. For iRMX III and iRMX for Windows, a 
command called sysload is used to load STL modules that are to remain 
resident in memory after control returns to the CLI. The differences be
tween using sysload and the CLI's background command are the following: 

• Programs that run from sysload cannot do console I/O, even through 
command line redirection. 

• Programs that run from sysload cannot terminate by calling rqexitiojob() 
as the sample program did. They can terminate by making another sys
tem call, rqdeletejob(), or they can be terminated by means of a user
written HI command, somewhat like the CLI's kill command for termi
nating background programs.14 

• Background programs have the same privileges as the user who issued 
the background command, but sysload-ed programs always have the priv
ileges of the super user. This distinction is important for programs that 
access disk files, which involves checking a user's access rights. 

The other technique for adding code to the as is called system configura
tion. A special program called the Interactive Configuration Utility (ICU) 

14iRMX for Windows 2 .Oc introduced a version of sysload that can unload programs using 
the -u switch. 
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is used to edit a series of screens that describe various features of the oper
ating system, including the pathnames of any linkable modules the user 
wants to add to the as. The leu generates a number of files, including 
source code files that must be assembled or compiled and linked into new 
linkable modules; a control file that tells bld386, the system builder, how to 
construct a bootstrap-Ioadable file; and a command file. The command file 
contains all the commands needed to compile the generated source files; to 
bind the new object modules, linkable modules supplied by the user, and 
configuration libraries supplied with the as; and to build a new bootload
able copy of the as in a disk file. 

At the time of publication, sysload is available only for iRMX for Win
dows and iRMX III, and the leu can be used only with configurable ver
sions of the as, which does not include iRMX for Windows. Many of the 
configuration parameters normally set by the leu can be specified when 
an iRMX for Windows system is loaded into a file called : con -
fig:rmx.ini. 

3.10 Debugging First-Level Jobs 

The difficulty with debugging first-level jobs and device drivers is that the 
program is loaded by sysload or by the bootstrap loader rather than by the 
debugger. For iRMX I and iRMX II, this means that the only way to debug 
the code is to use the debug monitor and system debugger. The usual way to 
handle this situation is to insert a causeinterrupt (3) statement in the 
code so that the system will break to the monitor when the code is executed. 
The user is then left with the rather tedious process of debugging the code 
at the machine-language level. 

For iRMX III and iRMX for Windows, SoftScope III can be used to 
debug first-level jobs and device drivers symbolically. Because the code to 
be debugged already has been loaded when SoftScope is started, the ss 
command, load symbols, is used to get the symbolic debugging informa
tion from the boot-Ioadable file. You may find that the leU strips de
bugging information from the linkable or bootstrap-Ioadable module 
by inserting the nodebug control on the bnd386 or bld386 statements in 
the command file it generates. That control must be removed from the 
command file manually before submitting it for SoftScope to support sym
bolic debugging. 
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4 
Development Languages 

Choosing the programming language for implementing an iRMX applica
tion or systems program profoundly affects how easy it is to develop the 
code and how efficiently the code performs when executing. 

4.1 Overview 

This chapter examines how a programming language affects a program
mer's productivity through features ofthe source code language itself, how 
a programming language affects the run-time efficiency of a program via 
the run-time environment provided by the language, and how languages 
interact with the operating system. This chapter also mentions how the 
need to interact with the iRMX operating system affects the programming 
techniques used to implement algorithms, which can differ from the 
method of coding an algorithm using the same language, but a different 
operating system. 

The three most commonly used languages for developing iRMX appli
cations are assembler, PLM, and C. FORTRAN compilers are also avail
able for all versions of iRMX, and Pascal compilers are available for some 
versions of iRMX, but these two are not as widely used as assembler, PLM, 
and C, so the focus is on these three. 

The following table shows how the three languages can be ranked ac
cording to the criteria of programmer productivity, run-time efficiency, 
and ease of mastery, with rank of 1 being best: 

Programmer Run-Time Ease 
Rank Productivity Efficiency of Mastery 

1 C assembler PLM 
2 PLM PLM C 
3 assembler C assembler 
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This table makes some assumptions in the rankings for run-time effi
ciency and ease of mastery that should be mentioned, even though the as
sumptions do not affect the discussion that follows. The assumption for 
run-time efficiency is that code for both PLM and assembler is written by 
programmers who are experts in both languages. The average assembly 
language programmer, however, does not generate code as efficiently as the 
PLM compiler running with all optimizations enabled. Assembly language 
programs are ranked as more efficient, however, because of the possibility 
of hand-tuning by an assembly-language expert. The assumption about 
ease of mastery is that the programmer does not already know any of the 
languages listed. Obviously, this assumption is often inappropriate, invali
dating that part of the ranking. 

Many people develop iRMX applications in assembly language, and a 
rudimentary knowledge of assembly language is just about essential for de
bugging iRMX applications. Regardless ofthese two facts, assembly lan
guage is dropped from consideration now for two reaSons. First, assembler, 
as a rule, provides very little advantage over PLM and C in terms of which 
functions can be implemented. Note that the one exception to this rule is 
the direct manipulation of a processor's registers, which can be done only 
in assembler. Assembler is used in chapter 10 to perform some register 
operations, but otherwise, PLM and C provide all the functions needed to 
develop iRMX code, including device drivers. The second reason for leav
ing assembler aside is that the run -time efficiency benefits of assembly lan
guage programming are typically so small compared to the productivity 
benefits of programming in PLM or C that it is better to pursue high-level 
programming techniques instead. 

The compilers and assemblers available for iRMX are all compatible 
with one another, so it is common to code different parts of an application 
using different languages. We focus on PLM and C separately in this chap
ter, looking at the technical issues involved in using the languages rather 
than on trying to decide which language is better than another. Note that 
this chapter is not a tutorial on the syntax for either PLM or C. 

4.2 Source Language Issues 

The sample program in chapter 3 used the iRMX system call rqcsend
coresponse ( ) to perform console I/O, as well as another iRMX system 
call, rqexitiojob(), to terminate the program's execution. Instead of 
coding that program in PLM and using iRMX system calls, the same pro
gram could have been coded in C using the standard C library functions 
printf() and gets() for console I/O, and a return statement from main( ) to 
terminate the program. The code for such a C program is given in Figures 
4.1 and 4.2. These two figures provide some interesting comparisons with 
Figures 3.3 and 3.4, which is considered in the material that follows. Before 



Development Languages 105 

Figure 4.1 C version of hellormx main program using C library functions. 

/***> hellorrnx.c <*************************************************** 

Sample C program for iRMX 
-- main program using C library functions 

**********************************************************************/ 

#include <stdio.h> 

char *prompt = "Type something: ". 

int 
main (int argc, char *argv[]) 

char reply[80]; 

dosub (&reply); 
printf ("You typed: %s\n", &reply); 
return 0; 

Figure 4.2 C version of hellormx subroutine using C library functions. 

/***> hellosub.c <*************************************************** 

* 
Sample C program for iRMX 
-- subroutine using C library functions 

* 
**********************************************************************/ 

#include <stdio.h> 

extern char *prompt; 

void 
dosub (char * inbuff) { 

printf ("%s", prompt); 
gets (inbuff); 
return; 
} 

launching that comparison, however, it is important to note that these two 
pairs of source code files represent just 2 of 16 ways in which our sample 
application might have been constructed. 

The 16 ways to construct the application are derived from the fact that 
the following four Boolean decisions could be made independently of one 
another. l The: 

1. Main program could have been written in PLM or in C. 

lLater in this chapter two versions of the C library (shared or non-shared) are discussed, 
both of which can be used, adding at least 12 more ways in which the sample program could be 
constructed. 
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2. Subroutine could have been written in PLM or in C. 

3. Main program could have used either iRMX system calls or C library 
functions. 

4. Subroutine could have used either iRMX system calls or C library func
tions. 

In particular, consider Figures 4.3 and 4.4, which are C versions of the 
main program and subroutine that use the same iRMX system calls as Fig
ures 3.3 and 3.4. Later in this chapter you will see two PLM versions ofthe 
program that call functions from the standard C library instead of making 
direct iRMX system calls. With three sets of sample programs (Figures 3.3 
and 3.4,4.1 and 4.2,4.3 and 4.4), you are now ready to consider the first of 
the language issues, that of include files. 

4.2.1 Include files 

Both PLM and C include files are used to insert prototypes for external 
functions into a source module. Function prototypes tell the compiler how 
many parameters should be passed to a function or procedure, what the 
data types of those parameters should be, and what type of value, if any, 
will be returned. With this information available, the compiler can verify 
that references to these functions are coded correctly. Without function 
prototypes, the compiler would have to accept references to functions that 
are syntactically correct (balanced parentheses, etc.) but error inducing 

Figure 4.3 C version of hellormx main program using iRMX system calls. 

/***> hellormx.c <*********************************************** 

* 
sample C program for iRMX 
-- main program using iRMX system calls 

*****************************************************************/ 

#include <rmxc.h> 
#include <string.h> 

/* Header file for iRMX system calls. */ 
/* Header file for udistr(), etc. */ 

char *prompt = "Type something: "; 

int 
main (int argc, char *argv[]) ( 

char reply[80], *youTyped "You typed: ". 
WORD Status; 

dosub (&reply); 
rqcsendcoresponse (NULL, 0, udistr (youTyped, youTyped), &Status); 
rqcsendcoresponse (NULL, 0, reply, &Status); 
rqexitiojob (0, NULL, &Status); 
} 
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Figure 4.4 C version of hellormx subroutine using iRMX system calls. 

/***> hellosub.c <*************************************************** 

* 
Sample C program for iRMX 

* -- subroutine using iRMX system calls 
* 
**********************************************************************/ 

#include <rmxc.h> 
#include <string.h> 

extern char *prompt; 

void 
dosub (char * inbuff) 

WORD Status; 

/* header file for iRMX system calls */ 

rqcsendcoresponse (inbuff, 80, udistr (prompt, prompt), &Status}; 
return; 

when the code the compiler generates is finally executed. A general princi
ple in software development is that the earlier errors are detected in the de
velopment process, the easier they are to correct. 

Traditionally, C compilers allow function prototypes to be omitted, 
making assumptions about functions referenced but not defined. ANSI C 
compilers, such as those used for iRMX development, provide for careful 
type checking through function prototypes. C programs should always 
code function prototypes explicitly to develop the most robust applications 
possible. PLM compilers always insist on a function prototype for every 
external procedure referenced by a source module. 

For both languages, the issue is to know which header file to include to 
obtain the proper set of function prototypes for the functions actually 
called by the program. The PLM language supplies no standard header 
files, but the iRMX operating system provides a single file (lrmx386/ 
inc/rmxplm. ext) that provides function prototypes for all iRMX 
system calls. For C, iRMX provides an equivalent header file, 
: include: rmxc. h, which is included in Figures 4.3 and 4.4. (Intel C com
pilers look in the: include: directory to find the include files, which are 
named inside angle brackets, such as <rmxc. h>.) The traditional C pro
gram shown in Figures 4.1 and 4.2, uses the standard I/O functions, 
printf() and gets(), to perform input and output operations, so these pro
grams include the standard I/O header file, : include: stdio. h, instead. 
The prototypes for various C functions are kept in a number of different 
header files, and the documentation for each function tells which header 
file to include to obtain the corresponding prototype. Documentation for 
virtually all functions used for iRMX applications can be found in one of 
four places, described as follows. 



108 Basics 

Any book that documents the ANSI standard library for C programs, 
such as Harbison and Steele (1991) or Plauger (1992) provides documenta
tion on C functions. Programs that use only those functions defined by the 
American National Standards Institute (ANSI) standard are most easily 
ported from one operating system to another. 

The library reference manual that accompanies the compiler also de
scribes these functions. For example, Intel C compilers for DOS and iRMX 
provide a number of functions for use with those operating systems that 
are not part of the ANSI standard. An example of such a function is 
udistr(), which is used in Figures 4.3 and 4.4 and is discussed in the section 
on character strings later in this chapter. The manual that documents 
these functions is the iC-86/286/386 Library Supplement, volume 15 of the 
iRMX for Windows documentation set. 

The functions that provide access to iRMX operating system services 
(iRMX system calls) are documented in the iRMX System Call Reference, 
volume 9 of the iRMX for Windows documentation set. The same docu
mentation is available in hypertext format as a DOS command, rmxhelp, 
which is part of iRMX for Windows. The iRMX system calls are intro
duced in chapter 6 and beyond in this book. This book also provides C lan
guage function prototypes for the iRMX system calls discussed here. 

The functions that provide access to iRMX networking services are doc
umented in the iRMX Network Programmer's Reference. Network pro
gramming is introduced in chapter 11 of this book. This book also provides 
function prototypes for both the PLM and C languages. 

In addition to function prototypes, both C and PLM allow include files 
to contain arbitrary pieces of source code, such as boilerplate comments or 
data structure declarations that are shared across several source modules. 
It is possible to include executable code in header or include files in both 
languages, but this option should be avoided if you plan to use a source
level debugger, such as SoftScope, which cannot trace such code. This re
striction does not apply to macro definitions in C header files (see the next 
section for information on macros). 

C header files are usually not displayed in the listing file produced by the 
compiler, but this default can be overridden by the lis t inc I ude compiler 
control, abbreviated as Ie. PLM include files do appear in the listing file by 
default, but most PLM include files, including those produced by extgen, 
start with the save and nolist compiler controls to suppress the listing, 
and end with the restore compiler control to resume listing of the source 
code. Extgen is the utility program introduced in chapter 3 that generates 
small include files for PLM programs based on the actual system calls the 
programs reference. 

4.2.2 Macro preprocessing 

Both C and PLM provide a text substitution facility, but the C macro capa
bility is much more powerful than that available for PLM. PLM's macro 
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facility is provided by the LITERALLY clause, which does not make any 
provision for arguments and is restricted to a maximum of 255 bytes of text 
per macro. The include files for the sample PLM program in chapter 3 
(Figures 3.6 and 3.7) illustrate typical uses for PLM's LITERALLY clause, 
such as providing symbolic names for commonly used data constants 
(TRUE and FALSE) and giving alternative names to data types (TOKEN and 
WORD_16). The operating system supplies PLM include files that provide 
symbolic names for commonly used data type and constant declarations 
(/rmx386/inc/common.lit, for system call condition codes /rmx386/ 
inc/ error. Ii t, and for various other constants useful in PLM programs 
for iRMX). 

The C language macro facility provides for parameter substitution 
within a macro body and uses a declaration and invocation syntax that 
makes macro invocations look like function calls. This feature lets the de
signer of a C function decide whether to optimize for either memory usage 
or execution speed. Functions use less memory because the machine code 
for a function is generated only once regardless of from how many places it 
is called, whereas machine code for a macro is inserted into a program each 
place the macro is referenced. Macros execute faster because they avoid the 
overhead of passing parameters and manipulating return addresses. Pro
grammers might not know whether they are using a macro or calling a 
function when the macro definition or function prototype is part of a 
header file and not displayed in the source code listing. 

4.2.3 1/0 support 

The most significant difference between the two languages is I/O process
ing. The C language is well-known for its standard library ofl/O functions, 
codified by the ANSI and adopted by POSIX.l. C programs that use these 
functions are automatically portable across all operating systems that 
support ANSI C. This standardization of I/O functions by no means im
plies that the I/O functions are implemented equivalently on different sys
tems. For example, the reference to stdin in the sample C program is actu
ally a macro reference, which is defined in : include: stdio. h for iRMX 
as: 

When the program is run under DOS using Borland C, the corresponding 
stdio. h file contains the definition: 

#define stdin (&_streams[O]) 

A corresponding Unix header file contains: 

#define stdin (&iob[O]) 
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Thus, ANSI C programs are portable with respect to I/O operations at the 
source code level, provided the header files provided with the compiler are 
not considered part of the source code. 

The contrast with PLM could not be greater. The PLM language does not 
support I/O at all, except for very primitive operations used for coding de
vice drivers. There is nothing like C's printf(), nothing like Pascal's wri
teln, nothing. So what is rqcsendcoresponse(), which was used in the sample 
PLM program in chapter 3? It is a system call provided by iRMX, not part 
of the PLM language. 

At this point, the difference between the two languages regarding I/O 
might still appear to be minor. In the sample programs, the PLM program 
used one system call, rqcsendcoresponse( ) to accomplish what the C pro
gram in Figures 4.1 and 4.2 did with two of its standard I/O functions, 
printf() andgets(). The difference between the two seems even more trivial 
when you see that C programs can make iRMX system calls directly just as 
PLM programs can, and that PLM programs can call all the standard C li
brary functions as well. A PLM version of the sample program that calls 
functions from the C run-time library is given in Figures 4.10 and 4.11, for 
example. 

The sample programs blur the distinctions between the I/O facilities of 
C and PLM because they happen to do only character string I/O. Consider 
instead a program that operates with floating point data. 

4.2.4 Floating point support 

Both languages support floating-point data types and computations using 
an x87 numeric hardware coprocessor, which should be initialized before 
being used, or an emulator. PLM programs explicitly initialize the co
processor by calling the built-in procedure initrealmathunit(). Severalop
tions can be set when using the coprocessor, such as its rounding mode and 
error reporting. The PLM built-in procedure setrealmode() can be called to 
change these options for particular applications, and there are other built
in procedures for testing, saving, and restoring the status of the coproces
sor. 

Although Intel numeric coprocessors implement the IEEE-754 standard 
for floating-point computations, ANSI C does not specify a standard 
method for controlling the options to control floating-point operations. 
Thus, for ANSI C programs, the coprocessor is automatically initialized, 
and the various options cannot be changed. The Intel C compilers, 
however, provide the same built-in functions as the PLM compilers for 
initializing the coprocessor, changing its options, and managing its status, 
if desired. 

At this point, a significant difference between the I/O processes of the 
languages emerges: C programs can read in and output floating-point 
values easily using the %f conversion format with standard I/O functions 
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such as printf() and scanf( ), but no such conversions exist for PLM. This 
point is made in the context of floating-point conversions, but the situa
tion is the same for integers as well: PLM programs can make system calls 
to do 110, but the only data type that can be input or output is an array of 
bytes, the equivalent of C's unsigned char[]. This issue is obscured for 
the sample programs, because they only do 110 with character strings, 
which map fairly directly onto arrays of characters (bytes) in both lan
guages. 

PLM programs that use numbers to communicate with human users 
must provide routines to convert the numbers from their external repre
sentation as character strings to their internal representation as integers 
or reals and back. These conversion routines are either written by the ap
plication developer or drawn from a library of such routines. Such a library 
is designed for use with assembly language programs, but it can be accessed 
from PLMprograms as well, in/lib/ndp387 /dc387f .lib. Figure 4.5 is 
a listing of a PLM program that uses two of the routines from this library to 
input two floating point numbers and display their sum. As you can see, it 
takes quite a bit of code to convert between character and floating-point 
representations of real numbers. The code that performs equivalent con
versions generally adds quite a bit of overhead to C programs that work 
with float or double data. 

Figure 4.5 Sample PLM program that illustrates floating-point I/O using conversion rou
tines from /lib/ndp387/dc387f.lib. 

/***> floatest.plm <************************************************ 

* Sample PLM program to illustrate floating-point I/O 
* .This code illustrates the use of the routines mqcdec_bin and 
* mqcbin_declow from the library /lib/ndp387/dc387f.lib. 

*********************************************************************/ 
$title ('Sample Program to Illustrate Floating-Point I/O') 
$compact (exports mqcdec_bin, mqcbin_declow) 

floatest: DO; 
$include (floatest.ext) 
DECLARE cr LITERALLY 

If LITERALLY 
DECLARE Status WORD_16, 

(x,y, z) 
index 
prompt1 (*) 
prompt2 (*) 
answer (*) 
outbuf (81) 
string (21) 

REAL, 
BYTE, 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE; 

INITIAL 
INITIAL 
INITIAL 
INITIAL 

'ODh' , 
'OAh' ; 

(' Enter first value: '), 
(' Enter second value: '), 
(, +zzzzzz .E+zz', cr ,If) , 
(' The sum of '), 

/* External Procedure Declarations 
*/ 

mqcdec_bin: PROCEDURE (dcb$ptr) EXTERNAL; 
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Figure 4.5 (Continued) 

DECLARE dcb$ptr 
END mqcdec_bin; 

POINTER; 

mqcbin_declow: PROCEDURE (adcb$ptr) EXTERNAL; 
DECLARE adcb$ptr POINTER; 
END mqcbin_declow; 

/* Data Structures Used by Conversion Routines 
*/ 

DECLARE dcb STRUCTURE ( /* 
b_buffer POINTER, 
precision BYTE, 
d_Iength BYTE, 
d_buffer POINTER) ; 

DECLARE adcb STRUCTURE ( /* 
b_buffer POINTER, 
precision BYTE, 
d_Iength BYTE, 
d_buffer POINTER, 

Decimal Conversion Block 
/* Binary Buffer */ 

*/ 

/* Decimal Character Buffer 
Augmented Decimal Conversion 
/* Binary Buffer */ 

/* Decimal Character Buffer 

*/ 

Block 

*/ 

scale SHORTINT, /* True Decimal Exponent */ 

sign BYTE) ; /* plus or minus character 
DECLARE single LITERALLY '0 I, /* Codes for precision 

double LITERALLY 12 I, 

extended LITERALLY 13' ; 

$subtitle ('Main Program') 
/* Coprocessor Initialization. 
* No need to use INIT87 or INITFP with PLM. 
*/ 

CALL init$real$math$unit; 

/* Get the external representation of the first value ... 
*/ 

prompt 1 (0) = length (promptl) - 1; 
CALL rqcsendcoresponse (@string, 20, @promptl, @status); 

/* ... and convert it to floating-point format. 
*/ 

index = skipb (@string(1), ' " string(O)); 
dcb.b_buffer = @x; 
dcb.precision = single; 
dCb.d_length = string(O) - index - 2; 
dcb.d_buffer = @string(index + 1); 
CALL mqcdec_bin (@dcb); 

CALL movb (dcb.d_buffer, @outbuf(12), dcb.d_Iength); 
CALL movb (@(' and '), @outbuf(12 + dcb.d_length), 5); 
outbuf(O) = 17 + dcb.d_length; 

/* Get the external representation of the second value ... 
*/ 

prompt2(0) = length (prompt2) - 1; 
CALL rqcsendcoresponse (@string, 20, @prompt2, @status); 

/* ... and convert it to floating-point format. 
*/ 

index = skipb (@string(1), ' " string(O)); 
dcb.b_buffer = @y; 

*/ 

*/ 

*/ 
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Figure 4.5 ( Continued) 
dcb.precision = single; 

dCb.d_length = string(O) - index - 2; 
dCb.d_buffer = @string(index + 1); 
CALL mqcdec-pin (@dcb); 

CALL movb '(dcb.~buffer, @outbuf(outbuf(O)), dcb.d_length); 
outbuf(O) = outbuf(O) + dcb.d_length; 
CALL movb (@(' is '), @outbuf(outbuf(O)), 4); 
outbuf(O) = outbuf(O) + 4; 

/* Computation section 
*/ 

z = x + y; 

/* Generate the result string 
*/ 

adcb.b_buffer = @z; 
adcb.precision = single; 
adcb.d_length = 6; 
adcb.d-puffer = @answer(1); 
CALL mqcbin_declow (@adcb); 
answer(O) = adcb.sign; 
IF adcb.scale < 0 THEN DO; 

answer (length (answer) - 5) '-'I 
adcb.scale = -adcb.scale; 
END; 

answer (length (answer) - 3) = BYTE(adcb.scale mod 10 + '0'); 
answer (length (answer) - 4) = BYTE(adcb.scale / 10 + '0'); 

/* Display the result and exit 
*/ 

CALL movb (@answer, @outbuf(outbuf(D)), length(answer)); 
outbuf(D) = outbuf(D) + length(answer); 
CALL rqcsendcoresponse (nil, 0, @outbuf, @Status); 
CALL rqexitiojob (0, nil, @Status); 

END floatest; 

4.2.5 16- and 32-bit targets 

Recall from earlier chapters that there are three versions of iRMX: 
iRMX I, which runs in real mode on microprocessors with 16-bit words; 
iRMX II, which runs in protected mode on microprocessors with 16-bit 
words; and iRMX III, which runs in protected mode on microprocessors 
with 32-bit words. iRMX for Windows is iRMX III with added software to 
support concurrent operation of iRMX III, DOS, and Windows. 

Chapter 5 discusses the architectural significance of different word sizes 
and processor modes. Chapter 12 describes the features that iRMX for 
Windows adds to iRMX III. The focus of this section is how different word 
sizes affect code written in PLM or C for the different versions of the oper
ating system. For present purposes, there is no need to differentiate be
tween iRMX III and iRMX for Windows. 

Different compilers allocate different amounts of memory for variables 
declared identically. For example, a variable declared to be of type WORD in 
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PLM -86 or PLM -286 is 16 bits of memory, but a variable declared the same 
way in PLM-386 is allocated 32 bits. Likewise, an int is 16 bits in iC-86 
and iC-286, but 32 bits in iC-386. The problem of variable sizes depending 
on the word size of the target computer is a general one, and not restricted 
to the compilers used to develop code for iRMX. If source code is being de
veloped for use with only a single target architecture, the problem is mini
mal, except for ensuring that the correct parameter types are passed to li
brary or system call functions. 

If source code is designed to run on different versions of iRMX, the 
problem is more significant, but can still be dealt with using straightfor
ward techniques. Regardless of how many different architectures are to be 
the target of code being developed, several options exist for dealing with 
target word size. C programmers have the following options: 

• The C data types short and long are always 16 and 32 bits long, respec
tively, regardless ofthe version ofthe compiler. This consistency is part 
of the ANSI standard for the C language, so all programs can rely on it. 

• The Intel C compilers provide a predefined macro called _ ARCHITEC
TuRE_ that returns values of 86, 286, and 386 for iC-86, iC-286, and 
iC-386, respectively. Conditional compilation (using the preprocessor 
directive #if) can be used to cause different code to be compiled de
pending on the architecture of the target processor. 

• The header file for iRMX system calls, :include:rrnxc.h, includes 
definitions for certain PLM data types. The term PLM data types is a bit 
of a misnomer, as will be seen directly. Nonetheless, the data types 
BYTE, WORD, and DWORD can always be used for 8-, 16-, and 32-bit 
unsigned integers respectively. Other PLM data types are declared in 
: inc 1 ude : rrnxc . h, but the three listed here work specifically with dif
ferent sizes of unsigned values, and appear frequently in the sample code 
in this book. 

• The rrnxc. h header file also defines a data type called NATIVE_WORD, 
which is a 16-bit unsigned integer for iC-86 and iC-286, or a 32-bit un
signed integer for iC-386. 

In PLM, a variable declared to be oftype WORD will be allocated 16 bits by 
the PLM-86 or PLM-286 compiler, but is allocated 32 bits of memory by 
the PLM-386 compiler. When using the PLM-386 compiler, there are two 
ways to allocate 16 bits to a variable: either declare the variable to be of type 
HWORD, or use the WORDl6 compiler control, which causes the compiler to 
use 16 bits for all WORD variables in the program. When you use the WORDl6 
compiler control, you can test a compiler variable, also named WORDl6, 
with a $if compiler control, as seen in the boilerplate code generated by 
extgen in chapter 3. The sample PLM code in this book uses the data types 
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WORD_16 and WORD_32 established by extgen to declare variables with 
proper word sizes. 

Programs that make iRMX system calls must know the word size of the 
target processor, whether the code is intended to run on a single version 
of the operating system or on different versions. Fortunately, including the 
proper header files in the program allows the compiler to verify that the 
proper data types are being passed to the operating system functions. A 
properly coded program can be compiled to run without any syntax errors 
for any version of iRMX using the techniques previously listed. Certain 
system calls are unique to specific versions of the OS, so a program de
signed to run on different versions of iRMX must also take this factor into 
account. 

The relationship between iRMX II and iRMX III applications deserves 
special note. Loadable iRMX II modules (16-bit code developed using 
PLM-286 or iC-286 and BND286) execute under iRMX III without any 
need to recompile or rebind. The secret to this binary compatibility lies in 
the libraries linked to 32-bit applications that make iRMX system calls. 
All parameters are passed to subroutines on a pushdown stack in memory, 
which uses I6-bit words or 32-bit words, depending on the development 
tools and libraries used to construct the application. The 32-bit libraries 
include code that passes a flag variable to the operating system to indicate 
the use of a 32-bit stack segment. If an iRMX III operating system function 
does not find this flag variable on the stack, it automatically adjusts to 
work with a I6-bit stack. One reason 32-bit code can't be run on iRMX II is 
that iRMX II does not adjust to the 32-bit stack size. More important, the 
iRMX II Application Loader (AL) does not recognize the 80386 Object 
Module Format generated by bnd386. 

4.2.6 Scoping rules 

In PLM, all data and procedure names declared within a source module are 
private to the module unless explicitly declared to be public. In addition, 
the only way a PLM program can reference data or procedures declared in a 
different source module is to declare the symbolic name to be external. Of 
all the object modules combined by the binder, exactly one can contain a 
public declaration of a symbol, and any number of other modules can refer 
to the symbol as an external. 

PLM variables are allocated storage in the data segment of the module. 
Although variables declared inside a procedure cannot be accessed from 
outside the procedure, the values of the variables are retained between calls 
to the procedure by default. The exception to this rule is any procedure de
clared to be reentrant. In this case, local variables are allocated storage on 
the run-time stack when the procedure is entered, and when the procedure 
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returns, the storage is freed, so the values of local variables are not pre
served across calls. 

The C language essentially operates in a complementary fashion to 
PLM. For C, all data declared outside any function and all functions them
selves are automatically either public or external unless explicitly re
stricted to a single module by being declared static. Whether a non-static 
symbol is public or external depends on whether the symbol is being de
fined (public) or referenced (external). To complete the complementary 
pattern, all C functions are reentrant by default, which means that all vari
abIes declared local to the function are allocated storage on the run-time 
stack unless declared to be static. 

The character string prompt is declared and defined in the main module 
of our sample C program (Figures 4.1 and 4.3), thus being a public symbol 
in that object module. It is declared with the extern storage class in the 
subroutine module (Figures 4.2 and 4.4). If prompt had not been declared 
extern here, it would have been considered a defining declaration, and 
bnd386 would have issued a warning about duplicate public declarations. 

4.2.7 Function prototypes 

In the sample C program, no function prototype for the function dosub() 
exists in the main module (Figures 4.1 and 4.3). In this situation, the com
piler provides the function with a prototype based on the form of the refer
ence to dosub() in the code. For the sample program, the ANSI standard 
specifies that the function be prototyped as returning an int, even though 
the function actually returns nothing, as established by its declaration as 
type void in the second module. This inconsistency results in a conflict be
tween the two declarations in the object modules hellormx and hello
sub. Technically, the binder should issue a warning for this type mis
match, even though the code will run without error because the main 
program does not actually try to use any return value from the function. 
Current versions of bnd386 do not issue any warning or error for this spe
cific type mismatch, probably because it is a benign problem characteristic 
of many C programs.2 

If this type of symbolic mismatch is a problem, a development tool called 
map386 can be useful. The tool was not previously mentioned in chapter 3 
because it is not a required step in the development process. Map386 pro
duces a complete symbolic map for a load module. The command 

iRMX> rnap386 hellorrnx [1] 

generates a file named hellormx. map, which lists information about 

2The current ie-3S6 compiler issues a "remark" about the missing function prototype when 
it compiles hellorrnx. c. 
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every public symbol for all linkable modules combined to produce a load 
module. This map file can be very useful for tracking down linking errors 
that are not clear from the binder's. mpl file. For example, the. map file for 
the sample program includes a warning for the symbol type mismatch of 
dosub(), even though the • mpl file produced by bnd386 does not. 

This description of e declarations omits some details. See chapter 4 in 
Harbison and Steele (1991) for more information. The main issue here is to 
point out some of the differences between PLM and e that can lead to un
expected problems during the binding stage if they are not understood. 

4.3 Run-time Considerations 

This section discusses the run -time environments provided bye and PLM. 
(Other run-time considerations specifically relating to iRMX are covered 
in the next section.) 

Run-time efficiency can be optimized for either speed or memory re
quirements. Both e and PLM compilers allow the developer to select the 
level of optimization for generating object code, using a value from 0 (no 
optimization) to 3 (maximum optimization). Most object code optimiza
tions improve the speed of the program, often by eliminating superfluous 
instructions, which improves the memory requirements of the program as 
well. Both compilers are expected to produce object code of equivalent size 
and speed when working at the same optimization levels. 

The two languages differ most in the size of the code that must be bound 
together to produce an executable program. Figure 4.6 represents the mem-
0ry structure of a loadable iRMX application, such as an HI command. 
The lower part of the figure is the as itself, which is always completely res
ident in memory. The upper part of the figure represents one loadable ap
plication. Systems with multiple users or users running multiple programs 
simultaneously (using the eLI's background command or the HI sysload 

Application-Specific Code 

Language-Specific iRMX Interface 
Run-Time Code Procedures 

Resident iRMX as Code 

Figure 4.6 Main memory structure for a loadable iRMX appli
cation program. 
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command) might have multiple loadable applications in memory at the 
same time. Each application consists of three parts: application-specific 
code, language-specific code, and interface procedures. 

Application -specific code is derived from the source code written by the 
application programmer and compiled into object modules by the com
piler. This code is made part of an application by listing the object module 
files for the application first in the input path list of a bnd386 command 
line. The application -specific code for all versions of the sample program is 
in the files hellorrnx.obj and hellosub.obj. 

Interface procedures are used to access system calls, which are sub
routines located in the resident part of the as. The interface procedures 
come from a library, such as /rrnx386/lib/rrnxifc32 .lib for our sam
ple program, which is supplied as part of the as. The library of interface 
procedures for system calls is language independent, and must be bound 
with all application programs, whether written in PLM, C, or assembler. It 
will be necessary to understand the internal logic of interface procedures in 
chapter 10 when adding new system calls to the operating system are dis
cussed, but consider these interface procedures to be black boxes for now. 

Currently, you should pay attention to the language-specific run-time 
libraries that must be bound with programs written in high-level lan
guages. These libraries contain functions and procedures that are called by 
the application-specific code explicitly, implicitly, or indirectly. 

Explicit functions. Explicit functions are routines called by an application 
but considered part of the programming language. The entire standard C 
library consists of explicit functions, including printf() and gets() for the 
sample program in Figures 4.1 and 4.2. The PLM-386 language includes 
very few explicit functions, only a few routines for manipulating bit arrays. 

Implicit functions. Implicit functions are routines that do not appear by 
name in an application's source code but for which the compiler inserts 
machine language call instructions to invoke them. These functions pro
vide operations supported by the language but implemented as subroutines 
by the compiler rather than with in -line code. For example, both PLM and 
C support multiplication and division of doubleword integers, but both 
compilers use implicit functions to perform these particular computations. 

Indirect functions. Indirect functions are routines that are called by func
tions called by the application's code. A language-independent example of 
an indirect function is rqerror(), which is referenced by the interface pro
cedures for all iRMX system calls. rqerror( ) is called by an interface proce
dure if the system call returns an error condition. The PLM language does 
not use any indirect functions, but the C language explicit functions make 
many indirect function references. For example, the printf() function indi
reetly calls other functions to format the characters for output and then 
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perform the actual printing. The presence of indirect function references 
helps determine the order in which library files are listed on the binder's 
command line. For example, ifthe C run-time library makes indirect refer
ences to the iRMX system call interface library, the C library must appear 
before the iRMX interface library so the binder can resolve the indirect 
references successfully. 

The run-time routines for the implicit functions referenced by the PLM 
and C compilers are found in the library files lintel/lib/plm386 . lib 
(: lang: plm3 86 . lib for iRMX versions other than iRMX for Windows) 
and: lang: ic386 . lib for PLM and C, respectively.3 These run-time li
braries are not only very small, but are actually used only for applications 
that perform 64-bit multiply and divide operations. For example, although 
it was included in the input file list for binding the sample PLM program in 
chapter 3, no modules from plm386 . lib were actually included in the 
loadable file produced by the binder. The same is true of i c 386 . lib for 
the sample programs in this chapter. Implicit functions never make indi
rect function references, so the language-specific run-time libraries are 
always listed last in the input file list for the binder. 

No library of explicit functions for PLM programs exists other than the 
library of interface procedures for iRMX system calls, so the following dis
cussion is specific only to C-Ianguage programs or PLM programs that call 
routines in the C run-time library. 

The explicit and indirect functions called by a C program come from two 
different files. The first is a single object module called the C start-off code, 
and the second is the C run-time library itself. The C language does not 
provides a method to generate an execution starting point as PLM and as
sembler do. PLM programs start executing at the first executable state
ment that appears outside of any procedure; there must be only one such 
statement among all the object modules bound together to create an exe
cutable program. Assembler programs use the END directive to specify the 
execution starting point. 

The C compiler never specifies an execution starting point in the object 
modules it produces. Rather, the convention is for execution to begin at the 
function named main(), which must be called by an assembly language or 
PLM program known as the start-off program. The code in the start-off 
module performs a number of initializations (described as follows), and 
then calls main(), passing command-line arguments in the traditional 
argc and argv parameters. If main( ) returns to the start-off module, it 
will encounter an indirect call to cq_ exit(), which in turn will make an indi
rect call to the iRMX system call rqexitiojob() to terminate execution. 

3The implicit library for C is in the interface library for the shared C library for those sys
tems, including iRMX for Windows, that support that library. The shared C library, also 
called the C layer, is described later in this section. 
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There are two ways to handle the run-time library for C programs. Each 
C program can be bound to the necessary parts of the library, or the entire 
library can be loaded with the operating system so that C programs can in
voke any library function the same way they call iRMX system calls - by 
calling interface procedures. Figure 4.6 represents the case in which each 
application is linked to the C library, and Figure 4.7 represents the case in 
which a single resident copy of the run-time library is shared among all C 
applications. The shared copy ofthe C run-time library is pre-linked to the 
iRMX system call interface procedures that actually perform operating 
system functions such as I/O and program termination, so those interface 
procedures are shown as part of the resident OS. If an application program 
made iRMX system calls in addition to C run-time library calls, interface 
procedures for those system calls would need to be included in the applica
tion program's memory in the upper part of the figure. 

Because Figures 4.6 and 4.7 are not drawn to scale, the major difference 
between the two techniques is not immediately obvious: The shared resi
dent version ofthe library results in much smaller application programs at 
the expense of more memory dedicated to the resident portion of the OS. In 
the current version ofiRMX for Windows, the resident C library adds 107 
KB to the memory requirements of the operating system. 

The size of the C nonshared run-time library is measured in the 
hundreds of thousands of bytes, and virtually all C programs extensively 
use the routines it provides. The C version of the hellormx program that 
calls gets() and printf() in Figures 4.1 and 4.2, for example, binds to 75 
modules directly or indirectly from the C run -time library crmxnf 3 c . lib. 
Furthermore, the functions in these modules reference an additional 51 
modules from rmxif c 32 . lib, resulting in a loadable command file of over 
80 KB. 

Application-Specific Code 

Language-Specific 
Interface Procedures 

Resident iRMX Interface 
Run-Time Code Procedures 

Resident iRMX as Code 

Figure 4.7 Main memory structure for a loadable iRMX applica
tion using the resident C run-time library. 
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If the same program is bound to the library of interface procedures for 
the resident version of the library instead, only 11 modules are included 
from that library, and no indirect references are made to the iRMX inter
face procedure library. The loadable command file is only about 10 KB. 
The PLM version ofthe same program (Figures 3.3 and 3.4), incidentally, 
is less than 7 KB after binding to the iRMX interface procedure library. 

Table 4.1 summarizes the size requirements for the PLM and eversions 
of the hellormx program presented in this chapter and chapter 3, including 
the PLM programs that use C library functions, which are examined later 
in this section. For the programs, I/O and program termination were coded 
either to make iRMX system calls directly or to call functions in the C run
time library. Programs that call functions in the C run-time library were 
linked to either the shared or the non-shared version of the library. The 
number of object modules linked from the C library is given as 1 + n for 
those programs that require the C start-off code, and as n otherwise. The 
Loadable columns give the sizes ofthe loadable files (executable STL files) 
with and without debugging information retained. The Code + Data col
umn gives the sum of the code and data memory segments for each pro
gram, but does not include memory requirements for the program's stack 
segment, nor for data segments created as the program executes. All com
pilations were performed using the compiler's compact and debug con
trols. All C programs were compiled using the compiler's nosrclines 
control. 

The table points out the ambiguity involved in citing the size of a pro
gram. As can be seen, the sizes of the loadable files vary greatly, depending 
on whether they include debugging information. As discussed in chapter 3, 
this debugging information is discarded by the iRMX AL, but is used by 
source language debuggers such as SoftScope. The actual amount ofmem
ory used by a program is more accurately given by the Code + Data column 
of the table, which shows the actual amount of memory occupied by the 
code and data segments of the programs. Even this column is not a totally 
accurate representation of a program's memory requirements, however, 
because both iRMX system calls and C run-time library functions create 
additional data memory segments as a program executes. 

TABLE 4.1 Sizes of Various Versions of the Hellormx Program 

Source C C iRMX Loadable Loadable Code + 
Language Functions Library Modules Modules w/Debug w/o Debug Data 

PLM iRMX none 0 7 6,873 4,380 455 
C C shared 1 + 11 0 10,791 8,787 5,161 
C C not shared 1 + 75 51 80,821 46,912 52,369 
C iRMX shared 1 + 10 7 12,025 9,062 5,430 
C iRMX not shared 1 + 72 53 75,900 42,916 48,369 
PLM C shared 6 0 6,355 4,386 376 
PLM C not shared 1 + 75 51 81,478 46,907 52,449 
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The following two command lines illustrate the two ways to build the 
version of hellormx that uses the C run-time library: 

iRMX> bnd386 & 

•• :lib:cstrmx3c.obj, hellormx.obj, hellosub.obj, & 
•• :lib:crrnxnf3c.lib, /rrnx386/1ib/rrnxifc32.1ib, & 
•• rn(code to code32) ss (stack(B192» 
rc(dm(O,OFFFFFFh» & 

··oj(hellormx) 

iRMX> bnd386 & 

•• :lib:cstart32.obj, hellorrnx.obj, hellosub.obj, & 
•• : lib: clibxf32 • lib & 

•• rn (code to code32) ss(stack(8192» 
rc(dm(O,OFFFFFFh) ) & 
** oj (hellormx) 

[2] 

[3] 

Command line [2] illustrates the use of the non-shared version of the li
brary, and command line [3] illustrates the use of the shared version. The 
logical name : lib: in both command lines should not be taken literally 
because the locations of the various libraries sometimes change positions 
from one release of iRMX to another, or across versions of the OS. For 
iRMX for Windows 2.0a, :lib: refers to the directory Irmx386/newl 
intel/lib in command line [2] and refers to the directory lintel/lib 
in command line [3].4 

The two command lines reference different start-off files as well as dif
ferent run-time libraries. The start-off code for the non-shared version of 
the library in line [2] (cstrmx3. obj ) performs much more initialization, 
to be described in the section on multitasking, than the start-off code for 
the shared version ofthe library in line [3] (cstart32. obj). Note that the 
binder normally generates its output in an STL file that has the same name 
as the first file of its input file list with the extension of the file name 
dropped. If the 0 j () control had not been used on the command lines, 
the binder would have produced its output in a file in the : lib: di
rectory. Aside from not wanting the executable program to be named 
: lib: cstrmx3 or : lib: cstart32, the bind commands would probably 
fail on any iRMX file systems where most users do not have write permis
sion for the : lib: directory. 

Several versions of non-shared run-time libraries are supplied with the C 
compilers for iRMX. The name ofthe one used in command line [2] indi
cates that it is used to interface C programs to iRMX (crmx .•• ), that it 

4The names and directories for library files have changed several times during the evolution 
of the iRMX for Windows operating system. For example, the command to build the hellormx 
program using the shared C library in iRMX for Windows version 2.0c is: 

iRMX> bnd386 & 

** /intel/lib/cstart32.obj, hellormx.obj, hellosub.obj, & 
** /intel/lib/cifc32.1ib & 
** rn(code32 to code) ss(stack(8192» & 

** rc(dm(O, OFFFFFFFFh» oj (hellormx) 
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provides no floating-point support ( ... nf ... ), that it is for iRMX III 
( ... 3 ... ) and that it is used for programs compiled using the compact 
segmentation model ( ... c . lib). At the time of this writing there is just 
one version ofthe shared run-time library available. It is found in the file 
/rmx386/jobs/clib. job, which can be called from any iRMX III ap
plication regardless of its model of compilation, and which includes float
ing point support. There is presently no library of interface procedures to 
this library for 16-bit applications. 

4.4 Congruence with iRMX 

This section discusses issues that must be handled properly to make iRMX 
system calls from C and PLM programs. The issues mainly involve passing 
arguments to system calls and receiving results back from the as, but 
there are also considerations that focus specifically on multiple tasks and 
multiple jobs for C programs. 

4.4.1 Character strings 

iRMX system calls that receive character string arguments or return char
acter string values, such as rqcsendcoresponse ( ) in the sample PLM 
program, expect the character string to be represented as an array of bytes. 
The first element of the array contains an unsigned binary number specify
ing the number of characters in the string, and the next bytes in memory 
contain the ASCII codes for the characters in the string. For example, if a 
user of the PLM version of hellormx typed ABC<cr> in response to the 
Type something: prompt, the first six bytes ofthe array Reply would be 
filled with the following sequence of values, given in hexadecimal: 

05 41 42 43 OD OA • • • 

The first byte contains the length of the string, which is five characters 
long. The next three bytes contain the ASCII codes for the letters A, B, and 
C, and the next two bytes contain the ASCII codes for carriage return 
(OxOD) and line feed (OxOA). The remainder of the bytes in the array would 
not be affected by this call to rqcsendcoresponse(). PLM has no character 
string data type, so arrays of bytes are used for all iRMX strings. PLM pro
grams must explicitly set the length of strings that will be passed to iRMX 
system calls, by using the built-in length() function, for example, to com
pute the length to be stored in array element zero, as shown in the state
ment: Prompt (0) = length (Prompt) -1; in the PLM version of hel
lormx. 

The C language does have a character string data type, which is repre
sented in memory as an array of bytes terminated by a byte containing bi
nary zeros (known as null-terminated string). This representation of 
strings can be used as long as the C run-time library only is involved in any 
string operations, such as in the C version of hellormx in Figures 4.1 and 
4.2. When iRMX system calls are made from C programs, however, C 
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strings must be converted to iRMX strings and vice versa. The C run-time 
library supplied with Intel C compilers provides functions named udistr( ) 
and cstr( ) for these conversions. The function prototypes for these func
tions are given in : include: string. h, along with the function proto
types for the ANSI string-handling functions. The code in Figures 4.3 and 
4.4 illustrates using udistr( ) to convert C strings to iRMX strings. (The 
name udistr() refers to the Universal Development Interface (UDI) layer 
ofiRMX, but all layers of the OS use the same representation for strings.) 

iRMX strings cannot be longer than 255 bytes because of the limitation 
of storing the length of the string in a single byte, but each byte ofthe string 
can contain an arbitrary bit pattern, including all zeros. C strings can be 
longer, but cannot contain any bytes with all zeros within the string. C pro
grammers must remember these differences when using strings with 
iRMX system calls. 

The C language allows strings to include control characters using an 
escape mechanism. For example, the C string' 'hello \n' , uses <\n> to 
insert a new-line (ASCII linefeed) character into the string. PLM strings 
do not support such an escape mechanism. Rather, arbitrary values can be 
used to initialize byte arrays by simply placing their value in the initializa
tion list. The PLM initialization list, ( 'he 110 ' , OAh, 0) is equivalent to 
the preceding C string. Note that the byte of zeros at the end of this list 
must be given explicitly in PLM, but is automatically appended to the end 
of all C-Ianguage strings. 

One final issue concerning strings that C programmers need to be aware 
of is the difference between signed and unsigned characters. By default, the 
char data type is a signed data type, according to the ANSI standard for 
the C language. (Watch for a sign extension when a char value greater 
than Ox7F is promoted to an int.) The function prototypes for the ANSI 
string manipulation functions all specify signed characters (or pointers to 
them) for their arguments. iRMX system calls that take string arguments, 
however, are prototyped to take unsigned char arguments. The PLM 
BYTE data type defined in : include: rrnxc. h is for unsigned characters, 
and it is sometimes necessary to be aware of the difference between the 
two data types when mixing iRMX system calls and C string operations. 
The: include: rrnxc. h header file defines the STRING data type to be 
signed characters and can be used for C applications that need signed 
characters. 

4.4.2 Parameter passing 

When establishing protocols for passing parameters to subroutines and 
receiving returned values, you must consider the specific architecture of 
the CPU being used, the programming languages involved, and the operat
ing system. An early example of treating all these issues uniformly was the 
IBM S/360 architecture introduced in the 1960s. IBM specified that all 
programming languages and all operating systems that ran on the S/360 
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architecture would use the general purpose registers ofthe CPU in a stan
dard way when calling and returning from subroutines.6 

iRMX, C, and PLM all use the stack system of the x86 architecture for 
managing parameters, return addresses; and return values for subroutine 
calls. Differences exist, however, between how C uses the stack and how 
iRMX and PLM use the stack, and these differences must be taken into 
consideration. Readers familiar with making system calls to other operat
ing systems such as DOS or OS/2 should remember that those two systems 
use a register-based scheme for passing parameters to system calls rather 
than the stack scheme used by iRMX. Also, Unix programmers have not 
dealt with this issue at all because Unix and the implementations of C on 
Unix always use a single calling convention, which is stack-based on those 
processors that support it. 

On stack-based systems, each subroutine call results in a data structure 
called a stack frame put on the top of the pushdown stack kept in memory. 
A CPU register called the stack pointer (sp) always points to the top of this 
stack, and another register called the bCL$e pointer (bp) keeps track of 
nested stack frames. Figure 4.8 shows the general structure of a stack frame 
during a subroutine call. Note that stacks grow d()wnward; sp always has 
the lowest memory address occupied by the stack. The three parts of a 
stack frame are constructed in three separate steps: 

1. A sequence of machine language push instructions pushes the argu
ments to be passed to the subroutine onto the stack. 

2. A machine language call instruction pushes the return address onto the 
stack. The return address is the address of the next machine language 
instruction in the calling program after the call instruction. 

3. Finally, for re-entrant subroutines, space is reserved on the stack for the 
local variables of the subroutine by li'Iubtracting the numb~r of bytes 
needed for local variables from the sp register. Subroutines address in
coming parameters by specifying positive offsets relative to the bp reg
ister and local variables using negative offsets relative to bp. 

The difference between PLM and C is that both the PLM compiler and 
all iRMX system call subroutines assume that parameters are pushed onto 
the stack in a left-to-right sequence, whereas C compilers normally push 
parameters onto the stack in a right-to-Ieft sequence. The C technique 
always puts the first parameter, which sometimes specifies the number of 
actual parameters there are for the call, at a fixed location in the stack next 
to the return address. 

6For the 8/360 architecture, register 14 contained the return address, register 1 contained 
the address of a parameter list in memory if the arguments could not be passed in registers, 
and register 13 was used as the link field in a linked list of register save areas for nested sub
routine calls. There was no hardware support for pushdown stacks in memory, 80 stackS were 
not an issue. The same conventions were retained in the 8/370 architecture. 
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Figure 4.8 Structure of a stack frame during a subroutine call. 

For example, the first parameter to printf()is a string that contains for
matting codes; the number of formatting codes in the string tells the func
tion how many additional parameters it should expect to find on the stack. 
The PLM technique makes it impossible to implement variable-length ar
gument lists to subroutines, but executes more efficiently on the x86 archi
tecture because the fixed number of arguments allows the subroutine to 
update the stack frame pointer, return to the calling program, and drop the 
incoming parameters from the stack in one or two machine instructions 
(leave count, or pop bp; return count). This method is opposed to the 
variable argument list technique, which requires the parameters to be 
dropped as a separate instruction by the calling program after the sub
routine returns. 

Intel C and PLM compilers can each use the other's calling convention. 
This feature allows the C run-time library to use the more efficient PLM 
model wherever possible, allows C programs to make iRMX system calls 
(which require the PLM argument passing model), and makes it possible to 
develop mixed-language applications as well. Intel C compilers recognize a 
pair ofpragmas, fixedparams and varparams to identify which calling 
convention is to be used for individual functions. PLM compilers provide 
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the interface control for forcing routines to be called using the C con
vention. 

Figure 4.9 shows a sample PLM program that calls routines from the C 
run-time library. Note that the program is coded as a procedure named 
main{ ), which will be called from the C start-off code. This construction is 
necessary when linking to the non-shared version of the C run-time library 
because the start-off code must complete certain initializations before any 
function in the library is called. When using the shared version of the li-

Figure 4.9 PLM version of Iwllormx main program using non-shared C library functions. 

1***> hellorrnx.plm <************************************************** 

Sample PLM program for iRMX 
-- main program using non-shared C library functions 

**********************************************************************/ 

$title ('Sample PLM Main Program') 
$interface (C = printf) 

hellormx: DO; 
DECLARE 

prompt (*) BYTE PUBLIC INITIAL ('Type something: ',0), 
reply (81) BYTE; 

$if WORD16 
DECLARE WORD_16 LITERALLY 'WORD'; 
$else 
DECLARE WORD_16 LITERALLY 'HWORD'; 
$endif 

printf: PROCEDURE (ptr) EXTERNAL; 
DECLARE ptr POINTER; 
END printf; 

dosub: PROCEDURE (response$ptr, response$max) EXTERNAL; 
DECLARE 

response$ptr 
response$max 

END dosub; 

/* 

POINTER, 
WORD_16 ; 

Execution Starts Here 
*/ 

main: PROCEDURE (argc, argv) WORD_16 PUBLIC; 
DECLARE 

argc 
argv 

WORD_16, 
POINTER; 

CALL dosub (@reply, size (reply) - 1); 

CALL printf (@('You typed: %s', ODh, OAh 0), @reply); 
RETURN 0; 

END main; 
END hellormx; 
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brary, this initialization is automatically performed when the first call to 
any function in the run-time library is called, and the equivalent PLM pro
gram can be coded as shown in Figure 4.10. Either version of the main pro
gram, using the appropriate version of the run-time library, could be linked 
to a single version of the subroutine, which is shown in Figure 4.11. 

Figure 4.12 provides the bnd386 command that will build the program 
under iRMX. This command involves linking the same files as any C pro-

Figure 4.10 PLM version of hellormx main program using shared C library functions. 

/***> hellormx.plm <************************************************** 

* Sample PLM program for iRMX 
-- main program using shared C library functions 

**********************************************************************/ 

$title ('Sample PLM Main Program') 
$interface (C = printf, exit) 

hellormx: DO; 
DECLARE 

promptStr (*) 
prompt 
reply (81) 

$if WORD16 

BYTE INITIAL (, Type something: ',0), 
POINTER PUBLIC INITIAL (@promptStr), 
BYTE; 

DECLARE WORD_16 LITERALLY 'WORD'; 
$else 
DECLARE WORD_16 LITERALLY 'HWORD'; 
$ end if 

printf: PROCEDURE (ptr) EXTERNAL; 
DECLARE ptr POINTER; 
END printf; 

exit: PROCEDURE (code) EXTERNAL; 
DECLARE code WORD_16; 
END exit; 

dosub: PROCEDURE (response$ptr, response$max) EXTERNAL; 
DECLARE 

response$ptr 
response$max 

END dosub; 

/* 

POINTER, 
WORD_16; 

* Execution Starts Here 
*/ 

CALL dosub (@reply, size (reply) - 1); 

CALL printf (@('You typed: %s', ODh, OAh, 0), @reply); 
CALL exit (0); 

END hellormx; 



Development Languages 129 

Figure 4.11 PLM version of hellormx subroutine using C library functions. 

/***> hellosub.plrn <************************************************* 

* 
sample PLM program for iRMX 
-- subroutine using C library functions 

**********************************************************************/ 

$title ('Sample PLM Subroutine') 
$interface (C ; printf, gets) 

hellosub: 00; 

$if WORD16 
DECLARE WORD_16 LITERALLY 'WORD'; 
$else 
DECLARE WORD_16 LITERALLY 'HWORD'; 
$endif 

printf: PROCEDURE (ptr) EXTERNAL; 
DECLARE ptr POINTER; 
END printf; 

gets: PROCEDURE (ptr) EXTERNAL; 
DECLARE ptr POINTER; 
END gets; 

DECLARE prompt POINTER EXTERNAL; 

dosub: PROCEDURE (resp$ptr, resp$max) PUBLIC; 
DECLARE 

resp$ptr 
resp$max 

POINTER, 
WORD_16 ; 

CALL printf (@('%s', 0), prompt); 
CALL gets (resp$ptr); 
RETURN; 

END dosub; 
END hellosub; 

Figure 4.12 The command to bind the PLM version of hellormx using the non-shared 
C library. 

iRMX> /rrnx386/new/intel/lib/cstrrnx3c.obj, hellormx.obj, hellosub.obj, & 
** /rmx386/new/intel/lib/crrnxnf3c.lib, /rmx386/1ib/rrnxifc32.1ib & 
** rn (code32 to code) ss(stack(8182)) oj (hellorrnx) rc(dm(O,OFFFFFFh)) 

gram. The resulting loadable file is approximately 81 KB. Using the 
bnd386 command shown in Figure 4.13 to link with the interface proce
dures for the shared library (and the object module for Figure 4.10) reduces 
the size of the load module file to approximately 6 KB. Table 4.1 compares 
the actual sizes for these two versions of the program in terms of files and 
actual memory usage. 

Finally, note that PLM and C programs can build compatible stack 
frames with the codes shown in Figures 4.14 and 4.15. Figure 4.14 is a C 
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Figure 4.13 The command to bind the PLM version of hellormx using the shared C library. 

iRMX> hellorrnx.obj, hellosub.obj, & 
** /intel/lib/clibxf32.1ib, /rmx386/1ib/rrnxifc32.1ib & 
** rn (code32 to code) ss(stack(8182)) oj (hellorrnx) rc(dm(O,OFFFFFFh)) 

Figure 4.14 C version of hellormx main program that can call the PLM version ofthe sub
routine given in Fig. 4.11. 

/***> hellormx.c <*************************************************** 

* 
* 
* 

Sample C program for iRMX 
main program using C library functions 

-- calls subroutine using PLM calling conventions 
* 
**********************************************************************/ 

#include <stdio.h> 

unsigned char *prompt (unsigned char *) "Type something: "; 

#pragma noalign (dosub) 
void dosub (unsigned char * unsigned short); 

int 
main (int argc, char *argv[]) 

unsigned char reply[80] ; 

do sub (&reply[O] , 80); 
printf ("You typed: %s\n", &reply); 
return 0; 

Figure 4.15 C version of hellormx subroutine that can be called from the PLM main program 
given in Fig. 4.10. 

/***> hellosub.c <*************************************************** 

* Sample C program for iRMX 
* subroutine using C library functions 
* -- subroutine is called using PLM calling conventions 

* 
**********************************************************************/ 

#include <stdio.h> 

extern unsigned char *prompt; 

#pragma noalign (dosub) 
void 
dosub (unsigned char * inbuff, unsigned short limit) { 

printf ('%s·, prompt); 
gets ((char *) inbuff); 
return; 
} 



Development Languages 131 

main program that can call a PLM version of dosub( J. The fixedparams 
pragma tells the compiler to use the PLM calling convention for that rou
tine. The subroutine in Figure 4.15 can be called from a PLM program, 
such as the one in Figure 4.10 or from a matching C main program, such as 
the one in Figure 4.14. 

4.4.3 Pointers 

Memory address pointers can take four different forms in iRMX envi
ronments. Depending on the memory segmentation model, pointers are 
classified as near or far. Depending on the architecture of the processor 
running the application and the as, pointers reference 16- or 32-bit seg
ments. Thus, the four types of pointers are 16-bit near, 16-bit far, 32-bit 
near, and 32-bit far. Near pointers are used when the item being addressed 
is in one of the memory segments directly accessible by the CPU, and con
sist of a 16-bit or 32-bit offset value for identifying a location in the seg
ment. Far pointers are used when an item being addressed is not in one of 
the memory segments directly addressed by the CPU. They consist of a 16-
bit segment identifier, plus a 16-bit or 32-bit offset. Pointers and memory 
addressing in general are discussed further in chapter 5. 

Both PLM and C support parameter passing by value only, but both lan
guages accomplish the equivalent of reference parameters by passing 
pointers as values. Parameters passed by value cannot be modified by a 
subroutine because only a copy of the argument is actually available to the 
subroutine. For C and PLM, a copy of the parameter value is pushed onto 
the stack in this instance. Passing a pointer, on the other hand, enables the 
subroutine to modify variables in the calling program's memory by indirect 
addressing. The PLM language supports indirect addressing through its 
based-variables mechanism. Indirect addressing is accomplished in C by 
declaring a variable to be a pointer, either by using the asterisk declarator 
or by declaring the variable to be array. 

Although it is not an iRMX issue, you should note that a major differ
ence between pointers in C and PLM is the type checking performed by the 
compiler. All PLM pointers are generic in the sense that the language in
cludes no mechanism for specifying the data type of the memory location 
addressed by a pointer. The C language, however, requires the data types of 
the variables addressed by pointers to be declared explicitly, and the com
piler performs full type checking for all uses of pointers. 

The distinction between 16- and 32-bit pointers is not as significant 
when making iRMX system calls as one might expect. All programs that 
run on iRMX I and iRMX II must use 16-bit code just to run, so there is no 
question about 32-bit pointers for those operating systems. For iRMX III, 
we have already noted that the as can accept either 16- or 32-bit pointers 
because it can determine the word size ofthe stack segment at run time (the 
interface procedure pushes a flag for 32-bit stacks). As long as a program 
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uses all 16-bit code or all 32-bit code, PLM386 and iC386 will cause all seg
ments, including the stack, to use the same word size, and pointers will au
tomatically match that chosen word size. 

The rule for passing near or far pointers to iRMX system calls is simple: 
all pointers must be far pointers because the operating system occupies 
separate memory segments from applications. For PLM programs, simply 
use that language's @ operator, which always generates far pointers. In cer
tain circumstances, the PLM compiler will issue a warning message if you 
create a far pointer to information normally accessed through a near 
pointer, such as a pointer to a subroutine when using the compact memory 
segmentation model. This warning can be eliminated by using an extended 
segmentation model to force the compiler to use the large model for access
ing particular subprograms. The fioatest application in Figure 4.5 illus
trated the use ofthis extended segmentation technique for the mqcbin _ de
clow() and mqcdec_bin() functions. 

For C, the situation is somewhat more complicated. The & operator will 
generate either a near or far pointer, depending on the memory segmenta
tion model being used and whether the referenced item is in the program's 
code or data, as summarized in this table: 

Segmentation Model 

Compact 
Large 

Code Reference 

near 
far 

Data Reference 

far 
far 

Furthermore, the C compiler will generate a pointer without use of the & 

operator when arrays or functions are passed as arguments to functions. 
For example, the C compiler generates exactly the same code for the fol
lowing two function calls without issuing any warning or error messages: 

char a_string[20J; 
foo (a_string); 
foo (&a_string); 

In summary, C generally produces far pointers, which is what is required 
for passing pointers to iRMX system calls. The one exception is a pointer 
to code when using the compact segmentation model. For this situation, 
use the compiler's far type qualifier when declaring a function, use afar 
cast on the pointer to the function, or use extended segmentation to make 
the function far. The far type qualifier is only recognized by the compiler 
when the extend compiler control is used. 

PLM-like extended segmentation for C programs uses the exact same 
syntax as for PLM programs, but the segmentation definition must be in a 
separate file from the source module, and that file must be named using the 
subsys compiler control. The following is an example of two files that il
lustrate all three techniques. Note that this example is triply redundant; 
only one of the three techniques is needed: 
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File foo. sys: 

$compact (exports bar) 

File foo.c: 

#pragma subsys (foo. sys) 

#pragma extend 

void far bar (void) ; 

main{ ) ( 

foo ({far *) bar); 

Because the subsys and extend compiler controls are specified with 
pragmas in the source module file (faa. c), and the segmentation model is 
specified in the subsystem declaration file (faa. sys), this example could 
be compiled with the simple command line: 

iRMX> ic386 foo.c [4) 

Because ofthe triple redundancy in declaring bar() to be a far procedure, 
this example would be unchanged if the far keyword were omitted from the 
function prototype for bar(), ifthe (far *) cast were omitted from the call 
to foo(), or if the subsys pragma were omitted entirely. The subsys 
pragma is particularly useful for mixed-language applications, which can 
maintain a single set of subsystem definitions used by all parts of the ap
plication, regardless of language. 

4.4.4 I/O connections for C programs 

C programs have three choices for identifying I/O channels: file descrip
tors, streams, and iRMX connections. The first technique uses small in
tegers to identify different channels: the value 0 is used for the standard 
input channel, 1 for the standard output channel, and 2 for the standard 
error channel. File descriptors historically have been used for Unix and 
DOS programs, but should be avoided for new applications because they 
are not part of ANSI C, and thus, are not portable. Streams, which are de
fined as part of ANSI C, are referenced by a variable declared as a pointer 
to the data type FILE, which is a typedef for a data structure declared in 
stdio.h. 

The iRMX C run-time library provides a function called fdopen() for 
converting file descriptors to stream file pointers and a function /ileno( ) for 
converting file pointers to ints that can be used as file descriptors. The C 
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run -time library internally translates both file descriptors and file pointers 
into iRMX objects called connections so that the library can implement 
I/O operations using the iRMX I/O system. iRMX connections are identi
fied to the OS by variables of type TOKEN, which is a typedef declared in the 
header file rmxc. h. This header file contains all typedefs and function 
prototypes needed by any C program that makes iRMX system calls. The 
functions ~et_rmx_conn() and yut_rmx30nn(), which are also proto
typed in rmxc. h, can be used to convert C file descriptors to iRMX con
nections and vice versa. The use of iRMX connections for I/O is discussed 
in chapter 8. 

4.4.5 Multitasking and multiple jobs for 
C programs 

Even though this section pertains only to C programs, it might also be of 
interest to programmers familiar with Unix systems programming because 
a rough correspondence exists between iRMXjobs and Unix processes and 
between iRMX tasks and POSIXA threads. (iRMX jobs and tasks are de
scribed more thoroughly in chapter 6. POSIXA is the IEEE standard for 
real-time Unix introduced in chapter 1.) 

A Unix process has a defined part of memory that it can access (its "ad
dress space") and a single thread of execution. A Unix thread is a thread of 
execution that shares an address space with a process. Both processes and 
threads inherit all open I/O connections from their parent process, but can 
create their own private I/O connections as well. A major distinction be
tween iRMX and Unix is that iRMX jobs do not inherit any I/O connec
tions from their parents, although they can create their own connections 
based on those of their parent or any other job. For example, when the HI 
creates a job to run a command, the HI provides the job with connections 
corresponding to stdin, stdout, and stderr (connections with iRMX 
logical names : C i :, : co : ,and: term: , respectively). Since these connec
tions belong to the job that created the command rather than to the com
mand itself, the command must create its own connections based on these 
connections before using them. The creation of I/O connections for: ci : 
and: co: is handled automatically by the rqcsendcoresponse() system calls 
in our sample programs, and the process is demonstrated explicitly when 
we examine I/O programming in detail in chapter 8. Although I/O connec
tions cannot be shared across jobs, all tasks within an iRMX job can share 
I/O connections. 

The iRMX C run-time library follows the POSIX.l model of providing 
separate environments for jobs and tasks created by C programs. The 
shared version of the C library sets up this environment the first time a 
task makes a call to one ofthe library functions. The non-shared version of 
the library intercepts any iRMX system calls that create or delete iRMX 
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jobs and tasks so that it can cause the start-up code within the library to be 
executed before passing control to the actual code for the job or task speci
fied by the application program. This start-up code is a subset of the start
off code that is executed for all e programs running as iRMX HI com
mands. For most e programs, this behavior is invisible and provides a very 
clean way to implement applications with multiple jobs or tasks in e, but is 
less efficient than the shared library implementation. 

e applications not run as HI commands must be aware of this behavior 
on the part of the nonshared run-time library, however. Such applications 
include those resident applications configured into the as using the leu 
described in chapter 9. Such applications must be bound with a version of 
the cstrmx. obj file, which has been modified to eliminate any calls to 
routines that initialize command line parsing (there is no command line to 
parse) and to set up stdin, stdout, and stderr (there is no default ter
minal associated with such applications). 

Furthermore, such applications cannot have their system calls for cre
ating jobs and tasks intercepted by the e run-time library, or those same 
initialization routines will be called and will then fail for the reasons 
indicated. One approach to solve this problem is to use the non-shared e 
run-time library and do an incremental bind, first binding the application 
with the iRMX interface library (lrmx386/lib/rmxifc32 . lib) so that 
system calls that create and delete jobs and tasks will call the as directly 
without going through the e run -time library. The resulting linkable module 
can then be bound with the e run -time library to link in other routines from 
that library that the application might call. Such applications must not call 
run-time routines that do 1/0 using stdin, stdout, or stderr, however, 
because these 1/0 streams cannot be set up for resident applications. 

The assembly language source code for generating cstrmx. obj is 
provided with the compiler in a file named /lib/ic386/cstart.asm. 
The release notes provided with the compiler give instructions for reas
sembling this file to produce a version of the start-up code tailored to the 
needs of resident applications. 

The situation is simpler for resident iRMX III and iRMX for Windows 
applications that use the shared run-time library. These programs are 
loaded by sysload rather than as part of the as itself. They still do not have 
access to a user's login terminal, but they can do command-line argument 
processing. Since the shared run-time library initializes access to the 
s tdin, stdout, and s tdout I/O connections when first referenced rather 
than from within the start-off code, there is no need to create a special ver
sion of cstart. obj for these applications. Furthermore, the shared run
time library does not intercept the iRMX system calls to create and delete 
iRMX tasks and jobs, so there is no need to perform an incremental bind of 
applications that make these calls. 
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4.5 Debugging 

This section considers two ways in which the choice oflanguage affects the 
debugging process: exception handling and compatibility with the Soft
Scope debugger. 

4.5.1 Exception handling 

System call condition codes and the exception handler procedure are cov
ered in detail in chapter 6. Basically, abnormal conditions detected by the 
OS during system calls either cause a procedure called the exception handler 
to be called or cause a nonzero condition code value to be returned to a vari
able passed to the system call as a reference parameter. The sample pro
grams in this book generally use a 16-bit unsigned integer variable named 
Status to receive this condition code value. Every iRMX task has its own 
exception handler procedure and sets its own mode for handling exceptions, 
either by testing the condition code variable after each system call (referred 
to as in-line handling), or by having the exception handler procedure called 
automatically when exceptions occur. A default exception handler and 
mode setup exists for each iRMXjob, which is used for each task within the 
job. Two system calls are available for determining and changing the current 
mode and procedure for individual tasks as they execute. 

Most iRMX systems are configured with either the System Debugger 
(SDB) or the HI's exception handler as the default handler, and the excep
tion handling mode is set to call the handler whenever exceptions occur. 
This behavior is what C and PLM programs typically encounter when they 
run. For exceptions that occur during functions provided by the C run-time 
library, the iRMX condition code is mapped into a numeric value for the 
errno variable provIded for each task. Portable C programs can test for 
standard error conditions by comparing errno to the symbolic constants 
defined in <errno.h>. 

4.5.2 SoftScope debugging 

Under iRMX I and II, SoftScope sets the default exception handler for a 
job to a routine that it supplies. Although applications can still use system 
calls to change the handler for any task, the default behavior for both C and 
PLM programs is for iRMX applications to break to SoftScope whenever 
an exception occurs. Version 1;0 of SoftScope III operates in the opposite 
manner: all exceptions must be handled in-line, regardless of whether the 
program is coded in PLM or C. A later version of SoftScope III is supposed 
to change this behavior to match the iRMX I and II versions. 

SoftScope III operates differently from SoftScope for iRMX I and II for 
command-line processing as well. Under iRMX I and II, all programs that 
process command line arguments work properly even though the actual 
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command line given to start the debugging session has the sscope command 
name as the first part of the command line. A C program that refers to the 
string at argv[O], for example, will find the command's name, not Soft
Scope's. For Soft Scope III, C programs have their command lines parsed 
the same way (properly) whether they are run under SoftScope or directly 
as HI commands. Version 1 of SoftScope III does not support HI command 
line parsing at all. In fact, Version 1 of SoftScope III does not support sev
eral critical system calls to the HI layer of iRMX, such as rqcsendcore
sponse(), which was used in the sample programs in chapter 3 and this 
chapter. To support these system calls would require SoftScope III to im
plement some of the functionality of the HI itself. One way to resolve this 
issue is to add system calls to the HI that Soft Scope itself could call to per
form the necessary functions. This approach is superior to the alternative 
of having SoftScope implement these functions itself, because changes in 
the internal logic of the HI in future versions ofthe OS would not require 
parallel changes in SoftScope. 





Chapter 

5 
The Intel x86 Architecture 

5.1 Overview 

Ideally, it would be possible to develop systems programs and real-time ap
plications using a high-level language such as C or PLM without consider
ing the computer architecture. A computer's architecture consists ofthose 
features ofthe processor's design visible to the machine- or assembly-lan
guage programmer. 

High-level language programmers should not have to be concerned with 
architectural issues such as CPU registers, memory addressing and pro
tection, or interrupt handling. Real-time and systems programmers do not 
live in an ideal world, however, and an understanding of the architecture of 
the processor used is necessary to producing efficient applications or even 
functional code. In chapter 4, for example, we already considered the var
ious formats that memory pointers can take. 

This chapter presents those microprocessor architectural features rele
vant to iRMX applications development. This discussion is not a complete 
survey of the Intel x86 architecture, and it does not claim to include enough 
information to program in assembly language. The chapter should, how
ever, provide the necessary background for understanding some key con
cepts ofthe iRMX operating system, which has been specifically designed 
to take advantage of x86 architectural features to provide reliable and effi
cient real-time performance. 

5.1.1 CPU Registers 

The architecture of a processor is its appearance to the machine- or assem
bly-language programmer. Thus, it includes the processor's instruction 
set, data formats, addressing mechanism, interrupt mechanism, I/O mech
anism, and register set. The goal of this chapter is to discuss those parts of 
the architecture that a systems programmer, working in a high-level sys-
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tems implementation language such as C or PLM, must work with, but not 
those parts of the architecture specific to assembly language programming. 
Very little about the processor's instruction set is discussed, for example, 
except the names of a few instructions. High-level language programmers 
do not need to work with processor registers either, but, some register 
names are mentioned. It is worthwhile to show the entire set of registers to 
provide context for the ones discussed. 

Figure 5.1 shows the processor registers visible to the machine- or as
sembly-language programmer for 80386 and 80486 microprocessors.! All 
registers, except the segment registers, include subregisters that can be 
manipulated independently. For example, Register eax is a 32-bit register, 
but bits 0 through 15 can be modified by referencing Register ax without 
affecting bits 16 through 31 of Register eax. Furthermore, bits 8 through 
15 of eax can be manipulated as an independent register by referencing 
Register ah. 

The registers shown in Figure 5.1 are the same as the 80286 registers and 
earlier processor registers, with the following exceptions: 

31 

31 

I 

I 

General Purpose Registers 
241 23 16 15 81 7 0 

AH AX AL EAX 

BH BX BL EBX 

CH CX CL ECX 

DH OX DL EDX 

SI ESI 

DI EDI 

BP EBP 

SP ESP 

Segment Registers 
15 0 

CS Code Segment 

SS Stack Segment 

00] ES 
Data Segments 

FS 

GS 

Instruction POinter 
16 15 0 

I IP I EIP 

Flags Register 

I FLAGS I EFLAGS 

Figure 5.1 Processor registers for 
the 80386 microprocessor. (From 
the i486'" Microprocessor Hand
book, Intel order number 240440-
001. Reprinted by permission of 
Intel Corporation, © Intel Corp. 
1989.) 

IVarious Intel microprocessors also provide additional registers: CRn for control functions, 
DRn for debug functions, and TRn for test functions. 
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• All registers on the 80286 and earlier processors are 16 bits. The 32-bit 
registers, such as eax, eip, etc., do not exist on those processors, only 
their 16-bit parts, ax, ip, etc. 

• The fs and gs segment registers do not exist on the 80286 and earlier 
processor. 

5.2 Memory Segmentation 

The x86 microprocessors all provide access to memory with a segmented 
architecture. The actual memory attached to an x86 processor consists of a 
linear array of bytes, which are accessed by the microprocessor for reading 
and writing using a physical memory address.2 Segmentation allows the 
programmer to generate controlled references to this linear array that can 
be checked for basic correctness by the processor. Segmentation, however, 
does not affect the basic linear nature of the memory system connected to 
the processor. 

An anology might be to think of physical memory as a large piece of 
graph paper with each box, representing one byte, containing one value. 
The bytes are accessed by specifying their position (linear address) on the 
graph paper. Segments would be like boundary lines drawn on a clear piece 
of plastic set on top of the graph paper. Programs specify memory ad
dresses for instructions and data relative to these segment boundary lines, 
and the processor transparently transforms these segmented addresses 
into linear addresses for accessing the actual memory location. 

Each memory segment is identified to the CPU by a 16-bit quantity 
called a selector. At the least, a selector is a value used by the CPU to com
pute the starting address of a segment in the physical RAM attached to the 
processor, and some x86 processors use the selector to determine other 
segment characteristics as well. The CPU can access information in a seg
ment only if that segment's selector has been loaded into one of the CPU 
registers specifically intended to hold selectors. The segments that have 
their selectors loaded into one of the CPU selector registers at any particu
lar moment are called the currently accessible segments, or just the current 
segments. All members of the x86 family provide segment registers for ad
dressing one code, one stack, and one data segment at a time. These regis
ters are named cs, ss, and ds, respectively. The data segment selected by 
the ds register is the default data segment, and various x86 microproces
sors provide additional segment registers for accessing extra data seg
ments, with names like e s, f s, and gs. Any time the processor must access 
a code, stack, or default data segment different from the current data seg-

2For now, the terms physical memory address and linear address are used interchangeably. 
There is a difference between the two when paging is used, which is discussed later in this 
chapter. 
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ments, the processor must load a new selector into the corresponding CPU 
segment register. The processor can access extra data segments without 
reloading ds, however, by using a selector from es, f s, or gs. Loading seg
ment registers requires time and should, therefore, be avoided whenever 
possible. 

Figure 5.2 shows how an x86 processor accesses physical memory. The 
first step is to develop a logical address that consists of a selector register 
and an effective address. The various components of an effective address 
are not always used. For example, a far pointer is a logical address that 
consists of just a selector and a displacement, with no base register or 
index. The segmentation unit combines the two parts of a logical address to 
produce a linear address, which is transformed into a physical memory ad
dress by the paging unit. If the paging unit is not used or is not present (for 
instance, on processors earlier than the 80386), the linear address is the 
same as the physical address. On 80386 processors and later, the effective 
address, the linear address, and the physical address are all 32 bits wide. A 
separate data path exists for transferring information between the mem
ory location specified bya physical address and the registers inside the pro
cessor, as shown in the lower part of Figure 5.2. 
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'---------7) 0 ~( ___ ---I 
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Logical Address 1 
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Paging Unit 
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16-bit Selector 

Data. Instruction 

Registers 

~ ~ 
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Physical Memory I 
Figure 5.2 Protected-mode address calculation. 
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A linear address is the sum of a segment base address and an effective 
address. The segmentation unit computes the segment base address from 
the segment selector in one of two ways, depending on the operating mode 
of the processor. In real mode, which is supported by all x86 processors, the 
segment base address is 16 multiplied by the value of the selector. That is, it 
is computed by shifting the selector 4 bits to the left and filling in on the 
right with zeros. Thus, the real-mode base addresses are constrained to be 
16 + 4 = 20 bits wide, which places a limit of 220 = 1 MB of memory that 
can be accessed in real mode.3 

In protected mode, which is supported by 80286 and later processors, the 
base address of a segment is taken from a data structure called a segment 
descriptor, and the selector is used to select the appropriate descriptor 
from a table of descriptors. (Hence the name selector.) For the 80286 mi
croprocessor operating in protected mode, segment descriptors provide 24-
bit base addresses, allowing the CPU to address up to 16 MB of memory. 
Descriptors for 80386 and later microprocessors can contain 32-bit base 
addresses, allowing access to as much as 4 gigabytes (GB) of memory when 
operating in protected mode. A descriptor must be loaded into the CPU 
every time a segment register is changed in protected mode, which is why 
the penalty for changing segments is so great in iRMX II. The problem is 
not as severe for iRMX III applications, simply because the segment regis
ters do not need to be changed as often (discussed later in the chapter). 

The maximum effective address (offset) that can be added to a segment's 
base address is 16 bits wide, except for the 80386 or later microprocessors. 
The 80386 and later microprocessors operating in protected mode might 
have a particular bit of the current code segment descriptor (called the D 

bit) set to 1, in which case the offsets are 32 bits wide.4 Thus, the maximum 
size of a memory segment is 64 KB for all x86 processors before the 80386, 
and 4 GB for the 80386 microprocessor and after. iRMX I and II applica
tions always have 64K segments, and iRMX III applications can have ei
ther 64K or 4G segments, depending on the D bit setting, which will be set 
to 1 if compiled with the PLM-386 or iC-386 compiler and bound with 
bnd386. 

The x86 architecture allows segments to overlap each other in memory. 
For example, for the small memory segmentation model, the cs, s s, and ds 
registers are all loaded with the same selector, constraining such programs 
to work with a total of 64 KB of memory for code, data, and stack in real and 
80286 protected modes. A special case of the small memory segmentation 

3The actual limit is OxOFFFFO plus the maximum value of an offset, OxOFFFF (i.e., 
OxOlOFFEF = 1M + 64 KB). However, on processors below the 80286, addresses above 1MB 
(OxOl00000) wrap around to low memory for a limit of 1M. On the 80286 and later, the addi
tional 64 KB above 1M is accessible in real mode and the amount of memory available is 
1M + 64 KB. The 64 KB above 1M is called the High Memory Area (HMA). 

4D stands for Default Operation Size; 1 = 32 bits, 0 = 16 bits. 
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model is the flat model. For flat memory addressing, all segment registers of 
an 80386 or later operating in protected mode are loaded with a single selec
tor for a 4-GB segment that starts at physical memory location O. In this case, 
the entire notion of memory segmentation essentially disappears because 
any location throughout physical memory can be accessed using any seg
ment register and an offset value equal to the desired physical memory ad
dress. The problem with overlapping segments is that they circumvent the 
hardware's memory protection mechanism by allowing multiple methods of 
accessing the same memory location, possibly using different access rights. 
This override feature is essential for such situations as loading code into 
memory for execution (the code must be treated as data while being loaded), 
but the override feature can cause error conditions to go undetected. The 
80386 microprocessor's paging mechanism offers an alternate way to pro
vide memory protection when segmentation is not used. 

The iRMX operating system maintains separate, non-overlapping seg
ments for an application's code, data, and stack segments. That is, iRMX 
supports only the compact and large models and does not support the small 
or flat segmentation models. This approach to using memory allows iRMX 
to take full advantage of the memory protection facilities provided by the 
segmentation hardware of protected-mode processors, and real-mode ap
plications are automatically upwardly compatible with protected-mode 
versions. The main advantage of operating in protected mode for real-time 
systems is that protected mode automatically detects coding errors early in 
the development process, leading to more robust systems. 

To summarize, all memory is accessed using the segmentation mecha
nisms of the x86 architecture under the iRMX operating system. Various 
versions of the operating system operate with different segment imple
mentation as follows: 

The iRMX I operating system operates in real mode. A maximum of 1 MB of 
addressable memory exists and segments can be up to 64 KB. Addresses 
within the current set of addressable segments can be referenced with near 
pointers consisting of I6-bit offset values, and addresses outside the cur
rent set of addressable segments are referenced with far pointers that con
sist of a I6-bit offset value and a 16-bit segment base address expanded to 
20 bits by multiplying by 16. 

The iRMX II operating system operates in protected mode. A maximum of 16 
MB of addressable memory exists, and segments can be up to 64 KB. Near 
pointers consist of I6-bit offsets, and far pointers consist of a I6-bit offset 
and a I6-bit selector that identifies a descriptor containing a 24-bit seg
ment base address. 
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The iRMX III operating system and iRMX for Windows operates in either 16-bit or 
32-bit protected mode. In the latter case, there is a maximum of 4 GB of 
addressable memory, segments can be up to 4 GB, near pointers consist 
of 32-bit offsets, and far pointers consist of a 32-bit offset and a I6-bit se
lector that identifies a descriptor containing a 32-bit segment base 
address. 

From a programming perspective, near pointers are always 16 bits, and 
far pointers are always 32 bits for iRMX I and II as well as for iRMX III 
code that operates in I6-bit mode. Near pointers are 32 bits, and far 
pointers are 48 bits (I6-bit selector plus 32-bit offset) for iRMX III code 
that operates in 32-bit mode. 

5.2.1 iRMX segmentation rationale 

It may seem contradictory that an operating system developed by Intel to 
exploit the x86 architecture would support only the compact and large 
models. Indeed, this chapter introduces additional architectural features 
of the x86 architecture not used by the iRMX operating system, so the 
issue is not limited to memory segmentation. 

The explanation for this apparent anomaly lies in the design goals for a 
real-time operating system: deterministic behavior, robustness, and effi
ciency. For memory segmentation models, the small and flat models are 
not robust in the sense that overlapping segments defeat the ability of the 
hardware to detect memory-protection violations. In this case, either an 
application must check for such violations in software, an undesirable per
formance penalty, or applications are subject to failure due to unchecked 
invalid memory access errors, an undesirable compromise to a system's ro
bustness. 

Another explanation hinges on what it means to say that the operating 
system supports (or does not support) a particular segmentation model. 
The issue is simply a matter of what types of pointers (near or far) must be 
used for pointer arguments to system calls and what types of machine 
language call and return instructions are used for system calls. All iRMX 
system calls require far pointers for arguments, regardless of the segmen
tation model being used by the code, but both near and far calls and returns 
are supported for system calls. Programs can be compiled using any seg
mentation model, provided only that the programs adhere to these require
ments when making system calls. Naturally, the development tools used to 
build iRMX applications, the compiler and binder, must support the seg
mentation model used by the operating system. A fuller understanding of 
the issues involved here is developed in chapter 6, where the iRMX system 
call mechanism is presented. 
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5.2.2 Procedure calls and stack segments 

Procedures, functions, subprograms, and subroutines are all terms used to 
refer to code invoked by a machine language call instruction, and which can 
resume execution at the next instruction after the call by executing a ma
chine language return instruction. The semantic differences among the 
four terms listed above, if any, are imposed by high -level programming lan
guages and concern such matters as whether the procedure returns a value 
to the calling program or not. In this section, the architectural support 
provided by the x86 architecture for calling and returning from procedures 
is presented without regard to high-level language constructs. The mate
rial in this section is useful both for developing the iRMX system call 
mechanism in Chapter 6 and for understanding the rationale behind the 
x86 segmentation mechanism. 

The processor uses a register called the Instruction Pointer (i p) to hold 
the offset into the current code segment of the next instruction to be exe
cuted.5 As one instruction is fetched, the processor automatically incre
ments ip by the length ofthe instruction so that it always contains the ad
dress of the next instruction. The common way to represent the selector 
and offset parts of an x86 pointer is to separate them by a colon; cs: ip 
refers to the address formed from the selector in the cs register and the 
offset in the ip register. A machine language call instruction must preserve 
the value of cs: ip when the call is made, and the CPU restores this pre
served value when a procedure executes a return instruction so that the 
processor can execute the instruction following the call. 

The x86 architecture uses a memory stack segment for holding preserved 
values of cs: ip as well as for passing parameters to procedures and allo
cating memory to local variables defined only within the scope of a proce
dure. The s 8 register is used to hold the selector for the stack segment, and 
two more registers, the sp and bp, are used to mark distinguished positions 
within the stack segment. The 8p register is called the Stack Pointer, and 
always contains the offset ofthe current top ofthe pushdown stack main
tained in the stack segment. Initially, the pushdown stack is empty, and sp 
contains the offset of the end of the stack segment. As information is 
pushed onto the pushdown stack, sp is used as the offset for storing the in
formation in the stack segment, and is then decremented to point to the 
new top of the stack. If sp ever reaches zero, it means that the pushdown 
stack has overflowed its stack segment, and the processor raises a protec
tion fault (interrupt level 12). 

The processor automatically uses S8: sp as the address for storing 
cs : ip in memory whenever a call instruction is executed, and again when 

5For 80386 microprocessors and above, the corresponding 32-bit register is called eip. The 
naming convention of prefixing 32-bit register names with e holds for all the registers men
tioned in this chapter. 
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the processor restores cs: ip during execution of a return instruction. By 
using a pushdown stack for the cs : ip values, the processor automatically 
accommodates nested subroutine calls and returns. 

Of course, both cs and ip do not need to be saved and restored if the 
procedure called is in the current code segment, as is the case for the com
pact memory model of compilation. In this case, only the ip register must 
be preserved and restored, which reduces the time for protected mode calls 
and returns considerably (see the next section for more information). Two 
different machine language call instructions and corresponding return in
structions must be used, depending on whether the full c s : i p value or just 
the i p value is to be pushed onto the stack and restored. These instruction 
pairs are referred to as far call and far return for far calls or near call and 
near return, for near calls. Compilers for PLM and C generate the proper 
call and return instructions automatically, provided that the segmentation 
models and function prototypes used in the modules to be linked together 
are declared consistently. 

Data operands. A procedure can access data operands from one of four lo
cations in memory: 

• Static global data 

• Local data 

• Procedure parameters 

• Pointers 

Static global data are variables and constants located in the current data 
segment. For PLM and C, these data are declared outside ofthe body of any 
procedure or function, which is sometimes referred to as the module level. 

Local data are variables and constants that exist when a procedure or 
function is called and cease to exist when the procedure returns. The data 
can be either static or dynamic. 

Static local data occupies memory permanently allocated from the cur
rent data segment. The data cannot be referenced by code outside the pro
cedure that contains the data declarations because it is semantically incor
rect for a compiler to generate code to do so. 

For dynamic local data, storage is allocated on the stack when the proce
dure starts executing. This allocation occurs by decrementing the sp regis
ter by an amount equal to the total size of the local variables for the proce
dure. The sp register is incremented by an equal amount when the 
procedure returns, so the data can no longer be accessed by any code. In 
fact, its memory will be overwritten by the local variables of the next pro
cedure called after the first procedure returns. The C language refers to this 
type of data as auto storage data. 

In C, variables and constants declared inside a function are dynamic 
local data unless their declarations include the static modifier. For PLM, 
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variables declared inside a procedure are static unless the procedure is de
clared to be reentrant. In this instance, the C language is more flexible than 
PLM; C allows individual variables declared within a function to be either 
static or dynamic, but PLM requires local variables for a procedure to be 
either all static or all dynamic. 

Arguments to a procedure are pushed onto the stack before the proce
dure is called, and procedure parameters can be accessed from within the 
procedure by accessing memory locations with the appropriate stack seg
ment offsets. The bp register is used to facilitate access to these values, as 
described next. 

Pointers, often passed as parameters to procedures, can be used to access 
data through indirect addressing. The selector part of the pointer is loaded 
into one of the extra segment registers, and the offset is used to complete 
the effective memory address. Near pointers consist only of the offset part 
of a logical address; the selector is automatically taken from the current 
value of the ds register. Pointers can be used to access any of the other 
three types of data, or even to reference memory areas not occupied by the 
program being executed. 

Stack frames. With the aid of the x86 architecture, compilers construct a 
standard data structure in the stack segment for each procedure, called an 
activation record or stack frame. Figure 5.3 shows how a stack frame is de
veloped as a procedure is called. 

In Figure 5.3a, the bp register holds the offset of the calling procedure's 
stack frame, and the s p register holds the offset of the current top of the 
pushdown stack. (Don't let the term top of stack confuse you; it refers to the 
offset of the last item pushed onto the stack and takes on numerically lower 
values as the stack grows downward within the stack segment.) 

When a compiler translates a procedure call (function reference), it gen
erates a series of machine language push instructions to push the proce
dure's arguments onto the top of the stack. These arguments can be either 
copies of data values or pointers to data values. After these push instruc
tions have executed, the situation looks like Figure 5.3b. 

The next instruction the compiler generates is either a near call or a far 
call, and the stack looks like Figure 5.3c when the processor starts execut
ing code inside the procedure. The return address in (c) is either just an ip 
value or a full cs: ip pointer, depending on the type of call instruction 
used. 

The compiler generates machine instructions, called the procedure pro
logue, at the beginning of each procedure which completes the construction 
ofthe activation record for the procedure. For most x86 processors, the ac
tivation record can be done in a single machine instruction called enter, but 
early processors, such as the 8086 and 8088, require a few separate instruc
tions. The procedure prologue performs three functions: (1) it pushes a 
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Figure 5.3 Development of an activation record (stack frame) for a procedure call. (a) The 
stack segment before the call. The selector in the 55 register is used to derive the base address 
of the stack segment. The sp register contains the offset of the top of the pushdown stack, and 
the bp register contains the offset of a known position in the current procedure's activation 
record. (b) The situation just before the call instruction is executed. The arguments to be 
passed to the procedure have been pushed onto the stack, and the sp register has been decre
mented accordingly. (c) Just after the call instruction is executed, but before the procedure's 
prologue code. The return address has been pushed onto the stack, and sp has been decre
mented. (d) After the procedure's prologue code has been executed. The previous value of the 
bp register has been saved on the stack, and the bp register has been set to the offset of that 
stack position. The sp register has been decremented to allocate memory for the procedure's 
dynamic local variables. From within the procedure, parameter!! can now be accessed using 
positive offsets from bp_ Local dynamic variables can be accessed using negative offsets from 
bp. When the procedure returns to the caller, the stack must be restored to the condition 
shown in (a). 



150 Basics 

Figure 5.3 (Continued) 
Stack Segment: 

procedure arguments 

bp -7 1----'-----'--------1 

local dynamic variables 

(d) 

activation record 
(stack frame) 

copy of the bp register onto the top ofthe stack, (2) it copies the value in the 
sp register into the bp register, and (3) it decrements the sp register by the 
amount of storage needed for the procedure's local dynamic variables. The 
situation after the prologue code has executed looks like Fig. 5.3d. 

With the activation record complete, a procedure can access the various 
parameters passed to it by adding various constants to the value in the bp 
register. The procedure can access its local variables using stack segment 
offsets computed by subtracting various constants from the value in the bp 
register. 

To support nested procedure calls, a procedure's activation record must 
be removed from the stack when the procedure returns to the caller. To do 
this, the compiler generates code called the procedure epilogue that is exe
cuted before a procedure returns to a caller. The epilogue code increments 
the s p register to drop the local variables, pops the value now at the top of 
the stack into the bp register, thereby restoring the caller's stack frame 
pointer, and returns to the caller (using a near or far return instruction as 
appropriate), which increments the sp register to an offset just above the 
return address pushed by the caller. 

To complete the removal of an activation record, the parameters that 
were passed to the procedure must also be dropped from the stack by incre
menting the sp register by the appropriate amount. If a procedure is always 
called with the same number and types of arguments (such as C functions 
named in a fixedparams pragma and PLM procedures not listed in an 
interface control), the value to be added to sp can be specified as part of 
the return instruction so that the parameters are dropped as part ofthe ex
ecution of that instruction. If the compiler cannot tell how many bytes 
might be passed as arguments to a procedure (such as for normal C func
tions like printf()), the return instruction cannot drop the arguments, and 
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the calling program must include the code to do so as a separate instruction 
after the procedure returns. 

Threads of execution. At this point something can be said about what in
formation an operating system must maintain to support independently 
scheduled threads of execution, such as iRMX tasks or Unix processes. For 
each thread, a separate cs: ip value must exist, as well as a separate stack 
segment. 

When one thread is to assume control of the processor from another, the 
address of the next instruction to be executed by the first thread (its 
cs: ip) must be saved and then restored when that thread is scheduled to 
use the processor again. We call this address the thread's continuation ad
dress because it tells where the thread is to continue its execution when al
lowed to use the CPU again. A pushdown stack cannot be used to hold con
tinuation addresses unless the different threads of execution are always 
scheduled in a nested fashion, like procedure calls. Since this condition 
does not generally hold for multi-threaded operating systems, it is not pos
sible to share a single pushdown stack for continuation addresses across 
threads. (iRMX task scheduling is discussed in chapter 6.) By similar rea
soning, threads cannot share a pushdown stack for their activation records 
either. Each thread of execution must have its own cs: ip and its own 
stack segment. 

5.2.3 Memory protection 

The segment descriptors used in protected-mode addressing contain in
formation to provide for hardware memory protection as well as the seg
ment base address. Figure 5.4 shows the format of descriptors for code and 
data segments in the 80386 and 80486 processors. The format is the same 
for 80286 microprocessors, except that the 16 bits labeled base 
31 ... 24, G, D, and limi t 19 ... 16 are all zeros for the 80286. The 
two items to notice in the descriptor format for now are the 20-bit limit 
field constructed by concatenating LIMIT 19 ••• 16 and SEGMENT LIMIT 
15 ... 0) and the access-rights byte. 

The limit field of a descriptor tells how large the segment is. If an offset 
used to access information in the segment exceeds this value, it signifies 
that an attempt has been made to access memory outside the segment, and 
the hardware then raises a general protection violation. As indicated ear
lier, allowing segments to overlap can defeat this protection mechanism, 
and overlapping segments are not normally used for iRMX applications. 
Protected mode versions of iRMX do, however, provide system calls that 
allow users to create descriptors for segments that occupy arbitrary parts 
of physical memory, including overlap with other segments, and to allow 
users to set their access-rights bytes in arbitrary ways. 

To accommodate 4-GB segments with a 20-bit limit field, the G (granu
larity) bit is set to 1, and the processor internally appends twelve Is to the 
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31 0 

SEGMENT BASE 15 . .. 0 SEGMENT LIMIT 15 ... 0 0 

BASE 31 ... 24 1 G 1 D 1 0 1 AVL 1 LIMIT 

ACCESS 
1 BASE 

RIGHTS 
23 ... 16 

+4 
19 ... 16 

BYTE 

DIS 1 = Default Instruction Attributes are 32·Bits 
a = Default Instruction Attributes are 16-8its 

AVL Available field for user or as 
G Granularity Bit 1 = Segment length is page granular 

0= Segment length IS byte granular 

I 0 Bit must be zero (0) for compatibility with future processors 

Figure 5.4 Descriptor format for code and data segments. Reprinted by permission of Intel 
Corporation, © Intel Corp. 1989. 

right ofthe limit value from the descriptor, for a total of 32 bits, which im
plies that the size of segments larger than 1 MB must be a multiple of 
212 = 4 KB in size. 

The access-rights byte tells the processor whether a descriptor is for 
code, a stack, a data segment, or one of the other types of segments dis
cussed later in this chapter. For code segments, the access-rights byte also 
signifies whether read accesses are allowed in addition to instruction fetch 
accesses, and, for data segments, whether write accesses are allowed in ad
dition to data read accesses. For protected-mode versions of iRMX, the 
memory management software always makes code segments both execut
able and readable and data segments both readable and writeable. 

5.2.4 Other types of descriptors 

The x86 protected-mode architecture uses descriptors for more than just 
describing code, data, and stack segments. There are also system segment 
descriptors and gate descriptors. System segments are memory segments 
used by the microprocessor itself. Typically, these segments are initialized 
by the operating system and then accessed and updated by the micropro
cessor as it runs. Gates are special descriptors used to provide controlled 
access to system calls and interrupt handlers in protected mode. 

System segments. There are four types of system segments: the global de
scriptor table (GDT), local descriptor tables (LDTs), the interrupt descrip
tor table (IDT), and task state segments (TSS). 

Only one global descriptor table exists, but there can be many local de
scriptor tables. Each descriptor table contains up to 8,192 descriptors. Two 
CPU registers hold the physical memory addresses of the global and current 
local descriptor tables. Each time a segment register is loaded with a selector , 
bit 2 of the selector (third from the right) is used to indicate whether the cor
responding descriptor is in the global or local descriptor table, and another 13 
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bits are used to index into the proper table to obtain the correct descriptor.6 

The descriptor is then loaded into a CPU register associated with the selector 
(code, stack, data, extra) and is not changed until the segment register is 
loaded again. Performance of the 80286, 80386, and 80486 microprocessors 
suffers a bit because these processes do not contain actual registers to hold 
the current segment selectors - reloading the same selector results in load
ingthe same segment descriptor from the descriptor table again. This behav
ior is logically necessary in case the contents of a descriptor table in memory 
changes between loads of a selector. An on -chip cache of recently used selec
tors and their descriptors could improve performance significantly. 

The memory management software ofthe OS builds descriptors and in
serts them into the appropriate table in memory. To accomplish this rou
tine, the OS keeps a descriptor for a write able data segment that overlaps 
the descriptor table segment, allowing the operating system to modify the 
descriptor table memory. 

Although the x86 protected-mode architecture provides direct support 
for multitasking applications, such as the provision for local descriptor 
tables, iRMX II and III do not currently use these features to implement its 
multitasking operations. It is more efficient for the operating system to 
perform a subset of the architecture's multitasking operations in software 
than to let the CPU do full multitasking in hardware. At this point, the rel
evant issue is that current implementations of iRMX II and III use the 
global descriptor table for all code, data, and stack segments. 

Task state segments (TSS) are also associated with hardware support 
for multitasking. Each TSS contains all the information the CPU needs to 
interrupt and resume a thread of execution. This information includes the 
state of all CPU registers, such as the e5, ip, 55, 5P, andbp registers men
tioned above in the discussion of procedure calls and multithreading. TSSs 
also provide space for any housekeeping information an operating system 
might want to maintain about a thread, such as its priority and scheduling 
state. Although iRMX II and III do not use CPU management for multi
tasking, they do maintain similar data structures to hold the information 
needed for iRMX tasks. 

Gate descriptors. As indicated above, the three types of descriptor tables, 
(global, local, and interrupt) contain special descriptors known as gates. 
There are call gates, trap gates, interrupt gates, and task gates. The struc
ture of these gates is given in Figure 5.5. Except for task gates, gate de
scriptors contain a pointer to a routine that will receive control when the 

6 These uses account for 14 of the 16 bits in a selector. The right-most two bits are a privilege 
level (valve 0 to 3), mentioned below. 
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31 24 16 8 5 0 

SELECTOR OFFSET 15 ... 0 0 

OFFSET 31 .. . 16 plDPLIOI TYPE IOIOIOI~~; +4 

Gate DeSCriptor Fields 
Name Value Description 
Type 4 80286 caU gale 

5 Task gate (for 80286 or 486TM CPU task) 
6 80286 interrupt gale 
7 80286 trap gate 
C 486 TM CPU call gate 
E 486™ CPU interrupt gate 
F 48S™ CPU trap gate 

p 0 Descriptor conlents are not valid 
1 Descriptor contents are valid 

OPL-Ieasl pnvileged level at which a task may access the gate. WOAD COUNT 0-31-the number of parameters to copy from caller's stack 
to the called procedure's stack. The parameters are 32·M quantities for 486TM CPU gates, and 16·bit quantities for 80286 gales. 

DESTINATION 16-bIt Selector to the target code segment 
SELECTOR selector or 

Selector to the target task state segment for task gate 

DESTINATION offset Entry pomt wlthm the target code segment 
OFFSET IS-bit 80286 

32-bIt 486n .. CPU 

Figure 5.5 Descriptor format for call, trap, and interrupt gates. 

gate is referenced. The pointer consists of a selector for the code segment 
that contains the routine, and the field that would contain the limit for 
segment descriptors is used as the offset part of the pointer. The use of 
these gate descriptors is described further in section 5.4. 

5.2.5 Privilege levels 

The x86 protected -mode architectures support rings of privilege, which are 
used to provide controlled access to OS functions from applications. The 
code being executed at any moment has a privilege level associated with it 
(held in the low-order two bits of the cs selector register), and every de
scriptor has a 2-bit descriptor privilege level used to determine whether or 
not the currently executing code is allowed to access the item referenced by 
the descriptor. 

A separate 2-bit privilege level is loaded into a CPU register to control 
the use of machine language instructions that perform I/O operations. 
This privilege level is known as the I/O Privilege Level (IOPL) field ofthe 
Flags register. The current code selector's privilege level is compared to the 
I/O privilege level to check whether a program is allowed to execute I/O in
structions or not. These instructions are described in section 5.6. 

Current versions of iRMX II and iRMX III do not use the privilege levels 
provided by the processor. They effectively turn this feature off by setting 
the privilege levels for all code segments to 0 (the most privileged ring) and 
the I/O privilege level ofthe CPU to 3 (I/O instructions can be executed by 
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any code regardless of privilege). This design decision makes sense because 
iRMX is not intended as a timesharing system where tasks compete for ac
cess to CPU resources in an uncontrolled manner, or where there is the 
possibility that malicious processes might try to compromise the system. 
Rather, iRMX is designed as a real-time system where tasks cooperate to 
complete jobs, and the overhead of managing privilege levels could inter
fere with real-time performance.7 

5.2.6 Paging 

The x86 architecture supports memory paging for 80386 and later proces
sors. Paging is a mechanism whereby the memory addresses generated by a 
program, called virtual memory addresses, are mapped by memory manage
ment hardware in the processor to different physical memory addresses. 
To accomplish this mapping, the physical memory is divided into fixed
size blocks (4KB for x86 processors) called page frames. Memory manage
ment hardware includes a memory map, which contains a list of page frame 
numbers. Virtual memory addresses are conceptually divided into two 
parts, a logical page number (the leftmost 20 bits of the address) and an 
offset into the logical page (the rightmost 12 bits ofthe address). The logi
cal page number is used as an index into the memory map to obtain a page 
frame number, which is concatenated with the offset part of the address to 
generate the physical memory address that is actually used for reading or 
writing memory. Figure 5.2 illustrated this simplified description of pag
ing. 

Paging for the x86 architecture is performed by the processor after the 
segmentation processing, as was shown in Figure 5.2. This implementation 
is sometimes referred to as paging under segmentation. Like segmentation, 
paging does not require any particular features of the memory system it
self,just access through linear physical addresses. The clear sheet of plastic 
analogy used earlier for describing segmentation could be extended to pag
ing by imagining a series of optical fibers connecting the graph sheet cells 
with arbitrary locations on the clear plastic segmentation overlay. By look
ing at a location on the segmentation sheet, one might actually see any lo
cation in physical memory. The analogy, however, is perhaps a bit over
burdened to be useful. For example, paging can map two different virtual 
memory locations to the same physical memory location, which does not 
correspond well to a plastic sheet and fiber optics model. 

The actual x86 memory map is implemented using memory-resident 
tables called page tables and page directories. The issue involved is the need 

7 iRMX for Windows does use privilege rings to help isolate the DOS and Windows environ
ments from the iRMX environment. Refer to the discussion of interrupt virtualization in 
Chapter 12 for more information on how this is implemented. 
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to manage 220 or 1M of virtual pages for 32-bit virtual addresses and 4 KB 
pages. Such a large memory map cannot be implemented on the CPU chip 
itself using current technology. Even if a single such map could be accom
modated, many paging systems require separate memory map images for 
different processes or threads of execution, all of which would have to be 
held in primary memory (or disk) anyway. 

Paging is enabled by turning on the pg bit of the processor's control reg
ister 0 and loading control register 3 with the physical base address for a 
page directory table. The page directory table contains 1,024 entries, each 
of which has the physical address of a page table. Each page table then 
contains 1,024 entries for page frames. When paging is enabled, the proces
sor uses the 32-bit virtual address computed by the effective address and 
segmentation units to access the paging mechanism. The high-order 10 
bits of the virtual address index into the page directory, which contains the 
base address of a page table. The second 10 bits of the virtual address (bits 
12 through 21) index into this page table, which contains the base address 
of a page frame in memory. The remaining 12 bits of the virtual address are 
added to the page-frame base address to obtain the physical address of the 
memory location to be accessed. 

To reduce the overhead associated with paging, the processor maintains 
a cache of the most recently computed virtual-to-physical page address 
mappings in its translation lookaside buffer. Access to locations in these 
pages are made without accessing either the page directory or a page table 
in primary memory. 

Both the page directory entries and the page table entries contain a bit 
(the p bit) that signifies whether the corresponding information (page 
table or page frame) is actually present in primary memory. If this bit is off 
when an access is made through the entry, the processor generates an in
terrupt number 14, which must be connected to the page fault handler to 
handle the condition. Usually the handler reads a copy of the referenced 
information in from disk to replace some other directory or frame. Other 
bits in the page table entries control whether a page is readable, writeable, 
or executable. Systems that use hardware tasking can easily assign differ
ent page directories and page tables to different programs to implement 
hardware-enforced memory protection across tasks. 

It is the responsibility of the operating system, or possibly the applica
tion program in the case of iRMX, to allocate memory for the page directo
ries and tables, to initialize their p bits appropriately, to initialize the 
read/write/execute bits as desired, and to load control register 3 with the 
address of the page directory. After that, the operating system (or iRMX 
application) must handle page faults as they occur by supplying the proper 
code to handle interrupt number 14s. Both PLM and C provide statements 
for loading control registers. In PLM -386, loading the control registers 
is performed by referencing the built-in array of words named 



The Intel x86 Architecture 157 

control$register. iC-386 provides functions named getcontrolregis
ter() and setcontrolregister(). 

Paging is a powerful tool for memory management. Although not used in 
any versions of iRMX at the time of this writing, paging might be incorpo
rated in iRMX III or iRMX for Windows at some future time. Consider the 
following three situations and how they could be handled for iRMX III and 
iRMX for Windows: 

1. Virtual memory smaller than physical memory. 

2. Virtual memory and physical memory are the same size. 

3. Physical memory is smaller than virtual memory. 

Virtual memory smaller than physical memory. An inevitable process in the 
evolution of computer systems seems to be the appearance of the small 
memory problem. This problem refers to the inability of a computer archi
tecture to address as much primary memory as people would like to attach 
to the processor. 

For example, the small memory problem manifests itself in the x86 ar
chitecture in the 20-bit limit placed on real-mode memory addresses and, 
to a lesser extent, on the 24-bit limit for 80286 protected-mode addresses. 
As DOS applications were developed that needed to use more than 1MB of 
memory (DOS runs in real mode only), the small memory problem became 
acute. The solution was a software implementation of paging called Ex
panded Memory Management (EMM). For x86 microprocessors that do 
not include paging support (i.e., the 80286 and below), one or more pages 
are reserved in the upper area of memory between 640K (the official top of 
DOS's memory) and 1M + 64K (the top of real-mode addressing). Appli
cations make special system calls to signify what physical page frame 
they want mapped to a particular upper memory page. The system calls 
then interface with an expanded memory board to map the desired page 
frame to the selected upper memory page, and the application can then ac
cess the expanded memory through the addresses in the upper memory 
page. 

With processors that support paging (80386 and later), EMM can be im
plemented more efficiently using what is called extended memory and pag
ing. Extended memory is simply memory that can handle 24-bit or larger 
addresses, but contains no address mapping mechanism of its own. In this 
situation, software called EMM386 puts the processor into protected mode 
(so it can generate addresses greater than 1M + 64K) and enables the pro
cessor's paging mechanism. When an application needs to reference ex
panded memory, it makes the same system calls it would have made for 
conventional expanded memory, but EMM386 receives the calls and uses 
the information to update the processor's page tables. Subsequent accesses 
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to the upper memory pages are then mapped to the appropriate page 
frames above 1M. 

iRMX for Windows supports expanded memory provided it is imple
mented using expanded memory hardware. iRMX for Windows does not 
support expanded memory using paged extended memory because it can
not start if the processor has already been put in protected mode by 
EMM386. 

Virtual memory and physical memory are the same size. Sometimes, it is in
convenient or impossible for the operating system to allow an application 
to reference physical memory most naturally. Paging allows the operating 
system to establish an arbitrary mapping between an application's mem
ory references and the actual physical memory it uses. 

For example, memory segments by definition are physically contiguous 
in main memory. The problem is that an application might try to create a 
large memory segment for which there is enough free memory, but which is 
fragmented due to earlier patterns of allocating and freeing managed mem-
0ry space. (Chapter 6 covers the iRMX memory management policies.) 
iRMX III and iRMX for Windows could handle the allocation of large 
memory segments by using the paging mechanism to map a noncontiguous 
set of physical pages to a contiguous memory space within a segment. Since 
paging is done under segmentation, the mapping would be transparent to 
the application; segments would appear to be contiguous, as expected. 
There would be problems for DMA device controllers, however, which ac
cess memory without going through the processor's paging unit. The oper
ating system would need to provide device drivers for such controllers with 
the virtual-to-physical mapping information. 

Large segments are defined as those over 1 MB in size. Segmentation 
granularity must be used for segments this large anyway, making them 
multiples of 4 KB in size and thus conforming nicely with the x86 page size. 
This desirable feature may be incorporated in a future version of iRMX for 
Windows. 

PhYSical memory is smaller than virtual memory. This situation is closely as
sociated with the notion of virtual machines that has given logical memory 
its alternate name of virtual memory. In this situation, an application pro
gram can be as large as necessary, even larger than the amount of physical 
memory available for execution. An initial set of pages that compose the 
application is loaded into memory, and execution begins. When the pro
gram references a page not currently available in primary memory, the 
operating system intervenes to bring the desired page into memory from 
disk, a process called demand paging. 

Demand paging is a very effective technique for improving multipro
gramming performance in time-sharing systems in addition to its value for 
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managing memory use by programs larger than available physical memory. 
An operating system can keep the active pages of several different pro
grams in primary memory at the same time if the OS uses a reasonable page 
replacement policy.s By keeping just the active pages of several programs 
in memory, the operating system can readily schedule another process to 
use the CPU when the running process blocks for an I/O operation. With
out demand paging, primary memory holds fewer programs at once, and 
the operating system must go to disk to find code that the CPU could exe
cute when a running process is blocked. 

The discussion in chapter 1 on the importance of deterministic response 
times in real-time systems should make it clear why demand paging is not 
implemented in iRMX. Some real-time operating systems deal with the 
indeterminacy arising from unpredictable page fault patterns by allowing 
real-time processes to have their pages locked in memory, which excludes 
these processes from consideration for replacement by the operating sys
tem's page replacement algorithm, while allowing non-real-time processes 
to be paged. iRMX assumes that all processes are real-time and not paged, 
while allowing the application developer the option of adding paging for 
non-real-time processes. 

For example, DOS running with Windows is an application program as 
far as iRMX for Windows is concerned.9 Windows running in enhanced 
mode conducts a form of demand paging among the programs it runs using 
the paging mechanism of the 80386 and later microprocessors. This use of 
demand paging by an application program is allowed by iRMX, but re
quires some type of coordination by Windows and iRMX in the use of page 
tables before iRMX for Windows will be able to support enhanced-mode 
Windows. 

5.3 Interrupt Processing 

The interrupt processing mechanism of the x86 architecture has already 
been mentioned several times. This section describes the mechanism from 
the CPU's perspective. Chapter 9 provides more details on implementing 
the software used to interface with interrupts in iRMX systems. 

Interrupt requests can be initiated either by hardware external to the 
CPU or by software using the machine language int instruction. There are 
two types of hardware interrupts, non-maskable (NMI) and maskable. 
The NMI is used for abnormal situations, such as impending loss of elec-

8The page replacement policy is the algorithm the operating system uses to decide which 
page to remove from primary memory when the running process references one of its pages 
not currently in memory. 

9The proper terminology is that DOS is an iRMX task, as discussed in chapter 6. 
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trical power, and is not considered further here. In the case of maskable in
terrupts' external circuitry called a programmable interrupt controller 
(PIC) arbitrates among the various devices causing interrupts, manages 
priorities and sequencing in the case of simultaneous requests, and informs 
the CPU of the interrupt level (a number between 0 and 255) when an in
terrupt occurs. Software interrupts appear to be of the same type as mask
able interrupts, but the int instruction supplies the interrupt level number 
rather than the PIC. 

Software and hardware interrupts are handled differently by the CPU. 
Hardware interrupts are acknowledged only when the processor is between 
machine instructions and has its interrupt enable bit (one of the bits in the 
CPU's Flags register) set to 1, but software interrupts can never be dis
abled. 

The PIC used with x86 processors can receive interrupt signals from 
eight different wires, which are normally connected to different device 
controllers. (Device controllers are described below.) When one or more 
interrupt signals arrives at the PIC, it sends a signal to the CPU on the 
INTR (interrupt request) wire to indicate the condition. When interrupts 
are enabled in the CPU and the CPU is between machine instructions, it 
acknowledges the interrupt by sending a signal called INT A (interrupt ac
knowledge) to the PIC and reading the interrupt level of the highest prior
ity interrupting device back from the PIC.lO Before interrupt processing 
begins, the processor must program the PIC by sending it commands sig
nifying which interrupt level to associate with each of its eight interrupt 
sources. The PIC decides which level number to send to the processor by 
evaluating the relative priorities of the sources requesting interrupts at the 
time it receives the CPU's INTA signal. 

A single master PIC can have up to seven slave PICs connected to it in 
cascade fashion as shown in Figure 5.6, for a total of up to 57 external in
terrupt sources. l1 

Once the processor acknowledges an interrupt request and determines 
the interrupt number, it pushes its flags register plus the cs: ip ofthe next 
instruction to be executed onto the stack of whatever program is running, 
disables further interrupts, and branches to the interrupt handler asso
ciated with the interrupt number. Every task or process in a multithreaded 
system must have a stack segment large enough to accommodate the infor
mation that might be pushed onto it by an interrupt, in addition to its own 
stack requirements for activation records. 

In real mode, as for DOS or iRMX I, an array of 256 pointers is kept in 
the first 1,024 bytes of memory, and the address of the appropriate inter-

IOCertain instructions that take a long time to execute, such as instructions that perform an 
operation on an entire array of bytes, can be interrupted during their execution and resumed 
later from where they left off. 

11 Input number 0 of a master PIC cannot be connected to a slave PIC. 
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Figure 5.6 Connections between Programmable Interrupt Controllers (PICs) and the cpu. 

rupt handler is determined by indexing into this array with the interrupt 
number. In protected mode, this array of pointers is replaced by a structure 
called the interrupt descriptor table (IDT), and the interrupt number is 
used as an index into the IDT. The IDT contains task, interrupt, or trap 
gates, described in the next section. Typically, the IDT contains interrupt 
descriptors, which consist of a pointer to the interrupt handler plus a type 
code telling the CPU that the CPU should disable interrupts before jump
ing to the interrupt handler code. 

When an interrupt handler procedure starts executing, it does so in the 
context of the program running at the time of the interrupt. Since this 
activity is transparent to the interrupted program, it is important for 
interrupt handlers not to disturb the state of the CPU as they do their 
work. To accomplish this, all processor registers that an interrupt handler 
modifies must be saved by pushing them onto the stack of the interrupted 
program, and then they must be restored when the interrupt handler fin
ishes its work and is ready to let the interrupted program resume. The pro
cessor's flags, cs, and ip registers are automatically pushed onto the stack 
by the CPU's interrupt mechanism, but any other registers must be pushed 
explicitly. 
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Finally, when an interrupt handler completes its processing, it must re
store the contents of any registers it has modified to their original values. 
By including the cs and ip registers in this process, the interrupt handler 
effectively branches back to the interrupted program. The cleaning up is 
done in two stages: first, any register values that were pushed onto the 
stack when the interrupt handler started executing are popped back into 
their original registers. Then, the cs, ip, and flags registers are popped 
from the stack by a special form of return instruction called iret (interrupt 
return). Both the PLM and Intel C compilers generate all the special code 
for interrupt handlers if they are declared to be interrupt procedures or 
functions. In PLM, this is done by specifying the interrupt keyword in 
the procedure declaration, and in C it is done using the interrupt pragma 
or compiler control. 

5.4 Call, Task, Interrupt, and Trap Gates 

Gates are protected-mode descriptors used to provide controlled access 
from application programs to operating system software, such as system 
calls and interrupt handlers. The four types of gates, call, task, interrupt, 
and trap, can be found in either the GDT or LDT, and all but call gates can 
be found in the IDT. 

Gates are accessed from the IDT when an external interrupt is acknowl
edged, when a software int instruction is executed, when a trap occurs 
(such as division by zero), when a fault is detected (such as a memory pro
tection violation), or when an abort occurs (when a fault occurs while pro
cessing a fault). Table 5.1 shows the interrupt levels automatically used by 
the microprocessor for various types of events. I/O interrupts use interrupt 
levels above 32. 

Gates are accessed from the GDT or LDT when a program executes a far 
call machine instruction. A far call is one that uses a far pointer (selector 
and offset) as the address of a subroutine. Normally, a far call causes the 
selector part ofthe pointer to be loaded into the processor's cs (code seg
ment) register, and the corresponding descriptor to be loaded into the code 
segment descriptor register. The offset part ofthe pointer is then added to 
the base address found in the descriptor to calculate the linear address of 
the next instruction to be executed. If the selector part of the pointer se
lects a descriptor for a gate (determined by the type code in the descriptor), 
however, the offset part ofthe instruction's pointer is discarded, and a far 
pointer to the actual code is obtained from the gate itself. The far pointer 
from the gate is then used as just described for operating with the pointer 
part of a regular far call instruction. 

Call gates are normally used to make system calls. Two properties of call 
gates support the rings-of-privilege feature of the processor mentioned 
earlier. The first property is an automatic, but controlled, shift in CPU 
privilege between the application and the OS. The gate contains a privilege 
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TABLE 5.1 Interrupt Vector Assignments. 

Return Address 
Instruction Which Points to 

Interrupt Can Cause Faulting 
Function Number Exception Instruction Type 

Divide Error 0 DlV,IDlV YES FAULT 
Debug Exception 1 Any instruction YES TRAP* 
NMI Interrupt 2 INT 2 or NMI NO NMI 
One Byte Interrupt 3 INT NO TRAP 
Interrupt on Overflow 4 INTO NO TRAP 
Array Bounds Check 5 BOUND YES FAULT 
Invalid OP-Code 6 Any illegal instruction YES FAULT 
Device Not Available 7 ESC, WAIT YES FAULT 
Double Fault 8 Any Instruction That Can ABORT 

Generate an Exception 
Intel Reserved 9 
Invalid TSS 10 JMP, CALL, IRET, INT YES FAULT 
Segment Not Present 11 Segment Register YES FAULT 

Instructions 
Stack Fault 12 Stack References YES FAULT 
General Protection 13 Any Memory Reference YES FAULT 

Fault 
Page Fault 14 Any Memory Access or YES FAULT 

Code Fetch 
Intel Reserved 15 
Floating Point Error 16 Floating Point, WAIT YES FAULT 
Alignment Check 17 Unaligned Memory Access YES FAULT 

Interrupt 
Intel Reserved 18-32 
Two Byte Interrupt 0-255 INTn NO TRAP 

*Some debug exceptions may report both traps on the previous instruction, and faults on the 
next instruction. Reprinted by permission of Intel CorP. 

level that must be matched or exceeded by the privilege level of the code 
being executed. A gate with a privilege level of zero could be called only by 
code running at ring zero (determined by the privilege level of the current 
code descriptor), but a gate with a privilege level of three could be called by 
any code, for example. If a program is allowed to call a gate, the selector 
part of the gate is used to access a new code segment. The CPU shifts to the 
privilege level of this new segment (typically level zero) when it starts exe
cuting the OS code, and automatically reverts to the original privilege level 
when the OS returns to the application. 

The second property of call gates is the provision for separate stacks for 
different privilege levels. A 5-bit field in a call gate descriptor signifies how 
many words (parameters) to copy from the application's stack to the called 
routine's stack before transferring to the called routine. The performance 
overhead incurred by parameter copying across stacks is one ofthe main 
reasons that iRMX II and III do not use the privilege-rings feature of the 
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x86 protected-mode architecture.12 iRMX II and III do, however, use call 
gates for accessing sytem calls from application programs, as seen in Chap
ter 6. 

Traps are essentially interrupts that occur because of the execution of 
certain instructions. Examples of traps include division by zero, invalid 
operation codes, memory protection violations, and the like. In fact, the 
CPU treats software interrupt instructions as traps. Both trap and inter
rupt gates contain pointers to interrupt service routines and are normally 
found in the IDT. Unlike call gates, neither trap nor interrupt gates cause 
any parameters to be copied from the interrupted program's stack to the 
operating system's stack. The difference between trap and interrupt gates 
is that an interrupt gate resets the CPU's interrupt enable flag, but trap 
gates do not. 

Hardware tasking, activated by calls to task gate descriptors, is a partic
ularly intriguing feature ofthe x86 protected-mode architecture for a mul
titasking operating system such as iRMX. A hardware task is a complete 
execution context including the address for a thread of execution (cs and 
i p registers), stack registers for all privilege levels, plus data and extra data 
segment registers, and a pointer to an LDT table for providing a memory 
context. All this information is kept in the Task State Segment (TSS) 
memory segment. A task gate contains a selector for a TSS; a far call that 
references a task gate causes the processor to save the current state of the 
processor in the current TSS (a CPU register has the current TSS's selec
tor in it) and to load all the CPU registers from the new TSS. 

Although iRMX II and III use a data structure that has the same format 
as a TSS to hold the states of the tasks it manages, current implementa
tions of II and III do not use task gates, and the entire operating system and 
all applications run as a single machine task. The i486 data book claims 
that that processor can completely switch from one hardware task to an
other in just 17 microseconds, but iRMX engineers have found that system 
performance is even better if they switch task contexts in software rather 
than if the operating system uses multiple hardware tasks. By using a data 
structure similar to the TSS structure for iRMX tasks, however, the option 
remains to change the operating system relatively painlessly to use multi
ple hardware tasks at some time in the future. 

5.5 Virtual 8086 Mode 

The x86 protected-mode architecture provides a feature called virtual BOB6 
mode (VM86) to allow real-mode programs, including operating systems 
such as DOS, to run while the processor is in protected mode. To the pro
gram running in VM86 mode, the processor appears in every way to be 

12The other reason is the overhead of loading the descriptor for a new stack segment and 
restoring it again when the call completes. 
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operating in real mode. The CPU appears to use base and offset pointers 
rather than selectors and offsets, memory is limited to 1M + 64K bytes, 
interrupts appear to be vectored through pointers in the first 256 double
words of memory, and so on. 

In reality, a VM86 program runs as a privilege-level 3 (the lowest privi
lege ring) machine task in protected mode. A protected-mode operating 
system (such as iRMX for Windows) must provide the software glue to 
make the VM86 real-mode illusion work. All interrupts and traps, includ
ing the software int instructions typically used to make system calls from 
real-mode operating systems, cause the processor to generate a general 
protection (GP) fault (protected-mode interrupt number 13) when the 
CPU is operating in VM86 mode. The GP faults are handled by the pro
tected-mode operating system, and one ofthe bits in the CPU's flags regis
ter (the vrn bit) tells whether or not the interrupt was generated while the 
processor was in VM86 mode. If the processor was in VM86 mode, the pro
tected -mode operating system can choose either to handle the interrupt or 
trap on behalf of the VM86 program or to pass control back to the VM86 
program to handle the interrupt itself, whichever is appropriate. Chapter 
12 describes the operation of the iRMX for Windows code that handles 
VM86 mode interrupts, called the VM86 Dispatcher. 

If paging is enabled, the protected-mode operating system can transpar
ently map the VM86 program's 1 MB of memory into any part of available 
RAM, including memory above the first 1 MB of real memory. Thus, for 
example, multiple copies of DOS could be running simultaneously in dif
ferent parts of RAM as different simultaneous VM886 programs. (iRMX 
for Windows does not enable paging.) 

The VM86 architecture also provides flexible control over I/O process
ing. The protected-mode operating system can selectively allow a VM86 
task to access I/O ports (see Section 5.6) directly, or can program the pro
cessor to cause a GP fault whenever an I/O port is accessed. The selection 
of which port accesses cause GP faults is based on the I/O permission bit
map in the TSS of the VM86 program. The bitmap has one bit for each I/O 
port that tells whether the VM86 program is allowed direct access to the 
port or if accessing the port will cause a GP fault. For example, iRMX for 
Windows, which runs DOS programs in VM86 mode, uses the I/O permis
sion bitmap to control access to the computer's PIC, timer, and serial 
ports. More details on the implementation and features of iRMX for Win
dows is covered in chapter 12. 

5.6 I/O Processing 

CPU accesses to memory and I/O devices are closely related, so this section 
begins with an overview of how the microprocessor reads and writes all 
types of information, and then examines the specifics of how I/O opera
tions occur. This section is of particular interest to those who will be devel-
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oping device drivers, the software that interacts with device controllers. 
Although the concepts presented in this section focus on hardware issues 
and the corresponding machine-language constructs, PLM and C com
pilers provide full access to these resources from a high-level language. The 
actual design of iRMX device driver software is covered in chapter 9. 

The microprocessor is connected to both memory systems and I/O de
vice controllers by means of a bus, which consists of address, data, and 
control wires. Various systems provide different buses, called the CPU bus, 
the local bus, or the system bus. The CPU bus refers to the wires attached 
directly to the electrical contacts on the microprocessor's housing and pro
vides the highest speeds for moving information into and out of the CPU. 
(The electrical contacts are normally called pins.) The CPU bus is limited, 
however, in terms of the lengths of wires that can be used for it and the 
number of memories or device controllers that can be connected to it. 

The system bus is logically similar to the CPU bus, but includes addi
tional circuitry so that it can be reliably connected to a larger number of 
memories or device controllers over greater distances. A system bus also 
normally includes additional signal wires compared to the CPU bus so that 
the system bus is suitable for connecting different CPU types to device 
controllers and memories in a standard way. Examples of system buses in
clude the ISA, EISA, Microchannel, Multibus I, and Multibus II buses 
mentioned in chapter 2. 

A local bus is either a synonym for the CPU bus or a third level of wires 
intermediate between the CPU bus and the system bus in terms of electri
cal loading and speed characteristics. The distinctions among the three 
types of buses are not really important for our purposes, and the material 
here is presented in terms of just one bus, which will be treated as if it were 
the CPU bus without any real loss of generality. 

The CPU must perform six different types of information transfers 
using the bus: (1) read an instruction from memory, (2) read data from 
memory, (3) write data to memory, (4) read data from a device controller, 
(5) write data to a device controller, and (6) read an interrupt level number 
from an interrupt controller. 

For the i486, the CPU has three pins used to identify which type of bus 
operation it is performing, called M/IO#, D/C#, and W /R#P M/IO# is 
true if the microprocessor is reading or writing memory data or code, and 
false ifthe microprocessor is reading or writing I/O data. l4 D/C# is true if 
the information being read or written is data, and false if the information is 
a machine instruction or an interrupt vector. W /R# is true if the micropro-

13These particular pin names and their meanings are unique to the i486, but other proces
sors use similar pins with similar functions. 

14This section describes conventional I/O operations. An alternative is called memory 
mapped I/O, in which M/IO# is always true, and device controllers respond to particular 
memory addresses as if they were I/O addresses. 
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cessor is writing (sending information from itself to a memory or device 
controller), and false if the microprocessor is reading. There are 23 or 8, 
ways these three bits can be set, of which we are concerned with the six 
combinations that correspond to the six types of bus transfers mentioned 
above. The following table is a summary of the six types of bus operations. 

M/IO# D/C# W/R# Type of Bus Transfer 

0 0 0 Get Interrupt Vector 
0 1 0 I/O Read 
0 1 1 I/O Write 
1 0 0 Instruction Read 
1 1 0 Memory Read 
1 1 1 Memory Write 

These three pins of the microprocessor are connected to three of the 
wires that constitute the control part of the bus. They tell all the device 
controllers, memories, and the interrupt controller what the CPU wants to 
do with the bus at all times. Two other pins of the microprocessor con
nected to the bus are called ADS (address status), which is true whenever 
the microprocessor wants to start a bus transfer, and RDY, which is used 
by the memories and device controllers to let the microprocessor know 
when a bus transfer is complete. One other pin of the microprocessor that 
connects to a wire in the control portion of the bus is INTR, which is used 
by the interrupt controller to send a signal to the microprocessor telling it 
that there is a request for an interrupt. 

The number of address and data wires in the bus depend on the particu
lar microprocessor. The i486 can access up to 4 GB of memory, and can 
access 1, 2, or 4 bytes of information per bus transfer. To do this, it has 30 
address pins (A31 through A2 ) that can select any of IG 4-byte words, plus 
four additional pins (BE3 through BEo) for specifying which byte(s) within 
the word are involved in the transfer. 

Another way to look at this would be as if there were 32 address pins plus 
two more pins to tell how many bytes are to be transferred. The 80286 mi
croprocessor has 24 address pins, and the 8086 microprocessor has 20 ad
dress pins, corresponding to the maximum memory capacities of 16 MB 
and 1 MB ofthose two CPUs, respectively. Likewise, each microprocessor 
has a number of pins devoted to carrying the information to be read or 
written, called data pins, even though instructions and interrupt vector 
numbers are transferred through these pins in addition to data. The i386 
and i486 have 32 data pins; the 8086 and 80286 have 16. The address and 
data pins of the microprocessor are connected directly to the address and 
data wires of the bus. 

For memory read and write operations, the microprocessor calculates a 
32-bit physical address using the segmentation, and possibly paging, 
mechanisms as shown in Figure 5.2. This 32-bit physical address is sent out 



168 Basics 

over the address wires ofthe bus at the same time that the M/IOH, D/CH, 
and W /R# wires are set to their appropriate values, and ADS is asserted 
(made true) to signal the start of a bus cycle. Every device controller and 
memory attached to the bus examines the address wires simultaneously, 
and one memory unit will recognize the address as belonging to itself. That 
memory unit will then either store the data that the microprocessor sup
plies on the data wires into the proper place (a memory-write operation) or 
will supply the data from the proper memory location on the data wires (a 
memory-read operation). The memory unit signals the completion of ei
ther type of bus transfer by asserting RDY. A crucial concept here is that 
everything connected to the bus includes logic circuitry for comparing an 
address on the bus to the addresses to which it will respond, and for com
paring M/IOH, D/CH, and W /R# to the combination of bits that signals its 
own type of device. Those controllers or memories that do not match an 
address value for a particular bus cycle simply ignore all further activity on 
the bus until ADS becomes true again. 

From this discussion of how a memory cycle operates, it should be clear 
that there are similarly structured addresses for both memory and for de
vice controllers. The significant differences between device controller ad
dresses and memory addresses are the following: 

• The CPU computes memory addresses by using the segmentation and 
paging mechanisms described earlier whenever it fetches instructions, as 
well as when it uses the effective address of a machine instruction to ac
cess an operand from data or stack memory. Device controller addresses 
are generated directly from special I/O machine language instructions 
that never involve paging or segmentation . 

• Device controller addresses are limited to 16 bits for all x86 architec
tures, whereas memory addresses are 20, 24, or 32 bits, depending on the 
CPU model. Thus, there is always a maximum of 64K device controller 
addresses. 

The question arises of what it is that device controller addresses refer to. 
The answer is that each device controller contains a number of registers 
that can be read or written by the CPU, using exactly the same technique 
for reading and writing individual memory locations, but with the M/IO# 
pin set to false. These registers fall into three categories: data buffers, 
command registers, and status registers. Each of these registers is assigned 
a 16-bit I/O port address used by the CPU for reading or writing the regis
ter. By the way, the term I/O port can be used to refer to an entire device 
controller, such as a serial I/O port. Such a device controller could use sev
eral I/O port addresses for the registers and buffers the CPU can access. 

To understand this issue, first look at Figure 5.7, which shows the con
nections between the CPU, bus, memory units, device controllers, and de
vice units. Device unit is the iRMX term for an individual I/O device, such 
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Figure 5.7 Connections between the CPU, bus, memory, device controllers, and device units. 

as one terminal or one disk drive. Figure 5.8 focuses on a single device con
troller, showing the command and status registers and some data buffers. 
Each ofthese registers uses a single I/O port address, although some device 
controllers might share one I/O port address for two registers. For exam
ple, writing to an address might store a command in a device controller's 
command register, but reading from the same address might read the con
tents ofthe status register. Figure 5.8 shows only the connections between 
the data wires of the CPU bus and the registers and buffers in the device 
controller. The address and control wires are implicit in that diagram. 

A command register is used for receiving commands written from the 
CPU to a device controller. Each device controller has its own set of com
mands that it can process, analogous to the operation codes ofthe CPU's 
machine language. Before using a device controller, a CPU program must 
write one or more ofthese commands to the controller's command register 
to set the various options available for it, such as whether to generate in
terrupts or not. 

The data buffers accommodate the vast difference between the speed 
with which the CPU can read and write information using its bus compared 
to the time it takes to transfer information to or from typical I/O devices 
themselves. To output data to a device unit, the CPU first writes the data to 
a device controller's data buffer, and the device controller then transmits 
the data to the device unit in the appropriate manner for the particular de
vice. The transfer of data from the CPU to the device controller can be just 
as fast as storing information in memory (the same bus is used), but trans
ferring data from the device controller to the device unit is a very slow pro-
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Figure 5.8 Device controller. 

cess in comparison. For example, to write a character to a terminal operat
ing at 9600 baud might take less than 100 nanoseconds for the transfer 
from CPU to device controller, but it would take approximately 1 millise
cond (10,000 times as long) for the transfer from the device controller to 
the terminal. Some device controllers, however, operate at significantly 
slower clock rates than the CPU and thus mitigate this speed difference. 

The CPU continues to execute other code while a device controller per
forms data transfers to or from a device unit, and there are two methods for 
the CPU to find out when such a transfer is completed. The first method is 
called polling, in which the CPU periodically reads a device controller's 
status register. The device controller dynamically changes the setting of 
one or more bits in the status register to indicate when data transfers are 
complete. The CPU can read this status register at any time and then test 
the transfer-complete bit(s) to know when more data can be written to the 
device controller or when data has arrived at the device controller that can 
now be read into the processor. The device controller also sets bits in the 
status register that the CPU can test to determine if any errors occurred as 
the device controller transferred information to or from its device unit. 

The second way for the CPU to know when a data transfer is complete is 
through the interrupt mechanism. Device controllers can be programmed 
to generate an interrupt request every time one of their transfer-complete 
bits becomes true. In this case, the software that responds to the interrupt 
reads the device controller's status register and tests whatever bits are nec
essary to verify that the interrupt indicates a data transfer completed nor-
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mally rather than because of an error condition. The software can then 
read or write more data to or from one of the device controller's data 
buffers. 

A direct memory access (DMA) device controller is able to compete with 
the CPU for use of the system bus. To perform a long data transfer, regis
ters on the DMA controller are initialized with the physical addresses of 
the beginning and end of the memory buffer to be read or written, and the 
controller then proceeds to complete the data transfer between the device 
unit and the buffer, generating a single interrupt to the CPU (or setting a 
status bit that can be polled) only when the transfer is complete. The con
troller's address registers are initialized by the CPU using normal I/O in
structions. Although the CPU and DMA controller compete with each 
other for use of the system bus during a DMA data transfer, the technique 
can be particularly attractive if the CPU has an on -chip code or data cache 
that reduces its demands on the bus. 

The choice between polled and interrupt-driven I/O can be a critical one 
for high performance real-time systems. Chapter 1 introduced interrupt 
response time (IRT) as a critical parameter affecting a real-time system's 
performance. Perhaps surprisingly, the best IRTs are obtained if you don't 
use interrupts at all! A system that uses polling can respond to the change 
in a device controller's status register most rapidly by executing a tight 
loop that continuously reads the status register and tests the bit or bits that 
indicate an I/O operation has completed. The system responds to the event 
that would normally give rise to an interrupt request by the device con
troller without incurring the overhead of saving and restoring the CPU's 
state. 

Of course, polling is not limited to a single device controller. A polling 
loop can be constructed that tests the status registers of a number of device 
controllers in succession, branching off to a processing routine each time 
an event is found to process. 

The problem with a polled sytem, however, is that the entire CPU is de
voted to the polling loop, so it can do no other useful work while waiting for 
events to process. An interrupt-driven system can perform time-critical 
operations in response to interrupts, and defer less critical processing to 
those times when no interrupt handling routines are active. For systems of 
even moderate complexity, the overhead associated with saving and restor
ing CPU state in response to interrupts is offset by the improved manage
ability afforded by the ability to partition the code executed in response to 
events by means of separate tasks with different scheduling priorities. Of 
course, if a single CPU is to be used for both real-time and non-real-time 
processing, as when DOS and/or Windows is used to provide the user in
terface to a real-time process using iRMX for Windows, there is no choice 
but to use an interrupt-driven system. 



172 Basics 

There is no direct support for polling in iRMX. Polling can be done, but 
it would interfere with all the task management functions central to the 
design of iRMX, and will not be considered further in this book. 

The programmable interrupt controller mentioned earlier is an example 
of a special-purpose device controller. It is programmed by writing encoded 
binary values to its command port addresses, and it outputs the 8-bit in
terrupt level number onto the data wires of the bus when the CPU initiates 
a get-interrupt vector bus cycle (M/IO#, D/C#, and W /R# equal to 0, 0, 0). 

Intel's PLM and C compilers all support I/O port operations. In PLM, 
byte output to ports occurs by assigning values to a built-in 64K element 
array called output. There are corresponding arrays for outputting 16-bit 
and, in PLM-386, 32-bit values as well. Port input of 8- or 16-bit data 
occurs by invoking built-in functions named input and inword, respec
tively, which take port addresses as arguments and return input data as 
their result. Again, PLM -386 provides for 8-, 16-, and 32-bit data transfers. 
In C, both input and output occur via functions. The outbyte() function 
takes a port number and a data value as arguments and returns nothing. 
The inbyteO function takes a port number as an argument and returns a 
byte of input data. Again, additional functions exist for doing 16-bit and, in 
iC-386, 32-bit transfers as well. There are also machine-language con
structs that allow a single instruction to input or output an entire array of 
bytes, and corresponding C and PLM constructs as well: the blockinbyteO 
function and its cousins for C and the blockinputO procedure and its 
cousins for PLM. 
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You can look at the design of an operating system (OS) in various ways: the 
functions and relationships among the units that constitute the as, the 
layout of memory when the as is running, the different interfaces the as 
presents to the application programmer or the user, and other ways as well. 
This chapter discusses the first three of these views: the software layers 
that constitute the structure of the as, memory organization and manage
ment, and the system call mechanism used by application programmers to 
access iRMX services. The common thread across all of these topics, the 
object-based nature of the operating system, is also discussed. 

The Nucleus layer of iRMX is the particular focus of this chapter. The 
Nucleus is the one required layer of all iRMX systems. A process called 
system configuration can be used to build a copy of iRMX that omits other 
layers of the system if they are not needed for a particular situation, but 
every configuration must include the Nucleus layer. A crucial feature of the 
Nucleus is that it provides the basis for the object-based nature of iRMX. 
All of the optional layers of the as build on the resources provided by the 
Nucleus in ways that preserve this object-based design philosophy. 

The chapter begins with a discussion of object-based and object-oriented 
systems, providing a background for the terminology and concepts used to 
characterize iRMX. It then presents the three fundamental iRMX object 
types managed by the Nucleus (jobs, tasks, and segments), and introduces 
the memory management and system call facilities provided by the Nu
cleus. The chapter ends with a description ofthe iRMX system call mecha
nism that relates both to the object-based nature of the operating system 
and to the features of the x86 architecture introduced in chapter 5. 
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6.2 Object-Based Systems 

The ideas of object-oriented and object-based systems date back to the 
1960s, when the programming language Simula provided programmers 
with the means to create entities called classes. A class is a programmer
defined data type and set of operations that may be applied to items de
clared to be instances of the type. Examples of other languages that support 
the same concept of classes include Ada (the concept is referred to as pack
ages), C++ (referred to as classes), and Smalltalk (also referred to as 
classes). Note that the C-Ianguage typedef facility is not an example of an 
object-oriented system because the language provides no built-in mecha
nism to associate typedefs with the functions that operate on variables of 
the defined type. 

iRMX described itself as object-oriented before that term evolved and 
became more restricted than would properly apply to iRMX. Following the 
lead of Finlayson (1991),1 the term object-based is used for iRMX, which 
refers to a subset of the features of a true object-oriented system. 

An object is defined as a data structure combined with a set of functions 
that provide access to the data structure. An object type is the format ofthe 
data structure, and an object instance is an occurrence of an object type in 
the computer's memory. For each type of object in an object-based system, 
the set of procedures for managing individual objects of that type is called a 
type manager. Each object type has its own type manager. All type man
agers include two procedures: one for allocating memory to hold the data 
structure that represents an instance of the object type and for initializing 
the data structure, and another for deleting the object instance and freeing 
the memory that instance occupied. In addition, each type manager pro
vides a set of functions to appropriately manipulate the objects the type 
manager manages according to the object type. In a pure object-based sys
tem, an application program cannot access the memory occupied by an ob
ject except by calling type-manager functions. The set of function defini
tions provided by the type manager is known as the Application Program 
Interface (API) for the type.2 

Figure 6.1 shows the relationship between application programs, type 
managers, and objects for object-based systems. The application programs 
at the top of the figure can access the objects at the bottom of the figure 
only by calling the functions provided by the type managers shown in the 
middle of the figure. In the figure, arrows indicate allowed accesses, either 
through function calls or direct memory manipulation. Each type manager 
provides its own set of functions and manages its own separate set of ob-

l"To parallel Wegner's definition of an object-oriented programming language (Wegner, 
1987), we say that in order for an operating system to be object-oriented rather than object
based, it must also support some form of inheritance." 

2The term API is also used in other contexts besid~s object-based programming. 
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Application 
Program - 1 

Application 
Program - 2 

CreateA() !DeleteA() ! FooA() I BarA() 

Type Manager - A 

\ Object A1 \ \ ObjectA2 \ 

• • • Application 
Program - n 

CreateB() !DeleteB() ! FooB() 

Type Manager - 8 

\ Object 81 \\ Object 82 \\ Object 83\ 

Figure 6.1 Relationships among application programs, type managers, and objects in an 
object-based system. 

jects. The API for Type Manager A consists of the four functions Crea
teA{}, DeleteA{}, FooA{}, and BarA{}. 

You should note two important features of object-based systems. The 
first is that object-based systems simplify the work of application program
mers, who work only with an API rather than the internal data structures 
of objects. The second important feature is that object-based systems allow 
the developer of the type manager the flexibility to implement objects in a 
variety of ways, provided only that the implementation is consistent with 
the API. Thus, the implementation can be changed, for whatever reason, 
without affecting any of the applications that use the type manager, as long 
as the API specification does not change. 

Sometimes, especially when an object's data structure is quite rich, the 
API does not provide all of the functionality needed by some application 
programs for dealing with objects of a particular type. This situation re
sults in cheating, which is defined as an application program directly ac
cessing the data structure for an object rather than going through the type 
manager's API. Although cheating might seem innocuous when accom
plishing the goal of getting something to work, it is just as iniquitous in 
software development as it is in real life. Once an application is coded to 
cheat, it is doomed to work properly only as long as the underlying object 
implementation does not change. If the object is managed by an operating 
system, for example, the application might need to be recoded every time 
the operating system is updated by the vendor. 

The only proper solution to the need to cheat is to augment the type 
manager with additional functions to provide controlled access to the de
sired information. When done correctly, the new functions do not affect 
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existing applications that do not use them, and are designed so that they 
provide a consistent interface to applications despite possible future 
changes in the internal representation of objects. 

Any object-based system needs some mechanism to allow a type man
ager to discriminate among the various object instances that it has created 
at one time. In Figure 6.1, how is function FooA() to know whether it is 
supposed to deal with object Al or object A2 when called? The answer is 
that the type manager's create() function returns an identifier, called a 
token in iRMX, to the application. Thereafter, when the application wants 
to perform an operation on a particular object, it calls the appropriate type 
manager function using the token as one of its arguments. 

Internally, the type-manager functions use these tokens to identify the 
part of memory that contains a particular instance of the object. The token 
could be an index into an array of data structures, a pointer to a data struc
ture in memory, an index into a table of data structure descriptors, or what
ever the type manager deems appropriate. In iRMX, all tokens are memory 
segment selectors (or segment bases in iRMX I) which are used to access 
memory segments through the Global Descriptor Table (GDT) described 
in chapter 53. In PLM programs, iRMX tokens are stored in variables de
clared to be of type SELECTOR, for which TOKEN is usually declared to be a 
literal equivalent. The Intel C compilers also provide a selector data 
type, provided you include anyone of a number of different header files 
(rrnxc.h, i486.h, i386.h, i286.h, il86.h, i8086.h, or i86.h). 
The rrnxc. h header file provides the selector data type as well as literal 
equivalence among selector, SELECTOR, and TOKEN. 

To summarize, in an object-based system, objects are data structures 
that occupy memory. A type manager exists for each class of object sup
ported by the system. Each type manager provides functions to allocate 
memory for a new object, to free memory for objects no longer needed, and 
perform any other functions needed to support the class of objects repre
sented by the type. Individual objects are said to be encapsulated, which 
means that the memory of these objects cannot be examined directly or 
modified by application programs, only by functions provided by the type 
manager. 

iRMX is an object-based system. When an iRMX object is created, a 
memory segment and a slot in the GDT are allocated to the object, and the 
selector for that segment becomes the token for the object. Because iRMX 
II and III applications operate at privilege ring 0, object encapsulation 
cannot be enforced by the hardware; given a token for an object, it is possi
ble for a program to directly access the object memory without resulting in 
a hardware trap. But to do so is cheating, of course. Several iRMX object 
types and associated type managers exist, with each type manager consist-

3Future versions of iRMX might change to allow LDT -based objects. 
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ing of a set of system calls for creating, deleting, manipulating, and obtain
ing information about objects of its particular type. 

There are also iRMX system calls that have nothing to do with objects. 
That is, iRMX does not coerce all operating system functions into the ob
ject-based model. For example, there are system calls for obtaining or 
changing the system's time-of-day clock, but the clock is not treated as an 
object instance or type of object because it does not make sense to create or 
delete instances of the time. 

6.3 Object-Oriented Systems 

As the terminology has evolved, the term object-oriented has come to be 
applied only to systems that include certain features in addition to those of 
object-based systems like iRMX. Because iRMX is not object-oriented ac
cording to present usage of the term, this section describes some of the dif
ferences between object-based and object-oriented systems to help keep 
iRMX in proper perspective. Although the features described in this sec 
tion are not built into iRMX itself, iRMX could easily be used as the 
basis for an efficient implementation of any of these features by iRMX 
applications. 

6.3.1 Polymorphism 

Polymorphism, also known as operator overloading, refers to using a single 
function name to provide different functionality, depending on the type of 
object passed to the function for manipulation. A standard example is the 
plus operator in most programming languages.4 If the objects to be summed 
are real numbers, the plus operator invokes the processor's floating-point 
unit to perform the operation, but if the objects are integers, plus invokes 
the processor's fixed-point hardware instead. In most programming lan
guages, the overloading of the plus operator is handled by the compiler 
when it translates the source code into machine language. In an object-ori
ented system that supports the mechanism called late binding, overloaded 
functions can determine the types of objects during program execution 
rather than when the program is compiled because the objects themselves 
are not created until run-time. 

The main advantage of polymorphism is that it provides the application 
programmer with a convenient and consistent way to handle objects that 
have logically equivalent functionality but different implementations. Ad
dition of real numbers and addition of integer numbers are logically equiv
alent, but have different implementations. 

iRMX does not provide polymorphism. Each function provided by each 

'Syntax is the only significant difference between an infix operator such as + and a fllllC

tion such as plus(), so plus can be thought of as a function that is provided as part of the type 
manager for a data type. 
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type manager has a unique name, and tokens are validated when system 
calls are made to ensure that each function deals only with objects of its 
own proper type. Although polymorphism is a convenient mechanism for 
the programmer, its greatest advantage comes when it is coupled with late 
binding, which implies a level of overhead inconsistent with high -perform
ance real-time systems. 

6.3.2 Derived classes, inheritance, and 
code reusability 

One of the most appealing features of object-oriented systems is their pro
vision for using existing object types (classes) as the basis for defining new 
types. Either existing functions in the API are redefined to meet the needs 
of the new type, or new functions are added to the set provided by the origi
nal type. In both cases, all of the functions provided by the original type 
manager remain available in name, but with possibly altered semantics. 
Using standard terminology, one says that the derived class (new type) in
herits the function set of the base class (original type). 

Inheritance is appealing because it promises developers the Holy Grail 
of code reusability. If you build a good set of type managers for one applica
tion' you can use the same code in other applications, yet be able to extend 
them to match the new application's needs. 

This concept is simply not present in iRMX. Instead, iRMX provides 
users with the ability to create new objects composed of aggregates of ex
isting objects. In addition, the same mechanisms used by OS type man
agers for interacting with the operating system are also available for user
written type managers. Each type manager, however, must define its own 
set of system calls (the API), and it must make explicit calls to the appro
priate type managers to manipulate its object's subobjects. An object that 
consists of other objects is called a composite object in iRMX terminology. 
A type manager for composite objects reuses code in the sense that it makes 
calls to the type manager functions for component objects to manipulate 
those component objects, but it does not inherit those functions in the ob
ject-oriented sense of the term. 

6.3.3 Message passing 

A scheme commonly used by object-oriented systems, but not unique to 
them, is the inversion ofthe relationship between objects and their API to 
produce what is called a message-passing system. In a message-passing sys
tem, the application sends a message to an object telling it what operation 
to perform, rather than calling a function provided by an object type's API 
to manipulate the object. The object itself is no less encapsulated by this 
approach; it simply provides a convenient mechanism for finding the code 
to perform an operation in the case of derived classes. The Objective Clan-
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guage is an example of an object-oriented language based on this message
passing model, and the documentation provided with NeXT computers 
provides a good description of its implementation. 

iRMX supports message passing as an important mechanism for tasks 
that share information and synchronize execution with each other. How
ever, no relationship exists between this feature of the operating system 
and the message-passing mechanism of some object-oriented systems. All 
operations on an iRMX object are performed by passing the object (a token 
for the object) to a type manager function rather than by passing some sort 
of function, in the form of a message, to an object. 

6.4 Survey of iRMX Layers 

Before discussing the Nucleus layer in more detail, it is useful to have an 
overview of all of the iRMX layers. These OS layers are the following; 

• Nucleus 

• Basic I/O System (BIOS) 

• Extended I/O System (EIOS) 

• Application Loader (AL) 

• Human Interface (HI) 

• Universal Development Interface (UDI) 

• Shared run-time library for C (introduced in chapter 4) 

Each layer provides one or more type managers (object types and asso
ciated system calls) and, possibly, other system calls that provide services 
not part of any type manager. All of a layer's system calls are implemented 
as subroutines that occupy the area of primary memory called system 
memory. The code for the system calls is loaded into system memory when 
iRMX first runs and remains resident as long as the operating system runs, 
i.e., until the computer is turned off or rebooted.s 

The idea of the entire operating system always being resident in memory 
contrasts with many other operating systems, which reduce demands on 
primary memory space by making certain parts of the operating system 
transient. That is, parts of the operating system in RAM can be overwrit
ten by application programs or other parts of the operating system, and 
then reloaded from disk when needed again. This strategy can be very ef-

5System memory can be implemented as read-only memory. In this case, the code for the 
system calls is burned into ROM chips once and does not need to be loaded when power is ap
plied to the system. In many embedded systems, the application's code is loaded into memory 
at the same time as the OS. These systems also encompass the case of application code burned 
into ROM. 
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fective for improving overall throughput for many types of systems, but it 
is generally inappropriate for a real-time system such as iRMX. The rea
son this strategy is inappropriate is because of the time required to bring 
parts of the operating system into memory introduces an indeterminacy 
into the response time of the system that would be unacceptable for real
time work. 

6.4.1 The Nucleus 

The Nucleus layer provides the system calls that 

• Support the fundamental object-based nature of the operating system. 

• Provide object types for intertask synchronization and communication. 

• Manage the connections between the hardware and software of the in
terrupt system. 

• Create new object types. 

• Add new system calls to the system. 

These features of the Nucleus are described later in this chapter. The 
ability to create new object types and to add system calls are particularly 
relevant to this survey of iRMX layers because those functions are used by 
all the other parts of the operating system to establish themselves as iRMX 
layers. Because system calls are available to application programmers as 
well as the layers supplied with the operating system, application program
mers can easily add their own layers to the operating system or replace 
layers that do not match their requirements with custom versions that do. 
Chapter 10 tells how to use these facilities to add customized layers to 
iRMX. 

The discussion of the Nucleus layer later in this chapter will include a 
description of the three fundamental iRMX object types: memory seg
ments, jobs, and tasks. The other types of objects managed by the Nucleus 
include mailboxes, semaphores, regions, extensions, and composites, 
which are discussed in chapter 7. Nucleus functions for interrupt manage
ment are covered in chapter 9 when the topic of adding I/O device drivers 
to an iRMX system is explained. 

Nucleus operations must meet both speed and robustness criteria to 
provide a sound basis for real-time applications. The iRMX III and iRMX 
for Windows Nucleus layer is implemented using the iRMK real-time ker
nel for some of its fundamental operations. iRMK functions can be called 
directly by applications that need to do so for performance reasons. Such 
applications, however, lose some of the robustness provided by the Nu
cleus' object-based design. iRMK is also an object-based system, but it is 
easier for errors in applications that use iRMK functions to compromise 
the system's integrity than for those that restrict themselves to Nucleus 
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functions. The iRMK functions available to iRMX applications are in the 
following categories: 

• Task management. 

• Time management. 

• Mailboxes and semaphores. 

Task management. Applications can use iRMK functions to provide the 
explicit control over task scheduling that cannot be achieved using the 
Nucleus task management functions described in Section 6.5.3. iRMK 
functions exist to turn task scheduling on and off and to notify procedures 
every time a task switch occurs. Nucleus task objects are iRMK task ob
jects, which is not exactly true for other iRMK object types. 

Time management. iRMK functions can provide applications with milli
second-granularity timing functions, whereas the standard Nucleus gran
ularity is 0.01 second. In addition to a sleep() function analogous to the one 
provided by the Nucleus, iRMK provides functions for elapsed-time mea
surement and alarms, which are user-written routines called at specified 
times. 

Mailboxes and semaphores. These objects are used for intertask commu
nication and synchronization. These iRMK objects provide only subsets of 
the functionality provided by the corresponding Nucleus objects, as well as 
the Nucleus' region object type, but the iRMK functions operate faster. 
The Nucleus' task synchronization and communication functions are cov
ered in section 7.2. 

The iRMK functions available to iRMX applications are documented in 
the manual iRMK Kernel for the iRMX Operating System. 

6.4.2 The Basic I/O System 

The services provided by the Basic I/O System (BIOS) system calls fall 
into the categories of time-of-day management, data operations, and file 
system management. The inclusion of time-of-day management in the 
BIOS layer rather than the Nucleus, where task scheduling is based on 
real-time clock interrupts, is based on the fact that time-of-day clocks are 
typically implemented as I/O devices. If there is a battery-backed clock in a 
system, the BIOS obtains the current time of day by reading that device 
when the system initializes, and then maintains its record of the current 
time based on real-time scheduling of a BIOS task by the Nucleus. The 
BIOS system calls for setting and reading the battery-backed clock are 
called rqsetglobaltime() and rqgetglobaltime(), while the system calls for 
setting and reading the time of day maintained by the BIOS time-of-day 
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task (often called the local time) are called rqsettime() and rqgettime(). If 
no battery-backed clock exists in the system, the BIOS initializes the local 
time from the time and date at which the computer's file system was last 
accessed. 

This section introduces some of the key concepts of the BIOS's data 
operations and file system management, which are covered in detail in 
chapter 8. In addition to code invoked directly by system calls, the BIOS 
includes the code for device drivers (software that acts as an intermediary 
between hardware device controllers and the remainder of the software 
that constitutes the system), and data tables that describe I/O device char
acteristics. These features of the BIOS are described in more detail in 
chapter 9. Some of the important features of the BIOS layer include those 
described in the following subsections. 

The BIOS presents a device-independent interface to the code that calls its 
functions. The same system calls are used whether an I/O operation in
volves a disk, a tape drive, a file on a network, a terminal, a printer, or a 
custom device that has been incorporated into the system. Programs do not 
need to be changed to work with different devices. 

I/O operations can be invoked from !lpplication programs or from any layer of 
the Qperating system. In all cases, however, actual I/O operations are per
formed by code in the BIOS layer of the operating system. For example, the 
system call rqcsendcoresponse( ) used in the sa,mple programs in chapters 3 
and 4 is part of the HI layer of iRMX, but the HI implements the call by 
making calls to the EIOS layer, which in turn implements its functions by 
making system calls to the BIOS. 

BIOS operations are generally performed asynchronously with respect to the 
program that invokes them. This means that a program can use a BIOS 
system call to add an item to the BIOS's queue of I/O operations to be per
formed without waiting for the operation itself to complete. At some later 
time the program makes another system call to determine if the operation 
has completed and its outcome. This feature allows a program to enter sev
eral operations into the BIOS's various work queues simultaneously and to 
overlap computation with I/O operations in general. 

You can build a copy of iRMX that does not include the BIOS. Although all 
system calls that involve I/O operations require the BIOS layer for their 
operation, it is possible to build a copy of iRMX that does not include the 
BIOS or any other layer that depends on it, In this case, the application 
program itself must supply all the code for I/O operations. 

The BIOS implements an iRMX object type called an I/O user obje~. This ob
ject type is used to help determine the access rights that programs have to 
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individual files and I/O devices, based on the identity of the user who in
voked the program. 

The BIOS implements a second iRMX object type called an 1/0 connection that is 
used for all 110 operations. BIOS I/O connections are analogous to file han
dIes in DOS systems and file descriptors in Unix systems. The C run-time 
library maps file descriptors and I/O streams to iRMX connections for 
programs that use standard C functions for I/O. Two special library func
tions, ~et_rmx_conn() and yut_rmx_conn(), in the C run-time library 
can be used by C programs to translate between file descriptors and iRMX 
connections if needed. 

6.4.3 The Extended 1/0 System 

Essentially, the Extended I/O System (EIOS) is a synchronous interface to 
the BIOS. Almost every BIOS system call has a corresponding EIOS sys
tem call that performs the same function, but the EIOS version provides a 
simpler interface to the application program. The simplification some
times involves supplying default or built-in values for certain system call 
parameters, but the primary simplification is the synchronous interface. 

When a program makes an EIOS system call, code in the EIOS initiates 
the I/O operation by making the corresponding BIOS system call. The 
EIOS code then waits for the BIOS operation to complete, checks the re
sult of the operation for exceptional conditions, and only then returns to 
the calling program. That is, when control returns to a program that made 
an EIOS system call, all activity associated with the operation has com
pleted. This means, for example, that any data buffer involved in a data 
transfer either contains new data (in the case of a read operation) or can 
safely be overwritten with other information (in the case of a write opera
tion). 

This fact might not seem remarkable because it is the normal mode of 
operation for programs that use the standard I/O facilities of most high
level languages, but it is important in the context of the asynchronous in
terface provided by the BIOS for iRMX. The problem with synchronous 
I/O is that EIOS calls constrain the degree of throughput that can be 
achieved by a single thread of execution. Those applications that must 
overlap computation with I/O or need to schedule concurrent I/O opera
tions would use BIOS functions instead of EIOS functions. Where these 
features are not important, however, an application can benefit by using 
the simpler EIOS calls instead. Furthermore, EIOS system calls can be 
used to implement automatic overlap of I/O operations with application 
execution using techniques called read-ahead and write behind. If an appli
cation processes files sequentially, it can tell the EIOS to use its own 
buffers to implement this feature as described in chapter 8, providing the 
advantages of asynchronous BIOS interface along with the simpler form of 
synchronous EIOS calls. 
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The EIOS manages a type of iRMX object called an I/O job. An I/O job is 
a normal iRMXjob as implemented by the Nucleus (discussed in Section 
6.5.2) that has been augmented to have an I/O user object associated with 
it, along with certain other details. The EIOS also manages its own type of 
connection object based on BIOS connection objects that have been aug
mented with housekeeping information. The EIOS needs this housekeep
ing information to support its simplified interface to application programs. 
Section 7.4 covers I/O jobs in greater detail. 

6.4.4 The Application Loader 

As its name implies, the Application Loader (AL) loads application pro
grams into primary memory for execution. One system call provided by the 
AL simply loads code into memory but does not start its execution. This 
system call requires only the BIOS layer of the operating system for its im
plementation. Other AL system calls create an I/O job for the program 
being loaded and start the program running; they require the EIOS layer of 
the operating system to create I/O jobs. 

There are both asynchronous and synchronous versions of the AL sys
tem calls to create I/O jobs, which operate in ways analogous to the 
asynchronous and synchronous versions of I/O system calls. In the case of 
the AL, the asynchronous version of the call returns to the calling program 
before the application program is actually loaded into memory, and the 
synchronous version returns to the caller only after the new program has 
been loaded successfully. Both versions, however, return before the loaded 
program completes its execution, and a mechanism is provided for deter
mining when the loaded program has completed and for checking its final 
status. 

The files loaded into memory by the AL must be in standard STL object 
module format, as prepared by the binder (discussed in chapter 3), and can 
include either memory overlays or monolithic program images. The AL 
layer does not provide a type manager for any iRMX object types. 

6.4.5 The Human Interface 

Three types of system calls are provided by the Human Interface (HI) layer 
of iRMX: (1) command invocation, (2) command-line parsing, and (3) 
console I/O. 

When an iRMX system starts running, the HI determines how many 
terminals are available for user access to the system by reading the : con -
fig: terminals file. For those terminals with static logon users, the HI 
logs a particular user onto the system automatically, creates an I/O job for 
the user, and has that job start running the Command Line Interpreter 
(CLI).6 For terminals with dynamic logon users, the HI issues a prompt for 

6Although the eLI is typically loaded into system memory with the resident layers of the 
system, it is not considered a layer itself because it does not provide any system calls to the 
system, which the other layers do. 
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a user's name and password, and then creates an I/O job for the user when 
the logon process is successful. 

When the HI creates an I/O job for a user, it augments that job with in
formation that allows the job to use HI system calls to perform console I/O 
and command line parsing. An I/O job that has been augmented in this way 
is called an HI job, although this is not standard iRMX terminology. An ex
ample of the HI's console I/O system calls was rqcsendcoresponse(), seen in 
the sample programs in chapters 3 and 4. The command-line-parsing sys
tem calls allow an application program to determine what the user typed on 
the command line that started the program running and to interpret that 
information in the standard way outlined in chapter 2 (input file list, pre
position, output file list, parameters). 

Like the AL, the HI layer does not provide a type manager for any iRMX 
object types. 

6.4.6 Universal Development Interface 

The Universal Development Interface (UDI) layer provides a way of im
plementing portable application programs. This same layer of software has 
been implemented for iRMX, DOS, VAX/VMS, and Unix System V, so 
programs that make no system calls except those supplied by this layer can 
be run unchanged on all of the operating systems for which the UDI pro
gramming interface is available. Intel has used this interface in imple
menting all of its x86 software development tools so that just a single copy 
of each tool runs on all the different supported development platforms. For 
VAX/VMS, the development tools had to be built to execute using DEC's 
VAX machine language instructions, but for operating systems that run on 
the x86 architecture, the same binary file can run under the different oper
ating systems. The UDI is the mechanism used to implement the common 
DOS-hosted and iRMX-hosted editors, compilers, and binders mentioned 
in chapter 3. 

Two things are of particular note in the UDI. First, most iRMX applica
tions are not intended to be portable. The main reason for developing them 
to run under iRMX is to take advantage of the specific real-time features 
of this operating system. Thus, the UDI is not used for real-time applica
tions, but rather is reserved for use with utility programs and develop
ment tools. 

Second, there are alternatives to the UDI for portable applications. A 
primary example is the use of a standard high-level language with its own 
run-time library, such as C using the POSIX.llibrary, which was intro
duced in chapter 1. POSIXA even offers the hope for portable real-time 
applications at the source-code level. Presently, the advantages ofthe UDI 
are that it provides a simpler interface to the I/O system than the EIOS, 
and it provides a mechanism by which a single binary file can run on both 
DOS and on iRMX. 
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6.5 iRMX Fundamental Objects 

The previous survey of iRMX layers has suffered from the use of some 
vague and as-yet-undefined terms. In particular, just what is a job, and 
what does it mean to augment it to make it into an I/O job or an HI job? 
Also, how is a BIOS I/O connection object augmented to become an EIOS 
connection object? This section presents the background information 
needed to solidify these concepts. 

Three fundamental object types are provided by the iRMX operating 
system: memory segments, jobs, and tasks. These object types could be 
presented here in the manner appropriate to ail object types, by describing 
the set of procedures available for working with these objects (the API for 
the objects). For these three types of objects, however, it is important first 
to see how they relate to all the other object types managed by the operat
ing system, and that is the primary focus in this section. These object 
types, as well as the remainder of the object types managed by the Nucleus, 
are covered from the application programmer's viewpoint in chapter 7, 
which surveys some of the system calls provided by the various layers of the 
operating system. 

For an iRMX system to function, there must be objects, and there must 
be operations performed on those objects. There are computations that 
applications and the operating system itself perform that have nothing to 
do with objects, but without objects these other computations would oper
ate in a vacuum and thus serve little or no useful purpose. 

To have objects, memory must exist to hold the information about the 
objects, a mechanism must exist to allocate the memory used by objects in 
an orderly way, and an execution entity must exist that can cause objects to 
be created, manipulated, and disposed of. In iRMX, the memory segment 
object type provides the memory that holds objects, the job object type pro
vides the basis for allocating memory for objects (jobs are said to own the 
memory occupied by objects), and the task object type provides the execu
tion entities of the system. These three object types are described next. 

6.5.1 Memory segments 

There are only two type manager functions (system calls) for memory seg
ments. One function creates a segment, and the other deletes a segment. 
Assuming myseg has been declared to be of type TOKEN, and Status has 
been declared to be of type WORD, the following statement makes an iRMX 
system call to create a segment: 

myseg= rqcreatesegment (5280, &Status); 

This is a C statement, but it would be the same in PLM ifthe & was changed 
to @. The first argument is the size of the segment, in bytes. For iRMX I and 
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II, the maximum size is 64K, but for iRMX III, it is 4G. The second argu
ment is a pointer to a 16-bit unsigned value that will be set to a completion 
code for the system call. A value of 0 means the call completed success
fully.7 

Unlike any other type of iRMX object, memory segments are completely 
unstructured as far as the operating system is concerned, and there are no 
restrictions on what an application does with the memory contents. For 
this one type of object, the only reason for creating an object is, in the ob
ject-based sense of the term, to cheat with it! 

Figures 6.2 and 6.3 present equivalent PLM and C programs that illus
trate a possible use of an iRMX segment object. The main program creates 
a segment, reads characters into it from the keyboard, and passes it to a 
subroutine that displays the characters on the screen. The subroutines ac
cess the information in the segment by either explicitly or implicitly using 
the token received from rqcreatesegment( ) as the selector part of a pointer 
to the information. The code seems a bit messy in the subroutines because 
of the logic to check that the message to be displayed will actually fit into 
the memory reserved for an output buffer. These programs should be 
viewed only as demonstrations of how segments can be created and ac
cessed rather than as illustrations of proper programming style for iRMX. 
There are certainly much more efficient ways to share information be
tween a main program and a subroutine than to incur the overhead of 
creating an iRMX memory segment object! 

Fundamental about memory segment objects is that all other iRMX ob
jects are constructed from them. For example, if a program creates a job 
object, the type manager for jobs creates a memory segment to hold the 
data structures that it maintains about the job, initializes the data struc
tures in the segment, and returns the selector for the segment as the token 
for the job. Likewise, if a program creates a task object (or a mailbox, a 
semaphore, or any other type of iRMX object), the type manager for tasks 
(or mailboxes, semaphores, or whatever) calls rqcreatesegment() to obtain 
the memory in which the type manager places information about the task 
(or mailbox, semaphore, or whatever), and returns the selector for the seg
ment as the token for the new object. 

When an application needs to do something with one of its objects, it 
passes the token for the object to the appropriate type manager function, 
and the type manager's code uses the fact that the token is a selector to ac
cess the data structure for the object in much the same way that mySub( ) 
accessed the contents ofthe input buffer segment in Figures 6.2 or 6.3. It is 

7For more information on how to code this and all other system calls, you should consult 
either the on-line help facility provided with iRMX for Windows, or the reference manual for 
the appropriate part of the operating system, such as the iRMX System Call Reference, vol
ume 9 of the iRMX for Windows documentation set. 
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Figure 6.2 Sample PLM program illustrating the use of an iRMX segment. 

/***> segexamp.plm <************************************* 

* 
Sample program to illustrate the use of an iRMX segment 

*********************************************************/ 

$title "Sample Program Illustrating Use of an iRMX Segment') 

segexamp: DO; 
$include (segexamp.ext) 
DECLARE 

SEGSIZE LITERALLY '81' , 
myseg TOKEN, 
Status 

/* 
Subroutine to display an iRMX string contained in a segment. 

*/ 

segsub: PROCEDURE (theSeg); 
DECLARE 

theSeg TOKEN, 
theBuf BASED theSeg (1) BYTE, 
outBuf (81) BYTE; 

CALL movb (@ (11, 'You typed: '), @outBuf, 12); 
CALL movb (@theBuf(l), @outBuf(12), theBuf(O)); 
IF (outBuf(O) + theBuf(O)) < size (outBuf) - 1 THEN 

outBuf(O) outBuf(O) + theBuf(O); 
ELSE 

outbuf(O) size (outBuf) -1; 
CALL rqcsendcoresponse (NIL, 0, @outBuf, @Status); 
RETURN; 

END segsub; 

/* Main program starts here 

* 

*/ 

Read a string from the keyboard into a segment, and pass it 
to a subroutine for display. Assume that system call errors 
are checked by the default exception handler. 

myseg = rqcreatesegment (SEGSIZE, @Status); 
CALL rqcsendcoresponse (buildptr (myseg, 0) , SEGSIZE - 1, 

@(16,'Type something: '), @Status); 
CALL segsub (myseg); 
CALL rqexitiojob (0, NIL, @Status); 
END segexamp; 

not cheating for the type manager to access the memory for an object in 
this way; rather, that is its purpose. Such accesses correspond to the lower 
set of arrows in Figure 6-l. 

At this point, what an application might want to do with an object has 
not yet been covered, but that is because other types of iRMX objects have 
not yet been considered. As each object type is introduced, the functions 
that can be performed with objects of that type need to be presented as well. 
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Figure 6.3 Sample C program illustrating the use of an iRMX segment. 

/***> segexamp.c <************************************************** 

sample program illustrating the use of an iRMX segment 

*********************************************************************/ 

#pragma title (" Sample Program Illustrating Use of an iRMX Segment··) 
#include <rmxc.h> 
#include <string.h> 

#define SEGSIZE 81 

TOKEN 
WORD 

mySeg; 
Status; 

/* Main program starts here 

*/ 

int 

Read a string from the keyboard into a segment, and pass it 
to a subroutine for display. Assume that system call errors 
are checked by the default exception handler. 

main (int argc, char * argv[]) { 

mySeg = rqcreatesegment (SEGSIZE, &Status); 
rqcsendcoresponse (mySeg, SEGSIZE - 1, 

udistr ("Type something: ", "Type something: "), &Status); 
mySub (mySeg); 
rqexitiojob (0, NULL, &Status); 
} 

/* 
Subroutine to display an iRMX string contained in a segment. 

*/ 
void 
mySub (TOKEN theSeg) 
char outBuf[81] "You typed: ". 
char *theBuf; 

theBuf = theSeg; 
strncat (outBuf, &theBuf[l] , 

(sizeof (outBuf) > (strlen(outBuf) + theBuf[O])) 
theBuf[O] : sizeof (outBuf)); 

udistr (outBuf, outBuf); 
rqcsendcoresponse (NULL, 0, outBuf, &Status); 
} 

6.5.2 Jobs 

Each object in an iRMX system is owned by some job. This relationship 
has three important ramifications. 

1. Each job has a memory pool. The iRMX memory management policy is 
to allocate a contiguous block of free space memory to a job when it is cre
ated. Free space is an area of RAM that has not yet been turned into seg-
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ments in the sense that there are no descriptors in the GDT or LDTs that 
could be used to access this memory. When a memory segment or other ob
ject belonging to a job is created, a new descriptor is constructed that de
fines a piece of this memory pool as a segment, and the record of the job's 
memory pool (one of the data structures in the job object itself) is updated 
to reflect that this piece has been taken from its pool. 

2. Objects cease to exist when their owning job is deleted. Because the 
memory for an object is allocated from the memory pool for the job that 
owns the object, and because deleting a job implies deleting its memory 
pool, all objects that belong to a job are automaticaliy deleted when the job 
is deleted. 

3. There is a tree-structured hierarchy of jobs. All objects are owned by jobs 
and jobs themselves are objects, implying that jobs are also owned by jobs, 
which is true. Each job has one parent job and zero or more child jobs. 
There is one distinguished job, called the root job, that has no parent. This 
parent-child relationship with a root node gives rise to the treecstructured 
hierarchy of jobs in an iRMX system. The form of an iRMXjob tree can be 
very dynamic as jobs are created and deleted during the time a system is 
running. In practice, however, much of the job tree is quite static. 

A corollary of the tree-structured hierarchy of jobs is that there is a tree
structured hierarchy of memory pools. Because jobs are owned by other 
jobs, it makes sense that the memory pools for jobs should be allocated 
from the memory pools of their parent jobs; however, this is only partially 
correct. There are two memory pool values associated with each job, called 
the minimum and maximum memory pools. When a job is created, a con
tiguous block of memory equal to the size of the job's minimum pool is allo
cated from its parent jobs' pool. During the job's lifetime, it can request ad
ditional memory by means of the rqcreatesegment() system call or by 
creating other objects whose type managers call rqcreatesegment(). These 
segments will be taken from the job's minimum memory pool if possible, 
but, if the job's minimum memory pool is either exhausted or simply too 
fragmented to provide a contiguous block of memory to satisfy the request, 
the segment can be allocated from the memory pool of the job's parent by a 
process called borrowing. 

If the parent job's memory pool is too small or too fragmented, the seg
ment can be allocated from the grandparent job's pool, and so on up the job 
tree to the root job. A job's maximum memory pool is the limit for how 
much memory can be borrowed from ajob's ancestors. A significant differ
ence between ajob's minimum pool and its maximum is that the former is 
always contiguous, but the latter can be scattered among several ancestor's 
pools. 

Memory segments must always be internally contiguous, but this re
quirement might be impossible to meet for very large segments when jobs' 
memory pools become fragmented, even thoughthe total number of bytes 
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needed for a large segment might be available. As mentioned in chapter 5, 
iRMX III could use the paging facilities of the 80386 and later micropro
cessors to map disjoint pages into contiguous segments to accommodate 
applications' needs for very large segments, but this feature has not been 
implemented at the time of this writing. Recall that paging is done by the 
microprocessor after segmentation, which would make it transparent to an 
application that references the contents of a segment through the standard 
selector and offset pointer mechanism (logical addresses). Recall also that 
segments larger than 1 MB must be multiples of 4 KB in size.s Thus, a 
proper match always exists between the size oflarge segments and the page 
size used by the processor, which is also 4 KB, and no additional memory 
fragmentation or wastage occurs due to the use of the paging mechanism in 
this context. 

It might help to consider the sequence of events that occurs when an 
iRMX system starts running. First, a copy of the entire operating system is 
loaded into an area of memory known as system memory. This loading pro
cess can be done by a bootstrap loader that reads the operating system from 
a local or network disk file, or the operating system can be burned into 
PROMs so that it is available as soon as electrical power is applied to the 
system. The code loaded into system memory consists of all the type man
agers initially defined (others can be added as the system is running), a 
GDT that includes call gates for all the type-manager functions that have 
been loaded, plus initialization code that starts executing as soon as con
trol passes to the operating system. 

In addition to system memory, there must be some RAM that can be 
used for the dynamic memory requirements of the various jobs in the sys
tem. This RAM is known as the free-space memory, and it is managed by a 
software module in the Nucleus called the Free Space Manager (FSM). 
Free-space memory cannot be accessed initially because no descriptors for 
segments in this part of memory exist yet. 

The initialization code first calls the FSM to create a segment that will 
contain the root job object, and it fills in that segment with the information 
about the job. The job information of concern here is the memory pool in
formation for the root job, which is set up to have a small minimum mem-
0ry pool as well as a maximum memory pool limited only by the amount of 
physical memory available. In essence, the root job owns the entire free
space memory, and it is conceptually equivalent if its pool minimum is set 
to be equal to the size of the entire free space area. The situation at this 
point is shown in Figure 6.4. The root job has been created, and its maxi
mum memory pool encompasses all of FSM. The root job object occupies a 
memory segment that has been allocated from free space memory and 
charged against its own maximum memory pool. 

SOnly 20 bits are available in descriptors for the segment size, so 12 zeros are appended to 
the 20-bit limit field in the descriptor for such large segments. 
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Figure 6.4 Primary memory during system initialization. 

The lower part of memory is shown containing system memory, and the 
upper part is free-space memory, all of which belongs to the root job. A 
piece of the free-space memory has been allocated as the root job's mini
mum memory pool, and a segment has been created in the root job's mini
mum memory pool to hold the root job object itself. The memory for an ob
ject is normally allocated from the owning job's memory pool, but this one 
object must be treated specially because of the distinguished nature of the 
root job itself; it has no parent, so it owns itself. 

After the root job has been created, initialization continues with the cre
ation of a set of jobs that are the immediate children of the root job. These 
jobs are called first-level jobs, and their memory pool requirements are de
fined when the operating system is configured. These first-level jobs con
sist of jobs needed by the various layers of the operating system as well as 
application-specific jobs. These jobs are created in a well-defined se
quence, which is also defined when the operating system is configured, so 
that any job that depends on another job's existence will be created only 
after that other job has been created and has completed execution of its in
itialization code. 

Each first-level job is given a minimum memory pool which is taken from 
the root job's pool. Figure 6.5 represents the situation in which there are 
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Figure 6.5 Primary memory after the root job has created first-level jobs B, A, E, and H. 

four first-level jobs, named B, A, E, and H, in the figure. To make matters 
interesting, Job E is shown having created a child job of its own (Job N), 
which has taken some of Job E's minimum pool. Jobs B, A, E, and H have 
been allocated memory pools from the root job's maximum pool (FSM). 
Job N has had its memory pool allocated from job E's pool. Jobs B, A, E, 
and H can all borrow memory from the root job's maximum pool, and job N 
can borrow memory from either its parent (job E), or its grandparent (the 
root job).The letters used to name the jobs in this figure are meant to be 
suggestive of the jobs' natures, which is explained next. The relative sizes 
of the boxes, however, do not indicate the relative sizes of the memory 
pools or job objects in the figure. 

Among the first-level jobs created are jobs for some, but not all, of the 
layers of iRMX. In Figure 6.5, jobs B, E, and H represent jobs created for 
the BIOS, EIOS, and HI layers ofthe operating system. Job A represents 
an application-specific job created after the BIOS job and before the EIOS 
job. One might assume that this particular application needs to be able to 
make Nucleus and BIOS system calls, but not EIOS or HI calls, based on 
the order in which it was created relative to the other jobs. Job N, the child 
job of the EIOS, is an example of a job created by a first-level job during 
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system initialization. An example of a job like this on some systems is the 
iRMX-Net job, which is why it was named N in this example.9 

In a typical iRMX system, each first-level job is given an unlimited 
maximum memory pool. The effect of this is to allow the root job and all 
first-level jobs to compete equally for use offree space memory. First-level 
jobs need to draw on the resources of free-space memory for two different 
reasons. One regards the unique requirements of the HI, and the other is 
based on the relationship between first-level jobs and iRMX layers. These 
two matters are discussed next. 

The HI job's memory pool. For those configurations that include the HI 
layer of the operating system, the section of the job tree rooted at the Hljob 
is the most dynamic segment of the tree. The HI creates a new job each 
time a user logs on to an iRMX system, and another job is created every 
time a user runs an HI command or certain eLI commands (such as back
ground). All of these jobs endure only during execution of the specified 
command or, in the case of a logon job, until the user logs off. 

All of these descendant jobs of the HI compete for resources within the 
free-space memory, since the HI job's minimum memory pool is not large 
enough to meet any but the smallest attempts to borrow from it. To provide 
some degree of fairness in multi-user systems, the HI is normally config
ured to supply each logon user job with a memory pool large enough to run 
most commands and development tools, and a maximum memory pool 
small enough to ensure that some free memory will be available for other 
users who log on later. These memory pool settings are established by the 
files in the: conf ig: users directory. For each user, there is a file in this 
directory that specifies the user's minimum and maximum memory pool, 
as well as other information, such as the pathname to the user's home di
rectory. For example, a system with 4 MB offree space memory might set 
each user's minimum memory pool to 512K and maximum memory pool to 
2M. This way, there would always be enough memory for at least two users 
to log on without any problem, and a system with light memory demands 
could support as many as eight users simultaneously. 

The relationship between first-level jobs and layers. The second type of de
mand on free-space memory is made directly by other first-level jobs be
sides the HI. To understand these demands, first consider the implications 
of the hierarchical nature of the job tree and memory pools on the lifetimes 
of iRMX objects. 

A crucial concept for understanding the iRMX operating system is the 
following: when a job is deleted, all of its memory pool is returned to the 

!Vfhe iRMX-Net layer of the operating system is described in chapter 11. 
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job(s) from which it was obtained, and all memory segments that had been 
established within that memory pool are deleted from the GDT. This 
means, without exception, that all objects owned by ajob cease to exist when 
the job terminates. A corollary to this rule follows from the fact that it is 
possible for one job to obtain a token for an object that belongs to another 
job. In general, objects can be shared across jobs, but if the job that owns an 
object terminates, any further attempt to use the token for that object from 
another job will result in an error10• 

So, what does this have to do with first-level jobs for OS layers, and why 
do some layers have first-level jobs, and other layers do not? The answer is 
that some layers need to create permanent dynamic objects, and others 
(the AL and UDI, in particular) do not. The AL and UDI provide system 
calls that might result in the creation of objects, but those objects are allo
cated from the memory pool of the application program that made the sys
tem call. The other layers, however, create objects that must continue to 
exist after the job that triggered their creation terminates. There is a first
level job for each of these other layers so that they can act as the owners for 
these more-permanent objects. 

It might not make much sense to discuss these permanent objects be
cause you do not know what each ofthe layers does yet, but a few of the ob
jects are described briefly here to explain the rationale for first-level jobs. 

The BIOS layer creates system-wide objects every time a device is at
tached. Even though the action of attaching a device is invoked from a par
ticular job, such as the job spawned by the HI when the user enters an at
tachdevice command, the attachment itself must exist beyond the lifetime 
of the creating job (the job that runs the attachdevice command). Thus, the 
objects associated with a device attachment (which include an object called 
a device connection, a task for communicating with the device driver soft
ware for the device, and perhaps some memory segments for sharing infor
mation between the BIOS and the device driver) must be created dynami
cally, but must continue to exist after the job that calls the BIOS 
terminates. The solution is for the attachment to be performed by, and 
hence to be owned by, a permanent job, namely the BIOS job. 

Some layers of the operating system create type managers for new object 
types beyond those provided by the Nucleus. For example, the BIOS layer 
supplies the type manager for an iRMX object type called a user object. (A 
user object is simply a memory segment containing a list of ID numbers to 
be associated with a particular user of the 1/0 system. This list of user IDs 
is used by the BIOS to determine access rights to files that a program tries 
to open. You can see a display of your user object by typing the whoami 
command at the eLI's prompt.) 

lONot all objects can be shared across jobs. Objects called connections, which are managed 
by the BIOS and EIOS layers of iRMX, may not be shared across jobs. This restriction may 
well extend to other types of objects as the operating system evolves. 



198 iRMX Concepts and Features 

The idea introduced here is that type managers can be added to iRMX by 
other layers ofthe operating system besides the Nucleus. An example is the 
type manager of the BIOS for user objects. Application programs can add 
their own type managers to the system that will operate the same as the 
type managers supplied by the operating system itself. The mechanism for 
adding a type manager involves creating a type of iRMX object called an 
operating system extension (OSE). When a program (either an as layer or 
an application program) creates an OSE object, it specifies a type code for 
the new object type and, optionally, a deletion mailbox for objects of the 
new type. The new type manager also creates new system calls for manag
ing objects of the new type so that programs can create, delete, and manip
ulate objects of the new type. Other parts of the Nucleus use the informa
tion specified when the OSE was created to provide an orderly mechanism 
for deleting a job's objects when the job is deleted. 

Thus, a second rationale for having a job associated with an operating 
system layer is to provide an owner for the OSE objects that a layer needs if 
it provides type managers. The code for the type managers (the code for the 
system calls that can be used to create and manipulate object instances of 
the new type) occupies system memory, but the as extension object asso
ciated with each type manager is created dynamically and owned by the 
layer's job. The reason the AL and UDI do not need jobs is that they do not 
provide type managers. 

The EIOS layer, on the other hand, needs a job to own the two object 
types that it creates, logical names for devices (introduced in chapter 3) 
and a composite object type called I/O jobs. An I/O job consists of ajob ob
ject, a user object, and some other objects not important here. What is im
portant at this point is that it follows immediately from the existence of 
these type managers that the EIOS layer needs a corresponding job to own 
the OSE objects for these types. 

There are two reasons for having a job for the HI. One reason is for man
aging the memory pools for users and their applications already presented. 
The other is to provide an owner for the tasks that the HI provides. The HI 
job owns a task for each terminal on which users can log on to the system. 
When a user logs on, the task associated with the terminal creates a child 
job of the HI that acts as the unique parent for all jobs created by the user's 
commands. In addition, a task is used to implement the sysload command 
that allows programs to be loaded and to continue running after the user 
who issued the sysload command logs off the system. Commands run by 
sysload are run as child jobs of the HI job rather than as child jobs of the 
user's logon job. That is, there is an HI job to act as a permanent owner for 
the sysload task and the logon tasks. 

6.5.3 Tasks 

Tasks are threads of execution. They are a fundamental object type in 
iRMX simply because without them no code can be executed. Without 
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them, the type managers provided by the operating system or its exten
sions could not be called, and no objects could be created, manipulated, or 
deleted. Without them, nothing would happen. 

Until now, the discussion of jobs and programs had to be a bit imprecise. 
Although jobs own objects, they do not create objects. An object is created 
when a task executes a system call that executes a type manager's function 
to create the object. So how does a job own an object that a task creates? 
The job that owns the task that creates the object owns the object. How 
does a job get to own a task? An initial task is automatically created for 
every job created. Except for being the first task created for the job, this one 
task is indistinguishable from all other tasks that the job might own during 
its existence. As mentioned in chapter 5, the iRMX II and III task man
agers allocate a memory segment structured as a protected-mode Task 
State Segment (TSS) for every task in the system. 

No hierarchy exists among iRMX tasks. All objects created by a task be
long to the job that owns the task rather than to the task itself. If one task 
creates another task the two tasks are siblings: they are both owned by the 
same job and have no other particular relationship to each other. If a sec
ond task creates a third task, that task is equivalent to both the initial task 
and the task that created it. If a task creates ajob, that job is owned by the 
creating task's job, and the new job's initial task is owned by the created 
job. The creating and created task in this case simply have the relationship 
to each other of "do not belong to the same job," and there is nothing dis
tinctive about the fact that one belongs to a job that is the parent of the 
other's job. 

An important distinction to make is the difference between a task and a 
procedure. A task is a thread of execution; a procedure is a piece of execut
able code. The proper terminology is to say that a task enters a procedure, 
executes the procedure's code, and exits. (Of course, a procedure might 
contain an endless loop, in which case the task would never exit.) More 
than one task can enter a procedure at the same time, in which case the 
procedure must be re-entrant-it must allocate separate copies of all in
coming parameters, return addresses, and local variables for each task that 
enters. This allocation is accomplished by giving each task its own stack 
segment in memory, and allocating memory for parameters, return ad
dresses, and local variables on the calling task's stackll. 

All functions in the C language are re-entrant by default, but PLM pro
cedures and functions must explicitly be declared re-entrant if they are to 
be used in this way. Both languages use the stack for passing parameters 
and holding return addresses; the issue is whether local variables are part 
of the stack frame (activation record) or stored in a static data segment. 

URefer to chapter 5 for a description of how the x86 uses a stack segment for subroutine 
activation records containing this information. 
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When a job or task is created, one of the parameters for the call to the 
type manager's create function is the address in memory where the task 
(the initial task in the case of a job) is to begin execution. Unlike other 
operating systems that require tasks to execute within the address space of 
the parent process, iRMX places no restriction on what memory can con
tain the procedures to be executed by a job's tasks. In particular, no re
quirement exists for any task to start executing at an address within its 
job's memory pool. In fact, this would be impossible to arrange for a job's 
initial task because the creating task cannot know the address of a job's 
memory pool before the job is created. For example, the initial task for an 
HI command starts executing an AL procedure that loads the command's 
code and data from a file into the job's memory, and then branches to the 
initial instruction in the newly loaded code segment. 

Once a task has been created, it can execute procedures any place in 
memory that contains code. Unlike other operating systems that require 
some type of context switch when a thread of execution makes a system 
call, iRMX tasks execute system call procedures directly without any con
text switch at all. The one exception to this principle is asynchronous pro
cessing by the BIOS, which is described in chapter 8. The mechanism for 
branching to the proper location in system memory to execute system calls 
will be discussed later in this chapter. 

6.5.4 Examining iRMX objects 

As mentioned in chapter 3, iRMX provides an extension to the debug 
monitor called the system debugger (SDB) that can be used to examine 
iRMX objects interactively. The SDB is code placed in system memory 
with the rest of the operating system when the OS is first loaded. The SDB 
code is connected to the same command interpreter as the debug monitor 
(the code that allows interactive examination of hardware facilities), so it 
can be accessed from either the same prompt as the monitor ("." or " .. ", 
depending on whether you are using iRMX I or a protected-mode version 
of the operating system) or from the SoftScope command line. Several 
SDB commands exist for examining objects and certain other data struc
tures maintained by the operating system. They are fully documented in 
the iRMX System Debugger Reference Manual. The SoftScope III Debug
ger User's Guide (volume 13 ofthe iRMX for Windows documentation set) 
tells how to use them from a Soft Scope session. 

SDB commands help application programmers know about the objects 
created by their program so they can debug effectively, but the program
mers should not have to cheat to do so. One of the most commonly used 
SDB commands is vt, which stands for view token. Given a token for an ob
ject (either the numerical value of the selector for the object or, in Soft
Scope, the name of a variable that holds a token), vt will display all of the 
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essential information about the object in a format suitable for human ex
amination, but without compromising the encapsulation principle of an 
object-based system. Think of vt as an interface to the type managers for 
all iRMX object types. It follows from the material presented previously on 
object-based systems that any changes to the internal representation of an 
object type by the as designers must include parallel changes to the rou
tines in the SDB that display information about that type of object. 

SD B commands can also be very instructive for people interested in bet
ter understanding how iRMX works. If you want to know what informa
tion is maintained by the as for jobs, give a vt command with a token for 
any job object. If you want to know what is known about tasks, give a vt 
command with a token for a task object. For example, Figure 6.6 is the out
put of a vt command for a job, discussed more fully in the next section. 

Some SDB commands that might be useful to try out at this time include 
the following: 

vj View Jobs. The hexadecimal value of the token for every job in the 
current iRMX job tree is displayed with indentation showing the tree 
structure. You can limit the display to one branch of the tree by giving 
the token for a particular job as an argument. Within a level, jobs are 
displayed from the top down in the reverse order of creation (HI job 
on top, BIOS job on bottom for first-level jobs, for example). 

vo View Objects. Given a token for a job, this SDB command displays a 
list of all the objects owned by that job, arranged by object type. 

vh View Help. This command lists SDB command names and syntax. 

Figure 6.6 Display produced by the SDB vt command, given the token for the root job of a 
system running iRMX for Windows. 

Object type = 1 Job1 

Current tasks 0003 Max tasks ffff Max priority 00 
Current objects 0005 Max objects ffff Parameter obj 0000 
Directory size 00c8 Entries used 0018 Job flags 0000 
Except handler 0280:00008850 Except mode 00 Parent job 0000 
Pool min 0002lfff Pool max 0002lfff 
Initial size 0002lfff Borrowed 00000000 

Byte range I Number chunks I Largest chunk Total memory 

22-44H 00000001 00000030 00000030 
44-84H 00000000 00000000 00000000 
84-200H 00000000 00000000 00000000 
200H-1K 00000000 00000000 00000000 
1K-2K 00000000 00000000 00000000 
2K-4K 00000000 00000000 00000000 
4K-8K 00000000 00000000 00000000 
8K-32K 00000000 00000000 00000000 
+ 32K 00000002 00035760 00044ddO 
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6.6 More about the Nucleus 

With the fundamental nature of memory segments, jobs, and tasks having 
been introduced, we now further examine some other fundamental fea
tures of the Nucleus layer, starting with more information about job and 
task management. 

6.6.1 Job management 

This section provides more information about how a job's memory pool is 
managed by the FSM and how a data structure called an object directory 
can be used for sharing access to objects across tasks or jobs. 

Memory management. The basic principles of memory management were 
already introduced in the previous discussion of jobs and memory seg
ments, but a few details can be elaborated on here. 

The FSM uses data structures within ajob object as it manages the job's 
memory pools. Without knowing the actual organization of these data 
structures or the actual algorithms used by the FSM (in keeping with the 
encapsulation principle of object-based design), it is nonetheless possible 
to deduce some useful information about management of a job's memory 
based on documentation and a bit of experimentation with the SDB. Fig
ure 6.6 is the display produced by the SDB vt command for the root job of a 
system running iRMX for Windows. 

The lower portion of Figure 6.6 shows some of the information that the 
FSM uses. The Pool min, Pool max, Initial size, and Borrowed all refer to 
the job's memory pool, with values given as numbers of I6-byte units called 
paragraphs12• The three columns at the bottom of the display show how the 
FSM keeps track of the memory in a job's pool. It keeps a list for each of 
several chunk sizes. (You can find out that the lists are implemented as 
doubly linked lists by consulting the SDB manual, but that kind of knowl
edge comes close to cheating!) For each chunk size, there is a list of contigu
ous bytes of memory that are ofthat size range. Presumably, although not 
shown by the vt display, the FSM stores the actual starting address and 
length for each chunk on the list. Note that all the values shown in the 
chunk-management part of the display are in bytes rather than para
graphs. 

The algorithm actually used for allocating memory segments is not pub
lished by Intel, but what follows should be a reasonable approximation: 

1. Search for the first nonempty list that might contain a chunk large 
enough to accommodate a segment of the desired size. Start with the list 

12Paragraphs have no architectural significance in protected mode, but a paragraph in real 
mode is the minimum spacing between segment base addresses because of the way base ad
dresses are calculated. This topic is discussed in chapter 5. 
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for the chunk size range that includes the requested segment size, and 
continue to the lists for larger chunks until either a nonempty list is 
found or the set of lists is exhausted. 

2. If no list is found in the current job, repeat step 1 for the parent job as 
long as the current job's pool max has not yet been reached and as long 
as there is a parent job. If unable to continue, return the condition code 
E MEM to the caller. 

3. Search the selected list of chunks for one large enough to hold the seg
ment, skipping over chunks within the range of the list but too small to 
hold the segment. This step could use either a first-fit or best-fit rule. 
The former would use the first chunk on the list that is large enough, 
and would execute somewhat faster, whereas the latter would search the 
entire list for the smallest chunk that would hold the segment, and thus 
could reduce memory pool fragmentation. 

4. If step 3 fails, return to step 1, starting with the list for the next larger 
range of chunk sizes in the current job. 

5. Delete the selected chunk from its list. 

6. Subtract the number of bytes needed for the segment from the size of 
the selected chunk, resulting in a new chunk size. Add the size of the 
segment to the base address of the selected chunk, resulting in a new 
chunk base address. Add the new chunk to the appropriate list for the 
job. 

7. Create a descriptor for the new memory segment. Use the base address 
of the selected chunk as the base address field in the descriptor, and use 
the requested segment size as the limit field of the descriptor. Set the 
descriptor type bits to be writeable data. 

8. Allocate a slot in the GDT for the new descriptor. Ifthis cannot be done, 
return E_SLOT to the caller, and restore the job's chunk list to its origi
nal condition. 

9. Store the descriptor in that slot. Create a selector for the descriptor and 
return its value as the token for the new segment object. 

Two observations about this algorithm are worth noting. First, it is 
bounded, but nondeterministic. That is, creating segments can lead to 
variable response times from the system, depending on the current dy
namics of the job tree and memory pools. Second, the algorithm does not 
guarantee to eliminate fragmentation. It is possible for there to be enough 
free bytes in a job's memory pool to meet the needs of a rqcreatesegment() 
request, but no contiguous chunk that is large enough, which leads to bor
rowing if possible, or leads to a possible failure to create the segment. The 
current FSM will not move segments around within a memory pool to elim
inate fragmentation, but a future version of the iRMX III FSM might use 
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paging to map noncontiguous pages within a memory pool into an appar
ently contiguous segment. 

Both indeterminacy and fragmentation can be minimized by creating as 
many of the necessary memory segments as possible when the job first 
starts running, rather than incrementally throughout the job's existence. 
Furthermore, creating these segments in decreasing order of size can re
duce fragmentation and the possible need for borrowing. Because all ob
jects occupy memory segments, the strategy applies equally well to mem
ory segments themselves as well as all other types of objects that the job 
will need. Figure 1.2 implicitly recognized this strategy when it showed the 
code structure for a typical real-time task: the task first performs initiali
zation (creates the objects it will need), then begins its real-time mission by 
entering an endless event loop. 

Object directories. Job objects contain another data structure called an 
object directory used to facilitate sharing objects among jobs. Various parts 
of the operating system use object directories extensively for their own 
purposes, such as EIOS logical names, but the mechanism is equally avail
able for use by application programs. You can look at the object directory 
for a job with the SDB vd command. 

An object directory consists of a list of tokens and corresponding names 
for them. The number of entries that can be made in ajob's object directory 
is a fixed number determined at the time the job is created, and can be as 
small as zero and as large as several thousand. A typical object directory 
has room for 50 entries. 

To help explain the notion of an object directory, as well as some of the 
derived concepts that follow, the three system calls related to object direc
tories are introduced. In the context of the discussion of object-based de
sign, these system calls are part of the iRMX job type manager. An object 
directory is actually implemented as a hash table occupying one ofthe data 
structures of a job object, but the system calls you are about to see make the 
actual implementation irrelevant to the application program. 

First, two notes on iRMX system calls. A system call is a procedure re
siding in system memory executed by a task that belongs to some job. The 
task that makes a system call is normally assumed to belong to a job asso
ciated with an application, although tasks belonging to first-level jobs and 
other operating system jobs make system calls as well. 

Second, C function prototypes are used to introduce iRMX system calls. 
ANSI C allows, but does not require, variable names in the parameter list 
of a function prototype. Such variable names are used to facilitate talking 
about the different parameters, even though they are normally omitted in 
actual practice. PLM programmers can refer to the on-line help accompa
nying iRMX for Windows or to the iRMX System Call Reference manual 
(volume 9 of the iRMX for Windows documentation set) for the equivalent 
information expressed using that language's syntax. 
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job, 
object, 
namePtr, 
exceptPtr ) ; 

This system call causes the token stored in variable object to be cata
loged in the object directory for the job whose token is stored in the vari
able job, using the name stored in the character array name. If the system 
call succeeds, the word pointed to by exceptPtr will be set to a value of 
zero (often referred to symbolically as E _OK). If the call fails, either the 
word at exceptPtr will be set to an exception code or the exception 
handler for the task that made the system call will receive control, depend
ing on how the task handles exceptions. (Exception handling is discussed 
in more detail in the following section). 

For the system call to succeed, job must be a token for a valid job object, 
enough memory must exist in that job's object directory to hold the new 
entry, the obj ect token must be for an existing iRMX object (of any type), 
the length of the iRMX string at name must be between 1 and 12 bytes, and 
the string must not match any of the entries already cataloged in the job's 
object directory13. 

At this point, a number of facts about object directories should be stated 
explicitly, and are outlined here. First, a program can catalog tokens in any 
job's object directory, not just its own, provided only that it can obtain a 
token for the job. For example, the system call rqgettasktokens() can be 
used to get the token for such key jobs as the root job. 

Second, the same token can be cataloged multiple times either within a 
single job or across multiple jobs. The only requirement is that every entry 
in a particular job's object directory have a unique name within that direc
tory. The same name can be used in different job directories for the same or 
different tokens. 

Third, not all objects are cataloged in object directories, only those that 
need to use the directory mechanism for sharing. For example, if two tasks 
can access a shared variable, that variable can be used for sharing the value 
of a token, and no object directory needs to be used to do the sharing. Gen
erally, object directories are used for sharing tokens between tasks that be
long to jobs loaded into memory separately and that do not share global 
variables. 

Finally, whenever tokens are shared, whether through object directories 
or by global variables, a token can become invalid. For example, if a token 
for an object belonging to Job 1 is cataloged in Job 2' s object directory, and 

13 An iRMX string consists of one byte containing the length of the string as an unsigned 
value between 0 and 255, followed by a sequence of values occupying the specified number of 
bytes. The byte values are often ASCII codes, but ASCII is not a requirement. Any 8-bit 
values can be used. 
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Job 1 terminates, all the objects belonging to Job 1 are deleted. The token 
in Job 2's object directory, however, is not automatically deleted. iRMX 
will not let an invalid token be placed into a job's object directory, but it 
does not guarantee that all cataloged tokens are still valid at some later 
time. 

TOKEN 
rqlookupobject ( TOKEN 

char far * 
WORD 
WORD far * 

job, 
name, 
timeLimit, 
exceptPtr ) ; 

Given a token for job and a match between name and one of the names 
in the object directory for job, this function returns a copy of the token ca
taloged under that name. timeLimi t specifies the amount of time the 
calling task is willing to wait if the name is not in the job's object directory 
when the system call is made. If a value of zero is specified and the name is 
not found, the call completes immediately with an exception code of 
OxOOOl (E _TIME), either returning to the caller with the word pointed to 
by exceptPtr set to OxOOOl or to the caller's exception handing routine, 
depending on the setup. If timeLimi t is set to OxOFFFF, the calling task 
will block until the name appears in the job's directory (placed there by an
other task) or the program is terminated. (Task scheduling states are dis
cussed in the next section.) 

If timeLimi t is between 0 and OxOFFFE and name does not match an 
entry in the object directory, the calling task will block until either the 
entry appears in the object directory or the time limit expires. The time 
limit is specified in O.Ol-second intervals for almost all iRMX systems. 
That is, the task may block for 0 to 655.34 seconds waiting for another task 
to catalog an object that uses the matching name. 

Because a time limit is associated with this call, the call can be used to 
synchronize concurrently executing tasks. The synchronization provided 
by this call is normally used only when an application is initializing and 
cataloging objects that are to remain in place for the duration of the appli
cation. More dynamic synchronization is usually accomplished using other 
system calls that involve less overhead. 

void 
rquncatalogobject ( TOKEN 

char far * 
WORD far * 

job, 
name, 
exceptPtr); 

This function is used for housekeeping. As its name implies, it removes 
an entry from a job's object directory. It is good programming practice to 
uncatalog tokens for objects about to be deleted to avoid the invalid token 
problem mentioned previously. Also, uncataloging objects ensures that a 
job's object directory does not fill up over a period of time. 
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A common use for this call is when an application catalogs an object in 
another job's directory, terminates unexpectedly (Le., without uncatalog
ing the object), and is restarted. It must uncatalog the entry from the first 
time the program executed before it can catalog a new token using the same 
name the second time it runs. 

The following are a few summary points about object directories, which 
are necessary before discussing tasks. 

Object directories are an optional property of jobs. It would be absolutely 
possible to build a complete iRMX system with all object directories for all 
jobs empty and of length o. Methods other than object directories can be 
used for sharing objects among tasks or jobs. 

The iRMX job tree and object directories are not related at all to the tree-struc
tured file system or the directory nodes in a file system.14 Think about it. For 
example, you could not have a file tree without directory nodes, but you can 
have a job tree without object directories. Files and directories reside on 
disks. Jobs and object directories occupy primary memory (RAM). The job 
tree is based on a parent-owns-child relationship. File directories do not 
own the files listed in them - users (people) own files and file directories. 
No analogies exist between jobs and files. The fact that there are both job 
trees and file system trees says something about the ubiquitous nature of 
tree structures in computer science, but does not imply any relationship 
between jobs and files. 

There is an SOB command to view the object directory for a job. View direc
tory, or vd, (available from the SoftScope prompt or by typing <alt
Break> under iRMX for Windows16) takes a token for the job as its argu
ment. As various layers of iRMX that use the object directory facility are 
discussed, it can be very instructive for you to poke around in the system 
you are using to see the actual entries that have been cataloged in various 
job's object directories. 

6.6.2 Task management 

The essence of task management is scheduling. Task creation and deletion 
are part oftask management too, but the heart of the matter is scheduling. 

In a single-CPU environment, such as the computers on which iRMX 
runs, exactly one task can be executing at any particular moment. Task 
scheduling ultimately boils down to a matter of selecting which single task 
is to execute at any time. In iRMX, tasks can use a rich set of functions for 
synchronization and communication among themselves. All of these func-

14Certain objects that the BIOS or EIOS use in managing a file system do show up in object 
directories (logical names), but the basic statement that the two have nothing to do with each 
other is correct. 

llType <g> to exit the SDB if you enter it using <alt-Break>. 
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tions should be thought of as extensions to the task scheduler procedure in 
the Nucleus. When any system call that involves communication or 
synchronization changes the state of a task, it does not return directly to 
the code from which it was called (the application program). Instead, it 
exists to the task scheduler, which determines whether that task or some 
other task is to execute next. 

Two concepts are central to task scheduling. First, every task has a pri
ority number between 0 and 255 assigned to it, with 0 being the highest. 
The basic scheduling rule used by the iRMX task scheduler is called pre
emptive, priority-based scheduling. This rule says that of all the tasks ready 
to execute at any moment, the one task with the highest priority will be se
lected to execute, and it will continue to execute until it either blocks (waits 
for an event of some sort) or is preempted by another task of higher priority 
that becomes ready. If two tasks of equal priority are ready at the same 
time, the first one that became ready is selected for execution. 

This first-come-first-served algorithm can be augmented by a round
robin policy in which ready tasks with equal priority are given time quanta 
of CPU time, and the running task is put at the end of its priority queue 
when its quantum expires. Round-robin scheduling is optional and most 
commonly used when an iRMX system is being used as a time-sharing sys
tem for development work rather than for real-time applications. The de
fault configuration of iRMX enables round-robin scheduling for tasks with 
priorities between 140 and 255, with a time quantum of 50 milliseconds. 
Note that if two ready tasks have different priorities, even if both priorities 
are in the round-robin range, the higher-priority task is always the one that 
runs. Round-robin applies only to tasks of equal priority. (Round-robin 
scheduling is ignored in the description of scheduling that follows, but that 
does not affect the essence of the discussion.) 

Note that all tasks are treated uniformly by the task scheduler, without 
regard to the jobs to which the tasks belong. The only interaction between 
jobs and task scheduling is that every job has a maximum task priority as
sociated with it (one is shown, for example, in the upper right corner of Fig
ure 6.6). Thus, no task belonging to a job can be created with a priority 
higher (numerically lower) than this value. Tasks can change their own or 
other tasks' priorities during execution (using rqsetpriority( ), but each 
job's priority limit always applies to all the tasks that it owns.16 

The second concept central to task scheduling is the notion ofthe sched
uling state. At any moment, every task in the system is in one of several 
states. Figure 6.7 is the standard diagram for iRMX task scheduling states. 
Exactly one task is always in the running state, and any number of tasks 

16Ifyou still are not clear about the difference between time-sharing and real-time systems, 
consider this: If you are using an iRMX system for timesharing and you do not like the impact 
of the other users on your work, just run a program that calls rqsetpriority( ) to change all the 
other users' task priorities to 255! 
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Ready 

Running 

Asleep / 
Suspended 

Figure 6.7 State diagram showing possible state transitions for iRMX tasks. 

are in each of the other states. The ready state holds all tasks not blocked 
but with priorities less than or equal to the task in the running state. The 
asleep state is used for most cases of blocked tasks, with suspended and 
asleep-suspended used for a special form of blocking described in the fol
lowing sections. 

Once a task enters the running state, it stays there and continues to have 
total control of the CPU until one of the following things happens. 

The task calls rqs/eep(). This system call causes the task to block (enter 
the asleep state) for a specified time interval. At the end of the interval, the 
task wakes up, enters the ready state, and runs again if its priority is higher 
than the running task's. 

The task calls rqsuspendtask() and specifies itself as the task to be sus
pended. The task then moves to the suspended state and stays there until 
another task in the running state calls rqresumetask( ), and then this task 
enters the ready state and runs again when it has the highest priority. 

The task calls rqresumetask() and the task being resumed has a higher priority 
than the running task. The resumed task enters the ready state, is seen to 
have a higher priority than the running task, and preempts it. The running 
task enters the ready state, and the resumed task becomes the running task. 

The task makes one of the system calls listed in Table 6.1, which blocks be
cause the specified request cannot be satisfied.. If the task blocks, the call
ing task will remain blocked until either the blocking event occurs or a time 
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TABlE 6.1 Nucleus System Calls That Might cause a Task to Block 

System call Event that will end the block 

rqforcedelete Another task calls rqenabledeletion() for the object to be deleted. 
No time limit. 

rqlookupobject A task calls rqcatalogobject() for a token with a matching name. 

rqreceivecontrol A task calls rqsendcontrol() for the region. No time limit. 

rqreceivedata A task calls rqsenddata() for the data mailbox. 

rqreceivemessage A task calls rqsendmessage() for the object mailbox. 

rqreceiveunits A task calls rqsendunits() for the semaphore. 

rqsleep None. Time limit only. 

rqsuspendtask Another task calls rqresumetask() for this task. No time limit. 

rqetimedinterrupt An interrupt of the proper level occurs. 

rqwaitinterrupt An interrupt of the proper level occurs. No time limit. 

rqreceive A task on another processor of a Multibus II system sends a 
message to the specified port. 

rqreceivereply A task on another processor of a Multibus II system replies to an 
RSVP message. 

rqreceivesignal A task on another processor of a Multibus II system sends a signal. 

limit completes, except as noted in the table. The table also lists the event 
that can release the block. Most of these system calls include a time-limit 
parameter, as we saw earlier for rqlookupobject(). The task enters the 
asleep state and remains there until (1) the request can be satisfied, (2) the 
specified time limit expires, or (3) another task suspends the asleep task, 
putting it into the asleep-suspended state,17 Whichever event-(1) or (2) 
- occurs next, the task then enters the ready state and preempts the run
ning task if it has a higher priority. The task must examine the condition 
code returned for the system call to determine whether the call completed 
because the event occurred (E_ OK) or because the time limit expired (E_ 
TIME). A task can enter the asleep state only by making a system call it
self. Unlike the suspended state, one task cannot put another task into the 
asleep state. 

The task makes one of the system calls listed in Table 6.2, which satisfies a re
quest that had caused another task to block. The blocked task moves to the 
ready state and preempts the running task if the blocked task has higher 
priority. 

17 A task that enters the asleep-suspended state returns to the asleep state if it is resumed 
before its time limit expires, or enters the suspended state ifits time limit expires before being 
resumed. 
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TABLE 6.2 Nucleus System Calls That Can Cause Another Task to Enter the Ready State 

System Call Task that might preempt the running task 

rqcatalogobject A task that has called rqlookupobject(). 

rqcreatejob The initial task of the created job. 

rqecreatejob The initial task of the created job. 

rqcreatetask The newly-created task. 

rqenable The interrupt task for the enabled interrupt level. 

rqenabledeletion A task that has called rqforcedelete() for the object. 

rqendinittask The initial task in the next first-level job to be created. 

rqresumetask The resumed task. 

rqsendcontrol A task that has called rqreceivecontrolO for the region. 

rqsenddata A task that has called rqreceivedata() for the data mailbox. 

rqsendmessage A task that has called rqreceivemessage() for the object mailbox. 

rqsendunits A task that has called rqreceiveunits() for the semaphore. 

The task calls rqsetpriority(). With this command, the task might either 
raise the priority of another task or lower its own priority so that it no 
longer has a higher priority than all the tasks in the ready state. 

For each case listed so far, the running task makes a system call that 
causes itself to exit the running state. Each of these system calls is part of 
the Nucleus layer of iRMX, and each of them finishes its work by calling 
the iRMX task scheduler, which is the procedure in the Nucleus that se
lects the next task to run. 

Some scheduling state transitions occur without the running task mak
ing a system call. These cases are initiated by hardware interrupts. When a 
hardware interrupt request occurs, the CPU's interrupt logic, described in 
chapter 5, saves the state of the currently running program (which for 
iRMX is the task in the running state) and activates a procedure called an 
interrupt handler. It can be said that the interrupt handler is then running 
in the context of the currently scheduled iRMX task. All iRMX tasks must 
have a stack large enough to accommodate the CPU state saved during in
terrupt processing. The stack is restored to its original condition when the 
interrupt handler terminates. The following items illustrate the general 
scheduling issues related to interrupt processing. 

There is a clock circuit that causes a hardware interrupt, typically 100 times per 
second for iRMX systems. The clock interrupt handler uses a counter vari
able to keep track of current time of day. When the clock interrupt handler 
increments the time-of-day counter to the time limit of a task in the asleep 
state, the task scheduler is activated, which moves the asleep task to the 
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ready state, and causes that task to preempt the running task if its priority 
is higher. Versions of the Nucleus that support iRMK operations (iRMX 
III and iRMX for Windows) can be based on a finer-granularity clock (typ
ically, 1 millisecond), but the behavior of the system for applications that 
do not make iRMK calls is the same as described here. 

When a hardware I/O device controller causes an interrupt, an interrupt handler 
is provided as part of the software device driver for that device con
troller. Neither the iRMX task scheduler nor the task running when the 
interrupt occurs can know when an interrupt handler is activated. I/O in
terrupt handlers, however, are allowed to make a special Nucleus system 
call named rqsignalinterrupt(), which tells the task scheduler to move a 
task associated with the interrupt into the ready state. This interrupt task 
thus preempts the running task ifthe interrupt task has a higher priority. 

6.7 Exception Handling 

The last (or only) parameter of every iRMX system call is a pointer to a 
word set to the condition code, sometimes called the exception code, for the 
call. If the call completes normally, this word is set to a value of zero 
(OxOOOO). If an abnormal condition occurs during execution ofthe call, the 
iRMX exception handling mechanism is called. A mnemonic is associated 
with each condition code value, such as E _OK for OxOOOO. Header files are 
available so that programs can refer to these values by name rather than by 
number.1s This section gives an overview ofthe exception-handling mech
anism, and the next section describes how it is implemented in more detail. 

6.7.1 Types of exceptions 

Before discussing the types of exceptions, let's distinguish among environ
mental exceptions, programmer exceptions, and faults. 

Environmental exceptions. These are abnormal conditions that arise dur
ing the execution of a system call but which do not necessarily represent 
programming errors. Examples include attempting to write to a printer 
that is out of paper or having the time limit of a call to rqlookupobject( ) ex
pire without the requested object being cataloged. The first example is 
clearly not an error, and the second example might or might not be an error 
condition, depending on the nature of the application program. 

Programmer exceptions. These are also conditions that occur during the 
execution of system calls, but which simply should not happen. They are 
caused by bugs in the program that makes the call. An example would be 

18 For example, :includeirmx_err.h on iRMX for Windows system. 
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passing something other than a token for a valid iRMXjob as the first pa
rameter of a call to rqcatalogobject(). 

Faults. Faults are conditions detected by the microprocessor hardware 
operating in protected mode, as described in chapter 5. The most common 
fault that programmers encounter is probably the general protection fault 
(GP fault), which has a fault code of 13. 

The other common type of fault is the stack fault, code number 12, which 
occurs when the current stack segment overflows (for instance, because of 
an infinite loop that includes a function call that keeps creating new stack 
frames) or when a re-entrant function (such as any C function not declared 
to be static) makes an out-of-bounds reference to a local array variable, and 
thus located in the stack segment rather than a data segment. 

If an application program faults while executing its own code, it is be
cause the programmer has coded an illegal memory reference (array out of 
bounds, attempt to execute data, etc.). If an application program faults 
while executing a system call, the fault should be handled by the operating 
system itself. (Otherwise, it would represent a bug in the operating sys
tem.) Faults in a user's code and exceptions, which occur only during exe
cution of a system call, are handled a little differently from each other, as 
you will see in the next section. 

Returning to exception handling, every system call has associated with it 
a set of condition code values that it can generate to indicate exceptions. 
These values are documented with each call, and that documentation 
should be consulted when designing and debugging applications that en
counter exceptions.1s The same exception-code value can provide you with 
subtly different information, depending on what system call caused it to 
occur. 

The decision about what to do if an exception or fault does occur depends 
on the stage of development of the application and the nature ofthe partic
ular exception. Some conditions should cause the application to terminate 
or break to a debugging program, while others might alter the logic flow in 
the program. Programmers accustomed to developing software in a non
protected environment such as DOS might consider faults and exceptions 
to be a nuisance at first, but they are actually extremely significant time 
savers during development. Without faults and exceptions, debugging can 
involve working from the side effects of an error that occurred thousands of 
instructions earlier than the point at which the problem became apparent. 
A fault or exception, on the other hand, generally occUrs at the moment the 
error occurs, making localization of the problem much easier. 

l"iRMX for Windows users will find the exception codes associated with each system call 
listed in the help system provided with that version of iRMX. 
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6.7.2 Handling exceptions and faults 

You can handle exceptions in two ways. One is to have the application task 
examine the condition -code value after the system call completes, which is 
called in-line exception handling. The other is to establish an exception
handling procedure that automatically receives control when a system call 
completes with a nonzero condition code value. 

Figure 6.8 is a C program that demonstrates in-line exception handling. 
The two values explicitly tested for Status in this program are OxOOOO, 
which is also known as E_OK (no error), and Ox0002, also known as 
E _ MEM, which means there is not enough memory to satisfy the request. 
Other condition codes that might be returned include Ox0004 (E_LIMIT) 
if the job has already created all of the objects it is allowed to, and OxOOOC 
(E_SLOT) if there are no more slots available in the GDT to hold the de
scriptor for the segment. 

Figure 6.8 Sample code illustrating in-line exception handling. 

/***> inline.c <************************************************* 

Demonstrate in-line exception handling 

*****************************************************************' 

#include <stdio.h> 
#include <stdlib.h> 
#include <rmxc.h> 

/* Execution starts here 
*/ 

int 
main (int argc, char *argv[]) 

DWORD 
WORD 

Size; 100; 
Status; 

TOKEN Segment; 
EXCEPTIONSTRUCT eh; 

/* Default segment size */ 

/* Set up for in-line exception handling 
*/ 
rqgetexceptionhandler 
eh.exceptionmode ; 0; 
rqsetexceptionhandler 

(&eh, &Status); 
/* Never call the exception handler 

(&eh, &Status); 

/* Get the size of a segment to create from the command line 
*/ 
if (argc ;; 2) Size; atol (argv[l]); 

*/ 

/* Create a memory segment object and test to see if the system call 
* was successful or not. 
*/ 
Segment; rqcreatesegment (Size, &Status); 
switch (Status) { 

case OxOOOO: printf ("Created a %d-byte segment successfully.\n', 
Size) ; 

exit (0); 
case Ox0002: printf ("Not Enough Memory for a segment of size %ld.\n", 

Size) ; 
exit (1); 

default: printf ("Unable to create segment of size %ld.\n" 
"Exception code is %4X\n", Size, Status); 

exit (1); 



Fundamental iRMX Objects and Structures 215 

This program explicitly checks for the two most common values for the 
condition code after calling rqcreatesegment() (normal completion and not 
enough memory), and lets all the other possible values that the call might 
return be handled as the default case in the switch statement. 

Every iRMX task has an exception handler, and there are several ways 
to select which procedure is to be the exception handler for a particular 
task. The most accessible way to associate an exception handler with a task 
is for the task to use the rqsetexceptionhandler( ) system call. This same call 
is also used to select between in-line exception handling and use of an ex
ception handler. The C function prototype is the following: 

void 
rqsetexceptionhandler ( ehstruct * 

WORD far * 
eh, 
exceptPtr); 

ehstruct is a structure consisting of a far pointer to the routine to serve 
as the handler procedure and a mode byte that tells under what conditions 
the handler procedure should be called. Values for the mode byte follow: 

o Never. The application must handle all exceptions in-line. 
1 Programmer Errors. The exception handler is called if a programmer 

error occurs, but other exceptions are handled in-line. 
2 Environmental Conditions. The exception handler is called if an envi

ronmental condition occurs, but programmer errors are handled in
line. 

3 Always. All system calls that result in a nonzero condition code setting 
cause the exception handler to be called. 

Every job has an exception handler and mode associated with it; a 
pointer to an ehstruct is one of the parameters of the rqcreatejob() or 
rqecreatejob() system call (see chapter 7 for a summary of many system 
calls that have not been introduced yet). Each task created for the job auto
matically inherits that job's default exception handler and mode, and each 
task can then change its handler and mode by calling rqsetexception
handler(). 

Sometimes, a task needs to switch between in-line exception processing 
and the use of its default exception-handler procedure. To do this, the task 
calls rqgetexceptionhandler(), which fills in an ehstruct structure with 
the current exception handler pointer and mode byte. The task can then 
change the value of the mode byte in this structure and call rqsetexception
handler( ) to achieve the desired effect. For example, Figure 6.9 is a PLM 
program that does in-line exception handling for a call to rqcreateseg
ment() and uses the job's default exception handler to handle any excep
tions that occur when it calls rqexitiojob(). Examining this code, you might 
wonder why some system calls are followed by tests of the variable Sta tus 
and others are not. Let's consider each call in sequence. 



216 iRMX Concepts and Features 

Figure 6.9 PLM program illustrating both in-line exception handling and use of the default 
exception handler for the job. 

1***> handle.plm <*************************************************** 

* 

* 

PLM Program demonstrating switch between in-line and default 
exception handling 

*********************************************************************/ 

handle: DO; 
$include (handle.ext) 

DECLARE 
E$OK LITERALLY '0' , 
NEVER LITERALLY '0' , 
PROGRAMMER LITERALLY '1' , 
ENVIRONMENT LITERALLY '2' , 
ALWAYS LITERALLY '3' , 
CR LITERALLY 'ODh' , 
LF LITERALLY 'OAh' , 
ehstruct STRUCTURE 

handler POINTER, 
mode BYTE) , 

Segment TOKEN, 
Status WORD; 

/* Get the default exception handler and mode for the job, and 
change the mode to 0 -- handle exceptions in-line. 

*/ 

CALL rqgetexceptionhandler (@ehstruct, @Status); 
ehstruct.mode = NEVER; 
CALL rqsetexceptionhandler (@ehstruct, @Status); 

/* Create a segment and check for exceptions. 
*/ 

Segment = rqcreatesegment (5280000, @Status); 
IF Status <> 0 THEN 

DO; 
CALL rqcsendcoresponse (NIL, 0, @(15, 'Create Failed', cr, lf), 
@Status) ; 
IF Status <> 0 THEN 

END; 

CALL rqcsendcoresponse (NIL, 0, @(23, 'SendCOResponse Failed', 
cr, lf), @Status); 

/* Let default exception handler manage anything that goes wrong now 
*/ 

ehstruct.mode = ALWAYS; 
CALL rqsetexceptionhandler (@ehstruct, @Status); 
IF Status <> 0 THEN 

CALL rqcsendcoresponse (NIL, 0, @(20, 'Set Handler Failed'. cr. 
If). @Status); 

CALL rqexitiojob (0. NIL. @Status); 

END handle; 
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When the program starts running, the default exception handler will de
lete the job if any exception occurs (described in the following section), and 
the mode is initially set to 3 (also described). The first system call is to 
rqgetexceptionhandler( ), and Sta tus is not checked after the call. Status 
is not checked because if the call fails, the default handler will abort the job, 
so any code following the call will either find Sta tus to be 0 or will never be 
reached. The second call is to rqsetexceptionhandler{}. Again, the condi
tion code is not checked. If the call fails, it means the mode did not change, 
the default handler will be invoked to handle the condition, and the job will 
be aborted. If the call succeeds, there is no need to check the condition 
code - it is o. 

The call to rqcreatesegment() is followed by an in-line check of Status, 
and the code handles any error condition by displaying a message. Since 
the call to rqcsendcoresponse() might fail, Status is again checked after 
that call. Chances are, trying another rqcsendcoresponse() to display a 
message about the failure of call to the same routine will also fail, but the 
code is included anyway, and the potentially infinite regress is arbitrarily 
terminated at that point. (This piece of code has not been fully tested; it is 
hard to get rqcsendcoresponse() to fail!) 

Before exiting the job, the default exception-handling mode is changed 
back to 3, and rqexitiojob() is called. The condition code is checked after 
rqsetexceptionhandler(), as failure means that in-line checking is still in 
effect, but the code is not checked after rqexitiojob(), because mode 3 is in 
effect for that call and will cause the job to abort if the call fails. 

Figure 6.10 illustrates the use of a user-written procedure as a task's ex
ception handler. The procedure takes four parameters: the condition code 
for the system call that caused an exception, the number of the parameter 
that was in error (numbered left to right in the system call's argument list, 
starting with 1), an unused parameter, and a word containing the numeric 
coprocessor's status word if the condition code is E_NDP _ERROR 
(Ox8007). There is no standard header file that contains a function proto
type for exception handler procedures. The iRMX Nucleus Programming 
Concepts manual (volume 3 of the iRMX for Windows documentation set) 
gives the information needed to code this procedure. 

The sample handler simply displays the values of the first two parame
ters passed to it and returns to the program that caused the exception to 
occur. The function main() installs the exception handler and then tests it 
by calling rqlookupobject( ) with a value for the first parameter of the call 
taken from a command-line argument. Three interesting cases can be 
tested with this program, as described as follows. 

The command line argument is 0 or omitted. The rqlookupobject() system 
call interprets a job token with the value of 0 as a reference to the calling 
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Figure 6.10 Sample user-written exception handler, installed and tested by main{}. 

/***> handler.c <****************************************************** 
* 
* 
* 

user-written exception handler example 

***********.**********************************************************/ 
iinclude <stdio.h> 
iinclude <stdlib.h> 
iinclude <rmxc.h> 

/* The Exception Handler Procedure 
* 
*/ 

void far 
myHandler (WORD code, WORD param, WORD reserved, WORD npxStatus) { 

printf ("ExCeption Ox%04X occurred in parameter %d.\n", code, param); 
return; 
} 

/* 

* 
*/ 

int 

Code to test the handler starts here 

main (int argc. char *argv[)) 

EXCEPTIONSTRUCT 
TOKEN 

eStruct; 
dUIlUllY; 
Status; WORD 

/* Establish handler() as this task's exception handler 
*/ 

eStruct.offset = (NATIVE_WORD) (void near *) myHandler; 
eStruct.base = (selector) myHandler; 
eStruct.exceptionmode = 3; 
rqsetexceptionhandler (&eStruct, &Status); 

/* Force an exception to test the handler 
*/ 

if (argc == 2) dUIIUIIY = (TOKEN) atoi (argv[l]); 
else dUIIUIIY = (TOKEN) NULL; 
rqlookupobject (dUIlUllY, "\x006INARDY", (WORD) 0, &Status); 
printf ("exit from main\n"); 
exit (0); 

task's job. (No real iRMX object has a token value of 0; GDT slot 0 holds 
the descriptor for the GDT segment itself.) Because the program does not 
have anything cataloged in its job's object directory using the name "IN
ARDY" the system call fails with an E _TIME exception because the object 
cannot be found within the time limit specified. The messages issued by the 
program are the following: 

Exception OxOOOI occurred in parameter 3. 
exit from main 
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The numeric code for the E_TIME exception is Ox0001, and the system 
call reports that the error occurred because of the value ofthe third param
eter (the time limit). The second message demonstrates that the exception 
handler returns to main() successfully. 

The command line argument is 1. No iRMX object has the token value 
of 1, so the call to rqlookupobject() fails with an exception code of 
E_EXIST (token does not exist), which has a numeric code of Ox0006. 
Since the job parameter is the first argument to the system call, the pro
gram issues the following messages: 

Exception Ox0006 occurred in parameter 1. 
exi t from main 

The command argument is 600. Telling you this is cheating, but 600 
(Ox258) has always been the numeric value of the token for the root job of 
iRMX systems, and will probably continue to be so for some time.2O If your 
system is running with iRMX networking installed (discussed in chapter 
11), there will indeed be a token cataloged in the root job's object directory 
using the name INARDY, and the exception handler will not be called if you 
run the program with 600 on the command line. Only the exi t from main 
message will be displayed. 

Fault handling also involves passing control to an exception handler 
routine when the fault is detected by the hardware. iRMX for Windows 
systems allow two choices for the fault handler. In the rmx. ini configura
tion file, there is a parameter called DEH (Default Exception Handler) in 
the [Nucleus] section. If this parameter is set to OOOH (the file uses PLM 
syntax for hexadecimal values), faults cause a break to the System Debug 
Monitor (SDB), which the programmer can use to debug the problem. If 
DEH is 0 FFH, faults cause the job that owns the faulted task to be deleted. 

You cannot cause a program's own exception handler to be invoked 
when a fault occurs in iRMX for Windows systems, but iRMX systems 
that support the Interactive Configuration Utility (ICU) can do so. (The 
ICU is introduced in chapter 9.) When a user's exception handler is config
ured to receive control on faults, the exception code will be Ox800C for 
stack faults and Ox800D for general protection faults. That is, the code is 
Ox8000, plus the interrupt level of the fault. As faults are not associated 
with system calls, the parameter-number argument passed to the handler 
is zero for faults. 

20It will probably change as soon as someone in the iRMX development group at Intel reads 
this! The proper way to determine the token for the root job is to use the gettasktokensO sys
tem call. 
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6.7.3 The default exception handler for a job 

Every job created has an exception handler and mode assigned to it, either 
by default (a default system exception handler and mode is configured into 
every iRMX system) or by setting a parameter in the system call that cre
ated the job. (The system calls to create jobs are covered in chapter 7.) Any 
task can change its own exception handler and mode using the rqsetexcep
tionhandler() system call; doing so does not affect exception handling for 
other tasks belonging to the same job. This section considers the options 
available for establishing the default exception handler for a job, which is 
the handler in effect for each task belonging to the job until the task 
changes the exception handler. 

The examples in Figures 6.8 and 6.9 demonstrate the difference between 
C and PLM programs with regard to which default exception handler is in 
place when execution begins. The difference is only superficial: all pro
grams that run as HI commands start with a default exception handler that 
deletes the job in the event of any exception and a mode of 3 (signifying 
that the handler is always invoked). C programs, however, do not start ex
ecuting at main(), they start executing in a start-off routine that performs 
initialization and then calls main(). This initialization code sets the ex
ception handling mode to ° before calling main(), so C programs do in-line 
exception handling by default.21 Programs run under SoftScope III also 
have their exception handling mode set to 0, whether they are coded in 
PLM or C. Earlier versions of Soft Scope leave the default mode at 3. 

As mentioned earlier, a pointer to an ehstruct is one ofthe parameters 
of the rqcreatejob() system call. If this parameter is coded as a null pointer, 
the job inherits the default exception handler procedure and mode for the 
system. For systems that support the ICU, the system default is chosen at 
the time the system is configured, with the choices being: 

• A handler that deletes the task that encounters an exception. 

• A handler that suspends the task. 

• A handler that deletes the job that owns the task. 

• The system debugger. 

• A procedure supplied by the system administrator when the system is 
configured. 

In addition to the default handler procedure, the default mode can be 
configured to any of the four values (always, never, environment, program
mer) using the ICU as well. 

21This behavior changed with iRMX for Windows 2.0c. With this release, the initialization 
code does not change the exception handling mode. The code in Figure 6.10 is coded to work 
regardless of the version of the operating system. 
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Programs run as HI commands have their job's default handler set to the 
system default procedure and mode, so the preceding statement about the 
default handler for HI commands is true only if the system default is set to 
delete the task's owning job and the default mode is Always. 

6.8 The iRMX System Call Mechanism 

Chapter 5 introduced the machine-language conventions used for making 
function calls with the x86 architecture and described the call gate and 
software mechanisms that can be used for accessing as functions with 
protected-mode and real-mode operating systems. In addition, chapters 3 
and 4 introduced interface procedures, to which an application must be 
linked to make system calls. This section describes the internal logic of in
terface procedures in more detail. 

When an application includes iRMX system calls, its object module 
must be linked with a library that contains an interface procedure for each 
system call referenced by the application. The interface procedure library 
contains small assembly-language functions that act as the intermediary 
between the application's code and the actual system call procedures resi
dent in system memory. Although these interface procedures have system 
call names like rqcsendcoresponse( ) or rqcreatesegment(), they do not per
form the actual work of a system call. They pass parameters from the ap
plication to the actual system call, branch to the proper place in system 
memory for the actual system call, and return result and condition code 
values from the actual system call to the application task. 

The code for making a system call from an application is just like the 
code for calling any other type of function: the parameters are pushed onto 
the calling task's stack (in left to right order for iRMX system calls), and a 
machine language call instruction is then used to push a return address 
onto the stack and branch to the prologue code in the interface procedure, 
which completes a normal x86 stack frame by pushing the bp register and 
saving the sp register in bp. Depending on whether the application was 
compiled using the compact or large model, the call instruction will have 
pushed either a near or far return address onto the stack (offset only or off
set plus selector). 

Because the actual system call will access the parameters by referring to 
fixed offsets from the top of the stack, there are two libraries of interface 
procedures. The interface procedures in the library for compact-model 
programming include an extra push instruction (of a dummy value) before 
sp is copied into bp to put the parameters at the same relative positions in 
the stack as for large model programs. The interface procedures in the large 
model library are the same as the compact model except for this extra push 
instruction and a corresponding difference at the end of the interface pro
cedure, where the compact model must delete the extra word on the stack 
before returning to the application. The overhead for these extra two in-
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structions in the compact-model interface procedures, by the way, is insig
nificant compared to the overhead that large model programs incur as they 
load and restore the es and ds segment registers (and descriptors in pro
tected mode) when calling and returning from their interface procedures. 

With the incoming parameters at a fixed location on the stack, the inter
face procedure now calls the actual system subroutine to do the system 
call's work. In real mode, this is done by loading a value into a register to 
indicate which particular system call is being made and executing a ma
chine-language int instruction to enter the operating system. A different 
interrupt number exists for each layer ofthe OS, so the interface procedure 
executes the int for the appropriate layer, the interrupt vector contains a 
pointer to an entry routine for the layer in system memory, and the entry 
routine examines the register value to determine which system call sub
routine to jump to. 

For protected-mode versions of the OS, the interface procedure uses a 
far call instruction to enter the appropriate system subroutine directly. 
The offset part of this call instruction is ignored, because the selector part 
always goes to a slot in the GDT that contains a call gate. From chapter 5 
you might recall that call gates are special descriptors that contain com
plete pointers to subroutines, along with information used to change privi
lege levels and copy parameters from the application's stack to the stack 
for the new privilege level. The call gates for current versions of iRMX do 
not invoke privilege shifts for system calls. Both applications and the OS 
routines operate at privilege level 0 (most privileged level) at all times, so 
there is no parameter copying involved for iRMX. 

Note that the interface procedures do not need to know the actual ad
dress of the system subroutines they call. In real mode, only an interrupt 
number for the OS layer and a code value for the particular system call are 
needed. In protected mode, only a slot number in the GDT is needed. Thus, 
the operating system can be reconfigured, revised, or rewritten, and appli
cations bound to interface procedures do not need to be changed as long as 
this information remains constant. 

At this point, the system subroutine executes and returns certain values 
to the application. The iRMX convention is to return these values in regis
ters, but most system calls are written in a high-level language (usually 
PLM or C), so they typically call one of several assembly-language proce
dures called exit routines, passing the appropriate values on the stack. The 
exit routines put the values into the proper registers and return to the in
terface procedure. 

The interface procedure now stores the register that holds the condition 
code for the system call (the ex register) in the word pointed to by the last 
parameter of the application's system call and examines its value. If the 
value is OxOOOO, meaning the system call completed normally, the interface 
procedure now cleans up the stack frame and returns to the application in 
the usual way. 
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If, however, the condition-code value is not zero, the interface procedure 
calls the rqerror() procedure, which determines what the exception -han
dling mode is for the application task. If the mode is 0 (handle exceptions 
in-line), rqerror() returns to the interface procedure, which returns to the 
application, which must test the word pointed to by its last parameter to 
determine the result of the system call. If, however, the application task is 
not doing in-line handling of the type of exception that occurred, rqerror() 
calls the task's exception handler. A user-written exception handler could 
return to rqerror( ), which will return to the interface procedure, which will 
then return to the application, but none of the exception handlers supplied 
with the operating system return. 

The foregoing description is slightly simplified with respect to rqerror(). 
The interface procedures for Nucleus-layer system calls under protected
mode versions of iRMX (II, III, and iRMX for Windows) call nucerror() 
instead of rqerror(). The difference is that nucerror() checks the exception 
mode and (conditionally) calls the exception handler directly, but rqerror( ) 
uses the Nucleus-layer system call, rqsignaiexception(), to do the same 
function. 

The use of rqerror() or nucerror( ) procedures to test for and possibly in
voke a task's exception handler provides an alternative mechanism for ex
ception management for iRMX applications. The code for these proce
dures comes from the interface procedure libraries, so applications can 
provide procedures with the same names to substitute for those supplied by 
Intel. As long as a module containing the substitute procedures has been 
linked by the binder before the interface library, the interface procedure 
calls to these routines will be linked to the substitute versions, and the 
standard versions will not be used. If this technique is used, and if the sub
stitute version of rqerror() does not call rqsignalexception(), the setting of 
the individual tasks' exception handler and mode become irrelevant. Once 
the code for an application is linked to the substitute version of rqerror(), 
all tasks that execute that application's code, regardless of their calls to 
rqsetexceptionhandier() and their jobs' default exception handler, have 
their exceptions handled as coded in the substitute rqerror() procedure. 

The purpose of this section has been to clarify the steps involved in 
making any iRMX system call. Readers who plan to code their own system 
calls (and thus their own interface procedures as well) will have to do some 
assembly language programming. That code is covered in more detail in 
chapter 10, which covers techniques for adding system calls and type man
agers to the operating system. 

As a summary, Figure 6.11 is a pseudocode diagram for an application 
program that makes a system call. Execution begins in the application pro
gram, enters the interface procedure, transfers to the code in system mem
ory, returns to the interface procedure, where rqerror() is called if the 
condition code set by the system call is not zero. Rqerror() calls 
rqsignalexception( ), which invokes the task's exception handler unless ex-
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LOADABLE MODULE: 

Application Program: 

/* Start Here */ 
Push parameters onto stack 
Call interface procedure 
Test condition code 
/* Continue application program */ 

Interface Procedure: 

Adjust stack pointer for compact model 
Update stack frame pointer 
Call the system subroutine in system memory 
/* system subroutine returns here */ 
Test the condition code in register cx 

not zero: Call rqerror() /* might not return */ 
zero: continue 

Clean up stack, store condition code for application 
Return to the application program 

rqerror(): 

Call rqsignalexception() /* might not return */ 
Return to the interface procedure 

RESIDENT OPERATING SYSTEM (System Memory) 

System Subroutine: 

Get parameters from stack 
Perform the system call operation 
Load return value and condition code into registers 
Return to interface procedure 

Figure 6.11 Pseudocode for an application program that makes a system call. 

ceptions are being handled in line. If they are handled in line, rqsignalex
ception() returns to rqerror(), which returns to the interface procedure, 
which returns to the application. If no exception occurs, the interface pro
cedure returns directly to the application without calling rqerror(). 



Chapter 

7 
Basic iRMX System Calls 

7.1 Overview 

So many system calls are available for use with iRMX that it is often diffi
cult to know how to begin developing a real-time application for the sys
tem. This chapter presents the system calls associated with the key con
cepts of task, memory, and job management used in developing basic 
real-time applications for iRMX.l 

System calls for Human Interface (HI) command processing are briefly 
introduced, but they are not covered in detail because applications devel
oped in C generally do not use them. System calls used for device drivers 
and interrupt management are covered in chapter 9, and system calls for 
managing composite objects and for creating new system calls are pre
sented in chapter 10. 

For complete information on all the system calls for iRMX II and III, 
consult the iRMX System Call Reference manual, volume 9 ofthe iRMX for 
Windows documentation set, or the corresponding volume for other ver
sions of the operating system. The entire text of the iRMX for Windows 
version of this volume is available in hypertext format from the DOS 
rmxhelp command provided with iRMX for Windows. iRMX I users might 
prefer to consult the System Calls volume of the iRMX I documentation 
set, which omits material specific to iRMX II and III. 

Intel provides system call documentation using both PLM and C syntax. 
This book presents system calls using C-Ianguage function prototypes 
based on the: include: rmxc. h header file provided with the iC386 com-

IThis chapter omits the calls for deleting objects. For every type of iRMX object there is a 
system call to delete an object of that type that simply takes a token for the object to be deleted 
as its first parameter. The names of those calls always take the form ofrqdeletexxxO with xxx 
equal to the name of the object type. 
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piler, with descriptive names added for the parameter type specifications. 
The rationale for using C prototypes rather than PLM prototypes is that C 
prototypes are more complete; C pointer declarations include the type of 
variable to which they point, unlike PLM pointers. PLM programmers can 
easily derive their prototypes from the ones given here, or can consult 
either the iRMX for Windows on-line help or the system calls refer
ence manual for the PLM prototypes. The C function prototypes use type 
definitions for various data structures and data types defined in 
: include: rmxc. h or in one of the header files included from there. Most 
of these typedefs are self-explanatory, but those concerning word sizes and 
pointer types deserve special attention here. 

iRMX I and iRMX II run on microprocessors with I6-bit words, while 
iRMX III runs on microprocessors with 32-bit words. For the function 
prototypes given in this book, however, a parameter declared to be oftype 
WORD is always 16 bits long, regardless of the operating system and micro
processor being used. Likewise, parameters of type DWORD are always 32 
bits long. There are, however, some system calls that take certain are 16-bit 
parameters for iRMX I and II, but 32-bit parameters for iRMX III. These 
parameters are declared to be of type NATIVE_WORD, which is predefined to 
the appropriate value by the different Intel C compilers. 

The preceding situation is handled for PLM by the WORDl6 or WORD32 
compiler-defined symbols and appropriate code in the rmxplm. ext in
clude file provided with the system. Coding problems arise when using the 
PLM386 compiler, however, because it uses 32-bit values for variables de
clared to be of type WORD. All of the sample PLM code in this book uses 
header files that declare data types called WORD_l6 and WORD_32, which 
are used to generate variables of the correct sizes. 

The figures for this chapter include sample programs illustrating the use 
of some of the system calls discussed in the chapter. You might skip over 
them for now, and refer back to them to see examples of system calls as 
they are introduced. Figures 7.1 and 7.2 are equivalent PLM and C pro
grams that illustrate creating a new task within ajob. Figure 7.3 illustrates 
creating an I/O job whose initial task executes a procedure loaded into 
memory with the application itself. Figure 7.4 is a program that loads an 
I/O job from a disk file, and Figure 7.5 is a sample program that could be 
loaded by the program in Figure 7.4. The C programs equivalent to Figures 
7.3 through 7.5 are left as exercises for the reader. 

Figure 7.1 is a PLM program that displays some information about the 
job created to run an HI command, creates a new task for that job, synchro
nizes execution between the initial task and the created task using a binary 
semaphore, and exits. The output from running this program might look 
like the following: (The numerical values for the tokens will change from 
run to run of the program.) 
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Figure 7.1 PLM program to demonstrate iRMX multitasking. 

/***> plmtask.plm <*********************************************** 

* Sample program illustrating multitasking in PLM. 

******************************************************************/ 

$compact (exports my task) 
$title ('Sample Program Illustrating Task Creation') 

plmtask: DO; 

$include (plmtask.ext) 

/* Global Variables 

*/ 
DECLARE 

mess (*) 

CR 
LF 

LITERALLY 
LITERALLY 

'ODh' , 
'OAh' , 

BYTE INITIAL (0, 'This is the initial task: xxxx.', CR, LF, 
I belong to job xxxx. " CR, LF, 
My priority is xxxx.', CR, LF, 
My maximum priority is xxxx.·, CR, LF, 
Now I will create a new task.', CR, LF), 

taskmess (*) BYTE INITIAL (0, CR, LF, 'This is the new task: xxxx.', 
CR, LF, My priority is xxxx.', CR, LF, 

Now I will send a unit to the semaphore 
'and delete myself.', CR, LF), 

waitmess (*)BYTE INITIAL (0, CR, LF, 'This is the initial task again.', 
CR, LF, I created task xxxx.', CR, LF, 

Now I will wait for a unit from 
'the semaphore.', CR, LF), 

hextab (*) BYTE INITIAL ('0123456789ABCDEF'), 
(my job, my token , newtask) TOKEN, 
syncSem 
myprio 
maxprioptr 
maxprio BASED maxprioptr 
(unitsLeft, Status) 

TOKEN, 
BYTE, 
POINTER, 
BYTE, 
WORD; 

/* Procedure to Convert a Hexadecimal Value to ASCII Characters 

*/ 

word2hex: PROCEDURE (value, where); 
DECLARE 

value WORD, 
i INTEGER, 
where POINTER, 
xxxx BASED where (1) BYTE; 

DO i = 3 TO 0 BY -1; 
xxxx(i) = hextab(value AND OFh); 
value = shr (value, 4); 

END; 
END word2hex; 
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figure 7.1 (Continued) 

/* Procedure to be Executed b¥ the New Task 

*/ 
my task: PROCEDURE PUBLIC; 
DECLARE 

my token TOKEN, 
mypriority BYTE, 
Status WORD; 

my token = rqgettasktokens (0, @Status); 
mypriority = rqgetpriority (selector$of(NIL) , @Status); 
CALL word2hex (WORD (my token) , @taskmess(25)); 
CALL word2hex (mypriority, @taskmess(49)); 
CALL rqcsendcoresponse (NIL, 0, @taskmess, @Status); 

CALL rqsendunits (syncSem, 1, @Status); 
CALL rqdeletetask (selector$of(NIL) , @Status); 

END my task; 

/* Initial Task Starts Here 

*/ 
mess(O) = length (mess) -1; 
taskmess(O) length (taskmess) -1; 
waitmess(O) = length (waitmess) -1; 

my token = rqgettasktokens (0, @Status); 
my job = rqgettasktokens (1, @Status); 
myprio = rqgetpriority (selector$of(NIL) , @Status); 
CALL word2hex (WORD (my token) , @mess(27)); 
CALL word2hex (WORD (my job) , @mess(52)); 
CALL word2hex (myprio, @mess(76)); 
maxprioptr = buildptr (my job, 018h); /* Illustrate cheating */ 
CALL word2hex (maxprio, @mess(108)); 
CALL rqcsendcoresponse (NIL, 0, @mess, @Status); 

syncSem 
newt ask 

rqcreatesemaphore (0, 1, 0, @Status); 
rqcreatetask (myprio, @mytask, 

selector$of(NIL) , NIL, 4096, 0, @Status); 

CALL word2hex (WORD (newtask), @waitmess(53)); 
CALL rqcsendcoresponse (NIL, 0, @waitmess, @Status); 

unitsLeft = rqreceiveunits (syncSem, 1, OFFFFh, @Status); 
CALL rqcsendcoresponse (NIL, 0, @(46, CR, LF, 

'Unit received b¥ initial task.', CR, LF,' Exiting.', CR, LF), 
@Status); 

CALL rqexitiojob (0, NIL, @Status); 

END plmtask; 
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Figure 7.~ C program equivalent to Fig. 7.1. 

/***> ctask.c <****************************************************** 

* 
* 
* 

Sample C program to demonstrate iRMX multitasking 

**********************************************************************/ 

#include <rmxc.h> 
#include <string.h> 

#define MYTASK 0 
#define MYJOB 1 

char 

TOKEN 

hextab[] "0123456789ABCDEF', 
xxxx[] = "xxxx"; 
syncSem; 

/* 

* 
Utility to Generate ASCII Representation of a Hex Value 

*/ 
void 
word2hex (WORD a_word) { 
int i; 

for (i=3; i >= 0; i--) { 

/* 

* 
*/ 

xxxx[i] = hextab [a_word & OxOf]; 
a_word = a_word » 4; 
} 

Sample Procedure to be Used as a Task 

void far 
my task (void) 
WORD Status; 
BYTE 
TOKEN 

char 

myprio = rqgetpriority «selector) NULL, &Status); 
mytoke~ = rqgettasktokens (MYTASK, &Status), 
my job = rqgettasktokens (MYJOB, &Status); 
mess[256]; 

strcpy (mess, 'This is a new task: "); 
word2hex «WORD) my token) ; 
s;trcat (mess, xxxx); 
strcat (mess, ".\r\n I belong to job 0); 
word2hex «WORD) my job) ; 
strcat (mess, xxxx); 
strcat (mess, ".\r\n My priority is H); 
word2hex «WORD) myprio); 
strcat (mess, xxxx); 
strcat (mess, ".\r\n Now I will send a unit to the semaphore \ 

and delete myself.\r\n\n"); 
udistr (mess, mess); . 
rqcsendcoresponse (NUL.L, 0, mess, &Status); 
rqsendunits (syncSem, 1, &Status); 
rqdeletetask «selector) NULL, &Status); 
} 

/* Main Task Starts Here 
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Figunt 7.2 (Continued) 

* 
*/ 

int 
main (int argc, char *argv[]) ( 

Status; WORD 
BYTE 
TOKEN 

myprio = rqgetpriority «selector) NULL, &Status), maxprio; 
my token = rqgettasktokens (MYTASK, &Status), 
my job = rqgettasktokens (MYJOB, &Status), 
newtask; 

char mess[256]; 

syncSem = rqcreatesemaphore (0, 1, 0, &Status); 

strcpy (mess, "This is the initial task: "); 
word2hex «WORD) my token); 
strcat (mess, xxxx); 
strcat (mess, ". \r\n I belong to job"); 
word2hex «WORD) my job) ; 
strcat (mess, xxxx); 
strcat (mess, ".\r\n My priority is "); 
word2hex «WORD) myprio); 
strcat (mess, xxxx); 
strcat (mess, ". \r\n My maximum priority is .); 
rqsetpriority «selector) NULL, 0, &Status); 
maxprio = rqgetpriority «selector) NULL, &Status}; 
rqsetpriority «selector) NULL, myprio, &Status); 
word2hex «WORD) maxprio); 
strcat (mess, xxxx); 
strcat (mess, ".\r\n Now I will create a new task.\r\n\n"); 
udistr (mess, mess); 
rqcsendcoresponse (NULL, 0, mess, &Status); 

newtask = rqcreatetask (0, 
my task, (selector) NULL, 
NULL, 4096, 0, &Status); 

strcpy (mess, "This is the initial task again.\r\n I created task "); 
word2hex «WORD) newtask); 
strcat (mess, xxxx); 
strcat 

(mess, ".\r\n Now I will wait for a unit from the semaphore.\r\n"); 
udistr (mess, mess); 
rqcsendcoresponse (NULL, 0, mess, &Status); 

rqreceiveunits (syncSem, 1, OxFFFF, &Status); 
strcpy (mess, ·unit received by initial task.\r\n Exiting.\r\n"); 
udistr (mess, mess); 
rqcsendcoresponse (NULL, 0, mess, &Status); 
rqexitiojob (0, NULL, &Status); 

return 0; 
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FIgIn 7.a Sample program demonstrating the creation of an I/O job, and receiving a termi
nation meIIII8P from the child job using a mailbox. 

/.**> IOJOB.PLM <***************************************************** 

* 
* 
* 
* 
* 

This is an HI command that demonstrates creation of a child I/O job 
and passing information from the child to the parent through the job 
completion mailbox. 

***********************************************************************/ 
$compact (exports my task) 
$title ('Sample Program to Create an I/O Job') 

iojob: DO; 
$include (iojob.ext) 

/* Global variables 

*/ 
DECLARE 

CR 
LF 

LITERALLY 
LITERALLY 

'OOh' , 
'OAh' , 

mess (*) BYTE INITIAL (0, 'This is the initial task: xxxx.', CR, LF, 
I belong to job xxxx.', CR, LF, 
My priority is xxxx.', CR, LF, 
My maximum priority is xxxx.', CR, LF, 
Now I will create a new I/O job.', CR, LF), 

exitrness (*)BYTE INITIAL (0, CR, LF, 'This is the initial task again.', 
CR, LF, ' I created I/O job xxxx.', CR, LF, 

It' 's exit code was xxxx.', CR, LF, 
Now I will print its exit message ' 

'and exit myself.', 
CR, LF), 

taskrness (*)BYTE INITIAL (0, CR, LF, 'I/O job: xxxx.', CR, LF, 
Task: xxxx.', CR, LF, 
Priority: xxxx.', CR, LF, 
Max priority: xxxx.', CR, LF, LF), 

hextab (*) BYTE INITIAL ('0123456789ABCDEF'), 
(my job, my token , 
newjob, jobrnbx, exittok) TOKEN, 
exitstruct BASED exittok STRUCTURE 

terrnination$code WORD_16, 
user$fault$code WORD_16, 
job$token TOKEN, 
return$data$len BYTE, 
return$data (1) BYTE) , 

myprio BYTE, 
maxprio 
Status 

/* Procedure to Convert a Hexadecimal Value to ASCII Characters 

*/ 
word2hex: PROCEDURE (value, where); 
DECLARE 

value 
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Figure 7.3 ( Continued) 

i INTEGER, 
where POINTER, 
xxxx BASED where (1) BYTE; 

DO i = 3 TO 0 BY -1; 
xxxx(i) = hextab(value AND OFh); 
value = shr (value, 4); 

END; 
END word2hex; 

/* Procedure to be Executed by the Initial Task of the I/O Job 

*/ 
my task: PROCEDURE PUBLIC; 
DECLARE 

(mytasktoken, myjobtok) 
mypriority 
maxpriority 
Status 

TOKEN, 
BYTE, 
BYTE, 
WORD_16; 

taskmess(O) = length (taskmess) -1; 
mytasktoken = rqgettasktokens (0, @Status); 
myjobtok = rqgettasktokens (I, @Status); 
mypriority = rqgetpriority (selector$of(NIL) , @Status); 
CALL rqsetpriority (selector$of(NIL) , 0, @Status); 
maxpriority = rqgetpriority (selector$of(NIL) , @Status); 
CALL word2hex (WORD (myjobtok), @taskmess(12)); 
CALL wbrd2hex (WORD (mytasktoken), @taskmess(27)); 
CALL word2hex (mypriority, @taskmess(46)); 
CALL word2hex (maxpriority, @taskmess(69)); 

CALL rqexitiojob (01234h, @taskmess, @Status); 

END my task; 

/* 

*/ 

Initial Task of the Parent Job Starts Here 

mess(O) = length (mess) -1; 
exitmess(O) = length (exitmess) -1; 

my token = rqgettasktokens (0, @Status); 
my job = rqgettasktokens (I, @Status); 
myprio = rqgetpriority (selector$of(NIL) , @Status); 
CALL word2hex (WORD (my token) , @mess(27)); 
CALL word2hex (WORD (my job) , @mess(52)); 
CALL word2hex (myprio, @mess(76)); 
CALL rqsetpriority (selector$of(NIL) , 0, @Status); 
maxprio = rqgetpriority (selector$of(NIL) , @Status); 
CALL word2hex (maxprio, @mess(108)); 
CALL rqcsendcoresponse (NIL, 0, @mess, @Status); 
jobmbx rqcreatemailbox (0, @Status); 
newjob = rqcreateiojob (1024, OFFFFFFFFh, NIL, 0, 0, @mytask, 

selector$of(NIL) , NIL, 4096, 0, jobmbx, @Status); 
exittok = rqreceivemessage (jobmbx, OFFFFh, NIL, @Status); 

CALL word2hex (WORD (newjob), @exitmess(56)); 
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Figure 7.3 ( Continued) 

CALL word2hex (exitstruct.user$fault$code, @exitmess(84)); 
CALL rqcsendcoresponse (NIL, 0, @exitmess, @Status); 
CALL rqcsendcoresponse (NIL, 0, @exitstruct.return$data$len, @Status); 

CALL rqexitiojob (0, NIL, @Status); 

END iojob; 

Figure 7.4 Sample program that uses the AL to create a child job and load it from a disk file. 
/***> loadjob.plm <************************************************** 

* 
* sample PLM program to load an I/O job from file 'newjob' 

*********************************************************************/ 

$title ('Sample Program to Load an I/O Job') 

loadjob: DO; 
$include (loadjob.ext) 

/* Global Variables 

*/ 
DECLARE 

CR 
LF 

LITERALLY 
LITERALLY 

'ODh' , 
'OAh' , 

mess (*) BYTE INITIAL (0, 'This is the initial task: xxxx.', CR, LF, 
I belong to job xxxx.', CR, LF, 
My priority is xxxx.', CR, LF, 
My maximum priority is xxxx.', CR, LF, 
Now I will create a new I/O job.', CR, LF), 

exitmess (*)BYTE INITIAL (0, CR, LF, 'This is the initial task again.', 
CR, LF, I created I/O job xxxx.', CR, LF, 

It' 's exit code was xxxx.', CR, LF, 
Now I will print its message and exit.', 

CR, LF), 
hextab (*) BYTE INITIAL ('Ol23456789ABCDEF'), 

(my job, my token, 
newjob, jobmbx, exittok) TOKEN, 
exitstruct BASED exittok STRUCTURE 

termination$code WORD_16, 
user$fault$code WORD_16, 
job$token TOKEN, 
return$data$len BYTE, 
return$data (1) BYTE) , 

myprio 
maxprio 
Status 

BYTE, 
BYTE, 
WORD_16; 

/* Procedure to Convert a Hexadecimal Word to 4 ASCII Characters 

*/ 
word2hex: PROCEDURE (value, where); 
DECLARE 

value 
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Figure 7.4 (Continued) 

i INTEGER, 
where POINTER, 
xxxx BASED where (1) BYTE; 

DO i = 3 TO 0 BY -1; 
xxxx(i) = hextab(value AND OFh); 
value = shr (value, 4); 

END; 
END word2hex; 

/* Initial Task of Parent Job Starts Here 

*/ 
mess(O) = length (mess) -1; 
exitmess(O) = length (exitmess) -1; 

my token = rqgettasktokens (0, @Status); 
my job = rqgettasktokens (1, @Status); 
myprio = rqgetpriority (selector$of(NIL) , @Status); 
CALL word2hex (WORD (my token) , @mess(27)); 
CALL word2hex (WORD (my job) , @mess(52)); 
CALL word2hex (rnyprio, @mess(76)); 
CALL rqsetpriority (selector$of(NIL) , 0, @Status); 
maxprio = rqgetpriority (selector$of(NIL) , @Status); 
CALL word2hex (maxprio, @mess(108)); 
CALL rqcsendcoresponse (NIL, 0, @mess, @Status); 

jobmbx 
newjob 

rqcreatemailbox (0, @Status); 
rqsloadiojob (@(6, 'newjob'), 0, 0, NIL, D, D, 

0, jobmbx, @Status); 
exittok = rqreceivemessage (jobmbx, DFFFFh, NIL, @Status); 

CALL word2hex (WORD (newjob), @exitmess(56)); 
CALL word2hex (exitstruct.user$fault$code, @exitmess(84)); 
CALL rqcsendcoresponse (NIL, D, @exitmess, @Status); 
CALL rqcsendcoresponse (NIL, 0, @exitstruct.returndatalen, @Status); 

CALL rqexitiojob (D, NIL, @Status); 

END loadjob; 

Figure 7.5 Sample program that could be loaded as an I/O job by the program in Fig. 7.4. 

/***> newjob.plm <**************************************************** 

* 
* Sample program to be used as a child I/O job for the loadjob program 
* 
**********************************************************************/ 

$title ('Sample Program to Serve as a Child I/O Job') 

newjob: DO; 
$include (newjob.ext) 

/* Global Variables 

*/ 



Basic iRMX System Calls 235 

Figure 7.5 (Continued) 

DECLARE 
CR 
LF 

LITERALLY 
LITERALLY 

'ODh' , 
'OAh' , 

taskmess (*)BYTE INITIAL (0, CR, LF, 
'Job: xxxx.', CR, LF, 

Task: xxxx.', CR, LF, 
priority: xxxx.', CR, LF, 
Max priority: xxxx.', CR, LF, 
Exi t. " CR, LF), 

hextab (*) BYTE INITIAL ('0123456789ABCDEF'), 
(my token, myjobtok) TOKEN, 
mypriority 
maxpriority 
Status 

BYTE, 
BYTE, 
WORD_16; 

/* Routine to Convert a Binary Word to 4 Characters Representing 
its Hexadecimal Value 

*/ 
word2hex: PROCEDURE (value, where); 
DECLARE 

value 
i INTEGER, 
where POINTER, 
xxxx BASED where (1) BYTE; 

DO i = 3 TO 0 BY -1; 
xxxx(i) = hextab(value AND OFh); 
value = shr (value, 4); 

END; 
END word2hex; 

/* Initial Task of the I/O Job Starts Here 

*/ 
taskmess(O) = length (taskmess) -1; 
my token = rqgettasktokens (0, @Status); 
myjobtok = rqgettasktokens (1, @Status); 
mypriority = rqgetpriority (selector$of(NIL) , @Status); 
CALL rqsetpriority (selector$of(NIL) , 0, @Status); 
maxpriority = rqgetpriority (selector$of(NIL) , @Status); 
CALL word2hex (WORD (myjobtok), @taskmess(8»; 
CALL word2hex (WORD (my token) , @taskmess(23»; 
CALL word2hex (mypriority, @taskmess(42»; 
CALL word2hex (maxpriority, @taskmess(65»; 

CALL rqexitiojob (01234h, @taskmess, @Status); 

END newjob; 
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This is the initial task. 0018. 
I belong to job AFBO. 
My priority is OOSE. 
My maximum priority is OOSO. 
Now I will create a new task. 

This is the initial task again. 
I created task 004 S. 
Now I will wait for a unit from the semaphore. 

This is the new task. 004S. 
My priority is OOSE. 
Now I will send a unit to the semaphore and delete myself. 

Unit received by initial task. 
Exiting. 

Figure 7.1 also illustrates cheating as defined in chapter 6. To determine 
the maximum task priority for the job, the program examines a location 
within the job object's data structure. Although the code works for current 
versions of iRMX III and iRMX for Windows, it does not work for current 
versions of iRMX I and iRMX II. Furthermore, it may very well fail to 
work in future versions of iRMX III and iRMX for Windows. Thus, the 
program illustrates the "wrong" way to code an iRMX application. It is 
coded this way simply to illustrate the fact that the internal data structure 
of an iRMX object really is accessible to application programs. Such 
cheating should never be done in actual iRMX applications. 

The eversion ofthe program in Figure 7.2 illustrates the proper way to 
code this application. It uses the rqsetpriority() system call to set the initial 
task's priority to o. The value 0 for the new priority is interpreted by this 
system call to mean the maximum priority allowed for the task. The task 
then calls rqsetpriority() to determine what priority it has, and thus deter
mines what the maximum priority is for the job. The output from running 
this program might look like this: 

This is the initial task. E040. 
I belong to job BA2S. 
My priority is OOSE. 
My maximum priority is OOSO. 
Now I will create a new task. 

This is a new task. F310. 
I belong to job BA2S. 
My priority is OOSO. 
Now I will send a unit to the semaphore and delete myself. 

This is the initial task again. 
I created task F310. 
Now I will wait for a unit from the semaphore. 

Unit received by initial task. 
Exiting. 

The output from running the program in Figure 7.3 might look like this: 

This is the initial task. BOlO. 
I belong to job AEOS. 
My priority is OOSE. 
My maximum priority is OOSO. 
Now I will create a new 1/0 job. 



This is the initial task again. 
I created I/O job B040. 
It's exit code was 1234. 
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Now I will print its exit message and exit myself. 
I/O job: B040. 

Task: B058. 
Priority: 008D. 
Max priority: 008D. 

The internal logic of some of the system calls given in this chapter and 
elsewhere should be described here. The descriptions are based on the pub
lished documentation for the system calls, augmented by a bit of sleuthing 
with the System Debugger's u- commands that display information about 
iRMX objects. They are not based on examination of the operating sys
tem's source code nor on disassembly of any part ofthe operating system's 
memory. Thus, these descriptions do not necessarily describe how the OS 
is actually implemented, but rather how it could be implemented. The idea 
is to build a realistic model of how iRMX works rather than simply present 
a set of rules that you apply by rote when writing iRMX programs. The 
model should help you develop iRMX code more effectively without com
promising the encapsulation provided by the operating system's object
based design. 

7.2 Task Synchronization and Communication 

Real-time systems need efficient and powerful multitasking facilities to 
support programs that use separate threads of execution to manage the 
different classes of events that drive the logic of most real-time applica
tiolls. Of course, many nonreal-time applications are event-driven too, no
tably those with graphical user interfaces. Thus, the multitasking features 
described in this section make iRMX appealing for both real-time and gen
eral application development. 

Before you can see how iRMX supports task synchronization and com
munication, you need to see how tasks are created, explicitly placed into 
certain scheduling states, and deleted. The following is the function proto
type for the Nucleus call to create a task: 

extern TOKEN 
rqcreatetask ( BYTE 

far * 
TOKEN 
WORD far * 
NATIVE WORD 
WORD 
WORD far * 

priority, 
startAddress, 
dataSeg, 
stackPtr, 
stackSize, 
taskFlags, 
exceptPtr) ; 

This function returns a token for a new task object. The new task is a sib
ling of the task that made the system call in the sense that both belong to 
the same job. No ownership or parent-child relationship exists among the 
tasks of an iRMX system. 
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taskPr ior i ty specifies the initial priority for the task. A value of ° 
gives the task the maximum priority for the job that owns the task that 
made the call to rqcreatetask(). Unless it is 0, the value ofthis parameter 
must not be less than the maximum priority for the job. Ifthis parameter is 
0, the new task is given a priority equal to the highest allowed priority (nu
merically lowest value) allowed for the current job. If the new task has a 
higher priority than the task that creates it, the new task will preempt the 
creating task. If the new task has a priority less than or equal to the task 
that creates it, the new task is made ready and executes when it becomes 
the task with the highest priority on the ready queue. 

The startAddress parameter is a pointer to the first instruction to be 
executed by the new task. This parameter is normally coded as a pointer to 
a function or procedure, but this is not strictly necessary. (See the follow
ing description of the da taSeg parameter for one reason for using a 
pointer to a procedure, though.) Note that there is no restriction on where 
in memory the new task must start executing. It can start in the same code 
segment as the creating task (as in Figures 7.1 and 7.2), or in a different 
code segment. If it starts in a different code segment, there is no require
ment for that segment to belong to the current job, although it usually does. 

The da taSeg parameter is a selector for the data segment to be used for 
the new task. There are two different ways to handle this parameter. One 
way is to supply the token for an iRMX memory segment that is to serve as 
the new task's data segment. This approach is most often used when the 
task is going to execute code in the same module as the creating task, and 
the compact model of compilation is being used. In this case, the value to 
use for the dataSeg parameter is obtained by extracting the selector part 
of a far pointer to any static variable in the application. For PLM pro
grams, this might be coded as selector$of (@Status), and for C pro
grams as (selector) &Status, assuming Status is a static variable 
(i.e., not in the calling task's stack segment). 

The second way to handle this parameter is to have the new task execute 
code that initializes the ds register itself and to code this parameter as the 
selector part of a null pointer (16 bits of zeros). Far procedures always in
clude this initialization code in their prologues, so this technique works in 
any of the following situations: 

• If the startAddres s parameter is a pointer to a procedure or function 
that was declared public using the large model of compilation (either 
PLM or C). 

• If the startAddress parameter was explicitly declared to be a far func
tion in C. 

• If the s tartAddre s s parameter was made a far function by exporting it 
from a compact subsystem using the compilers' extended segmentation 
features. 
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The stackPtr and stackSize parameters are needed because every 
iRMX task has its own stack segment, as described in chapter 6. If 
stackPtr is a valid pointer (not a null pointer), the new task will be given 
a stack in the memory segment specified by the selector part of the pointer, 
and the sp (top of stack pointer) register will be set to the sum of the offset 
part of the pointer and the value of the stackS i ze parameter. This option 
is useful for applications that want the new task to use part of an existing 
segment for its stack. For example, an application could declare an array of 
words to be used as the stack for a task and pass a pointer to the beginning 
of the array as stackPtr and the size of the array (in bytes) as the stack
Size. The problem with this technique is that the new task can easily 
overwrite other information in its stack segment without the microproces
sor detecting an error, even in protected-mode systems. On the other hand, 
this technique could be used to pass parameters to a new task. Doing so 
would require some tricky coding. 

The other way to handle the new task's stack is to code stackPtr as a 
null pointer. In this case, the Nucleus creates a segment for the new task's 
stack with a size equal to the stackS i ze parameter. The advantage of this 
technique is that the new task will cause a stack fault (fault number 12) if it 
overflows its stack segment, which is trapped by the hardware. Remember, 
hardware traps like this are good: they let you know as soon as a bug occurs 
so it can be located easily and fixed. 

Except for programs that use the stack for recursion, the size of a stack 
segment that a task needs depends on the following: 

• The procedure calls it makes itself (this quantity is given at the end of the 
listing file produced by the compiler). 

• Space for additional stack frames for nested calls. 

• Space to store the state of the processor if an interrupt occurs. 

For example, a call to an EIOS function requires stack space for the ini
tial stack frame, plus one for the corresponding BIOS call that the EIOS 
makes, plus another level of frames for calls to the Nucleus from the BIOS. 
iRMX Programming Techniques and Examples (volume 11 of the iRMX 
for Windows documentation set) includes an appendix that can be used to 
determine how much stack space a task actually needs. In practice, tuning 
this parameter is important only for applications with a large number of 
tasks and a limited amount of memory. Creating a few 8 kilobytes (KB) or 
16 KB stacks (which are generous values) is insignificant in a system with 
multiple megabytes of RAM. 

The taskFlags parameter contains only one bit of information. The 
value should be set to 1 if the task contains floating-point instructions, and 
set to 0 otherwise. The setting of this bit affects the time the system needs 
to perform a context switch involving the task because of the separate set 
of registers for floating-point operations (found in the CPU for 80486 pro-
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cessors, and in the coprocessor for other CPUs). If the task does not per
form floating-point operations, these registers do not need to be saved in 
memory when the task is preempted, and they do not need to be reloaded 
when the task runs again. The time savings can be significant for real-time 
applications. 

The exceptPtr parameter is the ubiquitous last parameter of every 
iRMX system call, as described in the exception handling section of chap
ter 6. 

A task can put itself into the asleep scheduling state by calling rqsleep{}: 

extern void 
rqsleep ( WORD 

WORD far * 
tirneLirnit, 
exceptPtr); 

The timeLimi t parameter is the amount of time the calling task is 
placed in the asleep scheduling state. When the time limit expires, the task 
is placed on the ready queue, and is then scheduled to run again when it has 
the highest priority of all ready tasks. (The various scheduling states were 
described in chapter 6.) 

The amount of time the task spends asleep is equal to the product of 
timeLimi t and the resolution of the system's real-time clock, normally 
10 milliseconds (0.01 sec). There are two exceptions, however. 

First, a value of 0 simply moves the running task to the end ofthe portion 
ofthe ready queue for its own priority. That is, all tasks on the ready queue 
with the same priority are arranged in first-in, first-out (FIFO) order, and a 
timeLimi t of 0 puts the task at the end of its portion of the queue. If no 
other tasks have the same priority on the ready queue, the running task just 
continues to run. 

Second, a value of OxFFFF is illegal for this system call. For system calls 
that include a time limit parameter, such as rqlookupobject() presented in 
chapter 6, a value of OxFFFF means "indefinitely" or "forever." Since the 
only way a task completes a call to rqsleep( ) is for its time limit to expire, it 
makes no sense for it to sleep forever. If a task does not want to execute any 
more, it should delete or suspend itself. A task can suspend itself or any 
other task by calling rqsuspendtask( ): 

void 
rqsuspendtask ( TOKEN 

WORD far * 
task, 
exceptPtr ) ; 

A task can suspend itself by using the selector part of a null pointer for the 
task parameter. This strategy is just a convenience: the task would have to 
call rqgettasktokens( ) to get the token for itself otherwise. The only way a 
suspended task can execute again is for another task to call rqresume
task( ): 

void 
rqresurnetask ( TOKEN 

WORD far * 
task, 
exceptPtr ) ; 
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If a task is suspended multiple times, it must be resumed an equal num
ber of times to become ready again. This feat can be accomplished in a sce
nario in which one task, called the lead task, partitions chunks of work into 
subchunks that are assigned to other tasks for processing. The lead task is 
suspended once for each subchunk of work and resumed once by each task 
that completes processing a subchunk. When the lead task runs again, it 
partitions the next chunk of work into another set of subchunks, and so on. 

Another fundamental way to change a task's scheduling state is to 
change its priority: 

void 
rqsetpriority ( TOKEN 

BYTE 
WORD far * 

task, 
priority, 
exceptPtr ) ; 

Again, the selector part of a null pointer causes the calling task's priority to 
change, subject to the limits for its job. A value of 0 sets the task's priority 
to the maximum allowed for its job. Note that any task can change the pri
ority for any other task for which it can obtain a token, including tasks that 
belong to other jobs. 

As a rule, tasks do not change their priorities dynamically to control ex
ecution sequences. The synchronization mechanisms described in the fol
lowing sections (semaphores, mailboxes, and regions) are used for that 
purpose. In fact, there is surprisingly little use for this call by most applica
tions, and misuse of it can negatively impact overall system performance. 

There are two situations in which the Nucleus changes the priority of a 
task automatically. One is a dynamic priority change related to regions 
(described later in the chapter). The other is a static change for tasks that 
become interrupt tasks by calling rqsetinterrupt(). Interrupt tasks take on 
a priority associated with the particular interrupt level that are associated 
with, as described in chapter 9. This priority change is a static change be
cause the task's priority is never changed again (unless it enters a region). 

To handle situations in which a task must to have a higher priority than 
allowed for its job, there is a system call to change the maximum priority 
for a job: 

void 
rqesetmaxpriority ( TOKEN 

BYTE 
WORD far * 

job; 
priority, 
exceptPtr ) ; 

Setting the maximum task priority for a job does not change the actual 
priority of any tasks, it simply makes it possible for tasks belonging to the 
job to have higher priorities than otherwise possible. This call cannot be 
used to lower the maximum task priority for a job. It was added to the oper
ating system to support loadable device drivers. Normally, jobs loaded 
while the system is running do not have high enough maximum task prior-
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ities to allow them to own interrupt tasks, but this call makes it possible for 
them to do so. See chapter 9 for more information on this topic. 

7.2.1 Semaphores 

Semaphores are the first of the task synchronization and communication 
objects to be examined. They, along with mailboxes and regions, fall into 
the generic category of exchanges in the iRMX documentation. Exchanges 
are mechanisms managed by the Nucleus that enable tasks to synchronize 
with each other and/or pass information from one to another. Because 
these mechanisms are managed by the Nucleus, tasks that use them do not 
need polling loops, which would overload the CPU, to test when other 
threads of execution have triggered events. 

Semaphore objects include a counter of the number of units that reside 
in the semaphore. Tasks can send units to a semaphore and request to re
ceive units from it. A task that asks to receive more units than are available 
at the semaphore blocks (enters the asleep state) until either enough units 
accumulate at the semaphore to satisfy the request or until the time limit 
specified with the request expires. While a task is asleep, it makes no de
mands on the CPU. If enough units exist at the semaphore to satisfy a re
quest when it is made, the counter is simply reduced by the number of units 
requested, and the calling task continues running. 

Classically, there are two types of semaphores, binary and counting. All 
iRMX semaphores are counting semaphores, but the application can place 
an upper limit on the number of units the semaphore can hold at one time 
when it is created. With a limit of 1, a counting semaphore is the same as a 
binary semaphore. 

Like other iRMX objects, no intrinsic limit is placed on the number of 
semaphores ajob can own other than a possible limit on the total number of 
objects the job can own. This limit is specified at the time the job is created 
(see below). Semaphores can be shared across jobs, provided you can com
municate the token for the semaphore between jobs. When it is necessary 
to share a semaphore this way, the usual technique is to catalog the token 
for the semaphore using an agreed-upon name in an agreed-upon job's ob
ject directory. 

The following are the system calls for semaphores: 

Extern TOKEN 
rqcreatesemaphore ( WORD 

WORD 
WORD 
WORD far * 

initialValue, 
maxValue, 
semaphoreFlags, 
exceptPtr ) ; 

The initial Value and maxValue semaphores initialize the sema
phore counter and its upper limit, respectively. The proper settings for 
these parameters depend on how the application will use the semaphore. 
For a binary semaphore used to protect a shared-memory variable, for ex-
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ample, the values would both be set to 1, indicating that the variable is 
available to the first task that wants to access it. A different example is 
shown in Figures 7.1 and 7.2, where a semaphore with initial and maximum 
values of 0 and 1 is used so the creating task will sleep until the created task 
signals when it has completed its initialization phase. 

The semaphoreFlags controls the order of multiple tasks queued at 
the semaphore. A value of 0 means by FIFO, regardless of priority, and a 
value of 1 means by priority, with tasks of equal priority arranged in FIFO 
order. The task at the head of the queue always has its request satisfied 
first, even if enough units exist at the semaphore to satisfy a request for 
fewer units, but made by a task further down the queue. 

extern void 
rqsenduni ts ( TOKEN semaphore, 

WORD units, 
WORD far * exceptptr ) ; 

extern WORD 
rqrecei veuni ts ( TOKEN semaphore, 

WORD units, 
WORD timeLimit, 
WORD far * exceptPtr ) ; 

The first parameter for these two calls is the token for a semaphore re
turned by an earlier call to rqcreatesemaphore(). The number of units sent 
to a semaphore must never make the semaphore's counter exceed its 
maxValue, or rqsendunits() will fail with the condition code set to Ox0004 
(E_LIMIT). 

The value returned by rqreceiveunits( ) signifies how many units remain 
in the semaphore after removing the units requested. An application that 
wants to test a semaphore without blocking and without encountering an 
exception can ask to receive 0 units from a semaphore. 

The timeLimi t parameter is the standard time-limit parameter for 
many Nucleus system calls. It specifies the number of O.OI-second clock 
ticks the task is willing to wait for the requested units to arrive at the sema
phore. A value of OxFFFF means the task is to sleep for as long as necessary 
for the units to arrive. 

7.2.2 Mailboxes 

Mailboxes provide an efficient mechanism for tasks both to synchronize 
their execution and exchange data. Tasks send messages (consisting of 
iRMX tokens) or data (up to 128 bytes of arbitrary data) to a mailbox. 
Other tasks can then receive the messages or data at a later time. Each 
mailbox has a queue, which is one of the following: 

• Empty . 

• A list of messages or data items sent to the mailbox but not yet received. 
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• A list of tasks that have attempted to receive a message or data but have 
been put to sleep because there is nothing to receive yet. 

The availability of an efficient message-passing mechanism fundamen
tally impacts the design of iRMX multitasking applications compared to, 
for example, process synchronization in Unix systems. Consider an event
driven program that waits for input from any of several devices, processes 
whichever device generates data first, and then waits for the next input. In 
BSD Unix, this is accomplished using the select( J system call, which allows 
one process to block until the kernel determines that one of the selected 
channels is ready for I/O. The process then tests the value returned by 
select( J, reads from the proper channel, processes the input, and returns to 
select( J. 

An iRMX application handles the equivalent situation by having a set of 
tasks monitor the various I/O connections. Each monitoring task sends a 
message to a single mailbox when it completes a data transfer. The event
processing task waits at this mailbox for messages, and processes each 
event when it arrives. If additional messages arrive while the event-pro
cessing task is busy with an event, these messages are automatically 
queued at the mailbox. The efficiency of mailbox operations and the low 
overhead associated with iRMX multitasking make it possible to achieve 
very high processing throughput using this technique. 

Each mailbox can handle either messages or data, but not both. The 
choice is determined by a parameter when the mailbox object is created. 
Data mailboxes provide no new functionality compared to message mail
boxes because a message mailbox can always be used for exchanging mem-
0ry segment objects that contain data. So why are there two types of mail
boxes? Generally, message mailboxes are more efficient to use than data 
mailboxes even when they are used for sending memory segments. The 
message bytes are not copied to and from a message mailbox as they are for 
data mailboxes (only the two-byte token is copied), and no limit exists on 
the size of message segments that can be sent to a message mailbox. (There 
is a limit of 128 bytes on data items.) 

On the other hand, data mailboxes are useful for applications that per
form a lot of one-way message passing. A significant amount of overhead 
exists, especially for protected-mode versions of the operating system, if a 
memory segment must be created for each message sent and ifthe receiving 
task must then delete each segment it receives to avoid depleting the send
ing job's memory pool. For such applications, a buffer pool for managing 
message segments provides a good way to mitigate this problem, but data 
mailboxes provide a simpler solution for cases where the data traffic is rela
tively low and the messages are small. Buffer pools are described later in 
this chapter. The following are the iRMX system calls for mailboxes: 
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mailboxFlags 
exceptPtr ) ; 

mai lboxFlags determine three features about the mailbox being created: 

1. The queuing rule to be used when tasks are queued at the mailbox. 

2. Whether the mailbox is to be used for sending and receiving messages 
(tokens for iRMX objects) or data (byte arrays). 

3. The size of the high-performance queue to be created for the mailbox. 

The value for the mai lboxFlags is the sum of three values: 0 for a mes
sage mailbox or 32 for a data mailbox, plus 0 for a FIFO task queue or 1 for a 
priority-base task queue, plus a value for the size of the high-priority mes
sage queue. The high-priority queue applies only to message mailboxes and 
signifies how much memory to reserve for the queue of messages waiting 
for tasks to receive them. 

iRMX always reserves room for at least eight messages, but you can in
crease the size (thereby saving the time needed to create a memory segment 
if the queue overflows) by adding to this parameter a value that is one-half 
the number of objects you want the queue to hold. Note that the value you 
add must be an even number. Data mailboxes are always created with room 
to queue three 128-byte data items, but the queue is automatically ex
panded if necessary. To send a token to an object mailbox, use rqsendmes
sager ): 

extern void 
rqsendmessage ( TOKEN 

TOKEN 
TOKEN 
WORD far * 

mailbox, 
object, 
response, 
exceptPtr ) ; 

The token passed as object is sent to the message mailbox, mailbox. 
iRMX provides a return-receipt mechanism for message mailboxes 
through the response parameter of this call and a correspondingparame
ter for rqreceivemessage(). The sending task specifies a token for an iRMX 
semaphore, mailbox, or region (usually a semaphore) for this parameter, 
and this token is delivered to the receiving task, along with the token 
passed using the obj ect parameter. The tasks must adopt the convention 
that the receiving task will send something back to the response ex
change (typically one unit to the semaphore) to let the sender know when 
the message has been delivered. 

The response mechanism can also be used as a simple alternative to the 
buffer pool mechanism described later in this chapter. In this case, re
sponse is a token for another mailbox to which segment tokens received at 
this mailbox are sent for recycling when the receiving task finishes with 
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them. Applications that do not want to use this feature of message mail
boxes code this parameter as the selector of a null pointer. 

extern TOKEN 
rqreceivemessage ( TOKEN 

WORD 
TOKEN far * 
WORD far * 

mailbox, 
timeLimit, 
responsePtr, 
exceptPtr ) ; 

The preceding function returns the next token available on the message 
queue of the indicated mailbox. timeLimi t indicates how long the task 
is willing to wait for a message, in O.Ol-second units, if no message is 
present when the call is made. A value of OxFFFF indicates no time limit. If 
the sender specified a token for a response exchange, and if this call is 
coded with a valid pointer for responsePtr, the token for the exchange 
will be stored in the location pointed to by responsePtr. 

extern void 
rqsenddata ( TOKEN 

BYTE far * 
WORD 
WORD far * 

mailbox, 
dataPtr, 
actualLength, 
exceptPtr ) ; 

The array of bytes pointed to by dataptr is sent to the data mailbox, 
mailbox. The number of bytes sent is specified by actualLength, which 
is automatically limited to 128 if a greater value is specified. The data item 
is not interpreted as an iRMX string, so the first byte at da taPtr is not 
interpreted as the length of the item being sent. (It is not interpreted as 
a null-terminated C string either, for that matter.) Only the value of 
actualLength determines how many bytes are sent to the mailbox. No 
provision exists for a response mechanism for data mailboxes. 

extern WORD 
rqreceivedata ( TOKEN 

BYTE far * 
WORD 
WORD far * 

mailbox, 
dataPtr, 
timeLimit, 
exceptPtr ) ; 

The preceding call retrieves a data item from the data mailbox, mail
box. The message is copied into the array of bytes pointed to by da taPtr, 
and the actual number of bytes copied is returned as the value of the func
tion. t imeL imi t specifies the amount of time the receiving task is willing 
to wait for data in O.Ol-second units, with OxFFFF signifying no limit. 

Note: This call fails if less than 128 bytes of memory can be accessed 
starting at da taPtr, so you should reserve 128 bytes for received data even 
if you know that all calls to rqsenddata() will send fewer bytes. 

7.2.3 Regions 

The iRMX region object type deals with a problem associated with sema
phores, called priority inversion, that can occur when semaphores are used 
to implement mutual-exclusion algorithms. 
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To see the problem, consider three tasks with relatively low, medium, 
and high priorities. Assume that the tasks called low and high both need to 
manipulate a shared resource of some type, and use a semaphore to ensure 
mutually exclusive access to it. If low receives a unit from a binary sema
phore, high will block if high now attempts to also receive a unit. This situ
ation is normal; high should not access the resource protected by the sema
phore until low finishes the operation it has begun on the resource and 
sends a unit back to the semaphore. The inversion occurs if medium be
comes ready while low is running and high is blocked. Medium will preempt 
low and high will now be waiting for medium to execute even though 
medium has nothing to do with high's access to the shared resource. 

An iRMX priority region object can be used instead of a semaphore to 
solve this problem. The priority of a task that controls access to a resource 
protected by a priority region object automatically has its priority raised to 
match that of any higher-priority task that tries to obtain control ofthe re
gion at the same time. Using this mechanism in the previous example, task 
medium would be prevented from preempting low because low's priority 
would have been raised to match high's. When low relinquishes control of 
the region, low's priority reverts to its normal level, and high receives con
trol of the region and executes without ever waiting for medium. 

All regions have a property that makes it important to use them care
fully: a task that holds a region cannot be suspended or deleted, which also 
means that the job that owns the task cannot be deleted. For this reason, 
regions can be particularly troublesome when debugging HI commands 
because an error could cause a task to take control of the region and fail to 
release it, making it impossible to terminate the command with the usual 
< A C> mechanism from the console. The entire system must be rebooted 
when this situation occurs. The following are the system calls for regions: 

extern TOKEN 
rqcreateregion ( WORD 

WORD far * 
regionFlags, 
exceptPtr ) ; 

This call creates the equivalent of a binary semaphore, with an optional 
provision for avoiding priority inversion as just described. The reg ion
Flags parameter is set to 0 if the queue of tasks waiting at the region uses 
FIFO order, or set to 1 if it uses priority-based order. Note that FIFO re
gions do not deal with the priority-inversion problem. Only priority re
gions can cause a shift in priority for the task that occupies the region. 

extern void 
rqrecei vecontrol ( TOKEN 

WORD far * 
region, 
exceptPtr); 

If region is available, the calling task takes control of the region and 
proceeds to execute. If the region is not available, the calling task goes to 
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sleep until it is at the head ofthe region's queue and the region is released. 
Note that there is no time-limit parameter associated with this call. Tasks 
that try to enter a region using this call must be willing to sleep indefinitely. 
(If a task is not willing to wait, it might instead call rqacceptcontrol( ):) 

extern void 
rqacceptcontrol ( TOKEN 

WORD far * 
region, 
exceptPtr); 

The preceding call is almost the same as rqreceivecontrol(), but the call re
turns immediately if the region is not free, rather than putting the calling 
task to sleep. The condition code is set to Ox0003 (E _BUSY) ifthe region is 
occupied when this call is made, rather than the usual OxOOOl (E_TIME) 
that is returned when a time limit of 0 results in the failure of a system call 
such as rqreceiveunits() or rqreceivemessage(). 

extern void 
rqsendcontrol ( TOKEN 

WORD far * 
region, 
exceptPtr) ; 

This call allows another task to obtain control of a region. It can only be 
made by the task currently in control of region. If the calling task's prior
ity has been temporarily raised while it occupied the region, this is the time 
at which it resumes its normal value. If a task has entered two or more re
gions, this call causes it to exit the most-recently entered region. A task 
that has had its priority raised while occupying regions has its priority re
stored only when it has exited all of the regions it entered. 

7.2.4 Deadlock 

Deadlock, the situation in which tasks are permanently stopped from exe
cuting because of their interactions with other tasks, is a potential problem 
in any system that allows multiple threads of execution to compete for a 
common set of resources. The resources can be anything, such as files, 
memory segments, or whatever. The problem occurs when an exchange 
mechanism, such as a region or semaphore, is used to enforce mutually ex
clusive access to individual resources. In its simplest case, deadlock can 
occur if two tasks each need exclusive access to the same two resources at 
the same time. Call the tasks 1 and 2, and the resources A and B. Deadlock 
occurs if Task 1 acquires Resource A, is preempted by Task 2, which ac
quires Resource B. Now Task 2 cannot proceed because it cannot acquire 
Resource A, and Task 1 cannot proceed because it cannot acquire Re
source B. 

The use of any iRMX exchange object can result in deadlock, although 
deadlock can be broken manually for semaphores and mailboxes by delet
ing the tasks involved, or broken automatically if at least one of the tasks 
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uses a finite time limit for the call that tries to obtain a resource and the 
time limit expires. The problem is particularly pernicious when tasks use 
rqreceivecontrol() to obtain control of regions that control access to re
sources because there is no way to break an ensuing deadlock. No time limit 
is associated with rqreceivecontrol(), you cannot delete a task that owns a 
region, and no other task can call rqsendcontrol() for any of the regions in
volved because that can only be performed by the tasks that obtained con
trol of the regions themselves. 

Deadlock need not be a concern because it is easily avoided. The proce
dure is to have all tasks that acquire mutually exclusive access to multiple 
resources do so in a fixed sequence when they obtain elements from the set 
of resources and to then use the reverse sequence when the tasks release 
the resources. For example, if a set of resources are protected by regions 
named with different letters of the alphabet, deadlock can be avoided if all 
tasks that access any subset of the resources always attempt to receive 
control from the regions in alphabetical order and release control ofthose 
regions in reverse alphabetical order. It does not matter how the letter 
names are assigned to the regions, as long as all tasks that access any of 
them use the same alphabetic assignment. 

7.3 Buffer Pools 

In the discussion of message mailboxes, it was noted that a considerable 
amount of overhead is associated with creating and deleting memory seg
ments, especially for protected-mode versions of the operating system. The 
system calls to create and delete segments are simple enough to code, but 
the Free Space Manager (FSM) must be invoked to manage the calling 
job's memory pool, to borrow and return pieces of memory from ancestor 
jobs, and to manage the descriptor table slots for the segments. A common 
strategy for dealing with this overhead is for an application to create all the 
memory segments it needs when it first starts running. This strategy 
moves the overhead of creating segments into the initialization phase of 
the application and out of the event loop portion of the code, which must 
concern itself with real-time constraints. 

A common problem with this strategy arises because memory segments 
are often used to pass information in a single direction, from a source task 
to a destination task. The destination task must be able to recycle seg
ments when it finishes processing the information in them. If the destina
tion task does not do anything with the segments it receives, the applica
tion soon runs out of memory. If the task deletes the segments, the source 
task must create more segments to replace them. A technique to do this re
cycling is to set up a mailbox that acts as a place for destination tasks to 
send tokens for the segments they are ready to recycle. Buffer pools provide 
another method to do the same thing, and offer the advantage of making it 
easy to work with segments of different sizes. Buffer pools, however, are 
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less efficient than segment recycling if all segments are the same size.2 Al
though the name buffer pool implies that buffer pools were developed for 
the management of memory segments to be used as I/O buffers (they were), 
the mechanism is perfectly general and can be used effectively to manage 
any set of memory segments. 

A task creates first a buffer pool object, and then a number of memory 
segments that it releases to the pool. Additional segments can be released 
to the pool at any time, but the usual practice is to give the pool most, if not 
all, of the segments it is to manage as the application initializes itself. One 
of the internal design features of the buffer pool type manager is visible to 
users of buffer pool objects: the segments released to a buffer pool are en
tered onto internal lists according to segment size, and no more than 16 
different sizes of segments can be released to a single buffer pool object. 

Data chaining is an option that can be enabled for a buffer pool when it is 
created. With this option, an application can request a buffer larger than 
any ofthe segments residing in the pool, and the buffer pool type manager 
satisfies the request by giving the task as many segments as it needs to sat
isfy the request. In this case, it will return a data structure called a chain 
block that contains a list of pointers and sizes of the segments returned. 
When this option is used, the application must acknowledge that a single 
buffer from the buffer pool does not necessarily occupy a single contiguous 
segment in memory. 

The following is a description of the basic system calls for buffer-pool 
use. Additional calls for buffer pools exist but are not listed here. Those 
calls support the use of buffer pools for message passing in iRMX systems 
that run on Multibus II platforms. The Multibus II system bus provides a 
hardware mechanism with which multiple processors can send messages to 
each other very rapidly. That mechanism is fully supported by iRMX, and 
buffer pool management is closely integrated with that support, but our at
tention here is on the system calls for basic buffer-pool management. 

extern TOKEN 
rqcreatebufferpool ( WORD 

WORD 
WORD far * 

maximumBuffers, 
poolFlags, 
exceptPtr); 

maximumBuffers limits the number of memory segments that can be 
released to the buffer pool at one time. The upper limit for this parameter is 
8,192, the maximum number of slots in a descriptor table. 

poolFlags signifies whether or not to support data chaining for this 
buffer pool. A value of 0 means no, and a value of 2 means yes. 

2The iRMK kernel, available with iRMX III and iRMX for Windows systems, provides an
other memory management system even more efficient than recycling segments. 



extern void 
rqreleasebuffer( TOKEN 

TOKEN 
WORD 
WORD far * 
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bufferPool 
bufferSegrnent, 
bufferFlags, 
exceptPtr ) ; 

bufferSegment is added to the list of segments occupying buffer
Pool in this example. Problems that can occur include the buffer pool 
being full (the maximumBuffers specified in rqcreatebufferpool() already 
reached), or the size of the segment that is released to the segment is not 
one of 16 different segment sizes already released to the pool. 

bufferFlags contains two pieces of information: whether the buf
ferSegment being released is a single memory segment or a data chain 
and how to handle the buffer pool full condition for this system call. If the 
bufferSegment token is for a memory segment to be released, add 0 to 
the value of this parameter. If the bufferSegment token is for a chain 
block, add 1 to this parameter. If you want the segment being released to be 
deleted if the buffer pool is full when this call is made, add 0 to this parame
ter. If you want the segment to be retained in this situation and have 
the condition code set to Ox0004 (E _LIMIT), add 2 to the value of this 
parameter. 

extern TOKEN 
rqrequestbuffer( TOKEN 

DWORD 
WORD far * 

buffer Pool 
bufferSize, 
exceptPtr) ; 

bufferSize must have a value between 1 and OxFFFFFFFE. If a single 
segment is available that can satisfy the request, its token is returned, and 
the condition code is set to E _ OK. If data chaining is allowed for the buffer 
pool and the buffer pool manager is able to satisfy the request only by 
creating a data chain, the token returned is for a segment containing a 
chain block, and the condition code is set to OxOOOD (E _DAT ACHAIN). If 
the buffer pool does not have a segment that can satisfy the request (and 
data chaining is disabled), or if the pool does not have the segments that 
could satisfy the request (even though data chaining is enabled), the call 
fails and the condition code is set to Ox0002 (E_MEM). 

7.4 Job Management 

One recurring theme in understanding the iRMX operating system is that 
there seems to be different types of jobs. We have already used terms like 
Nucleus Job, I/O Job, and HI Command Job. In reality, all jobs are equiva
lent in the sense that they are originally created by one oftwo Nucleus sys-
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tem calls, rqcreatejob( ) and rqecreatejob(), that differ from each other only 
in the values that can be specified for the memory pool parameters.3 

7.4.1 Creating a Nucleus Job 

The following are function prototypes for creating a Nucleus job: 

extern TOKEN 
rqcreatejob ( 

extern TOKEN 
rqecreatejob ( 

WORD 
TOKEN 
NATIVE WORD 
NATIVE WORD 
WORD 
WORD 
BYTE 
EXCEPTIONSTRUCT far * 
WORD 
BYTE 
far * 
TOKEN 
WORD far * 
NATIVE_WORD 
WORD 
WORD far * 

WORD 
TOKEN 
DWORD 
DWORD 
WORD 
WORD 
BYTE 
EXCEPTIONSTRUCT far * 
WORD 
BYTE 
far * 
TOKEN 
WORD far * 
NATIVE WORD 
WORD 
WORD far * 

directorySize, 
paramObj, 
poolMin, 
poolMax, 
maxObjects, 
maxTasks, 
maxPriority, 
exceptHandler, 
jobFlags, 
taskPriority, 
startAddress, 
dataSeg, 
stackPtr, 
stackSize, 
taskFlags, 
exceptPtr) ; 

directorySize, 
paramObj, 
poolMin, 
poolMax, 
maxObjects, 
maxTasks, 
maxPriority, 
exceptHandler, 
jobFlags, 
taskPriority, 
startAddress, 
dataSeg, 
stackPtr, 
stackSize, 
taskFlags, 
exceptPtr); 

directorySize signifies the number of entries to reserve for the job's 
object directory. The value of this parameter determines in part how much 
memory will be used for the segment containing the job object itself. The 
object directory is implemented as a hash table within the job object. 

paramObject is a token for any iRMX object to be passed to the job. 
The object is normally a memory segment that contains data specific to 
one particular job out of a set of jobs that are otherwise identical. Applica-

3 All Nucleus system calls have names that start with rq, and those calls that take advantage 
of the extended features of the 80286 microprocessor or later start with rqe. Of course, the rqe 
calls are not available for iRMX 1. 
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tions that do not use this feature set this parameter to the selector of a null 
pointer (i.e., 16 bits of zeros). Any task belonging to a job can retrieve a 
copy of this token by calling rqgettasktokens(). I/O jobs and HI command 
jobs have a parameter object passed to them, which is the token for a seg
ment returned to the parent job when the child job calls rqexitiojob()4. This 
segment does not seem to contain any useful information when the job is 
created. 

poolMin and poolMax were discussed in chapter 6. For rqcreatejob(), 
these values cannot be greater than 1M, and for rqecreatejob( ), which is not 
available for iRMX I, the values cannot be greater than 16M for iRMX II 
or 4G for iRMX III. In all cases, the values specified are given in units of 
16-byte paragraphs. Thus, if you want a maximum memory pool of 512,000 
bytes for a job, specify a value of 32,000 for poolMax.5 

maxObj ects and maxTasks place a limit on the number of objects ajob 
can own in general, and on the number of task objects in particular. Values 
of OxFFFF indicate no limit. These limits cannot be set to zero because 
every job must own at least one object: its initial task. Values less than 
OxFFFF are subtracted from the corresponding limits for the parent job 
immediately, even before the child job creates any new objects. 

maxPriori ty is the numerically lowest scheduling priority (0 to 255) 
that any task belonging to the new job can take. If you specify a value of 0 
for this parameter, the job's maximum priority is set equal to its parent's 
maximum priority. A child job cannot have a higher maximum priority 
than its parent's, unless it is explicitly changed using the rqesetmaxprior
ity() system call after the job has been created. 

exceptHandler is a pointer to the exception handler structure de
scribed in chapter 6. A null pointer gives the job the system default handler 
and mode. 

j obFlags contains just one bit that might affect the job. If this parame
ter is set to 1, and neither the calling job nor any of its ancestor jobs has 
selected parameter checking, the system will not check the validity ofpa
rameter values passed to system calls by the tasks of the child job. A speed 
advantage can be obtained for time-critical applications by using this fea
ture for perfectly debugged applications. However, iRMX for Windows, as 
well as most other configurations of iRMX, have this bit turned off for the 
root job, so the argument is almost always ignored. 

The remaining parameters for these two calls are all concerned with the 
new job's initial task. Basically, they have the same values and interpreta-

'Phrases to the effect that "some job executes some code" is shorthand for saying "a task 
belonging to some job executes some code." 

552,000 is Ox7DOOO and 32,000 is Ox7DOO. The term paragraph is a holdover from real-mode 
addressing in which segments are always a multiple of 16 bytes in size because the l6-bit base 
address is shifted 4 bits left before adding the offset. 
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tions as the corresponding parameters to rqcreatetask(), (section 7.2) but 
there are a few differences to consider. 

taskPriori ty is the initial priority for the initial task. Its value is lim
ited by the maxPr ior i ty parameter for the job being created, not the call
ing task's job. 

s tartAddres s is interpreted the same as rqcreatetask(), but there is an 
important implication of the logic of this call: because this is a parameter 
being passed to the system subroutine that will create the memory pool for 
the new job, it is impossible for this pointer to point to an address within 
the new job's memory. That is, the initial task for every iRMXjob starts ex
ecuting code that resides in some other job's memory (or in system memory, 
which does not belong to any job).6 

An example of how this process might work is an application that con
tains separate procedures to be executed by the initial tasks ofthe applica
tion's various child jobs. All the procedures would be loaded as part of the 
application, and then, rather than call the procedures as subroutines, child 
jobs are created with their initial tasks set to execute the various proce
dures. Another example is the Application Loader (AL), which creates jobs 
with initial tasks set to start executing a loader procedure that loads a pro
gram into the new job's memory from a disk file, and then branches to it. 

The AL system calls are described in section 7.4.3. 
If stackPtr is a null pointer, the Nucleus will use the stackSize pa

rameter to create a segment for the task's stack, taking the memory for the 
stack from the new job's memory pool. If stackPtr is not null, the speci
fied segment will be used instead (normally a segment belonging to the 
creating job, but not necessarily), and the child job's memory pool will not 
be reduced by the size of the stack. 

7.4.2 Creating an 1/0 job 

Any task that makes calls to the Extended I/O System (EIOS) must belong 
to an I/O job. The reason for this requirement is the way I/O processing is 
performed, especially the file-protection mechanism, discussed in chapter 
8. Our focus at this point is to examine the rqcreateiojob() and rqecreateio
job() system calls provided by the EIOS to see how they relate to the corre
sponding Nucleus calls for creating jobs. The following are the function 
prototypes: -

extern TOKEN 
rqcreateiojob ( NATIVE WORD 

NATIVE_WORD 
EXCEPTIONSTRUCT far * 
WORD 

poolMin, 
poolMax, 
exceptHandler, 
jobFlaqs, 

8Unix aficionados might contrast this behavior to that system's fork() call that copies or 
maps the parent process's code into the child process's memory. 
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rqecreateiojob ( 
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BYTE 
far * 
TOKEN 
WORD far * 
NATIVE WORD 
WORD 
TOKEN 
WORD far * 

DWORD 
DWORD 
EXCEPTIONSTRUCT far * 
WORD 
BYTE 
far * 
TOKEN 
WORD far * 
NATIVE WORD 
WORD 
TOKEN 
WORD far * 

taskPriority, 
startAddress, 
dataSeg, 
stackPtr, 
stackSize, 
taskFlags, 
msgMbox, 
exceptPtr); 

poolMin, 
poolMax, 
exceptHandler, 
jobFlags, 
taskPriority, 
startAddress, 
dataSeg, 
stackPtr, 
stackSize, 
taskFlags, 
msgMbox, 
exceptPtr}; 

Most of the arguments to these two calls are exactly the same as the ar
guments to rqcreatejob( ) and rqecreatejob( ), with the same interpretations 
for all values. The exception is the taskFlags parameter, which includes 
a bit to indicate if the initial task ofthe 1/0 job is to start executing imme
diately or not. If not, the task is suspended until some other task calls 
rqstartiojob() with a token for the new job as its argument. This feature is 
used, for example, by the HI to allow it to alter the new job's object direc
tory before letting it start executing, as described in section 7.4.4. 

One additional parameter to these calls compared to the Nucleus calls is 
the msgMbox token (located in the second from the last position). This 
token is for a mailbox object to which a message will be sent when the new 
job terminates. (The use of iRMX mailbox objects was described earlier in 
this chapter.) The message sent to this mailbox is a segment that contains 
the following: 

• The token for the terminating job (useful if a parent job wants to monitor 
the completion of several child jobs by using a single mailbox for all ter
mination messages). 

• A fault code equal to the first parameter of tbe terminating job's call to 
rqexitiojob( ). 

• A message string (up to 89 bytes long) supplied as the second parameter 
of the terminating job's call to rqexitiojob(). 

• A termination code that states whether the terminating job called 
rqexitiojob( ) itself or was deleted for some other reason, such as by an ex
ception handler. This same segment is used internally by the EIOS as it 
sets up the object directory for the child job, and is used as the job's pa
rameter object for this reason. 
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I/O jobs provide a case history in the way iRMX can be extended to pro
vide type managers for new object types. The rules for making EIOS sys
tem calls from I/O jobs are well specified in the iRMX documentation, and 
explanations of how I/O jobs differ from Nucleus jobs are provided. There 
is also an explanation to deal with the catch-22 ofI/O jobs: I/O jobs can 
only be created by other I/O jobs. (One or more I/O jobs are "automati
cally" created when an iRMX system is initialized, provided the configura
tion includes the EIOS layer.) 

But what is an I/O job, really? How does it come into existence? Why is 
it necessary to have this second type of job? The answers cannot be com
plete at this point because all the necessary concepts have not been covered 
yet, but following are some of the answers. 

I/O jobs are composite objects. That is, they consist of other iRMX ob
jects. This new object type is defined by the EIOS job when it starts run
ning at system initialization time. The Nucleus calls involved with creat
ing a new object type and managing individual objects of that type are 
covered in chapter 10. The two points to know now are that composite ob
jects are implemented as lists oftokens for other objects, and that there is 
the provision for a type manager to supply a deletion mailbox for objects of 
the composite type. Composite objects can be deleted by calling a routine 
supplied by the type manager for the object type, or automatically by the 
Nucleus as it deletes all objects belonging to a terminating job. The dele
tion mailbox provides a mechanism for the type manager to find out if one 
ofthe composite objects it is managing is being deleted without a call to the 
manager's deletion routine. 

In the case of I/O jobs, the deletion routine provided by the type manager 
is the rqexitiojob() system call. By using a deletion mailbox, the EIOS can 
also be informed if an I/O job is deleted by some other means, such as by an 
exception handler (any job can be deleted by any task that knows the token 
for the job), or by the user typing < A C> if the job is being run as an HI 
command job. When ajob calls rqexitiojob(), or when a token for an I/O job 
arrives at the type manager's deletion mailbox, the type manager formats 
the job's termination message and sends it to the mailbox that was speci
fied in the IUsgMbox parameter when the job was created. 

How does the type manager know what mailbox to send the message to? 
The token from the IUS gMbox parameter was stored as one of the items in 
the list of objects for the I/O job object type. How does the Nucleus know 
enough to send the token for an I/O job to the type manager's deletion 
mailbox if the job is deleted by a call to rqdeletejob() (by an exception 
handler, for example) instead of by a call to rqexitiojob()? How does the I/O 
job type manager know which I/O job is calling its rqexitiojob() routine? 

The answer to the first question is that the Nucleus keeps a list of all ob
jects owned by each job so that it can delete the proper objects when ajob is 
deleted. When a job being deleted owns a composite object, rqdeletejob() 
automatically sends the token for the composite object to the proper dele-
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tion mailbox if there is one (and there is one for I/O jobs). That is, an I/O 
job is a composite object owned by a Nucleus job. When a Nucleus job is 
deleted, the composite object is sent to the deletion mailbox being moni
tored by the I/O job type manager in the EIOS. There is nothing circular 
nor even tricky happening here. Just a little complex. 

The secret is to reconstruct the logic of the rqcreateiojob() system call. 
When an application task calls rqcreateiojob(), it executes code in the 
EIOS that calls rqcreatejob( ) with the same parameters as were passed to 
itself except for two: the msgMbox is not passed because there is no way to 
do so, and the startAddress parameter is changed to point to a proce
dure within the EIOS. When the initial task ofthe new job starts executing 
this procedure, it executes the code to create an I/O job composite object. 
The tokens it places in this composite object are the following: 

1. A token for its own job (available in shared memory with the rest of the 
EIOS or by calling rqgettasktokens( ). 

2. The token for the msgMbox that was passed to rqcreateiojob() (available 
in memory shared with the rest of the EIOS). 

3. A token for the memory segment to hold the exit message sent to 
msgMbox when the job exits. (The segment is created by the task that 
called rqcreateiojob() so that it belongs to the parent job and will not be 
deleted when the child job exits.) 

The procedure being executed by the initial task then performs a bit 
more housekeeping and jumps to the code pointed to by the start
Address parameter of the rqcreateiojob() system call. If the taskFlags 
parameter for the job specifies suspending the initial task until rqstartio
job() is called, the task suspends itself before jumping to startAddress. 

That "bit more housekeeping" that the new job's initial task does before 
jumping to the startAddress provides the answer to the second ques
tion, which can be made a bit more general: How does the EIOS know what 
I/O job owns the task that makes any ofthe EIOS system calls that can be 
executed only by I/O jobs and not by Nucleus jobs? The secret lies in the 
use of an I/O job's object directory. Before jumping to s tartAddre s s, the 
initial task executes code to catalog four items into its own job's object di
rectory using the following names: 

R?IOJOB.7 This is the object directory name for the token for the I/O job 
composite object. The EIOS can call rqlookupobject(), described in chapter 
6, for a token with this name to find out if the calling job is an I/O job or 

7The choice of object directory entry names that start with RQ and R? was probably made to 
avoid conflicts with names used by application developers. They have nothing to do with the 
rq prefix used for all system call names (also chosen to avoid conflicts with application func
tion names) and nothing to do with the r? prefix used to name hidden files in the file system. 
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not.8 The EIOS' rqexitiojob() routine, in particular, looks up this object and 
extracts the token for the segment to hold the termination message and the 
token for the mailbox to which the message is sent. 

R?IOUSER. The token cataloged with this directory name is for another 
composite object type called an I/O user object. It consists of a memory 
segment containing a list of I6-bit user ID numbers (OxOOOO for the Super 
user, OxFFFF for the World user, and other values for individual users or 
groups defined in the User Definition File). A token for one of these objects 
is one of the parameters for the BIOS calls that perform user access check
ing, notably rqaopen(), described in chapter 8. When an application task 
calls the corresponding EIOS function rqsopen(), the EIOS uses this token 
as one of the parameters when it makes the call to rqaopen(). 

$. This name is a token for an I/O connection to the application task's 
current working directory. I/O connections are another composite object 
type. Like I/O user objects, they are managed by type manager code in the 
BIOS. The EIOS needs this to pass on to the BIOS when the application 
attaches to a file and does not supply a full pathname. Again, chapter 8 
provides more details about how I/O system calls work. 

RQGLOBAL. The EIOS maintains the concept of a global job for I/O jobs. 
One specific example of a global job is the one created when a user logs on to 
an iRMX system, which becomes the global job for all jobs created by that 
user. (Every HI command executed by the user is run as a child of this 
global job, and any I/O jobs created by those HI command jobs have the 
same global job.) The EIOS uses the global job's object directory as one of 
the places it searches for logical names during rqslookupconnection(). 
(Once again, refer to chapter 8 for more information about logical names 
and their associated system calls.) 

The last three of the preceding items are copied into the new I/O job's 
object directory from its parent job's object directory. Without worrying 
about why that should be done for now, consider how it could be done from 
a job management point of view. The parent job is the one that owns the 
task that called rqcreateiojob(), so the calling task could execute the calls to 
rqlookupobject() to get these tokens from its ownjob's object directory. The 
values of these tokens should be stored in memory locations accessible by 
the procedure executed by the initial task of the child job. The new job's 
task then catalogs the tokens using the same names in its own job's object 

SYou already know that "the calling job" means the job that owns the task that made the 
call. Now, add the shorthand of "the EIOS calls rqlookupobjectO" to mean that the task mak
ing an EIOS system call enters a procedure in the EIOS' part of system memory which con
tains the code to call rqlookupobject(). From this fact follows the important point that the ob
ject directory searched for the R?IOJOB entry is the one for the job that owns the task that 
makes the call, not the object directory for the EIOS job itself. 
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directory and then jumps to startAddress. Alternatively, the new job's 
task could look up the tokens in its parent job's object directory and then 
catalog them. 

The net result of this exercise is that you can see that an I/O job really is 
just a Nucleus job after all, but that it has had a particular set of objects ca
taloged in its object directory - objects that make it possible for the EIOS 
to obtain information it needs when the job makes EIOS system calls. "I/O 
job" is actually something else as well: it is the name of a composite object 
type whose type manager is provided by the EIOS, and the token for an in
stance of this object type is one of the items cataloged in the object direc
tory of every I/O job. 

7.4.3 Using the AL 

Many iRMX applications run in dedicated systems with both the as and 
the application jobs loaded into memory when the system is initialized. 
Chapter 3 introduced the sysload command that can be used to load such 
resident application jobs for iRMX for Windows systems. Traditional 
iRMX systems would use the Interactive Configuration Utility, described 
briefly in chapters 9 and 10 to incorporate applications into the as image. 
It is also possible to load application code into memory as the system is 
running by using the AL layer of the operating system9 • This section de
scribes the use of the AL to load an I/O job into memory from a disk file. 
The next section shows how this call can be used by the HI to create some 
of its offspring jobs. Sample code illustrating this technique is given in Fig
ures 7.4 and 7.5. The output from running the first program might look like 
this: 

This is the initial task: B9ES. 
I belong to job BSBO. 
My priority is OOSE. 
My maximum priority is OOSO. 
Now I will create a new I/O job. 

This is the initial task again. 
I created I/O job BASO. 
Its exit code was 1234. 
Now I will print its message and exit. 

Job: BASO. 
Task: BB5S. 
Priority: OOSO. 
Max priority: OOSo. 
Exit. 

9The sysload command uses the AL to load programs into memory. 
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The system call described here (rqsloadiojob() is one of several calls 
provided by the AL for loading code into memory. For example, rqaload() 
loads a program into memory but does not create a new job for it. The 
segments for the program's code, data, and stack segments are taken from 
the calling job's memory pool, and no task is created to execute the code. 
The call returns selectors for all the segments, and a far pointer to the exe
cution start address for the program. Another call, rqsoverlay(), is used to 
load different parts of a program into memory dynamically to reduce over
all memory requirements for the program at the expense of a run-time 
delay as the overlay is read in from the disk. Since these two calls do not 
create an I/O job, they can be used in configurations of iRMX that do not 
include the EIOS layer of the operating system. 

There is also an asynchronous version of rqsloadiojob() called rqaloadio
job() that allows the calling program to continue executing while the new 
job is being loaded from disk. The calling program must then check that the 
loading operation was successful using a technique analogous to that used 
for asynchronous I/O processing with the BIOS. 

The following is the function prototype for rqesloadiojob(). 

extern TOKEN 
rqesloadiojob ( STRING far * 

DWORD 
DWORD 
EXCEPTIONSTRUCT far * 
WORD 
BYTE 
WORD 
TOKEN 
WORD far * 

pathPtr, 
poolMin, 
poolMax, 
exceptHandler, 
jobFlags, 
taskPriority, 
taskFlags, 
msgMbox, 
exceptPtr); 

The first parameter is a pointer to an iRMX string (an array of bytes 
containing the length of the string in the first byte) that gives the iRMX 
pathname for the program to be loaded. Use the same rules for the path
name as when typing pathnames on a command line: if the pathname 
starts with /, :, or A, it is a full pathname; otherwise, the first element must 
be the name of a file or directory in the current working directory. 

The poolMin and poolMax parameters are normally coded as 0 for 
these calls, which means that the AL determines the appropriate values for 
these parameters before calling rqcreateiojob(). Recall from chapter 3 that 
an STL file begins with a header portion that tells the program's minimum 
and maximum memory pool requirements as specified on the bndX86 
command line, as well as the types and sizes of all the segments that make 
up the program. The AL reads in this header part of the file before it creates 
the I/O job and uses the information it finds there about the program's 
memory pool requirements to set those values for its call to rqcreateiojob(), 
unless the call to rqesloadiojob( ) provides nonzero values for these parame
ters, which would be used instead. 
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To solve the problem of loading a program into a job that has not yet 
been created, the AL has the new I/O job load itself into memory. 
You might be able to figure out how this is done by now. The AL sets the 
startAddress parameter of its own call to rqcreateiojob() to point to a 
procedure that it supplies for loading the program. That procedure ends 
with a call to create a new task that starts execution at the first instruction 
in the loaded program. The task that loaded the program (the real initial 
task of the child job) is used for loading overlays for the childjob if it needs 
them, or deletes itself if the program does not contain overlays. As far as 
the application is concerned, the second task created for the job is its initial 
task. Since all tasks belonging to a job are equivalent siblings, there is no 
significance whether the real initial task or some other task executes the 
job's code. 

The procedure that does the actual loading needs a certain minimum 
amount of memory for I/O buffers and its own housekeeping operations. If 
necessary, the mi nPoo 1 parameter for the call to rqcreateiojob( ) is adjusted 
to override the minimum memory pool specified in the loaded file's header 
to take this memory requirement into account. The segments created by 
this procedure are deleted when the loading operation finishes if the pro
gram does not contain overlays. 

7.4.4 HI offspring jobs 

The HI job is the first-level job created for the HI layer of the operating 
system when it initializes. The HI job creates a task for each terminal de
fined in :config:terminals, and each of these tasks displays a login 
prompt on its terminal's screen.lO When a user logs in, this task reads in
formation about the user from the :config:udf (User Definition File) 
and from a file that has the user's login name in the: conf ig: users di
rectory, and then creates a job that provides the environment for that 
user's work on the system. This job is referred to either as a eLI job, be
cause it includes the task that executes the command line interpreter for 
the user, or as a terminal job, because it is associated with a particular login 
terminal. As mentioned earlier, this job is an I/O job that acts as the global 
job for all other I/O jobs spawned from the user's login session. The HI 
creates this job using rqcreateiojob() with a value for the taskFlags pa
rameter that causes the initial task to wait before executing.l1 The HI then 
catalogs into the job's object directory tokens for those objects that it will 
need to perform its operations for the user. Some of these tokens replace 

l<Vfhe : conf i g : termi na 1 s file might specify a static logon user for the terminal, in which 
case the task automatically performs the login process for the user on that terminal. 

llBecause the HI job is not an I/O job (there is no R? rOJOB entry in its object directory), 
there seems to be a bit of forgery going on in the operating system to circumvent the rule that 
only I/O jobs can create I/O jobs. 
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objects already cataloged in the job's object directory by the EroS during 
the call to rqcreateiojob( ). The following is a list of the objects cataloged in a 
CLI job's object directory by the HI. 

R?IOJOB. This is the normal I/O job object cataloged by the EroS and 
unchanged by the Human Interface. 

R? roUSER. Each user logged onto an iRMX system is checked against the 
entries in the: conf ig: udf file, where group and individual user ID num
bers are stored. These ID numbers are used to build a new user object for 
the individual who logs in. This user object replaces the one copied into the 
job's object directory from its parent, the HI job. 

RQGLOBAL. This job is a global job itself, so the token cataloged under this 
name is changed from the copy inherited from the HI job into a token for 
itself. 

HOME. The user's pathname to the home directory of the file system is 
found in :config:users/<username> when the user logs in, and a 
token for an I/O connection to this directory is cataloged using this name. 

$ . The I/O connection token inherited from the HI job for the current 
working directory in the file system is changed to match the token cata
loged with the name HOME when the user logs in. No command changes the 
token cataloged with the name HOME, but $ changes when the user runs the 
attachfile command. 

PROG. This directory entry is cataloged with the token for an I/O connec
tion to the file system directory that has the pathname : home: prog. The 
CLI gets the r? logon and r? logoff files from this directory and submits 
them when the user logs on and off, respectively. 

TERM, cr, CO. The same token is cataloged with these three different 
names. The token is for an I/O connection to the user's console input and 
output devices. The same connection is used for all three because the key
board and CRT are parts of the same device, but the potential exists for 
separating CO and cr from TERM through command-line redirection using 
the > and < characters. 

As seen in chapter 8, HOME, $, PROG, TERM, cr, and CO are all logical 
names for I/O connections. To steal the thunder from that chapter a bit, all 
logical names are implemented by cataloging a token for an I/O connection 
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object in the root, global, or local job's object directory. (A local job is sim
ply whatever job owns the task that references the logical name.) 

The eLI procedure adds more entries to the eLi job's object directory 
beyond those placed there by the HI. These objects are used internally by 
the eLi, and include the following. 

R?CRT. A token for a segment that contains an iRMX string with the 
name for the type of terminal used for logging into the system. Applica
tions that need to do full-screen operations can find this name in the 
: conf ig: termcap file, along with the codes that a particular type of ter
minal recognizes for controlling the screen, and the keyboard codes the ter
minal generates for special keys such as the cursor arrow keys. The eLI, 
SoftScope, and Aedit use this information to adapt to different types of ter
minals. 

R? ALIAS. A token for a segment that contains all the command aliases the 
user has defined. 

R?BACKPOOL. A token for a segment that contains the default values for 
the minimum and maximum memory pool parameters that the eLi will 
use when creating a child job to run a background command. 

R?ERROR. A token for a segment that contains the termination code for 
the most recent HI command run by the user. At least some versions of the 
eLi do not update the contents of this segment. 

R?CURR$APP. A token for the HI command job that the user is running at 
the time. This token is not cataloged except when a command is actually 
running. 

To create the actual jobs used for the commands, a user types at a termi
nal (HI commandjobs), the eLIjob reads the command line from the key
board, and then sends the string typed by the user to the HI by calling 
rqcsendcommand(). The HI parses the command line, and searches a par
ticular set of directories in the file system for a file name that matches the 
beginning of the command line. It then passes the full pathname of this file 
as the first argument of a call to rqsloadiojob(), with the job's taskFlags 
parameter set to suspend execution. The HI then updates the new job's ob
ject directory with the entries it will need if the job makes any system calls 
to the HI layer (system calls with names that begin with rqc, such as 
rqcsendcoresponse() and rqcsendcommand()). It then calls rqstartiojob() 
and waits at the termination mailbox for the command job to exit. It then 
sets the condition code for the call to rqcsendcommand( ) to indicate the 
exit status of the job. Of course, all the code executed in the HI by rqcsend-
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command() is actually executed by a task in the CLI job, so the new HI 
command job is created as a child of the CLI job, and it is the CLI job task 
that actually waits at the termination mailbox for the command job to 
complete. 

The CLI is not the only command line interpreter in iRMX systems. The 
HI commands super, subniit, and esubmit all act as command line inter
preters. A simple command line interpreter is relatively easy to construct, 
and one is included in appendix C. . 



Chapter 

8 
I/O Management 

8.1 Overview 

The Basic I/O System (BIOS), Extended I/O System (EIOS), Human In
terface (HI), and User Development Interface (UDI) layers of an iRMX 
system provide system calls that application programs can use to perform 
input and output with peripheral devices connected to a computer system. 

The terms input and output can have different meanings in different 
contexts. This chapter discusses I/O between the memory of a processor 
running iRMX and either the peripherals attached to that computer di
rectly or the peripherals attached to a remote computer system running the 
networking software OpenNet. 

Access to remote peripherals is possible if the local iRMX system is con
figured to include a job called iRMX-Net. iRMX-Net uses ISO-standard 
communication protocols provided by a software module called iNA -960 to 
communicate with complementary software running on remote computer 
systems. The messages that iRMX-Net exchanges with remote systems 
are in Microsoft's Server Message Block (SMB) format. 

iRMX applications can also access any DOS device through the EDOS 
file driver described in this chapter. If the DOS side of an iRMX for Win
dows system has mapped remote devices to DOS drives using a Novell net
work, for example, those mapped devices are available to iRMX applica
tions through EDOS. What unifies all these ways of accessing I/O devices 
is that the same iRMX system calls, the ones described in this chapter, are 
used in all cases. 

Other types of information transfers are sometimes placed under the 
headings of input and output operations. For example, iRMX supports 
passing data from a task running on one computer to a task running on an
other. This form of I/O is called either message passing or inter process com
munication (IPC). The latter is a term borrowed from Unix, where threads 
of execution are called processes. iRMX supports message passing between 
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computers running iRMX as well as other operating systems. The two 
techniques available for this are Nucleus Communications Service for 
communications between tasks (processes) running on two computers 
connected by a Multibus II system bus, and the ISO Transport Layer ser
vices provided by iNA -960. IPC mechanisms based on iNA -960 are covered 
in chapter 11. 

This chapter is divided into three parts. The first part presents the sys
tem calls that the BIOS and EIOS provide for performing data operations, 
which involves developing a model for talking about I/O operations and an 
introduction to how files are maintained on an iRMX file system. The sec
ond part covers some of the other services provided by the BIOS, such as 
special device-dependent functions, user authentication, and time-of-day 
management. The third part of the chapter describes the disk structure of a 
native-mode iRMX file system and the utility program called diskverify 
that can examine and modify that structure. 

8.2 Data Operations 

One byword of the iRMX I/O system is device independence. No matter 
what type of actual device a program works with, whether a disk drive, 
printer, terminal, or robot, the program uses the same two system calls for 
data transfers, rqaread() and rqawrite(), which are provided by the BIOS 
layer. Other system calls for data transfers are provided by the EIOS, HI, 
and UDI layers, but all those calls ultimately interface to these two BIOS 
calls that actually do the work. 

To accomplish this degree of device independence, the BIOS must be 
able to use mechanisms to transform a device-independent system call like 
rqaread( ) into the very specific and device-dependent actions that must be 
invoked to perform a particular data transfer. Whether an application pro
grammer is fully aware of these mechanisms or not, applications must per
form a number of steps to prepare the BIOS for the device-independent 
calls to rqaread( ) or rqawrite(). Some of these calls are device dependent, 
but most are device independent. This section looks at those steps and ex
plains how they relate to the structure of the BIOS. 

8.2.1 An 1/0 model 

One problem with learning any new system is mastering the terminology 
used to describe it. The iRMX I/O system uses consistent terminology for 
various concepts relating to data -transfer operations. The terms are based 
on a model situation in which a task does data transfers to and from named 
files located on a disk drive. The same terms are then expanded to encom
pass how to access generalized peripheral devices in a device-independent 
way. The model situation is described first. 
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Consider the structure of an actual iRMX file found on a disk device for
matted to hold an iRMX file system. iRMX can work with disks that have 
been formatted with other file systems, notably the MS-DOS file system, 
but the iRMX file system provides a somewhat more general model than 
DOS. Details about the internal structure of an iRMX disk volume are 
presented in the last section of this chapter, while the DOS file system is 
described in a number of different sources, such as the Disk Explorer man
ual provided with the Norton Utilities software package for DOS. For now, 
some general characteristics of how files are stored and accessed are dis
cussed. 

A disk file is always organized as an unstructured sequence of bytes. The 
operating system does not add any control characters like record marks or 
end-of-file marks to the contents of a file. Instead, it maintains a separate 
data structure for each file that tells what disk blocks the file occupies, the 
total size of the file, and housekeeping information (discussed later). An 
iRMX disk block and a DOS file cluster are conceptually similar con
structs. They refer to the smallest amount of space on a disk that can be 
allocated to a file, and they cannot be shared by more than one file. The size 
of disk blocks is fixed for a particular disk volume and is always an integral 
multiple of the sector size for the volume. The size requirement is because 
of the hardware restriction that one sector is the smallest amount of data 
that can be transferred to or from the disk at a time. A disk volume means 
one hard disk drive, one partition on a disk drive, or one diskette. 

The housekeeping information that the I/O system maintains for disk 
files allows the disk files to occupy noncontiguous blocks of the disk. This 
fragmentation leads to efficiently using the space on a disk volume, but can 
result in performance problems because the disk heads can be forced to 
move to widely different locations on the disk to access different parts of a 
file. If you are familiar with the DOS file system, you probably already 
know that this same problem exists there too, and that DOS utility pro
grams can reorganize a disk to make files contiguous. The problem is par
ticularly serious for real-time systems which need to work with determin
istic response times to meet their deadlines. The iRMX technique for deal
ing with the problem is given in the description of rqacreatefile(), section 
8.2.6. 

An iRMX application must create an open connection to a file before it 
can read or write to it. Since many files can exist on a single volume, it fol
lows that the system supports multiple simultaneous connections to files 
on a single disk device. In fact, the system allows multiple simultaneous 
connections even to a single file on the disk, provided that the different ap
plications that have open connections to the file agree about how they will 
share the file with one another. 

Sharing refers to the possible combinations of exclusive or shared access 
to a file for reading and/or writing. When an application opens its connec
tion to a file, it indicates the operations it intends to perform {read and/or 
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write) and tells which operations it is willing to allow other applications to 
perform simultaneously. The I/O system checks the logical consistency be
tween this application's request and all other open connections to the same 
file. An application closes its connection to the file when it no longer needs 
to access it, and the I/O system then updates its record of sharing con
straints for the file. 

Creating a connection to a file is a two-step process. First, the applica
tion must either create an I/O connection to the device that holds the file or 
reference an existing I/O connection to the device. It then creates its con
nection to the file based on the connection to the device. Only one connec
tion can exist to a device at one time, so that connection is normally made 
readily available for sharing among the various applications that might 
want to use it as the basis for creating connections to files on the device. 
Creating an I/O connection to a device initializes a software module called 
a device driver that acts as the interface between the OS and the hardware 
device controller used to operate the device. (Device drivers are the topic of 
chapter 9.) Creating a connection to a device also associates another soft
ware module, a file driver, with the connection and all file connections 
based on it. 

Following is a list of the steps that must be taken to perform data 
transfers on an iRMX system, along with the names of the system calls 
that might be used at each step. The calls that begin rqa are provided by the 
BIOS layer, the others are provided by the EIOS layer. Only steps 2 
through 5 are normally performed from with an application program. 

1. Connect to the device. (This step can also be done by the HI command, 
attachdevice. ) 
rqaphysicalattachdevice( ) 
rqlogicalattachdevice( ) 

2. Connect to the file. (This step can also be done by the HI command, at
tachfile.) 
rqaattachfile( ) 
rqacreatefile( ) 
rqacreatedirectory() 
rqsattachfile( ) 
rqscreatefile( ) 
rqscreatedirectory( ) 

3. Open the file. 
rqaopen( ) 
rqsopen( ) 

4. Read and/or write. 
rqaread( ) 
rqawrite( ) 
rqaseek( ) 



rqatruncate( ) 
rqsreadmove( ) 
rqswritemove( ) 
rqsseek() 
rqstruncatefile( ) 

5. Close the file. 
rqaclose() 
rqsclose( ) 
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6. Disconnect from the file. (This step can also be done by the HI com
mand, detachfile.) 
rqadeleteconnection( ) 
rqsdeleteconnection( ) 

7. Disconnect from the device. (This step can also be done by the HI com
mand, detachdevice.) 
rqaphysicaldetachdevice( ) 
rqlogicaldetachdevice( ) 
rqhybriddetachdevice( ) 

The iRMX I/O system uses this same model and its terminology for all 
data transfer operations, not just disk file I/O. Even if an application is 
writing to a printer, it first obtains a connection to the device and then uses 
that connection as the basis for creating a connection to a file on the device, 
even though printers do not actually have files on (or in) them, according to 
the traditional use of the word file. 

The device independence that arises from using the connect-to-a-file 
model for all I/O operations produces two "Big Wins," one for application 
developers and one for system programmers. 

Application programs are easily written to be device independent. Because 
the same system call is used to write to a printer, a terminal screen, or a file, 
the actual device involved can be changed without changing the program. 
This, of course is the idea of command-line redirection using the '>' and 
'<' symbols, but redirection is used in less obvious situations as well. For 
example, a program that reads from the console input device normally re
ceives its input from a keyboard, but the source is automatically changed to 
come from a disk file when the command is run from a submit file. 

System programmers benefit from device independence. This indepen
dence is achieved by partitioning the I/O system into modules with well
defined interfaces between them. System developers can thus extend the 
functionality of the I/O system without interfering with existing applica
tions and with minimal changes to existing portions ofthe I/O system it
self. For example, support for network operations and the DOS file system 
have been added to iRMX without adding any new system calls or chang-
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ing the logic of most existing I/O system calls. About the only change, aside 
from the added functionality, was the addition of new condition-code 
values returned by existing system calls. This modular organization with 
well-defined interfaces between modules also makes the addition of user
written device drivers to the system a relatively straightforward operation, 
as seen in chapter 9. 

8.2.2 Sample I/O programs 

Figures 8.1 and 8.2 are equivalent PLM and C programs that illustrate the 
steps a program takes to perform I/O transfers on an iRMX system. These 
programs are not typical device-independent applications. They are coded 
to illustrate all the steps in the model, rather than just usual program steps. 
Device-independent programs would not call rqlogicalattachdevice() 
themselves. Rather, a user would make the connection to a particular de
vice outside the program, such as by issuing the HI attachdevice command 

. before running the program. 
The programs read from the console input device device - inde

pendently (input can be redirected by using the '<' character on the 
command line), but write to a file on a particular device, calledb_dos. The 
programs will run on an iRMX for Windows system running on an AT 
platform with a DOS-formatted diskette in drive B:, but if you do run 
them, be sure there is not a file named type on • txt that you care about on 
the diskette you have in drive B:. The program will overwrite it. 

The programs begin· by creating a connection to the b _ dos device by 
calling rqlogicalattachdevice(). They then obtain connections to two files. 
For the output, a true named file on the diskette is used, but for the input, 
the connection is to the console keyboard device. The rqscreatefile() sys
tem call is used to connect to the output file and create it if it does not yet 
exist. The rqsattachfile() call is used to connect to the console input device 
as a file, using the logical name: ci: to identify the connection to the de
vice that serves as the basis for the connection to the file.1 This rqsattach
file() system call can also be used to connect to disk files that already exist. 

Once the connections to files have been created, they are opened, and the 
reading/writing loop proceeds until the user types a null line at the key
board (By pressing < A Z > at the beginning of aline) or until the end of file 
is reached in the case where the input has been redirected to come from a 
file. The program calls for the use of an I/O system buffer for the output 
connection (the third parameter of the call to rqsopen( ), which means that 
output accumulates in the buffer until it fills, at which point it is written to 
the disk, and a new buffer is begun. If the buffer is partially full after the 

1 Actually, : ci: is already a connection to a file at this point. It was originally a connection 
to a device, and the I/O system builds on this device information to create a connection to a 
file. 
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Figure 8.1 Sample PLM program illustrating I/O using EIOS system calls; the program reads 
from the console keyboard and writes to a disk file named type on • txt on the B: disk of an 
AT computer. 

/***> typeon.plm <**************************************************** 

Sample PLM program to illustrate EIOS I/O 
The program reads lines from the keyboard and writes them to a 
file named typeon.txt on the B: drive of a PC. 

**********************************************************************/ 

$title ('Sample program to illustrate EIOS 1/0'1 
typeon: DO; 
$include (typeon.extl 

DECLARE 
EDOS 
READALL 
WRITENONE 

LITERALLY 
LITERALLY 
LITERALLY 

(console, filel 
(bytesRead, bytesWrittenl 
buffer (801 
Status 

'6' , 

'5' , 

TOKEN, 
WORD_32, 
BYTE, 
WORD_16 ; 

/* Execution Starts Here 

*/ 
/* Establish a connection to the b_dos device with the logical 

name :B:. This is equivalent to the HI command, 
ATTACHDEVICE B_DOS AS B EDOS 

*/ 

CALL rqlogicalattachdevice (@(1, 'b'l, @(5, 'b_dos' I , EDOS, @Statusl; 

/* Create connections to two files, the console input device and 
a file on the disk, and open them appropriately. 

*/ 

console = rqsattachfile (@(4,':ci:'I, @Statusl; 
file = rqscreatefile (@(13,':b:typeon.txt'l, @Statusl; 
CALL rqsopen (console, READALL, 0, @Statusl; 
CALL rqsopen (file, WRITENONE, 1, @Statusl: 

/* Read from console, write to file -- until done 

*/ 
bytesRead = rqsreadmove (console, @buffer, size(bufferl, @Statusl: 
DO WHILE bytesRead <> 0; 

bytesWritten = rqswritemove (file, @buffer, bytesRead, @Statusl; 
bytesRead = rqsreadmove (console, @buffer, size(bufferl, @Statusl; 

END; 

/* Close file, detach device, and exit 

*/ 
CALL rqsclose (file, @Statusl: 
CALL rqlogicaldetachdevice (@(l, 'b'l, @Statusl; 
CALL rqexitiojob (0, NIL, @Statusl; 

END typeon; 
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Figure 8.2 C program equivalent to Fig. 8.1. 

/***> typeon.c <**************************************************** 

* Sample C program to illustrate EIOS I/O 
The program reads lines from the keyboard and writes them to a 
file named typeon.txt on the B: drive of a PC. 

**********************************************************************/ 

#include <rmxc.h> 
#include <string.h> 

#define ALWAYS 3 
#define EDOS 6 
#define READALL I 
#define WRITENONE 5 

main (int argc, char *argv[J) 

EXCEPTIONSTRUCT ehStruct; 
TOKEN 
DWORD 
BYTE 
STRING 

console, file; 
bytesRead, bytesWritten; 
buffer [80J; 
b[J = "b", b_dos[J = "b_dos" , ci[J 
pathName [J = ": b: typeon. txt" ; 

WORD Status; 

/* Convert C strings to iRMX strings 

*/ 
udistr (b, b); 
udistr (b_dos, b_dos); 
udistr (ci, ci); 
udistr (pathName, pathName); 

/* Let exception handler take care of errors 

*/ 
rqgetexceptionhandier (&ehStruct, &Status); 
ehStruct.exceptionmode = ALWAYS; 
rqsetexceptionhandler (&ehStruct, &Status); 

II :ci: II I 

/* Establish a connection to the b_dos device with the logical 
name :B:. This is equivalent to the HI command, 

ATTACHDEVICE B_DOS AS B EDOS 

*/ 
rqlogicalattachdevice (b, b_dos, EDOS, &Status); 

/* Create connections to two files, the console input device and 
a file on the disk, and open them appropriately. 

*/ 
console = rqsattachfile (ci, &Status); 
file = rqscreatefile (pathName, &Status); 
rqsopen (console, READALL, 0, &Status); 
rqsopen (file, WRITENONE, 1, &Status); 

/* Read from console, write to file -- until done. 



Figure 8.2 (Continued) 

*/ 
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bytesRead = rqsreadmove (console, buffer, sizeof (buffer), &Status); 
while (bytesRead != 0) { 

bytesWritten = rqswritemove (file, buffer, bytesRead, &Status); 
bytesRead = rqsreadmove (console, buffer, sizeof (buffer), 

&Status) ; 
} 

/* Close file, detach device, and exit. 

*/ 
rqsclose (file, &Status); 
rqlogicaldetachdevice (b, &Status); 
rqexitiojob (0, NULL, &Status); 

last write operation to the file, the partially full buffer is written when the 
connection is closed. The file is closed automatically when the application 
exits, but the file must be closed explicitly for this program because the 
program deletes the connection to the device containing the file before ex
iting by calling rqlogicaldetachdevice( ). That system call does not flush the 
EIOS's buffers for file connections based on the device connection before 
deleting the device connection. The issue is not important for the input 
side because that connection is opened with no buffering and the connec
tion to the device is not deleted by the program.2 

8.2.3 Synchronous and asynchronous 
I/O operations 

Most system calls for most operating systems are synchronous. A task 
makes a system call, and does not return to the calling program until all 
operations associated with the system call are complete. That is, the re
sumption of the calling program is automatically synchronized with the 
completion of the system call. For an I/O system call, this means that the 
calling task could be delayed for relatively long periods of time. Waiting 
several dozen milliseconds for a disk transfer to occur is a very long wait for 
an application that measures the time it takes to process a real-time event 
in microseconds. (Imagine reading from a terminal's keyboard when the 
operator decides it's time for a coffee break!) 

If a task returns from a system call before the logic of the call completes, 
the system call is said to be asynchronous. Asynchronous system calls allow 
a task to be more productive; the task can perform other computations 
while another task executes the logic of the system call concurrently. A 

2If there were input buffering, the application's call to rqsreadmove() would not complete 
until the user typed 1,024 characters. This is not an issue for the sample programs, but it could 
wreak havoc with the "user-friendliness" of an interactive program! 
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mechanism must exist then by which a task can determine when the con
current part of the call has actually completed. That is, there must be a way 
for the calling task and the task executing the system call to resynchronize. 

A major distinction between the BIOS and EIOS layers of iRMX is that 
the BIOS layer supports asynchronous operation for most of the system 
calls it provides, but the EIOS supports only synchronous operations. The 
resynchronization mechanism is this: when the calling task makes an 
asynchronous system call, it supplies a token for a mailbox as one of the pa
rameters. (This parameter is referred to as responseMbx in the system 
calls that follow.) The BIOS does some initial processing ofthe system call 
to ensure that the parameters for the system call make sense, and returns 
to the calling task. If the condition code returned for this synchronous part 
ofthe system call is 0 (E_OK), it means that a task in the BIOS has been 
dispatched to process the concurrent part ofthe call. When that task com
pletes, it sends the token for a memory segment to responseMbx, having 
placed information in that segment to indicate whether the asynchronous 
part of the system call completed successfully or not. When the calling task 
is ready to resynchronize, it can use either oftwo system calls. The task can 
call rqreceivemessage() to obtain the token for the segment sent to the 
mailbox, in which case the task must examine the contents of the memory 
segment to determine the result of the call. Alternatively, the task can call 
a BI as function, rqwaitio( ), which receives the segment at the mailbox, ex
amines the contents of the mailbox to determine how the asynchronous 
part of the call fared, and sets its own condition code to indicate the result. 
For both rqreceivemessage() and rqwaitio(), the normal rules for iRMX 
mailboxes apply. If a token is at the mailbox when the call is made, the call 
completes immediately; if a token is not at the mailbox, the calling task is 
put to sleep until either a token arrives or until a time limit, specified as the 
value of a parameter to the system call, expires. 

Figure 8.3 is a PLM program that performs the same function as the pro
grams in Figures 8.1 and 8.2, but uses BIOS calls instead of EIOS calls to 
demonstrate asynchronous coding. If nothing else, this program should 
make it clear to you how much easier it is to use EIOS calls! The C program 
to do the same thing has generously been left as an exercise for you to do. 

The EIOS implements a second form of synchronization important to 
recognize. All I/O operations performed through the EIOS using an I/O 
connection are serialized. That is, once any task issues a call to rqsread
move(), for example, using a particular I/O connection, the EIOS will not 
release to the BIOS any I/O requests made by other tasks that use the same 
connection object. If different tasks have different connections to the same 
file, the EIOS will allow them to access the file concurrently (provided the 
connections are opened for sharing), but tasks cannot perform concurrent 
I/O operations using a single connection. The BIOS does not implement 
any such serialization of I/O requests. 
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Figure 8.3 PLM program equivalent to Fig. 8.1, using BIOS (asynchronous) system calls. 

/***> atypeon.plm <************************************************** 

* PLM program to illustrate asynchronous (BIOS) I/O 

* 
The program reads from the keyboard and writes to a disk file 
called typeon.txt on the B: drive of a PC. 

* 
**********************************************************************/ 

$title ('Sample program to illustrate BIOS I/O') 
atypeon: DO; 
$include (atypeon.ext) 

DECLARE 

$ELSE 

$ENDIF 

$ELSE 

$ENDIF 

EDOS LITERALLY '6' , 
SEGMENT LITERALLY '6' , 
READ LITERALLY '1' , 
WRITE LITERALLY '2' , 
SHARENONE LITERALLY '0' , 
SHAREALL LITERALLY '3' , 
HARD LITERALLY 'OFFh' , 

(console, file, inMbx, iorsTkn, 
outMbx, b_dos) TOKEN, 
(bytesRead, bytesWritten) 
(ibuffer, obuffer) (80) 
(ioStatus, Status) 

iors BASED iorsTkn STRUCTURE 
status WORD_16, 
unit$status WORD_16, 

actual 

actual 
actual$fill 

device 

WORD_16, 
WORD_16, 

unit BYTE, 
function BYTE, 
sub$function WORD_16, 
device$location WORD_32, 
buffer$p POINTER, 

count 

count 
count$fill 

auxilary$p 
link$for 
link$back 
resp$mbox 
done 
iors$fill 
cancel$id 
conn$t 

WORD_16, 
WORD_16, 

POINTER, 
POINTER, 
POINTER, 
TOKEN, 
BYTE, 
BYTE, 
TOKEN, 
TOKEN) ; 

DWORD, 
BYTE, 
WORD_16, 
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Figure 8.3 ( Continued) 

/* Execution Starts Here 

*/ 

Set up response mailboxes for asynchronous operations 
Strategy will be to initiate operation on one connection before 
waiting for previous operation on other connection to complete 

inMbx = rqcreatemailbox (0, @Status); 
outMbx = rqcreatemailbox (0, @Status); 

/* Establish a connection to the b_dos' device with no logical name 

*/ 
CALL rqaphysicalattachdevice (@(5,'b_dos'), EDOS, outMbx, @Status); 

/* Create connection to the console input device as a file 

*/ 
CALL rqaattachfile (selectorof(NIL) , 

rqslookupconnection (@(4,':CI:'), @Status), 
NIL, inMbx, @Status); 

/* Wait for output attachdevice to complete; create output file 

*/ 
iorsTkn = rqreceivemessage (outMbx, DFFFFh, NIL, @Status); 
IF rqgettype (iorsTkn, @Status) = SEGMENT THEN 

CALL rqexitiojob (iors.Status, @(20, 'Attach Device Failed'), 
@Status) ; 

b_dos = iorsTkn; 
CALL rqacreatefile (selector$of(NIL) , b_dos, @(10, 'typeon.txt'), 

Illlb, 0, 0, 0, outMbx, @Status); 

/* Wait for input attachfile to complete; open input for reading, 
share with all 

*/ 

iorsTkn = rqreceivemessage (inMbx, OFFFFh, NIL, @Status); 
IF rqgettype (iorsTkn, @Status) = SEGMENT THEN 

CALL rqexitiojob (iors.Status, @(18,'Attach File Failed'), 
@Status) ; 

console = iorsTkn; 
CALL rqaopen (console, READ, SHAREALL, inMbx, @Status); 

/* Wait for output createfile to complete; open output for writing, 
share wi th all 

*/ 
iorsTkn = rqreceivemessage (outMbx, DFFFFh, NIL, @Status); 
IF rqgettype (iorsTkn, @Status) = SEGMENT THEN 

CALL rqexitiojob (iors.Status, @(18, 'Create File Failed'), 
@Status) ; 

file iorsTkn; 
CALL rqaopen (file, WRITE, SHARE NONE , outMbx, @Status); 
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Figure 8.3 ( Continued) 

/* Set up for main loop: Be sure both connections opened all right, 
and initiate first read from console 

*/ 

iorsTkn = rqreceivemessage (inMbx, OFFFFh, NIL, @Status); 
IF iors.Status <> 0 THEN 

CALL rqexitiojob (iors.Status, @(17, 'Open Input Failed'), 
@Status) ; 

CALL rqaread (console, @ibuffer, size(ibuffer), inMbx, @Status); 
iorsTkn = rqreceivemessage (outMbx, OFFFFh, NIL, @Status); 
if iors.Status <> 0 THEN 

CALL rqexitiojob (iors.Status, @(20, 'Open Output Failed'), 
@Status) ; 

/* Wait for first read to complete and initiate first write 

*/ 
bytesRead = rqwaitio (console, inMbx, OFFFFh, @Status); 
if Status <> 0 THEN 

CALL rqexitiojob (Status, @(11, 'Read Failed'), @Status); 
CALL movb(@ibuffer, @obuffer, bytesRead); 
CALL rqawrite (file, @obuffer, bytesRead, outMbx, @Status); 
CALL rqaread (console, @ibuffer, size(ibuffer), inMbx, @Status); 

/* Read from console, write to file -- until done 

*/ 
DO WHILE bytesRead <> 0; 

bytesRead = rqwaitio (console, inMbx, OFFFFh, @Status); 
if Status <> 0 THEN 

CALL rqexitiojob (Status, @(ll, 'Read Failed'), @Status); 
bytesWritten = rqwaitio (file, outMbx, OFFFFh, @Status); 
if Status <> 0 THEN 

CALL rqexitiojob (Status, @(12, 'Write Failed'), @Status); 
CALL movb(@ibuffer, @obuffer, bytesRead); 
CALL rqawrite (file, @obuffer, bytesRead, outMbx, @Status); 
CALL rqaread (console, @ibuffer, size(ibuffer), inMbx, @Status); 

END; 

/* Detach device and exit 

*/ 
CALL rqaphysicaldetachdevice (b_dos, HARD, selectorof(NIL) , 

@Status) ; 
CALL rqexitiojob (0, @(11, 'Normal Exit'), @Status); 

END atypeon; 

Asynchronous system calls have names that begin with rqa, and equiva
lent synchronous call have names that begin with rqs. When a function 
that is available through both asynchronous and synchronous system calls 
is discussed, the name will start with rq {as J to indicate both calls. 
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8.2.4 IORSs and DUIBs 

To describe the logic of certain I/O operations, you need to know the names 
of two data structures associated with the I/O system and what they are 
used for. The actual contents of each data structure are covered in some 
detail in chapter 9, where their roles in the operation of I/O device drivers 
are discussed. 

The first data structure is called a Device Unit Information Block, or 
DUIB. This data structure contains the information the I/O system needs 
to work with a particular I/O device unit, such as a certain disk drive or ter
minal. A list of DUIBs is kept in memory at all times, and a unique ASCII 
name exists for each possible device to which an application could connect. 
These DUIB names are also known as physical device names, and they were 
mentioned in chapter 2 when the attachdevice HI command was intro
duced. You can use the physnames command to list the DUIBs on a system. 

The D UIB named b _ dos was used in the sample programs in Figures 8.1 
and 8.2. If you know the name for a DUIB, you can see what the I/O system 
knows about it by using the system debugger (or SoftScope) vb command. 
The structure of aD UIB is not of concern here, but the fields are discussed in 
chapter 9, and a typedef for this data structure is presented. 

The other data structure is called an Input/Output Request/Result Seg
ment, or 10RS. (At any moment it is either a request segment or a result 
segment, so it gets only one R in its acronym.) IORS is the segment that is 
sent to responseMbx when the asynchronous part of a BIOS system call 
completes. It is created when the synchronous part of the call is made, 
when it gets filled with information supplied by the parameters to the sys
tem call and then sent to the proper device driver to perform the work of 
the system call. When the device driver task completes its work for the 
operation, it puts a result code and other information, such as the actual 
number of bytes that were read or written, into other fields of the same 
IORS, and sends the token for the 10RS to the response mailbox. The fol
lowing is the typedef for an IORS. 

#pragma noalign (iorsStruct) 
typedef struct iorsStruct ( 

WORD 
WORD 
NATIVE WORD 

#if _ARCHITECTURE_ < 386 
WORD 

#endif 
WORD 
BYTE 
BYTE 
WORD 
DWORD 
BYTE far * 

status; 
unitStatus; 
actual; 

actualfill; 

device; 
unit; 
funct; 
subfunct; 
deviceloc; 
buff; 



NATIVE WORD 
Hif _ARCHITECTURE_ < 386 

WORD 
Hendif 

void far * 
iorsStruct far 

* 
iorsStruct far 

* 
TOKEN 
BYTE 
BYTE 
TOKEN 
TOKEN 

} IORSSTRUCT; 

count; 

countfill; 

aux; 

linkForward; 

linkBackward; 
responseMbx; 
done; 
fill; 
cancelID; 
connection; 

1/0 Management 279 

The first word, status, gives the concurrent condition code for 
asynchronous system calls, with E_OK (zero) signifying normal comple
tion. Most of the other fields in this structure will make more sense as you 
read more of this chapter, so you might want to refer back to the structure 
from time to time. 

8.2.5 1/0 connection objects 

Our model for iRMX I/O has an application connect to a device first and 
then to a file on the device. In keeping with the object-based nature of 
iRMX, the I/O system provides an object type, called an I/O connection, to 
manage the connections that applications make. The sample programs 
used variables named console and file to hold tokens for I/O connec
tion objects. The structure of the information inside a connection object 
varies, depending on what type of device it connects to and whether it rep
resents a connection to the device itself or a connection to a file on the de
vice. You can talk about a device connection or a file connection, but both 
terms refer to the same object type, except with different internal data 
structures. 

To make an application device independent, the application should in
clude the code for connecting to a file, but not the code for connecting to a 
particular device. You can use logical names to accomplish this. To con
nect to a file, the application must specify an existing device-connection 
object. Tokens for a number of device-connection objects can be cataloged 
into the object directory of a well-known job (normally the root job of the 
system or the global job for the application) using well-known directory 
entry names. Applications then obtain device-connection tokens by refer
encing these well-known names rather than the actual device names. This 
way, the same application can work with different devices by transparently 
changing the device connection object that has been cataloged with the 
well-known name. 
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The well-known names in the object directories are called logical names, 
The EIOS conveniently provides system calls for setting up these logical 
names and searching the proper object directories for them for the applica
tion programs. The HI commands attachdevice and attach file introduced in 
chapter 2 allow users to set up logical names from the command line. 

Connections to devices can be shared across jobs, but connections to files 
cannot. Each job must obtain its own connection objects to files. It's not 
that two jobs cannot access the Same file simultaneously, it's just that tasks 
in different jobs cannot use the same connection object to do so. The issue 
is one of system integrity. If two jobs share an open file connection and the 
job that owns the connection terminates, the other job is left with a token 
for a connection object that does not exist. This type of problem exists 
whenever jobs share objects, but for file connections, the memory protec
tion faults and issues of file integrity that could ensue are too serious to 
allow the situation to occur at all. If a job can access a token for a file con
nection that belongs to another job, the BIOS system calls rqaattachfileO 
or rqacreatefileO can be used to copy the existing connection object, but 
this copy belongs to the calling job so that the job can have its own cQnnec
tion to the file. 

8.2.6 System calls for managing 
connection objects 

The BIOS and EIOS each supply a system call to create a connection object 
for a device. The following is the BIOS version. 

extern void 
rqaphysicalattachde~ice ( STRING far * 

BYTE 
TOKEN 
WORD far * 

deviceNamePtr, 
fileDriver, 
responseMbx, 
exceptPtr); 

deviceNamePtr is a pointer to an iRMX string (which consist of a byte 
containing the length of the string followed by the bytes that constitute the 
actual string) that names the DUIB for the device to be attached. The type 
of device is specified by the fileDriver parameter, with the following 
possible values. 

Physical. The physical file driver is used for devices such as printers and 
terminals that do not support named file systems, It is also used for disks to 
be accessed on a block-by-block basis rather than by named files. The 
terms physical file driver and physical attachdevice have nothing to do with 
each other. Physical file driver identifies one of the five file drivers in this 
list. Physical attachdevice differentiates this system call from the EIOS 
system call logical attachdevice. 
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Stream. An iRMX stream is not really a peripheral device. Tasks can 
communicate with each other by writing to and reading from streams. The 
data that is read or written is transferred using memory buffers managed 
by the stream file driver. 

Named. The named file driver is used for disks formatted to use the iRMX 
file system structure described later in this chapter. Name is the type of file 
system described in chapter 2. 

Remote. The remote file driver is used for remote computer systems con
nected to the local computer by a network that supports Intel's OpenNet 
protocols. OpenNet uses ISO protocols to connect computers running 
iRMX, XENIX, UNIX System V, DOS, and V AX/VMS. The messages 
that OpenNet passes over the network adhere to Microsoft's Server Mes
sage Block (SMB) protocol. 

EDOS. This acronym stands for Encapsulated DOS, and is used with disks 
formatted under Microsoft DOS. EDOS file systems are simpler but have 
fewer capabilities compared to iRMX Named file systems. This file driver 
allows access to DOS disks using the same syntax as for accessing iRMX 
files. For example, EDOS uses the forward slash character to separate 
components of a path name rather than the backslash used by DOS. 

Not all iRMX configurations support all five device types. As the name 
for this parameter implies, each type of device is supported by a software 
module called a file driver. Device driver might seem more appropriate, but 
file driver makes sense if you think of this module as the one that trans
forms file-oriented system calls into device-specific operations. Thus, ap
plication tasks, file drivers, and device drivers are related as shown, with 
the file driver layer named for the interface it presents to the application 
tasks above it. 

Application Task 

File Driver 

Device Driver 

Because rqaphysicalattachdevice() is an asynchronous system call (note 
the rqa prefix to the system call name), the token for the new connection 
object is not returned immediately. Rather, the token is sent to the 
responseMbx mailbox after the asynchronous part ofthe call completes. 
This process is an exception to the general procedure for asynchronous 
BIOS calls. An IORS is sent to responseMbx only ifthis call fails, with the 
reason for failure given in a status field within the IORS. 
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This feature thus raises the question of how a task can know whether a 
token it receives at a message mailbox is for an IORS or an I/O connection 
object. The answer is that each iRMX object type has an associated type 
code, which can be determined by passing the token as a parameter to the 
system call rqgettype(), which will return a word containing one ofthe fol
lowing values: 

OxOOOl 
Ox0002 
Ox0003 
Ox0004 
Ox0005 
Ox0006 
Ox0007 
Ox0009 
OxOOOA 
Ox0100 
Ox010l 
Ox0300 
Ox030l 
Ox8000·0xFFFF 

Job 
Task 
Mailbox 
Semaphore 
Region 
Segment 
Extension 
Multibus II Port 
Buffer Pool 
Composite (I/O User) 
Composite (I/O Connection) 
Composite (I/O Job) 
Composite (Logical Device) 
User-Created Composites 

Thus, the type code for the token that arrives at responseMbx is Ox010l if 
the connection was created successfully, but Ox0006 ifthe call failed and an 
IORS is returned instead, as illustrated several times in Figure 8.3. 

A critical concept here is that the I/O connection object created by rqa
physicalattachdevice() belongs to the job that created it, and is automati
cally deleted when the job that created it terminates. Since device connec
tions are normally shared across jobs, they should continue to exist after 
the job that creates them terminates. For example, the attachdevice HI 
command allows users to create a device connection and associated 
logical name that persist after the HI attachdevice command job exits. To 
achieve this permanence, the EIOS provides the rqlogicalattachdevice() 
system call, which causes a task owned by the EIOS to call rqaphysical
attachdevice(). This way, the device connection is owned by the EIOS 
job, and remains in place after the job for the attachdevice command 
exits. 

Very few applications call rqaphysicalattachdevice( ) to create connec
tions that they use themselves. In addition to the problem of non perman
ent connection objects, applications that call rqaphysicalattachdevice( ) or 
rqlogicalattachdevice() lose their device independence. Rather, jobs usually 
catalog the token for the connection to a device in an object directory where 
other jobs can access it. This concept is the heart ofthe EIOS logical name 
construct. 

The EIOS manages a composite object type called a logical connection 
(object type Ox0301) for this purpose. When an application calls rqlogi
calattachdevice(), the EIOS creates a type Ox0301 object and catalogs the 
token for it in the root job's object directory. Later, when the first file con-
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nection based on this logical name is made, the EIOS calls rqaphysicalat
tachdevice() to create the type OxOlOl object, waits at responseMbx for 
the asynchronous part of that call to complete, and updates the type 
Ox0301 object to include the token for the type OxOlOl object. Thus, a logi
cal name is the name of an object cataloged in the root job's object directory 
that can be used to find the token for a connection to a device. The EIOS 
handles logical names for connections to files a little differently, as you will 
soon see. 

If you could enter an HI logicalnames command during the execution of 
the sample I/O programs, you would see the logical name B in the list 
displayed by the command. If you build the program and omit the call to 
rqlogicaldetachdevice(), the logical name would still be in place after the 
program stops running. If you look in the object directory of the root job 
while the program is running (using SoftScope), you will find a token for a 
type Ox0301 object cataloged with the name B. If you dump the memory 
segment for the type Ox0301 object before the call to rqscreatefile(), and 
then again after that call, you would find that a token for a type OxOlOl ob
ject appears in the segment as the result of the call. The following is the 
function prototype for rqlogicalattachdevice(). 

extern void 
rqlogicalattachdevice ( STRING far * 

STRING far * 
BYTE 
WORD far * 

logicalNamePtr, 
deviceNamePtr, 
fileDriver, 
exceptPtr); 

logicalNamePtr points to an iRMX string for the logical name to be 
created. The type Ox0301 object will be cataloged in the root job's object di
rectory using this name. Colons around the name are optional, and letter 
case does not matter. The EIOS strips off any colons and converts all let
ters to uppercase before it calls rqcatalogobject(). EIOS also converts logi
cal names into this canonical form before it calls rqlookupobject(), such as 
when an application task calls the EIOS system call rqlookupconnection(). 
The colons around a logical name are needed only when a pathname is 
supplied to the EIOS, so EIOS can recognize whether the pathname begins 
with a logical name or not. 

deviceNameptr and fileDriver are coded exactly the same as the 
corresponding parameters to rqaphysicalattachdevice(). The EIOS simply 
stores them in the new type Ox0301 object until the logical name is used for 
connecting to a file, at which time they are used as parameters in a call to 
rqaphysicalattachdevice( ). 

Once a device connection has been created, it can then be used to create a 
file connection using one of two BIOS calls. The first one is rqaattachfile(), 
which can be used regardless of which file driver was used when the I/O 
connection to the device was created. 
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extern void 
rqaattachfile ( TOKEN 

TOKEN 
STRING far * 
TOKEN 
WORD far * 

user, 
prefix, 
subpathPtr, 
responseMbx, 
exceptPtr); 

A token for either a new I/O connection object (type OxOIOI) or an 10RS, 
in case of an error, is returned to responseMbx when the asynchronous 
part of this call completes. 

user is a token for an 1/0 user object (composite object type OxOlOO) 
that consists of a list of user ID numbers. This user object is used only for 
files that reside on devices attached with the named or remote file driver. 
You can omit this parameter by coding a selector for a null pointer (a word 
of zeros). If you omit this parameter for a file that resides on a device at
tached with the named or remote file driver, the BIOS will use the default 
user object for the job, which is the one cataloged in the job's object direc
tory under the name R?IOUSER. In general, the user object is not used 
when the file is attached, it is simply added to the I/O connection object at 
this time and used later., when the file is opened, to check for a user's access 
rights to the file. For remote files, the user object is used immediately, along 
with the user's name and encrypted password from the: conf ig: udf file, 
to verify that the person who logged on to the local system is a legitimate 
user on the remote system, with the same password on both systems3• 

prefix and subpathPtr are used together to identify the file to be at
tached. Various combinations of these two parameters are possible, de
pending on the file driver being used. These combinations are: 

File Driver Prefix 

Physical or Stream Either a token for a connec
tion to the device, or a null 
selector. 

Named, Remote, or ED OS Either a token for a connec
tion to the device, or a null 
selector. 

Subpath 

Null pointer. Always ig
nored. 

Either a pointer to a path
name string or a null pointer. 

If pref ix is a null selector (a I6-bit word of zeros), a default prefix must 
exist for the job, which is a token for a connection object cataloged in the 
job's object directory using the name $. The prefix itself can be a token for a 
connection to either a device or a file, because connections to files imply a 

3iRMX is not a secure time-sharing system because any user who can execute a program 
can create a user object that includes the superuser's ID, giving the user super-user privileges 
for at least for the duration of the user's program. On the other hand, the operating system 
does not extend this laissez-faire attitude to computer systems with which it shares a network. 
iRMX systems do not allow users to break security mechanisms of remote systems through 
their own security loopholes. 



1/0 Management 285 

unique device to the I/O system. In an apparent inversion of the normal 
relationship between the BIOS and the EIOS, you can specify a type 
Ox0301 connection object as the prefix (a token for a logical name created 
by the EIOS), and the BIOS will extract the embedded OxOlOl connection 
object from it automatically, provided the connection has been physically 
attached through a previous EIOS system call. 

subpathPtr points to a string that actually names the file to be ac
cessed. It is always a null pointer for physical and stream devices because 
those devices do not support named files. For the Named, Remote, and 
EDOS file drivers, the pathname string identifies a file or directory that 
can be located by starting at the file or directory specified by the prefix and 
then following <A> and <I> characters in the string to determine what 
directory contains the file being attached. If the pathname string starts 
with <I>, the search for the file always starts at the root directory of the 
device specified or implied by the prefix. 

Although the rules about the prefix token and the subpathPtr string 
are complex, they need not be too confusing. One point to remember is that 
the prefix can specify a connection to either a device or a file. A second 
point is that the named, remote, and EDOS file drivers do not distinguish 
between files and directories at this point, so the token returned by the 
asynchronous part of the call can be for an I/O connection object to either a 
file or a directory. Finally, the relationships between the prefix and the 
subpath should become more intuitive when you look at the corresponding 
EIOS call, rqsattachfile(), used in the sample I/O programs: 

extern TOKEN 
rqsattachfile ( STRING far * 

WORD far * 
pathPtr, 
exceptPtr); 

The token returned by this system call is for a type OxOlOl connection ob
ject, not for a type Ox0301 object. The latter are used only for logical device 
connections. 

The EIOS code for this call generates a call to rqaattachfile( ). How does 
the EIOS have values for all the parameters for the call to rqaattachfile() 
when it receives only two parameters for a call to rqsattachfile()? First, the 
user parameter is always set to a null selector so that the BIOS will use the 
default user object, which is always cataloged in the object directory of an 
I/O job. Second, the EIOS has its own mailbox it uses for responseMbx, so 
that leaves only the prefix and subpathPtr parameters. Clearly, the 
EIOS creates the values for these two parameters from the pathPtr it re
ceives. 

The syntax rules for constructing the string pointed to by pa thPtr are 
the same introduced in chapter 2 for typing pathnames in commands en
tered at the iRMX> prompt. The key to parsing a pathname string lies in 
the value of the first character in the string. 
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Rule First Character at pathPtr prefix subpathPtr 

1 $ Null selector. Pointer to second char-
acter at pathPtr if 
there is one, otherwise 
null selector. 

2 : Look up the logical Pointer to the first char-
name. If the type Ox0301 acter after the second : 
object does not yet con- in the path if there is 
tain a type OxOlOl ob- one, otherwise, null se-
ject, call rqaphysicalat- lector. 
tachdevice () to get one. 
Use the token for the 
type OxOlOl object. 

3 I Null selector. pathPtr. 

4 A Null selector pathPtr. 

5 Other character Null selector pathPtr. 

Rule 1 includes four subcases: 

1. The string following the $ character is empty. The application obtains a 
second connection to the same device or file that $ represents. Useful for 
an application that changes $ temporarily. 

2. The character following the $ is a /. Same as Rule 3. 

3. The character following the $ is a A. Same as Rule 4. 

4. Any other character follows the $. Same as Rule 5. 

Rule 2 is used when the pathname starts with a logical name. The file or 
device represented by the logical name is the prefix, and anything that fol
lows the logical name is the subpath. This use of a logical name to specify 
the prefix can save a lot of time compared to a full pathname starting at the 
root ofthe file system because the directories that lead from the root to the 
point of the logical name do not need to be searched. 

In the case of Rule 3, a full pathname is specified from the root directory 
of the volume that contains the default prefix file. 

Rule 4 is used for a pathname that is specified relative to the default pre
fix file, and Rule 5 is the same as Rule 4 as far as the EIOS is concerned. 
The BIOS, however, starts at different parts of the file system tree for 
Rules 4 and 5. 

The other calls for creating connections to files are used only with de
vices that actually support named file systems (devices connected using 
the Named, Remote, or EDOS file drivers). These two calls, rqacreatefile() 
and rqscreatefile(), as their names imply, create a file on the disk if one does 
not already exist. If the file does already exist, the application can specify 
what to do with the current contents of the file for rqacreatefile(), but the 
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contents are always discarded for rqscreatefile( ). The following is the more 
complicated BIOS version first: 

extern void 
rqacreatefile ( TOKEN 

TOKEN 
STRING far * 
BYTE 
WORD 
DWORD 
BYTE 
TOKEN 
WORD far * 

user, 
prefix, 
subpathPtr, 
access, 
granularity, 
size, 
mustCreate, 
responseMbx, 
exceptPtr ) ; 

The parameters with the same names as the corresponding rqaattachfile() 
parameters have the same interpretations here as for that call. 

access specifies the access rights with which the file is to be created. 
Four possible values tell whether the owner of the file can perform delete, 
read, append (write to the end) or update (write anywhere) operations on 
the file. The rq[asJchangeaccess() system calls can set the access rights for 
other users. The EDOS file driver creates all files with read access enabled 
for the World user because of the nature of the DOS file system. The Re
mote file driver must map these access rights to those of the remote oper
ating system as best it can. The value for this parameter can be computed 
by adding the values one, two, four, and eight for delete, read, append, and 
update access rights, respectively. 

The next three parameters, granularity, size, and mustCreate, 
work together to produce various effects. They control whether existing 
files are truncated or not, and they allow you to create three different types 
of new files: normal, real-time, and temporary. 

Truncating existing files. Existing files are truncated when the size pa
rameter has a value of O. For new files, a size of 0 simply means that the file 
will not have any disk blocks allocated to it until an application opens and 
writes to the file. If you specify a value greater than 0 for s i z e, enough disk 
blocks to accommodate the number of bytes specified will be allocated to 
the file, but not initialized with data in any way. If the file already exists, its 
current size will be either extended or shortened to match the size speci
fied. Again, bytes added to a file this way are not initialized. 

Normal iRMX file. A normal file is one that is allocated space on the disk 
volume on a demand basis. Normal files are likely to be fragmented because 
no particular constraint is placed on the locations of the disk blocks allo
cated to the file. A file's granularity is the number of disk blocks allocated 
to the file when it becomes too large for its current allocation, or freed when 
it becomes smaller. The expected size and growth dynamics of the new file 
determine the best value for this parameter. A large value can improve per
formance if a file is going to grow quickly, since the overhead of allocating 
new blocks to the file does not occur as often. On the other hand, a large file 
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granularity might result in wasted disk space. If a file needs just a few bytes 
beyond the end of its current last block, it is still allocated the number of 
bytes given by granulari ty. Most ofthose bytes are wasted until the file 
grows to occupy them. The granulari ty parameter is specified in bytes 
so that applications do not need to know what the block size of the disks 
being worked with are, but 1,024 is the most commonly used block size for 
iRMX disks. This parameter is automatically rounded up by the BIOS to 
be a multiple of the disk block size if necessary. 

Real-time file. A real-time file is a contiguous file. To create a real-time 
file, you must specify the size of the file using the size parameter and use a 
value of OxFFFF for the file granularity. The file is allocated a contiguous 
set of disk blocks if possible. The system allows a real-time file to be ex
tended beyond its initial size, but any blocks added to the file after it is cre
ated are not necessarily contiguous. The EDOS file driver does not support 
real-time files. 

Temporary file. A temporary file is an unnamed file automatically deleted 
when the connection to it is deleted, which is normally when the job that 
created it terminates. The BIOS actually deletes the file when the last con
nection to it is deleted in case the connection is shared across jobs. To 
create a temporary file, the prefix/subpath combination must identify an 
existing directory (not a file) and the mustCreate parameter is set to false 
(0). A connection to a named or EDOS disk device can be used as a connec~ 
tion to the root directory of that device, providing a convenient place to put 
temporary files. 

A user can create a temporary file in any directory, whether that user has 
write access to the directory or not, because no directory entry is actually 
created for the temporary file. The exception to this case is for a temporary 
file created on a remote computer's disk. The temporary file is actually en
tered into the directory of the remote system, which requires the user to 
have write permission on the remote system. 

The mustCrea te parameter can also be used to ensure the file being cre
ated does not yet exist. If the parameter is true and the prefix/subpath does 
identify an existing file rather than a directory, the system call fails with a 
condition code of E_FEXIST (Ox0020). Unix users might think this fea
ture is important, as it is the basis for an important type of Unix IPC, file 
locks. File locks are not normally used on iRMX systems because of the 
more efficient mechanisms for IPC supplied by the Nucleus. 

In contrast to the BIOS version, the rqscreatefile() system call provided 
by the EIOS is simplicity itself. The price paid for this simplicity is loss of 
functionality, however. The following is the prototype. 

extern TOKEN 
rqscreatefile ( STRING far * 

WORD far * 
pathPtr, 
exceptPtr ) ; 

You can create normal and temporary files with this system call, but not 
real-time (contiguous) files. If the file already exists, this call always tries 
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to truncate the file length to O. The prefix/subpath parameters for the 
EIOS call to rqacreatefile() are created using the same rules as for rqsat
tachfile( ). 

The reasons for using rqacreatefile() insteadofthe.rqsattachfile() call are 
for the following reasons: 

• To obtain asynchronous processing of the system call. Several disk ac
cesses are involved in each level ofthe file system tree that must be tra
versed to access a file or directory, so this call can take a relatively long 
time to execute. 

• To create the file with the owner's initial access rights set to something 
other than delete, read, update and append. 

• To pre-allocate disk blocks to a normal file or to set the size of an existing 
file to a value other than zero. 

• To create a real-time (contiguous) file. 

8.2.7 System calls for data transfers 

Once a connection to a file has been created, whether the file is a disk file or 
simply a physical or stream device that is to be treated as a file, the connec
tion must be opened before reading or writing with it. Three issues must be 
resolved when a connection is opened: sharing (all connections), access 
rights (connections based on the Named, Remote, and EDOS file drivers 
only), and buffering (rqsopen() only). The following is the BIOS call for 
opening a connection. 

extern void 
rqaopen ( TOKEN 

BYTE 
BYTE 
TOKEN 
WORD far * 

connection, 
mode, 
share, 
responseMbx, 
exceptPtr ) ; 

connection is a token for a connection to a file (not a device) that could 
have been created by a BIOS or EIOS attachfile or createfile system call. 
The connection object cannot be open at the time this call is made, al
though it can be closed and reopened any number of times. 

mode is a value to indicate whether the connection will be used for read
ing (a value of 1), writing (a value of 2), or both (a value of 3). share is a 
value to indicate whether the application is willing to share the file with 
other readers (a value of 1), other writers (a value of 2), both readers and 
writers (a value of3), or no other readers or writers (a value of 0). Ifa file is a 
directory, it must be opened for reading only, share with all. Special system 
calls exist for reading and writing directories. This call always returns an 
IORS to the response mailbox, and the application can use either the 
rqwaitio() or rqreceivemessage( ) system call to check for the result of the 
asynchronous part of this system call. 

To take advantage of the automatic buffering facilities available with 
the EIOS, use rqsopen() instead: 
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extern void 
rqsopen ( TOKEN 

BYTE 
BYTE 
WORD far * 

connection, 
mode, 
numBuffers, 
exceptPtr); 

The value of mode is set to a single value that combines the mode and 
share parameters of rqaopen( J. The value is a number between 1 and 12 as 
follows: 

Share Share Share Share 
with None with Readers with Writers with Both 

Open for reading 4 7 10 1 
Open for writing 5 8 11 2 
Open for both 6 9 12 3 

Mode number 1 is used for reading and share with all, which is the value 
that must be used for opening connections to directory files. 

numBuffers is used to invoke automatic ErOS buffering of I/O data 
transfers, if desired. The EIOS maintains a pool of 1,024 byte buffers that 
it can use for managing data transfers. If you specify a value of 0 for this 
parameter, the EIOS will not buffer data for this connection. Whatever is 
written from an application program's buffer is transferred immediately to 
the device, and whatever is read from the device is copied immediately into 
a buffer supplied by the application. As mentioned previously, a value of 0 
is particularly appropriate for terminals, for which buffering can lead to 
confusing interactions for a terminal user. 

When the EIOS does buffering, it attempts to optimize data transfers to 
and from the device. If the program is reading from a file, the EIOS will 
start reading from the next sequential location in the file as soon as it has 
finished reading from the current location. It will continue reading ahead 
until it exhausts the number of buffers specified in the call to rqsopenO. 
Likewise, when a program writes to a file using buffering, the EIOS does 
not actually write information to the file until a buffer is filled, which is 
then written to the device while the application proceeds to write more in
formation into another EIOS buffer. If an application opens two files, one 
for reading and one for writing, each with two buffers, the EIOS allows the 
application to copy one file to the other with full overlap of reading and 
writing operations, but without the application handling asynchronous 
I/O at the BIOS level. 

EIOS buffering is not always a good idea for disk file I/O. If an applica
tion uses rqsseek( J (described in section 8.2.8) to read from nonconsecutive 
locations within a file, the reading ahead that the EIOS does results in 
extra disk accesses that interfere with the actual disk operations the appli
cation needs to perform. Also, large transfers might be performed more ef
ficiently by using larger buffers than the ones used by the EIOS. The EIOS 
uses a fixed size for all of its internal buffers, normally 1,024 bytes. This 
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buffer size can be set for the Named, EDOS, and Remote file drivers in the 
rrnx. ini file or can be set using the ICU (discussed in chapter 9) for sys
tems that do not support the ICU. 

The BIOS calls for reading and writing are: 
extern void 
rqaread ( 

extern void 
rqawrite ( 

TOKEN 
BYTE far * 
DWORD 
TOKEN 
WORD far * 

TOKEN 
BYTE far * 
DWORD 
TOKEN 
WORD far * 

For the EIOS, the calls are: 

extern NATIVE WORD 
rqsreadmove ( 

extern NATIVE WORD 
rqswritemove ( 

TOKEN 
BYTE far * 
DWORD 
WORD far * 

TOKEN 
BYTE far * 
DWORD 
WORD far * 

connection, 
bufferPtr, 
count, 
responseMbx, 
exceptPtr); 

connection, 
bufferPtr, 
count, 
responseMbx, 
exceptPtr ) ; 

connection, 
bufferPtr, 
count, 
exceptPtr); 

connection, 
bufferPtr, 
count, 
exceptPtr); 

For all of these calls, the number of coun t bytes are read or written using 
the open file connection object specified by connection. The bytes are 
written from or read into the memory location pointed to by bufferPtr. 
The actual number of bytes read or written is normally equal to the value of 
coun t, but will be less if an attempt is made to read past the end of the file, 
to write to a full disk, or if a memory protection violation occurs while ac
cessing the buffer pointed to by bufferptr. The actual number of bytes 
transferred is the returned value for the EIOS functions. For the BIOS 
calls, the actual number of bytes transferred is returned in the laRS when 
the asynchronous part of the call completes. The word move in the names 
of the EIOS functions refer to the fact that these functions move data be
tween the application program's buffer and one ofthe EIOS's buffers, with 
the actual read or write operation occurring according to the buffering 
technique in place for the connection. 

The BIOS rejects calls to rqaread() and rqawrite() for connections 
opened by the EIOS with a condition code value ofE_BUFFEREDCONN 
(Ox0036), so the EIOS record of what buffers contain what information for 
a file do not become invalid by circumventing the EIOS calls. 

8.2.8 Seek and truncate operations 

Two other system calls fall into the data operations category, seeking to a 
particular position in a file, and truncating a file. Both of these system calls 
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are executed in the BIOS by updating housekeeping information in mem
ory, and they complete their execution very rapidly. Both operations might 
also initiate more time-consuming operations, however, that take place 
after the system call completes. The potentially time-consuming opera
tions are discussed first, then the system calls that are used to initiate 
them. 

Disk access. Disk access time is the time it takes to transfer data to or 
from a disk device. The four components to this time interval, are seek, se
lect, search, and transfer times. To understand these components, the 
structure of a disk must first be reviewed. 

Information is recorded on a disk by rotating a rigid or flexible surface 
under a read/write head. The read/write head assembly can be positioned 
at a number of discrete positions on the recording surface, defining a num
ber of concentric circles where data can be stored, called tracks. 

Each track is divided into a fixed number of segments called sectors, with 
one sector being the smallest amount of information that can be written to 
or read from a disk at one time. Typically, between 256 and 1,024 bytes are 
stored per sector, and between 9 and 63 or more sectors exist per track. 

Flexible disks normally have two recording surfaces, one on each side of 
the rotating material, and two read/write heads linked together so that ei
ther of two tracks, one on either side of the diskette, can be accessed from 
one read/write head position. Hard disks often have several rotating plat
ters linked together, with a linked set of read/write heads (two per platter) 
that can be positioned simultaneously. The tracks that can be accessed 
from a single position of the read/write heads are called a cylinder. For a 
floppy disk, there are two tracks per cylinder, and for a hard disk, there are 
two times the number of platters for each cylinder. Hard disks typically 
have 200 to 400 or more cylinders and anywhere from two to 50 platters. 

Seek time is the time it takes to move the read/write heads from their 
current position to the cylinder that contains the next data to be read or 
written. The term track-to-track positioning time is generally used to refer 
to the time it takes to move the read/write heads from one cylinder to an 
adjacent cylinder, which is usually a few milliseconds for hard drives. 
Because of the inertia involved in starting and stopping head movements, 
less time is required to move the heads as a group across a set of adjacent 
cylinders than to move across the same set one at a time. For a truly ran
dom set of disk accesses, the average seek time should be one half the time 
to move the read/write heads across all the cylinders on the disk, or half 
a second for a 200 cylinder drive with a track-to-track positioning time 
of 5 msec. 

Select time is the time it takes to select the read/write head that will be 
used for accessing one of the tracks in the cylinder. This operation is done 
electronically and is normally overlapped in time with one ofthe mechani
cal operations involved in accessing the disk. 
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Search time, sometimes called rotational delay, is the amount of time it 
takes for the desired sector to start passing under the read/write heads ( 
once the heads have been positioned on the proper track. Sometimes, the 
proper sector arrives almost immediately, other times the sector has just 
gone past the head. The average search time equals half the time it takes 
the disk to make one complete revolution. Hard disks typically rotate at 
3,600 RPM, leading to average search times of 8 msec. 

Data transfer time is the time it takes to copy information from the sur
face of the disk into the computer's memory, or vice versa, which usually 
expressed as its reciprocal, data transfer rate. More factors are involved 
here than just the time it takes for a sector to pass under the read/write 
head, including the speed of the bus connecting the disk to the system's 
memory. Values range from 1 KB to 8 MB per second. 

One factor that can effect average search time for those cases in which 
several sectors are to be read or written sequentially is the order in which 
consecutively numbered sectors are stored on a track, which does not have 
to be in consecutive positions. The sectors on a track can be interleaved. 
For example, if nine sectors are stored in the sequence 1,6,2,7,3,8,4,9,5, the 
track is said to be 2-way interleaved because logically consecutive sectors 
are physically 2 sectors apart on the track. Interleaving can reduce average 
search time for computers that need to read consecutive sectors, but that 
cannot issue the commands to read successive sectors as fast as the sectors 
arrive at the read/write heads. Interleaving can be done easily because the 
logical number of each sector is stored on the disk at the beginning of the 
sector. The term search time refers to the fact that the disk controller 
searches a track for a sector with the logical number requested by the soft
ware driver, which makes the order ofthe logical sectors on the disk arbi
trary, as far as the disk controller is concerned. 

High-performance disks typically provide a cache on the disk controller 
capable of holding all the data for a complete track. By starting to read into 
this cache as soon as the heads reach the proper cylinder, the effects ofro
tational delay can be minimized and the need for interleaving eliminated. 
Three conclusions can be drawn from disk access time: 

1. Disk access time is a composite value that depends on the physical 
characteristics of the disk, the organization of the information on the 
disk, and the pattern of accesses made to the data on the disk. 

2. Seek time is just one component of the time it takes to read or write disk 
data. 

3. Beware of anyone who tries to use the value of just one component of 
disk access time to tell you how fast a disk is, especially if that person is 
trying to sell you a disk! 

The BIOS and EIOS system calls for controlling the position of disk ac
cesses within a file are as follows: 
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extern void 
rqaseek ( 

extern void 
rqsseek ( 

TOKEN 
BYTE 
DWORD 
TOKEN 
WORD far * 

TOKEN 
BYTE 
DWORD 
WORD far * 

connection, 
mode, 
seekAmount, 
responseMbx, 
exceptPtr ) ; 

connection, 
mOde, 
seekAmount, 
exceptPtr); 

The BIOS maintains a DWORD in the data structure for an open con
nection to a disk file that signifies the next position in the file for reading or 
writing. This value is often called a file pointer but it is not a memory 
pointer (selector and offset), just an unsigned integer that starts at 0 when 
the file is opened and is incremented by the number of bytes actually 
transferred each time the file is read or written. For the Named file driver, 
the seek system calls simply assign a new value to this variable so that the 
next read or write operation occurs at the desired location within the file. 
In this instance, the system call executes very quickly, but it can affect the 
amount of time it takes to perform the next disk transfer for the file. For 
the physical file driver, seek calls are passed to the device driver immedi
ately. Thus, the name seek for these calls is only loosely linked to the actual 
hardware seek operation performed during a disk access. 

Seeking can affect the allocation of disk blocks to a file. If you seek to the 
end of a file and then write data to the file, the new data goes into whatever 
space is still available in the last data block allocated to the file, and causes 
a new block to be allocated if the last one fills up. If you seek beyond the 
current end of a file, additional disk blocks are allocated to the file for the 
space between the current end of file and the new end of file, but the bytes 
in that unused part of the file are not initialized. 

These two system calls are interchangeable except the BIOS will not 
work with buffered EIOS connections mode tells one of four ways to inter
pret seekAmount: 

• The new file position is to be the current file position minus seekA
mount (mode-i). 

• The new file position is to be the value of seekAmount (mode - 2 ) . 

• The new file position is to be the current file position plus seekAmount 
(mode-3 ). 

• The new file position is to be the end of the file minus seekAmount 
(mode-4 ). 

Seek operations can be performed with connections built on the physical 
file driver as well as the Named, Remote, and EDOS if it makes sense to do 
so. You cannot seek with a terminal, but you can seek on a disk that was 
attached with the physical file driver. Such disks are just one big file as far 
as iRMX is concerned. 
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File truncation. File truncation is very similar to seeking. The following 
are the calls: 

extern void 
rqatruncate ( 

extern void 
rqstruncatefile ( 

TOKEN 
TOKEN 
WORD far * 

TOKEN 
WORD far * 

connection, 
responseMbx, 
exceptPtr); 

connection, 
exceptPtr); 

These calls set the end of file to the current file position. Truncating is 
normally viewed as a way to remove all or part of a file, but by preceding a 
truncate call with a seek call beyond the end of the file, this call actually 
enlarges a file. Any disk blocks between the new end-of-file and the old 
end-of-file are released to the disk's free space immediately by this call if 
this call shrinks the file, or allocated immediately if the call enlarges the 
file. This call cannot be used with file connections based on the physical 
file driver because there is no known software technique for making a phys
ical disk drive change its size. 

8.3 Special Functions 

Device-independent system calls are great, but they do not format disk 
drives or control character echoing on a terminal. Rather than add a new 
system call to the EIOS and BIOS for every device-dependent operation 
that an application might need to perform, one system call provides access 
to whatever special functions might be provided by a particular device 
driver. These system calls, appropriately enough, are called rqaspecial() 
and rqsspecial( J. Each device driver in the system supports its own (possi
bly empty) set of special functions. The functions for formatting a disk 
drive and basic terminal operations are used as examples; If you are inter
ested you can find out more from the documentation available for the var
ious device drivers4. The following are the two system calls for special 
operations: 

extern void 
rqaspecial ( TOKEN 

WORD 
void far * 
TOKEN 
WORD far * 

connection, 
functionCode, 
parameterPtr, 
responseMbx, 
exceptPtr); 

4'fhe device drivers provided with the operating system are documented in the iRMX De
vice Driver Programming Concepts manual, volume 7 of the iRMX for Windows documenta
tion set. 
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extern void 
rqsspecial ( TOKEN 

WORD 
void far * 
IORSSTRUCT far * 
WORD far * 

connection, 
functionCode, 
parameterPtr, 
iorsPtr, 
exceptPtr) ; 

Here is a case where the EIOS user can work with the IORS that is nor
mally returned to responseMbx for BIOS calls. Most EIOS users do not 
need this information, and code iorsptr as a null pointer. If iorsPtr is 
not null, the EIOS receives the IORS at its own mailbox and copies part of 
it to the data structure the caller has reserved at the address pointed to by 
iorsPtr. The typedef rORSSTRUCT in: include: rrnxc .hdefinestheac
tual fields returned for rqsspecial(). 
iorsPtr. The typedef rORSSTRUCT in : inlcude: rrnxc. h defines the ac
tual fields returned for rqsspecial(). 

The functionCode parameter specifies which of several special opera
tions the device driver is to perform. Each device driver can interpret the 
function code differently, but the device drivers supplied with the operat
ing system all interpret the values listed in Table 8.1 uniformly. The File 
Driver column in the figure lists the file drivers that can be used to connect 
to device drivers that support the functions listed. The functions are im
plemented by device drivers, not file drivers. If you add your own device 
driver and want it to support special functions other than those listed in 
the figure, use values from Ox8000 to OxFFFF to ensure no conflict occurs 
with any additional standard codes that might be added to the system. 

TABLE 8.1 Function Codes for rqaspec/al(} and rqspec/al(}. 

Code 

o 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14,15 
16 
17 
18 
19-0x7FFF 
Ox8000-0xFFF 

Function 

Format track 
Query 
Satisfy 
Notify 
Get disk/tape data 
Get terminal data 
Set terminal data 
Set signal 
Rewind tape 
Read tape file mark 
Write tape file mark 
Retension tape 
Set character font 
Set bad track/sector information 
Get bad track/sector information 
Reserved 
Get terminal status 
Cancel terminal I/O 
Resume terminal. I/O 
Reserved for other Intel drivers 
Available for user-written drivers 

File Driver 

Physical 
Stream 
Stream 
Physical or Named 
Physical 
Physical 
Physical 
Physical 
Physical 
Physical 
Physical 
Physical 
Physical 
Physical 
Physical 

Physical 
Physical 
Physical 
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The parameterPtr argument is a pointer to one of several data struc
tures. The specific data structure depends on the value of functionCode. 
Strict C pedants would argue that this argument be prototyped as a pointer 
to a union of the different data structures, but a pointer to void suffices. 

All the special functions not discussed in the following subsections are 
fully covered in the documentation for the rqaspecial() system call. The 
ones discussed in section 8.3.1 through 8.3.3 provide an idea of how the 
rq[asJspecial() system calls work and introduce particularly useful termi
nal operations, such as setting up hot keys and controlling character echo
ing and line editing for the keyboard. Appendix C illustrates the use oftwo 
other rq[asJspecial() functions, the query and satisfy functions for 
streams. 

8.3.1 Format track 

The first example is the function used to perform low-level formatting of a 
disk volume. The device drivers for some tape drives use this function to 
layout tape blocks as well, but the disk operation is used as our model. As 
mentioned earlier, each track on a disk consists of a number of sectors, 
which might or might not be in consecutive order. Low-level formatting 
puts the binary framework on a track to set up sectors and identify each 
one with its logical position on the track. The HI format command does a 
low-level format of each track on the volume, and then creates a file system 
on the volume in a process called high -level formatting. High -level format
ting initializes certain data blocks on the disk to act as the root directory 
and perform other housekeeping operations, such as setting up the fnodes 
for an iRMX volume or the File Allocation Table (FAT) for DOS volumes. 
The last section of this chapter describes the high -level format of an iRMX 
named disk. A disk volume accessed using the physical file driver is as
sumed only to have been low-level formatted. (It might have been high
level formatted by another OS, such as Unix.) The following is the data 
structure that parameterPtr points to for formatting a disk. 

#pragma noalign (formatTrack) 
struct formatTrack { 

WORD 
WORD 
WORD 
WORD 

trackNumber; 
interleave; 
trackOffset; 
fillCharacter; 

trackNumber is the number ofthe track to be formatted. Rather than 
the application determining the physical organization of the disk, the de
vice driver accepts a number between 0 and 1 less than the total number of 
tracks on the disk as the value of this field. The driver then translates this 
relative track number into the proper cylinder and read/write head num
ber for the seek operation. 
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A value of 0 or 1 for interleave causes the track to be formatted with 
the sectors numbered sequentially on the track. Other values cause sector 
numbering to skip by the units specified, as described earlier. In the exam
ple given earlier, a sector sequence of 1,6,2,7,3,8,4,9,5 is obtained by speci
fying a value of 2 for this parameter. This parameter is ignored for devices 
that do not need to do interleaving. 

An indicator marks the beginning of each track on a disk. If the mark 
goes past the read/write head twice without finding the sector number 
specified in a seek operation, the controller knows something is wrong with 
the track. Sector number 1 can be placed any number of actual sectors past 
the beginning-of-track mark by specifying a nonzero value for the track
Offset field. 

When the controller formats the track, it fills all the data bytes in each 
sector with a single data value. Some controllers allow this character to be 
specified by the fillCharacter field, but others always use a built-in 
character. 

8.3.2 Get/set terminal data 

Treating a terminal as two sequential files, one for input and one for out
put, is good unless an application wants to treat a terminal as a terminal. 
Using the get and set terminal data functions of the rq[ as ] special() system 
calls, an application can control a large number of terminal operating 
characteristics. The idea behind this pair of functions is that the terminal 
device driver maintains a data structure for each I/O connection to a termi
nal. The data structure contains values specifying how line editing and 
character echoing are to be handled for the terminal. To change a setting in 
the data structure, an application first gets a copy of the current values for 
the data structure (using function 4), modifies the copy to make the desired 
changes, and then sends the copy back to the device driver (using function 
5) to change the actual data structure maintained internally. The data 
structure used for these two functions looks like: 

#pragrna noalign (terminalAttributes) 
struct terminalAttributes { 

WORD numWords; 
WORD 
WORD 
WORD 
NATIVE WORD 
NATIVE WORD 
WORD 
WORD 
WORD 
WORD 
WORD 
WORD 
WORD 

numUsed; 
connectionFlags; 
terminalFlags; 
inBaudRate; 
outBaudRate; 
scrollLines; 
xySize; 
xyOffset; 
specialModes; 
highwaterMark; 
lowWaterMark; 
fcOnChar; 



WORD 
WORD 
WORD 
BYTE 
) 

fcOffChar; 
linkPararneter; 
spcHiWaterMark; 
specialChar [4] 
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The distinction between the items defined in connectionFlags and 
those defined in terrninalFlags is important. The items in connec
tionFlags, which include the echo-character function illustrated in 
Figures 8.4 and 8.5 apply only to the connection specified by the first pa
rameter to rqaspecial() or rqsspecial(). Since I/O operations can only be 
performed using connections that belong to the calling job, it follows that 
one job cannot affect the connectionFlags options for another job. The 
sample programs and the CLI run as different jobs, so they have their own 
connections to the console device. When the sample programs exit, their 
connections are deleted, and their echo-suppression operation has no ef
fect on the CLI's I/O to the same device. A corollary of this relationship 
with regard to console I/O, incidentally, is that a program cannot change 
the behavior of rqcsendcoresponse() by setting connectionFlags be
cause there is no way for an application program to modify the connections 
to : CI: and: co: used for that system call. 

As its name implies, the terrninalFlags field is used to control fea
tures that affect all connections to a terminal, such as the use of modem 
control functions. A utility program called term can be used to change 
many of these functions from the command line. 

The PLM program in Figure 8.4 illustrates control of character echoing. 
It uses the standard EIOS system calls seen earlier in this chapter to create 
a file connection to the terminal based on the connections already estab
lished for the job with the logical names : C I: and : co : . The calls to rqsat
tachfile() could have been replaced with calls to rqlookupconnection() with 
the same effect. The connections are opened, and the connection to : CI: is 
then modified by turning bit number 2 ofthe connectionFlags word for 
the console connection on to suppress character echoing. Once the user's 
password has been carefully read in without echoing to the screen, it is re
turned to the main program, which promptly displays it for all to see. 

The C program, Figure 8.5, shows that you can modify connection
Flags for the I/O connections that the C run-time library uses for stan
dard I/O. To do so, you need to know which iRMX connection object is 
being used by the run-time library for the particular I/O stream to be modi
fied. The iCx86 run-time libraries provide a function, -'5etJmx_conn() 
which returns a token for the proper iRMX connection object, given the 
file descriptor for the I/O stream. In the figure, this token is the file de
scriptor for the standard input device. The sample program uses the stan
dard library function fileno() to convert the FILE pointer stdin to a file 
descriptor, although the value of 0 for the file descriptor could have been 
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Figure 8.4 PLM program to read a user's password from the console input device (: CI:) 
without displaying it on the screen. 

/***> passwd.plm <**************************************************** 

* PLM Program to read from :CI: without echo 
The program prompts for a password, which does not echo as the 

* user types it. 

**********************************************************************/ 

passwd: DO; 
$include (passwd.ext) 

/* Procedure to prompt for password and read it without echo 

*/ 

getpassword: PROCEDURE (replyPtr); 
DECLARE 

replyPtr POINTER, 
password BASED replyPtr (1) BYTE, 
(ciToken, coToken) TOKEN, 
terminalData STRUCTURE 

numWords WORD_16, 
numUsed WORD_16, 
connectionFlags WORD_16) , 

(BytesRead, BytesWritten) WORD_32, 
Status WORD_16; 

/* Create and open connections 

*/ 

ciToken = rqsattachfile (@(4, ':CI: '), @Status); 
CALL rqsopen (ciToken, 1, 0, @Status); 
coToken = rqsattachfile (@(4, ':CO: '), @Status); 
CALL rqsopen (coToken, 2, 0, @Status); 

/* Suppress echo for :CI: connection 

*/ 

terminalData.numWords = 1; 
terminalData.numUsed = 1; 
CALL rqsspecial (ciToken, 4, @terminalData, NIL, @Status); 
terminalData.connectionFlags = terminalData.connectionFlags OR 4; 
CALL rqsspecial (ciToken, 5, @terminalData, NIL, @Status); 

/* Read the password and return 

*/ 

bytesWritten = rqswritemove (coToken, @('Enter password: ,), 16, 
@Status); 
bytesRead = rqsreadmove (ciToken, @password(l), 16, @Status); 
password(O) = BYTE (bytesRead) ; 
RETURN; 

END getpassword; 

/* Execution Starts Here 

*/ 

DECLARE 
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Figure 8.4 ( Continued) 

newline LITERALLY 'ODh,OAh', 
Message (*) BYTE 

INITIAL (19, newline, 'Your password is **************** I), 
Reply (81) BYTE, 
Status 'WORD_16; 

CALL getpassword (@Reply); 
CALL movb (@Reply(l), @Message(20), Reply(O»; /* strcat in PLM */ 
Message(O) = 19 + Reply(O); 
CALL rqcsendcoresponse (NIL, 0, @Message, @Status); 
CALL rqexitiojob (0, NIL, @Status); 

END passwd; 

Figure 8.5 C program illustrating the use of rqsspecial( ) to suppress character echoing for the 
standard C function, gets(). 

/***> passwd.c <****************************************************** 

* 

* 

C program to illustrate reading from stdin without echo 
The program prompts the user to enter a password. which is read from 
the standard input device without echoing the characters typed. 
The program determines the iRMX connection being used for stdin and 
modifies the character echo attribute of the connection. 

**********************************************************************/ 

#include <stdio.h> 
#include <rmxc.h> 

#define get Terminal Data 4 
#define setTerminalData 5 

/* Prompt for password. and read it without echoing to screen 

*/ 
void 
getpasswd (char *reply) { 
#pragma noalign (terminalAttributes) 
struct terminalAttributes { 

WORD numWords; 
WORD numUsed; 
WORD connectionFlags; 
WORD terminalFlags; 
} stdinAttributes; 

TOKEN stdinConnection; 
WORD Status; 

stdinConnection = _get_rmx_conn (fileno(stdin»; 
stdinAttributes.numWords = 1; 
stdinAttributes.numUsed = 1; 
rqsspecial (stdinConnection, getTerminalData, &stdinAttributes, 

NULL, &Status); 
stdinAttributes.connectionFlags 1= 4; 
rqsspecial (stdinConnection, setTerminalData, &stdinAttributes, 

NULL, &Status); 
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Figure 8~5 ( Continued) 

printf ("Enter password: "); 
gets (reply); 
return; 
} 

/* main(): get password and display it. 

*/ 
int 
main (int argc, char *argv[]) 
char password[16]; 

getpasswd (password); 
printf (" \nYour password is %s\n", password); 
} 

hard -coded5• Character echoing is suppressed by setting bit 2 of the con -
nectionFlags for this connection to 1. 

One final word. Note that the iRMX Terminal Support Code (TSC, a 
software module available to all terminal device drivers) allows terminal 
attributes to be set by embedding escape sequences in the character stream 
being written to or read from a terminal. For example, Appendix B shows 
how the TSC can be used to get the iRMX for Windows console driver to 
respond to ANSI X3.64 escape sequences, the same function provided by 
the ANSLSYS device driver for DOS. 

8.3.3 Set signal character 

The last special function to be discussed is a function that allows an appli
cation to set up the equivalent of hot keys. The difference between these 
iRMX signal characters and true hot keys is that signal characters operate 
only in the context of a single application, whereas true hot keys, such as 
the <al t -SysRq> key used by iRMX for Windows, operate no matter 
which job is running. 

The idea behind signal characters is very straightforward. A call to 
rqsspecial( ) or rqaspecial( ) with function code 6 is used to tell the terminal 
device driver which character code is to be treated as a signal character and 
to associate a semaphore with that character. From then until the connec
tion is deleted (or the signal character is reset by another special call), the 
device driver examines each incoming character to determine if it is a sig
nal character. If the character is a signal character, the driver sends a unit 
to the corresponding semaphore and discards the character. Otherwise, the 

5The standard input, standard output, and standard error streams always correspond to file 
descriptors 0, 1, and 2 respectively. 
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driver simply passes the character on to the application. Up to 12 different 
signal characters can exist for a connection at one time. 

A problem can arise when establishing signal characters for terminals 
connected to the system through buffered device controllers. In this situa
tion, a user might type a signal character, but the device driver will not see 
it until the controller's buffer fills with other characters typed by the user 
after the signal character. This delayed effect of signal characters can be 
overcome for up to four special characters. The preceding terminal-attri
butes data structure includes an array (specialChar[4]) for characters 
that are to be forwarded to the device controller as soon as they are typed. 
(The spcHi Wa terMark field can be used to cause a specific number of spe
cial characters, more than one, to be typed before being sent to the device 
driver.) 

All HI command jobs have a signal character automatically set up for 
< A c>, along with a task that waits at the < A C> semaphore, ready to abort 
the job if the character is pressed. The HI layer of the OS provides a system 
call for changing the semaphore associated with this one signal character 
(rqcsetcontrolc()} , but an application can also do so itself by calling 
rq [as J special( ). The UD I layer also provides a system call, dqtrapcc( ), that 
can be used to cause a user-written procedure to be called when < A c>is 
typed. 

The signal characters, in general, must be control characters « A A> 
through <A Z> have ASCII codes Ox01 through Ox1A), but <rub> (Ox7F) 
as well as all characters with ASCII codes between OxOO and Ox1F are valid. 
The device driver discards any characters that have been typed ahead (en
tered by the user but not yet read by an application) ifOx20 is added to the 
value of the character code given for this call. 

The data structure pointed to by parameterPtr for setting a signal 
character is the token for the semaphore and the code for the character: 

#pragma noalign (s ignalPair) 
typedef struct signalPair { 

TOKEN 
BYTE 
} SIGNALPAIR; 

Semaphore; 
Character; 

8.4 File System Structure and Management 

This section introduces the data structures the BIOS maintains on a disk 
volume formatted with an iRMX Named file system. Note the distinction 
between the Named file system, which is the iRMX native-mode organiza
tion for supplying a tree-structured volume of named files and directories, 
and the generic uncapitalized term, named file system. The latter could be 
an iRMX, DOS, Unix, or VAX/VMS file system, all of which support tree
structured volumes with named files and directories. A Named volume 
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connected to the local computer is accessed using the Named file driver; a 
DOS volume connected to the local computer is accessed using the EDOS 
file driver. All four types of named volumes attached to remote computers 
can be accessed using the Remote file driver as long as OpenNet software is 
running on both the local and remote systems. 

An HI command called diskverify can be used to examine and modify the 
data structures described in this section. In addition to the documentation 
on the command-line options for diskverify in the first part of the iRMX 
Command Reference (volume 10 ofthe iRMX for Windows documentation 
set), an appendix in that manual explains how to use diskverify interacti
vely to examine and modify the data structures that the iRMX BIOS 
maintains on a disk volume. Another appendix provides complete infor
mation about the data structures introduced in this section. Diskverify is to 
iRMX Named file systems as Norton Utilities or PC Tools are to DOS file 
systems. Diskverify does not work with DOS file systems, but the system 
calls mentioned in this section work with any named file system. 

8.4.1 Files and directories 

Each file or directory on an iRMX Named volume consists of a set of vol
ume blocks on the disk. A volume block is simply the smallest amount of 
disk space that can be allocated to a file, which is always a multiple ofthe 
disk's sector size. Volume blocks are numbered sequentially from zero to 
one less than the maximum number of blocks on the disk, analogous to 
how tracks are numbered when they are formatted with rq[asJspeciaIO. 
Files can contain any type of information using any structure appropriate 
to the application; to the OS a file consists of an ordered sequence of 
bytes. 

Certain special files exist on a Named volume, however. One-of-a-kind 
housekeeping files are created when the volume is formatted (see section 
8.4.3), and a distinction exists between normal files and directories. Direc
tories are stored the same as normal files on the disk, but the BIOS imposes 
restrictions on how their contents can be accessed, and enforces an inter
nal structure on their contents. The distinction between normal files, 
sometimes called data files, and directory files is not always important, and 
the generic term file refers to both types of files. The structure imposed on 
the contents of a directory is a sequence of I6-byte entries. Each entry has 
the following format: 

#pragma noalign (directoryEntry) 
struct directoryEntry { 

WORD fnode; 
BYTE pathComponent[14]; 
} 

The bytes in pa thComponent (the name of a file) are arbitrary characters, 
not necessarily printable, that can include spaces and punctuation marks 
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(except: or $ at the beginning or :, $, I, or A anywhere, including the be
ginning), as well as normal ASCII characters. Uppercase and lowercase 
letters are stored as specified in rq[asJcreatefile(), but there is no case sen
sitivity for any system call that references files by name. No intrinsic sig
nificance is attributed to periods in a file name, although iRMX develop
ment tools impose a name-and-extension structure on file names by using 
periods. The pa thComponen t field is padded on the right with OxOO for file 
names less than 14 characters long. 

Directory entries do not contain any information about the file other 
than its name, not even an indication of whether the entry is for a data file 
or another type of directory. That information, along with just about ev
erything else the BIOS knows about the file or directory, is kept in a data 
structure called an {node. The fnode field of a directory entry is a I6-bit 
value that uniquely identifies the fnode for the entry. 

Fnodes are discussed in the next section, but first, the system calls that 
can be used to create and access directories are presented. The following 
are the BIOS and EIOS calls to create a directory: 

extern void 
rqacreatedirectory ( TOKEN 

TOKEN 
STRING far * 
BYTE 
TOKEN 
WORD far * 

user, 
prefix, 
subpathPtr, 
access, 
responseMbx, 
exceptPtr) : 

The parameters to this call are the same as those to rqacreatefile(), with the 
omission of that call's granularity, mustCreate, and size parame
ters. Directories are always created with size of 0, granularity of 1 (theyex
pand by one volume block each time they expand beyond their current al
location). Also, a file or directory cannot already exist with the same name 
as specified by this call's prefix and subpathPtr. The EIOS call to 
create a directory is rqscreatedirectory(): 

extern TOKEN 
rqscreatedirectory ( STRING far * 

WORD far * 
pathPtr, 
exceptPtr ) : 

You can write to a directory only by creating a file in the directory using 
rq [as] createfile( ) or rq [as] createdirectory(). You cannot write directly to a 
directory. You can, however, examine the contents of a directory either by 
reading it as a normal data file (it must be opened for reading and share 
with all), or with the rq[asJgetdirectoryentry() system calls: 

extern void 
rqagetdirectoryentry ( TOKEN 

WORD 
TOKEN 
WORD far * 

connection, 
entryNumber, 
responseMbx, 
exceptPtr): 
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connection is a token for a connection to the directory, normally ob
tained by rq [as] attachfile(). The connection does not need to be open. The 
entries in a directory are numbered sequentially, and entryNumber iden
tifies which entry in the directory the caller is interested in. When an ap
plication wants to search a directory, it normally makes the call from 
within a loop, with the value ofthis parameter starting at 0 and increment
ing by 1 each time through the loop. This call does not return an IORS to 
responseMbx; it returns a segment containing a data structure that looks 
deceptively similar to the actual data structure of a directory entry on the 
disk: 

#pragma noalign (directoryEntryInfo) 
struct directoryEntryInfo { 

WORD Status; 
BYTE Narne[14J; 
} ; 

Two differences exist between this structure and the structure ofthe di
rectory entries on the disk. The more obvious difference is that the first 
word ofthis structure is a condition code value, not the entry's fnode num
ber. The other difference is that the Name field is padded on the right with 
blanks (Ox20) in this structure, rather than with OxOOs as on the disk. 

Status has three interesting values. As usual, a value of 0 indicates nor
mal completion of the system call, with a valid file or directory name in 
Name. A value ofOx0024 (E_EMPTYENTRY) indicates that the directory 
entry specified by the entryNumber parameter once held a valid entry, but 
does not now. This situation is normal, and occurs whenever a file or direc
tory is deleted from the system. 

Rather than rearrange the entire directory file from which the deletion is 
being made, the BIOS simply changes the fnode field ofthe entry to o. No 
data file or directory has an fnode number of 0, so this value always marks 
empty entries, which are reused the next time a new file or directory is cre
ated in this directory. 

Changing the fnode field of the entry to 0 is like the OxE5 at the begin
ning of a file name that DOS uses to mark deleted directory entries. The 
difference between the DOS and iRMX file systems is that iRMX cannot 
recover deleted files because the fnode number, rather than part of the 
file name, is lost. A program searching a directory simply increments the 
entryNumber and repeats the system call if this value is returned for 
Status. 

The other interesting value that might be returned in the Status field is 
Ox0025 (E_DIREND) which, as its name implies, indicates that entry
Number is beyond the end of the directory. 

extern void ( 
rqsgetdirectoryentry ( STRING far * 

WORD 
dirNarnePtr, 
entryNurnber, 



STRING far * 
WORD far * 
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entryNamePtr, 
exceptPtr); 

As usual, the EIOS version of the call is a bit simpler to use. In this case, the 
user supplies a buffer to hold the entry name, passing a pointer to this 
buffer as entryNamePtr. Otherwise, this version operates the same as the 
asynchronous version. 

8.4.2 Fnodes 

An iRMX file system uses a data structure called an fnode (file node) to 
hold the information it needs for each file on a volume. Fnodes are stored 
on the disk in a special file named R?FNODE. Don't bother to try to read (or 
write!) this file yourself; it can only be accessed by the BIOS. You can, how
ever, see much of the information in an fnode by using the extended option 
on the dir command. From the listing that command produces, you can see 
that the system knows the name of the file (obtained from the directory 
entry for the file), your currently allowed access rights for the file (com
puted from your default user object and the accessor list for the file), and 
the following information taken from the fnode: 

• Whether it is a file or directory. 

• The size of the file in bytes. 

• The number of volume blocks it occupies. 

• The times at which the file was created, last modified, and last accessed. 

• The complete accessor list for the file. 

You might notice that the dir command takes considerably longer to ex
ecute' especially over a network, if you specify the long, short, or extended 
options rather than the fast (default) option. The reason for this difference 
in execution times is that the fast option lists just the names of the files in 
the directory, which can be obtained by simply reading the directory itself 
or calling rq[asJgetdirectoryentry(). Generating the other listings requires 
additional disk accesses to obtain the information contained in the fnode 
for each entry. 

An application can call rq[asJgetfilestatus() to obtain a copy of most of 
the information about a file's fnode, along with some additional informa
tion maintained in memory by the Named file driver: 

extern void 
rqagetfilestatus ( 

extern void 
rqsgetfilestatus ( 

TOKEN 
TOKEN 
WORD far * 

STRING far * 
SFILESTATUSSTRUCT far * 
WORD far * 

connection, 
responseMbx 
exceptPtr); 

pathPtr, 
fileStatusPtr, 
exceptPtr); 
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These calls can be used to obtain information from the EDOS, Remote, 
and Physical file drivers as well as the Named file driver. In the case of the 
Physical file driver, only the first part of the following data structure is re
turned to the program. 

#pragma noalign (sfilestatusstruct) 
typedef struct sfilestatusstruct { 

WORD deviceshare; 
WORD numberconnections; 
WORD numberreaders; 
WORD numberwriters; 
BYTE share; 
BYTE namedfile; 
BYTE devicename[14J; 
WORD filedrivers; 
BYTE functions; 
BYTE flags; 
WORD devicegranularity; 
DWORD devicesize; 
WORD deviceconnections; 

/* The remainder of this structure is returned only for files accessed using 
the Named, EDOS, and Remote file drivers. */ 

WORD fileid; 
/* fnode number */ 

BYTE filetype; 
/ * See text */ 

BYTE filegranularity; 
WORD ownerid; 
DWORD creationtime; 
DWORD accesstime; 
DWORD modifytime; 
DWORD filesize; 
DWORD fileblocks; 
BYTE volumename[6J; 
WORD volumegranularity; 
DWORD volumesize; 
WORD accessorcount; 
BYTE owneraccess; 

/* The following fields are returned only for the asynchronous version of the 
call, and are not declared in rmxc.h. */ 

WORD ownerid; 
BYTE secondaccess; 
WORD secondid; 
BYTE thirdaccess; 
WORD thirdid; 
BYTE volumeFlags; 

/* See text * / 
} SFILESTATUSSTRUCT; 

The information in the second part of this data structure is largely what 
you find in the fnode of an iRMX named file, modified as necessary to ac
commodate the different information available to different file systems. 
For example, the DOS file system has no concept of different users, so the 
EDOS file driver makes the owner of all DOS files the iRMX World user. 
Furthermore, DOS files are either read-only or totally accessible, so the 
EDOS file driver does not differentiate among delete, append, and update 
access rights. (If you have one right, you get all three.) 
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Clearly, some of the information in the second part of this structure ap
plies to the disk volume containing the file and not to the file itself (volume 
name, granularity, size, and Flags). The name of the volume is similar to 
the label of a DOS disk, but the EDOS file driver can fit only the first 6 of an 
ll-character DOS label into the volumename field. Volume granularity 
was mentioned earlier in defining a volume block, and volume size is the 
unformatted storage capacity of the volume. The volumeFlags field, 
which is not available for iRMX I disks, tells whether the volume was prop
erly shut down the last time it was used (value 0) or not (value 1). The 
filetype field tells whether the file is a directory (value 6), a data file 
(value 8), or one of the housekeeping files for the volume, which are de
scribed next. 

8.4.3 Housekeeping files 

Formatting an iRMX Named volume consists of performing a low-level 
format operation on every track of the volume, followed by writing house
keeping information onto the disk in the form of a set of files. Although 
these housekeeping files might appear to be normal disk files in the sense 
that their names are visible in the root directory of the disk, these files can 
be read and written only by low-level routines within the BIOS. Each of 
these files has a unique file type, which is the same as the number of the 
fnode used for the file itself. This section describes each of these files in 
file-type order. 

File type O. The file with fnode number 0 is the file that contains the 
fnodes themselves. When the volume is formatted, the format command 
takes a command line argument, files = n, to determine how many 
fnodes the fnode file is to hold. If the argument is not given, format uses a 
default value for n based on the capacity of the volume. Each fnode occu
pies a fixed number of bytes in the fnode file, so the file can be viewed as an 
array of fnode structures. The fnode numbers are used as indices into this 
array. To make accesses to this important file as efficient as possible, the 
file is created as contiguous, as are the other housekeeping files. Unlike 
normal files, the fnode file can never expand after it has been created. 
Thus, the file can never become noncontiguous, but the maximum number 
of files and directories on an iRMX volume is fixed at the time the volume 
is formatted, and can never be changed. It is perfectly possible to use up all 
the fnodes on a volume without exhausting the supply of disk blocks that 
can be allocated to files. 

To understand fnodes better, the following is a display offnode number 0 
(the fnode for the fnode file) of a 1.2 MB diskette, as generated by the disk
verify utility. 

Fnode number = 0 
flags : 0005 => short file 
type : 00 => fnode file 
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file gran/vol gran : 01 
owner : 

create, access ,mod times : 
total size,total blocks: 

block pointer (1) 
block pointer (2) 
block pointer (3) 

block pointer (4) 
block pointer (5) 
block pointer (6) 

block pointer (7) 
block pointer (8) 

this size: 
id count: 

accessor (1) : 
accessor (2) : 
accessor (3) : 

parent, checksum : 
aux (*) : 

0000 
lA79lF88, lA79lF88, lA79lF88 
000048C6, 00000025 
0025, 00049F 
0000, 000000 
0000, 000000 
0000, 000000 
0000, 000000 
0000, 000000 
0000, 000000 
0000, 000000 
00004AOO 
0001 
00, 0000 
00, 0000 
00, 0000 
0006, 0000 
000000 

The fields in this structure, from top to bottom, are: 

flags. The bits in this field describe the status of the fnode itself as well 
as the file it describes. Bit position 0 tells whether this fnode is actually in 
use or not. (Remember, the entire fnode file is created when the disk is for
matted.) When a file is added to the volume, an unused fnode must be allo
cated for it from the pool of unused fnodes in the fnode file. Bit 0 tells if the 
fnode is available or not. Bit 1 tells if the file is long or short. (See the de
scription of the block pointers that follows for more information.) Bit 2 is 
always set to one, bit 5 identifies if the file has been modified or not, and bit 
6 tells ifthe file is marked for deletion. All other bits are zero. The Bags for 
this fnode have bits 0 and 2 on (Ox0005), so you can conclude that this 
fnode is allocated for a short file not marked for deletion that has not been 
modified. 

type. This byte will have a value of 6 for a directory, 8 for a normal file, 
and a value equal to the fnode ofthe file for housekeeping files. Fnode num
ber 0 is the fnode in the example, which is the fnode for the fnode file itself, 
so its type is o. 

file gran/vol gran. This field is the file granularity specified when the 
file was created. The notation here is a reminder that this value is specified 
as a multiple of the volume granularity. 

owner. This field is the ID of the owner of the file, which in this case is the 
Super user. You might think that the Super user could do something with 
the fnode file, but it's not true. The normal rules for file access do not apply 
to housekeeping files. 

create, access, mod times. These three 32-bit words give the number 
of seconds since January 1, 1978, when the file was created, last accessed, 
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and last modified. All three of these files are the same for the fnode file, be
cause you cannot access or modify this file in the normal sense of the terms. 

total size, total blocks. Total size is the size of the file in bytes, and 
total blocks is the number of volume blocks allocated to the file. For the 
fnode file, these values never change. (See this size.) 

block pointer (1) through block pointer (8). These eight fields tell 
where the file is actually stored on the disk. A file can occupy up to eight 
extents on a disk volume. The blocks within an extent are contiguous, but 
the extents may be noncontiguous with respect to one another. Block 
pointer number 1 shows that this fnode file occupies Ox25 blocks, starting 
at volume block Ox49F (i.e., volume blocks Ox49F through Ox4C3). Because 
the fnode file is always contiguous, it never occupies more than one extent, 
so block pointers 2 through 8 are always unused for the fnode file. If a file 
needs more than eight extents, the file becomes a long file by treating each 
of the block pointers in the fnode as indirect references to data blocks that 
contain the actual block pointers for the file. 

This change from short to long happens automatically when the need 
arises, and is reflected in bit 1 of the flags word for the fnode described ear
lier. Long files can become extremely large (each indirect block can hold 
100 to 200 block pointers, depending on the volume granularity, and there 
can be 64K block pointers per extent of a long file), but performance de
grades sharply as extra disk accesses are required just to locate parts of the 
file on the disk. 

Long and short do not necessarily indicate relative sizes of disk files. A 
long file could consist of as few as nine volume blocks if they are all non
contiguous, and a short file could consist of 512K volume blocks made up 
of eight extents of 64K blocks each. At 1,024 bytes per volume block, that 
is a half-gigabyte short file and a 9,216 byte long file. The terms short and 
long really refer to the degree of fragmentation of the file, rather than its 
size. 

this size. this size is obtained by multiplying the number of blocks 
allocated to the file by the volume granularity. The difference between 
this size and total size represents space that has been allocated to 
the file but is not in use. A few more fnodes could have been allocated for 
this diskette when initially formatted without making the fnode file any 
larger. 

id count and accessor (1) through accessor (3). These fields are the 
accessor list for the file. The id count tells how many ofthe three entries 
are actually used, with the first entry always used for the file's owner. Each 
entry consists of a byte specifying the access rights to the file (only the 
low-order four bits of the byte are used) and the user's access rights. For 
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this file, there is only one accessor, the Super user (an ID of 0), who has no 
access rights to the file. 

parent, checksum. The parent is the fnode of the directory that con
tains this file. As you will soon see, fnode 6 is always used for the root direc
tory of a volume. The fnode file does not actually appear in any directory, 
but if it did, it would be in the root directory. Remember, fnode number 0 in 
a directory entry means that the entry is empty. The checksum is a check
sum on the fnode itself, used to help detect file system corruption. Appar
ently, it is not computed for the fnode file, but is updated for other fnodes 
every time they are modified. 

aux( * ). These three bytes are called the extension data for the fnode, and 
can be used for any purpose. The format command adds a three-byte ex
tension to every fnode by default (making the total fnode size 88 bytes), but 
the number of bytes can be any number from 3 to 255. Anyone can examine 
or modify these bytes for a file's fnode by using the rqagetextensiondata() 
and rqasetextensiondata() system calls. The idea is that you could add your 
own layer to the iRMX operating system (perhaps replacing the HI or 
EIOS layer, for example), and use this field to store whatever information 
you want with each file of your customized operating system. 

File type 1. The file with fnode 1 is the volume free-space map and appears 
in the root directory with the name R? SPACEMAP. Remember, you must use 
the invisible option on the dir command to see files that have names begin
ningwith R? or r? This file is owned by the World user, who has read ac
cess to it. The contents of the file is a bitmap, with each bit representing 
one volume block on the disk. A bit equal to 1 means the corresponding 
block is free to be allocated to a file; a bit equal to 0 means the correspond
ing block has been allocated. 

File type 2. The file with fnode 2 is the free fnode bitmap file. If a bit in this 
map is 1, the corresponding fnode is free to be used for a new file or direc
tory. If a bit is 0, the corresponding fnode is already in use. The redundancy 
between the bits in this file and bit number 0 in each fnode's flags field 
provides a basis for one of the consistency checks that diskverify can do for 
a disk volume. This file is in the root directory of the volume with the name 
R ? FNODEMAP and can be read by anyone. 

File type 3. fnode number 3 is used for an empty file that is called the Ac
counting File. The file is not presently used, cannot be accessed by any 
users, and does not appear in any directory. An accounting command can 
be used to cause the HI to keep a record of every login to an iRMX system, 
but that command does not use this file. 
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File type 4. fnode number 4 is used for the volume's bad-blocks bitmap. A 1 
bit means that the corresponding volume block has a defect and cannot be 
used. This bitmap is initialized by format from the defect list supplied by 
the drive manufacturer if possible. The defect list can be supplied to format 
from a file if desired, and the map can be updated using diskverify interac
tively if new bad blocks are encountered as the file system is used. This file 
can be read by anyone; its name is R?BADBLOCKMAP in the root directory. 

A distinction exists between volume blocks and physical blocks. Most 
controllers can make a disk appear to be perfect by using spare tracks as 
replacements for physically bad blocks. Physically bad blocks do not show 
up in the bad blocks bitmap unless the controller is unable to substitute a 
spare or the user forces blocks to be marked bad using diskverify. 

File type 5. fnode 5 is used for the volume-label file, which always occupies 
the first 3,328 bytes of any iRMX Named volume. It can be read by anyone, 
using the file R?VOLUMELABEL in the root directory. The volume label 
consist of six parts: 

• Space reserved for a bootstrap loader. 

• An iRMX volume label. 

• A bootloader location table. 

• An ISO volume label. 

• Reserved space for future ISO standardization. 

• More reserved space for bootstrap loaders. 

ISO standardization provides the potential for automatic recognition of 
floppy disk characteristics despite differences in their physical and logical 
structure on the rest of the disk. The iRMX volume label holds such infor
mation as the following: 

• Volume name. 

• Volume granularity. 

• Where the fnode file starts on the disk (fnode 0 tells where the fnode file 
is too, but that does not help if you cannot find the fnode file to read 
fnode 0 from it). 

• How large each fnode is (which depends on the size of the extension data 
field in each fnode). 

• The volume flags byte, which tells whether the volume was shut down 
properly or not. 

The bootstrap loader part of the volume label contains the code executed to 
start the bootstrap-loading process for the operating system. The boot-
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loader location table is specifically used by Multibus II systems to find the 
special bootstrap-loader code used with that platform. 

File type 6. All directories on the disk have a type field of 6 in their fnodes. 
The root directory for the volume actually uses fnode number 6. This direc
tory is created by the format command and initially contains entries for 
some of the other housekeeping files. Except for being set up by format 
rather than by a call to rq[aslcreatedirectory() and the fact that the direc
tory cannot be deleted, this directory is just like any other directory on the 
volume. The owner of the root directory is the user who formatted the vol
ume, not necessarily the super user. 

File type 8. All other files on the disk have a file type of 8, meaning a nor
mal file (not a directory). Two housekeeping files might also be written by 
format that are created as type 8 files. If they are present, they use fnode 
numbers 7 and 8. One file is the second stage of the Multibus II bootrap 
loader, which appears in the root directory as R?SECONDSTAGE. The other 
file is a copy of the fnode file, which appears in the root directory as 
R? SAVE. The file is created if you specify the reserve option on the format 
command, and is updated from the fnode file if you specify the backup op
tion on the shutdown command. If the master fnode file is damaged, you 
can replace it with the copy in R?SAVE by using the diskverify command 
interactively and giving its backupodes subcommand. 

The data recovery mechanisms available for iRMX Named volumes are 
not as slick as the utilities available for DOS disks, but they are very power
ful and easy to use once you understand the structure of a disk. Experi
menting with diskverify and a spare floppy disk can be good preparation for 
dealing with a hard disk disaster. 

Applications that demand highly reliable disk systems should consider 
using a technique called disk mirroring, which operates two disk drives in 
parallel for automatic redundancy and recovery in case one drive fails. The 
HI mirror command is not currently available for iRMX for Windows, but 
it is available for iRMX III systems, which suggests that it will become 
available for iRMX for Windows also. 

8.5 Time-ot-Day Management 

The BIOS layer of iRMX supplies routines to track the date and time. 
Time-of-day management refers to maintaining a record of the current 
time and date with one-second granularity. When an iRMX system initial
izes, the BIOS obtains the current time and date from either a battery
backed clock, if one is available, or from the time at which the system disk 
(the one the OS was bootstrap loaded from) was last shut down. This time 
and date value is converted into a count of the number of seconds that have 
elapsed since midnight, January 1, 1978. A BIOS task repeatedly sleeps for 
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one second, adds one to the current time counter, and goes back to sleep 
again. At any time, an application can determine the current value of this 
counter or set it to a new value using the system calls rqgettime( ) and rqset
time(). The HI commands time and date allow users to look at or change 
the setting of the counter using meaningful character strings to represent 
times and dates. 

The time maintained by the BIOS can easily be inaccurate, either be
cause the initial setting of the time and date when the system initializes 
was inaccurate or because the BIOS task that updates the time and date at 
one-second intervals might be preempted by other tasks during, for exam
ple, periods of intense I/O activity. If inaccuracy is a problem, a system 
could introduce a task that periodically obtains the correct time and date 
from an external source (or from an on-board battery-backed clock) and 
updates the time and date counter from that source. 

This problem of time-of-day drift raises the matter of real-time accuracy 
of iRMX, but that is a totally separate issue. The Nucleus manages the 
real-time clock interrupts that occur at O.OI-second intervals on most 
iRMX systems. iRMX for Windows reprograms the host system's Pro
grammable Interrupt Timer to generate interrupts at this higher rate, and 
then emulates the lower clock rate normally generated on AT platforms for 
DOS. These interrupts are normally connected to the highest-priority in
terrupt request lines of the system's master Programmable Interrupt Con
troller (See chapter 5). 

C programmers might be aware that the ANSI standard specifies a dif
ferent starting date for the time and date functions in the standard C run
time library, namely midnight January 1, 1970. This difference in starting 
time (called the epoch in ANSI parlance) between the ANSI standard and 
the iRMX value is handled automatically by the Intel version ofthe C run
time library. The following are the function prototypes for the two BIOS 
calls to manage the time of day. 

extern WORD 
rqgettime ( 

extern void 
rqsettime ( 

WORD * 

DWORD 
WORD *excer ) ; 

excer) ; 

dateTime, 

The DWORDs in these two function prototypes are declared as time_t in 
: INCLUDE: rmxc. h, which is a typedef for an unsigned long (the same as 
a DWORD) in the time. h header file that rmxc. h includes. If a battery
backed clock is available on the system, its time and date can be set or ex
amined using the following two system calls. 

extern SETTIMESTRUCT 
rqgetglobaltime ( WORD • exceptpr) ; 
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extern void 
rqsetqlobaltime ( SETTIMESTRUCT • 

WORD • 

The typedef for SETTIMESTRUCT is: 

#praqrna noaliqn (settimestruct) 
typedef struct settimestruct { 

BYTE seconds; 
BYTE minutes; 
BYTE hours; 
BYTE days; 
BYTE months; 
WORD years; 
} SETTIMESTRUCT; 

8.6 Logical Name Reprise 

dateTimeptr, 
exceptPr) ; 

Now that you have seen how an iRMX volume is organized on the disk, 
consider the operations to read from a file on a Named volume. You will see 
some of the logic that must be performed by the file driver along the way, 
but the real idea here is to look at the disk accesses involved in doing read 
operations. You will see how logical names for directories, or even files, can 
impact real-time perfoance by encapsulating as many time-consuming 
disk accesses as possible in the initialization phase of an application. 

To make things concrete, assume that a floppy disk has the file structure 
shown in Figure 2.1, and that an application is going to read from f ilel on 
the diskette. The complete path name would be /dl/d2/filel. For this 
example, assume the diskette is a 3.5" floppy mounted in the A: drive of an 
AT platform system running iRMX for Windows. The logic for the exam
pIe would be the same for a hard disk, except for the issue of the partition 
table on the hard drive of an AT platforms that would have to be negotiated 
to get to the iRMX file system. Here is the scenario: 

1. The user attaches the device using the command 
iRMX>attachdevice amh as a named 

2. The user makes d2 the current directory by using the command 

[1] 

iRMX>attachfile :a:dl/d2 as $ [2] 

3. The application starts running and makes the following system calls: 
fileConn= rqsattachfile ( "filel", &Status); 
rqsopen (fileConn, 1, 0, &Status); 
for (;;) { 
rqsreadmove (fileConn, buffer, size (buffer), &Status); 

} 

The following is a list of the number of the disk accesses involved here, 
and when they occur relative to the loop, which you can assume is where 
the bulk of the work done by the application occurs. When the device is at
tached (command [1]), the Named file driver must invoke the following 
disk accesses: 
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1. Read the volume label to find the location of the fnode file and the size 
of the fnodes. 

2. Read fnode 0 from the fnode file to find its extent on the disk. 

At this point the connection object for the device can be built and its 
token cataloged in the root job's object directory using the logical name 
: A:. When the attachfile command is run (command [2]), the following 
additional disk accesses must take place: 

3. Read fnode 6, the fnode for the root directory, from the fnode file. This 
fnode can be kept in memory, and the: A: connection object is updated 
to incorporate the information from the fnode. (An fnode memory 
pointer appears in the debugger's vt display for the connection.) 

4. Use the block pointers in the root directory's fnode to find the first disk 
block that contains directory entries of the root directory and search 
for the first element of the pathname, dl. Since the sample file system 
has only two entries in the root directory (dl and d3) plus entries for 
four or five housekeeping files, only one disk block must be read. For a 
very large directory, several additional disk accesses would be required 
to read in additional blocks of the directory and search them. 

5. From the directory entry for dl, determine its fnode number. Compute 
the offset of the fnode into the fnode file (fnode number multiplied by 
fnode size), call rqaseek() to that position in the fnode file (no disk ac
cess required), and call rqaread() to read the fnode for dl. If the fnode 
crosses a disk block boundary, two disk accesses are needed to read in 
the fnode. People who worry about this extra disk access sometimes 
format their disks with additional extension data to make the size of 
fnodes a multiple or divisor of the volume's block size. (Make the ex
tension size 43 instead of the default of three, and each fnode will oc
cupy 128 bytes). 

6. Read directory entry blocks from dl until an entry for d2 is found. For 
the sample file system, the entry for d2 will be found in the first block 
of the directory. 

7. Read the fnode for d2 into memory and create a new connection object 
that includes a pointer to this fnode as part of its internal structure. 
The copy ofthe fnode for dl in memory can be discarded at this time. 
The new connection object is cataloged in the global job's object direc
tory using the logical name : $ :, and becomes the default prefix for 
subsequent calls to rqsattachfile(). 

Now the application program starts running and makes its call to rqsat
tachfileO. The EIOS recognizes from the syntax of the pathname (filel 
does not start with /, A, or :) that it is to use the default prefix to locate the 
file. 
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8. The fnode for the default prefix tells what disk blocks to read in the 
search for a directory entry named filel. Again, the sample file sys
tem will require reading just one block to find the entry, but a larger 
directory could require additional accesses at this point. 

9. Read the fnode for filel into memory, and create a new connection 
object that includes a pointer to the fnode. 

The call to rqsopen() requires no disk accesses. The accessor list 
from the fnode is already in memory and the default user object was 
cataloged in the application job's object directory when the job was cre
ated, so access rights and sharing can be validated using information 
already available without going to the disk. If the application had spec
ified EIOS buffering, reading the first blocks of data from the file 
would be initiated at this time, but the example specified zero EIOS 
buffers. 
Finally, the program enters its main processing loop. 

10. Each call to rqsreadmove( ), depending on the number of bytes being 
read and their position in the file, might require a disk access. Even 
without EIOS buffering, the BIOS must read an entire block into 
memory at a time, so it is possible that read requests will be satisfied 
from data already in memory. On the other hand, a single cal1to rqar
ead() can request bytes from the file not aligned with disk blocks, re
quiring multiple disk accesses so that the BIOS can perform de-block
ing at either end of the user's buffer. Our tenth disk access simply 
represents a typical case. 

Consider now the following two alternative scenarios, which summarize 
how logical names can be used to control when disk accesses occur. 

The first alternative is if the application had used a full pathname, 
:A: dl/d2/filel. In this case, the EIOS would use the token for :A: ca
taloged in the root job's object directory as the prefix, and dl/ d2/ f ilel as 
the subpath. The BIOS would have to repeat disk accesses 4 through 7 to 
get ready to search for f ilel Disk access 3 would still have been done for 
the attachfile(), so the fnode for the root directory would already be avail
able.) The application would have incurred four additional disk accesses 
during its initialization phase. 

For the second alternative, assume that the user had given the following 
command before entering the program, and used the pathname : x: in the 
call to rqsattachfile(): 

iRMX>attachfile :a:dl/d2/filel as x [3] 

In this case, the connection to the file would have been established before 
the application started running, with the logical name : x: representing 
the token for this connection object cataloged in the application's global 
job. In this case, all of disk accesses 1 through 9 would have occurred before 
the application started running, and the only accesses the application 
would encounter would be those involved in actually reading from the file. 



Chapter 

9 
Extending iRMX: 

Adding Device Drivers 

9.1 Overview 

Although iRMX is a proprietary operating system with regard to the ar
chitecture ofthe processor on which it runs, it has always been very much 
an open system with regard to its support for peripheral devices. Intel's 
operating system has always supported the hardware devices that Intel 
manufactures, of course, and it has also always supported commonly used 
devices not manufactured by Intel. But what is truly open about iRMX is 
the provision it makes for anyone to add their own support for nonstandard 
devices, and to incorporate that user-written code into the operating sys
tem on an equal footing with the code supplied by Intel. 

This chapter looks at the structure of iRMX device drivers. Device 
drivers are especially interesting because they must interface with all of the 
following: 

• The hardware of a device controller attached to the computer's system 
bus. 

• The microprocessor's interrupt logic. 

• The software of the operating system. 

• The code of the application program that invokes I/O operations 
through system calls (indirectly). 

It is not surprising, perhaps, that this chapter builds on concepts intro
duced in chapters 5 through 8. The primary source of information for this 
chapter is the iRMX Device Driver Programming Concepts manual, volume 
7 of the iRMX for Windows documentation set. The manual includes how 
to use the device drivers supplied with the operating system, as well as how 
to write new device drivers. Only the latter topic is covered in this chapter. 

319 
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9.2 I/O Terminology 

A mini-glossary is necessary before starting to discuss device driver con
cepts. The following three terms are used when speaking about the iRMX 
I/O system: 

device unit The iRMX name for an actual I/O device, such as a termi
nal' printer, or disk drive. 

device controller The hardware interface that connects a device unit 
to the microprocessor's I/O bus. (Device controllers on PCs are called 
adapters.) More than one device unit can be connected to a single device 
controller. For example, a single device controller for disks might have 
several drives attached to it. 

device driver The software that actually interacts with a device con
troller. Device drivers are considered part of the BIOS itself. A single de
vice driver would be used for all the device units attached to one device 
controller, and it is even possible for one device driver to manage several 
different device controllers at the same time. 

Readers familiar with device drivers for DOS will find that the iRMX 
use of the term device driver is much more restricted than DOS's. An iRMX 
device driver interacts directly with the iRMX BIOS using well-defined 
interfaces described in this chapter. Application tasks can interact with an 
iRMX device driver only through the standard I/O system calls described 
in chapter 8. DOS uses the term much more loosely to describe almost any 
program that remains resident in memory while other applications run. 
Unlike iRMX device drivers, DOS device drivers often provide their own 
system calls that applications can call. In this regard, DOS device drivers 
are more akin to iRMX operating system extensions, described in chap
ter 10. 

Four types of device drivers are supported by the BIOS. The simplest 
type to understand is called a custom driver, used in this chapter in the pre
sentation of device driver concepts. The other three types of device drivers 
are actually custom drivers for which iRMX provides boilerplate code to 
permit developers to concentrate on the special characteristics of their own 
device controllers without writing a considerable amount of standard code 
over again. After the structure of a custom driver is discussed, the features 
of the other three types are examined as well. The names for these other 
three are common, random, and terminal. These names are quite descrip
tive: common drivers are used for relatively simple devices, such as a 
printer or tape drive; random drivers are used for random-access devices 
such as disks; and terminal drivers are used for terminals. 



Extending iRMX: Adding Device Drivers 321 

9.3 Logical Structure of a Device Driver 

A device driver consists of three major components, which are related to 
each other as shown in Figure 9.1. Figure 9.1 also shows the relationships 
between the device driver components, a device controller, the BIOS, and 
an application task. The system bus in Figure 9.1 divides the hardware and 
software sides of the I/O system. 

The module labeled Interface with the Device Controller is responsible 
for managing most of the device driver hardware interactions, which are 
interrupt handling and the actual transfer of data between the device con
troller and the processor's memory. The Interface with BIOS module con
sists of a set of procedures called by one ofthe file drivers within the BIOS 
when it needs to interact with the device driver. The driver task module is 
the code that acts as the intermediary between the other two modules. It 
receives 10RSs from the BIOS, processes the functions requested in the 
10RSs by preparing data operations for the hardware interface, and re
turns each 10RS to its responseMbx when the function is complete. 

9.3.1 Interface with the device controller 

Chapter 5 introduced the hardware side of the x86 microprocessor's I/O 
interface. To review, data, control, and status information are written to 
and read from a device controller by writing and reading I/O port addresses 
in much the same way as memory locations are written and read using nor
mal memory addresses. The device controller signals the completion of 
data transfers between itself and a device unit by generating an Interrupt 
Request (lNTR) signal to the microprocessor through a Programmable 
Interrupt Controller (PIC) that manages simultaneous interrupt requests 
from multiple device controllers. When the microprocessor acknowledges 
an INTR, the PIC presents it with an 8-bit interrupt-level number that in
dicates the source of the interrupt request. The CPU uses the interrupt
level number to index into a table of descriptors for software routines 
called interrupt handlers (or interrupt service routines in DOS), and forces 
the equivalent of a call instruction to the appropriate handler. When the 
handler starts executing, further interrupts are blocked from occurring in 
two ways. 

First, the PIC will not generate any more interrupt requests until it re
ceives a command byte, called an end-of-interrupt (EOn command, from 
the processor. One ofthe responsibilities of an interrupt handler is to out
put the EO! byte to the PIC's command register either directly or by using 
a system call. 

Second, the interrupt enable (IE) bit in the processor's flags register is 
turned off when the handler is called, preventing the processor from recog
nizing interrupt requests even ifthe INTR signal line is asserted by the PIC 
again. As the CPU forces the call to an interrupt handler, it pushes the cur-
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rent state of the flags register (which must have the IE bit on to recognize 
the interrupt) onto the stack, along with the return address for the inter
rupted task. The special return instruction executed by interrupt handlers 
(iret) pops the flags register and the return address when the handler exits, 
thus turning the IE bit back on. 

iRMX places severe limits on the processing interrupt handlers can do 
because they execute in the context of whatever iRMX task happens to be 
running at the time of the interrupt. The interrupt handler performs a 
small amount of processing in response to the interrupt and calls the Nu
cleus to schedule execution for a task associated with the given interrupt 
level. 

Each iRMX task priority level has a set of interrupt levels associated 
with it that are prevented from occurring when a task ofthat level is run
ning. For tasks with priorities 129 through 255, the set of interrupt levels is 
the empty set, but for higher priority tasks, the Nucleus programs the PIC 
to prevent certain interrupt levels from occurring as part of the process of 
scheduling a task for execution. An interrupt task for a given interrupt 
level automatically has a priority assigned to it that prevents all interrupt 
levels lower than its own from interrupting the CPU while the task is run
ning. The task priorities and associated set of disabled interrupt levels are 
given in a table in the manual iRMX Nucleus Programming Concepts, vol
ume 3 of the iRMX for Windows documentation set. 

Assuming a device controller that performs both input and output data 
transfers, our Interface with Device Controller module consists of two in
terrupt handlers and two interrupt tasks. The first priority is to see how to 
code an interrupt handler procedure, then how to create an interrupt task, 
and finally how to get the two to communicate with one another. 

An interrupt handler is a normal procedure (a void function) declared as 
an interrupt handler when it is compiled. The following fragments show 
how to do this for a handler named myhandler() coded in either C: 

#pragrna interrupt (rnyhandler) 
void rnyhandler ( ) ; 

or PLM: 

rnyhandler: PROCEDURE PUBLIC INTERRUPT; 

The compilers generate special code for interrupt procedures. The pro
logue code for interrupt handlers includes machine instructions to save a 
copy of all the processor's registers on the stack. The epilogue code in
cludes the instructions to restore the registers, and the procedure ends with 
the special iret instruction that restores the processor's flags register and 
return address from the stack. In short, the code is generated so that the 
procedure can be executed in the context of any thread of execution with
out interfering with the interrupted thread. 
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The next two steps are to enter the address of the interrupt handler into 
the proper slot of the processor's Interrupt Descriptor Table (IDT) and 
establish an interrupt task for the interrupt level. It is possible to have an 
interrupt handler without having an interrupt task, but assume the need 
for both for now. Both steps are accomplished with a single system call, 
rqsetinterrupt() . 

extern void 
rqsetinterrupt ( WORD 

BYTE 
void far • 
TOKEN 
WORD far· 

level, 
interruptTaskFlag, 
interruptHandler, 
interruptHandlerDS, 
exceptPtr); 

level is an encoded value that identifies which interrupt level is being 
configured. Rather than enter a number between 0 and 255 that would 
serve as the index into the Interrupt Descriptor Table (IDT), iRMX works 
with encoded levels that identify interrupt sources by their connections to 
PICs. One PIC, called the master, is always connected to the microproces
sor and up to seven slave PICs can then be connected to the master, as 
shown in Figure 5.6. The value of level takes the form OxOOMS, where M 
is the number ofthe interrupt request line for the master PIC that gener
ated the request, and S is the interrupt request line on the slave PIC, which 
is 8 ifthe interrupt request line is connected directly to the master PIC. For 
example, a handler for interrupt requests from a device controller con
nected to interrupt request line 3 of the master PIC has a value of Ox0038 
for level, and a handler for interrupt requests from a device controller 
connected to interrupt request line 4 of the slave PIC, which in turn is con
nected to interrupt request line 7 ofthe master PIC, has an encoded level of 
Ox0074. 

Encoded values of level are mapped to two different numbers by the 
Nucleus. One mapping is to the 8-bit index into the IDT for the level. IDT 
slots 56 through 127 are used for interrupt handlers, with slots 56 through 
63 used for master levels, and 64 through 127 used for slaves. This mapping 
is important to know about if you want to invoke an interrupt handler by 
means of a software interrupt instruction, such as when developing a de
vice driver before an actual device controller is available. 

The second mapping is to the priority of the interrupt task for the level 
mentioned previously. Priorities increase in a monotonic sequence from 4 
to 128 as level varies from OxOO to Ox77. iRMX application tasks always 
run with priorities numerically greater than 128 so that they do not inter
fere with the interrupt response mechanism of the system. 

interruptTaskFlag indicates whether there is to be an interrupt task 
for the interrupt level or not. If the value is 0, there is to be no interrupt 
task, and all interrupt processing for the level must be done by the inter-
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rupt handler. The focus here is on the situation that does involve an inter
rupt task. 

If interruptTaskFlag is not zero, the calling task immediately 
becomes the interrupt task for the level. No separate system call creates an 
interrupt task, only this call, which transforms a normal task into an 
interrupt task and associates it with a particular level. If the calling task is 
to become an interrupt task, it immediately assumes the priority asso
ciated with level. Thus, the maximum priority for the job that owns the 
calling task must be high enough to accommodate this priority shift. This 
requirement can be a problem for loadable device drivers, and the solution 
to this problem is to use the rqesetmaxpriority( ) system call to raise the 
maximum priority for the job. This parameter is more than just a Boolean 
flag. It also indicates how many times the interrupt handler can be acti
vated without the interrupt task indicating readiness to process new inter
rupts. (See the next subsection on Handler-Task synchronization.) If the 
limit indicated by the value of interruptTaskFlag is reached, the inter
rupt level is automatically disabled. 

interruptHandler is a pointer to the interrupt handler procedure. 
The procedure must have been coded as an interrupt procedure, cannot re
ceive any arguments nor return any value, must handle exceptions in-line, 
and it must remain in memory as long as the interrupt level is set. Remain
ing in memory is of particular concern for loadable device drivers because 
there is the possibility that the job owning the handler's code and/or mem
ory data segments might be deleted, and its memory segments returned to 
the Free Space Manager (FSM). This problem does not exist for device 
drivers loaded by sysload because they are owned by the Human Interface 
(HI) job, which will not terminate until the system is reset. The dynamic 
device driver mechanism described later in this chapter tries to minimize 
this concern, but cannot eliminate it entirely. 

interruptHandlerDS is a selector for a memory segment to be used as 
the data segment when the interrupt handler executes. The interrupt 
handler can have this selector loaded into its ds register when it executes 
by calling rqenterinterrupt( ). This feature could be used if the handler and 
the task wanted to use the same data segment but normally run with dif
ferent data segments. This situation would only occur if the handler and 
the task were compiled in separate modules using the large segmentation 
model. Since this condition is uncommon, this parameter is normally 
coded as a null selector, and the handler's prologue code loads the ds auto
matically. 

Handler-task synchronization. The CPU disables all interrupts and gener
ates a call to the interrupt handler each time it acknowledges an interrupt 
for the appropriate level. The PIC does not make any additional interrupt 
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requests to the processor until it receives an EOI command byte. When the 
handler is called, it performs whatever processing is appropriate (as little 
as none), and then makes the Nucleus call rqsignaiinterrupt().l The Nu
cleus does three things when rqsignaiinterrupt() is called: 

1. Sends the EO! byte to the PIC. 

2. Moves the interrupt task for the level to the ready queue. By definition, 
the interrupt task has higher priority than the task running at the time 
of the interrupt and will preempt it. 

3. As part of the scheduling process for the interrupt task, the Nucleus 
programs the PIC to ignore interrupt requests for lower interrupt levels, 
and turns on the CPU's interrupt enable bit. 

Interrupt handlers that do not call rqsignalinterrupt( ) to signal an inter
rupt task must either call rqexitinterrupt( ) to get the EOI command sent, 
or output the EO! byte to the PIC's control port directly, which is more ef
ficient than making the system call. By calling rqsignalinterrupt(), the 
handler is preempted and does not run again until the interrupt task relin
quishes the CPU.2 When the handler runs again, it executes its epilogue 
code, which restores all registers to the values they had when the handler 
was called and executes the special iret instruction that restores the CPU 
flags register from the stack. Interrupt handlers, then, are procedures that 
act like normal procedures in that they return after they are called. In con
trast, the procedure executed by any task, including interrupt tasks, typi
cally contains an endless loop that never returns. 

The procedure executed by an interrupt task follows the normal model 
for event-processing tasks. After doing some initialization, including the 
call to rqsetinterrupt() that makes the task an interrupt task, the code con
sists of an endless loop that begins with a call to either rqwaitinterrupt( ) or 
rqetimedinterrupt( ). These calls enable interrupts for the particular level if 
they are disabled, and cause the interrupt task to sleep until the interrupt 
handler calls rqsignalinterrupt().3 The difference between rqwaitinter
rupt() and rqetimedinterrupt() is that rqetimedinterrupt() includes a 
standard iRMX time-limit parameter, a WORD that tells the maximum 
number of real-time clock ticks (normally in O.Ol-second units) that the 
task is willing to wait for the handler to call rqsignaiinterrupt(). Both calls 
include an encoded level parameter, which allows several interrupt tasks 
to use a single procedure for their code. 

IThe interrupt level is the only parameter for this call other than exceptPtr. 

2Higher-priority interrupts can occur while the interrupt task is running but their nested 
processing is invisible to the process being described here. 

aIf a handler has called rqsignalinterrupt() more times than the value of interruptTaskFlag 
in the rqsetinterrupt() system call without the interrupt task calling rqwaitinterrupt() or 
rqetimedinterrupt(), the Nucleus programs the PIC to disable interrupts for that level. 
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Interrupt handlers run with all interrupts disabled because the proces
sor's interrupt mechanism disables the interrupts automatically. Because 
interrupts are disabled when interrupt handlers execute, good system de
sign dictates that they should perform their work as quickly as possible. 
Also, because the handler is running in the context of an arbitrary iRMX 
task, the Nucleus restricts interrupt handlers to making only those system 
calls directly concerning interrupt processing. 

An interrupt task, on the other hand, runs with interrupts disabled only 
for lower priority levels (because the Nucleus programs the PIC to do this 
when it schedules the task) and operates in its own context. As a result, 
much less concern exists about reducing the computation time for inter
rupt tasks and no constraints exist on which system calls an interrupt task 
can make. If the response to an interrupt requires a significant amount of 
processing time, however, the interrupt task should pass control to an ap
plication task (one that runs at a priority that does not disable any inter
rupt levels) using a semaphore or mailbox. The application task can then 
complete its processing without interfering with the system's response to 
any interrupt levels. 

9.3.2 Interface with the BIOS 

The interface between a device driver and the BIOS consists of two data 
structures and four procedures that the device driver provides. The two 
data structures are the IORS, introduced in chapter 8, and the DUIB 
(device unit information block), mentioned briefly before and shown 
here: 

#pragma noalign (duibStruct) 
typedef struct duibStruct ( 

BYTE name[14); 
WORD fileDrivers; 
BYTE functions; 
BYTE flags; 
WORD deviceGranularity; 
DWORD deviceSize; 
BYTE device; 
BYTE unit; 
WORD deviceUnit; 
void (near * initializeIO) 
void (near * finishIO) ( ); 

void (near * queueIO) ( ); 

void (near * cancelIO) ( ); 

void far * devicelnfoPtr; 
void far * unitlnfoPtr; 
WORD updateTimeout; 
WORD numBuffers; 
BYTE priority; 
BYTE fixedUpdate; 
BYTE maxBuffers; 
BYTE reserved; 

( ); 
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Most DUIBs for an iRMX system are loaded into system memory at the 
time the as is initialized, but the rqinstallduibs() system call can be used to 
load additional D UIBs at run -time. The ability to add D UIBs to the system 
at run-time is a relatively recent addition to iRMX, and is particularly 
valuable for developing loadable device drivers, a technique described later 
in this chapter. 

At this point, just a few fields in the DUIB data structure need to be 
mentioned. The name field is a blank -padded array of bytes containing the 
device name for the DUIB. When a task calls rqphysicalattachdevice(), the 
BIOS searches through all the DUIBs in memory to find a match between 
this field and the string pointed to by the devNameptr parameter of the 
call. There must be at least one blank at the end of this field, effectively 
limiting the name to 13 characters. 

The fileDrivers field is a bit array that identifies which file drivers 
can be used when performing an attach-device operation with this DUIB 
(Physical, Named, Stream, Remote, or EDOS). functions is another bit 
array and identifies which functions the device driver will support for the 
device unit referenced by the DUIB. These functions are covered in the 
Driver Task section that follows. The first four ofthe pointers in the mid
dle ofthe structure point to four procedures, described next, that the BIOS 
will call to communicate with the device driver. The other two pointers are 
to data structures used by the common, random, and terminal device 
drivers. Custom drivers can use these two pointers, for anything they like, 
or code them as null pointers. 

Just four procedures serve as the interface between the BIOS and a de
vice driver. In the case of common, random access, and terminal drivers, 
the BIOS provides other routines called by these four procedures, but for 
custom drivers, these routines are the complete procedural interface to a 
driver. Although the BIOS calls the procedures by referencing their 
pointers rather than their names, it is convenient to give generic names to 
the procedures, initializeIO(), finishIO(), queueIO(), and cancelIO(). 

void 
initializeIO ( DUIBSTRUCT far * 

TOKEN far * 
WORD far * 

duibPtr, 
deviceDataPtr, 
exceptPtr); 

As its name implies, initializeIO() is called to initialize the device driver 
to work with a particular device controller. If a device controller is con
nected to more than one device unit, this function is called only if no other 
device units connected to the controller are already attached. The function 
is called when an application task calls rqaphysicalattachdevice(), such as 
through an EIOS system call, but, like the other three procedures in this 
set, is actually called by a task that belongs to the BIOS job rather than di
rectly by the application task. The implication of this indirect call is that 
the objects that this procedure creates belong to the BIOS job, not to the 
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application task that initiated the operation. Typically, this procedure 
creates a task for the device controller being attached (the driver task de
scribed in the next section) and sets up the queue for passing IORSs to the 
driver task. 

The duibPtr parameter points to the DUIB that contains the pointer to 
this procedure. This pointer is passed to the driver's initializeIO() proce
dure to accommodate the case of several D UIBs containing pointers to the 
same driver. A single, generalized device driver can serve a number of dif
ferent device controllers and units by having the deviceInfoptr and 
uni tInfoptr fields of the DUIBs point to data structures that describe 
the particular controller and unit to be used. 

A device driver might want to have a memory segment to hold informa
tion about the device units connected to a particular controller. To do so, it 
can create such a segment when initializeIO() is called, and place a token 
for the segment in the variable pointed to by deviceDataptr. This token 
will then be passed back to the device driver as one of the parameters to 
each of the other three procedures that compose the driver's procedural in
terface to the BIOS (queueIO(), cancelIO(), andfinishIO(). This mecha
nism allows a single device driver's code to be used to service multiple de
vice controllers. If a driver does not need such a data segment, it should 
place a null selector in the variable pointed to by this parameter. 

Although this procedure is not a system call, the last parameter looks 
strikingly familiar: a pointer to a word containing a condition code. In this 
case, the BIOS task that calls this procedure supplies the pointer and the 
word to which it points. It is the responsibility of the initializeIO() proce
dure to store an appropriate condition code value in the word, which is 
returned as the condition code for the application's call to rqphysicalat
tachdevice(). It is important to set the value of this variable properly. 

void 
finishIO ( DUIBSTRUCT far • 

TOKEN 
duibPtr, 
deviceDataTkn) ; 

The finishIO() procedure is called when a device unit is detached and no 
other device units are still attached for the device controller. Its job is to 
delete all the resources created when the device was first attached, such as 
the driver task, interrupt tasks, and 10 RS queue. If this housekeeping were 
not performed, repeatedly attaching and detaching a device would lead to 
unused objects accumulating in the system, thus resulting in wasted mem
ory. This routine can also perform any final processing necessary to allow 
the device controller to be attached again at a later time. The two parame
ters are a pointer to the DUIB for the device unit being detached and a 
token for the data segment created for this device when initializeIO( ) was 
called the first time the device was attached. Deleting this segment is one of 
the housekeeping operations this function performs. 
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void 
queueIO ( TOKEN 

DUIBSTRUCT far * 
TOKEN 

iorsTkn, 
duibPtr, 
deviceDataTkn); 

The queueIO( ) procedure is the workhorse of the interface between the 
BIOS and a device driver. It is called for every I/O operation invoked by 
every application task that uses the driver. Its function is actually quite 
simple: it places the token for an 10RS, its first parameter, onto the queue 
of IORSs maintained for work to be performed by the driver task. A device 
driver that supports multiple device controllers might have multiple driver 
tasks and 10RS queues, in which case the deviceOataTkn is normally the 
selector for the memory segment holding the head of the IORS queue for all 
the device units attached to a particular controller. This segment is the one 
that would have been created when initializeIO( ) was called at the time the 
first device unit was attached. Each IORS includes fields to set up a doubly 
linked list of 10RSs on a queue that can be usedby queueIO(), but a 
rudimentary device driver could use as simple a mechanism as an object 
mailbox to implement its 10RS queue. The only requirement is that this 
procedure act as a producer of 10RSs that can be consumed by a 
driver task. 

queueIO() performs the synchronous portion of a BIOS system call. 
Once the IORS has been queued, this procedure returns to the file driver 
that made the queueIO() call, which in turn allows the application task 
that made the system call to continue execution. The driver task then pro
cesses the 10RS asynchronously, ultimately returning it to responseMbx 
when processing is complete. 

void 
cancelIO ( WORD 

DUIBSTRUCT far * 
TOKEN 

cancelID, 
duibPtr, 
deviceDataTkn); 

cancelIO() is a housekeeping procedure that the BIOS calls to remove 
10RSs from a queue. It undoes the effects of previous calls to queueIO(). 
Thus, this procedure removes those 10RSs whose cancelIO fields match 
the cancel IO parameter of this call. This procedure is called, for example, 
when a connection is closed to ensure that no I/O operations are performed 
using a closed connection. Device drivers that process all 10RSs sequen
tially can often skip the functionality of this procedure, at the risk of per
forming some I/O operations queued by ajob that terminates abnormally. 
Note that proper implementation of this procedure precludes use of the 
simple mailbox mechanism for the 10RS queue mentioned previously, 
since a mailbox queue of 10RS tokens cannot be searched like a linked list 
of IORSs themselves. 
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9.3.3 The Driver Task 

In our model of a device driver, the Driver Task is the heart of a device 
driver; witness its central position among the software units in Figure 9.1. 
The task is created by initializeIO( ), and begins its processing by complet
ing any initialization not already performed. Typically, this initialization 
includes programming the device controller as necessary (to tell it to start 
generating interrupts and to set the baud rate, for example), and creating 
the interrupt tasks and handlers for the controller. The driver task then 
enters an endless loop in which it receives 10RSs from its 10RS queue and 
manages whatever work must be done to process each I/O request. This 
model is particularly convenient for drivers that must service separate in
terrupt levels for input and output with a device controller. This model is 
not the only one that will work, however. For example, the drivers supplied 
by Intel accomplish the work the example assigns to the driver task either 
in the BIOS task that calls queueIO() or the driver's interrupt task. The 
following is the structure declaration for an 10RS, previously given in 
chapter 8, for easy reference. 

#pragrna noalign (iorsStruct) 
typedef struct iorsStruct { 

WORD 
WORD 
NATIVE_WORD 

#if ARCHITECTURE < 386 - -
WORD 

#endif 
WORD 
BYTE 
BYTE 
WORD 
DWORD 
BYTE far • 
NATIVE_WORD 

#if ARCHITECTURE < 386 - -
WORD 

#endif 
void far • 
iorsStruct far • 
iorsStruct far • 
TOKEN 
BYTE 
BYTE 
TOKEN 
TOKEN 

} IORSSTRUCT; 

status; 
unitStatus; 
actual; 

actualfill; 

device; 
unit; 
funct; 
subfunct; 
deviceloc; 
buff; 
count; 

countfill; 

aux; 
linkForward; 
linkBackward; 
responseMbx; 
done; 
fill; 
cancelID; 
connection; 

The funct field of an 10RS is a function code. Values for funct sym
bolic names and a summary of driver task processing are: 

o fRead The driver task reads the number of count bytes 
from the device controller into the application's 
buffer, pointed to by buff. If appropriate for the de
vice, deviceloc tells from where on the device the 
data are to be read, such as a sector number on a disk. 
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1 fWrite 

2 fSeek 

3 fSpecial 

4 fAttach-
Device 

5 fDetach-
Device 

The driver writes the number of count bytes from 
the application's buffer, pointed to by buff, to 
the device controller. If appropriate for the device, 
deviceloc tells where on the device the data are to 
be written. (Reading and writing are described in 
more detail in the following section.) 
For disks, the device driver positions the read/write 
head where specified by the deviceloc field. 
This function is used when a task calls rq[asJspe
cial(). The subfunct field ofthe IORS contains the 
value of the functionCode parameter to those calls, 
so the device driver will know whether to format 
a track, set a signal character, or whatever device
specific operation is needed by the application. The 
aux pointer of the IORS is the same as the parame
terPtr argument ofthe call to rq[asJspecial(). That 
is, it points to whatever data structure is appropriate 
for the particular operation to be performed. For ex
ample, for the signal character function described in 
chapter 8, aux points to a structure that contains a 
byte code and a semaphore token. 
The device driver performs whatever initialization 
necessary for attaching a particular device unit. ini
tializeIO() is called when a device is attached only if 
no other device units for the device are already at
tached. An fAtta~hDevice IORS, however, is sent 
to queueIO() for every device unit attached. A device 
driver that supports multiple device units connected 
to a single controller might be structured with a main 
driver task, created by initializeIO(), which receives 
all IORSs. When this main driver task receives an 
fAttachDevice IORS, it could create a new driver 
task for the device unit being attached and forward 
all future IORSs for that device unit to its proper 
task, based on the device and unit fields of the 
10 RSs (which match the corresponding fields of the 
DUIB used to attach the device unit). 
An fDetachDevice IORS is sent by the BIOS for 
each device unit to be detached. The device driver de
letes whatever resources were allocated to the device 
unit and does whatever is necessary to shut the unit 
down so that it can be attached again at a later time. 
If no other device units for this device controller are 
attached at the time, the BIOS calls the driver's 



6 fOpen 

7 fClose 
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finishIO() routine immediately after queuing this 
IORS. 
Most of the logic associated with opening a connec
tionto a file is performed by the file driver in the 
BIOS, including checks for access rights, sharing 
mode consistency, and connection data structure up
dating to show that the connection is indeed open. An 
fOpen IORS notifies a device driver that a connec
tion is open. A driver for a local device normally does 
very little, if any, processing for this function, but it is 
very important for network drivers, which use this 
function to trigger checking of remote access rights. 
Like fOpen, this function is mostly a courtesy call for 
drivers, managing local devices, but is used by net
work drivers to get the remote server to close its con
nection to the file. 

After processing an 10RS, the driver task must update the status and 
uni tStatus fields of the IORS to indicate the result of the operation. (At 
this point the meaning of IORS shifts from I/O Request Segment to I/O 
Result Segment.) A value of 0 for status means the operation completed 
normally, and a value ofOx2B (E_IO) signifies a typical I/O error. If the 
driver sets status to E_IO, it should normally setuni tStatus to one of the 
standard values listed: 

0 iOUnclass An error other than one of the codes listed here oc-
curred. 

1 ioSoft An error occurred that might correct itself by simply 
retrying the operation. 

2 ioHard Unrecoverable I/O error. Retry is useless. 
3 ioOprint Operator intervention required. (No paper in the 

printer, etc.) 
4 ioWrprot Cannot write to a write-protected volume. 
5 ioNoData For magnetic tape, no data exists in the next tape 

record. 
6 iOMode A read or write was attempted before the previous 

read or write for the same device unit completed. 
(This condition can occur for tape drive operations.) 

7 ioNoSpares A disk needs an alternate track or sector to replace a 
defective one, but no spares are available to make the 
assignment. 

S ioAlt- An alternate track or sector had to be assigned. 
Assigned 
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In addition to setting the status and unitStatus fields, the driver 
must also fill in the actual field to indicate the actual number of bytes 
transferred for fRead and fWr i te functions. The value is normally equal 
to the count field, unless an event occurs, such as a disk filling up on out
put or an end-of-file being encountered on input. 

Finally, the device driver sends the token for the IORS to the mailbox 
specified in the responseMbx field to indicate it has completed the opera
tion. 

9.3.4 Driver task and interrupt 
task interactions 

When a device driver receives an IORS for a data transfer, it follows one of 
several models described as follows for synchronizing device controller 
operations with the CPU. 

Polling. The driver task repeatedly reads the device controller's status 
register to determine when an I/O transfer is complete. This technique 
does not use the interrupt mechanism of the processor at all, and is seldom 
used by iRMX device drivers. Ifthe task that polls the controller has a very 
high priority, it can starve other time-critical tasks in the system. If the 
driver task has a low priority, there is little or no advantage over using the 
interrupt system. 

No interrupts. This technique is used when the driver task calls another 
procedure that handles the interrupt(s) for the data transfer. A primary ex
ample of this technique is used by some iRMX for Windows drivers run
ning on an AT platform that make ROM-BIOS procedure calls to perform 
data transfers. The driver task calls the ROM-BIOS procedure, and does 
not run again until that procedure completes the I/O transfer, including all 
interrupt processing associated with the transfer. Since the driver polls for 
a completion flag to be set by a ROM-BIOS interrupt handler, this tech
nique is really no better than straight polling. 

One interrupt per IORS. D MA device controllers can perform an entire data 
transfer given the information from the buff and count fields of an IORS. 
The driver task sends this information to the device controller, along with 
whatever control codes are needed to indicate whether the operation is a 
read or a write. When the entire data transfer is complete (either success
fully or not), the device controller signals the processor with an interrupt 
request. The driver task then reads status information from the controller 
to test whether the operation completed normally or not. Once the inter
rupt is processed, the driver task can process the next IORS when it ar
rives. If the device driver processes I/O requests one at a time using this 
technique, the driver task can serve as the interrupt task for the driver. 
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Multiple interrupts per IORS. This type of operation is used for device con
trollers that cannot complete an entire data transfer in a single step. The 
situation arises in the case of an unbuffered serial port that generates an 
interrupt for each byte of data it transmits or receives, or in the case of a 
disk controller, that cannot perform data transfers that cross sector or 
cylinder boundaries without additional seek operations. 

A device driver for a Universal Asynchronous Receiver-Transmitter 
(UART) provides a good example of a driver that must process multiple 
interrupts per IORS, and the following discussion of this driver includes 
concurrent processing of input and output operations as well. AU ART is a 
single integrated circuit that operates as an almost complete device con
troller for an asynchronous serial communication line, such as an RS-232 
or RS-422 serial port connected to a device unit such as a modem, terminal, 
or another computer. All the UART needs to complete the controller is an 
external clock circuit to set the baud rate and some buffers to provide and 
buffer the proper transmission voltages. 

A simplified diagram of a UART is shown in Figure 9.2. The UART pro
vides two on-chip data buffers, one for transmitting and one for receiving 
characters. These buffers typically hold as little as a single byte of data 
each. There are UARTs with large data buffers on chip, in which case they 
are considered to be buffered controllers, and are typically handled using 
the one-interrupt-per-IORS model. 

For this discussion, the input buffer consists of a one-byte receiver regis
ter that receives serial data (one bit at a time) from the device unit and a 
one-byte input data buffer that can be read in parallel (n bits at a time, with 
n usually being 8) by the processor. The arrival of a character from the de
vice unit begins with a voltage transition on the input data wire called a 
start bit. Using the baud rate clock for timing, the UART then shifts suc
cessive bits into the receiver register until the register has received the 
proper number of data and parity bits. At that point, the receiver register 
must receive a pulse opposite in polarity to the start bit, called a stop bit. 

If the number of data bits and the value of the parity bit match the 
UART's expectations, which are determined by a set of control codes sent 
before transmission began, the UART dumps the receiver register into the 
data buffer register and generates an interrupt request signal. This signal 
goes to the processor through the mediation of a PIC as described in chap
ters 5 and 8. If an error occurs, such as an invalid parity bit value (a parity 
error), failure to receive a stop bit at the expected time (a framing error), or 
arrival of a character before the previous character has been read from the 
input data buffer by the processor (a data overrun error), the UART sets an 
appropriate error code value in an on -chip status register before generating 
its interrupt request. 

The output buffer is just the opposite of the input buffer. It consists of a 
one-byte output data buffer that receives parallel data from the processor 
and a transmitter register that sends serial data to the terminal, modem, or 



336 iRMX Concepts and Features 

/ > I Receiver 

Device 

Unit 
I Input Buffer > 

I Output Buffer I ~----7~/~------

f-I-- I Trahsmitter 

1 

Figure 9.2 DART registers. 

Status -7 
f------I 

Command ~-

Processor 

remote computer. The transmitting side of the DART generates an inter
rupt request every time the DART is ready to accept a new byte of data 
from the processor. The first data byte it receives is immediately loaded 
into the transmitter shift register so that the output data buffer can imme
diately receive another byte of output. The processor can monitor the 
status of the output data buffer and the transmitter by examining the 
status register of the DART, but the interrupt mechanism typically takes 
care of this automatically. 

The two sides ofthe DART can operate concurrently, and the device can 
generate separate interrupt requests for the two sides independently. It is 
electrically possible to merge the two interrupt request signals into one, but 
the two interrupt requests are generally separate, so there are two interrupt 
tasks. (A single task cannot act as an interrupt task for two interrupt 
levels.) 

A device driver for this type of device controller, then, requires two in
terrupt tasks, and can profitably be constructed with a third driver task for 
managing lORSs. Figure 9.3 shows the relationships among the tasks for 
such a device driver. The structure in Figure 9.3 could be established by in
itializeIDO as follows: 

Step 1. Create the input and output buffer queues. The input buffer holds 
input data that arrives from the DART before the driver task processes a 
corresponding read lORS. For a terminal connected to a serial port, this 
buffer is often called a typeahead buffer because it holds the characters that 
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a user types before they are read by a program:' The output buffer holds 
outgoing data produced by the driver task in response to write IORSs, but 
which have not yet been output to the UART by the output task. Logically, 
this buffer could be eliminated if the driver task served as the output inter
rupt task, but such an arrangement would limit the amount of concurrent 
input and output that could occur. 

rTfTriiiUiI 
-7~-7 

Figure 9.3 Device driver tasks for concurrent input and output. 

Driver 
Task 

Not shown in Figure 9.3 is the possibility that the output buffer queue 
can be accessed by the input interrupt task for sending flow control charac
ters to the device unit. For example, if the input interrupt task finds that 
the input buffer queue is filling up too rapidly, it could send an <xoff> 
character to the device unit by inserting the character at the head of the 
output buffer queue. The <xoff> character would tell the device unit to 
stop sending data to the U ART until the device receives an <xon> charac
ter, which the input interrupt task would place in the output buffer queue 
when the input buffer queue has sufficiently emptied. (The ASCII 
<xoff> and <xon> characters are <AS> and <AQ>, respectively.) The 
point at which the number of characters in the input queue triggers an 
<xoff> character is called the high-water mark, and the point at which 
the number of characters is low enough to generate an <xon> is called the 
low-water mark. 

Step 2. Once the input and output buffer queues have been initialized, the 
two interrupt tasks can be created. The algorithms for these two tasks are 
relatively straightforward. After calling rqsetinterrupt(), the input task 
enters an endless loop in which it first calls rqwaitinterrupt(). The task will 
block until the input interrupt handler calls rqsignalinterrupt(), which 
might be the only thing that procedure does when it is activated in response 

4Device drivers for terminals are not normally coded as custom drivers on iRMX. Terminal 
drivers, introduced in section 9.4.4, handle the typeahead buffer somewhat differently. 
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to an interrupt request from the UART. The interrupt task then reads the 
status byte from the UART to ensure that no error has occurred, and then 
reads the contents of the UART's input data buffer, which also clears any 
error conditions that have occurred. The interrupt task then adds the char
acter just read to the input buffer queue and returns to the top of its pro
cessing loop, where it calls rqwaitinterrupt() again. 

A couple of details should be noted here. First, the interrupt task must 
verify that space is available in the input buffer queue before it adds data to 
it, and block and/or invoke a flow control mechanism if the queue is full. 
Second, if an rq[asJspecial() system call has established signal characters 
for the device, the interrupt task should recognize signal characters when 
they arrive and process them by sending a unit to the signal character 
semaphore and possibly flushing the input buffer queue instead of adding 
them to the queue. 

The output interrupt task really is simple: it waits for a character to ar
rive in the output buffer queue, writes it to the UART's output data buffer, 
calls rqwaitinterrupt() to wait until the UART is ready to receive another 
byte of data, and loops back to the top of its processing loop to await the 
arrival of more data in the output buffer queue. 

Step 3. After initiating steps 1 and 2, initializeIO() can now create the 
IORS queue for the driver and the driver task itself. InitializeIO() sets the 
status word passed to it to 0 and returns to the file driver that called it, 
which will proceed to add IORSs to the IORS queue in response to system 
calls by application tasks. The driver task now has the responsibility for 
processing IORSs as they arrive at the queue. Essentially, this consists of 
copying data from the application's buffer to the output buffer queue for 
write IORSs, or copying data from the input buffer queue to the applica
tion's buffer for read IORSs. 

iRMX device drivers for serial device controllers provide a number of 
ancillary functions that can be added to the operations performed for read 
IORS processing. Most of these operations are normally performed by rou
tines in a software module called the Terminal Support Code (TSC), de
scribed in the section on Terminal Drivers. A few of these operations are 
described here to illustrate some of the interactions that could take place in 
a three-task device driver, such as the one being considered here. 

The first operation to be considered is character echoing. For computer
to-computer communication, the input and output data streams are 
normally independent of one another, but for communication between a 
terminal and a computer, the characters that a user types at the keyboard 
must be echoed to the terminal's display device to be visible. The echoing 
can also be done by the terminal itself, as is normal in half-duplex opera
tion, where the terminal and computer cannot both transmit data to each 
other at the same time. But for a full-duplex connection, the computer 
echoes the characters it receives to make them visible. 
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The echoing can be done by either the input interrupt task or the driver 
task. The latter is preferable because the characters do not appear on the 
user's screen until they are actually read by an application task. The user 
thus receives positive acknowledgment that what was typed was actually 
read by a program, and can tell exactly which program read them by where 
they appear on the screen relative to output prompt messages. Echoing, 
like the other operations discussed here, is controlled for iRMX terminal 
drivers by a setterminalattributes call to rq[as]speciaIO. If echoing is en
abled for the three-task driver, characters taken from the input buffer 
queue are simply copied to the output buffer queue as well as to the appli
cation's buffer. 

A second operation is end-of-input recognition. For normal terminal 
operation, iRMX drivers recognize <cr>, <If>, and <sub> (Ox lA, ob
tained by typing <A z» as end-of-message characters. Receiving one of 
these characters from the input buffer queue completes processing of a 
read IORS, even if the number of characters provided in iors. count have 
not yet been transferred to the application's buffer. The driver task sets 
iors . actual to indicate the number of characters actually transferred. 
Most software treats an iors. actual value of 0, obtained when a user 
types <A Z> at the beginning of an input line, as an end-of-file condition. 
Without end-of-message recognition, the driver task cannot complete pro
cessing of a read IORS until it can obtain iors . count characters from the 
input buffer queue. The three characters are treated differently: 

• <A Z> is not echoed to the user's screen and is not placed in the applica
tion's buffer. iors. actual is not incremented. 

• <cr> is placed in both the output buffer queue for echoing to the screen 
and in the application's buffer. It also causes the driver to add a linefeed 
character to both the application's buffer and the output buffer queue. 
iors. actual is incremented by 2. 

• <If> is simply put in the output buffer queue and the application's 
buffer. iors. actual is incremented by 1. 

Terminal drivers for buffered controllers must also manage special char
acters that trigger end-of-input recognition when they are typed. Special 
characters are established by a setterminalattributes call to rq [as] special( ). 

The third operation considered is line editing. Application tasks can 
specify one of three line editing modes by calling rq [as] special( ) with func
tion code 5 (which is set terminal attributes). The line-editing mode is 
specified by a two-bit value as follows: 

o Not allowed 
1 Transparent mode Signal characters received by the interrupt 

handler are processed normally, but all other 
characters are placed in the application's buffer 
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2 Normal mode 

3 Flush mode 

unchanged. A read operation completes only 
when the number of characters in iors. count 
are obtained from the input buffer queue. That 
is, <cr>, <If>, and <sub> have no signifi
cance and are placed in the application's buffer 
unchanged. 
In addition to the message-ending significance 
of the three characters mentioned previously, a 
<rub> character typed by the user can be used 
to delete characters from a line being typed. If 
any characters have been placed in the applica
tion's buffer when this character is detected, the 
driver task decrements iors. actual by one, 
decrements its pointer into the application 
buffer (if it is not using iors. actual as an 
index into the buffer), and places a character se
quence in the output buffer queue to indicate 
that a character has been erased. For a CRT, the 
sequence is <bs> <sp> <bs>, which moves the 
cursor left one position, writes a blank character, 
and moves the cursor left again. 
This mode is the same as transparent mode, ex
cept that the read operation completes immedi
ately with however many bytes are available in 
the input buffer queue at the time the driver task 
starts processing the read IORS. 

For all three modes, it is possible that the input buffer queue will contain 
more bytes than requested by the read IORS. In this case, the extra charac
ters simply accumulate in the queue until another read request arrives. 

There are three more functions that a terminal device driver should 
support, which are invoked by application calls to rq[as]speciaIO with 
function codes 16, 17, and 18. Code 16 is used by applications to obtain 
information about the state of a connection, such as the number of charac
ters present in the typeahead buffer. Code 17 is used to cancel outstanding 
operations on a connection (the BIOS calls the driver's cancel/O() routine 
for this function rather than queue/OO). Code 18 is used to resume I/O for 
a terminal that has been blocked because the user entered a control charac
ter, such as <AS>. 

As mentioned earlier, this discussion has not shown how Intel's iRMX 
terminal drivers actually work, and it has not shown many of the control 
functions that can be used with iRMX terminal drivers. Some of that ma
terial is presented in Section 9.4.4, and a full explanation of all the features 
supplied to terminal drivers by the Terminal Support Code is given in the 
manual iRMX Device Drivers Programming Concepts. What this section 



Extending iRMX: Adding Device Drivers 341 

has tried to do is show how a custom device driver could be designed to im
plement the functions described. 

Bounded buffer implementation. The three tasks in the program provide a 
classic example of the producer-consumer relationships common to con
current processing problems found in systems programming. Before mov
ing on to a discussion of other types of device drivers, this relationship is 
examined, along with how standard iRMX programming techniques are 
used to implement an efficient solution. 

One example of a producer-consumer relationship is provided by the 
input interrupt task and the driver task. The input interrupt task produces 
information by placing data bytes in the input buffer queue, and the driver 
task consumes the information by removing the data bytes from the same 
queue at some later time. The queue is known as a bounded buffer simply 
because its capacity is bounded by the amount of storage allocated to it 
when it is created. (An unbounded buffer would be allowed to grow by allo
cating more memory to it if it fills up.) Each task must obey a simple con
straint: the consumer cannot remove data from the buffer when it is empty, 
and the producer cannot add data to the buffer when it is full. A task that is 
blocked by its constraint condition must wait until the condition is lifted 
before proceeding to carry out its operation. An iRMX solution to this 
problem can be implemented using the following data structure. 

typedef struct boundedBuffer { 
TOKEN critical; 
TOKEN occupied; 
TOKEN free; 
WORD nextPut; 
WORD nextGet; 
BYTE bufferBytes [bufSize]; 
} 

To create a bounded buffer using this typede f, a task could perform the 
following sequence of steps: 

1. Create a memory segment the size of this structure to hold the buffer 
and its associated variables. The size would be 10 or 14 bytes, depending 
on the size of a pointer for the processor's architecture, plus the length 
of the bufferBytes array. 

2. Set the values of nextPut and nextGet to O. These variables will be 
used as indices into the bufferBytes array by the producer and con
sumer tasks, respectively. 

3. Create a counting semaphore with an initial value of 0 and a maximum 
value equal to bufSize. Place the token in occupied. 

4. Create another counting semaphore with both its initial and maximum 
values equal to bufSize. Place its token in free. 
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5. If there are to be multiple producer tasks or multiple consumer tasks, 
create a region and place its token in critical. The region is used to 
control access to next Put and nextGet, but is not needed if each vari
able is manipulated by only one task. The two variables could be pro
tected by two different regions, but accesses to these variables are so 
brief a second region is probably not worth the overhead of creating it. 

The producer uses the following algorithm to add a data byte to the 
bounded buffer: 

1. Receive a unit from the free semaphore. If no free space exists in the 
buffer, the task will sleep until the consumer removes a data item and 
signals that it has done so by sending a unit to this semaphore. 

2. If multiple producer tasks might access the buffer, receive control of the 
cri tical region. 

3. Store a data byte at bufferBytes[nextPut]. Add one, modulo buf
Size, to nextPut. (The array acts as a circular buffer.) 

4. Send control of critical if there are multiple producer tasks. 

5. Send a unit to the occupied semaphore to indicate the availability of 
the data. 

Meanwhile, consumer tasks can execute the following algorithm: 

1. Receive a unit from the occupied semaphore. If none is available, the 
task sleeps until a producer task enters data into the buffer and sends a 
unit to the semaphore indicating its availability. 

2. If multiple consumer tasks might access the buffer, receive control of 
the critical region. 

3. Do whatever is desired with bufferBytes[nextGet], such as copy it 
into a private variable. Add one, modulo bufSize to nextGet. 

4. Send control of the region if there are multiple consumer tasks. 

5. Send a unit to the free semaphore to indicate the availability of an un
used slot in the array. 

In reviewing the logic of the three-task driver presented in this section, it 
should be clear that the automatic synchronization provided by this mech
anism was implicitly relied upon when the algorithms were described, fol
lowed by all three tasks. A very attractive feature of iRMX is the relatively 
low amount of overhead this mechanism places on the processor compared 
to other operating systems or programming languages that incorporate 
synchronization primitives in their semantics. 
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9.4 Common, Random, and Terminal Drivers 

If a device controller operates with a single interrupt level, even if it gener
ates multiple interrupts per I/O transfer, a new device driver can usually be 
developed for it without coding the procedures and tasks previously out
lined for a custom driver. The iRMX BIOS includes code for a standard in
terrupt task and standard versions of initializeIO(), finishIO(), queueIO(), 
and cancelIO() that work for a wide variety of device controllers. 

In the discussion that follows, terms such as system initializeIO( ) refer to 
the versions ofthese procedures supplied with the operating system. Three 
types of device drivers exist with built-in BIOS support, Common, Ran
dom, and Terminal. The term user driver refers to a Common, Random, or 
Terminal driver developed by a user using system-supplied services. The 
drivers supplied with iRMX are also Common, Random, and Terminal 
drivers that use these same system-supplied services. They are usually 
called Intel drivers. 

To take advantage of these system-supplied services, the developer 
needs only to supply procedures and data structures and link them into the 
BIOS. Many techniques are available for adding such code to the operating 
system, including dynamically adding them at run time. The remainder of 
this chapter introduces the concepts involved in developing a user device 
driver and adding it to the BIOS. For full details, consult the iRMX Device 
Drivers User's Guide. 

All user drivers rely on a data structure called a Device Information Table 
(called a DIT here, but not in the iRMX documentation), that is pointed to 
by the deviceInfoptr field of a DUIB. The format of a DIT varies for 
Common, Random, and Terminal drivers, but in all cases the DIT contains 
pointers to user-written procedures called by the system-supplied code to 
perform device-specific operations. 

A DIT contains information specific to a single device controller. As 
Figure 9.4 shows, this information includes pointers to several user-sup
plied routines. For Common and Random drivers, there are five of these 
pointers, and for Terminal drivers, there are seven.6 These procedures are 
called by the system-supplied parts of the driver whenever it is time to per
form a device-specific operation. In addition, the system supplies utility 
and housekeeping procedures that the user-supplied procedures can (utili
ties) or must (housekeeping) call at certain times. 

5iRMX II and III, when running on a Multibus II platform, support a form of interaction 
between a device controller and a processor known as message passing. The format of a DIT 
and much of the material in the remainder of this chapter applies only to interrupt-driven 
I/O, not to message passing. Message passing drivers are described in the iRMX Device 
Driver Programming Concepts. 
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The following are descriptions of two system -supplied utility procedures 
that can be called by any device driver. Other procedures are listed later for 
the specific types of drivers that call them. 

biosgetaddress() takes a far pointer as an argument and returns the cor
responding physical memory address in a doubleword. A second argument 
is a pointer to a condition-code word set to a nonzero value if the pointer 
contains either an invalid selector or offset. This routine performs the 
same function as the rqegetaddress() system call, but executes faster be
cause it is a local procedure and does not involve the overhead ofthe system 
call mechanism. Any type of device driver can use this procedure. 

gdelay() takes two WORD parameters. The first is the number of 10-
microsecond intervals the driver would like to delay its execution, and the 
second is a delay factor that depends on the type of CPU and its clock rate. 
Device drivers sometimes need to invoke small time delays between device 
controller operations, and this routine incurs less overhead and allows 
finer time resolution than possible with rqsleep(). The delay factor for a 
particular processor is found in the memory segment that is cataloged in 
the root job's object directory using the name RQSYS INFO; the structure of 
this segment, including the delay_const field, is given in /rmx386/ 
inc/ sys info . lit. By including the delay factor as a parameter, this 
procedure can work accurately in different processing environments, un
like the similar built-in procedure, time(), available in PLM. 

Figure 9.4 shows the relationships among the data structures involved in 
developing a user driver. It does not show the logical relationships among 
the procedures involved, which are shown in Figure 9.5. The sections that 
follow provide a more detailed view of a user driver than the generic model 
presented in these two figures. 

9.4.1 Common drivers 

Common drivers and random drivers are very similar. This section de
scribes common drivers, and the next section tells how random drivers 
differ from them. 

The procedures that must be supplied by a common driver are called 
deviceInit(), deviceFinish(), deviceStart(), deviceStop(), and deviceInter
rupt(). These are generic names for the procedures. The actual access to 
them is through pointers in the DIT, and are called as follows: 

void 
devicelnit ( DUIBSTRUCT far • 

void far • 
WORD far * 

duibPtr, 
deviceDataPtr, 
exceptPtr); 

This procedure takes exactly the same arguments as initializeIO() de
scribed earlier, and is in fact called directly from the system version of that 
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Figure 9.5 User-driver logical structure. 

procedure with the corresponding parameters passed to this routine. This 
routine, however, does not have to create the IORS queue or an interrupt 
task for the driver; those operations are done automatically by the system 
version of initializeIO(). 

The deviceDataPtr parameter points to an area of memory that can 
be used in any way the driver wishes. The same pointer will be passed to 
each of the other procedures in this set when they are called. The size of 
this data area is specified in the DIT. When the system initializeIO() pro
cedure is called, it creates a data segment large enough to hold the infor
mation it needs to support the driver (the head of the IORS queue and 
other housekeeping information) plus the size of the device storage area 
specified in the DIT. The pointer that deviceInit() receives points to the 
first location in this segment after the housekeeping information, as shown 
in Figure 9.6. This procedure only performs necessary initial programming 
of the device controller when the controller is first attached. 

void 
deviceFinish ( DUIBSTRUCT • 

void far' 
duibPtr, 
deviceDataPtr) ; 

The preceding procedure is called from the system finishIO( ) procedure. 
This procedure performs any device controller programming needed to 
allow the controller to be attached again in the future. All other housekeep-
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ing operations associated with detaching the device are handled automati
cally by the system finishIO() procedure. 

void 
deviceStart ( IORSSTRUCT far • 

DUIBSTRUCT far • 
void far • 

iorsPtr, 
duibPtr, 
deviceDataPtr); 

The deviceStart() procedure is called when a new IORS must be pro
cessed. Two different conditions can cause this procedure to be called. One 
is when the system queueIO() procedure is called, and the IORS queue for 
the driver is empty. The other is when the system interrupt task finishes 
processing one IORS and there is already another IORS on the IORS 
queue for this driver. In either event, the purpose of this routine is to start, 
and possibly complete, processing an IORS. For data transfer operations 
(reading, writing, and certain special functions), this routine normally 
starts the operation and returns to its caller. Completion of these opera
tions is signaled by an interrupt from the device controller. For other oper
ations, this routine completes processing ofthe IORS immediately and re
turns to its caller. 

Before returning to the caller, this procedure must set the done field of 
the IORS to true (OxFF) or false (any even-numbered value) so the caller 
knows whether to leave the IORS on the IORS queue or not.6 If the opera
tion is complete (done is true), this routine must also set the status field 
of the IORS to indicate whether the operation completed normally or not. 
In this case, the caller removes the IORS from the IORS queue and returns 
it to the application's responseMbx. 

Housekeeping Information Available for Device Driver 

l' 

L deviceDataTkn 

l' 

L deviceDataPtr 

Figure 9.6 Relationship between the device data token and the device data pointer 
for common and random drivers. 

tVfhese conventions for true & false are based on the semantics of the PLM language. C pro
grammers must note the differences from that language's definition of true (any nonzero 
value) and false (zero). 
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void 
deviceStop ( IORSSTRUCT far * 

DUIBSTRUCT far * 
void far * 

iorsPtr, 
duibPtr, 
deviceDataPtr); 

This procedure is called from the system cancel/O() function. Its job is to 
do whatever is necessary to stop the device controller from completing an 
operation that has been started but has not yet completed. This routine is 
important for device controllers that might take a long time to complete 
processing of a single IORS function, but is not as important for device 
controllers that always operate quickly, in which case the procedure might 
simply do nothing and return. Of course, "long time" and "quickly" are rel
ative terms, so the developer must decide whether this routine must actu
ally do anything or not. 

void 
device Interrupt ( IORSSTRUCT far * 

DUIBSTRUCT far * 
void far * 

iorsptr, 
duibPtr, 
deviceDataPtr); 

This procedure is called from the interrupt task created for the driver by 
the system initializeIO() procedure. It is called every time an interrupt 
from the device controller is recognized by the processor. That is, the sys
tem-supplied interrupt handler calls rqsignalinterrupt( ) every time it is ac
tivated, and the system-supplied interrupt task calls this procedure every 
time its own call to rqwaitinterrupt() completes. 

In the case of multiple interrupts per IORS, this procedure sets the done 
field of the IORS to false, and does whatever necessary to handle the 
present interrupt and prepare itself and the device controller for the next 
one. For example, this process could involve reading a byte of data from the 
controller, putting it in the application's input buffer, and updating the 
actual field of the IORS. If the interrupt marks the completion of 
the work for an IORS, because actual reaches count in the IORS, for ex
ample, this routine sets the done field of the IORS to true and sets the 
status field of the IORS to the proper completion code (0 means no 
error).In this case, the interrupt task will de-queue the IORS and return it 
to the application's responseMbx when this procedure returns. 

It is possible that a device controller will generate a spurious interrupt 
when there are no IORSs on the IORS queue. In this case, this routine will 
receive a null pointer for iorsPtr, and it can simply return without doing 
anything. 

The housekeeping and utility functions that the system supplies for a 
Common driver to call are described after Random drivers, since some of 
these functions are designed specifically for use by those drivers. 
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9.4.2 Random drivers 

Random drivers and Common drivers are implemented using exactly the 
same system-supplied routines. They share the same copy ofinitializeIO(), 
finishIO(), queueIO(), and cancelIO(). Their interrupt tasks and handlers 
execute the same procedures, and the algorithms for calling user-supplied 
procedures are also the same. Only two differences exist between the two 
types of drivers, and they are discussed next. 

First, common drivers have a value of 0 in the numBuffers field of their 
DUIB, but Random drivers have a nonzero value. The file driver creates 
sector-sized buffers (as many as this field specifies) when the device is at
tached so it can read and write entire disk sectors to service data transfer 
requests not aligned with sectors on the disk. If an application task reads or 
writes data that completely spans one or more disk sectors, each complete 
sector of data is read or written directly to or from the application's buffer 
without using the buffers reserved with the numBuffers field. Any data 
transfer that does not begin and end on a sector boundary requires the 
BIOS to read an entire sector into one of these buffers, transfer the proper 
portion of the sector to or from the application's buffer, and, in the case of a 
write operation, transfer the sector back to the disk drive. The file driver 
layer of the BIOS manages the use of these buffers for this purpose auto
matically. 

Second, random drivers must supply a valid pointer in the unit
InfoPtr field ofthe DUIB. This field must point to a data structure that 
specifies the track and cylinder sizes of the disk, as well as a count of the 
number of times an I/O request should be retried before returning an laRS 
with an iosoft code in the uni tStatus field. The system-supplied 
queueIO() and interrupt task handler retries automatically. The cylinder 
size tells how many sectors there are per cylinder on the disk. If this value is 
greater than zero, it tells the file driver when to initiate seek operations on 
the disk drive, that is when a read or write is to be performed at a new posi
tion of the read/write heads. 

9.4.3 Housekeeping and utility routines for 
common and random drivers 

The following is a list of the housekeeping and utility procedures provided 
by the BIOS for use by Common and Random drivers. 

notify( J. This procedure must be called when a driver finds that a disk de
vice unit is off line. For example, the deviceInterrrupt( ) procedure for a 
floppy disk drive would call notify( ) if it received an interrupt from a drive 
because the door to the drive is open. When this happens, the files on the 
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disk can no longer be accessed, and the file driver rejects I/O requests for 
the device unit until the door is closed again. Very few (but some) of the 
3.5" and 5.25" floppy drives found on PCs generate the door-open signal, 
which is why it is necessary to detach and reattach diskette drives man
ually each time a diskette is changed on most PC platforms. The issue does 
not arise for the EDOS file driver because it uses the processor's ROM
BIOS to access floppies instead of an iRMX Random or Common driver. 
The ROM -BI OS assumes the diskette has been changed every time a drive 
is accessed and does not buffer any information from the diskette between 
accesses. 

seekcomplete(). When the file driver encounters a data transfer that re
quires moving the disk's read/write heads, the file driver first sends an 
10RS to the device driver for the seek operation. Once the seek operation 
has successfully started, the driver returns the 10RS with its done field set 
to true and then proceeds to allow I/O operations for other device units at
tached to the controller. When the device driver determines that the seek 
operation has completed, it calls seekcomplete(), and the file driver then 
generates the 10RS for the actual data transfer operation. This optimiza
tion is important when multiple disk drives are attached to a single con
troller because it allows concurrent disk operations during seeks, which 
may take large fractions of a second to complete. 

On the other hand, this optimization is not important when only one 
disk unit is connected to a controller because the seek and data transfer 
must be performed sequentially on a per-disk unit basis. The two argu
ments passed to this procedure are a byte identifying the unit number of 
the drive and a pointer to the user portion ofthe device's data storage area 
(the deviceDataPtr passed to the devicelnterrupt() procedure). 

The seek operation being considered here refers to the physical move
ment ofthe device unit's read/write head assembly. The rq[asJseek() sys
tem calls do not invoke this sort of seek operation, they simply adjust the 
byte offset into a file where the next read or write operation will occur. Only 
when rqaread() or rqawrite() is actually called will the file driver determine 
if physical movement of the heads is necessary. If multiple drives are at
tached to a single controller and an application issues concurrent read or 
write operations for the different drives, the file driver issues all the physi
cal seeks concurrently and initiates the data transfers in the order in which 
the seeks complete. Applications that wish to decouple seeks from data 
transfers explicitly must use the fSeek function code in a call to rq[asJspe
cial() for the device unit. 

beginlongtermopO and endlongtermopO. These two procedures, which 
both take a unit number and a deviceDataPtr pointer as arguments, are 
used for overlapping long-term operations other than seeks across device 
units connected to a single device controller. When a device driver deter-
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mines that it is to begin a long operation that will not interfere with access 
to other device units through the same controller, such as rewinding a tape 
drive, it marks the IORS done field to true and calls beginlongtermop(). 
When the operation completes, the driver calls endlongtermop( ), just as it 
would call seekcomplete( ) when a seek operation completes. These calls are 
necessary because the file driver cannot automatically determine when 
long-term operations other than seeks are being invoked. 

getiorsO. When an interrupt marking the end of a long-term operation 
occurs, the devicelnterruptO procedure is called with a null pointer for the 
first parameter passed to it instead of a pointer to the IORS. If the driver 
must access the IORS, to indicate an error condition for example, or per
haps to modify the IORS to indicate a linked operation that is to be per
formed (reading the beginning-of-tape mark after rewinding a tape is the 
standard example), the driver can call getiorsO to get the token for the 
IORS being processed. This call also takes a unit number and device
DataPtr as its arguments. 

9.4.4 Terminal drivers 

The general model for a Common or Random driver shown in Figures 9.4 
and 9.5 holds for Terminal drivers in general too. The DUIB contains a 
pointer to a DIT that points to user-supplied routines called by system
supplied versions of initializeIO(), finishIO(), queueIO(), and cancelIO(). 
The user-supplied routines in turn call system-supplied housekeeping rou
tines as they execute. 

The first difference between Terminal drivers and Common or Random 
drivers is that the system-supplied routines pointed to by the DUIB are 
different, and have the names tsinitilizeIO(), tsfinishIO(), tsqueueIO(), 
and tscancelIO(). The ts prefix stands for terminal support. The second dif
ference is that the DIT for a terminal driver includes pointers to eight dif
ferent user-supplied procedures. The unit information table pointed to by 
the DUIB for a Terminal driver also has a different structure from the unit 
information table pointed to by the DUIB for a Random driver. It contains 
the connection flags, terminal flags, baud rate information, number of 
lines on the screen, and any additional static information the driver might 
want to maintain for an individual terminal device unit. 

Before looking at the user-supplied routines for a Terminal driver, it is 
important to understand the steps that terminal data takes as it moves be
tween the terminal device unit and the application task's buffer. Two 
buffers are involved in addition to the application's buffer. Starting at the 
device unit, the first step is for input characters to be entered into a raw 
input buffer as they are typed by the operator. This buffer can reside in the 
device controller itself or, using the Custom driver developed earlier as a 
model, can be implemented as a bounded buffer for which the input inter-
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rupt task acts as the producer and the driver task acts as consumer. 
The second buffer is the Terminal Support Code (TSC) buffer. The TSC 

is the system-supplied code that performs line editing and character echo
ing on terminal input. For both input and output operations, the TSC can 
also recognize escape sequences embedded in the stream of characters 
passing through its buffers and act on those sequences, either by modifying 
the stream of characters or by setting terminal parameters such as the 
connection flags or terminal flags. 

Appendix B is an example of using TSC escape sequences so that the 
TSC can translate ANSI escape sequences into control codes that a non
ANSI terminal will recognize. The ability to use one set of escape 
sequences to get the TSC to recognize and act upon another set of escape 
sequences illustrates the power of the TSC code, although it is a bit difficult 
to master its use. For the Custom driver developed earlier, the buffering, 
line editing, and escape sequence processing done by the TSC would all 
have to be performed by logic in the driver task of that driver. The set
terminal-attributes function of the rq[aslspecialO system call can be used 
to control or circumvent the TSC functions dynamically for Terminal 
drivers. 

Another item to clarify about Terminal drivers is the difference between 
buffered and nonbuffered device controllers. Multibus II-hosted systems 
can also use message-passing controllers that operate as buffered device 
controllers. The DART presented in the development of a Custom driver 
was an example of a nonbuffered controller. It generates a separate inter
rupt for every character read from or written to the controller, and the 
characters are written one at a time. It is possible to have a nonbuffered ter
minal controller with multiple DARTs (multiple device units for one de
vice controller). In fact, there are single integrated circuits with multiple 
DARTs on the chip. 

A buffered controller includes both a DART and on-board memory for 
holding input and output characters. A processor on the controller board 
reads characters into on -board memory and generates an interrupt request 
for the host processor when the buffer fills or when one of a set of special 
characters is received. Likewise, the controller's processor manages the 
character-by-character transmission from an on-board buffer through the 
DART when writing and generates an interrupt request for the host when 
it is ready to accept more data for output. The power of a buffered device 
controller is the use of dual-ported memory for the controller's buffers. 
The host processor reads and writes the controller's buffer memory as if it 
were its own memory, normally using block move instructions that require 
no program loops to move data between a controller's buffer and a driver's 
or application's buffer. Message processing controllers simply use the 
Multibus II message-passing mechanism to access the controller's buffer 
memory rather than dual-ported memory. Buffered terminal device con
trollers almost always support multiple device units per controller. 
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The following is an overview of the eight user-supplied functions for a 
Terminal driver. 

void 
terminit ( TSCDATASTRUCT far * tscDataPtr); 

This procedure is called from tsinitializeIO(), but the parameters passed 
to that routine are not passed on to this routine as was the case for a Com
mon or Random drivers' deviceI nit( ) procedure when it was called from in
itializeIO(). Rather, this procedure is passed a pointer to a data structure 
that the TSC maintains for the device connection. It is actually a pointer to 
a device data segment created by tsinitializeIO( ) and then returned to the 
file driver through the deviceDataPtr parameter passed to that routine. 
The format of a TSCDATASTRUCT consists of a header used for all device 
units connected to a single device controller and a set of separate data 
structures maintained for each of the device units. See the iRMX Device 
Drivers User's Guide, or look in /rmxx86/inc/xtsdtn.lit for the 
structure definition. 

For nonbuffered device controllers, this routine must create a memory 
segment for the raw input buffer for the device unit and initialize the equiv
alent of nextGet and nextPut from our bounded buffer example to zero. 
The routine must put the token for the segment and the indexes into fields 
of the unit-specific part of the TSC data structure. Before returning to 
tsinitializeIO(), the routine must set a status word in the header of the TSC 
data structure to indicate its completion status, with 0 signifying no error. 

void 
termfinish ( TSCDATASTRUCT far • tscDataPtr); 

This routine is called from tsfinishIO() to allow the driver to do any pro
cessing necessary when the last device unit on the controller is detached to 
prepare the unit for later reattachment. 

void 
terminalsetup ( TSCUNITSTRUCT far • unitDataPtr); 

This procedure is called when a terminal is attached and again if the baud 
rate or parity checking values for the terminal change because of a call to 
rq[asJspecialO. For buffered device controllers only, the procedure is 
called again when the terminal is detached. The routine, as its name im
plies, is used to set up the terminal for operation: it sets the baud rate, sets 
parity checking, asserts Data Terminal Ready if there is a modem, and en
abIes reading and writing through the controller. The uni tDataPtr 
points to the unit-specific information within the TSC data segment for 
the particular terminal unit being attached. 

If the baud rate is not specified in the unit information table pointed to 
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by uni tDataPtr, this routine must initiate a baud-rate scan by trying to 
read a character from the terminal. The user must type in an uppercase 
letter U (ASCII code Ox55). The driver can then determine the baud rate at 
which the terminal is operating by reading at a high baud rate and counting 
the number of Is in the received character. 

One piece of housekeeping must be done for nonbuffered device con
trollers. Since no data has been written yet to the device controller, and 
since an output interrupt is generated only when the controller completes 
transmission of an output character, the TSC must be told that the termi
nal unit is ready to receive its first output byte whenever an application 
tries to write to it. The housekeeping procedure this routine must call is 
named xtssetoutputwaiting(), which takes a copy of the uni tDataPtr as 
its single argument. 

void 
termcheck ( TSCDATASTRUCT far * tscDataPtr); 

This routine is called from the interrupt task for a device every time the 
controller generates an interrupt. Interrupts can signal the arrival of new 
data at the controller, readiness to accept new output data, arrival of a spe
cial character at a buffered controller (the application can designate up to 
four characters as special by calling rq [as J special( ), or a change in modem 
status. 

If the terminal setup function initiated a baud rate scan, this routine 
should read the character the user typed in and appropriately set the baud 
rate in the unit-specific part of the TSC data segment. In all cases, this rou
tine must update a field in the TSC data segment to indicate the type of in
terrupt that occurred, move data into the raw input buffer for the unit ifthe 
interrupt type indicates data is available from a nonbuffered controller, 
and return to the interrupt task. What happens next significantly depends 
on what type of interrupt this routine indicates occurred. 

void 
termout ( 

char 
UNITDATASTRUCT far * unitDataPtr, 

outputChar); 

The TSC calls this routine to output a character to an nonbuffered device 
controller. This routine must set the parity bit of outputChar if necessary 
before writing it to the device controller. This routine will not be called for 
buffered controllers. 

void 
termutility ( UNITDATASTRUCT far * unitDataPtr); 

This procedure must be able to perform about a dozen different operations 
for a buffered terminal controller. When the TSC calls this procedure, it 
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first sets a function code field in the unit's data structure to indicate which 
operation the routine is to perform. Functions include moving data from 
the application task's output buffer to the controller's output buffer for the 
proper terminal unit, responding to changes in the unit's modem status 
and terminal attributes (such as specifying a new set of special characters 
to be recognized by the controller or changes in flow control parameters), 
and handling canceled input or output operations. 

void 
terminalanswer ( 

void 
terminalhangup ( 

UNITDATASTRUCT far • unitDataPtr); 

UNITDATASTRUCT far • unitDataPtr); 

These two procedures are used only if the device unit is connected to a 
modem. The TSC calls terminalanswer( ) when the terminalcheck( ) proce
dure sets the interrupt-type code to indicate that the modem reported a 
telephone ring indication, and it calls the terminalhangup() procedure 
when terminalcheckO sets the interrupt-type code to indicate that the 
modem reported carrier loss. Escape sequences can also be embedded in ei
ther the input or output data stream for the terminal to tell the TSC to call 
these procedures. In any event, the jobs of these two procedures are to set or 
reset the DTR signal for the modem. If there is no modem, these proce
dures do nothing but return to the TSC. 

9.5 Adding a Device Driver to the System 

Several options are available for adding device drivers to an iRMX system. 
The technique used with iRMX for Windows is to develop the driver as 
loadable. To use this technique, the developer must write a front-end rou
tine for each device driver to install it while the system is running. This 
technique installs the driver on a near-equal footing with the drivers sup
plied with the system. In fact, many of the device drivers supplied with 
iRMX for Windows are installed this way. 

For other versions of iRMX, there is a tool called the Interactive Configu
ration Utility (lCU) that is used to build a new copy ofthe operating system 
tailored to a particular set of requirements. The ICU provides two ways of 
incorporating user-written device drivers into a system, one of which is the 
same technique used for building the iRMX-supplied drivers themselves. 
A characteristic of both of these techniques is that once installed into the 
system, a device driver cannot be removed or replaced, as would be desir
able during development of a new device driver.7 

7The -u flag for the sysload command, introduced with iRMX for Windows 2.0c allows sys
loaded jobs to be unloaded. 
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The third technique for adding drivers to a system described here allows 
drivers to be installed and removed dynamically. This technique is referred 
to as the dynamic device driver mechanism to distinguish it from loadable 
device drivers. Support for dynamic device drivers must be added to an 
iRMX system using one of the previous two techniques. 

For iRMX III and iRMX for Windows systems, SoftScope III provides 
support for debugging user-developed device drivers (loadable or resident). 
For other versions of iRMX, only the dynamic driver mechanism allows 
symbolic debugging with SoftScope. The other techniques require the use 
of machine-language debugging tools, such as the HI debug command. 

9.5.1 Loadable device drivers 

To build a loadable device driver, the programmer must create an STL file 
(an executable program) that includes the DUIBs, DITs, and UITs the 
driver needs, along with the code for all functions the driver uses. All load
able drivers must supply DITs, even Custom drivers for which DITs are 
normally optional. The pointer fields in each DUIB used for initialize/O(), 
finish/O(), queue/O(), and cancel/O() are all filled in with a constant value 
indicating the type of driver being installed (OxFFFFFFFF = Custom, 
OxFFFFFFFE = Common, OxFFFFFFFD = Random, OxFFFFFFFC = 
Terminal, and OxFFFFFFFB = Message Passing), and the system fills in 
the addresses of the actual system supplied routines for each driver type 
when the DUIB is installed. 

For Custom drivers, the user must supply a DIT that contains far 
pointers to the four driver procedures for initialize/O(), et al. This step is 
necessary for custom drivers because the user-supplied routines are in a 
different code segment from the rest of the BIOS, but the DUIB provides 
room only for near (offset-only) pointers. 

For non-Custom drivers, the DIT and UIT have the normal formats re
quired for each type of driver, except that each pointer in the tables must be 
a far pointer rather than a near pointer. The DIT and UIT must be initial
ized with the proper pointers and data values before a DUIB is installed. 
This difference between near and far pointers is one item that was alluded 
to previously when it was said that loadable device drivers are installed on 
only a "near-equal footing" with drivers configured into the system. 

A second difference between loadable device drivers and resident drivers 
is that the binder cannot link either the user's code to the system-supplied 
utility or housekeeping routines for Common, Random, and Terminal 
drivers. Instead, iRMX supplies versions of these routines in a library, 
/rrnx386/lib/ldd.lib, bound with the loadable driver's code. 

A loadable driver, like normal HI commands, has an initial task that 
must initialize any necessary data structures, such as fields in the DIT, 
that install the DUIB(s) by calling rqeinstallduibs(), and then suspending 
or deleting itself. The initial task must not call rqexitiojobO because that 
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would delete the job and return its memory to the free space manager. The 
initial task for loadable device drivers supplied with iRMX all write a log 
file in the directory from which they were run to indicate whether they were 
loaded successfully or not, and several ofthem accept command-line argu
ments that can specify driver parameters to be initialized before the 
DUIBs are installed. The function prototype for rqeinstallduibs() looks 
like: 

void 
rqeinstallduibs ( WORD 

DUIBTABLESTRUCT far • 
void far • 
WORD far' 

numDUIBs, 
duibsPtr, 
auxPtr, 
exceptPtr) : 

A duibstablestruct is simply a contiguous array of DUIBs, with num
DUIBs giving the number of elements in the array. The auxPtr is not used 
in present versions of iRMX, and should be coded as a null pointer. 

A loadable driver can be loaded two possible ways. The first would be to 
run it as a normal HI command. Since the terminal from which the com
mand is issued becomes unusable (the program never exits), the command 
must be run as a background command. This approach is really unsatisfac
tory, though, because of the possibility that the job will terminate (because 
the user logs off or kills the job from the console) and leave pointers to in
terrupt handlers no longer resident in the system, as well as DUIBs con
taining DIT pointers that no longer point to valid DITs. Rather, loadable 
drivers are run using the sysload command. When a command is run from 
sysload, it is created as a child of the HI job rather than a child of the user's 
terminal job, and never risks being deleted. 

9.5.2 Using the interactive 
configurl\ltion utility 

The interactive configuration utility (leU) is really an editing and file 
generating program that allows a user to edit a special-format file called a 
system definition file that specifies what features and parameter values are 
needed for a customized copy of the operating system. Once the definition 
file has been constructed with the leu editor (icu86, icu286, or icu386), the 
file generator segment of the leu produces a set of files - assembly lan
guage and PLM code, binder commands, build file information, and submit 
files - that will assemble, compile, bind, and build a new copy of iRMX. 
The editor works by presenting the user with a sequence of menu screens, 
and the user enters values for the various menu items on each screen. 

The leu can include a user driver in an iRMX configuration in two 
ways. One way is to provide the leu with the pathnames to already-com
piled code of user-written driver procedures and to assembly language 
source code for DUIBs, DITs, and UITs used by the driver. The leu in-
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serts the source code into the assembly language that it generates for all the 
data tables of the BIOS and includes the object code in the bind of the 
BIOS layer. This technique is fairly easy to use, but it does require the user 
to adjust the values coded into the device and deviceUni t fields of his or 
her DUIBs after examining the source code in the DUIB file that the ICU 
generates. These values must then be recoded every time the system is re
configured if the I/O configuration changes. 

A more general way to incorporate a user-written driver is to have the 
ICU include the driver in its menu screens, and have it generate the 
DUIBs, DITs, and UITs automatically. This is done in two steps. First you 
prepare a text file that describes the driver. The file includes a version 
number, a driver name, an abbreviation for the driver (used by the ICU to 
identify menu screens for this driver), and a driver type identifier. Driver 
types allowed are Terminal drivers with 0, 1, or 2 interrupt levels; Common 
or Random drivers; Message Passing drivers; and a General (i.e., Custom) 
driver type. The file also includes descriptions of any additional DIT or 
UIT values the driver requires beyond those always included for the partic
ular driver type being developed. 

A program named uds is then run, which generates two new files based 
on the user's text file, called a screen-master file and a template file. A listing 
file is also generated by uds so the user can verify that the screen master 
and template files were generated correctly. When they are correct, they 
are merged into a new copy of the icu program by running the icumrg util
ity. When this version of icu is run, the operator can add instances of the 
user-written driver using the same type of screen menus as are used for all 
the device drivers supplied with iRMX. The only difference is that a user 
running the customized version of icu must bring up the UDS Device 
Drivers Module screen menu and give the pathname of the file containing 
the object code for the user-written device driver procedures. 

Device drivers added to iRMX using either of the ICU techniques de
scribed here operate on exactly the same footing as iRMX-supplied resi
dent device drivers. They are bound with the BIOS layer of the system, 
loaded with the rest of the operating system, and are in every way indistin
guishable from device drivers supplied by Intel. The fact is, Intel uses ex
actly the same technique to incorporate the drivers it provides with iRMX. 

9.5.3 Dynamic device drivers 

The third method for adding device drivers to an iRMX system is some
what of a hybrid between the loadable device drivers technique and the 
ICU technique. Its advantage is that it allows the user to load a device 
driver, test it, remove it, and reload an improved version without reconfig
uring or even rebooting the system. This mechanism is not supplied by 
Intel. Rather, it is described in a series of articles in the iRUG newsletter 
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(Vickery, 1991), and the source code to provide support for Custom drivers 
using this technique is available from the iRUG library or the author. The 
description that follows is for this Custom driver version; if you follow its 
logic, you will realize that developing Common, Random, or Terminal ver
sions requires linking dynamic drivers with the ldd . lib library men
tioned previously to provide access to housekeeping and utility procedures. 

AD UIB is added to the system either as a loadable driver or by using the 
ICU. This DUIB, called dyndrvcu, remains resident in the system at all 
times. This driver provides small procedures for initializeIO(), finishIO(), 
queueIO(), and canceIIO() that detect the presence or absence of a dynamic 
driver when they are called. If no dynamic driver is installed when one of 
these procedures is called, the procedure completes the call with an appro
priate error indication, generally simulating reference to a nonexistent 
DUIB. If, however, a valid dynamic driver is installed, these routines call 
the corresponding device driver functions, passing their input parameters 
on unchanged. When the dynamic driver routines return to dyndrvcu's 
routines, they return control to the BIOS. 

The secret to the success of dyndrvcu is its ability to handle unexpected 
termination of a dynamic driver's job. This is accomplished by creating an 
operating system extension that instantiates a type manager for a new ob
ject type called a driver interface object. The technique for creating this ex
tension is described in chapter 10. For a dynamic driver to install itself, it 
must first make a system call to create an object of type driver interface. 
The procedure is qccreatedynamicdriver(): 

TOKEN 
qccreatedynarnicdriver ( WORD 

WORD 
WORD 
PROCSTRUCT far • 
INTSSTRUCT far • 
WORD far' 

driverType, 
fileDriver, 
duibFunc tions, 
procArray, 
intsArray, 
exceptPtr); 

The system call takes one code value that signifies the type of the dy
namic driver (Custom, Common, Random, or Terminal), two values for 
modifying fields in the DUIB that might be examined by the BIOS (a code 
telling which file drivers the device driver supports and a code telling which 
IORS functions the driver supports). The call also takes a pointer to an 
array of pointers to the dynamic driver's queueIO(), et al. procedures 
(procArray), plus a pointer to a data structure that tells how many inter
rupts the driver will use and their levels (intsArray). The system call re
turns a token for a driver interface object owned by the dynamic driver job, 
so it will be deleted, along with all the other resources belonging to that job 
when it terminates, either normally or abnormally. 

There is also a qcdeletedynamicdriver() system call, but dynamic drivers 
do not really need to use it. The Nucleus provides a facility, called a dele-
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tion mailbox, for informing type managers when objects are deleted. 
Dyndrvcu includes a task that waits at the deletion mailbox for driver in
terface objects and performs the critical operation of calling rqresetinter
rupt( ) for each of the interrupt levels indicated by the dynamic driver when 
it created its driver interface object. Thus, even if a dynamic driver job is 
terminated while the device is attached, dyndrvcu will know about it and 
can recover completely. Of courSe, it is still possible f01" a dynamic driver to 
crash the system, by failing to return a critical IORS for example, but that 
is true of any driver not fully debugged. 

9.5.4 Debugging strategies for device drivers 

Speaking of debugging, the following are two strategies for debugging de
vice drivers. Debugging these device drivers poses several challenges for 
the developer: 

• Device drivers execute in the context of the BIOS job of the operating 
system. It can be tricky to get output debugging information from them 
because they do not have access to a user's logon terminal as an output 
medium, as normal HI commands do. 

• Device drivers configured into the OS are loaded into memory at the time 
the system is initialized, so symbolic information about the driver is not 
normally available to SoftScope. It is possible to include the symbolic 
information that SoftScope needs for iRMX III systems by editing the 
submit file generated by the leU, but it is not possible to provide this in
formation under iRMX for Windows. 

• Device driver execution is inherently asynchronous with respect to other 
tasks within the system. Drivers that incorporate tasks in their design 
pose the problem of tracking the execution of these tasks within the 
driver itself as well. 

The first strategy is to use some of the special features available with 
Soft Scope III, and thus this strategy is available only for iRMX III sys
tems, including iRMX for Windows. The second strategy involves adding 
code to the driver so that it outputs its own debugging information. This 
technique requires rebuilding the driver each time a bug is encountered for 
which there is not yet suitable output information. The one advantage of 
getting a driver to output its own debugging information is that the tech
nique can be used with either loada.ble drivers (iRMX III and iRMX for 
Windows) or dynamic drivers (any version of iRMX). 

SoftScope III provides full support for debugging both loadable and con
figured-in device drivers. While the normal process for using the leu to 
configure a version of the OS eliminates all debugging information from 
the file that is bootstrap loaded, the bld386 command generated by the leu 
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to build the system can easily be edited manually to change the notype 
and nodebug controls to type and debug, respectively. Using the Soft
Scope load command to load the operating system image file that has been 
bootstrap loaded and is already running causes SoftScope to extract the 
debugging information from the file. All normal debugging techniques are 
then available, such as setting breakpoints within the driver, examining its 
variables and data structures, etc. SoftScope does not actually try to load 
the operating system itself again, it just gathers the symbolic debugging 
information. Since the system image file retains the information about the 
modules that were combined to build the operating system, SoftScope can 
recognize module names and locate the listing file for the driver thus dis
playing source statements when execution enters the driver's code. 

The procedure for debugging a driver with Soft Scope includes develop
ing a normal HI command that exercises the driver's functions. In a single 
SoftScope session, the user loads this program in the usual way and loads 
the debugging information for the driver. The SoftScope task command 
can then be used to display the status of all tasks being debugged, both the 
driver and the test program's tasks. The task command also tells SoftScope 
which listing file to work with, the driver's, or the test program's. (Soft
Scope can have just one listing file open at a time.) 

SoftScope III can also be used to debug loadable device drivers. In this 
case, the driver is loaded just like any other HI command to be debugged. 
The driver code can be debugged just like any HI command, even though 
some of the code in the module is executed by the HI command and some is 
executed by tasks belonging to the BIOS. The problem with debugging a 
loadable device driver from SoftScope is that there is no way to unload a 
device driver when it is time to exit SoftScope. The driver job will be a child 
of the SoftScope session job and will be deleted when SoftScope termi
nates, requiring a reboot of the system when the debugging session is com
plete. The only reason you need SoftScope III rather than an earlier ver
sion of SoftScope to debug loadable drivers is that loadable drivers are 
supported only for iRMX III, and only SoftScope III runs under iRMX III. 

For all drivers, dynamic, loadable, and configured-in, care must be taken 
when setting breakpoints within interrupt handlers and tasks. To deter
mine when an interrupt handler has been executed, it is necessary to add 
code to the handler so that it modifies a static variable (such as an interrupt 
counter) that can be examined by SoftScope rather than to try to set a 
breakpoint in the handler. Remember, all interrupts are disabled while an 
interrupt handler is executing, so SoftScope will not be able to read or write 
the operator's console from a breakpoint set within an interrupt handler. 

Because loadable and dynamic drivers are installed by the initial task of 
an HI command, which normally suspends or deletes itself after it has in
stalled the driver, another possibility exists for debugging these drivers. 
This technique is to have the initial task create a mailbox, leaving the 
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token for it in a variable accessible from any procedure within the module. 
After installing the driver, the initial task waits at the mailbox for mes
sages. Debugging code is added to the driver procedures to send messages to 
this mailbox, which you can do even though the tasks executing the proce
dures belong to the BIOS job. The HI command's initial task then displays 
these messages on its standard output device as they arrive. 



Chapter 

10 
Extending iRMX: Adding System 

Calls and Type Managers 

10.1 Overview 

iRMX is a layered operating system. A kernel layer is implemented by the 
iRMK kernel on iRMX III and iRMX for Windows systems, which pro
vides primitive task scheduling and communication facilities. The iRMX 
Nucleus is built on top of the kernel to provide a robust multitasking oper
ating system, including memory, task, and interrupt management facilities 
described in earlier chapters. All layers of iRMX above the Nucleus are 
implemented using the primitives supplied by the Nucleus to add new sys
tem calls to the operating system and to implement type managers for new 
object types to the system. 

This chapter examines the resources provided by the Nucleus for adding 
new system calls and type managers to iRMX. Understanding the material 
in this chapter can be important in several ways: 

• An accurate model of how the operating system is built helps program
mers develop more robust and efficient programs to run on the system. 

• The design considerations used to developing a new layer or system call 
illuminate issues that real-time and systems programmers face in gen
eral, especially object and concurrency management . 

• Developers may wish to add their own layer(s) to iRMX. 

Sometimes, a new layer added by a developer is specific to the needs of a 
particular application, but more often a new layer is added to provide some 
set of utility functions that can be used by any number of applications. The 
dynamic device driver mechanism described in chapter 9 is one example of 
such a utility. Another example is the implementation ofthe Unix socket() 

363 
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mechanism for interprocess communication over a network, described in 
Vickery (1990). 

The tools and techniques used by developers to add new system calls and 
layers to an iRMX system are exactly the same as those used by the iRMX 
developers at Intel to add the optional layers, such as the BIOS, to iRMX 
itself. Two separate issues are involved in adding a layer to the system, new 
system calls and new object types. The iRMX documentation uses some
what different terminology from that used in this chapter, which will be ex
plained as they are used. First, take a look at the following mini-glossary 
for some terms used in this chapter: 

System call. For this chapter, a system call is a procedure called through a 
call gate. Thus, our discussion of adding new system calls to iRMX is fo
cused on iRMX II and iRMX III systems, since iRMX I does not use call 
gates. iRMX I system calls are installed as interrupt handlers and invoked 
by int machine language instructions. The x86 call gate mechanism was in
troduced in Section 5.4. 

Operating system extension. (OSE or extension) An operating system ex
tension is any iRMX object type that is not one of the primitive object 
types defined as part ofthe Nucleus. Most ofthe primitive Nucleus object 
types were discussed in chapter 6. They are jobs, tasks, mailboxes, sema
phores, regions, memory segments, and buffer pools. OSE is also the name 
of another primitive object type provided by the Nucleus, which is used to 
implement new extensions. 

Several iRMX layers of the operating system provide system calls but 
not OSEs. These include the Application Loader (AL), the Human Inter
face (HI), and the Universal Development Interface (UDI). Thus, system 
calls and OSEs are independent entities. 

Type manager. A type manager is a combination of an OSE and a set of 
system calls for creating, manipulating, and deleting instances of an OSE 
object type. Although it is common to add system calls to iRMX without 
adding an OSE, the reverse is much less common. For this chapter, assume 
that every OSE is accompanied by at least two system calls, one to create 
instances of the new object type and another to delete them. 

Composite object. A composite object is an instance of an object type. To 
illustrate, "I/O Job" is the name of an OSE managed by the BIOS, but a 
particular I/O job created to run a single HI command, for example, is a 
composite object - an instance of that object type. Here, the word compos
ite indicates that all objects of user-defined types are composed of other 
objects. 
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Component object. Each composite object consists of a set (possibly the 
empty set) of other objects. All of these other objects are called component 
objects, which can be either primitive objects or other composite objects. 

10.2 A Sample Type Manager 

To provide a framework for this chapter, sample code is presented that im
plements part of a type manager for a new object type, the bounded buffer 
introduced in section 9.3.4. The iRMX documentation also presents a type 
manager for this object type (called a ring buffer) in the Nucleus User's 
Guide or iRMX Nucleus Programming Concepts manual (volume 3 in the 
iRMX for Windows documentation set), depending on the OS version. 

The material presented here omits some of the system calls the type 
manager would supply (the ones that actually add bytes to the buffer and 
remove them), but includes more detailed descriptions of the assembly
language interfaces that must be used to implement system calls. Bounded 
buffers could be called the koan of systems programming. Like the hello 
world program that Kernighan and Ritchie (1978) used to introduce the C 
language, successful implementation demonstrates basic mastery of the 
situation. 

The job that owns an OSE object and the memory segments containing 
the procedures that implement system calls must exist as long as there are 
applications that own composite objects of the OSE type or that might in
voke the system calls. This means that a user-supplied layer is normally ei
ther loaded by sysload when the system is initialized or is configured into 
the system using the ICU. The Nucleus enforces the rule that a job that 
owns an OSE cannot be deleted, and an OSE cannot be deleted as long as 
there are composite objects of that OSE's type in existence. The Nucleus 
cannot prevent a system call's memory from being released to the free 
space manager, however.l Thus, it is not wise to use HI commands to run 
jobs that create OSEs or system calls because such jobs could either be
come impossible to delete if there is a problem deleting the extension or a 
composite object or be deleted accidentally, leaving behind call gates that 
point to free memory rather than system call procedures. 

IThe issue is efficiency. The Nucleus could keep a list of all the selectors that appear in in
terrupt or call gates and refuse to delete segments that appear on this list. The security that 
would accrue to systems being used to develop user-written device drivers or system calls is 
outweighed by the unnecessary overhead that each call to rqdeletesegment( ) would incur for 
the vast majority of code for which the issue is not a problem. In contrast, the system must 
maintain a separate list of composite objects for each aSE type for normal Nucleus opera
tions anyway, so checking if this list is empty or not during rqdeletejob( ) processing is trivial. 
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Of course, these two conditions are most likely to occur when a new OSE 
or system call is being debugged, which is exactly the time when it would be 
most convenient to load and test the code as an HI command. Currently 
you cannot debug a program symbolically if it is loaded with sysload, and 
developing either configured-in code or sysload-ed code requires rebooting 
the operating system every time a change is made to the code. Accordingly, 
in the spirit of the dynamic device driver mechanism discussed in section 
9.5.3 to deal with similar considerations for user-written device drivers, 
this chapter demonstrates the structure of an HI command that could be 
used to develop an OSE and some system calls. Changes that would be 
made when the code is ready to be configured into the system or loaded by 
sysload are also presented. 

The sample code consists of four source modules bound into one HI 
command. The first module (bbmanage), which is given in equivalent and 
interchangeable PLM and C versions in Figures 10.1 and 10.3, can be com
piled to run anyone of three ways. The PLM compiler control set or the 
C compiler control def ine can be used to set one of the symbols first
level, sysload, or Hlcmd to select the environment for which the mod
ule is to be compiled. Exactly one of these three symbols should be defined 
when this module is compiled. 

Figure 10.1 PLM code for an HI command to install and test two user-written system calls, 
qccreateboundedbutfer() and qcdeleteboundedbu/1er(). 

/**> BBMANAGE.PLM <******************.******* •• *** ••• **** •• ********** 
* Bounded Buffer Type Manager 
* This module includes a main program that creates an os extension 
* for Bounded Buffer objects and establishes call gates 440 and 441 
* as the slots for calling qccreateboundedbuffer() and 
* qcdeleteboundedbuffer(). 
********************************************.******** •• *.*************/ 

$compact (exports bbcreate. bbdelete. bbdeletetask) 
bbmanage: DO; 
$include (bbmanage.ext) 

DECLARE BB_TYPE LITERALLY 'SOOOh'; 
DECLARE createGate LITERALLY '440'; 
DECLARE deleteGate LITERALLY '441'; 

/* 
* The system call procedures 
*/ 

bbCreate: PROCEDURE (bbSize. exceptPtr. 
application_eip. application_ebp) EXTERNAL; 

DECLARE bbSize WORD_32. 
exceptPtr POINTER. 
application_eip WORD_32. 
application_ebp WORD_32; 

END bbCreate; 

bbDelete: PROCEDURE (thisBB. exceptPtr. 
application_eip. application_ebp) EXTERNAL; 
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Figure 10.1 (Continued) 

DECLARE thisBB 
exceptPtr 
application_eip 
application_ebp 

END bboelete; 

/* 
* The interface procedures 
*/ 

TOKEN. 
POINTER. 
WORD_no 
WORD_32; 

qccreateboundedbuffer: PROCEDURE (bbSize. exceptPtr) TOKEN EXTERNAL; 
DECLARE 

bbSize 
exceptPtr POINTER; 

END qccreateboundedbuffer; 
qcdeleteboundedbuffer: PROCEDURE (bbTkn. exceptPtr) EXTERNAL; 
DECLARE 

bbTkn TOKEN. 
exceptPtr POINTER; 

END qcdeleteboundedbuffer; 

/* 
* Static Variables and Constants 
*/ 

DECLARE 
hexTab(16) 
coConn 
bbDelTsk 

BYTE DATA ('0123456789ABCDEF'). 
TOKEN. 
TOKEN. 

bbDelMbx TOKEN PUBLIC. /* Global used by bbDelete() 
*/ 

bbOSE TOKEN PUBLIC; /* Global used by system calls 
*/ 

$if HIcmd OR sysload 
1*·**--***--*-*---***_·*_·· __ ··*-_·_-*-*_·_*·_·**-_··- ****************** 

* 
* Utility Procedure to Convert a Hexadecimal Word 
* to 4 ASCII Characters 
* 
**********************************************************************/ 

word2hex: PROCEDURE (value. where); 
DECLARE 

value WORD_16. 
i INTEGER. 
where POINTER. 
xxxx BASED where (1) BYTE; 

DO i = 3 TO 0 BY -1; 
xxxx(i) = hextab(value AND OFh); 
value = shr (value. 4); 

END; 
END word2hex; 

/*********************************************************************** 

* 
* Check Status utility 
* 
**********************************************************************/ 
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Figure 10.1 ( Continued) 

checkStatus: PROCEDURE (a_token, status_in, msgPtr); 
DECLARE 

a_token 
status_in 
msgptr 
message based msgPtr(l) 
valMess (6) 
actual 
Status 

valMess(4) = ODh; 
valMess(S) = OAh; 

TOKEN, 
WORD_l6, 
POINTER, 
BYTE, 
BYTE, 
WORD_32, 
WORD_16; 

actual = rqswritemove (coConn, @message(l), message (0) , @Status); 
IF (status_in = 0) THEN DO; 

actual = rqswritemove (coConn, @(' succeeded. Token = '), 21, 
@Status) ; 

CALL word2hex (WORD (a_token), @valMess); 
END; 

ELSE 00; 
actual = rqswritemove (coConn, @(' failed. Status 

@Status); 
CALL word2hex (status_in, @valMess); 
END; 

actual 

RETURN; 

rqswritemove (coConn, @valMess, 6, @Status); 

END checkStatus; 
Sendif 

'), 19, 

/**************************** ••••• ******.**** •• *** •••• *.******.* •••••••• 

* Procedure Executed by the Deletion Task 
* 
******************* •••• *.**** •••••••• ***.*.*.* ••• ***************** •••• / 

bbDeleteTask: PROCEDURE PUBLIC; 

DECLARE 

/* 

* 
*/ 

thisBB TOKEN, 
tokenList STRUCTURE ( 

numSlots WORD_16, 
numUsed WORD_16, 
tokens (S) TOKEN) , 

Status 

Handle exceptions in-line 

ehStruct.handler = NIL; 
ehStruct.mode = 0; 
CALL rqsetexceptionhandler (@ehStruct, @Status); 

/* Wait at the deletion mailbox for BB objects to delete; 
* delete the composite and, if possible, its components. 

*/ 
DO WHILE 1; 

thisBB = rqreceivemessage (bbDelMbx, OFFFFh, NIL, @Status); 
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Figure 10.1 ( Continued) 

/* Get the tokens for the component objects 

*/ 
tokenList.numSlots = 5; 
CALL rqinspectcomposite (bbOSE, thisBB, @tokenList, @Status); 

/* Delete the composite to make the BB unavailable to applications 
* and to unblock any task that called rqdeletejob() or 
* rqdeleteextension(). 

*/ 
CALL rqdeletecomposite (bbOSE, thisBB, @Status); 

/* Delete the region first. If there is a task using this BB, this 

call will automatically block until the region is released. 
* 
*/ 

/* 

* 
* 

CALL rqdeleteregion (tokenList.tokens(4) , @Status); 

Now delete the other component objects. 
Any or all of these calls may fail with no consequence. 

*/ 
CALL rqdeletesegment (tokenList.tokens(O) , @Status); 
CALL rqdeletesemaphore (tokenList.tokens(l) , @Status); 
CALL rqdeletesemaphore (tokenList.tokens(2) , @Status); 
CALL rqdeletesegment (tokenList.tokens(3) , @Status); 

END; 

END bbDeleteTask; 

/*********************************************************************** 

* 
Initial Task 

***********************************************************************/ 

DECLARE 
ehStruct STRUCTURE ( 

handler POINTER, 
mode BYTE) , 

thisJob TOKEN, 
a_Buf TOKEN, 
b_Buf TOKEN, 
actual WORD_32, 
Status WORD_16; 

/* Handle exceptions in-line 

*/ 
ehStruct.handler = NIL; 
ehStruct.mode = 0; 
CALL rqsetexceptionhandler (@ehStruct, @Status); 
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Figure 10.1 (Continued) 

/* 

* 
Create connection for writing messages 

*/ 
$if HIcmd 

cOConn rqsattachfile (@(4,':CI:'), @Status); 
$endif 
$if sysload 

coConn = rqscreatefile (@(6,'bb.log'), @Status); 
$endif 
$if sysload or HIcmd 

CALL rqsopen (coConn, 3, 0, @Status); 
$endif 
$if sysload 

thisJob = rqgettasktokens (1, @Status); 
CALL checkStatus (thisJob, Status, @(17, 'Start sysload job'»; 

$endif 

/* 

* 
* 

Create the OS Extension. 
Spawn a task to monitor the deletion mailbox. 

*/ 
bbDelMbx = rqcreatemailbox (0, @Status); 

$if HIcmd 
CALL checkStatus (bbDelMbx, Status, @(23, 'Create deletion mailbox'»; 

$endif 

bbOSE rqcreateextension (BB_TYPE, bbDelMbx, @Status); 

$if HIcmd OR sysload 
CALL checkStatus (bbOSE, Status, @(16,'Create extension'»; 

$endif 
$if HIcmd 

bbDelTsk = rqcreatetask (0, @bbDeleteTask, selectorof (@hexTab), 
NIL, 8192, 0, @Status); 

CALL checkStatus (bbDelTsk, Status, @(20,'Create deletion task'»; 
$endif 

/* 

* 
* 

Install the type manager procedures. 
Make sure slots are free first. 

*/ 

/* 

* 

CALL rqesetosextension (createGate, NIL, @Status); 
CALL rqesetosextension (deleteGate, NIL, @Status); 
CALL rqesetosextension (createGate, @bbCreate, @Status); 
CALL rqesetosextension (deleteGate, @bbDelete, @Status); 

Type Manager is set up. 

*/ 

$it first level 
/* Signal the NUcleus and become the deletion task 
* for the type manager. 
* 
*/ 

CALL rqendinittask; 
CALL bbDeleteTask; 
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Figure 10.1 ( Continued) 

$endif 

$if sysload OR HIcmd 
Issue set up message • .. 

*/ 
actual = rqswritemove (coConn. 

@('Bounded Buffer Manager is Set Up', ODh, OAh) , 34, @Status); 
$endif 

$if sysload 
/* Close the log file and become the deletion task 

for the type manager. 
* 
*/ 

CALL rqsdeleteconnection (coConn, @Status); 
CALL bbDeleteTask; 

$endif 

$it HIcmd 
/* Test TYPe Manager functionality. 
* Create two bounded buffers, delete one, 
* and clean everything up so the HI command can exit. 
* 
*/ 

a_Buf = qccreateboundedbuffer (5280, @Status); 
CALL checkStatus (a_Buf, Status, @(23,'Create a bounded buffer'»; 
b_Buf = qccreateboundedbuffer (5280, @Status); 
CALL checkStatus (b_Buf, Status, @(23,'Create a bounded buffer'»; 

CALL qcdeleteboundedbuffer (b_buf, @Status); 
CALL checkStatus (b_Buf, Status, @(23, 'Delete a bounded buffer'»; 
CALL rqdeleteextension (bbOSE, @Status); 
CALL checkStatus (bbOSE, Status, @(23, 'Delete the as extension'»; 

CALL rqesetosextension (createGate, NIL, @Status); 
CALL rqesetosextension (deleteGate, NIL, @Status); 
CALL rqexitiojob (0, NIL, @Status); 

$endif 

END bbmanage; 

If f irstlevel is defined, the module produces code for a first-level job, 
suitable for inclusion in a configuration ofiRMX generated by the ICU, in
troduced in section 9.5.2. Jobs configured into the system using the ICU 
can be run either as first-level jobs (immediate children of the root job) or 
as child jobs of the EIOS. The difference between the two is that first-level 
jobs are not I/O jobs, so they cannot make EIOS system calls, but child jobs 
ofthe EIOS are I/O jobs, although they do not have a default prefix (default 
directory, : $:). 

If firstlevel is defined, no I/O code is compiled, and the program 
calls rqendinittask() after it has set up the bounded buffer type manager. 
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This system call is used during system initialization to signal the Nucleus 
each time a first-level job finishes initialization so that the next first-level 
job in sequence can be created and initialized. Note that no error exists in 
the code in Figures 10.1 and 10.3; rqendinittask() is the one iRMX system 
call that does not take any arguments. 

If sys load is defined, the code will be suitable for running from asysload 
command. In this case, the job is run as a child of the HI and is allowed to per
form I/O. The convention is that jobs run from sysload create a log file to in
dicate they have been loaded and initialized successfully, so code to do so is 
compiled if this option is chosen. The default directory for jobs run from sys
load is : config:, so the log file, bb . log, appears in that directory.2 

If Hlcmd is defined, the program can run as an HI command from the 
command line as a background job or under SoftScope. The code outputs 
status messages as it initializes, and exercises the OSEbycreatinga bounded 
buffer and then deleting it. Finally, it deletes the OSE and the system calls so 
the HI command can terminate. 

An alternative design for the program is to make the code that exercises 
the OSE a separate command. In this case, it is necessary to implement a 
mechanism for removing the OSE cleanly so it could be re-run after any 
changes are added during development. The present design was chosen be
cause the OSE is automatically deleted as soon as testing completes. 

If none of these three symbols is defined when the code is compiled, you 
will get a program suitable for running from sysload, but which generates 
no log file. 

As a type manager, the initial task for this program creates the OSE for 
bounded buffer objects and installs two new system calls for creating and 
deleting bounded buffers. Looking at the code in Figures 10.1 and 10.3, you 
will see that ifHlcmd is defined, the initial task also creates a second task 
that executes a procedure to monitor a mailbox, called the deletion mailbox. 
IfHlcmd is not defined, the initial task executes this procedure itself. The 
role of this procedure is discussed in the section on deletion mailboxes, 
section 10.4.3. At this point, however, note that this procedure is normally 
executed by the job's initial task, but a separate task is needed to execute 
this procedure when the initial task is being used to exercise the new sys
tem calls. 

The second source module (bbsyscal) is also shown in equivalent and 
interchangeable PLM and C versions in Figures 10.2 and 10.4, respec
tively. This module contains the actual system call procedures that create 
and delete bounded buffer objects. Procedures for the other system calls 
the type manager is to supply (to put bytes into a bounded buffer and to get 
bytes out) would go in this module as well. Considerable care must be used 

2Most jobs loaded by sysload specify an explicit pathname for the log file in case the default 
directory changes in the future. 
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Figure 10.2 PLM procedures to implement the qccreateboundedbufferO and qcdeleteboun· 
dedbufferO system calls. 

1**> BBSYSCAL. PLM <*** *** *** *** * ** *** *-.- ** * * * * * * * *** * * * * * * * * * ******** 
• Bounded Buffer System Call Procedures 

This module contains the procedures that implement type manager 
* functions for the Bounded Buffer object type. 
* 
* A bounded buffer object is constructed from the following objects: 
* 

* 

o - A segment containing the BB structure: 
bufSize DWORD 
nextGet DWORD 
nextPut DWORD 

* 1 - A counting semaphore containing one unit for each occupied slot 
* 2 - A counting semaphore containing one unit for each free slot 
* 3 - A segment to hold the buffer itself . 

4 - A region for controlling concurrent accesses to the BB 
* 
* Tokens for these objects occupy tokenList.tokens positions zero 
* through four, in sequence. 
****************************************************** ***************1 

$compact (exports bbcreate, bbdelete) 

bbsyscal: DO; 

$include (bbsyscal.ext) 
$include (:inc:error.lit) 

DECLARE 

/* 

bbOSE 
bbDelMbx 

TOKEN EXTERNAL, 
TOKEN EXTERNAL; 

System Call exit procedures 
*/ 

/* Extension Object */ 
/* Deletion Mailbox */ 

sys_exit_n: PROCEDURE EXTERNAL; 
END sys_exit_n; 

/* No return value */ 

sys_exit_v: PROCEDURE (value) EXTERNAL; /* Return 1-4 bytes */ 
DECLARE value WORD_16; 
END sys_exit_v; 

sys_exit_e: PROCEDURE (code, parameterNum) EXTERNAL; /* Error return 
*/ 
DECLARE (code, parameterNum) WORD_16; 
END sys_exit_e; 

/*********************************************************************** 

* 

* 
System call procedure for qccreatedboundedbuffer() 
Create a Bounded Buffer object 

**********************************************************************/ 

bbCreate: PROCEDURE (bbSize, exceptPtr, 
application_eip, application_ebp) REENTRANT PUBLIC; 

DECLARE bbSize WORD_32, 

exceptPtr POINTER, 
application_eip WORD_32, 
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application_ebp WORD_32; 

DECLARE tokenList STRUCTURE ( 
numSlots WORD_l6. 
numUsed WORD_l6. 
tokens (5) TOKEN); 

DECLARE 

/* 
* 

Get 

bbStructTok TOKEN. 
BBstruct based bbStructTok STRUCTURE ( 

bufSize WORD_32. 
nextGet WORD_32. 
nextPut WORD_32). 

callersEH STRUCTURE ( 

handler POINTER. 
mode BYTE) • 

savedMode BYTE. 
thisBB TOKEN. 

Status WORD_l6. 
StatusO WORD_l6. 
Statusl WORD_l6. 
Status2 WORD_l6. 
Status3 WORD_l6. 
Status4 WORD_l6. 
Status5 WORD_l6; 

the caller's exception handling mode and change to in-line 

*/ 
CALL rqgetexceptionhandler (@callersEH. @Status); 
savedMode = callersEH.mode; 
callersEH.mode = 0; 
CALL rqsetexceptionhandler (@callersEH. @Status); 

/* 
* 

Create the objects that will make up the BB object 

*/ 

/* 
* 
* 

tokenList.numSlots = 5; 
tokenList.numUsed = 5; 
tokenList.tokens(O) rqcreatesegment (size(BBstruct). @StatusO); 
tokenList.tokens(l) rqcreatesemaphore (0. bbSize. O. @Statusl); 
tokenList.tokens(2) rqcreatesemaphore (bbSize. bbSize. O. @Status2); 
tokenList.tokens(3) rqcreatesegment (bbSize. @Status3); 
tokenList.tokens(4) rqcreateregion (0. @Status4); 
thisBB = rqcreatecomposite (bbOSE. @tokenList. @Status5); 

If any part of the initialization failed. delete all objects. 
set the appropriate condition code. and return to the caller. 

*/ 
IF (StatusO OR Statusl OR Status2 OR Status3 OR Status4 
OR Status5) <> E$OK THEN DO; 

CALL rqdeletesegment (tokenList.tokens(O). @Status); 
CALL rqdeletesemaphore (tokenList.tokens(l). @Status); 
CALL rqdeletesemaphore (tokenList.tokens(2). @Status); 
CALL rqdeletesegment (tokenList.tokens(3). @Status); 
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CALL rqdeleteregion (tokenList.tokens(4) , @Status); 
CALL rqdeletecomposite (bbOSE, thisBB, @Status); 

/* 

* 
Restore calling task's exception handling mode and return 

*/ 
callersEH.mode = savedMode; 
CALL rqsetexceptionhandler (@callersEH, @Status); 

IF (StatusO = E$MEM) OR (Status3 = E$MEM) THEN 
CALL sys_exit_e (E$MEM, 1); 

IF (StatusO E$LIMIT) OR (Statusl 
(Status2 = E$LIMIT) OR (Status3 
(Status4 = E$LIMIT) OR (StatusS 

THEN CALL sys_exit_e (E$LIMIT, 0); 

E$LIMIT) OR 
E$LIMIT) OR 
E$LIMIT) 

ELSE CALL sys_exit_e (E$CONTEXT, 0); /* Default exception code */ 

END; /* if failure */ 

/* Set initial values for the housekeeping variables. 

*/ 

/* 

* 
* 

bbStructTok = tokenList.tokens(O); 
BBstruct.bufSize bbSize; 
BBstruct.nextGet 0; 
BBstruct.nextPut 0; 

Restore calling task's exception handling mode 
and return the composite 

*/ 
callersEH.mode = savedMode; 
CALL rqsetexceptionhandler (@callersEH, @Status); 

CALL sys_exit_v (WORD(thisBB»; 
END bbCreate; 

/********************************************************************** 

* 
* 
* 

System call procedure for qcdeleteboundedbuffer() 
Delete a Bounded Buffer object. 

* 
*********************************************************************/ 

bbDelete: 

DECLARE 

PROCEDURE (thisBB, exceptPtr, 
application_eip, applicatio~ebp) REENTRANT PUBLIC; 

thisBB 
exceptPtr 
application_eip 
applicatio~ebp 

callersEH 
handler 
mode 

savedMode 

TOKEN, 
POINTER, 
WORD_32, 
WORD_32, 

STRUCTURE 
POINTER, 
BYTE), 

BYTE, 
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(Status, Status1) 

/* 

* 
This call sends the token for the buffer to be deleted to the 
deletio~ mailbox. .. 

*/ 
/* Get the caller's exception handling mode and change to in-line 
* 
*/ 

CALL rqgetexceptionhandler (@callersEH, @Status); 
savedMode = callersEH.mode; 
callersEH.mode = 0;. 
CALL rqsetexceptionhandler (@callersEH, @Status); 

CALL rqsendmessage (bbDelMbx, thisBB, selectorof(NIL) , @Status1); 

/* 

* 
Restore calling task's exception handling mode and return 

*/ 
callersEH.mode = savedMode; 
CALL rqsetexceptionhandler (@callersEH, @Status); 

IF Statusl = E$OK THEN CALL sys_exit~; 
CALL sys_exit_e (E$CONTEXT, 0); 

END bbDelete; 

END bbsyscal; 

FIgUre 10.3 C code equivalent to Fig. 10.1. 

/**> BBMANAGE.C <*~*************************~************************* 

* Bounded Buffer Type Manager 
* This module includes a main program that creates an os extension 
* for Bounded Buffer objects and establishes call gates 440 and 441 
* as the slots fOr calling qccreateboundedbuffer() and 
* qcdeleteboundedbuffer(). . 
******************.****~**~*************************~* ****************/ 

#include <stdio.h> 
#include <fcntl.h> 
#include <rmxc.h> 
#incltide <common.h> 
#include "boundbuf.h" 

#pragma noalign (bbTOKENLISTSTRUCT) 
typedef struct { 

WORD numSlots, numUsed; 
TOKEN tokens[5); 
} bbTOKENLISTSTRUCT; 

#define BB_TYPE OxBOOO 
#define createGate 440 
#define deleteGate 441 

extern void far /* The system call procedures */ 
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Figure 10.3 (Continued) 
bbCreate (); 
extern void far 
bbDelete (); 

static TOKEN 
static FILE 

TOKEN 
TOKEN 

#if HIcmd I I sysload 

bbDelTsk; 
*msgOut; 

bbDelMbx; /* Global 
bbOSE; /* Global 

used by bbDelete() */ 
used by system calls */ 

/************** •• ******************************************.****.******* 

* 
* Check Status utility 
* 
*.* •• ****.*.********** •• ********************************************.*/ 

void 
checkStatus (TOKEN a_token. WORD status. char *message) { 

fprintf (msgOut. "%s". message); 
if (status == E_OK) 

fprintf (msgOut. "succeeded. Token = %4X\n". (WORD) a_token); 
else fprintf (msgOut. "failed. Status = %4X\n". status); 
} 

#endif 

/*********************************************************************** 

Procedure Executed by the Deletion Task 

***.***** •• **************.**.* •• ****.*************.*******************/ 

void far 
bbDeleteTask (void) 

/* Task to monitor deletion mailbox */ 

TOKEN 
bbTOKENLISTSTRUCT 
EXCEPTIONSTRUCT 
WORD 

thisBB; 
tokenList; 
ehStruct; 
Status; 

/* 

* 
Handle exceptions in-line 

*/ 

/* 
* 
* 

ehStruct.offset = 0; 
ehStruct.base = (selector) NULL; 
ehStruct.exceptionmode = 0; 
rqsetexceptionhandler (&ehStruct. &Status); 

Wait at the deletion mailbox for BB objects to delete; 
delete the composite and. if possible. its components. 

*/ 
for (;;) 

thisBB rqreceivemessage (bbDelMbx. OxFFFF. NULL. &Status); 

/* Get the tokens for the component objects 

*/ 
tokenList.numSlots = 5; 
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FIgunt 10.3 (Continued) 

rqinspectcomposite (bbOSE. thisBB. 

/* 

* 
* 
* 
*/ 

(TOKENLISTSTRUCT far *) 'tokenList. 'Status); 

Delete the composite to make the BB unavailable to applications 
and to unblock any task that called rqdeletejob() or 
rqdeleteextension() . 

rqdeletecomposite (bbOSE. thisBB. 'Status); 

/* 

* 
* 
*/ 

Delete the region first. If there is a task using this BB. this 
call will automatically block until the region is released. 

rqdeleteregion (tokenList.tokens[41. 'Status); 

/* 

* 
* 
*/ 

Now delete the other component objects. 
Any or all of these calls may fail with no consequence. 

rqdeletesegment (tokenList.tokens[Ol. 'Status); 
rqdeletesemaphore (tokenList.tokens[11. 'Status); 
rqdeletesemaphore (tokenList.tokens[21. &Status); 
rqdeletesegment (tokenList.tokens[31. &Status); 
} 

/*********************************************************************** 

* 
* Initial Task 
* 
******************************************.***************************/ 

int 
main (int argc. char * argv[l) 

EXCEPTIONSTRUCT ehStruct; 
TOKEN iLBUf. b.J3uf; 
WORD Status: 

/* 

* 
Handle exceptions in-line 

*/ 
ehStruct.offset = 0: 
ehStruct.base = (selector) NULL: 
ebStruct.exceptionmode = 0: 
rqsetexceptionhandler (&ebStruct. &Status); 

lifdef sysload 
/* Redirect standard output for sysload-ed jobs 
* 
*/ 

msgOut = fopen ("bb.log". "w"): 
fprintf (msgOut, "Tbis is job '4X\n", rqgettasktokens (I, &Status)); 

lelif HIcmci 
msgOut = stdout: 

lendif 

/* Create tbe OS Extension. 
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Figure 10.3 (Continued) 

* Spawn a task to monitor the deletion mailbox if necessary. 
* 
*/ 
bbDelMbx = rqcreatemailbox (FIFO_QUEUING. &Status); 

lifdef HIcmd 
checkStatus (bbDelMbx. Status. ·Create deletion mailbox"); 

iendif 

bbOSE rqcreateextension (BB_TYPE. bbDelMbx. &Status); 

lif HIcmd II sysload 
checkStatus (bbOSE. Status. ·Create extension"); 

iendif 
iifdef HIcmd 

bbDelTsk = rqcreatetask (0. &bbDeleteTask. (selector) &bbDelMbx. 
NULL, 8192. O. &Status); 

checkStatus (bbDelTsk. Status. ·Create deletion task"); 
lendif 

/* 

* 
* 

Install the type manager procedures. 
Make sure slots are free first. 

*/ 

/* 

* 

rqesetosextension (createGate. NULL. &Status); 
rqesetosextension (deleteGate. NULL. &Status); 
rqesetosextension (createGate. &bbCreate. &Status); 
rqesetosextension (deleteGate. &bbDelete. &Status); 

Type Manager is set up. 

*/ 
iif sysload I I HIcmd 

fprintf(msgOut. "Bounded Buffer Manager is Set Up\n"); 
ielif first level 
/* First level jobs signal the Nucleus and become the deletion task 
* 
*/ 
rqendinittask(); 
bbDeleteTask(); 

iendif 

iif sysload 
/* Sysloaded commands must delete the log file connection. 
* then become the deletion task 
* 
*/ 
fclose (msgOut); 
bbDeleteTask(); 

iendif 

iif HIcmd 
/* 

* 
* 
*/ 

Test TYPe Manager functionality. 
Create two bounded buffers. delete one. 
and clean everything up so the HI command can exit. 

a_Buf = qccreateboundedbuffer (5280. &Status); 
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figure 10.3 (Continued) 

checkStatus (a_Buf. Status. 'Create a bounded buffer"); 
b_Buf = qccreateboundedbuffer (5280. &Status); 
checkStatus (b_Buf. Status. "Create a bounded buffer"); 

qcdeleteboundedbuffer (b_Buf. &Status); 
checkStatus (b_Buf. Status. "Delete a bounded buffer"); 
rqdeleteextension (bbOSE. &Status); 
checkStatus (bbOSE. Status. "Delete the OS extension"); 

rqesetosextension (createGate. NULL. &Status); 
rqesetosextension (deleteGate. NULL, &Status); 
rqexitiojob (0, NULL. &Status); 

#endif 

bbDeleteTask () ; 

Figure 10.4 C functions equivalent to Fig. 10.2. 
/**> BBSYSCAL.C <**************************************************** 

* Bounded Buffer System Call Procedures 
* This module contains the procedures that implement type manager 
* functions for the Bounded Buffer object type. 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

A bounded buffer object is constructed from the following objects: 

o - A segment containing the BB structure: 
bufSize DWORD 
nextGet DWORD 
nextPUt DWORD 

1 - A counting semaphore containing one unit for each occupied slot 
2 - A counting semaphore containing one unit for each free slot 
3 - A segment to hold the buffer itself. 
4 - A region for controlling concurrent accesses to the BB 

Tokens for these objects occupy tokenList.tokens positions zero 
through four, in sequence. 

*********************************************************************/ 

#include <rmxc.h> 
#include <common.h> 
#include <error.h> /* /rmx386/inc16/error.h with '$' changed to */ 

#pragma noalign (bbTOKENLISTSTRUCT) 
typedef struct { 

WORD numSlots, numUsed; 
TOKEN tokens[5]; 
} bbTOKENLISTSTRUCT; 

#pragma noalign (bbStruct) 
typedef struct bbStruct { 

DWORD bufSize, next Get , nextPUt; 
} BBSTRUCT; 

extern TOKEN 
extern TOKEN 

bbDelMbx; 
bbOSE; 

/* Declared and initialized in bbmanage.c */ 
/* Declared and initialized in bbmanage.c */ 
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Figure 10.4 ( Continued) 

/* 
System Call exit procedures 

*/ 
void near 
sys_exit_n (void); /* No return value */ 

void near 
sys_exit_v (WORD); /* Return 1-4 bytes */ 

void near 
sys_exit_e (WORD, WORD); /* Error return */ 

/****************************************************.****************** 

* 
* 

System call procedure for qccreatedboundedbuffer() 
Create a Bounded Buffer object 

~***********************************************.***** ************.***/ 

void far 
bbCreate (DWORD bbSize, WORD far *exceptPtr, 

DWORD application_eip, DWORD application_ebp) 

bbTOKENLISTSTRUCT tokenList; 
EXCEPTIONSTRUCT callersEH; 
BYTE 
BBSTRUCT 
TOKEN 
WORD 

savedMode; 
*thisBBstruct; 
thisBB, bbStructSeg, occSem, freeSem, bbBufferSeg; 
StatusO, Statusl, Status2, Status3, Status4, 

Status5, 
Status; 

/* Get the caller's exception handling mode and change to in-line 

*/ 
rqgetexceptionhandler (&callersEH, &Status); 
savedMode = callersEH.exceptionmode; 
callersEH.exceptionmode = 0; 
rqsetexceptionhandler (&callersEH, &Status); 

/* Create the objects that will make up the BB object 

*/ 

/* 

* 
* 

tokenList.numSlots = 5; 
tokenList.numUsed = 5; 

tokenList.tokens[O) = rqcreatesegment (sizeof (BBSTRUCT), &StatusO); 
tokenList.tokens[l) 

rqcreatesemaphore (0, bbSize, FIFO_QUEUING, &Statusl); 
tokenList.tokens[2) 

rqcreatesemaphore 
tokenList.tokens[3) 
tokenList.tokens[4) 
thisBB = 

(bbSize, bbSize, FIFO_QUEUING, &Status2); 
rqcreatesegment (bbSize, &Status3); 

= rqcreateregion (FIFO_QUEUING, &Status4); 

rqcreatecomposite (bbOSE, (TOKENLISTSTRUCT *) &tokenList. &Status5); 

If any part of the initialization failed, delete all objects, 
set the appropriate condition code, and return to the caller. 
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*/ 
if (StatusO I I Statusl I I Status2 I I Status3 I I Status4 I I StatusS) { 

rqdeletesegment (tokenList.tokens[Ol. &Status); 

1* 

* 

rqdeletesemaphore (tokenList.tokens[ll. &Status); 
rqdeletesemaphore (tokenList.tokens[21. &Status); 
rqdeletesegment (tokenList.tokens[31. &Status); 
rqdeleteregion (tokenList.tokens[41. &Status); 
rqdeletecomposite (bbOSE. thisBB. &Status); 

/* Restore calling task's exception handling mode and return 
* ---------------------------------------------------------
*/ 
callersEH.exceptionmode = savedMode; 
rqsetexceptionhandler (&callersEH. &Status); 

if «StatusO == E~EM) I I (Status3 == E_MEM» sys_exit_e (E~M. 1); 
if «StatusO == E_LIMIT) I I (Status1 == E_LIMIT) II 

(Status2 == E_LIMIT) I I (Status3 == E_LIMIT) I I 

(Status4 == E_LIMIT) I I (StatusS == E_LIMIT» 
sys_exit_e (E-LIMIT. 0); 

sys_exit_e (E_CONTEXT. 0); 1* Default exception code */ 
} 

thisBBstruct = buildptr (tokenList.tokens[Ol. 0); 
thisBBstruct -> bufSize bbSize; 
thisBBstruct -> nextGet 0; 
thisBBstruct -> nextPut 0; 

Restore calling task's exception handling mode 
and return the composite 

*1 
callersEH.exceptionmode = savedMode; 
rqsetexceptionhandler (&callersEH. &Status); 

sys_exit_v «WORD) thisBB); 
} 

/******************************************************************* 

* 
* 
* 
* 

System call procedure for qcdeleteboundedbuffer() 
Delete a Bounded Buffer object 

******************************************************************/ 

void far 
bbOelete (TOKEN thisBB. WORD far *exceptPtr. 

DWORD application_eip. DWORD application_ebp) 

EXCEPTIONSTRUCT 
BYTE 

callersEH; 
savedMode; 
Status. Statusl; WORD 

1* 
* 
* 
*/ 

1* 

This call sends the token for the buffer to be deleted to the 
deletion mailbox. 

Get the caller's exception handling mode and change to in-line 
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* 
*/ 
rqgetexceptionhandler (&callersEH. &Status); 
savedMode = callersEH.exceptionmode; 
callersEH.exceptionmode = 0; 
rqsetexceptionhandler (&callersEH. &Status); 

rqsendmessage (bbDeIMbx. thisBB. (selector) NULL. &Statusl); 

/* Restore calling task's exception handling mode and return 
* 
*/ 

callersEH.exceptionmode = savedMode; 
rqsetexceptionhandler (&callersEH. &Status); 

if (Status1 == E_OK) sys_exit_n(); 
sys_exit_e (E_CONTEXT. 0); 
} 

in the design of procedures that will be system calls in a multitasking sys
tem such as iRMX. These procedures are discussed more fully in the next 
section. 

The third module (sys_exit) is coded in assembly language, given in 
Figure 10.5. The procedures in this module are general-purpose routines 
that could be used by any system call to handle the conventions for return
ing condition code and function values to an application through the pro
cessor's registers3• This module, however, will work only for 32-bit appli
cations. Designing a comparable module that could accommodate both 
16-bit and 32-bit applications is left as an exercise for the reader! 

FIGure 10.5 Assembly language exit procedures for 32-bit system calls. 

code 

System Call Exit Routines 

Bind these routines to a system call procedure to enable it to 
return to an interface procedure properly. These routines are 
for 32-bit code only. 

segment er public 

public sys_exit_n normal exit. no return value 
public sys_exit_v normal exit. return 8. 1G. or 32-bit value 
public sys_exit_d normal exit. return G4-bit value 

3'fhe procedures for sys _exit _ d( ) and sys _exit y( ) are not actually used by the sample sys
tem calls but are included for completeness. 
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Figure 10.5 (Continued) 
public 
public 

sys_exit-p 
sys_exit_e 

normal exit, return far (48-bit) pointer 
error exit 

The routines in this module must make FAR returns to the 
interface procedure because they must complement the interface 
procedure's call to a call gate, which is also a FAR call. 

exits proc far 

- - Procedure Exit - No Return Value - - - - - - - - - -
Calling sequence: 

CALL sys_exit_n(); 

add sp,4 ;Drop sys call's near return 
address 

xor 
leave 
pop 
ret 

eX,ex 

ds 

;Make exception code E_OK 
;Drop sys call's local variables 
;Restore application's DS 
;Far return to interface proc 

- - - - Function Exit - Return Value up to 32 Bits -
Calling sequence: 

CALL sys_exit_v (return_value); 

near 

add sp,4 ;Drop sys call's near return 
address 

pop eax ;Get return value 
xor eX,ex ;Make exception code E_OK 
leave ;Drop sys call's local variables 
pop ds ;Restore application's DS 
ret ;Far return to interface proc 

; - - - - - - - Function Exit - Return doubleword or far pointer 
value 

Calling sequence: 
CALL sys_exit_d (return_value); 
CALL sys_exit-P (return value); 

sys_exit_d label 
sys_exit-p label 

near 
near 

add sp,4 
address 

pop eax 
value 

pop edx 
value 

xor eX,ex 
leave 
pop ds 
ret 

; Drop sys call's near return 

;Get low-order part of return 

;Get high-order part of return 

;Make exception code E_OK 
;Drop sys call's local variables 
;Restore application's DS 
;Far return to interface proc 

- - - - Error Exit - Return Code & Parameter # - - -
Calling sequence: 
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Figure 10.5 (Continued) 
CALL sys_exit_e (error_code, parameter_number); 

add sp,4 
address 

pop edx 
pop ecx 
mov eax,OFFFFFFFFh 
leave 
pop ds 
ret 

exits endp 
code ends 
end 

;Drop sys call's near return 

;Get parameter number 
;Get exception code 
;Forced value on error 
;Drop sys call's local variables 
;Restore application's DS 
;Far return to interface proc 

These first three modules are bound together to form the bounded buffer 
type manager. If bbmanage is compiled for use as a first-level job, 
the bnd386 command would omit the rc ( dm (. . .» and s s 
(stack (. . .» controls, and the resulting linkable file would normally 
be called boundbuf .lnk using the binder's oj (boundbuf .lnk) control. 
The leU screen for adding first-level jobs to an iRMX configuration, the 
USERJ screen, obtains this information by asking for the values of the job's 
memory pool and stack segment size. 

The USERM screen is used to tell the leU the pathname to bound
buf .lnk. If the type manager is to be run as an HI command or by sysload, 
the three modules would be bound just like any other loadable module, with 
the compiler controls for the bbmanage module determining whether the 
program will be configured to run from sysload or not. If the command is 
configured to run as an HI command, the interface procedures for qccrea
teboundedbuffer() and qcdeleteboundedbuffer( ) must also be bound to the 
program, which brings us to the fourth module.4 

The fourth module (bbifc32) is the assembly language code for the in
terface procedures for these two system calls. The design of bbifc32 is 
described in section 10.3.2. This module must be bound to every applica
tion program that uses the bounded buffer type manager. It is bound to the 
program when configured to run as an HI command because the HI com
mand includes code to call the interface procedures after adding the system 
calls to the system. Module bbi f c would not be bound to the program if it 
is loaded using sysload or configured as a first-level job because those ver
sions of the program do not invoke either of the new system calls them
selves. 

4If a separate HI command were written to exercise the OSE, the interface procedures for 
qccreateboundedbufferO and qcdeleteboundedbuffer( ) would be bound only to this exerciser 
command, not to the code that installs the OSE. 
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If there were several type managers or if the interface procedures for 
each system call were to be assembled separately, various object modules 
for interface procedures should be placed into a library file using lib386. 
This step would be unnecessary overhead in the present case, where there 
is only one object module that contains both of the interface procedures. 
The code in this interface procedure module is discussed in the next 
section. For now, like the sys_exit module, the code in this module 
works only for 32-bit applications. The exercise mentioned previously to 
develop a sys_exi t module that works for both I6-bit and 32-bit applica
tions includes the exercise to develop a set of interface procedures to 
match! 

10.3 Adding a System Call to iRMX 

The iRMX system call mechanism was introduced in section 6.8, and the 
material presented here is a continuation of that section. Five issues are 
involved in adding a system call to an iRMX system: 

1. Adding the call gate for the system call to the iRMX Global Descriptor 
Table (GDT). 

2. Coding the assembly language interface procedure that applications call 
to gain access to the system call. 

3. Passing parameters from the application task to the system call proce
dure. 

4. Coding the system call procedure to work correctly in a multitasking en
vironment. 

5. Returning values and error codes from the system call to an application 
task. 

10.3.1 Installing the call gate 

A procedure can be connected to a call gate in two ways: by using the ICU to 
add the procedure when the system is configured or by calling rqesetosex
tension{). The choice of name for this system call is unfortunate. The call is 
used to add a system call to the operating system and its use might or might 
not have anything to do with implementing an operating system extension. 
As indicated in the preceding mini-glossary, it is quite common to add sys
tem calls to iRMX without adding an operating system extension. The 
name should be something like rqesetsystemcall{ ) or rqesetcallgate{ ). The 
prefix rqe would indicate that the system call is available only for iRMX II 
and III, because, as you recall, iRMX I does not use call gates. 

Before adding a system call to the operating system, you must select 
which call gate the system call will use. A cluster of call gates starting at 
GDT slot number 440 (in decimal) is available for user-defined system 
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calls. iRMX for Windows systems determine the size of this cluster 
from the osx parameter of the : conf ig: rmx. ini file that is consulted 
when the system is initialized.6 For systems configured using the leU, the 
size of the cluster is determined by the number of OSEXT screens the user 
incorporates in the definition file. Note that both osx and OSEXT signify 
Operating System Extension, and perpetuate the failure to distinguish be
tween system calls and extension objects in the iRMX documentation. 

A potential problem exists in managing the call gate numbers used by 
user-supplied system calls. Interface procedures must be hard-coded with 
the proper call-gate numbers, so any conflict between call-gate numbers or 
any change to the call-gate number allocated to a particular system call 
must be resolved by reassembling all the interface procedures involved and 
rebinding all applications that use the call to the new interface procedures. 
If this is a problem for developers who want to distribute their system calls 
to a broad range of iRMX users, it is necessary to establish some sort of reg
istry for new system calls and their call gate numbers. Presently, the prob
lem has not extended beyond the scope of single development sites, and 
local management of call-gate slot numbers has been satisfactory. 

Adding system calls with the ICU. Any iRMX II or III system that supports 
the reu must have a call gate cluster reserved when the system is config
ured if it is to allow user-written system calls. The user can link any subset 
ofthe gates in the cluster (possibly none) to actual procedures when confi
guring the system. The relevant menu screens are Subsystems, OSEXT, 
and USERM. The Subsystems screen includes an os Extension option 
that must be set to yes to establish a GDT cluster. Once this option has 
been selected, the leU presents OSEXT screens when the user steps to the 
proper place in the definition file. For each GDT slot to be reserved, the 
user enters a slot number (starting at 440) and an optional public proce
dure name to be linked to the slot. No procedure name needs to be specified 
because the linkage can be made at run-time by calling rqesetosextension(). 
If any public procedures are specified on the OSEXT screens, the user must 
supply the leu with the pathname to the file containing the object mod
ules on the USERM screen. 

Adding system calls by calling rqesetosextension(). Whether the G DT clus
ter for user-written system calls is reserved at configuration time using the 
leU or at system initialization time using the osx parameter of the 
rmx. ini file, it is always possible to set up or to change the association be
tween a GDT slot and a system call procedure by calling rqesetosexten
sion( ). 

5The default value is 20 at the time of publication. 
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void 
rqesetosextension ( WORD 

void far * 
WORD far * 

callGate, 
systemCallPtr, 
exceptPtr) ; 

The eallGate parameter specifies the number of the GDT slot to be 
used, and the systernCallPtr is a pointer to the user-written procedure 
to be bound to the gate. If systernCallPtr is a null pointer, the current 
binding for the GDT slot is cleared. You might recall from section 5.4 that 
a call gate is a descriptor that contains a far pointer to a procedure. When a 
task makes a far call (supplying both the selector and offset as the address 
of a procedure) and the selector provided with the call is found to reference 
a GDT slot containing a call gate, the call instruction's offset value is ig
nored, and the complete far pointer to the procedure is taken from the call 
gate. Clearly, the two parameters to this call are exactly what the operating 
system needs to know to install a call gate into a particular slot of the GDT. 
Figures 10.1 and 10.3 demonstrate the use of this call, first to clear any call 
gates already using slots 440 and 441, and then to associate those gates with 
the system call procedures shown in either Figure 10.2 or 10.4. 

10.3.2 The interface procedure 

As indicated in section 6.8, an assembly language interface procedure must 
exist for every system call added to the operating system. This procedure 
must: 

1. Ensure that the stack frame is in the proper format for passing parame-
ters to the system call, considering the caller's model of compilation; 

2. Make the far call to the proper GDT slot; 

3. Check for exceptions; and 

4. Pass the system call's return value and condition code back to the caller 
as appropriate. The interface procedures for qccreateboundedbuffer() 
and qcdeleteboundedbuffer() are in module bbife32, Figure 10.6. 

The module name follows the iRMX library module naming convention: 
- ife - stands for interface for the compact model, and 32 indicates that 
the procedures are specific to 32-bit applications. iRMX supplies three in
terface procedure libraries for system calls supplied with the operating 
system: rrnxife32.lib for 32-bit applications (iRMX III only), 
rrnxife . lib for 16-bit compact model applications (iRMX I, II, or III), 
and rrnxifl.lib for 16-bit large model applications (iRMX I, II, or III). 
The versions of rrnxife . lib and rrnxifl.lib for iRMX I must be differ
ent from the versions for iRMX II and III because iRMX I runs in real 
mode and cannot use call gates, but they use the same file names. The 



Extending iRMX: Adding System Calls and Type Managers 389 

sp + 24 : bufferSize 

Sp + 20 I : : offset 

exceptPtr 

sp + 16 I>K: selector 

sp + 12 1 : : Return address to calling task (eip) 

sp + 8 1 : : base pointer (ebp) 

sp + 4 1 : : offset Return address 

to interface procedure --71%: sp selector 

32-bit Stack 

sp + 14 0 bufferSize 

sp + 12 0 offset 

0 
exceptPtr 

sp + 10 selector 

sp + 8 0 offset Return address 

sp + 6 0 selector to calling task 
(or dummy) 

sp + 4 0 base pointer (bp) 

sp + 2 0 offset Return address 

sp --70 selector to interface procedure 

16-bit Stack 

Figure 10.6 Stack frames for 32-bit and I6-bit applications upon entry to the system call 
createBB() procedure. 



390 iRMX Concepts and Features 

iRMX II and iRMX III versions of rrnxifc . lib are identical to each 
other, as are the iRMX II and iRMX III versions of rrnxifl.lib. 

The names that applications use to access the example system calls are 
determined by the names given to the procedures in this module, not by the 
names of the procedures that actually implement the system calls. Thus, 
the name of the new system call to create a bounded buffer is qccreateboun
ndedbuffer(), as defined in bbifc32.asrn (Figure 10.6), rather than 
bbCreate(), as defined in bbsyscal. plrn or bbsyscal. c (Figure 10.2 or 
lOA). iRMX-supplied system call names start with rq, often followed by a 
letter indicating the layer of the operating system that supports the call. qc 
was chosen to start the example system call names just to differentiate 
them from the iRMX -supplied calls. 

The first issue an interface procedure must deal with is to ensure the 
stack frame appears identical, whether the application made a near call or 
a far call to the system call. This issue is not applicable for 32-bit code 
because the interface procedure is always reached from a near call. 
(Remember that 32-bit compilers treat the compact and large models 
identically.) For 16-bit code, the interface procedure for the compact model 
must push a dummy 16-bit word onto the stack to take the place of the cs 
register value that a far call would have placed there. Once this has been 
done, the caller's parameters are at a fixed offset into the stack (four bytes), 
regardless of the model of compilation. The procedure prologue generated 
for 16-bit code would then push the current stack frame pointer register 
(bp) onto the stack and load it with the current top of stack pointer (sp). 
For the interface procedures presented here, the ebp and esp registers are 
the corresponding 32-bit registers. A system call procedure that accepts 
calls from either 16- or 32-bit applications must deal with the difference in 
the number of bytes pushed onto the stack by the prologue for the two dif
ferent types of code, as discussed shortly. 

The actual call to the system subroutine is then made using the appro
priate call gate number as the selector part of a far call instruction. The 
instruction to call a call gate is the same as the instruction to call any far 
procedure, except that the value of the offset part of the subroutine address 
is irrelevant because the actual pointer to the subroutine's code is taken 
from the call gate itself. The interface procedures in bbifc32 use a macro 
named call_g() to generate a far call with an offset of 0 and a selector 
formed by multiplying the gate number by 8. 

Recall from chapter 5 that a selector has bits 3 through 15 (the left-most 
13 bits) set to the index of the descriptor table slot to be accessed, bit 2 se
lects the GDT or the LDT, and bits 0 through 1 (the right-most two bits) 
specify the requested privilege level for the gate access. Multiplying the 
gate number by eight creates a selector in this format for the GDT with 
privilege level o. 

When the system call returns to the interface procedure, it must deal 
with the condition code value returned. By convention, all iRMX system 
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calls return their condition code value in the ex register. If that register is 
nonzero when the call returns to the interface procedure, it calls the proce
dure rqerror(), which makes another system call, rqsignalexception(), 
which in turn either calls the exception handler for the task or returns to 
the interface procedure ifthe task is handling exceptions in-line. The rqer
ror( ) procedure is in the interface libraries supplied with iRMX, although 
users could substitute their own code for the system-supplied version sim
ply by listing an appropriate object module before the interface library on 
the binder's input file list. 

If the exception handler does not delete the job (because there was no 
error and rqerror() was not called, or because rqerror( ) was called but ex
ceptions are being handled in-line, or because the application has provided 
an exception handler that does not delete the job) the interface procedure 
stores the condition code value from ex into the caller's condition code pa
rameter, cleans up the stack frame (16-bit, compact-model interface pro
cedures must drop the dummy es register that was pushed onto the stack 
before the prologue), and returns to the caller. The iRMX system call con
ventions also specify that nonzero condition code values are accompanied 
by an index of the parameter causing the problem in register dx if possible. 
Parameters are numbered from left to right starting at 1 for this value. If 
you decide to write your own exception handler procedure, it should be 
coded to receive these two values, plus two more words, as arguments. This 
information is also useful when debugging an application program. If you 
single step into an interface procedure for a system call that is causing a 
problem, you can examine the registers on the next instruction after the 
call to the call gate to see the value in the Dx register. 

If the value in the ex register is 0 (E_OK), the value is simply stored in 
the word pointed to by the caller's last argument. The les instruction in the 
sample interface procedures loads the selector portion of the caller's 
exeeptPtr argument into the es register and the offset portion into the 
ebx register, and the following instruction stores the condition code value. 
Unlike their 16-bit counterparts, PLM-386 and iC-386 compilers assume 
that the es and ds registers always contain the same values, and the sam
ple interface procedures make sure that this is the case before returning to 
the caller. 

Calculating the number of bytes to drop from the caller's stack on the ret 
instruction must also be done differently for 16-bit and 32-bit interface 
procedures. The calculation requires full understanding of how the com
pilers use the task's stack for passing parameters, which is covered in the 
next section. You might refer back to the ret instructions in the sample in
terface procedures after reading the following material to verify that the 
code matches your understanding of how the stack is used. 

System call procedures that return function values will do so in the pro
cessor's registers, and interface procedures do not need to be concerned 
with this issue other than to avoid destroying the value accidentally. For 
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32-bit code, a value is returned in the eax register and possibly the edx. For 
16-bit code, the ax, bx, and dx registers can be used for return values. Set
ting these registers is the responsibility of the exit procedures for the sys
tem call, and is discussed further in section 10.3.5. 

10.3.3 Receiving parameters in the system 
call procedure 

Although system call procedures, especially for user-written system calls, 
are normally written in PLM or C, the system call programmer must have a 
good understanding of the conventions used by the compilers for passing 
arguments on the stack. First, the compilers enforce Ii notion of a 16-bit or 
32-bit stack different from the microprocessor's rules for operating on the 
stack. For a 16-bit stack, the microprocessor always pushes or pops 16-bit 
values. You cannot push or pop a single byte, and pushing or popping a 
pointer or a 32-bit value involves pushing or popping two 16-bit values. 
The 16-bit compilers use this same model for passing and receiving param
eters, so this issue is minor. 

For a 32-bit stack, however, the microprocessor and the compilers use 
slightly different models. The microprocessor still works with 16-bit units. 
You still cannot push or pop a single byte, and pushing a 16-bit value, a 
32-bit value, or a 64-bit value pushes 2, 4, or 8 bytes, respectively. If you 
push a segment register, the microprocessor pads it from 2 bytes to 4. The 
compilers use a32-bit modulus for all values passed as parameters on a 32-
bit stack. Whether you pass a 1-, 2", or 4-byte value as an argument, it 
occupies 4 bytes on the stack, and the compiled code in a subroutine auto
matically ignores the unused bytes of any value passed. Far pointers are 
passed as a four-byte offset and a four-byte value containing the two-byte 
selector and two unused bytes. . 

Figure 10.7 shows the structure of a 16-bit stack and a 32-bit stack when 
the interface procedure has executed its far call to createBB() through call 
gate 440. As the figure shows, the caller's parameters, the stack frame 
pointer pushed by the interface procedure, and the return address to the 
interface procedure all occupy ,different amounts of stack space for the two 
types of stack. The 16-bit stack is the same for both the compact and large 
models of compilation, but is significantly different from the 32-bit stack. 
Here, full credit is given to the Intel engineers who developed iRMX III 
system call procedures that accept either 16-bit or 32-bit stacks, and pro
ceed to the simpler problem of developing system call procedures that work 
only for 32-bit stacks. 

The two procedures in this module are coded as far procedures even 
though they are compiled using the compact memory segmentation model. 
They are compiled using the compact model to not incur unnecessary code 
segment changes when calling other procedures with which they are 
bound. The exit procedures are such procedures in the example. The pro
cedures must he coded as far procedures so the compiler will generate code 



Extending iRMX: Adding System Calls and Type Managers 393 

Figure 10.7 Assembly language interface procedures for 32-bit implementation of qccreate
boundedbuffer() and qcdeleteboundedbuffer() called through call gates 440 and 441. 

name bbifc32 ; 32-bit interface procedures for Bounded Buffer 

This is the interface module for bounded buffer system calls. 
The following system calls are supported: 

TOKEN 
qccreateboundedbuffer (DWORD bbSize, WORD far *exceptPtr); 

void 
qcdeleteboundedbuffer (TOKEN bbOSE, WORD far *exceptPtr); 

First define a macro to generate call instructions that reference 
call gates. The assembler does not provide a codemacro for this 
instruction. 

$genonly 
%*define(call_g(arg)) 
( 

code 

db 
dd 
dw 

9Ah 
o 
%arg*8) 

Set up the code segment 

segment er public 

op code for far call 
offset is ignored for call gates 
for GDT, Privilege Level 0 

extrn rqerror: near 

qccreateboundedbuffer interface procedure 

qccreateboundedbuffer 
public 

proc near 
qccreateboundedbuffer 

Procedure prologue and call to the system call procedure 

push 
mov 

ebp 
ebp, esp 

Return here from sys_exit procedure - check for errors 

and 
jz 

call rqerror 

If rqerror returns, it means that 
in-line, so we return to it after 

;Test condition code 
;Zero is E_OK 

;Possible call to task's EH 

the application is handling errors 
storing the error code. 
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Figure 10.7 (Continued) 

les 
mov 
mov 
mov 
pop 
ret 

ebx, [ebp+08h] 
es: word ptr [ebx],cx 

;Get app's last parameter 
;Store condition code 

di,ds 
es,di 
ebp 
12 

;Be sure es == ds 
; for 32-bit code 

; Epilogue code 
;Drop one dword and one pointer 

qccreateboundedbuffer endp 

deleteboundedbuffer interface procedure 

qcdeleteboundedbuffer 
public 

proc near 
qcdeleteboundedbuffer 

Procedure prologue and call to the system call procedure 

push 
mov 

ebp 
ebp,esp 

Return here from sys_exit procedure - check for errors 

and 
jz 

call rqerror 

;Test error code 
;Zero is E$OK 

;Possible call to task's EH 

If rqerror returns, it means that the application is handling errors 
in-line, so return to it after storing the error code. 

les ebx, [ebp+08h] ;Get app's last parameter 
moves: word ptr [ebx],cx ;Store condition code 
mov di,ds ;Be sure es == ds 
mov es,di ; for 32-bit code 
pop ebp ;Epilogue code 
ret 12 ;Drop one token and one pointer 

qcdeleteboundedbuffer endp 

code ends 
end 
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to load the procedures' ds register during the procedure prologue. In gen
eral, these procedures are not bound to the application task's code, so they 
must use their own code and data segments. For the PLM version, the pro
cedures are made far by coding the $compact (exports createBB 
deleteBB) compiler control before the first DO block. For C, it is done sim
ply by declaring the procedures to be far. 

To refer to the parameters being passed to it by the application task, the 
procedures must be coded to account for the values pushed onto the stack 
by the interface procedure. The compiler automatically knows about the 
far return address and the changes it makes to the stack during the proce
dure prologue, so it is just a matter of accounting for the base pointer value 
and application task's return address, as shown by the two parameters, 
application_eip and application_ebp, declared after the parame
ters of interest in the two procedures. With these declarations in place, the 
compiler generates the proper offsets into the stack to access the applica
tion's parameters. 

To put some perspective on the sample code, the following is a review of 
how the different versions of the interface procedures available for iRMX
supplied system calls work to provide a consistent interface to the system 
call procedures. 

32-bit code (rrnxifc32 . lib). The interface procedure pushes a 32-bit flag 
value (-1) onto the stack to signal a call from a 32-bit application before 
pushing ebp and making the system call. The system call procedure con
tains an assembly language prologue that tests for the flag value on the 
stack and branches to the code that references parameters from 32-bit ap
plications. 

16-bit compact (rrnxifc • lib). The interface procedure creates a 16-bit 
dummy offset value for the return address on the stack by pushing the bp 
register, updates the stack frame pointer by pushing the bp register again, 
and makes the system call. The system call's prologue finds two copies of 
the bp register, which never have the value -1, in place of the flag value, and 
knows to treat the application's part ofthe stack as 16-bit values. The sys
tem call code itself is 32-bit code, so the stack is assumed to contain 32-bit 
values, but this assumption can be overridden by referencing 16-bit regis
ters and operands in the code. The system call, however, must use the 
proper offsets into the stack to obtain the operands. 

16-bitlarge (rrnxifl.lib). The caller's return address on the stack already 
contains a 16-bit offset value, so the interface procedure just updates the 
stack frame pointer and makes the system call. The system call procedure 
does not need to know whether the application is using the compact or 
large model, only that it is passing 16-bit values on the stack rather than 
32-bit values. 
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Note that the interface procedures for 16-bit code are exactly the same 
for iRMX II and III. Only the interface procedures for 32-bit applications 
and the system call procedures themselves are different for iRMX III. 

If you develop a system call to be used with 32-bit applications only 
(which. implies running on iRMX III or iRMX for Windows only), the sam
pIe code provides a slightly more efficient protocol for passing parameters 
to system call procedures. The sample code does not bother with the flag 
value on the stack and thus eliminates the need for an assembly language 
prologue for the system call procedure to test the flag value and determine 
the word size of the caller's stack. 

10.3.4 Design of a system call procedure 

A procedure that will operate as a system call must deal with the following 
issues: 

• Operation in a multitasking environment. 

• Memory and object management. 

• Condition code and exception management. 

All these concerns are examined in the sample code in the createBB() 
and deleteBB() procedures of Figures 10.2 and 10.4, although memory and 
object management are covered in section 10.4.2. Looking at the structure 
of these procedures, it is important to remember that they are executed by 
an application task, so they must take care to maintain that task's environ
ment and work properly, even if the calling task is preempted at any point 
during the execution of the system call procedure. 

Thus, the first consideration for a multitasking environment is to ensure 
that the procedure maintains separate copies of each caller's local vari
ables so that different tasks can call the system call procedures concur
rently. For C programs, this is done automatically because local variables 
are allocated on the caller's stack by default (unless declared static). 
For PLM programs, however, it is necessary to declare the procedures 
reentrant to achieve the same effect. Remember, each iRMX task has its 
own stack segment. 

A second consideration for operating in a multitasking environment is 
not illustrated in the code being examined in this chapter. The issue 
is managing global state information needed by the OSE. In this case, there 
is no such information; each bounded buffer is created and operated inde
pendently of all others. Another OSE might need global state information, 
however. For example, the BIOS allows only a single I/O connection to be 
made to a device at a time, so it must maintain knowledge about what de
vices have I/O connections globally - across all the I/O connection objects 
that it manages. In a multitasking operating system such as iRMX, more 
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than one task could make calls to an OSE that involve examining or modi
fying such global state information concurrently. It is crucial for this 
information to be protected through standard mutual exclusion mecha
nisms, such as semaphores and regions, to ensure correct operation of the 
OSE. 

The other matter to address is how to handle exceptions that occur dur
ing execution of the system call procedures. One strategy is to not change 
the calling task's exception handling mode within the system call. Leaving 
exception handling unchanged, the system call procedure is aborted if an 
exception is encountered and the application has elected to use an excep
tion handler that deletes the task or job when an exception occurs. How
ever, the system call must be coded to test the condition code after each 
system call in case the application has elected the in-line mode for han
dling exceptions. In this case, each system call made from within a system 
call procedure would be followed by a test for nonzero S ta t us, and a return 
of that value to the caller through sys _exit _ e( ). 

The strategy adopted in the sample code for bbCreate() is to force the 
application to do in-line exception handling while it is in the system call, 
restoring the original exception handling mode of the calling task before 
exiting. This way, our system call procedure can complete successfully 
even if an iRMX system call that is not essential to the operation of our 
code fails. Our bbDelete() procedure, on the other hand, makes only one 
iRMX system call (rqsendmessage() to send the token for the composite 
object to the deletion mailbox}, which can fail only if the type manager is 
not properly installed. So bbDelete() does not bother to check for an excep
tion when making this iRMX call; it just passes the status from rqsend
message() back to the caller as its own condition code value. 

Forcing in-line exception handling also allows system call procedures to 
recover cleanly if they encounter an iRMX exception in the middle of pro
cessing. For example, bbCreate() deletes all component objects if it is un
able to create anyone of them successfully. This technique also allows the 
system call to pass back condition code values that might be more mean
ingful to an application than whatever condition code happens to be re
turned by a nested system call. For example, qccreateboundedbuffer() is 
guaranteed to return one of only four condition code values, E_OK, 
E_MEM if not enough memory exists to create the buffer object, E_LI
MIT if the calling task's job has reached its object limit, or E _ CO NTEXT 
if any other error caused the call to fail. 

10.3.5 Exit procedures 

Once a system call procedure completes its work, it must return its condi
tion code to the application and, if it is a function, a return value as well. 
The calling conventions for iRMX require that the condition code and pa-
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rameter number causing an error, if any, are returned in registers ex and 
dx, and that function values from 8 to 32 bits long are returned in register 
eax. 

If a function returns a pointer or a 64-bit doubleword, the selector part of 
the pointer or the high-order half ofthe doubleword is returned in register 
edx, and the offset or low-order half is returned in eax. The PLM-386 
compiler returns function values using this convention automatically, as 
does the C-386 compiler for functions declared with the fixedpararns 
pragma, as all iRMX system call interface procedures are. Setting the ex 
and dx registers, however, must be done in assembly language, and cannot 
be done in PLM or C. Instead of returning directly to the interface proce
dure, system calls return to the interface procedure indirectly through one 
of four exit procedures given in Figure 10.5. These exit procedures are: 

• sys _exit_nO 

• sys_exit_v() 

• sys_exit_d() 

• sys_exit_e() 

sys _exit _ n() is called for a normal exit by a system call that returns no 
value and completes normally. This procedure sets register ex to zero, the 
E_OK condition code. This procedure is called from bbDelete() when no 
error occurs. 

sys _exit _ v( ) is called for a normal exit from a system call that returns a 
value in register eax. This procedure loads the return value, which the sys
tem call passes to it on the stack, into register eax, and sets ex to zero. This 
procedure is called from bbCreate() to return the token for a new bounded 
buffer composite object. 

sys _exit _ d( ) is called for a normal exit from a system call that returns a 
far pointer or a doubleword in registers edx and eax. The same code is used 
for returning far pointers as for returning doublewords, so the alias sys _ ex
it _p() is provided for this function. Neither procedure is actually used by 
the code in this chapter. 

sys_exit_e() is called to return a nonzero condition code value and pa
rameter number for system calls that fail. It is called from various places in 
both system calls. 

Exit procedures do not return to the system call procedures that call 
them. After setting the processor's registers, exit procedures return to the 
interface procedure that called the system call procedure. Thus, the exit 
procedures first add 4 to the stack pointer to eliminate the near return ad
dress used to return to the system call procedure. They then pop the ds reg
ister to restore the interface procedures' data segment register, and then 
use the leave instruction to drop any local variables the system call proce
dure left on the stack and to pop the ebp register value that was pushed by 
the compiler-generated prologue code for the system call procedure. The 
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form of this code is predicated on knowing what code compilers insert as 
the prologue for any far procedure. The various exit procedures then make 
far returns to the interface procedure. 

Exit procedures for 16-bit applications must be coded differently to re
flect the differences in calling conventions and stack usage compared to 
32-bit code. A system call that serves both 16- and 32-bit applications must 
use two different sets of exit procedures to accommodate these differences. 
The register conventions for 16-bit and 32-bit applications are fairly easy 
to summarize: 

First, 32-bit functions return all 1-, 2-, or 4-byte values in register eax. 
64-bit values are returned with the low-order half in eax and the high
order half in register edx. Pointers are returned with the offset part in eax 
and the selector part in register dx. 

Secondly, 16-bit functions return 8- and 16-bit values in register ax, and 
use dx for the high-order half of 32 bit values. However, they return the 
offset part of a pointer in bx instead of dx and return the selector part of a 
far pointer in es instead of dx. 

10.4 Adding a Type Manager 

The good news about adding a type manager to an iRMX system is that it 
doesn't involve any assembly language coding! Five system calls are in
volved in setting up a type manager and using it, and these are described in 
this section. In chapter 6 you saw that one of the primitive object types 
supported by the Nucleus is called an operating system extension, or aSE 
object. An aSE object is a meta-object: it defines a new object type for the 
system. Two of the five system calls described here are used to create and 
delete an aSE object. The other three calls are used to create, modify, and 
delete objects of the new aSE type, i.e., composite objects. 

10.4.1 Creating an extension 

Before looking at the system calls for creating and deleting new object 
types, object type codes must be considered. Every type of iRMX object has 
a unique type code. For example, the following object type codes are used 
for the primitive objects managed by the Nucleus: 

Type code 

1 
2 
3 
4 
5 
6 
7 
8 

10 

Primitive object type 

Job 
Task 
Mailbox 
Semaphore 
Region 
Memory Segment 
OS Extension 
Composite Object 
Buffer Pool 
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These type codes are used by the Nucleus to verify that objects of the 
correct types are passed to system calls. This object type checking adds 
greatly to the robustness of the system and helps detect programming 
errors early in the development process. The system simply will not let you 
pass a token for a mailbox to rqsendunits(), for example. Object types 7 and 
8 are of particular concern here. For every type of object beyond those 
listed previously, a type manager must call rqcreateextension() to define 
the new object type to the system. The following is the function prototype 
for that call. 

extern TOKEN 
rqcreateextension ( WORD 

TOKEN 
WORD far' 

typeCode, 
deletionMbx, 
exceptPtr) ; 

The first parameter to this call is a user-selected type code for the new 
type being created. Intel reserves type codes 0 through Ox7FFF for the ex
tensions they add to iRMX, and users can use any type codes between 
Ox8000 and OxFFFF. Similar to the allocation of call gates to user-written 
system calls, a problem can arise in deciding which OSEs are to use which 
type codes. Again, some sort of managed registry must be set up if this be
comes a problem. The deletionMbx parameter is discussed in section 
10.4.3. For now, the concern is with type codes. 

iRMX has a set of OSEs already defined by various layers of the system. 
The ones defined at the time of this writing use the following type codes: 

Type Code 

Ox0009 
OxOlOO 
OxOlOl 
Ox0300 
Ox0301 

Extension Object Type 

Message Port 
I/O User 
I/O Connection 
I/O Job 
Logical Device 

These five object types are managed by different layers of the operating 
system: Message Port is defined as an extension type by the Nucleus itself 
(message ports are used for Multibus II message passing), I/O Users and 
I/O Connections are defined by the BIOS, while I/O Jobs and Logical De
vices are defined by the EIOS. 

If you pass a valid token for any iRMX object to the rqgettype( ) system 
call, you will get back the type code for either one of the primitive object 
types, one ofthe extension object types listed previously, or the value ofthe 
typeCode parameter ofthe rqcreateextension() system call that defined a 
user-developed extension type. Objects created by a type manager for an 
OSE actually have two type codes: the extension type code for the particu
lar extension and the primitive type code 8, indicating that the object is a 
composite object. The Nucleus keeps the primitive type code for each ob-
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ject in a hidden data structure known as the canonical part of the object. 
When the Nucleus encounters a composite object (type code 8), it knows to 
look for the actual type code in a data structure called the base segment for 
the object. As shown in Figure 10.8, this base segment contains the exten
sion type code for the object and a list of tokens for the component objects 
that constitute the composite object. The component objects that consti
tute a composite object can be either Nucleus objects or other composite 
objects. 

The token returned by rqcreateextension() is called a license for the new 
object type in the iRMX documentation. The idea is that the value ofthis 
token, bbOSE in the sample code, is made available to the routines that 
compose the type manager, but is not available to other code. The iRMX 
system calls used to create and manipulate composite objects all require 
this token as one of their parameters. This strategy helps encapsulate com
posite objects by making it impossible for a task to use system calls to ex
amine or modify a composite object without a copy ofthe license to do SO.6 

10.4.2 Managing composite objects 

Once an extension has been created, applications can create composite ob
jects that are instances of the new type by calling rqcreatecomposite(). This 
function is called from within the create system call provided by the type 

Token for 
Composite 
Object 

Base Segment of Composite Object 

Type Code 

Object 

Object 

Object 

Object 

Figure 10.8 Structure of a composite object. 

6A task could cheat and examine or modify the contents of a composite's base segment di
rectly, but it could not use rqinspectcomposite() or rqaltercomposite() to do so. 
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manager. The sample code shows a call to this function in the system call 
procedure for qccreateboundedbuffer(), procedure bbCreate() in Figure 10.2 
or lOA. The function prototype is the following: 

extern TOKEN 
rqcreatecomposite ( TOKEN 

TOKENLISTSTRUCT far * 
WORD far * 

extensionTkn, 
tokenListPtr, 
exceptPtr); 

The first parameter is the token returned by rqcreateextension() to iden
tify the object type of the composite object to be created. TOKENLIST
STRUCT consists of a count of the number of objects that the composite can 
contain, followed by a counted list of tokens for objects that are to consti
tute the initial contents of the object. That is, it starts with a word telling 
the maximum number of tokens the object can contain, followed by a count 
of how many tokens are actually being initialized as the object is created. 
The sample bbCreate( ) function creates composites that can contain five 
objects and initializes all five of them: a segment for housekeeping infor
mation, a segment for the buffer itself, plus two semaphores and a region 
for controlling access to the object. It is acceptable to initialize slots in 
tokenList with null selectors to act as place holders, although this is not 
shown in the sample code. 

Once a composite object has been created, type manager functions can 
change the object's token list by calling rqaltercomposite(): 

extern void 
rqaltercomposite ( TOKEN 

TOKEN 
WORD 
TOKEN 
WORD far * 

extensionTkn, 
compos iteTkn , 
component Index , 
replacingObject, 
exceptionPtr); 

In principle, the value ofthe extensionTkn parameter is implied by the 
compositeTkn parameter to this call. Requiring both tokens helps en
force object encapsulation, as described previously. The other two parame
ters for this system call are the index into the tokenList for the token to 
be changed, with one being the first element of the list, and the new token 
to be stored in tokenList for the object. The value for replacing
Ob j ect can be a null selector if you need to delete a component object from 
a composite. 

When a composite has been created, applications can call type manager 
procedures with the token for a composite as one of the parameters, nor
mally the first. The type manager procedure gets a copy ofthe tokenList 
for the composite to be manipulated by calling rqinspectcomposite(): 

extern TOKEN 
rqinspectcomposite ( TOKEN 

TOKEN 
TOKENLISTSTRUCT far * 
WORD far * 

extensionTkn, 
compositeTkn, 
tokenList, 
exceptPtr) ; 
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As with rqaltercomposite( ), the caller must supply both the license for the 
extension type and the token for the particular composite to be inspected. 
For this call, the first word of the tokenList is a count of the number 
of tokens the caller is willing to receive. You can elect to look at just the 
first few tokens of a large composite object by controlling the value of 
this word. 

The sample code calls rqinspectcomposite() from within the deletion 
task's procedure in the bbmanage module. The code illustrates how to ac
cess component objects that are part of a composite, in this case to delete 
them. The system call to add bytes to a bounded buffer would use the fol
lowing algorithm: 

1. Inspect the composite. 

2. Receive a unit from tokenList[2], the free space counting semaphore. 

3. Receive control from tokenList[ 4], the critical region for the buffer. 

4. Store the byte in the tokenList[3] segment, indexed by the nextPut 
value in the tokenList[O] segment. 

5. Update nextPut by one, modulo bufSize. 

6. Release the region. 

7. Send a unit to tokenList[lj, the occupied space counting semaphore. 

Similarly, the following algorithm would be used by the system call that 
removes bytes from a bounded buffer: 

1. Inspect the composite. 

2. Receive a unit from tokenList[lj, the occupied space counting sema
phore. 

3. Receive control from tokenList[4j, the critical region for the buffer. 

4. Copy the byte in the tokenList[3j segment, indexed by the nextGet 
value in the tokenList[Oj segment. 

5. Update nextGet by one, modulo bufSize. 

6. Release the region. 

7. Send a unit to tokenList[2j, the free space counting semaphore. 

These system calls modify the components of the composite object, 
but do not modify a composite object itself. That is, they would not call 
rqaltercomposite( ). 

10.4.3 Deleting composites and extensions 

There are three distinct situations in which a composite object is deleted, 
as shown in Figure 10.9. 
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Figure 10.9 Three ways to delete a composite. 

The first situation is if ajob that owns a composite object terminates. If 
the type manager has established a deletion mailbox for the extension, the 
Nucleus automatically sends tokens for such objects to the deletion mail
box as part of its processing of the rqdeletejob( ) system call. If no deletion 
mailbox exists, the Nucleus deletes the object itself. 

The second situation is if the type manager calls rqdeleteextension() to 
delete an OSE. The Nucleus deletes all composites of the OSE type before 
deleting the OSE. If there is a deletion mailbox, the composites are sent 
there for deletion. Otherwise, they are simply deleted. 

Third, the type manager for the extension can provide a system call for 
deleting composites, and an application task makes this system call. 

The second situation is uncommon. Normally, a type manager is in
stalled when the operating system initializes, and never deletes the OSE 
object for the type it is managing. This case is important, however, when a 
type manager is being developed and debugged as an HI command. For ex
ample, the sample type manager, when the bbmanage module is compiled 
with the Hlcmd symbol set, creates two bounded buffer composite objects, 
calls qcdeleteboundedbuffer( ) to delete one of them, then calls rqdeleteex
tensionO, and exits the job. When the task calls rqdeleteextension( ), tokens 
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for all existing bounded buffer composites are automatically sent to the 
deletion mailbox. One such object still has not yet been deleted, so that ob
ject is sent to the deletion mailbox at this time. 

If the sample program had not called rqdeleteextension(), the same token 
would have been sent to the deletion mailbox as part of the processing of 
the rqexitiojob( ) system call, which calls rqdeletejob( ). This situation would 
have been an example of the second situation. The call to rqexitiojob() 
would have failed in this case, however, because the job still owned an ex
tension object and thus could not be deleted. 

When a task calls rqdeletejob() or rqdeleteextension(), it deletes compos
ite objects sequentially. That is, instead of just sending all the tokens for all 
the composite objects to be deleted to their respective deletion mailboxes 
and letting them queue up for the deletion tasks to process at their leisure, 
these routines wait for positive acknowledgment that each composite ob
ject has actually been deleted before proceeding to delete the next object 
belonging to the job or the extension. This strategy allows type managers 
to delete composite objects that contain other composites. The Nucleus 
guarantees that composites will be deleted in a most-recently created se
quence so that a deletion task can count on being able to access component 
objects that constitute a composite even if those component objects are 
slated for deletion during processing of the same delete system call. 

The preceding rule deals with two different issues. First, the deletion 
tasks for different type managers could be put into a race condition result
ing in indeterminate system behavior if two composite objects of different 
types, each containing a component of the other type, are sent to their de
letion mailboxes at the same time by rqdeletejob(). The rule guarantees 
that a deletion task will be able to access component objects of any type 
provided they were created before the composite object itself. By exten
sion, a deletion task can safely access component objects of the same type 
as the composite itself, provided such components are created before their 
containing composite. 

The code for rqdeletejob() also follows the rule of deleting all primitive 
objects only after deleting all composite objects, regardless of when the 
primitive objects were created. The considerations concerning which com
ponent objects can be accessed by a deletion task really do apply only to 
composite components, not primitive components. 

What should the deletion task do when it receives a token for an object to 
be deleted? One essential piece of business is to call rqdeletecomposite(): 

extern void 
rqdeletecomposite ( TOKEN 

TOKEN 
WORD far * 

extensionTkn, 
compositeTkn, 
exceptionPtr); 

This call is essential if compos i teTkn was sent to the deletion mailbox by 
rqdeletejob() or rqdeleteextension() because this call is what provides the 
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positive acknowledgment that allows the Nucleus to continue processing 
the call to rqdeletejob() or rqdeleteextension(). 

But what if the composi teTkn was sent by the type manager's delete() 
system call? Aside from the fact that there is no reason that a deletion task 
would want to avoid making this call, there are three reasons for an applica
tion to delete an object: to make the object unavailable for access, to reclaim 
the memory used by the object, and to free the GDTsiot used by the compos
ite. Calling rqdeletecomposite() satisfies all three requirements. 

Deleting a composite object does not delete the component objects that 
constitute the object. Doing so, which the sample deletion task does, is gen
erally important, but not universally so. Deleting the composite objects 
prevents what are known as memory leaks, which can be a significant issue 
for long-running applications that create and delete objects dynamically 
during their lifetimes. For example, a network server job might create and 
delete composite objects as client programs establish and break communi
cation channels. If the composites for each communication channel are not 
deleted, the server job gradually consumes more and more of its memory 
pool (and GDT slots) until it can no longer handle new client requests. 

Sometimes, it is actually inappropriate to delete component objects, 
namely when the same component object is contained in multiple compos
ite objects. The deletion task would need to be coded to handle such situa
tions appropriately, taking care to manage the global state information 
implied by this situation properly. (See section 10.3.4.) 

The Nucleus enforces its own rule in this regard: no object can be deleted 
if it belongs to ajob for which rqdeletejob() is being processed. Our bounded 
buffer type manager would encounter this situation if it is compiled with 
HI cmd defined and if the call to rqdeleteextension() were omitted. In that 
case, a_buf would be sent to the deletion mailbox when the initial task 
called rqexitiojob(), and all the delete( ) system calls executed by the dele
tion task would fail. The example deletion task simply ignores any such 
errors. There is no problem because the component objects are deleted au
tomatically as the rqdeletejob() system call proceeds. 

The bounded buffer deletion task illustrates one more important con
cept in the design of robust system calls, which is the consideration of the 
interactions among multiple tasks that might access a single composite 
concurrently. It is possible that a token will arrive at the deletion mailbox 
for a composite object already in use by some other task than the one that 
called qcdeleteboundedbuffer(). No problem exists if another task has a 
copy of the token for the object being deleted because, once the deletion 
task calls rqdeletecomposite(), any task that presents the token for that 
composite to a system call will fail with an E _EXIST condition code. 

The problem is more subtle: if a task uses the token for a bounded buffer, 
to get a byte from the buffer, for example, then enters the region for the 
buffer, and is at that point preempted by another task that deletes the 
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buffer, what happens to the task trying to get a byte from the buffer? The 
answer is that the task completes its call successfully because the deletion 
task deletes the region for the buffer before deleting any of the other com
ponents of the buffer. Since rqdeleteregion() automatically waits for any 
task that has entered the region to leave it (the task that is getting a byte 
from the buffer in this case), the situation is handled correctly. 

A decision was made in the design of the example type manager that 
should be made explicit before leaving this topic. There seems to be two 
equally reasonable ways to handle object deletion. The way the example 
handled it was to have the deleteBB( ) system call send objects to the dele
tion task and have the deletion task perform the actual deletion process. 
Another design might have been to have deleteBB( ) perform the deletion, 
and have the deletion task call qcdeleteboundedbuffer() for each object that 
arrives at the deletion mailbox. The difference between the two is that de
leteBB( ) would have to be designed to handle concurrent calls from differ
ent tasks, whereas the deletion task is a single thread of execution. A call to 
rqdeleteregion( ) causes deadlock if it is called by two tasks for the same re
gion at the same time, so deleteBB( ) would have had to be coded to serialize 
calls to rqdeleteregion() in the alternate design, probably by adding a bi
nary semaphore to the bounded buffer composite structure. This overhead 
is circumvented by using the deletion task which, as a single thread of exe
cution, automatically serializes all delete operations. 





Chapter 

11 
iRMX Network Programming 

11.1 Overview 

Networking support is an important feature of the iRMX operating sys
tem. Networking was introduced in chapter 2 where the system's support 
for networked access to remote files was discussed from a user's perspec
tive. In this chapter, the nature of iRMX networking is covered in more 
detail so you can develop programs that use the network directly. You will 
also see how the BIOS' remote file driver uses the network to implement 
access to networked file systems. 

Networking is a key element of the iRMX for Windows support for the 
Windows Dynamic Data Exchange (DDE) mechanism. The DDE is what 
allows Windows applications to exchange data with one another, such as a 
field in a word processing document containing a value extracted from a 
cell of a spreadsheet. iRMX for Windows allows iRMX applications to use 
the DDE mechanism to share data with Windows applications and, more 
significantly, to extend the DDE to operate transparently over a network. 
With the iRMX for Windows networking software in place on computers 
running Windows, any mixture of iRMX and Windows applications run
ning on different computers can exchange data the same way that two con
ventional Windows applications use the DDE without iRMX. The DDE 
mechanism is discussed in more detail in chapter 12. 

11.2 A Network Model 

No discussion of networking can begin without mention of the familiar 
seven-layer reference model for networking known as the Open Systems 
Interconnection (OSI) Reference Model and promulgated by the Interna
tional Standards Organization (ISO ).1 

IThere are those who believe that the ISO purposely chose the name OSI for their model to 
confuse people with two acronyms that are anagrams of each other. 

409 
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Figure 11.1 ISO seven-layer reference model. 

Figure 11.1 shows two systems linked by a network in terms of the OSI 
model. The physical layer is the medium that connects systems on the net
work, such as an Ethernet cable. The data link layer is very similar to the 
hardware device controller that connects a computer to the physical me
dium, and the network layer can be thought of as the device driver software 
that acts as the interface between the operating system and the device con
troller. This characterization ofthe lower three layers as structures should 
already be familiar to you from the discussion of device drivers in chapter 9, 
but is only approximately accurate. Nonetheless, it provides a useful start
ing point. 

Above the network layer, software modules at the corresponding layers 
on different systems can communicate with each other by passing requests 
up and down the stack of layers on the local system. For example, an appli
cation on one computer that wants to communicate with an application on 
another computer can do so by using the Presentation layer on the local 
computer. The Presentation layer passes each request from the Applica
tion layer to the Session layer, and so on, until the Physical layer actually 
transfers the request over the network to the remote system. At the remote 
computer, the Physical layer receives the request, and passes it up to the 
Data Link layer, which passes it on up the stack of layers, which repeats 
until the request is delivered to the appropriate application. 

The OSI model allows for a many-to-one relationship between software 
modules at one layer and the next lower layer. For example, several appli
cations can simultaneously share the same Presentation layer software. At 
the other end of the stack, a single Ethernet cable might carry packets for 
Novell, Transmission Control Protocol/Internet Protocol (TCP lIP), and 
ISO networks. They would all be processed equivalently by the Physical 
layer, but the Data Link layer manages the differentiation among packet 
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types to support the three different Network layer modules concurrently. 
The ISO has published standards for the interfaces among the OSI refer
ence model layers, but networks such as Novell and TCP lIP do not use 
these standards. The implementations of the lowest layers, however, do 
support the sharing of common Physical and Data Link hardware and soft
ware among these three as well as other types of networks. 

Here, by the way, is an example of where the analogy between the lower 
three layers and devices, device controllers, and device drivers breaks 
down. One mechanism for supporting multiple networking protocols is 
called a packet driver, which is a device driver that resides between the data 
link and the network layer in the OSI model. When a Novell packet arrives 
at the device controller, the packet driver passes it on to the Novell device 
driver. When an Internet Protocol (lP) packet arrives, the packet driver 
passes it on to the IP device driver. When an ISO packet arrives, the packet 
driver passes it on to the ISO device driver. Another mechanism is for the 
ISO device driver to receive all packets and pass the IP packets on to the IP 
driver. Both mechanisms are used on iRMX systems, and neither fits per
fectly into the ISO model. The packet driver mechanism is used on PC 
platforms, and the ISO-receives-all mechanism is used in a TCP lIP im
plementation for iRMX currently under development at Intel. The differ
ence between the two approaches is not terribly significant beyond noting 
that it is possible for the Data Link layer to support higher-level protocols 
that do not adhere to ISO standards.2 This topic is further discussed at the 
end of this chapter when the Data Link layer services available to iRMX 
programs are detailed. 

A natural break exists in the OSI stack between the Transport layer and 
the layers above it because the Transport layer is the lowest layer that pro
vides for the reliable exchange of packets between processes running on 
separate computers. Applications such as file transfer, remote procedure 
calls (RPC), and E-mail can be built directly on top of a Transport layer 
implementation. The Internet uses the Transmission Control Protocol 
(TCP) and IP to implement the layers at the Transport layer and below, 
and applications such as FTP for file transfer and Telnet for remote login 
are implemented on top of TCP/IP. Rose (1990) argues that the TCP/IP 
protocols are more efficient than the corresponding ISO layers, and he has 
implemented the ISO Development Environment (ISODE) for imple
menting upper-layer ISO modules on top of the TCP lIP Transport layer 
interface. iRMX provides a Transport layer that is compatible with the 
ISO standards, and there is an experimental implementation of TCP lIP 
available as well, with a complete TCP lIP package, including FTP and 
Telnet applications, expected to be available from Intel in 1993. 

2To provide a consistent implementation of TCP lIP across various computing platforms, 
the TCP lIP layer performs all its network processing by making calls to the ISO Data Link 
layer. On the PC platform, the Data Link layer uses the Packet Driver to perform the actual 
network data transfers. 
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11.3 THE iRMX Networking Context 

iRMX provides networking support in two software modules. The Trans
port layer and below are encapsulated in one module, called iNA-960.3 

Remote file access (the Session layer and above) is provided by a second 
module, called iRMX-Net. In keeping with the OSI many-to-one relation
ship among layers, it is possible for other applications besides file access to 
be built on top ofthe Transport layer, and the latter part ofthis chapter is 
devoted to the concepts involved in developing such applications on top of 
the Transport layer. 

iNA-960 runs either as an iRMX job using the processor running the 
iRMX operating system itself, or is downloaded to a network controller 
board that supplies its own processor and memory. The version ofiNA-960 
that runs in protected mode as an iRMX II or iRMX III job is called iTP-4. 
(TP-O and TP-4 are the names of the most commonly used ISO standards 
for the Transport layer; the digit in the names refers to increasing levels of 
reliability.) The version of iNA-960 that is downloaded to a network con
troller board runs in real mode as standalone code and is called iNA-961. 
(The name iNA will refer to either implementation.) 

To provide a consistent interface to applications, all access to iNA is 
achieved through software that implements the Message Interprocessing 
Protocol (MIP). If iNA is running as an iRMXjob, the MIP software sim
ply passes messages back and forth between the application and iN A using 
internal procedure calls. If, however, iNA has been downloaded to a sepa
rate network controller processor, a version of MIP is used that uses the 
system bus to pass messages. Depending on the nature of the system bus, 
this message passing involves using either the message passing facility of 
the bus (Multibus II) or shared dual-ported memory (Multibus I and AT 
bus). Although MIP is an interface to the Transport layer, it does not fit 
into the OSI reference model as a Session layer implementation. Rather 
than acting as one of several users of the Transport layer, the MIP is sim
ply the unique interface to the Transport layer for all upper-layer software 
that works, regardless of the implementation of the Transport layer in a 
particular configuration. 

iRMX-Net uses iNA to provide interoperability between iRMX, DOS, 
Unix, and VAX/VMS file systems. Basically, interoperability means that 
computers running any of these operating systems can share files and 
printers, provided they run ISO Transport layer software and Intel's 
OpenNet software. OpenNet, in turn, acts as an interface between the local 
computer's I/O system and the network. There are different versions of 
OpenNet for different operating systems. OpenNet for iRMX is called 
iRMX-Net, OpenNet for DOS is called MS-Net, OpenNet for VMS is 

3iNA stands for Intel Network Architecture. The number 960 is an arbitrary part of the 
name and has nothing to do with the i960 microprocessor. 
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called VMS-Net, OpenN et for Unix System V is called SV -Net, and Open
Net for Xenix is called Xenix -Net. You will see how iRMX -Net operates in 
this chapter, which will provide some background for using iNA directly, 
and you will also see how MS-Net operates in anticipation of the network
ing discussion under iRMX for Windows. 

Before discussing iRMX-Net and MS-Net, you need to be aware of a 
fundamental difference between typical PC networking systems and 
iRMX or Unix networking. Because DOS is inherently single-threaded, 
most PC networks run network servers on one computer and network 
clients on separate computers. The server computer runs a special operat
ing system dedicated to satisfying network requests made by remote clients 
for file or device access. When a user operating a client machine needs ac
cess to a remote file or printer, his or her local computer communicates 
with the server computer to send or retrieve the proper data. While the 
transfer is taking place, the client computer (running DOS) is dedicated to 
processing the transfer, just as it is normally dedicated to servicing local 
disk accesses when they occur. The server computer, on the other hand, 
can normally process several client operations concurrently because ofthe 
design of its networking operating system. 

Unix and iRMX, however, are inherently multithreaded operating sys
tems. There is no problem for the same computer to simultaneously act as 
both a server and a client for the network, except perhaps for the additional 
computing load placed on the user's processor. (This overhead is less when 
iNA is running on a separate processor located on the network controller 
board.) Rather than dedicating an entire computer to server operations, all 
computers on a Unix or iRMX network can concurrently operate as both 
servers and clients in what is known as a peer-to-peer networking relation
ship. The OSI reference model fits a peer-to-peer network structure well, 
but does not require that structure. Of course, some computers in a peer
to-peer network might be thought of primarily as servers because of the 
particular peripherals attached to them, such as printers or large disks, 
which these computers make available to the other computers on the net
work. Still, such servers are peers in the sense that they can also act as 
clients in principle, if not in practice. Peer-to-peer networks such as Open
Net commonly allow systems running different operating systems to work 
with each other, b~t they do not require a special operating system just for 
server operations. 

11.3.1 iRMX-Net 

Figure 11.2 shows the structure of the networking components of an 
iRMX-Net system. The iRMX-Net job is a resident program that acts as 
the intermediary between the iRMX BIOS and the Transport layer inter
face to the network. When an application program uses an I/O connection 
that was attached using the Remote file driver, it acts as a file consumer. In 
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Figure 11.2 Relationships among the networking components of an iRMX system. 

this case, the iRMX -Net job acts as the device driver for all I/O operations. 
It translates each I/O request into an appropriate network request, which 
it sends to the transport layer software, iNA, using the MIP layer as the in
terface to iNA. The iRMX-Net (or VMS-Net, or whichever) job running 
on the remote computer receives the request over the network and acts as 
the file server for the request by making I/O calls on the remote computer 
to perform the requested operations on behalf of the client. Figure 11.2 rep
resents this server feature of iRMX -N et by showing connections from 
iRMX-Net to the other BIOS file drivers of an iRMX system-Physical, 
Named, and EDOS. Figure 11.2 also shows that iRMX applications can 
access iNA services directly to implement other data-link and transport
level operations besides file transfers. The direct interface between iRMX 
applications and iNA is the focus of most of this chapter. 

Implicit in the notion of an iRMX-Net file server or file consumer are 
the issues of user security and network addressing. iRMX-Net builds on 
the User Definition File (UDF)-based security mechanisms inherent in the 
BIOS. (The UDF was introduced in the discussion of I/O user objects in 
chapters 7 and 8.) Because iRMX itself is not designed as a secure operat
ing system, iRMX -Net can use either of two techniques to validate a user's 
network requests. 

The first technique is client-based protection, which can be used when 
the security of an iRMX system can be trusted. In this case, the server as
sumes that the client machine has verified the authenticity of its users and 
accepts all requests from a client machine, provided only that the client is 
listed in the server's : conf i g : cdf file, the Consumer Definition File 
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(CDF) for the server. The command modcdf can be used to add the names 
and passwords of client machines to the server's CDF. The CDF is similar 
in function to the hosts .equiv file on Berkeley Unix systems. 

Client-based protection uses the actual user name supplied when an in
dividuallogged into a system rather than a user's current ID at the time of a 
remote file access to reduce the likelihood of problems due to forged user 
objects. For example, this feature prevents a user from forging Super-user 
status on an iRMX system and then using the forged identity to obtain un
warranted permissions for a remote system. 

The second technique is server-based protection, which is used to provide 
a more secure networking environment. In this scheme, there is no entry in 
the server's CDF for a client. Every network access initiated by a client 
(such as issuing an attachdevice to a remote system) is accompanied by the 
name and password supplied when the user logged into the client system, 
which must match the name and password for the user in the server sys
tem's UDF. (The user and group ID numbers do not need to match, but the 
names and passwords must.) 

Network addresses are rather complicated data structures that are dis
cussed later in this chapter. iRMX-Net provides a distributed database 
that allows programs to obtain network addresses (and other information) 
using simple names. The database is accessed through a software module 
called the Name Server (NS). Although the NS is part ofiRMX-Net, it can 
optionally be run either on the iRMX processor or downloaded to the LAN 
board and accessed independently of the file services provided by iRMX
Net. 

Chapter 2 described how to access a file on a remote computer from the 
command line. That process began with an attachdevice command, such as 
the following: 

iRMX>attachdevice systeml as 1 remote [1] 

This command establishes : 1: as the logical name for the virtual root 
directory on a computer system called systeml. When this command is 
issued (or the equivalent system call is executed), the remote file driver 
routes the operation to the iRMX-Net job to act as the device driver for 
operations that involve the connection created with the logical name : 1 : . 
The iRMX-Net job uses the NS to query the network's database to deter
mine the network address of systeml, and stores that address (or a 
pointer to it) as part of the connection's internal data structure. 

For this operation to succeed, some computer on the network must pre
viously have loaded the network address of systeml into its portion of the 
distributed database. For iRMX systems, each computer typically loads its 
own name and network address into its own part ofthe database when the 
operating system initializes. However, other OpenNet systems do not in
clude the NS provided by iRMX-Net. For those systems, one ofthe iRMX 
computers can act as the spokesperson for the other computer. For exam-
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pIe, systeml's portion ofthe database can include entries both for itself 
and another machine called systemu that is running SV-Net (Unix Sys
tem V). In this case, systeml is said to act as the spokesperson for sys
temu. 

11.3.2 MS-Net 

From a user's point of view, the most significant difference between MS
Net and the other members ofthe OpenN etfamily is that MS-Net does not 
support peer-to-peer networking. A computer running MS-Net can oper
ate as either a client or a server, but not as both simultaneously. When 
MS-Net is running as a client, a user can issue DOS commands to access 
remote disks and printers using the same command line syntax as that 
used to access local devices. When MS-Net is running as a server, DOS 
continues to run on the computer, but the local user is prevented from en
tering any DOS commands except for those that interact with the server 
itself, such as to shut it down. The reason for this characteristic of MS-Net, 
as mentioned earlier, is the single-threaded nature of the underlying DOS 
operating system. 

Two features ofthe implementation of MS-Net are important to men
tion here: NetBIOS and the Redirector. NetBIOS is a standard interface 
for DOS software that performs network operations. The NetBIOS Appli
cation Programming Interface (API) is accessed by constructing a data 
structure known as a Network Control Block (NCB) that contains infor
mation such as code for the network operation to be performed and values 
for the parameters needed to perform the operation. A pointer to the NCB 
is loaded into a register pair (es: bx), and the application issues a software 
int 5C instruction to call the NetBIOS software. There is no single Net
BIOS software module for DOS. Rather, a user loads a Terminate and Stay 
Resident (TSR) program that will implement the NetBIOS API as appro
priate for the particular network being accessed. For example, netbios.exe 
is the name of a program supplied as part of MS-Net that installs itself as 
the interrupt handler for level5C, translating the NetBIOS NCBs into re
quests to be carried out by iNA software running on the Network Interface 
Adapter (NIA) installed in the user's PC. 

The Redirector is built on the capability available in DOS to work with 
what could be called virtual device names. For example, even without net
working software installed, a DOS user can make disk-drive letters, such as 
A: or B : , represent something other than actual physical disk drives. The 
DOS assign command can be used to tell DOS that all I/O operations that 
name one disk are actually to be performed using a different disk, and the 
DOS subst command lets the user reference arbitrary directories using 
drive letters as well. 

There are at least three ways to implement I/O redirection in DOS. The 
first way DOS supports network redirection is through a set of system calls 
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(int 21, functions Ox5F02, Ox5F03, and Ox5F04) that allow device names for 
printers and disk drives to be redirected to the network. Function code 
Ox5F03 is used to establish such a redirection mapping, Ox5F02 is used to 
find out what mappings are in effect, and Ox5F04 is used to cancel a redi
rection mapping. 

The second method is for software to chain to the DOS int 21 vector. In 
real mode, any program can access the interrupt vector in low memory. A 
program can therefore install itself as the interrupt handler for interrupt 
level 21, which is used for DOS system calls. Such a chained software mod
ule would examine each I/O request made to DOS to determine whether 
the request references a device for which the program is providing redirec
tion. If such a request is detected, the program would service it itself; if not, 
the program would pass the request back to DOS's original int 21 handler. 
Novell's network redirector uses this technique to intercept I/O operations 
that must be processed by its IPX network driver. 

The third method is to use the internal DOS interrupt, level2A, to which 
a network redirector can chain instead oflevel21. MS-Net chains to this 
level, generating NetBIOS requests on level 5C when it detects network 
accesses. 

You will see in chapter 12 how the standard NetBIOS interface provides 
support for the DDE mechanism in iRMX for Windows.' 

You will also see how the notion of a network redirector is added to the 
iRMX side ofthe network to provide network access for the Windows DDE 
mechanism. At this point, the discussion focuses on programming iRMX 
applications that interact directly with the iNA implementation ofthe ISO 
Transport layer. 

11.4 Network Mechanisms 

Two processes communicate over a network by sending messages to each 
other. Each message includes the data to be exchanged, along with address
ing information that tells each layer of the network stack where the mes
sage is to be delivered. This addressing information is prepended to each 
message by each layer of software, so that a message sent over the network 
might ultimately look like Figure 11.3. Each layer in the protocol stack 
prepends its own addressing information as the message is sent down the 
stack, and, at the other end, each layer of the stack uses the addressing at 
the head of the message to direct it to the next layer above, removing its 
own addressing information in the process. 

4When running iNA on an iRMX for Windows system, a DOS program calledpcnet.exe in
tercepts NetBIOS requests on level5C, and generates equivalent requests on level5B. These 
requests are received by an iRMX job called netrdr.job, which turns these requests into iNA 
request blocks. 
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Data Link Network Transport Application Application 
Address Address Address ... Address Data 

Figure 11.3 Structure of a network message. 

The ellipsis ( ... ) in Figure 11.3 is more than a convenience to make the 
figure more compact. Rather, it indicates that some layers of the protocol 
stack might not actually be present. For example, you will see how applica
tions can communicate with each other through direct interaction with the 
Transport layer without going through any Session or Presentation layer 
at all. Also, note that there is no Physical layer address in the figure. Each 
message is broadcast to all computers connected to the network, and logic 
at the Data Link layer (the device controller) recognizes which messages 
are to be accepted by that computer. The Data Link layer simply ignores all 
other messages on the network. 

iNA supports two types of network addresses, Null2 and ES-IS. The dif
ference is whether the Network layer is to be included in the system or not. 
If all the computers that need to communicate are on the same subnetwork 
(connected to the same Ethernet cable, for example), Network layer ad
dressing is not needed, and iNA can be set up to use Null2 addresses, which 
omits the logic associated with the Network layer. On the other hand, if two 
computers that need to communicate are on different subnetworks, they 
can only communicate with the help of a third system connected to both 
subnetworks. The two computers that need to communicate with each 
other are called End Systems (ES), and the third computer is called an In
termediate System (IS), providing the name for the ES-IS address format. 
The IS accepts packets from all subnetworks and sends the packets out on 
the subnetwork so they will be delivered to the proper ES. Another name 
for an IS is an internetwork router. 

11.4.1 Packets and messages 

Figure 11.3 is an abstraction of a network message form, and the actual 
data structures used by the programmer to build a network message are 
discussed shortly. First, two related concepts must be covered: packets and 
connections. The terms packet and message have been used somewhat 
loosely and interchangeably throughout this book. All information sent 
over an Ethernet cable is sent a packet at a time, and the Ethernet specifi
cation (IEEE standard number 802.3) specifies the maximum number of 
bytes (called octets by parts of the networking community) a packet can ac
commodate. If a single message is too large to fit in one packet, it must be 
divided into smaller chunks that will fit into the packets. The packets are 
transmitted separately over the network and reassembled into a single 
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message again at the other end of the network connection for delivery to 
the receiving application. 

The terms Transport Protocol Data Unit (TPDU) and Transport Service 
Data Unit (TSDU) are used to distinguish between packets and messages. 
A TSDU is a network message, and can be essentially any size, including 
the size of an entire disk file. A TPDU is the part of a message sent in a sin
gle packet. Each TPDU is small enough to fit into a single Ethernet packet 
along with the addressing information used by the lower network layers. A 
TPDU also includes sequencing information so that the Transport layer 
software at the receiving end can assemble the entire message in the cor
rect order, even if the individual packets are delivered across the network 
out of sequence. Out-of-sequence delivery is a distinct possibility when al
ternate networking routes are available between a sending ES and a re
ceiving ES. 

Applications do not need to be concerned with TPDUs, but they do deal 
with TSDU (message) boundaries. If a fixed-length entity such as a file is 
being sent as a message, an application could request that the Transport 
layer send the entire message, or send the file in chunks whose sizes depend 
on the buffer sizes the application uses to read the file from disk before writ
ing it to the network. The application uses two different commands for writ
ing the data, send_data and send_eorn_data. The former is used for 
sending all but the last chunk, and the latter (eorn stands for end of message) 
is used to send the last chunk in the message. The receiving application can 
read the message in whatever chunk sizes are convenient for itself, indepen
dent of the chunk sizes used to send the message. The receiver receives a spe
cial condition code when it reads the end of the message. The Transport 
layer software apportions the chunks being sent into TPDUs at the sending 
end, divides TPDUs into the chunks requested by the receiving end, and 
handles the end-of-message condition at both ends, automatically. 

This ability to send and receive data over the network independent of 
message boundaries is crucial for applications that work with stream data, 
defined as a sequence of data that must be consumed by a receiver as it is 
produced by a sender, without waiting for an end-of-message indicator. An 
example would be an interactive remote login server, which must read and 
echo each keystroke as it is typed by a remote user without waiting for the 
user to type an end-of-line character. 

Stream data is characterized by having fixed-length data units with in
ternal codes that indicate message boundaries. For the terminal server ex
ample, each octet is a data unit, and an ASCII <cr> could indicate the end 
of a message. Another example is found in the X Window System protocol 
in which network requests consist of request blocks containing various 
numbers of bytes. The first part of each request block is a fixed-length 
header that always includes a field identifying the total size of the request 
block. The receiving application reads the header and then reads as many 
additional bytes as necessary to read the rest of the block. 
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11.4.2 Network connections 

The ISO standards provide for two types of communication over a net
wor k, connectionless and connection-oriented. Connectionless communica
tion' which is also called datagram service, treats each packet sent over the 
network as a separate message, called a datagram. The network plays a 
passive role for datagram service. Once the local machine's lower network
ing layers verify that a datagram has been sent out successfully, the local 
machine's networking software is no longer involved with that datagram. 

Because a network packet is received by any and all systems on the net
work that recognize the address in the packet's header, it is possible that no 
remote systems (or, perhaps, several) will accept a datagram sent out by a 
local system. In an ES-IS environment, a datagram might go through several 
retransmissions before reaching its destination, leading to a degree of un
certainty on the part of a sending program about whether a datagram has ac
tually been delivered successfully or not. One solution to this uncertainty 
problem is to have applications that want to communicate with each other 
using datagrams establish their own protocol for reliable communication. A 
datagram-based server, for example, could be programmed to send an ac
knowledgment packet to the sender of every packet it receives. If the sender 
does not receive an acknowledgment in a reasonable amount oftime, it re
transmits the datagram. Individual datagrams could be given unique ID 
numbers so that a server would ignore duplicate datagrams sent because an 
acknowledgment datagram got lost or took too long to be delivered. 

The need for this type of reliable delivery service is so common that it has 
been built into the Transport layer itself. The mechanism involves setting 
up a connection called a virtual circuit (VC) between the two programs that 
want to communicate. The term connection in this context has nothing to 
do with the iRMX BIOS's connection object type. You can think of a VC as 
an object type defined by and managed by iNA software that is indepen
dent ofthe iRMX operating system.5 Connection-oriented communication 
goes through several distinct phases, as described as follows: 

Connection establishment. This phase sets up a virtual circuit, which can 
involve a negotiation process between the Transport layer software on 
both computers. When this process is complete, the programs at each end 

5iRMX-NET creates an operating system extension (aSE) for VC objects, largely so that 
iRMX -NET can be informed when a job that has created a VC terminates without deleting 
the VC itself. (See the discussion of deletion mailboxes in Chapter 10 for more information on 
the rationale behind this use ofaSEs.) When iNA is implemented on a controller board with 
its own processor and memory, the data structure associated with a VC is allocated from the 
controller board's memory, and the aSE provides a mechanism to help manage the memory 
on the controller board. 



iRMX Network Programming 421 

both have a token used to identify the VC to their local Transport layer 
software. 

Data transfer. Either program can send messages of any length to the pro
gram at the other end. The Transport layer divides the messages into 
TPDUs as necessary, verifies that individual packets are received by the 
Transport layer software at the other end, and assembles arriving TPDUs 
into messages for delivery to the local user of the VC on demand. 

Connection termination This phase is supposed to provide for an orderly 
shutdown of communication between programs at the two ends ofthe VC. 
In practice, closing a VC is not like closing a BIOS or EIOS I/O connection. 
In particular, any data queued for transmission but not yet sent is lost 
when a VC is closed. Applications need to establish their own protocols to 
tell each other when it is safe to close a VC between them. 

11.5 Transport Address Buffers 

Probably the most difficult part of network programming is the manage
ment of network addresses. Transport layer datagrams and virtual circuits 
use a data structure called a ta_buffer, shown in Figure 11.4. 

The buffer consists of four parts: the local Network Service Access Point 
(NSAP), the local Transport Service Access Point (TSAP), the remote 
NSAP, and the remote TSAP. The idea of a service-access point such as a 
TSAP or NSAP is to support the many-to-one relationship between one 
protocol layer and the software running one layer above it. For example, 
each application that uses the Transport layer must specify a unique iden
tification number for itself (its TSAP) so the Transport layer can dis
tinguish one application from another. Likewise, an NSAP allows the 
Network layer to tell which of possibly several Transport layer implemen
tations it is communicating with. Since iNA (the Transport layer) and the 

Figure 11.4 Structure of a transport address buffer. 

struct ta_buffer { 
BYTE local_nsap_selector_length; 
BYTE local_nsap_selector[LOCAL_NSAP_SELECTOR_LENGTH}; 
BYTE local_tsap_selector_length; 
BYTE local_tsap_selector[LOCAL_TSAP_SELECTOR_LENGTH}; 
BYTE remote_address_length; 
BYTE remote_address [REMOTE_ADDRESS_LENGTH} ; 
BYTE remote_tsap_selector_length; 
BYTE remote_tsap_selector[REMOTE_TSAP_SELECTOR_LENGTH] ; 
} 
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Network layer are implemented as a unit on iRMX systems, it should be 
clear that there is no real need for a local NSAP for iRMX networking, 
and the ISO standards allow a value of zero for LOCAL NSAP ADDRESS 
LENGTH.6 - - -

Selector (like connection) is another term that has different meanings in 
iRMX and networking contexts. For networking, it is simply a name for an 
identification number and has nothing to do with microprocessor pro
tected-mode memory addressing as described in chapter 5. Indeed, other 
commonly used names for NSAP selectors (found in a remote_nsap
_address, described later) and TSAP selectors are NSAP IDs and TSAP 
IDs. If two programs will communicate with each other using the Trans
port layer, they must specify matching TSAP ID values for the ta _ buf fer 
used when connecting (or for each datagram for connectionless opera
tions). This requirement for matching TSAP IDs can be handled in one of 
three ways: 

1. The applications that want to communicate select any convenient 
values for the TSAP IDs. This technique works provided two different 
applications do not decide to use the same values for their TSAP IDs on 
the same network. 

2. The name server, described below, can be used by applications to publi
cize the TSAP IDs they are using. For example, a server could determine 
a TSAP ID that is not being used and enter that value into the name 
server database using some well-known name. Clients could query the 
database by name to determine the TSAP ID value to use for connecting 
with the server. 

3. A central authority could be set up to assign TSAP IDs to application 
protocols. For example, an organization could decide that a certain file 
exchange protocol will have all file servers use a TSAP ID value of 
OxlOOO and all file consumers use a TSAP ID value of OxllOO. 

Readers familiar with the TCP lIP protocols used on the Internet might 
recognize that TSAP IDs play the same role as port addresses in those pro
tocols. For example, all Internet File Transfer Protocol (FTP) servers ac
cept requests for service in the well-known TCP lIP port number 21. The 
Internet Protocols, including port numbers used, are published in docu
ments called Request for Comments (RFCs), available from the Network 
Information Center (NIC), which can be accessed using FTP at the Inter-

6The structure shown in Figure 11.4 should be considered pseudo-code because a value 
of zero leads to a syntax error if you try to compile it; In particular, the local nsap se
lector length field is usually zero, so the local nsap selector array mustbe omitted 
from the code for the structure. --
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net address nic.ddn.mil. Thus, the NIC could be thought of as the central 
authority for Internet Protocol port numbers.7 

For another example of choosing TSAP IDs, the values provided in item 
(3) are the actual port numbers used by OpenNet file servers and con
sumers. They are entered in the name server's database using the names 
FSTSAP and FCTSAP, implying that it would be possible to develop Open
Net file servers and consumers that use different TSAP values. That might 
actually be true, but there is no reason to do so, and it is not clear that ex
isting OpenNet software can adapt to different TSAP IDs in a meaningful 
way. Rather, it is better to think of these TSAP IDs as being assigned by 
another central authority, namely the OpenNet developers at Intel. 

The REMOTE_NSAP _ADDRESS field of a ta_buffer provides the infor
mation that the network layers below the Transport layer will need to con
nect to a remote system. There are three forms this field may take, Nu1l2, 
Static Internetwork, and ES-IS Network formats. These forms are dis
cussed in the following subsections. 

11.5.1 Nul12 network addresses 

Null2 addresses can be used if all the computers communicating with each 
other are connected to the same network medium, such as a single Ether
net cable. In networking parlance, all the computers are said to be on the 
same subnetwork. Thus, the Null2 format can be used when there is no 
need for an IS to route packets from one subnetwork to another. The name 
Null2 refers to the idea that Null2 addresses are used when iNA is config
ured with no (or null) network routing capabilities. 

iRMX for Windows supports Transport layer communication using 
N u1l2 addressing even when no network device controller is installed in the 
computer. In this case, two applications running on a single computer can 
use networking protocols to exchange data with each other whether they 
are both Windows applications, both iRMX applications, or a combination 
of the two. Furthermore, the applications can be ported transparently to 
operate over a real network, as demonstrated in the discussion of the 
iRMX for Windows DDE mechanism in chapter 12. 

A C structure for a Nu1l2 address would be the following: 

struct Nu1l2 ( 
BYTE AFI; 
WORD subnet; 
BYTE host_id[6); 
BYTE lsap_selector; 
BYTE nsap_selector; 
} 

7Comer (1988) presents a good summary of the IP addressing mechanism and provides a list 
of many of the well-known port addresses used on the Internet. Stevens (1990) provides an 
excellent guide to this and many other networking topics relevant to this chapter. 
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The AFI field is the Authority and Format Identifier. All iNA network 
addresses use a value ofOx49 for this byte. If another ISO Network layer 
were to use the same subnetwork as iNA, it could use a different value for 
this byte, and the format of the remainder of the network address couid be 
decoded according to the different AFI values encoded here. This feature is 
useful in concept only, however, as the iNA implementation of the Net
work layer recognizes only this one value. 

The subnet field is used for internetwork routing. For Ntill2 addresses 
it is always set to a constant value, OxOOOl. 

The host_id field, for Ethernet connections, is a unique identifier 
associated with the network device controller. Every company iIi the world 
that manufactures Ethernet device controllers is assigned a range ofthese 
Ethernet addresses by a central authority, and every controller board 
manufactured by a company is built with a different address within the 
company's assigned range configured into it. The idea is to guarantee that 
addressing conflicts do not exist among computers connected to an Ether
net, regardless of from where the Ethernet device controllers came. The 
Ethernet address is also known as the Media Access Control (MAC) ad
dress for a computer. 

The lsap_selector field is a Link Service Access Point identifier, 
serving an analogous role for the Data Link layer to the TSAPand NSAP 
IDs for the Transport and Network Layers. Since the Data Link layer is 
implemented within iNA, this selector is always coded with the same value, 
OxFE, for all iNA applications. 

Finally, the nsap_selector field is an ID number used for network 
routing. Since the Null2 address format does not support network routing, 
this byte is always coded as OxOO. Technically, this byte can be omitted for 
Null2 addresses, with the remote nsap address length field of the 
ta_buffer indicating whether it is pres;nt (length~quals 11) or absent 
(length equals 10). Standard practice is to include it. 

How to fill in this data structure is discussed later in this chapter when 
name server operations are covered in section 11.9 and when a small data
gram application is presented in section 11.7. 

11.5.2 Static and dynamic internetwork addresses 

Network routers (the ISs in our terminology) accomplish their job by 
maintaining a set of tables to identify how to direct packets from one 
subnetwork to another. These tables are nianaged by iNA for OpenNet 
networks, and can either be set up when the network is configured, or 
constructed and modified as the network is running. The former is less 
flexible, but makes fewer demands on the network itself. The flexibility of 
dynamic router tables also requires additional software to create and 
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maintain them. Static internetwork addresses look almost exactly like 
Nu1l2 addresses: 

struct Static { 
BYTE AFI; 
BYTE area_id[5] 
BYTE subnet; 
BYTE host_id[6J; 
BYTE lsap_selector; 
BYTE nsap_selector; 

The difference is that the 2-byte subnet field has been replaced by 6 
bytes that incorporate an area_id and a subnet number. The other 
difference is that iNA interprets an address as a Nu1l2 address if the 
nsap_selector field is 0, even if an area_id is included. The values for 
AFI, host_id, and lsap_selector have the same interpretations as the 
corresponding fields of a Nu1l2 address. 

The format of internetwork addresses for networks that support dy
namic routing tables is basically the same as for Nu1l2 and static routing 
(AFI, subnet, host_id, lsap_selector, and nsap_selector fields). 
However, the interpretation of the subnet field depends on how the rout
ing tables are configured for the network, which is beyond the scope of this 
chapter. Interested readers should consult the iNA 960 Programmer's Ref
erence manual (Intel, 1991a).8 

11.6 The Request Block Interface to iNA 

To communicate with the network, an iRMX application must communi
cate with iNA. To the application, communicating with iNA is similar to 
the IORS interface to the BIOS, introduced in chapter 8. In networking, 
the application creates a Request Block (RB), places a token for a response 
mailbox in the RB, sends the RB to iNA, perhaps performs other process
ing while iNA processes the RB, and then waits at the response mailbox, 
where the RB is returned with a completion status and other information. 

The differences between iNA RB processing and BIOS IORS processing 
are that the application constructs RBs itself, but the BIOS constructs 
IORSs for applications automatically, and that the communication of 
IORSs between the BIOS, the device driver, and the task that calls the 

8This manual is being replaced by the Network Programmer's Reference manual. The Net
work Programmer's Reference manual and the iRMX Network Concepts manual, which re
places the one written in 1991 {Intel 1991b), are bound into a single volume and included with 
the iRMX III documentation set. 
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BIOS is all managed directly by iRMX, whereas RBs are passed between 
iRMX and iNA using the MIP protocol mentioned earlier. Using the MIP 
often involves communication between two different microprocessors 
(often including the processor on the device controller that is not running 
iRMX) that communicate through shared memory or the message passing 
features of a hardware bus. 

Each RB includes a function code, room for status information, the 
token for a response mailbox, and pointers to the buffers needed for the 
particular function being requested. The exact nature of this information 
is discussed shortly, but first, programmers must be aware of a basic prob
lem that must be dealt with, at least in most iNA implementations: 
pointers that make sense for one microprocessor, such as the one running 
iRMX, do not automatically make sense for another microprocessor, such 
as the one running iN A, even if the pointers refer to the same shared physi
cal memory addresses. 

For example, a protected-mode version of iRMX would use the selec
tor: offset form for pointers that refers to the microprocessor's private 
Local Descriptor Table (LDT) or Global Descriptor Table (GDT) descrip
tor tables (see chapter 5), whereas iNA typically runs on a processor that 
runs in real mode with base: of f set pointers. For the MIP to accomplish 
the necessary pointer conversions in the various configurations in which it 
must operate, all pointers in RBs are passed and returned as 32-bit values 
put into the proper form for a particular environment using the function 
cqcommptrtodword(). The matching function, cqcommdwordtoptr(), turns 
a 32-bit address back into a protected-mode pointer. For cqcommdword
toptr() to function correctly in all situations, all of the buffers referenced 
by an RB must be in the first 64 kilobytes (KB) ofthe same segment as the 
RB. In addition, the selector (token) for the segment containing the RB 
must be stored in the header portion of the RB itself. 

At this point, you can see the general algorithm that tasks use for all in
teractions with iNA: 

1. Obtain a segment to hold the RB data structure and all buffers that the 
RB references. 

2. Fill in the RB data structure, including the opcode, the token for a re
sponse mailbox, and whatever other information might be required. 

3. If the RB includes pointers to buffers, use cqcommptrtodword() to con
vert those pointers to a form recognized by iNA. Put the token for the 
segment containing the buffers in the proper field of the RB. 

4. Use the function cqcommrb() to send the RB to iNA for processing, a 
process called posting an RB. The RB is not necessarily moved any
where, but iNA receives access to it. The application must not alter the 
contents of the RB until iNA finishes processing it. 
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5. Wait at the response mailbox for the RB token to be returned. A task 
can post multiple RBs using the same response mailbox, if desired. 

6. If necessary, the task can use cqcommdwordtoptr( ) to convert any physi
cal addresses in the RB back to protected mode pointers after it receives 
the RB back from iNA. 

11.6.1 The request block header 

Every RB starts with the same data structure, called a Request Block 
Header, shown in Figure 11.5. The fields are summarized as: 

reserved. iNA uses this field internally to build a doubly linked list of 
all the RBs being processed. 

length. This field is the total length of the RB in bytes. This value in
cludes the length of the RB header, plus the length of any arguments that 
follow the header. It does not include the lengths of any buffers pointed to 
by the arguments. An incorrect value in this field can lead to errors that are 
difficult to trace. 

user_id. Before sending any RBs to iNA, an application must obtain a 
user _id value by calling cqcreatecommuser(), and it must place this value 
in the user_id field of every RB the application uses. (Function proto
types for all the cq system calls are given in the next section.) 

response_port. This field is always coded as the constant OxFF. 
response_mailbox. A token for an object mailbox is placed in this 

field. The token for the RB segment is returned to this mailbox when iNA 
has finished processing it. 

segmentTkn. The token for the segment that contains the buffers 
pointed to by the arguments in this RB goes in this field. The value is used 
only by cqcommdwordtoptr(), as described previously. 

subsystem. This code identifies the part of iNA that processes the RB. 
The first nibble (high-order four bits) tells the OSI layer, using the num
bers in Figure 11.1. The Transport layer subsystems are Ox40 for virtual 
circuits and Ox41 for datagrams. Non-OSI operations, such as the Network 
Management Facility introduced in Section 11.10, use a value of 8 for the 
first nibble. 

Figure 11.5 Structure of a Request Block (RB) header. 

struct rbHeader { 
WORD reserved[21; 
BYTE length; 
WORD 
BYTE 
TOKEN 
TOKEN 
BYTE 
BYTE 
WORD 
} 

user_id; 
response....port ; 
response_mailbox; 
segrnentTkn; 
subsystem; 
opcode; 
response_code; 
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opcode. This field is the operation code for the specific function to be 
performed. 

response_code. Response code is a condition code value filled in when 
the RB is returned to the response_mailbox if an error occurred. The 
application should set this field to 0 before posting the RB. This field can 
be set by either the MIP, if the problem occurred delivering the RB to iN A, 
or by iNA to indicate the result of processing the RB. MIP response code 
values are in the range OxFFOO to OxFFFF. Note that the standard iNA 
"OK" response code is Ox0001, rather than the normal iRMX value of 
OxOOOO. Programs that use literal names for response code values are more 
reliable than those that use numeric constants; the values sometimes 
change. Literal names for iNA response codes are given in the various 
: include: cq* . hand: inc: cq* .li t files for C and PLM programs, re
spectively. 

OK_RESPONSE is the standard name for the iNA response code OxOOO1. 
Note also that the iRMX exception handling mechanism described in 
chapter 6 does not apply to iNA or MIP exceptions. 

The user_id field offers an interesting example of the use of an Oper
ating System Extension (OSE), described in chapter 10. A bit of poking 
around with the System Debugger (SDB) or SoftScope indicates that the 
value returned by cqcreatecommuser( ) is a token for an iRMX composite 
object with type code Ox0165. The OSE for this object type is owned by the 
iRMX -Net job, and the extension does have a deletion mailbox associated 
with it. The idea is that if a job that owns a user_id object terminates 
without first calling cqdeletecommuser{}, a copy ofthe user_id token is 
sent to the deletion mailbox as the job is deleted, and the task that moni
tors that mailbox can notify iNA to free its resources that have been allo
cated to that user. If this mechanism were not in place, iNA's memory re
sources could easily become depleted over time, requiring an eventual 
system reset to continue processing. 

11.6.2 Function prototypes for RB operations 

Only five functions exist in the API for the RB interface to iNA.9 
The interface procedures are in library files called cqc .lib, cql.lib, 

and cqc32 .lib for 16-bit compact, 16-bit large, and 32-bit applications, 
respectively. These libraries are found in : SD : rmx3 8 6/ rmxnet for iRMX 
for Windows; their directories vary for other versions of iRMX. The fol
lowing are their function prototypes. 

extern TOKEN 
cqcreatecommuser ( WORD far * exceptPtr) ; 

9The API for iNA is simply a programming interface to the network services supplied by 
iNA. The API is independent of any network protocols used to exchange information over a 
network. 
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The value returned is a user_id, as described previously. The exception 
code returned is a normal iRMX exception code; any nonzero value means 
the iRMX-Net software could not create the communication user object. 

extern void 
cqcommrb ( TOKEN 

WORD far * 
rbTkn, 
exceptptr) ; 

This function is used to post an RB to iNA. The application should not 
modify the memory used by the RB or its buffers until the token is returned 
to the response_mailbox. 

extern DWORD 
cqcommptrtodword ( void far * 

WORD far * 
Ptr, 
exceptPtr) ; 

The value of Ptr is converted into a 32-bit form understood by iNA. IfiNA 
runs on a separate processor, the form can be a 32-bit physical memory ad
dress.1f iNA runs on the same processor as the application, the form can be 
a l6-bit selector and l6-bit offset. For 32-bit code, the latter form restricts 
the addresses referenced by RBs to the first 64 KB of a segment. 

extern void far * 
cqcommdwordtoptr ( DWORD 

WORD far * 
dw, 
exceptPtr) ; 

The 32-bit address in dw is converted into a protected-mode pointer. For 
this call to work properly, it requires dw to be an address within a segment 
that begins with a valid RB header, as described previously. 

11.6.3 Alternative interfaces to iNA 

As the examples which follow show, programming the RB interface to iN A 
can be a tedious process. Each field of each RB must be initialized with a 
separate assignment statement, and a lot of repetitive work must occur to 
create RBs, sending them to iN A, get them back, check for exceptions, and 
the like. There are several ways to improve on the situation. 

First, write a personal set of utility functions to perform common opera
tions such as creating an RB segment, filling in a ta_buffer, and the like. 
The rprint command for network printing, available from the iRUG users 
group, includes such a set offunctions developed by Fred Richter ofIntel's 
Islandia, New York, office. 

Second, use a programmatic interface to iNA instead of the RB inter
face. An excellent way to do this would be to implement a new type man
ager and set of system calls for network operations using the techniques 
described in chapter 10.Finally, Vickery (1990) describes an interface that 
makes iNA virtual circuits appear to implement the socket mechanism 
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available for BSD Unix systems. An alternate interface currently under 
development at Intel is based on the Unix Transport Layer Interface 
(TLI). 

Readers interested in developing networking applications should con
sult the iNA 960 Programmer's Reference manual (Intel, 1991a) for de
tailed information on the RB interface to iNA. 

11.7 A Datagram Example 

At this point, you are ready to look at a sample networking application to 
see the RB processing operation in action. The example is a time-of-day 
server that could be used on a network in which some of the computers do 
not have a battery backed-up time-of-day clock. A computer that does 
maintain the correct time-of-day information is designated as a time-of
day server, and always runs a job, called timesrv, that accepts a datagram 
from any other computer that wants to obtain the current time of day. 
When such a request arrives, the server sends back another datagram con
taining the current time, using the standard iRMX representation for time 
and date: a 32-bit integer giving the number of seconds since midnight 
January 1, 1978. 

Any computer on the network (including the one running timesrv) can 
run the second program, gettime. This program sends a datagram to the 
time server requesting the current time of day, receives a datagram con
taining the time in return, and uses the value in the returned datagram to 
set the local computer's time of day. The datagram sent to the server nor
mally contains just one 32-bit word with a value ofO. If the useris the Super 
user and specifies set on the gettime command line, the value sent in the 
datagram is the local system's time of day, which the server uses to set its 
own time-of-day clock.lo The C source code for timesrv is given in Figure 
11.6. The algorithm implemented is the following: 

1. Create a logfile, : sd: \ timesrv . log, and write a sign-on message to it. 

2. Look up the iRMX object cataloged in the root job's object directory 
with the name INARDY. The token obtained is of no interest, but the fact 
that it is available is the signal that iNA is available. If the lookup oper
ation fails, it means either that the networking job failed to initialize for 
some reason or that it was not included in the system configuration. 

3. Call cqcreatecommuserO to obtain the user_id value that will be in
cluded in each RB posted to iNA. 

IOThe sample server uses rqsettime() to set its time of day. This system call modifies only 
the time of day maintained by the operating system. If this call were changed to rqsetglobal
time(), it would set the time on the computer's battery-backed clock. 
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Figure 11.6 Source code for the timesrv server program demonstrating the use of datagrams. 

/***> timesrv.c <****************************************************** 

* 
* 
* 

This program provides the current date and time when it receives 
datagrarns at TSAP Ox0064. 

* 

* 
* 

* 

The data portion of a received datagram must contain a four-byte 
value. If the value is non-zero, this server will use it to set 
the local system's time of day clock. Whether the received value 
is zero or not, this server will return a datagram containing the 
current time of day in iRMX format (number of seconds since 
January 1, 1978). 

* 
**********************************************************************/ 

#include <stdio.h> 
#include <time.h> 
#include <string.h> 

#include <rmxc.h> 
# include <cqcornm.h> 
#include <cqcornmon.h> 

/* POSIX time functions */ 

/* iNA Interface Function Prototypes 
/* RB cornmon header structure 

*/ 
*/ 

#include <cqtransprt.h> /* TL structs, opcodes, and response codes */ 

#include "tlrespcodes.h" 

#define E_OK 0 
#define NO_WAIT 0 
#define ROOT_JOB 3 

char logrnessage[80]; 
timeNow; /* POSIX date and time */ 

Status; WORD 
TOKEN user_id, root_job, a_token, rb_segrnent, 

responseMbx, coConn; 

#pragrna noalign (Nul12) 
struct Nul12 { 

BYTE 
WORD 
BYTE 
BYTE 
BYTE 
} ; 

AFI; 
subnet; 
host_id[6] ; 
Isap_selector; 
remote_nsap_selector; 

#pragrna noalign (ta_buffer) 
typedef struct ta_buffer { 

BYTE local_nsap_selector_length; 
BYTE local_tsap_selector_length; 
WORD local_tsap_selector; 
BYTE remote_address_length; 
struct Nul12 
BYTE 
WORD 
} TA_BUFFER; 

remote_address; 
remote_tsap_selector_length; 
remote_tsap_selector; 



432 iRMX Concepts and Features 

Figure 11.6 ( Continued) 

#pragma noalign (timesrv_dg_segment) 
struct timesrv_dg_segment ( 

1* 
* 

DATAG~RB dg_rb; 
T~BUFFER ta-Puf; 
DWORD date_time; 1* iRMX date and time buffer *1 
) *dgPtr; 

*rbPtr; 
*taPtr; 

main() Starts Here 

*1 
int 
main (int argc, char *argv[]) { 

1* 
* 
* 
* 
* 
* 
* 

*1 

Initialization 

Assume we are not able to write to a user's console (perhaps 
because we are run by a sysload command), but that we are an 
110 job and can write to a file. Create a logfile in the root 
directory of the system device ... it's the only path we are sure 
of. 

coConn = rqscreatefile «STRING *)"\x010:sd:/timesr.v.log", &Status); 
rqsopen (coConn, 2, 0, &Status); 
timeNow = time (NULL); 1* POSIX time *1 
sprintf (logmessage, "timesrv started -- %s", ctime (&timeNow»; 
rqswritemove ( coConn, (BYTE *)logmessage, 

. strlen (logmessage), &Status); 
if (Status != E_OK) 

rqdeletejob «selector) NULL, &Status); 1* tragedy *1 

1* Be sure iNA is available before continuing 
*1 

root~job = rqgettasktokens (ROOT_JOB, &Status); 
a_token = rqlookupobject (root_job, " \ 6 INARDY " , NO_WAIT, &Status); 
if (Status != E_OK) { 

rqswritemove (coConn, 
(BYTE *)"iNA not available, timesrv aborted.\r\n", 37, &Status); 
rqdeletejob «selector) NULL, &Status); 
} 

1* Allocate all the resources this job will need 
* 
* 
* 
* 
* 
*/ 

These consist of: 
collllil user ID 
datagram RB segment 
response mailbox for RBs 

user_id = cqcreatecommuser (&Status); 
if (Status != E_OK) { 

rqswritemove (coConn, 
(BYTE *)"Unable to create comm user, timesrv aborted. \r\n" , 46, 
&Status) ; 

rqdeletejob «selector) NULL, &Status); 
} 
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Figure 11.6 (Continued) 

rb_segment = 
rqcreatesegment (sizeof (struct timesrv_dg_segment), &Status); 

if (Status != E_OK) { 
rqswritemove (coConn, 

(BYTE *)"Unable to create RB segment, timesrv aborted.\r\n", 47, 
&Status); 

rqdeletejob «selector) NULL, &Status); 
} 

responseMbx = rqcreatemailbox (0, &Status); 
if (Status != E_OK) { 

rqswritemove {coConn, 
(BYTE *)"Unable to create resp mbx, timesrv aborted.\r\n", 47, 
&Status); 

rqdeletejob «selector) NULL, &Status); 
} 

/* Initialize the contents of the single segment we will be using for 
* all datagram request blocks in this program. 

* 
* First, the header portion declared as RB_COMMON in cqcommon.h 
*/ 

rbPtr = (RB_COMMON *) buildptr (rb_segment, 0); 
rbPtr->reserved[O] = 0; 
rbPtr->reserved[1] = 0; 
rbPtr->length = sizeof (DATAGRAM_RB); 
rbPtr->user_id = user_id; 
rbPtr->resp-port = OxFF; 
rbPtr->resp_mbox = responseMbx; 
rbPtr->rb_seg_tok = rb_segment; 
rbPtr->subsystem = TL_DATAGRAM; 
rbPtr->opcode = RECEIVE_DATAGRAM; 
rbPtr->response = 0; 

/* Now, the datagram arguments 
* declared as DATAGRAM_RB in cqtransprt.h 
*/ 

dgptr = (struct timesrv_dg_segment *) rbPtr; 
dgPtr->dg_rb.reserved[O] 0; 
dgptr->dg_rb.reserved[1] 0; 
dgptr->dg_rb.reserved[2j 0; 
dgPtr->dg_rb.reserved[3j 0; 
dgptr->dg_rb.ta_buffer_addr 

cqcommptrtodword «void *) & (dgptr->ta_buf), &Status); 
if (Status != E_OK) { 

rqswritemove (coConn, 
(BYTE *)"cqcommptrtodword failed, timesrv aborted. \r\n" , 45, 
&Status) ; 

rqdeletejob «selector) NULL, &Status); 
} 

dgPtr->dg_rb.qos = 0; /* Quality of Service */ 

dgPtr->dg_rb.num_blks 1; 
dgPtr->dg_rb.data_blk_list[O] . length = 4; 
dgPtr->dg_rb.data_blk_list[O] .address = 

cqcommptrtodword «void *) & (dgPtr->date_time) , &Status); 
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Figure 11.6 (Continued) 

/* 

* 
*/ 

/* 

* 
* 

* 

* 
* 
*/ 

if (Status != E_OK) { 
rqswritemove (coConn, 

(BYTE *) "cqcommptrtodword failed, timesrv aborted. \r\n", 45, 
&Status) ; 

rqdeletejob ((selector) NULL, &Status); 
) 

Finally, the transport address buffer, declared as TA_BUFFER 
in this program 

taPtr = & (dgPtr->ta_buf) ; 
taPtr->local_nsap_selector_length = 0; 
taPtr->local_tsap_selector_length = 2; 
taPtr->local_tsap_selector = Ox0064; 
taPtr->remote_address_length = sizeof (struct Null2); 
taPtr->remote_address.AFI = Ox49; 
taPtr->remote_address.subnet = OxOOOO; 
taPtr->remote_address.host_id[O] 0; /* -any */ 
taPtr->remote_address.host_id[l] 0; 
taPtr->remote_address.host_id[2] 0; 
taPtr->remote_address.host_id[3] 0; 
taPtr->remote_address.host_id[4] 0; 
taPtr->remote_address.host_id[5] 0; 
taPtr->remote_address.lsap_selector = OxFE; 
taPtr->remote_address.remote_nsap_selector 0; 
taPtr->remote_tsap_selector_length = 2; 
taPtr->remote_tsap_selector = OxOOOO; /* any */ 

rqsclose (coConn, &Status); 

Main Loop 

Here we post a RB to iNA that indicates we are interested in 
all datagrams sent to our TSAP ID, Ox0064. As datagrams 
arrive, we process them, send a datagram in return, and post 
another RB to accept another datagram. This loop never exits. 

for (;;) 

/* Post a receive_datagram RB, and wait for it to return 
*/ 

cqcommrb (rb_segment, &Status); 
if (Status != E_OK) { 

rqsopen (coConn, 2, 0, &Status); 
rqswritemove (coConn, 

(BYTE *) "cqcommrb rcv dgm failed, timesrvaborted.\r\n", 
45, &Status); 

rqdeletejob ((selector) NULL, &Status); 
) 

a token rqreceivemessage (responseMbx, OxFFFF, NULL, &Status); 
if (rbPtr->response != OK_EOM_RESP) { 

if (rbPtr->response > TL_RESP_CODES_MAX) rbPtr->response = 0; 
strcpy (logmessage, tlResponseCodes[rbPtr->response]); 
rqsopen (coConn, 2, 0, &Status); 
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Figure 11.6 ( Continued) 
rqswritemove (coConn, 

(BYTE *) logmessage, strlen (logmessage), &Status); 
rqsclose (coConn, &Status); 
break; 
) 

if (dgPtr->dg_rb.buf_len != 4) { /* Sanity check */ 
rqsopen (coConn, 2, 0, &Status); 
rqswritemove (coConn, (BYTE *) "Invalid datagram\r\n", 

18, &Status); 
rqsclose (coConn, &Status); 
break; 
} 

/* We have a valid datagram. Set the local system's time if the 
* data value is not zero. Then, put the local system's time in 

the same data buffer, and send the datagram back to the sender. 
*/ 

/* 

* 
*/ 

if (dgptr->date_time != 0) 
rqsettime (dgPtr->date_time, &Status); 

dgPtr->date_time = rqgettime (&Status); 

rbPtr->opcode = SEND_DATAGRAM; 
rbPtr->response = 0; 
cqcommrb (rb_segment, &Status); 
if (Status != E_OK) { 

rqsopen (coConn, 2, 0, &Status); 
rqswritemove (coConn, 

(BYTE *) "cqcommrb snd dgm failed, timesrv aborted. \r\n", 
45, &Status); 

rqdeletejob ((selector) NULL, &Status); 
} 

a token rqreceivemessage (responseMbx, OxFFFF, NULL, &Status); 
if (rbPtr->response != OK_RESPONSE) { 

if (rbPtr->response > Ox24) rbPtr->response = 0; 
strcpy (logmessage, tlResponseCodes[rbPtr->response]); 
rqsopen (coConn, 2, 0, &Status); 
rqswritemove (coConn, 

(BYTE *) logmessage, strlen (logmessage), &Status); 
rqsclose (coConn, &Status); 
break; 
} 

Now reset the necessary parameters to again make our RB segment 
into a receive datagram on TSAP 0064 from anyone. 

rbPtr->opcode = RECEIVE_DATAGRAM; 
rbPtr->response = 0; 

dgPtr->dg_rb.num_blks = 1; 
dgptr->dg_rb.data_blk_list[O] . length = 4; 
dgptr->dg_rb.data_blk_list[O] . address = 

cqcommptrtodword ((void *) & (dgptr->date_time), &Status); 

taptr->local_nsap_selector_length 0; 
taPtr->local_tsap_selector_length 2; 
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Figure 11.6 ( Continued) 
taPtr->local_tsap_selector = Ox0064; 
taPtr->remote_address_length = sizeof (struct Nul12); 
taPtr->remote_address.AFI = Ox49; 
taPtr->remote_address.subnet = Ox0001; 
taPtr->remote_address.host_id(O) 0; 
taPtr->remote_address.host_id(l) 0; 
taptr->remote_address.host_id(2) 0; 
taPtr->remote_address.host_id(3) 0; 
taPtr->remote_address.host_id(4) 0; 
taPtr->remote_address.host_id(5) 0; 
taPtr->remote_address.lsap_selector = OxFE; 
taPtr->remote_address.remote_nsap_selector 0; 
taPtr->remote_tsap_selector_length = 2; 
taPtr->remote_tsap_selector = OxOOOO; 

return 0; /* never reached */ 

4. Create an iRMX segment object to hold each RB and its· associated 
buffers. This program uses just one RB for all its operations, so there is 
just one segment. 

5. Create a mailbox for iNA to return each RB as iNA finishes processing 
the RB. Because this program makes only one request to iNA at a time, 
the same token is always returned to the mailbox, so the mailbox serves 
only as a synchronization mechanism. 

6. Fill in the values for a receive_datagram RB. These values include 
the header information that is the same for all iNA RBs, plus those 
values specific to datagram RBs. 

7. Fill in the transport address buffer and initialize the pointers for the da
tagram data buffers. 

8. The program now enters an endless loop in which it: 
a. Posts a receive_datagram RB. 
b. Modifies the same RB is to serve as a send_datagram RB when a 

datagram is received, and uses the RB to send a reply datagram con
taining the server's time back to the sender. 

c Again modify the RB to act as a receive_datagram RB when the 
reply has been sent. 

d. Repeat Loop. 

Let's look at the process in a bit more detail. The first step is to under
stand the data structures defined in the various header files included in the 
program. The file cqcomm . h contains function prototypes for the four pre
ceding procedures (cqcreatecommuser(), cqcommrb(), and the two pointer
conversion routines}. The cqcommon. h file contains the data structure for 
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the header part of all iNA RBs described earlier. The fields in this header 
are referenced using the rbPtr pointer variable in timesrv. c. The 
header file cqtransp. h contains data structures and definitions used 
with iNA's Transport layer functions' datagrams and virtual circuits. 
This header file includes definitions of all the operation codes, such as 
SEND_DATAGRAM and RECEIVE_DATAGRAM, as well as names for all the 
response codes that might appear in the response field of the header 
when a datagram or virtual circuit RB is returned by iNA. The typedef for a 
DATAGRAM_RB is given in this file, as well as other structures used for vir
tual circuit operations. 

The other header file used in this program, tlrespcodes . h, (the name 
is truncated to tlrespco. h on DOS file systems) simply establishes an 
array of string names for the various Transport layer response codes that 
might be returned by iNA. It is used for formatting any error messages the 
program writes to its log file. 

Sending or receiving a datagram involves two buffers, a ta_buffer and 
a data buffer. The sample program includes its own typedef for a ta_ 
buffer structure configured to use Nu1l2 addressing, as well as a single 
4-byte data buffer. To illustrate placing the RB and its associated buf
fers in a single memory segment, the program declares a structure, 
timesrv_dg_segment, that contains a DATAGRAM_RB structure, a 
TA_BUFFER structure, and a 4-byte data buffer for sending or receiving a 
date/time value. This structure is accessed in the program using the dgPtr 
pointer. Although all these structures make the code fairly easy to write, 
the logic can be a bit difficult to follow because there are several equivalent 
ways to access the same part of the datagram segment. As Figure 11.7 
shows, rb _ segmen t is a token (selector) for the segment that contains the 
RB and the two buffers, and both rbPtr and dgPtr are pointers that point 
to the beginning of this segment. 

dgPtr -7 timesrv_dg_segment 

DATAGRAM_RB 

RB_COMMON rbPtr -7 

llLSegment 

I 

I --V 
I 

I I TA_BUFFER 

I 

Figure 11.7 Structure of an RB segment used in timesrv. c. 

I date_time 

l' 
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Two important concepts regarding network addressing are illustrated by 
timesrv. c. The first is that, as a server, the program does not know the 
remote addresses of its potential clients. Thus, it fills in the ta_buffer 
with its own TSAP ID, but uses a value of 0 for the remote TSAP ID and 
remote host _ id (Ethernet address) fields. iNA interprets the value of 0 as 
unspecified, and accepts any datagram from any client provided only that 
the client's remote TSAP ID matches the server's local TSAP ID. 

The second concept is that when iNA returns the RB to the server 
because a datagram has arrived from a client, the server's data buffer is 
filled with the data supplied by the client and, more importantly, 
the ta_buffer is filled with the fully specified network address for the 
client. Thus, all the server must do to send a datagram back to a client 
as a reply is to supply the same ta_buffer it used when it posted the 
receive_ datagram request. Before issuing another receive_data
gram RB to iNA, the server must restore the contents of the ta _buffer to 
the unspecified (0) values for host_id and remote TSAP ID. 

For completeness, a client for the timeserver gettime is given in Figure 
11.8. This program first constructs a send_datagram RB with a remote 
TSAP ID, matching the server's local TSAP ID, a local TSAP ID that does 
not conflict with the server's, and an unspecified hos t _ id. It then issues a 
receive_datagram request to receive the server's reply. Because data
gram transmission is not guaranteed to be successful, the client repeats its 
request up to five times at five-second intervals if no server responds.ll 

Figure 11.8 Source code for the gettime client program demonstrating the use of datagrams. 

/***> gettime.plm <************~************************************* 

* 

* 
This program is used to get the system time from a remote 
system at TSAP 64h. Local TSAP is 63h. 

* 
*********************************************************************/ 

$compact 
get time: DO; 

$include (gettime.ext) 
$include (cqopcode.lit) 
$subtitle ('Declarations') 

DECLARE 
E$OK 
E$TIME 
super 
cr 

LITERALLY '0', 
LITERALLY '1' , 
LITERALLY '0' , 
LITERALLY 'ODh' , 

lIThe host ID value consisting of 6 bytes of OFFH on the line marked (***) must be changed 
tooA2h, OA4h, OA6h, OASh, OAAh, OACh iftimesrv andgettime are run on the same com
puter using ntp4at.job and no Ethernet controller. 
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lf 
five$sec 

date_time 
outbuf(81) 

LITERALLY 
LITERALLY 
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'OAh' , 
'500', 

INITIAL (0), 
INITIAL 

(0, 'HH:MM:SS 
keyword 

MM DDD YY - Time Set' ,cr, If), 
STRUCTURE ( 

len 
chars (80) 

(retries,i,is_super) 
atoken 
comm_user_token 
mailbox 
rb_segment 
user_token 
except_info 

Handler_Ptr 
Mode 

user_ids 
length 
count 
id(5) 

Status 

DECLARE 
RB BASED rb_segment 

reserved(2) 
length 
user_id 
response-port 
return_mailbox 
segment_token 
subsystem 
opcode 
response_code 

dg_args 
reserved(4) 
ta_buf_addr 
qos 
buf_len 
num_blks 
blocks(l) 

addr 
len 

ta_buf 
loc_nsap_sel_len 
loc_tsap_sel_len 
loc_tsap_sel 
rem_nsap_addr_len 

AFI 
subnet 
host_id(6) 
lsap_selector 
rem_nsap_sel 

rem_tsap_sel_len 
rem_tsap_sel 

BYTE, 
BYTE) , 

BYTE, 
TOKEN, 
WORD_16, 
TOKEN, 
TOKEN, 
TOKEN, 
STRUCTURE 

POINTER, 
BYTE) , 

STRUCTURE ( 
WORD_16, 
WORD_16, 
WORD_16) , 

WORD_16; 

STRUCTURE ( 
WORD_16, 
BYTE, 
WORD_16, 
BYTE, 
TOKEN, 
TOKEN, 
BYTE, 
BYTE, 
WORD_16, 

STRUCTURE ( 
BYTE, 
WORD_32, 
BYTE, 
WORD_16, 
BYTE, 
STRUCTURE ( 

STRUCTURE ( 
BYTE, 
BYTE, 
WORD_16, 
BYTE, 

BYTE, 
WORD_16, 
BYTE, 
BYTE, 
BYTE, 

WORD_32, 
WORD_16 ))), 

BYTE, 
WORD_16) ; 
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Figure 11.8 (Continued) 

$subtitle ('main task"s code') 
/* 

* 
*/ 

Execution Starts Here 

rb_segment = rqcreatesegment (128, @Status); 

CALL rq$get$exception$handler (@Except_Info, @Status); 
except_info.mode = D; 
CALL rq$set$exception$handler (@Except_Info, @Status); 

/* No point in doing anything until iNA is ready 
*/ 

/* 

• 
* 

*/ 

atoken = rq$get$task$tokens (3, @Status); /* root job's token */ 
atoken = rq$lookup$object (atoken, @(6, 'INARDY'), 200, @Status); 
IF (Status <> E$OK) THEN 
DO; 

END; 

CALL rq$c$send$co$response (NIL, D, 
@(24,'Network not responding', cr,lf), @Status); 

CALL rq$exit$io$job (Status, NIL, @Status); 

mailbox = rq$create$mailbox (D, @Status); 
comm_user_token = cq$create$comm$user (@Status); 
IF (Status <> E$OK) THEN 

DO; 
CALL rq$c$send$co$response (NIL, D, 

@(29,'Unable to Create Comm. User',cr,lf), @Status); 
CALL rq$exit$io$job (Status, NIL, @Status); 

END; 

The keyword ·set" on the command line causes us to send our 
system's time to the server, which will use it to set its own 
time. 

CALL rq$c$get$input$pathname @keyword, 
size (keyword.chars), 
@Status); 

IF keyword. len >= 3 THEN 
00 i = 0 TO 2; 

keyword. chars (i) = keyword.chars(i) OR 20h; /* to lower case */ 
END; 

IF cmpb (@keyword, @(3,'set'), 4) = OFFFFFFFFh THEN 
00; 

user_token = rq$get$default$user (SELECTOR$OF(NIL) , @Status); 
user_ids.length = length (user_ids.id); 
CALL rq$inspect$user (user_token, @user_ids, @Status); 
is_super = FALSE; 
00 i = 0 TO user_ids.count - 1; 

IF user_ids.id(i) = super THEN is_super TRUE; 
END; 
IF NOT is_super THEN 

00; 
CALL rq$c$send$co$response (NIL, D, 

@(50, 
'You must be Super to set the time server"s clock', 
cr,lf), @Status); 

CALL rq$exit$io$job (0, NIL, @Status); 
END; 
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Figure 11.8 ( Continued) 
END; 

/********************************************************************* 

Send a datagram to the time server at TSAP 64h in order to 
* trigger a returned dg containing the date and time at our 

TSAP 63h. Repeat up to 5 times if necessary. 

********************************************************************/ 

*/ 

retries = 0; 
DO WHILE (retries < 5); 

CALL movb (@(O, 

2, 
63h,O, 

/* loc_tsap_sel_len 
/* loc_tsap_sel 

*/ 
*/ 

11, /* rem_nsap_addr_len (Nul12 format) */ 

049h, /* AFI */ 

0,0, 
OFFh.OFFh.OFFh. 

/* subnet */ 

OFFh,OFFh,OFFh, /* host_id (***) 

OFEh. /* lsap_selector 
0, /* rem_nsap_sel 

2. 1* rem_tsap_sel_len 
64h,O), /* rem_tsap_sel 

@ta_buf, size (ta_buf) ); 

RB.reserved(O) , RB.reserved(l) 0; 
RB.length = size(RB); 
RB.user_id = comm_user_token; 
RB.response-port = Offh; 
RB.return_mailbox = mailbox; 
RB.segment_token = rb_segment; 
RB.opcode = send_datagram; 
RB.subsystem = 41h; /* Datagram */ 
RB.response_code = 0; 

CALL setb (0. @RB.dg_args.reserved, 0); 

*/ 
*/ 
*/ 

*/ 
*/ 

RB.dg_args.ta_buf_addr = cq$comm$ptr$to$dword (@ta_buf, @Status); 
RB.dg_args.qos = 0; 
RB.dg_args.buf_len = 4; 
RB.dg_args.num_blks = 1; 
RB.dg_args.blocks(O) .addr = cq$comm$ptr$to$dword (@date_time, 

@Status) ; 
RB.dg_args.blocks(O) .len = 4; 

IF cmpb (@keyword, @(3, 'set'), 4) = OFFFFFFFFh THEN 
DO; 

date_time = rq$get$time (@Status); 
CALL rq$c$send$co$response (NIL, D, 

@(23,'Setting Server' 's Time',cr,lf), @Status); 
END; 

ELSE 
date_time 0; 

CALL cq$comm$rb (rb_segment, @Status); 
IF (Status <> E$OK) THEN 
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Figure 11.8 ( Continued) 
DO; 

/* 

CALL movb @(35,'cqcornrnrb for send_datagram failed: '), 
@outbuf, 
36) ; 

CALL convert$hex (@outbuf, 80, Status, @Status); 
CALL movb (@(cr,lf), @outbuf(outbuf(O) + 1), 2); 
outbuf(O) = outbuf(O) + 2; 
CALL rq$c$send$co$response (NIL, 0, @outbuf, @Status); 
CALL rq$exit$io$job (0, NIL, @Status); 

END; 

atoken = rq$receive$message (mailbox, five$sec, nil, @Status); 
IF (Status <> E$TIME) THEN rb_segrnent = atoken; 
IF (RB.response_code <> ok_response) THEN 

DO; 
CALL movb (@(25,'dg to Time Server Failed '), @outbuf, 26); 
CALL convert$hex (@outbuf, 80, RB.response_code, 

@Status) ; 
CALL movb (@(cr,lf), @outbuf(outbuf(O) + 1), 2); 
outbuf(O) = outbuf(O) + 2; 
CALL rq$c$send$co$response (NIL, 0, @outbuf, @Status); 
CALL rq$exit$io$job (0, NIL, @Status); 

END; 

* Now wait for a returned datagram from the time server 
*/ 

RB.reserved(O), RB.reserved(1) 0; 
RB.opcode = receive_datagram; 
RB.response_code = 0; 
CALL setb (0, @ta_buf.host_id, 6); 
CALL cq$cornrn$rb (rb_segrnent, @Status); 
IF (Status <> E$OK) THEN 

DO; 
CALL movb @(35, 'cqcornrnrb for recv_datagram failed: '), 

@outbuf, 
36) ; 

CALL convert$hex (@outbuf, 80, Status, @Status); 
CALL movb (@(cr,lf), @outbuf(outbuf(O) + 1), 2); 
outbuf(O) = outbuf(O) + 2; 
CALL rq$c$send$co$response (NIL, 0, @outbuf, @Status); 
CALL rq$exit$io$job (0, NIL, @Status); 

END; 

atoken = rq$receive$message (mailbox, five$sec, nil, @Status); 
IF (Status <> E$TIME) THEN rb_segrnent = atoken; 
IF (RB.response_code ok_response) OR 

(RB.response_code = ok_eom_resp) THEN 
DO; 

IF (date_time = 0) THEN 
DO; 

CALL rq$c$send$co$response (NIL, 0, 
@(47,'Date and Time not Received from Remote System', 
cr, If), 
@Status) ; 
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CALL rq$exit$io$job (0, NIL, @Status); 
END; 

CALL rq$set$time (date_time, @Status); 
CALL convert$secs$to$time (@outbuf, 32, date_time, @Status); 
outbuf(O) = outbuf(O) + 2; 
CALL convert$secs$to$date (@outbuf, 32, date_time, @Status); 
outbuf(O) = outbuf(O) + 13; 
CALL rq$c$send$co$response (nil, 0, @outbuf, @Status); 
CALL rq$exit$io$job (0, NIL, @Status); 

END; 

retries = retries + 1; 
CALL rq$c$send$co$response (NIL, 0, 

@(21,'Gettime retrying ... ',cr,1f), @Status); 

END; /* DO WHILE */ 

CALL rq$c$send$co$response (NIL, 0, 
'@(30, 'No Response from Time Server',cr,lf) , @Status); 

CALL rq$exit$io$job (0, NIL, @Status); 
END get time; 

The five-second interval is timed by placing a time limit on the rqrecei
vemessage( ) system call that receives the RB back from iNA. The program 
uses the same RB segment for all five retries, which raises the potential for 
confusion because it violates the rule that an application should not access 
an RB from the time it is sent to iNA and the time iNA returns it. No prob
lem exists for this procedure though, because the client makes all five RBs 
look identical, the client responds identically regardless of which RB is re
turned, and, with Nu1l2 addressing, datagram transmission is almost 
always successful, unless there is a physical problem with the physical 
link.12 

11.8 Virtual Circuit Operations 

Connection-oriented Transport layer operations are performed using the 
virtual circuit mechanism. A virtual circuit server would typically use an 
algorithm similar to the following: 

1. Ensure iNA is running by looking up the INARDY object in the root job's 
object directory. 

2. Call cqcreatecommuser() to establish a link to iNA. 

12 Another potential problem with the application is the race condition that exists between 
the client and the server. If the server responds to the client's request before the client issues a 
receive datagram RB, the reply will be missed and the client will go through a retry cycle 
before receiving a response. Normally (meaning when separate RBs are used for sending and 
receiving), a client would post its receive RBs before its send RB. 
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3. Use the iNA name server (see the next section) to enter the server's 
host_id and local TSAP ID in the network database using a well
known name. Clients use this information to access the server. 

4. Use an RB with an operation code of open to obtain a reference number 
from iNA. This number is used internally by iNA to access the informa
tion it keeps for the new connection, called a connection database 
(CDB). Once a virtual circuit has been established by connection with a 
client, this reference number is used to identify the CDB to iNA without 
using the addressing process (described next) again. 

5. Issue an await_connect_request_xx RB. Two different opcodes 
can be used here. If xx is TRAN (opcode 2), the Transport layer estab
lishes a virtual circuit whenever a matching send_connect_ 
request from a remote system arrives. If xx is CLIENT (opcode 
3), iNA returns the RB when a remote system sends a matching 
send_connect_request, but does not complete the virtual circuit 
unless the application accepts the connection by issuing an ac
cept_connect_ request RB. If the application issues a close RB 
instead, the virtual circuit is not established. Note that the term client in 
this opcode name refers to the local application program (a client of the 
Transport layer) and not to the remote application. 

6. Once a virtual circuit has been established, the server supplies iNA with 
data buffers to receive data from the client using receive_data RBs, 
and uses send_data or send_earn_data to send data to the client. 
Since the RB interface is inherently asynchronous, great flexibility 
exists for how a particular server can manage its flow of data with a 
client. 

7. The close RB is used to terminate a virtual circuit (or to reject one as 
mentioned previously). The close operation does not trigger the trans
mission of any previously queued output data the way that closing a disk 
file does. Rather, the server and client must use a separate mechanism, 
such as special data messages, ifthey are to provide an orderly term ina -
tion of their connection. The close operation causes iNA to delete its 
CDB entry for the virtual circuit. 

Several other features of virtual circuits deserve mention. One is that 
clients and servers can exchange relatively small amounts of data with 
each other when they establish and terminate a virtual circuit. For exam
ple, a server could use await_connect_request_client, and use a 
password supplied by the remote client in its matching send_con
nect_request to decide whether to accept the connection or not. Like
wise, a server could provide up to 64 bytes of information when it closes a 
virtual circuit, such as a text string explaining why it closed a circuit. 

A second feature of virtual circuits important for some applications is 
the provision for expedited data (called out-oj-band data in the comparable 
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Internet protocols). Normally, all data sent from one application to an
other over a virtual circuit is guaranteed to be received in the same order in 
which it is was sent. Expedited data is sent ahead of any normal data that 
might be in transit over the network. An example of using expedited data 
would be a login server that receives single characters as they are typed by 
the user and echoes them in response. A user might want to cancel text that 
was typed before receiving the server's response. The user can do so by 
typing a < 1\ c> character. That character could be sent as expedited data, 
which the server might receive using a task waiting at a special mailbox set 
up for receive_expedited_data RBs. 

The other issue to mention is the management of data buffers. Because 
iNA often runs on a 16-bit processor, the virtual circuit RB interface re
quires each data buffer to be used for sending or receiving data to be no 
greater than 64 KB iq. length. Within this 64-KB limit, iNA supports 
gather-write and scatter-read operations. That is, a single RB can refer
ence several disjoint locations in memory as a single data buffer. When 
writing to the network, iNA gathers data from the locations into a single 
internal buffer and transmits it as a unit. Likewise, iNA will distribute 
(scatter) the parts of an incoming message into several locations if that is 
how the user has defined the receive buffer. 

11.9 Name Server Operations 

Each entry in iNA's distributed database of network information takes the 
form of a 4-tuple, {name, property type, uniqueness, property value}. For 
example, a typical entry might be: 

{MYHOSTID, Ox0004, FALSE, OxAOA2A4A6A8AAAC} 

The name is any arbitrary string of up to 16 bytes, normally ASCII charac
ters. The property type is an unsigned 16-bit numerical value that can be 
thought of as a modifier for the name. For example, iRMX-Net uses two 
database entries for each system it services. Both have the same name (the 
name used in an attachdevice command), but two different property types 
for two pieces of information that iRMX-Net needs to maintain about the 
system. The virtual terminal facility, which allows remote login to a sys
tem, uses the same name along with a third property value for information 
it needs to know about the system. 

The uniqueness database entry is a Boolean value that tells whether a 
network can have more than one entry with the same {name, property 
type} combination. For example, every machine on the network has an 
entry for {MYHOST ID, OxO 0 0 4}, so that combination is not unique. On the 
other hand, only one machine can have a particular name and property 
type for a virtual terminal or file server. If you give a command such as at-
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tachdevice systeml as 1 remote, no more than one computer can be 
named systeml on the network, so that entry must be unique. 

The value part of a database entry can be any sequence of bytes desired, 
not necessarily ASCII characters. The property value for {MYHOSTID, 

Ox0004}, for example, is the 6-byte Ethernet address for the computer. 
iRMX-Net and the virtual terminal use the Nu1l2 network address as the 
property value for the entries with the system's name and property types 
Ox0003 and Ox0008, respectively. The listname command normally in
stalled in : utils: or : util286: displays the portion ofthe distributed 
database that resides on the local system. 

11.9.1 The RB interface to the name server 

Eight opcodes are used in the RB interface to iNA's name server. These 
functions are documented in the iRMX-Net User's Reference manual 
(Intel, 1991b) rather than the iNA 960 programmer's Reference cited ear
lier in this chapter. RBs for name server operations include the RB header 
structure used for all iNA RBs, followed by pointers to three buffers: a 
name buffer, a property value buffer, and an extra buffer used for some of 
the operations. The RB also has fields for property type and the unique
ness Boolean. 

Figure 11.9 gives the source code for a utility program called namesrv 
that allows a user to exercise the eight name-server commands interacti
vely. Each command takes some subset of a database 4tuple and might or 
might not return information from the database, as described on page 458. 

Figure 11.9 Source code for namesrv, a program that allows a user to exercise the eight name 
server functions interactively. 

/***> namesrv.c <****************************************************** 

* 
* 

* 
* 
* 
* 

This program allows users to query and update iNA's distributed 
database. 

The program accepts command lines consisting of a nameserver 
operation code name followed by the appropriate arguments. 

Names and values are entered as strings, and types are entered 
* as integers. The get_* functions display the result returned 

by the nameserver. The others simply perform their operations. 

* 

* 
* 

add_name 
delete_name 
get_value 
change_value 
deleteJlroperty 
get_name 
get_spokesman 
list_table 

Name Type Value 
Name 
Name Type 
Name Type New Value 
Name Type 
Type Value 
Name Type 

*********************************************************************/ 
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Figure 11.9 ( Continued) 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 

#include <rmxc.h> 
#include <cqcomm.h> /* iNA Interface Function Prototypes */ 
#include <cqcommon.h> /* RB common header structure */ 
#include <cqname.h> /* NS structs, opcodes, and response codes */ 

#include ·nsrespcodes.h· 

#define E_OK 0 
#define NO_WAIT 0 
#define E_TlME 1 
#define ROOT_JOB 3 
#define EXIT_PROGRAM 99 

/* 

* 
Global variables shared with the various functions that 
implement the operation codes. 

*/ 
TOKEN user_id, root_job, a_token, rb_segment, responseMbx; 

RB_COMMON *rbPtr; 
NAME_SERVER_RB *nsPtr; 

NAME_BUFFER *nameBuf; 
VALUE_BUFFER *propValBuf; 
EXTRA_BUFFER *extraBuf; 

#pragma noalign (response_struct) 
struct response_struct { 

WORD 
char 
WORD 
WORD 
char 
} response; 

static struct { 
char *name; 
int len; 
char *args; 
} opcodes[] = 

static int 
static char 
static char 
static char 
static WORD 

opcode; 
nameString[32} ; 
propertyType; 
valueLength; 
valueString[256]; 

{·exit·, 1, •• }. 
{·add_name·, 1, ·name type value·}, 
{·delete_name·, 8, ·name·}. 
{·get_value·, 5, ·name type"}, 
{·change_value·, 1, ·name type value"}, 
{·delete-property·, 8, ·name type"}, 
{·get_name·, 5, ·type value·l, 
{·get_spokesman·, 5, ·name type·}, 
{·list_table·, 1, •• } 
I ; 

i, j; 
*nextPtr; 
commandLine[80]; 
hextab[] = ·0123456789ABCDEF·; 
Status; 
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Figure 11.9 ( Continued) 
static 

void 
char 
WORD 
} p; 

union { /* Pointers for interpreting buffers returned by iNA */ 
*anyPtri 
*charPtr; 
*wordPtr; 

/* getString () 

* 
This is a utility routine to extract a string from the command 
line. The string may be surrounded by single or double quotes. 

*/ 

static void 
getString (char *where) { 
int length; 

nextPtr += strspn (nextptr. " \t\n\r."); 
if (*nextptr == '\") { 

length = strcspn (++nextPtr. "\'"); 
} 

else if(*nextPtr == '\"') { 
length = strcspn (++nextPtr. "\""); 
} 

else { 
length strcspn (nextPtr. " \r\n\t"); 

/* 

* 
addName() 

/* 

* 
* 

*where = '\0'; 
strncat (where. nextPtr, length); 
nextPtr += length + 1; 
return; 

parseName ( ) 

Get a string for a property name from a command line 
*/ 

static void 
parseName (void) 

getString (response.nameString); 
udistr (response.nameString. response.nameString); 
return; 

/* 

* 
* 

} 

parseType ( ) 

Get a 16-bit property type from a command line. 
The user may enter the value in either decimal or hex 

*/ 

static void 
parseType (void) 

response.propertyType (WORD) strtoul (nextPtr, &nextPtr, 0); 
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/'* 
'* 
'* 

return; 

parseValue () 
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'* Get a string for a property value from a command line 
'*/ 

static void 
parseValue (void) 

getString (response.valueString); 
response.valueLength = strlen (response.valueString); 
return; 

/ '* doCommand () 

'* Get a command line from the user and parse it 
'*/ 

void 
doCommand (void) 

commandLine [ 0 ] , \ 0 ' ; 
while (strlen (commandLine) == 0) { 
printf ("\nEnter nameserver command: "); 
gets (commandLine); 
} 

for (i = 0; i < 80; i++) { 
if (commandLine[i] != ' ') break; 
} 

nextPtr = &commandLine[i]; 
response.opcode = -2; 
for (i = 0; i < 9; i++) { 

if (strnicmp (nextPtr, opcodes[i] .name, opcodes[i] .len) 0) { 
response.opcode = i - 1; 
break; 
} 

if (response.opcode == Oxffff) exit (0); 
nextPtr += strcspn (nextPtr, , \r\n \ t \ "\ ' ") ; 
switch (response.opcode) { 

case ADD.-NAME: 

case DELETE.-NAME: 

case GET_VALUE: 

case CHANGE_VALUE: 

parseName(); parseType(); parseValue(); 
addName(); break; 

parseName(); 
deleteName(); break; 

parseName(); parseType(); 
getValue(); break; 

parseName(); parseType(); parseValue(); 
changeValue(); break; 
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Figure 11.9 ( Continued) 

case DELETE_PROPERTY: parseName(); parseType(); 
deleteProperty(); break; 

case GET-.NAME: parseType(); parseValue(); 
getName(); break; 

case GET_SPOKESMAN: parseName(); parseType(); 
getSpokesman(); break; 

case LIST_TABLE: listTable(); break; 

default: 
printf ("Valid op code names and arguments are:\n"); 
for (i 0; i < 9; i++) 

printf (" %-16s %s\n", opcodes[i].name, 
opcodes[i] .args); 

return; 
} 

*/ 
int 
addName () { 

/* 

* 
Fix the Op Code field in the Request Block header for this function; 
reset the value of rbPtr->response; post the RB to iNA 

*/ 
rbPtr->opcode = ADD_NAME; 
rbPtr->response = 0; 
nsPtr->property_type = response.propertyType; 

cqcommrb (rb_segment, &Status); 
if (Status != 0) { 

printf ('cqcommrb failed: %4X\n", Status); 
exit (1); 
} 

/* Wait for iNA to return the RB, and make sure the operation completed 
* without error. 
*/ 

/* 

* 

rb_segment = rqreceivemessage (responseMbx, 1000, NULL, &Status); 
if (Status != 0) { 

if (Status == E_TIME) { 
printf ("add_name failed: no response from iNA\n"); 
exit (1); 

} 

printf ("rqreceivemessage failed: %4X\n", Status); 
exit (1); 
} 

if (rbPtr->response != OK_RESPONSE) 
printf ("add_name request failed: %S", 

nsResponseCodes[rbPtr->response]); 

return; 
} 

deleteName () 
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*/ 
int 
deleteName () ( 

/* 
* 

Fix the Op Code field in the Request Block header for this function; 
reset the value of rbPtr->response; post the RB to iNA 

*/ 
rbPtr->opcode = DELETE_NAME; 
rbPtr->response = 0; 
nsPtr->property_type = response.propertyType; 

cqcommrb (rb_segment, &Status); 
if (Status ! = 0) { 

printf ("cqcommrb failed: %4X\n", Status); 
exit (1); 

/* Wait for iNA to return the RB, and make sure the operation completed 
without error. 

*/ 

/* 
* 

rb_segment = rqreceivemessage (responseMbx, 1000, NULL, &Status); 
if (Status != 0) ( 

if (Status == E_TIME) ( 
printf ("deleteJlame failed: no response from iNA \n" ) ; 
exit (1); 
} 

printf ("rqreceivemessage failed: %4X\n", Status); 
exit (1); 
} 

if (rbPtr->response != OK_RESPONSE) 
printf ("deleteJlame request failed: %s", 
nsResponseCodes[rbPtr->response» ; 

return; 
} 

getValue() 

*/ 
int 
getValue () { 

/* Fix the Op Code field in the Request Block header for this function; 
* reset the value of rbPtr->response; post the RB to iNA 
*/ 

rbPtr->opcode = GET_VALUE; 
rbPtr->response = 0; 
nsPtr->property_type 
response.valueLength 

response.propertyType; 
256; 

cqcommrb (rb_segment, &Status); 
if (Status != 0) { 

printf ("cqcommrb failed: %4X\n", Status); 
exit (1); 
} 
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/* Wait for iNA to return the RB, and make sure the operation completed 
* without error. 
*/ 

/* 

* 
*/ 

int 

rb_segment = rqreceivemessage (responseMbx, 1000, NULL, &Status); 
if (Status != 0) { 

if (Status == E_TIME) { 
printf ("get_value failed: no response from iNA\n"); 
exit (1); 
} 

printf ("rqreceivemessage failed: %4X\n", Status); 
exit (1); 
} 

if (rbPtr->response != OK_RESPONSE) { 
printf ("get_value request failed: %s", 

nsResponseCodes[rbPtr->response); 
return; 
} 

printf ("The value for %s (assumed to be a unique name) is:\n", 
cstr (response.nameString,response.nameString»; 

for (i 0; i < response.valueLength; i++) ( 
printf ("%c%c ", hextab[(response.valueString[il » 4) & OxOf), 

hextab[(response.valueString[i) ) & OxOf); 
if «(i % 20) == 19) printf ("\n"); 
} 

changeValue ( ) 

changevalue () { 

/* 

* 
Fix the Op Code field in the Request Block header for this function; 
reset the value of rbPtr->response; post the RB to iNA 

*/ 
rbPtr->opcode = CHANGE_VALUE; 
rbPtr->response = 0; 
nsPtr->property_type = response.propertyType; 

cqcommrb (rb_segment, &Status); 
if (Status != 0) { 

printf ("cqcommrb failed: %4X\n", Status); 
exit (1); 
} 

/* Wait for iNA to return the RE, and make sure the operation completed 
* without error. 
*/ 

rb_segment = rqreceivemessage (responseMbx, 1000, NULL, &Status); 
if (Status ! = 0) ( 

if (Status == E_TlME) { 
printf ("change_value failed: no response from iNA\n"); 
exit (1); 

printf ("rqreceivemessage failed: %4X\n", Status); 
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exit (1); 

/* 
* 

} 

if (rbPtr->response != OK_RESPONSE) 
printf ("change_value request failed: %s", 
nSResponseCodes[rbPtr->response]); 

return; 
} 

deleteproperty() 

*/ 
int 
deleteproperty () { 

/* 
* 

Fix the Op Code field in the Request Block header for this function; 
reset the value of rbPtr->response; post the RB to iNA 

*/ 
rbPtr->opcode = DELETE_PROPERTY; 
rbPtr->response = 0; 
nsPtr->property_type = response.propertyType; 

cqcommrb (rb_segment, &Status); 
if (Status != 0) { 

printf ("cqcommrb failed: %4X\n", Status); 
exit (1); 
} 

/* Wait for iNA to return the RB, and make sure the operation completed 
* without error. 
*/ 
rb_segment = rqreceivemessage (responseMbx, 1000, NULL, &Status); 
if (Status != 0) { 

if (Status == E_TlME) { 
printf ("delete-property failed: no response from iNA\n"); 
exit (1); 

printf ("rqreceivemessage failed: %4X\n", Status); 
exit (1); 
} 

if (rbPtr->response != OK_RESPONSE) 
printf ("delete-property request failed: %s", 
nsResponseCodes[rbPtr->responsel); 

return; 
} 

/* getName () 

*/ 
int 
getName () { 

/* 

* 
Fix the Op Code field in the Request Block header for this function; 
reset the value of rbPtr->response; post the RB to iNA 



454 iRMX Concepts and Features 

Figure 11.9 ( Continued) 

*/ 
rbPtr->opcode = GET_NAME; 
rbPtr->response = 0; 
nsPtr->property_type = response.propertyType; 

cqcommrb (rb_segment, &Status); 
if (Status != 0) ( 

printf ("cqcommrb failed: %4X\n", Status); 
exit (1); 

/* Wait for iNA to return the RB, and make sure the operation completed 
* without error. 
*/ 
rb_segment = rqreceivemessage (responseMbx, 1000, NULL, &Status); 
if (Status != 0) { 

if (Status == E_TlME) { 
printf ("get_name failed: no response from iNA\n"); 
exit (1); 

printf ("rqreceivemessage failed: %4X\n", Status); 
exit (1); 

if (rbPtr->response != OK_RESPONSE) { 
printf ("get_name request failed: %s", 

nsResponseCodes[rbPtr->response]); 
return; 
} 

printf ("The following names have property value type %4X:\n", 
response.propertyType); 

p.charPtr = (char *) &extraBuf->name_list[O]; 
for (i = 0; i < extraBuf->count; i++) { 

printf ("%s\n", cstr (p.charPtr, p.charPtr)); 
p.charPtr += strlen (p.charPtr); 
} 

return; 

/* 

* 

} 

*/ 
int 

get Spokesman ( ) 

getSpokesman (). { 

/* Fix the Op Code field in the Request Block header for this function; 
reset the value of rbPtr->response; post the RB to iNA 

*/ 
rbPtr->opcode = GET_SPOKESMAN; 
rbPtr->response = 0; 
nsPtr->property_type = response.propertyType; 

cqcommrb (rb_segment, &Status); 
if (Status != 0) { 

printf ("cqcommrb failed: %4X\n", Status); 
exit (1); 
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/* Wait for iNA to return the RB, and make sure the operation completed 
wi thout error. 

*/ 
rb_segment = rqreceivemessage (responseMbx, 1000, NULL, &Status); 
if (Status != 0) { 

if (Status == E_TIME) { 
printf ("get_spokesman failed: no response from iNA \n") ; 
exit (1); 

printf ("rqreceivemessage failed: %4X\n", Status); 
exit (1); 

if (rbPtr->response != OK_RESPONSE) { 
printf ("get_spokesman request failed: %s", 

nsResponseCodes[rbPtr->responsel); 
return; 

printf ("The Ethernet address of the spokesman for %s is 
cstr (response.nameString,response.nameString)); 

p.charPtr = (char *) extraBuf; 
for (i = 0; i < 6; i++) { 

printf ("%c%c hextab[(p.charptr[il» 4) & OxOfl, 
hextab[(p.charPtr[il ) & OxOfl); 

printf ("\n"); 
nsPtr->extra_buffer_length 
return; 
} 

/* listTable () 

*/ 
int 
listTable () ( 

4096; /* clobbered by this function */ 

/* Fix the Op Code field in the Request Block header for this function; 
reset the value of rbPtr->response; post the RB 

*/ 
rbPtr->opcode = LIST_TABLE; 
rbPtr->response = 0; 

cqcommrb (rb_segment, &Status); 
if (Status != 0) { 

printf ("cqcommrb failed: %4X\n", Status); 
exit (1); 

/* Wait for iNA to return the RE, and make sure the operation completed 
* without error. 
*/ 
rb_segment = rqreceivemessage (responseMbx, 100, NULL, &Status); 
if (Status != 0) { 

if (Status == E_TIME) 
printf ("list_table failed: no response from iNA\n"); 
exit (1); 
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Figure 11.9 ( Continued) 
printf ("rqreceivemessage failed: %4X\n", Status); 
exit (1); 
} 

if (rbPtr~>response == E_BUFF_SPACE) 
printf ("Local portion of database. > 4 KB. OUtput truncated\n"); 

else if (rbPtr->response != OK_RESPONSE) { 
printf ("list_table request failed: %s", 

nsResponseCodes[rbPtr->response); 
return; 
} 

if (extraBuf->count == 0) { 
printf ("Local portion of database is empty\n"); 
return; 
} 

/* Interpret the contents of the returned table for display on the 
* screen. Because the strings make the size of each object in the 
* database unknown at compile time, each object has to be interpreted 
* individually; Use anyPtr to keep track of where we are in the table. 
*/ 
p.anYPtr = &(extraBuf->name_Iist[O); 
printf ("NAME TYPE HEXADECIMAL VALUE\n") ; 
for (i = 0 ; i <: extraBuf->count; i++) { 
if «i % 24) == 23) { 

printf ("more? 0); gets (commandLine); 
if (*commandLine == 'q') { 

return; 
} 

printf ("%-16s cstr (p.charPtr, p.charPtr»; /* property name */ 
p.charPtr += strlen (p.charPtr) + 2; /* skip unique flag too */ 
printf ("%4X ", *(p.wordPtr»; /* property type */ 
p.charPtr += sizeof (WORD) + 1; /* skip property value type too */ 
for (j = 0; j < *(p.wordPtr); j++) { 

printf ("%c%c ", hextab[(*(p.charPtr + j + 2) » 4) & OxOf), 
hextab[*(p.charPtr + j + 2) & OxOf); 

if «j % 16) == 15) printf ("\n "); 
} 

printf ("\n"); 
p.charPtr += (*p.charPtr) + 2; 
} 

/* skip to next entry */ 

return; 
} 

/* 

* 
main() 

*/ 
int 
main (int argc, char *argv[) ( 

int 
WORD 

/* 

* 

* 
* 

i; 
Status; 

Initialization 

Be sure iNA is available before continuing, then allocate 
all the resources this job will need. 
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Figure 11.9 ( Continued) 

These consist of: 
* corom user ID 

*/ 

nameserver RB segment 
response mailbox for RBs 

root_job = rqgettasktokens (ROOT_JOB, &Status); 
a_token = rqlookupobjeet (root_job, "\6INARDY", NO_WAIT, &Status); 
if (Status != E_OK) { 

printf ("iNA is not available\n"); 
return 1; 

user_id = cqcreatecommuser (&Status); 
if (Status != E_OK) { 

printf ("cqereateeommuser failed: %4X\n", Status); 
return 1; 

rb_segment 
rqcreatesegment (sizeof (struct name_server_rb), &Status); 

if (Status != E_OK) { 
printf {"rqcreatesegment failed: %4X\n", Status); 
return 1; 

responseMbx = rqcreatemailbox (0, &Status); 
if (Status != E_OK) { 

printf ("rqcreatemailbox failed: %4X\n", Status); 
return 1; 

/* Initialize the buffer pointers to be used for name server names 
* and values. 
*/ 

nameBuf = (NAME_BUFFER *) response.nameString; 
propValBuf = (VALUE_BUFFER *) &response.valueLength; 
if «extraBuf = (EXTRA_BUFFER *) malloc (4096) == NULL) 

printf ("malloe failed\n"); 
return 1; 

/* Initialize the contents of the single segment we will be using for 
all request blocks in this program. 

*/ 
First, the header portion declared as RB_COMMON in cqcommon.h 

rbPtr = (RB_COMMON *) buildptr (rb_segment, 0); 
rbPtr->reserved[O) = 0; 
rbPtr->reserved[I) = 0; 
rbPtr->length = sizeof (NAME_SERVER_RB); 
rbPtr->user_id = user_id; 
rbPtr->resp-port = OxFF; 
rbPtr->rb_seg_tok = rb_segment; 
rbPtr->resp_mbox = responseMbx; 
rbPtr->subsystem = NAME_SERVER; 
rbPtr->opcode = LIST_TABLE; /* first operation */ 
rbPtr->response = 0; 
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figure 11.' (Continued) 

/* 

* 
*/ 

Now, the nameserver arguments, declared as NAME_SERVEILRB 
in cqname.h 

nsptr = (struct name_server_rb *) rbPtr; 
for (i = 0; i < 6; i++) nsPtr->reservedlil = 0; 
nsptr->name_buffer-ptr = 

cqcommptrtodword «void *) nameBuf, &Status); 
if (Status != 0) { 

printf ("cqcommptrtodword failed: %4X\n", Status); 
return 1; 
} 

nsptr->unique_IliI1IIELflag = Oxff; /* Unique for this program */ 
nsptr->property_value_type = 0; /* Only unstructured values */ 
nsptr->pv-Puffer-ptr = 

cqcommptrtodword «void *) propvalBuf, &Status); 
if (Status != 0) { 

printf ("cqcommptrtodword failed: %4X\n", Status); 
return 1; 
} 

nsptr->extr~buffer-Ptr = 
cqcommptrtodword (void *)extraBuf, &Status); 

if JStatus != 0) { 
printf ("cqcommptrtodword failed: %4X\n", Status); 
return 1; 
} 

nsPtr->extra-Puffer_length = 4096; 

/* Greet the user with a list of the current contents of the database 
*/ 

listTable () ; 

/* Main Loop 

* 
* 
* Get a string from the user, and dispatch it to the proper 
* function, based on the opcode 
*/ 

for (;;) { 
doCommand ( ) ; 
} 

return 0; /* never reached */ 

add_name. The user supplies a name, property type, and property value, 
which are entered into the database. The namesrv program assumes the 
entry is unique and accepts only a character ,string for the value, but these 
restrictions are not imposed by iNA. No information is returned by iNA 
except a response code telling if the operation was successful or not. If the 
operation fails, namesrv displays a string indicating the reason for failure 
using the mnemonics defined in cqname. h. 

delete_name. The user supplies a name, and iNA deletes all entries 
with a matching name, regardless of property type, from the database. No 
data is returned by iNA, only a response code. 
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get_value. The user supplies a name and property type, and iNA re
turns the value for the property in the value buffer supplied in the RB. The 
program sets the uniqueness Boolean to true, so iN A returns only the value 
found on the local system. The option to specify a value of false is not sup
ported by the program, but if a value of false was specified, iNA would 
query the entire network to find all matching entries in the distributed da
tabase and return a list of values to the user. 

change_value. The user supplies the same information as for add_ 
name, and the value for the corresponding entry in the database is updated 
accordingly. This operation fails if the name and property type are not al
ready entered in the database. No data is returned by iNA, only a response 
code. 

de lete _property. The user supplies both a name and a property type, 
and the entry is deleted from the database. Contrast this with the dele
te _name operation described previously. No data is returned by iN A, only 
a response code. 

get_name. The user supplies a property type and a value, and iNA re
turns a list ofthe name portion of all matching entries in the database. The 
list of names is returned in the extra buffer pointed to by the RB. If the 
extra buffer is not large enough to hold the entire list, an error code is re
turned, but as much of the list as will fit is placed in the user's buffer. 

get_spokesman. The user supplies a name and property type, and iNA 
returns (in the extra buffer) the Ethernet address of the computer that 
holds the corresponding entry. The spokesperson (spokesmachine?) 
mechanism is used by iRMX-Net for accessing systems that run iNA but 
for which there is no operating system software available to initialize the 
database locally. The HI commands setname and loadname can be used to 
make an iRMX system act as a spokesperson for other systems that do not 
support the iNA nameserver. 

list_table. The user supplies no arguments; iNA returns the entire 
local portion ofthe database in the extra buffer. Using this option with the 
namesrv program produces the same result as the iRMX-Net listname 
command. 

11.10 The Network Management Facility 

Users have access to many of the parameters, statistics, and other infor
mation maintained by iNA through its Network Management Facility 
(NMF). Services provided by the NMF include: 

• Asynchronous event notification. For example, an RB can be returned 
every time iNA encounters an invalid Transport layer addresses. 

• Configuration information about iNA. Such as the maximum TPDU 
size or the number of virtual circuits that can be open at a time. 
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• Statistical information, such as the total number of transmitted data
grams or the total number of expedited data bytes transmitted over vir
tual circuits. 

• Connection information, such as a list of all current CDBs (see the pre
vious discussion of virtual circuits) or the local and remote TSAP IDs for 
a virtual circuit. 

• Routing information. This information includes routing tables, configu
ration parameters, and statistics. 

• A dump ofiNA's memory. This option is useful to users who implement 
their own configurations of iNA. 

• Remote boot operation. A diskless workstation can obtain an operating 
system image from a remote computer's disk file using this feature. 

An HI command called inamon provides interactive access to many of 
iNA's NMF facilities. A simpler command, called mynamon, (pardon the 
pun) is given in Figure 11.10. mynamon prompts the user for an NMF ob
ject ID and displays the information that iNA returns about that object. 
NMF object IDs are 4-digit hexadecimal values used to identify the infor
mation the user is interested in seeing. The first two digits identify which 
part of iNA maintains the information, and the second two digits identify 
the particular object. iNA recognizes about 200 different object IDs. Their 
values are given in Appendix A of the iNA 960 Programmer's Reference 
manual. Values for the first two digits are the following: 

20, 21, 25 
31 

Various Data Link implementations 
Network 

38 
39 
40 
41 
80 
81 

Static Routing 
ES-IS Routing 
Transport layer virtual circuits 
Transport layer datagrams 
iNA NMF itself (system time and version number) 
Boot Server 

Figure 11.10 Source code for mynamon, a program that allows a user to examine Network 
Management Function (NMF) objects interactively. 

1***> ~namon.c <**************************************************** 

* This program allows users to examine Network Management objects 
on the local system. 

* 
The user enters a network object ID in hex and gets back a 

* hex dump of the returned object. Returned items that are 

* 

two or four bytes in length are assumed to be unsigned values 
and are displayed in decimal as well as hex. 

*********************************************************************/ 
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Figure 11.10 (Continued) 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 

iNA Interface Function Prototypes *J 
#include <rmxc.h> 
#include <cqcomm.h> 
iinclude <cqcommon.h> 
#include <cqnmf.h> 

/* 
/* 
/ .. RB common header structure *f 

NMF structs. opcodes. and response codes *f 

#include "nmfrespc.h" /* NMF response code strings 

#define E_OK 
#define NO_WAIT 
#define E_TlME 
#define ROOT_JOB 

o 
o 
1 
3 

/* Static and global variables 
*/ 

TOKEN 

*rbPtr; 
*nmfPtr; 

COMMAND_BUFFER *commandPtr; 
RESPONSE~UFFER *responsePtr; 

union ( 

WORD 
DWORD 
char 
BYTE 
} p; 

static 
static 
static 
static 

int 
WORD 
char 
char 

/* pointer aliases *f 
*wordPtr; 
*dwordPtr; 
*charPtr; 
*bytePtr; 

i, n; 
Status; 
reply[81]; 
hextab[] "0123456789ABCDEF"; 

/* 

* 
showHexString ( ) 

* 
* Display count-many bytes in hex 

*J 
void 
showHexString (unsigned char count. unsigned char *bytes) { 
int i; 

J* 
* 

for (i = 0; i < count; i++) { 
printf ("%c%c " hextab[(bytes[i] » 4) & OxOF]. 

hextab[bytes[i] &OxOF]); 
if (Ii % 16) == 15) printf ("'n"); 
} 

printf ("'n"); 
return; 

nmfString I) 

*J 
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Figure 11.10 (Continued) 

* Return a string from nmfResponseCodes for a response code value. 
*/ 

char * 
nmfString (WORD codeVal) { 
struct nmf_codes *rcPtr = &nmfResponseCodes[O]; 

while (rcPtr->codeValue != Oxffff) 
if (codeVal == rcPtr->codeValue) return rcPtr->codeString; 
rcPtr++; 
} 

return ·Unknown NMF response code"; 

/* main() 

*/ 
int 
main 

/* 

* 

* 
* 

* 
* 

*/ 

(int argc, char *argv[]) { 

Initialization 

Be sure iNA is available before continuing, then allocate 
all the resources this job will need. 

These consist of: 
comm user ID 
nameserver RB segment 
response mailbox for RBs 

root_job = rqgettasktokens (ROOT_JOB, &Status); 
a_token = rqlookupobject (root_job, "\6INARDY", NO_WAIT, &Status); 
if (Status != E_OK) { 

printf ("iNA is not available\n"); 
return 1; 
} 

user_id = cqcreatecommuser (&Status); 
if (Status != E_OK) { 

printf ("cqcreatecommuser failed: %4X\n", Status); 
return 1; 

rb_segment 
rqcreatesegment (sizeof (struct nmf_object_rb), &Status); 

if (Status != E_OK) { 
printf ("rqcreatesegment failed: %4X\n", Status); 
return 1; 
} 

responseMbx = rqcreatemailbox (0, &Status); 
if (Status != E_OK) { 

printf ("rqcreatemailbox failed: %4X\n", Status); 
return I: 

/* Initialize the buffer pointers to be used for commands and replies 
*/ 
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Figure 11.10 ( Continued) 

/* 

* 
*/ 

if «cornmandPtr = (COMMAND_BUFFER *) 

malloc (sizeof (COMMAND_BUFFER») 
printf ("malloc failed\n"); 
return 1; 

NULL) { 

if «responsePtr = (RESPONSE_BUFFER *) 
malloc (sizeof (RESPONSE_BUFFER) + 512» 
printf ("malloc failed\n"); 
return 1; 

NULL) { 

Initialize the contents of the segment we will be using for 
all request blocks in this program. 

First, the header portion declared as RB_COMMON in cqcommon.h 

rbPtr = (RB_COMMON *) buildptr (rb_segment, 0); 
rbPtr->reserved[O] = 0; 
rbPtr->reserved[1] = 0; 
rbPtr->length = sizeof (NMF_OBJECT_RB); 
rbPtr->user_id = user_id; 
rbPtr->resp-port = OxFF; 
rbPtr->rb_seg_tok = rb_segment; 
rbPtr->resp_mbox = responseMbx; 
rbPtr->subsystem = NMF; 
rbPtr->opcode = READ_OBJECT; /* always */ 

rbPtr->response = 0; 

/* Now, the net management arguments, 
declared as NMF_OBJECT_RB in cqnmf.h 

*/ 
nmfPtr = (NMF_OBJECT_RB *) rbPtr; 
nmfPtr->reference = 0; /* Local Agent Only */ 
nmfPtr->resp_buf-ptr = 

cqcommptrtodword «void *) responsePtr, &Status); 
if (Status != 0) { 

printf ("cqcommptrtodword failed: %4X\n", Status); 
return 1; 
} 

nmfPtr->resp_buf_length sizeof (RESPONSE_BUFFER) + 512; 
nmfPtr->cmd_buf-ptr = 

cqcommptrtodword «void *) commandPtr, &Status); 
if (Status != 0) { 

printf (·cqcommptrtodword failed: %4x\n", Status); 
return 1; 

nmfPtr->cmd_buf_length = sizeof (COMMAND_BUFFER); 

/* Finally, the fixed fields of the command buffer 
*/ 

commandPtr->num_obj = 1; 
commandPtr->obj_info[O] .object Ox4001; /* conn. ID list */ 
commandPtr->obj_info[O] .modifier = 0; 
commandPtr->obj_info[O] . length 0; 

/* Main Loop 
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Figure 11.10 ( Continued) 

* 

*/ 

Get a command string from the user. Exit, if requested. 
Otherwise, accept an object id and, optionally, a VC id. 

for (;;) { 

if (argc > 1) { 
printf ("\nEnter an object id in hexadecimal (%X): %s\n", 

commandPtr->obj_info[O) .object, argv[l); 
strcpy (reply, argv[l); 
argc--; argv++; 
) 

else { 
printf ("\nEnter an object id in hexadecimal (%X): " 

commandPtr->obj_info[O) .object); 
gets (reply); 
) 

if «*reply == 'e') II (*reply == 'q'» return 0; 
if (strspn (reply, " 0123456789ABCOEFabcdef") != strlen (reply» 

printf ("\nEnter q or e to exit,\nenter "); 
printf ("an 10 from Appendix A of iNA Programmer\'s "); 
printf ("Reference,\nor press <enter> to accept "); 
printf ("the default value displayed\n"); 
continue; 
} 

if (strlen (reply» 
commandPtr->obj_info[O).object = strtoul (reply, NULL, 16); 

if «commandPtr->obj_info[O] .object > Ox4080) && 
(commandPtr->obj_info[O] .object < Ox4093» 

printf ("Enter virtual circuit 10 (%X): ", 
commandPtr->obj_info[O] .modifier); 

gets (reply); 
if (strlen (reply» 

commandPtr->obj_info[O] .modifier strtoul (reply, NULL, 16); 

/* Post the RB to iNA, wait for reply, check results. 
*/ 

cqcomrnrb (rb_segrnent, &Status); 
if (Status != 0) ( 

printf ("cqcommrb failed\n;"); 
return 1; 

a_token rqreceivemessage (responseMbx, 500, NULL, &Status); 
if (Status == E_T1ME) { 

printf ("No response from iNA \n") ; 
return 1; 
} 

if (Status != E_OK) { 
printf ("rqreceivemessage failed\n"); 
return 1; 

if (rbPtr->response != OK_RESPONSE) { 
printf ("Request failed: %s\n", nmfString (rbPtr->response»; 
continue; 
) 
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Figure 11.10 (Continued) 

if (responsePtr->obj_info[O] .status != E_OK_OBJ_CMND) { 
printf ("Request failed: %s\n", 

nmfString «WORD) responsePtr->obj_info[O] .status)); 
continue; 

/* We have a valid response from iNA; display it 
*/ 

p.byteptr = &responsePtr->obj_info[O] .value[O]; 
switch (commandPtr->obj_info[O] .object) { 

case Ox4001: /* Connection ID vector */ 
if (responsePtr->obj_info[O] . length == 0) ( 

printf ("There can be no virtual circuit connection IDs\n"); 
break; 
) 

printf ("Virtual circuit connection IDs:\n"); 
n = 0; 
for (i = 0; i < responseptr->obj_info[O] . length / 2; i++) { 

if (*p.wordPtr) { 
printf (" %4X\n", *p.wordPtr); 
if «++n % 24) == 23) { 
print f ("more? "); 
gets (reply); 
if «*reply == 'q') II (*reply 'n')) break; 
) 

p.wordPtr++; 
) 

if (n == 0) printf (" 
break; 

none\n"); 

case Ox4081: printf ("Local TSAP selector:\n ,,); 
showHexString (responsePtr->obj_info[O] .value[O] , 

&responsePtr->obj_info[O] .value[l]); 
break; 

case Ox4082: printf ("Remote NSAP address: \n ,,); 
showHexString (responsePtr->obj_info[O] .value[O], 

&responsePtr->obj_info [0] . value [1] ) ; 
break; 

case Ox4083: printf ("Remote TSAP selector:\n "); 
showHexString (responsePtr->obj_info[O] .value[O], 

&responsePtr->obj_info[O] .value[l]); 
break; 

case Ox8049: responsePtr->obj_info[O] .value 
[responseptr->obj_info[O] . length] 

printf (" System time is %s \n" , 
responseptr->obj_info[O] .value); 

break; 

default: 
if (responsePtr->obj_info[O] . length 2) 

printf ("The value is Ox%X (%d)\n", 
*p.wordPtr, *p.wordPtr); 

'\0' ; 
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Figure 11.10 (Continued) 

else if (responseptr->obj_info[O] . length 4) 
printf ("The value is Ox%lX (%ld)\n", 

*p.dwordPtr, *p.dwordPtr); 
else { 

printf ("The value is: "); 
if (responsePtr->obj_info[O] . length > 16) printf ("\n"); 
showHexString (responsePtr->obj_info[O] . length, 

&responsePtr->obj_info[O] .value[O]); 

return 0; /* never reached */ 

11.11 Data Link Operations 

Like the other iN A modules, the Data Link layer can be accessed using the 
RB interface. Normally, the Data Link layer is accessed only from within 
iNA itself, but users are given direct access to this layer using a set of RB 
commands collectively called the External Data Link (EDL) interface. 
The EDL commands bypass the Transport and Network layers of iNA to 
provide users with the ability to program functions that would otherwise be 
impossible. You should note, however, that this increased functionality 
comes at a price. You can send and receive datagrams using the ED L, but 
you must code your application to handle the network protocols that might 
be used by different packets and the problems of unreliable delivery asso
ciated with datagram service. Applications that access the network 
through the Transport layer do not have to deal with these issues. 

In addition to supporting the direct transmission and receipt of data
grams, the EDL provides RB functions for multicast filtering and raw 
packet processing. To understand these two types of functions, you must 
delve a bit into the Physical layer ofthe ISO diagram shown in Figure 11.1. 
First, note that this book always assumes that a LAN is implemented using 
Ethernet to connect the computers. Actually, iNA provides support for 
both Ethernet connections (IEEE Standard 802.3) and Token bus connec
tions (IEEE Standard 802.4), using different device controllers, of 
course.l3 

Everything said so far applies equally to both types of network. Even the 
information that follows is true conceptually for both Ethernet and Token 
bus networks, but the details are given in Ethernet terms, just to be con
crete. 

When a packet is transmitted over the Ethernet, it is sent simulta
neously to all device controllers connected to the cable, and all controllers 

13iNA can also be configured to support other device controllers. 
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examine the packet header to see if the 6-byte address contained in the 
packet matches the value embedded in that particular controller. Nor
mally, a controller simply ignores all packets for which the address is not 
an exact match, but two mechanisms can be used that allow the device 
controller to accept additional packets and make them available to the 
Data Link layer. One is called the broadcast address mechanism, which uses 
a special address, OxFFFFFFFFFFFF, that all Ethernet device controllers 
accept if they are programmed to do so. The other mechanism, called 
multicast addressing, causes the device controller to accept packets that 
contain any of several addresses in their header field. A special case of 
multicast processing, called promiscuous mode, causes the device con
troller to accept all packets that pass along the Ethernet cable. The crucial 
concept here is that a single device controller is not restricted to accepting 
only those packets specifically addressed to it. 

The term multicast filtering refers to the ability of an application to de
termine which network packets are accepted by the local system and which 
are ignored. For example, our transport layer datagram example timesrv 
could invoke multicast filtering so that its unspecified NSAP address 
would actually result in the receipt of datagrams from a selected set of re
mote client machines, rather than all remote machines that sent packets 
using the proper TSAP ID. The EDL provides two ways to control multi
cast filtering. One, using the conf igure RB opcode, allows the user to add 
addresses to (or remove address from) the device controller's list of recog
nized multicast addresses. The second method is to use the mc _add opcode 
to set up a list of addresses used to perform multicast filtering by the Data 
Link software. 

Normally, all Data Link communication is controlled by matching Link 
Service Access Point (LSAP) IDs between the sender and the receiver. You 
have already seen that iNA's Network layer uses LSAP ID OxFE when you 
looked at the remote NSAP structure within a ta_buffer. This same 
LSAP ID is used by the nameserver, which operates as a Transport layer 
application from within iNA. Another LSAP ID (Ox08) is used by iNA's 
NMF module when it accesses information about remote systems to exam
ine or modify data maintained there. Users who wish to perform EDL da
tagram operations would choose their own LSAP IDs, ensuring that the 
selected IDs do not conflict with others that might already be in use. 

A special LSAP ID, Ox99, is reserved for a special Data Link service, 
called the raw EDL (RA WEDL) interface. Use ofthis LSAP ID, along with 
promiscuous-mode multicast filtering, allows an iRMX application to re
ceive all Ethernet packets not specifically addressed to another ISO LSAP 
on the local machine. That is, an application can receive network packets 
that are in the ISO format, but are not specifically addressed to the local 
machine, and it can receive packets that do not follow the ISO format for 
packet structure. Receiving packets addressed to other computers can be 
used to develop a network analyzer program to look at network traffic 
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loads, isolate connectivity problems, and the like. Receiving non-ISO 
packets means that an application can be written that will support multi
pIe protocol stacks concurrently. 

No problems occur with having multiple types of network share a single 
physical link, such as a single Ethernet cable. For one thing, each packet 
sent over the Ethernet includes the address of the destination computer. 
Two Novell network nodes can send Ethernet packets to each other, which 
will simply be ignored by all the other computers connected to the same 
cable simply because they do not have the same addresses. In addition, 
every network protocol, whether it is ISO, TCP lIP, Novell, DECNET, or 
any other, includes header information in each packet that it transmits 
over the network. 

When a packet arrives that survives multicast filtering, the Data Link 
layer performs certain checks, such as a CRC computation, to verify that 
the packet has not been corrupted and does indeed conform to the format 
expected for that protocol. Packets that fail these protocol checks are sim
ply discarded. The idea is that a lost packet will result in some higher-level 
software detecting a communication problem so that the packet will be 
transmitted again.14 

iNA's RAWEDL interface allows an application to receive Ethernet 
packets that fail the Data Link's check for valid ISO protocol format. This 
means that a single device controller, operating with a single Ethernet ad
dress, could be programmed to accept ISO, TCP/IP, and IPX network 
traffic. Thus, ifthe Data Link receives a packet not in proper ISO format, it 
sends it to an application that has posted a raw_post_recei ve RB with 
an LSAP ID of Ox99. That application can then examine the packet to de
termine what protocol it does adhere to, and pass it on to the Networking 
module for the proper protocol stack, or discard it if it cannot be recog
nized. A TCP lIP protocol stack for iRMX that coexists with the present 
ISO functions provided by iNA is under development at Intel, as men
tioned earlier. 

I'This action is the reason that datagram processing is considered unreliable: if a packet 
somehow becomes corrupted, the sender is not notified. The different networking protocols in 
use are designed so that a packet that is valid for one protocol will always appear to be invalid 
for all other protocols. A Novell node using Novell's IPX network protocols would never ac
cept a TCP lIP packet, for example, even if it contained the proper 6-byte Ethernet address 
for the node. 
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12 
iRMX for Windows 

12.1 Overview 

DOS, Windows, and iRMX all bring their own characteristics to iRMX for 
Windows. DOS brings a simple operating system whose popularity has en
gendered a tremendous amount of application software, as well as a large 
body of knowledgeable users and developers. DOS, however, is constrained 
in the areas of memory management, multitasking, and user interface de
sign. Windows addresses all three of these DOS problems, and improves on 
them as well. Windows also provides good facilities for sharing informa
tion among different applications. iRMX's list of contributions to the 
equation is long, including true multitasking within applications, efficient 
real-time task management, and good support for customizing the operat
ing system itself. 

Two or three operating systems (depending on whether you want to call 
Windows an operating system or not) that run concurrently on a single 
computer extract penalties. Each of the three adds its own memory re
quirements to the system, and each draws on the processing power avail
able from the CPU. The payoff, however, is that the whole is greater than 
the sum of its parts. By drawing on the strengths of each of the compo
nents, iRMX for Windows brings more than just real-time computing to 
the DOS environment. 

iRMX for Windows with DOS alone provides extended memory man
agement and access to iRMX's peer-to-peer networking capabilities, for 
example. Adding Windows to the configuration provides real-time appli
cations with access to the Dynamic Data Exchange (DDE) mechanism for 
sharing information among Windows and iRMX applications, and ex
tends the DDE mechanism to include network links among applications, 
which Windows alone does not support. 

Since the design of the iRMX operating system has already been dis
cussed in earlier chapters, this chapter presents iRMX for Windows in 

469 
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terms ofthe features it adds to iRMX III. iRMX for Windows actually adds 
features to DOS, Windows, and iRMX in an integrated fashion, so the dis
cussion does not always maintain the simple view of iRMX for Windows as 
iRMX with some added features. Nevertheless, that view provides a conve
nient framework for this information, so this chapter is organized as a pre
sentation of features that fall into the following categories: 

• Console management . 

• File system compatibility. 

• Interrupt management. 

• System call compatibility. 

• Memory management. 

• VM86 protected mode extensions. 

• Windows compatibility . 

• Network compatibility. 

• Run-time configuration. 

Many of these topics have been considered tangentially in earlier chap
ters, and some of these features, such as run-time configuration, will no 
longer be unique to iRMX for Windows when they are incorporated into 
other versions of iRMX. 

Note that Windows compatibility and network compatibility are in
cluded in the preceding list. Despite the name of the operating system, 
Windows is not required to run iRMX for Windows. Likewise, you do not 
need a network to run iRMX for Windows, but support for Windows and 
support for networking is always available. 

Instructions for using these facilities are well documented in the iRMX 
for Windows documentation set. This chapter provides a guide to the facil
ities and some background on the issues involved in allowing DOS, Win
dows, networking, and iRMX to coexist on a single computer system. 

12.2 Console Ownership 

The first feature an iRMX for Windows user normally encounters is the 
management of the console when DOS, iRMX, and possibly Windows are 
all running concurrently. Console refers to the keyboard and monitor con
nected directly to the host computer, not terminals that might be con
nected to the computer over serial links, and not monitors that might be 
connected to the system through additional display adapters beyond the 
first. Ownership refers to what program is to receive characters typed on 
the keyboard and what program is to display its output on the monitor at 
any moment. 
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Console ownership is switched between DOS and iRMX by entering 
<alt-SysRq> from the keyboard. Switching the keyboard from the DOS 
side to iRMX or back is relatively straightforward, but control ofthe mon
itor is a bit more complex. For one thing, the information displayed on the 
screen should be preserved as control is switched back and forth between 
the two operating systems, but this is subject to two limitations. 

First, DOS programs that reset the video adapter destroy the image of 
the iRMX screen. Before switching to iRMX, it is necessary to restore the 
display adapter to text mode, and you must press <enter> on the iRMX 
side to display a new prompt on the screen. 

Second, graphics programs (such as Windows) are incompatible with 
the iRMX use of the console, and <alt-SysRq> is not recognized when 
these graphics programs are running. Note that this limitation is not in ef
fect when command. com is being run from Windows because com
mand.com runs with the display adapter set to text mode. 

But what happens if an iRMX application tries to generate output while 
DOS owns the console, or vice versa? The iRMX side will store the output 
in a buffer and display it on the screen when control returns, but output by 
DOS programs is discarded when iRMX owns the console. 

The console switch between DOS and iRMX can be invoked from pro
grams as well as from the keyboard. For example, Figure 12.1 is an iRMX 
program that makes a DOS system call to display a message on the screen 
using the rqe _ dos Jequest( ) system call described in section 12.5.1. Before 
calling rqedosrequest(), the code programmatically switches to the DOS 
console by invoking the iRMX for Windows system call, rqealtsysreq(), 
and then switches back to the iRMX prompt before exiting the program. 
When the program is run from the iRMX prompt, the screen switches to 
the DOS prompt for a fraction of a second, generates its output on the 
screen, and returns to the iRMX prompt. Manually switching back to the 
DOS prompt reveals the message on the DOS screen. 

Figure 12.1 iRMX program to display a string by making a DOS system call. (This program 
does not produce legible output when run under Windows.) 

/ •• *> hel1odos.c <** •• ********************************************** 

* 
* iRMX program to display "Hello, World!' by invoking a DOS system 
* call to print a string. 
* 
.*.*****************************************************************/ 

#include <rmxc.h> 

#define NULL (void far *) 0 
#define TSRCONTEXT 0 
#define NONE 0 
#define TRUE 1 
#define DS_DX 2 
#define toRMX 3 
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Figure 12.1 ( Continued) 

#define 
#define 

extern BYTE 

toDOS 
threeSeconds 

rqealtsysreq (BYTE, WORD far *); 

int 
main (int argc, char *argv[]) { 

4 
300 

BYTE helloWorld[] = "Hello, World!\r\n$"; 
DOS_DATA_STRUCT dosRegisters; 
BYTE consoleCode; 
WORD Status; 

dosRegisters.x.int_nurn = Ox21; 
dosRegisters.x.tsr_flags = TSRCONTEXT; 
dosRegisters.x.reg_ax = Ox0900; 
dosRegisters.x.xfer_data = TRUE; 
dosRegisters.x.srcl_xfer-pair = DS_DX; 
dosRegisters.x.src2_xfer-pair = NONE; 
dosRegisters.x.destl_xfer-pair = NONE; 
dosRegisters.x.dest2_xfer-pair = NONE; 
dosRegisters.x.src-ptr_l = helloWorld; 
dosRegisters.x.src_count_l = sizeof (helloWorld); 

consoleCode = rqealtsysreq (toDOS, &Status); 
rqedosrequest (&dosRegisters, threeSeconds, &Status); 
consoleCode rqealtsysreq (toRMX, &Status); 
rqexitiojob (0, NULL, &Status); 

The program can also be invoked directly from Windows by running the 
wterm demonstration application provided with iRMX for Windows, or 
the Win Term terminal emulator available from Markefield Software. 
These programs allow users to interact with the iRMX console through a 
Windows window. Running the sample program from wterm or Win Term 
results in output to the screen, but the message and ASCII string cannot be 
read because the screen is in graphics mode. Part of the Windows display 
will be changed (the J1Pper left corner), but no text appears. 

The rqealtsysreq() function is currently supplied in its own library, 
: sd: rmx386/demo/altsys/altsys . lib. The function prototype is: 

BYTE 
rqeal tsysreq ( BYTE 

WORD far * 

The possible values for functionCode are: 

1 Acquire lock 
2 Release lock 

functionCode, 
exceptionPtr); 
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3 Switch to DOS 
4 Switch to iRMX 
5 Inquire ownership 

The lock referenced for values 1 and 2 is a mutual exclusion mechanism 
that can guarantee that only one program will attempt to change owner
ship of the console at one time. The lock was not used in the sample code 
because the issue is not a crucial. Value 5 is used to determine which oper
ating system currently owns the console. The function returns a Boolean 
value indicating the owner ofthe console (0 = DOS, OxFF = iRMX). For 
functions 3 and 4, the value indicates the owner before the call was made. 
For functions 1 and 5, it indicates the current owner. No return value is 
defined for function 2. 

12.3 File System Compatibility 

The DOS file system is similar to the iRMX file system in three ways. They 
both: 

• Use a tree structure consisting of directories and files. 

• Do not differentiate between uppercase and lowercase letters in file and 
directory names. 

• Allow files to be hidden and/or read-only. 

There are, however, significant differences between the two file systems. 
First, an iRMX file system incorporates the notion of file system users, 
with different users having different access privileges for individual files 
and directories. iRMX file attributes are also maintained separately for 
different users, and the attributes (or permissions) include deletion, read
ing, appending to the end, and updating. Also, "hidden" is not an attribute 
for iRMX files, but an effect of a file-naming convention. Hidden iRMX 
files have names that begin with r? or R? 

DOS file and directory names follow the 8.3 naming rule (eight charac
ters, an implied dot, and a three character extension), whereas an iRMX 
file system allows up to 14 characters in virtually any combination for file 
and directory names. 

The two operating systems also use totally different data structures for 
representing a file system on a disk volume. The iRMX file system struc
ture was introduced in section 8.4 and is documented in the iRMX Com
mand Reference, volume 10 ofthe iRMX for Windows documentation set. 
The structure of the DOS file system is documented in a number of differ
ent places, including the Disk Explorer manual provided with the Norton 
Utilities product for DOS, or the technical reference manuals available 
from Microsoft for the various versions of DOS. 

A DOS file system is required for running iRMX for Windows. The soft-
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ware is installed in a DOS partition, and DOS commands are used to ini
tialize the iRMX operating system. Beyond that, you can choose to have 
any iRMX volumes or not. An iRMX volume can take the form of an entire 
hard disk drive, a partition on a hard drive, or a diskette. The issues in
volved in deciding whether to use iRMX volumes or not include conve
nience, performance, functionality, and security. 

The convenience of an iRMX volume is the freedom to use 14-character 
file and directory names rather than the 8.3 rule for DOS. On the other 
hand, the DOS file system on a floppy is a convenient way to transfer files 
from one platform to another. Because DOS is so pervasive, almost all 
operating systems (including iRMX) can read and write DOS-formatted 
diskettes. 

The performance issue concerns the speed and predictability of the two 
file system implementations. Data transfers using an iRMX file system are 
generally faster than DOS, although there are a number of side issues here, 
notably the hardware or software disk caching that is often done on DOS 
systems. On the other hand, any caching scheme improves average per
formance at the expense of response time predictability because a cache 
miss involves much more overhead than a cache hit. Many real-time sys
tems cannot tolerate such indeterminacy. 

Presently, iRMX volumes on an AT platform do not provide any func
tions not available for DOS volumes other than access protection. One pos
sible difference in function deserves mention, however, in part to clarify 
some confusing terminology. 

Both iRMX III and DOS provide a command named mirror. Aside from 
the fact that the command is not presently available for iRMX for Win
dows, the two operating systems use the terms in totally different ways. 
The iRMX command is used to initiate a mode of operation in which every
thing written to one disk volume is also written to a second volume to en
sure high reliability in the face of possible disk failure. The two images of 
the disk volume are continuously verified to ensure no discrepancies exist. 
iRMX mirroring can also yield performance advantages if the user elects to 
have alternate read operations directed to alternate volumes in the mirror 
set because the system overlap pairs of operations in time. The DOS com
mand, however, is somewhat of a misnomer, since no copying of user data is 
invoked by that command. Rather, the DOS mirror command saves a 
snapshot of critical parts of a DOS file system (the file allocation table and 
the partition table) that can be used to recover from a user accidentally 
formatting a disk. iRMX provides similar functionality to DOS mirroring 
by allowing the user to reserve space for a copy of the fnode file when for
matting a volume. The backup option of the shutdown command creates a 
copy of the fnode file in this save area, which can be used to recover acci
dentally erased or physically damaged files using the diskverify utility. 

The final issue that might make an iRMX disk volume desirable is sys
tem security. Because a DOS file system has no provision for user identifi-
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cation or access rights, iRMX must treat all files and directories on all DOS 
volumes as having full access rights for the World user. iRMX does not 
purport to be a secure time-sharing system (anyone with access to the de
velopment tools for the system could write a program to run with Super 
user privileges), but the iRMX file system's protection features do prevent 
accidental destruction of system files and casual unauthorized access to 
other users' files. When an iRMX system is to be shared among several 
users, the protected file system can, at the least, prevent unintended con
flicts in using the system. Even a system used only by a single individual 
can benefit from the protected file system. Provided the individual makes a 
habit of doing development work as a user other than Super and becomes 
Super only for system administration chores, much inadvertent damage to 
the file system can be avoided. 

12.3.1 Accessing a DOS volume from iRMX 

All iRMX for Windows installations must be able to access DOS files from 
iRMX. This access is accomplished by the iRMX Encapsulated DOS file 
driver, EDOS. The word encapsulated in the name of this driver refers to 
the fact that it is used with the version of iRMX that encapsulates DOS as 
a VM86 task. There is nothing encapsulated about the file driver itself. 

When file drivers were introduced in chapter 8, it was noted that the file 
driver acts as an intermediary between application tasks that make iRMX 
BIOS system calls and a device driver that performs the actual I/O opera
tions involving interaction with the hardware device controller. No iRMX 
device drivers for disks or other devices, however, directly access DOS disk 
volumes. Rather, the EDOS file driver performs its I/O operations by 
making calls to DOS itself, as described later. This technique ensures that 
the two operating systems do not interfere with each other, but you gener
ally pay a performance penalty for accessing devices through EDOS com
pared to using a file driver that communicates directly with an iRMX de
vice driver. 

Of course, EDOS cannot make a silk purse out of a sow's ear. For exam
ple, if you call rqsgetdirectoryentry( ) with a connection to a directory on a 
DOS volume, you will get back a data structure that looks just like what you 
get back from the same call for an iRMX volume. The contents of the 
entry, however, will be limited to the DOS 8.3 format, with the period in the 
file name explicitly present to match the iRMX file naming rules. Going 
the other way, if you try to create a file or directory on a DOS volume using 
a name too long for the DOS system, any extra characters are silently 
dropped from the name, the same way DOS 5.0 'supports' long file names. 
If you try to create a file or directory with an illegal DOS file name (two or 
more periods, for example) the EDOS file driver will reject the request. 

EDOS converts files that have names starting with R? or r? into DOS 
hidden files, without the r? part of the name. Likewise, DOS hidden files 
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appear to the iRMX user as if they had r? at the beginning of their names. 
The iRMX dir command displays invisible files if you include the inv is i -
ble (or just i) parameter. For example, 

iRMX> dir $ invisible (1) 

displays the names of all files in the current directory ( $), including hidden 
ones. 

Finally, ED OS cannot add the iRMX file access protection mechanism 
to a DOS file system. Commands like permi do not return error messages, 
but all users are treated as the iRMX World user. The DOS system and 
archi ve attributes are not supported at all by EDOS, but the read -only 
attribute can be set for any file by using the permit command: 

iRMX> permit a_file nr u=world [2] 

This command is read, "Permit a_file to have no access but reading 
for user world." Any numerical value between 0 and OxFFFF could have 
been substituted for wor ld with the same effect because all iRMX user IDs 
are treated as the World user (ID 65535). Giving permission for deletion, 
reading, or update gives full access to the file for all users. 

12.3.2 Accessing an iRMX volume from DOS 

When iRMX for Windows is running, you can use sysload to install the 
iRMX-Hosted DOS File Server (RHDFS) job.1 This iRMX job provides 
support for the DOS command rmxuse. (How iRMX jobs and DOS pro
grams communicate with each other is discussed shortly.) The rmxuse 
command is used to map iRMX logical names to DOS drive letters. The 
command includes the option to perform an iRMX attachdevice to create 
the iRMX logical name if it does not already exist. The following are exam
pIes that show how the command can be used. (Note the use of c : > as our 
generic DOS prompt; rmxuse must be given as a DOS command, not 
iRMX.) 

c.> rmxuse F •• SD. [3] 

The iRMX logical name: SD: (the root directory ofthe system device) 
can now be referenced from DOS as drive F:. 

c.> rmxuse G. :1. \p=systeml \r [4] 

ty ou can load the RHDFS or Standard Mode Windows job, but not both. 
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The device name systeml is attached as the iRMX logical name: 1:, 
and can now be referenced from DOS as drive G: • The I r switch indicates 
that systeml is the name of a remote computer system rather than the 
name of a DUIB on the local system. You cannot do silly things with 
RHDFS and rmxuse, like map a DOS device for which there is an iRMX 
logical name onto another DOS drive letter: 

c:> rrnxuse H: :b: \p=b_dos [5] 

This command, if it worked, would let you refer to the DOS diskette in 
drive B: as H: . DOS provides its own commands, subst and join, for doing 
this sort of command directly without going through an iRMX job. For 
more examples of rmxuse, see the iRMX Command Reference. 

12.4 Interrupt Management 

A common theme throughout the remainder of this chapter is how the pro
cessor responds to interrupts in the various contexts in which it may be 
operating. This section provides an overview of how interrupts are han
dled. You may want to refer back to chapter 5 for background on the hard
ware features mentioned here. 

An i386 or later processor can operate in real, protected, or VM86 mode. 
When iRMX code is running, the processor is always in protected mode. 
When Windows is running the processor is in protected mode, but it puts 
the processor into real mode to run non-Windows (traditional DOS) appli
cations.2 iRMX for Windows puts the processor in VM86 mode whenever 
DOS is running without Windows and whenever Windows tries to put the 
processor in real mode to run a DOS application. Thus, any given hard
ware- or software-generated interrupt request could be destined for an 
iRMX protected-mode interrupt handler, a Windows or Windows applica
tion protected-mode interrupt handler, or a DOS real-mode interrupt 
handler. 

In real mode, the processor gets the address of the handler for an 
interrupt level from a vector of 256 pointers stored in the lowest 256 
doublewords of memory. In protected mode, the address of a handler is de
termined from one of the 256 entries in the Interrupt Descriptor Table 
(IDT). In VM86 mode, interrupts always vector into the IDT, and the 
operating system can then either call the corresponding real-mode inter
rupt handler or process the interrupt itself. 

2Windows has its own modes of operation, but it runs only in its standard mode with iRMX 
for Windows, so its 386 enhanced mode is ignored in this discussion. 
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managed by DOS and DOS applications, the protected-mode IDT man
aged by Windows and Windows applications, and the protected-mode IDT 
managed by iRMX. iRMX for Windows effectively merges the Windows 
IDT into its own because the processor can support only one IDT. Manag
ing interrupts destined for DOS's real-mode interrupt vector or the Win
dows IDT is the job of a routine called the VM86 Dispatcher. When an in
terrupt destined for Windows occurs, the VM86 dispatcher (using a 
program called smw.job) simply makes a far call to the interrupt handler 
provided by Windows. 

Handling interrupts destined for DOS's real-mode interrupt vector is 
more complicated. In VM86 mode (DOS always runs in VM86 mode), the 
processor causes a GP fault (interrupt level 13) if a program tries to execute 
an "IOPL-sensitive" machine instruction, and the privilege level of the 
current code segment is numerically greater than the I/O Privilege Level 
(lOPL) of the processor. 

IOPL-sensitive instructions include int instructions (used by DOS pro
grams to make system calls), as well as those instructions that enable or 
disable interrupts or perform I/O transfers. GP faults that occur while the 
processor is in VM86 mode can be either emulated or ignored by the VM86 
dispatcher. For example, by controlling attempts by DOS programs to dis
able interrupts, the VM86 dispatcher can preserve real-time responsive
ness for iRMX tasks at the expense of DOS or Windows performance. 

There are two choices for the processor's 10PL when DOS is running. If 
the IOPL is 0, DOS interrupts cause GP faults, but if the IOPL is 3, the mi
croprocessor does not trap 10PL-sensitive instructions, and DOS pro
grams run with minimal interference from iRMX (at the expense of 
iRMX's real-time responsiveness). A configuration option called interrupt 
virtualization is selected when an iRMX for Windows system initializes to 
determine the 10PL to be used when DOS is running. If the : con
fig: rrnx. ini file contains an entry, VIE=OOOh, in the [DISPJ] section, 
then interrupt virtualization is disabled, the IOPL is set to 3 when DOS 
runs, and iRMX interferes only minimally with DOS. 

If the entry is VIE=OFFh, then interrupt virtualization is enabled, the 
IOPL is set to ° when DOS runs, and DOS interferes only minimally with 
iRMX. If I/O-intensive DOS applications need to run efficiently while 
iRMX is maintaining real-time performance, the solution is to have iRMX 
manage the I/O operations. For example, an iRMX SCSI device driver can 
be loaded with iRMX for Windows to provide high-performance disk ac
cess to DOS applications even though interrupt virtualization is enabled. 

12.5 System Call Compatibility 

In chapters 9 and 10 you saw that iRMX application developers have ac
cess to the same mechanisms for adding device drivers, system calls, and 
type managers as the engineers who developed iRMX itself. Thus, it 
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should come as no surprise that the same mechanism used by the EDOS 
file driver to make DOS system calls is also available to iRMX for Win
dows developers. In addition, DOS programs can invoke many (but not all) 
iRMX system calls, and can use iRMX as a DOS extender (which is a pro
gram that allows a real-mode application to use protected-mode features of 
an 80386 microprocessor). After all, the iRMX for Windows exists to pro
vide facilities for iRMX and DOS applications to interact with each other. 
The facilities for iRMX-to-DOS and DOS-to-iRMX interactions are dis
cussed in the next two sections. 

12.5.1 iRMX access to DOS system calls 

DOS programs make DOS system calls by loading parameter values into 
registers and executing an int21 instruction. For example, loading register 
ax with Ox0900 and registers ds : dx with a pointer to a $-terminated string 
causes the string to be displayed on the DOS console. The following is a 
sample DOS program that uses in -line assembly code to display a message: 

#include <stdio.h> 
int 
main (int argc, char * argv[]) ( 
char far *a'string=' 'hello, world'\n'\r$"; 

asm ( 
mov ax, Ox0900 
Ids dx,a'string 
int Ox21 
} 

return 0; 

Most C compilers for DOS allow you to set up the registers and execute 
the int instruction with a library call, as the following example shows: 

#include <stdio.h> 
#include <dos.h> 

int 
main (int argc, char * argv[]) ( 
char *a' string = n'\r$' , ; 
union REGS regs; 
struct SREGS sregs; 

regs.x.ax= Ox0900; 
regs.x. dx = FP _OFF (a' string); 
sregs .ds = FP' sEG (a' string); 
intdosx (&regs, &regs, &sregs); 

return 0; 

Why not just run the equivalent program from iRMX? After all, the code 
runs on the same processor as DOS, so the registers and interrupts must be 
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the same, right? Not exactly. Remember that DOS runs as a VM86 task 
(see section 5.5) when iRMX for Windows is running. If this program were 
compiled and bound using ie-386 and bnd386 to run under iRMX, execu
tion of the int 21 instruction would be vectored into the iRMX interrupt 
descriptor table, not the DOS interrupt vector in low memory. Because 
iRMX does not process DOS system calls, the program would fail. 

Instead, iRMX for Windows programs can call rqe_dosJequest() to 
make DOS system calls while running under iRMX. The mechanism to 
support rqe_dosJequest() consists of two parts, an iRMX first-level job 
that responds to the iRMX call and a DOS program that performs the DOS 
system call on behalf of the iRMX application. This DOS program must 
always be available when iRMX for Windows is running to provide this 
support, so it is run as a DOS Terminate and Stay Resident (TSR) pro
gram, with the appropriate name of rmxtsr. 

A TSR is a program run from the DOS command line but which executes 
the DOS terminate and stay resident system call to return control to the 
command processor while remaining in DOS memory. Since DOS is a sin
gle-threaded operating system, a TSR can execute only by responding to 
interrupts. An analogy would be to run an iRMX command using the back
ground command or the sysload utility, but iRMX tasks do not have to be 
interrupt-driven to run. 

On the iRMX side, the first-level job that responds to rqe _ dos Jequest( ) 
is called the VM86 Dispatcher, which acts as the manager for all DOS 
VM86-mode operations. As such, it can send messages to rmxtsr by means 

. of real-mode software interrupts. Similar to the intdosx() function of DOS, 
rqe _ das Jequest() takes a data structure that contains the values of the 
processor's registers as one of its arguments. This data structure must be 
more elaborate than REGS and SREGS in the previous examples, however. 
The concepts involved can be explained by examining how the "hello 
world" program would be coded to invoke the DOS print string function 
from iRMX. The code is given in Figure 12.1. 

Looking at the sequence of assignments to fields in dosRegisters 
(which includes the x specifier to select word-wide registers), the first field 
of interest is int_num. This field tells rmxtsr which real-mode software 
interrupt number to use to invoke the system call. Most DOS system calls 
use interrupt-level Ox21, but DOS uses other levels as well. Furthermore, 
this interrupt level can be set to values for invoking ROM-BIOS functions 
directly, if desired. 

The tsr _flags field is a binary variable. lfit is 0, as in the example, the 
DOS function is executed using the context of rmxtsr. A value of 1 invokes 
the function using the context of the currently running DOS application.3 

3The context of a DOS program is stored in a 256-byte data structure called the Program 
Segment Prefix (PSP). The PSP contains command line arguments, settings of environment 
variables, a disk buffer, and other information. 
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The register initialization for register ax is straightforward, but loading 
the pointer to the string that is to be printed into the OS: ox register pair 
illustrates a major issue in making DOS calls from iRMX. The iRMX ap
plication occupies memory above 1 MB using the processor's protected
mode addressing mechanism, but rmxtsr occupies memory below 1 MB and 
uses the processor's real-mode addressing mechanism. Therefore, rmxtsr 
(or DOS, for that matter) cannot access the string declared in the iRMX 
program. It must be copied from iRMX memory to DOS memory, and 
rmxtsr provides four buffers for just this purpose. 

Two buffers are available for copying information from iRMX applica
tions to DOS, and two are available for copying information in the opposite 
direction. The xfer data field is a Boolean variable that identifies 
whether any ofthese buffers are to be used. In the sample code, src _ptr_1 
was set to point to the dollar-terminated string to be used for the system 
call, and src_count_1 was set to the length of the string so rmxtsr knows 
how many bytes to copy into its internal real memory buffer. The 
src1_xfer_pair is then set to the constant os_ox to tell rmxtsr that a 
pointer to this buffer is to be loaded into the processor's ds: dx registers 
before executing the int 21 instruction. By setting the other three xfer_ 
pair fields to NONE, rmxtsr knows that the other three transfer buffers are 
not used for this call. 

Note that rmxtsr knows nothing of DOS or ROM-BIOS calls to provide 
its services to iRMX clients. By keeping the interface between it and 
iRMX tasks fully general, it can accommodate the invocation of any func
tion that might be invoked by a software interrupt in the DOS environ
ment. The only restriction is that several DOS functions should not be in
voked from any TSR, including rmxtsr. These functions are listed as 
unsupported in the iRMX System Call Reference manual documentation 
for rqe _ das Jequest(). 

12.5.2 The DOS Real-Time Extension: 
making iRMX system calls from DOS 

A mechanism called the DOS Real-Time Extension (RTE) is used by DOS 
programs to make iRMX system calls. Although the RTE interface to 
iRMX system calls is always the same, push parameters onto the stack and 
execute an int B8 instruction), there are several ways in which the int in
struction is actually handled, which are described in section 12.4. 

The RTE code that handles int B8 instructions examines the arguments 
on the caller's stack and a function code the caller placed in the processor's 
ax register, then invokes the appropriate iRMX system call based on the 
function code. The RTE recognizes codes for 28 different Nucleus system 
calls, plus two special RTE functions that allow DOS programs to copy in
formation between iRMX protected-mode segments and DOS real-mode 
segments. The 30 RTE calls are listed in Table 12.1. 

As you should expect by now, the mechanism that iRMX for Windows 
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TABLE 12.1 iRMX System Calls That Can Be Made By DOS Programs Using the RTE Mechanism 

RTE code 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
26 
27 
28 
30 
31 

Corresponding 
iRMX system call 

rqcreatemailbox( ) 
rqdeletemailbox( ) 
rqsendmessage( ) 
rqsenddataO 
rqreceivemessage() 
rqreceivedataO 
rqcreatesemaphore() 
rqdeletesemaphore( ) 
rqsendunits( ) 
rqreceiveunitsO 
rqcreateregionO 
rqdeleteregion() 
rqsendcontrol( ) 
rqreceivecontrolO 
rqacceptcontrol() 
rqcreatesegment( ) 
rqdeletesegment( ) 
rqgetsizeO 
rqegetaddress( ) 
rqecreatedescriptor( ) 
rqedeletedescriptor() 
rqechangedescriptor() 
rqcatalogobject( ) 
rquncatalogobject( ) 
rqlookupobject( ) 
rqgettasktokens( ) 
rqgettype( ) 
rqsleep( ) 
rqereadsegment( ) 
rqewritesegment( ) 

uses to implement the RTE is also available for systems programmers to 
use to develop their own protected-mode extensions (PMEs) to DOS, as 
you will see in section 12.8. For example, a DOS program could invoke 
other system calls besides those listed in Table 12.1 by invoking a PME 
that recognized function codes for other iRMX calls. Because the VM86 
job that owns the DOS task is a first-level job created after the BIOS, DOS 
programs could, in principle, make any Nucleus or BIOS layer system calls 
using a PME. 

iRMX interrupt handlers are not allowed to make iRMX system calls 
(see chapter 9), and neither can DOS interrupt handlers. This means that 
DOS TSRs that connect themselves to hardware interrupts to check for 
users typing special characters (hot keys, for example) cannot use the RTE 
mechanism. 

There is a nonissue involved in using the RTE mechanism. The objects 
owned by an iRMX job are automatically deleted when the job terminates, 
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but the VM86 job does not terminate until the iRMX system shuts down. 
This would seem to imply that a DOS program could create iRMX objects 
that would continue to exist after the DOS program terminates. Actually, 
the VM86 job is able to tell when DOS programs terminate (there is always 
an interrupt involved), and the RTE mechanism provides a procedure that 
automatically deletes the appropriate iRMX objects any time any DOS 
program terminates. 

12.5.3 Invoking RTE functions from 
DOS programs 

Making an iRMX system call from DOS involves pushing parameters onto 
the stack, setting up the processor's s i register to point to the last parame
ter, and issuing a software int instruction to call the RTE task. If the sys
tem call returns a value, it will be returned in the processor's ax register, 
and must be obtained from there. The code to do all this work can be writ
ten in assembly language or C if your compiler supports either in-line as
sembly language or the int86( ) function, as Microsoft, Borland, and others 
do. Certainly, the easiest way to invoke RTE functions from DOS 
programs, however, is to use the interface library for RTE calls pro
vided with iRMX for Windows in the file \rmx386\demo\rte\lib\ 
rmxintfc.c. 4 

Supplying the code in source form documents the calling convention 
being used and provides developers with code that can be adapted to differ
ent vendors' development tools if necessary. A batch file, rmxintfc. cmd 
is supplied that compiles the code three times to produce object libraries in 
the small, compact, and large models using the Microsoft C compiler. The 
object modules created by these compilations are also provided in the files 
called dosrtes .lib, dosrtec .lib, and dosrtel.lib. Its not really an 
issue here, but it is worth remembering that Microsoft and Borland DOS 
development tools define the various memory segmentation models differ
ently from Intel's iRMX development tools, as mentioned in chapter 3. 

The source code file is named rmxintfc. c in recognition ofthe analogy 
between the functions in this file and the interface procedures used to 
make iRMX system calls from iRMX programs, as discussed in chapters 6 
and 10. The difference is that these interface procedures are two steps re
moved from the iRMX interface procedures. These procedures set up and 
invoke real-mode software interrupt instructions that are intercepted by 

'Watch the pathname syntax in this chapter. A / is used as the path component separator in 
the iRMX context, and a '\ is used as the separator in the DOS context. The same files can be 
accessed from either context for the files discussed in this chapter because they are normally 
installed on a DOS partition. DOS, however, uses / to introduce command line switches, while 
the iRMX eLI uses '\ as an escape character. The syntax difference helps keep track of which 
operating system is accessing the files in this chapter. 
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the iRMX PVAM interrupt manager, which activates an iRMX task, 
which then calls the iRMX interface procedure to make the system 
call. 

A header file in '\rmx386'\demo'\rte,\lib'\rmxintfc.h is used to 
compile the interface libraries, but another header file in 
'\rmx386\demo\rte\inc\rmxintfc.h should be included in C pro
grams that call the library routines. The ... '\inc\rmxintfc. h version in
cludes monocase, underscore format, and mixed case definitions for all the 
RTE functions, so the create mailbox system call, for example, could be in
voked using rqcreatemailbox(), rq_ create _ mailbox( ), or RQCreateM ail
box(), whichever you prefer. You might recall from chapter 3 that system 
calls invoked from iRMX can be invoked using monocase names if you in
clude : include: rmxc. h, or using underscores if you include : in
clude: rmx_c. h. (There is currently no mixed-case header file for the 
iRMX side.) 

Before a DOS program generates an interrupt to call an RTE function, it 
should first determine if iRMX for Windows is actually running. (Generat
ing an int B8 instruction with no interrupt handler installed is not a good 
idea.) Two functions can be called from DOS to determine whether the 
iRMX for Windows TSR has been loaded or not and, if the TSR is present, 
whether iRMX has been loaded or not. The two functions, RMX_Inter
face_TSR_Present() and get_RMXjF_dseg() , are provided in DOS 
object module format in the file \rmx386\demo\rte\lib\rmxu
tils. obj. Installing the TSR and loading iRMX are normally done to
gether by submitting the batch file '\dosrmx\rmx. bat, so a single func
tion that makes calls to both these utilities is normally used to determine if 
RTE calls can be made or not. Such a function, named RQEGetRMX
Status(), is defined in rmxintfc. c. 

Figure 12.2 illustrates the use of RQEGetRMXStatus() to determine 
whether iRMX for Windows is available followed by two RTE calls to ob
tain tokens for the caller's task and job. The program uses the code in 
\rmx386\demo\rte,\lib\rmxintfc. c as an interface library for the 
system calls. This code is compiled using a DOS C compiler, and linked 
with rmxutils .obj and dosrte? . lib (? = [slcll)) to produce an exe
cutable DOS program, with a name such as rtesamp. exe. When it runs, 
the program displays the tokens for the DOS task and the VM86 job be
cause that is the context in which DOS programs run. The C program in 
Figure 12.2 can be run as a Windows application rather than a DOS appli
cation by using the Borland development tools, which provide a version of 
printf( ) that writes to a window instead of the DOS screen; the output is the 
same: 

This is iRMX task 10DO. 
I belong to iRMX job 1040. 
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Figure 12.2 DOS program to invoke iRMX system calls through the Real·Time Executive 
(RTE) mechanism. 

/***> rtesamp.c <*********************************************** 

* 
This is a DOS program that makes iRMX system calls using 
the iRMX for Windows RTE mechanism. 

****************************************************************/ 

#include <stdio.h> 
#include "\rmx386\demo\rte\inc\rmxintfc.h" 

#define 

WORD Status; 

int 
main (int argc, char *argv[]) ( 
WORD task, job; 

if (RQEGetRrnxStatus() != E_OK) { 
printf ("This program will not run without iRMX for Windows\n"); 
exit (1); 

task = rqgettasktokens (0, &Status); 
if (Status != E_OK) ( 

printf ("rqgettasktokens() returned %X\n", Status); 
return 1; 

job = rqgettasktokens (1, &Status); 
if (Status != E_OK) { 

printf ("rqgettasktokens () returned %X\n", Status); 
return 1; 

printf 
("This is iRMX task %X. \n", task); 
printf 

("r belong to iRMX job %X.\n", job); 

return 0; 

Figures 12.3 and 12.4 illustrate two other ways to implement RTE calls 
from DOS programs with the same output as Figure 12.2. Figure 12.3 is an
other C program but uses in-line assembly language to set up and invoke 
the RTE functions. Like Figure 12.2, this version of the program can also 
be run as a Windows application, as long as the run-time library version of 
printf() generates output to a Window instead of the DOS screen. Figure 
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Figure 12.3 DOS program equivalent to Fig. 12.3, but which uses in· line assembly language to 
make its RTE calls. 

1***> dorte.c <************************************************* 

* 
This is a DOS program that makes iRMX system calls using 

* the iRMX for Windows RTE mechanism. 

* 
* 
* 
* 

It uses in-line assembly code to set up the stack and to 
invoke the RTE interrupt level, axBS. 

****************************************************************/ 

#include <stdio.h> 
#include " \rmx3S6\demo\rte\inc\rmxintfc.h" 

#define 

WORD Status; 

#pragma argsused 
int 
main (int argc, char *argv[]) ( 
WORD task, job; 

if (RQEGetRrnxStatus() != E_OK) ( 
printf ("This program will not run without iRMX for Windows\n"); 
exit (1); 

asm 
mov 
push 
mov 

ax,O /* get token for task */ 
ax 
ax, SEG Status 

moves, ax 
mov 
push 
push 
mov 
mov 
int 
add 
mov 
mov 

ax, OFFSET Status 
es /* Far pointer to Status */ 
ax 
si,sp 
aX,26 
axBS 
sp, 6 
task, ax 
ax, Status 

/* function code for rqgettasktokens() */ 
/* invoke the DOS RTE */ 

cmp ax, a 
jne error 

mov 
push 
mov 
mov 
mov 
push 
push 
mov 
mov 
int 
add 
mov 

aX,l /* get token for job */ 
ax 
ax, SEG Status 
es, ax 
ax, OFFSET Status 
es /* Far pointer to Status 
ax 

*/ 

si,sp 
aX,26 
OxBS 

/* function code for rqgettasktokens() */ 

sp, 6 
job, ax 

/* invoke the DOS RTE */ 

mov ax, Status 
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Figure 12.3 ( Continued) 
cmp ax, 0 
jne error 
} 

printf 
("This is iRMX task %X.\nI belong to iRMX job %x.\n", task, job); 
return a; 

error: 
return 1; 

Figure 12.4 Assembly language version of Fig. 12.3 (Assembled with Borland TASM 3.0). 

;---> rteasm.asm <-----------------------------------------------

This is a DOS program that makes iRMX system calls using 
the iRMX for Windows RTE mechanism. 

It uses assembly code to set up the stack and to 
invoke the RTE interrupt level, axB8 . 

. _-----------------------------------------------------------------, 

NAME 
PAGE 
. MODEL 
. STACK 
. DATA 

TRUE 
FALSE 

Status 
Task 
Job 

emess 

tmess 
tmessx 
jmess 
jmessx 
smess 
smessx 
hextab 

.CODE 

rteasm 
58, 132 
SMALL 
10ah 

EQU 
EQU 

DW 
DW 
DW 

DB 
DB 

DB 
DB 
DB 
DB 
DB 
DB 
DB 

aFFh 
aaOh 

? 
? 
? 

'This program will not run without iRMX for windows' 
ODh, DAh, '$' 

'This is iRMX task ' 
'XXXX' , ODh, DAh 
'I belong to iRMX job 
'XXXX', DDh, DAh, '$' 

'RQ_Get_Task_Tokens failed. Status is ' 
'XXXX' , ODh, OAh, '$' 
'0123456789ABCDEF' 

EXTRN _RMX_Interface_TSR_Present: FRoe 
EXTRN _get_RMX_IF_dseg: FROC 
PUBLIC _MAIN 

TOHEX 



488 iRMX Concepts and Features 

Figure 12.4 ( Continued) 

TOHEX PROC 
push 

shr 
mov 
add 
mov 
mov 
inc 

pop 
push 
shr 
and 
mov 
add 
mov 
mov 
inc 

pop 
push 
shr 
and 
mov 
add 
mov 
mov 
inc 

pop 
and 
mov 
add 
mov 
mov 

ret 

TOHEX ENDP 

;---- MAIN 

J1AIN PROC 

mov 
mov 

call 
cmp 
jne 
call 
cmp 
jne 

not_ok: 
mov 
ritov 

; Convert value in ax to 4 hex chars at ds:di 
ax 

ax, 12 
si, OFFSET hextab 
si, ax 
ax, lsi) 
[di), al 
di 

ax 
ax 
ax, 8 
ax, OFh 
si, OFFSET hextab 
si, ax 
ax, lsi] 
[di), al 
di 

ax 
ax 
ax, 4 
ax, OFh 
si, OFFSET 
si, ax 
ax, lsi) 
[di) , al 
di 

ax 
ax, OFh 
si, OFFSET 
si, ax 
ax, lsi) 
[diJ, al 

ax, @data 
ds, ax 

hextab 

hextab 

First char 

Second char 

Third char 

Last char 

Set up ds: 

_RMX_Interface_TS~Present 

ax, TRUE 
Check for iRMX 

not_ok 
_get_RMX_IF_dseg 
ax, 0 
ok 

ax, 0900h 
dx, OFFSET emess 
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Figure 12.4 (Continued) 

ok: 

int 21h 
mov ax, 4COOh 
int 21h 

Get tokens for this task and this job 

Got 

mov 
push 

ax,O get token for task 
ax 
ax, SEG Status 
es, ax 
ax, OFFSET Status 
es 
ax 

Far pointer to Status 

mov 
mov 
mov 
push 
push 
mov 
mov 
int 
add 
mov 
mov 
cmp 

si, sp 
aX,26 
OB8h 

function code for rqgettasktokens() 
; invoke the DOS RTE 

sp, 6 
task, ax 
ax, Status 
ax, 0 

jne error 

mov 
push 
mov 

aX,l get token for job 
ax 
ax, SEG Status 

moves, ax 
mov 
push 
push 

ax, OFFSET Status 
es 
ax 

mov si, sp 

Far pointer to Status 

mov 
int 
add 

ax,26 
OB8h 
sp, 6 

function code for rqgettasktokens() 
; invoke the DOS RTE 

mov job, ax 
mov ax, Status 
cmp ax, 0 
jne error 

tokens ok. Display them. 

mov ax, task 
mov di, OFFSET tmessx 
call tohex 

mov ax, job 
mov di, OFFSET jmessx 
call tohex 

mov ax, 0900h 
mov dx, OFFSET tmess 
int 21h 

mov ax, 4COOh 
int 21h 

Error: display status and exit. 
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Figure 12.4 (Continued) 

error: 
mov di, OFFSET smessx 
call tohex 
mov ax, 0900h 
mov dx, OFFSET smess 
int 21h 

mov ax, 4COOh 
int 21h 

_MAIN ENDP 

END _MAIN 

12.4 is a straight assembly language version of the program that generates 
exactly the same output as Figures 12.2 and 12.3. This program, however, 
uses a DOS system call to write its output, and can be run only as a DOS 
application. Running it under Windows generates similar behavior to the 
code in Figure 12.1; the program writes to the screen, but the output cannot 
be read because ASCII text is written when the screen is in graphics mode. 

Although it would make sense to look now at the Protected-Mode Ex
tension mechanism that applications can use to develop functions that go 
beyond the RTE mechanism, that topic is deferred until section 12.8. First, 
memory management issues are examined, which provide a good back
ground for understanding the PME. 

12.6 Memory Management 

Two memory management issues are involved in iRMX for Windows. One 
is to provide DOS, or Windows, programs with access to memory managed 
by the iRMX operating system, and the second is to have iRMX for Win
dows coexist with various existing memory management systems that exist 
for DOS and Windows. 

12.6.1 Accessing iRMX memory from DOS 

A DOS program can create, delete, and determine the size of iRMX mem-
0ry segment objects of any size (up to 4 G B) by using the RTE to make the 
iRMX system calls rqcreatesegment(), rqdeletesegment(), and rqgetsize(). 
But the token returned by rqcreatesegment() cannot be used by a DOS 
(real-mode) program to access iRMX (protected-mode) memory directly. 
Instead, the RTE provides two functions, rqereadsegment() and rqewrite
segment(), that copy information between DOS real-mode segments and 
iRMX protected -mode segments. Of course, only a maximum of 64 KB can 
be transferred at a time because of the architectural limitation that real
mode addressing imposes on DOS programs. 
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Because rqereadsegment() and rqewritesegment() are called from DOS 
programs, the proper function prototypes for them can depend on the C 
compiler being used for the DOS application. Like the RTE-supported 
iRMX system calls, the source code for interface procedures that call these 
routines is given in \rrnx386\derno\rte\lib\rrnxintfc.c, and the 
header file with function prototypes suitable for use with Microsoft C and 
compatible DOS compilers is given in \rrnx386\derno\rte\inc\ 
rrnxintfc. h. 

12.6.2 Coexisting with other memory managers 

DOS memory management started out fairly simple. The 8086 architec
ture allowed up to 1 MB of memory. It seemed that 640 KB, ten times the 
amount of memory available with the previous generation of microproces
sors (the 8080 and its competitors), would be adequate to reserve for DOS 
and the programs it runs. This memory area is often referred to as program 
memory or conventional memory. The remaining 360 KB of the 1 MB ad
dress space, called the upper memory area, is reserved for ROM-resident 
code and RAM used by various device controllers. Some of the ROM-resi
dent code, the ROM-BIOS, is supplied with the computer, and some of it is 
supplied by the device controllers. Initially, both the program area below 
640K (conventional memory) and the area above 640K (upper memory) 
were lightly used. 

Over time, programs and device controllers increased their demands on 
the respective regions of the real-mode address space accessible to them. It 
might seem that programs won the race to exhaust the amount of memory 
available to them, but this is somewhat illusory. Device controllers for 
video displays, for example, can require extremely large amounts of mem
ory. A 640 X 480 pixel display with 16 colors per pixel (the resolution of a 
standard VGA adapter) requires more than 150,000 bytes of storage for a 
screenful of graphical information. Expanding this to 256 colors per pixel 
doubles the number of bytes needed; increasing the resolution to 768 X 
512 pixels exceeds the 360K of memory space available to all device con
trollers. Seeing the inevitability of too little memory available to increase 
graphical capabilities on a regular basis, graphics device controllers make 
subsets of the entire display memory accessible to the microprocessor at 
different times. As Figure 12.5 illustrates, only a portion of the actual dis
play memory managed by a display adapter is mapped to the memory ac
cessible to the microprocessor at a time.6 Other device controllers, such as 
disk and network adapters, also make demands on the upper memory area 
above 640K for Direct Memory Access (DMA) buffers. 

5The term frame buffer is normally used in computer graphics to refer to what is called dis
play memory here. 
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1 M 
Upper Memory 

1 '::;:£1, 
640 K 

Display Memory 

Program Memory 

a 
Main Memory 

Figure 12.5 The microprocessor can access only part of a display adapter's video memory at a 
time. 

Two basic techniques exist for making additional memory available to 
DOS programs. One technique, called expanded memory, can be used with 
processors that can access no more than 1 MB of RAM (the 8086 architec
ture). The other technique, extended memory, can be used with any proces
sor that can access more than 1 MB of RAM. (The 80286 or i386 architec
tures provide access to 16 MB and 32 GB, respectively.) 

! 

Expanded memory. Expanded memory works very much like the video 
memory technique just discussed. A special memory board is added to the 
system that can map portions of its memory into part of the upper memory 
area above 640K. To use an expanded memory board, the user must load a 
software module called an expanded memory manager and then run appli
cation programs that make requests for access to various parts of expanded 
memory by software interrupts. The expanded memory manager responds 
to the software interrupts by setting registers in the expanded memory 
board, mapping the desired part of expanded memory into an area of mem-
0ry above 640K where the application can access it. The RAM cannot be 
accessed on an expanded memory board except by setting the registers the 
way the expanded memory manager does.6 

True expanded memory using an expanded memory board can be used to 
make more memory available to any processor, including those that oper-

6Most expanded memory boards can be configured by changing hardware switches or 
jumpers to provide extended memory instead of expanded memory. The statement is correct 
for expanded memory boards configured for expanded memory use. 
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ate only in real mode, such as the 8086. It is also possible to emulate ex
panded memory on a processor that can access more than 1 MB of RAM. 
To perform the emulation, a software module intercepts the same software 
interrupts as a true expanded memory manager, but, instead of setting 
hardware registers to map memory from an expanded memory board into 
the upper memory area, the emulator puts the processor into protected 
mode. In this mode, the processor can address RAM above 1M, and copies 
the emulated expanded memory pages between RAM in the upper memory 
area and RAM above 1M, and then restores the processor to real mode be
fore returning to the application. The application can then access the 
emulated expanded memory by addressing locations in the upper memory 
area in the usual way. Naturally, switching the processor in and out of pro
tected mode and copying memory blocks back and forth is slower than 
using an actual expanded memory board. 

Another way to emulate expanded memory is to use the paging mecha
nism available on i386 processors and later. This technique requires the 
processor to be in protected mode at all times and for DOS to run as a 
VM86 task. In this situation, the expanded memory emulator responds to 
expanded memory software interrupts by setting the processor's page 
tables to map parts of memory above 1M to the upper memory area. 

The software interface between application programs that want to use 
expanded memory and an expanded memory manager is given in the LIM 
4.0 expanded memory specification (Lotus et al., 1987). 

Extended memory. Extended memory (XMS) is a generic term for mem
ory above 1M that can be accessed by processors operating in protected 
mode. Thus, the expanded memory emulators just mentioned would be 
said to copy or translate between extended memory pages and the upper 
memory area. DOS programs that want to access extended memory do so 
by executing an int 2F instruction to determine if an XMS manager is 
available and the address of a routine to call to perform XMS functions. 
The basic XMS functions are to allocate, free, and copy blocks of extended 
memory. Extended memory blocks are allocated in 1 KB increments of up 
to 16 MB on 80286 processors, or up to 64 MB on i386 processors and later. 
Copying can be done between extended memory blocks or between an ex
tended memory block and a program memory (below 640K) block. 

Extended memory managers provide three other types of service in ad
dition to management of extended memory blocks. These are High Mem
ory Area (HMA) support, A20 management, and UMB support. Recall 
that real-mode addressing on an 80286 or greater processor can generate 
addresses as large as Oxl0FFEF (OxFFFFO + OxFFFF). The memory 
above 1 MB (addresses Oxl00000 through Oxl0FFEF) is available for use 
by real-mode programs for both code and data. (Extended memory cannot 
be used for code for a DOS program) DOS 5.0, for example, can be set to 
load much of the operating system itself into the HMA. An extended mem-
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ory manager can manage access to the HMA through functions that allow 
programs to request and release use of the HMA area. Only one program 
can occupy any part of the HMA at a time. 

A20 management is closely related to HMA support. The address lines 
connecting the processor to memory are numbered from right to left start
ing at AOO. Looking at the binary representation of memory addresses 
below 1 MB compared to those in the HMA, you can see that low addresses 
have address line A20 equal to 0 and addresses in the HMA have address 
line A20 equal to 1. Since 8086 processors do not have an A20 line (only 
lines AOO through AI9), any attempt to access the HMA on that processor 
results in address wraparound. That is, accesses to the HMA result in ac
cesses to real memory locations OxOOOOO through OxOFFEF. 

Because there are DOS programs that rely on this wraparound, most 
computers that use an 80286 microprocessor or later provide a mechanism 
for optionally disabling the A20 address line under software control to sim
ulate the 8086 processor's behavior. Extended memory managers provide 
functions that can be used to enable or disable the A20 address line using 
whatever technique is appropriate for a particular type of computer. For 
example, the extended memory manager provided with DOS 5.0 can be 
passed a parameter to tell it which of 14 different types of computer it must 
deal with when manipulating A20. The general rule is to have only the pro
gram using the HMA, normally DOS itself, make calls to the extended 
memory manager to change the state of the A20 line if necessary. 

Finally, extended memory managers provide functions to manage access 
to Upper Memory Blocks (UMBs). UMBs are parts of memory in the 640K 
to 1M address range for which the computer physically provides RAM and 
which is not used by the ROM-BIOS or any device controllers. Programs 
can reserve and release portions ofthis RAM through two calls to the ex
tended memory manager. UMBs are always a multiple of 16 bytes in size, 
and can be as large as one real-mode segment, 64 KB. 

The Application Program Interface (API) for invoking extended mem
ory manager functions is called the XMS Specification, (Microsoft, 1988). 
The API is summarized in Table 12.2. All functions are invoked from a 
DOS program by loading the indicated function code into register ax and 
executing an int 2f instruction. 

12.6.3 DOS expanded memory and 
extended memory managers 

DOS 5.0 provides an expanded memory emulator for processors numbered 
80386 and later, called emm386.exe, and an extended memory manager for 
80286 processors and later, called himem.sys. Both programs are loaded, 
like device drivers, when the user's config. sys file is processed. 
emm386.exe uses himem.sys to provide access to the extended memory it 
needs to emulate expanded memory, so himem.sys must be loaded before 
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TABLE 12.2 Summary of the Version 2.0 Extended Memory Specification (XMS) for DOS. 

Code Function 

Ox43 Determine if an XMS driver is installed 
OxOO Get XMS version number and internal revision number 
OxOl Request High Memory Area (HMA) 
Ox02 Release HMA 
Ox03 Global Enable A20 (Used only by the program in the HMA.) 
Ox04 Global Disable A20 
Ox05 Local Enable A20 (Might be used by conventional DOS programs.) 
Ox06 Local Disable A20 
Ox07 Query A20 
Ox08 Query Free Extended Memory 
Ox09 Allocate Extended Memory Block (EMB) 
OxOA Free EMB 
OxOB Move EMB 
OxOC Lock EMB (Prevent move operations.) 
OxOD Unlock EMB 
OxOE Get EMB Information (Locking count, block size) 
OxOF Reallocate EMB (Change the size of a block.) 
OxlO Request Upper Memory Block (UMB) 
Oxll Release UMB 

emm386.exe (that is, it must be listed before emm386.exe in conf ig. sys). 
emm386.exe also manages the upper memory area for systems that want to 
load device drivers and interrupt handlers into that part of memory. 

12.6.4 The DOS Protected Mode Interface (DPMI) 

What does all this information have to do with iRMX for Windows? Be
fore answering that question, you still have to look at one more set of func
tions that affect DOS memory management, the DOS Protected Mode In
terface Specification (DPMI, 1991). 

The basic rationale of the DPMI Specification is to provide an orderly 
manner in which DOS programs can take advantage ofthe protected-mode 
features of the 80286 and later processors. A program, called the DPMI 
host or DPMI server, responds to requests for protected-mode operations 
from real-mode programs called DPMI clients. DPMI clients are DOS pro
grams that can enter protected mode, switch between real and protected 
mode, and either terminate normally or terminate and stay resident in 
protected mode to provide services to other protected-mode DPMI clients. 
While in protected mode, DPMI clients can make a large number of re
quests ofthe DPMI host through int 31 function calls. These functions fall 
into the following categories: 

• Local descriptor table (LDT) management. 

• Extended memory management. 
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• DOS memory management. 

• Interrupt management. 

• Page management (i386 and above only). 

• Translation. 

• Debug support. 

• Miscellaneous. 

Although DPMI hosts provide extended memory management services, 
the DPMI functions are different from the XMS functions listed in Table 
12.2. For example, rather than receive a handle for a new extended memory 
block, a DPMI client receives the actual linear address of a block that it 
allocates. The DPMI client must then allocate and initialize Local De
scriptor Table (LDT) descriptors to provide addressability to the block. 
Because DPMI clients normally operate in protected mode, the client can 
access the extended memory area directly, rather than be forced to use 
XMS functions to copy information between extended and conventional 
memory. 

Noting the support for interrupt and memory management listed pre
viously, it would seem natural that iRMX for Windows should act as a 
DPMI server, and that DOS applications that want to access protected
mode services using the D PMI API instead of the iRMX RTE mechanisms 
should be able to do so. Such is not the case, however, and there seem to be 
two reasons for this. 

One reason is that the DPMI interface is large (81 functions) and would 
require considerable overhead to implement a.nd ensure that DPMI clients 
cannot interfere with the real-time requirements of iRMX. The second 
reason is the crucial one, though. A key DOS application for iRMX for 
Windows is Microsoft Windows itself, and Windows versions 3.0 and 3.1 
do not operate as DPMI clients. Indeed, both versions of Windows provide 
their own DPMI servers, albeit servers that adhere to an earlier DPMI 
specification (version 0.9) rather than the current one (version 1.0). 

The Windows DPMI server is available only when Windows is running 
in enhanced mode (available only for i386 and later processors), and not 
when it is running in standard mode (available for 80286 processors and 
later). Simply stated, iRMX for Windows cannot operate with Windows 
running in enhanced mode because to do so, it would have to operate as a 
DPMI client, which would preclude its operation as a real-time operating 
system. There is nothing inherent in the design of Windows, by the way, 
that would prevent it from running as a DPMI client in enhanced mode. If 
such a version of Windows were to be released, it would undoubtedly be 
supported by iRMX for Windows. As it stands, iRMX for Windows can 
run with Windows operating only in its standard mode. 
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12.6.5 Memory management summary 

We can now summarize the characteristics of the iRMX for Windows 
memory management system. Each item in this summary is based on the 
fact that iRMX for Windows takes over and uses all of the processor's ex
tended memory. 

• Programs that emulate expanded memory, such as emm386.exe, cannot 
be used with iRMX for Windows because they manage extended memory 
to do their emulation. 

• DOS cannot use UMBs for device drivers and TSRs when iRMX for 
Windows is running because UMBs are managed by emm386.exe, and 
emm386.exe is not compatible with iRMX for Windows. 

• There is no problem using a true expanded memory board and its ex
panded memory manager with iRMX for Windows because they do not 
involve extended memory. 

• iRMX for Windows completely honors the state of the HMA as it existed 
before iRMX was loaded. Thus, himem.sys can load DOS into the HMA, 
for example, and iRMX will preserve the state of the HMA. 

• If the HMA is not in use when iRMX is loaded, the iRMX extended 
memory manager for DOS programs, himem.job, can be used to allocate 
the HMA to any program that wants it. Unlike himem.sys, himem.job 
has no mechanism for placing a limit on the minimum amount of mem-
0ry in the HMA that a program can request. 

• Any extended memory blocks allocated by an extended memory man
ager before iRMX is loaded will become inaccessible; himem.sys must 
put the DOS task into protected mode from VM86 mode, which iRMX 
does not allow. If himemJob is run, it cannot honor requests for access to 
already-allocated extended memory blocks because of the following: 

1. himem.job has no way to associate the original extended memory 
manager's handle values with actual extended memory regions. 

2. The parts of extended memory allocated by the original extended 
memory manager might have been overwritten by iRMX itself when 
it was loaded. 

• DPMI hosts, such as Windows running in enhanced mode, cannot be run 
with iRMX for Windows because the DPMI extended memory manage
ment functions conflict with iRMX's management of extended memory. 

• DPMlclients cannot be run with iRMX because iRMX does not provide 
a DPMI host. The iRMX RTE does, however, provide real-mode pro
grams with access to extended memory, and iRMX's VM86 protected 
mode extension mechanism allows users to build other DPMI-like func
tions as well. 
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12.7 PME: VM86 Protected Mode Extensions 

A good way to understand the iRMX VM86 Protected Mode Extensions 
(PME) mechanism is to compare the use ofthe PME with the operation of 
a DPMI client. The idea in both cases is for a real-mode DOS program to 
make use of the processor's protected-mode features. For DPMI, this ac
cess is provided by a DPMI host. For iRMX, it is provided by iRMX for 
Windows itself. In both cases, the real-mode DOS program is actually run
ning with the processor in VM86 mode. In this mode, every software int in
struction (among others) passes control to its proper interrupt handler 
using one of the mechanisms described in the earlier discussion of the 
RTE.lfthe processor is running in VM86 mode with interrupt virtualiza
tion enabled, the transfer is managed by the VM86 dispatcher, which is 
part of the VM86 job. For both the iRMX VM86 dispatcher and a DPMI 
host, there are three basic ways to handle the interrupt: 

1. Simulate the behavior that the real-mode operating system would per
form in response to the interrupt. 

2. Reflect the interrupt back to the real-mode operating system's handler 
for the interrupt. 

3. Invoke a protected-mode routine to perform computations not nor
mally be available to real-mode programs. 

Many interrupts that occur in the context of DOS programs evoke a re
sponse that is a combination of items (1) and (2). For example, every time a 
DOS program running with iRMX for Windows invokes one of the DOS 
terminate functions (int 21 with function code Ox4COO, for example) the 
VM86 dispatcher notifies all iRMX programs that need to be informed 
whenever DOS programs terminate, then causes the corresponding real
mode DOS interrupt handler to be called for normal DOS termination pro
cessing. 

Item (3) is reminiscent ofthe iRMX RTE mechanism discussed earlier. 
In fact, the RTE mechanism is itself implemented using the PME mecha
nism. For D PMI systems, the mechanism is known as a real-mode callback. 
The idea is that a protected-mode program connects one of its procedures 
to a real-mode interrupt level. When a real-mode program (actually, a 
VM86-mode program) invokes the appropriate real-mode software inter
rupt, the VM86 dispatcher receives control, recognizes the interrupt level, 
and calls the appropriate protected-mode procedure. When interrupt vir
tualization is not enabled, or when the DOS task is running in protected 
mode (under Windows), the DOS task can call the protected-mode inter
rupt handler directly through the IDT without using the VM86 dispatcher. 
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A sample PLM program to illustrate the PME mechanism is given in 
Figure 12.6. The program first displays some information about its iRMX 
environment using the same code as the I/O job program in Figure 7.3, 
creates a task to terminate the program in an orderly fashion when the user 
types <"C>, creates a PME by calling rqesetvmextension(), and then goes 
into an endless loop in which it receives messages from the PME procedure 
and displays them on the console. 

Figure 12.8 PLM program that installs a Protected Mode Extension (PME). 

/***> PME.PLM <****************************************************** 

* 
* 
* 
* 
* 
* 

This is an HI command that demonstrates the Protected Mode 
Extension mechanism. The main task sets up the PME, then 
displays messages that the PME sends to it. The PME is invoked 
by a DOS int CO instruction. 

*********************************************************************/ 

$compact (exports pmeproc, cntrlCtask) 
$title (·'Sample Program to create a Protected Mode Extension.') 

pme: DO; 
$include (pme.ext) 

/* Global Variables 

*/ 
DECLARE 

mess (*) 

CR 
LF 

LITERALLY 
LITERALLY 

'DDh' , 
'OAh' , 

BYTE INITIAL (0, 'This is the initial task: xxxx.', CR, LF, 
I belong to job xxxx.', CR, LF, 
My priority is xxxx.', CR, LF, 
MY maximum priority is xxxx.', CR, LF, 
Now I will create a PME', CR, LF), 

pmemess (*) BYTE INITIAL (0, CR, LF, 'PME job: xxxx.', CR, LF, 
Task: xxxx.', CR, LF, 
priority: xxxx.', CR, LF, 
Max priority: xxxx.', CR, LF, LF), 

buffer (128) BYTE, 
hextab (*) BYTE INITIAL ('0123456789ABCDEF'), 

(my job, my token , 
cntrlCtaskTkn, PMEmbx) 
myprio 
maxprio 
actual 
Status 

TOKEN, 
BYTE, 
BYTE, 
WORD_16, 
WORD_16; 

/* Procedure to Convert a Hexadecimal Value to ASCII Characters 
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F"l9ure 12.8 (Continued) 

*/ 
word2hex: PROCEDURE (value, where); 
DECLARE 

value WORD_16, 
i INTEGER, 
where POINTER, 
xxxx BASED where (1) BYTE; 

DO i = 3 TO 0 BY -1; 
xxxx(i) = hextab(value AND OFh); 
value = shr (value, 4); 

END; 
END word2hex; 

/* 

* 
*/ 

Procedure to be executed by the Control-C Task 

cntrlCtask: PROCEDURE PUBLIC; 
DECLARE 

/* 

* 
*/ 

cntrlCsem 
Status 

TOKEN, 
WORD_16; 

cntrlCsem = rqcreatesemaphore (0, 1, D, @Status); 
CALL rqcsetcontrolc (cntrlCsem, @Status); 

Delete the PME when the user terminates the program 

actual = rqreceiveunits (cntrlCsem, 1, OFFFFh, @Status); 
CALL rqesetvm86extension (OCOh, NIL, NIL, @Status); 
CALL rqcsendcoresponse ( NIL, 0, 

@ (13, 'PME removed', CR, LF), 
@Status) ; 

CALL rqexitiojob (0, NIL, @Status); 

END cntrlCtask; 

/* 
* 
*/ 

Procedure to be executed as the Protected Mode Extension 

pmeproc: PROCEDURE (DOSState, Flags) BYTE PUBLIC; 
DECLARE 

/* 
* 
*/ 

DOSState 
Flags 

(mytasktoken, myjobtok) 
mypriority 
maxpriority 
Status 

POINTER, 
DWORD, 

TOKEN, 
BYTE, 
BYTE, 
WORD_16; 

Format a Message to send to the HI Command job 

pmemess(O) = length (pmemess) -1; 
mytasktoken = rqgettasktokens (0, @Status); 
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Figure 12.6 (Continued) 

myjobtok = rqgettasktokens (1, @Status); 
mypriority = rqgetpriority (selector$of(NIL) , @Status); 
CALL rqsetpriority (selector$of(NIL) , 0, @Status); 
maxpriority = rqgetpriority (selector$of(NIL) , @Status); 
CALL rqsetpriority (selector$of(NIL) , mypriority, @Status); 
CALL word2hex (WORD (myjobtok) , @pmemess(12)); 
CALL word2hex (WORD (mytasktoken), @pmemess(27)); 
CALL word2hex (mypriority, @pmemess(46)); 
CALL word2hex (maxpriority, @pmemess(69)); 

/* Send it 

*/ 
CALL rqsenddata (PMEmbx, @pmemess, length (pmemess), @Status); 

RETURN OFFh; /* Notify DOS that processing is complete */ 

END pmeproc; 

/* 

*/ 

/* 
* 
*/ 

/* 

* 
*/ 

/* 

* 
*/ 

Initial Task Starts Here 

mess(O) = length (mess) -1; 

Format Initial Message and Display It 

my token = rqgettasktokens (0, @Status); 
my job = rqgettasktokens (1, @Status); 
myprio = rqgetpriority (selector$of(NIL) , @Status); 
CALL rqsetpriority (selector$of(NIL) , 0, @Status); 
maxprio = rqgetpriority (selector$of(NIL) , @Status); 
CALL word2hex (WORD (my token) , @mess(27)); 
CALL word2hex (WORD (my job) , @mess(52)); 
CALL word2hex (myprio, @mess(76)); 
CALL word2hex (maxprio, @mess(108)); 
CALL rqcsendcoresponse (NIL, 0, @mess, @Status); 

Create a Task That will Delete the PME When This Job Terminates 

cntrlCtaskTkn = rqcreatetask (0, @cntrlCtask, selectorof(@Status), 
NIL, 8192, 0, @Status); 

Create the Protected Mode Extension and Display Messages From It 

PMEmbx = rqcreatemailbox (20h, @Status); /* Data Mailbox */ 
CALL rqesetvrn86extension (OCOh, @pmeproc, NIL, @Status); 

DO WHILE 1; 
actual = rqreceivedata (PMEmbx, @buffer, OFFFFh, @Status); 
CALL rqcsendcoresponse (NIL, 0, @buffer, @Status); 

END; 

END pme; 
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When the program starts running, it displays some information about 
its iRMX job and initial task that might look like this: 

This is the initial task: BADS. 
I belong to job B9AO. 
My priority is OOSE. 
My maximum priority is OOSD. 
Now I will create a PME 

It then sets up a task that runs when the iRMX user types < A C>, sets up a 
procedure to be called as a PME, and goes into an endless loop waiting for 
messages to arrive from the PME procedure. Each time a DOS program 
issues an int OxCO instruction, the iRMX VM86 Dispatcher calls the PME 
procedure, which formats a message with information about itself, sends it 
to the mailbox that is being monitored by the job's initial task. A typical 
message would look like: 

PME job: 1040. 
Task: 1000. 
Priority: OOFE. 
Max priority: 0000. 

When the user types < A C> at the iRMX console, the control-C task wakes 
up, deletes the PME so that further DOS int OxCO instructions will not be 
recognized by the VM86 Dispatcher, and exits the iRMX job. 

As the sample output indicates, the PME procedure is executed in 
a totally different context from the initial task of the HI job. The PME 
procedure's job is the VM86 job that owns the DOS task, and the PME 
procedure's code is executed by (in the context of) that same DOS task. Its 
task priority is 254, the level assigned to the DOS task in order to give 
higher priority to real-time tasks running under iRMX. 

Note that the PME procedure calls rqsetpriority() with a value of 0 as its 
first parameter, which sets the task's priority to the maximum allowed for 
its job, which is 0 in the case of the VM86 job. If the sample program were 
coded to leave the DOS task's priority at 0, DOS (which constantly polls for 
I/O) would prevent any iRMX code from running. 

Because the VM86 job is a first-level job, there is no console associated 
with it, so PMEs do not have access to console I/O functions. Most PMEs 
are installed to provide DOS programs with services that do not involve in
teraction with an iRMX user. In a more typical application, the job that 
sets up the PME is installed using sysload, and remains in effect for as long 
as the iRMX operating system is running. Such jobs would not do any 
iRMX console I/O and would not need a < A C> handler as the sample pro
gram does. Still, the sample code does illustrate an important point: the 
PME procedure is not being executed by a task that belongs to the iRMX 
job initiated by sysload, it is executed by a task that belongs to the job that 
owns the VM86 dispatcher, the DOS task. Figure 12.7 gives the code for a 
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DOS program that could be run to invoke the PME of Figure 12.6. It simply 
ensures that iRMX is running and issues an int CO to invoke the PME. 

Figure 12.7 DOS program that invokes the Protected Mode Extension set up by the code in 
Fig. 12.6. 

/***> dopme.c <************************************************** 

* 
* 
* 
* 

This is a DOS program that generates an interrupt oxeo 
It will trigger an iRMX Protected Mode Extension that 
has been installed at that interrupt level. 

*****************************************************************/ 

#include <stdio.h> 
#include <dos.h> 
#include "'rmx386\demo\rte\inc\rmxintfc.h" 

#define 

int 
main (int argc, char *argv[]) 
union REGS regs; 
struct SREGS sregs; 

if (RQEGetRmxStatus() != E_OK) { 
printf ("This program will not run without iRMX for Windows\n"); 
return 1; 

for (;;) { 
printf ("Invoking the iRMX PME with int OxeO\n"); 
int86x (OxeO, &regs, &regs, &sregs); 
printf ("Done. Again? H); 
if (getch() != 'y') break; 
} 

return 0; 

The RTE is a PME that invokes a specific set of iRMX system calls on 
behalf of DOS RTE clients. But DOS programs are not limited in their ac
cess to iRMX services by the design ofthe RTE. The PME mechanism can 
be used to build an iRMX server that provides access to any iRMX func
tionality an application might require. 

12.8 DOE: Communication with 
Windows Applications 

Windows provides three mechanisms programs can use to interact with 
each other: Dynamic Link Libraries (DLLs), Dynamic Data Exchange 
(DDE), and Object Linking and Embedding (OLE). DLLs are really a way 
for Windows applications to share object code; they do not actually provide 
a mechanism for programs to communicate or synchronize with one an-
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other. DDE and OLE both allow Windows programs to share data and 
communicate with each other. Because iRMX for Windows does not 
presently provide support for OLE, the focus in this section is the DDE 
mechanism. 

Any Windows application can be programmed to act as a DDE server or 
DDE client, and the Windows kernel acts as the switchboard for passing 
messages between DDE servers and clients. iRMX for Windows provides a 
program called the DDE Router that acts as a surrogate Windows applica
tion for iRMX progrllms that want to use the DDE mechanism, as either 
servers or as clients. The DDE Router, normally installed as \ win
dows \rmx\router. exe, can be thought of as an extension to rmxtsr, de
scribed earlier, which acts a surrogate for iRMX programs that want to 
make DOS system calls. 

An interaction between Windows applications that use the DDE begins 
when a client sends a message addressed to a particular {<application>, 
<topic> } tuple, where <application> and <topic> are strings that specify 
the pathnames of a particular Windows application and a particular 
document with which the application is to work. The Windows kernel 
broadcasts the message to all active Windows applications. When the ker
nel receives an acknowledgment from an application that recognizes the 
tuple, it opens a channel by which the client and server can communicate 
with each other using a set ofDDE commands. An example of a DDE ex
change between two Windows applications might be word processor macro 
which, when run, establishes a conversation with a spreadsheet program 
using a particular spreadsheet as the conversation topic. The macro might 
obtain the value of a particular cell in the spreadsheet to supply a value to 
use in the text of a report. 

The DDE Router provides a significant extension to the Windows DDE 
mechanism by recognizing an extended form for the <application> string, 
which includes a machine-name component used to identify the network 
node on which the DDE server resides. Since the machine name and the 
application name are embedded in a single string, the mechanism is trans
parent to the Windows kernel. When the kernel broadcasts an extended
form <application> string, the DDE Router recognizes it by the presence 
of a <%> character in the string, which is used to separate the machine 
name from the application name,7 The DDE Router then redirects the re
quest to the appropriate network node, where a copy ofDDE Router must 
be running to receive the request and pass it on to the proper DDE server 
on the remote system. 

7This means that the DDE Router also intercepts attempts to initiate conversations with 
Windows DDE servers that have a <%> character in their names. If this is a problem, the sep, 
arator character can be changed in the [DIiERouter 1 section ofthe system's win. ini config
uration file. 
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To operate, the DDE Router requires iRMX for Windows to be running 
with its networking software in place. You saw how iRMX used iNA 960 to 
supply ISO-compatible network support to iRMX applications in chapter 
11, and you will see how this support is integrated with various DOS net
working options in the next section. An example scenario for which the 
iRMX DDE mechanism is useful might be the use of a PC to perform real
time control over a manufacturing process while running a task that acts as 
DDE server. A remote user could monitor or even control that process 
using a custom Windows application working as a DDE client. 

Figure 12.8 is a sample iRMX DDE client, ddeinq, that illustrates the use 
of the DDE mechanism. The program takes two command-line arguments, 
a node name for a computer running the DDE router and the name of an 
application program that can operate as a DDE server. The program first 
tries to establish a conversation using the node and application name sup
plied on the command line using the client_dde_initiate() library call. If 
this call succeeds, the program returns a 16-bit value called a conversation 
ID, which is used as the first argument to other DDE calls the wayan 
iRMX token is used to identify a particular object in iRMX system calls. 

Figure 12.8 An iRMX DDE client. 

/***> ddeinq.c <**************************************************** 

* 
* Allows an iRMX user to determine topics available for a DDE server. 

* Command line: 

* ddeinq <node> <application> 

* 

* 

The <node> must be the name of a computer running DDE Router 
with the win.ini file containing a [DDERouter] section with a 
line in the form pcname=<node>. 

********************************************************************/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <rmxdde.h> 

static WORD 
static char 
static CONFIGBUF 

conversation, Status; 
topicsList[4096] , *this; 
configBuf; 

/* Status check utility 

* 
*/ 

void 
chkStat (char *message) 

if (Status) ( 
printf (O%s failed. Status is %X\n°, message, Status); 
client_dde_terminate (conversation, &Status); 
exit (1); 
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Figure 12.8 (Continued) 

/* 

* 

return; 

Main Program Starts Here 

*/ 
int 
main (int argc, char *argv[]) { 

if (argc != 3) { 
printf 

("Give machine node and application name on command line.\n"); 
return 1; 

dde_library_init (&configBuf, &Status); 
chkStat ("dde_library_init"); 

/* Most DOE apps provide a "system" topic for housekeeping 
*/ 

conversation = client_dde_initiate (argv[l], 

chkStat ("client_dde_intiate"); 

/* Now ask for a list of topics 
*/ 

argv[2] , 
"system" , 
(LINKFUNCPTR) 0, 
&Status) ; 

client_dde_request (conversation, "topics", topicsList, (WORD) sizeof 
(topiCSList), &Status); 
chkStat (. client_dde_request" ) ; 

this = strtok (topiCSList, "\ t" ) ; 
printf (. Application %s on machine %s has the following topics: \n", 

argv[2], argv[l]); 

while (this) { 
printf (" %s\n", this); 
this = strtok (NULL, "\t"); 
} 

client_dde_terminate (conversation, &Status); 
chkStat ("client_dde_terminate"); 

return 0; 
} 

The value returned is not actually an iRMX token, however. It is a small 
integer used by the DDE library routines to index into an internal list of 
active conversation data structures. If the call fails, the program receives 
a nonzero exception code, which takes on one of the values given In 

Table 12.3. 
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TABLE 12.3 Exception Codes Returned by iRMX DDE Library Functions. 

OxEOOO 

OxDOOO 

OxC800 

OxCOXX 

Value 

OxOOOO through Ox3FFF 

Name 

dde_busy 

dde_denied 

dde _no_response 

Meaning 

Remote program is busy. 

Remote program denied a request. 

No response from the remote 
program. 

XX is an application-defined 
exception code returned by the 
remote application. 

Standard iRMX exception codes. 

The topic name used to establish the conversation is system. Many Win
dows applications able to operate as DDE servers recognize this special 
topic name, which is used to supply general information without accessing 
a particular document or worksheet. The sample program then makes a 
call to client _ dde Jequest() with a data item name of topics. A more typical 
type of data item name might be the name of a cell or range of cells in a 
spreadsheet or a bookmark in a wordprocessing document, but ddeinq 
takes advantage of the fact that many DDE servers return a list of cur
rently available topics (e.g., the currently open worksheets or currently 
open documents) when a client uses the topics data item name for a conver
sation based on the system topic. The list is returned as a <tab>-sepa
rated list terminated by a <nul>. The sample program uses the ANSI 
strtok() function to extract the individual topic names from the returned 
list, and displays them. Three types ofDDE application programs might be 
developed to run under iRMX: 

Simple client. A simple client application can request information from a 
server, as illustrated by ddeinq, tell the server to change the value of a data 
item using the client_ddeyokeO function, or pass a set of commands for 
the server to execute using the client_dde_execute() function. 

Client link. Two types of links can be established between a client and 
server. A hot link causes the server to send the value of a data item to the 
client any time the value changes, whereas a warm link causes the server 
simply to notify the client when a value changes The client can then obtain 
the value using client _ dde Jequest( ) if it wants. The client is notified of the 
new value or of the change in value by a callback mechanism. When the 
client issues the call to dde _library _initiate( ) to establish a conversation 
with the server, it can include a pointer to a function that will be called by 
the library whenever a server updates a hot or warm link. (The ddeinq sam
pIe program coded the pointer as (LINKFUNCPTR) 0 because it does not use 
links.) 
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Server. An iRMX server supplies pointers to two functions when it calls 
server _ddeJegister{} to inform the DDE library that the application is 
ready to act as a DDE server. The first pointer identifies a function known 
as the server's conversation callback, which is called by the DDE library 
any time a client attempts to initiate or terminate a new conversation with 
the server. The second pointer identifies the server's data callback, which 
is called by the DDE library whenever the client requests a data operation, 
including to request data, poke data, or establish a hot or warm link. 

There is nothing to prevent an application from acting in a mixed fash
ion with respect to these three modes. Because of the multitasking nature 
of iRMX, there would be no problem, for example, in having an application 
performing client operations with one task while the DDE library 
asynchronously makes calls to conversation and data callback functions 
declared previously by a call to server _ddeJegister{}. 

The DDE functions supplied by the iRMX DDE library are not unique 
to iRMX. Rather, they are functions provided by the library that allow 
iRMX applications to access standard Windows DDE functions. The 
Windows DDE protocol is discussed in some detail in Petzold (1992). 

12.9 Network Compatibility 

Two basic approaches can be taken for integrating iRMX and DOS net
working. The simpler but less powerful approach is simply to maintain an 
existing DOS network and let iRMX applications access network drives 
using the EDOS file driver from the iRMX side or the rmxuse command 
from the DOS side. For example, if your computer is running a Novell net
work that gives you access to a networked disk as your DOS drive G:, you 
can give the iRMX command: 

iRMX> attachdevice 9_dos as 9 edos [6) 

After this command, iRMX can access the networked drive using the 
logical name : G: without regard to the fact that it is being accessed over 
the network. This approach is easy to use, but requires quite a bit of over
head to access the networked disk, and no provision exists for operating as 
anything but a network client or a dedicated network server. 

The second approach is to provide the network access from the iRMX 
side and let DOS and Windows applications make use of the iRMX net
working facilities. This approach is more efficient for iRMX applications 
and provides the added benefit of allowing the computer to operate con
currently as a network server and client. This section explores the situa
tion when the network device controller is managed from the iRMX side. 

Chapter 11 introduced the native iRMX networking environment: a 
software module called iNA 960 provides (in addition to name-server and 
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network-management functions) an ISO standard implementation of the 
Transport, Network, and Data Link layers, which can be interfaced to 
Ethernet (802.3) or Token Bus (802.4) network device controllers. iNA in
cludes support for multiple protocol stacks at the Data Link layer, which 
means that the same device controller can be used to support concurrent 
operation with different networking protocols, such as TCP /IP and No
vell, in addition to ISO protocols. Here, you will see how iRMX for Win
dows integrates the iRMX networking capabilities provided by iNA with 
DOS networking. In the process, you will also see how this integration pro
vides for networked DDE communication, introduced in the previous sec
tion. 

Figure 12.9 shows the structure of the software components that con
tribute to iRMX for Windows networking. In this figure, the box labeled 
iNA 960 would normally include all the iRMX-Net components shown in 
Figure 11.2. On an iRMX for Windows system, networking software is 
loaded by a sysload command, normally when the system initializes. Dif
ferent versions of the network job are used, depending on what network 
device controller and system bus iNA is configured to operate with. For ex
ample, the networking file netat.job contains iRMX-Net for PC/AT bus 
systems. iRMX-Net loads iNA into the memory of the network device 
controller as it initializes. 

Another networking file that might be used instead is ntp4at.job, which 
is a version of iNA that does not require any network device controller at 
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Figure 12.9 Relationships among DDE servers and clients using the iRMX DDE Router. 
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all. When this job is loaded, iNA provides the ISO Transport layer inter
face, TP4, coupled with a null Data Link layer. Because no network con
troller is involved, ntp4at.job does not include any iRMX-Net support, 
however. The significance of ntp4at.job is that the iRMX support for Win
dows' DDE mechanism is based on a networking model for its operation, 
and ntp4at.job allows the DDE mechanism to be used on a standalone 
computer system. 

The use of ntp4at.job also allows programs to perform many ofthe iNA 
functions described in chapter 11 on a non-networked computer; it just 
does not support iRMX-Net and the Remote file driver. The timesrv, get
time, namesrv, and mynamon programs presented in chapter 11 all run 
successfully on iRMX for Windows systems running ntp4at.job. 

As Figure 12.9 shows, an iRMX application linked to the iRMX DDE 
Library communicates with DOS through iNA, using the Request Block 
interface described in chapter 11. The RB requests are intercepted by 
netrdr.job, another job normally started by means of a sysload command 
when the system initializes. The netrdr.job includes a PME that communi
cates with a DOS TSR supplied with iRMX for Windows named 
pcnet.exe.8 When an iRMX application makes a DDE library call, the li
brary encapsulates the request as an iN A network request. iNA running on 
the remote system receives the message over the network, where it is re
ceived by that system's copy of netrdr.job. If the DDE request is addressed 
to the local computer, the local copy of netrdr.job receives the request di
rectly from iNA. In either case, local or remote DDE request, netrdr.job 
transmits the request to pcnet.exe on the DOS side, which passes the re
quest to the DDE Router, the Windows application that acts as a surrogate 
DDE client and server for iRMX DDE operations. 

The reverse path is followed when a Windows application makes a DDE 
protocol request using a conversation based on an extended application 
name that includes a node name and <%> character, as introduced pre
viously. The DDE router intercepts the request and usespcnet.exe to send 
it to netrdr.job, which sends it over the network where it is received by the 
remote system's netrdr.job and passed up to the DDE Library code that in
teracts with the iRMX application. 

Figure 12.9 also shows a direct connection between the iRMX applica
tion and iNA. This link represents the Request Block (RB) interface to 
iNA described in chapter 11. This same RB interface is used by netrdr.job 
for its interface to iNA, but the actual form it takes (datagrams or virtual 
circuits) is invisible to the DDE user. 

SYou must install the pcnet.exe TSR after loading netrdr.job and the iRMX iNA job. If you 
loadiRMX from autoexec. bat and your iRMX : config: loadinfo loads the networking 
jobs, you can put the pcnet statement in the au toexec • ba t file after the statements to load 
iRMX. 
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What remains to be examined is the connection between DOS applica
tions and the network, as managed by iRMX and shown by the connection 
between pcnet.exe and DOS applications in Figure 12.9. One key to the suc
cess of this part lies in the fact that all DOS networking software, whether 
MS-Net, TCP/IP, or Novell, uses a common interface to the network, 
called NetBIOS, based on data structures called Network Control Blocks 
(NCBs) sent to a networking device driver using int 5C instructions. The 
pcnet.exe TSR intercepts these interrupts, transforms the NCBs into iNA 
RBs, and passes them on to netrdr.job, which passes them to iNA for the 
actual network operations. 

The second key to the integration of non-ISO networks such as Novell 
and TCP lIP with iRMX networking is the availability of the RA WEDL 
interface to iNA described in section 11.11. By using RAWEDL RBs,pcnet 
and netrdr are able to send and receive Novell and TCP lIP packets 
through a single network device controller without interfering with each 
other or with concurrent ISO operations. 

Although this section has presented the conceptual structure of the 
components involved in iRMX for Windows and DOS networking, many 
procedural details must be followed to make the entire process work. In 
particular, integration of Novell and TCP lIP networking on the DOS side 
requires the installation of MS-Net software, available from Intel for use 
with its PCL2(A) network device controller; Novell client software from 
Novell (and a Novell server on the network); the PC/TCP Ethernet device 
driver from FTP Software, Inc.; and a special Novell shell available from 
Brigham Young University. Details for integrating all ofthis software are 
given in the documentation supplied with MS-Net and in volume 8 ofthe 
iRMX for Windows documentation set, iRMX Network Concepts. 

12.1 0 Run-Time Configuration 

System configuration refers to the process of tailoring the software struc
ture of iRMX to match the particular hardware present on a system and 
the particular functional needs of a user. Adding a device driver to support 
a particular device controller, or deleting unneeded software modules to 
conserve system memory requirements, are both examples of system con
figuration. Before iRMX for Windows was introduced, configuration of an 
iRMX system was always performed using the Interactive Configuration 
Utility (ICU) described in chapter 9. 

The ICU is a menu-based editing program used to modify a special file 
called a definition file and then to generate a set of command files based on 
the definition file that, when submitted, would assemble and compile var
ious tables of information, link everything together, and generate a new 
operating system image file that could be bootstrap loaded. The process of 
editing a definition file and generating a new image file might take only 15 
to 20 minutes on a fast machine, and several image files can be kept on disk 
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so the desired features for the system can be selected by bootstrap loading 
the proper image. 

iRMX for Windows introduced the notion of selectively loading device 
drivers and operating system software layers at system initialization time. 
A text file, :config:loadinfo(:config: is normally :sd:/rrnx386/ 
config), contains sysload commands to install the desired set of device 
drivers and software layers. Once the core part ofthe operating system has 
been loaded (from DOS), the loadinfo file is automatically submitted for 
execution, thereby running the set of sysload comIllands selected by the 
user. Users do not need to deal with the ICU, which is a bit complicated to 
learn to use, and there is no need to keep multiple images of the operating 
system on disk. Each layer or driver is stored just once, and multiple ver
sions ofthe loadinfo file can be stored to select different configurations 
selected by the user. A nice feature of using sysload to install software is 
that it allows command-line arguments, such as device driver interrupt 
numbers or I/O port addresses, to be passed to the module as it is being 
loaded. With the ICU, it is necessary to change the definition file and re
build the system every time such a change is made. The ICU might give de
velopers the ability to change certain features of a system that cannot be 
done with sysload, but, with the introduction of sysload and the loadinfo 
file in iRMX III.2, it is clear that Intel's intention is to provide most of the 
functionality users need without using the ICU. . 

But what about the layers of the operating system always included in an
iRMX for Windows configuration, such as the Nucleus? Users need a way 
to set configuration parameters for these parts of the operating system as 
well. To deal with this problem, a second configuration file is used based on 
the model used in Windows' win. ini file. The iRMX file, : con
fig: rrnx. ini, is divided into sections marked by bracketed names for the 
various layers of the operating system, each of which contains a series of 
lines in the form of <parameter>=<value>. For example, the file might 
begin: 

[Nue] 
UML=FFFFFFFFH; 
OSX=14H; 

Upper Memory Limit 
Number of user as Extensions 

These lines cause the Nucleus layer to use of all memory available on the 
system (OxFFFFFFFF is the same as no limit) and to reserve Ox14 de
scriptor table slots for user-installed system calls, described in chapter 10. 
Volume 2 of the iRMX for Windows documentation set, System Configura
tion and Administration, contains detailed information on managing the 
rrnx. ini file. 
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12.11 Summary 

The iRMX operating system provides a rich set of resources for developing 
robust real-time systems. iRMX for Windows adds to this by allowing 
iRMX applications to coexist and interact with either DOS or Windows 
applications in ways that build on the advantages that each operating envi
ronment has to offer. The primary contribution of DOS is its widespread 
availability and familiarity. From our point of view, the primary contribu
tion of Windows is its DDE mechanism for exchanging information among 
applications, although its graphical interface and task switching capabili
ties can also be useful in developing user interfaces to real-time systems. 
iRMX contributes its real-time resources to the system. The major real
time feature, of course, is rapid, deterministic scheduling of real-time 
tasks. In the tradition of real-time operating systems, however, iRMX also 
provides developers with a great number of resources for customizing the 
operating system to the needs of an application using the same facilities 
used by the developers of the operating system itself. 

iRMX for Windows, to take advantage of the DOS and Windows envi
ronments, adds several features to iRMX that cannot be provided in an 
iRMX-only configuration. Features like console sharing, interrupt man
agement, extended memory management, and access to DOS file systems 
are basic extensions necessary to enable DOS, Windows, and iRMX to 
coexist successfully. Features like sysload, device drivers, and run-time 
configuration that were introduced largely as convenience items in iRMX 
for Windows do not need to be unique to the DOS environment and are 
being incorporated into other versions of iRMX as well, most notably 
iRMX III. Finally, incorporating iRMX's networking facilities into iRMX 
for Windows has generated a facility that goes beyond what either system 
could provide alone: networked DDE. 
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A 
SoftScope III Command Summary 

NOTE: This Appendix is extracted from chapter 5 ofthe SoftScope III Ref
erence Manual, reprinted with permission of Concurrent Sciences, Inc. 
The full manual is included as volume 13 ofthe iRMX for Windows docu
mentation set. 

BPSCOPE 

Syntax 

BPSCOPE [TASK JOB I GLOBAL J 

Description 

TASK Sets the scope so only one task (as specified by the TASK 
command) can trigger a breakpoint. 

JOB Sets the scope so only the tasks in ajob (specified by the TASK 
command) can trigger a breakpoint. 

GLOBAL Sets the scope so any task can trigger a breakpoint. 

BPSCOPE determines the scope of all breakpoints which are set after the BPSCOPE command 
is issued. A breakpoint can be triggered within a task, within any task in a job, or within any 
task in the system. 

BPTIMEOUT 

Syntax 

BPTIMEOUT [decnumber32] 

decnumber 32; A 32-bit unsigned integer. 

515 
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Description 

BPTIMEOUT sets or displays the maximum time Soft-Scope III will wait for a breakpoint to be 
hit. If this time is exceeded, Soft-Scope III will report < Task running> and change the prompt 
to a running prompt (an exclamation point (I) will precede the prompt). 

BREAKPT 

Syntax 

BRBAKPT [-J [coderefJ [ TASK I JOB I GLOBAL J 
BRBAKPT [-J WRITE I ACCESS memref [ TASK I JOB I GLOBAL J 
Abbreviation: DR 

Description 

coderef 

memref 

address 

modname 

linenum 

codesym 

datasym 

- (dash) 
WRITE 
ACCESS 
TASK 

JOB 

GLOBAL 

address 
[ :modnameJ #linenum 
[:modnameJ . codesym 
address 
:modname 
[:modnameJ [ . codesymJ *. datasym 
[ : modname J • codesym 
[:modnameJ#linenum 

A logical, physical, or linear address, (eg. DS: 1000, 1000P, or 
OFFFFL). 
A module name. 

A line number found in the current module or in modname. 

The name of a procedure or label. 

The name of a symbol. 

Delete breakpoint. 
Break when written to . 
Break when read from or written to . 
Sets the scope so only one task (as specified by the TASK 
command) can trigger a breakpoint. 
Sets the scope so only the tasks in a job (as specified by the TASK 
command) can trigger a breakpoint. 
Sets the scope so any task can trigger a breakpoint. 

BREAKPT manages a list of static execution and data breakpoints. A breakpoint tells Soft
Scope III to stop execution when a condition is met. 

CONSOLE 

Syntax 

CONSOLB devicename [termtype) 

CONSOLB 
devicename A host-system-dependent name for the device. 
t ermtype = The physical type of the second terminal. 
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Description 

You can redirect Soft-Scope III Qutput to a second terminal with the CONSOLE command. 
CONSOLE with no parameters will direct Soft-Scope III output back to the original terminal. 

DISASM 

Syntax 

[count] DISASM [ALL] [NOLINES] [coderef] [TO coderef] 

Abbreviation: DIS 

count 
coderef 

address 

modname 
linenum 
codesym 
ALL 

NOLINES 

An integer in the range 1 to 32,767. 

address 
:modname 
[:modname]#linenum 
[:modname] . codesym 
A logical, physical, or linear address, (eg. OS: 1000, 1000P, or 
OFFFFL). 
A module name. 

A line number. 

A procedure name or label. 

Display op-codes and comments. 

Don't display source lines. 

Description 

DUMP 

D1SASM disassembles the instructions found at the specified address, and if the corresponding 
high-level lines can be determined, displays them. 

Syntax 

[count] DUMP [ BYTE I WORD I DWORD ] [memref] 
DUMP [ BYTE I WORD I DWORD ] memref [TO memref] 
count An integer in the range I to 32,767. 

memref 

address 

modname 
datasym 
codesym 
linenum 
BYTE 

address 
[:modname] [.codesym]*.datasym 
[:modname] .codesym 
[:modname]#linenum 
A logical, physical, or linear address, (eg. DS:IOOO, 1000P, or 
OFFFFL). 

A module name. 

The name of a symbol. 

A procedure name or label. 

A line number from the current module, or from modname. 

Display in BYTE fonnat (byte order: 1 2 3 4). 
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WORD 

DWORD 

Display in WORD format (byte order: 2 1 4 3). 

Display in DWORD format (byte order: 4 3 2 1). 

Description 

EVAL 

DUMP displays blocks of memory with a hexadecimal display on the left and the corresponding 
ASCII field on the right. Memory dumps can be displayed in BYTE, WORD, or DWORD 
format (BYTE is the default). WORD and DWORD formats display memory addresses in word
or dword-Iength groupings. 

Syntax 

EVAL [memref I coderefJ 
memref 

coderef 

address 

modname 
datasym 
codesym 

linenum 

address 
[:modnameJ [.codesymJ*.datasym 
[:modnameJ .codesym 
[ :modnameJ #linenum 
address 
:modname 
[:modnameJ#linenum 
[ :modnameJ . codesym 
A logical, physical, or linear address, (eg. DS: I 000, 1000P, or 
OFFFFL). 

A module name. 

The name of a symbol. 

A procedure name or label. 

A line number from the current module, or from modname. 

Description 

EXIT 

Evaluating a procedure displays the procedure's module name, line numbers, starting and ending 
addresses, and length. Evaluating pointers displays the descriptor entry and physical address 
associated with that pointer. Using EVAL on other kinds of symbols will produce the same 
display as you would see if you entered the symbol name without EV AL. 

Syntax 

EXIT 

Description 

This command exits Soft-Scope 11I and returns you to system command level. You can also use 
QUIT. 
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GO 

Syntax 

GO [WRITE I ACCESS] memref 

GO coderef 

GO RETURN 

Abbreviation: G 

coderef 

memref 

address 

modname 

datasym 

codesym 

linenum 

WRITE 

ACCESS 

RETURN 

address 
[:modnamel#linenum 
[:modnamel.codesym 
address 
[:modname] [.codesym]*.datasym 
[:modname] .codesym 
[:modname]#linenum 

A logical, physical, or linear address, (eg. DS:IOOO, 1000P, or 
OFFFFL). 

A module name. 

The name of a symbol. 

A procedure name or label. 

A line number from the current module, or from modname. 

Go till coderef is written to. 

Go till coderef is read or written to. 

Go till return from the current procedure. 

Description 

HELP 

GO tells Soft-Scope III to transfer execution to your application. The program will start 
executing at the current execution point. GO coderef sets a temporary breakpoint at the desired 
code reference -- a line number, label name, procedure name, or absolute address. Execution 
then proceeds at full speed until that (or any other) breakpoint is hit. 

Syntax 

HELP [topic] 

topic Soft-Scope III command name or Help topic. 

Description 

LINE 

HELP provides on-line assistance with Soft-Scope III syntax and usage. Each Soft-Scope III 
command has a HELP entry associated with it. HELP with no parameters displays the command 
syntax summary, as well as a list of other topics for which help text is available. 

Syntax 

LINE [coderef] 

Abbreviation: <carriage return> 
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coderef 

address 

modname 

linenum 

codesym 

address 
:modname 
[:modname]#linenum 
[:modname] .codesym 
A logical, physical, or linear address, (eg. DS:IOOO, IOOOP. or 
OFFFFL). 

The name of a module from your program. 

A line number from the current module, or the module given by 
modname, if supplied. 

The procedure name or label. 

Description 

LIST 

LINE directs Soft-Scope IJI to display as much information as it can about the whereabouts of 
the specified address. The display will include some or all of the following: line number, 
module name, procedure name, and source line or assembly instruction. 

Syntax 

[count] LIST [lineref I TO lineref] 

LIST lineref TO lineref 
Abbreviation: L 

count 
lineref 

modname 
linenum 
codesym 

An integer in the range I to 32,767. 

:modname 
[ :Ihodnamel#linenum 
[:modname) . codesym 
A module name. 

A line number from the current module or from modname. 

A procedure name or label. 

Description 

LOAD 

Use LIST to display source lines from a module's listing, or find a specified string in a source 
tile. Soft-Scope 1Il uses the lines from the compiler-generated listing tile. 

Syntax 

LOAD [SYMBOLS] filename 

filename 

SYMBOLS 

Description 

A host system dependent identifier for a disk tile. (eg. 
ISRCIFILE). 

Load only symbols. 

The LOAD command loads symbols from the specified tile, and (with the exception of LOAD 
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SYMBOLS), loads the code and data into iRMX III free space, through the Application Loader. 
This command is designed to be used with applications written to be run under the Human 
Interface and generated by BND386 (or BND286). The application loaded under Soft-Scope III 
will be automatically deleted upon exit from the debugger. 

The LOAD SYMBOLS command allows you to load symbolics without disturbing the selected 
application or changing register values. This command is appropriate for first-level jobs or 
device drivers embedded in the iRMX III boot file. 

LOADSEGS 

Syntax 

LOADSEGS [segtoken jobtoken filename] 

segtoken hexnumber16 

datasym 

jobtoken hexnumber16 

datasym 

f i 1 ename a host system dependent identifier for a disk file. 

hexnumber 16 A 16-bit hexidecimal number. 

datasym A name ofasymbol. 

Description 

LOG 

You may access and debug files loaded by your application through the iRMX system call 
RQALOADO with the macro LOADSEGS. This macro will also load the symbolic information 
for the file specified. You must follow the RQALOADO call with a RQECREATEIOJOBO. 
The segfoken is the token returned to the caller of RQALOADO via a mailbox. The johtokell is 
returned directly by the RQECREATEIOJOBO system call. Thefilename is the name of the file 
passed to RQALOADO. 

Syntax 

LOG [devicename I filename] 

LOG ON I OFF 

Description 

devicename A host-system-dependent name for the device. 

filename A host-system-dependent identifier for a disk file. (eg. 
/src!output.ss). 

ON Log to device. 

OFF Stop logging to device. 

Use LOG filename to create or open a file and begin copying most Soft-Scope I/O to thaI file. 
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MACRO 

Syntax 

MACRO [LIST] 

MACRO LOAD filename 

MACRO DELETE [macroname] 

MACRO STEP [macroname] 

filename = A host-system-dependent identifier for a disk file. (eg. 
/src/samp.mac). 

macroname = The name of a macro from the currently-loaded macro tile. 

Description 

This command gives you the basic tools you will need to manipulate Soft-Scope III macros. For 
information about how to create your own macros, see Macros (Chapter 7 of the full SoftScope 
Manual. 

MODULE 

Syntax 

MODULE [:modname = filename] 

Description 

modname The name of a module from your program. 
modname A module name. 

filename = A host-system-dependent identifier for a disk file. (eg. 
/SRCIFILE.LST). 

MODULE displays the current listing file assignments. MODULE :nu){/name = filename assigns 
a listing file to a program module. 

QUIT 

Syntax 

QUIT 

Description 

This command exits Soft-Scope III and returns you to system command level. You can also use 
EXIT. 

REG 

Syntax 

REG [ALL I FLOAT] 



ALL 

FLOAT 

Show system registers. 

Show Floating Point Registers. 
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Description 

REG displays the contents of the CPU registers. When the 386 is running in protected mode, 
REG ALL gives a fuller display. 

RESUME 

Syntax 

RESUME tasktoken 
tasktoken ~ hexnumber16 

datasym 
hexnumber16 A 16-bit hexidecimal number. 

datasym A name of a symbol. 

Description 

SET 

The RESUME macro allows you to restart a suspended task. This macro, in conjunction with 
SUSPEND, is useful when you are trying to debug a task and its interaction with another task is 
preventing you from determining the problem. You could suspend one task while you locate the 
problem and resume the task once the problem is solved. 

Syntax 

SET [optionname [~ optionvaluell 

Description 

Soft-Scope III maintains a list of options for the Soft-Scope III environment and their associated 
values. If you set up these values in the Soft-Scope 111 configuration file SS.SET, they will be 
configured whenever you bring up Soft-Scope 111. Soft-Scope III uses these options for specitic 
operations, but only looks at a value when it is needed, so it's possible to specify an invalid 
option and not generate an error until that option is used by some other Soft-Scope III command. 

The following options are available: 

Option 

sym.case 

sym.pointer 

sym.descriptor 

src.path.ext 

src.path 

src.tab 

Description 

Consider case in searches. 

Type of FAR pointer to use. 

Descriptor Type Override type. 

Pathname for source-file searches. 

Pathname for all file searches. 

Tab equivalence for any files. 



524 Appendix A 

cmd.history 

cmd.macro 

cmd.prompt 

cmd.initial 

cmd.silent 

Number of commands available to recall. 

Initial macro file(s) to load. 

Soft-Scope III prompt to use. 

Initial command or macro to execute when 

Soft-Scope III is invoked. 

Disable the bell. 

STACK 

Syntax 

[count] STACK [TRACE] [LINES] 
STACK USAGE I RESET 

count Number oflevels to view. 

TRACE 

LINES 

USAGE 

RESET 

Display calling statements. 

Display source line. 

Display current stack level. 

Clear unused stack area. 

Description 

STEP 

STACK TRACE shows procedure call nesting. It tells you what procedure called what 
procedure, starting at the your current execution point and proceeding backwards. If the stack 
display is longer than can fit on one screen, you will have the option to continue tracing 
backwards along the stack. STACK LINES displays the source line that made each procedure 
call. 

Syntax 

[count] STEP [ASM] [INTO] 

Abbreviation: S 

count number of source lines to execute. 

ASM Step one assembly instruction at a time. 

INTO Step into all calls. 

Description 

The STEP command executes source code one line at a time. Soft-Scope III displays the next 
line to be executed. If the execution doesn't start at the beginning of a line, you will see the 
"[ Inside ]" prompt, telling you that the first step began in the middle of the assembly code 
generated for that line. STEP ASM displays disassembled instructions and steps in assembly
language increments. STEP steps over all calls. Specify STEP INTO to step into all calls. 
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SUSPEND 

Syntax 

SUSPEND tasktoken 

tasktoken ~ hexnumber16 

datasym 

hexnumber16 A l6-bit hexidecimal number. 

datasym A name of a symbol. 

Description 

The SUSPEND macro in conjunction with the RESUME macro allows you to suspend a task and 
then restart it. This is useful when you are trying to debug a task and its interaction with another 
task is preventing you from determining the problem. You could suspend one task while you 
locate the problem and resume the task once the problem is solved. This macro corresponds 
exactly to an iRMX RQSUSPENDO system call. 

SYSTEM 

Syntax 

SYSTEM program 

Abbreviation: SYS 

program iRMX command to execute. 

Description 

TASK 

SYSTEM allows you to execute operating system commands from inside Soft-Scope III. When 
you are finished, you will return to the Soft-Scope \lJ command line. 

Syntax 

TASK [tasktoken] I [ALL] 

Description 

ALL All tasks from all Soft-Scope III sessions. 

tasktoken ~ hexnumber16 

datasym 

hexnumber 16 A 16-bit hexidecimal number. 

datasym A name ofa symbol. 

The TASK macro allows you to determine the status of other tasks being debugged and to 
change the current task context. TASK reports information on which tasks are at a breakpoint, 
and will print source-level information about the breakpoint, if possible. The task whose 
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context Soft-Scope III is currently using is denoted by the asterisk in the left-most column. 
TASK ALL lists all tasks at break from all Soft-Scope III sessions. 

TYPE 

Syntax 

TYPE (memref I coderefl 

Description 

coderef 

memref 

address 

modname 
datasym 
linenum 

codesym 

address 
:modname 
(:modnamel#linenum 
(:modnamel.codesym 
address 
:modname 
(:modnamel (.codesyml*.datasym 
[:modnamel.codesym 
(:modnamel#linenum 
A logical, physical, or linear address, (eg. DS:IOOO, IOOOP, or 
OFFFFL). 

A module name. 

The name of a symbol. 

A line number from the current module, or from modname. 

A procedure name or label. 

TYPE displays all available information about a variable's data type. In addition to the type, the 
display will show scope (global, module, or local), and storage class (static, stack-based, 
parameter, or based). TYPE allows you to look at the composition of large, complex data 
structures without looking at the contents of these variables. Use TYPE memref to see if a 
variable is stack-based and only reachable from within the procedure where it is declared. 

"V" MACROS (SOB) 

Syntax 

VT objtoken 
VJ [jobtokenl 
VO jobtoken 
VD jobtoken 
W tasktoken 
VK 
VS 
vc segment:offest 
VF 
VB devicename 
VR segtoken 
VH 
VMI [hexnumber16] 
VMO [hexnumber16] 
VMF 

(view token) 
(view jobs) 
(view object) 
(view directory) 
(view unwind) 
(view ready) 
(view stack) 
(view call) 
(view free) 
(viewduib) 
(view iors) 
(view help) 
(view message input)*. 
(view message output) 
(view message failsafe) 

* 'llie interactive mode of these commands (using a comma, ':) is not supported. 



Description 

objtoken 

jobtoken 

hexnumber16 

datasym 

hexnumber16 

datasym 

tasktoken = hexnumber16 

segtoken 

segment 

offset 

datasym 

hexnumber16 

datasym 

hexnumber16 

hexnumber16 

hexnumber32 
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devicename A host-system-dependent name for the device. 

hexnumber16 A 16-bit hexadecimal number. 

hexnumber32 A 32-bit hexadecimal number. 

datasym A name of a symbol. 

You can access the iRMX III System Debugger (SDB) through a set of macros in SS.MAC. 
Soft-Scope III provides information about iRMX system objects, such as mailboxes, tasks, jobs, 
semaphores, segments, and regions. It also displays stack and system call information. If YOll 

are using a Multibus II system, you can display the input or output message buffer of the 
Message Passing Coprocessor (MPC), or toggle its fail-safe timeout feature. 

VERSION 

Syntax 
VERSION 

Description 

VERSION displays Soft-Scope III's version number and information about its host operating 
system. 
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B 
Terminal Support Code 

This appendix describes the technique for adapting the iRMX for Win
dows console driver to work with ANSI X3.64 escape sequences. The tech
nique uses the translation feature of the Terminal Support Code (TSC ), a 
layer of software that acts as a programmable filter between terminal I/O 
drivers and application programs. The material in this appendix is derived 
from Appendix C of the Device Driver Programming Concepts manual of 
the iRMX for Windows documentation set (Chapter 2 of the Device Driver 
User's Guide in the documentation sets for other versions of iRMX), from 
the Aedit Reference manual, and from experimentation. 

When a program writes characters to the screen, they pass through the 
TSC on their way to the driver. If the TSC has been told to, it will intercept 
X3.64 sequences and translate them into character codes appropriate for 
the specific type of non-ANSI terminal that is to receive the output. An ex
ample of a non-ANSI terminal is the iRMX console driver for the PC, 
which has the DUIB name D _CONS. On input, the driver accepts keyboard 
scan codes and puts the proper character codes in the application's input 
buffer. On output, the driver accepts character codes from the application's 
output buffer and determines what to place in the PC's video memory to 
get the proper characters to appear on the screen. 

The following table lists some X3.64 escape sequences and the corre
sponding D _CONS control codes. 

Function X3.64 o CONS 

Cursor Forward <esc> <OxI9> 
Cursor Backward <esc> <OxlF> 
Cursor Up <esc> <OxIE> 
Cursor Down <esc> <OxIC> 
Cursor Position <esc> see text 
Clear Screen <esc> <OxOC> 
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In the table, <esc> is the ASCII escape character <OxIB>, and 99 rep
resents an arbitrary number which, if omitted, defaults to 1.1 D _CONS cur
sor positioning is performed with a sequence of bytes consisting of a lead
in character <Ox04> and two bytes giving the row and column as binary 
numbers offset by Ox20. For example, the cursor could be positioned to row 
12, column 34 by sending three bytes with the values Ox04, Ox2B, and Ox41 
in that order. (Rowand column numbering start at zero.) Another way to 
position the cursor using the D_CONS driver would be to clear the screen 
and send a sequence of 11 cursor-down <OxIC> and 33 cursor-forward 
<OxI9> characters. The file hellocon. cad illustrates the use first tech
nique (cursor addressing): 

File hellocon. cad. <OxOC><Ox04><Ox2B><Ox41>Hello There I 

The file hellocon. cmv illustrates accomplishing the same thing using 
cursor movement codes: 

File hellocon. cmv. 

<OxOC><OxlC><OxlC><OxlC><OxlC><OxlC><OxlC><OxlC><OxlC><OxlC> 
<OxlC><OxlC><Ox19><Ox19><Ox19><Ox19><Ox19><Ox19><Ox19><Ox19> 
<Ox19><Ox19><Ox19><Ox19><Ox19><Ox19><Ox19><Ox19><Ox19><Ox19> 
<Ox19><Ox19><ox19><Ox19><Ox19><Ox19><Ox19><Ox19><Ox19><Ox19> 
<Ox19><Ox19><Ox19><Ox19><Ox19>Hello There I 

To generate these files yourself, you must insert the indicated hexadeci
mal codes into the files using a text editor. With Aedit, you can use the HI 
(hex insert) command from command mode or the < A IV command while 
in insert mode. To use these files, just copy them to the screen using the 
iRMX copy command. For example: 

rmx> copy hellocon.cmv 

When the D_CONS device driver receives the characters from the file 
(because the copy command writes them to : co:), it inserts the proper 
characters into the display adapter's video RAM to cause a message to ap
pear in the middle of the screen. The • cmv file contains a clear screen char
acter, followed by a sequence of cursor-down and cursor-forward charac
ters to do the positioning. The • cad file accomplishes the same thing using 
direct cursor addressing. 

If you try typing the hellocon. * files on a DOS console (with 
ANSI.SYS installed) or copy them to the screen of a terminal that recog-

lSome of the codes in this appendix can be difficult to read. The symbols> and < never ap
pear in any of the codes being described; they are always used to delimit single character 
codes. Where ASCII names like <esc> and <cr> are not available, the hexadecimal values 
of the necessary character codes are given using C-Ianguage syntax inside the angle brackets. 
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nizes ANSI sequences, they will not accomplish the same thing because the 
D _CONS control codes are not the same as the corresponding ANSI escape 
sequences. The files helloans . cmv and helloans . cad are equivalent to 
the hellocon files, but illustrate the use of X3.64 escape sequences. These 
files can be copied to the screen of a DOS or ANSI terminal with the desired 
effects, but they do not work on the iRMX for Windows console because 
the D _CONS driver does not recognize them. These files will be looked at 
after we solve problem of getting the D _CONS driver to accept ANSI escape 
sequences. 

The terminal support code saves the day. I programmed the TSC to 
translate X3.64 escape sequences into D _CONS control codes. The TSC is 
programmed by writing TSC control codes to the device. These control 
codes begin <esc]> as opposed to ANSI codes that begin with <esc>[. 
When the TSC receives the <esc>] sequence, it interprets everything 
until it receives the sequence <esc>\ as information for its own use, and 
does not pass on any of those characters to the device driver. Here is an ex
ample of a TSC escape sequence: 

<esc>] T: E2=25 <esc>\ 

The T: part tells TSC that this sequence applies to the terminal as op
posed to an I/O connection, for example. E2=25 tells TSC that X3.64 
escape sequence number 2 is equivalent to decimal code 25 for this termi
nal. Table C-5 in Device Driver Programming Concepts (Table 2-3 in De
vice Drivers User's Guide) must be consulted to determine that X3.64 se
quence number 2 is the cursor-forward sequence «esc> [99C). The value 
25 is Ox19, which is the D _CONS code to move the cursor forward. Any num
ber of translations can be set up with a single TSC sequence: 

<esc>] T: E2=25, E3=31, E4=30, E5=28, E6=4, E30=12 <esc>\ 

E2 through E5 correspond to the four cursor movement functions, E6 is 
for cursor addressing, and E30 is the clear screen function. To perform 
cursor addressing, TSC must also be told the order in which the row and 
column are specified (row, then column, in the case of D_CONS), and the 
offset value for row and column numbers (32 for D_CONS). This informa
tion can be specified by the following sequence: 

<esc>] T: F=l, U=32 <esc>\ 

This string was determined by consulting Table C-4 in the Device Driver 
Programming Concepts. (Table 2-2 in the Device Driver User's Guide.) The 
field F=l tells the TSC that rows are specified before columns, and U=32 
tells the offset value for converting encoded row and column numbers to 
lines and column numbers on the screen. You can also view and set these 
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parameters with the HI term command. With no command-line argu
ments, term displays current settings. The command term yx over=32 
will have the same effect as this TSC sequence. 

The file ans i . os c contains a TSC string for all of the preceding plus a 
few other translation values, such as for erasing a line or part of the screen. 
I chose the . osc extension for the file name because Intel documentation 
calls these strings for the TSC Operating System Command (OSC) strings. 
There is another type of string that the TSC recognizes called an Applica
tion Program Command (APC) string, but that is not of concern here. Here 
is ansi. osc: 

File ansLosc 
<esc>] T:F=l, U=32, E2=25, E3=31, E4=30, E5=28, E6=4,E26=05, E28=Ol, 
E30=12, E31=03, E33=02, E35=06<esc>\ 

Just setting all the translation rules and cursor addressing information 
is not enough. It is also necessary to turn on TSC translation to get the 
TSC to intercept X3.64 sequences and pass the correct control codes on to 
the device driver. This can also be done using the term command, but it is 
usually done with a TSC string that looks like: 

<esc>] T: T=l <esc>\ 

There is one more messy detail to handle before proceeding to show the 
files for ANSI control of the D_CONS driver. Aedit and the CLI have their 
own way of controlling the screen display and processing such keyboard 
characters as the arrow keys. They access the : conf ig: termcap file to 
find out which control codes to send to the device driver, assuming no TSC 
translation is in effect. The termcap file contains strings such as AFMR=19, 
which Aedit and the CLI interpret as "the character code to move the cur
sor to the right is <Ox19>." The point here is that TSC translation must 
be off for Aedit and the CLI to work correctly. Either that, or you have to 
provide a complete mapping of X3.64 codes to D _CONS codes, turn transla
tion on, and use the CLI's set term=vtlOO command to tell Aedit and the 
CLI to use ANSI sequences rather than D _CONS codes. VT100 is the entry 
in : conf ig: termcap that is the same as X3.64. 

Finally, here are the files that use ANSI escape sequences to accomplish 
the same thing as the files hellocon. cad and hellocon. cmv presented 
previously. 

File helloans. cad 
<esc>] T: T=1<esc>\<esc>[2J<esc>[12;34HHello 
There !<esc>[9; 9HAgainl I <cr><lf><esc>] T: T=O<esc>\ 

File helloans.cmv 
<esc>] T: T=l <esc>\ <esc> [2 J<esc> [llB<esc> [3 3CHello 
There I <cr><lf><esc>] T: T=O<esc>\ 
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You can see that the files contain the TSe string to turn on translation, 
followed by the ANSI sequences to clear the screen and positio~ the cursor 
in the middle. Next comes the message text, including <cr)<lf>, fol
lowed by the TSe string to turn translation back off so that Aedit and the 
eLi will still work after the file is copied to the screen. If you type this same 
file on the DOS console, the message will still show up in the proper place, 
but you will also see the TSe string on the screen because ANSI.SYS does 
not know what to do with it. 

Although all the examples in this appendix have shown the contents of 
files, application programs can generate the same effects simply by writing 
the same codes to the console output device. For example, you could have a 
small program that writes the equivalent of ans i . osc to the terminal, and 
include that program in your r?logon file (or your : config: r?initfile). 
The TSe information only needs to be output once. After that, you could use 
term to turn translation on and off as desired, and have your applications 
generate ANSI escape sequences for all cursor control operations. 





Appendix 

C 
Stream I/O 

C.1 Overview 

This appendix shows how to use the iRMX stream file driver to implement 
intertask communication. Understanding streams helps explain two to
tally different features ofthe operating system: 10RS processing by device 
drivers and command processing by a CLI. First, the structure of an appli
cation that uses streams for intertask communication will be reviewed. 
The main issue in designing an application that uses streams is to under
stand how the streams device driver processes 10RSs. (Device drivers and 
10RS processing are covered in chapter 9.) I then show how streams can be 
used to implement I/O redirection by a CLI. 

C.2 Stream IORS Processing 

Two tasks communicate using a stream file by performing read and write 
operations on the same stream file. One task writes to the file, and the 
other task reads from it. The stream device driver copies data from the 
writer's output buffer in RAM directly to the reader's input buffer. No ac
tual I/O device is involved in the process. Any number of tasks read or write 
a given stream file, possibly even just one task does both the writing and 
the reading. 

As explained in chapter 8, the iRMX I/O model is based on the iRMX 
object type called an I/O connection. I/O connections to devices encapsu
late information about the device driver and the file driver to be used for 
performing I/O operations and are sometimes called device connections. 
I/O connections to files identify the particular file to be accessed on a de
vice and are sometimes called file connections. Both device connections 
and file connections are really just one (composite) type of object as far as 
the iRMX Nucleus is concerned, but the BIOS differentiates between the 
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two in two important ways: 

1. No more than one connection can exist to a particular device driver at 
any time on an iRMX system. Any number of file connections can exist 
based on a single device connection, however. 

2. Any task can use a particular device connection, but only tasks that be
long to the same job can use the same file connection. The BIOS does, 
however, allow a task to use a file connection belonging to another job to 
create a new file connection, one that belongs to the calling task's own
ing job. 

A stream device driver and a stream file driver are provided on virtually 
all iRMX systems. (It would be possible to configure an iRMX system that 
does not support streams by using the ICU.) Furthermore, an I/O connec
tion to the stream device is normally established automatically as the sys
tem initializes. The logical name for this device connection is : STREAM: . 

As with I/O connections for other device drivers and file drivers, there is 
just one I/O connection to the stream device, but there can be any number 
of file connections based on the connection to the device. A sIngle file con
nection does not uniquely identify a particular file, however. For example, 
a single disk file can be accessed concurrently by two different programs 
using two different connections to the file (provided only that the two con
nections are opened with compatible file sharing modes). For disk files, 
what uniquely identifies a file is the file's fnode data structure. 

The fnode data structure is stored on the disk itself,and a copy is stored 
in memory whenever connections to the file exist. There is an analogous 
data structure to a disk file's fnode for each different stream file that exists, 
called the stream file's file node. Thus, multiple sets of tasks can be 
communicating by means of different stream files at the same time. The 
different sets of tasks use file connecti<)Ds with different stream file node 
numbers. Just as two tasks read or write the same disk file if their I/O con
nections specify the same fnode number, two tasks read or write the same 
stream file if their I/O connections specify the same stream file node num
ber. 

The BIOS creates a new stream file node number each time a file con
nection is created based on the device connection to the stream device 
driver. Two ways to do this are the following: 

1. Call rqacreatefile() or rqsattachfile( ) with the pref ix parameter set to 
the token for the stream device connection and the subpathPtr set to 
null. 

2. Call rqscreatefile() or rqsattachfile() with the logical name for the 
stream device (: STREAM:) as the pathname. 

The two ways to create a new stream connection with a stream file num
ber that matches an existing one are: 
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1. Call rqacreatefile() or rqaattachfile() with the pref ix parameter set to a 
token for an existing stream file connection. 

2. Catalog a stream file connection in some job's object directory by calling 
rqscatalogconnection( ) or rqcatalogobject( ) and use the resulting logical 
name as the pathname argument to rqscreatefile() or rqsattachfile(). 

When a task reads or writes using a stream connection, the stream file 
driver creates an 10RS for the operation and calls the device driver's 
queueIO() procedure to enter the 10RS on the driver's queue of work to be 
done. The device driver tries to match the new 10 RS with any others that it 
has already received with the same stream fnode number. If a match exists, 
the device driver copies data from the writer's buffer to the reader's buffer, 
and returns both 10 RSs to their response mailboxes. If no match is found, 
the new IORS is simply added to the driver's queue of work to be done. If 
the number of bytes being read is different from the number of bytes being 
written, the driver completes any I/O requests it can and leaves any extra 
bytes pending until further IORSs arrive. Note that the mailbox used by 
the sample device driver in chapter 9 does not work as the stream driver's 
10RS queue because the stream device driver needs to be able to access 
more than one 10RS at a time. 

Figure C.l is a program that uses BIOS system calls to illustrate stream 
10RS processing. The main task creates a new stream file connection and 
then does a series of I/O transfers: a read of 12 bytes, two writes of 9 bytes 
each, and a read of 6 bytes. The first read completes only after both write 
operations are performed. The second write operation provides 6 more 
bytes than the first read requested, so the driver uses those 6 bytes to sat
isfy the second read request. The sequence in which the read and write 
operations are performed is arbitrary as far as correct operation of the pro
gram is concerned. The task that monitors the response mailbox termi
nates the program when no 10RSs arrive in a 2-second period. 

Figure C.1 A program that performs a series of stream file transfers using BIOS 
(asynchronous) system calls. 

/***> rwwr.c <************************************************** 

* One of a series of programs which performs asynchronous 
stream I/O. 

* 
This program performs two reads and two writes in the 
sequence r-w-w-r. The total number of bytes read and 
written are equal (24). 

****************************************************************/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <rmxc.h> 
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Figure C.1 ( Continued) 

#define chk(x) if (Status) printf ('%X %s\n', Status, x) 

/* 
Global variables 

*/ 

TOKEN pipe, respMbx, iorsTkn, streamDev; 
A_IORS_DATA_STRUCT *iorsPtr; 

/* 

* 

*/ 

Task to monitor the response Mailbox and display 
information about IORSs that arrive there during 
reading and writing 

void far taskl (void) { 
WORD i, Status; 
char *bufPtr, hexTab[] = 'Ol23456789ABCDEF'; 
char * funcNames [] = (' read' , 

'write' , 
"seek" , 
'special', 
'attach device', 
'detach device', 
"open II , 

'close'); 

for (;;) { 
iorsTkn = rqreceivemessage (respMbx, (unsigned short) 600, NULL, 

&Status); 
if (Status == OxOOOl) { 

printf ('time out\n'); 
exit (0); 
) 

iorsptr = (A_IORS_DATA_STRUCT *) iorsTkn; 
printf ("%8 transferred %ld bytes with status %4X\n', 

funcNames[iorsPtr->funct] , 
iorsPtr->actual, 
iorsPtr->status); 

bufPtr = (char *) iorsPtr->buf-ptr - (int) iorsPtr->actual; 
printf ("Data transferred:"); 
for (i = 0; i < iorsPtr->actual; i++) { 

printf (" %c%c", hexTab [ (*bufptr » 4) & OxOF] , hex Tab [*bufPtr & 
OxOF]) ; 

/* 

* 
* 
*/ 

bufPtr++; 
) 

printf ("\n"); 
) 

Main task - initializes everything and does the reading 
and writing. 

int main (int argc, char *argv[]) 
BYTE buffer[30]; 
BYTE myPrio; 
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Figure C.1 ( Continued) 

WORD Status; 

/* 
* Initialize 
*/ 

myPrio = rqgetpriority ((selector) NULL, &Status); 
streamDev = rqslookupconnection ("\x008:STREAM:", &Status); 
respMbx = rqcreatemailbox ((unsigned short) 0, &Status); 

rqacreatefile ((selector) NULL, 
streamDev, 
(selector) NULL, 
(unsigned char) OxOF, 
(unsigned short) OxOOOO, 
(unsigned long) OxOOOOOOOO, 
(unsigned char) OxOO, 
respMbx, &Status); 

/* 
/* 
/* 
/* 
/* 
/* 
/* 

user */ 
prefix */ 

path */ 
access */ 
granularity 
size */ 
must create 

*/ 

*/ 

pipe rqreceivemessage (respMbx, (unsigned short) OxFFFF, NULL, 
&Status) ; 

chk ("main create"); 
iorsPtr = (A_IORS_DATA_STRUCT *) pipe; 
rqaopen (pipe, (unsigned char) Ox03, (unsigned char) Ox03, respMbx, 

&Status) ; 
iorsTkn 

&Status) ; 
rqreceivemessage (respMbx, (unsigned short) OxFFFF, NULL, 

/* 

iorsptr (A_IORS_DATA_STRUCT *) iorsTkn; 
chk ("main open"); 

rqcreatetask (myprio, &taskl, (selector) NULL, NULL, 
(unsigned long) 8192, (unsigned short) 0, &Status); 

Exercise the stream connection. Display a progress message 
and delay for a second after each operation so the user may 
observe when the other task blocks relative to this one. 

*/ 
rqaread (pipe, 

buffer, 
(unsigned long) 12, 
respMbx, 
&Status) ; 

chk ("main read"); 
printf ("read\n"); 
rqsleep ((unsigned short) 100, &Status); 

rqawrite (pipe, 
(unsigned char *) "Message 1", 
(unsigned long) 9, 
respMbx, 
&Status) ; 

chk ("main write 1"); 
printf ("write l\n"); 
rqsleep ((unsigned short) 100, &Status); 

rqawrite (pipe, 
(unsigned char *) "Message 2", 
(unsigned long) 9, 
respMbx, 
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Figure C.1 ( Continued) 

&Status); 
chk ("main write 2"); 
printf ("write 2\n"); 
rqsleep ((unsigned short) 100, &Status); 

rqaread (pipe, 
buffer, 
(unsigned long) 6, 
respMbx, 
&Status); 

chk ('main read"); 
printf ("read\n"); 
rqsleep ((unsigned short) 100, &Status); 

/* The other task exits the job 
when it stops receiving IORSs. 

*/ 

rqsuspendtask ((selector) NULL, &Status); 

The code in Figure C.l uses a single task and a single I/O connection for 
all reading and writing to illustrate basic stream I/O without having to deal 
with the intricacies of steam I/O synchronization. There are two intrica
cies to consider: EIOS serialization of I/O operations on a connection, and 
management of arbitrary data transfer sizes. These two issues are ad
dressed in the next two sections. 

C.2.1 EIOS serialization 

The EIOS serializes all I/O transfers performed using a single I/O connec
tion. It was mentioned earlier that EIOS transfers are synchronous in the 
sense that they do not return to the caller until the data transfer completes. 
In addition, the EIOS does not release a request for an I/O operation using 
a connection until all previous operations using that same connection have 
completed. If the main task in Figure C.l had used EIOS calls for reading 
and writing, execution would never have proceeded past the first read 
operation because it could not complete until another task performed a 
matching write operation. The point being made here is that another task 
could not perform the matching write operation using the same connection 
object as the main task (the token pipe) because the EIOS would not actu
ally issue that other task's write request to the BIOS until the read request 
using that same connection had completed. This deadlock can be avoided 
by having the main task catalog its connection in some job's object direc
tory and have the second task call rqscreatefile() or rqsattachfile() using the 
logical name specified by the initial task to obtain a second connection to 
the same stream file node. Alternatively, the second task could use the 
main task's token as the prefix parameter in a call to rqacreatefile() or 
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rqaattachfile(). In either case, the second task could use a second connec
tion to the same stream file to initiate a second I/O operation. 

C.2.2 Managing arbitrary transfer sizes 

iRMX streams are often used in situations where the reading or writing 
task does not know how much data the other side of the stream is transfer
ring. A sample program shown later in this appendix, for example, shows a 
task that reads an arbitrary number of characters from the user's console 
and writes them to a stream that acts as the console input for an arbitrary 
task that could be trying to read any number of bytes at a time. 

The rq [as J special( ) system calls provide function codes 0 and 1 to handle 
this problem for streams. Function code 0 is called query, and function 
code 1 is called satisfy. A task uses the query function to find out how 
many bytes have been requested by a read or write operation on a stream. 
The call returns an IORS that the caller examines to determine the value of 
the count field, which can then be used as the count operand for a match
ingwrite or read operation. The satisfy function is used to force another 
task's read or write request to complete, with the actual number of bytes 
transferred being equal to the number of bytes already matching the pend
ing request, even if that number is less than the number of bytes requested. 
Examples of these calls being used are shown after the system calls pro
vided by the Human Interface (HI) for command-line processing are dis
cussed. 

C.3 Command-Line Processing 

The HI provides support for executing command lines programmatically 
through the rqcsendcommand() system call. The function prototype for 
this call is the following: . 

void 
rqcsendcoJlUlland ( 

STRING far • 
WORD far' 
WORD far * 

TOKEN cOJlUllandConn, 
conunandLine, 
cOJlUllandExceptionPtr, 
exceptionPtr); 

The commandLine argument is simply an iRMX string (byte count fol
lowed by characters) that looks like a command line typed in by a user. In 
fact, the iRMX CLI reads command lines typed by a user and uses just this 
system call to pass them to the HI for processing. The buffer into which the 
CLI reads command lines is pointed to by the CommandLine argument to 
the call. Application programs can invoke any HI command programmati
cally by putting a pointer to any command string in this argument. 

Two different condition codes are associated with this system call. The 
code pointed to by exceptionPtr can be set to a nonzero value for two 
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different situations. One is when the commandLine is terminated with an 
ampersand, which is the iRMX continuation mark for command lines. In 
this case, the HI returns a condition code value ofOx0083 (E_CONTINUED), 
and the program that called rqcsendcommand() should then repeat the 
call, supplying additional parts of the command line. The HI assembles all 
the parts of the command line into an internal buffer and runs the com
mand when a line with no continuation mark is received. The second case 
in which the exceptionPtr condition code is nonzero is if an invalid 
command line is entered that prevents the HI from launching a new HI 
command job. Examples of this situation include naming a command that 
the HI cannot find in the disk directories searched for command files, or 
naming a command file that is not in valid STL load module format. 

Once a command starts running, it might terminate with an error code. 
The commandExceptionPtr argument points to a word that will be set to 
the termination code specified by the value of the first parameter of the 
command's call to rqexitiojob(). If the job terminates because the user 
types < A C> or because the program encountered a processor fault, the 
condition code for the command is set to Ox0080 (E_CONTROLC) or 
Ox800X, where X is the fault code (OxOC for a stack fault, OxOD for a gen
eral protection fault, etc.). Note that a task's call to rqcsendcommand(), if 
it does have a zero value for its normal condition code, does not complete 
until the child job created by the command completes processing. That is, 
this call is not an asynchronous call, even though it returns two different 
condition codes at two different times. 

Before making a call to rqcsendcommand(), a program must obtain a 
token for an object called a command connection. This object is simply a 
memory segment in which the HI stores information about the command 
connection; it is not an iRMX composite object type. To create a command 
connection, call rqccreatecommandconnection(): 

TOKEN 
rqccreatecomrnandconnection ( TOKEN 

TOKEN 
WORD 
WORD far * 

ciConnection, 
coConnection, 
connectionFlags, 
exceptionPtr ) ; 

The first two parameters of this call are tokens for the connections that 
the HI sets up as : CI: and: co: for the programs run programatically 
based on the command connection returned by this call. For normal com
mands issued through the iRMX CLI, these two tokens are simply the 
tokens for the CLI's own: CI : and: co: logical names. In the next section, 
the use of stream files for these two connections is illustrated. 

The connectionFlags parameter is a Boolean value. If it is true (any 
odd value), calls to rqcsendcommand() return a condition code value of 
Ox0085 (E_ERROROUTPUT) if a child command calls rqcsendeoresponse(), 
that is, if it tries to write to its error output device instead of its console 
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output. At the time of this writing, the value of connectionFlags has no 
effect on C programs that write to stdout. 

C.4 1/0 Redirection Using Streams 

A common use of the stream device and file drivers is to implement com
mand-line redirection and submit files by the CLI. A submit file can be 
thought of as command input redirection applied to an entire set of com
mands rather than to a single command using the < character. Commands 
invoked from a submit file read from the submit file itself when they read 
from their: CI: device. The basis for this I/O redirection by a CLI is illus
trated in Figures C.2 through CA. The main task (Figure C.2) creates two 
stream files and catalogs them in the local job's object directory using the 
logical names: PIPE1: and: PIPE2:. It then creates two tasks. Task 1 
reads from: CI: and writes to : PIPE1:, and Task2 reads from: PIPE2 : 
and writes to : CO :. The main task then operates as a simple CLI: it creates 
a command connection using the two streams as the connection's input 
and output devices, and then enters an endless loop in which it reads com
mand lines from the console and sends them to the HI for processing by 
calling rqcsendcommand( ). The program exits when the user enters a quit 
command or types a null line «\z at the beginning of a line). 

Figure C.2 Main module for a stream-based command line interpreter (eLI). 
/***> strmcli.plm <*********************************************** 

* 
* 
* 
* 

* 

Stream I/O sample program 
Creates three tasks and two pipes. 

Task 1 copies :CI: to pipe 1 
Task 2 copies pipe 2 to :CO: 

* 
* 

The main task then acts as a CLI, using the pipes in place of 
the console. 

* 
******************************************************************/ 

$compact (exports taskl, task2) 
strmcli: DO; 
$include (strmcli.ext) 

DECLARE 
STREAM$QUERY 
STREAM$SATISFY 
E$CONTlNUED 
LF 
CR 

ehstruct 
handler POINTER, 
mode BYTE} 

LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 

(coConn, pl, p2, tl, t2) 
(siConn, soConn, cmdConn) 
buffer (8l) 
(Status, cmdStatus) 

'0' , 
'1' , 
'0083h' , 
'OAh' , 
'ODh' , 

STRUCTURE 

INITIAL (NIL, O), 
TOKEN, 
TOKEN, 
BYTE, 
WORD_l6; 
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Figure C.2 (Continued) 

1* 
* 
*1 

Test Condition Code Utility 

chkstat: PROCEDURE (StatusVal, MessagePtr, abortFlag) PUBLIC REENTRANT; 
DECLARE 

1* 
* 
* 
* 
*1 

StatusVal 
MessagePtr 
Message BASED MessagePtr (1) 
abortFlag 
actual 
Status 

WORD_16, 
POINTER, 
BYTE, 
BYTE, 
WORD_32, 
WORD_16; 

If StausVal is non-zero, display its value and a 
message; exit the job if the abortFlag is set. 
Otherwise, simply return. 

IF StatusVal <> 0 THEN DO; 
CALL movb (MessagePtr, @buffer, Message(O) + 1); 
CALL rqcformatexception (@buffer, 80, StatusVal, 0, @Status); 
CALL movb (@(ODh, OAh) , @buffer(buffer(O) + I), 2), 
buffer(O) = buffer(O) + 2; 
actual = rqswritemove ( coConn, 

@buffer(l), 
DWORD(buffer(O», 
@Status) ; 

IF abortFlag THEN CALL rqexitiojob (0, NIL, @Status); 
END; 

RETURN; 

END chkstat; 

task1: PROCEDURE EXTERNAL; 
END task1; 

task2: PROCEDURE EXTERNAL; 
END task2; 

1* Main Program Starts Here 

* 

*1 

1* 

First, open connection to actual console for use by chkstat. 

coConn = rqsattachfile (@(4,':CO:'), @Status); 
CALL rqsopen (coConn, 2, 0, @Status); 

* Set up: in-line exception handling, 
* streams, 
* 1/0 tasks. 
*1 

CALL rqsetexceptionhandler (@ehstruct, @Status); 

p1 = rqscreatefile (@(8,':STREAM:'), @Status); 
CALL chkstat (Status, @(6,'pipe1 '), TRUE); 
CALL rqscatalogconnection ( selectorof(NIL) , pI, @(7, ':PIPE1:'), 

@Status) , 
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Figure C.2 ( Continued) 

/* 

*/ 

/* 

*/ 

/* 

*/ 

CALL chkstat (Status, @(5, 'cat1 '), TRUE); 

p2 = rqscreatefile (@(8,':STREAM:'), @Status); 
CALL chkstat (Status, @(6, 'pipe2 '), TRUE); 
CALL rqscata10gconnection ( selectorof(NIL) , p2, @(7,':PIPE2:'), 

@Status) ; 
CALL chkstat (Status, @(5, 'cat2 '), TRUE); 

t1 = rqcreatetask ( 0, 
@task1, 
selectorof (@Status) , 
NIL, 
8192, 
0, 
@Status) ; 

CALL chkstat (Status, @(3, 't1 ,) , TRUE) ; 
t2 = rqcreatetask ( 0, 

@task2, 
selectorof (@Status) , 
NIL, 
8192, 
0, 
@Status); 

CALL chkstat (Status, @ (3, 't2 ') , TRUE) ; 

Set up command connection to use for CLI operations 

siConn = rqsattachfile (@(7,':PIPE1:'), @Status); 
CALL chkstat (Status, @(14, 'task3 attachl '), TRUE); 
CALL rqsopen (siConn, 1, 0, @Status); 
CALL chkstat (Status, @(12, 'task3 open1 '), TRUE); 

soConn = rqsattachfile (@(7,':PIPE2:'), @Status); 
CALL chkstat (Status, @(14, 'task3 attach2 '), TRUE); 
CALL rqsopen (soConn, 2, 0, @Status); 
CALL chkstat (Status, @(12, 'task3 open2 '), TRUE); 

Create a command connection based on the pipes 

cmdConn = rqccreatecommandconnection siConn, /* stream 
soConn, /* stream 
1. /* detect 
@Status) ; 

input 
output 
eo out 

CALL chkstat (Status, @(23, 'task3 create cmd conn'), TRUE); 

Prompt for a command line. 
Exit on zero-length input or a quit command. 

DO WHILE 1; 

*/ 
*/ 
*/ 

CALL rqcsendcoresponse (@buffer, 80, @(9 ,'Command: '), @Status); 
IF (buffer(buffer(O» <> If) THEN 

CALL rqcsendcoresponse (NIL, 0, @(2, cr, If), @Status); 
IF (buffer(O) = 0) OR 

(cmpb (@buffer(l), @('quit'), buffer(O) -2) = OFFFFFFFFh) THEN 
CALL rqexitiojob(O, NIL, @Status); 

CALL rqcsendcommand (cmdConn, @Buffer, @cmdStatus, @Status); 
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Figure C.2 (Continued) 

DO WHILE Status = E$CONTINUED; 
CALL rqcsendcoresponse ( @buffer, 80, @(lO, 'Continue: '), 

@Status) ; 
IF buffer(buffer(O)) <> If THEN 

CALL rqcsendcoresponse (NIL, 0, @(2, cr, If), @Status); 
CALL rqcsendcommand (cmdConn, @Buffer, @cmdStatus, @Status); 
END; 

CALL chkstat (Status, @(l3, 'send command '), FALSE); 
CALL chkstat (cmdStatus, @(l5, 'command failed '), FALSE); 
END; 

END strmcli; 

Figure C.3 Input task for the stream-based CLI. This task reads from the console (: CI:) and 
writes to the stream named: PIPEl:. 

/***> taskl.plm <************************************************ 

* 
* Read from :CI:, write to :PIPE1: 

*****************************************************************/ 

$compact (exports taskl) 
taskl: DO; 
$include (taskl.ext) 

DECLARE 
STREAM$QUERY 
STREAM$SATISFY 
LF 
CR 

LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 

'0' , 
'l' , 
'OAh' , 
'ODh' ; 

chkstat: PROCEDURE (StatusVal, MessagePtr, abortFlag) EXTERNAL; 
DECLARE 

StatusVal 
MessagePtr 
abortFlag 

END chkstat; 

/* taskl: Read from :CI:, write to :PIPEl: 

*/ 

taskl: PROCEDURE PUBLIC; 
DECLARE 

buffer(80) 
(actualr, actualw) 
ehStruct STRUCTURE 

handler 
mode 

(ciConn, pipeConn) 
iors 

actual 
device 
unit 
funct 
subfunct 
device_loc 
buf-ptr 

POINTER, 
BYTE) , 

WORD_32, 
WORD_l6, 
BYTE, 
BYTE, 
WORD_16, 
WORD_32, 
POINTER, 

WORD_16, 
POINTER, 
BYTE; 

TOKEN, 
STRUCTURE 
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Figure C.3 ( Continued) 

/* 

*/ 

/* 

* 
*/ 

*/ 

count 
aUXJltr 

Status 

Handle Exceptions in-line 

ehStruct.mode = 0; 

WORD_32, 
POINTER) , 

CALL rqsetexceptionhandler (@ehStruct, @Status); 

Set up connections to :ci: and :pipel: 

ciConn = rqsattachfile (@(4,' :CI:'), @Status); 
CALL chkstat (Status, @(14, 'taskl attachl '), TRUE); 
CALL rqsopen (ciConn, 1, 0, @Status); 
CALL chkstat (Status, @(12, 'taskl openl '), TRUE); 

pipeConn = rqsattachfile (@(7,':PIPEl: '), @Status); 
CALL chkstat (Status, @(14, 'taskl attach3 ,), TRUE); 
CALL rqsopen (pipeConn, 2, 0, @Status); 
CALL chkstat (Status, @(12, 'taskl open3 '), TRUE); 

When another task tries to read from the stream, 
read input from keyboard and write it to the stream. 

DO WHILE 1; 
CALL rqsspecial (pipeConn, STREAM$QUERY, NIL, @iors, @Status); 
CALL chkstat (Status, @ (12, 'taskl query '), TRUE); 
actualr = rqsreadmove (ciConn, @buffer, 80, @Status); 
CALL chkstat (Status, @(11, 'taskl read '), FALSE); 

IF Status = ° THEN DO; 
actualw = rqswritemove (pipeConn, @buffer, actualr, @Status); 
CALL chkstat (Status, @(12,'taskl write '), TRUE); 
IF actualr < iors.count THEN DO; 

CALL rqsspecial (pipeConn, STREAM$SATISFY, NIL, NIL, @Status); 
CALL chkstat (Status, @(14, 'taskl satisfy'), TRUE); 
END; 

END; 
END; 

END taskl; /* procedure */ 

END taskl; /* module */ 

Figure C.4 Output task for the stream-based eLI. This task reads from the stream named 
: PIPE2: and writes to the user's screen (: co:). 

/***> task2.plm <************************************************ 

Read :PIPE2:, write to :CO: 

*****************************************************************/ 
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Figure C.4 ( Continued) 

$compact (exports task2) 
task2: DO; 
$include (task2.ext) 

DECLARE 
STREAM$QUERY 
STREAM$SATISFY 
LF 
CR 

LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 

. 0', 
'1' , 
'~Ab' , 

'ODh' ; 

chkstat: PROCEDURE (StatusVal, MessagePtr, abortFlag) EXTERNAL; 
DECLARE 

StatusVal 
MessagePtr 
abortFlag 

WORD_16, 
POINTER, 
BYTE; 

END chkstat; 

/* task2: Read from :PIPE2:, write to :CO: 

*/ 
task2: PROCEDURE PUBLIC; 
DECLARE 

/* 

*/ 

/* 

*/ 

buffer(80) 
ehStruct STRUCTURE 

handler 
mode 

(pipeConn, coConn) 
iors 

actual 
device 
unit 
funct 
subfunct 
device_Ioc 
buCptr 
count 
auxJltr 

(actualr, actualw) 
Status 

Handle Exceptions in-line 

ehStruct.mode = 0; 

POINTER, 
BYTE) , 

WORD_32, 
WORD_16, 
BYTE, 
BYTE, 
WORD_16, 
WORD_32, 
POINTER, 
WORD_32, 
POINTER) , 

BYTE, 

TOKEN, 
STRUCTURE 

WORD_32, 
WORD_16; 

CALL rqsetexceptionhandler (@ehStruct, @Status); 

Set up connections to :pipe2: and :co: 

pipeConn = rqsattachfile (@(7,':PIPE2:'), @Status); 
CALL chkstat (Status, @ (14, 'task2 attach1 '), TRUE); 
CALL rqsopen (pipeConn, 1, 0, @Status); 
CALL chkstat (Status, @(12, 'task2 open 1 '), TRUE); 

coConn = rqsattachfile (@(4,':CO:'), @Status); 
CALL chkstat (Status, @(14,'task2 attach2 '), TRUE); 
CALL rqsopen (coConn, 2, 0, @Status); 
CALL chkstat (Status, @(12,'task2 open2 '), TRUE); 
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Figure C.4 ( Continued) 

/* 
* Read input from the stream, and echo it to the screen. 
*/ 

DO WHILE 1; 
CALL rqsspecial (pipeConn, STREAMS QUERY , NIL, @iors, @Status); 
CALL chkstat (Status, @(12, 'task2 query '), TRUE); 
actualr ; rqsreadrnove (pipeConn, @buffer, iors.count, @Status); 
CALL chkstat (Status, @(11, 'task2 read '), TRUE); 
actua1w ; rqswritemove (coConn, @buffer, actualr, @Status); 
CALL chkstat (Status, @(12, 'task2 write '), TRUE); 

END; 

END task2; /* procedure */ 

END task2; /* module */ 

As it stands, the stream I/O performed by the sample eLI does not do 
anything special. The command connection could just as well have been 
created using tokens for : C I : and: co: instead of : PIPE 1 : and: PIPE 2 : . 

However, this eLI does work, so it serves as an illustration of tasks that 
communicate successfully using stream I/O. Furthermore, the sample eLI 
could easily be extended by having Task 1 read from a disk file or some 
other device rather than from: CI :, or by having Task 2 write to a disk file 
or other device rather than to : co: , thereby implementing I/O redirection. 
The logic of the eLI itself remains unchanged, and the commands exe
cuted by the calls to rqcsendcommand() never know the difference. 

There is a significant difference between the environment in which 
commands are run using the sample eLI and those run using the normal 
iRMX eLI. Under the iRMX eLI, commands use actual connections to 
: C I : and: co: unless the user invokes command line redirection using the 
< and/or> characters or uses the submit command. I/O through: CI : and 
: co: is processed by a terminal I/O device driver, which means that an ap
plication program can make rq [as J special() system calls specific to that 
driver to perform such operations as changing the line edit mode, character 
echoing, signal character recognition, and the like. The stream device 
driver supports none of these operations. Because the sample eLI always 
uses stream I/O, no command invoked from it can successfully make any 
rq [as J special( ) system calls that change terminal or connection attributes. 
To give a concrete example, aedit will not run properly in its interactive 
mode using the sample eLI because aedit needs to control the terminal's 
character-echoing and line-editing modes. This same restriction applies to 
the iRMX eLI only in those situations where it uses stream I/O com
mand-line redirection and the submit command. 

The sample eLI is intended only as a demonstration of the use of stream 
I/O through the EIOS. It lacks many features of the iRMX eLI, such as 
command history, aliases, background commands, and a super mode. 
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iRMX System Calls 

The following list of iRMX system call names is adapted from Tables 1-1 
through 1-7 of the iRMX System Call Reference manual, volume 9 of the 
iRMX for Windows documentation set. Refer to that manual for complete 
documentation for each system call. The system calls to access iNA and the 
Name Server at the end of this list are documented in the iRMX Network 
Concepts and Network Programmer's Reference manual. 

The names in this appendix are appropriate for C programs that include 
the header file rrnxc . h, for PLM programs, and for assembly language pro
grams. C programs that include the header file rrnx _c. h use names with 
embedded underscore characters for easier reading. 

C programs that use the networking system calls listed here should in
clude the header file cqcomm. h; PLM programs that use networking sys
tem calls should include the file cqcomm. ext. C programs that use the 
UDI system calls listed here should include the header file udi. h or 
udi_c. h; PLM programs that use UDI system calls should include the 
file udi. ext. 

It might be necessary to link to three different libraries to use these sys
tem calls. Programs that use system calls with names beginning with rq or 
rqe must be linked to the library rrnxif~ . lib, where ~ depends on the 
model of compilation and word size C, C32, or L. Programs that use UDI 
calls must link to udiif~ .lib, and programs that make use network sys
tem calls must link to cq~. lib. 

Application Loader System Calls 

rqaload 

rqaloadiojob 

Loads an object file from secondary stor
age into memory. 

Creates an I/O job with a memory pool of 
up to 1 Mbyte, loads a specified object 
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rqealoadiojob 

rqsloadiojob 

rqesloadiojob 

rqsoverlay 

BIOS System Calls 

BIOS job-level system calls 

rqencrypt 

rqgetdefaultprefix 

rqgetdefaultuser 

rqsetdefaultprefix 

rqsetdefaultuser 

BIOS device-level system calls 

rqaphysicalattachdevice 

rqaphysicaldetachdevice 

rqeinstallduibs 

rqaspecial 

file, and creates a task to execute the 
loaded code. 

Creates an I/O job with a memory pool of 
up to 4 GB, loads a specified object file, 
and creates a task to execute the loaded 
code. 

Loads an object file and creates an I/O 
job for it. This call is similar to rqesload
iojob; it is provided for compatibility 
with older versions of the iRMX as. 
Creates an I/O job with a memory pool of 
up to 4 GB, loads a specified object file, 
and creates a task to execute the loaded 
code. 

Loads an overlay module into memory. 

Encrypts a specified string of characters. 

Returns the default prefix of a specified 
job. 

Returns the default user object of a speci
fied job. 

Sets the default prefix for a specified ex
isting job. 

Sets the default tiser object for a specified 
existing job. 

Attaches the specified device to the 
BIOS. 

Detaches a device that was attached 
using rqaphysicalattachdevice(). 

Installs a cluster of Device Unit Infor
mation Blocks (DUIBs) into the BIOS. 

Enables tasks to perform a variety of de
vice-level functions. 
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BIOS file/connection-level system calls 

rqaattachfile 

rqacreatedirectory 

rqacreatefile 

rqadeleteconnection 

rqadeletefile 

Creates a connection to an existing file of 
any type. 

Creates a directory file. 

Creates a file and returns a token for the 
new file connection. 

Deletes a file connection created by rqa
createfile(), rqacreatedirectory(), or 
rqaattachfile( ). 

Marks a stream, named data or named 
directory file for deletion. 

BIOS file-modification system calls 

rqachangeaccess Changes the access rights to a named 
data or directory file. 

rqarenamefile 

rqatruncate 

Changes the pathname of a named data 
or directory file. 

Truncates a named data file at the cur
rent setting of the file pointer. 

BIOS file input/output system calls 

rqaclose 

rqaopen 

rqaread 

rqaseek 

rqaupdate 

rqwaitio 

rqawrite 

Closes an open file connection for any 
type of file. 

Opens an asynchronous file connection 
for I/O operations for any type of file. 

Reads the requested number of bytes on 
an open connection for any type of file. 

Moves the file pointer of an open file 
connection. 

Updates a device by writing all buffered 
partial sectors. 

Returns the concurrent condition code 
for the prior call to the calling task. 

Writes data from the calling task's buffer 
to a connected physical, stream, or 
named data file. 
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BIOS get status/attribute system calls 

rqagetconnectionstatus 

rqagetdirectoryentry 

rqagetfilestatus 

rqagetpathcomponent 

BIOS user object system calls 

rqcreateuser 

rqdeleteuser 

rqinspectuser 

BIOS extension data system calls 

rqagetextensiondata 

rqasetextensiondata 

BIOS time/date system calls 

rqgettime 

rqsettime 

rqgetglobaltime 

rqsetglobaltime 

EIOS System Calls 

EIOS I/O job calls 

rqcreateiojob 

Returns information about the connec
tion status of a specified file. 

Returns the filename associated with an 
entry number in a named or EDOS direc
tory. 

Returns status and attribute informa
tion about a specified file. 

Returns the name of a data or directory 
file, as cataloged in its parent directory. 

Creates a user object, accepts a list of 
IDs, and returns a token for the new ob
ject. 

Deletes a user object. 

Accepts a token for a user object and re
turns a list of the IDs contained in the 
user object. 

Writes the extension data for a named 
data or directory file; not valid for DOS 
files. 

Stores a named file's extension data; not 
valid for DOS files. 

Returns the date/time value from the 
BIOS's local clock. 

Sets the date and time for the BIOS's 
local clock. 

Reads the time of day from the battery
backed-up hardware clock. 

Sets the battery-backed-up hardware 
clock to a specified time. 

Creates an I/O job containing one task 
with a memory pool of up to 1 Mbyte. 



rqecreateiojob 

rqexitiojob 

rqstartiojob 

EIOS logical name calls 

rqscatalogconnection 

rqsgetdirectoryentry 

rqsgetpathcomponent 

rqhybriddetachdevice 

rqlogicalattachdevice 

rqlogicaldetachdevice 

rqslookupconnection 

rqsuncatalogconnection 

EIOS file and connection calls 

rqsattachfile 
rqscreatedirectory 

rqscreatefile 

rqschangeaccess 

rqsrenamefile 
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Creates an I/O job containing one task 
with a memory pool of up to 4 Gbytes. 

Sends a message to a previously desig
nated mailbox and deletes the calling 
task. 

Starts the initial task in an I/O job. 

Creates a logical name for a connection 
by cataloging the connection in the ob
ject directory of a job. 

Returns a directory entry filename to the 
caller. 

Returns the name of a named file as the 
file is known in its parent directory. 

Temporarily removes the correspon
dence between a logical name and a phys
ical device. 

Assigns a logical name to a physical de
vice. 

Removes the correspondence between a 
logical name and a physical device, and 
removes the logical name from the root 
object directory. 

Returns a token for the connection asso
ciated with the specified logical name. 

Deletes a logical name from the object di
rectory of a job. 

Creates a connection to an existing file. 

Creates a new directory file and automat
ically adds a new entry to the parent di
rectory. 

Creates a new physical, stream, or named 
data file. 

Changes the access list for named file. 

Changes the pathname of a directory or 
data file. 
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rqsclose 

rqsopen 

rqsreadmove 

rqsseek 

rqstruncatefile 

rqswritemove 

rqsdeleteconnection 

rqsdeletefile 

EIOS device call 

rqsspecial 

EIOS status calls 

rqsgetconnectionstatus 

rqsgetfilestatus 

rqgetlogicaldevicestatus 

EIOS user-related calls 

rqgetuserids 

rqverifyuser 

Closes an open connection to a named, 
physical, or stream file. 

Opens a file connection. 

Reads a number of contiguous bytes from 
a file associated with a connection to a 
buffer specified by the calling task. 

Moves the file pointer for any open phys
ical or named file connection. 

Removes information from the end of a 
named data file. 

Writes a collection of bytes from a buffer 
to a file. 

Deletes a file connection, not a device 
connection. 

Deletes a stream, named data, or named 
directory file created by the BIOS or the 
EIOS. 

Allows tasks to communicate with de
vices, device drivers, and the stream file 
driver to perform various operations. 

Provides status information about file 
and device connections that were created 
by the BIOS or the EIOS. 

Obtains information about a physical, 
stream, or named file created by the 
BIOS or the EIOS. 

Provides status information about logi
cal names that represent devices. 

Returns the user ID(s) associated with a 
user defined in the User Definition File 
(UDF). 

Verifies a user's name and password. 



Human Interface System Calls 

HI I/O processing calls 

rqcgetinputconnection 

rqcgetoutputconnection 

HI command parsing calls 

rqcbackupchar 

rqcgetchar 

rqcgetinputpathname 

rqcgetparameter 

rqcgetoutputpathname 

rqcsetparsebuffer 

rqcgetc()mmandname 

HI message processing calls 

rqcformatexception 

rqcsendcoresponse 

rqcsendeoresponse 
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Returns an EIOS connection object for 
the specified input file. 

Returns an EIOS connection object for 
the specified output file. 

Moves the parsing buffer pointer back 
one character for each occurrence of the 
call. 

Gets a character from the parsing buffer 
and moves the parsing buffer pointer to 
the next character. 

Gets a pathname from the list of input 
pathnames in the parsing buffer. 

Retrieves one parameter from the pars
ing buffer and moves the parsing pointer 
to the next parameter. 

Gets a pathname from the list of output 
pathnames in the parsing buffer. 

Permits parsing the contents of a buffer 
other than the command line buffer 
whenever the parsing system calls are 
used. 

Obtains the pathname of the command 
entered by the operator. 

Creates a default message for a given ex
ception code and writes that message 
into a user-provided string. 

Sends a message to : co: and reads a re
sponse from: ci:. 

Sends a message to and reads a response 
from the operator's terminal. 
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HI command processing calls 

rqccreatecommandconnec
tion Returns a token for a command connec

tion object required to invoke commands 
programmatically instead of interacti
vely. 

rqcdeletecommandconnection Deletes a command connection object 
previously defined in a ccreatecom
mandconnection call and frees the mem
ory used by the command connection's 
data structures. 

rqcsendcommand 

HI program control call 

rqcsetcontrolc 

Nucleus System Calls 

Nucleus job calls 

rqcreatejob 

rqecreatejob 

rqdeletejob 

rqoffspring 

rqeoffspring 

Stores a command line in the command 
connection created by the ccreatecom
mandconnection call, concatenates the 
command line with any others already 
stored there, and (if the command invo
cation is complete) invokes the com
mand. 

Changes the default response to a 
<Ctr 1 - c> entry to a response that 
meets the needs of your task. 

Creates a job containing one task with a 
memory pool of up to 1 Mbyte and re
turns a token for the job. 

Creates a job containing one task with a 
memory pool of up to 4 Gbytes and re
turns a token for the job. 

Deletes a specific job. 

Returns a token for the a segment con
taining tokens of the child jobs of the 
specified job. 

Fills the specified data structure with 
tokens of the child jobs of the specified 
job. 



Nucleus task calls 

rqcreatetask 
rqdeletetask 
rqgetpriority 

rqgettasktokens 

rqresumetask 

rqsetpriority 

rqsleep 

rqsuspendtask 

Nucleus mailbox calls 

rqcreatemailbox 

rqdeletemailbox 

rqreceivedata 

rqreceivemessage 

rqsenddata 

rqsendmessage 

Nucleus semaphore calls 

rqcreatesemaphore 

rqdeletesemaphore 
rqreceiveunits 

rqsendunits 
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Creates a task and returns a token for it. 
Deletes a specific, non-interrupt task. 
Returns the static priority of a specific 
task. 
Returns a token for either itself, its job, 
its job's parameter object, or the root job. 
Decreases a task's suspension depth by 
one. 
Changes the priority of a non-interrupt 
task. 
Places the calling task in the asleep state 
for a specified amount of time. 
Increases a task's suspension depth by 
one. 

Creates a mailbox and returns a token for 
it. 
Deletes a specific mailbox. 
Receives a data message from a data 
mailbox. 
Receives a signal message from an object 
mailbox. 
Sends a data message of up to BOH char
acters to a mailbox. 

Sends a signal object to a mailbox. 

Creates a semaphore and returns a token 
for it. 
Deletes a specific semaphore. 

Requests a specific number of units from 
a semaphore. 
Sends a specific number of units to a 
semaphore. 
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Nucleus segment and memory pool calls 

rqcreatesegment 

rqdeletesegment 

rqgetpoolattributes 

rqegetpoolattrib 

rqgetsize 

rqsetpoolmin 

Nucleus buffer pool calls 

rqcreatebufferpool 

rqdeletebufferpool 

rqreleasebuffer 

rqrequestbuffer 

Nucleus descriptor calls 

rqechangedescriptor 

rqecreatedescriptor 

rqedeletedescriptor 

Nucleus object calls 

rqcatalogobject 

rqechangeobjectaccess 

Creates a segment and returns a token 
for it. 
Returns a segment to the memory pool 
from which it was allocated or deletes a 
descriptor from the Global Descriptor 
Table (GDT). 

Returns the memory pool attributes of 
the calling task's job. 

Returns the same information as getpoo
lattributes for any job, plus the amount 
of memory borrowed and the token of the 
parent job. 

Returns the size, in bytes, of a segment. 

Sets the minimum attribute of the mem
ory pool of the caller's job. 

Creates a buffer pool object that can be 
associated with one or more ports. 
Deletes a buffer pool object. 

Returns previously allocated buffer 
space to the specified buffer pool. 

Gets a buffer from an existing buffer 
pool. 

Changes the base physical address and 
size of a descriptor in the G DT. 

Builds a descriptor for a memory seg
ment, places the descriptor in the GDT, 
and returns a token for that descriptor. 

Removes a descriptor entry from the 
GDT. 

Places an entry for an object in an object 
directory. 

Changes the access rights of iRMX seg
ments or composite objects. 



rqegetaddress 

rqegetobjectaccess 

rqgettype 

rqlookupobject 

rquncatalogobject 

Nucleus exception handler calls 

rqgetexceptionhandler 

rqsetexceptionhandler 
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Returns the physical address of an ob
ject. 

Returns the access type of an object 
whose token is specified. 

Returns the type code for the specified 
object. 

Returns a token for the specified cata
loged object name. 

Removes an entry for an object from an 
object directory. 

Returns the address of the calling task's 
exception handler and the current value 
of the task's exception mode. 
Assigns an exception handler and excep
tion mode attributes to the calling task. 

Nucleus interrupt management calls 

rqdisable Disables a specific interrupt level. 
rqenable 

rqendinittask 

rqenterinterrupt 

rqexitinterrupt 

rqgetlevel 

rqresetinterrupt 

rqsetinterrupt 

rqsignalinterrupt 

rqetimedinterrupt 

Enables a specific interrupt level. 
Informs the root task that a synchronous 
initialization process has completed. Not 
available to iRMX For Windows users. 
Sets up a previously-specified data seg
ment base address for the calling inter
rupt handler. 

Used by interrupt handlers to send an 
end-of-interrupt to hardware. 

Returns the interrupt level of the highest 
priority interrupt that an interrupt 
handler is currently processing. 
Cancels the assignment of an interrupt 
handler to a level. 

Assigns an interrupt handler and, if de
sired, an interrupt task to an interrupt 
level. 
Used by interrupt handlers to invoke in
terrupt tasks. 
Puts the calling interrupt task to sleep 
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rqwaitinterrupt 

Nucleus composite object calls 

rqaltercomposite 

rqcreatecomposite 

rqdeletecomposite 

rqinspectcomposite 

Nucleus extension object calls 

rqcreateextension 

rqdeleteextension 

Nucleus deletion control call 

rqdisabledeletion 

rqenabledeletion 

rqforcedelete 

Nucleus OS extension calls 

rqesetosextension 

rqsetosextension 

rqsignalexception 

until either it is called into service by an 
interrupt handler or a specified time pe
riod elapses. 

Puts the calling interrupt task to sleep 
until it is called into service by an inter
rupt handler. 

Replaces components of composite ob
jects. 

Creates a composite object and returns a 
token for it. 

Deletes a composite object but not its 
component objects. 

Returns a list of the component tokens 
contained in a composite object. 

Creates a new object type and returns a 
token for it. 

Deletes an extension object and all com
posites of that type. 

Makes an object immune to ordinary de
letion. 

Makes an object susceptible to ordinary 
deletion. 

Deletes objects whose disabling depths 
are zero or one. 

Attaches or deletes the entry-point ad
dress of a user-written as extension to a 
call gate. 

Supported by iRMX I only. Attaches or 
deletes the entry-point address of a user
written as extension to a call gate. 

D sed by as extensions to signal the oc
currence of an exceptional condition. 



Nucleus region calls 

rqacceptcontrol 

rqcreateregion 

rqdeleteregion 

rqreceivecontrol 

rqsendcontrol 
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Provides access to data protected by a re
gion only if access is immediately avail
able. 

Creates a region and returns a token for 
it. 

Deletes a specific region. 

Allows the calling task to gain access to 
data protected by a region. 

Relinquishes control to the next task 
waiting at the region. 

Nucleus communication service calls 

rqattachbufferpool 

rqattachport 

rqbroadcast 

rqcancel 

rqconnect 

rqcreateport 

rqdeleteport 

rqdetachbufferpool 

rqdetachport 

rqgethostid 

rqgetportattributes 

rqreceive 

rqreceivefragment 

rqreceivereply 

Associates a buffer pool with one or more 
ports. 

Forwards all messages sent to the port 
that issued the call to a sink port. 

Sends a control message to every mes
sage passing host. 

Performs synchronous cancellation of 
RSVP message transmission. 

Creates a connection between the send
ing task and a remote task. 

Creates a port object that can be used in 
message passing. 

Deletes a specific port. 

Ends the association between a buffer 
pool and a port. 

Ends message forwarding from the 
source port to the sink port. 

Returns the host ID of the board that the 
task is running on. 

Returns information about the specified 
port. 

Accepts a message at a port. 

Accepts a fragment of an RSVP data 
message. 

Accepts a message that is a reply to an 
earlier request. 
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rqreceivesignal 

rqsend 

rqsendrsvp 

rqsendreply 

rqsendsignal 

Receives a signal from a remote host at a 
specified port. 
Sends a data message from a port to a 
port on another board. 

Initiates a request/response message ex
change. 

Sent in response to the rqsendrsvp sys
tem call. 
Sends a signal message to a remote host 
through the specified port. 

Nucleus multibus II interconnect calls 

rqgetinterconnect Retrieves the contents of the specified 
interconnect register. 

rqsetinterconnect Alters the contents of an interconnect 
register to a specified value. 

UOI System Calls 

UOI program control calls 

dqexit 
dqoverlay 
dqtrapcc 

UOI file-handling calls 

dqattach 
dqchangeaccess 

dqchangeextension 

dqclose 
dqcreate 
dqdelete 
dqdetach 
dqfileinfo 

dqgetconnectionstatus 

Exits from the current application job. 
Loads an overlay module. 

Designates an interrupt procedure that 
takes control when <Ctrl-C> is en
tered. 

Creates a connection to a file. 
Changes access rights to a file or direc
tory. 

Changes the extension of a file name in 
memory. 
Closes the specified file connection. 
Creates a file. 

Deletes a file. 
Closes a file and deletes its connection. 
Returns data about directory and data 
files. 
Returns information about a file connec
tion. 



dqopen 

dqread 
dqrename 

dqseek 

dqspecial 

dqtruncate 

dqwrite 

UOI memory management calls 

dqallocate 

dqfree 

dqgetmsize 

dqgetsize 

dqmallocate 

dqmfree 

dqreserveiomemory 

UOI exception-handling calls 

dqdecodeexception 

dqgetexceptionhandler 

dqtrapexception 
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Opens a file for a particular type of ac
cess. 

Reads bytes from a file. 
Renames a file. 

Moves the file pointer of a file. 

Sets the mode of a console input device. 

Truncates a file at the position specified 
by the file pointer. 

Writes data to a file. 

Requests a memory segment. 

Returns a memory segment to the sys
tem. 

Returns the size of a segment allocated 
by dqmallocate. 

Returns the size of a specified segment. 

Requests a logically contiguous memory 
segment of a specified size. 
Returns memory allocated by dqmallo
cate to the Free Space Pool. 

Sets aside memory for I/O operations. 

Converts a condition code into its equiv
alent mnemonic. 

Returns the address of the current ex
ception handler. 

Substitutes an alternate exception 
handler. 

UOI utility and command parsing calls 

dqdecodetime Decodes the specified binary date/time 
value to ASCII characters. 

dqgetargument 

dqgetsystemid 

dqgettime 

Returns an argument from the command 
line. 

Returns the identity of the OS environ
ment. 

Obsolete: included for compatibility. 
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dqswitchbuffer Selects a new command line buffer. 

Windows- and DOS-Specific System Calls 

rqereadsegment 

rqewritesegment 

rqesetvm86extension 

rqedosrequest 

Allows a OOS application program to 
transfer data from a Protected Virtual 
Address Mode (PV AM) segment to a 
Real Mode segment. 
Allows a DOS application program to 
transfer data from a Real Mode segment 
to a PV AM segment. 

Installs and removes a Virtual 8086 
Mode (VM86) extension at the specified 
interrupt level. 

Makes DOS/ROM BIOS requests and 
other software interrupts handled by 
DOS applications. 

System Calls for Access to iNA and the 
Name Server 

cqcommdwordtoptr 

cqcommptrtodword 

cqcommrb 

cqcreatecommuser 

Converts a 32-bit absolute address to the 
corresponding pointer. 

Converts a pointer to the corresponding 
32-bit absolute address. 

Delivers a request block to iNA or to the 
Name Server for processing. 

Creates a user ID for programmatic ac
cess to iNA. 
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8.3 rule The DOS file naming rule that requires an eight-character base part, fol
lowed by a period, followed by a three-character extension part. 

ACRONYM A Contrived Reduction of Nomenclature Yielding Mnemonics. 

activation record A data structure consisting of a procedure's parameter values, 
return address, and local dynamic variables. 

AL Application Loader. The layer of an iRMX system that loads programs into 
memory for execution, such as when a user enters a command at the console. 

ANSI American National Standards Institute. 

API Application Programming Interface application task. A task that runs at a 
priority level that does not disable any interrupt levels. 

ASCII American Standard Code for Information Interchange. A 7 -bit character 
code specified in ANSI standard number X3.4. 

AT bus The system bus architecture used in most PCs. Also known as the ISA 
bus. 

base address The address in physical or virtual memory at which a memory seg
ment begins. Derived from a selector when a processor is operating in real mode or 
from a descriptor identified by a selector when a processor is operating in protected 
mode. 

base register A register that is added to an index and a displacement to compute 
the effective memory address of an operand for a machine language instruction. 

binary compatible An executable program that can run on different systems 
without being recompiled or relinked. 

BIOS Basic I/O System. The layer of an iRMX system that provides an 
asynchronous interface to the input/output system. The same acronym is used in 
the context of PCs for the code that resides in ROM to supply OS-independent ac
cess to the computer's I/O system. 

bootstrap loader Unless the operating system resides in ROM, it must be loaded 
into memory from a disk using a program called a bootstrap loader. For iRMX, the 
disk may be either local or accessed over the network. 

buffer pool An iRMX object type managed by the Nucleus layer. Buffer pools 
provide a way to manage sets of memory segments efficiently. 
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C start-off routine The initial code for a C program that calls mainO and which 
receives control when main() returns. 

callback A function that is called by another program in response to some event. 

COB Connection Database. iNA maintains information about each virtual cir
cuit that it manages in a data structure called a CDB. It returns an unsigned integer 
to identify the CDB when a program issues an open Request Block. 

cheat To use knowledge about the internal representation of an encapsulated 
object in an application program. 

client On a network, a client is a computer which makes requests for a remote 
system that acts as a server. For example, a client could request a remote server to 
supply it with data from one of the server's disk files. 

compile time The time at which source code is translated into an object module. 
If the source code is assembly language rather than a high-level language, the pro
cess is called assembly rather than compilation, and is said to occur at assembly 
time. 

composite object An iRMX object that is made up of other objects. All applica
tion-defined object types use composite objects. 

condition The name of a synchronization primitive introduced by POSIXAa. 

connection A composite object type managed by the BIOS. Although there is 
only one connection object type, the internal format of a connection object depends 
on whether it was created by an attach device or an attach file system call. 

consumer Another name for a network client. 

conventional memory A DOS term used to refer to the portion of the real mode 
address space below 640K. 

CPU Central Processing Unit. In this book, the same as a microprocessor. 

CRC Cyclic Redundancy Check. A parity-based mechanism for checking the in
tegrity of data retrieved from a memory or communication link. 

CST Context switch time. The time it takes to get the CPU to stop executing code 
for one task and start executing code for another one. 

CUSP Commonly Used Systems Program. 

datagram A message passed over a network on a best-effort basis. The network is 
not guaranteed to deliver datagrams in the order in which they are sent, if at all. 
Successful transmission of a datagram does not mean that it was actually received 
anywhere. 

DOE Dynamic Data Exchange. A technique for sharing information between 
Windows applications, such a fields within word processing documents or cells 
within spreadsheets. iRMX for Windows extends the DDE to allow applications to 
communicate over a network. 

deadline Time limit on when a task can complete processing an event. 

default prefix An I/O connection, normally to a directory, that is used as the 
starting point for locating a file or directory that does not include a complete path 
in its name. 
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descriptor An 8-byte data structure taken from a descriptor table in memory. 
Descriptors provide about information memory segments, system call procedures, 
interrupt and trap handling procedures, and hardware-supported tasks. 

development system A computer system used to build application software that 
will be debugged on, and ultimately, integrated with, another computer called the 
target system. 

device connection A BIOS connection object that was created by rqaphysi
calattachdevice ( ) or rqlogicalattachdevice ( ). A device connection 
identifies the DUIB, and hence the device driver, that will handle I/O requests for a 
particular device. 

device controller The hardware interface between the CPU or system bus and a 
device unit. 

device driver The software interface between the BIOS and a device controller. 

device independence A feature of an OS that makes it possible for application 
programs to do I/O to disk files or different physical devices without having to 
change the program itself in any way. 

device unit A single I/O device, such as a terminal or a disk drive. 

DHDT DOS-Hosted Development Tool. A compiler, binder, or other develop
ment tool that runs under MS-DOS on a PC. 

disk volume A single floppy diskette or hard disk drive that has been formatted 
with a particular type of file system. 

DMA Direct Memory Access. A device controller design in which the processor 
provides the controller with the address of a memory buffer and receives only a sin
gle interrupt from the controller when it has completed the data transfer for the 
entire buffer. 

DOS Disk Operating System. In this book, the MS-DOS or PC-DOS operating 
system of Microsoft or IBM. 

DUIB Device Unit Information Block, also known as a device name or physical 
device. 

EDL External Data Link. The name for the collection of Data Link operations 
that can be invoked directly by applications using the iNA RB interface. 

EDOS Encapsulated DOS. The iRMX file driver for use with MS-DOS disks. 

effective address The address of a memory operand referenced by a machine 
language instruction. Computed as the sum of a displacement value, the contents of 
an index register, and the contents of a base register. 

EIOS Extended I/O System. The layer of an iRMX system that provides a syn
chronous interface to the BIOS layer. 

EISA Extended ISA bus. A system bus architecture for PCs. Competes with 
MCA. 

embedded system Any device or piece of equipment that is controlled by one or 
more microprocessors. Normally, users interact with an embedded computer only 
through the instrument's controls, if at all. 
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encapsulation A characteristic of object-based systems. The representation of 
an object is hidden from the user of that object. Only the object's type manager can 
manipulate an object. Users of an object can manipulate the object only by invok
ing type manager functions for the object. 

EOI End of Interrupt. A command that is sent to a Programmable Interrupt 
Controller to indicate that an interrupt handler has completed processing an inter
rupt. 

event loop A code structure characterized by an endless loop in which a task is 
idle while it waits for an event, performs some computation when an event occurs, 
then returns to the waiting state until its next event occurs. 

exception handler A program that receives control when an error is detected by 
the operating system or by the hardware. 

exchange Generic name for semaphores, mailboxes, and regions, which are ob
ject types managed by the Nucleus that allow tasks to synchronize and communi
cate with one another. 

execution breakpoint An instruction in a program that causes a transfer of con
trol to a debugging program. Implemented by replacing the original machine lan
guage instruction at the break point with an interrupt 3 instruction. 

exit procedure A procedure called by a system call procedure when it is ready to 
return to an application that called it. The exit procedure performs the machine 
language operations needed to set up the condition code and any return value for 
the system call, and then returns to the interface procedure. 

expedited data Virtual circuit data that can be transmitted and received ahead 
of normal data already en-route over the circuit. 

explicit function A function called by name from an application program. 

FIFO First in, first out. 

file driver Any of five software interfaces to the BIOS that provide a uniform, 
file-oriented view of I/O devices. The four file drivers are the Named, Physical, Re
mote, Stream, and ED OS drivers. 

flags register A CPU register used to hold status information resulting from 
arithmetic operations, and some of the bits to control the operating mode of the 
processor, such as the interrupt enable flag. 

FSM Free Space Manager. The type manager provided by the Nucleus for creat
ing and reclaiming memory segment objects. 

gather-write An output option that allows several discontinuous parts of mem
ory to supply the data to be written, rather than use a single contiguous buffer. 

GOT Global Descriptor Table. A memory segment that contains descriptors for 
code, data, and descriptor table segments. All processor tasks have access to a com
mon GDT. 

GP fault General Protection fault. Protected mode processors generate interrupt 
number 13 to indicate a GP fault whenever an attempt is made to violate the pro
cessor's protection mechanism. For example, invalid program addresses cause GP 
faults. 
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hardware task A thread of execution that can be managed directly by the proces
sor with little or no operating system intervention. A Task State Segment (TSS) is 
used to save and restore the task's processor state for context switches. 

help file A file with a name ending in . hlp and residing in one of the directories 
normally searched by the help command. 

HI Human Interface. The layer of an iRMX system responsible for interactions 
with people who use the system. 

high-water mark When the rate at which data arrives is too great for a serial de
vice driver to buffer, it sends a signal to the device unit telling it to cease transmis
sion temporarily. The amount of buffered data that triggers this action is called the 
high-water mark. 

HMA A DOS term for the High Memory Area, the part of the real-mode address 
space between 1M and 1M + 64K. 

hot key A special combination of keys that activates a software function that was 
previously loaded into the computer's memory. 

hot link In the context of the Windows DDE mechanism, a hot link causes a DDE 
server to send the new value of a data item to a DDE client any time the value 
changes. 

I/O connection A composite iRMX object type managed by the BIOS layer. 
There can be no more than one I/O connection to a device at a time. There can be 
any number of I/O connections to a file on a device. 

I/O job A composite iRMX object type managed by the EIOS layer. Only tasks 
belonging to I/O jobs are allowed to make EIOS system calls. 

I/O port A device controller that can connect to one serial device, such as a termi
nal, or parallel device, such as a printer. 

I/O port address The l6-bit address used to reference registers and buffers in a 
device controller. 

I/O user A composite iRMX object type managed by the BIOS layer. An I/O user 
object is a list of user ID values that are used for checking access rights to named or 
remote files. 

leu Interactive Configuration Utility. A tool for generating customized configu
rations of the iRMX operating system. 

lOT Interrupt Descriptor Table. A memory segment containing call, trap, or in
terrupt gates. Used to vector interrupts to the proper handler when the processor is 
in protected mode. 

IEEE Institute of Electrical and Electronics Engineers, a professional organiza
tion that includes the Computer Society (lEEE-CS). The IEEE-CS Technical 
Committee on Operating Systems (TCOS) is developing the POSIX standard. 

implicit function A function that must be bound to an application to satisfy a ref
erence generated by the compiler, but which is not explicitly named in the applica
tion's source code. 

iNA Intel Network Architecture. The software module that implements trans
port layer networking using OSI protocols. 
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incremental bind Binding an application in two or more steps to control the se
lection of object modules that share common public symbol names. 

indirect function A function that is not called by an application program, but 
from a run-time function that is linked to the application. 

interface procedure A procedure that is linked to an application so it can make 
system calls. The interface procedure sets up the registers for the call, invokes the 
proper call gate, and checks for errors on return. 

interrupt handler Code that is executed in response to a hardware interrupt re
quest without incurring an operating system context switch. 

interrupt response time The time between the moment that an I/O controller 
makes an interrupt request until the CPU starts executing instructions to process 
that request. 

interrupt task A task that is scheduled for execution in response to an interrupt 
event. 

interrupt virtualization An iRMX for Windows configuration parameter set by 
the VIE entry in the rmx. ini file. If virtualization is enabled, iRMX manages in
terrupts and DOS performance may suffer. If interrupt virtualization is disabled, 
DOS I/O can interfere with iRMX real-time performance. 

10PL I/O Privilege Level. When a processor is operating in protected or VM86 
mode, the current IOPL in the flags register and the privilege level of the current 
code selector determine the response of the processor to I/O instructions. 

10RS Input/Output Request Segment or Input/Output Result Segment. The 
data structure sent to a device driver by the BIOS to initiate an I/O operation. 
When the operation is complete, the segment is returned to a mailbox that was 
specified in the BIOS system call that initiated the operation. 

IPC Inter-Process Communication. A Unix term for various mechanisms used for 
information exchange between processes. 

iRMK Intel's Real-time Multitasking Kernel. A software module that may be 
used to implement small real-time systems. Some iRMX implementations use 
iRMK as the basis for the Nucleus layer and allow applications to make direct calls 
to some iRMK functions. 

iRMX Intel's Real-time Multitasking eXecutive. 

IRT Interrupt Response Time. The time that elapses form the moment a device 
controller signals that an event has occurred until an interrupt handler starts exe
cuting in response to the event. 

iRUG The Intel Real-Time User's Group. P.O. Box 91130, Portland, Oregon 
97291, 800-255-IRUG (800-255-4784). Also manages real-time forum on Compu
Serve. 

ISA Industry Standard Architecture. The name of the system bus used on most 
PCs. Also known as the AT bus. 

ISO International Standards Organization. 

ISO-Latin-1 An 8-bit character code that includes ASCII as the first 128 codes 
and international extensions in the upper 128 codes. 
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job One ofthe fundamental iRMX object types. Jobs have memory pools and own 
objects. 

LAN Local Area Network. In this book, a LAN is assumed to be a set of computers 
connected by an Ethernet cable. A different medium, such as a Token Ring, could 
be substituted without affecting the concepts involved. 

layer A part of the operating system that supplies a set of system calls. A single 
layer can implement zero, one, or several type managers, and might or might not 
have a corresponding job. 

LOT Local Descriptor Table. A memory segment that contains code and data de
scriptors. Each processor task has its own LDT. 

linear address A virtual memory address. Ifpagingis not being done, the same as 
a physical memory address. If paging is being done, a linear address consists of 
three fields: a page directory, page table, and an offset. Linear addresses are gener
ated by the segmentation unit. 

link time The time at which an object module is combined with other object mod
ules to produce a load module. 

load module The contents of a disk file that is in a suitable format to be loaded 
into primary memory and executed. iRMX load modules are in a format called Sin
gle Task Loadable (STL) format. A load module contains executable code, data 
constants, information needed to reserve memory for variables and a stack, and 
initial values for key processor registers. A load module can also contain symbolic 
information about all or parts of a program for use by an interactive debugging 
program. 

local On a network, the computer on which software is running is called the local 
computer. The local computer may be either a client or a server, or both. 

logical address The combination of a selector and an effective address that are 
combined by the processor's segmentation unit to produce a linear address. 

logical device A composite iRMX object type managed by the EIOS layer. A logi
cal device is an I/O connection to a device and an associated logical name. 

logical name A name for a device or file connection. Up to 12 characters long, 
plus surrounding colons. Logical names (without the colons) and the token for the 
associated I/O connection object are cataloged in some job's object directory. 

low-water mark The point at which a device driver for a serial device controller 
generates a signal that allows the remote device unit to resume sending data. See 
also high-water mark. 

LSAP Link Service Access Point. The ID number that a Network layer imple
mentation uses to identify itself to the Data Link Layer in an ISO network. 

MAC Media Access Control. The 6-byte Ethernet address for a computer node on 
a network. 

mailbox An iRMX object type managed by the Nucleus layer. Mailboxes are used 
for intertask synchronization and communication. 

MCA Microchannel Architecture. A proprietary system bus used in some IBM 
personal computers. 
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memory segment (1) The architectural device used by x86 processors to access 
memory. Each segment is identified by a 16-bit value called a selector. In real mode, 
the value ofthe selector is multiplied by 16 to give the base address of the segment 
in memory. In protected mode, the selector contains an index into a table of de
scriptors which specify the segments base address, size, and access permissions. 
(2) A fundamental iRMX object type managed by the Free Space Manager part of 
the Nucleus layer. Implemented as hardware memory segments. 

message port A composite iRMX object type managed by the Nucleus layer. 
Used for interprocessor communication in Multibus II systems. 

MIP Message Interprocessing Protocol. Originally a Multibus I standard for com
munication among processors over the Multibus I system bus, now used in several 
configurations for message passing between iNA and applications. 

mnemonics Mellifluous Notation Enabling Mastery Of Nomenclature in Con
catenate Sequence. 

monitor A program used for debugging at the machine language level. A monitor 
is often kept in ROM, but for iRMX for Windows, the iSDM III monitor is loaded 
with the OS. 

Multibus I, II System bus architectures. Multibus I uses a 16-bit data bus; Mul
tibus II uses a 32-bit data bus. iRMX II and III support message passing on Mul
tibus II systems. 

multicast filtering The selection of network packets to be accepted by the net
work device controller or by the Data Link software layer. 

mutex A mechanism for guaranteeing mutually exclusive access toa shared re
source by a set of cooperating tasks. The iRMX semaphore and region object types 
can be used as mutex mechanisms. Also, the name of a specific mechanism for this 
purpose defined in POSIXAa. 

Named The file driver used to access disk volumes that have been formatted with 
an iRMX file system. 

NCB Network Control Block. The data structure, analogous to iNA Request 
Blocks, used to invoke DOS networking functions using the NetBIOS interface. 

NMF Network Management Facility. An iNA module that supplies statistics, 
parameters, and data maintained internally by iNA. The information can be exam
ined, and in some cases altered as well. 

NSAP Network Service Access Point. The ID number a Transport layer module 
uses to identify itself to the Network layer in an ISO network. 

object An instance of a data structure that can be accessed only through a set of 
functions provided by a type manager. 

object directory A data structure that is part of ajob object. Object directories are 
used for sharing objects across jobs or tasks. An object directory is a list of tokens 
and names for those tokens. The names are normally made of ASCII characters. 

object module The contents of a disk file produced by the compilation of a single 
source module. In addition to binary machine instructions and data constants, an 
object module contains information about external and public symbols as well as 
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memory requirements for variables and stack. The object module can also include 
symbolic information (symbol names, data types, and locations) to be passed on to 
a symbolic debugger. 

octet Eight bits. This term is used by the networking community instead of byte 
because there are some machines that define bytes in sizes other than eight. 

offset A I6-bit quantity (32-bits for the i386 architecture) that is added to a seg
ment base address to obtain a physical or virtual memory address. The offset 
can be part of a pointer or can be the effective address for a machine language in
struction. 

OMF Object Module Format. The specification for how information is to be 
stored in object modules, libraries, load modules, and bootstrap-Ioadable files. 

operating system extension An object type added to the system by a user-sup
plied or iRMX-supplied layer. 

OS Operating System. 

OS/2 Registered trademark of International Business Machines Corporation. 

OSE Operating System Extension. An iRMX object type managed by the Nu
cleus layer. OSEs are used to create new object types. 

OSI Open Systems Interconnection. The ISO seven-layer reference model for 
network communication. 

out-ot-band data The Internet protocol term for out-of-band data. 

path name The unique identification of a particular file on a file system that is 
given by naming all the directories, starting with the root, that must be traversed to 
locate the file. 

PC Personal Computer. An IBM trademark, but used generically in this book. 

peer-to-peer Networking in which computers can act as both servers and con
sumers (clients), rather than being dedicated to one or the other class of operation. 

physical The file driver used to access disks on a block-by-block basis (rather 
than as a file system), tapes, terminals, and other serial devices. 

physical address If paging is not operating, a physical address is the same as the 
linear address generated by the segmentation unit. Ifpaging is operating, the phys
ical address is the linear address transformed by the paging unit. 

physical memory The primary memory accessed by the CPU when it accesses 
machine instructions and operands. 

PIC Programmable Interrupt Controller. An integrated circuit that can resolve 
simultaneous interrupt requests and negotiate a sequence of CPU interrupt re
quests based on the priorities of the requesting device controllers. 

PME VM86 Protected Mode Extension. DOS programs can trigger the execution 
of an iRMX task by issuing a software interrupt instruction. The procedure to be 
executed by the iRMX task is defined using the PME mechanism. 

portable The ability of a single program to run on different computer systems. 
The term is used to describe a variety of programs, ranging from those that require 
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"minor" changes to the source code when moving from one system to another, to 
those that require no changes to the executable code, even to run on systems with 
different processor architectures. 

POSIX Portable Operating System Interface for Computer Environments. A set 
of Unix -based standards being developed by the IEEE Computer Society's Techni
cal Committee on Operating Systems. 

POSIX.1 The IEEE Standards committee that defined the C Language API to 
POSIX systems. 

POSIX.16 The IEEE Standards committee concerned with multiprocessing ex
tensions to POSIX. 

POSIX.4 The IEEE Standards committee concerned with real-time extensions to 
POSIX. 

POSIX.4a The IEEE Standards committee concerned with the threads extension 
to POSIX. 

primary memory The memory that holds programs as they are being executed by 
the CPU. Can be either RAM (volatile, read-write memory) or ROM (nonvolatile, 
read-only memory). 

priority inversion A situation in which a high-priority task is effectively pre
vented from running by a lower-priority task even though the lower-priority task 
has nothing to do with the higher-priority task. iRMX region objects eliminate this 
problem. 

process An independently scheduled thread of execution. In iRMX, a task. In 
Unix, a thread of execution plus an address space. 

protected mode A mode of operation of 80286 and later microprocessors in 
which the processor checks the legitimacy of memory accesses. 

PSP Program Segment Prefix. The data structure used by DOS to store informa
tion about a command that is loaded into memory. 

PVAM See VM86. 

RAM Random Access Memory. Strictly speaking, any type of memory in which 
access time does not depend on the position (address) of the data to be read or writ
ten. Common usage reserves RAM for memory that can be both read and written 
and which loses its stored information when electrical power is removed from the 
circuit. (See ROM.) 

RAWEDL Raw External Data Link. The Request Block interface to the Data 
Link layer of iNA that allows an application to receive and send packets that do not 
conform to ISO standards. 

RB Request Block. The data structure that is used for communicating network 
requests to iNA and receiving results in return. 

real mode An operating mode available on all x86 processors. No memory access 
checking is done by the processor. 

region An iRMX object type managed by the Nucleus layer. Regions are used to 
prevent priority inversions that might occur if semaphores are used for intertask 
synchronization. 
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Remote (1) The file driver that is used to access files or devices located on a re
mote computer. (2) Any computer that is accessed over a network. The remote 
computer can act as either a client, a server, or both. 

RHOT iRMX-Hosted Development Tools. Development Tools that run on 
iRMX. See DHDT. 

RISC/CISC Reduced Instruction Set Computer / Complex Instruction Set Com
puter. Two styles of computer architecture. RISC computers use many simple but 
fast instructions to accomplish the same work as CISC computers do with a few 
complex, but relatively slow, instructions. iRMX runs on Intel's CISC processors, 
using the x86 architecture. 

ROM Read Only Memory. A type of random access memory circuit that can be 
read, but not written. An important feature of ROM is that it retains the informa
tion stored in it even after electrical power is removed from the circuit. 

RPC Remote Procedure Call. A mechanism that allows a task on one computer to 
invoke a system call (or other procedure) on another computer by passing an ap
propriate request over a network. 

RTE Real-Time Extension. DOS programs can make certain iRMX system calls 
by using the iRMX for Windows RTE mechanism. 

run time The time at which a program is executed by the CPU. The code must 
first be compiled, linked, and loaded. 

run-time library A library of object modules supplied with a high-level program
ming language. Functions in the library can be called by an application explicitly, 
such as the printif ( ) function for C, implicitly, such as doubleword multiplica
tion and division for PLM and C, or indirectly, such as cq_exit for C. 

scatter-read An input option in which arriving data is distributed to several dis
jointed parts of memory instead of into a single contiguous buffer. 

segment A contiguous region of memory, up to 64 Kilobytes (KB) for 80286 pro
cessors and lower, but up to 4 Gigabytes (GB) for i386 processors and higher. Also, 
a type of iRMX object which provides unstructured access to memory segments. 

segment descriptor An 8-byte data structure that provides the physical base ad
dress, the size, and the access rights for a segment. 

selector A 16-bit value used to identify a memory segment. 

semaphore An iRMX object type managed by the Nucleus layer. Semaphores 
are used for intertask synchronization. 

server On a network, a server is any computer which responds to requests from 
remote systems. A file or print server allows remote systems to access local disks or 
printers, for example. 

SIL System Implementation Language. A high-level language suitable for coding 
a systems program or an operating system itself. PLM is a SIL, C can be used as a 
SIL, Pascal is not a SIL. 

5MB Server Message Block. A format for messages used to communicate be
tween network servers and clients. The message formats were defined by Microsoft 
and are used by OpenNet software. 
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source module The unit of compilation. For iC-x86 and PLM -x86, one disk file 
contains the ASCII text for one source module plus optional compiler directives. 
One of these directives, "include," allows additional text to be inserted into the 
source module from other disk files at compile time. 

spawn The phrase "all jobs spawned by a job" is used to refer to both the direct 
children of the job as well as their descendants. 

stack frame An activation record. 

static login A terminal that automatically comes up with a particular user al
ready logged in when the system starts. 

STL Single Task Loadable. The object module format (OMF) that is used for pro
grams loaded by the iRMX Application Loader. 

stream The file driver that provides access to a pseudo-I/O device. Used for in
tertask communication by means of I/O system calls. 

system call A subroutine supplied by the OS to provide some service, such as I/O 
processing or memory allocation. 

system definition file A file that can be edited by the ICU editor to build a speci
fication for a customized configuration of iRMX. Once the definition file is 
complete, the ICU uses it to generate the files needed to build the new copy of the 
operating system. 

target system A computer that runs the iRMX OS and real-time applications, as 
distinguished from a development system. 

task An independently scheduled thread of execution. Same as a process in the 
general OS literature. One of the fundamental object types in iRMX. 

token A unique identifier for an object. In iRMX systems, a selector for the mem
ory segment containing the representation of the object. 

TPOU Transport Protocol Data Unit. The size in bytes of the largest packet that 
can be sent over the network by the Transport layer. Single messages larger than 
the TPDU size are broken up by the Transport layer, sent over the net, and reas
sembled at the other end. 

TSAP Transport Service Access Point. A number, sometimes called a selector, 
used to identify an individual application to the Transport layer of an ISO network. 

TSR A DOS program that terminates (allows DOS to return to the command in
terpreter), but stays resident in memory so that it can provide services for other 
DOS programs or respond to interrupts. The equivalent iRMX mechanism uses 
the sysload command to install a program. 

type manager The set of procedures for manipulating objects belonging to a par
ticular object type. 

UOI Universal Development Interface. A set of system calls that can be invoked 
by programs running on different operating systems, including iRMX, MS-DOS, 
and VAX/VMS. 

UNIX Registered trademark of UNIX Systems Laboratories. Not an acronym. 
Also known as Unix. 
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upper memory A DOS term referring to the real-mode address space between 
640K and 1M. 

user 10 A 16-bit number used to identify an individual or group of users on iRMX 
systems. User ID OxOOOO is the Super user, who can read all files and change their 
permissions. User ID OxFFFF is the World user, which is a member of every indi
vidual's I/O user object by default. 

virtual circuit A network connection managed by Transport layer software that 
provides reliable end-to-end sequential transmission of data. 

virtual memory Primary memory as addressed by machine language instructions 
but subject to mapping into physical memory by paging hardware in the 80386 ar
chitecture. For iRMX, which does not use paging, virtual memory is the same as 
physical memory. 

virtual root The list of public directories and devices offered to the network by a 
computer system. 

VM86 Virtual 8086 Mode. A mode of operation for the i386 and later micropro
cessors in which a hardware task seems to be running in real mode. 

VM86 dispatcher The iRMX for Windows code that receives control when a 
VM86 task causes a software interrupt, issues an I/O instruction, or performs any 
operation that the processor reserves for protected mode operations. The VM86 
dispatcher can ignore the event, emulate it, or invoke the VM86 task's interrupt 
handler, as appropriate. 

volume block The smallest amount of storage that can be allocated or freed on a 
disk. Equivalent to the volume's granularity, the size of a volume block is always a 
multiple of the size of a disk sector. 

volume granularity The smallest number of bytes that can be read from or writ
ten to a disk volume at one time. This value is often equal to the sector size of the 
disk but it can be made to be a multiple ofthe disk sector size when the disk is for
matted. 

VT Virtual Terminal. A mechanism for supporting remote login to a computer 
using Open NET . 

warm link In the context ofthe Windows DDE mechanism, a warm link causes a 
DDE server to notify a DDE client any time the value of a data item changes. 

x3.64 The ANSI standard for extended terminal control codes based on ASCII, 
which in turn is ANSI standard number X3.4. 

x86 Generic name for a family of microprocessors that are upwardly compatible 
with the Intel 8086 CPU. These include the 8086, 80186, 80286, i386, and i486. Also 
means "either 86,286, or 386" in names of programs for which there are versions 
specific to different architectures, such as "iC-x86." 
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background processing, 36-37 
command line interpreter (CLI), 35-41 
error conditions, 31, 57-59 
exception handler, 57-59 
files, command files, CLI, 37-39 
format for command lines, 33-34 
freeze screen, 31-32 
history commands, 35 
human interface (HI), binding HI commands, 

80-89 
keyboard and function keys, 31 
parameters, CLI, 35-36 
redirection ofI/ 0, 34 
repeat command, <! >, 31 
search path lists, 49-50 
wildcards, 34 

command files, 37-39, 89 
command line interpreter (CLI), 31, 35-41 

aliases, 36 
background processing, 36-37 
command files, 37-39 
history commands, 35 
jobs, CLI jobs, 261 
logging off, 39-41 
parameters, 35-36 
stream I/O, 539-541 
super command, 39 
user ID, Super, 39 

commonly used system programs (CUSP) (see 
utilities) 

communication service system calls, 561 
compilers/compiling (see also languages for 

development), 73-78 

Index 585 

binder controls, 88-89 
compiler controls, compact and debug 

parameters, 73 
iC86, iC286 or iC386, 67 
include files, 74-77, 106-108 
languages (see languages for development) 
listing files, 77-78 
object files and object modules, 78 
segmentation models, 79-80 
source modules and source files, 74 

complex instruction set computers (CICS), 11, 
12 

component objects, 365, 560 
composite objects, 180, 364 

type managers, 401-403 
type managers, deleting, 403-407 

concurrency of execution, xi, 5 
configuring operating systems 

interactive configuration utility (ICU), 100, 
101 

console ownership, Windows, 470-473 
CONSOLE, SoftScope, 514-515 
context switch time (CST), 12-13 
controllers (see device drivers) 
conventional(program) memory, Windows, 491 
copy command, 33-34, 49, 52, 56, 529 
copydir,52 
cqcommdwordtoptr( ), 425, 564 
cqcommptrtodword(), 564 
cqcommrb(), 437,564 
cqcreatecommuser(), 425, 427, 436, 437, 564 
cqdeletecommuser(),427 
cq_exit( ), 119 
create( ), 178 
createA( ), 176 
createBB( ), 394, 396 
createfile command, 289 
cstr( ), 124 
current directory, 47-48 

D 
data files, 304 
data link operations, networking, 466-468 
data operands, 147-148 

arguments, 148 
auto storage data, 147 
dynamic local data, 147 
local data, 147 
pointers, 148 
static global data, 147 
static local data, 147 

data transfer, 289-291, 293 
networking, 421 
step-by-step procedures, 268-269 
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datagrams, 420, 430-443 
DDEInitiate( ), 508 
ddeinq( ), 507 
ddclibrary_initiate(), 507 
deadlock, 248-249 
debug command, 95 
debugging, 57-59, 94-99 

breakpoints, 96 
debug system command, 95 
device drivers, 360-362 
exception handling, 136 
first-level job debugging, 101 
HI command debugging, 94-99 
languages, 136-137 
LOADSEGS macro, SoftScope, 520 
monitors, 58,95 
SoftScope, 96-99 
system debugger (SDB) use, 96 
task status, TASK, SoftScope, 523-524 
V macros and System Debugger, SoftScope, 

524-525 
definition illes, 512 
delete( ), 406 
deleteA( ), 176 
deleteBB( ), 396, 407 
deletion control system calls, 560 
deletion mailboxes, 372 
descriptors, Intel x86 architecture, 152-154 

gate descriptors, 152 
system descriptors, 152 

detachdevice, 51, 52 
determinancy of systems, real-time systems, 

12 
development (see application development; 

languages for development) 
development systems, iRMX, 27 
development tools, 6-7 
devices and device drivers, xi, 268, 319-362 

adapters, 320 
adding device drivers to system, 355-362 
asynchronous operation, 273-277 
BIIOS, 265, 320, 327-330 
bounded buffer implementation, 341-343 
character echoing, 339 
common drivers, 320, 343, 346-349 

housekeeping routines, 349-351 
utility routines, 349-351 

connections and connection objects, 197, 
268,279-280 

controllers, 320, 321-327 
buffered,335 
interface, 321-327 

custom drivers, 320 
data files, 304 

data operations, 266-295 
data transfer, 268-269, 289-291 
debugging strategies, 360-362 
device-independence, 266, 269-270 
device information table (DIT), 344 
device unit, 168, 320 
device unit information block (DUIB), 51, 

278-279 
directories and subdirectories, 304-307 
disk access, 292-295 
dynamic device drivers, 358-360 
EIIOS, 265 
encapsulated DOS (EDOS), 281 
fattachdevice, 332 
fclose, 333 
fdetachdevice, 332 
file-drivers, 43, 268 
file structures, 267, 303-314 
fnodes, 305, 307-309 
fopen, 333 
format track, 297-298 
fread,331 
fseek,332 
fspecial, 332 
fwrite, 332 
get/set terminal data, 298-302 
high-water mark, 338 
housekeeping files, 309-314 
human interface (HI), 265 
input/output request/result segment (II 

ORS), 278-279, 330-334 
input/output, 266-270, 320 

models, 1I0 model, 266-270 
network I/O, 265 
remote 1I0, 265 
sample 1I0 programs, 270-273 

Intel drivers, 343 
interactive configuration utility (ICU), 355, 

357-358 
interfaces, 319 

BIIOS, 327-330 
controller, 321-327 
objects, interface objects, 359 

interprocess communication (IPC), 265 
interrupts and interrupt handlers, 321-325 

multiple, 335 
single interrupt, 334 
synchronization, 325-327 
task interactions with driver, 334-343 

iRMX-NET, 265 
ISO transport layer services, 266 
loadable device drivers, 356-357 
logical names, 46-47, 280, 316-318 
logical structure of device drivers, 321-343 
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message passing, 265 
named drivers, 51, 278, 281 
network I/O, 265 
normal iRMX files, 287-288 
nucleus communications service, 266 
physical devicesnames, 51, 278, 280 
polling, 334 
prefixes, 286 
random drivers, 320, 343, 349 

housekeeping routines, 349-351 
utility routines, 349-351 

real-time files, 288 
remote devices, 281 
screen-master files, 358 
seek operations, 291-292, 350-351 
sharing files, 267-268 
signal characters, 302-303 
special functions, 295-303 
start and stop bits, 335 
stream, 281 
subpaths, 286 
synchronous operation, 273-277 
system calls, connection object manage-

ment, 280-289 
system definition files, 357 
tasks, 331-334 
template files, 358 
temporary files, 288-289 
term utility, 299 
terminal drivers, 320, 343, 351-355 
terminal support code (TSC) buffer, 352, 

527-531 
time-of-day management, 314-316 
truncating files, 287, 291-292 
type-ahead buffers, 336 
UARTs, 352 
unit standard values, 333-334 
user development interface (UDI), 265 
user driver, 343 

device independence, 269-270 
device information table (DIT), 344 
device unit information blocks (DDIBs), 51, 

278-279 
deviceFinish( ), 346 
devicelnit( ), 346, 347, 353 
devicelnterrupt( ), 346, 350, 351 
deviceStart(), 346, 347 
deviceStop( ), 346 
dir, 31, 42, 54, 307 
directories/subdirectories, 304-307 

current directory, 47-48 
home directory, 47-48 
logical names, 45-47 

naming conventions, 44-45 
networked files, 54 
object directories, 204-207 
paths, path names, 47-48 
search path lists, 49-50 
virtual roots, 54 

DISASM, SoftScope, 516 
disk access, device drivers, 292 

data transfer rate, 293 
data transfer time, 293 
file pointers, 294 
rotational delay, 293 
search time, 293 
select time, 292 
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track-to-track positioning time, 292 
diskverify, 304, 313, 314,474 
DOS operating systems, xi, 17, 19, 27-28 

system calls specific to DOS operation, 564 
DOS-hosted development tools (DHDT), 65 
doskey facility, iRMX equivalent, 31 
dosub(), 75, 116-117, 131 
dqallocate( ), 563 
dqattach( ), 562 
dqchangeaccess(),562 
dqchangeextension( ), 562 
dqclose ( ), 562 
dqcreate( ), 562 
dqdecodeexception(),563 
dqdecodetime(), 563 
dqdelete( ), 562 
dqdetach( ), 562 
dqexit( ), 562 
dqfileinfo( ), 562 
dqfree( ), 563 
dqgetargument(), 563 
dqgetconnectionstatus ( ), 562 
dqgetexceptionhandler(), 563 
dqgetmsize( ), 563 
dqgetsize( ), 563 
dqgetsystemid( ), 563 
dqgettime( ), 563 
dqmallocate( ), 563 
dqmfree(), 563 
dqopen(), 563 
dqoverlay( ), 562 
dqread( ), 563 
dqrename( ), 563 
dqreserveiomemory( ), 563 
dqseek( ), 563 
dqspecial( ), 563 
dqswitchbuffer( ), 564 
dqtrapcc( ), 303, 562 
dqtrapexception( ), 563 
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dqwrite( ), 563 
drivers 

device drivers (see devices and device 
drivers) 

file drivers, 268, 281 
DUMP, SoftScope, 515-516 
dynamic data exchange (DDE), 409, 469 

Windows, 503-508 
dynamic link libraries (DLL), 503 
D_CONS (see terminal support code) 

E 
echoing, character echoing, 339 
EliaS, 27, 181, 185-186 

asynchronous operation, 274 
connection object management, 280-289 
device call, 555 
device drivers, 265 
file and connection calls, 554 
110 

job calls, 552-553 
job creation, 254 
job objects, 186 
stream 110 synchronization, 538-539 

logical name calls, 554 
read-ahead techniques, 185 
status calls, 555 
stream 110, serialization, 538-539 
synchronous operation, 274 
system calls, 185, 280-289, 552-554 
user-related system calls, 555 
write behind techniques, 185 

EISA Bus platforms for iRMX systems, 28 
embedded systems 

real-time programming, 8-9 
structure of embedded vs. real-time sys-

tems, 9-10 
emm385.exe, 494 
encapsulated DOS (EDOS) device, 43-44, 281 
encapsulated files, 475-476 
encapsulated objects, object-based systems, 

178 
end systems (ES), networking, 418 
endlongtermop( ), 351 
environment 

exceptions and errors, 212 
set options, SET, SoftScope, 521-522 

epilogue, procedure epilogue, 150 
errors, error conditions, 57-59 

compile errors, listing files, 77-78 
error messages, 58-59 
exception handlers, 57-59,212-221,223, 

559 
escape sequences 

ANSI X3.64 to iRMX, terminal support 
code, 527-531 

esubmit command, 39, 90, 91, 264 
Ethernet, 424 
EVAL, SoftScope, 517 
event loops, 9 
exception handlers, 57-59, 136, 212-221 

command line argument equals 0, 217-219 
command line argument equals 1, 219 
command line argument equals 600, 219 
default exception handler for jobs, 220-221 
environmental exceptions, 212 
faults, 213 
handling exceptions and faults, 214-219 
in-line exception handling, 214-219 
nucleus system calls, 559 
programmer exceptions, 212-213 
system calls, 223 
types of exceptions, 212-213 
UDI, system calls, 563 

exchanges (see semaphores) 
exit procedures, system calls, 397-399 
exit routines, 222 
EXIT, SoftScope, 517 
expanded memory, 492-493, 494 
explicit functions, 118-119 
extended memory, 493-494 
extended segmentation (see segmentation 

models) 
extensions 

add data, BI/OS system calls, 553 
creating extensions, type managers, 399-401 
POSIX systems, 25 
system calIs for extension objects, 560 
type managers, deleting, 403-407 

external data link (EDL), 466 
extgen utility, 108, 114 

F 
far calls, 147 
far memory pointer, 131-133 
fattachdevice, 332 
faults, 213 
fclose, 333 
fdetachdevice, 332 
fdopen( ), 133 
file drivers (see also devices and device driv

ers), 43-44, 268, 281 
file management, 41-56, 303-314 

access rights, accessor lists, 42-43 
backups, 314 
BIIOS file 110 system calls, 552 
connection-levels, BIIOS system calls, 268, 

552 



data files, 304 
data transfer, 268-269 
directories/subdirectories, 304-307 

current, 47-48 
home, 47-48 

disk access, device drivers, 292-295 
DOS, accessing from iRMX for Windows, 

475-476 
DOS, accessing iRMX volumes from DOS, 

476-477 
drivers, file driver concept, 43 
EIIOS system calls, 554 
encapsulated files, 475-476 
extensions, add data, BIIOS system calls, 

553 
file structure, 267, 304-307 
floppy disk storage, 51-53 
fnodes, 305, 307-309 
hidden files, 45 
housekeeping files, 309-314 
list files, MODULE, SoftScope, 521 
logical names, 45-47 

system vs. user logical names, 48-49 
mirroring, 314, 474 
modification data, BIIOS system calls, 552 
named files, 43-44, 303 
naming conventions 

files and directories, 44-45 
logical names, 45-47 

networking, 53-56, 304 
normal iRMX files,device drivers, 287-288 
open file, LOG, SoftScope, 520 
path names, 47-48 
printing files, 56 
protection for files, 41-43 
real-time files, device drivers, 288 
search path lists, 49-50 
seek operations, device drivers, 291-292 
sharing files, 267-268 
structure of files, 267, 304-307 
temporary files, device drivers, 288-289 
text editing, Aedit, 70-73 
time-of-day management, device drivers, 

314-316 
truncating files, device drivers, 287, 291-292 
types, 310 
UDI processing, system calls, 562-563 
Windows, file system compatibility, 473-477 

fileno( ), 133, 299 
finishIlO(), 328, 329, 330, 343, 347, 349, 

351, 356, 359 
floatest application, 132 
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floppies and floppy disk drives, 51-53 
flow control commands 

evaluate procedure, EVAL, SoftScope, 517 
procedure call nesting, STACK, SoftScope, 

523 
resume execution, RESUME, SoftScope, 

522 
step-by-step execution, STEP, SoftScope, 

522-523 
system-command use, SYSTEM, SoftScope, 

524 
transfer execution, GO, SoftScope, 518 

fnodes, 305, 307-309 
foat command, 313 
foo( ), 133 
FooM ), 176, 178 
fopen, 333 
format command, 309, 314 
format track, device drivers, 297-298 
formatting floppy disks, 51 
FORTRAN language (see also languages), 103 
frames 

paging frames, 155 
stack frames, 125, 148 

fread, 331 
free-space memory (see memory management) 
freeze screen, 31-32 
fseek,332 
fspecial, 332 
function prototypes, languages, 116-117 
functions, 146 

explicit functions, 118-119 
implicit functions, 118-119 
indirect functions, 118-119 

fwrite, 332 

G 
gates 

call gates, 388 
descriptors, 152, 154 
Intel x86 architecture, 162-164 

gdelay( ), 344 
Gerber, Rick, 13 
getcontrolregister( ), 157 
getiors( ), 351 
gets( ), 104, 107, 110, 118 
gettime, 430, 438 
geLrIillLconn(), 185, 299 
global descriptor tables (GDT), object-based 

systems, 178 
GO, SoftScope, 518 

floating-point data types H 
languages and floating-point support, 110-113 hard real-time, 9 
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hardware 
AT Bus (PC compatibles) platforms for 

iRMX systems, 28-29 
complex instruction set computers (CICS), 

11,12 
Intel x86 architecture (see Intel x86 architec

ture) 
iRMX versional development vs, micropro

cessor progress, 18-19 
real-time system performance vs., 11 
reduced instruction set computers (RISC), 

11,12 
header files (see also include files), 74 
hellorrnx.ext program sample, 75-76, 104-106 
hellosub.ext program sample, 76, 104-106 
help 

HELP, SoftScope, 518 
rmxhelp, 32 

hidden files, 45 
high-water mark, 338 
himem.job,497 
himem.sys, 494, 497 
history commands, 35 
HOME,262 
home directory, 47-48 
housekeeping files, 309-314 
human interface (HI), 27, 28, 181, 186-187 

application loader (AL) debugging, 94 
arguments for command line, 34-35 
binding commands, 80-89 
command entry, 32-35 
command parsing system calls, 556 
command processing system calls, 557 
command-line format, 33 
debugging HI commands, 94 
device drivers, 265 
help, 32 
HI jobs, I/O processing, 187 
input/output path, 33 
I/O processing calls, 556 
list of commands, 32 
memory pool HI jobs, 196 
message processing system calls, 556 
offspring jobs, 261-264 
program control system calls, 557 
redirection of I/O, 34 
system calls, 186-187, 225, 555-556 

command parsing system calls, 556 
command processing system calls, 557 
I/O processing calls, 556 
message processing system calls, 556 
program control system calls, 557 

wildcards, 34 

icumrg utility, 358 
implicit functions, 118-119 
in-line handling (see exception handler) 
iNA, access via system calls, 564 
inamon, 460 
inbyte( ), 172 
include files, 62 

compiling, 74-77 
hellormx.ext program sample, 75-76 
hellosub.ext program sample, 76 
languages, 106-108 

indirect functions, 118-119 
indosx( ), 480 
inheritance, object-oriented systems, 180 
initializeI/O( ), 328, 329, 330, 336, 338, 343, 

346,347,348,351,356,359 
initrealmathunit( ), 11 0 
input/output (I/O) and input/output manage-

ment, 4, 165-172,265-318 
basic IIO system (see BIIOS) 
C language, i/o connections, 133-134 
connections, BIIOS, 185 
CONSOLE, SoftScope, 514-515 
device units, 168 
extended IIO system (see EIIOS), 27 
HI jobs, 187 
human interface (HI) processing system 

calls, 556 
Intel x86 architecture i/o processing, 165-

172 
interrupt -driven processing, 171-172 
iRMX systems, 27 
job calls, EIIOS, 552-553 
job creation, nucleus, 254-259 
job objects, EIIOS, 186 
languages and IIO support, 109-110 
path format for command lines, 33 
polling, 169-172 
POSIX systems, 25 
redirection, 34 

CONSOLE, SoftScope, 514-515 
stream IIO, 541-547 

stream IIO, 534, 541-547 
user objects, BlIOS, 184-185 
wildcard use, 34 

input/output request/result segment (lIORS), 
278-279 

device drivers, 330-334 
stream IIO, 533-538 

instances, object-based systems, 176 
instruction pointer (IP), 146 
int instructions, 160, 222 
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Intel x86 architecture, 139-172 

cali gates, 162-164 
calis, far vs. near, 147 
continuation addresses, 151 
data operands, 147-148 
frames, paging frames, 155 
gate descriptors, 154 
ilo processing, 165-172 
instruction pointer (lP), 146 
interrupt gates, 162-164 
interrupt processing, 159-162 
linear addresses, 143 
memory segmentation, 141-159 

currently accessible (current) segm, 141 
data operands, 147 
descriptors, 152-154 
far vs. near calis, 147 
irmx segmentation rationale, 145 
procedure calis, 146-151 
selectors, 141 
stack segments, 146-151 
paging, 155-159 
privilege levels, 154-155 
protected memory, 151-152 
stack frames, 148 
system segments, 153-154 
threads of execution, 151 

offset addresses, 143 
overlapping segments, 143-144 
physical memory access, 142 
privilege levels, 154-155 
procedure calis, 146-151 
protected-mode operation, 144 

16- or 32-bit, 145 
protection of memory, 151-152 
real-mode operation, 144 
registers, CPU, 139-141 
stack frames, 148 
stack segments, 146-151 
system segments, 153-154 
task gates, 162-164 
threads of execution, 151 
trap gates, 162-164 
virtual 8086 mode, 164-165 
virtual memory addresses, 155 
virtual vs. physical memory size, 157-159 

interactive configuration utility (lCU), 6, 100, 
101, 355, 357-358, 388-389 

interfaces 
human interface (HI) (see human interface) 
system calis, interface procedures, 389-394 
universal development interface (UDI), 27, 29 
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intermediate systems (IS), networking, 418 
internetwork routers, 418 
interprocess communication (IPC) 

device drivers, 265 
POSIX, 25 
UNIX systems, 22 

interrupt response time (IRT) , 12-13 
interrupts and interrupt handlers, xi 

clock circuit for hardware interrupts, 211-
212 

CST-determination program (switch), 13 
gates, interrupt gates, Intel x86 architec

ture, 162-164 
handlers, interrupt handlers, 13, 211, 321-

327 
synchronization, 325-327 

I/O processing, 171-172, 212 
Intel x86 architecture interrupt processing, 

159-162 
IRT-determination program (inttest), 13 
management, nucleus system calis, 559 
response time (IRT), 12-13 
tasks, interrupt tasks, 13 
Windows, 477-478 

inttest program, IRT determination, 13 
iRMX, 17-22,27-59 

application loader (AL), 27, 181, 186 
El/OS, 27, 181, 183-185 
command entry in iRMX, 31-41 
command line interpreter (CLI), 31, 35-41 
debugging, 57-59 
development systems, 27 
DOS vs., 19, 27-28 
EI/OS, 27, 181, 185-186 
error conditions, 57-59 
exception handler, 57-59 
file management, 41-56 
history and development, 18-19 
human interface (HI), 27, 28, 32-35, 181, 

186-187 
I/O devices, 27 
layered OS structures, 27,196-198,363 

relating jobs and layers, 196-198 
logging on to iRMX, 30 
microcomputer development system (MDS), 

18 
Multibus I and II platforms, 29 
networks (see networking) 
nucleus layer, 27, 181, 182-183,202-212 
objects (see objects in iRMX) 
OS-2 vs. iRMX, 19-21 
passwords, 30 
platforms, 28-29 
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iRMX, cant. 
POSIX vs., 22-26 
printing files, 56 
remote login, 56-57 
run-time libraries, 27, 181 
target systems, 27 
universal development interface (UDI), 27, 

29, 181, 187 
UNIX vs., 21-22, 27-28 
versional differences, 18-19 
Windows use (see Windows) 

iRMX-Net, networking, 265, 413-416 

J 
jobs command, 36 
jobs in iRMX, 191-198 

K 

application loader (AL) use, 259-261 
eLI job, 261 
deleting jobs/deleting objects, 192 
exception handling, default handler, 220-221 
HI jobs in memory pool, 196 
hierarchy, tree-structured job hierarchy, 192-

196 
I/O job creation, 254-259 
management, job management, system calls, 

251-252 
memory management, 202-204 
memory pools, 191-196 

borrowing, 192 
minimum and maximum, 192 

nucleus job creation, 252-264 
nucleus management, 202-207 
object directories, 204-207 
offspring jobs, HI, 261-264 
relationship between first-level jobs and 

layers, 196-198 
terminal jobs, 261 
terminate joblterminate objects, 197 

kernel-based systems, real-time, 7 
operating systems vs., xii-xiii 

kill command, 36 

L 
languages for development (see also application 

development), 61, 103-137 
16-bit targets, 113-115 
32-bit targets, 113-115 
assembler language, 103 
background processing, 117 
e language, 68, 103 

i/o connections, 133-134 
multitasking, 134-135 

character strings, 123-124 
compatibility of languages used in iRMX 

systems, 104 
congruence with irmx, 123-135 
debugging, 136-137 
exception handling, 136 
explicit functions, 118-119 
floating point support, 110-113 
FORTRAN, 103 
function prototypes, 108, 116-117 
header files, 108 
include files, 106-108 
i/o connections for e programs, 133-134 
I/O support, 109-110 
implicit functions, 118-119 
indirect functions, 118-119 
macro preprocessing, 108-109 
multitasking for e programs, 134-135 
networking, 108 
object-based systems support, 176 
parameter passing, 124-131 
Pascal, 103 
pointers, 131 
programming language for microcomputers 

(PLM), 68, 103 
PLM vs. e language in hellorrnx program 

example, 104-106 
run-time considerations, 117-123 
scoping rules, 115-116 
selection criteria: productivity, efficiency, 

speed, 103 
source language issues, 104-117 
system calls, 108 

leaks, memory leaks, 406 
line numbers, LINE, SoftScope, 517-518 
Link86 utility, 67 
linkable modules, 62, 88, 99-101 

binder controls, 99-100 
operating systems using linkable modules, 

100-101 
LIST, SoftScope, 519 
listing files, application development, 77-78 
listname,459 
load files, binding and compiling, 85-88 
LOAD, SoftScope, 518-519 
loadable modules, 62 
loadname,459 
loadrmx,30 
LOADSEGS, SoftScope, 520 
LOG, SoftScope, 520 
logging in to iRMX systems, 30 

remote login, 56-57 
logging off iRMX systems, 39-41 
logical names, 45-47, 48-49, 280, 316-318 
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subpaths, 286 
system vs. user logical names, 48-49 

logicaJnames command, 49 
logoff command, 39-41 
loops, event loops in real-time programming, 9 
low-water mark, 338 

M 
MacOS operating system, 17 
MACRO, SoftScope, 521 
macros 

Aedit macros, 71, 73 
languages, preprocessing, 108-109 
preprocessing, languages, 108-109 
SoftScope, MACRO, 521 

mailboxes, 243-246 
deletion mailboxes, 372 
nucleus, 183, 557 

make command, 72, 91-93 
map files, binding and compiling, 85-88 
map386,116-117 
media access control (MAC), 424 
memory and memory management, xi, 4 

access iRMX memory from DOS, 490-491 
addressing 

continuation addresses, 151 
linear addresses, 143 
offset addresses, 143 
virtual memory addresses, 155 

conventional (program) memory, 491 
DOS protected mode interface, Windows, 

495-496 
dumps, DUMP, SoftScope, 515-516 
expanded memory, 492-493, 494 
extended memory, 493-494 
free-space memory, 193 
nucleus management, 202-204, 558 
physical memory access, Intel x86 architec-

ture,142 
pointers, memory pointers, near and far, 

131-133 
pools 

buffer pools, 249-251 
memory pools, 191-196 
memory pools, borrowing from, 192 
memory pools, HI jobs, 196 
memory pools, system calls, 558 

protected memory, Intel x86 architecture, 
151-152 

POSIX systems, 24 
segmentation (see Intel x86 architecture) 
segments, memory segments in iRMX, 188-

191 

system calls, 558 
system memory, 193 
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UDI processing, system calls, 563 
upper memory area, 491 
Windows, 490-498 

memory segmentation models (see segmenta
tion models) 

message interprocessing protocol (MIP), 412 
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file and connection calls, 554 
I/O job calls, 552-553 
logical name calls, 554 
status calls, 555 
user-related calls, 555 

exception handling, 223 
exit procedures, 222, 397-399 
extension, DOS real-time extension, 481-

483 
functions and languages, 108 
human interface (HI), 186-187,225, 555-

556 
command parsing calls, 556 
command processing calis, 557 
I/O processing calis, 556 
message processing calis, 556 
offspring jobs, 261-264 
program control calls, 557 

iNA access, 564 
interactive configuration utility (ICU), 388-

389 
interface procedures, 221-222, 389-394 
intemallogic of system calis, 237 
I/O job creation in nucleus, 254-259 
I/O job creation program sample, 231-233 
iRMX access to DOS calls, 479-481 
issues involved in adding system calls to 

iRMX, 385 
job management, 251-252 
mailboxes, 243-246 
name server use, 564 
Nucleus layer, 182 

buffer pool calls, 558 
communication service calls, 561 
composite object calis, 560 
deletion control calis, 560 
descriptor calls, 558 
exception handler calls, 559 
extension object calls, 560 
interrupt management calis, 559 
I/O job creation, 254-259 
job creation, 252-264 
object calis, 558-559 
OS extension calis, 560 
region calls, 561 
segment and memory pool calls, 558 
semaphore calls, 557 

parameters, receiving parameters, 394-396 
priority setting, 236 
procedure design, 396-397 
pseudocode diagram sample, 223-224 
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system calls, cont. 
regions, 246-248 
rqsetosextension( ), 389 
semaphores, 242-243 
task synchronization , 237-249 
tasks, 208 
time limits, 210 
UDI, 187, 562-564 

exception handling calls, 563 
file-handling calls, 562-563 
memory management calls, 563 
program control calls, 562 
utility and command parsing calls, 563 

Windows, 478-490, 564 
system configuration, 100, 101 
system debugger (SDB), 96 

examining iRMX objects, 200-20l 
object directory viewing, 207 

system definition files, 357 
system descriptors, 152 
system logical names, 48-49 
system memory (see memory and memory 

management) 
SYSTEM, SoftScope, 524 
systeminitializeIlO( ), 343 
systems programming (see also real-time 

programming), 3-26 
application programming, 4 
development tools development, 6-7 
DOS vs. iRMX environments, xi 
hierarchy of programming applications, 3 
learning programming using iRMX, xi-xii 
operating system construction, 4-6 
operating systems variations, 3-26 
operating systems vs. kernels, xii-xiii 
POSIX vs. iRMX, xiii 
real-time programming vs. (see real-time 

programming) 
system calls to reduce coding tasks, 5 
UNIX vs. iRMX, xii 
user programming, 4 
utilities development, 6-7 

sys_exiLe( ), 397 
sys_exiLn through sys_exiLe(), 398 

T 
target systems 

iRMX,27 
languages, 16- and 32-bit targets, 113-115 

task gates, Intel x86 architecture, 162-164 
tasks and task management, 198-200, 207-212 

blocked tasks, 209-210 
deadlock, 248-249 
device drivers, 331-334 

interactions of, 334-343 
interrupt handler, 211 
mailboxes, 243-246 
nucleus, 183 
preemptive priority based scheduling, 208 
priority of tasks, 

inversion of priority, 246 
setting, 211, 241 

real-time programming, 9 
regions, 246-248 
scheduling states: ready, asleep, asleep-

suspended, suspended, 208 
semaphores, 242-243 
suspended,240 
synchronization, 237-249 
system calls, 208 
time limits, 210 

TASK, SoftScope, 523-524 
template files, 358 
term utility, 299 

device drivers, terminal support code, 531, 
532 

terminal jobs, 261 
terminal support code, 527-531 
terminalanswer( ), 355 
terminalcheck( ), 355 
terminalhangup( ), 355 
terminate and stay resident (TSR) programs, 

20-21,480 
text editing with Aedit, application develop-

ment, 70-73 
command mode, 72 
copy block of text, 73 
cursor movement, 70-71 
end-of-file markers, 71 
end-of-Iine characters, 70 
error handling, 72 
K command, 72 
macros for Aedit, 71, 73 
make utility, 72 
modes of Aedit: insert, exchange, etc., 71 

o command, 72 
Q command and options, 72 
two-file simultaneous editing, 72 
usage summary, 71-73 
W command, 72 

threads (see POSIX operating systems) 
threads of execution, Intel x86 architecture, 

151 
time(),344 
time-of-day management, 

BIIOS system calls, 553 
device drivers, 314-316 
Nucleus layer, 183 



timesrv, 430 
tokens, object-based systems, 178 
tools, development tools 

compilers, iC86, iC286 or iC386, 67 
DOS-hosted development tools (DHDT), 65 
linking, Link86 utility, 67 
native-mode tools, 65 
RMX-hosted development tools (RHDT), 65 
run86 utility, 65 

track-to-track positioning time, 292 
transport protocol data unit (TPDU), 419 
transport service access point (TSAP), 421-

425 
transport service data unit (TSDU), 419 
trap gates, 162-164 
tscancelI/O ( ), 351 
tsfinishIlO( ), 351 
tsinitializeI/O( ), 351, 353 
tsqueueIlO( ), 351 
type command, device drivers, terminal sup

port code, 532 
type managers, 176, 363, 364, 365-386, 399-

407 
composite objects, 401-403 

deleting, 403-407 
deletion mailboxes, 372 
extensions 

creation, 399-401 
deleting extensions, 403-407 

memory leaks, 406 
object-based systems, 176 
ring buffers, 365 
sample programs, 365-386 

type, object type, object-based systems, 176 
TYPE, SoftScope, 525 
type-ahead buffers, 336 

U 
universal development interface (UDI), 27, 29, 

181, 187 
device drivers, 265 
exception handling system calls, 563 
file-handling calls, 562-563 
memory management calls, 563 
program control system calls, 562 
system calls, 187, 562-564 
utility and command parsing calls, 563 

udistr(), 108, 124 
UNIX operating systems, xii, 17, 21-22, 27-28 

interprocess communication problems, 22 
preemption of processes, 22 
real-time system vs., 22 

user ID, super command, 39 
user interfaces (see human interface (HI)) 
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user logical names, 48-49 
user objects, 197 

BIIOS system calls, 553 
user programming, 4 
utilities, 32 

development, 6-7 
portability of utility software, 6 

V 
variables, show data type, TYPE, SoftScope, 

525 
verify utility, 309 
version information 

iRMX, versional development, 18-19 
SoftScope III, VERSIION command, 526 

virtual 8086 mode, Intel x86 architecture, 164-
165 

virtual circuit (VC), networking, 420, 443-445 
virtual memory addresses, 155 
virtual terminals (VT), 56 
VM86 dispatcher, 165 
vt command, 56 

W 
warm links, 507 
whomai command, 197 
wildcards, 34 
Windows, 469-513 

address wraparound, 494 
client, link, 507 
client, simple, 507 
console ownership, 470-473 
definition files, 512 
DOS real-time extension, iRMX system calls 

from DOS, 481-483 
DOS volumes, accessing from iRMX, 475-

476 
DOS, accessing iRMX volumes from DOS, 

476-477 
dynamic data exchange (DDE), 469, 503-

508 
dynamic link libraries (DLL), 503 
features and operations, 470 
file system compatibility, 473-477 
interrupt management, 477-478 
memory management, 490-498 

access iRMX memory from DOS, 490-491 
coexisting with other memory managers, 
491-494 

conventional (program) memory, 491 
DOS protected mode interface, 495-496 
expanded memory, 492-493, 494 
extended memory, 493-494 
upper memory area, 491 
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Windows, cont. 
mirroring files, 474 
netdr.job, 510 
network compatibility, 508-511 
object linking and embedding (OLE), 503 
protected mode extension (PME), 498-503 
rmxtsr, 480-481 
RTE functions invoked from DOS, 483-

490 
run-time configuration, 511-513 
server, 508 
system calls 

compatibility of system calls, 478-490 

iRMX access to DOS system calls, 479-
481 

Windows-specific, 564 
terminate and stay resident (TSR) pro

grams, 480 
wterm and WinTerm, 472 

WinTerm, 30, 472 
wraparound, address wraparound, 494 
write-behind techniques, EIIOS, 185 
wterm, 30,472 

X 
xtssetoutputwaiting( ), 354 
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