
intef

SYSTEM
PROGRAMMING

EXTENDED iRMX@I I .3
OPERATING SYSTEM

DOCUMENTATION

VOLUME 4
UTILITIES AND
INFORMATION

O r d e r N u m b e r ; 4 6 1 8 4 7 0 0 1

nte l Corporat ion
306 5 Bowers Aven u e

5 a n t a C l a r a , C a l r f o r n a 9 5 0 5 1

Copyrrght ì988, ln te Corporat ron, Al l Rights Reserved

I n l D c a t i (r n s o u t s r d e t h e U n r t e d S t a t e s , o b t a i n r d d ì t r o n a l r r r p r e s , r l l n t e ì d o e u m c n l a l i o n b y

r ,) n t r L (t i n g y o r r r l o c a l I n t e ì s a l e s , r f f i c e . I ' ì r r y o L r r c o n s c n r e n c e , L n t e f n a t i ,) n a l s a l { r s , r f f i c e a d d r e s s r : s

are located di rect ly bei ì r re the reader repìv tard in rhe back I l l he manua I

t h e i n l o r m a t i o n i n t b r s d o c u m I o t i s s r . t b i e r t t , r . h a n q e { r t h o u t r ì , , t r (r '

l n t e l (' ,) r f o r a l r l) n r ì r r k o s d ,) w a r r a n t \ ' , r f r ì r ì v k r r l w r t h r f j l a r d l , r t h r s ù ì a t { . r ì a l . i n c l (ì d i n g , b L r l n r) l

l i m r t e d 1 o , t h e i n r p ì i o d | | r r r a r t ì o s) l n r f r r h a . l r l) r l L ! v a r r l f i t n e s s l ì r a p a r t i c u l a r p u r p o s € . I n l e l
(1 ,) r p ,) r a t i ,) n r f s p i) n s L b r l i l r ' i ì) r r ì ! ì v f r f , r f s r h r l n ì r ì v r p p e a r r n l h i s d (x L ì n r e n t . I n l € l
C o r p o r a t i o n m a k e s n , r r , r r r r r n i l n r e o t r r) L r p d a t p) . t , r k e p p . L r r r e n l t h e I n { i) r m a t i r) n c o n t a r n o d ì n t h r s

I n l e l (o r p , J r a l i o n a s s u n ì r s n , ì . { r s p r ì n s r b i l i t y f i) r t h f u s e r i i r n v f i . r u i l r ! o r h € r t h a n c L r c u i l r y
r : m b r x ì i e d i n l r n I n l e l l) r , r l L r (l \ ,) , r l . h e r . i r c u i t 0 t t l e n l l i . { ' r ì \ p s r r e i r r r p l i e d .

I n t e l s .) l ì r r n . r p r) d u . t s a r f L o p v r r r : h t c d b v a n (l r h a l l r c m a ì n t h e p r) p e r t y ,) i l n t e l (,) r p o r r l r) n .

t ' s e . d L r p l ì c a l i r r n , r r r l ì s c l , r s u r e i s s u b t e (t t ,) r r s t r ì c t i ,) . \ i t a l P d r n I n t e l s , ; o f t s a r e l r c o n s p . , ' r n s
r l e i ì n e d i n A S t) R 7 1 0 , 1 9 r r) r 9 r .

\o part ,) f thrs do(.unìen1 rnar be f ,)pred 0r reprrx luced rn any form or bv anv rneans , r r l hout pr ror
{ r i l t f n c o n s e n t r) l I n t e | (' ,) r p ,) f l r t i ,) n .

Ì h e f l l l o $ L n g a r e t r a d e m ? ì r k s ,) l I n t p l (o r p o r î t i o Ì 1 a n d r t s a f f i ù a t e s a n d m a y b e u s c d o n l y L 0
r d e n l i l v I r) t e l p r , ! l u f i s :

A b , r v e , l . l ì X

B I I I I (S
('OY Ypute r r l l I) l)K
(lRl ' iDi î r \ lMX

I) r ì t a I ì p e h n e l n s r l e

l ì fn i l 's ,n r , , l

T rnrc l l ìOs
r I n t o l e v i s r r) n

f 2 l C F i , n r e l i g e n t l d e n t , f i o r

l C F l , n t e l i s e n t i '] r r) s r a n ì m i n q

r C É l L I n l o l l e c

i C S I n t e ì l i n k

rDtì l ' ,OSP

I D I S r P l) S

ì l 'St ì

rPS(l

r l ì U X

r SI I ('

r S l l X

L S I) U

r SSII

iSX 11

L r b r a r l \ f e n r L q e r

tf('s
\ fega(hassrs
\ft(' t ìo \ f ' \ r \ t RA l l l]
\ fU I ,T IB (,S
\ I L I , ' T I (]HA \ \E I ,
\ f L ; t . l t \ f o t) (Lu

O p e n \ L L
o \a ! l
I l l u s A I l ubb ìe
PIIoMPT

QL:EST
Quex
Rrpp lenode
R\f x/80
RUPI

SI,I I
L P I
VLS'(' ! :1.

KE.* lK, \ fS DOS, \ fLr l tLplan. rnd \ f icrosol ì are t rademarks,r l \ l icrosof t C,-r rporatLon. [. \ lK rs a
t r r d e n ì a r k ' r i B e l l L r i b o r r t , r r r e s F l t h e r n c l r s a l r a (l e n r r r k ' r t X e r | \ (,) r p o r a t i o n . C (' n r r , r n r r s ì s a
L r a d e m a r k , r l (l e n t r o n ' r s D a t r (,) m p u l e r (' , , r p o r a t L o n . (h a s s i s T r a k r s a l r a d e n Ì a r k , r l (Ì e n e r a l

[) e v Ì c e s C o n r p a n v , I r ì f . \ ' A \ , r o d V U S r r f t r a d e n ì x r k s r f l) r q r t r l t q u r p m e n r C o r p o r a r i o n _
S n ì a r t m o d e m i 2 0 0 a n d l l a y e s a r e r r a d e m a r k s o f I l a \ ' f s \ l r c r o c o | n p u t (' r l , r o d u c r s , I n c . I B M i s a
r fgrsterpd t radeùrark ,) l ln l t ' rnaÌ ional l lusÌness \ fachrnes. Sof t S{.0pe rs a regtstered rrnr lernark of
(l i)ncurrent Scrences.

(' ,) p y r i q h t ! l 9 l l l ì . l n t o l C , r r p o r r t i o n

VOLUME PREFACE

MANUALS IN THIS VOLUME

This volume (Volume 1, Ertended iRMl{'@ II Operating Syltent Lltilitit:s and prograntniry4
Infonnation) includes the following manuals:

Exteruled IRMXP II Boorstap Loader Reference Manual
Extended iRMÀo II Systent Debug4er Reference Manuol
Extended iRlll)o II Disk Verilication Lltilitl Reference Manuul
Guide to tlu: Etcntletl IRM}@ II lrtteructive Configuration utiliq,
Ertended iRltl)@ II Prograrntning Technique.s Reftrente Mrtttuttl

The Extended iRMA\o II Bootstrap Loader Refercncc Manual tlescril.tes thc use of the
Bootstrap Loader and how to modify the Bootstritp Loatler îiles.

The Ertenderl iRhl)@ II System Dehugqer Reference Manualdescribes the iRMX@ II
Operating System's static debug-eer. All of thc System Debugge r commancis are explained
and an example debug-uing session is provided.

The Ertended iRMXo II Dkk Veificatbn lrility Rcferenu Munual rlescrihes the Disk
ver i l icat ion Ut i l i ty which is used to examine and rnot l i fy thc dat l ì s t ructures of iRMXo I I
named and physica l vo lumes.

The Guide to the Efiended iRMXo II Interactive Conf.guration Utlltv'manual describes the
Interact ive Conf i {urat ion Ut i l i ty commands and menus, and prov ides an example system
conf igurat ion.

The Extended iL\lÀl@ II Progrurnnting Techniques Reference !úanuul provides programnring
techniques and examoles.

I t liRMX@ II System Utilities and Prograrnming lnformation Volume

VOLUME PREFACE

VOLUME CONTENTS

Manuals are listed in the order they appear in the volumes. For a synopsis of each manual,
refer to fhe Introductiort to the Ertended |RMX\ II Operating System.

VOLUME 1. Erk:nried iRMXo II Introduction, It$tallation, and Operating Instructions

Introductiort to the Ertended iRMX II Operating System
Exteruled |RMX ll Hardware and SoffA,are Installation Cuide
Operator's Guide to the Extenried |RMX II Human Interface
Master Iruler

VOLUME 2: Extended iRMXo II Operating System User Guide.s

Extended iRltlXÒ II Nucleus U.ser's Guide
Extended iRMXo II Ba.sic I/O Systent User's Guide
Extended |RIVX@ I I E.rtended I/O Systent U.ser'.s Guide
Extended iRM)P ll Hurnctn Interface User's Guide
Extended iRMXo II Applicatbn Loader User's Guitle
Erteruled iRl'ltX@ ll Universal Development Intefaca U.ser's Cuide
Device Div'cr.s Uscr's Gu' le

VOLUME 3: Ertended iRMXo II Sy*em Calk

Extended iRMXo II Nucleus Systent Calls Referente Manual
Extended iRMÀ@ II Basic I/O System Calls Reference Manual
Extended iRhl}.@ II Ertended I/O System Calls Reference Manual
Ertended |RMX@ ll Applicatiort Loader Systent Calls Reference Manual
Extended iRMXa II Hurnrut Interface Sy-stent Calls Reference Manrutl
Ertended iRlllYù II UDI Sl,stern Calls Reference Martual

VOLUME 4: Ertendad |RMX@ II Operuting $,stem Utilities

Extended iRltlX@ II Bootstrup Loadar Reference Manual
Extended iRlt't)@ II S1'stent Debugger Ret'erence l4anual
Exte nded iRltl)'@ II Di.sk Verification Utility Ret'ere ce lllanual
Extended |RMXò II Progranuning Techniques Reference Mrutual
Guide to the E.rtundd iRMX@ II Interactive Configuration Utilitl,^

VOLUME 5'. Ettended íRMXò II Interoctive Configurutbn Utility Reference

Extended iRltlXE II Inteructive Configurution Utility Reference Manual

l v iRl\tX@ ll System Utilities and Programming Information Volume

REV. REVISION IIISTORY DATE

- 0 0 1 f) r i g i n n l l * * u r 0 l / 8 8

intel

EXTENDED iRMX@II
BOOTSTRAP LOADER
REFERENCE MANUAL

l n t e l C o r p o r a t r o n
306 5 Bowers Aven u e

S a n t a C l a r a , C a l i f o r n a 9 5 0 5 1

C o p y r i g h t I 9 8 8 , I n t e l C o r p o r a t r o n , A i l R g h t s R e s e r v e d

PREFACE

INTRODUCTION

The Bootstrap Loader enables you to generate a system îhat can bootload from Intel-
supplied or custom devices. A hootable system gains control immediately after power-up
or system reset. This manual provides information that enables you to configure your
system to boot from specific devices, to include your own custom device drivers as part ol
the system, and to place your generated system into PROM devices.

READER LEVEL

The manual assumes that you are fami l iar wi th the iRMX ì l Operat ing System and an
editor with which you can edit source code fiÌes. lt may also be helpful if you are familiar
with the following:

o SUBMIT f i les.

. ASM86 source cocle files.

MANUAL OVERVIEW

This manual is organized as tbllows:

Chapter I This chapter provides an overview of the Bootstrap Loader operations.

Chapter 2 This chapter provides an operator's viewpoint of using the Bootstrap
Loader.

Chapter 3 This chapter describes how to configure the first stage of the Bootstralr
Loa der.

Chapter 4 This chapter describes how ro configure the third srage of the
Bootstrap Loader.

Chapter 5 This chapter describes how to write custom first-stage drivers.

Chapter 6 This chapter clescribes how to write custom third-stage drivers.

Bootstrap [,0ader l l t

PREFACE

Chapter 7 This chapter describes error handling procedures.

Appendir A This appendir describes how to include automatic boot device
rccogn i t ion into your systcm.

Appendix B This appendix describes how to load the Bootstrap Loader and the
monitor into PROM devices.

CONVENTIONS

The following conventions are used throughout this manual:

o Information appearing as UPPERCASE characters when shown in keyboard
examples must be entered or coded exactly as shown. You may, however, mix lower
and uppercase characters when entering the text.

. Fields appearing as lowercase characters within angle brackets (< >) when shown in
keyboard examples indicate var iable informat ion. You must enter an appropr iate
value or symbol lbr variable fields.

. User input appears in one of the following forms:

as bo lded tex t n i th ln a sc reen

. The term " iRMX I f ' refers to the Extended iRMX l l .3 Operat ing System.

. The term' iRMX I ' refers to the iRMX I (iRMX 86) Operat ing System.

. Al l numbers, unless otherwise stated, are assumed to be decimal. Hexadecimal
numbers include the "H" radix character (for example, OFF H).

t v Bootstrap l,oadcr

CONTENTS

CHAPTER 1
OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

PAGE

CHAPTER 2
USING THE BOOTSTRAP LOADER

PAGE

CHAPTER 3
CONFIGURING THE FIRST STAGE

PAGE

Bootstrap [,oader

CONTENTS

CHAPTER 3 (continued) PAGE

CHAPTER 4
CONFIGURING THE THIRD STAGE

PAGE

vl Brntstrap Inader

CONTENTS

CHAPTER 4 (continued) PAGE

CHAPTER 5
WRITING A CUSTOM FIRST.STAGE DBIVER

PAGE

5 .1 In t roduc t i on . 5 -1
5.2 Device Ini t ia l ize Procedure..5-2
5.3 Device Read Procedure.. . . . 5-3
5.4 Supplying Conf igurat ion Informat ion to the First-Stage Driver. .5-4

5.4.1 Hard-Cocì ing the Conf igurat ion Informat ion .5-4
5.4.2 Providing a Conf igurat ion Fi ìe. .5-5

5.5 Using the MULTIBUS@ I l Transport Protocol .5-8
5.5.1 Message Passing Control ler In i t ia l izat ion.. .5-9
5.5.2 Message Tlpes ,5-10
5.5.3 Request/ Response Transact ion ModeI. 5- 10
5.5.4 Send and Receive Transact ion Models . 5- l5
5.5.5 Message Broadcast ing.. 5-20
5 .5 .6 T ransmiss ion Modes 5 -22
5.5.7 Interconnect Space5-22
5.5.8 Driver Code Considerat ions.. . 5-30

5.6 Changing BSl.A86 or BS1M82.,486 to Include the New First-Stage Driver. 5-33
-5.7 Generat ing a New First Stage Containing the Custom Device Driver 5-34

CHAPTER 6
WRITING A CUSTOM THIRD-STAGE ORIVER

PAGE

6 .1 In t roduc t i on , 6 -1
tr .2 What a Third-Stage Device Driver Must Contain. ,6-1
6.3 Device Ini t ia l izat ion Procedure.. 6-3
6.4 Device Read Procedure6-4
6.5 Protected Mode Considerat ions . .6-ó
6.(r Supplying Conf igurat ion lnformat ion to the Third-Stage Driver6-1
ó.7 Using MULTIBUS@ II Transport Protocol 6-8
6.8 Changing BS3.A86 to Include the New Third-Stage Driver. -6-8
f i .9 Generat ing a New Third Stage Containing the Custom Driver.6-9

Bootstrap Loader vtl

CONTENTS

CHAPTEB 7 PAGE
ERROR HANDLING

7.1 In t roduc t i on . 7 -1
7.2 Analyzing Bootstrap Loader Fai lures. l - l

7.2.1 Act ions Taken by the Bootstrap Loader After an 8rror. . . ,7 -1
7 .2.2 AnalyzingBrrors With Displayed Error Messages7 -2
7.2.3 Analyzing Errors Without Displayed Error Messages.. .7-5
7.2.4 ln i t ia l izat ion Errors.7 -7

APPENDIX A PAGE
AUTOMATIC BOOT DEVICE RECOGNITION

4.1 In t roduc t i on . .A -1
A.2 How Automatic Boot Devìce Recognit ion Works.. A-1
A.3 How to Include Automatic Boot Device Recognit ion.. A-2
A.4 How to Exclude Automatic Boot Device Recosnit ion . A-5

APPENDIX B PAGE
PROMMING THE BOOTSTRAP LOADER AND THE ISDM" MONITOR

B. l In t roduc t ion .B-1
8.2 Incorporating the iSDM" Monitor..8- l

vlt t Brxrtstrap l{)ader

CONTENTS

TABLES

TABLE PAGE

l -1 Intel-Suppl ied Bootstrap Loader Drivers. . 1-8
2-1 Suppl ied Third Stage Fi les. 2-7
3- l Procedure Names for Intel-Suppl ied First Stage Drivers , . 3-25
3-2 5.25-lnch Diskettes Supported by iSBC@ 20tl and MSC-specific Drivers............. 3-26
3-3 8-Inch Diskettes Supported by iSBC@ 208 and MSC-Specif ic Dr ivers.3-2ó
4-l Names for Intel-Suppl ied Third Stage Drivers4-7
4-2 Memory Locat ions Used by the Bootstrap Loader. .4- l f i
7- I Postmortem Analysis of Bootstrap Loader Fai lure . . .7 -6

FIGURES

FIGURE PAGE

LXB(x)tstrap Lr|ader

CHAPTER 1
OVERVIEW OF BOOTSTRAP

LOADER OPERATIONS

1.1 INTRODUCTION

The Bootstrap Loader is a program that is not part of any particular Operating System.
Rather, it is a program that loads an application system into RAM from secondary storage
so that it can begin running. This process is called bootstrap loadìng or booting. Booting
can occur when the system is turned on, when the system is reset, or under operator
control when the monitor is act ive.

The Bootstrap Loader eliminates the need to place complete applications into PROM
devices. Instead, you can place the Bootstrap Loader--ir relatively small program--into
PROM devices and store your application system on a mass storage device. The Bootslrap
Loader can then be used to load the application program into RAM.

The Bootstrap Loader consists of three stages.

The first stage resides in PROM devices. It determines the name of the file to load, loads
part of the second stage, and passes control to that part. Intel System 300 Series
Microcomputers are delivered with the first stage of the Bootstrap Loader and the iSDM
monitor already placed in PROM devices. Intel Modules Development Platforms are
delivered similarly except with the D-MON386 monitor. If you are huilding your own
computer systems, you can use the information in this manual to configure a first stage and
place it into PROM devices.

The second stage resides on track 0 of every iRMX-formattcd nrmed volume. That is,
whenever you use the Human Interlàce FORMAT command to format a volume, the
second stage is copied to that volume. When invoked, the second stage finishes loading
itself into memory and then loads a file from the same volume and passes control to it.
The contents of this load file depend on the kind of system you are loading. If you are
loading an iRMX I system, the file loaded by the second stage contains the application
system itself. Ifyou are loading an iRMX II system, the file loaded by the second stage
contains the third stage of the Bootstrap Loader, which finishes the loading process.

Bootstrap Loader l - l

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

Thc third stage is necessary for loading iRMX ll applications, because these applications
require the 80286 processor to be running in protected mode and because they use the
OMF-2tì6 object module format. The OMF-28fi format is different from the OMF-86
format and therefore cannot be handled b1'the second stage. The third stage places the
processor in protected mode, loads the iRMX II application system, and transfers control
to that application system. The third stage resides in a named file on the same volume as
the second stage. Your Bootstrap Loader package contains a configured third stage that
can load appl icat ions from selected devices. The instruct ions in this manual can help you
configure your own third stage to add support for other dcr iees.

The bootstrap loading process cannot be completed without a device driver. The device
driver is a small program that providcs the interface between the Bootstrap Loader and a
hardware device (or a controller for the device). When you configure the Bootstrap
Loader (a task that is independent of operating system configuration), you specifo the
device drivers that the Bootstrap Loader rcquires. During the course of configuration,
these device drivers (which are usually distinct from the drìvers needetJ by the application
system) are l inked to the Bootstrap Loader automatical ly.

1.2 THE STAGES OF THE BOOTSTRAP LOADER

The Bootst rap Loader has a number of s taqes that contro l the loac l ing of the appl icat ior .
system. iRMX I appl icat ions load u ' i th a two-stage process. iRMX I I appl icat ions use
these two stages but a lso requi re a th i rd s tage.

1.2.1 First Stage

The Bootstrap Loader's first stage consists of two parts. One part is the code for the first
stage, and the other part is a set of minimal device drivers used by the first and second
stages to initialize and read from the device that contains the system to be booted.

The Bootstrap Loader package contains device drivers for many common Intel devices. To
support other devices, you can write your own drivers and configure them into the first
slage.

To use the Bootstrap Loader, the first stage must be in one of two places. The natural
place fbr the first stage is in PROM devices, either as a standalone product or combined
wi th a moni tor . f n te l System 310 and 380 Ser ies Microcomputers are del ivered wi th the
Bootstrap Loatler's first stage, the iSDM monitor, anrJ the System Conficlence Test (SCT)
in the PROM devices. Intel System 320 Series Microcomputers are delivered with the
Bootstrap Loader's first stage, the iSDM monitor, the D-MON3tì(r monitor, and the SCT in
the PROM devices. In te l Mociu les Development Plat forms are del ivcred wi th the
Bootst rap Loaclcr 's f i rs t s tage, the D-MON386 moni tor , and the SCT in the PROM
devices.

t-2 Brxrtstrap [-oader

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

l f you have a system that inc ludes the iSDM moni tor and you are ac ld ing your own device
driver to the Bootstrap Loader's first stage, you might find it useful to load the first stage
into the target system's RAM using a development system iSDM kracìer and activate thc
f i rs t s tage under iSDM contro l f rom the development systcm. Af ter act ivat ing the f i rs t
s tage, you could then debug dr iver code. I f your system inc ludes the D-MON38(r moni tor ,
however, you must perform all driver debugging from the target system. You cannot
download the first stage from a development system into the target system and then use D-
MON38ó to in i t ia te program execut ion. When debugging under these la t ter c i rcumstances,
you may wish to e i ther debug wi th in the PROM devices or perhaps use a work ing
Bootst rap Loader to boot load the Bootst rap Loader that conta ins the new dr iver .

When the f i rs t s tage begins running, i t f i rs t ident i f ies the bootst rap device and the name of
the f i le to boot , e i ther by accept ing that in format ion f rom a command l ine enterec l u t the
moni tor or by us ing defaul t character is t ics establ ishcd whcn the f i rs t s tage was conf iguret ì .
The Bootst rap Loader next ca l ls i ts in ternal device dr iver for the c lev ice, which in i t ia l izes
the device and reatis the first portion of the second sttìge into memory. (The second stage
always resides on track 0 and block 0 of the named volume, so it can be accessed easily by
the f i rs t s tage.) Af ter ca l l ing the in ternal device dr iver , the î i rs t s tage passes contro l to the
second stage.

Because the first stage works on both lt0tl6/ ll lf i- ancl 802t16/31.ì(r-basccl computers, it
operates in real address mode when running in an t l02t l6 /386-based systcm. This means
that any device drivers you write for the first stage must also opcrate in real address mode.

1.2.2 Second Stage

Unlike the first stage, the second stage of the Bootstrap Loadcr is not configurable. Its slze
is a lways the same (less than f ìK bytes) , and i t does not depend on the appl icat ion in any
way. The cot ìe for the second stage res ides on a l l vo lurnes forr rat tcd wi th the iRMX I or
iRMX I I Human ln ter face FORMAT commands. Thercf ì r re, the second stagc is a lways
available for loading applications residing on random access tlevices.

When the second stage receives contro l , i t f in ishes loading i tsc l f in to memory and then
loads the file determined by the first stage. When loading the file, it uses the same device
driver used by the first stage. In iRMX I systems, the load file is the application systcm
i tse l f . In iRMX I I systems, th is f i le is the th i r t l s tage of the Bootst rap Loader .

Bmtstrap LOader l-3

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

NOTE

You cannot bootstrap load the iRMX IL 1, 11.2, II.3 Operating System from a
volume that was formatted using the iRMX 1.6 or I.7 (iRMX 86 Release 6 or 7)
FORMAT command. However, you can make the volume bootable without
reformatting the entire volume and losing the data stored on it. To be able to
boot both the iRMX I and iRMX II Operating Systems from the same volume,
invoke the iRMX II.3 FORMAT command and specify the BOOTSTRAP
control. With BOOTSTRAP specified, FORMAT just replaces the second
stage on track 0 of the volume while leaving the remaining data untouched.
When the FORMAT command finishes, you can bootstrap load both the iRMX
I and iRMX II Operating Systems from the same volume.

1.2.3 Third Stage

The third stage of the Bootstrap Loader is used for loading iRMX Il-based applications
into memory. The third stage resides in a named file on the bootstrap device. Both the
third stage and the application system to be loaded must reside in the same directory on
the volume.

There are two types of third stages: a generic third stage and a device-specific third stage.
The type needed for your system depends on the size of the application system you intend
to load.

1 .2.3.1 Generic Third Stage

The generic third stage is so named because it can load application systems from any
device that the first stage recognizes. This stage contains no device driver of its own.
Instead, it uses the same device driver used by the first and second stages. This means that
you won't need to write a separate device driver to work in protected mode, but it also
means that the generic third stage runs in real address mode. In real address mode,
addressability is restricted to the first (lowest) megabyte of memory. Therefore, the
generic third stage can load only those application systems that are smaller than 840K
bytes. The remaining space is used by the Bootstrap Loader, the monitor and the SCT. To
load larger applications, you must use a device-specific third stage.

When the generic third stage receives control, it uses the device driver supplied in the first
stage to load the application system. Then it switches the processor into protected virtual
address mode and passes control to the application.

l-4 Bo()tstrap lrader

OYERYIEW OF BOOTSTRAP LOADER OPERATIONS

1.2.3.2 Devicespecilic Third Stage

The device-specific third stage switches the processor to protected virtual address mode
before loading the application system. This enables this stage to load into memory
addresses higher than one megabyte. However, because this stage switches the processor
into protected mode, it cannot use the first stage's device drivers (which operate only in
real mode). Instead, it must contain its own device driver, operating in protected mode, to
control the device from which the application system is loaded.

The device-specific third stage supplied in your Bootstrap Loader package supports the
following devices:

. iSBC 21SG/iSBX 2l8A winchester and diskette controller combination or the
iSBC 214 controller

. iSBC 264 bubble memory controller

. iSBC 186/224A multi-peripheral controller

o SCSI (Small Computer Systems lnterface) an<l SASI (Shugart Associates Systems
Interface) peripheral bus controllers having iSBC 2861100A CPU board as the host.

If you want to boot from any other device, you must write a protected mode device driver
for the device and link the driver in when you configure the device specific third stage (see
Chapter ó).

When the device-specific third stage receives control, it performs the same operations as
the generic third stage. However, before invoking the device driver to load the application
system, it switches the processor into protected mode. This enables the third stage to load
applications that reside outside the first megabyte.

1.2.3.3 Naming the Third stage

Both the generic and the device-specific third stages are stored as executable files. The
base portion of this file's name -- the filename minus any extension '- must be the same as
the base portion of the file containing the applìcation system to be loaded. Because the
name of the third stage and the name of the application system must match, you must
provide a separate third stage fi-le for each bootable system on the volume. To provide
additional third stage files, simply make a copy of the third stage file you are currently
using. Name the copy so that it matches the application system you intend to load.

1.2.4 Load File

The load file is a file containing the application system you are trying to boot. The load file

shoulcl be on an iRMX I- or iRMX ll-formatted named volume. This volume must have

been formatted by the Human Interface FORMAT command. lf the load file is an iRMX

II application, the volume must also have a file containing the third stage of the Bootstrap
Loader.

Bootstrap Loader 1.5

O!'ERVIEW OF IÌOOTSTRAP LOADER OPERATIONS

If your load f i le is an iRMX I I appl icat ion, the name of that f i le must correspond to the
nanre of the Bootstrap Loatler third stage, as fbllows:

. The base port ion of the loar l f i le 's name (the f i lename minus the extension) must be
the same as that of the f i le containing the third stage.

o The extension port ion of the loacl f i le 's name must consist of the characters " .286".

The lbl lowing are examples ofval ic l and inval id third stage/Ìoad f i le comhinat ions:

Val ic l Combinat ions

Third stage --
Load f i le --

Th i rd stagc --
l-oad file --

Inva l id Comhinat ions

Third stage --
Load file --

Third stage --
Load file --

MYSYS
MYSYS.286

SYS I .3RD
SYS l .2t ì6

MYSYS
YOURSYS.2I. ì6

MYSYS.]RD
MYSYS.LOD

When you configure the first stage of the Bootstrap Loader, you can choose the file name
that wi l l be used i f the operator doesn' t speci fy a f i lenamc when invoking the Bootstrap
Loader. By ciefaul t , the f i le name is /SYSTEM/RMX86 for iRMX I load f i les. For iRMX
II systems, /SYSTEM/RMX[J6 is the defaul t name of the Bootsrrap Loader 's third stage
and /SYSTEM/RMX86.2E6 is the clefaul t name of rhe iRMX I I load f i le.

NOTE
Because of the way the Bootstrap Loader interprets f i lenames, the only pcr iod
(.) a l lowed in the ent i re pathname for the load f i le is the one that prececles the
extension 28(r. For example. the pathname /SYSTEM I /MYSYS.286 is inval i r l
because i t contains more than one ner iod.

l -6 Bootstrap lnader

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

1.3 DEVICE DRIVERS

When the Bootstrap Loader starts running, there is no sofiware in place to enable the
processor to communicate with the device from which you want to load the system. Part of
the task of the Bootstrap Loader is to establish communications with the boot device. To
communicate with devices, the Bootstrap Loader must include programs, called device
drivers, for the devices from which you want to boot. When configurìng the Bootstrap
Loader, you specify the device drivers you want to include. The configuration process links
the drivers to the Bootstrap Loader code.

Both the first stage and the device-specific third stage require their own drivers. The first-
s tage dr ivers operate in real address mode and are used to load iRMX I appl icat ions and
the third stage of the Bootstrap Loader. The generic third stage also uses the first-stage
drivers to load iRMX II applications.

The thir<J-stage drivers operate in protected virtual aticlress mode ancl are used by thc
device-specific third stage to load iRMX II applications into the full 16 megatryte address
space.

The first stage must include a real mode device driver for each device from which you want
to boot. The generic third stage includes no drivers of its own, but the device-specific third
stage must include a protected mode driver for each of the boot devices. Intel includes
severa l real and protected mode dr ivers in the Bootst rap Loader package, as l is ted in Table
l -1. A l Ì the reaÌ mode dr ivers can be used wi th the f i rs t s tage and wi th the gener ic th i rd
stage. All the protected mode drivers can be used with the device-specific third stage.

lf you want to boot from a device not supported by these device drivers, you can write your
own device driver. See Chapter 5 for information on writing a new device driver.

Bootstrap l,oader t-7

Table l-1. Intel-Supplied Bfi)tstrap lnader Drivers

Driver îyp"

iSBC 208 Flexible Disk Drive Controller. Real Mode. Also used with the
generic third stage.

Mass Storage Controller (MSC), supporting the iSBC 214
and iSBC 215G controller boards. Also suooorts the
|SBX 218A controller when it is mounied on the iSBC 215G
ooafo_

Both Real and Protected Mode.

ìSBX 218A Flexible Disk Controller (used on a processor
board)

Real Mode only. Also used
wiîh the generic third stage.

iSBC 220 SMD Disk Controller Real Mode only. Also used
wiîh the generic third stage.

isBc 186/224A Both Real and Protected Mode.

iSBX 251 Bubble Memory Controller Real Mode Only.

iSBC 254 Bubble Memory Controller Real Mode Only.

iSBC 264 Bubble Memorv Controller Both Real and Prot€cted Mode.

SCSI (Small Computer Systems Interface) and SASI
(Shugart Associates Systems lnterface) Peripheral Bus
Controllers when the host for these controllers is the
iSBC 286/100A CPU board.

Both Real and Protected Mode.

SCSI (Small Computer Systems Intelace) and SASI
(Shugart Associates Systems Interface) Peripheral Bus
Controllers when the host for these controllers ìs the
iSBC 186/03A CPU board.

Real Mode Only.

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

1.4 MEMORY LOCATIONS USED BYTHE BOOTSTRAP LOADER

All three stages of the Bootstrap Loader reside in or are loaded into memory. This sectron
discusses the memory locations for different tnres of systems.

NOTE
When you configure your own version of the Bootstrap Loader, you must
ensure that the memory locations occupied by the three stages do not overlap.
ln addition, when you configure the application system, you must ensure that it
will not be loaded into the memory occupied by the stage that is loading it.
However, you can configure this memory so that the iRMX I and iRMX II free
space manager has access to it once the application begins running.

l -8 Bu)tstrap lrrader

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

The code for the first stage is normally located in PROM devices in the upper part of the
memory address space. The first stage data and stack are located by in conjunction with
the second stage code at address 088000H. The second stage uses the same data and stack
as the first stage. The first stage data and stack plus the second stage code require 8K
bytes of memory. You can change the locations of the first stage data and stack, and the
second stage code by selecting a different address for the second stage when you invoke the
SUBMTT file, BS1.CSD, to configure the first stage. Chapter 3 describes the BSl.CSD file.

The device-specific third stage is located by default at address 0BC000H. lt requires 16K
byes of memory, and it uses its own stack and data segments. You can change the locatton
of the device-specific third stage by using the BS3.CSD SUBMIT file to generate your own
version. Chapter 4 describes the BS3.CSD file.

The generic third stage is located by default at address 0BC000H. Unlike the device-
specific third stage, it uses the data and stack of the first stage (because it uses the first-
stage device drivers). You can change the location of the generic third stage by using the
BG3.CSD SUBMIT file to senerate vour own version of it. Chapter 4 describes the
BG3.CSD file.

When you use the second stage and generic third stage loaded into memory at their default
addresses (088000H and 0BC000H), blocks of memory beginning at these two addresses
are used to load the application. The generic third stage uses 16K bytes of memory. Thus,
ifyour application were to occupy memory between 0B8000H and OBFFFFH, the generrc
third stage would fail to load the application.

1.5 CONFIGURING YOUR OWN BOOTSTRAP LOADER

If you intend to create your own version of the Bootstrap Loader, you must use the
Bootstrap Loader configuration and generation files supplietl by Intel. In iRMX I systems'
these files reside by default in the directory /RMX86/BOOT. In iRMX II systems, the
files reside in the directory /RMX286/BOOT. Information about configuring the first and
third stages is available in Chapters 3 and 4, and information on writing new device drivers
is available in Charrters 5 and 6.

Bootstrap l-oader 1-9

USING THE
CHAPTER 2

BOOTSTRAP LOADER

2.1 INTRODUCTION

The procedure for using the Bootstrap Loader depends on where you locate the first stage,
and for iRMX II users, which third stage you choose. This chapter explains the operator's
role, methods of defining the first stage, and options to consider when choosing a third
stage.

2.2 OPERATOR'S ROLE IN BOOTSTRAP LOADING

The operator's princìpal role in the bootstrap loading process is to specify the pathname of
the file that is to be loaded. For iRMX I systems, this is the pathname of the application
system. For iRMX II systems, this is the pathname of the Bootstrap Loader's third stage.
If the operator is using the lntel-supplied first stage, the load file specifications can be
entered in one of the following ways:

. By specifying neither the device name nor the file name

. By specifying both the device name and the file name

. By specifying the device name only

. By specifying the file name only

In addit ion, i fyou have the iSDM monitor, the operator can also use the Debug opt ion to
specily that control should pass to the monitor atier loading is complete. (The D-MON386
monitor does not support a debug option.)

2.2.1 Specifying the Load File

An operator can speci! a load file:

. When the monitor has issued a prompt. In this case, the operator can enter the
rnonitor's B (bootstrap) command, followed by the name of the load file (include the
name within single quotes if you are using the D-MON3tìfi monitor). For this to work,
the Bootstrap option must have been configured into the monitor. Refer to the |SDM
Systen Dehug Monitor User's Gufule and th'e D-MON39ó Dehug Monitor for the 80386
User's Guide for informatìon on confisurins monitors.

B0otstrap l,oader 2- l

USING THE BOOTSTRAP LOADER

. When the first stage of the Bootstrap Loader has issued an asterisk (*) prompt. When
this prompt appears, the first stage waits for an operator to enter the name of the load
file.

The method used to determine which file to load depends on the configuration of the
Bootstrap Loader's first stage. Refer to Chapter 3 for more information about first stage
configuration.

When entering the monitor's B command or responding to the Bootstrap Loader's asterisk
prompt, the operator must specifo the load file. One way to do this is to simply press
Carriage Return. This causes the Bootstrap Loader to search for a default file on the
default device (these defaults are set up when you configure the first stage). The Intel-
supplied first stage uses the following pathname as its default

/SYSTEM/RMX86

If you were using the default first stage and you wanted to load the file called

/SYSTEM/RMX86 from the default device, you could simply type the B command with no
parameters (ifyou boot from the monitor) and press Carriage Return, or type a Carriage
Return only (if the Bootstrap Loader displays its own prompt).

Ifyou need to speci! a load file that is different from the default one, use the following
format for the specification:

:device:pathname (iSDM)
':device:pathname' (D-MON386)

Where:

:device: This is the name ofthe secondary storage device that contains the load
file. Ifyou omit the device name, the default device is used (as
established during first stage configuration).

pathname When loading iRMX I applications, this is the full pathname of the file
you want to load. When loading iRMX II applications, this is the full
pathname of the Bootstrap Loader's third stage. For iRMX II systems,
the file to be loaded is assumed to have the same pathname as the third
stage except for the filename extension, which is assumed to be .286.

If you omit this name, the Bootstrap Loader attempts to load the
default file (always /SYSTEM/RMX86).

To invoke the Bootstrap Loader with the monitor's B command, the processor must be
running in real address mode. Ifyour processor is running in real address mode, you can
simolv break to the monitor and issue the boot command.

2-2 Bootstrap Lader

USING THE BOOTSTRAP LOADER

However, if the processor is running in protected virtual address mode (as it is when the
iRMX II Operating System is in control), you cannot boot another system by breaking to
the monitor and issuing a boot command. You must first reset the system. After resetting
the system, you can invoke the Bootstrap Loader at the monitor prompt.

Example 1: Assume that an iRMX I application system resides in the file

/SYSTEM/MY86SYS on drive :WFO:. You can boot this system by issuing the following
command at the iSDM monitor prompt:

Example 2: Assume that an iRMX II system resides in the file /SYSTEM/MYSYS.286 on
drive :WF0:, and that the third stage of the Bootstrap Loader resides in the fiÌe

/SYSTEM/MYSYS. If the processor is in real address mode, you can boot this system by
issuing the following command at the D-MON386 monitor prompt:

2.2.2 DebugOption

Assuming that the iSDM monitor is present in the system, the operator can include a
debug option when specifying a load file (the D-MON386 monitor does not support a
debug option). This option instructs the Bootstrap Loader to do the following immediately
after loading is complete:

. Set a breakpoint at the first instruction to be executed by the application system. For
iRMX I systems, the breakpoint will be set in the load file. For iRMX Il systems, the
load file (the third stage) will be loaded as always and it will load the application
system. The breakpoint will then be set in the application system.

o Pass control to the iSDM monitor, which displays an "Interrupt 3 at <>ooo<:pm<>"

message at the terminal, issues its prompt (a single period for real-mode iRMX I
systems, fwo periods for protected-mode iRMX II systems), and waits for a command
from the terminal. At this point the operator can invoke any of the iSDM monitor
commands that are appropriate for real or protected mode. (To continue running the

loaded program, enter G <cr >.)

One advantage of the Debug switch is that the monitor's interrupt message tells you that
the loacling process was successful. If a system you are booting fails, you might not
otherwise be able to tell whether the bootstrap load itself was unsuccessful, or whether the

system loaded successfully and then failed during initialization. The presence or absence of

the interrupt message when you use the Debug option clarifies whether the loading was

successful.

Bootstrap l-oader , -'l

USING THE BOOTSTRAP LOADER

Because the Debug option leaves you in the monitor, you can alter the contents of specific
memory locations and perform other monitor actions (such as <Jebugging) before you start
your system running with the monitor's G command.

To use the Debug option when you are invoking the Bootstrap Loader from the iSDM
monitor, include the letter D in the command line immediately after the B (boot)
command. Speci! any load file pathname after lhe B and D characters.

For example, any of the following command Iines invoke the Bootstrap Loader (from the
iSDM monitor) wi th the Debug opt ion:

Notice that the "D" and any pathname must be separated by at least one space.

You can also use the Debug option on systcms in which the Bootstrap Loader is configured
to request the load file name; that is, on systems that issue the Bootstrap Loader's first
stage asterisk (.) prompt. On these systems, place the "D" in the command line before the
load file specification (separated by at least one space). Examples of this are:

2.3 PLACING THE BOOTSTRAP LOADER INTO MEMORY

Before you can invoke the Bootstrap Loader, you must place it into memory. Several rvays
exist to place the Bootstrap Loader into memory:

l. Place the first stage, configured for standalone operation, in PROM devices. In thts
case, îhe first stage begins to run on power-up or reset. Depending on its
configuration, the standalone Bootstrap Loader may issue an asterisk prompt so that
you can enter the name of the load file. To configure the first stage for standalone
operation, refer to Chapter 3.

2-4 Brxrtstrap Loader

USING THE BOOTSTRAP LOADER

2. Configure the monitor to include the Bootstrap option, reconfigure the first stage of
the Bootstrap Loader to include the first stage device driver(s) needed for bootstrap
loading as not all of the device drivers supplied with the Bootstrap Loader will fit
into the memory range provided by the monitor. Then program new PROM devices
with the combination of the monitor and the first stage of the Bootstrap Loader.
With this method, you initiate bootstrap loading via the monitor's 'B' (boot)
command. To use this method, refer to chapter 3 for configuration information.
Refer to the Guide to the Extended i.RMX II Interactive Configuration Utility for
information on programming a monitor and the Bootstrap Loader into the same set
of PROM devices.

3. Place the first stage in secondary storage. Then, using the iSDM monitor or ICE in-
circuit emulator, invoke the first stage. This procedure is particularly useful when
you are adding a new device driver to the first stage and you need to debug the code.
To configure the first stage for standalone operation where loading is to be
performed with the iSDM monitor or ICE in-circuit emulator, refer to Chapter 3.

NOTE
If your system includes the D-MON38ó monitor, you cannot download
the first stage from one system to another and then invoke it using
D-MON386 as described above. The previous description applies only
to a system configured with the iSDM monitor or ICE in-circuit
emulator.

4. Place the first stage in secondary storage, and then load it programmatically. This
applies only to iRMX I systems. Because the iRMX Il Operating System cannot
switch back to real mode from protected mode, it cannot load the first stage, which
runs in real mode. (These systems can load the first stage in real mode only.)

The rest of this section gives instructions for using the fourth method.

Although bootstrap loading is usually performed in response to an external event (such as a
system reset or a monitor command), it can be initiated by an executing program. Such a
program can load another system by calling the PUBLIC symbol BOOTSTRAP ENTRY.
To prepare for such a call, do the following:

l. Define BOOTSTRAP ENTRY as an EXTERNAL svmbol in the code of the
invoking program.

-

2. Place a call to BOOTSTRAP ENTRY in the code of the invoking program. The
form of the call is

CALL BOOTSTRAP ENTRY(@filename)

Bootstrap hader t_<

USING THE BOOTSTRAP LOADER

where:

filename An ASCII string containing either the pathname of the
target file followed by a CARRIAGE RETURN, or a
CARRIAGE RETURN only. If the string contains a
pathname, the named file is loaded. If the string
contains a CARRIAGE RETURN only, the default file,
as defined by the %DEFAULTFILE macro in the
BS1.A86 or BS1MB2.A86 configuration file, is loaded,
(The BS1.A86 and BS1MB2.A86 files are discussed in
Chapter 3.)

The call must follow the PL/M-8ó I-ARGE model of segmentation. (Even though this
is a call, rather than a jump, it does not return.)

3. Link the calling program to a version of the first stage of the Bootstrap Loader. You
can do this by using the BSl.CSD file as a model and making the following changes:

. Add the calling program to the list of modules that are linked in BS1.CSD.

r "Comment out" the locate sequence ifyou want to use any code other than absolute
code. For more details on absolute code, refer to the LAPX 8ó, 88 Family Utilitíes
Guide.

More information on the BS'l.CSD file is available in Chaoter 3.

2.4 CHOOSING ATHIRD STAGE

Ifyou plan to load iRMX II applications, you must include a version of the Bootstrap
I-oader's third stage on the secondary storage device from which you are loading your
applìcation. You can use the following kinds of third stages, depending on the type of
system you are loading.

o A generic third stage

. A default device-specific third stage

. Your own configuration ofthe device-specific third stage containing customized device
drivers.

The rest of this section should help you decide which third stage best suits your needs.

The important factors to consider when choosing a third stage are the size of your system,
the tlpe of mass storage devices you are using to boot your system, and the CPU board you
are usrng.

If you plan to load your system from any of the Intel-supplied devices, you can use the
default device-specific third stage regardless of the size of your system or a default generic
third stage for systems up to 840K bytes. Both third stages are supplied for 80286 and
80386 CPU boards.

2-6 Bmtstrap hader

USING THE BOOTSTRAP LOADER

If you plan to load your system from a custom device, the size of the system determines
which third stage)'ou should use.

. For systems that are not expected to exceed tt40K bytes, use the generic third stage. In
this case, you do not need to supply a custom device driver for the thirtl stage. You will
already be supplying a custom first stage driver; the generic third stage will use that
same driver to access the custom device.

. If your application exceeds 840K bytes, you must use the device-specific third stage,
because it switches the processor into protected mode before loading the application.
This enables the third stage to load into the entire l6 megabyte address space
supported by protected mode. However, to Ìoad applications from your custom device,
you must write a third stage clevice driver for your device. This driver can be a
modification of your first stage driver that runs in thc iì02fì6 proccssrtr's protccted
mode. For informat ion on wri t ing a third stage dr iver, refer to Chapter 6.

NOTE
The 840K byte limit on systems loaded by the generic third stage applies
to the boot f i le only . Once the boot f i Ìe is loaded and has contro l , the
entire lfr megabytes of memory address space is available for the system
(both the f ree space managcr and the Appl icat ion Loader) .

Table 2- l l is ts the vers ions of the th i rd s tage that arr : suppl icd on the Bootst rap Loader
Release Disket te. This tab le enables you to p ick the appropr ia te th i rc l s tage f i r r your
system. After you install your system, these files are available in the /RMX286/BOOT
directory.

Table 2-1. Suppl ied Third Slage Fi les

CPU Bosrd
Devico-Spscil ic
Third Stag€

Gonsric
Third Stage

isBc 286/10
isBc 286/10A
isBc 286/12
isBc 286/100A
isBc 386/2X
isBc 386/3X
isBc 386/116
isBc 386/120

2fú12
28612
28612
2861mA
38520
38620
386100
386100

28612.G8N
28612.GEN
28612. GE N
2861OOA. G E N
38620.GEN
38620.GEN
3861@.GEN
386100.GEN

Bff)tstrap k)ader

CONFIGURING
CHAPTER 3

THE FIRST STAGE

3.1 INTRODUCTION

There are three stages to the Bootstrap Loader, anrJ two of these stages (the first stage and
the third stage) can be configured to m:rtch your application system. The second st:rge is
constant and does not need to be configured. This chaptor tlescribes how to configure the
first stage.

Configuring the first stage of the BoÒtstrap Loacler involves the tollowing operations:

. Editing three or more assembly language source files to inclicatc the configurable
opt ions and device dr ivers to inc lude in the f i rs t s tage

. lnvoking a SUBMIT f i le to assemble the sourcc f i les, l ink thcm togcthcr wi th the code
for the fìrst stage, and assign absolute addresses to the code in preparation for placing
it into PROM devices.

Defaul t vers ions of the assembly language source f i les ancl the SUBMIT f i lc arc p laced rn
the /RMX86/BOOT or /RMX286/BOOT di rectory dur ing insta l la t ion. These f i les
include the following:

BSl .AlJ() This assembly language source file contains nlacros that speciry
information about the processor and the bus, how the boot device
and load file are selected. and which devices can bc booted from.
You should use this file if your system is a MULTIBUS I system.

This assembly language source file contains macros that speciry
information about the processor and the bus, how the boot devicc
and load file are selected, and which tlevices can be booted from.
You should use th is f i le i f your system is a MULTIBUS I I system.

This assembly language source lile contains macros that tell the
Bootstrap Loader what to do if errors occur during bootstrap
loadins.

BS1M82.A86

BSERR,A86

Brxrtstrap l,oader -1- I

CONFIGURING THE FIRST STAGE

B208.486
BMSC,A86
8218A.A8ó
82244.A86
B251.A86
B254.486
8264.486
BSCSI.A86

BSl.CSD

These assembly language source files contain configuration
information about the first stage device drivers. Each file describes
one device driver. For each device driver that you want to include
in the first stage, you must set up the appropriate file and link it to
the rest of the first staqe.

This SUBM IT file contains the commands needed to assemble the
preceding source files, link the resulting modules (and any others
that you supply), and locate the resulting object module containing
the configurecl first stage.

As shipped on the release diskettes, these files are set up to generate the default version of
the Bootstrap Loader's first stage. If you decide to configure your own version of the first
stage, you will most likely edit either the BS 1.,A86 or BS I MB2.A86 configuration file
(depending upon your system), the BSERR.A86 configuratìon file, and the BSl.CSD
submit file. Make changes in the device driver configuration files only if you want to
change the Intel-supplied defaults in those files.

The following sections describe how to modifu all the configuration files to tailor the first
stage of the Bootstrap Loader to meet your specifications

NOTE
I t 's important that the BSl. ,486 or BS1M82.A86 conf igurat ion f i le and the
BSI.CSD SUBMIT f i le agree as to the device dr ivers that are included in the
first stage. Whenever you change the device driver specifications in one of
these files, be sure to check the other file as well. Specific areas that you should
check are discussed in descriotions of the files.

3.2 BS1.A86 AND BS1MB2.A86 CONFIGURATION FILES

Figures 3-1 and 3-2 show the BSl.,4lì6 and BS1MB2.A86 files as they are delivered from
Intel. These files consist of four INCLUDE statements and several macros. The
definitions of the macros that can appear in these files are contained in the INCLUDE file
BS 1.INC. The macros themselves are discussed in the next few sections.

ì - 7 Bmtstrap l-oader

CONFIGURING THE FIRST STAGE

NOTE
Depending on your system, you must choose between BS1.,486 and
BS1MB2.A86 as the correct configuration file. If your system is a MULTIBUS
I system, choose the BS1.A8tr configuration file. Ifyour system is a
MULTIBUS II system, choose the BS1M82.A86 configuration file.

Figure 3-1. Intel-Supplied BSI-486 File

nane bs1

$ i n c l u d e (: f 1 : b c i c o . i n c)
$ i n c l u d e (: f l : b m b 2 . i n c)
$ inc lude (: f I : bmps . inc)

u cpu (80386)

í S B C 1 8 8 / 4 8 i n i t i a l i z a t i o n o f t h e i A P X 1 8 8
iAPX_186_INIT (y , Ofc3 8h, none, 8Obbh, none, 003bh)

i s B c 1 8 6 / / 0 3 (A) a n d i S B C 1 8 6 / 5 1 i n i t Í a l i z a t i o n o f t h e i A P X 1 8 6
1APX_186_INIT(y, none, none , 8Obbh, none ,0038h)

%console
Zmanual
Zauto

% l o a d f i l e

Xde faul t fi le (' /sys tern/rmx8 6 ')

% r e r r i e s (5)

c l-ear_s dm_extens ions

c i c o

ísBc 86 /05 / I2a/I4/30 /35
s e r i a l _ c h a n n e l (8 2 5 I a , 0 d 8 h , 2 , 8 2 5 3 , O d A } l , 2 , 2 , 8)

isBX 3s1 (on isBX /10)
se r ia l channe l (825 la , 0A0h , 2 , 8253 , 0B0h , 2 , 2 , 8)

Boolstrap [,oader 3-3

CONFIGURING THE FIRST STAGE

1SBX 354 Channel A (on iSBX /10)
s e r i a l _ c h a n n e f (8 2 5 3 0 , 0 8 4 H , 2 , 8 2 5 3 0 , 0 8 4 H , 2 , 0 , O e h , a)

i S B X 3 5 4 C h a n n e l B (o n i S B X i l 0)
s e r i a l _ c h a n n e l (8 2 5 3 0 , 0 8 0 H , 2 , 8 2 5 3 0 , 0 8 0 H , 2 , 0 , O e h , b)

8 MHz 1SBC 186/03A Channel A
s e r i a l _ c h a n n e t (8 2 7 4 , 0 d 8 h , 2 , 8 0 1 8 6 , 0 f f 0 0 h , 2 , 0 , 0 d h)

8 t4Hz iSBC 186/ /03A Channel B
s e r i a l _ c h a n n e l (8 2 7 4 , 0 d a h , 2 , 8 0 1 8 6 , 0 f f O 0 h , 2 , 1 , 0 d h)
s e r i a l _ c h a n n e l (8 2 7 4 , O d a h , 2 , 8 0 1 3 0 , 0 e 0 h , 2 , 2 , 0 3 4 h)

6 MHz iSBC 186/03/51 Channel A
s e r i a l _ c h a n n e I (8 2 7 4 , 0 d 8 h , 2 , 8 0 1 8 6 , 0 f f 0 0 h , 2 , 0 , 0 a h)

6 MHz iSBC I86/03/5L ChanneL B
s e r i a l _ c h a n n e l (8 2 7 4 , 0 d a h , 2 , 8 0 1 8 6 , 0 f f 0 O h , 2 , 1 , 0 a h)
s e r i a l _ c h a n n e l (8 2 7 4 , 0 d a h , 2 , 8 0 1 3 0 , 0 e 0 h , 2 , 2 , O 2 1 h)

i -SBC 188/48/56 SCC #1 Channel A
s e r i a l _ c h a n n e l (8 2 5 3 0 , 0 d O h , 1 , 8 2 5 3 0 , 0 d O h , 1 , 0 , 0 e h , a)

1.SBC 188/48/56 SCC /11 Channel B
s e r i a l _ c h a n n e L (8 2 5 3 0 , 0 d 2 h , 1 , 8 2 5 3 0 , 0 d 2 h , 1 , 0 , 0 e h , b)

i S B C 2 8 6 1 1 0 (A) / 1 2 C h a n n e l A
s e r i a l _ c h a n n e I (8 2 1 4 , 0 d 8 h , 2 , 8 2 5 4 , 0 d 0 h , 2 , 2 , 8)

í S B C 2 8 6 1 1 0 (A) / 1 2 C h a n n e l B
s e r i a l _ c h a n n e l (8 2 7 4 , 0 d a h , 2 , 8 2 5 4 , 0 d O h , 2 , 1 , 8)

i s B c 3 8 6 / 2 X a n d I S B C 3 8 6 / 3 X
s e r í a l c h a n n e l (8 2 5 1 a , 0 d 8 h , 2 , 8 2 5 4 , 0 d 0 h , 2 , 2 , 8)

Figure 3-1. Intel-Supplied BSI;\86 File
lcontinued)

3-4 Bfi)tstrap Loader

CONFIGURING THE FIRST STAGE

Multibus I devices :

0 , d e v Í c e i n i t 2 0 8 g e n , d e v i c e r e a d 2 0 8 g e n)
l , dev icè in i t208gen, deviceread2 08gen)

0, device in i tmscgen, devicereadmscgen)
1, devicè in i tmscgen, devicereadmscgen)

8, device ini tnsc gen, devicereadmscgen)
9, device initmscgèn, devicereadrns cgen)

%dev ice (a f0
ldev ice (a f l

%dev ice (w0 ,
Zdevice ($rl ,
ldev íce (wf0

itdevice (wf 1
% d e v i c e (s 0 , 0 , d e v i c e i n i t s c s i , d e v i c e r e a d s c s i)
Z device (sx1410a0 , 0 , device in i tscs i , dev icereadscsí , sas i_x1410a)
l dev ice (sx1410b0, 0, devieeinÍ tscsÍ , dev iceteadscsi , sas i_x1410br
l d e v i c è (s n f 0 , 2 , d e v l c e i n i t s e s i , d e v i c e r e a d s c s i , s a s i _ x 1 4 2 0 m f)
%device(prnf0, 0 , device in i t2 l8A, deviceread2LSA)
T d e v i c e (p b O , 0 , d e v i c e i n i t 2 5 l , d e v i c e r e a d 2 5 l)
Z d e v i c e (b 0 , 0 , d e v i c e i n i L 2 5 4 , d e v i c e r e a d 2 5 4)
%device(baO, 0, devicè in i t264, devíceread264)

Zend

Figure 3-1. Intel-Supplied tsSr.4,86 File
(continued)

-t-sBootstrap Loader

CONFIGIIRING THE FI RST STACE

Figure 3-2. Intel-Supplied BSIMB2-486 File

name bsl

$ i n c l u d e (: f l : b c i c o . i n c)

9 i n c l u d e (: f l : b r n b 2 . i n c)

$ i n c l u d e (: f l : b m p s . i n c)

; b i s t (0 F F F F H : 0 F F F F H)

; c o p y (0 8 0 0 0 H , 0 0 F F H , 0 8 0 0 0 H , 0 0 0 F H , 0 8 0 0 0 H , 0 H)

; (L B X) , (P S B , a d d r) o r (L B X + P S B)

; auto_c onf i gure_memory (LBX)

l r n c r u o e (: r 1 : D s L l n c J

% c p u (8 0 3 8 6)

; MPC and AD| {A conf igura t ion fo r 1SBC 286/L00 w i th iE lW 100 MPC modu le
; b n p s (0 0 H , 4 , 0 8 8 H , 2 0 0 H , 3 , 2 , 0 A 0 H , 1 6)

; MPC and ADI4A conf igura t íon fo r íSBC 286/700A
; b m p s (0 0 H , 4 , 0 8 B H , 2 0 0 H , 2 , 3 , 0 E O H , 1 6)

; MPC and ADMA conf igura t ion fo r 1SBC 386/100
Z b m p s (0 0 H , 4 , 0 8 9 H , 2 O 0 H , 2 , 3 , 0 0 0 H , 1 6)

Z c o n s o l e
%manual
%auto

% l o a d f i l e

% d e f a u l - t f i l e (' / s y s t e m / r n x 8 6 ')

X r e t r i e s (5)

; c lear_s dm_extens ions

; c i - c o

3-6 Brxrtstrap l,oader

1SBX 351 (on iSBX /10)
se r ia l_channe l (825 Ia , 0A0h , 2 , 8253 , 080h , 2 , 2 , 8)

iSBX 354 Channel A (on iSBX /10) for 1SBC
s e r i a l _ c h a n n e l (8 2 5 3 0 , 0 8 4 H , 2 , 8 2 5 3 0 , 0 8 4 H , 2 , 0 ,

iSBX 354 Channel B (on iSBX /10) for iSBC
s e r i a l _ c h a n n e l (8 2 5 3 0 , 0 8 0 H , 2 , 8 2 5 3 0 , 0 8 0 H , 2 , 0 ,

386 /r00
0 e h , a)

3 8 6/100
O e h , b)

iSBC 286l f00A Channel A
s e r i a l _ c h a n n e l (8 2 5 3 0 , 0 d c h , 2 , 8 2 5 3 0 , 0 d c h , 2 , O , O e h , a)

iSBC 28611004 Channel B
s e r i a l _ c h a n n e l - (8 2 5 3 0 , 0 d 8 h , 2 , 8 2 5 3 0 , 0 d 8 h , 2 , 0 , O e h , b)

Mul t íbus d e v i c e s

l d e v í c e l s 0 , 0 , d e v i c e i n i t s c s i . d e v i c e r e a d s c s í)
Z d e v i c e (s x 1 4 1 0 a 0 , 0 , d e v i c e i n i t s c s i , d e v i c e r e a d s c s i , s a s i _ x 1 4 1 0 a)
Z d e v i c e (s x 1 4 1 0 b 0 , 0 , d e v i c e i n i t s c s i , d e v i c e r e a d s c s i , s a s i _ x l 4 1 0 b)
Z d e v i c e (s m f 0 , 2 , d e v í c e i n i t s c s i , d e v l c e r e a d s c s i , s a s i _ x 1 4 2 O r n f)
Z d e v i c e (p m f 0 , 0 , d e v i c e i n i t 2 l 8 4 , d e v i c e r e a d 2 l S A)
Tdevice (w0, 0, device_in i x_224a , dev lce_read_2 24a)
%device(w1 , I , dev ice_iní t_224a , dev ice_read_224a)
Tdevice (wfo, 4, device_in i t : ._224a, device_read_2 2+a 2
Zdevice(wf l , 5 , dev ic e_in i t_224a, device_read_2 24a)
%end

CONFIGURING THE FIRST STAGE

Figure 3-2. Intel-Supplied IlSlM82"{8ó File
(continued)

To configure your own version of the Bootstrap Loader first stage, edit either the BS1.A86
or BS1MB2.A86 file if you need to include or exclude macros. A percent sign (%)
preceding the macro name includes (invokes) the macro, and a semicolon (;) preceding the
macro name excÌudes the macro. treatins it as a comment.

NOTE
When you exclude a macro, you must replace the percent sign with a semicolon.
Do not simply add a semicolon in front of the percent sign.

The order in which the macros should appear is the same order that they are listed in the
BS1.A86 or BS 1M82.A86 file.

tsfi)tstrap l,oader J - /

CONFIGURING THE FIRST STAGE

The following sections describe the macros that can appear in the BS1.,4lì6 and
BSlMB2.A8ó files. Because the Bootstrap Loader supports both iRMX I and iRMX II
Operating Systems, some of these macros apply to one Operating System and not the
other. In such cases, the section heading notes the operating system to which the macro
applìes. When no operating system designation appears, the macro is valid for both the
iRMX I and iRMX Il Operating Systems. The macros are described in the order they are
listed in the BS1.A86 and BS1MB2.A86 files.

If you make a syntax error when entering macros into the BS 1.A86 or BS1MB2.A86 fiìe, an
error message appears when assembling the file. For example, if you misspell a macro
name in a macro call, the following type of message may be returned:

*** ERROR #301 IN 129, (MACRO) UNDEFINED MACRO NA.|.{E
INSIDE CALL: BADNAME

*** ERITOR /I1 TN 129, SYNTAX ERROR

If an error such as this occurs. check for correctness in the BSl.Atì6 or BSlM82.A86 file
and attemDt to reassemble the file.

3.2.1 %BIST Macro (MULTIBUS@ l lOnly)

MULTIBUS Il systems include a Built-In Self Test (BfSD program in PROM devices that
verifies MULTIBUS Il hardware when the hardware is powered up. The ToBIST macro
causes the Bootstrap Loader to invoke the BIST program on the CPU board during
Bootstrap Loader initialization. The BIST program then tests the hardware.

If the BIST program encounters an error condition, it places an error code in the AX
register and loops. It does not call the Bootstrap Loader's BSERROR routine because an
error of this tlpe implies that the system hardware is inoperable.

The %BIST macro should be included only for MULTIBUS II systems, and only for those
systems that don't also include a monitor in PROM devices. In systems that include a
monitor, the monitor becomes active before the Bootstrap Loader, and it invokes the BIST
program. Therefore, invoking the BIST program from the Bootstrap Loader is
unnecessary.

3-8 Bootstrap l-oader

CONFICURINC THE FIRST STAGE

The syntax of the macro is

%BIST (address)

where:

address Address of the CPU board's BIST program. This parameter must be
entered in the form BASE:OFFSET (for example, 1234:5678). To
determine the address ofyour CPU board's BIST program, refer to the
hardware reference manual for that board.

3.2.2. o/"COPY Macro (MULTIBUS@ llOnly)

T'he ToCOPY macro isusedwith 386l116- and 386/120-based systems. Ifyour system is
not of this t)?e, do not include the o/oCOPY macro in the BSlM82.,486 file.

Both 3tl6/ 1 16- and 386/120-based systems locate EPROM memory at the top of the 4
gigabyte address space supported by the E0386 upon reset. However, the first stage of the
Bootstrap Loader must execute within the first megabyte of address space (real mode).
Because the first stage must be repositioned within memory, you must use the o/oCOPY

macro for any application where the EPROM memory is mapped outside of the first
megabyte of address space upon reset.

In contrast, the 386/2X and 38ó/3X systems locate EPROM memory at the top of the first
megabyte of memory space upon reset. Thus, the ToCOPY macro is unnecessary.

This macro copies the first stage of the Bootstrap Loader from EPROM devices to the low
megabyte of RAM. You should only specifo this macro if you do not have a monitor
installed and the Bootstrap loader executes first upon system reset.

The syntax of the o/eCOPY macro is as follows:

ToCOPY(src_lo, src_hi, dest_lo, dest_hi, count_Ìo, count_hi)

where:

src lo
r.Jhi

dest_lo
dest_hi

count lo
count hi

The low word of the 24-bit physical source address.
The high byte of the 24-bit physical source address.

The low word of the 24-bit physical destination address.
The high byte of the 24-bit physical destination address.

The low word of the number of bytes in the first stage.
The high byte of the number of bytes in the first stage.

Bootstrap l,oader 3-9

CONFIGURING THE FIRST STACE

3.2.3. "/'AUTO CONFIGURE MEMORY Macro (MULTIBUS@ ll
Only)

This macro causes the Bootstrap Loader to automatically configure the starting and ending
addresses of all iLBX and/or iPSB memory boarcls available to MULTIBUS II systems.
Configuration begins with the memory board in the lowest numbered slot and progresses
through the memory board in the highest numbered slot. Configuration occurs differently
depending upon how you invoke the macro.

You should include the %AUTO CONFIGURE MEMORY macro only for MULTIBUS
ll systems. and only for those sysGms in which the Bootstrap Loat ler is invoked upon
system reset (as opposed to under program control). In systems that include the monitor
in PROM devices, the monitor becomes active before the Bootstrap Loader, and it should
invoke its own %AUTO CONFIGURE MEMORY macro. Therefore. invokins the
macro from the Bot-rtstrap Loader is unnia"a.ory.

The syntax of the macro is

%AUTO_CONFIGURE_MEMoRY(interface_type [,start_address])

where:

interface_$pe

start address

A string representing the bus interface of the memory
board(s) to be configured. Valid strings are LBX, PSB,
or LBX + PSB.

The starting 64K page of memory when PSB memory is
hc ino cnn f im r r ed

Three pcssible configuration options exist: iLBX only, iPSB only, or iLBX and iPSB. You
must speci! the required parameters using one of the following three methods:

a/oAUTO_CONFIGURE_MEM O RY (LBX)

This option configures memory boards accessible to the processor via the iLBX bus.
Using this configuration option, the macro assigns sequential consecutive addresses
beginning with zero for the start and stop addresses of each iLBX memory board.
Board configuration proceeds from the board occupying the lowest slot number to the
board occupying the highest slot number.

%AUTO_CONFIGURE_MEMORY (PSB, start address)

This option configures memory boards accessible to the CPU via the iPSB bus. Using
this configuration option, the macro assigns sequential consecutive addresses for the
starî and stop addresses of each iPSB memory board. The assigned addresses begin
with the supplied starting address. Board configuration proceeds from the board
occupying the lowest slot number to the board occupying the highest slot number.

3-10 Bmtstrap l-oader

CONFIGURING THE FIRST STAGE

ToAUTO_CONFIGU RE_MEMORY (LBX+ PSB)

This option configures memory in the same manner as the first option, with one
additional configuration. All boards on the iLBX bus that also have iPSB interfaces
have the same starting and ending addresses for both interiaces.

The following syntax errors can occur if you enter incorrect parameters or incorrect
combinations of parameters.

ERROR - <type>, inval- id interface type
ERROR - inva l id Daraneter cornb ina t ion

3.2.4 "/"CPU Macro

The %CPU macro identifies the type of CPU that performs the bootstrap loading
operation. You must include this macro in the BS1.A86 or BSlM82..486 file once (and
only once).

The syntax of the CPU macro rs

%CPU(cpu_type)

where:

cpu_type The type of CPU performing the bootstrap operation. Valid types are:

Typ"

8086
8088
8018ó
801l l t i
80286
80386

Description

8[ì86 processor (iRMX I only)
8088 processor (iRMX I only)
8018ó processor (iRMX I only)
lì0ltllì processor (iRMX I only)
80286 processor (iRMX I and iRMX I I)
80386 processor (iRMX I and iRMX II)

3.2.5 "/"BMPS Macro (MULTIBUS@ llOnly)

The %BMPS macro configures the message passing system used during bootstrap loading.
This macro identifies the base address of the Message Passing Coprocessor (MPC),
address distance between MPC ports, and information that defines how direct memory
access (DMA) transfers occur. If you have a MULTIBUS II system that bootloads from a
device whose driver uses MULTIBUS II transport protocol (i.e. the 186/224A driver), you
must use this macro. lf you have a MULTIBUS I s)'stem or a system that bootloads from a
device whose driver does not use MULTIBUS II transport protocol, you must not use this
macro.

Bootstrap lnader 3- l l

CONFIGURING THE FIRST STAGE

The syntax of the %BMPS macro ls

%BMPS (mpc$base$addr, port$sep, duty$rycle, dma$base$addr, dmain, dmaout,
dma$trans, data$width)

where:

mpc$base$addr

port$sep

duty$rycle

dma$base$addr

dma$in

dma$out

The base I/O port address of the MPC. Refer to the
appropriate single board computer user's guide for this
address.

The number of addresses separating individual MPC
ports. For example, if the mpc$base$addr is 0000H and
the next three I/O port addresses are 0004H, 0008H,
and 000CH, respectively, the port$sep is 4H. Refer to
the appropriate single board computer user's guide for
the l/O port address map.

The MPC duty cycle for the local bus. (The rate at
which data packets are generated.) For information on
how to calculate a duty cycle suitable for the local bus,
refer to the MPC User's Manual. For duty cycles suitable
for Intel single board computers, refer to the appropriate
single board computer user's guide.

The base I/O port address for the Advanced Direct
Memory Access (ADMA) controller. Refer to the
appropriate single board computer user's guide for this
address.

The channel used to receive (input) DMA message
passing transfers. Refer to the appropriate single board
computer user's guide for this channel number.

The channel used to send (output) DMA message
passing. Refer to the appropriate single board computer
user's guide for thìs channel number.

The l/O port address used for DMA data transfers.
Reier to the appropriate single board computer user's
guide for this address.

The data width in bits of the local bus. This value must
be ei ther l6 or 32 ldecimal l . I f thewidth is set to 32 bi ts
on a 386/116- or 386/120-based board, flyby (one cycle)
DMA mode is enabled.

dma$trans

data$width

The %BMPS macro can qenerate errors if the local bus width is not l6 or 32 bits wide.

3-t2 Bmtstrap l-oader

CONFIGURING THE FIRST STAGE

3.2.6 %IAPX 186 lNlT Macro (!RMX I MULTIBUS@ | Systems
Only)

T\e o/oIAPX_186_INIT macro specifies the initial chip select and mode values for 8018ó
and 80188 CPUs. Include this macro only for systems that use the 80186 or 80188
processor and do not include a monitor in PROM devices. In systems that include the
iSDM monitor, the monitor becomes active before the Bootstrap Loader, and the monitor
must initialize the CPU. An iSDM configuration macro is available for this purpose. See
the iSDM System Debug Monitor Reference Manual for more information.

The syntax of the iAPX_186_INIT macro is

ToiAPX_186_INIT(rmx, umcs, lmcs, mmcs, mpcs, pacs)

where:

rmx The initial mode of the 80186 Programmable Interrupt Controller
(PIC). Acceptable values are as follows:

Value

v

Description

The 8018ó PIC is initialized in iRMX compatibility
mode.

umcs

lmcs

mmcs

mpcs

pacs

n The 80186 PIC is initialized in default mode.

Initial value for the upper-memory chip-select control register.

Initial value for the lower-memory chip-select control register

Initial value for the midrange-memory chip-select control register.

Initial value for the memory-peripheral chip-select control register.

Initial value for the peripheral-address chip-select control register.

In all parameters except the first one (rmx), NONE is also an acceptable value, implying
that no initialization value should be placed in the corresponding register. For information
on the chip-select control registers, and the values to place in them, see the data sheets for
the 80186 and 8018t1 processors.

All the default parameter values for this macro (in the Intel-supplied BSl.Alt6 file shown in
Figure 3-1) are appropr iate to in i t ia l ize the CPUs on the iSBC 186/03(A), iSBC 186/51
and iSBC 188 /48 /56 boards.

The iRMX I Operating System does not allow you to move the 80186 relocation register to
I/O addresses other than 0FF00H, its default register.

Bootstrap l-oader 3-13

CONFIGURING THE FIRST STAGE

3.2.7 %CONSOLE, %MANUAL, and %AUTO Macros

The CONSOLE, MANUAL, and AUTO macros specify how the first stage identifies the
file that the second stage will load (either the load file or the third stage) and the device on
which the file is found.

The syntax of the a/oCONSOLE, o/oMANUAL, and %AUTO macros is

TaCONSOLE

TaMANUAL

ToAUîO

There are no parameters associated with any of these macros.

Depending on the action you want the Bootstrap Loader to take, you can include none,
any, or all of these macros, and the combination you choose defines the set of actions
taken. Because the ToMANUAL macro automatically includes both the %CONSOLE and
%AUTO macros, five functionally-distinct combinations are possible. Each of these
combinations requires that the device list at the end of the BS1.A86 or BS1MB2.A86 file
be set up in a certain way. For more information on the device list, see the discussion of
the ToDEYICE macro later in this chapter. The following paragraphs list the possible
macro combinations, the device requirements, and the actions that the Bootstrap Loader
takes when each combination is invoked.

No (Requires that the device list defined with ToDEVICE macros have
o/oCONSOLE, only one entry.)
%MANUAL.
or TaAU'f O
macro

o The Bootstrap Loader tries once to load from the active device.

. The Bootstrap Loader tries once to load the file with the default
pathname (the one you define with the %DEFAULTFILE macro).

3-14 Bo0tstrap lrader

CONFIGURING THE FIRST STAGE

ToCONSOLE (Requires that the device list have only one entry.)
oruy

. The Bootstran Loader tries once to load from the device in the device
l ist .

r The Bootstrap Loader issues an asterisk (*) prompt at the console
terminal and waits for an operator to cnter the pathname of the file to
load. It tries once to load the file the operator specifies.

-- If the operator enters a pathname, the Bootstrap Loader loads
the file with that pathname.

-- If the operator enters a CARRIAGE RETURN only, the lile
with the default pathname is loaded.

%MANUAI (Requires a device list with at least one entry.)
only

. The Bootstrap Loader issues an asterisk (*) prompt for a pathname at
the console terminal .

. The Bootstrap Loader chooses a device depending on the operator's
response.

-- lf a device name is entered, the Bootstrap Loader loads from
that device. It tries to load until the device becomes ready or
until no more tries are allowed (as limited by the optional
%RETRIES macro).

-- If only CARRLq.GE RETURN is entered, the Bootstrap Loader
looks for a ready device by searching through the list of devices
(in the order the ToDEVICE macros are l isted in the BSl. ,486
or BS I MB2.A86 file). The search continues until a ready device
is found or until no more tries are allowed (as limited by the
optional %RETRIES macro). If the Bootstrap Loader finds a
ready device, it loads from that device.

. The Bootstrap Loader chooses a file depending on the operator's
response.

-- If a pathname is entered, it tries once to load the file with that
pathname.

-- If no file name is entered, it tries once to load the file with the
default pathname.

Bmtstrap [-oader 3-15

CONFIGURING THE FIRST STAGE

%AUTO (Requires a device list with at least one entry.)

. The Bootstrap Loader looks for a ready device by searching through the
list of devices (in the order the %DEVICE macros are listed in the
BSl.A86 or BSlM82.A86 file). The search continues until a ready
device is found or until no more tries are allowed las limited bv the
optional % RETRIES macro).

. If the Bootstrap Loader finds a ready device, it tries once to load the
file with the default file name.

o/oAUTO, (Requires a clevice list with at least one entry.)
ToMANUAL,
and
o/aCONSOLE

. The Bootstrap Loader issues an asterisk (*) prompt for a pathname at
the console.

. If the operator responds with a pathname that contains no device name,
the Bootstrap Loader looks for a ready device by searching through the
list of devices (in the order the %DEVICE macros are listed in the
BSl.A86 or BSlMB2.A86 f i le) . The search cont inues unt i l a ready
device is found or until no more tries are allowed las limited bv the
opt ional ToRETRIES macro).

. lf the Bootstrap Loader finds a ready device or the operator responds
with a pathname containing a device name, the Bootstrap Loader tries.,"':.. l;:::l;il:l:'::',:"? ::::T::: ;:T;':.,,^",

lathname.

-- If only CARRIAGE RETURN is entered, it tries to load the file
with the defaul t pathname.

Whenever the Bootstrap Loader's asterisk prompt appears, the operator can include a
Debug Switch along with a device and/or filename specification. The Debug Switch is
clescribed in Chapter 2.

3.2.8 o/"LO ADFI LE Macro

The %LOADFILE macro causes the Bootstrap Loader to display the pathname of the file
i t loads. I f you are loa<Jing an iRM X I system, this wi l l bethepathnameof the load f i le. I f
you are loading an iRMX II system, the pathname of the Bootstrap Loader's third stage
will be displayed. The macro displays the pathname at the console after loading the second
stage but before loading the load file (or third stage).

3 - l ó Bootstrap l,oader

CONFIGURING TIIE FIRST STACE

If you include the ToLOADFILE macro, you must also include either the o/cCONSOLE or
%MANUAL macros to enable the Bootstrap Loader to acr:ess the console.

The syntax of the %LOADFI LE macro is

EALOADFILE

There are no parameters associated with this macro.

3.2.9 ./'DEFAU LTFI LE Macro

The %DEFAULTFILE macro specifies the complete pathname of the default file. The
default file is the file that the second stage loads whenever no othcr file is specified.

The syntax of the TaDEFAULTFILE macro is

7o DEFAULTFI LE('pathna me')

where:

pathname Hierarchical pathname of the defaul t f i le, start ing at the root directory.
The pathname must be enclosed in single quotes. For example, the
name'/BOOT/RMX286l2' mighr he used.

l f you omit th is macro from the BS1.A86 or BSlMB2.At ló f i le, a NULL pathname is
assumed by the Bootstrap Loader first stage. In this case, the second stage assumes the
default name is /SYSTEM/RMX86. The Intel-supplied BSl.A86 and BSlMB2.A8ó files
include a ToDEFAULTFILE macro and assigns /SYSTEM/RMX86 as the default file.

3.2.10 %RETRIES Macro

The %RETRIES macro, when included with the %AUTO or %MANUAL macros. limits
the number of times that the first stage searches the device list for a ready device.

NOTE
I f you omi t the o/aRETRIES macro when inc luding the %AUTO or
%MANUAL macros and no device in the list is ready, then the search lbr a
ready device continues indefinitely.

Bootstrap [,oader 3- r7

CONFIGURING THE FIRST STAGE

The syntax of the %RETRIES macro is

%RETRIESlnumber)

where:

number Maximum number of times the first stage checks each device for a ready
condition. You can speci$ any number in the range of 1 through
OFFEH.

3.2.11 ./"CLEAR SDM EXTENSIONS Macro

The ToCLEAR SDM EXTENSIONS macro causes the Bootstrap Loader to clear the
iSDM monitor iorn-ind extensions (the U, V, antl W commands). Once cleared, a
monitor extension, such as the iRMX I or iRMX II System Debugger (SDB) or the System
300 System Confidence Test (SCT), must be reinitialized before it can be used again.

This macro is usefuI when adding monitor-level clebugging command extensions. It
prevents you from inadvertently attempting to invoke a monitor extension that was loaded
in a previous debugging session and overwriting application or Operating System code.

The syntax of this macro is

A/O CLEA R-S D M_E XTE NS IO NS

The Intel-supplied versions of the BS1.A86 and BS1M82.A86 files do not invoke this
macro. This macro must not be invoked if you are configuring a standalone Bootstrap
Loader.

3.2.12 %CICO Macro

The CICO macro specifies that console input and output are to be performed by
standalone Cl and CO routines; that is, routines that are not part of the monitor. Ifyou
include the CICO macro, you must perform some other operations as well, depending on
whether the CI and CO rourines you want to use iìre your own or those supplied by Intel.

If you use the Intel-supplied standalone CI and CO routines:

1. Change the l ine in the BSl.CSD f i le (Figure 3-3) that reads

to

: f l : b c i c o . o b j , &

2. Include exactly one instance of the ToSERIAL CHANNEL macro (described in the
next se(' t ion) in the BSI.AEó or BSlMB2.ASo

-f i Ie.

3 -18 Bootstrap Loader

CONFIGURTNG THE FIRST STAGE

If you supply your own standalone CI and CO routines:

1. Change the line in the BSI.CSD file (Figure 3-3) rhat reads

& : f l : b c i c o . o b j , &

to

: f1 :myc i co . ob j , &

where:

mycico.obj An object file that you supply containing procedures
named CI, CO, and CINIT. CINIT must perform
initialization functions required to prepare the console
for input and output operations.

2. Do not include the ToSERIAL CI:IANNEL macro in the BS1.A86 or BStMB2.A86
file.

The synt lx of the oiCICO macro is

VoCICO

There are no parameters associated with this macro. The CICO macro is not invoked in
the Intel-supplied BSl..{86 or BSlMB2.A86 file. This macro musr be invoked if you are
configuring a standalone Bootstrap Loader which prompts for the load file pathname.

3.2.13 %SERIAL_CHANNEL Macro

The ToSERIAL CLLA.NNEL macro identifies the type and characteristics of the serial
channel usecl to communicate with your system console.

You must omit this macro if any of the following conditions are true:

o Your system includes a monitor.

o Your system does not use a terminal during bootstrap loading.

. You supply your own CI and CO routines.

NOTE
You cannot use the %SERIAI- CHANNEL macro unless the serial device is
local to the CPU board. Also, the %SERIAL CFIANNEL macro does not
support the on-board diagnostic serial pn.t on the |SBC -186/100 boarcl.

Bootstrap l-oader 3-19

CONFIGURING TIIE FIRST STAGE

You must include this macro if you are configuring a standalone Bootstrap Loader to use

the Intel-supplied Cl and CO routines (see the description of the o/cCICO macro in the
previous section). In this case, use the %SERIAL_CHANNEL macro to describe the
serial controller device that handles the communication to and from the terminal accessed
by the Bootstrap Loader.

The Bootstrap Loader permits ser ial communicat ion via an 8251A USART, an 8274 Mult i -
Protocol Serial Controller. or an 82530 Serial Communications Controller. The Intel-
suppl ied BS1.A86 and BS1M82.486 f i les l ist appropr iate invocat ions of the
ToSE,RIAL CHANNEL macro for each of these serial channel controllers. To choose one
of these veÉions of the macro, replace the semicolon on the appropriate line with a
percent sign. lncluding more than one o/oSERIAL_CHANNEL macro causes an assembly
error in BSl.Al l f i or BSlMB2.AU6.

The syntax of the o/aSERIAL_CHANNEL macro is as follows:

o/aSERIAL_CHANNEL (serial_type, serial_baselort, serialjort_delta,
counter_type, counter_baselort, counterjort_delta,
baud counter, count, flags)

where:

serial_type

serial_base_port

Serial Channel

82514
8274 Channel A
8274 Channel B
tt2530 Channel A

82,530 Channel B

The serial controller device you are using. Valid values
are 8251A,8274, and 82530.

The l6-bit port address of the base port used by the
serial channel. This port varies according to the tlpe of
serial controller device and, if applicable, the channel
used on the device. To determine îhe port whose
address you should specifo here, look at the left column
of the following list. Pick the item that corresponds to
the serial device on your CPU board and the channel
through which the CPU communicates with your
terminal. Then specify the port address of the
corresponding port listed in the right column. The
hardware reference manual for your CPU board lists the
port acldresses for these seriaÌ devices.

Base Port

Data Register Port
Channel A Data Register Port
Channel B Data Register Port
Channel A Command Register
Port
Channel B Command Register
l'o ft

l-20 Bootstrap Loader

serialJrort_delta

counter_type

counter_baseJort

counterjort_delta

baud counter

8253
80130
82530

Timer Type

8253
8254
80 r30
80186
82530 Channel A

CONFIGURING THE FIRST STAGE

The number of bytes separating consecutive ports used
by the serial device.

The type of device containing the timer your CPU board
uses to generate a baud rate for the serial device defineci
by this macro. Valid values are:

8254
80186
NONE

Specif ing NONE impl ies that the baud rate t imer is
automatically initialized and the Bootstrap Loader does
not need to perform this function.

The 1ó-bit port address of the base port used by the
baud rate t imer- The portwhose addressyou speci fy
varies according to the type of timer device and, if
applicable, the channel used on the device. The following
list shows the ports for each of the valid timers. Specify
the address of the port that corresponds to your timer
device. The hardware reference manual for the CPU
board lists the oort addresses for these serial devices.

Base Port

Counter 0 Count Register Port
Counter 0 Count Register Port
ICW I Register Port
Use 0FF00H for all boards
Channel A Commantl Register
Port

82530 Channel B Channel B Command Register
Port

The number of bytes separating consecutive ports used
by the t imer.

The number of the counter that is used fbr baud-rate
generation. The lblÌowing list identifies the possible
counter numbers you can specify for each of timers.

Timer Type

8253
8254
80130
80186
82530

Counter Numbers

0 , l , o r 2
0 , l , o r 2
2
0 o r l
0

Bootstrap l,oader 3-21

CONFIGURING THE FIRST STAGE

count A value that when loaded into the t imer register
generates the desired baud rate. The method of
calculating this value follows these parameter
definitions.

flags Applies only when the serial t)?e parameter is defined
as 82530. For other serial controllers. omit this
parameter.

This parameter specifies which channel of an 82530
Serial Communications Controller will serve as the serial
controller. Valid values are

Value Channel

Channel A
Channel B

To derive the correct value for the count parameter, you must perform five computations.
The starting values for these computations are the desired baud rate at which you want the
serial port to operate and the clock input frequency to the timer. The clock input
frequency is listed in the data sheet for the timer.

First, perform one of the following calculations to obtain a temporary value for use in later
calculat ions:

I f the t imer is an 8253,82-54, l ì0130, or 80186,

temporary_value = (clock frequency in Hz)/(baud rate x 16)

I f the t imer is an 82530,

temporary_value = ((clock frequency in Hz)/(baud ralex2)) - 2

Next, perform the following calculation to obtain the fractional part of the temporary value
found in the first calculation:

fraction = temporary_value - INT(temporary_value)

The INT function gives the integer portion of temporary_value.

B

1,-)) Brmtstrap l-oader

CONFIGURING THE FIRST STAGE

The third and fourth calculations yield the desired count value and another value, called
error fraction. The error fraction value is needed to determine whether the calculated
count value is feasible, givèn the clock frequenry specifiecl in the first calculation. These
calculations, performed according to the size of the value of "fraction" from the second
calculation, are as folìows:

If the value of "fraction" is greater than or equal to .5,

count = INT (temporary value) + 1
error_fraction = 1 - fraction

If the value of "fraction" is less than .5,

count = INT (temporary_value)
error_fraction = fraction

The fifth and final calculation yields the percentage of error that occurs when the clock
frequenry is used to generate the baud rate, as follows:

EÒ error = (error_fraction / count) x 100

lÎ the 7o error value is less than 3, then the calculated count value is appropriate, and the
desired baud rate will be generated by the specified clock frequenry. However, if the 7o
error value is 3 or greater, you must do one or both of the folJowing:

. Provide a higher clock frequency

. Select a lower baud rate

After choosing one or both of these options, go through the series of computations again to
get a new "count" value and to see whether the revised value of "lo error" is less than 3.
Continue this process until the "7o errorn value is less than 3.

The %SERIAL CHANNEL macro can generate the following error messages:

ERROR - inva l id por t de l ta fo r the (ser_ type) Ser ia l Dev ice
ERROR - <ser_ type> is an lnva l id Ser ia l Channe l type
ERROR - Inva l id por t de l ta fo r the Baud Rate T imer
E R R O R - 8 2 5 3 / 4 B a u d R a t e C o u n t e r i s n o t 0 , 1 o r 2
ERROR - Counter 2 i s the on ly va l id 80130 Baud Rate Counter
ERROR - 80186 counter counter , type is no t a va l id Baud Rate Counter
ERROR - <counter type> is an invalid Baud Rate Tirner cype
ERROR - Counter 0 i s the on ly va l id 82530 Baud Rate Counter
I IRROR - 825J0 channe l must be spec i f ied as A or B on ly
ERROR - Max Baud Rate Count must be sreater than 1

Bootstrap lnader 3-23

CONFIGURING THE FIRST STAGE

3.2.14 %DEVICE Macro

The VoDEYICE macro defines a device unit from which your appÌication system can be
bootstrap loaded. If the BS1.A86 or BS1MB2.A86 file contains multiple ToDEYICE
macros, their order in the file is the order in which the first stage searches for a ready
device unit.

All, ToDEYICE macros that select device units on the same controller must be listed
consecutively in BS1.A86 or BSlMB2.A86, or assembly errors will occur. Recall that
multiple %DEVICE macros may be included only if the VoAUTO or ToMANUAL macro
is included (otherwise, an error occurs during the assembly of BS 1.,486 or 8S1MB2.A86.1.

The syntax of the ToDEVICE macro is

ToDEVICE(name, unit, device$init, device$read, unit info)

where:

name The physical name of the device, not enclosed in quotes or between
colons. This is the name that you would enter to speciry this device
when invoking the Bootstrap Loader from the keyboard. (However,
when invoking the Bootstrap Loader, you would surround this name
with colons.)

After the Bootsîrap Loader loads from a device, it passes the physical
name of îhe device, as listed here, to the load file. To enable the
Operating System's Automatic Boot Device Recognition capability (see
Appendix A) to function, this physical name must match a device-unir
name for the device as specified during the confìguration of the
Operating System. Refer to the Interúctive Configuration Utílity
Reference Manual for more information about configuring the
Operating System.

The number of this unit on this device. Unit numbering is the same as
that used for devices by the Basic I/O System. Refer to the Device
Diver User's Guide îor more information about unit numbering.

The name of the device initialization procedure thar is part of the first
stage device driver for this device-unit. Before attempting to read from
the device-unit, the Bootstrap Loader calls this proce<.lure to perform
initialization functions. If the device-unit has an Intel-supplied device
driver, specify the name of the device initialization procedure as listed
in Table 3-1. Ifyou supply your own driver (written as described in
Chapter 5), enter the name of the initialization procedure.

unrt

device$init

3-24 Bootstrap lr}ader

device$read

unit info

TabÌe 3- l lists the names of the device initialization and device read procedures for Intel-
supplied first stage device drivers.

Table 3-1 lists hoth specific and general procedures for the iSBC 208 and MSC devices.
Configurations of the Bootstrap Loader that use the general version of either driver will be
larser.

CONFIGURING TIIE FIRST SI'ACE

The name of the device read procedure that is part of the first stage
device driver lbr this device-unit. To read from this device-unit. the
first and second stages of the Bootstrap Loader call this procedure. lf
your Bootstrap Loader uses a generic third stage, it too uses this device
read procedure to read liom the device unit. If the device-unit has an
Intel-supplied device driver, specify the name of the device read
procedure as listed in Table 3- 1. If you supply your own driver (written
as described in Chapter 5), enter the name of the device read
procedure.

An ASM8ó label that marks the location of an array of BYTEs
containing specific device-unit information required by the mass storage
device defined by this invocation of the ToDEVICE macro.

This parameter is currently used only by the SCSI device driver. Ifyou
include it for any other device, the Bootstrap Loader will fail to load
your application from that device. Refer to the "First Stage Device
Driver Files" section of this chapter, under the clescriptions of the
ToSCSI and 9iSASl UNIT INF'O macros for information about how
ancl when to specify this unTt information and for examples of its use.

Table 3-1. I'rocedure Names for Intel-Supplied l' irst Stage Drivers

Dsvice Drivor
Device lnil ialize
Procedure

Device Read
Procedure

iSBC 208 Specifìc Driver
iSBC 208 General Driver *
|SBC MSC Specific Dr ver.
iSBC MSC General Driver
SCSI Driver
iSBX 218A Driver
iSBC 224A Driver
iSBC 251 Driver
iSBC 254 Driver
iSBC 264 Driver

deviceinit20S
deviceinit20Bgen
deviceinitmsc
deviceinitmscgen
deviceinitscsi
deviceinil2lSA
deviceini1224A
deviceinit25l
deviceinlt254
deviceinlt264

deviceread20S
deviceread20Sgen
devicereadmsc
devicereadmscgen
devicereadscsi
deviceread2'18A
deviceread224A
deviceread25l
deviceread254
deviceread264

The MSC drivers support the iSBC 214, iSBC 215G, |SBC 220 controllers, as well as the iSBX 218A
controller mounted on the iSBC 215G board. The drivers must be reconfigured to support the iSBC
220 controller.

Bootstrap l-oader 3-25

CONFIGURING THE FIRST STAGE

One difference between the two versions of these device drivers is that the general versions
will bootstrap load applications from any of the standard types of diskettes as defined in
the Installation Systems. The specific versions will bootstrap load applications only from
specific types of diskettes listed in Tables 3-2 and 3-3. These tables apply to the specific
versions of both the iSBC 208 and MSC device drivers.

The Intel-supplied BSl.A86 and BS1M82.A8ó configuration files include %DEVICE
macros for all of the supported devices, and include multiple instances of some of the
macros to indicate multiple units on the same device. It doesn't hurt to include support for
all of these devices, even if your application system won't contain all of them. And if you
add a new device later, you'll be able to boot from the device without generating new boot
PROM devices. However, you can reduce the size ofyour Bootstrap Loader by excluding
support for devices that you never intend to use. Release 3.2 of the iSDM monitor
provides space from 0FE400H to OFFFTFH for use by the Bootstrap Loader. This
requires you choose only the devices you need when you reconfigure the Bootstrap Loader
so it will fit into the space allocated by the iSDM monitor. If the Bootstrap Loader does
not fit into the space allocated by the monitor, you must locate it below the monitor.

To exclude a device driver from the Bootstrap Loader, two steps must be performed. First,
exclude all the ToDEYICE macros in BS1.A86 or BS1M82.A86 that apply to device units
on that controller. To do this, edit BS1.A86 or BS1MB2.A86 and replace the percent sign
(7o) in îr<tnt of the macro with a semicolon (;). The edited version of such a macro would
look similar to:

;device(ba0, 0, deviceinit264, deviceread264)

Table 3-2. 525-Inch Diskettes Supported by iSBC 208 and MSC-Specilìc Drivers

Seclor Size Density Seclors Der Track

256
256

Singl€
Double

I

NOTE: The diskettes can be formatted with either 48 tracks p€r inch or 96 tracks per inch, and
can b€ either single- or doubl€-sided.

Table 3-3. 8-lnch Diskettes Supported by iSBC 20E and MsC-Specific Drivers

Sector Size Density Seclors o€r Treck

128
2s6

Singl€
Double

26
26

NOTE: lhe diskettes may be either single- or double-sided.

3-26 Bu)tstrap l-oader

CONFIGURING THE FIRST STAGE

The semicolon replacing the percent sign turns the EIDEWCE macro for the iSBC 264
driver (in this caseì into a comment.

Second, edit the file BSl.CSD as described later in this chapter.

3.2.15 %END Macro

The %END macro is required at the end of the 851.A86 or BS1MB2.A86 file. The syntax
of this macro is

%END

There are no parameters associated with the ToEND macro.

3.3 BSERR.A86 CONFIGURATION FILE

The BSERR.A86 file, shown in Figure 3-3, defines what the first stage of the Bootstrap
Loader does if it cannot load the load file.

name bser r

ì l n c l u o e (: t I : b s e r r . l n c)

; c o n s o l e
; rexr
Í l i s t

; a g a l n
; in t l
Z ln t3

; h a l t

lend

Figure 3-3. First Stage Configuration File BSERR.A8ó

The BSERR.A86 file consists of an INCLUDE statement and several macros. The
BSERR.INC file in the INCLUDE statement contains the definitions of the macros in the
BSERR.A86 lile.

The following sections describe the functions of the macros in the BSERR.A86 file. For
each macro, ifa percent sign (7a) precedes the name, then the macro is included (invoked).
If a semicolon (;) replaces the percent sign, then the macro is treated as a comment and is
not included.

Bootstrap Inader t_r1

CONFIGURING THE FIRST STAGE

The first three macros, ToCONSOLE, ToTEXT, and a/oLIST, determine what the Bootstrap
Loader displays at the console whenever a bootstrap loading error occurs. The other four
macros, %AGAIN, 7olNT1, %INT3, and ToHAIJT, determine what recovery steps, if any,
the Bootstrap Loader takes whenever a bootstrap loading error occurs. Only one of the
latter three macros can be included in the BSERR.Afì6 file.

3.3.1 %CONSOLE Macro

The %CONSOLE macro causes the Bootstrap Loader to display a brief message at the
console whenever a bootstrap loading error occurs. The message indicates the nature of
the error (see Chapter 7 for the message list).

The syntax of the %CONSOLE macro is

ToCONSOLE

There are no parameters associated with this macro.

This ToCONSOLE macro is completely unrelated to the %CONSOLE macro used in the
BS1.A86 or BS1MB2.A86 file. Be careful not to confuse them.

3.3.2 "/"TEY[Macro

T\e VoTEXT macro is similar to the %CONSOLE macro in that it causes the Bootstrap
Loader to display a message at the console whenever a bootstrap loading error occurs. The
advantage of the %TEXT macro is that its messages are longer and more descriptive. The
disadvantage of the %TEXT macro is that it generates more code and makes the first stage
of the Bootstrap Loader larger.

The syntax of thr 4TEXT macro is

o/o'IEXT

There are no parameters associated with this macro. Ifyou include the ToTEXT macro,
the %CONSOLE macro is automaticallv included-

3.3.3 %LIST Macro

The ToLIST macro causes the Bootstrap Loader to display a list of the ready device-units
at the console whenever the onerator enters an invalid device-unit name. You can include
this macro only if you includeìhe TaMANUAL macro in the BSl.,486 or BS1MB2.A86 file,
as dercribed earlier in this chaoîer.

3-28 Bo0tstrap l-oader

CONFICURING THE FIRST STAGE

The syntax of the %LIST macro is

ToLlST

There are no parameters associated with this macro. If you inclucle the %LIST macro, the
T"CONSOLE and a/oTEXT macros are automaticallv included.

3.3.4 %AGAIN Macro

The %AGAIN macro causes the bootstrap loading sequence to return to the beginning of
the first stage whenever a bootstrap loading error occurs. You should incluile this macro iî
you include the TocoNSoLE macro in the BSERR.A86 file, either directly or by inclutling
the VoTEXT or o/aLIST macro.

The syntax of the a/oAGAIN macro is

o/oAGAIN

Exactly one of the ToAGAIN, %INTI, 7oINT3, and o/oHALT macros must be included. or
an error will occur when BSERR.A86 is assembled.

3.3.5 o/"lNTl Macro

The o/aINTl macro ciìuses the Bootstrap Loader îo execute an INT I (software interrupt)
instruction whenever a bootstrap loading error occurs. This macro useful for passing
control to the D-MON386 monitor. The iSDM monitor does not support this macro.

The syntax of the 4lNTl mlcro is

TaINTl

There are no parameters associated with this macro.

Exactly one of the a/oAGAIN, %lNT1, 7olNT3, and %HALT macros must be included. or
an error will occur when BSERR.A86 is assembled.

The %INTI macro, as well as the 7aINT3 ancl VoHAL^l macros described next, are
reasonable choices if none of the TaCoNSoLE, E TEXT, or ToLIST macros are include<l
in the BSERR.A86 f i le.

Bu)tslrap Loader 3-29

CONFIGURING THE FIRST STAGE

3.3.6 "/"lNT3 Macro

The %INT3 macro causes the Bootstrap Loader to execute an INT 3 (software interrupt)
instruction whenever a bootstrap loading error occurs. Ifyou are using the iSDM monitor,
the INT 3 instruction passes control to the monitor. Otherwise, the INT 3 instruction has
no effect unless you have placed the address of your custom interrupt handler in position 3
of the interrupt vector table.

The syntax of the %lNT3 macro is

%INT3

There are no parameters associated with this macro.

Exactly one of the %AGAIN, %INTI, 7oINT3, and ToHALT macros must be included, or
an error will occur when BSERR.A86 is assembled.

The %INT3 macro, as well as the 7oINT1 and %HALT macros, are reasonable choices if
none of the a/oCONSOLE, To'lEX'1, or ToLIST macros are included in the BSERR.A86
file.

3.3.7 %HALT Macro

The a/oFIALT macro causes the Bootstrap Loader to execute a halt instruction whenever a
bootstrap loading error occurs.

The synt:u of the %HALT macro is

TOÍIALT

There are no parameters associated with this macro.

Exactly one of the TaAGAIN, %lNTl, %INT3, and ToHALT macros must be included, or
an error will occur when BSERR.A86 is assembled.

The %HALT macro, as well as the %lNT1 and 7aINT3 macros, are reasonable choices if
none of the ToCONSOLE, ToTEXT, or ToLIST macros are included in the BSERR.A86
file.

3-30 Bootstrap l-oader

CONFIGURING TIIE FIRST STAGE

3.3.8 o/oEND Macro

The %END macro is required at the end of the BSERR.Af,ìó file.

The syntax of this macro is

%END

There are no parameters associated with the TaEND macro.

3.4 DEVICE DRIVER CONFIGURATION FILES

A separate configuration file is included for each device driver provided with the Bootstrap
Loader. These files are named 8208.A86, BMSC.A8ó, 8218A.A86, 8224A.A86, B251.A86,
8254.A86, 8264.A86, and BSCSI.A86. Each consists ofan include statement and a macro
call. The source file always has the form

$ include(:f 1 :hno<.inc)

Tabno<(parameters)

where:

)oo(Ei ther 208, MSC, 218A, 224A,251,254,261, or SCSI, depending on the
device driver.

The number and type ofparameters that are included with the macro depend on the device
driver. The parameters for each macro are discussed in the following sections.
Additionally, when a SASI controller board is used with the SCSI device driver, it requires
another macro. Refer to the "ToBSCS| Macro" and 'oloSASI UNIT INFO Macro" sections
for details and for invocation examples. The <lefault parameìer vrhies for the macros in
these sections are compatible with the default parameter values of the Installation Systems.

You should prepare one of these files for each tvpe of device you want the first stage of the
Bootstrap Loader to support. In most cases, you can use the Intel-supplied files. The
following sections describe the individual macros so that you can make changes to them, if
necessarv.

Bootstrap l-oader J-3r

CONFIGT]RING THE FIRST STAGE

3.4.1 "/oB2O8 Macro

T\e o/o8208 macro has the form

%B20tl(io_base)

where:

io-base I/O port acldress selected (umpered) on the iSBC 208 controller board.

The default invocation of this macro in the 8208.,486 file rs

o/oB208l l80Hl

3.4.2 %BMSC and0/"8,220 Macros

The BMSC.A86 file contains two macros, %BMSC and o/o8220. However, you can use
only one. lf you have one of the drivers listed at the bottom of Table 3- 1, you should use
the o/oBMSC macro. If you have the iSBC 220, you should use the /o8220 macro. Both
macros have îhe form

o/oBxxx (wakeup, cylinders, fixed_heads, removable_heads, sectors,
dev_gran, alternates)

where:

xxx Either MSC or 220.

wakeup Base address of the control ler 's wakeup port .

The remaining parameters are used to speci! the characteristics of the disk drives. If
the ToDEVICE macro you used for MSC or iSBC 220 devices in the BSl.,486 or
BS 1M B2.Atl6 file has deviceinitmsc (rather than deviceinitmscgen) as its third
parameter, then all MSC or iSBC 220 drives used by the Bootstrap Loader must have
the characteristics listecl in the following parameters. That is, they must have the same
number of rylinders per platter, fixed heads, removable heads, sectors per track, bytes
per sector, and alternate cylinders. However, if the TaDEVICE macro specifies
deviceinitmscgen, these restrictions do not apply and the following piìrameters are not
used by the Bootstrap Loader.

cylinders Number of cylinders on the disk drive or drives.

fixed_heads Number of hearls on fixed platters.

removable_heads Number of heads on removable platters.

sectors Number of sectors oer track.

3-32 Btlotstrap lrader

CONFIGURINC THE FIRST STACE

dev_gran Number of bytes per sector.

alîernates Number of cylinders set aside as backups for cylinders
having imperfections.

In the BMSC.A86 file, the default invocation of the %BMSC macro is

ToBMSC(100H, 256,2,0,9, 1024, 5)

and the default form of the uninvoked 7o8220 macro is

;8220(100H, 256, Z, 0, 9, 1024, 5)

3.4.3 "/oB218A Macro

The 7oB218A macro has the form

7oB2 1 8A(base;rort_address, motor_fl ag)

where:

base_port_address The base port address of this device unit, as selected on
the iSBX 2l8A controller board.

motor_flag A value indicating whether rhe motor of a 5 l/4" flexible
diskette drive should be turned off after bootstrap
loading. Valid values are:

Value Description

0FFH The drive will be turned off after
bootstrap loading. Specify this value only
if this device is not to become the system
device. Turning off the drive slows slows
bootstrap loading.

00H The drive will not be turned off after
bootstrap loading.

The default invocation of this macro in the 8218A.Atì6 file is

7"82l8A(80H,00H)

This allows you to mount the iSBX 2l8A module in the SBX I socket ofyour CPU board.

Bootstrap Lader 3-33

CONFIGURING THE FIRST STAGE

3.4.4 "/oB224A Macro

'Íhe 7oB224A macro has the form

board id

heads

sectors

o/oB224A (instance, board_id, cylinders, heads, sectors, device_gran,
slip$sectors, 7a(reserved))

where:

instance A value indicating which iSBC 1861224A controller the driver should
use if the system contains multiple iSBC 186/2244 boards. During
initialization the driver calculates the instance by rcanning the
MULTIBUS II slots in ascending order and sequentially assigning
numbers to each iSBC 186/224A controller found. For example, I is
assigned to the iSBC 186/224A board in the lowest-numbered slot, and
2 to the iSBC 1861224A in the next-lowest-numbered slot. This method
of identifying the board provides slot independence.

A ten-byte string identifring the board. The board-id is found in
registers 2-1'l of the header record in the interconnect space. For the
ISBC 1861224A controller board, the board_id is ASCII 186/224A
followed by two ASCII NULL (0) characters and can be entered in the
8224A.A86 file using the following form:

186/224AXX

where 'XX' are ASCII NULL (0) characters.

The following parameters are used for initializing Winchester disk drives but not floppy
disk drives:

rylinders A word speciffing the number of cylinders on the disk.

A byte specifying the number of fixed data heads on Winchester disk
drives.

A byte specifying the number of sectors per track.

device_gran A word specifying the number of bytes per sector for the device.

slip$sectors A byte specifying the number of sectors per track to be used as alternate
sectors when bad sectors are found during formatting. This feature is
enabled only when the sector-slipping option is used. Currently sector-
slipping is not supported; therefore, this value should be set to zero.

3-34 Bmtstrap hader

CONFIGURING THE FIRST STAGE

reserved This parameter is reserved for future use. It consists of 10 one-byte
values, separated by commas. The driver uses these bytes as the last ten
bytes of the parameter buffer it uses to initialize the drive. For
example, the iSBC 186/224A expects rhese ten bytes to be zero. This
parameter may be specified as either

%(0,0,0,0,0,0,0,0,0,0)

or

a/o(10 dup(0))

The iSBC 186 /224A device driver sends an initialize command to the ISBC 186/ZZ4A
controlìer, which uses the preceding values to initialize the Winchester disk drive. Then
the volume label is read. If the volume label has valid device characteristics, the drive is
reinitialized with those characteristics.

Intel assumes the floppy disks are in standard format: track 0 formatted as 128
bltes/sector, 1ó sectors/track. The disk characteristics are read from the volume label and
the drive is reinitialized with those characteristics.

The default invocation of this macro in the 8224A.A86 file is

voB224A ('186/224A??" 132H, 4,9, 1024,0,0/Ò(10 dup (O)))

Note, the characters '??' represent two ASCII NULL characters entered using AEDIT. To
input an ASCII NULL character, invoke AEDIT, position the cursor on top of the second
single quote mark, press the key'H'for hex input, press the key'I'for input,, press the key
'0' for the value. After inserting one ASCII NULLcharacter, enter a second one.

3.4.5 "/oB.251 Macro

T\e 7oB251macro has the form

VoB251 (io _base, dev_gran)

where:

io_base I/O port address selected fiumpered) on the iSBX 251 controller board.

dev_gran Page size, in bytes.

The default invocation of this macro in the B251.A86 file rs

7oB251 (80H,64)

Bootstrap l-oader 3-35

CONFIGURING THE FIRST STAGE

3.4.6 o/"B.254 Macro

The %B.254 macro has the form

VoB254 (io _base, dev_gran, num_boards, board-size)

where:

io_base I/O port address selected fiumpered) on the iSBC 254 controller board.

dev_gran Page size, in bytes.

num_boards Number of boards grouped in a single device unit.

board_size Number of pages in one iSBC 254 board.

The default invocation of this macro in the 8254.A86 file is

%8254 (0880H, 256, 8, 204t1)

3.4.7 "/o8.264 Macro

The %R.264 macro has the form

VoB264 (io _base, dev_gran, num_boards, board_size)

where:

io_base I/O port address selected (jumpered) on the iSBC 264 controller board-

dev_gran Page size, in bytes.

num_boards Number ofboards grouped in a single device unit.

board_size Number ofpages in one iSBC 264 board.

The default invocation of this macro in the 8254..48ó file is

%8264 (0880H, 256, 4,8192)

3--r6 Bootstrap Lóader

CONFIGURING THE FIRST STAGE

3.4.8 %BSCSIMacro

This macro allows you to specify the details of a SCSI host board, such as the
iSBC 186/03A, iSBC 28ól100 or iSBC 286/100A board, when an 82554 programmable
Peripheral Interface component is used to implement the host interface.

The ToBSCSI macro has the form

ToBSCSl (a_port, b_port, cJlort, control_port, reservcrl, reserved,
dma_controller, dma_channel, dma_base_address, dma_separation,
scsi_info, info)

The END command at the end of th is f i le is an ASM86 statement and i t does nor require a

where:

ajort The WORD address of Port A of the 8255
Programmable Peripheral Interface (PPI) used by this
SCSI driver.

b-_port The WORD address of Port B of the 825-5 PPI used by
this SCSI driver.

cJort The WORD address of Port C of the lì255 PPI used by
this SCSI driver.

control_port The WORD address of the control word register of the
8255 PPI used by this SCSI driver.

reserved Reserved for future use. It should he set to zero.

reserved Reserved fitr future use. lt shoultl be set to zero.

dma_controller The type of DMA controller used. possible values are

Value Controller Type

01 80186 DMA control ler
02 822-5[Ì Advanced DMA controller

Other values are reserved for future use.

dma_channel A BYTE that indicates which channel on rhe DMA
controller will be used. Specify the number of the DMA
channel as l isted in the appropr iate Intel data sheet.

dma_base_address A WORD that indicates the base I/O port address of
the cont rol ler 's registcrs.

dma_separation A BYTE that intlicates the number ofbytes separating
consecutive ports on the controller.

Bootstrap I,()ader 5 - S I

CONFIGURING THE FTRST STAGE

scsi_info This parameter is iSBC-board-specific; it does not

depend on the SCSI driver's requirements. This
parameter is a BYTE which has the following meaning:

Value Meaning

o Indicates that no additional
information is needed to
configure the BootstraP Loader
for the iSBC board vou are usinq.

I Indicates this configuration of the
Bootstran Loader is used on the
isBC 28r; / lo0A board.

2-255 Reserved for future use.

info Varies depending on the value of scsi_info.

If scsi_info is 0, then no other information is needed and
info is left blank.

lf scsi_info is 1, then ìnfo is a single WORD that
specifies the port address of the iSBC 286/ 100 or
iSBC 286/100A port used for multiplexing DMA sources
into the on-board 82258 DMA component.

The SCSI driver can be used to bootstrap load from any random-access device on the SCSI
bus. The SCSI driver can also be used to bootstrap load from specific random-access
devices on the SASI bus. When using the SASI bus, you must select a specific device,
because the SASI devices require unitlue initialization information. Do this by specifying
unique unit information for each device on the SASI bus (the %SASI UNIT INFO macro
is used for this purpose).

The ToBSCSI macro can be invoked only once in the BSCSI.A86 configuration file. The
%SASI_UNIT_INFO macro (described in the next section) can be invoked multiple times
to allow specification of the units on the SASI bus. Refer to the description of the
TaSASI_UNIT_INFO macro to see how to speci! unique unit information for devices on
the SASI bus.

In the BSCSLA86 file, the default versions of the %BSCSI macro are

o/oBSCSI(0C8H, OCAH, 0CCH, 0CEH, 0, 0, 1, 0, 0FFCOH, 2, 0)

;BSCSI(0C8H, OCAH, OCCH, OCEH, 0, 0, 2, 0, 0200H, 2, l , 0DlH)

The SCSI host board interface defined by the first instance (which is invoked) is the
iSBC 186/03A board and uses the 80186 DMA controller.

-ì-38 Bfi)tstrap [,oader

CONFIGURING THE FIRST STAGE

The SCSI host board interface defined by the second instance (which is not invoked) is the
iSBC 286/100 or iSBC 286/100A MULTIBUS II board and uses the on-board 82258
Advanced DMA controller. If you want to invoke this board, replace the ";" with a "Vo", and
replace the "To" with a ";" to comment out the interface defined by the first instance (iSBC
186/03A board using the 80186 DMA controller).

An important feature to note about devices that use an SCSI controller is the configuration
information is device-independent. That is, only the host board interface to the controller
needs to be specified in the configuration file. The configuration values contain no
information about the device(s) actually being used.

3.4.9 %SASI_UNIT_INFO Macro

The SCSI device driver provides an interface to mass storage devices through either SASI
or SCSI controllers, If using devices controlled by a SASI controller, you must speci$ a
sequence of initialization bytes for the controller. This information is not required by SCSI
controllers. The initialization sequence identifies the type of device you have assigned to
the particular unit of the SASI controller. The sequence will be different depending on the
manufacturer and model of the hard disk or flexible diskette drive. and the manufacturer
and model of the SASI controller board itself.

This macro enables you to define the initialization sequences required by your devices on
the SASI bus. For each instance of the ToDEVICE macro (in the BSl.,486 or
BS1MB2.A86 file) that defines a device on the SASI bus, you must also include the
%SASI UNIT INFO macro (in the %BSCSI.A86 file) to define that device's initialization
r.qr"nJ". The label specified for the unit info field of the %DEVICE macro must match
the label field of the corresponding %SASI_UNIT_INFO field.

The information supplied by an occurrence of the %SASI UNIT INFO macro is not used
by devices on the SCSI bus. Therefore in the 851.A86 o. SStlr4g2.aaO file, ToDEY\CE
macros for devices controlled by the SCSI bus should never speciff a value for the unit info
parameter. Note that there is only one pair of device initialization/device read procedures
for the SCSI driver regardless of whether the controller is SCSI or SASI.

The %SASI UNIT INFO macro can be included only in the SCSI/SASI driver
conficuration file. BSCSI.A86. The macro has the form

%SASI_UNIT_INFO (label, init_command, init_count, init_data)

Bootstrap l-oader 3-J9

CONFIGURING THE FIRST STAGE

where:

label

init_command

init_count

ini t data

The default invocations of this macro in BSCSI.AIì6 are

A valid ASM86 labcl name matching the one you
specified in the unit info field of the %DEWCE macro
for your device (in the file BS1,A86 or BSlMB2.A86).

A WORD that is the initialization command for vour
particular SASI controller.

A BYTE specifing the number of initialization BYTEs
that your SASI control ler requires.

The array of BYTEs of initialization data required by
your SASI controller. The length of this array must be
equal to the value in the init count parameter.

: i S B C L 8 6 / 0 3 A S C S I H o s t
Z b s c s l (0 c 8 H , 0 c A H , 0 c c H , 0 c 8 H , 0 , 0 , 1 , 0 , O F F C O H , 2 , 0)
i
i iSBC 286/100 SCSI Host
; b s c s i (0 C 8 H , o C A H , 0 C C H , O C E H , 0 , 0 , 2 , 0 , 0 2 0 0 H , 2 , 1 , O D l H)

; Xebec Sl -420 SASI contro l ler and e Teac rnodel F558, 5 1/4- inch
; f lex lb le d lskecte dr lve.
l s a s i u n i t i n f o (s a s i x 1 4 2 O r n f , l 1 h , 1 0 , 0 , 2 8 h , 2 , 9 0 h , 3 , 0 f h , 5 0 h , O f h , 0 1 4 h , 0)

; Xebec 51,410 SASI contro l ler and a Quantum rnodel Q540, 5 1- /4- inch
i l , l inches ter d isk dr lve.
Z s a s i _ u n i t _ i n f o (s a s i _ x 1 4 1 0 b , O c h , 8 , 2 , 0 , 8 , 2 , 0 , 0 , 0 , 0 b h)
;
; Xebec S1410 SASI contro l ler and a Computer Memor ies, Inc.
; m o d e l C M I - 5 6 1 9 5 1 / 4 - i n c h W l n c h e s t e r d i s k d r l v e .
l s a s i _ u n i t _ i n f o (s a s í _ x 1 4 0 a , O c h , 8 , 1 , 3 2 h , 6 , 0 , 0 b 4 h , 0 , 0 , O b h)

3.4.1 0 User-Supplied Drivers

Ifyou want to bootstrap load your system from a device other than one for which Intel
supplies a first stage device driver, you must write your own device initialization and device
read device driver procedures that the first stage will call. Chapter 5 describes how to do
this. In addition, perform the following actions to add the procedures îo the Bootstrap
Loader:

. Specify the names of the device initialization and device re:rd procedures in a
ToDEYICE macro in the BSl.,486 or BSlMB2.A8ó file.

3-40 Bq)tstrap l-oader

CONFIGURING THE FIRST STACE

. If there are configurable parameters associated with your device (such as base
addresses or wakeup ports), you might want to create your own configuration macro
and include it in a special configuration file, just like the Intel devices do. Chapter 5
describes how to set up a macro.

. Assemble your device initialization procedure, your device read procedure, and your
configuration file (if you have one), and link the resulting object code to the rest of the
Bootstrap Loader object files and libraries.

3.5 GENERATING THE FIRST STAGE

The submit file BSl.CSD performs the assembly, linkage, and location of the first stage of
the Bootstrap Loader. Often it will need to be modified to generate the particular
configuration of the Bootstrap Loader you specified in BS l.A8ó or BS 1MB2.A86. Figure
3-4 shows commands in the Intel-suonlied BS 1.CSD file.

Burtstrap llader 3-41

CONFIGURING THE FIRST STAGE

a t t a c h f l l e $ a s : f l :

The next four l fnes rnust be used to generate the Bootst rap Loadèr on
iRMX l I . The tRìO(11 Updates supply the MPL286 ut i l i ty .

n p l 2 8 6 : f l : 1 2 . a 8 6 $ o b J e c t (: f 1 : l 2 . m p 1)
m p 1 2 8 6 : f l : b s e r r . a 8 6 $ o b j e c t (: f I : b s e r r . m p l)
a s n 8 6 : f 1 : f 2 . m p 1 r n a c r o (9 0) o b j e c t (: f l : X 2 . o b j) p r i n t (: f 1 : U 2 . l s t)
a s m 8 6 : f l : b s e r r . m p l r n a c r o (5 0) o b j e c t (: f 1 : b s e r r . o b j) p r i n t (: f l : b s e r r . l s t)

The
iRMX
four
the

next tr^Ìo lines must be used to generate the Bootscrap Loader on
86. No invocat ion of MPL286 is requi red. Comment ouc the prev ious
l i n e s b y i n s e r t l n g a ' ; ' i n f r o n t o f t h e l i n e . R e n o v e t h e ' ; ' f r o r n

front of the nexÈ tr.ro lines if generating on iRl'D(86.

; a s n 8 6 : f l : 1 2 . a 8 6 m a c r o (9 0) o b j e c t (: f 1 : Z 2 . o b j) p r Í n t (: f 1 : 1 2 . l s t)
; a s n 8 6 : f 1 : b s e r r . a 8 6 n a c r o (5 0) o b j e c t (: f 1 : b s e r r . o b j) p r i n r (: f I : b s e r r . l s t)

asm86
asm86
asm86
asm86
asn86
asm86
asm86

f l : b 2 0 8 . a 8 6
f l :brnsc . a86
f l : b 2 1 8 a . a 8 6
f 1 : b 2 5 1 . a 8 6
fI:b254 . a86
f 1 : b 2 6 4 . a 8 6
f l : b s c s i . a 8 6

macro (50)
macro (50)
macro (50)
maero (50)
rnacro (50)
macro (50)
nacro (50)

o b j e c t (
o b j e c t (
o b j e c t (
ob j ec t (

ob j ec t (
ob j ec t (
o b j e c t (

f l : b 2 0 8 . l s t)
f l : bmsc . ls t)
f l : b 2 1 8 a . I s t)
f 1 . | . a q l r - + \
L L . W L J L . L J L)

r Ì . u Z J + . 1 - 5 L , ,

f 1 : b 2 6 4 . 1 s t)

f1 :b208 . ob j) pr in t (
f1 :brnsc . ob j) pr in t (
f l : b 2 1 8 a . o b j) p r i n t (
f 1 ' h ? 5 1 n h i \ n Y í n r - i /

f 1 : b 2 5 4 . o b j) p r i n c (
f1 : b264 . ob j) pr in t (
f 1 h c n c i n h i \ n r i n t t /

3-42

Figure 3-4. First Stage Confìgurat ion File BS I.CSD

Bmtstrap Loader

CONFIGURING THE FIRST STAGE

; l,îultibus II conflgurarÍon
;
; a s n 8 6 : f l : b 2 2 4 a . a 8 6 r n a c r o (5 0)

l ink86
f L : 7 " 2 . o b j ,
f1 : bserr . ob j ,
f 1 : b c i c o . o b j ,
f l :b208 . ob j ,
f l :bmsc . ob j ,
f 1 : b 2 l 8 a . o b j ,
f l . h t s 1 ^ h ì

f1 : b264 . ob j ,
f7 :b224a . ob l ,
f 1 : b s c s i . o b J ,
f 1 : b s 1 . 1 i b

t o : l I : 2 2 . 1 n k p r i n t (: f l : u 2 . m p 1) &
&nopubl ics except(f i rs ts tage, &

f i r s t s t a g e _ l 8 6 , &

Renove the 'ó ' f rom the beg inn ing o f
iAPX 186 INIT macro is invoked in the

boots trap_entry)

no in i t code
^ È - - r t C :
r L 4 ! ! \ r r & > u 5 L d É Y ,

&
& Change the previous
& iAPX_186_INIT rnacro
&

segs iz e (boot (1800H))

o b j e c t (: f l : b 2 2 4 a . o b j) p r i n t (: f 1 : b 2 2 4 a . 1 s È)

&
&
&
& ; for standalone ser ial channel support
&
&
&
&
&
&
&
&
&

&
&
&
&
&
&

the prev ious l ine i f
conf igurat ion f i1e.

the

l o c 8 6 : f l : 2 2 . l n k
a d d r e s s e s (c l a s s e s (c o d e (0 % 0) , s t a c k (0 2 1)))
o r d e r (c l a s s e s (s t a c k , d a t a , b o o t , c o d e , c o d e e r r o r))

&

&
&
&

&
&

l i n e t o ' s t a r t (f i r s t s t a g e _ 1 8 6) ' i f t h e
is invoked in the conf igura t ion f í1e .

Figure 3-4. First Stage Configuration File BSI.CSD
(continued)

3-43Bootstrap lrader

CONFIGURING THE FIRST STAGE

m a p p r i n c (: f l : 1 2 . m p 2) &
; b o o t s t r a p

R e m o v e L h e ' ; ' f r o r u t h e l i n e ' : b o o t s t r a p ' w h e n g e n e r a t i n g a
a standalone Bootst rap Loadèr ín PROM for a 80286-based CPU board.
Do not rernove the ' ; ' i f uhe BooEstrap Loader ls beÍng generated
for an 80386-based CPU board.

Bootst rap Loader f Í rs t s tage generat ion conplete.

Figure 3-4. First Stage Configuration File BSI.CSD
(continued)

3.5.1 Moditying the BSl.CSD Submit Fi le

To generate your own version of the Bootstrap Loader first stage, there are several
changes you might need to make.

First, ifyou have excluded any device drivers from the Bootstrap Loader (by excluding
TaDEYICE macros from the BSl.A86 or BS'lMB2.A86 file), you won't ìvant to link the
code for those drivers into the the first stage. To prevent the linking of a device driver, edit
the LINKSó command in the BSI.CSD file and place an ampersand (&) in front of any file
name that corresponds to a driver you want to exclude. Figure 3-5 is an example that
shows a portion of the BSl.CSD file after excluding the iSBC 208, iSBX 218A, iSBX 251,
iSBC 254 and SCSI device drivers.

3-44 Bmtstrap l-oader

CONFIGURJNG THE FIRST STAGE

Figure 3-5. Excluding the iSBC 251 and iSBC 254 Drivers

NOTE
If you exclude a dcvice driver, do NOT include any %DEVICE macros for it in
the BSl.A86 or BS I lt{82.A86 configuration file or errors from LINK86 will
occur.

Also, if you are not using an iRMX I or iRMX II system to configure the Bootstrap
Loader, you must comment out the command attaching the directory where the Bootstrap
Loader files reside as the logical name :F1:. Change the line:

ATTACHFILE $ AS :Fl :

to

;ATTACHFILE $ AS :F1 :

3-45

1ink86
f 1 : 1 2 . o b j ,
f l : b s e r r . o b J ,
f 1 : b c i c o . o b j ,
f1 : b208 . ob j ,
f1 :bnsc . ob j ,
f l :b218a . obJ ,
f l : b 2 5 l . o b j ,
f l : b254 . ob j ,
f l : b264. obj ,
f7 :b224a . ob j
f 1 : b s c s i . o b j ,
f l : b s 1 . 1 i b
f l : l 2 . l n k p r i n t (: f l : 2 2 . u r p l) &

&
&
&
& ; for s tandalone
&
&
&
&
&
&
&
&
&

&

ser ia l channel suppor t&
&

&
&
&

&

to
&nopubl ics except (f i rs ts tage,

f i r s t s t a g e _ l 8 6 , &

Renove the '& ' f rom the beginning of the prev ious l ine i f Èhe
iAPX_186_INIT rnacro is invoked in rhe conf igurar ion f i le .

&
&
&
&

Bootstrap l,oader

CONFIGURING THE FIRST STAGE

3.5.2 Invoking the BSl.CSD Submit File

After you have modified the BSl.CSD file to correspond to your configuration, invoke the
submit file to assemble the Bootstrap Loader files, link them together, and assiglt absolute
addresses. The format for invokins the submit file is as follows:

ATTACHFILE /RMX286/BOOT
SUBMIT BS l (f i r s t - s tage_address , second-s tage -address . I i r s t - s tage - f i 1e)

where:

first_stage_address The starting address of the first stage of the Bootstràp
Loader. This can be a RAM address ifyou intend to run
the Bootstrap Loader from RAM, or it can be a PROM
devices address if you intend to place the Bootstrap
Loader into PROM devices. The address you specif
should be a full 20-bit address. Do not use the
base:offset form to indicate the address. The iSDM
Release 3.2 monitor allocates the address range from
0FE400H to 0FFFTFH to the Bootstrap Loader. Ifyour
configuration of the Bootstrap Loader will not fit in this
space, locate it at a lower address than FF8000H.

The address in RAM where the second stage of the
Bootstrap Loader will be loaded. The data area for the
first and second stages is also located here. The size of
this second stage area consists of less than 8K contiguous
bytes. The default address for the second stage is
0B8000H. This address has been chosen to be
compatible with the default address of the third stage
which is 0BC000H.

The first-stage configuration file to use. lfyour system is
a MULTIBUS I system, set this parameter equal to the
str ing'bs1' . Sett ing this parameter to 'bs1'causes the
located Bootstrap Loader f i le to be named'bs1' . I fyour
system is a MULTIBUS II system, set this parameter
equal to the str ing'bslmb2'. Sett ing this parameter to
'bs1mb2'causes the located Bootstrap Loader file to be
named'bs1mb2'.

second_stage_address

first_stage_file

3-46 B(x)tstrap l-oader

To invoke the BSl.cSD SUBMIT file with the default addresses for combining with the
iSDM monitor, type one of the two sets of commands below:

3.6 MEMORY LOCATIONS OF THE FIRST AND SECOND STAGES

when you invoke the BSl.csD file, you assign memory locations to the first and secon<l
stages. It is important that îhe addresses you assign do not cause the stages to overlap,
either with themselves or with the files they load. Chapter 4 discusses the memory
locations of all three stages of the Bootstrap Loader and the stcps to take to ensure that
they don't overlap. Also inspect the map file, BSl.Mp2, to ensure the segments are
properly laid out. If too many device drivers have been confìgured into the Bootstrap
Loader, some segments will be located in low memory starting at 200H. This is
unacceptable and you must remove some more device drivers from vour confisuration.

CONFIGURING THE FIRST STAGE

Bootstrap bader 3-17

CONFIGURING
CHAPTER 4

THE THIRD STAGE

4.1 INTRODUCTION

The third stage of the Bootstrap Loader is used only for loading iRMX lI sysrems. Ir
provides the capability of loading modules that usc the 80286 object motJule formar (such
as those produced using BND286 an<J BLD2[ì6) and those that require the processor's
protected virtual address mode. This chapter describes how to configure the third stage.

There are two different tipes of third stages that can be used to load iRMX ll files: the
generic third stage and the device-specific third stage. Both load OMF-28ó modules, but
the generic third stage leaves the processor in real address mode while it loads. This
permits it to use the first-stage device drivers to access the storage devices. The device-
specific third stage switches the processor into protected mode before calling the device
driver. Although this permits the device driver to load into the entire l6 megabyte arJdress
space, special device drivers that work in protected mode must be included in the third
stage.

configuration of the third stage differs slightly depending on whether you configure the
generic or device-specifìc third stage. However, the differences are small enough that both
will be described together throughout most of this chapter. The next two sections pnrvitle
overviews of configuring each type of third stage. The rest of the chapter provides thc
details of third-stage configuration, noting any options rhat apply specifically to one type of
third stage.

4.2 OVERVIEW OF THIRD STAGE CONFIGURATION

configuring the third stage (either the generic or device-specific third stage) is very similar
to configuring the first stage. It involves the following operations:

Ì . Editing an assembly language source file to intiicate which CPU board to run on ancì
what to do if errors occur during bootstrap loading. If you are using the <ìevice-
specific third stage, you must also indicate which devices the third stage supports.

Invoking a SUBMIT file to assemble one or more assembly language source files,
link them with code for the third stage, and assign absolute addresses to the code,
This executable module remains in a file to be loaded by the second stage.

Bootstrap l,oader 4-t

CONFIGURING THE THIRD STAGE

Like the iìrst stage, the device-specific third stage requires its own device drivers.

l'herefore, you might expect to modiff, assemble, and link configuration fi-les for each of
the devices, just as you do for the first stage. Actually, the SUBMIT file does assemble and
link the device configuration files, but you don't need to do any additional work on these
files. Because device-specific information (such as the I/O port address, the number of
cylinders, etc.) is the same regardless of which stage accesses the device, the SUBMIT file
uses the same device configuration files used for first-stage configuration.

The generic third stage uses the first-stage device drivers to communicate with mass
storage devices. Therefore there is no need to supply configuration information about
devices to the generic third stage.

Default versions of the assembly language source files and the SUBMIT file are placed in
the /RM)086/BOOT directory during installation. These files include the following:

853.A86 These assembly language source files contain macros that specify
BS3MB2.A86 the devices supported by the third stage (for device-specific third
BG3.A86 stage only), identify the CPU board, and indicate what to do if

errors occur during bootstrap loading. The 853.,486 file applies to
the device-specific third stage for MULTIBUS I systems, the
BS3M82.A86 file applies to the device-specific third stage for
MULTIBUS Il systems, and the BG3.Alì6 fiìe applies to the generic
third stage on ei ther MULTIBUS I or MULTIBUS I I systems.

These assembly language source files apply just to the device-
specific third stage. They contain configuration information about
the devices in your system. These are the same files that were used
during the configuration of the first stage. You do not need to
modify them for the device-specific third stage.

These SUBMIT f i les contain the commands needed to assemble the
source files, link the resulting moduÌes (and any other you supply)
with the code for the third stage, and locate the resulting object
module. The BS3.CSD file applies to the device-specific third stage,
while the BG3.CSD file applies to the generic third stage.

BMSC.A86
B264.Atì6

BS3.CSD
BG3.CSD

As shipped on the release diskettes, these files are set up to generate the default versions
of the Bootstrap Loader's device-specific and generic third stages.

4.3 8S3.A86, BS3M82.A86, AND BG3.A86 CONFIGURATION FILES

Figures 4- 1, 4-2, and 4-3 list the assembly language configuration files for the device-
specific third stage files BS3.A86 and BS3M B2.AlÌ(r and the generic third stage file
BG3.A86. Each of these files consists of an INCLUDE statement and several macros. The
definitions of the macros that can appear in these files are contained in the INCLUDE file
(BS3CNF.INC). These macros are similar to the macros that can appear in the first stage
confisuration file.

4-2 Brntstrap l,oader

CONFIGURING THE THIRD STAGE

To configure your own version of the generic or device-specific third stage, you should etlit
the BS3.Atl6, BS3MB2.A86, or BG3.A86 file to include or exclude macros. For each
macro, a percent sign (7o) preceding the name includes (invokes) the macro, ancl a
semicolon (;) preceding the name excludes the macro, treatinc it as a comment.

NOTE
When you exclude a macro, you must replace the percent sign with a semicolon.
Don't just add a semicolon in front of the percent sign.

The following sections describe the macros thar can appear in the 853.A86, BS3MB2.A|ìó,
and BG3.A86 files. Unless otherwise specified, the macros can appear in either of the
three files (the %DEVICE macro is the only one that applies just to the device-specific
third stage).

Figure 4-1. Intel-Supplied B53..486 File

b s 3

V r n c l u d e (: i l : b s l c n f . i n c)
l r n c l u o e (: t I : r r m p s . t n c)

ldev ice (0 , w0 , dev ice ln i tms c gen, dev ice readmsc gen , da ta_ms c)
Xdev ice (1 ,w1 , dev ice in i tms cgen , dev ice readms c gen, da ta_rnsc)
Zdev ice (8 , w fO , dev ice ín i t rns cgen, dev icere adrns c gen, da ta_rnsc)
ldev ice (9 , wf l , dev ice in i tnscgen, dev icereadmscgen, da ta_nsc)
l d e v l c e (0 , s 0 , d e v i c e l n i t s c s i , d e v i c e r e a d s c s i , d a t a _ s c s i)
Z d e v i c e (0 , s x 1 4 l 0 a 0 , d e v i c e i n i t s c s i , d e v i c e r e a d s c s i , d a t a _ s c s i , s a s i _ x 1 4 t 0 a)
l d e v i c e (0 , s x 1 4 l 0 b 0 , d e v i c e i n i t s c s i , d e v i c e r e a d s c s i , d a t a _ s c s i , s a s i _ x l 4 1 0 b)
U dev ice (2 , s rn f0 , dev ice in i tscs i , dev ic e readsc s i , da ta_scs i , sas i_xL42Ornf)
Ídev ice (0 , p rn fO , dev Íce in i t218Agen, dev iceread2 lSAgen, da ta_218)
Z d e v i c e (0 , b a 0 , d e v i c e i n i t 2 6 4 , d e v i c e r e a d 2 6 4 , d a t a 2 6 4)

; i n t l
U in t3

; h a l t

Scpu*board (286 /12)

Xena

Mul t ibus I dev ic e s

Bootstrap Loader 4-.1

CONFIGURING THE THIRD STAGE

name bs3

$ i n c l u d e (: f 1 : b s 3 c n f . i n c)

;
; MPC and ADMA conf ígurat íon for isBC 286/100 wl th iEXM 100 MPC module

; b r n p s (0 0 H , 4 , 0 8 B H , 2 0 0 H , 3 , 2 , 0 A 0 H , 1 6)
;
; MPC and ADMA conf igurat ion for iSBC 2861100A
; b r n p s (0 0 H , 4 , 0 8 8 H , 2 0 0 H , 2 , 3 , 0 E 0 H , 1 6)

; UfC rna AD!4A conf lgurat ion for iSBC 386/100
T b m p s (0 0 H , 4 , 0 8 9 H , 2 0 0 H , 2 , 3 , 0 0 0 H , 1 6)

l dev ice (0

Zdev ice (0
% d e v i c e (0
i idev ice (2
% d e v i c e (0 ,
% dev i ce (I ,
% dev ice (2 ,
% dev ice (3 ,
i
; i n t 1
% in t3

; h a l t

%cpu_board (386/100)

% end

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; i i i i i i ; i ; i ; i ; ; ; ; , , ,
M u l t i b u s I I d e v i c e s

' ,
; i , , i , i ; ; ; : : ; : ; ; : ; : : : ; ; : ; : : : ; ; ; ; ; : : : ; i ; : : ; : : i ; ; ; ; ;

s 0 , d e v Í c e i n i t s c s í . d e v í c e r e a d s c s i , d a t a _ s c s i)
s x 1 4 1 0 a 0 , d e v i c e i - n i t s c s i , d e v i c e r e a d s c s i , d a t a _ s c s i , s a s i _ x 1 4 1 0 a)
s x 1 4 1 0 b 0 , d e v i c e i n i t s c s i , d e v i c e r e a d s c s i , d a t a _ s c s i , s a s i _ x 1 4 1 0 b)
s m f 0 , d e v í c e i n i t s c s i , d e v i c e r e a d s c s i , d a t a _ s c s i , s a s i _ x 1 4 2 O r n f)
w0, dev ice_ in i t_224a , dev ice_read_2 24a , da ta_bs_dr ivers)
, , 1 . 1 - , , i ^ ^ i ^ i t)) / , - è , ò . ' i - ^ - ^ . A 1 a t , - . 1 . 1 - h - . ì r i r r o r c ì

wfO, dev ice_ in ix_224a , dev i c e_read_2 24a , da ta-bs_dr ivers)
, , € r , ^ , , i - ^ í - i È î r a ^ À ^ , . i - ^ r ^ - . 1 1 1 / , - . r - r . h . à r i r r a r c \

Figure 4-2. Intel-Supplied BS3MB2.Atl6 File

4-1 Bootstrap [-oader

CONFIGURING THE THIRD STAGE

name bg3

$ i n c l u d e (: f l : b s 3 c n f . i n c)

; ln t l
U ínt3
; h a l t

Xcpu board 1286/12)

9 : - ^ ! ^ t ! ^ ! : ^ - / - \ò ! ! r > r d r r d L r u r r \ r r . /

l end

Figure 4-3. Intel-Supplied BG3"{8ó File

4.3.1 o/"BMPS Macro (MULT|BUS@ il Onty)

The ToBMPS macro configures the message passing system used during bootstrap loading.
This macro identifies the base address of the Message Passing Coprocessor (MPC),
address distance between MPC ports, and information that defines how direct memory
access (DMA) transfers occur.

The syntax of the ToBMPS macro ls

%BMPS (mpc$base$addr, port$sep, duty$cycle, dma$base$addr, dmain, dmaout,
dmagtrans, datagwidth)

where:

mpc$base$addr The base I/O port address of the MPC. Refer to the
appropriate single board computer user's guide for this
address.

port$sep The number of addresses separating individual MPC
ports. For example, if the mpc$base$addr is 0000H and
the next three l/O port addresses are 0004H, 0008H,
and 000CH, respectively, the port$sep is 4H. Refer to
the appropriate single board computer user's guide fbr
the I/O port address map.

Bootstrap [.oader ,l-5

CONFIGURING THE THIRD STAGE

duty$cycle The MPC duty cycle for the local bus. (The rate at
which data packets are generated.) For information on
how to calculate a duty cycle suitable for the local bus,
refer to the MPC User's Manual. For duty cycles
suitable for Intel singie board computers, refer to the
appropriate single board computer user's guide.

dma$base$addr The base I/O port address for the Advanced Direct
Memory Access (ADMA) controller. Refer to the
appropriate sing.le board computer user's guide for this
address.

dma$in The channel used to receive (input) DMA message
passing transfers. Refer to the appropriate single board
computer user's guide for this channel number.

dma$out The channel used to send (output) DMA message
passing transfers. Refer to the appropriate single board
computer user's guide for this channel number.

dma$trans The I/O port address used for DMA data transfers.
Refer to ihe approprint. single board computer user's
guide for this address.

data$width The data width in bits of the local bus. This value must
be eìther l6 or 32 (decimal) . I f the width is set to 32 bi ts
on a 386/116- or 386/ 120-basetJ board, flyby (one cycle)
mode is enabled.

The ToBMPS macro can generate errors if the local bus width is not l6 or 32 bits wide.

4.3.2 %OEVICE Macro (853.A86 and BS3M82.A86 Only)

T\e /oDEYICE macro applies only to the device-specific third stage (BS3.A86 and
BS3MB2.A86 files). It associates a device with a particular third stage device driver. The
syntajK of the ToDEYICE macro is as follows:

ToDEYICE (unit, name, device$init, device$read, device$da ta.u n it_in fo)

where:

unit The unit number of this device. Unit numbering should be the same as
that used in the BS1.A86 or BS1MB2.A86 file described in Chapter 3

name The name of the device. You should always specifu the same name that
you used for the device in the BSl.A86 or BSlMB2.A86 file.

4-6 Bootstrap LOader

CONFIGURJNG THE THIRD STAGE

device$init Public name oî the third stage device driver,s initialization procedure.
Table 4-1 lists the names used for lntel-supplied device drivers. lfyou
supply your own driver (written as described in Chapter 6), enter the
name of its initialization procedure.

device$read Public name ofthe third stage device driver's read procedure. Table 4-1
lists the names used for Intel-supplied device drivers. If you supply your
own driver (written as described in Chapter 6), enter the name of its
read procedure.

device$data Public name of a label that marks the first byte of the data segment used
by the third stage device driver. Table 4-l lists the names used for Intel-
supplied device drivers. Ifyou supply your own driver (written as
described in Chapter 6), you must create such a label and enter its name
here.

unit info An ASM86 label that marks the location of an array of ByTEs
containing specific device-unit information required hy the mass srorage
device defined by this invocation of the %DEVICE macro.

Table 4-1 lists the names of the device initialization procedures, device read procedures,
and data segments for Intel-supplied third stage device drivers.

4.3.3 "/"SASl_UNIT_INFO Macro (BSCSl.A86 Fite)

The SCSI device driver provides an interface to mass storage devices through either SASI
or SCSI controllers. ìf using devices controlled by a SASI controller, you must specifo a
sequence of initialization bytes for the controller. This information is not required by SCSI
controllers. The initialization sequence identifies the type of iìevice you have assigned to
the particular unit of the SASI controlìer. The sequence will be clifferent depending on the
manufacturer and model of the hard disk or flexible diskette drive. and the manufacturer
and model of the SASI controller board itsell

Table 4-1. Names for Intel-Supplied Third Stage Drivers

Devico Driver
Oevice Inhislize
Procedur€

Devica Read
Proc6dure Dsta 569ment

MSC Driver
iSBC 264 Driver
iSBC 186/224A Driver
SCSI Driver

deviceiniîmscgen
deviceinit264
device init 2244
deviceinltscsi

d€vicereadmscgen
deviceread264
deYicelead 2244
devicereadscsi

data msc
aaazu
data bs drivers
oala scsl

Bootstrap Loader 1-7

CONFIGURING THE THIRD STAGE

This macro enables you to define the initialization sequences required by your devices on

the SASI bus. For each instance of the ToDEVICE macro (in the 851.A86 or
BS1MB2.A86 file) that defines a device on the SASI bus, you must also include the

ToSASI_UMT_INFO macro (in the %BSCSI.A86 file) to define that device's initialization
sequence. The label specified for the unit info field of the %DEVICE macro must match
the label field of the corresponding %SASI_UNIT-INFO field.

The information supplied by an occurrence of the %SASI-UNIT-INFO macro is not used

by devices on the SCSI bus. Therefore in the BS1.A86 or BSIMB2.A86 file, VoDEYICE
macros for devices controlled by the SCSI bus should never specif a value for the unit info
parameter. Note that there is only one pair of device initialization/device read procedures
for the SCSI driver regardless of whether the controller is SCSI or SASI.

The %SASI_UNIT_INFO macro can be included only in the SCSI/SASI driver
confisuration file. BSCSÌ.A86. The macro has the form

%SASI-UNIT

where:

label

init_command

init_count

init data

_INFO(label, init_command, init_count, init_data)

A valid ASM86 label name matching the one you
specified in the unit info field of the ToDEVICE macro
for your device (in the f i le BS1.,{86 or BSlM82.,486).

A WORD that is the initialization command for your
particular SASI controller.

A BYTE specifying the number of initialization BYTEs
that your SASI control ler requires.

The array of BYTEs of initialization data required by
your SASI controller. The length of this array must be
equal to the value in the in i t count parameter.

4-8 Bootstrap Inader

CONFIGURING THE THIRD STAGE

The default invocations of this macro in BSCSLA86 are

; j .SBC 786/03A SCSI Host
l b s c s i (0 C 8 H , O C A H , O C C H , O C E H , 0 , 0 , 1 , 0 , O F F C O H , 2 , 0)

; iSBc 286/700 SCSI Hosc
b s c s i (0 C 8 H , 0 c A H , 0 C C H , 0 C E H , 0 , 0 , 2 , 0 , 0 2 0 0 H , 2 , l , 0 D 1 H)

; Xebec 51420 SASI contro l ler and a Teac model F558. 5 L/4- ínch
; f l e x i b l e d i s k e t t e d r i v e .
X s a s i _ u n i t _ f n f o (s a s i _ x 1 4 2 0 m f , 1 l h , 1 0 , 0 , 2 8 h , 2 , 9 0 h , 3 , 0 f h , 5 0 h , 0 f h , 0 1 4 h , 0)
i
; Xebec 51410 SASI conÈrol ler and a Quantum roodel Q540, 5 L/4- lnch
; l , l inchester dÍsk dr ive.
Z s a s i _ u n i t _ i n f o (s a s i _ x 1 4 1 0 b , O c h , 8 , 2 , 0 , 8 , 2 , 0 , 0 , 0 , O b h)
;
; Xebec S1410 SASI contro l ler and a Computer Memor ies, Inc.
; rnodel CMI-5619 5 1/4- inch l ,J inchester d isk dr ive.
Z s a s i _ u n i t _ i n f o (s a s i _ x 1 4 0 a , O c h , 8 , 1 , 3 2 h , 6 , 0 , 0 b 4 h , 0 , 0 , O b h)

4.3.4 o/"lNTl Macro

The ToINTl macro causes the third stage to execute an INT 1 (soliware interrupt)
instruction whcnever a bootstrap loading error occurs. This enables you to pass control to
a user-written program if loading fails. However, to pass control to another program, you
must place the address of that program in position 1 of the interrupt vector table. This
macro is supported by only the D-MON3Só monitor. The iSDM monitor does nor support
this macro.

The svntax of the %lNTl maero is

a/ol NTI

There are no parameters associated with this macro.

Exactly one of the %lNTl, %lNT3, and %HALT macros must be included, or an error will
occur when BS3.Alì6, BS3MB2.A[ìó, or BG3.A8ó are assembled.

Bootstrap Loader 4-9

CONFIGURING THE THIRD STAGE

4.3.5 %lNT3 Macro

The %INT3 macro causes the third stage to execute an INT 3 (sofrware interrupt)
instruction whenever a bootstrap loading error occurs. Ifyou are using the iSDM monitor,
the INT 3 instruction passes control to the monitor. Otherwise, the INT 3 instruction has
no effect unless you have placed the address of your custom interrupt handler in position 3
of the interrupt vector table.

The syntax of the aol NT3 macro is

7aINT3

There are no parameters associated with this macro.

Exactly one of the %lNT1, %lNT3, and TaHALT macros must be included, or an error will
occur when 8S3.A86, BS3MB2.A86, or BG3.A86 are assembled.

4.3.6 %HALT Maero
'Íhe

ToHAIJT macro causes the third stage to execute a halt instruction whenever a
bootstrap loading error occurs. The syntax of the VoÍIALT macro is as follows:

ToHAlT

There are no parameters associated with this macro.

Exactly one of the ToINTl, %INT3, and ToHALT macros must be included, or an error will
occur when BS3.A86, B53MB2.A86, or BG3.A86 are assembled.

4.3.7 a/oCPU BOARD Macro

The ToCPU BOARD macro specifies the type of processor board in your system. The
third stage needs this information so that it can properly initialize the board when
switching into protected virtual address mode. The syntax of the %CPU BOARD macro
is as follows:

TaCPU_BOARD (type)

4-10 Bootstrap Loader

CONFIGURING THE THIRD STAGE

where:

type The tlpe of processor board in your system. The following are the valid
values:

Value Processor Board

286/12 iSBC 286/10 board
286/|Z iSBC 2861104 board
286112 iSBC 28ól12 board
2861100A iSBC 2861100.4 board
386/20 iSBC 386/2X board or iSBC 386/3X Board
386/100 iSBC 386/116 board or iSBC 386/120 Board

4.3.8 %INSTALLATION Macro (8G3.A86 Only)

The TaINSTALI-ATION macro specifies whether the generic third stage will enter the
monitor after loading the application system or not. The syntax of the %INSTALLATION
macro ls:

ToINSTALI-ATION (monitor_entry)

where:

monltor_entry The type of action the Bootstrap Loader is to take upon
loading the application system. If monitor entry is 'n' the
system is loaded and then executed with no monitor
entry inbetween. If it is'y', the monitor is entered after
the system is loaded. You must rype in the monitor GO
command to continue.

When the monitor is entered, as a result of specifying 'y' for the monitor_entry parameter,
the Bootstrap Loader prints the following message to the terminal:

Insert the Start-uD Svsten Cornmands Dlskette and tvDe "G<RETURN>"

NOTE
If your system has the D-MON386 monitor rather than the iSDM monitor, type
' 'GO< RETURN>".

Bootstrap Loader 4-t I

CONFIGUR-ING THE THIRD STAGE

This macro is used to generate the generic third stage used to boot the Operating System

from diskettes. The %INSTALT ATION macro allows one diskette, which contains only
the Operating System boot file and the third stage to be usetl to load the system from
diskette into memory. In entering the monitor, it allows a second diskette, which contains
the necessary system commands, to be used as the system device when the system is
initialized.

4.3.9 %END Macro

The ToEND macro is required at the end of the 853.A86, BS3MB2.A8ó, and BG3.A86
files. The syntax of this macro is as follows:

ToEND

There are no parameters associated with the ToEND macro.

4.3.1 0 User-Supplied Drivers

If you want to use the device-specific third stage to load your system from a device other
than one for which Intel supplies a third-stage driver, you must write your own device
driver procedures that the third stage will call. Chapter fr describes how to do this. In
addition, perform the following actions to add the procedures to the Bootstrap Loader:

Speci! the names of the device initialization procedure, the device read procedure,
and the driver's data segment in a ToDEYICE macro in the 853..4[ì6 file.

If there are configurable parameters associated with your device (such as base
addresses or wakeup ports), you might want to create your own configuration macro
and include it in a special configuration file, just like the Intel devices do. Chapter 5
describes how to set up a macro. You will probably use the same configuration file for
both the first- and third-stage drivers.

Assemble your device initialization procedure, your device read procedure, and your
configuration file (ifyou have one), and link the resulting object code to the rest of the
BootstraD Loader obiect files and libraries.

4-12 Bfi)tstrap hader

4.4 GENERATING THE THIRD STAGE

Two SUBMIT files (BS3.cSD and BG3.csD) are used to generate the two types of third
stages. B53.cSD performs the assembly, linkage, and location ofthe device-specific third
stage. BG3.GSD performs the same operations for the generic third stage. Figures 4-4 and
4-5 show the Intel-supplied B53.CSD and BG3.CSD files.

CONFIGURING THE THIRD STAGE

a t t a c h f i l e $ a s : f l :
;
rnp1286
asn86
asn86
asrn86
asm86
asn86
asm86
;
l ink86

&
&
c o

;
1 o c 8 6 : f l : Z 0 . l n k

a d d r e s s e s (c l a s s e s (c o d e (1 1)))
o r d e r (c l a s s e s (c o d e , d a t a))
noin i tcode purge
s taf t (bs 3)
map pr in t (: f1 : %0. np2)

The Thi rd Stage, locared ar

: f 1 : Í 0 . a 8 6 $ o b j e c t (% 0 . r n p 1)
f l : f 0 . r n p l
f 1 : b m s c . a 8 6
f 1 : b 2 l 8 a . a 8 6
fL:b264 . a86
f 1 : b s c s i . a 8 6
f I :b224a . a86

&
f 1 2 0 . o b j , &
f 1 : b s 3 . l i b , &
f1 :brnsc . ob j , &
f l : b 2 1 8 a . o b j , &
f l : b264 . ob j &
f 1 : b s c s i . o b j , &
f l : b 2 2 4 a . o b j &
f l : 1 0 . l n k p r i n t (: f 1 : Z 0 . m p 1) n o t y p e n o l i n e s n o s y n b o l s

&
&
&
&
&

address 11 , i s i n t he f i l e 10

Figure 4-4. Device-Specific Third Stage SUAMIT File (B53.CSD)

Bootstrap Inader ,:t- 13

a t f a c n î l I è I a s : f r :

;
a s m 8 6 : F l : b g 3 . a 8 6 n o l i s r
;
l ink86 &

: f 1 : b g 3 . o b J , &
. ! i - . u B J . r ! u ù

to : f l :bg3.1nk notype nol ines nosyurbols

1oc86 : f l : bg3 . lnk &
a d d r e s s e s (c l a s s e s (c o d e (Z l))) &
o r d e r (c l a s s e s (c o d e , d a t a)) &
noln i tcode &

&è L d ! L \ u r J . / P u ! ó c

t o : F l : 2 0 . 1 1 n a p p r i n t (: f l : i f O . m p 2)

The Gener ic Th i rd S tage is loca ted a t address Z2 and is
i n t h e f i l e Z 0 . 1 1 -

CONFIGURING THE THIRI) STAGE

Figure 4-5. Generic Third Stage SUBMIT File (BG3.CSD)

4.4.1 Modifying the Submit Files

Before generating your own version of the third stage, you should modify the appropriate
submit file to match your intended configuration.

If you are using the device-specific third stage and you have excluded any device drivers
from it (by excluding o/oDEYICE macros from the 853.A86 or BS3MB2.A86 file), you
won't want to link the code for those drivers into the the third stage. To prevent the
linking of a device driver, edit the LINK86 command in the BS3.CSD file and place an
ampersand (&) in front of any file name that corresponds to a driver you want to exclude.

If you are not using an iRMX I or iRMX II system to configure the third stage, you must
comment out the line where the directory containing the Bootstrap Loader files is attached
as :fl: before invoking the other commands in the BS3.CSD or BG3.CSD file. Change the
l ine:

ATTACHFILE $ AS :F l :

to

:ATTACHFI I -E S AS :F1 :

4-14 Burtstrap [-oader

CONFIGURING T I IE THIRD STAGE

4.4.2 Invoking the Submit File

After you have modified either the BS3.CSD or BG3.CSD file to correspond to your
configuration, invoke the appropriate SUBMIT file to assemble the third stage files, link
them together, and assign absolute addresses. The format for invoking either SUBMIT file
is as follows:

Device-soecific third stage

SUBMIT B53 (filename, third_stage_addr)

Generic third stage

SUBMIT BG3 (filename, extension, third_stage_addr)

where:

filename The name of the file in which to store the senerated
rhird stage. Also, the name of the third-stage
configuration file you are using (BS3.A8ó for
MULTTBUS I systems and BS3MB2.A86 for
MULTIBUS II systems). The generic third stage
appends the next parameter (extension) to the lìÌename.

The extension the generic third stage is to have. This
does not apply to the device specilìc third stage. Normal
generic third stages usually have the extension 'GEN'.

Generic third stages used lbr Operating System
installation should use the extension 'INS'.

The address in RAM where the third stage will be
loaded. The address you specify should be a full 20-bit
address. Do not use the base:offset form to indicate the
address.

If you have no special requirements for loading the third
stage, speci$ a value of 0BC000H for this parameter.

extenslon

third_stage_addr

Bootstrap hader 4-r5

CONFIGURING THE THIRD STAGE

4.5 MEMORY LOCATIONS OF THE THREE STAGES

When you configure the first and third stages of the Bootstrap Loader, you can assign the
addresses at which the three stages will be located. Before setting these addresses, you
must understand how default memory is assigned in the Bootstrap Loader.

Table 4-2 lists the default memory locations used by the Bootstrap Loader- It also names
the SUBMIT files you can invoke to change the memory assignments.

Table 4-2. Memory Locations Used bv the Bootstrap Loader

The Bootstrap Loader Release Diskette contains a standalone version of the Bootstrap
Loader, in the file named BS1, which selects all the supported lntel device drivers. The
map file, BS1.MP2, is supplied to show the layout of the segments in BS1. The first stage is
located at 0C0000H and the second stase is located at 0B8000H. All default third stases
are located at 0BC000H.

Deacription D€fauh
Marimum
Size'

Configuration
File

1st Stage
Code

2nd Stage
Code, I st/2nd
Data and Stack

3rd Stage
(specifìc)
Cod€, Data
and Stack

3rd Stage
(gen€ric)
Code

Third Stage
(generic)
Data and Stack

Applicatìon Dependent *

0FE40OH for iSDM R3.0

088000H

0Bc000H

0Bc000H

0880@H

14K Bytes

8K Bytes

16K Bltes

8K Byîes

BSl ,CSD

BSl .CSD

BS3.CSD

BG3,CSD

BSl,CSD

* Maximum siz€ is a function ol the size of the device drivers included in the Bootsfap Load€r,

1-16 Bootstrap Iîader

WRITING A CUSTOM
CHAPTER 5

FIRST.STAGE
DRIVER

5.1 INTRODUCTION

You can configure the Bootstrap Loader to run with many kinds of devices. If you plan to
use one of the devices for which Intel supplies a device driver, you can skip this chapter.

If you want to use the Bootstrap Loader with a device other than those supported by Intel,
you must write your own first-stage device driver. (lf you want to load iRMX II
applications past the first megabyte of address space, you must also write a custom third-
stage driver. Chapter 6 describes how to write thirtJ-stage drivers.) This chapter provides
you with guidelines for writing a custom first-stage driver.

You must include two procedures in every first-stage device driver: a device initialize
procedure and a device read procedure. The device initialize procedure must initialize the
bootstrap device. The device read procedure must load information from the device into
RAM.

The rest of this chapter refers to the two procedures as DEVICE$INIT and
DEVICE$READ. However, you can give them any names you want, provided no other
first-stage driver procedure uses the chosen names. To check the names of the Intel-
supplied first-stage procedures, use LI886 to Iist the modules in the object library
/RMX286/BooT/BS 1. I - lB or /RMX86/BooT/BS 1.LIB.

You must write both procedures in an t1086 language (either PL/M-ll6 or ASM86) and
conform to the I-ARGE model of segmentation of the PL/M-86 programming language.
This means that you must declare the two procedures as FAR (not NEAR) an<J all pointers
must be 32 bits long. You must adhere to the interfacing and referencing conventions of
the PL/M-8ó IARGE model even if you write the procedures in assembly language.

If your driver code is going to operate in the MULTIBUS II environment, two adclitional
driver code constraints exist. First, you must follow the MULTIBUS II transport protocol
for communication between the driver and the device controller you bootstrap load tiom
You can au:omplish this by using Bootstrap Loader Communìcation System utiÌity calls
within your driver code. Second, you must organize your driver code so that it belongs to
the BSL-Drivers COMPACT sub-system. This last requirement is necessary because rhe
Bootstrap Loader Communicat ion System ut i l i t ies are al l NEAR cal ls.

Bmtstrap lîader 5 - l

WRITING A CUSTOM FIRST-STAGE DRryER

The next two sections describe the interface these two procedures must present to the first-

stage Bootstrap Loader code. Subsequent sections describe how to supply configuration
information to the driver, how to use Bootstrap Loader Communication System utilities in
your driver code, and how to generate first-stage Bootstrap Loader code that includes the
new driver.

5.2 DEVTCE INITIALIZE PROCEDURE

The device initialize procedure must present the following PL/M-86 interface to the
Bootstrap Loader:

dev ice$ in i t : PROCEDURE (un i t) WORD PUBLIC;

DECI-ARE unit WORD:

. (T y p i c a l c o d e)

END dev ices in i t :

where:

device$init The name of the device initialize procedure. You can choose any name
you wish for this procedure, as long as it does not conflict with the
names of any other first-stage procedure.

unit The device unit number, as defined during Bootstrap Loader
configuration.

The WORD value returned by the procedure must be the device granularity (in bytes) if
the device is ready, or zero if the device is not ready.

To be compatible with the Bootstrap Loader, the device initialize procedure must perlbrm
the following steps:

1. Test to see if the device is present. If not, return the value zero.

2. lnitializ.e the device for reading. This operation is device-dependent. For guidance
in initializing the device, refer to the hardware reference manual for the device.

3. Test to see if device initialization is successful. If not. return the value zero.

4. Obtain the device granularity. For some devices, only one granularity is possible,
while for other devices several granularities are possible. The hardware reference
manual for your device explains this device-dependent issue.

5. Return the device granulariry.

5-2 Bmtslrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

NOTE
In addition to the above five steps, the procedure must follow N4ULTIBUS ll
transport protocol and belong to the BSL-Drivers COMPACT sub-system if the
driver functions in a MULTIBUS II environment. Refer to Section 5.5 for
more information on these two requirements.

5.3 DEVICE READ PROCEDURE

The device read procedure must present the following PL/M-86 interface to the Bootstrap
I-oader:

device$read: PROCEDURE (uni t , b lknun, bufptr) PUBLIC;
DECIARE unit WORD,

b1k$num DWORD,
buf$ptr POÌNTER;

. (Typical code)

END deviceSread:

where:

device$read The name of the device read procedure. You can choose any name you
wish for this procedure, as long as it does not conflict with the names of
any other first-stage procedure.

unit The device unit number, as defined during Bootstrap Loader
conf igurat ion.

blk$num A 32-bit number specifying the block number the Bootstrap Loader
wants the procedure to read. The size of each block equals the device
granularity, with the first block on the device being block number 0.

buf$ptr A 32-bit POINTER to the buffer in which the device read procedure
must copy the information it reads from the secondary storage device.

The device read procedure does not return a value to the caller.

To be compatible with the Bootstrap Loader, the device read procedure must perform thc
following steps:

1. Read the block specified by blk$num from the bootstrap device specified by unit into
the memory location specified by buf$ptr.

Bootstrap l-oader 5-J

WRITING A CUSTOM FIRST-STAGE DRIVER

Check for I/O errors. [f none occur, return to the caller. Otherwise, combine the

device code, if any, for the device with 0l (in the form < device code > 01), push the
resultingworcl value onto the stack, and call the BSERROR procedure. For example,
if the device code is 0B3H, push B301H onto the stack, and call BSERROR. If no
device code exists. use 00.

Adding the following statements aocomplish this in PL/M-86:

DECI.ARE BSERROR EXTERNAL,
DECI^A.RE IO-ERROR LITERALLY'OB3O1H'
CALL BSERROR(ÌO_ERROR) ;

lf you call the BSERROR procedure from assembly language, note that BSERROR
follows the PL/M-86 TARGE model of segmentation; that is, declare BSERROR as

e x t r n B S E R R O R : f a r

NOTE

In adclition to the above two steps, the procedure must follow MULTIBUS II
transport protocol and belong to the BSl-Drivers COMPACT sub-system if the
driver functions in a MULTIBUS II environment. Refer to Section 5.5 for
more informat ion on these lwo requircments.

5.4 SUPPLYING CONFIGURATION INFORMATION TO THE
FIRST.STAGE DRIVER

Any custom device driver you write needs some configuration information about the devrce
it supports, such as the address of the device wakeup port. (To determine what device-
specific information your driver needs, consult the hardware reference manual for the
device.) You can provide this information to the custom device driver one of two ways:

. Place the informat ion direct ly into the dr iver (hard-coding)

. Create a configuration file similar to those provided with the Intel-supplied drivers.

5.4.1 Hard-Coding the Configuration lnformation

One way to supply configuration information to a custom device driver is to place it
directly into the code. This method works, but if any of the configuration information
changes, or if you want to support a similar device that has a slightly different
configuration, you must change the ciriver ancì reassemble it. Fortunately, first-stage devrce
drivers are usually small enough so that the amount of time required to reassemble them is
negligible.

5-4 Brxtlstrap lrtader

WRITING A CUSTOM FIRST-STAGE DRIVER

Figure 5-t illustrates how to place the configuration information directly into the code.
This figure lists the "Constants and Data" section that could be used to supply the MSC
first-stage driver with device-specific configuration information.

Figure 5-1. Hard-Coded Confìguration Information

5.4.2 Providing a Configuration File

The second way to supply configuration inlbrmation is to declare all device-specifìc
parameters as variables that are external to your device driver. A separate small module
can declare these parameters as public variables in . You can incorporate this second
module into the Bootstrap Loader by placing assembly and link commands in the first-
stage SUBMIT file BS1.CSD. To use this approach, follow the steps below:

Constants and Data

data_bsmsc segnent ; Stat ic Data

wakeup_newdrivl dw 100H ;MSC wakeup address

device_newdrlvl db 0

drtab_ne\,Jdr ivl d\r 256 ;number of cylinders
db 2 ;nuruber of fixed heads
db 0 ;nurnber of rernovable heads
d b 9 ; n u m b e r o f s e c t o r s
d b L 0 2 4 : d e v i c e g r a n u l a r i c y
db 5 ;nurnber of a l ternaÈe cy l inders

Bootstrap l-oader 5-5

WRITING A CUSTOM FIRST-STAGE DRTVER

1. In the code for the device driver, declare the device-specific parameters as external
variables. For example, the following code could be used instead of the hard-coding
shown in Fisure 5- l.

narne bpmsc
; Conf lgurat ion in format ion:

extrn r^rakeup_newdrivl

extrn device_ne\rdrivl
ext rn drÈab newdr iv l

word

byce
byte

;l,Iakeup port

;Devlce nurnber
;Device Table

Create an INCLUDE file containing a macro definition. The macro definition must
declare the device-specific parameters as public variables (matching the external
declarations from the previous step). This file should be named as "roo<.inc" where
no< is any name you choose. For example, you could place the following code into a
file called NEWDRIVI.INC to define a macro for the device-soecific Darameters
declared in Sten 1.

U * D E F I N E (b n e w d r i v l (w a k e u p , n c y l , n f s u r , n r s u r , n s e c , s e c s l z e , n a l t)) (
nane bnewdrivl
publ lc wake_rnsc, devlce_msc, dr tab_msc

code_newdr iv l segment byte publ ic 'CODE'

wakeup-newdrlvl dw lwakeup

device_newdrivl db 0

drtab_newdrivl dw lncy1
db nfsur
db %nrsur
db Zns ec
d r r % s e c s i z e
db lna l t

code_newdrivl ends)

Z* DEFINE (end) (end)

3 . Create another file that contains the macro invocation. You should name this fìle
"roo<.a86", where xxx is any name you choose. The file must also contain an
INCLUDE directive for the INCLUDE file created in the previous step. To be
consistent with the Intel-supplied device drivers, the INCLUDE directive should use
the logical name :F1: as a prefix to the name of the include file. For example, the fiìe
NWDRV1MAC.A86 could contain the followins information to invoke the macro
defined in Step 2.

5-6 Bootstrap l-oader

WRITING A CUSTOM FIRST.STAGE DRIITR

$lnc1ude (: f1 :newdr lv l . inc)

I b n e w d r i v 1 (1 0 0 H , 2 5 6 , 2 , 0 ,
fend

9 , 1024 ,

If the device-specific configuration information ever changes, you can change the
macro invocation in this file to reflect those changes. This is normally easier than
changing the source code of the driver, especially for users who are not familiar with
assembly language.

Store the files created in Steps 2 and 3 in the directory where the Bootstrap Loader
configuration files reside (normally /RMX286/800T or /RMX86/BOOT). For
example, the following Human Interface commands can be used to copy the files
created in Stens 2 and 3.

- copy nevdr fv l . lnc, nsdrv lmac.aS6 to &
x* /xrrx286 /boot/newdr lvl . lnc , /rnx286/boot/nsdrvlmac. a86
newdrivl . inc copied to / rnx286 /newdr ivl . inc
nwdn..mac . a86 copied to /rmx2 8 6/nvdrvmac . a8 6

5. Edit the first-stage SUBMIT file (BSI.CSD) to cause it to assemble your configurarion
file and link it to the first stage. To the list of ASM86 invocations, add an ASM86
invocation for the file created in Step 3 (>oo<.a86). To the list of modules to be linked
(immediately below the LINK86 invocation), add the name of the object module
created when your file (no<.a86) is assembled. In both the ASMIJ6 invocation and the
LINK86 invocation, preface the filename with the logical name :Fl: (such as
:f1:nc<.a86). Unless you have reason to do otherwise, use the same ASM86 and
LINK86 options shown for other files assembled and linked by BSI.CSD.

Figure 5-2 shows modifications to BSl.CSD that add support for the driver
configuration files just created. Arrows ar the left of the figure show the lines that were
added. Notice that only the configuration file is being assembled each time BSl.CSD is
invoked, not the entire driver. BSl.CSD assumes the use of the configuration file
BS1.A86 and that you have assembled your driver and added the resulting object
module into the library BSl.LIB.

Bootstrap l.oader f , - /

WRITING A CUSTOM FIRST-STAGE DRIVER

Figure 5-2. Modified BSI.CSD File

5.5 USING THE MULTIBUS@ IITRANSPORT PROTOCOL

If the driver you are creating functions within a MULTIBUS I environment, you need not
read this section. Skip to Section 5.6.

If the driver you are creating functions within a MULTIBUS II environment, you must
write the driver code to use the MULTIBUS II message transport protocol. To help you
accomplish this task, Intel provides a small, single-thread communication system that
enables Bootstrap Loader drivers to communicate with device controllers within a
MULTIBUS II environment. This communication system is called the Bootstrap Loader
Communication System.

The following paragraphs provide an overview of the Bootstrap Loader Communication
System, which uses concepts similar to the Nucleus Communication System. Should you
desire a more complete description of these communication system concepts, refer to the
Extended |RMX II Nucleus User's Guirie in Volume 2 of the iRMX ll documentation set.

;
; a s r n 8 6 : f 1 : b s 1 . a 8 6 r n a c r o (9 0) o b j e c c (: f 1 - : b s 1 . o b J) P r í n r (: f l : b s 1 . l s t)

a s r n 8 6 : f l : b 2 6 4 . a 8 6 n a c r o (5 0) o b j e c t (: f 1 : b 2 6 4 . o b j) p r i n t (: f 1 : b 2 6 4 . 1 s t)
a s n 8 6 : f 1 : b s c s l . a 8 6 m a c r o (5 0) o b j e c t (: f l : b s c s t . o b J) p r i n t (: f l : b s c s i . l s t)

-> asn86 : f l :nvdrv lnac.aS6 nacro(50) object (: f l :nvdrwlnac.obj no l lsÈ
;
l l n K ó b

' f 1 ' h c p r r n h ì

& : f 1 : b c i c o . o b j ,

&
&
&
&;standaÌonè ser lal channèl support

f l h c n c i n h i

f l : b 2 6 4 . o b J ,
fl : nrdrvlnac . obj ,

&
&
&r l : D s _ t . l l D

to : f 1 : b s 1 . l n k p r l n t (: f l : b s 1 . n p l) &

5-E Bootstrap [.oader

WRITING A CUSTOM FIRST-STAGE DR-IVER

The Bootstrap Loader Communication System can be thought of as a subset of the Nucleus
Communication System. It fully conforms to the MULTIBUS II transport protocol
suitable for a limited bootloading environment. Unlike the Nucleus Communication
System, the Bootstrap Loader Communication system is designed to handle bootstrap
loading only. Consequently, the system is synchronous in nature. In other words,
procedures execute to completion one after the other; no multitasking or need to handle
asynchronous events exists,

MULTIBUS II transport protocol functions supported by the Bootstrap Loader
Communication System include control and data message tlpes, a subset of the
request/response transaction model, send and receive transaction models, message
broadcasting, and access to device interconnect space.

To support these functions, lntel supplies a set of system utilities grouped together in a
Bootstrap Loader Message Passing System Module. As a programmer, you have access to
these utilities through system calls you place in your driver code. The remainder of this
section explains the supported functions in the Bootstrap Loader Communications System
and shows you how to use each of the utilities.

5.5.1 Message Passing Controller Initialization

Before any Bootstrap Loader Communication System calls can be made, you must
initialize certain parts of the hardware in preparation for message passing. You
accomplish this initialization through the BSMPSINIT utility. You must make this call
from your driver's initialization procedure before making any other Bootstrap Loader
Communication utility calls. The following utility description presents BSMPSINIT:

CALL BSMPSINIT

INPUT PARAMETERS

This utility has no input parameters.

OUTPUT PARAMETERS

This utility has no output parameters.

DESCRIPTION

The BSMPSINIT utility provides hardware initialization for the Message Passing
Controller (MPC) and the Advanced Direct Memory Access (ADMA) devices. You must
perform a call to this utility before attempting any other Bootstrap Loader Communication
Svstem utilitv calls.

Bootstrap Loader 5-9

WRITING A CUSTOM FIRST-STAGE DRI!'ER

CONDITION CODES

This utility has no condition codes.

5.5.2 Message Types

The Bootstrap Loader Communication System supports two types of messages: control
messages and data messages.

Control messages consist of only a control portion. These messages occur between the
sender and receiver requiring no explicit buffer resource allocation. The reason for no
buffer allocation is because a control message has no data part. The maximum length of a
control message is 20 bytes. Also, a one-to-one correspondence exists between control
messages and MULTIBUS II unsolicited messages (all unsolicited messages are control
messages).

Data messages consist of both a l6-byte control portion and a variable length data portion.
These messages do require explicit buffer allocation between the sender and receiver. The
reason buffer allocation is required is because this type of message contains a variable
amount ofdata. The maximum length of the data portion is 64K-l bytes.

5.5.3 Request/Response Transaction Model

The Bootstrap Loader Communication System supports a subset of the re<1uest/response
transaction model that the Nucleus Communication Svstem uses. This subset has the
folìowing characteristics:

o Because the Bootstrap Loader Communication System functions within a bootloading
environment, request messages originate only from the host CPU board. The specific
device controllers then match responses to requests on a one-to-one basis.

. No support exists for multiple outstanding requests.

. Fragmentation and transmission of response messages into specific application buffers
can occur. Because this fragmentation is completely transparent to the user, the
fragmented response is considered as a single response to a single request.

o The Bootstrap Loader Communication System receives messages in the order in which
they are sent.

Communication between the CPU host board executing the driver and lhe bootable device
controller uses the basic transmission model of send and receive. The driver sends a
request to the device controller and then receives a response back. When the driver
initiates the message, an internal transaction ID is generated that logically associates the
request with the response. This ID remains valid until the device controller responds, thus
completing the transaction.

5-10 Bootstrap l-oader

WRITING A CUSTOM FIRST-STAGE DRIVER

For messages that require data as part of the response, the driver can initiate the allocation
of an rsvp data message buffer in which to receive the response data. The data can then
arrive either whole or fragmented. Regardless of fragmentation, the host CPU board views
the response message as one message. If the request message requires no data as a
response, the response must be a control message.

The utility the Bootstrap Loader Communication System uses to support the
request/response transaction model is BS$SEND$RSVP. The following utiliry description
presents BS$SEND$RSVP:

CALL BS$SEND$RSVP(socket,control$ptr,data$adr,data$length,
rsrp$control$p,rsrp$data$adr,rsvp$data$length,
flags,exception$ptr)

INPUT PARAMETERS

socket

control$ptr

data$adr

data$length

rsrp$control$p

rsrp$data$adr

A DWORD of the form host$id:port$id identif ing the
remote destination.

A POINTER to a control message. If data$adr = NULL
(0) or data$length = 0, then the control message is 20
bytes long. Otherwise, the control message is 16 bytes
long.

A DWORD containing the absolute address of a data
message. If data$adr is NULL (0), then a control
message is sent. Otherwise, data$adr points to a
contiguous buffer.

A WORD defining the length of the data message. If
data$length is equal to zero, the control message length
is assumed to be 20 bytes.

A POINTER to the received control message. If
rsvp$data$adr = NULL (0) or rsrp$data$length = 0, then
the control message is 20 bytes long. Otherwise, the
control message is 16 bytes long.

A DWORD containing the absolute address of a data
message buffer for the return response that is expected.
If rsrp$data$adr is NULL (0), then a control message is
expected as a reply. Otherwise, rsw$data$adr points to
a contiguous buffer in which the data message arrives.

Bootstrap Loader 5 - l l

WRITINC A CUSTOM FIRST.STAGE DRI!'ER

rslp$data$length A WORD defining the length of the rsrp data buffer.

flags WORD reserved for future use. Aithough this
parameter is ignored, you must supply a "0" value as a
placeholder.

OUTPUT PARAMETER

exception$ptr A POINTER to a WORD to which the Operating
System returns the exception code generated by this
Bootstrap Loader Communication System call.

DESCRIPTION

The BS$SEND$RSVP utility sends a message from a port to a remote socket with an
explicit request for a return response. This call is synchronous with respect to both the
request and the response.

5-12 Bootstrap l-oader

WRITING A CUSTOM FIRST.STAGE DRIVER

EXAMPLE

This example illustrates the fundamentals of the request/response transaction model
between the host CPU board and bootable device controller board. This examole is
written in PL/M-Só code and is intended to be generic in nature.

//**
* îh is exanple sends a 20,byte contro l nessage to the *
* bootable device contro l ler board located ln s lo t 1 *
* at por t 500 of the MULTIBUS I I systen. This nessage *
* so l lc i ts data f rom the device as DarÈ of the *
* r a < n a n c a

*

The cont ro l message sent i s con ta ined in the 2o-by te
data array p$couurand$ursg (Peripheral Comrnand
Message) . The cont roL rnessage rece ived is captured
ln the 20-by te da ta a r ray p$sra tusgrnsg (Per lphera l
S ta tus Me s sage) .

The so l i c i ted da ta i s rece ived f rom the dev ice v Ía
an rsvp bu f fe r . Note tha t the address po ln t ing to
che rsq bu f fe r rnus t be an abso lu te address be fore
i t i s passed ro BS$SEND$RSVP. Thus , rhe need fo r
ca l l ing a convers ion rou t Íne . In th is exarnp le , a
routine (not shown) ca1led CONVERT ADDRESS handles
the address convers ion . I t i s up to the prograrnroer
to supp ly the convers lon rou t lne .

* Set t ing data$length and data$adr to NULL (0) *
* Índ icates that only a contro l nessage is being sent *
* f roro the host CPU board to the contro l ler board. *
** /

Bootstrap Loader 5-r3

WRITING A CUSTOM FIRST-STAGE DRIVER

SAMPLE_BS $ S ENDSRSVP : Do;

DECÌ-ARE socket DWoRD;
DECIARE socket$o s t ruc Eure

(host$ id l lORD,
por t$ id I . IORD) AT (Gsocket) ;

DECLARE p$contro l$msg(20) BYTE:
DECIAREp$status$msg(20) BYTE;
DECLARE send$data(100) BYTE;
DEOI"ARE rswp$data(1024) BYTE;
DECIARE rsvp$data$adr Df.lORD;
DECI,A,RE rsrp$ data$ l ength DI,I0RD;
DECI,ARE flags WORD;
DECÌARE exception WoRD;
DECIARE s lot L ITERALLY '1H' ;

DECLARE port LITERALLY ' LF4H' ;
DECI,ARE null LITERALLY '0H' ;

C o D E : D O ;
^ ^ ^ 1 , ^ + C ̂ t - ^ - F C i I
è v w N c u v v . r r v r e v r u

c n r l z o t (n n n r t (i À

rsrp$data$ 1-ength
f lags

r c \ m q À r ' - . q . / r =

- s l o t ;
- p o r t ;
- 4 0 0 H ;
: n u l l ;

CoNVERT_ADDRESS (@rsrp$data (0)) ;

. (Typica l code to def ine

. the 20-byte p$contro l$msg b lock

. wi th the contro l nessage.)

CALL BS$SEND$RSVP
(s o c k e t , @ p $ c o n t r o l $ m s g (0) , n u l l ,
n u l l , @ p g s t a t u s g r n s g (0) ,
r s r p $ d a t a $ a d r , r s r p $ d a t a $ 1 e n g t h ,
f lags , @except ion) ;

IF except ion <> 0
THEN CALL BSERROR;

. (T y p i c a l c o d e t o e x e c u L e

. l o r s u c c e s s f u l s t a t u s .)

END CODE;
sAÌ,fPLE_BS I SEND9RSVP ;

5-r4 Bootstrap [-{)ader

WRITINC A CUSTOM FIRST-STAGE I)RtVER

CONDITION CODES

E$OK 0000H No exceptional conditions.

BSEBUFFER$SIZE 0082H The rsvp buffer posted is too
smal l .

BSETRANSMISSION 00ElI{ An error occurretl while
transmit t ing a MULTIBUS I I
message.

5.5.4 Send and Receive Transaction Models

In addi t ion to the request/response transact ion model, the Bootstrap Lolder
Communication System supports scnd and receive transaction models. Normally,
communication between a driver and a device in a bootloading environment uses the
request/response or send models. However, ifyour host CPU board can capitalize on a
receive transaction model initiated liom the driver, the utility is available.

You can make calls to the send and receive utilities, respectively when you neetl the driver
to simply send a message with no request for a response, or when you need the driver to
wait lbr spontaneous communication from a specific device controller.

The two utilities available to you that support the send and receive transaction models are
BS$SEND and BS$RECEIVE. The following utility descriptions present BS$SEND and
BS$RECEIVE:

CALL BS$SEND (socket,control$ptr,data$adr,data$length,
flags,exceptiongptr)

INPUT PARAMETERS

socket A DWORD of the form hostgid:portgid identifying the
remote dest inat ion.

control$ptr A POIN'IER to a control message. lf datagadr = NULL
(0) or data$length = 0, then the control message is 20
bytes long. Otherwise, the control message is l6 bytes
long.

data$adr A DWORD conta in ing the absolute address of a data
message. I f data$adr is NULL (0) , then a contro l
message is sent. Otherwise, data$adr points to a
contiguous buffer.

B{ntstrap l-oader 5-t-s

WRITING A CUSTOM FIRST-STAGE DRIVER

data$length A WORD defining the length of the data message. If

data$length is equal to zero, the control message length
is assumed to be 20 bltes.

flags WORD reserved for future use. Although this
panrmetcr is ignored, you must supply a "0" value as a
placeholder.

OUTPUT PARAMETER

exception$ptr A POINTER to a WORD in which the Bootstrap
Loader returns the exception code generated by this
Bootstrap Loader Communication System call.

DESCRIP'TION

The BS$SEND utility sends either a contrttl or a data message to a MULTIBUS II board
identified by the parameter socket.

EXAMPLE

This example illustrates the fundamentals of message passing from the host CPU board to
the bootable device controller board. This example is written in PL/M-Só code and is
intended to be qeneric in nature.

/ ********************************** : t******* :******************
* This exaurp le sends a data nessagè to the bootable
* c o n t r o l l e r b o a r d l o c a t e d i n s l o t 1 a t p o r t 5 0 0 o f
* the MULTIBUS I I systern.

The contro l por t ion of the message sent is located *

i .n the 16-byte data array p$contro l$rnsg (Per iphera l *
Conmand Message). The data por t ion of the nessage *
sent is located in the 100-bvÈe data arrav *
send$data. *

Note that the progranmer is responsib le for
" . " . r . i r rg

i
p$contro l$msg and the area conta in ing the data *
por t ion of the rnessage are in i t ia l ized l r i th correct *

**/

5- ló Bfi)tstrap l-oader

SAIPLE_BS$SEND: D0;

DECI,ARE s ocke t
DECIARE socket$o s truc ture

(ho s E$ id
Porr$ id

DECI^ARE pgcontrol gms g (l6)
DECIARE send$data(100)
DECIARE data$adr
DECIARE data$ len8th
DECIARE fl ags
DECIARE except ion
DECTARE sIoC LITEMLLY
DECI-ARE port I-ITERALLY
DECIARE nul-l LITEMLLY
DECIARE length LITERALLY

C O D E : D O ;
s o c k e t $ o . h o s t $ l d :
s o c k e t $ o . p o r t $ i d :
d a t a $ l e n g r h
f l a g s

data$adr : coNvERT

DWORD ;

WORD ,
WORD) AT (@socket) ;
BYTE;
BYTE ;
DWORD ;
WORD ;
WORD ;
WORD ;
, l H ' ;
, 1 F 4 H ' ;
' 0 H ' ;
, 6 4 H , 1

s l o t ;
p ó r t ;
l e n g t h ;
n u l l ;

ADDRESS (Gsend$dara (0)) ;

. (Typ ica l code to de f ine

. t h e 1 6 - b y t e p $ c o n t r o l $ m s g b t o c k

. ho ld ing the cont ro l message.)

. (Typ i -ca Ì code to de f ine

. t h e 1 0 0 - b y c e m e s s a g e

. p o r C i o n .)

CALL BS 9 SEND
(s o c k e t , @ p $ c o n c r o l $ m s g (0) , d a t a g a d r ,
d a t a $ L e n g t h , f [a g s , @ e x c e p t i o n) ;

I F e x c e p t i o n < > 0
THEN CALL BSERROR;

. (T y p i c a l c o d e t o e x e c u t e

. f o r s u c c e s s . f u l s L a L u s .)

END CODE;
SMPLE_BS$SEND;

WRITING A CUSTOM FIRST-STAGE DRIVER

Bootstrap l,oader 5-17

WRITING A CUSTOM FIRST-STAGE DRIVER

CONDITION CODES

E$OK

BSETRANSMISSION

No exceptional conditions.

An error occurred while
transmitting a MULTIBUS II
message.

0000H

OOEIH

CALL BS$RECEIVE (socket,control$ptr,data$adr,data$length,
exception$ptr)

INPUT PARAMETERS

socket

control$ptr

data$adr

A DWORD of the form host$ id:por t$ id ident i$ ing the
remote sender.

A POINTER to the area in memory that receives the

control message.

A DV/ORD conta in ing the absolute address of a d: r ta
messrìge received. If data$adr is NULL (0), then the
host CPU board expects a control message. Otherwise,
data$adr points to a contiguous buffer that receives the
data portion of the message.

A WO RD defining the length of the data message
received.

data$length

OUTPUT PARAMETERS

exception$ptr A POINTER to a WORD to which the Operating
System returns the exception code generated by this
Bootstrap Loader Communication System call.

DESCRIPTION

The utility BS$RECEI\E, enables a host CPU board to receive a message from a specific
device controller. The utilities call identifies the MBII slot to wait on, the tlpe of message,
and addresses for the control portion and, if necessary, the data portion of the message.

To receive data messages, you must provide a buffer containing adequate space in which to
capture the data. Ifyou do not supply a large enough buffer, the receiving CPU host
rejects the message. Also, your application must make a call to BS$RECEIVE before the
actual message is sent. No facility for queuing asynchronously received messages exist.

5 -18 Bootstrap LOader

WRITING A CUSTOM FIRST-STAGE DRIVER

EXAMPLE

This example illustrates the fundamentals of message passing from the hootable device
controller board to the host CPU board. This example is written in PL/M-86 code and is
intended to be seneric in nature.

/**
* This example i l lust rates how a host CPU board *
* receives a data message f rom the bootable *
* contro l ler board located in s lo t 1 at por t 500 of *
* the MULTIBUS I I system. *

* The controf por t ion of the message rèceivèd is *
* located in the 16-byte array p$sCatus$msg *
* (Per iphera l Starus Message) . The data por t ion of *
* the nessage received is located in the 1024-byte *
* data array sent$data. *
***)t /

SAHPLE BSSRECEIVE: DO:

DECIARE
DECI*ARE

DECI.ARE
DECIARE
DECIARE
DECl-ARE
DECIARE
DECIARE
DECLARE
DECIARE
DECISRE
DECIAREn u 1 1

socke t
socket$o s t ruc ture
(h o s t $ i d
p o r r $ i d
p$ s ta tus $msg (16)
data$adr
data$length
f l a g s
except ion
s e n r $ d a r a (1 0 2 4)
Slot LITERALLY
POTI LITEMLLY
length LITEMLLY

DWORD ;

WORD ,
I .JORD) AT (GsÒcket) ;
BYTE ;
DWORD ;
WORD ;
IIORD ;
WORD ;
BYTE ;
' l H ' ;
, 1 F 4 H ' ;
, 400H' ;
, O H ' ;Ll TEMLLY

C O D E : D O ;
s o c k e t $ o . h o s t $ i d : s l o t ;
c n n l . o t (n ^ ^ r t - (i À : p o r t ;
d a r a $ l e n g t h - l e n g l h ;
f Ìags : nu l l ;

dara$adr : CoNVERT_ADDRESS (@sent$dara(0)) ;

CALL BS $RECEIVE
(socket , @p$status$nsg(0) , data$adr ,
. l ^ + ^ C l ^ - ^ . r -u d L d v , r , ' 6 t

" ,
I I d é s , \ : c À u F p L I u ' r / ,

Bootstrap Loader 5-r9

] F except ion <> 0
THEN CALL BSERROR;

(Typ ica l code to execute

f o r s u c c e s s f u l s t a t u s .)

END CODE;
SAMPLE_BS $RECE IVE ;

WRITINC A CUSTOM FIRST.STAGE DRIVER

CONDITION CODES

E$OK 0000H No exceptional conditìons.

BSEBUFFER$SIZE 0082H The receive clata buffer posted is
too small.

BSETRANSMISSION 00ElH An error occurred whi le
transmitting a MULTIBUS II
message.

5.5.5 Message Broadcasting

Message broadcasting enables one control message to go out at the same time to all boards
(bus agents) in the MULTIBUS ll system. Recall that the identification scheme for boards
employs sockets, which have the host$id:port$id form. Host$id indicates the board
involved and port$id indicates the unique I/O port within the board. During message
broadcasting, the host$id portion of the socket is uninterpreted. Thus, the message arrives
at every board having a port identifieci by port$id.

The Bootstrap Loader Communication System uses the bs$broadcast utility to support
message broadcasting. The following utility description presents bs$broadcast:

CALL BS$BROADCAST (socket,control$ptr,exception$ptr)

INPUT PARAMETERS

socket A DWORD of the form host$id:port$id identifying the
remote destination. The host$id component is ignored.

control$ptr A POINTER to the control message sent.

5-20 Bootstrap hader

WRITING A CUSTOM FIRST.STAGE DRIYER

OUTPUT PARAMETER

exception$ptr A POINTER to a WORD to which the Operating
System returns the exception code generated by this
Bootstrap Loader Communication System call.

DESCR]PTION

The bs$broadcast utiliry transmits a single control message to the MULTIBUS ll boards
having a port whose ID matches the port$id portion of the parameter socket. This
message goes out on all MULTIBUS Il buses (iPSB parallel system bus and/or iSSB serial
system bus) connected to the broadcastìng CPU host board.

EXAMPLE

This example illustrates the fundrrmentals of broadcasting control messages over a
MULTIBUS II system. This example is written in PL/M-tì(r code and is inten<led to be
seneric in nature.

/**
* This exarnple i l lust rates ho\ t a host CPU board *
* broadcasts a contro l message to a l l systen boards *
* h a v i n g a p o r t $ i d o f 5 0 0 . D u r i n g m e s s a g e *
* b r o a d c a s c i n g . t h e h o s t $ i d p o r t i o n o f s o c k e t i s *
* i gno red .

* T h e c o n i r o l F é s s , ? o e s e n E i s
* (Pe r i phe ra l Command Message .

l oca ted in p$cont ro l$msg *

)t*****/

SAMPLF._BS $BROADCAST : D0;

DECIARE
DECIARE

DECIARE
DECI^ARE
DECIARE
DECI.ARE

socke t
socket$o s L ruc Lure
(h o s t $ i d
por r$ id
pgcontro l grns g (20)
e x c e p l i o n
s lot L ITEMLLY
POTI LITEMLLY

DWORD ;

I,JORD ,
W O R D) A T (G s o c k e t) ;
A V T F .

WORD ;
, 1 H , .

, 1 F 4 H ' ;

C O D E : D O ;
s o c k e t $ o . h o s t $ i d * s l o t ;
c ò . L a i - q ^ n n r t (i à : n ^ r i - '

CALL BS$BROADCAST
(s o c k e t , G p $ c o n t r o l $ r n s g (0) , @ e x c e p t i o n)

Bootstrap l-oader 5-21

IF èxcept ion <> 0
THEN CALL BS ERROR;

END

. (Typica l code to execute

. for successfuÌ s tatus .)

END CODE;
SAMPLE-BS 9BROADCAST ;

WRITING A CUSTOM FIRST-STACE I)RIVER

CONDITION CODES

E$OK 000011 No exceptional conditions.

BSSESTRANSMISSION 00E lH An error occurred while
transmitting a MULTIBUS II
message.

5.5.6 Transmission Modes

Data message transmissions are synchronous in that the sender of the message waits for
the receiver of the message to rcturn a transmission status value. This value indicates
whether or not the receiver successfully acquired the message. Control messages, however,
are not synchronous in this manner. There is no indication to the sender that a control
message has been received. Also, related to each tlT)e of message transmission is a
transaction ID value. The communication system uses this value internally to match
requests with responses and to indicate whether the message is an rsrp message or a
nonrsvp message. lf the message sent is not an rsvp message, the associated transaction ID
value is zero. If the message sent is an rsvp message, the associated transaction ID value is
a nonzero value matched to both the recìuest and the resoonse.

5.5.7 Interconnect Space

The Bootstrap Loader Communication System supports access to board interconnect
space. This access enables the driver to determine critical device status information. The
Bootstrap Loader Communication System provides interconnect space access through two
system utilities: BSGETINTERCONNECT and BSSETINTERCONNECT. When
you use these calls within your driver code, you must verify the value read or written from
or to the interconnect space is u'hat you expect. The Bootstrap Loader code does not know
what "correct" values should be

<-)) Bfi)tstrap Loader

WRITING A CUSTOM FIRST.STAGE DRIVER

The following utility description presents BS$GEfiINTERCONNECT:

value = BSGETINTERCONNECT (slot$number,reg$number,
exception$ptr)

INPUT PARAMETERS

slot$number A BYTE that specifies the MBII slot whose interconnect
space is to be read. You must speciry this value as
lbllows:

Value Meaning

0-19 specifies iPSB slot numbers 0-19
20-23 illegal values
24-29 specifies iLBX slot numbers 0-5
30 illegal
3l specifies the iPSB slot ofthe CPU

that the calling software is
executing on, regardless of the
actual iPSB slot number of the
CPU

32-255 illegal values

reg$number A WORD identifoing the interconnect register to be
read. This value must be in the range of 0000H to
0l FFH (the interconnect space definition).

OUTPUT PARAMETERS

value A BYTE containing the contents of the interconnect
register read.

exception$ptr A POINTER to a WORD in which the Bootstrap
Luader returns the exception code generated by this
Bootstrap Loader Communication System call.

DESCRIFIION

The utility BSGETINTERCONNECT reads the contents of the interconnect register
specified by reg$number from the board specified by slot$number and returns the contents
in the parameter value.

Bootstrap Loader 5-23

WRITING A CUSTOM FIRST-STAGE DRIVER

EXAMPLE

This example illustrates the fundamentals of reading interconnect space registers. The
example is written in PL/M-86 code and is intended to be generic in nature.

/**
* This exarnple reads the general purpose reglster of che *
* uni t def ln i t ion record v i th in the in terconnect spacè *
* found on the board in s lo t nunber three. Note that *
* th is code dóès no checking of s ta lus af ter each cal l to *
* BSCET INTERCONNECT. The programmer Erust ensure the *
* va lue returned is correct . *
** /

SA.I,fPLE_BSGETINTERCONNECT : DO ;

DECIARE slot$nurnber BYTE;
DECI-ARE record$offset IíORD;
DECIARE uni tdefrec BYTE;
DECIAR-E rec$length$reg$of f BYTE;
DECTARE gen$staÈus$reg$of f BYTE;
DECLARE record$found BYTE;
DECIÀRE eoE$rec BYTE;
DECI,ARE stacus woRD;
DECTARE value BYTE;
DECI-ARE slot LITERALLY '3H' ;
DECIARE udr LITERALLY '0FEH'

DECIARE gsro LITERALLY 'OAH' ;
DECIARE eotrec LITERALLY '0FFH'

DECI,ARE rlro LITERALLY '01H' ;
DECLARE ro LITERALLY '020H'

C O D E : D 0 ;
s lot$nurnber - s lo t ;
un i tdefrec - udr ;
g e n $ s t a t u s S r e g $ o f f - g s r o ;
e o t $ r e c - e o t r e c ;
rec$ length$ reg$ o f f : r l ro ;

/***
* Set up to read the f i rs t nonheader record wi th in the *
* in tèrconnect space. This is done by establ ish ing *
* record$of fset past the in terconnect space header *
* record, which in th is case is 32 bytes long. *
>r************/

r e c o r d $ o f f s e t : r o ;

5-24 Boolstrap LOader

WRITING A CUSTOM FIRST.STACE DR]VER

/***
* Read the record type regis ter (the f i rsE regis ter *
* wl th in a record) of the f i rs t nonheader record in to *
* the var iab le recordSfound. *
***,/

record$f ound = BS$CEîgIMERCONNECT
(s lotSnumber ,
recordSof fset ,
Gstatus) i

/ *************************** : t*********************** : t***r t****
* Decerminè i f th is f i r s t record is the record we r^ tan t to *
* read f rom. I f so , bypass the D0 I iH ILE loop and ge t *
* r i g h t t o r e a d i n g t h e s p e c i f í c r e g i s c e r . l f n o c , *
* and the record is no t the EOT (End Of Tenp la te) record , *
* execute the DO hT l lLE loop to ge t a t thè nex t rècórd . *
***************rk******* :&************************************ /

D0 WHILE (record$found o uni t$def$rec) AND
(record$found <> eot$rec) ;

/**
* Posi t ion record$of fset to read lhe next sequent ia l *
* record. This ís done by cal l lng BS 9CET$ INTERCONNECT *
* to read the aurrent record length, adding 2 (for the *
* t l^ io bytes used for the record type and record length *
* r e g i s t e r s) , a n d f i n a l l y a d d i n g t h e c u r r e n t : r
* r e c o r d S o f f s e t v a l u e . N o t e t h a t r e c o r d $ o f f s e t + *
* rec $ length$re g$o f f y ie lds the in terconnect regis ter *
* that holds the current record length. *
**********************)t*************************************/

record$of fset - record$of fset + 2 +
BS $G ET$ 1NÎERCONNECT

(slot$nurnber ,
record$of fset +
r e c $ 1 e n g t h $ r e g $ o f f ,
Gs tatus) ;

/***
* Read the next record- type regi ,s ter in to the var iab le *
* record$found. *
** : t********** /

Bootstrap L0ader <-? q

WRITINC A CUSTOM FIRST-STACE I)RIVER

CONDITION CODES

E$OK 0000H No exceptional conditions.

The following utility description presenrs BS$SEfi INTERCONNECT:

record$found = BS cET INTERCONNECT
(slotSnunber,
recordSof fset ,
G s t a c u s) ;

END ;

/ * :P*** * *
* Ca11 BS GET INTERCONNECT to read the general status *
* regis ter . The exact regis ter locat ion is deterur ined by *
* adding the règis ter of fset va luè gen$ s ta tus rego f f to *
* record$of fset *
** /

value - BS GET INTERCONNECT (slot$nurnber,
record$of fset + gen$statusregof f ,
G s t a t u s) .

END CODE:
END SA}fPLE-BSGETINTERCONNECT ;

CALL = BSSETINTERCONNECT (value,slot$number,reg$number,
exception$ptr)

s-26 Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

INPUT PARAMETERS

value A BYTE containing the value to be written into the interconnect register.

slot$number A BYTE specirying the MBll slot whose interconnect
space is to be written. You must specify this value as
follows:

Value

0- 19
20-23
24-29
30
3 t

32-255

Meaning

specifies iPSB slot numbers 0-19
illegal values
specifies iLBX slot numbers 0-5
illegal
specifies the iPSB slot of the CPU
that the calling software is
executing on, regardless of the
actual iPSB slot number of the
CPU
illegal values

reg$number

OUTPUT PARAMETERS

exception$ptr

A WORD identifuing the interconnect register to be
written. This value must be in the range of 0000H to
0lFFH (the interconnect space definition).

A POINTER to a WORD in which the Bootstrap
Loader returns the exception code generated by this
Bootstrap Loader Communication System call.

DESCRIPTION

The utility BSSETINTERCONNECT writes the interconnect register specified by
reg$number on the board specified by slot$number with the contents in the parameter
value.

Bootstrap Loader 5-27

WRITING A CUSTOM FIRST.STAGE DRIVER

EXAMPLE

This example illustrates the fundamentals of writing interconnect space registers. The
example is written in PL/M-86 code and is intended to be generic in nature.

/**
* Th is exarnp le wr i tes the conÈro l le r in i t Ía l i za t ion *

* reg is te r o f the para l le l sys ten bus cont ro l record *
* w i th in the in te rconnect space found on the board in *

* slot nunber three. Note that this code does no *

* check inp o f sca tus a f te r each ca l l to *

* BSGET INTERCoNNECî and BS $ s ET$ INTERCONNECT . Thè
* prograumer rnust ensure values returned and writcen are
* c o r r e c t .

* This exarnple uses the sane record - s earching scheme *
* shown ln the exanple for BS GET INTERCONNECT. *
**,/

SAI{PLE_BS $ S ET$ INTERCONNECT : D0 ;

DECI^ARE slot$nurnber BYTE;
DECLARE status \'ORD;
DECLARE record$of fset WORD;
DECI-ARE psb$ctr l$rec BYTE;
DECLARE rec $ length$ re g$off BYTE;
DECIARE contr$ init$ reg$off BYTE;
DECI-ARE record$found BYTE;
DECIARE eot$rec BYîE;
DECIARE host$mess$ id BYTE;
DECIARE sloÈ LITEMLLY ' 3H' ;
DECI,ARE psbcr LITERALLY '6H' ;
DECLARE c i ro LITERALLY 'DH' ;

DECLARE eotrec LITERALLY 'OFFH'

DECIARE rlro LITEMLLY ' 01H' ;
DECIARE hnid LITERALLY 'AH';

DECIARE ro LITERALLY '020H'

C o D E : D Q ;
s lot$number : s lo t ;
p s b $ c t r l $ r e c : p s b c r ;
c o n t r $ i n i t $ r e g $ o f f - c i r o ;
e o t $ r e c - e o L r e c ;
- ^ ^ C l - - ^ f h C - ^ . C ^ F F - r l y ò .r c L Y r c " ó r

" v
' c t 1 . ? u .

h o s t $ m e s s $ i d - h n i d ;

5-28 B(ntstrap [,0ader

WRITING A CUSTOM FIRST-STAGE DRIVER

/***
* Set up to read the f i rs t nonheader record wí th in the *
* in tèrcónnect space. This is done by establ ish ing *
* record$of fset past the in terconnect space header *
* record, which in th is case is 32 bytes lóng. *
*** /

r e c o r d $ o f f s e t - r o ;

//**************x**
* Read the record type regis ter (thè f i rs t reg is ter *
* wi th in a record) of the f i rs t nonheader record in to *
* the var iab le record$found. *
*** /

record$found - BS cET INTERCONNECT
(s1ot$nurnber ,
record$of fset ,
G s t a t u s) ;

/**
* Deterrn ine i f chís f i rs t record is the record we wanc to *
* wr i te . I f so, bypass the D0 l+rHlLE loop and proceed *
* ' r r í t i n s t h e s n e . i f i c r e p í s r c r I f n . l t e n d t h e r e c o r d *
* i s no t the EOT (End Of Templa te) record , executè the DO *
* I.IHILE loop to get at the next record.)t
**/

DO WHILE (record$found o psb$ctr1$rec) AND
(record$found O eot$rec) ;

/**
* Posi t ion record9of fset to read the next sequent ia l *
* record. This is done by cal l ing BSGET INTERCONNECT *
* to read the current record length, addíng 2 (for the *
* Èwo bytes used for the record type and record length *
* r e g i s t e r s) , a n d f i n a l l y a d d i n g t h e c u r r e n c *
* record$of fset va lue. Note that record$of fset + *
* rec9lengthregof f y ie lds the in terconnect regisrer *
* that holds the current record lengÈh. : *
**/

r e c o r d $ o [[s e t : r e c o r d $ o f f s e t + 2 +
BS 9GET$ INTERCONNECT

(s lor$number ,
r e c o r d $ o f f s e t +
recglengthgreggof f ,
@ s t a t u s) ;

Bootstrap l,oader 5-29

WRITING A CUSTOM FIRST.STAGE DRIVER

CONDITION CODES

E$OK 0000H No exceptional conditions.

5.5.8 Driver Code Considerations

When writing the first-stage driver, you must provide two procedures to the Bootstrap
Loader: a device initialization prrredure and a device read procedure. To be compatible
with the Bootstrap Loader, these procedures must perform the same steps as the
initialization and read procedures listed in Sections 5.2 and 5.3.

An additional requirement for driver code used in a MULTIBUS II environment stipulates
that code using any of the utilities shown in Sections 5.5.2 through 5.5.6 belong to the
Bootstrap Loader Drivers COMPACT sub-system. The reason for this requirement is
because all the utilities are arcessible as NEAR calls.

/***
* Read the nexÈ record- type regis ter in to the var iab le *
* record$found. *
***/

record$found - BS GET INTERCONNECT
(slot$nurnber ,
r e c o r d $ o f f s e t ,
G s L a t u s) ;

END :

/ **)k*****
* ca l l BsS SETS INTERCONNECT to wr i te the contro l ler *
* i n i t i a l i z a t i o n r e g i s t e r . T h e e x a c t r e g i s t e r l o c a t í o n *
* is detern ined by adding the regis ter of fset va lue *
* contr$ in l t$ reg$o f f to record$of fsèt . *
** /

CALL BS SET INTERCONNECT (hos t$mess$ id , s lo t$number,
r e c o r d $ o f f s e t + c o n t r $ i n i t $ r e g $ o f f , @ s t a t u s) ;

END CODE;
END SAMPLE-BS $ S ET$INTERCONNECT ;

5-30 Bfi)tstrap k)ader

WRITING A CUSTOM FIRST.STAGE DRIVER

In the above example, bs2pci is the name of the dr iver ntodule. You can name your dr iver
module any unique name you desire.

The two following public statements declare the devicc initialization and device read
procedures as public. These public statements enable the Bootstrap Loader code to access
them as FAR cal ls. Again, you can nante your device in i t ia l izat ion and reat l procedures
any unique name you desire.

Next, the two group statements cnsure that th is dr iver module is grouped together with the
Bootstrap Loader ut i l i t ies as part of the same COMPACT sub-system. You must usc t l ìc
two group names bsl_drivers cgroup irncl bsl_cirivers_dgroup ancl the two segment names
hsl clrivers code and bsl drivers data.

FinaÌ Ìy , the two assume statements establ ish the correct va lues for the code seqment base
address and the data segment hase address, cs and ds.

The following partial code provides ln example of how to ensure your driver code is part of
the Bootstrap Loader Driver coMPACT sub-system. In this example, the cocling is shown
using the ASM86 programming Ianguage.

n a m e b s 2 p c i

publ ic device_in i t_2 24A
publ ic devic e _read_Z24t t

bs l_dr ive rs_cgroup group
b s l_dr ive rs_dgroup group

assume cs: bs l_dr ive rs_c group
assune ds: bs Ì_dr ive rs_dgroup

bs l_dr ive rs_data segment word

b s 1_dr i ve rs*code
b s I d r i v e r s d a t a

. (T y p i c a l

ends

segment by te
p roc

pubÌ i c 'DATA'

c o d e)

b s l_dr i ve rs_data

bs l_dr ive r s_c ode
d e v i c e i n i r 2 2 4 A

p u b L i c ' C O D E '

f a r

bs1 dr ivers code

. (T y p i c a l c o d e)

ends

tsootstrap l,Oader 5--t I

WRITING A CUSTONI FIRST-STAGE I)RIVER

The following algorithm is an example that illustrates both a method of using the Bootstrap

Loader Communication System es a way of verifuing a certain board is present in the

system anrl of using the utility BSGETINTE,RCONNECT. The example is written using

a pseudo code that is not meant to represent any known programming language.

*BEGIN COMMENTS:

* Paraneters rece ived are BOARD$ID and INSTANCE.

* BOARD$ID is the ident i f i ca t lon va lue
* Ò f f h e t r o a r d b e i n s l o o k e d f o r .

* INSTANCE Ís the ins tance o f a par t i cu la r
* t roard on the para l le l bus sys tem. Th is
* p a r a m e t e r a l l o w s f o r m u l t i p l e o c c u r r e n c e s o f
* the sarne board w i th in the MULTIBUS I I sys te rn

* Parameters re tu rned are iPSB$SLOT

* iPsB$sLoT is the MULTIBUS I I board s lo t when the board
* i s found, o r the va lue OFFH when Lhe board is
* no t found.

* Note tha t the var iab le VENDOR_ID poín ts to the
* c n o n í f i . í n l " a r . n n n p r . l - s n a . p r è p i s t e r f h a t

* c o n c a i n s t h e b o a r d i d e n t i f i c a t i o n v a l u e .

*END COMMENTS:
**********************************-x***************

*BECIN CODE:

* DO unt i l a l l MULTIBUS I I board s lots on the PSB are
* sequent ia l ly examined. Use the var iabÌe
* iPSB$SLOT as the looping var iab le to ind icate
* the s lor nunber for che board being examined.

* VENDOR$ID : BS GET INTERCONNECT (iPSB$SLOT,
* VENDOR ID, STATUS)

5-32 Bù)tstrap [,oader

WRITING A CUSTOM FIRST-STAGE I)RIVER

* r f
* the VENDOR$ID re tu rned is nonzero ,
* a board ex i -s ts in the examined s lo t
* then
x Ì t
* VENDOR$ÌD rnarche s BoARDgtD
* then
* l f
* INSTANCE is the des i red Íns tance o f
* BOARD $ ID
* then
) t re tu rn lhe iPSBSSLOT loop ing index to
* ind icace the s l -oc number o f BOARD$ID
* e l s e
* e l s e
* e l s e
* I f we have checked a l l board s lo ts
* then
* Return the va lue OFFt t as the ipSB$SLOT
* p a r a m e t e r i n d i c a t i n g t - h e d e v i c e
n t o b o o t f r o m d o e s n o t e x i s t .
* e l s e
* Loop back to beg inn ing to check the nex t
* b o a r d s l o t .

* END DO

*END CODE:

5.6. CHANGING BS1.A86 OR BS1MB2.A86 TO INCLUDE THE NEW
FIRST.STAGE DRIVER

The first stage of the Bootstrap Loader obtains information about the devices antl their
associated device drivers from the Bootstrap Loader configuration file BS LA86 or
BS1MB2.A86. To support a custom device driver, you musr add to that file a TTDEVICE
macro for each unit on the device thît your first-stage device driver supports. For
example, if tr.vo flexihle diskette drives are attached to the device, you must add two
ToDEYICE macros to the list (one for each clrive). Chapter 3 describes the syntax ol thc
%DEVICE macro.

Brntstrap hader 5-33

WRITING A CUSTOM FIRST-STAGE I)RIVER

As an example, Figure 5-3 shows a portion of the BSl.A86 file that was changed to add

%DEVICE macros for two units supported by a custom first-stage driver (changes to
BS lMB2.A86 would occur similarly). The units have numbers 0 and 1, and their physical
names are YZ\ and YZ1, respectively. The name of the custom driver device initialization
procedure is NEWDEVICEINIT, and the name of the device read procedure is
NEWDEVICEREAD. Arrows to the left of the fisure show the added lines.

b s 1

$ i n c l u d e (: f 1 : b s 1 . i n c)

f c p u (8 0 2 8 6)

; i S B C 1 8 8 / 4 8 i n i t i a l i z a t i o n o f t h e i A P X 1 8 8
; iAPX_186_INIT (y , 0 fc38h , none , BObbh , none , 003bh)

Zdev lce (b0 ,
Zdev ice (bao ,

- - > l d e v l c e (y 2 0 ,
- - > l d e v l c e (y z I ,

Tend

Ò r l o r r i n a i n i t ? 5 ú

Ò . . l o r r i n a i n i r ? 6 ú

0 , n e s d e v l c e i n i t ,
l , n e w d e v i c e i n i t ,

d e v i c e r e a d 2 5 4)
dev ic e re ad2 64)
newdev lceread)
newdev iceread)

Figure 5-3. Nftrdilìed BSl.Att6 File

5.7. GENERATING A NEW FIRST STAGE CONTAINING THE
CUSTOM DEVICE DRIVER

Once you have written the custom clevice driver and changed the Bootstrap Loader

Configuration files, you must generate ir new first stage that includes the custom device
driver. To do so, follow the steps below. (These steps ilssume that you use an iRMX II

system to develop your cocle.)

l. Compìle or assemble the first-stage clevice initialization and device read procedures.

For example, the following command assembles device read and device initialize
nroceclures that iìre assumc(l to reside in the file NEWDEVICE l.Al'tfr.

- a s m 8 6 n e w d r i v l . a 8 6 o b j e c t (n e w d r l v l . o b j)
iRMX rr 8086/87/186 MACRO ASSEMBLER, V2.0
C o p y r i g h t 1 9 8 0 , 1 9 8 1 , 1 9 8 2 , I N T E L C O R P .
ASSEMBLY COMPLETED, NO É]RRORS IOUND

5-34 Bo0tstrap l,{)ader

WRITINC A CUSTOM FIRST-STAGE I)RIVER

2. Insert the object modules for the device read and the device initialize procedures into
the object library of the Bootstrap Loader. This library is named BS 1 .LIB and
normally resides in the directory /RMX2tlfr/BOOT or /RMX86/BOOT. The
fol lowing commands add the object modules generated ìn Step l .

. L IB86
iRMX I I 8086 LIBRARIAN V2.O
Copyr lght 1980 INTEL CORPOMTION
*add newdr iv l .ob j to / rnx286/boot /bs1.1 ib

3. Attach the directorv containing the Bootstrap Loader configuration files as the current
default directorv:

- a t tach f 11e

/ rnx286 /boor ,
/tntx296 /boot

- t s F ^ ^ l ^ . 1 ^ c è .o ! L d L L ' E u n J , V .

4. Generate a new f i rs t s tage by invoking the SUtsMI l ' f i le named BSI.CSD. Chapter 2
descr ibes the deta i ls of the invocat ion. As an erample, the fo l lowing command assumes
that you have chosen 40000H as the memory locat ion of the f i rs t s tage ant l 43000H as
the memory location of the seconcl stage.

This step assumes that you have made appropr iate changes to the BSI.CSD f i le as
described earlier in this chapter.

The BSl.CSD f i le places the resul t ing located Bootstrap Loader in the f i le BSl.

One thing to remember about this procedure is that because you added your device driver
to the object library of the Bootstnìp Loader, the device driver is automatically inclucled in
all future versions of the first stage created bv BS 1.CSD.

B0otstrap lr'ader 5--t:

WRITING A CUSTOM
CHAPTER 6

THIRD.STAGE
DRIVER

6.1 INTRODUCTION

Ifyou plan to use the Bootstrap Loatler to load iRMX ll applications from a device for
which no Intel-supplied third-stage driver exists, you can make one of two choices
dependent upon the size ofyour loadl i le:

. For loadfiles smal-ter than i3.lt)K bytcs. use the generic third stage.
'I'he generic third

stage uses the first-stage delice cirivers you have already supplied. Since the loadlile
fits in the I megabyte aclclress space supported in real mode, and first-stage device
drivers are able to place the loadfile, no need for you to create new device drivers exists
for the third stage.

. For loadfiles larger than 840K bytes, use the device-specifìc third stage. The device-
specific third stage uses new clevice drivers that you must supply. These device drivers
run in protected virtual address mode enabling the loadfile to be placed using the full
16 megabyte range of addresses.

This chapter outlines the procedure lirr writing a thirtl-stage tlriver needed lbr the device-
specific thir<J stage. To assist you in writing your own tlrivers, the iRMX II package
contains the source code fbr a wor k ing third stage dr iver. After instal l ing your iRMX I I
system, you can f ind the sourcc cor lc ìn the f i le /RMX286/BOOT/BPMSC.A86.

6.2 WHAT A THIRD-STAGE DEVICE DRIVER MUST CONTAIN

The third stage device drìver, likc thc lirst stage, must contain a tlevice initialization and a
device read procedure. For the nrost p:rrt, these procedures are similar to their first-sta,'.,
counterparts. However, two diflèrences exist.

. Both procedures must res ide in the same coLle segment .

. You must a lso create a PUUI- l (l s l ,mbol that conta ins a pointer to the device dr iver
data segment. The third stage neerls this information so that it can create a descriptor
for the data segment, enabling the driver to access the segment in protected morJe.

Bff)tsf rap Loader ó - l

WRITING A CUSTOM TI I IRI) -STACE I)RIVER

When developing codc for your th i rd s t lgc dr iver , you must remember that the second

stage always loads the third stage. including the drivers you write. The only type ofcode

that the second stage can Ìoad is cocle thrìt uses the 8086 object module format (OMF-86),

Therefore, you must use t1086 tools (ASM86, Pl - /M-86, LINK|6, etc .) to develop the th i rd-

stage device initialization and read procedures.

Even though you use l l0 lJ f) too ls to dele lop your dr iver code, the resul t ing in i t ia l izat ion and

read procedures must be able to run in protccted mode. One rami f icat ion of running in

protected mode is th l t a l l long pointers prot luced by PL/M-86 (or by any other means)

that were correct in real mode ciìusc rn ILLECAL SELECTOR exception in protected

mocie. Therefore, i fyou must use lon{ pointers, your c lev ice in i t ia l izat ion and read

procedure must determine whether or not the processor is ìn protected mode. I f protected

mode is act ive, the prr redure must repl rce a l l the selector por t ions of long pointers wi th a

new selecîor that is va l id in protected mode.

You can cietermine the processor nrode l.rv using the following assembly code:

D B o F H , 0 1 H , 0 E 3 H ; O p c o d e f o r t h e A S M 2 8 6 i n s t r u c t i o n

; S M S W B X . Y o u m u s t u s e

; D B 0 F l l , 0 1 H , 0 E 3 H b e c a u s e S M S W 1 s a n

; A S l " l 2 8 6 i r ' c r r ' u c t i o n u n r e c o g n i z e d b y

; A S M 8 6 .
AND BX, 01H ;Examine Lo \ res t b i t o f MSl l to see i f

; C P U i s r u n n i n g i n P V M .
JZ REAL ;No, no t runn ing in PVAl ' f .

. code to over r ide ;Yes , runn ing in PVAJ ' I .

. s e l e c t o r s o f i

. l o n g p o i n t e r s ;

. ;

I f your dr iver code is going to operate in the MULTIBUS I I environment, two addit ional
dr iver code constraints exist . First , vou must fol low the MULTIBUS I I t ransport protocol
for communication between the ciriver and the device controller you bootstrap load from.
You can accomplish this by using Bootstrap Loader Communication System utility calls
within your driver code. Second, you n.rust urganize your driver code so that it belongs to
the BSL-Drivers COM PACI'I sub-systen. 'l h is llst requirement is necessary because the
Bootstrap Loader Communicat ion St 'stenr ut i l i t ies are al l NEAR cal ls.

The next two sect ions descr ibe the inter l r rce these procedures must present to the third
stage. The sections after that describe how to supply configuration information to the
dr iver and how to qenerate a thirc l strge thut inclucles the new dr iver.

6-2 Brxfstrap l-oader

WRITING A CUSTOM THIRD.STAGE I)RIVER

5.3 DEVICE INITIALIZATION PROCEDURE

The device initialization procedure must present the following PL/M-86 interface to the
third stage:

device$ini t : PROCEDURE (uni t) WORD PUBLIC:
DECURE unir WORD:

.
END dev i ceS in i t :

where:

device$init The name of the device initialization procedure. You can choose any
name you wish for this procedure, as long as it does not conflict with the
names of other third-stage procedures.

unit The device unit number as defined during Bootstrap Loader
con[igur: ì t ion.

The WORD value returned by the procedure must be the device granularity, in bytes, if the
device is ready, or zero if the dcvicc is not ready.

The third-stage device driver initialization procedure, (like the first-stage device
initialization procetlure) must perform the following operations:

1. Test to see if the device is present. If the device is not present, return the value zero.

2. InitiaÌize the device fbr reading. This is a device-dependent operation. For guidance
in initializing the device, relèr to the hardware reference manual for the device.

3. Test to see if device initialization was successful. If it was not, return the value zero.

4. Read the device volume label to to obtain the device granularity. (For information
on the location anci organization of the volume label, see the |RMX 86 Disk
Ve ijì cat i o n U t i li r\ n n nua L)

5. If the attempt to obtain the device granularity was successful, return the device
granularity. Otherwise, return the value zero.

NOTE
In addition to the above five steps, the procedure must follow MULTIBUS II
transport protocol and belong to the BSL-Drivers COMPACT sub-system if the
driver functions in a MULTIBUS II environment. Refer to Section 5.5 for
more information on these t\yo requirements.

Bootstrap lnader 6-3

WRITING A CUSTOM THIRD-STAGE I)RIVER

Notice that the functions of the first-stage and the third-stage device initialization
procedures are identical. Therefore, you can take two courses of action to provide a devlce
initialization procedure for the third-stage custom driver.

1. You can allow the first-stage custom driver and the third-stage custom driver to
share the same data segment. In this case, the third-stage device initialization
procedure is redundant because the device was initialized by the first stage and any
data in the data segment remains valid.

Because the third stage calls the device initialization procedure regardless of your
intentions, you must supply a third-stage driver device initialization procedure even
if it is redundant. However, thc device initialization procedure can be an empty
routine whose only function is to return the device granularity read from the
common data segment.

2. You can require the first-stage and third-stage drivers to use different data segments.
In this case, the first-stage and third-stage initialization procedures must
independently initialize their respective data segments. With this arrangement, you
must provide two complete device initialization routines. However, because their
functions are identical (except for assigning a value for the data segment), you can
use the same code for both nrocedures.

6.4 DEVICE READ PROCEDURE

The device read procedure must present the following PL/M-86 interface to the third

stage:

dev ice$read: PROCEDURE (un i t , b lk$num, bu f$p t r) PUBLIC;
DECI^ARE unit WORD;
DECI-ARE blk$nurn DWORD ;
DECLARE buf$pr r POINTER;

. (code)

E N D d e v i c e $ r e a d ;

where:

device$read The name of the device read procedure. You can choose any name you
wish for this procedure, as long as it does not conflict with the names of
any other third-stage procedure.

unit The device unit number as specified during Bootstrap Loader
configuration.

6-4 Bootst rap hader

WRITING A CUSTOM THIRD-STAGE DRIl'ER

blk$num A 32-bit value specifying the number of the block that the Bootstrap
Loader wants the procedure to read. Each block is of device granularity
size, with the first hlock on the device being bÌock 0.

buf$ptr A 32-bit pointer to the buffer in which the device reacl procedure must
copy the information it reads from the secondary storage device.

The device read procedure does not return a value to the caller. lt simply reads data from
the bootstrap device and places it in the memory location specified by the buf$ptr
parameter.

The third-stage and first-stage device read procedures perform similar functions.
Therefore, you may want to create the third-stage read procedure by performing
modifications on the first-stage read procedure (if, for instance, it has already been written
and resides in PROM). lf the first-stage read procedure does not yet exist, you can write
the third-stage read procedure first and then modify it to create the first-stage procedure.

Unlike the Bootstrap Loader first stage, the third stage has no built-in facilities for
reporting I/O errors. That is, the cievice driver cannot call BS$ERROR. Therefore, ifyou
require I/O error reportìng, you must write a complete custom error-checking mechanism
and include it in the device read procedure. (For an explanation of BS$ERROR, refer to
Chapter 3.)

To be compatible with the Bu)tstrap Loader, the device read procedure must perform the
following steps:

l . Save the third stage DS (the data segment selector of the cal l ing rout ine), and then
copy the driver data segment selector from the AX register into the DS register.
(When calling the device read procedure, the third stage puts the driver data
segment selector in the AX register.) The device read procedure must perform this
funct ion immediately.

Because register manipulation is not possible with high-level languages (such as
PL/M-8ó), you must write this portion of the device read procedure in assembly
language (ASM86).

2. Check whether the processor is in real or protected mode. lf the processor is in
protected mode, you may want to initialize other selectors to appropriate values
(buf$ptr for example). Assuming Step I has already been accomplished, you need
not initialize the code (CS), clata (DS), ancì stack (SS) registers. These registers will
already be set correctly.

3. Read the block (specified by the blk$num parameter) from the bootstrap device
(specified by the unit paramcter) and place the data in the memory location
specified by the buf$ptr parameter.

4. Restore the third stage data segment selector to the DS register. As with Step l, you
must write this code in assemblv language, because it involves register manipulation.

Bmtstrap I-0ader o-5

WRITING A CUSTOM THIRD-STAGE DRIVER

NOTE

In addition to the above steps, the procetlure must follow MULTIBUS II
transport protocol and belong to the BSL-Drivers COMPACT sub-system if the
driver functions in a MULTIBUS ll environment. Refer to Section 5.-5 for
more information on these two reauirements.

6.5 PROTECTED MODE CONSIDERATIONS

Because you develop your driver proceclures using 80tì6 tools and run the procedures in
protected mode, you should keep several items in mind:

o When the third stage calls the device read procedure, it puts the driver data segment
selector in the AX register. When first called, the device read procedure must save the
DS used by the caller (the third stage data segment selector), and then copy the driver
data segment selector from the AX register into the DS register. Before exiting, the
procedure must restore the original contents of the DS register. If you are writing in
assembly language, you can perform this operation as follows:

THE$DEVICE$READ PROC
PUSH BP

M O V B P , S P
PUSH DS
Mov Ds, Ax

POP DS
POP BP
RET 8

THE$DEVICEgREAD ENDP

FAR
: u e L l 1 q o r e s s a o . L M y L o

;arguments

' G é t I r l . r l d a t n c e o r n e n t

;Per fo r rn the dev ice read

; f u n c t i o n s

' R P q l r r r c t h i r . l q t : o c D S

; R e s t o r e B P
; R e t u r n

If you are writing code in a high-level language (such as PL/M-86), you still must code this
function in assembly language. The reason for this restriction is because higher level
languages do not allow you to manipulate registers directly. You can, however, combine
assembly language with your high-level language by writing an assembly language "shell"
that handles the register manipulation ancl then calls a PL/M-86 procedure to perform the
other device read functions. For instance, the following example saves the third stage DS,
calls a high-level language routine to do the device read, and restores the third stage DS
register before returning.

6-6 Bu)tstrap l-oader

WRITING A CUSTOM THIRD.STAGE DRIVER

THE$DEVTCE$READ PROC FAR
PUSH BP ;Cet Addressabi l i ty to

;argunents
MOV BP, SP
PUSH DS :Save th i rd s tage DS
MoV DS, AX ;Get local data segnent

CALL PLù{READ ;Call a PLM procedure Eo
;per forn the
. , 1 - . ' i ^ - F " - - r í a n c

POP OS ;Restore th i rd s tage DS
P O P B P ; R e s t o r e B P
RET 8 ;Return

THE$DEVICE$READ ENDP

Be careful when changing DS, SS, CS, or ES registers while in protected mode. They
point to valid entries in the g.lobal descriptor table (GDT) that were prepared for your
driver by the third stage. If you change any of these registers, the new value must be a
valid GDT entry or an ILLEGAL SELECTOR or a GENERAL PROTECTION
exception will occur.

Do nclt link your code to PLM8r,.LlB, bec:ruse the compiler issues long calls to
procedures in that library. These long calls cause exceptions when the calls are
attempted in protected mode.

The buf$ptr parameter the third stage passes to the device read procedure is a valid
pointer in real mode only. You can pass this value to the device as a physical address,
but do not try to use it as a pointer in protected mode. lfyou require a pointer, replace
the buff$ptr selector with the third stage DS value. This DS value is intact when the
device read procedure is calletl.

6.6 SUPPLYING CONFIGURATION lNFORMATION TO THE
THIRD-STAGE DRIVEB

Like a first-stage device driver, all third-stage drivers require configuration information
about the devices they support. You can provide this information either by hard-coding it
into the driver or hy creating a special configuration file for the device. Both of these
techniques are the same for the lìrst and third stages. Refer to the section in Chapter 5
entitled "Supplying Configuration Information to the First Stage" for descriptions of these
techniques.

Bmtstrap lrader 6-7

WRITING A CUSTOM THIRD.STAGE I)RIVER

If you decide to create configuration files for your first-stage and third-stage drivers, you
should probably use a single configuration file for each device and link it to both the first-
stage and third-stage drivers. The device-specific information is the same for both drivers,
and keeping the information in a single file prevents you from giving conflicting
information to the two drivers. You can include the configuration file by editing BS3.CSD
to assemble and link the configuration file to the third stage. Refer to Section 5.4.2 for an
example that shows the similar first-stage process.

6.7 USING MULTIBUS@ IITRANSPORT PROTOCOL

If the driver you are creating functions within a MULTIBUS I environment, you need not
read this section. Skip to Section 6.[ì,

If the driver you are creating functions within a MULTIBUS Il environment, you must
write the driver code to use the MULTIBUS II message transport protocol. To help you
accomplish this task, Intel provides a snrall, single-thread communication system that
enables Bootstrap Loader drivers to communicate with device controllers within a
MULTIBUS ll environment. This system is called the Bootstrap Loader Communication
System, and is a subset of the Nucleus Communication System.

Concerning adherence to the MULTIBUS II transport protocol, requirements for third-
stage device drivers and first-stage device tlrivers are identical. Thus, you should refer to
Section 5.5 for an overview of the Bootstrap Loader Communication System, the availabte
Bootstrap Loader Communication System utilities, and guidance in writing the device
initialization and device read proceclures.

Should you desire a more complete clescription of Bootstrap Loader Communication
System concepts similar to Nucleus Contmunication System concepts, reîer to the Extended
|RMX II Nucleus User's Guide in Volume 2 of the iRMX II documentation set.

6.8 CHANGING 853.A86 TO INCLUDE THE NEW THIRD.STAGE
DRIVER

The device-specific third stage ohtains information about the device and its associated
device driver from the Bootstrap Loatler configuration file 853.A86. To support a custom
device driver, you must add to that file a cZDEVICE macro for each unit on the device that
your first-stage device driver supports. For example, if two flexible diskette drives are
attached to the device, you must add two oZDEVICE macros to the list (one for each
drive). Chapter 4 describes the syntax of the 9óDEVICE macro.

6-8 Booastrap l.oader

WRITING A CUSTOM THIRD.STACE DRIVER

Figure 6-1 shows a portion of the 853.A86 file that was changed to add %DEVICE macros
for two units supported by a custom third-stage driver. The arrows in the figure indicate
the changes. The new units have numhers 0 and 1, and their physical names are YZ\ and
YZl, respectively. (These physical names must match the names used in the VoDEYICE
macros in the first-stage configuration file BSl.,{86 or BS1MB2.A86.) The name of the
custom driver device initialization procedure is NEWDEVICEINIT, and the name of the
device read procedure is NEWDEVICEREAD. The public name of the driver data
seqment is DATA NEWDEV.

g i n c l u d e (: f l : b s 3 e n f . i n c)

Ídev ice (0 ,w0, dev ice in i tmsc gen, dev icereadnsc gen, da ta_msc)
fdev ice (1 ,w1 , dev lce in i tms cgen, dev icereadns c gen, da ta_rnsc)
ldev ice (8 , w fO , dev ic e in i rnsc gen, dev ic e readnscgen, da ta_msc)
l d e v l c e (9 , w f l , d e v i c e i n i t m s c g e n , d e v l c e r e a d m s c g e n , d a t a _ n s c)
ldev ice (0 , ba0, dev ice in i t264, dev i ce read264 , da ta_264)

- -> Idev lce(0 , yz0 , newdev ice ln l t , newdev iceread, da ta_newdev)
- -> ldev ice(1 , yz l , newdev ice ln f t , nevdev lceread, da ta neudev)

;
; i n t 1
Z ln t 3

; h a l t

%cpu_board (286/12)

i
lend

Figure 6- l. Changing the tsS3.A8ó File

6.9 GENERATING A NEW THIRD STAGE CONTAINING THE
CUSTOM DRIVER

Once you have written the custom device driver and changed the Bodstrap Loader
Configuration files, you must genenrte a device-specific third stage that includes the
custom device driver. To do so, perform the following steps. (These steps assume that you
use an iRMX system to develop your code.)

l. Compiìe or assemble the third-stage device initialization and device read procedures.
For example, the following command assembles device read and device initialization
procedures that reside in the file NEWDRIV3.A86.

Bootstrap [íader ó-9

WRITING A CUSTOM THIRD-STAGE T)RIVER

- asn86 newdrív3. a86 obj ect (nesdr lv3 . ob j)
iR lD{ r r 8086/87/L86 MACR0 ASSEMBLER, V2.0
c o p y r i g h r 1 9 8 0 , r 9 8 1 , 1 9 8 2 , I N T E L C o R P .
ASSEMBLY COMPLETED, NO ERRORS FOUND

Insert the object modules for the device read and the devìce initialize procedures
into the Bootstrap Loader object library. This library is named BS3.LIB and
normally resides in the directory /RMX8ó/BOOT or /RMX286/BOOT. The
following commands add the object modules generated in Step l.

- L IBS 6
iRMX I I 8086 LIBMRIAN V2.O
Copyr ight 1980 INTEL CORPORATÍON
*add newdr iv3. obj to / rnx2B6/boot /bs3.1 ib

3. At tach the d i rectory conta in ing the Bootst rap Loader conf igurat ion f i les as the
current defaul t d i recton .

- a t tach f l le

/rnx286 /t>oot ,
/rnx286 /boot

. f l - , . } l a ; A q q

Generate a new third sta_qe by invoking the SUBMIT file named BS3.CSD. Chapter
3 describes the details of invoking BS3.CSD. As an example, the following command
names the new third stage "NEW3STG," and locates it at memory location 08C000H.

This step assumes that you have macle any appropriate changes to the BS3.CSD file
that are required to support trny configuration files you might have designed.

z.

A

6- 10 B(x)tstrap k)ader

CHAPTER 7
ERROR HANDLING

7.1 INTRODUCTION

If the bootstrap loading process is unsuccessful, the Bootstrap [-oader ìnitiates error-
handl ing procedures. Not i f icat ion ol la i lures occurr ing dur ing the loading process clepends
on the conf igurat ion of the f i rst r rnr l th i rr i st l ,qes. This chupter descr ibes the Bootstral t
Loader 's error handl ing fnci l i t ies.

7.2 ANALYZING BOOTSTRAP LOADER FAILURES

The Bootst rap Loader can d isp| r l n tess: tges at the termin. l when bootst r i ìp loacì ing is
unsuccessfu l . As d iscusscd in Cìhaptcr l . rhc . I .CONSOLh, . ;T 'EXT. and _cÉLIST macros
in the BSERR.AE(I f i lc dcterminc *hcthcr or not nìcss i ìges i r re r i isp l lyerJ when crrors
occur dur ing the f i rs t and secol rd s t l r -s ts . how det i r i lcd the ntessages are, and under what
c i rcumstances thev are d isp layed. As Cìh lpter - l expla ins. the th i rd s t lqe automat ic l l ly
determines i f a moni tor is prescnt . : rnc l i l so. d isp lavs crror messages at the terminal
regardÌess of the f i rs t s tage coni igunt t ion.

The following sections describe whrrt h;rp;rcns u hen a bocttstrap loutlinq error occurs ancì
how to analyze the errclr. Therc arc two situations described: error anulvsis when nlessu_lllcs
are d isp layed, and error analvs is when no rnessaqcs are d isp laycc l .

7.2.1 Actions Taken by the Bootstrap Loader After an Error

After responding to an error hy pushing a word onto the st i rck and opt ional ly d isp lay ing a
message, the Bootst rap Loadcr c i thcr t r ies again, passcs contro l to a moni tor , or hal ts . l f
the error ìs detected in the f i rs t or sccond st l rqe, the act ion taken depends on whether vour
BSERR.At ì6 f i le conta ins an f iA(lAIN. . ; lNTl , . - ; lN ' f l , or _c iHALT macro. I f rhe errc l
is detected ìn the th i rd s tage, rhe acr ion r : rken depends on whether your BS3.A8ó or
BC3.A8ó f i le conta ins an c l lN ' f I , c i lN ' l '] . or c . , iHALT macro.

The only diffèrcnce between the clcvicc-spccilic and generic third stagcs is that the generie
th i rd s tage never generates the crror codc "Dcvicc Not Supported" (rc ler to error code J. l
la ter in th is chapter) , becausc the qener ic th i rd s tage suppor ts a l l the devices suppor ted l ry
the f i rs t s tage. I f you invoke the tsoorst r t rp Loader wi th a device name that is not
suppor ted by the f i rs t s taqe, the gcncr ic th i rd s tage wi l l never even get Ìoaded in to memory.

Brxrtstrap l-oader 7 - l

ERROR HANDLING

7.2.2 Analyzing Errors With Displayed Error Messages

If your BSERR.A86 file contains the o/cCONSOLE, ToTEXÎ, or a/oLIST macro, then the
Bootstrap Loader displays an error message at the terminal whenever a failure occurs in
the bootstrap loading process. The message consists of one or two parts. The first part,
which is always displayed, is a numerical error code. The second part is a short description
of the error. Although the second part is always displayed for third stage errors, it is
displayed for first and second stage errors only if the T,ITEXT or ToLIST macro is included.

Each numerical error code has two digits.
'l 'he first digit indicates, if possible, the stage of

the bootstrap loading process in which the error occurred. The second digit distinguishes
the types of errors that can occur in a particular stage. There are four possible values for
the first disit.

First Digit Stage

Can't te l l
First
Second
Th irtl

The error codes, their abbreviated cìisplay messages, and their causes and meanings are as
folìows.

Error Code: 0l
Description: I/O error

An I /O error occurred i ì t some undetcrmined t ime dur ing the bootstrap loading
process.

I f the ToCONSOLE macro is inclucled. the Bootstrap [.oader places a code in the high-
order byte of the word it pushes onto the stack, so that you can further diagnose the
problem. This byte identifies the drivcr lìrr the device that produced the error, as
follows:

0
I
2
3

Code

08H
l 5 H

18H
25H
5 l H
54H
()EOH
other (in range A0H-DFtl)

Driver

20tì
MSC (with or
without 2l8A)
218A on CPU board
1861224A
25r
254 or 264
SCSI
driver for your custom

1 1 Brntstrap Lrader

ERROR TIANI)LING

Note that this device code is oven'ritten when the description is printerJ if the o/r'l'EXT
or ToLIST macro is included.

The last entry in the list of device c.des assumes that you have written :r device driver
for your device and have identified the driver by some c.de in the inclicated range --
other values are reserved for Intel dr ivers. For informat ion about how to incorpor ir tc
this code into the dr iver, see Cihapter 5.

Error Code:
Description:

Error Code:
Description:

Error Code:
Descr ipt ion:

Error Code:
Descr ip t ion:

'fhe
specific device designatet{ for bootstrap loatJing is not reatly. This error occurs

only when your BSERR.AIJíT f i le does not conta in the fTAUTO macro. Thcrcforc.
e i ther the operator has speci f ied a par t icu lar device or only one dcv ice is in thc
Bootst rap Loader 's t lev ice l is t , : rn t l the device is not rear jv .

1 1
Device not readv.

1 2
Device does not ex is t . (l f BSERR.AIJ6 cuntu ins the TcLIST nracro,
the d isp lay then shows the l is t o f known devices.)

1 3
No devicc rcu dv.

2 l
Fi le not founr l .

The device name entered at thc console has no cntry in the Bootst rap Loader 's devicc
l is t . This error occurs only when I 'our t ìSERR.A8(r l i le conta ins thc gIMANUAL
macro and you enter a device name, but the device name you enter is not known to thc
Bootst rap Loader . Af ter d isp lay ing rhe message, the Bootst rap Loader t l ispÌays the
names of the c lev ices in i ts t lcv ice l is t .

None of the devices in the l]ootstrup l ,oader 's device l ist are readv. This error occurs
only when your BSERR.A8(r l i le contains the 9óAUTO or oZMANUAL macro and vou
do not enter a device name at the console.

The Bootst rap Loader could not f ind the ind icuter l f i le on the dcs ignl r ted bootst r i ì [l
dev ice. This is the defaul t f i le i f no p: ì thname was entered at the console . Othenl ise, i t
is the f i le whose pathname r las entered. In iRMX I I syste ms, the Bootst rap Loacìer
could not f ind the th i rd s taqc.

Brntstrap hader

ERROR HANI)LING

Error Code: 22
Description: Bad checksum.

While trying to load the target file (the application system for iRMX I systems, or the

third stage for iRMX II systems), the Bootstrap Loader encountered a checksum error.

Each file consists of several records. Associatetl with each record is a checksum value

that specifies the numerical sum (ignoring overflows) of the bytes in the record When

the Bootstrap Loader loacls a file, it computes a checksum value for each record and
compares that value to the recorded checksum value. If there is a discrepancy for any

recorcl in the file, it usually mcans thrtt one or more bytes of the file have been
corrupted, so the Bootstrap Loirder returns this message instead of continuing the
loading process.

Error Code: 23
Descr ipt ion: Premature end of l i le.

The Bootstrap Loader did not fintl the required encl-of-file records at the end of the
target f i le (the appl icat ion system 1i)r iRMX I systems, or the third stage for iRMX l l
systems).

Error Code: 24
Description: No start address tìruncl in input file.

The Bootstrap Loader successlully loaded thc target file but was unable to transler
control to the f i le, because ini t i i r l CS i tnd IP values were not present.

Error Code: 3l
Description: File not found.

The third stage was unable to f inr l the turqet f i le on the designated bootstrap device.
Regardless of the way you invokecl the Bootstrap Loader, the target file is expected to
have a .286 extension.

Error Code: 32
Descr ipt ion: Bad checksu m.

The third stage encountered a checksum error whi le t ry ing to load the target f i le.

Error Cotle: 33
Descr ipt ion: Premature end of f i le.

The third stage reached end-of- f i le ea r l ier than expected whi le at tempting to load the
target file.

7-4 Boolstrap hadcr

ERROR IIANI)LING

Error Code: 34
Description: Device not supportetJ.

The specifietl device is not supported by the device-specific third stage. That is, there
is no %DEVICE macro invocation for this device in the BS3.Auó file.

Error Code: 35
Description: Invalitl file t1,pe.

The target file is not an 8028ó bootloadable file (usually produced by BLD2lt6).

7.2.3 Analyzing Errors Without Displayed Error Messages

In most cases, you can determìne the cause of a Bootstrap Loader failure by obsen ing the
behavior of the Bootstrap Loader whcn i t fa i ls to load the appl icat ion successlul ly. You
can then take steps to correct the frr i ìure. ' l 'able 4-1 Ì ists some common behaviors and
possible causes for failure. The table iìssunles that the Bootstrap Loader is set up to halt if
it detects :ìn error. Before haÌting. the Bootstrap Loader places the error code into the CX
reglsler.

Another possible cause oî îailure. the eltècts of which are unpredictlble, is that the device
controller block (as determined by the device's wake-up atldress) can be corrupted. To
avoid this kind of failure, ensure thiìt neither the Bootstrap Loader nor the target fiJe
overlans the device controller block 1ìrr the device.

Brxrtstrap Inader 7-5

ERROR IIANDLING

Table 7-t. Postmolem Anallsis of Bootstrap Inader Failure

Behavior of Loader Possible Ceuses

Bootst rap Ìoading fa i ls ìn
the f i rs t s tage.

The indicated device is not ready or is not
known lo thc B(ìoî \ t rap Loader

An I/O error occurred during the first stage
<lrcrat ion.

Bootstrap loading fai ls in
the second stage.

The indicated file is not on the device.

The file has no end-of-file record or no start
i rd t l ress.

The f i le conta ins a checksum error .

An I /O error is occurr ing dur ing the second
stiìue operat r()n.

Bo()tstrap Loader enters
second stage, but does not
h:rlt or pass control trl the
file it loads.

1 'he Bootst rap Loader is at tempt ing to load
the svstem, or th i rd s tage, on top of the
second stage.

The second stage is at tempt ing to load the
l i le in to nonexis tent memory.

Bootstrap loading fìils in
the third stage.

t he designated file with a .2lJ(r extension was
not found on the device.

The third stage reached an end-of-file earÌier
t hun erpected.

' l
he f i ìe conta ined a checksum error .

An I /O error occurred dur ing the th i rd s tagc
opera t io n.

' l
he Bootst rap Loader is at tempt ing to load

the second stage on top of the Protected
Nlode th i rd s tage.

l -tr Btxrtstrap Loader

ERROR IIANDLINC

7.2.4 lnitiahzation Errors

If an error occurs during the initialization of one of the layers of the iRMX I or II
Operating System, an error message will be displayed at the console. The message lists the
name of the layer whose initialization failed, and gives the iRMX exceptional condition
code that indicates the cause of the taìlure. The following is an example of the kind of
message that will be displayed:

HI INITIALIZATION: 0021H

Incerrupt 3 at 02 80 : 54D8

The messages you see will be similar to this one.

Refer to the Operator's Guirle to tltc iR!+íX 86 Hunum lnterftrce or the Operator's Guida to
the Ex.tended |RMX II Humctn Inte rlìtce for more information about the condition codes.

Brxrtstrap Loader

APPENDIX A
AUTOMATIC BOOT DEVICE

RECOGNITION

4.1 INTRODUCTION

Automat ic Boot Device Rccogni t ion (ABDR) a l lows the iRMX I or iRMX I I Operat ing
System to recognize the device from which it was bootstrap loaded and to assign a logicat
name (normal ly :SD:) to represent th i ì t c lev ice.

I f you use th is feature. you can conf i rurc vers ions of the Operat ing System that are device
independent, that is, versions you can load and run from any device your system supports.

This sect ion descr ibes the ABDR teature in t le ta i l . I t consol idates in format ion l i rund in
other iRMX I manuals and answcrs the fo l lowing quest ions:

. How does Automat ic Boot Devìce Recogni t ion work?

. How do you configure a version of the Operating System that includes this featurc'/

4.2 HOW AUTOMATIC BOOT DEVICE RECOGNITION WORKS

The Nucleus, the Extended I/O System. and the Bootstrap Loader combine to provide the
Automatic Boot Device Recognition ltature, as lbllcws:

l . The Bootstrap Loader, af tcr lo l id ing the Operat ing System, places a pointer in thc
Dl:SI register pair . This pointer f roints to a str ing containing the name of the devrce
from which the system was lorrcled. The name it uses is the one supplied as a
parameter in the 9óDEVICE macro when the l3ootstrap Loader was configured.

2. The Bootstrap Loader sets the CX and DX registers to the value 1234H. This value
signi f ies that the pointer containet l ìn the DI:SI register pair is val id.

3. The root job checks CX ancl DX and thcn, i f both contain 12341{, uses the pointer in
DI:SI to obtain the device ni tnte.

' l 'he
Root Job sets a Boolean var iable to indicate

whether i t found the nume of the boot device. I f CX contains 1234H and DX
contains l235l l , the iRMX root job wi l l execute an INT3 instruct ion befbre any other
code in the Openrt ing Svstent is executed.

B{rctstrap l,oader A-l

AUTOMATIC BOOT DEVICE RECOGNITION

A

5.

6 .

The Nucleus checks the Root Jol;'s Boolean variable and, if true (equal to 0FFH),
places the device name in a segment and catalogues that segment in the root job's

object directory under the name RQBOOTED. If it is false (equal to 0), nothing is
catalogued in the Root Job's directory. The absence of RQBOOTED from the Root
Job's directory indicates the system was not bootloaded or that ABDR was not
selected.

The Extended I/O System looks up the name RQBOOTED and, if successful,
obtains the device name from the segment catalogued there. If the name
RQBOOTED is not catalogued in the root directory, the Extended I/O System uses
a default device name specified during the configuration of the Extended I/O System
(DPN prompt of the "EIOS" screen).

The Extended I/O System attaches the device as the system device, assigning it the
logical name that you must have specified during the configuration of the Extended
I/O System (DLN prompt on the "EIOS" screen).

A.3 HOW TO INCLUDE AUTOMATIC BOOT DEVICE RECOGNITION

This section describes the operations you must perform to include the ABDR feature in
your application. The operations include

. The ABR prompt on the "EIoS" screcn (Figure A-1) affects whether the ABDR
feature will be included in your application. If you set ABR to "no," the Extended I/O
System does not attach a system clevice. If you set ABR to "yes," the Extended I/O
System automatically attaches the system device. The ICU displays another screen
(shown in Figure A-2) that lets you specify the characteristics of the system device.

EIOS
-->(ABR) Autornat fc Boot Devlce Recognl t lon IYes/No] Yes

(IBS) Incernal Buf fer Size [O-OFFFFh] 0400H
(D D S) D e f a u l t l O J o b D í r e c t o r y s i z e [5 - 3 8 4 0] 5 0
(I T P) I n t e r n a l E I O S T a s k ' s P r i o r i t i e s l 0 - 2 5 5 1 1 3 1
(P M I) E I O S P o o l M l n i m u m I O - O F F F F H I 0 1 8 0 H
(PMA) EIOS Pool Maxi rnum [0-0FFFFH] OFFFFFH
(CD) Conf igurat ion d i rectory lL-45 characters l :SD:RMX286/C0NFIC

Figure A-1. EIOS Confîguration Screen (ABR)

A-2 Bootstrap l,0ad€r

AUTOMATIC BOOT DEVICE RECOGNITION

. If you set ABR to "yes," the ICU displays the screen shown in Figure A-2. On this
screen, you must speciry the characteristics of the system device via the DLN, DPN,
DFD, and DO prompts. For the DLN, DFD, and DO prompts, you must not supply
this information later in the "Logical Names" screen.

With the DLN prompt, you can specifo the logical name for your system device. If you
change this value from the default (SD), you must change all other references to the
:SD: logical name to the new name you speciff. The Extended I/O System creates the
logical name you speci! only if you set ABR to "yes."

With the DPN prompt, you specifo the physical name of a device that you want to use
as your system device in case the Extended I/O System cannot find the name
RQBOOTED catalogued in the root ohject directory. This situation normaÌly occurs
when you load your system using a means other than the Bootstrap Loader. For
example, if you transfer the Operating System to your target system via the iSDM
monitor, there is no bootstrap cievice. In this case, the Extended I/O System uses the
device name specified in the DPN prompt as the system devrce.

With the DFD and D0 prompts, you set other characreristics associated with the
system device. For most cases, the defaul ts (DFD=Named and DO=0000H) are the
nreferred values.

(ABDR) Automat ic Boot Device Recogni t lon
-- ->(DLN) D,r faul t Systen Device Logfcal Nane I l -12 chars] SD
-- ->(DPN) D, : fau l t Systen Devlce Physlca l Nane [1-12 chars] r r0
-- ->(DFD) D, : fau l t Systen Device Fl le Dr iver \P/S/N/R) Named
--->(DO) D,r faul t Syster0 Devlce Osners ID [0-oFFFFH] 0000H

Figure A-2. ABI)R Screen (DLN, DPN, DFD, DO)

. During configuration of the Basic I/O System, you must specify device-unit
information for t re devices you wish to support. One of the prompts on each "Device-
Unit lnformatior " screen (NAM) requires you to specify the name of the device-unit.
Another parameLer (UN) requires you to specify the unit number. (See Figure A-3 for
an example of thr:se prompts.) To enable the ABDR lèature to work correctly, you
must assign device-uni t nantes and uni t numbers that match the device names and uni t
numbers assignecl during Bootstrap Loacler configuration.

. You assign the Br)dstrap Loadcr dcvice names and unit numbers by including or
motJifying o/oDE\rICE macros in the first-stage configuration file (BSl.A8ó or
BS1MB2.Atl6). With the lCU, you can define device-unit names and unit numbers
other than those that are valid tìrr the Bootstrap Loadcr. But each Bootstrap Loader
device name must have a corresponding device-unit name, and the unit numbers must
be the same.

Bootstrap Loader A-3

AUTOMATIC BOOT DEVICE RECOGNITION

Before you can use the ABDR feature, you must format your system device using the
FORMAT command. The Guide to the Extended |RMX Il lnteractive Configuratton Utilirt^
describes how to set up your system device for use with the current release.

Figure A-3. Device-Unit Information Screen (NAM and UN)

(I M S C) M a s s S t o r a g e C o n t r o l l e r D e v i c e - U n i t l n f o r m a t i o n
(D E V) D e v i c e N a m e [1 - 1 6 C h a r a c t e r s]

- - ->(NAì l) Devlce-Uni t Name [1-14 chars]
(PFD) Physica l F i le Dr iver Required IYesrzNo]
(N F D) N a m e d F i l e D r í v e r R e q u i r e d l Y e s / N o l
(SDD) Singlè or Double Densi ty Disks ISingle/Double]
(SDS) Single or DoubIe Sided Disks ISingle/Double]
(E F I) 8 o r 5 i n c h D i s k s l 8 l 5 1
(SUF) Standard or Uni form Fornat lS candard/Uni form l
(GRA) Cranular i ty [0 - OFFFFH]
(DSZ) Device Size [0 - OFFFFFFFFH]

- - ->(UN) Unl t Number on th is Devtce [O-OFFH]
(U I N) U n i t I n f o N a r n e l L - 1 6 C h a r s l
(RUT) Request Update T imeout l0-OFFFFHI
(NB) No. of Buf fers Inonrar id : O/rand : 1-0FFFFH]
(CUP) Comrnon Update lTrue/Fa 1s e l
(MB) Max Buf fers [0 - OFFH]

YES
YES
DOUBLE
DOUBLE
8
STANDARD
0100H
07c500H
0000H

0 0 9 6 H
0 0 0 8 H
TRUE
OFFH

A-4 Burtstrap Loader

AUTOMATIC BOOT DEVICE RECOGNITIO\

4.4 HOW TO EXCLUDE AUTOMATIC BOOT DEVICE RECOGNITION

To configure a system that does not include the ABDR feature, set rhe ABR prompt in the
"EIOS" screen to "no" (see Figure A- 1). This disables the ABDR fèature.

When you set ABR to "no", the ICU will not display the ABDR screen. Therelbre, you
must provide information for the DLN, DPN, DFD, and DO prompts as input to the
"Logical Names" screen. Figure A-4 shows an example of this screen after it has been filled
in to include a logical name for the system device. The underlined information in Figurc
A-4 is the information you would supply if you set the ABR prompt in FigureA-l to "no"
and you want the system device to be a flexible diskette drive controlled by an iSBC 208
device controller.

(LOCN) Log ica l Narnes
Log ica l Narne : Iog_narne, dev lce_narne, f i Ìe_dr iver , owners- id

[1 - 1 2 c h a r s] , [1 - 1 4 C h a r s] , Í P / S / N / R] , [0 - O F F F F H]
[1] Log ica l Name : BB , BB , PHYSICAL, 0H

[2] Logical Name : STREAM , STREAI"f , STREAM , 0H

[3] L o g i c a l N a m e : L P , L P , P H Y S I C A L , 0 H
- - -> [4] Log ica l Nane = SD , AFO , NAXED , 0H

Figure A-,1. Logical Names Screen

Bootstrap [-oader A-5

APPENDIX B
PROMMING THE BOOTSTRAP

LOADER AND THE |SDM" MONITOR

8.1 INTRODUCTION

chapter 2 stated that one of the ways to prepare the Bootstrap Loader for use is t'
combine it with one of the Intel monitor packages and burn the combined code into
PRoM. This appendir suppÌies intbrmation about combining the Bootstrap Loader and
the |SDM monitor. The iSDM S;ver n Debug Monitor lJser's Guide also contains
information about this process.

8.2 INCORPORATING THE |SDM MONITOR

This section gives the instructions required to place the first stage and the iSDM monitor
into nvo 27128 EPROM devices. You can modify this example to suit your own purposes,
oryou can follow it exactly. Refer to the iPPS PROM PROGRAMMING SOF|WARE
USER'S GUIDE for detailed inlìrrmation about the commands. The step-by-step
procedure is as follows:

1. Enter the name of the (version 1.4 or later) software used with the iUpp Universal
PROM Proerammer:

2. Speci fo that the PROMs irrc 2712R EPROM devices:

3. Respond with the numbe r oî the ciesired work file drive:

1

This says that drive :fl : * il l be usecl for creating temporary IPPS workfiles.

4. lnitialize the file type to be loacled:

This says that the load file is an li0lló Object Module Format file (which the first
s tage and the iSDM moni tor are) .

Bff)tstrap k)ader B- l

PROMMING THE BOOTSTRAP LOADI]R ANI) TTIE iSD]\I' MONITOR

5. Specify that the even-numbcred bytes of the BS I (lirst stage) file are to go into

EPROM 0 and the odd-numbered hytes are to go into EPROM l. (The address
FE400H is an example value which is compatible with most configurations of the
iSDM R3.2 monitor. The upper bound of the format range is OFFF7FH, the highest
memory location the Bootstrap Loader can use when combining it with the iSDM
monitor. The upper bound also applies to all previous versions of the iSDM 86 or
iSDM 286 monitors. Always check the monitor and Bootstrap Loader memory maps
before burning the addresses into the PROM devices. Also, be sure that the
addresses you use do not collide. l'he numbers 3, 2, and I match IPPS prompts for
defining the information.)

6. Tell the software to progriìm onc EPROM with even-addressetl bytes. Use the
fol lowing formula to determine the adi l ress to use:

a<ldress = ((address of first stage) - (start address of EPROM ptk))12

Therefore:

address = (FE400H-Ft i000I l) /2 = 32001{

The IPPS command is as lbllows:

7. Do the same for the odd-numbered bvtes.

8. Exit the IPPS program.

As a further example for step number sir above, the formula below determines the address
to speciff when using 27512 EPROM devices:

address = (FE400H-0E0000H)/2 = 0F2000H

B-2 Btx)tstrap Iîader

INDEX

VoAgaín 3-27,29
VÒAufo 3-14
TaAuto_configure_memory 3- I 0
VoB208 3-32
7o8215 3-32
VoB218A 3-33
VoB220 3-32
VoB251 3-35
o/a8254 3-36
%B264 3-36
%BIST 3-8
%BMPS 3 -11 ,4 -5
TaBSCSI 3-37
o/oBSERR.A86 3-27
o/cClCO 3- 18
%Clear_SDM_extensions 3-18
TaConsole 3-14, 27, 28, 7 -1,, 2
EaCPU 3-rt , 4-5, 10
VoDefaukfile 3-17
VoDev tce 3 -24, 4 -6, 5-34, 6-8
VoEnd 3-27,31, 4-5, 12
%H^ l t 3 -27 ,30 ,4 -5 , l 0
EA\APX 186 INIT 3-13
%lnstallition 4-5, t t
%lNTt 3-27,29,4-5,9
o/olN'î3 3-27, 30, 4-5, 10
ToLtst 3-27,28,7 -1,2
%Loadfl.e 3-16
VoManual 3-14
EÒR.etries 3-17
%SASl_unit_info 3-39, 4-7
%Serial_channel 3- 19
VaText 3-27,28,7-1,2

Bootstrap l,oader Index-l

INDEX

A

Actions taken by the Bootstrap Loader after an error 7- I
Automatic boot device recognition A- l, 2, 5
Automatically configuring memory 3- 10

B

8208.48ó 3-2,3l
82 l5 .A8ó 3-2 ,31 ,4-2
82 l84 .A86 3-2 ,31
B251.486 3-2 ,3 l
8254.A86 3-2,31
8264.A86 3-2,3r, 4-2
BG3.A86 4-2

Default file 4--5
Edit ing 4-3
Excluding macros 4-3

BG3.CSD 4-2
Dethult file 4- 14
Invocat ion 4- 15
Modif icat ion 4- 14

Board-scan algorithm 5-32
Boot device recognition A-1
Boot ing iRMXo I and iRMX@ II Operat ing Systems from the same volume 1-4
Bootstrap Loader communication system 5-8, (r-lì
Bootstrap Loader dr iver COMPACT sub-system 5-3I
Bootstrap Loader fai lures 7-1. f i
BS$BROADCAST .5-20,21
BSGETINTERCONNECT .5-22, 23
BS$RECEIVE 5.I I ì
BS$SEND 5.15, 16
BS$SEND$RSVP 5 -1 I . 12
BSSETINTERCONNECT 5-22, 26, 21
BSl.A86 3-1, 2, 5-33

Custom drivers 5-33
Edit ing 3-7

BSI .CSD 3 -2 ,41
Default file 3-42
Invocation 3-4(r
Mo<lification 3-44

BS3.Atì6 4-2, 6-8
Edit ing 4-3
Excluding macros 4-3
Modification 6-8

Index-2 Bu)tstrap l-{)ader

BS3.CSD 4.2, 13
Default file 4- 13
Invocation 4- l-5
Modif icat ion 4- 14

BSCSI.A86 3.2, 3I
BSERR.A86 3 - I , 7 - I
Bui l t - ln Sel f Test (BIST) 3-8

c
Chip mode configuration 3- l3
Choosing a third stage 2-ó
CI routines 3- lll, l9
Clear ing iSDM monitor command extensions 3- l lJ
CO rout ines 3- 18, l9
Condition codes

BS$BROADCAST 5-22
BSGET INTERCONNECT 5-2Ó
BS$RECEIVE .5-20
BS$SEND 5.1I. ì
BS$SEND$RSVP 5 - I5
BSSETINTERCONNECT 5-30

Con f igu ra t i on 3 -1 ,4 -1
CPU board 4- l0
Fi les 3-31
Fi les for cuslom dr iver: -5-5
Firsl stage 3- l
Memory 3- 1t)
Message passing syste m 3- | l, ,l--5
Processor board type .1- 10
Third stage 4- l

Controlling error message displav 3-28
Conventions iv
CPU board conf igurat ion 4- l (l
C P U t y p e 3 - 1 1 , 4 - 1 0
CS register integrity fi-7

INI)EX

B(x)tsl rap l/)ader lndcx--ì

I N D E X

Custom dr ivers 5-1,6-7
BS1.A8ó al terat ions 5-33
BS3.A8ó alterations 6-li
Configuration files -5-5
Determining processing mode (r-2

Device initialize 5-2, G3
Device read 5-3, 6-4
First stage configuration 5-4
First stage considerations 5-30
First stage requirements 5-1
Generating the first stage 5-34
Generat ing the third stage 6-9
Hard-coded configuration 5-4
MULTIBUS@ II t ransport protocol 5-8.6-t l
Protected mode 6-fi
Third stage configuration 6-7
Third stage requirements ó-2

D

Debug option 2-3
Default BG3.All6 file 4-5
Default BG3.csd file 4- l4
Default BS I.CSD 3-42
Defaul t BS3.CSD f i le 4- 13
Defaul t BSERR.A86 f i le 3-27
Default load file 3- 17
Defining bootable devices

First stage 3-24
Third stage 4-(r

Def ining SASI bus in i t ia l izat ion sequences l -39, 1-8
Device driver I -2, 7, 8

Code considerations -5-3t)
Configuration files 3-3 I
First stage 3-25

Device initialization
Requirements, first stage 5-2
Requirements, thircì stage 6-3
Procedure 5 - l , 2 , ó - l , 3

Device read
Procedure 5- 1, 3, 6-1, .1
Requirements, first stage 5-J
Requirements, third stage 6-5

Dev i . 'e-speci f ie third strgv l -5

lndex-.1 Burtstrap Loader

Displayed error messages 7-2
Displaying error messages 3-26
Displaying the load file pathname 3- ló
Drivers, custom 5-l

E

Edit ing BSl. ,486 3-7, 5-33
Errors

Analyzing 7-2, 5
Bootloading 3-27
Code 0l 7-2
Code I I 7-3
L , O O e t l / - 1

Code 13 7-3
L O O e Z I / - - t

Code 22 7-4
Code 23 7-4
CorJe 24 7 -4
Code 3 1 7-4
Co<le 32 7 -4
Code 33 7-4
Code 34 7-5
Code 35 7-5
Control l ing message d isplay ì-2l l
Handl ing 7- I
In i t ia l izat ìon 7-7
Message display 3-28
Procedures 3-1, 8, 27, 1 - l

ES register integrity 6-7
Examples

Boa rd-scl n i ì lgor i thm 5-.1:
BS$BROADCAST 5-21
BSGETINTERCONNECl' 5-2.}
BS$RECEIVE -5.19
BS$SEND 5-I6
BS$SEND$RSVP 5-13
BSSETINTERCONNECT 5-2II
Maintaining DS register inte-urity 6-o
Modified BSl.A8fi file 5-l'l

Excluding a device driver 3-26,45
Excluding automatic boot device recognition A-5
Excluding BS 1.A86 macros 3-7

IN I)EX

Bootstrap [,oader Indcx-5

INI)F],X

F

Fai lures 7- l
F i r s t s tage l -1 ,2

BSI.CSD f í le 3-42
BSERR.A86 file 3-27
Conf igurat ion 3-1
Custom dr ivers 5- l , 3(l
Defining a hootable rlevice l-2,1
Device dr iver conf igurat ion l i les l -2
Device dr ivers 1-7
Device in i t ia l izat ion 5- 1, 2
Device read 5- 1, 3
Error procedures 7- l
Fa ilure 7-(r
Generat ion 3-41
Generat ion for custonì dr ivers 5-3.1
Halt ing the boot 3-30
I ni t ia l izat ion re qu i reme nts 5-2
iSDM' monitor inclusion B- |
Loca t i on l -2 , f ì , 9 , 3 -17 , 1 - |ó
Placing in memory 2-4
Read requirements 5-3
Seconcl stage identilìcation 3- 1.1
Size l -2
Steps when supplying your own t l r ivcrs 3-,10
Supported device drivers J-25
User-supplicd drivers 3-40

G

Generaî ion
First stage containing a custont devicc driver -5-3.1
Third stage 4- l3
Third stage (custom device cìrir.cr) 6-9

Generic th i rd stage l -4

H

Hal t ing the Bootst rap l -oader dur inq errors
First stage 3-30
Third stage 4- l0

I{ard-coding custom driver configuration information 5-.1
How to configure the first stage l- I
How to conf igure the th i rd s tage , l -1

How to define a device to boot from. first sttrge 3-24

Index-6 B0otstrap L{rader

How to display the load f ì le parhname 3- ló
How to exclude automatic boot device recognition A-5
How to include automatic boot c levice recognit ion A-2
How to indicate a defaul t load f i le 3-17

I

Ident i fy ing the ser ial channel J- l t)
Including automatic boot device recognition A-2
Incorporat ing the iSDM" monitor B- I
lnitialization errors 7-7
Intel-supplied BG3.A86 file 4-5
Intel-supplied Bootstrap Loader cievice clrivers l-tl
Intel-supplied device drivers 3-3 |
Intel-supplied first stage drivers 3-l-5
Intel-supplied third stage drivers ,1-7
Intel-supplied third stage files 2-7
lnterconnect space 5-22
Interrupt

INTI 3-29, 4-9
INT3 3 -30 ,4 -10

Invocat ion from the iSDM monitor 2-2
Invoking the BG3.CSD submit f i les 4- 1-s
Invoking the BS I.CSD submit file 3-4(r
Invoking the BS3.CSD submit f i lcs .1- l5
iSBCo 208 Driver 3-25
iSBC@ 215 Driver 3-25. 4-7
iSBCo 251 Driver 3-2-5
iSBC@ 254 Driver 3-25
iSBC@ 2ó4 Driver 3-25, 4-7
iSBX@ 218A Driver 3-25
iSDM* monitor B- I
iSDM" monitor command extensions, c lear ing 3- l13

L

Load file l -5
Device 3- 14
Pathname specification 2- I

Loading the Bootstrap Loader into memory 2-.1
Location of first stage 1-2
Location of second stage l-3

IN I)EX

Bootstrap I-rnder Index-7

I \ I)EX

M

Manual oven' iew i i i
Memory locat ions usecl by the Bootstr l ìP l -oacler l -8, 3-47, '1- ló
Message broadcasting 5-20
Message passing system cont igurr i t ion l - I l , 4-5
Message types 5- l0
Modify ing the BG3.CSD subrr i t f i i , :s {- l1
Modify ing the BSl.CSD submit f i le l - -1.1
Modify ing the BS3.CSD submit f i lcs . l - l . l
Monitor entry af ter th ird stagc -1 | I
MULTIBUS@ II environntent 5- i0. 6-]
MULTIBUS@ II t r lnsport protocol 5- l . 8, 6-2, l l

N

Naming the Ìoad f i le 1-5
Naming the th i rd s tage 1-5

o
Operator 's role 2- l

P

Placing the Boot : i t rap Lolc jer in to mcnrorv l - .1
Product oven' iew i i i , l -1
Program matically loading the first stagc 2--5
Promming the Bootst rap l -oader uncl thc iSDM' moni tor B- l
Protected mode considerat ions o-o

R

Reader level i i i
Receive transact ion model 5- l -5
Request/response tnrnsact ion model 5- 10
Retries for ready devices 3-17

S

SASI bus in i t ia l izat ìon sequence def ini t ion l -39,4-u
SASI controller 3-39, 4-7
SCSI controller 3-39, 4-7
SCSI driver 3-25
Searchìng for a ready device 3- l7

Index-8 Brxrlstrap Loadcr

Second stage 1-1,3
Error procedures 7- I
Failure 7-ó
Locat ion 1-3, 8, 9, 3-47, 4- l r r
Size 1-3

Send transaction model 5- 15
Serial channel identification 3- 19
Serial communicat ion

Base port 3-20
Baud counter 3-21
Counter base port 3-21
Counter type 3-21
Flags 3-22

Serial communicat ion 3-20
Error messages 3-23

Serial controller device 3-20
Software interrupt (lNT1) 3-29, ,1-9
Software interrupt (lNT3) 3-30, 4- 10
SS register integrity 6-7
Stages 1-2
Supplying con f igu rat ion inform;rt ion

First stage driver 5-4
Third stage driver 6-7

Supplyingyour own device dr iver 3-,10,4- l2
Supported 5.25- inch diskettes 3-2ó
Supported ll-inch diskettes 3-2(r
Supported tlevice drivers 3-2-5, J I
Supported devices 1-8

T

Third stage l-2, 4
BG3.CSD file 4- 1,1
BS3.CSD f i le 4- l3
Choosing 2-(r
Configuration files .1-2
Custom drivers fi- 1, fi-tì
Defining a bootable devìce .1-6

Device drivers l -7
Device initialization 6-3
Device read 6-,1
Device-specific l-5, 4- I
Error procedures 7- l
r a l l u r e / - o

Generation 4- l3

INI)EX

Brxltstrap l,oader Index-9

INDEX

Third stage (cont.)
Generation for custom drivers 6-9
Generic 1-4, 4- 1
Halting the boot 4-10
lnitialization requirements 6-3
Intel-supplied 2-7
Location l-4, 8, 9, 4-16
Naming l -5
Read requirements 6-5
Steps for supplying your won drivers 4- 12
User-supplied drivers 4- l2

Transaction ID value 5-22
Transmission

Modes 5-22
Status 5-22

U

User-supplied drivers 3-40, 4- l2
Using the Bootstrap Loader 2- I
Using the iSDM debug option 2-,1

w
Writing a custom first stage driver -5- I
Writing a custom third stage clriver 6- I

Index-10 Bff)tstrap l,oader

intel

EXTENDED iRMX@II
SYSTEM DEBUGGER

REFERENCE MANUAL

ln te l Corporat lon
3065 Bowers Aven u e

5 a n t a C l a r a , C a 1 f o r n r a 9 5 0 5 1

1988, In te l Corporat ion, A I Rights ReservedC o p y r i g h t

PREFACE

INTRODUCTION

The iRMX II System Debugger is a memory-resident extension of the iSDM'r System
Debug Monitor and the D-MON3li6 Monitor. The System Debugger gives you a strìtic
debugging tool that can recognize and display all iRMX II objects. It enables you to
examine your iRMX II system interactively so you can find and correct errors.

READER LEVEL

This manual is intended for appl icatìon engineers fami l iar wi th the concepts and
terminolory introduced in the E.ttended |RMX II Nuclcus User's Guide and system
programmers implementing clevice tlrivers, olrject ntanagers, and operating systent
ext ensr ons.

MANUAL OVERVIEW

This manual consists of the followins chanters:

Chapter I INTRODUCTTON--This chapter describes the features of the
System Dehugger, illustrates how the System Debugger relates
to EPROM-based clebugging tools, and explains how to use the
System Debugger. Read this chapter if you are going through
the manual lbr thc f i rst t ime.

SYSTE,M DEBTJGG ER COMMANDS--This chapter contains
detai led descr ipt ions of the System Debugger commands,
presented in alphabetical order. When debugging your system,
refèr to this chapter for specific inlbrmation about the fìrrmat
and narameters of the commands.

Chapter 2

lSystem Debugger

Chapter 3

Appendix A

Appendix B

CONVENTIONS

This manual uses the fo l lou ' ing format convent ions:

. User input appears in one of the lbllowing forms:

l v

iRMX@ II SYSTEM DEBUCGER OVERVIEW

SAMPLE DEBUG SESSION--This chapter shows in a step-by-
step 1ìshion how to use System Debugger feetures. The chapter
contains a sample debugging session clemonstrat ing how to use
iSDM monitor and System Debugger cclmmands to lociìte an
application-code error, correct it, and test the change. Discrete
examples showing additional debugging techniques are also
included. Use this chapter as a hands-on introduction to the
System Debugger.

iSDM MONITOR COMMANDS--This appendix br ie l ly
descr ibes the funct ion of al l basic iSDM monitor commands.
Use this appendix as a quick reference to the iSDM monitor.
For more information see the iSDM Si.rtern Debu7 Monitor
User's Guide.

D-MON386 MONITOR COMMANDS--This appendix br ief ly
describes the function of all basic D-MOr..*3iìfi monitor
commands. For more information. refer to the D-MON-18ó
Dehup lvlonitor for the 80.18ó User's Guùlc.

as bo lded tex t w i th ln a screen

The text < CR > appears where you must enter a carr iage return. When pressing the
carriage return key, the text < CR > does not appeîr on the console.

Although all syntax diugrams show uppercase Ìerters (e.g., VR), you can also use
lowercase letters.

The manual refers to the iRMX I I Operat ing System as the opcr l t ing syslem.

All numbers unless otherwise stated are assumed to be decimal. Hcxaclecimal numbcrs
include the "H" radix chlracter (for example, OFFH).

Darker shaded text appelrring over shaded text within figures or screen displays does
not actual ly appear on the screen. The text wi thin the darker bor suppl ies informat ion
that is helpful in understancl ing the f igure or screen displav.

System Debugger

CONTENTS

CHAPTER 1
iRMX@ II SYSTEM DEBUGGER OVERVIEW

CHAPTER 2
SYSTEM DEBUGGER COMMANDS

PAGE

PAGE

System Debugger

CONTENTS

CHAPTER 3
SAMPLE DEBUG SESSION

APPENDIX A
ISDM" MONITOR COMMANDS

APPENDIX B
D.MON386 COMMANDS

PAGE

PAGE

PAGE

vl System I)cbugger

CONTENTS

APPENDIX B (continued) PAGE

FIGURES

FIGURE

a 1

a a

1 À

z-)

System Debugger vl l

CONTENTS

FIGURE

2-7
2-8
2-9
2-10
2-11
2- t2
2-13
2-14

2-16

2-lt ì
2-19
2-20
2-21
2-22

2-26

2-28
2-29
2-30
2-ll
l - -) I

2-34
2-35
3 - 1
3-2
3-3

PAGE

Format o f VJ Ou tpu t 2 - l u

iRMX@ I l Job T ree - 2 -20
. , : - : z

F-ormat of VO Output2-24

Format of VR Output. -2-28

Format of VS Output '2-32
Format of VT Output: Job Display.. ,2-37
Format of V f Output: Non-lnterrupt Task..2-39
Format o f VT Ou tpu t : I n t c r rup t Task 2 -39
Format of VT Output: Miì i l l)ox with No Qucue.. -- 2-42
Format of VT Output: Mai lbox with Task Queue - - ----2-42
Format of VT Output: Mai lbox with Ohjcct Queue..2-43
Format of VT Output: ! f i r i l lxrr r i i th Data \ ' lcssir te Queue.. l -13

Format of VT Output: Se nrrr l tht t re u ' i th No QucLre2- '11

Format of VT Output: Sennphore * i th Tlsk Queuc.. 2- . l -5

Format of V' f Output: Region u' i th No Que ue.. 2-1-5
Format o f VT Ou tpu t : Rcq ion w i th Task Queue - - - 2 ' 46
Format of VT Output: Exte nsion () t r ject2-17
Format o f V ' f Ou tpu t : Scgmcn t 2 - ' 16
Format of VT (lutpLrt : Compositc Otr ject Othe r Than 8IOS..2-11Ì
Format of VT Output: f i l lOS LJscr Olt jcct Compc1si te. . 2- '19
Format o f VT Ou tpu t : B IOS Phys i ca l F i l e Conncc t i on 2 -19
Format of VT Output: I ì lOS Stream Fi le C-Ì tnnect ion.. , . . .2--51
Format of VT Output: 13lOS Nunret j f r i le Connect ion 2--5 '1
Format o f VT Ou tpu t : I ì lOS Rcnro te [ì i l e Connec t i t l n 2 -56
Format o f VT Ou tpu t : S ign : r l P ro loco l Po r t . 2 -51
Format of VT Output: Di ì t i r

' l ' ransport Prt t tctcol Port . -2-5f t
Fo rma t o f VT Ou tpu t : Da ta l n tnspo r t P r (} t oco l Po r t . 2 -5 l J
Fo rmat o f V ' f Ou tpu t : Bu f l e r Poo l 2 -60
Format o f VLJ Ou tpu t 2 -63
Exampf e PL /M-286 App l i c l t i on (l n i t) 3 ' 2
Examp le PL /M-286 App l i c : r t ron (A lphonse) 3 -5
Examp le PL . IM-286 App l i ca t i on (C las ton) , , 3 -7
MOVW in Gaston (ìrdc. l - 12

Yl l l System l)ebugger

IRMX@ II SYSTEM
CHAPTER 1
DEBUGGER
OVERVIEW

1.1 INTRODUCING THE |RMX@ II SYSTEM DEBUGGER

When you develop appl icat ion svstems, you need debugging capabi l i t ies on your
development system. In addit ion to the iSDM System Debug Monitor or the D-MoN3Err
Monitor, Intel provides rhe iRMX I I System Debugger (SDB) îor debugging your
iRMX I I -based appl icat ion system.

NOTE
The remainder of th is manual uses thc term' ,moni tor ' , to re ler to both the
iSDM System Debug Moniror and rhe D-MON3l ì (r Monrror .

The System Debugger is a memory-res ident extension of the moni tor ; thereforc, vou must
have the monitor if you have thc Systent Debugger confi{ured into your system. The
monitor provides code disassembly, execution breakpoinrs, memory cJisplay, and pro_qran.l
download capahi Ì i t ies. The Systen Debuqqer extends the moni tor 's d isassembly fun i t ions
by in terpret ing iRMX I I ca l ls , data s t ructurcs, and stacks.

Moni tor and System Debugger conrmands are entcrec i in rcsponse to the isDM Moni tor 's
protected-mode prompr (. .) or rhe D-MONl8(r Moniror 's prompt (>) . When you invoke
the m.ni tor , both the operat ing systcm and y.ur appl icat i .n svstem are l i .zen. As vou use
monl tor commands to set l t reakpoints whi le the appl icat ion code is executed, you can
inspect system objects, change systcm call parameters and regisrers, and test chrrnees.
Refer to Appendix A for more in format ion on iSDM M.ni t . r commands and Appcndix B
tor D-MON3tì6 Moni tor cornmanos.

System Debugger l - I

iRI\TX@ II SYSTEI\Í I)EBTJGGER OVERVIEW

1.2 SUPPORTING THE SYSTEM DEBUGGER

To use the System Debugger, you must have one of the fo l lowing hardware conf igurat ions

wi th a l l the requi red suppor t hardware:

o An Intel MicrocomPuter ctlnnected to an 8021ì6- or 386-based board

. A terminal connected directly to lrn 802iì(r- or 386-bltscd lrortrtl

. An Intellec@ Development Svstenì connected to an E1)21ì(r- or 386-based lxlard

In adcl i t ion to the above hardware, vou must have both of the fo l lowing:

o The E,PROM por t ion o1 the iSDM System Debug Moni tor or the D-MON3fì6 Moni tor

. At least the min imal conf isurat ion of the iRMX I I Nucleus

1.3 CONFIGURING THE SYSTEM DEBUGGER

You cannot use the System Debuqqer unt i l y t t t t inc lut le i t in vour s1 's tem through the

Interact ive Conf igurat ion Ut i l i t i , (ICLJ) .
' fo

inc lude the System Debugger, begin by

invoking the ICU. Next , prov ide the fo l lowing in lbrmat ion the I (ì tJ requi res to conf igure

the System Debuggcr:

1. In the ICU's "Sub-Systems" screcn, respond "yes" to the SDB prompt.

2. In the ICU's "System Debuqqer" screcn, set the in terrupt lcvel vou want to use to

invoke the moni tor manual ly (bv press inq a hardware in terrupt but ton) .

To use the Non-Maskable In terrupt (NMI) for debug-qing t lev ice dr ivers, see the

Ertended |RMX II Hardn'are and Softv'are lrtstalloliott CLtitle.

For deta i led in format ion on conf igur in t thc System Dehuggcr , consul t the Extenfud

iRlvIX II Interactive Confrguration l.ltilif Rtftrotcc ltlartuttl.

1.4 INVOKING THE SYSTEM DEBUGGER

You must enter the moni tor to use the Svstem Debu[qer . You can invoke the moni tor in

tnree ways:

l . Use a hardware swi tch physica l ly connected to the in terrupt lcvel you speci f ied dur ing

conf igurat ion. Act ivat ing th is su ' i tch hal ts the r rppl icat ion svstem, saves the system's

contents, ant l passes contro l to thc nroni tor .

2. Use the Human lntcr l ì rcc DEtsUG commrtnd. DEBUC loat ls y 'our speci f ied
appl icat ion progr i ìm in to main memorv and t r i ìns lcrs co l ì t ro l to the moni tor .

l-2 System I)cbugger

iRMX@ II SYSTE]\ Í DEBUGGER O! 'ERVIElV

3. Use the Bootstrap Loader DEtsLJG switch. When you speci fy rhis switch, the monitor
comes up after the system is loucled but befì t re the system starts running. Thc CS:lP
points to the f i rst instruct ion of the appl icat ion system. At th is point the system hus not
been ini t ia l ized; therefctre, you can run only monitr t r cctmmands. Using the MAP2IJ(I
output, you can ident i ly where vou want to insert breakpoints. (For more inf i t ln l t t ion
on BIND, MAP, and OVL, sec the AI,X 286 Utilities U.ser's Guitle fttr |RMX l/.$urlnr.r).
Use the break address parameter in the monitor 's CO (G) command to set breakpoints
in the appl icat ion systcm cocle. When you enter "G <CR>", thc system starts anLi is
in i t ia l ized. The monitor is invoked when the CS:lP reaches the breakpoints. I ìor more
information on booting with DE,BUG, consult rhe Extended |RMX II Bootstntp Loudcr
Reference Manual.

When you invoke the monitor, the appl icat ion system stops running i tnd al l syster l act iv i r \
f reezes. The appropr iate prompt i tppears (the " . ." for the iSDM Monitor or thc " > " for the
D-MON3tl6 Monitor) , anci you cun bcqin enter ing Systent Debuggcr and moniror
commands to exirmine system objccts.

1.5 USING THE SYSTEM DEBUGGER

The System Debugger uscs ntoni tor J l rocedurcs to parse the command l ino and to out l tu t
lo the console; therefore, you run both System Debuggcr unt l moni tor comm:rnc ls f ì -orn the
monitor. The syntax for System Debugter communds is a "V" or "v" followed bv another
le t ter , an opt ional space, und un opt ion i r l panìmeter .

The twelve System Debueeer commirnds (descr ibed in Chaptcr 2) fa l l in to three c i r teqor ics:

. E ight commands extend thc nroni tor mcmory d isp lay funct ions by d isp lay ing i l ìMX l l
data s t ructures and ot !ccts .

. Three commands extcnd thc ntoni t r t r d isasscmbly funct ions bv rccogniz ing and
display ing iRMX I I ca ls .

. A help command prov ides a shor t descr ip t ion of a l l the conìrnancls .

Al l commands c i ther d isp lay in l ì r rmat ion as hexadecimal numbers or t ry to in tcr l) re t t l ìe
in format ion. I f the System Debuucr c l ìnnot in terpret the in format ion, i t d ìsp lays the
actual heradecimal value, followed by tu,o question marks.

iRMX I I prov ides two features that e nable vou to leave the moni tor wi thout r i jsc t t ing your
system: warm-star t and Cl- l - restar t . The \ ìarm-star t leature re in i t ia l ìzes the systent and
returns contro l to the Human Intcr face. The Cl- l - restar t feature deletes the current jo t r

then returns contro l to the f lommlrnt l [- ine Interpreter . Refer to Chapter 2 for ntore
information on these tèatures.

System Debugger l --l

iRMX@ II SYSTENI I)EBUGGER OVERVIEIV

1.6 RETURNING TO YOUR APPLICATION

When you have finished debugging your application system with the System Debugger, or if

you want to test the changes you made to the apPl icat ion code, use the monitor 's GO

command (G) to resume execut ion of the appl icat ion.

l -4 System l)ebugger

SYSTEM DEBUGGER
CHAPTER 2

COMMANDS

2.1 INTRODUCTION

This chapter conta ins deta i led descr ìpt ions of the iRMX I I System Debugger contn l rnds.
Commands appear in a lphabet ica l orc lcr , wi th the î i rs t r rcurrence of euch command
appear ing in at the top oI the page. A d i rectory of the commands, d iv ic le t l in to
lunct ional groups, precedes the commrnd descr ip t ions.

This ehapter uses the [o l lou in- [\ . (,n \ (.n t i (ìn \ :

. "CS: lP" is the Code Segmcnt : lnst ruct ion Pointer- -Thc pointcr to the inst ruct ion th l t
would be executed next i î thc r rppl icat ion svstenì \ r 'c re running. I f vouspeci fv i rn Ip
value (one fbur-d ig i t hex i rc iec i r r r r l number) but not i ì CS v l r lue, the Systenì Debuq,qcr
uses the current CS as thc del ì tu l t base.

o "SS:SP" is the Stack Segment :s l r rck Pointer- - ' ['he pointer to the current s tack locat ion.

. Enter ing zero (0) as a va luc l i r r an opt ional p i r r i tn ìetcr is the sanre as omi t t ing the
parameter ; the def ì ru l t vaÌuc o1 thc p i r r i rmeter is uscd.

. A l l terminal examples assunle thr ì t the iSDM System Debuq Moni tor is beinq usecl .
Thus, example input l ine s shou, rhe iSDlv l moni tor prompr (. .) .

2.2 CHECKING VALIDITY OF TOKENS

Manv System Debug-{er communds usc iRNIX I I tokcns îs p l rameters or d isp lay tokens i rs
par t o f the command output . The i lLMX I I Operat ing Svstent mir in ta ins toke ns in r loublv
Ì inked l is ts . When you enter u token i ts u p l ru lmeter , the Svstem Dcbugger chccks the
val id i ty of the token by look ing at the t ì r ruarc i rnd backward l inks of the token.

I f one of the l inks is bad, thc Svstenr l)ebuggcr genenì tes Í ìn error message a long wi th the
standard command output . The token vou enter as a paranletcr a lw;rys appcars l ts the
center va lue in each l ine of the tokcn t l isp la l ' . The d isp lays for f ì r ru ,arc l - and b lckuald- l ink
erroÍs are as lbllows:

Forward l ink ERROR: .1 I I l - - >. lF.E5 .1 l l I < - - .+t r lJ-5-- > 4 155 ' IFFFF<-- , l l -s5

tsackward l ìnk E,RROR: 4l l l - ->110F' l 4 I I I < --4E85-- > 4 l5-5 4El. ì -5<--.1155

System Debugger

System Debugger Commands

Arrows to the left indicate backward links; arrows to the right indicate forward links. A
question mark before or after a value signifies a forward or backward link error,
respectively.

Ifboth links are bad, the System Debugger considers the token invalid. A token may also
be invalid if it belongs to an object in the deletion process, if an incorrect token is entered
as a parameter in a system call, or if a deleted or unused token is entered as a parameter.
When the token is invalid, the System Debugger displays the following message:

*** lNvALlD ToKEN ***

A link error indicates that iRMX II data structures have been corrupted. The most
common reason for this problem is a task might have accidentally written over part of the
system data structures. However, the iRMX II protection mode feature protects against
such overwriting under normal circumstances. Data structure corruption can also occur if
you are using the Non-Maskable Interrupt (NMI). The Nucleus may have been
interrupted while it was setting up the links. (The NMI is a hardware interrupt. For more
information on the NMI, see the 80286 Hardware Reference Manual or the 8038ó Hardware
Reference Manual.)

2.3 PICTORIAL REPRESENTATION OF SYNTAX

This chapter uses a schematic device to illustrate command syntax. The schematic consists
ofwhat looks like an aerial view of a model raiìroad, with syntactic elements (appearing in
circles) scattered along the track. To construct a valid command, imagine that a train
enters the system at the far left, travels from left to right only (backing up is not allowed),
chooses one branch at each fork, and finally departs at the far right. The command
generated consists of the syntactic elements it encounters on its journey. The following
schematic shows two valid seouences: AC and BC.

2-2 System Debugger

System Debugger Commands

These schematics do not show spaces as elements, but you may include one or more spaces
between the command and parameter. For example, even though the syntax for VR is as
follows:

The following command is valicl:

The space between "VR" and "xxxx" is optional.

2.4 LEAVING THE MONITOR

Two features enable you to leave the monitor wi thout resett ing your system: wrrm-strrr t
and CLI-restart .

The warm-start feature is the process of starting a systcm without reloading it from
secondary storage. Warm-start rcinitializes the system, that is, it begins executing the
application system at the same point whcre the Bootstrap Loader passes control to the
system.

To warm-start the system from the iSDM monitor, enter the fol lowing command:

To warm-start the system from the D-MON3lì6 monitor, enter the following commancl:

If no system code or data segments were corrupted, the system reiniîializes. If segment
corruption has occurred, the application system will not run; you must reboot the system.

I f your system contains a Command Line Interpreter, and running your appl icat ion
program causes an exception that brcaks to tht: monitor (for example, a General
Protection exception), enter the following commlìnd to CLI-restart the system from the
iSDM monitor:

sagmenl
token

System Debugger 2-3

Systern Debugger Commands

Enter the following command to CLI-restart the system from the D-MON3lì6 monittlr:

These commands causes the system to attempt to delete the job tree of the running task. If
the running task is part of the application's job (not a subsystem task running on behalf of
thejob) control returns to the Command Line Interpreter. Otherwise, you must reboot the

system.

2.5 COMMAND DIRECTORY

Command

DISPI-AYING iRMX II DATA STRUCTURES

V B - - D i s p l a y D U I B l n f o r m a t i o n

V D - - D i s p l a y a J o b ' s O b j e c t D i r e c t o r v .

V F - - D i s p l a y N u n b e r o f F r e e S l o t s

VJ - -D isp lay Job H ierarchy

V K - - D i s p l a y R e a d y a n d S l e e p i n g T a s k s . .

V O - - D i s p l a y O b j e c t s i n a J o b .

V R - - D i s p l a y 1 / O R e q u e s t / R e s u l t S e g m e n t

V T - - D i s p l a y i R M X I I O b j e c t .

RECOGNIZING AND DISPLAYING iRMX II SYSTEM CALTS

V C - - D i s p l a y S y s t e r n C a l l I n f o r m a t i o n .

V S - - D i s p l a y S t a c k a n d S y s t e m C a l I I n f o r m a t i o n

W - - D i s p l a y S y s t e m C a l l s i n a T a s k ' s S t a c k . .

OTHER COMMANDS

V H - - D i s p l a y H e l p l n f o r m a t i o n

Page

. 2 - 1 2

. 2 - 1 4

. 2 - r 8

. 2 - 2 2

. 2 - 2 4

. 2 - 2 1

. 2 - 3 6

. . 2 - 9

. 2 - 6 2

. 2 - 1 6

2-4 System Debugger

The VB command displays the DUIB information for the specified physical device. For
addit ional informat ion about Device-Unit Informat ion Blocks (DUlBs), refer to Chapter
of the Extended iRMX II Device Divers User's GuùIe.

PARAMETER

Physical device The name of the physical device for which you want to view the
DUIB intbrmat ion (e.g. , WMF0). This device must be part ot
the svstcm confisuration.

DESCRIPTION

The VB command displays the DLJIB information fbr the specified physical device. Figure
2- 1 i l lust rates the outnut f rom the VB command.

D e v i c e n a m e :

Func ts :
Dev$gran
D e v $ s i z e
Un i t
D e v i c e $ i n f o $ p
U p d a t e S t i m e o u t
P r i o r i t y
I n i t $ i o

Queue$ io

F l a g s :
Dens i t y
S i z e

F i l e d r i v e r :
P h y s i c a l

(phys ica l dev i ce

xx
XXXX

XXXXXXXX

X X X X : X X X X

XXXX

X X

xxxx : xxxx
xxxx : xxxx

xx
XXXXXX

X

xxxx
XXXX

name>

DUIB addre s s
M e w A h l f f a r <

Device
Dev$uni t

N " m (h " f € a r c

F ixe d$upda te
F in i sh$ io
C a n c e 1 $ i o

V a l i d
S ide s
Format

Named
S t r e a m

XXXX ; XXXX

xx
X X

XXXX

X X X X : X X X X

XXXX

xx
XXXX : XXXX

XXXX : XXXX

xxxxxx
xxxxxxxx

xxxx
XXXXX

Figure 2-1. Fr)rmal trf VB Output.

System Debugger 7 -1

VB--DISPLAY DUIB INFORMATION

The fields displayed in Figure 2- I are as lbllows:

Functs A BYTE used to specify the [/O function validity for this
devrce-unr t .

DUIB address The star t ing address in memory of the speci f ied DUIB.

Dev$gran A wORD that specifies the device granularity, in bytes. This
parameter applies to random access devices, and to some
common devices, such as tape drives. It specifies tht: minimum

numtrer of bytes of information that the device reads or writes in

onc OPcI i l l i (ìn .

Max$buffers The muxinrum number of buffers that the EIOS can allocate fìrr
a connect ion to th is device-uni t when the connect ion is opened
by a call to S$OPE,N.

Dev$size The number of bytes of information that the device-unit can
store.

Device The number of the device with which this device-unit is
associated.

Uni t The number of th is device-uni t , which d is t inguishes th is uni t
f rom other uni ts of the device,

Dev$uni t The device-uni t number, which d is t inguishes th is c lev ice-uni t
f rom other device-uni ts in the hardware system.

Device$info$p A POINTER to a s t ructure th î t conta ins addi t ional in format ion
ahout the device. The common, random, and terminal devicc
drivers recluire a Device lnformation Table in a specific tormat,
for each device.

Uni t$ info$p A POINTE.R to a s t ructure that conta ins adt l i t ìonal in format ion
about the unit. R:rnrlom access, common rlevice (such as tape
tJr ives) , anc i terminal c lev ice dr ivers rer lu i re th is Uni t
Inlbrmation Table in a specific lbrmat.

Update$t imeout The numtrer of system t ime uni ts that the I /O System must wr i t
before writing l partial sector, after processing a wriîe request
for a disk device.

Num$buffers The number of buffers of device-granula rity size that the I/O
Systenì alÌocates.

Priority The priority of the I/O System service task for the device.

Fixed$update Indicates whether the fixed update option was selected for this
device-unit when the application system was configured.

In i t$ io The address of the In i t ia l ize I /O procedure associatcd wi th th is
unr t

2-6 Systen I)ebugger

vB--DI SPL\Y DUIB In*FORNIATI ON

Finish$io The address of the Finish I/O procedure associated with this
un i t .

Queue$io The address of the Queue I/O procedure associatetl with this
uni t .

Cancel$io The adciress of the Cancel I/O procedure associated with this
unl t .

Flags Specifies the characteristics of diskette devices.

Val id Indicates whether the Flags f ie ld is "Val id" or "Not Val id" for
t his tler iee.

Density The density of the device. If the flags for this DUIB are invalicl,
this field is marked "N/A".

Sides The n umber of media sides that the device can wri te to. I f the
f lags lor thìs DUIB are inval id, th is f ie ld is marked "N/A".

Size 'l'he physical size of the clevice (-5 l/4-inch or S-inch). If the
flags for this DUIB are invalid, this lìeld is marked "N/A",

Format Indicates whether t rack 0 of a disk is to be formatted as a
STANDARD diskette (12tt bytes/sector) or as a UNTFORM
diskette (all sectors formatted as specified). This parameter
applies only to flexible diskettes. Hard disks are alwrys
speci i ied as UNIFORM. l f the f lags for th is DUIB are inval id,
this f ie ld is marked "N/A".

Fi le dr iver: A WORD that indicates the BIOS f i le dr iver to which this
connect ion is at tached.

Named Indicates whether this device is configured to use the Named file
dr iver.

Physical lndicates whether this device is configured to use the Physical
file driver.

Stream Indicates whether this device is conf igured to use the Stream f i le
driver.

System Debugger) - 1

VB--DISPÍAY DUIB INFORMATION

ERROR MESSAGES

Syntax Error An error was made when entering the command. The correct
syntax is VB <physical device>. Any other syntax produces this
messaSe.

VB not supported VB couldn't find the byte bucket DUIB entry in the BIOS code
segment. If no DUIB entry for the byte bucket exists, VB ìs
unsupported.

If the BIOS has not been configured into the system, or if the
BIOS code segment has execute-only attributes, this error
message is returned.

DUIB not found VB returns this error message under these conditions:

1. The DUIB is not configured into the system.

2. The DUIB entry for the specified device is located betbre
the b)'te bucket DUIB entry.

3. The user made an error while entering the physical device
name.

2-8 System I)ebugger

The VC command checks to see if a CALL instruction is an iRMX II system call. The VC
command identifies system calls for all iRMX II Operating System layers.

PARAMETER

polnrer The address of the CALL instruction to be checked. This
parameter can tre any valid monitor address (two four-digit
hexadecimal numbers separated hy a colon).

If you are using the iSDM monitor and you do not supply a
pointer (or you specifo 0), this parameter defaults to the current
CS:lP. If you specify an IP value (one four-digit hexadecimal
number) but not a CS value, the System Debugger uses the
current CS as the default base.

lf you are using the D-MON38ó monitor and you specily the
address with an offset value with no base value, the parameter
defaul ts to the current CS:lP value.

DESCRIPTION

lf the CALL instruct ion is an iRMX I I system cal l , the VC command displays informat ion
about the CALL instruction as shown in Fieure 2-2.

gate /INNNN
(s u b s y s t e n) s y s t e m c a l l

Figure 2-2. Formaf of VC Oulput

The fields in Figure 2-2 are as lbllows:

gate #NNNN The gate number associated with the iRMX II system call at the
address specified in the command.

System Debugger 2-9

VC--DISPI,AY SYSTE]\Í CALL INFORMATION

(subsystem) The iRMX ll Operating System layer corresponding to the
system call.

system call The name of the iRMX II system call.

NOTE
The System Debugger uses the gate number to determine whether the CALL
instruction represents a system call. Since the System Debugger does not
disassemble the code, but rather examines a byte value at a particular offset
from the CALL instruction, in rare cases a non-system call can be displayed as
an iRMX II system call. However, the System Debugger does recognize and
display a l l iRMX I I system cal ls .

ERROR MESSAGES

Syntax Error An erftrr was made in ente ring the command.

Not a system CALL The parameter specified points to a CALL instructior.
that is not an iRMX I I system cal l .

Not a CALL instruction The CS:lP specified does not point to any kìnd of call
instruct ion.

EXAMPLES

Suppose you disassembled the fol lowing code using the iSDM monitor 's Display Memory
(DX) command:

1 8 A 0 : 0 0 6 D 5 0 P U S H A X
1 8 A 0 : 0 0 6 8 E S A D I E C A L L A : l F l E ; $ + 7 8 5 6
1 8 A 0 : 0 0 7 1 E 8 D D 0 3 C A L L A : 0 4 5 1 1 $ + 9 9 2
1 8 A 0 : 0 0 7 4 8 8 0 0 0 0 M O V A X , O
1 8 A 0 : 0 0 7 7 5 0 P U S H A - \
18A0:0078 8D060600 LEA A-\ , lnoRD PRT 006
1 8 A 0 : 0 0 7 C 1 E P U S H D S
1 8 A 0 : 0 0 7 D 5 0 P U S H A x
1 8 A 0 : 0 0 7 E E 8 4 1 l E C A L L A - L E C 2 ; $ + 7 7 4 8
1 8 A 0 : 0 0 8 1 A 3 0 0 0 0 M o v w o R D P T R 0 0 0 0 H , A x

I f you use the VC command on the CALL instruct ion at address 1t ìA0:0t)(rE by enter ing
the following command:

2-r0 Systenr I)ebugger

VC..DISPI.AY SYSTEM CALL INFORMATION

The System Debugger displays the following inlbrmation:

gate 110468
(Nucleus) set except ion handlèr

Gate number 0468 corresponds to an RQSETEXCEPTION$HANDLER system call,
which is a Nucleus call.

Now, suppose you want to see if the CALL instruction at 18A0:0071 is a system call. Enter
the followins command:

The System Debugger responds with the following:

Not a sys ten CALL

Finally, ifyou use the VC command on the instruction at l840:0074, the System Debugger
responds with the following:

Not a CALL inst ruct ion

System Debugger 2-tl

The VD command displays a job's object directory.

PARAMETER

job token The token for the job having the object dìrectory you want
displayed. To obtain the job token, use the VJ command.

DESCRIPTION

If you specified a valid job token, the System Debugger displays the job's object directory,
as shown in Fisure 2-3.

Directory

narnel
narne2

.

namek

namen

s \ z e : x x x x

tokenl
: ^ ^ l - - . . - { * i - -
L d J ^ r ! d r L I i È t

iok.r,i
tokenk

cokunat

E n t r i e s u s e d :

t o k e n 2 . . . t o k e n i

Figure 2-3. Format of YD Output

Figure 2-3 shows these fields:

Directory size

Entries used

The maximum number of entries this job can have in its object
directory.

The number of entries presently in the directory.

2-12 System Debugger

VD..DISPLAY A JOB'S OBJECT DIRECTORY

namel...namen The names under which objects are catalogued. These names
were assìgned at the time the objects were catalogued wìth
RQ$CATALOG$OBJECI.

tokenl...tokenn Tokens for the catalogued objects.

tasks waiting Signifies that one or more tasks have performed an
RQ$LOOKUP$OBJECT on an object not catalogued. The
tokens following this field identify the tasks still waiting for rhe
object to be catalogued.

For more information on object directories, see the Extendtd \RMX I I Nucletts lLser's
Guide.

ERROR MESSAGES

Syntax Error No parameter was specified for the command, or an
error was made in entering the command.

TOKEN is not a Joh A valid token was entered that is not ajob token.
... IIWALID TOKFN *** The value entered for the token is not a valid token (as

defined in "Checking Validity of Tokens" earlier in this
cnapter) .

EXAMPLE

Suppose you want to look at the object directory ofjob "2280". Enter the following
command:

The System Debugger responds with

D i r e c È o r y s l z e : 0 0 0 A

S 2228
R?IOUSER 2?OO
RQGLoBAL 2280

Entr ies used: 0003

The symbols '$", 'R?IOUSER", and "RQGLOBAL" are the names of objects rhc sysrem
creates; their respective tokens are 2228,2200, and 2280. There are no waiting tasks or
invalid entries.

System Debugger 2-13

The VF command displays the number of free Global Descriptor Table slots available to

the user.

PARAMETERS

The VF command has no parameters.

DESCRIFIION

The VF command displays the number of free Global Descriptor Table (GDT) slots
available to the user, in the format shown in Figure2-4.

Number of free slots : xxxxxxxx

Figure 2-4. Format oflT Output.

2-14 System Debugger

!T'..DISPI,AY NUMBER OF FREE SLOTS

ERROR MESSAGES

Syntax Error An error was made in entering the command.

2-15System Debugger

The VH command displays and briefly describes the twelve System Debugger commrrnds.

PARAMETERS

This command has no parameters.

DESCRIPTION

The VH command lists all of the System Debugger commands, along with their parameters
and descriptions.

ERROR MESSAGE

Syntax Error An error was made in entering the command.

EXAMPLE

If you enter the following command:

2-16 System Debugger

VH--DISPLAY HEI.P IN FORMAI]ON

The System Debugger responds as shown in Figure 2-5.

Extended iRllx II SYSTEM DEBUGGER, Vx.y
Copyr ight <year) ln te l Corporat iÒn

vb <Dev Narne> Displays DùlB for physica l device.
vc [<POINTER>] Display sysrern ca l l .
vd <Job TOKEN> Display job,s objècr d i recrÒry.
v f Dispì -ays number of f ree s lots avai lab le ro user .
vh Display help in forrnat ion.
v j [<Job TOKEN>] Display job h ierarchy f rom speci f ied 1evel .
vk Display ready and s leeping rasks.
v o < J o b T Q K E N > D i s p l a y l i s t o f o b j e c t s f o r s p e c i f i e d j o b .
vr <Seg TOKEN> Display I /0 Request lResul r Segmènr.
vs [(count)] Disp lay s tack and syscem caLl in formaLion.
vt <TOKEN> Display iRMX t l ob ject .
a 'u <task TOKEN> Unwind task s tack, d isp lay ing system cal ls .

Figure 2-5. I'ormat of VH Output

Angle brackets surround required variable fields.
Square and an_ule brackets surround opt ional f ie lds.

NOTE
The system uses default values if vou speci|r zero (0) for any of the optional
parameters in Figure 2-5. LJsing zero for requirecl parameters causes the
system to display the following messrìge:

System Debugger 2- t7

The VJ command displays the portion of the job hierarchy that descends from the level you

sDecifu.

PARAMETER

job token The token of the job for which you want to display descendant
jobs.

If you do not specify a job token, or you specifu zero (0), VJ
displays the root job and its descendant jobs.

I f the job has more than 44 generat ions of job descendants, the
System Debugger disconîinues the display at the 44th
descendant level, displays an error message, and prompts for
another command.

DESCRIPTION

The VJ command displays the token of the specified job and the tokens of all its
descendant jobs. It also displays the tokens ofjobs (and their descendants) at the same
level as the specified job. The tokens lbr descendant jobs are indented three spaces to
show their job's position in the hierarchy. Figure 2-6 shows the format of the job hierarchy
disolav.

iRMx@ Il Job Tre e

token l
token2

token3
token4

tokent
token,

o

Rooc Job
Hurnan I ntè rface
Command L ine Inte rpre ter
App I lca t í on
E I O S
B I O S

2- l8

Figure 2-6. Formal of VJ Oulput

Sysfem Debugger

VJ-.DISPI-AY JOB IIIERARCTIY

The fields in Figure 2-6 are

tokenl The token you specified as job token (recall that the rootjob
token is the default).

token2...token6 The tokens for the descendant jobs of token 1.

In Figure 2-6, the Human Interface, EIOS, and BIOS Jobs are indented three spaces to
signify that they are children of the Root Job. Similarly, the Command Line Interpreter
Job is the child of the Human Interface Job, and the Application Job is the child of the
Command Line Interpreter Job.

ERROR MESSAGES

Syntax Error An error was made in entering the command.

TOKEN is not a Job A valid token was entered that is not ajob token.

TOKEN *** The value entered for the token is not a valid token (as
defined in "Checking Validity of Tokens" earlier in this
chapter).

SDB job nest limit The specified job (or the default job) has
exceeded more than 44 generations ofjob descendants.

EXAMPLES

Ifyou want to examine the hierarchy of the root job, enter the following command:

Suppose the System Debugger responds with the following job tree:

lRMx@ II Job Tree

0258
0F38

1670
2460

088 8
0E00

Figure 2-7 shows this joh tree:

System Debugger 2-19

VJ--DISPL{Y JOB HIERARCHY

R o o t J o b
(0 2 5 8)

l l u m a n I n t e r f a c e
(0 F 3 8)

/
/

/
C o r n n a n d L i n e I n t e r p r e t e r

(1 6 1 0)

E IOS
(0 8 8 8)

Figure 2-7. iRMXo ll Job Tree

A p p I i c a t i o n
(2 4 6 0)

If you want to display the descendant jobs of "0E88", enter the following command:

2-20 System Debugger

VJ..DISPT.4,Y JOB HIERARCTIY

The System Debugger displays the following:

Note that the tokens for alljobs at the same level as the specified token (0E00 and 0F38),
and their descendants (1ó70 antJ 2460), are also displayed.

2-21

ÍR-ì{XO II JOb

0E88
0E00
0F38

1670
2460

Tree

System Debugger

The VK command displays the tokens for tasks in the ready and sleeping states.

PARAMETERS

This command has no parameters-

DESCRIPTION

The VK command displays the tokens for tasks that are ready and asleep, in the format
shown in Figure 2-8.

Ready casks: xxxx xxxx

Sleeping tasks: xxxx xxxx

Figure 2-8. Format ofVK Output

The fields in Figure 2-8 show the following:

Ready tasks The tokens for all tasks in the ready state. The first token in this
lìst represents the running task

Sleeping tasks The tokens for all tasks in the sleeping state.

ERROR MESSAGES

Syntax Error An error was made in entering the command.

Ready tasks: Can't locate The system is corrupted.

Sleeping tasks: Can't locate The most common reason for this type of error ts
not initializing the Nucleus. To recover from this
error, reinitialize the system.

2-22 System Debugger

VK..DISPI-AY READY AND SLEEPING TASKS

EXAMPLE

To display a iist of all the ready and sleeping tasks in your system, enter the following
command:

The System Debugger responds with the following:

2-2i

Ready tasks:

Sleeping taeks:

2F00

26F0
2020
20D0

2 5 8 8
1FF8
0 3 0 0

2688
2698

2200
2238

2180
2118

2090
2668

2588 2050
2638 27 68

System Debugger

The VO command displays the tokens for the objects in the specified job.

PARAMETER

job token The token of the job for which you want to display objects.

DESCRIFTION

The VO command lists the tokens for a job's child jobs, tasks, mailboxes, semaphores,
regions, segrnents, extensions, composites, and buffer pools in the format shown in Figure
t_o

Chi ld Jobs
Tasks :
M a i l b o x e s :
S ernaphores

Segnents :
Ex tens ions
Cornpos i tes
Buffer Pools :

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

xxxx
XXXX

xxxx
XXXX

XXXX

xxxx

XXXX

XXXX

XXXX

XXXX

xxxx
xxxx
XXXX

XXXX

XXXX

Figure 2-9. Format of VO Output

The fields in Fizure 2-9 are as follows:

Chiìd Jobs

Tasks

Mailboxes

The tokens for the specified job's offspring jobs.

The tokens for the tasks in the specified job.

The tokens for the mailboxes in the job. An "o" following a
mailbox token means that one or more objects are queued at the
maìlbox. A "t" following a mailbox token means that one or
more tasks are queued at the mailbox.

2-24 System Debugger

VO..DISPLAY OBJECTS IN A JOB

Semaphores The tokens for the semaphores in the specified job. A "t,'
following a semaphore token means that one or more tasks are
queued at the semaphore.

Regions The tokens for the regions in the specified job. A,'b" (busy)
following a region token means that a task has access to
informat ion guarded by rhe region.

Segments The tokens for the segments in the specified job.

Extensions The tokens for the extensions in the specified job.

Composites The tokens for the composites in the specified job. A ,'s,'

following a composite sigrifies a port with a signal waiting. An
"m" signifies a port with a message waiting. A "t" signifies a port
with a task waiting.

Buffer Pools The rokens for the buffer pools in the specified job.

ERROR MESSAGES

Svntax Error
I:J.T:Tff:Jff:ffil?',lTJ*command

or an

TOKEN is not a Job A valid token wa, .nt"."dlho*"uer, it is not a job token.

... INVALID TOKEN *** The value entered for the token is not a valid token (as
defined.in "Checking Validity of Tokens" earlier in this
cnaDter ì .

System Debugger , -)<

VO.-DISPI-AY OBJECTS IN A JOB

EXAMPLE

If you want to look at the objects in the job having the token "1670", enter the following
command:

The System Debugger responds with the following:

This display shows the tokens for the childjobs, tasks, mailboxes, semaphores, regions,
segments, extensions, composites, and buffer pools in thejob. It also tells you that tasks
are waitins at four mailboxes and one semaphore.

Chi ld j obs
Tasks :
Mai lboxes:
Sermphores
RegÍons:
Sègnents:
Extens ions
Conposi tes
Buf fer pools :

2460
1688 t178 1788 1940 1950 2FF8
L720 1128 1738 r 1740 r 1760 r 1768 r
17A0 17A8 r

1 6 D 8 1 7 5 0 1 9 5 8 1 9 6 0 2 F E 8 2 F c 8

1 6 9 0 1 6 F 0 1 7 1 0 1 8 2 8 1 8 4 8 1 9 8 0

2-26 System Debugger

The VR command displays information about the iRMX ll Basic I/O System I/O
Request/Result Segment (IORS) that corresponds to the segment token you enter.

PARAMETER

Segment token The token for a segment containing the IORS you want to
display. I f th is segment is not an IORS, the VR command
returns invalid information. To obtain a list of the segment
tokens in a iob. use the VO command.

DESCRIPTION

The VR command displays the names and values for the fields of a specific IORS. The
contents of the IORS reflect the most recent I/O operation in which this IORS was usec.
Except for ensuring the specified segment is between 45 and 65 bytes long, the System
Debugger cannot determine whether the segment contains a valid IORS, so you must
ensure that it does. If the parameter is a valid segment token for a segment contain ing an
IORS, the System Debugger displays informarion about rhe IORS as shown in Figure 2-10.
For more information on l/O Request/Result Segments, see the Extended |RMX II Basic
I/O System User's Guide.

For more detailed information about the IORS contents, see the Extended |RMX II Device
Diven User's Guide.

System Debugger 2-27

VR..DISPT-AY I/O REQUEST/REST]LT SEGMENT

l /O Request Resu l t Segment

Sta tus xxxx Un i t s ta tus xxxx

Device xxxx Unit xx

Function xxxxxxx Subfunction xxxxxxx

count xxxx Actual xxxx

Dev ice loca t ion xxxxxxxx Buf fe r po in te r xxxx :xxxx

Resp mai lbox xxxx Aux po in te r xxxx :xxxx

L ink fo rward xxxx :xxxx L ink backward xxxx :xxxx

Done xxxxx Cance l ID xxxx

Connect ion token xxxx

Figure 2-l{ì. Format of VR Output

The fields in Fisure 2- l0 are as follows:

Status The condi t ion c t r tF for the l /O operat ion.

Unit status Additional status information. The contents of this field are
meaningful only when the Status field is set to the E$lO
condit ion (0028H). l f the Status f ie ld is not set to E$lO, the
Unit Status f ie ld displays "N/A"

The number of the device for which this I/O request is intended.

The number of the unit for which this l/O request is intended.

The operation performed by the Basic I/O System. The
possible functions are

Device

Unit

Function

Funct ion

Reaci
Wr i te
Seek
Special
Att Dev
Det Dev
Open
Close

Svstem Call

RQAREAD
RQAWRITE
RQASEEK
RQASPECIAL
RQA PH YSICAL$ATTACH$DEVICE
RQA PHYSICAL$DETACH$DEVICE
RQAOPEN
RQACLOSE

If the Funct ion f ie ld contains an inval id value, the System
Debugger displays the actual value in this field, followed by a
space and two question marks.

2-28 System Debugger

VR.-DISPI-AY I/O REQUEST/RESULT SEGMENT

Subfunction A further specification of the function that applies only when the
Function field contains "Special" from the BIOS
RQASPECIAL system call. Possible subfunctions lnci their
descr ipt ions are

Subfunction Description

For/Que Format or Query
Satis! Stream file satisfy function
Notify Notify funct ion
Device char Device characteristics
Get Term Attr Get terminal at t r ibutes
Set Term Attr Set terminal attributes
S ignl l Signal funct ion
Rewind Rewind tape
Read Fi le Mark Read f i le mark on tape
Write File Mark Write file mark on taoe
Retent ion Trpe Take up slack on t lp i
Set Font Set character font
Set Bad Info Set bad track/sector information
Get Bad Info Get bad track/sector information

If the Function field doesn't contain "Special," thcn thc
Subfunction field contains "N/A." If the Subfunction field
contains an invalid value, the System Debugger displays the
valuc of the field followed by a space and two question marks.

Count The number of bytes of data called for in the I/O request.

Actual The number of bytes of data transferred in response to the
requ(st .

Device location The eight-riigit hexadecimal address of the byte or logical block
where the I/O operation began on the specified device.

Buffer pointer The adclress of the buffer the Basic I/O System read frcm, or
wr(ì tc t (ì . in response to the request.

Resp mailbox A token for the response mailbox to which the device sent thc
IORS after the operat ion.

Aux pointer The pointer to the location of auxiliary data, if any. This field is
significant only when the Function field contains "Special."

Link forward The adclress of the next IORS in the queue where the IORS
waited to be processed.

Link backward The address of the previous IORS in the queue where the IORS
waited to be orocessed.

Systern Debugger 2-29

VR--DISPT-AY I/O REQUEST/RESULT SECMENT

Done This field is always present but applies only to IORSs for I/O
operations on random-access devices. When applicable, it
indicates whether the I/O operation has been completed. The
possible values are TRUE (0FFH) and FAI-SE (00H).

Cancel ID A word used by device drivers to identi! I/O requests that need
to be canceled. A value of zero (0) indicates a request that
cannot be canceled.

Connection token The token for the file connection used to issue the request for
the I/O ooeration.

ERROR MESSAGES

Syntax Error No parameter was specified for the command or an
error was made in entering the command.

TOKEN is not a SEGMENT The token entered is valid but not a segment token.
*** INVALID TOKEN *** The value entered for the token is not a valid token (as

defined in "Checking Validity of Tokens" earlier in this
chapter).

SECMENT wrong size - The specified segment is not berween 45 and
not an IORS 65 bytes long, so it is not an I/O Request/Result

Sesment.

2-30 System Debugger

The VS command identifies system calls (as does the VC command) and displays the stack.

PARAMETER

A decimal or hexadecimal value that specifies the number of
words from the stack to be included in the display. A suffix of T,
as in l6T, means decimal. No suffix or a suffir of H indicates
hexadecimal.

If you do not specify a count, or you specify a count of zero (Lr,
the number ofwords in the display depends on the number of
parameters for the system call at the CS:IP. Or, in the case
when CS:IP is not pointing to a system call, the entire contents
of the stack is disolaved.

DESCRIFTION

The VS command identifies iRMX II system calls for all iRMX II subsystems (as does the
VC command) and interprets the system call parameters on the stack. If the stack does not
contain a system call, the VS command displays either the number of stack elements you
specifu or all of the stack contents, whichever is least. If a parameter is a string, the System
Debugger displays the string. For additional system call information, see the appropriate
iRMX II Volume 3 system call manual.

The VS command interprets the CALL instruction at the current CS:IP. If you want to
interpret a CALL instruction at a different CS:IP value, you must move the CS:IP to that
value. To move the CS:lP using the iSDM monitor, use the GO (G) command or the
EXAMINE/MODIFY REGISTER command (X with CS or lP specified as the 80286 or
80386 register). If you are using the D-MON386 monitor, use only the GO command.

If the instruction is not a CALL instruction, VS displays the contents of the words on the
stack and no message. If the instruction is a CALL but not a system call (for example, a
PLIM-286 call to a procedure), VS displays the stack contents and a message informing
you that the CALL was not a system call.

System Debugger 2-31

VS..DISPT.AY STACK AND SYSTE]IT CALL INFORMATION

The VS command uses current values of the SS:SP (Stack Segment:Stack Pointer) registers
to display the current stack values. If the instruction is an iRMX ll system call, VS displays
the system call and the stack information as shown in Figure 2-11.

gare /INNNN
xxxx:xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
XXXX:XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

(subsys tem) sys tem ca l l

l p a r a m e t e r s I

Figure 2-ll. Format of VS Output

The fields in Figure 2-l l are as folÌows:

xxxx:xxxx The contents of the SS:SP (stack memory addresses).

)oofi Values (tokens) currently on the stack. The number of stack
values varies, depending on the number of parameters in the
system call.

parameters The names of the stack vaìues. The parameters correspond to
the stack values directly above them. The maximum number of
displayed para meters is 24.

The three remaining fields in Figure 2-11 are identical to those in the VC command:

gate #NNNN The gate number associated with the system call.

(subsystem) The iRMX ll Operating System layer that the system call is part
of.

system call The name of the iRMX II system call.

) -7) System I)€bugger

VS--I)ISPLAY STACK AND SYSTEM CALL INFORMATION

ERROR MESSAGES

Syntax Error An error was made in entering the command.

Not a system CALL The CS:IP is pointing to a CALL instruction that is not an
iRMX II system cal l .

Unknown entry code This message indicates that one of two infrequent events has
occurred. One is that the System Debugger has mistaken an
operand belonging to some instruction in the object code for the
FAR CALL instruction. The other event is that a software link
from user code into iRMX ll code has been corrupted. To
recover from system corruption, reboot the system.

EXAMPLES

Suppose you determine that the SS:SP is '1906:07CA (using the iSDM Monitor's X
command, for example) then use the VS command by entering the following command:

The System Debugger responds with the following:

gate /10360
1 9 0 6 : 0 7 c A 0 8 0 8 1 9 8 0 1 E A 8 1 9 8 0 1 9 8 0 0 0 0 0 0 8 0 0 1 9 0 8
1906:07DA 19A0 0820 0s80 1EA8 1EA0 1EE8 0000 0000

(Nucleus) delete mai lbox

| . . e x c e p $ p . . | . r n b o x . I

The parameter names identifo the stack values directly above them. That is, the "excep$p"
parameter name signifies that the first two words represent a pointer (1980:0808) to the
exception code. Similarly, the "mbox" parameter signifies that the third word (18A8) is the
token for the mailbox being deleted.

Now, suppose that you move the SS:SP to 2906:07D0. If you invoke the VS command by
entering the following command:

System Debugger 2--l-l

VS.-DISPLAY STACK AND SYSTEM CALL INFORMATION

The System Debugger displays the following stack and a message informing you that the
instruction is a CALL instruction but not an iRMX II system call:

When an iRMX II system call is executed, its parameters are pushed onto the current
stack, and then a CALL instruction is issued with the appropriate stack address. If the call
has more parameters than will fit on one line, the System Debugger automatically displays
multiple lines of stack values, with corresponding multiple lines of parameter descriptions
directly below them.

For example, suppose you use the VS command as follows:

This display indicates thar the CALL instruction is a Nucleus Re$CREATE$JOB system
call with 18 parameters. The names of these parameters are shown between the vertical
bars (|). The words on the stack correspond to the Darameters directlv below them.

2906:07D0 2980
2906:0780 27 C8

Not a systen CALL

2980
27 C8

0000
25C8

0600
25C8

2908
25C8

29 A0
2 5 C 8

0020 1s80
25C8 25C8

gate i10310
z l c c : Q F 9 A 0 1 5 8 2 0 C 8
2 7 c c : O F A A 2 0 E 8 0 0 2 8
27CC:0FBA 2608 tA58

(N u c l e u s) c r e a t e j o b

0000
0000
1AF8

20c8 20c8
0000 20C8
2608 0000

0000 0600 l1c8
OOEO 2FF8 2FF8
0000 0000 0000

l . . . e x c e p g p . . . I
l . . c s . . l . . p r i . I
lpoolm-x lpoolrnn I

. t$ f lgs .

. p a r a m . .

s t k s z e l . . s p .
. exp$ in fo$p .
o l r s 1 z I

. 1 . . ""
. . l . . ds . . l . . ip . . I

. I maxpri Inaxtsk I maxobj I

2-34 System I)ebugger

VS--DISPI-AY STACK AND SYSTEM CALL INFORMATION

The following display shows that the CALL instruction is a Basic I/O System (BIOS)
RQAATTACH$FILE system call with five parameters. The "subpath$p" parameter
points to a string seven characters long: the word "example."

gate /10500
27CC|0F4E 0F88 17c8 25F8 0000 2600 29AO 0000 2600
27CC:0F5E 2608 1C10 2600 1320 26D0 0F78 0DF8 2FF8

(B Ios) aÈ tach f i 1e

l e x c e p $ p . . . l . r n b o x . l . . s u b p a t h $ p . . l . p r e f i x l . u s e r l
subpath- -) 07' exarnple'

The following display indicates that the CALL instruction at CS:IP is an Extended I/O
System RQSRENAME$FILE system call with three parameters. Two of the parameters
have strings: the "new$path$p" parameter points to a string four characters long ("XY70");
the "path$p" parameter points to another string four characters long ("temp").

gate /f 06E8

27AC:0F98 0148 20c8 0858 20E8 0640 2088 0000 0600
27CC:0F48 17c8 2088 0028 1320 0000 20c8 0008 2600

l . . excepgp . . l . . newgpathgp . . l . . . path$p . . . I
new path- -> 04 'XY70 '
paEh - -> 04' teurp '

NOTE
If a string is more than 50 characters long, the System Debugger displays only
the first 50 characters. If the pointer is pointing to a nonreadable segment, the
System Debugger does not display the string.

System Debugger 2-35

The VT command displays information about the iRMX II object associated with the token
you enter.

PARAMETER

token The token of the object for which you want to display
information.

DESCRIPIION

The VT command determines the type of iRMX II object represented by the token and
displays information about that object. Both the information and the format in which the
System Debugger displays the information depend on the type of object.

The following sections are divided into display groups illustrating the display format for
these iRMX II objects:

. Jobs . Segments

. Tasks o Extensions

. Mailboxes . Composite objects (six types)

r Semaphores . Buffer Pools

. Regions

ERROR MESSAGES

Svntax Error
}:ffixTil::Jtr:i:;il:1i"JJ*comman'lr

or an

*** INVALID TOKEN +** The value entered for the token is not a valid token (as
defined in "Checkins Validitv of Tokens" earlier in this
chapter) .

2-36 System Debugger

VT--DISPI,AY iRMX@ II OBJECT

JOB DISPI,AY

If the parameter you specify is a valid job token, the System Debugger displays information
about the job having that token, as Figure 2-12 shows.

O b j e c t t y p e : 1 J o b

Curren t tasks
Cur ren t ob j ec ts
Di rec tory s i ze
Except hand ler
Poo l min
Borro!.red

XXXX

XXXX

XXXX

xxxx : xxxx
XXXXX

XXXXX

Max tasks
Max ob j ec ts
Ent r ies used
Except rnode
PooI max

xxxx Max pr ior i ty xx
xxxx Paraneter obj xxxx
xxxx Job flags xxxx
xx Parent job xxxx
xxxxx In i t ia l s ize xxxxx

Bvte ranse

22 - 44H
44 - 81-!H
84 - 200H
2 0 0 H - 1 K
1 K - 2 K
2 K - 4 K
4K- 8K
8 K - 3 2 K
+3 2K

Number chunks

xxxxxxxx
XXXXXXXX

xxxxxxxx
XXXXXXXX

XXXXXXXX

XXXXXXXX

xxxxxxxx
xxxxxxxx
xxxxxxxx

Largest chunk

XXXXXXXX

xxxxxxxx
xxxxxxxx
XXXXXXXX

XXXXXXXX

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

Total memory

XXXXXXXX

xxxxxxxx
xxxxxxxx
XXXXXXXX

xxxxxxxx
xxxxxxxx
XXXXXXXX

xxxxxxxx
xxxxxxxx

Figure 2-12. Format ofVT Output: Job Display

The fields in Figure 2-12 (from Ieli to right) are as follows:

Current tasks The number of tasks currently existing in the job. If the Max
tasks is not 0FFFFH (no limit), the number of Current tasks is
equal to the Current tasks of this job plus all of its children Max
tasks.

The maximum number of tasks that can exist in the job

simultaneously. This value was set when the job was created.

The maximum (numerically lowest) priority allowed for any one
task in the job. This value was set when the job was created.

The number of objects currently existing in the job.

The maximum number of objects that can exist in the job

simultaneously. This value was set when thejob was created.

Max tasks

l\{a-r priority

Current objects

Max objects

System Debugger 2-37

W..DISPI,AY iRMX@ II OBJECT

Parameter obj The token for the object that the parentjob passed to this job.
This value was set when the job was created.

Directory size The maximum number of entries the job can have in its object
directory. This value was specified by the first parameter when
the job was created with the Nucleus RQ$CREATE$JOB
system call or the RQE$CREATE$JOB system call.

Entries used The number of objects currently catalogued in the job's object
directory.

Job flags The job flags parameter specified when the job was created. It
contains information the Nucleus needs to create and maintain
the job.

Except handler The start address of thejob's exception handler. This address
was set when the job was created.

Except mode The value that indicates when control is to be passed to the new
job's exception handler. This value was set when the job was
created.

Parent job The token for the specified job's parent.

Pool min The minimum size (in 16-byte paragraphs) of the joh,s memory
pool. This value was set when the job was created.

Pool max The maximum size (in 16-byte paragraphs) of the job's memory
pool. This value was set when thejob was created.

Initial size The initial size (in 16-byte paragraphs) ofthejob,s memory
pool.

Borrowed The current amount (in 16-byte paragraphs) of memory that the
job has borrowed from its ancestor(s).

Free Space All free memory in a job's pool is accounted for, via several
double-linked lists. Each list contains a range of chunk sizes. A
chunk is a piece of contiguous memory. Column one of the free
space table shows the size ranges for the list. Column two shows
the number ofchunks on each list. Column three disnlavs the
largest chunk on each iist. Column four shows the toial amount
of memory on each list.

2-38 System Debugger

VT--DISPT.AY iRMX@ II OBJECT

TASK DISPI"AY

The System Debugger displays information about tasks in two different ways. Figure 2- 13
shows the display for non-interrupt tasks, and Figtre 2-14 shows the display for interrupt
tasks.

O b j e c t t y p e - 2 T a s k

C È - È i ^ - - tr L a L r e P ! r

Suspend depth xx
Except handler xxxx: xxxx
Concaln ing job xxxx

Dynamic pri xx
Delay req xxxx
Except mode xx
Interrupt task no

Last exchange
Task f lags
K - s a v e d S S : S P

xxxx
XX

xxxx : xxxx

Figure 2-13. Format ofVT Output: Non-Interrupt Task

O b j e c t t y p e - 2 T a s k

Suspend depth
Except hand ler
Conta in ing job
Master nask
Max in te r rup ts

xx
xx
xxxx : xxxx
XXXX

XX

xx

XXXXXXXXX

xxxx
xx
XX

XX

n , , - ^ - i ^ - - i ' r ^ ^ 1 . ^ r ^ , ^u j l r rdu ' r L Pr r

Delay req xxxx Las t exchange
E x c e p L m o d e x x T a s k f l a g s
I n L e r r u p t t a s k y e s I n t l e v e l
Slave rnask xx Pending int
K-saved SS: SP xxxx : xxxx

Figure 2-14. Format of VT Output: Intemrpt Task

The fields in Figures 2-13 and2-14 (from left to right) are as follows:

Static pri

Dynamic pri

The maximum prioriry value of the task. This value was set by
the max$priority parameter when the task's containing job was
created with RQ$CREATE$JOB or RQE$CREATE$JOB.

A temporary priority that the Nucleus sometimes assigns to the
task to improve system performance. For example, if a higher
priority task wants control of a region that belongs to a currently
executing lower priority task, the Nucleus assigns the lower
priority task a priority equal to that of the higher priority task.
This increasing of a task's priority, in this case, improves the
overall svstem oerformance.

System Debugger 2-39

vT--DISPLAY iRMX@ II OBJECT

Task state

Suspend depth

Delay req

Last exchange

Except handler

The state of the task. The twelve oossible states. as thev are
displayed, are

Descriotion

task is ready for
execution
task is asleep
task is suspended
task is both asleep and
suspended
task is being deleted
task is wait ing at an
exchange
task is asleep waiting
at an exchange
task is asleep and
suspended waiting at
an exchange
task is queued at a port
task is asleep waiting at
a port
task is queued at a port
on transaction queue
task is asleep and
queued at port on
transact ion queue

If this field contains an invalid value, the System Debugger
displays the value followed by a space and two question marks.

The number of RQ$SUSPEND$TASK system calls that have
been applied to this task without corresponding
RQ$RESUME$TASK system calls.

The number of sleep units the task requesîed when it last
specified a delay at a mailbox or semaphore, or when it last
called RQ$SLEEP. lf the task has not done any of these, this
field contains zeros.

The token for the mailbox, region, or semaphore at which the
task most recentìy began to wait.

The start address of the job's default exception handler. This
value was set either when the task was created with
RQ$CREATE$TASK RQ$CREATE$J OB,
RQE$CREATE$JOB, or later with
RQSETEXCEPTION$FIANDLE R.

State

rea<Jy

asleep
susp
asrp/susp

deleted
on exch Q

aslp/exch

sl/xc/susp

on port Q
aslp/por t

on trans Q

aslp/trans

2-40 Syslem Debugger

VT..DISPI-AY iRMX@ II OBJECT

Except mode The value that indicates the exceptional conditions under which
control is to be passed to the new task's exception handler. This
value was set either when the task was created with
RQ$CREATE$TASK RQ$CREATE$JOB,
RQE$CREATE$JOB, or later with
RQSETEXCEPTION$HANDLER

Task flags The task flags parameter used when the task was created with
RQ$CREATE$TASK. It contains information the Nucleus
needs to create and maintain the job's initial task

Containing job The token of the job that this task belongs to.

Interrupt task Indicates whether this task is an interrupt task "No" signifies
that the task is not an interrupt task. In this case, only the K-
saved field folÌows in the display. (See Figure 2-13.)

"Yes" signifies that the task is an interrupt task ln this case,
additional fields appear in the display. (See Figure 2-14.)

K-saved SS:SP The contents of the SS:SP registers when the task last left the
ready state.

Int level The level that the interrupt task services. This level was set
when this task called RQSETINTERRUPT.

Master mask The value associated with the interrupt mask for the master
interrupt controller. This value represents the master interrupt
levels disabled by the interrupt level that the task services

For example, if the task services master interrupt level 68H,
then master levels 6 and 7 are disabled, so the master mask field

is 110000008 (=0C0H) For more information about interrupt
levels. see the Exterukd |RMX II Nucleus User's Guide.

Slave mask The value associated with the interrupt mask for a slave
interrupt controller. This value represents the slave interrupt
levels disabled by the level that the task services.

For example, if the task services slave interrupt level 62H, then
slave levels 2 through 7 are disabled, so the slave level field is
I I 1 1 I 100B (= OFCH). For more information about interrupt
levels. see the Extended |RMX II Nucleus User's Guide

Pencling int The number of RQ$SIGNAL$INTERRUPT calls pending for

the Int level .

Ma-\ interrupts The marimum number of RQ$SICNAIJINTERRUPT calls
that can be pending for the Int level.

System Debugger 2-41

W..DISPI.AY iRMXO II OBJECT

MAILBOX DISPI,AY

The System Debugger displays information about mailboxes in three different ways:

. Figure 2-15 shows the display when nothing is queued at the mailbox.

. Figure 2-16 shows the display when tasks are queued at the mailbox.

. Figpre 2-17 shows the display when objects are queued at the mailbox.

. Figure 2-18 shows the display when data messages are queued at the mailbox.

Obj ect type - 3

Mai lbox type
Queue di sc ip I ine
Conta in ing job

Mai lbox

xxxxxx
XXXX

xxxx

Task queue head xxxx
Obj ect queue head 0000
Obj ec t cache depth xx

Figure 2-15. Format of VT Output: Mailbox with No eueue

O b j e c t t y p e : 3 M a i l b o x

Mailbox type
Queue di sc ip l ine
Conta in ing job

Task queue

xxxxxx Task queue head zzzz
xxxx Object queue head 0000
xxxx Object cache depth xx

zzzz xxxx

Figure 2-16. Format of VT Output: Mailbox with Task eueue

2-42 System Debugger

yT--DISPT-AY iRMX@ II OBJEC'T

O b j e c t t y p e : 3 M a i l b o x

Mai lbox type xxxxxx Task queue head xxxx
Queue d isc ip l ine xxxx Object queue head zzzz
Conta in ing job xxxx Object cache depth xx

O b j e c t c a c h e q u e u e z z z z x x x x

Object over f lo ! , queue xxxx xxxx

Figure 2-17. Format of VT Output: Mailbox with Object Queue

O b j e c t t y p e : 3 M a i l b o x

Mai lbox type xxxxxx Task queue head zzzz
Q u e u e d i s c i p l i n e x x x x D a t a q u e u e h e a d x x x x : x x x x

Data message queue xxxx:xxxx xxxx:xxxx xxxx:xxxx
X X X X : X X X X X X X X : X X X X

Figure 2-18. Format of VT Output: Mailbox with Data Message Queue

The f ie lds in Figures 2-15,2-16,2-17, and 2-18 are as fol lows:

Maiìbox type The type of mailbox: object or data. Mailbox type is either
Object or Data. The mailbox type is dclìned when the
mailbox is created.

Task queue head The token for the task at the head ol the queue. If the task
queue for this mailbox is empty, this field contains the
mailbox token.

Object queue head The token for the object at the hcad of the clueue. If the
object queue for this mailbox is empty, this field contains
"0000". If the mailbox type is "Data", this field contains
'N/A' .

System Debugger 2-43

VT--DISPI-AY iRMX@ II OBJECT

Queue discipline Indicates how tasks are queued at the mailbox. Tasks are
queued as "FIFO" (first-in-first-out) or by 'PRI" (priority),
depending on how the mailbox was defined when it was
created with RQ$CREATE$MAILBOX. If the System
Debugger can't interpret this field, it displays the actual
value followed by a space and two question marks.

Object cache depth The sìze of the high-performance cache portion of the
object queue associated with the mailbox. This size was
specified when the mailbox was created with
RQ$CREATE$MAILBOX. If the mailbox tlpe is "Data",
this field contains "N/A".

Containingjob The token for the job that contains this mailbox.

Task queue A list of tokens for the tasks queued at the mailbox in the
orcler they are queued. If there are no tasks in the task
queue, this field is not displayed.

Object cache queue A list of tokens lbr the objects queued in the object cache
queue, in the order they are queued. If there are no
objects in the object cache queue or the mailbox type is
Data, this field is not displayed.

Object overflow queue A list of tokens for the objects queued in the object
overllow queue, in the order they are queued. If there are
no objects in the object overflow queue or the mailbox type
is Data, this field is not displayed.

Data queue head The pointer for the first diìta message at the head of the
message queue.

Data message queue Pointers for the tlata messages residing at the mailbox.

SEMAPHORE DISPI-AY

The System Debugger displays inlbrmation about semaphores in two ways. The first
display appears when no tasks are queued at the semaphore (Figure 2-19), and the second
appears when tasks are queued at the semaphore (Figure 2-20).

ob jec t type : 4 Senaphore

Task queue head xxxx Queue d isc ip l ine xxxx
Current value xxxx Maxirnum value xxxx
C n n r r i n i n o i a h

Figure 2-19. Format of VT Output: Semaphore with No Queue

System Debugger2-44

VT..DISPLAY iR,NIX@ II OBJECT

ob jec t type - 4 Semaphore

Task queue head xxxx Queue d isc ip l ine xxxx
Current value xxxx Maxinum value xxxx
w v L d r , ' r ' r 6 J u u

' r ̂ ̂ ì . ^ . . ^ . . ^raSK queue xxxx xxxx

Figure 2-20. Format of VT Output: Semaphore with Task Queue

The fields in Figures 2-19 and 2-20 are as folìows:

Task queue head The token for the task at the head of the queue. If the task
queue is empty, this field contains zeros.

Queue discipline Indicates how tasks are queued at the semaphore. Tasks are
queued as "FIFO" (first-in-first-out) or by "PRI" (priority),
depending on how the semaphore was specified when it was
created with RQ$CREATE$SEMAPHORE.

Current value The number of units currently held by the semaphore.

Maximum value The m:ximum number of units the semaphore can hold. This
number was specified when the semaphore was created with
RQ$CREATE$SEMAPHORE.

Containingjob The token for thejob that the semaphore belongs to.

Task queue A list of tokens for the tasks <lueued at the semaphore, in the
order they are queued. If no tasks are queued, this list does not
appear.

REGION DISPI-AY

If the parameter you supply is a valid token for a region, the System Debugger displays
information about the associated region as shown in Fieures 2-21 antl2-22.

O b j e c c t y p e : 5 R e g i o n

Entered task xxxx Queue d isc ip l ine xxxx
Conta in ing job xxxx

Figure 2-21, Forrnat of VT Output: Region with No Queue

2-15System Debugger

W..DISPI.AY iRMX@ II OBJECT

O b j e c c t y p e : 5 R e g i o n

Encered task xxxx Queue d isc ip l ine xxxx
Conta in ing job xxxx

Task queue xxxx xxxx

Figlre 2-22. Format ofVT Output: Region with Task Queue

The fields in Figures 2-21 and 2-22 are as follows:

Entered task The token for the task currently accessing information guarded
by the region.

Queue discipline lndicates how tasks are queued at the region. Tasks are queued
as "FIFO" (first-in-first-out) or by "PRI" (priority), depending on
how the region was specified when it was created with
RQ$CREATE$REGION.

Containing job The token for the job that the region belongs to.

Task queue Tokens for the tasks waiting to gain access to data guarded by
the region. This line is displayed only if a task is already in the
region and another task is waiting.

SEGMENT DISPI-AY

If the parameter that you supply is a valid token for a segment, the System Debugger
displays information about the associated segment as shown in Figure 2-23.

O b j e c t t y p e - 6 S e g r n e n t

Segment s ize xxxx Conta in ing job xxxx

Figure 2-2.1. Formal of VT Outpul: Segment

2-46 System Debugger

VT--DISPI.AY iRMX@ II OBJECT

The fields in Figure 2-23 are as follows:

Segment size The number of bytes in this segment. The size of the segment
was specified when the segment was created with
RQ$CREATE$SECMENT.

Containing job The token for thejob that the segment belongs to.

EXTENSION OBJECT DISPI-AY

If the parameter that you supply is a valid token for an extension, the System Debugger
displays information about the associated extension as shown in Figure 2-24.

object type : 7 Extension

Extension type xxxx Delet ion mai lbox xxxx
Conta in ing job xxxx

Figure 2-24. Format of VT Output: Extension Object

The fields in Figure 2-24 are as follows:

Extension R?e The type code associated with composite objects licensed by this
extension. This code was specified when the extension t]?e was
created with RQ$CREATE$EXTENSION. See the Ertended
|RMX II Nucleus User's Guide for more information about
extenslon types.

Deletion mailbox The token for the deletion mailbox associated with this
extension. This maiìbox was specified when the extension type
was created with RQ$CREATE$EXTENSION.

Containingjob The token for the job that the extension belongs to.

COMPOSITE OBJECT DISPI.AY

The VT command displays the following kinds of composite information:

. All composites except those defined in the Basic I/O System (BIOS) and the port
connection

. BIOS user objects

. BIOS physical file connections

. BIOS stream file connections

System Debugger 2-47

W--DISPI-AY iRMX@ II OBJECT

. BIOS named file connections

. BIOS remote file connections

. Port connection

Figure 2-25 shows the format for the display of non-BIOS objects.

Obj ec t type : 8 Compos i te

Extens ion type xxxx Ex tens ion ob j xxxx De le t ion rnbox xxxx
N Lun o . f en I r ies xxxxw u ' r u d f " ! u É l u u ^ À À ^

C o m n o n p n t I i s t v w Y w x x x x x x x x x x x x

Figure 2-25. Format of VT Output: Composite Object Other Than BIOS

The fields in Figure 2-25 are as follows:

Extension type The code for the extension type of the extension object used to
create this composite. This code was specified when the
extension olrject was created with RQ$CREATE$EXTENSION.

Extension obj The token for the extension otrject used to create this composite
object.

Deletion mbox The token for the mailbox to which this composite goes when
the composite is to be deleted. This mailbox was specified when
the extension was created with RQ$CREATE$EXTENSION.

Containingjob The token for the job that the composìte object belongs to.

Num of entries The number of component entries in the composite object.

Component list The list of tokens for the components of the composite.

2-48 System Debugger

VT.-DISPL{Y iRMX@ II OBJECT

Figure 2-26 shows the format for the Basic I/O System user object display.

Object type : 8 Composi te

Excension type xxxx Extension obj xxxx Delet ion mbox xxxx
C o n t a i n i n g j o b x x x x N u m o f e n t r i e s x x x x

BIOS USER OBJECT:
User segnent xxxx Nr.unbe r of IDs xxxx

User ID l is t xxxx xxxx

Figure 2-26. Format of VT Output: BIOS User Object Cornposite

Figure 2-26 uses the composite display described in Figure 2-25 as a base and appends ths
following fields:

User segment The token for the segment containing the user IDs tbr the user
object.

Number of lDs The number of user IDs associated with the user ohject.

User lD list List of the user lDs associated with the user object.

Figrtre 2-27 shows the format for a (file) connection to a physical file.

Obj ec t type : 8 Cornpos i te

Extens ion type xxxx Ex tens ion ob j xxxx De le t ion mbox xxxx
C o n t a i n i n g j o b x x x x N u m o f e n r r i p s x x x x

T$CONNECTION OBJ ECT :
F i Ie d r iver Phys ica l Conn f lags xx Access xxxx
O p e n m o d e x x x x x x O p e n s h e r e x x x x x x x F í l e p o i n t e r x x x x x x x x
IORS cache xxxx F i le node xxxx Dev ice desc xxxx
Dynamic DUIB xxxxx DUIB po in te r xxxx :xxxx Num o f conn xxxx
Num of readers xxxx Num o f wr i te rs xxxx F í le share xxxxxxx
F i le d r ivers xxxx Devíce gran xxxx Dev ice s ize xxxx
Dev ice func ts xxxx Num dev conn xxxx Dev ice name xxxxxxxxxx

Figure 2-27. Format ofVT Output: BIOS Physical File Connection

System Debugger 2-19

M-.DISPLAY iRMX@ II OBJECT

Figure 2-27 uses the composite display described in Figure 2-25 as a base and appends the
followine fields:

Fi le dr iver The BIOS file driver to which this connection is attached. The
four possible values are Physical, Stream, Named, and Remote.
If this field contains an invalid value, the System Debugger
displays the value followed by a space and fwo question marks.

The flags for the connection. To determine how the flag is set,
convert the hexadecimal value to binary. The following
description shows the connection state when a bit (0 is the
rightmost hit) is set to 1:

Conn flags

Bit Condi t ion

0 The connection is being detached
I The connection is active and can be

opened
: This is a dcvice conneetion
4 The connection was forcibly

deta ched
Reserved
Reserved

Access The access rights for this connection. This display uses a single
character to represent each access right. If the connection has
the access ríght, the character appears. If the connection does
not have an access right, a hyphen (-) appears in the character
positìon. The access rights and the characters that represent
them are

3
< t

D e l e t e

n i r o r r ^ r - f i 1 - . .

- Ldd
| - L , nange

D a t a F i l e s :
Update
Append
R e a d
D e l e t e

2-50 System Debugger

Open mode

Open share

File pointer

IORS cache

File node

W-.DISPLAY iRMX@ II OBJECT

The mode established when this connection was onened. The
nossible modes are

Descrintion

Connection is closed
Connection is open for
reading
Connection is open for
writing
Connection is open for
reading and writing

If this field contains an invalid value, the System Debugger
displays the value, followed by a space and two question marks.
If this value is Read, Write, or R/W, this value was specified
when the connection was opened.

The sharing status established for this connection when it was
opened. The sharing status for a connection is a subset of the
sharing status of the file (see the File share field). The possible
modes are

Description

File cannot be shared
File can be shared wìth
readers
File can be shared with writers
File can be shared with all
USCTS

0 Connection is not open

If this field contains an invalid value, the System Debugger
displays the value, followed by a space and two question marks.
This probably indicates that the connection data structure has
been corrupted.

The current location of the file pointer for this connection.

The token for the segment at the head of the BIOS list of used
IORSs. These IORSs are being saved for the RQ$WAIT$IO
system call to use again. This list is empty if zeros appear in this
field.

The token for a segment that the operating system uses to
maintain information about the connection. The information in
this segment appears in the next two fields.

Open Mode

Closed
Read

Write

R/w

Share Mode

Private
Readers

Writers
ALL

System Debugger 2-51

VT--DISPI-AY iRMX@ II OBJECT

Device desc

Dynamic DUIB

DUIB pointer

Num of conn

Num of readers

Num of writers

File share

File drivers

The token for the segment that contains the device descriptor
The device descriptor is used by the operating system to
maintain information about connections to a device.

Indicates whether a Device Unit Information Block (DUIB) was
created dynamically when the device associated with this
connection was attached.

The address of the DUIB for the device unit containing the file.
See the Ertended iRMX II Device Divers User's GuLle for more
information about DUlBs.

The number of connections to the file.

The number of connections currently open for reading.

The number of connections currently open for writing.

The share mode of the file. This parameter defines how other
connections to the file can be opened. The share mode of a file
is a superset of the sharing status of each of the connections to
the file (see the Open share field description). The possible
modes are

Share Mode

Private
Readers
Writers
Al l

Description

File cannot be shared
File can be shared with readers
File can be shared with writers
File can be shared with all users

If this field contains an invalid value, the System Debugger
displays the value, followed by a space and two question marks.
This probably means that the internal data structure for the file
or the fnode for the file has been corrupted. See the Lrtended
|RMX II Basic I/O System User's Guide for more information
about sharing modes for files and connections.

The file drivers that connect the file. lf the file can be connected
to a given file driver, then the bit in the display is set to l. Bit 0
is the rishtmost bit.

Driver

Physical file
Stream file
Reserved
Named file
Remote file

Bir

0
I
2
3
4

2-52 System Debugger

Device gran

Device size

Device functs

Num dev conn

Device name

W..DISPI-AY iRMX@ II OBJECT

The granularity (in bytes) of the device. This is the minimum
number of bytes that can be written to or read from the device
in a single (physical) I/O operation.

The capacity (in bytes) of the device.

Describes the functions supported by the device where this file
resides. Each bit in the low-order byte of the field corresponds
to one of the possible device functions. If that bit is set to 1,
then the corresponding function is supported by the device.

Bit

0
I
2
3
4
5
o
7

Function

F$READ
F$WRITE
F$SEEK
F$SPECIAL
F$ATTACH$DEV
F$DETACH$DEV
F$OPEN
F$CLOSE

The number of connections to the device.

The l4-character (or fewer) name of the device where this file
resides.

Fisure 2-28 shows the format for a lfile) connection to a stream file.

O b j e c t t y p e : 8 C o m p o s i c e

ExtensÍon Lype xxxx Extension obj xxxx
Conta in ing job xxxx Num of entr ies xxxx

T$CONNECTION OBJECT:
Fi le dr iver Stream Conn f lags xx
Ò n o n m n r l a O n é n c h . r è

IORS cache xxxx Fi Ìe node xxxx
Dynamic DUIB xxxxx DUIB pointer xxxx:xxxx
Nun of readers xxxx Num of writers xxxx
Fi le dr ivers xxxx Device gran xxxx
Devicè functs xxxx Nun dev conn xxxx
Req queued xxxx Queued conn xxxx

Figure 2-28. Format ofVT Output: BIOS Stream

Delet ion mbox

Acce s s
F i l e p o i n t e r
Dev ice desc
Num of conn
F i le share
D e v i c e s i z e
Device name
Open conn

File Connection

xxxx
xxxxxxxx
xxxx
XXXX

xxxxxxx
xxxx
strearn
XXXX

System Debugger 2-53

VT-_DISPLAY iRMX@ II OBJECT

Figure 2-28 uses the physical display described in Figure 2-27 as a base and appends the
followins fields:

Req queued

Queued conn

Open conn

The number of requests currently queued at the stream file.

The number of connections currently queued at the stream file.

The number of connections to the stream file currentlv onen.

Fisure 2-29 shows the format for a file connection to a named file.

Objec t type : 8 Compos i te

Extens ion type
Conta in ing job

F i le d r iver
Open rnode
IORS cache
Dynamic DUIB

O!,me r
Tota l - b locks
Volurne gran

xxxx
xxxx

Named
xxxxxx
XXXX

XXXXX

XXXXX

XXXXXXXX

XXXX

Extens ion ob j
Nurn o f en t r ies

De le t ion mboxXXXX

xxxx

T$CONNECTlON OBJECT:

Nurn of readers xxxx
F i le d r ivers xxxx
Device functs xxxx
Nun of buffers xxxx
Fnode number xxxx

F i Ie node
DUIB po in te r
Num o f wr i te rs

Nr.1ln dev conn
F ixed update
F i le type
F i le /Vo l g ran
T o t a l s i z e
Vo lume s ize

XX

XXXXXX

XXXX

XXXX : XXXX

xxxx
xxxx
XXXX

XXXX

xxxxxxxxx
xxxx
XXXXXXXX

xxxxxxxx

A c c e s s
E i I a n ^ i n t a r

Dev ice desc
Nurn of conn
F i le share
D e v i c e s i z e
Dev ice name
Update t imeout
Fnode f lags
Fnode PTR(s)
T h i s s i z e
Volume name

XXXX

xxxxxxxx
XXXX

XXXX

XXXX

XXXXXXXX

xxxx
XXXX

xxxx
xxxx : xxxx
xxxxxxxx
XXXXXX

Figure 2-29. Format of VT Output: BIOS Named File Connection

Figtre 2-29 uses the physical display described in Figure 2-27 as a base and appends the
followins fields:

Num of buffers The number of buffers allocated for blocking and unblocking
I/O requests involving the device. A value ofzero (0) indicates
that the device is not a random-access device.

TRUE or FALSE indicates whether the device uses the fixed
update timeout feature. For more information about update
timeout, see the Extended ikMX II Basic I /O System User's
Guide.

Fixed update

2-54 System Debugger

Update timeout

Fnode number

File type

Fnode flags

Owner

File/Vol gran

Fnode PTR(s)

File tyoe

DIR
DATA

Description

Directory file
Data file

W.-DISPLAY iRMX@ II OBJECT

The length of the time for the update timeout feature, measured
in Nucleus time units. For more information about fired
updating, see the Erteruled |RMX II Basic I/O System User's
Guide.

The fnode number of this file. For more information about
fnodes, see the Ertended |RMX II Disk Verification Utility
Reference Manual.

The type of named file. The possible values are

SPACEMAP Volume free space map file
FNODEMAP Free fnodes map file
BADBLOCKMAP Bad blocks file

If this field contains an invalid value, the System Debugger
displays the value, followed by a space and two question marks.

A word containing flag bits. lf a bit is set to 1, the following
description applies. Otherwise, the description does not apply.
(Bit 0 is the rightmost bit.)

6

' 7 1 <

The ID of the owner of the file. If this field has a value of
FFFFH, then the field is displayed as "WORLD". See the
Extended |RMX II Basic I/O System User's Guide for more
informat ion about f i ie ownership.

The granularity of the file (in volume granularity units).

The addresses of the fnode pointers. See the Extended iRMX II
Disk Veification Utility Ret'erence Manutl for more information
about fnode oointers.

Bi t

0
I
2

5

Description

This fnode is allocated
The file is a long file
Primary fnode
Reserved
This file has been
modified
This file is marked for
deletion
Reserved

System Debugger 2-55

VT--DISPT-AY iRMX@ II OBJECT

Total blocks The total number ofvolume blocks currently used for the file;
this includes indirect blocks. See the Ertended |RMX II DLsk
Veifcation Utility Reference Manual for more information about
blocks.

Total size The total size (in byes) of the file; this includes actual data only.

This size The total number of bltes allocated to the file for data.

Volume gran The granularity (in bytes) of the volume.

Volume size The size (in bytes) of the volume.

Volume name The name of the volume.

Figure 2-30 shows the format for a file connection to a remote file.

Objec t type : 8 Conpos i te

Extens ion type xxxx Ex tens ion ob j xxxx De le t ion mbox xxxx
Conta in ing job xxxx Num o f en t r ies xxxx

T9CONNECTION OBJECT:
FÍ l -e d r iver Rernote Conn f lags xx Access xxxx
Open rnode xxxxxx Open share xxxxxx F i le po in te r xxxxxxxx
IORS cache xxxx F i le node xxxx Dev lce desc xxxx
Dynanic DUIB xxxxx DUIB pointer xxxx:xxxx Num of conn xxxx
Num of readers xxxx Num o f wr i te rs xxxx F i le share xxxx
F i le d r ivers xxxx Dev ice gran xxxx Dev lce s ize xxxxxxxx
Device functs xxxx Nurn dev conn xxxx Device name xxxx

Figure 2-30, Format of VT Output: BIOS Remote File Connection

The fields in Figure 2-30 are the same as the fields in Figre 2-27 , with the exception of the
File driver field, which is "Remote" rather than "Physical."

Figure 2-31 shows the display format for a port having signal protocol type.

2-56 System Debugger

VT-.DISPLAY iRMX@ II OBJECT

object type : 8 Cornposi te

Extension type xxxx Extension obj xxxx Delet ion mbox xxxx
Conta in ing job xxxx Num of entr ies xxxx

T$PORT OBJ ECT :
Prococol type Signal Queue d isc ip l ine xxxx Signal count xxxx
source id xxxx

Task queue xxxx xxxx

Figure 2-31. Format of VT Output: Signal Pmtocol Port

Figure 2-31 uses the composite display described in Figure 2-23 as a base and appends the
following fields:

Protocol type The message protocol. This value is "Signal" to indicate signal
service The type is determined when the port is created through
RQ$CREATE$PORT.

Queue discipline Indicates how tasks are queued at the port. Tasks are queued as
"FIFO" (first-in-first-out) or by "PRI" (priority), depending on
how the port was specified when it was created with
RQ$CREATE$PORT. If this field is uninterpretable, the actual
BYTE value followed by a space and two question marks
appears (? ?).

Signal count The number of signals currently waiting to be received at the
port.

Source id The board (agent) identification number for which this port was
created to send messages to or receive messages from. This
identification number matches the slot number of the remote
board. The number is established through the "message$id"
field when the port is created using the utility
RQ$CREATE$PORT.

Task queue The tokens for the list of tasks (if any) queued at the port.

Frgure 2-32 shows the display format fbr a port having data transport protocol type.

System Debugger 2-57

VT..DISPI-AY iRMX@ II OBJECT

Objec t type : 8 Compos i te

Extens ion cype xxxx Ex tens ion ob j xxxx DeLet ion mbox xxxx
Conta in ing job xxxx Num o f en t r ies xxxx

T$PORT OBJ ECT :
P r o t o c o l t y p e D a t a T Q u e u e d i s c i p l i n e x x x x B u f f e r p o o l x x x x
F r e p m p n f - ^ t i o n v r . v l . f a x P o r t T r a n s c t n s x x x x S i n k o o r t x x x x
D e s L i n a L i o n m s g i d x x x x D e s l i n a t i o n p o r t i d x x x x S o u r c e p o r L i d x x x x

Transac t ion id xxxx Task token xxxx
Transac t ion id xxxx Message po in te r xxxx :xxxx

Message queue xxxx :xxxx xxxx :xxxx

Figure 2-32. Format of VT Output: Data Transport Protocol Port

Objec t type : 8 Compos i te

Extens íon type xxxx Ex tens ion ob j xxxx De le t ion mbox xxxx
Conta in ing job xxxx NuIn o f en t r ies xxxx

T$PORT OBJECT:
Pro toco l type Data T Queue d isc ip l ine xxxx Buf fe r poo l xxxx
Fragmenta t ion xxx Max Por t T ransc tns xxxx S ink por t xxxx
D e s c i n a L i o n r n s g i d x x x x D e s t - i n a t i o n p o r L í d x x x x S o u r c e p o r t í d x x x x

Transac t ion id xxxx Task token xxxx
Transac t ion id xxxx Message po in te r xxxx :xxxx

Task queue xxxx xxxx

Figure 2-33. Format of VT Output: Data Transporî Protocol Port

Figures 2-32 and 2-33 use the composite display described in Figure 2-23 as a base and
append the following fields:

Protocol tlpe The message protocol. This value is "Data T'to indicate Data
Transport service The tlpe is determined when the port is
created through RQ$CREATE$pORT.

2-58 System Debugger

W--DISPLAY iRMX@ II OBJECT

Queue discipline lndicates how tasks are queue<J at the port. Tasks are queued as
"FIFO" (first-in-first-out) or by "PRl" (priority), <Jepending on
how the port was specified when it was created with
RQ$CREATE$PORT.

Buffer pool The token of the attached buffer pool (ifany). The utility
RQ$ATTACH$BUFFER$PooL attaches a buffer pool to a
port .

Fragmentation The fragmentation protocol. This value is either "Yes" if the
port can handle message fragmcntation, or "No" if the port does
not handle message fragmentation. Port fragmentation protocol
is defined through the utility RQ$CREATE$PORT.

Max Port Transctns The maximum number of simultaneous outstanding transactitlns
for the port. This limitation is defined when the Port is created
using RQ$CREATE$PORT.

Sink port The token of the sink port (i f any) associated with the port .
Sink ports are connectetl to ports through the
RQ$ATTACH$PORT utilìtY.

Dest inat ion msg id The host$id port ion of the socket ident i fy ing the renlote Port
that th is port is connected. This vaÌue is establ ished through the
RQ$CONNECT ut i l i tY.

Dest inat ion port id The port$id port ion of the socket ident i$ ' ing the remote port
that th is port is connected. This value is establ ished through the
RQ$CONNECT utilitY

Source port id The board (agent) identific:ttion number for which this port was
createcl to send messages ttt or receive messages from. The
number is established through the "port$icl" field when the port
is created using the ut i l i ty RQ$CREATE$PORT.

Transact ion id Outstanding transact ion ident i f icat ion numbers at th is po|1.

Task token The token(s) of the task or tasks with outstanding transact ions
at this port.

Message pointer The pointer of the message(s) with outstanding transactions at
this port .

Message queue The list of pointers representing the mess:rges queued at this
port. This field appears only if the port has queued mess:rges.

System Debugger 2-59

W-.DISPI-AY iRMX@ II OBJECT

NOTE
In addition to the display forms shown in Figures 2-32 and 2-33, the VT ourput
lbr a Data Transport protocol port can appear with the following combinations
of fields:

r Transaction information with no Message Queue or Task eueue
informatìon

. Message Queue information with no Transaction or Task eueue
information

. Task Queue information with no Transaction or Message eueue
information

o No Transaction, Message Queue, or Task Queue information

tsUFFER POOL DISPT.AY

If the parameter that you supply is a valid token lbr a buffer pool, the System Debug,ger
displays information about the buffer pool as shown in Figure 2-34.

O b j e c t t y p e : 1 0 B u f f e r p o o l

Max Buf fe rs xxxx Tota l bu f fe r count xxxx Tota l s ize count xxxx
Conta in ing job xxxx

B u f f e r p o o l c o n t e n t s :

Buf fe r s ize xxxx Buf fe r count xxxx
Buf fe r s ize xxxx Buf fe r count xxxx

Figure 2-34. Format of VT Output: Iìuffer Pml

Figure 2-34 display fields are defined as follows:

Max buffers The toral number of buffers allowed in this buffer pool. Thi-s
maximum vrr luc is determined when the bufîer pool is created
using RQ$CREATE$BUFFER$pOOL.

Total buffer count The number of bulfers currentlv in the buffer pool. This
number is equivalent to the number of buffers created in the
pool using RQ$CREATE$SEG MENT.

2-60 System Debugger

VT.-DISPI,AY iRMX@ II OBJECT

Total size count The number of different buffer sizes in the buffer pool. The
mil\lmum number of different buffer sizes is eight.

Containing job The token for the job that created this buflèr pool.

Buffer size The avaiÌable buffer sizes for this buffer pool. These sizes are
determined when the individual buffers are created throush
RQ$CREATE$SEGMENT.

Buffer count The number of buffers that are of the buffer size disnlaved in
the field directly to the left.

System Debugger 2-61

The VU command displays (unwinds) the iRMX II system calls in the stack of the task
having the token you enter.

PARAMETER

token The token for the task having the stack to be searched for
svstem calls.

I)ESCRIPTION

The VU command accepts a token for a task and then searches the task's stack for
iRMX II system calls, starting at the top of the stack. For each system call it finds in the
stack, it displays

. The return address for the call. This is the address of the next instruction to be
executed on behalf of the task after the system call has finished running.

. The VS display with two lines of stack values (or more if required for parameters of the
system call), as if the CALL instruction for the system call were in the CS:IP register
and the displayed stack values were at the top of the stack.

This command requires that the task stack reside inside an iRMX II segment.

The VU command uses internal iRMX ll data structures to get some of its information.
The data structures are updated immediately after the system call at the top of the task,s
stack runs to completion. Since the monitor interrupt might come after the system call is
completed, but before the data structures are updated, some of the information the VU
command uses may be obsolete. Therefore, the first system call the VU command displays
may not be valid.

Figure 2-35 illustrates the format of one system call display hy the VU command. System
calls can be nested, with one calling another, so some invocations of the VU command
produce multiple displays of the type shown in the figure.

If the stack of the indicated task has no system calls, the VU command displays the
following message:

2-62 System Debugger

VU..DISPI.AY SYSTEM CALLS IN A TASK'S STACK

N o s y s t e m c a l 1 s o n s t a c k

gate IINNNN

Return cs: ip - yyyy:yyyy
XXXX:XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

XXXX:XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

(subsyscen) system cal l

l p a r a m e t e r s I

Figure 2-35. Format of VU Output

The fields in Figure 2-34 are as follows:

gate #NNNN The gate number associated with the system call.

Return cs:ip The return address for the system call of this display (y11y:ypy).

xxxx:xxxx The address of the stack Dortion devoted to this call.

)ooo(Values currently on the stack.

(subsystem) The iRMX II Operating System layer containing the system call.

system call The name of the iRMX II system call.

parameters The parameter names associated with the stack values. The
parameters correspond to the stack values directly above them.
If one of the parameters is a string, it displays the string contents
below the parameters.

ERROR MESSAGES

Syntai{ Error An error was macle in entering the command.

*** INVALID TASK TOKEN ++* The value entered for the token is not a valid
tasK tol(en.

Stack not an iRMX II segment The stack of the task is not an iRMX ll segment,
as is required.

TOKEN is not a TASK The value entered for the token is valid;
however, it is not a task token.

System Debugger 2-63

W--DISPI.AY SYSTEM CALLS IN A TASK'S STACK

EXAMPLE

This example shows how the VU command responds when system calls are nested. The
task for the example has called RQSWRITE$MOVE of the Extended I/O System.
RQSWRITE$MOVE has called RQ$A$WRITE of the Basic l/O System.
RQAWRITE has called RQ$RECEIVE$MESSAGE to wait for the data transfer ro be
completed.

Suppose that before the message arrives signaling the completion of the transfer, you enter
the System Debugger and invoke the following VU command:

The System Debugger responds by displaying the following:

gate i l04 3 0

R e t u r n c s : i p - 0 9 8 8 : 5 7 6 A
2 1 6 A : 0 1 8 2 0 1 C 8 2 1 6 A 0 1 c 8 2 1 6 A F F F F L t 6 8 1 7 6 0 1 9 8 8
2L6A:QIC2 1s50 0000 2148 1FF8 1440 2558 2000 2050

(Nucleus) receive message

l . . . e x c e p g p 1 r e s p g p . . . | . t i m e . I . r n b o x . I

gate i l05B0

R e t u r n c s : i p - 0 9 D 8 : 0 8 8 7
2 1 6 A : 0 1 D 4 0 1 8 8 2 1 6 A 1 F s 8 0 4 0 0 0 0 0 0 2 0 8 8 2 o s T 2 0 8 8
2 1 6 A : 0 1 E 4 1 4 3 0 2 0 4 8 0 1 F 8 2 0 F 8 1 4 0 0 0 2 1 8 0 0 0 0 0 t F 8

(B I O S) w r i t e

l . . . e x c e p g p . . . l . . r n b o x . l . c o u n r l . . . b u f f e r g p . . l . c o n n . I

gate /10710

R e t u r n c s : i p - 0 9 F 8 : 0 6 F A
2 1 6 4 : 0 2 1 8 0 0 2 0 1 9 F 0 0 4 0 0 0 0 3 0 1 9 F 0 2 O g B 2 0 8 0 Z t 4 O
2L6A:0228 2058 0000 0000 20c8 zOcB 20cB 20c8 20cB

(EIOS) wr i te nove

l . . . e x c e p g p . . . l . . c o u n t l . . . b u f f e r g p . . . | . c o n n . I

2-64 System Debugger

CHAPTER 3
SAMPLE DEBUG SESSION

3.1 INTRODUCTION

This chapter provides a sample PLIM-2s6 program thar was developetl on an Intel 3l[)
system running on an iSB@ 2lÌ6/10 processor board with the iRMX I I .3 Operat ing
System. The terminal was a Hazelt ine 1510. The code has compi led without errors;
however, it does not run. The step-by-step process for using iSDM monitor and System
Debugger commands to locate and fir the bug, then to test the correctetl code is clcscribed
in sect ion 3.2. A scenario examining debugging techniques and adcl i t ional comrr i rnds is
provided in section 3.3.

3.2 SAMPLE PROGRAM

This program inc ludes three tasks: an in i t ia l izat ion task (ca l led In i t) that creates the other
two tasks and a mai lbox, and two tasks (ca l led Alphonse and Gaston) that exchange
messages via mailboxes. The source cocle is listed in Figures 3- l, 3-2, and 3-3. For
information on compiling and bincìing this code , see the Extended |RMX II programming

Techniques Reference Manuttl. The lìrllowing clescription explains how the program is
supposed to work.

The application code runs as a Human lnterfhce program; therefore, the < name of the
oBJECT file specified in BND2u6 > is entered at the Hl prompt. rhe task calletl lnit runs
first, creating a mailbox it catalogs in the rod directory under the name,'master.', lt
creates the tasks Alphonse and Ga:itorì then suspencls itself.

When Gaston receives contftrl, it gets the token for the mailbox created by Init (by looking
up the name "master" in the root job's object directory). It then creatcs a segment (in
which it will place a message) and a response mailbox (to which Alphonse will send a
reply). Next it goes into a loop in which ìt places a message in the segment (after
d isp lay ing i t on the screen) , sends the segment to the master mai lbox, then wai ts at the
response mailbox for a repÌy.

When Alphonse receives contrctl, it also sets the token lbr the mailbox created by Init (by
looking up the name in the root job's objcct clirectory). It rhen goes into a loop in which it
waits at the maiìbox for a messagc and checks to see if the token it received is a segment.
If it is a segment, Aìphonse places its own message in the segment (alier displaying it on
the screen), then sends the segment to the response mailhox. If it isn't a segment,
Alphonse drops out of the loop anri deletes itself.

System Debugger 3- l

SAMPLE I)EBUG SESSION

By using the two mailboxes, the tasks Alphonse and Gaston are synchronized. Gaston
sends a message to the first mailbox and waits at the second one before continuing.
Alphonse waits at the first mailbox. When it receives a message, it sends a reply to the
second mailbox and waits at the first for another message. This cycle continues for 6
messages.

After sending its sixth message, Gaston drops out of the loop. Instead of sending a
segment to the m:ìster mailbox, Gaston displays a final message to the screen then sends
the task token (the token for the Ini t t r ìsk) to the mai lbox. When Alphonse receives this
token and finds it is not a segment, Alphonse drops out of its loop and deletes itself.

To finish the processing, Gaston causes the Init task to resume processìng (remember, the
Init task suspended itself earlier). When Init takes over, it deletes both offspring tasks and
issues an EXITIOJOB svstem call to return control to the Human ìnterface level.

compacf
i n i t : D O ;

DECI-ARE token
DECI,ARE fifo
DECI-ARE seÌf
D E C I A R E t a s k $ p r i o r i t y
DECI^ARE c a11 ing$ task
DECIARE c a11 ing$ tasks $ j ob
DECI- {RE master$mbox
DECI,ARE status
DECI^ARE ini t$ task$ t oken
DECIARE gas ton$ task$ token

LITEMLLY
LITEMLLY
LITEMLLY
B Y T E ;
TOKEN;

,SELECTOR' ;
' 0 ' ;
, 0 , ;

TOKEN
TOKEN
WORD ;
TOKEN
TOKEN

DECI-ARE alphons e $ tas k$ token TOKEN
DECIARE a Ìphonse$star t$add
DECI- {RE gas tonq s ta r tSadd
DECLARE ga s ton$ds
DECI"{RE alphons e $ ds
DECLARE s tack$po in te r
DECI- {RE s tack$s ize
DECLARE task$ f l ags

gas ton :
PROCEDURE EXTERNAL;

END gas ton ;

a l p h o n s e :
PROCEDURE EXTERNAL;

END a lphonse;

P O I N T E R ;
POINTER;
WORD EXTERNAL;
WORD EXTERNAL;
PO I NTER ;
WORD ;
T.IORD ;

3-2

Figure 3-1, Example PL/M-286 Application (Init)

System Debugger

SAMPLE DEBUG SESSION

$ inc lude (/ rmx2 86/ inc/nuclus . ext)
$ include (/rmx286 / inc / eio s . ext)

ca l l ing$tasks$job: S ELECToR$OF (NIL) i , / * Di rectory obj cata loged in * /

ca l l ing$task : SELECToR$OF(NIL) ; / * îask whose pr ior i ty v i l l * /

/* be gotter' */

gas ton$ s tar t$add : @gaston; / * Set up scar t addresses for * , /

a lphonse $ s tar t$add : @alphonse; / * Lasks * /

s t a c k $ p o i n t e r : N I L ; , / * V a l u e s f o r c r e a t i n g t a s k s * /

s t a c k $ s i z e : 5 0 0 ;
t a s k $ f 1 a g s : 0 ;

in i t$ task$token : RQ$GET$TASK$T0KENS (, / * Get token for in i t task * /

s e l f ,
Gstatus) ;

CALL RQ$ 0ATALoG$oBJ ECT (/* catalog task token in */

c a l l i n g $ t a s k s $ j o b , / * d i r e c t o r y o f c a l l i n g x /

i n i c $ t a s k $ t o k e n , / * t a s k ' s j o b * /

@ (4 , ' i n i t ') ,
@s ratus) ;

naster$nbox : RQ$CREATE$MAILBOX (/ * Create mai lbox tasks use * /

f i f o , / * t o P a s s m e s s a g e s x /

Gstatus) ;

CALL RQ$ CATALOC$OBJ ECT (/ * Cata log mai lbox in * /

c a l l i n g $ t a s k s $ j o b , / * d i r e c t o r y o f c a l l i n g * /

master$mbox, , / * task 's job * /

@ (6 , ' m a s t e r ') ,
@s catus) ;

task$pr lor i ty : RQ$GET$PRIORITY (. / * Get pr ior i ty of ca l l ing * /

ca l l ing$task, / * xask * /

@s tatus) ;

t a s k S n r i o r i t v : t a s k $ p r í o r i t y I I i / x P i c k l o w e r p r i o r i r y f o r * /

,/* ne!{ tasks * /

Figure 3-1. Example PL/M-286 Application (Init) (continued)

System Debugger 3-3

SAMPLE DEBUG SESSION

alphons e $ task$ token : RQ$CREATE$TASK (/ * create rasks * /
r . c l z Q - F i ^ r i r "

aÌphonse$star t$add,
SELECTOR$OF (Ga Iphonse$ds) ,
< f 2 ^ L q n ^ i n f a r

s t a c k $ s i z e ,
task$ f J-ags ,
@ s t a t u s) ;

gas ton$ task$ roken - RQ$CREATE$TASK (
t a s k $ p r i o r i t y ,
gas t on$ s Lar t $ add
SELECTOR$oF (Ggas ton$ds) ,
s t a c k $ p o i n t e r ,
s c a c k $ s i z e ,
task$ f lags ,
Gs tatus) ;

CALL RQ$SUSPEND$TASK (/ * Suspend sel f and le t orher * , /
ca l l ing$task, / * tasks run
@s tatus) ;

CALL RQ$DELETE$TASK (/* clean up and exir
gas ton$ task$ token ,
@status) ;

CALL RQ$DELETE$TASK (
a lphonse $ task$ token ,
G s t a t u s) ;

CALL RQSEX]TIOJOB (
0 ,
N I L ,
Gs tatus) ;

END; / * In i t * /

Figure 3-1. Example PL/M-286 Application (lnit) (conrinued)

3-4 System Debugger

SAMPLE DEBUG SESSION

$conpact
a l p h o n s e $ c o d e : D 0 ;

DECI-ARE token LITEMLLY 'SELECTOR' ;

$ ine lude (/ rmx286/ inc/nuclus . ext)
$ inc lude (/ rmx2 8 6/ inc/e ios . ex t)
$ inc lude (/rmx286 / i-r'c /hí . ext)

a l p h o n s e :
PROCEDURE PUBLIC;

DECIARE CR LTTER-A.LLY ' 13' ;
DECI.ARE LF LITERALLY '10' ;
DECIARE wai t$forever LITERALLY 'OFFFFH' ;
DECIARE FOREVER LITEMLLY 'I^IHILE 1 ' ;
DECIARE cal l ing$ tasks $ j ob TOKEN;
DECI-ARE rnaster$mbox TOKEN;
DECIARE response$mbox TOKEN;
DECI,ARE status WoRD;
DECLARE type$code WORD;
DECIARE t ime$I i rn i t WORD;
DECI,ARE count IIORD;
DECIARE alphonse$ds WORD PUBLIC;
DECI-ARE seg$coken TOKEN;
DECTARE seg$s ize WORD;
DECI-ARE disp lay$nessage (*) BYTE DATA(

C R , L F , ' A f t e r y o u , G a s t o n ' , C R , L F) ;

DECIARE nessage BASED seg$token STRUCTURE(
count BYTE,
t e x t (2 5) B Y T E) ;

t i m e $ l i r ì i t : 2 5 ; / * D e l a y f a c t o r f o r m e s s a g e x /

, / * d isp lay * /
s e g $ s i z e : 3 2 ; / * S i z e o f m e s s a g e s e g m e n t x /
ca l l lng$tasks$job : SELECTOR$OF(NIL) i , / * Di rectory in which to look * , /

/* up obj */

Figure 3-2. Example PL/M-28ó Application (Alphonse)

System Debugger 3-5

SAMPLE DEBUG SESSION

rnaster$nbox - RQ$LoOKUP$oBJ ECT (
cal l ing$ tasks $ j ob,
@ (6 , ' m a s t e r ') ,
wai t$ forever ,
Gstatus) ;

DO FOREVER;

seg$token : RQ$RECEIVE$MES SAGE (
n a < t a r (m h n v

w a i t $ f o r e v e r ,
Qresponse $rnbox ,
@s taÈus) ;

type$code - RQ$GET$TYPE (
s e g $ t o k e n ,
Gstatus) ;

I F t y p e $ c o d e o 6 T H E N
CALL RQgEXITIOJOB (

0 ,
N I L ,
@status) ;

n a l n t : ? 1 '

N I L ,
0 ,
r) - ^ ^ ^ - ^ ^ ^ ^ . . - c
lqxrc> s dÉr . uuu L ,

Gs tatus) ;

CALL RQ$SLEEP (
t i rne$1i rn i t ,
Gstatus) ;

CALL RQ9SEND$MESSACE (
response$mbox,
seg$token,
s ELECT0R$0F (Nt L)
Gstatus) ;

END ;
END alphonse;
a lphonse$code;

/ * R e r - c i v c r r c n n n c p x /

/ * f r o m G a s t o n * /

/ x I f i t i s n ' L a x /

/ * s e g m e n t , e x i t * /

,/* Look up
,/* nai lbox

/ * See what k ind o f

, / * o b j e c t i t i s

,/* FOREVER
,/* Alphonse

C A L L M O V B (G d i s p l a y $ r n e s s a g e , @ m e s s a g e . t e x t , s i z e (d i s p l a y $ m e s s a g e)) ;

CALL RQCSEND$C0$RESPONSE (/ * Send rnessage to * /

/ * t Ja i t a wh i le to x /

, / * g i v e u s e r t i m e L o x /

/ * s e e t h e m e s s a g e * /

, / * Send message Lo * /

/ * response rna i lbox * /

Figure 3-2. Example PL/M-286 Application (Alphonse) (continued)

3-6 System Debugger

SAMPLE DEBUG SESSION

9compact
o a c r - ^ n q ^ ^ . l a ' n n '

DECI-ARE token LITEMLLY ,SELECTOR, ;

$ inc lude (/ rmx2 86/ inc/nuc lus . ext)
$ include (/rrnx286 / inc / e io s . ext)
$ include (/rmx286 / íne /hi . ext)

gas con :
PROCEDURE PUBLIC;

DECIARE CR LITERALLY ' I3 ' :
DECI-ARE LF LITEMLLY ' 10 ' ;
DECLARE f i fo LITERALLY '0 , ;
DECI"ARE wai t$forever LITERALLY ,OFFFFH, ;
DECIARE parent$task TOKEN;
DECIARE cal l ing$ tasks $j ob TOKEN;
DECIARE master$mbox TOKEN;
DECIARE response$mbox TOKEN;
DECLARE status ITORD;
DECI"ARE t ime$l in i t I IORD;
DECI-ARE count WORD;
DECIARE f ina l$count WORD;
DECIARE gaston$ds latORD PUBLIC;
DECI"ARE seg$token TOKEN;
DECI-ARE seg$s ize WORD;
DECIARE rnain$message (*) BYTE DATA(

C R , L F , ' A f t e r y o u , A l p h o n s e ' , C R , L F) ;

DECIARE f ina l$message(*) BYTE DATA(
C R , L F , ' I f y o u i n s i s t , A l p h o n s e ' , C R , L F) ;

DECI^ARE rnessage BASED seg$token STRUCTURE(
count BYTE,
r e x r (2 7) B Y T E) ;

c o u n t : 0 ; , / * I n i t i a l i z e c o u n t * /
f lna l$count : 6 ; , / * Set nurnber of loops * /
t i m e $ l i n i t : 2 5 ; / * D e l a y f a c r o r f o r d i s p l a y

/* to screen * /
seg$size : 32; / * S ize of message segment * /
ca l l ing$tasks$job : SELECTOR$OF(NIL) j , / * Di rectory in which to look * , /

/* up obj ect x/

Figure 3-3. Example PL/M-286 Application (Gaston)

Systern Debugger J - l

SAMPLE DEBUG SESSION

rnaster$rnbox : RQ$LOOKUP$OBJ ECT (,/* Look up message mailbox */

ca l l ing$ tasks $ j ob ,

@ (6 , ' m a s t e r ') ,
w a i t $ f o r e v e r ,

Gs ta tus) ;

response$mbox : RQ$CREATE$MAI LBOX (/ * Create response rna i lbox * /

f i f o ,

@sta tus) ;

seg$token - RQ$CREATE$ S EGMENT (/ * Create message segment * /

seg$ s i ze ,
Qs ta tus) ;

DO WHILE count < f ina l$count ;
n e s s a g e . c o u n t : 2 3 ;
C A L L M O W (@ m a i n $ r n e s s a g e , @ m e s s a g e . t e x t , S I Z E (m a i n $ m e s s a g e)) ;

CALL RQCSEND$C0$RESPONSE (/ * Send rnessage to sc reen * /
N I L ,
0 ,
A r î a (< , o a ^ ^ ' 1 n f

@status) :

CALL RQ$SLEEP(/ * i la i r a wh i le ro g ive user * /
t ime$ l - in i t , , / * t ime Lo see the messa€ le x /

Gsta tus) ;

CALL RQ$SEND$MESSAGE (/ * Send message to ma i lbox * /
n a s t e r $ m b o x ,
seg$ token,
r p < n a n c a Q - h ^ -

Gs tatus) ;

seg$token : RQ$RECEIVE$MES SAGE (, / * Receive response f rom x/
r e s p o n s e $ m b o x , / * A l p h o n s e x /
w a i t $ f o r e v e r ,
N I L ,
@ s t a t u s) ;

count : Count + 1;
END; / * WIILE * /

. ^ , , n r _ : , 7 .

CALL MOVB (Gf ina l$message, Gmes sage . rex t , S I ZE (f ína1$rnessage)) ;

Figure 3-3. Example PL/M-286 Application (Gaston) (continued)

-3-8 System Debugger

SAMPLE DEBUG SESSION

CALL RQ$ C9 S ENDCORES PONS E (
N I L ,
0 ,
a - ^ ^ ^ - ^ ^ ^ ^ . . - è
r Y x , c r r d É r . L U U L '

@s tatus) ;

CALL RQ$SEND$MESSAGE (
masterSmbox,
m a s t e r $ m b o x ,
S E L E C T o R $ O F (N r L) ,
Gs tatus) ;

parent$task : RQ$LOOKUP$OBJ ECT (
c a l l i n g $ t a s k s $ j o b ,
@ (4 , ' i n i t ') ,
w a i t $ f o r e v e r ,
@s tatus) ;

CALL RQ$RESUME$TASK (
parent$ task ,
Gs tatus) ;

END gas ton;
g a s t o n $ c o d e ;

/ * Send f ina l messa8e to * /

/ * sc reen * /

/ * Send coken fo r ma i lbox * , /

/* to rnailbox. This . ' t i)- l */
, / * c r ^ n ^ i L ì a r r , c l z

/* Look up token for
/ * . . 1 1 i n o r , < L

END

,/* Resurne cal l ing
/ * F n r n 1 a a n " n

/ * cas ton

Figure 3-3. Example PL/M-286 Application (Gaston) (continued)

3.3 DEBUGGING THE PROGRAM

Although it's a good idea to include error checking when developing programs, we did not
include any in our sample program so that we could demonstrate more features of the
System Debugger. The sample program contains one error. We will show two approaches
to finding and correcting it using the System Debugger.

The addresses and token values appearing in the following examples are those the system
assigned in this debugging session. Most of these values will change from session to
session. It's helpful to keep paper and pencil handy to note the various addresses and
tokens.

System Debugger 3-9

SAMPLE DEBUG SESSION

When the iSDM monitor is invoked, both the application code and the operating system

code freeze. However, by using iSDM monitor and System Debugger commands you can
disassemble and execute the application instructions. Thus, in a debugging session you will
move the CS:IP through your code, examining system objects, possihly changing stack or
register values. These changes are valid for only one pass through the code. To re-execute
the code, kill the current job by using the Cll-restart feature, then re-enter the iSDM
monitor by using the Human Interface DEBUG command.

EXAMPLE #1:

When < name of OBJECT fiìe specified in BND286 > runs, the system displays the
following message:

In terrupt 13 at 2C38:0199 General Protect ion EC0DE:0000

The values 2C38:0199 are where the CS:IP was pointing when the program halted. The
protected-mode prompt (..) indicates that we are in the iSDM monitor. However, since the
program has been executed, we must re-enter the iSDM monitor to re-execute the code.
We can use the Cll-restart feature to return to the Command Line Interoreter. Enter the
followins command:

The system responds with the Human Interface prompt (-). Next, enter the following
command:

The system responds with the following:

In terrupt 3 at 2A70: FFFF

Use the iSDM monitor's GO (G) command to set a breakpoint at the instruction where the
program halted (remember the CS:IP value is given in the interrupt message displayed
when the program halts). The code segment (CS) value will change each time you re-enter
the iSDM monitor, but the instruction pointer (IP) will remain the same. Enter the
followins command:

-ì-10 System Debugger

SAMPLE DEBUC SESSION

To find out where we are in the code, use the iSDM monitor's D (DISPIAY
MEMORY/DESCRIPTOR TABLES) command to display a disassembled block of code.
Enter the following command:

The system displays the following code:

The instruct ion at address 2-500:0199 is a MOVE STRING WORD command. The only
move word instruction in the sample program is the PL/M-2t16 MOVW call when Caston
enters the loop after creating the segment. The lbllowing display shows this section of
code:

2 500 : 0199
2 5 0 0 : 0 1 9 8
2 500 : 019E
2 500 : 01A0

F2A5
880000
SBDO
5 2
50
680000
8E063800
880000
0 6
5 0

REP
MOV
MOV
PUSH
PUSH
PUSH
MOV
M0v
PUSH
PUSH

MOVSW
AX, 0000
D X , A X
DX
AX
0000
E S , [0 0 3 8]
AX, 0000
E S
A X .

2 500 : 01Al
2 5 0 0 : 0 1 A 2
2 5 0 0 : 0 1 A 5
2 500 : 0 IA9
2 5 0 0 : 0 1 A C
2 500 ; 0lAD

System Debugger 3 - l I

SAMPLE DEBUG SESSION

r e s p o n s e S m b o r = R Q S C R E A T E $ U A I L B O X (/ . C r e a t e r e s p o n s e m a i l b o x * /

f i f o ,
G s t a t u s) ;

SEgS IOKEN = RQ SC REATE 9 SEGMENT (

s e g 9 s i z e .
! a s t a t u s) ;

D O w H I L E c o u n t I i n a l S c o u n t ;
. ^ , ' ^ r = ? ì .

/ i C r e a t e m e s s a g e s e g m e n t r /

CÈIL r|Ottx(enal n$nessage, 0nessage.tert, SIZE(nain$rcssagè] I i

CALL RQSCSSEND$COSRESPONSE (

N I L ,

0 ,

r y ' I r s 5 4 Y s . L U u r r L t

0 s t a t u s) ;

, / t S e n d m e s s a g e t o s c r e e n r /

Figure 3-,1. MO!'W in Gaston Code

lf displaying the instruction doesn't provide enough information about why the program
halted, we can look at the surrounding code by displaying for-ward or backward from the
CS:IP. The comma we specified in the DX command enables us to enter just a comma (,)
now to display forward another ten instructions from the current CS:lP. (Displaying
backward from the CS:IP is shown in Example #2.)

However, since the instruction where the exception occurred is traceable to the sample
code, we know where the program fails. To ex:rmine what happenswhen the system tries
to move the message, we'll return to the protected-mode prompt (by entering a carriage
return <CR>) and examine register contents before and alìer MOVSW is executed.
Enter the following command:

3-12 System l)ebugger

SAMPLE DEBUC SESSION

The system displays the following:

AX-OOOO CS_2500 IP-0199 FI .FO293 RGDT .BASE:OO2OOO .LIMIT:2FFF
B X * 0 0 3 4 S S : 2 6 3 8 S P : 0 1 F 2 B P : O 1 F 2 R f D T . B A S E : O O 5 O O O . L I M I T : O 3 F F
cx-0017 Ds:2530 sI -0042 MSW:FFFB
DX:2680 ES:2680 Dr:0001 TR=0278 RLDT:02A0

To execute the MOVSW instruction, enter the lblkrwing commancl:

The system displays the fol l t rwing:

Enter a comma (,) .

The system responds with the following:

I n c e r r u p t 1 l a t 2 5 0 0 : 0 1 9 9 G e n e r a l P r o r e c r i o n E C O D E * O o 0 0

To see how execut ing th is inst ruct ion changed regis ter contents, enter the fb l lowing
command:

The system displays the folÌowing:

AX-OOOO CS-2800 IP_0I99 FI , :O293 RGDT .BASE:OO2OOO .LIMIT:2FFF
B X : 0 0 3 4 S S : 2 6 D 8 S P : 0 1 F 2 B P : 0 1 F 2 R I D T . B A S E : O O 5 O O O . L I M I T - O 3 F F
CX:OOO6 DS:2888 S I :0062 MSW:FFFB
DX:26C0 ES:26C0 Dl=0021 TR:0278 RLDT:02A0

System Debugger 3- t3

SAMPLE DEBUG SESSION

In the ASM286 Assembly language MOVSW instruction, DS:SI represents the source data

is moving from; ES:DI is the destination. (For more intbrmation on MOVSW, see the
ASM286 Assemhly Language Reference Manual.) To check the limit of the ES register,
enter the following command:

The system displays the following:

cDT (1427T) DSEG BASE:090484 L l t f r r :oo lF P* l DPIFO ED:O l l -1 A:1 sR*0000(Es)

The LIMIT parameter shows that the segment limit is 1FH (31 decimal). Since the system
counts from zero, the limit is 32 decimal which is the value assigned to seg$size in Gaston.
The DI register (shown in the previous display) contains 2lH (33 decimal), indicating the
system was trying to write past the segment limit when the program halted. This fact
suggests the PL/M-286 MOVW call should be changed to MOVB. Here we could exit the
iSDM monitor, change the PLIM-286 code, then recompile and run it.

However, we can use the iSDM monitor's EXAMINE/MODIFY REGISTERS (X)
command to change a register v:rlue and the GO (G) command to execute the program.
Making changes with the X and S (SUBSTITUTE MEMORY) commands enables us ttr
test code without having to recompile and bind it.

The CX register contains the count ofbytes or words moved. If we decrease the count in
the CX register to l5 before \rye execute the MOVSW instruction, we should be able to
move all the data. Re-enter the iSDM monitor and set a breakpoint at the MOVSW
instruction by entering the following commands:

Set the CX register to 15. E,nter the fbllowing command:

Now, execute the rest of the program by entering the following command:

3 - l 4 System Debugger

SAMPLE DEBUG SESSION

The system responds with the following:

Since our change was valid for one pass through the code, the first pass through the Gaston
loop worked. The next pass failed. To return to the Command Line Interpreter, enter the
following command:

This partially successful run shclws that if we reduce the number ofwords moved, the
program works. Therefore, to make a permanent fix, we should change the PLIM-286
MOVW call to MOVB in the sample code. then recomnile and bind it.

EXAMPLE #2:

We can also make changes in the disassembled code. Suppose we have run the program
for the first time, and the system displayed the following message:

In terrupt 13 at 2A70:0199 General Protect ion EC0DE-0000

Restart the system using the CLI-restart lèature as you did in Example #1, then re-enter
the iSDM monitor by entering the lbllowing command:

Set a breakpoint at the instruction that was executing when the program failed and display
a block of disassembled code by entering the following commands:

. .

After you,

AfÈer you,

Interrupt

Gaston

1 3 a t 2 4 7 0 : 0 1 9 9General Protect ion ECODE-0000

System Debugger 3-15

SAMPLE DEBUC SESSION

The system displays the following:

To look at the instruct ions preceding MOVSW, enter the fol lowing command:

The system displays the following coclc:

MOVSW is a repet ì t ive move f rom DS:SI to ES:Dl . Looking at the precedìng inst ruct ions,
we see 1251J:0181 moves 17H into CL, which is the low-order regis ter of CX. Remember
that CX is the count of bytes or wortls moved. (For more information on the register set,
see the ASM286 Assentbly Language Rat'erence Manual). lf we display the ES register
contents us ing "ddt(es) <CR>" as we d id in the last example, we can check the l imi t . S ince
the limìt is 32 (decimal) and the system is trying to write l7H words, rhe system lirils when
it tries to write past the segment limit. f f we reduce this count we shouÌd be abÌe to move
the data. We must re-enter the iSDM moni tor , then us ing the iSDM moni tor 's
SUBSTITUTE (S) command, we crn change the code at l25t l :0181. Semicolons (;)
precede the explanat ions in the fo l lowing cocle; enter the in format ion appear ing in b lue:

1 2 5 8 : 0 1 9 9
1 2 5 8 : 0 I 9 B
1 2 5 8 : 0 1 9 E
1 2 5 8 : 0 1 A 0
1 2 5 8 : O 1 A 1

F2A5
8 8 0 0 0 0
SBDO
5 2
5 0

REP
MOV
MOV
PUSH
PUSH

MOVSW
Ax, 0000
DX,AX
DX
AX

L258
7258
1258
1 2 s 8
t 2 s 8
1 2 5 8
t258
r258
1 2 s 8
1 2 5 8
L258
1 2 5 8
t258
t258
1258

o l l 4
0 1 7 8
0 1 7 C
0 1 7 E
0 1 8 1
0 1 8 3
0 1 8 7
0 1 8 C
0 1 8 E
0r92
0 1 9 5
0 1 9 8
0 1 9 9
0 1 9 8
0 1 9 E

8 8 0 6 3 8 0 0
3 80 6 3A00
7 203
8 9 7 6 0 0
8 1 l 7
8 E 0 6 3 E 0 0
2 6 8 8 0 E 0 0 0 0
8 5 0 0
8 E 0 6 3 8 0 0
8F0100
B E 4 2 0 0
FC
F2A5
880000
SBDO

MOV
CMP
J B
J M P
MOV
MOV
MOV
MOV
MOV
MOV
MOV
CLD
REP
MOV
MOV

A x , I 0 0 3 8 1
A x , 1 0 0 3 A l
A = 0 1 8 1
A:O 1F 7
C L , I l
E S , [0 0 3 E]
E s : [0 0 0 0] , c L
c H , 0 0
E S , [0 0 3 8]
D I , 0 0 0 1
s r , 0 0 4 2

MOVSW
Ax, 0000
DX,AX

-l-t6 System Debugger

SAMPLE I)EBUG SESSION

;en ter mon i to r conunand to subs t i tu te
menory a t lp :0181

1 2 5 8 : 0 1 8 1 8 1 - ; e n t e r a c o n m a r o s r e p t o t h e c o u n È
1 2 5 8 : 0 1 8 2 1 7 - ; e n t e r t h e n e ù c o u n r

; r e - s t a r t c o d e e x e c u t i o n

The system responds with six iterations of the following:

After you, A1
Af ter you, Gaston

After six iterations of the previous screen, the monitor displays the following:

I f y o u l n s i s t , A l p h o n s e

3.4 VIEWING SYSTEM OBJECTS

Consider that we have a deadlock problem. tsy looking at system objects at various stages
of execution, we can observe how synchronization (or lack of it) is occurring.

We can view any object in a job using the VO command (specifying the job's token) to
provide the broad picture of the system state, then the VT command to focus on individual
elements. Suppose, we want to view the state of thc olrjects belbre entering the loop in
which Gaston and Alphonse exchange messages. Assume we have stepped through the
code, verifying system calls until we located the CS:lP lbr the Nucleus creategsegment
system call in Gaston. Re-enter the iSDM monitor and set a breakpoint at this CS:lP by
entering the fol-lowing commands:

-Debug <nane of OBJECT f i le specl f ied 1n BND286> <CR>
. . 9 , 1 6 d < C R >

System Debugger 3-t7

SAMPLE DEBUG SESSION

'I'o get the job token, enter the following command:

The system cl isplays the frr l l t rwing:

iRMX@ ll Job Tre e

0 2 5 8
0 F 3 8

1 6 7 0
2460

0 E 8 8
0E00

Note that "2460" is the token for the application job. To view objects for this job, enter the

following command:

The syst rm d isp lays the fo l lowing:

At this stage of program execution, two mailboxes exist. The "t" following mailbox 25C0
means one or more tasks are wai t ing at i t (AÌphonse was created f i rs t and is wai t ing for a

message from Gaston). Examine mailbox 25C0 by entering the follorving command:

C h i l d J o b s
T a s k s :
M a i l b o x e s :
Semaphores

S e g m e n t s :
Extens ions
Conpos i te s

26D0 26F0 1AC8 19 00
25C0 t 1AB8

2580 25E8 25E0 2650 2528 2480 2418

24A0

3-18 Syst€m I)ebugger

SAMPLE DEBUG SESSION

The system responds with the following:

Use the System Debugger's VU command to view the waiting task's stack. To unwind the
stack, enter the following command:

The system displays the folkrwing:

gate /104 30

R p r , , r n . q í n - l n l R ' O z q F

1 6 C 8 : 0 1 E 6 0 0 8 6 1 D 2 8 0 0 8 4 1 D 2 8 F F F F 1 7 E 0 0 0 0 0

(Nuc leus) rece ive message

l . . . excep$p . . . l r esp$p- . . l . t ime . I . r nbox . I

We can continue to examine objects or set a breakpoint at the return CS:lP. Setting the
CS:IP (g, 29f < CR >) in the sample program causes the iSDM monitor to display the
followins:

ln terrupt L3 at 21F0:0199 Ceneral Protecî r ion ECODE:0000

This message indicates that the program halts in Gaston and that 21F0:0199 is the
instruction executins when it drcs.

object Èype - 3

Task queue head
Queue di sc ipl ine
ContaÍn ing job

Mal]box

1900
FIFO
2460

1900

Obj ect queue
obj ect cache

head
depth

0000
0 8

System Debugger l-19

SAMPLE DEBUG SESSION

This chapter has shown two ways to find an error and two ways to make temporary fixes
from the System Debugger. The message clisplayed when the program halts contains the
CS:IP of the last instruction executing. If setting the CS:IP at this instruction and
displaying the surrounding code doesn't give you enough information about where this
point is in your application code, you can use combinations of VJ, VO, VT, VU, and VS to
Iocate the running task. Then set the breakpoint at the CS:IP of the last executing
instruction and display code, objects, and registers to determine how the system is
executins that instruction.

J-20 System Debugger

iSDM"MONITOR
APPENDIX A
COMMANDS

4.1 INTRODUCTION

This appendir briefly describes the iSDM System Debug Monitor commands in
alphabetical order. A command directory listing the functional groups and page references
precedes lhe command descriptions. For examples and more detailed informaîion about
the commands, see the ISDM Sy,stem Debug Monitor User's Guide.

A.2 COMMAND DIRECTORY

This section provides a brief summ:rry of all iSDM monitor comm:rnds listed by functions.
Each entry in the following summary contains along with the command name a brief
description of the command and a page reference where you can find more information on
the command.

Command Function Performed Pa,qe

PROGRAM LOADING AND EXECUTION

d P r w ú u d ' È J r r s l i s (r ' u 5

s e c o n d a r y s t o r a g e j n t o t l r e L a r g e t s y s t e m ' s m e m o r y A - 3

C B e e i n P " è r r t i n e e n n r : ̂ ^ ' . . A - 5' r . E J q P r / ' P ' u É , d , , ,

L * L o a d a n 8 0 8 6 a b s o l u t e o b j e c t f i L e o r a n 8 0 2 8 6
o b j e c t f i l e f r o m a d e v e l o p m e n t s y s t e m i n t o

r s r v r y . A - 6

N Execute one or more ins t fuc t ions a t a t ime A 6

R * L o a d a n d e x e c u t e a n 8 0 8 6 a b s o l u t e o b j e c t f i l e o r a n
8 0 2 8 6 a b s o l u t e o b j e c t f i l e i n t a r g e t s y s t e m n e m o r y . . . A - 8

iSDM" Syslem Debugger A-l

iSDM" MONITOR COMMANDS

Command Function Performed Page

I/O PORT INPUTAND OUTPUT COMMANDS

I Inpu t and d isp lay a by te o r word f rom the spec i f ied
p o r c . . . A - 5

O O u t p u t a b y t e o r w o r d t o t h e s p e c i f i e d p o r t A - 1

BLOCK MANIPUI-A,TION

C Conpare the conten ts o f one b lock o f memory t^ ' i th
t h a t o f a n o t h e r b l o c k . . A - 4

F Search the spec i f ied b lock o f memory fo r a sequence
of hexadec i rna l d ig i ts A-5

M Copy che conten t o f a b lock o f memory to another
h l n n l r n f m p r n n r v . . A - 6

MEMORY/REGISTER DISPIAY AND MODIFICATION

D Disp lay the conten ts o f mernory and descr ip to r tab le
e n t r i e s . A - 4

S D isp lay and (op t iona l l y) mod i fy nemory loca t ions and
d e s c r i p L o r t a b l e e n t r i e s A - 8

X D isp lay and/or mod i fy CPU/NPX reg is te r o r rask s ta te
s e g m e n t c o n t e n l s . A - 9

L-2 iSDM" System Debugger

iSDM" MONITOR COMMANDS

Command Function Performed Page

MISCELI-ANEOUS COMMANDS

E* Ex i t the loader p rogram. Return cont ro l to the
deve lopnent sys tem. . . A-4

K* Echo a l1 conso le ou tDut to a f i1e . A-5

P DÍsp lay che base and o f fse t por t ion o f an address
o r a n e x p r e s s i o n A ' - 1

Q Enab le Pro tec ted V i r tua l Address Mode (p ro tec ted

m o d e) . . A - 1

Y* D isp lay and de f ine symbol in fo r rna t ion . . A-9

* Command requ i res an a t tached deve lopment sys tem.

A.3 COMMAND DESCRIPTIONS

This section provides brief descriptions for iSDM monitor commands in an easily
referenced alphabetical order. For more information on command parameters, syntax, and
options, refer to the iSDM tstem Debug Monitor User's Guùúe.

A.3.1 B-Bootstrap Load

The B command passes control to the bootstrap loader to load absolute object code from
secondary storage into your target system memory. The Bootstrap Loader loads the file
into the target system at the memory address specified in the file. After the bootstrap
loader finishes loading the file, the code begins executing. To use the B command
correctly, you must be operating in real mode.

If either the file you specified or the default file does not exist, the bootstrap loader halts
and takes action according to how it is configured.

iSDM" System Debugger A.3

iSDM. MONITOR COMMANDS

A.3.2 C-Compare

The C command compares the contents of one block of memory defined by a range with
the contents of another block of memory that begins at a destination address. The iSDM
monitor expects the blocks to be equal in length. If the iSDM monitor encounters any
mismatched bytes, it displays them in the folìowing formaL.

aaaa:bbbb xx yy aaaa:bbbb

where "aaaa:bbbb" are the addresses of the bytes that do not match and "xx" and "yy" are
the bytes themselves.

4.3.3 D-Display Memory/Descriptor Tables/Disassembled
lnstructions

The D command is actually three commands in one. You can use it to display the contents
of a specifie<.I block of memory, the contents of an 80286/80386 descriptor table, or the
contents of a specified block of memory in disassembled form. Ifyou are operating in reat
mode, you cannot display descriptor table entries. However, ifyou are operating in
protected mode, you can use both functions of this command.

A.3.4 E-Exit

The E command enables you to exit the loader program by returning control from the
loader program to the development operating system. Upon return, the iSDM monitor
loses all symbol information.

When using the E command, you must use it on a line by itself; do not use multiple
commands on a line with the E command. Also, your system must include an attachetl
development system before you can use this command.

When you reinvoke the iSDM monitor after exiting the loader program, one of two things
happens:

. The iSDM monitor prints either a single or double prompt depending upon whether
you were operating in real or protected mode when you exited.

. The iSDM monitor pr ints i ts usualsign-on message and re- ini t ia l izes i tsel f i f you reset
your target system between the time you exited the loader and the time you reinvoked
the iSDM monitor.

A-4 iSDM" System I)ebugger

iSDM" MONITOR COMMANDS

4.3.5 F-Find

The F command searches the block of memory you specified to determine if it contains the
sequence of hexadecimal digits you chose in the data parameter. Each time the iSDM
monitor finds a match, it displays the address of the first matching byte.

A.3.6 G-Go

The G command instructs the iSDM monitor to begin executing your application program.
In response to the G command, the iSDM monitor single steps the first instruction, then
executes all succeeding instructions at full speed.

Your application program must have at least 12 bytes of stack available for lhe iSDM
monitor to use. If you are operating in protected mode, each task in your program must
contain at least 12 bytes of stack at privilege level 0 for the iSDM monitor to use.

With 80286 and 80386 boards, a special situation arises when you execute the G command
and you speci! a breakpoint address but not a starting address. If the breakpoint is in an
interrupt handler and the current CS:IP is at a software interrupt instruction (INT x,
INTO, BOUND), the iSDM monitor single steps the interrupt instruction, executing the
interrupt handler at full speed and bypassing the breakpoint you set. To get arountl this
8028ó/8038ó operational anomaly, make sure that the CS:IP is pointing to the (or any)
instruction preceding the software interrupt instruction before you execute the
G command.

A.3.7 l-Port lnput

The I command retrieves and displays a byte or word from the port you specify. Byte and
word formats are different. (See the ISDM System Debug Monítor User's Guide for byte and
word format descriptions).

4.3.8 K-Echo File

The K command copies all console output to a development system file you specify.
Repeating the K command without speciling a file causes the iSDM monitor to stop
copying console output. Your system must include an attached development system in
order to use this command

iSDM" Systen Debugger A-5

iSDM" MONTTOR COMMANDS

A.3.9 L-Load Absolute Object File

The L command loads absolute 8086 or 80286 object files into target system memory. The
iSDM monitor loads the data from the file into the memory location that you specified
when you used the LOC86 or BLD286 commands. When loading the data, the iSDM
monitor discards all previously loaded symbol information and loads the new symbol
information, but it retains all user-defined symbols. If the file contains a register
initialization record, the iSDM monitor sets the appropriate registers to the values the file
specifies. Your system must include an attached development system in order to use this
command.

The L command cannot load relocatable modules. Ifyou are operating in real mode, you
can load only 808ó absolute object files. Ifyou are operating in protected mode, you can
load only 80286 absolute object files.

When you load an 80286 object file, the iSDM monitor initializes the first 40 global
descriptor table (GDT) entries for its own use. In addition, the iSDM monitor initializes
any uninitialized interrupt descriptor table (lDT) entries. If the access byte is equal to
zero, the iSDM monitor assumes that the descriptor table entry is not initialized. Refer to
Intel's Microprocessor and Peipheral Handhook, Microststem Components Handbook, or
IAPX 286 Operating System Witer's Guide for more information about the descriptor tahles.

4.3.10 M-Move

The M command copies the contents of a block of memory to a memory address you
specif .

4.3.1 I N-Execute Single Instructions

The N command displays and executes one or more disassembled instructions at a time.
Going through your application line-by-line is called "single-stepping." SingJe-stepping
allows you to begin at a CS:IP you specify and check your application for problems in an
instruction-by-instruction manner.

Your application program must have at least 12 bytes of stack available for the iSDM
monitor to use. Ifyou are operaîing in protected mode, each task in your program must
contain at least 12 bytes of stack at privilege level 0 for the iSDM monitor to use.

When you are single-stepping instructions, you should be aware of some special
considerations. See the ISDM S1,sîem Dehug Monitor User's Guide îor more information
about these special considerations when using the N command.

A-6 iSDM" Sysfem l)ebugger

iSDM" MONITOR CONI]!IANI)S

4.3.12 O-Port Output

The o command allows you to enter data (a byte or word) at the console and send it to a
port you select.

4.3.13 P-Print

The P command allows you to display either the value of an expression or the value of the
base (or selector) and offset portions of an address. The values are tJisplayed on your
console terminal screen. The iSDM monitor always displays an address in hexaclecimal
form. Ifyou enter "P" plus an expression, the iSDM monitor prints the value in
hexadecimal. I f you enter "Pl- 'or "PS" plus an expression, the iSDM monitor pr ints the
value in decimal or signed decimal form, respectively.

In this command, the comma act ing as a separator also causes the iSDM nroni t . r to add a
space between the addresses or exltressions it displays.

4.3.14 Q-Enable Protection (80286/80386 Onty)

The Q command changes the [ì02tlfi- or 803iJ6-based system from real ntode to protected
mode. The iSDM monitor displays the lbllowing mcssage when you use rhe e command:

Now in Pro tec ted Mode

When you invoke this command, the iSDM monitor in i t ia l izes the entr ies i t needs in the
GDTandthelDT. The iSDM mon iror then places i tsel f at pr iv i lege level zero. I fyou are
already operating in protected mode when you invoke this command, the iSDM monitor
re-initializes the GDT and IDT entries. The only way you can return to real mocle is to
reset the 80286 or 80386 hardwarc.

iSDM" System Debugger A-7

iSDM* MONITOR COMMANDS

A.3.15 R-Load and Go

The R command is a combinat ion of the Load command (L) and the Go command (G)
This command loads an absolute object file from a develrrpment system into target system
memory then executes this program. This command causes the iSDM monitor to discard
all previously loaded symbol information and load new symlxrl information; however, the
iSDM monitor retains al l user-def ined symbols. Your system must include an attached
development system in order to use this command.

The iSDM monitor loads the data from the file into the memory localion that you specified
when you used the LOC86 or BLD2ttfi commands. If the file contains a register
in i t ia l izat ion record, the iSDM monitor sets the appropr iate registers to the values the f i le
specifies.

The R command cannot load rekrcatable modules. I f you are operat ing in real-addressing
mode, you can load only f1086 absolute object f i les. I fyou are operat ing in protected mocle,
you can load only 80286 boot loadable (ahsolute) f i les.

When you load an 80286 object file, the iSDM monitor initializes the first 40 global
descr iptor table (GDT) entr ies for i ts own use. In addi t ion, the iSDM monitor in i t ia l izes
any uninitialized interrupt descriptor table (lDT) entries. Relèr Ío Intel's Microproces.sor
and Peipheral Handhook, Microsy.îtem Components Handhook, or APX 286 Operatíng
System Witer's Guide for more information about the 80286 component's descriptor tahles.

After the iSDM monitor loads the f i le and sets the appropr iate registers to the values the
file specifies, it begins to execute the program at the location specified by the CS and IP
regrsters.

Your application program must have at lcast l2 bytes of stack available for the iSDM
monitor to use. I fyou are operat ing in protected mode, each task in your program must
contain at least l2 bytes of stack at pr iv i lege level 0 for the iSDM monitor to use.

A.3.16 S-Substitute Memory/Descriptor Table Entry

The S command is actual ly two commands in one. You can use i t to display and
(optionally) modifo either the contents of memory or the contents of descriptor table
entr ies. I f you are operaî ing in real mode, vou cannot display and modi! descr iptor tabÌe
entries. However, ìf yclu are operating in protected mode, you can use both functions of
this command.

A-8 iSDM" System Debugger

iSI)M* I\f ONITOR CONII\'IANI)S

If you enter the S command without an equal s ign (=) , the |SDM monitor displays a
special hyphen (-) prompt. Then, it waits for you to enter either

o A cont inuat ion comma instruct ing the iSDM monitor to t l isplay the next mcnìory
location.

. A single expression or a list of expressions separated by slashes (/). By entering an
expression (or expressions), you instruct the iSDM monitor to substitute these values in
place of those already in the memory location you specified.

The iSDM monitor cont inues to issue hyphen prompts unt i l you enter î carr iage return.

4.3.1 7 X-Examine/Modify Registers

The X command al lows you to examine and (opt ional ly) rrodi fy the contents of your
system's NPX ant l microprtress,tr rcgis lcrs.

I f you use the X command with no parametcrs, the iSDM ntoni tor displays al l o l the 8(Ìbo,
286, and 386 registers.

I f you use both the register name and an expression, (for exrmple, CS = XXXX), the value
you entered (XXXX) is placed in the specified register.

You can use the X command to set the tl0tl6 family and NPX registers lnd the task state
segment contents to any value. l fyou used any inval i t l values. the iSDM monitor reports
them when you execute the application program.

4.3.18 Y-Symbols (80286 or 80386 Only)

The Y command allows you to rJisplay and define symbol information generated by 8028tr
translators. I f you use the Y command with no parameters, the iSDM monitor displays al l
the symbols stored in the current domain module or in al l modules i f you set no domuin.
You can also choose to have the iSDM monitor display the symbols and their values in a
particular module or you can use this command to define your own symbols. To use this
command, you must be operat ing in protected mode, with an at tached development
system.

iSDM" System Debugger A-9

D-MON386
APPENDIX B
COMMANDS

8.1 INTRODUCTION

This appendix briefly describes rhe 80386 Debug Monitor (D-MoN3tì6) commancls in
alphabetical order. A command directory listing the functional groups and page references
precedes the command dev:riptions. For examples and more detailed information about
the commands, see the D-MONJ86 Debug Monitor for the 8038ó llser's Guide.

8.2 ENTERING COMMANDS

To enter D-MON386 commands, follow the gui<Jelines below:

o Terminate a command line by pressing rhe ENTER key or the RETURN (< CR >)
key. A command line can consist of one or more commands.

. Separate multìple commands on a single line using a semicolon (;).

o Continue commands from one line to another by entering the slash (/) just before
terminating the line with rhe ENTER key or RETURN key.

. Enter commands using upper or lower case characters.

o Use CTRL-C (pressing the control key down while at the same time pressing the C
key) to abort a command being constructed on the command line.

D-MON3Eó System Debugger B- l

I) -MON386 COMMANDS

8.3 COMMAND DIRECTORY

This section provides a brief summary of all D-MON386 commands listed by functions.

Each entry in thc fol lowing summary contains along with the command name a br ief
description of the command and a page reference where you can find more information on

the commantl .

Command Function Performed Page

BI-OCK

COUNT/ENDCOUNT Prov ides mol ì i to r command cont ro l

s t r u c t u r e s . T h e s e s t r u c t u r e s e n a b Ì e y o u
t o e n L e r a n d r e p e a t e x e c u t i o n o f s e v e r a l
non i to r cornmands B-5

CONTROL VARIABLES

BASE Disp lay or se t the base nurnber sys tem to

t o e i t h e r b i n a r y , o c t a l , d e c i m a l , o r

h e x a d e c i r n a l B - 5

N 0 - N 9 D i s p l a y o r s e t s c r a t c h r e g i s t e r s z e r o

t h r o u g h n i n e . . . B - B

$ D i s p l a y o r s e t t h e c u r r e n t e x e c u t i o n p o i n t . . B - 5

EXPRESSION DISPLAY

EVAL EvaLuates an express íon and d isp ì -ays the

r e s u l t s 8 - 6

EXECUTION ENVIRONMENT

G 0 C o n t r o l s h i g h - 1 e v e l e x e c u t i o n e n v i r o n m e n t . . . B - 1

I S T E P E n a b L e s s i n g l e s t e p e x e c u t i o n . B - 8

S W B R E A K D i s p l a y s a n d s e t s s o f t w a r e c o c l e b r e a k s B - 9
ShREMOVE Removes so f tware code breaks . B-10

B-2 D-MON3116 System Debugger

I)-MON3II6 COMMANI)S

Command Fu nct ion Performcd Page

DESCRIPTOR TABLE ACCESS

G D T D i s p l a y s t h e c l o b a l D e s c r i p t o r T a b l e o r
s p e c i f i c e n t r i e s B _ 1

L D T D i s p l a y s t h e L o c a l D e s c r i p t o r T a b l e o r
s p e c i f i c e n t r i e s . B - g

I D T D i s p l a y s t h e I n t e r r u p t D e s c r i p t o r T a b l e o r
s p e c i f i c e n t r i e s B _ 7

D T D i s p l a y s t h e G l o b a l o r L o c a l D e s c r i p r o r
t a b Ì e s . t s _ 6

MEMORY ACCESS

A S M D i s a s s e m b l e s m e m o r y a s 8 0 3 8 6 a s s e m b l e r
mnemonrcs B _ 5

B Y T E R e a d s o r w r i t e s b y t e s o f m e m o r y . B - 5
D W O R D R e a d s o r w r i t e s d o u b l e w o r d s o f m e n o r y . . . 8 - 6
I N T n R e a d s o r w r i t e s 1 - , 2 , , o t 4 - b y t e i n t e g e r s

i n m e m o r l / . . B _ 7
O R D n R e a d s o r \ r r i t e s 1 , 2 - , o r 4 b y t e o r d i n a Ì s

i n m e m o r y . . . B _ g
U S E I n i t i a l i z e s t h e d e f a u l t f o r d i s a s s e m b l i n g

c o d e r o L 6 - b i r o r 3 2 - b i t . B - 1 0
W O R D R e a d s o r w r i t e s r v o r c l s o f n e m o r y . B - 1 0

PAGE TABLE ACCESS

P D D i s p l a y s t h e P a g e T a b l e D i r e c t o r y o r p a g e
t a b l e e n t r i e s B _ g

D-MON.l8ó System Debugger Ir-3

D-MON38ó COMMANDS

Commancl

PoRT r/O

DPORT
PORT
WPORT

USER AID

B
HELP
HOST

Function Performed

R e a d s o r w r í t e s 3 2 - b i t p o r t s . . B 6

R e a d s o r \ t r i t e s 8 - b i t p o r t s . . B - 9

R e a d s o r w r i t e s 1 6 - b i t p o r t s . . B - 1 1

Page

REGISTER ACCESS

C R E C S D i s p t a y s t h e c o n t r o l r e g i s t e r s 8 - 6

FLAGS Disp lays the lower 16 b i ts o f the EFI -A.GS

r e g i s t e r i n n n e m o n i c f o r m . , . B 6

R e g i s t e r - n a m e D i s p l a y s o r m o d i f i e s l n d i v i d u a l r e g i s t e r s . . . B - 9

R E C S D i s p l a y s a s e t o f s e l e c t e d r e g i s t e r s a s a

g r o u p . . B - 9

S R E C S D i s p l a y s t h e s e g m e r ì t r e g i s t e r s a s a g r o u p . . . B - 9

TASK STATE SEGMENT ACCESS

T S S D i s p t a y s t h e c o n t e n l s o f a t a s k s t a t e
s e g m e n t . B - 1 0

E x e c u t e s a r e a l m o d e i n c e r f a c e p r o g r a m B - 5

D i s p l a y s t h e h e l p s c r e e n . B - l

P r o v i d e s t h e c a p a b i l i L y f o r o p e r a t i o n w i L h

P M O N h o s t s o f t w a r e . B - l

V E R S I O N D i s D l a v s L h e v e r s i o n o f D - M O N 3 8 6 B - 1 0

8.4 COMMAND DESCRIPTIONS

This section provicles brief cìescriptions for D-MON3fifi commands in an easily referenced
alphabet ical order. For on- l ine syntax help, refer to the HE,LP command. For more
information on command parameters, syntax, and options, refer to the D-,ttON-18ó Dehug
Mottitor for tlrc 8038(t User's Guitle.

B-rl D-MON3tl6 System Debugger

D-MON3116 COMMANI)S

8.4.1 $

This command displays or modifies the current execution point via the execution address
register (CS:ElP). The contents of CS:EIP determine which ASM3tì6 statement executes
next. Entering $ by itself displays the current contents of CS:EIP.

8.4.2 ASM

This command disassembles code into ASM386 opcode mnemonics. Using this command
and the addresses you supply with it, you can disassemble from one to several lines of code.
Disassembled code appears on the screen in column form. Each row of columns contains
an address, a hexadecimal object value, an opcode mnemonic, any operands, and
comments appended to the operands.

8.4.3 B

This command invokes a user-supplied real mode interface program. The B command is
intended primarily for including a bootstrap loatJer program.

8.4.4 Base

This command displays or modifies the number base. Available number bases include
binary, octal, decimal, and hexadecimal. The hexadecimal base is the monitor default base.
Entering BASE by itself displays the current base. Entering BASE followed by an
expression that evaluates to 2, 8, 10, or 16 (all tlecimal numbers) sets the base to binary,
octal, decimal, or hexadecimal, respectively.

8.4.6 Count/Endcount

This command executes groups of D-MON386 commands in a specified order for a
specified number of times. After entering COUNT expr, simply enter in commands you
wish to execute. After entering ENDCOUNT, one iteration of the commands will have
already been executed. The entire group of commands then continues to execute for expr-
1 number of times.

B.4.5 Byte

This command displays or modifies partitions of memory using a byte format. You can
specify the partition as a single byte or a range of bytes. Entering the command BYTE
followed by an address or range of addresses causes that partition of memory to appear on
the screen. Entering the command BYTE as an equation causes the partition of memory
on the left side of the equation to be replaced with the contents of memory or value of the
right side of the equation.

D-MON386 System Debugger B-5

D.MON38ó COMMANDS

8.4.7 Cregs

This command displays the contents of the control registers and the EFI-AGS register
when the processor is in real mode. lf the processor is in protected mode, the CREGS
command also displays the system address registers TR and LDTR. The display appears
usine a hexadecimal number base.

8.4.8 Dport

This command reads or writes a 32-bit port. Entering DPORT with the physical
input/output address space as a l6-bit unsigned quantity causes the specified port to be
read and the contents to appear on the screen. If you supply an expression to the right of
the equal sign when entering this command, the addressed port is written with the value
the expression equals.

8.4.9 DT

This command displays descriptors from either the LDT or the GDT depending upon the
index supplied with îhe commanct.

B.4.10 Dword

This command displays or modifies partitions of memory using a double word format. You
can display a specific double word or a range of double words by entering DWORD
followed by the single address or the range of addresses. Entering the DWORD command
as an equation causes the partition of memory specified on the left-hand side of the
equation to be replaced with the contents of memory or value of the right-hand side of the
equat ion.

8.4.11 Eval

This command evaluates the expression entered in after the kepvord EVAL. The results
of the expression appear on the screen in binary, octal, decimal, hexadecimal, and ASCII
formats.

8.4.12 Flags

This command displays the contents of the lower 1ó bits of the EFI-AGS register. The
display appears in a mnemonic form. The presence of a mnemonic indicates a flag is set.
The absence of a mnemonic in the disnlav indicates a flaq is not set.

B-6 I)-MON3lt6 System Debugger

D.MON]116 COMMANDS

8.4.13 GDT

This command displays the entire Global Descriptor Table (GDT) or individual GDT
descriptors. Entering the key"lvord GDT by itself causes the entire GDT to appear.
Entering GDT followed by an index expression causes a specific descriptor to appear.

8.4 .14 Go

This command supplies high-level execution control. Use of the GO command enables you
to begin and end program executìon using specific points in the application. You can also
clear and specify break conditions using the GO command.

8.4.15 Help

This command displays the major D-MON3lì6 commands along with their general syntax.
For examples and more detailed information about the commands, see the D-MON38ó
Debug Monitor for the 80386 User's Guide.

8.4.16 Host

This command provides the capability for operation with PMON host software. When
entering this command, be sure to press only the E,NTER key or a carriage return <CR>
immediately after HOST.

8 .4 .17 IDT

This command displays the entire Interrupt Descriptor Table (lDT) or individual IDT
descriptors. Entering the kepvord IDT causes the entire ìDT to appear. Entering IDT
followed by an index causes a specific descriptor from the IDT to appear.

8 .4 .18 lNTn

This command displays or modifies partitions of memory using an integer f ormat. When
enter ing the command, you can subst i tute the numbers 1,2, or 4 for n. Thus, the integer
type(s) referenced in memory are either 1-,2-, or 4-byte integers. You can specify the
partition as a single INTn value or a range of INTn values. Entering the command INTn
follo'xed by an address or range of addresses causes that partition of memory to appear on
the screen. Entering the command INTn as an equation causes the partition of memory on
the left side of the equation to be replaced with the contents of memory or value of the
right side of the equation.

D-MON3E6 System Debugger B-7

D-MON386 COMMANDS

8.4.18 lstep

This command performs single-step execution. You can use this command to single-step
through the executable code from one to 255 executable statements. ISTEP also provides
the capability to begin execution from a point other than the current execution point.

B.4.19 LDT

This command displays the entire Local Descriptor Table (LDT) or individual LDT
descriptors. Entering the keyrvord LD f causes the entire LDT to appear. Entering LDT
followed by an index causes a specific descriptor from the LDT to appear.

8.4.20 N0-N9

This command displays or alters scratch registers zero through nine. Entering Nn (where n
is a number 0 through 9) by itself causes the value of the appropriate register to appeur on
the screen. You can enter Nn followed by an equal sign and an expression to alter the
contents of the appropriate scratch register.

8.4.21 ORDn

This command displays or modilìes partitions of memory using an ordinal format. When
enter ing the command, you can subst i tute the numbers 1,2, or 4 for n. Thus, the ordinal
type(s) referenced in memory are either l-, 2-, or 4-byte ordinals. You can specify the
partition as a single ORDn value or a range of ORDn values. Entering the command
ORDn followed by an address or range of addresses causes that partition of memory to
appear on the screen. Entering the command ORDn as an equation causes the partition of
memory on the left side of the equation to be replaced with the contents of memory or
value of the right side of the equation.

8.4.22 PD

This command examines the Page Table Directory and page tables. When paging is
enabled, the 80386 uses two levels of tables to translate a linear address into a physical
address: the Page Table Directory and the page tables themselves. Entering the PD
command by itself causes the entire 4K Page Table Directory to scroll to the screen. You
can, however, supply an index with the PD command to view a particular directory entry
within the Page Table Directory. Also, you can use the additional ,PT option with an index
to view a particular page tahle entry.

B-8 D-MON-1t|6 Sysf em Debugger

D.MON38ó COMMANDS

8.4.23 Port

This command reads or writes a 8-bit port. Entering PORTwith the physical input/output
address space as a 16-bit unsigned quantity causes the specified port to be read and the
contents to appear on the screen. Ifyou supply an expression to the right of the equal sign
when entering this command, the addressed port is written with the value the expression
eouals.

8.4.24 Register-name

D-MON386 enables you to display or alter the contents of 80386 registers. To gain register
access, enter the name of the register Entering the name of the register onÌy causes the
contents of the register to appear on the screen. Entering the name of the register
followed by an equal sign and a valid expression causes the contents of the register to be
written with the value of the expression. For a complete list of register names, refer to the
u-MON386 Debug Monitor for the 80386 User's Guide.

NOTE
Register modification is dependent on the current processor protection model.
You cannot modify protected registers.

8.4.25 Regs

This command displays the contents of a set of registers as a group. The register set
depends on which mode the processor is currently operating under (real or protected).
The display is always in hexadecimal, and it provides less detail for the segment and control
registers than the command that are specifically designed for those groups of registers, that
is SREGS and CREGS, respectively.

8.4.26 Sregs

This command displays, in hexadecimal, the contents of the segment registers (CS, DS, SS,
ES, FS, and GS).

8.4.27 Swbreak

This command displays or sets code patch breaks. Entering SWBREAK by itself causes all
current software break definitions to appear. If you enter SWBREAK folÌowed by an
equal sign and one or more addresses, the command sets a software break at the specified
address or addresses.

D-MON3Eó Syslem Debugger B-9

D-MON386 COMMANDS

NOTE
When specifying software break addresses, the address must be able to be
written, present in physical memory, and on an instruction boundary. A
maximum of 16 software breaks mav be in effect at one time.

8.4.28 Swremove

This command removes all or selected code patch breaks. Entering this command followed
by ALL removes all current software breaks. If you supply one or more addresses with the
command. the software breaks at those addresses alone are removed.

8.4.29 TSS

This command displays the contents of a task state segment. TSS supports both 80386 and
80286 task state segments. Task state segments appear using the component names.

8.4.30 Use

This command specifies the default (16-bit or 32-bit code) for disassembling code from
physical or linear addresses. When entering the command, the expression to the right of
the equal sign must evaluate to either l6 or 32 (decimal).

8.4.31 Version

This command displays the version number of the D-MON386 software you are using.

8.4.32 Word

This command displays or modifies partitions of memory using a word format. You can
specify the partition as a single word or a range of words. Entering the command WORD
followed by an address or range of addresses causes that partition of memory to appear on
the screen. Entering the command WORD as an equation causes the partition of memrtry
on the left side of the equation to be replaced with the contents of memory or value of the
risht side of the equation.

B -10 D-MON-ì86 System Debugger

D-MON386 COMN{ANDS

8.4.33 Wport

This command reads or writes a 16-bit port. Entering WPORT with the physical
input/output address space as a l6-bit unsigned quantity causes the specified port to be
read and the contents to appear on the screen. Ifyou supply an expression to the right of
the equal sign when entering this command, the addressed port is written with the value
the expression equals.

D-MON3tì6 System Debugger B- t I

INDEX

A

Altering descriptor table entries A-8
Altering memory contents A-[t, B-5, 6, 7, 8, 10
Altering register contents 3-1,1, A-9, B-8, 9

B

Bootloading from the monitor A-3, B-5
Bootstrap Loader DEBUG switch l-3
Breakpoints 1-3, 3- 10, B-9, 10

c
Changing current instruction pointer B-5
Changing disassembled code 3-15, 16
Changing descriptor table entry contents A-8
Changing memory contents A-8, B-5, 6, 7, 8, 10
Changing modes A-7
Changing register contents 3-14, A-9, B-8,9
Cl- l - restart 1-3, 2-3, 3-10
Code blocks, displaying 3-12, ló
Commands

D-MON386 B-l
Directory 2-4
iSDM" A-1
Overview 1-3
Synta\ for debugger l-3
Token validity 2-l
vB 2-5
vc 2-9
vD 2-12
vF 2-14
vH 2-16
vJ 2-18 ,3-18
YK 2-22
YO 2-24,3-t7, t8
vR 2-27

System Debugger lndex-.1

INDEX

Commands (cont.)

vs 2.31
w 2-36,3-17,18
vu 2-62,3-19

Comparing blocks of memory A-4
Configuration 1-2
Contents of the stack 2-31
Convent ions iv,2-1
Copying blocks of memory A-6
Current instruction, displaying 3-11, B-5

D

D-MON386 monitor command directory B-2
D-MON386 monitor command overview B-1, 5
D-MON386 monitor commands

$ B-5
Asm B-5
B B-5
Base B-5
Byte B-5
Count/Endcount B-5
Cregs 8-6
Dport 8-6
DT 8-6
Dword 8-6
Eval 8-6
Flags 8-6
GDT B-7
Go B-7
Help B-7
Host B-7
IDT B.7
INTn B-7
Istep B-8
LDT B-8
N0-N9 B-8
ORDn B-8
PD 8.8
Port B-9
Register name B-9
Regs B-9
Sregs B-9
Swbreak B-9

Index.2 System Debugger

D-MON386 monitor commands (cont.)
Swremove B-10
Syntax B-l
TSS B.1O
Use B-10
Version B-10
Word B- l0
Wport B- 1 1

Deadlock 3- 17
DEBUG command 1-2,3-10
Debug session, sample 3- 1
Descriptor tables, displaying A-4, 8-6, 7,8
Determining the base and offset of an address A-7
Disassembled code, displaying 3-15, A-4, B-5, l0
Displaying blocks of code 3-12, A-4
Displaying symbol information A-9
Displaying the number base B-5
DUIB information, displaying 2-5

E

Echoing console output A-5
ES register limit, checking 3-14
Examining a mailbox 3- 18
Examining page table directory and tables using D-MON3[ì6 B-fì
Examining register contents 3-12, 13, 8-6, 9
Examining stack contents 3-19
Example debug session 3-l
Executing a program 3-14, 15, A-5, 8, B-7
Executing a sing.le line of code 3- 13, A-ó, B-8
Exiting the monitor A-4
Expression evaluation A-7, 8-6

F

Finding text A-5

G

GDT slots, displaying free amount 2- 14
Getting help 2-16, B-7

H

Hardware/Software requirements 1-2
Help 2-16, B-7

INDEX

System Debugger lndex-3

INDEX

I

I/O Result Segment (IORS) 2-27
Identifuing system call parameters on the stack 2-31
Interpreting system call parameters on the stack 2-31
Invocation 1-2,3-10
IORS, displaying 2-27
ISDM* monitor command directory A-1
ISDM' monitor command overview A- 1
ISDM" monitor commands

B - bootstrap load A-3
C - compare A-4
D - Display 3-11, A-4
E - exit A-4
F - find A-5
G - go 3-10, 14, 15, A-5
I - port input A-5
K - echo file A-5
L - load A-6
M - move A-ó
N - single instruction execution 3-13, A-ó
O - port output A-7
P - print A-7
Q - enable protection A-7
R - load and go A-8
S - substitute A-8
X - examine/modify 3-12, 13, 14, A-9
Y - symbols A-9

J

Job and descendent job tokens, displaying 2-18

L

Loading object files A-6, 8
Locating running tasks 3-20
Looping within D-MON386 B-5

M

Mailbox examination 3- 18
Manual Overview iii
Modi$ring the number base B-5
Mode changìng A-7
Monitor 1- 1

Index-4 System Debugger

INDEX

Monitor commands
iSDM" A.1
D-MON386 B-1

Moving blocks of memory A-6

o
Object directory, displaying 2- 12
Objects, displaying 2-24, 3 -18

P

Ports
Displaying data A-5, 8-6, 9, 11
Entering data A-7, 8-6, 9, 1l

Product overview iii, l-1
Program code execution 3- l3

o
Quitting the debugger l-4, A-4

R

Re-entering the iSDM" monitor 3- 10, l5
Reader level iii
Redirecting console output A-5
Removing Breakpoints with D-MON3U6 B- 10
Register contents, examining 3-12, 13
Returning to your application l-4

s
Sample debug session 3-l
Searching for text A-5
Setting breakpoints l-3, 3-10, B-9
Single-step execution A-6, B-8
Stack contents 2-31, 3-19
Starting the debugger 1-2
Strings, display limitations 2-35
Support 1-2
Symbol information, displaying A-9
Syntax for D-MON38(r commands B- I

System Debugger Index-5

INDEX

Syntax for debugger commands 1-3,2-2
System call information, displaying 2-9
System call parameters on the stack, clisplaying 2-31
System requirements 1-2

T

Task system calls, displaying 2-62
Task tokens, displaying 2-22
Tokens, displaying 2-36, 3-1tl

U

Using PMON host software with D-MON386 B-7
Using the debugger l -3,3-9

v
VB command 2-5
VC command 2-9
VD command 2-12
Version number of D-MON386, displaying B- lt)
VF commanti 2-'14
VH command 2- l6
VJ command 2- 18
VK command 2-22
VO command 2-24,3-17
VR command 2-27
VS command 2-31
VT command

Buffer pool display 2-60
Composite object display 2-47
Extension object display 2-47
Job display 2-37
Mailbox display 2-42, 3- 1Íl
Region display 2-45
Segment display 2-46
Semaphore display 2-44
Task display 2-39

VT command 2-36
VU command 2-62

w
Warm-start 1-3, 2-3

Index-6 System Debugger

EXTENDED iRMX@II
DISK VERIFICATION

UTILITY REFERENCE MANUAL

In te l Corporat ion
306 5 Bowers Avenue

5 a n t a c l a r a , c a l i f o r n r a 9 5 0 5 1

Copyr ight ' ' 1988, ln te l Corporat ron, Al l Rrghts Reserved

PREFACE

INTRODUCTION

The iRMX II Disk Veri f icat ion Ut i l i ty is a software tool that runs as a Human Interface
command verifying and modifying the datiì structures of iRMX named and physical
volumes.

This manual describes the utility invocation and contains cìetailed descriptions of all utility
commands. I t a lso documents the iRMX I l capabi l i ty of backing up and restor ing volume

file descriptor nodes (fnodes).

In addit ion. the manual descr ibes the structure of iRMX named volumes as users must be

famil iar wi th volume structure to use the ful l capabi l i t ies of the Disk Veri f icat ion Ut i l i ty.

READER LEVEL

This manual is intendetl for programnrers whtt have an understanding of the operating
system, and part icular ly the Basic l /O System and Human Interface layers. To use this

manual effectively, programmers shoulcl be familiar with iRMX volume structure.
Appendix A provides a br ief revicw of iRMX named volume structure. However, th is is

intended as a reference ancl not as a tut t l r ia l .

MANUAL OVERVIEW

This manual

Chapter I

is organized as follows:

This chapter describes two ways of invoking the Utility: sing.l€-

command mode or interactive mode. It explains single-command

mode and how to interpret output and error messages from the

single-command verification. lt also describes the invocation in

interactive mocle and the interactive mocle error messages.

Commands for the in teract ive mode are expla ined in Chapter 2.

Disk Verification | l l

PREFACE

Chapter 2 This chapter contains detailed descriptions of the Disk Verification
Utility commands. The commands are discussed in alphabetical
order. When verifying ancl modifying volumes, vou should refer to
this chapter for specific information about the format and
parameters of the commands.

Chapter 3 This chapter explains the fnode backup and restore feature in
detail. This feature provides a limited mechanism for attempting
to recover data when the volume label or the fnode file has been
damaged.

Appendix A This appendix provides information on the format of iRMX named
volumes. lt includes details of the volume label and fnode file,
differences between long and short files, and format information
specific to diskettes. Programmers should be familiar with this
information before attempting to modify a volume.

CONVENTIONS

This manual uses the fol lowing convent ions:

. Information appearing as UPPERCASE characters when shown in keyboard
examples must be entered or coded exactly as shown. You may, however, mix lower
and uppercase characters when entering the text.

. Fields appearing as lowercase characters within angle brackets (< >) when shown in
keyboard examples indicate variable information. You must enter an appropriate
value or symbol tbr variable fields.

. User input appears in one of the following forms:

as bo lded tex t \ r í th in a sc reen

. text is used to indicate the first occurrence of each command described in
Chapter 2; subsequent occurrences are printed in black ink.

. The terms "iRMX II. and "Operating System" refer to the Extended iRMX II
Operating System.

. The term "ìRMX I'refers to the iRMX I Operating System (ìRMX 86 Operating
System).

. All numbers unless otherwise stated are assumed to be decimal. Hexadecimal
numbers include the "H" radix character (for example, OFFIì).

lv Disk Verification

CONTENTS

CHAPTER 1
INVOKING OISKVERIFY

CHAPTER 2
DISKVERIRY COMMANDS

PAGE

PAGE

Disk Verilication

CONTENTS

CHAPTER 2 (continued) PAGE

CHAPTEF 3 PAGE

APPENDIX A PAGE

v l Disk Verification

CONTENTS

APPENDIX A (continued) PAGE

TABLES

TABLE

A-1

FIGURE

a i

a a

l - t

2-4
t <

A-t
A-2

PAGE

8-lnch Diskette Character ist ics.4-21
5 1/4-lnch Diskette Characteristics4-22

FIGURES

Disk Verification Yl l

INVOKING
CHAPTER 1
DISKVERIFY

1.1 INTRODUCTION

When using an iRMX lI application system, you will need to store data on secondary
storage devices. Unfortunately, occasional power irregularities or accidental reset may
destroy the index to the data on these devices, making the information inaccessible to the
system. In some cases, losing evcn a small amount of data can render an entire volume
useless.

You need a tool to examine and fix the damaged volume. This tool should enable you to
determine how much of the data was damaged and help you recreate file structures on the
damaged volume. The iRMX II Disk Verification Utility (DISKVERIFY) is a tool that
enables you to verify the consistency and recover damaged data on iRMX volumes.

The Disk Verification Utility inspects, verifies, and corrects the data structures of iRMX
named volumes. It can also verifo an iRMX physical volume. The Disk Verification
Utility can reconstruct the fnode file, the volume label, the file descriptor nodes (fnodes)
map, the volume free space map, and the bad blocks map of the volume. In addition, with
DISKVERIFY you can manipulate fnodes, bad track information, and the actual data on
the volumes. The Disk Verification Utility also supports auto-volume recognition which
means you can veri! any iRMX named volume without detaching and attaching the
device with the correct DUIB.

You can use DISKVERIFY in one of two ways:

o As a single command that verifies the structures of a volume and returns control to
the Human Interfàce

o As an interactive program that enables you to check and modify data on the volume
by entering disk verification commands

To take full advantage of this utility, you must be familiar with the structure of iRMX
(ei ther iRMX I or iRMX I I as the volume structure is almost the same for both) named
volumes. Appendix A contains detailed information about volume structure. If you are
unfamiliar with the iRMX lI volume structure, you should avoid using the DISKVERIFY
commands. Some commands, if not used correctly, can render your volumes unusable.

However, even ifyou know nothing about iRMX volume structures, you can still use the
Disk Verification Utility as a single command to verify that the data structures on an
iRMX volume are valid.

Disk Verification l - l

INVOKING DISKVERIFY

1.2 TNVOCATTON

To invoke DISKVERIFY, enter the following command:

where:

:logical name:

TO

OVER

AF'TER

Logical name of the secondary storage device containing the
volume to be verified.

Copies the output from the Disk Verification Utility to the file
specified in OUTPATH. If no "TO" is specified, output is directed
to the console screen (:CO:).

Copies the output from the Disk Verification Utility over the
specified file.

Copies the output from the Disk Verification Utility beginning at
the en<l of the snecified file.

t-2 Disk Verification

INVOKING DISKVERIFY

OUTPATTI Pathname of the file to receive the output from the Disk
Verification Utility. If you omit this parameter and no preposition

is specified, output is directed to the console screen (:CO:) by
default. You cannot direct the output to a file on the volume being
verified. If you attempt this, the utility returns an
E$ALREADY_ATTACHED error message.

Following is a list of the DISKVERIFY options. lf you invoke DISKVERIFY without

specifying one of these options, you enter the interactive mode. In thiscase, the utility

displays a hea<ler message and the utility prompt (.). You can then enter any of the

DISKVERIFY commands listed in Chapter 2.

DISK Displays the attributes of the volume being verified. lf you
specify this option, the utility performs the function and

returns control to you at the Human lnterface level You can

then enter any Human Interface command, provided that the
device verified is not the system devicc Any parameter after
this one is ignored. Refer to the description of the DISK
command in Chapter 2 for more information.

GETBADTRACKINFO Reads the bad track information from the volume and

or GB displays it. Bad track information that is redirected to a file
can be used as input to the FORMAT command by removing
the header information. Chapter 2 providcs a complete
exPlanation of this command

vERIFY or V Verifies the volume. This function and the assocìated options
are described in detail under "VERIFY" in Chapter 2' Ifyou
specify only this option' the utiìity performs the NAMED
verification function and returns control to you at the Human

Interface level. You can then enter any Human Interface

command, provided the device verified is not the system

device.

Disk Verification l-l

INVOKING DISKVERIFY

NAMEDI or N1

NAMED2 or N2

NAMED or N

FIX Performs the same functions as VERIFY. In addition, it tries to fix
several t)?es of problems on the volume after performing the
verification. You should be careful when using FIX as it changes
the data on the disk (which may prove dangerous). For example,
during NAMED I verification, FIX corrects the checksums on
fnodes with bad checksums. I{owever, an fnode with a bad
checksum may indicate another problem with the fnode which
should not be ignored. As a result, it is recommended that you use
FIX only after performing the following steps.

1. Use DISKVERIFY with the VERIFY opt ion.

2. Examine the output and the problems on the volume to
determine the type of "fix" needed.

3. If the problems can be fixed using DISKVERIFY,
run DISKVERIFY with the FIX opt ion to correct
the problems.

VERIFY or FIX opt ion that appl ies to named volumes only. This
option checks the fnodes of the volume to ensure that they match
the directories in terms of file type and file hierarchy. This oprion
also checks the information in each lìode to ensure consistency.

When used with FIX, the NAMED I option corrects bad
checksums and attaches orphan fnodes to their parcnts. Refer to
the dev:r ipt ion of the VERIFY and FIX commands in Chapter 2
for more inlbrmation.

VERIFY or FIX opt ion that appl ies to named volumes only. This
option checks the allocation of fnodes and space on the volume,
constructs the space antl fnode bit maps to reflect îhe current
contents of the volume, and verifies that the fnodes point to the
correct locati{)ns on the volume. When used with the FIX option,
NAMED2 saves the correct bit maps, that were constructed during
the verification phase, on the volume. It also removes fnodes with
multiple references from their illegal parents. Refer to the
description of the VERIFY and FIX commands in Chapter 2 for
more information.

VERIFY or FIX opt ion that performs both the NAMEDI ant l
NAMED2 ver i f icat ion funct ions on a named volume. I f you
speci ! VERIFY or FIX with no opt ion, the svstem assumes
NAMED (defaul t) .

t-4 Disk Verification

INVOKING DISKVERIFY

ALL VERIFY or FIX option that applies to both nrmed and physical
volumes. For named volumes, this option performs both the
NAMED and PHYSICAL verification functions. For physical
volumes, this option performs only the PHYSICAL verification
function.

VERIFY or FIX option that applies to both named and physical
volumes. This option reads all blocks on the volume and checks for
I/O errors. When used with FIX, it adds the bad blocks that it
encounters to the volume's bad block map.

A control that you can use with any option that activates NAMEDI
verification (NAMED, NAMEDl, or ALL). When you use this
option, the file information generated by VERIFY or FIX is
displayed for every file on the volume, even if the file contains no
errors. Refer to the description of the VERIFY and FIX
commands in Chapter 2 for more informat ion.

PHYSICAL

1.3 OUTPUT

When you enter the DISKVERIFY command, the utility responds with

i R M X I I D i s k V e r i f y U t i l i t y , V x . x
Copyr ight <year) In te l CorporaÈion

where Vx.x is the version number of the utility. If you specify the VERIFY (or V)

parameter in the DISKVERIFY command, the utility verifies the volume and displays the

verification information on the screen (or copies it to the file specified by the outpath

parameter). The verification information is the same as that from the VERIFY utility

command. After generating the verification output, the utility returns control to the

Human Interface, which prompts you for more Human Interface commands. The

following is an example of such a DISKVERIFY command:

-DISKVERIFY :Fl: VERIFY NAI{EDz <CR>
1 R M X I I D i s k V e r i f y U t i Ì i t y , V x . x
Copyr ight <year) In te l Corporat ion

DEVICE NA}{E - wfdO : DEVICE SIZE : 00038900 : BLoCK SIZE - 0080

,NA},ÍED2' VERIFICATION
B I T M A P S O , K .

LIST

Disk Verification l-5

INVOKING DISKVERIFY

lf you omit the DISK or VERIFY parameter from the DISKVERIFY command, the
utility does not return control to the Human Interface. Instead, it issues an asterisk (*)
prompt and waits for you to enter DISKVERIFY commands. The following is an
examnle:

-DISKVERIPY : Fl: <GR)
iRl ' tx 11 Dlsk Ver i fy Ut i l i ty , Vx.x
CopyrighÈ <year> Intel Corporation

At the asterisk prompt, you can enter any of the DISKVERIFY commands listed in the
DISKVERIFY COMMANDS chapter of this manual. If you enter anything else, the
utility will display an error message.

NOTE
Although you can use DISKVERIFY to veriff the system device (:sd:),
note that all connections to this device are deleted by the operating system.
After exiting, you must reboot the system or use the warm start feature
(see the Extended |RMX II System Debugger Ret'erence Manual).

1.4 INVOCATION ERROR MESSAGES

The following is a list of error messages you might encounter when invoking the Disk
Verification Utility.

argument error The option specified is not valid.

<logical name>, invalid logical The logical name does not exist; was
name. longer than 12 characters; contained

invalid characters; or was missing a
matching colon.

0045 : E$LOG NAME NEXIST A nonexistent <losical name> was
or <logical name>.logical name speci f ied in ei ther ihe: logical name: or
does not exist outpath parameter.

<outpath> 0038 : The output was directed to a file on the
E$ALREADY_ATTACHED volume being verified.

command syntax error A syntax error was made when entering
the command

l-6 Disk Verilication

< logical name >, outstanding
connections to the device have
been deleted.

< log.ical name > or < outpath > .
invalid wildcard specification

< logical name > , can't attach
device

device size inconsistent size in
volume label = <valuel > :
computed size = < value2 >

not a named disk

< partial logical name >,
0081: E$STRING_BUFFER

< logical name > , device does not
belong to you

< logical name > , device size is
zeÍo

INVOKING DISKVERIFY

This warning is not fatal and wilì occur
every time you try to verifu the system
device or any other volume on which files
have been attached.

The logical name or output pathname
contained a wildcard character

The device cannot be attached and read.

When the Disk Verification Utility
computed the size of the volume, the size
it computed did not match the
information recorded in the iRMX II
volume label. The volume label may
contain invalid or corrupted information.
This is not a latal crr t t r , hut i t is an
indication that further error conditions
may result during the verification session.
You may have to reformat the volume or
use the Disk Verification Utility to
restore the volume label.

A NAMED, NAMEDl, or NAMED2
verification was requested for a physical
volume.

The logical name was longer than 14
characters in length, not including colons.

An attempt was made to verify a device
that was attached by another user. For
example, the system device is :SD: and
USER is not the super user.

The logical name entered does not deline
a mass storage device. For example, you
cannot perform DISKVERIFY on a line
printer.

Disk Verification r-7

DISKVERIFY
CHAPTER 2

COMMANDS

2.1 INTRODUCTION

When the Disk Veri f icat ion Ut i l i ty issues the aster isk (*) prompt, you can enter
DISKVERIFY commands to examine or change f i le structure infurmat ion on the volume.
This process usually involves reacling a portion of the volume into a buffer, modirying that
buffer, and u'riting the information back to the volume. This chlpter describes the
commands that enable vou to perfbrm thesc operat ions.

The commands ìn this chapter are presentcr l in alphabet ical order regardless of their
funct ion. The onÌy except ion is when two commancis are simi lar, such as DISPIAYBYTE
and DISPLAYWORD. In this case, the l i rst commantl is explained in i ts alphabet ical
order, and the second comnrancl fo l lows i t wi th only the di f ferences descr ibed.

The f i rst occurrence of each command n:rme is pr inted in blue ink and appears on the
outsitle upper corner of the page; subsequent occurrences are printed in black ink. Blue
or bolded text is also used to indicate an entry vou make from vour terminaÌ.

Before descr ibing the indiv idual commancls, th is chapter discusses command syntax,
command names, parameters, input radices. ancl error messages. I t a lso provides a
command dict ionary that gives a hr ief descr ipt ion of each commund and the page number
on which the commancl is founcl .

2.2 COMMAND SYNTAX

The syntax for each commancl clescribeci in this chapter is presented in a "railroad track'
schematic, with syntiìctic elemeilts scattered along the track. Your entrance to any given

schematic is always from lcfì to right, beginning with the command name entry.

Elements shown in uppercase churacters must tre typed in a comnrand line exactly as
shown in the schemat ic , however , you mry enter thcm in eì ther uPl)ercasc or lowercase.

Syntactic elements shown in lowercase arc qe neric terms, which means you must supply

the speci f ic i tem, such as the pathnanre o l a f i le .

Disk Verifìcation 2-l

DISK VERIFY COMMANDS

"Railroad sidings" go through optional parameter elements. In some cases, you have a

choice of going through one of several sidings before returning to the main track. In still
other cases, the main track itself diverges into two separate tracks, which means you must
select one track or the other but not both. For example, a command that consists of a
command name and two ontional narameters would look like this:

F 0 2 1 3

You can enter this command in any one of these forms:

The arrows are used here to illustrate the possible flow through the tracks. They do not
appear in the schematics in the rest of this chapter.

2.3 COMMAND NAMES

When you enter a DISKVERIFY command, you can enter the command name or its
abbreviation (listed in this chapter), or you can enter any unique portion of the command
name. For example, when specifying the DISPLAYFNODE command, you can enter any
of the followins:

You can also enter any other partial form of the word DISPLAYFNODE that contains at
least the characters DISPIAYF.

COM MAN D

param l

4 , .

Disk Verification

DISKVERIFT COMMANDS

2.4 PARAMETERS

Several DISKVERIFY commands have oarameters described as beine in this form:

You can also enter these Darameters in this form:

For example, both of these speci! a FREE command:

2.5 INPUT RADICES

DISKVERIFY always produces numerical output in hexadecimal format. You can
provide input to DISKVERIFY in any one of the following three radices by including a
radix character immediately after the number. The valid radix characters are

radix character example

hexadecimal horH 16h,7CH

decimal t or T 23t, 1007

octal o, O, q, or Q 27o,33Q

If you omit the radix character, DISKVERIFY assumes the number is hexadecimal.

Disk Verification 2-3

DISKVERIFY COMMANDS

2.6 ABORTING DISI(\/ERIFY COMMANDS

You can abort the following DISKVERIFY commands by entering a CONTROL-C,
which terminates the command and returns control to the Disk Verification Utilitv lnot
the Human Interface command levell.

DISK
DISPT-AYBYTE
DISPI-AYDIRECTORY
DISPI.A,YFNODE
DISPT-AYNEXTBLOCK
DISPI-A,YPRE\'IOUSBLOCK
DISPI-A,YWORD
EDITFNODE
EDITSAVEFNODE
FIX
GETBADTRACKINFO
LISTBADBLOCKS
SUBSTITUTEBYTE
SUBSTITUTEWORD
VERIFY

2.7 DISKVERIFY ERROR MESSAGES

Each DISKVERIFY command can generate a number of error messages, which indicatc
errors in the way the command was specified or problems with the volume itself. The
following messages can be generated by many of the commands (each command
description lists the error messages generated by the particular command):

block I/O error The utility attempted to read or write a block on the
volume and found that the block was physically
damaged and therefore, could not complete the
requested command. Or, an attempt was made to
write a block to a disk volume that is write
protected. The error message states whether read
or write was performed and the number of the
hlock causing the error.

command syntax error A syntax error wiìs made in a command.

illegal command The command specified is not a valid
DISKVERIFY command.

2-4 Disk Verification

fnode file/space map
file inconsistent

argument error

not a named disk

seek error

Command

ALLOCATE

BACKUPFNODES
BF

2.8 COMMAND DICTIONARY

The command dictionary below lists the DISKVERIFY commands in alphabetical order
and provides a brief functional description of each command. Following each command
name is its unique abbreviation, if any. For quick reference, you can locate thecommand
using the page headers remaining in this chapter.

DISK !'ERIFY COMMANI)S

One of the files, R?SAVE or R$FNODEMAP, is
damaged and DISKVERIFY cannot perform
further verification.

The command was missing an argument, or the
argument was illegally specified.

The device is not a named volume (a tape, for
example) or the iRMX volume label, obtained when
DISKVERIFY begins processing, contains invalitJ
information. If the label contains invalìd
information, the utiliry (in some cases) can assume
that a named volume is a physical volume. In this
case, the commands that apply to named volumes
onÌy (such as DISPTAYFNODE,
DISPTAYDIRECTORY, and VERIFY NAMED)
issue this message. If you are sure the volume is a
named volume, this message may indicate that the
iRMX II volume label is corrupted. (If the file was
formatted with the RESERVE option of the
FORMAT command, DISKVERIFY issues this
message only if both volume labels are corrupted.
When only the volume label is invalid, the duplicate
in the save area is used.)

The utility unsuccessfully attempted to seek to a
location on the voÌume. This error normally results
from invalid information in the iRMX II volume
label or in the fnodes. Or. a new volume was
inserted after DISKVERIFY was invoked.

Synopsis

Marks a particular fnode or volume block
as allocated

Copies current fnode file into a backup
file named R?SAVE

Disk Verification t -<

DISK VERIFY COMMANDS

Command Synopsis

DISK Displavs the attributes of the volume
being verified.

DISPI-A,YBYTE Displays the working buffer in byte
DB or D format

DISPI-A.YWORD Displays the working buffer in word
DW format

DISPI-A,YDIRECTORY Displays directory contents
DD

DISPI-A,YFNODE Displays the specified fnode information
DF

DISPI.A.YSA\'EFNODE
DSF

Displays the fields of a single fnode in the
R?SAVE fiIC

DISPI-AYNEXTBLOCK Displays the "next" volume block
DNB or > or <CR>

DISPI-A.YPREVIOUSBLOCK Displaysthe"previous"volumeblock
DPB or <

EDITFNODE Edits the specified fnode
EF

EDITSAVEFNODE Edits the specified saved fnode
ESF

EXIT Exits the Disk Verification Utiìiry
E

FIX Verifies the disk and fixes inconsistencies

FREE Marks a particular fnode or volume block
as free

GETBADTRACKINFO Displays the bad track information
GB

2-6 Disk Verifrcation

DISKYERIFY COMMANDS

Command Synoosis

HELP Lists the DISKVERIFY commands
H

LISTBADBLOCKS
LBB

Miscellaneous Commands

RESTOREFNODE
RF

Displays all the bad blocks on the volume

Perform useful arithmetic and conversion
functions; the commands include ADD,
SUB, MUL, DIV, MOD, HEX, DEC,
ADDRESS,and BLOCK

Copies one fnode (or range of fnodes)
from the R?SAVE file to the fnode file

QUIT Exits the Disk Verification Utility
o

READ Reads a volume block into the working
R buffer

RESTOREVOLUMEI-ABEL Copies the duplicate volume label to the
RVL volume label offset on track 0

SAVE Writes the updated fnode map, free space
map, and bad block map to the volume

SUBSTITUTEBYTE Modifies the contents of the working
SB or S buffer in byte format

SUBSTITUTEWORD Modifies the contents of the working
SW buffer in word format

VERIFY Verifies the volume

WRITE Writes the workins buffer to the volume
w

Disk Verilication a n

This command designates file descriptor nodes (fnodes) and volume blocks as allocated.
You can also use this command to designate one or a range of volume blocks as "bad "
The format of the ALLOCATE command is as follows:

INPUT PARAMETERS

fnodenum

blocknum

Number of the fnode to allocate. This number can range from 0
through (max fnodes - 1), where max fnodes is the number of
fnodes defined when the volume was originally formatted. Two
fnode values separated by a comma signifies a range of fnodes.

Number of the volume block to allocate. This number can range
from 0 through (max blocks - 1), where max blocks is the number
of volume blocks in the volume. Two block numbers separated by
a comma signifies a range of block numbers.

OUTPUT

If you are using ALLOCATE to allocate fnodes, ALLOCATE displays the following
message:

<fnodenurÈ, fnode marked al located

where < fnodenum > is the number of the fnode that the utility designated as allocated.

If you are using ALLOCATE to allocate volume blocks, ALLOCATE displays the
following message:

<blocknuÈ. b lock marked a l l ocate d

where <blocknum> is the number of the volume block that the utilitv desienated as
allocated.

2-8 Disk Verification

ALLOCATE

If you are using ALLOCATE to designate one or more volume blocks as "bad,"
ALLOCATE displays the following mcssage:

(blocknun>, block narked bad

where < blocknum > is the number of the volume block that the utility desigrrated as "bad."
If this block was not allocated before you attempt to designate it as "bad," ALLOCATE
also disolavs

<blocknun>, bLock rnarked aÌlocated

ALLOCATE checks the alìocation status of fnodes or blocks before allocating them.
Therefore, ifyou speci! ALLOCATE for a block or fnode already allocated,
ALLOCATE returns one of the following messages:

<fnodenun>, fnode already marked allocated

<b lockntuÈ, b lock a l ready narked a l loca ted

<blocknurÈ, block already narked bad

DESCRIPIION

Fnodes are data structures on the volume that describe the files on the volume. They are
created when the volume ís formatted. An albcated fnode is one that represents an
actual file. ALLOCATE designates fnodes as allocated by updating the FI-AGS field of
the fnode and free-fnodes-map file with this information.

An allocated volume block is a block of data storage that is part of a file; it is not available
to be assigned to a new file. ALLOCATE designates volume blocks as allocated by
updating the volume free-space-map with this information.

When you use ALLOCATE to designate bad blocks, it not only updates the volume free-
space-map but also marks an associated bit as "bad" in the bad blocks file.

Disk Verification 2-9

ALLOCATE

ERROR MESSAGES

argument error A syntax error was made in the command
or a nonnumeric character was specified
in the blocknum or fnodenum Darameter.

<blocknum >, block out of range The block number specified was larger
than the largest block number in the
volume.

< fnodenum > , fnode out of range The fnode number specified was larger
than the largest fnode number in the
volume.

no badblocks file The volume does not have a bad blocks
file. This message could appear if an
earlier version of the Human Interface
FORMAT command was used when the
disk was formatted.

2-to Disk Verification

This command copies the current fnode file into a designated fnocle backup file named
R?SAVE. R?SAVE must have been reserved when the volume was tbrmatted. (That is,
the RESERVE option of the FORMAT command must have been specifietl.) The format
of the BACKUPFNODES commantl is as follows:

INPUT PARAMETERS

None.

OUTPUT

BACKUPFNODES displays the following message:

fnode f i le backed up to save area

DESCRIPTION

The BACKUPFNODE,S command ensures ag:ìinst data loss that occurs when the fnode
file is damaged or destroyed. To use this command, you must have formatted the volume

using the FORMAT command (V1.1 or later) to create a special reserve area (R?SAVE)

A switch in the FORMAT command (the RESERVE switch) controls the creation of
R?SAVE. If you did not specify the RESERVE parameter whcn the volume was
formatted, the BACKUPFNODE.S command will he unable to copy the fnode f ile to
R?SAVE. An error message will be returned indicating that no save areil has been

reserved. In this case, the volume must be refìrrmatted if you wish to use the
BACKU PFNODES ctrmmanti .

The FORMAT command writes the initialized copy of the fnode file into R?SAVE
Therefore, you do not have to use BACKUPFNODIIS to back up a newly formatted

volume. Subsequently, you can routinely (for example, once a ciay) backup tiodcs to

assure that the data in R?SAVE matches the data in the fnode f i le. You can do this by

using ei ther the BACKUPFNODES command or thc Human Interf ice SHUl 'DOWN
commantl wi th the BACKUP opt ion. (For more informat ion on SHI.J-I 'DOWN, see the

Operator's Guide to the Extanded |RMX II Human Intarfitce.)

B A C K U P F N O D E S

Disk Verification 2-t l

BACKUPFNODES

NOTE

Be sure that the current fnode file is valid before executing the
BACKUPFNODE command (using NAMED verification).

ERROR MESSAGES

argument error When the command was entered, an
argument was supplied.
BACKUPFNODES does not accept an
argument.

no save area was reserved when The volume has not been formatted to
volume was formatted support fnode backup. To allow future

use of backupfnodes on this volume, you
should invoke the Human Interface
BACKUP command to save the data on
the volume, reformat the volume with a
save area (using the RESERVE option of
the FORMAT command), and finally,
restore the volume data.

not a named disk The volume specified when the Disk
Verìfication Utility was invoked is a
physical volume, not a named volume.

EXAMPLE

super- dlskvertfy : sd: (CR.>
1RMX I I Disk Ver i fy Ut j - l i ty , Vx.x
Copyr íght <year> Inte l Corporat i on
:sd: , ouÈstanding connect ions Èo device have been deleted
ìtsverify NAI{ED <CR>

B I T M A P S O . K .
*backupfnodes <CR> or bf <cR>
fnode ffle backed up to save area

2-t2 Disk Verilication

This command displays the attributes of the volume being verified. You can abort this
command by typing a CONTROL-C. The format of the DISK command is as follows:

INPUT

None.

OUTPUT

The output of the DISK commantl depends on whether the volume is formatted as a

physical or named volume. For a physical volume, the DISK command displays the

following information:

wnere:

< devname > Name of the device containing the volume. This is the physical
name of the device, as specified in the ATTACHDEVICE Human
Interface command.

<devgran> Granularity of the device, as defined in the Device Unit
Information Block (DUIB) for the device. Refer to the Guide to
the Ertended .RMX II Interactive Configuration Utility for more
information about DUIBs. For physical devices, this is also the

volume block size.

< numblocks > Number of volume blocks in the volume.

< size > Size of the volume, in bYtes.

devfce narne

P ' r y s r L d r u a D N

devlce granular i ty
b l o c k s i z e

mrnber of blocks
volune s ize

<de!'name>

<devgran>
<devgran>
(numblocks)
< s i z e >

Disk Verification 2-13

DISK

For a nametl volume, the DISK command displays the following information:

The <devname>, <devgran>, <numblocks>,and <size> f ie lds are the same as for
physical files. The remaining fields are as follows:

<volname> Name of the volume, as specified when the volume was formatted.

<volgran > Volume granularity, as specified when the volume was formatted.

< numfreeblocks > Number of available volume blocks in the volume.

<inleave> The interleave factor for a named volume.

<xsize> Size, in bytes, of the extension data portion of each file descriptor
node (fnode).

< numfhodes > Number of fnodes in the volume. The fnodes were created when
the volume was formatted.

< numfreefnodes > Number of availahle fnodes in the named volume.

save area reserved Indicates whether the R?SAVE file is reservetl lbr volume label
and fnode file backups.

Refer to Appendix A of this manual or to the description of the FORMAT command in
the Operetor's Guide to the Ertended |RMX II Human Interface for more information about
the named disk fields.

DESCRIPTTON

The DISK command displays the attributes of the volume. The format of the output from
DISK depends on whether the volume is formatted :rs a named or physical volume.

ERROR MESSAGES

None.

device narne
named disk, volume narne

u c v r r E É r d , , u r d r r L J i

b lock s i ze
nurnber of blocks

nunber of free blocks
vo lune s ize

in te r leavè
e x t e n s i o n s i z e

nunber of fnodes
nuxober of free fnodes

save area reserved

<deYname>
<volname>
<devgrar>
<volgrar>
{numblocks)
<numfreeblocks>
<s ize>
<in leave>
<xs i ze>
<nurnfnodes>
(nurnfree fnode s)
(y e s l n o)

2-11 Disk Verifìcation

EXAMPLE

The following example shows the output of the DISK command for an 5.25-inch diskette.

DISK

super- d lskver l fy : f0 : <CR>
i R M x l l D i s k V e r i f y U t i l i t y . v x . x
Copyr ight <year> Inte l Corporat Íon

*dfsk <CR>

device name
named disk, volume narne

device granular icy
b l o c k s i z e

nurnber of b I ocks
numbe r of f ree b locks

volume s ize
inte r 1e ave

e x t e n s i o n s i z e
nurnber of fnodes

nurnbe r of free fnodes
save area re s e rved

wnfdx0
rmx2 8 6
0 2 0 0
0200
0 0 0 0 0 2 7 c
0 0 0 0 0 1 E 9
0004F800
0 0 0 5
0 3
OOCF
008[
no

Disk Verification 2-15

endoffset

This command displays the specified portion of the working buffer in BYTE format. It
displays the buffer in 16-byte rows. You can abort this command by typing a CONTROL-
C. The format of the DISPI-AYBYTE command is as folìows:

INPUT PARAMETERS

startoffset Number of the byte, relative to the start of the buffer, that begins
the display. DISPI-AYBYTE starts the display with the row
containing the specified offset. Ifyou omit this parameter and the
endoffset parameter, DISPI-A.YBYTE displays the entire working
buffer.

Number of the byte, relative to the start of the buffer, that ends the
display. If you omit this parameter, DISPII,YBYTE displays only
the row indicated by startoffset. However, ifyou omit both
startoffset and endoffset, DISPLAYBYTE displays the entire
workins buffer.

OUTPUT

In response to the command, DISPI-AYBYTE displays the specified porrion of the
working buffer in rows, with 1ó bytes displayed in each row. Figure 2- l illustrates the
format of the disolav.

2-16 Disk Verification

DISPLAYBYTE

As Figure 2-1 shows, DISPT-AYBYTE begins by listing the block number where data
resides in the working buffer. It then lists the specified portion of the buffer, providing
the column numbers as a header and beginning each row with the relative address of the
first blte in the row. It also includes, at the right of the listing, the ASCII equivalents of
the bytes, if the ASCII equivalents are printable characters. (lf a byte is not a printable
character, DISPIAYBYTE displays a period in the corresponding position.)

*d lsp laybyÈe 7,13 <cR>

BLOCK NUHBER - blocknum

o f f s e t 0 | 2 3 4 5 6 7 I 9 A B c D E F A s c I I S T R I N G
0000 00 01 02 03 04 05 06 07 08 09 0A 0B 0c 0D 0E 0F
0010 61 6E 20 65 F8 61 6D 70 6C 65 20 20 20 20 20 20 an example

Figure 2-1. DISPLAYBYTE Format

DESCRIPIION

DISKVERIFY maintains a working buffer for READ and WRITE commands. The size
of the buffer is equal to the volume's granularity value. Alier you read a volume block of
memory into the working buffer with the READ command, you can display part or all of
that buffer, in BYTE format, by entering the DISPT-AYBYTE command.
DISPI-A,YBYTE displays the hexadecimal value for each byte in the specified portion of
the buffer.

If you omit all parameters, DISPI-A.YBYTE displays the entire block stored in the
working buffer.

ERROR MESSAGES

argument error A syntax error was made in the command
or a nonnumeric character was specified
in one of the offset parameters.

< offset >, invalid offset Either a larger value was specified for
startoflset than for endoffset or an offset
value larger than the number of bytes in
the block was specified.

Disk Verification 2-17

This command is the same as the DISPL.AYBYTE command, except that it displays the
working buffer in WORD format, fì-words pcr row, The tbrmat of the DISPT-AYWORD
command is as follows:

EXAMPLES

Assuming that the volume granularì ty is 128 bytes and that you have read block 20H into
the working buffer wi th the READ commanrl , the f t r l lowing commanci c l isplays that block
in WORD format.

The ibllowìng command displays the portion of the block that contains the offsets 3 I h
through 45h (words beginning at odd addrcsses).

*DISPIAYTJOR.D <CR>

BLOCK NUHBER : 20

o f f s e t
0000
0010
0020
0030
0040
00s0
0060
0070

o 2
0000 0000
0000 00 80
0000 0000
1F2 5 0000
0001 0000
0000 0000
0000 0000
0000 0000

4 6 8
0000 0000 0000
0000 0000 0000
0500 0000 0000
002E 0000 1F25
0001 0080 0000
0000 0000 0000
0000 0000 0000
OOOl FFOF OOFF

A C E
0000 0000 0000
0001 FFOt' 00FF
0025 0108 FFFF
0000 002B 0000
0000 0000 0000
0000 0000 0000
0000 0080 0000
0000 0000 0500

*DI{ 31, 45 <CR>
BLOCK NUMBER : 20

o f f s e t O 2
0 0 3 1 0 0 l F 2 E 0 0
0 0 4 1 0 0 0 0 0 1 0 0

4 6 8
0 0 0 0 2 5 0 0 0 0 l F
8 0 0 0 0 0 0 0 0 0 0 0

2 8 0 0
0 0 0 0

C E
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0

2-18 Disk VerifÍcalion

DISPLAYWORD

The following command displays the portion of the block that contains the ollsets 30h
through 45h (words beginning at even addresses).

*DIS PIAYSORD 30, 45
BLOCK NUMBER - 20

of fset O 2
0030 rF25 0000
0040 0001 0000

<cR>

4 6
002E 0000
0001 0080

8 A
1F25 0000
0000 0000

C
0028
0000

E
0000
0000

Disk Verification 2-r9

This command lists all the files contained in a directory. You can abort this command by
ryping a CONTROL-C. The format of the DISPLq.YDIRECTORY command is as
follows:

INPUT PARAMETER

fnodenum Number of the fnode that corresponds to a directory file. This
number can range from 0 through (max fnodes - 1), where max
fnodes is the nurnber of fnodes defined when the volume was
originally formaued. DISPI-AYDIRECTORY lists all files or
directories contained in this directory.

OUTPUT

In response to the command, DISPI-AYDIRECTORY lists information about all files
contained in the specified directory. The format of this dìsplay is as follows:

FILE NAME FNODE TYPE FILE NAME FNODE TYPE

where:

< filenam >

< fnode >

<f i lenaÈ (fnode) (type)
(f ilenarn) <fnode> <type>

(f i l enam) (fnode) (type)
(fi lenam) (fnode) <type)

FILE NAI"IE FNODE TYPE

(f ilenarn> <fnode> <type>
<f ilenam> (fnode) <type)

Name of the file or directory contained in the directory.

Number of the fnode that describes the file.

2-20 Disk Verification

type > Type ofthe file. The <rype> can be

Tlpe of file Descrintion

DISPLAYDIRECTORY

DATA
DIR
SMAP
FMAP
BMAP
VI-A.B

data files
directory files
volume free space map
free fnodes map
bad blocks map
volume label file

DESCRIPTION

DISPI-AYDIRECTORY displays a list of files contained in the specified directory, along
with their fnode numbers and tvoes. You can then use other DISKVERIFY commands to
examine the individual files.

ERROR MESSAGES

argument error A nonnumeric character was specified in
the fnodenum parameter.

< fnodenum > , fnode not The number specified for the fnodenum
allocated parameter does not correspond to an

allocated fnode. This fnode does not
represent an actual file.

<fnodenum>, not a directory The number specified for the fnodenum
fnode parameter is not an fnode for a directory

file.

< fnodenum > , fnode out of range The number specified for the fnodenum
parameter is larger than the largest fnode
number on the volume.

Disk Verification 2-21

DISPLAYDIRECTORY

EXAMPLE

The following command lists the files contained in the directorv whose fnode is fnode 6.

*DISPIAYDIRICTORY 6 <CR>

FILE NAME FNODE TYPE FILE NAME
R?SPACEMAP OOO1 SMAP R?FNODEMAP

R?VOLUMEU,BEL OOO5 VTAB R? SAVE
M1TILE OOO9 DATA YOURFILE

FNODE TYPE FILE NAME FNODE TYPE
OOO2 FMAP R?BADBLOCKMAP OOO4 BMAP
0007 DATA Rlfl(286 0008 DIR
OOOA DATA ONEFILE OOOB DATA

) -) 7 Disk Verification

This command displays the fields associated with an fnode. You can abort this command
by typing a CONTROL-C. The format of the DìSPTAYFNODE command is as follows:

INPUT PARAMETER

fnodenum Number of the fnode to be displayed. This numbercan range from
0 through (max fnodes - l), where max fnodes is the number of
fnodes defined when the volume was orisinally formatted.

OUTPUT

In response to this command, DISPIAYFNODE displays the fields of the specified
fnode. The format of the display is as follows:

Fnode nuuber - <fnodenurn)
pach nane: <pathnarne>

f lags
tYPe

t . . ^ l - - ^ ^
L L L - É L d t t /

OIJTìE T

c r e a t e , a c c e s s , m o d t i m e s
t ^ È ^ r L t r . -

bl-ock pointer (1)
b l o c k p o i n t e r (2)
h l n r l z n n J n r p r / ? \

b l o c k p o i n t e r (4)
t ' l ^ - L ^ ^ i - r - r / 5 \

h l n r l z n a i n t a r l 6 ì

b l o c k p o i n t e r (7)

b l o c k p o i n t e r (8)

t h i s s i z e
id count

a c c e s s o r (1)
a e e e s s o r (2)

a c c e s s o r (3)
n . . a h È r h o r l z < r t m

aux (*)

<f1gs>
<tYP>
<gran>
<oLrn>
<cr t ine>, <acct ine>,
<tots ize>, <totb lks>
<blks>, <blkpt r>
<blks>, <bÌkptr>
<blks>, <blkpt r>
<b1ks>, <blkpt r>
<blks>, <blkptr>
<blks>, <blkpt r>
<blks>, <blkpt r)
<blks>, <blkpt r>
< t h i s s l z e >
<count>
<access>, < ld>
<access) , (id)
(access) , (id)
<prnt>, <checksuÍ>
<auxbytes>

<rnodtime>

Disk Yerification t - t1

DISPLAYFNODE

where:

< fnodenum > Number of the fnode being displayed. If the fnode does not
describe an actual file (that is, if it is not allocated), the following
message appears next to this field:
*** AILOCATION STATUS BIT IN THIS FNODE NOT SET ***

In this case, the fnode fields are normally set to zero.

< pathname > FulÌ pathname of the file described by the fnode. This field is not
displayed if the fnode does not describe a file.

< flgr > A word defining the attributes of the file. Significant birs of
this word are as follows:

Bit Meaning

0 Allocation status. This bit is set to 1 for
allocated fnodes and 0 for free fnodes.

1 Long or short file attribute. This bit is set to 1
for long files and 0 for short files.

5 Modification attribure. This bit is set to 1
whenever a file is modified.

ó Deletion attribute. This bit is set ro 1 to
indicate a temporary file or a file to be deleted.

The DISPLAYFNODE command displays a message nexr to this
field to indicate whether the file is a long or short file.

< typ > Type of file. This field contains a value and a description which is
displayed next to the value. The possible values and descriptions
are as follo\À's:

Value Descriptions

00 fnode file
01 volume map file
02 fnode map file
03 account file
04 bad block file
06 directory file
08 data file
09 volume label file

< gran >

<own>

File granularity, specified as a multiple of the volume granularity.

User ID of the owner of the file.

2-24 Disk Verification

DISPLAYFNODE

<crtime> Time and date of file creation, last access, and
< acctime > last modification. These vaiues are expressed as
<modtime> the time, in seconds, since January 1, 1978.

< totsize > Total size, in bytes, ofthe actual data in the fiìe.

<totblks> Total number of volume blocks used by the file, including indirect
block overhead.

< blks >, < blkptr > Values that identify the data blocks of the file. For short files, each
< blks > parameter indicates the number of volume blocks in the
data block, and each <blkptr> is the number of the first such
volume block. For long files, each <blks> parameter indicates the
number of volume blocks pointed to by an indirect block, and each
<blkptr > is the block number of the indirect block.

< thissize > Size in bytes of the total data space allocated to the file, minus any
space used for indirect blocks.

< count > Number of user IDs associated with the file.

< access > , < id > Each pair of fields indicates the access rights for the file and the ID
ofthe user who has that access ID. Bits in the <access> field are
set to indicate the following access rights:

Data File Directory
Bit Ooeration Operation

0 delete delete
1 read list
2 append add entry
3 update change entry

The first ID listed is the owner's ID.

<prnt > Fnode number of the directory file that contains the file.

<checksum> Checksum of the fnode.

<auxbytes> Auxiliary bytes associated with the file.

Appendix A contains a more detailed description of the fnode fields.

DESCRIFTION

Fnodes are system data structures on the volume that describe the files on the volume.
The fnode structures are created when the volume is formatted. Each time a file is
created on the volume, the iRMX II Basic I/O System allocates an fnode for the file and
fills in the fnode fields to describe the fiìe. The DISPI-A.YFNODE command enables you
to examine these fnodes and determine where the data for each file resides.

Disk Verification)-r\

DISPLAYFNODE

ERROR MESSAGES

argument error The value entered for the fnodenum
parameter was not a legitimate fnode
number.

< fnodenum >,fnode out of range The number specified for the fnodenum
parameter is larger than the largest fnode
number on the volume.

The pathname specified could not be
retrieved. Possible causes of this error
are seek error, I/O error, or invalid
parent.

Unable to get pathname
< reason >

EXAMPLE

The following example displays fnode 10 of a volume. This fnode represents a directory.

XDISPIAYFNODE 10 <CR>

Fnode number : I0
n r r h n . m o / M \ ' n T P

f l a o c

tyPe

ollTte r

c r e a t e , a c c e s s , m o d t i m e s

c o t a l s i z e , t o t a l b l o c k s
h l ^ . L n ^ í n r a r / I I

b l o c k p o l n t e r (2)
h l a n l r n n i n r a r t ì l

L l ^ ^ 1 . - ^ i - + ^ - / / , \
9 r v L ^ P 9 l l r L q ! \ Y /

h l a r l z n n i n t a r r (\

h l n a l z n n J n r a r i ' A t

h ì n n l r n n i n t a r / 7 \

h 1 n n L - ^ i ^ t - r / e \

th is s ize
fd count

e c n o < < n r / l \

a c c e s s o f (2)
a c c e s s o f (3)

n . r a n r a h a a l z c ' ' -

aux(*)

0025 :>short f i Ie
06 :)d i rec to ry f l l e
0 1
FFFF
I02L9017 , 10219E58,
00000360 , 00000001
0001 , 000050
0 0 0 0 , 0 0 0 0 0 0
0 0 0 0 , 0 0 0 0 0 0
0 0 0 0 , 0 0 0 0 0 0
0 0 0 0 , 0 0 0 0 0 0
0 0 0 0 , 0 0 0 0 0 0
0 0 0 0 , 0 0 0 0 0 0
0 0 0 0 , 0 0 0 0 0 0
00000400
00 01
OF, FFFF
0 0 , 0 0 0 0
0 0 , 0 0 0 0
0006 , 0000
000000

1 0 2 1 9 E s 8

2-26 Disk Verifìcation

This command is identical to DISPI-AYFNoDE, except the DISPLAYSAVEFNoDE
takes the fnode information from the R?SAVE file, and displays the fnode as saved.
R?SAVE must have been reserved when the volume was formatted. (That is, the
RESERVE option in the FORMAT command must have been specified.) The format of
the DISPT-AYSAVEFNODE command is as follows:

F 0 2 1 2

ERROR MESSAGES

argument error

< fnodenum > , fnode out of range

no save area was reservetl when
volume was formatted

Unable to get pathname
< reason >

When the command was entered, no
argument was supplied.
DISPTAYSAVEFNODE requ i res a
designation of the fnode number.

The number specified for the fnodenum
parameter is larger than the largest fnode
number on the volume.

The volume was not formatted to support
backup fnodes. This means the
RESERVE option was not specified
when the volume was formatted.

The pathname specified could not be
retrieved. Possible causes of thrs error
are seek error, I/O error, or invalid
parent.

fnodenu mDISPLAYSAVE FNODE

Disk Verífication 2-27

This command displays the "next" volume block. (The "next" volume block is the block
immediately following the block currently in the working buffer.) The display format can
be either WORD or BYTE. The utility remembers the mode in which you displayed the
volume block currently in the working buffer, and it displays the next block in that format.
So, if you used DISPI-AYBYTE to display the current volume block, the next volume
block appears in BYTE format; if you used DISPLAYWORD, the next volume block
appears in WORD format. DISPLAYNEXTBLOCK uses the BYTE format as a default
ifyou have not yet displayed a volume block. You can abort this command by typing a
CONTROL-C. The format of the DISPTAYNEXTBLOCK command is as follows:

F 0 .205

OUTPUT

In response to the command, DISPI-AYNEXTBLOCK reads the "next" volume block into
the working buffer and displays it on the screen.

DESCRItrTION

The DISPI,AYNEXTBLOCK command copies the "next" volume block from rhe volume
to the working buffer and displays it at your terminal. It destroys any data currently in the
working buffer. Once the block is in the working buffer, you can use
SUBSTITUTEBYTE and SUBSTITUTEWORD to change the data in the block. Finally,
you can use the WRITE command to write the modified block back out to the volume.

NOTE
If you specifo the DISPI-AYNEXTBLOCK command ar rhe end of the
volume, the utility'Vraps around" and displays the first block in the
votume.

D I5PLAY N EXTE LOCK

CARRIAGE RE-TU RN

2-28 Disk Verification

This command is identical to DISPLAYNEXTBLOCK except that it displays the volume
block preceding the current block in the working buffer. The format of the
DISPI-AYPREVIOUSBLOCK command is as follows:

F 0 2 0 6

2-29Disk Verification

This command allows you to edit values within a specilìed fnode. It can be aborted by
enterins CONTROL-C. The format of the EDITFNODE command is

INPUT PARAMETER

fnode Number of the fnode to edit. This number can be in the range of 0
through (max fnodes - l), where max fnodes is the number of fnodes
defined when the volume was orisinallv formatted.

OUTPUT

When EDITFNODE is invoked it displays the following message:

Fnode nurnbe r - nnnn

where nnnn is the number of the fnode you want îo edit. The first field of the fnode is
displayed with its current value, as follows:

f l a g s (x x x x) :

where poo< is the current value of the flags field. From this point on, you can edit the
fnode fields, one at a time. After the last fnode field has been edited or a',e,'has been
entered while in edit mode, the following query appears on the screen and the modilìed
fnode is disolaved.

Wri te back?

A response of "Yes" causes the fnode with the modified values to be written on the
volume and the following message to be displayed:

Fnode has been updated

2-30 Disk Verification

EDITFNODE

Any other response causes the fnode to remain unchanged and the following message to

be displayed:

Fnode not changed

DESCRIPTION

EDITFNODE is used to change values within a specified fnode. When it is invoked, it

displays the message shown above. Once you receive the invocation message, you can edit

the fnode, one field at a time. The first field, flags, is displayed upon invocation (as shown

above). The current value of each field is displayed followed by a colon. EDITFNODE
then waits for one of the following responses from the terminal.

Response Meaning

< CR > No modification to the field.

numerical value < CR > The new value to be assigned.
This value is always interPreted
as hexadecimal.

Quit or Q or c1 < CR > Skip the remaining fields and
display the query.

Any response, other than those listed above, causes the field to remain unchanged, and
the next field to be displayed.

Once the fnode has been updated, you can use DISPLAYFNODE to examine the
contents of the fnode and the changes you made. Changing the contents of an fnode

causes it to have a bad checksum. Use FIX with the NAMED1 option to correct it. For

more details, see the ex?lanation of FIX later in this chapter.

ERROR MESSAGES

argument error The option specified is not valid.

<fnode num>, fnode out of The fnode number specified was larger

range than the largest fnode number on the
volume.

Error in Input Invalid input was entered while editing an
entry.

Disk Verification 2-l t

EDITFNODE

EXAMPLE

The following example illustrates using EDITFNODE to edit fnode 10.

*edltfnode 10 <CR>
fnode nurnber - 10
f l a g s (0 0 2 5) : < C R >
t y p e (0 0 0 6) : < C R >
f l le gran/vol gran(01) : <CR>
owner(0FFFF): 0 <CR>
créatè t ime(1O2I9CR2): q <CR>

Encer ing "q ' r causes the modi f ied fnode to be d isp layed.

f l ags
tYPe

s . : 1 ^ - , - . ^r r r E ó ! d r r l v u r É L d r r
OIJTìE r

c r e a t e , a c c e s s , m o d t i n e s
totaL s i "ze, to ta l b locks

b l o c k p o í n t e r (1)
b l o c k p o i n t e r (2)
b l o c k p o i n t e r (3)
b lock pointer (4)
b l o c k p o i n t e r (5)
h l o e l r n a i n r o r / 6 t

b l o c k p o i n t e r (7)
h l ó . L n ^ i n t a r 1 R \

th is s ize
i.d count

a c c e s s o r (1)
a c c e s s o r (2)
a c c e s s o r (3)

n r r é n t _ e h a r l z < " -

aux (*)
l,lrice back? yes <CR>
Fnode has been updated

0025 -)shor t f i Ie
O A : > r l i r a r t n r r r f í 1 a

0 1
0000
1 0 2 1 9 C 8 2 , 1 0 2 1 9 C C 8 , 1 0 2 1 9 C C 8
00000360 , 00000001
0001 , 0000s0
0000, 000000
0 0 0 0 , 0 0 0 0 0 0
0 0 0 0 , 0 0 0 0 0 0
0000 , 000000
0000 , 000000
0 0 0 0 , 0 0 0 0 0 0
0000 , 000000
00000400
0001
OF, FFFF
00 , 0000
00 , 0000
0006 , 0000
000000

2-32 Disk Verification

EDITSAVEFNODE is identical to EDITFNODE, except that it allows you to edit an
fnode from the R?SAVE file. (R?SAVE must have been reserved when the volume was

formatted.) In addition, it designates the fnode as saved when displaying the fnode

number. You can abort this command by entering CONTROL-C. The format of the

EDITSAVEFNODE command is

ERROR MESSAGES

The error messages are the same as in EDITFNODE with the addition of the following
messaqe.

The volume was not formatted to support
backup fnodes. This means the RESERVE option
was not soecified when the volume was formatted.

no save area was
reseryed when volume
was formatted

Disk Verification 2-33

This command exits the Disk Verification Utility and returns control to the Human
Interface command level. The format of the EXIT command is as follows:

r o20t

This command is identical to the QUIT command.

NOTE
Although you can use DISKVERIFY to verify rhe sysrem device (:sd:),
note that all connections to this device are deleted by the operating system.
After exiting, you must reboot the system or use the warm start feature
(see the Ertended iRMX II System Debugger Ret'erence Manual).

2-34 Disk Verification

This command verifies the volume in the same way as the VERIFY command to
determine if the data on the volume is consistent. In addition, this command "fixes"
various kinds of inconsistencies discovered during verification. You can abort this
command by entering CONTROL-C. (CONTROL-C is ignored when FIX is writing to
the volume in order to prevent inconsistencies on the volume.)

Because FIX and VERIFY perform the same verification functions and generate the
same error messages, the command description given below describes only the additional
functions of FIX. For a complete explanation of the veriff functions, see the VERIFY
command described later in this chanter. The format of the FIX command is:

Disk Verification 2-35

Ftx

INPUT PARAMETERS

NAMED1 or N1

NAMED2 or N2

NAMED or N

PHYSICAL

LIST

ALL

Performs NAMEDl verification and fixes the following
inconsistencies:

. Fixes bad checksums

. Attaches orphan fnodes to their parents. An orphan fnode is
an fnode contained within a directory and whose parent field
does not point back to this directory. If the parent field of the
specified fnode points to a second valid directory, and the
second directory also points to the fnode, no fix is performed
since the specified fnode belongs to an existing directory. This
is a case of multiple references (discussed in NAMED2).

If the parent field does not point to a valid parent, the parent field
is fixed to point to the directory that contains this fnode in its fiìe
l ist .

Performs NAMED2 verification and fixes the followins
inconsistencies:

. Removes fnodes from their iilegal parents. If there is a multiple
reference to an fnode, the fnode is removed from the
directories that it does not point to (if FIX was performed with
NAMEDl, the fnode should now point to one valid parent).

r Saves fnode and block bit maps on completion of NAMED2.

Performs both the NAMEDI and NAMED2 verification functions
on a named volume and fixes the inconsistencies defined for these
options.

Performs all operations appropriate to the volume. For named
volumes, this option performs both the NAMED and PHYSICAL
verification functions. For physical volumes, this option performs
only the PHYSICAL verification function. For both NAMED and
PHYSICAL volumes, ALL performs the fixes for the relevant
verifications.

Performs PHYSICAL verification and saves the bad block bit man.

Lists the file information displayed in Figure 2-3 for any
verification that includes NAMED l.

2-36 Disk Verilication

FIX

OUTPUT

FIX produces the same output as the VERIFY command (see Figures 2-3, 2-4, and 2-5)
with additional messages displayed when an inconsistency is fixed. NAMEDl output
includes these messases.

Checksum Fixed
fnode nnnn was at tached to parent nnnn

The first message appears after a bad checksum is fixed. The second message is displayed
when the parent field of an fnode is modified to point to a valid parent.

NAMED2 displays this message when an fnode with multiple references is removed from
the directory.

fnode rernoved frorn this dlrectory

If an fnode exists on a disk and is marked allocated, but has not been referenced, FIX
issues a warning message and asks if you want to save the bit maps. This prevents SAVE
from freeing this fnode and its blocks and possibly causing a file to be lost.

2-37Disk Verification

This command designates fnodes and volume blocks as free (unallocated). It also
removes volume blocks from the bad blocks file. The format of the FREE command is as
follows:

INPUT PARAMETERS

fnodenum Number of the fnode to free. This number can range from 0
through (max fnodes - l), where mar fnodes is the number of
fnodes defined when the volume was originally formatted. Two
fnode values separated by a comma signify a range of fnodes.

Number of the volume block to free. This number can range from
0 through (max blocks - 1), where mar blocks is the number of
volume blocks in the volume. Two block numbers separated by a
comma signif a range of block numbers.

OUTPUT

Ifyou are using FREE to deallocate fnodes, FREE displays the following message:

blocknum

<fnodenutr>, fnode narked free

where <fnodenum> is the number ofthe fnode that the utilitv desisnated as free.

If you are using FREE to deallocate volume blocks, FREE displays the following message:

<blocknun>, block marked free

where < blocknum > is the number of the volume block that the utilitv desisnated as free.

2-18 Disk Verification

FREE

Ifyou are using FREE to designate one or more "bad" blocks as "good," FREE displays
the following message:

<blocknun>, block marked good

where < blocknum > is the number of the volume block that the utilitv desisrated as
"good."

FREE checks the allocation status of fnodes or blocks before freeing them. Therefore, if
you specify FREE for a block or fnode that is already unallocated, FREE returns one of
the following messages:

<fnodenuo>, fnode already marked free

(blocknum>, block already marked free

(blocknun>, block already marked good

DESCRIPTION

Free fnodes are fnodes for which no actual files exist. FREE designates fnodes as free by
updating both the F[-{GS field of the fnode and the free fnodes map file.

Free volume blocks are blocks that are not part of any file; they are available to be
assigned to any new or current file. FREE designates volume blocks as free by updating
the volume free space map.

When you use the FREE command to designate one or more bad blocks as "good," it
removes the block number from the bad blocks file. However. FREE BADBLOCK does
not designate the blocks as free. To update the volume free space map and designate
these blocks as free, use the FREE BLOCK command.

ERROR MESSAGES

argùment error A syntax error was made in the command
or a nonnumeric character was specified
in the blocknum or fnodenum Darameter.

< blocknum > , block out of range The block number specified was larger
than the largest block number in the
volume.

< fnodenum > , fnode out of range The fnode number specified was larger
than the largest fnode number in the
volume.

Disk Verification 2-39

FREE

no badblocks file The volume does not have a bad blocks file. This message could

appear because an earlier version of the Human Interface
FORMAT command was used when the disk was formatted.

not a named disk FREE was performed on a physical volume.

2-40 Disk Verification

This command displays the volume's bad track information. It can be aborted by entering
CONTROL-C. The format of GETBADTRACKINFO is

INPUT PARAMETERS

None.

OUTPUT

The GETBADTRACKINFO command displays the volume's bad track information as
written by the manufacturer or the Human Interface FORMAT command. The output
displayed by the GETBADTRACKINFO command is compatible with the format
required by the Human Interface FORMAT command when writing bad track
information on the disk. To use the output as input to FORMAT, remove the first two
lines, leaving only the actual bad track information data. The display is as follows:

Bad t rack in format ion:
L ^ - r

L-/ !

cccc hh ss
cccc hh ss

where cccc is rylinder number, hh is the head number and ss is the sector number (always
zero for all devices supported in this release of the operating System).

x.1599

Disk Verification 2-41

GETBADTRACKINFO

As mentioned above, the output of the GETBADTRACKINFO command can be used as

input to the FORMAT command when creating the bad track information file. The
example below shows how to use GETBADTRACKINFO this way.

-atÈachdevlce wnfdxo as :v: <CR)
- d l s k v e r l f y : s d : t o : v : b a d . l l s È
*getbadtracklnfo <CR>
*exLt <CR>

<cR>

After exiting DISKVERIFY and rebooting the system, edit :w:bad.lst and remove the
header lines. The file can then be used as inDut to the bad track information file created
by the FORMAT command.

ERROR MESSAGES

I/O error while trying to read bad An I/O error occurred while reading the
track information bad track information.

No valid bad track info found Bad track information is not valid and
cannot be displayed.

No bad track info found The area designated for bad track
information is emDtv.

2-42 l)isk Verification

This command lists all available Disk Verification Utilify commands and provides a short
descrintion of each command. The format of the HELP command is

F 0 2 1 4

OUTPUT

In response to this command, HELP displays the following information:

2-4i

*heIp
a L l o c a c e / f r e e

backup/ res tore fnodes (b î / r î)
Cont ro l C

d i s k
d isp lay by te /vord (d , db /dw)

d isp lay d i rec to ry (dd)
d i s p l a y f n o d e (d f)

d isp lay nex t b lock (> , dnb)
d isp lay p rev ious b lock (< ,dpb)

d l s p l a y s a v e f n o d e (d s f)
e x Í t , q u i t

l i s t b a d b l o c k s (l b b)
r e a d (r)

res to re vo lune labe l (rv l)

save
subst l tu te by te /word (s , sb /sw)

ver i f y
\,Iri te (Lr)

e d i t f n o d e (e f)
ed i t save fnode (es f)

fix
ge t bad t rack in fo (gb)

nisc connands -

address
b l o c k

hex /dec
add, + , sub , - , nu l , * , d iv , / , rnod

a1 l -oca te / f ree fnodes , space b locks , bad b locks
b a c k u p / r e s t o r e I n o d e f i l e t o , / f r o m s a v e a r e a

abor t the comnand in p rogress
d isp lay d isk a t t r ibu te s

d isp lay the bu f fe r in (by te /word fo rmat)
d isp lay the d i rec to ry conten ts
d isp lay fnode in fo rmat ion
read and d isp lay 'nex t ' vo lune b lock

read and d isp lay 'p rev ious ' vo lume b lock
d isp lay saved fnode in fo rmat ion
^ . . : c r . ' ^ 1 , . . ^ - : f - ,
g u r L u r s F w E ! t !)

l i s t bad b locks on the vo l .ume
read a d isk b lock in to the bu f fe r
copy vo lu rne 1abe l f rom save area
save f ree fnodes , f ree space & bad b lock naps

rnod i fy the bu f fe r (by te /word fo rmat)
. . ^ - : 8 . . È L ^ r i - 1 .

, r i te to the d isk b lock f rom the bu f fe r
ed i t an fnode
ed i t a saved fnode
per fo rn var lous f i xes on the vo luue
get the bad track info on the volume

conver t b lock nurnber co abso lu te address
conver t abso lu te address to b lock nurnbe r
display number as hexade c imal/de c imal nurnbe r

a f i thmet ic opera t ions on uns igned nurnbers

Disk Yerification

This command displays all the bad blocks on a named volume. You can abort this
command by tlping a CONTROL-C. The format of the LISTBADBLOCKS command is
as follows:

F 0208

OUTPUT

In response to this command, LISTBADBLOCKS displays up to eight columns of block
numbers that you specified as "bad." Figure 2-2 illustrates the format of the display.

Badblocks on

<b I ocknurr>

(b I o cknurn)

<b locknurn>

<blocknun>

<bLockn!u>

<U locknurn>

Volune: volumenurn

<blocknuÈ <blocknlu) <blocknuD <blocknlrn>

(blocknurn) (blocknr.uÈ (blocknurn) (blocknurn)

(blocknum> <blocknurp <Ul octnum> <blocknum>

Figure 2-2. LISTBADBLOCKS Format

lf none of the blocks have been marked as "bad", LISTBADBLOCKS displays the
following message:

2-44

no badblocks

NOTE
Bad tracks and bad blocks are different. Bad tracks are handled by the
device drivers in conjunction with the hardware, whereas, bad blocks are
handled by the iRMX II Basic I/O System.

Disk Verification

LISTBADBLOCKS

ERROR MESSAGES

no badblocks fiÌe The volume does not have a bad blocks file. This message could
appear because an earlier version of the Human Interface
FORMAT command was used when the disk was formatted or
because the disk is a ohvsical volume.

2-45Disk Verification

The following commands provide you with the ability to perform arithmetic and

conversion operations within the Disk Verification Utility. The commands perform the
operations on unsigned numbers only and do not report any overflow conditions. When

the number is displayed in both hexadecimal and decimal format, it appears in

hexa<lecimal format first, followed by the decimal number in parentheses. For example:

13 (19r)

ADD

This command adds two numbers together. Its format is

wnere:

arg 1 and arg2 Numbers the command q{ds together. The value of each argument
l l

cannot be greater than 2- '4-1.

In response, the command displays the unsigned sum of the two numbers in both
hexadecimal and decimal format.

ADDRESS

All memory in a volume is divided into volume blocks, which are areas of memory the
same size as the volume granularity. Volume blocks are numbered sequentially in the
volume, starting with the block containing the smallest addresses (block 0). The
ADDRESS command converts a block number into an absolute address (in hexadecimal)
on the volume, so that you don't have to perform this conversion by hand. The format of
this command is

<@tx::*r.rì

2-46 Disk Verification

where:

blocknum

MISCELLANEOUS COMMANDS

Volume block number that ADDRESS converts into an absolute
address in hexadecimal. This parameter can range from 0 through
(mar blocks - 1), where max blocks is the number of volume blocks
in the volume.

In response. ADDRESS displays the fol lowing informat ion:

absolute address - <addr>

where:

< addr > Absolute address in hexadecimal that corresponds to the speciîied
block number. This address represents the number of the byte that
begins the block and can range from 0 through (volume size - 1),
where volume size is the size, in bytes, of the volume.

BLOCK

The BLOCK command is the inverse of the address command. It converts a 32-bit
absolute address (in hexadecimal) into a volume block number, so that you don't have to
perform this conversion by hand. The format of this command is

where:

address Absolute address in hexadecimal that BI.OCK converts into a
block number. This parameter can range liom 0 through (volume
size - 1), where volume size is the size, in bytes, of the volume.

In response, BLOCK dispÌays the following information:

block nunber : <blocknurn>

where:

< blocknum > Number of the volume block that contains the specified absolute
address in hexadecimal. The BLOCK command determines this
value by dividing the absolute address by the volume block size and
truncatinq the result.

Disk Verification 2-47

MISCELLANEOUS COMMANDS

DEC

This command finds the decimal equivalent of a number. Its format is

<'-y'--'<1:,->

where:

arg Number for which the command finds the decim-al equivalent. The
value of the argument cannot be greater than2'"-1. The default
base is in hexadecìmal.

In response, the command displays the decimal equivalent of the specified number.

DIV

This command divides one number by another. Its format is

where:

argl and arg2 Numbers on which the command operates. It divides-argl by arg2.
The value of each argument cannot be greater than 2rz- 1.

In response, the command displays the unsigned integer quotient in both hexadecimal and
decimal format.

2-48 Disk Verification

M ISCELLAN EOUS COMMANDS

HEX

This command finds the hexadecimal equivalent of a number. Its format is

<3>1-r->

where:

arg Number for which the command finds the hexadecimal eouivalent.
If you are speci$ring a decimal number, you must spgify i "f'
The value ofthe argument cannot be greater than2)z-1.

In response, the command displays the hexadecimal equivalent of the specìfietl number.

MOD

This command finds the remainder of one number divided by another. Its format is

uoo
, / - - -

-e '
-.,'1]

! ''c'?

where:

argl and arg2 Numbers on which the command operates. It performs the
operation argl modulo arg2. The value of each argument cannot
be greater than 2-'z-l.

In response, the command displays the value argl modulo arg2 in both hexadecimal and
decimal format.

Disk Verification 2-19

MISCELLANEOUS COMMANDS

M U L

This command multiplies two numbers together. Its format is

where:

argl and arg2 Numbers the command multiplies lo^gether. The value of each
argument cannot be greater than 2'tz- 1.

where:

argl and arg2 Numbers on which the command operates. The command
subtracts arg2 from argl. The value of each argument cannot be
ereater than 2''z- 1.

In response, the command displays the unsigned product of the two numbers in both
hexadecimal and decimal format.

SUB

This command subtracts one number from another. Its li)rmat is

In response, the command displays the unsigned difference in both hexadecimal and
decimal format.

2-50 Disk Verification

MISCELTANEOUS COMMANDS

ERROR MESSAGES

The following error messages may be returned by any of the Miscellaneous Commands:

argument error A syntax error was made in the
command, a nonnumeric value for one of
the arguments was specified, or a value
for a block number parameter that was
not a valid block number was soecified.

< blocknum > , block out of range lf the command was an ADDRESS
command, the block number entered was
greater than the number of blocks in the
volume.

< address > , address not on the If the command was a BLOCK command,
disk BLOCK converted the address to a

volume block number, but the block
number was greater than the number of
blocks in the volunrc.

EXAMPLES

*l{ul, 134î, 13î <CR>
6cE (7142T)

*+ 8, 4 <CR>
0c (12 r)

*suB 8884, 256 <CR>
862E (34350r)

* l {oD 1225, 256T <CR>
25 (31 r)

*HEx 155T <CR>
9B

*ADDRESS 15 <CR>
absolute address - 0A80
*BLoCK 2236 <CR>
block nunber - 44

Disk Verification 2-51

This command exits the Disk Verification Utility and returns control to the Human
Interface command level. The format of the QUIT command is as follows:

This command is identical to the EXIT command.

) -<, Disk Verilìcation

This command reads a volume block from the disk into the working buffer. The format of
the READ command is

argument error

< blocknum > , block out of range

FFFFFFFF. block out of ranee

Number of the volume block to read. This number can range from
0 through (max blocks - 1), where max blocks is the number of
volume blocks in the volume.

A nonnumeric characterwas specified in
the blocknum parameter.

The block number specified was larger
than the largest block number in the
volume.

No block number was specified and no
previous read request was executed on
this volume.

INPUT PARAMETER

blocknum

OUTPUT

ln response to the command, READ reads the block into the working butlèr and displays
the following message:

read block nurnber: <blocknuÍ>

where <blocknum> is the number of the block.

DESCR]PTION

The READ command copies a specified voÌume block from the volume to the working

buffer. It destroys any data currently in the working buffer. Once the block is in the
working buffer, you can use DISPTAYBYTE and DISPTAYWORD to display the block,

and you can use SUBSTITUTEBYTE and SUBSTITUTEWORD to change the data in

the block. Finally, you can use the WRITE command to write the modified block back to

the volume and repair damaged volume data.

ERROR MESSAGES

2-53Disk Verification

This command copies an fnode or a range of fnodes from the R?SAVE file to the fnode
file. Before changing the fnode file, RESTOREFNODE displays the fnode number to be
changed and prompts you to confirm (by entering a "y") that the fnode is to be restored.
R?SAVE must have been reserved (the RESERVE option of the FORMAT command
must have been specified) when the volume was formatted. The format of the
RESTOREFNODE command is as follows:

INPUT PARAMETER

fnodenum The hexadecimal number of the fnode to be restored. This number
must be greater than or equal to zero and less than the m.tximum
number of fnodes defined when the volume was fbrmatted.

The initial hexadecimal fnode number in a range of fnodes to be
restored. This number must be greater than or equal to zero and
less than or equal to the final fnode number in the range
lfnodenum2l.

The final hexadecimal fnode number in a range of fnodes to be
restored. This number must be greater than or equal to the initial
fnode number in the range (fnodenuml) and less than the
marimum number of fnodes defined when the volume was
formatted.

fnodenum I

fnodenum2

OUTPUT

When the fnode is restored (the response to the confirmation query is "Y" or "y"):

restore fnode
resÈored fnode

(fnodenurn) ? Y <CR>
nunber : (fnodenr.un)

f n o d e n u mR E s T O R É F N O D E

f n o d e n u m 1 f n o d e n u m 2

2-54 Disk Verification

RESTOREFNODE

When the fnode is not restored (the response to the confirmation query is not "Y"):

restore fnode (fnodenur) ? <CF>

DESCRIFTION

The RESTOREFNODE command enables you to rebuild a damaged fnode file, thereby
re-establishing links to data that would otherwise be lost. RESTOREFNODE copies an
fnode or a range of fnodes from the R?SAVE file (the fnode backup file) to the fnode file.
Before each of the specified fnodes is copied, RESTOREFNODE displays a query
prompting you to confirm that the indicated fnode is to be restored. You must reply to
this query with the letter "Y" (either "Y" or "y") to restore the fnode. If you enter any
other response, RESTOREFNODE will not restore the fnotle and will pass on to the next
fnode in the range.

Since RESTOREFNODE operates on the R?SAVE file, you must have reserved this file
when the volume was formatted. (You reserve R?SAVE by specifuing the RESERVE
parameter when you invoke the FORMAT command to format the volume.) lf the
R?SAVE file was not reserved when the volume was formatted, RESTOREFNODE will
return an error message.

CAUTION
When using this comrnand, be sure that any fnode you restore represents
a file that has not been modified since the last fnode backup.
RESTOREFNODE overwrites the specified fnode in the fnode file with the
corresponding fnode in the R?SAVE file. Ifthat fnode has not been
backed up since the last file modification, a valid fnode may be
overwritten with invalid data, Thus, all links to the associated fìle will be
destroyed, and YOU WILL LOSE ALL OF THE DATA IN THE FILE.

ERROR MESSAGES

argument error When the command was entered, no
argument was supplied. This command
rct lu ires an argument.

no save area was reserved when The volume was not formatted to support
volume was formatted backup fnodes. This means the

RESERVE option was not specified
when the volume was formatted.

Disk Verification 2-55

RESTOREFNODE

not a named disk

< fnode num >, fnode out of
range

allocation bit not set for saved
fnode restore fnode < fnode
num>?

The volume specified when the Disk
Verification Utiiity was invoked is a
physical volume, not a named volume.

The fnode number specified is not in the
range of 0 to (maximum fnodes - 1).

The fnode you specified has not been
backed up in the R?SAVE file. If you
respond to the query with a "Y", THE
DATA IN THE FILE ASSOCIATED
WIT]] THE ORIGINAL FNODE WILL
BE LOST.

EXAMPLE

super- dfskver l fy : sd: <CR>
iRl{X I I Disk Ver i fy Ut i l i ty , Vx.x
Copyr lght <year) In te l Corporat lon
:sd: , outstanding connect ions to device h&ve
*resÈorèfnóde 9,08 <CR> or r f 9 ,0B <CR)
restore fnode 9? Y <CP>
restored fnode number: 9
rescore fnode 0A? Y <Cl>
restored fnode nurnber: 0A
restore fnodè 0B? Y <CR>
rescored fnode number: 0B

been de1èted

2-56 Disk Verification

This command copies the duplicate volume label to the volume label on track 0. The
duplicate volume label must have been constructed when the volume was formatted.
(That is, the RESERVE option of the FORMAT command must have been specified
when the volume was formatted.) The format of the RESTOREVOLUMEII,BEL
command is as follows:

F 0 2 1 1

INPUT PARAMETERS

None.

OUTPUT

volume label restored

DESCRIPIION

The RESTOREVOLUMELABEL command enables you to rebuild a damaged volume
label, thereby re-establishing links to data that would otherwise be lost.
RESTOREVOLUMEI-ABEL copies the duplicate volume label to the volume label offset
on track 0. When you use the Human Interface FORMAT command to create the
duplicate volume label (by specifying the RESERVE parameter), the volume label is
automatically copied to the end of the R?SAVE file. Because the contents of the volume
label do not change, no other volume label backup is required.

If a duplicate volume label has been reseryed on a volume, the Disk Verification Utility
can access that volume as a Named volume even if the volume label is damaged. When
the original volume label is corrupted, the Disk Verification Utility attempts to use the
duplicate volume label. If the backup label is used, a "DUPLICATE VOLUME I-ABEL
USED" message appears when the utility is invoked.

If the duplicate volume label was not reserved when the voiume was formatted,
RESTOREVOLUMEI-ABEL will return an error messase.

Disk Verification 2-57

RESTOREVOLUMELABEL

ERROR MESSAGES

argument error

no save area was reserved when
volume lvas formatted

not a named disk

When the command was entered, an
argùment was supplìed. This command
does not accept an argument.

The volume has not been formatted to
support volume label backup.

The volume specified when the Disk
Verification Utility was invoked is a
physical volume, not a named volume.

2-58

EXAMPLE

supèr- d iskver l fy : sd: <CR>
I R M X I l D l s k V e r i f y U t i l i t y , V x . x
Copyr lght <yèar> ln te l Corporat ion
:sd: , outstandlng connect ions to device have been deleted
DUPLI CATE VOLUME U.BEL USED
*restorevolune labe I <CR> or rvl <CR)
volune 1abe1 rès tored

Disk Verification

This command writes the reconstructed free fnodes bit map, volume free space bit map,
and the bad blocks bit map to the volume being verified. (The NAMED2 and
PHYSICAL options of the VERIFY command originally created the maps.) The format
of the SAVE command is

OUTPUT

In response to this command, SAVE displays the lbllowing message:

save fnode roap?

Ifyou want to write the reconstructed free fnodes map to the volume, enter Y, y, or YES.
Otherwise, enter any other character or a carriage return. lf you enter YES, SAVE writes
the free fnodes map to the volume and displays the following message:

free fnode nap saved

fn any case. SAVE next tJ isp lays the fo l lowing messagc:

save space rnap ?

Ifyou want to write the reconstructed free space map to the volume, enter Y or YES.
Otherwise, enter any other character or a carriage return. Ifyou enter YES, SAVE writes
the volume free space map to the volume and displays the following message:

f ree space map saved

SAVE displays the following message if the bad blocks map is reconstructed:

save bad block rnap?

If you want to write the reconstructed bad blocks map to the volume, enter Y, y, or YES.
Otherwise, enter any other character or a carriage return. If you enter YES, SAVE writes
the volume bad blocks map to the volume and displays the following message:

bad b lock map saved

Disk Verification 2-59

SAVE

DESCRIPTION

Whenever you perform a VERIFY function with the NAMED2 option (refer to the
description of the VERIFY command for more information), VERIFY creates its own
free fnodes map and volume free space map. It does this by examining all directories and
fnodes on the volume, not by copying the maps that exist on the volume. To create lhe
free fnodes map, it examines every directory on the volume to determine which fnodes
represent actual files. To create the volume free space map, it examines the
POINTER(n) fields of the fnodes to determine which volume blocks the files use.

If the volume has a bad blocks file and you perform a VERIFY function with the
PHYSICAL option (refer to the description of the VERIFY command for more
information), VERIFY creates its own bad blocks map. It does this by examining every
block on the volume, not by copying the maps that exist on the votume.

VERIFY then compares the newly created maps with the maps that exist on the volume.
If a discrepancy exists, VERIFY displays a message indicating this.

The SAVE command takes the free fnodes map, the volume free space map, and the bad
block map created during the VERIFY operation and writes them to the volume,
replacing the maps that currently exist.

ERROR MESSAGE

nothing to save No bit map was constructed prior to invoking SAVE. (Bit maps
are constructed by NAMED2 or PHYSICAL verifications.)

EXAMPLE

The following example illustrates the format of the SAVE command after you use
VERIFY and the NAMED or NAMED2 ootion.

*VERTFY NAIIED2 <CR>
,NAI4ED2' VERIFICATION

B I T M A P S O . K .
*sAvE <cR>
savè fnode map? y <CR>

free fnode map saved
save space nap? y <CR>

free space map saved

2-60 Disk Verification

This command enables you to interactively change the contents of the working buffer (in
byte format). You can abort this command by typing a CONTROL-C. The format of the
SUBSTTUTEBYTE command is

INPUT PARAMETER

offset Number of the first byte, relative to the start of the working buffer,
that you want to change. This number can range from 0 to (block
size - l), where block size is the size of a volume block (and thus
the size of the working buffer). If you omit this parameter, the
command assumes a value of 0.

OUTPUT

In response to the command, SUBSTITUTEBYTE displays the specified byte and waits
for you to enter a new value. This display appears as

<of fset>: va l

where < offset > is the number of the byte, relative to the start of the buffer, and val is the
current value of the byte. At this point, you can enter one of the following:

. A value followed by a carriage return. This causes SUBSTITUTEBYTE to substitute
the new value for the current byte. If the value you enter requires more than one byte
of storage, SUBSTITUTEBYTE uses only the low-order byte of the value. It then
displays the next byte in the buffer and waits for further input.

. A carriage return alone. This causes SUBSTITUTEBYTE to leave the current value
as is and display the next bytc in the buffer. lt then waits for further input.

S U A S r r Ì U l € B Y r E

Disk Verifìcation 2-61

SUBSTITUTEBYTE

. A value followed by a period (.) and a carriage return. This causes
SUBSTITUTEBYTE to substitute the new value for the current b]'te. It then exits
from the SUBSTITUTEBYTE command and gives the asterisk (*) prompt, enabling
you to enter any DISKVERIFY command.

. A period (.) followed by a carriage return. This exits the SUBSTITUTEBYTE
command and gives the asterisk (*) prompt, enabling you to enter any DISKVERIFY
command.

DESCRIP'TION

With the SUBSTITUTEBYTE command you can interactively change bytes in the
working buffer. Once you enter the command, SUBSTITUTEBYTE displays the offset
and the value of the first byte. You can change the byte by entering a new byte value, or
you can leave the byte as is by entering a carriage return. The command then displays the
next byte in the buffer. In this manner, you can consecutively step through the buffer,
changing whatever bytes are appropriate. When you finish changing the buffer, you can
enter a period followed by a carriage return to exit the commantl.

The SUBSTITUTEBYTE command considers the working buffer to be a circular buffer.
That is, entering a carriage return when you are positioned at the last byte of the buffer
causes SUBSTITUTEBYTE to display the first byte of the buffer.

The SUBSTITUTEBYTE command changes only the values in the working buffer. To
make the changes in the volume, you must enter the WRITE command to write the
working buffer back to the volume.

ERROR MESSAGES

argument error A nonnumeric character was specified in
the offset parameter.

<offsetnum>, invalid offset An offset value larger than the number of
bytes in the block was specified.

2-62 Disk Verification

SUBSTITUTEBYTE

EXAMPLE

This example changes several bytes in two portions of the working buffer. Two
SUBSTITUTEBYTE commands are used.

*SUBSTITUTEBYTE<CN>

0000: A0 - 00<cR>
0001: 80 - <CR>
0002 : E5 - <CR>
0003 : FF - 31<cR>
0004: FF - .<CR>

*SUBSTITUÎEBYÎE 4O<CR>

0040: 00 - E6<CR>
0041: 0O - E6<cR>
0042: 00 - . <cR>

Disk Verification 2-63

2-64

This command is identical to SUBSTITUTEBYTE, except that it displays the buffer in
WORD format, and substitutes word values in the buffer. The format of the
SUBSTITUTEV/ORD command is

EXAMPLE

This example changes several bytes in two areas of the working buffer. Two
SUBSTITUTEWORD commands are used. In the first command the words begin on
even addresses, and in the second commanC, they begin on odd addresses.

*SUBSTTTUTEgORD<CR>

0000
0002
0004
0006
0008

AOBO
8070
E51t-
FFFF
FFFF

0000<cR>
<cR>
<cR>
3111<CR>
. <cR>

*SUBSTITUTEi{ORD 3 5<CP>

0035: 0000 - E6FF<CR>
0037: 0000 - E6AB<CR>
0039: 0000 - . <CR>

Disk Veriffcation

V E R I F Y

N A M E D

PHYSICAL

This command checks the structures on the volume to determine whether the volume is
properly formatted. You can abort this command by t)?ing a CONTROL-C. The tbrmat
of the VERIFY command is

F 0 2 1 1

INPUT PARAMETERS

NAMEDl or Nl Checks named volumes to ensure that the infìtrmation recorded in
the fnodes is consistent and matches the information obtained
from the directories themselves. VERIFY perfbrms the following
operations during a NAMEDl verification:

. Checks fnode numbers in the directories to see if they
correspond to allocated fnodes.

. Checks the parent lhode numbers recorded in the thodes to see
if they match the information recorded in the directories.

o Checks the fnodes against the files to determine if the thodes
specif the proper file type.

. Checks rhe POINTE,R(n) structures of long files to see if the
indirect blocks accurately reflect the number of blocks used by
the f i le.

. Checks each fnode to see if the TOTAL SIZE, TOTAL BLKS,
and THIS SIZE fields are consistent.

o Checks the bad blocks file to see if the blocks in the file
correspond to the blocks marked as "bad" on the volume.

o Checks the checksum of each fnode.

Disk Verilication 2-65

VERIFY

NAMED2 or N2 Checks named volumes to ensure that the information recorded in
the free fnodes map and the volume free space map matches the
actual files and fnodes. VERIFY performs the following
operations during a NAMED2 verification:

e Creates a free fnodes map by examining every directory in the
volume. It then compares that free fnodes map with the one
already on the volume.

o Creates a free space map by examining the information in the
fnodes. lt then compares that free space map with the one
already on the volume.

. Checks to see if the block numbers recorded in the fnodes and
the indirect blocks actually exist.

. Checks to see if two or more files use the same volume block.
If so, it lists the files referring to each block.

e Checks the volume free space map for any bad blocks that are
marked as "free."

. Checks to see if two or more directories reference the same
fnode. If so, it lists the directories referring to each fnode.

NAMED or N Performs both the NAMEDI and NAMED2 ooerations on a
named volume. If you specify the VERIFY command with no
option, NAMED is the default.

ALL Performs all operations appropriate to the volume. For named
volumes, this opt ion performs borh the NAMED and pHySICAL
operations. For physical volumes, this option performs only the
PHYSICAL operations.

PHYSICAL Reads all blocks on rhe volume and checks for I/O errors. This
parameter applies to both named and physical volumes. VERIFY
also creates a bad blocks map by examining every block on the
volume.

LIST When you speci! this option, the file information in Figure 2-3 is
displayed for every file on the volume, even if the file contains no
errors. You can use this option with all parameters that, either
explicitly or implicitly, specify the NAMED I paramerer.

OUTPUT

VERIFY produces a different kind of output for each of the NAMEDl, NAMED2, and
PHYSICAL options. The NAMED and ALL options produce combinations of these
three kinds of outDut.

2-66 Disk Verification

VERIFY

Figure 2-3 illustrates the format of the NAMEDI output (\ùithout the LIST option).

DEVICE NAI'IE : <devname) : DEVICE SIZE : (devsize) : BLOCK SIZE : <blksize>

, NAì"ÍEDI' VERIFlCATION

FILE- (<f i lenarne), (fnodenurn)): LEVEL:<l-ev>: PARENT:<parnt>: TYPE:<typ>
<error messages>

FILE- (<f i lenarne), (fnodenr.un)): LEVEL:<1ev>: PAI{ENT:<parnt>: TYPE:<typ>
<error messases>

ffle- 1<fi tenarne>, <fnoden\rll>r: LEVEI--<1ev>: PARENT-<parnt>: TYPE:<typ>
< e r r o r m e s s a g e s >

Figure 2-3. NAMEDI Verification Output

The following paragraphs identifo the fields listed in Figure 2-3.

< devname > Physical name of the device, as specified in the ATTACHDEVICE
Human lnterface command.

< devsize > Hexadecimal size of the volume, in bytes.

< blksize > Hexadecimal volume granularity. This number is the size of a
volume block.

<f i lename> Name of the f i le (l to 14 characters).

< fnodenum > Hexa<lecimal number of the file's fno<le.

<lev> Hexadecimal level of the file in the file hierarchy. The root
directory of the volume is the only level 0 file. Files contained in
the root directory are level 1 files. Files contained in level I
directories are level 2 files. This numberins continues for all levels
of files in the volume.

< parnt > Fnode number of the directory that contains this file, in
hexadecimal.

Disk Verification 2-67

VERIFY

<typ> File type, either DATA (data files), DIR (directory files), SMAP
(volume free space map), FMAP (free fnodes map), BMAP (bad
blocks map), or VI-AB (volume label file). If VERIFY cannot
ascertain that the file is a directory or data file, it displays the
characters r****ù iÍr this field.

<error messages> Messages that indicate the errors associated with the previously-
listed file. The possible error messages are listed later in this
section.

As Figure 2-3 shows, the NAMED1 option (without the LIST option) displays
information about each file that is in error. Ifyou used the LIST option wjth the
NAMED I option, the file information in Figure 2-3 is displayed for every file, even if the
file contains no errors. The NAMEDl display also contains error messages that
immediately follow the list of the affected files.

Figure 2-4 i.llustrates the format of the NAMED2 output. If VERIFY detects an error
during NAMED2 verification, it displays one or more error messages in place of the "BlT
MAPS O.K.' messase.

DEVICE NAME : (dermame) : DEVICE SIZE : (devs ize> : BLK SIZE : (b lksze)

'NA.t.fED2 ' VERI FICATION

B I T M A P S O . K .

Figure 2-4. NAMED2 Verificati{}n Output

The fields in Figure 2-4 are exactly the same as the corresponding fields in Figure 2-3.

Figure 2-5 illustrates the format of the PHYSICAL output.

DEVICE NAl.fE : <der.marne> : DEVICE SIZE : (devsize> : BLOCK SIZE : <blkslze>

, PHYSICAL' VERIFICATION

NO ERRORS

2-68

Figure 2-5. PHYSICAL Verification Output

Disk Verification

VERIFY

The fields in Figure 2-5 are exactly the same as the corresponding fields in Figure 2-3.

If VERIFY detects an error during PHYSICAL verification, it displays the message:

<blocknurn), error

in place of the "NO ERRORS" message.

lf you specifu NAMED verification, VERIFY displays both the NAMED 1 and NAMED2
output. If you specify the ALL verification for a named volume, VERIFY displays the
NAMEDl, NAMED2, and PHYSICAL output. If you specify the ALL verification for a
physical volume, VERIFY displays the PHYSICAL output.

DESCRIFTION

The VERIFY command checks physical and named volumes to ensure that the volumes
contain valid file structures and data areas. VERIFY can perform three kincls of
verification: NAMEDl, NAME,D2, and PHYSICAL. NAMEDI and NAMED2
verifications check the file structures of named volumes. They do not apply to physical
volumes. A PHYSICAL verification checks each data block of the volume for I/O errors.
PHYSICAL verification applies to both named and physical volumes.

As part of the NAMED2 verification, VERIFY creates a free fnodes map and a volume
free space map, which it compares with the corresponding maps on the volume. You can
use the SAVE command to write the maps produced during NAMED2 verification to the
volume, overwriting the maps on the volume.

When you perform a PHYSICAL verification on a named volume, VERIFY also creates
a bad blocks map. You can use the SAVE command to write the bad blocks map
produced during PHYSICAL verification to the volume; this destroys the bad blocks map
already on the volume.

ERROR MESSAGES

Four kinds of error messages can occur as a result of entering the VERIFY command:
VERIFY command errors, NAMEDl errors, NAMED2 errors, and PHYSICAL errors.

VERIFY Command Error

argument error The parameter specified is not a valid VERIFY parameter.

Disk Verilìcation 2-69

VERIFY

NAMED I Messases

The following messages can appear in a NAMED1 display, immediately after the file to
which they refer.

. <blocknum 1 - blocknum n>, block bad

The block numbers displayed in this message are marked as "bad."

. <blocknum I - blocknum n >. invalid block number recorded in the

fnode/indirect block

One of the POINTER(n) fields in the fnode specifies block numbers larger than the
largest block number in the volume.

o directory stack overflow

This message indicates that a directory on the volume lists, as one of its entries, itself
or one of the parent directories in its pathname. If this happens, the utiliry, when it
searches through the directory tree, continually loops through a portion of the tree,
overflowing an internal buffer area. In this case, performing NAMED2 verification
may indicate the cause of this problem.

. file size inconsistent

total$size = <totsize> :this$size = <thsize> :data blocks = <blks>

The TOTAL SIZE, THIS SIZE, and TOTAL BLKS fields of the fnode are
inconsistent.

o < filetpe >, illegal file type

The file type of a user file, as recorded in the TYPE field of the fnode, is not valid.
The valid file types and their descriptions are as follows:

File Fpe Number Descriorion

SMAP 1 volume free space map
FMAP 2 free fnodes map
BMAP 4 bad blocks map
DIR 6 directory
DATA 8 data
VI-AB 9 volume label file

. <fnodenum>, allocation status bit in this fnode not set

The file is listed in a directory but the flags field of its fnode indicates that fnode is
free. The free fnodes map may or may not list the fnode as allocated.

. <fnodenum>, fnode out ofrange

The fnode number is larger than the largest fnode number in the fnode file.

2-70 Disk Verification

VERIFY

. <fnodenum>, parent fnode number does not match

The fi.le represented by fnodenum is contained within a directory whose fnode number
does not match the parent field of the file.

e invalid blocknum recorded in the fnode/indirect block

One of the pointers within the fnode or within the indirect block specifies a block
number that is larger than the largest block number in the volume.

. insufficient memory to create directory stack

There is not enough dynamic memory available in the system for the utility to perform
the verification.

. sum of the blks in the indirect block does not match block in the fnode

The file is a long file, and the number of blocks listed in a POINTER(n) field of the
fnode does not agree with the number of blocks listed in the indirect block.

. total-blocks does not reflect the data-blocks correctly

The TOTAL BLKS field of the fnode and the number of blocks recorded in the
POINTERIn) fields are inconsistent.

. Bad Checksum, checksum is : <number>

Checksum should be: <number>

An invalid checksum has been calculated.

NAMED2 Messages

The following messages can appear in a NAMED2 display.

. < blocknum I - blocknum2>, bad block not allocated

The volume free space map indicates that the blocks are free, but they are marked as
"bad" in the bad blocks file.

. <blocknum>, block allocated but not referenced

The volume free space map lists the specified volume block as allocated, but no fnode
specifies the block as part of a file.

r <blocknum>, block referenced but not allocated

An fnode indicates that the specified volume block is part of a file, but the volume free
space map lists the block as free.

Disk Verification 2-7 |

VERIFY

. directory stack overflow

This message can indicate that a directory on the volume lists, as one of its entries,
itself or one of the parent directories in its pathname. If this happens, the utility,
when it searches through the directory tree, continually loops through a portion of the
tree, overflowing an internal buffer area. The "Multiple Reference" message
(explained below) may help you find the cause of this problem.

o Fnodes map indicates fnodes > m:u$fnode

The free fnodes map indicates that there are a greater number of unallocated fnodes
than the maximum number of fnodes in lhe volume.

r <fnodenum>, fnode-map bit marked allocated but not referenced

The free fnodes map lists the specified fnode as allocated, but no directory contains a
file with the fnode number.

o <fnodenum>, fnode referenced but fnode-map bit marked free

The specified fnode number is listed in a directory, but the free fnodes map lists the
fnode as free.

. Free space map indicates Volume block > max$Volume$block

The free space map indicates that there are a greater number of unallocated blocks
than the maximum number of blocks in the volume.

. insufficient memory to create directory stack

Not enough dynamic memory is available in the system for the utility to perform the
verification.

. insufficient memory to create fnode and space maps

During a NAMED2 verification, the utility tried to create a free fnodes map and a
volume free space map. However, not enough dynamic memory is available in the
system to create these maps.

. insufficient memory to create bad blocks map

During a PHYSICAL verification, the utility tried to create a bad blocks map.
However, not enough dynamic memory is available in the system to create the map.

o Multiple reference to fnode <fnodenum>
Path name : < full path name >
referring fnodes:
< fnodenum > Path name: < full path name >
<fnodenum> Path name: <ful l path name>

The directories on the volume list more than one file associated with this fnode
number.

2-72 Disk Verification

VERIFY

. Multiple reference to block < blocknum >
referring fnodes:
<fnodenum> Path name: <full path name>
<fnodenum> Path name: < full path name>

More than one fnode specifies this block as part of a file.

PHYSICAL Messages

. < blocknum >, error

An I/O error occurred when VERIFY tried to access the speciîied volume block. The
volume is probably flawed.

Miscellaneous Messases

The following messages indicate internal errors in the Disk Verification Utility. Under
normal conditions these messages should never appear. However, if these messages (or
other undocumented messages) do appear during a NAMEDl or NAMED2 verification,
you should exit the Disk Verification Utility and re-enter the DISKVERIFY command.

directory stack empty
directory stack error
directory stack underflow

EXAMPLE

The following command performs both named and physical verification on a named
volume.

*VERIFY ALL <CR>

DEVICE NAÌ'IE : F1 : DEVICE SIZE : 0003E900 : BLoCK SIZE : 0080

,NAI4EDI' VERIFICATION

,NA.I{ED2' VERIFICATION
BIT } , IAPS O.K.

, PHYSICAL' VERIFICATION
NO ERRORS

Disk Verification 2-7t

This command writes the contents of the workins buffer to the volume. The format of
this command is

F 0 2 1 0

INPUT PARAMETER

blocknum Number of the volume block to which the command writes the
working buffer. If you omit this parameter, WRITE writes the
buffer back to the block most recentlv accessed.

OUTPUT

In response to the command, WRITE displays the following message:

write to block <b locknur*?

where <blocknum> is the number of the volume block to which WRITE intends to write
the working buffer. If you respond by entering Y or any character string beginning with y
or y, WRITE copies the working buffer to the specified block on the volume and displays
the following message:

wri t ten to b lock nunber :<blocknun>

Any other response aborts the write process.

DESCRIPTION

The WRITE command is used in conjunction with the READ, DISPT-AYBYTE,
DISPI-AYWORD, SUBSTITUTEBYTE, and SUBSTITUTEWORD commands to
modify information on the volume. Initially you use READ to copy a volume block from
the volume to a working buffer. Then you can use DISPTAYBYTE and
DISPI-A,YWORD to view the buffer and SUBSTITUTEBYTE and
SUBSTITUTEWORD to change the buffer. Finally, you can use WRITE to write the
modified buffer back to the volume. By default, WRITE copies rhe buffer to the block
most recently accessed by a READ or WRITE command.

A WRITE command does not destroy the data in the working buffer. The data remains
the same until the next SUBSTITUTEBYTE, SUBSTITUTEWORD. or READ
command modifies the buffer.

blockn u m

2-74 Disk Verification

WRITE

ERROR MESSAGES

argument error A syntax error was made or nonnumeric
characters were specified in the
blocknum parameter.

< blocknum > , block out of range The block number specified was larger
than the largest block number in the
volume.

FFFFFFFF, block out ofrange No blocknum was specified and no
previous read request was executed on
this volume.

EXAMPLE

The following command copies the working bullèr to the block from which it was read.

*I.RITE <CR>
wrire 48? y <cR>
wr l tcen to b lock number: 48

Disk Verification 2-75

BACKING UP AND
CHAPTER 3
RESTORING

FNODES

3.1 INTRODUCTION

To access data on a named volume (such as a disk), the iRMX Il Operating System uses a
mechanism common to virtually all operating systems: it maintains an index to every file
on the disk. This index is created when the disk is formatted and remains as a permanent
structure at a dedicated location on the clisk. The index consists of a system of pointers
that indicate the location of the data files on the disk. Thus, when data must be stored on
or retrieved from the disk, the operating system can find the exact location of the
appropriate file by looking up the file name in the index.

In the operat ing system, the index consists of the iRMX l l volume label and an fnode f i le.
This volume label resides at the same location in all devices and serues as the initial entry
point into the device. The fnode file can reside an).where on the disk (specified when the
disk is formatted) and contains a series of individual structures called file dcscriptor nodes
or "fnodes." There is one fnode for each lle on the disk. The lnode contains information
essential to accessing and maintaining the respective file.

The iRMX II file structure for a named volume is organizerJ as a hierarchical tree. That
is, there is a root directory with branches to other directories and ultimately, to files. The
organization of the fnode file reflects this hierarchical structure. The iRMX II volume
label contains a pointer to the fnode of the file structure's root directory. The root
directory is always the starting address for any fiìe or directory on the volume. It lists alÌ
the first level files and directories on the volume. First level directories point to second
level files and directories, and so on, down the hierarchical structure.

As previously mentioned, each file or directory is represented by an fnode. The fnode,
along with other data describing the file or directory, contains pointers to blocks on the
volume. If the fnode describes a short file, these blocks contain the actual file data. If the
fnode describes a long file, these blocks contain pointcrs to other blocks containing the
actual data. If the fnode describes a directory, these blocks contain entries which describe
the contents of the directorv. Each entrv lists the fnode number and name of the
associated file or directory,

The operating system creates the iRMX Il volume label and the lìode file when the disk
is formatted.

Disk Verification 3 - l

BACKING UP AND RESTORING FNODES

The number of unallocated fnodes in the fnode file is controlled by the FILES parameter
of the FORMAT command. In addition to the unalìocated fnodes, seven (with an option
of eight) allocated fnodes are established when the fnode file is created. These allocated
fnodes represent

. the fnode file

. the volume label file - R?VOLUMEIABEL

. the volume free space map file - R?SPACEMAP

o the free fnodes map file - R?FNODEMAP

o the bad blocks file - R?BADBLOCKMAP

. the root directory

. the space accounting file,

. Optionally, the duplicate volume label lile - R?SAVE

For a full description of these files, see Appendix A "Structure of A Named Volume."

Thereafter, when files or directories are creiìted directly subordinate to the root, the
operating system must adjust a pointer in the root fnode to indicate the fnode number of
the new data file or directory file. Subserluently, clirectories subordinate to the root must
also have their pointers adjusted when they become parents to a new data file or
directory.

This method of storing and retrieving data on a disk has one major drawback. All access
to files on the disk is through the iRMX II volume label and the fnode file. If either the
volume label file or the fnode file is damaged or destroyed, there is no practical way to
recover data on the disk.

The backup and restore fnodes feature enables some recovery of data lost as a result of
damage to the fnode file or the iRMX II volume label. With this feature, you create a
backup version of the volume label and all the fnodes on the disk. The backup version is
stored in one of the innermost tracks of the disk where the chance of accidental loss of
data is minimal. (In normal use, the disk heads do not extend to the innermost tracks.)

To implement this feature, the Human Interface FORMAT command has been modified
to include an optional parameter -- RESERVE. This version of the FORMAT command
creates a file named R?SAVE in the innermost track of the volume. A copy of the iRMX
II volume label is placed in the front (that is, the physical end) of the file and an fnode is
allocated for R?SAVE in the fnode file. (The fnode for the R?SAVE file is allocated out
of the fnodes reserved through the FILES parameter of the FORMATcommand. Thus,
ifyou specify "FILES = 3000" when you format, only 2999 of those fnodes will remain
available after the R?SAVE fnode has been allocated.) Finally, FORMAT copies the
fnode file into R?SAVE.

a-) Disk Verifîcation

BACKINC UP AND RESTORING FNODES

Notice that the FORMAT command creates a backup of the fnode file in its initialized
state. R?SAVE is not subsequently updated as files are written to or deleted from the
volume. Therefore, you will have to use the BACKUPFNODES Disk Verification Utility
command or the BACKUP option of the Human Interface SHUTDOWN command to
back up the fnode file at regular intervals. If the volume label or the fnode file become
damaged, you can attempt to recover liles on the volume by using the Disk Verification
Utility commands (RESTOREFNODE and RESTOREVOLUMETABEL) to rebuild the
index. To assist in this process, the DISPI-AYSAVEFNODE Disk Verification Utility
command enables you to look at individual fnodes stored in the R?SAVE file.

Since the contents of the iRMX II volume label do not change, the copy of the volume
label in R?SAVE is always valid. Therefore, you can restore the volume label at any time
regardless of when the R?SAVE file was last updated. (When the Disk Verification
Utility encounters a damaged volume label, it automatically uses the backup volume label
if the R?SAVE file is present, however, it does not restore unless explicitly instructed.)

CAUTION
One note of caution: The fnode fìle is changed each time a volume is
modified (that is, each time a fìle or directory is created, written to, or
deleted from the volumel. Therefore. valid restoration can be assured
only for fnodes whose associated files or directories have not been
changed since the last backup.

If the fnodes are not backed up after each modificafion, the structure of
the R?SAVE file will differ from that of the fnode file. Some fnodes in
R?SAVE may not be assoriated with the same files as the corresponding
fnodes in the fnode file. Attempting to recover fnodes under these
conditions is dangerous because the RESTOREFNODE command will
ovenvrite what may be a valid fnode in the fnode file.

While the backup and restore fnodes leature is a useful aid in attempting to recover data
on a volume, this capability is limited in scope. If you are troubleshooting your system,
you may want to back up the fnodes on the system disk before taking any action that may
risk the disk's integrity. You may also decide to back up the fnodes on a routine basis
(before or during each system shutdown, for instance) so that the R?SAVE file is always
relatively currcnt. However, under normal circumstances, where a volume is accessed and
modified frequently, backing up the fnodes after each modification is not practical. The
most practical solution is to back up the fnode file once a day using the BACKUP option
of the SHUTDOWN command.

Disk Verification J-J

BACKING LIP ANI) RESTORING FNOI)ES

Note that this feature is not intencled to provicle comprehensive protection from the loss
of data associated with damaged iRMX Il volume labels or fnode files. Rather, it offers a
tool that, when properly applied, can be useful in maintaining volume integrity in certain
situations. For comprehensive protection against loss of data use the Human Interface
BACKUP command.

3.2 USING FNODE BACKUP AND RESTORE

To use the fnode backup and restore feature, you must use Vers ion L l (or la ter) o f the
I Iuman Inter face FORMAT comnurnd anr l the Vers ion 2.0 (or la ter) o f the Disk
Ver i f icat ion Ut i l i ty . Used togethe r , these vers ions of the FORMAT command and the
Disk Ver i f icat ion Ut i l i ty enable you to

. format a vo lume to cre: ì te the backup f i le (R?SAVE)

. back up the fnor ies of any f i ìcs wr i t ten to the volume

. examine the contr ìn ts of thc h lckup f i ìe (R' ISAVE,)

. restore damaged fnodcs

. restore the volunie label

. edit fnodes or save fnodcs

'l his section describes hou, to perlìrrm each of thcse operations. A brief overview of the
openrt ion is fo l lowed by onc or nrore examples of a typ ica l implementat ion. ln the
exumples, b lue or holded text ind icates an entry you make f rom your terminal . Standard
type (th is is s tandard type) ind icates system ourpur ro your rerminal .

3.2.1 Creating the R?SAVE Fnode Backup File

I lyou intend to buckup the volume lrrbel ant l the l iodes on a volumc', you must f i rst create
the RISAVE backup f i le on the innermost t racks of the volume. To do so, you must
invoke Version 2.0 oî the Human Interface FORMAT command, speci fy ing the
RESERVE opt ion. NOTE THAT THE FORMAT COMMAND OVERWRITES ALL
OF THE DATA CURRE,NTLY ON THE DISK. Thereftrre, make a backup copy of any
î i les you wish to save using the Human lnterface BACKUP command.

Once the volume has been formtttecì, the R?SAVE file will contaìn a copy of the fnode
file inclutling the allocated liodes (R?SPACE,MAP, R?FNODEMAP, erc.). Therefore,
you need not back up the lìode file immediately after formatting the volume.

PROCEI)URE

From the I luman Interface, invoke the FORMAT command, speci fy ing the RESERVE
Darameter.

3-,1 Disk Verification

BACKING UP AND RESTORING FNODES

EXAMPLE

Assume that you have booted your system from a flexible diskette to format the system
disk. The command listed below formats the disk and creates the R?SAVE backuo file.
The initialized fnode fiìe is cooied into R?SAVE.

-attachdevlce carbo as :nydlsk: <CR>
-fornat ;aaydlskr 1l - 4 ftles = 3000 reserve (CR>

volume () will be fornatced as a NAÌ.IED volurne
granular i ty - L ,O24 nap star t - 7 ,859
lnter leave - 4
f i les * 3000
extensionsize - 3
save area reserved - yes
bad t rack/sector Ín format ion wr i t ten - no
volume s ize : 15 , 984K

1 l r t . L I r l l r I r - t - L l - t I

vol,u.ne fornalted

The disk has now been formatted. A file named R?SAVE has been reserved in the
innermost tracks of the disk. (If you use the Disk Verification Utility
DISPI-AYDIRECTORY command on the volume root fnode (fnode 6) or the Human
Interface DIR command with the invisible (l) option on the volume root directory, you
will find an fnode listed for R?SAVE.) R?SAVE contains a duplicate copy of the fnodes
in the fnode file. That is, R?SAVE contains eight allocated fnodes (R?SAVE,
R?SPACEMAP, R?FNODEMAP, etc.) and 2,999 unallocated fnodes. (Remember, the
R?SAVE fnode is allocated out of the 3,000 fnodes specilìed through the FILES
parameter.)

3.2.2 Backing up Fnodes on a Volume

DESCRTPTION

To back up the fnodes on a volume, you must have previously reserved the back up file
R?SAVE when the volume was lbrmatted. Thereatìer, any modification to the volume
(creating, writing to, or deleting a file) requires that the fnodes be backed up if the
R?SAVE file is to contain an accurate copy of the fnode file.

You can backup the fnode on a volume either by:

. Using the Human Interface SHUTDOWN command wirh the BACKUP option

. Using the BACKUPFNODES option of DISKVERIFY (see Chapter 2)

Disk Verification 3-5

BACKING UP AND RESTORING FNODES

EXAMPLE I

This example shows how to backup the fnode file using SHUTDOWN with the BACKUP
option. The BACKUP option allows you to copy the volume fnode file to its duplicate
file, R?SAVE, on any attached volume.

super-SHUTDoIIN B <CR>
***SYSTN{ I{ILL BE SHUTDOI.N IN 10 MINUTE(S)
:SD:, outstanding connect ions to device have been deletèd
***sl{uTDoI\rN ooMPLETED ***

R?SAVE now contains a duplicate copy of all fnodes in the fnode file.

EXAMPLE 2

This example shows how to use the BACKUPFNODE command of DISKVERIFY to
backup the fnode file. Assume that the system disk is attached as logical device:sd:. The
initial contents of the :sd: fnode file were copied to R?SAVE by the FORMAT command.
A file hasjust been written to the volume. An fnode for this file is entered in the fnode
file; however, no corresponding entry has been made in R?SAVE. The following
sequence of commands will copy all fnocles in the fnode file into the R?SAVE file.

super- d lskver l fy : sd: <CR>
i R M X I 1 D i s k V e r i f y U t i l i t y , V x . x
C o p y r i g h t < y e a r > I n t e l C o r p o r a t i o n
: s d : , o u t s t a n d i n g c o n n e c t i o n s t o d e v i c e
*backupfnodes <CR> or bf <CR>
fnode f l le backed up to save area

have been de le ted

R?SAVE now contains a duplicate copy of all fnodes (allocated and unallocated) in the
fnode file.

Note that in both cases you must reboot the system after backing up the fnodes on the
volume,

3.2.3 Backing up the Volume Label

The volume label is initially copied to R?SAVE when rhe volume is formatted. Since the
contents of the volume label do not change, no other volume label backup procedures are
reouired.

3-6 Disk Verification

BACKING UP AND RESTORING FNODES

3.2.4 Restoring Fnodes

DESCRIPTION

To restore fnodes on a volume, you must have previously reserved the backup file
R?SAVE when the volume was formatted. If damage has occurred to the fnode fiìe, you
can attempt to rebuild the file (or portions of it) by using the Disk Verification Utility
RESTOREFNODE command.

RESTOREFNODE enables you to restore a single fnode or a range of fnodes. You
designate the fnodes to be restored by entering the fnode numbers. The specified fnodes
in R?SAVE are copied into the corresponding fnodes in the fnode file.

Before restoring each fnode, RESTOREFNODE prompts you with the message "restore
fnode < fnode number > ?". To restore the fnode, you must enter "yes" or the letter "Y"
(either Y or y). Ifyou enter any other response, the fnocle will not be restored.

When restoring fnodes, you must be very careful to ensure that you are not overwriting a
valid fnode in the fnode file with an invalid fnode from R?SAVE. Be sure the volume has
not been modified since the fnodes were last backed up.

PROCEDURE

1. Invoke the Disk Verification Utility, using the logical device name of the volume to
be backed up.

2. When you receive the Disk Verification Utility prompt (*), enter the appropriate
Disk Verification Utiìity commands (VERIFY, DISPI-AYFNODE, etc.) to examrne
the fnodes file and determine which fnode must be restored.

3. Invoke the Disk Verification Utility RESTOREFNODE command to replace the
damaged fnodes. The Disk Verification Utility prompts you to confirm that the
proper fnode is being restored. Make sure you have specified the correct
hexadecimal number for the fnode, then enter the letter "Y" in response to the
prompr.

4. RESTOREFNODE returns the message "restored fnode < fnode number >" after
the fnode in the R?SAVE file has been written over the corresponding fnode in the
fnode file.

Disk Verification 3-7

BACKING UP AND RESTORING FNODES

EXAMPLE I

Assume that a disk drive is attached as logical device :sd:. The volume :sd: contains the
R?SAVE fnode backup file. You have not modified the disk since the fnodes were last
backed up. You suspect the fnode file has been damaged, so you use the Disk
Verification Utiliry to confirm your suspicions:

super- d iskvet l fy : sd: <CR>
iRl , fx I I Disk Ver i fy Ut i l i ty , Vx. x
Copyr lght <year) In te l Corporat ion
:sd: , outsÈanding connect ions to device have been deLeted
*verffy

After using the Disk Verification Utility to examine the structure of the disk, you find that
fnodes 9 through 0C have probably been destroyed. You then use rhe
RESTOREFNODE command to recover these fnodes.

Fnodes 09 through 0C in the R?SAVE file have been copied into fnode 09 through 0C in
the fnode file. Since the disk has not been modified since the last fnode backup, restoring
the damaged fnodes should now enable you to recover the data on the disk.

*restorefnode
restore fnode
resÈored fnode
restore fnode
rescored fnode
restore fnode
restored fnode
restore fnode
restored fnode

9, 0C <CR> or
9? Y <CR>

nunbe r : 9
OA? Y <CR>

nurnber: 0A
OB? Y <CR>

nurnber: 0B
QC? Y <CR>

number: 0C

rf 9 , 0C <CR>

3-8 Disk Verification

BACKING UP AND RESTORING FNODES

EXAMPLE 2

Assume the same initial conditions as Example 1 with the following exception: two files
have been modified since the last time the fnodes were backed up. ln the fnode file, the
new files are represented by fnodes 0D and 0E. Again, you suspect that the fnode file has
been damaged, so you use the Disk Verification Utility to check the condition of data on
the disk:

super- dfskvellfy : sd: <cR>
iRf . fx I1 Disk Ver i fy Ut i l i ty , Vx.x
Copyright <year> Intel Corpora!íon
:sd: , outstanding connect ions to device have been deleted
Jcverlfy

After using the Disk Verification Utility to examine the structure of the disk, you find that
fnodes 9 through 10 have probably been destroyed. You decide to use the
RESTOREFNODE command to recover these fnodes. You do not wish to restore fnodes
0D and 0E because they were not backed up. Since the data fields of fnodes 0D and 0E in
R?SAVE contain all zeros, you would be destroying possibly useful data in the
corresponding fnodes. You then use RESTOREFNODE to restore a range of fnodes that
includes 0D and 08. However, you intend to pass over the restoration of these two fnodes
by responding to the confirmation prompt with some character other than "Y."

*restorefnode
restore fnode
restored fnode
restore fnode
restored fnode
restore fnode
restored fnode
resÈore fnode
resÈored fnode
al locat ion b i t
restore fnode
a l l o c a t i o n b i t
restore fnode
festore fnode
restored fnode
restore fnode
restored fnode

9 , 1 0 < C R > o r r f 9 , 1 0
9? Y <CR>

nunber: 9
OA? Y <CR>

nunber: 0A
OB? Y <CR>

nurnber: 0B
0c? Y <cR>

number: 0C
not sec for saved fnode

0D? <cR>
not set for saved fnode

0E? n (CR)
OF? Y <CR>

nunber: 0F
10? Y <CR>

number: 10

Disk Verification l-9

BACKING UP AND RESTORING FNODES

Notice that because fnodes 0D and 0E were not allocated when they were backed up,
those fnodes in R?SAVE are unallocated. Therefore, the Disk Verification Utility
returns the "allocation bit not set for saved fnode" message. Since you do not wish to
restore this fnode, you respond to the confirmation prompt with a character other than

The R?SAVE fnodes 09 through 0C and fnodes 0F through l0 have been copied over the
corresponding fnodes in the fnode file. Fnodes 0D and 0E were not restored.

3.2.5 Restoring the Volume Label

DESCRIPTION

To restore the volume label, you must have previously reserved the backup file R?SAVE
when you formatted the volume. If the volume contains the R?SAVE file, a backup copy
of the volume label already exists. The FORMAT command automatically places a copy
of the volume label into R?SAVE when the file is created. Thereafter, the contents of the
volume label do not change and you can restore the label without fear of destroying data
in the existing label.

To restore the volume label, you must invoke the Disk Verification Utility using the
logical device name of the appropriate volume. If the volume label is corrupted, the Disk
Verification Utility attempts to use the backup copy of the volume label in R?SAVE.
When the backup label is used, the Disk Verification Utility issues a message that reads
"duplicate volume label used." If this message appears when the Disk Verification Utility
is activated, then the volume label is damaged. To restore the volume label, enter the
Disk Verification Utility RESTOREVOLUMELABEL command. The current volume
label will be overwritten with the volume label conv from R?SAVE.

PROCEDURE

1. Invoke the Disk Verification Utility, using the logical device nante of the volume to
be backed up.

2. If the "duplicate volume label used" message appears, the volume label must be
restored. Enter the Disk Verification Utiliry RESTOREVOLUMEI-ABEL
command.

3. When the volume label has been restored, the Disk Verification Utility returns the
messape "volume label restored."

3-10 Disk Verification

BACKING UPAND RESTORING FNODES

EXAMPLE

Assume that a disk drive is attached as logical device :sd:. The volume :sd: contains the
R?SAVE fnode backup file. When you attempt to aocess files on :sd:, the system returns
an E$ILLEGAL_VOLUME message. You suspect that the volume label may be
damaged. You decide to check your suspicions using the Disk Verification Utility.

super- d lskver l fy : sd: <CR>
iRMx I1 Disk Ver í fy Ut i l i ty , vx.x
Copyr ight <year> ln te l Corporat lon
:sd: , outstanding connecÈions to device have been deleted
dupl icate vo lune label used

The "duplicate volume label used" message confirms that the volume label has been
damaged. You restore the volume label usìng the RESTOREVOLUMEI-ABEL
command.

*re s torevohime labè I <cR>
volune labeI restored

o r rvl- <CR>

The original volume label has been overwritten with the duplicate copy from the R?SAVE
file. Attempts to access files on volume :sd: should now be successful.

3.2.6 Displaying R?SAVE Fnodes

DESCRIPTION

Any fnode (both allocated and unallocated) in the R?SAVE file can be examined by using
the Disk Verification Utility DISPIAYSAVEFNoDE command. The Disk Verification
Utility wiÌl display vital information abouî the fnode (total blocks, total size, block
pointers, parent node, etc.). The fnode is displayed in the same fbrmat used by the
DISPIAYFNODE command.

To display an R?SAVE thode, enter the DISPI-AYSAVEFNODE command and specify
the hexadecimal number of the fnode to be disnlaved.

Disk Verilication 3 -11

tsACKING UP AND RESTORING FNODES

PROCEDURE

1. Invoke the Disk Verification Utility using the logical device name of the
appropriate volume.

2. When you receive the Disk Verification Utility prompt (*), enter the Disk
Verification Utility DISPI-AYSAVEFNODE command. Speci! the hexadecimal
number of the fnode to be displayed.

3. The Disk Verification Utility will return with an fnode display.

EXAMPLE

Assume that you cannot access a file on a disk attached as :sd:. You suspect that the
fnode file may be damaged. By entering the Disk Verification Utility and displaying the
file's directory, you find that the file you were unable to access is represented by fnode
3C8. You use DISPT AYFNODE to display fnode 3C8, but you are not confident of the
data you see. Since the fnode for the file has been backed up since the file was last
modified, you decide to use data in the R?SAVE fnode to examine the fnode file. The
following command displays the data for fnode 3C8 in R?SAVE.

3-12 Disk Verification

super- dlskverlfy : sd: <Cn>
iRHX I I Disk Ver i fy UEi l i ty , Vx.x
Copyr tghc <year> Inte l CÒrporat ion
:sd: , outstandlng connect ions to devlce have been deleted

*displaysavefnode 3CB <CR> or dsf 3C8 <CR>

Fnode nurobe r - 3C8 (saved)
path narnè: ^SER/I{YFILE

f lags
cype

a í I ^ ^ - ^ ^ / - . ^ 1 - - - ^r r r E É r d ! , /

owîer
create , access , nod t ixnes

tota l s lze, to ta l - b locks
h l n n l r n n i n t o r / 1 \

h ì a n l r n n i n r o r / ? \

} l I a n l t n a i n t p r 1 1 \

u r u L K P U r r r L r r \ + , ,

block pointer (5)
h ì n n L n n i n r o r l 6 l

h l .) . k n . l í n r é r l 7 l

h l o e l r n a i n r a r l f l \

t h i s s i z e
id count

a e c e s s o r (L)
a c c e s s o r (2)
a c c e s s o r (3)

n 4 r ó h t n h a n 1 z < , r m

aux (*)

002 5
08 -> dara f1lè
01
0001
00000000, 00000000, 00000000
0 0 0 0 2 D 0 1 , 0 0 0 0 0 0 0 c
0 0 0 c , 0 0 4 9 1 0
0000, 000000
0000 , 000000
0 0 0 0 , 0 0 0 0 0 0
0 0 0 0 , 0 0 0 0 0 0
0 0 0 0 , 0 0 0 0 0 0
0 0 0 0 , 0 0 0 0 0 0
0 0 0 0 , 0 0 0 0 0 0
00003000
0001
0F , 0001
00 , 0000
00 , 0000
0 3 c 4 , 0 0 0 0
000000

BACKING UP AND RESTORINC FNODES

You can modify the contents of the both the original fnode file and the saved fnode iile by
usins either the EDITFNODE or EDITSAVEFNODE commands.

Disk Verification 3-r3

STRUCTURE OF A
APPENDIX A

NAMED V-OL_UME

A.1 INTRODUCTION

This appendix descr ibes the structure of an iRMX I I volume that contains named 1i les. I t
is provided as reference information to help you interpret output from the DISKVERIFY
commands or to help you create your own formatt ing ut i l i ty programs.

This appendix is for programmers u' i th experience in reacl ing and wri t ing i rcturr l volume
information. It does not attempt to teach these functions.

4.2 VOLUME STRUCTURE

This appendix discusses the structure of named f i le volumes in c letai l . I t covers the
structure of directory files and the concepts of long and short lilcs. It also includes
information on

o ISO Volume Lahel

. iRMX VoÌume l-abel

. fnode file

r volume free space map file

r free fnodes map file

. bad blocks map file

o root directory

The blocks reserved for the Bootstrap Loader (Figure A- I) are not tiiscussed. Bootstrîp
Loader blocks are automatically included on a new volume when you format a volume
with the FORMAT command. Refer to the FORMA'| command for a clescription of the
bootstrap opt ion.

Figure A- 1 illustrates the general structure of a named lile volume.

Disk Verilication A - l

STRUCTURE OFA NAMED VOLUME

l s o

l o r e r r e o s r l s r , , - . 1 , - . r s r r J r r r a

x t i45

Figure A- l. General Structure of Named Volumes

A.3 VOLUME LABELS

Each iRMX II named volume contains ISO (International Standardization Organization)
label information as well as iRMX II label information and files. This section describes
the structure of ISO volume labels and iRMX II volume labels. both of which must be
Dresent on a named volume.

A-2 Disk Verifìcation

STRUCTURE OF A NA]\ IED VOLUI\TE

4.3.1 ISO Volume Labe!

The ISO volume label is recorded in absolute byte positions 761Ì through 895 of the
volume (for example, sector 07 of a single-density flexible diskette). The structure of thrs
volume label (in PL/M notation) is:

DECI.ARE
1SOVOLTABEL STRUCTURE(

T .ABEL$ ID(3) BYTE,
RESERVED$A BYTE,
VOL$NAI"ÍE(6) BYTE,
VOL$STRUC BYTE,
RESERVED$B (6O) BYTE,
REC$SIDE BYTE,
RESERVED$C (4) BYTE,
I LEAVE (2) BYTE,
RESERVED$D BYTE,
ISO$VLRSION BYTE,
RESERVED$E (48) BYTE) ;

Where:

IABEUID(3) Label ident i f ier . For named f i le volumes, this f ie ld contains the
ASCII characters "VOL".

RESERVED$A Reserved field containing the ASCII character " 1".

VOL$NAME(6) Volume name. This f ie ld can contain up to s ix pr intable ASCII
characters, left justified and space filled. A vaÌue of all spaces
implies that the volume name is recorded in the iRMX II Volume
Label (absolute byte positions 3lt4-393),

VOII$STRUC For named file volumes, this f ield contains the ASCII character
"N", indicatìng that th is volume has a non-ISO f i le structure.

RESERVED$B(60) Reserved field containing 60 bytes of ASCII spaccs.

REC$SIDE For named f i le volumes, this f ie ld contains the ASCII character " l "
to indicate that only one side of the volume is to be recorded.

RESERVED$C(4) Reserved field containing four bytes of ASCII spaces.

ILEAVE(2) Two ASCII digits indicating the interleave fìrctor for the volume, in
decimal. ASCII digits consist of the numbers 0 through 9. When
formatting named volumes, you should set this field to the sanìe
interleave factor that you use when physically formatting the
volume.

RESERVED$D Reserved field containing an ASCII space.

Disk Verification A-.1

STRUCTURE OF A NAMED VOLUME

ISO$VERSION For named file volumes, this field contains the ASCII character "l",
which indicates ISO version number one.

RESERVED$E(48) Reserved field containing 48 ASCII spaces.

A.3.2 IRMX@ l lVolume Label

The iRMX II Volume Label is recorded in absolute byte positions 384 through 5l I of the
volume (sector 04 of a sing.le density tìexible diskette). The sîructure of thìs volume label
is as follows:

DECI-ARE
RMX9VOLUME9INFORMATION STRUCTURE(

vOL$NA-Ì"IE (10)
FI"AGS
FILE$DRIVER
VOL$CRAN
VOL$ S I ZE
MA.\$FNODE
FNODE$ START
FNODE$ S I ZE
ROOT$FNODE
DEV9CRAN
INTERLEAVE
TRACK$ SKEW
SYSTEM$ I D
SYSTEM$NA] 'JE(l2)
D E V T C E $ S P E C T A L (8)

BYTE ,
BYTE ,
BYTE ,
WORD ,
DWORD ,
WORD ,
DWORD ,
WORD ,
WORD ,
WORD ,
WORD ,
WORD ,
WORD ,
B Y T E ,
B Y T E) ;

where:

voL$NAME(10)

FLAGS

Volume name in printable ASCI I characters, left justified and zero
filled.

BYTE that lists the device charrcteristics for automatic devic"
recognition. The individual bits in this BYTE indicate the
following characteristics (bit 0 is rightmost bit):

Bi t Meaninc

0 VF$AUTO flag. When set to one, this bit indicates
that the FI-AGS byte contains valid data for
automatic device recognition. When set to zero, it
indicates that the remaining f lags contain
meaningless data.

A-4 Disk Verification

STRUCTURE OF A NAMED VOI,UME

1 VF$DENSITY flas. This bit inclicates the
recording density òfthe volume. When set to one,
it indicates modified frequency modulation (MFM)
or tlouble-density recording. When set to zero, it
indicates frequency modulation (FM) or single-
density recording.

2 VF$SIDES f las. This bi t indicates the number of
recorcJing sides on the volume. When set to one, it
indicates a double-sided volume. When set to zero,
it indicates a single-sided volume.

3 VF$MINI flau. This bit indicates the size of the
recording meAia. When set to one, it indicates a
5 I /4-inch volume. When set to zero, it indicates an
8-inch volume.

4 VFNOTFLOPPY. This bit indicates the type of
disk you are using. When this and Bit 0 are set to l,
it indicates a Winchester disk.

5-7 Reserved

FILE$DRIVER Number of the file driver used with this volume. For named file
volumes. this field is set to four.

VOLIGRAN Volumo granularity, specilìed in bytes. This value must be a
multiple of the device granularity. It sets the size of a logical
device block, also calÌed a volume block.

VOII$SIZE Size of the entire volume, in bytes.

MAX$FNODE Number of fnodes in the fnode file. (Refer to the next section for a
description of fnodes.)

FNODE$START A 32-bit value that represents the number of the first byte in the
fnode file (byte 0 is the first byte of the volume).

FNODE$SIZE Size of an fnode, in bytes.

ROOT$FNODE Number of the fnode describing the root directory. (Refer to the
next section for further information.)

DEV$GRAN Device granularity of all tracks except track zero (which contains
the volume label). This field is important only when the system
requ i res a utomatic device recognit ion.

INTERLEAVE Block interleave factor for this volume. This value indicates the
physical distance, in blocks, between consecutively-numbered
blocks on the volume. A value of one indicates that consecutively-
numbered blocks are adjacent. A value ofzero indicates an
unknown or undefined interleave factor.

Disk Verification A-5

STRUCTURE OF A NAMED VOLT]ME

TRACK$SKEW

SYSTEM$ID

SYSTEM$NAME(12)

Character

F

U

Offset, in bytes, between the first block on one track and the

first block on the next track. A value of zero indicates that all
tracks are identical.

Numerical code identifying the operating system that formatted
the volume. The followìng codes are reserved for Intel
operating systems:

Operating Svstem

iRMX I , I I
iRMX lt{i
iNDX

Current ly, the iRMX I I Operat ing System places a zero in this
f ie ld.

Name of the operat ing system that formatted the volume, in
printable ASCI I characters, left justified and space filled.
Zeros (ASCIl nulls) indicate that the operating system is
unknown. The iRMX Il Operating System currently places
several pieces of informat ion into this f ie ld, as fol lows:

. The leltmost eight bytes of this field contain the ASCII
chrìriìcters "iRMX IL3' to identify the operating system.
The iRMX IL I Operat ing System f i l led this f ie ld with
zeros.

. The next byte is an ASCII character that ident i f ies the
program that formatted the volume. The following
characters appÌy:

Formatting Program

Human Inter lhce FORMAT command

iRMX I Fi les Ut i l i ty (used pr ior to
iRMX r .7)

I f the formatt ing program is unable to provide this informat ion,
it places an ASCII space in this field.

. The Human Inter lace FORMAT command that is part of
iRMX I l .3 places the characters "03 " in the Ìast 3 bytes of
this field.

Code

0 - (l F h
10h - lFh
20h - 2Fh

A-6 Disk Verification

STRUCTURE OF A NAMED VOLU]\IE

DEVICE$SPECIAL(II) Reserved for special device-specific information. When no
device-specific information exists, this field must contain zeros.
For example, if the device is a Winchester disk with an iSBC
214 /215G controller, the iRMX lI Operating System imposes a
structure on this field and supplies the following information:

SPECIAL STRUCTURE (
CYLINDERS WORD,
FIXED BYTE,
REMOVABLE BYTE,
SECTORS BYTE,
SECTOR SIZE WORD,
ALTERNATES BYTE);

where:

CYLINDE,RS Total number of cylinders on the disk
drive.

FIXED Number of heads on the fixed disk or
Winchester disk.

REMOVABLE Number of heads on the removable disk
cartridge.

SECTORS Number of sectors in a track.

SECTOR SIZE Sector size, in bytes.

ALTERNATES Number of alternate cylinders or spare
sectors on a track.

The remainder of the Volume Label (bytes 440 through 5 I I) is reserved and must be set
to zero.

Disk Verification A-7

STRTICTURE OF A NAMEI) VOT,T]ME

4.4 INITIAL FILES

Any mechanism that formats iRMX II named volumes must place seven files, with the
option of an eighth file, on the volume during the format process. These files are

Fi le

fnode fiìe
volume label file
volume free space map file
free fnodes map file
bad blocks file
root directory
space accounting file,
Optionally, duplicate volume label file

Fi le Name

R?VOLUMELABEL
R?SPACEMAP
R?FNODEMAP
R?BADBLOCKMAP

R?SAVE

The first of these fiìes, the fnode file, contains information about all of the files on îhe
volume. The general structure of the fnode file is discussed first. Then all of the files are
cliscussed in terms of their fnode entries and their functions.

A.4.1 Fnode File

A data structure called a file descriptor node (fnode) describes each file in a named file
volume. AII the fnodes for the entire volume are grouped together in a file called the
înode file. When the I/O System accesses a file on a named volume, it examines the
iRMX II Volume Label (described in the previous section) to determine the location of
the fnode f i le, ancl then examines the appropr iate fnode to determine the actual locat ion
of the fiÌe.

When a volume is formatted, the fnode file contains seven allocated fnodes and any
number of unallocated fnodes. The original number of unallocated fnodes depends on the
FILES parameter of the FORMAT command. These allocated fnodes represent the
fnode file, the volume label file, the volume free space map file, the free fnodes map file,
the bad blocks file, the root directory, and the space accounting file. (Later sections of
this appendix describe these lìles.) The size of the fnode fiÌe is determined by the number
of fnodes that it contains. The number of fnodes in the fnode file also determines the
number of files that can be created on the volume. The number of files is set when vou
format the st .orage mcdium

A-8 Disk Verification

The structure of an individual fnode in a named file volume is as follows:

DECIARE
FNODE STRUCTURE (

FIAGS WORD,
TYPE BYTE,
GRAN BYTE,
OWNER \IORD,
CR$TIME Di tORD,
ACCESS$TIME DWORD,
MOD$TIME DWORD,
TOTAL$SIZE DWORD,
TOTAL$BLKS DI,/ORD,

POINTR(40) BYTE,
THIS$SIZE DLIORD,
RESERVED$A WORD,
RESERVED$B WORD,
rD$couNT \,roRD,

A C C (9) B Y T E ,
PARENT WORD,
A U X (*) B Y T E) ;

where:

STRUCTURE OF A NAMED VOLUME

A WORD that defines a set of attributes for the file. The
individual bits in this word indicate the followins attributes (bit 0 is
the r ightmost bi t) :

Meaning

Alìocation status. If set to one, this fnode
describes an actual file. If set to zero, this
fnode is available for allocation. When
formatt ing a volumc. this bi t is set to one in
the six allocated fnodes. In other fnodes, it
is set to zero.

FT-AGS

Bi t

0

Disk Verilication A-9

STRUCTURE OF A NAMED VOLUME

7-r5

TYPE

Long or short file attribute. This bit
describes how the PTR fields of the fnode
are interpreted. If set to zero, indicating a
short file, the PTR fields identi$ the actual
data blocks of the file. If set to one,
indicating a long file, the PTR fields identify
indirect blocks (described later in this
section). When formatting a volume, this bit
is always set to zero, since the initial files on
the volume are short files.

Reserved bit, always set to one

Reserved bits, always set to zero.

Modification attribute. Whenever a file is
modif ied, th is bi t is set to one. Ini t ia l ly,
when a volume is formatted, this bit is set to
zero in each fnode.

Deletion attribute. This bit is set to one to
indicate that the file is a temporary file or
that the file will be deleted (the deletion
may be postponed because additional
connections exist to the file). lnitially, when
the volumc is f ormatted, th is hi t is srr r t l
zero in each fnode.

Reserved bits, always set to zero.

Type of file. The following are acceptable qpes:

Tlpe

fnode file
volume free space map
free fnodes map
space accounting file
device bad blocks fle
directory file
data f i le
voÌume label file

During system operation, only the I/O System can aocess file types
other than F|$DATA and F-|$DIR. These file tvnes are discussed
later in this section.

Fiìe granularity, specifìed in multiples of the volume granularity.
The default value is L This value can be ser to anv multiole of the
volume sranularitv.

2

3-4

5

Mnemonic Value

FT$FNODE O
F-T$VOLMAP 1
FT$FNODEMAP 2
FI$ACCOUNT 3
FT$BADBLOCK 4
FT$DIR 6
F-T$DATA 8
F'T$VLI,BEL 9

GRAN

A-r0 Disk Verilìcation

STRUCTURE OF A NAMED VOLUME

OWNER User lD of the owner of the file. For the files initially present on
the volume, this parameter is important only for the root directory.
For the root directory, this parameter should specify the user
WORLD (FFFFH). The l/O System does not examine this
parameter for the other files (fnode file, volume free space map
file, free fnodes map file, bad blocks file, volume label), so a value
of zero can be specified.

CR$TIME Time and date that the file was created, expressed as a 32-bit value.
This value indicates the number of seconds since a fixed, user-
determined point in time. By convention, this point in time is
12:00, January l, 1978. For the files initially present on the
volume, this parameter is important only for the root directory. A
zero can be specified for the other files (fnode file, volume free
space map file, free fnodes map file, bad blocks file, volume label.)

ACCESS$TIME Time and date of the last fi-le access (read or wrìte), expressed as a
32-bit value. For the files initially present on the volume, this
parameter is important only for the root directory.

MOD$TIME Time and date of the last file modification, expressed as a 32-bit
value. For the files initiatly present on the volume, this parameter
is important only for the root directory.

TOTAL$SIZE Total size, in bytes, of the actual data in the file.

TOTAII$BLKS Total number of volume blocks used by this file, including indirect
block overhead. A volume block is a block of data whose size is the
same as the volume granularity. All memory in the volume is
divided into volume blocks, which are numbered sequentially,
starting with the block containing the smallest addresses (block 0).
Indirect blocks are discussed later in this section.

POINTR(4O) A group of BYTES on which the following structure is imposed:

PTR(8) STRUCTURE (
NUMSBLOCKS WORD
BLK$PTR(3) BYTE) ;

This structure identifies the data blocks of the fììe. These data
blocks may be scattered throughout the volume, but together they
make up a complete file. Ifthe file is a short file (bit 1 ofthe
FTAGS field is set to zero), each PTR structure identifies an actual
data bÌock. In this case. the fields of the PTR structure contain the
followins:

Disk Verification A-l l

STRUCTURE OF A NAMED VOLUME

THIS$SIZE

RESERVED$A

RESERVED$B

ID$COUNT

ACC(e)

NUM$BLOCKS Number of volume blocks in the data block.

BLK$PrR(3) A 24-bit value specifying the number of the
first volume block in the data block.
Volume blocks are numbered sequentially,
starting with the block with the smallest
address (block 0). The bytes in the
BLK$trtR array range from least significant
(BLK$mR(0)) to most significant
(BLK$PrR(2)).

If the file is a long file (bit I of the FIAGS field is set to one), each
PTR structure identifies an indirect block (possibly consisting of
more than one contiguous volume block), which in turn identifies
the data blocks of the file. In this case. the fields of the PTR
structure conta in the following:

NUM$BLOCKS Number of volume blocks pointed to by the
indirect block.

BLK$FrR(3) A 24-bit volume block number of the
indirect block.

Indirect blocks are discussed later in this section.

Size, in BYTES, of the total data space allocated to the file. This
figure does not include space used for indirect blocks, but it does
include any data space allocated to the file, regardless of whether
the file fil ls that allocated space.

Reserved field, set to zero.

Reserved field. set to zero.

Number of access-ID pairs declared in the ACC(9) field.

A group of BYTES on which the following structure is imposed:

ACCESSOR(3) STRUCTURE(
ACCESS BYTE,
I D W O R D) :

This structure contains the access-ID pairs that define the access
rights for the users of the file. By convention, when a file is
created, the owner's ID is inserted in ACCESSOR(O), along with
the code for the access rights. The fields of the ACCESSOR
st ructu rc conta in the fo lkrwing.

A-12 Disk Verifìcation

STRUCTURE OF A NAMED VOLUME

ACCESS Encoded access rights for the file. The
settings of the individual bits in this field
grant (if set to one) or deny (if set to zero)
permission for the corresponding operation.
Bit 0 is the rightmost bit.

Data File Directory
Bit Onerat ion Onerat ion

0 delete delete
I read list
2 append add entry
3 update change entry
4-7 reserved (must be 0)

PARENT

ID ID of the user who gains the corresponding
access perm ission.

Fnode number of directory file that lists this file. For files initially
present on the volume, this parameter is important only fbr the
root directory. For the root directory, this parameter should
specify the number of the root directory's own fnode. For other
files (fnode file, volume free space map file, free fnodes map file,
bad blocks file, volume label) the t/O System <loes not examine this
f ie ld.

Auxiliary BYTES associated with the file. The named lile driver
does not interpret this field, but the user can access it by making
GET$EXTENSION$DATA and SET$EXTENSION$DATA
system calls. The size of this field is determined by the size of the
fnode, specified in the iRMX II Volume Label. If you use the
Human lnterface FORMAT command or create your own utility to
format a volume, you can make this field as large as you wish;
however, a larger AUX field implies slower file access.

A U X (-)

Certain fnodes designate special files that appear on the volume. The following sections

discuss these fnodes and the associated files.

Disk Verincation A-13

STRUCTURE OF A NAMED VOLUME

4.4.2 Fnode 0 (Fnode File)

The first fnode structure in the fnode file describes the fnode file itself. This file contains
all the fnode structures for the entire volume. It must reside in contisuous locations in the
volume. The fields of fnode 0 must be set as follows:

. The bits in the FIAGS field are set to the following (bir 0 is the rightmost bit):

Bi t Value Descr int ion

0 1 Allocated file
1 0 Short file
2 1. Primary fnode
3-4 0 Reserved bits
5 0 Initial status is unmodified
6 0 File will not be deleted
7-15 0 Reserved bits

. The TYPE field is set to FT$FNODE.

. The GRAN field is set to l.

r The OWNER field is set to the ID of the user who formatted it.

. The CR$TIME, ACCESS$TIME, and MOD$TIME fields are set to the time the
system was formatted.

. Since the iRMX II Volume Label specifies the size of an individual fnode structure
and the number of fnodes in the fnode file, the value specified in the TOTAL$SIZE
field of fnode 0 must equal the product of the values in the FNODE$SIZE and
MAX$FNODE fields of the iRMX II Volume Label.

. The TOTAL$BLOCKS field specifies enough volume blocks to accounr for the
memory listed in the TOTAI-I$SIZE field. The product of the value in the
TOTAL$BLOCKS field and the volume granularity equals the value of the
THIS$SIZE field, since the fnode file is a short file.

. Since the fnode file must reside in contiguous locations in the volume, only one pTR
structure describes the location of the file. The value in the NUM$BLoGKS field of
that PTR structure equals the value in the TOTALSBLOCKS field. The BLK$pTR
field indicates the number of the first block of the fnode file.

. The ID$COUNT field is set to one.

A-14 Disk Verification

STRUCTURE OF A NAMED VOLUME

A.4.3 Fnode 1 (Volume Free Space Map File)

The second fnode, fnode 1, describes the volume free space map file. The TYPE field for
fnode I is set to FT$VOLMAP to designate the file as such.

The volume free space map file keeps track of all the space on the volume. It is a bit map
of the volume, in which each bit represents one volume block (a block of space whose size
is the same as the volume granularity). If a bit in the map is set to one, the corresponding
volume block is free to be allocated to any file. If a bit in the map is set to zero, the
corresponding volume block is already allocated to a file. The bits of the map correspond
to volume blocks such that bit n of byte m represents volume block (8 . m) + n. The bits
in the remaining space allocated to the map file (those that do not correspond to actual
blocks of memory) must be set to zero.

When the volume is formatted, the volume free space map file indicates that the first 3328
bytes of the volume (the label and bootstrap information) plus any files initially placed on
the volume (fnode file, volume free space map file, free fnodes map file, bad blocks file)
are allocated.

A.4.4 Fnode 2 (Free Fnodes Map File)

The third fnode, fnode 2, describes the free fnodes map file. The TYPE field of fnode 2 is
set to FI$FNODEMAP to designate the lile as such.

The free fnodes map file keeps track of all the fnodes in the fnodes file. It is a bit map in
which each bit represents an fnode. If a bit in the map is set to one, the corresponding
fnode is not in use and does not represent an actual file. If a bit in the map is set to zero,
the corresponding fnode already describes an existing file. The bits in the map
correspond to fnodes such that bit n of byte m represents fnode number (8 * m) + n. The
bits in the remaining space allocated to the map file (those that do not correspond to
actual fnode structures) must be set to zero.

When the volume is formatted, the free fnodes map file indicates that fnodes 0, 1, 2, 3,4,
5, and 6 are in use. If other files are initially placed on the volume, the free fnodes map
file must be set to indicate this as well.

A.4.5 Fnode 3 (Accounting File)

When a volume is formatted, fnode 3 is set up representing a file of type FT$ACCOUNT
The fnode is set up as allocated, and of the indicated type, but it does not assign any
actual snace for the file.

Disk Verification A-15

STRUCTURE OFA NAMED VOLUME

A.4.6 Fnode 4 (Bad Blocks Map File)

The fifth fnode, fnode 4, contains a map of all the bad blocks on the volume. The TYPE
field of fnode 4 is set to FfiBADBLOCK to indicate this.

The bad block map file keeps track of all the bad blocks on the volume. It is a bit map of
the volume, in which each bit represents one volume block (a block of space whose size is
the same as the volume granularity). If a bit in the map is set to zero, the corresponding
volume block has no bad blocks and may be allocated to any file. If a bit in the map is set
to one, the corresponding volume block is bad. If a block is marked "bad", it must also be
marked allocated in the volume free space file. The bits of the map correspond to volume
blocks such that bit n of byte m represenîs volume block (8 * m) + n.

A.4.7 Fnode 5 (Volume Label File)

This fnode contains the first 3328 bytes of any volume. The inlbrmation in this file
defines the volume as a whole. The TYPE field of this fnode is set to FTSVIABEL. You
cannot write to this fnode.

4.4.8 Fnode 6 (Root Directory)

The root directory is a special directory file. It is the root of the named file hierarchy for
the volume. The iRMX II Volume Label specifies the fnode number of the root directory.
The root directory is its own parent. That is, the PA RE NT field of its fnode specifies its
own fnode number.

The root directory (and all directory files) associates file names with fnode numbers. It
consists of a number of entries that have the followins structure:

DECI^ARE
DIR$ENTRY STRUCTURE (

FNODE WORD,
coMPoNENT(14) BYTE);

where:

FNODE Fnode number of a file listed in the directory.

COMPONENT(14) A string of ASCII characters that is the final component of the
path name identifying the file. This string is left justified and null
padded to 14 characters.

When a file is deleted, its fnode number in the directorv entry is ser ro zero.

A-r6 Disk Verification

STRUCTURE OFA NAMED VOLUME

4.4.9 Fnode 7 (R?SAVE)

The R?SAVE is a file which may be optionalìy created by the RESERVE option of the
FORMAT command. The FORMAT command creates a file named R?SAVE, which
contains the duplicate volume label, in the innermost track of the volume. A copy of the
iRMX II volume label is placed in the front (that is, the physical end) of the file and an
fnode is allocated for R?SAVE in the fnode file. (The fnode for the R?SAVE file is
allocated out of the fnodes reserved through the FILES parameter of the FORMAT
command.)

The FORMAT command creates a backup of the fnode file in its initialized state.
R?SAVE is not subsequently updated as files are written to or deleted from the volume.
Therefore, you will have to use the BACKUPFNODES Disk Verification Utility
command or the BACKUP option of the Human Interface SHUTDOV/N command to
back up the fnode file at regular intervals.

4.4.10 Other Fnodes

When formatting a volume, no other fnodes in the fnode file represent actual files. The
remaining fnodes must have bit zero (allocation status) set to zero.

4.5 LONG AND SHORT FILES

A file on a volume is not necessariìy one contiguous string of bytes. In many cases, it
consists of several contiguous blocks of data scattered throughout the volume. The fnode
for the file indicates the locations and sizes of these blocks in one of two ways, as short
files or as long files.

4.5.1 Short Files

lf the file consists of eight or less distinct blocks of data, its fnode can specify it as a short
file. The fnode for a short file has bit 1 of the FLAGS field ser ro zero. This indicates to
the I/O Systern that the PTR structures of the fnode identify the actual data blocks that
make up the file. Figure A-2 illustrates an fnode for a short file. Decimal numbers are
used in the figure for clarity.

Disk Verilication A.-17

STRUCTURE OF A NAMED VOLUME

tofaLlstzÉ

-l--l
t 1

d ! , ! b , o c \ t]

l-t
l t
IJ

3

P-rR (0)

- T ; -
L

P r R (r t

f - -

:

' fxrsisrzE

Figure A-2. Shof File Fnode

As you can see in Figure A-2, fnode 8 identifies the short file. The file consists of three
distinct data blocks. Three PTR structures give the locations of the data blocks. The
NUM$BLOCKS field of each PTR structure gives the length of the data block (in volume
blocks), and the BLK$PTR field points to the first volume block of the data block.

A-18 Disk Verification

STRUCTURE OF A NAMED VOLUME

The other fields shown in Figure A-2 include TOTAII|BLKS, THIS$SIZE, and
TOTAUSIZE. The TOTAT$BLKS field specifies the number of volume blocks allocated
to the file, which in this case is eight. This equals the sum of NUM$BLOCKS values (3 +
2 + 3), since short files use all allocated space as data space.

The THIS$SIZE field specifies the number of bytes of data space allocated to the file.
This is the sum of the NUM$BLOCKS values (3 + 2 + 3) multiolied bv the volume
granularity (1024) and equals 8192.

The TOTAI-i|SIZE field specifies the number of byes of data space that the file occupies
(designated in Figure A-2 by the shaded area). As you can see, the file does not occupy
all the space allocated for it, so the TOTAL|$SIZE value (tì000) is not as large as the
THIS$SIZE value.

4.5.2 Long Files

where:

NBLOCKS

BLK$FTfR

If the file consists of more than eight distinct blocks of data, its fnode must specify it as a
long file. The fnode for a long file has bit 1 of the FTAGS fieltl set to one. This tells the
I/O System that the PTR structures of the fnode identify indirect blocks. The indirect
blocks identiîy the actual data blocks that make up the file.

Each indirect block contains a number of indirect pointers, which are structures similar to
the PTR structures. However, an indirect block can contain more than eight structures
and thus can point to more than eight data blocks. In fact, an indirect block can consist of
more than one volume block; however, all volume blocks of an indirect block must be
contiguous. The structure of each indirect pointer is as follows:

DECI.ARE
IND$PTR STRUCTURE (

NBLOCKS BYTE,
BLK$PTR BLOCK$NUM);

Number of volume blocks in the data block.

A 24-bit volume block number of the first volume block in the data
block. Volume blocks are numbered sequentially throughout the
volume, starting with the block with the smalìest address (block 0).

The Operating System determines how many indirect pointers there are in an indirect
block by comparing the NBLOCKS fields of the indirect pointers with the
NUM$BLOCKS field of the fnode. It assumes that the indirect block contains as many
pointers as necessary for the sum of the NBLOCKS fields to equal the NUM$BLOCKS
field.

Disk Verification A-19

STRUCTURE OF A NAMED VOLUME

Figure A-3 illustrates an fnode for a long file. Decimal numbers are used in the figure for

clarity.

Figure A-3. I-ong File FNODE

t
- . = >

F ' 1
L J

i\[__l

t tr . 1
t t

r o l u m e 9 ' ! ^ u l ! " i r i 0 ? 4

I

, l-lr-r t l
L__l L_l

t '[",;i.

t - ,1

loraLtsrzE

roraLSaLxs
2 1

pri ror . : '
zol

r H r s s s r z E

41ry

A-20 Disk Verification

STRUCTURE OF A NAMED VOLUME

As you can see in Figure A-3, fnode 9 identifies the long file. The actual file consists of
nine distinct data blocks. One PTR structure and an indirect block give the locations of
the data blocks. The NUM$BLOCKS field of the PTR structure contains the number of
volume blocks pointed to by the indirect block. The BLK$PTR field points to the first
volume block of the indirect block.

In the indirect block, each NBLOCKS field gives the length of an individual data block,
and each BLK$PTR field points to the first volume block of a data block.

Figure A-3 also lists the TOTAI-||BLKS, THIS$SIZE, and TOTAL$SIZE values, which
are more complex than for a short file. The TOTAT$BLKS field specifies the number of
volume blocks allocated to the file, which in this case is 21. Of these 21, 20 are used for
actual data storage and 1 is used for the indirect block.

The THIS$SIZE field specifies the number of bytes of data space allocated to the file, and
does not include the size of the indirect block. This size is equal to the NUM$BLOCKS
value (20) or the sum of NBLOCKS values in the indirect block (2 + | + 2 + 3 + 2 + 3 +
3 + 2 + 2 = 20) multiplied by the volume granularity (1024) and equals 20480.

The TOTATJSIZE field specifies the number of bytes of data space that the file currently
occupies (designated in Figure A-3 by the shaded areas). As you can see, the file does not
occupy all the space allocated for it, so the TOTALJSIZE value (20300) is not as large as
the THIS$SIZE value.

4.6 FLEXIBLE DISKETTE FORMATS

The flexible diskette device drivers supplied with the iRMX II Basic I/O System can
support several diskette characteristics, listed in Tables A-1 and A-2.

Table A-1. 8-Inch Diskette Characteristics

S€ctor
Siz€ D€nsity

Sectors
per Track

Devic€ Size (in bytes)
On€-Sided Two-Sid€d

128
256
5 '12
1024

Single
Single
Single
Singl€

1 5
I

256256 512512
295168 s90848
314880 6n272
315392 630784

5 1 2
1024

Doubl6
Doubl€
Double

26
1 5
I

5@184 '10216€6

587264 ',l ',177600

626688 1255424

Disk Verilication A-21

STRUCTURE OF A NAMED VOLUME

For compatibility with ECMA (European Computer Manufacturers Association) and ISO
(fnternational Organization for Standardization), the iRMX II device drivers, when called
by the Human Interface FORMAT command, can format the beginning tracks of all
llexible diskettes in the same way. A configuration option for each driver enables you to
specify the following:

. For all 5 l/4-inch and 8-inch flexible diskettes, the device drivers format track 0 of
side 0 with single-density, 12fì-byte sectors, with an interleave factor of 1.

. For 8-inch, double-sided, double-density flexible diskettes, the device drivers format
track 0 of side I with double-density, 256-byte sectors.

The iRMX II device clrivers map the sectors on these beginning tracks into blocks of
device granularity size so that the Basic I/O System and the Bootstrap Loader can treat
ilexible diskettes as if they contained a contiguous string of blocks, all of the same size.

However, this mapping is not exact when you use 8-inch, double-sided, double-density
diskettes and specify a device granularity of 512 or 1024. A problem arises because there
are 26 128-byte sectors in a track, which is not an integral mapping for device granularities
of 512 or 1024. Thus, the device driver combines the leftover 128-byte sectors of track 0,
side 0 with the first sectors of track 0, side 1 to make a block of device granularity size.
This continues throughout track 0, side l, but the same problem occurs with the last 256-
byte sectors of track 0, side 1; not enough sectors are available to make a block of device
granularity size.

When the device driver tries to combine these leftover sectors of track 0, side 1 with the
first sectors of track l, side 0, it finds that the sectors of track 1, side 0 are already of
device granularity size. Therefore, since the device driver cannot access partial sectors, it
is left with one block (the leltover sectors of track 0, side l) that is less than device
granularity size. When the device granularity is 512, this small block is block l9; when the
device granularity is 1024, it is block 9.

Table A-2. 5 l/4-Inch Diskette Characteristics

Soctor
Size Density

Seclors
per Track

Device Size (in by,tes)
One-Sided Two-Sided

40 Tracks 80 Tracks 40 Tracks 80 Tracks

128
2s6

1024

Single
Single
S ing le
S ing le

I

2

81920 163840 163840 327680
91904 1840Ar 1840&1 3683&1
81920 163840 163840 3276€0
81920 163840 163840 3276É0

256
5 1 2
1024

Double
Double
Double

t o

I
4

1617921 325632 325632 &53312
161792't 325632 325632 653312
1617921 325632 325632 653312

A-22 Disk Verification

STRUCTURE OF A NAMED VOLUME

If nothing is done to exclude this smaller-than-normal block from use, the device driver
will treat this block as a normal block, assuming it is of device granularity size. Thus, if
you try to write information to that block, the driver will attempt to write an entire device
granularity block of information into a block that is much smaller, thereby losing data.

To prevent this situation, the Human Interface FORMAT command automatically
declares this smaller-than-normal block as allocated in the volume free space map when it
formats the volume. This prevents the Basic I/O System from ever writing information
into this block. If you wite your own formatting utility, you should also declare this block
as allocated.

Disk Verificotion L-23

< command 2-6, 29
<CR> command 2-6
> command 2-6, 28
5 ll4-inch diskette characteristics A-22
8-inch diskette characteristics A-21

A

Aborting commands 2-4
Add command 2-46
Address command 2-46
Allocate command 2-5, 8
Argument error 2-5
Automatic device recogrition A-4, 5

B

Backing up the volume label 3-6
Backupfnodes command 2-5, I I
Bad blocks 2-8,44,3-2
Bad blocks map file 2-9, 59, 60, 65, 66, 69,72, , A-8,
Bad track information, displaying 1-3
BF command 2-5, 1 I
Block allocation 2-8
Block command 2-47
Block I/O error 2-4
Bootstrap Loader blocks A-l

c
Checksums 1-4, 2-31, 36, 65
Command options

All 1-5
Disk 1-3
Fix 1-4
Getbadtrackinfo 1-3
List 1-5

1 ó

Disk Verification Indcx-l

INDEX

Command options (cont.)
Named 1-4
Namedl 1-4
Named2 l-4
Physical 1-5
Veriff l-3

Commands
< 2-6,29
<cR> 2-ó
> 2-6,28
Aborting 2-4
Allocate 2-5
Backupfnodes 2-5
BF 2-5, 11
D 2-6, 16
DB 2-ó, 16
DD 2-6,20
DF 2-6,23
Disk 2-6, 13
Displaybyte 2-6, 16
Displaydirectory 2-6, 20
Displafnode 2-6, 23
Displaynextblock 2-ó, 28
Displaypreviousblock 2-6, 29
Displaysavefnode 2-6, 27
Displayword 2-6, 18
DNB 2-ó,28
DPB 2-6,29
DSF 2.ó
DSF command 2-27
DW 2-6, 18
E 2-6,34
Editfnode 2-6,30
Editsavefnode 2-6,33
EF 2-6,30
Error messages 2-4
ESF 2-6,33
Er/.J.r 2-6,34
Fíx 2-6,35
Free 2-6,38
GB 2-6,4r
Getbadtrackinfo 2-6, 41
H 2-7,43

Index-2 Disk Verification

Commands (cont.)
Help 2-7,43
LBB 2-7,44
Listbadblocks 2-7, 44
Miscellaneous 2-7, 46
Names, entering 2-2
Parameters 2-3
Q 2-7,s2
Quit 2-'7, 52
R 2-7,53
Radices 2-3
Read 2-7,53
Restorefnode 2-7,54
Restorevolumelabel 2-7, 57
RF 2-7,54
P.VL 2-7,57
s 2-7 ,61
Save 2-7,59
sB 2-7 ,61
Substitutebyte 2-7,61
Substituteword 2-7,64
Summary 2-5
sw 2-7,64
Syntax 2-1
v 2-7,65
Yerlîy 2-7,65
w 2-7,74
Write 2-7,74

Conventions iv

D

D command 2-6, 1ó
DB command 2-6, 16
DD command 2-ó, 20
Dec command 2-48
DF command 2-6, 23
Directing output 1-2
Directories, displaying 2-20
Disk command 2-6, 13
Displaybyte command 2-6, 16
Displaydirectory command 2-6, 20
Displayfnode command 2-6, 23
Displaying R?SAVE 3- 1 1
Displaynextblock command 2-6, 28

INDEX

Disk VerilÍcation Index-3

INDEX

Displayprevious block command 2-29
Displaypreviousblock command 2-6
Displaysavefnod e command 2-6,27
Displayword command 2-6, 18
Div command 2-48
DNB command 2-6, 28
DPB command 2-6, 29
DSF command 2-6, 27
Duplicate volume label file 3-2, A-8, 17
DW command 2-ó, 18

E

E command 2-6, 34
Editfnode command 2-6, 30
Editsavefnode command 2-6, 33
EF command 2-6, 30
Error Messages 1-6, 2-4

Add 2-51
Address 2-51
Allocate 2-10
Backupfnodes 2-12
BF 2-12
Block 2-51
D 2-77
DB 2-17
DD 2-21
Den 2-51
DF 2-26
Displaybyte 2-17
Displaydirectory 2-21
Displayfnode 2-26
Displaysavefnode 2-27
Div 2-51
DSF 2.2'7
Editfnode 2-31
Editsavefnode 2-33
EF 2-3r
ESF 2-33
Free 2-39
GB 2-42
Getbadtrackinfo 2-42
Hex 2-51

Index-4 Disk Verification

Error Messages (cont.)
LBB 2.45
Listbadblocks 2-45
Miscellaneous commands 2-51
Mod 2-51
Mul 2-51
R 2-53
Read 2-53
Restorefnode 2-55
Restorevolumelabel 2-58
RF 2-55
RvL 2-58
s 2-62
Save 2-ó0
sB 2-62
Sub 2-51
Substitutebyte 2-62
v 2-69
VeriS 2-69
w 2-75
Write 2-75

ESF command 2-6, 33
Examples

Add 2-51
Address 2-51
Backupfnodes 2- 12
BF 2-12
Block 2-51
D 2-17
DB 2-17
DD 2-22
Dec 2-51
DF 2-26
Disk 2-15
Displaybyte 2-17
Displaydirectory 2-22
Displayfnode 2-26
Displaysavefnode 3- 12
Displaying R?SAVE 3-12
Displayvord 2- 18
Div 2-51
DSF 3-12
DW 2-18

INDEX

Disk Verification Index-5

INDEX

Examples (cont.)
Editfnode 2-32
EF 2-32
H 2-43
Help 2-43
Hex 2-51
LBB 2.44
Listbadblocks 2-44
Miscellaneous commands 2-51
Mod 2-51
Mul 2-51
Restorefnode 2-56
Restorevolumelabel 2-58
Restoring fnodes 3-4, 8
Restoring the volume label 3- 11
RF 2-56
RvL 2-58,3-11
s 2-63
Save 2-60
sB 2-63
Sub 2-51
Substitute word 2-64
Subsritutebyte 2-63
sw 2-64
v 2-73
Yertfy 2-73
w 2-75
Write 2-75

Exit command 2-6, 34

F

FiÌe descriptor node (fnode) A-8
File sizes A-19,21
Fix command 2-ó, 35
Fixing bad checksums 2-36
Flexible diskette formats A-21
Flexible diskette track 0 abnormalities A-22
Fnode

Access ID A-12
Altering 2-30
Auxiliary byes A-13
Backing up on a volume 3-5

Index-ó Disk Verilication

Fnode (cont.)
Creation time A-11
data block identification A-11
Displaying 2-23
Flags 2-9, A-9
Freeing 2-38
Granularity A- 10
last file access A- 11
last modification A-11
Overview A-8
Owner A-11
Parent 2-65, A-13
Restoring 2-54,3-1,7
size (byes) actual data A- 1 1
size (byes) data space A-12
Structure A-9
Type A-10
Volume blocks A-11

Fnode allocation 2-8
Fnode file 3-1, 2, A-14
Fnode file/space map file inconsistent 2-5
Free command 2-6, 38
Free fnodes map file 2-9, 39, 59, ó0, 66, 69,72,3-2, A-15
Free space A-15
Free space map frle 2-72

G

GB command 2-6, 41
Getbadtrackinfo command 2-6, 41

H

H command 2-7, 43
Help command 2-7, 43
Hex command 2-49

I

Illegal command error 2-4
Initial files A-8
Invocation 1-2

Error messages 1-6
Example 1-5
Interactive 1-6
Single command mode I -5

INDEX

Disk Verlfication Index-7

INDEX

IRMXo II volume labels A-4
ISO volume label A-3

L

LBB command 2-7, 44
Listbadblocks cornmand 2-7, 44
Location of files 3-1, A-18, 19
l,ong files 2-65,3-1, A-'19

M

Manual overview iii
Marking bad blocks 2-8
Miscellaneous commands 2-7, 46

Add 2-46
Address 2-46
Block 2-47
Dec 2-48
Div 2-48
}lex 2-49
Mod 2-49
Mul 2-50
Sub 2-50

Mod command 2- 49
Modes of operation 1-1, 2-1
Mul command 2-50

N

Named volume structure A-1
Named volumes 1-4
Not a named disk error 2-5

o
Operational modes 1-1, 2-1
Orphan fnodes l-4,2-36

P

Parameters 2-3
Product overview iii, 1-1

Index-8 Disk Verification

o
Q command 2-7, 52
Quit command 2-7, 52

R

R command 2-7, 53
R?SAVE 2-t7, 14, 27, 33, 54, 55, 57,3-2,5, 11, A-17
Radices 2-3
Read command 2-7, 53
Reader kvel iii
Reading volume blocks 2-53
Restorefnode command 2-7, 54
Restorevolumelabel command 2-7, 57
Restoring fnodes 3-1
Restoring the volume label 3-10
RF command 2-7, 54
Root directory A- 16
RVL command 2-7, 57

s
S command 2-7, 6l
Save command 2-7,59
SB command 2-7, 61
Seek error 2-5
Short files 3-1, A-17
Size of files 2-65, A- 19, 2l
Space accounting file 3-2, A-15, A-8
Structure of a named volume A- I
Sub command 2-50
Substitutebf e command 2-7, 61
Substituteword command 2-7, 64
SW command 2-64
Syntax error 2-4

T

Track 0 Abnormalities. flexible diskettes A-22

INDEX

Disk Verilication Index-9

INDEX

v
V command 2-7, 65
Verifo command 2-65
Volume attributes, displaying 1-3, 2- 13
Volume blocks, freeing 2-38
Volume free space map file 2-9, 39, 59, 60, 66, 69,3-2, A-8, 1-5
Volume label

backing up 3-6
iRMXO II A.4
ISO A-3
Restoring 3-10

Volume label f r le 2-57,3-1,2, A-8, l6
Volume structure

Named A-2

w
W command 2-7, 74
Working buffer, changing contents 2-62
Write command 2-7, 74

Index-10 Disk Verification

intel

GUIDE TO TH E
EXTENDED iRMX@II

INTERACTIVE CON FIG U RATION
UTILITY

ln te l Corporat ion
306 5 Bowers Aven u e

5 a n t a C l a r a , C a l r f o r n i a 9 5 0 5 1

Copyr ìght 1988, ln te l Corporat lon, Al l R ghts Reserved

PREFACE

INTRODUCTION

This manual describes the Interactive Configuration Utility (ICU) and explains its use. It
does not explain each screen displayed by the ICU. For a description of the ICU screens
and their parameters, refer to the Extended |RMX II Interactive Configuration Utility
Reference Manual.

READER LEVEL

The manual assumes that you are familiar with the monitor and keyboard from which you
run the ICU. It is also helpful if you are familiar with the tbllowing:

. The Extended iRMX II Operating System

. PL/M-286

r BND286 and BLD286

MANUAL OVERVIEW

This manual is organized as follows:

Chapter 1 This chapter provides introductory material to configuring an
iRMX I I system using the Interactive Configuration Utility (ICU).

Chapter 2 T)1is chapter describes how to generate a system.

Chapter 3 This chapter describes how to prepare application jobs.

Chapter 4 This chapter provides overuiew infbrmation on how to add users to
your system. For detailed information on adding users, ref-er to the
Extended iR'UX Operator's Guide to tlrc Human Interface.

Chapter 5 This chapter describes how to load and test the system.

ICU Useds Cuide ul

PREFACE

Appendix A
'l-his

appendix lists files created by the ICU.

Appendir B This appendix shows an examplc configuration session.

Appendix C This appendix describes how to program a generated 28(r-based
system into PROM devices.

Appendix D This appendix describes how to program a 386/100-based system
into PROM devices.

CONVENTIONS

This manual uses the fol lowing convent ions:

. Information appearing as UPPERCASE characters when shown in keyboard
examples must be entered or coded exactly as shown. You may, however, mix lower
and uppercase characters when enter ing the text .

. Fields appearing as krwercase characters within angle lrrackets (< >) when shown in
keyboard examples indicate var iable informat ion. You must entcr an appropr iate
value or symbol for variable fields.

o lJser input appears in one of the following forms:

as bo lded tex t w l th ln a screen

. The term " iRMX l l ' re f ers to the Extended iRMX I l .3 Operat ing System.

. The term " iRMX I ' rc lers to the iRMX I (iRMX 86) Operat ing System.

. All numbers unless othcrwise stated are assumed to be decimal. Hexadecimal
numbers inc lude the " " rad ix character (for example,0FFH).

lv ICU User's Guide

CONTENTS

CHAPTER 1 PAGE

ICU Usefs Guide

CONTENTS

CHAPTEB 1 (continued) PAGE

CHAPTER 2 PAGE

CHAPTER 3 PAGE

CHAPTER 4 PAGE

YI ICU Use/s Guide

CONTENTS

CHAPTER 5 PAGE

APPENDIX A
FILES CREATED BY THE ICU

PAGE

APPENDIX B
EXAMPLE SYSTEM CONFIGURATION

PAGE

APPENDIX C
PROGRAMMING A 2SSBASED SYSTEM INTO PROM DEVICES

PAGE

C.l Introduct ion . C- l
C.2 Requirements . - . C-1
C.3 Conf igur ing a ROM-Based System..C-2
C.4 Generat ing/Bui ld ing the System.. C-9

C.4.1 Including the iSDM" Monitor and the Bootstrap Loader
in the PROM Devices.. C-10
C.4. l . l Sett ing up the iUP 201 PROM Programmer . C- 11
C.4.1.2 Formatt ing the Operat ing System PROM Fi leC-12
C.4.1.3 Programming the Operat ing System into PROM Devices.. , C-14
C.4.1.4 Programming the iSDM* Monitor into PROM Devices.. - . . C'16
C.4.1.5 Programming the Bootstrap Loader into PROM Devices. - C-17
C.4.1.6 Start ing the Operat ing System in ROM from the iSDM" Monitor. . C-17

C.4.2 Creat ing a System that is act ivated on Power-up.. C-18
C.4.2.1 Formatting the Operating System PROM File C-19
C.4.2.2 Programming the Operating System lnto the PROM Devices C-20
C.4.2.3 Start ing the Operat ing System in PROM... ' . ' . .C-23

C.4 Hardware Jumper Modif icatrons.. -C-24

ICU Use/s Guide Y l r

CONTENTS

APPENDIX D
PROGBAMMING A 386/lOO.BASED SYSTEM INTO PROM DEVICES

PAGE

TABLES

TABLE

t î

l - 3

Y l l l ICU Use/s Guide

CONTENTS

FIGURES

FIGURE

1 - 1
' t a

].-4
1-5
1-6
J - l

B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
B-9
B-10
B - 1 1
B-12
B- l3
B-14
B-15
B- 16
B-17
B- 18
B-19
B-20
B-2"t
B-22
B-23
B-24
B-25
B-26
B-27
B-28
B-29
B-30

lxICU User's Guide

CONTENTS

FIGURE

B-31
B-32
D - J J

B-34
B-35
B-36
B-37
B-38
B-39
B-40
B-41
B-42
B-43
B-44
B-45
B-46
B-47
B-48
B-49
B-50
B-51
B-52
B-53
B-54
tl--))

B-56
B-57
B-58
B-59
B-60
B-61
B-62
B-63

ICU Usefs Guide

INTRODUCTION
CHAPTER 1

TO CONFIGURATION

1.1 INTRODUCTION

The iRMX II Operating System is modular in structure, enabling you to include or omit
subsystems according to your needs. It is also compatible with a variety of peripheral
boards. The Interactive Configuration Utility (ICU) is designed to help you take
advantage of this flexibility.

This chapter provides an overview of the ICU. It explains the configuration process,
configuration environment, ICU files, ICU commands, error messages, the utilities that
comprise the ICU, and more. The chapter is very comprehensive and includes many
important details for using the ICU. lntel recommends that you read this chapter
carefully before attempting to configure your system.

1.2 WHAT IS CONFIGURATION?

Configuration is the process of selecting your application's hardware and operating system
layers and then binding and building the entire operating system. The tool used for
configuration is the Interactive Configuration Utility (lCU). The ICU is a menu-driven
utility which presents a series of screens that prompt you lbr intbrmation. The
information is stored in a definition file that is then used to senerate the new system.

The objective of running the ICU is to build a definition file that contains all of the
configuration information. This file contains two kinds of information:

. Initializationparameters

o A set of variables specirying which operating system layers and device drivers are to
be bound together with your application software

Intel provides six definition files you can use as a starting point. If you run the UPDEF
Utility supplied with this release, you can also use a definition file from iRMX II.l. (It is
not necessary to run UPDEF if you are using a definition file from iRMX IL2.) As you
perform the configuration process, you alter the chosen definition file to match your
target system.

ICU Uset's Guide l - l

INTRODUCTION TO CONFIGURATION

1.3 WHEN TO USE THE ICU

You should use the ICU whenever one of the following is true:

. You want to generate the configuration files that describe your system.

. You are using a system other than one described by an Intel-supplied definition file.

o You are changing an existing system's hardware and/or soffware (e.g., adding a new
disk drive).

1.4 tCU LOCATTON

The ICU files are located in the directory :SD:RMX286/ICU. When working with the
ICU, you must use the full pathname in each command (see Figure l-l) or create an
ALIAS for the pathname.

Figure 1-1. klcation ofthe ICU Directory in an Intel-supplied System

t-2 ICU User's Guide

INTRODUCTION TO CONFIGURATION

1.5 THE GENERAL PROCESS OF USING THE ICU

You configure a system in three steps:

1. Intefactively modify a definition file (see Figure 1-2). To do this, invoke the ICU
and then supply information to filì in screens that the ICU presents. (This step can
be omitted ifyour system matches one ofthe Intel-supplied definition files.)

2. When you finish configuring the operating system, use the ICU to generate new
configuration files as defined in your modified definition file (see Figure l-3). The
end product is a group of files that define the system.

3. Exit from the ICU, and at the Human Interface level, execute the submit file
created by the ICU during the generate step (see Step 2). This creates the new
version of the operating system which can then be loaded and executed.

Figure l-2. First Step: Editing a Definition File

QU€STTONS

Ntw
DrscRrPf roN

F I L T

DEFAULT OR OIHER
OLD

DtSCRtP ION
FIL E

ICU User's Guide l-J

INTRODUCTION TO CONFIGURATION

C O M M A N D S

Figure l-3. Second Step: Generating a Subrnit File and Source Files

f I N A L
D T S C R I P f I O N F I L E

C O N F I G U R A f I O N
S O U R C E F I L E

1.6 WHAT TO DO BEFORE INVOKING THE ICU

Before you invoke the ICU, you must perform checks on your existing system and make
several decisions. The following sections provide the information you need to know
before invoking the ICU.

1.6.1 Configuration Environments

You can run the ICU on the followins svstems:

o An Intelle@ Series IV Microcomputer Development System with 256K contiguous
bytes of memory, a hard disk, and version 2-8 or later of the iNDX Operating
System.

r An iRMX Il-based system with 1 Mbyte of RAM memory which allows a user
partition of 384K bytes, a hard disk, and the iRMX I I Operaring System. For
information on changing the amount of memory allocated to your terminal, see
the section on editing the :CONFIG:TERMINALS file in Volume l, Operator's
Guide to the Human Interface.

l-4 ICU Usefs Guide

I n-TRODUCTI ON TO CONFI CU RATION

1.6.2 Ensuring the ICU Files are on Your Hard Disk

Contained on the iRMX II Operating System release diskettes or tape are the files to run
the ICU. These files must be on the hard disk before you can invoke the lCU. Follow the
instructions in fhe Ertended |RMX II Hardware and Software Installatiotl Guide to copy
these files to your system.

Table 1-1 lists all of the files required to run the Interactive Configuration Utility for
iRMX II systems and for iNDX systems. Check that your hard disk contains all of the
files required by your system. If your hard disk does not contain the required files, return
to the instructions in the Extended |RMX II Hardware and Soflware Installation Guide.
Following the directions in that manual will place all the iRMX II files into the standard
directorv structure.

ICU Useds Guide l-5

INTRODT]CTION TO CONFIGURATION

Table I-1. |RMX@ l l ICU Fi les

Function Filename

tcu286

Scre€n Master File

f€mplate File for System Gen€ration

Update D€finition Utility

Usor Device Support Uti l i ty

UDS Screen Master File

Template example - (minimum UDS
input f i le)

Template example - (UDS input fÌ le
containing user help built into
help text)

ICUMRG Util i ly

Definit ion File for an iRMX ll
Multi-User System designed to run
on the ìSBC 286/10(A) and iSBC 286/12
froards

Definit ion File lor an iRMX ll
Multi-User System designed to
run on th6 SXM 386 AP Kir

Definit ion File for an iRMX ll
Muhi-Us6r System designed to
run on an |SBC 386 /2X aîdM/3X
ooaro

Definit ion File lor an iRMX ll
Multi 'User System designed to
run on an iSBC 286/100A board

Definit ion File for an iRMX ll
Mutti-User System designed to
run on an |SBC 386/116 and 386/120
board

lCU286 (for iRMX ll systems)
1CU286.86 (for iNDX systems)

rcu286.scM

ICU286.TPL

UPDEF (for iRMX ll systems)
UPDEF.86 (for iNDX systems)

UDS (for iRMX ll systems)
UDS.86 (for iNDX systems)

UDS.SCM

TEMPLATE-1,UDS

TEMPLATE 2,UDS

ICUMRG (for |RMX ll systems)
lCUMRG.86 (for iNDX systems)

28612,DEF

SXM 386.DEF

38620. D E F

2861004. D E F

3861m.DEF

l - 6 ICU User's Guide

INTRODT]CTION TO CONFIGT]RATION

1.6.3 Choosing Your Definition File

lf you have never configured an iRMX-based system before, you should choose one of the
Intel-supplied, multi-user definition files (listed in Table 1-l) as input into the ICU. You
can build a definition file screen by v:reen, but you will save time by starting with a
standard definition file. Details on the standard definition files are qiven in the Extended
iRMX II Hardware and Software Insnllation Guide.

If you created a definition file using an iRMX II.l version of the ICU, you can use this file
as input to iRMX II.3 of the ICU only after running the UPDEF Utility. Once you create
a iRMX I I .3 def in i t ion f i le, you cannot use i t rs input into iRMX IL I of the ICU.

The Intel-supplied definition files define 80286- or 80386-based MULTIBUS I and
MULTIBUS II systems. These systems are fully configured multi-user iRMX II
Operating Systems. Each layer implements all its system calls and most of the features
and drivers provided by the iRMX ll Operating System. Multiple users can communicate
with the operating system interactively through a terminal or via an application program,
and can access secondary storage. The definition files include UDI so that you ciìn run
languages, such as PL/M-2t16, PASCAL, and FORTRAN.

To define your own system, modify the definition file that comes closest to your needs.
To see the contents of a dcfinition filo, use thc LIST command (described later in this
chapter). Details of board configuration and interrupt levels are given ìn the Extended
|RMX II Hardware and Software Inslallatbn Guide.

1.6.4 Checking Access Rights to Definition Files

I fyou use the ICU on an iRMX I I -based system, the operat ing system makes sure you
have the proper access to both the definition files and their rcspective directories. This
check is performed in two instances: when you invoke the ICU and when vou enter the G
(generate) command (discussed in a later section). If you do not have proper access, onc
or more of the fo l lowing: i tuat ions can occur :

. The ICU will be unable to read the input definition file.

. The ICU will be unable to save the changes you make tJuring the ICU session.

. The ICU will be unable to create the generation files necessary to complete the
configuration process.

Following the installation instructions in the Extendcd |RMX II Ilurdu'are artd Software

Installation Galde ensures that the user WORLD can senerate a new version of the

operating system.

ICU User's Guide t-7

INTRODUCTION TO CONFIGURATION

To check your access rights to directories and files contained in directories, use the DIR
command folÌowed by the E[xtended] or Llong] options, For example, you can check your
access rights to the :SD:RMX286/lCU directory and the 28612.DEF file by using the
following commands:

DIR :SD:RMX286 E[xtended]
DIR :SD: RMX286/ICU E[xtended]

For more information on using the Human Interface commands, see the Operator's Gui"de
to the futended |RMX II Human Interface.

The access rights needed to use the ICU successfully vary according to the operations to
be performed. In all cases where the G (generate) command is to be used, you must have
Add Entry access to the directory containing the definition file and to the directories you
specify in the'Generate File Names" screen. In other cases, the access required depends
on the kind of file (new or existing) and whether it is an input or output file. The
following paragraphs describe the access rights required in different circumstances.

. Ifyou specify an existing <Jefinition file as an input file, you must have Read access to
the definition file.

. If you specifu an existing definition file as an output file, you must have Delete and
Write access to the definition file. You must also have Add Entry access to the
directory containing the definition file.

. Ifyou specify an existing definition file as the only definition fiìe on the command line,
the file serves as both an input and an output file. In this caser you must have
Read/Write and Delete access to the definition file. (Refer to the Extended íRMX II
Interactive Configuration Utility Reference Manual fr>r more information about the
"Generate File Names" screen.)

. If you specify a new file as the only file on the command line, the file serves as both an
input file and an output file. In this case, you must have Add Entry access to the
directory containing the new file.

Ifyou do not have the correct access rights, the ICU returns the following message:

0026: E$FILE_ACCESS, wh i le load lng command

Additional information about access rights can be found in the \RMX II Extended I/O
System User's Guide.

t-8 ICU Usefs Guide

INTRODUCTION TO CONFIGURATION

EXAMPLES:

To use the G command without causing an error, you must have Add/Delete Entry access
to the directory in which you are working. This section describes the various ways of
invoking the ICU and the access rights required.

- /RMX286/ICU / ICU286 :HOME:NEW.DEF

where

:HOME:NEW.DEF Pathname of a new definition file. The ICU uses this file as
both the input file and the output file.

You must have Add Entry access to the directory
containing NEW.DEF (:HOME:). If you do not have Add
Entry access, the ICU returns the following message:

* * * T , / n F r r ^ r i n f i l e H O M E : N E I , J . D E F
0026: E$FILE_AccEsS

If the directory does not exist, the ICU returns the
following message:

*** I /0 Error in f i le : :HoME:NEl ,] .DEF
0021: ESFILE NoT EXIST

- /RMX286/rcu ltcu286 DIRi oLD.DEF

where

DIR/OLD.DEF Pathname of an existing definition file. The ICU uses this
file as both an input and an output file. It can be a new or
existing file.

You must have Read/Write and Delete access to save
changes to OLD.DEF.

- /RMX286/ICU I LCUZ86 / RMX286 I I3UIINPUT.DEF to DIR/OUTPUT.DEF

ICU Usefs Guide t-9

INTRODUCTION TO CONFIGURATION

wnerc

/RMX286/lCU/INPUT.DEF Pathname of a standard definition file. The ICU uses
this file as the input file

DIR/OUTPUT.DEF Pathname of the output definition file. This file can be
a new or existing file.

You must have Add Entry access to the directory
containing OUTPUT.DEF (DIR). ln addi t ion, i f
OUTPUT.DEF is an existing file, you must have Delete
access to lt.

1.7 DISTINGUISHING ICU-GENERATED FILES

Each time you generate your system, the ICU generates a set of ICU files. To help you
distinguish your generation files from each other and to determine which input definition
fìle generated the ICU files, you can use one of these options:

. Create a new directory to contain your definition file.

. Use the prefix option supplied by the ICU.

The followins sections describe each method in more detail.

1.7.1 Creating Directories for iRMX@ ll-Based Systems

Intel recommends that you maintain the default tlirectory structure by placing any new
system definition files in a new directory nested in your :HOME: directory. Before
invoking the ICU, you should creaîe a copy of the input definìtion file in your working
directory to avoid corrupting the original file. The following example illustrates how to do
this using the 28612.DEF f i le as the start ing def in i t ion f i le:

Once you attach the new directory (28612) as the working directory, you will need to use
the full pathname to invoke the ICU. For example

You may wish to creiìte an ALIAS for the complete pathname used to invoke the lCU. A
convenient convention to use is to create the working directory with the same name as the
definition file (without the .DEF extension). The operating system produced should have
the same name as the definition file (with a .286 extensionì.

l - l 0 lCtl User's Guide

INTRODUCTION TO CONFIGURATION

1.7.2 Using the Prefix Option

A second method to distinguish your ICU generated files from each other is to use the
prefix option supplied by the ICU. You can select the prefix option when entering the
Generate (G) command. The ICU then displays a prompt (see Chapter 2 for the actual
screen) asking you for the prefix letter you wish to assign to the files created by the lCU.
For example, if you choose the letter "Q" as your prefix option, a "Q" will precede all the
files generated when you enter the Generate command on the menu screen. In this case
the files generated for the Nucleus will be

QNTABL.A2S
QNUCDA.A2S
QNJOBC.A2S

The files created for all other subsystems will also be preceded by the letter "Q" as in the
example above. Ifyou want to generate configuration files for more than one system,
choose a different prelìx option each time. Intel also recommends that your input
definition file start with the same prefix letter you assign to the generatetj files. This
allows you to easily determine which definition files created each set of output files- If
you create a file with a prefix that already exists, the ICU over-writes the previous file.

If you do not want to use the prefix option, enter a carriage return when you are
prompted for the prefix. This causes the ICU to generate the output files without a prefir
(see Appendix A for a complete list of the ICU generate<J files).

1.8 INVOKING THE ICU

This section lists the syntax necessary to invoke the ICU. When invoking the ICU, be sure
that the ICU286.SCM file and the ÌCU286.TPL file reside in the same directory as the
ICU286 file that you are invoking.

The syntax for invoking the ICU is as follows (brackets indicate optional items):

lCU286 [input-file-name TO] output-file-name

where

input-file-name Name of the definition file from which the ICU obtains
configuration information. This is typicaUy an lntel-supplied
definition fiÌe or a delìnition file from a previous use of the ICU.

output-file-name Name of the definition file to which the ICU writes updated
conficuration information.

ICU User's Guide l - l I

INTRODUCTION TO CONFIGURATION

The following guidelines must be followed when specifying input and output files:

input-file-name: If both an input-file-name and an output-file-name are specified,
the input-file-name must represent an existing definition file created by the ICU.

output-file-name only: If the input-file-name is omitted, you enter only the output-
file-name, the ICU uses the output-file-name as both the input and output
definition file. When the ICU session is complete, the ICU writes the updated
configuration intbrmation back to the output-file-name.

The output-file-name entered can represent a new or an existing definition file. If
the output-file-name specified does not exist, the ICU searches the directory
containing ICU for a file named ICU286.DEF. If ICU286.DEF exists, rhe ICU uses
it as the input fiJe. In any case where an input file does not exisr, the ICU displays
the following message among the main screen display:

NEW CONFICURATION FILE

and the session starts with the ICU default values. After saving or exiting, the
edited file is stored in the named outnut file.

1.8.1 Invocation Error Messages

when issuing the invocation previously described, a number of error messages can occur.
These error messages are described in the following paragraphs.

Invoking the ICU with no parameters or invalid parameters causes the following message
to be disolaved:

*** twALID INVoCATION ***
USACE: ICU286 [input - f í 1e T0l output - f i 1e

Invoking the ICU with a corrupted definition file, or a lìle rhat is not a definition file.
causes the following message to be displayed:

On invocation the ICU validates the file version numbers. ICU286.SCM, ICU236.TpL,
and each definition file have an Intel Version Number, an UDdate Version Number. and a
user Version Numher. The Intel version numher changes *Leneuer Intel upgrades the
ICU to support new release. The Update version number changes whenever the ICU is
upgraded, using the ICUMRC utility, to support an update; and the User version number
changes whenever a user device is atlded (using the UDS and ICUMRG utilities).

l-12 ICU Usel,s Guide

INTRODUCTION TO CONFIGURATION

The ICU checks the version numbers when it is invoked. If there is an inconsistenry in
the version numbers of either ICU286.SCM or ICU286.TPL, the ICU displays the
following error message and returns control to the operating system:

*** ERROR . INCONSISTENCY IN THE VERSION OF THE INTERNAL lCU FILES
Vers ions: ln te l Update User

ICU286.SCM <Inte l> + <rpdate> <User vers lor i>
ICU286.TPL <lnte l + UDdate> <User vers ior ì>

If the inconsistenry is in the definition file, the ICU displays the following warning
message and asks for permission to upgrade the file or restore from the file. (The
upgrade process is a simpler, faster operation than restore and requires no additional user
input.)

lf the ICU needs to restore from a file in order to use it, you will be prompted as follows:

Do you lrant to restore frorn the fíl.e? y/lnl

A response of "No" causes the ICU to stop executing. A "Yes" response means the ICU
will restore the backup information stored in the definition file (discussed later in this
chapter). If the Update version number is higher than the ICU version number, you are
probably using the wrong version of the ICU. In this case, the ICU displays this warning
before the restore DromDt:

*** WAINING - The DefiniCion File version is NEIIER

However, if the ICU is able to use the file without restoring, it prompts with

D o y o u w a n t t o u p d a c e t h e f l l e ? y / l n]

A response of "No" causes the ICU to stop exccuting. A "Yes" response causes the ICU to
update the file. Since the ICU processes delìnition files with inconsistent version
numbers, you can use all of the Intel-supplied definition fles as input for your own tailor-
made ICU.

*** WAIìNING. DEFINITION FILE

ITS VERSION IS:
VERSION EXPECTED:

VERSION IS NOT CORRECT.

<the incons is tency>
<correct vers ior>

ICU Usefs Guide l - 1 3

INTRODUCTION TO CONFIGURATION

The ICU issues the restore prompt if it discovers any of the following in the definition

file:
. Inconsistency in the Intel version number.

o Inconsistency in the User version number, if the file contains user devices a<lded with
UDS and ICUMRG.

. Inconsistency in the Update version number, if the fi.le version number is higher
(newer) than the ICU version number.

The ICU prompts for permission to use the file without restoring in the following cases:

. Inconsistency in the User version number, if the file does not contain user devices.

. Inconsistency in the Update version number, if the file version number is smaller than
the ICU version number.

1.9 WHAT TO DO AFTER INVOKING THE ICU

After you invoke the ICU, the main menu screen is displayed as follows:

iRMX I1 In teract ive Conf igurat lon Ut t l i ty For Extended iRMX l I ,<v>
Copyr lght <years> ln te l Corporat ion

For general help ln any screen enter H <CR>.

The following cornmands are available

Change
Cenerate
Lis t
S ave
qui È
E x i t
Replace
Deta i l -Leve1
Backup

ENTER COMMAND :

In the screen shown above is the main ICU menu, whenever you see this screen you are in
command mode. The string <v> represents the ICU version number. The string
<years> represents the copyrighted years of the product.

t-14 ICU User's Guide

INTRODUCTION TO CONFIGURATION

Whenever you are in command mode, you must enter one of the commands listed or an
"H" for help. All ofyour responses should be followed by a carriage return. The ICU
regards all invalid input as a response of "H < CR > " and displays the "Help" screen until a
valid response is entered.

The following sections describe the choices on the menu screen.

1.9.1 Help Command

ENTER COI4ì.1AND : H <CR>

ICU Use/s Guide l-15

INTRODUCTION TO CONFIGURATION

Ifyou enter H (help) and a carriage return, the ICU will display the following screen:

The Change (C) comnand allows you to specify the configuratlon
paraméters that def ine your syscen. To get to a speci f ic
screen, Èype 'C screen$nanne' . C? g ives you a l is t o f a l l the
screen nanes .

The Generate (G) connand creates the submit file and all Pl,!{
and assembler files required to create your Extended iRì,fX II
system.

The List (L) comnand shows you the current state of yóur
configuration flle. To copy the values thac define your
s y s t e n t o a f i l e , t) ? e ' L f i l e $ n a m e ' .

Thè Quit (Q) comnand leaves the ICU wíthout saving any
changes.

The Exit (E) comnand leaves the ICU and saves all the
changes.

The Savè (S) comrnand saves all the changes lrithout leaving
the ICU.

The Replace (R) comrnand replaces the current contro l
c h a t a c t e r .

The Deta i l level (D) cornrnand sets the leveÌ of deta i l .

The Backup (B) comrnand wr i tes a backup f Í le .

TYPE <CR> to Cont inue

1.9.2 Change Command

ENTER COMMAND : G[hange] lScreen Abbrev] <CB>

l - 16 ICU Usefs Guide

INTRODUCTION TO CONFIGURATION

The Change command enables you to begin editing the definition file. The syntax of the
Change command is as follows (the elements inside the brackets are optional):

C[hange] [screen abbrev]

C ?

where

C or Change Starts editing the definition file from the first screen (the
"Hardware" rcreen). The first time you run the ICU you should
use this option.

screen abbrev Begins editing at a specific screen. For example, ifyou enter "C", a
space, the abbreviation of an existing screen, antl a carriage return,
the ICU enables you to start editing your definition file from that
particular screen.

If you enter a screen abbreviation incorrectly, the ICU displays a
screen containing all the screen names and abbreviations (see
Table l-2). The abbreviation enclosed in parentheses indicates
what must be entered for each screen.

? Causes the ICU to display a screen with all the screen names and
abbreviations.

Table 1-2 lists all the possible screen names. The screens are displayed in order from left
to right, that is the "Interrupts" screen is displayed after the "Hardware" screen. Device
drivers are listed at the end of the table.

Ifyou did not invoke the ICU with the name of an existing definition file, you should start
your edit with the "Hardware" screen. If you did invoke the ICU with the name of an
existing definition file, you can start your edit with the name of any screen that the input
definition file has already defined. lfyou enter a valid screen name but that screen is not
configured into your definition file, the ICU displays the next "main" screen followed by
this warnins:

*** l tarn ing - The screen requested cannot be d isp layed

The ICU progresses from screen to screen in a logical orcler. Refer to Figure 1-4 for the
losical flow of the ICU.

ICU UseCs Guide l-17

INTRODUCTION TO CONFIGTIRATION

1.9.3 Generate Command

ENTER CoMMAND : G[enerate] <CR>

The Generate command creates all the ASM, PL/M, build and submit files required to
configure the iRMX II system. Refer to Chapter 2 for more information on generating a
system.

Table l-2. Screen Names

--- Main screens: --- (HARD) Hardware (MBll) Multìbus l l Hardware
(lNT) Interupts (SLAVE) Slave Interrupt (MEMS) Memory for System
(MEMF) Memory for FSM (SUB) Sub-systems (OSEXT) OS Extensions
(Hl) Human Interface (HUOB) Hl Jobs (RES) Resident/Recovery User
(PREF) Prefìxes (HILOG) Hl Logical (APPL) Application Loader
(REM) Remote fi le Access (REMFS) Remote Servers (EIOS) EIOS
(ABDR) Auto Boot Dev iLOGN) Logical Names (IOUS) l/O Users
(IOJOB) l/O Jobs (BIOS) BIOS (BCALL) BIOS System Calls
(IDEVS) Intel Devices (USERD) User Devices (UDDM) UDS Device Driver Mods
(SDB) System Debugger (NUC) Nucleus (NCOM) Communication Service
(USERJ) User Jobs (USERM) User À4odules (ROM) ROM Code
(INCL) Includes and Libs (GEN) Generate File Names (COMNT) Comments screen

-*- Device Drivers --- (D214) Mass Storage Controller Driver

(D8274) 8274 Terminal Driver (D8251) 8251A Terminal Driver
(D253O) 82530 Terminal Driver (D534) 534 Terminal Driver
(D544) 5444 Terminal Driver (D8848) Terminal Comm controller
(D286) Line Printer - |SBC 286/10 (D350) Line Printer - |SBX 350
(D220) |SBC 220 (D218) |SBX 21BA (D202) |SBX 208
(D264) iSBC 264 (D2s1) |SBX 251 (DRAM) RAM Disk Driver
(DSCSI) SCSI Driver (0224A) |SBC 18f.1224A (D410) |SBC 186/410
(D279) iSBX 279

ENTER screen abbreviation:

l - 18 ICU Usefs Guide

INTRODUCTION TO CONFIGURATION

1.9.4 List Command

ENTER CoMMAND : L[ist] fname] <CR>

The List command enables you to list the contents ofyour definition file to a file or to a
device. This command lists the contents of those screens that you selected to define your
system. The syntax of the List command is as follows (the elements inside the brackets
are opt ional) :

L[ist] [name]

where

L or List Lists the contents of your screens.

name Specifies an iNDX or iRMX II device or file. If you omit the name, the
terminal (:CO:) is assumed. You should list the definition file to a file
name rather than to the terminal since the display scrolls rapidly. If you
want to use your terminal to review your definition file, use the Change
command to view just those screens you want.

After the ICU has listed the definition file to the specified filename, it notifies you that
the definition file has been listed and returns to command mode. For example, if you
listed the ICU screens to a file called ICU286.I-ST, the ICU would display

T h e D e f i n i t i o n F i l e h a s b e e n l i s t e d t o f i l e : I C U 2 8 6 . L S T

followed by the main menu screen.

1.9.5 Save Command

ENTER COMMAND : SIavel lname] <CR>

The Save command updates your definition file with all of the changes you entered during
the current ICU session. The syntax of the Save command is as follows (the elements
inside the brackets are optional):

S[ave] [pathname]

ICU UsePs Guide l-19

INTRODUCTION TO CONFIGURATION

where

S or Save

pathname

Saves all the changes made in this session.

Pathname of a file to use instead of the default output-file-name to
save chanses to the definition file.

When the Save command is entered (followed by a carriage return), the ICU updates the
file you specified as the output-file-name. After the ICU updates the definition file, it
notifies you that the specified file has been updated and returns to command mode. For
example, if you invoked the ICU using 28612.D8F as the output-file-name, the ICU
would display this message followed by the menu screen:

T h e D e f i n i c i o n F l l e h a s b e e n w r i t t e n t o f i l - e : 2 8 6 1 2 . D E F

To be sure you are updating the right file, use the List command before you save your
definition file. The List command displays the name of the output definition file at the
top of each ICU screen.

1.9.6 Quit Command

ENTER COMMAND : Qluitl <CR>

The Quit command enables you to stop your current ICU session without updating the
definition file. The synta-r of the Quit command is as follows (the elements inside the
brackets are optional):

Qlui t l

After you enter the Quit command (followed by a carriage return), the ICU may display
the prompt "Do you want to quit without saving your changes? y/[n]" to ensure that you
did not accidentally enter the Quit command. Your response to this prompt should be
either "Yes" or "No". The ICU only displays this prompt if you use the Quit command
after making changes to an existing definition file or creating a new definition file. If no
changes were made to the definition file before the Quit command was entered, no
prompt is displayed.

l-20 ICU Use/s Guide

INTRODUCTION TO CONFIGURATION

1.9.7 Exit Command

ENTER CoMI{AND : EIxit] lpathnarne I <CR)

The Exit command exits the ICU and updates the definition file with all of the changes
from the current ICU session. The syntax ofthe Exit command is as follows (the elements
inside the brackets are optional):

E[xit] [pathname]

where

E or Exit Exits the ICU saving all the changes made in this session.

pathname Pathname of a file to use instead of the output-fiìe-name to save
changes made to the definition file.

You should always use either the Exit or Save command after using the Generate
command.

1.9.8 Replace Command

ENTER COMMAND : RIeplace] <CR>

The Replace command enables you to change the control character that the ICU uses in
the special editing commands. The control character precedes special editing commands,
the default character is the caret (^). lfyour terminal does not support this character, or
you prefer a different character, use R[eplace] to change it to any character of your
choice. The syntax of the Replace command is as follows (the elements inside the
brackets are optional):

RIeplace]

ICU User's Guide 1-21

INTRODUCTION TO CONFIGURATION

After you enter the Replace command (followed by a carriage return), the ICU displays
the followins screen:

ENTER COMMAND : R{eplace} <CR>

Input new contro l character :

Enter the new control character you select, followed by a carriage return.

1.9.9 Detail-Level Command

ENTER COMì, ÍAND : DIeta i l -Level] <CR>

The Detail-Level command enables you to set the level of detail you want in displaying
the ICU screens. Thiscommand provides the option of selective v:reen displays. Rather
than viewing all the screens, you can elect to see only screens of a partìcular t)?e. There
are four possible levels you may request:

All Shows all the screens

Devices Shows only device screens

Operating System Shows all non-hardware related screens

Jobs Shows only the job screens (such as User, ì/O and User
Modules screen)

The syntax of the Detail-Level command is as follows (the elements insitle the brackets
are optional):

DIetail-Level]

l-22 ICU Usefs Guide

INTRODUCTION TO CONFIGURATION

After you enter the Detail-Level command (followed by a carriage return), the ICU
displays the following screen:

If you enter an invalid response, the ICU reclisplays this screen until it receives a valid
response.

1.9.10 Backup Command

ENTER COMMAND : Blackupl f Í ìe .name <CR>

The Backup command writes an ASCII backup file containing a list oî all the parameter
abbreviations and their current values. The backup fi.le is used as input to the ICU during
the restore process (discussed later in this chapter). Remember, the informaîion in the
backup file is part of the definition file. The advantage of creating a backup file is that it
is in ASCII which is easier and safer to use with other utilities or electronic mail.

The syntax of the Backup command is as follows (the elements insitle the brackets are
opt ional) :

B[ackup] filename

where

B or Backup Writes a backup file.

filename Name of the file that wìll contain the backuo information.

The fo l lorv ing levels

Al l
Devices
0perat ing- Sys ten
Jobs

EMER LeveÌ of Deta i l

o f d e t a i Ì a r e a v a i l a b l e :

ICU Useds Guide r-23

INTRODUCTION TO CONFIGURATION

When the backup command has completed, the ICU displays a message that the filename
specified has been backed-up. It then returns to command mode. For example, ifyou
backed-up your definition file to a file named UPDATE.BCK, the following screen would
be disnlaved.

The Def in i t ion F i le has been backed-up to f i le : UPDATE.BCK

For genera l he lp ln any screen enter H (CR).

The following commands are avallable

Change
Generate
Lls t
Save
Qui t
Ex i t
Replace
Deta i l - Level
Backup

ENTER COMMAND :

1.9.11 Abort ing ICU Commands

The ICU enables you to abort an ICU process, without losing any information, by
entering CONTROL-C. If you enter CONTROL-C during the execution of an ICU
command (Generate, List, etc.) the ICU stops executing the current command, and
returns to the main menu screen. The ICU handles CONTROL-C differentlv for each
command.

. lf entered in command mode, or during SAVE, QUIT, EXIT or BACKUP, it is
ignored.

e If entered during CFIANGE, it displays the following message:

C Lo EXTT to the Main-Henu'

o If entered during GENERATE, the ICU finishes writing the file being generated,
disnlavs

' * *1 t Process ABORTED. '

and returns to command mode

l -24 ICU Usef s Guide

INTRODUCTION TO CONFIGURATION

If entered during LIST, the ICU displays the Process ABORTED message, writes the
message to the file or device specified in the List command, and returns to command
mode.

[f entered during REPTACE or DETAIL-LEVE,L, the ICU returns to command
mode.

If entered while restoring, the ICU displays the following messiìge and returns control
to the operating system.

' * * * Process ABORTED - The Def in l t ion F l le r t ras no t res l -o red . '

1.10 CHANGING A DEFINIT ION FILE

It is possible to change a definition file by entering the "Change" command on the menu
screen. The ICU then shows one screen of information at a time. Each screen pertains to
a specific area of configuration. The information displayed on the screen consists of a
series of prompts and default values. Any of the default values can be changed. However,
the changes you make are not immediately displayed on the screen. They are displayed
only when you reshow the screen using the editing command ̂R (or R), discussed later in
this chapter, or just a carriage return.

Entering another carriage return alìer using one to reshow a screen causes you to proceed
to the next screen. The changes are recorded in the definition file when you exit the ICU
using the "E" command or when you enter the "S" command while still in the ICU.

ICU Usefs Guide t-25

INTRODUCTION TO CONFICURATION

1 .10.1 Explanation of the Basic Screen Elements

The following definitions will help you understand the various parts of :r sc'reen. The
followins screen illustrates the defined terms.

(SCABV) The abbreviation enclosed in parentheses identifies the
screen being displayed. This abbreviation is used with
the "Change" or "Find" (discussed later in this chapter)
commands to access a screen.

SCREEN NAME The name of the screen.

(ABV) The abbreviation enckrsed in parentheses identifies the
parameter whose existing value can be replaced.

PARAMETER DEFINITION This tjefinition briefly describes the parameter thar you
can cnange.

[range ofvalues] This defines the range of acceptable values for this
parameter.

XXX The value in the current def in i t ion f i le. I f the exist ing
value is not what you want, replace it with any other
value within the range of values.

(SCABV) SCREEN NAME

(ABV) PAXAì,IETER DEFINITION [range of values] XXX
(ABV) PARAI'IETER DEFINITION Irange of values] XXX

Enter lAbbrev iat íon - new value / Abbrev iat Íon ? / H) :
<prornpt l ine>

t-26 ICU Usefs Guide

INTRODUCTION TO CONFIGURATION

<prompt line> This line is where you enter changes to the screen. The
cursor is located at the begìnning of this line ready for you
to enter one of the following:

. An abbreviation, an equal sign (=) and a new value

. An abbreviation and a "?", if you need an explanation of
the parameter

. A ^H (H), ifyou need general help in understanding
the screen types or editing commands

. A "?", if you need an explanation of the specific screen

Data you enter on the prompt line should be followed by a
carr iage return (. CR>).

The following screen ìs the first screen displayed when entering Change mode with a new
definition file. All of the features described above are displayed. The screen abbreviation
ìs (HARD) and the screen name is "Hardware". There are nine (9) parameter lines and a
prompt line. Each par:rmeter line includes a range of legal values which may be entered if
the default value does not meet your system requirements. The bolded entries on the
following screen illustratc how you would use the prompt line to make changes to two
narameter lines.

ICU User's Guide 1-27

INTRODUCTION TO CONFIGURATION

The hardware screen chapter of. the Ertended iRMX II Interactive Confrguration Utility
Reference Manual explains how to respond to the specific prompts shown in this screen.
The purpose of this section is to explain how to make entries on this and other types of
screens.

(HARD) Hardware

(DUS) System Bus Type [1 * t' lBI / 2 ^ llBÎÎi
(T P) 8 2 5 4 T t m e r P o r t [0 - 0 F F F F H]
(C I L) C l o c k I n t e r r u p t L e v e l l 0 - 7 1
(C N) T i n e r C o u n t e r N u m b e r [0 , 1 , 2]
(C I N) C l o c k I n t e r v a l [0 - 6 5 5 3 5 m s e c]
(C F) C l o c k F r e q u e n c y [0 - 6 5 5 3 5 k h z]
(TPS) T iner Por t separat ion [0-OFFH]
(NPX) Nurer ic Processor Extenslon lYes/Nol
(I f) I n i t i a l i z e O n - b o a r d F u n c t í o n s [1 . 2 , 3 , 4 , 2 N o]
(B I P) B o a r d l n i t i a l i z a t i o n P r o c e d u r e l 1 - 4 5 C h a r s l

Encer IAbbreviat lon : ner^ ' va lue / Abbrev lat ion ? / H
: cll-4 <CR>
: npx=no<CR>
<cR>

1
ODOH
0
0
1 0
L229
02H
YES
1

l :

t-28 ICU Usef s Cuide

INTRODUCTION TO CONFIGURATION

1.10.2 Entering File Names, Address Values, and Integer
Constants

You can enter several types ofvalues in response to a parameter line, depending on the
range of values for the parameter. The kinds of values you can enter include

device/file name A device or file name can be any device or file name acceptable to
the operating system.

integer constants Constants must be unsigned integers that you can enter in any of
three radices: decimal, hexadecimal or kilobyte. A trailing radix
character indicates the radix of the number, as shown in Table l-3.
The default radix is decimal.

addresses Address values must be entered in the form
SELECTOR:OFFSET. 1'he radix must be speciiìed (either
explicitly or by default) for both portions of an address. For
example, you must specify the selector of 900H and an offset
address of 384H as 900H:384H.

(llARD) Hardware

(BUS) System Bus îype [1 - M-BI / 2 - yIBIf-)
(TP) 8254 Timer PorE [0-0FFFFH]
(CIL) Clock ln terrupt Level [0-7]
(C N) T i x o e r C o u n t e r N u m b e r 1 0 , 1 , 2 1
(C I N) C l o c k l n t e r v a l I 0 - 6 5 5 3 5 n s e c l
(c F) C l o c k F r e q u e n c y l 0 - 6 5 5 3 5 k h z l
(TPS) T imer Por t Separat ion [0-OFF] I l
(NPX) Nuuer ic Processor Extension IYes/No]
(I F) I n i t i a l l z e O n - b o a r d F u n c t i o n s [1 , 2 , 3 , 4 / N o]
(BIP) Board In i t ía l izat ion Procedure I l -45 Chars]

I
ODOH
4
0
1 0
1229
02H
NO
I

Enter I Abbrev ia t ion : ne ! , va lue / Abbrev ia t ion ? / H)
:

Table l-3. Integer Constant Formats

Rad ix TraiLng Character

D6cimal
Hexadecimal
Kilobyîes

None or D
H o r h
K o r k

ICU Usefs Guide l-29

INTRODUCTION TO CONFICURATION

1.10.3 Help Messages

The ICU provides three types of help messages to supply information and save you time
as you are defining your definition files.

. For HELP about parameters, enter the parameter abbreviation followed by a "?".

. For HELP about the screen being displayed, enter a ?

. For HELP about editing screens, enter ̂ H or H.

After reading the help messages, enter a carriage return to return to the screen you were
editing.

1.10.4 Screen Formats

Three basic tlpes of screen formats are used in the ICU: the fixed screen, the repetitive
screen, and the repetitive-fixed screen. These screen formats have similar features.

1 .'l0.4.1 Fixed Screen Formats

The fixed screen format enables you to make changes by entering the two- or three-letter
abbreviation, the equal sign (=;, the new value, and a carriage return. The "Hardware,,
screen shown earlier in this chapter is a fixed format screen.

1.1 0.4.2 Repetitive Screen Formats

Most screens use the fixed format to display information. However, a screen such as the
"Prefixes" screen, shown below, uses a repetitive screen format. In a repetitive screen
format, the same prompt is repeated many times. Each time you enter information on the
screen, you define new system information. In the example below, each time you enter a
line of information, you define a logical name for a directory. As you can see from the
example, identifoing numbers precede each line of intbrmation. To make changes to this
screen, you should enter the line number, the equal sign (=), the new value, and a
carriage return. After entering the change, the screen is redisplayed.

l-30 ICU Useds Guide

(PREF)

Pref ix

[2] P r e f i x
[3] P r e f i x
[4] P r e f i x
[5] P r e f i x

Pref ixes

1-45 characrers
: PRoG :
: UTILS :
: SYSTEM:
: I.ANG :

[Number : new valueEnter Changes ,/ "D Nunber / ? / 11 \l

INTRODUCTION TO CONFICURATION

1 .10.4.3 Repetitive-Fixed Screen Formats

The repetitive-fired screen format combines the features of the other two screen types. It
repeats a full screen of information any number of times. In the following example, the
"User Jobs" screen, you define a userjob by entering inforrnation on the screen. When
you complete this screen or any repetitive-fired screen, a one-line query screen is
displayed. In this case the query screen asks: "Do you have any/more User Jobs?". If you
answer "yes" or "y", the ICU presents another "User Jobs" screen. Each time you make
entries to one of these screens you define a new user job. The ICU repeats this screen
until you respond with a "no", "n", and/or a carriage return to the prompt.

ICU User's Guide l -31

INTRODUCTION TO CONFIGURATION

(USERJ) User Jobs

(NA.l.t) Job Narne [0 - 14 Char]
(O D S) O b j e c t D i r e c t o r y S i z e [0 - 3 8 4 0]
(PMI) Pool Mlnimrtln [20H- OFFFFFH]
(Pì,fA) Pool Maxinuu [20H-OFFFFFH]
(UoB) tlaxinun objects [1- OFFFFH]
(MTK) Maxlnun Tasks (1- 0FFFFH l
([PR) l . lax imuxn Pr ior i ty [0-255]
(EHS) Except lon Handler Entry Poinc [1-31 Chars]

(EM) Exception Mode INever/Prog/Envi ron/All]
(PV) Parameter Val ldat ion IYe srzNo]
(T P) T a s k P r i . o r i t y [0 - 2 5 5]
(TSA) Task EnLry Point I l -31- Chars]

(VAR) Publ Íc Var iable Name [0-31 Chars]

(S S A) S t a c k S e g n è n t A d d r e s s I S S : S P l
(s s l) s t a c k s i z e [0 - O F F F F H]
(NPX) Nuner ic Processor ExtensiÒn Used [Yes/No]

Enter lAbbreviation- new value / Abbreviation ? / H]
: <CR>

0
0 60H
OFFFFFH
OFFFF1I
OFFFFH
r29

NEVER
YES
1 5 5

0000 : 0000H
0300H
NO

1.11 SCREEN EDITING COMMANDS FOR THE ICU

Several special commands are available to simplifu the editing process. They are
summarized in Table 1-4 and then explained in detail in the following paragraphs. The
commands are initiated by entering the caret "^" control character (or a character you
substituted for the caret using the "R" command in command mode) followed by one or
more characters. It is also possihle to enter all of the commands, except Insert, Copy, and
Delete, without the control character. Ifyou try to use lnsert or Delete without the
control character, you will receive a message explaining the correct invocation of these
commands. Each command sequence must be terminated with a carriage return.

l-32 ICU Usefs Guide

INTRODUCTION TO CONFIGURATION

Complete descriptions of the special editing commands are as follows:

^B or B Enables you to move backwards from the current screen to the
previous screen. The ICU displays the previous screen and enables
you to continue as usual. Moving backwards beyond the beginning
of the definition file returns you to command mode. This
command can be used on all types of screens.

^C or C Returns you to command mode from any ICU rcreen. lt then
displays the main menu.

Enables you to delete an entire repetitive-fixed format screen. The

screen deleted is the current screen.

Table l-4. Special Editing Commands

Command M6aning Scre€ns Affected

Fix€d R€p€t-
rtrv€

Rep€t-
fixed

^ B o r B

^ C o r C

^D

^D < numb€r>

^F <scabv>
or F <scabv>

^ H o r H

^l < number>

^ R o r R

^ N o r N

^S <s t r ing>
or S < sîring>

Eack up to previous screen

R€turn to command mode

Delete a screen

D€l6te th€ €lem€nt with this
number

Find and display the specifred
screen

Display the l ist of special
commands that apply to the
current screen format

lns€rt an new screen in front
of the current scre€n

lnsert a new line

Copy the curent screen

Redisplay the curent screen

Go to the next logical screen

Search the remaining scr€ens
for the specified string

X

X

X

x

X

X

X

X

X

X

X

X

X

X

X

x

X

X

x

X

X

X

X

X

ICU Use/s Guide I --l-1

INTRODUCTION TO CONFIGTIRATION

^D < number >

^F < scabv >
or F < scabv >

^ H o r H

^I

^I <number> =
or <number> =

^co

^ R o r R

^ N o r N

Enables you to delete a specific item in a repetitive screen. The
numbcr you cntcr identifies the cntry to be deletcd.

Finds and displays the screen indicated by the screen
abbreviation. The syntax ofthe ̂ F command is

^F
lor F) screen-ahhreviat ion

where the screen-abbreviation can be any abbreviation listed rn
Table 1-2. This command enables you tojump from one screen to
another. Ifyou specify a screen name not previously defined, this
command jumps to the next available screen, and displays this
warning message:

*** WAI{NING - The screen requested cannot be disol

Ifyou do not speciry a screen abbreviation, the list of screen names
and abbreviations is displayed (see Tahle 1-2) and you are
prompted for a screen abbreviation. Ifyou want to exit this
command without entering an abbreviation, press the carriage
return and continue to the next logical screen. Figure l-4 shows a
flowchart of how you proceed from one screen to the next ifyou
simply enter a carriage return.

Displays the list of special editing commands.

Enables you to insert an additional repetitive-fixed screen in front
of the current screen. Otherwise, the command ̂l has no effect.

Enables you to add a new line to a repetitive screen.
The ̂ I is optional. Only the line number and an equal sign are
required.

Enables you to insert an identical copy of the current screen in
front of the present screen. This command can be used only with a
repetitive-fixed screen.

Redisplays the current screen, showing any changes made.
Entering ̂R is the same as entering a null carriage return. The
default or previously entered responses are displayed until you
enter the ̂ R command (or < CR >) to show the changes y<tu have
made to this screen. I fyou are in a help screen, the command ^R

returns you to the last non-help screen you were on.

DispÌays the next logical screen. For example, if you are entering
data on a unit-information screen and enter ̂ N. the first DUIB
screen for that driver is displayed. If you enter ̂ N again, the first
screen of the nexî driver is displayed, and so on. If you enter ̂ N in
the last screen. the ICU returns to command mode.

l-34 ICU Useds Guide

^S < string>
or S < string>

INTRODUCTION TO CONFIGU RATION

Searches repetitive-fixed screens of the same logical
tlpe for the specified string. When this command is entered, the
search begins in the next screen of that logical type and searches all
fields wìth a character range (for example, 1-31 characters). The
search continues until a match is found. If no match is found, the
cursor remains at its current position and the ICU displays the
following message:

No next rnatch found

The syntax for this command is
^S (or S) <str ing>

The following example shows how to use the ̂ S command.
Assume you have 20 DUIB screens for the iSBC 214 driver and
you want to find the screen that defines the device name as w0.
First, you would get to the first "(I214)" screen. Then you would
enter

The ICU searches al l the iSBC 214 DUIB screens unt i l i t f inos
"w0". It then displays that screen.

1.1 1.1 Deleting Data on a Repetitive Screen Format

To delete information from a repetitive screen, you must use the ̂ D <number>
command, where <number> is the number of the line to be deleted. After the line is
deleted, the remaining lines are renumbered and the screen is displayed again. The ICU
does not allow you to delete a line that is not displayed. To replace a line you must first
delete the existing line, and then insert the new line.

An example of how to delete data on a repetitive screen follows. Assume the "prefix"
screen is defined as shown below. The cursor is positioned under the word "Enter". Ifyou
wish to delete line 6, you would do so as shown here.

ICU Useds Guide 1-35

INTRODUCTION TO CONFIGURATION

(PREF) Pref ixes

Pref ix - 1-45 characters

[1] P r e f t x - : P R O G :
[2] P r è f í x - : U T I L S :
[3] P r e f i x - : S Y S T E H :
[4] Pref lx : : IANG:
[5] P r e f i x - : $:
[6] Pref ix - : l . toRKl :
[7] P r e f i x - : T M P 2 8 6 :
[8] P r e f i x -

Enter Changes [Nurnber * ne\t value /
^D Nunber / ? / H]

: ^d 6 <CR>

After line ó is deleted, the screen is redisplayed with lines 7 and 8 renumbered to 6 and 7
as shown here.

(PREF) Pre f ixe s

Pref ix - l - 45 characters
[1] P r e f i x * : P R O G :
l 2 l P r e f i x - : U î I L S :
[3] P r e f i x - : S Y S T E M :
I4 l Pref ix : : I ,ANG:
[5] P r e f i x * : 9 :
[6] P r e f t x * : T M P 2 8 6 :
[7] P r e f i x -

Enter Changes [Number - new value /
^D Nurnber / ? / H]

r-36 ICU User's Guide

INTRODUCTION TO CONFIGURATION

1.11.2 Inserting Data on a Repetitive Screen Format

To insert a line on a repetitive screen, enter the insert command ̂l (optional), the line
number, an equal sigr (=), and the new value. When the new line number is inserted, the
ICU renumbers the remaining lines and displays the screen again. If the number you
enter is larger than the actual number of lines in the screen, the ICU inserts the new line
as the last line. Assume you want to insert a new prefix on line 6 of the "Prefix" screen
displayed previously. You can enter

and the screen will be redisnlaved with the new values as shown here.

Ifyou are entering numerical data on a repetitive screen such as the "Memory lbr System"
screen, you can enter the data in any order. However, the ICU automatically arranges
your data in the proper order and displays it on the screen. For example, if you enter the
following three insert commands

^ r L - 2 o o o H , 4 o o o H
^ r 2 = S o o o o H . g o o o o H
^r 3 = l ooooH, l 2oooH

P r e f i x

[2] P r e f i x

P r e f i x e s

l - 45 characters
: P R o C : { 2 1 P r e f i x : : U T I L S :
: UTILS :
: SYSTEM :
: IANG :
: l :

: CONFI :
: TMP2 86 :

[Nurnber - new value / "D NunberEnter Changes / ? / H

ICU User's Guide r-37

INTRODUCTION TO CONFIGURATION

on the "Memory for System" screen (see fhe Extended |RMX II Interactive Confguration
Utility Reference Manual), the ICU sorts the data in ascending order and redisplays the
lines as follows:

2 *
3 -

2000H, 4000H
10000H, 12000H
8 0 0 0 0 H , 9 0 0 0 0 H

1 .11.3 Deleting a Repetitive-Fixed Screen

The ̂ D command enables you to delete information for an entire repetitive-fixed screen;
you delete the current screen. You can use this command to delete I/O Jobs, User Jobs,
OS Extensions, and Remote File Servers, as well as Intel and user devices. Ifyou want to
delete a device driver, it is only necessary to delete the Driver screen for that device. The
ICU automatically deletes all the Unit and DUIB screens associated with it (see the
Extended |RMX II Interactive Configuration Utility Ret'erence Manual for more
information).

r-38 ICU User's Guide

INTRODUCTION TO CONFIGURATION

Figure 1-4. ICU Flowchart

l-39ICU Usefs Guide

INTRODUCTION TO CONFIGURATION

Q
'.",,0" ,n" .,,""0ed r/o sysrem Layé.?

l-4. ICU Flowchaf
(Continued)

l-40

Figure

ICU Usefs Guide

INTRODUCTION TO CONFICURATION

Figure l-4. ICU Flowchaf
lContinued)

ICU Usefs Guide l -41

INTRODUCTf ON TO CONFIGURATION

1.11.4 Inserting a Repetitive-Fixed Screen

The ̂ l command enables you to insert an additional screen of information between two
existing screens. (This can be used only with the repetitive-fired screen format.) Use this
command on the screen you wish to precede. For example, ifyou have three User Jobs
and wish to insert a fourth job between the second and third job, use the ̂ I command on
lhe screen for the third job.

The copy command (^CO) can also be used to insert an additional repetitive-fixed screen.
The copy command inserts a copy of the current screen in front of itself. The only
difference between the insert command and the copy command is that the copy command
uses the current screen values rather than the default values.

1.12 ICU ERROR MESSAGES

During the interactive portion of the ICU process, two types of error messages can occur:

. interactive error messages

r internal ICU errors

The interactive messages are the most frequently encountered, and are self-explanatory.
The ICU internal error messages should not occur. The following sections explain these
errors in more detail.

1 .12.1 lnteractive Error Messages

The ICU accepts data that you enter only if it lies within the range of aoceptable values.
Usually, the range of acceptable values for a given prompt appears in brackets "[]" on the
prompt line. If you speci! a value outside the range of acceptable values, the ICU
displays one of the following messages, depending on the kind of value it requires (all of
these messages are preceded by **r ERROR -):

. number expected or number too large

. number is not within its ranse

. address expected

o the selector is not within its range

o offset in address is not a number

. string too long

. a prefix of a legal string expected

. "Yes or No" expected

. the field is "Req"; cannot be changed

ta ICU Use/s Guide

INTRODUCTION TO CONFIGURATION

. erroneous delimiter

. the line entered overlaps

When an error occurs, the ICU does not change the current value of the parameter. If
the values you speciff lie within the range of au:eptable values, the ICU aocepts them
without checking their reasonableness. Therefore, ifyou enter values that cause the ICU
to generate a nonfunctional version of the operating system, neither the interactive phase
nor the generation phase ofthe ICU wili flag these values as errors.

When the ICU leaves the change phase and returns to the initial menu screen, it performs
a number of logical tests, such as checking that the memory locations reserved for the
system and the Free Space Manager do not overlap. If it detects a logical error, the ICU
issues a self-explanatory error message. You must then make the necessary corrections to
your definition file or you will not be able to generate a working system.

1.12.2 Internal ICU Errors

If during execution the ICU encounters an internal error such as the Screen Master File
or the Template file being corrupted, it displays the following message:

*** ICU Internal Error - <number[.s l>

where < number[,s] > can be either one number or two numbers separated by a comma.
The numbers represent an internal code for the ICU and are not meaningful for the user.
Internal ICU errors rarely occur, but if you should receive this error message, lbllow these
guidelines.

1. First, assume your definition file has become corrupted, and try running the ICU
again with a new definition file.

2. If Step I is not the solution, try running the ICU with a new Screen Master File and
a new Template file. Default versions of these files are kept in the directory
:CONFIG:default.

3. If neither of the above solve the problem. contact vour local Intel sales office.

1.13 UPGRADING DEFINITION FILES

There are three reasons you may have to upgrade definition files.

. To make iRMX II.1 definition files compatible with iRMX II.3.

. To add Intel-supplied changes

. To add user device drivcrs

ICU UseI,s Guide l-43

INTRODUCTION TO CONFIGURATION

To upgrade definition files created by iRMX II.l of the iRMX Il Operating System, use
the UPDEF Utility.

To upgrade your iRMX II.3 definition files to include Intel-supplied changes or user
devices, invoke the ICU with the definition file you want upgraded as input. iRMX II.3
definition files can have two formats:

. ICU standard format with a specific version number

o Backup format (ASCII) used by difl-erent versions

The ICU checks the version numbers (see section, "lnvocation Error Messages', earlier in
this chapter) and decides how to proceed. If it is possible to upgrade the definition file
without restoring the backup information, the ICU prompts

D o y o u w a n t t o u p d a t e t h e f i l e ? y / [n]

A response of "Yes" causes the ICU to upgrade the file as you input it. You can then
proceed with the ICU as usual.

If the ICU must restore to upgrade the definition file (for example, if the ICU is invoked
with a backup file or a definition file whose Intel version number differs from the ICU
version number), it invokes the restore process and prompts you as follows:

Do you want to restore f rom the f i le? y / [n]

A response of "No" causes the ICU to stop executing. A "Yes" response means the ICU
should restore the backup information contained in the file, and create a new version of
the definition file.

Ifyou enter "Yes" and the input file is the same as the output file, you are prompted

Enter new outDut file narne:

If the output file exists, the ICU displays this message:

File <ourpur_f i1e> exlsrs . oVERi,tRlTE? y / l-r.,1 i

While restore is operating, the ICU displays a series of asterisks (*) on the screen. If the
restore operation reaches completion with no loss of data, the ICU displays the main
menu and you proceed as usual. However, if an error is encountered, the ICU displays
the folJowing message and exits.

l-44 ICU User's Guide

INTRODUCTION TO CONFIGUMTION

*** Ezu{oR vhile restoring
The Def ini t ion Fi le has been restored to f i le: <f i le-name>.def
l nspec t t he l og f i l e : < f i l e -name>.1og

The ICU writes the backup information that was not restored to a log-file. The log-file
lists each screen name followed by any errors that occurred while restoring that screen. It
also lists abbreviations of fields which were not restored. The log-file has the same name
as the output file but with a ".log" extension. The log-file makes it easy to compare the
backup definition file and the restored file to see which values were not restored. You
should then run the ICU correcting the fields in error. After that you can proceed as
usual.

Assume that while restoring from file upO.def, the ICU was not able to restore the "CF'
parameter on the "Hardware" screen. The log file would look like this:

lCU286 <vers ion number) Res tor ine f rom f i le : upO.def <date> < t i rne>

S c r e e n : H A R D
nr.!Ìber expe c te d

S c r e e n : I N T

I n f i e l d : C F

The error messages in the log-fiìe are the same as the ICU interactive error messages.

This example shows only a portion of the log-file. Ilowever, the actual file lists all the
screen names. The version number, date, and time in the heading are variables.

1.14 THE ICUMRG UTIL IW

The ICUMRG Utility supplied with the ICU provides the ability to include configuration
support for new drivers. The ICUMRG Utility allows you to

. Integrate new [ntel device drivers with a previous version of the operating system

. Integrate user-written device drivers into the operating system

The ICUMRG Utility combines the main Screen Master File (ICU286.SCM) and the
main Template File for System Generation (lCU286.TPL) with the Screen Master File
(SCM) and Template Files (TPL) for the new driver.

ICU Uset's Guide r-45

INTRODUCTION TO CONFIGURATION

Ifyou are adding an Intel-supplied driver, both the SCM and TPL files are supplied with
the update package. In addition to adding your device driver, the ICUMRG Utility
updates the 'Intel Device" screen to include the new device, and changes the help message
that lists all the screen names. Upon completion, ICUMRG updates the Update version
number.

If you are adding a user-written device, the SCM and TPL files were previously generated
by the UDS Utility (see the Extended íRMX II Device Divers User's Guide for more
information). Upon completion, ICUMRG updates the User version number.

After running ICUMRG, the version numbers of the new ICU and your definition files
are different. To continue using your definition files, invoke the ICU as usual. The ICU
will check for version number consistency, and if necessary issue a warning and a prompt
(see section "Invocation Error Messages", earlier in this chapter) to which you should
respond "Yes". The ICU then updates your definition fiìes and continues executing.
Figures 1-5 and 1-6 give the logical flow of the ICUMRG Utility when adding either an
Intel device driver or a user device.

Figure 1-5. Merging Intel Device Drivers

t-46 ICU User's Guide

INTRODUCTION TO CONFIGURATION

Figure l-6. Merging User Devices

1.14.1 Invoking ICUMRG

Before invoking ICUMRG be sure that the ICU286.SCM, ICU286.TPL, and ICUMRG
fiìes are in the same directory. To invoke the ICUMRC Utility enter

ICUMRG input-file(root) TO newicu-file(root)

where

input-file(root) The input-file name without the extension providing the input to
ICUMRG. AIÌ extensions included in the pathname are ignored,
and replaced by SCM and TPL. The ICUMRG Utilìty searches
the input directory for

input-file.SCM - contains all information about the new driver and
the new "lntel Device" screen.

input-file.TPL - contains information needed for generation of new
screens.

The ICUMRG Utility also uses ICU286.SCM and ICU286.TPL as
rnDut.

ICU User's Guide t-47

INTRODUCTION TO CONFIGURATION

newicu-file(root) The name of the wo updated files, without their extensions,
created by the ICUMRG Utility. All extensions included in the
pathname are ignored, and replaced by SCM and TPL. ICUMRG
creates

newicu-file.SCM - contains the ICU Screen Master File updated
with the new device driver.

newicu-file.TPL - contains the ICU Template File updated with the
new device driver.

Be aware that the ICUMRG utility always merges your .SCM and .TPL files with the ICU
files ICU286.SCM and ICU286.TPL. If you plan to add support for several drivers to the
ICU, make sure that the ICU286.SCM and ICU286.TPL files contain the latest version of
your merged ICU files. Otherwise, ICUMRG will merge your driver information with
outdated ICU fiÌes.

NOTE

Before changing the name of any ICUMRG output fiìes to ICU286.SCM
and ICU286.TPL, save the original files by copying them to other files
(such as ICU286OLD.SCM and ICU286OLD.TPL). Although ICUMRG
allows you to add support for new drivers, once you add that support, there
is no way to remove it. If the device driver you added contains an error,
you must revert back to the original .SCM and .TPL files.

1.14.2 ICUMRG Example

The following example shows how to add a device - D219.

The input files are ICU286.SCM AND ICU286.TPL (located in same
directory as ICUMRG)

D2l9.SCM and D219.TPL

The output files are ICUNEW.SCM and ICUNEW.TPL

Upon completion the system prompt is displayed. You are then ready to run the ICU and
generale your system.

1-48 ICU UseCs Guide

INTRODUCTION TO CONFIGURATION

1.14.3 ICUMRG Error Messages

The ICUMRG utility generates an error message if one of the following occurs:

. it is not invoked correctly

. an I/O error occurs

o the version numbers are inconsistent

. either the SCM or TPL files are not valid

Invalid invocation of ICUMRG causes one of the following self-explanatory error
messages to be displayed.

. paraneters required
USAGE: I CUMRG in f i le TO out f i l -e

o n iss ing "To ou t f i le "
USAGE: ICUMRG in f i le To ou t f i le

o n i s s i n g " T O "
USAGE: ICUMRG in f i le TO out f i le

o n i s s i n g " o u t f i l e "
USAGE: I CUMRG in f i le T0 ou t f i le

. coo many Pa rame te rs

USAGE: ICUMRG in f i le TO out f i le

In addition to the invocation error messages, ICUMRG issues the error messages [sted
below.

. *** UDI Error - <except ion-code>, (mnemonic)

An error was detected by the UDI. The mnemonic explains the cause of the error.
For example, you can receive this error message if ICUMRG cannot successfully
change the extension.

. * * * E r r o r - i n p u t f i l e s a m e a s o u t p u t f i l e

The input and output files cannot be the same.

. *** l /o Error ín f i le: <f i le narne)
<excep-code>, <mnemonic>

An I/O error occurred. For example, the ICUMRG utility was not able to create,
open, read, write or seek one of the specified files.

. * * * Er ro r - < f i1e narne> is no t a va l id SCM f i le

The data in the SCM file is not valid.

. * * * Er ro r - < f i le name> is no t a va l id TPL f i le

The data in the TPL file is not valid.

ICU Usefs Guide r-49

INTRODUCTION TO CONFIGURATION

. * * * Er ro r - incons is tency in the vers ion o f the in te rna l ICU f i les

Versions: INTEL UPDATE USER

ICU286.SCM <Intel> + <Update> <User Version>
ICU286.TPL <Intel> + <Update> <User Version>

There is an inconsistenry in the version numbers ofthe ICU286 SCM and ICU286
TPL files.

. * * * Er ro r - incons is tency in the vers ion o f the in te rna l ICU f i les

Versions: INTEL UPDATE USER

Input Scm Fiìe < Intel > + < Update > < User Version >
Input Tpl File < Intel > + < Update > < User Version >

There is an inconsistency in the version numbers of the input SCM and TPL files.

. *** Error - (screen-abbr> screen already exists in ICU286.SCM

Duplicate screen names are not allowed. You are probably merging the wrong SCM
and TPL files, thus causing a duplicate name to be created.

. *** Error - unexpected end of TPL f i le <f i le name>

An unexpected end of file in the TPL file was encountered.

1-50 ICU Usefs Guide

GENERATING
CHAPTER 2

YOUR SYSTEM

2.1 INTRODUCTION

The process of generating your configured system consists of the following steps:

o Generating configuration files.

o Executing a SUBMIT file that compiles, assembles, binds, and builds all necessary
fi.les.

2.2 GENERATING CONFIGURATION FILES

By using the ICU, you can define the operating system that best meets your individual
needs. This process takes place while you are editing your definition file. When you have
completely defined your system, return to command mode to generate your configured
system as follows:

1. Use the List command to create a file that records your system configuration.

2. Use the Generate command to generate your configuration files.

3. Use Exit to save your changes and exit the ICU.

The following screen shows the results of having used the G[enerate] command to
generate all the required configuration files (assuming the definition file used was
nen'file.del).

ICU Usefs Guide 2 - l

ENTER COMMAND : I

ENTER a Ìet ter tÒ be used as pref ix :a

The pref ix le t tèr is : A
Beginning NUCLEUS Flle Generation

Beginnlng BI0S Fi le Cenerat íon

Eeglnnlng EIOS Fi le Generat ion

BegÍnning LOADER File Generation

B e g l n n i n g H I F i l e G e n e r a L i o n

Beginning UDI F i l .e Generat ion

Beginn íng SDB F i le Cenera t ion

Beginning Subni t F i Ie Generat i .on

Beginning Bui ld F i le Generat ion

NoTE: îo GENERATE your system submit NEI,IFILE.CSD

For genera l he lp in any screen enter H <cr>

The following cornrnands are available

Change
Cenerate
Lis t
Save
Quit
Exit
Replacè
Deta lL - Level
Backup

ENTER COM},IAND :

DONE

DONE

DONE

DONE

DONE

DONE

DONE

GENERATING YOUR SYSTEM

The files listed in Table 2-l are the configuration files that define your system. The
system processes these files during execution ofyour SUBMIT lile. The ICU creates the
SUBMIT file with the same filename as your definition file (with a .CSD extension). For
example, the definition file used in the previous screen was labeled NEWFILE.DEF.
Therefore. the SUBMIT file is called NEWFILE.CSD.

2-2 ICU User's Guide

GENERATING YOUR SYSTENI

If you use the prefix option, be sure to choose a unique prefir each time you generate
your system. If a file of the same name already exists, the ICU overwrites the old file with
the new file.

Table 2- 1 shows file names created using no prefix (carriage return only). If you enter any
character other than carriage return when prompted for a prefix, that character is added
as the nrefix to the file names.

CAUTION
Changes made to the ICU definition file are not reflected in your
configuration hles until you generate.

Table 2-1. F i les Crealed by the Clenerate l Command

File Name Screens Used to D€fine th€ File

NTA8L.428

NUCDA-M8

NJOBC,A2S

IfABL.A2S

ICDEV.A2S and

ETABL.A2S

EDEVC.A2S

EJOBC.42B

HCONF.P28

LTABL,42S

tcoNF.P28

SDBCN.A28

UTABL.A2S

NROMC.A28

ITDEV.A2S

Nucleus

Nucleus, Hardware, Interrupts, Slave Interupts,
OS Extensions, ROM Code

OS Extensions, User Jobs

BIOS System Calls, Remote File Access

All Intel and user devices, Remote Fie Access

None

EIOS, Automatic Boot Device, Logical Names

l/O Users, l/O Jobs

Human Interface, HlJobs, Resident User, Preflxes,
Hl Logical Names

None

Applicalion Loader

System Debugger

None

Hard , MBl l , Mems, ROM

ICU UsePs Guide) _ t

GENERATING YOUR SYSTEM

2.3 EXECUTING THE SUBMIT FILE

After you exit the ICU, execute lhe STJBMIT file and wait for your system to be
generated.

The SUBMIT file assembles or compiles any configuration fiÌes generated by the ICU and
binds the object files with any needed libraries used by a subsystem. It then builds the
system. The syntax for invoking the SUBMIT file is

SUBMIT output-file[.CsD] [to filename] [echo]

where:

output-file The name of your definition file.

f i lename A f i le that the system creates to contain the output of the SUBMIT
command.

e[cho] Sends a copy of the clata reacl to the screen.

For more information on the SUBMIT command, see fhe Operaîor's Guide to tlte
Ertended |RMX Il Hunnn lnterftrce.

2.3.1 Assembling the Configuration Files

The SUBMIT file generated by the ICU identilìes the configuration files that must be
assembled or compiled lbr each of your subsystems. The number of files assembled varies
from system to system and depends upon the features that you choose. No errors should
be encountered during this phase. Figure 8-36, in Appendix B, gives an example of the
SUBMIT f i le output dur ing this phase of the conf igurat ion process.

2.3.2 Binding the Individual Subsystems

As soon as ASM2ll6 generates the object files lbr a given subsystem, the SUBMIT file
ini t iates BND286 to bind these object f i les together with any l ibrar ies needed by the
subsystem. Any warnings generated during this phase should be ìgnored. Explanations of
the various warnings appear at the en.i of this section. Figure B-3ó, in Appendix B, shows
some of the output generiìte(l durin{r this phase of the configuration pnrcess.

2-1 ICU User's Cuide

GENERÀTINC YOT]R SYS'TEM

2.3.3 Warning Messages

When you invoke the system generation SUBMIT file, a number of warning messages
may be issued by BND286. These are normal messages and are not critical.

r IIARNING 151: UNRESOLVED EXTERNAL SI'Ì'ÍBOLS

This warning is the most common. It indicates that BND2l.l6 did not resolve all the
external symbols declared. You may ignore this warning since the missing symbols are
resolved only at build time. It may appear when binding the Nucleus or after the first
phase of binding either the Basic I/O Sysrem or the Extendcd I/O System. It may
also appear after the second phase of the EIOS, if you are binding a first-level I/O
job.

o WARNING 133: SEGMENT LIMIT DECREASED DUE TO SEGSIZE VALUE

This warning is expected in the Nucleus. I t indicates that the size of the segment
named is being decreased because of a SEGSIZE speci f icat ion.

2.3.4 Building the System

After the SUBMIT file has completed the assembling and binding of each of the
subsystems, it builds the system by invoking rhe BLD286 utility. The invocation lbr
BLD286 is contained within the SUtsMIT fiJe. An cxample of this can be seen in Figure
B-36.

Enter ing the Generate command produces a bui ld f i le wi th the s: tmc namc as thc
definition file but with the extension BLD. This serves as the inpur filc to BLD286. 1'he
output file created by BLD286 is the file you define in the "Ceneratc File Name" screen
(see the Extended iRMX II Interactive Conf.guration lJtility Reference Manual). No errors
should ocrur during this phase of the ICU. However, you can expect one warning which
can be ignored. The warning is

***WAI{NINC 269 (L ine-number>, NI IAR 'CLI_DATA' , SEGMl lNT SIZE REDUCED

This warning appears af ter the fo l lowing l ine of code in the bui ld l i le :

c l i _ c o d e (d p 1 : 0) , c 1 i _ d a t a (l i m i t : 0 , d p ì : 0)

ICU UsePs Guide 2-5

GENERATING YOUR SYSTEM

2.3.5 Error Messages

In addition to warning messages, the language utilities can return error messages. Error
messages are not normal and you should not ignore them. They indicate serious problems
that prevent the successful generation ofyour system. The following error messages can
appear.

o 0021: E$FILE_NOT_EXI ST
8042: E$NOT_CONNECTION , command abor ted by EH

One of these messages might appear if you enter an invalid pathname as input to the

ICU.

r 0026: E$FILE_ACCESS

This message may appear if there is no read access to the input file, no add entry
access to the directory, or no write access to the output file.

. ERROR I18: INPUT SEGMENTS EXCEED TARCET MEMORY

The memory blocks you declared in the "Memory for System" screen are not large
enough for the system you delìned. ln this case, enter the ICU again, increase the
system memory, and decrease the Free Space Manager memory. This error message
may result from installing an update which increases the size of the operating system.

2-6 ICU User's Guide

PREPARING
CHAPTER 3

APPLICATION JOBS

3.1 INTRODUCTION

Once you have prepared your application jobs, you should locate your first system in
RAM to facilitate testing and debugging ofyour programs. It is much easier to test and
debug your programs in RAM than it is to reburn your PROM devices when you detect
errors. After debugging in RAM, you can locate the final system in PROM/RAM or copy
it to a secondary storage device and load it with the Bootstrap Loader.

Putting together a RAM-based system consists of the following steps:

1. Using the ICU to define your system

2. Preparing your application code

3 . Compiling and binding the application jobs

4. Using the ICU to generate the system with your application (not needed if the
Application Loader loads your application)

5. Loading and testing the system

This chapter describes how to prepare your application code, compile and bind it, and
build a system with your application jobs (steps 2 through 4 above). Both loading and
testing your system are described in Chapter 5 of this manual.

3.2 PREPARING APPLICATION CODE

You can write the code for your application tasks in any language supported by the
iRMX II Operating System. This manual assumes that you are using PL/M-286. In order
to use assembly language, you must adhere to the PL/M-286 calling conventions
described in the ASM28ó Macro Assemhler Operating Instrucrions manual. T\e Extended
|RMX II Programrning Techniques manual also contains information to help you write your
application code, especially assembly language applications.

When writing your application code there are additional instructions you should follow in
order to use all the features of the iRMX lI Operating System. The following sections
nrovide this information.

ICU Use/s Guide 3 - l

PREPARING APPLICATION JOBS

3.2.1 Language Requirements

Adhere to the following language requirements when writing your task code:

. Make certain any utilities you use are linked to the Extended iRMX Il UDI libraries

. In general, you should designate all of your tasks as procedures. Designation of initial
tasks is the only exception to this recommendation. Refer tct Ertended |RMX II
Application Loader User's Guide Îor details about main modules and procedures.

. I f you are compi l ing your PL/M-21ì6 code using any model other than tARGE,
specify the ROM compiler control. This causes the compiler to place the CONST
segment in the CODE class, where it can be more easily loaded into PROM. You do
not need to specify the ROM control for those programs compiled using the LARGE
model. The compiler does this automatically for the TARGE model.

. Use the DATA and INITIAL PLIM-286 statements with care. The DATA statement
is valid only if you use the PL/M-21'ì(r TARGE mociel of segmentation or if you specify
the ROM compiler control. The INITIAL statement cannot be used in a procedure if
you put that procedure in PROM. [t clin be used, however, if vou use the Bootstrap
Loader or Application Loader to load the procedure into memory.

3.2.2 Include Fi les

A number of files must be prtsent t n your microettmputer system to compile your
application software ancl to configure your operating system. The "Includes and Libraries"
screen, discussed in the Extended iRll,lX II Interactive Configuration Utility Reference
Manual, selects files that must be present to configure your operating system. This
section discusses the files needed to compile your application software.

Any program containing iRMX II system calls must include an external declaration of the
system calls. The iRMX II Operating System provides the declaration of the system calls
for FORTRAN, PASCAL, and PL/M-286 in files called INCLUDE files. When you
install the system as described in the Extended iRMX I I Hardware and Software Installation
Guide, these fiÌes are located in directory /RMX286/lNC. FORTRAN system calls are rn
file RMXFTN.EXT, PASCAL system caìls are in RMXPAS.EXT, and PL/M-286 system
cal ls are in RMXPLM.EXT.

o

3-2 ICU User 's Guide

PREPARING APPLICATION JOBS

However, if you are programming in PL/M and your system does not include all the
subsystems, or if you are trying to save memory, you may want to use a PL/M INCLUDE
file that contains system calls only for a particular layer. These files are

Subsystem File Name

Nucleus NUCLUS.EXT
BIOS BIOS.EXT
EIOS EIOS.EXT
Application Loader LOADER.EXT
Human Interface HI.EXT
UDI UDI.EXT

3.3 DETERMINING MEMORY LOCATIONS

An iRMX II system must be located either entirely in ROM or entirely in RAM. Intel
recommends that you put your system in RAM until you have completed the testing and
debugging stages. To determinc your application's memory requirements, you should add
the size of your application code to the amount of memory required by the system. After
calculating your system's memory requirements, you must determine its physical location
in memory and enter the starting and ending addresses on the "Memory tbr System"
screen,

Some additional factors should be taken into consideration when determining the physical
address of your system. AÌì systems have a m in imum address at which they can start
depending on the elements comprising the system. All systems must take the following
memory locations into consideration:

. 088000H-0BFFFFH, default addresses required by the second and third stages of the
Bootstrap Loader.

o the top 32K bytes, if the system includes the iSDM monitor and the first stage of the
Bootstrap Loader (the top 25(rK bytes, if the system is a System 300 Series
Microcomputer).

In addition, ifyour system includes either a RAM disk driver or a communication board,
you must be careful not to include the board's dual-port memory in the memory you
declare for your system. For example, if your system includes an MSC driver, you must
reserve 68 bytes of memory in the lower megabyte (in an Intel-supplied system, the first
2000H bytes are reserved for such data). After you have reserved room for all the data
requiring fired locations, you can locate your application anpvhere within the l6M byte
memory of the iRMX II Operating System. For more inlbrmation on calculating the
exact memory locations, see Chapter 2 of the Ertended |RMX II Interactive Confguration
Utilin Reference Manual.

ICU User's Guide J-J

PRF],PARING APPLICATION JOBS

Use the memory screens to define the memory for the system and the Free Space
Manager. Intel recommends that first you pad the memory locations to leave room for
any device drivers that may be added or changes that may be made during development
After running BLD286, you can reduce the memory to the actual size necessary by re-
invoking the ICU and editing the memory rcreens (see section "Minimizing the Memory
Address Space", later in this chapter).

3.4 BINDING AND BUILDING YOUR APPLICATION JOBS

Application jobs are include<l in the system by using BND286 and BLD286. You must
bìnd each application job with its offspring jobs and the interface libraries discussed later
in this section. The following sections describe the binding and buiìding process, and the
interface libraries in more detail.

3.4.1 BND286

The BND286 command is used as shown below to bind your firstlevel application jobs.
This command is described in detail in the LAPX 286 Utilities User's Guùle. 'îhe followinu
invocatìon of BND28ó applies to both the iRMX ll and Series lV systems.

B N D 2 8 6 &
a p p j o b . o b j , &
i n t e r f a c e . l i b &

OBJECT(appjob.1nk) NoLoAD &
NOPUBLICS EXCEPT(star t_address, publ ic_var iable, exc_handle r_addre s s)

where:

appjob.obj Pathname of the file containing the object code for your
application job. You do not need to provide this code in one file;
you can bind jn several files or libraries at this point.

Pathname of the file containing the interface libraries for the
system calls included in your jobs. These interface libraries are
described in later paragraphs of this section,

Pathname of the file in which BND286 places the module
containing your bound application code. [Jse this file as the input
file when configuring your application job on the "User Modules"
screen.

The starting address of your application. The Nucleus uses this
name to obtain the selector and offset ofthe initial task. This must
be the same name you entered as the Task Start Address on the
"User Jobs" screen.

interface.lib

appjob.lnk

start address

l-4 ICU User's Guide

exc handler address

PREPARINC APPLICATION JOBS

The starting address ofyour exception handler. You must enter
this value if the starting address is not zero. The Nucleus uses this
name to obtain the selector and offset of the exception handler.
This must be the same name you entered as the Exception Handler
Start Address on the "User Jobs" screen.

The PUBLIC name of a variable in your data segment. The
Nucleus uses this name to obtain the data selector number. This
must be the same name you entered as the Public Variable Name
on the "User Jobs" screen. lf there is no data segment or the
application initializes its own data segment, it is not necessary to
specifo this parameter.

public_variable

You should be aware of the following requirements when bindìng an application job.

. Use the NOLOAD option of BND286. This causes the System Builder (BLD286) to
combine your application with the sysrem lo create a bootloadable file.

r Ensure that the output of BND286 includes three PUBLIC names, one for the start
address, one for a variable in the initial data segment of your application job, and one
for the exception handler (the data segment and exception handler are optional).
These names must be same as the names you specified on the "User Jobs" screen.
These public names allow the system to create a job and start iÌs execution at the
correct address with the corresponding data segment intact.

o Bind the appropriate interîace libraries to your application job, if you use any
iRMX2tl6 system calls. The interface libraries contain routines that satisfo external
references to system calls. The name of the library that you must bind in with your
application code depends on which model of PL/M-286 segmentation the jobs were
compiled under. Table 3- I shows the correlation between models of segmentation
and interface libraries. Specifu these libraries as the last modules in the BND286
input list so that they can satisfy references from all bound modules. Notice that no
library exists for the SMALL model of PL/M-286 segmentation; except for Universal
Development lnterface (UDI) level applications, the iRMX II Operating System does
not support applications compiled in SMALL.

Table 3-1. Interface Libraries as a Function of PL/M-286
Models

Subsystem SMALL COMPACT TARGE oT MEDIUM

All subsystems,
except uDl
UDI UDIIFS.LIB

RMXIFC.L IB

UDI IFC.L IB

RMXIFL.L IB

U DI IFL , L IB

ICU Usefs Guide J - J

PREPARING APPLICATION JOBS

After you have bound your object code using BND286 with the NOLOAD option, you
should

1. Invoke the ICU. You may want to use the Level of Detail option and select Jobs
from the displayed menu to see all the job screens that require changing.

2. Enter the application job onto the "User Job" screen.

3. Enter the pathname of the object file, created by compiling and binding the code,
onto the "User Module" screen.

4. Ensure that you have enough memory for the system, including your application
jobs.

5. Generate the system by entering the "G" command and submitting the output-
file.CSD. (lnvoking the ICU system generation submit file activates BLD2fló.)

The iRMX II Operating System does not allow you to build your application system in
separate bootload files. With BLD286 you build the system as a unit. Figure 3-l
illustrates the bind and build orocedure.

3.4.2 Minimizing the Memory Address Size

When you originally located your application jobs, you may have included extra memory
to accommodate changes during development. However, in the final system, after binding
and building, you can eLiminate some of the extra space. BLD28(r creates a map file with
the same name as the system, but with the extension MP2, as part of its output. By
looking at the MP2 file, you can find the exact starting addresses of the clescriptor tables,
the monitor, and all the other constants in your system. To tighten up memory, change
the system memory definition and generate your system again using the ICU.

3-6 ICU User's Guide

PREPARING APPLICATION JOBS

F ì R S I L E V E L] O 8

O B] E C ' I C O D €

N I E R F A C E
L B R A R Y

OF;SPR NG JO8
OB] ECI CODE

I N T E R F A C E
L S R A R Y

O F F 5 P R N 6] O B
O B] E C I C O D E

B N D 2 8 6

L N K E D A P P I C A T O N
É R 5 T L E V E T] O 8

8 L D 2 8 6

EOOILOADABLE
F t E

Figure 3-1. Application Job Bind and Build Procedure

f 0 5 r 8

3.4.3 Building a ROM-Based System

Before you burn your system into ROM (PROM) devices, you should first be confident
that your code is fully debugged. You must also know the size of all the code and data
segments. In a RAM-based system, the amount of memory needed by the code and data
segments is reserved for the system on the "Memory for System" screen. The remaining
memory is available ior the Free Space Manager. However, in a ROM-based system, it is
necessary to copy the Global Descriptor Table (GDT), Local Dercriptor Table (LDT),
Interrupt Descriptor Table (IDT) and all writeable segments into RAM. Therefore, you
should subtract the amount of memory required by the descriptor tables and the writeable
segments from the memory available for the Free Space Manager. The actual area to be
used for the system RAM is defined by the "RAM Start Address" parameter and the size
of the RAM segments. Ensure that this area is not reserved for the system or the Free
Space Manager.

ICU Use/s Guide

PREPARING APPLICATION JOBS

To determine the size ofyour code and data segments, follow these guidelines.

1. Bind your application using BND286.

2. Run the ICU to create the generation SUBMIT file.

3. Invoke the SUBMIT f i le.

4. Read the memory map (.MP2 file) created during the build phase to find the start
address for the GDT in ROM, the amount of ROM your system uses, and the
amount of RAM your system requires. Calculate the RAM memory required by
adding the size of the IDT, the final GDT (the number of GDT entries multiplied
by 8), the final LDT, which is the same as the final GDT, and the sum of all the data
segments with the WRITEABLE attribute. To this number add 2700 bytes which
are used as a work area during system startup.

5. Invoke the ICU and remove the size of the memory calculated in step 4 from the
memory defined on the "Memory for System" screen.

6. Rerun the ICU to generate the final SUBMIT file.

7. Invoke this system SUBMIT file.

The final file generated after rerunning the ICU with the correct parameters does not
include the start address ofyour system, that is the initial JMP at address 0FFFFF0H.
You must burn that into ROM separately. Ifyou specìfied that the initialization code
resides somewhere in the top 64K bytes (not below address 0FF0000H), then you can
burn a short jump to that address. Otherwise, you need a FAR jump, which may cause a
problem. The tì02tì6 processor resets the high 4 address bits. This means you can only
jump to the lowest megabyte, but your ROM is usualìy in the high megabyte. Boards such
as the iSBC 2tì6/ 12, iSBC 386/2X, and iSBC 31ì6/3X solve this problem by setting the 4
address bits to one until a specific OUT command is issued. This allows you to perform a
FAR jump to anyvhere in the high megabyte.

The initialization routine resides in the segment NUCDAT.CODE_ROM, and its entry
point is at offset 12H. To obtain the entry point address, add the entry routine offset
(12H) to the address of NUCDAT.CODE_ROM (which you specified tJuring ICU
configuration). For example, if the address of NUCDAT.CODE_ROM is 0FC0000H, the
address of the ROM-initialization routine would be 0FCO0l2H. At location 0FFFFF0H
in your PROMs burn a FAR jump to the address you derived for the ROM-initialization
routine.

Appendix C provides an example of how to place your code into PROM. It lists both the
hardware and software necessary to do this. Refer to this appendix for further
information.

3-8 ICU Useds Guide

ADDING USERS
CHAPTER 4

TO YOUR SYSTEM

4.1 INTRODUCTION

To function correctly, a system configured with the I{uman Interface requires information
about all users (operators) and terminals that intend to access the system via the Human
Interface. Two t)?es of users exist for your system: a resident user and non-resident
users.

4.2 THE RESIDENT USER

The resident user becomes part ofyour final system antl resides in memory along with the
rest of the Operating System (thus, the term "resident user").

'l wo types of resident users
exist: a recovery resident user and a non-recovery resident user. The recovery resident
user gains control only if an initialization error occurs during initialization of the Human
Interface. Regardless of the type, the resident user occupies one of the system terminals
and is created before non-resident users. The Operating System can contain information
about only one resident user.

Including a resident user tlpe in your system is called resident user configuration.
Resident user configuration is accomplished by supplying information to the Human
Interface (HI) screen during ICU configuration of the Human lnterface. Refer to the
Ertended |RMX II Interactive Conftguration Reference Manual for tletailed information
needed for resident user conficuration.

4.3 NON-RESIDENT USERS

Non-resident users are users that can access the system using the Human Interface logon
procedure. Ifyour system is to be a multiple-user system, you need to define to the
Human Interface all the non-resident users that can access the system. Configuration for
non-resident users occurs through the Human [nterface PASSWORD command and
possible editing of several user definition files. These files define user names, limitations,
passwords, terminals, and tcrminal charactcristics to the system.

The process of adding non-resident users to your system ìs called non-resident user
configuration. The files involved are called non-resident configuration files.

ICU Usefs Guide 4 - l

ADDING USERS TO YOUR SYSTEM

The system manager (who has user ID 0) can modify these files to add users or terminals,
delete users or terminals, or change characteristics of users or terminals. Depending on
the tlpe of modifications made, the changes take effect either the next time the affected
user logs onto the system or the next time the system is initialized. To prevent
unauthorized users from changing the system configuration, the system manager should
be the only user with change access to these files.

Refer to the Operator's Guide to the Ertended |RMX II Human Interface for detailed
information on non-resident user confisuration.

4-2 ICU Useds Guide

LOADING AND TESTING
CHAPTER 5

THE SYSTEM

5.1 INTRODUCTION

After you run the SUBMIT file generated by the ICU, you are ready to load the system
into RAM and test it. The system RAM code is conrained in the file that you specified
while running the ICU. There are several diflerent ways in which you can load your
system into RAM.

5.2 LOADING YOUR SYSTEM INTO RAM

If you are using a Series lV development system, use the iSDM System Debug Monitor to
load your system from disk into RAM. The iSDM monitor is described in the rSDM
Systetn Debug Monitor Reference Manual. Shctukl, you have a system that uses D-MON386,
you load the system into RAM using the D-MON3Iì6 B command (Bootstrap Loader
command).

If you are usingyour System 300 Series Microcomputer or a MULTIBUS II system as a
development tool, use the Bootstrap Loader to load your system into RAM. The
procedures for using the Bootstrap Loader are described ín the Extended iRMX II
Bootstrap Loader Reference Manual.

5.3 INITIALIZING YOUR SYSTEM

Aller you load your system, you must initialize it. Ifyou are using the Bootstrap Loader
this process takes place automatically. lf you did not load your system using the Bootstrap
Loader, refer to the appropriate manual for instructions on how to initialize your systern
by starting execution from the beginning of the Root Job.

5.3.1 Initialization

An iRMX ll Operating System can be configured to include your own code as a first-level
job or as a first-level I/O job. When created, such a job contains only a single task. That
single task creates or starts the creation of all other objects required by the first-leveljob.
Thus it is referred to as the initialization task lbr its job, even though it may perform other
functions as well. You should synchronize the operation of each initialization task with
that of the root task to ensure proper functioning of your applcation system.

ICU User's Guide 5 - l

LOADING AND TESTING THE SYSTEM

The root task is structured so that it creates the first-leveljobs one at a time. It contains a
programming loop that in general performs the following:

Repeac fo r each f i r s t - l eve l j ob
C r e a t e f i r s t - 1 e v e 1 j o b
S u s p e n d r o o t t a s k (u n t i l r e s u r n e d b y a f i r s t - 1 e v e 1 j o b)

Unt l l f in ished
End

Each time the root task creates a firstJeveljob, the root task suspends itself to allow the
initialization task in the new job to perform synchronous initialization. Synchronous
initialization consists of functions that must be performed immediately, before some other
firstJeveljob is created. Typically, this requires creating objects or making resources
available that tasks in first-level jobs, not yet created, expect to be available when they
themselves are created. (For example, the initialization task in the Extended I/O System
job must create the entire Extended I/O System belbre it can allow the root task to create
other first-level jobs that might make use of Extended l/O System functíons.)

When the initialization task finishes its synchronous inìtialization, it must inform the root
task that it is finished, so that the root task can resume execution and create another first-
level job. The initialization task must always inform the root task that it has completed its
synchronous initialization process by making the following procedure call:

CALL RQ$ END$ IN IT$TASK;

This procedure call requires no parameters. When you calÌ this procedure, the root task
resumes execution, allowing it to create the next first-leveljob. You must include a call to
RQENDINIT$TASK in the initialization task of each of your first-level jobs, even if the
jobs require no synchronous initialization. If one of the firstlevel tasks does not include
this call, the root job remains suspended and cannot create any of the remaining first-level
jobs.

The amount of synchronous initialization that an initialization task must do depends on
your job structure. You may require some of your initialization tasks to create all of the
offspring jobs and a number of other objects before calling RQENDINIT$TASK. Some
others may have to perform only one or two functions, call RQENDINIT$TASK and
then resume the process of initialization asynchronously. Still other initialization tasks
may not have any synchronous initialization requirements and so can c:rll
RQENDINIT$TASK before performing any initialization. You must determine how
the pieces ofyour system interact, and how they must be synchronized.

5-2 ICU Usefs Guide

LOADING AND TESTING THE SYSTEM

Another important factor in initialization is the order in which the root job creates the
first-leveljobs (see Table 5-l). The amount of processing your initialization tasks must do
before calling RQENDINIT$TASK may depend on which jobs the root rask has already
created and which jobs it has yet to create. The order in which the root task creates first-
level jobs depends on the order that you specify thesejobs while running the ICU, not on
the priority of the tasks in those jobs.

You should always use RQENDINIT$TASK as described in this section in order to
perform your synchronous initialization. Otherwise, the root task cannot be resumed and
thus. it cannot comnlete svstem initialization in the correct order.

5.3.2 System Initialization Errors

If the system encounters an error during the initialization process, it places diagnostic
information in the processor registers and halts the processor. lf the "Report
Initialization Errors" entry on the Nucleus screen is "yes" and your processor board
contains the iSDM monitor, a hexadecimal code and a mnemonic are displayed at the
console indicating the layer that contains the initialization error. On encountering an
initialization error, the subsystem containing the error returns control to the iSDM
monitor after writing a message with the following format:

<subsysteÈ ln i t ia l izat ion Error : (er ror code number>

This initialization error reporting is selected either for all subsystems or for none of the
subsystems. If "Report Initia[zation Errors" is not configured into the system, the
exception code returned by the unsuocessful system call is placed in both the AX register
and the first WORD of the Nucleus data segment, NUCDAT. A code indicating the layer
that failed initialization is placed in the second WORD of the Nucleus data segment. The
system then goes into a infinite error loop. (The codes lbr the various layers are
1=Nucleus. 2=BIOS. 3=EIOS. 4=Human Interface. l

Table 5-1, Order of Initialization

Order Root Job First-L€v€lJob l/O User Job

1
2
3

5
6
7

Root Job
System Debugger
Basic l/O System
Enended l/O System

User Jobs
Human lnterface

l/O User Jobs

ICU User's Guide 5-3

LOADINC AND TESTING THE SYSTEM

The only subsystem that handles an initialization error slightly different is the Human
Interface. In addition to the initialization error described above, the Human Interface
may issue the following warning if it does not have enough memory to fill the user's
recuest.

In such a case, the user is assigned whatever memory is available at the time.

5.3.3 Completing Initialization

Once initialization is complete, users can create and attach files on the devices specified
with the ICU. lf the devices are olTline, an exceptional condition code is returned. If one
of these devices is switched from on-line to oifJine, the Extended I/O System
automatically detaches the device, and aÌl file connections on that device are marked
invalid by the BIOS. When the unit is switched back on-line, the Extended I/O System
automatically attaches it the first time a user tries to create or attach a file on the device.
The Extended I/O System performs this service only for devices that it attaches.

5.4 TESTING YOUR SYSTEM

The normal development cycle is to load your system, test it and correct any errors, then
reassemble or recompiìe any appropriate program code. Next, redefine and regenerate
your system using the ICU, and load the system again. You can c<lntinue this procedure
until you have created your target system. Once you have created your final system,
minimize the memory locations allocated for the system by editing the "Memory for
System" rcreen (see Chapter 3). You can then copy your final system to PROM or use
the Bootstrap Loader to load it from secondary storage.

If you are going to use the Bootstrap Loader to load your system, refer fo Ertended iRMX
II Bootstrap Loader Reference Manaal for confìguration information.

i *** WAIU{INC: THE SYSTEM DID NoT HAVE YoUR MINIMUM MEMORY REQUIREMENTS
I you wrLL coME up wrrH ALL THE ì,rEMoRy rIIAT ts AVAI TABLE rN THE
I sYsTEM, CONTACT THE SYSTEM MANAGER.

5-4 ICU Use/s Guide

LOADING AND TESTING THE SYSTEM

5.4.1 Using the Debugging Tools

The development of every system requires debugging ancl^testing. To aid you in the
development of iRMX II-based application systems, the IzICE In-Circuit Emulator, the
iRMX II System Debugger with either the iSDM System Debug Monitor or the
D-MON38ó Monitor are available from Intel. The System Debugger extends the
capabilities of the iSDM Monitor and the D-MON386 Monitor. In addition to the sysrem
debugging tools, Intel has Soft-Scope 286/ to debug user programs loaded by the
Application Loader. The following sections describe the advantages of these debugging
tools.

5.4.1.1 Advantages ol the iRMXo ll System Debugger

You can extend the capabilities of the iSDM Monitor or the D-MON386 Monitor by
including the System Debugger as part ofyour operating system. In addition to retaining
the features of the monitors, the System Debugger

. Identifies and interprets iRMX II system calls,

. Displays iRMX II objects.

. Allows the user to examine the stack of a task to determine which iRMX Il svstem
calls it has made recently.

5.4.1.2 Advantages of Soft-Scopeo 286

Soft-Scope is an interactive, source-level debugging tool designetJ to aid in the debugging
of user programs loaded by the Application Loader. It provides the following debugging
features:

. Source code interface and on-line listings

o Access to program variables, including arrays and structures

. High- levelbreakpoints

. Access to asscmbly level debugging

. iRMX II multitasking support

. iRMX I I except ion handl ing

o Access to iRMX Il objects such as mailboxes and tasks

. Abilitv to susnend and resume tasks

ICU Usefs Guide 5-5

LOADING AND TESTING THE SYSTEM

5.4.1.3 Advantages ol the l2lCE" In-Circuit Emulator

The IzICE emulator provides in-circuit emulation for 80286 and 80386 microprocessor-
based systems, meaning that it "stands in" for the these microprocessors in your target
iRMX II- or Distributed iRMX Ill-based system. The in-circuit emulator allows you to

. Get closer to the hardware level by examining the contents of input pins and input
ports.

. Change the values at output ports.

. Examine individual components rather than an entire board.

o Look at the most recent 80 to 150 assembly language instructions executed.

. Protect memory areas from being altered and trap on attempted access.

5.4.2 Debugging Application Jobs

While you are creating your application jobs, you will probably use the following iterative
procedure to remove bugs from your code:

1. Configure your system.

2. Generate your system using ICU generated command fiÌes.

3. Test the system to find bugs.

4. If any bugs are found, modify the application code to eliminate the bugs and go to
Step 2.

Once you have performed the entire configuration process, you are ready to load the
system.

5 -ó ICU Use/s Guide

APPENDIX A
FILES CREATED BY THE ICU

4.1 INTRODUCTION

The files listed in this appendix are created/recreated by the ICU or as output of the
SUBMIT fiìe.

4.2 CREATED FILES

The table below lists the files that are created/recreated whenever you issue the G
command from the ICU and/or invoke the lCU-generated SUBMIT file. The file names
Iisted here do not include the prefix letter that may be added before generation.

Table A-1. Files Created by the ICU and SUBMIT File

Subsystem Created by ICU Created by SUBMIT File

Nucl€us

Basic l/O System

NTABL.A2S

NUCDA.A2S

NJOBC,A2S

NROMC.428

ICDEV.428

ITABL.A2S

IIDEV,A2S

NTABL,OBJ
NIABL,LST
NUCOA.OBJ
NUCDA.LST
NJOBC.OEJ
NJOBC.LST
NROMC.OBJ
NROMC.LST
NUCl,LNK
N U C 1 . M P l
NUCLS.LNK
NUCLS.MPl

ICDEV.OBJ
ICDEV.LST
IfABL.OBJ
ITABL.LSf
ITDEV,OBJ
ITDEV.LST
IOSl .LNK
tosl .MP l
IOS.LNK
IOS.MPl

ICU Usefs Guide A-l

Table A-1. Files Created By the ICU and SUBMIT File (continued)

Subsystem Created by ICU Created bv SUBMIT File

E),lendsd l/O
System

Appllcation
LOaO€t

Human
lnterfac€

UDI

System
Debugger

Others

EDEVC.A28

ETABL,42S

EJOBC,A2s

LTABL-428

LCONF.P28

HCONF.P28

UTABL.A2S

SDBCN.428

< output-fi le >.CSD
< outputj i le >.BLD

EDEVC.OBJ
EDEVC.LST
ETABL.OBJ
EIABL.LST
EJOBC,OBJ
EJOBC,LST
Etos1.MP1
EIOS,LNK
Elos.MPl
EIOSl .LNK

LTABL,OBJ
LTABL,LST
LCONF,OBJ
LCONF,LSf
LOADR.LNK
LOADR,MPl

HCONF,OBJ
HCONF.LSI
HI .LNK
H I . M P 1
CLI.LNK
CLI.MPl

UTABL.OBJ
UTABL,LST
UDI.LNK
UDI.MPl

SDBCN.OBJ
SDBCN.LST
SDB.LNK
SDB.MPl

boofloadable iRMX l l f i le
< bootloadable-f i le>.MP2

FILES CREATED 8Y THE ICU

A-2 ICU Use/s Guide

EXAMPLE SYSTEM
APPENDIX B

CONFIGURATION

8.1 INTRODUCTION

This appendix contains an example illustrating how to use the ICU to modifo an Intel-
supplied definition file. This example contains the following descriprions:

. The configuration defined by the lntel-supplied definition file (28612.de|).

r The target system, focusing on the differences between it and the supplied
configuration.

o The ICU changes required to convert the existing definition lìle to one corresponding
to the target system.

8.2 THE INTEL.SUPPLIED DEFINITION FILE

The existing definition file, named 28612.D8F, defines the 80286-based mulrluser system.
This particular system configuration has the following charaeteristics:

. The CPU board is an iSBC 286/10(A) or an iSBC 286/12 board.

. Interrupt levels are assigned as fbllows:

Level 0-SystemClock

Level I - System Debugger

Level2 - Available

Level 3 - Used by the Terminal Communicarions Controller

Level 4 - Available

Level 5 - An MSC controller

Level 6 - An 8274 Terminal Driver

Level 7 - An 82594 slave PfC

. Up to 8M bytes of RAM, at addresses 20t)0lI through 07FFFFFH. Of these,
addresses 05A000H through OTFFFFFH are allocateci to the Free Space Manager.

. The system device is :SD:.

. The supplied, ready-to-bootstrap-load file is /BOOT/2t1612.286.

ICU Uset's Guide B- l

EXAMPLE SYSTEM CONFIGT]RATION

B.3 DIFFERENCES BETWEEN THE TARGET AND START-UP
SYSTEMS

The differences between the target system and the 80286-based multi-user system dictate
how you will use the ICU to alter the definition file. These systems differ in the following
ways:

. Change the reserved memory address of the MSC driver to prevent an address
conflict with the iSBC 220 ,Jriver.

. An iSBC 220 SMD controller for an 87M byte disk is an addition to the 80286-baseo
multi-user system. This controller uses interrupt level2,IlO address 120H.

. An iSBC 208 flexible disk controller added to support 8-inch flexible disks. As our
target system will not include iRMX-NET, the iSBC 208 witl be placed on interrupt
level four and will use slave I/O address 180H.

o A RAM driver is an addition to the 80286-hased multi-user system.

. The target system defines 4M bytes of RAM,3M bytes are used by the system and the
Free Space Manager and lM byte is used by the RAM disk.

. The target system resides in a bootloadable file named /BOOT/SAM286.286.

The name of the new definition file for the target system is SAM2ll6.DEF. Figure B-1
shows memory maps of the layout of both systems: the 2tìfil2.def layout is on the left and
the target system layout is on the right.

8.4 STEPS PERFORMED TO CREATE THE TARGET SYSTEM

The steps needed to modi! an existing definition file to meet the target system needs are
outlined below.

. Add the iSBC 220 SMD Driver

. Add the iSBC 208 Flexible Disk Controller Driver

. Add the RAM Driver

. Change the memory for the system and Free Space Manager to reflect the amount of
memory needed for operation of the new devices.

As you proceed through this example refer to the Ertended |RMX II Inleructive
Confguration Utility Referent'e manual for more information about configuring each of the
above drivers.

B-2 ICU User's Guide

EXAMPLE SYSTEM CONFIGURATION

16 M bytes 16 M bytes
SDM Moni to r
SDM Star t Fc0000H

- - - - - - O 7 F F F F H

Free Space Manager

- - 5 5000H

Sub - Sys tems

RAM Drlver

3 M b y t e s -

SDM Moni tor
FC0000H sDM S tar t

a

a

Unused Address Space

4 M bytes

Free Space Manager

5FFFFH -

Sub - Systems

I000H - -
i s B c 2 0 8

2C00H Reserved Memory

2 6 9 0 H-=isBa]?I-
1210H Reserved Hemory
1200H iSBC 220 Wakeup

1 1 8 0 H M S C R e s e r v e d

1 0 1 0 H
1000H MSC Wakeup

SDM DATA

SA.ì{2 8 6 . DEF l,faD

2 0 0 0 H

MSC Reserved 12 00H

MSC \.Jakeuo 1000H

SDM DATA
OHOH

28 612 . DEF Uap

Figure B-1. Memory Maps for the 802tì6-Based Systern
and Target System

ICU Usef s Guide B-3

EXAMPLE SYSTEM CONFIGURATION

8.5 USING THE ICU TO DEFINE THE TARGET SYSTEM

This section describes a dialogue between a user and the ICU. This dialogue
demonstrates the steps needed to define the target system described in the previous
section. In the dialogue, user input is shown in either blue or bolded text, followed by a
carriage return (. CR >). Shoultl you make an error in entering information as you
proceed through this example, you can re-type the information ifyou are currently
vìewing the screen in which the error was entered. If not, you can use either the Backup
(b) or Find (l) command to access the screen you want to change, then re-tlpe the correct
information. If you are new to the iRMX II ICU and do not want to use these commands,
you can delete the SAM286.DEF file in the SAM286 directory and start over by entering
the last line of the command sequence listed below.

Invoke the ICU, giving the name of the default file and the desired name of the modified
definition file, as follows:

This produces the display shown in Figure B-2. This is the first screen you see each time
you invoke the ICU.

B-4 ICU Userrs Guide

EXAMPLE SYSTEM CONFIGURATION

Figure B-2. Initial ICU Screen

The first thing to change in the target system is the MSC disk and tape controller. To do
th is, go to the "l ntel Device Drivers" screen by entering "C idevs < C R > ", as shown in
Figure B-2. This produces the screen shown in Figure ts-3.

lR l4X I1 In teract ive Conf igurat ion Ur i l i ty For Extènded
Copyr ighc <years> Inte l Corporat ion

For general help in any screen entèr H <cr>.

The following cofiìnands are available

Change
Generate
Lis t
Save
Qul t
Exl t
Replace
De tai l - Leve 1
Backup

ENTER CoMMAND : C ldevs <CR>

iRlO(II, <v>

ICU Usef s Guide B-5

EXAMPLE SYSTEM CONFIGURATION

(IDEVS) ln te l Device Dr ivers

(S14) Mass Storage Contro l ler [Yes/No] YES
(î74) 8274 Tern inal Dr iver [YeslNo] YES
(T51) 8251A Tern inal Dr iver [YesrzNo] NO
(T30) 82530 Tern inal Dr iver [Yes/No] NO
(TCC) Termtnal Comm Controller [Yes/No] YES
(L86) Lfne Pr in ter for 1SBC 286/ fO lYes/No) YES
(L50) Ltne Pr ln tèr - iSBX 350 [Yes,zNo] NO
(s20) isBc 220 [Yes/No] N0 (X18) isBX 218A [Yes/No] N0
(s08) lsBc 208 [Yes/No] N0 (T34) lSBc 534 [Yes,zNo] N0
(T44) iSBC 5444 [YeslNo] YEs (s64) lsBc 264 [Yes/No] N0
(X5I) iSBX 251 [Yes,zNo] NO (RAM) RAM Disk Dr iver [Yes/No] N0
(scs) scs l Dr iver [Yes/No] N0 (s24) isBc L86/224A [YeslNo] N0
(s10) isBc 1,86/4LO [Yes/No] N0 (c79) isBX 279 [Yes,zNo] No

Enter I Abbrev iat ion - nevvalue / Abbrev iat ion ? /Hl
: Sl4 - y <CR)

Figure B-3. The Intel Device Drivers Screen

The "Intel Device Drivers" screen, shown in Figure B-3, lists all of the available Intel
devices. The "YES" or "NO' field shown to the right of each device indicates whether or
not it is part of the current definition file. To add a device or go to the first screen of an
existing device, enter its three-letter abbreviation followed by " = y < CR > ". The
abbreviation for the S14 is "S14", so rype "S14=Y <CR>". This produces the screen
shown in Figure B-4.

The parameter that must be changed is the'IPA I/O Processor Block Address"
parameter. The memory maps in Figure B-1 showwhy. From these mapsyou can see
that there would be an address conflict between the iSBC 220 SMD controller and the
original location of the MSC disk and tape controller. To prevent this conflict, one of the
devices must be moved. Moving the "IPA I/O Processor Block Address" from 1200H to
1180H will resolve the conflict. Enter "ipa= 1180H <CR>", as shown in Figure B-4. To
check this change, type "<CR>r'. This produces the screen shown in Figure B-5.

B-ó ICU Uset's Guide

(D214) Mass Storage Contro l ler Dr iver

(DEV) Device Name [1-16 Chars]
(IL) Incerrupt Level IEncoded Level]
(I T P) l n t e r r u p t T a s k P r i o r i t y [0 - 2 5 5]
(wlP) Wakeup I /0 Por t [0-OFFFFH]
(IPA) I /O Processor Block Address [0-OFFFFFH]

EnÈèr I Abbreviation - neu_value / Abbreviation
: lpa-1180h <cR>
: <CR>

2 1 5 - A
058H
1 3 0
0100H
01200H

? / H)

EXAMPLE SYSTEM CONFIGURATION

Figure B-4 MSC Driver Screen

Figure B-5 MSC Driver Screen

To add the iSBC 220 SMD controller, you return to the "Intel Device Drivers" screen by
entering "f idevs <CR>". This produces the screen shown in Figure 8-6.

(D2L4) Mass Storase Contro l ler Dr iver

(DEV) Device Naue [1-16 Chars]
(T L) T n t e r r u p t L e v e l I E n c o d e d L e v e l l
(I T P) I n t e r r u p t T a s k P r Í o r i t y [0 - 2 5 5]
(l . t IP) Wakeup I /O Por t [0-oFFFFH]
(IPA) I /O Processor Block Address [0-OFFFFFH]

Enter I Abbrev iac ion: new_value / Abbrev iac ion
: f fdevs <CR>

215 -A
058H
1 3 0
0100H
01180H

? / H 1

ICU Use/s Guide B-7

EXAMPLE SYSTEM CONFIGURATION

(IDEVS) Inte l Devlce Dr ivers

(S14) Mass Storage Cóntro l ler [Yes/No] YES
('174) 8274 Terrn inal Dr iver [Yes/No] YES
(T51) 8251A Tèrn inal Dr iver [Yes/No] No
(T30) 82530 TernÍnal Dr Íver [Yes/No] NO
(TCC) Terminal Conm Concro l ler [Yes/No] YES
(L86) L lne Pr in ter for íSBC 286110 [YeslNo] YES
(L50) L ine Pr in ter - tSBx 350 [Yes,zNo] No
(s20) lsBc 220 [Yes/No] N0 (x l -8) isBX 2 l8A [Yes/No] N0
(s08) isBc 208 [YeslNo] N0 (T34) isBc s34 [YèslNo] N0
(T44) iSBC 5444 {YeslNol YEs (s64) lsBc 264 [Yes/No] N0
(X51) iSBX 251 [Yes,zNo] N0 (RAr ' f) RAM Disk Dr iver [Yes/No] NO
(SCS) SCSI Dr lver IYes/No] N0 (S24) lSBC 186/224A IYes/No] N0
(S10) ÍSBC 186/410 [Yes/No] No (c79) isBX 279 [YeslNo] No

E n t e r I A b b r e v i a c i o n : n e * / v a l u e / A b b r e v i a t i o n ? / H]
: S20 - v <CR>

Figure 8-6. The Intel Device Drivers Screen

The abbreviation for the iSBC 220 SMD controller is "S20", so you type "S20=y <CR>" at
the bottom of the screen, as sho\,rr'n in Figure 8-6. This will produce the screen shown in
Fisure B-7.

Do you want any /mo re
y <cR>

iSBC 220 DEVI CEs ?

Figure B-7. Query Screen for the iSBCo 220 SMD Device

Figure B-7 shows a query screen that asks ifyou want to add a tievice. To start the
process of adding the iSBC 220 SMD controller, type "y <CR>" as shown in Figure B-7.
This will produce the "iSBC 220 Driver" screen, as shown in Figure B-8,

B-8 ICU Uset, s Guide

EXAMPLE SYSTEM CONFIGURATION

(D22O) ISBC 220 Driver

(DEV) Device Name [1-16 Chars]
(IL) In terrupt Level lEncoded Level l 028H
(I T P) l n t e r r u p t T a s k P r Í o r l t y [0 - 0 F F H] 1 3 0
(wIP) Wakeup I /o Por t [O-0FFFFH] 0120H
(IPA) I /O Processor Block Address [0,0FFFFFH] 01210H
(SB) Size of Buf fers [O-0FrrrH] 01480H

EnEer I AbbrevÍat ion * new/va1ue / Abbreviat ioa ? /H]
: dev-220 <CR>
: <cR>

Figure B-8. The iSB@ 220 Driver Screen

The minimum information that must be entered on this screen is the "(DEV) Device
Name" field. Enter "dev=220 <CR>", as shown in Figure B-8. Because all of the
remaining fields match the target system's hardware configuration for the iSBC 220 SMD
controller, you can use the default values. Enter "<CR>" to reshow the screen with the
name field completed. This produces the screen shown in Figure B-9.

(D22O) íSBC 220 Dr iver

(DEV) Device Nane [1-16 Chars] 220
(IL) ln terrupt Level lEncoded Level l 028H
(I T P) I n t e r r u p t T a s k P r i o r i t y I o - 0 f F H l 1 3 0
(l . l lP) Wakeup I /O Por t IO-OFFFFHI 0120H
(IPA) I /0 Processor Block Address [0-OFFFFFH] 01210H
(S B) S i z e o f B u f f e r s [0 - O F F F F H] 0 1 4 8 0 H

Enter I Abbrev iat ion : new_value / Abbrev iat lon ? /H
: <cR>

Figure B-9. The Completed iSBC@ 220 Driver Screen

Check that you have entered the device name correctly. lf so, you are ready to add the
iSBC 220 unit information. Typing a "<CR>", as shown in Figure B-9, will display the
query screen shown in Figure B- 10.

ICU Uset's Guide B-9

EXAMPLE SYSTEM CONFIGURATION

Do you
<cP>

want any /more 1SBC 220 DEVICES ?

Figure B-10. Query Screen for another iSBC€ 220 Driver

As this application requires only one iSBC 220 SMD controller, respond with a carriage
return (<CR>) as shown in Figure B-10. This tells the ICU that you do not want another
iSBC 220 Driver and causes the next screen to be displayed, as shown in Figure B-11.

Do you want ar,y /mote
y <cR>

iSBC 220 UNITS ?

Figure B-ll. Query Screen for iSB@ 220 SMD Controller Unit Information

Figure B-11 shows a query screen that asks ifyou want to fill in Unit ìnformation for an
iSBC 220 SMD controller. This is the first time that an iSBC 220 SMD controller has
been added, so such information does not yet exist. Respond to this screen by entering
"y <CR>", as shown in Figure B-l l. This produces the "iSBC 220 Unit Information"
screen shown in Fisure B-12.

B-10 ICU Usefs Guide

(V220) ISBC 220 Uni t In format ion

(DEV) Device Nane [1-16 Chars]
(NAl , f) Uni t In fo Name [1-16 Chars]
(l ' tR) Maxlmum Retr ies l0-0FFFFHI
(C S) C y l i n d e r S i z e [0 - O F F F F H]
(NC) Nunber of Cyl inders [0-0FFFFH]
(NFH) Nunber of Heads/Fixed Dlsk [0-OFFH]
(NRH) Nunber of Heads/Rexlovab le Disk [0-OFFH]
(NS) Nurober of Sectors/Track [0-OFFFFH]
(NAC) Nunber of A l ternate Cyl inders [0-0FFH]
(SSN) Star t ing Sector Nunber [0-0FFFFFFFFH]
(BTI) Bad Track Informat íÒn IYes/No]

09H
O T E H
O24DH
0 7 H
OH
0 1 2 H
OBH
OH
YES

E n t e r I A b b r e v i a t i o n : n e w / v a l u e / A b b r e v i a t l o n ? / H l
: dèr:220 <CR>
: nan-ulnfo_22o <CR>
: <cR>

EXAMPLE SYSTEM CONFIGURATION

Figure B-12. The iSBCo 220 Unit Information Screen

The fields requiring information on this screen are the "(DEV) Device Name" and
"(NAM) Unit Info Name" f ie lds. Enter "dev=220 <CR>" and "nam=uinfo_220 <CR>",
as shown in Figure B-12. The remaining fields need not be changed because the defaults
match the target system. Reshow the "iSBC 220 Unit Inlbrmation" screen to ensure that
you typed everything correctly by entering " < CR > ", as shown in Figure B- 12. This
produces the screen shown in Figure B- 13.

ICU User's Guide B - l l

EXAMPLE SYSTEM CONFIGURATION

(U220) ISBC 220 Uni t ln formÉt ion

(DEV) Devlcè Nane [1-16 Chars] 22O
(NAM) Uni t In fo Narne [1-16 Chars] UINFO_220
(MR) Haximu:r Rerr íes [o-oFFFFH] 09H
(CS) Cyl Índer Size [0-0FFFFH] 07EH
(NC) Nurnbe r o f Cyl inders IO-OFFFFH] 024DH
(NFH) Nr:nber of Heads/Fixed Disk l0-OFFHl 07H
(NRH) Nunber of Heads/Renovable Disk [0-ofFH] 0H
(NS) Number of Seccors/Track [0-0FFFFH] 012H
(NAC) Nutrrber of Alternate Cylinders l0-OFFHl OBH
(ssN) s tar t ing sector Number [0-OFFFFFFFFTI] 0H
(BTI) Bad Track Informat ion [YeslNo] YES

Enter I Abbrev iat ion - new/va1ue / Abbrèviat ion ? / H)
: <CR>

Figure B-13. Completed iSBC€ 220 Unit Information Scre€n

After checking the entries on the screen shown in Figure B-13, type a "<CR>" to view the
next screen.

Do you want
<cB>

any/nore iSBC ?20 UN' fTs ?

Figure B-14. iSBC€ 220 Unit Query Screen

Only one Unit is required for the iSBC 220 SMD controller, so by entering a carriage
return (<CR>), as shown in Figure B-14, you tel l the ICU that you are ready to v iew the
next major screen.

Do you want any /mote
y <cR>

i S B C 2 2 0 D U I B s ?

Figure B-15. iSBC@ 220 SMD DUIB Query Screen

To complete the inclusion of the iSBC 220 SMD controller, a Device Unit lnformation
Block (DUIB) must be completed. Typing "y <CR>", as shown in Figure B-15, causes
the "iSBC 220 Device-Unit Information" screen in Fìgure B-16 to appear.

B-12 ICU User's Guide

EXAMPLE SYSTEM CONFIGURATION

Figure B-16. The iSB@ 220 Device-Unit Informatkrn (DUIIì) Screen

Once again the default values match the target system. 'I-he
only fieÌds that must be filled

in are the "(DEV) Device Name", "(NAM) Device-Unit Name", and "(UlN) Unit Info
Name'f ie lds. Enter "dev=220 <CR>", "nam=sfO < CR > ", and "uin = uinfo_220 <CR>",
as shown in Figure B- 16. To reshow the screen to check your cntrics, ctìtcr a carriage
return (<CR>) as shown in Figure B-16. This produces the screen shown in Figure B- 17.

(1220) iSBC 220 Devlcè UniÈ Informat ion

(DEV) Device Nane [1-16 Chars]
(NAÌ , f) DevÍce-Unic Name [1-14 Chars]
(PFD) Phystcal F i le Dr iver Required [Yes/No] YES
(NFD) Naned Fi lè Dr iver Required [Yes/No] YES
(GM) Granular i ty [0 - OFFFFH]
(DSZ) Device Size [0-0FFFFFFFFH]
(UN) Unl t Number on th is Dèvíce [0-0FFH]
(UIN) UnlÈ Info Narne [1-16 Chars]
(RUT) Request Update T ineout [0-OFFFFH]

0400H
0471F000H
OH

064H
(NB) Number of Buffers [nonrandom : 0/rand - I-0FFFF]II 08H
(CUP) Comnon Updatè [Yes/No]
(UB) Max Buf fers [0- 0FFH]

E n t e r I A b b r e v i a t i o n = n e w _ v a l u e / A b b r e v i a t i o n ? / H)
dev=220 <CR>
nan=sf0 <CR>
uln=ulnfo_220 <CR>
<c8>

YES
OFFH

ICU Use/s Guide B-13

EXAMPLE SYSTEM CONFIGURATION

Figure B-17. Completed iStsC€ 220 Device-Unit Information Screen

ìf al l the entr ies are correct, a l l of the steps to include the iSBC 220 SMD Control ler are
completed.

Note that adding the MSC disk and tape, the iSBC 220 SMD, and the iSBC 208 peripheral
devices requires changing the amount of memory available to both the system, "(MEMS)
Memory for System" screen, and the Free Space Manager, "(MEMF) Memory for Free
Space Manager" screen. Each of these drivers requires RAM space in the low megabyte
of memory for host/controller communications and, in the case of the iSBC 208 and iSBC
220, some I/O buffering. This memory must be taken from the Free Space Manager and
given to the system. This process can be performed before or after adding the driver
screens. For this example, all of the devices will be added, then the memory parameters
will be changed to incorporate the new devices.

The next step, then, is to add the iSBC 20[Ì Flexible Disk Drive Controller. To begin,
return to the "Intel Device Drivers" screen by entering "f idevs <CR>" as shown in Figure
B-17.

(î 2 2 0) 1 S B C 2 2 0 D e v i c e U n i t I n f o r m a c i o n

(DEV) Devlce Name [1-16 Chars] 220
(NAl ' f) Devlce-UnÍ t Nane [1-14 Chars] SFO
(PFD) Physícal F i le Dr iver Required [Yes,zNo] YES
(NFD) Named Fi le Dr iver Required [Yes/No] YES
(CRA) cranular t ty [O-OFFFFH] 0400H
(DSZ) Device Size [0-0FFFFFFFFH] 0471F000H
(UN) Uni t Nunber on th is Device [0-0FFH] 0H
(UIN) Uni t In fo Name [1-16 Chars] UINFO_220
(RUT) Requesc Update T imeout IO-OFFFFH] 064H
(NB) Number of Buf fers [nonrandom - O/ranó - 1-OFFFFH] 08H
(CUP) Comnon Updace lYes/Nol YEs
(MB) Max Buf fers l0-OFFHl OFFH

EnÈer I Abbrev iat ion * new_value / Abbrev iat ion ? /H]
: f ldevs <CR>

B-14 ICU Usefs Guide

EXAMPLE CONFIGURATI

(rDEVS) I n t e l D e v i c e D r i v e r s

(S1-4) Hass Storagè Contro l ler
(T7 4) 8274 TerminaL Dr iver
(T51) 8251A Terra inal Dr iver
(T30) 82530 Tern inal Dr iver
(TCC) Terrnínal Conm Conrro l ler
(L86) L ine Pr in ter for 1SBC 286110
(L50) L lne Pr ínter - iSBX 350
(s20) isBc 220 [YeslNo] N0
(s 0 8) i s B c 2 0 8 [Y e s / N o] N 0
(T44) lsBc 544A lYes/Nol YES
(X51) ísBX 251 [Yes/No] No
(S C S) S C S I D r i v e r I Y e s / N o] N o
(s10) tsBc L86/4I0 [YeslNo] N0

Enter I Abbreviation : new/value
. g0g - y <cR>

lYes/Nol YES
[YeslNo] YES
[Yes/No] No
[YeslNo] N0
IYes,zNo] YES
IYes/No] YES
lYes/Nol NO

(x18) isBx 218A
(T34) iSBC s34
(s64) i sBC 264
(RAX) RAM Disk Driv
(s24) isBC L86/224A
(c79) i sBX 279

/ Abbrev ia t ion ? /

IYeslNo]
IYeslNo]
IYeslNo]
IYes/No]
IYesrzNo]
IYeslNo]

l

NO
NO
NO
NO
NO
NO

Figure B-18. The Intel Device Drivers Screen

To add any driver from the (IDEVS) screen, you type the device's three-
abbreviation on6 "=y <cR>,,. The abbreviation for rhe iSBC 209 Flexit
Controller is "S08", so you type "S08 = y <CR>" as shown in Figure B-li
the screen shown in Fisure B-19.

Disk Drive
This produces

Do
v

you want any/nore
<cR>

iSBC 208 DEVICEs?

Figure B-19. iSBCo 208 Device Query Screen

Figure B-19 shows a query screen that asks users if they want to add a dr
process of adding the iSBC 208 Flexible Disk Drive Controller, tlpe "y <
causes the 'iSBC 208 Driver" screen, as shown in Figure B-20, to appear.

Usefs Guide

. To start the
> ". This

B-

ON

ICU l5

EXAMPLE SYSTEM CONFIGURATION

(D208) iSBC 208 Dr iver

(D E V) D e v l c e N a n e [1 - 1 6 C h a r s]
(IL) InÈerrupt Level [Encoded Level] 048H
(I T P) I n t e r r u p t T a s k P r i o r i t y [0 - 2 5 5] 1 3 0
(PA) Por t Address [0-OFFFFH] 0180H
(MDV) Motor Delay Value IO-OFFFFU] 050H
(BBA) Boundary Buf fer Address [0-OFFFFFFFFH] 01600H

Enter I Abbrev iat ion - ner^ ' -va lue / Abbrev i -at io l ? /H]
: dev=208 <CR>
: bba-2c00H <CR>
: <cR>

Figure B-20. The iSB@208 Driver Screen

Because the target system matches most ol this screen's default values, only two fields
need to be changed on this screen. The "(DEV) Device Name" and the "(BBA) Boundary
Buffer Address" fields. Enter "dev = 208 < CR > " to fill in the "(DEV)"Íìeld. Because the
iSBC 220 driver has memory located at the default iSBC 208 address (see Figure B-42)
the "(BBA)" f ie ld must be changed. Enter "bba=2C00H <CR>" to change this address.
Enter a carriage return (< CR >) to reshow the screen (Figure B-2 1).

Figure B-21. Completed iSBC-@ 20tl Driver Screen

The changes and additions needed on this screen have been made and checked; the
"iSBC 208 Unit Information" screen must now be filled in. To indicate to the ICU that
you are ready to view the next screen, enter a carriage return (< CR >) as shown in Figure
B-21.

(D208) iSBc 208 Dr ive r

(DEV) Device Narne [1-16 Chars]
(IL) In terrupt Level lEncoded Level l
(I T P) I n t e r r u p t T a s k P r i o r i t y [0 - 2 5 5]
(PA) Por t Address [0 - OFFFFH]
(MDV) Motor Delay Value [0-0FFFFH]
(B B A) B o u n d a r y B u f f e r A d d r e s s l 0 - O F F F F F F F F H I

2 0 8
0 4 8 H
1 3 0
0 1 8 0 H
0 50H
2C00H

E n t e r I A b b r e v i a t i o n : n e w _ v a l u e / A b b r e v i a t i o i ? / H]
: <cR>

B-16 ICU User's Guide

EXAMPLE SYSTEM CONFIGURATION

Do you
<cR>

want any/nore iSBC 208 DEVICEs?

Figure B-22. Query Screen for another iSBCo 20E Driver

As this application requires only one iSBC 208 flexible disk driver, respond with a carriage
return as shown in Figure B-22. This tells the ICU that you do not want another iSBC 208
driver and causes the iSBC 208 Unit query screen to appear, as shown in Figure B-23.

Do you
y <cR>

L'ant any/more iSBC 208 UNITS?

Figure B-23, Query Screen for the iSB@ 208 Unit Information

Because this is a newly added device, you must complete all screens related to the
iSBC 208 Flexible Disk Drive Controller. Respond ro rhis screen by entering "y <CR>",
as shown in Figure B-23 to produce the screen shown in Figure B-24.

ICU Use/s Guide B-17

EXAMPLE SYSTEM CONFIGURATION

(U208) iSBC 208 Uni t ln format ion

(DEV) Device Nane [1-16 Chars]
(NAM) Uni t In fo Name [1-16 Chars]
(MR) Maximun Rerr ies I0-OFFFFH] 09H
(cS) Cyl inder Size [O-OFFFI1I1 0fA] t
(NT) Nurnber of Tracks per Side [o-oFFFFH] 04DH
(NS) Nurnber of Sectors/Track IO-OFFFFH] 01AH
(S R) S t e p R a t è [0 - 0 F F H] 0 8 H
(HLT) Head Load Ti rne [0-0FfH] 028H
(HUT) Head Unload Ti rne l0-0fFHl 0F0H

Enter I Abbrev iat ion : new_value / Abbrev iat ion ? /H]
: dev-208 <CR>
: nan=ufnfo_2O8 <CR>
: <CR>

Figure B-24. iSBC@208 Unit Information Screen

Because the target system matches the defaults on this screen the only fields you must
enter are the "(DEV) Device Name" and "(NAM) Unit Info Name" fields. Enter
"dev=208 <CR>" and "nam=uinfo_208 <CR>", as shown in Figure B-24. To reshow the
screen to check your entries, enter a carriage return (< CR >)

u-r8 ICU User's Guide

EXAMPLE SYSTEM CONFIGURATION

@Figure B-25. Completed iSBC@208 Unit Information Screen

Figure B-25 shows the completed "iSBC 208 Unit Information" screen. Aller checking
that the entries are correct, enter a carriage return (< CR >) to continue completing the
screens related to the iSBC 208 Flexible Disk Drive Controller.

Do you want
<cR>

anylrnore iSBC 208 UNITs ?

Figure 8-26. iSBC€208 Unit Query Screen

This application requires only one Unit. To continue completing the screens related to
the iSBC 208 Flexible Disk Drive ControlÌer, enter a carriage return (<CR>), as shown
in Fisure 8-26.

Do you
y <cR>

want any/more iSBC 208 DUIBs ?

Figure B-27. The iSBC€ 20E DUIB Query Screen

To complete the addition of the iSBC 208 Flexible Disk Drive Controller, you must
complete a Device Unit Information Block (DUIB). Typing a "y <CR>" causes the
"iSBC 208 Device-Unit Information" screen, shown in Figure B-28, to appear.

(U208) isBc 208 Uni t In format Íon

(DEV) Device Name 11-16 Chars l 2OB
(NAM) Uni t In fo Nane [1-16 Chars] UINFo-
(l ,R) Maxlmum Rerr ies I0-oFFFFHI 09H
(Cs) Cyl lnder Size [O-0FFFFH] 01AH
(NT) Numbet of Tracks per Sfde [0-0FFFFH] 04DH
(NS) Nurnber of Sectors/Track |0-0FFFFHI 0l-AH
(s R) S t e p R a t e [0 - 0 r F H] 0 8 H
(HLT) Head Load Time lO-0FFHl 028H
(HUT) Head Unload Tine [0-0FFH] 0F0H

Entèr I Abbreviation = nev_value / AbbreviatÍon ?
: <CR>

208

/ H)

ICU User's Cuide B-r9

EXAMPLE SYSTEM CONFICURATION

Figure B-28. The iSB@208 Device-Unit Information (DUIB) Screen

The default values provided on this rcreen match the target system for this application.
The only fields that must be filled in are "(DEV) Device Name", "(NAM) Device-Unit
Name", and "(UIN) Unit Info Name". Enter "dev=208", "nam = atdO,', and
"uin = uinfo_208", as shown in Figure B-28. Reshow the screen to check your entries by
enter inga carr iage return (<CRr).

(1208) 1SBC 208 Device-Unic ln format ion

(DEV) Devlce Naúe [1-16 Chars]
(NAì , f) Device-Unic Narne [1-14 Chars]
(PFD) Physica l Fí Ie Dr iver Required [Yesr /No]
(NFD) Named Fl le Dr lver Requlred IYes/No]
(SDD) Stngle or Double Densi ty Dlsks I S ing le,zDouble]
(SDS) Single or Double Slded Disks ISingle/Double]
(E F I) 8 o r 5 l n c h D i s k s [8 / 5]
(SUF) Standard or Unlform Format { S tandard/Uni forru l
(GRA) Cranularity [0 - OFFFFH]
(DSZ) Devlce Size l0 - OFFTFFFFFH l
(UN) Uni t Nu.nber on th is Device [0-0FFH]
(UIN) Uni t In fo Name [1-16 Chars]
(RUT) Request Updatè T i rnèour [0-OFFFFH]
(NB) Number of Buf fers fnonrandon * O/ îand - 1-OFFFFH]
(CUP) Comrnon Update [YeslNo]
(MB) Max Buf fers [0 - OFFH]

E n t e r I A b b r e v i a t i o n - n e w / v a l u e / A b b r e v i a t i o n ? / H l
dev-208 <CR>
nan-afdo <CR>
uln-ulnfo_2O8 <CR>
<cR>

YES
YES
DOUBLE
SINGLE
8
STANDARD
0100H
0 7 c 5 0 0 H
OH

064H
06H
YES
OFFH

B-20 ICU User's Guide

EXAMPLE SYSTEM CONFIGURATION

Figure B-29. Completed iSBCo208 Device-Unit Information Screen

All of the steps to include the iSBC 201ì flexible disk driver are completed. You still,
however, must adjust the system memory to allow for the addition of this device. For
now, though, add the RAM driver to complete the addition of all the devices listed in the
changes. The first step is to return to the "lntel Device Drivers" screen by entering "f
idevs < CR > " as shown in Figure B-29.

(1208) 1SBC 208 Device-Uni t In format ion

(DEV) Device Name l1-16 Chars l
(NAM) Device-Unl t Naroe [-14 Chars]
(PFD) PhysicaL Fi lè Dr iver Required [YeslNo]
(NFD) Naued Fi le Dr iver Required [Yes/No]
(SDD) Stngle or Double Dènsi ty Disks ISingle/Double]
(SDS) Slngle or Double Sided Disks lS lngle/Double l
(E F I) I o r 5 I n c h D i s k s [8 / 5]
(SUF) Standard or Uniforn Fornat I S tandard/Uni form]
(cRA) cranularity [0 - OFFFFH]
(DSZ) Devíce Stze [0 - OFFFFFFFFH]
(uN) Unit Nu.rnber on this Device [0-0FFH]
(UIN) Uni t In fo Name {1-16 Chars l
(RUT) Request UpdaLe Timeóut I0-0FFFl î l l
(NB) Nurnber of Buf fers lnonrandom - 0/ rand: I -0FFFFHI
(CUP) Coúnon Update IYeslNo]
(MB) Max Buf fers [0 - 0FFH]

Enter I Abbrev iat ion : new/va1ue / Abbreviac ion ? /H
: f ldevs <CR>

208
AFDO
YES
YES
DOUBLE
SINGLE
I
S TANDARD
0100H
0 7c500H
OH
UINFO-208
064H
06H
YES
OFFH

ICU Usefs Guide B-21

EXAMPLE SYSTEM CONFIGURATION

(IDEVS) ln te l Dèvice Dr ivers

(S14) Mass Storage Cóntro l1er [Yes/No] YES
(T74) 8274 Tern inal Dr iver [YeslNo] YES
(T51) 8251A Ternínal Dr iver [Yes,uNo] NO
(T30) 82530 Terrn inal Dr iver [YeslNo] NO
(TCC) Terrninal Comm Controller [Yes/No] YES
(L86) L lne Pr in ter for iSBC 286110 [YeslNo] YES
(L50) L ine Pr ln tèr - ISBX 350 [Yès/ /No] NO
(s20) iSBc 220 [Yes/No] No (X18) isBX 218A [Yes/No] No
(S08) ISBC 208 [Yes/No] N0 (T34) tsBc 534 [Yes/ /No] NO
(T44) iSBc 5444 [YeslNo] YES (s64) lsBc 264 [Yes/Nol N0
(X51) ISBX 251 [Yes/No] N0 (RAM) RAt l Dlsk Dr iver [Yes/No] NO
(SCS) SCSI Dr iver [Yes/No] No (s24) isBc 186/224A [Yes/No] No
(s 1 0) i s B c 1 8 6 / 4 1 0 [Y e s / N o] N 0 (c 7 9) i s B X 2 7 9 l y e s l N o] N o

E n t e r I A b b r e v i a t i o n - n e l v a l u e / A b b r e v i a r i o n ? / H]
: raro=v <CR>

Figure B-30. Intel Device Drivers Screen

To add the RAM driver, you type the device's threeletter abbreviation from the (IDEVS)
screen and "=y <CR>". The abbreviation for the RAM Disk is "RAM',, so you t)?e
"ram= y <CR>" as shown in Figure B-30. This produces the screen in Figure B-31.

Do you I'ant any /more
y <cR>

RAl,l Disk Driver DEVI CEs ?

Figure B-31. RAM Disk Device Query Screen

To start adding the RAM disk, tlpe "y <CR>". This entry produces rhe',RAM Disk
Driver" screen as shown in Fisure B-32.

B-22 ICU Use/s Guide

EXAMPLE SYSTEM CONFIGURATION

(DRAM) RAI{ Disk Dríver

(DEV) Device Name [1-16 Characters]

Enter lAbbrev iat ion = new_value / Abbrev iat ion ? / H] :
: dev-ran <CR>
: <cR>

Figure B-32. Default RAM Disk Driver Screen

The only information to enter on this screen is the "(DEV) Device Name" field. Enter
"dev= ram <CR>", as shown in Figure B-32. Enter a carriage return (<CR>) to
redisolav the screen with the new data.

(DRAì4) RAM Disk Driver

(DEV) Device Narne 11-16 Characters l RAI1

Enter [Abbreviat ion: new_va1ue / Abbreviat ion ? / H] :
: <CR>

Figure B-33. Inserted RAM Disk Driver Screen

Figure B-33 shows that the necessary change has been made; therefore, simply enter a
carriage return (< CR >) to view the next query screen as shown in Figure B-34.

Do you want
<c8>

anv/more RAI'Í Disk Driver DEVICES ?

Figure B-34. RAM Driver Query Screen

Because you have only one RAM disk driver to add, enter a carriage return (< CR >) to
view the RAM driver Units query screen as shown in Figure B-35.

ICU User's Guide B-23

EXAMPLE SYSTEM CONFIGURATION

Do you want any/nore
y <cll>

RAl,t Disk Driver UNITs ?

Figure B-35. RAM Unit Query Screen

Because the Unit information does not yet exist in our definition file, type "y <CR>".
This produces the "RAM Disk Driver Unit Information' screen as shown in Figure 8-36.

Figure 8-36. RAM Disk Driver Unit Information Screen

The fields that must be filled in on this screen are "(DEV) Device Name", "(NAM) Unit
Info Name", and "(BMA) Base Memory Address". The base memory address value is
chosen by selecting an address above the default memory reseryed for the system and the
Free Space Manager in the memory map shown in Figure B-42. Enter "dev=ram",
"nam = uinfo_ram", and "bma = 300000h". To check your entries, enter a " < CR > ". This
action produces the screen shown in Figure B-37.

(URAI{) Ml'f Disk Dri.ver Unit Infornation

(D E V) D e v i c e N a m e [1 - 1 6 C h a r a c t e r s]
(NAM) Un i t In fo Name [1 -16 Chars]
(BMA) Base Memory Address l0 -OFFFFFPHI
(WP) Wr i te Pro tec ted IYes /No]

0100000H
NO

Enter lAbbrev iat lon: ner^r_value / Abbrev lat ion ? / H I :
dev-ran <CR)
nan*ulnfo_ram cP>
bna-300000h <cR>
<cR>

B-24 ICU User's Guide

EXAMPLE SYSTEM CONFIGURATION

(UR-AX) RAM Disk Drj.ver Unit Infornation

(DEV) Device Name [1-16 Characters] RAM
(NAì4) UniÈ Info Nane [1-16 Chars] UINFO_RA.I{
(Bl'lA) Base Memory Address IO-oFFFFFFH] 300000H
(IJP) lJr i te Protected [Yes/No] NO

Enter [Abbreviation - new_va1ue / Abbreviation ? / H | :
: <cR>

Figure B-37. Inserted RAM Disk Driver Unit Information Screen

After checking the entries on the screen shown in Figure B-37, ty?e a "<CR>" to view the
next screen.

Do you want
<cR>

anvlnore RA-t,f Disk Driver UNITs ?

Figure B-38. RAM Unit Query Screen

Only one Unit is required for the RAM Disk, so by entering a "<CR>", as shown in
Figure B-38, you continue the process of adding the RAM Disk.

Do you want any/mo]ie
y <CI{>

RA.|4 Disk Driver DUIBS ?

Figure B-39. RAM DUIB Query Screen

To finish adding the RAM disk, you must complete a DUIB. To begin, enter "y <CR>"
as shown in Figure B-39. The ICU then displays the "Ram Disk Device-Unit Information"
screen. as shown in Fisure B-40.

ICU Use/s Guide B-25

EXAMPLE SYSTEM CONFIGURATION

Figure B-40. RAM Disk Device-Unit Information Screen

The fields that must be filled in on this screen are "(DEV) Device Name", "(NAM)
Device-Unit Name", and "(UIN) Unit Info Name". The remaining fields can use the
default values. Enter "dev=ram < CR > ", "nam = r0", and "uin = uinfo ram <CR>". To
check your entries, type Figure B-41 shows the inserted "RAM Disk Device-
Unit Information" screen.

(IRAI4) RAM Disk Device-Uni! Infornation

(DEV) Device Nane [1-16 CharacÈers]
(NAl ' f) Devlce-Uni t Narne l1-14 chars l
(PFD) Physica l Fí1e Dr iver Rèquired [Yes,zNo] YES
(NFD) Narne Fi le Dr iver Required [Yes/No] YES
(GM) Granular í ty |0-OFFFFHI 0200H
(DSZ) Devlce Size |O-OFFFFFFFFHI 0100000H
(UN) Uni t Ntrnbèr of th is Device [0-0FFH] 0H
(UlN) Uni t In fo Narue I l '16 Chars]
(RUT) Request Update T imeout IO-OFFFFH] 0H
(NB) Nr.ruber of Buffers [nonrandom - O/rand - 1-OFFFFH] 02H
(CUP) Conmon Update [Yes/No] YES
(MB) Max Buf fers |O-OFFH] OFFH

Enter lAbbreviation - new_value / Abbreviation ? / H) :
dev-ran <CR>
nan=ro <CR>
uln*uinfo_ran <CR>
<cR>

B-26 ICU User's Guide

EXAMPLE SYSTEM CONFIGURATION

Figure B-41. Inserted RAM Disk DUIB Information Screen

As mentioned earlier, adding certain devices requires adjustments to the memory for the
system and the Free Space Manager. Use the memory map in Figure B-42 to determine
where you will increase the memory locations for the system and decrease the memory
locations for the Free Space Manager. Figures B-43 through B-4tì show these changes.
You will notice that you cannot simply insert the memory locations nee<Jed. First you
must delete the current reserved memory locations, view the screen again to enter the
new values, then view the screen a third time to check the changes. This procedure is
necessary because the ICU does not accept addresses that could cause overlapping
memory locations.

Enter "f mems < CR > " to view the "Memory for System" screen shown in Figure B-43.

(IRA.I'!) RAÌ.t Disk Device-Unit Informarion

(DEV) Device Narne [1-16 Characters]
(NAl , f) Device-Uni t Name l1-14 chars l
(PFD) Physlca l F i le Dr iver Required IYeslNo]
(NFD) Nane Fi Ie Dr iver Required [YesruNo]
(GM) Cranular tcy [0 - OFFFFH]
(DSZ) Device S ize [0-0FFFFFFFI1I]
(UN) Uni t Nunber of th is Device lO-0FFHl
(UlN) Uní t In fo Narne (1-1-6 Chars l
(RUT) Request Update T imeout [0-0FFFF!]
(NB) Nunber of Buffers [nonrandom : O/rand -],-0FFFFHI
(CUP) Common Update [Yes/No]
(MB) Max Buf fers [0 - OFFH]

Enter [Abbreviat ion - new_value / Abbrev iat ion ? / H]
: f nens <CR>

RAM
RO
YES
YES
0200H
0100000H
OH
UINFO-RAI'I
OH
0 2 H
YES
OFFH

ICU UseIJs Guide B-27

EXAMPLE SYSTEM CONFIGURATION

16 M bytes 16 M bytes
SDM Moni tor
SDM Star t Fc0000H

- - - OTFFFFH

Free Space Manager

- - - - 5 5 0 0 0 H

Sub - Sys terns

2000H

MSC Reserved 1200H

C n M M ^ 6 i r ^ r

FC0000H SDM S tar t

Unused Address Space

4 M bytes

RAI'f Dr iver

I M b y t e s -

I ' r a o Q n e n p M , n . o è r

5FFFFH-

Sub - Sys tems

I 0 0 0 H - -
i s B c 2 0 8

2C00H Reserved Memory

2690H-------I3Ba-f7-
1210H Reserved Memory
1200H iSBC 220 l , , takeup

1180H MSC Re served

1 0 1 0 H
1000H MSC l.Iakeup

SDM DATA

SAUz86. DEF XaD

MSC tJakeuo 1000H

SDM DATA
OHOH

2 8 6 1 2 . D E F M a p

Figure B-42. The Original and Modified Memory Maps

B-28 ICU Usefs Guide

EXAMPLE SYSTEM CONFIGURATION

(MEMS) Menory for Sys tem

s Y s - ì o w l 0 - O F F F F F F H I , h i g h [0 - O F F F F F F H]
[1] s Y S - 0 2 0 0 0 H , 0 5 9 F F F H
[2] sYs

Enter Changes [Nurnber : new_value /
^D Number / ? / H) :

: ^d I <cR>

Figure B-43. Memory for System Screen

To delete the default values rype "^d 1 <CR>". This entry produces the screen shown in
Fisure B-44.

(MEMS) Memory for Sys t em

sYs * l ow {0 -OFFFFFFHI , h Ígh l 0 -OFrFFrFH l
[1] s Y S

E n t e r C h a n g e s l N u m b e r : n e v r _ v a l u e /
^ D

N l t n b e r / ? / H] :
: I - 3000h,5 f f f fh <CR>

Figure B-4.1. Changing the Memory for System Screen

From the memory map in Figure B-42, you find the lower and upper addrcss limits for
system memory and configure them by entering'l = 3000h,5ffffh <CR>", as shown in
Figure B-44. This produces the "Memory for System" screen containing these changes,
shown in Fìgure B-45. Note that the upper value (5FFFFII)was selected to ensure
adequate memory space. If saving memory is a concern, cxamine the .mp2 file producecl
during system generation (G[enerate] command) to find out the actual system size. Once
the actual system size is determined, adjust this address accordingly.

ICU User's Guide B-29

EXAMPLE SYSTEM CONFIGURATION

(MEMS) Menory for systèn

SYS - 1ow IO-oFFFFFFH], h lgh Io-oFFFFFFH]
[r] sYs - 03000H, o5FFFFH

[2] sYs

Enter Changès [Number * ner,r_value /
^D Nunber / ? / H I :

: f nenf <CR>

Figure B-45. New Memory for System Screen

Now, you must change the memory for the Free Space Manager. Enter "f memf < CR > "
to view the "Memory for Free Space Manager" screen as shown in Figure 8-46. Follow
the steps for changing memory addresses, as shown in Figures 8-46 through B-48.

(MEMF) Menory for Free Space Manager

Fsu - low [0-OFFFFFFH], h igh IO-OFFFFFH]
[1] FsM : 05A000H, O7FFFFzu

[2] F s M

E n t e r C h a n g e s [N u r n b e r * n e \ { _ v a 1 u e /
^ D

N u n b e r / ? / H) :
: ^d 1 <cP>

Figure 8-46. Memory for Free Space Manager Screen

(MEMF) Memory fo r Free Space Manager

rs l l - 1ow [0-OFFFrFrH], high lO-0rrFFFHl
[1] rs],f

E n t e r C h a n g e s [N u m b e r : n e w _ v a 1 u e /
^ D

N u n b e r / ? / H l :
: I - 600O0h,02f f f f fh <CR>

Figure B-47. Changing the Memory for Free Space Manager Screen

B-30 ICU Usefs Guide

EXAMPLE SYSTEM CONFIGURATION

(MEilf) Menory for Free Space Manager

FsM - low [0-0FFFFFFH], h igh [0-OFFFFI1{]
[1] FSr.f - 060000H, o2FFFFrir
[2] FsM

E n t e r C h a n g e s [N u m b e r : n e w _ v a l u e /
^ D N u r n b e r / ? / H] :

: f gen <CR>

Figure B-48. New Memory for Free Space Manager Screen

Now that the system and Free Space Manager memory for the 80286-based multi-user
system have been changed to match the target system, you are ready to generate the
system. To produce the "Generate File Names" screen, type "f gen <CR>" as shown in
Fisure B-48.

(CEN) cenerate F i le Nanes

Fi le Narne [1^-55 Characters]

(ROF) ROM Code File Nane
/BoOT/RMX2 86 . Rol,r

(RAF) RAl,f Code File Narne

/Boor /28612 .286

Enter fAbbrevlat ion: new_vaLue / Abbreviat lon ? / H] :
' wf-/boot/ saxo28 6 . 28 ó <cR>
: <CR>

Figure B-49. Generate File Names Screen

On the "Generate FiÌe Names" screen, sho\ryn in Figure B-49, you must specify the
pathname of the new bootloadable file you will be generating. For this application, the
file is SAM286.286, and it will be a RAM code file name. Enter "raf = /boot/sam28ó.286
<CR>". To produce the changed "Generate File Names" screen (shown in Figure B-50),
enter a carr iage return "<CR>"

You are now ready to start the generation phase of the ICU. To do this you must first
return to the ICU menu screen. Enter "c <CR>" on the screen shown in Figure B-50.
This entry produces the ICU menu screen shown in Figure B-51.

ICU Usefs Guide B-31

EXAMPLE SYSTEM CONFIGURATION

(CEN) Cenera te F i le Names

F i l e N a r u e [1 - 5 5 C h a r a c t e r s]

(ROf) ROM Code File Name

/Bo0T/RMX286 . Ror.r
(RAF) RAM Code File Name

/Roor/sM286.286
Enter lAbbrev iat íon: new_value / Abbrev iat ion ? / H) :
: c <cB>

Figure B-50, New Generate File Names Screen

For genera l he lp in any screen enter H <cR>.

The fo l lowing commands are avai lab le

Change
Generate
L i s È
Save
Qul t
Ex i t
Replacè
D e t a i l - L e v e l
Backup

ENTER COMMAND : g <CR>

Figure B-51. ICU Menu Screen

Entering the G command on the ICU menu screen produces the screen shown in Figure
B-51, starting the generation process. As shown in Figure B-52, the display prompts you
for the prefix you wish to assign to all the files generated by this submit file. For this
example, type "s < CR > ". The ICU echoes the prefix and informs you of the progress of
the generation process.

B--ì2 ICU Usefs Guide

EXAMPLE SYSTEM CON FIGU RATION

ENTER a le t ter to be used as pref ix : s <CR>

The pref fx le t ter is : S
Beginnlng NUCLEUS File Ceneration

. , . . D O N E
Beginning BIOS f i le Generat iÒn

; ; ; i ; ; i ; ; ' ; ióir i i .c"". ."; i ; ; " '" D.NE

. D O N E
Beglnning LOADER flle Generation

;;;i;;i;; '; i i i i" c"""."iion
" "D.NE

:
' ' : " : " . . : :

'
: : :

'
^ " ' ' ' ' D o N E

Beginn ing UDI F i Ie Genera t ion

;;;i;;i;; ';;; Fii; ó;;;;;;i;;
' "' D'NE

: ' ' :
' : ' ' ^ . ' ' :

- : - " ^ " " ' D o N E
B e g i n n i n g S u b n í t F i 1 e C e n e r a t i o n

Beginning Bui ld Fí le cenerat ion
. D O N E

NOTE: To Generate your systern subni t SAM286.CSD

For genera l he lp in any screen enter H <CR>.

The following comrnands are available

Change
Gènerate
L l s t
S ave
QuiÈ
Exi t
Replace
Deta i I -Leve1
Backup

ENTER COMMAND : e <cR>

Figure B-52. Generation Phase ICU Screen

ICU Usef s Guide B-33

EXAMPLE SYSTEM CONFIGURATION

When the generation process is completed, the ICU displays the name of the resulting
submit file. In this case, the submit file is SAM286.CSD. The ICU then continues
automatically to the ICU menu screen where you should enter "e <CR>" to exit the ICU
antl save the definition file. Upon receiving the Exit command, the ICU informs you that
the definition file has been written. It issues the following message before returning
control to the command lìne:

The Def ln i t ion F i le has been wr i t ten to f i le : SAM286.DEF

You are now ready to invoke the SUBMIT file SAM286.CSD. You do this by entering

The SUBMIT file assembles all the configuration files generated by the ICU and binds
the object files with all the libraries required by the subsystems. It then builds the system.
Figure B-53 shows a listing of the output from the SUBMIT file. You may notice warning
messages. The warning messages are normal and can be ignored. Only error messages
must be heeded.

B-34 ICU User's Guide

Figure B-53. Output of Submit File for SAM28ó.CSD

EXAMPLE SYSTEM CONFIGURATION

NUCLEUS

- : IANG:ASM286 SNTABL. A2I
TRI'ÍX II iAPX286 MACRO ASSEMBLER, V1 .3
Copyr ight 1982 ln te1 Corporat ion

AS SEI.ÍBLY COM?LETE, NO I.'ARNINCS , NO ERRORS
- : IANG: ASM286 SNUCDA.A2E
iRMX II IAPX286 MACRO ASSEMBLER, Vl ,3
copyr ighÈ 1982 Incel Corporat ion

ASSEMBLY COMPLETE, NO WARNINGS, NO ERRORS
- : IANC:ASM286 SNJOBC . A28
IRMX II IAPX286 MACRO ASSEMBLER, Vl .3
Copyr lght 198 2 Inte l Corpórat ion

ASSEMBLY COMPLETE, NO WARNTNGS, NO ERRORS
- : IANG:BND286 &

**OBJECTiSNUCI.LNK) NODEBUC NOTYPE SEGSIZE(STACK(2OO)) &
** NoLOAD NoPUBLICS EXCEPT (RQ_ni1_os_ext , &

iRMX I I iOPXZEE BINDER, V3,2
Copyr ight 1982, 1985 Inte l Corporat ion

PROCOSSING COMPLETED, 2 WARNINGS, O ERRORS
- : I -ANG: BND286 &

:
**OBJ ECT (SNUCLS . LNK) NODEBUG NOTYPE &
** NoLOAD SECS rZE (STACK(200))
iRMX I I IAPX286 BINDER, V3.2
c o p y r i g h t 1 9 8 2 , 1 9 8 5 I n t e l c o r p o r a t i o n

PROCESSING COMPLETED. 1 WARNING, O ERRORS

ICU UseCs Guide B-35

n î n c
. ;
- : IANG:ASM286 SITABL. A28
1RMX II 1APX286 MACRO ÀSSE},IBLER, V1.3
Copyr tght 1982 Inte l CorporaÈlon

ASSEI,ÍBLY COMPLETE, NO IIARNINGS, NO ERRORS
- : IANG:ASU286 SICDEV. 428
iR}D(II iAPX286 MACRO ASSEMBLER, V1.3
Copyr ight 1982 Inte l Corporaî r lon

ASSEMBLY COMPLETE, NO WARNINGS, NO EPAORS
- : I -ANG:AS[286 SITDEV.A2S
iRMX II iAPX286 MACRO ASSEHELER, V1.3
Copyr ight 1982 Intè1 Córporat ion

ASS EI,IBLY COMPLETE, NO Í.IARNINCS , NO ERRORS
- :LANG:bnd286 &

**OBJECT (SIOSI.LNK) NODEBUG NOTYPE &
** NOLOAD NOPUBLICS EXCEPT (rqaiosinittask , &

iRMx rr iepxzeo BTNDER, v3.2
Copyr ighÈ 1982, 1985 Inte l Corporar ion

PROCESSING COMPLETED, 1 I.IARNING, O ERRORS
- : IANG:bnd286 &

**OBJECT (STSC.LITK) NODEBUG NOTYPE SECSIZE(STACK(O)) &
** NOLOAD NOPUBLICS EXCEPT(TSCINITIO, &

iR} , lX I I iETXZSO BINDER, V3.2
C o p y r l g h t 1 9 8 2 , 1 9 8 5 I n c e l C o r p o r a r i o n

PROCESSING COMPLETED. O IIARNINCS, O ERRORS

EXAMPLE SYSTEM CONFIGURATION

Figure B-53. Output of Submit File for SAM286.CSD (continued)

B-36 ICU UseIJs Guide

- :LANG:bnd286 &

**OBJECT (SIOS.LNK) NODEBUG NOTYPE SECSIZE(STACK(O)) &
** N0L0A! NoPUBLICS EXCEPT (rqaiosinittask , &

1RMX I I iEPXZEE BINDER, V3.2
C o p y r i g h t 1 9 8 2 , i 9 8 5 r n L e I c o r p o r a t i o n

PROCESSING COMPLETED. O I.JARNINGS, O ERRORS

- : EIOS

- : I -ANG: ASM2 86 SETABL.A2S
tRIO(I1 1APX286 MACRO ASSEI"IBLER, V1 .3
Copyr ight 1982 Inte l Corporat ion

ASSEMBLY COMPLETE, NO WARNINGS, NO ERRORS
- :LANG:ASM286 SEDEVC . A2 8
iRMX II 1APX286 MACRO ASSEì'IBLER, V1 ,3
Copyr lght 1982 Inte l Corporat ion

ASSEMBLY COMPLETE, NO IIARNINCS, NO ERRORS
- : IANG:ASM286 SEJOBC .428
iRMX I I iAPX286 MACRO ASSEMBLER, V1 .3
Copyr lght 1982 Inte l Corporat ion

ASSEMBLY COMPLETE, NO WARNINCS, NO ERRORS
- : LANG:BND286 &

**OBJECT(SEIOSl .LNK) NOLOAD NODEBUG SEGSIZE(STACK(O)) &
** NOPUBLICS ExcEPT(rqeios in i t task , &

íRMX I I iAPX286 BINDER, V3.2
Copyr ight 1982, I985 Inte l Corporat ion

PROCESSING COMPLEîED. 1 WARNING, O ERRORS

EXAMPLE SYSTEM CONFIGURATION

Figure B-53. Output of Submit File for SAM2116.CSD (continùed)

ICU Uset's Guide B-37

EXAMPLE SYSTEM CONFIGURATION

- : IANG:BND286 6

**OBJECT(SEIOS.LNK) NOLOAD NODEBUG SEGSIZE(STACK(O))
iRMX I I 1APX286 BINDER, V3.2
Copyr ight 1982, L985 Inte l Corporar lon

PROCESSING COI{PLETED. O I.IARNINGS, O ERRORS

- ; I,OADER

- :lANc:ASl'f286 SLTABL.A2S
iR!.o(II 1ApX286 MACRO ASSEUBIER, V1 .3
Copyr lght 1982 Inte l Corporar lon

AS SEI'TBLY COMPLETE, NO WARNINGS, NO ERRORS
- :I,ANG: PLtl286 SLCONF. P28

1RMX II PL/N-286 COUP1LER V2.5
Copyr ight In te l Corporar lon 1982, 1983, 1984, 1985
PL/t4-286 CoMPIIATTON CoMPLETE. 0 ITARNTNCS, 0 ERRORS

. : I ,ANG:BND286 &

,
**oBJECT (SLOADR. LNK) NOLoAD NODEBUC SEGSTZE(STACK(0)) &
** NOPUBLICS EXCEPT (asynchload, &

tRMx rr iarxzas BTNDER, v3.2
Copyr ighr 1982, l -985 lnre l Corporat ion

PROCESSINC COMPLETED. O WARNINGS, O ERRORS

I.T T

- irolrc, pr-Mzee sHcoNF. p28

íRlo(II PL/tt-286 CoMPILER V2.5
Copyrlght Intel Corporar ion 1982, 1983, 1994, 1985
PL/\I-286 CoMPITATIoN CoMPLETE. 1 WARNTNC, 0 ERRORS

Figure B-53. Output of Submit File for SAM2E6.CSD (continued)

B-38 ICU Use/s Guide

- : l3NG:BND286 &

**OBJECT(SHI .II.IK) NOLOAD NODEBUG SEGSIZE(STACK(O)) &
** NoPUBLICS EXCEPT (rqhÍ lni ttask, &

rRlo(rr iepxzee BTNDER, v3.2
C o p y r i g h t 1 9 8 2 , 1 9 8 5 I n t e l c o r p o r a t i o n

PROCESSINC COMPLETED. 1 WARNING, O ERRORS

CLI

IANG:BND286 &

**OBJECT(SCLI .LNK) NOLOAD NODEBUG &
**SEGSIZE (sTAcK(02400H)) NoPUBLICS EXcEPT (hc l i in i t)
1RMX I I íAPX286 BINDER, V3.2
C o p y r l g h t 1 9 8 2 , 1 9 8 5 l n l e l C o r p o r a c i o n

PROCESSINC COMPLETED. O WARNINCS, O ERRORS

- i U D I

- ; IANG: ASI'Í286 SUTABL.A2S
IR},IX II 1APX286 I.IACRO ASSE},ÍBLER, VI , 3
Copyr tght 1982 ln te l CorporaÈion

ASSEMBLY COI'IPLETE, NO LIARNINGS, NO ERRORS
- : IANG:BND286 &

**OBJECTi SUDI . LNK) NODEBUG NOTYPE SEGSIZE(STACK(O)) &
**NoLOAD

.
NoPUBLIC S EXCEPT (U_Allocete , &

IRMX I I iAPX286 BINDER, V3.2
C o p y r i g h t 1 9 8 2 , 1 9 8 5 I n t e l G o r p o r a t i o n

PROCESSINC COMPLETED. O WARNINGS, O ERRORS

EXAMPLE SYSTEM CONFIGURATION

Figure B-53. Output of Submit File for SAM286.CSD (continued)

ICU Useds Guide B-39

EXAMPLE SYSTEM CONFIGURATION

' i
- i s D B

- : I ,ANG:ASMz86 SSDBCN. A28
iRMX 1I iAPX286 MACRO ASSEMBLER, Vl.3
Copyr ight 1982 Incel Corporat lon

ASSEMBLY COMPLETE, NO WARNINGS, NO ERRORS
. : I.ANG: BND286 &

**oBJECTi SSDB. r,Ì.rK) ss(STACK(0)) NOI,OAD &
**NOPUBLICS EXCEPT (rqsdb ini ttask)
iRMX I I íAPX286 BINDER, V3.2
C o p y r i g h t 1 9 8 2 , 1 9 8 5 l n r e l C o r p o r a r í o n

PROCESSING COMPLETED. O I.'ARNINGS, O ERRORS

- ; BUILD

- : I A N G : B L D 2 8 6 &

ì** orincr 17ru,rxz B6/rcu/sùi2f,6 / s$'r286 .286) NoDEBUG NorypE &
** BUI LDFILE (SA.I{2 86 . BLD)
iRMX 11 iAPX286 SYSTEM BUILDER, V3.2
Copyr Íght 1982, 1985 Inte l Corporar ion

PROCESSING COMPLETED. 1 WARN]NG, O ERRORS
- END SUBMIT sam286. CSD

Figure B-53. Output of Subrnit File for SAM286.CSD (continued)

This ends the output from the SUBMIT file SAM286.CSD. To bootstrap load this system,
prepare a third-stage bootstrap loader by entering

This places a copy of the device-specific third-stage bootstrap loader in a boot file named
/BOOT/SAM286, which is required ro bootstrap load the bootable file for this example
confisuration.

B-40 ICU User's Guide

EXAMPLE SYSTEM CONFIGURATION

If conserving memory is a consideration, you can minimize the memory assigned to the
system by examining the segment map of file /BOOT/SAM28ó.MP2 created during the
build process. By adding the segment limits in the segment map you can calculate the
precise memory addresses required by the system and the Free Space Manager.
Remember that when you configured the ICU, you estimated the memory required,
leaving extra room for any changes made during development. Now with the exact
addresses available you can minimize the memory you have reserved. For the rest of this
example assume that this calculation resulted in a system that can reside in addresses
3000H to 59FFFH. To minimize the memory, you must invoke the ICU with the
definition file you havejust created. Invoke the ICU by entering

iRMX I I Inreract ive Conf igurat ion Ut i l i ty FÒr Extended iRMX 1I , <v>
Copyr lghÈ <years> Inte l Corporat ion

For general help in any screen enter H <CR>.

The fol-lowlng conrnands are availabl.e

Change
Generate
L l s t
Save
Quit
Exl t
Replace
Dete l l - LeveI
Backup

ENTER COMI'ÍAND : c nems <cR>

Figure B-54. Initial ICU Screen

This entry produces the initial ICU screen shown in Figure B-54. Entering "c mems
<CR>" takes you to the "Memory for System" screen, shown in Figure B-55, where you
can adjust the memory reserved for the system. Using the MP2 file you can determine
that the system requires less memory than you had previously reserved, leaving more
memory for the Free Space Manager. Consequently, you must change the memory
screens, as shown in Figures B-55 through 60. Remember that the ICU does not accept
overlapping memory addresses. Therefore, you must perform the separate steps of
deleting the existing memory locations, making your changes, and viewing the new screen.

ICU Usefs Guide B-41

EXAMPLE SYSTEM CONFIGURATION

(MEMS) Memory for systèm

sYs : 1ow [0-0FFFFFFH], h igh [o-OFFFFFFH]
[1] sYs - 03000H, 05FrFFH
[2] sYs

Enter Changès [Nurnber : new_value /
^D Nunber / ? / H] :

:^d I <GR>

Figure B-55. Memory for System Screen

(MEMS) Mènory for System

sYs - 1ow [O-0FFFFFFH], h igh I0-OFFFFFFH]
[1] sYS

Enter Changes [Number - new_value / "D Nurnber / ? / H] :
; l - 3000h,5Bf f fh <cR>

Figure B-56. Adjusting the Memory for System Screen

(MEMS) Menory for System

SYS : Lol r I0-OFFFFFFH], h igh IO-0FFFFFFH]
l r l sYs - 03000H, 059FFFH
[2] sYs

Enter Changes [Nurnber : ner{r_value /
^D Nurnber / ? / H] :

:f nenf <CR>

Figure B-57. Final Memory for System Screen

Once you have changed the "Memory for System" screen, you are ready to change the
"Memory for Free Space Manager" screen. Once you know the system memory
requirements, the Free Space Manager gets the rest of the memory. you can assign the
Free Space Manager more memory than you had originally assigned since your system
was smalìer than you expected. Change the "Memory for Free Space Manager', screen, as
shown in Figures B-58 through 8-60.

B-42 ICU Usefs Guide

EXAMPLE SYSTEM CONFIGURATION

(MEUF) Memory For Free Space Manager

FsM - low [0-OFFFFFFH], h igh [O-OFFrrm]
[1] rsu * 060000H, o2FFFFFH
[2] FsM

Enter Changes [Nurnber : nelr_value /
^D

Nurnber / ? / H] :
: ̂ d I <cR>

Figure B-58. Memory for Free Space Manager Screen

(MEMF) Memory For Free Space Manager

F S M - l o w l O - O F F F F F F H I , h i g h I O - 0 F F F F r u]
[1] F s M

Enter Changes lNurnber - neu_value /
^D Nlunber / ? / H) :

: l - 5C00Oh, 2f f f f fh <CR>

Figure B-59. Changes to the Memory for Free Space Manager Screen

(MEì,fF) Menory For Free Space Manager

F S M - l o w [0 - 0 F F F F F F H I , h i g h [0 - 0 F F F F F H]
[1] FsM : 05A000H, O2FFFFFT
[2] rsM

Enter Changes [Nunber - new_value / "D Nunber / ? / H) :
: c <cI>

Figure 8-60. Final Memory for Free Space Manager Screen

After you have made all the necessary changes to your definition file, you can save the file
and exit the lCU. However, first you must return to the ICU menu screen (shown in
Figure 8-61) by enter ing "c <CR>" as the f inal entry in Figure 8-60. As an extra
precaution before exiting, you should list the contents of our definition file to a file or to a
device. The List command lists the contents of the screens in the system you have just
generated and enables you to ensure that you have the correct parameter values before
saving the f i les. To use the List command, enter " l <f i le name> <CR>" in Figure 8-61,
which produces the screen displayed in Figure B-62.

B-43ICU User's Guide

EXAMPLE SYSTEM CONFIGURATION

For general help in any screen enter H <CR>.

The follor.llng commands are available

Change
Generate
Lis t
S ave
QuiÈ
Exi t
Rèplace
Deta i l -Level
Backup

ENTER COMMLND :l san286.lst <CR>

Figure 8-61. Entering the List Command

îhe Def in l t lon F i le has been l is ted to f i le :

For general help in any screen enÈer H <CR>.

The following commands are available

Change
Generate
Lls È
Save
Qui t
l ! ,x 1c

Rep Iace
Deta l l -Leve1
Backup

ENTER COMÌ,IAND : g <CR>

SAM286 . LST

Figure 8-62. ICU Menu Screen

Enter the G command on the ICU menu screen to start the generation process, shown in
Figure 8-62. As shown in Figure 8-63, the display prompts you for the prefix you wish to
assign to all the files generated by this submit file. For this example, type "s <CR>". The
ICU echoes the prefix and informs you of the progress of the generation process.

B-44 ICU Use/s Guide

EXAMPI-E SYSTEM CONFIGURATION

Figure 8-63. Generation Phase ICU Screen

Now that you have L[isted] the definition file and G[enerated] the system configuration
files, you are ready to exit the ICU by entering "e <CR>", as shown in Figure 8-63

B-45

ENTER a le t ter to be used as pref ix : s (CR)

T h e p r e f i x l e t t e r i s : S
Beginnlng NUCLzuS File Generation

. D O N E
Beginning BIOS Fi le Generat ion

,"ói""i"e eiói nii" ò"""i';i;;
" 'D.NE

nnÀtP

Beginning L0ADER Fi.le Generation
. D O N E

Beglnning HI Ft le Generat Íon

Beglnning UDI F i le CeneraÈlon
" " " D O N E

Beginning SDB Fi le Generat ion

;;;i;;i;; ';;-i; Fii; ;;;;;;i;"
"' D.NE

' ' " " D O N E
Beginning BuÍ1d Fi le Cenerat ion

"ói;;
i; ;;;"r.." y"", "y;;;' ;;;i; i*rà;.::it

For genera l he lp in any screen en le r H <CR>.

The following cornmands are available

Change
Genera te
L i s t
Save

Qui t
Ex i t
Rep lace
Deta l1 - l ,eve1
Backup

E N T E R C o M M A N D : e (C R)

ICU User's Guide

EXAMPLE SYSTEM CONFIGURATION

When the ICU has successfully saved the definition file, it exits after issuing the following
messaqe:

The Def ln f r lon F i le has beén er i t ten to f i le : SAU286.DEF

You are now ready to invoke the SUBMIT file SAM286.CSD. Do this by entering

The SUBMIT file assembles all the configuration files generated by the ICU and binds
the object files with all the libraries required by the subsystems. It then builds the system.
Refer again to Figure B-53 for a listing of the output from the SUBMIT file. You may
notice warning messages. The warning messages are normal and can be ignored. Only
error messages must be heeded. When the SUBMIT file is completed your entire system
has been built.

The bootfile named /BOOT/SAM286.286 contains the entire svstem. You are now readv
to bootload your new executable system.

B-46 ICU User's Guide

APPENDIX C
PROGRAMMING A 286.BASED
SYSTEM INTO PROM DEVICES

C.1 INTRODUCTION

This appendix provides examples of the procedures used to place the iRMX II Operating
System into ROM of a 286-based system. All software generation described assumes you
are using an Intel System 300 Series Microcomputer. In this appendix, one version of the
operating system is created, but two examples of how to proglam it into ROM exist.

The first example places the iSDM monitor and the iRMX II Bootstrap Loader in ROM
along with the generated operating system. A system such as this executes the iSDM
monitor code during the initial power-up sequence. This example includes the iSDM
monitor and iRMX II Bootstrap Loader for several reasons. First, while you develop the
ROM-based system, you can bootstrap load RAM-based versions of the operating system
rather than having to switch PROM devices if you are using one processor board. Second,
the iSDM monitor, while not allowing breakpoints in PROM DEVICEs, does allow you to
disassemble and examine memory in both ROM and RAM. You can use this feature to
determine correct code is in correct locations.

The second example eliminates the iSDM monitor and the Bootstrap Loader from the
PROM devices. A stand-alone system such as this allows the operating system to be 32
Kbytes larger than in the first example. In this example, the operating system receives
control during initial power-up or reset.

C.2 REQUIREMENTS

To use the procedures outlined in this appendix, you must have the following hardware
and software:

. A system defined during configuration as residing in RoM.

. The iRMX IL3 and iPPS V1.4 lor newer) software. The iPPS software runs on an
Series-IV Development System.

ICU Usefs Guide c-1

PROGRAMMING A 286-BASED SYSTEM INTO PROM DEVICES

. A 286-based system and a Series-lV Development System connected via the iSDM
monitor.

o An iUP-200/201 Universal Programmer with a 'FAST 27/K' module with 27512
support.

. Four 27512 EPROM devrces.

C.3 CONFIGURING A ROM.BASED SYSTEM

Before you can program your system into PROM DEVICEs, you must modify a number
of parameters in your definition file. These examples assume that you start with the Intel-
supplied definition file 286l2.DEF locared in directory /RMX28ó/ICU.

To begin the example, you should make a copy of the definition file in a separate
directory. To do this, create a new directory in which to do the system generation. The
definition file should have a .DEF extension, the boot-loadable system should have a .286
extension, and the system to be loaded into ROM should have a .ROM extension.
Entering the three following commands creates a new directory calted ROMSYS, attaches
you to that directory, and invokes the ICU placing a copy of the definition file 28612.D8F
into the new directory. (This example assumes your :HOME: directory is your current
default directorv.l

As part of the configuration process, you must perform the following three things in order
to fit the iRMX II system developed in these examples into ROM:

. Delete the System Debugger from the system.

. Replace the iRMX I I .3 CLI with the iRMX I I . l CLL

. Delete all Intel device drivers except the 8274 MPSC and MSC device drivers.

Having invoked the ICU, you now can begin to make the necessary configuration changes.
Start by modifying the memory screens to define the ROM memory locations the system
requires. Do this by first selecting the "Memory for System" screen with the following
command:

c-2 ICU Use/s Guide

PROGRAMMING A 286.BASED SYSTEM INTO PROM DEVICES

Entering the previous command causes the "memory for System" screen to appear as

follows:

(MEMS) Menory for Syscen

SYS - los IO-OFFFFFFH], hrgh IO-0FFFFFFH]
[r l sYs - 010000H, 059FFFH

[2] sYs

Enter Changes lNurnber - new-value / "D Nurnber / ? / \ I I

Begin the alteration by deleting line I by entering the following command:

After the screen reappears, enter the low and high addresses to indicate the location of

the system in ROM as follows:

In this example, the system resides in locations 0FC1000H to 0FF7FFFH. These

locations allow the iSDM monitor and Bootstrap Loader to reside at locations 0FF8000H

to OFFFFFFH in ROM. After entering the new memory locations, the "Memory for

System" screen appears as follows:

(MEUS) MerDory for SysEen

SYS - low [0-0FFFFFFH] , h igh [O-0FFFFFFH]
[1] sYS - 0Fc1000H, 0FFTFFTH

[2] sYs

Enter Changes [Nurnber * new-value / "D Nwrber / ? / H 1 :
: <cR>

Ifyou were not to include the iSDM monitor and Bootstrap Loader, you could use

locations 0FC1000H to 0FFFFEFH.

ICU Use/s Guide c-3

PROGRAMMING A 2Iì6-BASEI) SYSTEM INTO PROM DE\TCES

Now, display the "Memory for Free Space Manager" screen by entering "<CR>', as
shown in the previous screen. You must also adjust this memory screen as a ROM-based
system uses different memory locations than the RAM-based system defined in the
definition lile. Change the "Memory lbr Free Space Manager" screen to contain the
memory locations 45000H ro IFFFFFH. The following screen shows the "Memory for
Free Space Manager" screen after making the changes:

After making changes to the memory screens, request the "Sub-systems', screen by
enter ing the fo l lowing commlrnd:

Here, you must delete the Systcm Debugger because of size considerations. Derete the
SDB by enter ing the fol lowing command:

(MEMF)

FSM : Iow
[1] F S M
[2] F s M

Enter Changes
:

Memory For Free Space Manager

[0 - 0 F F F F F F H] , h i g h [0 - 0 F F F F F H]
O45OOOH, O1FFFFFH

f N u r n b e r - n e w _ v a l u e /
^ D

N u m b e r / ? / H) :

(suB) Sub - sys tems

(UDI) Universal Developmenr In ter face Iyes/No]
(HI) Human Inrer face Iyes/No]
(AL) Appl icat ion Loader IYes/No]
(RFA) Renore Fi le Access lyes/Nol
(EIo) Exrended l /0 System [yes/No]
(B I O) B a s i c I / 0 S y s t e m I y e s / N o]
(SDB) System Debugger IYes/No]
(O E) O S E x t e n s i o n I Y e s / N o]

YES
REQ
REQ
NO
REQ
REQ
YES
NO

Enter fAbbreviat ion : new_value / Abbrev iat ion ? /H] :
:

c-4 ICU Use/s Guide

PROGRAMMING A 28ó.BASED SYSTEM INTO PROM DE\TCES

Next, request the "Human Interface" screen by enteríng the following command:

Change the resident initial program (CLI) by entering the following command:

Both the iRMX II.3 CLI and the iRMX II.2 CLI are considerably larger than the iRMX
II.1 CLI and cannot be used in this example due to size restrictions.

Next, request the "Intel Device Driver" screen by entering the following command:

Delete all device drivers except the 8274 and MSC drivers by entering the following
commands:

Do you want any /more iSBC 544A DEVICEs?

Do you l tan t any /more Tern ina l Corunun ica t ions Cont ro l le r Dev ices?

Do you want any /more L ine Pr in te r fo r iSBC 286/10 DEVICEs

Now, request the "Nucleus" screen by entering the following command:

You must define the number of Global Descriptor Table (GDT) entries your ROM-based
system needs. Because ROM space is limited, the numberyou enter should be the
minimum number. Enter the number oî real GDT entries required when the system is
copied and expanded in RAM using the "ROM Code" screen. Also, because the System
Debugger was previously deleted from the configuration, you must change the Default
Exception Handler parameter to something other than SDB.

ICU UsePs Guide c-5

PROGRAMMING A 2E6-BASED SYSTEM INTO PROM DEVICES

Chanse the "Nucleus" screen as follows:

Once you have updated the "Nucleus" screen, view the "ROM Code" screen to change the
parameters to match the ROM-based system. Set the RAG parameter to FC1000H to
match the starting address defined on the "Memory for System" screen. Always place the
GDT at the first memory location reserved for the system. Set the RAS parameter to
2000H to allow enough memory for the controllers in the system. Controllers are always
assigned addresses below 2000H. Finally, set the RIA parameter to FC0000H, the
starting address of processor board ROM. Change the "ROM Code" screen as follows:

(MJc) Nucleus

(NGE) Nr.[nber of GDT Entries [4a0 - 8190]
(NIE) Nunber of lDT Entr ies 10-256)
(PV) Parametar Validation IYesr/No]
(RoD) Root objéct Dí téctory Size f0 38401
(DEH) Default Exception Handler [Yes/No/SDB/User]
(NMI) Nl.f l Exception Handler I Yes/No/I gnore / J ob / SDIIN seî I
(NEB) NHI Enable Byte [0-255]
(STK) Exception Handler for stack Exception, Bad TSS and

Double Faulc [Yes/No/JoblsDB]
(NEH) Nane of Ex Handler ObJect Module [1-55chs]

(EM) Excèptión Mode INever/Program/Environ/Al l]
(LSE) Los GDT/LDT Slot Excluded f rom FSM [440-8189H/None:0]
(HSE) High CDT/LDT Slot Excluded f ron FSM 1440-8189/None-01
(RRP) Round Robin Pr ior i ty Threshold l0-2551
(RRT) Round Robln T ime Quota [0-255]
(RIE) Report In l t la l izat ion Errors IYeslNo]
(MCE) Maxinuxn Data Chain Elenents [0-OFFFFH]
(CS) Nucleus CoÍununicat íon Serv ice [Yes/No]

E n t e r [A b b r e v i a c i o n - n e w _ v a l u e / A b b r e v i a t i o n ? / H) :
460 <CR>
Job <CR>
<cR>

2000
1 2 8
REQ
5 0
SDB
ICNORE
4

JOB

NEVER
0
0
140
5
YES
080H
YES

:nge -
: d e h -
: f rorn

c-6 ICU Uset's Guide

PROGRAMMING A 2E6-BASED SYSTEM INTO PROM DEVICES

(R0ì,1) R0!{ code

(SYR) System ln ROM [Yes/No] N0
(MG) ROM Address of Master-GDT I0-OFFFFFFH] 0H
(NSG) Nunber Slots in Real CDT [440-81901 7024
(RAS) RAtf Star t Address for Systen IO-OFFFFFH] 0H
(RIA) RoM lní t ia l izat lon Code Address [0-OFFFFFFH] 0FF0000H
(RIP) RoM Iní t la l izac lon Procedure IL - 45 chars]

Enter [Àbbreviatlon - nes_value / Abbrevlatlot ? / H):
: syr-yes <CR>
: rag:fcloooh <cR>
: ras-02000h <CR>
:rla-fc0000h <CR>

Now, request the "Generate File Names" screen by entering the following command:

The "Generate File Names" screen is where you define the pathname of the file
containing the ROM-based system. Enter the pathname :$:ROMSYS.ROM as shown
below:

Next, enter a "c <CR>" to return to the ICU menu screen.

(cEN) Genera te F i le Names

Fi le Name I l - 55 Characters]

(ROF) RoM Code File Name

(RAF) RAM Code File Narne
/Boor/RMX286 . RoM

/Booî/28612.286

Enter [Abbrevlat ion: new*value / Abbrev iat lon ? / H) :
: ro f - : $: ronsys,ron <CR>
: c <cIì>

ICU Uset's Guide c-7

PROGRAMMING A 286-BASED SYSTEM TNTO PROM DEVICES

c.4 GENERATTNG/BU|LD|NG THE SYSTEM

You are now ready to generate the definition files and build the system. The last step oî
the previous section caused the ICU main screen to appear. From this screen, enter the
Generate (G) command to generate files.

For general help ln any scteen enter H (CR).

The followlng commands are avallable

Change
Generate
L i s t
Save
Qul t
Ex iE
Replace
Deta i l -Level
Backup

ENTER COMMAND :C <CR>

After entering "G <CR>" with no prefix, the ICU informs you as each layer is generated
(see Figure B-35 for an example). When the system has been generated, the ICU returns
to the main menu screen.

Enter the Exit (E) command to write the definition file and exit the ICU as follows:

After entering this command, the ICU informs you that the definition file has been
written. It issues the following message before returning control to the command line:

The daf in í t ion f i le has been \ r r i t ten to f i le : ROMSYS.DEF

You are now ready to invoke the SUBMIT file ROMSYS.CSD that builds the system.
The ICU created this SUBMIT file as part of the generation process. Execution of the
SUBMIT file generates the application system with the pathname :$:ROMSYS.ROM.
Execution of this SUBMIT file also generates the map file ROMSYS.MP2, which conrains
information crucial to configuring a "tight" system. The map file ROMSYS.MP2 also
contains the following warning which you can safely ignore:

c-8 ICU Uset's Guide

I,IARNINC 119:
LOW ADDRESS:
HIGH ADDRESS:

SEGMENTS OVERTAP
00Fc0000H

00Fc0E04H

PROGRAMMING A 286-BASED SYSTEM INTO PROM DEVICES

After the submit file completes execution, use the DOWNCOPY command to copy the
resulting file ROMSYS.ROM to the file :Fl:ROMSYS.ROM on the hard disk of the
Series-IV Development System. This assumes you have used the LNAME command on
the Series-IV system to define the logical name :Fl for rhe directory into which you will
copy the file.

Now that the system has been generated, you can either program the PROM devices to
include only the operating system by itself (stand-alone) or you can include the iSDM
monitor. The next sections describe these different Drocesses.

C.4.1 Including the |SDM" Monitor and the Bootstrap Loader in
the PROM Devices

This section explains how to include the iSDM monitor and iRMX ll Bootstrap Loader as
part of the operating system that resides in ROM. With this type of system, the iSDM
monitor code executes when the system is powered up. In order to create a system that
includes the iSDM monitor and the Bootstrap Loader you must prepare two files; one file
for each piece of software.

First you must generate a version of the iSDM monitor for the iSBC 286/10(A) board.
The iSDM monitor is normally installed on iRMX lI systems in the directory /SDM.
Since the Bootstrap Loader is to be included in the PROM devices along with the iSDM
monitor, be sure you invoke the BOOTSTRAP macro as follows when you configure the
iSDM monitor:

The iRMX II.3 iSDM monitor is always located at address 0FF8000H. The iSDM
monitor places values into the reset vector and receives control on power-up or reset.
Refer to the iSDM Systetn Debug Mottitor User's Guide for more information on
generating the iSDM monitor.

Next, generate a version of the iRMX Bootstrap Loader first stage. Assign your current
default directory to be the Bootstrap Loader directory by entering the following
command:

ICU User's Guide c-9

PROGRAMMING A 286.BASED SYSTEM INTO PROM DEVICES

Due to the limited amount of space left over for the Bootstrap l-oader, you can not leave

all available devices selected within BS1.A8ó. Consequently, you must edit the first stage

configuration file, BS1.A86 to contain only the driver included in the ROM system, the

MSC device driver. You do not need îo change any other parameters in BS 1.A86. You

must also edit the first stage configuration SUBMIT file (BSl.CSD) to link in only the

MSC file.

Execute the Bootstrap Loader SUBMIT file by entering the following command:

Complete details on these actions are available in the Extended |RMX II Bootstmp Loader
Reference Manual.

At this point, the files for the iSDM monitor and the Bootstrap Loader are generated.
Copy the resul t ing f i les, BSI and 28610A, to the f i les:F1:BSl and :F1:286l0A of the hard
disk of the Series-IV Development System using the DOWNCOPY command. This
example assumes you have used the LNAME command on the Series-IV system to define
the logical name :F1: as the directory into which you will copy the files. The following
commands move the two files:

The next six sections describe how to program the PROM devices.

C.4.1.1 Sett ing Up the iUP 201 PROM Programmer

Perform the following three steps to set up the iUP 201 PROM Programmer:

1. Make sure that the RS-232A line is connected from the iUP 201 programmer to the
Series-IV system.

2. Insert the'FAST 27K'module into the iUP 201 28-pin socket and turn on the power
to the iUP 201 Universal Programmer.

3 Press the ONLINE button on the iUP 201 front oanel.

WARNING
While following the steps outlined in this section, you must closely adhere
to any warnings or cautions given in the iUP-200/201 Universal Programmer
User's Gukle.

c-10 ICU Uset's Guide

PROGRAMMING A 286.BASED SYSTEM INTO PROM DEVICES

C.4.1.2 Formatting the Operating System PROM File

Invoke the iPPS software and issue the following commands to format the two PROM
image files. Because this example includes the iSDM monitor and Bootstrap l,oader as
part of the operating system, the memory range for the operating system goes from
OFC0000H to 0FF7FFFH. lf you were programming only the operating system, the
largest memory range for it would range from 0FC0000H to OFFFFEFH.

. IPPS <CR>

INTEL PROM PROGRAM},IING SOFTI,JARE, VX. Y
COPYRIGHT INTEL CORPOMTION years

PPS>type 27512 <CR>
PPS>ln l t la l lze 286 <CR>
PPs>format : f l : romsys.ron (0FC0000h, 0FFTFFFh) <CR>
LOGICAL UNIT (BIT:1 , NIBBLE:2 , BYTE-3 , N*BYTE-4)
LU -3 <CR>
INPUT BLOCK SIZE (N BYTES)
N :2 <CR>
OUTPUT BLOCK SIZE (N BYTES)
N -1 <CR>.

INPUT BLOCK STRUCTURE.
NUMBER OF INPUT LOGICAL UNITS :OO2

LSB

l o o l 0 1 |

**ri*-ot ourPUT LocrcAL uNrrs :ool

OUTPUT SPECIFICATION (<CR> TO EXIT) :
*0 to ; fl: romsys , evn <CR>
OUTPUT STORED
*L to : f l : ronsys . odd <CR>
OUTPUT STORED
* <cR>
PPS>

The parameters in parcnthesis on the FORMAT line tell the IPPS software what memory
range of code you wish to program into PROM devices.

ICU Use/s Guide c-l l

PROGRAMMING A 2II6-BASED SYSTEM INTO PROM DEITCES

C.4.1.3 Programming the Operating System into PBOM Devices

To actuaUy place the generated system into the PROM devices, begin by inserting the first
PROM device into the active socket of the PROM programmer. Next, enter the following
PPS commands shown as bolded text:

PPS>copy : f l : ronsys.evn to Ptom <CR>
..,.CAUTION.. - - PROGRAMI"IING THE TULL LENGTH REQUIRES MORE THAN ONE

PROM.
CHECKSUM*va1ue

FIRST INSTALL THE NEW/NEXT PRO}4 AND THEN CONTINUE.
coNTtNr.rE - -YlN? Y
CHECXSUM:value

PPS>ex!È <CR>

During the copy, the IPPS software automatically determines that the contents of the file
require more than one of the specified type of PROM devices to contain the code. When
a new PROM device is needed, IPPS prompts you with the following message:

INSTALL THE NE\N/NEXT PROM AND THEN CONTINUE

Remove the first PROM device ancl insert the second. Next, type "Y <CR>". When the
checksum value appears on the screen, remove the second PROM device. These two
PROM devices you have removed contain the even (or low) bytes of the WORD values
that compose the operating system. As you remove the PROM devices from the
programmer, carefully label them; unlabeled PROM devices look very much alike. At a
later time, you will place the first programmed PROM device in socket U41 and the
second programmed PROM device in socket U40 of an iSBC 286/10(A) board. (Use
sockets U2 and U3 of the iSBX 341 on an iSBC 286/12 board.)

Next, you need to program the PROM devices to contain the odd (or high) bytes of the
WORD values that compose the operating system. Insert the third PROM device into the
active socket of the PROM programmer and enter the following PPS commands shown as
bolded text:

c-12 ICU Useds Guide

PROGRAMMING A 286.8A5ED SYSTEM INTO PROM DEVICES

PPS>copy : f l : ronsys.odd to prom <CR>
. . . . CAUTION - . . . PROCRAì,IMING THE TULL LENGTH REQUIRES MORE T}IAN ONE

PROM .
CHECKSUM:value

FIRST INSTALL THE NELT/NEXT PROM AND THEN CONTINÙE.
coNTIN'rJE - -YlN? Y
CHECKSUM:value

PPS>

Again, when IPPS determines it needs another PROM device, it prompts you with the
following message:

INSTALL THE NEII/NEXT PROI,I THEN CONTINUE

Remove the third PROM device and insert the fourth. Next, type "Y <CR>". When the
checksum value appears on the screen, remove the fourth PROM device. These two
PROM devices contain the odd (or high) bytes of the WORD values that compose the
system. As you remove the PROM devices from the programmer, carefully label them;
unlabeled PROM devices look very much alike.. At a later time, you will place the third
programmed PROM device in socket U76 and the fourth programmed PROM device in
socket U75 of an iSBC 286/ l0(A) board. (Use sockets U5 and U6 of the iSBX 341 on an
iSBC 286/12 board.) The next step programs the iSDM monitor and the
iRMX Bootstrap Loader into the fourth PROM device so do not install it now.

C.4.1.4 Programming the |SDM Monitor into PROM Devices

This section describes how to program the iSDM monitor into the second and fourth
PROM devices. To do this, insert the second PROM clevice and enter the followins
commands shown as boldetl text:

ICU User's Guide c-r3

PROGRAMMING A 286-BASED SYSTEM INTO PROM DEVICES

PPs>forrnet : f l :28610a (0FF8000h, oFFFFFFh) <CR>
LOGICAL UNIT (BIT-1, NIBBLE_2, BYTE:3, N_BYTE-4)
LU *3 <CR>
INPUT BLOCK SIZE (N BYTES)
N :2 <CR>
OUTPUT BLOCK SIZE (N BYTES)
N -l <cR>

OUTPUT SPECIFICATION (<Cb TO EXIT):
* 0 t o : f l : 2 8 6 l 0 a . e v n < c R >
OUTPUT STORED
* l t o : f l : 2 8 6 1 0 a . o d d < C R >
OUTPUT STORED
<cP>
PPS>

PPS>copy : f l :28610a.ewn to prom(0c000H) <CR>
CHECKSUM-va1ue

When the IPPS software prompts you with the following message, remove the second
PROM device, insert the fourth, and enter the following command:

PPS>copy : f l :286Loa. odd to prom(0o000H)
CHEcKSUM:value

<cR>

C.4.1.5 Programming the Bootstrap Loader into PROM Devices

This section describes how to program the Bootstrap Loader into the second and fourth
PROM devices. To begin, insert the second PROM device and enter the commands
shown as bolded text:

c-14 ICU UseCs Guide

PPs>ln l t la l lze 86 <cR>
PPs>format : f l : BSI (0FE400h, 0FFFTFh)
L O C I C A L U N I T (B I T - I . N I B B L E : 2 , B Y T E : 3 , N _
LU -3 <C8>
INPUT BLOCK SIZE (N BYTES)
N -2 <CR>
OUTPUT BLOCK SIZE (N BYTES)
N :1 <CR>

OUTPUT SPECIFICATION (<CR> TO EXIT) :
* 0 t o : f l : b s l . e v n < C R >
OUTPUT STORED
* l t o : f l : b s l . o d d < C R >
OUTPUT STORED
<cR>
PPS>

PPS>copy : f l :bs l . evn to pron(0F200H)
CHECKSUM:va1ue

<cR>
BYTE:4)

PROGRAMMING A 286.BASED SYSTEM INTO PROM DEVICES

When the IPPS software displays the following prompt, remove the second PROM device,
insert the fourth PROM device, and enter the following command:

PPS>copy : f1 : bs1. odd to prorn(0F200H)
CHECKSùM:value

PPS>exl t <CR>

<cR>

C,4,'1,6 Starting the Operating Syslem in ROM from the iSDM" Monitor

The four PROM devices now contain the operating system, the iSDM monitor, and the
Bootstrap Loader. Perform the following steps to slart the system:

1. Place the first programmed PROM device in socket U4l of the iSBC 286/10(,4)
board.

,|

2.

3 .

Place the second programmed PROM device in socket U40 of the iSBC 286/10(A)
board.

Place the third programmed PROM device in socket U76 of the iSBC 286/10(A)
board.

Place the fourth programmed PROM device in socket U75 of the iSBC 286/10(A)
board.

ICU User's Guide c-15

PROGRAMMING A 286-BASED SYSTEM INTO PROM DEVICES

5.

6.

Insert the iSBC 286/10(A) board into the system chassis and apply power to the

hardware.

Enter the following command from the iSDM monitor to activate the iRMX ll
svstem:

The code executed by entering the command in step 6 above is the ROM initialization
procedure whose address was specified in the ICU as 0FC0000H. The offset ofthe
beginning instruction of this procedure is 12H. The reason 0C000:12 is used instead of
0FC000:12 is that, in real address mode, the 80286 can only access up to 1 megab]'te of
memory. Also, in real address mode, the memory decoding of the 286/10(A) board, when
jumpered for 2'7512 EPROM devices, places the memory addresses of the PROM devices
at 0C000:0 to 0FFFF:F. This addressing scheme results in execution of the code at
0C000: 12 to occur first. The code at 0C000: l2 is the first instruction of the ROM
initialization code.

C.4.2 Creating a System That is Activated on Power-Up

The previous section explained how to program a system that included the operating
system, the iSDM monitor, and the Bootstrap Loader into PROM devices. With this type
of a system, the iSDM monitor receives control during the initial power-on (or reset)
sequence and is signed on. This requires that you give a command to the iSDM monitor
to start the operating system. This section explains how to program only the operating
system into the PROM devices. To create a PROM-based iRMX II system which receives
control at power-on, you need to take certain steps. Before the following section
describes these steps, you should be made aware of the following:

. Most PROM-based systems are already "debugged" and have no need of the iSDM
monitor or the iRMX II System Debugger (SDB).

o The iSDM monitor has limited use in a PROM-based svstem because it can't set
breakpoints in code that executes from ROM.

. The ROM initialization code of the iRMX II Nucleus currently has no means of fully
initializing the iSDM monitor. Initialization code can only inform the iSDM monitor
(if it is present and has been previously initialized) that the 80286 CPU has been
s$,itched to Protected Mode.

. Virtually all PROM-based iRMX II systems require that the system be initialized
immediatelv uoon Power Un.

c-16 ICU Usefs Guide

PROGRAMMING A 286-BASED SYSTEM INTO PROM DEVICES

For these reasons, a standalone PROM-based iRMX II Operating System has no reason
to include the iSDM monitor, the Bootstrap l.oader or the SDB. With this in mind, the
following sections explain how to program such a system into the PROM devices and
detail the additional steps required to manually program the Reset Vector. (You must
manually program the Reset Vector in order to have the operating system receive control
after the initial power-on or reset sequence.)

C.4.2.1 Formatting the Operating System PROM File

To begin, you must prepare twÒ PROM image files: one for the even bytes and one for
the odd bytes of the operating system. To prepare these files, invoke the iPPS software
and issue the following commands shown as bolded text. Because you are now
programming only the operating system into the PROM devices, the largest possible
memory range for the system ranges from 0FC0000H to 0FFFFEFH. The parameters in
parenthesis on the FORMAT line tell the IPPS software what memory range of code you
wish to program into the PROM devices. Ifyour system does not extend to 0FFFFEFH,
you only need to specify the address at which it does reach, although there is usually no
harm in specilying the entire range.

The foÌlowing screen shows the commands necessary and the response you receive at the
terminal:

ICU Uset's Guide c-r7

PROGRAMMING A 286-BASED SYSTEM INTO PROM DEVICES

- IPPS <CR>

INTEL PROM PRoGRA.tfì,tING SOFTIIARE, Vx. y
COPYRIGHT INTEL CORPORATION years

PPS>type 27512 <CR>
PPs>ln l t laL lze 286 <CB>
PPs>fornat : f l : ronsys.ron (0Fc0000h, 0rFFFEFh) <CR>
LOGICAL UNIT (BIT:1, NIBBLE:2 , BYTE:3, N-BYîE-4)
LU -3 <CB>
INPUT BLOCK SIZE (N BYTES)
N -2 <CR>
OUTPUT BLOCK SIZE (N BYTES)
N -1 <CR>

OUTPUT SPECIFICATION (<CR> TO EXIT) :
*0 to : f l : roEsys, evn <CR>
OUTPUT STORED
*1 to : fl: ronsys . odd <€R>
OUTPUT STORED
* <cR>
PPS>

C.4.2.2 Ptogtamming the Operating System Into the PROM Devices

This section describes how to program the two operating system files prepared in the
previous section into the PROM devices and how to modify the Reset Vector jump
address.

^fwo 27512 PROM devices are required to contain the even bytes of the operating system
and two 27512 PROM devices are required to contain the odd bytes of the operating
system. This example refers to these PROM devices as one through four.

You can program the first ofthese PROM devices with no intermediate steps. Begin by
inserting the first PROM device into the active socket and enter the following command:

PPS>copy : f l : ronsys.ewn(0, oFFFFH)
CHECKSUM-value

to Pron <cR>

After the CHECKSUM = value message appears, remove the first PROM device, insert
the second PROM device. and enter the followins command:

c-18 ICU User's Guide

PROGRAMMING A 28ó.BASED SYSTEM INTO PROM DE\TCES

PPS>copy i f l : ronsys.evn(10000H,OIFFFFH) to buffer <CR>
CHECKSUM:value

You now need to modi$ the even bytes of the Reset Vector jump address. Use the iPPS
SUBSTITUTE command to change the even bytes of the Reset Vector in the buffer as
follows:

OOFFFS: FF FF FF FF FF FF FF FF

lo

00FFF8: EA 00 C0 FF FF FF FF FF

After changing the values, copy the buffer to a file by entering the following command:

copy buffer to : fl: temp

Now, copy the temp file to the PROM devices by entering the following command:

PPS>copy : fl: tenp to pron
CHECKSUM:value

<c8>

After the CHECKSUM=value message appears on the screen, remove the second
PROM device. The first two PROM devices now contain the even (or low) bytes of the
WORD values that compose the operating system. As you remove the PROM devices
from the programmer, carefully label them; unlabeled PROM devices look alike. Place
the first programmed PROM device in socket U41 and the second programmed PROM
device in socket U40 of an iSBC 286/ 10(A) board.

You can program the third and fourth PROM devices with no intermediate steps also.
Begrn by inserting the third PROM device into the active socket and enter the following
command:

PPS>copy : f l ; ronsys,odd(O, 0FFFFI I)
CHECKSUM-vaIue

to pron <CR>

Aîter the CHECKSUM =value message appears, remove the third PROM device, insert
the fourth PROM device, and enter the following command:

ICU Usefs Guide c-19

PROGRAMMING A 2tt6.BASED SYSTEM INTO PROM DEVICES

PPS>copy : fL : ronsys.odd(10000H,0IFFFFH) to bì l f fe t <CR>
CHECKSUM-value

You now need to modifu the odd bytes of the Reset Vector jump address. Use the iPPS
SUBSTITUTE command to chanse the odd bytes of the Reset Vector in the buffer as
fbllows:

00FFF8: EA 00 C0 FF FF FF FF FF

to

00FFF8: 12 00 FF FF FF FF FF FF

After changing the values, copy the bufler to a temporary file by entering the following
command:

copy bu f fe r to : f1 : tenp

Now, copy the temporary file to the PROM devices by entering the following command:

P P S > c o p y : f l ; t e n p t o p r o m
CHECKSUM:value

<cR>

Afier the CHECKSUM=value message appears on the screen, remove the fourth PROM
device. The third and fourth PROM devices now contain the odd (or high) bytes of the
WORD values that compose the operating system. As you remove the PROM devices
from the programmer! carefully label them; unlabeled PROM devices look alike. Place
the third programmed PROM device in socket U76 and the fourth programmed PROM
device in socket U75 of an iSBC 286/ l0(A) board.

The iPPs SUBSTITUTE commands above provide a FAR JUMP instruction to the ROM
ìnitialization procedure whose address is specified in the ICU as 0FC0000H. The offset
of the beginning instruction of this procedure is l2H. The reason 0C000: l2 is used
instead of 0FC000:12 is that, in real adclress mode, the 80286 can only access up to 1
megabyte of memory. Also, in real address mode, the memory decoding of the
286/10(A) board, when jumpered for 27512 EPROM devices, places the memory
addresses of the PROM devices at 0C000:0 to 0FFFF:F. This addressing scheme results
in execution of the code at 0C000:12 to occur first. The code at 0C000: 12 is the first
instruct ion of the ROM ini t ia l izat ion code.

c-20 ICU Use/s Guide

PROGRAMMING A 286-BASED SYSTEM INTO PROM DEVTCES

C.4.2.3 Starting the Operating System in ROM

The four PROM devices now contain the operating system and the altered Reset Vector
jump address. Perform the following steps to start the system:

1. Place the first programmed PROM device in socket U41 of the iSBC 286/10(4.)
board.

3.

Place the second programmed PROM device in socket U40 of the iSBC 286/10(A)
board.

Place the third programmed PROM device in socket U76 of the iSBC 286/10(A)
board.

Place the fourth programmed PROM device in socket U75 of the iSBC 28ó/10(A)
board.

Insert the iSBC 2U6/10(A) board into the system chassis and apply power to the
hardware. The iRMX ll system is immediately initialized and sign on occurs using
the terminal(s) specified in :CONFIG:TERMINALS on the system device.

C.4 HARDWARE JUMPER MODIFICATIONS

To program the system into PROM devices as in the above example, the following
jumpers were changed on the iSBC 2tl6/10(A) board:

To specifu 4 27512 EPROM devices, set upjumpers 62 through 9l as follows;

5.

Default Configuration

E62 - E63
870 - E72
E71 - 873
F.75 - E76
L t I - r : t ó

E85 - E87
886 - 888
E90 - E91

Jumpers to Set for 27512 EPROMS

E65 - 867
E68 - E70
E71 - E73
875 - 876
E80 - 882
E83 - E85
E86 - E88
E90 - E91

To specify a starting memory address and memory size for local memory, use primary
decode option 3. Thejumpers required are

Default Configuration

E2l8 - E2l9 installed
8220 - E221 removed

Jumoers for Primary Decode Option 3

EZIS - E219 installed
8220 - E22l installed

ICU Uset's Guide c-21

PROGRAMMING A 286-BASED SYSTEM INTO PROM DEVICES

To specify memory/size/justification for local memory, use secondary option 3. The
jumpers required are

Default Configuration

E5t - 859 removed
E50 - 858 removed
E49 - E57 installed

Jumpers for Secondary Option 3

851 - E59 removed
E50 - E58 installed
E49 - 857 installed

c-22 ICU UsePs Guide

APPENDIX D
PROGRAMMTNG A 386/1 oo-BASED

SYSTEM INTO PROM DEVICES

D.l INTRODUCTION

This appendix provides an example of the procedures used to place the iRMX II
Operating System into ROM for a 386/ 100-based system. All software generation
described assumes you are using an Intel System 300 Series Microcomputer. In addition,
because a Series-IV Development System is required to run the PROM programmer, the
iSDM monitor is used to provide the serial link between the iRMX system and the Series-
IV system. In this example, one version of the operating system is created.

The example consists of three processes: configuring a ROM-based system,
generation/building of the system, and actually placing the system into ROM. In this
example, the iSDM monitor and Bootstrap Loader are not included as part of the
generated system. This allows the operating system to be 32 Kbytes larger. For a system
generated in this manner, the operating system receives control on power-on or reset.

The last section of this appendir describes the configuration differences existing when
programming a 386/ 100-based system and a 386/20-based system into PROM devices.

D.2 REQUIREMENTS

To use the procedures outlined in this appendir, you must have the following hardware
and software:

. A system defined during configuration as residing in RoM.

. The iRMX II.3 and iPPS Vl.4 (or newer) software.]'he iPPS software runs on an
Series-IV Development System.

. A 386/100-based system and a Series-lV Development System connected via the
iSDM monitor.

r An iUP-200/201 Universal Programmer with a'GUPI 27010'module.

o Two 27010 EPROM devrces.

ICU Usefs Guide D-l

PROGRAMMING A 3E6/1OO.BASED SYSTEM INTO PROM DEVICES

D.3 CONFIGURING A ROM.BASED SYSTEM

Before you can program your system into ROM, you must modi$ a number of
parameters in your definition file. These examples assume that you start with the Intel-
supplied definition file 386100.DEF located in directory /RMX286/ICU.

To begin the example, you should make a copy ofthe definition file in a separate
directory. To do this, create a new directory in which to do the generation. Give the
directory the same name as the definition file and the output system. The definition file
should have a .DEF extension, the boot-loadable system should have a.28ó extension and
the system to be loaded into PROM devices should have a . ROM extension. Entering the
three following commands creates a new directory called ROMSYS, attaches you to that
directory, and invokes the ICU placing a copy ofthe definition file 386100.DEF into the
new directory. (This example assumes your :HOME: directory is your current default
directorv.l

As part of the configuration process, you must perform the following two things in order
to fit the iRMX II system developed in this example into PROM devices.

. Delete the System Debugger and UDI from the system.

. Replace the iRMX IL3 CLI with the iRMX II.1 CLI.

Having invoked the ICU, you now can begin to make the necessary configuration changes.
Start by modifying the memory screens to define the ROM memory locations the system
requires. Do this by first selecting the "Memory for System" screen with the following
command:

D-2 ICU Usefs Guide

PROGRAMMING A 386/IOO-BASED SYSTEM INTO PROM DEVICES

Entering the previous command causes the "memory for System" screen to appear as
follows:

(t fEMS) Henory for System

SYS - low I0-OFFFFFFH], h igh IO-0FFFFFFH]
l r] sYs = 010000H, 059FFFH
[2] sYs

Enter Changes fNumber - new_va]-ue /
^D

Nr,nber / ? / H) |

At this screen, you must configure the amount of memory required for the generated
system. When a 386-based system is initialized, it moves from ROM to RAM and then
begins execution. The area in RAM where it resides is the lowest block of memory
specified in the "Memory for System" screen. Thus, you must speciry the lowest block of
memory with enough space to fit the system. At this point, because you do not know the
exact size needed, you would normally supply a guessed value to replace 06FFFEH.
Then, after the real system is generated, you could determine the actual size using
information given in the.MP2 file created at generation time. For this example, however,
the amount of memory needed is known beforehand as 10000H to 4FF00H.

Configure the memory needed for the system using the following two commands. These
commands delete the default information and add the new information.

ICU Use/s Guide D-3

PROGRAMMING A 386/IOO.BASED SYSTEM INTO PROM DEVICES

After entering the memory locations, the "Memory for System" screen appears as follows:

(MElfS) llenory for Systen

SYS - low |0-OFFFFFFIII , high |0-OFFFFFFHI
[1] SYS - 010000H, 4FF00H
[2] s Y S

Enter Changes [Ntrrrber - new_value /
^D Nurnber / ? / H) :

: <Cn>

Now, display the "Memory for Free Space Manager" screen by entering'<CR>", as
shown in the previous screen. Because a ROM-based system uses different memory
locations than a RAM-based system, you must adjust this memory screen. The memory
for the Free Space Manager must not overlay system memory or the writeable data
segments, which reside just above system memory. To ensure that you speci! the correct
starting address for the Free Space Manager memory, perform the following steps:

1. Calculate the sum of the read/write segment iimits found in the .MP2 file.

2. Find the segment with the largest end address.

3. Add together the result of step one and the address found in step two.

4. Use the result of step three for the minimum start address for the Free space
manager.

After determining the start address for the Free Space Manager, make the changes by
entering in commands similar to the ones you entered to change the',Memory for System,'
screen. The only difference is use memory locations 65000H to TFFFFFH. The following
screen shows the "Memory for Free Space Manager" screen after making changes.

(MEl{f) Menory For Free Spacè Manager

FSl , l : lor . r [0-oFFFFFFH] , h igh [0-0FFFFFH]
[1] r s M : 6 s 0 0 0 H , T F F F F F H
[2] F s M

Enter Changes [Nurnber - new_value /
^D Number / ? / H] :

;f sub <CR>

D-4 ICU Usefs Guide

PROGRAMMING A 386/I()O-BASED SYSTEM INTO PROM DEVICES

After making changes to the memory screens, request the "Sub-systems" screen using the
command "f sub < CR > " shown in the orevious screen.

(SUB) Sub - systems

(UDI) Universal Development In ter face IYes/No] YES
(HI) Hurnan Interface [Yes/No] REQ
(AL) Appl icat ion Loader [Yes/No] REQ
(RFA) Rèmote Fi lè Accèss [Yes/No] NO
(EIO) Extended I/O Sysrern [Yes/No] REQ
(BI0) Basic l /O Systen [Yes/No] REQ
(SDB) Sysren Debugger [YeslNo] YES
(OE) 0S Excension [Yes/No] NO

Enter lAbbrev iat ion: ner . r -va lue / Abbrev iat ion ? / H] :
: s db-n <CR>
: udl:n <CR>
, 11_y <CR>
: f hl <CR>

Here, you must delete the System Debugger and the UDI because of size considerations.
You also select the Human Interface for your system by setting ans\trering yes to "hi". The
last command above requests the "Human Interface" screen

Change the resident initial program (CLI) versions by entering the following command:

Both the iRMX tl.3 CLI and the iRMX II.2 CLI are considerably larger than the iRMX
II.1 CLI and cannot be used in this example due to size restrictions.

Next, request the "Nucleus" screen by entering the following command:

You now must define the numtrer of Global Descriptor Tables (GDT) entries your ROM-
based system needs. Because ROM space is limited, the number you enter should be the
minimum number of entries needed. The number of real GDT entries required when the
system is copied and expanded in RAM is entered on the "ROM Code" screen.

You also must change the Default Exception Handler parameter to something other than
SDB since the SDB was nreviouslv deleted from the confisuration.

ICU Usef s Guide D-5

PROGRAMMING A 386/IOO.BASED SYSTEM INTO PROM I)EVICES

Enter the followins commands to make the necessarv chances to the "Nucleus Screen":

After making these changes, the "Nucleus Screen" appears as follows:

After updating the "Nucleus" screen, enter the the following command to view the "ROM
Code" screen:

(Mrc) Nuc leus

(NGE) Nunbér of cDT Entr ies l4zr0 - 81901
(NIE) Nurnber of IDT Entr ies [0-256]
(PV) Paranèter Val idat ion IYes/No]
(R o D) R o o t o b j e c t D i r e c t o r y S i z e l 0 3 8 4 0 1
(DEH) Defaul t Except ion Handler IYesr î . lo lJob/SDB/Use r]
(NflI) NMI Exception Handler IYes/No/I gnore/J ob/SDM/User]
(NEB) NMI Enable Byte l0-2551
(STK) Except ion Handler for Stack Except ion, Bad TSS and

Double Faul t IYe s/No/Job/SDB]
(NEH) Name of Ex Handler Object Module [1-55chs]

(EM) Exeeption Mode lNever/Prograrn/Envi. ron/Al1 l
(LSE) Low GDT/LDî Slot Excluded f rom FSM 1440-8189H/None:01
(HSE) High CDT/LDT Slot Excluded f rorn FSM [440-8189/None-0]
(R R P) R o u n d R o b i n P r i o r i t y T h r e s h o l d [0 - 2 5 5 J
(RRT) Round Robin T ime Quota [0-255]
(RIE) Report ln i t ía l izat ion Errors lYes/Nol
(MCE) Maxi rnun Data Chain Elernents [0-FFFFH]
(CS) Nucleus Communicat ion Serv ice

Enter [Abbreviat íon: new_value / Abbrev iat ioa ? / H] :

460
r28
REQ
5 0
JOB
IGNORE
4

JOB

NEVER
0
0
255
5
YES
080H
YES

D-6 ICU User's Guide

PROGRA]\,IMING A 38ó/1OO-BASED SYSTEM INTO PROM DEVICES

The "f rom <CR>" command causes the "ROM Code" screen to appear as follows:

(ROM) ROM code

(SYR) Systern in ROM [Yes/No] N0
(RAC) ROM Address of Mastèr-cDT [0-OFFFFF!!] 0H
(NSG) Number Slots in Real GDT [440-8190] L024
(RAS) RAM Star t Address for Systern IO-OFFFFFH] 0H
(RIA) ROM In i t ia l Ízat ion Code Address [0-0FFFFFFH] 0FF0000H
(R I P) R O M l n i t i a l i z a t í o n P r o c e d u r e [1 - 4 5 c h a r s]

E n t e r [A b b r e v i a t i o n : n e w _ v a l u e / A b b r e v i a t i o n ? / H) :

Use the followinq command to inform the ICU that vour system is to reside in ROM:

I'he RAG field provides the 2.1-bit physical a<ldress of the master Global Descriptor Table
(GDT) as it is to be burned into ROM. For a 386/100-based system, RAG also indicates
the starting address of ROM code and data that is copied into RAM. For this reason, you
should locate the GDT at the start of ROM. ln this example, we are using 27010 EPROM
devices so you should set the RAG field to 0FC0000H using the following command:

The RAS field gives the starting address where the nucleus initialization code is to begin
copying writeable segments of the system into RAM. Consequently, you must ensure that
the writeable blocks do not overlay system memory specified in thc MEMS screen or the
memory managed by the free space manager specified in the MEMF screen. In this
example, the system is copìed to RAM starting at address 010000H to approximately
04FF00H. Thus to place the writeable segments above the executable code, assign RAS
to 04FF00H using the following command:

The RIA determines the 2,1 bit address of the nucleus initialization code. This address
must be located in the first megabyte of RAM. Normally, you would assign RIA to 0
when you build the system the first time. After the system buiìd, you could then examine
the .MP2 file and see where the builder located the initialization code. Having obtained
the address the builder used, you would then Assign the base address to RIA and generate
the system again. By relying on the builder to locate RIA, memory fragmentation is
minimized. Note, a system generated with zero (0) assigned to RIA does not work. For
this example, however, assign 0l3A30H to RIA using the following command:

ICU User's Guide D-7

PROGRAMMING A 386/IOO.BASED SYSTEM INTO PROM DEVICES

Enter a carriage return <CR> and verify that the "ROM Code" screen appears as
follows:

(ROl'f) ROM code

(SYR) Systen in ROM (Yes,rNol YES
(RAC) ROM Address of Master-CDT IO-0FFFFFFH] FC0000H
(NSG) Nurnber Slots in Real cDT [440-8190] LO24
(RAS) RAl{ Start Address for Sysien [0-0FFFFI1i] 4FF00H
(RIA) ROM In i t ia l izac ion Code Address I0-oFFFFFFH] 0 l3A30H
(RlP) ROM ln i t ia l ízat ion Procedure [1 - 45 chars]

Enter [Abbrevíat ion: new_va1ue / Abbrevlat ion ? / H l :

Now, request the "Generate File Names" screen by entering the following command:

Entering the above command causes the "Generate File Names" screen to appear as
below:

(GEN) cenera te F l le Names

F i l e N a r n e [1 - 5 5 C h a r a c t e r s]

(ROF) ROM Code Flle Narne

/Boor/Rro(286 . Rou
(RAF) RAM Code File Nane

/ROOî/386100.286

Enter [Abbreviat ion - new_value , / Abbrev iat ion ? / H] :

The "Generate File Names" screen is where you define the pathname of the file
containing the ROM-based system. Specify the pathname by entering the following
command:

D-8 ICU UseCs Guide

PROGRAMMING A 3Iì6/TM-BASED SYSTEM INTO PROM DEVICES

After making the change, the screen looks as follows:

(GEN) Generate F i le Narnes

F í l e N a r n e [1 - 5 5 C h a r a c t e r s]

(ROF) ROM Code FiLe Name
:$:Rol , tSYS.RoM

(RAF) RAI'! Code File Name
/Roo"t/386100 .286

Enter [Abbreviat íon: new_value / Abbrev iac ion ? / H] :c <CR>

D.4 GENERATING/BUILDING THE SYSTEM

You are now ready to generate the definition files and build the system. Entering a'C" as
the last step in the previous section causes the ICU main screen to appear. From this
screen, enter the Generate (G) command to generate files.

For genera l he lp in any screen

The fo l low ing commands are

Change
Genera te

Save

Qul t
Ex i t
Rep lace
D e t a i l - L e v e l
Backup

ENTER CoMMAND :G <CR>

ENTER a Ìe t te r to be used

enter H <CR>.

aval lab le

as pref lx : (CR)

After enterìng "G <CR>", the ICU asks you to enter a single letter to be used as a prefix
to the generated f i le names. Enter ing a carr iage reîurn causes no pref ix to be used. After
responding to the prefix prompt, the ICU informs you of each layer as it is generated (see
Figure B-35 for an example). When the system has been generated, the ICU returns to
the main menu scrce n.

ICU User's Guide D-9

PROGRAMMING A 386/1OO.BASED SYSTEM INTO PROM DEVICES

Enter the Exit (E) command to write the definition file and exit the ICU as follows:

After entering this command, the ICU informs you that the definition file has been
written. It issues the following message before returning control to the command line:

The def ln l t lon f l le has been wr l t ten to f l le ; ROI, ISYS.DEF

You are now ready to invoke the SUBMIT file ROMSYS.CSD that builds the system.
The ICU created this SUBMIT file as part of the generation process. Execution of the
SUBMIT file generates the application system with the pathname :$:ROMSYS.ROM.
Execution of this SUBMIT file also generates the map file ROMSYS.MP2, which contains
information crucial to configuring a "tight" system. The map file ROMSYS.MP2 also
contains the following warnings which you can safely ignore:

*** IIAIINING 269: LINE 22, NEAR CLI DATA: Sesnent Size Reduced

LIARNING 119:
LOW ADDRESS :
HIGH ADDRESS :

SEGMENTS OVERI^AP
FFT'FAOH

FFFFF2H

After the submit file completes execution, use the DOWNCOPY command to copy the
resulting file ROMSYS.ROM to the file :F1:ROMSYS.ROM on the hard disk of the
Series-IV Development System. This assumes you have used the LNAME command on
the Series-IV system to define the logical name :Fi for the directory into which you will
copy the file.

Now that the system has been generated, you must program the PROM devices to include
the stand-alone system.

D.5 PROGRAMMING THE SYSTEM INTO PROM DEVICES

This section explains how to pro$am the operating system into PROM devices. To
create a PROM-based iRMX II system which receives control at power-on, you need to
take certain steps. Before the following section describes these steps, you should be made
aware of the following:

. Most PROM-based systems are already "debugged" and have no need of the iSDM
monitor or the iRMX II System Debugger (SDB).

D-IO ICU User's Guide

PROGR.ÀMMING A 38ó/TOO-BASED SYSTEM INTO PROM DEVICES

. The iSDM monitor has limited use in a PROM-based system because it can't set
breakpoints in code that executes from ROM.

. The ROM initialization code of the iRMX II Nucleus currently has no means of fully
initializing the iSDM monitor. Initialization code can only inform the iSDM monitor
(if it is present and has been previously initialized) rhat the 80286 CPU has been
switched to Protected Mode.

o Virtually all PROM-based iRMX II systems require that the system be initialized
immediately upon Power Up.

For these reasons, a standalone PROM-based iRMX lI Operating System has no reason
to include the iSDM monitor, the Bootstrap Loader, or the SDB. With this in mind, the
following sections explain how to program such a system into PROM devices.

ICU Usefs Guide D- I1

PROGRAMMING A 386/IOO-IìASED SYSTEM INTO PROM DEVICES

D.5.1 Formatting the Operating System PROM File

lnvoke the iPPS software and issue the folÌowing commands (user input is in bold) to
prepare the four PROM image files. The parameters in parenthesis on the FORMAT
line tell the IPPS software what memory range of code you wish to program into PROM
devices.

. IPPS <CR>

INTEL PROM PROGRAI"IMING SOFTWARE, Vx.y
COPYRIGHT INTEL CoRPORATION years

PPS>type 27010 <CR>
PPs>ln l t ia l lze 286 <cR>
PPs>fornat : f l : ronsys . ron (010000h, 04f f00h) <cR>
LOGICAL UNIT (BIT:1,NIBBLE:2, BYTE:3,N_B\" IE:4)
LU -3 <CR>
INPUT BLOCK SIZE (N BYTES)
N *2 <CR>
OUTPUT BLOCK SIZE (N BYTES)
N :l <cR>

INPUT BLOCK STRUCTURE.
N' I ÌHBER OF INPUT I ,OC]CAI, UN1TS: OO2

LSB

l o o l o l l

NUMBER OF OUTPUT LOGICAL UNITS : OO1

OUTPUT SPECIFICATION (<CR> TO EXIT) :
*0 to : f l : romsys. evn <CR>
OUTPUT STORED
*l - to : f l : ronsys. odd <cR>
OUTPUT STORED
* <cR>
PPS>

D-12 ICU Use/s Guide

PROGRAMMING A 386/TOO-BASED SYSTEM INTO PROM DEVICES

D.5.2 Formatting the Copy Routine

This step involves formatting the copy routine that actually executes in ROM. Enter the
following commands shown in bold text to perform this task:

PPs>fornat : f I : romsys. ron(0f f f faoh)
LOG]CAL UN]T (BIT:1 , NIBBLE-2 , BYTE-3 , N-BYTE:4)
LU -3 <CR>
INPUT BLOCK SIZE (N BYTES)
N :2 <CR>
OUTPUT BLOCK SIZE (N BYTES)
N -1 <CR>

ouTPùT SPECÌFICATIoN (<CR> TO EXIî) :
*0 to : f l : copyron.evn <cR>
OUTPUT STORED
*1 to : f l : copyron. odd <CR>
* <cR>

D.5.3 Copying the Operating System and the Copy Routing to
ROM

To copy the system and the copy routine to ROM, you must copy even and odd bytes of
the system and the copy routine using the PPS copy command. First insert a PROM
device and use the PPS copy command to burn the even bytes of the system and the copy
routine into the PROM devices:

PPS> copy romsys.evn to PROU
CHECKSUM _ VALUE
PPS> copy copyron. evn to PROU(lffdOh)
CHECKSUM _ VALUE

ICU Uset's Guide D.I]

PROGRAMMING A 3116/I(n.BASED SYSTEM INTO PROM DEYICES

Now you must burn in the odd bytes of the system and the copy routine. Insert the
remainins PROM device and issue the folìowins two commands:

PPS> copy ronsys.odd to PRoX
CHECKSUM ' VALUE
PPS> copy copyrou, odd ro PRolr(l,ffd0h)
CHECKSUM - VALUE

Notice that the copy command for the copy routine is entered in the following form:

copy copyrom.)oo(to PROM(offset)

The value offset causes the copy routine to be physically placed away from the system. To
determine the value for offset use the following formula:

offset = (start_address_of_copy_routine - PROM_start_address) / 2

For this example, offset is calculated as follows:

offset = (FFFFAOH - FC0000H) / 2 = IFFD0H

D.6 BOOTING THE SYSTEM

After placing the system into PROM devices, you can boot the system. In this example,
the system included the Human Interface subsystem. Consequently, the system must also
include a system device (hard disk drive or llexible diskette drive). If your system does
not include the Human Interface, the system does not have to include a system device.
For systems that include a system device, you must perform a system reset after initially
supplying power to the system. The reason for performing a reset after power-up is
because the system device needs time to reach maximum spinning speed before the
Human Interface can successfullv access files on the device.

D-14 ICU Use/s Guide

PROGRAMMTNG A 38ó/lOO-BASED SYSTEM INTO PROM DE!'ICES

D.7 CONSIDERATTONS FOR A 386/20-BASED SYSTEM

If the system you are building is going to run on a 38ó/20-based machine, some
configuration differences exist. The following list summarizes these differences:

. Because ROM is mapped to the lower megabyte of memory when the system is in real
mode, you must supply a different ROM address for the master Global Descriptor
Table in the "ROM Code" screen. Assuming your system uses 27010 EPROM devices,
supply a value of 0C0000H for the RAG field in the "ROM Code" screen during
configuration. This value causes the GDT to be placed at the start of ROM.

o You must configure the Initialize On-board Functions (IF) field in the "Hardware"
screen to 3 rather than 4. The value 3 indicates the board beins initialized is an iSBC
386/20 board.

ICU Uset's Guide D-r5

INDEX

A

Abbreviated screen names l- 1o
Aborting ICU commands l-24
Access rights to definition files 1-7
Adding a RAM driver B-21
Adding an Intel-device driver B-15
Adding an Intel-supplied controller 8-6
Adding new device drivers 1-45, 46, 47
Adding uni t informat ion B-10, 18
Adding users to your system 4-l
Application code 3- I
Application jobs 3-l
ASCII backup files 1-23
Assembling configuration files 2-4, B-34, D- 10

B

Backup command l-23
Binding application jobs 3-4, 7
Binding the subsystems 2-4,8-34. C-8, D-10
BND286 3-4
Bootstrap loading a system B-4[]
Bootstrap Loader inclusion C-v
Build files 1- 18
Building application jobs 3-4, 7
Building the system 2-5, B-34, C-8, D- 10

c
Change command 1-16, 25, B-41, C-2, D-2
Changing definition files l-17, 29
Changing the editing control character 1-21
Changing system memory B-29, C-2, D-2
Choosing a definition file 1-7
Code segment size 3-8
Command mode 1- 14

ICIJ Usefs Guide Index-l

INDEX

Commands
Backup 1-23
Change 1- 16, B-41, C-2, D-2
Detail-level l-22
Exit l-27,2-1,B-34
Generate 1-18,2-1, B-32,44, C-8, D-9
Help 1- 15
List 1-19,2- l ,B-44
Quit 1-20
Replace 1-21
Save 1-19,2-1

Communication board 3-3
Configuration

Environments 1-4
Files 2-2, 3, A-l
Generating fiìes 2-1

Configuring users into your system 4-l
Control-C 1-24
Conventions iv
Copy routine D-13
Copying the current screen 1-33,34
Creating build and submit files 1- 18
Creating directories for your systems 1- 10, C-2, D-2
Creating systems that activate on power-up C- 16

D

Data segnent size 3-8
Debugging application jobs 5-6
Definition file 1-1,7, B-1, C-8, D-10
Deleting a repetitive-fixed screen 1-38
Deleting a screen 1-33, 38
Deleting an element 1-33,34, 35
Deleting data on a repetitive screen format 1-35
Determining memory locations 3-3, 6
Displaying the next screen 1-33, 34
Displaying the previous screen 1-33

E

Editing a screen 1-29, 32,8-6,7
Editing control character 1-21
Editing definition files 1-17, 25
Elements of a screen 1-26
Eliminating excess space 3-6, B-41

Index-2 ICU Uset's Guide

Ending an ICU session 1-20, 21
Errors

Assembling the configuration files 2-6
Binding the system 2-6
Building the system 2-6
ICUMRG I-49
Insufficient access rights for the definition file 1-8
Interactive 1-42
Internal 1-43
Invocation 1-12
System initialization 5-3
Type of 1-42

Examples
Adding a RAM driver B-21
Adding an Intel-device driver B-15
Adding an Intel-supplied controller B-6
Adding unit information B-10, 18
Assembling configuration files B-34
Binding the subsystems B-34
Bootloading a system B-40
Building the system B-34
Changing system memory B-29, C-2,D-2
Configuration C-2, D-2
Deleting a repetitive fixed screen 1-38
Deleting data on a repetitive screen format 1-3ó
Deleting the System Debugger from the system C-4, D-5
Deleting the UDI from the system D-5
Editing a screen 8-6, 7
Formatting the copy routine D-13
Formatting the operating system PROM file C-11, 17, D-12
Generate 2-2, B-32,44, C-8, D-9
ICUMRG 1.48
Inserting a repetitive-fixed screen 1-42
Inserting data on a repetitive screen format 1-37
Invoking the ICU 1-9, 10, B-4
List command B-44
Loading a system into RAM B-40
Memory adjustments to include the Bootstrap Loader C-3
Memory adjustments to include the iSDM" monitor C-3
Memory for Free Space Manager Adjustments C-4, D-4
Memory map for 80286-based system A-3, B-28
Programming a 286-based system into PROM devices C-1
Programming a 386/100-based system into PROM devices D-l

INDEX

ICU Use/s Guide Index-3

INDEX

Examples (cont.)
Programming a 386/20-based system into PROM devices D-15
Programming PROM devices C-10, D-10
Programming the Bootstrap Loader into PROM devices C-14
Programming the iSDM" monitor into PROM devices C-13
Programming the operating system into PROM devices C-12, lu, D-13
Removing device drivers C-5
Starting the operating system in ROM C-21
Starting the operating system in ROM from the iSDMa* monitor C-15
System configuration B-l

Exit command 7-25,2-1, B-34

F

File locations 1-2
File version numbers 1-12,44,46
Files of the ICU l-2, 5, 6, 2-3, A-1
Finding a screen 1-33, 34
Fixed screen formats 1-30
Formatting the copy routine D- 13
Formatting the operating system PROM file C-11, 17,D-12
Formats of screens 1-30

G

General ICU use 1-3
Generate command 1-18, 2-1,B-32,44, C-8, D-9
Generated files 2-3, A- 1
Generating configuration fiìes 2-1, C-8, D-9
Generating the system 2-1, B-31
Gett ing help l -15, 30, 33, 34

H

Hardware requirements l-4
Hardware screen 1-28
Help command 1- 15, 30
Help for special editing commands 1-33, 34
How to choose a definition file l-7

I

I2ICE" In-Circuit Emulator 5-ó
ICU flowchart 1-39
ICUMRG Utiliry 1-45
Include files 3-2

Index-4 ICU User's Guide

Including the Bootstrap L,oader C-9
Including the iSDM" monitor C-9
Initialization routine 3-8
Initializing your system 5-1
Inserting a new line 1-33,34,37
Inserting a new screen 7-33,34,42
Inserting a repetitive-fixed screen 1-42
Inserting data on a repetitive screen format 1-37
Intel-supplied definition files 1-7
Interactive errors 1-42
Interface libraries 3-5
Internal errors 1-43
Invocation errors 1-12
Invoking the ICU 1-9, 10, 11, B-4
ISDM* monitor inclusion C-9

L

Language requirements when writing application cocle 3-2
Level of detail for screens 1-22
List command 1-19,2-1, B-44
Listing a definition file 1-19
I-oading the system into RAM 5-1, B-40
Location of ICU files 1-2
l-og-file 1-45
l,ogical flow of the ICU 1-39

M

Main menu screen 1-14, B-5
Manual overview iii
Memory locations 3-3, 6, B-29
Minimizing memory address size 3-6, B-41

N

Naming ICU-generated files l-1I
Non-resident users 4-1

P

Parts of a screen 1-26
Pre-configuration requirements 1-4
Prefix option 1-11,2-3
Preparing a RAM-based system 3- 1
Preparing appl icat ion code 3- l

INDEX

ICU Uset's Guide lndex-5

INDEX

Product overview 1- 1
Programming PROM devices C-1, 10, D-10
Programming the Bootstrap I-oader into PROM devices C-14
Programming the iSDM" monitor into PROM devices C-13
Programming the operating system into PROM devices C-18, 12, D-13

o
Quit command 1-20

R

RAM disk driver 3-3
RAM-based systems 3-1
Reader level iii
Redisplaying the current screen 1-33,34
Repetitive screen formats 1- 30
Repetitive-fixed screen formats 1-31
Replace command 1-21
Resident user 4-1
Restoring from af e 113,23,44
Returning to command mode 1-33, C-7, D-9
ROM-based systems 3-7, C-1, D-1

S

Save command l-19, 25, 2-1
Saving an edited definition file 1-19, 21, 25
Screen editing 1-29
Screen editing commands 1-32, 33
Screen elements l-26
Screen formats 1-30
Screen names 1- 18
Searching for a string within a screen 1-33, 35
Soft-Scope 2860 5-5
Software requirements 1-4
Special editing commands 1-33
Start address of a system 3-8
Starting the operating system in ROM C-21
Starting the operating system in ROM from the iSDM" monitor C- 15
Submit f i les 1-18,2-2,4,B-34,46, C-8, D-10
Synchronous initialization 5-2
System debugger 5-5

Index-6 ICU User's Guide

T

Testing the system 5-1, 4

U

Unit information, adding B-10, 18
UPDEF Uti l i ry l -1,7,44
Upgrading definition files 1-43
Using the ICU 1-3, 39

v
Version numbers, files 1-12,44,46

w
When to use the ICU 1-2
Writing Application code 3- 1

INDEX

ICU UsePs Guide Index-7

intel

EXTENDED iRMX@II
PROGRAM MtNG TECHNTQU ES

REFERENCE MANUAL

l n t e C o r p o r a t i o n
306 5 Bowers Aven u e

5 a n t a C l a r a , C a l i f o r n a 9 5 0 5 1

C o p y r L g h t I 1 9 8 8 , I n t e l C o r p o r a t o n , A R r g h t s R e s e r v e d

PREFACE

INTRODUCTION

This manual summarizes techniques that will be useful to you as you produce an
applìcation system based on the Extended iRMX II Operating System. A typical
development process goes through these stages:

. Dividing the application into jobs and tasks

o Writing the code for tasks

r Writing interrupt handlers

. Configuring and starting up the system

. Debugging an application

Use this manual as a reference guide when developing your application system. The
techniques described here will help you save time and avoid problems during the
development process.

Information has been added to this manual to reilect changes in the use of external
declaration INCLUDE files. Use of individual files, hints for efficiency, and tables of the
Nucleus, Basic I/O System, Extended l/O System, Human Interface, Application Loader,
and Universal Development Interface system calls with their corresponding external
declaration file names appear in Chapter 2.

READER LEVEL

This manual assumes that you are familiar with the following:

o the PL/M-286 programming language

. PL/M-286 segmentation models

. iRMX II jobs, tasks, mailboxes, physical files or named files, stream files, type
managers and composite objects, system calls, and segments

. the System Debugger

Programming Techniques l

PREf'ACE

. object module linking

o object libraries

. programming in the iRMX II environment using PL/M-286

MANUAL OVERVIEW

This manual is organized in the lbllowing manner:

Chapter 1 This chapter provides information on PL/M-286 segnentation
models.

Chapter 2 This chapter describes how to invoke iRMX II system calls from
your source code.

Chapter 3 This chapter describes how communication occurs between iRMX
II jobs.

Chapter 4 This chapter presents guidelines for stack sizes.

Chapter 5 This chapter describes how to convert iRMX I (IRMX 86)
applications to iRMX II applications. This chapter also describes
how to improve the performance of your application.

Appendix A This appendir lists and describes sample iRMX II applications.

CONVENTIONS

The following conventions are used throughout this manual:

. User input appears in one of the following forms:

as bo lded tex t i r i rh !n a screen

o The term "iRMX II" refers to the Extended iRMX II.3 Operating System.

r The term' iRMX I" refers to the iRMX I (iRMX 86) Operat ing System.

. All numbers, unless otherwise stated, are assumed to be decimal. Hexadecimal
numbers include the "lI" radix character (for example, 0FFH).

tv Programming Techniques

CONTENTS

CHAPTER 1 PAGE

CHAPTER 2
USING |RMXO II SYSTEM CALLS

PAGE

CHAPTER 3
COMMUNICATION BETWEEN iRMX@ JOBS

PAGE

CHAPTER 4
GUIDELINES FOR STACK SIZES

PAGE

Programming Techniques

CONTENTS

CHAPTER 4 (continued) PAGE

APPENDIXA
EXAMPLE PROGRAMS

PAGE

vl Programming Techniques

CONTENTS

APPENDIX A (continued) PAGE

TABLES

TABLE

A-1
A-2
A-3
A-4

PAGE

iRMX@ II External Declarat ion INCLUDE Fi les. .2-5
Interface Librar ies and iRMXo I I Layers.2-11
Stack Requirements for Interrupts and System Ca11s.. - - - . - . . - . . - . . - . . - . .4-4
Li teral Fi les Helpful With Nucleus System CaIIs. .A-5
Li teral Fi les Helpful With BIOS System Cal ls. -A-6
Li teral Fi les Helpful With EIOS System Cal ls. .A-6
Literal Files Helpful With Human Interface System CaIÌs...............................A-6

Programming Techniques Ytl

CONTENTS

FIGURES

FIGURE

A-1

A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A - 1 1

v|l l Pmgrarnming Techniques

CHAPTER 1
SELECTTNG A PLIM-286

SEGMENTATION If/IODEL

1.1 INTRODUCTION

Read this chapter only if you will be programming iRMX II tasks using PL/M-286. You
should already be familiar with the following concepts:

. The PL/M-286 programming language

c PL/M-2t16 segmentation models

. iRMX II jobs, tasks, and segments

When you invoke the PLIM-286 compiler, you must specify (either explicitly or by
default) the segmentation model (SMALL, COMPACT, MEDIUM, or t-qRGE) that
your program will use. The segmentation model affects the amount of memory required
to store your application's object code and the perfbrmance of the application.

With operating systems that run on lJ0[J6 processors (or on til0286 and tì0386 processors n
real address mode), choosing the appropriate segmentation model is important for
reducing the amount of memory that an application uses. Memory use is important
because the 8086 processor is limited to I megabyte of memory address space. The
operating system, on the other hand, uses the 80286 and 80386 processors in protected
virtual address mode (PVAM). ìn PVAM, the processor can access the full memory
address range that is available. Thus, program size becomes less imporlant.

However, loading a segment register in PVAM takes longer than ìoading other kinds of
instructions. If you can minimize the number of times the processor must switch
segments, application performance will improve. Because the segmentation model
determines how code and data are stored, choosing the proper model minimizes the
number of segment switches, and increases perlbrmance.

The following sections explain which segmentation model will attain the highest
performance, while still satisfying system requirements.

Programming Techniques l - l

SELECTING A PL/M-286 SEGMENTATION MODEL

1.2 WHAT ARE THE SEGMENTATION MODELS?

The four segrnentation models supported by PL/M-286 are SMALL, COMPACT,
MEDIUM, and [,ARGE. T\e PL/M-286 User's Guidc for ikMX 286 Systems describes
each of these models in detai.l. This section qives a brief overview of each.

Code sections from all linked modules are placed in the same code
segment, which is addressed by CS. Data and stack sections are
placed in the same data segment, which is addressed by both DS
and SS.

Code sections from all linked modules are olaced in the same code
segment, which is addressed by CS. Data sections are placed into a
single data segnrent, which is addressed by DS. Likewise, stack
sections are placed into a stack segment, which is addressed by SS.

The code section from each compiled module is placed in its own
code segrnent, enabling the total amount of code to be more than
64K bytes. Data and stack sections from all finked modules are
placed into a sing.le data segment, which is addressed by both DS
and SS.

During program execution, the CS register is updated whenever a
PUBLIC or EXTERNAL procedure is activated.

Code and data sections from each compiled module are placed into
their own code and data segments, enabling the total amount of
code and data to be more than 64K bytes. Stack sections are
placed into a sing.le stack segment, which is addressed by SS.

In I-ARGE model, code and data segments are paired. During
program execution, both the CS and DS are updated whenever a
PUBLIC or EXTERNAL nrocedure is activated.

SMALL

COMPACT

MEDIUM

TARGE

Specifying the ROM or RAM compiler controls determines whether the constants you
define in your prog'ams are placed in the code or data areas. This provides additional
control on the size of those segments.

1.3 RESTRICTIONS

The fewer times your application must load the segrnent registers, the better it performs.
To improve performance, choose the segmentation model that uses the fewest segments
but still supports the required amount of code or data. This practice means starting with
the SMALL model and working up to the TARGE model, using the first model that can
handle the amount of code or data in your application. However, some models place
restrictions on iRMX II ooerations.

t-2 Pmgramming Techniques

SELECTING A PLIM-286 SEGMENTATION MODEL

1.3.1 Small Model Restrictions

When you compile programs using the PL/M-286 SMALL control, all POINTER values
are 16 bits long. This introduces some restrictions, including inability to address the
contents ofan iRMX II segment received from another job. Because ofthese restrictions,
the only applications that can use SMALL model are those that invoke UDI system calls
only. Applications that invoke other iRMX II system calls cannot use the SMALL
seprnentation model.

1.3.2 Compact Model Restrictions

You cannot compile exception handlers in the COMPACT model and link them with
other COMPACT prcrcedures, because the operating system always makes a far call to an
exception handler. To include exception handlers, compile them using the l-A.RGE size
control.

1.3.3 Medium Model Restrictions

When using PLIM-286 MEDIUM model, you lose the option of having the Operating
System dynamically allocate stacks for tasks that are created dynamically. Anticipate each
task's stack requirements, and explicitly reserve memory for each stack during
configuration.

1.3.4 Using Large Model

There are no restrictions with the PL/M-286 [-A.RGE model. If your application is too
large for the other models, or you wish to avoid restrictions, use the I-ARGE model.

1.4 CHOOSING A SEGMENTATION MODEL

For best performance, use the following guidelines when choosing a segmentation model:

. If your code and data can each fit into a 64K-byte segment, use the COMPACT
model.

. If your application is too large for COMPACT, consider using COMPACT
subsystems. This enables you to set up your application in pieces (subsystems), each
of which adheres to the COM PACT model. With COMPACT subsystems, segment
registers are changed only when you call procedures or access variables that reside in
one of the other subsystems. However, creating COMPACT subsystems requires
more technical knowledge than the other alternatives and it requires changes to the
source code. Refer to the PL,/M-286 User's Guide for |RMX 286Systems for more
information.

Programming Techniques l-3

SELECTING A PL/M-286 SEGMENTATTON MODEL

. If you decide not to use COMPACT subsystems, MEDIUM offers the next best
performance. MEDIUM, however, requires that all data and stack fit into a single
64K segment.

. If all else fails, use l-ARGE model. There are no size or iRMX II restrictions with
I-ARGE, but this model results in the largest number of segment register switches.

To determine whether your application can fit into the COMPACT model, try compiling
and binding it under the COMPACT model. If the application is too large for
COMPACT, BND286 will return an error message. At that point, you can decide whether
to use MEDIUM, [-A,RGE, or recode your application for COMPACT subsystems.

If your application will be loaded into RAM, you may be able to use the ROM or RAM
controls to adjust segment sizes so that your application fits into the COMPACT or
MEDIUM models. These controls speciS where your program's constants will reside.
For example, ifyour application's data is slightly larger than 64K bytes, specifying the
ROM control (which places the constants in the code segment) might alÌow the remaining
data to fit in a 64K segment. This could make your code eligible for the COMPACT or
MEDIUM models.

l-4 Programming Techniques

USING |RMX@ II
CHAPTER 2

SYSTEM CALLS

2.1 INTRODUCTION

Read this chapter if you write programs that use iRMX Il system calls. You should
already be familiar with the foÌlowing concepts:

o System calls

. Object module linking

. Object libraries

. PL/M-286 segmentation models

This chapter explains how to include iRMX II system calls in your programs, and how to
bind your code with the necessary iRMX II libraries.

2.2 CODING THE SYSTEM CALLS

The first step in invoking iRMX II system calls is placing source statements in your code.
The following sections discuss how to place system calls in your PL/M-286 and ASM286
source code.

2.2.1 Invoking System Calls From PL/M-286

The iRMX II system call reference manuals use the PL/M-286 syntax when listing the
iRMX II system calls. When writing code, use the synt:rx listed in the system call
reference manuals.

2.2.2 lnvoking System Calls From Assembly Language

Programs communicate with the operating system calling inîerface procedures designed
for use with programs written in PL/M-286. To invoke system calls from assembly
language programs, the assembly language programs must obey the procedure-calling
protocol used by PL/M-286. For example, ifyour ASM286 program uses the
SEND$MESSAGE system call, then you must call the rq$send$message interface
procedure from your assembly language code.

Pmgramming Techniques 2-l

USING iRMX@ II SYSTEM CALLS FROM I-ANGUAGES

The technique for calling PL/M-286 procedures from assembly language is described in
the ASM28ó Macro Assembler Operating Instructions for \RMX 28ó Sysfems. This section
presents an overview of the technique.

In general, to call a PL/M-286 procedure, first push all the parameters onto the stack and
then call the procedure. Push the parameters in the order they are listed in the system
call reference manuals; that is, starting with the leftmost parameter. Long pointers
(complete addresses consisting of a selector and an offset) should be pushed as two words:
the selector first, then the offset.

The CALL instruction also places the return address ofyour calling procedure onto the
stack. This enables control to return to your program after the system call completes.

Some system calls return values. In assembly language, the returned values are available
in registers, as follows:

Type Register

BYTE AL
WORD AX
DWORD DX:AX
INTEGER AX
POINTER ES:BX
SELECTOR AX

When writing assembly language routines that call PLIM-286 interface procedures, you
must adhere to a segmentation model (COMPACT, MEDIUM, or I,ARGE) because
conventions for making calls depend on the segmentation model.

Ifyour application is written entirely in assembly language, you can arbitrariìy select an
interface library (COMPACT or l-ARGE) based on whether your application makes near
or far calls. Size and performance advantages can be gained by using the COMPACT
interface procedures, because their procedure calls are all NEAR. The IARGE interface,
which has procedures that require FAR procedure calls, is advantageous only ifyour
application code is larger than 64K b1tes.

However, if some of your application code is written in PL/M-286, your assembly
language code should use the same interface procedures as those used by your PL/M-286
code.

7 -) Pmgramming Techniques

USING iRMX@ II SYSTEM CALLS FROM LANCUAGES

The following example shows how to call iRMX II system calls from assembly language.
The examole assumes that the COMPACT seqmentation model is used.

DATA segnent RW FUBLIC

seg_tok Dl1l ?
excèp Dl.l ?

DAÎA ENDS

coDE segnent ER PUBLIC

extrn rqc reate s ègment : near

ny_prog PROC near

; G e c a d d r e s s a b i l i t y t o p a r a m e t e r s

push bp
uìov bp, sp
;
; Save cal ler 's DS and obta in local DS

push ds
mov

.
ds, daÈa

Typical ASM statemenEs

:
i
; seg_tok - rq$ create $ segrnenc (400H, @excep) ;
;
push 400H
push ds
push of fset excep
cal l rqcreatesegment
uÌov seg_tok, ax

Pmgramming Techniques t_1

USING iRMX@ II SYSTEM CALLS I.'ROM I-ANGUAGES

; IF except o E$OK THEN GOTO

cmp excep, 0

:
Typica l ASM staLenents

rny_prog ENDP
CODE ENDS
END

er ro r ;

2.2.3 lnvoking System Calls From C

Programs written in c can easily directly access iRMX II system calls by defining them as
alien procedures.

For example, the following Iines define the CREATE$SEGMENT and
DELETE$SEGMENT system calls as alien procedures.

al ien unslgnèd shor t rqcreatesegment ()
a l ien rqdele tesegrnent ()

Ifyou invoke system calls from C, you must pass parameters ofthe same type expected by
the system cal.ls. The c compiler does no tlpe checking of arien procedurei. Raiher, it
assumes the parameter t)?es are those that are used in the actual call. In oarticular. 32.
bit constants should be explicitly marked by using the L suffix.

2.3 INCLUDING EXTERNAL DECLARATION FILES

When you call a procedure that is not defined in your current program mo<lule (a
separately compiled portion ofyour program), you must declare that procedure to be
external. Doing so enables the binder to satisù/ the references to thaiprocedure when it
links your program modules together. This enables a program in one module to call a
procedure in another module.

Invoking iRMX II system calls is just like calling any pLlly',-zgí procedure. Because you
don't define the system calÌs in your programs, they must be external procerJures.
Therefore, you must include external declarations for each svstem call vou invoke.

2-4 Programming Techniques

USINC iRMX@ II SYSTEM CALLS FROM IANGUAGES

Intel has made it easy for you to place external declarations for the system calls in your
programs. Supplied on the iRMX II release diskettes are INCLUDE files, which reside
permanently in one location and provide the PL/M-286 external procedure declarations
for all iRMX II and UDI system calls. An INCLUDE file eliminates duplication of
statements in your source code modules. The declarations are written once, placed in an
INCLUDE file, and then used in lieu of repeating the actual declaration in each module.

For example, to use the INCLUDE file NUCLUS.EXT, place the following statement at
the beginning ofyour PL/M-286 source code. This statement declares all the Nucleus
system calls to be external.

$ TNcLUDE (,,/Rr0(2 8 6,/ r NC/NLlC LUS . EXT)

Table 2-1 lists the external declaration INCLUDE files supplied with the operating
system. After installation ofthe operating system, these files are available in the

/RMX286/INC directory.

Table 2-I . iRMXo l l External Declaral ion INCLUDE Fi les

INCLUOE Fil€ Languag€ D€scription

RMXPAS.EXT

RMXFTN,EXT

RMXPLM.EXT

NUCLUS,EXT

BIOS.EXT

EIOS.EXT

LOADER.EXI

HI .EXT

UDI.EXf

PASCAL-286

FORIRAN-286

PLlM-285

PLlM-286

PLlM-286

PLlM-286

PL/M-286

PLlM-286

PLlM-2e6

External declarations for all system calls.
Refer to the 'Using the PASCAL INCLUDE File'
section for more information.

External d€clarations for all system calls that
return a valu€. R€l€r to the 'Using the FORTRAN
INCLUDE File' s€cîion for mor€ information.

Ext€rnal declarations for all iRMX ll system
ca s.

External declarations for Nucleus system
cafls.

External declarations for Basic l/O
System calls.

External declaratìons for Extend€d l/O System
calls.

External declarations for Application Loader
system calls.

Ext€rnal declarations for Human Interface
system calls.

External declarations lor UDI system calls.

Pmgramming Techniques t-<

USING iRMX@ II SYSTEM CALLS T-ROM I-ANGUAGDS

Because each INCLUDE file contains external declaratíons for many system calls (either
all iRMX II system calls or all system calls in a particular subsystem), including a
particular file will probably result in external declarations for several system calls your
program does not invoke. Although having extra external declarations poses no problems
for the compilers and causes no error conditions, you can improve compilation speed by
copyingjust the external declarations your program needs into a separate INCLUDE file
and specifying that file in the INCLUDE statement.

2.3.1 Using the PASCAL-286 Include File

When using PASCAL-286 to write an application, you must include the RMXPAS.EXT
INCLUDE file with your PASCAL-28ó source program. To do this, enter this statement
ln your source program:

$ lNCLUDE (/RMX2 86lrNC/RMXPAS . EXT)

This statement inserts the contents of RMXPAS.EXT into your PASCAL-286 program.
This file contains external declarations for all the iRMX II system calls. However, it uses
names that are slightly different from the system call names shown in the reference
manuals. Because PASCAL does not allow dollar signs ($) in procedure names, the
system calls are declared without the $ characters. To make the names recognizable, the
INCLUDE file mixes uppercase and lowercase letters in the names. You can use this
convention in your programs also.

Because of data-type checking that the PASCAL-286 compiler performs, the INCLUDE
file may require editing before your program will compile correctly. Four Nucleus and
two EIOS system calls are affected:

Nucleus System Calls EIOS System Calls

RQCreateJob
RQECreateJob
RQCreateTask
RQSignalException

RQCreatelOJob
RQECreatelOJob

These six system calls enable you to specifo an absolute value (0) or a POINTER (such as
@stacktop) as the STACK R parameter. No single PASCAL-28ó data type can be used
to declare both types of values

RMXPAS.EXT contains a declaration for speci$ing pointers. This declaration enables
you to speciff a stack location by supplying a pointer to the stack.

You may want to use the vaìue 0, which indicates that the operating system is to provide
the appìication's stack location, for the STACKPTR paramerer.

2-6 Pmgramming Techniques

USING iRMX@ II SYSTEM CALLS FROM I,ANGUAGES

To let the operating system provide rhe stack, edit RMXPAS.EXT as shown in the
following paragraph and use comment notation around the form of the declaration that is
no longer needed. The following example changes the declaration of the STACKPTR
parameter in the Nucleus call RQ$CREATE$TASK but the form applies to all five
system calls that may need editing. Note that only one STACKPTR declaration can be
"active."

Change

to read

T'IJNCTlON RQCREATETASK(

VAR

{VAR

PRIORITY
STARTADDRESS
DATASEG
STACKPTR
STACKPTR
STACKS IZE
TASKFIACS
EXCEPTR

BYTE ;
BYTES;
WORD ;
BYTES /STACKADDR/;)
LONGINT;
ITORD ;
WORD ;
BYTES) ;VAR

Note that you can change any or all five declarations, depending on the requirements of
your ovr'n PASCAL-286 program.

2.3.2 Using the FORTRAN-286 Include File

When you use FORTRAN-286 to write an application, you must include the
RMXF|N.EXT INCLUDE file with your FORTRAN-28ó source programs. To do this,
place the following statement in your source code:

$INCLUDE (/RMx2 86lINCIRMXFTN. EXT)

FIJNCTION RQCREATETASK(

VAR

VAR

PRIORITY
STARTADDRESS
DATASEG
STACKPTR
{STACKPTR
STACKS IZE
TASKFI.AC S
EXCEPTR

BYTE ;
BYTES ;
WORD ;
BYTES /STACKADDR/;
LONGINT ; Ì
WORD ;
I,IORD ;
BYTES) ;VAR

Programming Techniques
'r -7

USING iRMX@ II SYSTEM CALLS FROM I.A,NGUAGES

This statement inserts the contents of RMXFIN.EXT into your FORTRAN-286
program. Only those system calls that return values need to be declared, so not all system
calls are contained in the file RMXFTN.EXT.

When invoking iRMX II system calls from FORTRAN'28ó programs, remember the
following techniques:

e Use the %VAL pseudo function when passing any parameter that is not a pointer.
FORTRAN passes parameters by reference; the TcVAL pseudo function forces the
parameter to be passed by value. When passing parameters, match the tJpe of the
formal parameter. That is, variables of WORD or BYTE types should be passed as
words on the stack; DWORDs should be passed as two words. You must do this to
assign parameters to a variable and then pass the variable using 7oVAI. This method
is mandatory for expressions (even built-ins such as INT2), because expressions
cannot be passed using 7oVAL.

o Because FORTRAN does not recognize unsigned entities, you may have difficulty
referring to byte values greater than or equal to 128, word values greater than or equal
to 32768, and double word values greater than or equal to2**37. For example, the
GET$PRIORITY system call returns an unsigned byte value that indicates the
priority. To deal with this number in FORTRAN, either check the value as a negative
number, or assign the value to a word and mask the high byte to zero. These examples
show how to deal with byte and word values.

Dealing with bvte values greater than or equal to 128

in teger*2 task_tok, s tatus, pr i _ \ . rord
í n l - é o è r * l n Ì " 1

pr i*Rqce tPr ior i ty (lval (task-tok) , status)

.or,rràra the stgned byre to an unsigned word
prl_word - pri . and. /l0ff

2-8 Progranming Techniques

USING |RMX@ II SYSTEM CALLS FROM T.ANGUAGES

Deal ing with word values greater than or equal to 327ó8

ln teger*2 se8_tok, scatus, s ize
integèr*4 s ize_dlrord

s l z e = R q G e t S i z e (l v a l (s e g _ t o k) , s t a c u s)

converE the sígned word to an unsigned dr.rord
s lze_dword - s lze. and. / l0 f f f f

Programming Techniques 2.9

USING iRMX@ II SYSTEM CALLS FROM IANGUAGES

FORTRAN strings are not iRMX lI strings and are not useful for any iRMX II
system calls. A FORTRAN string should be converted into an array, with the first
byte set to the length of the string. The following example illustrates this technique.

SUBROUTINE Rru'(STR (FILE-NAME, FI LE-ARRAY)
CHAMCTER*(*) FILE-NAME
INTEGER*I FILE_ARRAY(*)
TNTECER*2 LN, I

UI:LEN (FILE-NAME)

C move st r ing to array
FILE_ARMY(1)-LN
D0 100 , r -1 , LN

FILE-ARMY(I+1):ICHAR(FILE-NAME (I : I))
100 CONTlN'IJE

C suppress t ra i l ing b lanks, f iL l leading length byte
D 0 2 0 0 , I - 1 , L N

r F (C H A R (F I L E _ A R R A Y (L N + 2 - r)) . N E . ' ') T H E N
FI LE_ARRAY (I) -LN+1.I
RETURN

ENDIF
200 coNTlN'ItE

END

character*40 f i 1e-naure
i n t e g e r * 1 f i l e _ a r r a y (4 1) , c o (5)

cal l rmxs t r (' : co : ' , co)

f i le 'name-, , / r nx286 /L lb/ sots tce/ a.x ,

.
ca l l r rnxst r (f i le_name, f i le_array)

end

2-lo Programming Techniques

USING iRMX@ II SYSTEM CALLS FROM LANGUAGES

2.4 BINDING YOUR CODE TO INTERFACE LIBRARIES

After you have written your programs and inserted INCLUDE statements for the
necessary system calls, you must compile the code and bind it to the appropriate iRMX II
interface library.

Interface lìbraries, supplied with the iRMX II product, provide a standard and simple
interface to the system calls. The interface libraries contain procedures that correspond
to iRMX II system calls. These procedures have the same names and use the same
parameters as the system calls. To invoke a system call, simply declare the system calls as
external procedures (as described in the previous section) and call the corresponding
interface procedure just as you would a PL/M-286 procedure. The interface procedure
performs more complicated operations to invoke the actual system call. For example,
iRMX I interface procedures use soffware interrupts to invoke system calls. Their iRMX
II counterparts make calls to call gates when accessing system cal.ls.

After compiling the program code, you must satisfy the external references to the system
calls by using BND286, which binds the compiled code to the appropriate interface
libraries. There are several interface libraries from which to choose. Which interface
library must be bound to your program depends on the system calls and the segmentation
model used. -îable 2-2lists the interface libraries.

As Table 2-2 shows, for each segmentation model, except SMALL, there is one interface
library for UDI and one interface library for all the other layers. The SMALL model is
supported only for UDI. Ifyour code includes only UDI system calls (or if it uses the I/O
support provided by the language), bind your program only to the appropriate UDI
library. Ifyour code doesn't invoke UDI system calls, or you don't plan to include the
language's I/O support, bind the code just to the appropriate RMX;oo< library. If your
code invokes both UDI and other iRMX II system calls, bind the code to both of the
libraries for the segmentation model you chose. In this last instance, when you specify the
BND286 command to bind your code, the UDI interface library must precede the
RMXrco< library in the list of modules to be bound.

Table 2-2. Interface Libraries and iRMX@ II Layers

SMALL COMPACT LARGE OR
MEDIUM

All lay€rs
€xcspt UOI

UDI UDIIFS.LIB

RMXIFC.LIB

UDIIFC.LIE

RMXIFL.LIB

UDIIFL.LIE

Pmgramming Techniques 2-tl

USING iRMXO II SYSTEM CALLS FROM I.ANGUAGES

2.5 BIND SEOUENCE

The previous section described which interface libraries you should bind to your
program's object code. This section discusses the entire BND286 command that should
be used to bind a program in preparation for execution under the Operating System.

The following example shows the bind sequence for a PL/M-286 program that uses the
COMPACT segmentation model. The program consists of three object modules,
MODA.OBJ, MODB.OBJ, and MODC.OBJ. The program invokes UDI and other
iRMX II system calls. After binding the resulting executable module will be placed in a
file called FINAI-SYS. It is assumed that FINAISYS will be invoked from the Human
Interface; that is, by tlping its name at the Human Interface prompt.

BND286 &
MODA.OBJ, MoDB.O&], ! {oDC. OBJ, &
: LANG: PLM286.LIB, &
/Nrx286 /LfBnDr r Fc . LrB, &
/î,to/.286 /LLB/P$LXIFC. LrB &
OBJECT(FINÀLSYS) &
SEGSTZE(STACK(+L750)) &
RCoNFIGURE(DYNAMTCMEM(5000H, oFFFTH))

In this BND286 statement, the three object files (MODA.OBJ, MODB.OBJ, and
MODC.OBJ) are bound together with three lbraries: PLM286.LIB, UDIIFC.LIB and
RMXIFC.LIB. The library called PLM286.LIB is the standard pLM-286 library
distributed with the compiler. It satisfies compiler-generated externals, such as those that
occur when you call built-in functions (DWORD arithmetic is one example).
PLM286.LIB should always be the first library that you bind to your pLM-286 object code.

The second and third libraries (UDIIFC.LIB and RMXIFC.LIB) are the iRMX II
interface lìbraries used with the COMPACT segmentation model. These interface
libraries satisry the external references generated when your programs invoke UDI and
iRMX II system calls. UDIIFC.LIB should always precede RMXIFC.LIB in the bin<l
sequence.

The OBJECT control specifies the name of the executable file to be generated bv
BND286. In this case, the file is called FINAI-SYS.

The SEGSIZE(srACK(+ 1750)) control specifies that an additional 1750 decimal byres of
stack beyond that required by the program alone should be reserved for this application.
These extra bytes are required for invoking system calls. Refer to Chapter 7 for
guidelines on selecting stack sizes.

2-12 Pmgramming Techniques

USING iRMXO II SYSTEM CALLS FROM I.ANGUAGES

The RCONFIGURE(DYNAMICMEM(5000H, 0FFFFH)) control directs BND286 to
produce a single+ask loadable (STL) module, to assign a minimum of5000H bytes of
dynamic memory to the module, and to limit the amount of memory it can borrow from
its parent to OFFFFH byes. All iRMX II tasks to be loaded by the Application Loader
must be STL modules (and programs invoked at the Human Interface level are ìoaded by
the Application Loader). Therefore, your BND286 command should always include the
RCONFIGURE control.

Programming Techniques 2-13

CHAPTER 3
COMMUNICATION BETWEEN

|RMX@ il JOBS

3.1 INTRODUCTION

Read this chapter if you want to pass information from one iRMX II job to another. You
should already be familiar with the following concepts:

. iRMX Il jobs, including the root job and object directories

. iRMX I I tasks

. iRMX II segments

. iRMX Il mailboxes

. iRMX II physical files or named files

. iRMX II stream files

o iRMX II qpe managers and composite objects

In multiprogramming systems, where each of several applìcations is implemented as a
distinct iRMX II job, information must occasionally pass from one job to another. This
chapter describes several techniques you can use to accomplish this.

The techniques are divided into two groups: passing data between jobs, and passing iRMX
II obiects.

NOTE
Many of the techniques in this chapter involve sending tokens or pointers
to other jobs. If the sending job is deleted, these entities become invalid.
If the receiving job uses the entities later, the results are unpredictable
(usually a general protection error). It is the programmer's responsibility
to avoid these situations.

Progremming Techniques 3 - l

COMMUNICATION BETWEEN iRMX@ II JOBS

3.2 PASSING DATA BETWEEN JOBS

Data can be sent from one job to another in several ways:

1. You can use the SEND$DATA and RECEIVE$DATA system calls to exchange the
information. SEND$DATA and RECEIVE$DATA use a mailbox to exchange up
to 128 bytes of information. To use this method, the task that creates the mailbox
must catalog it in the root object directory, so that the other task can access it. Thrs
procedure is described later in this chapter.

The advantages of this technique are

o Because this technique requires only the Nucleus, you can use it in systems that
do not use other iRMX II layers.

. Althou€ù the Operating system copies the information from one place to
another, it copies the information very quickly.

o It is the quickest method of passing small amounts of data.

. It can be used to exchange larger amounts of data by passing the pointer to that
data as data itself in the SEND$DATA system call. The receiving job can then
use the pointer to refer to the relevant data. This method of exchanging data rs
faster than using SEND$MESSAGE because it does not require the overhead
of creating a segment.

The disadvantages of this technique are

. Only 128 bytes of information can be exchanged with the SEND$DATA and
RECEM$DATA system calls.

2. You can create an iRMX II segment and place the information in the segment.
Then, using one of the techniques discussed below for passing objects between jobs,
you can deliver the segment.

The advantages of this technique are

. Because this technique requires only the Nucleus, you can use it in systems that
do not use other iRMX II layers.

. The Operating system does not copy the information from one place to another.

The disadvantages of this technique are

o The segrnent occupies memory until it is deleted, either explicitly (by means of
the DELETE$SEGMENT system call), or implicitly (when the job that created
the segment is deleted). Until the segment is deleted, a substantial amount of
memory is unavailable for use elsewhere in the system.

. The application code may have to copy the information into the segment or
from it.

t - 2 Programrning Techniques

COMMUNICATION BETWEEN iRMX@ II JOBS

3. You can use an iRMX II stream file.

The advantages of this technique are

. You can use I/O System calls to pass information directly between tasks,
without slowing down the transfer by temporarily placing the data on a
secondary storage device.

o This technique can easily be changed to Technique 4 (below).

The disadvantages of this technique are

r You must configure one or both I/O systems into your application system.

. There is a 4K byte limit on the amount of data you can pass via a stream file.

o Writing data to and reading data from a stream file is much slower than any of
the previous methods.

As a last resort, you can use the Basic I/O System, the Extended I/O System, or the
Universal Development Interface to write the information onto a mass storage
device, from which the job needing the information can read it.

The advantages of this technique are

. Many jobs can read the information.

. This technique can easily be changed to Technique 3 (above).

The disadvantages of th is technique are

. You must incorporate one or both I/O systems (and possibly UDI) into your
application system,

e Device I/O is slower than reading and writing to a stream file, making this the
slowest of the four methods.

3.3 PASSING OBJECTS BETWEEN JOBS

Jobs can also communicate with each other by sending objects across job boundaries. You
can use any of several techniques to accomplish this. In the following discussions you will
see how to pass objects by using object directories, mailboxes, and parameter objects.

Although you can pass any object from onejob to another, there is a restriction pertaining
to connection objects. When a file connection created in one job (Job A) is passed to a
second job (Job B), Job B cannot successfully use the object to perform I/O. Instead, Job
B must create another connection to the same file. It does this by invoking the Basic I/O
System's A$ATTACH$FILE system call, using the connection obtained from Job A as the
prefix parameter. No subpath parameter needs to be specified. A$ATTACH$FILE
returns a new connection to the same file, which Job B can use to perform I/O. This
restriction about connections is discussed in the Extended |RMX II Basic I/O System User's
Guide and in the |RMX II Extended I/O Svstem User's Guide .

Programming Techniques 3-3

COMMUNICATION BETWEEN iRMX@ II JOBS

3.3.1 Passing Objects Through Object Directories

Consider a hypothetical system in which tasks in separate jobs must communicate with
each other. Task B in Job B must not begin, or resume running, until Task A in Job A
grants permission.

One way to perform this synchronization is to use a semaphore. Task B can repeatedly
wait at the semaphore until it receives a unit, and Task A can send a unit to the
semaphore whenever it wishes to grant permission for Task B to run. If Tasks A and B
were within the same job, this would be a straightforward use of a semaphore. But the
two tasks are in different jobs, and this causes some complications.

Specifically, how do Tasks A and B access the same semaphore? For instance, Task A can
create the semaphore and access it, but how can Task A provide Task B with a token for
the semaphore? The solution is to use the object directory of the root job.

In the following explanation, each of the two tasks must perform half of a protocol. The
process of creating and cataloging the semaphore is one half, and the process of looking
up the semaphore is the other.

For this protocol to succeed, the programmers of the two tasks must agree on a name for
the semaphore, and they must agree which task performs which half of the protocol. In
this example, the semaphore is named PERMIT_SEM. And, because Task B must wait
until Task A grants permission, Task A will create and catalog the semaphore, and Task B
will look it up.

Task A performs the creating and cataloging as follows:

1. Task A creates a semaphore with no units by calling the CREATE$SEMAPHORE
system call. This provides Task A with a token for the semaphore.

2. Task A calls the GET$TASK$TOKENS system call to obtain a token for the root
job.

3. Task A calls the CATALOG$OBJECT system call to place a token for the
semaphore in the object directory of the root job under the name PERMIT_SEM.

4. Task A continues processing, eventually becomes ready to grant permission, and
sends a unit to PERMIT SEM.

3-4 Programm ing Techniques

COMMUNICATION BETWEEN iRMX@ II JOBS

Task B performs the look-up protocol as follows:

1. Task B calls the GET$TASK$TOKENS system call to obtain a token for the root
job.

2. Task B calls the LOOKUP$OBJECT system call to obtain a token fbr the object
named PERMIT_SEM. If the name has not yet been cataloged, Task B waits until
I t l s .

3. Task B calls the RECEIVE$UMTS system call to request a unit from the
semaphore. If the unit is not avaiìable, Task A has not yet granted permission and
Task B waits. When a unit is available, Task A has granted permission and Task B
becomes ready.

You should be aware of several aspects of this technique:

o In the example, the object directory technique was used to pass a semaphore. You
can use the same technique to pass any type of iRMX II object.

. The semaphore was passed via the object directory of the root job. The root job's
object directory is unique because it is the only object directory to which alljobs in the
system can gain access. This accessibility allows onejob to "broadcast" an object to
anyjob that knows the name under which the object is cataloged.

. The object directory of the root job must be large enough to accommodate the names
of all the objects passed in this manner. If it is not, it will become full and the
Operating system wi.ll return an exception code when attempts are made to catalog
additional objects.

. Ifyou use this technique to pass many objects, you could have problems ensuring
unique names. To avoid this, use an object directory other than the root object
directory for different sets ofjobs. For example, have one of the jobs catalog its token
in the root job's object directory under a previously set name. Any other jobs can then
look up the token of the cataloged job in the root job's directory, and use its object
directory rather than that of the root job.

e In the example, the object-passing protocol was divided into two halves: the create-
and-catalog half and the look-up half. The protocol works correctly regardless of
which half runs first.

Programming Techniques J-f,

COMMUNICATION BETWEEN iRMX@ II JOBS

3.3.2 Passing Objects Through Mailboxes

You can also send objects from onejob to another by using a mailbox. This is a two-step
process; the two jobs using the mailbox must first use the object directory technique to
obtain mutual access to the mailbox, and then use the mailbox to pass additional objects.

There are two ways to transmit information via a mailbox. If the mailbox is set up to
transfer data, the tasks can use SEND$DATA and RECEIVE$DATA to send and receive
128-byte data. With these calls, tasks can transfer strings, arrays, and even tokens for
objects, as long as the information is 128 bytes or less.

If the mailbox is set up to transfer objects, the tasks can use SEND$MESSAGE and
RECEIVE$MESSAGE to send and receive iRMX II objects. With these calls, only the
object tokens are sent and received.

Whenever rwo jobs send data via mailboxes, the sending and receiving task must perform
handshaking to ensure that they are finished using the segment containing the data. If the
segment is deleted and the receiving task attempts to access the now nonexistent segment,
a general protection error occurs.

3.3.3 Passing Parameter Objects

One of the parameters of the CREATE$JOB system call is a parameter object. This
parameter allows a task in the parent job to pass an object to the newly created job. Once
the tasks in the new job begin running, they can obtain a token for the parameter object
by calling GET$TASK$TOKENS. This technique is illustrated in the following example.

Suppose that Task I in Job I is responsible for spawning a new job (Job 2). Suppose also
that Task 1 maintains an array needed by Job 2. Task I can pass the array to Job 2 by
putting the array into an iRMX II segment and designating the segment as the parameter
object in the CREATE$JOB system call. Then the tasks of Job 2 can calÌ the
GET$TASK$TOKENS system call to obtain a token for the segment.

ln the example, the parameter object is a segment. However, you can use this technique
to pass any kind of iRMX II object.

3.3.4 Restrictions

As mentioned earlier, there is a restriction concerning the passing of connection objects
between jobs. When a file connection created in onejob is passed to a second job, the
second job cannot use the object to perform I/O. Instead, the second job must create
another connection to the same file. This restriction is discussed in the Extended |RMX II
Basic I/O Svstem User's Guide and in the r'RMX Extended I/O Svstem User's Guide.

3-6 Programming Techniques

COMMUNICATION BETWEEN iRMX@ II JOBS

3.3.5 Comparison of Object-Passing Techniques

Consider these guidelines when deciding how to pass an object berween jobs:

. Ifyou are passing only one object from a parentjob to a child job, use the parameter
object when the parent creates the child.

. Ifyou are passing only one object but not from parent to child, use the object directory
technique. It is simpler than using a mailbox.

. If two jobs frequently pass objects between each other, the mailbox technique is the
fastest and easiest method.

. Ifyou need to pass more than one object at a time, use any ofthe following
techníques:

- If the tokens fit in a 128-byte array, create a mailbox and use SEND$DATA and
RECEIVE$DATA to transfer the array.

-- Assign an order to the objects and send them one by one to a mailbox (using
either SEND$DATA or SEND$MESSAGE) where the receiving job can pick
them up in order.

-- Give each object a name and use an object directory.

- Write a simple type manager that packs and unpacks a set of objects. Then pass
the set of objects as one composite object.

Programming Techn iques J - /

GUIDELINES
CHAPTER 4

FOR STACK SIZES

4.1 INTRODUCTION

This chapter is for three kinds of readers:

. readers who vr'rite tasks that create iRMX II jobs or tasks

. readers who write interrupt handlers

o readers who write tasks to be loaded by the Application Loader or tasks to be invoked
by the Human Interface

You should already be familiar with the iRMX II System Debugger, and you should know
which system calls are provided by the various layers of the Operating System. You also
should know the difference between maskable and nonmaskable interrupts.

This chapter will help you compute the amount of stack you must specify for a system call
that creates a job or task. Ifyou are writing an interrupt handler, this chapter tells you
about stack size limitations that you must adhere to. If you are writing a task to be loaded
by the Application Loader or invoked by the Human Interface, this chapter tells you how
much stack to reserve during the binding process.

4.2 STACK SIZE LIMITATION FOR INTERRUPT HANDLERS

Many Operating system tasks are subject to two kinds of interrupts: maskable and
nonmaskable. When these interrupts occur, the associated interrupt handlers use the
stack ofthe interrupted task. Consequently, you must know how much ofyour task's stack
to reserve for these interrupt handlers.

The operating system assumes that all interrupt handlers require no more than 128
(decinal) bytes of stack, even if a task is interrupted by both a maskable and a
nonmaskable interrupt. Ifyou fail to adhere to this limitation when writing an interrupt
handler, you risk stack overflow in your system.

Programming Techniques 4-l

GUIDELTNES FOR STACK SIZES

To stay within the 128 (decimal) byte limitation, restrict the number of local variables that
the interrupt handler stores on the stack. For interrupt handlers serving maskable
interrupts, you can use as many as 20 (decimal) byes of stack for local variables. For
handlers serving nonmaskable interrupts, use no more than 10 (decimal) bytes. The
balance of the 128 bytes is consumed by the SIGNAI$INTERRUPT system call and by
storing the registers on the stack.

For more information about interrupt handlers. refer to the Ertended |RMX II Nucleus
User's Guide.

4.3 STACK GUIDELINES FOR CREATING TASKS AND JOBS

When you create a task by invoking a system call, you must specify the size of the task's
stack. And, since every new job has an initial task created simultaneously with thejob,
you must also designate a stack size when you create a job.

Be careful when specifing a task's stack size. Specifying a stack size that is too small,
could cause the task to overflow its stack. If the stack overflows, the hardware will detect
the error and cause the Nucleus to invoke an exception handler, which could delete the
offending task or activate the iSDM monitor. Specifing a stack size that is too large
wastes memory. Ideally, you should specify a stack size that is only slightly larger (500-
1000 bytes) than v/hat is actually required.

This chapter illustrates two techniques for estimating a task's stack size: arithmetic and
empirical. For best results, start with the arithmetic technique and then use the empirical
technique to tune your original estimate.

If your programs are recursive, do not rely solely on either of these techniques. Stack
usage in recursive routines varies because of run-time events, and should be computed
carefully.

To minimize problems, pad the results ofyour computations by 500 to 1000 bytes to allow
for situations that you might not have experienced in your tests.

4.4 STACK GUIDELINES FOR TASKS TO BE LOADED OR INVOKED

Ifyou are creating a task to be loaded by the Application Loader or invoked by the
Human Interface, you must specify the size of the task's stack during the bind process.
The following techniques will help you estimate stack size requirements.

4-2 Prograrnming Techniques

GUIDELINES FOR STACK SIZES

4.5 ARITHMETIC TECHNIQUE

This technique slightly overestimates a task's stack size. After you use this technique to
obtain an estimate, use the empirical technique described later in this chapter to refine
the estimate.

The arithmetic technique is based on these factors, which affect a task's stack:

. Interrupts

o iRMX II system calls

r Requirements of the task's code (for example, the stack used to pass parameters to
procedures or to hold local variables in reentrant procedures)

Estimate the size of a task's stack by adding the amount of memory required to
accommodate these factors. The following sections explain how to compute these values.

4.5.1 Stack Requirements for Interrupts

When an interrupt occurs while a task is running, the interrupt handler uses the task's
stack while it services the interrupt. Consequently, you must ensure that a task's stack is
large enough to accommodate the needs of rwo interrupt handlers: one for maskable
interrupts and one for nonmaskable interrupts. Refer to the earlier section "Stack Size
Limitation for Interrupt Handlers" for more information.

4.5.2 Stack Requirements for System Calls

When a task invokes an iRMX II system call, the processing associated with the call uses
some of the task's stack. The amount of stack required depends on which system calls you
use.

Table 4-1 shows how many bytes of stack a task requires to support the system calls of
each layer. Included in these figures are the 128 bytes required by the interrupt handlers.
To find out how much stack you must allocate for system calls, determine which layers of
the operating system your task uses. Scan Table 4- 1 to find which of those layers requires
the most stack. By allocating enough stack to satisfy the requirements of the
most demanding layer, you can satisfy the requirements of all system calls used by your
task.

Progranming Techniques 4-3

GUIDELINES FOR STACK SIZES

Table 4-1. Stack Requirements for Interrupts and System Calls

Layer BYes (Decimal)

UDI

Human lnterface

Application Loader

Enended l/O System

Basic l/O System

Nucl€us

1750

1500

7@

550

350

2s0

4.5.3 Computing Stack Size

To compute stack size, add the following numbers:

. The number of bytes required for interrupts and system calls, according to the most
demanding layer you intend to use.

. The amount of stack required by the task's code. This figure can be determined by
looking at the information about the STACK segment in the .MPl map file that
BND286 produces when it binds your application code. This stack usage is the result
of calling local procedures and using the stack for local variables when your code is
reentrant.

This sum is a conservative, but reasonable, estimate of a task's stack requirements. For
more accuracy, use the sum as a starting point for the empirical fine tuning described
below.

4.6 EMPIRICAL TECHNIQUE

This technique starts with an overly large stack and uses the iSDM Monitor to determine
how much of the stack is unused. Once you have found out how much stack is unused,
you can modify your task-creation and job-creation system calls to create smaller stacks.

To use this technique, change your program code to break to the iSDM monitor at the
beginning and at the end of the program. When coding in PL/M-286, use the
CAUSE$INTERRUm(3) statement to break to the monitor (INT3 in assembly
language). Ifyour application is loaded by the Human Interface (that is, invoked as a
command), use the DEBUG command to gain access to the monitor, instead of adding
extra instructions to your code.

4-4 Programming Techniques

GUIDELINES FOR STACK SIZES

When the iSDM monitor first receives control, fill the unused portion of the stack with a
value that would not normally appear there. For example, use the monitor's S command
to fill the remaining stack with a value of OAAH.

Continue running the program. When the iSDM monitor receives control at the end of
the program, examine the stack and see how much of it still contains the value you filled in
earlier. That portion was unused throughout the entire execution of the program.

Use this technique to determine stack usage, but do not assume that the value you obtain
is an exact number. The value you determine usually won't be exact because a typical run
of the program probably will not take the deepest path (using the most stack) through the
program. Also, a tlpical run might not encounter interrupts on the deepest paths through
the program.

Programming Techniques 4-5

CONVERTING |RMX@
AND IMPROVING

CHAPTER 5
IAPPLICATIONS
PERFORMANCE

5.1 INTRODUCTION

When moving an iRMX I application to the iRMX II Operating System, your fist
concern is usually making the application work. After you realize that the upv/ard
compatibility provided by the iRMX II Operating System makes the change easy, you will
want to get optimum performance from the 80286 and 80386 processors. This chapter
helps you do that, by providing instructions that will enable you to design applications with
optimum performance.

5.2 EFFECTS OF SEGMENTATION

Segmentation is one of the most important performance areas in which the iRMX I and
iRMX II Operating Systems differ. When using the 8086 processor, and the 80286/38ó
processors in real-address mode, changing a segment register is as fast as changing any
other register, making it one of the fastest operations to perform. However, with the
80286 and 80386 processors in protected virtual address mode, changing a segment
register involves looking up four words in the global or local descriptor tables (GDT or
LDTI. Therefore. it is a slower oneration.

5.2.1 Causes of Program Slowdown

When the processor is in protected virtual address mode (as it is when the operating
system runs), it is possible to spend unnecessary time on segment register changes
because of the way PLIM-286 works. The default model of segrnentation under which
PL/M-286 compiles your code is I-ARGE. Under the LARGE model, the following items
apply:

. Every procedure has its own code segment and its own data segment.

Programming Techniques 5-l

COI{I'ERTINC iRMX@ I APPLICATIONS AND IMPROVING PERFORMANCE

. Every reference to a nonlocal variable causes the processor to set up the ES register
to access the variable's segnent, an operation requiring 17 clock cycles.

. Every procedure call to an external procedure or to a public internal procedure is a
long call, which changes the CS register and costs 26 clock cycles (as compared to 7

rycles for a short call and 13 rycles for a long call in real-address mode). The long call
is followed by a MOV to DS to establsh a new data segment. This costs an additional
17 clock cycles (as compared to 2 cycles in real-address mode).

The net result of this additional overhead is a significant slowdown when compared to the
same instruction running in real-address mode. The overall slowdown of the application
depends of course on how often such instructions are used.

5.2.2 Avoiding Slowdown

To help avoid the slowdown caused by changing a segment register, read the "PL/M-286
Extended Segmentation" chapter in the PL/M-286 manual. In addition, use the
COMPACT model of PL/M-286 when possible. Use the MEDIUM model when you
cannot use COMPACT, and use COMPACT subsystems when you need more speed than
MEDIUM can give you. Resulting code will have fewer segment register changes and will
run faster. A side benefit of this technique is that it requires fewer objects (the operating
system has an upper limit of 8000 objects).

In addition, you can reduce slowdown by using the OPTIMIZE(3) compiler control when
compiling code. T\e PL/M-286 User's Guíde describes the requiremenrs for including this
control. Use the OPTIMIZE(3) control cautiously. If you aren't sure whether your code
meets the requirements for OPTIMIZE(3), use OPTIMIZE(2) instead.

s.3 PLIM-286 BASED VARTABLES

Accessing a PLIM-286 varíable that is BASED on a POINTER or a SELECTOR requires
that the ES register be loaded first. It is therefore a slower operation in protected mode
(relative to real mode). To avoid making numerous references to members of a BASED
structure or array, you might want to try the following approach:

. Declare a non-BASED copy ofthe structure or array.

o Use MOVIV to copy from the original BASED structure ro the non-BASED copy.

. Continue accessing only the copy.

To see if this technique helps, place SCODE and $NOCODE controls around the areas of
code in which potential slowdown occurs. This causes the compiier to generate assembly
language listings of these areas. With the listings, you can determine how often segment
registers are loaded and whether this optimization technique is necessary.

<-t Programming Techniques

CONVERTING iRMX@ I APPLICATIONS AND IMPROVING PERFORMANCE

5.4 OPTIMIZING NUCLEUS PERFORMANCE

After you increase your application's speed, try to optimize the use of Nucleus system
calls. To do this, you must understand that under the operating system, fast Nucleus
system calls get faster and slow system calls get slower, when compared to the iRMX I
Nucleus running on a real-mode 80286 processor. Therefore, use the fast system calls
(such as sending and receiving messages) as much as possible, and use the slower system
calls (creating and deleting) as little as possible.

One way to avoid creating and deleting objects is by reusing segments. Instead of creating
a segment each time you need one and deleting it each time you finish, keep the segment
for later use. If the segment size is appropriate, you can use it again without incurring the
overhead of creating a new segment.

s.s oPTrMrzrNG SEQUENTIAL l/O

Ifyour programs use primarily sequential I/O (as opposed to random I/O) you can
increase performance when using the Ext€nded I/O System, by assigning larger buffers
than you used under the iRMX I Operating System.

5.6 MAILBOX TUNING

When creating a mailbox, you can specif the number of messages that can be waiting in
the mailbox's high-performance queue. When this queue overflows, the operating system
creates an additional segment to contain 100 more messages. This overflow queue is
slower than the high-performance queue only for the initial overflow, because at that time
the operating system must create a new segment to serve as the overflow queue (recall
that creating a segment is a relatively slow operation). After the overflow queue is
created, that queue isjust as fast as the high-performance queue. The overflow queue is
not deleted until the entire mailbox is empty (both queues).

Because ofthe mechanism used to create and delete overflow queues, when you create a
mailbox give it a queue large enough to handle all the messages you expect to be waiting
at the queue. However, if an overflow is possible, you might want to prevent the queue
from emptying, so that the operating system won't delete the overflow queue and then be
forced to create it again when another overflow oocurs.

5.7 RECYCLING BUFFERS

Because creating and deleting segments are slow operations, applications that use many
buffers can benefit from reusing buffers from a previously created Buffer Pool instead of
creatine buffers and deleting them as needed.

Programming Techniques 5-3

COIIVERTING iRMX@ I APPLICATIONS AND IMPROVING PERFORJVIANCE

You can recycle buffers by creating a Buffer Pool with a sufficient number of buffers
during the application's initialization. When you create the Buffer Pool, you have
complete control (within limits) over the number and size ofthe buffers available.

When a buffer is needed a task can invoke the REQUEST$BUFFER system call to
receive the token of one of the buffers from the Buffer Pool. This is faster than creating a
segment. When the buffer is not needed any more, the task can invoke
RELEASE$BUFFER to return the buffer to the Buffer Pool (this is faster than deleting a
segment).

5.8 CONSERVING LIMITED RESOURCES

With the iRMX I Operating System, programmers must often pay special attention to the
amount of memory in the system. Because the 8086 processor can access only one
megabyte of memory, memory is usually the scarcest resource in the system.

Under the iRMX II Operating System, programmers must still pay attention to the
amount of memory in the system. But, memory is no longer a scarce resource, because
the 80286 and 80386 processors can each access up to their full address range of memory
locations. Instead, the most limited resource is the number of entries in the global
descriptor table, which serve as tokens for iRMX II objects.

In an iRMX I environment, programs often veri! memory problems by examining the
condition code returned by each system call and looking for E$MEM conditions. In an
iRMX II environment, programs should check for both E$MEM and E$SLOT conditions.
The E$SLOT code is returned if there aren't enoush GDT slots to comnlete the
requested system call.

Build your iRMX II systems with as many GDT slots as possible. For systems with over
2MB of physical memory, allocating full-size GDT slots (8K slots that consume 128K bytes
of memory) seems a reasonable cost for the problems that the extra GDT slots can
eliminate.

5-4 Pmgramming Techniques

4.1 INTRODUCTION

This appendix contains complete programming examples that use iRMX II system calls.
You can compile, bind, and run these programs from the Human Interface yourself, or
you can use them purely as examples, to see hovr' to perform certain operaîions under the
operating system

You can also use the EXAMPLE 1 files as a starting point in developing your application
code. Using different parts of these files saves you from initially having to create the
source module, adding include statements, re-writing code that attaches the console, etc.

4.2 EXAMPLE 1 - SYSTEM PROGRAMMING CONCEPTS

Example 1 demonstrates some iRMX programming concepts by printing prompts to the
console screen and accepting input from the user. To accomplish this, the program uses
two tasks: the main program code the a second task called TASK2. The main program
code is the initial task and creates the second task TASK2.

The function of the main program code is the following:

. set up the programming environment by creating objects, the second task, etc.

o prompt the user for and capture keyboard input

. pass the captured input to TASK2

. exit with an error after receiving three user-supplied keystrokes.

The function of TASK2 is to receive user-supplied keystrokes from the main program
code and process them. The processing consists of printing the received keystroke to the
screen once every second.

Because thejob uses two tasks, each task can perform its function separately from the
other task. Communication and data passing between the main program code and
TASK2 is handled using some basic iRMX programming techniques.

Programming Techniques A-l

EXAMPLE PROGRAMS

The following sections show you where to locate the actual code in the iRMX file
structure, explain basic iRMX programming concepts used in the example, show how to
build the program, and show how to run it.

A.2.1 Program Source Code

The program source code and supporting files can be found in the Intel-supplied iRMX
file structure. The complete pathname for the source code files and related files is the
following:

/ rmx28 6 / deno /p 1m/ intro

Before attempting to understand this example, you should produce hard copies of the
source code files or have easy access to view them from a console screen.

Getting and Setting Terminal
Attributes

Creating Tasks

Cataloging Objects

A.2.2 Concepts

This example illustrates nine common iRMX programming concepts. The following list
briefly describes each of these concepts:

In-Line Exception Processing The processing of all errors resulting
from iRMX System Calls in your
application code rather than using the
default exception handler, which deletes
tasks that get errors.

Using separate files that contain PL/M-
286 data structure definitions and literal
definitions needed to make system calls.
Providing separate literal files, such as
these, relieves you from repeating data
structure and literal definitions
throughout modules.

Using iRMX System Calls to get the
current terminal attrihutes. After getting
and altering the attributes, you can use
another iRMX System Call to set them.

Using an iRMX System Call to create
additional tasks from an existing task.

Describing to the system where key
objects the job uses reside. Tasks can
easily share cataloged objects.

Using Literal Files

A-2 Prograrnming Techniques

Using Response Pointers During
Inter-Task Communication

Using Buffer Pools

Performing Screen Input/Output

Performing Simultaneous
Input/Output

EXAMPLE PROGRAMS

Instructing serving tasks where to
respond with information that signals the
completion of a requesting task.
Response Pointers allow serving tasks to
keep track of which requesting tasks they
are responding to.

Creating areas of memory for a job that
tasks can use as a common memory
resource. Once a buffer pool and its
buffers have been created, a[ì the system
has to do in order to use the memory is to
request and release buffers.

Reading and writing data to the physical
terminal screen.

Tasks performing I/O operations
independent of one another. For
example, one task may wait for terminal
input whiìe another task processes data
and writes it to the terminal.

4.2.2.1 In-Line Exception Processing

Inline exception processing provides a way for your application to handle errors
generated from system calls. The flexibility of the iRMX Operating System allows you to
determine how to process exceptions: processing them in-line or using the default
exception handler. This example demonstrates a method that lets you provide your own
exception processing. In order for you to provide your own exeeptiÒn processing, you
must do two things: cause the system to pass control to your exception handler routine
instead of built-in exception handler routines, and create your own exception handler
routine.

To get the operating system to pass control to your routine instead of a built-in routine
involves resetting the value of the current task's exception mode and coding your tasks to
call your exception handler routine.

This example uses a procedure called SET$EXCEF |ION in the file EXCEPT.P28 to
reset the exception mode to a value ofzero. A value ofzero telìs the operating system to
never pass control to built-in exception handler routines. lf you examine the beginning of
both the main program code and TASK2, you will see that the very first executable
statement is a call to the SET$EXCEPTION orocedure as follows:

Prograrnming Techniques A-3

EXAMPLE PROGRAMS

CALL se !$except lon(N0$EXCEPTIONS) ;

This call passes a zero value parameter (NO$EXCEPTIONS supplied from a literal file)
to the procedure. When SET$EXCEPTION executes, it calls
GET$EXCEPTION$HANDLER, which returns exception handler information to the
data structure addressed by except$info. The procedure then replaces the exception
mode with zero usins the followins statement:

except$ ln fo . mode = except$mode;

The procedure then calls SEfiEXCEPTION$HANDLER to reset the exception handler
information with the altered data addressed by except$info. By supplying a zero value for
mode in the data structure that describes exception information, you tell the system to
never pass control to the built-in exception handler routine (refer to the Extended |RMX II
Nuclew Systems Calls Manual for detailed information on these system calls)

Now that you have got the operating system not to call built-in exception handler routines,
you must code your tasks to either check for individual expected errors or to call your own
exception handler routine. This example uses a procedure called ERROR$CHECK in
the file EXCEPT.P28 as the exception handler routine. Notice that in the source code for
the main program code and TASK2, a call to ERROR$CHECK follows every system call.
The following code illustrates an example:

CALL rqsopen (co$conn, LTRITE$ONLY, 0, @status) .
CALL et ror$check(510,status) ;
na i l$box - rq$lookup $ obj ec t (CALLER, G(3, 'MBX') , INFINITE$I . IAIT,

@s tatus) ;
CALL error$check(520,status) ;
pool$tkn: rq$ lookup$ obj ec t (CALLER, @(6, 'BUFFER') , INFINITE$I4ÌAIT,

G s t a t u s) ;
CALL error$check(530,status) ;

The above code is from TASK2. Each time a system call is matle, a subsequent call is
made to ERROR$CHECK passing it a line number and a word containing the status from
the previous system call. The routine ERROR$CHECK tests the value of status and
returns to the calling task if it is zero (no error occurred). lf the value of status is not zero
(an error occurred), then ERROR$CHECK builds an error message, prints it to the
screen, and exits the job.

A-4 Programming Techniques

EXAMPLE PROGRAMS

NOTE
The line numbers passed as the first parameter in calls to
ERROR$CHECK have no implicit meaning. These numbers are simply
arbitrary numbers that can be associated with a system call. This
technique, allows you to easily find a system call that generates an error.

4.2.2.2 Use of Literal Files

Within the iRMX directory structure, you will find intelsupplied literal files. These files
are located in the directory /RMX286/INC and have a file extension of .LIT. Literal files
provide many data structure definitions used by iRMX System Calls and some extremely
useful lìteral definitions for PL/M-286 code. Including the appropriate literal files in your
program modules saves you the trouble of having to repeatedly enter the data structure
definitions manually in your source code and keeps your code independent of changes to
these structures between iRMX releases. Because the names used in literal definitions
are descriptive, your code becomes easier to understand. It is good programming practice
to get in the habit of using Intel-supplied literal files.

This example uses include statements to include various literal files in every source code
file. The following PL/M-286 statements are from the main program code in the file
DEMO.P28. These statements show how to include six literal files.

$ lnc lude (/ r rnx286l inc/e r ror . I i t)
$ include (r/rrnx2 86/inc/eornrnon. 11t)
$ incLude (/rmx2 86l1nclns texh . l ic)
$ l n c l u d e (/ r m x 2 8 6 l t n c l t s c r n . l i t)
$ i n c l u d e (/ r m x 2 8 6 l i n c / i a i o r s . l i t)
$include (/rnx286 / inc / Io. IiL)

Tables A-1 through A-4 show which Intel-supplied literal files are useful for which types of
system calls-

Table A-t Literal Files Helpful Wilh Nucleus Syslem Calls

Nucleus System Call Literal File

CREAfE$JO8 NSfEXH.LIT

GET$EXCEPTION$HANDLER NSTEXH.LIT

GET$IASK$TOKENS NGTTOK.LIT

GET$TYPE NGfTYP.LIT

SETSEXCEPTIONSHANDLER NSTEXH.LIT

Programming Techniques A-5

Table A-2 Literal Files Helpful With BIOS System Calls

BIOS Syst€m Call Literal Fil€

A$GETSCONNECTION$STAf US IAGTCS.LII
to.Lrr

AGETFILE$STAfUS IAGTFS.LIT
IFLTYP.LIT
to.LtT

A$OPEN ro.LtT
A$PHYSICAL$ATTACH$DEVICE to.LrT
A$SEEK to.LrT

A$SPECIAL TSCRN.LIT

EXAMPLE PROGRAMS

Table A-3 Literal Files Helpful With EIOS System Calls

EIOS Syst€m Call Lit€ral Fil€

CREATEIOJOB NSTEXH.LIT
IEXIOJ.LIT

E$CREATESIOSJOB NSIEXH.TIT

EXIT$IO9JOB IEXIOJ.LIT

GET$LOGICAL$DEVICE$SIATUS to.LtT
LOGICAL$ATTACHSDEVI CE to .LtT

SGETCONNECTION$STATUS ISGTCS.LIT
ro.L| l

SGETFILE$STATUS ISGTFS.LIT
IFLryP.LIT
to.LtT

S$OPEN ro.Lrf
S$SEEK to.LtT
S$SPECIAL ISIORS,LIT

TSCRN.LIT

Table A-4 Literal Files Helpful With Human Interface System Calls

Human Intertace System Call Lrteral File

CGEIOUTPUT$CONNECTION HGTOCN.LIT

CGETOUTPUT$PATHNAME HGTOCN.LIT

A-6 Programrning Techniques

EXAMPLE PROGRAMS

Aside from the literal files shown in Tables A-1 through A-4, two other important literal
files exist: COMMON.LIT and IAIORS.LIT. COMMON.LIT contains many literal
declarations commonly used in PL/M-286 programming. You should include this file in
all your PL/M-286 programs. IAIORS.LIT contains the structure for the I/O Result
Segment (IORS) returned in most BIOS System Calls. You should include this file in all
your PL/M-286 programs that make BIOS System Calls.

4.2.2.3 Gening and Setting Terminal Atlributes

Many new users have difficulty understanding how to set the desired attributes for a
terminal. Before you set the terminal attributes, you must first get the current attributes
by invoking the A$SPECIAL (BIOS) System Call or the S$SPECIAL (EIOS) System Call
with the spec$func parameter set to f$get$mode. The main program code illustrates both
these calls. The only visible difference between the two calls is the structure of the I/O
Return Segment used.

Refer to the main progtam code in the iile DEMO.P28. To set terminal attributes, this
code first sets the current terminal attributes bv callins A$SPECIAL as follows:

CALL rqaspecia l (c i$conn, SPECIAL$GET$TERM$DATA, €cern$at ts ,
r e a d $ m b x , G s t a t u s) ;

In this call, the literal SPECIALGETTERM$DATA specifies that we are getting
current terminal attributes. The pointer @term$atts tells what data structure to place the
attribute data into. The token read$mbx indicates the mailbox to which the IORS arrives.

The code then waits indefinitely until the I/O Result Segment arrives. The following
statement illustrates how the code waits:

lors$tkn - rq$receive$nessage (read$mbx, INFINITE$WAIT, NIL,
Gstatus) ;

The main code then checks to make sure that terminal data did in fact arrive by checking
the status ofthe I/O Result Segrnent. A zero indicates that the I/O operation was
successful.

Because A$SPECIAL and not S$SPECIAL was used to get the terminal information, we
must specifically delete the I/O Result Segment. It is okay to delete the I/O Result
Segment at this point because the current tcrminal data now resides in the data structure
term$atts. Deleting the I/O Result Segment frees that memory for other uses.

Programm ing Techn iques A-7

EXAMPLE PROGRAMS

The main program code next modifies two terminal attributes to cause no line editing and
no echoing of keystrokes to the screen, The code modifies these attributes using the
followins code:

te rD$at ts . connec t ion$ f lags - ((tern$atts. connect ion$ f lags
(Nor C$MASK$LINE$EDÌT)) oR 1)
csMAsK$ECHO;

AND
OR

This long assignment statement effectively uses AND and OR logic to alter the
least-significant three bits of the 16-bit connection$flags element of the term$atts data
structure. The literals C$MASK$LINE$EDIT and C$MASK$ECHO are equal to 3 and
4, respectively. Refer to the Extended |RMX II BIOS System Call Manual for detatled
information about A$SPECIAL and the data structure term$atts.

The use of the Iiterals, C$MASK$LINE$EDIT and C$MASKI$ECHO, defined in the
literal file TSCRN.LIT, facilitate the setting of the attributes by sparing you from having
to type in the correct 16-bit binary sequences. It also makes your program much easier to
understand, especially at a future date when you are trying to remember exactly which
attributes you were trying to set when you wrote the program.

The main program code uses the S$SPECIAL system call as shown below to write the
modified terminal attributes back to the file ci$conn (the physical terminal connection).

CALL rqsspecia l (c i$conn, S PEcIAL$s ET$TERM$ DATA, eterxo$at ts , NIL,
Gsratus) ;

Notice that with the S$SPECIAL call, it is not necessary to specifically delete the I/O
Result Segment. The operating system handles the task synchronization (the
RQ$RECEIVE$MESSAGE) and the IORS deletion for you.

In summary, to change terminal attributes, you must first get them using A$SPECIAL or
S$SPECIAL, alter them, and then set them again using either A$SPECIAL or
S$SPECIAL. If you use A$SPECIAL, you must delete the IORS resulting from the I/O
operation. Ifyou use S$SPECIAL, the operating system takes care of IORS deletion for
you.

NOTE
Although, this example uses both versions of the special call (A$SPECLA.L
and S$SPECIAL), no reason exists that you could not use one version
alone.

A-8 Pnrgramming Techniques

EXAMPLE PROGRAMS

4.2.2.4 Crealing Tasks

When writing an application, you will normally find that it takes several tasks to
accomplish thejob. Normally, you code separate tasks in separate files (modules) to ease
the maintenance of the tasks. Then, from the main program, you use iRMX System Calls
to create task objects for the individual modules the applìcation requires.

In this example, only two tasks exist: the main program code (in the file DEMO.P28) an<J
TASK2 (in the file TASK2.P28). Thus, in the main program code, TASK2 is created and
given a priority lower than that of the creating task (the main program code). Regardless
of the number of tasks your particular job may have, the principles for task creation
remain the same.

The following code shows how the main program code creates and assigns a priority to
TASK2:

t a s k - r q $ c r e a t e $ t a s k ((r q $ g e t $ p r i o r i t y (0 A L L E R , @ s t a t u s) - l) ,
@ t a s k 2 , s e l e c t o r $ o f (N I L) , N I L , 1 0 2 4 ,
0 , G s c a t u s) ;

CALL error$check(270, s tatus) ;

Imbedded in the CREATE$TASK System Call is the GET$PRIORITY System Call. The
GET$PRIORITY System Call gives the new task a priority one level lower than that of
the task creating it (the higher the numeric value the lower the priority). It is also
possible to assign an absolute priority if you so desire.

The data segment parameter of the CREATE$TASK call is set to SELECTOR$OF(NIL),
which indicates that the task sets up its own data segment.

The stack pointer parameter is set to NIL, which indicates automatic stack allocation.
Automatic stack allocation means that the NUCLEUS dynamically creates the stack for
the new task. The stack size of the new task has been set to 1024 bytes (the next
parameter), which is a fairly arbitrary number. If a task will be making NUCLEUS
System Calls, the stack size should be at least 300 bytes. If you assign a stack size which is
too small, the operating system informs you with a General Protection fault during the
task's execution.

Finally, the task flags parameter has been set to zero, which designates that the new task
has no floating-point instructions.

For detailed information on the system calls described in this section, refer to the
Extended LRMX II Nucleus System Calls Reference Marutal.

Pmgrammlng Techniques A-9

EXAMPLE PROGRAMS

A.2.2.5 Cataloging Objects

It is possible to catalog the key objects of a job. By cataloging objects, you allow other
tasks the ability to look up the objects they need for processing at run time. Also, you grve
modules a higher degree of independence from other modules. Another useful reason to
catalog the key objects is to provide you with a helpful debugging tool. Ifyou are using
Soft-Scope 286 or the System Debugger to debug your programs, the advantage of having
your objects cataloged is that you have a way to correlate TOKEN values with the names
you have assigned in your program. The VIEW DIRECTORY command displays all
cataloged objects and their respective character strings.

A-10 Programming Techniques

EXAMPLE PROGRAMS

This example catalogs several objects. The following statements from the main program
code in the file DEMO.P28 show how to use iRMX System Calls to catalog the objects
described as MBX, SEMAPHORE, BUFFER, and TASK2.

CALL rq$cata log9obj ect (CALLER, ual l$box, €(3, ' l ' fBX') , @status) ;
CALL error$check(220, s tatus) ;
senaphore - rq$create $ s emaphore (0, 3 , FIFo$QUEUING, @staLus) ;
CALL error$check (2 30 , s catus) ;
CALL rq$caÈalog$obj ect (CALLER, sernaphore, @(9, 'SEMAPHORE') ,

G s t a t u s) ;
CALL error$check(240, sratus) ;
p o o l $ t k n ' c r e a t e $ b u f $ p o o l (1 8 , 1 8 , 0 , S I Z E (b u f f e r) , G s t a t u s) I
CALL error$check(250,scacus) ;
CALL rq$cara log$obj ec t (CALLER, pool$rkn, G(6, ' ,BUFFER') , estaÈus) ;
CALL error$check(260, s tatus) ;

/* By including Èhe llne $compac t (expo rts task2)
ln che subsys. lnc f i le r , re have forced cask2 tó be
large nodel and it therefore creates its o\.n daLa
segnent . l t a lso prèvènts us f rón get t lng a warning
when we use @task2 as the Polnter to the starllng
address for the new task.

task - rq$create$task ((rqgetpr ior i ty (CALLER,Gstatus) - 1) ,

@ t a s k 2 , s e l e c t o r $ o f (N I L) , N I L , 1 0 2 4 , 0 ,
@status) ;

CALL error$check(270, s tatus) ;
C A L L r q $ c a t a l o g $ o b j e c t (C A L L E R , t a s k , Q (5 , ' T A S K 2 ') , G s t a t u s) ;
CALL error$check(280, s tatus) ;

In each of the above four calls to CATALOG$OBJECT, the first parameter indicates
whose job object directory the object will be cataloged under. The token CALLER
indicates to use the calling job's (main program code) object directory. The second
parameter tells which object is going to be cataloged. The third parameter gives the
object a name to be cataloged under. And, the fourth parameter is a pointer that points

to the condition code generated by the system call.

For more detailed information about the system call CATALOG$OBJECI, refer to the
Extended LRMX II Nucleus System Calls Reference Maruul.

Programming Techniques A-l r

EXAMPLE PROGRAMS

A.2.2.6 Using a Response Pointer During lnter-Task Communication

When you design an application, tasks need to communicate with one another. For
example, a serving task may need to inform a requesting task that a process is done, or
that it has received some information. Many times, more than one task needs to
communicate with the same task. For example, perhaps a requesting task sends
information to several serving tasks, and then needs to be notified when each of the
serving tasks are done processing data. iRMX System Calls allow you to SEND and
RECEIVE data between tasks and keep track of inter-task communication.

The main program code in the file DEMO.P28 demonstrates how a task sends an object
to another task (TASK2). The following code from the main program code shows the
iRMX Svstem Call SEND$MESSAGE:

D 0 t - 1 t o 3 ;
b u f f $ t k n - r q $ r e q u e s t $ b u f f e r (p o o l $ t k n , s Í z e (b u f f e r) , G s t a t u s) ;
CAII, error$check (2 90 , status) ;
buf fer - wr i . te$read(@message$2, SIZE (message$2) , INFINITESÍ. /AIT,

@ s t a t u s) ;
CALL error$check(300, s tarus) I

/ * A semaphore is belng passed as
thè exchange to lrhich the response should be sent,

CAI I rq$send$nessage (rnal l$box, buf f$tkn, semaphore, @status) ;
CALL error$check (310 , stacus) ;

END :

/* now waiÈ for thlee responses so thaÈ we know che other task
has processed thè data.

unlÈs - rq$rece ive$uni ts (sernaphore, 3, INFINITE$WAIT, @srarus) ;
CALL error$check(320,status) ;
bytes$wr i t * rq$s$wr l te$nove (co$conn, @message$3, s ize(rnessage$3),

Gsratus) ;
CALL error$check(330,status) ;

In the above code, the main program loops three times. Each time through the loop, the
main program code sends TASK2 the object buff$tkn. In this example, the object sent is a
user-supplied keystroke obtained through the system call WRITE$READ just prior to the
SEND$MESSAGE call. After sending the keystroke, the main program code returns to
the top of the loop and calls WRITE$READ to wait for another keysrroke.

A-12 Programming Techniques

EXAMPLE PROGRAMS

Every time TASK2 receives an object sent from the main program code, it responds by
sending a unit to the object SEMAPHORE. TASK2 knows exactly where to send the unit
because when the main progam code issued the SEND$MESSAGE call, it passed the
token for SEMAPHORE to the mailbox. Thus, when TASK2 does the
RECEIVE$MESSAGE call, the token for SEMAPHORE can be kept in TASK2's version
of the variable SEMAPHORE (SEMAPHORE is not a global variable). This technique
makes use ofthe response and response$ptr parameters for the SEND$MESSAGE and
RECEM$MESSAGE calls, respectively. By speciling where TASK2 is to respond, the
main program code ensures that TASK2 responds to the correct task. In applications
where more than two tasks exist, this request/response technique is critical.

Pmgramming Techniques A-13

EXAMPLE PROGRAMS

TASK2 demonstrates how a task receives objects and can send units to a semaphore, thus
ensuring inter-task communication. The following code is from the procedure TASK2 in
the file TASK2.P28:

Using the RECEIVE$MESSAGE call, TASK2 waits at the previously created and
cataloged mailbox to receive the object token buff$tkn from the main program code. The
second parameter (INFINITE$WAIT) indicates for TASK2 to wait forever until the
object arrives. The third parameter (@semaphore) is the response$ptr parameter. This
parameter telÌs the operating system where to put the response token passed in from the
SEND$MESSAGE call.

After receiving the object, TASK2 processes it. The processing consists of printing out a
message to the console that processing is beginning, performing some housecleaning on
the buffer pool (refer to Section A.2.2.7 for information on buffer pools), and updating
the unit count for SEMAPHORE.

buf f2$tkn - rq$recefve$message (nai l$box, INFINITE$WAIT,
@senaphore, Gstatus) ;

r . r r lce$nbx * rq$creace$nai lbox (FIFO9QUEUING, @status) ;

D0 FOREVER i
IF status - E$OK THEN
D O ;

CALL rqawrí te (co$conn, @nessage, s ize(nessage) ,
v r l t e $ m b x , G s t a t u s) ;

CALL errorgcheck(540,status) ;
actual - rq$wal t$ io (co$conn, wr í te$mbx, INFINITE$WAIT,

Gs tatus) ;
C A L L e r r o r $ c h e c k (5 5 0 , s t a t u s) ;
IF buf f$tkn o se lec tor$of (NIL) THEN
D O ;

CALL rq$re lease$buf fer (poo1$ tkn, buf f $ tkn, @s tatus) ;
CAII error$check (560 , s tatus) ;

END ;

buf f$rkn - buf f2$tkn,

CALL rqgsend$uni ts (senaphore, l , @status) ;
CALL error$check(590,status) ;

END ;
ELSE IF status o E$TIl,tE THEN

CALL error$check(600, s tatus) ;

A.l4 Pmgramming Techniques

EXAMPLE PROGRAMS

Updating the unit count for SEMAPHORE is accomplished through the system call
SEND$UMTS. In this call, TASK2 sends one unit to the object pointed to by the local
variable semaphore. Recall that the local variable semaphore contains the token for the
object SEMAPHORE created in the main program code. After updating the unit count,
TASK2 begins to print the keystroke repeatedly to the screen, waiting for another object
to be received from the main program code.

When the main program code sends the third and final keystroke to TASK2, it examines
the number of units in the object SEMAPHORE. The followirg statement performs this:

unlts - rq$rece ive$uni te (semaphore , 3 , INFINITE$WAIT , gsÈatus);

The call to RECEIVE$UNITS waits infinitely until three units have arrived at the object
SEMAPHORE. When TASK2 has sent over the third unit usins SEND$UMTS, the
main program code conlinues processing.

In this example, the processing is immediate ancl simple. The inter-task communication
technique shown here would be very valuable in complex processing such as when one set
of data sent to a second task takes longer to process than a second set.

In summary, the system calls SEND$MESSAGE, RECEM$MESSAGE,
SEND$UMTS, and RECEIVE$UNITS can be used to pass data and provide needed
synchronization between tasks. In applications where more than two tasks exist, you can
use the response parameter of SEND$MESSAGE and the response$ptr parameter of
RECEIVE$MESSAGE to ensure that tasks respond to correct requesting tasks.

A.2.2.7 Using Buffer Pools

Buffer Pools provide your system with an available shared resource of fixedlength
segments of memory that can be used, as needed, by any task in your job without having
to repeatedly create or delete memory segments. These buffers can be used within a task,
passed between tasks, and returned to the Buffer Pool when processing is complete, so as
to be available for the next task that needs the memory. Because the allocation of
memory is a very slow process relative to other system calls, it is good programming
practice to create your Buffer Pools at the beginning ofyourjob. Once the Buffer Pool is
created, it is simply a matter of requesting and releasing buffers within the Buffer Pool to
make use of the memory.

Both the main program code and TASK2 make use of Buffer Pools. The main program
code initially creates the the Buffer Pool and requests buffers. TASK2 releases buffers
back to the Buffer Pool. The relationship illustrated between the main program code and
TASK2 is one of a supplier task and a consumer task. The main program code is
requesting the buffers (supplying) from the Buffer Pool, while TASK2 is releasing
(consuming) buffers back to the Buffer Pool.

Programming Techniques A-r5

EXAMPLE PROGRAMS

First, let's look at the code that creates the Buffer Pool. The main program code uses the
following code to make a call to the procedure CREATEBUFPOOL:

pool$tkn - creaÈe$buf$pool (18, 18, 0, SIZE(buf fer) , @status) ;
CALL ètror$check (250, status) ;
CALL rq$cata log$obJect (CALLER, pool$tkn, €(6, 'BUFFER') , @status) ;
CALL error$check(260, status) ;

This call passes parameters that define the buffer pool. The token pool$tkn is used to
reference or identif the Buffer Pool. The next two parameters (18 and 18) indicate the
maximum number of buffers in the pool and the initial number of buffers. The parameter
"SlZE(buffer)" returns the value of one. Thus, the size of each buffer created will by only
one byte long. Finalìy, "@status', is the token that points to the word containing the status
of the call.

Notice that after the main program code calls CREATEBUFPOOL, it makes a system
call to CATALOG$OBJECT to catalog the newly created Buffer Pool.

The Buffer Pool is actually created in CREATEBUFPOOL in the file CRBPOOL.P28.
The following code shows how the Buffer Pool is created using iRMX System Calls:

A-16 Pmgramming Techniques

EXAMPLE PROGRAMS

createbufpool : PR0C EDURE (nax_bufs , init_nun_bufs, attrs, sizè,
sÈatus_ptr) TOKEN PUBLIC ;

DECIARE ,/* Paraneters *,/

nax_bufs I.IORD, /* naxlnun mlnbe r of buffers ln
buf fer Pool * /

init_num_bufs WORD, /* inÍtlal nurnbe r of buffers in
pÓol */

attrs !IoRD, /* buffer pool creation
attÍibutès */

slze woRD, /* síze of buffers in buffer

PooL */
status_pÈr POINTER i /* exceptlon pointer */

DECIARE /* Local Pararìeters */

scatus BASED status Dtr l,loRD
buf_poo1

buf_tok

ToKEN, /* buffer pool cornplete
wlth buffers */

ToKEN, /* buffer token *,/
llORD; /* locaL lndex */

DECLARE l* L|terals */

BFTAGS LITERALLY '0108' ; / * s ing le buf fer , don ' t
release */

buf_pool - rq$ create$buf fer$pool (nax_bufs , a t t rs , s tatus-Ptr) ;
CALL error$check(10, s tatus) ;
D0 1- I to ln i t_mln_bufs;

buf_tok : rq$creaÈe$segment(s ize, s taÈus_ptr) ;
CALL error$check(20, s tatus) ;
IF status o E$oK THEN

RETURN sel -ector$of (NIL) ;
CALL rq$re leas e$buffer (buf_pool , buf_tok, BFIAGS, status-ptr);
CALL error$check(30, s ta tus) ;
IF s tatus o E$oK THEN

RETURN selector$of (NlL) ;
END ;
RETURN buf_poo1 ;

END createbufpool ;
END crbpool ;

Programming Techniques a-17

EXAMPLE PROGRAMS

In order for the procedure CREATEBUFPOOL to create the Buffer Pool, several
sysrem calls are used. First, a call to cREATE$BUFFER$POOL is made. This call
creates a Buffer Pool in which 18 buffers are allowed and no data chaining between the
buffers can occur. Next, the routine loops 18 times (one for each buffer allowed in the
Buffer Pool). Each time through the loop, system calls are made to
CREATE$SEGMENT and RELEASE$BUFFER. Each time these calls are made, a
one-bye memory segment is created and released for use to the Buffer Pool. When the
loop finishes, 18 individual one-bye buffers reside in the Buffer Pool ready for use by any
task.

In order to use buffers from the Buffer Pool, the main program code and TASK2 must
request and release buffers. Recall that when the main program code was involved in its
loop to send user-supplied keystrokes to TASK2, that the object being sent was a buffer.
Let's look at that code again to see how it requests a buffer from the Buffer Pool and
waits for data to arrive in it.

D O f - 1 t o 3 ;
buf f$tkn * rq$ reques t$buf fer (pool $ tkn, s lze(buf fer) ,@status) ;
CALL error9check (290 , stacus) ;
buf fer - wr l te$read (@rnessage$2, SIZE(message$2),

INFINITE$I.IAIT , Gs tatus) ;
CALL error$check(300,status) ;

/ * A semaphore ls belng passed as
Èhe exchange co which the response should be senÈ.

CALL rq$ s end$rne s sage (rnai l$box, buf f$tkn, semaphore, Gstatus) ;
6ALL error$check (310 , s tatus) ;

END :

The first statement in the loop makes a system call to REQUEST$BUFFER to return
token for the buffer. The program then waits indefinitely for the user to enter a keystroke
using the WRITE$READ system call. When a key is pressed, the character goes into
buffer, which is a variable BASED on buff$tkn. Thus, the character is captured in the first
available buffer from the Buffer Pool. The main program code can now proceed to send it
to TASK2 throush the mailbox MBX.

A-18 Programming Techniques

EXAMPLE PROGRAMS

After TASK2 receives the buffer, it releases the buffer so it is not sitting idle. The code
below shows how TASK2 releases buffers from the Buffer Pool:

DO;
CALL rqawr i te (co$conn, Gmessage, s ize(xnessage) , l r r i tegmbx,

Gs tatus) ;
CALL error$check(540,stetus) ;
acEual - rq$wal t$ io (co$conn, wr Í te$nbx, IN! ' INITE$WAIT,

@srarus) ;
CALL error$check(550 , s tatus) ;
IF buf f$tkn o sè lec rÒr$of (NIL) THEN
D O ;

CALL rq$re lease$buf f er (poo1$ rkn, buf f $rkn, 0, @s rarus) ;
CALL error$ check (560 , s tatus) ;

END ;

buf f$rkn - buf f2 $ tkn ,

CALL rq$send$uni ts (senaphore, 1, Gstatus) ;
CALL error$check(590, s tatus) ;

END ;

At this point, TASK2 has already received the buffer at the mailbox. The loop above is
performed every time the main program code sends over a keystroke. The first time
through the loop, the variable bufflitkn is equal to selector$of(Ml-), which is zero. Thus,
TASK2 skips around the code that releases the buffer back to the Buffer Pool. The
reason this code is skipped is because the character needed is still in the the buffer and
TASK2 must get it. The statement "buff$tkn = buff2$tkn" captures the data from the
buffer into another area of memory local to this task. TASK2 is now free to later release
the buffer since it is really no longer of any use. TASK2 continues processing the
keystroke until another keystroke is received.

The second and third times through the loop, TASK2 releases the buffer used during the
previous trip through the loop by calling RELEASE$BUFFER. The code releases the
buffer before capturing the currently received keystroke. The parameter buff$tkn
contains the token that indicates which buffer to release (the same buffer requested by
the main program code for the previous loop pass). After releasing the buffer, buff$tkn
can then be set equal to buff2$tkn, the token of the buffer containing newly arrived
keystroke.

In summary, it is the responsibility of the calling task to create and set up Buffer Pools
used between tasks that share data. Once the Buffer Pool has been established. the
calling task must request a buffer, get data into it, and pass the buffer to the serving task.
After receiving the buffer, the serving task must secure the data and release the buffer
back to the Buffer Pool for possible use bv other tasks.

Pmgramming Techniques A-19

EXAMPLE PROGRAMS

For detailed information on the system calls used with Buffer Pools, refer lo the Extended

\RMX II Nucletu Syuem Calls Reference Marunl.

A.2.2.8 Methods ol Screen Input/Output

During an application that involves keyboards and terminal screens, you will probably find

it necessary to be able to read and write information to and from the console screen. This

example shows two of three methods that you can use to perform this type of I/O.

A very simple type of I/O is demonstrated through a Human Interface System Call. Thrs

call is shown in the file DEMO.P28 in the procedure CLEAR$SCREEN. The following
code shows the orocedure:

clear$screen: PRocEDURE;

DECISRE i IIORD ,
c r $ l f $ s t r (*) B Y T E D A T A (2 , c R , L F) ;

D O i - 1 r o 2 5 ;
CALL rqcsendeoresponse (NIL, 0, @cr$l f$st r , Gstatus) ;

END ;

END c lear$screen;

In the above procedure, the call to C$SEND$EO$RESPONSE is used to clear the screen.
This procedure calls C$SEND$EO$RESPONSE 25 times. Each time the call is made, the
system sends a carriage return and line feed to the terminal. The parameter ML
indicates that no response is expected back from the user. Thus, the screen is cleared.

This method of I/O is simple and quick. Using this call, you can also cause your program
to wait and receive a response from the terminal. To receive a response, provide
appropriate values for the first two call parameters.

Refer to the Extended |RMX Human Inteface Svstem Calls Manual for more information
on this system call.

A-20 Programming Techniques

EXAMPLE PROGRAMS

The second and third methods of terminal I/O involve using BIOS System Calls. Borh
methods also require that you establish connections that can be used to write to and read
from the terminal. The following statements from the main program code in the file
DEMO.P28 show how to establish these connections:

The above code creates a new physical file and its connection ibr terminal output :CO:
and creates a connection to the existing terminal input file :Cl:. After creating the
connections, the program then opens the :CO: file as WRITE$ONLY and the:CI: file as
READ$ONLY. Now, whenever the application needs ro perform terminal output, it
writes to co$conn. And, whenever the applìcation wants to read from the terminal, it
reads from ci$conn.

A second method of I/O that this example shows is demonstrated using the following
code from the procedure WRITE$READ in the file DEMO.P28:

CALL rqawr iEe (co$conn, msg$ptr , rnsg$size, wr i re$nbx, Gstatus) ;
CALL error$check(2000,status) ;
ac tual - rq$wai t$ io (co$conn, wr i te$rnbx, INFINITE$WAIT, @sratus) ;
CALL error$check(2010, s ta tus) ;

The above code writes a message to the terminal. The call to A$WRITE sends the
message addressed by msg$ptr to the screen. After the I/O is performed, the system
returns an I/O Result Segment (IORS) to the mailbox write$mbx. The IORS contains
information about the previous I/O call. Next, a call to WAIT$lO is made. This call
returns the actual number of bytes written in the previous A$WRITE call. Notice that the
time specified to wait for WAIT$IO to return data is indefinite. Thus, when data does
arrive, the procedure knows that the I/O operation has completed. The call WAIT$IO
also performs one other convenient operation for the programmer -- it recycles the IORS
for A$READ, A$WRITE, and A$SEEK calls and deletes the IORS for all other BIOS
calls. The user does not have to specifically perform the deletion.

c o $ c o n n - r q $ s $ c r e a t e $ f i l e (@ (4 , ' : C 0 : ') ,
CALL error$check(100 , s tatus) ;
c i $ c o n n - r q $ s $ a È t a c h g f i . l e (G (4 , ' : C I : ') ,
CALL èrror$check(110, s tatus) ;
CALL rqsopen (co$conn, WRITE$ONLY, 0,
CALL error$check(120 , s tatus) ;
CALL rqsopen (c i$conn, READ$ONLY, 0,
CALL error$chèck (130 , s tatus) ;

Gs tatus) ;

Gstatus) ;

Programming Techniques A-21

EXAMPLE PROGRAMS

A third method of I/O (not demonstrated in this example) that can be used is very similar

to the second example above. This method also involves using read and write system calls
to the previously defined files :CO: and :CI:. With this method, however, no subsequent
call is made to WAIT$IO. Because no call is made to WAIT$IO, the programmer must
wait at the mailbox designated for the IORS, extract information from the mailbox about
the I/O operation, and then delete the IORS.

For more information about the calls used to perform terminal I/O, refer fo the Extended
.RMX II EIOS System Calk Manual aÍd rhe Extended |RMX II BIOS System Calls Marutal.

A.2.2.9 Simultaneous Input/Output

The final concept that thís example demonstrates is simultaneous Input/Output. That is,
one task can be performing or waiting for input while another task is processing or
performing output.

Once the initial job environment is established, the function ofthe main program code is
to collect three keystrokes from the user. As shown before, the main program code
accomplishes this function using the following program loop:

D 0 l - 1 t o 3 ;
buf f $ ckn - rq$request$buf fer (pool$tkn, s ize (buf fer) , QsLatus) ;
CALL error$check (290 , status) ;
buf fer - wr i te$read (Gmessage$2, SIZE(nessage92),

INFINITE$I^IAIT, es tatus) ;
CALL error$check (300 , status) ;

/ * A senaphore is being passed as
the exchange to whlch the response should be sent.

CALL rq$send$message (nai1$box, buf f$tkn, senaphore, €stetus) ;
CALL error$check (310, s tatus) ;

END ;

As shown above, the main program code waits for the keystroke. If the user does not
enter one, the program continues to wait virtually forever. Each time a keystroke is
provided, the program "wakes up" and processes it by sending it off to TASK2. After
sending the keystroke, the program resumes waiting for another keystroke.

A-22 Pmgramming Techniques

EXAMPLE PROGRA,MS

When TASK2 receives the keystroke, it performs some processing such as releasing the
buffer the data arrived in and completing its half of some inter-task communication.
After this initial processing, TASK2 writes the received keystroke to the terminal at the
rate of one character per second. TASK2 continues to write keystrokes until it receives
another one. The following code shows how TASK2 indefinitely prints the current
keystroke and waits for the next one:

CALL rqawr i te (eo$conn, bui ld$ptr (buf f$ckn,0) , 1 , wr i te$mbx,
@status) ;

CALL error$check (610 , s tatus) ;
actual - rq$wai t$ lo (co$conn, wr l te$rnbx, INFINITE$I ,JAIT, @status) i
CALL error$check(6 20 , s tatus) ;

buf f2$tkn - rq$rece ive $ne s sage (nai l$box, 100, @senaphore,
Gs tatus) ;

In the above code, the first four lines aocomplish writing the contents ofthe buffer from
the Buffer Pool out to the screen. The last system call to RECEIVE$MESSAGE waits for
one second at the mailbox mail$box for the arrival of the next buffer (the next keystroke).
If one second elapses, control loops up and eventually returns to the first four statements
that again output the keystroke to the screen. If the next buffer arrives at the mailbox
before the second elapses, TASK2 begins processing the new keystroke at the top of the
infinite loop.

As can be seen from the timing of the I/O from the two tasks, the main program code is
clearly waiting for, receiving, and processing keystrokes at the same time that TASK2 is
writing the previous keystroke to the terminal and waiting to receive the next one. Thus,
input from the terminal and output to the terminal can be occurring in two separate tasks
independent of one another.

A.2.3 Compiling and Binding the Code

Along with the source code files are t$r'o files you can use to compile and bind the job.

The file COMPILE.CSD compiles the source code into object modules. The file

DEMO.CSD binds the job into an executable program named EXAMPLE.

Programming Technlques L-23

EXAMPLE PROGRAMS

To compile the example, enter the Human Interface command SUPER and supply the

appropriate password. Running under SUPER gives you all the needed file access rights
to run the example. Next, enter the following command from the directory that contains
the example's files:

This command executes the submit file COMPILE.CSD. This file initiates the
compilation of all the jobs source code files. After compilation, you should have one
object file for each source code file in the job.

To bind the example, enter the following command:

This command executes the submit file DEMO.CSD. This file binds the example and
places the executable program in the file EXAMPLE in the current default directory.

NOTE
Ifyou wish to generate the example as another user, create new directory,
copy the example's files to the new directory, move to that directory,
submit COMPILE.CSD, and submit DEMO.CSD. Generating the
example from another directory allows you to alter source code, while
keeping the original version intact.

4.2.4 Running the Example

You should now have a file called EXAMPLE that you can execute. To run the example,
tvDe its name as follows:

A-24 Pmgramming Techniques

EXAMPLE PROGRAMS

After typing the filename, the example prompts you with the following message:

At this point, the example is executing code in the PROMPTANDWAIT procedure in
the file DEMO.P28. The example is counting down from 60, waiting for you to press a
key to start things going. The string <lm> in the previous screen is the decrementing
count. To continue, press a key. After pressing any key, the example clears the screen
and prompts you with the following message:

Please h i t a key which wi l l be for l rarded to task2 for processing.

Let's assume you enter the letter X for the first "counted" keystroke. The example reads
the X from the terminal and passes it on to TASK2. TASK2 "wakes up" and prints out the
following message to the screen:

TASK2 PROCESSING
Please h i t a key which wi l l be forwarded to cask2 for processing

' . .

The X characters that TASK2 prints to the screen continue to appear at the rate ofone
per second. The character will repeat indefinitely until you enter another keystroke.
Also, notice that the prompt to enter another keystroke is buried in the middle of
TASK2's processing message and the string of letters that it displays. A close examination
of the main program code and TASK2 show the synchronization used to time the output
of these tasks. The tasks use a semaDhore to achieve task communication.

1RMX II PLIH Exanple, V3.0
Copyr ight 7981/L988 Inte l Corporat ion

Welcorne to the PL/,! Demo Program!

At the prompt you wi l l be g iven 60 seeonds to h i t any key.
If yÒu do not hlt a key thè demo vlll continue anway.
You nay h l t an "E" i f you wish to ex iÈ Èhe prograu.

You now have (xx) seconds left to hic a key.

Pmgramming Techniques A,-25

EXAMPLE PROGRAMS

Entering the next two keystrokes conclude the example. The following output assumes
you enter the characters Y and Z:

TASK2 PROCESSING Y
Please h l t a key which wl l l be forwarded to task2 for processlng

. . . .
îASK2 PROCESSINC Z

Thls concludes the PL/M Demo Program.

This vould be a good time to exanine the program code to see hov
these features work.

l . le wi I I no ' , r ex i t by generacíng an error .

INTERNAL ERROR AT il 340 STATUS : QQ23: E$SUPPORT

After you enter the final keystroke, the main program code recognizes that you have
entered three characters. This fact signals the code to end the program. Notice that the
main program code ends the program before TASK2 can begin printing the third
character to the console screen.

4.3 EXAMPLE 2 . TASK COMMUNICATION

The second example is a simple one that shows one method that two tasks can use to
communicate with each other. The example is written in PLIM-286 and can be invoked
by the operator from the Human Interface level.

A.3.1 Program Source Code

Figures A-1, A-2, and A-3 list the source code of this example. This example includes
three tasks: an initialization task (called INIT) that creates the other two tasks and a
mailbox, and two tasks (called ALPHONSE and GASTON) that exchange messages via
mailboxes. The next few paragraphs discuss how these tasks operate.

The example runs when invoked at the Human Interface level from the keyboard. The
task called IMT runs first, creating a mailbox that it catalogs in the root directory under
the name "master.' It creates the tasks GASTON and ALPHONSE. and then susDends
itself.

A,-26 Pmgramming Techniques

EXAMPLE PROGRAMS

When GASTON receives control, it gets the token for the mailbox created by INIT (by
looking up the name "master" in the root job's object directory). It then creates a segment
(in which it will place a message) and a response mailbox (to which ALPHONSE will send
a reply). Next it goes into a loop in which it places a message in the segment (after
displaying it on the screen), sends the segment to the master mailbox, and waits at the
response mailbox for a reply.

When ALPHONSE receives control, it too gets the token for the mailbox created by IMT
(again, by looking up the name in the root job's object directory). It then goes into a loop
in which it waits at the mailbox for a message, checks to see if the token it received is a
segment, and if it is, places its own message in the segrnent (after displaying it on the
screen), and sends the segrnent to the response mailbox.

By using the two mailboxes, the tasks ALPHONSE and GASTON are synchronized.
GASTON sends a message to the first mailbox and waits at the second one before
continuing. ALPHONSE waits at the first mailbox. When it receives a message, it sends
a reply to the second mailbox and waits at the first for another message. This cycle
continues for 15 messages.

After sending its fifteenth message, GASTON drops out of the loop. lnstead of sending a
segment to the master mailbox, GASTON tJisplays a final message to the screen and sends
the token for a task (the token for the INIT task) to the mailbox. When ALPHONSE
receives this token and finds it is not a sesment, ALPHONSE drops out of its loop and
deletes itself.

To finish the processing, GASTON causes the INIT task to resume processing
(remember, the INIT task suspended itself earlier). When INIT takes over, it deletes
both offspring tasks and issues an EXITIOJOB system call to return control to the
Human Interface level.

In this example, each of the three tasks are contained in separate files. The procedures
for compiÌing and linking assume that source files are called INIT.P28 (shown in Figure
A-1), ALPHONSE.P2S (shown in Figure A-2), and GASTON.P28 (shown in Figure A-3).

a-27Pmgramming Techniques

EXAMPLE PROGRAMS

$compact
$debug
i n i t : D O ;

DECIARE token
DECIARE fi fo
DECIARE E$OK
DECIARE self
DECIARE task$priority
DECIARE call lng$task

LITERALLY
LITERALLY
LITERALLY
LITERALLY
BYTE ;
TOKEN ;
TOKEN ;
TOKEN ;
WORD ;
TOKEN ;
TOKEN ;
TOKEN ;
POINTER;
POINTER;
WORD EXTERNAL;
WORD EXTERNAL;
POINTER;
I,IORD ;
WORD ;

,SELECTOR' ;

, 0 , ;
, 0 , ;

/ * An error has occurred

/* Exi t

Figurc A-1. Example PLIM-286 Application (INIT)

DECTARE ca l l ing$ tasks $j ob
DECIARE nastersrnbox
DECIARE status
DECIARE init$Èask$token
DECI-ARE gas Èon$ task$ token
DECIARE alphonse$ task$ token
DECIARE alphonse$ s tart$add
DECIARE gas ton$ start$add
DECI^ARE gaston$ds
DECIARE alphonse$ds
DECIARE stack$po inter
DECLARE s tack$s 1z e
DECIARE task$flags

gASTON: PROCEDURE EXTERNAL;
end gaston;

alphonse: PRoCEDURE EXTERNAL;
Y U d r P r r u r ' 5 c ,

$ inc lude (/ r rnx286/ inc/nuclus. ext)
$ i nc lude (/ rux286 / inc / e ios. ext)

e x i t :
PROCEDURE PUBLIC;

lF status o E$OK THEN
CAUSE$INTERRUPT(3) ;

END ;

A-28 Pmgramming Techniques

EXAMPLE PROGRAMS

cal l ing$tasks$j ob : S ELECToR$oF (NIL) i , / * Di rectory in which to x /

/* catalog obj */.
ca l l ing$task : SELECT0R$0F(NIL) ; / * Task whose pr ior i ty wi l l * /

, / * be Sot ten * /
gas ton9 s tar t9 add - @gaston; / * SeC up star t addresses * /

,/* for tasks * /
a lphonse$ s tar t$ add - @alphonse;
stack$pointer : NIL; , / * Values for creat ing tasks * , /
S E a C K ì S I Z e - l t 4 H ;

t a s k $ f l a g s - 0 ;

in i tg task$coken - RQ$GET$TASK$TOKENS (/ * Cet token for in i t task * /
s e l f ,
Gs tatus) ;

IF status o E$OK THEN /* An erroî has occurred */
C A L L e x i t ;

CALL RQ$ CATALOC$OBJ ECT (/* Catalog task token in */
c a l l i n g S t a s k s $ j o b . / * d i r e c l o r y o f c a l l i n g * /
i n i t $ t a s k $ t o k e n , , / * t a s k ' s j o b * /

@ (4 , ' i n i t ') ,
@s tatus) ;

IF scaÈus o E$oK THEN /* An error has occurred * /
CALL ex i t ;

master$mbox - RQ$ CREATE$MAILBoX (/* Create mailbox tasks use */
f i fo , , / * to pass messages. * /

@status) ;

lF s tatus o E9OK THEN /* An error has occurred * /
CALL ex i t ;

CALL RQ$ CATALOG$OBJ ECT (/* Catalog mailbox in */
ca l l ing$tasks$job, / * d i recxory of ca l l Íng * /
m a s C e r $ m b o x , / * t a s k ' s j o b * /

G (6 , ' m a s t e r ') ,
@status) ;

IF s tatus o E$oK THEN /* An error has occurred * /
C A L L e x i t ;

task$pr ior i ty - RQ$GET$PRIORITY (, / * Cet pr ior í ty of ca l l ing * /
c a l l i n g $ t a s k , / * t a s k * /

Gs tatus) ;

IF s tatus o E$OK THEN /* An error has occurred * /
CALL ex i t :

Figure A-1. Example PL/M-286 Application (INIT)

(continued)

Pmgramming Techniques A-29

EXAMPLE PROGRAMS

task$pr ior i ty - task9Pr ior i ty + 1;
j :

alphonse$ task$ token : RQ$CREATE$TASK (
task$pr lor lÈy,
alphonse$ s tart$add ,
SELECTOR$0F (@alphonse$ds) ,
s tack$pointer ,
s t a c k $ s 1 z e ,
task$f l -ags,
Gstacus) ;

IF s tatus o E$OK THEN /*
CALL ex i t ;

gas ton$ task$ token - RQ$CREATE$TASK(/*
task$pr ior i ty ,
gas ton$ s tar t$add ,
SELECToR$oF(Ggas ton$ds) ,
s tack$pointer ,
s t a c k $ s l z e ,
task$f1ags,
G s t a t u s) ;

IF s tatus o E$oK îHEN
CALL ex i t ;

CALL RQ$SUSPENDgTASK (
cal l lng$task,
@ s t a t u s) ;

IF status o E90K THEN
CALL ex l t ;

CALL RQ$EXIT$IO$JOB (
0 ,
N I L ,
G s t a t u s) ;

IF s tatus o E$OK THEN
CALL ex i t ;

LoOP: GoTO LOOP;

/* An error has occurred * /

Pick lower
new tasks

pr ior icy for * /
* /

, / * Suspend se l f and le t
,/* other tasks run

^ ^ . i ' r r a . l * /An error has

Create tasks

END ;

, / * An error has occurred * /

,/* An error has n n n r r r r a r l * /

I f w e g o t h e r e , w e ' r e
in trouble

ln i t

Figure A-1. Example PLIM-286 Apprication (INIT)
(continued)

A-30 Pmgramming Techniques

EXAMPLE PROGRAMS

$conpacc
$debug
alphonse: D0;

DECIARE CR
DECIARE LF
DECIARE token
DECIARE vait$forever
DECIARE FOREVER
DECIARE self
DECIARE E$OK
DEoIARE cal l lng$ tasks $j ob
DECIARE rnas ter$nbox
DECIARE respons e $rnbox
DECIARE status
DECIARE type$code
DECIARE t ime$ l imi t
DECIARE count
DECIARE alphonse$ds
DECIARE seg$token
DECIARE seg$ s iz e
DECI-ARE di sp lay$rnes s age (*)

C R , L F , ' A f t e r y o u , G a s t o n ' ,

LITEMLLY
LITERALLY
LITEMLLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
TOKEN ;
TOKEN ;
TOKEN ;
WORD;
WORD ;
ifORD ;
I.IORD :
WORD PUBLIC;
TOKEN ;
WORD ;
BYTE
C R , L F) ;

' 1 3 ' ;
' 1 0 ' ;
,SELECTOR' ;
, oF['Fr ' .
, LTHILE 1 ' ;, s ELECTOR$oF (Nr L) ', ;

DECI^A,RE message BASED seg$token STRUCTURE (
count
r e x t (2 5)

exit: PRoCEDURE EXTERNAL;
e n d e x l t ;

$ include (/rmx286/inc/nuclus . ext)
$include (/rrnx286 / Lncl\i . exx)

a lphonse: PROCEDURE PUBLIC;

t l m e $ l i r n l t - 2 5 ;

s e g $ s i z e - 3 2 ;
cal1 lng$ tasks $ j ob - SELECTOR$OF(NIL) ;

rnas te r$nbox:RQ$LooKUP$OBJECT (
cal l ing$ casks $ j ob,
G (6 , ' r n a s t e r ') ,
w a i t $ f o r e v e r ,
G s t a t u s) ;

Figure A-2. Example PL/M-2Eó Application (ALPHONSE)

DATA (

BYÎE ,
BYTE) ;

/ * Delay factor for message * /

/ * d isp lay * /

/ * s ize of nessage segnent * /

/ * Di rectory in which to * /

/* look up obj */

/* Look up nessage rnailbox */

Progranming Techniques A-3r

EXAMPLE PROGRAMS

IF s tatus o E$OR THEN /* An error has occurred * /
CALL ex i t ;

DO FOREVER;

seg$token - RQ$RECEIVE$MESSAGE (/ * Receive Gaston 's response * /
n r c r a r q m h ^ Y

wal t$forever ,
@response$rnbox ,
Qstacus) ;

IF s tatus O E$oK THEN , / * An error has occurred * /
CALL ex l t ;

tyPe$code : RQSGET$TYPE(/* See what k ind of object * /
s e g $ t o k e n , / * í L i s * /
Gs tatus) ;

IF s tatus o E$OK THEN /* An error has occurred * /
CALL ex i t ;

IF type$code o 6 THEN , / * I f not a segnent , s top x/
D O ;

CALL RQ$SUSPEND$TASK (
s e 1 f ,
@ s t a r u s) ;

IF s tacus o E$OK THEN /* An error has occurred * /
CALL ex i t ;

END ;

n e s s a g e . c o u n t : s i z e (d i s p l a y $ r n e s s a g e) ;
CALL MOVB (Gdi sp lay$me s sage , Gnessage. rexr , s ize (d isp laygmessage)) ;

CALL RQC S ENDCORES PONS E (/x Send nessage to screen * /
N I L ,
0 ,
Gmessage. count ,
Gs tatus) ;

IF s tatus O E$OK THEN /* An error has occurred * /
CALL ex i t ;

CALL RQSSLEEP (/ * Wai t awhi le ro g ive user * /
t ine$l in i t , , / * t ime to see the nessage * /
Gstatus) ;

Figure A-2. Example PL/M-2E6 Application (ALPHONSE)
(continued)

A-32 Programrnin g Techniques

EXAMPLE PROGRAMS

IF s tatus o E$OK THEN /* An error has occurred * /
CALL ex i t ;

CALL RQ$SEND$MESSAGE (/* Send nessage to response */
response$mbox , / * ma i lbox * /
seg$token,
SELECT0R$0F(NrL) ,
Q s t a t u s) ;

IF scatus o E$oK THEN /* An error has occurred * /
CALL ex l t ;

END; /* FOREVER */
END; ,/* Alphonse */
END ;

Figure A-2. Example PL/M-286 Application (ALPHONSE)
(continued)

$conpact
$debug
g a s t o n : D 0 ;

DECI^ARE CR
DECIARE LF
DECIARE toKen
DECIARE fi fo
DECI-ARE self
DECIARE lrait$forever
DECIARE E$OK
DECL{RE parent$task

LITEMLLY
LITERALLY
LITEMLLY
LITEMLLY
LlTERALLY
LITEMLLY
LITERALLY
TOKEN ;

TOKEN ;
WORD ;
WORD ;
WORD ;
WORD ;
WORD PUBLIC;

, 1 0 , ;
, S E L E C T O R ' ;
' 0 ' :, SELECTOR$OF (NIL) ' ;, O F F F F H ' ;, 0 , ;

DATA (

DECIARE ca l l ing$ tasks $ j ob TOKEN:
DECI-ARE naster$nbox TOKEN;
DECIARE re sponse $rnbox
DECIARE s tatus
DECTARE t i rne$l in i t
DECLARE counc
DECIARE f ina l$count
DECI-ARE gas ton$ ds
DECIARE seg$token ToKEN;
DECIARE seg$size t ioRD;
DECIARE ma in$rnes sage (*) BYTE

C R , L F , ' A f t e r y o u , A l p h o n s e ' , C R , L F) ;

Figure A-3. Example PL/M-2E6 Application (GASTON)

Programming Techniques A-33

EXAMPLE PROGRAMS

DECI-ARE flnal$rnes sage (*) BYîE DATA (
C R , L F , ' I f y o u i n s l s t , A l p h o n s e ' , C R , L F) ;

DECIARE nessage BASED seg$token STRUCTURE (
count BYTE,
t e x t (2 7) B Y T E) ;

exlt PROCEDURE EXTERNAL;
end ex l t ;

$ include (/rmx2 8 6/inc/nuc lus . ext)
$ include (/rrnx286 / ír,c /hi . ext)

gaston PROCEDURE PUBLIC;

count - 0 ; / * ln iCia l ize count * /
f lna lScount - 15: , / * Set number of loops * /
t l rne$l in i t : 25; / * DeLay factor for d isp lay * /

/ * to screen * /
seg$size : 32; / * S ize of rnessage segnent * /
ca l l lng$tasks$job : SELECTOR$OF (NI L) i , / * Di rectory in which to * /

/x ì-ook up obj */

naster$nbox - RQ$LOOKUP$OBJ ECT (/* Look up message rnailbox */
ca l l ing$ tasks $ j ob,
@ (6 , ' r n a s t e r ') ,
wai t$ forever ,
Gs tacus) ;

IF s tatus O E$OK THEN /* An error has occurred * /
CALL exÍ r ;

response$rnbox : RQ$CREATE$MAILBoX (/* Create response mailbox */
f i f o ,
@status) ;

IF s tatus O E$OK THEN /* An error has occurred * /
CALL exí t ;

seg$coken - RQ$ CREATE$ S EGMENT (/ * create lnessage segnenr * /
s e g $ s i z e ,
@ s t a t u s) ;

IF s tatus O E$oK THEN /* An error has occurred * /
CALL ex i t ;

Figure A-3. Example PL/M-286 Application (GASTON)
(continued)

A-34 Programm ing Techniques

EXAMPLE PROGRAMS

DO l,v'}tl LE count < f inal$count;
m e s s a g e . c o u n L - s i z e (m a i n $ m e s s a g e) ;
CALL MoVB (@ma in$me s sage , @message. text , SIZE(nain$message)) ;

CALL RQ$ C$ S ENDCORES PONS E (/ * Send message to screen * /
N I L ,
0 ,
/) * ^ ^ ^ ^ ^ ^ ^ ^ . . - *
Y x r r s s d É E . L v u r r L ,

Gs ta tus) ;

IF sca tus O E$oK THEN / * An er ro r has occur red * /
CALL ex i t ;

CALL RQSSLEEP (/ * t la i t awh i le to g ive user * /
t ineg l in i t , / * t ime to see the message * /
Gs ta tus) ;

IF s ta tus O E$OK THEN / * An er ro r has occur red * /
CALL ex i t ;

CALL RQ$SEND$MESSAGE (/ * Send message to rna í lbox * /
n a s t e r $ m b o x ,
s e g $ t o k e n ,
r e s p o n s e $ m b o x ,
@sta tus) ;

I F s t a t u s o E $ O K T H E N / * A n e r r o r h a s o c c u r r e d * /
C A L L e x i t ;

seg9token : RQ$RECEM$MESSACE (/ * Rece ive response f rom * /
response$nbox , / * A lphonse * /
w a i t $ f o r e v e r ,
N I L ,
Gs ta tus) ;

IF s ta tus O E$OK THEN / * An er ro r has occur red * /
CALL ex i t ;

count - count+1 ;
END ; /* l,IHtLE x /

r n e s s a g e . c o u n t : s i z e (f i n a l $ m e s s a g e) ;
C A L L M O V B (G f i n a l $ m e s s a g e , @ m e s s a g e . t e x t , S l Z E (f i n a I $ m e s s a g e)) ;

CALL RQ$ C$ S ENDCORES PONS E (/ * Send f ina l message to * /
N l L , / * s c r e e n * /
0 ,
@message . count ,
Gsta tus) ;

Figure A-3. Example PL/M-286 Application (cASTON)
(continued)

A-35Programmin g Techniques

EXAMPLE PROGRAMS

IF s tatus o ESOK THEN , / * An error has occurred * /

CALL ex i t ;

CALL RQSSEND$MESSAGE (/* send token for rnailbox to */

rnaster$mbox, , / * mai lbox. This wiJ- l s top * /

rnaster$rnbox, / * o ther task. * /
sF I Fc rnp qnF / N - t T .)

G s t a t u s) ;

IF s tatus o E$OK THEN , / * An error has occurred * /

CALL ex i t ;

parent$task - RQ$ LOOKUP$OBJ ECT (/* Look uP token for calling */
'

c a l l i n g $ t a s k s $ j o b , / * t a s k * /

@ (4 , ' i n i t ') ,
va i t$ forever ,
€status) ;

rF s tatus o E$oK THEN /* An error has occurred * /
CALL ex i t ;

CALL RQ$RESUME$TASK(,/* Resurne calling task for */
parent$task, / * c leanuP * /

Qstatus) ;

rF s tatus o E$oK THEN /* An error has occurred * /
CALL ex i t ;

CALL RQ$SUSPEND$TASK (/ * Suspend sel f just in case * /
s e l f ,
G s t a t u s) ;

IF s tacus o E$oK THEN , / * An error has occurred * /
CALL ex i t ;

END; / * Gaston * /
END ;

Figure A-3. Example PL/M-286 Application (GASTON)
(continued)

A.3.2 lnclude Files

As shown in Figures A-l through A-3, each of the tasks contains $INCLUDE statements
to include the external declarations of the iRMX II system calls. INIT.P28 uses both
Nucleus and Extended I/O System calls, so it includes the external files for both those
layers. ALPHONSE.P28 and GASTON.P2S use Nucleus and Human Interface system
calls, so they include the external files for those two layers.

A-36 Programming Techniques

EXAMPLE PROGRAMS

Each task contains its own set of include files because each is a separately compiled
module. If the tasks were all contained in the same program module, only one set of
$INCLUDE statements would be needed.

4.3.3 Compiling and Binding the Code

The following command is used to compile the three files of PL/M-286 source statements:

The PLM286 commands do not include controls for selecting the model of segmentation
(SMALL, COMPACT, MEDIUM, or I-ARGE) because the $COMPACT control was
already included in the source files.

The compiler produces three files of object code. Because the PLM2tl6 command did not
speci! names for the object code files, the files are given the names INIT.OBJ,
ALPHONSE.OBJ, and GASTON.OBJ by default.

After compiling, the object files must be bound together and bound with the iRMX ll
interface libraries. The BND286 statement used to do this is as follows:

ln this BND286 statement, the three object lìles (INIT.OBJ, GASTON.OBJ, and
ALPHONSE.OBJ) are bound together with two libraries: PLM286.LIB and
RMXIFC.LIB. PLM286.LIB is the standard PLIM-286library distributed with the
compiler. RMXIFC.LIB is the COMPACT version of rhe iRMX II interface library.

The OBJECT control specifies the name of the executable file generated by BND286. In
this case, the file is called SAMPLE.

The SEGSIZE(STACK(+ 1500)) control specifies that 1500 bytes of stack should be
reseryed in addition to the amount required by the program. As listed in Chapter 4, this
amount represents the amount required by iRMX II applications that include the Human
Interface.

The RCONFIGURE(DYNAMICMEM(5000H)) control directs BND286 to produce an
STL (single-task loadable) module and îo assign a minimum of 5000H bytes of dynamic
memory to the module.

Pmgramming Techniques A-37

EXAMPLE PROCRAMS

A.3.4 Running the ExamPle

The BND286 command produces an executable file called SAMPLE. To run the example,

at the Human Interface prompt type the name of the file.

A.4 EXAMPLE 3 - CONTROL.C HANDLER

This section shows an example of a CONTROL-C handler. It is written in PL/M-286 and

uses UDI calls exclusively. lt can be invoked from the Human Interface level.

A.4.1 Source Code

Figure A-4 contains the source code for the CONTROL-C example (a file called
ECHO.P28). The main program echoes to the screen any line entered at the terminal.
However, before starting this infinite loop, the program installs a CONTROL-C handler
and opens a connection to the terminal. The CONTROL-C handler (a procedure called
CC$TRAP) is invoked when the operator enters a CONTROL-C at the keyboard. It
resets the CONTROL-C handler. issues a message to the terminal, and exits to the
Human Interface.

A-38 Prograrnming Techniques

EXAMPLE PROGRAMS

$large DEBUG Pt . l (79) RoM
ECHO DO;
$ TNcLUDE (/RMX2 8 6/rNC/RMXPLM. EXr)

DECI.ARE
NUL LITERALLY 'SELECTOR$OF(NIL) ' ,
JOB$ABORTED LITERALLY
CR LITEMLLY ' ODH' ,
LF LITERI.LLY 'OAH' ,
READ$WRITE LITERALLY '3' ,
TRUE LITEMLLY 'OFFH' ,
FALSE LITEMLLY 'O' ;

DECI-ARE
CONSOLE TOKEN,
ACTUAL WORD,
STATUS WORD,
IO$BUFFER(256) BYTE;

DEClARE
INIT$MSG(*) BYTE DATA (CR, LF, ' DNTER DATA FROM KEYBOARD' , CR, LF) ,
CONTROL$CSMSG(*) BYTE DATA (CR, LF , ' GONNA GO BYE BYE NOW"CR,LF);

CC$TRAP: PROCEDURE PUBLIC;
DECIARE

STATUS 'WORD;

L e t t h e O n e r a l - o r k n o w t h a L w e a r e f i n i s h e d .

CALL DQ$hT.ITE (
CONSOLE,
@coNTROLCMSG,
srzE(coNrRoLcMsc) ,
GSTATUS) ;

Return contro l back to the CLI

CALL DQ$EXIT(JOBABORTED) ;

END CC$TRAP;

Figure A-4. CONTROLC Handler Example

Pmgramming Techniques A-39

EXAMPLE PROGRAMS

Main l ine code is requi red so the APpl icat ion Loader gets an
in i t ia l izat ion record. We v i l l open a connect ion to the tern inal
and seÈ a CONTROL-C handler in p lace before insta l l ing the in terrupt
handler . l f a CONTROL-C is entered f rorn the keyboard the CONTROL-C
handler , CC$TRAP, wi l l reset the in terruPt and then cal l DQ$EXIT

Insta l l the CoNTRoL-C handler

CALL DQ$TRAP$CC (
GCC$TRAP,
@STATUS) ;

C r e a t e a n o p e n c o n n e c t i o n t o t h e c o n s o l e . : C I : a n d : C O : w i l l
a u t o n a t i c a l l y b e c a t a l o g e d i n o u r j o b ' s o b j e c t d i r e c t o r y a s P a r t
o f t h e l o a d i n g p r o c e s s .

coNsoLE - DQ$ATTACH (
G (4 , ' : C O : ') ,
@STATUS) ;

CALL DQ$OPEN (
c0Ns0LE,
READ$I.IRITE,
0 ,
€STATUS) ;

r - . t ^ - * F l - ^

CALL DQ$WRITE (
CONSOLE,
GINITMSG,
S I Z E (I N I T $ M S G) ,
GSTATUS) ;

DO Ii},IILE TRUE;

t r 'n tp r fo rewpr loon echo l ines en tered a t the conso le .

Read a l ine f ro rn the keyboard .

ACTUAL : DQ$READ (
CONSOLE,
@IO$BUFFER,
SIZE (IO$BUFFER) ,
@STATUS) ;

Figure A-4. CONTROLC Handler Example
lcontinued)

A-40 Programming Techniques

EXAMPLE PROGRAMS

Echo i t back to the cr t .

CALL DQL'RITE (
coNsoLE,
@IO$BUFFER,
ACTUAL,
GSTATUS) ;

END ; /* I,IHI LE I */

END ECHO;

Figure A-4. CONTROLC Handler Example
(continued)

4.4.2 Compiling and Binding the Code

The following command is used to compile the code for this example:

The PLM286 command doesn't include controls for selecting the model of segmentation
(SMALL, COMPACT, MEDIUM, or LARGE) because the $LARGE control was
already included in the source files. The ROM control is also included, to place the
constants in the data segment.

The compiler places the generated object code into the file ECHO.OBJ.

After compiling, the object file must be bound with the appropriate iRMX II interface
libraries. The BND286 statement used to do this is as follows:

4.4.3 Running the Example

The BND286 command produces an executable file called ECHO. To run the
application, simply type the name of the file at the Human Interface prompt. To invoke
the CONTROL-C handler and stop the progam, hold down the CONTROL key and type

Programming Techniques A-41

EXAMPLE PROGRAMS

A.5 HARDWARE REQUIREMENTS FOR REMAINING EXAMPLES

Sections A.6 and A.7 show examples of interrupt handlers. Both of these examples
require hardware that might not be available on all iRMX II systems. This hardware
includes an iSBX 350 parallel MULTIMODULE board and an iCS 920 digital signal
termination panel. The examples were developed using the iSBX 350 module mounted on
an iSBC 286/ 10A processor board.

Before running the examples in sections A.6 and A.7, you should configure the hardware
as follows:

iSBX 350 configuration

. Add jumper E5-86, placing +5V on Jl pin 50

. Remove jumper El-E2 and addjumper E2-83. This configures Port A for input.

o Remove jumper E13-El4 and add jumper El3-E'18. This conf igures the Port A
interrupt to MlNTR0.

o Install the iSBC 901 terminator packs in sockets XU3, XU5, and XU6.

o Install the 7438 buffer in socket XU4.

iCS 920 configuration

o Connect jumper E2-83, enabling the +5V from the iSBX 350 to power the iCS 90
board.

o For wirewrap matrices J1 through J24, install jumper 1-2, enabling the LED
indicators. Also install jumper 3-4 to wire the iSBX signals to the plus connectors on
the terminal strip. Finally, install jumper 5-6 to place the ground to the connectors on
the terminal strip.

Cable configuration

o Connect the iSBX 350 board to the iCS 920 board with a 50-pin ribbon cable (3M
33ó5-50 or equivalent). When fabricating the ribbon, note that the iCS 920 connector
J25 is wired the opposite of the iSBX 350 pins.

o Connect the cable to the iSBX 350 board using a connector equivalent to one of the
following:

3M 3415-0000
AMP 88083-1
ANSLEY 6Oq.5OI5
SAE SD6750 Series

L-42 Programming Techniques

EXAMPLE PROGRAMS

. Connect the cable to the iCS 920 board using a connector equivalent to one of the
following:

3M 3425-7050
ANSLEY 609.5001M

Switches

. Pull-up resistors are provided to +5V on both the iCS 920 and iSBX 350 boards.
Single-pole, single-throw switches will be adequate for data inputs 0 through 7. The
interrupt switch should be a momentary-contact switch.

o Switches 0 through 7 should be wired to terminals A0 through A7 respectively. The
momentary-contact switch should be wired to terminal C4.

NOTE
Because timed interrupt waits are available with the Operating System,
testing can proceed without the interrupt circuit in place.

iSBC 286/ l0A configuration

. Install the iSBX 350 module in the J5 connector of the iSBC 28ól10A board.

4.6 EXAMPLE 4..INTERRUPT TASK

This example shows an interrupt task that works with the hardware described in the
previous section. In this example, the interrupt task echoes the Port A switches to the
Port B lights whenever the interrupt switch is togg.led.

This example is invoked from the Human Interface level. For the example to work, the
user must have a marimum task priority of 126 or higher (numerically lower). The
example also includes a CONTROL-C handler, enabling you to cancel the program and
return to the Human Interface level bv enterins a CONTROL-C.

4.6.1 Source Code

Figure A-5 contains the source code for the interrupt task example (a file called
INTRTSK.P2S). The program consists of an interrupt handler, a CONTROL-C handler,
and a main program.

The interrupt handler (SBXj50$IN1$HNDLR) receives control whenever the interrupt
switch is toggled. It informs the interrupt task (the main program) of the interrupt by
issuing the SIGNAT$INTERRUPT system call. It performs no other operations.

Progryamming Techniques A-43

EXAMPLE PROGRAMS

The CONTROL-C handler (CC$TRAP) is invoked whenever the operator enters a
CONTROL-C at the keyboard. When this happens, the routine invokes the
RESET$INTERRUPT system call to reset the CONTROL-C handler and then exits to
the Human Interface level by invoking the DQ$EXIT system call.

The main program issues a DQ$TRAP$CC system call to set up the CONTROL-C
handler. Then it creates a connection to the terminal and initializes the iSBX 350
interface. When this is complete, it issues the SET$INTERRUFI system call to install
the interrupt handler. Finally, it enters a loop where it performs a WAIfiINTERRUPT
to wait for the interrupt signal from the interrupt handler. When it receives notification
of the interrupt, it reads the status of the switches and sets the lights accordingly. Then it
waits for the next interruDt.

$Iarge DEBUG Pt . I (79) ROM
SBX350_MOD: DO;

WARNING:
In order to run this 1ab from the Hurnan Interface the user must
have the abi l lÈy to create tasks wi th a pr ior i ty of 126. I f you
are us ing dynamic logon terminals the process involves creat ing
a u s e r w i t h a r n a x p r i o r i t y o f 1 2 6 o r

' l e s s .
l f y o u a r e u s Í n g a

stat ic logon tern inal , you rnay have to reconf igure your systen.

$ TNcLUDE (/R-r,fX2 8 6/rNC/RMXPi,r'f . EXT)

DECIARE
NUL LITEMLLY 'SELECTOR$OF(NIL) ' ,

Use MINTRO from an iSBX 350 insta l led on J5

SBX3 50 $ INTR$LEVEL LITERALLY '075H"
JOB$ABORTED LITERALLY '4' ,
CR LITERALLY ' ODH' ,
LF LITERALLY 'OAH'
READ$WRITE LITERALLY '3' ,

Figure A-5. Internrpt Task Example

A-44 Pmgrarnming Techniques

EXAMPLE PROGRAMS

SBX3509P0RT$A LTTERALLY ',OAoH', ,
SBX35O$PoRT$B LTTERALLY ',OA2H', ,
SBX350$P0RT$C LTTEMLLY ',OA4H', ,
S BX3 5 O$CONTROL$ PORT LITERALLY 'OA6H"

Set Por t A for s t robed input and Por t B for Mode 0 output

s Bx3 5 0$ rNIT$MODE LTTERALLY ' ,10111000B' , ,
ENABLE$PORT$A$ INTERRUPT LITEMLLY ' OOOO1OO1B' ;

DECI-ARE
(
CONSOLE) TOKEN,
(
STATUS) WORD;

DECIARE
SBXINITMSC (*) BYTE DATA (
C R , L F , ' T H E I N T E R R U P T T A S K I S N O W I N I T I A L I Z E D ' , C R , L F) ,
CONTROLCMSG (*) BYTE DATA (
C R , L F , ' C O N N A G O B Y E B Y E N O I J " C R , L F) ;

CC$TRAP: PROCEDURE PUBLIC;
DECI.ARE

STATUS WORD;

f ì l a e r r h a i h t - è r r , ' n l -

CALL RQ9RESET$ INTERRUPT (
sBx3 50 $ INTR$LEVEL,
GSTATUS) ;

Let the Operator know that r , re are f in ished.

CALL DQ$\,'RITE (
c0NsoLE ,
GcoNîRoLcMsc,
s I Z E (C O N T R O L $ C $ M S c) ,
@STATUS) ;

Return concro l back to the CLI

CALL DQ$EXIT (
JOBABORTED) ;

END CC$TRAP ;

Figure A-5. Interrupt Task Example
(continued)

A-45Programming Techniques

EXAMPLE PROGRAMS

SBX35OINTHNDLR: PROCEDURE INTERRUPT PUBLIC;

DECIARE STATUS WORD ;

l .p l . thp in tc r run t task do a l l o f the work . The t ime fo r a
contex t s l r í t ch shou ld he lp in the debounce o f the ín te r rupc
sr^'i Èch .

CALL RQ$ S ICNAL$ INTERRUPT (SBX3 50 $ INTR$LEVEL, @STATUS);

END SBX350INTHNDLR;

Maln l lne code is requ i re so the app l ica t ion loader ge ts an
i n i t l a l l z a t l o n r e c o r d .

We wi l l open a connect ion to the te r rn ina l and se t a CONTROL-C
hand ler in p lace be fore ins ta l l ing the in te r rup t hand ler .

I f a CONTROL-C is en tered f rom the keyboard , the CONTROL-C
hand ler , CC$TRAP, w i l l rese t the in te r rup t and then ca l l DQ$EXIT

lns tal l- the CONTROL-C handler

CALL DQ$TRAP$CC (
GCC$TRAP,
GSTATUS) ;

Create an open connect ion to the conso le .

CONSOLE - DQ$ATTACH (
G (4 , ' : c o : ') ,
GSTATUS) ;

CALL DQ$OPEN (
coNs0LE,
READ$L'RITE,
0 ,
@STATUS) ;

Figure A-5. Interrupt Task Example
(continued)

A-46 Pmgramming Techniques

EXAMPLE PROGRAMS

I n i t i a l i z e t h e S B X 3 5 0 i n t e r f a c e .
Por t A - Input
Por t B - output
Por t C - Output
Por t A in terrupt enabled

oUTPUT(SBX350SCoNTROL$PoRT) : SBX350$rNrT$MoDE;
OUTPUT (SBX3 50 $ CONTROL$PORT) : ENABLE$PORTA INTERRUPT ;

- " - - t H a n d l e r .L r r c a u e e ! ! u P

CALL RQ$S ET$ INTERRUPT (
sBX3 50$ TNTR$LEvEL,
1 ,
GSBX3 s0$ TNT9HNDLR ,
NUL,
GSTATUS) ;

l h € ^ r h È h a n n À r . r ^ ?

CALL DQ$I./RITE (
coNs0LE,
GSBXINlTMSG,
srzE(sBX$rNr r$MsG) ,
GSTATUS) ;

Enter forever loop wai t ing for in terrupts.

DO WHILE 1;
CALL RQ$WAIT$INTERRUPT (

sBX3 5 0$ rNTR$LEVEL ,
GSTATUS) ;

l , l a i t L o d e b o u n c e t h e i n l e r r u p t s w Í t c h .

CALL RQ$SLEEP (
I ,
GSTATUS) ;

C r l t h e i n n ì r l d . e t a .

OUTPUT(SBX35O$PORT$B) : NOT (INPUT(SBX35O$PORT$A)) ;
END; / * WHILE I * /

END SBX35O_MOD;

Figure A-5. Interrupt Task Example
(continued)

Programming Techniques A-47

EXAMPLE PROGRAMS

A.6.2 Compiling and Binding the Code

The following command is used to compile the code for this example:

The PLM286 command doesn't include controls for selecting the model of segmentation
(SMALL, COMPACT, MEDIUM, or I-ARGE) because the $LARGE control was
already include<j in the source files. The ROM control is also included, to place the
constants in the data segment.

The compiler places the generated object code into the file INTRTSK.OBJ.

After compiling, the object file must be bound with the appropriate iRMX II interface
libraries. The BND286 statement used to do this is as follows:

A.6.3 Running the Example

The BND286 command produces an executable file called INTRTSK. To run the
applications, type the name of the file at the Human Interface prompt. To invoke the
CONTROL-C handler and stop the program, hold down the CONTROL key and type C.

4.7 EXAMPLE 5..FIRST-LEVEL JOB

This section contains a larger, more complicated example that is typical of a real-world
application. It is a multitasking, data acquisition application configure<J as a firstJeveljob.
Each time an interrupt occurs from the iCS 920 board, the application reads the iCS 920
switches via the iSBX 350 board installed on the iSBC 286110A board. After a number of
interrupts, the application calculates the mean, median, and mode of the inputs and and
displays this information at the terminal. The application also accepts input from the
terminal to indicate how many samples to take before calculating the results.

The application is divided into two jobs: a firstJevel job that handles all the data
acquisition and formats messages for the terminal, and a terminal job that handles all I/O
with the terminal. The terminal job is an offspring of the firstlevel job.

A-48 Programming Techniques

EXAMPLE PROGRAMS

Within the first-level job are three tasks: an initialization task (IMTTSK), an interrupt
task (SBX350TSK), and a process task (PROCESSTSK). The initialization task creates
the other tasks in thejob and also creates the offspringjob. The interrupt task collects the
data from the iSBX350 board and passes it on to the process task. The process task
receives instructions from the I/O job and sends formatted information to the I/O job.

The terminal job also contains three tasks: an initialization task (TERMIMTTSK), a
terminal input task (TERMINTSK), and a terminal output task (TERMOUTTSK). The
initialization task creates the other tasks in thejob and establishes a connection to the
terminal. The terminal input task reads input from the terminal. The terminal output
task sends output to the terminal.

The tasks in this application communicate via mailboxes. The interrupt task creates and
catalogs a mailbox called SBX35OMBX where it will receive data from the process task. It
also looks up the name of the process task's mailbox, which it uses to send information to
the process task. Likewise, the process task creates a mailbox called PROCIOMBX and
looks up the name of the interrupt task's mailbox. In addition, the process task looks up
the names of the mailboxes created by the terminal input and terminal output tasks so
that it can send data to and receive data from the terminal. These mailboxes, called
TERMINMBX and TERMOUTMBX are created by the terminal input and terminal
output tasks when they start running.

A.7.1 Source Code

The source code for this example is divided into five separate files. INITTSK.P2S
contains the initialization task for the first-level job (INITTSK). It is listed in Figure A-6.

INITTSK performs the following operations:

. Creates the interrupt task SBX35OTSK

o Creates the process task PROCESSTSK

. Creates the terminal job

TERM.P28 contains all the tasks in the terminal job (TERMINITTSK TERMINTSK
and TERMOUTTSK). It is listed in Figure A-7.

TERMINITTSK performs the folìowing operations:

o Creates a connection to the terminal and catalogs it as CONSOLE

o Creates the terminal input and output tasks

TERMINTSK performs the following operations:

. Looks up the connection for CoNSOLE

. Creates the mailbox for terminal input and catalogs it as TERMINMBX

Programming Techniques A-49

EXAMPLE PROGRAMS

. Starts an infinite loop in which it waits at the TERMINMBX mailbox for an input
request, reads a line of input, and sends the input data to the response mailbox
specified

TERMOUTTSK performs the following operations:

. l,ooks up the connection for CONSOLE

o Creates the mailbox for terminal output and catalogs it as TERMOUTMBX

. Starts an infinite loop in which it waits at the TERMOUTMBX mailbox for an output
message, formats the message and sends it to the console, and deletes the message

S8X350.P28 contains the code for the interrupt task (SBX35OTSK) and the interrupt
handler (SBX350INTHNDLR). This file is listed in Figure A-8,

SBX350TSK performs the following operations:

o Creates and catalogs the mailbox SBX350MBX.

. Initializes the iSBX 350 board.

r Sets the SBX350INTHNDLR procedure as the interrupt handler associated with this
task.

. Looks up the TERMOUTMBX mailbox and sends an initialization message there.

. Looks up the PROCIOMBX mailbox and sends initialization data there.

. Begins an infinite loop in which it waits at the SBX35OMBX mai.lbox for a message
indicating the number of samples to take. For each sample, it waits for an interrupt,
obtains the sample from the iSBX 350 board, stores the data in an array, and clears
the interrupt. When it has obtained all the samples, it sends the data to the
PROCIOMBX.

SBX35OINTHNDLR simply invokes the SIcNAIJINTERRUPT system call. This passes
control to the SBX350TSK interrupt task, which actualìy handles the interrupt.

PROCIO.P2S contains the code for the process task (PROCESSTSK). This file is listed
in Figure A-9.

PROCESSTSK performs the following operations:

. Looks up the TERMINMBX, TERMOUTMBX, and SBX35()MBX mailboxes.

. Creates a mailbox for communication with SBX35OTSK and catalogs it as
PROCIOMBX. It waits at the maiÌbox to synchronize with SBX350TSK.

. Sends a parameter request message to TERMOUTMBX, sends an input request
message to TERMINMBX, waits at the response mailbox for the terminal input, and
verifies the input as valid. PROCESSTSK continues to perform this step until it
receives valid input. Then it sends the valid message to the SBX350MBX mailbox.

A-50 Pnlgramming Techniques

EXAMPLE PROGRAMS

. Begins an infinite loop in which the following operations are performed:

- Waits at the PROCIOMBX for data from the interrupt task.

- Formats the data and sends it to the TERMOUTMBX mailbox.

- If no input request is pending, sends a message to the TERMINMBX mailbox
requesting input.

- Checks the response mailbox without waiting to see if the operator has responded
with an input request.

- If there is an input request, valìdates it and passes it to the interrupt task via the
SBX350MBX mailbox. Then deletes the segment containing the data.

UTIIS.P28 contains utility procedures used by the various tasks. The procedures include
STRLEN to return the length of a null-terminated string, BTOA to take a byte value and
convert it to ASCII, ATOB to convert an ASCII string to a byte value, CALC$MEAN to
calculate the mean, CALC$MEDIAN to calculate the median, and CALC$MODE to
calculate the mode. This file is listed in Fisure A-10.

Programmlng Techniques A-51

EXAMPLE PROGRAMS

$CoMPACT DEBUG PW(79) ROM
STARTUP: DOi

$TNcLUDE (/RMX2 86lrNC/RrO(PLM. EXT)

DECIARE
NUL LITERALLY 'SELECTOR$OF(NIL) ' ,
NO$NPX LITERALLY 'O' ,
ALL$ERRORS LITERALLY '3' ,,

SBX35O TSK: PROCEDURE EXTERNAL;
END SBX35O_TSK;

TERI,Í INIT TSK: PROCEDURE EXTERNAL;
END TERX-TNIT-TSK;

PROCIO TSK: PROCEDURE EXTERNAL;
rnn ppÀarn rc tz .

Setup pub l ic da ta var iab le so th is can be conf igured in as
r f i r c t l o r r o l i n h

DECI.A,RE DUMMY$DATA$VARI BLE BYTE PUBLIC;

INIT-TSK: PROCEDURE PUBLIC;

This task ls the in i t ia l task of our f i rs t level job. I t
creates t \^ ro other tasks: BX350TSK, which wi l l become the
interrupt task handl ing d ig i ta l input , and PRoCIOTSK, which
is responsib le for processing the the input data and
provid ing format ted I /O for the operator . This task a lso
c r e a t e a s e p a r a t e j o b f o r L e r m i n a l I / O .

DECI.ARE

TERMJOBTOKEN TOKEN,
INITJOBTOKEN TOKEN,
sBx3 5o$TASK$TOKEN roKEN,
PROC IO$TASK$TOKEN TOKEN,
STATUS I.'ORD,
DUMMYEHSTRUC STRUCTURE (

EH$PTR POINTER,
EHSMODE BYTE);

CAUSEINTERRUPT(3) ;

Figure A-6. First-l-evel Job Initialization Task (INITTSICP2S)

A-52 Pmgrarnming Techniques

EXAMPLE PROGRAMS

SeÈ up che except ion handler s t ructure. PLM 286 does not
a l low NIL to be used wi th in a DATA declarat ion. SetuD of
DUMMYEHSTRUC nust be done dynarn ica l ly . Nore: We còuld
have l ied to PLM by declar ing EH$PTR ai a DWORD.

DUMMY$ EH9STRUC . EH$PTR - NIL;
DUMI'îY$ EH$STRUC . EH$MODE - ALLSERRORS;

CreaÈe the task which handles d ig i ta l input f rom the SBX350.
Note: This wí l l become an in terruDt Èask.

sBx350$TASK$ToKEN - RQ$CREArE$rASK(
1 3 9 ,
GSBX350 TSK.
ÈEr.ncroEgor(GDUMMygDATAgvARTBLE), , / * In i t ia l ize rhe DS, as we are * /

/* in CoMPACT
,/* Let rmx ass ign the stack * /N I L ,

400H ,
NO$NPX,
@ s t a t u s) ;

, / * S tack S ize
/ * T h i s L a s k d o e s n ' t u s e t h e N P X * /

/* in COMPACT
/ * Le t rmx ass Ígn the s tack * /
/ * e t r r l z (i z a

/ * T h i s L a s k d o e s n ' t u s e t h e N P X * /

C r e a t e t h e p r o c e s s c o n t r o l t a s k t h a t m a n i p u l a t e s t h e d i g i t a l d a t a .

PROCIO$TASK$TOKEN : RQSCREATE$TASK(
1 3 9 ,
appnaTr r Tcv

SELECTOR$OF(GDUMMY$DATA$VARIBLE), /* Inítíalize the DS, as we are */

N f L ,
400H ,
NO9NPX,
@ s t a t u s) ;

Create the tern inal job to process console input . The
t e r m i n a l i n i t t a s k w i l l c r e a t e a n i n p u t t a s k a n d a n o u r p u t
t a s k . A j o b Í s n o L a c t u a l l y r e q u i r e d f o r t h i s a p p l i c a t i o n
but we are doing i t to show RQE$CREATESJoB.

INITJOBTOKEN : RQSCET$TASK$TOKENS(
t , , / * c e t t h Í s j o b ' s t o k e n . x /
GSTATUS) ;

Figure A-6. First-I*vel Job Initialization Task (INITTSK.P28)
(continued)

Programming Techniques A--53

EXAMPLE PROGRAMS

TERMJOBTOKEN - RQECREATE$JOB(
4 0 H , / * W e w i l l b e c a t a l o g i n g o b j e c t s i n t h i s * /

rNrrgJoBgroKEN, l: i : :"".Î l : ' i5iTl ."u." ro the rerninar job */
400H, ,/* Minirmrur memory pool */
oFFFFFH, , / * Mernory pools can conta in up co 16 Megabyces. * /
0100H, , / * Max í rnum objects for th is job * /
3, / * TERMINITTSK plus two ochers * /
0 , / * N o l i r n i t o n p r i o r i t y o f t a s k s i n t h i s j o b * /

GDUMMYEH STRUC , ,/* Use SDB as error handler */
0 , , / * Requi re paraneter checking as th is job * /

/ * nakes BI0S cal ls . * /
1 3 9 , / * I n i t i a l t a s k p r i o r i t y i s 1 3 9 * /
@TERM INIT TSK.
Àer-ncîon$oF(GDÙMMygDATA$vARtBLE), ,/* rnitialize rhe DS, as we are */

/* in COMPACT */
NIL, / * Let r rnx ass ign the stack * /
4 0 0 H , / * S t a c k S i z e * /
NO$NPX, / * This task does not use the NPX * /
@ s t a t u s) ;

I n i c i a l i z a t i o n i s c o n D l e t e . s o d e l e t e t h i s t a s k

CALL RQSDELETE$TASK(
NUL ,
GSTATUS) ;

END INIT-TSK;

END STARTUP;

Figure A-6. First-Level Job Initialization Task (INITTSICP2E)
(continuedl

A-54 Pmgramming Techniques

EXAMPLE PROGRAMS

$ cornpac t DEBUG pw(79) ROM
TERM_MOD: DO;

$INcLUDE (/RMx2 8 6/rNc/RMXPLM. Exr)

DECIARE
NUL LITEMLLY ' SELECTOR$OF (NIL) ' ,
CONNECTION$OBJ ECT$TYPE LITERALLY 'OlOlH' ,
PARAMETER$OBJ ECT$TYPE LITERALLY '02',
IIAIT$FOREVER LITEMLLY 'OFFFFH' ,
PHYS ICAL$ FILE$ DRIVER LITEMLLY '01 ' ,
READ$WRITE LITERALLY '3' ,
S}IARE$ALL LITEMLLY '3' ,
DRAU LITERALLY 'OOOO1I11B' ,
SUPER LITEMLLY 'O' ,
WORLD LITERALLY 'OFFFFH' ,
NO$NPX LITEMLLY '0"

TRUE LITEMLLY ' OFFH' ,
FALSE LITEMLLY 'O' ,
CR LITEMLLY 'OAII' ,
LF LITERALLY 'ODH' ;

STRLEN: PROCEDURE(STRPTR) BYTE EXTERNAL;
DECIARE STRPTR POINTER;

END STRLEN;

TERMIN TSK: PROCEDURE PUBLIC;

TERMINTSK receives nessages at TERMINMBX. I t per forms a
read operat ion and returns a zero terminated st r ing to the
response mai lbox speci f ied dur ing the receive message.

DECIARE
PARA.I.IETER$OBJ ECT9TOKEN TOKEN ,
TERMINMBX TOKEN,
TERMOUTMBX TOKEN,
CONSOLE$TOKEN TOKEN,
BUFFERT TOKEN,
USERRSPMBX TOKEN,
BIOSRSPMBX TOKEN,
BUFFER BASED BUFFERT (128) BYTE,
ACTUAL WORD,
STATUS I.'ORD ;

Figure A-7. Terminal Job (TERM.P28)

Programning Techniques A-55

EXAMPLE PROGRAMS

Create the mai lbox at which keyboard input requests wi l l be received
*/
TERMINMBX - RQ$ CREATE9MAI LBOX (

0 ,
@STATUS) ;

Cata log the mai lbox as "TERMIN" in the parent job.

PAXA.I'Í ETER$OBJ ECT$TOKEN : RQGETTASK$TOKENS (
PARAMETER9OBJ ECT$TYPE,
GSTAÎUS) ;

CALL RQ$ CATALOG$OBJ ECT (
PARAMETER$OBJECT$TOKEN,
TERM$IN9MBX,
@ (6 , ' , T E R M r N ' ,) ,
GSTATUS) ;

Lookup the open connect ion for the keyboard

cONsoLE$ToKEN : RQ$LOoKUP$OBJ ECT (
NUL,
G (7 , ' , C o N s o L E ' ,) ,
WAIT9FOREVER,
GSTATUS) ;

C r e a t e t h e r e s p o n s e r n a i l b o x t o b e u s e d w i t h B I O S s y s t e m c a l l s ,

BIOSRSPMBX - RQ$ CREATE$MAI LBOX (
0 ,
@sTATUs) ;

DO I*iILE TRUE;

Enter forever loop wai t ing for input requests.

I t ^ i + F ^ - ^ - i ^ - . ,w a r L L o ! a r r r P L l c r e q u e s f .

BUFFERT - RQ$RECEIVE9MES SAGE (
TERM$ IN9MBX ,
WAIT$FOREVER,
@usER$RSPMBX,
@sTATUs);

Figure A-7. Terminal Job (TERM.P28)
lcontinued)

A-56 Pmgranrming Techniques

EXAMPLE PROGRAMS

Send a read request to the keyboard.

CALL RQAREA-D (
coNs0LE$ToKEN,
@BUFFER ,
S I Z E (B U F F E R) ,
Br0sRsPMBX,
GSTATUS) ;

Wait for a <CR> input fron the keyboard.

ACTUAL - RQ$WAIT$ IO (
coNsoLE9TOKEN,
BrosRsPMBX,
w A l r ì r u K É v t K ,

@STATUS) ;

The terminal - dr iver wi l l append a <LF> af rer the <CR>.
We don' t want e i ther of thern so zeÍo out the next to last
c h a r a c t e r .

IF ACTUAL >: 2 THEN
B U F F E R (A C T U A L . 2) : O ;

ELSE
B U F F E R (O) : O ;

Send the zero terminated st r Íng back to whomever requested i t .

CALL RQ$ S END$MES SAGE (
USER$RSPMBX,
BUFFERT ,
NUL,
GSTATUS) ;

END; /* DO I.IHILE 1 */

END TERUIN_TSK;

Figure A-7. Terminal Job (TERM.P28)
(continued)

A-57Programming Techniques

EXAMPLE PROGRAMS

TERMOUT TSK: PROCEDURE PUBLTC;

TERMOUTTSK expects to receive zero terninated strings at TERMOUTMBX.
Ic wi l l then wr i te these st r ing ouc to the CoNSOLE.

DECIARE
PARAMETER$OBJ ECT$TOKEN TOKEN,
TERMOUTMBX TOKEN,
CONSOLE$TOKEN TOKEN,
BUFFERT TOKEN,
USER$RSPgMBX TOKEN,
BIOS$RSP9MBX TOKEN,
BUFFER BASED BUFFERT (1) BYTE,
ACTUAL WORD,
STATUS) WoRD;

Create the mai lbox at whích console output rnessages wi l - l be received,

TERMOUTMBX - RQ$ CREATE$MAILBOX (
0 ,
GSTATUS) ;

Cata log the maí lbox as "TERMOUT" in the parent job.

PARAMETER$OBJECT$TOKEN : RQGETTASK$TOKENS (
PARAMETER$OBJECT$TYPE,
@sTATnS) ;

CALL RQ$CATALOG$oBJECT (
PARAMETER$OBJ ECTSTOKEN,
TERMOUTMBX,
@ (7 , ' T E R M o U T ' ,) ,
@srATUs) ;

Lookup the open connect ion for the console.

CoNSOLE$ToKEN - RQ$LOoKUP$oBJ ECT (
NUL ,
@ (7 , ' , c o N s o L E ') ,
I 'AIT9FOREVER,
GSTATUS) ;

Figure A-7. Terminal Job (TERM.EZE)
(continued)

A-58 Programming Techniques

EXAMPLE PROGRAMS

Create the response nai lbox Èo be used wi th BIOS system cal ls .

BIOSRSPMBX - RQ$CREATE$MAILBOX(
0 ,
GSTATUS) ;

D0 trrHlLE TRUE;

Enter forever loop wai t ing for input requests.

Y r - | È f ^ -w a r L r o ! a n o u L p u t n e s s a g e ,

BUFFERT . RQ$RECEIVE$MES SAGE (
TERM$OUTSMBX,
LTAIT$FOREVER,
@usER$RSPr{8X,
GSTATUS) ;

Wr i te the nessage to the console

CALL RQSA$L'RITE (
coNsoLE$ToKEN,
@BUTFER,
STRLEN(GBUFFER),
BrossRsP$M8x,
csrATUs);

WaÍt for the nessage to be output

ACTTJAL - RQ$WArT$rO (
coNSoLE9TOKEN,
F . l n q (p s p (M R Y

i.tAlT9FoREVER,
GSTATUS) i

Nolr deLece the segnent which we received ac TERMOUTMIX.

CALL RQ$DELETE$SEGMENT (
BUFFERT ,
GSTATUS) ;

END; /* DO IIHILE 1 */

END TERMOUT-TSK;

Figure A-7. Terminal Job (TERM.P28)
(continucd)

Pmgramming Techniques A-59

EXAMPLE PROGRAMS

TERM-INIT-TSK: PROCEDURE PUBLIC;

Thls task ls responsib le for set t ing up the connect ions to
the console and creatíng the tasks TERMINTSK, and TERMOUTTSK.

DECI.ARE
MBX,
Bros9RsP$trBX ToKEN,
DIJI,ÍMY$MBX TOKEN ,
TERÌÍDEVCON TOKEN,
TERM$FILE$CON TOKEN,
USERST TOKEN,
TERI'ÍIN$TASK$TOKEN TOKEN,
TERMOUT$TASK$TOKEN TOKEN,
IORST TOKEN,

IORS BASED IORST STRUCTURE (
STATUS WORD),

STATUS,
ACTUAL) LIORD,

BUFFER(256) BYTE,

SICNON$MESSAGE (*) BYTE DATA 'TERMINAL ONLINE .-
R E A D Y F O R P R O C E S S I N G . ' , O A H , O D H) ;

Create the response rnai lbox to be used wi th BIOS systen cal1s,

BIOSRSPMBX - RQ$CREATE$MAILBOX(
0 ,
@srArus);

Create a device connect ion the tern inal - .

CALL RQ$APHYS I CAL$ATTACH$DEVICE (
€ (2 , ' , r 0 ,) ,
PHYS I CAL$FILE$DRIVER ,
BrosRsPMBX,
@STATUS) ;

Figure A-7. Terminal Job (TERM.P28)
(continued)

A-60 Programming Techniques

EXAMPLE PROGRAMS

Wait for the device connect ion token to be returned be the BIOS.

TERMDEVCON : RQ$RECEIVE$MES SAGE (
Br0sRsPMBX,
WAIT$FOREVER,
GDUMMY$MBX ,
GSTATUS) :

Create a f i le connect ion on the terminal device.

CALL RQACREATE$ FI LE (
NUL,
TERM$DEV9CON,
G (0) ,
DRAU ,
0 ,

0 ,

0 ,
BrosRsPMBX,
GSTATUS);

wai t for the device connect íon token to be returned be the BI0S.

TERM$FILE$CON - RQ$RECEIVE$MES SACE (
BIOS9RSP$MBX,
WAIT$FOREVER,
GDUMMY$MBX ,
GSTATUS) ;

onan i hF t - e rm in r l F i l e f o r bo th read and l , r r i t e .

CALL RQ$ASOPEN (
TERM$FILE9CON,
READSL'RITE,
S}IARE$ALL,
BrossRsP$MBX,
GSTATUS) ;

Figure A-7. Terminal Job (TERM.P2E)
lcontinued)

/ * l Jser token ignored fo r phys ica l f i1es . * /

/ * Subpath po in te r ignored fo r phys ica l f i1es . * /

/ * C r a n u l a r i t y i r r e l e v a n t . W e a r e n o t o n a * /

, / * Randorn Access dev ice . * /

/* Size irrelevant. l le are not on a Random */
. / * A î ^ ò c c À a f i î a * /

Programming Techniques A-61

EXAMPLE PROGRAMS

i . ta l t for the I /O resul t segnent to be returned by the 81OS.

roRsr - RQ$RECETVE$IÍES SAGE (
Bros9RsP9MBX,
wAtT$FOREVER,
ANIIMMV<MP.Y

GSTATUS) ;

Catalog the connection token for the open
"coNsoLE".

CALL RQ$CATAI,OG$OBJ ECT (
NUL,
TERIr$FILE9CON,
G (7 , , C O N S O L E ') ,
GSTATUS) ;

Create the task that will handle keyboard

TERMIN$TASK$TOKEN - RQ$CREATE$TASK(

f i l e in the loca l job as

inpuc .

1 1 q

GTERMIN-TSK,
SELECTOR$oF (@STATUS) ,
N I L ,
400H ,
N0$NPX,
G s t a t u s) ;

Create the task wh ich w i l l p rocess conso le ou tpu t .

TERMOUT$TASK$TOKEN . RQ9CREATE$TASK(
1 3 9 ,
GTERMOUT-TSK,
sELECîOR$0F(QSTATUS),
N I L ,
4 0 0 H ,
No$NPX,
G s t a t u s) ;

Delete thysel f as noth ing more to do.

CALL RQ$DELETE$TASK(
NUL,
GSTATUS) ;

Figure A-7. Terminal Job (TERM.P28)
(continued)

/ * In i t ia l ize the
/* Let rnx ass ign
/ * < f A î V 9 i z a * /

/ * Th is task does

/ * T n i i i . l i z o r } : . a

/* Let rrnx as s ign
/ * q l - r ^ L 9 i z a * /

/ * th is task does

DS as we are in COMPACT
the stack *,/

not use the NPX */

DS as we are in COMPACT
the stack * /

not use the NPX */

A-62 Pmgramming Techniques

EXAMPLE PROGRAMS

I F S T A T U S O O T H E N
CAUSEINTERRUPT(3) ;

END TERM_INIT_TSK;

END TERM-MOD;

Figure A-7. Terminal Job (TERM.HZ8)
(cnntinued)

$COMPACT DEBUG PI,J(79) ROM
SBx350_MoD: D0;

$ TNCLUDE (/RMx2 8 6/rNC/RMXPLM . EXr)

DECIARE
NUL LITERALLY 'SELECTOR$OF(NIL) ' ,

Use MINTRO from an isBX 350 insta l led on J5

sbx35o $ INTRSLEVEL LITERALLY ,075H, ,
WAIT$FOREVER LITEMLLY 'OFFFFH' ,

NO$LIAITING LITERALLY 'O' ,
ONESSECOND LITERALLY ' OIOO' ,
CR LITERALLY ' ODH' ,
LF LITEMLLY 'OAH' ,
SBX35OSPORT$A LITEMLLY 'OAOH' ,
sBx35OsPoRTsB LTTERALLY '0A2H"

SBX35O$PORT$C LITEMLLY 'OA4H"

S BX3 5 OSCONTROLS PORT LITERALLY 'OA6H',

Set Por t A for s t robed input and Por t B for Mode 0 output

SBX3 5 O$ INIT$MODE LITERALLY '1O111OOOB' ,
ENABLE$PORT$A$ INTERRUPT LITERALLY 'OOOO1OO1B' ;

Figure A-8. Interrupt Handler and Task (SB)350.P28)

Programming Techniques A-63

EXAMPLE PROGRAMS

SBX3 5O$ INT$HNDLR: PROCEDURE INTERRUPT PUBLIC;

DECIARE STATUS WORD ;

Let the interrupt task do all of the work. The tirne for a
context swlcch should help in the debounce of the interrupt s!,/itch.

CALL RQ$ S IGNAL$ INTERRUPT (SBX3 50$ INTR$LEVEL, GSTATUS);

END SBX3 5OS INT$HNDLR:

SX350 TSK: PROCEDURE PUBLIC;

DECIARE
SBX35OMBX TOKEN,
PROCIOMBX TOKEN,
RSPMBX TOKEN,
STATUS WORD,
INPUT$VALUES (128) BYTE,
ACTUAL BYTE,
NIJMBEROF SAMPLES BYTE,
SBX$INIT$DATA BYTE,
INDEX BYTE;

DECIARE
SBXINITMSC(*) BYTE DATA (
CR,LF, 'THE INTERRUPT TASK IS NOI ' INITIALIZED ' , CR, LF, O) :

I n Í t l a l l z e t h e S B X 3 5 0 i n t e r f a c e .
Port A - Input
Por t B - Output
Por t C - Outpuc
Port A in terrupt enabled

oUTPUT (SBX3 5O$CONTROL$ poRT) - SBX3 50$ rNrT$MoDE;
OUTPUT (SBX3 5O$CONTROL$ PORT) - ENABLE$PORT$A$ INTERRUPT ;

sBx35o$MBX - RQ$CREATE$MAr LBox (
60H ,
@STATUS) ;

/ * Se t up fo r pass ing da ta no t RMX ob jec ts * /

Figurr A-E. Interrupt Handler and Task (SBX350.P2E)
(continued)

A-M Programming Techniques

EXAMPLE PROGRAMS

CALL RQ$CATAT,OG$OBJ ECT (
NUL,
sBx350$MBX,
G(9, ' SBX35O|. ÍBX') ,
GSTAÎUS) ;

Insta l l che Interrupt Handler .

CALL RQ$ SET$ INTERRUPÎ (
sBx3 50$ INTR$LEVEL,
1 ,
@s8x3 50$ TNTSHNDLR,
NUL,
@STATUS) ;

PROCTOMBX - RQ$LOoKTJP$OBJ ECT (
NUL,
G(9, 'PRocroMBX',) ,
WAIT$FOREVER,
@STAÎUS) ;

CALL RQ$SEND9DATA(
PROCIOMBX,
@SBXINITDATA,
1 ,
GSTATUS) ;

ACTUAL - RQ$RECEIVE$DATA (
SBX35OMBX,
GNUI,IBER$OFSAMPLES ,
IiIAtT$FOREVER,
GSTATUS) ;

DO I+IHI LE 1 ;

Enter forever loop wai t ing for in terrupts.

D0 INDEX - 0 T0 (NUMBEROFSAMPLES - I);
CALL RQ$I{AIT$ INTERRUPT (

sBX3 50$ rNTR$LEVEL ,
GSTATUS) ;

Figure A-E, Interrupt Handler and Task (SBX350.H!8)
(continued)

Prograrnming Techniques A-65

EXAMPLE PROGRAMS

WalÈ to debounce the interrupt sr,titch.

CALL RQ$SLEEP (
1 ,
GSTATUS) ;

Cet the lnput data.

INPUT$VALUES (rNDEX) - NOT (TNPUT(SBX35O$PORT$A)) ;
oUTPUT(SBX350$P0RT$B) - INPUT$VALUES (rNDEX);
END; /* DO INDEX - O TO (NUMBEROFSAMPLES . 1) */

CALL RQ$SEND$DATA(
PROC I OMBX ,
@INPUT$VALUES,
NUr.fSEROF SAT.ÍPLES,
@STATUS) ;

ACTUAL - RQ9RECEIVE$DATA (
SBX3 5OMBX,
@NUMBERSOFSAMPLES ,
N0$r{AITING,
GSTATUS) ;

END; /* l,lHILE I *,/

END SBX35O-TSK;

END SBX35O-MOD;

Figure A-E. Interrupt Handler and Task (S8X350.P28)
(continued)

A-6ó Progranming Techniques

EXAMPLE PROGRAMS

$CoMPACT DEBUG Pl,J(79) RoM

PROCIO_MOD: Do;

9INcLUDE (/RMX2 8 6/rNc/RMxpLM. EXT)

STRLEN: PROCEDURE(STRPTR) BYTE EXTERNAL;
DECI.ARE STRPTR POINTER;

END STRLEN;

BTOA: PROCEDURE(CHR, STR) EXTERNAL;
DECIARE

CHR BYTE,
STR POINTER;

END BTOA;

ATOB: PROCEDURE(STR ,STSP) BYTE EXTERNAL;
DECIARE

STR POINTER,
STSP POINTER;

END ATOB;

DECIARE
NUL LITERALLY
I'AIT$FOREVER LITEMLLY

' S E L E C T o R $ o F (N I L) ' ,' O F F F F H ' ,' 0 ' ,' 0 , '
, O D H ' ,, OAH

"
, OFFH ' ,, 0 ' ;

NO$WAITINC
E$OK
CR
LF
TRUE
FALSE

LITERALLY
LITEMLLY
LITERALLY
LITERALLY
LITERALLY
LITEMLLY

CALC$MEAN: PROCEDURE (CoUNT, BUFFP) BYTE EXTERNAL;
DECIARE

COUNT BYTE,
BUFFP POINTER;

END CALC$MEAN;

CALC$MEDIAN: PROCEDURE(CoUNT, BUFFP) BYTE EXTERNAL;
DECIARE

COUNT BYTE,
BUFFP POINTER;

END CALC$MEDIAN;

Figure A-9. Process Task (PROCIO.P28)

Programming Techniques A-67

EXAMPLE PROGRAMS

CALC$MODE: PROCEDURE(COUNT, BUFFP) BYTE EXTERNAL;
DECI^ARE

COUNT BYTE,
BUFFP POINTER;

END CALC$MODE;

PROCIO TSK: PROCEDURE PUBLIC;
DECIÀRE

TERMINMBX TOKEN,
ÎERMOUTMBX TOKEN,
SBX35o$MBX ToKEN,
PRoCroMBX ToKEN,
PROCgIORSPMBX TOKEN,
DUMMY$MBX TOKEN,
BUFFERT TOKEN,
STATUS T.TORD,
ACTUAL WORD,
NUMBEROT SAMPLES BYTE,
rAST$SAMPLE BYTE,
MEAN BYTE,
MEDIAN BYTE,
MODE BYTE,
I'AITINC$ FOR$KEYBOARD BYîE,
VALID BYTE,
DATA$BUFFER (IOOH) BYTE,
BUFFER BASED BUFFERT (256) BYTE;

DECI^A,RE
INITMSG (*) BYTE DATA(

C R , L F , ' I N P U T I N I T I A L I Z A T I O N C O M P L E T E ' , C R , L F , O) ,
MEAN$MSG (*) BYTE DATA (
CR,LF, ' THE MEAN INPUT VALUE I ,JAS ') ,

MEDIAN$MSC (*) BYTE DATA (
C R , L F , ' T H E M E D I A N I N P U T V A L U E W A S ') ,

MODE$MSG (*) BYTE DATA (
C R , L F , ' T H E M O D E T N P U T V A L U E I I A S ') ,

ENTRY$MSG (*) BYTE DATA (
CR,LF, 'PLEASE ENTER A DECIMAL VALUE BETWEEN l AND 128 <CR>

"O
) ,

SMPLE$MSG (*) BYTE DATA (
CR,LF, 'THE NUMBER OF SAMPLES TAKEN WAS ') ;

Figure A-9. Process Task (PROCIO.P28)
lcontinued)

A-68 Programming Techniques

EXAMPLE PROGRAMS

Lookup the mai lboxes for ter rn inal l /0 and the SBX350 task.

TERMINMBX - RQ$LOOKUP$OBJ ECT (
NUL,
@ (6 , ' T E R M T N ') ,
T.TAIT9FoREVER,
GSTATUS) ;

TERMOUTMBX - RQ$LOOKUP$OBJ ECT (
NUL,
@ (7 , ' , T E R M O U T ' ,) ,
WAIT$FOREVER,
@sTArus);

sBX350$MBX - RQ$LOOKUP$OBJ ECT (
NUL ,
@(9, ' , sBX3soMBX') ,
WAIT$FOREVER,
GSTATUS) ;

Setup a rnai lbox where the PPI task can send data for processing.

PROCIO$MBX : RQ$CREATE$MAI LBOX (
60H, / * set up for passing data not RMx objects * /
G S T A T U S) ;

Cata log the mai lbox so the PPI task can f ind i t .

CALL RQ$ CATALOG$OBJ ECT (
NUL ,
PR0Ct0$MBX,
G (9 , ' P R O C T O M B X ') ,
GSTATUS) ;

W a i t f o r d a t a f r o n P P I t a s k i n i È i a l i z a t i o n b e f o r e p r o c e e d i n g .

ACTUAL _ RQ$RECEIVE$DATA (
PROCIO$MBX,
GDATA$BUFFER,
WAIT9FOREVER,
GSTATUS) ;

Figure A-9. Process Task (PROCIO.P28)
lcontinued)

Programming Techniques A-ó9

EXAMPLE PROGRAMS

Create a nai lbox for use when request ing keyboard input

pRocloRsPMBX - RQ$CREATE$MATLBOX (
0, / * set up for passing RMX objects * /
GSTATUS) ;

l . la l t for a response f rom the operator before proceeding.

VALID - FALSE;
DO I,IHILE NOT VALID;

waiE for in i t ia l izat ion data f rom the operator before proceeding.

send a rnessage request ing operator input

BUFFERT . RQ$CREATEg S ECMENT (
S I ZE (BUFFER) ,
GSTATUS) i

CALL MOVB (
GENTRY$MSG ,
GBUFFER ,
S I Z E (E N T R Y $ M S G)) ;

CALL RQ$SEND$MESSAGE (
TERM9OUT$MBX,
BUFFERT ,
NUL,
@sTArus);

Now check for a response.

BUFFERT - RQ9CREATE$ S EG},IENT (
s l z E (B U F F E R) ,
@srArus);

BUFFER(O) - 80H;
CALL RQ$S END9MES SAGE (

TERM$ IN$MBX,
BUFFERT ,
PRoC$r0$RSP$MBX,
GSTATUS) ;

Rt lFFFp , r _ D^ (D F .F r \ rF$MES SAG E (
PROC$ 10$RS P$MBX ,
t {A .L I ì f U t (ÉV EK ,

GDUMMY$MBX ,
@STATUS) j

Figure A-9. Prccess Task (PROCIO.P28)
lcontinued)

A-70 Programming Techniques

EXAMPLE PROGRAMS

Val ldace che input parameter and cransforn i t f ron ASCII

NUMBEROF SAMPLES - ATOB (
@BUFFER ,
€STATUS) ;

r F (S T A T U S - 0)
AND (NWBEROFSAMPLES >O)
AND (NUMBEROF SAMPLES <:128) THEN

VALID - TRUE;

Delete the segment received at PROCIORSPMBX.

CALL RQ$DELETE$ S EGMENT (
BUFFERT ,
GSTATLS) ;

END; /* DO LIHILE NOT VALID */
LAST$SA.I,fPLE - NUMBER$OFSMPLES ;

Now let the PPI task proceed

CALL RQ$SEND9DATA (
sBX350$MBX,
GNUMBEROFSAMPLES,
1 ,
@STATUS) ;

Set a f lag not ing the no requests are pending for keyboard input .

I,IAITINC$ FOR$KEYBOARD : FALSE;
DO I,IHILE 1;

E n t e r n a i n l o o p f o r p r o c e s s i n g d i g i t a l I / O .

W a i t f o r d a t a . f r o m P P I t a s k .

ACTUAL - RQ$RECE I VE$ DATA (
PROCIo$MBX,
A N A T A (R I I F F F P

w A l r l r u K É v È . K !

GSTATUS) ;

Figure A-9. Process Task (PROCIO.P28)
(continuedl

Programming Techniques A-71

EXAMPLE PROGRAMS

Now fornat the data and send i t to the terminal output task.

Inform the operacor of the number of sarnples taken.

BUFFERT - RQ$CREATE$ S EGMENT (
S I ZE (BUFFER) ,
GSTATUS) ;

CALL MoVB (
GSAMPLE9MSG,
GBUFFER ,
c l T F / q a M r) I F C M q c ì \ .

CALL BTOA (
ACTUAL,
GBUFFER(SIZE(SAMPLE$MSC))) ;

CALL RQ$ SEND$MES SAGE (
TERM$OUT9MBX,
BUFFERT ,
NUL,
GSTATUS) ;

Calculate the nean input va lue send i t to the operator
d s P d r L s L r r r r É . .

MEAN : CALC SMEAN (
ACTUAL,
GDATA$BUFFER) ;

BUFFERT - RQ$ CREATE$ SEGMENT (
S I Z E (B U F F E R) ,
€STATUS) ;

CALL MOVB (
€MEAN$MSG,
@BUFFER ,
srzE(MEAN$MSG)) ;

CALL BTOA(MEAN,
GBUFFER(srzE(MEAN$MSG))) ;

CALL RQ$ S END9MES SAGE (
TERMOUTMBX,
BUFFERT ,
NUL,
QSTATUS) ;

Figure A-9. Process Task (PROCIO.P28)
(continued)

A-72 Prograrnming Techniques

EXAMPLE PROGRAMS

Calcu la te the med ian input va lue send i t to the opera tor
, c n r r t a f a z c r o t é r h i n , t è . 1 < t r i n o

MEDIAN - CALC$MEDIAN (
ACTUAL ,
GDATA$BUFFER);

BUFFERT . RQ$CREATE$ S ECMENT (
S I Z E (B U F F E R) ,
GSTATUS) ;

CALL MOVB (
GMEDIAN9MSG,
GBUFFER,
srzE(MEDTANSMSG)) ;

CALL BTOA (
MEDIAN,
GBUFFER(SIZE(MEDIAN$MSG))) ;

CALL RQ$SEND$MESSAGE (
TERMOUTMBX,
BUFFERT ,
NUL ,
GSTATUS) ;

Calculate the rnode input va lue send i t to the operator
d > P d ! L 5 L '

" ' 6 . .

MODE - CALC$MoDE (
ACTUAL,
@DATA$BUFFER) ;

BUFFERT - RQ$ CREATE$ S EGMENT (
s r z E (B U F F E R) ,
GSTATUS) ;

cALL MOVB (
GMODE$MSG,
GBUFFER ,
c r 7 F r / M n n F (M C / : r \ .

CALL BTOA(
MODE ,
@ B U F F E R (S I Z E (M O D E $ M S G))) ;

CALL RQ$SEND$MESSAGE (
TERMOUTMBX,
BUFFERT ,
NUL,
@STATUS) :

Figure A-9. Process Task (PROCIO,P28)
lcontinued)

Pmgramming Techniques A-73

EXAMPLE PROGRAMS

send a rnessage request ing operator input

BUFFERT - RQ$ CREATE$ S EGMENT (
S I Z E (B U F F E R) ,
GSTATUS) ;

CALL MOVB (
@ENTRY$MSC,
@BUFFER ,
srzE (ENTRY$MSG)) ;

CALL RQ$ SEND$MES SAGE (
TERMOUTMBX ,
BUFFERT ,
NUL,
@STATUS) ;

IF WAITING$ FOR$KEYBOARD <> TRUE THEN DO;

l f no input request message ís pending then send one,

BUFFERT - RQ$CREATE$ S EGMENT (
S I Z E (B U F F E R) ,
@srATUS) ;

BUFFER(O) - 80H;
CALL RQ$SEND$MESSAGE (

TERM$IN9MBX,
BUFFERT ,
PROC$ IO9RS P$MBX ,
@STATUS) ;

I'AITING$ FOR$KEYBOARD : TRUE;
END ;

Check for a response f rom the operator before proceeding.

BUFFERT - RQ$RECEIVE9MES SACE (
PRoC$ ro9RSP$MBX ,
NO9WAITINC,
GDUMMY$MBX ,
@STATUS) ;

IF STATUS - O THEN DO;

Figure A-9. Process Task (PROCIO.P28)
lcontinued)

A-74 Programming Techniques

EXAMPLE PROGRAMS

Val idate the input parameter and t ransform i t f ron ASCII .

NUUBER$OF9 SA]"TPLES - ATOB (
GBUFFER,
@STATUS) ;

rF (NUMBERoF SAMPLES >0)
AND (NI,I.fBEROFSAMPLES <:128)
A N D (S T A T U S - O) T H E N D O ;

New sarnple s ize requested. In form the in terrupt task.

CALL RQ$SEND$DATA (
sBX350gMBX,
GNUMBEROFSAI'iPLES,
1 ,
GSTATUS) ;

IAST9SAMPLE - NUMBEROFSMPLES ;
END ;

Delete the segment we received f rorn the keyboard.

CALL RQ$DELETE$ SEGMENT (
BUFFER$T,
@STATUS) ;

Clear the fJ-ag showing that a keyboard input request is pending

I.IAITINC$ FOR$KEYBOARD : FALSE;
END; / * IF STATUS : 0 * /

END; /* DO h'IIILE 1 *,/

END PROCIO-TSK;

END PROCIO-MOD;

Figure A-9, Process Task (PROCIO.P28)
(continued)

Prograrnming Techniques A-75

EXAMPLE PROGRAMS

$COMPACT DEBUG PW(79) ROM OPTIMIZE(O)

UTILIfi-MOD : DO;

$ TNcLUDE (/Rrfi 2 8 6/rNC/RMXPLM. EXT)

DECIARE
NUL LITEMLLY 'SELECTOR9OF(NIL) ' ,
WAIT$FOREVER LITERALLY ' OFFFFH' ,
TRUE LITEMLLY 'T' ,
FALSE LITEMLLY 'O' ,
MAX$STRINC LITERALLY '255' .,

STRLEN: PROCEDURE(STRPTR) BYTE PUBLIC;

DECIARE
STRPTR POINTER,
STRINC BASED STRPTR(I) BYTE,
INDEX BYTE;

INDEX - O;
DO Í,ÍHILE (STRING(INDEX) O O) AND (INDEX < MAXSTRING) ;

INDEX . INDEX + 1;
END ;

IF STRING(INDEX) : O THEN
RETURN INDEX:

ELSE
RETURN O;

END STRLEN;

BTOA: PROCEDURE(CHR, STRINGSP) PUBLIC;
DECI-ARE

STRING$P POINTER,
CHR BYÎE;

DECIARE (
QUOîr ENT ,
REMAINDER,
COUNT ,
MORE$DATA,
INDEX) BYTE,
STRINC BASED STRINC$P(80) BYTE,
D I G I T (8 o) B Y T E ;

Figure A-10. Utility Procedures (UTILS.P28)

L-76 Programming Techniques

EXAMPLE PROGRAMS

INDEX,MORE9DATA - O;

REI,IAINDER - CHR ;

IF CHR : O THEN DO;
D r c r T (0) ' ' 0 ' ;
D r G r T (l) : 0 ;
INDEX : 1 ;
END ;

ELSE DO I.IHILE REMAINDER > O;
D I G I T (I N D E X) : (R E M A I N D E R M O D 1 0) + , 0 ' ;
REMAINDER - REMAINDER . (REMAINDER MOD 10);
REI,ÍAINDER - REÌ.fAINDER / 10;
INDEX - INDEX + 1;
D I G I T (I N D E X) - O ;
END ;

T h i s s t r i n g m u s t b e r e v e r s e d t o h a v e t h e m o s t s i g n i f i c a n t
. l i o í t - ^ r r i - n r r r - f i r 9 l 3 1 t h e t e r m í n a l .

COUNT : O;
DO WHILE INDEX > O;

STRING(COUNT) _ DIGIT(INDEX . 1) ;
COUNT : COUNT + 1;
INDEX : INDEX - 1;
END ;

S T R I N C (C O U N T) : 0 ;

END BTOA;

ATOB: PROCEDURE (STRP, STSP) BYTE PUBLIC;

T h i s p r o c e d u r e í s t o t a l l y w r o n g !

DECIARE
STR$P POINTER,
STS$P POINTER,
CHARS BASED STR$P (1) BYTE,
STATUS BASED STS$P WORD,
VALUE BYTE,
INDEX BYTE,
I BYTE,
MULTIPLIER) BYTE:

Figure A-10. Utility Procedures (UTILS.P28)
(continued)

Program min g Techniques A-77

EXAMPLE PROGRAMS

INDEX, VALUE . O;
MULTIPLIER - 1;
STATUS . O;
DO r,rHrLE (CHARS (ÌNDEX) >: '0',)

AND (CHARS (INDEX) <: ' ,9 ') ;
INDEX - INDEX + 1;
END ;

IF INDEX : O THEN DO;
STAÎUS - OFFFFTI;
RETURN O;
END ;

I - I N D E X - 1 ;
D O W H I L E I < I N D E X ;

VALUE - VALUE + ((C} IARS(I) - 'O ') * MULTIPLIER);
MULTIPLIER . MULTIPLIER * 10;

END ;

RETURN VALUE;
END ATOB;

CALC$MEAN: PROCEDURE (CoUNT, BUFFP) BYTE PUBLIC;
DECIARE

COUNT BYTE,
BUFFP POINTER,
BUFF BASED BUFFP(1) BYTE,
INDEX BYTE,
TOTAL WORD;

TOTAL - O;
DO INDEX - 1 TO COUNT;

TOTAL - TOTAL + BUFF(INDEX . 1);
END ;

RETURN (TOTAL / COUNT)

END CALC$MEAN;

CALC$MEDIAN: PROCEDURE(CoUNT, BUFFP) BYTE PUBLIC;
DECTARE

COUNT BYTE,
BUFFP POINTER,
BUFF BASED BUFFP(I) BYTE,
VALUES(1OOH) BYTE,
TOTAL BYTE,
INDEX BYTE;

Figure A-10. Utilify Procedures (UTILS.P28)
(continuedl

A-7E Programming Techniques

EXAMPLE PROGRAMS

CALL SETB(0, GVALUES, SrZE(VALUES)) ;
DO INDEX . 1 TO COUNT;

VALUES(BUFF(INDEX - 1)) - VALUES(BUFF(INDEX - 1)) + 1;
END ;

TOTAL . O;
INDEX - O;
DO r,rHILE TOTAL <- (COUNr / 2) ;

TOTAL . TOTAL + VALUES (INDEX);
INDEX - INDEX + 1;
END ;

RETURN INDEX .1;

END CALC$MEDIAN;

CALC$MODE: PRoCEDURE(CoUNT, BUFFP) BYTE PUBLIC:
DECIARE

COUNT BYTE,
BUFFP POINTER,
BUFF BASED BUFFP(T) BYTE,
VALUES(IOOH) BYrE,
(
MAX,
INDEX) BYTE;

CALL SETB(0, GVALUES, SrZE(VALUES)) ;
DO INDEX - 1 TO COUNT;

VALUES (BUFF(INDEX - 1)) : VALUES (BUFF(INDEX - 1)) + 1;
END ;

r{Ax - 0;
DO INDEX . O TO IAST(VALUES);

IF VALUES (INDEX) > VALUES(MAX) THEN
MAX : INDEX;

END ;
RETURN MAX;

END CALC$MODE;

END UTILITY_MOD;

Figure A-10. Utility Procedures (UTILS.P28)
(continued)

Programming Techniques a-79

EXAMPLE PROGRAMS

A.7.2 Compiling and Binding the Code

The following commands are used to compile the code for this example:

These PLM286 commands do not include controls for selecting the model of
segmentation (SMALL, COMPACT, MEDIUM, or l-ARGE) because the $COMPACT
control was already included in the source files. The ROM control is also included, to
place the constants in the data segment.

The compiler places the generated object code into the files INITTSK.OBJ, SBX350.OBJ,
TERM.OBJ, PROCIO.OBJ, and UTI[-S.OBJ.

After compiling, the object fi-tes must be bound with the appropriate iRMX Il interface
libraries. Because the code will be configured into the system with the Interactive
Configuration Utility, the BND286 command required is different than the ones used for
the previous examples. The BND286 command for this example must include the
NOLOAD and NOPUBLICS EXCEPT controls.

The NOLOAD control is required because the SUBMIT file created by the ICU will
invoke BLD28ó to further process the resulting module. The NOPUBLICS EXCEFI
control is required to limit the public symbols in the output module. The only public
symbols in the output module are the entry point of the initial task and the dummy
variable identifying the data segment of that task. If all public symbols were allowed, the
names of the iRMX II interface procedures would conflict with the names of the call gates
used inside the operating system.

Even though the NOPUBLICS EXCEPT control is required, including that control can
make debugging somewhat of a chore because the MAP286 utility will not be able to
generate much valuable information. To correct that problem, you can use a three-step
bind operation that produces one output file for use by MAP286 and another output file
that will be used as input to the ICU.

To implement this solution, first bind the object code with the NOLOAD and DEBUG
controls and place the result in a temporary fiìe. Then use the temporary file as input to
BND286 and include the LOAD ontion. This will cause the error

NO START ADDRESS FOUND IN OUTPUT MODULE

A-80 Programming Techniques

EXAMPLE PROGRAMS

This error can be ignored. The object module produced from this invocation of BND286
can be used as input to MAP286 to generate a map of the first-level job. Finally, run the
temporary file through BND286 again, specirying the NOLOAD and NOPUBLICS
EXCEPT controls. The output of this invocation will be combined during configuration
with the rest of the operating system.

The following commands perform the operations just mentioned. They create both a
usable map file and the object module that will be combined with the operating system.

A.7.3 Configuring the First-Level Job

To add the first-level job to the operating system, you must use the ICU and build a
configuration containing that job. The easiest way to do this is to start with an existing
configuration file and modif it to include the new first-level job. You can use any
configuration file that includes the SDB, the Basic I/O System, and supports a device with
the name T0. This example assumes that you start with the configuration file 28612.DEF
as supplied with the operating system.

Programmin g Techn iques A-81

EXAMPLE PROGRAMS

When you run the ICU, make sure to examine the following screens:

Memory for System (MEMS)
screen.

Sub-systems (SUB) screen.

Device Drivers.

In many cases, when you add a first-level
job to the operating system, you must
allocate more memory for the operating
system. In this instance, you won't need
to allocate more memory because you
will be eliminating some of the layers of
the operating system from your
configuration (only the Nucleus, SDB,
and BIOS are needed). In fact, you'll
probably have more than enough memory
allocated for operating system code. If
you were building an actual production
system, you could find out exactly how
much you need by running the ICU twice.
The first time through, allocate a
generous amount of system memory.
After you run the SUBMIT file generated
by the ICU, examine the .MP2 file
produced by BLD286 and find out how
much memory was actually used. Then
go back and modifo the MEMS screen
accordingly, and generate the system
again. For this example, just leave the
MEMS screen set to its default value.

This example requires just the services of
the Nucleus, System Debugger, and Basic
I/O System. Therefore, speciff NO for
the UDI (UDI = NO) and YES for the
Basic I/O System (BIO=YES).

There are no changes required to the
BIOS screens, but only the 8274 driver is
required for this example. To remove the
other drivers, invoke their driver screens
and enter the value

^D

to delete them from the conf iqurat ion.

A-82 Programming Techniques

User Jobs (USERI) screen.

User Modules (USERM)
screen.

EXAMPLE PROGRAMS

Because you are adding a firstlevel job,
you must fill out the User Jobs screen to
describe that job. The fields on this
screen are simi lar to îhe parameters in
the RQE$CREATE$JOB system call.
Figure A- 1 I shows the filìed-out User
Jobs screen. Notice that the Task Start
Address (TSA) and Public Variable
Name (VAR) fields are set to the public
names that remain in the first-level iob
after running BND286
(DUMMYvARIBLE and lNlT_TsK).

On this screen, you must indicate the
paîhname of the ohject module
containing your firstJeveljob. This is the
file produced by BND286 earlier
IEXAMPLE.LNK).

After you make these modifications with the lCU, generate a new system and run the
SUBMIT file produced by the ICU. You can invoke your system by using the Bootstrap
Loader to load the operating system file produced by the ICU's SUBMIT file.

(usERJ)

(NAì'I)
(oDs)
(Pr.rr)
(PMA)
(MoB)
(l,fTK)
(MPR)
(EHs)

(Er'{)
(Pv)
(TP)
(TSA)

(vAR)

(ssA)
(ss r)
(NPX)

EXAI'IPLE
40

OFFFH
OFFFFFH

OFFFFH
OFFFFH

0

ALL
YES
1 3 9

INIT TSK

User Jobs

J o b N a m e [0 - 1 4 c h a r a c t e r s]
O b J e c c d i r e c t o r y S i z e [0 - 3 8 4 0]
PooI Mininun [20H - OFFFFzu]
PooI Maxirm-un [20H - OFFFFFH]
Maxlnum ObJecrs 11 - oFFFFHI
l,faxirnurn Tasks [1 - OFFFFH]
Maximum Pr ior i ty [0 - 255]
Excepcion Handler Entry Point [L-31 chars]

Exception Mode INever/Prog/Envi ronlAl L]
Parameter Val idat lon IYes/No]
T a s k P r i o r i t y [0 - 2 5 5]
T a s k E n t r y P o l n t [1 - 3 1 c h a r s]

P u b l i c V a r l a b l e N a m e l 0 - 3 1 c h a r s l

S t a c k S e g m e n t A d d r e s s I S S : S P]
S t a c k S i z e [0 - O F F F F H] 0 3 0 0 H
Nurner íc Processor Extension Used f Yes, /Nol

DUMUYDATAVARI BLE
0000 : 0000H

NO

Programmlng Techniques

Figure A-l l. User Jobs Screen

A-83

$SLEEP A.32,35

A

AGETCONNECTION$STATUS A.6
AGETFILE$STATUS A.6
A$OPEN A.ó,61
A$PHYSICALI$ATTACH$DEVICE A-6
A$READ A.21,57
A$SEEK A.6,21
A$SPECI-AL A'.6,7,8
A$WRITE A-21,23,59
Assembly code

Parameter passing 2-3
Using iRMXo system calls 2- 1

B

Based variables 5-2
Bind sequence 2-12, A-23,37, 41, 48, 8l
Binding code to interface libraries 2- 1 1
BIOS.EXT 2.5
BND286 2-1t, 12, A-37,41,48, 81
Buffer Pools

Creating 5-3, A- 16
Overview A-3
Passing buffers A- 15
Releasing buffers A-17, 19
Requesting buffers A-18
Using 5-3, A-15, l8

c
C code

Parameter passing 2-4
Using iRMXo system calls 2-4

CGETOUTPUT$CONNECTION A-6
CGETOUTPUT$PATTINAME A-6
C$SEND$CO$RESPONSE A-32, 35
C$SEND$EO$RESPONSE A-20
CATALOG$OBJECT A-11, 16, 29, 56, 58, 62, 65, 69

Pmgramming Techniques Index-l

INDEX

Cataloging objects A-2, 10
Coding iRMX@ system calls 2-l
Communication A-3

Jobs 3-1
Tasks A- 12, 22

Compact segmentation model l-2
Compiler controls

RAM 1 -2 ,4
ROM 1 -2 ,4

Compi l ing code A-23, 37,41, 48, 80
Configuring ajob into the operating system A-81
Constant locations 1-4
Control-C handler A-38
Conventions iv
Converting iRMX@ I applications 5-1
CREATE$BUFFER$POOL A. 17, 18
CREATEIOJOB A.6
CREATE$JOB A-5
CREATE$MAILBOX A-14, 29, 34, 56,58, 59, 60, 64, 69,70
CREATE$SEGMENT 4.17, 18,34, 70, 72,73,74
CREATE$TASK A-9, 11,30,53, 62
Creating tasks A-2, 9

D

Data Acquisition job A-48
Data passing between jobs 3-2

SEND$DATA and RECEIVE$DATA 3-6
Dynamic stack allocations 1-3

E

E$CREATE$IO$JOB A-6
E$CREATE$JOB A-54
EIOS.EXT 2-5
Example

Binding code A-23, 37,41, 48, 81
BND286 2-12
Buffer Pools A-15
Cataloging objects A-10
Clearing the screen A-20
Compiling code A-23,37,41, 48, ll0

Index-2 Programming Techniques

Example (cont.)
Concepts A-1
Configuring a job into the operating system A-83
Control-C handler A-38
Data acquisition A-48
Execution of a job A-24, 38, 41, 48
First-level job A-48
FORTRAN-28ó string conversion 2- 10
In-line exception processing A-3
Include files 2-5, 6, 7
Inter-task communication A-12, 22, 26
Interrupt handler A-43,49, 63
Job initialization A-52
Literal files A-5
Programming concepts A-1
Programs A-1
Pushing parameters onto the stack 2-3
Response pointer A-12
Screen I/O A-20, 35, 55
Simultaneous IIO A-22
System calls from assembly source code 2-3
Task creation A-9
Terminal attributes A-7

Exception handlers 1-3, 5-4, A-4
Execution ofajob A-24, 38, 41, 48
EXITIOJOB A-6,27,30
External procedures 't-2,2-4, 1l

F

File connection restrictions 3-3, 6
FORTRAN-286 code

Include file 2-7
Parameter passing 2-8
Restrictions 2-8
String conversion example 2- 10
Strings 2-10
Using iRMXo system calls 2-8

INDEX

Programming Techniques Index-3

INDEX

G

General protection error 3-1, b
GEfiEXCEPTION$HANDLER A-4, 5
GET$LOGICATJDEVICE$STATUS 4.6
GET$PRIORITY A-9, II, 29
GET$TASK$TOKENS A.5, 29, 53, 56, 58
GET$TYPE A-5,32
Getting terminal attributes A-7

H

HI.EXT 2-5

I

I/O Result Segnent (IORS) A-21, 22, 62
Improving performance (see optimization)
In-line exception processing A-2, 3
Include files

BIOS.EXT 2-5
Description 2-5, A-36
EIOS.EXT 2-5
Example of use 2-5, 6
Example use of 2-7
FORTRAN-286 fiÌe 2-7
HI.EXT 2-5
LOADER.EXT 2.5
Location of 2-5
NUCLUS.EXT 2.5
PASCAL-286 file 2-6
RMXFTN.EXT 2-5,7,8
RMXPAS.EXT 2.5,6,7
RMXPLM.EXT 2.5
Types 2-5
UDI.EXT 2.5

Initialization A-52
Inter-task communication A-3, 12, 26
Interface libraries

BND286 restrictions 2-12
Choosing for use 2-11
Function 2- 11
RMXIFC.LIB 2.11, 12
UDIIFC.LIB 2-11, 12

Interrupt handlers 4-1,3, A-43, 49, 63
Interrupts 4-1

) - l

Index-4 Programming Techniques

L

l-arge applications 1-2, 3
Literal files A-2, 5
LOADER.EXT 2-5
l,oading the stack 2-3
LOGICAI]'ATTACH$DEVICE A-ó
LOOKUP$OBJECI A-4, 31, 34, 36,56, 58, 65, 69

M

Mailbox 3-6,A-27,49
Mailbox optimization 5-3
Manual overview iv
Maskable interrupts 4-1
Medium segnentation models 1-2
Multitasking job A-48

N

Nonmaskable interrupts 4-1
NUCLUS.EXT 2-5

o
Object catalogin g A-2, 10
Object directory ofthe rootjob 3-5
Object passing between jobs 3-3
Optimization

Based variables 5-2
Compiler controls 5-2
Mailboxes 5-3
Nucleus 5-3
Overflow queues, mailboxes 5-3
Seglentation model 5-2
Sequential I/O 5-3
Based variables 5- 2

P

Parameter passing
Assembly code 2-3
Between tasks 3-6
C code 2-4
FORTRAN-286 2.8

INDEX

Pmgramming Techniques lndex-5

INDEX

PASCAL-286 code
Include file 2-6
Restrictions 2-6
Stack allocation 2-7

Passing buffers between tasks A-15
Passing data passing bet'ween jobs

BIOS 3-3
EIOS 3-3
Segments 3-2
SEND$DATA and RECEIVE$DATA 3-2
Stream files 3-3
UDI 3.3

Passing objects between jobs
Guidelines 3-7
Mailboxes 3-6, 7
Object directories 3-4, 7
Overview 3-3
Parameters 3-6,7

Performance 1,-1,2-2, 6, 5-1.,2
PLIM-286 code

Based variables 5-2
Using iRMXo system calls 2-1

Processing exceptions A-3
Program conversion 5-1
Programming examples A-1
Public procedures l-2,2-2

R

RAM compiler control 1-2, 4
Reader level iii, 1-1, 2-1, 3-1, 4-1
RECEM$MESSAGE A-7, 8, 13, 14, 15,23,32,35, 56, 59, 61,62,70,74
RECEIVESUMTS A.12. 15
RELEASE$BUFFER A-14, 17,18, 19
Releasing buffers A-17, 19
REQUEST$BUFFER A.12, 18, 22
Requesting buffers A-18
RESET$INTERRUFT A.44. 45
Response pointer A-3, 12
Restrictions

BND286 2-12
Compact segmentation model 1-3
Connection objects 3-3, 6
FORTRAN-286 code 2-8

Index-6 Pmgramming Techniques

Restrictions (cont.)
Ilrge segmentation model 1-3
Medium segmentation model 1-3
PASCAL-286 code 2-6
Passing data between jobs 3-2, 3
Passing objects between jobs 3-6
Small segmentation model 1-3
Stack size 4-2

RESUME$TASK A-3ó
RMXF|N.EXT 2.5,7,8
RMXIFC.LIB 2.1I, 12
RMXPAS.EXT 2-5,6,7
RMXPLM.EXT 2.5
ROM compiler control 1-2, 4
Root job object directory 3-5

S

SGETCONNECTION$STATUS A.-6
SGETFILE$STATUS A-6
S$OPEN A-4,6,21
S$SEEK A-6
S$SPECIAL A-6,7,8
Screen I/O A-3, 20,35, 55
Segnent registers 7-1, 5-1, 2
Segnentation model

Assembly language calling conventions 2-2
Choosing the size 1-3,2-2, 3
Compact 1-2,2-2,3
Default 5-1
Interface libraries 2- I I
l-arge 1-2, 2-2, 5-1
Medíum 1-2,2-2
Small 1-2

Semaphores
Cataloging 3-4
Creations 3-4
Getting units from 3-5, A- 15
Looking up 3-5
Use in synchronization 3-4

SEND$MESSAGE A-12, 13, 14, 15, 18, 22,33,35,36, 57,70,72,73,74
SEND$UNITS A.14, 15, 19
SET$EXCEPTION$HANDLER A-4, 5
SET$INTERRUM A.44, 47, 65
Setting terminal attributes A-7

INDEX

Pmgramming Techniques Index-7

INDEX

SIGNAI]$INTERRUPT A.43, 46, 50, 64
Simultaneous I/O A-3, 22
SLEEP A-47,66
Small applications 1-2, 3
Small segrnentation model 1-2
Stack

Allocation in PASCAL-286 code 2-7
Computing size using the arithmetic technique 4-3, 4
Computing size using the empirical technique 4-4
Interrupt requirements 4-3
Overflow 4-1, 2
Recursive code 4-2
Size for created tasks andjobs 4-2
Size for loaded or invoked tasks 2-12, 4-2, A,-37
Size limitation for interrupt handlers 4-1, 3
System call requirements 4-3,4

Stream file 3-3
SUSPEND$TASK A-30, 32, 36
Synchronization

Tasks in different jobs 3-4
Using semaphores 3-4

T

Task creation A-2, 9
Terminal attributes A-2, 7
Terminal I/O A-20, 35, 55

u
UDI system calls 2- 11
UDI.EXT 2-5
UDIIFC,LIB 2-11, 12
Using iRMX@ system calls 2- 1

w
WAIT$INTERRUM A-44, 47, 65
WAIT$IO A-2r, 22, 23, s7, s9
Writing code 2-1

Index-8 Progr-amming Techniques

INTERNATIONAL SALES OFFICES

IN 'TE L CORPORAIION .]APAN
3065 Bowers Avenue Inte l Japan K.K
S a n î a C l a r a , C a l i f o r n i a 9 5 0 5 1 F l o w e r - H i l l S h i n - m a c h i

1 - 2 3 . 9 , 5 h r n m a c h i
E E L G I U M S e t a g a y a - k u , T o k y o j 5
Inte l Corporat ion 5A
Rue des Cot tages 65 NETIIERLAND5
B - 1 1 8 0 B r u s s e l s t n t e l S e m i c o n d u c t o r (N e t h e r l a n d I V .)

Alexanderpoor t 8u i ld ing
DENMARK Marten Meesweg 93
Intel Denmark A,/5 3068 Rotterdam
G lentevej 6 î -3rd F loor
d k-2400 Copenhagen NORWAY

lntel Norway A"/5
ENG LAN D P.O Box 92
Inte l Corporat ion (U K.) t ID Hvamveien 4
Prper 's Way N-20l3, Skjet ten
Swindon, Wi l tsh i re 5N3 1RJ

sPAIN
FtN LAND Inre l tber ia
lnte l F in land OY Cal le Zurbaran 28- lZeDA
R u o s i l a n t e 2 2 8 0 1 0 M a d r i d
00390 Hels ink i

S W E D E N
FRANCE Inte l sweden A.B.
Inte l Par is Dalvaegen 24
1 R u e E d i s o n - B P 3 0 3 5 - 1 7 1 3 6 S o t n a
78054 5t . -Quent i n-en-Yvel i nes Cedex

5WI-TZERLAN D
ISRAE L Inte l Semiconductor A.G.
Inte l Semiconductors LTD. Talackerst rasse 17
A t i d i m I n d u s t r i a l P a r k 8 1 2 5 G l a t r b r u g g
Neve sharet CH-8065 Zu r ich
P.O Box 43202
' f

e l - A v i v 6 1 4 3 0 W E s T G E R M A N Y
lnte l 5em icond uctor G. N. B. H.

ITALY Seid lest rasse 27
Inte l Corporat ron S.P.A. D-8000 Munchen
Mi landf ior i , Palazzo El4
20090 Assago (Mi lano)

