
intef

EXTENDED iRMX@II .3
OPERATING SYSTEM

DOCU M E NTATION

VOLUME 3
SYSTEM CALLS

O r d e r N u m b e r : 4 6 1 8 4 6 - 0 0 1

Inte l Corporat ron
306 5 B owers Avenue

5 a n t a C l a r a , C a l i f o r n l a 9 5 0 5 1

Copyrrght ' 1988, ln te l Corporat ion, Al l R ghts Reserved

I n l o c a t i o n s o u t s i d e t h e (j n i t e d S t a t e s , o b t a i n : ì d d i t r o n a l c o p i e s o l l n t e l d o { L r m e n t a t i o n b y
c o n t a î t i n g y o u r l o c a l l n t c l s a l e s o l l i c e . I . ' o r v o u r c o n v e n r e n c e . i n t e r n a t r o n a l s a l e s o m c e a d d r e s s e s
ar€ l { } (ated dìrect ly bef ì ì re the reader re pìy îard in the back of the nranual .

The infòrnìal ion in th js do(umenl is subjecl to r l ì?rnse s i thoLrt not icr

I n t e ì (r) r p o r a l L i) n n ì . ì k o s n { r s a r r a n l y r ì l a n y k i d d \ ! r l h r c s a f d l o t h r s I l ì a t r r i r l , r n (l u d i n g , b u t n o t
l i n ì i t e d t o . l b e r m p l i e d \ \ a r r a n L r e s o f m c r c h a n t a b i ì r t v a n d f i t n e s s f ì) r a p t ì r t i c u l a r p u r p o s e I n t e l
(i l rponrt ion assunìcs no responsrLi l i ty f ì r r nny i ' r rors that nìay appear in th is document. Inte l
C o r p o r a t i o n n r u k e s n o (' r) n r n ì i l n ì c n t t i ' u p , l r r ! c , r r t o k e e t c u r r e n t t h c i n f o r n ì a t i 0 n c o n t a i n e d i n t h i s

I r te l ('orporat ion assr. rncs no rrsponsrbì l ì ry ibr lh€ use of anv c i rcurLrv oth€r lhan c i rcui t ry
e n r b r r d r e d r n a n I . l e l p r ') r l u c t . \ ,) o t h e r c r r c u r l p a t e n t l i r e n s e s a r e r ù ì p l i r d .

I n t c l so l ì \ \ a re p rod r r c t s a re cop r r rgh ted by and sha l l r emarn t he p rope r t y ,) f I n t€ l Co rpo ra t ì on .
t j se . l l up l r ca t r rn o r d r s r l osL r r | r s sL rb l f r t l o r es t r r c l i ons sh led I n I n t r ì l s so f t \ | a re l r cense , r) r as
d e l ì n r d r n A S I ' R ? 1 0 4 . 9 1 a) 1 9)

\o part i) f th is dr)cLrn{ nt nìay be copr.d or rcprodu(od in any form or by any meaDs \ \ l thout pr ior
w r r t t e n c o n s e n t o l l n l e l C o r p o r a L r o n .

' I 'he
I ì r ì l r l rng are l radenrarks ol lnte l Corporat ion and i ts a l l ì l ìares and nìa! be used only to

rdcnlL iy t r ì le l prodLìc ls:

Abor e i l .BX
BITRL:S
CONf\ ' fputer iMDt)X
CRI.]I) IT jM\' IX

l)ata t '] ipel ine lnsi le

Gen rus i n t " l
A
i i n t p l B o s

r l n l e l € v r s i o n

I Z I C E i , , t e l i s e n t I d e n t r f i c r

l C l l i n t e h q e n t P r ,) [. a l r t n ì i n g

r (l U t , I n l c l l o c

i (' S I n l f l l i n k

r l) U l ' ì O S P

I D I S r I J D S

ì l)SI l

rPS(l
i R M X
rSUC
rSB X
rSIl M
rSSu
rSX \ l
l ,rbrarv ! lanager
\ fCS
!fegachassis
\t ICRO \ ' IAI \ ! 'RA}f !]
\ fL-I-TII]L'S
\f L: I-TI C H A NN !] T,
IfUI,TI\ ' IODULE

OpenNFì t
o\c Fi
I r l uq A I l L ,bb le
PROMPT

QUrisT
QueX
Ripplenrode
R \f x/ti0
RL: PI
Seamless
st,t)
UPI
VI,Si(]EL

XENIX, VS t)OS, \ , fu l t ip lan. and Microsol t are t rademarks ol lú icrosof t Corporat ion. L ' \ lX is a
Lradenìark of Bel l Laboratorres. [] thernet is a Lradenìark of Xerox ('orporatron. Centronics is a
l radenrark r) f ('cntronrrs Data Computcr C, ; rporat ion. Cbassrs Trek is a t rademark oi General
D e v i c e s (l o n r p a l y , I n c . V A K a n d V \ t S a r c t r a d e n r a r k s o f l l ì g i r a l E q u i p n l e n t C o r p o r a r r o n .
S r n a r t r n o d e n ì l 2 f) 0 a n d t l a v e s a r e t r a r J e r n a r k s o f H a y e s M i c r o c o m p u t e r P r o d L k t s . I n r . I I I M r s a
regÌstered t radenìark o i lnternat ionàl Busrness Machines. Slr f t Skope is a reetsterod t rademark of
ClonLurrenl S{ ie nrcs.

Copyf l ghtr 1988. Inte l (lorporat ion

l l

VOLUME PREFACE

MANUALS IN THIS VOLUME

This volume (Volume 3, F-rtended |RM)€ II System Cal/s) contains the following manuals,
all of which document the iRMX II system calls. In each manual you will find the system
calls listed with their syntax and descriptions. Note that since these are reference manuals,
their format differs somewhat from the other iRMX II Operating System manuals.

Ertended iRM}.F II Nucleus System Calk Reference Manual
Ertended iRMXo II Basic I/O System Calb Reference Manual
Ertended iRMXo II Extended I/O System Calls Reference Manual
Ettended iRMXo II Application Loader System Calls Reference Manual
Extended iRMXo II Human Interface System Calls Reference Manual
Extended |RMX@ II UDI System Calls Reference Manual

The Exteruled iRMXo II Nucleus System CalLs Reference Manual descri\es the use of all

Nucleus system calls.

T'lte Extendett IRMxcI^ II Busic I/O System Calls Reference Man,al describes the use of all
BIOS system calls.

The Ertenderl lRM)@ II Extended J/O Svstem Calb Reference Manual describes the use of

all EIOS system calls.

The Extended |RM}@ II Application Loader System Calls Ret'erence Man&a/ describes the

use of all loader system calls.

The Extended iRMx{'^ II Human Interface System Calls Reference Manual describes the use
of all Human Interface system calls.

T\e Extendcd iRM),o ll IJDI Svstem Calls Reference Manual describes the use of all UDI

system calls.

iRMX@ II Svstem Calls Volume I l r

VOLUME PREFACE

VOLUME CONTENTS

Manuals are listed in the order they appear in the volumes. For a synopsis of each manual,
reîer to the Introduction to îhe Ertended |RMX\ II Operatíng Sy*em.

VOLUME 1: Extended .RMP II Introduction, Installation, and Operating Instructions

Introduction to the Extended |RMX II Operating System
Ertended iRMX II Hardware and Software lnstallation Gukle
Operator's Guide to the Extentled iRMX II Human InterJace
Master Ind"J

VOLUME 2: Extended |RMl@ II Operating System User Guides

Extended |RM),@ II Nucleus User's Cuide
Ertended iRMP II Basic I/O System User's Cuide
Ertended |RM)@ II Extended I/O System Use r's Guide
Lrtended |RM)F II Human Interface User'.s Gukle
Extendzd |RMP II Application Loader User'.s Guide
Extended |RM}o II Universal DeveloDnrcnt Interface User's Guide
Device Driverc User's Guid.e

VOLUME 3: Extended IRM)..o II System Culls

Extended |RMN II Nucleus System Calls Reference Manual
Extended |RM)F II Basic I/O System Calls Ret'erence Manual
Extended IRM}@ II Extended I/O System Calls Reference Manual
Extended |RMÌ@ II Application Loader Ststem Calls Ret'erence Manual
Ertended lRMXo II Human Interface S.v-stent Culls Ret'erence Manual
Extended IRMXD II UDI System Calb Reference Manual

VOLUME 4: Extended |RM},€ II Operating Systetn Utilities

Extendtd |RMXD II Bootstrap Loader Ret'ertnce Manual
Extended |RMN II System Debugger Reference Manual
Lttended LRM)Ó II Disk Veification Utiliry Ret'erence Manual
Extended iRM},@ II Programming Technique s Reference Manual
Guide to the Lrtended |RM)P II Interactive Configuration Utility

VOLUME 5: Extended |RM}@ II Interactive ConJìgurutbn Utiliry Reference

Extended |RMXo II Interactive Conftguration Utility Reference Manual

lv iRlllX@ II Svstem Calls Volume

REV. REVISION HISTORY DATB

-001 Orig inal Issue. 0 l / 8 8

intel

EXTENDED iRMX@II
NUCLEUS SYSTEM CALLS

REFERENCE MANUAL

In te l Corporat ion
3065 Bowers Aven u e

5anta Clara, Cal i forn ia 95051

Copyr ight . 1988, In te l Corpora l ion, Al l Riqhts Reserved

PREFACE

INTRODUCTION

This manual documents the system calls of the Nucleus, the innermost layer of the
Extended iRMX@ II Operating System. The inlbrmation provided in this manual is
intended as a reference to the systen.ì calls and provides detailed descriptions of each call.

READER LEVEL

This manual is intended for programnrers who rre familiar with the concepts and
terminolory introduced in the Ertended |RMX II Nucleus User's Guide and with the PL/M-
28ó programming la nguage.

MANUAL ORGANIZATION

This manual presents logical groupings of Nucleus System calls. The individual calls
within each group are in alphabetical orcier îor easy reference. The following list shows
how the system calls are groupccl:

. Calls for jobs

. Calls for mailboxes

. Calls for semaphores

. Calls for segments and mcmory pools

. Calls for descriptors

. Calls for all objects

. Calls for exception handlers

. Calls for exception handÌers
o Calls for interrupt handlers, ttsks, ancì levels
. Calls for composite objects
. Cal.ls for extension objects
. Calls for deletion control
. Cal ls for operat ing systcm c\tcnsi()ns
. Calls for regions
. Calìs for MULTIBUS@ ll svstems

Nucleus Svstem Calls l l l

PREI-ACE

lv

Thjs manual uses the following conventions:

. System call names appear as headings on the outside upper corner of each page. The
first appearance of each system call name is printed in ink; subsequent
appearances are in black ink.

. Throughout this manual, most system calls are shown using a generic shorthand (such
as ACCEFNCONTROL instead of RQ$ACCEPT$CONTROL). This convention is
used to make the names easier to understand. Only the calls that are iRMX II
versions of iRMX I system calls are spelled out completely (such as
RQE$CREATE$JOB). When you use the system calls in your programs, you must
specifo the actual PL/M-286 external-procedure names.

You can also invoke the system calls from assembly language, but you must obey the
PL/M-286 calling sequences when doing so. For more information on these calling
sequences refer to the Extended |RMX II Progranmting Teclmique.s Reference Manual.

Nucleus System Calls

CONTENTS

EXTENDED |RMXO II NUCLEUS SYSTEM CALLS PAGE

Nucleus System Cells

CONTENTS (continued)

v l Nucleus Systern Calls

CONTENTS (continued)

Nucleus Svstem Calls Y l l

INTRODUCTION

This manual presents the iRMXo II Nucleus system calls in functional groups and
provides a detailed description of each one.

The callìng sequence for each call is the same as for the PLIM-286 interface. The
information for each system call is organized in the following order:

o A brief sketch of the effects of the calÌ.

o The PL/M-286 calling sequence for the system call.

. Definitions of the input parameters, if any.

. Definitions of the output parameters, if any.

o A detailed description of the effects of the call.

. An example of how the system call can be used.

. The condition codes that can result from using the call, with a description of the
possible causes of each condition.

Throughout this manual, PLIM-286 data types such as BYTE, WORD, POINTER and
SELECTOR are used. In addition, the iRMX II data tlpes TOKEN and STRING are
used. A TOKEN is a 16-bit value that uniquely identifies an iRMX II object. A STRING
is a sequence of consecutive bytes in which the first byte specifies the number of bytes that
follow it in the string. When these terms are used as data types, they are aÌways
capitalized.

Because TOKEN is not a PL/M-28ó data type, you must declare it to be lìterally a
SELECTOR every place you use it. The word "token" in lowercase refers to a value that
the iRMX II Operating System returns to a TOKEN (the data qpe) when it creates the
obiect.

Nucleus System Calls

EXTENDED iRMXO I I NUCLEUS SYSTEM CALLS

The examples used in this manual assume the reader is familiar with PL/M. In these
examples, the appropriate DECI-A,RE and INCLUDE statements are made first. The
reader should note the use of an INCLUDE statement that declares all of the system calls
included in the iRMX II Operating System.

Following this introduction is a system call dictionary in which the calls are grouped
according to rype. The dictionary includes short descriptions and page numbers ofthe
complete descriptions that follow.

Nucleus Svstem Calls

NUCLEUS SYSTEM CALL DICTIONARY

caLLS FOR JO8S.. PAGE

CREATE$JOB -- Creates a job (whose memory pool is limited ro lM
byte) with a task and returns a token for the job.. l0

RQE$CREATE$JOB - Creates a job (with memory pool up to 16M
bytes)and a task and returns the token for the job.. l8

DELETE$JOB - Deletes a job . . 26

OFFSPRING -- Provides a segment containing tokens of the schild
jobs of the speci f ied job..28

RQE$OFFSPRING - Provides, in a user-supplied dara structure, a lìst
of tokens for the chi ld jobs of the speci f ied job.. 31

CALLS FOR TASKS.. PAGE

CREATE$TASK -- Creates a task and returns a token for i t .34

DELETE$TASK -- Deletes a task that is not an interrupt task . 38

GET$PRIORITY -- Returns the stat ic pr ior i ry of a rask.. .41

GET$TASK$TOKENS -- Returns to the caller a roken for either itself,
i ts job, i ts job's parameter object, or the root job..43

RESUME$TASK -- Decreases a task's suspension depth by one;
resumes (unsuspends) the task if the suspension depth becomes
zero.. , , . ,45

SET$PRIORITY -- Changes a task's pr ior i ty. . .48

SLEEP -- Places the calling task in the asleep state for a specifìed
amount of t ime.. 52

SUSPEND$TASK -- Increases a task's suspension depth by one;
suspends the task i f i t is not already suspended..54

CALLS FOR MAILBOXES PAGE

CREATE$MAILBOX - Creates a mailbox and returns a token for
i t 57

DELETE$MAILBOX - Deletes a mai. lbox.. ó1

Nucleus System Calls

NUCLEUS SYSTEM CALL DICTIONARY

CALLS FOR MAILBOXES (continued) PAGE

RQ$RECEM$DATA - Allows the calling task to receive a data
message from a mailbox; the task has the option of waiting if no
messages are present. 63

RECEM$MESSAGE - Allows the calling task to receive an object;
the task has the option of waiting if no objects are present................. 66

SEND$DATA - Sends a data message of up to 80H characters to a
mai1box..70

SEND$MESSAGE -- Sends an obiect to a mai lbox..73

CALLS FOR SEMAPHORES. , . , PAGE

CREATE$SEMAPHORE -- Creates a semaphore and returns a token
for i t 77

DELETE$SEMAPHORE -- Deletes a semaphore.. 80

RECEIVE$UNITS -- Asks for a specific number of units from a
semaphore.. 83

SEND$UNITS - Adds a specific number of units to a semaphore.......................... 86

CALLS FOR SEGMENTS AND MEMORY POOLS.. .PAGE

CREATE$SEGMENT - Creates a segment and returns a token
for i t 89

DELETE$SEGMENT - Returns a segment to the memory pool from
which it was allocated; can also delete a descriptor from the Global
Descr iptor Table (GDT). 9 l

GET$POOL$ATTRIBUTES -- Returns the following memory pool
attributes of the caller's job: pool minimum and pool maximum
(both limited to lM byte of memory), initial size, number of
allocated 16-byte paragraphs, number of available 16-byte
paragraphs. 94

RQEGETPOOTSATTRIB -- Returns the same information as
GET$POOL$ATTRIBUTES for any job, plus the amount of
memory borrowed and the token of the parent job; returns pool mi
nimum and maximum values for pools greater than 1M byte - .97

Nucleus Svstem Calls

NUCLEUS SYSTEM CALL DICTIONARY

CALLS FOR SEGMENTS AND MEMORY POOLS (continued)..,..................PAGE

GET$SIZE -- returns the size, in bytes, of a segment . 101

SET$POOI-$MIN - Changes the minimum attribure of the memory
pool of the cal Ìer 's job.. 104

CALLS FOR BUFFER POOLS PAGE

CREATE$BUFFER$POOL - creates a buffer pool object.................................... 106

DELETE$BUFFER$POOL -- deletes a buffer pool object 108

RELEASE$BUFFER -- Returns previously allocated buffer space to
the speci f ied buffer poo1.. 109

REQUEST$BUFFER -- gets a buffer f rom a buffer pool . 111

CALLS FOR DESCRIFTORS , ,PAGE

RQE$CHANGE$DESCRIPTOR -- Changes the physical address or
size of a segment by modif ing i ts descr iptor in the GDT.. 113

RQE$CREATE$DESCRI OR -- Creates a descriptor in the GDT
describing a segment, and returns a token for that descriptor... 116

RQE$DELETE$DESCRIPTOR -- Removes a descriptor entry from
the GDT.. 119

CALLS FOR ALL OBJECTS PAGE

CATALOG$OBJECT - Places an object in an object directory. 1,21

RQE$CHANGE$OBJECI$ACCESS -- Changes the access of an
n h i a n r t . A

RQEGETADDRESS -- Returns the physical address of an
obiect. 128

RQEGETOBJEC'I$ACCESS -- Returns the access qpe of an
object. 131

GET$TYPE - Accepts a token for an object and returns its tlpe
code.. 135

LOOKUP$OBJECT - Accepts a cataloged name of an object and
returns a token for i t , . . , . . , . . , . . , 138

Nucleus System Calls

NUCLEUS SYSTEM CALL DICTIONARY

UNCATALOG$OBJECI -- Removes an object from an object
directory. 141

CALLS FOR EXCEPTION HANDLERS PAGE

GET$EXCEPTION$HANDLER -- Returns the current values of the
caller's exception handler and exception mode attributes 145

SET$EXCEPTION$HANDLER - Sets the exception handler and
except ion mode attr ibutes of the cal ler747

CALLS FOR INTERRUPT ÍIANDLERS, TASKS, AND LEVELS.................... PAGE

(* indicates the system calls that an interrupt handler can make)

.DISABLE - Disables an interrupt 1eve1.. 151

ENABLE -- Enables an interrupt level . . 154

END$INIT$TASK - Informs root task that a synchronous
ini t ia l izat ion process has completed 157

*ENTER$INTERRUPT -- Sets up a previously designated data
segment base address for the calling interrupt handler...................................... 158

.EXIT$INTERRUPT -- Used by interrupt handlers to send an end-of-
interrupt s ignal to hardware..162

*GET$LEVEL -- Returns the interrupt level of highest priority for
which an interrupt handler has started but has not yet finished
processlng.. 1ó5

RESET$INTERRUPT -- Cancels the assignment of an interrupt
handler to a level and, if applicable, deletes the inrerrupt task for
that 1eve1..167

SET$INTERRUPT - Assigns an interrupt handler and, if desired, an
interrupt task to an interrupt leveI. .171

*SIGNAL$INTERRUPT -- Used by interrupt handlers to invoke
interrupt tasks . . 176

RQE$IMED$INTERRUPT -- Puts the calling interrupt task to sleep
until either it is called into service by an interrupt handler or a
speci f ied t ime per iod eIapses.. 180

Nucleus Svstem Calls

NUCLEUS SYSTEM CALL DICTIONARY

WAIT$INTERRUPT -- Puts the calling interrupt task to sleep until it
is called into service by an interrupt handler................ 184

CALLS FOR COMPOSITE OBJECTS..PAGE

ALTER$COMPOSITE -- Replaces components of composite
objects. 188

CREATE$COMPOSITE -- Creates a composite object and returns a
token for i t . . 190

DELETE$COMPOSITE -- Deletes a composite object. 193

INSPECT$COMPOSITE -- Returns a list of the component tokens
contained in a composite object. 195

CALLS FOR EXTENSTON OBJECTS..pAcE

CREATE$EXTENSION -- Creates a new object type and returns a
token for i t . . . ,_. 197

DELETE$EXTENSION -- Deletes an extension object and all
composites of that type.. 200

CALLS FOR DELETTON CONTROL..PAGE

DISABLE$DELETION -- Makes an object immune to ordinary
delet ion.. 203

ENABLE$DELETION -- Makes an object susceptible to ordinary
deletion. Required only if the object has had its deletion
disabled.. 206

FORCE$DELETE -- Deletes objects whose disabling depths arezero
or one.. -209

CALLS FOR OPERATING SYSTEM EXTENSIONSPAGE

RQESETOS$EXTENSION -- Attaches the entry-point address of a
user-written OS extension to a call gate or deletes such an entry......21,?,

SIGNAT-$EXCEPIION -- Used by OS extensions to signal the
occurrence of an except ion .215

Nucleus System Calls

NUCLEUS SYSTEM CALL DICTIONARY

CALLS FOR REGIONS... PAGE

ACCEP,|$CONTROL - Causes the calling task to accept control from
the region only if control is immediately available. If control is not
available, the calling task does not wait at the region...218

CREATE$REGION -- Creates a region and returns a token for it.........221

DELETE$REGION - Deletes a region..223

RECEIVE$CONTROL - Causes the calling task to wait at the region
unt i l the task receives control . .226

SEND$CONTROL - Relinquishes control to the next task waiting at
the region..229

NUCLEUS COMMUNICATION SERVICE CALLS.. PAGE

ATTACH$BUFFER$POOL -- Associates a buffer pool with one or
more ports.232

ATTACH$PORT - Forwards all messages sent to the port that issued
the call to another port known as a sink port..........234

BROADCAST -- Sends a control message to every agent on the iPSB
bus236

CANCEL -- Performs synchronous cancellation of RSVP message
transmission..238

CONNECT -- Locally connects a port and assigns a default remote
socket.240

CREATE$PORT -- Creates a port object that can be used to send and
receive MULTIBUS II messages between bus agents..242

DELETE$PORT -- Deletes a port . .247

DETACH$BUFFER$POOL -- Ends the association between a buffer
pool and a port248

DETACH$PORT - Ends message forwarding from the source port to
the sink port250

Nucleus System Calls

NUCLEUS SYSTEM CALL DICTIONARY

NUCLEUS COMMUNICATION SERI'ICE CALLS (continued)PAGE

GET$HOST$ID -- Returns the host ID of the board (agent) that
the task is running on.. 252

GET$PORTSATTRIBUTES -- Returns information about how the
specified port is set up253

RECEIVE - Accepts a message at a port..............256

RECEM$FRAGMENT - Acceprs a part (fragmenr) of a requesr
(RSVP) data fnessage.. 260

RECEM$REPLY - Accepts a message that is a reply to an earlier
request262

RECEIVE$SIGNAL -- Receives a signal from a remote host ar a
speci f ied port266

SEND -- Sends a data message from a port to a port on another board2
68

SEND$RSVP - lnitiates a request/response message interchange.......................271

SEND$REPLY - Sent in response to the RQ$SEND$RSVP system
cal l 274

SEND$SIGNAL -- Sends a MULTIBUS Il signal (dataless message)
to a remote agent (board) through the speci f ied port 277

MULTIBUS II INTERCONNECT CALLS.......

GET$INTERCONNECT -- Retrieves the contents of the soecified
interconnect register. -278

SET$INTERCONNECT - Ajters the conrents of an interconnecr
register to a value specified in the caII............280

Nucleus System Calls

The CREATE$JOB system call creates a job with a single task. The memory pool
assigned with this system call is limited in size to 1M byte.

j o b : R Q $ C R E A T E $ J o B (d i r e c t o r y $ s i z e , p a r a r n $ o b j , p o o l $ m i n , p o o l $ m a x ,
r n a x $ o b j e c t s , r n a x $ t a s k s , r n a x $ p r i o r i t y , e x c e p t $ h a n d l e r ,
j o b $ f I a g s . c a s k $ p r i o r i c y , s c a r c $ a d d r e s s , d a c a $ s e g , s t a c k $ p t r ,
s t n c L S c i z e t : c L S f l r o < è y . è n r S n t r \ '

Input Parameters
directory$size A WORD specifying the miuimum allowable number of entries a

job can have in its object directory. The value zero indicates that
no object directory is desired. The maximum value for this
parameter is 0FF0H.

param$obj A TOKEN indicating the presence or absence of a parameter
object. See the Extended |RMX II Nucleus User's Guide for an

:-tilff:T..* ,."-']"'i "ii"r " token ror the new job,s
parameter object.

If set to SELECTOR$OF(NIL), it indicates that the new jotr
has no parameter object.

pool$min A WORD that specifies the minimum allowable size of the new
job's pool, in 16-byte paragraphs. The poolgmin parameter is also
the initial size of the new job's pool. Pool$min should be at least
two paragraphs (20H). If the stack$ptr parameter has a base value
of SELECTOR$OF(NIL), pool$min should be at least rwo
paragraphs plus the value of stack$size in 16-byte paragraphs.

pool$max A WORD that indicates the maximum allowable size of the new
job's memory in 16-byte paragraphs. If pool$max is smaller than
pool$min, an E$PARAM error is reîurned.

max$objects A WORD that specifies rhe maximum number of objects that the
created iob can own.

o If not 0FFFFH, contains the maximum number of objects,
created by tasks in the new job, that can exist at one time.

'
11,',1i.1îî;,l,l:i:ì'll."f ffi ::nl'Ji::"

the number of

t 0 Nucleus System Calls

CREATE$JOB

max$tasks A WORD that specifies the maximum number of tasks that can
exist simultaneously in the new job.

. If not 0FFFFH, it contains the maximum number of tasks that
can exist simultaneously in the new job.

. If 0FFFFH, it indicates that there is no limit to the number of
tasks that tasks in the new job can create.

. It cannot b€ zero. A value of 0H will produce the E$LIMIT
exception.

max$priority A BYTE that sets an upper limit on the priority of the tasks
created in the new job.

o If not zero, it contains the maximum allowable priority of tasks
in the new job. If max$priority exceeds the maximum priority
of the parent job, an E$LIMIT error is returned.

o lî zero, it indicates that the new job is to inherit the maximum
priority attribute of its parent job.

except$handler A POINTER to a structure of the following form:

STRÙCTURE (
EXCEPTION$HANDLER$ PTR POINTER,
EXCEPTION$MODE BYTE):

If exception$handler$ptr is not NIL, then it is a POINTER to the
first instruction ofthe newjob's own exception handler. If
exception$handler$ptr is NIL, the new job's exception handler is
the system default exception handler. In both cases, the exception
handler for the new task becomes the default exceotion handler for
the job.

The exception$mode indicates when control is to be passed to the
exception handler. It is encoded as follows:

When Control Passes
Value To Exceotion Handler

0 Never

I On programmer errors only

2 On environmental conditions only

3 On all exceptional conditions

Nucleus System Calls l l

CREATE$JOB

job$flags A WORD containing information that the Nucleus needs to create
and maintain thejob. The bits (where bit 15 is the high-order bit)
have the following meanings:

Bits Meaning

15-2 Reserved bits that should be set to zero.

1 If0, then whenever a task in the newjob or any of its
descendant jobs makes a Nucleus system call, the Nucleus will
check the parameters for validity.

If 1, the Nucleus will not check the parameters of Nucleus
system calls made by tasks in the new job. However, if any
ancestor of the new job has been created with this bit set to 0,
there will be parameter checking for the new job.

0 Reserved bit that should be set to zero.

task$priority A BYTE that controls task priority as follows:

o If not zero, it contains the priority of the new job's initial task.
If the task$priority parameter is greater (numerically smaller)
than the new job's maximum priority attribute, an E$PARAM
error is returned.

. Ifzero, it indicates that the new job's initial task is to have a
priority equal to the new job's maximum priority attribute.

start$arldress A POINTER to the first instruction of the new iob's initial task
(the task created with thejob).

data$seg A TOKEN that specifies which data segment the new job's initial
task is to use.

. If a valid selector, it is the base selector of the data segment of
the new job's initial task.

. If SELECTOR$OF(NIL), it indicates that the new job's initial
task assigns its own data segment. Refer to the Guide to the
Extended |RMX II Interacti.ve Configuration Utility and the
Extended |RMX II Interacti.ve Configuration UrrTiO, Reference
manual for more information about data segment allocation.

stack$ptr A POINTER that specifies the location ofthe stack for the new
job's initial task.

. If the pointer is valid, it points to the base of the user-provided
stack of the new iob's initial task.

12 Nucleus Systen Calls

Description

The CREATE$JOB system call creates a job with an initial task and rerurns a token for
thejob. The new job's parent is the calling task'sjob. The new job counts as one againsr
the parent job's object limit. The new task counts as one against the new job,s object and
task limits. The new job's resources come from the parent job, as described in the
Exten{led |RMX II Nucleus User's Guide. ln particular, the max$task and max$objects
values are deducted from the creatingjob's maximum task and maximum objects
attributes, respectively.

CREATE$JOB

o If the pointer is set to ML, it indicates that the Nucleus should
allocate a stack for the new job's initial task. The length of the
allocated segment is equal to the value of the stack$size
parameter.

A WORD containing the size, in bytes, of the stack of the new job's
initial task. The stack size must be at least 16 bytes and should
be at least 300 (decimal) bytes if the new task is going to make
Nucleus system calls. Refer to the Extended ikMX II Programming
Techniques manual for further information on estimating stack
sizes.

A WORD containing information that the Nucleus needs to create
and maintain the job's initial task. The bits (where bit 15 is the
high order bit) have the following meanings:

Bits Meaning

stack$size

task$flags

Output Parameters
job

except$ptr

l5- 1

0

Reserved bits which should be set to zero.

If one, the initial task contains floating-point
instructions. These instructions require the Numeric
Processor Extension (NPX) component for execution.

If zero, the initial task does not contain floating-point
instructions.

A TOKEN to which the Operating System will return a roken for
the new job.

A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Nucleus System Calls 13

CREATE$JOB

This system call is included for compatibility with iRMX I systems. When you use it, your
memory pools are limited to 1M byte in size. To allocate larger memory pools, use the
RQE$CREATE$JOB system call.

Example

/***
* This exanple i l lust rates hol r the CREATE$JoB syscen cal l can be *
* u s e d . *
*** /

DECIARE TOKEN LITEMLLY ' SELECTOR' ;
, / * NUCLUS.EXT declares a l1 sysEem ca1ls * /

$ INCLUDE (/rrnx 2 8 6,z inclNUCLUS . EXT)
INITIALTASK: PROCEDURE EXTERNAL:
END INITIALTASK;

DECIARE j ob$ Eoken
DECTARE di rec tory$ s ize
DECIARE paran$obj
DECIARE poo I $rnin
DECIARE poo l$rnax
DECIARE nax$obj ects
DECI-ARE rnax$ tasks
DECTARE rnax$pr ior i ty
DECI-ARE except$handler
DECURE j ob$f lags
DECLARE cask$pr ior i ty
DECIARE s tart$addres s
DECfARE data$seg
DECIARE s tack$po inte r
DECIARE s tack$ s ize
DECI-ARE task$ flags
DECLARE s tatus

TOKEN ;
WORD ;
TOKEN :
WORD ;
WORD ;
WORD ;
WORD ;
BYTE;
POINTER;
WORD ;
BYTE ;
POINTER:
TOKEN ;
POINTER;
WORD ;
WORD ;
WORD :

SA},TPLEPROCEDURE :
PROCEDURE;
di rectory$size : 10; , / * max 10 entr ies in object d i rectory * /
param$obj * SELECToR$oF(NIL) ; / * nev job has no paranerer objecr * /
pool$min - OIFFH; / * min 01FFH, rnax 0FFFFt l 16-byte * /
pool$max : OFFFFH; / * paragraphs in job pool * /
max$objects : OFFFFH; , / * no l imic to number of objects * /
max$tasks : l0 ; , / * 10 tasks can ex is t s inu lÈaneously * /
max$pr ior i ty : 0 ; / * inher i t nax pr lor i ty of paren! * /
except$handler - NIL; / * use system defaul t except handler * /
job$f lags : 0 ; / * pararnerer va l idat ion is on * /
t a s k $ p r i o r i t y : 0 ; , / * s e t i n i r i a l t a s k t o m a x p r i o r i . l y * /

s tar t$address - @INITIALTASK;
/* points Èo f i rs t inst ruct ion of

in i t ia l rask * /

t4 Nucleus System Calls

daca$seg - SELECTOR$oF(NIL) ;

s t a c k $ p o i n t e r : N I L ;
s c a c K v s r z e :) I z :
task$f lags : 0 ;

Typica l PL/YI-286 S Èarernents

CREATE$JOB

/* initlal task seÈs up or.rn data
segnent */

, / * Nucleus a l locates s tack * /

/ * 512 bytes in s tack of in i t ia l task
, / * no f loat lng-point inst rucÈions * /

. Typica l PL/14-286 Statements

/***x
* The cal l ing task creates a job wl th an in i t ia l task labeled *
* INITIALîASK. *

**/

j ob$ token - RQ$CREATE$JOB (d i r e c t o r y $ s i z e ,
param$obj ,
pool$rn in,
p o o l $ m a x ,
nax$obj ec ts ,
max$tasks,
rnax$pr ior i ty ,
except$handIer ,
j ob$ f lags ,
t a s k $ p r i o r i t y ,
s t a r t $ a d d r e s s ,
d a t a $ s e g ,
s tack$po in ter ,
s t a c k $ s i z e ,
task$ f lags ,
@s tatus) ;

END SAMPLEPROCEDURE ;

Condition Codes

E$OK

E$B,,\D$ADDR

E$CONTEXT

0000H No exceotional conditions.

800FH At least one of the except$handler, data$seg, or
stack$ptr parameters is invalid. Either a
selector does not refer to a valid segnent, or an
offset is outside the segment boundaries.

0005H Thejob containing the calling task is in the
process of being deleted.

Nucleus System Calls l 5

CREATE$JOB

E$EXIST

E$LIMIT

E$MEM

E$PARAM

0006H The param$obj parameter is not
SELECTOR$OF(ML) and is not a token for
an existing object.

0004H At least one ofthe following is true:

o max$objects is larger than the unused portion of
the object allotment in the calling task's job.

. max$tasks is larger than the unused portion of
the task allotment in the calling task's job.

. max$priority is greater (numerically smaller)
than the maximum allowable task prioriw in the
calling task's job.

. directory$size is larger than 0FF0H.

. The initial task would exceed the object limit in
the new job. That is, the max$objects
parameter rs set to zero.

. The initial task would exceed the task limit in
the new job. The max$tasks parameter is set to
zefo.

0002H At least one of the following is true:

r The memory available to the new job is not
sufficient to create a job descriptor (an internal
data structure) and the object directory.

. The memory available to the new job is not
sufficient to satisfy the pool$min parameter.

o The memory available to the new job is not
sufficient to create the task as specified.

8004H At least one ofthe following is true:

. pool$min is less than 16 + (number of
paragraphs needed for the initial task and a
system-alìocated stack) + 5 (if the task uses rhe
NPX component).

o pool$min is greater than pool$max.

. task$priority is unequal to zero and greater
(numerically smaller) than max$priority.

o stack$size is less than 16.

. the exception handler mode is not valid.

l ó Nucleus Svstem Calls

CREATE$JOB

E$SLOT 000CH There isn't enough room in the GDT for the
new job and task descriptors.

Nucleus System Calls t7

The RQE$CREATE$JOB system call creates a job with a single task. It provides the
same services and has the same syntax as the CREATE$JOB system call, except that it
can allocate memory oools of uD to lóM bvtes in size.

job - RQESCREATESJOB (d i rectorygsize, paraur$obJ, pool$nin,
pool$max, rnax$obj ects , max$tasks, nax$pr ior i ty ,
excepc$handler , job$f lags, task$pr lor l ty , scar t$address,
d a t a $ s e g , s t a c k $ p t r , s t a c k $ s i z e , t a s k $ f 1 a g s , e x c e p t $ p t r) ;

Input Parameters
directorv$size

param$obj

pool$min

pool$max

mò\$objects

A WORD specifying the maximum allowable number of entrres a
job can have in its object directory. The value zero is permitted,
for the case where no object directory is desired. The maximum
value for this parameter is 0FF0H.

A TOKEN indicating the presence or absence of a parameter
object. See the Extended |RMX II Nucleus User's Guidz îor an
explanation of parameter objects.

. If a valid selector, it must contain a token for the new lob's
parameter object.

o If set to SELECTOR$OF(ML), it indicates that the new job
has no parameter object.

A DWORD that specifies the minimum allowable size of the new
job's pool, in 16-byte paragraphs. The pool$min parameter is also
the initial size of the new job's pool. Poolgmin should be at least
two paragraphs (20H bytes) and no more than OFFFFFH. If the
stack$ptr parameter has a base value of SELECTOR$OF(NIL),
pool$min should be at least two paragraphs plus the value of
stack$size in 16 byte paragraphs.

A DWORD that indicates the maximum allowable size of the new
job's memory in 16-byte paragraphs. If poolgmax is smal.ler than
pool$min, an E$PARAM error is returned.

A WORD that specifies the maximum number of objecrs that the
created job can own.

. If not OFFFFH, contains the maximum number of objects,
created by tasks in the new job, that can exist at one time.

l 8 Nucleus System Calls

RQESCREATE$JOB

. If 0FFFFH, indicates that there is no limit to the number of
objects that tasks in the new job can create.

max$tasks A WORD that specifies the maximum number of tasks that can
exist simultaneously in the new job.

o If not OFFFFH, it contains the maximum number of tasks that
can exist simultaneously in the new job.

. If OFFFFH, it indicates that there is no limit to the number of
tasks that tasks in the new job can create.

. It cannot be zero. A value of 0H will produce the E$LIMIT
exception.

max$priority A BYTE that sets an upper limit on the priority of the tasks
created in the new job.

. If not zero, it contains the maximum allowable priority of tasks
in the new job. If max$priority exceeds the maximum priority
of the parent job, an E$LIMIT error is returned.

o If zero, it indicates that the new job is to inherit the mzr-rimum
priority attribute of its parent job.

except$handler A POINTER to a structure of the following form:

STRUCTURE (
EXCEPTION$HANDLER$PTR POINTER,
EXCEPTION$MODE BYTE);

If exception$handler$ptr is not NIL, then it is a POINTER to the fifst instruction of the
new job's own exception handler. If exception$handler$ptr is NIL, the new job's exception
handler is the system default exception handler. In both cases, the exception handler for
the new task becomes the default exception handler for the job.

The exception$mode indicates when control is to be passed to the exception handler. It is
encoded as follows:

When Control Passes
Value To Exception Handler

0 Never

1 On programmer errors only

2 On environmental conditions only

3 On all exceptional conditions

Nucleus System Calls l 9

ROE$CREATE$JOB

job$flags A WORD containing information that the Nucleus needs to create
and maintain thejob. The bits (where bit 15 is the high-order bit)
have the following meanings:

Bits Meaning

l5-2 Reserved bits that should be set to zero.

1 If 0, then whenever a task in the newjob or any of its
descendant jobs makes a Nucleus system call, the
Nucleus will check the parameters for validity.

If l, the Nucleus will not check the parameters of
Nucleus system calls made by tasks in the new job.
However, if any ancestor of the new job has been
created with this bit set to 0. there will be Darameter
checking for the new job.

0 Reserved bit that should be set to zero.

task$priority A BYTE that controls task priority as follows:

o If not zero, it contains the priority of the new job's initial task.
If the task$priority parameter is greater (numerically smaller)
than the new job's maximum priority attribute, an E$PARAM
error is returned.

c If zero, it indicates that the newjob's initial task is to have a
priority equal to the new job's maximum priority attribute.

start$address A POINTER to the first instruction of the new iob's initial task
(the task created with the job).

data$seg A TOKEN that specifies which data segment the new job's initial
task is to use.

o If a valid selector, it is the base selector of the data segrnent of
the new job's initial task.

. If SELECTOR$OF(NIL), it indicates that the new job's initial
task assigns its own data segment. Refer to the Guide to the
Extended |RMX II Interactive Configumtion Utílity and the
Extended |RMX II Interactive Configuration Utility Reference
manual for more information about data segment allocation.

stack$ptr A POINTER that specifies the location of the stack for the new
job's initial task.

. If the pointer is valid, it points to the base of the user-provided
stack of the new iob's initial task.

20 Nucleus System Calls

Output Parameters
jnb

except$ptr

Description

The RQE$CREATE$JOB system call creates a job with an initial task and returns a
token for thejob. The new job's parent is the calling task'sjob. The new job counts as
one against the parent job's object limit. The new task counts as one against the new job's
object and task limits. The new job's resources come from the parent job, as described in
the Extended |RMX II Nucleus User's Guilz. In particular, the max$task and maxgobjects
values are deducted from the creatingjob's maximum task and maximum objects
attributes, respectively.

RQE$CREATE$JOB

. If the pointer is set to ML it indicates that the Nucleus should
allocate a stack for the new job's initial task. The length of the
allocated segment is equal to the value of the stack$size
parameter.

A WORD containing the size, in bytes, of the stack of the new job,s
initial task. This size must be at least 16 (decimal) bytes. The
Nucleus increases specified values that are not multiples of 16 up
to the next higher multiple of 16.

The stack size should be at least 300 (decimal) bytes if the new task
is going to make Nucleus system calls. Refer to the Extended iRMX
II Programming Techniques manual for further information on
estimating stack sizes.

A WORD containing information that the Nucleus needs to create
and maintain the job's initial task. The bits (where bit 15 is rhe
high order bit) have the following meanings:

Bi ts Meaning

stack$size

task$flags

15- 1

0

Reserved bits which should be set to zero.

If one, the initial task contains floating-point
instructions. These instructions require the Numeric
Processor Extension (NPX) component for execution.

If zero, the initial task does not contain floating-point
instructions.

A TOKEN to which the Operating System will return a token for
the new job.

A POINTER to a WORD to which the iRMll II Operating System
will return the condition code generated by this system call.

Nucleus Svstem Calls 2 l

ROE$CREATE$JOB

This system call is an extension ofthe CREATE$JOB system that supports the full
memory-addressing capabilities of the iRMX II Operating System. When you use it, you
can assign memory pools of up to 16M bytes in size.

DECI-ARE
DECIARE
D EC I-A,RE
DECI.ARE
DECI^ARE
DECIARE
DECI.ARE
DECI.{RE
DECI.ARE
DECI.ARE
DECI"ARE
DECIARE
DECIARE
DECIARE
DECT.ARE
DECT^ARE
DECIARE

j o b $ t o k e n
d i r e c t o r y $ s i z e
pararn$obj
p o o l $ m i n
poo 1$rnax
rnax$obj ec ts
rnax$ tasks
rnax$pr ior i ty
except$handler

t a s k $ p r i o r i c y
s tar t$ addre s s
data$ s e g
s tack$po in ter

task$ f lags
s EaEus

TOKEN ;
WORD ;
TOKEN ;
DWORD ;
DWORD ;
WORD ;
WORD ;
av-t c

POINTER;
WORD ;
R\/TF .

PO INTER :
TOKEN ;
PO INTER ;
1IORD ;
WORD ;
WORD ;

SAI'fPLEPROCEDURE :
PROCEDURE;

u r r c w u v r J v r r z

paran$obj : S ELECTOR$OF (NI L)
p o o l ì m l n : u 1 i . l H ;

P o o I l m a x : U Ì t I I l t l ;

max$ob j ec t s - OFFFFH ;
rnax$tasks - 10;
m a x $ p r i o r i t y : 0 ;
except$handler : NIL;
j o b $ f l a g s - 0 ;
t a s k $ p r i o r i t y - 0 ;

, / * max 10 en t r ies in ob jec t d i rec to ry * /

/ * n e w j o b h a s n o p a r a m e t e r o b j e c L * /

/* rnin 01Fl'H, max oFFFFFH L6-byte */

/* par agr aphs in job pool */

/ * no l im i t co nurnber o f ob jec ts * /

, / * 10 tasks can ex is t s imu l - taneous ly * /

, / * í n h e r i t m a x p r i o r i t y o f p a r e n t * /

/ * use sys tem defau l t except hand ler * /

/ * parameter va l ida t ion ls on * /

, / * se t in i t ia l task to max pr io r Í ty x /

Example

/ *********************************** :k******************************
* This exanple i l lust rates how the RQE$CREATE$JoB systero ca l l *
* can be used. *

**/

DECIARE TOKEN LITERALLY 'SELECTOR' ;

, / * NUCLUS.EXT declares a l l systen cal ls * , /

$ INcLUDE (/rrnx2 8 6/ inclNUcLUS . EXT)
INITIALTASK: PROCEDURE EXTERNAL;
END TNITIALTASK;

22 Nucleus Svstem Calls

star t$address : @INITIALTASK:

d a t a $ s e g : S E L E C T O R S O F (N I L) ;

RQE$CREATE$JOB

/ * po in ts co f i rs t ins t ruc t ion o f
in i t ia l task * /

, / * ín i t ia t task se ts up ovn da ta
segment * /

, / * Nuc leus a l loca tes s tack * /

/ * 512 by tes in s rack o f in i t ia l task * . /

/ * no f loaCing-po in t inscruc t ions * /

stack$pointer
s t a c k $ s i z e -
task$f lags :

- N I L ;
5 L 2 ;
0 ;

. Typica l PL/11-286 S rarenenrs

/******************x***************************)k*******)r***********
* The ca l l ing task c rea tes a job w i th an in i t ia l task labe led *
* IN IT IALTASK. *

***************************************x**************************
/

j ob$token : RQEgCREATE$JOB (d i r e c t o r y $ s i z e ,
param$obj ,
p o o I l m l n ,
p o o l $ m a x ,
max$obj ec ts ,
max$ tasks ,
rnax$pr ior i ty ,
e x c e p t $ h a n d l e r ,
j o b $ f l a g s ,
t a s k $ p r i o r i t y ,
s t a r t $ a d d r e s s ,
d a t a $ s e g ,
s t a c k $ p o i n t e r ,

t a s k $ f 1 a g s ,
Gs tatus) ;

Typica l PL/YI-286 S rarenents

END SA},IPLEPROCEDURE :

Nucleus Systern Calls 23

RQE$CREATE$JOB

Condition Codes

E$OK

EBADADDR

E$CONTEXT

E$EXIST

E$LIMIT

E$MEM

0000H No exceptional conditions.

800FH At least one of the following parameters is
invalid: except$handler, data$seg, or stack$ptr.
Either a selector does not refer to a valid
segment, or an offset is outside the segment
boundaries.

0005H Thejob containing the calling task is in the
process of being deleted.

0006H The param$obj parameter is not
SELECTOR$OF(NIL) and is not a token for
an existing object.

0004H At least one ofthe following is true:

. max$objects is larger than the unused portion of
the object allotment in the calling task's job.

. max$tasks is larger than the unused portion of
the task allotment in the calling task's job.

. max$priority is greater (numerically smaller)
than the maximum allowable task priority in the
calling task's job.

o directory$size is larger than 0FF0H.

. The initial task would exceed the object limit in
the new job. That is, the max$objects
parameter is set to zero.

. The initial task would exceed the task limit in
the new job. The max$tasks parameter is set to
zefo-

At least one of the following is true:

The memory available to the new job is not
sufficient to create a job descriptor (an internal
data structure) and the object directory.

The memory available to the new job is not
suffìcient to satisfy the pool$min parameter.

The memory available to the new job is not
sufficient to create the task as soecified.

0002H

24 Nucleus Svstem Calls

RQE$CREATE$JOB

E$PARAM 8004H At least one of the following is true:

o pool$min is less than 16 + (number of
paragraphs needed for the initial task and a
system-allocated stack) + 5 (if the task uses the
NPX component).

. pool$min is greater than pool$max.

. task$priority is unequal to zero and greater
(numerically smaller) than max$priority.

. stack$size is less than 16.

o the exception handler mode is not valid.

E$SLOT 000CH There isn't enough room in the GDT for the
new job and task descriptors.

Nucleus Svstem Calls)<

The DELETE$JOB system calì deletes a job.

CALL RQSDELETE$JOB (j ob, except$ptr) ;

Input Parameter
jnb

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code generated by this system call.

Description

The DELETE$JOB system call deletes the specified job, all of the job's tasks, and all
objects created by the tasks. Exceptions are that jobs and extension objects (see the
Extended |RMX II Nucleus User's Cuide) created by tasks in the target job must be deleted
prior to the call to DELETE$JOB. Information concerning the descendants of a job can
be obtained by invoking the OFFSPRING system call.

During the deletion of any interrupt tasks owned by the job, the interrupt levels associated
with those tasks are reset. The levels that do not have interrupt tasks associated with
them will not be reset during an RQ$DELETE$JOB call.

During deletion, all resources thar the target job had borrowed from its parent are
ret u rn ed.

Deleting a job causes a credit of one toward the object totaì of the parent job. Also, the
maximum tasks and maximum objects attributes of the deleted job are credited to the
current tasks and current objects attributes, respectively, of the parent job.

Example

/**
* This exarnple i lLust rates how the DELETE$JOB systern ca l l can be *
* u s e d t o d e l e t e t h e c a l l i n g t a s k ' s j o b . *

)k********************* /

DECIARE TOKEN LITEMLLY ' SELECTOR' :

A TOKEN for the job to be deleted. A value of
SELECTOR$OF(NIL) specifies the calling task's job.

26 Nucleus System Calls

DELETE$JOB

/ * NUCLUS. EXT declares a l l systern ca l1s * /
$ INCLUDE (/rmx2 8 6/ inclNUcLUS . EXT)

DECIARE cal l ing$ rasks gj ob TOKEN;
DECI-qRE status WORD;

SAMPLEPROCEDURE :
PROCEDURE;

cal l ing$ task$j ob - SELECTORgoT(NIL) ; / * Ser job co task,s job. x7

. Typica l PL/YL-286 Statenents

/**
* I f you ser rhe job pararnerer ro SELECTOR$OF(NIL) , rhe DELETEgJOB *
* s y s t e m c a l l w i l l d e l e t e t h e c a l l i n g t a s k , s j o b . *

** /

CALL RQ$DELETE$JOB (cal l inggtasksgjob, Gstarus) ;

END SAMPLEPROCEDURE ;

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$TYPE 8002H The jobparameter is a token for an object that
rs not a Joo.

0000H No exceptional conditions.

0005H At least one of the following is true:

o There are undeleted jobs or extension objects
(see the Extended |RMX II Nucleus User's
Guide) which have been created by tasks in the
target job.

. The deleting task has access to data guarded by
a region contained in the job to be deleted.
(Refer to the Extended |RMX II Nucleus User's
Guide for information concerning regions.)

0006H Thejob parameter is not a token for an existing
object.

Condition Codes

E$OK

E$CONTEXT

E$EXIST

Nucleus Svstem Calls , 1

The OFFSPRING system call returns a token for each child (ob) of a job.

t o k e n $ l i s t - R Q $ o F F S P R I N C (j o b , e x c e p t S p t r) ;

Input Parameter
job A TOKEN for the job whose offspring are desired. A value of

SELECTOR$OF(NIL) specifies the calling task's job.

Output Parameter
token$list A TOKEN that indicates the children of the specified job.

. If a valid selector, the TOKEN contains a token for a segrnent.
The first word in the segment contains the number ofwords in
the remainder of the segment. Subsequent words contain the
tokens for jobs that are the immediate children of the specified
job.

. If SELECTOR$OF(NIL), the specified job has no children.

except$ptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Description

The OFFSPRING system call returns the token for a segment. The segment contains a
token for each chiid of the specifie<J job. By repeated use of this call, tokens can be
obtained for all descendants of a job; this information is needed by a task which is
attempting to delete a job that has child jobs.

Example

/**
* This exanple i l lust rates hor . r the OFFSPRING systern ca l l can be used *
* to return a token for each chi ld of a job. *
**/

DECIARE TOKEN LITEMLLY 'SELECTOR' ;

/x NUCLUS. EXT declares a l l syscem cal ls * /
$ INCLUDE (/rmx2 8 6/ incINUCLUS . EXT)

: 8 Nucleus System Calls

OFFSPRING

DECIARE token$l is t ToKEN:
DECIARE ca l I i ng$ tasks$j ob TOKEN ;
DECIARE status WoRD;

SA.MPLEPROCEDURE :
PROCEDURE;

. Typical PL/14-286 statenents

/************)r***
* In th is example, the cal l ing task lnvokes the systen cal l OFFSPRING *
* to obta in a token for a segment . This segnent conta ins the tokens *
* f o r j o b s L h a t a r e i m r n e d i a t e c h i l d r e n o f t h e c a l l i n g t a s k ' s j o b . *
**/

ca l l ing$tasks9j ob : SELECTOR$OF(NIL) ;

t o k e n $ l i s t : R Q $ O F F S P R I N G (c a l l i n g $ t a s k s g j o b ,

@s tatus) ;

. TyPical PL/ t tL-286 S tatements

END SAI'ÍPLEPROCEDURE;

Condition Codes

E$OK

E$EXIST

0000H No exceptional conditions.

0006H Thejob parameter is not a token for an existing
object.

E$LIMIT 0004H The calling task'sjob has already reached its
object limit.

E$MEM 0002H The memory available to the specified job is not
sufficient to complete this call.

ENOTCONFIGURED 0008H This.system call is not part of the present
conlrquratron.

Nucleus System Calls 29

OFFSPRING

E$SLOT 000CH There isn't enough room in the GDT for
another descriptar.

E$TYPE 8002H Thejob parameter contains a token for an
object that is not a job.

30 Nucleus Svstem Calls

The RQE$OFFSPRING system call performs the same function as the Re$OFFSPRING
system call. However, RQE$OFFSPRING returns the list of child iob tokens in a
structure that you supply, rather than in a segment.

C A L L R Q E $ O F F S P R I N C (j o b , l i s r g p r r , e x c e p r g p r r) ;

Input Parameter
jnb

Output Parameters
list$ptr

A TOKEN for the jobwhose offspring are desired. Avalue of
SELECTOR$OF(ML) specifies the calling task's job.

A POINTER to a STRUCTURE in which the system call returns
tokens for the children of the specified job. The format of this data
structure is as follows:

DECIÀRE offspring STRUCTURE (
maxlnum wuKU,
ac tua l WORD,
c h i l d r e n (*) T O K E N) ;

The fields of this structure are as follows:

max$num This is actualìy an input field. Before
invoking the system call, you must set this
field to indicate the maximum number of
child job tokens the system call can return in
this structure. That is, this field must
specifo the number of slots for children
tokens in this structure. The value in this
field must be greater than zero.

The system call fills in this field to indicate
the number of tokens it returned in this
structure. This number will never be larser
than the max$num value.

children(.) The system call fills in these fields with the
tokens for the immediate children of the
specified job. The number of tokens in this
list is indicated in the actual field.

actual

Nucleus Systern Calls 3 l

RQE$OFFSPRING

except$ptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Description

The RQE$OFFSPRING system call returns a structure that contains a token for each
child of the specified job. By repeated use of this call, tokens can be obtained for all
descendants of a job. This information is needed by a task that is attempting to delete a
job that has child jobs.

This system call returns exactly the same information as RQ$OFFSPRING. The only
difference between the two system calls is that RQ$OFFSPRING creates an iRMX II
segment to contain the information about the offspring tokens; RQE$OFFSPRING
returns the token information in a structure that you supply. Using structures instead of
iRMX II segments minimizes the number of iRMX II objects (and thus the number of
GDT entries). It also means that the memory for the list is allocated when the task starts
running, not dynamically when needed. This minimizes the chance of the system call
failing because of a lack of memory.

The offspring structure that you supply has two fields in addition to the slots in which the
system call returns the tokens. The first, max$num, is an input parameter that you fi[in
to indicate the amount of room in the structure for offspring tokens. The second field,
actual, is filled in by the system call when it returns the tokens. The actual field is set to
indicate the number of tokens actually returned. If there are more tokens to be returned
than slots in the structure, the system call returns only enough to fill up the structure (that
is, max$num).

Example

/***************************************x********************************
* This example i l lust rates how the RQE$OFFSPRING system cal l can be *
* used to return a token for each chi ld of a job. *
** /

DECI-ARE TOKEN LITERALLY 'SELECTOR' ;

/ * NUCLUS.EXT declares a l1 systen calLs * /

$ INCLUDE (/rrnx2 8 6/ inc/NUCLUS . EXT)

DECTARE token$l is t
max$nurn
actual
c h i l d r e n (2 0)

DECIARE c a I I i ng$ ta s ks $ j ob
DECI,ARE status

STRUCTURE
WORD ,
WORD ,
TOKEN) ;
TOKEN ;
WORD ;

1 t Nucleus System Calls

RQE$OFFSPRING

SAMPLEPROCEDURE:
PROCEDURE;

. Typica l PL/ l . l -286 S rarernents

/ ***x
* In th is example, the cal l ing task invokes the systen cal l *
* RQE$oFFSPRING ro obta in a l is t o f up co 20 tokens for rhe jobs thar *
* are the imrnediate ch i ldren of the cal l ing task,s job. *
**/

ca l I ing$ tasks $ j ob - SELECTORgOF(NIL) ;
token$1ist .nax$nurn - 20 ;

CALL RQE$OFFSPRING (ca l l ing$ tasks g j ob, Grokeng l is r
Gs tatus) ;

. Typical PL/1.1-286 S ta cenent s

END SMPLEPROCEDURE;

Condition Codes

E$OK

E$EXIST

ENOTCONFIGURED

E$TYPE

0000H No exceptional conditions.

0006H Thejob parameter is not a token for an existing
object.

0008H This system call is not part of the present
configuration.

8002H Thejob parameter contains a token for an
object that is not a job.

Nucleus System Calls J.'

The CREATE$TASK svstem call creates a task.

task : RQ$CREATE$TASK (pr ior i ty , s tar t$address, data$seg, s tack$ptr ,
s t a c k S s i z e . t a s k $ f l a g s , e x c e p t $ p t r) :

lnput Parameters
priority

start$address

data$seg

stack$ptr

A BYTE that specifies the priority of the new task.

o lf not zero, it contains the priority of the new task. The priority
parameter must not exceed the maximum allowable priority of
the calling task's job. If it does, an E$PARAM error is
returned.

o Ifzero, it indicates that the new task's prioriry is to equal the
maximum allowable priority of the calling task's job.

A POINTER to the first instruction of the new task.

A TOKEN that specifies the new task's data segment.

. If a valid selector, the TOKEN contains the base address of the
new task's data segment.

o If set to SELECTOR$OF(NIL), the TOKEN indicates that the
new task assigns its own data segment. Refer to Guide To The
Ertended |RMX II Interactive Configuration Utility ^nd Exîended
|RMX II Interactive Confrguration Utility Reference Manual for
further information on data segruent allocation.

A POINTER that specifies the location of the stack for the new
task.

. If this is a valid pointer, the Nucleus uses the sum of the offset
portion and the stack$size parameter (declared during the calÌ
to CREATE$TASK) as the value of the SP register (the stack
polnrerr .

. If the pointer is set to NIL, the Nucleus allocates a stack to the
new task. The length of the stack is equal to the value of the
stack$size Darameter.

34 Nucleus System Calls

CREATE$TASK

stack$size A WORD containing the size, in bytes, of the new task,s stack
segment.

The stack size must be at least 16 bytes and should be at least 300
bytes if the new task is going to make Nucleus system calls. Refer
to the Extendcd LRMX II Programming Techniques manual for
further information on assigning stack szes.

task$flags A WORD containing information that the Nucleus needs to create
and maintain the task. The bits (where bit 15 is the high-order bit)
have the following meanings:

Bits Meaning

15-1 Reserved bits which should be set to zero

0 Ifone, the task contains floating-point instructions.
These instructions require the NPX component for
executlon

If zero, the task does not contain floating-point
instructions

Output Parameters
task A TOKEN to which the Operating System will return a token for

the new task.

except$ptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Description

The CREATE$TASK system call creates a task and returns a token for it. The new task
counts as one against the object and task límits of the calling task's job. Attributes of the
new task are initialized upon creation as follows:

o priority: as specified in the call.

o execution state: ready.

. suspension depth: 0.

. containingjob: thejob that contains the calling task.

. exception handler: the exception handler of the containing job.

. exception mode: the exception mode ofthe containingjob.

Nucleus Svstem Calls 35

CREATE$TASK

Example

/**
* This example i l lust rates how the CREATE$TASK systen cal l can be *
* u s e d - *
** /

DEC1ARE TOKEN LITERALLY'SELECTOR':

/ * NUCLUS.EXT declares a l l systern ca l ls * , /

$ INCLUDE (/rnx2 8 6/inc/NUCLUS . EXT)

TASKCODE: PROCEDURE EXTERNAL:
END TASKCODE:

DECI-ARE task9coken TOKEN;
DECI-{RE pr ior i ty$ leveI$210 LITEMLLY ' 210 ' :
DECIARE star t$address POINTER;
DECI-ARE data$seg TOKEN;
DECIARE stack$pointer PoINTER;
DECTARE stack$size$512 LITERALLY '512 ' ;

/ * n e w t a s k ' s s L a c k s i z e i s 5 1 2 b y t e s * /
DECTARE task$f lags WORD;
DECIARE status WORD:

SAMPLEPROCEDURE :
PROCEDURE;

star t$address : @TASKCODE; / * f i rs t inst rucc ion of che new task * /
data$seg : SELECTOR$OF(NIL) ; / * task sets up own data segnent * /
s c a c k $ p o i n t e r - N I L ; / * a u t o r n a t i c s t a c k a l l o c a t i o n * /
task$f lags : 0 ; , / * des ignates no f loat ing-point inst ruct ions * , /

. T y P i c a I P L / M - 2 8 6 s t a t e m e n L s

/**
* The task (whose code is l -abeled TASKCODE) is created when Èhe *
* ca l l ing task invokes the CREATE$TASK systern ca l l . *

**/

rask$roken - RQ$CREATE$TASK (pr ior i tyg levetg66,
^ F ^ - È è ^ r r - ^ - ^r L ó r L v d u u ! E s > I

data$ seg ,
c t a n l z (n n í n t - o r

s c a c k $ s i z e $ 5 1 2
taskg f lags ,
@s tatus) ;

36 Nucleus System Calls

CREATE$TASK

. T y p i c a l P L / M ' 2 8 6 S t a t e m e n t s

END SMPLEPROCEDURE ;

Condition Codes

E$OK 0000H No exceptional conditions.

EBADADDR 800FH The datagseg, or stack$ptr is invalid. Either a
selector does not refer to a valid segment, or an
offset is outside the segment boundaries.

E$LIMIT 0004H The calling task'sjob has already reached its
object limit or task limit.

E$MEM 0002H The memory available to the calling task's job is
not sufficient to create a task as specified (task
descriptor, stack, and possibly NPX area).

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$PARAM 8004H At least one of the following is true:

. The stack$size parameter is less than 1ó.

. The priority parameter is nonzero and greater
(numerically smaller) than the maximum
allowable priority for tasks in the calling task's
job.

E$SLOT 000CH There isn't enough room in the GDT for
another descriptor.

Nucleus Systern Calls 37

The DELETE$TASK system call deletes a task.

CALL RQ$DELETE$TASK (task, except$ptr) ;

Input Parameter
A TOKEN that identifies the task to be deleted.

. If a valid selector. the TOKEN must contain a token for the
task to be deleted.

r If SELECTOR$OF(NIL), this parameter indicates that the
callins task should be deleted.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code generated by this system call.

Description

The DELETE$TASK system call deletes the specified task from the system and from any
queues in which the task was waiting. DELETE$TASK allows any task currently within a
region to exit the regìon before being deleted. Deleting the task counts as a credit of one
toward the object total of the containing job. It also counts as a credit of one toward the
containing job's task total.

You cannot successfully delete an interrupt task by invoking this system call. Any attempt
to do so results in an E$CONTEXT exceptional condition. To delete an interrupt task,
invoke the RESET$INTERRUPT system call.

Example

x************************
* This example i l lust rates how the DELETE$TASK system cal l can be *
* u s e d .

******xx** /

task

38

DECIARE TOKEN LITEMLLY ' SELECTOR' ;

Nucleus Svsten Calls

/ * NUCLUS.EXT dec la res a l l sys tem ca l l s
$ INCLUDE (/rmx2 8 6/ inclNUCLUS . EXT)

TASKCODE: PROCEDURE EXTERNAL:
END TASKCODE;

DECLARE task$ roken
DECLARE p r l or i ty$ leve 1g 210
DECI-ARE star t$address
DECIARE data$seg
DECIARE s tack$po inter
D E C I A R E s t a c k $ s i z e $ 5 1 2

DECLARE task$ f l ags
DECI-q,RE s catus

SAI'fPLEPROC EDURE : PROCEDURE;

s t r r t S a d d r e s s @ T A S K C O D E ;

d a t a $ s e g : S E L E C T O R g O F (N I L) ;
s t a c k $ p o i n t e r : N I L ;
t a s k $ f Ì a g s : 0 ;

DELETE$TASK

TOKEN ;
L I T E M L L Y ' 2 1 0 ' ;

POINTER;
TOKEN ;
POINTER;
L I T E R A L L Y ' 5 1 2 ' ;

/ * n e w L a s k ' s s c a c k
s i z e i s 5 1 2 b y t e s * 7

WORD ;
WORD ;

/ * o o i n t . s t o f i r s r i n s f r u c t i o n o f
the new task *,/

, / * task se ts up own data segment * /

/ * a u t o m a L i c s L a c k a l I o c a t Í o n ' x /

, / * ind ica tes no f loa t ing - po in t
i n < r r t , ^ r i ^ n < * /

Typ ica Ì PL/ l \ -286 S ta te rnenc s

/**
* I n o r d e r t o d e l e t e a t a s k , a t a s k m u s t k n o w c h e t o k e n f o r t h a t *
* task. In th is example, the needed token is known because the *
* c a l l i n g t a s k c r e a t e s t h e n e w t a s k (T h e c a s k , s c o d e i s l a b e l e d *
* T A S K C o D E) . *

**************************************x*****************************//

task$token - RQ$CREATE$TASK (pr ior i ty$ levet$210,
< t a r t (a À À r a c c

d a t a $ s e g ,
s t a c k $ p o i n t e r ,
s t a c k $ s i z e $ 5 1 2 ,
t a s k $ f l a g s ,

G s t a t u s) ;

Typ ica l PL/ l lL - 286 S ta tements

Nucleus System Calls 39

DELETE$TASK

/ ******************5!*****************************+*******************
* T h e c a l l i n g t a s k h a s c r e a t e d a t a s k (w h o s e c o d e i s l a b e l e d *
* TASKCODE) wh ich is no t an in te r rup t task . I lhen th is task is no *
* longer needed, i t rnay be de le ted by any task tha t knows i t s *

* t o k e n . *
x /

CALL RQSDELETE$TASK (task$ token, Gscatus) ;

o Tvo ica l PL/M, - 286 Sta tements

END SMPLEPROCEDURE;

Condition Codes

E$OK

E$CONTEXT

E$EXIST

ENOTCONFIGURED

E$TYPE

0000H No exceptional con<litions.

The task parameter is a token for an interrupt
task.

0006H One of the following conditions has oocurred:

. The task parameter is not a token for an
existing object.

o The task parameter represents a task whose job
is being deleted.

. More than one task is trying to delete a task
which is in a region.

0008H This system call is not part of the present
configuration.

8002H The task parameter is a token for an object
which is not a task.

0005H

40 Nucleus Svstem Calls

The GET$PRIORITY system call returns the priority of a task.

p r i o r i r v : R Q S G E T $ P R I O R I T Y (r a s k , e x c e p r $ p r r) :

Input Parameter
A TOKE,N that specifies the task whose priority is being requested.

. If a valid selector, the TOKEN must contain a token for the
task whose priority is being requested.

. I f SELECTOR$OF(NIL), the cal l ing task is asking for i ts own
pr io r i ty.

Output Parameters
priority A BYTE in which the system call rerurns the priority of the task

indicated by thc task parameter.

except$ptr A POINTER to a WORD to which the iRMX l l Operat ing Systcnr
wi l l return the concl i t ion code generated by this system cal l .

Description

The GET$PRIORI'l Y system call returns the iRMX II priority of the specified task.

task

Example

/ ***x***- ,1; ' r ; i
* Th is exanp le iL lus t ra tcs how the CET$PRIORITY sys tem ca l l can be ' r .

* u s e d .
* ; L * d - ; L * - r : r i) " - /

DEC1ARE TOKEN LITERALLY 'SELECTOR' ;

/ * NIJCLUS. EXT declares a l l system cal ls * , /

$ INCLUDE (/ rnx286l inc/NUCLUS . EXT)

DECI-ARE pr ior i ry BYTE;
DECLARE caÌ I ing$task TOKEN;
DECI-ARE status l toRD;

Nucleus Svstem Calls 4 l

GET$PRIORIW

SA.I{PLEPROC EDURE :
PROCEDURE;

. TyPical PL/ l ' l - 286 Statenents

/**
* The CET$PRIORITY system cal l re turns the pr ior i ty of the cal l ing *
* t a s k . *
**//

c a l l i n g $ t a s k : S E L E C T O R $ o F (N I L) ; , / * S e l e c t c a l l i n g x a s k . * /

pr ior i ty : RQCETPRIORITY (ca l l ing$ task,
@s tatus) ;

. Typica l PL/14- 286 Statements

END SAMPLEPROCEDURE ;

Condition Codes

E$OK 0000H No exceptional condirions.

E$EXIST 0006H The task parameter is not a token fbr an
existing object.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$TYPE 8002H The task parameter is a token for an object that
is not a task.

12 Nucleus System Calls

The GET$TASK$TOKENS system call returns the token requested by the calling task.

obj ect : RQGETTASK$TOKENS (selecr ion, exceprgprr) ;

Input Parameter
selection A BYTE that rells the iRMX II Operating System what

information is desired. It is encoded as follows:

Value Obiect for which a Token is Requested

0 The calling task.

1 The calling task's job.

2 The parameter object of the calling task's job.

3 The root job.

Output Parameters
object A TOKEN to which rhe iRMX ll Operating System will return the

requested token.

except$ptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Description

The GET$TASK$TOKENS system call rerurns a roken for eirher rhe calling task, the
calling task's job, the parameter object of the calling task,s job, or the root job, depending
on the encoded request.

Example

/**xx******************
* This exanple i l lusrrates how the GET$TASK$TOKENS systern ca l l can be *
* used to return che TOKEN requested by che cal l ing task. , !
) t*************) ' r* /

DECIARE TOKEN LITEMLLY 'SELECTOR' :

Nucleus System Calls 43

GET$TASKSTOKENS

/ * NUCLUS. EXT dec la res a l l sys tem ca1 ls * /

$ INCLUDE (/rrnx2 8 6/incINUCLUS . EXT)

DECIARE task$token
DECIARE c a1 l ing$ task
DECI,ARE s tatus

SA.l 'fPLEPROCEDURE:
PROCEDURE;

TOKEN ;
L I T E R A L L Y ' O ' ;

WORD ;

0000H No exceptional conditions.

800411 The selection parameter ìs greater than 3.

. Typ ica l PL/ I I - 286 Sta tements

/**
* I f y o u s e t t h e s e l e c L i o n p a r a m e r e r t o z e (o , t h e G E T S T A S K $ T O K E N S I
* s y s t e m c a l l w i L l r e t u r n a t o k e n f o r t h e c a Ì l i n g t a s k . *
***************,r***-k/

t a s k $ t o k e n : R Q $ G E T $ T A S K $ T O K E N S (c a l l i n g g t a s k ,

@ s t a t u s) ,

. TyP ica l PL/14 ' - 286 Sta tements

END SA]"IPLEPROCEDURE ;

Condition Codes

E$OK

E$PARAM

41 Nucleus Systern Calls

The RESUME$TASK system call decreases by one the suspension depth of a task.

CALL RQSRESUME$TASK (task, excepr$prr) ;

Input Parameter
task A TOKEN for the task whose suspension depth is to be

decremented.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code generated by this system call.

Description

The RESUME$TASK system call decreases by one the suspension depth of the specified
non-interrupt task. The task should be in either the suspended or asleep-suspended statc,
so its suspension depth should be at least one. If the suspension depth is stil l positive
afier being decremented, the state of the task is not changed. If the depth becomes zero,
and the task is in the suspended state, then it is placed in the ready state. If the depth
becomes zero, and the task is in the asleep-suspended state, then it is placed in the asleep
state.

Example

//**d-)r'r:r,,r ' 'r
* Th is example i l l us t ra tes ho \ r the RESUME$TASK sys tem ca l l can be - r r
* used to decrease by one the suspens ion depth o f a task . *
***)k*:k/

DECT,ARE TOKEN LITERALLY 'SELECTOR' ;

/ * NUCLUS. EXT declares a l l system cat Ìs * , /
$ INCLUDE (/ rmx2 I 6 / incINUCLUS . EXT)

TASKCODE: PROCEDURE EXTERNAL:
END TASKCODE;

DECIARE task$token TOKEN;
DECLqRE pr ior i ty$ level$200 LITERALLY ' 200 ' ;
DECLARE star t$address POINTER;

Nucleus Svstem Calls 45

RESUME$TASK

DECI^ARE
DECIÀRE
DECIARE

DECIARE
DECIARE

stack$pointer
s t a c k $ s i z e $ 5 1 2

task$ f lags
s cacus

TOKEN ;
POINTER;
LITEMLLY '512 ' ;

WORD ;
WORD ;

/ * new task 's s tack
c i z a i c 5 1 ? h w r a e * /

SAMPLEPROCEDURE :
PROCEDURE;

s t a r t $ a d d r e s s - G T A S K C O D E :
data$seg - SELECToR$OF(NIL) ;
s tack$pointer - NIL;
t a s k $ f l a g s - O ;

Typica l PL/14-286 Statements

/ * f i r s r i n s f r r r c r i o n o f t h e n e w

/* task sets up own data seg

/ * au tonat ic s tack a l loca t ion

, / * ind ica tes no f loa t ing- po ín t
Íns t ruc c ions

. Typ ica l PL/M' - 286 Sta tenents

/**
* In th is example the ca l Ì ing task c rea tes a non- in te r rup t task and *
* suspends tha t task be fore invok ing the RESUME$TASK sys ten ca l l . x
**,/

task$token - RQ$CREATE$TASK(p r i o r i t y $ l e v e I $ 2 0 0 ,
c r r r t q r d . l r è c c

d a t a $ s e g ,
< t - . . L q n ^ i n ' - a r

task$ f lags ,
@sta tus) ;

T y p i c a l P L / ú - 2 8 6 S t a t e m e n t s

/**
* A f t e r c r e a c i n g L h e L a s k , t h e c a l l i n g t a s k i n v o k e s S U S P E N D $ T A S K . *
* Th is sys tem ca l l inc reases by one the suspens ion depth o f the new *
* task (whose code is labe led TASKCODE) . *
** /

CALL RQ$SUSPEND$TASK (task$token,

16 Nucleus Svstern Calls

RESUME$TASK

/ **) t>t
* Using the token for the suspended task (whose code is labeled
* TASKCODE), the caÌ l ing task invokes RESUME$TASK ro decrease by the *
* o n e t h e s u s p e n s i o n d e p t h o f t h e s u s p e n d e d t a s k .
**-/

CALL RQ$RESUME$TASK (raskg token .
G s t a t u s) ;

. Typica l PL/14-286 Statements

END SAI,ÍPLEPROCEDURE ;

Condition Codes

E$OK 0000H No exceptional conditions.

E$CONTEXT 0005H The task indicated by the task parameter is an
interrupt task.

E$EXIST 0006H The task parameter is not a token for an
existing object.

E$STATE 0007H The task indicared by rhe rask paramerer was
not suspended when the call was made.

E$TYPE 8002H The task parameter is a token for an object that
is not a task.

Nucleus System Calls 47

The SET$PRIORITY system call changes the priority of a task.

CAUTION
Tasks can become blmked for long periods of time, and real-tine
performance ofthe iRMX II Operating Systern can be degraded when a

task uses this system call to lower its own priority.

C A L L R Q S S E T $ P R I o R I T Y (t a s k , p r i o r i t y , e x c e p t $ p t r) ;

lnput Parameters
task

priority

A TOKEN for the task whose priority is to be changed. Setting
this parameter to SELECTOR$OF(NIL) selects the invoking task.

A BYTE containing the task's new priority. A zero value specifies
the mirximum priority of the specified task's containing job.

Description

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX lI Operating System

will return the condition code generated by this system calì.

The SET$PRIORITY system call allows the priority of a non-interrupt task to be altered
dynamically. If the priority parameter is set to zero, the task's new priority is its
containing job's maximum priority. Otherwise, the priority parameter contains the new
priority of the specified task. The new priority, if explicitly specified, must not exceed its
containing joh's maximum pr ior i ty.

Example

/**
* T h i s e x a m p L e i 1 1 u s t r a t e s h o r ' t h e S E T $ P R I o R I T Y s y s t e r n c a 1 1 c a n b e
* , r c a d t ^ . h . n o é r h *\ , ' < P t r u r

** /

DECIARE TOKEN LITEMLLY 'SELECTOR' ;

,18 Nucleus Systern Calls

SET$PRIORIW

/ * NUCLUS. EXT declares a l l system
$ INCLUDE (/rmx2 8 6/ incINUCLUS . ExT)

TASKCODE: PROCEDURE EXTERNAL;
END TASKCODE;

DECI-ARE
DECI.ARE
DECI-ARE
DECIARE
DECI.ARE
DECIARE
DECIARE

DECIARE
DECIARE
DECI-ARE

task$ token
p r i o r i t y $ l e v e I $ 6 6
p r i o r i t y $ 1 e v e 1 $ 2 1 0
^ È ^ - e è ^ r r - ^ ^ -r L d r L V d u u r e 5 s

d a t a 9 s e g
^ È - ^ l - é - ^ i - È ^ -J r o L ^ Y P v a r r L s r

s t a c k $ s i z e $ 5 1 2

t a s k $ f l a g s
s caEus
j ob $ token

TOKEN ;
LITERALLY
LITERALLY
POINTER;
TOKEN ;
POINTER;
LITERALLY

WORD ;
WORD ;
TOKEN ;

' 6 6 ' ;
' 2L0 '

' 5 I 2 ' ; / * n e w t a s k ' s
s t a c k s i z e i s
5L2 byxes 'x 7

/ * n o i n t e r r r r F i r s l i n s l r u c L i o n o f
i n r a r / , , n r f ^ < V * /

/ * t a s k s e L s u p o w n d a L a s e g m e r L t . ? /
/ * . , , r - ^ r . È i ^ è r - . ^ L . l l ^ ^ . r i ^ n * /

/
- a u L u , , , d L

/ * r ì p c i o n : t e c n ^ f I . t - a 1 - i n o - n ó i n I

ì n e l t , , . r i ^ n c * , /

. T v D i c - ì P l . / V - 2 8 6 S L a t e m e n t s

task$token : RQ$CREATE$TASK (p r i o r i t y $ 1 e v e 1 $ 6 6 ,
s t a r t $ a d d r e s s ,
da ta$ seg ,
c r ' . 1 - q n ^ i n r ó r

s t a c k $ s i z e $ 5 1 2 ,
t a s k $ f 1 a g s ,
Gs tatus) ;

SAMPLEPROCEDURE;
PROCEDURE;
s t a r t S a d d r e s s G T A S K C O D E ;

data$seg : SELECToR$oF(NIL) ;
s t a c k $ p o i n t e r : N I L ;
t a s k $ f 1 a g s : 0 ;

Nucleus Svstem Calls 49

SET$PRIORITY

CALL RQSCATALOC9OBJ ECT (j ob$ token,
taskS token .
G (9 , ' , T A S K C O D E ') ,
Gs tatus) ;

. Typícal PL/l' l-286 statements

/**
* The new task (whose code is labeled TASKCODE) is not an in terrupc *
* task, so ics pr ior i ty nay be changed dynarn ica l ly by invoking the *
* SET$PRIORIîY system ca1l . *
** /

CALL RQSETPRIORITY (task$token,
p r i o r i t y $ 1 e v e 1 $ 2 1 0 ,
Gs tatus) ;

a

. T y p i c a l P L / 1 4 - 2 8 6 S t a t e m e n t s
a

/**
* Once the need for the h igher pr ior i ty is no longer present , the *
* p r i o r i t y o f t h e n e w t a s k c a n b e c h a n g e d b a c k t o i t s o r i g í n a l *
* pr ior i ty by invoking SET$PRIORITY a second c ime. *
**/

CALL RQSETPRIORITY (task$ token.
p r i o r i t y $ l e v e l $ 6 6 ,
@s tatus) ;

. Typica l PL/ I î -286 S tatements

END SAMPLEPROCEDURE ;

Condition Codes

E$OK 0000H No exceptional conditions.

E$CONTEXT 0005H The specified task is an inrerrupr rask. You
cannot set the priority of an interrupt task
dynamically.

E$EXIST 0006H The task parameter is not a token for an
existing object.

50 Nucleus Svstem Calls

SET$PRIORIW

E$LIMIT 0004H The priority parameter contains a priority value
that is higher than the maximum priority of the
specified task's containing job.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$ryPE 8002H The task parameter is a token for an object that
rs not a task.

Nucleus System Calls 5 l

The SLEEP system call puts the calling task to sleep.

C A L L R Q $ S L E E P (L i m e $ I i m i t , e x c e p t $ p t r) ;

Input Parameter
timeglimit A woRD indicating the conditions in which the calling task is to

be put to sleep.

o If not zero and not OFFFFH, causes the calling task to go to
sleep for that many clock intervals, after which it will be
awakened. The length of a clock ìnterval is configurable.
Refer to lhe f:iended .RMX II Interactive Configuration Utility
Reference Manual for further information.

'llí"i",illil[T:llL'J:ì,-,::lT'il:iff J5,ff :!i*
:l;1","x'":î: :::l

t^'ut there is no errect and the calling task

. lf 0FFFFH. an error is returned.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code generated by this system call.

Description

The SLEEP system call has two uses. One use places the calling task in the asleep state
fbr a specific amount of time. The other use allows the calling task to defer to the other
ready tasks with the same priority. When a task defers in this way it is placed on the list
of ready tasks, immediately behind those other tasks of equal priority.

52 Nucleus Svstem Calls

SLEEP

Example

/***ì 'ì 'r*
* Th is exanp l -e i l l us t ra tes how the SLEEP sys ten ca l l can be used. *
)t****************x*x*-k-k-k /

DECIARE TOKEN LITERALLY 'SELECTOR'
;

/ * NUCLUS. EXT dec Ìares a l l sys tem ca l l s * /

$ INCLUDE (/rmx2 8 6/ inclNUcLUs . EXT)

DECI-ARE t ine$ l l rn i t
DECI-ARE s ta tus

SAI'fPLEPROCEDURE :
PROCEDURE;

t i r n e $ l i m i t : 1 0 0 ; / * c l é é n f n r l O O . l ò . L l - i . L < * /

WORD ;
WORD ;

. Typica l PL/11-286 s caternents

/**_;.*
* T h e c a l l i n g t a s k p u t s i t s e l f i n t h e a s l e e p s t a t e f o r 1 0 0 c l o c k *
* t icks by invoking the SLEEP systern ca l l . *
*** :k**-k** 'k-k* /

CALL RQ$ S LEEP l r i m a q ì i n i È / * l O m < í c r h a r l o f r r r l t * r

Gstatus) ; / * 100 : 1 second 'x /

. Typica l - PL/ l t -286 s ta tèments

END SA]'ÍPLEPROC EDURE ;

Condition Codes

E$OK 0000H No exceotional condilions.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$PARAM 8004H The time$limit parameter contains the invalid
value 0FFFFH.

Nucleus System Calls 5J

The SUSPEND$TASK system call increases by one the suspension depth of a task.

CALL RQ$SUSPEND$TASK (task, except$ptr) ;

Input Parameter
task A TOKEN specifing the task whose suspension depth is to be

incremented.

. if a valid selector, contains a token for the task whose
susoension deoth is to be incremented.

. rf SELECTOR$OF(NIL), in<licates that the calling task is
suspending itself.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code senerated bv this svstem call.

Description

The SUSPEND$TASK system call increases by one the suspension depth of the specified
task. If the task is already in either the suspended or asleep-suspended state, its state is
not changed. If the task is in the ready or running state, it enters the suspended state. If
the task is in the asleep state, it enters the asleep-suspended state.

SUSPEND$TASK cannot be used to suspend interrupt tasks.

Example

/**
* This example i l lust rates how the SUSPEND$TASK systern ca l l ean be *
* used to increase the suspension depth of a non- ínterrupt task. *
** /

DECIARE TOKEN LITEMLLY 'SELECTOR' ;

/ * NUCLUS. EXT declares a l l system cal ls * , /

$ INCLUDE (/rnx2 8 6/ incINUCLUS . EXT)

54 Nucleus Svstem Calls

SUSPEND$TASK

TASKCODE: PROCEDURE EXTERNAL;
END TASKCODE;

DECIARE task$token TOKEN;
DECLARE pr ior i tyg leveJ-9200 LITEMLLy , 200, ;
DECIARE starc$address POINTER;
DECIARE datagseg ToKEN;
DECI-ARE stackspoinrer POINTER;
D E C I A R E s t a c k 9 s i z e $ 5 1 2 L I T E M L L Y , 5 1 2 ' ; / x n e r , r r a s k , s s r a c k

s ize is 5I2 bytes *1
DECIARE task$f lags WORD;
DECI-ARE status IIORD;

SAMPLEPROCEDURE :
PROCEDURE;
star t$address - @TASKCoDE; / * f i rs t insrruct ion of the new rask * . , /
data$seg : SELECTOR$OF(NIL) ; , / * task sers up owr l dara seg * /
s tack$poinCer : NIL; / * autornat ic s tack a l locagion * /
t a s k $ f l a g s : 0 ; / * d e s i g n a t e s n o f l o a t i n g - p o i n r

inst ruct ions * , /

. Typica l PL/ \L-286 S tatement s

x*************
* l n o r d e r L o s u s p e n d a t a s k , a t a s k m u s t k n o v t h e t o k e n f o r L h a t *
* cask. In th is exarnple, che needed coken is known because the *
* c a l l i n g t a s k c r e a t e s t h e n e w t a s k (\ , / h o s e c o d e i s l a b e l - e d T A S K C O D E) . *
-/

task$token : RQ$CREATE$TASK (pr lor i tyg levelg200,
s t a r t $ a d d r e s s ,
d a t a $ s e g ,
s t a c k $ p o i n L e r ,
s t a c k $ s i z e $ 5 1 2 ,
task$ f lags ,
@s tatus) ;

. T y p i c a l P L / M - ? 8 6 s L a t e m e n t s

/ **>!*
* A f te r c rea t ing the task , the ca l l ing task invokes SUSPEND$TASK. ' t
* T h i s s y s t e m c a I I i n c r e a s e s b y o n e t h e s u s p e n s i o n d e p t h o f t h e n e w k
* task (whose code is labe led TASKCoDE) ' k

* - . t *J^ - ' ' r /

CALL RQ$SUSPENDSTASK (task$token, @srarus) ;

Nucleus Svstem Calls f,f,

SUSPEND$TASK

. T Y P i c a I P L / I { - 2 8 6 s t a t e m e n t s

END SMPLEPROCEDURE;

Condition Codes

E$OK 0000H No exceptional conditions.

E$CONTEXT 0005H The specified task is an interrupt task. You
cannot suspend interrupt tasks.

E$EXIST 0006H The task parameter is not a token for an
existing object.

E$LIMIT 0004H The suspension depth for the specified task is
already at the maximum of 255.

E$TYPE 8002H The task parameter is a token for an object that
is not a task.

5tr Nucleus System Calls

The CREATE$MAILBOX system call creates a mailbox.

rnai lbox - RQ$ CREATE$MAI LBOX (mai lboxgf lags, exceptgprr) ;

Input Parameters
mailbox$flags A WORD containing information about the new mailbox. The bits

(where bit 15 is the high-order bit) have the following meanings:

Bi ts

15-6

5

Value

0

Meaning

Reserved hits which should be set to zero.

A bit that determines the type of messages that this
mailbox can handle, as follows:

Message Scheme

This mailbox passes iRMX II objects. The
SEND$MESSAGE and RECEIVE$MESSAGE systenr
calls can be used to send and receive objects.

This mailbox passes up to 128 bytes of data. 'I he
SEND$DATA and RECEIVE$DATA system calls can
be used to send and receive the data.

Meaning

A value that, when multiplied by four, specifies the
number of messages that can be tlueued on the high
performance object clueue. Eight is the minimum size
for the high performance queue; that is, specifying a
value less than eight in these bits results in a high
performance queue that holds eight objects.

These four bits have meaning only when the mailbox is
set up to pass object tokens (not data). When the
mailbox is set up to pass data, the Operating System
ignores these bits and automatically sets up a queue
that is three messages long, each message is 128 bytes
in length.

Bi ts

+ - t

Nucleus Svstem Calls J /

CREATE$MAILBOX

A bit that determines the queuing scheme for the task
queue of the new mailbox. as follows:

Value Queuing Scheme

0 First-in/first-out

1 Priority based

A TOKEN to which the Operating System will return a token for
the new mailbox.

A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Output Parameters
mailbox

except$ptr

Description

This system call creates a mailbox, an exchange that tasks can use to exchange messages.
There are two kinds of mailboxes that you can create, depending on the kind of messages
your tasks wish to exchange. Bit 5 in the mailbox$flags parameter specifies the kind of
nìailbox to create.

lfyou set bit 5 to 0, the mailbox is set up to pass iRMX II objects between tasks. That is,
if your message is a block of data, you must set it up as an iRMX II segment first. You
can pass other kinds of iRMX II objects as messages too. To send the message, use the
token for that object as input to the SEND$MESSAGE system call. The
RECEIVE$MESSAGE system call can be used to receive object tokens from a maiìbox.

If you set bit 5 to 1, the mailbox is set up to pass data. Instead of creating an iRMX II
object for your message, you can use the SEND$DATA system call to pass up to 80H
bytes of data from a user-supplied buffer. RECEIVE$DATA can be used to receive a
message from a mailbox and place it into another user-supplied buffer. Passing data
instead of objects can be important to systems whose Global Descriptor Table (GDT) is
almost full, because each object you create requires an entry in the GDT. Of course, you
can pass only 80H bytes of data per message. But the data can be in the form of a pointer,
which can point to an area larger than 128 bytes.

Each mailbox you create can be used in only one way. That is, a mailbox set up to pass
objects can pass only objects, not data. A mailbox set up to pass data cannot pass objects.

5 d Nucleus System Calls

CREATE$MAILBOX

When you set up a mailbox to pass objects, you can also specify the size of a high-
performance queue that is associated with the mailbox. This queue is a block of memory
that stores objects waiting to be sent or received. It is permanently assigned to the
mailbox, even if no objects are queued there. lf the queue overflows, the Nucleus
temporarily allocates another 200-object queue.

Setting the size of the high-performance queue involves a tradeoff between memory an<J
performance. Setting a size that is too large wastes memory, because the unused portion
ofthe queue is unavailable for other uses. But setting a size that is too small forces the
Nucleus to create a temporary queue (and creating and deleting objects are relatively slow
operations). You should set up a high-performance queue large enough to contain all the
objects queued during normal operations, and let the overflow queue handle large
overflows or unusual chcumstances.

lf you create a mailbox that passes data, you don't speci! the size of the message queue.
The Operating System automatically sets up the queue to an appropriate size of400
decimal bytes.

Example

/**************************x**************************************
* This exarnpl-e illustrates hov the CREATE$MAILBOX systern call *
* c a n b e u s e d . *

**/

DECIARE TOKEN

/ * NUCLUS.EXT dec la res a l l sys tem ca l l s * , /

$ INCLUDE (/rrnx2 8 6/ incINUCLUS . EXT)
DECIARE mbx$ token
DECIARE rnbx$ f lags
DECIARE s ta tus

SA.I{PLEPROCEDURE :
PROCEDURE;
m b x $ f l a g s : 0 ;

L I T E M L L Y ' S E L E C T O R ' ;

TOKEN ;
WORD ;
WORD ;

/* designates a h igh per formance
o b j e c t q u e u e o f e i g h r o b j e c r s ;
d c s í e n e l - c s a f i r s t - í " / f i r s L - o u t

t ask queue , * /

. Typ ica l PL/ | , I -286 S ca tements

/x***
* The token rnbx$token is returned r,rhen the calling Èask invokes *
* the CREATE$MAILBOX system cal-I. *

x********* /

Nucleus System Calls 59

CREATE$MAILBOX

mbx$token - RQ$ CREATE$MAI LBOX (rnbx$flags,

G s t a t u s) ;

. Typica l PL/ l l -286 S catements

END SAMPLEPROC EDURE ;

Condition Codes

E$OK 0000H No exceptional conditions.

E$LIMIT 0004H The calling task'sjob has already reached its
object limit.

E$MEM 0002H The memory avai lable to the cal l ing task's job rs
not sufficient to create a mailbox.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$SLOT 000CH There isn't enough room in the GDT for the
new job and task descriptors

60 Nucleus System Calls

The DELETE$MAILBOX system call deletes a mailbox.

CALL RQ$DELETE$MAILBOX (rnai lbox, except$ptr) :

Input Parameter
mai.lbox A TOKEN for the mailbox to be deleted.

Output Parameters
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code generated by this system call.

Description

The DELETE$MAILBOX system call deletes the specified mailbox. If any tasks are
queued at the mailbox at the moment of deletion, they are awakened with an E$EXIST
exceptional condition. If there is a queue of object tokens data messages at the momenr
of deletion, the queue is discarded. Deleting the mailbox counts as a credit of one toward
the object total of the containing job.

Example

/**
* This example i l lust rates hovr the DELETE$MAILBoX system cal l can *
* b e u s e d . *

) tX************ /

DECIARE TOKEN LITEMLLY ' SELECTOR' ;

/ * NUCLUS. EXT dec la res a I1 sys tem ca l l s * /

$ INCLUDE (/rmx2 8 6/ incINUCLUS . EXT)

DECL{RE rnbx$token TOKEN;
DECI ,ARE mbx$f lags WORD;
DECIARE s ta tus WORD;

SAMPLEPROCEDURE:
PROCEDURE;

Nucleus Svsfem Calls 61

DELETE$MAILBOX

rnbx$f lags : 0 ;

' TYP ical

Condition Codes

E$OK

E$EXIST

/**
* In order to delete a rnai lbox, a task nnust know the token for *
* that mailbox. In this exampJ-e, the needed token is knoltn *
* because the cal l ing cask creates the mai lbox. *

**/

rnbx$roken - RQ$CREATE$MATLBoX (mbx$f1ags, @sratus) ;

. Typica l PL/ l ' Í -286 s ta tements

//**
* When the rnai lbox is no longer needed, i t rnay be deleted by *
* any task that knows the token for the mailbox, *

** /

CALL RQ$DELETE$MAILBOX (rnbx$token, Gstatus) ;

. TyPical PL/14- 286 Statements

END SAMPLEPROC EDURE ;

, / * des ignates e igh t ob jec ts to be queued

on the h igh per fo rmance ob jec t
queue; des ignates a f í rs t - in /
f i r s t -ou t task queue; des lgnates a
rna i lbox tha l - n .aqqpq f okPns * /

PL/14-286 Stacenents

0000H No exceptional conditions.

0006H Either the mailbox parameter is not a token for
an existing object or it represents a mailbox
whose job is in the process of being deleted.

0008H This system call is not part of the present
configuration.

8002H The mailbox parameter is a token for an object
which is not a mailbox.

ENOTCONFIGURED

E$TYPE

62 Nucleus System Calls

The RECEIVE$DATA system call delivers the calling rask ro a mailbox, where it can wait
for a message to be returned.

actual : RQ$RECEM$DATA (rnai lbox, rnessage$ptr , t i rnegl in i t ,
e x c e p t $ p t r) ;

Input Parameters
mailbox A TOKEN for the mailbox from which the cailing task expecrs ro

receive a message.

time$limit A WORD that indicates how long the calling task is willing to wait.

o lfzero, indicates that the calling task is not willing to wait.

o If 0FFFFH, indicates that rhe task will wait as long as is
necessary.

. If between 0 and OFFFFH, indicates the number of clock
intervals that the task is willing to wait. The length of a clock
interval is configurable. Refer to the Extended |RMX II
Irtteructive Configuration Utility Reference Manual îor fuîfher
informat ion.

Output Parameters
actual A WORD in which the Operating System returns the number of

bytes actually received.

message$ptr A POINTER to the start of a user-supplied buffer. The system call
places the message into this buffer. The maximum message length
is 128 bytes, so this buffer should be large enough to contain
messages of that length.

except$ptr A POINTER ro a WORD to which the iRMX II Operating System
wjLl return the condition code generated by this system call.

Nucleus System Calls 63

RECEIVE$DATA

Description

The RECEIVE$DATA system call receives messages from mailboxes that have been set
up to pass data (rather than tokens). It causes the calling task either to receive the data
message or to wait for the data in the task queue of the specified mailbox. If the message
queue at the mailbox is not empty, then the calling task immediately receives the message
at the head of the queue and remains ready. Otherwise, the calling task goes into the task
queue of the mailbox and goes to sleep, unless the task is not willing to wait. In the latter
case, or if the task's waiting period elapses without a data message arriving, the task is
awakened with an E$TIME exceptional condition.

When you creaîe a mailbox with CREATE$MAILBOX, you can speci! whether the
mailbox will be used to pass object tokens or data. RECEIVE$DATA functions only with
those mailboxes that have been set up to pass data. RECEIVE$DATA returns the
message data (up to a maximum of 128 bytes) in a user-specified memory buffer. The
system call also returns the length of the actual message received.

Example

/*******x**
* This example í l lust rates how the RECEIVE$DATA systern ca l l can be *
* u s e d t o r e c e i v e a m e s s a g e s e g m e n t . *

**r ' * /

DECI-ARE TOKEN LITEMLLY 'SELECTOR' ;

/x NUCLUS. EXT declares a l l system cal ls * , /

$ INCLUDE (/rmx2 8 6/ inc/NUcI-US . EXT)
DECIARE mbx$token TOKEN;
DECIARE cal l ing$tasks$job TOKEN;
DECI-ARE wai t$forever LITERALLY ' OFFFFH' ;
DECIARE rnessage (80H) BYTE i
DECI-ARE status talORD;
DECIARE actual IIORD;

SA.I,IPLEPROCEDURE :
PROCEDURE;

. T y P i c a I P L / 1 1 ' 2 8 6 S t a t e m e n t s

/***x
* T n r h í s e v a m n l p r h è - - 1 - h e L o k e n f o r t h e m a i l b o x *r r r , ó L d ù ^ r v w A 5 u P r

* p r i o r t o i n v o k i n g t h e R E C E M $ D A T A s y s t e m c a l l . *
) t********* /

c a l l i n g $ c a s k s $ j o b - S E L E C T O R S o F (N I L) ;

64 Nucleus Svstern Calls

RECEIVE$DATA

nbx$roken - RQ$LoOKUPgOBJECT (cat l inggrasksgjob,

G (3 , , M B x ') ,
l ra i t$ forever ,
G s t a t u s) ;

. Typica l PL/11-286 S tatemenrs

/**x*
* Knowing the token for the rnai lbox, the cal l ing task can l ra i t for a) r
* message f rorn th is rnai lbox by invoking the RECEM$DATA systen *
* ca l l . r r
***_*/

actual - RQSRECEIVEgDATA (mbxg roken,
@ m e s s a g e ,
w a i t $ f o r e v e r ,
G s t a t u s) ;

. Typica l PL/ l l -286 S tatements

END sAMP;EPRoCEDURE ;

Condition Codes

E$OK 0000H No exceptional conditions.

E$EXIST 0006H The mailbox parameter is not a token for an
existing object.

ENOTCONFIGURED 0008H This system call is not part of rhe present
configuration.

E$TIME 0001H One of the following is rrue:

. The calling task was not willing to wait and
there was no message available.

r The task waited in the task queue and its
designated waiting period elapsed before the
task got the desired message.

E$TYPE 8002H One of the following is rrue:

. The mailbox parameter contains a token for an
object that is not a mailbox.

. The mailbox has been set up to pass tokens, not
data.

Nucleus System Calls 05

The RECEIVE$MESSAGE system call delivers the calling task to a maiibox, where it can
wait for an obiect token to be returned.

obj ect - RQSRECEM$MESSAGE (rnai lbox, t ine$1imi t , response$ptr ,
e x c e p t $ p t r) ;

Input Parameters
mailbox A TOKEN for the mailbox at which the calling task expects to

receive an object token.

time$limit A WORD that indicates how long the calling task is willing to wait.

. Ifzero, indicates that the calling task is not willing to wait.

. If OFFFFH, indicates that the task wil wait as long as is
necessary.

. If between 0 and OFFFFH, indicates the number of clock
intervals that the task is willing to wait. The length of a clock
interval is configurable. Refer to the Extended |RMX II
Interacive Confrguration Utility Reference Manucl for further
information.

Output Parameters
object A TOKEN for the object being received.

response$ptr A POINTER to a TOKEN in which the system returns a value.
The returned pointer:

. if a valid pointer, points to a token for the exchange to which
the receiving task is to send a response.

. if NIL, indicates that no response is expected by the sending
task

except$ptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

66 Nucleus System Calls

RECEIVESMESSAGE

Description

The RECEIVE$MESSAGE system call causes the calling task either to get the token for
an object or to wait for the token in the task queue ofthe specified mailbox. This mailbox
must be set up to pass objects. If the object queue at the mailbox is not empty, then the
calling task immediately gets the token at the head of the queue and remains ready.
Otherwise, the calling task goes into the task queue ofthe mailbox and goes to sleep,
unless the task is not willing to wait. In the latter case, or if the task,s waiting period
elapses without a token arriving, the task is awakened with an E$TIME exceptional
condition.

When you create a mai-lbox with CREATE$MAILBOX, you can speci! whether the
mailbox will be used to pass object tokens or data. RECEIVE$MESSAGE functions only
with those mailboxes that have been set up to pass objects.

It is possible that the token returned by RECEIVE$MESSAGE is a token for an object
that has already been deleted. To verifo that the token is valid, the receiving task can
invoke the GET$TYPE system call. However, tasks can avoid this situation by adhering
to proper programming practices.

One such practice is for the sending task to request a response from the receiving task
and not delete the object until it gets a response. When the receiving task finishes with
the object, it sends a response, the nature of which must be determined by the writers of
the two tasks, to the response mailbox. When the sending task gets this response, it can
then delete the original object, if it so desires.

Example

//**
* This exanple i l lust rates ho\{ the RECEIVE$MESSAGE system cal l - can be *
* u s e d t o r e c e i v e a n e s s a g e s e g m e n c . *

************)r*********)t**)k** /

DECIARE TOKEN LITEMLLY 'SELECTOR' ;

/ * NUCLUS.EXT declares a1l systern ca l ls * , /
$ INCLUDE (/rrnx2 8 6/ inclNUCLUS . ExT)

DECI,ARE mbx$token ToKEN;
DECI-ARE cal I ingg tasks gj ob TOKEN;
DECIARE wai t$forever LITERALLY ,0FFFFH, .
DECIARE seg$coken TOKEN;
DECI-ARE response TOKEN;
DECLARE status WoRD;

SAMPLEPROCEDURE :
PROCEDURE;

Nucleus System Calls 67

RECEIVE$MESSAGE

i rypicar PL/YL-286 statements

/ ************************************** :k***** :k** :k**********) t*************
* In th is exarnple the cal l íng task looks up the token for the mai lbox *
* pr ior to invoking the RECEIVE$MESSACE systen ca1l . *
** /

ca l l lng$ tasks $ j ob - SELECTOR$OF (NIL) ;
rnbx$token - RQ$LOOKUP$OBJECT (cal l ing$tasks$job,

G (3 , ' M B X ') ,
wai tSforever .
Gs tatus) ;

. TyP ica I PL/ l l - 286 Sta tements

/**
* Knowing the token fo r the maÍ lbox , the ca l l ing task can wa i t fo r a *
* message f rom th is ma i lbox by invok ing the RECEIVE$MESSAGE sys tem *
* c a l l . *
**/

seg$token : RQ$RECE IVE$MES SAGE (rnbx$token,
w a i t $ f o r e v e r ,

@ r e s p o n s e ,
G s t a t u s) ,

. Typica l PL/ l l -286 S tatenents

END SAI,ÍPLEPROCEDURE;

Condition Codes

E$OK

E$EXIST

0000H No exceptional conditions.

000óH The mailbox parameter is not a token for an
existing object.

ENOTCONFIGURED 0008H This.system call is not part of the present
conllquratlon.

68 Nucleus System Calls

RECEIVE$MESSAGE

E$TIME 0001H One of the following is true:

. The calling task was not willing to wait and
there was not a token available.

o The task waited in the task queue and its
designated waiting period elapsed before the
task got the desired token.

E$TYPE 8002H One of the following is true:

. The mailbox parameter contains a token for an
object that is not a mailbox.

. The mailbox was set up to pass data messages,
not objects.

Nucleus System Calls 69

The SEND$DATA system call sends a message of up to 80H bytes to a mailbox.

CALL RQ$SEND$DATA (mai lbox , message$pt r , ac tua l$ length , except$p t r) ;

Input Parameters
mailbox A TOKEN for the mailbox to which the message is to be sent. This

mailbox must be one that was created to pass data, not objects.

message$ptr A POINTER to a memory buffer containing the message.

actual$length A WORD specilying the length of the message. Any value between
0 and 0FFFFH can be specifiecl. However, because messages are
Imited to 80H bytes, any v:rlue over 80H causes only 80H bytes to
be sent.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code senerated bv this svstem call.

Description

The SEND$DATA system call sends messages to mailboxes that have been set up to pass
data. It sends to a specìfied mailbox a maximum of 80H bytes from a user-specified
buffer. The number of bytes actually sent is also specified in the SEND$DATA call. If
there are tasks in the task queue at that mailbox, the task at the head of the queue is
awakened and is given the data. Otherwise, the message data is placed at the tail of the
mai-lbox's message queue.

When you create a mailbox with CREATE$MAILBOX, you can specify whether the
mailbox will be used to pass object tokens or data. SEND$DATA functions only with
those mailboxes that have been set uo to oass data.

Example

/******x***
* This example i l lust rates how the SEND$DATA system cal l can be *
* u s e d t o s e n d d a t a t o a m a i l b o x . *
x*********************,/

DECIARE TOKEN LITEMLLY ' SELECTOR' :

70 Nucleus System Calls

SEND$DATA

/ * NUCLUS.EXT declares a l l systern
$ INcLUDE (/rmx2 8 6/ inclNUCLUS . EXT)

DECI-ARE
DECI.{RE
DECI-ARE
DECI-ARE
DECIARE
DECIé,RE

rnsS$ptr
s i z e
rnbx$ token
mbx$ f l a gs
s c a c u s
j ob $ token

POINTER;
WORD ;
TOKEN ;
WORD ;
WORD ;
TOKEN ;

SA.I,IPLEPROCEDURE :
PROCEDURE;
mbx$f lags : 20H;

j o b $ t o k e n : S E L E C T O R $ O F (N t L) ;

/ * des ignates a da ta na i lbox

, / * i n d i c a t e s o b j e c t s t o b e c a t a l o g e d
i n i ^ r h a n h i a n r ; i r a - r ^ ' " ^ F - l - ' .

c r l l i r o r . c L ' c i ^ h * . /

. Typ ica l PL/ IL -286 S ta tement s

//**
* The ca l l ing cask c rea tes a mai lbox and ca ta logs the mai lbox token. -k
* The ca l l ing task then sends message da ta to the mai lbox .
*) ' r - ; r

/

rnbx$token : RQ$ CREATE$MAI LBOX (mbxgf lags,

Gs tatus) :

/ ** , r) t
* I L i s n o c m a n d a c o r y f o r t h e c a l ì i n g t a s k t o c a t a ì o g t h e m a i l b o x , .
* L o k e n i n o r d e r t o s e n d a m e s s a g e , l t i s n e c e s s a r y , h o w e v e r , L o
* c a t a 1 o g (o r i n s o m e w a y c o m m u n i c a t e) t h e m a i l b o x t o k e n i f a n o t h e r
* t a s k i s t o r e c e i v e t h e m e s s a g e . : l
**)r*)k ,/

CALL RQ$ CATALOG SOBJ ECT (j o b $ t o k e n ,
rnbx$ token ,
G (3 , , M B X ,) ,

Typica l PL/14- 286 S tatements

/ * ' !> t

* The ca l l ing task invokes rhe SEND$DATA sys tem ca l l ro send a -k
* m p s s a o p 1 . o î h r c n é . i f i e d m a i l b o x .
*** /

Nucleus Svstem Calls 7 l

SEND$DATA

CALL RQ$SENDSDATA (mbx$token,

G (' r h i s i s a m e s s a g e ') ,

1 8 ,
Gstatus) ;

. T y p i c a l P L / l ! ' - 2 8 6 S t a t e m e n t s

END SAMPLEPROCEDURE ;

Condition Codes

E$OK 0000H No exceptional conditions.

EBADADDR 800FH The pointer to the message is invalid. Either
the selector does not refer to a valid segment, or
the offset is outside the segment boundaries.

E$EXIST 0006H The mailbox token is not a token for an existing
object.

E$MEM 0002H The data message queue is full and the system
does not have enough memory to create
anoth er.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$TYPE 8002H Either one of the folkrwing is true:

. The mailbox parameter is a token for an object
that is not a mailbox.

. The specified mailbox was set up to pass tokens,
not data.

72 Nucleus System Calls

The SEND$MESSAGE system call sends an object token to a mailbox.

CALL RQ$SEND$MESSAGE (mai1box, object , response, except$ptr) ;

Input Parameters
mailbox A TOKEN for the mailbox to which an object token is to be sent.

This mailbox must be one that was set up to pass objects, not
polnlers.

object A TOKEN containing an object token which is to be sent.

response A TOKEN for a mailbox or semaphore at which the sending task

:";il. ."#]1..,,,"., a token rbr the desired response
mailbox or semaphore.

lf SELECTOR$OF(NIL), indicates that no response is
requested.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code generated by this system call.

Description

The SEND$MESSAGE system call sends messages to mailboxes that have been set up to
pass object tokens. It sends a token for an iRMX II object to the specified mailbox. lf
there are tasks in the task queue at that mailbox, the task at the head of the queue is
awakened and is given the token. Otherwise, the object token is placed at the tail of the
object queue of the mailbox. The sending task has the option of specifing a mailbox or
semaphore at which it will wait for a response from the task that receives the object. The
nature of Ìhe response must be agreed upon by the writers of the two tasks.

When you create a mailbox with CREATE$MAILBOX, you can specify whether the
mailbox will be used to pass object tokens or pointers. SEND$MESSAGE functions only
with those mailboxes that have been set up to pass object tokcns.

Nucleus Systern Calls

SEND$MESSAGE

Example

/**
* This example i l lust rates how the SEND$MESSAGE systern ca l l can be *
* u s e d t o s e n d a s e g m e n t t o k e n t o a m a i l b o x . *
)t*********************** /

DECIARE TOKEN LITERALLY 'SELECTOR' ;

/ * N U C L U S . E X T d e c l a r e s a l l s y s t e m c a I T s * /

$ INCLUDE (/rmx2 8 6/ incINUCLUS . EXT)

DECIARE seg$token TOKEN;
DECIARE s ize WORD;
DECI-ARE mbx$token ToKEN;
DEC1ARE mbx$f lags WORD;
DECIARE no$response L ITEMLLY '0 ' ;

DECLARE s ta tus ITORD;
DECI-ARE j ob$token TOKEN;

SAI,fPLEPROCEDURE :
PROCEDURE;

s íze : 64 ; / * des ignates new segment to conta in 64
b Y t e s * 7

mbx$f lags : 0 ; / * des ignates four ob jec ts to be queued
o n t h e h i g h p e r f o r m a n c e o b j e c t
q u e u e ; d e s i g n a t e s a f í r s t - i n /
f i r s t - ou t task queue * /

j o b $ t o k e n - S E L E C T O R $ O F (N l L) ; , / * i n d i c a t e s o b j e c t s t o b e c a t a l o g e d
i n t o t h e o b j e c t d i r e c t o r y o f t h e
c a l l i n g t a s k ' s j o b * /

. Typ ica l PL/ l l - 286 Sta tements

/***-^.
* The ca l l ing task c rea tes a segment and a mal lbox and ca ta logs the *
* rna i lbox token. The ca l l ing cask then uses rhe tokens fo r bo th *
* o h i c r - t s f ó s F n . ì , m p q q e e e *- s s a g e .
*******************************) t** /

seg$token : RQ $CREATE$ S ECMENT (s lze,

@s tatus) ;
nbx$token : RQ$CREATE$MAI LBoX (rnbx$f lags,

Gs tatus) ;

71 Nucleus Svstem Calls

SEND$MESSAGE

//***-Ì
* I t i s no t rnandatory fo r the ca l l ing rask to caca log rhe mai lbox) r
* token in o rder to send a message. I t i s necessary , however , to *
* ca ta log (o r in someway communica te) the rna i lbox token i f another *
* task is to rece ive the nessage. *
* - l< /

CALL RQSCATALOC$OBJ ECT (j obgtoken,
rnbx$token,
G (3 , , l ' l B X ') ,
Gs tatus) ;

. Typica l PL/YI-286 S tatement s

/ * _ * J _

* The ca l l ing task invokes the SEND$MESSAGE sys tern ca l l co send rhe >r
* t o k e n f o r t h e s e g m e n t t o t h e s p e c i f i e d m a i l b o x . ì í
**r?/

CALL RQ$SENDSMESSAGE (mbxgroken.
s e g S t o k e n
n o $ r e s p o n s e ,
G s t a t u s) ;

. T y p i c a l P L / M - 2 8 6 S t a t e m e n t s

END SAI,IPLEPROCEDURE ;

Condition Codes

E$OK 0000H No exceptional conditions.

E$EXIST 000óH One or more ol the input parameters is not iì
token for an existing object.

E$MEM 0002H The high performance queue is full and the
calling task's job does not contain suftìcient
memory to complete the call.

ENOTCONFIGURED tl00tìH This system call is nor parr of rhe presenr
configuratìon.

Nucleus System Calls / :

SEND$MESSAGE

E$TYPE 8002H At least one of the following is true:

r The mailbox parameter is a token for an object
that is not a mailbox.

o The response parameter is a token for an object
that is neither a mailbox nor a semaphore.

. The specified mailbox was set up to pass data,
not tokens.

76 Nucleus System Calls

The CREATE$SEMAPHORE svstem call creates a semaohore.

semaphore : RQ$ CREATE$ S EMAPHORE (in i r ia lgvalue, rnaxgvalue,
semaphore $ f lags , except$ptr) ;

Input Parameters
initial$value A WORD containing the initial number of units to be in the

custody of the new semaphore.

max$value A WORD containing the maximum number of units over which the
new semaphore is to have custody at any given time. If maxgvalue
is zero, an E$PA RAM error is returned.

semaphore$flags A WORD containing information about the new semaphore. The
low-order bit determines the queuing scheme for the new
semaphore's task queue:

Value Oueuing Scheme

0 Firsr- in/ f i rsr -out
I Priority hased

The remaining bits in semaphore$flags are reserved for future use
and should be set to zero.

Output Parameters
semaphore A TOKEN to which the Operating System will return a token fbr

the new semaphore.

except$ptr A POINTER to a WORD to which the iRMX II Operaring System
will return the condition code generated by this system call.

Description

The CREATE$SEMAPIIORE system calì creates a semaphore and returns a token for it.
The created semaphore counts as one against the object limit of the calling task's job.

Nucleus Svstem Calls 77

CREATE$SEMAPHORE

Example

/**
* This exarnple i l lust rates how the CREATE$ S EMAPHORE systern ca l l can *
* b e u s e d . *
** /

DECIARE TOKEN LITEMLLY ' SELECTOR' ;

/ * NUCLUS. EXT dec l -a res a1 l sys te rn ca l l s * , /

$ INCLUDE (/rrnx286/inc/NUCLUS . EXT)

DECI-ARE sem$ token
DECI^ARE ini t$value
DECIARE rnax$value
DECIARE sem$ f lags
DECI-ARE s tatus

SA.l,fPLEPROCEDURE:
PROCEDURE;

TOKEN ;
WORD ;
WORD ;
WORD ;
WORD ;

i n i t$va lue : 1 ; , / * the new semaphore has one in i t ia l
uni t *,/

max$va1ue - 10H; ,/* the new sernaphore can have a maxirnum
of 16 un i ts * , /

s e r n $ f l a g s : 0 ; / * d e s i g n a t e s a f i r s t - i n /
f i rs t - ou t cask queue * /

. TyP ica l PL/11-286 S ta tenent s

/ ***x
* The token sem$token is returned when the cal l ing task invokes the *
* CREATE$ S EMAPHORE system cal l . *
**/

sen$roken : RQ$ CREATE$ s EMAPHoRE (in i rgvalue
max$value,
s e m $ f Ì a g s ,
G s t a t u s) ;

. Typica l PL/11-286 S tatements

END SAMPLEPROCEDURE ;

78 Nucleus Svstern Calls

CREATE$SEMAPHORE

Condition Codes

E$OK 0000H No exceptional conditions.

E$LIMIT 0004H The calling task'sjob has already reached its
object limit.

E$MEM 0002H The memory available to the calling task's job is
not sufficient to create a semaphore.

ENOTCONFIGURED 0008H This system call is not parr of the present
configuration.

E$PARAM 8004H At least one of the following is true:

. The initial$value parameter is larger than the
max$value parameter.

. The maxgvalue parameter is 0.

E$SLOT 000CH There isn't enough room in the CDT for
another descriptor.

Nucleus Svstem Calls 79

The DELETE$SEMAPHORE system call deletes a semaphore.

C A L L R Q S D E L E T E S S t M A P H O R E (s e m a p h o r e , e x c e p t $ p c r) :

Input Parameter
semaphore A TOKEN for the semaphore to be deleted.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code generated by this system call.

Description

The DELETE$SEMAPHORE system call deletes the specified semaphore. If there are
tasks in the semaphore's queue at the moment of deletion, they are awakened with an
E$EXIST exceptional condition. The deleted semaphore counts as a credit of one toward
the object total of the containing job.

Example

/ *J t *
' t Th is example i l l us t ra tes how the DELETE$ S EMAPHORE sys tem ca l l *
* c a n b e u s e d . *

**/

DECI.ARE TOKEN LITERALLY ' SELECTOR' ;

/ * N U C L U S . E X T d e c l a r e s a l ì s y s t e m c a l . l s * . /

$ INCLUDE (/rrnx2 8 6 / incINUCLUS . EXT)

DECIARE sem$token ToKEN;
DECIéRE in i t$value I ,JORD;
DECIARE max$va1ue WORD;
DECIARE sern$f lags LIORD;
DECI-ARE sLaLus WORD

80 Nucleus Svstem Calls

DELETE$SEMAPHORE

SA},fPLEPROCEDURE :
PROCEDURE;

in i t$va lue - l ; / * the new semaphore has one in i t ia l un i t * , /
max$value - l0H; ,/* the new semaphore can have a maximum

o f 1 6 u n l c s * /
s e m $ f l a g s - 0 ; , / * d e s i g n a t e s a f i r s t - i n

f i rs t - ou t task queue * /

. Typ ica l PL/ l l -286 s ta tenents

/**
* ln o rder to de le te a senaphore , a task nus t know the token fo r *
* tha t semaphore . In th is exarnp le , the needed token is known *
* because the ca l l ing task c rea tes the senaphore . *
x *

**/

sem$token = RQ$ CREATES S EMAPHORE (init$value , rnax$value ,
s e m $ f l a g s , G s t a t u s) ;

. T v o i c e l P l . / Y -) R 6 S r a t e m e n t s

/**
* iy 'hen the sernaphore is no longer needed, i t may be deleted by *
* any task chat knows the token for the semaphore. *
* *

*rk** /

CALL RQ$ DELETE$ S EMAPHORE (s e m $ t o k e n , @ s t a t u s) ;

Typ ica l PL/Y, -286 S ta tements

END SAMPLEPROCEDURE;

Condition Codes

E$OK

E$EXIST

0000H No exceptional conditions.

0006H One of the following is true:

. The semaphore parameter is not a token for an
existing object

The semaphore parameter represents a
semaphore whose job is being deleted.

Nucleus Svstem Calls 8r

DELETE$SEMAPHORE

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$TYPE 8002H The semaphore parameter is a token for an
object that is not a semaphore.

82 Nucleus System Calls

The RECEIVE$UNITS system call delivers the calling task to a semaphore, where it
waits for units.

value : RQ$RECEIVE$UNITS (sernaphore, uni ts , t imegl i rn i t , exceprgptr) ;

lnput Parameters
semaphore A TOKEN for the semaphore from which the calling task wants to

receive units.

units A WORD containing the number of units that the calling task is
request ing.

time$limit A WORD that indicates how long the calling task is willing to wait.

. If zero, the WORD indicates that the callìng task is not willing
to wait .

'
liÎil|.ii;[)e

woRD indicates that the task will wait as long

r If between 0 and 0FFFFH, the WORD indicates the number of
clock intervals thar the rask is willing to wait. The length of a
clock interval is configurable. Refer to the Extendcd ikMX II
Interactive Conftguration Utility Reference Manual for further
rn[ormat ion.

Output Parameters
value A WORD containing the number of units remaining in the

semaphore after the cal.ling task's request is satisfied.

except$ptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Nucleus Svstem Calls E3

RECEIVE$UNlTS

Description

The RECEIVE$UNITS system call causes the calling task either to get the units that it is
requesting or to wait for them in the semaphore's task queue. If the units are available
and the task is at the front of the queue, the task receives the units and remains ready.
Otherwise, the task is placed in the semaphore's task queue and goes to sleep, un.less the
task is not willing to wait. In the latter case, or if the task's waiting period elapses before
the requested units are available, the task is awakened with an E$TIME exceptional
condition.

Example

/**
* This example i l lust rates how the RECEIVE$UNITS system cal l can be *
* u s e d t o r e c e l v e a u n i t . *
**,/

DECI-ARE TOKEN LITERALLY 'SELECTOR' ;

/ * N U C L U S . E X T d e c l a r e s a l I s y s t e m c a L L s * /

$ INCLUDE (/rmx2 8 6,2 incINUCLUS . tXT)
DECIARE sem$token TOKEN;
DECI-ARE cal l i .ng$tasks$job TOKEN;
DECI-ARE wai t$forever LITEMLLY ' 0FFFFH' ;
DECIARE seg$token TOKEN;
DECIARE uni ts$remain ing t iORD;
DECIARE uni ts$requested WORD;
DECLARE status WORD:

SAI'fPLEPROCEDURE :
PROCEDURE;

. Typica l PL/14-286 S tatement s

/ ***************)k**
* ln ch is example, the cal l ing task looks up the token for the *
* sernaphore pr ior to invoking the RECEIVE$UNITS systen cal l . *
**/

ca l -1 ing$tasks$job : SELECTOR$OF(NIL) ;
sem$token : RQ$ LOOKUP$OBJ ECT (cal l inggtasksgjob,

G (s , , S E M A 4 ') ,
w a i t $ f o r e v e r ,
Gs tatus) ;

o T v o i c a l P L / 1 4 - ? 8 6 S t a t e m e n t s

84 Nucleus Svstem Calls

RECEIVE$UNITS

/**)'r*
* Knowing the token fo r the semaphore , the ca l l ing task can wa i t fo rk
* un i ts a t th is semaphore by invok ing the RECEIVE$UNITS sys tern ca l l *
* ; L ' ! * /

u n i t s $ r e q u e s t e d - 4 ;

uni ts$remain ing - RQ$RECEM$UNITS (s ern$ roken,
u n i t s $ r e q u e s t e d ,
w a i t $ f o r e v e r ,
@s tatus) ;

a

. T y p i c a L P L / l l - 2 8 6 S t a t e m e n t s

END SA]'IPLEPROCEDURE ;

Condition Codes

E$OK 0000H No exceptional conditions.

E$EXIST 000óH The semaphore paranìeter is not a token for an
existing object.

E$LIMIT 0004H The units parameter is greater than the
maximum value specified for the semaphore
when it was created.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$TIME 0001H One of the following is truc:

. The calling task was not willing to wait and the
requested units were not available.

. The task waited in the task queue and its
designated waiting period elapsed before the
requested units were available.

E$TYPE 8002H The semaphore parameter is a token for an
object that is not a semaphore.

Nucleus System Calls 85

The SEND$UNITS system call sends units to a semaphore.

CALL RQ$SEND$UNITS (senaphore, uni ts , except$ptr) ;

Input Parameters
semaphore A TOKEN for the semaphore to which the units are to be sent.

units A WORD containins the number of units to be sent.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

wilì return the condition code senerated bv this svstem call.

Description

The SEND$UNITS system call sends the specified number of units to the specified
semaphore. If the transmission would cause the semaphore to exceed its maximum
allowable supply, then an E$LIMIT exceptional condition occurs. Otherwise, the
transmission is successful and the Nucleus attempts to satisfy the requests of the tasks in
the semaphore's task queue, beginning at the head of the queue.

Example

/*****************************x**
* Th is example i l l us t ra tes how the SEND$UNITS sys ten ca l l can be used *
* to send un i ts to a sernaphore ,) r
***x z

DECIARE TOKEN LITEMLLY 'SELECTOR' :

/ * NUCLUS.EXT declares a l ì , system cal l ,s * /
$ lNCLUDE (/rrnx2 86linclNUCLUS . EXT)

TOKEN ;
WORD ;
WORD ;
WORD ;

DECI-ARE three$uni ts$senr LITERALLY , 3 , ;

DECIARE s ern$ token
DECIARE ini t$vaÌue
DECIARE max$value
DECLARE s em$ fl ags

DECI,ARE s tatus
DECTARE j ob$ token

WORD ;
TOKEN;

86 Nucleus System Calls

SEND$UNITS

/ * the new semaphore has one in i t ia l
uni t *,/

/* the new semaphore can have a rnaxinium
of 16 un i ts * , /

/ * d e s i B n a t e s a f i r s t - i n / f i r s t - o u t
task queue * /

/ * i n d i c a t e s o b j e c t s t o b e c a t a l o g e d
í n r ò t h a ^ h i é . r . l i r a . r - ^ r " ^ € r l ' ò

c a l l i n g t a s k ' s j o b * /

. Typical PL/14.-286 S taternents

/**
* T h e c a l l i n g t a s k c r e a t e s a s e m a p h o r e a n d c a c a l o g s t h e s e m a p h o r e *
* coken. The cal l ing task then uses the token to send a uni t .)k
* *> ! * /

sem$token : RQ$CREATE$ S EMAPHORE (Ín í tgva lue .
max$va lue ,
s e r n $ f l a g s ,

@ s t a t u s) ;

. Typ ica l PL/11-286 S ta tement s

/***)t*******
* I t Í s no t mandatory to ca ta log the semaphore token in o rder to send *
* u n i t s . I t i s n e c e s s a r y , h o w e v e r , t o c a c a l o g (o r i n s o m e w a y *
* co lunun ica te) the semaphore token i f another task is to rece ive the *
* u n i t s . *
**>9* /

CALL RQ9 CATALOG 9OBJ ECT (j o b $ t o k e n ,

@ (5 , S E M A 4 ' ,) ,

Typ ica l PL/ l l , - 286 S ta tements

/ **>t*
* The ca l l ing task invokes the SEND$UNITS sys tem ca l l co send the rk
* u n i t s t o t h e s e m a p h o r e j u s t c r e a t e d (s e m $ t o k e n .) i -

**- , t* /

CALL RQ$ S END$UNITS (s e r n $ t o k e n ,
t h r e e S u n i t s S s e n t ,
@s tatus) ;

SA},fPLEPROCEDURE :
PROCEDURE ;
i n i t $ v a l u e - 1 ;

rnax$value - 10H;

s e m $ f l a g s - O ;

j ob$token - SELECToR$OF(NIL) ;

Nucleus System Calls 87

SEND$UNITS

. Typica l PL/ l l -286 S ta tement s

END SAMPLEPROCEDURE ;

Condition Codes

E$OK 0000H No exceptional conditions.

E$EXIST 0006H The semaphore parameter is not a token for an
existing object.

E$LIMIT 0004H The number of units that the calling task is
trying to send would cause the semaphore's
supply of units to exceed its maximum allowable
supply.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$TYPE 8002H The semaphore parameter is a token for an
object that is not a semaphore.

88 Nucleus System Calls

The CREATE$SEGMENT system call creates a segment.

segnenc - RQ$CREATE$ S EGMENT (s ize, except$ptr) ;

Input Parameter
size A WORD that specifies the size of the requested segment.

. If not zero, it contains the size, in bytes, of the requested
sesment.

. tt r"ro Or OFFFFH, It indicates that the size of the request is
6553fi (64K) bytes.

Output Parameters
segment A TOKEN to which the Operating System will return a token for

the new segment.

except$ptr A POINTER to a Vr'ORD to which rhe iRMX II Operating System
will return the condition code generated by this system call.

Description

The CREATE$SEGMENT system call creates a segment and returns the token for it.
The memory for the segment is taken from the liee portion of the memory pool of the
callìng task's job, unless borrowing from the parentjob is both neccssary and possible.
The new segment counts as one against the object limit of the calling task's job.

To gain access into the segment, you should base an array or structure on the
SELECTOR that is returned as the token for the segment.

When setting up the descriptor for the new segment, the Nucleus assigns the segment as a
data segment, with read/write aocess, at privilege level 0.

Nucleus System Calls 89

CREATE$SEGMENT

Example

MAINPROC: D0;

/**
* Th is example i l l us t races how the CREATE$SEGMENT sys tern ca l l can be *
* u s e d . *
*****************) t) t) t*) t) t*** /

DECI*ARE TOKEN LITERALLY ' SELECTOR' ;

/ * N U C L U S . E X T d e c l a r e s a l l s y s t e m c a l l s * , /

$ INCLUDE (/rmx2 8 6/ incINUCLUS . EXT)

DECI-ARE seg$token TOKEN;
DECI^ARE seg$s ize WORD;
DECIARE s ta tus WORD;

SAMPLEPROCEDURE :
PROCEDURE i

seg$s ize : 100H; / * xhe s ize o f the reques ted segnent
i s 2 5 6 b y t e s x /

Typ ica . [PL /11- 286 Sta tements

/**************x***
* The coken seg$token is re tu rned when the ca l l ing task invokes the *
* CREATE$SEGMENT sysrem ca1 l . *
**************************x***************************x*****************/

s e g $ t o k e n : R Q S C R E A T E $ S E G M E N T (s e g $ s i z e , G s r a t u s) ;

Typ ica l PL/ l l - 286 S ta tement s

END SMPLEPROCEDURE;
END I , fA INPROC;

Condition Codes

E$OK 0000H No exceptional conditions.

E$LIMIT 0004H The calling task'sjob has already reached its
object limit.

E$MEM 0002H The memory available to the calling task's job is
not sufficient to create a segment of the
specified size.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$SLOT 000CH There isn't enough room in the GDT for
another descriptor.

90 Nucleus Svstem Calls

The DELETE$SEGMENT system call deletes a segment or a descriptor.

CALL RQSDELETES S ECMENT (segmenr, exceprgprr) ;

Input Parameter
segment A TOKEN for the segment or descriptor to be deleted.

Output Parameter
except$ptr A POINTER îo a WORD to which rhe iRMX Il Operating System

will return the conclition code generated by this system call.

Description

The DELETE$SEGMENT system call deletes iRMX II segments created via
CREATE$SEGMENT and descriptors created via RQE$CREATE$DESCRIPTOR.
When deleting iRMX lI segments, this system call returns the specified segment to the
memory pool from which it was allocated. The deleted segment counts as a credit of on"
toward the object total of the containing job.

When deleting descriptors, this system call does not return any memory to the memory
pool. It simply clears the descriptor slot in the Global Descriptor Table (GDT) and
returns that slot to the memory manager for reassignment.

Example

/**
* This example i l lust rates ho\^ ' the DELETE$SECMENT system cal l *
* c a n b e u s e d - *
x***/

DECIARE TOKEN LITEMLLY 'SELECTOR' ;

/ * NUCLUS. EXT declares a l l system cal ls * , /
$ INCLUDE (/rrnx2 8 6/ inc//NUCLUS . EXT)

DECIARE seg$token TOKEN;
DECIARE s ize WORD;
DECIARE status WORD;

Nucleus System Calls 9 r

DELETE$SEGMENT

SAMPLEPROC EDURE :
PROCEDURE;
s i z e : 6 4 ; , / * des Ígnates new segment to conta in

64 bytes *1

o T v n í c a l P l . / 1 4 - 2 8 6 S t a t e m e n t s

/**
* In o rder to de le te a segnent , a task must kno\ r the token fo r *
* tha t segment . ln th is example , the needed token is known *
* because the ca l l ing task c rea tes the segnent . *

**************)k*** /

s e g $ t o k e n : R Q $ C R E A T E S S E G M E N T (s i z e , G s r a t u s) ;

r T v n i c a l P l . / 1 4 - ? 8 6 S t a t e n e n t s

/**
* Lrhen the segment is no longer needed, l t may be deleced by any *
* task that knows the token for the sesnent . *
* *

**/

CALL RQ9DELETE9 S EGMENT (s e g $ t o k e n , G s t a t u s) ;

T y p i c a l P L / 1 1 - 2 8 6 S t a t e m e n t s

END SMPLEPROCEDURE;

Condition Codes

E$OK

E$EXIST

0000H No exceptional conditions.

000óH At least one of the following is true:

o The segment parameter is not a token for an
existing object.

o The segment parameter represents a segment
or descriptor whose job is being deleted.

92 Nucleus System Calls

DELETE$SEGMENT

ENOTCONFIGURED 0008H This system call is nor part of rhe present
configuration.

E$TYPE 8002H The segmenr parameter is a token for an object
that is not a segment or a descriptor.

Nucleus Svstem Calls 93

The GET$POOIJATTRIB system call returns information about the memory pool of the
calling task's job. For compatibility with iRMX I systems, this system call can report pool
sizes no larger than 1M byîe.

CALL RQCET PooL$ATTRI B (at t r ib$ptr , except$ptr) ;

Output Parameters
attrib$ptr A POINTER to a data structure of the following form:

STRUCTURE (
POOLSMAX WORD,
PooL$MrN WORD,
INITIAL$SIZE WORD,
ALLOCATED WORD,
AVAII-ABLE WORD) ;

The system call fills in the fields of this structure so that after the
call:

o POOL$MAX contains the maximum allowable size (in ló-byte
paragraphs) of the memory pool of the calling task's job.

. POOL$MIN contains the minimum allowable size (in 16-byte
paragraphs) of the memory pool of the calling task's job.

. INITIAII|SIZE contains the original value of the pool$min
attribute.

. ALLOCATED contains the number of 16-byte paragraphs
currently allocated from the memory pool of the calling task's
job.

. AVAILABLE contains the number of l6-byte paragraphs
currently available in the memory pool of the calling task's job.
It does not include memory that could be borrowed from the
parent job. The memory indicated in AVAIIABLE may be
fragmented and thus not allocatable as a single segment.

except$ptr A POINTER to a WORD to which the Operating System will
return the condition code generated by this system call.

94 Nucleus System Calls

GET$POOL$ATTRIB

Description

The GET$POOL$ATTRIB system call returns information regarding the memory pool of
the calìing task'sjob. The data returned comprises the allocated and available portions of
the pool, as well as its initial, minimum, and maximum sizes.

This system call is available for compatibility with iRMX I systems. Because the elements
of the attrib$ptr structure are all woRD values, this system call cannot return accurate
size information about memory pools that are larger than 1M byte. If the memory pool is
larger than lM byte, this system call reports the size as 1M byte. To get accurate
information concerning large (over lM byte) memory pools, use the
RQEGET POOL$ATTRIB system call.

Example

/**
* Th is example i l l us r ra tes how the CET$POOL$ATTRIB syscem ca l l can > .
* be used to re tu rn in fo rmat ion about the rnemory poo l o f the *
* c a l l i n g t a s k ' s j o b . *
**/

DECIARE TOKEN LITERALLY ' SELECTOR' ;

/ * N U C L U S . E X T d e c l a r e s a l l s y s t e m c a l l s * , /

$ INCLUDE (/ rmx286/ / inc INUCLUS . EXT)

DECIARE mern$pool STRUCTURE (
mem$poo l$rnax WORD,
rnem$pool$rnin Ì.IORD,
m e n q i n i L i a I 9 s i z e W O R D ,
rnern$a l loca ted Ì ,JORD,
mem$ava i lab le l , iORD) ;

DECI,ARE status t, lORD;

SAI,fPLEPROCEDURE:
PROCEDURE;

. Typ ica l PL/ l , l -286 S ta tements

/ **)k*********
* The max i rnum and min imum s ize o f the menory poo l , che or ig ina l va lue *
* o f tbe mÍn imurn poo l s ize , and the a l loca ted and ava i lab le nurnbe r o f *
* 1 6 - b y t e p a r a g r a p h s i n t h e m e m o r y p o o l o f r h e c a Ì l i n g t a s k , s j o b a r e ' t
* a l l re tu rned when the ca l l ing task invokes the GET$POOL$ATTRIB *
x s y s t e m c a l - l . *
x*/

Nucleus System Calls 95

GET$POOL$ATTRIB

CALL RQ9cET$POoL$ATTRIB (@rnem$pooI,
G s r a c u s) ;

. TYPical PL/ t4-286 statements

END SAMPLEPROCEDURE ;

Condition Codes

E$OK 0000H No exceptional conditions.

EBADADDR 800FH The attrib$ptr pointer is invalid. Either the
selector does not refer to a valid segment, or the
offset is outside the segment boundaries.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

96 Nucleus System Calls

The RQEGETPOOI"$ATTRIB system call returns information about any job's memory
pool. It is similar to the GET$POOI$ATTRIB system call, except that it can report pool
sizes larger than 1M byte, and it returns information about the parent job and the amount
of memorv borrowed.

CALL RQEGETP0OL$ATTRIB (at r r ib$prr , except$prr) ;

lnput/Output Parameter
attrib$ptr A POINTER to a data structure of the folÌowing form:

STRUCTURE (
TARGET$JOB TOKEN,
PARENT$JOB TOKEN,
PooL$MAX DWORD,
POOL$MIN DWORD,
INTTTAL$SlZE Dt iORD,
ALLOCATED DWORD,
AVAII-ABLE DI,JORD,
BORROWED DWORD):

This structure holds both input and output fields. You fill in the
TARGET$JOB field to identify the job whose memory-pool
information you want. The system call fills in the remaining fields
to provide that information. The fields of this structure contain the
following information:

. TARGET$JOB is a field that you fill in to speci! the token for
the job whose memory pool you want to examine. A value of
SELECTOR$OF(NIL) indicates the calling task's job.

. PARENT$JOB is a field in which the system call returns a
token for the parent job of the target job you specified.

. POOI$MAX is a DWORD that the system call fills in to
speciS the maximum allowable size (in 16-byte paragraphs) of
the target job's memory pool.

. POOL$MIN is a DWORD that the system call fills in to speciry
the minimum allowable size (in 16-bye paragraphs) of the
target job's memory pool.

. INITIAL$SIZE is a DWORD that the system call fills in to
specif the original value of the pool$min attribute.

Nucleus Svstem Calls 97

ROEGETPOOL$ATTRIB

except$ptr

. ALLOCA'IED is a DWORD that the system call fills in to
specify the number of l6-byte paragraphs currently allocated
from the target job's memory pool.

. AVAII-ABLE is a DWORD that the system call fills in to
specify the number of 16-byte paragraphs currently available in
the target job's memory pool. It does not include memory that
could be borrowed from the parent job. The memory indicated
in AVAII-ABLE might be fragmented and thus not allocatable
as a single segment.

o BORROWED is a DWORD that the system call fills in to
specify the amount of memory (in 16-byte paragraphs) that the
target job has borrowed.

A POINTER to a WORD to which the Operating System will
return the condition code generated by this system call.

Description

The RQEGETPOOL$ATTRIB system call returns information regarding the memory
pool of any job you specify. The data returned comprises the allocated and available
portions of the pool; the initial, minimum, and maximum pool sizes; the amount of
memory that the job has borrowed; and the ídentity of the job's parent job.

This system calÌ is similar to the GET$POOL$ATTRIB system call, but it offers several
enhancements. Unlike that system call, RQE$cEfiPOOL$ATTRIB can return
information about memory pools that are larger than 1M byte. It is not restricted to
returning information about the calling task'sjob; it can return information about anyjob.
And, it returns the amount of memory the job borrowed along with a token for the job's
parent job.

Example

/**
* This example i l lust rates how the RQEGET POOL$ATTRI B system cal l *
* can be used to return in format ion about the mernory pool o f the *
+ ^ . 1 | i h d r . - r . ' - . i ^ h *. - - ^ - r - b .
** /

DECIARE TOKEN LITEMLLY 'SELECTOR' ;

/ * NUCLUS.EXT declares a l l systern ca l ls * , /

$ INCLUDE (/rmx2 8 6,zinclNUCLUS . EXT)

98 Nucleus Svstem Calls

RQEGETPOOL$ATTRIB

DECIARE mem$pool STRUCTURE (
targ$j ob TOKEN ,
parent$ j ob TOKEN,
mem$pool$rnax DWORD,
nem$poolSmin DWOR-D,
rnem$in i t ia l$s ize DWORD,
mern$al located DWORD,
mem$avaiJ-able DWORD,
rnern$borrowed DWORD);

DECÌ-ARE scatus WORD;

SA.|4PLEPROCEDURE:
PROCEDURE;

nem$poo I . targ$j ob - SELECT0R$OF(N1L); , / * Ser rhe cal l ing task,s job
as the cal l ing iob. * /

. Typ í ca1 PL/14-286 Statemencs

/***rt****************************-r*
* The parent job 's token, the nax imum and rn in imun s ize o f the memory *
* pooÌ , the or ig ina l va lue o f rnem$poo l$min , and the amount i -
* o f a l loca ted , ava i lab le , and bor rowed memory in the nemory poo l o f *
* the ca l l ing task 's job are a l l re tu rned when the task invokes the *
* RQE$CETS POOLSATTRIB sys tem ca lJ - . *
**/

CALL RQRQEcET$ POoLSATTRI B (@rnerngpool,

Gs ta tus) ;

. Typ ica l PL/11-286 S ta tements

END SAMPLEPROC EDURE ;

Condition Codes

E$OK 0000H No exceptional conditions.

EBADADDR 800FH The attrib$ptr pointer is invalid. Either the
selector does not refer to a valid segment, or the
offset is outside the segment boundaries.

Nucleus System Calls 99

RQEGETPOOL$ATTRIB

E$EXIST 0006H The token for the target job is not a valid iRMX
token.

ENOTCONFICURED 0008H This system call is not part of the present
configuration.

E$TYPE 8002H The token for the target job is not a job token.

100 Nucleus Svstem Calls

The GET$SIZE system call returns the size, in bytes, of a segrnent.

s i z e - R Q $ G E T $ S I Z E (s e g m e n t , e x c e p t $ p t r) ;

Input Parameter
segment A TOKEN for a segment whose size is desired.

Example

Output Parameters
size A WORD in which the system call returns the size of the segment,

as fol-lows.

o If not zero, it contains the size, in bytes, of the segment
indicated by the segment parameter.

o If zero, the WORD indicates that the size of the segment is
65536 (64K) bytes.

except$ptr A POINTER to a WORD to which the iRMX lI Operating System
will return the condition code generated by this system call.

Description

The GET$SIZE system call returns the size, in bytes, of an iRMX II segnent.

/ ***) t) t**>t
* T h i s e x a m p l e i l l u s t r a t e s h o w t h e G E T $ S I Z E s y s t e r n c a l l c a n b e u s e d . *
** /

DECIARE TOKEN LITEMLLY'SELECTOR';

/ * NUCLUS. EXT declares a l ì - system cal ls * , /

$ INCLUDE (/rnx2 8 6/ inclNucLUS . EXT)
DECIARE mbx$coken TOKEN;
DECI-ARE cal l ing$ task$j ob TOKEN;
DEcIARE wai t$forever LITERALLY '0FFFFH' ;

Nucleus Svstem Calls r0l

GET$SIZE

DECLARE seg$token TOKEN;
DECI"ARE response TOKEN;
DECI ,ARE s ize WORD;
DECIARE status WORD;

SAI4PLEPROCEDURE :
PROCEDURE;

o Typica l PL/ l l -286 S tatements

/**
* ln o rder to invoke the GET$SIZE sys ten ca l l , the ca l l íng task must *
* know the token fo r the segment . ln th is example , the ca l l ing task *
* invokes che LooKUP$o8JECT and RECEIVE$MESSAGE sys ten ca l l s to *
* rece ive the token fo r a segrnent (seg$token) . The ca l -] - ing task *
* invoked LOOKUP$OBJECT to receive the token for the mailbox narned *
* 'MBX' . 'MBX' had been des ignated as the mai lbox another task *
* wou ld use to send an ob jec t , *
* * * * * * * * * * * *)k* tk* /

cal l ing$ task$j ob : SELECTOR$OF(NIL) ;

mbx$token: RQ$ LOOKUPSOBJ ECT (ca l l ing$ task$ j ob ,

@ (3 , ' , M B X ' ,) ,
w a i t $ f o r e v e r ,

G s t a t u s) ;

. Typ ica l PL/ l l -286 S ta tements

/**
* The RECEIVE$MESSAGE system cal l re turns seg$token to the cal l ing *
* t a s k .
***x z

seg$token : RQ$RECEIVE$MESSAGE (mbx$token,
w a i t $ f o r e v e r ,

Y r e 5 P w ' r 5 c ,

. Typ ica l PL/11 ' - 286 s ta tements

/***x******
* The GET$SIZE sys tem ca l l re tu rns rhe s ize o f the segrnent po in ted *
* t o b y s e g $ t o k e n .) r
** /

r02 Nucleus Svstem Calls

s i z e : R Q $ G E T S S I Z E

a

. Typica l PL/ t1-286 S tatenent s

END SMPLEPROCEDURE;

Condition Codes

E$OK

E$EXIST

0000H No exceptional conditions.

0006H The segment parameter is not a token for an
existing object.

GET$SIZE

(seg$ token , Gs tatus) ;

ENOTCONFIGURED 0008H This system cal-[is not part of the present
configuration.

E$TYPE 8002H The segment parameter is a token for an object
that ls not a segment.

Nucleus System Calls 103

The SEfiPOOLiIMIN system call sets a job's pool$min attribute.

CALL RQSSET$POOL$MIN (new$min, except$ptr) ;

Input Parameter
new$min A WORD indicating the pool$min attribute of the calling task's

io'rt ooooo", indicares rhar the pool$min auribute of the calling
task's job is to be set equal to that job's pool$max attribute.

If less than 0FFFFH, contains the new value of the pool$min
attribute of the calling task's job. This new value must not
exceed that iob's rrool$max attribute.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

wil.l return the condition code senerated bv this svstem call.

Description

The SEfiPOOL:$MIN system call sets the pool$min attribute of the calling task's job.
The new value must not exceed that job's pool$max attribute. When the pool$min
attribute is made larger than the current pool size, the pool is not enlarged until the
additional memory is needed.

Example

/**
* This exarnpJ-e i l lust rates hov the SET$POOL$MIN systen cal l can be *
* u s e d . *
***/

DECIARE TOKEN LITERALLY ' SELECTOR' ;

/ * NUCLUS.EXT declares a l l system cal ls * , /
$ INCLUDE (/rnx2 8 6/ incINUCLUS . EXT)

DECIARE new$rnin WORD;
DECI-ARE status WORD:

l0.t Nucleus System Calls

SET$POOL$MIN

SAMPLEPROCEDURE :
PROCEDURE;

n e l , $ m i n - o F F F F H : , / * s e t s p o o l $ m í n a t t r i b u t e o f c a l l i n g
task 's job equal to job 's pool$rnax
at t r ibute * , /

a

. Typical PL/14-286 s taternents

/**
* In th is example the pool$min at t r ibute of the cal l ing task 's job *
* i s t o b e s e t e q u a l t o t h a t j o b ' s p o o l $ r n a x a t t r i b u t e . *
***/

CALL RQSETPoOL$MIN (new$rnin,

Gs tatus) ;
o

. Typica l PL/ t4-286 S tatements

END SAMPLEPROCEDURE ;

Condition Codes

E$OK 0000H No exceptional conditions.

E$LIMIT 0004H The new$min parameter is not 0FFFFH, but it
is greater than the pool$max attribute of the
calling task's job.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

Nucleus Svstem Calls 105

The RQ$CREATE$BUFFER$POOL system call establishes a buffer pool and returns a
token for it.

buf fer$pool - RQ$CREATES BUFFER$ POOL (maxi rnum$buf fs , f lags, except$ptr) ;

lnout Parameters

maximum$buffs A WORD that indicates the maximum number of buffers that can
exist in the buffer pool at one time. The maximum size of the
buffer pool is controlled by this parameter.

lìags A WORD that defines the attributes of the buffer pool as follows:

Bit Meaning

0 Reserved. should be set to zero.
I lndicates if data chaining is supported. If set (1), then

data chains are supported. If not set (0), then only
contiguous buffers will be used.

2-15 Reserved. should be set to zero.

Outpul Parameters

buffer$pool A TOKEN in which the system call returns a token for the newly-
created buffer pool.

except$ptr A POINTER to a WORD to which the Operating Sysrem will
return the condition code generated for this system call.

Description

This system call sets up a buffer pool that will be associated with one or more ports.
These buffer pools can be used without any ports associated with them. In such cases,
they are general-purpose buffer managers. Once a buffer pool has been set up, tasks can
request segments of memory from the buffer pool (via RQ$REQUEST$BUFFER)
instead of creating the segments directly (via CREATE$SEGMENT) each time memory
space is needed. When a task finishes with a buffer, it can release the buffer back to the
buffer pool (via RQ$RELEASE$BUFFER) for later use by other tasks.

106 Nucleus System Calls

CREATE$BUFFER$POOL

When a buffer pool is created, it contains no memory segments. Therefore, you must use
RQ$CREATE$SEGMENT to create the segments to be managed by the buffer pool.
Once you create the segments, you can use RQ$RELEASE$BUFFER to add the
segments to the buffer pool. Each buffer pool can manage as many as 8192 (8K)
segments which can be of eight different sizes.

Condition Codes

E$OK 0000H No exceptional conditions.

E$MEM 0002H There isn't enough memory to create the
requested buffer pool.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$PARAM 8004H The max$bufs parameter has a value greater
rhat 8192.

E$SLOT 000CH There is no room in the GDT for the buffer
pool's descriptor.

Nucleus Sysfem Calls to7

The RQ$DELETE$BUFFER$POOL system call deletes a buffer pool.

CALL RQ$DELETESBUFFER$PooL (buf fer$pool - , except$ptr) ;

lnput Parameter
buffer$pool A TOKEN for the buffer pool to be deleted. This buffer pool must

have been created with the RQ$CREATE$BUFFER$POOL
system call.

Output Parameter
except$ptr A POINTER to a WORD to which the Operating System will

reîurn the condition code generated for this system call.

Description

This system call rleletes a buffer pool originally created with
RQ$CREATE$BUFFER$POOL. All buffers in the buffer pool and any information in
them is also deleted.

A buffer pool cannot be deleted as long as a port is attached to it.

Condition Codes

E$OK 0000H No exceptional conditions.

E$EXIST 0006H The buffer$pool parameter is nor a token for an
existing object.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$ryPE 8002H The buffer$pool parameter is the token for an
object that is not a buffer pool.

108 Nucleus System Calls

The RQ$RELEASE$BUFFER svstem call returns previouslv allocated buffer space to
the specified buffer pool.

CALL RQSRELEAS E$BUFFER (buf fer$pool , buf fer$tkn, f lags, except$ptr) ;

lnput Parameters
buffer$pool A TOKEN for the buffer pool that is to receive the released buffer.

buffer$tkn A TOKEN to the buffer that is to be released.

flass A WORD that is defined as follows:

Bits Meanins

If 0, then the buffer$tkn parameter
refers to a contiguous buffer. If 1, then
the buffer$tkn parameter refers to a
data chain.

1- 15 Reserved should be set to zero

Output Parameter
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code generated for this system call.

Description

The RQ$RELEASE$BUFFER system call returns a buffer to a specified buffer pool. If
the buffer pool is full, you will get an E$LIMIT exception and the buffer is still valid.

Nucleus System Calls 109

RELEASE$BUFFER

Condition Codes

E$OK 0000H No exceptional conditions.

E$EXIST 0006H Either the buffer$tkn or buffer$pool parameter,
or both, does not refer to an existing object.

E$LIMIT 0004H The calling task'sjob has already reached its'
object limit.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$TYPE 8002H Either the buffer$pool parameter does not refer
to a buffer$pool; or, the buffer$tkn parameter
does not relèr to a sesment.

l l 0 Nucleus System Calls

The RQ$REQUEST$BUFFER system call is used to get a buffer from an existing buffer
oool.

b u f f e r $ t o k e n : R Q $ R E Q U E S T g B U F F E R (b u f f e r g p o o ì - , s i z e , e x c e p r g p r r) ;

Input Parameters
buffer$pool

stze

A TOKEN for an existing buffer pool.

A DWORD specifying the desired size of the requested bufÍbr.
This value must be in the range of 1H through 0FFFFFEH.

A TOKEN to a buffer that fills the request. This buffer is either a
single segment, or a data chain block.

A POINTER to a WORD to which the Operating System will
return the condition code generated for this system calì.

Output Parameters
buffer$token

except$ptr

Description

The RQ$REQUEST$BUFFER system call gets a buffer from an existing buffèr pool.
Ideally the data fits inro an existing buffer. If a buffer large enough to hold the data is not
available and the buffer pooÌ supports data chains, a data chain will be created. A data
chain is a series of huffers that contain parts of the entire message. The location of each
individual block is contained in the data chain block. When creating data chains, the
largest avai.lable buffer will be used for the first portion of the data chain, then the next
buffer and so on. These available buffers may be larger than the data structures and data
actually stored in them. Therefore, a data chain may use more physical space than the
data would actually require.

The minimum bufTer size for data chains is lK in length and at least one buffer must be
requested to permit the system to build the data chain block. The minimum data chain
block size can be computed as:

(max elements*f l)+2 BYTES

wnere max_elements is an ICU parameter with a default value of 79H (127
decimal).

Nucleus System Calls I l l

REQUEST$BUFFER

Condition Codes

E$OK 0000H No exceptional conditions.

ESDATA$CHAIN 000DH A data chain has been returned. The TOI(EN
points to the beginning of the data chain block.

E$EXIST 0006H The buffer$pool parameter does not refer to an
existing object.

E$MEM 0002H The system could not locate enough memory to
create the requested buffer from the buffer
pool, as a data chain, or from free space.

ENOTCONFIGURED 0008H This system calì is not part of the present
configuration.

E$PARAM 8004H The size parameter is equal to zero, or is larger
than OFFFFFFH.

E$SLOT 000CH The Global Descriptor table is fulì.

E$TYPE 8002H The buffer$pool parameter refers to an object
that is not a buffer oool.

l 12 Nucleus System Calls

The RQE$CHANGE$DESCzuIOR system call changes the physical address or size of
a descriptor that was established with the RQE$CREATE$DESCRIFIOR system call.

CAUTION
This system call can change a descriptot's address to refer to any area of
physical memory, even if other descriptors already refer to that memory.
Although you might want to have multiple descriptors refer to the same
area of rnemory for aliasing purposes, take care nof to overlap memorJ
accidentally.

C A L L R Q E $ C i I A N C E $ D E S C R I P T O R (d e s c r i p t o r , a b s $ a d d r , s i z e , e x c e p r $ p c r ; ;

Input Parameters
descriptor A TOKEN for the descriptor to bc changed.

abs$addr A DWORD containing a full, 24-bit address. This is the address
where you want the segment represented by this descriptor to start.
Ifyou supply a 0 for this parameter, the segment retains its current
starting address.

A WORD indicating the size of the segment in bytes. If you supply
a 0 for this parameter, the segment size is set to ó4K b1tes.

sze

Output Parameters
except$ptr A POINTER to a WORD to which the iRMX II Operating System

wilì return the condition code generated by this system call.

Description

The RQE$CHANCE$DESCRIFfOR system call allows you to adjust certain entries in
the Global Descriptor Table (GDT). You can change the base physical address and size
of descriptors that were created with the RQE$CREATE$DESCRIPTOR system
call.These descriptors represent 80286 segnents of memory. You cannot change
descriptors that represent other kinds of iRMX II objects (such as segnents, tasks, or
mailboxes), nor can you adjust descriptors for other 80286 constructs (such as call or task
gates).

Nucleus Svstem Calls l 1 3

RO E$CHANGE$DESCRI PTOR

This system call is intended for system programs that need to access areas of memory in
special ways. For example, an overlay loader could use this system call to transfer
different-sized code blocks to memory. Other system programs can use this system call to
alias reserved or system segments, giving them the ability to modi! segments that are
normally read-only or code segments. With RQE$CHANGE$DESCRIFfOR, a system
program can minimize the number of descriptor slots it uses. Because the address and
size of a descriptor is adjustable, one descriptor can access many different areas of
memory.

This system call can change the address and size of a segment descriptor so that
to any area of memory. Therefore, when used improperly, it can corrupt system
data and allow overwriting of program code. Use it with care

Example

//**
x Th is example i l l us t ra tes the use o f RQE$Cf IANCE$ DESCRI PTOR by *
* c r e a t i n g a d e s c r i p t o r f o r a p r e v i o u s l y u n d e f i n e d a r e a o f *
* menory and then chang ing i t . *
**/

/ * N U C L U S . E X T d e c l a r e s a l l s y s t e m c a l l s * /

$ lNCLUDE (/rmx2 8 6/ incINUCLUS . EXT)
DECIARE TOKEN LITEMLLY ' SELECTOR' ;
DECLARE desc$token TOKEN;
DECIAREabs$addr DWORD;
DECIARE s ize WORD;
DECI,ARE status WORD;
SAMPLEPROCEDURE :

PROCEDURE;
abs$addr - 200000H; / * The abso lu te address o f the

m e m o r y a r e a b e i n g g i v e n a n
a d d r e s s i s 2 M b y t e s . * /

s ize - 256 ' , / * Îhe s ize o f the b lock is
256 bYtes . * /

/**
* Tha r^Lo^ . ì - . ^ (È^1, -n i s re tu rned when the ca l l ing task invokes *
* the CREATE$ DES CRI PTOR sysrem ca l1 . *
**/

d e s c $ t o k e n - R Q E S C R E A T E $ D E S C R I P T O R (a b s $ a d d r , s i z e , G s t a r u s) ;

Typical PL/1"1-286 S ta tements

it refers
and user

tl4 Nucleus Svstern Calls

RQE$CHANGE$DESCRI PTOR

/**
* The descr ip tor is changed to access a nel r area of nemory whose *
* base address is speci f ied by abs$addr. *
** /

abs$addr - A00000H; , / * The absolute address of che memory
a r e a i s c h a n g e d t o l O M b y t e s . * /

s j ,ze - 05L2i / * îhe s ize of the requested descr ip tor
i s 5 1 2 b y t e s . * /

CALL RQE$ CHANGES DES CRI PTOR (desc$coken, abs$addr, s ize, @starus) ;

o T v n í c a l P l . / 4 -) R 6 S t a t e m e n t s

END SAMPLEPROCEDURE ;

Condition Codes

E$OK

E$EXIST

ENOTCONFIGURED

E$PARAM

E$TYPE

0000H No exceptional conditions.

000óH The dev:riptor parameter is not a token for an
existing object.

0008H This system call is not part of the present
configuration.

8004H The absolute address is larger than 16M byîes.

8002H The descriptor parameter is a token for an
object that is not an iRMX II descriptor.

Nucleus Svsfem Calls r15

The RQE$CREATE$DESCRIPTOR system call builds a descriptor for an 80286 memory
segment, places the descriptor in the 80286 Global Descriptor Table (GDT), and returns a
token for the descriotor.

CAUTION
This system call can set up a segment descriptor to refer to any area of
physical memory, even if other descriptors already refer to that memory.
Although you might want to have multiple descriptors refer to the same
area of memory for aliasing purposes, take care not to overlap memory
accidentally.

d e s c r í p r o r - R Q E $ C R E A T E $ D E S C R I P T o R (a b s $ a d d r , s i z e , e x c e p t $ p t r) ;

lnput Parameters
abs$addr A DwORD containing a full,24-bit physical address. This is the address

where you want the segment represented by this descriptor to start.

size A WORD indicating the size of the segment in bytes. If you supply a 0 for
this parameter, the segment size is set to 64K bytes.

Output Parameters
descriptor A TOKEN to which the Operating System will return a token for

the new descriplor.

except$ptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Description

Before the 80286 processor can access an area of memory (in protected mode), a
descriptor for the memory segment must exist in one of the descriptor tables (the Global
Descriptor Table or the Local Descriptor Table). For iRMX II objects fiobs, tasks,
segments, mailboxes, etc.), the Operating System automatically creates the necessary
descriptors when it creates the objects. The RQE$CREATE$DESCRIPTOR system call
gives you the additional capabi.lity of adding your own memory-segment descriptors to the
GDT.

l l 6 Nucleus System Calls

RQ E$CREATE$DESCRI PTOR

When you set up a descriptor, you can specify the base physical adtlress and size of the
memory segment. The segment can lie any'lvhere in available memory, even outside the
range managed by the Operating System. The memory can overlap that contained in
other segments, if desired. The Operating System automatically sets up the new segmenr
as a data segment with read/write access at privilege leveÌ 0.

This system call is intended for system programs that need to access areas of memory in
special ways. For example, an overlay loader could use this system call to set up a data
segment so that it could load a program into what would normally be a code segment.
Other system programs can use this system call to alias reserved segments, giving them
the abitìty to modify read-only segments or segments outside the range managed by the
Operating System (and thus not accessible via CREATE$SEGMENT). Device drivers
can use this system call to gain access to dual-port memory resident on controller boards.

A segment created with this system call can be deleted by calling either the
RQE$DELETE$DESCRf PTOR or DELETE$SEGMENT system call. However,
segments created with RQE$CREATE$DESCRIPTOR are marked as descr iptors, not
iRMX I I segments. Unl ike ordinary iRMX I I segments (set up with
CREATE$SEGMENT), the memory associated with these segmcnts does not return to
the iRMX II memory pool for reallocation when the segments are deleted.

This system caìl c:rn set up a segment descriptor to refer to any area clf memory.
Therefore, when used improperly, it can corrupt system and user data and allow
overwriting of program cocle. Use it with care.

Example

//**
* T h i s e x a m p l e i l l u s t r a t e s t h e u s e o f R Q E $ C R E A T E $ D E S C R I P T O R . *
** /

/ * NUCLUS. EXT declares a l l system cal ls * , /

$ INCLUDE (/rmx2 8 6/ inclNUcLUS . EXT)
D E C I A R E T O K E N L I T E M L L Y ' S E L E C T O R ' ;
DECIARE desc$token TOKEN:
DECI-AREabs$addr DI ,JORD;
DECIARE s ize !ìORD ;
DECI,ARE status WORD;
SAl'fPLEPROCEDURE:

PROCEDURE;
a b s $ a d d r : 2 0 0 0 0 0 H ; / * T h e a b s o l u c e b a s e a d d r e s s o f t h e

block of menory is 2M. bytes. x7
s i z e : 2 5 6 : . / * T h e s i z e o f t h e b l o c k i s 2 5 6

b v t e s . * /

Nucleus Svstem Calls rt7

ROE$CREATE$DESCRI PTOR

/x****x**
* The token desc$token is returned when the cal l ing task ínvokes *
* ChE RQE9 CREATE$ DES CRI PTOR SYSTEM CAII . *
************************rk*** /

desc$token : RQES CREATE$DES CRI PTOR (abs$addr, s ize, Gscatus) ;

. Typica l PL/ t l -286 Statements

END SAMPLEPROCEDURE ;

Condition Codes

E$OK 0000H No exceptional conditions.

E$LIMIT 0004H Creating the requested descriptor would exceed
the job's object limit.

E$MEM 0002H The memory available to the calling task's job is
insufficient to create the descriptor.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$PARAM lÌ004H The absolute address specified is larger than
l6M bytes.

E$SLOT 000CH There is no room in the GDT for the new
tJescriptor.

l l 8 Nucleus Svstem Calls

The RQE$DELETE$DESCRIFTOR system call removes a descriptor, originally defined
with RQE$CREATE$DESCRIFfOR, from the Global Descriptor Table (GDT).

C A L L R Q E $ D E L E T E $ D E S C R I P T O R (d e s c r i p c o r , e x c e p t $ p t r) ;

Input Parameter
descriptor A TOKEN for the descriptor to be deleted.

Description

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX Il Operating System

will return the condition code senerated bv this svstem call.

This system call removes an entry in the GDT that was originally established with the
RQE$CREATE$DESCRIPTOR system call. Once the descriptor is deleted, the GDT
slot is returned to the memory manager, which can rcassign it when another object is
created. However, the memory that was addressed by the descriptor is not returned to
the free space manîger for reassignment.

Example

/*x**
* T h i s e x a m p l e i l l u s t r a t e s c h e u s e o f R Q E $ D E L E T E $ D E S C R I P T O R . F i r s t *
* t h e e x a m p l e c r e a t e s a d e s c r i p t o r . T h e n , w h e n t h e d e s c r i p t o r Í s n o , r
* longer needed, RQ E$ DELETE$DESCRI PTOR is used to delete i t . *
)k*X************* , /

DECIARE TOKEN LITEMLLY ' SELECTOR' :

/ * N U C L U S . E X T d e c l a r e s a l I s y s t e m c a l I s * , /

$ INCLUDE (/ rmx2 86l inc lNUcLUS . EXT)

DECTARE desc$token TOKEN;
DECIARE abs$addr DWoRD;
DECI-ARE s ize WoRD|
DECI,ARE status WORD;

SAMPLEPROC EDURE :
PROCEDURE;

Nucleus System Calls l 1 9

RQE$DELETE$DESCRI PTOR

abs$addr - 2000000H; , / * The absolute address of the
undef ined menory area is 2M bytes. * /

s íze : 256; / * The s ize of the b lock is
2 5 6 b v t e s . * /

/**
* The token desc$token is returned when the cal - l - ing task invokes the *
* RQESCREATE$ DESCRI PTOR system cal l . *
** /

d e s c $ t o k e n - R Q E S C R E A T E $ D E S C R I P T O R (a b s $ a d d r , s i z e , G s t a t u s) ;

o T v o i c a l P L / 1 4 - ? 8 6 S L a t e m e n t s

/**
* Ia Ihen the descr ip tor is no longer needed, i t may be deleted by a *
* task that knows the descr iDtor token. *

**/

CALL RQE$DELETE$ DESCRI PTOR (desc$token, Gstatus) ;

o T v o i c a l P L / 1 4 - 2 8 6 S t a t e m e n L s

END SAMPLEPROCEDURE ;

Condition Codes

E$OK

E$EXIST

ENOTCONFIGURED

E$TYPE

0000H No exceptional conditions.

0006H Either the tiescriptor parameter is not a token
for an existing object, or it represents a
descriptor whose job is now being deleted.

0008H This system call is not part of the presenr
configuration.

8002H You are attempting to delete an object that isn't
a descriptor.

lztl Nucleus System Calls

The CATALOG$OBJECT system call places an entry for an object in an object directory.

CALL RQ$ CATALoG$oBJ ECT (job, object , name, except$ptr) ;

Input Parameters
job

object

A TOKEN that indicates where the object is to be cataloged.

o If SELECTOR$OF(NIL), it indicates that the object is to be
cataloged in the object directory of the job to which the calling
task belongs.

. If a valid selector, it specifies the TOKEN for the job in whose
object directory the object is to be cataloged.

A TOKEN for the object to be cataloged. A value of
SELECTOR$OF(NIL) for this parameter indicates that a null
token is being cataloged.

A POINTER to a STRING containing the name under which the
object is to be cataloged. The name must not be over 12 characters
long. Each character can be a byte consisting of any value from 0
to 0FFH.

A POINTER to a WORD to which the iRMX II Operating System
will return the condìtion code generated by this system call.

Output Parameter
except$ptr

Description

The CATALOG$OBJECT system call places an entry for an object in the object directory
of a specific job. The entry consists of both a name and a token for the object. There may
be several such entries for a sing.le object in a directory, because the object may have
several names. (However, in a given object directory, only one object may be cataloged
under a given name.) If another task is waiting, via the LOOKUP$OBJECT system calÌ,
for the object to be cataloged, that task is awakened when the entry is cataloged.

Nucleus System Calls l2l

Example

/ **)k****)k****
* This exampLe i l lust rates how the CATALOC9OBJECT system cal l *
* c a n b e u s e d t o p l a c e a n e n t r y i n a n o b j e c t d i r e c t o r y . *

** /

DECL-ARE TOKEN LITEMLLY ' SELECTOR' :
/ * N U C L U S . E X T d e c l a r e s a l l s y s t e m c a l l s * /

$ INCLUDE (/ rmx2 86l incINUCLUS . EXT)

CATALOG$OBJECT

DECIARE mbx$ token
DECLARE mbx$ f l ags
DECI-ARE j ob$ token
DECI,ARE s tatus

SAI4PLEPROCEDURE :
PROCEDURE;

m b x $ f l a g s : 8 ;

TOKEN ;
WORD ;
TOKEN ;
WORD ;

/ * des ignates four ob jec ts to be queued
o n t h e h í g h p e r f o r m a n c e o b j e c t
q u e u e : d e s i g n a t e s a f i r " s t - i n /
r l r s L - o u L L a s K q u e u e x /

j o b $ t o k e n : S E L E C T O R $ O F (N I L) ' , / x i n d i c a t e s o b j e c t s t o b e
cata loged in to the ob j ec t
d i rec to ry o f the ca l l ing
t a s k ' s j o b * /

. Typ ica l PL/11-286 S ta tement s

/ ***r t********
* T h e c a l l i n g t a s k c r e a t e s a n o b j e c t , i n t h i s e x a m p l e a m a i l b o x , *
* b e f o r e c a t a l o g i n g t h e o b j e c t ' s t o k e n . *
*-- , in"*** /

rnbx$token : RQ$ CREATE$MAI LBOX (rnbx$f lags ,

@s ta tus) ;

T y p i c a L P L / M - 2 8 6 S t a t e m e n t s

/ / * * * * * * * * * * * * * * * a L *

* A f t e r c r e a t i n g t h e m a i l b o x , t h e c a l l i n g t a s k c a t a l o g s t h e *
* m a i l b o x t o k e n i n t h e o b j e c t d i r e c t o r y o f i c s o w n j o b . *

** /

CALL RQS CATALOG$OBJ ECT (j o b $ t o k e n ,
mbx$ token ,
@ (3 , ' , M B X ') ,
Gs ta tus) ;

. T y p i c a l P L / M - 2 8 6 S t a t e m e n t s

END SMPLEPROCEDURE;

122 Nucleus System Calls

CATALOG$OBJECT

Condition Codes

E$OK 0000H No exceptional conditions.

EBADADDR 800FH The pointer to the name is invalid. Either the
selector does not refer to a valid segment, or the
offset is outside the segment boundaries.

E$CONTEXT 0005H At least one of the following is true:

. The name being cataloged is already in the
designated object directory.

. The directory's maximum allowable size is 0.

E$EXIST 0006H Either the job parameter, which is not
SELECTOR$OF(NIL), or the object parameter
is not a token for an existing object.

E$LIMIT 0004H The designated object directory is full.

ENOTCONFIGURED 0008H This system call is not part of the present
Operating System configuration.

E$PARAM 8004H The first BYTE of the STRING pointed to by
the name parameter contains a zero or a value
greater tha n 12.

E$TYPE 8002H Thejob parameter is a token for an object
which is not a job or is not
SELECTOR$OF(NrL).

Nucleùs System Calls r23

The RQE$CHANGE$OBJECT$ACCESS system call changes the access rights of iRMX
II segments or composite objects.

C A L L R Q E $ C l l A N G E 9 O B J E C T $ A C C E S S (o b j e c r , a c c e s s , r e s e r v e d , e x c e p t $ p r r) ;

Input Parameters
ot.rject A TOKEN for an object whose access rights are being changed.

This token must represent a segment or composite object.

access A BYTE specifying the new access rights for the object. The
fol lowing values are val id for iRMX l l objects:Data Segments Bi
nurv Value Hex Value

Read-only 10010000 90H
Read/wri te 10010010 92H

Code Segments Binary Value Hex Value

Exccute-only l00l1000 98H
Execute/read l00l l0 l0 9AH
Execute only

(conforming) 1001 I 100 9CH
Execute/read
(con fo rm ing) l 00 l I 110 gEH

Other values are not appropriate for iRMX Il applications.

reserved A BYTE reserved for future enhancements. Always set this byte to
0 .

Output Parameters
except$ptr A POINTER to a WORD to which rhe iRMX Il Operating System

will return the condition code generated by this system call.

Description

Associated with each [ì021.16 ciescriptor is an access field that specifies a variety of
infbrmation about the object described by the descriptor. The
RQE$CHANGE$OBJECT$ACCESS system calì lets you modif this field for descriptors
that represent segments and composite objects. Not all of the fields can be modified, but
the fields that describe the segment type and access rights can be changed.

121 Nucleus System Calls

RQE$CHANGE$OBJ ECT$ACCESS

The aocess byte has the following general format. Bits that must be set a certain way for
iRMX II applications are indìcated as such.

Access Byte for Code Segments

1 6 4 3 2 L 0

P DPL L 1 c R

P Present bit (l =yes). This bit must be 1 for iRMX II applications.

DPL Descriptor privilege level. These two bits must be 0 for iRMX II applications.

The next two bits must be set to 1 for code segments. Bit 4 indicates a segment descriptor.
Bit 3 indicates an executable segment.

C Con fo rm ingsegmen t (1=yes ,0=no) .

R Readable segment (1=yes, 0=no).

A This bit must be set to zero.

Access Bvte for Code Srlments

7 6 4 3 2 r 0

P DPL I 0 ED I,i

P Present bit (1=yes). This bit must be 1 for iRMX II applications.

DPL Descriptor privilege level. These two bits must be 0 for iRMX II applications.

Bits 4 and 3 must be set as shown lbr data segments. Bit 4 indicates a segment descriptor.
Bit 3 indicates a non-executable segment.

ED Expand down bit (1=expand down). This bit must be 0 for iRMX II applications.

W Wri teable segment (l =yes, 0=no).

A This bi t must be set to zero.

The description of the "access" input paramcter lists the binary and hexadecimal values
that are appropriate for iRMX II segments.

Nucleus System Calls 125

ROE$CHANGESOBJ ECTSACCESS

Example

/***
* This example i l lust rates the use of RQE$ CI iANCE$OBJ ECTSACCES S *

by creat ing a segnent and changing i ts access r ights *
**/

, / * N U C L U S . E X T d e c l a r e s a 1 l s y s c e m c a l l s * , /

$ I NCLUDE (/rrnx2 8 6/incINUCLUS . EXT)
DECI-ARE TOKEN LITERALLY ' SELECTOR' ;
DECI-ARE obj 9token TOKEN;
DECIARE seg$s ize t loRD;
DECI-ARE scatus IIORD;
DECI-ARE access BYTE;
DECIARE reserved BYTE;
SAMPLEPROCEDURE :

PROCEDURE:
s e g $ s i z e : 0 2 5 6 ; , / * T h e s i z e o f t h e r e q u e s t e d s e g m e n t

i s 2 5 6 b y t e s . * /

. Typica l PL/ l ' l ' - 286 Statements

/**
* The token obj$token is returned when the cal l ing task invokes *
* the CREAîE$SEGMENT systern ca l - l . *
**/

j o b $ t o k e n : R Q $ C R E A T E $ S E G M E N T (s e g $ s i z e , G s t a t u s) ;

. Typica l PL/ l ' f -286 Statenents

/**
* The access r ights are changed to nake a wr i teable data segment , *
* n r ò c ò n f i ^ - - - ^ ' , , a n d n o t a c C e S S e d . *! ! , r . i ! t i r v !

J I

**/

a c c e s s - 0 9 2 H ; , / * T h e b i t c o n f i g u r a t i o n f o r a w r i t e a b l e
data segrnent , p resent in memory and
n o t a c c e s s e d . * /

reserved : 0 ; / * Reserved parameters a re a lways se t
t o 0 . * /

C A L L R Q E 9 C H A N G E $ O B J E C T $ A C C E S S (o b j $ t o k e n , a c c e s s , r e s e r v e d , G s t a t u s) ;

. Typ ica l PL/14-286 S ta tenent s

END SAI"ÍPLEPROCEDURE;

126 Nucleus System Calls

RQE$CHANGE$OBJ ECT$ACCESS

Condition Codes

E$OK 0000H No exceptional conditions.

E$EXIST 0006H The object whose access is to be changed does
not exist or is not a valid iRMX II object.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$TYPE 8002H The obj$token parameter refers ro an object
that is neither a segment nor a composite
obiect.

Nucleus System Calls 127

The RQECETADDRESS system call returns the 24-bit physical address of a logical
nointer.

p h y s $ a d d r : R Q E $ G E T $ A D D R E S S { l o g $ a d d r , e x c e p t $ p t r) ;

Input Parameter
log$addr A POINTER containing the segmented address for which the

physical address is desired. The segmented address must be in the
form: selector:offset.

Output Parameters
phys$addr A DWORD in which the system call returns the 24-bit physical

address of the log$addr parameter.

except$ptr A POINTER to a WORD to which the Operating System will
return the condition code generated by this system call.

Description

In protected virtual address mode, the base portion of an address (a selector) does not
specifo the physical location of the address. Rather, it points to a descriptor table, where
that 24-bit physical address is found. This system call retrieves the 24-bit physical address
lbr the selector portion of a pointer, adds the offset part of the pointer to that value, and
returns the resulting physical address of the complete pointer.

Example

//**
* This example i l luscrares rhe use of RQE$GETgADDRESS by crear lng *
* a segment , conver t ing the segnent 's se lector to a pointer , and - , r
* re turn ing the physica l - address of the segnent . *
** /

DECI.ARE TOKEN LITEMLLY ' SELECTOR' :

/ * NUCLUS. EXT declares a l l system cal ls * /
$ INCLUDE (/rrnx2 8 6/ inc/NUCLUS . EXT)

128 Nucleus Svstem Calls

RQEGETADDRESS

DECI-ARE obj $ token
DECI"ARE seg$size
DECIARE s tatus
DECIARE I o g$ addr
DECIARE phys$addr

SA.I,IPLEPROCEDURE :
PROCEDURE;

s e g g s i z e : 2 5 6 ; / * îhe s ize o f the reques ted segment i s
2 5 6 b y x e s . x /

o T v p i c a l P L / ú - ? 8 6 S t a t e m e n t s

/ **>r>! 'k)k
* The token ob j$ token is re tu rned when the ca l l ing task invokes the *
* CREATE$SEGMENT sys tem ca l l . , t
* r t r /

o b j $ t o k e n - R Q $ C R E A T E $ S E G M E N T (s e g $ s i z e , @ s t a t u s) ;

/ ***)kr?*
* T h e s e g m e n t s e l e c t o r i s c o n v e r t e d t o a p o i n t e r .) k
*)k* * * * * * - r - r /

l o g $ a d d r : B U I L D $ P T R (o b j $ t o k e n , 0) ;

/ ***)k
* T h e p o i n l e r w i L h t h e l o g i c a ì a d d r e s s i s u s e d L o g e c t h e p h y s i c a l
* address . : !
x***********-**-' 'r-.t/

phys$addr : RQE$GET$ADDRESS (log$addr , Gsrarus) ;

. Typ ica l PL/ l '1 - 286 s ta tements

END SMPLEPROCEDURE;

TOKEN ;
WORD ;
WORD ;
POINTER;
DÌ,JORD ;

Nucleus System Calls 129

ROEGETADDRESS

Condition Codes

E$OK

EBADADDR

ENOTCONFIGURED

0000H No exceptional conditions.

800FH The segmented address is invalid. Either the
selector does not refer to a valid segnent, or the
offset is outside the segment boundaries.

0008H This system call is not part of the present
confisuration.

130 Nucleus System Calls

The RQEGETOBJECI$ACCESS system call returns the access tlpe of an object
whose token is specified.

C A L L R Q E $ c E T 9 o B J E C T $ A C C E S S (o b j e c t , a c c e s s $ p t r , e x c e p t $ p t r) ;

lnput Parameter
object A TOKEN for an object whose access rights you want to see.

Output Parameters
access$ptr A POINTER to a data structure with the following format:

STRUCTURE (
ACCESS BYTE
RESERVED BYTE);

When control returns from this system call, the fields of this
structure have the following values:

o ACCESS is a BYTE in which the system call returns the access
rights for the object. The following values are typical for iRMX
Il objecrs:

Data Segments Binarv Value Hex Vaìue

Read-only 10010000 90H
Read/write 10010010 92}{

Code Segments Binarv Value Hex Value

Execute-only 10011000 98H
Execute/read 100i 1010 9AH
Execute only
(conforming) 10011100 9CH

Execute/read
(conforming) l00l I I l0 gEH

o RESERVED is a reserved BYTE that must be set to 0.

except$ptr A POINTER to a WORD to which the Operating System will
return the condition code generated by this system call.

Nucleus System Calls 13l

ROE$G ET$OBJ ECT$ACCESS

Description

Associated with each 80286 descriptor is an access field that specilìes a variety of
information about the object described by the descriptor. The
RQEGETOBJECT$ACCESS system call lets you view this field for descriptors that
represent iRMX II objects. The RQE$CIIANGE$OBJECI$ACCESS system call can be
used to change some of this access information for segment and composite objects.

The access byte has the following general format. Bits that are normally set a certain way
for iRMX II applications are indicated as such.

Access Byte for Code Segments

1 6 4 3 2 1 0

P DPL 1 1 c R

P Present bi t (1=yes). This bi t is 1 for iRMX I I appl icat ions.

DPL Descriptor privilege level. These two bits are 0 for iRMX II applications.

The next two bits are set to 1 for code segments. Bit 4 indicates a segment
descriptor. Bit 3 indicates an executabÌe segment.

C Conforming segment (1=yes, 0=no).

R Readable segment (1=yes, 0 = no)

A This bit must be set to 0.

Access Byte for Code Segments

1 6 4 3 2 L 0

P DPL 1 0 ED ln A

P Present bi t (1=yes). This bi t is 1 for iRMX l I appl icat ions.

DPL Descriptor privilege level. These two bits are 0 for iRMX II applications.

Bits 4 and 3 are set as shown for data segments. Bit 4 indicates a segment
descriptor. Bit 3 indicates a non-executable segment.

ED Expand down hi t (1=expand down). This bi t is 0 for iRMX I I appl icat ions.

W Wri teable segment (l =yes, 0=no).

A This bit must be set to 0.

The description of the "access" input parameter lists the binary and hexadecimal values
that are appropriate for iRMX II objects.

132 Nucleus Svstem Calls

RQEGETOBJ ECT$ACCESS

Example

/ ** ' , l r l
* This example í l lust rates rhe use of RQEgGET$oBJ EcT$AccEs S by *
* c r e a t i n g a s e g m e n t a n d t h e n r e q u e s t i n g t h e o b j e c t ' s a c c e s s r i g h t s . * -
***-**/

/ * NUCLUS. EXT declares aI1 system cal l .s * /
$INcLUDE (/rnx2 8 6/ inc/NUCLUs . EXT)

DECIARE TOKEN LITERALLY ' SELECTOR' ;
DECIARE obj $token ToKEN;
DECLARE seg$size 1. t0RD;
DECI,ARE starus WORD;
DECIARE access$struc STRUCTURE (

ACCESS BYTE,
RESERVED BYTE);

SA-I'{PLEPROCEDURE :
PROCEDURE;

, / * T h e s i z e o f t h e r e q u e s L e d s e g r n e n L
i s 5 1 2 b y t e s . * /

. Typica l PL/M'- 286 Staternents

/**
* The token obj$token is returned when the cal l ing task invokes the *
* CREATE$SEGMENT system caI1.
***)k*/

obj $token - CREATE$SEGMENT (seg$size, Gstatus) ;

o T w n i c n l p l / 1 . 1 -) R 6 q i . l - è r è n r - <

/*X***:k***************** 'r
* T h e a c c e s s r i g h t s o f L h e s e g m e n l o b j e c t a r e r e q u e s t e d . T h e v a l u e
* returned should be 92H or 90H for a read/ , , t r i te object . *
***r t* /

C A L L R Q E $ G E T $ O B J E C T $ A C C E S S (o b j $ t o k e n , @ a c c e s s S s t r u c , G s t a t u s) ;

. Typ ica l PL/ l l ' - 286 Sta tenents

END SAMPLEPROCEDURE ;

Nucleus System Calls r33

RQEGETOBJ ECT$ACCESS

Condition Codes

E$OK 0000H No exceptional conditions.

EBADADDR 800FH The access$ptr pointer is invalid. Either the
selector does not refer to a valid segment, or the
offset is outside the segment boundaries.

E$EXIST 0006H The object whose access is requested does not
exist or is not a valid iRMX II object.

ENOTCONFICURED 0008H This.system call is not part of the present
conllguratlon.

134 Nucleus Svstem Calls

The GET$TYPE system call returns the encoded type of an object.

t y p e $ c o d e : R Q S G E T $ T Y P E (o b j e c t , e x c e p t $ p t r) ;

Input Parameter
object

Output Parameters
type$code A WORD which contains the encoded type of the specified object.

The types for iRMX II objects are encoded as lbllows:

Value Tvnc

I job
2 task
3 mailbox
4 semaphore
5 region
b segment
7 extension

l00H composi te (user)
101H composi te (connect ìon)
300H composi te (t /O job)
l0l H compositc (logical device)
8000H - (lFt--FFH user-created composites

User and connection composites are described in the Extended
iRMX II BrLsic I/O System U.ser's Guide. l/O jobs and logical device
composites are described in the Ertended |RMX II Extended I/O
Systent User's Guide.

except$ptr A POINTER to a WORD to which the Operat ing System wi l l
return the condition code generated by this system call.

A TOKEN for an object whose type is desired.

Description

The GET$TYPE system call returns the type code for an object. For a composite,
type$code conîains the composite extension type, not the encoded object t1pe.

Nucleus System Cal ls l-t5

GET$TYPE

Example

/**
* This exarnple i l lust rates how the GET$TYPE system cal l can be used *
* to return the encoded type of an object . r t
**/

DECI.ARE TOKEN L I T E M L L Y ' S E L E C T O R ' ;

/ * NUCLUS. EXT dec la res a1 l sys te rn

$ INCLUDE (/rmx2 8 6/ inclNUcLUS . EXT)

ca l l ing$ tasks $ j ob
wa i t$ fo reve r
^ h i - ^ r q r ^ 1 . - -

r e s p o n s e
s t a t u s

cal Is * , /

WORD ;
TOKEN ;
TOKEN ;
LITERALLY
TOKEN ;
TOKEN;
WORD ;

DECI-ARE
DECI-ARE
DEClARE
DECI"ARE
DECI-ARE
DECI.{RE
DECI^ARE

, N F F F F I] ' .

SA]"lPLEPROC EDURE :
PROCEDURE;

o T v o i c a l P L / 1 4 - ? 8 6 S L a t e m e n L s

/-Ì***
* In o rder to invoke the GET$TYPE sys tem ca l l , the ca l l ing task must *
* h a v e t h e t o k e n f o r a n o b j e c t . I n t h i s e x a m p l e . t h e c a l l i n g t a s k *
* invokes the LOOKUP$OBJECT sys tem ca l l and rhen the RECEM$MESSAGE *
* s y s t e m c a l l t o r e c e i v e L h e t o k e n f o r a n o b j e c t o f u n k n o w n t y p e *
* (o b j e c t $ t o k e n) . *
**/

c a 1 l i n g $ t a s k s $ j o b : S E L E C T O R $ O F (N I L) ;

mbx$token: RQ$ LOOKUP$OBJ ECT (cal l ing$ tasks $j ob ,
G (3 , ' , M B x ' ,) ,
. . ^ i l C C ^ - ^ , . ^ -w d a L v r v ! s w r r ,

Gs tatus) ;

Typ ica l PL/ t4 -286 S ta tement s

/**
* The RECEIVESMESSACE sys ten ca l l re tu rns ob jec t$ token to the ca l l ing *

"
task a f te r the ca l l ing task invoked LOOKUP$OBJECT to rece ive the *

* token fo r the mai lbox named 'MBX' . 'MBX' had been des ignated *
* as the rna i lbox another task wou ld use to send an ob jec t . *
* *x /

l l 6 Nucleus Svstem Calls

GET$TYPE

obj ect$token : RQ$RECEIVE$MES SAcE (rnbx$token,
w a i t $ f o r e v e r ,
@ r e s p o n s e ,
Gs ta tus) ;

. T y P i c a l P L / F t - ? 8 6 S t a L e m e n t s

/***x******************r '<-k
* Us ing the type code re tu rned by the GET$TYPE sys tem ca l l , the *
* c a l l i n g L a s k c a n f í n d o u t i f t h e o b j e c t i s a j o b , t a s k , *
* r n a i l b o x , r e g i o n , s e g m e n t , s e m a p h o r e , e x t e n s i o n , o r c o m p o s i t e . *
)k***********r t**_. Ì_. t* /

type$code : RQ$GET$TYPE (ob j ec t $ token ,
Gsta tus) ;

. Typ ica l PL/M S ta tenents

END SAMPLEPROCEDURE ;

Condition Codes

E$OK 0000H No exceptional conditions.

E$EXIST 0006H The object parameter is not a token fbr an
existing object.

ENOTCONFIG U RED 0008H This system call is not part of the present
configuration.

Nucleus System Calls rJ7

' l 'he LOOKUP$OBJECT svstem call returns a token for a catalosed obiect.

o b j e c t : R Q $ L O O K U P $ O B J E C T (j o b , n a m e $ p t r , t i m e $ 1 í m i t , e x c e p t $ p t r) ;

Input Parameters
jub A TOKEN indicating the object directory to be searched.

. If a valid selector, the TOKEN must contain a token for the job
whose ohject directory is to be searched.

o If SELECTOR$OF(NIL), the object directory to be searched rs
thi ì t of the cal l ing task's job.

nanre$ptr A POINTER to a STRING which contains the name under which
the object is catakrged. During the lookup operat ion, upper antJ
Iower case let ters: l re t reated as being di f ferent.

t ime$l imit A WORD indicat ing thc task's wi l l ingness lo wair .

. I f zero, the WORD indicates that the cal l ing task is not wi l l ing
to wa l t .

o l f [)FFFFH, the WORD indicates that the task wi l l wai t as long
;rs is nce css;r ry.

r I l between 0 and 0FFFFH, the WORD indicates the number of
clock intervals that the task is wi l l ing to wait . The length of a
clock interval is a configuration option. Refer to the Extended
rRMX II Interactive Conftguratiut Utiliryt Reference Manual f or
lurthcr informat ion.

Output Parameters
olrject A TOKE,N containing rhe requested object roken.

exccpt$ptr A POINTER to a WORD to which the iRMX l l Operat ing System
wi l l re turn the condi t ion code generated by th is system cal l .

Description

The LOOKUP$OBJECT system call returns the token lbr an object after searching for its
name in the specìfied object directory. Because it is possible that the object is not
cataloged at the t ime of the cal l , the cal l ing task has rhe opr ion of wair ing, ei ther
indefinitely or for a specific period of time, for another task to catalog the object.

r38 Nucleus Svstem Calls

LOOKUP$OBJECT

Example

/ *** ') . : . rk
* T h i s e x a r n p 1 e i l 1 u s t r a t e s h o w t h e L o o K U P $ 0 B J E c T s y s t e m c a 1 1 c a n b e
* used to return a token for a cata loged object .
*** ; l -) ; : ; ;

DECI-ARE TOKEN LITEMLLY ' SELECTOR' :

/x NUCLUS.EXT declares a l l systern ca l Is * , /

$ INCLUDE (,zrrnx2 8 6 / incINUCLUS . EXT)
DECIARE mbx$token ToKEN;
DECIARE cal l ing$tasks$job TOKEN;
DECIARE wai t$forever LITEMLLY ' OFFFFH' ;
DECIARE status WORD:

SAMPLEPROCEDURE :
PROCEDURE;

. Typica l PL/ l ' l -286 s ra remenrs

/ *> ' r - l r *
* I n t h i s e x a m p l e , t h e c a l l i n g t a s k i n v o k e s L o o K U P $ o B J E C T i n o r d e r t o ' !
* < p r r e h r h a ^ h i o . F d i r ^ ^ ' ^ . . , ^ a . l - ^ ^ - l l i - , , r ^ ^ 1 , , ^ i ^ k F ^ - - ^ ^ 1 . i

B L d s K s J u u r u r d " u u J r L (^

* wi th the name ' MBX ' . ').

******************************r t***************************************) ' r r l /

caì - l ing$ tasksSjob : SELECTOR$OF(NIL) ;
r n b x $ t o k e n : R Q $ L O O K U P $ O B J E C T (c a l l i n g g t a s k s $ j o b .

@ (3 ,
' M B X ') ,

w a i t $ f o r e v e r ,

@ s t a t u s) ,

. Typ ica I PL /11-286 Sta tements

END SA},fPLEPROCEDURE;

Condition Codes

E$OK 0000H No excentional conditions.

EBADADDR tì00FH The pointer to the name string is invalid. Either
the selector does not refer to a valid segment, or
the offset is outside the segment boundaries.

E$CONTE,XT 0005H The specified job has an object directory of sizc

Nucleus Svstem Calls 139

LOOKUP$OBJECT

E$EXIST 0006H At least one of the following is true:

. The job parameter (which is not
SELECTOR$OF(NIL)) is not a token for an
existing object.

. The name was found, but the cataloged object
has a null (NlL) token.

E$LIMIT 0004H The specified object directory is full and the
object being looked up has not yet been
cataloged. This code (rather than E$TIME) is
returned when a full object directory does not
contain the requested object and the calling task
is not willing to wait.

ENOTCONFIGURED 000lJH This svstem call is not part of the present
configu rat ion.

E$PARAM tì004H The f i rst byte of the str ing pointed to by the
name parameter contains a value greater than
l2 or equal to 0.

E$TIME 0001H One of the fol lowing is t rue:

o The calling task indicated its willingness to wait
a certain amount of t ime, but the wait ing per iod
elapsed before the object became available.

. The task was not willing to wait, the entry
indicated hy the name parameter is not in the
specified object directory, and the object
dircctory is not lu l l .

E$TYPE 8002H The job parameter contains a token for an
object that is not a job.

t40 Nucleus System Calls

The UNCATALOG$OBJECT system call removes an entry for an object from an object
directory.

CALL RQ$UNCATALOG$OBJ ECT (job, narne, exceprgprr) j

Input Parameters
job A TOKEN indicating the job of the object directory from which an

entry is to be deleted.

. ìf a valid selector, the TOKEN contains a token for the jotr
fiom whose object directory the specified entry is to be deleted.

. If SELECTOR$OF(NIL), the enrry is to be deleted from the
object directory of the calling task's job.

name A POINTER to a STRING containing rhe name of the object
whose entry is to be deleted.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will rcturn the conclition code generated by this system cal.l.

Description
' l-he

UNCATALOG$OBJECT system call deleres an enrry from the object directory of
the specified job.

Example

/ ******x***>!) t
* Th is example i l l us t ra tes how the UNCATALOG$OBJ ECT sys tem ca l l can > t
* b e u s e d .) <
** , , r* /

DECI-ARE TOKEN LITERALLY'SELECTOR';

/ * N U C L U S . E X T d e c l a r e s a l ì s y s t e m c a I I s * , /
I INCLUDE (/ rnx2 86l incINUCLUS . EXT)

Nucleus System Calls 14 l

UNCATALOG$OBJECT

DECIÀRE seg$token TOKEN;
DECIARE s ize WORD;
DECI^ARErnbx$token TOKEN;
DECI"AREnbx$f lags i tORD;
DECI-ARE no$response L ITEMLLY '0 '

;
DECIéRE status l. lORD;
DECIARE j ob$token TOKEN;

SAMPLEPROCEDURE :
PROCEDURE;

s ize : 64 ; , / * des ignates new segnen i to conta in
64 by tes * /

mbx$f lags : 0 ; , / * des ignates four ob jeccs to be
queued on the h igh per fo r rnance
o b j e c t q u e u e ; d e s i g n a t e s a /
f i r s t - í n f i r s t - o u t L a s k q u e u e * /

j o b $ t o k e n : S E L E C T O R $ O F (N I L) ; , / * i n d i c a t e s o b j e c t s t o b e c a c a l o g e d
i n L o t h e o b j e c r d i r e c c o r y o . f t h e
c a l l i n g t a s k ' s j o b * /

. Typ i ca l - PL/ l l -286 Sta tements

/***x
* The ca l l ing task c rea tes a segnenc and a mai lbox and ca ta logs the *
* rna i lbox TOKEN. The ca l l ing task then uses the TOKENs fo r bo th *
* n h i p e t < l - ^ < è h . l *- . . . - s s a g e .
+***:k***)k***************/

seg$token : RQ$CREATE$ S EGMENT (s i .ze,

Gs tatus) ;
mbx$token : RQ$CREATE$MAI LBOX (mbx$f lags,

Gs tatus) ;

/**
f ^ r . h ^ ^ . l l i - ^ È . ^ 1 , - ^ ^ - r . ì ^ - - Ì . ' ^ - . i l t - . ^ , *r I 1 6 L d s K (o u d L a r (J t s

* t o k e n i n o r d e r t o s e n d a m e s s a g e . I t i s n e c e s s a r y , h o w e v e r , t o *
* c a t a l o p t h e r r a i l h o x t o k e n i f a t a s k i n a n o l h F r i o h í s t n r p c e í w c *
* t h e m e s s a g e . *
**/

CALL RQ$CATALOC$ OBJ ECT (j ob$ token ,
mbx$ token ,
@ (3 , ' M B X '

) ,

o T v o i c a l P L / M - 2 8 6 S L a t e m e n t s

112 Nucleus System Calls

UNCATALOG$OBJECT

/ *** ìk
* The ca Ì l ing task invokes the SENDSMESSAGE sys tem ca l l to send the *
* token fo r the segment to the spec i f ied mai lbox . * -
* ì L n L , ? /

CALL RQSSEND$MESSAGE (rnbxg token,
s e g $ r o k e n ,
n o $ r e s p o n s e ,
@s tatus) ;

a

. T y p i c a I P L / 1 1 - 2 8 6 S t a t e m e n L s

/ *** , !>! , t
* l lhen the mai lbox is no longer needed and there is no need to keep *
* i t s t o k e n c a t a l o g e d , i t m a y b e d e l e t e d b y a n y r a s k r h a t k n o w s i r s *
* t o k e n . *
*** , ' i , r , ! /

CALL RQ$UNCATALOG SOBJ ECT (jobgtoken,

G (3 , , M B X ') ,
G s t a t u s) ;

CALL RQ$ DELET E$MAI LBOX (mbxgroken,
@ s t a t u s) ;

. T y p L c a l P L / H - 2 8 6 S c a c e m e n c s

END SMPLEPROCEDURE;

Condition Codes

E$OK 000011 No exceptional conditions.

EBADADDR 800FH The pointer ro rhe srring is invalid. Either rhe
selector doesn't refer to a valid segment, or the
offset is outside the segment boundaries.

E$CONTEXT 0005H The specified object directory does not conrain
an entry with the designated name.

E$EXIST 0006H The job parameter is neither zero nor a token
for an existing object.

ENOTCONFICURED 000tlH This system call is not part of rhe presenr
configuration.

Nucleus System Calls l,.l3

UNCATALOG$OBJECT

E$PARAM 8004H The first byte of the STRING pointed to by the
name parameter contains a value greater than
12 or equal to 0.

E$TYPE 8002H The job.parameter is a token for an object that
$ no t a tob .

114 Nucleus Svstern Calls

The GET$EXCEPT$HANDLER system call returns information about the calling task's
exceDtion handler.

CALL RQCETEXCEPTION$HANDLER (except ion$infogptr , exceprgprr) ;

Output Parameters
exception$info$ptr A POINTER to a structure of the following form:

STRUCTURE (
EXCEPTION$HANDLER$ PTR POlNTER,
EXCEPTION$MODE BYTE):

where, after the call,

. EXCEPTION$HANDLER$POINTER poinrs to the first
instruction of the exception handler. If this pointer is NIL, the
calling task's exception handler is the system default exception
handler.

. EXCEPTION$MODE contains an encoded indication of the
calling task's current exception mode. The value is interpreted
as follows:

When to Pass Control
Value to Exception Handler

u Never
I On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

except$ptr A POINTER to a WORD to which the Operating System will
return the condition code generated by this system call.

Description

The GET$EXCEPTION$HANDLER system call rerurns both the address of the calling
task's exception handler and the current value of the task's exception mode.

Nucleus Svstem Calls 145

G ETSEXCEPTIO N$HAN DLER

Example

/ *** :k**************
* Th is example i l l us t ra tes how the GET$ EXCEPTIONSHANDLER sys tem ca l l *
* can be used to re tu rn in fo rmat ion about the ca1 l lns task 's *

* é Y . a n r i n n h : n r l l e r *

** /

DECIARE TOKEN LITERALLY ' SELECTOR' ;

/ * N U C L U S . E X T d e c l a r e s a l ì s y s t e m c a l I s * , /

I INCLUDE (/ rmx286l inc lNUCLUS . EXT)

DECI-ARE x$hand ler STRUCTURE (x$hand ler$po in te r POINTER,
x$rnode BYTE) ;

DECI-ARE status WORD;

SA]'{PLEPROC EDURE :
PROCEDURE i

. Typ ica l PL/ l l -286 S ta tements

/**
* T h e a d d r e s s o f t h e c a l l i n g t a s k ' s e x c e p t i o n h a n d l e r a n d t h e v a l u e *
. " o f t h e t a s k ' s e x c e p t i o n m o d e (w h i c h s p e c i f i e s w h e n t o p a s s c o n t r o l *
* i ò r h a p y e e n r i n n h : n r ì l e r ' l . r a h ó r h r è f ' r r n é . 1 , , ! - - - r L - ^ ^ ^ l l i - - È ^ - l ' *L d a r ! ' i É L d s N

* invokes the GET$ EXCEPTION$HANDLER sys tem ca1 l . *
-k-k** / /

CALL RQGET EXC E PT ION$HANDLER (@x$hand ler , Gs ta tus) ;

. Typ ica l PL/ l l - 286 Sta tements

END SA.I"IPLEPROCEDURE ;

Condition Codes

E$OK 0000H No exceptional conditions.

E$ BAD$ADDR iì00FH The oointer is invalid. Either the selector does
not refer to a valid segment, or the offset is
outside the segment boundaries.

E,NOTCONFIGURED 0008H This.system call is not part of the present
conl lguratron.

r16 Nucleus System Calls

The SET$EXCEPTION$HANDLER system call assigns an exception handler to the
callins task.

CALL RQS S ET $ EXCEPT lON$I IANDLER (excepr ionginfogptr , exceprgprr) ;

lnput Parameter
exception$info$ptr A POINTER to a srructure of the following form:

STRUCTURE (
EXCEPTI ON$HANDLER9 PTR POINTER,
EXCEPTION$MODE BYTE);

except$ptr A POTNTER t0 a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

where:

o exception$handler$ptr points to the first instruction of the
exception handler.

. exception$mode contains an encoded indication of the calling
task's intended exception mode. The value is interpreted as
follows:

When to Pass Control
Value to Excent ion Handler

0 Never
I On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

If EXCEPTION$HANDLER$P'f R equals NlL, the exception
handler of the cal l ing task's parent job is assigned.

Output Parameter

Nucleus Svstem Calls 147

SETSEXCEPTIONSHAN DLER

Description

The SET$EXCEPTION$HANDLER system call enables a task to set its exception
handler and exception mode attributes. Ifyou want to designate the Debugger as the
exception handler to interactively examine system objects and lists, the following code sets
up the needed structure in PL/M-286:

DECIARE excepr$pt r STRUCTURE (pr r POINTER,
m o d e B Y T E) ; / * e s t a b l i s h a

s t ruc ture fo r
e x c e p t i o n h a n d l e r s * , /

DECIARE exception WORD ;

except$p t r .p t r : @my_excep_hand le r / * " @rny_exc ep_hand l e f i s your own
p r o c e d u r e , h e r e i t d e s i g n a t e s r h H
debugger as the except i -on hand ler '? ;

x .mode : ZERO$ONE $TLIO$OR$THREE ; , / * the mode is a va lue 0- l * /

CALL RQ$ S ET$ EXC EPTION$HANDLER (Gx, @except ion) ;

Example

/ * x L * *

* Th is example i l l us t ra tes how the S ET$ EXCEPTION$HANDLER sys tem ca l l *
* can be used to ass ign an except ion hand ler to the ca l l ing task .) t

* * * * * * * * * * * * * * * * * *) t> ! ' ! ' t) t> t> f * /

DECIARE TOKEN LITEMLLY 'SELECTOR' ;

/ x N U C L U S . E X T d e c ì a r e s a l I . s y s L e m c a I l s * , /

$ INCLUDE (/rmx2 8 6/ inclNUcLUs . EXT)

EXCEPTIONTIANDLER: PROCEDURE EXTERNAL;
END EXCEPTIONTIANDLER;
DECIARE X$}IANDLER$ STRUCTURE LITERALLY 'STRUCTURE(

PtT POINTER,
m o d e B Y T E) ' ;

, / * es tab l i shes a s t ruc tu re fo r
except ion hand lers * , /

DECIARE X$hANdIET X$HANDLER$ STRUCTURE ;
/ * u s i n g t h e e x c e p L i o n h a n d l e r

s L r u c t u r e , t h e p o i n c e r t o L h e
o l d e x c e p t i o n h a n d l e r i s
de f ined * /

DECLARE newxhandler X$IIANDLER$ STRUCTURE ;
/ * u s i n g t h e e x c e p t i o n h a n d l e r

s t r u c t u r e , t h e n e w e x c e p t i o n
hand ler i s de f ined * /

l{tt Nucleus Svstem Calls

SET$EXC EPTION$HAN DLER

DECI-ARE al l$excepcions LITERALLY ,3, ;
, / * c o n t r o l i s p a s s e d t o t h e e x c e p t i o n

h a n d l e r o n a l l e x c e p t í o n a l
condi t ions * , /

DECIARE PTR$OVERIAY LITEMLLY ,STRUCTURE(of fser WORD,
b a s e T O K E N) ' ;

, / * establ ishes a s t ructure for
over lays * /

DECIARE seg$pointer POINTER;
DECI-ARE s e g$po in terg ov ly PTR$OVERIAY AT (@seggpointer) ;

/ * us ing the over lay s t ructure, the
f i r s t i n s t r u c t i o n o f t h e
except ion handler is ident i f ied ' t /

DECIARE status WORD;

SAMPLEPROCEDURE:
PROCEDURE;

seg$pointer : GEXC EPTIoNHANDLER; / * po inrer ro excepr ion handler * , /
n e w $ x $ h a n d l e r . o f f s e t : s e g $ p o l n c e r $ o v t y . o f f s e t ;

/ * o f f s e t o f t h e f i r s t i n s t r u c t i o n
o I L h e e x c e n t i o n h a n r t l c r * /

n e w $ x $ h a n d I e r . b a s e : s e g $ p o i n t e r $ o v I y . b a s e ;
, / * b a s e a d d r e s s o f c h e e x c e p L i o n

hand ler CPU s e g rnent conta in lng
t h e f i r s t i n s t r u c t i o n o f t h e
except ion hand ler * /

newxhand ler . rnode - a l l$except ions ; / * pass cont ro l on a l1 cond i t ions ' k /

. Typica l PL/ l ' l -286 S tatements

/***-***
* The address of the cal l ing task 's excepcion handler and the value *
* o f t h e t a s k ' s e x c e p t i o n r n o d e (w h e n t o p a s s c o n t r o l t o t h e e x c e p t i o n r t
* h rnd la r \ ' iÀ l , ^ rh - ^ t u rned when the ca l l i ns t ask i nvokes t he - r

* GET$ EXCEPT I ON$HANDLER syscem cal l .
*****x*** :L** /

CALLRQGETEXCEPTION$HANDLER (Gx$handler ,

Gs tatus) ;

. Typica l PL/14- 286 Scatements

Nucleus Systern Calls r49

SET$EXCEPTION$HAN DLER

/**
' k T h e c a l l i n g t a s k m a y i n v o k e t h e S E T $ E X C E P T I O N $ H A N D L E R s y s t e m c a l l *
* to f i rs t se t a new except ion hand ler and then to la te r rese t the *
* o ld except ion hand ler .) t

** /

CALL RQ$ S ET$ EXC EPT ION$HANDLER (@new$x$hand1er ,

@ s t a t u s) ;

. Typica l PL/ t1-286 S tatements

/**
* N o l o n g e r n e e d i n g t h e n e w e x c e p t i o n h a n d l e r , t h e c a l l i n g t a s k u s e s *
* the address and node o f the o ld except ion hand ler to re tu rn *
* e x c e p t i o n h a n d l i n g t o i t s o r i g i n a l e x c e p t i o n h a n d l e r . *

** /

CALL RQ$S ETS EXCEPT ION$HANDLER (G x $ h a n d l e r ,
t s r L d L u 5 / I

T y p i c a 1 P L / 1 1 - ? 8 6 S L a r e m e n L s

END SMPLEPROCEDURE;

Condition Codes

E$OK

EBADADDR

ENOTCONFIGURED

E$PARAM

0000H No exceptional conditions.

800FH The exception$infb$ptr is invalid. Either the
selector does not refer to a valid segment, or the
offset is outside the segment boundaries.

0008H This system call is not part of the present
configuration.

fì001H The exception$mode parameter is greater than
3 .

150 Nucleus Svstem Calls

The DISABLE system call disables an interrupr level.

CALL RQ$DISABLE (leve1, exceprgprr) ;

Input Parameter
level A WORD that specifies an interrupt level encoded as follows (bit

15 is the high-order bi t) :

Bi ts Value

l5-7 Reserved bits that should be set to zero

6-4 First digit of the interrupt level (0-7)

3 If one, the level is a master level and bits 6-4 specify the
entire level number

If zero, the level is a slave level and bits 2-0 specify the
second digit

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero

Output Parameter
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code gcnerated hy this system call. All
exceptional conditions must be processed in-line. Control does not
pass to an exception handler.

Description

The DISABLE system call disables the specified inrerrupr level. It has no effect on orher
levels. To be disabled, a level must have an interrupt handler assigned to it. Otherwise,
the Nucleus returns an E$CONTEXT Exception code.

You must not disable the level reserved for the system clock. You determine this level
during system confìguration (refer to the Ertended |RMX II Interactive Confrguration Utilit),
Reference Manual).

Nucleus Svstern Calls l 5 l

DISABLE

Example

/**
* This example i l lust rates how the DISABLE systern ca l l can be *
* used to d isable an in terrupt Level . +

) t*********************** /

DECIARE TOKEN LITERALLY ' SELECTOR' ;

/ * N U C L U S . E X T d e c l a r e s a 1 l s y s t e m c a l l s * /

$ INCLUDE (/rmx2 8 6/ incINUCLUS . EXT)

INTERRUPTHANDLER: PROCEDURE INTERRUPT EXTERNAL;
END INTERRUPTITANDLER;

D E C I - A R E i n t e r r u p t $ 1 e v e 1 $ 7 L I T E M L L Y ' 7 8 H ' ;

/ * s p e c i f i e s m a s t e r i n t e r r u p c l . e v e l 1 * /
D E C I A R E i n t - e r r u p t $ t a s k $ [l a g B Y T E i
DECI-ARE inte rrup t$handl e r POINTER;
DECI-ARE data$segment TOKEN;
DECIARE stacus I.IORD;
DECI-ARE j ob$token TOKEN;

SAMPLEPROC EDURE :
PROCEDURE;

i n L e r r u p t $ L a s k $ f I a g 0 : / * i n d i c a t e s n o i n L e r r u p L L a s k o n l e v e l
1 * /

da ta$segnent : S ELECToR$oF (NIL) ; , / * ind ica tes tha t in te r rup t
h a n d l e r w i l l l o a d i t s o m
data s e grnent */

. Typica l PL/ \ I -286 Staternents

//****x***
* A n i n f e r r u p t J e v e l m u s t h a v e a n i n t e r r u p t h a n d l e r o r a n i n t e r r u p t *
-* task ass igned to i r . Invoking the SET$INTERRUPT systen cal l , the *
* ca l l ing task ass igns INTERRUPTHANDLER to in terrupt level 7 . *
**/

CALL RQSET INTERRUPT (in te r rup t$ leve I$7 ,
i n t e r r u p t $ t a s k $ f l a g ,

@INTERRUPTHANDLER ,
d a t a $ s e g m e n t ,

@ s t a t u s) ;

r52 Nucleus System Calls

DISABLE

. T y p i c a l P L / 1 4 - 2 8 6 S t a t e m e n t s

/ / **>t
* The SET$INTERRUPT sys tem ca l l enab led in te r rup t leve l 7 . ln o rder > !
* to d isab le leve l 7 , rhe ca l l ing task invokes the DISABLE sys tem r !
* c a 1 l .) k
*************)k***- l * - ' t /

CALL RQ$DISABLE (in terrupcglevelgT ,
Gs tatus) ;

END SAMPLEPROCEDURE ;

Condition Codes

E$OK 0000H No exceprional conditions.

E$CONTEXT 0005H The level indicated by the level parameter is
already disabled or has no interrupt handler
assigned to it.

ENOTCONFIGURED 0008H This system call is not part of rhe present
confìguration.

E$PARAM 8004H The level parameter is invalid.

Nucleus Svstem Calls r53

The ENABLE system call enables an interrupt level.

CALL RQSENABLE (1eve1, except$ptr) ;

Input Parameter
leve I A WORD that specifies an interrupt level that is encoded as

follows (bit l-5 is the high-order bit):

Bi ts Value

l5-7 Reserved bits that should be set to zero.

6-4 First digit of the ìnterrupt level (0-7)

3 If one, the level is a master level and bits 6-4 specif the
ent i re lcvel numhcr

lf zero, the level is a slave level and bits 2-0 specify the
second digit

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero

Output Parameter
except$ptr A POf NTER to a WORD to which the Operating System will

return the condition code generated by this system call.

Description
-l'he

ENABLE system call enables the specified intcrrupt level. The level must have an
intcrrupt handler assignecl to i t . A task must not enable the level associated with the
system clock.

Example

/ **)k***
* T h i s e x a m p l e i l l u s t r a t e s h o w t h e E N A B L E s y s t e m c a l l c a n b e u s e d c o *
* p n . î h l é , n i n t - é r r l D t l e v e l . *

*-***/

| 5,1 Nucleus Svstem Calls

DECIARE TOKEN LITERALLY ' SELECTOR' ;

/ * NUCLUS.EXT declares a l l system cal ls * /

$ INCLUDE (,zrnx2 8 6/ inc/NUCLUS . EXT)

INTERRUPTHANDLER : PROCEDURE INTERRUPT EXTERNAL ;
END INTERRUPTHANDLER;

ENABLE

i h r - ó r r f , n f l a v a 1 l * /

DECt-ARE i n terruptSl evel S 7

DECI^ARE inte rrup t $ task$ fl ag
DECIÀRD inte rrup t$handler
DECIARE data$segment
DECIARE s tatus

SAMPLEPROCEDURE :
PROCEDURE;

i n t e r r u p t $ r a s k S f l . r g - 0 ;

LITEMLLY ' 78H' ;
, / * speci f ies rnas te r
BYTE ;
POINTER;
TOKEN ;
WORD ;

/ x i ^ à i î a t F s n o i n r p r r r n t t a s k o n l e v e l

I x /

data$segment : SELECTOR$OF(NlL) ; / * ind ica tes tha t in te r rupc hand ler
w i l l load i t s own data sesment * /

. Typ ica l PL/11 ' - 286 Sta ternents

,/************************************** **********************************
* A n i n c e r r u p t l e v e l m u s L h a v e a n í n l e r r u p L h a n d l e r o r a n i n L e r r u p L i
* t a s k a s s i g n e d t o í t . I n v o k i n g r h e S E T $ I N T E R - R U P T s y s t e m c a l l , t h e
* ca l l ing cask ass igns I NTERRUPTHANDLER Lo in le r rup t leve l 7 . ' t
***-*/

CALL RQg S ETgINTERRUPT
i n t e r r u p t $ t a s k $ f l a g ,
GINTERÌUPT}TANDLER ,
r - È ^ C - ^ ^ - ^ - ru d L d v r s ó x ' s r r L '

@s tatus) ;

Typ ica l PL/11- 286 S ta tement s

/**+*********************
* The SET$INTERRUPT sys tem ca l l enab led in te r rup t leve l 7 . In o rder d -
* to i l l us t ra te the use o f the ENABLE sys tern ca l l , in te r ruPt leve l 7 * -

* must f i r s t be d isab led . The ca l l ing task ínvokes the DISABLE) t

* sys tem ca l l to d isab l -e in te r rup t leve1 7
**-/r 'r /

Nucleus System Calls 155

ENABLE

CALL RQgDI SABLE (i n t e r r u p t $ 1 e v e 1 9 7 ,

@s tatus) ;

/**
* When an in terrupt level needs to be enabled, a task must invoke che *
* E N A B L E s y s t e m c a l 1 . *
**/

CALL RQ$ENABLE

. TyPica l PL/ t l -286 S ta tement s

END SA.I,f PLEPROCEDURE ;

Condition Codes

E$OK 0000H No except ional condit ions.

E$CONTEXT 0005H At least one of the following is true:

. A non-interrupt task tried to enable a level that
was already enabled.

. There is not an interrupt handler assigned to
the specified Ìevel.

e There has been an interrupt overflow on the
specified level.

ENOTCONFIGURED 0008H This system call is not parr of the presenr
configuration.

E$PARAM 80041J The level parameter is invalid.

(i n t e r r u p t $ 1 e v e l $ 7 ,
Gs tatus) ;

r56 Nucleus System Calls

The END$INIT$TASK system call is used by an initialization task of a firstlevel job to
inform the root task that it has comDleted its svnchronous initialization orocess.

CALL RQ$ END$ INIT$TASK:

Description

When the initialization task finishes its synchronous initialization, it must inform the root
task that it is finished, so that the root task can resume execution and create another first-
level job. When you call END$INIT$TASK, the root task resumes execution, allowing it
to create the next first-Ìeveljob. You must include this system call in the initialization
task of each first-level job, even if the jobs require no synchronous initialization. Refer to
the Extended iRMX II Interactive Conftguration IJtility Reference Manual for more
information on firstJeveljobs and the initialization process.

Nucleus Svstem Calls r57

The ENTER$INTERRUPT system call is used by interrupt handlers to load a previously-
soecified sesment base address into the DS reeister.

CALL RQ$ ENTER$ INTERRUPT (l eve 1 , except$ptr) ;

Input Parameter
level A WORD specifying an interrupt level that is encoded as foÌlows

(bit l5 is the high-order bit):

Bi ts Value

l5-7 Reserved bits that should be set to zero.

6-4 First digit of the interrupt level (0-7)

3 If one, the level is a master level and bits 6-4 specify the
entire level number

If zero, the level is a slave level and bits 2-0 specify the
second digit

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero

Output Parameter
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code generated by this system call. For this
system call, all exceptional conditions must be processed inline.
Control does not pass to an exceotion handler.

Description

ENTER$INTERRUPT, on behalf of the calling interrupt handler, loads a base address
value into the DS register. The value is what was specified when the interrupt handler was
set up by an earlier call to SET$INTERRUPT.

If the handler is going to call an inîerrupt task, ENTER$INTERRUPT allows the handler
to place data in the CPU data segment that will be used by the interrupt task. This
provides a mechanism for the interrupt handler to pass data to the interrupt task.

158 Nucleus Svstem Calls

ENTER$INTERRUPT

Example

/***rr
* Th is exarnp le iL lus t ra res how rhe ENTER$INTERRUPT sysCem ca l l can be *
* used to load a segment base address in to the da ta segnent reg is te r . *
*** ì , r /

DECINRE TOKEN LITERALLY ' SELECTOR' :

/x NUCLUS. EXT declares a l l systen cal ls * /
$ I N CLUDE (,/ rmx 2 8 6/ i nclNUC LUS . EIT)

DECIARE thegf i rs tgvord WORD;
DECIARE E$OK LITEMLLY 'OOH' .
DECIARE interrupt$ levelg7 LITERALLY , 78H' :

, / * s p e c i f i e s n a s t e r i n t e r r u p t l e v e I 7 x /

DECLé,RE interruptgtaskgf lag BYTE;
D E C I - A R E i n t e r r u p t $ h a n d l e r p O I N T E R ;
DECI^ARE data$segment TOKEN;
DECIARE starus WORD;
DECLARE interrupt$sratus t ì rORD;
DECLARE ds$pointer POINTER;
DECI^ARE PTR$OVERIAY LITERALLY ,STRUCTURE (offser WORD,

b a s e T O K E N) ' ;
/ * establ ishes a s t ructure for

over lays * /
D E C I A R E d s $ p o i n t e r g o v l y p T R g O V E R t A y A T (@ d s g p o i n t e r) ;

/ * u s Í n g t h e o v e r L a y s t r u c C u r e . t h e
base address of the in terrupt
h a n d l e r ' s d a t a s e g m e n t i s
i d e n t i f i e d * /

I NTERRUPTHANDLER ; PROCEDURE INTERRUPT PUBLIC; /* ENTER$INTERRUPT
establ ishes the
a c t u a Ì l e v e l . * /

. Typica l PL/14- 286 Statements

/ ** ì !*
* The ca l l ing in te r rup t hand ler invokes the ENTER$INTERRUpT sys ten *
* c a l l w h i c h l o a d s a b a s e a d d r e s s v a l u e (d e f i n e d b y *
* d s $ p o i n t e r $ o v l y . b a s e) i n t o c h e d a t a s e g m e n t r e g i s t e r . *
* : r r t *) t * * * * * * * * * * * * * * * * *)k* rL*xL 'k ^

/ ,

CALL RQS ENTER$ INTERRU PT (in terruprg levelgT,
G i n t e r r u p t $ s L a L u s) :

CALL I NLI NEERRORPROC Fs s / í n r a r n , n r q c r i 1- ' ' s)
.

Nucleus System Calls r59

ENTER$INTERRUPT

. TyP ica I PL/ l l -286 S ta tements

/**
* In te r rup t hand lers tha t do no t invoke in te r rup t casks need to *
* i n v o k e t h e E X I T S T N T E R R U P T s y s t e m c a l l t o s e n d a n e n d - o f - i n t e r r u p t *
* s ignal to the hard\,/are . *
**/

CALL RQ$EXTT$INTERRUPT

CALL INLINEERRORPROCESS
END I NTERRUPTHANDLER;

INLINEERRORPRoCESS: PROCEDURE (in t$ s ta tus)
DECIARE int$status WoRD;

IF in t$status <> E$OK THEN
D O ;

(in te r rup t$ leve 1$ 7 ,
G i n t e r r u p t $ s t a t u s) ;

(i n t e r r u p t $ s t a t u s) ;

Typica l PL/ l ' | - 286 S tatemencs

END ;
END INLINEERRORPROCESS ;

SA]'lPLEPROCEDURE:
PROCEDURE;

. ì c q n ^ i n t a É :

data$segment

Gthe$f i rs t$word i / * a duruny ident i f ie r used to po in t to
in te r rup t hand ler ' s da ta segrnent * /

: d s $ p o i n t e r $ o v l y . b a s e ;
/ * i . ì p n f i f i p s r h e b a s e a d d r e s s o f t h e

i n t e r r u p t h a n d l e r ' s d a t a s e g m e n t * /

in te r rup t$ task$f lag - 0 ; , / * ind ica tes no in te r rup t task on leve1
1 x/

. Typ ica Ì PL/M' -286 S ta tement s

/**
* By f i rs t invoking the SET$INTERRUPT system cal l , rhe cal l ing rask *
* sets up an in terrupt level . *
**/

160 Nucleus Svstem Calls

ENTER$INTERRUPT

CALL RQ$ S ET$ INTERRUPT (ín terrupcglevelgT,
in te r rupt$ task$ f lag ,
@INTERRUPT}IANDLER ,
data$seglnent ,
Gstatus) ;

. Typica l PL/ l f -286 Statements

END SAMPLEPROCEDURE ;

Condition Codes

E$OK 0000H No exceptional conditions.

E$CONTEXT 0005H No segment base value has previously been
specified in the call to SET$INTERRUPT.

ENOTCONFIGURED 0008H This system cal.l is not included in the present
configuration.

E$PARAM fì004H The level parameter is invalid.

Nucleus System Calls l 6 l

The EXIT$INTERRUPT system call is used by interrupt handlers when they don't invoke
interrupt tasks; this call sends an end-of-interrupt signal to the hardware.

CALL RQ$ EXIT$ INTERRUPT (leve1, except$ptr) ;

Input Parameter
level

Description

The EXIT$INTERRUPT system call sends an end-of-interrupt signal to the hardware.
This sets the stage for re-enabling interrupts. The re-enabling actually occurs when
control passes from the interrupt handler to an application task.

A WORD specifying an interrupt level that is encoded as follows
(bit l5 is the high-order bit):

Bi ts Value

15-7 Reserved bits that should be set to zero

6-4 First digit of the interrupt level (0-7)

3 If one, the level is a master level and bits 6-4 specify the
entire level number

lf zero, the level is a slave level and bits 2-0 specify the
second digit of the interrupt level

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero

Output Parameter
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code generated by this system call. All
exceptional conditions must be processed inline, as control does
not pass to an exception handler.

t62 Nucleus System Calls

DECIARE

DECl^ARE
DECI^ARE
DECIARE
DECI.{RE
DECI.{RE
DECI"{RE

interrup t$ leve 1$ 7

E$0K
inte r rup t $ task$ f lag
inte r rup c $handle r
data$ s e gment
s f a f us

in te r rup t$ s ta tus

L I T E M L L Y ' 7 8 H ;
/* speci f ies rnas ter
LI TERALLY 'OOh' ;
F , V T F .

P O I N T E R ;
TOKEN ;
i.IoRD ;
WORD ;

(i n t e r r u p L $ L e v e Ì $ 7 ,
la í n t é r r r r n r S c i i I ! | <) '

EXIT$INTERRUPT

í n f è r Y ! ' n t - l a r r o l f * . r

INTERRUPTHANDLER: PROCEDURE INTERRUPT PUBLIC; /* ENTER$INTERRUPT
estab l i shes accua l
leve 1 *,/

Typical PL/ l " l -286 S taremenrs

/********************************x**************************************x
* In te r rup t hand lers tha t do no t invoke in te r rup t tasks need co *
* i n v o k e t h e E X I T $ I N T E R R U P T s y s t e m c a l l r o s e n d a n e n d - o f - i n t e r r u p r *
* s i tna l to the hard l r 'a re . , r
*******)**x /

CALL RQ9EXIT$ INTERRUPT

I F i n t e r r u p t $ s t a t u s O
D O ;

Typ lca l PL/M, -286 S ta cements

END ;

END INTERRUPTHANDLER ;

SAMPLEPROCEDURE:
PROCEDURE;

Example

/***x
* Th is exarnp le i l l us t ra tes how the EXIT$INTERRUPT sys tern ca l l can be *
* used to send an end-o f - in te r rup t s igna l to the hardware . *
* *x

/

D ECI,ARE TOKEN LITEMLLY ' SELECTOR' ;

/ * NUCLUS. EXT declares a l l systern ca l ls * , /
9INCLUDE (/rrnx286/inclNUCLUS . EXT)

Nucleus Svstem Calls r63

EXIT$INTERRUPT

i . r ^ r r " ^ t Q t " " L q F 1 a g - 0 ; , / * i n d i c a t e s n o i n t e r r u p t t a s k o n
Ievel | */

da ta$segment : SELECTOR$OF(NlL) ; , / * ind ica tes thac the in te r rup t
hand ler w i l l load i t s own data
segnent * /

. TyP ica l PL/M-286 S ta tenents

/**
* By f i rs t invok ing the SET$TNTERRUPT sys tem ca l - l , the ca l l íng task) t
* s e t s u p a n i n t e r r u p t l e v e l . *
**/

CALL RQ$ S ET$ INTERRU PT (in te r rup t$1eve1$7,
in te r rup t$ task$ f l ag ,
@INTERRUPT}ÌANDLER ,
d e r r S < e o m c n t

Gstatus) ;

. TyPicaI PL/ l " l -286 s ta tement s

END SAMPLEPROCEDURE ;

Condition Codes

E$OK 0000H No exceptional conditions.

E$CONTEXT 0005H The SET$INTERRUPT system call has not
been invoked for the specified level.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$PARAM 8004H The level parameter is inval id .

164 Nucleus Svstem Calls

The GET$LEVEL system call returns the number of the level of the highest priority
interrupt being serviced.

I e v e l = R Q S G E T S L E V E L (e x c e p r $ p r r) ;

Output Parameters
level A WORD whose value is interpreted as follows (bit 15 is the high-

order bit):

Bi ts Value

15-8 Reserved bits that are set to zero

I ll zero, some level is being serviced and bits 6-0 are
significant

If one, no level is being serviced anrl bits 6-0 are not
significant

6-4 First digit of the interrupt level (0-7)

3 If one, the level is a master level and bits 6-4 specify the
ent i re level number

If zero, the level is a slave level and bits 2-0 specify the
second digit

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero

except$ptr A POINTER to a WORD to which the Operating System will
return the condìtion code generated by this system call.

Description

The GET$LEVE,L system call returns to the calling task the highest (numerically lowest)
level which an interrupt handler has started servicing but has not yet finished.

Nucleus Svstem Calls 165

GET$LEVEL

Example

/ **) t) t
* Th is example i l l us t ra tes how the GET$LEVEL sys tem ca l l can be used. *
**/

DECI^ARE TOKEN LITERALLY 'SELECTOR'
;

/ x N U C L U S . E X T d e c l a r e s a 1 ì s y s t e m c a l l s * , /

$ INCLUDE (/rrnx2 8 6/ inc /NUCLUS . EXT)

DECI-ARE in te r rup t$ leve l I ìORD;
DECI ,ARE s ta tus WORD;

SAMPLEPROCEDURE:
PROCEDURE;

. Typ ica l PL/ ì { - 286 Sta tements

/ ***************************************r !*****r !*) t) t) t********* :k**** :k******xx
* The GET$LEVEL sys tem ca l l re tu rns to the in te r rup t hand ler the nurnbe r *
* o f t h e h í g h e s t i n t e r r u p t l e v e l b e i n g s e r v i c e d .) t
**) ' r /

i n t e r r u p r $ l e v e l - R 0 S C E T $ L E V E L (@ s L a L u s) :

. Typ ica l PL/11-286 S ta te rnents

END SA-I'f PLEPROCEDURE ;

Condition Codes

E$OK 0{)() {)H N(ì c \ (' (p t i (ìn i r l cont l i t i r rns.

ENOTCONFIGURED 0008H This..system call is not part of the present
con l lgura t lon .

l6ó Nucleus System Calls

The RESET$INTERRUPT system call cancels the assignment of an interrupt handler to
a level.

CALL RQSRES ET$ INTERRUPT (level , exceptgptr) ;

Input Parameter
level A VVORD specifuing an inrerrupt level. This word musr be

encoded as follows (bir 15 is the high-order bit):

Bi ts Value

l5-7 Reserved bi ts that should be set to zero.

6-4 First digi t of the interrupt Ìevel (0-7).

3 If one, the level is a master level and bits 6-4 specify the
cnt i rc level numlrsl .

If zero, the level is a slave Ìevel and bits 2-0 specify the
second digit.

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX I I Operat ing Systenr

wi l l return the condit ion code generated by this system cal l .

Description

The RESET$INTERRUPT system call cancels the assignment of the current inrerrupt
handler to the speci f ied interrupt level . I f an interrupt task has also been assigned to the
level, the interrupt task is deleted. RESET$INTERRUPT also disables the level.

The level reserved fbr the system clock should not be reset and is considered invalid. This
level is a configuration option (refer to the Extentled |RMX Ìl Interactive Confguration
Utility Reference Manaal for further information).

Nucleus Svstem Calls r67

RESET$INTERRUPT

Example

/ *************) t***) t) t***
* Th is exanp le i l l us t ra tes how the RESETSINTERRUPT sys ten caL l can be *
* used to cance l the ass ignrnent o f an in te r rup t hand ler to an *
* in te r rup t 1eve l . *
** /

DECI-ARE TOKEN LITEMLLY ' SELECTOR' ;

/ * NUcLUs. EXT decl ares aì I system cal I s * , /

$ INCLUDE (/rrnx2 86linc/NUCLUS . EXT)
INTERRUPTHANDLER: PROCEDURE INTERRUPT EXTERNAL;
END INTERRUPTHANDLER:

DECI-ARE
DECI-ARE
DECL"ARE
DECLARE
DECI.ARE
DECT"{RE

DECL"ARE
DECL.ARE

DEClj,RE
DECIARE
DECI-ARE

TOKEN ;
LITEMLLY

POINTER;
TOKEN ;
POINTER;
LITEMLLY '

WORD ;
L I T E R A L L Y '
Ieve\ 7 x/
R \ ' T F .

WORD ;
WORD ;

task$ token
p r i o r i t y $ l e v e 1 $ 2 1 0
c f . r È q a d . l Y ó c c

data$segnent
s t a c k $ p o i n t e r
s t a c k $ s i z e $ 5 1 2

t a s k $ f l a g s
i n r - a r Y " n t - q l - . ' ^ l C l

s p e c i f i e s m a s t e r i n t e r r u p t
in te r rup t $ task$ f lag
i n r a r r r ì n r q c È . t - r i c

s c a c u s

< 1 O ' / + - ^ , , È - - l - , - - F - ^ l -
J L L , /

c í z a í c 5 t ? h r r t a c * /

' Z t Q ' ;

1NîERRUPTTASK: PROCEDURE PUBLIC;

in terrup tS task$ f l ag : 0O1H ;

data$segment : SELECTOR$OF(NIL) ;

/ * i n à i n a r - a c | - h . r ^ . 1 I i - - i - - L i -
! u r f f , , ó

Lo be the incerrupt task * , /

/* use ovrr data segment */

/**
* T h e f i r s t s y s t e m c a l I i n t h i s e x a m p l e , S E T $ I N T E R R U P T , m a k e s t h e *
* ca l l ing rask (INTERRUPTTASK) rhe inrerrupr task for rhe in terrupt *
* l e v e l . *
* * * * * * * * * * * * * * * *) t *) t)k *) t * *x ! *)k* * * * * * *)k* * * * * * * * * * * * * * * /

CALL RQ$ S ET$ I NTERRUPT (i n t e r r u p t $ 1 e v e l $ 7 ,
in te r rup t$ task$ f lag ,
GI NTERRUPTHANDLER ,
r - : ^ C - ^ - - ^ - Èu a r d v r c f i " ' s r r L !

G i n t e r r u p t $ s t a t u s) ;
/ **)k***

* The second system cal l , WAIT$INTERRUPT, is used by the in terrupt *
* t a s k t o s i g n a l i t s r e a d i n e s s t o s e r v i c e a n i n t e r r u p t . *
*** ,/

168 Nucleus System Calls

RESET$INTERRUPT

CALLRQ$TIAITSINTERRUPT (in terrupt$ level$7,
G i n t e r r u p t S s t a t u s) ;

. Typica l PL/11-286 S ta tements

/********x***
* When the interrupt task invokes che RESET$INTERRUPT systern call-,
* the ass ignment of the current in terrupt handler to in terrupt leveL *
* 7 i s c a n c e l e d a n d , b e c a u s e a n i n t e r r u p t t a s k h a s a l s o b e e n a s s i g n e d ' "
* r n r h o ì o r r o ì r - h è i h r a r r ! ' n i r . c l z i . . l o ì a t a d- , , . . , , . . c e r r u p L t a s k i s d e I e L e d .
***/

CALLRQ$RESET$INTERRUPT (in terrupt$1eve1$7,
(d i n t e r r u p t 9 s t a t u s) ;

END INTERRUPTTASK;

SAI"TPLEPROCEDURE :
PROCEDURE;
star t$address : GINTERRUPTTASK;

, / * ls t inst ruct ion of in terrupt task -k /

s t a c k $ p o i n t e r : N I L ; / * a u t o m a t i c s c a c k a l l o c a t í o n * /
t a s k $ f l a g s : 0 : , / * i n d i c a t e s n o f l o a t i n g - p o Í n t

inst ruct ions * /
data$segrnent : SELECTOR$OF(NIL) ; / * use or . 'n data segment * /

. T y p í c a l P L / M ' ' 2 8 6 S t a t e m e n t s

/ * ' !
) t Tn th í c py :mnl o rhp SMPLEPROCEDURE is needed to c rea te the Cask - i -

* labe led INTERRUPTTASK. >k
******) t***)k/

task$token : RQ$CREATE$TASK (pr ior i ty$ level$66,
e i , r r q . . ì . l r À e c

, r ^ È ^ è ^ ^ - - ^ - . Èu d L d v ù c é x ' s r r L ,

c t r . L q n ^ í n r a r

s c a c k $ s i z e $ 5 I 2
task$ f lags ,
@ s t a t u s) ;

END SMPLEPROCEDURE;

Nucleus System Calls r69

RESET$INTERRUPT

Condition Codes

E$OK 0000H No exceptional conditions.

E$CONTEXT 0005H There is not an interrupt handler assigned to
the specified level.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$PARAM 8004H The level parameter is invalid.

170 Nucleus Svstem Calls

The SET$INTERRUPT system call assigns an interrupt handler to an interrupt level and,
optionally, makes the calling task the interrupt task for the level.

CALL RQSETINTERRUPT (level , in terrup t$ rask$ f lag ,
i n t e r r u p t 9 h a n d l e r , i n t e r r u p t $ h a n d l e r $ d s ,
e x c e p t $ p t r) ;

Input Parameters
level A WORD containing an interrupt level that is encoded as follows

(bi t 15 is the high-order bi t) :

Bi ts Value

15-7 Reserved bits that shouÌd be set to zero

6-4 First digit of the intcrrupt level (0-7)

3 If one, the level is a master level and bits 6-4 specify the
entire level number

lf zero, the level is a slave level and bits 2-0 specity thc
second digit

2-0 Second cligit of the interrupt level (0-7), if bit 3 is zero

interrupt$task$flag A BYTE indicating the interrupt task rhat services the interrupt
level . The value of th is parameter ind icates the number of
outstanding SIGNAI-$INTE,RRUPT requests that can ex is t . When
th is l imi t is reached, the associated in terrupt level is d isabled. The
maxrmum vaÌue for this parameter is 255 decimal. The Extendetl
|RMX II Nutleus User's Cuide describes this feature in more detail.

. [f zero, indicates thirt no interrupt task is to be associated with
the specilrllcvel and that the new interrupt handler will not call
SIGNAL$INTERRUPT.

Nucleus System Calls 171

SET$INTERRUPT

CAUTION
If a task sets the interrupt$task$flag to zero, the desigrrated intermpt
handler should not be part ofa Human lnterface application that is
loaded into dynamic memory, If such an application is stopped (via a
CONTROLC entered at a terminal), subsequent interrupts to the vector
table entry set by this system call could cause unpredictable results.

o If unequal to zero, indicates that the calling task is to be the
interrupt task that will be invoked by the interrupt handler
being set. The priority of the calling task is adjusted by the
Nucleus according to the interrupt level being serviced. Be
certain that priorities set in this manner do not violate the
max$priority attribute of the containing job.

interrupt$handler A POINTER to the first instruction of the interrupt handler.

interrupt$handler$ds A TOKEN that specifies the interrupt handler's data segrnent.

o If a valid selector, it contains the base address of the interrupt
handler's data segment. See the description of
ENTER$INTERRUPT in this manual for informarion
concerning the significance of this parameter.

. if SELECTOR$OF(NIL), the parameter indicates that the
interrupt handler will load its own data segment and may not
rnvoke ENTER$INTERRUPf.

[t is often desirable for an interrupt handler to pass
information to the inrerrupt task that it calls. The following
PL/M-286 statements, when included in the interrupt task's
code (with the first statement listed here being the first
statement in the task's code), will extract the DS register value
used by the interrupt task and make it available to the interrupt
handler, which in turn can access it bv callins
ENTER$fNTERRUPT:

DECIARE begin WORD; /* A DUM]'ÍY VARIABLE */
DECLARE data$pcr POINTER;
DECLARE data$address STRUCTURE (o f fse t WORD,

base TOKEN) AT (@DATA$PTR)

/ * th is nakes access ib le
the two halves of the
po in te r DATA$PTR * /

da ta$pt r : @beg in ; / * pu ts the who le address o f
the da ta segment in to
data$pt r and

data$address * /

r72 Nucleus Svstem Calls

SETSINTERRUPT

ds$base : data$address. base ;

CALL RQS sET$ INTERRUPT (. . . , ds$base, . . .) ;

The SET$INTERRUPT system call is used to inform the Nucleus that the specified
interrupt handler is to service interrupts which come in at the specified level. In a call to
SET$INTERRUPT, a task must indicate r.vhether the interrupr handler will invoke an
interrupt task and whether the interrupt handler has its own data segment. If the handler
is to invoke an interrupt task, the call to SET$INTERRUPT also specifies the number of
outstanding SIGNAL$INTERRUPT requests that the handler can make before the
associated interrupt level is disabled. This number generally corresponds to the number
of buffers used by the handler and interrupt task. Refer to the Extended ikMX II Nuclew
User's Guide for further information.

If there is to be an interrupt task, the calling task is that interrupt task. If there is no
interrupt task, SET$INTE,RRUPT also enables the specified level, which must be disabled
at the time of the call.

Example

/**
* This example i l lust rates how the SET$INTERRUPT system cal l can be x
* u s e d .

* * * * * * * * * * * t l * * * * : f * * : f * /

DECIARE TOKEN LITERALLY 'SELECTOR' :

/ * NUCLUS. EXT declares a l l system caLLs * /
$ INCLUDE (/rrnx2 8 6/ incINUCLUS . EXT)
INTERRUPT}IANDLER : PROCEDURE INTERRUPT EXTERNAL :
END INTERRUPTTIANDLER ;

DECIARE interrupt$ level$7 LITEMLLY'78H, ;
/ * speci f ies master in terrupt leve1 7 * /

DECIARE interrupt$task$f1ag BYTE;
DECI-ARE data$segment TOKEN;
DECI-ARE status WORD:

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operaring System

will return the condition code senerated bv this svstem call.

Description

Nucleus System Calls r73

SET$INTERRUPT

SAMPLEPROC EDURE :
PROCEDURE;
i n t e r r u p L $ L a s k $ f l a g : 0 : / * i n d i c a t e s n o i n t e r r u p t c a s k o n I e v e l l ' k /
d a t a S s e g m e n t : S E L E C T O R $ O F (N T L) : / * i n d i c a t e s t h a t t h e i n t e r r u p t

hand ler w i l l load i t s onn da ta
segment * /

a

o T y p i c a l P L / 1 1 - 2 8 6 S L a L e n e n L s
a

/**
* An in terrupt level must have an in terrupt handler or an in terrupt *
* task ass igned to i t . lnvoking the SET$INTERRUPT systern ca l l , the *

" c a l l í n g t a s k a s s i g n s I N T E R R U P T H A N D L E R t o i n t e r r u p t l e v e l 7 . *
**/

CALL RQ$ S ET$ I NTERRUPT (in terrupt$ leve1$7,
i n t e r r u p t $ t a s k s f I a g ,
CI NTERRUPT}IANDLER ,
d a t a $ s e g m e n t ,
@ s t a r u s) ;

. T y p i c a I P L / 1 4 -) 8 6 s t a t e m e n t s

END SMPLEPROCEDURE;

Condition Codes

E$OK 0000H No exceptional conditions.

EBADADDR 800FH E,ither the pointer to rhe interrupt handler or
the seÌector for the data segment is invalid.
Either one of the selectors does not refer to a
valid segment, or the offset is outside the
segment hou nda r ies.

E$CONTEXT 0005H One of the lbllowing is rrue:

o The task is already an interrupt task.

. The specìfied level already has an interrupt
handler assigned to it.

. Thejob containing the calling task or the calling
task itself is in the process of being deleted.

171 Nucleus Svstem Calls

ENOTCONFIGURED

E$PARAM

SET$INTERRUPT

0008H This system call is not part of the present
configuration

ll004H One of the following is true:

. The level parameter is invalid or would cause
the task to have a priority not allowed by its job.

. The programmable interrupt controller (PIC)
corresponding to the specified level is not part
of the hardware configuration.

Nucleus Systcm Calls 175

The SIGNAI-IîINTERRUPT system call is used by an interrupt handler to activate an
interruot task.

CALL RQ$ S ICNALS I NTERRUPT (IeveI , except$ptr) ;

Input Parameter
level A WORD containing an interrupt level that is encoded as follows

(bit 15 is the high-order bit):

Bi ts Value

l5-7 Reserved bits that should be set to zero.

6-4 First digit of the interrupt level (0-7)

3 If one, the level is a master level and bits 6-4 specify the
entire level number

If zero, the level is a slave level and bits 2-0 specif the
second digit

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code generated by this system call. AlÌ
exceptional conditions must be processed inline, as control does
not piìss to an exceptional handler.

Description

An interrupt handler uses SIGNAL$INTERRUPT to start up its associated interrupt
task. The interrupt task runs in its own environment with higher (and possibly the same)
level interrupts enabled, whereas the interrupt handler runs in the environment of the
interrupted task with all interrupts disabled. The interrupt task can also make use of
exception handlers, whereas the interrupt handler always receives exceptions inline.

r76 Nucleus Svstem Calls

SIGNAL$INTERRUPT

Example

/**
* This exarnple illuscrates ho'r the S ICNAL$ INTERRUPT systen call can *
* be used to act ivaEe an in terrupt task. *
********)t***)t*****:t /

$inc lude (/ i l4x286 / INC /error . l i r)

DECI.A,RE TOKEN LITERALLY'SELECTOR':

/ * NUCLUS.EXT declares a l l system cal ls * /
$ INCLUDE (/rmx2 8 6/ inclNucLUS . EXT)

D E C I - A R E l n t e r r u p t $ l e v e l g T L Ì T E R A L L Y , T 8 H , ;
/x speci - f les naster in terrupt level 7-* /

DECI-ARE the$f i rs t$word WORD;
DECr-ARE inte r rup t$ task$ f I ag BYTE;
DECURE inte r rup t$handler POINTER;
DECI-ARE data$segment TOKEN;
DECIARE status WORD;
DECIARE inte rrup t$ s tatus tiORD;
DECLARE ds$pointer POINTER;
DECIARE PTR$OVERIAY LITEMLLY ,STRUCTURE (offsec tlORD.

b a s e T O K E N) ' :
, / * establ ishes a s t ructure for

over lays * /
D E C I A R E d s $ p o i n t e r $ o v l y P T R $ O V E R L À Y A T (@ d s g p o i n t e r) ;

/ * us ing the over lay s t rucÈure, the
base address of the in terrup!
handler 's data segnenc is
idenCi f ied * , /

INTERRUPTHANDLER: PROCEDURE INTERRUPT PUBLIC ;

. Typ i ca l PL /14 -286 S t a t enen ts

/*x**tk:."
* The cal l ing in terrupt handler invokes the ENTER$INTERRUPT system *
* ca l l which loads a base address value (def ined by *
* d s $ p o i n t e r $ o v l y . b a s e) i n t o c h e d a t a s e g r n e n r r e g i s t e r . T h i s *
* r e g i s t e r p r o v i d e s a m e c h a n i s m f o r t h e i n t e r r u p t h a n d l e r t o p a s s *
* data to the interrupt task to be started up by the SI GNAL$ INTERRUPT *-
* s y s t e m c a l l . *
**/

C A L L R Q $ E N T E R $ I N T E R R U P T (i n t e r r u p t $ 1 e v e 1 $ 7 ,
G i n t e r r u p t $ s t a t u s) ;

CALL INLINEERRORPRoCESS (in terrupt$status) ;

Nucleus Svstem Calls 177

SIGNALSINTERRUPT

Typical PL/ ' | I -286 S tatements

/*********x**
* T h e i n L e r r u p t h a n d l e r u s e s S T G N A L $ I N T E R R U P T t o s t a r t u p i t s *
- * a s s o c i a t e d i n t e r r u p t t a s k . *
**/

CALL RQ$ S IGNAL$INTERRUPT

CALL INLINEERRORPROCESS

i / í n r a r r " n t Q ì a r r - l Q 7

G i n t e r r u p t $ s t a t u s) ;
(i n t e r r u p t $ s t a t u s) ;

END INTERRUPTTIANDLER;

INLINEERRoRPRoCESS: PROCEDURE (in t$ s ta tus) ;
DECIARE int$status WORD;

IF in t$status <> E$OK THEN
D O ;

Typ ica l PL/ l t -286 S ta tement s

END ;

END INLINEERRORPROCESS ;

SAì,IPLEPROCEDURE :
PROCEDURE;
d s $ p o i n t e r :

da ta$ segment

@the$f i rs t$wordi /x a duruny ident i f ier used ro point ro
interrupt handler 's data segrnent * /

: d s $ p o i n t e r $ o v l y . b a s e ;

, / * i d e n t i f i e s t h e b a s e a d d r e s s o f t h e
i n t e r r u p C h a n d l e r ' s d a t a s e g m e n t * /

i n t e r r u p t $ t a s k $ f l a g - 0 1 H ; / * i n d i c a t e s t h a t c a l l i n g r a s k i s c o b e
in te r rup t task * , /

. Typ ica l PL/11-286 S ta tement s

/**x***********************
* By f i rs t invok ing the SET$INTERRUPT sys tem ca1 l , rhe ca l l ing task *
* se ts up an in te r rup t leve l and becomes the in te r rup ted task fo r *
* l e v e l 7 . *
*********>t***>t*****x

/
CALL RQ$ S ET$ INTERRUPT (in te r rup t$ l eve 1$ 7 ,

in te r rup t $ t ask$ f l ag ,
GI NTERRUPTHANDLER ,
d a t a $ s e g m e n t ,
@ s t a t u s) ;

l7tì Nucleus Systern Calls

END SMPLEPROCEDURE;

Condition Codes

E$OK

E$CONTEXT

E$INTERRUPT$OVERFLOW

T y p i c a 1 P L / M - ? 8 6 S L a t e m e n r s

0000H

0005H

OOOAH

SIGNAL$INTERRUPT

No exceptional conditions.

No interrupt task is assigned to the specified
level.

The interrupt task has accumulated more
than the maximum allowable number of
SIGNAL$INTERRUPT requests. [t had
reached its saturation point and then called
ENABLE to allow the handler to receive
further interrupt signals. It subsequently
received an additional
SIGNAL$.INTERRUPT request before
calling WAIT$INTERRUPT or
RQE$TIMED$INTERRUPT.

The interrupt task has accumuÌated the
maximum allowable number of
SIGNAL$INTERRUPT requests. This is
an informative message only. It does not
indicate an error.

An overflow has occurred because the
interrupt task has received more than 2-5-5
SIGNAL$INTERRUPT requests.

This system call is not part of the present
configuration.

The level parameter is invalid.

a

E$INTE RRUPISSATURATION 0009I1

E$LIMIT 0004H

ENOTCONFIGURED

E$PARAM

0008H

800.1H

Nucleus System Calls 179

The RQE$TIMED$INTERRUPT system call is used by an interrupt task to signal its
readiness to service an interruot for a certain oeriod of time.

CALL RQE$TIMED$ INTERRUPT (1eveI , t ime, except9ptr) ;

lnput Parameters
level A WORD specifying an interrupt level that the task will service.

This word is encoded as follows (bil 15 is the high-order bit):

Bits Value

15-7 Reserved bits that should be set to zero

6-4 First digit of the interrupt level (0-7)

3 If one, the level is a master level and bits 6-4 specifu the
entire level number

Ifzero, the level is a slave level and bits 2-0 speci! the
second digit

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero

time A WORD specifoing the number of clock intervals the interrupt
task is willing to wait for the interrupt to occur. A value of
0FFFFH means that the task is willing to wait forever.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code senerated bv this svstem call.

I80 Nucleus System Calls

RQE$TIMED$INTERRUPT

Description

The RQE$TIMED$INTERRUPT system call is similar to the WAIT$INTERRUPT
system call. Interrupt tasks can invoke it immediately after initializing and immediately
after servicing interrupts. Such a call suspends an interrupt task until the interrupt
handler for the same level resumes it by invoking SIGNATJINTERRUPT. Unlike
WAIT$INTERRUFTI, RQE$IMED$INTERRUPT permits the interrupt task ro limir
the time that it will wait. If the time limit expires before an interrupt occurs, the interrupt
task is resumed without an interrupt occurring.

Whiìe the interrupt task is processing, alì lower level interrupts are disabled. The
associated interrupt level is either disabled or enabled, depending on the option originally
specified with the SET$INTERRUPT system call. If the associated interrupt level is
enabled, all SIGNAI,:IINTERRUPT calls that the handler makes (up to the limit specified
with SEfiINTERRUPT) are logged. If this count of SIGNATJINTERRUPT calls is
greater than zero when the interrupt task calls RQE$TIMED$INTERRUP|, the task is
not suspended. Instead it continues processing the next SIGNAL$INTERRUPT request.

If the associated interrupt level is disabled while the interrupt task is running and the
number of outstanding SIGNAT$INTERRUPT requests is less than the user-specified
Ìimit, the call to RQE$TIMED$INTERRUPT enables rhat level.

Example

/**
* Th is example i l l us t ra tes how the RQE$TIMED$ INTERRUPT sys tem ca l l can ' k
* b e u s e d t o s i g n a l a t a s k ' s r e a d i n e s s t o s e r v i c e a n i n t e r r u p t . *
x**ìk******************/

DECIJRE TOKEN LITERALLY 'SELECTOR'
;

/ * NUCLUS. EXT dec la res a l l sysCen ca lLs * /

$ INCLUDE (/ rmx2 86 l inc lNùcLUS . EXT)

INTERRUPT}IANDLER : PROCEDURE INTERRUPT EXTERNAL :
END INTERRUPTT1ANDLER;

DECIARE task$token ToKEN;
D E C 1 A R E p r i o r i t y $ l e w e J - $ 1 5 0 L I T E M L L Y ' 1 5 0 ' -
DECI,ARE tine WORD;
DECIARE s tar t$address PoINTER;
DECIARE data$segment TOKEN;
DECIARE s tack$po in te r POINTER;
D E C I A R E s t a c k $ s i z e $ 5 l 2 L I T E R A L L Y ' 5 I 2 ' ' ,

/ * n e w c a s k ' s s c a c k
s ize is 5 I2 byLes * /

DECIARE task$f lags WORD;
D E C L A R E i n t e r r u p t $ l e v e l $ 7 L I T E R A L L Y ' 7 8 H ' ;

/ * c n o n i f í a c m . < r a r i n r a r r " n t l a v a 1 1 ; : /

Nucleus Svstem Calls t8 l

RQESTIMED$INTERRUPT

DECI-ARE inte rrup t$ task$ fl ag
DECLARE inte rrup t$handl e r
DECIARE interrup t$ s tatus
DECIARE status

INTERRUPTTASK: PROCEDURE PUBLIC;

in terrup t9 task$ f lag : 01H; / *

data$segrnent : SELECTOR$OF(NIL) ;

F,YTF .

POINTER;
WORD ;
WORD ;

i nd ica tes tha t ca l l ing task is to
h a , n i n È a É r , , n r l - . c L * /

/* use ovn data segment */

/ * I n t e r r u p t t a s k w i l l w a i c 1 0 0 c l o c k
intervals * /

/**
* The f i rs t system cal l in th is example, SET$INTERRUPT, nakes the *
* ca l l ing task (INTERRUPTTASK) the in terrupt task for in terrupt *
* l e v e L s e v e n . *
********************************** :k************************************* / /

CALL RQ$ S ETgINTERRUPT / i n r a r r l n r Q I a r r a I (7

in terrup tS task$ f lag ,
GI NTERRUPT}TANDLER ,
u a ! d v r c ó x r s I L ,

G i n t e r r u p t $ s t a t u s) ;

r T v o i c a l P L / ú - 2 8 6 S L a L e r n e n L s

/**
* The ca l l ing in te r rup t task invokes RQE$TIMEDS INTERRUPT to suspend *
* i t se l f un t i l the in te r rup t hand ler fo r the same 1eve l resunes che
* task by invok ing the S ICNAL$ INTERRUPT sys tem ca l l . *
***-k /

t l m e - 1 0 0 ;

CALL RQE$TIMED$ INTERRUPT$ (in te r rup t $ leve 1$ 7 ,
t i D e ,
G i n t e r r u p t $ s t a t u s) ;

. T v D i c a l P L / M - ? 8 6 S r a r e m e n r s

/***x
* When the in terrupt task invokes the RESET$INTERRUPT systen ca1l , *
* the ass ignment of the current in terrupt handler to in terrupt level *
* 7 i s c a n c e l e d a n d , b e c a u s e a n i n t e r r u p t t a s k h a s a l s o b e e n *
* a s s í s n e d 1 . o r h p I i n c t h e i n t è r r ì r n î r : c l . í s d e l e t e d . *
**/

182 Nucleus Svstem Calls

ROE$TIMEDSINTERRUPT

CALL RQ$RES ETg I NTERRUPT (in terruprgtevelgT ,
@ i n t e r r u p t $ s t a t u s) ;

END INTERRUPTTASK ; SAMPLEPROCEDURE :
PROCEDURE;

star t$address - @INTERRUPTTASK; , / * 1st inst ruct ion of in terrupt
task * , /

s t a c k $ p o i n t e r : N I L ; / * a u t o m a t i c s t a c k a l l o c a t i o n * /
t a s k $ f l a g s : 0 ; , / * d e s i g n a t e s n o f l o a t i n g - p o i n t

inst ruct ions * /
data$segment : SELECTOR$OF(NIL) ; / * use own dara segmenr * /

. Typica l PL/14-286 S tatenent s

/ / * - . ! - f , t
* In th is example, the cal l ing task invokes the systern ca l l - t
* CREATE$TASK ro create a cask labeled INTERRUPTTASK. ì ' r
* i L : ' . - - 1 , - /

task$roken : RQ$CREATE$TASK (p r i o r i ty g l eve I g 15 O ,
s t a r t $ a d d r e s s ,
d a t a $ s e g m e n t ,
s cackSpo in te r ,
s t a c k g s i z e g 5 l 2 ,
t a s k 9 f l a g s ,
@s tatus) ;

. Typica l PL/ l l -286 S catements

END SMPLEPROCEDURE;

Condition Codes

E$OK 0000H No exceptional conditions.

E$CONTEXT 0005H The calling task is not the interrupt task for the
given level.

ENOTCONFIGURED 0008H This system call is nor parr of the presenr
conf igurat ion.

E$PARAM 8004H The level paramerer is invalid.

E$TIME 0001H The time limit specified by the interrupt task
expired before an interrupt ocr:urred.

Nucleus System Calls r83

The WAIfiINTERRUPT system call is used by an interrupt task to signal its readiness to
service an interrupt.

CALL RQ$IIAI TS I NTERRUPT (Ieve1, exceptsptr) ;

Input Parameter
level A WORD speciffing an interrupt level which is encoded as follows

(bit 15 is the high-order bit):

Bi ts Value

15-7 Reserved bits that should be set to zero

6-4 First digit of the interrupt level (0-7)

3 lf one, the level is a master level and bits 6-4 specif, tne
entire leveÌ number

Ifzero, the level is a slave level and bits 2-0 speci$ the
second digit

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code generated by this system call.

Description

The WAIT$INTERRUPT system call is used by interrupt tasks immediately after
initializing and immediately after servicing interruprs. Such a call suspends an interrupt
task until the interrupt handler for the same level resumes it by invoking
SIGNAL$INTERRUPT.

t8{ Nucleus Svstem Calls

WAIT$INTERRUPT

While the interrupt task is processing, al.l lower level interrupts are disabled. The
associated interrupt level is either disabled or enabled, depending on the option originally
specified with the SET$INTERRUPT system call. If the associated interrupt level is
enabled, all SIGNAL$INTERRUPT calls that the handler makes (up to the limit specifiecl
with SET$INTERRUPT) are logged. If this count of SIGNAT-$INTERRUPT calls is
greater than zero when the interrupt task calls WAIT$INTERRUPT, the task is not
suspended. Instead it continues processing the next SIGNATJINTERRUPT request.

If the associated interrupt level is disabled while the interrupt task is running and the
number of outstanding SIGNAL$INTERRUPT requests is less than the user-specified
lìmit, the call to WAIT$INTERRUPT enables that level.

Example

/ ***)k**************_*: !>?_.1
* This example i l lust rates ho\ , / the WAIT$INTERRUPT systern caLl can be *
* u s e d t o s i g n a l a t a s k ' s r e a d i n e s s L o s e r v i c e a n i n L e r r u p L . *
- ,/

D E C I - A R E T O K E N L I T E M L L Y ' S E L E C T O R ' ;

/ x N U C L U S . E X T d e c . [a r e s a 1 l s y s r e m c a l] s * , /

$ INCLUDE (/rmx2 8 6/ inc/NUC LUS . EXT)
INTERRUPTHANDLER : PROCEDURE INTERÌUPT EXTERNAL ;
END INTERRUPTTIANDLER;

DECI, {RE rask9roken TOKEN;
D E C l j R E p r i o r i t y $ l e v e l $ 1 5 0 L I T E M L L Y ' 1 5 0 ' ;
DECI^ARE star t$address POINTER;
DECI^ARE data$segment TOKEN;
DECIARE stack$pointer PoINTER;
D E C I A R E s t a c k $ s i z e $ 5 1 2 L I T E M L L Y ' 5 I 2 ' ; / * n e w t a s k ' s s c a c k

size is 512 byxes 'x1

DECI-ARE task$f lags WORD;
D E C I A R E i n t e r r u p t $ l e v e l $ 7 L I T E M L L Y ' 7 8 H ' ;

, / * s p e c i f i e s m a s t e r i n t e r r u p t l e v e l 7 ' l /
D E C I A R E i n t e r r u p c $ r a s k $ f I a g B Y T E :
DECLqRE inte r rup t$handLe r POINTER;
DECIARE interrupt$status WORD;
DECLARE status talORD;

INTERRUPTTASK: PROCEDURE PUBLIC i

in terrup t$ task$ f lag : 01H; , / * ind icates chat ca l l ing cask is to
be in terruPt xask * /

data$segment : SELECT0R$0F(NIL) ; / * use own data segment * /

Nucleus System Calls lE5

WAIT$INTERRUPT

/************************+++++*+**++***++**++*+**++***++***++*******+**+*
* The f i rs t system cal l in th is exarnple, SET$INTERRUPT, makes the *
x ca l l ing rask (INTERRUPTTASK) rhe inrerrupr task for incerrupc *
* 1eve1 seven. *
** /

CALL RQSET INTERRUPT (i n t e r r u p t $ 1 e v e 1 $ 7 ,
in terrup tS task$ f lag ,
@INTERRUPTHANDLER ,
data$segment ,
G i n t e r r u p t S s t a c u s) ;

. T v D i c a l P L / M - 2 8 6 S L a L e m e n t s

/******x***
* T h e c c l I i n g i n t e r r u p t t a s k i n v o k e s W A I T $ I N T E R î U P T t o s u s p e n d i t s e l f *
- * un t i l the in te r rup t hand ler fo r the same leve l resumes the task by *
* invok ing the S IGNAL$ INTERRUPT sys tem ca l l . x
xx /

CALL RQ9WAl T9l NTERRUPT
G i n t e r r u p t $ s t a c u s) ;

. T v D i c a l P L / 1 4 - ? 8 6 S r a t e m e n r s

/**
* l , , t Ìen the in terrupt task invokes the RESET$INTERRUPT systen cal l , *

' L p c t t r r e n r i n i é r r r r n t - h : n d l e r J _ ^ i n r é r r ' , n f l o v a l *, , , 1 (r r u P L
* 7 i s c a n c e l e d a n d , b e c a u s e a n i n t e r r u p t t a s k h a s a l s o b e e n *
* a s s i g n e d t o t h e l i n e , t h e i n t e r r u p t c a s k i s d e l e t e d . *
**/

CALL RQgRESET$INTERRUPT

END INTERRUPTTASK;

SAl'fPLEPROCEDURE:
PROCEDURE;
< r a i r q . . l d r a c c :

s t a c k $ p o l n t e r :
t a s k $ f l a g s : 0 ;

d a t a $ s e g m e n t :

(i n t e r r u p t $ l e v e l $ 7 ,
@ interrup t$ s ta tus) ;

@INTERRUPTTASK

N T L ;

S E L E C T O R $ O F (N I L) ;

, / * I < r i n c t - r , , . r i ^ h ^ f i n- . . f , e r r u p L
task * , /

a u t o m a t i c s t a c k a l l o c a t i o n * /
des ignates no f l oa t ing - po in t
i n s t r u c t i o n s * /

/* use or. 'n data segment */

l 8ó

T y p i c a I P L / M - 2 8 6 S L a r e m e n r s

Nucleus System Calls

WAIT$INTERRUPT

/ ** , ' r* -
* In th is example the ca l l ing task invokes the sys tem ca l - l -k
* CREATE$TASK to c rea te a task labe led INTERRUPTTASK. ' ' r
***>?/

cask$roken - RQSCREATEgTASK (pr ior icyglevelg l5o,
s t a r È $ a d d r e s s ,
d a t a S s e g m e n c ,
s t a c k $ p o i n t e r ,
s t a c k $ s i z e $ 5 1 2 ,
t a s k $ f Ì a g s ,
@s tatus) ;

a

. T y p i c a l P L / I I - 2 8 6 S t a L e m e n t s

END SAMPLEPROC EDURE ;

Condition Codes

E$OK 0000H No exceptional conditions.

E$CONTEXT 0005H The calling task is nor rhe inrerrupr task for the
given level.

ENOTCONFIGURED 0008H This system call is nor part of the present
configuration.

E$PARAM 8004H Thc level paramerer is invalid.

Nucleus System Calls r87

'fhe ALTER$COMPOSITE, system call replaces components of composite objects.

CAUTION
Composite objects require the creation of extension objects. Jobs that
create extension objects cannot be deleted until all the extension objects
are deleted. Therefore you should avoid creating composite objects in
Human Interface applications. If a Human Interface application creates
extension objects, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a t€rminal.)

CALL RQSALTER$ COMPo S lTE (exrens íon , compos i te , c omponent$ index ,
r e p l a c i n g $ o b j , e x c e p t $ p t r) ;

lnput Parameters
cxtension A 1'OKEN for the extension type object corresponding to the

composi te ohject being a l tered.

composite A TOKEN for the composite object being altered.

component$ index A WORD whose value speci f ies the locat ion (s tar t ing at locat ion 1)
in the component list of the component to be replaced.

replacing$obj A TOKEN for the replacement component object or zero, which
represenls no ohject .

Output Parameter
except$ptr A POINTE,R ro a wORD to which the iRMX lI Operating System

will return the condition code generated by this system call.

Description

The ALTER$COMPOSITE system call changes a component of a composite object. Any
component in a composite object can be replaced either with a token for another object or
with a placeholding SELECTOR$OF(NIL) thar represents no object.

The component$index indicates the position of the target token in the list of components.

188 Nucleus System Calls

ALTER$COMPOSITE

Example

See the example in section "The GET BYTE Procedure" of the Extendzd \RMX II Nucleus
User's Guide.

Condition Codes

E$OK 0000H No exceptional conditions.

E$CONTEXT 0005H The composite parameter is not compatible
with the extension parameter.

E$EXIST 000óH The exrension, composire, or object
parameter(s) is not a loken for an existing
object.

ENOTCONFIGURED O(X)IìH This system call is not part of the present
configuration.

E$TYPE 8002H One or both of the extension or composite
parameters is a token for an object that is not of
the correct object type.

E$PARAM 8004H The componentgin<Jex parameter refers to a
nonexistent position in the component object
l ist .

Nucleus System Calls 189

The CREATE$COMPOSITE system call creates a composite obiect.

CAUTION
Composite objects require the creation of extension objects. Jobs that
create extension objects cannot be deleted until all the extension objects
are deleted. Therefore you should avoid creating composite objects in
Human Interface applications. Ifa Human Interface application creates
extension objects, the application cannot be deleted asynchrúnously (via a
CONTROLC entered at a terminal.)

c ompos i te :RQ$ CREATE$COMPOS ITE (extension, token$l isr , except$prr) ;

Input Parameters
extension

token$list

A TOKEN for an extension type representing a license to create a
composite object.

A POINTER to a structure of the form:

DECI^ARE
coken$l is t STRUCTURE (
nurn$slots WORD
nurn$ us e d WORD
t o k e n s (*) T O K E N) ;

where:

num$slots Number ofslots for component objects that the
composite object will contain. This number represents
the maximum number of component objects that the
composite object can handle. If numgslots is greater
than num$used, the values in the extra slots are ser to
SELECTOR$OF(NrL).

num$used Number of token elements to include in the composite.
If num$used is greater than num$slots, the extra
components are ignored.

token(.) Tokens that will actually constitute the composite
object.

190 Nucleus Svstem Calls

CREATE$COMPOSITT

Output Parameters
composite A TOKEN to which the Operating System returns the new

composite token.

except$ptr A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Description

The CREATE$COMPOSITE system call creates a composite object of the specified
extension type. It accepts a list oftokens that speciff the component objects and returns a
token for the new composite object. The token$list parameter points to a structure that
contains the list of tokens.

The first element in the token list (num$slots) indicates the number of slots available in
the composite object; that is the maximum number of component objects that can be part
of the composite. Because you might not fill all the slots when you create the composite
object, the second element (num$used) indicates the number of tokens that should be
included in the composite. These tokens folÌow num$used in the structure.
CREATE$COMPOSITE selects tokens to include beginning with the first token in the
token list.

If the number of token elements to include in the composite (num$used) is less than the
number of component slots (num$slots), CREATE$COMPOSITE fills the remaining
slots with the value SELECTOR$OF(NIL).

If, on the other hand, the number of component slots (num$slots) is less than the number
of token elements to include in the composite (numgused), CREATE$COMPOSITE
ignores the remaining tokens in the token l ist .

Example

See "CREATE RING BUFFER Procedure" in the Extended iRMX II Nucleus User's
\J UtAe.

Condition Codes

E$OK 0000H No exceptional conditions.

EBADADDR 800FH The token$list pointer is invalid. Either the
selector does not refer to a valid segnrent, or the
offset is outside the sesrnent boundaries.

Nucleus System Calls l 9 l

CREATE$COMPOSITE

E$EXIST 0006H The extension parameter or one or more of the
non-zero token$list parameters is not a token
for an existing object.

E$LIMIT 0004H The calling task'sjob has already reached its
object limit.

E$MEM 0002H The memory available to the calling task's job is
insufficient to create a composite.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$PARAM 8004H The specified number ofcomponents is zero.

E$SLOT 000CH There is no room in the GDT for the composite
object's descriptor.

E$TYPE 8002H The extension parameter is a token for an
object that is not an extension object.

192 Nucleus System Calls

The DELETE$COMPOSITE svstem call deletes a comnosite obiect.

CAUTION
Composite objects require the creation ofextension objects. Jobs that
create extension objects cannot be deleted until all the extension objects
are deleted. Therefore you should avoid creating composite objects in
Human Interface applications. Ifa Human Interface application creates
extension objects, the application cannot be deleted asynchronously (via a
CONTROLC entered at a terminal),

C A L L R Q S D E L E T E $ C O M P O S I T E (e x t e n s i o n , c o m p o s i t e , e x c e p t $ p t r) ;

Input Parameters
extension A TOKEN for the extension type used as a license to create the

composite object to be deleted.

composite A TOKEN for the composite object to be deleted.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code senerated bv this svstem call.

Description

The DELETE$COMPOSITE system call deletes the specified composite object, but not
its component objects.

Example

See the example in section "The Initialization Part" of the Ertended |RMX II Nucleus
User's Guide.

Nucleus Svstem Calls r93

DELETE$COMPOSITE

Condition Codes

E$OK 0000H No exceptional conditions.

E$CONTEXT 0005H The extension type does not match the
composite parameter.

E$EXIST 0006H One or both ofthe extension or composite
parameters is not a token for an existing object.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$TYPE 8002H One or both of the extension or composite
parameters is a token for an object that is not of
the correct tvDe.

194 Nucleus Svstem Calls

The INSPECT$COMPOSITE system call returns a list of the component tokens
contained in a comoosite obiect.

CAUTION
Composite objects require the creation of extension objects. Jobs that
create extension objects cannot be deleted until all the extension objects
are deleted, Therefore you should avoid creating composite objects in
Human Interface applications. Ifa Human Interface application creates
extension objects, the application cannot be deleted asynchronously (via a
CONTROLC entered at a terminal).

CALL RQ$ INS PECTS COMPoS I TE (extension, conposi re, token$l is t$ptr ,
e x c e p t 9 p t r) ;

Input Parameters
extension A TOKEN for the extension object corresponding to the composire

object being inspected.

composite A TOKEN for the composite object being inspected.

Output Parameters
token$list A POINTER to a structure of the fornr:

DECIARE
token$1isr$prr STRUCTURE(

nr-un$ s lo ts WORD,
num$used IJORD,
t o k e n s (*) T o K E N) ;

The system call returns information in the fields of this structurc,
as follows:

num$slots Number of positions available for tokens in tokenglist
(an upper limit on the number of tokens to be
returned). You fil l in this field to tell the system call
how many tokens to return.

num$used Number of component tokens making up the compositc
object.

Nucleus System Calls 195

INSPECT$COMPOSITE

token(*) The tokens that actually constitute the composite
obJect.

except$ptr A POINTER to a WORD to which the iRMX Il Operating System
will return the condition code generated by this system call.

Description

The INSPECfiCOMPOSITE system call accepts a token for a composite object and
returns a list of tokens for the components of the composite object.

The calling task must supply the num$slots value in the data structure pointed to by the
token$list parameter. The Nucleus fills in the remaining fields in that structure. If
num$slots is set to zero, the Nucleus will fill in only the num$used field.

lf the num$slots value is smaller than the actual number ofcomDonent tokens. onlv that
number lnum$slots) of tokens will be returned.

Example

See the "DELETE RING BUFFER Procedure" examole ín the Lxtended ikMX II
N uclcus lLser's Guide.

Condition Codes

E$OK 0000H No exceptionaÌ conditions.

EBADADDR 800FH The pointer to the token$list structure is invalid.
Either the selector does not refer to a valid
segment, or the offset is outside the segment
boundaries.

E$CONTEXT 0005H The composite paramerer is not compatible
with the extension parameter.

E$EXIST 0006H The composite and/or extension parameter(s)
is not a token for an existing object.

ENOTCONFIGURED 0008H This system call is not parr of rhe presenr
configuration.

E$TYPE 8002H One or hoth of the extension or composite
parameters is a token for an object that is not of
Lhc corrcct t.voe

r96 Nucleus Svstern Calls

The CREATE$EXTENSION system call creates a new obiect tvoe.

CAUTION
Jobs that create extension objects cannot be deleted until the extension
object is deleted. Therefore, you should avoid creating extension objects
in Human Interface applications. Ifa Human Interface application
creates extension objects, the application cannot be deleted
asynchmnously (via a CONTROLC entered at a terminal.)

extens ion :RQ$ CREATE$ EXTENS I0N (typegcode, de le t iongmai lbox ,
e x c e p t $ p t r) ;

Input Parameters
t)?e$code A WORD containing the type cocle for the new type. The type

code for the new type can be any value from 8000H to 0FFFFH
and must not be currently in use. (The type codes 0 through
TFFFH are reserved for lntel products.)

deletion$mailbox A TOKEN for the mailbox where objects of the new type are sent
whenever the extension type or their containingjob is deleted. A
SELECTOR$OF(NIL) value indicates no deletion mailbox is
desired.

Output Parameters
extension A TOKEN to which the Operating System will return a token for

the new type.

except$ptr A POINTER to a WORD ro which the iRMX II Operaring Sysrem
will return the condition code generated by this system call.

Description

The CREATE$EXTENSION system calì returns a token for the newly created extension
object type.

Nucleus Svstem Calls 197

CREATE$EXTENSION

You can specify a deletion mailbox when the extension type is created. Ifyou do, a task rn
your type manager for the new type must wait at the deletion mailbox for tokens of
objects of the new extension type that are to be deleted. Tokens of objects are sent to the
deletion mailbox for deletion either when their extension type is deleted or when their
containingjob is deleted; they are not sent there when being deleted by
DELETE$COMPOSITE. The task servicing the deletion mailbox may do anything with
the composite objects sent to it, but it must delete them.

lf you do not want to specify a deletion mailbox, set the token value for deletion$mailbox
to SELECTOR$OF(NIL). If rhe extension type has no deletion mailbox, composire
objects of that type are deleted automatically, and the type manager is not informed. The
advantage of having a deletion mailbox is that the type manager has the opportunity to do
more than merely delete the composite objects.

A job containing a task that creates an extension object cannot be deleted until the
extension object is deleted.

Example

See the example in section "The Initialization Part" of the Ertended |RMX II Nucleus
User's Guide.

Condition Codes

E$OK 0000H No exceptional conditions.

E$CONTEXT 0005H The calling task's job is being deleted.

E$EXIST 0006H The deletion$mailbox parameter is nor a token
for an existing object.

E$LIMIT 0004H The calling task's job has reached its object
l imit .

E$MEM 0002H The memory available to the calling task's job rs
not sufTicient to create an extension.

ENOTCONFIGURED 0008H This system call is not part of the presenr
configuration.

E$SLOT 000CH There is no room in the GDT for the
extension's descriDtor.

198 Nucleus System Calls

CREATE$EXTENSION

E$PARAM 8004H The type$code paramerer is invalid.

E$TYPE 8002H The deletion$mailbox parameter is a token for
an obiect that is not a mailbox.

Nucleus Svstem Calls 199

The DELETE$EXTENSION system call deletes an extension object and all composites of

that tvDc.

CAUTION

Jobs that create extension objects cannot be deleted until the extension
object is deleted. Therefore, you should avoid creating extension objects
in Hurnan Interface applications. If a Human Interface application
creates extension objects, the application cannot be deleted
asynchronously (via a CONTROLC entered at a terminal).

C A L L R Q $ D E L E T E $ E X T E N S l 0 N (e x t e n s i o n . e x c e p L $ p t r)

Input Parameter
extension A TOKEN for the extension object to be deleted.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code generated by this system call.

Description

The DELETE$EXTENSION system call tleletes the specified extension object and all
composite objects of that type, making the corresponding type code available for reuse.

If you specified a deletion mailbox when you created the extension, all the composite
objects created subsequently with that extension type are sent to the deletion mailbox.
You must delete all the composite objects sent to the deletion mailbox. The
DELETE$EXTENSION system call is not completed until all of the composite objects
have been deleted.

If an extension has no deletion mailbox, composite objects created by the
CREATE$EXTENSION system call are deleted without informing the t)?e manager.

The job containing the task that created the extension object cannot be deleted until the
extension obiect is deleted.

200 Nucleus Svstem Calls

DELETE$EXTENSION

Example

/**
* T h i s e x a m P 1 e i 1 1 u s t r a t e s h o \ , / t h e D E L E T E $ E X T E N S I o N S y S t e r n c a l l
* can be used. *

** /

DECI.{RE TOKEN LITERALLY 'SELECTOR';

/ * N U C L U S . E X T d e c l a r e s a l l s y s t e m c a l l s * /

$ INCLUDE (/rrnx2 8 6/ ÍnclNUCLUS . EXT)

DECIARE ex t$ token
DECIARE type$code

DECI-ARE s tatus

SAMPLEPROCEDURE:
PROCEDURE;

t y p e $ c o d e - 0 8 0 0 0 h ;

DECIARE de le tembxtoken TOKEN;

TOKEN ;
WORD ;

t^10RD ;

o Typ ica l PL/ l l -286 S ta tements

/**
* lJ leen the extension is no longer needed, i t may be deleted by *
* any task that knows the token for the extension. *

*************x**/

CALL RQ$DELETE$ EXTENS 10N (ext$token, Gstatus) ;

END SAMPLEPROCEDURE ;

th is i s a va l id va lue fo r a
new type */

d e l e t e $ m b x $ t o k e n : S E L E C T O R $ O F (N I L) ; / * N o d e l e t i o n m a i l b o x i s
desi red for th is new tYPe * /

/**
* In order to delete an ex lension, a task rnust kno ' . / the token for *
* that extension. In th is example, the needed loken is known *
* b e c a u s e t h e c a l l i n g t a s k c r e a t e s t h e e x t e n s i o n . *

**/

ext$token: RQ$ CREATE$ EXTENS ION (type$code,
deletenbxtoken,
G s t a t u s) ;

Nucleus System Calls 201

DELETE$EXTENSION

Condition Codes

E$OK 0000H No exceptional conditions.

E$EXIST 0006H The extension parameter is not a token for an
existing object.

E$MEM 0002H The memory available to the calling task's job is
not sufficient to complete this operation.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$TYPE 8002H The extension parameter is a token for an
object that is not an extension object.

202 Nucleus System Calls

' l.he
DISABLE$DELETION system call makes an object immune to ordinary deletion.

CAUTION
DISABLE$DELETION nakes an object immune to ordinary deletion by
increasing the disabling depth of an object. Ifa Human Interface
application contains objects whose disabling depths are greater than one,
the application cannot be deleted asynchronously (via a CONTROL-C
entered at a terminal). Therefore you should not use
DISABLE$DELETION (and have no need to use ENABLE$DELETION or
FORCE$DELETE) in Human Interface applications.

C A L L R Q $ D I S A B L E $ D E L E T I O N (o b j e c c , e x c e p r g p t r) ;

Input Parameter
object

Output Parameter
except$ptr A POINTER to a WORD to which the Operaring Sysrem wiLl

return the condition code generated by this system call.

A TOKEN for the obìect whose delction is to be disabled.

Description

The DISABLE$DELETION system call increases by one rhe disabling depth of an object,
making it immune to ordinary deletion. If an object's disabling depth is two or greatcr, it
is also immune to forced deletion. lf a task artempts to delete the object while it is
ìmmune, the task sleeps unril îhe immunity ìs removed. At that time, the object is deletecl
and the task is awakened.

The ENABLE$DELETION system call is used to decrease the disabling depth of an
object, making it susceptible to ordinary deletion.

Nucleus Svstem Calls 203

DISABLE$DELETION

NOTES

If an object within a job has had its deletion disabled, then the containing
job cannot be deleted until that object has had its deletion re-enabled.

Disabling deletion of a suspended task causes the calling task to hang until
the suspended task is resumed.

An attempt to raise an object's disabling depth above 255 causes an
E$LIMIT exceptional condition.

Example

/**
*- This example i l lust rates how the DI SABLE$ DELET I ON system cal l can *
* b e u s e d t o m a k e a n o b j e c t i m m u n e t o o r d i n a r y d e l e t i o n . *
* r l * /

DECI-{RE TOKEN LITERALLY ' SELECTOR' ;

/ ' k N U C L U S . E X T d e c l a r e s a l I s y s t e m c a l Ì s * , /

$ INCLUDE (/ rmx2 86 l inc INUCLUS . EXT)

DECI-ARE task$ token
DECI-{RE cal l ing$ ta sk
DECI-{RE s tatus

SA]"lPLEPROC EDURE :
PROCEDURE;

. TyP ica l PL/14- 286 Sta tements

//**-**
* I n t h i s e x a m p ì e t h e c a l l i n g t a s k w i l l b e t h e o b j e c t t o b e c o m e *
* immune to o rd inary de le t ion . CET$TASK$TOKEN is invoked by the *
' ^ . l l i - - t - - v t ^ ^ H È . i n i r c o \ , r n r n k a n *- - - - i n i t s o m c o k e n .
: l*************)t*+***+*+****************)t********)t***********************/

rask$roken : RQ$CET$TASK$ToKENS (ca l l inggrask ,

@s ta tus) ;

. Typ ica l PL/14-286 S ta tement s

T O K E N ;
LITERALLY 'O' :
WORD ;

204 Nucleus Svsten Calls

DISABLE$DELETION

//**
* Us ing i t s own token, the ca l l ing task invokes the DI SABLE$DELETI ON *
* sys tem caL l to inc rease i t s own d isab l ing depth by one. Th is makes *
* the ca l l ing cask imnune to o rd inary de le t ion . *
***-*/

CALL RQ$ D I SABLE$DELETION (task$ token, Gsta tus) ;

. Typ ica l PL/ l ' l - 286 Sta tements

END SA.I,ÍPLEPROC EDURE ;

Condition Codes

E$OK 0000H No except ional condit ions.

E$EXÍST 0006H The object parameter is not a token for an
existing object.

E$LIMIT 0004H The object's disabling depth is already 255.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

Nucleus Svstem Calls 205

The ENABLE$DELETION system call enables the deletion of objects that have had
deletion disabled.

CAUTION
DISABLE$DELETION makes an object immune to ordinary deletion by
increasing the disabling depth ofan object. If a Human Interface
application contains objects \vhose disabling depths are greater than one,
the application cannot be deleted asynchronously (via a CONTROLC
entered at a terminal). Therefore you should not use
DISABLE$DELETION (and have no need to use ENABLE$DELETION or
FORCE$DELETE) in Human Interface applications.

C A L L R Q S E N A B L E S D E L E T T O N (o h j e c t . e x c e p L S p I r) ;

Input Parameter
object A TOKEN for the object whose deletion is to be enabled.

Description

Output Parameter
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code generated by this system call.

The ENABLE$DELETION system call decreases by one the disabling depth of an object.
If there is a pending deletion request against the object, and the ENABLE$DELETION
call makes the object eligible for deletion, the object is deleted and the task which made
the deletion request is awakened.

Example

/**
* This exarnple i l lust rates how the ENABLE$DELETION system cal l can be *
* used to enable the delet ion of a task that had been delet ion *
* d isabl ,ed. *
** /

DECI.ARE TOKEN LITERALLY 'SELECTOR' ;

206 Nucleus System Calls

ENABLE$DELETION

/ * NUCLUS.EXT declares a l l systern
$ INCLUDE (/rmx2 8 6/ incINUCLUS . EXT)

DECIARE task$ roken
DECI-ARE cal I ing$task
DECI-ARE s tatus

SA},fPLEPROCEDURE:
PROCEDURE;

calLs */

TOKEN ;
LITERALLY' SELECTOR$OF(NIL)
WORD ;

o T v o i c a l P l . / 1 4 - ? 8 6 S t a t e m e n t s

/ ** :L- . r -^ , ' ' r
* l n î h i s e v : m n l c r h e . - r - L o h i p r r r n h o e n m o) t
* i m m u n e t o d e l e L i o n . T h e G E T $ T A S K g T o K E N i s i n v o k e d b y t h e c a l l i n g ; ,
* task to ob ta in i t s own coken. -k
* d - i f

" /

task$token - RQ $ C ET $ TAS K$ TOKENS

. Typ ica l PL/11- 286 Sta tenents

/ * -k* ik
x Us ing Í ts o \ rn token, the ca l l ing task invokes the DISABLE$DELETION *
* sys ten ca l l . to inc rease i t s own d isab l ing depth by one. Th ís makes *
* the ca l l ing task i rnmune to o rd inary de le t ion ,) ' r
** /

(c a l l i n g $ C a s k , @ s t a t u s) ;

(t a s k $ t o k e n , G s t a t u s) ;CALL RQ$ D I SABLE$ DELETION

Typlcal PL/ t l -286 S ca tements

/ * - / . - , '<

* I n o r d e r t o a l l o w i t s e l f t o b e d e l e t e d , t h e c a l l i n g t a s k i n v o k e s *
* the ENABLE$DELETION sys tem ca lL Th is sys tem ca l l decreases by one -u
* t h e d i s a b l i n g d e p t h o f a n o b j e c c . I n L h i s e x a m p ì e , t h e o b j e c t i s k
* t h e c a l L i n g t a s k .
-,t*r!*/

CALL RQ$ENABLESDELETION (c a s k 9 t o k e n , G s t a t u s) ;

Typ ica l PL/Y | -286 S ta tenents

END SA},f PLEPROCEDURE ;

Nucleus Svstem Calls 207

ENABLE$DELETION

Condition Codes

E$OK 0000H No exceptional conditions.

E$CONTEXT 0005H The object's deletion is not disabled.

E$EXIST 0006H The object parameler is not a token for an
existing object.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

20E Nucleus Svstem Calls

The FORCE$DELETE system call deletes objects whose disabling depths are zero or
one.

CAUTION
DISABLE$DELETION makes an object immune to ordinary deletion by
increasing the disabling depth ofan object. Ifa Human lnterface
application contains objects whose disabling depths are greater than one,
the application cannot be deleted asynchronously (via a CONTROL-C
entered at a terminal). Therefore you should not use
DISABLE$DELETION (and have no need to use ENABLE$DELETION or
FORCE$DELETE) in Human Interface applications.

CALL RQ$FORCE$DELETE (exrension, objecr , excepr$prr) ;

lnput Parameters
extension If the object to be deleted is a composite object, this parameter is a

TOKEN for the extension type associated with the composite
object to be deleted. Otherwise, the extension parameter is
ignoret i .

object A TOKEN for the object that is to be deleted.

Output Parameter
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code generated by this system call.

Description

The FORCE$DELETE system call deletes objects whose disabling depths are zero or
one. If an object has a deletion depth of two or more, the calling task is put to sleep until
the deletion depth is decreased îo one. At that time, the object is deleted and the task is
awakenecl. If the wrong extension parameter is specified when deleting a composite,
FORCE$DELETE issues an E$CONTEXT error and returns without deleting the
composite. If the object to be force deleted is not a composite, the extension parameter is
isnored.

Nucleus Svstem Calls 209

FORCE$DELETE

Example

/*****x**
* Th is example l l l uscra tes ho l t the FORCE$DELETE sys ten ca l l can be *

* used to fo rce the de le t ion o f a task tha t has had de le t ion *

* d i s a b l e d .) t

******************x**)t**** /

DECI,ARE TOKEN LITERALLY 'SELECTOR' ;

/ * NUCLUS.EXT declares a l l systern
$ INCLUDE (/rnx286linclNUCLUS . EXT)

TOKEN ;
TOKEN ;
WORD I
WORD ;
I,IORD ;
WORD ;

/ * the new semaphore has one in i t ia l un i t * , /

,/* the nevr senaphore can have a maximum of
16 un í rs * /

/ * d e s i g n a t e s a f i r s t - i n / f í r s t - o u t t a s k q u e u e * /

DECI-ARE
DECI-ARE
DECI-{RE
DECl.ARE
DECIARE
DECI-ARE

s ern$ token
ext$token
in i t$value
max$value
s e m $ f 1 a g s

SAl"lPLEPROCEDURE:
PROCEDURE;

i n i t $ v a l u e : 1 ;

max$va lue - 10h;

sern$ f lags : 0 ;

/ **)k***
* I n r - h i c a w e m n ì a i h è ^ - r ' r i - ^ - ^ ^ r . * L è ^ h ì a . r r ^ h p . n m p *n , , É L d s A (" (v u j ! ! L

* inmune to de le t ion . The CREATE$ S EMAPHORE is invoked by the ca l l ing *
* task to c rea te a sernaphore *
**/

sern$roken: RQ$ CREATE$ s EMAPHoRE (i n i t $ v a l u e ,
rnax$va1ue,

Gs tatus) ;

. Typ ica l PL/ l t -286 S ta tements

/**:k******************x
* Us ing the semaphore token, the ca l l ing task invokes the
* DI SABLE$ DELETIoN sys tem ca l l to inc rease the d isab l ing depth by one. *
* Th is makes the semaphore imrnune to o rd inary de le t ion . *
**/

(s e m $ t o k e n , @ s t a t u s) ;

2t0

CALL RQ$DI SABLE9DELETION

Nucleus System Calls

FORCE$DELETE

/**
* In o rder to de le te the senaphore , the ca l l ing task invokes *
* the FoRCESDELETE sys tem ca l1 . Th is sys tem ca l l de le tes the semaphore*
* even though the d isab l ing depth o f the semaphore is one. -k
**>k*/

ext$token - SELECTOR$OF(NIL) ; , / * there is no extension objecr , so
set the extension parameter to 0 * /

CALL RQ$FORCE$DELETE (ext g roken,
sem$ token ,
G s t a t u s) ;

a

. Typ ica l PL/14-286 S ta te rnents

END SAI4PLEPROCEDURE ;

Condition Codes

E$OK 0000H No exceptional conditions.

E$CONTEXT 0005H The wrong extension type was used in the
extension parameter of the FORCE$DELETE
system call.

E$EXIST 0006H One or both of the object or extension
parameters is not a token for an existing object.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$TYPE 8002H The extension parameter is a token for an
object that is not an extension object.

Nucleus System Calls 2tl

The RQESETOS$EXTENSION system call dynamically associates an entry point of a
user-written OS extension with a call eate. It can also clear that association.

CALL RQE$ S ET$oS $ EXTENS IoN (gate$nurnber , s tar t$address, except$ptr) ;

Input Parameters
gate$number A WORD specifying the number of the call gate to be associated

with the OS extension. This number lists the entry number of that
call gate in the GDT. For example, if the designated call gate is the
third descriptor listed in the GDT, use a value of 3 for this
parameter. The call gate you indicate must have been reserved for
this purpose during system configuration. This system call cannot
establish new call gates.

start$address A POINTER tÒ the first instruction of the OS extension. Selting
this parameter to NIL disables the OS extension previously
associated with the call sate.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code generated by this system call.

Description

This function request is used to set up OS extensions so thiìt tasks can invoke them just as
they would any other system call. This process involves forming an association between
the OS extension and a call gate.

To form this association, a call gate must already be created specifically for use with your
OS extensions. You must set up this call gate during system configuration by using the
ICU. You can also form the association between call gate and OS extension during
configuration. Ifyou do that, you do not need to invoke this system call. Refer to the
Exteruled |RMX II lnteractive Conftguration Utility Reference Manual for more information
about configuring OS extensions.

2t2 Nucleus Svstern Calls

ROESETOS$EXTENSION

The RQESETEXTENSION system call can also be used to terminate the association
between the call gate and a particular OS extension. Ifyou plan to use the same call gate
for multiple OS extensions, you must terminate the association with one OS extension
before establishing an association with another. Ifa task attempts to invoke an OS
extension that has been disabled in this manner, a null operation occurs.

DECIARE gate$440
DECLARE s tatus

ENTRY$440: PROCEDURE EXTERNAL;
END ENTRY$440;

SAMPLEPROCEDURE :
PROCEDURE;

. Typical PL/14,-286 S tatenents

/**
x The cal Ì ing task invokes the RQE$ S ET$OS $ EXTENS IoN systen cal l to *
* set the cal l gate at entry 440 in the GDT. The entry point address *
* i s a l s o s p e c i f i e d . * -
**>k-x z

CALL RQE$ S ET$OS $ EXTENS ION

. Typica l PL/ l r -286 S tatenents

END SAMPLEPROCEDURE ;

(g a t e $ 4 4 0 , G E N T R Y $ 4 4 o , G s t a t u s) :

L ITERALLY '440 '

I'ORD ;

Example

/**'
* This exarople i l Ìust rares how the RQE$ SET$OS g EXTENS ION sysrem cal l *
* sets the cal l gate used by an OS exÈension. The exarnple assumes *
* the gate nurnbe r vas reserved during configuration. *
***x7

DECI.ARE TOKEN LITEMLLY ' SELECTOR' ;

/ * NUCLUS. EXT dec la res a l l sysÈem ca l l s
$ INcLUDE (/rmx2 8 6/ inclNucLUS . EXT)

Nucleus Svstem Calls 213

RQESETOS$EXTENSION

Condition Codes

E$OK 0000H No exceptional conditions.

EBADADDR 800FH The pointer to the start address is invalid.
Eithàr the selector <ioesn't refer to a valid
segment, or the offset is outside the segment
boundaries.

E$CONTEXT 0005H The specified call gate is already associated with
an OS extension. Before you can set the call
gate again, you must first reset it (call
RQESETOS$EXTENSION and specify ML
for the start$address parameter).

ENOTCONFIGURED 0008H This system ca is not part of the present
conf igurat ion.

E$PARAM 8004H The gate$number parameter does not specify a
valid call gate.

E$TYPE 8002H The specified call gate is already in use.

214 Nucleus System Calls

The SIGNAL$EXCEPTION system call is normally used with OS extensions ro signal the
occurrence of an exceptional condition.

C A L L R Q $ S I G N A L $ E X C E P T I O N (e x c e p t i o n $ c o d e , p a r a m g n u m , s c a c k g p r r ,
f i rs t$reserved$word, second$reserved$word,
e x c e p t $ p t r) ;

Input Parameters
exception$code A WORD containing the code (see list in the Extended |RMX II

Nucleus User's Guide)'ior the exceptional condition detected.

param$num A BYTE containing the number of the parameter that caused the
exceptional conrlition. If no parameter is at fault, param$num
equa ls zerrr .

stack$ptr A WORD that, if not zero, must contain the value of the stack
pointer saved on entry to the operating system extension (see the
entry procedure in the Extended |RMX II Nucleus User's Guide îor
an example). 'ì-he

top five words in the stack (whcre BP is at thc
top of the stack) must be as follows:

FLAGS Saved by software interrupl
CS to OS extension
P

DS Saved by OS extension
Bp on entry

Upon completion of STGNAL$EXCEPIION, control is returned
to either of two instructions. If stack$pointer contains NIL, control
returns to the instruction following the call to
SIGNAL$EXCEPTION. Otherwise. control returns to the
instruction identified in CS and IP.

first$reserved$word A WORD reserved for Intel use. Set this parameter to zero.

second$reserved$word A WORD reserved for Intel use. Set this parameter to zero.

Output Parameter
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code generated by this system call.

Nucleus System Calls 215

SIGNAL$EXCEPTION

Description

Operating system extensions use the SIGNAL$EXCEPTION system call to signal the
occurrence of exceptional conditions. Depending on the exceptional condition and the
calling task's exception mode, control may or may not pass directly to the task's exception
handler.

If the exception hantller does not get control, the exceptional condition code is returned to
the calling task. The task can then access the code by checking the contents of the word
pointed to by the except$ptr parameter for its call (not for the call to
SIGNAL$EXCEPTION),

Example

/ x L * - *) t *

* This example i l lust rates how the S IGNAL$ EXCEPTION system caLl can *
* be used to s ignal the occurrence of the except ional condi t ion) t
* ESCONTEXT. *
**,/

DECIARE TOKEN LITEMLLY ' SELECTOR' ;

/ * NUCLUS. EXT declares a l l system caLls * /

$ INCLUDE (/rmx2 8 6/ incINUCLUS . EXT)

DECLARE e$contex t L ITERALLY '5H ' .

DECI^ARE param$nurn BYTE;
DECI-ARE s tack$po in te r t ^ rORD;
DECL-ARE reserved$word L ITERALLY '0 '

;
DECLARE status l. lORD;

SA.I,TPLEPROCEDURE :
PROCEDURE;
param$nurn : 0 ; / * no parameter a t fau l t * , /
s tack$po in te r : N IL ; , / * recurn cont ro l to inscruc t ion

fo l low ing ca l l * /

. Typ ica l PL/M-286 S ta tenents

//**
* In ch is example the S IGNAL$ EXCEPT ION sys tern ca l l i s invoked by *
* ex tens ions o f the Opera t ing Sys tern to s igna l the occur rence o f an *
* E$CONTEXT except iona l cond i t ion . *
**/

216 Nucleus Svstem Calls

CALL RQS S ICNAL$ EXCEPT ION (egconcext ,
param$num,
s tack$po incer ,
reserved$word,
reserved$word,
Gs tatus) ;

a

. Typica l PL/M-286 S tatements
a

END SMPLEPROCEDURE;

Condition Codes

E$OK 0000H No exceptional conditions.

SIGNAL$EXCEPTION

Nucleus System Calls 217

The ACCE,PT$CONTROL system call requests immedìate access to data protected by a
re qr on.

CAUTION
Tasks that use regions cannot be deleted while they access data protected
by the region. Thercfore, you should avoid using regions in Human
Interface applications. If a task in a Human Interface application uses
regions, the application cannot be deleted asynchronously (via a
CONTROI-C entered at a terminal) while the task is in the resion,

C A L L R Q S A C C E P T S C O N T R O L (r e g i o n . e x c e p L $ p r r) ;

Input Parameter
rcg ion A TOKEN for the targer region.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

u'ill return the condition code generated by this system call.

Description

The ACCEPT$CONTROI- sysrem call provides access ro data protected by a region if
access is immediate ly l rva i lab le. I f access is not immediate ly avai lab le, the E$BUSy
concj i t ion code is returned and the cal l ing task remains ready.

Once a task has gained control of a region, it should not suspend or delete itself while in
control of the region. Doing so will lock the region and prevent other tasks from gaining
acccss.

Example

/***
* This example i l lusrrates how the ACCEPTSCONTROL system cal l *
* c a n b e u s e d t o a c c e s s d a t a p r o t e c t e d b y a r e g i o n . *
- t /

2ltl Nucleus Syst€m Calls

ACCEPT$CONTROL

DECIARE TOKEN LITERALLY ' SELECTOR ' :
/ * NUCLUS. EXT declares a l l system ca1ls * , /
$ INCLUDE (/ rmx286/ ine lNUCLUS . EXT)

DECLARE region$token TOKEN;
DECI^ARE pr ior i ty$queue LITERALLY ' l ' ; / * casks wair in

P r i o r i L y o r d e | k /
DECIARE stacus WORD;

SAMPLEPROCEDURE:
PROCEDURE;

. Typica l PL/11-286 S tatements

/ *x** iL - t ' !
* In o rder to access the da ta w ich in a reg ion , a cask nus t know the -k

* token fo r tha t reg ion . In th is exampLe, the needed token is known *
* h p . r " c a r h p c e 1 1 i n o r n c k . . r p a t p c t - h p r é o i ^ n Jt a s k c r e a t e s t h e r e g i o n .
+******************-**)'rtr*/

reg ion$token : RQ$ CREATE$REG I ON (pr io r i t y$queue,

Gs ta tus) ;

. Typ ica l PL/14- 286 Sta tements

/***********************x**
* A t s o m e p o i n c i n L h e t a s k , a c c e s s i s n e e d e d t o t h e d a l a *
* p r o t e c t e d b y t h e r e g i o n . T h e c a l l i n g t a s k t h e n i n v o k e s t h e *
* ACCEPT$CONTROL sys tem ca l l and ob ta ins access to the da ta *
* i f a c c e s s i s i r n m e d i a t e l y a v a i l a b l e . *

***/

CALL RQ$ACC EPT$ CONTROL (reg ion$token,

@s Catus) ;

. Typ ica l PL/14- 286 Sta temencs

/**
* L lhen the task is ready to re l inqu ish access to the da ta *
* p ro tec ted by the reg ion , i t invokes the SEND$CONTROL *
* s y s t e m c a Ì I . *

*******************************-***********************************/

CALL RQ9SENDSCONTROL (@scarus) ;

. Typ ica l PL/ l l - ? -86 Sta tements

END SA}.ÍPLEPROCEDURE ;

Nucleus System Calls 219

ACCEPT$CONTROL

Condition Codes

E$OK 0000H No exceptional conditions.

E$BUSY 0003H Another task currently has access to the
protected data.

E$CONTEXT 0005H The calling task currently has access to the
region in question.

E$EXIST 0006H The region parameter is not a token for an
existìng object.

ENOTCONFICURED 0008H This system call is not part of the present
configuration.

E$TYPE 8002H The region parameter is a token for an object
lh i ì t is n(ì t r r region.

220 Nucleus Svstem Calls

The CREATE$REGION system call creates a region.

CAUTION
Tasks that use regions cannot be deleted while they are in control ofthe
region. Using regions in a Human Interface application task can cause
situations where the application cannot be deleted asynchronously (via a
CONTROLC entered at a terminal) while the task is in the region.
Therefore, you should avoid using regions in Human Interface
applications,

r e g i o n : R Q $ C R E A T E $ R E G I o N (r e g i o n g f l a g s , e x c e p r g p r r) ;

lnput Parameters
region$flags A WORD that specifies the queuing protocol of the new region. If

the low-order bit equals zero, tasks await access in FIFO order. lf
the low-order bit equals one, tasks await access in priority order.
The other bits in the WORD are reserved and should be set tu
zero.

A TOKEN to which the Operating System will return a token for
the new region.

A POINTER to a WORD to which the iRMX II Operating System
will return the condition code generated by this system call.

Output Parameters
regron

except$ptr

Description

The CREATE$REGION system calì creates a region and returns a token for the region.

Example

/************x***
* This example i l lust rates how the CREATE$RECIoN system cal l *
* c a n b e u s e d . *
**/

Nucleus Svstem Calls 221

CREATE$REGION

DECIARE TOKEN LITERALLY ' SELECTOR' ;

/ * N U C L U S . E X T d e c l a r e s a l l s y s t e m c a I I s * /

$ INCLUDE (/rrnx2 8 6/ incINUCLUS . EXT)

DECI-ARE region$token TOKEN:
DECI-ARE pr ior l ty$queue LITEMLLY ' 1 ' ;

, / * t a s k s w a i t í n p r i o r i t y o r d e r * , /
DECLARE status ITORD;

SA]"lPLEPROCEDURE :
PROCEDURE;

. T y p i c a l P L / l l - 2 8 6 s t a t e m e n f s

/ * à L *

* The token region$token is returned when the cal l ing task *
* invokes the CREATE$RECION systen cal l . *
x******//

reg ion$token : RQ$ CREATE$REC I0N (pr ior i ty$queue,

@ s t a t u s) ;

. Typica l PL/ l l -286 S tatenent s

END SMPLEPROCEDURE;

Condition Codes

E$OK 0000H No exceptional conditions.

E$LIMIT 0004H The calling task's job has reached its object
l imit .

E$MEM 0002H The memory pool of the calling task's job doer
not contaìn a sufficiently large block to satisry
the request.

ENOTCONFIGURED 0008H This system call is not parr of the presenr
configuration.

E$SLOT 000CH There isn't enough room in the GDT for
another descriptor.

222 Nucleus Systen Calls

The DELETE$REGION system call deletes a region.

CAUTION
Tasks which use regions cannot be deleted while they access data
protecled by the region. Therefore, you should avoid using regions in
Human Interface applications. If a task in a Human Interface application
uses regions, the application cannot be deleted asynchronously (via a
CONTROLC entered at a terminal) while the task is in the resion.

CALL RQS DELETE$REG ION (reg ion , exceptgp t r) ;

Input Parameter
region A TOKEN for the res ion to be deleted.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code generated by this system calÌ.

Description

The DELETE$REGION system call deletes a region. f f a task that has access to data
protected by the region requests that the region be deleted, the task receives an
E$CONTEXT exceptional condition. If a task requests deletion while another task has
access, deletion is delayed until access is surrendered. If two more more tasks requcst
deletion of a region that another task has access to, a deadlock results. A deadlock also
results u,hen a task attempts to delete another task that is in the process of trying to delete
an occupied region. When the region is deleted, any waiting tasks awaken with an
[$EXIST except ional condit ion.

Example

/**-
* This example i l lust rates hor , r the DELETE$RECION sysrem cal l can *
* b e u s e d .

**/

Nucleus Svstem Calls , r 1

DELETE$REGION

DECT.ARE TOKEN LITERALLY 'SELECTOR';

/ * NUCLUS.EXT declares a l l system cal1s
9INCLUDE (/rmx2 8 6/ incINUCLUS . EXT)

. Typ ica l PL/1" Í -286 S ta tements

/ / *** :k****************
* When the region is no longer needed, i t rnay be deleted by *
* any task that knows the token for the region, *

** /

CALL RQ$DELETE$RECIoN (region$token, Gstacus) ;

. TypicaÌ PL/l '1-286 S tatement s

END SA} PLEPROCEDURE;

DECIARE reglon$token TOKEN ;
DECTARE pr ior i ty$queue LITEMLLY ' l ' : ' / * tasks wai t in

p r i o r i t y o r d e r * /
DECI-ARE s tatus

SAMPLEPROCEDURE :
PROCEDURE;

WORD ;

. T w n í . r l P l . / M -) A 6 S i r l - p m F n t c

/**
* ln order to delete a region, a task must know the token for *
* that region. In th is exampÌe, the needed token is known *
* h p n : r r c a f h é . à l ì í n o t e c l t . r è à r - è c t h p r o o í n n

*** : f * * * * , f * / /

region$token: RQ$ CREATE$REC roN (p r i o r i t y $ q u e u e , € s t a t u s) ;

224 Nucleus System Calls

DELETE$REGION

Condition Codes

E$OK 0000H No exceptional conditions.

E$CONTEXT 0005H The deletion is being requested by a task that
currently holds access to data protected by the
region.

E$EXIST 0006H The region parameter is not a token for an
existing object.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$TYPE 8002H The region parameter is a token for an object
that is not a region.

Nucleus System Calls)) <

The RECEIVE$CONTROL system call allows the calling task to gain access to data
protected by a region.

CAUTION
Tasks which use regions cannot be deleted while they access data
protected by the region. Therefore, you should avoid using regions in
Human Interface applications. If a task in a Human Interface application
uses regions, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal) while the task is in the region.

C A L L R Q S R E C E I V E S C O N T R O L (r e g i o n . e x c e p L S p L r) :

Input Parameter
region A TOKEN for the region protecting the data to which the calling

task wants access.

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

wíll return the condition code generated by this system call.

Description

The RECEIVE$CONTROL system call requests access to data protected by a region. If
no task currently has access, entry is immerJiate. If another task currently has access, thc
calling task is placed in the region's task queue and goes to sleep. The task remains
asleep until it gains access to the data.

lf the region has a priority-based task queue, the priority of the task currently having
access is temporarily boosted, if necessary, to match that of the task at the head of the
queue.

Example

/***-Ì
* This example i l lust rates how the RECEIVE$CONTROL system cal l can be *
* u s e d t o g a í n a c c e s s t o d a t a p r o t e c t e d b v a r e g í o n . *

** /

226 Nucleus System Calls

DECI^ARE TOKEN LITERALLY 'SELECTOR' ;

/ * NUCLUS.EXT declares a l l systern
$ INCLUDE (/rmx2 8 6/incINUCLUS . EXT)

DECIARE reg i on$ token
DECIARE pr ior i ry$queue

DECIARE s ta tus

SAMPLEPROCEDURE :
PROCEDURE;

RECEIVE$CONTROL

' 1 ' / +
r , / . L d > N s

n r i ^ r i t w ò r à è r * /

cal ls * , /

TOKEN ;
LITERALLY

I{ORD ;

Typ ica l PL/ l l -286 S ta te rnent s

/ / * t !

* In o rder to access the da ta w i th in a reg ion , a task musc know the - r
* t o k e n f o r L h a t r e g i o n . I n t h i s e x a m p 1 e , t h e n e e d e d t o k e n i s k n o v m
* h p c : r c p r h p c r ì l i n o t a s k . r è r t è q f h e r p o i o n . A- . . - , . - - - , . . 6 t a s k c r e a t e s t h e r e g i o n .

***x**x* /

region$token : RQ$CREATE$RECION(p r i o r Í t y $ q u e u e ,

G s t a t u s) ;

Typ ica l PL/14-286 S ta tement s

/ **-k*
* W h e n a c c e s s t o t h e d a t a p r o t e c t e d b y a r e g i o n i s n e e d e d , t h e *
* ca l l ing task may invoke the RECEIVE$CONTROL system cal l . *
***- t /

CALL RQ$REC EIVES CONTROL (r e g i o n $ t o k e n ,

Typical PL/14 286 S raremenrs

END SMPLEPROCEDURE;

Nucleus System Calls 227

RECEIVE$CONTROL

Condition Codes

E$OK 0000H No exceptional conditions.

E$CONTEXT 0005H The region parameter refers to a region already
accessed by the calling task.

E$EXIST 0006H The region parameter is not a token for an
existing object.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$TYPE. 8002H The region parameter contains a token for an
object that is not a region.

228 Nucleus Svstem Calls

The SEND$CONTROL system call allows a task to surrender access to data protected by
a region.

CAUTION
Tasks that use regions cannot be deleted white they access data protected
by the region. Therefore, you should avoid using regions in Human
Interface applications. Ifa task in a Human Interface application uses
regions, the application cannot be deleted asynchronously (via a
CONTROL-C entered at a terminal) while the task is in the region.

CALL RQSSEND$CONTRoL (excepr$ptr) ;

Output Parameter
except$ptr A POINTER to a WORD to which the iRMX II Operating System

will return the condition code generated by this system call.

Description

When a task finishes with data protected by a region, the task invokes the
SEND$CONTROL system call to surrender access. If the task is using more than one set
of data, each of which is protected by a region, the SEND$CONTROL system call
surrenders the most recently obtained access. When access is surrendered, the system
allows the next task in line to gain access.

If a task calling SEND$CONTROL has had its priority boosted while ir had access
through a region, its priority is restored when it relinquishes the aocess.

Example

/**
* This example i l lust rates how the SEND$CONTRoL system cal l can be *
* u s e d t o s u r r e n d e r a c c e s s t o d a t a p r o t e c t e d b y a r e g i o n . ' k
***/

DECIARE TOKEN LITEMLLY 'SELECTOR' ;

/ * NUCLUS.EXT declares a l l system cal Ìs * /
$ INcLUDE (/rrnx2 8 6/ incINUCLUS . EXT)

Nucleus System Calls 229

SEND$CONTROL

DECIARE region$token
DECI^ARE pr ior i ty$queue

DECLARE s tatus

. TyPica I PL/14- 286

t 1 t . / + : - ^ 1 . ^ , , ^ i ' i -
r , / ^ L 4 J ^ r

pr ior i ty oró 'erx /

TOKEN ;
LITERALLY

WORD I

Stacements

SAl'fPLEPROCEDURE:
PROCEDURE;

/ ** :k**************) t************
* In o rder to access the da ta w i th in a reg ion , a task rnus t know the) t
* t o k e n f o r L h a L r e g i o n . I n t - h i s e x a m p l e , t h e n e e d e d t o k e n i s k n o w n ' k

* h e c : r r < p f h è . r l l i n o r . c L . r p : t - è c I h e r e o i n n !

**************)r*)r**)r***/

r e g i o n $ t o k e n : R Q $ C R E A T E $ R E C I O N (p r i o r í t y $ q u e u e ,
Gs ta tus) ;

T y p i c a ì P L / 1 1 - 2 8 6 S t a L e r n e n r s

/ * : f
* *

* When access to the da ta p ro tec ted by a reg ion is needed, the *
* ca l l ing task may invoke the RECEIVE$CONTROL sys tern ca l l . *
*** /

CALL RQ$REC EIVE$ CONTROL (r e g l o n $ t o k e n ,

@s ta tus) ;

r T v o i c a l P L / M - 2 8 6 S t a t e m e n t s

/**
* W h e n a t a s k f i n i s h e s u s i n g d a t a p r o f e c f e d b y a r e g i o n , L h e t a s k *
* invokes the SEND$CONTROL sys tem ca l l to sur render access , *
* :L** * * * * * * * * * *) t *)k* * * *)k* * * * * * * * * /

CALL RQ$SENDgCONTROL (@sta tus) ;

. T v D i c a I P L / 1 1 -) 8 6 S t a r e m e n L s

END SAI" IPLEPROCEDURE ;

230 Nucleus Svstern Calls

SEND$CONTROL

Condition Codes

E$OK 0000H No exceptional conditions.

E$CONTEXT 0005H The calling task does not have acccss to data
protected hy any region.

ENOTCONFICURED 0008H This system cal l is nor part of the present
configuration.

Nucleus Svstem Calls 231

The ATTACH$BUFFER$POOL system call associates a buffer pool with one or more
Dorts.

RQ$ATTACH$BUFFER$POOL(buf fer$poo1$tkn, por t$ckn, except$ptr) ;

Input Parameters
buffer$pool$tkn A TOKEN identifying the buffer pool to be attached to the port.

port$tkn A TOKEN identifying the port that is to gain the use ofthe buffer
pool.

Description

Output Parameters
except$ptr A POINTER to a WORD in which the Operating System will

return the condition code generated for this system call.

The RQ$ATTACH$BUFFER$POOL system call makes a buffer pool's memory
resources available to a port. A single buffer pool can have several ports attached to it,
but a port may have only one buffer pool attached. Borh the port and the attached buffer
pool must belong to the same job.

The Nucleus Communication Service will allocate buffers from this buffer pool to satisry
receive operations of associated ports. The applications, however, are responsible for
returning these buffers to the buffer pool when they are no longer needed.

Condition Codes

E$OK 0000H No exceptional condirions.

E$CONTEXT 0005H The porr and the buffer pool tokens refer to
objects that are not in the same job.

E$EXIST 0006H Either the port$tkn or the buffer$pool$tkn
parameter does not refer to an existing object.

ENOTCONFIGURED 0008H This.system call is not part of the present
conllsuratlon-

t 7) Nucleus Svstem Calls

E$STATE

E$TYPE

E$PROTOCOL

ATTACH$BUFFER$POOL

0007H The specified port already has a buffer pool
attached.

8002H Either buffer$pool$tkn or the port$tkn
parameter refers to an object that is not the
correct tlpe.

80E0H The port specified in the port$tkn parameter is
of the signal type, not the data communication
type.

Nucleus Systern Calls 233

The RQ$ATTACH$PORT system call forwards all messages sent to the port that issued
the call to another port known as a sink port.

CALL RQ$ATTACH$PORT(por t$tkn, s ink$por t , except$pcr) ;

lnput Parameters
port$tkn A TOKEN for the port that will forward its messages.

sink$port A TOKEN for the port that will receive the forwarded messages.

Output Parameters
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code generated for this system call.

Description

The RQ$ATTACH$PORT system call is used to forward messages from one port to
another. The port that issues the RQ$ATTACH$PORT system call is referred to as the
source port, that is its messages will he sent to the attached port. The port that is attached
by the call is referred to as the sink port, that is, the messages sent to the source port are
forwa rded to it.

More that one source port can be attacheci to a singÌe sink port. Using a sink port allows
a single task trt reccive messages from several connected source ports. The source ports
can be on a remote agent, that is, another boarrl in the system.

Messages that are already queued at the sÒurce port are not forwarded, only messages
that are sent after the RQ$AI-fACH$PORT system call is issued. Only one level of
forwarding is supported. A sink port may not issue an Re$ATTACH$pORT and forward
messagcs from its source port on to another port.

I f a source port issues an RQ$SEND$RSVP system cal l wi th the ' ,use

RECEIVE$REPLY" option, the response message is not forwarded to the sink port, it
wi l l be sent to the source port that issued the cal l .

234 Nucleus Svstem Calls

Condition Codes

E$OK

E$EXtST

ENOTCONFIGURED

E$PROTOCOL

E$STATE

E$TYPE

ATTACH$PORT

0000H No exceptional conditions.

0006H Either the port parameter or the sink$port
parameter refers to an object that is not a port.

0008H This system call is not part of the present
configuration.

8080H The port specified in the port$tkn is of the
signal type, not the data communication type.

0007H The ibrwarding port is already attached to a
sink port , or the sink port is at tached to another
source port.

8002H Either the port parameter or the parameter
sink$port parameter is not an existing object.

Nucleus System Calls 215

The RQ$BROADCAST system call sends a control message to every agent on the iPSB
bus.

CALL RQ$ BROADCAST (por t$ tkn , socket , concro l$ptr , excepc$ptr) ;

Input Parameters
port$tkn A TOKEN that indicates the port that is sending the broadcast

message

socket A DWORD (host$ id:por t$ id) that is the remote por t that is to
receive the broadcast message.

control$ptr A POINTER to a control message.

Output Parameters
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code generated for this system call.

Description

This system call sends a control message to each board on a message-passing bus. The
host$id portion of the socket is ignored. This call can broadcast a message to one port on
each board.

Condition Codes

E$OK 0000H No exceptional conditions.

E$EXIST 0006H The port$tkn parameter does not refer to an
existing object.

ENOTCONFICURED 0008H This system call is not part of the present
configuration.

ENUCBAD$BUF 80E2H One or more of the following is true:

. control$ptr is not a valid pointer to a buffer

. The buffer pointed to by control$ptr or data$ptr
is not large enough to hold the message.

236 Nucleus Svstern Calls

E$PROTOCOL

E$TRANSMISSION

BROADCAST

80E0H The specified destination port is a signal service
porr.

0008H A NACK (negative acknowledgment), timeout,
bus or agent error, or retry expiration occurred
during the transmission of the message.

8002H The port$tkn parameter refers to an object that
is not a Dort.

E$TYPE

Nucleus System Calls 237

The RQ$CANCEL system call performs synchronous cancellation of RSVP message
transmission.

CALL RQ$CANCEL (por r$ tkn , t rans$ id , except$p t r) ;

Input Parameters
port$tkn A TOKEN indicating the port that was the source of a previous

send RSVP operation.

trans$id A WORD that is the transaction lD of the messaqe transmission to
be ca nceled.

Output Parameters
except$ptr A POINTER to a WORD in which the Operating System will

return the condition code generated for this system call.

Description

The RQ$CANCEL system call performs a synchronous termination of an RSVP message
transmission. In the case of cancel ing an RQ$SEND$RSVP system cal l , the RSVP buffer,
if any, is disassociated from the port. The transaction ID of an RQ$SEND$RSVP system
call can be canceled by the Nucleus Communication Service after the initial request is
made, but before a response is received. That is, the transaction is canceled whether or
not the receiving task has done a receive via the RQ$RECEIVE or the
RQ$RECIEIVE$ REPLY system call.

Condition Codes

E$OK 0000H No except ional condit ions.

E$EXIST 000fiH The nort$tkn Darameter does not refer to an
existing objeci.

ENOTCONFIGURED 0008H This system call is not part of the presenr
configuration.

E$PROTOCOL 80E0H The.specified destination port is of the signal
servlce onlv I e.

238 Nucleus Svstem Calls

E$TRANS$ID

E$TYPE

CANCEL

0088H Either the trans$id parameter is invalid, or the
entire transaction is already complete. The
transaction is considered to be complete if the
Nucleus Communication Service has received a
response.

8002H The port$tkn parameter refers to an object that
is not a port.

Nucleus System Calls 239

The RQ$CONNECT system call locally connects a port and assigns a default remote

socket.

CALL RQ$cONNECT (por t$tkn, sockec, except$Ptr) ;

Input Parameters
port$tkn A TOKEN to a port object.

socket A DWORD that identifies the remote socket. Sockets are
identified bv a host$id:port$id combination.

Output Parameter
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code generated bv this svstem call.

Description

The RQ$CONNECT system call creates a connection between the sending task and a
remote port. A default remote socket is also assigned, if no socket is specified during a
send or receive operation the default socket is used. Issuing an RQ$CONNECT system
call using a zero (0) for the socket parameter disconnects the calling task's port.

While a port is connected, all messages sent from it go !o the remote port specified in the
socket parameter. Only messages sent by the remote port specified in the socket
parameter will be received. Any message that comes in from another port will not be
delivered to the connected nort.

Exception Codes

E$OK 0000H No exceptional conditions.

E$EXIST 0006H The port parameter does not refer to an existing
object.

E$HOST$ID 0082H The host$id portion of the socket does not
refer to an agent (board) that is currentìy in the
message space.

240 Nucleus System Calls

ENOTCONFIGURED

E$PROTOCOL

E$STATE

E$TYPE

CONNECT

0008H This system call is not part ofthe present
configuration.

80E0H The port specified in the port$tkn parameter is
of the signal type, not the data communication
type.

0007H The port specified in the port$tkn parameter
parameter is already the sink port of a
forwarded port and cannot be connected again.
Only one level of port forwarding is supported.

8002H The port parameter refers to an object that is
not a Don.

Nucleus System Calls 241

The CREATE$PORT system call creates a port object that can be used to send and
receive MULTTBUS II messages between bus agents. An agent is any board on the bus.

port$tkn : RQ$CREATE$PORT (num$trans, in fo$ptr , except$ptr) ;

Input Parameters
numStrans

info$ptr

A WORD that identifies the message-passing protocol associated
with this port. Supported values are: 2, which indicates data
transport service, and 3, which indicates the Message Interrupt
Controller signal service.

A POINTER to an information segment that is protocol-
dependent. The segment contents are associated with the port
object.

The definition of the structure for the signal protocol is:

DECIaRE port$creat ion$info LITEMLLY STRUCTURE (
m e s s a g e $ i d
reserved
tyPe

BYTE,

P.VTF

reserved BYTE
woRD) ;

where:

message$id The slot ID of the remote agent. The message$id
must be in the range of 0 to 19 decimal.

reserved Reserved for future use. This value should be set to
zero.

242 Nucleus Svstem Calls

type

0-1 Reserved for the Nucleus
Communications Service

Data Transport Service

Signal Service

lntel Reserved, should be set to 0H.

3

4-OFFH

Bir

Exnlanat ion

The Nucleus Communication
Service will assign the port iD.

Reserved values.

Available to users.

Reserved for
CREATE$PORT.

CREATE$PORT

The message protocol of the port as specified by:

Value Meaning

flags A WORD whose bit encoding defines the port's
task queuing discipline as:

Meaning

Reserved, should be set to zero.

1 Task queue discipline. If set (I), then tasks
are queued according to priority. If not set
(0), then tasks are queued in FIFO order.

2-15 Reserved, should be set to zero.

The definition of the structure for the signal protocol is:

DECI-ARE por t$crea t ion$ in fo L ITERALLY STRUCTURE (
p o r r $ i d w o R D ,
type BYTE,
reserved BYTE,
f l a g s W O R D) ;

where:

port$id A WORD value that identifies the Dort. Port ID
values are:

ID Range

0

I.7FFH

IÌO(lH-OFFFH

IOt)OH.t)FFFFH

Nucleus System Calls 243

CREATE$PORT

type The message protocol of the port as specified by:

Value Meaning

0-1 Reserved for the Nucleus
Communications Service

2 Data Transport Service

3 Signal Service

4-0FFH Intel Reserved, should be set to 0H.

flags A WORD whose bit encoding defines the port's
task queuing discipline as:

Bi t Meaning

0 Reserved, should be set to zero.

1 Task queue discipline. If set (1), then tasks
are queued according to priority. If not set
(0), then tasks are queued in FIFO order.

2 Defines whether or not the port will
perform message fragmentation if an
incoming message is too large for any
single buffer. 0H is fragmentation enabled,
1H is fragmentation disabled.

3-15 Reserved, should be set to zero.

Output Parameters
port$tkn A TOKEN to which the Operating System will return a token for

the new port.

except$ptr A POINTER to a WORD to which the Operating System will
return the condition code generated for this system call.

244 Nucleus System Calls

CREATE$PORT

Description

The CREATE$PORT system call creates a port object and returns a token for the newly
created port. The new port counts as one debit against the total number of objects
permitted on a single iRMX II board. Once the port is established, the task can send and
receive messages or signals through the port. Other tasks created within the same job can
also use the port.

For ports of the signal service type, only one connection can be established between any
two agents. Attempting to connect more than one port to the same agent results in an
E$CONTEXT exceotional condition.

NOTE
Ports of the signal service type receive messages before ports of the data
transport type. Therefore, if you create both types of ports on one board,
only the signal service ports will receive messages from the remote agent
associated with it. Ports of the data transport type will not receive
messages from the associated agent.

Condition Codes

E$OK 0000H No exceptional conditions.

E$CONTEXT 0005H The signal service protocol was specified and
the agent$id given already has a port associated
wirh i r .

E$LIMIT 0004H The calling task's job has already reached its
object limit.

E$MEM 0002H The memory available to the calling task's job is
not sufficient to create a port.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

ENUCBAD$BUF tlOE2H The info$ptr is invalid or points to a buffer that
is not large enough.

E$PARAM 8004H The protocol$type field does not specify the
signal service, or the agent$id was invalid (i.e.,
greater than 19 decimal) .

Nucleus Svstem Calls 245

CREATE$PORT

E$PORT$ID$USED 80E7H The port$id specified for a data transaction port
is in use.

E$SLOT 000CH There isn't enough room in the GDT for
another descriotor.

246 Nucleus System Calls

The DELETE$PORT system call deletes a port.

CALL RQ$DELETE$PORT (porrgrkn, exceprgprr) ;

Input Parameter
port$tkn A TOKEN for the port to be deleted.

Output Parameter
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code generated for this system call-

Description

The DELETE$PORT system call deletes the specified port. If any rasks are in the port's
receive task queue at the moment of deletion, they are awakened with an E$EXIST
exceptional condition. Deleting the port counts as a credit toward the object total of the
containingjob. Any messages queued at the port are discarded and, if the port is
forwarded, forwarding is severed.

Condition Codes

E$OK 0000H No exceptional conditions.

E$EXIST 0006H Either the port parameter is nor a token for an
existing object or it represents a port whose jott
is in the process of being deleted.

ENOTCONFIGURED 0008H This system call is not parr of rhe present
configur:rtion.

E$TYPE 8002H The port parameter is a token for an object that
rs nol a port

Nucleus System Calls 247

The RQ$DETACH$BUFFER$POOL system call ends the association between a buffer
oool and a oort.

buf fer$pool$tkn : RQ$ DETACHSBUFFER$ PooL (por t $ tkn, except$ptr) ;

Input Parameters
port$tkn A TOKEN identifying the port that is detaching the buffer pool.

Description

Output Parameters
buffer$pool$tkn A TOKEN that is returned as a result of the call. The returned

TOKEN references the buffer pool that was detached.

except$ptr A POINTER to a WORD to which the Operating System will
return the condition code generated for this system call.

The RQ$DETACH$BUFFER$POOL system call breaks the association between a port
and buffer pool. This call does not delete the buffer pool. The TOKEN received as a
result of this call can be used to attach the buffer pool to a different port, or to reattach it
to the same port.

Condition Codes

E$OK 0000H No exceptional conditions.

E$EXIST 0006H The port$tkn parameter is not a TOKEN for an
existing object.

ENOTCONFIGURED 0008H This system call is not parr of the present
configuration.

E$PROTOCOL 80E0H The port specified in the port$tkn parameter is
of the signal type, not the data communication
type.

248 Nucleus System Calls

DETACH$BUFFER$POOL

0007H No port is associated with the specified port.

8002H The port$tkn parameter refers to an object that
is not a port.

E$STATE

E$TYPE

Nucleus System Calls 249

The RQ$DETACH$PORT system call ends message forwarding from the source port to
the sink oort.

C A L L R Q $ D E T A C H $ P O R T (p o r t $ t k n , e x c e p t $ p t r) ;

Input Parameter
port$tkn A TOKEN for the source Dort that is to be detached.

Output Parameter
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code generated for this system call.

Description

The RQ$DETACH$PORT system call ends message forwarding from a source port to a
sink port. In message forwarding, messages originally sent to the source port are
ibrwarded to the sink port. If an RQ$DETACH$PORT is issued and messages are
queued at the sink port, they remnin at the sink port until removed with a receive
operatron.

Condition Codes

E$OK 0000H No exceptional conditions.

E$EXIST 0006H The port parameter does not refer to an existing
port .

ENOTCONFIGURED 0008H This system call is not part of rhe present
configuration.

E$PROTOCOL 8080H The port specified in the portgtkn parameter is
of the signal type, not the data communication
rype.

250 Nucleus Svsîern Calls

DETACH$PORT

E$STATE 0007H The port issuing the call does not have a sink
port attached.

E$TYPE 8002H The port parameter refers to an object that is
not a port.

Nucleus System Calls 251

The RQGETHOST$ID system call returns the host ID of the board (agent) that the
task is runnins on.

h o s t $ í d : R Q $ G E T $ H O S T S I D (e x c e p t $ p t r) ;

Input Parameters
None

Output Parameters
except$ptr A POINTER to a WORD in which the Operating System will place

the condition code generated for this system call.

Description

The RQGETHOST$ID system call returns the host ID for the board on which the
issuing task is running. The host lD is the first part of the host$id:port$id pair that makes
up a socket. A socket ìs a destination for (either return or remote) messages. This
system call is used to construct local sockets to be used as return addresses for messages.

Condition Codes

E$OK 0000H No exceptional conditions.

ENOTCONFIGURED 0008H This.system call is not part of the present
cont tqura t ton .

)<", Nucleus Svstem Calls

The GET$PORT$ATTRIBUTES system call returns information about how the specified
port ls set up.

CALL RQSGET$ PORT$ATTRI BUTES (po r r$ rkn, in fo$prr , excepr$prr) ;

Input Parameters
port$tkn

info$ptr

where

port$id

tlpe

reserved

A TOKEN for the port about which you need information.

A POINTER to a structure into which the Operating System will
write the information about the Dort.

DECI-ARE get$por t$ info LITERALLY'STRUCTURE
port$ id l lORD,
type BYTE,
reserved BYIE,
num$trans WORD,
r e s e r v e d (2) W O R D ,
sink$por t TOKEN,
d e f a u l t $ r e m o t e $ s o c k e t D i ^ r O R D ,
buf fer$pool TOKEN,
f lags WoRD,
r e s e r v e d B Y T E) ' ;

is the unique port id for the port

a WORD that specifies the type of messages that can be sent to
and from this port, the types are:

Type Value

0 - l

2

3

4-OFFH

Meaning

Reserved for the Nucleus Communications
Service

Send/Receive data messages

Send/ Receive dataless (signal) messages.

Intel Reserved

A WORD that is reserved and should be set to zero.

Nucleus System Calls 253

GETSPORT$ATTRIBUTES

num$trans

reserved

reserved

sink$port

default$remote-
socket

buffer$pool

exception$ptr

The number of simultaneous transactions that can be outstanding
al this port.

A WORD that is reserved and should be set to zero.

A WORD that is reserved and should be set to zero.

A TOKEN for another port that receives forwarded messages from
the port you are examining. This parameter contains a zero if
there is no sink port, that is, the port being examined has not
issued an RQ$ATTACH$PORT system call.

A host$id:port$id combination that specifies a default
destination/source for all messages sent/received at this port. This
parameter contains a zero if there is no default remote socket, that
is the port being examined has not issued an RQ$CONNECT
system call.

A TOKEN for the buffer pool, if any, that is attached to this port.
This parameter contains a zero if the port being examined does not
have a buffer pool attached, that is the port being examined has not
issued an RQ$ATTACH$BUFFER$POOL system call.

A WORD whose value is interpreted as follows:flags

Bit Meaning

Reserved

How messages are queued at the port.
Ifzero, the message queue is FIFO. If
one, the message queue is priority.

Defines if the port supports RSVP
request message fragmentation. If zero,
then fragmentation is supported. If one,
then fragmentation is not supported.

Reservetl

A POINTER to a WORD to which the Operating System will
return the condition code generated for this system call.

Description

The RQGETPORT$ATTRIBUTES system call returns informarion about rhe specified
porl.

254 Nucleus System Calls

GET$PORTSATTRIBUTES

Condition Codes

E$OK 0000H No exceptional conditions.

E$EXIST 0006H The portgtkn parameter does not refer to an
existing object.

ENOTCONFIGURED 0008H This sysrem call is not parr of the present
configuration.

ENUCBAD$BUF 8082H The infogptr parameter is invalid or poinrs to a
buffer that is not large enough.

E$ryPE 8002H The port$tkn parameter refers to an object that
rs not a Dorl.

Nucleus System Calls 255

The RQ$RECEIVE system call accepts a message at a port.

d a r a $ p r r : R Q $ R E C E M (p o r c $ r k n , t i m e $ 1 i r n i t , i n f o $ p t r , e x c e P t $ P t r) ;

Input Parameters
port$tkn A TOKEN for the port that is issuing the call.

time$limit A WORD that specifies the maximum time to wait for the message
to arrive at the port specified in the port$tkn parameter.
Acceptable values are:

Value Meaning

0 Do not vr'ait
65535 Wait forever
l-65534 Wait the specified number of clock intervals

info$ptr A POINTER to a STRUCTURE of the following type:

STRUCTURE (
f lags
s tatus
F ' ^ - - C i - lL r a r r J v r u

WORD ,
WORD ,
WORD ,

where:

data$length D\^ÌORD,
f o r w a r d Í n g $ p o r L T O K E N ,
r e m o t e $ s o c k e t S O C K E T ,
cont ro l $ms g (20) BYTE,
r e s e r v e d (4) B Y I E) ;

flags is a WORD with the following encoded meaning:

Bit Name
0-3 data$type
4-7 receive$type
8-15 reserved

where:

data$type defines whether data$ptr points to a data chain (018) or
a single buffer (008.) Other values are reserved.

256 Nucleus System Calls

00008
00018
00108

01008

RECEIVE

receive$type is an indicator of the type of message received as
follows:

Value Message Type

Transactionless message (RQ$SEND or similar call)
Transmission or system status message
Transaction request message (RQ$SEND$RSVP or
similar call)
Transaction response message (RQ$SEND$ REPLY
or similar call)

status contains the send messase status. The status codes are:

Sta tus

E$OK

Meaning

A new message has been
successfully received

E$CANCELED A SEND$RSVP transaction has
been remotely canceled.

ENOLOCAL$BUFFER This error applies to two cases:

If the receive$type parameter
indicates a request message, the
local port's buffer pool does not
contain a buffer large enough to
hold the message so the
RQ$RECEIVE$FRAGMENT
system call is required (message
fragmentation.)

If the receive$type parameter
indicates a response message, the
RSVP buffer supplied in the
RQ$SEND$RSVP system call is
not large enough to hold the
response.

ENOREMOTE$BUFFER The remote port's buffer pool does
not have a buffer large enough to
hold the message and message
fragmentation is disabled.

E$TRANSMISSION A NACK (Negative
Acknowledgment), MPC Failsafe
timeout, bus or agent error, or
retry expiration occurretj tjuring
the transmission of the message.

Nucleus Svstem Calls 257

RECEIVE

trans$id A WORD that contains the transaction
lD for this message. If trans$id is zero,
a new transactionless message has been
received. If trans$id is not zero, it either
indicates a request or response message
has been received. or it indicates an
asynchronous transmission status
message has been received.

data$length A DWORD that indicates the lengfh of
the data message received.

If receive$type indicates a newly
received message, then data$length
contains the length of the successfully
recerved message.

If receive$type and status indicate
request message fragmentation, the
data$length contains the length of all the
message fragments that will be received
using the RQ$RECEIVE$FRAGMENT
system call.

forwarding$port A TOKEN indicates a port. The
indicated port is the source port for the
port that is actually receiving the
message.

remote$socket ASOCKET(host$id:port$id)that
indicates the remote message source.

:ontrol$msg The 20-byte long control part of a data
message.

Output Parameters
except$ptr A POINTER to a WORD that will contain the condition code

generated by the Operating System for this system call.

data$ptr A POINTER that indicates the starting address of rhe data portion
(if any) of the message after it has been received.

25E Nucleus Svstem Calls

RECEIVE

Description

The RQ$RECEIVE system call accepts a message at a port. If the message contains a
data portion, a pointer to the buffer used to store the data portion is returned. When the
buffer is no longer required the application should return it to the buffer pool using the
RQ$RELEASE$BUFFER system call. If enough buffer space is not attached, the
message is rejected by the receiving host.

Condition Codes

E$OK 0000H No exceprional conditions.

E$EXIST 0006H The port$tkn parameter does not refer to an
existing object.

ENOTCONFIGURED 0008H This system call is not part of the current
configuration.

ENUCBAD$BUF 80E2H The info$ptr parameter points to a buffer that
either does not exist, or is not large enough.

E$PROTOCOL 80E0H The port specified in the port$tkn parameter is
of the signal type.

E$TIME 000iH The time the task is willing to wait, specified in
the time$limit parameter, expired before a
message was receivetl.

E$ryPE 8002H The port$tkn parameter is a token for an object
that ls not a Dort

Nucleus Svstem Calls 259

The RQ$RECEIVE$FRAGMENT system call accepts a part (fragment) of a request
(RSVP) data message.

CALL RQ$RECEIVE$FRAGMENT (por t$tkn, sockec, rswp$trans$id,
f ragment$ptr , f ragrnent$ length , f lags,
e x c e p t $ p t r) ;

Input Parameters
port$tkn A TOKEN to the port issuing the call.

socket A DWORD (host$id:port$ id) that specifies the port from which
the original RSVP message was sent. lf the port issuing the
RQ$RECEIVE$FRAGMENT system call is connected, the socket
pa rameter is ignored.

rsvp$trans$id A WORD value that is used to identify this particular message
transaction. A transaction ID is generated each time an
RQ$SEND$RSVP system call is issued.

fragment$ptr A POINTER to a buffer in which the message fragment will be
placed. If this POINTER is NIL, the receive of the message
fragments is terminated.

fragmenr$length A DWORD that defines the length of the fragment. If this length
is zero, fragmented transmission of a request message is
tcrminated.

flags A WORD that defines the type of message fragment. The encoded
values are:

Value Meaning

018 The data is in data chain form and
fragment$ptr points to a data chain
block.

00B The data is in a single buffer and
fragment$ptr points to the buffer.

Output Parameters
except$ptr A POINTER to a WORD in which the Operating System will place

the condition code generated for this svstem call.

26t) Nucleus System Calls

RECEIVE$FRAGMENT

Description

The RQ$RECEIVE$FRAGMENT system call accepts a message fragment that is sent
from a remote host via an RQ$SEND$RSVP system call. The data that satisfied the
RQ$SEND$RSVP system call could not be placed into a single buffer, therefore the
message had to be broken into sections calìed fragments.

Condition Codes

E$OK 0000H No exceptional conditions.

E$DISCONNECTED 0089H The socket parameter is equal to zero and the
port is not connected.

E$EXIST 0006H The port$tkn parameter does not refer to an
existing objeci.

ENOTCONFIGURED 0008H This system call is not part of the current
configuration.

ENUCBAD$BUF 8082H The fragment$ptr parameter points to a buffer
that either does not exist, or is not large enough.

E$PROTOCOL 8080H The port specified in the port$tkn parameter rs
of the signal type.

E$TIME 0001H The system receive fragment failsafe timeout
expired before the fragment was received

E$TRANS$ID 0088H The value is the rsvp$trans$id parameter does
not speciff a currently valid transaction.

E$TYPE 8002H The port$tkn parameter is a token for an object
that ls not a Dort .

Nucleus Svstem Calls 261

The RQ$RECEIVE$REPLY system call accepts a message that is a reply to an earlier
reouest.

d a t a $ p r r : R Q $ R E C E I V E $ R E P L Y (p o r r $ r k n , r s w p $ t r a n $ i d , r i m e $ t i m i r ,
i n f n (o r r é Y . é n r q n F r \ .

Input Parameters
port$tkn A TOKEN to the port object issuing the call. This port must not be

a slnk port.

rsvp$trans$id The transaction ID returnecl from the associated
RQ$SEND$RSVP system call.

t ime$l imit A WORD indicat ing the length of t ime the task is wi l Ì ing to wait
for the reply, supported values are:

Value Meaning

0 No wait
65535 Wait forever
l-65534 The number of clock cycles to wait

info$ptr A POINTER to a structure of the following form:

STRUCTURE (
f lags WORD,
status l . lORD,
t rans$id UoRD,
data$length DWORD,
f o r w a r d i n g $ p o r t T O K E N
remote$socket SOCKET,
c o n t r o l $ m s g (2 0) B Y T E ,
r e s e r v e d B Y T E) ,

where:

flags is a WORD with the following encoded meaning:

Bì t Name
0-3 data$type
1-7 receive$type
lJ- l5 resen ed

262 Nucleus System Calls

RECEIVE$REPLY

wnere:

data$type defines the whether data$ptr points to a data chain
(0lB) or a s ingle buffer (00B.) Other values are reserved.

receive$type is an indicator of the type of message received as
follows:

Value Message Type

00018 Transmission or system status message
01008 Transact ionresponsemessage

status contains the send message status. The status codes iìre:

Status Meaning

E$OK A new message has been
successfully received

E$CANCELED A SEND$RSVP transact ion hrs
been remotely canceled.

ENOLOCAL$BUFFER If thereceive$typeparameter
indicates a response message, the
RSVP buffer supplied in the
RQ$SEND$RSVP system call is
not large enough to hold the
response_

ENOREMOTE$BUFFER The remote port's buffer pool was
not large enough to hoÌd the
message and message
fragmentation is turned off.

E.$TRANSMISSION A NACK (Negat ive
Acknowledgment, timeout, bus or
agent error, or retry expiration
occurred during the transmission of
the message.

trans$id A WORD that contaìns the
transact ion ID for th is message.
Trans$ id indicates iì response
messitge hls heen receivctl. or it
ind icates an erroneous
asynchronous transmission status
message has been received.

Nucleus Svstern Calls 263

RECEIVESREPLY

data$length A DWORD that indicates the length
of the data message received.

If receive$type indicates a newlY
received message, then data$length
contains the lengh of the
successfully received message.

forwarding$pof A TOKEN indicating a port. The
indicated port is the source port for
the port that is actually receiving the
message. This field does not apply
to the RQ$RECEIVE$REPLY
system call.

remote$socket A SOCKET (host$id:port$id) that
indicates the remote message
source.

control$msg The 20-byte long control part of a
data message.

reserved A reserved BYTE.

Output Parameters
except$ptr A POINTER to a WORD that will contain the condition code

generated by the Operating System for this system call.

data$ptr A POINTER that indicates the starting address of the data portion
(if any) of the message after it has been received.

Description

The RQ$RECEIVE$REPLY system call is issued when a task wanrs ro wair for a reply to
an RSVP message that it sent previously. This call cannot be issued by a sink port (a port
that accepts messages forwarded from another port.)

Condition Codes

E$OK 0000H No exceptional conditions.

E$EXIST 0001H The port$tkn parameter does not refer to an
existing object.

ENOTCONFIGURED 0008H This.system call is not part of the current
cont lgurat lon.

2g Nucleus System Calls

RECEIVE$REPLY

ENUCBAD$BUF 80E2H The info$ptr parameter points to a buffer that
either does not exist, or is not large enough.

E$PROTOCOL 8080H The port specified in the port$tkn parameter is
of the signal type.

E$TIME 0006H The time the task is willing to wait, specified in
the time$limit parameter, expired before a
mcssage was received.

E$TRANS$ID 0088H Either an invalid transaction ID has been
supplied, or the transaction was canceled before
the response was received.

E$TYPE 8002H The port$tkn parameter is a token for an object
that ls not a Dort.

Nucleus Svstem Calls 265

The RtsCE,lVE$SIGNAL system call receives a signal from a remote host at a specified
port .

C A L L R Q S R E C E I V E $ S I G N A L (p o r t $ t k n , w a i t $ t i m e , e x c e p t $ p t r) ;

Input Parameters
port$tkn A TOKEN for the port where the signal is expected to arrive.

wait$time A V/ORD that specifies how long the calling task is willing to wait.

. If zero, the calling task is not wilÌing to wait.

. I f OFFFFH, the cal l ing task wi l l wai t as long as necessary.

. I f l -OFFFE,H. the cul l ing task wi l l wai t that number of c lock
intervals.

Output Parameters
except$ptr A POINTER to a WORD to whjch the Operating System will

return the condition cocle generated by this system calÌ.

Description

The RECEIVE$SIGNAI- system cal l causes the c:r l l ing task to ei ther receive a signal or to
wait the speci f ieci number of c lock inten,als at the speci f ied port .

If a signal is alrcaciy queued at the port, the calling tusk receives the signal. Otherwise,
the task ei ther goes to the end of the receive t l rsk queue to wait a speci f ied amount of
t ime, or i t is not u ' i l l ing to wait . In the lat ter case. or i f the task's wait ing per iod elapses
without a sìgnal arr iv ing, the task receives an E$TIME except ional condit ion.

When a signal arr ives and there are tasks on thc receive task queue, the task at the head
of the queue receives the signal . I f no tasks are wait ing in the queue, the signal is queuect
at the port . The next task to invoke RtrCEIVE$SIGNAL receives one of the queued
signals.

266 Nucleus System Calls

RECEIVE$SIGNAL

Condition Codes

E$OK 0000H No exceptional conditions.

E$EXIST 0006H The port$tkn parameter does not refer to an
existing object.

ENOTCONFICURED 0008H This system call is nor part of the present
configuration.

E$PROTOCOL 80E0H The port specified in the port$tkn parameter is
of the signal type, not the data communication
type.

E$TIME 0001H One of the following is true:

. The calling task was not willing to wait and no
signal was queued at the port.

. The task's designated waiting period elapsed
before the desired signal arrived.

E$TYPE 8002H The port$tkn parameter refers to an object that
ls not a port .

Nucleus Svstem Calls 267

The RQ$SEND system call sends a data message from a port to a port on another board.

T R A N S $ I D : R Q $ S E N D (p o r c $ t , s o c k e t , c o n t r o l $ p t r , d a t a $ p t r ,
data$length, f lags , except$ptr) ;

Input Parameters
port$tkn

socket

control$ptr

data$ptr

data$length

flags

where:

data$type

A TOKEN for the port to which a message is to be sent.

A DWORD (host$id:port$id) that specifies a unique board/port
combination that is the message destination- If the sending port
has issued an RQ$CONNECT then it has a default socket and this
parameter is ignored.

A POINTER to the control portion of a message. Ifdata$ptr =
NULL or data$length = 0, then the control message is 20 bytes in
length. Otherwise, the control message is 16 bytes in length.

A POINTER to a data message. If this parameter is NULL, then
there is no optional data portion for this message. If this
parameter is not NULL then it points to either a contiguous buffer
or a data chain block. If the data$type field of the flags parameter
is set (I), then this pointer points to a data chain block; otherwise,
(0) it points to a contiguous buffer.

A DWORD that indicates the length of the data message.

A WORD whose value is interoreted as follows:

Bits

0-3

,1 1

8- 15

Name

data$type

mode

Reserved (set to zero)

Describes the format in which the data is to be sent. Ifset (00018),
the data will be sent as a data$chain and data$ptr is a POINTER to
the data chain block. If not set (00008), the data is a single logical
segment and data$ptr is a POINTER to a buffer.

268 Nucleus System Calls

Description

The RQ$SEND system call sends a data message from a port to a port on another boarcl.
If the remote port to which the message is sent does not have adequate buffer space to
receive the message an ENOREMOTE$BUFFER error will be returned. No message
fragmentation will be performed if this call is used.

Condition Codes

E$OK 0000H No exceptional conditions.

E$DISCONNECTED 0089H The socket parameter is equal to zero and the
port is not connected.

E$EXIST 0006H The port$tkn paramerer does not point to an
existing object.

E$HOST$ID 00E2H The host$id portion of the socket parameter
does not refer to an agent (board) that is
currently in the message space.

ENOREMOTE$BUFFER 0083H The receiving agent could not allocate a buffer
to hold the message.

ENOTCONFIGURED 0008H This system call is not parr of rhe presenr
configuration.

ENUCBAD$BUF 80E2H Either the control$ptr or data$ptr parameter is
invalid or points to a buffer that is not large
enough.

SEND

mode Defines the transmission mode. If set (l), the transmission is
asynchronous. If not set (0), the transmission is synchronous

If the transmission is asynchronous, the send status must be
received by an RQ$RECEIVE system call.

Output Parameters
trans$id A WORD that is used to identi$ this particular message

transmission. If no data is being sent, data$ptr = NULL, then the
value returned is zero.

except$ptr A POINTER to a WORD to which the Operating System will
return the condition code generated for this system call,

Nucleus System Calls 269

SEND

E$PROTOCOL SOEOH

E,$RESOURCE$LIMIT OOE6H

E$TRANS$LIMIT OOEAH

E$TRANSMISSION O(.)OBH

E$TYPE

The port specìfied in the port$tkn parameîer is
of the signal t)?e. not the data communicat ion
type.

The number of simultaneous messages, has
been reached. This field is set during system
configuration.

A transmission resource limitation has been
encountered. An insufficient number of
transaction buffers was specified during system
configuration (The Max No. of Simultaneous
Transactions parameter in the Interactive
Configuration Utiìity's Nucleus Communication
screen.)

A NACK (negative acknowledgment), timeout,
bus or agent error, or retry expiration occurred
during the transmission of the message.

The port$tkn parameter refers to an object that
ls not a port

8002H

270 Nucleus Svstem Calls

The SEND$RSVP system call initiates a request/response message interchange.

t r a n s $ i d : R Q $ S E N D $ R S V P (p o r r $ r k n , s o c k e r , c o n r r o l g p r r , d a r a g p t r ,
d a t a $ Ì e n g t h , r s v p $ d a t a $ p t r , r s w p $ d a t a $ l e n g t h ,
F 1 a o c è v ^ a n t q n r r \ '

Input Parameters
port$tkn The TOKEN that identifies rhe port sending the RSVP message.

socket A DWORD (host$id:port$id) that idenr i f ies the remore
dest inat ion. I f the sending port has a defaul t socket, th is
pa r i t mct.cr is ignoret l .

control$ptr A POINTER ro rlìe control portion of a message. lf datagptr =
NULL or data$length = 0, then the control message is 20 bytes in
length. Otherwise, the control message is 16 bytes in length.

data$ptr A POINTER to a dîta message. lf NULL, then a control messagc
is sent. If not NULL, then it is a POINTER to either a contiquous
buffer. or a data chain block.

data$length A DWORD rhar is the length of the diìtÍì message.

rsvp$data$ptr A POINTER to a buffer into which the expected response is to be
placed. This buffer must be a contiguous block.

rsvp$data$length A DWORD that defines rhe length of the RSVP message buffer.

iìags A WORD whose value is interpreted as follows:

Bits Name

0-l data$type

mode

receive$reply

Reserved (set to zero)

8

9- 15

Nucleus System Calls 27r

SEND$RSVP

where:

data$type

mode

receive$reply

Describes the format in which the data is to be sent. Ifset (0001B),
the data will be sent as a data$chain and data$ptr is a POINTER to
the data chain block. If not set (00008), the data is a single logical
segment and data$ptr is a POINTER to a buffer.

Defines the transmission mode. If set (1), the transmission is
asynchronous. If not set (0), the transmission is synchronous,

Defines which system call, receive$reply or receive, will be used to
receive the response message. If set (1), then RECEIVE is being
used, if not set (0), then RECEIVE$REPLY is being used.

A WORD that is used to identi$ this particular message
transmission. lf no data is being sent, data$ptr = NULL, then the
value returned is zero.

A POINTER to a WORD to which the Operating System will
return the condition code generated for this system call.

Output Parameters
trans$id

except$ptr

Condition Codes

E$OK

E$DISCONNECTED

E$EXIST

E$HOST$ID

No exceptional conditions.

The port has no default socket and a zero was
specified for the socket parameter.

Either the port$tkn, control$ptr, data$ptr
parameter does not point to an existing object.

The host$id portion of the socket parameter
does not refer to an agent (board) that is
currently in the message space

The receiving agent could not allocate a buffer
to hold the message.

0000H

OOE9H

0006H

OOE2H

Description

The RQ$SEND$RSVP system call initiates a request with implied response interchange.
Typically RSVP interchanges are used to transfer data from one agent to another. The
parameter rsvp$data$ptr is used to supply a POINTER to a buffer that is the destination
of the resoonse data.

t1' ,

ENOREMOTE$BUFFER OOE3H

Nucleus System Calls

ENOTCONFIGURED

ENUCBAD$BUF

E$PROTOCOL 8OEOH

E$RESOURCE$LIMIT OOE6H

E$TRANSMISSION OOOBH

E$TRANS$LIMIT OOEAH

E$ryPE

SEND$RSVP

0008H This system call is not part ofthe present
configuration.

80E2H The info$ptr is invalid or points to a buffer that
is not large enough.

The port specified in the port$tkn parameter is
of the signal tlpe, not the data communication
tlpe.

Either the number of simultaneous messages, or
simultaneous transactions, has been reached.
These fields are set during system configuration.

A NACK (negative acknowledgnent), timeout,
bus or agent error, or retry expiration occurred
during the transmission of the message.

A transmission resource limitation has been
encountered. An insufficient number of
transaction buffers was specified during system
configuration (The Max No. of Simultaneous
Transactions parameter in the Interactive
Configuration Utility's Nucleus Communication
screen.).

The port$tkn parameter refers to an object that
is not a Dort.

Nucleus Svstem Calls 273

The RQ$SEND$REPLY system call is sent in response to the RQ$SEND$RSVP system
cal l .

t rans$id : RQ$SEND$REPLY (por t$tkn, socket , rsr .p$trans$id,
c o n t r o l $ p t r , d a t a $ p t r , d a t a $ l e n g t h , f l a g s ,
e x c e p t $ p t r) ;

Input Parameters
port$tkn The TOKEN that identifies the port sending the REPLY message.

socket A DWORD (host$id:port$ id) that ident i f ies the remote
destination. If the sending port has a default socket, this
pa ra meter is ignorer.l.

rsvp$trans$id This is the trans$id parameter from the SEND$RSVP call that is
being answered. This WORD is used at the destination to identify
the transaction that is being answered

control$ptr A POINTER to the control portion of the message. If data$ptr =
NULL or dataglength = 0, then the control message is 20 bytes in
length. Otherwise, the control message is 16 bytes in length.

data$ptr A POINTER to a data message. If NULL, then a control message
is sent. [f not NULL, then it is a POINTER to either a contiguous
buffer. or a data chain block.

data$length A DWORD that is the length of the data message.

flags A WORD whose value is interpreted as follows:

Bits

^ 1

0-3

9

l0 -15

Name

data$type

mode

Reserved (Set to zero)

EOT

Reserved (Set to zero)

274 Nucleus Svstem Calls

SEND$REPLY

wnere:

data$type Describes the format in which rhe dara is to be sent. Ifset (00018),
the data will be sent as a data$chain and data$ptr is a POINTER to
the data chain block. If not set (00008), lhe data is a single logical
segment and datagptr is a POINTER to a buffer.

mode Defines the transmission mode. If set (1), the transmission is
asynchronous. If not set (0), the transmission is synchronous.

EOT Defines a SEND$REPLY end-of-transaction option. If EOT is not
set, 0008, then this message is the last fragment of a response.
Otherwise. more frasments will be sent.

Output Parameters
trans$id A WORD that is used to identify this particular message

transmission. If no data is being sent, data$ptr = NULL, then the
value returned is zero.

except$ptr A POINTER to a WORD to which the Operating System will
return the condition code generated for this system calÌ.

Description

The RQ$SEND$REPLY system call is an answer to a previous SEND$RSVP system call.
The reply message may be sent as a single message or as a series of message fragments, as
controlled by the EOT flag.

Condition Codes

E$OK 0000H No except ional condit ions.

E$DISCONNECTED 00E,9H The port sending the message has previously
issued an RQ$CONNECT to a remote port.
The board on which the remote port is located
has been reset.

E$EXIST 000óH The port$tkn parameter does not point to an
existing object.

E$HOST$ID 00E2H l'he host$id portion of the socket parameter
does not refer to an agent (board) that is
currently in the message space.

ENOREMOTE$BUFFER 00E3H The receiving agent could not allocate a buffer
to hold the message.

Nucleus System Calls 275

SEND$REPLY

ENOTCONFIGURED

ENUCBAD$BUF

E$PARAM

E$PROTOCOL

E$TRANS$LIMIT

E$TYPE

E$RESOURCE$LIMIT OOE6H

E$TRANSMISSION OOOBH

This system call is not part of the present
ann f i o , , r e t i nn

The info$ptr is invalid or points to a buffer that
is not large enough.

The flags parameter is illegally specified.

The port specified in the port$tkn parameter is
of the signal R?e, not the data communication
type.

Either the number of simultaneous messages, or
simultaneous transactions, has been reached.
These fields are set during system configuration.

A NACK (negative acknowledgment), timeout,
bus or agent error, or retry expiration occurred
during the transmission of the message.

A transmission resource limitation has been
encountered.

The port$tkn parameter refers to an object that
is not a port

0008H

8OE2H

8004H

SOEOH

OOEAH

8002H

276 Nucleus System Calls

The RQ$SEND$SIGNAL system call sends a MULTIBUS II signal (dataless message) to
a remote agent (board) through the specifìed port.

CALL RQ$SEND$SIGNAL (por t$tkn, except9ptr) ;

Input Parameter
port$tkn A TOKEN for the port through which the signal will be sent.

Description

Output Parameter
except$ptr A POINTER to a WORD to which rhe Operating System will

return the condition code generated for this system call.

The SEND$SIGNAL system call sends a signal (dataless message) to a remote agent
through the specified port. If a bus timeout or other bus error occurs, the calling task
receives an E$TRANSMISSION exceptional condition.

Condition Codes

E$OK 0000H No exceptional conditions.

E$EXIST 0006H The port parameter is not a token for an
existing object.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$PROTOCOL 80E0H The port specified in the port$tkn parameter is
of the data communication type, not the signal
type.

E$TRANSMISSION 000BH A NACK (negative acknowledgement), timeout,
bus or agent error, or retry expiration occurred
during the transmission of the signal

E$TYPE 8002H The port parameter is a token for an object
that Is not a Port .

Nucleus System Calls 277

The GEfiINTERCONNECT system call retrieves the contents of the specified
interconnect resister.

value : RQGET I NTERCONNECT (s lot$number, reg$nurnber , except$ptr) ;

Input Parameters

slot$number A BYTE that specifies the MULTIBUS lI cardslot number of the
board on which the specified interconnect register is located.
Speci! either the physical cardslot number or 31 decimal (the host
processor board). The following decimal values are valid:

. I f in the range 0-19 decimal, th is parameter speci f ies Paral le l
System Bus (iPSB) slot numbers 0 to 19, respectively.

. lf in the range 24-29 decimal, this parameter specifies iLBX Il
cardslot numbers [] to 5 respectively on the host processor
board's Local Bus Extension (iLBX l l) .

. l f3 l decimal, th is parameter speci f ies that you wish to retr ieve
the contents of an interconnect regisîer from interconnect
space on the cal l ing task's processor board. In this case, do not
specify the actual cardslot number; incorrect values could be
rcl u rned.

Values 20-23, 30, and any decimal value greater rhan 3l are inval id.

reg$number A WORD that specifies the interconnect register to read. This
value must be in the range 0000H to 01FFH, the def ined range of
inîerconnect space. Refer to the harclware manual for your
particular board to determine the proper register number.

Output Parameters

v:rlue A BYTE in which this svstem call returns the contents of the
intcrconnect register. If the cardslot is empty or if the actual
cardslot numher for the host processor board is specified (rather
than 3l) ,0 is returnecl for iPSB cardslots and 0FFH for iLBX l I
cardslots.

except$ptr A POINTER to a WORD to which the Operat ing System wi l l
rcturn the condit ion code generatetJ for th is system cal l .

278 Nucleus System Calls

GETSINTERCONNECT

Description

The GET$INTERCONNECT system call returns the contents of the interconnect registcr
specified by the slot$number and reg$number parameters.

CAUTION
The Nucleus checks the range validity of the cardslot and register
numbers specified in the call, but it does not verify the existence ofa
board in any specifîc cardslot. Nor does it assign any meaning to the
register being accessed.

Condition Codes

E$OK 0000H No exceptional conditions.

ENOTCONFIGURED 0008H This system call is not part of the present
configu ratìon.

E$PARAM 8004H One or more of the inout oarameters has an
illeeal value.

Nucleus Svstem Calls 279

The RQSETINTERCONNECT system call alters the contents of an interconnect
register to a value specified in the call.

NOTE
The RQSETINTERCONNECT system call alters the contents of the
specified interconnect register (if it is writeable). It is possible to cornrpt
the values in interconnect registers by specifying incorrect values.

CALL RQ$ S ET$ INTERCONNECT (value, s lo t$number, reg$number,
e x c e p t $ p t r) ;

Input Parameters
value A BYTE that contains the value to which the soecified

interconnect register is to be changed.

slot$number A BYTE that specifies the MULTIBUS lI cardslot number of the
board on which the indicated interconnect reeister is located. The
following decimal values are valid:

. If in the range 0 to 19, this parameter specifies the indicated
iPSB cardslot number.

. If in the range 24 to 29, this parameter specifies an iLBX II
cardslot number from 0 to 5, on the host processor board's
iLBX II bus.

. If31, this parameter indicates that you wish to program the
contents of an interconnect register on the calling task's
processor board. In this case, do not specif the actual cardslot
number. Incorrect values could be returned.

o Values 20 to 23, 30, and any value greater than 31 are illegal.

reg$number A WORD that specifies rhe inrerconnect register to which a value
is to be written. This value must be in the range 0000H to 01FFH,
the defined range of interconnect space. Refer to the board's
hardware reference manual to determine the proper register
number.

280 Nucleus Svstem Calls

SET$INTERCONNECT

Output Parameter
except$ptr A POINTER to a WORD to which the Operating System will

return the condition code generated for this system call.

Description

The RQSETINTERCONNEC"f system call allows the contents of a specified
interconnect register to be altered dynamically.

NOTE
The Nucleus checks the range validity of the cardslot and register numbers
specified in the call, but it does not verify the existence of a board in the
specifìed cardslot nor does it check the read/write permission of the
register before it attempts to access the register.

Condition Codes

E$OK 0000H No exceptional conditions.

ENOTCONFIGURED 0008H This system call is not part of the presenr
configuration.

E$PARAM 8004H One or more of the input parameters has an
illesal value.

Nucleus Svstem Calls 281

INDEX

A

ACCEPT$CON'I'ROL 2I8
access byte for code segments 132
access byte for segments 12,5
access rights for objects 12.1
ALTER$COMPOSITE I88
ATTACH$BUFFER$POOL 232

c
CATALOG$OBJECT I2I
CREATE$COMPOSITE I90
CREATE$EXTENSION I97
CREATE$JOB 10
CREATE$MAILBOX 57
CREATE$PORT 242
CREATE$REGION 22I
CREATE$SEGMENT 89
CREATE$SEMAPHORE 77
CREATE$TASK 34

D

DELETE$COMPOSII'E I9.I
DELETE$EXTENSION :0(]
DELETE$JOB 26
DELETE$MAILtsOX 61
DELETE$PORT 247
DELETE$REGION 223
DELETE$SEGMENT 91
DELETE$SEMAPHORE 80
DELETE$TASK 3[I
D ISABLE 15 I
DISABLE$DELETION 203

Nucleus System Calls Index- I

INDEX (continued)

E

ENABLE 154
ENABLE$DELETION 206
encoded meanings for object types 135
encoding of interrupt levels 154
END$INIT$TASK 157
ENTER$INTERRUPT 158
examples

ACCEPT$CONTROL 2I8
CATALOG$OBJECÎ 122
CREATE$JOB 14
CREATE$MAILBOX 59
CREATE$REGION 22I
CREATE$SEGMENT 90
CREATE$SEMAPHORE 78
CREATE$TASK 36
DELETE$EXTENSION 20I
DELETE$JOB 26
DELETE$MAILBOX 6I
DELETE$REGION 223
DELETE$SEGMENT 91
DELETE$SEMAPHORE 80
DELETE$TASK 38
DISABLE 152
DISABLE$DELETION 201
ENABLE 154
ENABLE$DELETION 206
ENTER$INTERRUPT I59
EXIT$INTERRUPT 163
FORCE$DELETE 2It)
GET$EXCEPTION$HANDLER I46
GET$LEVEL 166
GET$POOI]|ATTRIB 95
GET$PRIORITY 41
GET$SIZE 101
GET$TASK$TOKENS 43
GET$TYPE 13ó
LOOKUP$OBJECT I39
OFFSPRING 28
RECEIVE$CONTROL 226
RECEIVE$DATA 64
RECEIVE$MESSAGE 67
RECEIVE$UNITS 84
RESET$INTERRUPT I68

Index-2 Nucleus Svstem Calls

examples (continued)
RESUME$TASK 45
RQE$CI{ANGE$DESCRIPTOR 1 14
RQE$CI{ANGE$OBJECT$ACCESS 126
RQE$CREATE$DESCRIPTOR 1 17
RQE$CREATE$JOB 22
RQE$DELETE$DESCRIPTOR 119
RQEGETADDRESS 128
RQEGETOBJECT$ACCESS 133
RQEGETPOOTJATTRIBUTES 98
RQE$OFFSPRING 32
RQESETOS$EXTENSION 213
RQE$TIMEDINTERRUPT 18 1
SEND$CONTROL 229
SEND$DATA 70
SEND$MESSAGE 74
SEND$UNITS 86
SET$EXCEPTION$HANDLER 148
SET$INTERRUPT 173
SET$POOI]$MIN IO4
SET$PzuORITY 48
SIGNAIJEXCEPTION 216
SIGNAL$INTERRUPT 177
SLEEP 53
SUSPEND$TASK 54
UNCATALOG$OBJECT 141
WAIT$INTERRUPT 185

E

EXIT$INTERRUYÎ 162

F

FORCE$DELETE 209

G

GET$EXCEPNON$TIANDLER I45
GET$INTERCONNECT 278
GET$LEVEL 165
GET$POOL$ATTRIB 94
GET$PORT$ATTRIBUTES 253
GET$PRIORITY 41
GET$SIZE 101

INDEX (continued)

Nucleus System Calls Index-3

INDEX (continued)

GET$TASK$TOKENS 43
GET$TYPE 135

I

INSPEC"I$COMPOSITE 195

L

LOOKUP$OBJECT 138

M

mailbox$flags
speci$ing information when creating a mailbox 57

meaning of the encoded interrupt level WORD l6-5

o
OF'FSPzuNG 28

o
queuing scheme of a semaphore 77

R

RECEIVE$CONTROL 226
RECEIVE$DATA 63
RECEIVE$MESSAGE 66
RECEIVE$SIGNAL 266
RECEIVE$UNITS 83
required tcp 5 words of stack for SIGNAL$EXCIEP'f ION
RESET$INTERRUIT 167
RESUME$TASK 45
RQ$ATTACH$PORT 234
RQ$BROADCAST 236
RQ$CANCEL 238
RQ$CONNECT 240
RQ$CREATE$BUFFER$POOL I 06
RQ$DELETE$BUFFER$POOL It)IJ
RQ$DETACH$BUFFER$POOL 2.1tI
RQ$DETACH$PORT 250
RQGETHOST$ID 252
RQ$RECEIVE 256
RQ$ RECEIVE$FRAGMENT 2fi0

2 1 5

Index-4 Nucleus Svstem Calls

RQ$RECEIVE$REPI-Y 262
RQ$RELEASE$BUFFER 1Oq
RQ$REQUEST$BUFFER II I
RQ$SEND 268
RQ$SEND$REPLY 274
RQ$SEND$SIGNAL 277
RQSETINTERCONNECT 280
RQE$CFIANGE$DESCRIPTOR I 13
RQE$CHANGE$OBJECT$ACCESS I24
RQE$CREATE$DESCRIPTOR 1 I6
RQE$CREATE$JOB I8

task$flags meaning 2l
RQE$DELETE$DESCRIPTOR I 19
RQEGETADDRESS I28
RQECETOBJECT$ACCESS I3 I
RQEGETPOOL$ATTRIB 97
RQE$OFFSPRING 3I
RQESETOS$EXTENSION 2 I2
RQE$NMED$INTERRUPT I8()

S

SEND$CONTROL 229
SEND$DATA 70
SEND$MESSAGE 73
SEND$RSVP 27I
SEND$UNITS 86
SET$EXCEPTION$HANDLE R I47
SET$INTERRUPT 171
SET$POOL$MIN IO4
SET$PRIORITY 48
SIGNAL$EXCEPTION 2I.5
SIGNA$INTERRUPT I76
sink port 234
SLEEP 52
source port 234
structures

access tlpe of object for RQE$CE'Í $OtsJ trCl'l'$ACCESS 131
data Fort creation information 242
except ion handler 11, 19
extracting the DS register used l-)y an interrupt task 172
for aocepting a MULTIBUS II reply message 262
for assigning as exception handler l,l7
information about the exception hanciler 145
pool attributes for GET$POOL$ATTRIBUTES 94

INDEX (continued)

Nucleus Svstem Calls Index-5

INDEX lcontinued)

structures (continued)
pool attributes for RQEGETPOOLATTRIBUTES 97
port information 253
receive a message at a port 256
signal port creation information 243
token$list for CREATE$COMPOSITE 190
token$list for INSPECI$COMPOSITE 195
TOKENS for child jobs returned by OFFSPRING 31

SUSPEND$TASK 54

T

type encodings for MULTIBUS II message fragments 260

U

UNCATALOG$OBJECT 14I

V

values for GET$TASK$TOKENS selection parameter 43

w
WAIT$INTERRUPT 184

Index-6 Nucleus System Calls

intel'

EXTENDED iRMX@II
BASIC I/O SYSTEM CALLS

REFERENCE MANUAL

Intel Corporatìon
3065 Eowers Avenue

5anta C la ra , Ca l i fo rn ia 95051

Copyr igh t o 1988, n te l Corpora t ion , A l l Rrgh ts Reserved

PREFACE

' l 'his
manual documents the system calÌs of the Basic I/O System, one of the subsystems of

the extended iRMX II Operating System. The information provided in this manual is
intended as a reference to the system calls and provides detailed descriptions of each call.

READER LEVEL

This manual is intended for programmers who are familiar with the concepts and
terminology introducecl in the Extended |RMX II Nucleus IJser's Guide and with the PL/M-
2l ì6 progr ; rmming la ngu age.

CONVENTIONS

System call names appear as headings on the outside uppcr corner of each page. The first
appoarance of each system call name is printed in ink; subsequent appearances are in
black.

Throughout this manual, system cal ls are shown using a generic shorthand (such as
A$CREATE$FILE instead of RQACREATE$FILE). This convention is used to allow
easier alphabetic arrangement of the calls. The actual PLIM-256 external-procedure
names must be usecl in all calling sequences.

You can also invoke the system calls from assembly language, but you must obey the
PL/M-28{t calling sequences when doing so. For more information on these calling
sequences refer to the Ertended iRlllX 1l Progranuning 'l'echniques Reference Mantnl.

BIOS System Calls l l l

CONTENTS

|RMX@ II BASIC I/O SYSTEM CALLS PAGE

BIOS System Calls

BAS|C t/O
|RMX@ II

SYSTEM CALLS

1.1 INTRODUCTION

The Basic I/O System Calls manual provides a detailed description of each Basic I/O
System call, listed alphabetically.

The manual describes the PL/M-2[ì6 calling sequences to the Basic I/O System calls.

Basic I/O operations are declared as typed or untyped exrernal procedures for pL/M-28ó.
PL/M-286 programs perform I/O operations by making external procedure calls.

The information for each system call is organized in this order:

o A brief sketch of the effects of the call.

o The PL/M-28ó calling sequence for the system call.

. Definitions of the input parameters, if any.

. Definitions of the output parameters, if any.

. A detailed description of the effects of the call.

r The condit ion codes rhat can resulr f rom using the cal l , wi th a descr ipt ion of the
possible causes of each condition.

Throughout this manual, PLIM-286 data types, such as BYTE, WORD, and SELECTOR
are used. ln addi t ion, rhc extended iRMX I l data type TOKEN (always capi tal ized) is
used. lf your compiler supports the SELECTOR data type, a TOKEN can be declaretl
literally as SELECTOR or WORD. Because TOKEN is not a PL/M-286 data rype, you
must declare it to be literally a SE,LE,CTOR or a WORD every place you use it. An
aster isk (*) is used as a STRUCTURE and ARRAY size indicator. You must subst i tute u
value for the aster isk in STRL.ICTURE and ARRAY declararrons.

The Basic I/O System does not distinguish between upper and ktwercase letters. For
example, file "xyz" is eclual to file "XYZ".

The system call dictionary on thcse next few pages Ìists system calls by function rather
than alphabetically. This dictionary includes short descriptions and page numbers of the
complete descriptions that follow.

BIOS System Cal ls

iR]\{X@ II BASIC I/O SYSTEM CALLS

1.2 SYSTEM CALL COMMAND DICTIONARY

This dictionary summarizes the Basic I/O System calls by function and, where applicable,
indicates the file types to which they apply:

PF Physical file
SF Stream file
NF Named data file
ND Named directory file

The page reference listed with each call points to the detailed description for the call.

JOB.LEVEL SYSTEM CALLS

System Call Function Page

ENCRYPT Encodes user password.. . . . 119

GET$DEFAULT$- Inspect defaul t pref ix. 121
PREFIX

GET$DEFAULT$USER Inspect default user. 123

SET$DEFAULT$- Set default prefix for job...... 130
PREFIX

SET$DEFAULT$USER Set default user for iob.........-..-.-..........-.... 132

DEVICE.LEVEL SYSTEM CALLS

A$PHYSICAL$- Asynchronous attach device..61
ATTACH$DEVICE

A$PHYSICAL$- Asynchronous detach device. -.,-.,.,........-........65
DETACH$DEVICE

A$SPECIAL Asynchronous perform devicelevel
funct ion..83

BIOS Svstem Calls

Ft LEICON N ECTTON,LEVEL SYSTEM CALLS

System Call Function

iRMX@ rr BASrC r/O SYSTEM CALLS

N N
F D

P S
F F

A$ATTACH$FILE

A$CREATE$.
DIRECTORY

A$CREATE$FILE

A$DELETE$CON.
NECTION

A$DELETE$FILE

FILE-MODIFICATION

Asynchronous attachfile.

Asynchronous directory file creation.

Asynchronous data file creatron.

Asynchronous delete file connection.

Asynchronous data or directory file
deletion.

SYSTEM CALLS

6

18

z-'t

29

P S
F F

N N
F D

A$CF]ANCE$ACCESS

A$RENAME$FILE

A$TRUNCATE

FtLE INPUT/OUTPUT

Asynchronous change access rights to file.

Asynchronous rename file.

Asynchronous truncate file.

SYSTEM CALLS

10

72

106

A$CLOSE

A$OPEN

A$READ

A$SEEK

A$UPDATE

Asynchronous close file.

Asynchronous open file.

Asynchronous read file.

Asynchronous move file pointer.

Asynchronous finish writing to output
device.

P S N N
F F F D

* , |) i * 1 6

* * * * 5 7

: t : * : t * ó 8

77

109

BIOS Svstem Calls

iRI \TX@ I I BASIC I /O SYSTEM CAI, I -S

WAIT$IO Synchronous wait for status after I/O. * *)i * 137

A$WRITE Asynchronous write file. +)t * 112

GET STATUS/ATTRIBUTE SYSTEM CALLS
P S N N
F F F D

AGETCON- Asynchronous get connection status. *)t * 't 37
NECTION$STATUS

AGETDIREC- Asynchronous inspect directory entry. * 41
TORY$ENTRY

AGETFILE$STATUS Asynchronous get file status. * * * * 47

ACETPATH$- Asynchronously obtains path name from * * 54
COMPONENT connect ion token.

USER OBJECT SYSTEM CALLS

CREATE$USER Creiìte a user object. 116

DE[-E' Í 'E$USER Delete a user object. 118

INSPECT$USER Get lDs in a user object. 128

EXTENSION DATA SYSTEM CALLS

System CalÌ Function
P S N N
F F F D

AGETEXTENSIOr..'$- Asynchronous receive a file's extension * * 44
DATA data.

ASETEXTENSION$- Asynchronous store a file's extension * * 80
DATA data.

BIOS Svsten Calls

iRMX@ II BASIC I/O SYSTEM CALLS

TIME/DATE SYSTEM CALLS

GET$IME Get date/time value in internal.ly-stored
format. , 127

SET$TIME Set date/time value in internally-stored
format. 136

CALLS FOR ACCESSING THE GLOBAL TIME.OF.DAY CLOCK

GET$GLOBAI-$TIME Obtains the time of day from the battery
backed-up hardware clocks.125

SET$GLOBAII$TIME Sets the battery backed-up hardware
clock to asoeci f ied t ime.. , . . , - . - . . . - . . 134

BIOS Svstem Calls

A$ATTACH$FILE creates a connection to an existing file.

CALL RQAATTACH$FILE(user , pref ix , subpath$ptr , resp$rnbox,
e x c e p t $ p L r) :

Input Parameters
user A TOKEN for the user object to be inspected in any access

checking that takes place. A SELECTOR$OF(NIL) specifies the
default user for the calling task's job. This parameter is ignored
when attaching physical or stream files. Access checking does
occur for named files.

prefir A TOKEN for the connection object to he used as the path prefix.
A SELECTOR$OF(NIL) specifies the default prefir for the calÌing
task's job.

subpath$ptr A POINTER to a STRINC containing the subpath ofthe file to be
attached. A null string indicates that the new connection is to the
filc designated by the prefix. The new conncction will not be open,
regardless of the open mode of the prcfix.
(This parameter is ignored for physical and stream fiÌes.)

Output Parameters
resp$mbox A TOKEN for the mailbox into which the Basic l/O System pJaces

a token for the result object of the call. This result object is a new
file connection if the call succeeds or an I/O result segment
otherwise (see the Extended |RMX II Ba.sic I/O System User's
Guide, Appendu C). To ascertain the type of object returned, use
the Nucleus system call GET$TYPE.

If the object received is an l/O result segment, the callìng task
should calÌ DELETE$SEGMENT to delete the seqment after
exam ining i t .

except$ptr A POINTER to a WORD where the sequential condition code will
be returned.

BIOS System Calls

A$ATTACH$FILE

Description

A$ATTACH$FILE creates a connection to an existing file. Once the connection is
established, it remains in effect until the connection object is deleted, or until the creating
job is deleted. Once attached, the file may be opened, closed, read, written, etc., as many
times as desired. A$ATTACH$FILE has no effect on the owner ID or the access list for
the file.

Condition Codes

A$ATTACH$FILE returns condition codes at two different times. The code returned to
the calling task immediately after invocation of the system call is considered a sequential
condition code. A code returned as a result of asynchronous processing is a concurrent
condition code. A complete explanation of sequential and concurrent parts of system calls
is in the Extended |RMX II Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by
the except$ptr parameter of this system call.

E$OK

EDEVOFFLINE

E$EXIST

0000H

OO2EH

No exceptional conditions.

The prefix parameter in this system call refers to a
logical connection. One of the following is true of
the device associated with the connection:

. It has been physically attached but is now off-
line.

. It has never been physicaÌly attached. (See
Appendix E in the Extended LRMX II Basic I/O
User's Guide for a more detailed explanation.)

One of the following is true:

. One or more of the following parameters is not
a token for an existing object:

- The user parameter

- The prefir parameter

- The resp$mbox parameter

. The prefix connection is being deleted.

0006H

BIOS System Calls

A$ATTACH$FILE

E$LIMIT

E$MEM

ENOPREFIX

ENOUSER

0004H

0002H

8022H

8021H

. The connection for a remote driver is no longer
active.

Processing this call would cause one or more of
these limits to be exceeded:

. The object limit for this job.

. The number of I/O operations that can be
outstanding at one time for the user object
specified in the call (255 decimal).

. The number of I/O operations that can be
outstanding at one time for the caller'sjob (255
decimal).

. The number of outstanding I/O operations for a
remote connection has been exceeded.

The memory available to the calling task's job is not
sufficient to complete the call.

The calling task specified a default prefk (prefix
argument equals zero), but no default prefix can be
found because of one of the following reasons:

. When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default prefix.

. The job's directory can have entries but a
default prefix is not cataloged there.

If the user parameter in this call is not
SELECTOR$OF(NIL), the parameter is not a
tokcn for a user ohject. l f the user parameter is
SELECTOR$OF(NIL), it specifies a tlefault user.
But no default user can be found because of one of
the following reasons:

. When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

. The job's directory can have entries but a
default user is not cataloged there.

. The object that is cataloged with the name
R?IOUSER is not a user object. The name
R?IOUSER should be treated as a reserved
word.

BIOS Svstem Calls

A$ATTACH$FILE

ENOTCONFIGURED 0008H This system call is nor part of the
present configuration.

E$TYPE fl002ll One or more of the followins conditions caused this
exception:

. The prefix parameter is a token for an object
that is not of the correct type. It must be either
a connection object or a logical device object.
(Logical device objects are created by the
Extended I/O System.)

. The resp$mbox parameter in the call is a token
for an object that is not a mailbox.

Concurrent Condit ion Codes

The Basic I/O System can return the follow.ing condition codes in an I/O result segment
at the mailbox specified by resp$mbox. After examining the scgment, you should delete ir
to return the memory to the memory pool.

E$OK 0000H No exceptional conditions.

EDEVDETACHING 0039H The file specified is on a device rhar rhe sysrem is
detaching.

E$FNEXIST 002It{ A file in rhe specified path, or rhe target file itsell,
does not exist or is marked for deletion.

E$FTYPL, 0027H The string pointed to by the subpath$ptr parameter
contains a filename that should be the name of a
directory, but is not. (Except for the last file, each
file in a path must be a named directory.)

E$INVALID$FNODE 003DH The fnode for the specified file is invalid. The file
cannot be n""".."i; you shoulcJ delete it.

E$lO 002BH An I/O error occurred, which might have prevented
the operation from completing. Examine the
unit$status f ie ld of the I /O resul t segment for more
informat ion.

EIOMEM 0042H The memory available to the Basic I/O System job rs
not sufficient to comrrlete the call.

BIOS System Calls

A$CHANGE$ACCESS changes the access rights to a named data or directory file.

CALL RQACHANGE$ACCES S (user , p re f i x , subpath$pt r , id , access ,
resp$rnbox , except$p t r) ;

Input Parameters
user

prefix

subpath$ptr

A TOKEN for the user object to be inspected in access checking.
A value of SELECTOR$OF(NIL) specifies the default user for the
calling task's job.

A TOKEN for the connection object to be used as the path prefix.
A SELECTOR$OF(NIL) specifies the default prefix for the calling
task's job.

A POINTER to a STRING giving the subpath of the file whose
access is to be changed. A null string indicates that the prefix itself
designates the desired file.

A WORD containing the lD number of the user whose access is to
be changed. If this ID does not already exist in the lD-access mask
list, it is added. This list may contain a total of three ID-access
pairs.

A BYTE mask giving the new access rights for the ID. For each
bit, a one grants access, and a zero denies it. (Bit 0 is the low-order
bit.) For a named data file, the possible bit settings are:

Bi t Meaning

id

0
I
2
3

Delete
Read
Append
Update
Reserved (set to 0)

l0 BIOS Svstem Calls

A$CHANGE$ACCESS

For a named directory file, the possible bit settings are:

Bi t Meaning

0 Delete
1 List
2 Add Entry
3 Change Entry
4-7 Reserved (set to 0)

If zero is specified for the access parameter (that is, no access), the
ID specified in the id parameter is deleted from the file's ID-aocess
list and the accessor count field is decremented.

Output Parameters
resp$mbox A TOKEN for the mailbox that receives an I/O result segment

indicating the result of the call (see EtteruLed |RMX II Basic I/O
System User's Guide, Appendx C). A value of
SELECTOR$OF(NIL) means that you do not want to receive an
I/O result segment.

lf it receives an I/O result segment, the calling task should call
DELETE$SEGMENT to delete the segment after examining it.

except$ptr A POINTER to a WORD where the sequential condition code will
be returned.

Description

A$CHANGE$ACCESS system call applies to named files only. This call has no effect on
existing connections to the fiÌe. It is calÌed to change the access rights to a named data or
directory file. Depending on the contents ofthe "id" and "access" parameters specified in
the system call, users may be added to or deleted from the file's ID-access mask list, or the
access privileges granted to a particular user may be changed.

NOTE
The caller must be the owner of the file or must have change entry access
to the file's parent directory. However, if the owner is 'WORLD", that is,
0FFFFH, then any task may change the access mask of the file. If system
manager support is configured, user 0 may change the aocess rights of any
file resardless of which user is the owner.

BIOS System Calls I t

A$CHANGE$ACCESS

Condition Codes

A$CIIANGE$ACCESS returns condition codes at two different times. The code
returned to the calling task imme<Jiately after invocation of the system call is considered a
sequential condition code. A code returned as a result of asynchronous processing is a
concurrent condition code. A complete explanation of sequential and concurrent parts of
system calls ís ín the Ertended |RMX II Basic I/O Slstem User's Guid.e.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by
the except$ptr parameter of this system call.

E$OK 0000H No excentional conditions.

EDEVOFFLINE OO2EH The prefix parameter in this system call refers to a
logical connection. One of the following is true of
the device that is associated with the connection:

. I! has been physically attached but is offline.

. It has never been physically attached. (For
example, LOG ICAL$ATTACH$DEVICE, an
EIOS call, was used. This call does not cause
the device to be physically attached until
another EIOS call references the logical device
object.)

At least one of the following is true:

o One or more of the following parameters is not
a token for an existing object:

- The user parameter
- The prefix parameter
- The response mailbox parameter

. The prefix connection is being deleted.

o The remote driver connection is no longer
active.

This system call applies only to named files, but the
prefix and subpath parameters specify some other
type of file.

Processing this call would cause one or more of
these limits to be exceeded:

E$EXIST 0006H

E$IFDR OO2FH

t2

E$LIMIT 0004H

BIOS Svstem Calls

A$CHANGE$ACCESS

o The object limit for this job.

. The maximum number of outstanding I/O
operations for the user object specified in the
call, (255 decimal).

. The number of I/O operations that can be
outstanding at one time for the caller's job (255
decimal).

. The number of outstanding I/O operations for a
remote file has been exceeded.

E$MEM 0002H The memory available to the calling task's job is nor
sufficient to complete this call.

ENOPREFIX 8022H The calling task specified a default prefix (prefix
parameter equals SELECTORgOF(NIL)). But no
default prefix can be found because of one of the
following:

o When this job was created, a size of
SELECTOR$OF(NIL) was specified for its
object directory, so the job cannot catalog a
default prefix-

. The job's directory can have entries but no
default prefix is cataloged there.

ENOUSER 802IH If the user parameter in this call is not
SELECTóR$oF(NIL), then rhe paramerer is not a
token for a user object.If the user parameter is
SELECTOR$OF(ML), it specifies a default user.
But no default user can be found because of one of
the following reasons:

o When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

. The job's directory can have entries but no
default user is cataloged there.

. The object which is cataloged with the name
R?IOUSER is not a user object. The name
R?IOUSER should be treated as a reserved
word.

ENOTCONFIGURED 0008H This system call is not part of the
present conllguratton.

BIOS System Calls l3

A$CHANGE$ACCESS

E$PATHNAME$- 0038H The specified pathname contains invalid
SYNTAX characters.

E$SUPPORT 0023H The connection was not created by thisjob.

E$TYPE 8002H One or more of the following conditions caused this
exceptlon:

. The user token desisnates a connection of the
wrong q?e.

. The prefix parameter is a token for an object
that is not of the correct type. It must be either
a connection object or a logical device object.
(Logical device objects are created by the
Extended I/O System.)

o The resp$mbox parameter in the call is a token
for an object that is not a mailbox.

Concurrent Condit ion Codes

The Basic I/O System can return the following condition codes in an I/O result segrrent
at the mailbox specified by resp$mbox. After examining the segment, you should delete it.

E$OK 0000H No exceptional conditions.

EDEVDETACHING 0039H The file specified is on a device that the system is
detaching.

E$FACCESS 0026H The user object in the parameter list is not the
owner of the specified file, nor does it have "change
entry" access to the parent directory.

E$FNEXIST 0021H A file in the specified path, or the target file itself,
does not exist or is marked for deletion.

E$FI-YPE 0027H The string pointed to by the subpath$ptr parameter
contains a filename which should be the name of a
directory, but is not. (Except for the last file, each
file in a path must be a named directory.)

E$INVALID$FNODE 003DH The fnode for the snecified file is invalid. The file
cannot be u"""r."J; you shoul<J clelete it.

E$lO 002BH An I/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the I/O result segrnent for more
information. For information on IORS structures.
see the Extended |RMX II Device Diven User's
Guide.

l 4 BIOS Svstem Calls

A$CHANGE$ACCESS

EIOMEM 0042H The memory available to the Basic I/O System job is
not sufficient to complete this call.

E$SUPPORT 0023H The call attempted to add another access ID to the
list of access ID's. The access list already contained
the limit of three such ID's.

BIOS System CaUs t5

A$CLOSE closes an oDen file connection.

CALL RQ9A$CLoSE(connect ion, resp$rnbox, excepr$prr) ;

Input Parameter
connection A TOKEN for the file connection to be closed.

Output Parameters
resp$mbox A TOKEN for the mailbox that receives an I/O result segrnent

indicating the result of the call (see Appendk C in the Extended
iRlvlX II Basic I/O User's Guide). A value of
SELECTOR$OF(NIL) means that you do not want to receive an
I/O result segment.

lf it receives an I/O result segment, the calling task should call
DELETE$SEGMENT to delete the segment after examining it.

A POINTER to a WORD where the sequential condition code wiII
be returned.

except$ptr

Description

The A$CLOSE system call closes an open file connection. It is called when the
application needs to change the open mode or shared status of the connection. The Basic
I/O System will not close the connection until all existing I/O requests for the connection
have been satisfied. In addition, the Basic I/O System will not send a response to the
response mailbox until the file is closed.

Condition Codes

A$CLOSE returns condition codes at two different times. The code returned to the
calling task immediately after invocation of the system call is considered a sequential
condition code. A code returned as a result of asynchronous processing is a concurrent
condition code. A complete explanation of sequential and concurrent parts of system calìs
is in the Extended |RMX II BtLsic I/O System lJser's Guùle.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

l 6 BIOS Svstem Calls

A$CLOSE

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by
the except$ptr parameter of this system call.

E$OK 0000H No exceptional conditions.

E$EXIST 0006H At least one of the following is true:

. One or more of the following parameters is not
a token for an existing object:

- The connection parameter

- The resp$mbox parameter

. The connection is being deleted.

r The connection for a remote driver is no longer
active.

E$LIMIT 0004H At least one of the following is true.

o The calling task's job has already reached its
object limit.

. The number of outstanding I/O operations for a
remote connection has been exceeded.

E$MEM 0002H The memory available to the calling task's job is not
sufficient to complete this call.

ENOTCON- 0008H This system call is not part of the
FIGURED present configuration.

E$SUPPORT 0023H The connection was not created by this job.

E$TYPE 8002H At least one of the following is true:

. The connection parameter is a token for an
object that is not a connection.

. The resp$mbox parameter is a token for an
object that is not a mailbox.

Concurrent Condit ion Codes

The Basic I/O System can return the following condition codes in an I/O result segment
at the mailbox specified by resp$mbox. After examining the segment, you should delete it.

E$OK 0000H No exceptional conditions.

E$CONN$NOfiOPEN 0034H The specified connection is not open.

E$IO 002BH An I/O error occurred, but the operation was
successlul anVwav.

BIOS System Calls t 7

A$CREATE$DIRECTORY creates a directory file.

CALL RQA CREATE$DIRECTORY (us e r , p re f i x , subpath$pt r , access ,
r e s p $ m b o x , e x c e p t 9 p t r) ;

Input Parameters
user A TOKEN for the user object of the new directory's owner. The

user object is inspected to make sure the caller has proper access
to the new directory's parent. A SELECTOR$OF(NIL) specifies
the default user for the calling task's job.

prefix A TOKEN for the connection to be used as the path prefix. A
SELECTOR$OF(NIL) specifies the default prefix for the calling
task's job.

subpath$ptr A POINTER to a STRING containing the subpath of the directory
to be created. The subpath string must not be null, and it must
point to an unused location in the directory tree.

access A BYTE mask giving the owner's initial access rights to the
directory. For each bit in the mask, a one grants access and a zero
denies it. The possible bit settings are:

Bi t Meaning

0 Delete
I List
2 Alld Entry
3 Change Entry
4-7 Reserved (set to 0)

Output Parameters
resp$mbox A TOKEN for the mailbox that receives the result object of this

call. This result object is a directory file connection if the call
succeeded, or an I/O result segment otherwise (see Appendix C in
the Extended |RMX II Bnsic I/O System User's Guide). 'îo

determine the type of object returned, use the Nucleus system call
GET$TYPE. If the object received is an I/O result segrnent, rhe
calling task should calì DELETE$SEGMENT to delete the
segment a f ter exrrmin ing i t .

l 8 BIOS Svstem Calls

A$CREATE$DIRECTORY

except$ptr A POINTER to a WORD where the sequential condition code wilÌ
be returned.

Description

The A$CREATE$DIRECTORY system call is applicable to named directory files only.
When called, it creates a new directory file and returns a token for the new file
connection. This system calì cannot be used to create a connection to an existing
directory. To attach to an existing file you should use the A$ATTACH$FILE system call.

NOTE
The caller must have add-entry access to the parent of the new dkectory.

Condition Codes

A$CREATE$DIRECTORY re turns condition codes at two dillerent times. The code
returned to the calling task immecliately after invocation of the system cal-[is considered u
sequential condition code. A code returned as a result of asynchronous processing is a
concurrent condition code. A complete explanation of sequential and concurrent parts of
system calls is in the Enended |RMX II Basic I/O System User's Guide.

The list on the following pages is divided into two parts--one lbr sequential codes, and onc
for concurrent codes.

Sequent ial Condit ion Codes

The Basic I/O System can return the following condition codes to the word specified by
the except$ptr parameter of this system call.

E$OK 0000H No exceptional conditions.

EDEVOFF$LìNE 0028H The prefix parameter in this system caÌl refers to a
logical connection, One of the following is true of
the device that is associated with the connection:

. It has been physically attached but is now ofl:
line.

o lt has never been physically attached. (See
Extended |RMX II Basic I/O System User's
Guide, Appendix E for a more detailed
explanation.)

E$EXIST 000611 At least one of the followins is true:

BIOS Svstem Calls l9

ASCREATE$DIRECTORY

. One or more of the following parameters is not
a token for an existing object:

- The user parameter

- The prefix parameter

- The response mailbox parameter

. The prefix connection is being deleted.

o The connection for a remote driver is no longer
actlve.

E,$IFDR 002FH This system call applies only to named directory
files, but the prefix and subpath parameters specify
some other type of file.

E$LIMIT 0004H Processing this call would cause one or more of
these limits to be exceeded:

. The object limit for this job.

. The number of I/O operations that can be
outstanding at one time for the user object
specified in the call (255 decimal).

. The number of I/O operations that can be
outstanding at one time for the caller's job (255
decimal).

. The number of outstanding I/O operations for a
remote connection has been exceeded.

E$MEM 0002H The memory available to the calling task's job is not
sufficient to complete this call.

ENOPREFIX ll022H The task specified a default prefix (prefir parameter
equals SELECTOR$OF(NIL)). But no default
prefix can be found because of one or more of the
following reasons:

. When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default prefix.

. The job's directory can have entries but no
default prefix is cataloged there.

ENOUSER 8021H I f the user parameter in this cal l is not
SELECTOR$OF(NIL), then the parameter is not a
user object. If the user parameter is
SELECTOR$OF(NIL), it specifies a default user.

20 BIOS System Calls

A$CREATESDIRECTORY

But no default user can be found because of one of
the followins reasons:

When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

The job's directory can have entries but no
default user is cataloged there.

The object that is cataloged with the name
R?IOUSER is not a user object. The name
R?IOUSER should be treated as a reserved
word.

0008H This system call is not part of the
present configuration.

003EH The soecified nath name contains invalid
cnaracters.

At least one of the following is true:

The prefix parameter is a token for an object
that is not of the correct type. It must be eithcr
a connection object or a logical device object.
(Logical device objects are created by the
Extended I/O System.)

The resp$mbox parameter in the calÌ is a token
for an obiect that is not a mailbox.

Concurrent Condition Codes

The Basic I/O System can return the following condition codes in an l/O result segment
at the mailbox specified by resp$mbox. After examining the segment, you should delete it.

E$OK 0000H No exceotional conditions.

EDEVDETACHING 0039H The file specified is on a device that the system is
detachins.

ENOTCON-
FIGURED

E$PATHNAME$-
SYNTAX

E$TYPE

E$FACCESS

E$FEXIST

E$FNEXIST

E$FNODE$LIMIT

8002H

0026H The user object in the parameter list is not clualified
for "add-entry" access to the parent directory.

0020H A file with the specified path name already exists.

0021H A file in the specified path does not exist or is
marked for deletion.

003FH The volume already contains the maximum number
of files. No more fnodes are available for new files.

BIOS System Calls 2 l

A$CREATE$DIRECTORY

E$F-I-YPE 0027H The string pointed to by the subpath$ptr parameter
contains a filename which should be the name of a
directory, but is not. (Except for the last file, each
file in a path must be a named directory.)

E$INVALID$FNODE, 003DH The fnode for the specified file (or for a directory in
the file's path) is invalid. The fiìe with the invalid
fnode cannot be accessed; you should delete it.

E$lO 002BH An I/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the I/O result segment for more
information.

EloMEM 0042H The memory available to the Basic I/O System job is
not sufficient to complete this call.

E$SPACE 0029H The volume is full.

E$SUPPORT 0023H The Basic I/O System is not configured to support
space alìocation.

22 BIOS Svstem Calls

A$CREATE$FILE creates a Dhvsical. stream. or named file.

CALL RQACREATE$FILE (user ,
g r a r Ì u r a r r c y , s l z e ,

pref ix , subpath$ptr , access,
must$create, resp$mbox, except$ptr) ;

Input Parameters
user

prefix

subpath$ptr

A TOKEN for the user object of the owner of the new file. It also
furnishes the user ID for any access checking that might occur. A
SELECTOR$OF(NIL) specifies the default user for the calling
task'sjob. This parameter does not apply to physical or stream
files.

A TOKEN for a device or file connection. The file created by this
call is of the type (physical, stream, or named) that is associated
with this parameter. A SELECTOR$OF(NIL) for this parameter
specifies the default prefix for the job.

For stream files, if the prefix is a device connection, a new stream
file is created. If the prefix is a file connection, a new file
connection to the same stream file is created.

For named fiìes, the prefix acts as the starting point in a directory
tree scan.

A POINTER to a STRING containing the subpath for the named
file being created. This parameter does not apply to physical and
stream liles.

Entering NIL for this parameter, when using a named file driver,
causes an unnamed file to be created. This file is automaticallv
deleted when the last connection to it is deleted.

A BYTE mask giving the owner's initial aocess rights to the new
file. For each bit, a one grants access and a zero denies it. (Bit 0 is
the low-order bit.)

Bi t Mean ing

0
I
2
3

Delete
Read
Append
Update
Reserved (set to 0)

BI0S System Calls 2J

ASCREATESFILE

This parameter does not apply to physical or stream files.

granularity A WORD giving the granularity of the file being created. This is
the size (in byes) of each logical block of volume space to be
allocated to the file. The value specified in this parameter is
rounded up, if necessary, to a multiple of the volume granularity.
Note that a contiguous file can become noncontiguous when it is
extended.

The granularity parameter can have the following values:

0 Same as volume granularity
FFFFH The file must be contiguous
Other Number of bytes per allocation

When a contiguous file is extended, space is allocated in volume-
granularity units. If "Other" is specified, a multiple of 1024 bytes is
recommended. This parameter is ignored for physical and stream
files.

s'ze A DWORD giving the number of bytes initially reserved for the
file. For stream files, this value must equal zero. If you make this
value greater than zero, for stream files the reserved space may
contain unknown data. For physical files, this parameter is
ignored.

must$create A BYTE with values of 1 for TRUE, or 0 for FAI-SE. Only the
least significant bit is checked. This BYTE determines the
handling of input paths designating an existing file (see following
Description). This parameter applies only to named files.

Output Parameters
resp$mbox A TOKEN for the mailbox that receives the result object ofthis

call. This result object is a new file connection if the call
succeeded; otherwise, it is an I/O result segment (see Appendix C
in the Extended |RMX II Basic I/O System User's Guíde). To
determine the type of object returned, use the Nucleus system calÌ
GET$TYPE.

lf the object received is an I/O result segment, the calling task
should call DELETE$SEGMENT to delete the sesment after
examining i t .

except$ptr A POINTER to a WORD where the sequential condition code will
be returned.

24 BIOS System Calls

A$CREATE$FILE

Description

The A$CREATE$FILE system call creates a physical, stream, or named data file and
returns a token for the new file connection. If a named file designated by the prefix and
subpath parameters already exists, one of the following occurs:

. Error: lf the "must$create" parameter is TRUE (0FFH), an error condition code
(E$FEXIST) is returned.

. Truncate File: Ifthe "must$create" parameter is FAI^SE (0) and the path designates
an existing data file, a new connection to that file is returned (that is,
A$CREATE$FILE acts like A$ATTACH$FILE). In rhis case, the file is truncated or
expanded according to the "size" parameter, so data in the file might be lost. As in the
case of A$ATTACH$FILE, the file's owner ID and access list are unchanged.

. Temporary File Created: lf the "must$create" parameter is FAISE (0), and the path
designates an existing directory file or device, an unnamed temporary file is created
on the corresponding device. This file is deleted automatically when the last
connection to it is deleted. Because this file is created without a Dath. it can be
accesscd only through a conncet ion.

Any task can create a temporary file by referring to any directory. This is true
because temporary files are not listed as ordinary entries in the directory, so no add-
entry access is required.

Many of the parameters specified in the A$CREATE$FILE call do not apply to physical
and stream files. ln these cases, the parameter is ignored.

NOTE
The caller must have add-entry access to the parent directory ofthe new
named fiie.

Condition Codes

A$CREATE$FILE returns condition codes at two different times. The code returned to
the calling task immediately after invocation of the system call is considered a sequential
condition code. A code returned as a result of asynchronous processing is a concurrent
condition code. A complete explanation of sequential and concurrent parts of system calls
is rn îhe Extended iRMX II Basic I/O System User's Guiàe.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

BIOS System Calls t (

A$CREATE$FILE

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by
the except$ptr parameter of this system call.

E$OK 0000H No exceptional conditions.

EDEVOFF$LINE 002EH The prefix parameter in this system call refers to a
logical connection. One of the following is true of
the device associated with the connection:

. It has been physically attached but is now off-
line.

o It has never been physically attached. (See
btended |RMX II Basic I/O System User's
Guide, Appendu E for a more detailed
explanation.)

E$EXIST 0006H At least one of the following is true:

. One or more of the following parameters is not
a token for an existing object:

- The user parameter

- The prefix parameter

- The resp$mbox parameter

. The prefix connection is being deleted.

. The connection for a remote driver is no longer
active.

E$LIMIT 0004H The number of outstanding I/O operations for a
remote connection has been exceeded.

E$MEM 0002H The memory available to the calling task's job is not
sufficient to complete this call.

ENOPREFIX 8022H The call specified a default prefix (prefix argument
equals SELECTOR$OF(NIL)). But no default
prefix can be found because of one of the following
reasons:

o When this job was created, a size of
SELECTOR$OF(NIL) was specified for its
object directory, so the job cannot catalog a
default prefix.

. The job's directory can have entries but a
default prefir is not cataloged there.

26 BIOS Svstem Calls

ENOUSER

ENOTCON-
FIGURED

E$PATHNAME$-
SYNTAX

E$TYPE

A$CREATE$FILE

8021H lf the user parameter in this call is not
SELECTOR$OF(NIL), then the paramerer is nor ii
token for a user object. If the user parameter is
SELECTOR$OF(NIL), it specifies a default user.
But no default user can be found because of one of
the following reasons:

. When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

. The job's directory can have entries but a
default user is not cataloged there.

. The object that is cataloged with the name
R?IOUSER is not a user object. Another task
cataloged an object (not a user object) under
the name R?IOUSER.

0008H This system call is not part of the
present configuration.

003EH The specified path name contains invalid
characters.

8002H At least one of the lbl.lowing is true:

. The prefix parameter is a token for an object
that is not of the correct type. It must be either
a connection object or a logical device object.
(Logical device objects are created by the
Extended l/O System.)

. The resp$mbox parameter in the call is a token
for an object that is not a mailbox.

Concurrent Condition Codes

The Basic I/O System can return the following condition codes in an I/O result segment
at the mailbox specified by resp$mbox. After examining the segment, you should delete it.

E$OK 0000H No exceot ional condit ions.

EDEVDETACHING Ot)39H The file specified is on a device that the system is
detaching.

E$FACCESS 002bH One of the fo lJowing is t rue:

. No file with the specified pathname exists, and
the specified user object does not have "add-
entry" access to the parent directory.

BIOS System Calls 27

A$CREATE$FILE

. A file with the specified pathname exists, but
the specified user object does not have "update"
access to the file.

E$FEXIST 0020H The "must$createn parameter in the call is TRUE,
and the file already exists. (See the Description
sectlon.)

E$FNEXIST 0021H A file in the specified path does not exist or is
marked for deletion.

E$FNODE$LIMIT 003FH The volume alreadv contains the maximum number
of files. No more inodes are available for new files.

E$FTYPE 0027H The strirg pointed to by the subpath$ptr parameter
contains a filename which should be the name of a
directory, but is not. (Except for the last file, each
file in a path must be a named directory.)

E$INVALID$FNODE 003DH The fnode for the specified file (or for a directory in
the file's path) is invalid. The file with the invalid
fnode cannot be accessed; you should delete it.

E$lO 002BH An I/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the I/O result segment for more
information.

EIOMEM 0042H The memory available to the Basic I/O System job is
not sufficient to complete this call.

E$SHARE 0028H The file this call is attempting to create already
exists and is open. It was opened with the
characteristic "no share with writers." (See the
A$OPEN call in this manual.)

E$SPACE 0029H The volume is full.

E$SUPPORT 0023H One of the following is true:

. The file exists and the must$create parameter is
FAI,SE. When the Basic I/O System was
configured, an option was chosen that prevented
this combination. so that files could not be
automatically truncated to zero size. See the
Description section.

. The Basic I/O System is not configured to allow
snace allocation on volumes.

28 BIOS System Calls

A$DELETE$CONNECTION deletes a named file connection created by
A$CREATE$FILE, A$CREATE$DI RECTORY, or A$ATTACH$FILE.

CALL RQSA$DELETE$CONNECTI0N(connect ion, resp$rnbox, except$ptr) ;

Input Parameter
connection A TOKEN for the file connection to be deleted.

The A$DELETE$CONNECTION system call deletes a connection object. It also deletes
the associated file if both of the following are true:

. The file is already marked for deletion (by a previous A$DELETE$FILE call) or is an
unnamed file.

. The specified connection is the only connection to the file.

If a connection is open when A$DELETE$CONNECTION is called, it is closed before
beins deleted.

NOTE
Connections should be deleted when no longer needed.

Output Parameters
resp$mbox A TOKEN for the mailbox that receives an I/O result segment

indicating the result of the call (see Appendix C in the Extended
|RMX II Basic I/O System User's Gui.de). Avahe of
SELECTOR$OF(NIL) means that you do not want to receive an
I/O result segment.

If it receives an I/O result segment, the calling task should call
DELETE$SEGMENT to delete the segrnent after examining it.

except$ptr A POINTER to a WORD where the sequential condition code will
be returned.

Description

BIOS Svstem Calls 29

A$DELETE$CONNECTION

Condition Codes

A$DELETE$CONNECTION returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system call is considered a
sequential condition code. A code returned as a result of asynchronous processing is a
concurrent condition code. A complete explanation of sequential and concurrent parts of
system calls is in the Ertended |RMX II Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by
the except$ptr parameter of this system call.

E$OK 0000H No exceptional conditions.

E$EXIST 0006H At least one of the following is true:

. One or more of the following parameters is not
a token for an existing object:

- The connection parameter

- The resp$mbox parameter

. The connection is being deleted.

o The connection for a remote driver is no lonqer
active.

E$LIMIT 0004H The calling task'sjob has already reached its object
limit.

E$MEM 0002H The memory available ro the calling task's job is not
sufficient to complete this call.

ENOTCON- 0008H This system call is not part of the
FIGURED present configuration.

ENOTFILE$CONN 0032H The connection parameter is a device connection,
not a file connection.

E$SUPPORT 0023H The specified connection was nor created by thisjob.

E$TYPE 8002H One or more of the following is a token for an object
that is not of the correct flpe:

o The connection parameter.

. The resp$mbox parameter.

30 BIOS Systern Calls

A$DELETESCONNECTION

Concurrent Condition Codes

The Basic I/O System can return the following condition codes in an I/O result segment
at the mailbox specified by resp$mbox. After examining the segrìent, you should delete it.

E$OK 0000H No exceptional conditions.

E$IO 0028H An I/O error occurred, however the connection was
deleted.

BIOS System Calls 3 l

A$DELETE$FILE marks a file for deletion.

CALL RQADELETE$FILE(user , pref ix , subpath$ptr , resp$rnbox,
e x c e p t $ p t r) ;

Input Parameters

prefix

subpath$ptr

Output Parameters
resp$mbox

except$ptr

The A$DELETE$FILE system call applies to stream and named files only. When called,
it marks the designated fiÌe for deletion and removes the file's entry from the parent
directory. The entry is removed immediately, but thc fiÌe is not actually deleted until all
connections to the file have been severed (by A$DELETE$CONNECTION calls).
Directory files cannot be deletecl unless they are empty.

A TOKEN for the user object to be inspected in access checking.
A SELECTOR$OF(NIL) specifies the default user for the calling
task'sjob. This parameter does not apply to stream files.

A TOKEN lbr the connection object to be used as the path prefix.
A SELECTOR$OF(NfL) specifies the default prefix for the calling
task's job.

A POINTER to a STRING giving the subpath for the file being
deleted. A null string indicates that the prefix itself designates the
desired file. In this instance, the user parameter is ignored, since
access checking was already performed when the file was attached.
This parameter does not apply to stream files.

A TOKEN for a mailbox that receives an I/O result segment (see
Extentlerl |RMX II Basic I/O Sy-stem User's Guide, Appendix C)
when the file is marked for deletion. The file will not actually be
deleted until all connections to the file are deleted. as exolained
uncler the Description below. A value of SELECTOR$dF(NIL)
means that you do not want to receive an I/O result segment.

If it receives an I/O result segment, the calling task should call
DELETE$SEGMENT to delete the segment after examining ir.

A POTNTER to a WORD where the sequential condition code will
be returned.

Description

-ìl BIOS Svstem Calls

ASDELETE$FILE

NOTE
The caller must have delete acr:ess to the file.

Condition Codes

A$DELETE$FILE returns condition codes at two different times. The code returned r
the calling task immediately after invocation of the system call is considered a sequential
condition code. A code returned as a result of asynchronous processing is a concurrcnt
condition code. A complete explanation of sequential and concurrent parts of system calls
ís n the Extended iRMX II Basic I/O System User's Guidc.

The following list is divided into two parts--one for sequential codes, an<J one for
concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by
the except$ptr parameter of this system call.

E$OK 0000H No exceptìonal contiitions.

EDEVOFF$LINE 002EH The prefix parameter in this system call refers ro a
logical connection. One of the following is true ol'
the device that is associated with the connection:

r It has been physically attached but is now off-
line.

. It has never been physically attached. (See
Appendir E ín the Extended iRMX II Basic I/O
System User's Guide for a more detailed
explanation.)

E$EXIST 0006H At least one of the following is true:

. One or more of the following parameters is not
a token for an existing object:

- The user parameter

- The prefix parameter

- The response mailbox parameter

. The prefix connection is being deleted.

. The connection for a remote driver is no longer
actlve.

BIOS Svstem Calls J J

A$DELETE$FILE

E$IFDR

E$LIMIT

E$MEM

ENOPREFIX

ENOUSER

OO2FH This system call applies only to named or stream
files, but the prefix and subpath parameters
specified a physical file.

Processing this call would exceed one or more of the
following limits:

. The object limit for this job.

. The number of I/O operations that can be
outstanding at one time for the user object
specified in the call (255 decimal).

. The number of I/O operations that can be
outstanding at one time for the caller's job (255
decimal).

. The number of outstanding I/O operations for a
remote connection has been exceeded.

The memory available to the calling task's job is not
sufficient to complete this call.

The calì specified a default prefix (prefix argument
equals SELECTOR$OF(NIL)). But no default
prefix can be found because of one of the following
reasons:

o When this job was created, a size of
SELECTOR$OF(ML) was specified for its
object directory, so the job cannot catalog a
default prefk.

. The job's dtectory can have entries but no
default prefix is cataloged there.

If the user parameter in this call is not
SELECTOR$OF(NIL), then the problem is that
the parameter is not a token for a user object. If
the user parameter is SELECTOR$OF(NIL), it
specifies a default user. But no default user can be
found because of one of the following reasons:

. When this job was created, a size of zero was
specified for its object directory, so thejob
cannot catalog a default user.

. The job's directory can have entries but no
default user is catalosed there.

0004H

8021H

0002H

8022H

l{ BIOS System Calls

A$DELETE$FILE

. The object that is cataloged with the name
R?IOUSER is not a user object. The name
R?IOUSER should be treated as a reserved
word.

ENOTCON- 0008H This system call is not part of
FICURED the present configuration.

E$PATHNAME$ 0038H The specified path name contains
SYNTAX invalid characters.

E$SUPPORT 0023H The specified connection was not created by thisjob.

E$TYPE 8002H At least one of the following is true:

o The prefix parameter is a token for an object
that is not ofthe correct type. It must be either
a connection object or a logical device object.
(Logical device objects are created by the
Extended I/O System.)

. The resp$mbox parameter in the call is a token
for an object that is not a mailbox.

Concurrent Condit ion Codes

The Basic I/O System can return the following condition codes in an I/O result segment
at the mailbox specified by resp$mbox. After examining the segment, you should delete it.

E$OK 0000H No exceptional conditions.

EDEVDETACHING 0039H The file specified is on a device that the system is
detaching.

EDIRNOT$EMPTY 0031H The call is attempting to delete a directory
containing entries.

E$FACCESS 0026H At least one of the following is true:

. The user object does not have delete access to
the file.

. The call attempted to delete the root directory
or a bit map file.

E$FNEXIST 002IH A file in the specilìed path, or the target file itself,
does not exist or is marked for deletion.

E$Fl-fPE 0027H The string pointed to by the subpath$ptr parameter
contains a string that should be the name of a
directory, but is not. (Except for the last file, each
file in a pathname must be a named directory.)

BIOS System Calls 35

A$DELETESFILE

E$IO 002BH An I/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the I/O result segrnent for more
information.

EIOMEM 0042H The memory available to the Basic l/O System is not
sufficient to complete the call.

-16 BIOS Svstem Calls

A$GEfi CONNECTION$STATUS returns information about a file connection.

CALL RQACET$ CONNECTlON$ STATUS (connec t ion, respgrnbox, exceprgprr) ;

Input Parameter
connectlon

Output Parameters
resp$mbox

A TOKEN for the file connection whose status is desired.

A TOKEN for the mailbox that is to receive a connection-starus
segment. The calling task is responsible for deleting the
connect ion-status segment alìer examining it.
' l he information in this sesment is structured as follows:

DECLARE conn$sta tus STRUCTURE (
s t a t u s
f i l e $ d r i v e r
f l a g s
open$mode
share $mode
f i l e S p r r
a c c e s s

These fields are interpreted as follows:

stalus

file$driver

A condition code giving the outcome of the
status-fetch operation. If this code is not
E$OK, the remaining fields must be
considered invalid.

Tells the type of file driver to which this
connection is attached. Possible values are:

WORD ,
BYTE ,
BYTE,
BYTE,
BYTE,
DWORD ,
BYTE) ;

Value

I
2

Type

Physical
Stream

4 Named
5 Remote

flags Contains two lìag bits. If bit 1 is set to onc,
this connection is active and can be opened.
bit 2 is set, this connection is a device
connection. (Bit 0 is the low-order bit.)

t l

BIOS System Calls

A$G ET$CONNECTION$STATUS

open$mode The mode established when this connection
was opened. Possible values are:

0 Connection is closed
1 Open for reading
2 Open for writing
3 Open for reading and writing

share$mode The sharins mode established when this
connection-was opened. Possible values are:

0 Private use only
I Share with readers only
2 Share with writers only
3 Share with all users

file$ptr The current bye location of the file pointer for
this connection.

aocess The access riehts for this connection. For each
bit, a one gra-nts access and a zero denies it.
(Bit 0 is the low-order bit.)

Bit Data Fjle Directory

0 Delete Delete
I Read List
2 Append Add Entry
3 Update Change Entry
4-7 Reserved Reserved

except$ptr A POINTER to a WORD where the sequential condition code will
be returned.

Description

The AGETCONNECTION$STATUS system call returns a segment containing starus
information about a file connection.

Condition Codes

AGETCONNECTION$STATUS returns condition codes at two different times. The
code returned to the calling task immediately after invocation of the system call is
considered a sequential condition code. A code returned as a result of asynchronous
processing is a concurrent condition code. A complete explanation of sequential and
concurrent parts of system calls is in the Ertendzd |RMX II Basic I/O System User's Gui.d.e.

The following list is divided into two parts-one for sequential codes, and one for
concurrent codes.

38 BIOS System Calls

A$G ET$CO N N ECTION$STATU S

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by
the except$ptr parameter of this system call.

E$OK 0000H No exceptional conditions.

E$EXIST 0006H At least one of the following is true:

. One or more of the following parameters is not
a token for an existing object:

- The connection parameter

- The resp$mbox parameter

. The connection is being deleted.

o The connection for a remote driver is no lonscr
active.

E$LIMIT 0004H At least one of the following is true:

. The calling task's job has already reached its
object limit.

. The number of outstanding I/O operations for a
remote connection has been exceeded.

E$MEM 0002H The memory available to the calling task's job is not
sufficient to complete the call.

ENOTCON- 0008H This system call is not part of the
FIGURED present configuration.

E$SUPPORT 0023H The specified connection parameter is not valid in
this system call because the connection was not
created by this job.

E$TYPE 8002H At least one of the following is true:

. The connection parameter is a token for an
object that is not a connection.

. The resp$mbox parameter is a token for an
object that is not a mailbox.

Concurrent Condit ion Codes

The Basic I/O System returns one ofthe following condition codes in an I/O result
segment at the mailbox specified by resp$mbox. You are responsible for deleting this
segment.

E$OK 0000H No exceotional conditions.

tsIOS System Calls 39

AGETCON N ECTION$STATUS

E$IO 0028H An I/O error occurred, which might or might not
have prevented the operation from being
completed. Examine the unit$status field of the
I/O result segment for more information.

40 BIOS System Calls

AGETDIRECTORY$ENTRY returns rhe file name associated with a named directory
file entrv.

CALL RQSAScET$ DIRECTORY$ ENTRY (connec r ion, enrrygnum, respgrnbox,
e x c e p t S p t r) ;

Input Parameters
connection A TOKEN for the directory file with the desired entry.

entry$num A V/ORD giving the entry number of the desired file name.
Entries within a directory are numbered sequentially starting from
zero. The E$EMPTY$ENTRY condition code will be returned it
there is no entry associated with this number.

Output Parameters
resp$mbox A TOKEN for the mailbox that will receive a directory-entry

segment. The task making the AGETDIRECTORY$ENTRY
caÌl is responsible tbr deleting this segment after examining it.

Information in this segment is structured as follows:

DECIARE dir$enrryginfo STRUCTURE(
status WORD,
n a m e (1 4) B Y T E) ;

where

status Indicates how the operation was completed,
EOK, EEMPTY$ENTRY, and
EDIREND condition codes all indicate
successful completion.

name File name contained in the specified entry,
padded with blanks. This field is valid only if
status = E$OK.

except$ptr A POINTER to a WORD where the sequential condition code will
be returned.

BIOS System Cal ls 4 l

A$G ET$DIRECTORY$ENTRY

Description

The AGETDIRECTORY$ENTRY system call applies to named files only. When
called, it returns the file name associated with a specified directory entry. This name is a
single subpath component for a file whose parent is the desigrrated directory. As an
alternative to using this system call, an application task can open and read a directory file.

NOTE
The caller must have display access to the designated directory.

Condition Codes

AGETDIRECTORY$ENTRY returns condition codes at two different times. The
code returned to the calling task immediately after invocation ofthe system call is
considered a sequential condition code. A code returned as a result of asynchronous
processing is a concurrent condition code. A complete explanation of sequential and
concurrent parts of system calls is in the Extended íRMX II Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by
the except$ptr parameter of this system call.

E$OK 0000H No exceptional conditions.

E$EXIST 0006H At least one of the following is true:

. One or more of the following parameters is not
a token for an existing object:

- The connection parameter

- The resp$mbox parameter

o The connection is being deleted.

E$IFDR 002FH This system call applies only to named directories,
but the connection parameter specifies another type
of file.

E$LIMIT 0004H The.calling task'sjob has already reached its object
lrmlt.

E$MEM 0002H The memory available to the calÌing task's job is not
sufficient to comDlete this call.

42 BIOS Svstem Calls

AGETDIRECTORY$ENTRY

ENOTCON- 0008H This system call is not part of
FIGURED the present configuration.

E$SUPPORT 0023H The specified connection was not created by thisjob.

E$TYPE 8002H At least one of the following is true:

. The connection parameter is a token for an
object that is not a connection.

. The resp$mbox parameter is a token for an
object that is not a mailbox.

Concurrent Condition Codes

The Basic I/O System can return the following condition codes in an I/O result segment
at the mailbox specified by resp$mbox. After examining the segment, you should delete it.

E$OK 0000H No exceptional conditions.

EDIREND 0025H The entry$num parameter is greater than the
number of entries in the directory.

E$EMP'IY$ENTRY 0024H The file entry designated in the call is empty.

E$FACCESS 0026H The specified connection is not qualified for
"display" access to the directory.

E$FTYPE 0027H The soecified connection does not refer to a
direcìory.

E$IO 002BH An I/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the I/O result segnent for more
information.

BIOS SysteD Calls 43

The AGETEXTENSION$DATA system call returns extension data stored with a Basic
I/O Svstem file.

CALL RQAcET$ EXTENS I0N$DATA (connec t i on, resp$mbox, except$ptr) ;

Input Parameters
connection A TOKEN of a connection to a file whose extension data is

desiretl

resp$mbox A TOKEN for the mailbox that will receive a segment containing
the named file-status information. The calling task is responsible
for deleting this segment after examining it.

Structure of the named file-status information is as follows:

DECI-ARE ext$data$seg STRUCTURE (
status WORD,
count BYTE,
in fo (*) BYTE) ;

These fields are interpreted as follows:

status A condition code indicating the outcome of the
status-fetch operation. If this code is not
E$OK, the remaining fields must be
considered invalid.

count A number (from 0 to 255 decimal) indicating
the number of bytes returned.

info The extension data.

Output Parameter
except$ptr A POINTER to a WORD where the sequential condition code will

be returned.

11 BIOS Svstem Calls

A$G ET$E)CTENSIO N$ DATA

Description

Associated with each file created through the Basic I/O System is a file descriptor
containing information about the file- Some ofthat information is used by the Basic I/O
System and can be accessed by tasks rhrough the A$GEfiFILE$STATUS system call.
Up to 255 additional bytes of the file descriptor, known as extension data, are available
for use by Operating System extensions. OS extensions can write extension data by using
ASETEXTENSION$DATA and they can read extension data by using
A$GE]$ EXTENSION$ DATA.

When a task calls AGETEXTENSION$DATA, it specifies a response mailbox to which
the system returns a segment with the extension data. The information is located in the
low-memory portion of the segment. AcETEXTENSION$DATA can only be applied
to connections created via the named file driver.

Condition Codes

AGETEXTENSION$DATA can return condition codes at two different times. The
code returned to the calling task immediately after invocation of the system call is
considered a sequential condition code. A code returned as a result of asynchronous
processing is a concurrent condition code. A complete explanation of sequential and
concurrent parts of system calls is in the Extended |RMX II Basic I/O System Ilser's Guùle.

The folÌowing list is divided into two parts--one for sequential codes and one for
concurrent codes.

Sequent ial Condit ion Codes

The Basic I/O System can return the following condition codes to the word specified by
the except$ptr parameter of this system call.

E$OK 0000H No exceprional conditions.

E$EXIST 000(rH At least one of the following is true:

. One or more of the following parameters is not
a token for an existing object:

- The connection parameter

- The resp$mbox parameter

o The connection is being deleted.

r The connection for a remote driver is no lonser
active.

E$IFDR 002FH This system call applies only to named files, but the
prefir and subpath parameters speci$ another type
of file.

BIOS Svstem Calls 45

AGETEXTENSION$DATA

E$LIMIT 0004H At least one of the following is true:

o The calling task's job has already reached its
object limit.

o The number of outstanding I/O operations for a
remote connection has been exceeded.

E$MEM 0002H The memory available to the calling task's job is not
sufficient to complete the call.

ENOTCON- 0008H This system call is not part of
FIGURED the present configuration.

E$SUPPORT 0023H The specified connection was not created by thisjob.

E$TYPE 8002H At least one of the following is true:

o The connection parameter is a token for an
object that is not a connection.

. The resp$mbox parameter is a token for an
object that is not a mailbox.

Concurrent Condilion Codes

The Basic I/O System will return one of the following codes in an I/O result segment at
the mailbox specified by resp$mbox. After examining the segrnent, you should delete it.

E$OK 0000H No exceptional conditions.

E$IO 002BH An I/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the I/O result segment for more
information.

16 BIOS System Calls

AGETFILE$STATUS returns status and attribute information about a file.

CALL RQACET$FILE$STATUS(connecr ion, resp$rnbox, except$ptr) ;

Input Parameter
connection

Output Parameters
resp$mbox

A TOKEN for a connection to the file whose status is sousht.

A TOKEN for the maiìbox that receives a segment containing a
data structure with the status inlbrmation for the specified fiÌe.
The information in the first part of this structure--down to the
dev$conn field-is returned for any file (physical, stream, or
named), but information from the file$id field down to the end of
the structure is provided only for named files. The contents of the
named$file field indicates whether the file is a named file.

DECI-ARE fi le$ info STRUCTURE (
J L A L U S

nurn$ c onn
n u m $ r e a d e r
num$wr i te r
share
named$f i le
dev$name (l4)
f i l e $ d r i v e r s
func ts
f l a g s
dev$gran
d e v $ s i z e
dev$conn

WORD ,
WORD ,
WORD ,
WORD ,
BYTE,
BYTE ,
BYTE ,
WORD ,
BYTE ,
RVTF

I,JORD ,
DWORD ,
WORD ,

Output Parameters
Information from this point on is returned only if the file is a
named file.

BIOS Svstem Calls 47

AGETFILE$STATUS

f i l e$ id
f i l e$ type
f i 1e $ g ran
ogner$ id
c reaÈe$ t ime
a c c e s s $ t i m e
rnodi fy$ t ime

f i l e $ b l o c k s
vo1$name (6)
vo l$gran
vo 1$ s i ze
accessor$count
f i r s t $ a c c e s s
f i r s t $ I D
second$access
second$ I D
th l rd$ acce s s
th i rd$ I D
vo 1$ f l ags

These fields are interpreted as follows:

status A condition code indicating how the get file
status operation was completed. If this code is
not E$OK the remaining fields must be
considered invalid.

The number of connections to the file.

The number of connections currently open for
reading.

The number of connections currently open for
v/riting.

The current shared status of the filei possible
values are:AGETFILE$STATUS:share
values;

0 Private use only
1 Share with readers only
2 Share with writers only
3 Share with all users

Tells whether this structure contains any
information beyond the dev$conn field. OFFH
means yes and 0 means no.

WORD ,

WORD ,
DIIORD ,
DWORD ,
DWORD ,
DITORD ,
DWORD ,
BYTE ,
WORD ,
DWORD ,
WORD ,
p. \rT F

WORD ,
F.1/TF

i,JORD ,
BYTE ,
I.JORD ,
BYTE) ;

num$conn

num$reader

num$writer

share

named$file

4tì BIOS Systen Calls

AGETFILE$STATUS

dev$name The name of the physical device where this file
resides (same name as in the DUIB). This
name is padded with blanks.

file$drivers A bit map that tells what kinds of files can

functs

reside on this device. If bit n is on, then file
driver n+ l can be used. Bit 0 is the low-order
bit.

Bit Driver No. Driver

0 1 Physical file
1 2 Stream file
2 3 reserved
3 4 Named file

A bit map that describes the functions
supported by the device where this file resides.
A bit set to one indicates the corresponding
function is supported. Bit 0 is the low-order
bit.

Bit Function

O F$READ
1 F$WRITE
2 F$SEEK
3 F$SPECLq.L
4 F$ATTACH$DEV
5 F$DETACH$DEV
6 F$OPEN
7 F$CLOSE

Meaningful only for diskette drives. This field
is interpreted as follows. (Bit 0 is the low-
order bit.)

Bit Meaning

0 0 = bits 1-7 are not significant
1 = bits 1-7 are sigrificant

1 0 = single density
I = double densiU

2 0 = single sided
I = double sided

3 0 = 8-inch diskette
I = 5 l/4-inch diskette

4 0 = standard diskette,
meaning that track 0 is
single-density with 128-byte sectors

flags

tsIOS System Calls 49

AGETFILESSTATUS

The information from here to the end of the structure
is returned only for named files, as indicated by a
value of OFFH in the named$file field.

file$id

dev$gran

dev$size

dev$conn

file$type

file$gran

owner$id

create$time

access$time

modify$time

file$size

file$blocks

1 = a non-standard diskette or
not a diskette

5-7 reserved

The device granularity, in bytes, of the device
where this file resides.

The storage capacity of the device, in bytes.

The number of connections to the device.

A number that distinguishes this file from all
other files on the same device. The Disk
Verification Utility refers to this number as an
FNODE. For information on the disk verify
utility, see Exteruled |RMX II Dísk Veiftcation
Utility Reference Marutal.

Indicates the type of the file: 6 means
directory file; and 8 means data file.

The file granularity, as a multiple ofvol$gran.
For example, if file$gran is 2 and vol$gran is
256, then the file's granularity is 512.

The first ID in the user object that was
presented to the Basic I/O System when the
file was created.

The time and date when the file was created.
Whether the Basic I/O System maintains this
field is a configuration option.

The time and date when the file was last
accessed. Whether the Basic I/O System
maintains this f ie l t l is a conf igurat ion opt ion.

The time and date when the file was last
modified. Whether the Basic I/O System
maintains this field is a configuration option.

The total size of the file, in bytes.

The number of volume blocks allocated to this
file. A volume block is a contiguous area of
storage that contains vol$gran bytes of data.

5t) BIOS Svstem Calls

AGETFILE$STATUS

vol$name The left-adjusted, null-padded ASCII name ibr
the volume containing this fiìe.

vol$gran The volume granularity, in bytes.

vol$size The storage capacity, in bytes, of the volume
on which this file is stored.

accessor$count The number of IDs in the file's accessor list.
(This may have been added after file creation.)

first$access Access masks for as many ID's as are

second$access indicatedbyaccessor$count.

third$access The bits of the access masks are defined in the
following table. An access right is granted if
the appropriate bit is set to 1; otherwise, that
right is denied. Bit 0 is the low-order bit.

Bit Data File Directorv File

0 Delete Delete
I Read Display
2 Append Add Entry
3 Update Change Entry
4-7 Reserved Reserved

first$lD lD values for the accessors.
second$ID
third$ID

vol$flags Contains flags for general volume information.
The fol.lowing flags are defined:

Elac Bit Meaning

vflintegerity 0 0 = The Volume
has been properly
shut down.

1= Indicates
possible disk
corruption (The
volume was attached
but was not
subsequently shut
down).

exsept$ptr A POINTER to a WORD where the sequential condition code will
be returned.

BIOS System Calls 5r

AGETFILE$STATUS

Description

The AGETFILE$STATUS system call returns status and attribute information about
the designated file. Certain information is returned for all file driver types. Additional
information is returned for named files.

Note that this call returns device-dependent information.

Condition Codes

AGETFILE$STATUS returns condition codes at two different times. The code
returned to the calling task immediately after invocation ofthe system call is considered a
sequential condition code. A code returned as a result of asynchronous processing is a
concurrent condition code. A complete explanation of sequential and concurrent parts of
system calls is in the Extended iRMX II Basic I/O System User's Guide.

The following list is divìded into two parts--one for sequential codes, and one for
concurrent codes.

Sequent ial Condit ion Codes

The Basic I/O System can return the following condition codes to the word specified by
the except$ptr paranìeter of this system call.

E$OK 0000H No exceptional conditions.

E$EXIST 0006H At least one of the following is true:

o One or more of the following parameters is not
a token for an existing object:

- The resp$mbox parameter

. The connecîion is being deleted.

. The connection for a remote driver is no lonser
active.

E$LIMIT 0004H At least one of the following is true:

. The calling task's job has already reached its
object limit.

. The number of outstanding I/O operations for a
remote connection has been exceeded.

E$MEM 0002H The memory available to the calling task's job is not
sufficient to complete the call.

ENOTCON- 0008H This system call is not part of the
FIGURED present configuration.

52 BIOS System Calls

intel

EXTENDED iRMX' I I
EXTENDED I /O SYSTEM CALLS

REFERENCE MANUAL

l n t e l C o r p o r a t o n
3065 Eowers aven u e

S a n t a C l a r a , C a f o r n i a 9 5 0 5 1

I n t e C o r p o r a t r o n , A R r g h t s R e s e r v e dC o p y r i g h t ' 1 9 8 8 ,

PREFACE

This manual documents the system calls of thc Extended I/O System, a subsystem of the
Extended iRMX I I Operat ing System. l 'he informat ion provided in this manual is
intended as a reference to the system calls and provides cìetailed tlescriptions of each call.

READER LEVEL

This manual is intended for programmers who are famililrr with the concepts and
terminology introduced in the Ertended iRlvlX II Nucleus Llser's Cuide and with the PL/M-
2tì6 programming language

CONVENTIONS

Svstem call names appear irs headings on the outside upper corner of each page. The first
appearance of each system caLl nanìc is pr in ted in ink; subsequent appearances are in
black.

Throughout th is manual , system cal ls are shown us ing a gener ic shor thand (such as
S$CREATE$FILE instead of RQSCREATE$FILE). This convenr ion is used to a l low
easìer a lphabet ic arrangement of the cal ls . The actual PL/M-2f Ì (r external -procedure
names must he used in a l l ca l l ing sequences.

You can also invoke the svstem calÌs lrom assemblv language, but vou must obey the
PL/M-2lìfi calling sequences when doing so. For more information on these calling
sequences refer to the E.rtended iRlttX II Progrununing Techniques Reference Manual.

EIOS System Calls l

tht CONTENTSFal

EIOS Systenr Cal ls

EXTENDED t/O
|RMX@ II

SYSTEM CALLS

1.1 INTRODUCTION

This manual descrilres thc systcnì calls provided by the Extended I/O System. The
manual contains

. A br icf explanat ion of condit ion codes.

. A system cal l c l ict ionlrn l ist ing the system c:r l ls by funct ion.

o Complete cìescri;rtions ol euch system call.

Throughout this manuaì, Pl- /M-2i ' i6 dl ta types, such as BYTE, WORD, and SELECTOR
are uscd. In addi t ion, the cxtcndcd i l ìMX I I data type TOKEN is used. These words are
always capitalized. If youl cornpilcr supports the SELECTOR data type, a TOKEN can
be dccl l reci l i teral ly ts SELECTOR. Because TOKEN is not a PL/M-28ó data type, you
must dechre it to be literlrll_v a SELECTOR every place you use it. Definitions of both
PL/M-286 and extended iRMX ll data types are given in the Extended |RMX II Ettended
I/O System User's Guidc. The word "token" in lowercase refers to a value that the
extended iRN,1X I I Operat ing S),stem returns to a TOKEN (the data type) when i t creates
the object,

In each clescr ipt ion ol r s\stcm cal l , vou wi l l f ind a l ist of possible condit ion codes.. This
l ist rs intended to help vou r ìebug your appl icat ion system.

1.2 SYSTEM CALL DICTIONARY

The system call dictionrrrv on thc next few pages lists system calls by function rather than
alphabet ica l lv .

'l
he following abbrcviatjons iclentil,v types of li les for which a particular system call can bc

useti:

PF means phl ,s ic l l l i le
SF means st ream f i le
NF means nameci t i ìe
ND means named d i rcctory

EIOS System Cal ls

iR i \ IX@ I I EXTENI)EI) I /O SYSI ' I] \ t C. , \ I - I ,S

SYSTEM CALLS FOR I/O JOI]S
PAGE

CREATEIOJOB Clrc l tes an I /O job wi th a memory pool
of up to lMbyte. -5

RQE$CREATE$lO$JOB f . - rer t t :s i ìn I /O job wi th a memory pool
o 1 u p t o l 6 M b v t e s 1 2

EXITIOJOB Sencìs a message to a mai lbox and deletes
t h e c a l l i n g t 1 s k . . 1 9

STARTlOJOB Str r r ts (mlkes ready) the in i t ia l task in an
I /O joh l the task was not s tar ted when
t h e j o b * ' a s c r e r ì t e d , , , 3 2

SYSTEM CALI .S RI ' - l .A ' l ' l \ - (;
' lO

l -OGICAL NAMES

I IYBRID$DETACI lS ' Temporur i lv removcs thc corrcspondence
DEVICE bcts een l i log ica l n i rme r rnd a physica l

c lev ice esta b l ished v i r r
I -C)G ICAI- .$ATTACI I$DF,VICE-26

LOGICAL$ATTACH$- Creates and cata loqs a log ica l name for a
I I E V I C E c 1 e v r c e 2 8

LOGICAL$DETACHS- De lc tes u log ica l n lme created wi th
DEVICE I -OGICAL$ATTACH$DEVICE. . . , ,30

STiCATALOCS- Creates a loqicul nante lirr a connection by
CIONNECTION cutr r loq inq the connect ion in the o l r ject

c l i rectory o l a speci f ic job. . . 36

SGETDlRECI 'ORY$- Rcturns a d i recton ' cnt rv n i ìme to the
E N T R Y c a 1 1 e r f i 5

SGETPATH$- Returns the name of a namecl f i le as the
COMPONENI ' f i lc is known i t i ts parent d i rectory. .75

S$LOOK$UP$- Seurches through an l /O job 's ohject
CONNECTION di rector ies to f inc l the connect ion

l u s s o c i a t e d w i t h a l o c i c a l n a m e . 7 6

EIOS Svstem Calls

iRNIX@ II EXTENDED I/O SYSTEM CALLS

SYSTEM CALt-S RELATINC 1'O I-OGICAL NAMES (continued)
PAGE

S$UNCATALOG$- l)e letes a log ica l name f rom the o l r ject
CONNE,CTION di rectory of a speci f ic job. . . 121

SYS

S$ATTACH$FILE Crcrr rcs a eonncct ion t r l un cx is t ing f i le . PF SF
ND NF 33

S$CREATF.I ìDI- Crcates a new directory f i le. ND 46
RECTORY

S$CREATESFILE Creates a new phvsical , stream, or named PF SF
datrr f i le. l t cannot create a named NF 50
cìirectory file.

SYSI-EM CALLS I iOIì C]I IANGING ACCESS AND RENAMINC

S$CflA NG t .$A(l(l F.SS Changcs t l re îccess l ist fbr named f i le. ND Nf" 38

S$RENAME$FILE Ch:rnges the path of a named f i le. ND NF 86

SYSTEM CALLS TO MANIPLJI-AI 'L, DA'fA IN FILES

S$C]LOSE

s$oPt-_N

(l u s c s : r n o p c n c r r n n c e t i o n t t ' ; r f ì l c . P F S F '

C)pcn\ i r eonnc(' t i t rn to . r I i le .

ND NF 44

PF SF
ND NF 78

S$READ$NIOVE Relds l number of bytes f rom a f i le to a Pf SF
bul ler . ND NF 82

S$SEE K Nlovcs the f r le pointcr . PF
ND NF 90

S$'f RUNCAI E$lr lLI : Removes informlt ion from the end of a NF 1 l l l
nanred data f i le.

S$WRITE$MOVE \\ ' r - i tes u col lect ion of bvtes from a huffcr PF SF
to a f i le. ND NF 123

FIIOS Svstem Cal ls

iRN{X@ II EXTENDED I/O SYSTE\I CALLS

SYSTEM CALL RELATINC DIRECTLY TO DEVICES
PAGE

S$SPECIAL Allows your task to perform functions PF SF 91
peculiar to a specific device.

SYSTEM CALLS FOR Ots'|AINING STATUS

GET$LOGICAL$- Provides status information about logical
DEVICE$STATUS devices..21

SGETCON- Provides status information about file and PF SF
NECTION$STATUS de\ iec connee tions. ND NF 62

SGETFILE$STATUS Allows a task to obtain information about PF SF
a f i le. ND NF 67

SYSTEM CALLS TO DELETE FILES AND CONNECTIONS

S$DELETE$CON- Deletes a f i le connect ion. I t cannot PF SF
NECTION delete a device connection. ND NF 5(r

S$DELETE$FILE Deletes a stream, physical , or named f i le. PF SF
ND NF -58

SYSTEM CALLS RELAI ' ING TO USERS

VERIFY$USER Veri f ies a user 's name and password.. .127

GET$USER$IDS Returns the user ID as def ined in the
User De f in i t i on F i l e 23

EIOS Svstem Cal ls

CREATElOJOB creates an I /O job containing one task.

i o $ j o b : R Q $ C R E A T E $ I O $ J O B (p o o l $ m Í n , p o o l g m a x , e x c e p l g h a n d l e r ,
j o b $ f l a g s , c a s k $ p r i o r i t y , s r a r r $ a d d r e s s ,
d r t a S s e g , s L a c k S p r r , s t a c k $ s i z e . t a s k $ f L a g s .
m s g $ m b o x , e x c e p t $ p t r) ;

Input Parameters
pool$min

pool$max

A DwORD containing the minimum allowable size of the new
job's pool, in 1f>byte paragraphs. For example, a value of35
indicates thirty-five 1ó-byte paragraphs. The Extended I/O System
also uses this value as the initial size of the memorv Dool for the
new job.

You must not assign pool$min a value less than 32. Furthermore,
if thc base of the stack$ptr parameter is equal to zero, you should
ensure that pool$min is no less than 32 + (number of ll>byte
paragraphs required to contain the stack). lf you set pool$min to a
value smaller than these minimums, the Extended I/O System will
return an E$PARAM exceptional condition.

The purpose of the pool$min parameter in this system cal l is
ident ical to the purpose of the pool$min parameter of the
CREATE$JOB system call provided by the Nucleus. For
information regarding memory pools, refer to the Ertended |RMX
ll Nucleus U-ser'-s Guide.

A DWORD containing the maximum allowable size of the new
job's pool, in l(r-byte paragraphs. For example, a value of 40
ind ica tes forty 16-byte paragraphs.

You must set pool$max to a value no less than pool$min, or the
Extencled I/O System will return an E$PARAM exceptional
co nd i t io n.
'l

he purpose of the pool$max parameter in this system call is
rr ient ical to thc purpose of the pool$max parameter of the
CREATE$JOB system call provided by the extended iRMX II
Nucleus. For more information about memory pools, refer to the
E.rtarttled iRMX II Nucleus Reference Manual.

EIOS Svstem Calls

CREATEIOJOB

except$hanciler A POINTER to a structure of the followinq form:

DECtnRE Ì ranc i Ì e r STRUCTURE (

job$ flags

task$prior i ty

e x c e p t i o n $ h a n d l e r $ o f f s e t W O R D ,
except ion$hand ler$base SELECTOR,
except ion$mode BYTE)

-I'he
Extended I/O System expects you to designate an exception

hanciler to be used as the new job's default exception handler. If
vou wish to designate the system ciefault exception handler, you can
do so by set t ing except ion$handler$base to SELECTOR$OF(NIL) .
I î vou set the base to any other va lue, then the Extended I /O
Svstem assumes that the f i rs t two wurds of th is s t ructure pÒint to
thc f i rs t inst ruct ion of your except ion handler .

Set the except ion$mode to te l l the t rx tended I /O Svstem when to
pass contro l to the new task 's except ion handler . Encode the mode
lrs I ì r l lows:

When Contro l Passes
Value To Except ion I landler

0 Contro l never passes to handler
I On programmer errors only
2 On cnvi ronmenta l condi t ions only
3 On a l l cxcept ion: r l condj t ions

For nrore in forrnut ion regrr rd ing except ion hundlcrs t rnd exceJr t ion
nrotlcs, rcfer lo îhe Ertended iRMX II Nucleus R,:ference ManLtal.

A WORD th i ì t te l ls the Nucleus whether to check the val id i ty of
objccts used as parameters in system cal ls . I f b i t I (where b i t 0 is
the low-order b i t) is zero, the Nucleus wi l l vaÌ idate o l r jects .

Al l b i ts other th tn b i t I must be set to zero. This p: ì rameter serr r 'es
prec ise ly the same purpose as the job$f ìa_qs paramcter of the
CREAI 'E$JOB system cal l prov ided by the Nucleus. Refer to rhe
E.rttttrlttl iRltlX II Nucleu.s Referettcc Munuul for more infrtrmation.

A t lY l 'E which establ ishes the pr ior i ty of the in i r i r l rask in the new
job.

o I f equrr l to zcro, speci l ies that the new job 's in i t ia l task is to
have a pr ior i ty equal to the the maximum pr ior i tv of the in i t ia l
job of the Extended I /O System. For more in format ion about
the in i t ia l job of the Extended I /O Svstem, refer to the chapter
of the Ertertded |RMX II Interactive Configuratiort Utilin'
Rtfartrtcc ltlanLnl relltingto the Extentlecl I/O Systcm.

EIOS System Cal ls

star t$address

data$seg

stack$ptr

s tack$size

CREATEIOJOB

. I f not equal to zero, conta ins the pr ior i ty of the in i t ia l task ot
thc new joh. I f th is pr ior i ty is h igher than (numer ica l ly less
than) the maximum pr ior i ty of the in i t ia l job of the Extended
I /O System, an E$PARAM error occurs.

A POINTER to the f i rs t inst ruct ion of the code segment for the
ncw job 's in i t ia l task. This code segment can be, but is not requi red
to be, : ìn extent ied iRMX I I segment .

A SELECTOR which,

. i f SELECTOR$OF(NIL) , ind icates one of two th ings. Ei ther
the new job 's in i t ia l task uses no data segment , or i t creates one
for i tse l f . Tasks can create thei r own data segments only under
specia lc i rcumstances. To f ind out more about these
ci rcumstances. re lèr to thc Extended I /O Systeni p i r r în le ters
section ol the Ertended |RMX II Inteructive Configuratbn Utili4t
Il.cfe rtnce lll attual.

. i f not Str I -ECI O R$OF-(N I t -) , conta ins the base address of the
dat i r segnìent of the new job 's in i t ia l task.

- l 'h is
data segment

crrn be, but is not requi red to be, an extended iRMX I I
segment .

A POINTER which,

. i f the s tack pointer is NIL, speci l ies that the Nucleus should
rr l locate a s tack lor the new job 's in i t ia l task. The length of the
i iL locrr ted stack is dctermincd by the stack$size parameter of
th is system cul l . Be aware that th is s tack is not an extended
iRN' lX I I segment .

. i f the s tack pointer is not equal to NIL, points to the base of
the st lck for the new job 's in i t ia l task. Because the Nucleus
t loes not a l locate th is s tack, you must a l locate i t dur ing the
conf igurat ion process, or your appl icat ion code must a l locate i t
whi le the system is running.

A WORD conta in ing the s ize, in bvtes, of lhe s tack for the new
job 's in i t ia l task. I f you speci fy less than 200, the Extended I /O
Svstem rv i l l increase the s ize to 200. For in format ion regard ing the
anìount of s tack to a l locate, refer to the chapter of the Extended
iRlllX II Progranunirtg Tetlutiques Reference Manual th,at discusses
strck s izcs.

EIOS Svstem Cal ls

CREATEIOJOB

task$flags

msg$mbox

If vou are al locat ing the stack dur ing conf igurat ion, or i f the
appl icat ion code is al locat ing the stack whi le the system is running,
the value of th is parameter wi l l be the precise amount of stack that
the system can use. I lowever, if the Nucleus is allocating the stack
for you, it niight allocate as many as 15 additional bytes in order to
muke the stack occupy whole lfi-byte paragraphs.

A WORD in which all bits except the two low-order bits must be
sct to zero. 1'he upper l4 bits are reserved for Intel's use.

Rit Z-ero: Use the low-order bit (bit 0) to tell the operating system
u hether the new job's in i t ia l task uses f loat ing-point instruct ions.
A vulue of 1 indicates the presence of iìoating-point instructions,
*hi le a zero indicates the absence of f loat ing-point instruct ions.

I l i t one: ts i t I indicates whether the in i t ia l task in the job should
run immediately, or whether i t should wait unt i l a
Sl-ARl-lOJOts s1'stem call is issued to start it. Set bit I to zero if
thc trrsk is to be nrade ready to run; set bi t I to one i f the task is to
* rr i t unt i l the START$IOSJOB cal l is issued.

A I'OKEN for a mlilbox. When a task exits (by invoking
F-X I1-$ IO$J Ot-ì). the Extended I/O System sends a message ro rhis
mlriltrox. If you r-lesire no such message, assign msg$mbox a value
ot SEI-ECTOR$OF(NIL).

Thr: lormat of the message is as fol lows:

i) !)CLARÉl message STRUCTURE (
te rmina t i on$ code
u s e r $ f a u l t $ c o d e
j ob $ toke n
r o t , , r n a À e r : (l - n

r o i , , r n q . l . r r r * ì

W O R D ,
woRD ,
TOKEN ,
B Y T E ,
BYTE)

t here

tcrm inat ion$cocle

C]ODE

A WORD that indicates why an
l /O job terminatecì, as fol lows:

MEANING

Sonrc tusk within the job-- the terminat ing task-
- invoked the EXIf i IO$JOB system cal l , and
indicated with this code that no problem
caused the tcrminat ion. Thejob has not yet
been deleted. and some of i ts tasks might st i l l
be ready.

The job was deleted because some task
invoked the DELETE$JOts svstem call.

EIOS Svstem Calls

CREATEIOJOB

any other code Some task within the new job invoketJ the
other E,XITlOJOB system call antl indicated
that the job was terminated because some
problem occurred. The job has not yet heen
deleted and some of i ts tasks might st i l l be
ready.

user$faul t$code A WORD that contains an encoded reason for
terminat ion of the new job. Whenever the
terminat ion$code has a value other than 0 or
l , th is parameter contains an error code that
the terminat ing task speci f ied when invoking
the EXITIOJOB systcm cal l . The precise
meaning of th is code is provided by the
terminat ing t îsk, not by the operat ing system.

job$token A I 'OKEN for the job that was terminated.

return$data$len A BYTE, that speci l ies the length (in bytcs) of
the return$data parametcr descr ibed below.
'fhe

maximum length is 89 (decimal) bytes.

rcturn$data A sequence of BYTES that contain data
speci f ied by the terminat ing task when i t
ìnvokcd the EXII '$ lO$JOB system cal l .

Output Parameters
ìo$job A TOKIIN that reprcsents the ncwly created job. The operat ing

systen.ì rcturns a val id token only i f the Extended I /O System
returns an E$OK condit ion code.

except$ptr A POINTER to a WORD where the Extended f /O System returns
the condit ic ln code.

Description

This system cllÌ crcates l job whose tasks can invoke the system calls provided by the
Extended I /O Si -s tem. Such jobsarecal led I /O jobs, and they d i f fer f rom other jobsin
lnese ways:

EIOS Svstem Cal ls

CREATEIOJOB

. Job paranìeter c le t r r ì r l ts : Many of the parameters requi red by the Nucleus 's

CRL,AIE,$JOII svstcnr cîll lrc not required lty the CREATEIOJOB system call.
' fhese para nretc ls inc lude

clirectorv$size
prr r : rm$ob. jcct
mrrrliotrjects
ntax$t i ìsks
max$pr io l i t l

The Extendecl I/() Systerl allows you to spccify values for some of these parameters
dur ìng the svstcnr conl iqurat ion process.

' Ihe
prec ise inst ruct ions for def in ing these

values arc provitled in the Etended iRl\[X II Interactive Configurution Utility Reference
Munual.

. Det ì ru l t job l r t t r i l)u tcs: The CREA' I 'F .$ lO$JO[ì system cal l prov ides defaul t va lues for
the l ì r l lowing l /O job at t r ibutes:

g lobal job
c ief l r r r l t r r :cr
c ie l i r u ì t prc t ix

The values l ì r r thcse r ì t t r ibutes : r re p: rssecl f rom prr rent job to ch i ld job. For instance,
i f Job A uses thc C'REATElOJOB systcm cal l to spawn Job B, then the Extended
I /O System copies the vr lues of the Joh A at t r ibutes in to the Job B at t r ibutes. Be
a\À' î rc that i l you chunqe the Job A:r t t r ibutcs a l ter Jot r B has been created, the
changcd vulues r r r r not copiec l in to Job B.

You can set thc v i r lues 1ì r r these at t r i l)u tes for the " f i rs t parent" job dur ing the process
(' l . ' r 'n l i ! .ur i r r$ \ r ,L I r : \ ' : lc l)1 .

. Not i f icat ion o l job te l r r inat ion: The CREATEIOJOB system cal l prov ides a
mechanisnr f ì r r not i lv inq the parent job of the terminat ion of the I /O job. The
Extendcd I /O Svstcm inrp lenrents th is mechanism by sending a terminat ion message
to a mai lbor of \ 'our choice whencver : r tusk in the I /O job terminates (ca l ls
EXIT$lOSJOts) . You speci f ,v the mai lbox by us ing the msg$mbox parameter of th is
system cal l .

The CREATE$lOSJOtì systcm cal l can bc cal lecì on ly f rom another I /O job. You can set
up one or more in i t ia l I /O johs whi le conf iqur ing the operat inr system. For more
infrrrmrttion ;rbout conIiqLrnrtion, rcf e r to (ìhapter 7 of thc E.rtended iRMX II Ertended I/O
Systcnt U.scr's Guidt.

Do not deìete u t r rsk in r rn I /O job i f the t lsk is us ing t r connect ion (that is , i f the
connect ion h: rs not been dr lc te(l) . I f vou c io so, the connect ion wi l l not be avai lab le to any
other task.

r0 l i lOS System Calls

Condition Codes
E$OK

E$CONTEXT

E$EXIST

E$MEM ()(X)]H

E$NO'I '$CONFIGU RED (XX)EI I

E$NOUSER Iì [)2I I ' I

E$PARAM lJ 00.1t {

EroJoB (x).17t I

CREATEIOJOB

No exceptional conditions.

The cal l ing task 's job is not an I /O job.

At least one of the following is true:

. The token cataloged uncler the name
ROGLOBAL (the g lobal job) is not a token for
an existing object. (See the Extended iRMX II
Basic I/O Systent User's Guide for inf ormation
on the global object directory.)

. The value assigned to the msg$mbox parameter
is not a token for an ex is t ing mai lbox.

. The uscr TOKEN is not va l ic l .

The memory avai l lb le to th t cr ì l l ing task 's job is not
sul l ic ient to complete the cal l .
' l

h is system cal l is not p i r r t o f the present
configuration.

The cal l ing task 's job does not have a defaul t user , or
the o l r ject cata loged under the log ica l name
R?IOLISER is not a user ohject. (See the E.rteruled
iRMX II Ba.sic I/O Systcnt [Jser'.s Gukle fctr
in l ì r rmat ion on R?IOLJSI ' -R.)

At le i ìs t one of the fo l ìowing is t rue:

o I he value ass igned to the pool$min parameter
is lcss than 32 decimal , or i t is greater than the
value ass ignet l to the pool$mar p: r rameter .

. The value ass igned to task$pr ior i ty is not zero
and is greater than (numerìca l ly less than) the

maximum pr ior i ty of the cal l ing I /O job.

. The value ass ignecl to the except ion$mode
parameter is outsicie the range 0-1, inclusive.

. E i ther the name or passuor t l conta ins inval id
cha racters.

The cal l ing task 's job is not an l /O job.

0000rì

0005H

000óH

EIOS Svstem Cal ls l l

RQE$CREATE$lO$JOts crerì tes an I /O job containing one task with a maximum of 16M

bvtes of mcmorv nool.

i o $. j o b : R Q E $ C R E A T I ì $ 1 O $ J O 8 (p o o 1 $ m i n , p o o l $ m a x , e x c e p t $ h a n d l e r ,
j o h $ I l ; g s . t a s k $ p r i o r i t y , s t a r t $ a d d r e s s ,
d a r a $ s e g , s t a c k $ p t r , s t a c k $ s i z e , t a s k $ f l a g s ,
m s g S m b o x , e x c e p t $ p t r) :

Input Parameters
pool$min

pool$max

A DwORD conta in ing the min imum al lowable s ize of the new
job s pool , in l (r -byte paragraphs. For example, a va lue of 35
int ì icu les th i r ty- l ivc l f i -b1 ' te paragraphs. The Extended I /O System
lr ìso Lrscs th is v l r lue as the in i t ia l s ize of the memory pool for the
ne* ' job. - fhe

memory in i t ia l ly a l located is a lways cont iguous. l f
r r rk l i t ionrr l nremory is rcquested, i t is not necessar i ly cont iguous.

You must not uss ign pool$min a va lue less than 32. Fur thermore,
i f the base of the stack$ptr parameter is equal to zero, you should
rnsurc thr ì t pool$min is no less than 32 + (number of l f>byte
prr r r r t r l rphs ret lu i rec l to conta in the stack) . I f you set pool$min to a
v i r lue snra l ler than these min imums, the Extended I /O System wi l Ì
rc turn ln E$PARAM except ional condi t ion.
' l 'he purpose o[the pool$min parameter in th is system cal l is
ic lcnt icr r l to the purpose of the pool$min parameter of the
CRITATE$JOB system cal l prov ided by the Nucleus. For
infìrrnration regarding memory pools, refer to the Extended |RMX
II Nuclctt.y Rtft:rcnce Manual.

A DWORD conta in ing the maximum al lowable s ize of the new
job 's pool , in 1ó-hyte p l ragraphs. For example, a va lue of40
ind icates l ì) r t) , 16-byte paragraphs.

You nrust set pool$max to a va lue no less than pool$min, or the
Extcnded l /O System wi l l re turn an E$PARAM except ional
co n c l i t io n.

The purpose of the pool$max parameter in th is system cal l is
ident ica l to the purpose of the pool$max parameter of the
CREATE$JOB system cal l prov ided by the extended iRMX I l
Nucleus. For more information about memory pools, refer to the
E.rttrttlcrl iRMX ll Nucleus Reference Manual.

t2 EIOS System Calls

except$handler A POINTER to a structure of the lbllowine form:

DECIARE hand ler STRUCTURE (

RQE$CREATE$IO$JOB

e x c e p t i o n $ h a n d l e r $ o f f s e t W O R D ,
exc e p t i on$hand l e r$bas e S ELECTOR ,
e x c e p L i o n $ m o d e B Y T E)

The Extended I/O System expects you to designate an exception
handler to be used as the new job's default exception handler. If
you wish to designate the system default exception handler, you can
do so by setting exception$handler$base to SELECTOR$OF(Nl L).
I f you set the base to any other value, then the Extended I /O
Systenr assumes that the first two words of this structure point to
the first instruction of your exception handler.

Set the exception$mode to tell the Extended I/O System when to
pnss control to the new task's except ion handler. Encode the mode
as ftrllou's:

When Control Passes
To Exception Hancller

Control never passes to handler
On programmer errors only
On environmental condit ions only
On al l except ional condit ions

[Ìrr more inlormation regarding exception handlers and exception
moctes, ref er to the Extended iRMX II Nucleus Reference Munual.

A WORD thrt te l ls the Nucleus whether to check the val id i ty of
otrjects uscd as par:rmeters in system calls. If bit I (where bit 0 is
the lou.ort ler bi t) is zero, the Nucleus wi l l val idate objects.

Al l b i ts other than bi t 1 must be set to zero. This parameter serves
precisely thc sume purpose as the job$f lags puranreter of the
CREATE$.IOB systenr call provided by the Nucleus. Refer to the
Extanrld iRltlX II Nucleu.s Reference Martual lor more intbrmation.

A BYTE r ih ich cstabl ìshes thc or ior i tv of the in i t ia l task in the new
job.

. l l equal to zero, speci f ies that the new job's in i t ia l task is to
have a pr ior i ty cqual to thc thc maximum pr ior i ty of the in i t ia l
job of the Extended l/O System. For more information about
the in i t iu l job of the Extended I /O System, refer to the chapter
ol the Erterded |RMX II Intcractive Configuration Utility
R,:ftrtnca Mattual relating to the Extended I/O System.

V a l u c

0
I
2

job$flags

task$prior i ty

EIOS Svstem Calls l3

ROE$CREATE$IO$JOB

. If not equal to zero, contains the priority of the initial task of
the new job. If this priority is higher than (numerically less
than) the maximum priority of the initial job of the Extended
I/O System, an E$PARAM error occurs.

start$address A POINTER to the first instruction of the code segrnent for the
new job's initial task. This code segment can be, but is not required
to be, an extended iRMX II segment.

data$seg A SELECTOR which,

o if SELECTOR$OF(NIL), indicates one of wo things. Either
the new job's initial task uses no data segment, or it creates one
for itself. Tasks can create their own data segments only under
special circumstances. To find out more about these
circumstances, refer to the Extended I/O System parameters
section of the Ertended .RMX II Interactive Configumrton Utility
Reference Manual.

r if not SELECTOR$OF(ML), contains the base address of the
data segment of the new job's initial task. This data segment
can be, but is not required to be, an extended iRMX II
segment.

stack$ptr A POINTER which,

. if the stack pointer is NIL, specifies that the Nucleus should
allocate a stack for the new job's initial task. The length ofthe
allocated stack is determined by the stack$size parameter of
this system call. Be aware that this stack is not an extended
iRMX II segment.

o if the stack pointer is not equal to ML points to the base of
the stack for the new job's initial task. Because the Nucleus
does not alÌocate this stack, you must allocate it during the
configuration process, or your application code must allocate it
while the system is running.

stack$size A WORD containing the size, in bytes, of the stack for the new
job's initial task. Ifyou specify less than 200, the Extended I/O
System will increase the size to 200. For information regarding the
amount of stack to allocate, refer to the chapter of the Ettendcd
iRMX II Programming Techniques manual that discusses stack sizes.

If you are allocating the stack during configuration, or if the
application code is allocating the stack while the system is running,
the value of this parameter will be the precise amount of stack that
the system can use. However, if the Nucleus is allocating the stack
for you, it might allocate as many as 15 additional bytes in order to
make the stack occupy whole 16-byte paragraphs.

l4 EIOS Systen Calls

task$llags

msg$mbox

whcre

term inat ion$cocle

CODE

U

RQE$CREATE$IO$JOB

A WORD in which all bits excent the two low-orcier bits are set to
zefo.

Bit Zero: Use the low-order bit (bit 0) to tell the operating system
whether the new job's initial task uses floating-point instructions.
A value of I indicates the presence of floating-point instructions,
while a zero indicates the absence of floating-point instructions.

Bi t One: Bi t I indicates whether the in i t ia l task in the job should
run immediately, or whether i t should wait unt i l a
STARTlOJOB system call is issued to start it. Set bit 1 to zero if
the task is to be made ready to run; set bit 1 to one if the task is tù
wait until the STARTlOJOB call is issued.

A TOKEN for a mailbox. When a task exits (by invoking
EXITIOJOB), the Extended I/O System sends a message to this
mailbox. ìf you desire no such message, assign msg$mbox a value
oî zero.

The format of the messace is as follows:

DECI- \RE message STRUCTURE (
te rm ina t Íon$code
u s e r $ f a u 1 t $ c o d e
j ob$ token
r e t u r n $ d a t a $ ì e n
r e L u r n $ d a L a (*)

WORD ,
WORD ,
WORD ,
BYTE ,
BYTE)

A WORD that ind icates why an I /O job

terminated, as follows:

M E A N f N G

Some task wi th in the job-- the terminat ing task-
-ìnvoked the EXITIOJOB system call, and
indicated with this code that no problem
caused the terminat ion. Thejob has not yet
been cìeleted, and some of its tasks might stil l
be ready.

The job was deleted because some task
invoked the DELETE$JOB system call.

EIOS SYstem Cal ls l5

RQE$CREATE$IO$JOB

any other code Some task within the new job invoked the
EXITlOJOB system call and indicated that
the job was terminated because some problem
occurred, The job has not yet been deleted
and some of its tasks might still be ready

user$fauÌt$code A WORD that contains an encoded reason lbr
termination of the new job. Whenever the
termination$code has a value other than 0 or
1, this parameter contains an error code that
the terminatìng task specified when invoking
the EXITIOJOB system call. The precise
meaning of this code is provided by the
terminating task, not by the operating system.

job$token A TOKEN for the job that was terminated.

rcturn$drta$len A BYTE that specifies the length (in bytes) of
the return$clata par:ìmeter described below.
The maximum ìength is 89 (decimal) bytes.

return$ciat l r A sequence of BYTES that contain data
speci f ied by the terminat ing task when i t
invoked the EXITlOJOB svstem call.

Output Parameters
io$job The TOKEN that represents the newly created job. The operating

system returns a va l id token only i f the Extended I /O System
returns i ìn E$OK condi t ion code.

except$ptr A POINTER to a WORD where the Extended I/O System returns
thc cond i t ion codc.

Description

This system calÌ creates a joh whose tasks can invoke the system calls provided by the
Extendetl l/O System. Such jobs are called I/O johs, and they diffèr from other jobs in
these ways:

. Job parameter delaul ts: Many of the parameters required by the Nucleus's
CREATE$JOII systcm call are not required by the CREATEIOJOB system calì.
These parame tcrs inclur le

directorr '$sizc
pa ram$olrjcct
max$objccts
max$tasks
max$prior i ty

t6 EIOS System Calls

RQE$CREATE$IO$JOB

The Extended I/O System allows you to speciry values for some of these parameters
during the system configurntion process. The precise instructions for defining these
values are provìtlecl in the Extended ikMX II Interactive Confguration lltility Reference
Manual.

o Default job attributes: The CREATEIOJOB system call provides default values for
the following I/O job attributes:

global job
delaul t user
default preflr

The values for these attril)utes are passed from parent job to child job. For instance,
if Job A uscs the E$CREATE$IO$JOB system call to spawn Job B, then the Extended
I/O System copies the vllues of the Job A attributes into the Job B attributes. Be
aware that if you change the Job A attributes after Job B has been created, the
changed values are not copicd into Job B.

You can set the vir lues for these attr ibutes for the " f i rst parent" job dur ing the process
of configu ring your system.

. Notification ol job termination: The CREATEIOJOB system call provides a
mechanism for not i fy ing the parent job of the terminat ion of the I /O job. The
Extended I/O Systcm implements this mechanism by scnding a tcrmination message
to a mailbox of vour choice whenever a task in the I/O job terminates (calls
EXI ' l '$ lO$JOB). You speci fy the mai lbox by using the msg$mbox parameter of th is
system call.

The E$CREATE$lO$JOII system cal l can be cal led only f rom another I /O job. You can
set up one or more in i t ia l I /O jobs whiÌe conf igur ing the operat ing system. Formore
information about configuration, reler to Chapter 7 of the Extended iR 4X II EÍtended I/O
Systent User's Guid,:.

Do not cìelete a task in ln f /O job i f the task is using a connect ion (that is, i f the
connect ion h;rs not been deleter l) . [1 you do so, the connect ion wi l l not be avai lable to any
other task.

Condition Codes
E$OK 0000H No exceptional conditions.

E$CONTE,XT 000511 The calling task's job is not an l/O job.

EIOS Svstem Calls t7

RQESCREATEIOJOB

E$EXIST 000óH At least one of the following is true:

. The token cataìoged under the name
RQGLOBAL (the global job) is not a token for
an existing olrject. (See the EXTENDED
iRMX II BASIC I /O SYSTEM USER'S
GUIDE for information on the globaì object
directory.)

. The value assigned to the msg$mhox parameter
is not a token for an exist ing mai lbox.

I'-$ N,f E,M 0002H The memory available to the calling task's job is not
suff ic ient tocomplete the cal l .

BNOTCONFIGURED 0008H This system cal l is not part of the present
conf igur: ì t ion.

E$NOUSER 8021H The cal l ing task's job does not have a defaul t user, or
the olr ject c;r ta logecl under the logical name
R?IOUSER is not a user object. (See the
EXTENDED iRMX I I BASIC I /O SYSTEM
USER'S GUIDE for informat ion on R?lOUSE,R.)

E$PARAM tì001I{ At least one of the fol lowing is t rue:

o The value assigned to the pool$min parameter
is less than 12 decimal, or i t is greater than the
vaÌue assigned to the pool$max parameter.

. The value assigned to task$priority is not zercr
and is greater than (numerical ly less than) the
nraximum pr ior i ty of the cal l ing I /O job.

. ' fhe value assignecì to the except ion$mode
parameter is outsi t le the range 0-3, inclusive.

EIOJOB 0017H The cl l l ing task's job is not an I /O job.

l u EIOS System Calls

EXITlOJOB sends a nlessîgc to r previously designated nlailbox and deletes the calling
task.

C A L L R Q $ E X I T $ I O $. l O B (u s e r $ f a u l t $ c o d e , r e t u r n $ d a t a $ p t r , e x c e p t $ p t r) ;

Input Parameters
user$faul t$code A wORD conta in ing the encoded reason for terminat ing thejob.

lf you terminate the job under normal circumstances, you should
cnter lì value of zero. If you terminate the job because of a
problem, vou should enter an error code that ident i f ies the
problem. The Extended I/O System sencls a structure containing
thc valuc you enîer to the mai lbox speci f ied in the
E$CREATE$lO$JOB system cal l .

return$dat:ì$ptr A POIN'l'L,R to a buffer containing a STRING containing data
(provitìed by the calling task) to be returned to the message
mt i lbox speci l ied in the CREATEIOJOB system cal l . I f you
enter Nl l - , no data is returned. I f the s t r ing is longer than 89
(decimal) trytes, only the first 89 bytes are returned.

except$ptr A POIrr-l'ER to a WORD where the Extended l/O System returns
the cont i i t ion code.

Description
' l 'he

EXITlOJOB svstem c;rll complements the CREA'I'ElOJOB systcm call. Using
the EXI'flOJOB svstem call, a task can delete itself and have the Extended l/O System
not i fy the prrent job of thc dc let ion.

When a task in ln I /O job (u jo l) created by the CREATEIOJOB system cal l) invokes
the EXITlOJOB system cal l , tu 'o th ings happen:

. The Extenclec l I /O System deletes the task (but not the job conl r in ing the task) that
invokcd the EXl l '$ lO$JOB system cal l .

o The Extended I/O System sends u termination message to the mailbox specified in the
CREATElOJOB s vstenr cu l Ì .

Output Parameter

EIOS Svstem Cal ls l 9

EXIT$IOSJOB

Special Circumstances

Your application code can use this system call to bring about an orderly deletion of an
I/O job. To do th is, have a task within the I/O job invoke this system call. Thenhavea
task in the parent job receive the message and delete the I/O job. Under certain
circumstances, this system call does not delete the calling task or does not send a
termination message.

Cal l ing Task Not Deleted

Although the EXITlOJOB system call generally deletes the calling task, this deletion
does not occur in thc foLlowing cireumstances:

. If the DE,LETE$TASK system call (which the Extended l/O System calls) returns an
exception code to the Extended I/O System.

e I f the cal l ing task is an interrupt task.

In both cases, the Extenderl I/O System returns control to the calling task and issues an
except ional condit ion code to indicate the nature of the problem. Under any other
circumstance, the Extended l/O System deletes the calling task.

Even if it fails to delete the task, the Extended I/O System sends the termination message
if one has been recluested, except for the following circumstances:

. I f the msg$mbox parameter of the CREATEIOJOB was set to
SELECTOR$OF(NtL).

. I f the mai lbox speci f ied in the msg$mbox purameter of the CREATEIOJOB system
cal l no longer exists.

Condition Codes
E$CONTEXT

ENOTCON-
F IGURED

0005H The task invoking the EXITIOJOB system call is
: ìn interrupt task and cannot be deleted.

0008H This system call is not part of the
present conf igurat ion.

20 EIOS System Calls

The GET$LOGICAL$DEVICE$STATUS svstem call orovides status information about
a loqical device.

CALL RQ$ GET$ LoG I CAL$DEV I cE$ STATUS (log$nane$ptr , dev$info$ptr ,
e x c e p t 9 p t r) ;

lnput Parameter
log$name$ptr A POINTE,R to a STRING containing the logical n:rme under

which the logical device object is cataloged in the root object
d irect o rv.

Output Parameters
dev$info$ptr A POINTER to a structure in which the Extended l/O System

rcturns tlìe status information. You can allocate memory for this
structure by requesting an extended iRMX II segment or by
resen'rng the memory in your code. The structure must have the
following lbrm:

DECI-ARE dev$info STRUCTURE (
device$nane (15) BYTE,
f i l e $ d r i v e r B Y T E ,
num$conns WORD,
owner9id WORD)

where

device$namc A STRING containing the physical name
associated with the device. This is the name
established during Basic I/O System
configuration.

file$driver The file driver associated with the device.
Possible values include

value f i le dr iver

1 physical
2 stream
4 named
-5 remote

EIOS Svstem Cal ls 2 l

G ET$LOGICAL$DEVI C E$STATU S

num$conns The current number of connect ions to the
device.

owner$id The owner ID for this device. This ID is the
first I D listed in the default user object of the
attaching task's job.

except$ptr A POINTER to a WORD in which the Extended I/O System
returns the cond i t ion code.

Description

The GET$LOCICAL$DDVICE$STATUS system call allows a task to obtain status
information about logical names that represent devices. The Extended l/O System does
not check access before return ing st i ì tus in format ion.

Condition Codes
E$OK (XX)01.t No except ional condit ions.

E$EXIST 000óH The device connection corresponding to the logicaL
name is lrcing deleted.

E$LIMIT 0004H Either the user object or the calling task's job is
already involved in 255 (decimal) I /O operat ions.

ELOGNAME$- 0045H The logical name was not found in the
NEXIST root object directory

ELOGNAME$- 00,10H The syntax of the specified logical name
SYNTAX is incorrect because at least one of the following

condit ions is t rue:

. The name was missing matching colons (:) .

. The STRING pointed to by the log$name$ptr
parameter is of zero length or has a length
sreater than 12 (not including colons (:) .

. 'l 'he
logical name contains invalid characters.

I :NOTCON- 0008H This syste m cal l is not part of the
FIGURED present conf igurat ion.

b,NOTDEVICE, 801 I H The specified logical name does not represenr a
vrr l iJ r lc i i . c ((ìnncel ion.

22 EIOS Svstem Calls

The GET$USER$IDS system call returns the user ID(s) associated with a USER defined
in the User Definition File (UDF).

CALL RQSCET$USER$IDS(nameprr , idspEr, exceprgprr) ;

Input Parameter
name$ptr A POINTER to a STRING containing the user name. (Only the

first eight characters are significant.)

Output Parameters
ids$ptr A POINTER to a structure where the ID(s) associated with the

user name will be placed. The structure has the following form:

DECI,ARE ids STRUCTURE (
length WORD,
count WORD,
id (*) woRD) ;

where

length Should be set by the caller to the maximum
number of ID(s) desired.

count Will contain the number of valid IDs in the ID
array after GET$USER$IDS has returned to
the calìer. This value will never be greater
than the ids.length. The user does not need to
initialize this value.

id Is an array of lDs obtained from the UDF.
The length of this array is contained in
ids.count. The user does not need to initialize
this value.

except$ptr A POINTER to a WORD where the Extended I/O System returns
a condit ion code.

EIOS System Calls ? 1

GETSUSERSIDS

Description

This system cal l re turns the user ID(s) associatcd wi th a user name def ined in the User
Def in i t ion F i le (UDF). I t searches the f i le :CONFIG:UDF for the user name pointed to
by the name$ptr p i ì rametcr and i f fount i , re turns th i ì t user 's ID(s) . Refer to the sect ion
on configuration in the Extodetl iRlvÍX ll Extentled I/O System User's Guide for details.

Condition Codes
E$OK (X)00t{ No except ional condit ions.

EBADCALL E00-5H A trsk wrote over the interface library or over the
EIOS job.

E$CIONTEXT 000-5tì The cal l ing job is not an I /O job.

F.$t)E,V$DEl 'ACII ING (X)391I An I /O opcr ir t ion could not be performed on the
r levicc (:SD:) becuuse i t * ' ls being detached.

E$DEVFD 0022t1 ' l 'he clevice (:SD:) cannot be used with the f i le dr iver
as specifietj in the preceding logical attach
opcr i ì t lon.

EUDFFORMAT 0018I{ - l -he
UDF is not in the corrcct format.

E$FACCESS 002611 - l -he
user rkres not have the proper access r ights for

t l) L t r ' (l t l (\ t ((l () p (r i r t i o n .

E$Ft . tJSf l lNG 002CH Thc t lcv ice (:SD:) is being dctached.

E$FNEXIST 002l l l At leust one of thc fo l lowing is t rue:

. Thc l i le or a f i le in i ts path does not ex is t .

. 'fhe
specified physical device was not found.

E$F|YPE (X)27H A p l th component is not a d i rectory f i le .

E.$ILLVOL (l02Dt l Thc f i lc dr iver g ivcn in the volume label conf l ic ts
wi th the f i le dr iver speci f ied in the preceding log ica l
a t t i rcn opcra t ton.

E$INVALID$FNODE (XÌ3Dl{ The lnor je ussociated wi th a f i le is e i ther marked not
i r lk rcated. or the fnode number is out of range. This
t i le should be deleted.

EIOHARD (X)-s2H A hard error occurred; the BIOS cannot ret ry the
rc(lu csr .

EIOMEM 0012H
- fhe

BIOS job d id not have enough memory ro
per l ì r rm thc requested funct ion.

EIOOPRINT 0053H
' l

hc do, icc is o l f - l ine; operator in tervent ion is
rcc lu i red.

l { EIOS System Calls

GET$USERSIDS

EIOSOF-T 00-51H A sof t er ror occurred and the BIOS hts rc t r ied the
opcr t t ion and has fa i led; i t rc t ry is not possib lc .

EiOUNCLASS 00-s0f l An unclass i l icd I /O crnrr occurrcd.

ElOWR$PROT 0051Fl Thc volume speci f ied in rh is c l l l is wr i re prorccred.

E$LlMlT 000.1H The root joh object d i rcctory is fu l l .

ELOGNAME$- 00.1-5H The log ica l name was nor founcì in the
NEXIST cal ler 's o l r jecr d i rectory, rhe g lobal job object

directory, or the root job object dircctory.

E$MEDIA 0011H The device associarcd u ' i th the systcm cal l is o f f - l ine.

E$NAME$NEXIST 00.1() t l The nanrc speci f ied in th is ca l l is not dc l inct l .

E$NOPREFIX 8022H
' fhc

ca l ler 's job does not havc a t ic luu l r pref ix , or i t is
rnvrr I id .

E$NOLjSER EOl I t I
- fhc

c l l ler 's job dot : s nor have a detaul r user ur i r is
inva I i t l .

E$NOTSCON- 000811 T 'h is syste m ct l l is not par t o f thc
FIGURED prcsenr con f igurat ion.

E$PARAM 800l t t At lc ls t onc o l the t ì r lk rwrn{ rs u 'uc:

. ' l
he n i rn lc$f l t r p l r r i rmeter is cqual to NIL.

. Thc length l ie ld of the ids s t ructure is equaL to
ZC TO,

. The nume conta ins inval id char i rc ters.

E$SHARE (X)2 l iH ' l
he f i lc is not sharabie wi th the requested access.

l-IOS System Calls) <

The I IYBRTD$DE-|ACHSDEVICE.: iystem cal l rcmoves the correspondence between a

Iogical nanre and ir phvsiciLl tlevice wìthout removing the logical name from the root ohject
d irecto rv.

26

c A L L R Q $ H Y B R I D S D E T A - l l S D E V l C E r l o g S n a n e $ p f r . e x c e p f $ p t r) ;

lnput Parameter
log$name$ptr A POINTER to a STRING containing the logical name under

uhich the logical device object is cataloged in the root object
r l r rct()rv.

Output Parameter
exccpt$ptr A POINTER to a WORD uhere the Extcnded I /O System returns

thc conr l i t ion code.

Description

I lYtsRlD$DETACI I$DEVIC[srvers an ussoci ;r t ion created by a cal l tcr
LOGICAI-$AITACII$DITVICE * i thout c lc let ing the corresponding entry in the root
olr ject c l i rectory. When ir tusk cal ls HYBRID$DETACH$DEVICE, the Extended I /O
System dctaches the device bv issuing the Blrs ic I /O System
A$PHYSICAL$DETACII$DEVI(-E cal l . In so doing. the Extended I /O System speci f ies
the hard detach opt ion which cieletes rr l l conncct ions to l i lcs on the device.

A device detached usinq H YBRID$DETACII$DEVICE can be reattached in one of two
ways:

. A task can issue the Blsic I /O System A$PIIYSICAL$ATTACH$DEVICE system
cal l .

. A task can use the clevice's lo-qic ir ì nanre (which is str l l cataloged in the root object
directory) ls the prel i r port ion of a pathrìame u,hcn issuing an Extended I /O System
cal l . In this crrse. the Flxtendccl I /O Sl"stcm phvsical ly at t îchcs the device using the
parameters or iginl lh,speci l ict ì rvhcn the loqicrr l nante was establ ished (via
LOG ICAt.$ATTACII I$ DITVICE).

A trsk cannot use LOC] ICAL$AT'fACfl$DEVICE to reattach a device that
I IYBRID$DETACI l$DLVIC'E t le l lchct l . Bcfìrre reattaching a dcvice with
LOGICAI-$A1'I 'ACl l$DEVICE, i ì t r ìsk nrust f i rst issue I-OGICAL$DETACH$DEVICE.

EIOS Svstem Cal ls

HYBRID$DETACH$DEVICE

The HYBRID$DETACI I$DEVICE, system cal l is part icular ly useful for rasks rhat must
temporarily detirch a device and irttîch it in a diflèrent way (for example, attaching a disk
as a physical device u'hen lìrrntatting a volume). These tasks can call
HYBRID$DEIACH$DEVICE ro derach thc device, atach the device using
A$PHYSICAL$ATTACH$DEVtCE, perlbrm the special processing on rhe device, and
detach the device using A$PHYSICAL$DETACH$DEVICE. Later, when a task includcs
the device's logical name in an Extencied I /O System cal l , the Extended I /O System
automatical ly reattuches the device in the previous miìnner.

The HYBRID$DEI'ACH$DEVlClE, svstenr cal l can be issuet l as fol lows:

. By the task ("at t t rching t lsk") that created the logical name by issuing
LOGICAL$ATTACII$D[,VICE, or by sonre other rask in rhe same job as rhe
attachine task.

. By any task in a job whose r lc l rrul t user olr ject contains the f i le 's owner ID in i ts lD Ì ist .

. By thc Svs tc r r r \ 4 : rn : r [<T

Condition Codes
E$OK (X)00H No ex.^ept ion l r l cont l ì r ions.

E$EXIST {X)()6 l l I 'he device connect ion corresponding to the log ica;
nanre is being deleted.

E$LIMIT (XX) l l l E i ther the user o l r jecr or the cal l ing task 's job is
a l ready involvec l in 2.55 (decimal) I /O operat ions.

ELOGNAME$- 00.1-51| ' l 'hc
lo_qica l n ; ime wls nor { ì rund in rhe root

NEXIST o l r ject r l i rectory.

E$t-OG$NAME$- 00.10l l The syntax of the speci f ied logìcal name
SYNTAX is incorrcct because at least one o l the fo l lowing

condì t ions is t rue:

. The STRINC poinret ì to by the log$name$ptr
paramcter is of zero length, has a length greater
than l2 not inc luding colons (:) , or is miss ing
t : t i t t .h ing r r r lons.

o The log ica l name conta ins inval ic l r :haracters.

E,NOTCON- 000EH This svsrem cal l is not p i ì r r o f rhe
FICURE.D present conf igurat ion.

ENOTDEVICE | t0 . l I I I The spcci l ic r i loq ica l name does not represent a
rr r ì i t l r lev i r e c t rnnect i t rn .

ENOTOV/NER 0046H The user (specifìed by the default user object) is not
the user that at tached the device.

EIOS Svstem Cal ls 27

The LOGICALI$ATTACH$DEVICE system call assigns a logical name to a physical
device.

CAUTION
Any task that uses this system call loses its device independence. To
maintain as much device independence as possible in your application' a
few selected tasks should perform all attaching and detaching of devices.

CALL RQ$LocI CAL$ATTACH$DEvI CE (log$narne$p tr , dev$narne, file$driver,
e x c e p t $ p È r) ;

Input Parameters
log$name$ptr A POINTER to a STRING (of 1 to 12 characters) containing the

logical name to be assigned to a device. The name can be
delimited with colons (:). The operating system removes the
colons so that a logical name with colons is the same as one without
(e.g., :F0: is effectively the same as F0), and colons do not count in
the length of the name. If you intend to use this logical name as
part of a pathname in other system calls, enclose it in colons.

dev$name A POINTER to a STzuNG containing the name of the device to
which the logical name is assigned. This device name is the name
of a Device-Unit Information Block (DUIB) specified during Basic
I/O System configuration.

file$driver A BYTE speciling which Basic I/O System file driver to use with
the device. Possible values are as follows:

value file driver

1 physical
2 stream
4 named
5 remote

Output Parameter
except$ptr A POINTER to a WORD where the Extended I/O System returns

the condition code.

28 EIOS System Calls

LOG ICAL$ATTACH$DEVICE

Description

LOGICAL$AT-|ACI l$DIIVICE assigns a logical name to a physical device. This system
call creates a Logical Device Olrject that corresponds to a physical device. This Logical
Device Object is cataloged in thc root object directory under the logical name pointed to
by log$name$ptr. The Logical Device Object must be cataloged before the Extended l/O
System can make connect ions to f i les on the cievice.

The first Extended I/O System call thlrt uses the logical name as a prefix in a path nanìe
causes the physical device to be at tached. (The Extended I /O System uses the Basic I /O
System cal l A$PHYSICAL$ATTACH$DEVICE.) The logical name can be used as a
prefix in other system cllls and cln be deleted by LOGICAL$DETACH$DEVICE,.

Becuuse of the nature of LOG ICAL$A1'I 'ACl i$DEVICE, some except ion codes that
resul t because of crrors in thìs systcm crr l l r r re not returned unt i l the l lxtended I /O System
tr ies to at tach the clcvice \ \ ' i th A$PI IYSICAI.$AT'fACtl$DEVICt.

Condition Codes
E$OK

E$CONTEXT

E$L IMIT

E$MEM

ELOGNAME$.
SYNTAX

ENOTCON-
F IGURED

(){XX)H

0005 t I

No exccJrt ional cond i t ions.

The root object clirectory already contains an entry
with the name pointed to bv the log$name$ptr

Paranìetcr.

At leust one of the fbl lowing is t rue:

. l'he callìng t:rsk's job object directory is full.

. The root object directory is full.

. The cal l ing task's job is not an l /O job.

Thc memory avai Ìable to the cal l ing task's job is not
sul l ic ient to complete this cal l .

The specified logical name is
svntrct ical lv incorrect because at least one of the
l i r l lowing conr l i t ions is t rue:

. The STRING pointer i to by the log$name$ptr
pi ì rameter is of zero length or has a length of
greater than l2 (including thc colons).

. The logical name contains inval id characters.
'ì-his system call is not part of the
present conf igurat ion.

0001Ft

0001H

{x).10

()(X)E I I

EIOS Svstem Calls 29

The LOGICAL$DETACH$DEVICE system call removes the correspondence between a
logical name and a physical device, and removes the logical name from the root object
directory.

CALL RQ$LOCI CAL$ DETACH$ DEVI CE (log$narne $p t r , except$ptr) ;

Input Parameter
log$name$ptr A POINTER to a STRING containing the logical name under

which the logical device object is catalogued in the root object
directory.

Output Parameter
except$ptr A POINTER to a WORD where the Extended I/O System returns

the condit ion code.

Description

LOGICAL$DETACH$DEVìCE severs an association created by a call to
LOGICAL$ATTACH$DEVICE and deletes the corresponding entry in the root object
directory. After LOGICAL$DETACH$DEVICE is issued, users cannot create new
connections using the logical name as a prefix. When the last file connection on the
physical device is severed, the Extended I/O System detaches the device (issues the Basic
I/O System call A$PHYSICAL$DETACH$DEVICE).

The LOGICAL$DETACH$DEVICE system call can be issued as follows:

. By the task ("attaching task") that created the logical name by issuing
LOGICAL$ATTACH$DEVICE, or by some other task in the same job as the
attaching task.

. By anotherjob having the same owner ID in its default user object.

. By the System Manager.

Condition Codes
E$OK 0000H No exceptional conditions.

E$EXIST 0006H The device connection corresponding to this logical
name is beins deleteu.

30 EIOS System Calls

LOG ICAL$DETACH$DEVICE

E$LIMIT 0004H One of the following is true:

. The job has reached the object limit of the
calling task's object directory.

. Either the user object or the calling task's job is
already involved in 255 (decimal) I/O
operations.

o The cal l ing tzrsk's joh is not an l /O job.

ELOGNAME$- 0045H The logical name was not found in the root
NEXISI' object directory.

ELOGNAME$- 00,10H The synrax of the specified logical name
SYNTAX is incorrect because at least one of the following

cond i t ions is t rue:

. The STRING pointed to by the log$name$ptr
parameter is of zero length or has a length

_qreater than 12 (not including colons (:)) .

. The logical name contains inval id characters.

E$MEM 0002H The memory available to the calling task's job is not
sufficient to complete the call.

ENOTCON- 0008H This system call is not part of the
FICURE,D present configuration.

ENOTDEVICE 801 I H The specified logical name does not represent a
valid device connection

ENOTOWNER 0046H The user (specified by the default user object) is not
the user that attached the device.

EIOS Svstem Calls 3 l

STARTIOJOB starts the execut ion of a task in an I /O iob. The task was not started
$hen the l /O job was crcuted.

C A L L R 0 $ S T A R T S I O S J O B (i o $ j t , l ' . q : { q q p l $ p 1 r) '

Input Parameter
io$job I'OKE.N for the I/O job to be started. This is the TOKEN that was

rerurned bv the cal l to GREATEloJoB.

Output Parameter
except$ptr A POINTER to a WORD where the Extended [/O System returns

the condi t ion code.

Description

When you cal l RQE$CREATE$lO$JOB you can speci fy (wi th the task$f lags parameler)
that the task in the new job not s t r ì r t running unt i l the STARI '$ lO$JOB cal l is issued. In
th is way you can in i t iu l izc any i tems th l r t need to be set before the in i t ia l task in the new
job star ts running. For exumple, vou c iu l creî te i r job, cata log a log ica l name in the new
job 's o l r ject d i rectory. and then issue STARTIOJOB.

Condition Codes
E$OK 0{)00H No except ional condi t ions.

ENOTCON- 000tH This system cal l is not par t o f the
FIGURED prcsent conf igurat ion.

E$TIME 000 I H The job cannot be star tet l yet , probably because the
oper : r t ing system has not f in ished processing the
CRL.ATElOJOB cal l that created th is job.

32 EIOS Svstem Calls

The S$ATTACH$FILE system call creates a connection to an existing file.

c o n n e c t i o n : R Q $ S $ A T T A C H $ F I L E (p a t h $ p r r , e x c e p r g p r r) ;

lnput Parameter
path$ptr

Condition Codes
E$OK

E$ALREADY$.
ATTACHED

E$CONTEXT

EDEVDETACIJ INC

No exception:rl conditions.
' l

he Extended l /O System cannot at tach the
device conta in ing the f i le because the Basic I /O
system has a l ready at tached the device.

'l 'he
calling task's job is not an I/O job.

The device containing the specified file is in the
process of being detached.

0000H

O03EH

0005 Ì I

00ieH

Output Parameters
connect lon

except$ptr

Description

This system cal l a l lows a task to obt i r in a connedion to i rny named, physica l , or s t ream
file.

The Extended I/O Systcm ulkrws any riìsk to attach any file. llowever, if the file being
î t tached is a namecl f i le , the Extendccì I /O System computes access r ights for the
connect ion. These lccess r ights are b i rscr i on the f i le 's access l is t and the user IDs in the
defaul t user object of t l ìe c l l l ing t lsk 's job. (Refer to extended iRMX I I Operar ing
System user guides f ì r r nrore inkrrmut ion.) l f the f i le 's access l is t a l lows no aLcess to the
users l is ted in the delaul t user o l r . ject , the cal l creates thc connect ion, but i t a l lows no
access.

A POIN'fER to a STRING containins the oarhname of the f i le to
be a t tached.

The' l 'OKEN that represents the new connect ion to the f i le .

A POIN' Ì ER to a WORD where the Extended I /O System returns
the condi t ion code.

EIOS Svstem Cal ls J J

SSATTACH$FILE

E$DEVFD 002211 The Extended I/o System attempted the physical
attachment of a device that had fbrmerly been only
logically attached. ln the process, it found that the
device and the tlevice driver specified in the logical
attachment were incompatible.

E$EXIST 000óH The device connection TOKEN is invalid.

E$FACCESS 0026t1 The default user object is not allowed access to the
file. See the Description section for more
informat ion.

E$FNEXIST 0021H A file in the specified path, or the target file itself,
does not exist or is marked for deletion.

E$FTYPE 002711 The specified path is attempting to use a data file as
a tlirectory.

E$ILLVOL 002DIì The Extcnded I /O System attempted the physical
îttachment of a device that had tbrmerly been only
logical ly at tached. During this process, i t examined
the volume label and found that the volume does not
contain nametl files. This prevented the Extended
I/O System from completing physical attachment
because the named file driver was requested tluring
logical at tachment.

E$INVALID$FNODE 003Dll The fnocle for the specified file is invalid. The file
cannot be accessed: you should delete it.

EIOHARD 00-52H A hard I/O error occurred. A retry is probably
useless.

EIOMEM 0012H The BIOS job did not have enough memory to
perform the requested function.

EIOOPRINT 0053Iì The device was off-line. Operator intervention is
recluired.

EIOSOFT 00-5lH A soft I/O error occurred. The Basic I/O System
triecl to perform the operation a number of times
and lai led (the number of retr ies is a conf igurat ion
p:rnìmeter). Another retry might still be successful.

EIOUNCIASS 0050H An unknown type of l/O error occurred.

E$LIMIT 0004H At Ìeast one of the fol lowing is t rue:

. The cal l ing task reachecl the object l imit .

. The user ol.rject or the calling task's job is
already involved in 255 (decimal) I /O
operat lons.

3,1 EIOS Svstem Calls

SSATTACH$FILE

. The calling task'sjob is not an I/O job.

ELOGNAME$- 00,+5H The specified path contains an explicit
NEXIST logical name, but the call was unable to find this

name in the object directories of the calling task's
local job, the global job, or the root job.

ELOGNAME$- 0010H The specified logical name contains at
SYNTAX least one of the following syntax errors:

. The specified path starts with a colon (:),
indicating that it contains a logical name. But
the call was unable to find a second colon to
delimit the logical name.

. The specilied path contains a logical name that
is ei ther longer than 12 characters (including
colons), has no characters, or contains invalid
characters.

E$MEDIA 00.11t I The device containing the specified file is not on-
l ine.

E$MEM 0002H The memory available to the calling task's job is not
sufficient to complete the call.

ENOPREFIX ti022H You did not specify an explicit prefix (logical name),
and the default prefix for the calling task's job is
either undefined, or it is not a valid device
ronn(ct ion or l i le conncct ion.

ENOTCON- 0008H This system cal l is not part of the
FIGURED present conf igurat ion.

ENOTl-OC$NAME 8010H The speci f ied path contains a logical name that
represents an object that is ncithcr a device
Lrìnnc(t ion nor a f i lc (rrnnecî ion.

ENOUStrR E02l l l The cal l ing task's job does not have a defaul t user, or
its default user is not a user object.

E$PARAM 800.111 The Extended I /O System attempted the physical
attachment of a device that had formerly been only
logically attached. The logical attachment referred
to a file driver (named, physical, or stream) that is
not configured into your system, so physical
l tt:rchrrìent is not possible.

E$PATLINAME$- 0038H The spcci f ied pathname contains inval id
SYNTAX characters.

l l lOS Svstem Calls -tf,

The S$CATALOG$CONNEC'flON system call creates a logical name for a connection
{ry cataloging the conrìection in the ol.rject directory of a specific job.

.l fi

C A L L R Q $ S $ C A T A L O G $ C O N \ * I ì C T I 0 N (j o b , c o n n e c t i o n . I o g $ n a m e $ p t r ,
e x c e p t $ p t r) ;

Input Parameters
job A1-OKEN l i r r the job in whose object d i rectory the log ica l name is

to be cata loged. l f the value of th is puramcter is
SI- - l .ECTOR$OF(NIL) , the Extended I /O System catakrgs the
connect ion in the object d i rectory of the cal l ing task 's job.

connect ion A TOKEN îor the connect ion to ber ass i_qnecl the log ica l name. l f
the value of th is parameter is SFl I -FICTO R$OF(N I t -) , the
Extenclet l I /O System obtr ins thc connect ion by look ing up the
nume in the object d i rectory of the cal l ing task 's job.

log$name$ptr A POINTER to l r buf fer conta in ing thc log ica l name, which must
bc e S ' l 'RING of l2 or lcwer characters. The name can be
t le l imi tet l u i th co lons (:) . The operat ing systenl rcmoves the
colons so that a log ic l r l name wi th co lons is the same as one wi thout
(e.g. , :F{) : is ef tèct ive lv the s i lme as F0) ; co lons do not count in the
lcnqth o l the nume. I f you expect to use th is log ica l name in other
Extent ied I /O Svstem cal ls . de l imi t the nanre wi th coktns.

Output Parameter
except$ptr A POINTER to a WORD where rhe Extended I /O System returns

the condit ion cot le.

Description

The Extended I /O System c i)nvcr ls t l ìe churacters in the loegnlmegptr STRING to
uppercase and catakrgs thc connect ion in the ot r ject c l i rectorv of the speci f ied job.
I lowever , two speciaÌ s i tuut ions r t f rc t the outcor Ì ìe of th is svstem cal l :

r I f the job 's ot r ject t l i rectory a l ready conta ins the log ica l name. the ncw connect ion
replaces the er is t i r rq o l r ject in the i ì i rcctory. The Extended I /O Sysrem considers rh is
to be a normrr l c i rcumst l rnce;rnc l . consci luent ly , does not return an exccpt ion code.

EIOS Svstem Cal ls

S$CATALOG$CONNECTION

. If your task sets the connection parameter to SELECTOR$OF(NIL), the Extended
I/O System looks up the logical name in the object directory of the calling task's job.
The system then copies the logical name and its definition into the object directory of
the specified job.

Condition Codes
E$OK 0000H No exceptional conditions.

E$CONTEXT 000-5H The job in which your task is attempting to catalog
the connection has an object directory that is zero
bytes long.

E$EXIST 0006H The job or connection parameter is not a token for
an existing object.

E$LlMlT 00{).ll I Ar least one of rhe followìng is true:

. The object directory for the specified job is
already full.

o The cal Ì ing task's job is not an I /O job.

ELOCNAME$NEXIST 0045H The Extended l/O System was unable to
find the specified logical name in the object
directory of the cal l ing task's job.

ELOGNAME$- 0010H The specified logical name conrains ar
SYNTAX least one of the following syntil\ errors:

. The speci f ied path starts with a colon (:) ,
indicating that it contains a logical name. But
the call was unable to find a second colon to
del imit the logical name.

. The specified path contains a logical name that
is ei ther longer than l2 characters, has no
characters, or contains invalid characters.

E$MEM (X)02H The memory avai lable to the cal l ing task's job is not
sulTicient to complete the call.

ENOTCON- 0008FI This system cal l is nor part of the
FIGURED present conf igurat ion.

ENOTCON- 80.12H The connection parameter is a token for an
NECTION object that is not a connection.

E$TYPE 8002H The job parameter is a token for an object that is not
a job.

EIOS Svstem Cal ls

The S$CHANGE$ACCESS system call changes the aqcess list for a named file. This
system call can be used for eithcr data or directory files.

C A I - L R Q $ S $ C H A N G E $ A C C E S S (p a r h $ p t r , i d , a c c e s s , e x c e p t $ p t r) ;

lnput Parameters
path$ptr A POINTER to a STRING conta in ing a path to the f i le whose

access is tcl be changed.

id A WORD containing the lD of the user whose access to the file is
to be changed. This value can dilTer from the owner ID of the
cal l ing task 's def ì ru l t user ohject . I f the f i le 's access l is t conta ins the
I D, the Extended I /O System changes the ID 's current access. I f
the uccess l is t docs not conta in the ID, the Extended I /O System
adds the ID to the file's access list. unless the access list is full
(conta ins three entr ies) . l f the access parameter descr ibed in the
next paragruph is zero, this call removes the ID from the access list.

iìccess A BYTE defining the new iìccess rights to be assigned to the
specified user, lf the entire BYTE is set to zero, the Extended I/O
System removes the specified ID from the access list of the file. If
the BYTE is nonzero, the meaning of the var ious b i t set t ings
depend upon whether the file is a data file or a directory file. The
fo l lowing two tables corre late the b i t pos i t ion and the k ind of
access. (System cal ls that s tar t wi th "A$", l ike A$READ, are par t
of the Basic I /O System.)

l f the b i t is set to l , access is to be granted. I f the b i t is set to 0,
access is to be denied. (Bi t 0 is low-order h i t .)

DATA FILE ACCESS RIGHTS

Access

Delete--permission to delete the entire file by
using the S$DELETE$FILE or
A$DELETE$FILE system cal Ìs. Also al lows
changing the name of the f i le by using the
S$RENAME$F-lLE or A$RENAME$FILE
system cal l .

Read--perm ission to read data from the f i le by
using the S$READ$MOVE or A$READ
svstem ca l l .

B ì t

0

.l li EIOS Svstem Cal ls

S$CHANGE$ACCESS

Appcnd--pcrnr iss ion to wr i te in [ormat ion onlv
i r t the end o l the f i le by us ing the
S$WRITE$l \ ' fOVE or A$WRl ' fE system cal l .
This t jocs not inc ludc permiss ion to wr i tc ovcr
i n l o r m l r l i o n ; r l r c r r t l v i n l h c l i l c o r p c r m i s s i (' n t , '
t runcate the f i le .

Update--pernr iss ion to wr i tc ovcr any
in l ì r rmat ion in the f i le by us ing the
S$WRITE$MOVE or A$WRITE system c l l ls ,
: rnd permiss ion to t runcl ì te the f i lc us ing the
S$' f RUNCATE$FI I -E or A$TRUNCATIT
svstem cal l . This does not inc luc le permiss ion
to adcl in l ì r rmat ion to the end of the f i le .

Rcscncd. Sct to zcro.

DI RECI'ORY ACCESS RIGII l 'S

B i t s

0

Acccss

I)c lc tc- -pcrm iss ion to dc lc tc the d i rcctorv bv
u s i n r t h c A $ f) t r l . F T I I $ F I t - U o r
S $ l) t r l . l - - ' l t r $ t l l . l l s v s t c r r c r i l l . A l s o a l k x v s
chlnqing thc nîmc of thc c l i rcctory by us in-(
the A$RHNAN' l I - -$F I t -E or
S $ R E N A M E S F I L E s v s t e m c l l l .

D isp lav--pcrm iss ion to read in formut ion f ront
the d i rectory by us ing the A$READ,
AGETDIRECTORY$ENTRY, or
S$READ$MOVE svstcnr cu l l .

Add entrv- -pernr iss ion to add f i les to the
t l i rectory bv us ing thc A$CREATE$FlLE,
A$CREATI l$DIRECTORY,
A$ RENA N' f F.$ F l I .E. S$CRIIATE$FI I .E, ,
S$C'REATE$ D I I ìECTORY, or
S$RENAMESFII -E svstem cal l . This does not
in . lu . ' lc p . rmiss i r)n t (' ch i rn! ,c c \ i \ t inÈl cnt r ics.

Change ent ry ' - -pernr iss ion to change the ucccss
l is t ussoci i r ted u i th a f i le conta ined in the
d i r c . l , r r - v . I n u t h e r u , ' r . l s . p c r m i s s i o n t r r u s c
t h < A $ C I I A N C F $ A C C E S S o r
S$CHANGE$ACICESS system cal l . This does
n (' t i n L l u d c I) c r m i s s i (l n t (ì i r J d n (\ c n l r i c s o r
change the access i is t o f the d i rectory in which
the l i le is c i r t : r krgecl .

EIOS Svstem Cal ls 39

S$CHANGE$ACCESS

n 1 Reserved. Set to zero.

Output Parameter
except$ptr A POINTER to a WORD where the Extended I/O System returns

the condi t ion code.

Description

The S$CHANGE,$ACCESS system call allows a task to change the access rights
associated with nanred data or directory files. This system call can be used on any named
file, including those created by the Basic I/O System.

For a task to be able to change the access rights associated with a file, the task's job must
mcct i r l lc i rs t onc r t f lhe fo l l r ru ing er i tcr i r r :

. One of the IDs in the job's default user olrject is the owner of the file, or is the System
Manager I D.

. One of the IDs in the job 's defaul t uscr o l r ject has change-entry access to the parent
directory of the file.

For more information ahout owners. access rights, and cielìrult user objects, refer to
Chapter 4 of lhe Exîetulrd iRlrÍX Il Estetulcd I/O S1'stent User's Guide.

Condition Codes
E$OK 00001ì t . \o except ional condit ions.

E$ALREADY$- 00381ì The Extended I /O System cannot at tach the
ATTACHED tlevice containing the file because the Basic I/O

Svstcrn has already attached the device.

E$CONTEXT (XX).5H The c:r l l in,q task's job is not an l /O job.

EDEVDETACHIt, \G 0039H The device containing the speci f ied f i le is being
d et i r che d.

E$DEVFD 0022H The Extended I/O System attemptetJ the physical
att:rchment of a device that had formerly been only
logic l l lv at tached. In the process, i t found that the
device and the cievice driver specified in the logical
at tacl ìmcnt u 'cre incompat ible.

E$FACCESS 0016H The job containing rhe cal l ing rask meers none of rhe
prerequisi tes for using this system cal l . None of the
IDs in the job's defaul t user object is the owner of
the file. nor does anv have change-entry access to
thc f i le 's parent dircctory.

{0 EIOS Svstem Calls

E$FNEXIST

E$F-fYPE

E$IFDR

E$ ILLVOL

F,$ INVALID$FNODI :

E$ IO$HARD

EIOOPRINT

EIOSOFf

EtOUNC]I,ASS

ErowRPRO't '

E$ IO$MEM

E$L IMIT

S$CHANGESACCESS

(X)2 l l l One of the fo l Ìowing condi t ions is t rue:

. A f i le in the speci f ied path, or the target l i le
i tse l f , does not ex is t or is marked f ì r r de let ion.

. The physìcal device was not found. The clevice
was speci f ied by the or ig inal ca l l to
A$PH YSICAL$AT-|ACH$ DEVICE and is
ind icated in th is ca l l by the path$ptr paramerer .

0027t i The speci f ied path is at tempt ing to use a d l ta f i le : rs
a directory.

002FH The f i le dr iver associated wi th th is connect ion is the
physicaÌ or s t ream f i le dr iver . I Iowever . the c l l l is
compat ib le wi th the numet l f i le t ì r iver only .

002DH The Extended I /O Systcm r ì t tempted the physica l
af tachment of a c iev ice that had l ì r rmer ly been only
logica l ly at tached. In the process, i t exnnt ined the
volume label and îound that the volume does not
cont ; r in named i i les. This prcvented the cal l f rom
complct ing physìcal i ì t t i ìchnlcnt bccrruse the named
l i lc dr iver was ret luest rd c lur ing log ica l a t tachmcnt .

(X)3DI l Thc fnodc for thc spcci l ied f i lc is inval i t i . The l i le
canr ìot bc accessed;vou shouìd delc te i t .

00-5 l l l A hard I /O error occurred. A rc t ry is probrb ly
useless.

0053H The device was of f - l ine. Operutor in ten,ent ion is
re c1u ired.

0051I I A sof t I /O error occurred. The I /O System t r ied to
per form (he operat ion l number of t imes and fe i led
(the number of ret r ies is a conl igurat ion p i ìn tmeter) .
Anothcr ret ry might s t i l l be successfu l .

00-50f { An unknown type of I /O error occurred.

00-5 l l l
' ['he

vo lume is wr i te-protectet l .

(X) .111| The Basic I /O Systcm job does not current ly have a
block of memory large enough to a l low th is system
cal l to run to complet ion.

0001H At least one of the fo l lowing is t rue:

. ' l 'he user object or the cal l ing task's job is
already involved in 255 (decimal) I /O
operat ions.

EIOS Svstem Cal ls 4 l

S$CHANGESACCESS

. The calling task's job is not an I/O job.

ELOGNAME$NE,XIST 00,15H The specified path contains an explicit
logical name, but the call was unable to find this
name in the object directories of the calling task's
Ìocal job, the global job, or the root job.

ELOGNAME$- 0010H
'Ihe

specified logical name contains at
SYNTAX least one of the following syntax errors:

. The specified path starts with a colon (:),
ind icat ing that i t conta ins a log ica l name. But
the cal l was unable to f ind a second colon to
del imi t the log ica l name.

. The specified path contains a logical name that
is e i ther longer than l2 characters (inc luding
cokrns), has no characters, or contains invalitl
c l ìaracters.

E$MEDIA (X):l4H 'l 'he
device containing the specified file is not on-

Ì in e.

E$MEM 0002H 1 'he memory avai lab le to the cal l ing task 's job is not
suf l ic ient to complete the cal l .

ENOPREFIX 8022H YoLr t l ic l not speci fy an expl ic i t pref ix (log ica l name),
rund the tiefault prefix for the calling task's job is
e i ther undef ìned, or i t is not a va l id device
con nect ion or f i le connect ion.

ENOTCONFIGU RE D 0001. ìH ' l 'h is
system cal l is nor par t o f rhe presenl

conl igu ra t ion.

ENOTLOG$NAME t i0 ,10H 1 'he speci f ied path conra ins a log ica l name thar
refers to an olrject that is neither a device
(()nnc(t i (ìn nor l r f i l . : tonnect ion.

F-NOUSER 802 I t l
' l

he ca l l ing task 's job does not have a defaul t user , or
its defirult user is not a user ohject.

E$PARAM l l (X) .111 The Extended I /O System auempred the physica l
irttachmcnt of a device that had formerly been only
logically attached. The logical iìttachment referred
to a file driver (named, physical, or stream) that is
rìot configured intcl your system. Therefore, physical
î t tach ment is not possib le.

E$PATHNAME$- 00 ìEH Thc speci f ied pathname conta ins inval id
SYNTAX e^hu nrcters.

EIOS SYstem Calls

S$CHANGE$ACCESS

E$SUPPORT 0023H At least one of the lì)llowing is true:

o The calling task attempted to change access for
a f i le other than a named f i le.

. The cal l ing task at tempted to add another user
ID to the file's access list, but the list already
contains three entr ies. The task must delete an
entry before it can add another.

. The connection specified in the call is not
contained in the job making the cal l .

EIOS Systern Calls 43

l 'hc S$CI-OSE systenr c i r l l ckrses an open connect ion to a named, physica l , or s t ream f i le .

, A L L R . J S S 5 ' L U S E / , , r . r , . . t i o Ì r . e x c e p f S p r r) ;

Input Parameter
conncct ion A ' fOKEN t ì r r a f i le connect ion that is current ly open and was

opencd bv the S$OPEN svstem cal l .

Output Parameter
excel) t$ptr A POINl t rR to l WC)RD where rhe Extended I /O System returns

thr con t l i t ion codc.

Description
' I

he S$Cl -OSE svst rnr cr r ì ì ckrses l connect ion thut has been opened by the S$OPE,N
svstem cul l . I t pcr l i r r r rs thc l i r lk lv in-g s teps:

l . I t wai ts unt i i r r l l current lv running I /O operat ions for the f i le are completed.

2. I t ensurcs thut r rnv in l ì r r r r r t ion in i r p i r r t ia l ly f i l led output buf fer is wr i t ten to the
f i le

-1. l t re lerses t rnv bLr l lc rs ussoci r r tcc l wi th the î i le .

J . I t c loscs lhe conncct ion to thc I i lc . dr lc t ing nei ther the f i le nor the connect ion.

The Extended I /O Sl s t tnr ; rcr f ì r rn ts no l ìccess checking before c los ing the connect ion.

- l 'hc
S$CILOSE svst tn l c i ! l l c i rnnot i) r i uset i to c lose connect ions that were opened by the

I ì r rs ic I /O Svstr rn. I l tour t l ìsk i t t t tn ìJr ts t0 do th is . the Extended I /O System returns an
E$CONN$NOT$Ol) l ìN crcrpt ion codc.

Condition Codes
L$OK 0(X)0l l h"o crccpt ional condir ions.

E$CANNO I '$CLOSE (10,1I H An error occurred u,hi le f lushing data from EIOS
bul lers îo an output device.

:l.l EIOS System Calls

S$CLOSE

E$CONN$NOT$OPEN 003'ltl One of the following conditions is true:

o The connection is not open.

. The connection was opened by A$OPEN rather
than S$OPEN.

E$EXIST 000óH The connection parameter is not a token for an
existing object.

EIOHARD 0052H A hard I/O error occurred. A retry is probably
useless.

EIOMODE 00561ì One of the fol lowing is t rue:

. A tape drive attempted to perform a read
operation before the previous write operation
completed.

. A tapc drive attempted to perform a write
operat ion before the previous read operat ion
completed.

EIONO$DATA 0055H A tape drive attempted to read the next record, but
i t found no data.

ElOOPRINT 00-53I I
'l 'he

device was off-line . Operator intervention is
rcclu i red.

EIOSOF*| {)0511ì A soft I /O error occurred. The I /O System tr icd to
perform the operat ion a number of t imes and fai led
(the number of retr ies is a conf igurat ion parameter) .
Another retry might still be successfìI.

EIOUNCLASS 00501I An unknown typc of I /O crmr occurred.

ElOWRPROT 0051H The volume is wri te-protected.

E$LIMIT (XX). l t l At lc i ìst one of the fol lowing is t rue:

o The calÌing task's job is not an I/O job.

. The caÌling task's job is already involved in 2-55
(clecimaÌ) l /O operat ions.

E$MEM 000211 The memory avai labÌe to the cal Ì ing task's job is not
sufficient to complete the call.

E$NOTSCOr.,,\FIGURE.D (l00iiH This system call is not part of the present
conl igurat ion.

ENOTCONNECTION ti012l I The connection parameter is a token for an object
thir t i \ not a connect ion

E$SUPPORT 0021H The specified connection was not created by a task
in the cal l ing task's job.

EIOS Svstem Cal ls 45

Thc S$C RtATt:$ DII ìF(" l O RY svstcm cal l creates a new directory f i le.

c o n ù e c I i o r ì R Q $ s $ a ì l ì l ' . r , 1 f l S I) l R l i c ' f o R Y (p a t h $ p t r , e x c e p t $ p t r) ;

Input Parameter

I) l r t h$pt r A l : ' () l N ' l l : f ì t o l S T R I N G c o n t a i n i n g t h e p a t h n a m e o f t h e n e w
(l r r t (t or \ , .

Output Parameters
conl rcct ion A l ()KI r \ - lhr ì t rc l) r rsrnts a connect ion to the new c l i rectory. You

crrn Lrsr th is lC)KI : l ' l us l ì p l ì ranìeter in system cal ls that access the
(l l t e e l (l t) .

except$ptr .A l , , () l \ l l l l l to u WOR[) where the Extendcd I /O System returns
the t ont i i t ion t r t l t .

Description

A task invokcs th is syst ro l cr r l ì to crcr r te r r new n:rmed-f i le d i rectory. Af ter creat ion, the
new di rectorv conl i r ins no rnt r ics.

' l 'h is systcm cal l automat ica l ly adds a new entry to the

l) l rcnt d i rcctor \ , .
. lhc

nerr c l i rectorv is corrprr t ib le wi th d i rector ies created by the Basic
I , / () Svstenl .

Posit ioning the Directory

' l
he c i r l l ing tusk n lus l Lrse thc pat l r$ptr I) i r r i ìn tc tcr to speci fy the locat ion of the new

t l i rectory r i ' i th in the n l rnrcr j f i ìc s l ru(tLrrc . The loc l r t ion ind icated by the path must not bc
occupiec l . In other u 'or r ìs . th is svstem crr l l c i rn ì re used onlv to obta in connect ions to new,
r i r t h c r t h r r n c x j r t i r r r . r l i t (\ ' 1 , ì r i L \ .

- l 'he
t lc f r ru l t user objcct l i r r the c l r l l inq task 's job must h i tve add-entry access to the parent

of the neu' d i rcctorv. I t thc crcrr t ion is successfu l . the f i rs t ID in the job 's defaul t user
ot) ject (the orvncr ID) becomes the o\ \ 'ner of the f i le .

The entry in the p i ì r er ì t i l i rccto lv 1ì r r the newly created d i rectory prov ides the owner of
thc new c l i rcctory * . i th lu l ì uccess (thc abi l i tv to Delete, l , is t , At ld , and Change entr ies) to
thc new c l i rectorv.

,t6 EIOS System Calls

Condition Codes
E$OK

E$ALREADY$-
ATTACHED

E$FEXIS'I '

E$FNEXIST

E$FNODE$LIMIT

E$FfYPE

E$ILLVOL

E$CONTEXT i)O().sH

EDEVDETACHING ()()39II

E$DEVFD 0022H

E$FACCESS 0026H

S$CREATE$DIRECTORY

No exceptional conditions.

The Extended I/O System cannot attach the
r lev ice conîa in ing the f i le because the Basic I /O
System has already attached the device.

The calling task's job is not an l/O job.

The device containing the specified file is in the
process of being detached.

The Extended I/O System attempted to physically
attach a device that had formerly been only logically
attached. In the process, it found that the device
and the device driver specified in the logical
at tach ment were incompat ib le.

J 'he user object associated wi th the cal l ing task 's job

does not have add-entry access to the parent
tlirectory.

The file already exists.

At least one of the following is true:

. A f i le in the speci f ied path does not ex is t or is
marked for delet ion.

. The device speci î ied in the cal l is not par t o f thc
currcnt conf igurat ion.

The volume a l ready cont l ins the maximum number
of filcs. No more fnodes are available for new files.
' l 'he

speci l ied path is at tempt ing to use a data f i le as
a d i rectory.

The Extended I/O System attempted to physicaÌly
attach a dcvice that had formerly been only logically
at tached, and found that the volume does not
contain named files. Thìs prevented the call from
complet ing physica l a t tachment because the named
file driver was requested during logical attachment.

The fnode fbr a directory in the specified pathnamc
is invalid. The file cannot be accessed; you shouÌd
delete i t .

A hard I/O error occurred. This means that a retry
is probablv useless.

0000H

0038H

0020H

0 0 2 1 H

()()3FH

0027H

OO2DH

E$INVALID$FNODE O()3DII

E$ IO$HARD 005:H

EIOS System Cal ls 47

S$CREATE$DIRECTORY

EIOOPRìNT 00-53H The device was off-line. Operator intervention is
required.

EIOSOF| 0051H A soft I/O error occurred. The l/O System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

EIOWRPROT 0051H The volume is write-protected.

EIOMEM 0042H The Basic l/O System job does not currently have a
block of memory large enough to allow this system
call to run to completion.

E$LIMIT 0004H At least one of the fol lowing is t rue:

. The user olrject or the calling task's job is
llreadv involved in 2-55 (decimal) I/O
operat ions.

. The cal l ing task's job is not an I /O job.

ELOGNAME$- 00.15H The specified path contains an explicit
NEXIST losical name, but the call was unable to find this

nanre in the object directories of the calling task's
local job, the global job, or the root job.

ELOGNAME$- 00,10H 'l'he spccified logicaÌ name contains ar
SYNTAX leirst one of the following syntax errors:

. The speci f ied path starts with a colon (:) ,
indict t ing that i t contains a logical name. But
the cal l was unabÌe to f ind a second colon to
del imit the logicaÌ name.

. The speci f ied path contains a logical name that
is either longer than 12 characters (excluding
colons), has a length of zero characters, or
conta ins inval id characters.

E$MEDIA 001'1H The device conraining the specilìed file is nor on-
l ine.

E$MEM 0002H The nrernory avai lable to the cal l ing task's job is not
suf l ic ient to complete the cal l .

ENOPREFIX lJ022H You did not specify an explicit prefix (logical name),
and the default prefi.r for the calling task's job is
ei ther undef ined, or i t is not a val id device
connect ion or f i le connect ion.

{u EIOS Svstem Calls

S$CREATE$DIRECTORY

ENOTCONFIGURED 0006H This system call is not part of the present
configuration.

ENOTLOG$NAME 8040H The specified path contains a logical name that
refers to an object that is neither a device
connection nor a file connection.

ENOUSE, R ll02 I H The calling task's job does not have a default user, or
its default user is not a user object.

E$PARAM lJ004tl The Extended I/O System artempted the physical
attachment of a device that had formerly been only
logically attached. The logical attachment referred
to a file driver (named, physical, stream, or remote)
that is not configured into your system, so physical
attachment is not possible.

E$PATHNAME$- 003E,H The specified pathname contains invalid
SYNTAX cha rîcters.

E$SUPPORT 002iH The NO ALLOCATE option is configured into the
BIOS. You cannot create any directories on this
volume.

E$SPACE 0029H The volume is full.

EIOS S_vstem Cal ls 49

The S$CREATE$FILE system call creates a new physical, stream, or named data file. It
cannot create a namecl directorv file.

c o n n e c t i o n : R Q $ S $ C R E A T E $ F I L E (p a t h $ p t r , e x c e p t $ p t r) ;

Input Parameter
path$ptr A POINTE,R to a STRING that conta ins the pathname of the f i le

to be created. The formut of this pathname depends on the kind of
file being createtl. Refer to Chapter 4 of the Ertended iRMX II
Ertcndul I/O Systatn Ust:r's Cuide for a discussion of named file
paths, to Chapter 5 for phvsica l f i les, and to Chapter 6 for s t ream
f i le pat hs.

Output Parameters
connect ion Thc TOKEN that rcpresents the connect ion to the new f i le.

except$ptr A POINTER to a WORD where the Extended I/O System returns
r r gont l i l i t ' r t r ' t rd< .

Description

A task invokes th is svstcm cal l to crc ; r te a phvsica l . s t ream, r) r namecl data f i le , or to at tach
an existing file. This svstem call cannot be usecl to creiìte or to attach a directory. (The
Extended I /O System prov ic les the S$CREATE$DIRECTORY system cal l for that
purpose.) The f i lc createc l hv th is svstem cal l is compat ib le wi th f i les created by the Basic
I /O System.

I f the f i Ìe speci f ied bv the path$ptr parameter a l ready ex is ts , the Extended I /O System
at tempts to t runcate the f i le to zcro length und return a connect ion to the empty f i le .
'Ihat

is, S$CREATE$FILE acts exactlv as an A$ATTACH$FILE followed by a call to
S$'t RUNCATE$FILE. The owner anci the îccessor list for the file remain unchanged.

I f the f i le a l ready ex is ts , the cal l succeeds only i f both of the fo l lowing condi t ions are t rue:

. AI I connect ions to thc f i le that r r re current ly open a l low shl r ing wi th wr i ters .

. An ID ìn the c lc faul t user object of the cal l ing task 's job has update access to the
exis t ing f i le . (This rc t lu i rement appl ies to named f i les only .)

5 l t EIOS System Calls

S$CREATE$FILE

If you wish to prevent the fiÌe from being truncated accidentally, use the
S$ATTACH$FILE svstem call; ìf the call to S$ATTACH$FILE returns an exception code
indicating the file does not exist, you can s:rfely use S$CREATE$FILE.

Specifying the Kind of File îo be Created

The path$ptr parameter tloes more than simply indicate the path of the file being created.
It also tells the Extended I/O System what kind of file (stream, physical, or named data)
to create. The correlation between lile paths and the kinds of fiìes is discussed in detail in
Chapters 4, 5, and 6 <fi the Ertended |RMX I1 Exteruled I/O System User's Guide.

Special Considerat ions for Named Fi les

These special considerat ions relate to named f i les:

. Your task must tel l the Extendcd l /O System which t l i rectory is to be the parent of
the new named f i le.

. To create a namcrl i i le, an ID rn the r lefaul t user object for the cal l ing task's job must
have add-entry iìccess to the pafcnt directory.

. The f i rst tD in the detrul t user object of the cal l ing task's job becomes the owner of
the new file. The ou,ner has Iuli access (the owner can delete, read, append, and
update the file).

Temporary Named Fi les

I f your task invokes this systenr cal l wi th the path of an exist ing directory f i le, the
Extended I /O System creatcs î temporary named data f i le on the device that contains the
directory file. l'hìs temporary fìlc differs from other named data files in two ways. First,
the îile is automatically marked for deletion, so that the Extended l/O System deletes the
file as soon as your lpplication code deletes all connections to the file. Second, the file is
created without a path, so i t cun be accessed only through a conncct ion.

Two access considerations apply to temporary files:

. First, any task can create a temporiìry fiÌe by referring to any directory. This is true
because the tcmporîry f i les are not l is tcd as ordinary entr ies in the directory, so no
add-entry access is required lbr the directory.

. Second, the owner uf the tcmporarv f i le (the f i rst ID in the t iefaul t user object of the
cal l ing task's job) has ful l access to the f i le.

Device Considerat ions

Every file, regarcìlcss of kintl, has an associated clevice. Evcn stream files, which have no
physical deviccs, use thc devicc connect ion to the stream f i le pscudo-device.

Before any f i le c:rn he created. i ts associ l r tcd clevice must be at tached to îhe system.

EIOS Svstem Calls 5 l

SSCREATE$FILE

There are two ways to attach tlevices to the system. One is to specify the attachment

during configuration. (For more information, refer to extended iRMX II Operating
System user guides).

The second way is to attach a device while the system is running using the
LOGICAII|ATTACH$DEVICE system call.

Condition Codes
E$OK 0000H No exceptional conditions.

E$ALREADY$- 0038H The Extended I/O System cannot attach the
AT-|ACHED device containing the file because the Basic I/O

System has already attached the device.

E$CONTEXT 0005H The calling task's job is not an I/O job.

EDEVDETACHING 0039H The device containing the specified file is being
detached.

E$DEVFD 0022H The Extended I/O System attempted to physically
attach a device that had formerly been only logically
attached, and found that the device and the device
driver specified in the logical attachment were
incomput ible.

E,$FACCESS 0026Ìl At least one of the following is true:

o The default user object associated with the
calling task's job does not have add-entry aocess
to the parent directory.

. The default user object associated with the
calling task's job does not have update access to
the exist ing f i le with the speci f ied pathname.

E$FNEXIST 002lH At least one of the fol lowing is t rue:

. A file in the specified path does not exist or is
mlrrkcd for delet ion.

. The physical device specified in the call was not
fou nd.

E$FNODE$LIMIT 003FH The volume already contains the maximum number
of files. No more fnodes are available for new files.

E$ F-|YPE 0027H The specified path is attempting ro use a dara file as
a directory.

-í2 EIOS Svstem Calls

S$CREATE$FILE

E$ILLVOL 002DH The Extended I/O System aftempted to physically
attach a device that had formerly been only logically
attached, and found that the volume does not
contain named files. This prevented the call from
completing physical attachment.

E$INVALID$FNODE 003DH The fnode for a directory in the specified pathname
is invalid. The file cannot be accessed; you should
delete i t .

EIOHARD 0052H A hartl I/O error occurred. A retry is probably
uselcss.

EIOOPRINT 0053H The device was off-line. Operator intervention is
required.

EIOSOF-| 00-5lH A sofi I/O error occurred. The I/O System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

EIOWRPROT 0054H The volume is wri te-protected.

EIOMEM 00.12H The Basic I/O System job does not currently have a
block of memory large enough to allow this system
cal l to run to complet ion.

E$LIMIT 0004H At least one of the fol lowing is t rue:

. The calling task has reached the object's limit.

. The user object or the calling task's job is
already involved in 255 (decimal) I/O
operat lons.

o The cal l ing task's job is not an I /O job.

ELOGNAME$- 0015H The specified path contains an explicit
NEXIST logical narre, but the call was unable to find this

name in the object directories of the calling task's
local job, the global job, or the root job.

E$ LOG$NAME$- 00101 {
'fhe

specified logical name contains at
SYNTAX lcast one of the following syntax errors:

. The speci f ied path starts with a colon (:) ,
indicat ing that i t contains a logical name. But
the cal l was unable to f ind a second colon to
del imit the logical name.

EIOS SYstem Calls 53

S$CREATE$FILE

E$MEDTA 0044H

E$MEM 0002H

ENOPREFIX t.i(]22H

ENOTCONFIGURED ()()OSH

ENOTLOG$NAME 8(]4(.)H

ENOUSER u02l H

E$PARAM 800.1t1

. The specified path contains a logical name that

is either longer than
'12

characters (including

colons), does not contain at least one character,
or conta ins invalid characters.

The device containing the specified file is not on-
Iine. The media maybe inserted incorrectly (upside
down).

The memory available to the calling task's job is not
sufficient to complete the call.

You dìd not speci$ an explicit prefix (logical name),
and the defauÌt prefix for the calling task's job is
e i ther undef ined, or i t is not a va l id device
con nect ion or f i le connect ion.

This system call is not pîrt of the present
conf igu rat ion.

The speci f ied path conta ins a log ica l name that
refers to an object that is neither a device
conncct ion nor a f i le connect ion.

The cal l ing task 's job does not have a defaul t user
object, or the object cataloged in R?IOUSER is not
a user object .

The Extended I/O System attcmpted to physically
attirch a device that had formerly been only logically
attachecl. The logical attachment referred to a fiÌe
dr iver (named, physica l , or s t ream) that is not
configured into your system, so the physical
at tachment is not possih le.

The speci f ied pathname conta ins inval id
cha nrcters.

You are trying to create a file that already exists.
The Extencled I/O System must truncate the existing
f i le to zero length to do the create. This t runcate to
zero length f l i led for one or more of the fo l lowing
reasons:

r Another open connect ion does not a l low
sha r ing wi th wr i ters .

. Thc dcfaul t user for the cal l ing task 's joh does
not have update access to the f i le .

Thc volume is l ì l l .

E$PATHNAME$-
SYNTAX

E$SHARE

Ot)SEH

002tìH

-i.l

E$SPACE 0029 t ì

EIOS System Calls

S$CREATE$FILE

E$SUPPORT 0023H One of the following is true:

. The NO CREATE FALSE option is configured
into the BIOS.

. The NO TRUNCATE option is configured into
the BIOS.

EIOS Svstem Calls 55

' l 'he
S$DELETE$CON-NECTION svstem call deletes a file connection. It cannot delete a

device connection.

C A L L R Q $ S $ D E L E T E $ C O N N E C T I O N (c o n n e c t i o n , e x c e p t $ p t r) ;

Input Parameter
connectron A I'OKEN f or the file connection to be deleted.

Output Parameter
except$ptr A POINTER to a WORD where the Extended I/O System returns

the conci i t ion code.

Description

This system cal l de letes a f i le connect ion, but i t c l ìnnot delete a device connect ion. I f the
connect ion is open, the S$DELETE$CONNE,CTION system cal l automat ica l ly c loses i t
before delet ing i t .

I f the f i le has been marked for delet ion (by a prev ious system cal l) and there are no more
connect ions to the f i Ìe . then S$DELETE.$CONNECTION deletes the f i le .

'I 'he
Extended l/O System docs not check acccss before deleting a connection.

The S$DELETE$CONNECTION system call can be used with connections that were
created by the Basic I /O System as long as the connect ions meet the requi rements
discussed in the Ertendt:tl iRlllX II Bu:it: I/O Slsttnt User's Cuide, Appendlx E.

Condition Codes
E$OK 0000H No except ional condit ions.

E$EXIST 0006H The connection pariìmeter is not a îoken for an
exist ing object.

EIOHARD 0052H A hard f/O error occurred. A retry is probably
useless.

5tt EIOS Svstem Calls

S$DELETE$CONNECTION

EIOMODE 005()H One of the fol lowing is t rue:

o A tape rJr ive at tempted to per l ì r rm a read
operat ion before the previous wri tc operat ion
complctcd.

. A t lpe dr ive at tempted to per form a wr i te
operat ion before the prev ious rear- l operat ion
completed.

EIONO$DATA 005-51I A tape dr ive at rempted to read rhe next recorc l , but
i t fou nd no data.

EIOOPRINT 0053H The device was of f - l ine. Operarur in tervenr ion is
requ i red.

EIOSOFT 00-5 lH A sof t l /O error occurret l . The I /O Svste m t r ie t l to
per l ì r rm the operat ion a number of t imes ant l fa i lcc i
(the number of ret r ies is a conl igurat ion paramcter) .
Another ret ry might s t i l l be successfu l .

ElOUNCLASS 00-50H An unknown rype of I /O error occurred.

EtOWRPROT 0051H The xr lume is wr i re-protecred.

E$LIMIT 0(XUII Ar fur ìsr onc of the fo l lowing is t rue:

o Thc associated job or the job 's defaul t user
ot r ject is a l ready involved in 255 (decinal) l /O
operat lons.

. The cal l ing task 's job is not an I /O joh.

E$MEM 0{)0:H ' fhe
nrcnrory lva i l lb le ro rhe cal l ìng task 's job is not

suf l ic icnt to comlt lc tc thc ca l l .

ENOTCONF' lG URIrD (XX)uH ' l 'h is
svstenr ca l l is nof par t o f thc present

con f igur l t ion.

ENOTCOrr-NF-ClTlON 8012H - l 'he
connecr ion paramerer is a roken for an object

th l i t is not a f i Ìe connect ion.

E$SUPPORT (X) l . lH ' fhe
specr l ied connccr ion was not created by a task

in th is job.

EIOS Svstem Cal ls 5 /

The S$DELETE$FILE system call cieletes a stream, named data, or named directory fiÌe.
This system call cannot dclete a physical file.

ù A L L R Q S S $ D E L E T E S f i L L (p a l h S p l r . e x c e p r $ p t r) :

Input Parameter
path$ptr A POINTE.R to a STRINC that specifies the path for the file to be

deleted. The fbrm of the path depends upon the kind of file. (See
Ihe EXTENDED iRMX II BASIC I /O SYSTEM USER'S GUIDE
for informut ion on Dlth svntax.)

Output Parameter
except$ptr A POINTER to a WORD where the Extended I/O System returns

; t ((' nd i t i (ì n (ùdc .

Description

A task can use this svstem call whenever the task needs to delete a stream, named data, or
named directory file. This system call marks the specified file for deletion, but the
Extended I /O System postpones delet ion unt i l the fo l lowing condi t ions are met :

. For stream and named tiata li les, thcre is only one condition. The deletion occurs as
soon i ìs no connect ions to the f i le remain. Your tasks can use the
S$DELETE$CONNECTTON system c: r l l to delete connect ions.

. For named directories there are two conditions. The directory must be empty, and no
connections to the directory can remain. The Extended I/O System deletes marked
directories as soon as both of these conditions are met.

This system call can delete files created by the Basic I/O System as well as those created
lry the Extended I/O System. Refer to the Extended |RMX II Basic I/O User's Guide,
Appendix E for a gencral discussion of compatibility between the Extended and Basic I/O
Systems.

If the task attempts to ilcletc a named data or directory file, the default user object of the
task 's job must have t ie lc t ion access to the f i le .

5tì EIOS System Calls

Condition Codes
E$OK

E$ALREADY$-
ATTACHED

E$CONTEXT

EDEVDETACHING 0039H

E$DEVFD 0022H

EDIRNOT$EMPTY OO3IH

E$FACCESS 002()H

E$FNEXIST 0021 H

E$FTYPE 0027H

E$ILLVOL OO2DH

E$IFDR

S$DELETE$FILE

No exceptional conditions.

The specified device is already attached.

The cal l ing task 's job is not an I /O job.

The device containing the specified file is in the
process of being detached.

The Extended l/O System attempted to physically
attach a device that had formerly been only logically
attached, and found that the device and the device
driver specified in the logical attachment were
incompatible.

Your task is at tempt ing to delete a d i rectory that is
not cmpty.

At lcast one of the fìrllowing is true:

o The default user object associated with the
calling task's job does not have delete access to
thc specified filc.

o The cal l is a t tempt ing to delete a b i t map f i le or
thc root directory.

At least one of the following is true:

. A file in the specified path, or the target file
itself, does not exist or is marked for deletion.

. The physical device was not found. The device
was specified by the original call to
A$PHYSICAL$ATTACH$DEVICE and is
in t l icated in th is ca l l by the path$ptr parameter .

The specified path contains a file name that should
be the name of a directory, but is not. (Except for
thc last file, each file in a path must be a directory.)

The Extended l/O System attempted to physically
attach a device that had formerly been only logicalìy
attached, and lbund that the volume does not
contain named files. This prevented the call from
completing physical attachment because the named
file driver was requested during logical attachment.

The specified file is a physical file.

0000H

0038H

0005H

EIOS System Calls

OO2FH

59

S$DELETE$FILE

t :$ INVALI D$FNOI)[

I , -IOHARL)

I r$ lO$OPRINT

EIOSOFf

IrlOUNCLASS

trlOwlìPIìOl '

hS IO$MEM

ESLI] \ I IT

ELOGNAME$-
NEXIST

ELOGNAMIi$-
SYNTAX

E$MEDIA

E$MEM

(X)lDI I The fnode associated with a f i le is ei ther marked not
al located, or the fnode number is out of range. This
l i le should be deleted.

0052H A hurd I/O error occurred. A retry is probably
useless.

00-53H The device was off-line. Operator intervention is
requ i red.

(X)51 H A solì I/O error oc.curred. The I/O System tried to
pcrlìrrm the operation a number of times and failed
(the nunrber of retr ies is a conf igurat ion parameter) .
Another retry might st i l l be successful .

00-5011 An unknown type of I/O error occurred.

(X)-5.1H -fhe volunrc ìs \À rite-protected.

0012H ' l 'he Blsic I /O System job does not current ly have a
block of nrcrnory lurge enough to al low this system
(i r l l t r r l u l ì t , ' L ! m f ' l < t i o n

(XX) ' l t l At lcust one o l the l ì r l lowing is t rue:

. E i ther the user object or the cal l ing task 's job is
a l rcudv involved in 255 (decimal) l /O
opcnr t ions.

. Thc c l l l ing task 's job is not an I /O job.

(X) l5 l l ' l
he speci f ied path conta ins an expl ic i t

log icr r l nunre. but the cal l was unable to f ind th is
nrme in the ohject d i rector ies of the cal l ing task 's
local joh. gìobl l job. or the root job.

00.1011 The speci f ied lo{ ica l name conta ins at
l (i rs t (ì r ì (t ' l th , fo lkrwing synt i lx errors:

. l 'he spcci f red path s tar ts u ' i th a co lon (:) ,
ind icat ing that i t conta ins a log ica l name. But
the calÌ *'as unable to find a second colon to
del imi t the log ica l name.

. The speci l iec i path conta ins a log ica l name that
is e i ther longer than l2 characters (inc luding
colons) , conta ins no chr ì racters, or conta ins
inv l l id cha rurcters.

0011H The device conta in ing the speci f ied f i le is of f - l ine.

0002H The nrenrory avai lab le to the cal l ing task 's job is not
suf f ic ient to complete the cal l .

60 EIOS Svstem Calls

S$DELETE$FILE

ENOPREFIX 8022H You did not specify an explicit prefix (logical name),
antl the default prefix for the calling task's job is
either undefined, or it is not a valid device
connection or file connection.

ENOTCONFIGURE,D 000tlH This system calÌ is not part of the present
configuration.

ENOTLOC$NAME 8040H The specified path contains a logical name that
refers to an object that is neither a device
connection nor a fiìe connection.

ENOUSER 8021H The cal l ing task's job does not have a defaul t user
object, or the object cataloged in R?IOUSER is not
a user object.

E$PARAM 80011I The Extended I/O System attempted to physically
attuch a device that is logically attached. That
logical attachment refers to a file driver (named,
physical. or stream) that is not configured into your
system. Therefore, physical attachment is not
possible.

E$PATHNAME$- 003t ' . t l
- l 'he speci f ied pathname contains inval id

SYNTAX chu racters.

E$SUPPORT 0021H Thc task is attempting to delete a physical file.

EIOS System Calls 6 l

The SGETCONNECTION$STATUS system call provides status information about file
and device connections.

CALL RQ$ S CETCONNECTION$ STATUS (conne c t ion, in fo$ptr , excePt$Ptr) ;

Output Parameters

Input Parameter
connection A TOKEN for the connection whose status is desired.

info$ptr A POINTER to a structure in which the Extended I/O System
places the status information. You can provide the memory for
this structure by requesting an enended iRMX II segnrent, or by
reservins it in vour code. The structure must have the followine
form:

DECI"\RE connection$info STRUCTURE(
f i le$dr iver BYTE,
f lags BYTE,
open$mode BYTE,
share$mode BYIE,
f ile$pointer DI.IORD,
access BYTE,
nurnber$buffers BYTE,
buffer$size LIORD,
seek BOOLEAN)

where

file$driver Identifies the kind of file associated with the
connection.

1 physical file
2 stream file
4 named file
5 remote

flags Indicates the kind of connection this is. If Bit
1 is one, the connection is capable of being
opened. If Bit 2 is one, the connection is a
device connection. (Bit zero is the low-order
bit.)

62 EIOS Systen Calls

SGETCON N ECTIONSSTATUS

open$mode Indicates the purpose for which the conneelion
was opened. This applies only to file
connections.

0 closed
1 open for reading only
2 open for writing only
3 open for both reading and

writing

share$mode Indicates who can share the connection.
Applies to both device and file connections.

0 cannot be shared
1 share with readers only
2 share with writers only
3 share with anybody

file$pointer A 32-bit offset from the beginning of the file
where the next I/O operation will be
performed.

access The access rights that were computed when
the connection was created. This information
applies only to connections for named files,
and the interpretation of the informatior.
depends upon whether the file is a data file or
a directory. Access is represented as a bit
mask. In the following tables, access is granted
if a bit is set to one (bit zero is the low-order
bir .) .

Bit Data File Directory

0 Delete Delete
1 Read List
2 Append Add Entry
3 Update Change Entry
1-7 Reserved Reserved

number$buffers The number of buffers used with this
connection. This applies only to file
connectlons.

buffer$size The size, in bytes, of each buffer used with the
connectton.

seek TelÌs whether or not the SEEK function can be
used with this connection. Zero means no, and
0FFh means yes.

EIOS Svstem Calls 63

S$G ET$CON N ECTION$STATU S

except$ptr A POINTER to a WORD where the Extended I/O System returns
the condit ion code.

Description

The SGETCONNECTION$STATUS system call allows a task to obtain status
information about file connections and device connections that were created by either the
Basic I/O System or the Extended I/O System. The nature of the returned information
depends upon whether the connection is for a file or a device. Some of the information
also depends on the kind of file associated with the connection.

The Extended I/O System does not check access before returning status information.

Allhough you can use this system call with connections created by the Basic l/O System,
you must adhere to the restrictions clescribed in the Extended iRMX II Basic I/O User's
Gaile, Appendix E.

Condition Codes
E$OK 0000H No except ional condi t ions.

E$CONN$NOT$OPEN (X)l4l-l The connection was opened by the A$OPEN system
calÌ rather than the S$OPEN system call.

E$EXIST 000(rH The connection parameter is not a token for an
e x i s t i n g j o b .

E$IFDR 002FH An invalicl fi le driver request occurred.

E$LIMIT 000, l l l At least one of the fo l lowing is t rue:

. The calling task has reached its object limit.

. E i ther the cal l ing task 's job, or the job 's defaul t
user object, is already involved in 255 (decimal)
l /O operr r t ions.

. The cal l ing task 's job is not an I /Ojob.

E$MEM 0002H The memory available to the calling task's job is not
suf î ic ient to complete the cal l .

ENOTCON- 000llH This system call is not part of the
FIGURED present conf igurat ion.

ENOTCONNECTION 8042H The connection parameter is a token for an object
th i r t is n(ì t i r connect ion.

E$SUPPORT 0023H The specified connection was not created by a task
in the cal l ing task 's job.

6d EIOS Svstem Calls

The RQSGET$DIRECTORY$ENTRY system call returns a directory entry name to
the caller. A directory entry nitme is a single path component for a file whose parent is
the directory.

CALL RQ$ S CETD IRECTORY$ ENTRY (d i r$name $prr , enrrygnun, nanegprr ,
e x c e p t $ p t) ;

Input Parameters
tlir$name$ptr A POINTER to a STRING containing the directory pathname.

This puthname can be up to 255 characters long.

entry$num A WORD giving the entry number of rhc desired file name.
Entries in a riirecîory are numbered sequentially starting from
zero. The E$EMPTY$ENTRY condition code wi-tl be returned ir
there is no directory entry associated with the number.

Output Parameter
name$ptr A POIN]ER to a buffer where the system wiÌl return the entry

name. This name, a maximum length of 14 BYTES, corresponds to
the entry number given by the user in the entry$num parameter.

except$ptr A POINTER to a WORD where the condit ion code wi l l be
rct urnc!1.

Description

The SGETDIRECTORY$ENTRY system call applies to named files only. When
calÌed, it returns the file name associated with a specified directory entry. This name is:t
single subpath component for a file whose purent is the designated directory. As an
:ì l ternat ive to usinq this system cal l . an appl icat ion task can open and read a directory f i le.

NOTE
The caller must have List access to the designated directory.

EIOS System Cal ls 65

SGETDI RECTORY$ENTRY

Condition Codes
E$OK 0000H No exceptional conditions.

EDIREND 0025H The entry$num parameter is greater than the
number of entries in the directory.

E$EMPTY$ENTRY 0024H The file entry designated in the call is empty.

E$FACCESS 0026H The specified connection is not qualified for list
access to the directory.

E$F-|YPE 0027H The specified connection does not refer to a
directory.

E$IFDR 002FH This system call applies only to named directories,
but the STRING pointed to by dir$name$ptr
specifies another $?e of file.

E$IO 002BH An I/O error occurred that might have prevented
the operation from completing.

E$LIMIT 0004H The calling task'sjob has already reached its object
l imit .

E$MEM 0002H The memory available to the calling task's job is not
sufîicient to complete this call.

ENOTCONFIGURED 0008H This.system call is not part of the present
conl lqurat lon.

66 EIOS System Calls

The SGETFILE$STATUS system call allows a task to obtain information about a
physical, stream, or named file

CALL RQ$ S GET Fl LE$ STaTUS (parh$prr , in fo$ptr , except$ptr) ;

Input Parameter
path$ptr

Output Parameters
info$ptr

A POINTER to a STRING that contains the path for the file. The
format of this path varies from one kind of file to another. Refer
to Chapters 4, 5, or 6 of the Extendzd |RMX II futendzd I/O User's
Guide for Dath svntax.

A POÍNTER to a structure where the Extended I/O System
returns the status information. You must allocate this memory,
either in your program code space or as an extended iRMX II
segment. The structure has the form described here.

The infornration in the first part of this structure--down to the
device$connections field-is returned for any file (physical, stream,
or named), but information from the file$id field to the end of the
structure is present only for named files. The contents of the
named$file field indicate whether the file is a named file.

DECLARE f i le$ in fo STRUCTURE (

dev ice$share
numbe r$ connec t ions
n r r r n h p r S r p a d p r
number$wr i te r
share
n a m e d $ f i l e
dev i ce $narne (14)
f i Ìe $dr i ve rs
func t ions
f lags
de v i c e $ g ranu I a r i t y
dev i ce $ s i ze
d e v i c e $ c o n n e c t i o n s

WORD ,
IJORD ,
WORD ,
WORD ,
F,\/T F

E\ 'TF

IIORD ,
RYTF

R\ /TF

WORD ,
DWORD ,
WORD ,

EIOS System Calls 67

SGETFILE$STATUS

Informat ion from this point on is returned only i f the f i le is a named f i le.

The meanings of these f ie lds are

dcv iec$sha rc

number$connections-

number$reader

number$writer

share

named$file

r lcv iec$nume

i i l p $ i d w o R D
f i l e $ t y p e B Y T E ,
, , ' - v l 1 ' d " u I a ' ' L t /

owner$ id Ì^IORD ,
c r e a t e $ t i m e D W O R D ,
access$t i rne DI IORD,
modi fy$ t ime DLIORD
f i l e $ s i z e D W O R D ,
f i l e $ b l o c k s D t t O R D ,
v o l u m e $ n a m e (6) B Y T E ,
v o l u m e $ g r a n u l a r i r y W O R D
volume$s ize DWORD,
a c c e s s o r $ c o u n t W O R D
o L / n (r $ J c c c s s B Y T E

Ind ic l tes whether or not the device can be sharec l .
Current ly , th is u,ord is : r lw lys set to l , ind icat ing that a l l
devices can tre sharerl.

The number of conncct ions to the f i le .

The number of connect ions current ly open for reading.
'I 'he

number of connections currently open for writing.

The current shared status of the f i le ; possìb le va lues are

0 Private use only
I Shi r re wi th re lders only
2 S h l r r c r r i t h * r i t c r : r r n l v
3 Share wi th a l l users

Tel ls whethcr th i : j s t ructur t : conta ins any in format ion
beyond the device$conncct ions f ie lc i . 0FFh means yes and
U means no.

The name of the physica l dcv ice where th is f i le res ides.
This nr tme is p l t lded u i th b lanks. To cnsure the
uniqueness of c ler ice names, thev should not be more than
1,1 characters in lcngth.

6lt EIOS Svstem Calls

SGETFILE$STATUS

file$drivers A bit map that tells what kinds of files can reside on this
device. If hit n is on, then file driver n + I can be used. Bit
0 is the loworder bit.

Bit Driver No. Driver

0 I Physical file
1 2 Stream file
2 3 Reserved
3 4 Named file
4 5 Remote file

functions A bit map that describes the functions supported by the
device where this file resides. A bit set to one indicates the
corresponding function is supported. Bit 0 is the low-orCer
bi t .

ts i t Funct ion

() F$READ
I F$WRITE
2 F$SEEK
3 F$SPECIAL
,1 F$ATTACH$DEV
5 F$DETACH$DEV
7 F$CLOSE

tìags Meaningful only for diskette drives. This field is
interpreted as follows. (Bit 0 is the low-order bit.)

Bi t Mean ing

0 0=bits 1-7 not s igni f icant
I = bi ts 1-7 are signi f icant

I 0=sing.le density
I = double density

2 0=single sided
I = double sided

3 0 = fì-inch diskeue
l=5 1/,1- inch diskette

.1 0=st lndard diskette, meaning that
track 0 is single-density with 128
byte sectors
I = a nonstandard diskette or not a
diskette

5-7 reserved

device$gra nularity The granularity, in bytes, of the device where this file
resides.

device$size The storîge capacity of the device, in bytes.

EIOS Systern Calls 69

SGETFILE$STATUS

device$connections The number of connections to the device.

The information from here to the end of the structure is returned onlv for named files, as
indicated by a value of OFFh in the named$file field.

file$id A number that distinguishes this file from all other files on
the same device.

file$type The file type: 6 means directory file and 8 means data file.

r'e$granuraritv Hrili,Íiì:l,Hl3l;:;fril'ft;::i""Tit"T"tll""il;',,
is 256, then the file's granularity is 512.

owner$id The first ID in the creating task's default user object.

create$time The time and date when the file was created. Whether the
operating system maintains this field is a configuration
opt ion.

access$time The time and date when the file was last accessed.
Whether the operating system maintains this field is a
conf igurat ion opt ion.

moditv$time The time and date when the file was last modified.
Whether the operating system maintains this field is a
configuration option.

file$size The total size of the file, in bytes.

r'e$brocks
il:T["i;1"""::T,',r'"'::3:X":1':1l:J$l1"";",",
volume$granularity bytes of data.

volume$name The left-adiusted, null-padded ASCII name for the volume
containing ihis file.

volume$granularity The volume granularity, in bytes.

volume$size The storage capacity, in bytes, of the volume on which this
file is stored.

accessor$count The number of IDs in the creatins task's default user
object.

owner$access The access rights to this file that are currently held by the
owner. The access rights are encoded in a bit mask that
you can interpret by using the following table. Remember
that Bit 0 is the low-order bit, and that access is granted if
the corresnondins bi t is set to l .

7t) EIOS Svstem Calls

SGETFILE$STATUS

Bit Data File Directory

0 Delete Delete
I Reat l L ist
2 Append Add Entry
3 Update Change E,ntry
4-7 Reserved Resen ed

except$ptr A POINTER to a WORD where the Extended I/O Sysrenl
returns the condit ìon code.

Description

This system call provides the calling task with information about the status of a fiÌe.
Fields through the device$connections field are always returned if the call is successful.
Fields following the device$connections field are returned only when the fiÌe being
referred to is a named file, as indicated by the named$filc field being OFFh.

The Extended I /O Systcm does not check access before rc turn ing f i le s tatus in format ion.

This system call can be used with any fiÌe, including those created by the Basic I/O
System. However, because of the asynchronous nature of some of the Basic I/O System
cal ls , there is some chance that the in lbrmat ion returned might be inaccurate. For
instance, i fyour appl icat ion code invokes the SGETFI LE$STATUS system cal l whi le
the Basic l /O System is processing an A$WRITE for the same f i le , the values returned in
the file size fields might be incorrect. Refer to rhe Ertended iRMX II BtLsic I/O User's
Guide, Appendu E for a more gencral discussion of compatibility between the Extended
and Basic I/O Systems.

Condition Codes
E$OK 0000H No except ional condi t ions.

E$ALREADY$- 0038H The Extended I/O System is unable to
ATTACHED attach the device containing the file because the

Basic I/O System has already attached the device.

E$CONTEXT 0005H The calling task's job is not an I/O job.

EDEVDETACHING 0039H The device containing the specified fiìe is in the
process of being detached.

E$DEVFD 0022H The Extended t/O System attempted the physical
attachment of a device that had formerly been only
logically attached. In the process, it found that the
device and the device driver specifietJ in the logical
at tachment were incomnat ib le.

EIOS System Calls 7 l

SGETFILE$STATUS

E$FNEXIST

E$FTYPE

E$ILLVOL

E$INVALID$FNODE

EIOT{ARD

EIOMODE

EIONO$DATA

EIOOPRINT

EIOSOFf

EIOUNCLASS

EIOMEM

0021H At least one of the fol lowing is t rue:

o A file in the specified path, or the target file
itself, does not exist or is marked for deletion.

. The physical device specified in the call was not
fou nd.

0027H The specified path contains a file name that should
be the name of a directory, but is not. (Except for
the last file, each file in a path must be a directory.)

002DH The Extended l/O System attempted the physical
attachment of a device that had formerly been only
logically attached. In the process, it examined the
volume label and found that the volume does not
contain named files. This prevented the Extended
I/O System from completing physical attachment
because the named file driver was requested during
logic l ì l at t : ìchment.

003DH The fnocle for the specified file is invalid. The file
cannot bc uccessed; you should delete it.

0052H A hard I/O error occurred. A retry is probably
useless.

005(rH One of the lbllowing is true:

. A tape drive attempted to perform a read
operation before the previous write operation
completed.

. A tape tlrive attempted to perform a write
operation before the previous read operation
completed.

0055H A tape drive attempted to read the next record, bur
i t found no data.

00-53H The device was off-line. Operator intervention is

0 0 5 1 H

reclu iretJ.

A soft I/O error occurred. The l/O System tried to
perform the operat ion a number of t imes and fai led
(the number of retr ies is a conf igurat ion parameter) .
Another retry might still be successful.

0050H An unknown type of I /O error occurred.

0042H The Basic I/O System job does not currently have a
hlock of memory large enough to allow this system
eir l l to run to complct ion.

72 EIOS Svstem Calls

E$L IMIT

ELOCNAME$-
NEXIST

ELOGNAME$.
SYNTAX

E$MEDIA

E$MEM

ENOPREF IX

ENOTCON-
F IGURED

ENOTLOG$NA\,IE

T.-NOUSER

SGETFILE$STATUS

At least one of the fo l lowing is t ruc:

. ' l 'he
user object or the cal l ing task 's job is

a l ready involved in 255 (decimal) I /O
oper l I t rons.

e The cal l ing task 's job is not an I /O job.

. Thc cal l ing task 's object l imì t has been reachcd.

The speci f ied path conta ins an expl ic i t
log ica l name, but the cal l was unable to f ìnd th is
name in the object d i rector ies of the cal l ing task 's
local job, the g lobal job, or the root job.

Thc spcei f icd krg ic ; r l n : rm< r ' t rn t r r ins at
leust one of the fo l lowing syntax errors:

. The speci l ied p l (h s tar ts wi th a co lon (:) ,
in i i icat ing that i t contu ins a log icu l name. But
the cal l was unable to f ind a second colon tcr
r ie l i rn i t the log ic l r l n lme.

. conta ins u krg icu l n : rme that is e i ther longcr
thrrn l2 churacters (inc luding cokrns) , has no
chrrnrcters, or conta ins invul id characters.

The device conta in ing the speci f ied f i le is not on-
l r n e .

The memory avai Ìable to the cal l ing task 's job is not
sul l ic ient to complete the cal l .

You did not specil-v an explicit prefix (logical name),
and the dt : fau l t pref ix for the cal l ing task 's job is
e i ther undef ined. or i t is not a va l id device
connect ion or f i le connect i ()n .

This svstem cal l is not par t o f the
present conf igurat ion.

The speci f ied path conta ins a log ica l name that
refers to an o l . r ject that is nei ther a device
connect ion nor a f i le connect ion.
' l 'hc

cr r l l ing t i rsk 's jo t r does not have a def ì ru l t uscr , or
its tjefault user is not a user object.

000r H

0045H

0010H

001.1H

0002H

E()2]H

(.)O()EH

80.10

u02rH

EIOS System Cal ls

SGETFILE$STATUS

E$PARAM

E$PATHNAME$-
SYNTAX

8004H The Extended I/O System attempted the physical
attachment of a device that had formerly been only
logically auached. In the process, it found that the
logical attachment referred to a file driver (named,
physical, or stream) that is not configured into your
system. Therefore the physical attachment is not
possible.

003E'H The specified pathname contains invalid
characters.

74 EIOS System Calls

SGETPATH$COMPONENT returns the name of a named file as the file is known in
its oarent directorv.

CALL RQSCET$ PATH$COMPONENT (connec r ion, narne gptr , except$prr) ;

Output Parameter

Description

Input Parameters
connection A TOKEN for the file connection whose name is desired.

The format of the component returned by this call is dependent on the type of file driver
employed by the call. A null string is returned under the following circumstances:

. If the file driver is Named ur Remote and the connection is to the root directory of a
volume.

o If the file driver's connection Accesses either Stream or Phvsical files.

Condition Codes
E$OK 0000H No exceptional conditions.

E$CONTEXT 0005H The name$ptr parameter is equal to NIL.

E$FNEXIST 0021H The file is marked for deletion. lln this case. the
string is undefined.)

E$INVALID$FNODE 003DH The fnode for the soecified file is invalid. The file
cannot be accessedjyou should delete it.

E$IO 002BH An l/O error ocr:urred that might have prevented
the operation from completing.

EIOMEM 0042H The memory available to the EIOS is not sufficient
to complete the call.

name$ptr A POINTER to a STRING where the system returns the path
component. The mlrximum length of the STRING is 14 BYTES.

except$ptr A POIN'I'ER to a WORD where the Extended I/O System returns
conclition codes.

EIOS System Calls / J

' l
he S$[.OOK$UP$CONNEC]TION system cal l accepts a logical name from the cal l ing

task and returns:ì tokcn 1or the connect ion associated with the logical name.

c o r ì n e c t i o n : R Q S S S L O O K S T I P S C O N N E C T I o N (1 o g $ n a m e $ p t r , e x c e p t $ p t r) ;

Input Parameter
iog$name$ptr

Output Parameters
con nect l0n

except$ptr

A POIN' l 'EI l to a STRING (of I to 12 characters) conta in ing the
logic l l name to be looked up. The name can be del imi ted wi tn
colons (:) . The opcrr t ing system removes the colons so that u
Ioqicr r l nunre wi th co lons is the same as one wì thout (e.g. , :F0: is
e l lcct ive ly the sume as F0) . Colons do not count in the lenglh of
thc n i tmc.

l 'he TOKEN thut rcpresents the connect ion associated wi th the
krg ica l nrmc.

A POINTER to a WORD where the Extended I /O System returns
the condi t ion code.

Description

After convert ing anv lowercase lct ters in the logical name to uppercase, the Extended I /O
System searches lìrr the lo-qical namc. It lirst checks the object directory of the local job,
then the global joh. ant l t in l l lv the root job. (This progressively more global search
sequence is descritrcd nrorc completelv in Chapter 3 of the Extended iRMX II Extended
I/O Systcnt User's Guitlt.) When it linds the logical numc. the Extended I/O System
r (tu tns thc token l 0 r l h (((' nn ((t i (ì n .

Your tasks can invoke this system cal l to look up loeical names created by the Nucleus
system call CAI-Al.OG$OBJECT. []owevcr', CATALOG$OBJECT does not convert
from lowercase to uppercllse. So if 1'ou desire compatibility, use uppercase characters
when you use thc CATALOG$OBJECT systenr c l l l .

Condition Codes
E$OK

E$CONTEXT

E$LIMIT

0000H No exceJrt ional cond i t ions.

0005H The cal l ing task's job is not an I /O job.

000,1H The cal l inq task's job is not an l /O job.

/ t l EIOS System Calls

ELOGNAME$.
NEXIST

ELOGNAME$-
SYNTAX

E$MEM

ENOTCON-
FIGURED

ENOTCONNECTION

E$TIME

0045H

0040H

0002H

000l.iH

8012I1

0001H

S$LOOK$UP$CONNECTION

The specified path contains an explicit
Iogical name, but the call was unable to find this
name in the object directories of the calling task's
local job, the global job, or the root job.

Thc spcci f ied logical name contains at
least one of the following syntax errors:

. The specified path starts with a colon (:),
indicating that it contains a logical name. But
the call was unable to find a second colon to
delimit the logical name.

. f'he specified path contains a krgical name that
is either longer than 12 characters, has no
characters, or contains invalid characters.

'l'he
memory available to the calling task's job is not

sufficient to complete the call.
'fhis

system call is not part of the
present conf igurat ion.

The logical name refers to an object that is not a
connect ion.

The cal l ing task's job is not an I /O job.

EIOS System Calls 77

The S$OPEN system call opens a file connection so that your tasks can access the file.

C A L L R Q $ S $ o P E N (c o n n e c t i o n , m o d e , n u r i b e r $ b u f f e r s , e x c e p t $ p t r) ;

Input Parameters
connection A TOKEN for the fìle connection to be opened. The connection

must have been creatcd in the cal l ing task 's job. I f the connect ion
was crerted in a different job, use S$ATTACH$FILE to obtain a
neu conneet ion.

nrode A BYTE te l l ing how vour task is goìng to use the connect ion and
wi th whom i t wi l l share the connect ion. You should set the BYTE
as fo l lows:

Vulue How Conncct ion is Used

LH For reading only ; share wi th a l ì .
2H For wr i t ing only ; share wi th a l l .
3H For both reading and wr i t ing; share wi th

a l l .
l t l Fr) r r (: rJ ing (ìn ly : pr iv i l tc use.

;il illiiliiii,i,ll;lll'Il,i,ì";, n.,"","
u se.

/H For reading only; share with readers.

fJf I For writing only; share with reatJers.

9l I For both readìng and wri t ing; share with
rea clers.

OAH For rcading only; share with writers.

OBH For wri t ing only; share with wri ters.

OCH For both reading and wri t ing; share with
wr i t ers.

number$buffers A BYTE containing the number of buffers that you want the
Extended t/O System to allocate for this connection. This number
must be between zero and a maximum value that you specified
when you configured the Basic I/O System.

78 EIOS System Calls

Output Parameter
except$ptr A POINTER to a WORD where the Extended I/O Svstem returns

the condition code.

This system call performs the ibllowing functions:

. It creates the number of buffers requested.

. It sets the connection's file pointer to NIL.

. It starts reading ahead if the number of buffers is greater than zero and the mode
parameter includes reading.

Access Rights and Selecting a Mode

When you specify the mode, you must be accurate or err on the side ofgenerosity. Ifyou
are not certain how the connection will be used, specify both reading and writing.

In the case of named files, the mode that you specify must match the access rights of the
connection. (These are the access rights that the Extended l/O System assigned the
connection when the connection was created.) For example, ifyour task attempts to open
for reading a connection that has access for writing only, the Extended I/O System returns
an E$FACCESS exception code.

Selecting the Number of Buffers

Deciding how many buffers to allocate for file I/O is based on two considerations--
memory and perlìrrmance. The amount of memory used for buffers is directly
proportional to the number of buffers. So you can save memory by using fewer buffers.

The performance consideration is more complex. Up to a certain point, the more buffers
you allocate, the faster your task can run. The actual break-even point, the point where
more buffers don't improve performance, depends on many variables. Be aware that in
order to overlap I/O with computation, you must specify at ìeast two buffers.

If performance is important, and you have no idea how many buffers to specify, start with
two. Once your task is running successfully, you can experiment, adding or removing
buffers until you have found the optimum number of buffers.

If performance is not so important and memory is, use zero buffers.

S$OPEN

Description

EIOS System Cal ls 79

S$OPEN

Condition Codes
E$OK 0000H No exceptional conditions.

E$CONN$OPEN 0035H The connection is already open.

EDEVOFF$LINE 002EH The device being accessed is now offline.

E$EXIST 000óH The connection parameter is not a token for an
existing object.

E$FACCESS 0026H The access rights embedded in the connection
prohibit opening the file in the specified mode.

EIOHARD 0052H A hard I/O error occurred. A retry is probably
useless.

EIOMODE 0056H One of the following is true:

. A tape drive attempted to perform a read
operation before the previous write operation
completed.

. A tape drive attempted to perform a write
operation before the previous read operation
completed.

EIONO$DATA 0055H A tape drive attempted to read the next record, but
it found no data.

EIOOPRINT 0053H The device was off-line. Operator intervention is
required.

EIOSOFT 0051H A soft I/O error occurred. The I/O System tried îo
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might st i l l he successful .

EIOUNCIASS 0050H An unknown tlpe of I/O error occurred.

EIOWRPROT 0054H The volume is write-protected.

E$LIMIT 0004H At least one of the following is true:

o The calling task's job is not an I/O job.

o The calling task's job, or the job's default user
object, is already involved in 255 (decimal) I/O
operatlons.

E$MEM 0002H The memory available to the calling task's job is not
sufficient to complete the call.

ENOTCON- 0008H This system call is not part of the
FIGURED present configuration.

80 EIOS Svstem Calls

S$OPEN

ENOTCONNECTION tl0,12H The connecrion parameter is a token for an object
that is not a file connection.

ENOTFILE$CONN 0032H The connecrion is a device connection.

E$PA RAM I.ì004H The mode Darameter is set to a value other than I
through C Èexadecimal.

E$SHARE 0028H At leasr one of the following is true:

. The call attempted to open a directory file or a
hi t -map f i le for wr ir ing.

. The file's sharing attribute is currently not
compatible with the mode specified in this call.

E$SUPPORT 0023H The specified connection was not created by a task
in the c;r I I int l t lsk 's ioh.

EIOS System Calls 8 l

The S$READ$MOVE reads a number of bytes from a file to a buffer.

bytes$read : RQ$S$READ$MOVE(connect ion , bu f fe r$p t r , by tes$des i red ,
e x c e p t $ p t r) ;

Input Parameters
connection A TOKEN for the connection to the file. This connection must be

open for reading or for both reading and writing, and the file
pointer of the connection must point to the first byte to be read.

bytes$desired A woRD containing the marimum number of bytes you want to
read from the file.

Output Parameters
bytes$read A WORD containing the actual number of bytes that the Extended

l/O System reads from the file.

buffer$ptr A POINTER to a buffer that wi receive the information that the
Extended l/O System reads from the file.

except$ptr A POINTER to a WORD where the Extended I/O System returns
a condit ion code.

Description

This system calÌ reads a collection of contiguous bytes from the file associated with the
connection. These bytes are placed in a buffer specified by the calling task.

Creating the Butfer

The buffer$ptr parameter tells the Extended I/O System where to place the bytes after
they are read. You must create this buffer because the Extended I/O System does not.
To create the buffer, make an extencìed iRMX II segment, or create a buffer during the
compilation ofyour program. You must ensure that the buffer is long enough.

Ifyou use an extended iRMX lI segment as your buffer, the 80286 microprocessor's built-
in abilities will detect when a task attempts to write beyond a buffer. If you create a
buffer at compilation time, the Extended I/O System will not sense when overwriting
occurs. lf your task attempts to read more bytes than the buffer is capable of holding, the
information immediately following the buffer could be overwritten.

82 EIOS Svstem Calls

SSREAD$MOVE

Number of Bytes Read

The number ofbytes that your task requests (bytesgdesired) is the maximum number of
bytes that the Extended I/O System places in the buffer. However, there are two
circumstances under which the Extended I/O System reads fewer bytes.

o First, if the Extended I/O System detects an end-of-file before reading the number of
bytes requested, it returns only those bytes preceding the end-of-file. In this case, the
bytes$read parameter can be less than the bytesgdesired parameter without
generating an exceptional condition.

. Second, if an exceptional condition occurs during the reading operation. In this case,
the information in the buffer and the value ofthe bytes$read parameter are
meaningless.

If your task performs random-access reads of the file, it must identify which bytes to read
from the file by using the S$SEEK system call to position rhe connection's file pointer to
the first byte that it wants to read.

ln contrast, ifyour task reads from the file sequentially, the Extended I/O System
maintains the connection's file oointer automaticallv.

Effects of Priority

The priority of the task invoking this system call can greatly affect the performance of the
application system. For better performance, the priority of the invoking task should be
equal to or lower than (numerically greater than) the priority of the task that attached the
device with the Basic I/O System call A$PHYSICAL$ATTACH$DEVICE. If the device
was attached with LOGICALiiATTACH$DEVICE. the task rhar issues
A$PHYSICAL$ATTACH$DEVICE is an Extended I/O System task creared when rhe
system is initialized. The priority of this task is set to 130 decimal. If the priority of the
calling task is higher than the task that attached the device, the operating system cannor
overlap the read operation with computation or with other I/O operations. (To find out
how to set priorities for application tasks, refer to the Extended |RMX II Nucleus lJser's
Guide.)

Condition Codes
E$OK 0000H No exceptional conditions.

EBADBUFF 8023H One of the following is rrue:

. The specified memory buffer is not writeable.

. The specified memory buffer crosses a segment
boundary.

EIOS System Calls 83

S$READ$MOVE

E$CONN$NOT$OPEN 0034H At least one of the following is true:

. The connection is not open for reading or for
both reading and writing.

r The connection is closed.

. The connection was opened by the A$OPEN
system call rather than the S$OPEN system call.

E$EXIST 0006H The connection is not a token for an existing object.

E$FLUSHING 002CH The specified device is being detached.

E$IDDR 002AH This request is invalid for the device driver. For
example, it is not valid to use this call with a line
pr inter.

EIOHARD 0052H A hard I/O error occurred. A retry is probably
useless.

EIOMODE 0056H One of the fol lowing is t rue:

. A tape drive attempted to perform a read
oper: ì l ion before the previous wri te operat ion
completed.

. A tape drive attempted to perform a write
operation before the previous read operation
completed.

EIONO$DATA 0055H A tape drive attempted to read the next record, but
i t found no data.

EIOOPRINT 0053H The device was off-line. Operator intervention is
required.

EIOSOFI 0051H A soft I/O error occurred. The I/O System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might still be successful.

EIOUNC[-4,SS 0050H An unknown type of I/O error occurred.

E,$LIMIT 0004H At least one of the fol lowing is t rue:

. The calling task's job, or the job's default user
object, is already involved in 255 (decimal) I/O
operat ions.

r The cal l ing task's job is not an l /O job.

E$MEM 0002H The memory avai lable to the cal l ing task's job is not
sufficient to complete the call.

It,l EIOS System Calls

S$READ$MOVE

ENOTCON- 000ilH This system call is not part of the
FIGURED present configuration.

ENOTCONNECTION 8042H The connection parameter is a roken for an object
that is not a file connection.

E$SPACE 0029H At least one of the following is rrue:

. This call attempîed to read beyond the end of
the volume.

. Another task is writing to the file using the
same connection and is attempting to write
beyond the end of the volume or the end of the
available space on the volume.

E$SUPPORT 0023H The connection parameter was not created by a task
in the calling task's job,

EIOS Svstem Calls x-l

The S$RENAME$FILE system call changes the name of a directory or data file. It
cannot be used for stream or physical files.

CALL RQSRENAME$FILE(path$ptr , new$path$ptr , except$ptr) ;

Input Parameters
path$ pt r A POINTER to a STRING that specifies the current path for an

existing file that is to be renamed. The syntax of this path is
described in Chapter 4 of the Ertenried |RMX II Estended I/O
Systent User's Guide.

new$path$ptr A POINTER to a STRING that specifies the new path for the file.
This path must comply with the syntax and semantics of paths for
named files as discussed in Chapter 4 of the Extended |RMX II
Extended I/O Sylcm Us{'s Glrr,le. Furthermore, this path cannot
reler to an existins file.

except$ptr A POINTER to a WORD where the Extended I/O System returns
a condìtion code.

Output Parameter

Description

This system call, which can be used only with named files, allows your task to change the
path for a file. You can rename directory files as well as data files.

NOTE
When you rename a directory, you change the paths for all files and other
directories contained in the directory.

Restrictions

If your task is renaming a file, the task can change any aspect of the file's path so long as
the file remains on the same volume. If you are renaming a directory, it must still have
the same parent directory (the directory above the one being renamed).

86 EIOS System Calls

S$RENAME$FILE

To be able to rename a file, the default user object of the calling task's job must have two
kinds of access:

. Deletion access to the original file

o Add-entry access to the file's new parent directory

Condition Codes
E$OK

E$ALREADY$.
ATTACHED

E$FEXIST

E$FNEX]ST

I]TFTVDtr

E$IFDR

E$ILLOGICAI]$-
RENAME

E$CONTEXT OOO5H

EDEVDETACHING OO39H

E$DEVFD 0022H

E$FACCESS 0026H

No exceptional conditions.

The Extended I/O System is unable to
attach the device containing the file because the
Basic l/O System has already attached the device.

The calling task's job is not an I/O job.

The device containing the specified file is in the
process of being detached.

The Extended l/O System auempted to physically
attach a device that had been only logicalìy attached,
and found that the tlevice and the device driver
specified in the logical attachment were
incompat ible.

At least one of the lìrllowing is true:

. The call is trying to rename a bit-map file or thc
root directory.

. The default user object associated with the
calling task's job does nÒt have add-entry access
to the parenî directory of the new$path$ptr file.

. The default user object associated with the
calling task's job does not have delete access to
the file to be renamed.

The new$path$ptr parameter refers to a file that
already exists.

A file in the specified path, or the file being
renamed, does not exist or is marked for deletion.

The specilìed path contains a file name that should
be the name of a dìrectory, but is not. (Except for
the Iast file, each file in a path must be a directory.)

The specified file is a stream or physical file.

The call attempted to rename a directory
to a new path containing itself.

0000H

0038H

0020H

0021H

0027H

Ot)2FH

Ot)3BH

EIOS Svstem Calls 87

S$RENAMESFILE

E$ILLVOL

E$IÌ.N/ALID$FNODE

EIOHARD

EIOOPRINT

EIOSOF'I

EIOUNCI-A,SS

EIOWRPROT

EIOMEM

E$LIMIT

ELOGNAME$-
NEXIST

002DH The Extended I/O System attempted to physically
attach a device that had formerly been only logically
attached. In the process, it found that the volume
does not contain named files. This prevented the
Extended I/O System from completing physical
attachment because the named file driver was
requested during logical attachment.

003DH The fnode for the specified file is invalid. The file
cannot be accessed; you should delete it.

0052H A hard I/O error occurred. A retry isprobably
useless.

0053H The device was offline. Ooerator intervention is
required.

0051H A soft l/O error occurred. The l/O System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might be successful.

0050H An unknown tlpe of I/O error occurred.

0054H The volume is write-protected.

0042H The Basic I/O System job does not currently have a
block of memory large enough to allow this system
call to run to completion.

0004H At least one of the following is true:

. The user object or the calling task's job is
already involved in 255 (decimal) I/O
operations.

r The calling task'sjob is not an l/O job.

. The caLling task's object limit has been reached.

0045H At least one of the specified paths
contains an explicit logical name, but the call was
unable to find this name in the object directories of
the calling task's local job, the global job, or the root
job.

[ì8 EIOS Svstem Calls

ELOGNAME$-
SYNTAX

E$MEDIA

E$MEM

E$PAT]]NAME$-
SYNTAX

E$PARAM

ENOPREFIX 8022H

ENOTCONFIGURED OOOSH

ENOTLOG$NAME 8O4()H

ENOTSAME$DEV OO3AH

ENOUSER 8021H

S$RENAME$FILE

At least one of the specified paths
contain one or more of the following logical name
syntax errors:

. A path starts with a colon (:), indicating that it
contains a logical name. But the call was unable
to find a second colon to delimit the logical
name.

. A path contains a logical name that is either
longer than 12 characters (including colons), has
no characters, or contains invalid characters.

The device containing the specified file is not on-
line.

The memory available to the calling task's job is not
sufficient to complete the calì.

At least one of the specified paths contains no
explicit pref;x (no logical name), and the default
prefix for the calling task's job is either undefined, or
it is not a valid device connection or file connection.

This system call is not part of the present
configuration.

At least one of the specified paths contains a logical
name that refers to an object that is neither a device
connection nor a file connection.

The two paths refer to different devices.

The calling task's job does not have a default user
object, or the object cataloged in R?IOUSER is not
a user object.

One or both of the specified pathnames
contain invalid characters.

The specified task$priority for an IO job is unequal
to 0 and is greater than the max$priority of the lO
job.

The volume is full.

The task attempted to rename a physical or stream
file.

0040H

0044H

0002H

O03EH

8004H

0029H

0023H

E$SPACE

E$SUPPORT

EIOS Svstem Calls 89

Using the S$SEEK system call, your tasks can move the fiìe pointer for any open physical-
or named-file connection. This svstem call cannot be used with stream files.

C A L L R Q $ S $ S E E K (c o n n e c t i o n , m o d e , n o v e $ c o u n c , e x c e p t $ p t r) ;

Input Parameters
connection A TOKEN lbr an ooen connection whose file Dointer vou wish to

mode

move.

A BYTE containing a vaÌue that controls the nature of the
movement of the file pointer. Any of the following values are
va l i d :

Me an ing

Move the pointer backward by the number of
bytes specified in move$count. If the move
count is large enough to position the pointer
pust thc hrginning of the f i lc . the pointer
moves to the first byte ???NIL?(position zero).

Set the pointer to the position specified by the
move count. Position ?NIL?zero is the first
position in the file. Moving the pointer
beyond the end of the file is valid for named
files only.

Move the file pointer forward by the specified
amount. Moving the pointer beyond the end-
of-file is valid for named files.

First move the pointer to the end of the file
and then move it backward by the specified
amount. If the value specified by move$count
woultl position the pointer beyond the front of
the tile, the pointer moves to the first byte in
the f i le ?NIL?(posi t ion zero).

move$counr A DWORD integer that tells the Extended I/O System how far, in
bytes, to move the pointer.

Mode

I

90 EIOS Svstern Calls

S$SEEK

Output Parameter
except$ptr A POINTER to the WORD where rhe Extended I/O System

returns the condition code.

Description

When performing randon I/O, your tasks must use this system call to position the file
pointer before using the S$READ$MOVE, S$TRUNCATE$FILE, and
S$WRITE$MOVE system calls. The location of the file pointer tells the Extended I/O
System where in the file to begin reading, truncating, or writing information.

lf your tasks are performing sequential I/O on a file, they do not need to use this system
call.

Access Control

Two requirements relate to access controÌ. First, the connection must be open for reading
only, writing only, or both reading and writing. If this is not the case, your task can use the
S$OPEN system calÌ to open the file.

The second access requirement is that the connection must have been created by a task
within the calling task's job. ìf this is nor rhe case, use the existing connection as a prefix,
and have the calling task obtain a new connection by invoking the S$ATTACH$FILE
system call. This newly created connection satisfies the second requirement.

Reading and Writing Beyond the End of File

It is legitimate to position the file pointer beyond the end-oÈlile fbr a named file. Ifyour
task does this and then invokes the S$READ$MOVE system call, the ExtentJed I/O
System behaves as though the reading operation began at the end-of-file.

Also, it is possible to invoke the S$WRITE$MOVE system call with the file pointer
beyond thc end of the file. Ifyour task does this, the Extended I/O System attempts to
expand the file. If the Extended l/O System does expand your file in this manner, the file
contains random information between the old end-of-file and the new end-of-file.

Condition Codes
E$OK 0000H No except ional condit ions.

EBADBUFF 802311 One of the fol lowing is t rue:

. The specified memory buffer is not writeable.

. The specified memory buffer crosses a segment
boundarv.

lllOS System Calls 9 l

S$SEEK

E$CONN$NOT$OPEN 0034H At least one of the following is true:

o The connection is not open.

. The connection was opened by an A$OPEN
rather than an S$OPEN.

E$EXIST 0006H The connection Darameter is not a token for an
existing object.

E$FLUSHING 002CH The specified device is being detached.

E$IDDR 002AH This request is invalid for the device driver. For
examplé, it is not valid to use this call with a line
printer.

E$IFDR 002FH The call attemDted to seek in a stream file. The
S$SEEK system call can be used only with named
and physical files.

EIOHARD 0052H A hard l/O error occurred. A retry is probably
useless.

EIOI{ODE 0056H A tape drive attempted a read (write) operation
before the previous write (read) completed.

EIONO$DATA 0055H A tape drive attempted to read the next record, but
it found no data.

EIOOPRINT 0053H The device was off-line. Ooerator intervention is
required.

EIOSOFI 0051H A soft I/O error occurred. The I/O System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

E$LIMIT 0004H At least one of the following is true:

. Either the calling task's job, or the job's default
user object, is already involved in 255 (decimal)
l /O operat ions.

r The calling rask's job is not an I/O job.

E$MEM 0002H The memory available to the calling task's job is not
sufficient to complete the call.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

ENOTCONNECTION lJ042H The connection parameter is a token for an object
thrt is not u l i le connect ion.

92 EIOS System Calls

S$SEEK

E$PARAM 8004H At least one of the following is true:

o The value of the mode parameter is not 1, 2, 3,
or 4.

. The calling task was attempting to seek past the
end of a physical file.

E$SPACE 0029H This seek operation forced the Extended I/O System
to attempt to empty the connection's buffer(s) by
writing their contents to the volume. However, the
volume is full.

E$SUPPORT 0023H The connection parameter refers to a connection
that was created by a task outside of the calling
task's job.

EIOS System Calls 93

The S$SPECìAL system call allows your tasks to perfbrm lunctions that are peculiar to a
specific device.

' A L L R Q $ S S S P E C l A L , c o r ì r , e c L i o n . f u n c t i o n . d a t d S p t r . í o r s $ p t r .
e x c e p r S p t r) :

Input Parameters
connection A TOKEN f or a connectìon to the file for which the special

function is to be performed.

funcîion A WORD that specifies thc special function being requested. Each
function is descrihed in detuil under the "Description" heading, but
the follou,ing tahle summurizes the values to be assigned to this
pa rameter.

Function Tvne of file Effect of
Value for connect ion Funct ion

0 Physical Format disk track
0 Stream Query
I Stream Satisfy
2 Physical or

Named Not i fy
ì Physical Get disk special data
4 Physical Get terminal data
5 Physical Set terminal data
6 Physical Set signal character
7 Physical Rewind tape

; ;lí:i::ìi fi,:llfi:ifiltl
l0 Physicaì Retention tape
ll-32167 Reserved for other Intel

)roLl ucts

clata$ptr A POINTER to a parameter block that your task uses to supply the
Exlended I/O System with information, or to receive information
from the Extended ì/O System. The contents and form of the

llarameter block depend upon the function being requested, so the
lbrm of the parameter block rs described later, under the
"Descr ip t ion" heading. I f the lunct ion requi res no parameter
block, set ciata$ptr to NlL.

91 EIOS System Calls

Output Parameters
iors$ptr

S$SPECIAL

A POINTER to a structure of the form described below. The
Extended I/O System uses this structure to return information that
might be of use to the calling task. lf you set this POINTER to
NIL, the Extended I/O System does not return the information.
Be aware that this is relatively obscure information that most
applications do not need.

DECI-ARE iors$dara STRUCTURE (
ac tua l
a c r u a l g f i l l
dev ice
un i t
func t
sub func t
d e v i c e $ l o c
b u f g p t r
count
c o u n t g f i l l
aux$p t r

I{ORD ,
IIORD ,
WORD ,
BYTE ,
BYTE,
WORD ,
DWORD ,
POINTER,
WORD ,
WORD ,
POINTER)

where

actual

acrual$fill

device

unlt

luncl

subfunct

device$loc

buf$ptr

coun!

counr$fill

aux$ptr

Number of bytes that were actua.lly translèrrecl
during the special function, if any.

Reserved for Intel's use.

Device number identifoing the device. For an
explanation of device numbers, refer to the
Extentled iRMX II Interactive Configuration
Utility Reference Manual.

Nurnber of the unit that contains the lile on
which the special function is being perfbrmed.

Code recognized by the driver, usually
meaning rh;r t th is is a special operat ion.

Function code you code into the call.

Location on the device where the operation
was performed.

POINTER to a buffer used for this operation.
if any buffèr is used.

Number of bytes transferred, if any were
tr:rnsferred.

Reserved for future use.

Same as data$ptr in the call to S$SPECIAL.

EIOS Svstem Calls 95

S$SPECIAL

except$ptr A POINTER to e WORD u'here the Extended I /O System returns
the condit ion code.

Description

This system c i r l l a l lou 's your t i rsks to conìmunicute wi th devices, device dr ivers, and the
strcunr f i le r l r iver to per l ì r rm opcnr t i r)ns that l ì rc less device- independent than other
Extended I /O System operat ions.

S$SPECIAL a l lou 's vour t ; rsk to per l ì r rn t sever i r l specia l funct ions. The Extende<J I /O
Svstern c iec i t ies u 'h ich funct ion to per form bv exunr in ing the funct ion parameter and the
kind of conncct ion prov ic lecì in thc conncct ion p i r rameter . The fo l lowing sect ions expla in
each funct ion in deta i l .

Formatî ing a Track (Funcîion Code 0)

' fo
use the SSSPF.CIAI- svstem c l r l l lo lorn l i ì t l ì tn ìck on a d isk, the cal l ing task must

s u l r p l y t h c t r r l l , r u i n - r - i r t I r ' r n r I r I i o n :

co l lnect ion A TOKE.N lor a connect ion to a physica l f i le . This connect ion
must be opcn 1ì r r re l rd inr l . ur i t in_t or both.

lunct ion Must he set t i) zero.

c ìata$ptr Must point to a STR|JCITL- IRE of the fo l lowing form:

I -C I -ARE t rack$ fornÌa L Ler STRUCTURE(
track$number WORD,
i n t e r l e a v e W O R D ,
t r a c k $ o f f s e t W O R D ,
f i l L $char BYTE)

w h c r c

t rack$nunt t rcr Nurrber of the t rack to be format ted.
Acccl t tab le va lues are 0 to one less than the
nunrbcr of t racks on the volume. Other va lues
cruse an E$SPACE except ion code. When
tormr i t t ing a tape or a RAM-disk, you must
p l l rcc u zero value in th is f ie ld .

96 EIOS Svstem Calls

in t cr lc uvc

track$offset

f i l l$ch l r

S$SPECIAL

The number of physical sectors between
consecutive logical sectors. (This field does
not apply to tapes or to RAM-disks.) If the
interlcave factor is zero or one, no physical
sectors are sk ipped. I f the speci f ied in ter lcuvc
v:r lue is greater than the numbcr of phvsic : r l
sectors on a track, the operating system diviclcs
th l r t in ter leave value by the number of physic l r l
sectors and uses the remainder as the
in lcr leave factor . A remainder ofzero has the
same el fect as an in ter leave of zero.

Number of physicrl sectors to skip betu'een the
index mark and the f i rs t log ica l sector . (This
f ie ld does not apply to t rpes or to RAM-disks.)
- ['hc

ch l r racter wi th *h ich the scctor wi l l be
u ' r i l ten; some cì r ivers ignore th is f ie ld unci f i l l
the scctors wi th a char i ìc ter the c l r ivcr
cst l rb l ishes.

Also see the descr ip t ion o l Funct ion Cocìe.3, Get t ing Specia l Disk Data.

Oblaining Information About Stream Fite Operations (Function Code O)

Occasional lv , : r t l rsk us ing i t s t rc i tm f i ìe ntust l ind out what is being rec lueste 'd l ty another
t i rsk us ing thc sanr t s t rcum f i le . Fol cx l inrp le, thc tusk re: rd ing a s t re; tm f i le nt iqht need to
know how mi lnv l ì \ ' tcs r r rc bc ing senl b t ,u t r rsk ur i t ing to the sunìe f i le . Tasks can obt l r in
th is k ind o l in îormrt ion bv c i r l l inL l S$SPECIAI . wi th rhe f ì r l lowins in i i r rmut ion:

conncc t lon

funct ion

d:r t i ì ! ìptr

r ì c t u i t l

i o u l l I

bul$ptr

l unc t

I f a task is rel t l inq front or u ' r i t inu to : r strc i ì r ì ì l i l t : , the Extended I /O System returns
inl i r rmat ion in the structurc to u hir :h iorssprr points. The l i r l lou' ing fbur f ie lds contuin
l a l i t l in l ì r r rnat ion:

A I OKEN lor a connect ion to a s t reum f i le .

7,tt o.

S c t t o N I L .

The number of l .x ' tes l t l rc l rc lv tnrns lerred.

The nunrbt r o f b t tes renra in inq to bc t ransl t r rcd.

A POIN' l EI ì to t l ìc mrmorv locat ion to be useci f ì t r the next bytc
to bc t r ; rns lerrcr l .

A vr r luc th l r t ind ic l tes the purpose of the r lueuct ì rcc luest . T 'he
value is zero for l r l rd rcc luests and one for wr i te requests.

EIOS Svstcm Cal ls 97

S$SPECIAL

lf no task is reading from or writing to the stream file, the Extended I/O System queues
the S$SPECIAL requesl. The request remains queued until a task issues a read or write
request. lf, before a read or write request is issued, another S$SPECIAL request arrives,
the Extended I/O System cancels both S$SPECIAL requests and returns
E$STREAM$SPECIAL exception codes to the tasks that issued the S$SPECIAL calls.

Satisfying Stream File Transactions (Funclion Code 1)

Stream files provide two tasks with the ability to communicate. When one task tries to
read or write to a stream fiìe, the task does not run again until the complementary task
issues a matching request.

For example, suppose that Task A wants to read 512 hytes, but Task B writes only 256
bytes. Task A stops running until Task B issues one or more requests which supply at
least 256 more bytes.

The S$SPECIAL system call enables tasks to force a stream file transaction to complete,
even if the number of bytes written does not match the number of bytes read.

To force this completion, a task must invoke the S$SPECIAL system call with the
parameters set as follows:

connection A TOKEN for a connection to the stream file. This connection
must be open for the operation that has not satisfied the matching
requirement. For ex:rmple, if the reading task wants to force the
Extended l/O System to consider the trans:rction completecì, the
connection must be open for reading.

function Onc.

data$ptr Set to NIL.

After requesting this satisfy function, the only inlìrrmation that your task can obtain is the
condition code returned by the Extended I/O Slstem. If the task invoking the
S$SPECIAL system call has already completed the transaction, the Extended I/O System
returns an E$STREAM$SPECIAL condition code.

9tì EIOS System Calls

S$SPECIAL

Requesting Notification that a Volume is Unavailable (Funclion Code 2)

This function applies to named and physical fiìes only. When a person opens a door to i,
flexible disk drive or presses the STOP button on other mass storage drives, the volume
mounted on that drive becomes unavailable. A task can request notification of such an
event by calling S$SPECLAL. For llexible disk drives attached to an iSBC 208 or iSBC
2l8A controller, and for some 5-l/4" flexible disk drives, notification occurs when the
Basic I/O System first tries to perform an operation on the unavailable volume. For most
other drives, notification occurs immediately. The reason for this difference is that
controller/drive combinations that include the iSBC 208 or iSBC 218A controller, or thar
include some 5-1/4" drives, cannot generate an interrupt when the drive ceases to be
ready. In contrast, most other controller/drive combinations do.

On those drives where no notification occurs until the Basic I/O System attempts to
access the drive, a dangerous situation occurs whenever you change a volume without first
detaching the tlevice. lf you do not first detach the tjevice and then reattach it, the Basic
I/O System accesses the device using the directory information from the old volume.
Unless the new volume is write-protected, this process corrupts the entire volume,
rendering it useless. The correct sequence of events when changing volumes on one of
these devices is as follows:

1. Detach the uni t (v ia A$PHYSICAL$DETACH$DEVICE).

2. Remove the old volumc.

3. Insîall the new volume.

4. Reattach the unit (via A$PHYSICAL$ATTACII$DEVICE).

For devices that can perform notification, a task requests notification by calling
S$SPECIAL with a token for a device connection, with spec$func set to 2, and with
data$ptr pointing to a structure of the lbllowìng form:

DECIARE noti fy STRUCTURE (
mai lbox TOKEN ,

TOKEN) ;

wnere

mailbox

object

A TOKEN for a mailbox.

A TOKEN for an object. When the Basic I/O System detects that
the implicd volume is unavailable, the object is sent to the mailbox.

After a task has made a request for notification, the Basic I/O System remembers the
object and mailbox tokens until either the volume is detected as being unavailable or until
the device is detached by the A$PHYSICAL$DETACH$DEVICE system call. When the
volume becomes unavailable, the object is sent to the mailbox. Note that this implies that
some task should be dedicated to wait inq at the mai lbox.

EIOS Svstem Calls 99

S$SPECIAL

I f the volume is c ie tected as being unlva i lab le, the Basic I /O System wi l l not execute I /O

recluests to the c lev ice on which the volumc was mounted. Such requests are returned
wi th the status f iek l o f the I /O resul t segment set to E$lO and the uni t$status f ie ld set to
IO$OPRINT (value = 3) . The la t ter code means thr Ì t operator in tervent ion is requi red.

If any task issues a subsequent notification request lbr the same device connection, the
Basic l/O System replaces the old maiÌbox antl otrject values with the new ones specìfied.
I t c ioes not return an except ion code.

To restore the avai lab i l i ty of a vo lume, per form thc fo l lowing stcps:

l . Close the door of the d isket te dr ive or rest i r r t the hard d isk dr ive.

2. Cal l A$PHYSICAL$DETACH$DEVICIE. I t nray t re nece: isary to do a "harcì"
detach of the device.

3. Cal l A$PI I YS ICAI-$AT-fACl t I$ DEVICE ant l rcut tach the r . lev ice.

.1. Create a new f i le connect ion.

' fo
cancel a request for not i t ic : r t ion, make a dummv rc(luest us ing thc same connect ion

wi th a SE,LECTOR$OF(NIL) va lue in the mr i lbox purameter .

Gett ing Disk Special Data (Funcîion Code 3)

You can wr i te your own prognrm to f i r rn l r t : r t j jsk . r l r ther th în us in{ the FORMAT
command (par t o f the er tended iRMX I I Hunl rn In tcr t i rce) . I f 1-ou do so, you must p l lce
some specia l r - levìce data in to the last bvtes ot thr L ibel on the extended i l ì .MX l l namer l
vo lunre. Currcnt ly , th is l ie lc ì in thc Lrbc l is c ight (8) l l tes krnq, a l though Inte l rescn.es the
r ight to ac ld to i ts lcngth la ter . (The st ructure of l rn er tcnr lc t l iRMX I I named l i le vo lume
is described in the Extended iRMX II Di.sk l'triJì.t utiort Utili4 Rt't'crence l\lanual.)

You can obta in the dr i ta in th is f ic ld bv issuin,g S$SPECIIAL wi th a lunct ion code o l threc.
You can then s i rvc the data r rnd wf i te i t in to thc ì r rbc l f ie ld whcn vou l ì r rmut the d isk.

' l ì)
use the S$SPECIAL svstem cî l l to o i r tu in thc spccia l d l ta for the label . the cal l ing task

must supply the f ì r l lou, ing in forn l r t ion:

cotìnecÎ ron A TOKt--N t ì r r i r connect ion to a phvsica l f i le . This conncct ion
musî l) r opcn t ì r r re l r r - l inq. I ì r r n r i t inq. r t r l i t r t ro th rcudin{ und
\\'n t r ng.
' l

h rec.l lnct ion

t(x) EIOS Svstem t la l ls

S$SPECIAL

dat i ì$pt r A POINl 'ER to l S ' I - I ìUCTURE of the lb l lowìng form:

DECI-ARE di skgla i re Lgdara STRUCTURE(
Ì a b e 1 $ d a t a (8) W O R D) ;

Gett ing Terminal Characterist ics (Function Code 4)
Sett ing Terminal Characterist ics (Function Code 5)

These two functions are complements of each other. They use the same type of data
st ructure wi t l ì ident ica l meanings lor eacl r f ie ld in the st ructure. A funct ion code of four
returns the current character is t ics of a p l r t icu l r r r terminal ; a funct ion code of f ive a l lows
you to set the character is t ics (.) f a termin l r l .

In te l recommends that before set t ing the terminal character is t ics, you f i rs t invoke
S$SPECIAL * , i th funct ion cot le 4 to {et thc curre nt character is t ics. Then, modi fy the
returncd st ructure to ref lect your dcs i rec l chungcs. F in i r l ly , invoke S$SPECIAL wi th
lunct ion code 5 to set (he chur îc ter is t ics. us ing vour modi i ied s t ructure as input .

In th is sect ion, cer ta in tcrnrs uniquc to ter rn in l r l dcv ices (l i t r example, l ine edi t ing, OSC
scquencc, t ranslat ion) are descr ibet i on l l , br ie l lv . I l you i r rc unfami l iar wi th these terms
rcfer ttr the E.tttndttl iRtrlX ll Bus l/O S.t.stttrt C ull.s llcferurte lluntutl and thc E.rteruL:tl
|RMX II Davit,: Driver Ustr's Cuùlt.

To use the S$SPE.CIAL systent c l r l l to ger or to set terminal ch a ract er is t ics , the cal l ing
task nìust supply the fo l lowing in f i r rmrr t ion:

connect ion A I OKEN l ì r r l t conrrcct ion to a terminal .

funct ion Four (uet char l rc tcr - is t . ics) or f ive (set character is t ics) .

[. lOS Svstem Cal ls l { | l

SSSPECIAL

da ta $pt r

where

A POINTER to a STRUCTURE of the following form:

DECIARE te rmina l$a tc r ibu tes STRUCTURE(
num$words i lORD,
num$used WORD,

connec t ion$ f lags WORD,

termina l$ f1ags WORD,
in$baud$ra te WORD,
out$baud$ra te WORD,
scro l l$1 ines l lORD,
xys ize I ' IORD,

xyof fse t woRD,
spec ia l$modes WORD ,
h igh$water$mark WORD,
low$water$mark t ' tORD,
fconchar WORD,

fc$of f$char WORD,
l ink$pararne ter WORD,
spc$h i$water$mark WORD,
s p e c i a l $ c h a r (4) B Y T E) ;

num$words

num$used

The number of words, not including
num$words and num$used, that are reserved
for the remainder of the terminal$attributes
data structure. To access all of the
information, set this field to at least 16. Intel
reserves the right to expand the length of this
structure in later releases.

The number of fields, following the num$used
field, that are actually being used for getting or
set t ing tcrm inir I c ha racte r ist ics.

ln getting and setting terminal information, the
amount of data returned or sent is governed by
the num$used field. For example, if function is
4 and num$used is 2, then an S$SPECIAL call
returns dîta in the connection$flags and
terminal$flags fields, but not in the remainder
of the fields.

t(t2 EIOS Svstem Calls

S$SPECIAL

I Iowevcr , *hcn sct t ing terminal i r t t r i l)u tes,
spcci fy ing a zero value for any of the next f ive
f ic lds (connect ion$f l ags through scro l l$ l ines)
c i ruses the I /O Systcm to sk ip over the zerot r j
f ic ld , lcav ing i t a t i ts prev ious set t ing. For
example, i f nurn$used is 2, whi le
connect ion$f l rgs is 0 and terminal$f lags is not
0, then S$SPECIAL uses the contents of the
terminal$f lags f ie ld to set terminal a t t r ibutcs,
but i t ignores the contents of connect ion$t ì rgs
f ie ld . In th is way, you can set some parametcrs
wi thout l f fect ing others.

For the funct ions represented by the remain ing l ic l i is in th is s t ructure, invoking
S$SPECIAL is not the only way to set the funct ions. You can a lso se t thcm wi th OSC
sequences. The descr ip t ion of each l ie lc j mcnt ions, in prr rentheses, the OSC char i rc ters
you can use. (OSC sequence s :rre described in the E-rte nded iRMX Il Deyice Driv,:r.s IJsL:r's
Guùle.) You can a lso use thc OSC Qucry scr lue 'nce when dcbutu ing, to ensure t l ìa t vour
tasks invoked S$SPECf AL correct lv .

connect ion$f lags
- fh is

word r rppl ics only to th is conncct ion to thc ter rn inal . (A l l
o thcr paramcters r rpplv to thc ternr inr i l i tse l f r rnd thercfore 1o r r l l
connect ions to the terr r inr r l .) I t you at tenrpt to set th is I ic l t l to
zcro, the I /O Systcm ignorcs your entry ant l le : rves the î iek l sct to
i ts prcv ious vu lue.

The f ìags in th is rvord arc encot lcd as fo l lows. (Bi t 0 is thc low-
order b i t .)

)l'Iqe ,!lrd_l4s!1lrg

Line cdi t ing contro l (corresponds to OSC
chanìcters C:T) . l - ine et l i t ing refers to how
the TSC (Terminal Support Code) handles
contro l charactcrs such as those that dc lete
churacters entercd at a terminal , scro l l
termin i r l output . and others. Relèr to the
Ertandtd |RMX II Deyice Drivers User's Cuitle
lor more in formir t ion.

Bi t s

0 - I

EIOS Svstem Cal ls I0-1

S$SPECIAL

NOTE

Line editing is supported on input only (that is, the stream of data entered
at, but not sent t0, a terminal).

Bi ts Value and Meaning

0 = I nval id Entry.

I = No line editing (transparent mode). lnput
is t ransmit ted to the request ing task exact ly as
entered at the terminal*. Before being
transmitted, drta accumulates in a buffer until
the requested number of characters has been
entered.

2 = Line edi t ing (normal mode). Edi ted data
accumulltes in a buffer until a line terminator
is cntered.

3 = No line editing (flush motje). Input is
transmitted to the requesting task exactly as
entcred : ì t the terminal*. Before being
transmit ted, data accumulates in a buffer unt i l
an input request is received. At that time, the
contents of the buffer (or the number of
chlrnrcters requested, if the bulfer contains
more thrn that number) is t ransmit ted to the
rcqucst ing t : rsk. I f any characters remain in
the buffer, they are saved for the next input
request.

Echo control (corresponds to OSC characters
C :E) .

0 = Echo. Characters entered at the terminal
are "echoeci" to the terminal's display screen.

1 = L)o not echo.
* Exccpt (1) s ignal characters (e.g. , the Human
lntertìrce CONTROL-C) set by specifuing "set
siqnul" in the spec$func parameter of
A$SPECIAL or S$SPECIAL, and (2) any
enabled output control characters or OSC
sequences.

t0'l EIOS Svstem Calls

6-7

S$SPECIAL

Input par i ty control (corresponds to OSC
characters C:R). Characters entered into the
terminal have their par i ty bi ts (bi t 7) set to 0
or not set by the Terminal Support Code,
l r ' ((ì rLl ing to the vuluc of thr input plrr i ty
control bi t .

0 = Sct par i ty bi t to 0.

1 = Do not al ter par i ty bi t .

Output par i ty control (correspr)nds to OSC
charactcrs C:W). Chrrracters being output to
thc terminal have their par i ty bi ts (bi t 7) set to
0 or not set hy the Terminal Support Code.
i l . (() r \ l i ng t r t t hc v l r l u t ' r r f t hc r ru t fu t p ; r r i t y
cont rol b i t .

o = Set p:rr i ty bi t to o.

I = Do not al ter par i ty bi t .

C)utput control character control (corresponds
to OSC chanrcters C:O). This bi t speci f ies
u,hcther output control characters are et lèct ive
u'hen entered at the terminal . The value of
this bi t appl ies only to output through this
connection. Control characters ere tlescribeci
in tlte Extetult:d iRillX II Dcvk:e Divtrs User's
Guitlc.

Notc thir t the out[)ut controì characters are
supported only on input f rom a terminal , not
as output to a terminal .

0 = Accept output control characters in the
l npu l s t ream.

I = Ignore output contro l characters in the
lnput s t rea m.

OSC contro l sequence enable/d isable
(corresJronds to OSC characters C:C). These
bi ts speci fy whether OSC contro l scquences
should be actcr i upon when they appear in the
input s t ream and, separate ly , when they
appear in the output s t ream. These b i ts apply
only to input or output through th is
connection. OSC control sequences are
dcscribed in Ertettded iRMX II Device Drivers
User's Cuide.

EIOS Svsfem Cal ls t 0,i

SSSPECIAL

0 = Act upon OSC sequences that appear in

e i ther- the input or output s t ream.

I = Act upon OSC sequences in the input
st ream only .

2 = Act upon OSC sequences in the output
str(]rm only.

3 = Do not act upon any OSC sequences.

tì-15 Reserved bits. For future compatibility, set to
t r .

terminal$flags
'I 'his word applies to the terminal and therefore to all connections
to the terminul . I l you i ì t tempt to set th is f ie ld to zero, the Basic
l/O System iqnores your entry and leaves the field set to its
pr evrous v i r lue.

' l 'hc
f l r rqs in th is word are encoded as fo l lows. (Bi t

0 is the low-order b i t .)

B i ts Vrr ìue r n t l Meaning

Rcstn,ed b i t . Sct to L

I Line protocol indicator (corresponds to OSC
chlructcrs T:L). Full-duplex terminals support
s imul tuneous and independent input and
ou tpu t. IJill l '-duplex terminals support
incìependcnt input and output , but not
s im u l ta neously .

0 = Ful l duplex.

I = Hl l f duplex.

2 Output medium (corresponds to OSC
c h l r l c t e r s T : H) .

0 = Vic ieo d isp lay terminal (VDT).

1 = pr in tcd (Hard copy) .

3 N,lotlcm indicator (corresponds to OSC
charrrc ters T:M).

0 = Not used wi th a modem.

I = Used wi th a modem.

l 0ó EIOS Svstem Calls

4-5

S$SPECIAL

lnput parity control bits (corresponding to
OSC characters T:R) determines how the
terminal driver handles input parity. The
parity bit (bit 7) of each input byte can be useci
in a variety ofways. A byte has even parity ìf
the sum of i ts bi ts is an even number.
Othcrwisc. the hyte has odd par i ty.

0 = Terminal tlriver always sets parity bit to 0.

1 = Terminal driver never alters the parity bit.

2 = Even parity is expected on input. The
terrninal dr iver uses the par i ty bi t to indicate
the presence (1) or absence (0) of an error on
input. That is, the clr iver sets the par i ty bi t to 0
unless the received byte has odd parity or
thers is some other error, such as (a) the
received stop bi t has a vt lue of 0 (f raming
crrnr) or (b) the previous characler received
hls not yet been fully processed (overrun
error) .

3 = odd parity is expected on input. The
terminal dr iver uses the par i ty bi t to indicate
t l ìc J)resence (l) or absence ({)) of an error on
input. ' l 'hat ìs, the dr iver sets the par i ty bi t to (l
t t t t l r ' s s l h , . t t , . t i r r ' J hy t t h ; t : r ' v t n p l r t i t ; t t t

thcrt is somc othcr error. such as (a) the
rcccivctl stop bit has a value of 0 (liaming
error) or (b) the previous character received
hiìs not yet been fulÌy prccessed (overrun
erro r) .

Output parity control bits (corresponding to
OSC characters T:W). Determines how the
tcr minal dr iver hlndles output par i ty. Thc
p:rr i t1, bi t (bi t 7) of each output byte can be
uscd in a variety of ways. A byte has even
pari ty i f the sum of i ts bi ts is an even number.
Otherwise, the byte has ocltì parity.

0 = Ternrinal cìriver always sets parity bit to 0.

I = ' fe rminal dr iver alwavs sets par i ty bi t to l .

2 = Terminal driver sets parity bit to give thc
byte even parity.

ó-8

EIOS Svstem Calls 107

S$SPECIAL

t0

3 = Terminal driver sets parity bit to give the
byte odd parity.

4 = Terminal driver does not alter the parity
bi t .

5-7 Inval id values.

Translat ion control (corresponds to OSC
characters T:-l). Translation refers to the
ability to clefine certain control characters so
th t whcnever these characters are entered at
or wr i t ten to a terminal , certain act ions,
usually cursor movements, take place
automatically. Translation is described in the
Ettnded |RIVX II Device Divers User's Guide.

0 = Do not enable translat ion.

I = Enable translat ion.

Terr l inal axes sequence control (corresponds
to OSC characters T:F). This specìf ies the
ort ler ìn which Cartesian- l ike coordinates of
eleÌnents on a terminal's screen are to be listed
or entered.

0 = List or enter the horizontal coordinate
1irst .

I = [-ist or enter the verticaÌ coordinate first.

I lor izontal axis or ientat ion control
(corresponds to OSC characters T:F). This
speci f ies * hether the coordinates on the
terminl i l s hor izontal axis increase or decrease
as you move from left to right across the
screen.

0 = Coordinates increase from left to right.

I = Coordinates decrease from left to right.

Vert ical axis or ientat ion control (corresponds
to OSC characters T:F). This specifies
whether the coordinates on the terminal 's
vertical axis increase or decrease as you move
fronl top to bottom across the scrcen.

0 = Coordinates increase from top to bottom.

I = Coordinates decrease from top to bottom-

u

t2

l0lt EIOS Svstem Calls

If bits 4-5 contain 2 or 3, and bits 6-tl also contain 2 or 3, then they must
both contain the sante value. That is, they must both reflect the same
parity convention (even or odd).

S$SPECIAL

13- 15 Reserved bits. For future compatibility, set to
tr.

NOTE

The input baud la te inc i icator (corresponds to OSC characters T: l) .
I f you at tempt to set th is f ie ld to zero, the Basic I /O System
ignores your entry and leaves the field set to its previous value.
The word is encoded as follows.

0 = Leave f ie lc i set to the prev ious value.

I = Use the input baucì r i ì te lbr output .

Other = Actu l ì l output l)aud rate, such as 9600.

The output l . ;auc l ra te in t l icator (cr t r responds to OSC characters
T:O). I f you at tempt to sct th is f ie ld to zero, the Basic I /O Systent
ignores your entry and leaves the f ie ld set to i ts prev ious value.
The u'orcl is encoded as lì.l l lows.

0 - Leave f ie ld set to the prev ious value.

l= Use the input baud rate for output .

Other= Actu: i l out l lu t b lud rate, such as 9ó00.

Most appl ic l t ions rec lu i re the input and output baud rates to be
equal . In such crrses, use ìn$baud$rate to set the baud rate and
speci fy a one lbr out$baud$rate.

An opcr : ì tor i ì t a ter r ì l in i r l can enter a contro l character (delaul t is
CONTROI--W) when hc/she is ready for data to appear on the
tcrminal 's d isp l l ry screen. The scro l lg l ines value (corresponding to
OSC character s T:S) speci t ies the maxinrum number of l ines that
are to be sent to thc tcrminal each t ime the operator enters thc
contro l ch:Lnrcter . I f you at tempt to set th is f ie ld to zero, the Basic
I/O System ignores your entry and leaves the field set to its
prev ious va luc,

The low-orcler byte ol this word specifies the number of character
posi t ions on e l ìch l ine of the terminal 's screen (ant l corrcsponds to
OSC chlnrcters T:X). 1'he high-ordcr hyte specifies the number of
l ìnes on the terminul 's screen (and corresponds to OSC chtracters
T:Y) .

in$ha ud$ra te

out$baud$rate

scro l l$ l ines

xysize

EIOS Svstem Calls 109

SSSPECIAL

x$ v$ oll sct

sl)c(i l l$modes

Thc low-orcier byte of this tvord specifies the value that starts the

numberinq sc(luence oî both the X and Y axes (and corresponds to
OSC characters T:U).

-l he high-order byte specifies the value to
u'hich the nunrberìng of the axes must " fal l back" af ter reaching 127
(irncl corrrsponds to OSC churlrcters T:V).

This ancl thc lo l lowing f ie lds apply only to buffered devices (such as
the iSBC -5.1.1A and the jSBC lfÌ8/48 boards). These devices
maintain thcir own input ancl output buffers separately f rom the
ones managed hy the Basic I /O System's Terminal Support Code.
I f you arcn' t surc whether vou can set these f ie lds, invoke
S$SPECIAI- wi th funct ion code 4 to get the terminal at t r ibutes. I f
b i t 15 of the speci l l$mocìes l ic ld is set, your board is a buffered
device and vou can set thc bi ts in special$modes and the fol lowing
f i r lds. (Ì f 1 'ou r bol rd is not a buffered device, sett ing any of the
1ìr l lorr ' ing I ic l t is rv i l l crrusc thc' fernr inal Support Code to return an
ES PA I ìAl \ { (loncj i t ion Cot ic.)

V l l u c : r n d l t l c a n i n g

Flow contro l mode speci f ies whether the
comnrunicut ions board sends f low contro l
ch: rnrctcrs (se lected by the fconchar and
lc$o1f$char f ie lds, but usual ly XON and
XOFF) to turn input on and of f (corresponds
to thc OSC characters T:G). The low-order b i t
(b i t 0) controÌs th is opt ion, as fo l lows:

0 = Dis l rb le l low contro l .

I = Enrrb le f low contro l .

When l low contro l is enabled, the
communicat ion board can contro l the amount
of drìtlì sent to it to prevent buffer overflow.
This is especi l l ly important when
comnrunicat ing wi th another computer .

Wi th the Specia l Character Mode
(corresponds to OSC characters T:D) you can
def inc up to four specia l characters. These
specirrl chur:rcters are different from the signal
characters prov ided by the Terminal Support
Cocle. though they may be signal characters. lf
your driver supports special characters, it
processcs these characters differently when the
Speci r r l Chl racter Mocie is on.

l l 0 EIOS System Calls

2-11

1 5

S$SPEC!AL

0 = Disable Special Character Mode.

I = Enable Special Character Mode.

Rcsen'cd hits. Set to 0.

tsulfered Device Control. This bit is set by the
Tcrnrinal Support Code to show if a device is
buflcred. lf invoking the S$SPECIAL systeni
cal l to get terminal at t r ibutes shows that th is
bit is set, then the special$modes bits and thc
dlta fields following are valid. If the Buffered
Device Control bi t is not set and you attempt
to al tcr these data f ie lds, an E$PARAM error
is returnecl

0 = Not a buflèred device.

I = Ilufièred device.

The remain ing f ie lds

high$water$mark

Iow$w;11sp$ m11. l i

lL$on $cha r

in the st ructure aJ;Ply onlv to buf fered devices.

When the communicut ion board 's t ru f fer f i l ls to conta in the
number of Lrvtes representeci by this field, the board's firmware
sends thc l low contro l "o l1 ' ' churrcrer to s top input . (This f ie ld
corresponds to the OSC chi ì racters T:J .)

The hìgh-water m:r rk of the ìSBC,544A board is not conf igurable;
thercfore, set t ing th is f ie Ìd has no ef fect on that board,

When the number of bvtes in the communicat ion board 's input
buf lèr drops to the number rcpresented by th is f ie ld , the board 's
f i rmwarc sencis the f lorv contro l "on" character to s tar t input . (This
f ie ld correspont ìs to the OSC characters T:K.)

The low-water nlìrk of the iSBC 511,4 board is not configurable;
therefore, set t ing rh is f ie l t i has no e lTect on that board.

An ASCII chî racter th l ì t the communicat ion board sends to the
connecting clevice when the nuntber of bytes in its input bulìer
drops to the lou.wl ter mlr rk . Normal ly th is character te l ls the
connecting devicc to resunte sending tlata. (This field corresponcls
to the OSC chrr racters T:P.)

TIie fconchirr for the iSBC 5,1,1.4 board is set to the XON
(CONTROL-Q) churrc ter rnd is not conf igurable; therefore,
set t ing th is f ie ld has no ef îect on that t roard.

EIOS Svstem Calls l l l

S$SPECIAL

tcoflchar An ASCII character thtt the communication board sends to the
connecting device when the number of characters in its input buffer
rises to the high-water mark. Normally this character tells the
connecting device to stop sending data. (This field corresponds to
the OSC characters T:Q.)

The fcoffchar for the iSBC 544,4 board is set to the XOFF
(CONTROL-S) chrtracter and is not configurable; therefore,
setting this field has no effect on that board.

link$parameter This word specifies the characteristics of the physical link between
the terminal and a device. rr'ot all device drivers support
link$parameter. (Thìs ficìd corresponds to the OSC characters
T:N, and is supported by the Terminal Communications Controlìer
driver.)

Bi ts Vulue ancl Meanine

0-1 Pari ty
0 = No par iry
I = I nval id Value
2 = Even p.rrity
3 = Odd pariry

2-3 Character length
0 = 6 bits/character.
I = 7 bi ts/character.
2 = l l b i ts/character.
3 = Inval id Value

4-5 Number of stop bi ts.
0 = l s t o p b i t .
| = 1 1/2 stop bi ts.
2 = 2s topb i t s .

6- 14 Resen'ed

15 Check i f th is word is to be used
0 = not used
I = used

lf parity is enablecl, an adclitional bit position beyond those
speci f ied in the Character Length control is added to the
transmitted data und expected in received data. The received
parity bit is transferred to the CPU as part of the data unless 8
bits/character is selected. If a parity error is detected on input, the
character is discarded.

l l l EIOS Svstem Calls

S$SPECIAL

In the 6 and 7 bits/character modes unused bit positions in
transmit data are ignored. Unused bits in receive data are set to L
If a framing error is detected on input, the character is returned as
an 8-bi t nul l (00H).

Bit 15 is checked to see if this word is to be used. If set to I, the
driver passes the low-order byte to the controller, which sets the
parity, character length, and stop bits. lf set to 0, this word is
skipped and the terminalgflags field is used.

spchiwater$mark This word specifies the high-water mark used by the special
character mode (bit I of special$modes) and is ignored if the
special character mode is off. lf your device driver supports the
special character mode, the driver processes special characters
differently when the number of characters in the input buffer
reaches the high-w:rter ntark. You can define up to four special
signal churacters (corresponds to the OSC characters T:A)

special$char(4) This array holds the churacters you define as special characters
(and corresponds to the OSC characters T:Z). If you define less
thln four speci l i l chi tntcters. then you must f i l l the remaining slotr
in the arrav with dupl icrr tes of the last character you def ine.

Designat ing Characters for Signal ing from a Terminal Keyboard (Funct ion Code 6)

You can use the S$SPECIAL system call to associate a keyboard character with a
semaphore, so that whenever the chanrcter is entered into the terminal , the Basic I /O
Svstem automatically sends a unit to the semuphore. Up to l2 character-semaphore pairs
can be so associated simultaneously; e:rch churacter being associated with a dil1èrent
semaphore, i f desired. Cha racter-semlrphore pairs are cal led Signal Characters.

To set up a signal character, call S$SPECIAL with a dcvice connection, with spec$func
equal to 6, and with data$ptr point ing to a strucrurc of the lb l lowing form:

DECL-{RE s ignal $pai r STRUCTURE(
scmaphore
c h a r a c t e r

TOKEN ,
BYTE) ;

where

semaphore A TOKEN lor the semaphore that is to be associated with the
cha racter.

EIOS System Cal ls l l l

S$SPECIAL

character I f the character value is in the range 0 to lFH, or is 7FH' the

terminal support code sends a unit to the associated semaphore
when it receives the ASCII equivalent of this value.

I f you add 20H to the character values in the 0 to I FH range
(mrrking this range 20H to 3FH), or i f the value is 40H, then the
type ahead buffer (and thc input buffer if this is a buffered device)
is c leared and a uni t is sent to the associated semaphore.

To delete a signal character, cal l S$SPECIAL u' i th the semaphore f ie ld set to 0 and
character set to the signal character to be deleted.

Tape Drive Funct ions (Funct ion Codes 7, 8, 9, and 10)

'I'he
S$SPECIAL system call perlbrms four cliflerent functions that apply to tape drives

only. Thcse funct ions include rewinding Ír tape, searching for f i le marks, wr i t ing f i le
marks, and retent ioning a tape.
To rewind a tapc, cal l S$SPECIAL with the fol lou' ing in l i r rmat ion:

connect ion A TOKE,N for a connect ion to a physical f i le.

funct ion Sevcn.

drta$ptr Set to NlL.

' I 'h is funct ion ternl inates tape read and wri tc operat ions and rewìnds a tape to i ts load
point . I f the tape dr ive is per lbrming a wri te operat ion when you invoke this cal l , the tape
cir ive wri tes rr f i le mrrrk before i t rewinds the tapc.

To search for a f i le murk, cul l S$SPECIAL u' i th the fol lowing informat ion:

connection A TOKEN for a connection to a physical file.

lunct ion Eight.

data$ptr A POINTER to l structure ol the l ì r l lowing lbrm:

DECI-ARE read$f i le$nark STRUCTURE (
search BYTE) ;

where

search A value indicat ing the direct ion of the search,
as follows:

00 Search for*,ard

tlFFll Selrch backward (lbr start/stop clrives
o n lv.)

' fh is
funct ion terminates tape read operat ions i rnd moves the tape to the next f i le mark.

Any outstanding requests are completed bcforc th is ca l l takes e l fect .

I l { EIOS System Calls

S$SPECIAL

To write a file mark, call S$SPECIAL with the 1ìrllowing information:

connection A TOKEN lbr a conncction to a physical file.

funct ion Nine.

data$ptr Set to NIL.

This funct ion terminates tape wri te operat ions and wri tes a f i le mark at the current
posi t ion on the tape.

To retention a tape, call S$SPECIAL with the tbLlowing information:

connection A TOKEN for a connection to a physical file.

lunct ion Tcn

data$ptr Set to NIL.

fhis function last-lbrwards the tape to the encl lnd then rewinds it to the load point.

Condition Codes
E$OK 0000H No exccpt ionul condi t ions.

E$CONN$NO1'$OPEN 0031t 1 At lcast onc of the fo l lowing is t rue:

o T l r c r ' r r n r r c . l i {) n i \ n {) t o p e n .

. ' l
he connect ion was opened by A$OPEN rather

tha n S$OPEN.

E$EXIST 000óH The connect ion panrmctcr is not a token t i r r en
exis t ing object .

L,$FLUSHtNG 002CH 1 'he speci f ied device is being detached.

E$IDDR 002At l The r tquested funct ion is not suppor ted by the
device contu in ing the speci f ied f i le .

E$IFDR 002FI{ Thc Extended I /O System does not suppor t thc
reclucstccl lunction for the file driver associatcd with
the con nect ion.

EIOHARD 0052H A hard I /O t r ror occurrcd. A ret ry is probably
usclcss.

EIOS Svstem Calls l l5

S$SPECIAL

EIOMODE 0056H One of the fol lowing is t rue:

. A tape drive attempted to perform a read
operation before the previous write operation
complcted.

. A tape clrive attempted to perform a write
operation before the previous read operation
completed.

EIONO$DATA 0055H The tape drive attempted to read the next record,
but i t found no data.

EIOOPRINT 0053H The device was off-line. Operator intervention is
requ i red.

EIOSOF| 0051H A soft l/O error occurred. The I/O System tried to
perform the operat ion a number of t imes and fai led
(the number of retr ies is a conf igurat ion parameter) .
Another retry m ight stilÌ be suocessful.

EIOUNCLASS 0050H An unknown type of l/O error occurred.

EIOWRPROT 0054H The volume is wri te-protected.

E$LIMIT 0004H At lcast one of the tbl lowing is t rue:

. Ei ther the cal l ing task's job or the job's defaul t
user olrject is already involved in 255 (decimal)
l /O operat ions.

. ' fhe cal l ing rask's job is not an l /O job.

E$MEM 0002H The memory avai lable to the cal l ing task's job is not
sufficient tocomplete the call.

ENOTCONFIGURED 0008H This call is not part of the present configuration.

ENOTCONNE,CTION 8042H The connection parameter is a token for an object
that is not a î i le connect ion.

E$PARAM 8004H The function code is not a legitimate value.

E$SPACE 0029H At le;rst one of the fol lowing is t rue:

. The cal l at tempted to format a track that is
beyond the end of the volume.

. Whcn formatt ing a RAM-disk or a tape, the cal l
at tempted to format a track other than track
zero.

i l6 EIOS Svstem Calls

S$SPECIAL

E$STREAM$SPECIAL 003CH At leasr one of the following is true:

o The calling task is attempting to satisfy a stream
file request, but there is no request queued at
the stream file.

. The calling task attempted to satisry a stream
file request, but the only queued request is a
query.

. The calling task is querying a stream file, but
the onÌy request queued at the file is another
query. The Extended l/O System removes both
queries from the queue and returns this
exception code.

E$SUPPORT 0023H The specified connection was created by a task
outsicìe of the cal Ì ing task's job.

EIOS System Calls lt7

The S$TRUNCATE$FILE system call removes information from the end of a named
data file. This system call can be used only with nlmetl files.

ù A L L R Q $ S S T R U N C A T E S F I L E (c o n n e c t i o n , e x c e p t $ p t r I :

INPUT PARAMETER
connection A TOKEN for a conncction to the named data file that is to be

truncated. The file pointer for this connection tells the Extended
[/O System where to truncîte the file. The byte indicated by the
pointer is the f i rs t byte to be r l ropped f rom the f i le .

OUTPUT PARAMETER
cxccpt$ptr A POINTE,R to a WORD whcre the Extended I /O System returns

ru r t rndi t ion eodc.

Description

This system cal l appl ies to named data l i les only . When cal led, i t t runcates a f i le .
" ' f runcate" means to get r id of the data in the f i le f rom the current locat ion of the f i le
pointer to the end of the f i le .

Unless the f i le pointer is a l reat ly where vou w:rnt ì t , 1 ,our task should use the S$SEEK
system cal l to posi t ion the pointer befòrc us ing the SI ìTRUNCATE$FILE system cal l .

Truncat ion wi l l occur immedi l r te ly , regard less of the status of o ther connect ions to the
same f ì le .

l f the pointer is at or beyond the end-of - f i le , no t runcat ion occurs.

Access Requirements

Three access requi rements per ta in to th is system cal l . F i rs t the connect ion must be open
lor wr i t ing only or fbr both reading and wr i t ing. l f th is is not the case, your task can use
the S$OPEN system cal l to open the connect ion.

Second, the connect ion must have update acccss to the f i le . Recal l that the Extended I /O
Svstem computes a connect ion 's access whcn the connect ion is created.

I l 8 EIOS System Calls

S$TRUNCATE$FILE

Third, the connect ion must have been crcuted l)y a task wi th in the cal l ing task 's job. [f thrs
is not the case, use the ex is t ing connect ion l rs l pref ix , and have the cal l ing task invoke the
S$ATTACH$FILE systcm call.

Condition Codes
E$OK 0000H No except ional condi t ions.

E$CONN$NOT$OPEN 0034H At le ls t one of the foÌ Ìowing is t rue:

. Thc connect ion is open in the wrong mode. I t
must tre opcn lòr writing or tbr both reading
and r i ' r i t ing.

e The conncct ion is not open.

r The connect ion was openet l by an A$OPF,N
rrr ther thr rn r rn S$OPEN.

E$FACCESS 0026H
' l 'he

cor tntc t ion does r rot have updi r te l tccess to t l ìc
l i l c .

E$EXIST 000(rH The conncct ion purameter is not a token for an

ex is t inq object .

E$IFDR 002FH Your t l isk is i r t tcurpt ing to t runct ì te I t s t ream or
physic l l t i le . The S$TRUNCATE$FILE systenì cr r r
can t re uset l on ly on numed f i les.

EIOHARD 0052H A hard I /O error occurred. A ret ry is probably
useless.

EIOOPRINT 0053H The device u 'as ot f - l ine. Operator in tervent ion is

reclu iretl.

EIOSOFT 0051H A sof t I /O error occurred. The I /O System t r ied to
per fornr the openr t ion a numtrer of t imes and ta i le t l
(the nunr t rer of re t r ies is l conf igurat ion paranìeter) .
Another ret ry might s t i l l be successfu l .

EIOUNCLASS 0050H An unkno*n type oî I /O error occurred.

EIOWRPROT 0054FI The volur lc is wr i te-protected.

E$LIMIT 000'1H At least one o l the t i) l lowing is t rue:

o The cal l ing task 's job is not an I /O job.

. E i ther the cal l ing task 's job, or the job 's t le faul t
user object , is l l rcady involved in 2-55 (decima. ,

I / O t ' 1 ' < r r t i , r n r .

E$ME,M 0002H The memory avai lab le to the cal l ing task 's job is not

suf l ic icnt to contp letc the cal l .

EIOS Svstem Cal ls 9

S$TRUNCATE$FILE

ENOTCONFIGURED 0008H This system call is not part of the present
conf igurat ion.

ENOTCONNECTION 8042H The connection parameter is a token for an object
thar is not r l i le . 'onnect ion.

E$SPACE 0029H The truncation required writing the contents of a
buffer to the file, but the volume was full.

E$SUPPORT 0023H The connection was created by a task outside the
caÌ l inr task's iob.

120 EIOS System Calls

The S$UNCATALOG$CONNECTION deletes a logical name from the object directory
of a iob.

C A L L R Q $ S $ U N C A T A L O G $ C o N N E C T I O N (j o b , I o g $ n a r n e $ p t r , e x c e p t $ p t r ; ;

Input Parameters
jub A TOKEN for a job. Thc Extendetl I/O System deletes the logical

name fmm th is job 's o l r jcct c l i re c tory. Set t ing the job paramcter to
SELECTOR$OF(NIL) speci f ies the cal l ing task 's job.

log$name$ptr A POINTER to a Sl RlNCi (of I to l2 characters) conta in ing the
krg ica l name to uncl t l ì log. Thc nume can he del imi ted wi th co lons
(:) . The opcrat ing svstenl rc [ìoves the colons so that a krg ica l
name wì th co lons is thc sumc as one wi thout (e.g. , :F0: is ef fect ive l l '
the same as F0) . Colons do not count in the lcngth of the name.

Output Parameter
except$ptr A POf NTE.R to a WOIìD uherc thc Extendcd I /O Systcm returns

the cond i t ion code.

Description

Your tasks should invoke th is system crr l l to c je lete log ic : r l n lmes th l t were addecl to the
object d i rectory by the S$CATALOG$CONNECTION sy 's tem cal l .

Condition Codes
E$OK

E$EXIST

E$L IMIT

000011 No exccpt ional condrt rons.

000f) tJ The job plr ; rmeter is not a token lbr an exist ing
objcct .

000.1H The cal l ing t lsk 's job is not an I /O job.

ELOGNAME$- 0015H The cal l could not f ind thc loq ica l name
NEXIST in the jo t r 's o l r ject d i rectory.

EIOS Svstcm Cal ls t2l

S$U NCATALOG$CO N N ECTIO N

ELOGNAME$- 00,10H The syntlx of the specified logical name
SYNTAX is incorrcct bccltuse at least one of the following

condit ions is t rue:

o The STRING pointed to by the log$name$ptr
parrmeter is of zero length or has a length
greater thrn l2 (not including colons (:)) .

. Thc logical nitme contains invalid characters.

E$MEM 0002H The memory avirilable to the calling task's job is not
sufficient to conrplete the call.

ENOTCONFIGURED 000lJH This system crtll is not part of the present
conf igura t ion.

E$TYPE fì002H The job parameter is a token for an object that is not
a job.

l)2 EIOS System Cal ls

The S$WRITE$MOVE system call writes a collecrion of bytes from a buffer to a file.

b y t e s $ w r i t t e n : R Q $ S $ h R I T E $ M O V E (c o n n e c r i o n , b u f $ p t r , c o u n r ,
e x c e p t $ p t r) ;

Input Parameters
connect ion A TOKEN for the connect ic)n to the f i le in which the in format io l

is to be wr i t ten.

buf$ptr A POINTER to a contiguous collection of bytes that are to be
wr i t ten to the speci f iec l l i le .

count A WORD conta in inq the numlter of bytes to be wrì t ten f rom the
bul ler to the f i le .

Output Parameters
bytes$wr i t ten A WORD conta in ing thc nunr l . rer of bytes that were actual ly

wnt ten to the I i le . This nunrber wi l l a lways be equal to or less thun
the nunì l)cr speci l iecì in the count p i t r i tmeter .

except$ptr A POINTE.R to:r WOIìD where the Extended I/O System returns
a cond i t ion code.

Description

This system cal l causes thc Extended I /O Sysrcnt to wr i te the speci f ìed number of bytes
from the buffer to the file.

Access Control

To wri te informat ion into a f i le, the connect ion pîranìeter must sat isfy the fol lowing two
requirements:

. The connect ion must have been crcateci t ry u t lsk within the cal l ing task's job. I f th is is
not the case, the Extended I /O Systenr retunrs l rn E$SUPPORT except ion code.

. The connection must be open lirr writing or ftrr both reading antJ writing.

EIOS System Calls 123

S$WRITE$MOVE

I f the f i le is a named data f i le , the access r ights l rssociated wi th the connect ion must

permi t the k ind of wr i t ing being per formed. That is , i f you are wr i t ing over data in the

fiÌe, the connection must have uprjlìte access or you u ill gct an exception code; if you are

wr i t ing data beyont ì the end-of - f i le , the conncct ion nrust h i tve append access or you wi l l

receive an except ion co(le.

'l 'he
connection can have access rights for updating, appending, or both. For information

reqarcling the process o1 assigning lrccess to lr connection. see the descriptions for the

S$ATTACH$FI l -E and S$CREATF.$Fl t -E. svsterr cr t l ls .

Number of Bytes Actually Written

Occasional ly , thc Extended I /O System wr i tes fc*er bytes than requested by the cal l ing
task (upon rc turn f rom the cal l , bvtes$wr i t tcn is lcss than count) . This happens under twcr

c i rcumstances:

. When the Extencicd I /O System encounte rs an I /O error . Your t : rsk wi l l be in l ì l rmed

of th is c i rcumstunce becuuse the Extencled I /O S1's tem returns an except ion code.

. When thc vo lume to uhich your t : rsk is $ ' r i t in-s i reconres fu l l . The Extcnded I /O

Systcm inf i l rms your tusk of th is conci i t ion l r t ' re turn inq an E$SPACE except ion code.

Where îhe Bytes are Written

Thc Extended I /o System u ' r i tes the l i rs t byte s t r ì r t ing x t the byte pointed to by the f i le
pointer . As the Extendet i I /O Systcm wr i tes the bvtes, i t a lso updates the pointer . Af ter
the wr i t ing openr t ion is complete, the f i le pointcr points to the byte immediate ly fo l lowing
the l i ìs t hyte wr i t ten.

Usc the S$SEEK svstcm cal l to posi t ion thc f i lc pointcr i f you are per forming random-
access opcrat ions.

I f ; -our task is us ing a connect ion th: r t h l rs apPcnt l ucccss. the task can star t a wr i t ing
operr t ion bevoncl (r : r thcr th : rn at) thc EOF. Thc Er tendcd l /O System extencls the f i le
and per forms the wr i t ing operat ion. I f the l i lc is extcnded, the extenclec l sect ion of the f i le
conta ins unknown, ranclom int ì r rmir t ion (vou crrn ur i tc r ia ta in to th is area la ter) . For
example, i f the EOF is at locat ion 200 and voLrr t l isk posi t ions the f i le pointer at 250 ancì
begins wr i t ing. locat ions 200 through 249 cont l in unclc tcrmined in format ion.

Effects of Priority

' l 'he
pr ior i ty of the task invoking th is system cr l l cun { reat lv a l ' fect the per formance of the

lppl icat ion svstem. For bet ter per l ì) rmrnce. the pr ior i tv of the invoking task should be
equal to or lower than (numer ica l ly grc l ter thr rn) 130. I1 the pr ior i ty of the cal l ing task is
qreater than 130, the operat ing systcm cannot over l rp the wr i te operat ion wi th
comput l ì t ion or wi th other I /O operat ions. (' l ì r f ind out how to set pr ior i t ies for
application tasks. reler to lhe Ertended iRlrlX Il Nutleus U.ser's Guide.)

121 EIOS Svstem Calls

S$WRITE$MOVE

Condition Codes
E$OK 0000H No except ional condit ions.

EBADBUFF 8023H One of the following is true:

. The specified source memory buffer is not
wri t ea blc.

. The specified source memory buffer crosses
scgmcnt bountJr r ies.

E$CONN$NOT$OPEN 0034H At least one of the following is true:

. The connection is not open for writing.

. Thc connect ion is not open.

. The connect ion was opened with A$OPEN
nither thun with S$OPEN.

E$EXIST 0006H The connect ion parameter is not a token for an
exist ing object.

E$FACCESS 0026H The clll tried to write beyond the end-of-file, but the
conneclion specified does not have append access to
the f i l e .

E$FLUSHING 002CH The specitied device is being detached.

E$FRAGMENTATION 0010H The lile is too fragmented to be extended.

EIOHARD 0052H A hard l /O error occurred. Another retry is
problbl l 'useless.

EIOMODE 0056H One ol the l ì r l lowing is t rue:

. A tal)c.1.ìu. ntì"mpt..Ì to perform a read
operat ion before the previous wri te operat ior.
compìeted.

. A t : ìpe dr ive at tempted to perform a wri te
ol)eriìtion before the previous reatl operation
complctcd.

EIOOPRINT 0053H The device was off-line. Operator intervention is
recluired.

EIOSOFT 005IH A soft I /O error occurred. The I /O System tr ied to
perform the operation a number of times and failed
(thc nurnber of retr ies is a conf igurat ion parameter) .
Another retry might still be successful.

EIOUNCL-ASS 0050H An unknown type of I/O error occurred.

EIOWRPROT 005.tH The volume is *,rite-protectetl.

EIOS Svstem CaUs 125

S$WRITE$MOVE

L$l . IMIT 0004H At least one of the fo l lowing is t rue:

. The caì l ing task 's job is not an I /O job.

. ' I 'he ca l l ing task 's job, or the job 's defaul t user
object, is :rlready involved in 255 (decimal) I/O

oper l t ions.

E.$N' IEM 0002H The memor l 'avai lab le to the cal l ing task 's job is not
suf f ic ient to complete the cal l .

ENOTCONFIGUREII 0008H This system cul l is not par t o f the present
c o n l i g u r a t i o n .

I rNOTCONNECl ' lON E0121I The connecl ion p i ì rameter is a token for an object
th i r t i r n() t r r l i lc conncct ion.

I r$PARAM 800,1H The cal l ing t lsk is î t tempt ing to wr i te beyond the

encl o f l phvs icr r l î i le .

I ' .$SPACE 0029H The volLrmr is lu l l .

t r$SLJPPORT 0{) l3 l l ' l 'he connect ion prr r i ìmctcr refers to a connect ion
t l ì ; ì t w;rs cre i r ted bv ; r task outs ide of the cal l ing
task 's job.

126 EIOS System Calls

The VERIFY$USER system call validutes a ìiser's name and password.

C A L L R Q $ V E R I F Y $ U S E R (u s e r $ t , n a m e $ p t r , p a s s w o r d $ p t r , e x c e p t $ p t r) ;

Input Parameters
user$t A TOKEN fbr the user otrject to be verified.

name$ptr A POINTER to a STRING containing the user name. This name
would typically l;e entered from the console during dynamic logon.
Only the first eight chÍrracters are used; any additional characters
l t re ignored.

password$ptr A POINTER to a STRING containing the unencrypted user
password. This p:rssu,old *ould typically be entered from the
console l ì t the same t ime :rs the name$ptr parameter. Only the
f i rst eiqht characters are uscd.

Output Parameter
except$ptr A POINTER to a WORD where the Extended l /O System returns

the condit ion cocie.

Description

The VERIFY$USER system cal l val idates a non-resident user 's name and password.
Val id l t ion means detcrmining i f the nume ancì password suppl ied as parameters ident i fy
a predef ined user of an extcndcd EXTENDED iRMX II system. This system cal l
searches the f i le :CONFIG:UDF (User Def ini t ion Fi le) for a matching user name and
password. (See the Guide To Tlte Ertcnded il?lrlX II Inte ractive Configuration Utilitl f<'tr
informat ion on the :CONFIG:UDF f i le.)

' fhe
nume must have the exact same form as i t

appears in the UDF fbr a match to occur. The pussu,ord par:ìmeter is encrypted and then
compared to the encrypted version in the UDF. The ID def ined in the UDF is also
compared with the lD contained in the user object.

I f a matching name, password, and ID are louncl , the uscr object is nodi f ied to indicate
the user has treen ver i l ied. l f ìRMX-NET is conf igured into your system an<J the
VERIF-Y$USE,R cal l succeeds, then you ulso guin access to remote f i les. (See the
|RMX Networkittg Sofuare User's Guide lbr nrore information on iRMX-NET.)

EIOS Svstem Calls 127

VERIFY$USER

If the name is not found or if the password, once encrypted, does not match the encrypted
password associated wìth the namc in :CONFÍ G:UDF, or i f the IDs arc not the same, an
error is returned and the user object is not modi l ied.

The Human Interface can use the VERIFY$USER system call to check a dynamic logon
Drocess.

NOTE
The remote file driver will reject all user tokens created by the
CREATE$USER system cal l unless the VERIFY$USER system cal l is
used to verify the user tokens createcì.

Condition Codes
E$OK 0000H No except ionl l condit ions.

EBADCALL |J{X)5H A trìsk wrote ovcr the interfàce library or over the
EloS job.

E$CONTEXT 0005H The user TOKEN has already been verified.

E$DEVFD 0022H The device cunnot be used with the f i le dr iver as
speci î icd in the preceding logical at tach operat ion.

E$DE,VICE$- 0039H An I /O operat ion could not be per lbrmed on
DETACHING the device l rec;ruse i t was heing detached.

E$EXIST 0006H The user TOKEN parameter is not val id.

E$FACCESS 002fiH The user does not have the proper access rights for
the re(luestecl operat ron.

E$FLUSHING 002CH The devicc is being detached.

E$FNEXIST 002IH One of the lo l lowing is t rue:

. The file or l file in its path does not exist.

. The specified physical device was not found.

E$F|YPE 0027H A path component is not a directory f i le.

E$ILLVOL 002DH The f i le r l r iver { iven in the volume label conf l icts
with the file driver specified in the preceding logical
i r t t l ì ch opef t ì t ion .

E$INVALID$FNODE 003DH The fnor le associuted with a f i le is ei ther marked not
allocaterl, or the fnode number is out of range. This
f i le should he deleted.

l2tì EIOS System Calls

VERIFY$USER

EIOHARD 0052H A hard error occurred; the BIOS cannot retry the
requcst.

EIOMEM 0042H The BIOS job did not have enough memory to
perform the requested function.

ElOOPRINT 0053I1 The device is off-line; operator intervention is
required.

EIOSOFT 005IH A sol i error occurred and the BIOS has retr ied the
opcrat ion and fai led; a retry is not possible.

EIOUNCI-ASS 00-50H An unclassified I/O error oocurred.

EIOWR$PROT 0054H The volume is wri te prorecred.

E$LIMIT 0004H The cal ler 's job is not an I /O job.

ELOGNAME$- 0045H The logical nlme was not lbund in the
NEXIST cul ler 's object c l i rectory, the global job object

ciirectory, or the root job object directory.

ELOGNAME$- 0040H One ot rhe l ì r l lowing was rrue:
SYNTAX

. A leading colon in the pathname STRING
inciicated the start of a logical name, but a
terminnte coÌon was nd found.

. l 'he logical name STRINC has a length of 0 or
nlore t l ìun l2 chîracters.

. l -he Ìogìcal namc STRING contains inval id
churactc ls .

E$MEDIA 004411 l'he tlevice assocìated with the system call is ofl-line.

E$MEM 0002H Thc c: r l ler 's job c ioes nor have enough memory to
prr l ì r r r : r t l te rec luestet l oncrat ion.

E$NAME$NEXIST 0049H The nunre specìfied in this call is not defined.

E$NOPREFIX u022H The cal lcr 's job does not have a defaul r pref i \ , or i t is
inval ic l .

ENOTCONFIGURED 000tJH This ca l l is not par t o f the present conf igurat ion.

ENOTLOG$NAME 8010t ì
' l

he token rc le r rec l to hy the log ica l name suppl ied
does not reîer to a va l id device or f i le connect ion.

E$NOUSER 8021H The cal lcr 's job docs not have a defaul t user or i t is
inva ì id .

E$PARAM 8004H The name or the password contain invalid characters
or thc nunre length is equal to zero.

EIOS System Calls 129

VERIFYSUSER

E$PASSWORD$- 004BH The password is incorrect.
MISMATCH

E$SHARE 0028H The file cannot be shared using the requested access.

E$TYPE 8002H The user$t plrameter is not a TOKEN for a user
object.

EUDFFORMAT 0048H The UDF is not in the correct format.

EUIDNEXIST 004AH The user ID present in the user token does not
match that speci f ied in the UDF.

l3t) EIOS Svstem Calls

INDEX

A

Access r ights 33,3t t ,40, 63,70, 124
Access rights and Selecting a Mode 79

B

Bit map for functions supported by GET$FILE$STATIJS 69
Buffer 63, 78, tì2, 95
Buffered Device Control I I I

B

Condition codes
see also each system call I

CREATE$FILE
Device Considerations 5 I
Special Considerations lbr Named Files 5 I
Specif ing the Kind of File to be Created 5l
Temporary Named Files 5 I

CREATElojob s
message structure 8
termination codes 8

D

Data file access rights 38
Directory access rights 39

E

EXITIOJOB I9
Calling Task Not Deleted 20
Special Circumstances 20

F

File$drivers bit map for GET$FILE$STATUS 69

EIOS Svstem Cal ls Index-l

I N I)EX

G

GET$FILE$STATUS
tìags for diskette drives 69
share modes 6fì

GET$LOGf CAL$DEVICE$STATUS 2 I
GET$USER$IDS 23

H

HYBRID$DETACH$DEVfCE 26

L

LOGICAL$ATTACH$DEVICE 28
LOGICAL$DETACH$DEVICE 30

M

Modes for passing control to an exception handler 6

R

RQSGET$DI RECTORY$ENTRY (r5
RQE$CREATE$IO$JOB I2

message structure l5
terminat ion codes l5

S

S$ATTACH$FILE 33
S$CATALOG$CONNECTION 36
S$CT{ANGE$ACCESS 3IJ
S$C]I,OSE 44

steps in closing a ftle 44
S$CREATE$DIRECTORY 4(r

Positioning the Directory 4(r
S$CREATE$FILE 50
S$DELETE$CONNECT]ON 5ó
S$DELETE$FILE 58
SCETCONNECTION$STATUS 62
SGETFILE$STATUS 67
SGETPATH$COM PONENT 7.5
S$LOOK$UP$CONNECTION 7ó

Index-2 EIOS Sl"stem Calls

INDEX

S$OPEN 78
Access Righrs 79
modes for using a connection 78
Selecting the Number of Bulîers 79

S$READ$MOVE 82
Effects of Priority 83
Number of Bytes Read 83

S$READMODE
Creating the Buffer 82

S$RENAME$FILE 86
Restrictions 86

S$SEEK 90
Access Control 9l
modes for seeking 90
Reading and Wri t ing Beyond the End of Fi le 91

S$SPECIAL 94
Designat ing Characters for Signal ingfrom a Terminal Keyboard (Funct ion Code f i) l13
Formatt ing a Track (Funct ion Code 0) 96
Cctt ing Disk Special Data (Funct ion Corle 3) 100
Cett ing Terminal Character ist ics (Funct ion Code . l)

Sett ing Terminal Character ist ics (Funct ion Code -5) 101
iors$data 95
Obtaining Information About Stream File Operations (Function Code 0) 97
Requesting Notification that a Volume is Unavailable (Function Code 2) 99
Satisfying Stream File Transactions (Function Code l) 9ti
Tape Drive Funct ions (Funct ion Codes 7, E, 9, and l0) l14
values for special functions 94

S$TRUNCATE$FILE 118
Access Requirements 1 18

S$UNCATALOG$CONNECTION 1 2 1
S$WRITE$MOVE I23

Access Control 123
Effects of Priority 124
Number of Bytes Actually Written 12.1
Where the Bytes are Written 12,1

Special circumstances for EXITlOJOB 20
STARTIOJOB 32
Structure

connection information for GET$CONNECTION$STATUS 62
device information 2l
exception handler 6, 13
file$info for GET$FILE$STAI'US fi7
for label information l0l

EIOS Svstem Calls Index-3

INDEX

Structure (cont.)
for reading or writing a file mark I l4
tbrmatting a track 9ó
iors$data 95
notification of volume availability 99
signal$pair 113
terminal information 102
user name IDs 23

T

Two conditions needed to create an existing file 50

v
Values for fiìe$driver parameter 21
Values for file$driver parameter of GET$CONNECTION$STATUS 62
Values for the files$driver parameter 28
VERIFY$USER 127

w
What tasks can call HYBRID$DETACH$DEVICE 27
When control passes to the exception handler 13

Index-4 EIOS System Cal ls

intel

EXTEN DED iRMX@II
APPLICATION LOADER

SYSTEM CALLS
REFERENCE MANUAL

In te i Corpora t ron
3 065 Bowers Aven ue

S a n t a C l a r a , C a i i f o r n i a 9 5 0 5 1

1 9 8 8 , l n t e l C o r p o r a t o n , A l l R g h l s R e s e r v e dC o p y r g h t

PREFACEIt
. -

' l
h is manual docunrents th t : svstenì ca l ls of the Appl icat ion Loader , a

subsystcm of t l tc cxtcnded i l ì \ ' lX I I Opelat ing Systcm.
' Ihe

in forn l r t ion l t rov i t lcd
ìn th is mlnuul is in tended l ts a ref r rence to the system cal ls and
provides c lc ta i lc t l t lescr ip t ions of each cal l .

READER LEVEL

l 'h is mrnul r l is in tenr lc t l 1 ì r r programmers who are lami l iar wi th the concepts ant ì
ternrinologr introcjuced ir tb,e E.rtetùed iRMX ll Nucleus IJ.srr'.t OuidL: rrnri uitir the l'1./Nl-
lAt r n1ùty 11m1nlng l : rnru. r rg. ' .

CONVENTIONS

Svstem cul l nrmes i ìpper ì r us herrc i inqs on the outs ic le upJ)er corner of each p i r te .
- l 'he

f i rs t
r ìpperr rance o l er ìch svstem cal l name is pr in ted in ink; subsequent uppearances are in
b l e c k .

- fhroughout
t l t is rn i r r ru i r l . systcm cul ls i r rc shown us ing a tener ic shor th i rnt ì (such l rs

A $ L O A D i n s t c r r t l o l I ì Q $ A $ L O A D) .
' l ' h i s

c o n v c n t i o n i s u s e d t o u l l o w t u s i c r l l p h l b c t i c
: ì r r i ìnqemcnt ot Ìhe c l t ì ìs . Thc r rc îu l l PL/M-2E6 external procecìure n i ìmcs nrust be uscc i
in r r l l c : r l l ins sc(luenccs.

' l
he only except ions to th is conlent ion are c l r l ls thut cx is t on lv in

exten(lc(l iRN{X IL Thcsc cul ls beqin wi th RQES l rnd appcur in the i r contp lc tc l ì r rn t .

You c l in l r lso inr okc the svstenl ca l ls î rorn assemfr lv langui rgc progr i tn ls , t)u t you rnust
r rc lherr to th t I)1 .7/ \ l -2 f ì6 cr l l ing sequences when r ìo ing so. For morc in îorr :ur t ion on thcsc
crtll inq sctlutnces t elcr lo tlte l:-rttndtd ill l\,lX I I I 'rogratruning

'l 'a
luùt1ut: llLJì:rt'rtt t

I l u r t u t t l .

Appl icat ion Loader Sls tem Cìa l ls l l l

CONTENTS

iRMX(€/ APPLICATION LOADER SYSTEM CALLS PAGE

r \pp l icat ion Loadcr Sls lcr r r ('n l ls

|RMX@ II
APPLICATION LOADER

SYSTEM CALLS

1.1 . INTRODUCTION

This manual describes the PL/M-2tt(r calling sequcnces lbr the system calls of the
Application Loader.

Throughout this manuaÌ, PLIM-286 data types, such as BYTE, WORD, and SELECTOR
are used. ln adtlition, thc extcndetl iRMX II data type TOKEN is used. Data types
always appear in capital letters. lfyour compiler supports the SELtsCTOR data type, a
TOKEN can be declared literally as SE,LECTOR. tsecauseTOKEN is not a PL/M-286
data t)?e, you must declare it to be literally a SL,LEC-|OR every place you uso it.
Definitions of both PL/M-213(I and extendecl iRMX lt data types are given in the Extcnded
|RMX II Application Loader User's Guide, Appendix A. The word "token" in lowercase
refers to a value that the iRMX ll Operating System returns to a TOKEN (the data type)
when it creates an object.

1.2 RESPONSE MAILBOX PARAMETER

Three system calls describccl in this mrrnual are asynchronous. These are the A$LOAD,
A$LOAD$IO$JOB, and RQE$A$I .OAD$IO$JOB svstem cal ls . Your task must speci fy a
mai lbox whenever i t invokes an asynchronous svstcm cal l . Thc purpose of th is mai lbox i '
to receive a Loader Result Segment.

In genera l , the Loader Resul t Segment ind icates the resul t o f the loading operat ion. The
format of a Loader Result Segment depends on which system call was invoked, so details
about Loader Result Segments are included in descriptions of the A$LOAD,
A$LOAD$lO$JOB, and RQE$A$LOAD$lO$JOB system cal ls .

Avoid using the same responsc mailbox lbr more than one concurrent invocation of
asynchronous system calls. This is necessary because it is possible for the Application
Loader to return Loader Result Segments in an order diltèrent than the order of
invocation. On the other hand, it ìs safe to use the same mailbox fìrr multiple invocations
of asynchronous system calls if only one task invokes the calls and the tlsk always obtains
the resul t o f one cal l v ia RQ$RECEIVE$MESSAGE beforc making thc next ca l l .

Applicalion l-oader Syslem Calls

iR\ IX@ I I APPLICATI()N I ,OAI)T]R SYS' IEI \T CALLS

1.3 CONDITION CODES

The Application Loader returns a condition code whenever a systenl calÌ is invoked. I1'

the cal l executes wi thout error , the Appl icat ion Loader returns the code E$OK. I f an
error occurs, the Application Loader returns a condition code.

This manual inc ludes. for each of the Appl icat ion Loader 's system cal ls , descr ip t ions o l '
thc condi t ion cocics th i r t thc systcn ' ì cr r ì l can rc turn. The svstem cal l munuals 1ì r r thc othcr '
layers of t he extent lcd i RM X I I Operat ing System do the sa me th ing for those l l t l 'e t s .
You can use the condi t ion code in format ion to wr i te codc to handle except ionrr l
condi t ions th: r t ar ise $hen system cal ls fa i l to per form as expected. See t l ìc t r /c /?.1{r .1
|RMX II Nutltus Ustr's Guitle for a ciiscussion of condition codes and how to write code to
handle them.

1.3.1 Condit ion Codes For Synchronous System Cal ls

For system cî l ls th i ì t : r re svnchronous (S$LOAD$lO$J OB. RQE$S$l -OAD$ IO$JOB. ln t l
S$OVERLAY), the Appì icr r t ion Lorr t ler returns a s ingle cont l i t ion code errch t inre thc cr r l l
is invoked. I1 vour svstcn l hr rs r rn except ion huncj ler , i t wi l l rcceive th is cot lc u 'hr . :n r rn
except ion:r l concl i t ior . r occurs, c ìcpcnt l ing on how the except ion$moLle l) i r r i rn le ter ìs sr t
For more inlormlrtion see lhe E.rttntlatl iRlv|X II Nucleu.s Usar's Guidt lnti the É-.rtu,rrr[,r1
iRLlX II Intcractivt (ttnJigtntion lltiIiry Raference lrlnttunl

1.3.2 Condition Codes For Asynchronous System Calls

For system cal ls that are asynchronous (A$LOAD, A$LOADlOJOB,
RQEALOAD$ l ()$JO l l) . the Appl icr r t ion Loi rdcr returns two cont l i t ion codcs err r : l r t inrc
the c l l l is invokeci . C)ne coclc is returned af ter the secluent ia l pr r r t o î the svstenr c l r l l is
executed, ancl the other is returncd a l ier the concurrcnt par t o f the c i r l l is executec l . YoLrr
task must process these tu,o conci i t ion codes separatc ly .

'I 'he
EÍu td iRlttX ll .,lpplication Loudcr Ustr's Gukfu cicscribes the secpe ntial :rnt1

concurrent por t ions of asvnchronous system cal)s .

1.3.2.1 Sequential Condit ion Codes

The Application [-our]er returns the sequential condit ion code in the wori l pointeiì to br
the except$ptr par lmeter . I t t 'our system hrs an except ion handler , i t wi l l receive th is
code when an exccpt ionel concl i t ion occurs. depending upon how the ercept ion$mot ic
p; r ramcte r ls set .

Appl icat ion l ,oadcr Srstcm (: r l ls

iRI \ IX@ II APPI-IC]ATION I-OAI)ER SYSTEI\ I CALLS

1 .3.2.2 Concurrent Condit ion Codes

The AppÌ icat ion Loader returns the concurrcnt cont l i t ion code in thr : Loaclcr Resul t
Segment i t sends to the response mui lbox. I f the cocle is E$OK, the asynchronous loading
operat ion nrn successfuì lv . l f thc coc le is other than E$OK, a problem occurrc t l dur ing the
asvnchronous loadinu operat ion, and your t rsk n lust c lec i r ìe what to c lo about the problenr .
Reg:r r t l lcss of the except ion nrot le set t in_q for the a l4r l icat ion, the except ion h l rnc l ler is not
invoker i bv concurrcnt concl i t ion cor- ics. so) ,our pro,gr i lm ntust h lnr ì le i t .

1.4 SYSTEM CALL DICTIONARY
' l

hc l ì r l Ìo l ing l is t is a summary of the extendcd iRMX l l AppÌ icat ion Loadcr systent c l r l i . ' ,
to-gcther * ' i th r r hr ie f c lcscr ìpt ion of cach cal l and the page uhere the cJescr ip t ion of the cal l
bcqins.

t " . " t "aar , t t ' " " a

A$LOAD Loads object code or dala Asynchronous 4
into merìory.

ASLOADIOJOB Creates an l/O job, loads Asynchronous 10

the job's code, and causes

the lotl s task to run.

ROEALOAII$IOSJOts Creates an l/O job wth a Asynchronous 18

mernory pool of up to 16tu1

byles, and oads the code as

the i f i t ia task .

SSLOADSIOSJOB Creates an l /O lob , loads Synchronous 26

the job's code, and causes

tfre lob s task to run

ROESLOAD$IO9JOB Creates an l/O job wlh a Synchronous 31

memory pool of up to 16N'1

by,tes and loads the code as

fhe rn r t a l task .

S$OVERLAY Loads an overlay into

rnemory.

SynchronoLrs 36

, \pp l icat ion Loadcr Sls tem Cal ls

l he A$LOAt) system crr l l loads an object f i le f rom secondary storage into memory.

C A L L R Q $ A $ L O A D (c o n n e c t i o n , r e s p o n s e $ m b o x , e x c e p t $ p t r) ;

Input Parameters
connect ion A TOKEN for a connect ion to the f i le that is to be loaded. The

connect ion must sat ìs fy a l l o f the 1ì r l lou ' ing re(lu i rements:

. l t must have been cret ted in the cal l ing task 's job.

. I t must be a connect ion to a namcd f i le .

. The cal l ing user must huve haci READ access to the f i le .

. I t must be c loscd.

I l a l l o f these connect ion requi rcments are not nret , thc
Appl ic l r t ion Loadcr returns an except ion codc.

lcsponseSnrbor A
- lOKhN

1ìr r the nrr i lbox to sh ieh thc Appl icr r t ion Lol r t ie l sencl .
the Lol rdcr I ìesul t Seqmcnt u l ter the cor ìcurrent I) i r r t o1 the svstcm
cal l l in ishes running. The f ì r rmat of the Lorrc ìer Resul t Segrnent is
g iven in the fo l lowing DESCRIPTIOiT- sect ion.

Output Parameter
except$ptr A POINTER to a WORD where the Appl icat ion Loaclcr rv i l l p lace

thc condi t ion cocie qenerated by the sequent ia l paf t o l the system
c r r l l .

Descript ion

A$LOAD al lows vour t l rsk to load o l r ject code f i les î ronr scconr lanv stonrqe in to r Ì lenìor l / .
1he object code to be Ìolcletl must be of the Single Task Loaclable (STL) type with
I .ODF- lX records.

L ln l ike the A$LOAD$lO$JOB and S$LOADlOJOB system cal ls . A$LOAD cannot
: rutornat ica l ly cuusc thc coclc to bc cxccuted i ìs a task. The cal ler must cxpl ic i t lv cuuse thc
trric to be executed.

Appl icat ion krader S.rstem Cal ls

A$LOAD

Asynchronous Behavior

' l 'he
A$LOAD svstem cal l is asvnchronous. I t a l lo \ \ 's the c l r l l ing task to cont inue runnìng

whi lc the loading operat ion is in progress. When the loading operat ion is f in ished, the
Appl icat ion Loader sends a Loader Resul t Segment to the mai lbox designated by the
reslronsegnrlrox panrrìleter. Refer to Appendir C of the Extendcd iRlllX II Applicutktrt
Lrxuier Usar's Cuid.,: for an explanation of how asynchronous systcm calls work.

F i le Shar ing

'fhc
Application Loader does not expect exclusivc iìccess [o the lile.]lou'ever, other tasks

shrr r ing the l i lc l re a l fected by the l 'o l lo* ' ing:

. ' ['he
t t ther tasks shoulc l not at tempt to sh l r re the connect ion passccl to the AppJicat ion

Louder, but instcac l shouÌd ohta in the i r own connect ions to the f i le .

. The Appl icat ion l .or tder speci l ies "shale wì th rcaders only" u 'hcn o; reni r rg the
connect ion, so, r ìur ing the loat l ing opcrat ic tn, o thcr t i tsks c i rn i rcccss the f i lc only 1or
reî (l Ing.

The A$LOAD Loader Resul t Segment

- l
hc Appl icat ion Lout lcr uses nternorJ 1rr)n l the pool of the cal l inq task 's job to crcate th€

Lorr t lcr l ìcsLt ì t Scsment îor th is sr ,s tcrn cr r l l .
' l

hc ca l l ing task shoulc l c je lete the segnl i ln t
ru l tcr i t is no lor r t t r ncct le t l . (l rc l r t ing r lu l t ìp le seqnrents u ' i thout c je let ing them can rcsul t
in l r t I ' . l i \1 l j \ l or l l5 jS l -OI excel t t ion codc.

Thc l -o iLr ler l ìcsLr ì t Se{nrcnt has the lo l lowing lbrm:

S T R U C T U R E (e) i c e p t 9 c o d e
r e s e r v e d $ w o r d $ 1
r c s e r v e d S b y L e
r :e s e rve d$wo rd$ 2
c o cte $ s e g$ o f f s <'t
c o d e $ s e g $ b a s e
. , f g o t f " . t
s t . c k $ s e g $ b a s e
s c a c k $ s i z e
d a t a $ s e g $ b a s e
n r r m $ m o r e $ s l o t s
nor :e $s Ìo ts (*)

WORD ,
woRD ,
tsYTE,
noRD ,
T,JORD ,
TOKE:I ,
I,JORD ,
TOKE* ,
IIORD ,
TOKEN
BYTE
TOKEN) ;

wherc:

cxccpt$corìe

rtsc rr'ctlSu or rl$ l

A WORD conta in ing the condi t ion code f i r r the concì i r rcnt p l ì r t o f
the : ivste n l ca l l . I f the coclc is othe r than E$OK. some pnrb lem
occurrcr l dLrr ing the lor rc ì in-u opcnr t ion.

[ìrscrvttl for r:sr bv Intcl.

Appl ic î l k)n Lrader S- ls lem Cal ls

A$LOAD

resen,ecl$bvte lìesen'ed 1ìrr use by Intel.

r cse n'ecj$worrl$2 Rcscrvecl for use bv Intel.

cor le$se-{$o1l .set A WORD conta in ing the in i t ia l va lue l ì r r the lo lc led program's
inst ruct ion pointer (lP regis ter) taken f rom the Task State
Segnrent (TSS) of the object file.

codeseqblse A TOKEN conta in inc the in i t ia l va lue of the codc seqment
se lect or .

s t r rck l ìo f l .set A WORD cont l in ing the in i t ia l vu lue of the st lck pointer taken
f lonr the

- l
ask Str ì te Seqment (' l SS) of the objcct f i le

st rckscgbrrsc , ' \ TOKEN conta in inu thc in i t i l r l va lue of the stack seqment
sL ' lect o r .

s t r rckSsize A \ \ 'ORD spcci f r , ing thr nunrbcr oî l l tes rer lLr i rcr l for the lor rdecl

l l t ()granl 's s tack

Thc Appl icat ion Lorrdcr scts th is vu lue to 0 whencvcr s t r rck$of îsct
i s (l ; r n c ì s t r r c k $ s e g $ b : r s e i s S E l . E C l l O R $ O F (N l l -) .

d l r ta$seql ib l rsc A TOKEN cont l r in inq the in i t ia l va lue of the r i r ì t l seqnìcr ì t s i : lector
t : rkL 'n f rom the J 'ask Str te Sei r r ì rcnt (' l 'SS) of the object 1ì le .

The Appl ic l t ion Loacler sets th is v l lLre to Seìcctor$of(N IL) i f the
target l i le conta ins no in i t ia l (l l t1r segnlcnt sr lector .

n Lrnr$ moreSslots A t ìY l 'E having u va lue between 0 anci 25-5 that inr j ic : r tes how
nrrnv GDT or LDT s lots uerc u l locuted, th is number incìur ìcs the
in i t i i r l coc lc . d i r ta , and stack segmcnts. I f the acturr l vaìue rvas
qrer ì tcr th : ìn 2-55, thc vr r lue returne(l is set to 255.

nrore$slots(*) , , \ I OKI lN ARIìAY that l is ts thc SELECTORS ol i r l l thc sesnrents
t l l r t $crr i ì l loc l ì ter l 1 ì r r thc lo l r r lcd proqr i ìn ì . 1 'hc ìcngth of th is
r r r r i tv is contr t incd in nunr$morcSsìots . Lr l) to the nr ; r r inrLrrn of f -55

Using The Loader Resull Segment

l ' l rc contcnts of lhc r . :sr r ì1 srgnrcnt cn lb lc voLl to s t i rTt the ìo i r t ìe t l cot ìc l l c r r l r t inq i r t l rsk
or job. \ \ 'hen doing th is . \ 'ou lnust spcc i tv the in i t i r i l ac l t l ress, s t r ìck point i ì r . s t i ìck s iz t : , l ìnd
(l i r t i r sesnìent .

- l
hesc rue i r l l i rva i la t r le in the l -oacier Resul t Se{ntcnt .

C)r rcc thc loaded Progrr rnt h l ts s loPgrcd runninq, vou ln i t l w l l l t to dc lc tc l r l l the scuntents
; r l loc l r ter l 1 ì r r th is p l 'ounrnr . Dclet ing these seqmcnts l ì -ers the nìcr lor \ , for use bv other
t r ìsks or jobs. To f inc l toktns for t l ìe scqments to delc te. check thc TOKITN ARRAY in
more$slots(*) .

Applicaf ion l-oader Slstenr C:rlls

ASLOAD

Condition Codes

The A$LOAD s) 's tenì ca l l can return condi t ion codes l ì t t$ 'o d i i îcre nt t imcs. Clocìcs
returned to the c l ì l l ing task immet l ia te ly af ter invocat ion of the system cu) l are secluent ia l
condi t ion codes. Codes returned af ter the concurrent par t o f the system c i r l l hus f in ishecl
running are concurrent condi t ion codes.

' l 'he
fo l lowing l is t is d iv ided in to t \ \ 'o p i ì r ts , one

for sequent ia l codes:rnd one l ì r r concurrent codes.

Sequential Condit ion Codes

The Appl icat ion Loar ler can return any of the fo l lowing condi t ron coLjes to the WORD
pointed to b\ '1he except$ptr paranìeter of th is system cal l

E$OK 0000H No except ionr l cont l i t io t rs .

t rBADHEAL)L. l ì (X ló2H The o l r ject î i le contu ins r tn inval ic l l ter t t l t r
recortl.

E.$CONN$NO't $OPEN 0031I I The AppÌ ic t t ion Loader openecì the connect ion
but some other task c losed the connect ion
belore the Ìoacì ing operut ion was bcgun.

E$CONNSOPEN 003-5H The cr l l ing task spcci l ier l u cor . t l tcct ion th i t t was

i ì l re i l (ly o l le n.

E$EOF 00ó5H The Appl icat ion L.oader er tcountet et l a t r

unexl)ected End-Of- l ì i le rvh i le lc l r t l in-q a tccotd-

ESEXIS' | 000611 At least one ot the fo l lowing is t rue:

. ' l
hc connect ion p l r i ìmeter is not a token for

an ex is t ing object .

. ' l 'he msg$mbox p i ì r i rmcter t l id I ro t rc ler t t l
lun er is t in i l ob jcct .

LSFACCIESS 002óH
' l 'he

speci l icc ì connect ion t l i t l not hr tve " re l t i "

aceess to the I i le .

h$I LLISI I IN(ì (X)2CH - l
he c l tv ice conta in ing thc t i ì rget l i le is beine

d etach ctl.

RlOf IARD 0052H A hard I /O error occurret l . This melns thr t t
; ìnot l ì t r t ry is probablv useless.

ElOOPRINT 0053H
' l

he device cont l in inq t l ìe t l rqet l i le u ' ls of f -

l ine. Oper: r tor i t ì terv t r ì t ion is rec lu i t ccì

Appl icat ion Loader System Cal ls

ASLOAD

EIOSOFT 0051H A sof t I /O error occurred. This means that the

l /O System t r ied to per form the operat ion ancl
fa i led, but anot l ìer t ry might s t i l l be successîu l .

ElOUNCLASS 00501I An unknown type of I /O error occurred.

ITSLIMIT 0004H At least one of the following is true:

r The calling task's job has alreacly reached its
object limìt.

o Ei ther the cal l ing task 's job, or the job 's

delault user ol.rject, is alreldy involvcd in
255 (rJec inra l) I , /O opcr l t ions.

E$LOADER$SUPPORT 006FH To load the target f i le rec lu i res c : rprb i l i t ies not
conf iqured in to the Appl icat ion Lo:rc ier .

E$MEM 000211 The mcmory lva i lab le to the cal l ing task 's job or
the Basic I /b System is not suf f ic ient to
complete the cal l .

ENOTFII -E$CONN 0032H The cul l ing task speci f ied u connect ion to u
dcvice nr ther th i ln to a namccl l i le .

I$SHARB 002lJH 1he cal l ing task t r ied to opct ì l ì cont ìect ion to a
l i le a l reecly being usecl bv sorne other t rsk. uncl
the f i le 's shar ing xt t r ibute is not comput ib le wi th
the open rcquest .

ITSSUPPOR'I 0023H The speci l ied connect ion was nor crcatcd by rhe
cal l ing task 's job.

[$TYPE, f ì002Ì l ' l
he connect ion par i ìn . ìe tcr is r r toke n for an

o h j . c t t h l r t i s n t ' t ; t c r r n n c r ' t i t r n

Application [,0ader System Calls

A$LOAD

Concurrent Condit ion Codes

After the Appl icat ion Loader at tempts the loading operat ion, i t returns a condit ion code
in the except$code field of the Loader Result Segment. The Application Loader can
return the îol lowine concl i t ion codes in thìs manner.

E$OK

E$EOF

ESEXIST

E$FLUSIJING

EIOHARD

I..$tosoPRIN't-

E$ lo$soF f

ElOU1. ' 'CLASS

E $ L I M I T

E$ NO$ LOADE IlSN,I EM

E$PARA] \ f

0000H No except ional condit ions.

00ó5H The call encountered an unexpectecl End-Of-
r l l e_

000(rH At least one c l f the fo l lowing is t ruc:

o The mailbox specìfied ìn the response$nbox
parameter was deleted l ' le fore the lor rc l ing
ope rat ion wls completec l .

. The devìce containing the fiÌe to be loacietl
was det i rched bef ì r re the loarJ ing operat ion
was completed.

002CH The device conta in ing the targct f i le is bc ing
detachecl.

005211 A hard I /O error occurred.
' l 'h is

means thr t
another t ry is probablv useicss.

00-5311 The device contr r in ing t l ìe targct f i le wi rs o l f -
l ine. Operator in ter lent ion is requi rcd.

(X)-5 l l I A sof t I /O crror occurred. This means thut the
I /O System t r iec l to per form the operat ion lnd
îa i lec l , hut anot l ìer t ry nr ight s t i l l be succcssfu l .

00501I An unknown type of I /O error occurred,

0004H The cal l ing t rsk 's joh h ls a l re: r r ly re lcheci ì ts
o l lect l imi t .

00ó7H The menrory pool o f the nerv lv crcatet l I /O jo t r

does not currently have a block ol nrenrorv large
enough to a l low the ApJr l icat ion Loucler to run.

t ì001H The target f i le has a s tack smir l ler th i ìn 16l)y tes.

, , \pp l icat ion I r rader S_vstcm Cal ls

The A$LoAD$tO$JOB
s tor tge to ma ln menìorv

svstem cull asynchronously loads an ohject file from secctntlarv

and cret tes an I /O job for i t .

j o b : R Q $ A $ L O A D $ I 0 $ J 0 B (c o n n e c t i o n . p o o l $ m i n , p o o l $ m a x ,
e x c e p t S h , r n d l e r . j o b $ f l r g s . t a s k $ p r i o r i t y .
t a s k $ l Ì a g s . n s g S m b o x . e x c e p t S p t r) :

Input Parameters
connect ior r

p o o l $ m i n

pool$max

crccpt$ hrr ncJ le r

j o h$ 1 l ;1qq

A TOKEN for a conncct ion to the f i le that the Appl ic : r t ion Loi rder
r r i l l load. The connect ion must be a connect ion to a namecl f i le .
Also. thc connect ion must bc c loset l . the user object speci l icc l u 'hen

the connect ion wi ìs created nrust hale had READ access, 1ì r . ìd t l ìe
connecl ion must h i ì \ 'c been crc l te t i in the c l r l l ing task 's job.

- l ' l r r :
Appl ic : r t ion Lout lcr tpe ns the conncct ion îor shal ing wi th

rc l r t ìcrs onlv , so, dur ing the loac l ing operat ion, other tusks may
r ìccess the f i le only lor readinq.

A WOIì l) contr r in inq l r v i r lue the Appl ic l r t ion l -or rc ler uses to
compute the pool$min s ize for the new I /O jo t r thr r t wi l l be cre; r te t l
1 ì r r thc lo l rded progr lm.

A WORD conta in in{ r r v l lue the Appl icat ion Lol r t ler us, rs to
compute the pool s izc for the new I /O joh.

A POINTER to i ì s t ructure of the fo l lowing form:

STRUCTURE (
EXC EPT I ON$HANDLER$ PTR POlN"TER,
E X C E P T I O N $ M O D E B Y T E) ;

This 1; l rameter is uscd us the input to RQE$C t ìFATE$lO$JOB,
u 'hcn i t is c l l lec l to create a new job for thc lout le t l cor lc . I f thc
exct l) Ì ion handler pointer t ie ld is NlL, the nerv job wi l l have the
sl rmc cxcepl ion h l rnt l ic r us i ls p l r rent . For rnore r ie t r r i ìs . sce lhe
r ìcscr i l r t ion o l th is p lnrnreter in I ìQE$CIREA' l Hl i lO$JOtJ in the
EXTENDED iRl r , f X u EXl ENDED I /O SYSTEN{ CALLS
nr l rn u l r l .

, , \ \VORD speci fv ing rvhethcr thc Nucleus is to check the v l ì ic l i ty of
objects used îs pr l r îmeters in svstem cal ls . Set t ing b i t I (* 'here b i t
(l is the low-order b i t) to (l spcc i l ies thut the Nucleus is to check the
r i r l i t l i tv o l o l r jects . Aì ì b i ts other than b i t I n tust be sr : t to 0.

I 0 Appl icat ion l ,oader S\ stem Cal ls

A$LOAD$IO$JOB

task$pr ior i ty A BYTE which,

. i f cqual to 0, ind icates th l t the new job 's in i t i l l t lsk is to h l rve a
p r i o r i t y e q u a l t o t h e m a r i m u m p r i o r i t y o t t h c i n i t i r l j o b o l t h e
Extended I /O System.

. i f not equal to 0, conta ins the pr ior i ty of the in i t i r r l t r rsk of the
new joh. I f th is pr ior i ty is h igher (numcr ic l l lv ìorver) th l rn the
maximum pr ior ì ty of the in i t ia l job of the F-xtencled I /C)
System, an E$PARAM error occurs.

task$f l i ìgs A WORD inc i icat ing whethcr the in i r ia l task uses l loat ing-point
inst ruct ions, lnd whether to s tar t the task in t r rediute ly .

Set b i t 0 (the Ìow-order b i t) to 1 i f the t ; rsk uscs l ìoet ing-point
inst ruct ions; otherr \ , ise set i t to 0.

Bi t I ind icates whcthcr thc in i t ìa l task in the job shouì t l nrn
intnrct l i l te ìv , o l whether i t should bc sr ispencìcc l unt i l u
S' fARl '$ lO$JOts systent c l l l is issued to s t l r t i t . Sct i t to 0 i l the
t l rsk is to be nt i rde rcat ly inr r lec i ia te ly ; set i t to I i l the t lsk is to l te
su spe n de d.

Set b i ts 2 (hrou{h L-5 to 0.

msi r$mbox A TOKEN for l r mai lbox th l ì t receives thc Louclcr Rcsul t Scqntent
lu t ter thc loadinq opemt ion is completec l .

. You must a lu,ays speci fv a va l id nra i lbox TOKEN l i r r th is
p i ì rametcr .

' l 'he
second purpose o l th is I)aranìctcr is to rueci i 'c un er i l r rcssur tc

l ron the newÌy creatcd I /O jo l t . Thc dcscr ip t ion o l th t
CREATElOJOB systcnt crll in the E"rtrrrtrltd il l i\ l) ' II l:.rtt 'tulctl
I/O Systent Cal/s manual shows thc lormut of an exit messuge.

The format of the Loadcr Rcsul t Segment is prov idcd la tcr in th is
dcset ip t ion.

Output Parameters
ju l , A TOKEN. returned by the Appl ic i r t ion Loi r t lc r , for the ncr . r ' I1 ,

createc l I /O job. This token is va l id onlv i f the Ap1; l ic l t ion [-o l t ler
r e t u r n s a n E $ O K c o n d i t i o n c o c l c t o t h e W O R D p o i n t e t ì t o l) \ , t h c
cxccpt$ptr p i ì ra metcr .

except$ptr A POINI 'L . I ì to a WORD where the Appl ic l t ion [-o: rc l t r is to
p lace the concl i t ion code generated by the secluent i l r l p ; r r f o l the
systc m cal l .

Appl icat ion Loader Svstem Cal ls

A$LOAD$IO$JOB

Description
' l 'his

system call operates in two phases, The first phase occurs <Juring the sequential p:lrt

of this system call. (Refer Io the Applicution Loader User's Guide fora discussion of the

sccquent ia l and concurrent p i r r ts of an asynchronous system cal l .) Dul ing th is f i rs t phase,

the Appl icat ion Loat ler ckres the îo l lowing:

. Checks the r ' : r l i r l i tv of the header record of the targct f i le , and calcu lates the rc t lu i re t l
memory pool thut rv i l l be g iven to the new job.

. a l reî tes : rn I /O job. This I /Ojob is a ch i ld of the cal l ing task 's job. The in i t ia l task of

th is job is a kuder tusk that wi l l asynchronously loa<J the object f i le .

. I ìe turns u cont l i t ion codc ref ìect ing the success or l ì r i lure of the f i rs t phase. The
Appl ic l t ion l -ouclcr p luces th is condi t ion code in the WORD pointed to b) , the
excef) tS l) t r f) l ì l ìnrc teT. I f the conci i t ion code is not E$OK, the job token returnet l is

not v l r l ic j l rn t l the : rsvnchrr)noì is par t o f the cal l d id not exccute.

- l
hc sccont l phasr occurs dur inq the concurrent p l r t o f the system cul l . This pur t runs as

the in i t ia l t i rsk in thc nov job und c loes the 1ì r l lo* ing:

. Lout ls thc f i lc r les i -gnutcd by the connect ion parameter .

r (l r r : r t ts the t r rsk thr r t wi l l execute the loaded code. l f there are no errors whi le thc f i le
is being lor rdcd r rnd i î b i t I o f the task$f lags parameter is 0, the concurrent par t makes
the task in thc nerv job ready to run. I f b i t one of task$f lags is one. the tusk wi l l be
sr- rspenclc i l unt i l ln I ìQ$S' l 'A I ì ' f$ lO$J O U is issued lor th is t rsk.

. Senr ls a Lo;rder l ìesul t Segnrcnt to thc nrr r ì lbox speci i ied by the ms-q$nrbox prr ln ìeter .
C)r ì r c ler ì ìer ì t in t l r ìs sc i lnrcnt is a condi t ion code ind icat ing the succcss or la i lure of the
scconcì 1 lh l rsc.

. ì t thc objcct t i l , - ' t locs not conta in over lays, thc loadcr task u ' i l l dc lete i tse l l a t th is
point . l l i t (lo ts cont i r in ovcr lays. the loader task wi l l be suspended, unt i l a rc(luest t . .
lo l r r ì ur r over l rLv is issued.

Restrict ion

' l
h is svstcnr c l r l l shoLrk l be invokccl on lv by t lsks runnins * ' i th in I /O jobs. Fai lure to heed

th is rest r ic t ion c luses l r sec lucnt ia l exce;r t ion conr i i t ion.

Format Of The Loader Flesult Segment

' l
he Lol r r ier RcsLr l t Stqment h: rs the form descr i t red bekru ' . This s t ructure is dc l iberate ly

conrpat ib le wi th the st ructLrre Of the messuqe returned when an I /O job ex i ts . (Sec the
E.rtandt:tl iRllX ll Ett,:tulerl l/O S1stern User's C uirla lor a description of exit messages.)

l l Appl icat ion Inader Svstem Cal ls

A$LOAD$IO$JOB

STRUCTURE (tcr : rn inat ion$code I ,JORD,
c x c e p t $ c o d e W O R D ,
j obs roken ToKEN ,
t e t u r n $ d a t a $ Ì e n B Y T E ,
rese rved$word$1 WORD,
r e s e r v e d $ b y t e B Y T E ,
r e s e r v e d $ w o r d $ 2 W O R D ,
n e m $ r e q u e s t e d W O R D ,
m e m $ r e c e i v e d W O R D) ;

where:

termina t ion$cot lc A WORD indicat ing the success or fa i lure of the loadin{
(ì l ì t ' r ' l l i o n

. A value of l00H indicr tes that the loac i ing operat ion
succeer ied.

' Lll'i:JJ;ii;*11ìJ,i.::i:ìl'ìii'lìt,iii"l;llll:.1);.,,,'Jl lil.'
Appl icat ion [-oader doesn' t c lo so.

exceptScode A WORD conta in ing the concurrent condi t ion code. Codes l rnd
interpretat ions fo l low th is descr ip t ion.

job$token A TOKEN for the newly cre l ted I /O job.

return$data$len A BY' l 'E that ind icates the length of the remuint ler of thc data
st ructurc minus l3 bytcs.

rescrved$word$ I Reserved lbr use by Intel,

resen'ecì$byte Resened for use by Inte l .

reservecl$''vortl$2 Resen'ed for use by lntel.

nrenr$rec luestec l A WORD indicat ing t l ìc number of l6-bvtc Pumgruphs thr t r ì r {e t
1 i ìe requested for the new job, inc luding the nÌemory needed l ì ; r a l l
scgments and that needed lor the job 's mernory pool .

mem$receivecl A WORD int i icat ing the number of ló-b1" te pr ìnì - r tmphs l ìc tual ly
a l located to the new job.

Condi t ion Codes
- l

h is svstem cul l can return condi t ion codes at tu 'o d i l lc rent t i r res. Clodes returned to thc
cal l in , r l t i rsk inrmediate ly af ter the invc lcat ion of the system cal l are considered sequent ia l
concl i t ion cor ics. Codes returned î l tcr the concurrcnt par t o f the svstenr cu l l h l rs l in ishecl
running are considered concurrent condi t ion codes. The fo l lo* ' ing l is t is t l i i ' i c ied i r r to $v
par ts - - one for sequent ia l codes lnd one fur concurrent codes.

, \pp l icat ion I ; rader S-rs lcm Cal ls l3

A$LOAD$IO$JOB

Sequential Condit ion Codes

' l 'hc
Appl icat ion Lordcr returns one of the lb l lowing condi t ion codes to the WOtìD

pointed to by the ercrpt$ptr parameter :

E$OK 0000H No except ional condi t ions.

EBADHEADER 0062H The object f i le conta ins an inv l l id hcr tc ler
record.

ESCONNNOTOPEN 0034H The Appl icat ion Loader opened the connect ion,
but some other task closecl the connection
before the loading operation was begun.

E$CONN$OPL,N 0035H The speci f ied connect ion was a l ready open.

ITSCIONT8XT 0(X)5 l l Thc cal l ing t lsk 's job is not an I /O job.

E$EOF 00f i5H The Appl icat ion Loader encounterer l an
unexpected Enr l -OÈFi le whi lc reading a record.

E: |EX|ST 000611 At le : rs t one of the t i r l lowins is t rue:

. The connect ion p l ì rameler is not t ì token lor
an existing object.

r The cal l ing task 's job has no g lobt l job.

Refer to the Ertended |RMX II Ertended I/O
S1'sttnt User's Guide for a delinition of gloult

JOD.

. The msg$mbox parameter (ìoes not refer to
an existing object.

E.$FACCESS 0026f{ 'ì he specified connection does not have "read
access to the fil..

E$FLUSII ING 002CH The device conta in ing the tarset f i le is being
detach ed.

EIOHARD 0052t1 A hard I /O errcr occurrcd. This merns that
another t ry is probably useless.

t :$ IO$OPRIr .v ' l ' 00-53H The dcv ice contu in ing the t i r rget f i le is of f - l ine.
Openrtor in ten 'ent ion is requ i rec i .

l { Applicati0n l,oader System Calls

A$LOAD$IOSJOB

EIOSOFI' 0051H A soft I /O error occurred. This means that the
I/O System tried to perlbrnr the openìtion lìnd
failed, but anothcr try might stìll be successful.

EIOUNCLASS 0050H An unknown type of l /O ernrr occurred.

EIOWRPROT 00-54H The volume is wri te-protected.

E$JOIJ$PAl{AM u0(r0H The pool$nrax paranìctcr is Lroth non-zcro and
smaller than the pool$min paran.ìcter.

I I$JOII$SIZE 00óDIl ' l 'he pool$mrx pírr i ìn leter is non-{) lncl too sm:r l l
for the t:rlgct filc.

E$ LOADER$SU PPO RT 006FH The target f i le requires capabi l i t ies not
conf igured into the Appl icat ion l -orcler.

E$N'f El t { (X)0: l l ' l he menrorv av;r i l ; rb le to the cl l l ing t : ìsk 's jo l) or
thc Brsic I /O System is not sr-r î l ic icnt to
conrp le r tc thc ca ì1 .

E$SLO'f 000CH Thc Global Descr iptor T:rble (GDT) has no
rrvrr i l rb le s lots.

E$NOSLOADER$N4EM (X)67H The merrory pool of the newly created [/O jot . r
does not current lv have l r b lock of memory large
enough to al low the Appl ic l t ion Loacler to run.

ENOTCONIT IG U RED 0 {)0EH Th is s1 ' s ten r c l l l i sno tpu r to f t hcp rcscn t
conl igLrr rr t ion.

ESNOI'$ F ILE$CONN 0032H The speci l iet l connect ion is to a clo ' icc rr ther
thun to u namcd I i l e .

E$PARAM l ì001t1 ' l 'hc valuc of the except$mode f ie ld rv i th in the
except$handler structure l ies outsir le the nrnge
0 through 3.

E$SI IARE 0028H The cal l ing task tr ied to ol)en a corìr ìcct iorì to i ì
f i le alrerrc iv being usecl by sonrc othrr t l rsk, anr l
the l i le 's shlr ing at tr ibute is r tot conrpl t ìb le u ' i th
the open request.

I :$SLJPPORI' 0023H
' l he speci f ied connect ion wlrs not createtì in this
job.

Appl icat ion krader System Cal ls l 5

A$LOAD$IO$JOB

F.$',r'tN{ tl

r..lì r'Y l,rl

t)00 l I l The cal l ing task 's job is not an I /O job.

t ì002H The connect ion parameter ìs a token for an
ohjc t t th ; t t is n t t l a connet t i t tn .

Concurrent Condit ion Codes

. , \ l tc r the Appl icat ior r l .o í rder at tempts the loading operat ion, i t rc turns a concl i t ion cocle

in the except$cot le f ie ld oî the Loader Resul t Segment . The Appl icat ion I -oacìer c l tn
rc t ì . r rn thc f ì r l Iorv inq concì i t ion cocies:

I : .S()K 0000I I t r -o exccpt ional condi t ions.

I :S l r -OF {)06511 The cal l cncountcred an unexpected Encj -Ol-
l ' l l (] .

l :$ l :XIS- f 00(l6H At least one of the fo l lowing is t rue:

. The mailbox specifiecl in the nrsg$mbox
paramett : r uas t ie le ted before the lor tc l inq
operat ion was complcted.

. The devicc conta in ing the t i r rget f i le u ' rs
t ie t rched before the loading openr t ion was
conrp lc ted.

I r : i I "A(l (lF-SS 0026t I l 'he dcîaul t user of the newly created I /O jo l r
does not have " read" access to the target f i le .

I i$ ITLUSHING 002CH The device conta in ing the t r rget l ì le is being
r ic t : rchcd.

l - . : i l ()$ l IARI) 00-52H A hard I /O crror occurret l . This meens th: r t
: ìnothcr t r l is probablv useless.

t :51() l r () l ' l ì l - ! ' l (X)-s lH Thr i lev icc corr ta in inq thc target l i le is of f - l ine.
(lpcr î tor in ten,cnt ion is rcqui ret l .

t :$ lOSSOIr l - 005 l t l A sof ì l /O error occurrcd. This nreans th l t the
I /O System t r ied to per lornr the operat ion and
l i r i led, but i ìnothcr t rv mi_ght s t i l l bc sLrcccssîu l

t r$ IOSUNCt-ASS (XÌ-50H An unknou,n type of I /O error occurrer l .

t 6 Application Loader System Calls

A$LOAD$IO$JOB

E$ I-I N,{ IT

ENO I-OA DE Iì$ N'l trM

Ir$ NOS'fA lì'l '

E$PARAN{

0001H At least one of the fo l lowing is t rue:

. l 'he task$pr ior i tv parameter is h igher
(numer ica l ly lower) than the newly created
I /O job 's maximum pr ior i ty . This maximunr
prror i ty is speci f ied dur ing the conl ìgurat ion
of the Extended I /O System (i f the job is a
descendant ol the Extentìecl I/O System) or
dur ing conf igurat ion of the Hurran
Inter face (ì f the job is a dcscend:rnt t ; f the
l luman I n ter face) .

r E i thur the newly crcatcd l /O job, or i ts
delaul t uscr , is a l reacly involved in 255
(d c c i m i r l l I / O o p c r i r t i l r r s .

. The cal l ing task 's o l r jcct t l i rectorv is î r - r l l .

r ' l-he r oot olrjcct tlirectorv is fLrll.

00(r7H
' l 'here

is not suî l ic ient n lcr ì lory av i r i l t rb le to t l tc
newly created I /O job or the Bl rs ic l /O Svstern
to a l low the Appl icat ion Loader to run.

006C1 I
' l 'he

t l rsct f i le docs not spcc i lv thc cntry l)o inr
for the pr oqram beinq lout lc t l .

8001t I The targct l i ic has a s t i rck sn l r l ler th l rn l6 l)y tcs.

Application k)ader Systcm Calls l 7

'I 'he RQIIALOA DSIO$JOB systenr call asynchronously loads an object file from
seconrl i r ry stonrqr to main nremorv and creutes an I /O job for i t . The cl i f ference betwccn
this cul l anci A$LCr\t)$lO$JOB is the maximum memory pool for
I ìQIrA LOADSIO$iOIl is l6M bytes.

I ìQEA I-OAD$ IOSJC) U crertes a new job using RQE,$CREATE$IO$JOB and loads the
slrer: i l iet l o l r jcct 1i lc. Thc loaded f i le 's code becomes the in i t ia l task of the new job. The
crr l l ing trrsk cont inues to run r lur ing the loading operat ion. I f the task$f lags paranìeter
spcci l ies t lcìrrvecl rrct ivrr t ion. a STARTlOJOil cal l must be issueci to st i l r t the ncw task.
I l the t l rsk$l ì i rgs I)rTi ìnlr t r r speci l ies inrmediate act ivat ion, the task becttmes reacìy at the
cn t i o f t he l o l r r i i nu on tn r t i o r t .

j o i r - F . Q l r $ A $ l . l l A D $ 1 0 $ J 0 B (c o r u ì e c t l o r ì , p o o l $ n i n , p o o l $ m a x ,
t ' r c c , p t $ l r ; r n c ì l e , r , j o b $ f ì . a g s , t a s k $ p r i o r i t y ,
t a : ; k $ f l a 1 ' , s , m s 6 ' , $ n b o x , c x c e p t $ p t r) ;

Input Parameters
t on n cc l ion

p o o ì $ n r ì n

l l o () l l I ì l i r \

/ \ ' fOKI lN l i r r i r i :onntct ion to the f i le that the Appl icat ion Loat ier
u i l l lo i rd . l 'hc connect ion nìust be a connect ion to a numcd f i le .
. , \ lso. Ìhe connect ion must be c loser l . the user object speci f ied when
thc connect ion wus created must have had READ access, and the
eonnccl ion nrus l hr rve been crcated in the cal l ing task 's job.
' l

hc Appl icut ion Loadcr opens thc connect ion for shar ing wi th
r c l rc ìcr s onl r ' . sr . l . c lur ing the Ìoading operat ìon, other tasks may
i ìccess the t i le onlv l i r r readin-9.

A I)WOI{D conta in ing l va lue the Appl ìcat ion Loader uses t
cor ì ìpute the pool s ize for the new l /O job.

A I) \ \ 'OI ì l) contr r in in-s a v l r lue the Appl icat ion l -ouclcr uses t . .
cor ì r l)u te the pool s ize t ì r r the ncw l /O job.

l f i Application Loader System Calls

cxcapt$handlcr

job$ lìlgs

task$prior i ty

task $ 1ì l gs

ROEALOADIOJOB

A POINTER to a structure of the following form:

STRUCTURE (
EXCEPT I ON$}iANDLER$ PTR POINTER,
EXCEPTION$MODE BYTE);

l f except ion$handìer$ptr is not NIL, then i t is a POINTER to the
I i rs t inst ruct ion of the new job 's own except ion hancl ler . l f
except ion$handler$ptr is NIL, the new job's exception hancller rs
the system detìtult exception handler. In both cases, the exception
handler lbr the new task becomes the defaul t except ion handler for
the job.

Set except ion$mode to speci fy when contro l is to pass to the new
tr ìsk 's except ion hrrndler . Encode the mocle as fo l lows:

When Control Passes
Va ue fo ExceDtion Handler

0 Never
1 On programmer ertors only
2 On environmenta conditions on y

3 On al l except onal cond t lons

For more inform:rtion regarding exception hrntllers anci the
exce;rtion nrode, refer to the Ertendul iRl\IX ll Nur:lr:u.r ll.rer's
Guitlt.

A wORD speci f ,v ing whether the Nucleus is to check the val ic ì i ty of

objects used l ìs p: ì remeters in systenr ca l ls . Set t ing b i t I (where h i t

0 is the low-order b i t) to 0 speci f ies th : r t t l ìe Nucleus is to check the
vt l i t l i tv of ob jects . A l l b i ts other than b i t 1 nust be set to 0.

A BYTE which,

. r l cqual to [) , ind icates that t l ie ncw job s in i t i l r l t lsk is to hr tve a
pr ior i tv equ:r l to the maximunì pr ìor i ty of the in i t ie l job of the
Extcnded I /O S1,stem.

. i l not cqual to () . conta ins the prror i ty o1 the in i t i i ì l task of the
n*r ' job. I l th is pr ior i ty is h igher (numer ica l ly lorver) th ln the
muximunt pr ior i tv oî the in i t ia l job of the Extended I /o
Svstem. un E$t . lMI ' l er ror occurs.

A WORD indicat ing * 'hether the in i t ia l task uses t lo t t ing-point
inst ruct ions. and wheîher to s tar t the task inrmediate ly .

Ser b i t 0 (rhe low-order b i t) to I i f the t r ìsk uses 1ìoat inq-point
inst ruct ions; otherwise set i t to t) .

Appl ica f ion l ,oader S ,vs fem Ca l ls l 9

ROEALOADIOJOB

nlsgS rìì l)ox

Bit I inc j icates whether the in i t ia l task in the job should run

immediately, or $'hether it shouìd tre suspended until a
STARTloJoB system cal l is issued to s tar t i t . Set i t to 0 i f the
tusk is to be made ready immediate ly ; set i t to I i f the task is to be
su spc n clcd.

Set b i ts 2 through 15 to 0.

A TOKEN tbr a mailbox that receives the Loader Result Segment
af ter the loading operat ion is completed. This parameter is s imi lar
to the corresponding parameter in the CREATEIOJOB system
call in the Extencled I/O System, with these exccpîions:

. You must always specify a valid mailbox TOKEN for this
p a ra mete r .

. SELECTOR$OF(NIt -) mav not be user l as a vu lue 1ì r r thc
I 'OKEN,

. E lch cr ì l l to A$LOAD$IO$JOB requi res a unique mai lbox.

Thc scconci purposc o i th is p: l r mctcf i5 to rects ivr l rn tx i t nressaqe
l ronr the newly created l /O job. The descr ip t ion of the
CREATEIOJOB system call in the Ertended iRMX II ExtLttdcrj
l/O Systent Cal/.r manual shows the format of an exit ntessage

The l ì r rmat of the Loader Resul t Segnìent is prov i t led la tcr in th is
cìescr ip t ion.

Output Parameters
job A TOKE.N, rcturned by the Application Loatler, for the nor'|,

cre l ted I /O job. ' l -h is
token is va l id only i f the Appl icat ion Loacler

retLrrns an E$OK condi t ion cocle to the WORD pointed to by the
except$ptr pr ì rameter .

A POINTER to a WORD where the Appl icat ion Lo:r t lc r is to
p l l rce thc condi t ion code generated hy the set luent ia l pr r r t o f the
svstem cal l .

exc(jpt$ptr

Descript ion
' l

h is svstcnr c : r l l oJrc l t l ts in tuo phtrses. The f i rs t phase occurs dur ing the secluent ia l par t
ol Ìhis svstcnr call. (lìclcr to the Applk:atkttt Loudcr U.scr's Guidc fora discussionof thc
sr t l r :cnt i r r l l rnd concLrr r rnt p l ì r ts of an asynchronous system cal l .) Dur ing th is f i rs t phase,
thc Appl icat ion [-o: r r ier ckres the fb l lowing:

. Checks the val ic i r tv ot the hel t ìer recorc i o f the target f i le .

2t) Appl icat iun Loadcr Sl s tem Cal ls

ROEALOADIOJOB

. Createsan I /O job. This I /O job is a chi ld of the cal l ing task's job. (Refertothe
E,rtendtd iRi\lX II Ettentlcd I/O Systent User's Guide for adefinìtionof I/O jobs.)

. Returns a conclition code relìecting the success or failure of the first phlse. The
Appl icat ion l .oader places thrs condit ion code in the WORD pointed to by the
cxcel) t$ l) t r J) i l r i ln ìeter .

' l
hc sccond phrrsc occurs dur ing the concurrent par t o f the syst (]n l c : ì ì1 . This par t runs : rs

the inr t ia l t lsk in the newjob and does the fo l lowing:

. Loacls the l i le designated by the connect ion parameter .

. Crcates the t i ìsk that wi l l execute the loaded code. I f there are no err r t rs whi le the f i le
is being lo ldet l i rnd i f b i t 1 of the task$f lags parameter is [) , the concurrent p l ì r t makes
the task in t l . re nerv jo t r ready to run.

. Scnt ls r t Lor t t lc r Rr :su l t Seqnrent to the nrr i lbox speci l ie i l by the msg$nrbox | i l r l rmeter .
Onc e lcntent i t t th is se{r rcnt is a concl i t ion cor le ind icat ing the succcss or l t r i lure of the
seconcl ph:rse.

. l) e l e t c s i t s c ì 1 .

Restrict ion

This s ls tcn crr l l shoLrk l be inwrket l on ly hy tasks running u ' i th in I /O jobs. F l r i lure to heed
th is rcst r ic t ion c i ruscs i ì se(luent i l r l except ion condi t ion.

Format Of The Loader Result Segment

l -he I .o r rc lc t l ì t ' sL r l î Scqnrcn t h r rs thc 1 ì r r n r descr i t red in th is scc t ion .
' I ' l t ì s

s t ruc tL r l t i s
cornpr r t ib lc * i th thc s t ruc tu re o f thc n tessuge re tu rned when an I /O job ex i ts . (See the
E.rttttt l tt l iR,\lÀ l I E.rttttdttl I/O Srurelr L,l icr 5 Gukle lor a descript ion of exit messlrges.)

S l R l l c l L l R E (t e r r n i n a t i o n $ c o d e W O R D ,
e x c e p t S c o d e W O R D ,
j o b g t o k e n T O K E N ,
I ' e t u r n $ d a t a $ l e r r B Y T E ,
r e s e r v e d g w o r d g ì W O R D ,
r e s e r v e d $ b y t e B Y T E ,
r e s e r v e d $ v o r d $ 2 W O R D ,
n e m g r e q u e s t e d W O R D ,
m e m g r e c e i v e c l W O R D) ;

$ 'h e r r :

l c rn r in r t ion$cor lc A WORD ind ica t ing the success or fa i lu re o f the loac l ing
t ' l) c l i l l i () n '

. A va lue o f l00H ind ica tes tha t the load ing opera t ion

succeeded.

Appl ic i ì t i {)n Loader S_vstcnr Cal ls 2 l

RQEALOAD$IOSJOB

except$code

job$token

rc lLrrn$ r lu t i rS l r n

reseryecl$rvorcl$ I

rcservecì$byte

rese n'ecl$*rrrcl$ 2

nrem$ rerlu c'stecì

nrem$ recr ivcti

r-.$oK

I . -SC'ON N:5 NOT$(] PI: N

h$CONNSOPEN

E$CONTEXT

Condition Codes

This s1 's tem c l r l l can rc turn condi t ion co{- les at two d i f ferent t imes. Cocles returned to the
clL l l ing task immer i iu te lv i r l tc r the invocat ion of the system cul l are consi r ierec i ser lucnt iu l
conci i t ion codes. Codes returned : ì l ìer the concurrcnt par t o f the s l ,s tent c l Ì l has f in isheci
rLtnning r r re consìr lercc l c i)ncrr r rent conr l i t ion codes. The îo l lowing l is t is r l iv i t ler i in to tw

l) l r r ts - - one l ì r r sec luent i r ì codcs ani l one for concurrent codes.

Sequent ia l Cond i t ion Codes

' I
he APPI icat ion Lol (lcr re turns one of thc t ì r l lowing condi t ion codes îo the WORI)

poi r r te t l to l ry thc exccpt$ptr p i ì rameter :

. A value of 2 indicates that the loading operation failed. In this

ciìse, your system should delete the newly created I/O job; the
Application Loader doesn't do so.

A WORD containing the concurrent condition code. Codes and

in t< rprr t ; r t ions tu l low th is descr ip t ion.

A TOKEN lbr the newly created I/O job.

A tsYl 'E that ind icates the length of the remainder of the data
st ructure minus l3 bytes.

Iìeserved fìrr use hy Intel.

Resen'ed for use by Intel.

Resen,ed for use by ln te l .

A WORD inc i icr r t ing the number of 16-b) , te p i ìnrgnrphs the t r ì rqet
l i lc requester ì for the new joh. inc luding the memory needed for a l l
scqmcnts and that needed for the job 's memory pool . I f morethan
l lv l bvtc w;rs rec lucsteLl , th is l ie ld wi l l conta in 0FFF-FFI l .

A W()RI) ind icat ing the number of l6-byte paragraphs actual ly
a l locrr ted to the new job. l îmorethan 1M t ry te was a l located, th is
f ic ld wi l l cont i r in (lFFFFFi l .

0000H No except iona I condi t ions.

001- l l l Thc Appl icat ion l -o : rder opened the c()nnccl io l l ,
but some other task c losecl the connect ion
before the loac l ing operat ion was begun.

001-5tl The spccified connection was alreldy open.

0005H The cal l ing task 's job is not an I /O job.

)"1 Appl icat ion krader Svstcnr Cal ls

RQEALOADIOJOB

Ì:$EXIST 0006H At least one of the tbllowing is true:

. The connection parameter is not a token for
an existing object.

o The cal l ing task's job has no global job.
Refer to the Ertended |RMX II Extended I/O
Sy.stem User's Guide fctr a definition of globrl
j ob

. The msg$mbox p:ìrameter does not refer to
an existing object.

E$FACCESS 0026H The specified connection does not have "read"
access to îhe file.

E$FLUSHING Otl2CH -I'he device containing the trrget file is being
detachcd.

E$IOSIIARD 00521t A hard l /O errcr occurrcd.
' fh is

nreans that
i ìnother t ry is probably useless.

ElOOPRf NT 0053H The device containing the target f i le is oî f - l ine.
Operator intervent ion is required.

EIOSOFI' 0051H A sol ì I /O error occurret l . This merns th:r t the
I/O System tr ied to perform the operat ion ancl
fai led, but înother t ry might st i l l be successful .

EIOUNCLASS 0050H An unknown type of I /O crror occurred.

E,$JOts$PAI{AM 8060H The pool$max parameter is both non-zero and
smal ler than the pool$min parameter.

E$JOII$SIZE 006D1I The pool$max paramcter is non-0 and too smal l
for the target file.

E$LOADE,R$SUPPORT 00óFH The t l rget f i le requires clpirbi ì i t ies not
confìguret l into the Aplr l icrr t ion [-ortc lcr .

E$M E\,1 0002H The memory avai lable to thc cal l ìn,q t lsk 's job or
the Basic I /O System is not sufî ic ient to
complete the ca l l .

ENOLOADER$MEM 0067H The memory pool of thc newly created l /O job
does not current ly have a block of memory ìarge
enough to al low the Appl icat ion Loader to run.

Application l-oader System Calls L.'

RQE$ASLOAD$IO$JOB

LNOTCONFIGURED 0008H This s-vstem call is not part of the present

configuration.

ESNOT$FILE$CONN 0032H The speci f ied connect ion is to a device rather
than to a named f ì le .

E$PARAM 8004H
' I -he value of the except$mode f ie ld wi th in the
except$handler structure lies outside the rangc
0 through 3.

h$SHARE 0028H The cal l ing task t r ied to open a connect ion to .1
f i le aÌ ready being used by some other task, and
the f ì le 's shar ing at t r ibute is not compat ib l t : wi th
the open request.

E$SUPPORT 0023H The speci f ied conncct ion was not created in th is
job.

E$TIME 0001H The cal l ing task 's job is not rn I /O job.

E$- fYPE 8002H Thc connect ion parameter is a token for an
object that is not a connect ion.

f -$Sl- ()T 000CH The Global Descr ip tor Table (GD1') has no
avai lab le s lo ts .

Co ncurrent Condit ion Codes

After the Appl icat ion Loader at tempts the loading operat ion, i t re turns a concl i t ion cocie
in the except$cor le f ic ld of the Loader Resul t Segment . The Appl icat ion Loader can
rcturn îhe fo l lowing condi t ion codes:

h$OK 0000H No except ionul condi t ions.

I r$f rOF- 006-5H The c: r l l encountered an uncxpectec l End-Of:
F i le .

ESEXIST 000(rH At least one of the fo l Ìowing is t rue:

. The mailbox specified in the msg$mbox
panìmeter was deleted bet ì r re the loac l ing
operat ion was completed.

. The device conta in ing the target f i le was
detachet l before the loading operat ion wa.
completed.

21 Appl icat ion Loader Srs lem Cal ls

E$FACCESS

E$FLUSHING

EIOHARD

hlOOPIì lN' l '

E$IOSSOFT

EIOUNCLASS

E$ Lllvlll '

E$NOS t-OA DI: R$\ ' f I lv l

11$NOSIA R] '

E$PARAM

RQEALOADIOJOB

0026H J'he default user of the newly created l/Ojob
does not have "reatl" access to the target iile.

002CH The device containing the target file is being
detached.

0052H A hard I /O error occurred. This means that
another try is probably useless.

0053H The device containing the target f i le is of l - l ine.
Operator intervention is required.

005 lH A soft I /O error occurred. This nrerrns thrLt the
I/O System tried to perform the opcration and
fai led, but another t ry nr ight st i l l be successlul .

005()H An unknown type of I /O error occurret l .

00041I At lerst one oî the lo l lowing is t rue:

. The task$prior i ty parameter is higher
(numerical ly lou'er) thun the ncwlv crel ì ted
I/O job's maximum pr ior i ty. This mrximum
prior i ty is speci f ied dur ing the conf igurat ion
of the Extencled I /O System (i f the job is a
descendant of the L,xtended l/O System) or
dul ing conl igurat ion oî the I Iunrrrn
lnterface (i f thejob is a descenciant ol thc
Hurnan lnterface).

. Ei ther the newly creuted I /O job, or i ts
dclìrult user, is alreacly involved in 2-55

1t ìee i r r l ; r l . ; l /O o1 ' , r1 ;11 i1 '11 t .

. The calling task's otrject tìirectory is full.

. ' l 'he
root object d i rectory is îu l l .

00ó7H There is not suf l ic ient menlory av l i lub le to the
newly cre l ted l /O job or the Basic I /O Systenr
to a l low the Appl icat ion Loadcr to run.

006CH The target f i le c ioes not speci lv the cntry point
lbr the program being loar1ct1.

800.1H The target f i le has a s tack smal ler than l6 bytes.

Appl icat ion l -oader Svstem Cal ls 25

' l 'he S$I-OAD$IOSJOB system call synchronously loads an object file from secondary
slorage to menlory i rncl creates an ì /O job for i t .

I ìQS LOADlOJ OIJ creates a new job using RQE$CREATE$lO$JOB and loads the
specified object file.

'I'he loaded file's cotle becomes the initial task of the new job. The
cr l l ing task ìs suspencled dur ing the loading operat ion. I f the task$f lags parameter
specifies delayed activation, a STARTIOJOB call must be issued to start the new task.
lf the task$llags prìrameter specifies immediate activation, the task becomes ready at the
cnt l of the loar l ins oncrat ion.

j o b : R Q $ S $ L O A D S I O $ J O B (p a t h $ p t r , p o o L $ m i n , p o o l $ r n a x ,
- a e - p t $ l r a n d l e r , j o h S f l a g s , t a s k S p r i o r i r y .
t a s k $ f l a g s , m s g $ r n b o x , c x c c p t $ p t r) ;

Input Parameters
p a t h $ p t r

I r , r r r l $ r n i n

pool$ nr:rx

except$hancl ler

A POINTER to a STRING conta in ing a path nanìe for the named
lrle with the otrject cocie to be loaded. The path name must
conftrrm to the Extencled l/O System path name syntax for namer-l
f i le s . I f you are not l ì rmi l i l r wi th extended iRMX I I path name
svntax, refer to tlte Ertendad iRMX II Ertended I/O System U.ser's
Guide.

A WORD conta in ing a va lue that the Appl icat ion Loacler uses to
compute the pool size lbr the new l/O job. See thc
Dh,SCRIPTION sect ion lbr deta i ls .

A WORD conta in ing a va lue that the Appl icat ion Loader uses to
compLrte the pool s ize l ì r r the new I /O job. See the
DIISCRIPTION scct ion for c ie t : r i ls .

A POINTE,R to a s t ructure of the fo l lowing l ì r rm:

STRUCTURE (
EXCEPT I ONS}IANDLER9 PTR POINTER,
E X C E P T I O N S M O D E B Y T E) ;

I f cxcept ion$handlcr$ptr is not NIL. then i t is a POINTER to the
t i rs t inst ruct ion of the new job 's own except ion handler . l f
cxccpt ion$hancì ler$ptr is NIL, the new job 's except ion h: rndler is
t l ìe svstem cìef lu l t ercept ìon handler . ln both c lses, the except ion
hl rnc l ler for the ne*, task becontes the detaul t except ion handler for
t h e j o h .

26 Appl icat ion Loadcr Slstem Cal ls

job$flags

task$prior i ty

task$ l lags

msg$mbox

S$LOAD$IO$JOB

Set the except ion$mode to te l l the Appl icat ion Loader when to
p:rss contro l to the new task 's except ion handler . Encode the ntode
:rs fo l lows:

When Control Passes
Value To Exceotion Handler

0 Control never passes to handler
1 On programmer errors on y
2 On environmental conditions only
3 On all exceptional cond lions

For more in format ion regard ing except ion handlers and the
exception mode, refer lo the E.rtended iRlllX II Nuclcu.r User's
Cuide.

A WORD speci ly ing whethcr thc Nìrc leus is to check the val id i ty of
ohjects used as parameters in system cal ls . Set t ing b i t I (where l) i t
0 is the low-order b i t) to t) speci f ies that the Nucleus is to check the
val icJ i ty of ob jects . A l l b i ts other than b i t I must be set to 0.

A BYTE which,

. i f equal to 0, ind icates that the new job 's in i t i l l task is to have a
pr ior i ty equal to t l ìe maximum pr ior ì ty of the in i t ìa l job of the
Extended l /O System.

. i f not equal to 0, conta ins the pr ior i ty of the in i t ia l task of the
new job. l f th is pr ior i ty is h igher (numer ica l ly lorver) thun the
maximum pr ìor i ty of the in i t ia l job of the Extended I /O
Systcm, an E$LIMIT crror occuÍs.

A wORD indicat ing whether the in i t ia l tusk uses i lo l t ing-point
inst ruct ions, and whether to s tar t the task imme(l ia te ly .

Set b i t 0 (the low-order b i t) to I i f the tusk uses l loat ing poìnt
inst ruct ions; othcrwisc set i t to 0.

Bi t I indìcates whether the in i t ia l task in the job should run
immediate ly , or whether i t should be suspended unt i l a
STARTlOJOB system call is issued to stîrt it. Set hit I to 0 if
the task is to be made ready immediate ly ; set i t to I i f the task is to
be suspended.

Set b i ts 2 through 15 to 0.

A TOKEN for a mai lbox that receives an ex i t message f rom the
newlv created I /O job. This parameter is s imi lar to the
CIìEATElOJOB system call docume nted in tbe Exte.tded i11.trÍX
II Ertended I/O Sl,stent Calls manual, with these exceptions:

{ppl icat ion Loader System Cal ls 27

S$LOAD$IO$JOB

. You must always speciÙ a valid mailbox TOKEN for this
pa rameler.

. SELECTOR$OF(NIL) may not be used as a value for the
TOKEN.

o Erch call to S$LOAD$IO$JOB requires a unique mailbox.

Output Parameters
job A TOKEN, returned by the Application Loader, for the newly

created I/O job. This token is valid only if the Application Loader
returns.ìn E$OK condit ion codc to the WORD speci f ied by the
cxcept$ptr parameter.

except$ptr A POINTER to a WORD where the Appl icat ion Loader is to
place a condit ion cocle.

Description

This system call perlìrrms the same function as A$LOAD$IO$JOB. The only difference
between the cal ls is that S$LOAD$IO$JOB is synchronous. That is, the cal l ing task
rcsumes running onlv af ter the cal l has completed i ts at tempt to create an I /O job and a
uscr task in that job.

The Application Loader does not necessarily have exclusive access to the file being
loaded. During the loading operat ion, however, i f other tasks are also using the f i le, they
nlrv access the file only lor reading.

NOTE
This systcnr cul l shoulci be invoked only by tasks running within I /O jobs.
Fl i lure to hecr l th is restr ict ion causes the Appl icat ion Loacìer to return an
E$CONTITX-f except ion code.

Condi t ion Codes
' l ' l re

AppÌ icat ion Lour lcr r r turns one of the fo l lowing condi t ion codes to the WORD
sJrecìfietl by the exccpt$ptr p:ìrameter of this systern call:

B$OK 0000H No except ional condit ions.

E$BADSIIEADER 0062H The ohject f i le contains an inval id header
record.

00051I The cal l ing task's job is not an l /O job.

28

E$CONTEXT

Application t oader System Calls

S$LOAD$IO$JOB

E$EOF 0065H The call encountered an unexpected End-Of-
File.

E$EXIST 0006II At least one of the fol lowing is t rue:

. The msg$mbox parameter is not a token for
an existing object.

. The cal l ing task's joh has no globr l job.
(Refer to the Extended |RIVX II Extended
I/O System User's Guide for a definition of
global job.)

. The device containing the target f i le was
detached.

ESFACCTTSS 002óH The detault user object lbr the new I/O job
does not have "re:rd" access to the speciliecl file.

E$FNEXIS l 002lH The speci f ied target f i le, or some f i le in the
speci f ìed path, does not exist or is murkecl lbr
delet ion.

E$FLUSHING 002CIl The dcvice containing the target f i le is being
det ach ed.

E$INVALID$FNODE 003DH The fnode for the specified file is invalid, so the
file must be deletcd.

ElOt lARIl 0052H A hard l /O error occurred.
' fh is

means that
another t ry is probubly useless.

EIOJOB 00.17H The cal l ing task's job is not an I /O job.

EIOOPRINT 0053H The device conîaining the target î i le is of f - l ine.
Operator intervention is required.

t j$ lO$SOITT 00-51H A sol t I /O ernrr occurret . l . This melns that the
I/O System tr ied to perform the operatìon and
faileci, but anotht:r try might still be successful.

EIOUNCLASS 0050H An unknown type of I /O error occurred.

EJOBPARAN{ iJ0f i0H The pooÌ$max parameter is nonzero and
smalÌer than the pool$rnin paranìeter.

EJOBSIZE 006DH The pool$nax pl ì r lmcter is nonzcro and too
srnall for the targct fìlc.

Appl icat ion Lrader Sls tem Cal ls 29

S$LOAD$IO$JOB

E$L IMIT

ESLOADER$SUPPORT

II$MEM

I]NOLOADE R$M I]M

E$1. '*O$START

Ir$ 1. \OT$CON FIC U RE D

Ir$PARAM

E$PATHNAN,{ E$SYN'fAX

E$'f f ME

h$-fYPE

000-lH At least one of the following is true:

. The task$priority parameter is higher
(numerically lower) than the newly created
I/O job's miximum priority. This maximum
priority is specified during the configuration
of the Extended I/O System (if the job is a
descendant of the Extended I/O System) or
of the Human Interface (if the job is a
descendant of the Human Interface).

o Either the newly created I/O job or its
dcfault user object is already involved in 255
(decimal) I /O operat ions.

006FH The target f i le requires capabi l i t ies not
configured into the Application Loader.

0002H The memory avai lable to the cal l ing task's job is
not sufîicient to complete the call.

0067H The memory pool of the newly createtl I/O job
does not currently have a block of memory large
cnou-{h to al low the Appl icat ion Loacicr to run.

006CH The target file does not specify the entry point
for the program being loadecl.

000ì{H This system cal l is not part oI the present
confìgurat ion.

8004H At least one of the following is true:

. The value of the except$mode fiekl within
the except$handler structure lies outside the
range 0 through 3.

o The target file recluestecl a stack smaller
than l6 bytes.

003EH The speci f ied pathname conta ins one or more
invalid characters.

000 lH Thc cal l ìng task 's job is not an I /O job.

l l002H The connect ion parameter is a token for an
ol r jcet thr r t is nol a conncct ion.

30 ApplicatiOn krader System Calls

The RQESLOADlOJOB system call creates an I/O job containing the Application
Loader task, which loads the code for the user task from secondary storage. The
RQESLOADIOJOB allows you to specify memory pools of up to 16M bytes using
the DWORD paranìcters, pool$min and pool$max.

j o b : R Q $ R Q E $ S $ L O A D $ l o $ J o B (p a t h $ p t r , p o o l $ m i n , p o o l $ m a x ,
e x c e p t $ h a n d l e r . j o b $ f I a g s , c a s k $ p r i o r i t y ,
t a s k $ f 1 a g s , m s g $ r n b o x , e x c e p t $ p t r) ;

lnput Parameters
prth$ptr A POIN' |E,R to a STRING conta in ing a path name for the n lmed

f i le wi th the object cot le to be loaded. The path name must
conl i r rm to the Extended l /O System path name syntax f i r r nanred
f i les. I f you are not fami l iar wi th extended iRMX I I path name
syntax, refer to lhe Ertended iRMX II Extendetl I/O System User'.s
Guide.

pool$min A DWORD conta in ing a va lue that the Appl icat ion loader uses îo
compute the pooÌ size for the new I/O job.

pool$m:rx A DWORD cont : r in ing a va lue that the Appl icat ion Lo: tc le r uses to
compute the pool s ize for the new l /O job.

except$handl r : r A POIN I - t1R to a s t ructure oî the f t r l lowing lorm:

STRUCTURE (
EXCI]PT I ON$HANDI-ER$ PTR POIN"TER,
EXCEPT]ON$MODE BYTE);

I î exccpt ion$ handler$ptr is nor NI [. , thcn i t is a POINTER to the
f i rs t inst ruct ion of the new jot r 's own except ion handÌer . I f
except ion$ha nillcr$ptr is NIL. the new job's cxccption handler is
tht: s)'sttlm tlclìruìt exccption hirndler. fn both clses, îhe exception
hrrndler lor the new task hecomes the del ì ru l t except ion handler l ì r r
the job.

Sct cxcept ion$mode to te l l the Appl icat ion Loldcr whcn to pass

control to thc new task's exception handler. Encode the mocle as
fttllou's:

Appl icat ion Loadcr Srstenr Cal ls 3 l

RQESLOADIOJOB

When Control Passes

Value To Exceotion Handler

0 Never

1 On programmer errors only

2 On environmental conditions only

3 On all exceptional conditions

For more in format ion regard ing except ion handlers and the
exccption mode, refer to the Ertended iRMX II Nucleus User's
Guitle.

job$1ìxgs A V/ORD specifying whether the Nucleus is to check the validity of
objects usecl as parameters in system calls. Setting bit I (where bit
0 is the low-order bit) to 0 specifies that the Nucleus is to check the
vl l id i tv of ob jects . A l l b i ts other than b i t 1 must be set to 0.

t r r s k $ p r i o r i t v A l l Y ' l E u ' h i c h ,

. i f equal to 0, inc l ic l tes that the new job 's in i t ia l task is to have a
pl ior i ty ec lual to the maximum pr ior i ty of the in i t ia l job of the
Extended l /O Systcm.

. i f not equal to 0, conta ins the pr ior i ty of the in i t ia l task of the
nerv job. I f th is pr ior i ty is h igher (numer ica l ly lower) than the
nnr imum pr ior i ty of the in i t ia l job of the Extendecl l /O
Svstem, an E$PARAM error occurs.

task$f lags A WORfI ind icr t ing whether the in i t ia l task uses f loat ing-point
inst ruct ions, and whether to s tar t the task immecl ia te ly .

Set t r i t (ì (thc low-or t icr b i t) to I i f the task uscs f loat ing-point
inst rLrct ions; other* , ise set i t to 0.

Bi t 1 inc l icates whether the in i t ia l task in the job should run
inrnrcc l ia te lv . or whether i t shoulc l be suspended unt i l a
SIARTlOJOB system cal l is issued to s tar t i t . Set b i t 1 to 0 i l
the t r rsk is to Lre macie readv immediate ly ; set i t to I i f the task is to
i re suspended.

Set b i ts 2 through l5 to [) .

msq$mbor A IOKEN 1ìr r a mai lbox that receives an ex i t message l rom the
ntu lv createc l I /O jo t r . This par i ìmeter is s inr i l i r r to the
(IRITATElOJOB system call documentcd in the Ertatulctl |RMX
ll E.ra'mfutl I/O Syst,:nt Calls manual, with these exceptions:

. You nrust a lu 'avs speci fy a va l id mai lbox TOKEN for th is
p l r rametcr .

. SITLECTO R$OF(n- l L) nray not bc used as a vu luc 1ì r r the
TOKEN.

1-) Application l,oader System Calls

ROESLOADIOJOB

Each call to RQESLOADIOJOB requires a unique
mai lbox.

Output Parameters
job A I'OKEN, returned by the Application Loadcr, for the newly

created I/O job. This token is valid only if the Application Loac.ler
returns an E$OK condit ion code to the WORD speci f ied by the
except$ptr parameter.

except$ptr A POINTER to a WORD where the Application Loader is to
place a condit ion code.

Description

This systerl call perfirrms the same funcrion as A$LOAD$IO$JOB. The only difference
l)etween the cal ls is rh l r RQESLOADlOJOB is synchronous. That is , the cr l l ing task
rcsumes running only a l ter the c: t l l has completecì i ts at tempt to cre i ì te an l /O job and l .
u s e r t a s k i n t h r r t j o b .

The Appl icat ion Loadcr c loes not necessar i Ìy have exc lus ive access to the f i le being
loaded. Dur ing the loading operat ion, however , i f o ther tasks are a lso us ing the f i le , they
nl i ìy : rccess thc l i le only 1ì r r reading.

NOTE
- l

h is svstem cl ì l should bc invoked onl l ' by tasks running within l /O jobs.
Flr i lure to hcecl th is restr ict ion causes thc Appl icat ion Loader to rcturn i ln
ESCONI EX'f except ion code.

Condi t ion Codes

The Application Loader returns one of the following condition codes to the WORD
specilied by the except$ptr paramerer of this system call:

E$OK 0000H No except ional condi t ions.

E$CON'f EXl ' 000-5 l I The cal l ing task 's job is nor i ìn I /O jo l) .

E$EOF 0065H The call encountered an unexpecteci Encl-Of-
File.

E$EXIS'| 0006H At least one of the following is true:

. The msg$mbox parameter is not a token for
an existing object.

Application l,oader Sysfem Calls 3.ì

RQESLOADIOJOB

. The calling task's job has no global job.
(Refer to the Extended |RMX II Ertended
I/O System User's Guùle for a definition of
global job.)

. The device containing the target file was
detached.

Ir$I"A(l(- l rSS 002(rH The defaul t user object for the new I /O job
does not have "read" access to the specified file.

l r$I NITXIS' f 0021H The speci f ied target f i le, or some f i le in the
specified path, does not exist or is marked for
delet ion.

[$FLL]SFI lNG 002CH The device containing the trrget f i le is being
detached.

E$INVALID$FNOD[, 003D1] The lnode t ì rr the speci f ied l i le is inval id, so the
f i le must be deleteo.

F-lOlIARD 0052H A hard l /O error occurred. This means that
Írnother try is probably useless.

[lOJOI] 001711 The cal l ing task's job is not an I /O job.

I ' -SIO$OPRINT 0053H The device containing the target f i le is of f - l ine.
Operator intervent ion is required.

I ;SIO$SOI-" | 00-slH A soft I /O error occurred. This melns th:r t the
I/O System tr ied to perform the operat ion and
failed, but another try might still be successful.

I r$lOiì t lNCl.ASS 00-s0H An unknown type of I /O error occurrecl .

l :$JOBSPT\RANI 806011 1'he pool$max parameter is nonzero and
smaller than the pool$min parameter.

l rSJOl l$SIZE 006DH The pool$max parameter is nonzero and too
small for the target file.

hSLINIIT 00041I At ieast one of the fol lowing is t rue:

. l{ Application [,()ader Syslem Calls

E$LOADL,R$SUPPORT

E$MEM

ENOLOADER$MEM

E$SLOT

ENOSTART

ENOTCONFICURED

E$PARAN{

E$PATITNAME$SYNTAX

tr$-f I N'l Il

E$TYPE

ROESLOADIOJOB

. The task$priority parameter is higher
(numerically lower) than the newly created
l/O job's maximum priority. This maximum
priority is specified during the configuration
of rhe Exrended I/o System (if the job is a
descendant of the Extended I/O System) or
of the Human Interface (if the job is a
descendant of the Human Interface).

. Either the newly created I/O job or its
default user object is already involved in 255
(rJecimal) I /O operat ions.

006FH The target iìle requires capabilities not
configured into the Application Loader.

0002II The memory avai lable to the cal l ing task's job is
not sulTicient to complete the call.

0067H The memory pool of the newly created ì/O job
does not currently have a block of memory large
enough to al low the Appl icat ion Loader to run.

000CH The Global Descriptor Table (GDT) has no
available slots.

00óCH The target file does not specify the entry point
fbr the program being loaded.

0008H This system call is not part of the present
conlìguftrtion.

8004H At Ìeast one of the following is true:

. l-he value of the except$mode Iield within
the except$handler structure l ics outsidc the
range 0 through 3.

. The target file requested a stack srnaller
than 1ó bytes.

{10.ìEH Thc speei l ied p:r thnlnre cont i r ins onc ()r nì()rc
inval id characters.

0001H The cal l ing task's job is not an I /O job.

8002H The connection parameter is a token lbr an
object that is not a connection.

Appl icat ion I ; lader Svstem Cal ls -t:

In proerams u'ith overlays, the root module of the program calls S$OVERLAY to load
over lav modules. The root module must be loaded using one of the systcm calls that
crcu te an l /O ìob.

c A L L R Q S S S 0 V t R L - A Y I n r m e $ p t r , e x c e p t S p L r) :

Input Parameter
nu nre$ptr A POINTER to a STRING containing the name of an overlay.

The overlay name should have only uppercase letters, both in this
string and when you specily the name in the overlay definition file.
For information about OVL28ó. refer to the i4 PX 286 Utilities
Uscr's Guide Fnr iRMX II Svstems.

Output Parameter
e.\cept$ptr A POINTER to a WORD in which the Application Loader will

p lace a condiî ion code.

Descript ion

Root moclu les issue th is svstem cal l when they want to load an over lay module, The
Ettcnded iRMX ll Al4tlitutiott Loader User's Garde describes overlays.

Synchronous Behavior

This system call is synchronous. The calling task resumes running only after the system
cal l has completed i ts at tempt to load the over lay.

Fi le Sharing

The Application Loacler does not expect exclusive access to the file containing the overhy
nrodule. Horvcver. whi le the over lay is being loaded, i f other tasks are also using the f i le,
thrv cun access the I i le only l ì r r reading.

36 Application Loader Systern Calls

S$OVERLAY

Condition Codes

The Application Loader returns one of the following condition codes to the calling task:

E$OK 0000H No exceptional conditions.

E$EOF 00ó5H The call encountered an unexpected End-Of-
File.

E$EXIST 0006H The specified device does not exist.

E$FLUSHING 002CH The device containing the target file is being
detached.

EIOHARI) 0052H A hard I /O error occurred. This means that
another try is probably useless.

EIOOPRINT 0053H The device containing the target over lay is ol l -
line. Operator intcrvention is required.

E$ÌOSSO 0051iI A soft I /O error occurred. This means that the
I/O System tried to perform the operation and
fai led, but another t ry might st i l l be successful .

ElOUNCLASS 0050H An unknown type of I /O error occurred.

E$LlMl'l' 0004H Either the calling task's job, or its default user
object, is already involved in 255 (decimal) I/O
operat ions.

E$NOMEN{ 006iìH The memory pool of the new I/O jotr does not
have a block of memory large enough to lllow
the AppÌication Loader to krad thc ovcrlay
mociule.

ENOTCONFIG URED 0008H This system cal l is not part of the present
configuration.

E$OVERLAY 006EH The over lay name indicated by the name$ptr
parameter does not match any overlay module
name in your overlay definition file.

. \pp l icat ion L,oadcr S r s lcm Cal ls

A

A$LOAD 4
A$I-OAD$IO$JOB IO

c
Clo nclit ion cories 2

lbr asynchronor-rs svstem cirlls 2
tor synchronous s l 's tem cal ls 2
secluential 2

F

[' i lc shar ing -5, . ì (r

Folml t o f the loat ler resul t segrnent 12,21

R

l ìesponse mai lbox paru meter I
I ìQESA$LOAD$IO$JOB I IJ
RQESLOADIOJOB] I

S

S$LOAD$IO$JOB 26
S$OVERI-AY 36
Svstem cal l c l ict ion:rrr ' 3

U

IJs inq thc lorLr jer rcsul t scgnìcnt (A$LOAD) 6

Application k)ader System Calls Index- I

intel'

EXTENDED iRMX@II
HUMAN INTERFACE

SYSTEM CALLS
REFERENCE MANUAL

In te l Corporat ion
3065 Bowers Avenue

S a n t a C l a r a , C a l i f o r n i a 9 5 0 5 1

C o p y r i g h t ' 1 9 8 8 , l n t e C o r p o r a t r o n , A l l R ì g h t s R e s e r v e d

PREFACE

This manual documents the system calls of the Human Interlhce, a subsystem of the
iRMX@ ll Operating System. The information provided in this manual is intended as a
reference to the system calls and provides detailed descriptions of each call.

READER LEVEL

This manual is intended for programmers who are tamiliar with the concepts and
terminology introduced in the Ertended. |RMX II Nucleu.s User's Cuide and with the PL/M-
28h programming langu:rg.- .

CONVENTIONS

System call names appear as headings on the outside upper corner of each page. The first
appearance of each system call name is printed in ink; sullsequent appearances are in
black.

Throughout this manual, system calls are shown using a generic shorthand (such as
CGETCHAR instead of RQCGET$CHAR). This convention is used to allow easier
alphabetic arrangement of the calls. The actual PLIM-286 external-procedure names
must be used in
all calling sequences.

You can also invoke the system calls from assembly langurge, but you must obey the
PL/M-286 calling sequences when doing so. For more information on these calling
sequences refer tct fhe Extended iRMX II Programming Techniques Refercnce Manual.

Human lnterface Svstem Calls l

CONTENTS

iRMX@ II HUMAN INTERFACE SYSTEM cALLs PAGE

Human Interface Svstem Calls

HUMAN INTERFACE
iRMX@ II

SYSTEM CALLS

1.1 INTRODUCTION
' l

he I Iuman Inter lacc sys lcnr ca l ls descr ibed in th is rnanual are presented in a lphat le t ica l
sc(luence iLnc l are not oruunized by lunct ion. However, the cal ls are groupcr ì accord ing to
funct ion in the Svstenr Cìr r l l l) ìc t ionary. For each cal l , the t i t l lowing in forrnat ion ìs
p rov ic iecì :

. B r . < f I r r n i t i , ' r r r r I J ! s r r i l ' t i , ' n

. Cu l l ing scc lucncc 1ì r r rn l r t

. Input pî r i ìn l r tcr t lc f in i t rons, i l uPpl icablc

. Output pr ì r i rmetcr c le f in i t ions, i t appl icable

o C--onsic lenr t ions anr l consequcnccs of c l r ì l usage

. Potent ia l exccpt ion codcs lnd thei r possib le causes

This mlnul l rc lers to PL/M-286 dr t l types such as BYTE,, WORD, and SE,LI ICTOR,
lLnt i er tent led iRì \ {X I I d i r ta t r l res such as STRINC. Thesc wort ls , whcn uset i us t lu ta
t) 'pes, i r re a l rv lvs c l ip i ta l izcc l ; the i r def in i t ions are found in Appendix A of thc Er tc t tdct l
iRIIX II l ltutnn ltltt:lt.(: Lt-tcr'-s Guidt. This manual also refers to an extcnclcd iRMX II
datr ì t) ' [)c ca l lcc l

' I
OKF-N. You c lec lure l TOKEN to bc l i tc ra l ly a SELECTOR. The word

" token' in lou 'crcr rsc reîers to l r vu luc that the extended iRMX I I Operut ing Systent
l rss igns to ln ot r j rc t .

' l
he operr r t ine s \s tenÌ retunìs th is va lue to a TOKEN (the c lata type)

' , r 'hen i t crerr tes the ohjcc l .

l l you r r re a r ìe \ \ ' L ìscr o1 the I Iunt i rn ln ter l lce ca l ls , you should rev iew the pars ing
consjclcrirtions rn the l:.ttottltd iRIIX II ltunwt Intc(uce U.;cr's Cuitlc belirre u,rìting your
source cot ìe. \ 'ou shoulc l ; r lso rcv ieu ' the forr t ra t o î the re leascd L lunt i tn ln ter l r rce
crrrnnlrncls.

-l 'hq'
lrre describetl in Lhe Opcrutur's Guítlc 7it

' l ' |rc
E.rtuuL:rl iRi\lX II Ìluntatt

IrtÍofutt,.

' l
h is n lurL l r l ussunlcs thul vou l r fc lunr i l i r r r u ' i th lernrs anr i concel) Ìs of the ext tnt l t ' r l

ìRMX ll C)perating Svstem. ll vou arc not. you should rcad lttroduúiot1 To Tlt E.rtended
ill.IlX Il ()ttrutittg Sr'.;tt:trt und lhc chapters ìn the Eterded iRlvlX II Nut:lcu.r llser's Guitl.
t l ì l ì t re ler to thc tern ls " rnenrorv pool" and "cata log."

I I u m : r n I n t c r l ì r c c S r s l c n t (a l l s

i I IN IXI ') I f I IT]NÍAN INI 'F]RF 'ACI] SYSI 'ENT CALLS

1.2 System Cal l Dict ionary

System Cal Synopsis Page

l/O ProcessingCalls

CSGET$INPUT$CON N EC I ION Return an EIOS connection for
t h è c ó a . f a . l i . ^ ' t f l a

CGETOUTPUT$CON N ECTION Return an EIOS connectlon for
the specified output f i le. 27

Command Pars ng Calls

CSBACKUP$CHAR Move the parsing buffer pointer
back one bye.

CSGE I$CHAR Get a character frofrì the cornmand line 12

CGETlN PUTSPATH NAl,,4 E Parse the cornmand line and return an
input pathname.

CGETPARAlv'IETER Parse the command line for the next
pararnetet and return t as a
keylvord name and a va ue.

CGETOUTPUT$PATH NAN']E Parse the command line and return
an o!tpul pathname.

CSSEI$PARSESBU FFE R Parse a buffer other than the
cur ren t command l lne .

CSGETSCON1MAN D$NAL| E Return lhe com.nand name by which
lhe cLrrrent comanand was invoked

21

36

33

56

[.4essage Processing Ca ls

CS FO R f\,44T$ EX C E PT IO N Create a default rnessage for an
exception code and place it in a
user buffer.

Send a message to the command
output (CO) and read a response
from lhe command input (Cl).

Send a message to the operalor's
terminal and return a response from
that lerminal.

CSSEN DCORESPONSE

4B

CSSENDEOR ESPONSE

I{uman Interface System Calls

iRN'IX@ II HUMAN INTERFACE SYSTEM CALLS

System Call Synopsis Page

Command Processing Calls

C$CREATE$COÀ,,lMAND$ Create a command connection and
CONNECTION return a token.

C$DELEIE$COMt'.4AN D$' Delete a specific command
CONNECIION connection.

C$SEND$COMMAND Concatenate command lines into
lhe data stfuctufe created by
CREATE$COMMAND$CONNECTION and
ihen invoke the command. 40

Program Control Calls

CSSETSCONîROL$C Change the defaull response for
a CONTROL'C. 54

I l umln ln ter face Srsfenr Cal ls

C$ BACKLJ P$ClìAR, l commanrl parsing cal l , moves the parsing buffer pointer back one
l)\,tc.

. \ L L $ B A , K U l S l l \ \ . . r r - p l S p l r) :

Output Parameter
c\ccl) t$ l) t r A POINTER to a WORD in which the Human Interface returns í ì

con t l i t ion code.

Descript ion

Whtn l rn o l) rnr tor inrokes l r cor ' : r r .nuncl . the commancl 's per înìeters ure p l l rcec l in a pars ing
bLr l l r r . Thc (l$ I I , , \CIKU P$CHA R svstem caÌ Ì a l lows lou to n ' love the p l rs ing bul ' l l r 's
pointer b i rck onc chl ì r iLctcr t ì r r each occurrence of the cal l

Exception Codes

I :SOK 000011 No except ional concì i t ions u'ere cncounterecì.

l is l - l l \ l11 000-1l l The parsing bul ler 's pointer is at the str ì r t of the
command.

000511 The job that issucd the cr l l is not ln l /O job.

Human lnter face System Cal ls

C$CREAI'E$CON4 N'fAND$CONNECTION.I.C$CREA]'E$COM MAN D$CONNECTI
C)t.\;, a comnrand processing call, creates an extended iRMX Il object called a comrland
conncct ion thut is rer;uired in order to invoke commands programmlr t ical ly.

conmand$ cor rn : RQ$ C$CREAîESCOMMAND$CONNECTION (de f au l t$c i ,
d e f c u l t $ c o . t l ; g s . e x c e p t $ p r r r ;

lnput Parameters
r ic f l rLr l t$c i

t lc lau l t l lco

flirgs

A' I OKEN for a connoct ion that is used l ìs thc :CI : (console input)
l ì r r l rny commancls you invoke us ing th is cornnland connect ion.

A ' lOKL.N l ìu a connect ion th l t is uscd as the:ClO: (console
output) l ì) r an1 ' cor lnr rnds you invoke us ing th is cornnranr l
conncct ion.

. . \ WORD used to i r ìd icate that the l lunran ln ter lace shor : l t l
rc turn an E$ERROR$OU' l 'PU' l ' except ion codc i l thc s l ,s tcm cal l
CI$SL.ND$EO$ RESPONSE is used by any task. 11 the uscr rv;rnts
thc excel) t ioD code, then the paranÌcter is set to one (l) ; o thcr-u ise,
thc pî r i rmeter must equal zero (0) .

A TOKEN u 'h ich receives a token îor thc nerv commlrnt l
connect ion.

A POINTER to a WORD in which the Flumln ln ter face returr ìs a
conci i t ion cocie.

Output Parameters
command$conn

exccllt$pt r

Description

You c: rn use th is c l r l l u 'h tn vou \ \ , în t to invoke a command progru mmlr t icuÌ ly instencl o f
in tcntct ive l r ' . l t pror ic ies l r l) lucc to s tore command l ines unt i l the contn l tnc l invocut ion i .
c(l n l l) lc l e .

' I
hc c i r l l c rc l r les l rn ex lent lcd iRl \ ' lX l t ob ject ca l led a command connect ion und returns a

tokcn l ì r r that conrnrrnd connect ion. The C$SEND$COMMAND sl ,s tcnt ca l l can use th is
lokcn to send conrrnund l ines to thc command connect ion, where they ' r [c s tored unt i l the
conunlrnd invocrr t ion is cunrp letc . The command cor ì Ì ìect ìon a lso del ines def l ru l t :C[: l rnd
:CO: connect ions th l i t : r re used bv any commands invoked v ja th is conrmand connect ion.

Human I n ter face Sls tem Cal ls

C$CREATESCOM MAN DSCON N ECTION

Although a job can contain multiple command connections, the tasks in a job cannot
create command connections simultaneously. Attempts to do this result in an
E$CONTEXT exception code. Therefore, it is advisable for one task to create the
command connections for all tasks in thejob.

A possible application where the parameter "flags" might be set to one is when you want
to write a custom CLI to perform batch jobs in the background. When any of the
background batch jobs attempt to communicate with the terminal through
C$SEND$EO$RESPONSE, the Human Interface issues an exception code. In this way,
the Human Interface keeps all the jobs in the background. Note that the Human
Interface CLI does not provide resident background or batch processing capability.

Exception Codes

E$OK 0000H No exceptional conditions were encountered.

E$ALREADY$ATTACHED 0038H While creating a STREAM file, the Extended
I/O System was unable to attach the
:STREAM: device because another task had
already invoked a Basic l/O system call to
attach the :STREAM: device.

E$CONTEXT 0005H At least one of the following is true:

o Two command connections were being
created simultaneously lty two tasks in the
same job.

. The calling task's job was not created by the
Human Interface.(Refer to the Ertended
iRMX II Ertended I/O System User's Guide
for information.)

EDEVDETACHING 0039H The :STREAM: device, the defaultgci device, or
the default$co device was in the Drocess of
beins detached.

Human Inlerface Svstem Calls

E$DEVFD

E$EXIST

E$FNEXIST

E$IFDR

E$INVALID$FNODE

EIOMEM

E$LIMIT

C$CREATE$COM MAN D$CON N ECTION

0022H The Extended I/O System attempted the
physical attachment of the :STREAM: device.
This device had formerly been only logically
attached. In the proccss, the Extended I/O
System found that the device and the device
driver specified in the logical attachment are
incompatible. The operating system would not
have returned this exception code if the
:STREAM: device had been properly
configured.

0006H The default$ci or default$co parameter is not a
token for an existing object.

0021H The :STREAM: file does not exist or is marked
for deletion.

002FH The Extended l/O System attempted to obtain
information about the default$ci or default$co
connection. Ho*'ever, the request for
information resulted in an invalid file driver
request.

003DH The fnode assrriated È'ith the specified file
(:Cl : or :CO:) is inval id. Delete the f i le.

0042H The Basic I/O System joh does not currently
have a block of memory large enough to allow
the Human lnterface to create a stream file.

0004H At least one of the lbllowing is true:

. The object directory of the calling task's job

has already reached the maximum object
directory size.

o The calling t:rsk's job has exceedcd its object
l imi t .

o The calling task's job (or that job's default
user ohject) is alreacìy involved in 2-55
(decimal) I/O operations.

r The calling task's job was not created by the
Human Interfacc. (Refer to lhe Extended
|RMX II Ertended I/O System User's Guùle
for information.)

Human Interface Svstem Calls

C$CREATE$COM MAN D$CON N ECTION

ELOGNAME$NEXIST 0045H The call was unable to find the logical name
:STREAM: in the object directories of the local
job, the global job, or the root job.

E$MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E$NOPREFIX 8022H The calling task'sjob does not have a valid
default prefix.

ENOTCONNECTION 8042H The default$ci or default$co parameter is a
token for an object that is not a connection to a
file.

ENOTLOG$NAME 8040H The logical name :STREAM: refers to an object
that is not a file or device connection.

E$NOUSER 8021H The callins task's iob does not have a valid
tlefault uslr objec'i.

E$PARAM 8004H The system call lbrced the Extended I/O
System to attempt the physical attachment of
the :STREAM: device, which had formerly been
only logically attached. In the process, the
Extended I/O System found that the stream file
driver is not properly configured into your
system, so the physical attachment is not
possible.

E$SUPPORT 0023H The default$ci or default$co device connection
was not created by this job.

Iluman Interface System Calls

C$DELETE$CONf MAND$CONNECIION, a command processing call, deletes a
command connection o\ect and frees the memory used by the command connection's
(iata structurcs.

CALL RQ$ c $ D l ìLETDS cOMMAND$ CONNECT ION (c o runand$ c onn , excepr$pt r) ;

Input Parameter
command$conn A TOKEN for a val id command conncct ion.

Output Parameter
except$ptr A POINI 'ER to a WORD in which the Human Inter face returns a

condi t ion code.

Description

This cr r l l c le lc tcs u conrmlrnd connect ion object prev iously def ined in a
Cl$Cl l ìEA IE$(lOl \ l \ '1AND$CIONNEC' l ' lON cal l and re leases the memory used by the
contnr i rnc i cc l r . rnect ion s d l ì ta s t ructures.

Exception Codes

E$OK

E$AXIST

0000H No exceptional conditions were encountered.

0006H The command$conn parameter is not a token
for an exist ing object.

E$TYPE l Ì002H The command$conn parameter is a token for an
olrject that is not a command connection otrject.

Human I n ter lace Ststem Cal ls

C$FORMAT$EXCEPTION, î message processing call, creates a detault message lbr a

,qiven exccption corle and writes that nìessage into a user-provided string.

CALL RQCFOMAT$E) iCEPTl0N(buf f$p , bu f f$max, except ion$code,
r e s e r v e d $ b y t e . e x c e p t $ p t r) :

lnput Parameters
bull$nrax A WORD that specifies the maximum number of bytes that may be

contlinetl in the string pointed to by buff$p.

exception$cocle A WORD containing the exception code value for which a message
is tL ' l .c crc . r tc t l .

reserved$byte A IIYTE reserved for future use. lts value must be one (l).

Output Parameters
buf f$p A POINTER to a STRING into which the Human Inter face

concateniìtes the formatted exception message.

excrpt$ptr A POINl 'ER to a WORD in which the Human Inter l ìce returns. l
co nt l i t ion code.

Descript ion

Ci$F'OIìMAT$EXCEPTION causes the Human lnterface to create a message for the
exception code.

'l 'he
message consists of the exception code value and exception code

nrnemonic in the fo i lorv ing fo lmat :

v l l u e : m n e m o n i c

u hcre the rnnemonics r r r e pt ov ided l ry t l ie Human ln ter face f rom an in ternal tab le and
rrre listed i.n the Optrator'.s Cuùle To The Extended iRMX II IIuman Interface.

The crÌl concatenates the message to the end of the string pointed to by the buftSp
pointer and updates the count byte to reflect the addition. If a string is not already
prcsent in the bul ler , thc I i rs t byte oî the but fer must be a zero. The message added by
aISFORMAT$EXCEPl- lON wi l l not be longer than 30 characters (not inc luc l ing the
ìenqth byte) .

l 0 Human lnlerface Svstem Cal ls

C$FORMAT$EXCEPTION

Exception Codes

E$OK 0000H No exceptional conditions were encounterecl.

E$PARAM tl004H An undefined exception codc value was
specified.

E$STRING 8084H The message to be returned exceeds the length
limit of 255 characters.

L,$STRING$BUFFER 0081H The buffer pointed to by the bull$p parameter
is not large enough to contain the exceptìon
message.

Human Interface Svstem Calls l l

CGETCHAR, a cr)nìmarìd parsing call, gets a character from the parsing buffer.

, h . î r - R Q S . S T i E T $ t g a p ,
" x c e p t $ p t r) ;

Output Parameters
chur A BYTE in which the Human Interface places the next character

of the parsing buffer. A null (00II) character is returned when the
parsing bulÍèr's pointer is at the end of the parsing bulTer.

except$ptr A POINTER to a WORD in which the Human lnterface returns a
condit ion code.

Descript ion

When an oper : ì tor invokes a command, the command's parameters are p laced in a pars ing
buifer. The C$CEl-$CHAR svstem call gets a sing.le character from that buffer and
nroves the prrs ing bul fer pointer to the next character , Consecut ive ca l ls to
Cl l jGET$CIIAR return (ot ì r tc ì r t ìve churacters t Ìom the pars ing buî fer .

Exception Codes

E$OK 0000i1 No except ional condit ions were encountered.

tr$(IONTEXT 0005H 'fhe calling task's job was nor creared by rhe
Human Interface. Refer to the Extended |RMX
II Extended I/O System User's Guide for
information.

E: iLlMlT 0004H Ar leasr one of the fol lowing siruar ions
occurred:

o The object directory of the calÌing task's jolr
has already reached the nraxintum ol.rject
directory size.

. The cal l ing task's job hus exceeded i ts object
l imit .

. The calling task's job was not created by the
Human lnterface. Refer to the Ertended
iRMX II Extended I/O S,-stent User's Guide
for inlormution.

t2 Human Interface System Calls

CSGET$CHAR

E$MEM 0002H The memory available to the calling task's job is
not sufficient to comolete the call.

l luman Intcr face Svstem (-a l ls l-ì

CGETCOMMAND$NAME, a command parsing call, obtains the pathname of the
command that the onerator used when invokine the command.

CALL RQ$ C cET col f ldL\D $NA. | , lE (path$name$p, name$max, except$ptr ; ;

Input Parameter
nunrc$mux A WOIìD thiìt specifies the miuimum length in bytes of the string

grointcd to t ry the path$name$p parameter.

Exception Codes

E$OK

I r$ l - lM Ì ' f

0000H No except ional condi t ions were encountered.

000,1H The caÌling task's job was not created by the
Human Interface.

E$PA'|HNAME$SYNTAX 003EH The specified pathname contains invalid
chiìracters.

Output Parameters
pír th$name$p A POINTE,R to a but lèr that receives a STRING containing the

n l rnr c of thc command.

cxcept$ptr A POINI'L.R to a WORD in which the Human Interlace returns a
conrl i t ion code.

Description

lî a command neecis to know the name under which it was invoked, the
ClGETCOMMAND$NAME returns this information. This information is available to
e l rch commanci and is s torcd in a but fer that is separate f rom the pars ing huf fer .
Therc lbre, c t l l ins C$CìI lT$COÌ\ ,1MAND$NAME does not obta in in format ion f rom the
pers ing t ru l lèr , nor c loes i t movc the purs ing pointer .

It the operator invokes the command u'ithout specifying a logical name, the Human
Inter t lce automut icr r l lv scrr rches a numtrer of d i rector ies for the command. In such cases,
the vaìue returner l hv CCETCOMMAND$NAME also inc ludes the d i rectory name
(sLrch i rs :SYSTElv l : , :PROG:, or :$:)as a pref i r to the command name.

t { Human Inter face Svstem Cal ls

CGETCOMMAND$NAME

E$STRING$BUFFER 0081H The buffer pointed ro by the path$name$p
parameter is not large enough to contain the
command name.

E$TIME 0001H The calling task'sjob was not created by the
Human Interface.

Human Interface System Calls 15

CGETINPUT$CONNECTION, an I/O processing call, returns an Extended I/O
System connection to the specified input file.

connect ion : RQ$ C $c ET$ INPUT $ CONNECTION (pa th$name $ p . excepc$pt r) ;

Input Parameter
plth$name$p A POINTER to a buffer that receives a STRINC. (The path of the

specified input lile.)

Output Parameters
cr;nnection A TOKE,N in which the operating system returns the token for the

connect ion to the speci f ied pathname.

except$ptr A POINTER to a WORD in which the Human Interface returns a
cordi t ion code.

Description

CGETINPUT$CONNECTION obtaìns a connection to the specified file. This
connection is open lirr reacling and has the following attributes:

. Rcud only

. Accessib le to u l l users

. Has tuo 102'1-byte buf fers (This is the defaul t s ize.)

CGETINPUT$CONNE,C't lON causes an error message to be displayed at the
operator's terminal (:CO:) whenever the operating system encounters an exceptional
conciition. The exception:ri condition that triggers the error message can either be one of
those listecl for CGETINPUT$CONNECTION or it can be one of those associated with
the Extenrlerl I/O System cells S$ATTACH$FILE and S$OPEN. The following messages
can occur :

. < n i r l h n i r n ì e . l i l c , . i i ' e s n o t e x i s l

T l r c i r r p u t l i l t ' L l , ' c s n , ' t c x i \ 1 .

r <pathname>, inv l l id f i le t1 'pe

The input f i le uas r r c i l r tu f i le und a d i rectory was requi red, or v ice versa.

o < pathname > , invul id ìog ica l name

t ó Human I n ler face Svslem Cal ls

CGETINPUT$CONNECTION

The input pathname contains a logical name that is longer than 12 characters, that
cont:rins unmatched colons, inva[id characters, or zero characters.

< pathname > , logical name does not exist

The input pathname contains a logical name that does not exist.

< pathname >, READ access required

The user does not have read access to the input file.

o < pr thnanre) , <except ion value > : < except ion mnemonic>

An except ional condi t ion occurret l when CGETINPUT$CONNECTION at tempted
to obt : r in thc in l)ut connect ion. The < except ion value> and <except ion mnemonic>
portions ol the rlessuge indicate the exception code encountered. Refer to "Exception
Codes" in this call descriptìon and to the descriptions of S$ATTACH$FILE and
S$OPtrN in fhe Ettcrulctl |RMX II Extendad I/O System Call.s Reference Manual.

Exception Codes

E$OK

E$ALREADY$ATTACHED OO38H

E$CONTEXT

EDEV I)ETAC]I I ING

E$DEVFD

E$EXIST

E$FACCESS

0000H No except ional condi t ions werc encounterec i .

0005I I

The device containing the f i le speci f ied in the
path$name$p parameter is alreacly at tached.

At least one of the fol lowing is t rue:

. The cal l ing task's job was not created by the
Human lnterface. (Refer to the Ertcnded
iRMX ll Ertended I/O System User'.s Guide
ibr intbrmation.)

. ' fhe cal l ing task's job was not created by the
Human Interface.

0019H f'he device specilìed in the path$name$p
parameter is in the process of being detachecl.

0022H The call attcmpted the physical attachment of a
device that had formerly heen only logically
at tached. ln the process, the cal l founcl that the
dcvice and the cievice clriver speciîied in the
logica l a t tachment were incompat ib le.

0006H The specified device does not exist.

002óH The specfìed connection does not have read
access lo the file.

I{uman Interface System Calls t7

CGETINPUT$CONNECTION

E$FNEXIST

E$FTYPE

E$ILLVOL

E$INVALID$FNODE

EIOTTARD

EIOMEM

EIONOT$READY

0021H At least one of the following is true:

. The target file does not exist or is marked
for deletion.

. While attaching the file pointed to by the
path$name$p parameter, the call attempted
the physical attachment of the device as a
named device. It could not complete this
process because the device specified when
the logical attachment was made was not
def ined dur ing conf igurat ion.

0027H The path pointed to by the path$name$p
parameter contained a file name that should
have been the name of a directory, but is not.
(Except for the last path component, each file in
a pathname must be a named directory.)

002DH The call attempted the physical attachment of
the specified device as a named device. This
device had formerly been only logically
attached. The caLl found that the volume did
not contain named files. This prevented the call
from completing physical attachment because
the named file driver was requested during
logical attachment.

003DH The fnode for the specified file is invalid, so the
file must be deleted.

0052H While attempting to access the file specified in
the path$name$p parameter, the call detected a
hard I/O error. Another call is useless.

0042H While attempting to create a connection, the
call needed memory from the Basic I/O
subsystem's memory pool. However, the Basic
I/O System job does not currently have a block
of memory large enough to allow this call to run
to completion.

0053H While attempting to access the file specified in
the path$name$p parameter, the call found that
the device was offline. Operator intervention is
required.

l 8 Human Interface System Calls

EIOSOFT

EIOUNCLASS

E$LIMIT

ELOGNAME$-NEXIST

ELOGNAME$SYNTAX

E$MEDIA

E$MEM

E$NOPRITF IX

ENOTI-OG$NAME

E$NOUSER

CGETI N PUT$CON N ECTION

0051H While attempting to access the fiÌe specified in
the path$name$p parameter, the call detected a
soft I/O error. It tried the operation again but
was unsucr:essful. Another try might be
successful.

0050H An unknown type of I/O error occurred while
this call tried to access the file given in the
path$name$p parameter.

00041I At least one of the following is true:

. The calling task's job or the job's cìetault
user object is already involved in 255
(decimal) I /O operat ions,

. The calling task's job was not created by the
Human Interface.

. The object l imit of the cal l ing jotr has been
reacheti.

004-5H The pathname for the specified device contains
an explicit logical name. The call was unable to
f ind this narne in the object director ies of the
local job, the global job, or the root job.

0010H The pathname pointed to by the path$name$p
parameter contains a logical name.

'l
his logical

name contains an unmatched colon, is longer
than 12 characters, has zero (0) characters, or
contains invalid characters.

0011H The speci l ied device was of l l ine.

0002H The memory avaì lable to the cal l ing task's job is
not sulîicient to conìplcte the call.

The calling task's job does not have a valid
default prefix.

lJ040l I The logical name spcci f ied by the path$name$p
parameter does not refer to a file or device
connection.

8021H The calling task's job does not have a valid
default user.

8022H

Human I n ter lhce Svstem Cal ls l 9

CGETINPUT$CON NECTION

E$PARAM 8004H At least one of the following is true:

. The system call forced the Extended I/O
System to attempt the physical attachment
of the device referenced by the
path$name$p parameter. This device had
formerly been only logically attached. In the
process, the Extended I/O System found
that the logical attachment referred to a file
driver (named, physical, or stream) that is
not configured into your system, so the
physical attachment is not possible.

. The connection to the specified file cannot
be opened for reading.

E$PATHNAME$SYNI'AX 0038H The specified pathname contains invalid
charaàters.

E$SHARE 0028H The file sharing attribute currently does not
allow new connections to the file to be ooened
for reading.

E$STREAM$SPECIAL 003CH The call attempted to attach a stream file and in
so doing issued an invalid stream file request.

20 Human Interl'ace System Calls

CGETINPUT$PATHNAME, a command parsing call, gets a pathname from the list of
input pathnames in the parsing buffer.

CALL RQSC CET INPUT$ PATHNME (path$narne $p , pach$name$rnax,
e x c e p t 9 p c r) ;

Input Parameter
path$name$m:rx A WORD that specifies the maximum length in bytes of the string

pointed to by the path$name$p parameter. The m:r-rimum length
that you can specify is 256 bytes (255 ch:rracters for the pathname
ancl onc bvte for the count).

Output Parameters
path$name$p

except$ptr

A POTNTER to a
the pathname list.
more pathnanìes.

A POIN'I-ER to a
condit ion code.

STRING which receives the next pathname in
A zeroJength string indicates that there are no

WORD in which the Human Interface returns a

Description

The first calÌ to C$GE'I $INPUT$PATHNAME retrieves the entire input pathname list
and moves the parsing pointer to the next parameter. CGETINPUT$PATHNAME
stores the list in an internal buller and returns the first pathname in the strìng pointed to
by the path$name$p parame tcr. Succeeding calls to CGETINPUT$PATHNAME
return additional pathnurnes from the input pathname list but do not move the parsing
pointer. CGETINPUT$PATHNAME denotes the end of the pathname list by
return ing l zero- length str ing.

CGETINPUT$PAl'HNAME acccpts wild-card characters in the last component of a
pl ì thníìnle. l t t re i ì ts a pathname that contains a wi ld-card as a l ist of pathnames. To
obtain each plìthname, it searches in the parent directory of the component containing the
wild-card, conrparing the "wild-carded" name with the names of all files in the directory. It
returns the next p: ì thname that matches.

The pathname returnecl try CGETINPUT$PATHNAME can be used for any purpose.
However, it is most often used in a call to CGETINPUI$CONNECTION, to obtain a
connect lon.

Human Interface Svstem Calls 21

CGETINPUT$PATHNAME

Exception Codes

ESOK 0000H No exceptional conditions were encountered.

E$ALREADY$AT-fACHED 0038H The device containing the file pointed to by the
path$name$p parameter is already attached.

E$CONTEXT 0005H At least one of the following is true:

. The calling task's job was not created by the
Human Interface. (Refer to the Extended
|RMX II Extended I/O System User's Guide
for more information.)

. The task called
CGETOUTPUT$PATHNAME before
calling CGETINPUT$PATHNAME.

EDEVDETACH ING 0039H The clevice pointed to by the path$name$p
parameter is in the process of being detached.

E$DEVFD 0022H The Extended I/O System artempred rhe
physical attachment of a device that had
formerly been only logically attacheci. In the
process, the Extended I/o System found that
the device and the device driver specified in the
logical attachment were incompatitrle.

E$EXIST 000óH At least one of the following is true:

. The connection to the parent directory of
the file pointed to by the path$name$p
parameter is not a token for the existing job.

r The calling task's job was not created by the
Human Interface.

E$FACCESS 0026H The connection used to open the cìirectory does
not have read access to the directory.

E$FLUSLIING 002CH The device containing the directory was in the
process of being detached.

E$FNEXIST 0021H At least one of the following is true:

. The target file does not exist or is marked
for deletion.

22 Human Interface Svstern Calls

E$FIYPE

E$IFDR

E$ILLVOL

E$INVALID$FNODE

EIOFIARD

EIOMEM

CGETINPUT$PATHNAME

. While attaching the parent directory of the
file pointed to by the path$name$p
parameter, the I/O System attempted the
physical attachment of the device as a
named device. lt could not complete this
process because the device specified when
the logical attachment was made was not
defined during configuration.

0027H The path pointed to by the path$name$p
parameter contained a fi.le name that should
have been the name of a <Jirectory, but is not.
(Except for the last file, each file in a pathname
must be a named directory.)

002FH The specified file is a stream or physicll file.

002DH The call attempted the physical attachment of
the specified device as a named device. This
device had formerly been only logically
attached. The call found that thevolume did
not contain named fiìes. This prevented the caU
from completing physical attachment because
the named file driver was requested durìng
logical attachment.

003DH The fnode for the specified file is invalid, so the
file must be deleted.

0052H While attempting to access the parent directory
of the f i le pointed to by the path$name$p
parameter, the call detected a hard I/O error.
This means that another call is probably useless.

0042H While attempting to create a connection, this
call needed memory from the Basic I/O
System's memory pool. However, the Basic I/O
System job does not currently have a block of
memory large enough to allow this call to run to
completion.

Human Interface Svstem Calls 23

CGETINPUT$PATHNAME

ElONOT$READY 0053H While attempting to access the parent directory
of the file pointed to by the path$name$p
parameter, this calÌ detected that the device was
offJine. Operator intervention is required.
C$FORMAT$EXCEPTION returns the value
EIONOT$READY for this code.

ElOSOt--T 005lH While attempting to access the parent directory
of the file pointed to by the path$name$p
parameter, this call detected a soft I/O error. It
tried the operation again, but was unsuccessful.
Another try might be successful.

ElOUNCI-ASS 0050H An unknown type of I/O error occurred while
this call tried to access the parent directory of
the file pointed to by the path$name$p
pa ra met er.

E$LIM IT 0001H At least one of the fol lowing is t rue:

o The calling task's job has already reached its
object limit.

. The cal l ing task's job or the job's defaul t
user object is already involved in 255

ldecimal) I /O operat ions.

o The cal l ing task's job was not created by the
Human lnterface.

E$LIST 0085H The last value of the input pathname list is
missing. For example, 'ABLE,BAKER," has no
value following the second comma.

ELOGNAME$NEXtST 0045H The pathname for the specified device contains
an explicit logical name. The call was unable to
find this name in the object directory of the
local job, the global job, or the root job.

E,LOGNAME$SYNTAX 0040H The pathname pointed to by the patb$name$p
parameter contains a logical name that has an
unmatched colon, is longer than 12 characters,
has zero (0) characters, or contains invalid
chîracters.

0014H The soecified device was off-line.

2+

I]$MEDIA

Human Interface Svstem Cal ls

E$MEM

E$NOPREFIX

ENOTLOG$NAME

E$NOUSER

E$PARAM

E$PARSE$TABLES

E$PATHNAME$SYNlAX

E$SHARE

E$STREAM$SPECIAL

E$STRING

E$STRING$BUFFER

CGETINPUT$PATHNAME

0002H The memory available to the calling task's job is
not sufficient to complete the call.

8022H The calling task'sjob does not have a valid
default prefix.

iì040H The logical name specified by the path$name$p
parameter does not refer to a file or device
connection.

8021H The calling task'sjob does not have a valid
default user object.

8004H At least one of the following is true:

. The Extended I/O System attempted the
physical attachment of the device pointed to
by the path$name$p parameter. This devicc
had formerly been only logically attached.
In the process, the Extentled I/O System
found that the logical attachment referred
to a file driver (named, physical, or stream)
that is not configured into your system, so
the physical attachment is not possible.

. The connection to the parent directory
cannot be opened for reading.

ll0tì()H The call detected an error in an internal table
used by the Human Interface.

003EH The specified pathname contains invalid
cnaracrers.

0028H The connection to the parent directory cannot
be opened for reading.

003CH The Extended I/O System issued an invalid
stream file request when an attempt to attach a
stream fiìe failed.

8084H The pathname to be returned exceeds the
length limit of 255 characters.

00ulH The buffer pointed to by the path$name$p
parameter was not large enough for the
pathname to be returned.

I luman Inter face Svstem Cal ls 25

CGETINPUT$PATHNAME

E$SUPPORT 0023H This call attempted to read the parent directory
of the pathname pointed to by the path$name$p
parameter. However, the file driver
corresponding to that directory does not
support this operatron.

E$WILDCARD 0086H The pathname to be returned contains an
invalìd wild-card soecification.

26 Human Interface Svstem Calls

CGETOUTPUT$CONNECTION, an I/O processing call, parses the command line
and returns an Extended I/O System connection referring to the requested output file.

connect ion = RQ$ C $c ET$ OUTPUT$ CoNNECTION (pathgnamegp , preposi r ion,
e x c e p t $ p r r) ;

lnput Parameters
path$name$p A POINTER to a STRING containing the parhname of the file to

be accessed.

preposrtion A BYTE that defines which preposition to use to create the output
[ile. tJse one of the ibllowing values to specify the preposition
nl o(ie:

Value Meaning

0 Use same preposition as was returned by
the last C$GE ì$OUTPUT$PATHNAME call

1 T O

2 OVER

3 AFTER

4-25-5 Undefined, results in an error

Output Parameters
connection A TOKb,N in which the Human Interface returns a token for the

connection to the output file.

except$ptr A POTNTER to a WORD in which the Human Interface returns a
condit ion code.

Description

CGETOU1'PUT$CONNECTION obtains a connection to the speciîied file.

This connection is open for writing and has the following attributes:

. Wri te only

. AccessibÌe to all

. Has two 102,1-byte buffers

Human Interface Svstem Calls 27

CGETOUTPUT$CON N ECTION

If the call to CGETOUTPUT$CONNECTION specifies the TO preposition and the
output file already exists, CGETOUTPUT$CONNECTION issues the following
message to the terminal (:CO:):

<pathnamè>, already exists, OVERI.IRITE?

lf the operator enters Y, y, R, or r, CGETOUTPUT$CONNECTION returns a
conne,ction to the existing file, allowing the command to write over the file. Any other
response causes CGETOUTPUT$CONNECTION to return an E$FACCESS
exception code.

CGETOUTPUT$CONNECTION causes an error message to be displayed at the
operator's terminal (:CO:) whenever an exceptional condition occurs. The exceptional
condition that causes the error message can be one ofthose listed below or one associated
with an Extended I/O System call. The following messages can occur:

. <pathname>, DELETE access required

The user does not have delete access to an existing file.

. <pathname>, directory ADD entry access required

The user does not have add entry access to the parent directory.

. < pathname > , file tlocs not exist

The output file does not exist.

. <pathname>, invalid file type

The output file was a data file and a directory was required, or vice versa.

o < pathname > , invalid logical name

The output pathname contains a logical name longer than 12 characters, contains
unmatched colons, contains invalid characters, or zero characters.

o <pathname>, logical name does not exist

The output pathname contains a logical name that does not exist.

. <pathname>, <exception value>: < exception mnemonic>

An exceptional condition occurred when CGETOUTPUT$CONNECTION
attempted to obtain the output connection. The <exception value> and <exception
mnemonic > portions of the message indicate the exception code encountered. Refer
to "Exception Codes" in this call description and to the Extended |RMX II Extended
I/O Svstem User's Guide -

Exception Codes

0000H No exceotional conditions were encountered.

28

E$OK

Human Interface System Calls

E$ALREADY$ATTACHED OO38H

E$CONTEXT

EDEVDETACt-IING

E$DEVFD

E$EXIST

E$FACCESS

E$FNEXIST

CGETOUTPUT$CON N ECTION

The Extended I/O System was unable to attach
the device containing the file because the Basic
I/O System has already attached the device.

The calling task's job was not created by the
Human Interface.

0039H The device referred to by the path$name$p
parameter was in the process of being detached.

0022H The call attempted the physical attachment of a
device that had formerly been only logically
attached. In the process, the call found that the
device and the device driver specified in the
logical attachment were incompatible.

0006H The connection parameter for the device
containing that file is not a token for an existing
object.

0026H At least one of the following is true:

. The default user for the calling task's job did
not have update access to an existing file
and/or add-entry access to the parent
directory.

. The TO or OVER preposition was specified
and the default user for the calling task's job
did not have the ability to truncate the file.

0021H At least one of the following is true:

. The target file does not exist or is marked
for deletion.

. While attaching the file pointed to by the
path$name$p parameter, the Extended I/O
System attempted the physical attachment
of the device as a named device. It could
not complete this process because the
device specified when the logical attachment
was made was not defined during
configuration.

0005H

Human lnterface System Calls 29

C$G ET$OUTPUT$CON N ECTION

E$FTYPE

E$IFDR

E$ILLVOL

E$INVALID$FNODE

EIOfIARD

EIOMEM

hlONOT$READY

Erosotrt'

0021H The path pointed to by the path$name$p
parameter contained a file name that should
have been the name of a directory, but is not.
(Except for the last component, each file in a
pathname must be a named directory.)

002FH The call requested information about the
specified file, but the request was an invalid file
driver request.

002DH The call attempted the physical attachment of
the specified device as a named device. This
device had formerly been only logically
attached. The call found that the volume did
not contain named files. This prevented the call
from completing physical attachment because
the named file driver was requested during
logical attachment.

003DH The fnode for the specified file is invalid, so the
lile must be deleted.

00-52H While attempting to access the file specified in
the path$name$p parameter, the call detected a
hard I/O error. A retry is probably useless.

0042H While attempting to create a connection, this
call needed memory from the Basic I/O
System's memory pool. However, the Basic I/O
System job does not currently have a block of
memory large enough to allow this call to run to
completion.

00-53H While attempting to access the file specified in
the path$name$p parameter, the call detected
that the device was offline. Operator
intervention is required.
C$FORMAT$EXCEPTION returns the value
EIONOT$READY for this code.

005lH While attempting to access the file specified in
the path$name$p parameter, the call detected a
soft I/O error. It tried the operation again but
was unsuccessful. Another try might be
successlul.

l0 Human Interl'ace System Calls

C$G ET$OUTPUT$CON N ECTION

EIOUNCIASS 0050H An unknown type of I/O error occurred while
this call tried to access the file given in the
path$name$p paramcter.

EIOWRPROT 0054H Whi le at tempting to obtain an input connect ion
to the file specified in the path$name$p
parameter, this calì found that the volume
containing the file is write-protected.

E$LIMIT 0004H At least one of the following is true:

. The calling task's job or the job's default
user object is alreaciy ìnvolvecl in 2,55
(decimal) I /O operat ions.

e The calling task's job was not created by the
Human lnterface.

o The calling task's job has reached its object
Iimit. (Refer to tl\e Lytended |RMX II
Extended I/O System IJser's Gri.lr for more
informat ion about I /O jobs.)

ELOGNAME$NEXIST 0045H The speci f ied pathname contains an expl ic i t
logical name. The cal l was unable to f incl th is
name in the object dìrectory of the local job, the
global job, or the root job.

ELOGNAME$SYNTAX 0010H The pathname pointed to by the path$name$p
parameter contains a logìcal name. However,
the logical name contains unmatched coÌons, is
longer than 12 characters, contains invalid
characters, or contains zero characters.

E$MEDIA 00.14H The specified device was off-line.

E$MEM 0002H The memory avai lable to the cal l ing task's jo l ; is
not sufficient to complete the call.

E,$NOPREFIX 80221I The cal l ing task's job does not have a val id
default prefix.

ENOTLOG$NAME 8040H The logical name speci f ied by the path$name$p
parameter does not refer to a file or device
connectlon.

E$NOUSER 8021H The calling task's job does not have a valid
default user object.

Human Interface Svstem Calls 3 l

C$G ET$O UTPUT$CON N ECTION

E$PARAM fì004H The system call forced the Extended I/O
System to attempt the physical attachment of
the device referenced by the path$name$p
parameter. The device had formerly been only
logically attached. In the process, the Extended
I/O System found that the logical attachment
referred to a file driver (named, physical, or
stream) that is not configured into your system,
so the physical attachment is not possible.

E$PATHNAME,$SYNTAX 0038H The specified pathname contains invalid
characters.

E$PREPOSITION 0087H One of the following is true:

. The command line contained an invalid
preposition value (a value greater than 3).

. The command line contained a zero as the
preposition value. This indicated that the
same preposition was to be used as in the
last call to
CGET OUTPUT$CONNECTION.
However, this is the first call to
C$G ET$O UTPUT$ CONNECTION.

E$SHARE 002tlH The new connection cannot be opened for
writing.

E$SPACE 0029H One of the following is true:

. The volume is full.

. The volume already contains the maximum
number of files.

E,$STREAM$SPECIAI- 003CH The Extended I/O System issued an invalid
stream file request when an attempt to attach a
stream file lailed.

1) Human Interface Syslem Calls

CGETOUTPUT$PATHNAME, a command parsing calÌ, gets a pathname from the list
of output pathnames in the parsing buffer.

preposi r Íon : RQ$ CS GET$OUTPUT$ PATHNAME (path$name $p , path$narne$max,
d p f r r , l t (n , , t n , r t (n p w n p n t (n r r \ '

Input Parameters
path$name$miìx A WORD that specifies the mzrximum length in bytes of the string

pointcd to by the path$name$p parameter. The maximum length
thrìt you can specify is 256 bytes (255 characters for the pathname
lrnd one bvte for the count) .

ciefa u lt$ou tput$p A POINTEIì. to a STRING containing the command's default
stant lar c l output. l f the f i rst invocat ion of th is system cal l does not
encountcr a TO/OVER/AFTER preposition, the text of this
parameter will be used as though it had appeared in the command
line. The text must specify TO, OVER, or AFTER for the output
mocìe. Examples: TO :CO: or TO :LP:.

Output Parameters
preposition A IJYTE describing the preposition type that

C$GETSOUI'PUT$PATHNAME encountered. You can pass this
vrlue to CGETOUTPUT$CONNECTION when obtaining an
output connection tÒ the fìle. The value will be one of the
îoIIou'ing:

Value Meaning

1 T O
2 OVER
.{ AFTER

piìth$nrìme$p A POINTE,R to a bufTer that receives a STRING. (The next
pl thname in the pathname I ist .)

cxccpr$prr A POÌN]'E I.l. to a WORD in which thc l{uman lnterface returns a
condit ion code.

Description

You should not call CGETOUTPUT$PATHNAME before first calling
CGET INPUT$PATHNAM E.

I luman Interf'ace Svstcm Calls J.'

C$G ET$OUTPI.!T$PATH NAM E

The first call to CGETOUTPUT$PATHNAME retrieves the preposition
(TO/OVER/AFIER) and the entire output pathname list; it then moves the parsing
pointer to the next parameter. If the parsing buffer does not contain a preposition and
pathname list, CGETOUTPUT$PATHNAME uses the default pointed to by the
default$output$p pai ameter (and does not move the parsing pointer). After retrieving
the pathname list, CGETOUTPUT$PATHNAME stores it in an internal buffer,
returns the first pathname in the string pointed to by the path$name$p parameter, an<l
returns the preposition in the preposition parameter. Succeeding calìs to
C$GElSOUTPUT$PATHNAME return additional pathnames from the output
pathname list (as well as the preposition), but they do not move the parsing pointer.
CGETOUTPUT$PATHNAME denotes the end of the pathname list by returning a
zero-length string in the STRING pointed to by path$name$p.

CGETOUTPUT$PATHNAME accepts characters with a wild-card as the last
component of a pathname. lt generates each output pathname based on this pathname
and wild-card, the corresponding pathname and wild-card that was input to
CGETINPUT$PATHNAME, and the most recent input pathname returned by
C$GE]$INPUT$ PATH NAME.

The pathname returnetl by CGETOUTPUT$PATHNAME can be used for any
purpose. However, it is most often used in a call to CGETOUTPUT$CONNECTION
to obtain a connection to the file. In such a case. CGETOUTPUT$CONNECTION
processes the TO/OVER/AFTER preposition. lf the pathname is used as input to a
system call other than CGETOUTPUT$CONNECTION, the interpretation of the
TO/O\tsR/AFTER preposition is the user's responsibility.

Exception Codes

E$OK

E$CONTEXT

E$DEFAULT$SO

0000H No exceptional conditions were encountered.

0005H The calling task's job was not created by the
Human lnterface.

8083H The default output string pointed to by
default$output$p contained an invalid
preposition or pathname.

34 Human Interface Svstem Calls

CGETOUTPUT$PATHNAM E

E$LIMIT 0004H At least one of the following is true:

o The calling task'sjob has already reached its
object limit.

. The calling task's job was not created by the
Human Interface.

o The calìing task'sjob or the job's default
user object is already involved in 255

ldecimal.l I/O operations.

ESMEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E$PATIINAME$SYNTAX 003EH The specified pathname contains invalid
characters.

E$STRING 8084H The rrathname to be returned exceeds the
lengÀ limit of 255 characters.

E$STRING$BUFFER 0081H The buffer pointed to by the path$name$p
parameter was not large enough for the
pathname to be returned.

E$UNMATCHED$LISTS OOtlBH The numbers of files in the input and output
lists are not the same.

E$WILDCARD 008óH The output pathname contains an invalid wild-
card snecification.

Human Interface System Calls 35

GET$PARAMETER, a command parsing call, gets a parameter from the parsing buffer.

more : RQ$ C$G ET$ PARA-IIETER (name $p , narne$max, value$p, value$nax,
i n d e x $ p , p r e d i c t $ l i s t $ p , e x c e p t $ p t r) ;

Input Parameters
n l rme$max

value$max

predic t$ l is t$p

A wORD that specifies the maximum length in bytes of the string
pointed to by the name$p parameter. The maximum length is 256
bytes (255 characters for the name and one byte for the count).

A WORD that specifies the maximum length in bytes of the string
pointed to hy the value$p parameter. The maximum length is
6-5535 ciecimal bytes.

A POINTE,R to a STRING$TABLE, as described in Appendix C
of the Extenrled |RMX II Human Interface User's Guide, thaî
specifies the values that this system calì accepts as prepositions.
The predict$list$p POINTER should be NIL if you do not intencl
t (ì retr icv(pirr i rmeters that use preposi t ions.

A BYTE value that indicates whether or not the current call to
CGETPARAMETER returned a parameter. A value of 00H
inciicutes that there are no more parameters (and that no
panìmeter was returned); a value of 0FFH indicates that a
para meter was returned.

A POINTER to a buffer that receives the kepvord portion of the
parameter. If this parameter does not contain a kelnvord portion,
the l-luman Interface returns a null (zeroJength) string.

A POINTE,R to a buffer used to store a STRING$TABLE, as
ciescribed in Appendix C of the Extended |RMX lI Human Interface
User's Guide, that receives the value portion of the parameter. If
the value portion contains a list of values separated by commas, the
IIuman Interface returns the values to the strins table one vaÌue
Der str ins.

Output Parameters
more

nume$p

value$p

36 Human Interface Svstem Calls

CGETPARAMETER

index$p A POINTER to a BYTE that receives the index to the list of
prepositions pointed to by predict$list$p. This index identifies the
name$p keyword as a preposition and identifies it out of the list of
possible prepositions. If the predict$list$p list is empty, or if the
key'rvord name is not contained in the predict$list$p list, the system
call returns a value ofzero for the index. That is, the index wil be
non-zero only if a keyrvord exists and it is one of the prepositions in
the predict$list$p list.

A POINTER to a WORD in which the Human Interface returns a
condition code.

except$ptr

Description

CGETPARAMETER retrieves one parameter from the parsing buffer and moves the
parsing pointer to the next paranìeter. The parameter can be one of the following:

. keFvord/value-list parameter usingparentheses

. ke)'rvord/value-list parameter using an equal sign

. kenvord/value-list parameter with the keyword as a preposition

. value-list without a key'rvord

A clescription of the types, format, and syntax of acceptable parameters is provided in the
Exfended iR lX II Human Intelace User's Guide.

CGETPARAMETER places the key.word portion of the parameter in the string
pointed to by name$p; it places the keyrvord list in the string table pointed to by value$p

Without input from you, CGETPARAMETER cannot determine whether groups of
characters separated by spaces are separate parameters or a single parameter that uses a
preposition. CGETPARAMETER uses the list of prepositions that you supply in the
string tablc pointetl to by predict$list$p to determine the prepositions that can appear.
When CGETPARAMETER retrieves a parameter, it obtains, from the parsing buffer,
the next group of characters that are separated by spaces. These characters are checked
against those in the predict$list$p list. If the characters match one of the values in the list
CGETPARAMETER realizes that the characters represent a preposition and not an
entire parameter; it then obtains the next group of characters separated by spaces as the
vulue nort ion of the Darameter.

Exception Codes

E$OK 0000H No exceotional conditions were encountered.

Human Interface SYstem Calls 17

C$GETSPARAMETER

E$CONTEXT

E$CONTINUED

E$LIMIT

E$LIST

E$LITERAL

0005H The calling task's job was not an I/O job.
(Refer to the Extended .RMX II Ertended I/O
System User's Guide îor information about l/O
jobs.)

0083H The call found a continuation character in the
parse buffer. Command lines should not
contain continuation characters.

0004H At least one of the following is true:

. The calling task's job has already reached its
object limit.

. The calling task's job was not an I/O job.
(Refer to the Extended |RMX II Extended
I/O System User's Guide for information
about I /O jobs.)

008-5H At least one of the following is true:

. The parameter contains an unmatched
parenthesis.

r A value in the value list is missing or an
improper value was entered. Examples of
both these conditions are

Value

A,B,

Comments

No value following second
comma.

A,B = C,D The equal sign can not be
used unless it is between
quotes: 'B = C' is valid.

A,B(C,E),F The parentheses can not be
used in a value unless it
is between quotes or set
off by commas.
A,B,(C,E),F is valid.

0080H The call found a literaÌ (quoted string) in the
parsing buffer with no closing quote. This
condition should not occur in the command line
buffer.

0002H The memory available to the calling task's job is
not sufficient to complete the call.

38

E$MEM

Human Interface Svstem Calls

CGETPARAMETER

E$PARAM 8004H The predict$list$p paramerer pointed to a string
table, but the index$p parameter was set to zero
(0).

E$PARSE$TABLES 8080H The call found an error in an internal table used
by the Human Interface.

E$SEPARATOR 0082H The call found an invalid commancl separator in
the parsing buffer. This condition should not
occur in the command line buffer. The
following is a list of invalid command
separators:

E$STRING 8084H The string to be returned as the paramerer
name or one of the parameter values exceeds
the length limit of 255 characters.

E$STRING$BUFFER 0081H The str ing to be rerurned as the parameter
name or one of the parameter values exceeds
the buffer size orovided in the call.

Iluman Interface System Calls 39

C$SEND$COMMAND, a command processing call, sends command lines to a command
connection created by C$CREATE$COMMAND$CONNECTION and, when the
command is comolete. invokes the command.

CALL RQC SENDSCOMMAND (command$conn, I ine$p . connand$except$p t r ,
e x c e p t $ p t r) :

Input Parameters
command$conn A TOKEN for the command connection that receives the

.^omm:rnd ìine.

line$p A POINTER to a buffer used to store a STRING containing a
((, r ì rmlnd l ine to execute.

Output Parameters
comma nd$except$ptr A POINTER to a WORD in which the Human Interface

returns a condition code indicating the status of the invoked

::iìî,îiJ:'ì.':J,xT""::T,i:$sit"11;:"iii'il''
except$ptr A POINTER to a WORD in which the Human Interface

returns a condition code indicating the status of the
C$SEN D$COMMAND svstem call.

Description

You can use this system call u'hcn you want to invoke a command programmatically
instead of interactrvell'. It stores r command line in the command connection created by
the C$CREATE$COMN'fAND$CONNECTION call. concatenates the command line
with any others alrelrly storcci there, and (if the command invocation is complete) invokes
the commanci.

' l
he command can be any standard Human Intertàce command (as

descrilred in the Opt:rutor's Guirle To The Extended |RMX II Human Inte(ace) or a
c(l rnmand t l ìa t vou cre i l te .

rl0 Human lnterface Svslem Calls

C$SEND$COMMAND

As described in greater detail in the Erle nded íRMX II Universal Development Intelace
User's Guide, a contmand invocation can contain several continuation marks. The
continuation mark (.t.) indicates that the command line is continued on the next line. If
the command line sent by C$SEND$COMMAND is continued on another line (that is,
contains a continuation mark), the Human Interface returns an E$CONTINUED
exception code and does not invoke the command. You can then call
C$SEND$COMMAND any number of times to send the conrinuation lines.

C$SEND$COMMAND concatenates the original command line and all continuation lines
into a single command line in the command connection. It removes all continuation
marks and comments from this command line.

Whcn the command invocation is complete (that is, the line sent by
C$SEND$COMMAND does not contain a continuation mark). the Human Interface
parses the command pathname from the command line. If no exception conditions halt
the process at this point, the Human lnterface requests the Application Loader to load
and execute the command.

An Application Loader call creates an I/O job for the command, and validates the header,
group definition and segment definition records of the command's object file. Refer to
fhe APX 28ó Utilities User\ Guide For Ettended |RMX II Systems for explanations of
segments, groups and object lile formats.

C$SEND$COMMAND returns two condition codes: one for the C$SEND$COMMAND
caÌl and one 1ìrr the invoked command. The word pointed to by the except$ptr parameter
returns the C$SEND$COMMAND conditions, as described under the "Exception Codes"
heading in this command description. The WORD pointed to by the
command$except$ptr returns the invoked command's condition codes; the values
returned depend on the command invoked. The E$CONTROL^$C exception code can be
returned at ei ther olacc.

NOTE
When t C$SEND$COMMAND call is made, the Human Interface sets
the CONTROL-C semaphore to the default Human Interface
CONTROL-C handler. If you previously set the CONTROL-C handler, it
must be set again after making this call. For more information see the
Extended |RMX II Human Inteface User's Guide.

Exception Codes

E$OK 0000H No exceotional conditions were encountered.

Human Interface Svstem Calls 4 l

CSSEND$COMMAND

E$ALREADY$ATTACI{ED OO38H

EBADGROUP

EBADHEADER

EBADSEGDEF

E$CHECKSUM

E$CONTEXT

E$CONTINUED

EDEVDETACHING

E$DEVFD

The Extended I/O System was unable to attach
the device containing the object file because the
Basic l/O System has already attached the
device.

0061H The object file represented by the command's
pathname contained an inval.id group definition
record.

0062H The object file represented by the command's
pathname does not begin with a header record
for a loadable object module.

0063H The object file represented by the command's
pathname contains an invalid segment
definition record.

0064H At least one record of the object file
represented by the command's pathname
contains a checksum error. This situation coultl
occur if the CHECKSUM amount calculated
during the read operation did not match the
CHECKSUM field of the record being read.

0005H The calling task's job was not created by the
Human Interface.

0083H The operating system detected a continuation
character while scanning the command line
pointed to by the line$p parameter. This
condition should occur if the command line is to
continue on the next line.

0039H The device containing the object file was in the
process of being detached.

0022H The Extended I/O System attempted the
physical attachment of a device that had
formerly been only logically attached. In the
process, the Extended I/O System found that
the device and the device driver specified in the
logical attachment were incompatible.

0065H The Application Loader encountered an
unexpected end of file on the object file
represented by the command's pathname.

12

E$EOF

Human Interface System Calls

C$SEND$COMMAND

E$EXIST 0006H At least one of the following is true:

. The call detached the device containing the
object fiìe before completing the loading
operation.

o The command$conn parameter is not a
TOKEN for a command connection.

E$FACCESS 0026H The default user for the callng task'sjob does
not have read access to the object file.

E$FLUSHING 002CH The device containing the object file was being
detached.

E$FNEXIST 0021H At least one of the following is true:

. The file in the command's pathname is
either marked for deletion or does not exist.

. While attaching the file specified in the
line$p parameter, the Extended l/O System
attempted the physical attachment of the
device as a named device. It could not
complete this process because the device
specified when the logical attachment was
made was not defined during configuration.

0027H The path pointed to by the path$name$p
parameter contained a component name that
should have been the name of a directory, but is
not. (Except for the last file, each file in a
pathname must be a named directory.)

002DH The call attempted the physical attachment of
the specified device as a named device. This
device had formerly been only logically
attached. The call found that the volume did
not contain named files. This prevented the call
from completing physical attachment because
the named file driver was requested during
logical attachment.

E$F-TYPE

E$ILLVOL

E$INVALID$FNODE 003DH The fnode for the specified file is invalid, so the
file must be deleted.

EIOHARD 0052H While attempting to access the object file, this
call detected a hard I/O error.

Human Interface Svstem Calls 43

C$SENDSCOMMAND

EIOMEM

EIONOT$READY

EIOSOFT

EIOUNCLASS

E$LIMIT

E$LITERAL

ELOGNAME$NEXIST

0042H The Basic I/O System does not currently have
enough memory to allow the Human Interface
to create the connection necessary to allow this
cal l to run to complet ion.

0053H While attempting to access the object file, this
call found that the device was off-line. Operator
intervention is required.
C$FORMAT$EXCEPTION returns the value
EIONOT$READY when given this code.

0051H While attempting to access the object file, this
call detected a soft I/O error. It tried again, but
was not successful. Another try might be
successful.

0050H An unknown type of I/O error occurred while
this call tried to access the object file.

0004H At least one of the following is true:

o The calling task's job has already reached its
object limit.

. The calling task's job , or the job's default
user object, is already involved in 255
(decimal) l /O operat ions.

. The new I/O job, or its default user, is
already involved in 255 (decimal) I/O
operatrons.

. The calling task'sjob was not created by the
Human Interface. (See to the Ertendzd
|RMX II Extended I/O System User's Guide
for information.)

0080H The call found a literal (quoted string) with no
closing quote while scanning the contents of the
command line pointed to by the line$p
parameter.

0045H The command's pathname contains an explicit
logical name, but the call was unable to find this
name in the object directory of the local job, the
g.lobal job, or the rootjob.

44 Human Interface System Calls

C$SEND$COMMAND

ELOGNAME$SYNTAX 0040H The pathname pointed to by the path$name$p
parameter contains a logical name. However,
the logical name contains an unmatched colon,
is longer than l2 characters, has zero (0)
characters, or contains invalid characters.

E$MEDIA 0044H The device containing the object file was off-
l ine.

E$MEM 0002H The memory available to the calling task's job,
the new I/O job, or the Basic l/O System job is
not sufficient to complete the call.

ENOLOADER$MEM 0067H At least one of the following is true:

o The memory pool of the newly created l/o
job does not currently havc a block of
memory large enough to allow the
Application Loader to run.

. The memory pool of the Basic I/o System's
job does not currently have a block of
memory large enough to allow the
Application Loader to run.

E$NOPREFIX 8022H The calling task's job does not have a valid
default prefix.

E,NOSTART 006CH The object file represented by the command
pathname does not specify the entry point for
the program being loarletJ.

ENOTCONNECTION 8042H The default$ci or default$co parameter is a
token for an object that is not a file connection.

ENOTLOG$NAME 8040H The command pathname contains a logical
name. The logical name of an object that is
neither a device connection nor a file
connection.

E$NOUSER 8021H The calling task's job does not have a valid
default user.

Human I n ler face Svstem Cal ls 45

C$SEND$COMMAND

E$PARAM

h,$PARSE$'TAtsLES

E$PATHNAME$SYNTAX

ESREC$FORMAT

lrRE,CLE,NGTI I

ERECTYPE

ESEGBOUNDS

TTSSEPARATOR

8004H The Extended I/O System attempted the
physical attachment of a device containing the
object file. This device had formerly been only
logically attached. While attempting this, the
Extended I/o System found that the logical
attachment referred to a file clriver (named,
physical, or stream) thaî is not configured into
your system. Hence, the physical attachment is
not possible.

8080H The call found an error in an internal table.

003EH The command's pathname contains invalid
characters.

0069H At least one record in the object file contains a
record fbrmat error.

006AH The object file contains a record that is longer
than the Loader's maximum record length. The
Application Loader's maximum record length is
a parameter specified during the configuration
of the Loader. (Refer to the Extended iRMX II
I nr eracî ive C o nf guration U ti I ity Refe re nce
Manual for detatls.)

00óBH At least one of the following is true:

. At least one record in the file being loaded
is of a type that the Application Loader
cannot process.

. The Application Loader has encountered
records in a sequence that it cannot process.

0070H The Application Loader created multiple
segments in which to load inlbrmation. One of
the data records in the object file specified a
load address outside of the created segments.

0082H The call found an invalid separator while
scanning the command line. The following is a
Iist of the invalid command separators: > <,
< > , l l . l , [, a n d] .

tJ0u4H The size of the command's pathname exceeds
the length Ìimit of 255 (decimal) characters.

1 6

E$S'fRING

Human Interface System Calls

C$SEND$COMMAND

E$STRING$BUFFER 0081H The size of the command's pathname exceeds
the size of the command name buffer specified
during the configuration of the Human
Interface.

E$TIME 0001H The calling task's job was not created by the
Human Interface.

E$TYPE 8002H The command$conn parameter is a token for an
object that is not a command connection.

l luman Interface Svstem Calls 47

C$SEND$CO$RESPONSE, a nessage processing call, sends a message to :CO: and reads

a resDonse from :CI: .

C A L L R Q S C $ S E N D $ C O $ R E S P O N S E (r e s p o n s e $ p , r e s p o n s e $ r n a x , n e s s a g e S p ,
e x c e p t q p t r) ;

Input Parameters
response$max A WORD whose value specifies the maximum length in bytes of

the string pointed to by the response$p parameter. The value in
response$max must equal the length of the string plus one
(str inglength + l) . I f response$max is zero or one, no response
îrom :CI: will be requested; control returns to the calling task
t m n t r J i l t t c l v

message$p A POINTER to a STRING containing the message to be sent to
:CO:. lf NlL. no messace is sent.

Output Parameters
response$p A PO[N-[E,R to a buffèr that receives the operator's response from

:C l l : .

except$ptr A POINTER to a WORD in which the Human Interface returns a
. L ' t r , . l i t i r r t t L r . r t i c .

Description

When used with lll its lertures, C$SEND$CO$RESPONSE sends the string pointed to by
message$p to :CO: and rvaits for a response from :CI:. It places this response in the string
pointed to by response$p. Ho*,ever, if message$p is NIL, C$SEND$CO$RESPONSE
omits sending the messugc to :CO:; if either response$miu or response$p is NIL, it does
not waìt for a response from :Cl:. Therefore, the operations performed by
C$SEND$CO$ RESPONSE, cìepend on the values of the message$p and response$max
r)a rameters. as follows:

message$p response$max Actron

NIL zero Perform no I/O
NIL non-zero Send no message, wait for input
NOT NIt- non-zero Send message, wait for input
1.\OT NIL zero Send message, don't wait

I8 Human Interface System Calls

C$SEND$CO$RESPONSE

If C$SEND$CO$RESPONSE requests a response from :CI:, output from other tasks can
be displayed at :CO: while the system waits for a response from :CI:.

The difference between the C$SEND$CO$RESPONSE and C$SENDEORESPONSE
calls is that C$SEND$EO$RESPONSE always sends messages to and receives messages
from the operator's terminal; input and output cannot be redirected to another device. In
contrast, C$SEND$CO$RESPONSE sends messages to :CO: and receives messages from.
:CI:; therefore, programs such as SUBMIT can redirect this input and output.

0000H No exceptional conditions were encountercd.

0005H The calling task'sjob was not created by the
Human Interface.

Exception Codes

E$OK

E$CONI'EXT

II$CONN$OPEN 00351I At least one of the fol lowing is t rue:

o The connection to :Cl: was not open for
reading or the connection to :CO: was not
open lbr writing.

. The connection to :CI: or :CO: was not
open.

. The connection to :CI: or :CO: was openecl
with A$OPEN rather than S$OPEN.

E$EXIST 0006H The token value fbr :CI: or:CO: is not a token
for an existing object.

E$FLUSHINC 002CH The device containing the :CI: and :CO; f i les
was being detachecl.

EIOHARD 0052H Whi le at tempting to aocess the :CI: or :CO: f i ie,
the operating system detected a hard I/O error.

EIONOT$READY 0053H Whi le at tempting to access the :CI: or :CO: f i le,
this call found that the device was ofl'-line.
Operator intervention is requiretl.
C$FORMAT$EXCEPTION returns the value
EIONOT$READY 1br this code.

EIOSOF"T 0051H Whi le at tempting îo access the :CI: or :CO: f i le,
this call detected a soft I/O error. It tried
again, but was unsuocessful. Another try might
be successful.

I Iuman In ler face S\ s lcm Cal ls 49

C$SEND$CO$RESPONSE

ElOUNCLASS 0050H An unknown type of I/O error occurred while
this call tried to access the :CI: or :CO: file.

Ir-$ |O$WRPROT 0054H While attempting to obtain a connection to the
:CO: file, this call found that the volume
containing the file is write-protected.

[,$LIMll' 0004H At least one of the following is true:

r The calling task's job has already reached its
object limit.

. The calling task'sjob, or the job's default
user object, is already involved in 255
(decimal) I/O operations.

. Thc calling task'sjob was not created by the
Human Interface.

l'-$M LNI 0002H The memory available to the calling task's job is
not suffìcient to complete the call.

tsNOTCONNECI'ION 8042H The call obtained a token for an object that
should have been a connection to :CI: or :CO:,
but was not a file conner'tion.

E$PARAM 800411 The calì attempted to write beyond the end of a
physical file.

E$SPACE 0029H One of the following is true:

o The output voÌume is full.

The call attempted to write beyond the end
of a physical file.

E$STREAM$SPECIAL 003CH When attempting to read or wri te to :CI: or
:CO:, the Extended I/O System issued an
invalid stream file request.

I$SLJPPORT 0023H The connect ion to :CI: or :CO: was not created
by this job.

E$TIM E 000 lH The calling task's job was not created by the
Human Interface.

5{) Human Intef'ace Svstem Calls

C$SEND$EOS RESPOI.vSE, a message processing call, sends a message to and reads a
resporlse fronr the oDerator's terminal.

C A L L R Q $ C $ S E N D $ E O $ R E S P O N S E (r e s p o n s e $ p , r e s p o n s e $ m a x , m e s s a g e $ p ,
e x c e p t $ p t r) ;

lnput Parameters
responsc$m:rx A WORD that specifies the maximum length in bytes of the string

pointed to by the response$p parameter. The value in
response$max must equal the length of the string plus one
(st r ing length + l) . l f response$max is zero (ì r one. no rcsponsc
from the opcrator's tcrminal will be requested; control returns to
thc caì l ing task immediate ly .

nressage$p A POINTER to a buf fer conta in ing the messtge to be sent to thr
oJ)era lor 's terminal . I f NIL, no messagc is sent .

Output Parameters
res l ronse$p A POINTER to a S ' l 'RING that receives the operator 's response

l ront the ternt ina l .

except$ l) t r A POINTER to a WORD in which the Human Inter face returns a
eorr r l i t ion code.

Description

When used with al l i ts lèatures, CI$SEND$EO$RESPONSE sends the str ing pointcd to by
message$p to thc operiìtor's tcrminal and waits for a response from the operator. It
placcs this response in the string pointed to by response$p. However, ìf message$p is
NtL, C--$SEND$EO$ RtrsPONSE omits sending the messi ìge to the operator; i f e i ther
response$rrar is zero or response$p is NI L, it does not wait for a response. Therefore.
the operat ions performed try C$SBND$EO$RESPONSE depend on the values of the
message$p and response$nlìx l)itrììrìteters, as ibllows:

nresslrge$n response$max Act ion

NIL zcro Perform no l /O
NIL non-zero Send no message, wait for input
NOT Nlt- non-zcro Se nd mcssage, waìt for input
NOl- NIL zcro Scnd message, don' t wait

Human I nlerface Srstem Cal ls 5r

C$SEND$EO$RESPONSE

If C$SEND$EO$RESPONSE requests a response from the terminal, no other output can
be displayed at the terminal until C$SEND$EO$RESPONSE receives a line terminator
fr om the operator. However, the operator can choose to ignore the displayed message by
cntcr ing a l ine terr l inator only.

The main distinction between the C$SEND$CO$RESPONSE and
C$SEND$EO$RESPONSE calls is that C$SENDEORESPONSE always sends
rìlessages to and receives messages from the operator's terminal; input and output cannot
be redirected to another device. In contrast, C$SEND$CO$RESPONSE sends messages
to :CO: and receives messages from :CI:; therefore, programs such as SUBMIT can
recl i rect th is input ancl output.

Exception Codes

II$OK 0000H No exceptional conditions were encountered.

EIjCION1.,ù$OPEN 0035H At least one of the following is true:

. Either, the connection to the operator's
terminal was not open for reading or it was
not open for wr i t ing.

. The connection to the operator's terminal
was not open.

. The connection to the operator's terminal
was opened with A$OPEN rather than
S$OPEN.

I:$(IONTE,X'f 0005H The calling task's job was not created by the
Human Interface.

ESERROR$OU'| PUT 8085H The call to SENDEORESPONSE was
attempted through an invalid method.

E$EXIST 0006H The token values for the operator's terminal are
not for existing objects.

E$FLUSHING 002CH The operator's terminal was being detached.

L.lONOI'SREADY 0053H While attempting to access the terminal, this
call found that the device was offline. Operator
intervent ion is requ i red.
CSFORMAT$EXCEPTION returns the value
EIONOT$READY when siven this code.

52 Human Interface Svslem Calls

C$SEND$EO$RESPONSE

E$LIMIT 0004H At least one of the following is true:

. The calling task's job has already reached its
object limit.

. The calling task'sjob or thejob's default
user object is already involved in 255
(decimal) I/O operations.

. The calling task's job was not created by tlie
Human Interface.

E$MEM 0002H The memory pool of the calling task's job does
not currently have a block of memory large
enough to allow this system call to run to
completion.

ENOTCONNECTION 8042H The call obtained a token lbr an object that
should have been a connection to the operator's
terminal, but was not a file connection.

E$PARAM 8004H The call attempted to write beyond the end of a
physical file.

E,$SI 'REAM$S PE.CIAL 003CH When attempting to read or wri te to the
operator's îerminal, the Extended l/O System
issued an invalid stream file request.

E$SUPPORT 0023H The connection to the termìnal was not created
by this job.

E$TIME 0001H The calling task's job was not created by the
Human Interface.

Human Interface Syslem Calls JJ

CSETCONTROL$C, a program control call, changes a calling task's CONTROL-C
exchange to the semaphore specified by the first parameter in the C$SEfiCONTROL$C
c l l l .

c A L L R Q $ C $ s E T $ c O N T R O L $ C (c o n t r o l $ c $ s e m a p h o r e , e x c e p t S p t r) ;

Input Parameter
controrcsemaph'lrre

iJ:f'.Xff+iài::','Jffi:.':Tii::::::'iil:lffieive
units

NOTE
When a CSE,NDCOMMAND cal l is made, the Human lnterface sets
the CONTROL-C semaphore to the default Human Interface
CONTROL-C handler. If you previously set the CONTROL-C handler, it
must be set again aiter making this call. For more information see the
Extended |RMX II Hunnn Inteface User's Guide.

Output Parameter
except$ptr A POINTER to a WORD in which the Human Interface returns a

! (, I l ! l i t i () t l L () Jc .

Descript ion

This call Ìets vou change thc r,iefault response to a CONTROL-C entry to a response that
nleets the needs of vour tesk. (The Human Interface's default CONTROL-C action is to
clelcte the acting job--for example, any Human Interface command.)

One unit will be sent to the semaphore each time a CONTROL-C is typed. Any units
scnt to the semaphore that exceed the niaximum number specified during system
con figurat ion will be ignoreci.

A job running in background mode cannot set CONI'ROL-C.

Exception Codes

0000H No exceptional conditions were encountered.

5,1

E$OK

Human Interface Svstem Calls

CSETCONTROL$C

E$CONTEXT 0005H The calling task's job was not an I/O job.
(Refer to the Extended LRMX II Extended I/O
System User's Guide for information about l/O
jobs.)

E$LIMIT 0004H At least one of the following is true:

. The calling task's job has already reached its
limit.

. The calling task'sjob was not created by the
Human Interface.

. The calÌing task'sjob or the job's default
user object is already involved in 255
(decimal) l/O operations.

E$TYPE 8002H The TOKEN given in the parameter
controlcsemaphore is not a TOKEN for a
semaphore.

Human Interface Svstem Calls 5f,

CSETPARSE$BUFFER, a command parsing call, permits parsing the contents of a
buffer other than the command line buffer whenever the parsing system calls are used.

of fset : RQCSET$PARSE$BUFFER(buf f$p, buf f$rnax, except$ptr) ;

Input Parameters
buff$p A POINTER to a buffer containing a STRING containing the text

to be parsed. If the buff$p is NIL, the buffer used for parsing
reverts to the command line buffer and the buff$max parameter is
ignored.

buff$max A WORD that specifies the length in bytes of the STRING pointed
to by the bufl$p parameter.

Output Parameters
offset A WORD in which the Human Interface places the byte offset

from the start of the parsing buffer of the last byte parsed in the
previous parsing buffer.

except$ptr A POINTER to a WORD in which the Human Interface returns a
condìtion code.

Description

CSETPARSE$BUFFER allows you to parse buffers other than the command line. You
can change buffers at will; you can also revert to the command line parsing buffer by
calling CSETPARSE$BUFFER with buff$p=NIL. However, only one parsing buffer
per job can be active at any given time.

When called, CSETPARSE$BUFFER sets the parsing pointer to the beginning of the
specified buffer. However, it also returns a value (in the offset parameter) that identifies
the last byte parsed in the previous parsing bufler. This gives you the ability, when
switching back to the previous buffer, of positioning the parsing pointer to its previous
position with successive calls to CcETCHAR.

Note that CSETPARSE$BUFFER does not affect the buffer from which
CGETINPUT$PATTINAME and C$GET$OUTPUT$PATHNAME retrieve
pathnames. These system calls always obtain their pathnames from the command line.

56 Hurnan Interface Svstem Calls

CSETPARSE$BUFFER

Exception Codes

E$OK 0000H No exceptional conditions were encountered.

E$CONTEXT 0005H The calling task's job was not created by the
Human Interface. (Retèr to the Extended |RMX
II Extended I/O System User's Guide for
information.)

E$LIMIT 0004H At least one of the following is true:

o The calling task'sjob has already reached its
object limit.

. The calling task's job was not created by the
Human Interface.

E$MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

Human Interface Svstem Calls f , /

INDEX

c
C$BACKUP$CIIAR 4
C$DELETE$COMMAND$CONNECTION 9
C$FORMAT$EXCEPTION IO
CGETCIIAR 12
CGETCOMMAND$NAME I1
CGETINPUT$CONNECTION I6
CCETINPUT$PATHNAME 2 I
CGETOUTPUfi CONNECTION 27
CGETOUTPUT$PATHNAME 33
CGETPARAMETER 36
C$SEND$CO$RESPONSE 48
C$SEND$COMMAND 40
C$SEND$EO$RESPONSE 51
CSETCONTROL$C 54
CSETPARSE$BUFFER 50

E

E$LIST, improper value examples 38
E$SEPARATOR, list of invalid command separators 39, 46
Errors returned to:CO: from

CGETOUTPUT$CONNECTION 28
CGETINPUT$CONNECTION 16

F

Format of exception code from C$FORMAT$EXCEPTION l0

S

System call dictionary 2

v
Values of the preposition parameter of

CGETOUTPUT$CONNECTION 27
CGETOUTPUT$PATHNAME 33

Human Interfac€ Svstem Calls Index-l

intel"

EXTENDED iRMX@II
UDI SYSTEM CALLS

REFERENCE MAN UAL

In te l Corporat ion
306 5 Bowers Avenue

5 a n t a € 1 a r a , C a l i f o r n i a 9 5 0 5 1

Copyr qht ' 1988, ln te l Corporat ron, Al l Rrghîs Reserved

PREFACE

This manual documents the system calls of the Universal Dcvelopment lnterface, a
subsystem of the extended iRMX II Operating System. The infirrmatìon provided in this
manual is intended as a reference to the system calls and provides detailed descriptions of
each cal.l.

READER LEVEL

This manual is intended for programmers who are l ì rmi l iar wi th the concepts and
terminolory introduced in the Extended |RMX II Nucleus User's Gukle and with the PL/M-
286 programming language.

CONVENTIONS

System call names appear as headings on the outside upper corner of each page. The first
appearance of each system call name is printed in ink; subsetluent appearances are ln
black.

Throughout this manual, system calls are shown using a generic shorthand (such as
ALLOCATE instead of DQ$ALLOCATE). This convention is used to allow easier
alphabetic arrangement of the calls. The actual PL/M-286 exte rna l- p rocedure names
must be used in all calling sequences.

You can also invoke the system calls from assembly language, but you must obey the
PL/M-286 calling sequences when doing so. For more information on these calling
sequences refer to the Extended |RMX II Programning Tecluiques Reference Manual.

UDI Systen Calls tu

CONTENTS

UDI SYSTEM CALLS PAGE

UDI Svstem Calls

UDI SYSTEM CALLS

1.1 INTRODUCTION

This manual describes the requirements and behavior of UDI system calls in the
Extended iRMX II Operating System environment.

Table l. Standard UDI Condition Codes and Their Meanings

Hex

Value Mnemonic UDI Calls Meaning

00O0H E$OK All but DQ$EXIT No exceptional conditions.

00O2H E$MEM DO$ALLOCATE Insufficient memory for

DO$ATTACH the requested operation.

DQ$CREAIE

DO$OPEN

DO$RESERVE$IO$-

MEMORY

DQ$MALLOCATE

0O20H E$FEXIST DQ$RENAME The specified fi le exists.

0021H E$FNEXIST DQ$AIîACH The specified file
DQ$DELETE does not exist.
DQ$RENAME
DQ$CHANGE$ACCESS

(continued)

UDI Svstem Calls

iRMX@ I I UDI SYSTEM CALLS

1.2 DESCRIPTIONS OF SYSTEM CALLS

This section describes the indiviclual UDI calls in detail. ImmetJiately preceding the
detailed descriptions, the UDI Call Dictionary (Table 2) arranges the calls in functional
groups, and lists the page numbers of the more detaiìed descriptions.

Table 1. Standard UDI Condition Codes and Their Meaninqs (continued)

HEX

Value Mnemonìc UDI Calls Meaning

0023H E$SUPPORI DQSATfACH An unsupported operation

DQ$CHANGESACCESS wasatiempted.

DQ$CREAIE

DO$DECODE$TIME

DO$FILE$INFO

DQGETCONNECTION$.

STATUS

DQ$OPEN

DQ$OVERtAY

DQ$READ

DO$RENAN"IE

DO$R ES E RVE$IO$M EMORY

DQ$SEEK

DQ$SPECIAL

DQ$IRUNCATE

DQ$WRITE

0026H E$FACCESS DQ$CHANGE$ACCESS Access to the specifìed

DQ$DELETE fi le is denied

DQ$OPEN

OO28H E$SHARE DQ$OPEN fhe specified fi le may not
be shared.

0029H E$SPACE The op€ration attempted

to add a direclory entry to
a full directory.

DQ$CREAIE

DQ$WRITE

0081 H The sking is over 45

characters long or the

argument is over 80

characters long.

E$STRING- DOSGETSARGUMENT

$BUFFER DQ$CHANGE$EXIENSION

UDI Svstem Calls

iRMX@ II UDI SYSTEM CALLS

Every system call description contains the following information in this order:

. The name of the system call.

. A brief summary of the function of the call.

. The form of the call as it is invoked from a PL/M-286 program, with symbolic names
for each parameter.

. Definition of input and output parameters.

o A complete explanation of the system calÌ, inclutling any information you will need to
use tt.

. Condition codes--a list of the error codes that can be incurred.

UDI Svstem Calls

iR]\f X@ II UDI SYSTEM CALLS

1.3 UDI SYSTEM CALLS DICTIONARY

Table 2. UDt Svstem Calls Dictionan'

UDI Cail Funcîion Performed Page

PROGRAM CONTROL CALLS

DQ$EXIT

DQ$OVERLAY

DQ$TRAP$CC

Exils from the curent application job.

Causes the specified overlay to be loaded.

Captures controlwhen CONTROL-C is typed.

22

45

6 1

FILE.HANDLING CALLS

DQ$AITACH Creates a connection to a specified f le.

DQ$CHANGE$- Changes access rights associated with a

ACCESS fi le or directory.

DQ$CHANGE$- Changes the extension ot a fi le name

EXTENSION in memory. 13

DO$CLOSE Closes the specified fi le connection. 15

OQ$CREATE Creates a fi le for use by the application. 16

DO$DELE'rE Deletes a fi le. 20

DOSDETACH Closes a fi le and deletes its connectioî,. 21

DO$FILE$INFO Returns data about a fi le connection 24

DQGETCON.

NECTION$STATUS Returns slalus of a fl le connection. 32

DQ$OPEN Opens a fi le for a particular type

of access. 42

DO$READ Reads the next sequence of bttes

from a fi le.

1 0

47

UDI Svstem Calls

iR]\IX@ II UDI SYSTEM CALLS

Table 2. UDI System Calls Dictionary (continued)

UDI Call Function Performed Page

FILE.HANDLING CALLS

DOSRENAME Renames the specified fi le.

DQ$SEEK Moves the current position pointer

of a file.

49

53

DQ$SPECIAL Se.sterminall ine'edit/transparentmode.

DQ$TRUNCATE Truncates a Íle to tîe specified lengtr.

DQ$WRITE Writes a sequence of by,tes to a fi le.

55

63

64

MEMORY MANAGEMENT CALLS

DQ$ALLOCATE Requests a memory segment of a specified 7

size.

DQ$FREE Returns a memory segment to the system. 28

DQSGET$MSIZE Returns the size ofthe specified

memory block. 35

DQ$GEÍ$SIZE Returns the size of the soecified seqment. 36

DO$MALLOCATE Requests a logically contiguous memory

segment of a specified size.

DQ$MFREE Returns memory allocated by DQ$MALLOCATE

to the Free Space Pool.

39

41

DQ$RESERVE$- Requests memory lo be set aside for
IO$MEMORY overhead to be incurred by l/O operations. 51

LIDI System Calls

iRMX@ II UI)I SYSTEM CALLS

Table 2. UDI System Calls Dictionary (conlinued)

UDI Call Function Performed Page

EXCEPTION-HANDLING CALLS

DQSDECODE$-
EXCEPTION

Converts an exceplion numeric code into its

equivalent mnemonic. 1 7

DOGETEXCEPT- Returns a POINTER to the address of the

ION$HANDLER program curently being used to process

34

DQ$IRAP$-

EXCEPTION

ldentif ies a custom excepìron processing

program for a particular type of error. 59

UTILIry AND COMMAND PARSING

DQ$DECODE$,
TIME

Returns system time and date in both

binary and AscI|-characler format 18

DQGETARGUMENI Returns an arqument lrom a STRING. 29

DQGET-
SYSTEM$ID

DOGEITIME

DOSSWIICH$-
BU FFE R

Relurns the identity of the environment

for the UDl. 37

Obsolete: incìuded for compatibil i tv. 38

Selects a new buffer from which lo process

commands. 58

UDI Svstem Calls

DQ$ALLOCATE requests a memory segment from the free memory pool.

s e g $ t : D Q $ A L L O C A T E (s i z e , e x c e p r $ p r r) ;

Input Parameter
sze

Condition Codes
E$OK

E$MEM

A WORD which,

. if not zero, contains the size, in bytes, of the requested
segment.text deleted

. if zero, indicates that the size of the recluest is 65536 (64K)
bytes.

0000H No exceptional conditions.

0002H Insulficient memory to creatc a segment of the
desired size.

In addition to the condition codes listed above, DQ$ALLOCATE can return the
condition codes associated with the Nucleus system calls
RQcETPOOL$ATTRIBUTES and RQ$CREATE$SEGMENT. See the Ertended
|RMX II Nucleus System Calls Reference Manual for detals.

Output Parameters
seg$t A TOKEN, into which the operating system places the base

address of the memory segment. If the request fails because the
memory requested is not available, this value will be undefined and
the system will return an E$MEM exception code.

except$ptr A POINTER to a WORD where the system places the condition
co(le.

Description

The DQ$ALLoCATE system call is used to request additional memory from the free
space pool of the program. Tasks may use the additional memory for any desired
purpose.

UDI Svstem Calls

The DQ$ATTACH system call creates a connection to an existing file.

c o n n e c t i o n $ t : D Q S A T T A C H (p a t h $ p t r , e x c e p c S p c r) ;

Input Parameter
path$ptr

Output Parameters
connection$t

except$ptr

Description

This system call allows a program to obtain a connection to any existing file. When the
DQ$ATTACH call returns a connection, all existing connections to the file remain valid

Your program can use the DQ$RESERVE$IO$MEMORY call to reserve memory that
the UDI can use for its internal data structures when the program calls DQ$ATTACH
and for buffers when the program calls DQ$OPEN. The advantage of reserving memory
is that the memory is guaranteed to be available when needed. If memory is not reserved,
a call to DQ$ATTACH might not be successful because of a memory shortage. See the
description of DQ$RESERVE$IO$MEMORY later in this chapter for more information
about reserving memory.

A POINTER to a STRING containing the pathname of the file to
be attached.

A TOKEN for the connection to the file.

A POINTER to a WORD where the svstem nlaces the condition
cooe.

UDI Svstem Calls

DQ$ATTACH

Condition Codes

E$OK 0000H No exceptional conditions.

E$FNEXIST 0021H The specified file does not exist.

E$MEM 0002H Insufficient memory for the requested
operation.

E$SUPPORT 0023H An unsupportetl operation was attempted.

In addition to the condition codes listed above, DQ$ATTACH can return the exception
codes associated with the Extended I/O System call RQSATTACH$FILE. See the
Extended iRMX II Extended I/O System Calk Reference Manual for details.

UDI System Calls

The DQ$CHANGE$ACCESS enables you to change the access rights of the owner of a
file (or directory), or the access rights of the WORLD user.

C A L L D Q $ C H A N G E S A C C E S S (p a t h S p t r , u s e r , a c c e s s , e x c e p t $ P L r) :

INPUT PARAMETERS
path$ptr

user

A POINTER to a STRING containing a pathname of the file

A BYTE specifying the user whose access is to be changed.

Value User

0 Owner of the file

I WORLD (all users on the system)

2 GROUP (ignored hy iRMX II Operating System

3-255 Reserved

If you speciS a value of 3-255, an E$SUPPORT exception will be
returned.

access A BYTE speci$ing the tlT)e of access to be granted the user. This
WORD is to be encoded as follows. (Bit 0 is the low-order bit.)

Bit Meaning

0 User can delete the file or directory

1 Read (the file) or List (the directory)

2 Append (to the file) or Add entry (to the directory)

3 Update (read and write to the file) or
Change Access (to the directory)

4 User can execute the file. Set to the value of bit one for
compat ibi l i ty wi th other operat ing systems.

5-7 Reserved. If you specify bits 5-7, an E$SUPPORT
exception will be returned.

t 0 tlDI System Calls

DQ$CHANGE$ACCESS

Output Parameter
except$ptr A POINTER to a WORD where the svstem olaces the conditron

code.

Description

In the general extended iRMX II environment, every program is associated with a user
object, usually referred to as the default user for the program. The default user consists
of one or more user IDs. Each fi-le has an associated collection of user lD-access mask
pairs, where each mask defines the access rights the corresponding user ID has to the file.
When the program calls DQ$CREATE to create a file or DQ$ATTACH to get another
connection to a file, the resulting connection receives all access rights corresponding to
user IDs that are both associated with the file and in the default user. The purpose of the
DQ$CHANCE$ACCESS system call is to change, for a particular file, the access rights
associated with a particular user ID. This has the effect of changing the access granted
when the program makes subsequent calls to DQ$ATTACH to get further connections to
the file.

In the UDI subset of the extended iRMX Il environment, a default user has two IDs. One
of them, called the owner ID, is associated with the program. The other, called the
WORLD, is associated universally with all programs. DQ$CHANGE$ACCESS can
change, for the file, the access mask of either the owner ID or the WORLD.

Changing the access rights for a user ID has no effect on connections already obtained by
the program. However, all subsequently obtained connections reflect the changed access
rights.

For more information about user IDs, default users, access masks, WORLD, access rights,
owner IDs, and how connections are related to all of these entities, refer to the Ettended
|RMX II Basic I/O System User's Gui.de.

NOTE
DQ$CHANGE$ACCESS affects only connections made after the call is
issued. It does not affect existins connections to the file.

UDI System CaUs l l

DQ$CHANGE$ACCESS

Condition Codes

E$OK 000H No exceptional conditions.

E$SUPPORT 0023H The value specified for the user parameter is
greater than two.

You tried to set bits 5-7 of the access
parameter.

E$FACCESS 0026H Access to the specified file is denied.

In addition to the condition codes listed above. DQ$CHANGE$ACCESS can return the
same condition codes as the Extended I/O System call RQSCFIANGE$ACCESS. See
the Extended |RMX II Extended I/O System Calls Reference Manual for details.

l 2 UDI Systern Calls

DQ$CHANGE$EXTENSION changes or adds the extension at the end of a file name
stored in memory (not the file name on the mass storage volume).

CALL DQ$ CHANGE$ EXTENS l0N (path$ptr , extension$ptr , except$ptr) ;

INPUT PARAMETERS
path$ptr A POINTER to a STRING containing a pathname of the file to be

renamed.

extension$ptr A POINTER to a series of three bytes containing the characters to
be added to the pathname. This is not a STRING. You must
include three bvtes. even if some are blank.

Output Parameter
except$ptr A POINTER to a WORD where the system places the condition

code.

Description

This is a facility for editing strings that represent file names in memory. If the existing file
name has an extension, DQ$CHANCE$EXTENSION replaces that extension with the
specified three characters. Otherwise, DQ$CHANGE$EXTENSION adds the three
characters as an extension.

For example, a compiler can use DQ$CHANGE$EXTENSION to eciit a string containing
the name, such as :AFDI:FILE.SRC, of a source file to the name, such as
:AFDl:FILE.OBJ, of an object file, and then create the object file.

Note that extended iRMX II file names may contain multiple periods, but if they do, the
extension, if any, consists of the characters following the last period. Note also that an
extension may contain more than three characters, but any extension created or changed
by DQ$CHANGE$EXTENSION has at most three (non-blank) characters.

The three-character extension may not contain delimiters recognized by
DQGETARGUMENT but may contain trailing blanks. If the first character pointed to
by extension$ptr is a space, DQ$CHANGE$EXTENSION deletes the existing extension
including the period, if any, preceding the extension.

UDI System Calls l3

DQSCHANGE$EXTENSION

Condition Codes

E$OK 000H No exceptional conditions.

E$STRING$BUFFER 0081H The f i lename is more than 14 characters.

l. l UDI System Calls

DQ$CLOSE waits for completion of I/O operations (if any) taking place on the file,
empties the output buffers, and frees all buffers associated with the connection.

CALL DQ$CLOSE (connect ion$t , except$p t r) ;

Output Parameter
except$ptr A POINTER to a WORD where the system places the condition

code.

Input Parameter
connection$t A TOKEN for a file connection that is currentlv onen.

0001Ì No exceptional cond it ions.

In addition to the condition code listed above. DQ$CLOSE can return the same condition
codes associated with the Extended I/O System call RQSCLOSE. See the Extended
|RMX II Extended I/O Svstetn Calls Referente Manual for details.

Description

The DQ$CLOSE system call cÌoses a connection that has been opened by the DQ$OPEN
system call. It performs the following actions, in order:

l. Waits until all currently running I/O operations for the connection are completed.

2. Ensures that information, if any, in a partially filled output buffer is written to the
file.

3. Releases all butlèrs associated with the connection.

4. Closes the connection. The connection is still valid, and can be re-opened if
necessarv.

Condition Codes

E$OK

UDI System Calls r5

DQ$CREATE creates a new file and establishes a connection to the file.

c o n n e c r i o n s t : D Q $ C R E A T E (p a t h $ p t r , e x c e p t $ p c r) ;

Input Parameter
path$ptr A POINTER to a STRING containing a pathname for the file to

be created.

Output Parameters
connection$t A TOKEN for the connection îo the file.

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

This call creates a new file with the name you specify and returns a connection to it. If a
file of the same name already exists, it is truncated to a length of zero and the data in it is
destroyed.

To prevent accidentally destroying a file, call DQ$ATTACH before calling
DQ$CREATE. lf the file does not exist, DQ$ATTACH returns an E$FNEXIST
exception code.

Condition Codes

E$OK

E$MEM

E$SPACE

0000H No exceptional conditions.

0002H Insufficient memory remains to complete the
calì.

0029H Insufficient space exists on a direct-access
device.

E$SUPPORT 0023H An unsupported operation was attempted.

In addition to the condition codes listed above, DQ$CREATE can return the condition
codes associated with the Extended I/O system calls RQSCREATE$FILE and
RQSDELETE$FILE. See the Ertended iRMX II Extended I/O System Calls Reference
Manual for detarls.

t ó UDI System Calls

DQ$DECODE$EXCEPTION translates an excention code into its mnemonic.

C A L L D Q $ D E C O D E 9 E X C E P T I O N (e x c e p t i o n $ c o d e , b u f f $ p t r , e x c e p r g p r r) ;

lnput Parameter
exception$code A WORD containing the numeric exception code that is to be

translated.

Output Parameters
buff$ptr A POINTER to a STRING (at least 8l bytes long) into which the

system returns the mnemonic.

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

Your program can call DQ$DECODE$EXCEPTION to exchange a numcric exception
code for its hexadecimal equivalent followed by its mnemonic. For example, if you pass
DQ$DECODE$EXCEPTION a value of 2 in the except$code parameter, the system
returns the following string to the area pointed to by the buff$ptr parameter:

0002H: ESMEM

The hexadecimal values and mnemonics fbr condition codes are listed in Table 1. This
system call can decode any extended iRMX lI exception code value. See the Operutor's
Guide To The Extended iRMX II Hunnn Interface for more details.

Condition Codes

E$OK 0000H No exceptional conditions.

In addition to the condition code listed above, DQ$DICODE$EXCEPTION can return
the condition codes associated with the Human lnterface system caÌ1,
RQCFORMAT$EXCEPTION . See the Extended iRMX II Human Inteface System
Calls Reference Manaal for details.

UDI Svstem Calls t7

DQ$DECODE$TIME returns the current system time and date as ASCII date and time
strings. You can also use DQ$DECODE$TIME to return the current time and date in
binary format or as a decoded ASCII string.

CALL DQ$DEcoDE$TIME (date$t lme$ptr , except$ptr) j

Output Parameters
date$time$ptr

except$ptr

A POINTER to a structure of the followins form:

DECTARE DT STRUCTURE (
SYSTEM$TIME DI"IORD,
DATE (8) BYTE,
T I M E (8) B Y T E) ;

where

SYSTEM$TIME is an operating-system-dependent DWORD
containing the current time and date. To get the current time and
date, the value in SYSTEM$TIME must be zero when the
DQ$DECODE$TIME call is issued. To decode a binary time
value, the time value must be stored in SYSTEM$TIME before
making the call. (See the following Description section for format
information.)

SYSTEM$IME receives the time as the number of seconds
since midnight, January 1, 1978.

DATE receives the date portion of the time, in the form of
ASCII characters.

TIME receives the time-of-day portion of the time, in the form
of ASCII characters.

If the value in SYSTEM$TIME is not 0 when
DQ$DECODE$TIME is called, DQ$DECODE$TIME accepts
that value as the number of seconds since midnight, January 1,
1978. decodes the value. and returns it in the DATE and TIME
fields.

A POINTER to a WORD where the svstem olaces the conditron
code.

ilì UDI System Calls

D1$DECODE$TIME

Description

This system call returns the indicated date and time, each as a series of ASCII bytes.
(Note that they are not STRINGs.)

DATE has the form MM/DD/YY for month, day, and year. The two slashes (/) are in
the third and sixth bytes. For example, the date January 15th of 1982 would be returned
as

o r / r5 / 82

TIME has the form HH:MM:SS for hours, minutes, and seconds, with separating colons
(:). The value for hours ranges from 0 through 23. For example, the time 20 seconds past
3:12 PM would be returned as

L 5 : 1 2 : 2 0

lf, when you call DQ$DECODE$TIME, the SYSTEM$TIME parameter is zero, the call
first gets the system time (number of seconds since midnight, January l, 1978) and then
clecodes it into the series of bytes as just describecl.

But if SYSTEM$TIME is not zero on input, DQ$DECODE$TIME uses it as the time to
decode.

One thing your program can do with DQ$DECODE$TIME is first to call
DQ$FILE$INFO to get two DWORD values associated with a file (the last time the file
was updated and the time the file was created). Then the program can call
DQ$DECODE$TIME to interpret the times.

Condition Codes

E$OK 0000H No exceptional conditions.

E$SUPPORT 0023H An unsupported operation was attempted.

In addition to the condition code listed above, DQ$DECODE$TIME can return the
condition codes associated with the Basic I/O System call RQGETTIME, see the
Extended |RMX II Basic I/O System CaIk Reference Manual for detarls.

tlDl System Calls l9

DQ$DELETE deletes an existins file.

CALL DQ$DELETE (path$ptr , except$ptr) ;

Input Parameter
path$ptr A POINTER to a STRING containins a oathname of the file to be

deleted.

Output Parameter
except$ptr A POINTER to a WORD where the system places the condition

code.

Description

A program can use this system call to delete a file. The immediate action this call takes is
to mark the file for deletion. It does this rather than abruptly deleting the file, because it
will not delete any file as long as there are existing connections to the file. DQ$DELETE
will delete the file only when there are no longer any connections to the file, that is, when
all existing connections have been detached. On the other hand, once the file is marked
for deletion, no more connections may be obtained for the file by way of DQ$ATTACH

Condition Codes

E$OK 0000H No exceptional conditìons.

E$FNEXIST 0021H The specified file does not exist.

E$FACCESS 0026H Access to the specifìed file is denied.

In addition to the condition codes listed above, DQ$DELETE can return the condition
codes associated with the Extended l/O System call RQSDELETE$FILE. See the
Extended |RMX II Ertended I/O System Calls Reference Manual for delals.

20 UDI System Calls

DQ$DETACH deletes a connection (but not the file) established by DQ$ATTACH or
DQ$CREATE.

CALL DQ$DETACH (connecr ion$c, except$ptr) ;

A TOKEN for the file connection to be deleted.

A POINTER to a WORD where the svstem nlaces the conditron
code.

Condition Godes

E$OK 0000H No exceot iona I condit ions.

In addition to the condition code listed above, DQ$DETACH can return the condition
codes associated with the Universal Development Interface system call DQ$CLOSE and
the Extended I/O system call RQSDELETE$CONNECTION. See the DQ$CLOSE
system call in this manual, or the Extended |RMX II Extended I/O System Calls Reference
Manual for details.

Input Parameter
connect ion$t

Output Parameter
except$ptr

Description

This system call deletes a file connection. If the connection is open, the DQ$DETACH
system call automatically closes it first (see DQ$CLOSE). DQ$DETACH also deleres rhe
file if the file has been marked for deletion, and this is the last existing connection to the
file. The results of specifying an invalid connection are operating-system-dependent.

llDI System Calls 2 l

DQ$EXIT transfers control from your program to the iRMX II Operating System. It
does not return any value to the calling program, not even a conclition code.

CALL DQ$EXIT (comple t ion$code) ;

lnput Parameter
completion$code A WORD containing the encoded reason for termination of the

program. See the following description for information about this
value.

Description

DQ$EXIT terminates a program. Before the actual termination, all of the program's
connections are closed and detached, and all memory allocated to the program by
DQ$ALLOCATE is returned to the memory pool.

DQ$EXIT does not return a condition code to the calling program.

If the calling program is running as an I/O job, the calling task, normally the command
line interpreter (CI-I), receives an extended iRMX ll condition code based on the value
your program supplied in the end$code field when it called DQ$EXIT. This assumes the
following sequence of events:

1. The CLI calls RQ$CREATE$IO$JOB, specifoing a response mailbox in the call.

2. Your program, running as a task in the created I/O job, performs its duties and
then calls DQ$EXIT, specifying an end$code value.

3. DQ$EXIT converts the end$code value into an extended iRMX l l condit ion code,
as follows:

iRMX I I
end$code Condil ion Associated
Value Code Mnemonic Meanino

0 0O0OH E$OK Termination \ryas normal.

1 0C1H E$WARNING$EXI-r Warning messages were issued.

2 AC2H E$ERROR$EXIT Errors were detected.

3 0C3H E$FATAI$EXIT Fatal erors were detected.

4 0C4H E$ABORT$EXIT The iob was aborted.

5-65535 0C0H E$UNKNOWN$EXII Cause of termination not known.

1. DQ$EXIT calls RQ$EXITIOJOB, specifying the extended iRMX II condition
code in the user$fault$code field.

22 UDI Svstem Calls

DO$EXIT

5.

6 .

RQ$EXIT$lO$JOB places the condition code into the user$fault$code field of a
message. Then RQ$EXIT$IO$JOB sends the message to the response mailbox set
up by the earlier call to RQ$CREATE$IO$JOB.

The CLI, when it obtains the message from the response maílbox, can take
appropriate actions. Note that it can call DQ$DECODE$EXCEPTION first, to
convert the condìtion code into its associated mnemonic.

The CLI program supplied with the extended iRMX II Operating System ignores these
UDI condition codes when they are returned in the user$fault$code field of the response
message. These condition codes are ignored because the UDI is not required to be in the
extended iRMX II Operating System, so the extended iRMX If CLI assumes that it is not.
Therefore, ifyou want the CLI to take actions based on that code, you must provide your
own CLI.

For more information about RQ$CREATE$IOJOB, RQEXITIOJOB see the
Ertended iRMX II Extended I/O System Reference Manual; for more information on the
format of the response message, see fhe Extended |RMX II Ertended I/O System User's
Guide.

UDI Systen Calls t l

DQ$FILE$INFO returns information ahout a file.

CALL DQ$FILE$INFO (connect ion$t , rnode, f i le$ info$ptr , except$ptr) ;

INPUT PARAMETERS
connection$t

mooe

A TOKEN containing a connection for the file.

An encoded BYTE specifing whether DQ$FILE$INFO is to
return the User ID of the owner of the file. Encode as follows:

Value Meaning

Do not return owner's User lD.

Return the owner's User ID.

Return E$SUPPORT exception.

Output Parameters
file$info$ptr

I

2-255

where

OWNER

LENGTH

TYPE

A POINTER to a structure into which the requested information is
to be returned. The form of the structure is

DECIARE FILE$INFO STRUCTURE (
ohNER (15) BYTE,
LENGTH DWORD,
TYPE BYTE,
OhNER$ACCESS BYTE,
WORLD$ACCESS BYTE,
CREATE$TIME DWORD,
rASTMODTIME DWORD,
GROUP$ACCESS BYTE,
R E S E R V E D (1 9) B Y T E) ;

A STRING containing (if requested) the User ID
of the file's owner.

A DWORD that gives the size of the file in bytes.

A value indicating the type of file, as follows:

21 UDI Svstem Calls

DO$FILE$INFO

Value File Type

0 Data file

1 Directory file

2 System-specific file

3-255 Reserved

OWNER$ACCESS An encoded BYTE whose bits specify the
type of access granted to the owner, as
follows. When a bit is set, it means the type of
access is granted; otherwise the tlpe of access
is denied. (Bit 0 is the low-order bit.)

Bit Associated Access TWe

0 Delete

1 Read (the data file) or

Display (the tiirectory)

2 Append (to the data file) or Add Entry (to the
directory)

3 Update (read and write to the file) or Change Access
(to the <Jirectory)

4 Execute the specified file.

(Set to the value of bit 1 for compatibility with other
operatlng systems.)

5-7 Reserved

WORLD$ACCESS An encoded BYTE whose bits specify the
type of access granted to the WORLD (all
users on the system). When a bit is set, it
means the type of access is granted; otherwise
the type of access is denied. (Bit 0 is the low-
order bit.)

tlDI System Calls 25

DQSFILE$INFO

except$ptr

Bi t Associated Tyne of Access

Delete

Read (the data file) or Display (the directory)

Write (to the data file) or Add Entry (to the directory)

Update (read and write to the file) or Change Access
(to the directory)

Execute the specified file. (Set to the value of bit 1 for
compatibility with other operating systems.)

Reserved

CREATE$TIME The date and time that the file or directory
was created, expressed as the number ol
seconds since midnight, January 1, 1978.
(You can convert this date/time to ASCII
characters by calling DQ$DECODE$TIME.)

LASTMODTIME The date and time that the fiìe or directory
was last modified. For data files. modified
means written to or truncated; for directories,
modified means an entry was changed or an
entry was added. (You can convert this
date/time to ASCII characters by calling
DQ$DECODE$nME.)

GROUP$ACCESS An encoded byte that is always set to the
value of WORLD$ACCESS. The extended
iRMX II UDI does not use
GROUP$ACCESS, it is included for
compatibility with other operating systems.

A POINTER to a WORD where the svstem olaces the condition
code.

Description

The DQ$FILE$INFO system call returns information, as described above, about a data
file or a directory file.

26 UDI System Calls

DQ$FILE$INFO

Condition Codes

E$OK 0000H No exceptional conditions.

E$SUPPORT 0023H The mode parameter has a value greater than 1.

In addition to the condition codes listed above, DQ$FILE$INFO can return the condition
codes associated with the Nucleus system calls RQ$CREATE$MAILBOX and
RQ$RECEIVE$MESSAGE and the Basic I/O system call RQAGET$FILE$STATUS.
See the Extended |RMX II Nucleus System Calh Reference Manual and the Extended iRMX
II Basic I/O System CaIb Reference Manual for detals.

UDI Svstem Calls 27

DQ$FREE returns to the system a segment of memory obtained earlier by
DQ$ALLOCATE.

C A L L D Q S F R E E (s e g $ t , e x c e p t $ p t r) ;

Input Parameter
seg$t A TOKEN containing the memory segment to be deleted. The

TOKEN is returned by a DQ$ALLOCATE call and is no longer
valid for this procedure once the call is made.

Description

Output Parameter
except$ptr A POINTER to a WORD where the system places the condition

code.

The DQ$FREE system call returns the specified segment to the memory pool from which
it was allocated. A subsequent attempt to use this deleted segment may cause errors or
unexpected results, since the memory may have been otherwise allocated.

Condition Codes

E$OK 0000H No exceptional conditions.

In addition to the condition code listed above, DQ$FREE can return the condition codes
associated with the Nucleus system call RQ$DELETE$SEGMENT. See the Ertended
|RMX I I Nucleus System Call Reference Manual for details

28 UDI System Calls

The DQGETARGUMENT system call returns arguments, one at a time, from a
command line entered at the system console. This command line is either that which
invoked the program containing the DQGETARGUMENT call or a command line
entered while the program was running.

del i rn i t$char - DQSCET$ARGUMENT (argunent$ptr , except$ptr) ;

Input Parameter
argument$ptr A POINTER to a STRING (at least 81 bytes long) that will receive

the arzument.

Output Parameters
delimit$char A BYTE which receives the delimiter character.

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

Your program can call GET$ARGUMENT to get arguments from a command line. Each
call returns an argument and the delimiter character following the argument.

Your program can use this command in two ways. One way is to get arguments from the
command line used to invoke the program at the console. In this case, you can assume
that the command line is already in a buffer that has automatically been provided for this
purpose.

The other way to use this command is to get arguments from command lines that are
entered in response to requests from your program. In this case, your progfam must
supply a when calling DQ$READ. This is the buffer you want used when your program
calls DQGETARGUMENT. To set this up, your program must call
DQ$SWITCH$BUFFER before the caII to DQGETARGUMENT.

A delimiter is returned only if the exception code is zero. The fbllowing delimiters are
recognized by the extended iRMX II Operating System:

,) (= # | V o + - & ; < > [ì \ ' l -

as well as a space () and all characters with ASCII values in the range 0 through 20H, or
between 7FH and OFFH.

UDI Systen Calls 29

DO$GETSARGUMENT

Before returning arguments in response to DQGETARGUMENT, the system does the
following editing on the contents of the command buffer:

. It strips out ampersands (&) and semicolons (;).

. Where multiple blanks are adjacent to each other between arguments, it replaces
them with a single blank. (Tabs are treated as blanks.)

. It converts lowercase characters to uppercase unless they are part of a quoted string.

. It treats the command line and the buffer (after a DQ$SWITCH$BUFFER system
call) as if they were preceded by a null delimiter.

When returning arguments in response to DQGETARGUMENT, the system considers
strings enclosed between matching pairs of single or double quotes to be literals. The
enclosing quotes are not returned as part of the argument.

Example

The following example illustrates the arguments and delimiters returned by successive
calls to DQGETARGUMENT. The example assumes that the contents of the buffer
are

P L M 2 8 6 L I N K E R . P L M P R I N T (: L P :) N o L I S T

The followinq shows what is returned if DQGETARGUMENT is called five times.

Call Number Argument Returned Del imiter Returned

I
2
3
À

5

(06H)PLM286
(OAH)LTNKER.PLM
(0sH)PRTNT
(04H) :LP :
(0óH)NOLTST

space
space

(

)
cr

Note that the argument returned has the form of an iRMX II string, with the first byte
devoted to speciffing the length of the string. In the second call, there are ten characters
in the argument, so the first byte contains 0AH.

Note that the last delimiter for the example is a carriage return (cr). This is how your
program can determine that there are no more arguments in the command line.

-10 UDI System Calls

DQ$GETSARGUMENT

Condition Codes

E$OK 0000H No exceptional conditions.

E$STRING$BUFFER 0081H An argument has been found that is longer than
80 characters. This only indicates that another
call to DQGETARGUMENT is needed to
obtain the rest of the argument.

UDI Svstem Calls 3 l

The DQGETCONNECTION$STATUS system call returns information about a file
connection.

CALL DQ$GETSCONNECTIoNSSTATUS (connect ion$t , in fo$ptr , excepc$ptr) ;

Output Parameters

Input Parameter
connection$t A TOKEN containinq the connection whose status is desired.

info$ptr A POINTER to a structure into which the operating system is to
place the status information. The structure has the following
format:

DECI-ARE INFO STRUCTURE (
OPEN BYTE,
ACCESS BYTE,
SEEK BYTE,
FILE$PTR DWORD);

where

OPEN A Boolean that is 0FFH (TRUE) if the connection is
open; 000H (FALSE) otherwise.

ACCESS Access privileges of îhe connection. The right is
granted if the corresponding bit is set to 1. (Bit 0 is
the low-order bit.)

Bit Access
0 Delele
1 Read
2 Write
3 Update (read and write)
4 Execute (Set to the value

of bit 1 for compatibility
with other operating systems.)

5-7 Reserved

1 t UDI Svstem Calls

DQGETCON N ECTION$STATUS

SEEK Types of seek supported.

Value Meaning

0 No seek allowed
3 Seek forward and backward

Other values are not meaningful.

FILE$PTR This DWORD integer marks the current position in
the file. The position is expressed as the number of
bytes from the beginning of the file, the first byte
being byte 0. This field is undefined if the file is not
open or if seek is not supported by the device. (For
example, seek operations are not valid for a line
pr inter.)

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

DQGETCONNECTION$STATUS returns information about a file. You might use
this system call, for example, if your program has performed several rcad or write
operations and you must determine where the file pointer is now located.

Condition Codes

E$OK 0000H No exceptional conditions.

E$SUPPORT 0023H An unsupportetl operation was attempted.

In addition to the condition code listed above, DQGETCONNEC'ìlON$STATUS can
return the condition codes associated with the Extentled l/O system call
RQSGET$CONNECTION$STATUS. See the Extendcd iRllÍX II Extended I/O Systetn
Calls Reference Manaal for details.

UDI System Calls -ì-Ì

DQGETEXCEPION$HANDLER returns the address of the current exception
handler.

CALL DQCET EXCEPTI ON$HANDLER (cur ren t$hand ler$p t r , except$p t r) ;

Output Parameters
current$handler$ptr A POINTER to a STRUCTURE into which this system call

returns the entry point of the current exception handler. This
STRUCTURE has the same form as a long POINTER.
DQ$TRAP$EXCEPTION specifies this entry point if it is called.

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

DQGETEXCEPTION$HANDLER is a system call that returns the address of the
current exception handler to your program. This is the address specified in the most
recent call, if any, to DQ$TRAP$EXCEPTION. Otherwise, the value returned is the
address of the system default exception handler.

This routine always returns a long POINTER, even if called from a program compiled
under the SMALL model of segmentation. You can use this long POINTER in two ways:

o You can use it to make an indirect call to the current exception handler.

. After temporarily substituting another exception handler, you can use it to restore the
current exception handler.

DQGETEXCEPTION$HANDLER is used in conjunction with
DQ$TRAP$EXCEFTIION and DQ$DECODE$EXCEPTION. See the descriptions of
these calls for more information.

Condition Codes

E$OK 0000H No exceptional conditions.

In addition to the condition code listed above, DQ$GETgEXCEPTION$FLA.NDLER can
return the condition codes associated with the Nucleus system call
RQGETEXCEPTION$HANDLER. See the Erre nded |RMX II Nucleus Svstem CaIIs
Reference Manual for details.

3,1 UDI System Calls

DQGETMSIZE returns the size. in BYTES. of the memorv block snecified.

s i z e : D Q $ G E T $ M S I Z E (s e g $ p t r , e x c e p t i o n $ p t r) ;

lnput Parameter
seg$ptr A POINTER that indicates an area of memory that was alÌocated

earlier by a call to DQ$N4,{LLOCATE.

Output Parameters
size A DWORD which receives the size (in BYTES) of the memory

block previously allocated by DQ$MALLOCATE.

exception$ptr A POINTER to a WORD where the system call places the
condition code.

Description

The DQGETMSIZE system call returns the size, in bytes, of a segment allocated by the
DQ$MALLOCATE system call. Okay folks! Does this call allocate memory in
paragraphs and round up to the next highest multiple of 16like DQGETSIZE? Are
there any restrictions on who should use this call? Should I give any information about
the memory being checked not always being in a new segment?

Condition Codes

E$OK 0000H No exceptional conditions.

E$SUPPORT 0023H An unsupported operation was attempted.

In addition to the condition codes listed above, DQGETMSIZE can return the
condition codes associated with the Nucleus system call RQGETSIZE. See the
Extended |RMX II Nucleus Svstem Calb Reference Manaal for details.

UDI Systern Calls 35

DQGETSIZE returns the size of a previousìy allocated memory segment.

s i z e - D Q $ G E T S S I Z E (s e g $ t , e x c e p t $ p t r) :

Input Parameter
seg$t A TOKEN for a segment of memory allocated by the

DQ$ALLOCATE call.

The GET$SIZE system call returns the size, in bytes, of a segment.

Condition Codes

E$OK 0000H No exceptional conditions.

ln addition to the condition code listed above, DQGETSIZE can return the condition
codes associated with the Nucleus system call RQGETSIZE. See the Extended |RMX II
Nucleus Svstem Calls Reference Manual îor details.

Output Parameters
size A WORD which,

if not zero, contains the size, in bytes, of the segment identified by
the seg$t parameter.

ifzero, indicates that the size of the segment is 65536 (64K) bytes.

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

-16 UDI System Calls

DQcETSYSTEM$ID returns the identity of the operating system providing the
environment for the UDI.

CALL DQGET SYSTEM$ ID (id$ptr , except$ptr) ;

Output Parameters
id$ptr A POINTER to a 21-BYTE buffer into which

DQGETSYSTEM$ID places a STRING identifying the
operatlng system.

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

This system call returns the string

1RMX II

Condition Codes

E$OK 0000H No exceptional conditions.

UDI System Calls 37

DQGETTIME returns the current date and time in character format. This procedure
is obsolete.

CALL DQ9GET$TIME (date$t ime9ptr , except$ptr) ;

This system call is included only for compatibility with previous versions of the UDl. Use
the more general DQ$DECODE$TIME system call for this function.

,ì tl UDI Svstem Calls

DQ$MALLOCATE requests that a specific amount of logically contiguous free memory
be added to the existing memory available to the calling program.

s e g $ p t r - D Q $ M A L L O C A T E (s i z e , e x c e p t S p t r) :

Input Parameter
slze A DWORD that specifies the number of BYTES of memory being

recuested.

Output Parameters
seg$ptr A POINTER that indicates the starting address of the acquired

memorv.

except$ptr A POINTER to a word in which the system places the condition
code.

Description

The DQ$MALLOCATE system call requests a specific amount of logically contiguous
memory be added to the memory pool of the calling program. If the call is successful, the
procedure returns a POINTER to the first byte of the acquired memory. If the call fails,
the procedure returns a POINTER of undefined value and an exception code.

Multiple calls to DQ$MALLOCATE will result in multiple segments being allocated.

NOTE
DQ$MALLOCATE cannot be used in the PLIM-286 SMALL model of
comoilation.

tlDI System Calls 39

DO$MALLOCATE

Condition Codes

E$OK 0000H No exceptional conditions.

E$MEM 0002H Insufficient memory is available to fill the
request.

E$SUPPORT 0023H An unsupported operation was attempted.

In addition to the condition codes listed above, DQ$MALLOCATE can return the
condition codes associated with the Nucleus system calls
RQGETPOOUATTRIBUTES and RQ$CREATE$SEGMENT. See the Extended
iRfulX II Nucleus System Calh Reference Manual for detatls.

,10 UDI System Calls

DQ$MFREE returns memory allocated, by DQ$MALLOCA'I'E, to the available memory
pool.

CALL DQ$MFREE (seg$ptr , except ion$ptr) ;

INPUT PARAMETERS
seg$ptr A POINTER to a block of memory that is to be returned to the

avarlable memorv oool.

Description

Output Parameters
exception$ptr A POINTER to a WORD where the :jystem places the condition

cooe.

The DQ$MFREE system call is used to return to available memory space a block of
memory that was previously allocated using the DQ$MALLOCATE system call. Any
memory freed by this call is no longer available to the calling program. Further attempts
to use this area of memory may result in unexpected results since the memory referenced
may have reallocated to another process.

In using the DQ$MFREE system call you must return an entire block of memory, it is not
possible to return a portion of the memory allocated bv a previous call to
DQ$MALLOCATE.

Condition Codes
E$OK 0000H No exceptional conditions.

In addit ion to the condit ion code l isted above, DQ$MFREE can return the condit ion
codes associated with the Nucleus system call RQ$DELETE$SECMENT. See the
Efiended |RMX II Nucleus Svstem Call Reference Marraal lbr details.

UDI System Calls 4 l

The DQ$OPEN system call opens a file for I/O operations, specifies how the file will be
accessed, and specifies the number of buffers needed to support the l/O operations.

CALL DQ$OPEN (connect ion$t , rnode, nurn$buf , exceptSptr) ;

INPUT PARAMETERS
connection$t A TOKEN for the file connection to be opened.

mode

num$buf

Value

1

2

J

5,7

Output Parameter
except$ptr A POINTER to a WORD where the system places the condition

code.

A BYTE specifuing how the connection will he used to access the
file. This value is encoded as follows:

Meanino

Read only

Write only

Update (both reading and writ ing)

Reserved

Available for Xenix systems;

ignored by iRMX ll systems

&255 Reserved

A BYTE containing the number of buffers needed for this
connection. Specifuing a value larger than 0 implicitly requests that
"double buffering" (that is, read-ahead and/or write-behind) is to
be performed automatically. Specifying a value greater than 2,
results in an E$SUPPORT error.

Description

This system call prepares a connection for use with DQ$READ, DQ$WRITE,
DQ$SEEK, and DQ$TRUNCATE commands. Your program can have up to six
connections open simultaneously.

The DQ$OPEN system call does the following:

. Creates the reouested buffers.

12 UDI Svstem Calls

DQ$OPEN

. Sets the connection's file pointer to zero. This a place marker that tells where in the
file the next I/O operation is to begin.

. Starts reading ahead if num$buf is greater than zero and the access parameter is
"Read only" or "Update."

Seleclin g Access Rights

The system does not allow reading using a connection open for writing only nor writing
using a connection open for reading only. Ifyou are not certain how the connection wil
be used, specifo updating. However, if the specified connection does not support the
specified type of access, an exception code is returned.

Selecting the Number of Buflers

The process of deciding how many buffers to request is based on three considerations--
compatibility, memory, and performance.

COMPATIBILIry. If you expect to run your UDI program on other systems, which
support the UDI, you should request no more than two buffers.

MEMORY. The amount of memory used for buffers is directly proportional to the
number of buffers. You can save memory by using lèwer buffers.

PERFORMANCE. The performance consideration is more complex. Up to a certain
point, the more buffers you allocate, the faster your program can run. The actual break-
even point, where more buffers don't improve performance, depends on many variables.
Often, the only way to determine the break-even point is to experiment. However, the
following statements are true of every system:

r To overlap I/O with computation, you must request at least two buffers.

. If performance is not at all important but memory is, request no buffers.

Requesting zero buffers means that no buffering is to occur. That is, each DQ$ READ or
DQ$WRITE is followed immediately by the phys.ical I/O operation necessary to perform
the requested reading or writing. Interactive programs should open :CI: and :CO: with a
request for no buffers.

If your program normally calls DQ$SEEK before calling DQ$READ or DQ$WRITE, it
should reouest one buffer.

UDI System Calls 43

DQSOPEN

Your program can use the DQ$RESERVE$IO$MEMORY call to reserve memory that
the UDI can use for its internal data structures when the program calls DQ$ATTACH
and for buffers when the program calls DQ$OPEN. The advantage of reserving memory
is that the memory is guaranteed to be available when needed, If memory is not reserved,
a call to DQ$OPEN might not be successful because of a memory shortage. See the
description of DQ$RESERVE$IO$MEMORY later in this chapter for more information
about reserving memory.

Condition Codes

E$OK 0000H No except ional concl i t ions.

E$SUPPORT 0023H At least one of the following is true:

. The mode parameter is 4 or 8-255.

. The num$buffs parameter is sreater than
two.

E$FACCESS

E$SHARE

E$MEM

0026H Access to the specified file is clenied.

0028H The specified file may not be shared.

0002H lnsufficient nìcrÌrory remaìns to complete the
call.

In addition to the condition codes listed above, DQ$OPEN can return the condition codes
associated with the Extended I/O system call RQSOPE,N. See lhe Erren ded .RMX II
Extended I/O System Calls Ret'erence Manual for details.

{{ til)l Svstem Calls

In systems using overlays, the root module calls DQ$OVERLAY to load an overlay
module.

CALL DQ9oVERfAY (nane$ptr , except$ptr) ;

Input Parameter
name$ptr A POINTER to a STRING containing the name of an overlay

module. The name must be in upDercase.

Output Parameter
except$ptr A POINTER to a WORD where the system places the condition

code.

Description

A root module, in an overlay system, calls DQ$OVE,RLAY each time it wants to load an
overlay module.

If your assembly language ot PLIM-286 program uses the DQ$OVERI-AY procedure,
you should ensure that you bind the UDI library to your program correctly. T\e |APX 28ó
Utilities man:al describes the OVL2[Ì6 utility in detail. The folìowing steps describe the
process for loading iRMX II programs in overlay form.

1. Use BND286 to create linkable overlay fiies from compiled modules belonging to
each overlay.

2. Use BND286 to create a nonpacked STL moduÌe from the linkable overlay files.
The BND286 NOPACK control must be used.

3. Write an overlay definition file to describe the structure of the overlays in the
program.

4. Use OVL286 to create an overlaid executable file from the linkable overlav files.
the loadable module, and the overlay definition file.

To maintain portability to other operating systems that support the [JDI, you should call
no more than one level of overlay invoked only from the root of the application.

UDI System Calls 45

DQ$OVERLAY

Condition Codes

E$OK 0000H No exceptional conditions.

E$SUPPORT 0023H An supported operation was îttempted.

In addition to the condition code listed above, DQ$OVER$LAY can return the condition
codes associated with the Extended I/O system call RQSOVERIAY. See the Lttended
|RMX II Ettended I/O System Calls Reference Mannal for details.

16 UDI Svstem Calls

The DQ$READ system call copies bytes from a file into a buffer.

b y t e s $ r e a d : D Q $ R E A D (c o n n e c t i o n $ t , b u f f $ p t r , c o u n t , e x c e p t $ p t r) ;

INPUT PARAMETERS
connection$t A TOKEN for the connection to the file. This connection must be

open for reading or for both reading and writing, and the file
pointer of the connection must point to the first byte to be read.

A POINTER to the buffer that is to receive the data from the file.

A WORD containing the requested number of bytes to be read
from the file.

buff$ptr

count

Output Parameters
bytes$read A WORD containing the number of bvtes actually read. This

number is always equal to or less than count.

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

This system call reads a collection of contiguous bytes fronr the file associated with the
connection. The bytes are placed into the buffer specified in the call. If bytes$read is less
than count and the exception code returned from thc DQ$READ system call is E$OK an
end of file was encountered. If you type an interrupt or a term inate character from the
console, for example a CONTROL-C, while the operating system performs a read
operation, an E$OK exception code is returned and bytes$read is set to zero.

The Buffer

The buff$ptr parameter tells the operating system where to place the bytes when they are
read. Your program must provide this buffer. DQ$READ copies rs many bytes as it is
ìnstructed to copy (unless it encounters the end of the file). If the buffer is not long
enough, copying continues beyond the end of the buîfer.

l lDI System Calls 47

DQ$READ

Number of Bytes Read

The number of bytes that your program requests is the maximum number of bytes that
DQ$READ copies into the buffer. However, there are circumstances under which the
system reads fewer bytes.

. If the DQ$READ detects an end of file before reading the number of bytes requested,
it returns only the bytes preceding the end of file. In this case, the bytes$read
parameter is less than the count parameter, yet no exceptional conclition is indicated.

o lf an exceptìonal condition occurs during the reading operation, information in the
buffer and the value of the bytes$read parameter are meaningless and should be
ignored.

. If a CONTROL-C (interrupt or terminate) character is typed at the console (see
description).

Connection Requirements

The connect ion must be open for reading or updat ing. I f i t is not, DQ$READ returns an
except ional condit ion.

Condition Codes

E$OK 0000H No exceptional conditions.

E.$SUPPORT 0023H An unsupported operat ion was attempted.

In addition to the condition codes listed above. DQ$READ can return the condition
codes associated with the Extended I/O system call RQS READ$MOVE (except
E$FLUSHING) . See the Extended |RMX II Erterded I/O S1'stent Call Rafarence Manual
for details.

4tl UI)[Svstem Calls

The DQ$RENAME system call changes the pathname of a file.

CALL DQSRENAME (pathptr , newpath$ptr , except$ptr) ;

Input Parameters
path$ptr A POINTER to a STRING that specifies the pathname of the lile

to be renamed.

new$path$ptr A POINTER to a STRINC that specifies the new pathname for the
fìle. This path must not refer to an existing file.

Output Parameter
except$ptr A POINTER to a WORD where the systcnì places the condition

c()(le.

Description

This system call allows your programs to change thc pathname of a rìata or a directory
file. Be aware that when you rename a directory, you are changing the pathnames of al^
files contained in the directory. When you renamc iì file to which a connection exists--this
is permitted--the connection to the renamed 1ìle remains established.

A f i le 's pathname may be changed in any way, provir ler l thc f i le or t ì i rectory remains on
the same volume. Successful ly renaming a f i le wi thout appropr iatc aceess permission
depends on the operating system.

lfyour operating system does not allow renaming a file to unother volume or storage
device, an E$SUPPORT exception is returned.

Condition Codes

E$OK 000H No except ionul condit ions.

E$FEXIST 0020H The file represented by new$path$ptr already
exists.

E$SUPPORT 0023H The file rcprescnted by new$path$ptr exists on
another volume

E$FNEXIST 0021H The lìle represented by path$ptr does not exist.

UDI Svstem Calls 49

DQ$RENAME

ln addition to these condition codes, DQ$RENAME can return the condition codes
associated with the Extended I/O System call RQSRENAME$FILE. See the Extended
|RMX II Extended I/O System Calls Reference Manrlal for details.

-\t, UI)I Svstem Calls

The DQ$RESERVE$lO$MEMORY system call lets your program reserve enough
memory to ensure that it can open and attach the files it will be using.

CALL DQ$RESERVE$IO$MEMORY (number$f i les, nurnber$buf fers , excepr$pcr) ;

INPUT PARAMETERS
number$files A WORD whose value indicates the maximum number of files the

program will have attached simultaneously. This value must not be
greater than 12. Moreover, no more than 6 of these files may be
open simultaneously.

number$buffers A WORD whose value indicates the total number of buffers (up to
a maximum of 12) that wilì be needed at one time. For example, if
your program will have two files open at the same time, and each
of them has two bullers (specified when they are opened),
number$files should be two and number$butlers four.

If you specifu a value for number$liles or number$buffers that
exceeds the limits explained above, an E$SUPPORT exception will
be returned. If you specify a zero for both number$files and
number$buffers, the memory reserved earlier will be returned to
the memorv oool.

Output Parameter
except$ptr A POINTER to a WORD where the system pÌaces the condition

code.

Description

DQ$RESERVE$lO$MEMORY sets aside memory on behalf of the calling program,
guaranteeing that it will be available when needed later for attaching and opening files.
This memory is used for internal UDI data structures when the program requests file
connections via DQ$ATTACH and for buffers when the program opens lìle connections
via DQ$OPEN. Memory reserved in this way is not eligible to be allocated by
DQ$ALLOCATE or DQ$MALLOCATE,. Your program should call
DQ$RESERVE$IO$MEMORY before making any calls to DQ$ALt-OCATE or
DQ$MALLOCATE.

UDI System Calls 5 l

DO$RESERVE$IO$MEMORY

For an application to be portable across all operating systems that support UDl, it should
not allow I/O without first explicitly reserving the memory by calling
DQ$RESERVE$lO$MEMORY. ln the cal Ì to DQ$RESERVE$lO$MEMORY, you
may specify as many as 12 fiìes (that can be attachecl using the resenved memory) and as
many as 12 buffers (that can be requested when opening files).

NOTE
I f a program cal ls DQ$RESERVE$lO$MEMORY after making one or
more calls to DQ$ATTACH or DQ$OPEN, the memory used by those
calls is immediately applied against the file and buflèr counts specified in
the DQ$RESERVE$lO$ME,MORY cal l , possibly exhaust ing the memory
supply being requested.

l f your program cat ls DQ$RESERVE$IO$MEMORY more than once in a program, i t
simply increases or decreases the amount of memory reserved, unless your requests total
more than 12 files or l2 buffers. If the requests exceecl the maximum number of files or
buffers, the maximum is reserved and no error is returned.

RESTRICTION

This system call is effective only ifyour program uses exclusiveìy UDI system calls to
communicate with the extended iRMX l I Operat ing System.

Portability across operating systems that support the UDI cannot be guaranteed if your
appl icat ion requires more than 12 f i les at tached simuìtaneously or a group of
simultaneouslv open files whose toîal number of buîîers exceeds 12.

Condition Codes

E$OK 0000H No except ional condi t ions.

E$MEM 0002H Insul l ic ient memory remains to complete the
ca l l .

E$SUPPORT 0023H At least one of the following is true:

o The value specified for numlrcr$files is
greater than 12.

o The value spccified for number$buffers is
greater than 12.

52 UDI Svstem Calls

DQ$SEEK moves the file pointer associated with the specified connection.

C A L L D Q $ S E E K (c o n n e c t i o n $ r , r n o d e , o f f s e r , e x c e p r g p r r)

Input Parameters
connection$t

mode

offset

Output Parameter
except$ptr

A TOKEN for the open connection whose lile pointer is to be
moved.

A BYTE indicating the type of file pointer movement being
requested, as follows:

Mode Meaning

1 Move the pointer backward by the specified
move count. If the move count is large
enough to position the pointer past the
beginning of the fiie, the pointer is set to
the first byte of the file (position zero).

2 Set the pointer to the position specifiecl hy
the move count. Position zero is the first
position in the fiìe. Moving the pointer
beyontì the end of the file is permitted.

3 Move the file pointer forward by the
specified move count. Moving the pointer
beyond the end of the 1ìÌe is permitted.

4 First move the pointer to the end of the
file and then move it backward by the
specified move count. lf the specified move
count would position the pointer beyond the
front of the file, the pointer is set to rhe
first byte in the file (position zero).

A DWORD specifying either how far, in bytes, the fìle pointer is to
be moved, or the exact position in the file to which the pointer is to
be moved.

A POINTER to a WORD where the svstcm nlaces the condition
code.

UDI System Calls 5J

DQ$SEEK

Description

When performing non-sequential I/O, your programs cAn use this system call to position
the file pointer before using the DQ$READ, DQ$TRUNCATE, or DQ$rir'RlTE system
calls. The location of the file pointer specifies where in the file a DQ$READ,
DQ$WRITE, or DQ$TRUNCATE operation is to begin. If your program is performing
sequential I/O on a file, it need not use this system call.

You can position the file pointer beyond the end of a file. lf your program does this and
then invokes the DQ$READ system call, DQ$READ behaves as though the read
operation began at the end of file. If your program calls DQ$WRITE when the file
pointer is beyond the end of the file, the file is extended and the data is written as
requested. A subsequent DQ$READ returns an end of file condition. Attemptinga seek
past the end of a file without performing an explicit DQ$WRITE, call and subsequently
expecting the file to be lengthened, will produce indeterminate results.

Condition Codes

E$OK 0000H No exceptional conditions.

E$SUPPORT 0023H The mode parameter was set to 0 or 5-255.

In addition to the condition code listed above, DQ$SE,EK ciìn return the condition codes
associated with the Extended I/O system call RQSSEEK. See the Extended |RMX II
Ertended I/O System Calls Reference Manual for details.

5.1 UDI Systen Calls

DQ$SPECIAL sets options or specifies actions to be performed in the program execution
envlronment.

CALL DQ$SPECIAL (rnode, parameter$ptr , except$prr) ;

lnput Parameters
mode A BYTE used to specify the options to be set or the actions to be

performed. Values and meanings of mode are

Value Meaning

1 Transparent

2 Line editing (default value)

3 Polling

4-5 Reserved

ó Baud rate

Each of these modes is explained in the Description section.

parameter$ptr A POINTER. See complete explanatìon in the Description
sectlon.

Output Parameter
except$ptr A POINTER to a WORD where the system places the condition

code.

Description

This system call changes the mode in which your program receives input from a console
input device. When your system starts to run, the mode is line editing (mode 2). By using
DQ$SPECIAL, you can change to either of the other two modes, or back to line editing.

The meanings of the mode parameter values are as follows:

UDI Svstem Calls Jf,

DO$SPECIAL

Value
'I

,,| <

Meaning

Transparent. Interactive programs must often obtain characters from the
console exactly as they are typed. Transparent mode makes this possible.
In transparent mode, normal input characters are placed in the buffer
specified by the call to DQ$READ. Two exccptions to this are (l) signal
characters (e.g., the Human Interface CONTROL-C) set by specifing "set
signal" in the spec$func parameter of A$SPECIAL or S$SPECIAL, and
(2) any enabled output control characters or .

DQ$READ returns control to the calling program when the number of
characters entered equals the number of characters specified in the read
request.

Line Editing. This option enables you to correct typing errors with special
keys before the application program receives the characters t)?ed.
Characters used for editing are operating-system-dependent. The
RETURN character is always converteLl to CARRIAGE-RETURN-LINE-
FEED ICRLFì.

Polling. This option is nearly the sanre as Transparent (l) mode, except
that in Polling mode DQ$READ returns control to your program
immediately after it is called, regardless of whether any characters have
been tlped since the last call to DQ$READ. lf no characters have been
typed, this is indicated by the bytes$read parameter of the DQ$READ
call. Characters typed between successive calls to read the terminal are
held in the " type-ahead" buffer.

where

parameter$ptr A POINTER to a TOKEN ibr a connection
to the :CI: file previously established by
DQ$ATTACH.

Reserved, E$SUPPORT will be returned.

Baud Rate Specifies baud rate selection for an asynchronous line.

where

pîrametersptr points to this structure:

DECLARE L INE BASED pa ramete r$p t r STRUCTURE (
conn TOKEN,

i n $ h a u d $ r a t e B Y T E .
out$baud$rate BYTE) ;

5tt UDI System Calls

DQ$SPECIAL

where

Condition Codes

E$OK

E$SUPPORT

000H No exceptional conditions.

0023H The mode parameter represents an

LINE.CONN is a connection previously established by a
DQ$ATTACII catl.

LINE.in$baud$rate specifies the desired input baud rate.

LINE.out$baud$rate specifies the desired output baud rate.

Thesc values spccify haud rate:

Byte Value

0
I
2
3
4
5
o
7

8-255

Baud Rate

Unspecified
300
600
1200
2400
4u(x)
9600
19200

Reserved

unsupportecl modc

In addition to the condition codes listed above, DQgSPECIAL can return the condition
codes associated with the Extended I/O system call RQSSPECIAL. See the Extended
|RMX II Extended I/O Sy*em Calls Reference Manrual for details.

t)Dl System Calls J , /

DQ$SWITCH$BUFFER substitutes a new command line for the existing one.

- ^ ^ ^ " - - ^ " ^ R r r F F F p / 1 , , , € f A n È r - - ^ - - r (^ r / 1 .c n a r) o L I S e L = u q l S w l l u n l L . y p - . , - . . - - r - v / L r / ,

A POINTER to a buffer containing the "new" command line. That
is, the one whose arguments are to be returned hy subsequent calls
to DQGETARGUMENT. The buffer must not exceed 32 K-
bytes in length.

A WORD into which the UDI places a number. This number
represents the number of bytes from the beginning of the "old"
command line to the last character of the last argument so far
processed by DQGETARCUMENT. In other words, the value
in char$offset tells how many characters in the old command line
have been processed by the time of this call.

A POINTER to a WORD where the svstem nlaces the condition
code.

Description

Input Parameter
buff$ptr

Output Parameters
char$offset

except$ptr

When your program is invoked from the console, the operating system places the
invocation command into a buffer. Typically, your program will use
DQGETARGUMENT to obtain the arguments in that command. lf your program
subsequently calls DQ$READ to obtain an additional command line from the console, it
can call DQ$SWTCH$BUFFER to designate the buffer with the new command line as
that from which arguments are to be obtained when DQGETARCUMENT is called.

You can use DQ$SWITCH$BUFFER any number of times ro point to tlifferent strings in
your program. However, you cannot use DQ$SWITCH$BUFFE R to return to the
command line that invoked the program, because only the operating system knows the
location of that buffer. Therefore, you should use DQGETARGUMENT to obtain all
arguments of the invocation command line before issuing the first call to
DQ$SWITCH$BUFFER.

5 d Ul)I Svstem Calls

DQ$SWITCH$BUFFER

A second service of DQ$SWITCH$BUFFER is that it returns the location of the last byte
of the last argument so far obtained from the old buffer by calls to
DQGETARGUMENT. Therefore, in addition to using DQ$SWITCH$BUFFER to
switch buffers, you can use it after one or more DQSGET$ARGUMENT calls to
determine where in the buffer the next argument starts. However, doing this "resets" the
buffer, in the sense that the next call to DQGETARGUMENT would return the first
argument in the buffer. To return to the desired point in the buffer, where you can
continue to extract arguments, catl DQ$SWITCH$BUFFER again, but when doing so, use
the sum of the starting address of the buffer and the value returned by the previous call to
DQ$SWITCH$BUFFER. The following is an example showing how to use the second
service of DQ$SWITCH$BUFFER:

DECIARE
ESOK LITEMLLY 'O'
E$FATAL$EXIT L ITEMLLY '3 '
mybu f fe r$p r r P0TNTER.
buff$ptr PoINTER,
arg$prr POINTER,
buff STRUCTURE (

of fset WORD,
segmenr rJoRD) AT (@buf f$prr) ,

next$char \,JORD,
char$of fset l . lORD,
^ ^ h ; i ' - i ^ h q - ^ ; - W o R D ,

del i rn i t$char BYTE i

, / * in i t ia l ize buf f$ptr and next$char * /

buf f$ptr : mybuf f$ptr ;
n e x t $ c h a r - 0 ;

, / * deterrn ine vhere in the buf fer the next argument s tar ts * /

char$of fset - DQ$ SI{ ITCH$ BUFFER (buf f$ptr , @condi t ion$code) ;
IF condi t ion$code o E$OK THEN /* òo et ror Processing * /

CALL DQ$EXIT (E$FATAL$EXIT)
n e x t $ c h a r - c h a r $ o f f s e t + n e x t $ c h a r ;

(Example continued on next page)

UDI Svstem Cells 59

DQSSWITCH$BUFFER

. / * r À È , ! r - r a À a c i r a r l n a i n i - i n h r r f f a r * , 1

b u f f . o f f s e t : b u f f . o f f s e t t c h a r $ o f f s e t ;
char$of fset - DQ$ SWITCH$BUFFER (buf f$ptr , @condi t ionscode) ;

IF condi t ion$code <> E$oK THEN /* do et ror processing * /

CALL DQ$EXIT (E$FATAL$EXIT)

/* get next argument */

del imi t$char = DQSCET$ARGUMENT (arg$ptr , @condi t ion$ptr) :
IF condi t ion$code <> E$oK THEN /* do error
processing * /

CALL DQ$EXIT (E$FATAL$EXIT)

Condition Codes

E$OK 0000H No except ional condi t ions.

In addi t ion to the condi t ion code l is ted above, DQ$SWITCI I$BUFFE,R can return the
condition codes associated with the Human Interface system call
RQCSET$PARSE$BUFFER. See fhe EÍended |RMX II Human Inteface System Calls
Reference Manual for detatls.

ó0 UDI Syslem Calls

DQ$TRAP$CC lets you speciry a procedure that gains control if an operator enters an
interrupt character (such as CONTROL-C) at the console.

CALL DQSTRAP$CC (cc$rout ine$ptr , except$ptr) ;

Input Parameter

cc$routine$ptr A POINTER to the entry point of your interrupt procedure.

A POINTE,R to a WORD where the svstem olaces the conditron
code.

0000H No exceptional contlitions.

Condition Codes

E$OK

Output Parameter
except$ptr

Description

The action the default interrupt procedure takes depends on the operating system. Using
the DQ$TRAP$CC system call, lets you substitutc an alternate interrupt procedure that
will automatically receive control when you enter an interrupt character on the console.
(See the Extended |RMX II Human Interface User\ Guide for more information.) The
context of the program executing at the time you invoke DQ$TRAP$CC must be saved by
your operating system. Due to this context switch, the contents of the CPU registers at
the time the interrupt procedure receives control may not be those associated with your
program. The CPU registers may contain values for an internal task that was executing
when the interrupt character was entered.

To ensure portability across other operating systems, a GOTO statement (PLlM, C,
FORTRAN, etc.) must not branch outside the DQ$TRAP$CC procedure's routine.

UDI Systen Calls 6 l

DQ$TRAP$EXCEmION substitutes an alternate exception handler for the default
exception handler provided by the operating system.

r - A L L D Q S T R A P $ E X C E P T I o N (h a n d l e r $ p t r , e x c e p t S p t r) :

Input Parameter
ha ndler$ptr A POINTER to a STRUCTURE containing a long pointer to the

entry point of the alternate exception handler. The STRUCTURE
has the form

DECIARE hand ler$p t r STRUCTURE (
o f f s e t W O R D ,
b a s e T O K E N) ;

A POINTER to a WORD where the svstem nlaces the conditron
code.

Codes and Exception-llandling Calls at the beginning of this
of the conditions of the strrck when vour alternate exceotion

See the section Condition
manual for an explanation
handler receives control.

Condition Codes

E$OK 0000H No except ionrr I concj i t ions.

In adcl i t ion to the condi t ion code l is ted above, DQ$TRAP$EXCEPTION can return the
condi t ion codes associated wi th the Nucleus system c i r l l
RQSETEXCEPTION$HANDLER. See the Exttndad iRlt' lX II Nucleus System Calh
Reference Manua / for details.

Output Parameter
except$ptr

Description

DQ$TRAP$EXCEPTION designates an alternate exception handler as the one to which
control should pass when an exceptional conclition occurs. The DQ$TRAP$EXCEPTION
routine should restore the default exception handler before it terminates. Therefore, your
program should call DQGETEXCEPTION$HANDLER before calling
DQ$TRAP$EXCEPTION to get the default exception hrrndler address.

62 UDI Svstem Calls

DQ$TRUNCATE moves the end-of-file to the current position of a named file
connection's file pointer, thereby freeing the portion of the file lying beyond the file
pointer.

CALL DQ$TRUNCATE (connect ion$t , except$ptr) ;

lnput Parameter
connection$t A TOKEN 1br an open connection to the named data file that is to

be truncated. The file pointer of this connection marks the place
where truncation is to occur. The byte indicated by the file pointer
is the first byte to be dropped from the file.

except$ptr A POINTER to a WORD where the system places the condition
eorl . .

Description

This system call truncates a file at the current setting ol the file pointer and releases all
file space beyond the pointer for reallocation to other files. lf the pointer is at or beyond
the end of file, no truncation is performed. Unless the file pointer is already at the proper
location, your program should use the DQ$SEEK system call to position the pointer
before calling DQ$TRUNCATE.

The connection should have write, or read and write access ri{hts, established when the
connection was onened.

Output Parameter

Condition Codes

E$OK

E$SUPPORT

0000H No except iona I condi t ions.

0023H An unsupported operat ion was at tempted.

In addition to the condition codes listed above. DQ$TRUNCATE can return the
condition codes associated with the Extended l/O system call RQS1'RUNCATE$FlLE.
See lhe Extended |RMX II Extended I/O Svstent Culls Refuratrce lvtrurrral for details.

UDI Svstem Calls 63

The DQ$WRITE system calì copies a collection of bytes from a buffer into a file.

C A L L D Q $ l " R I T E (c o n n e c t í o n $ t , b u t f $ p t r , c o u n t . e x c e p t $ P L r) :

INPUT PARAMETERS
connection$t A TOKEN containing the connection to the file into which the

information is to be written.

buff$ptr A POINTER to a buffer containing the data to be written to the
specified file.

count A WORD containing the number of bytes to be written from the
buffer to the file.

Output Parameter
except$ptr A POINTER to a WORD where the system places the condition

code.

Description

This system call causes the operating system to write the specified number of bytes from
the buffer to the file.

Number of Bytes Written

Occasionally, DQ$WRITE writes fewer bytes than requested by the calìing program. Thrs
happens under the following two circumstances:

o When DQ$WRITE encounters an I/O error.

o When the volume to which your program is writing becomes full.

Where the Bytes Are Written

DQ$WRITE starts writing at the location specified by the connection's file pointer. After
the writing operation is completed, the file pointer points to the byte immetiiately
following the last byte written.

Ifyour program must reposition the file pointer before writing, it can do so by using the
DQ$SEEK system call.

61 UI)I Svstem Calls

DQ$WRITE

Condition Codes

E$OK 00001I No except ional condit ions.

E$SUPPORT 0023H An unsupported operation was attempted.

E$SPACE 0029H lnadequate memory space remains to complete
the write.

In addition to the condition code listed above, DQ$WRITE can return the condition
codes associated with the Extended I/O system call RQSWRITE$MOVE. See the
Efiended |RMX II Ettended I/O Svstem Calls Reference Manual lbr tlctails.

UDI System Calls ó5

INDEX

A

Access mask 1 1
Access rights 10

from the ACCESS filed of DQGETCONNECTION$STATUS 32
needed to perform DQ$TRUNCATE 63
OWNER$ACCESS field in DQ$FILE$INFO 25
selecting 43

B

Baud rate
how to set using DQ$SPECIAL 56
value for mode parameter of DQ$SPECIAL 55

BND286, using to create overlay files 45
Buffer 29

DQ$CLOSE 15
for DQGETSYSTEM$ID 37
for DQ$READ 29
for the buff$ptr parameter of DQ$READ 47
number required for DQ$OPEN 42
the buff$ptr parameter of DQ$SWITCH$BUFFER 58
the buff$ptr parameter of DQ$WRITE, 64
the number$buffers parameter of DQ$RESERVElOMEMORY 51

c
CI (console input) 43
CO (console output) 43
Command line 30

parsing with DQGETARGUMENT 29
Compatibilìty

DQGETTIME system call 38
number of buffers permitted in the DQ$OPEN system call 43
setting the ACCESS bit of DQ$CHANGE$ACCESS for 10
setting the ACCESS field of the DQGETCONNECTION$STATUS system call 32
setting the GROUP$ACCESS field of the DQ$FILE$INFO system call 26
setting the WORLD$ACCESS field of DQ$FILE$INFO system call 25

Condition codes 3
Condition codes. table of 1.2

UDI System Calls Index-l

I N D E X

Connection
Boolean test for state 32
creating usirg DQ$CREATE ló
default access rights 11
deleting using DQ$DETACH 2l
freeing buffers associated with a connection 15
getting information using DQGETCONNECTION$STATUS 32
moving the fiìe pointer 53
requirements for DQ$READ 48
truncating the associatecl file 63

Connection, speciffing the number of buffers required for 42
CONTROL-C 4, 47, 48, 56, 61

D

Data structure
for DQ$DECODE$TIME 18
fbr DQ$FILE$INFO 24
for DQGETCONNECTION$STATUS 32
for DQ$SPECIAL 56
for DQ$TRAP$EXCEPTION 62

DATE 18 , 19 ,38
Defaul t user 11
Del imiter 29,30

example of delimiters returned from DQGETARCUMENT 30
DQ$ALLOCATE 7
DQ$ATTACH 8
DQ$CHANGE$ACCESS 10
DQ$CHANGE$EXTENSION I3
DQ$CLOSE 15
DQ$CREATE 16
DQ$DECODE$EXCEFIION I7
DQ$DECODE$TIME I8
DQ$DELETE 20
DQ$DETACH 2I
DQ$EXIT 22
DQ$FILE$INFO 24
DQ$FREE 28
DQGETARGUMENT 29
DQGETCONNECTION$STATUS 32
DQGETEXCEPTION$HANDLER 34
DQGETMSIZE 35
DQGETSIZE 36
DQGETSYSTEM$ID 37
DQGETTIME 3Iì

Index-2 LlDI System Calls

DQ$MALLOCATE 39
DQ$MFREE 41
DQ$OPEN 42
DQ$OVERI-AY 45
DQ$READ 47
DQ$RENAME 49
DQ$RESER\E$IO$MEMORY 51
DQ$SEEK 53
DQ$SPECIAL 55

baud rate 56
line editing 56
pol l ing 56

DQ$SWITCH$BUFFER 58
DQ$TRAP$CC 6I
DQ$TRAP$EXCEPTION 62
DQ$TRUNCATE 63
DQ$WRITE 64

E

End of file 47, 48, 54, 63
Examples

delimiters returned by DQcETARGUMENT 30
DQ$SWITCH$BUFFER 59

Exception handling
getting the address of the current exception handler 34
using your own exception handler 62

F

File
changing the pathname 49
creation ló
deletion 20
extension l3
informat ion 24,32
operations 42, 47, 51, 63, 64
pointer 53, 63
size 24

Free space pool, requesting additional memory from 7

INDEX

UDI Svstem Calls Index-3

INDEX

I

Interactive programs
getting characters from the console 56
opening CI and CO for interactive programs 43

Interrupt procedure 61

L

Line editing mode 56

M

Memory
block 35,41
p o o l 7 , 2 8 , 3 9 , 4 1 , 5 1
reservation 44, 5 1

Mode
file pointer seeks 53
parameter of DQ$FILE$INFO 24
parameter of DQ$OPEN 42
terminal 55

Model of segmentation 34, 39

o
Object

file 13
use r 1 l

Object file 13
Operatingsystem iclentification 37
OSC sequences 56
OVL286, using to create programs that use overÌays 45
Owner ID I 1
Owner of a file 10

P

Performance 43
PL/M-286 3,39,4s
Polling 55
Portabi l i ty 45,52,61

Index-4 [JDI System Calls

Program control
DQ$EXIT 22
DQ$OVERIAY 45
DQ$TRAP$CC 61
system calls 4

R

Reserving memory 44, 51
Root module 45

s
Segment 7,28,35,36
System calls

descriptions 2
dictionary 4
exception-handling ó
file-handling 4
memory management 5
program control 4
ut i ì i ty and command parsing

T
'fask

7, 22, 61
Terminal modes

polling 55
Terminating programs 22
TIME 18,38
Transparent mode 56

U

UDI library 45
User

default 11
ID 11,24
object 11
WORLD 10

User object 11
woRLD 10, 11,25
WORLD user 10

INDEX

UDI Svstem Calls Index-5

INTERNATIONAL SALES OFFICES

IN ' ì -E L CORPORATION JAPAN
3065 EowersAvenue Inte l lapan K.K.
S a n t a C l a r a , C a l i f o r n i a 9 5 0 5 1 F l o w e r - H i l l 5 h i n - m a c h r

1 . 2 3 - 9 , 5 h i n m a c h i
B E L G I U M S e t a g a y a - k u , T o k y o 1 5
Inte l Corporat ion 5A
Rue des Cot tages 65 NEÍHERLANDS
B-1 180 Brussels In te l Semi(onductor (Nether land B.V.)

Alexanderpoor t B u i ld ing
DENMARK Marten Meesweg 93
lnte l Denmark A, /5 3068 Rot terdam

c lentevej 61-3rd F loor
dk 2400 Copenhagen NORWAY

Intel Norway A,/S
ENGTAN D P.O. Box 92
Inte l Corporat ion (U.K.) L f D. Hvamveien 4
P i p e r ' s W a y N - 2 0 1 3 , 5 k j e t t e n
5windon, Wi l tsh i re 5N3 1 R. l

SPAIN
F I N L A N D I n t e l l b e r i a
Inte l F in land OY Cal le Zurbaran 28- IZQDA
R u o s i l a n t e 2 2 8 0 1 0 M a d r i d
0 0 3 9 0 H e l s i n k i

S W E D E N
FRANCE Inte l Sweden A.8.
Inte l Par is Dalvaegen 24
1 R u € É d i s o n - B P 3 0 3 5 - 1 7 1 3 6 S o l n a
78054 5t . -Quent i n-en-Yvel ines Cedex

5WITZERLAND
ISRAEI ln te l sem icond uctor A.G.
Inte l semiconductors LTD. Talackerst rasse 17
At id im Industr ia l Park 8125 Glat tbrugg
Neve sharet CH-8065 Zu r ich
P.O. Box 43202
T e l - A v i v 6 1 4 3 0 W E S T G E R M A N Y

I n t e l 5 e m i € o n d u c t o r G . N . B . H
I IALY Seid lest rasse 27
Inte l Corporat ion5 P A D-8000 Munchen

M i l a n d f i o r i , P a l a z z o E l 4
20090 Assago (Mi lano)

