
intel'

EXTENDED iRMX@II .3
OPERATING SYSTEM

DOCUMENTATION

VOLUME 2
USER'S GUIDES

O.der Number: 461845-001

r !

Intel Corporation
3065 BowersAvenue

Santa Clara, Cali fornla 95051

Copyright o 1988, Intel Corporation, Ail Rights Reserved

In locationB outside the Uúited Stata6, obtain ailditionsl copi€s of Iniel docuúentation by
contecting your jocal Iniel sales ofice. For yoù conveni€.ce, int€rnaiionsl sales ofiice rddr€ss€s
arc locateddircctlybeforetlìe readÈr.€ply.ardiirtrùÙàckollhe nuîual,

The infornation in Lhis do.uhent is subj€ct to change wiihoui noiice.

Inrel Corporation makes no warranty ofany kind with regard io rhi6 mat€rial, inclùding, but not
Ìimit€d to, the impiied ù arrantie6 of merchantsbility and Iithess fo. a parlicùlù pufpose. Iniel
Co.poration assumes no responsibility lo. any errors ihai may appear in ihi6 documeùt. Intel
Corporation makes no connitmentto update or to keep currentthe informùtioúcontained iù this

Iùtel Corporation assune6 no respohsibility lor the se of any circuilry other rhan circuit.y
ehbodied in an Intel prodùct. Noothercircuitpatentlicensesare implied-

Int€l $ftware p.oducts a.e copyrighted by and shall renain the property of Ìntel Corpofaiion.
Use, duplicaiio! or di6closure is subject to restrictions stated in Intel's soltwaré li.ebse, or as
detinedinASPRT 104.9 (a)(9).

No paú olthis document mèy be copied or rèproduced in any form or by any means without prior
wÌitt€n cons€nt oIInt€l Corporation.

The fouowins are tradeúÉrks of Intel Corporation and ik amliaies and nay be Èed only 10
id€ntily Intel producls:

iPSC
iRMX
iSBC
isBx
iSDM
issB
iSXM

MCS

MICROMAINFRAME
MULTIBUS
MULTICHANNEL
MULT!MODULE

XENIX, MS-DOS, Multiplan, and Microsoft are t.ademarks ofMicrosolt Co.poraiion. SNIX is a
trademark of Bell Laboratori€s. Ethe.net is a trademsrl< of X€rox Coeorstion. Cenirorics is a
rrad€mark of Centronics Data CoDDuter Corpo.ation. Chassis Trak is a tradenark of ceneral
Devices Company, tnc. yAX and VMS are iradeùarts of Digital Equipm€nt Corporarion.
Sma.tmodem 1200 5nd Hayes are traalemarls otH.yes Mic.ocompute. Produck,Inc. IBM is a
reqisiered trademark oflnt€.nltionÈl B$iness Machi@s, Softscope is a r€gistered tradémark nf

Copy.isht@ 1988, IntelCórpóration

Above iLBX
BTTBUS im
COMMputer ilfDDX
CREDIT iMMX
Daia PipeÌine Ìnsite

i i r tè IBOS
i lntelevision
I2ICE nrieligEtrLldcltifier
ICE inteligent Progrùmming
iCEL Intellec
iCS lrtellink
iDBP iOSP
iDIS iPDS

iPSB

ONCE

PROMPT

QUEST
Qùex

RM}V80
RUPI

SLD
UPI
VLSiCEL

t Ì

MANUALS IN THIS VOLUME

This volume (Volume 2, Eúended iRlulp II User's cuides) contains the following
manuaÌs, all of which documeff the iRMX fI layers. These manual are intended to provide
the information needed to use the iRMX II Opelating System.

Extenàed. iRMX@ II Nucleus User's Guiàe
Ertend?d |RMP II Ba\í. l/O Ststptk Uter's Guid"
Extehded. iRM1'@ II Extended I/O System User's Guíde
Extended iR.tulX@ II Applicati.oh Loader Userb Guide
Exiended íRMP Hurnan Intef.tce Userk Guide
Extended íRMP II UDI User's Guíl.e
hfehded iRMl@ lIDevice Drivers User's Guide

'l'ne Ertended. íRM:@ Il Nucleus Useri Guil.e descdbes the concepts of the inoermosr layer,
the Nucleus.

T'be E tehdzd. iRM7'@ II Basíc I/O System Userb Ga\da describes the concepts of the Basic
I/O System.

îhe Exfended. iRivDP II Extend.ed. I/O System (Jserb Guidc descîibes rhe conceprs of rhe
Exrended I/O system.

'fne ErtendEd \RAIP I Application Loadcr Ulerb Carrle describes hovy ro use the Loader
to load your programs.

Tl'rc Exfehded ìRMX@ II Human I ktface User's Guide explains how to use and modify the
Human Interface.

î'I\e Extendad, íRM)P II UDI User\ Guíd,e desri$es the use of all UDI, the language
interface.

'lhe Extended LRMP 1I Device Drivers User's Guide describes the data sÍuctures and
suDDort routines needed to write device drivers.

r-\

iRMX@ II User Guides Volume lu

YOLUME PREFACE

VOLUME CONTENTS

Manuals are listed in the order they appear in the volumes. For a synopsis of each manual,
reîeî fo the Introductìon to the Extended ìRMX\ II Operatíng System.

VOLUME 1: Extendzd |RMP II Intrcù)ctiory Installatíon, and Operutíng Inttructíons

Introdlctíon to the Ertended |RMX II Opetutíng System
Extended iRMX II Hardwue and SoÍf(,are Installation Guíde
Operatork Guíde to the Extended |RMX II Hunan lnterface
Ma^tter Index

VOLUME 2: Extended íRMX@ II Operutíng System User Guidas

Exte d,ed .RMP II Nucleus Userk Guide
Ertended íRùIP II B.uíc I/O System User's Guide
Extended íRMl@ II Extended I/O $stem Useî's Guide
Extended íRMA@ Human Inteface User's Guide
Extended, |RMX@ II Applicatíon Loader Userh Guíde
Extendad íRMX@ II Uhír'efial Development Interface User's Guidz
Extended |RMX@ II Device Divers User's Guide

VOLUME 3: Extendad |RùIl@ II System Calls

Entended íRMX9 II M&leus Srstem Calls Reîerence Manutl
Extended |RM)P II Basic I/O System Calb Refercnce Manual
Extended |RMP II btend.ed.I/O System Calls Refermce Manual
Extended íRM}@ I Applícatíon Loader System Call,s Refercnce Mahual
Extendzd |RMP II Human Interface System Calk Reference Manual
Extended |RM)P II UDI Swtem Calls Reference Manuel

VOLUME 4: Extended iRIutP II Opetutíng Esten Uîilities

Extendcd. |RMP II Bootstrap Load.er Reference Manual
Extended |RMP II System Debugget Refercnce Manual
Ettended |RMP II Disk Veifcation Utílíty Reference Manual
Extend,ed. |RMP II Progammíhg Techníques Reference Manual
Guile to the Extehded íRMP II Inteructiye Confrguratíon Utitíty

VOLUI{E 5: Extended iRMXs II Inteqctíve Confguftitíon Utílíty Reference

Exfended iRivlx@ II Interactive Confrguration Utiliry Reference Manual

iRMX@ II User Guides Volume

r-\ .
BEV, REVTSION HISTORY DATE

,001 Original Issue. 01/88

intet

{ì

EXTENDED iRMX@II
NUCLEUS USER'S GUIDE

Inteì Corporation
3065 BowersAvenue

Santa Ctara, Cali fornia 95051

Copyright o 1988, Intel Corporation, All Rights Reserved

f

This manual documents the Extended iRMX II Nucleus subsystem. The material
conîained in this manual is primadly intended for programmers who need to access
system capabilities.

READER LEVEL

This manual is intended for programmers who are familìar with the mnc€pts c.ntained in
the Introductíok to the Extended |RMX II Opemting SysteîL

RELATED PUBLICATIONS

The following manuals provide additional information that may be helpful to readers of
this manual.

t |RMX 286 Networking Software Userb Guide, Order Number: 122323
. LAPX 286 UtíIíties User's Guíde, Order N\mber. 121934
. MULTIBUSd II Tmhsport Protocol Specífrcatbn, Order Number: 14927

Nucleus User's Gùide lll

CHAPTER
OVERVIEW

CHAPTER 3
TASK MANAGEMENT

PAGE

PAGE

Nucleus Uset's Guide

CONTENTS

CHAPTER 4
EXCHANGE MANAGEMENT

CHAPTER 5
MEMORY MANAGEMENT

CHAPTER 6
OBJECT MANAGEMENT

PAGE

PAGE

PAGE

Nucleus Uset's Guide

CHAPTER 7
DESCRIPTOR MANAGEMENT

CONTENTS

PAGE

PAGE

CHAPTER 9
INTERRUPT MANAGEMENT

CHAPTER 8
EXCEPTIONAL CONDITION MANAGEMENT

PAGE

Nucleus Useds Guide Yll

CONTENTS

9.4 TIANDLING SPURIOUS INTERRUPTS9-?2
9.4.1 Caling GEI$LEVEL..............................-.-.-.-........9-23
9.4.2 Judicious Selectioo oflnterruDt Levels ...-............-.-...9-23
9.4.3 Examining the In-service Register........,.,,.,.,..9-23

9.5 EXAMPLES OF INTERRUPT SERVICING..-.-.............9-24
9.6 System Calls for Interrupte,.....,.,.,.,.........-.-..........-.-9-n

CHAPTER IO
OPERATING SYSTEM EXTENSIONS PAGE

10.1 Introductiori.,..... .-.-.-..........-.-.-.......... 10-1
10.2 Thee Ways of Adding Functionality....,................,......10-1
10.3 Creating an Operating System Extersion2

10.3.1 Proc€dures Used IÍ Operating System Extensions2
10.3.2 Interface ProceduresT
10.3.3 Bntry Procedures?
10.3.4 Function ProceduresS
10.3.5 RQ$ERROR And NUC$ERROR Procedures8

10.4 Establishing Exception-Handling Mechanisms.. 10-11
10.5 Customized Exception Codes..................... 10-14
10.6 Linking the Procedures 10-14
10.7 Inclùding OS Efensions 10-14
10.8 Protecting Resources From Being Deleted.. 10-15
10.9 System Calls For Extending The Operating System,........... 10-15

CHAPTER 11
TYPE MANAGERS PAGE

vlll Nucleus Uset's Guide

CHAPTER 12
|RMX@ II MULTIBUS@ II SYSTEMS

CHAPTER 13
NUCLEUS CONFIGURATION

CONTENTS

PAGE

PAGE
12.1 Introduction.......,.,....... 12.1
12.2 Features of MULTIBUS@ II Systems.-.-.................-..12-l
12,3 An Analory of How MULTIBUS@ II Systems lryork..,.....................,.,.,.,,,,.,..........12,2
12.4 MUIITIBUS@ II Hardware Overview ,.,,.,...............-... 123
12.4. I Cenu al Scrvices Module (CSM)....,.... ,.,.,,,,..................,,., j2-4

12.4.1.1 clobal Time-of-Day C1ock.......... 12-.i.global clock, MULTIBUS tI 12-5
12.4.2 Interconnect Address Space ,................., t2-.i.Intercomìect addr€ss spac€ 12-5
12.4.3 Bùilt-Ir SeUTests (BIST)...........................12-.i.Built-in SelfTests (BIST) 12-6
12.4.4 The MULTIBUS@ II Message Passirg Hardware and Messa ge ...-.-.......... 12-6

12.5 Extended iRMX@ II Software Overview. ,........................,,,.2-j
12.5.1 The MULTIBUS@ II Transport Protocol.-.-.-.-.-.-.-.-.....-......-.-.-.-.-......................12-8

12.5.2 The Nucleus Communication Service. .,.,.,................12-8
12.5.3 Nucleus Communication Objects........-.........I2-9
12.5.3.1 Port................12-9

12.5.3.2 BufferPools. 12-10
12.5.3.2.1 System Calls for Buffer Pools....,...,.,12-1I
12.5.3.2.2 Data Chaias..................................... ,,.,.,..,.,.,..12-1I
12.5.3.2.3 Messag€ Fragmentation,,12-13

12.5.4 Systeú CaÌls to Work With MULîBUS@ II Message Space.......12-13
12.5.4.1 System Calls for Interconrect Space.12-13
12.5.4.2 System Calls for Sending Messages through Message Space ,..........12-13
12.5.4.3 Calls For Geîting lnformation About Message Passing

Agents (Boards)......... ... 12-14
12,5,5 The Nucleus Communications Service System Calls..........,.....12-14
12.5,5,1 System calls used with buffer pool objects..............,.............. -...-.........12-14
12.5.5.3 System Calls Used to Send/Receive Messages Through ports....... 12-15
12.5.5.4 System Calls ùsed v.ith the Interconriect Registers on a board...,.,.l2-16

12.5.6 Examples Using Nucleus Communications Service Calls-.....,...,.........12-16
12.5.6.1 Interconnect Space Examp1e................ ..,.,.,.,.,12-18
12.5.6.2 Creatir'gaPort for Message Sending and Receiving..........,,,.,72-26
12.5.6.3 Sending Dara Ushg RQ$SEND$RSVP..12-31.
12.5.6.4 Sending a Data Chain Message...,....1237
12.5.6.5 Sending a Message irr Fragments..... ,,,,.,.,..,...12-44
12.5.6.6 Receiving a Mersage in Fragment Fo12-41
12.5.6.7 The Name Server Exarnple.,............,..,,,,,12-54

12.6 G1ossary.,............ ,.,....,..............12.56

txNucleus Uset's Guide

CONTENTS

APPENDIX A
EXTENDED iRMX@ II DATA TYPES

APPENDIX B
OBJECT TYPES AND RESOURCE REQUIREMENTS

PAGE

PAGE

APPENDIX C
EXCEPTION CODES PAGE

Figure 1-1. Initial Job Tree.........., ... 1-4
Figure 3-1. Task State Transition Diagram... 3-4
Figuîe 5-1. Memory Movement Diagram ... 5-3
FiguÌe 9-1. lnterrupt Processi[g Mode........,.......................,.,.,.,.,..,9-12
Figure 9-2. 80286 Inteùùpt Lines .. 9-4
Figure 9-3. Flow ChaÍ of Interrupt Hand|ing.....,...-.......... 9-15
Figure 9-4. Single-Buffer Intefupt Servicing,.,.,.,.,.,.,.,....,.,.,.,.. 9-17

Nucleus Usefs Guide

CONTENTS

FIGURES lcontinuedl
Figure 9-5. Multiple-Buffer Interrupt Servicing... 9-18
Figure 10-1. OS Ext€osions with Entry Procedure..,............,.,.,. 10-4
Figure 10-2. OS Extensioll without Entry Procedure .. 10-5
Figure 10-3. Sùúmary of Duties of Procedures in OS Extensions................................ 10,6
Figure 10-4. Handling Exceptions with an Exception Handler.................................... 10-10
Figure 10-5. Control Flow for Handling Exceptions In-Line..............-.-...-.-...-......-...-. 10-13
Figure 11-1. Creation Sequence for Composite Objects... 11-1
Figure 11-2. Type Manager Involvement in DELETE$JOB....................,....................11"4
Figure 1l-3. A Ring Buffer............. -....,,--...----...................... 11-8
Figure 12-1. Simpffied MULTIBUS@ II Bus Architecture.. 12-4
Frg'rre 12-2. A Simplified MULTIBUS@ II Message 12-7
Figure 12-3. A Data Chain Block and a Data Chainl2-12
Figll.re 12-4. Physical Location of Boards in the tsxampleslT
Figure 12-5. Board Scanning AlgorithmlS
Figure 12-6. Implementation of a Boaad Scanner.,.,.,.........,.......................12-25
Figure 12-8, Creating a Data Transport Protocol Port ... 12-30
Figure 12-9. An RSVP/REPLY Transaction between Two

Extended iRMX@ II Hosts................................12-32
Figure 12-10. Algorithm for RO$SEND$RSVP ExampIe.. 12-33
Figure 12-ll Algorithm for Server Board....12-33
Frg]ùre 12-12. Client Board Code for RQ$SEND$RSVP ExampÌe 12-35
Figure 12-13. The Server Board Code to Receive and Answer

an RS\? Message......12-37
Fig].tre 12-14. Data Chain Send 12-40
Figure 12-15. Receive a Message in Data Chain Form...12-44
Figure l2-16. Send a Message iri F agments... 12-47
Figúe 12-1'7. Receive a Message in Fragments... 12-50
Figure 12-18. Sending a Message that Requir€s

Receive Fragírentation.............,..........,.,..........12-52
Figure 12-19. Literal File DCOM.LIT...12-53
Frg.re 12-20. External File DCOM.EXT..12-54

Nucleus Use/s cuide xÌ

INTRODUCTION

The Exended iRMX@ II Nucleus is the core of every iRMX II application system. Its
activities include

r Supplying scheduling functions
. Controlling access to system resources
o Providing for communication between processes and processors
. Enabling the system to .espond to extemal events

The Nucleus provides the building blocks from which the other subsystems (Basic I/O
SysteÍ! Extended I/O System, AppÌication Loader, ard Human Intedace) and
application systems are constructed. These building blocks are called q$gqqq and are
classified into the following caregories called qEigELl@e!:

. Tasks

r Jobs

. Segments

. Mailboxes

. Semaphores

. Regions

o Extension objects

. Composite objeats

The îollowing generalizations can be made about these qpes:

. Tasks are the active objects in a system. They do the work of the system.

. Jobs are the environments in which tasks do their work. An envionment consists of
tasks, the objects that tasks use, a dfectory where tasks can catalog objects so as to
make them available to other tasks, and a memory pool.

. Segments are pieces of Ínemory, the medium that tasks use for communicating and for
storing data.

e Mailboxes are objects to which tasks go to send or receive other objects.

Nucleus Usefs Guide l-l

O!'ERVIEW

. Semaphores are the objects that enable tasks to synchronize their actions with other
tasks.

. Regions are objects that guard a specific collection of sha.ed data.

. Extension objects a.e objects which designate new q?es of objects.

. Composite objects objects of the new q?es designated by extension objects.

The Nucleus does extensive record-keeping of objects. It keeps track of each object by
means of a 16-bit value called a lqkqo The Nucleus provides a flumber of operators,
called ry$glqlallq that tasks use to manipulate objects.

When usfurg a system call, a task supplies parameter values, such as tokeng names, or
other values, dependiog oo the reqùirements of the system call, Some of the functions
that tasks can perform with system calls are

. Create objects

. DeÌete objects

. Send úessages to other tasks

. Receive messages from other tasks

. Obtain infomation aboùt objects

. Caîalog objects with descriptive names

. Delete objects from catalogs

1.2 OBJECTS

Each of the object t,?es discussed in this manual has unique characteristics. These
characteristics are discussed in detail in the following sections.

1.2.1 Tasks

!5$ do the work of the system. They car be considered a virtual CPU. Tasks used by
the iRMX II Operating System are software tasks. They should not be confused with
80286 processor hardware tasks. The entire iRMX II Operating System and its tasks,
when operatifig without exceptions, are one hardware task. A task has two goals:

. Its primary goal is to do a specific piece ofwork.

. Its secondary goal is to obtain control of the processor so that it can progress
toward its primary goal.

l-2 Nucleus Uset's Guide

OI'ERVIEW

OrÌe of the main activities of the Nucleus is to arbitrate when several tasks each want
control over the p.ocessor. The Nucleus does this by maintaining an execution state and a
priority for each task. The execution state for each task is, at any givcn time, either
running, ready, asleep, suspended, or asleep-suspended. The priority for each task is an
Dteger value between 0 and 255, inclusive, with 0 being the highest priority.

The arbitration algorithm that the Nucleus uses is thaî the rùnning task is the ready task
with the highest (numerically lowest) priority.

As viewed by the Nucleus, a task is merely a set of values, some of which aîe

r The task's priority

. The task's execution state

. A token for thejob that contains the task

Whcn a task becomes the running task, the following events occur, in order:

1. The context of the previously running task is saved by the Nùcleùs.

2. The Nucleus loads the new running task's context.

3. The new task bcgins executing.

The task continues to run until one ofthe following events occurs:

. The task removes itself from the ready state. For example, the task can suspeùd or
delete itself; thc task can attempt to receive a token for an object that has not yet been
sent, in rvhich case it might elect to wait (in the asleep state),

. The task (task A) is pre-empted when a higher priority task (task B) becomes ready.
For example, task B might previously have gone into the asleep state for a specific
period of time. When the time period has passed, rask B becomes ready again.
Because it is then the highest priority ready tasb rask B becomes the running task.

. The task is rescheduled due to round-robin. For a comDlete exDlanation of round-
robin scheduling, see Chapter 3.

't.2.2 Jobs

A jeb consists of tasks and the resources they need.

The jobs in a system form a family tree, with each job, except the root job, obtaining its
resources from its parent. The tasks in the ùser jobs can create additional objccts. If they
create additionaljobs, this enlaÌges thejob tree.

Thejob tree, as it may look after the initialization of a system, is shom in Figure 1-1.

Nucleus Uset's Guiile 1-3

OVERVIEW

Figurc 1-1, Initial Job Tree

Associated with each job is an qUigqllircO@ry. Objects are known to the Nucleus by their
respective tokens, but often, in the code that is executed by tasks, the objects are known
by symbolic names. The object dùectory for a job is a place in memory where a task can
catalog ari object under a name. Other tasks tbat know the ùame can then use the
directory to access the object.

Also associated with each job is a memorv pool. This is al amount of memory up to 16M
bytes, which is allocated to the job and its descendants. All memory needed to create
objects in îhe job comes from the memory pool.

l-4 Nucleus Uset's Guide

O}'ERVIEW

1.2.3 SegmènÈ

A fundamental resource that task need is memory. Memory is allocated to tasks in the
form of segments which are addreósable, contiguous blocks of memory containing up to
64K bytes of either code or data. A task needing memory requests a segment of $/hatever
size it lequires. The Nudeus aîtempts to create a segment from the memory pool given to
the task's job wheri îhejob was created. \ryh ethe segment is being used by the task, the
80286 microprocessor che.ks îhe segment lengrh to ensure that the segme[t does not read
or write beyond the segment length defined. If there is not enough memory available, the
Nucleùs will try to bo.row the needed memory from ancestors of the job. In this respect,
the tree-structured hierarchy ofjobs is instrumental in resource distribution.

1 .2.4 Buffer Pools

Buffer pools are holding areas for segDents, you creaîe a buffer pool and then filI it.with
buffers using the RQ$CREATE$SEGMENT system call. Having a pool of memory
readily available cuts down on system overhead because allocating existing buffers is faster
than creating and deleling segments.

1 .2.5 Exchange Obiects

Thee of the object types are used as information exchanges: mailboxes, semaphofes, and
regions. Each of these is explained in the following sectioris.

1.2.5.1 Mailboxes

A lqq[bgÈ is one of three types of objects îhat can be used for intertask communication.
\ryhen task A \ì/ants to sefld an object or a data packet to task B, task A must seod a token
for the object or the actual message to a úailbox, and task B must visit that mailbox. If a
tokel or a data packet isn't there, task B has the option of waiting for any deshed length
of time, If a token is being sent, task B can access the object after obtairdng the token.
Sending a token for an object in this manner can achieve various puryoses. The object
might be a segnent that contains data needed by the waiting task. On îhe other hand, the
segment rnight be blank, and sending its token might constitute a signal to the waiting
task.

1.2.5.2 Semaphores

A semaphore is a custodian of abstract "units." It dispenses units to tasks that request
them, and it accepts units from tasks. Units at a semaphore behave like null messages at a
maiÌbox.

Nucleus Uset's Guide 1-5

OVERVIEW

An example of Spical semaphore use is mutual exclusion. Suppose your application
system contains one I/O device which is being used {or output by multiple tasks. To
ensure that only one of these tasks can use the device at a given time, you can establish a
semaphore which has one unit and requfue that tasks obtain the unit before using the
device. A task wanting to use the device would request the unit from the semaphore.
when it gets the unit, it can use the device and then retum the unit to the semaphor€.
Because the semaphore has no units while the task is using the device, other tasks are
effectively excluded from using the device. Yoù might want to think of units at a
semaphore like currency at a bank. If there is no money in the bank, the bank cannot
function.

1.2.5.3 Règions

A lggigu is a one-unit semaphore with special semantics. It is an iRMX II object that
tasks can use to restrict access to a specific collection of shared data. once a task gains
access to shared data through a region, by issuing a successful ACCEPT$CONTROL
system call, the task can not be suspended or deleted (although it may sril be pre-empt€d
by a higher priority task) by other tasks until it surrenders access. When the task
currently using the shared data no longer needs access, it notifies the operating system,
which then allows the next task to access the shared data.

1.2.6 Extension And Composite Objects

Whenever more than onejob in your applícation system requires a function not supplied
by the iRMX II Operating System, you can add new tlpes ofobjects to your system to
provide the needed function. The procedures that support these added functions are
called operating system extensions. A type manager is an operating system extension that
can create objects of a new tlpe. A given t)?e manager can only create one tlpe of object,
but can create numerous objects (called composite objects) ofthat object q?e. The object
type is desìgrìated by an object called an extension object.

1.3 DESCRIPTORS

The Nucleùs keeps track of each object by means of a 16-bit value called a tokeÍ. The
token contains the logical address of the object. However, a d€leLiELoI is needed to
determine the physical address. Descriptors are used to give an area of memory
addressability. Each descriptor is an entry in a descriptor table and contains the physical
address of a segme[t. The operatiog syst€m assigns each object a descriptor when it is
created. Every object must have at least one descrìptor or there is no way to address it.

1-6 Nucleus Usefs Guide

OT'ERVIEW

.1.3,1 DescriDtor Tables

AII descriptors reside in a hardware descriptor table. 1lìcrc arc thrcc typcs of dcscriptor
tables: the clobal Descriptor Table (cDT), the Local Descriptor Table (LDT), and the
Interrupt Descriptor Table (IDT).

1.3,1.1 Global Descriptor Table (GDT)

The GDT is a table of up to 8K entries each of which is a descriptor containing the A-bit
physical address used by the sysîem to acce.ss areas oi memory. Desoiptors in the cDT
can be used by every task in the system. There is only one GDT for the entire operating
s,$tem. All the descriprors you need vr'ill be in rhe GDT.

f.3.1.2 Local Descriptor Table (LDT)

The LDT is the only hardware LDT in the iRMX II Operating System. It is reserved for
system use. Additional lDTs are not available.

'1.3.1.3 Interrupt Descripîof Tabte (tDT)

The IDT is a table containing the address of the intermpt handling code to be executed
when an interrupt occurs, Addresses can be entered into the IDT either when the system
is created or dynamically using the SET$INTERRUPT system call.

I .3.2 Call-Gates

Call-gates are used to enter the iRMX II Operating System and OS e{tensions. they
redirect flow within a task from one code segment to another. Each system call uses a
call-gate to traùsfer the progam directly to the iRMX service roùti[e requested. Call-
gates are part of the descriptor tables and are reselved when the system is configured.

1.4 HANDLERS

Two kinds of events can be handled specially: exceptional conditiom and inte.rupts. The
remainder of this chapter describes the handlers for these events.

Nucleùs Useros Guide

OVERITEW

1 .4.1 Exception Handlers

Tasks occasionally make errors, If an error occurs during an iRMX II system call, it
causes an exceDtional condition. If an error occurs as a result of a haîdware protection
feature, such as, a program tryil€ to execute out of its segment bourids or trying to
execute a segment that is defined zrs read only, it causes an exceptional condition known
as a trap. The occurrence of an exceptional condition or a trap can, if desired, cause a
transfer of control to the exception handler associated with the current task. the
exception handler is a procedure that typically deals rì/ith the problem by one of the
following methods:

. Correcting the cause of the problem and trying again

. Deleîiog or suspending the task that caused the error

The designer ofan iRMx Il-based system has two kinds of de.isions to make when
establishing an exception handler for each task. The first decision concerns the choic€ of
exc€ption hafldlers. The task can have its own custom exception handler, it can use the
exception handler lor the job to which it belongs, or it can use the Intel-provided system
exception handler, The second decision concerns vr'hen cortrol goes to an exception
handler. The task can direct control to the exception handler in avoidable (programmer)
and/or unavoidable (environmental) conditions. If control is not directed to an exception
handler, the task must handle the exception.

1 .4.2 lnterrupt Handlers

To function effectively as a real-time system, an iRMX II application system must be
responsive to external events. An i!!!!ruplh4!!!le!. which is required for each source of
external events (interrupts), is a procedu.e that is invoked by hardware to respond to an
as).nchronous event. The handler takes control immediately and services the interrupt.
When the interrupt handler is finished servicing the interrupt, it suúenders the processor,
which returns îo the inter.upted procedure.

As part of its seflicing, the inteîrupt handler can invoke a task îo further process the
interrùpt. An interrupt handler invokes an interrupt task if the processing of an interrupt
requires large amounts of time or if the processing rcquires those Nudeus system calls
that interrupt handlers are prohibited from using.

1-8 Nucleus Usefs Guide

2.1 INTRODUCTION

A job is an environment in which iRMX II objects such as tasks, mailboxes, semaphores,
segments, and (offspring) jobs reside. In additiori, ajob has an object dftectory and a
memory pool of up to 16M bytes. The job's memory pool provides the mw material irom
which obje.ts can be created by the tasks in the job.

Applications consist of one or more jobs. Jobs are independent but they may share
resouces. Each job has its own tasks and may have its own object directory. Objects may
be shared between jobs, although each object is contained in only one job.

The programmer rnust decide whether tasks belong in the same job. In general, you
should place tasks in the same job if

. They have similar or related purposes

. They share many resources

. 'lhey have similar lifespans

2.2 JOB TREE AND RESOURCE SHARING

The jobs in a system are arranged in the form of a tr€e. The root job is plovided by the
Nucleus. The remainingjobs, includingjobs that are created dynamically while the sysrem
runs, are descendaùts of the rootjob. A job containing tasks thaî create otherjobs is a
p31941g job. A newly created job is a child of the job whose rask created it.

Associated v/ith each job is the following set of limits:
o Maximum size oî its object directory

. Mavimum and minimum sizes of its memory pool

. Maximùm number of simultaneously existing objects that it can contain
r Maximum number of simultaneously existing tasks that it can contain
. Highest priority of any îask contained ill it

You must speciry these limits whenever you create a job. These lilnits, vrith the exception
of objert directory size, apply collectively to the job and all of its descendart jobs.

Nùcleùs Useis Guide

JOB À?LÀN,{GEMENT

For example, ifjobA createsjob B, these events occur:

. Sùfficient memory to meet job B's minimum mernory pool requiements is îransfeded
from job A's meùory pool to that ofjob B.

. The memory forjob B including its object directory is taken ftom job A's memory
pool.

. The numbers of tasks and total objects thatjob A can coÍtain are reduced by the
corresponding valùes spe.fied for job B.

r The specified maximum priority for tasks in job B cannot exceed the maximum
pdority for tasks in job A.

ffjob B is later deleted, its resoùrces are returned to job A.

2.3 JOB CREATION

A job is created with one îask whose fùnctions should include doing some initializing
activities for the newjob. Initializing activities can include housekeeping and qeating
other objects h the new job.

When a task qeates a job, it has lhe option of passing a tokeD for a p4É!f9l9!_sqjgq to
the newly created job. The parameter object can be of any t ?e and can be used for any
purpose. For example, the parameter object might be a segment containing data,
arranged in a predefined format, needed by tasks in the newjob. Tasks in the newjob can
obtain a token for the job's paiameter object by meaN of the GET$TA.SK$TOKENS
system call, desc.ibed llntheíRMX II Nucleus Sltstem Calls Reference Mantml-

2.4 JOB DELETION

Before a job can be deleted, all of its extension objects (see Chapter 1 1) and descendant
jobs must be delel.cd. By using lhe RQE$OFFSPRING system call, thc deleting task can
probe down the job tree and find all of the descendants. Then it can delete them,
beginning with descendants that have no children and working up the tree. Alter all of thc
descendants have been deleted, the îask can delete the target job.

2.5 SYSTEM CALLS FORJOBS

The following system calls manipulate j obs:

. RQE$CREATE$JOB-creates a job with a memory pool of up to 16M bltes and
returns a token for the job; resources for the new job are drawn fiom the resources of
the job to which the invoking task belongs. This system call should be used ior all new
applications or for present applications which may expand beyond 1M blte.

Nucleus Uset's Guide

JOB MANAGEMENT

. CREATE$JOB-qeates a job with a memory pool of up to 1M b].te and retums a
token for the job; resources for the new job are drawn from the resources of the job to
which the invoking task belongs. This call is available for compatibility v/irh the iRMX
86 Operating System. It should be used only by applications that requfue compatibitity
with the iRMX 86 Operating System. All new applications shoùld use
RQE$CREATE$JOB.

. DELETE$JOB--deleter a childlessjob that contains no extension objects and returns
the job's resouces to its parent.

r RQE$OFFSPRING-provides a list ofthe childjobs of the specifiedjob in a useÌ-
sùpplied data structure.

. OFFSPRING-provide.s a segÌnent c.otaining tokens ofthe child jobs of the specified
job.

For a complete list and explanation of the iRMX lI Nucleus system ca)ls, see the Erfended
îRMX II Nuclew System Calb Merence Manual.

Nucleus Uset's Guide

3.1 INTRODUCTION

Tasks are the active objects in an iRMX lI system. Each task is part of a job and is
restricted to the resources that its job provides.

The iRMX II Nucleus maintains a set of attributes ior each task. Among these attributes
are the priority and execution state of the task.

3,2 PRIORITY

A task's pdodty is an integer value between 0 and 255, inclusive. The lower the priority
number, the higher the pdority of the task. A high priority task has favored status as it
competes with other îasks for the microprocessor.

Unless a task is involved in processing interrupts (see Chapter 9), its priority should be
between 128 and 255. when a task having a priority in the range 0 to 122 is running,
cefain external inîerrupt levels are disabled, depending on the pdority.

3.3 TASKSTATES

A task is always in one of five erecution states. The states are asleep, suspended, asleep-
suspended, ready, and Ìunning.

3.3.1 The Asleep State

A task is in Lhe asleep state when it is waiting for a request to be granted. A task can put
itself in the asleep state by issuing a SLEEP system call, or it can be placed there by the
operating systcm after issuing a request that cannot be granted immediately if the task is
willing to wait. In either casg the length of time the task stays in the asleep state is
conîrolled by a parameter that the task speeifies.

Nucleus Uset's Cuide 3.1

TASK MA.NA.GEMENT

3.3.2 The Suspended State

A task ente.s the suspended state when it is placed there by another taslq when it is
waiting fo. an interrupt, or when it suspends itself. Associated with each task is a
suspension depth, which rcflects the number of "suspeùds" outstanding against it, Each
suspend operation must be coùntered with a resume opemtion befote the task caiÌ leave
the suspeùded state. The suspension level (the number of outstanding suspends) is not
available as a service of the operating system.

3.3.3 The Asleep-Suspended State

When a slceping task is suspended, it entels the asleep-suspended state. In effect, it is
then in both the asleep and suspended states. While asleep-suspended, the îask's sleepiog
time might expfue, putting it in the sÌrspended state. Aso, if atother task resumes an
asleep-suspended task, the latter task will enter the asleep state.

3.3.4 The Ready and Running States

A task is ready if it is not asleep, suspeÍded, or asleep-suspended. For a task to become
the running (executing) task, it must be the highest priority task in the Ìeady state,

3.4 TASK STATE TRANSITION

The Nucleus allocates processor tine to tasks in a priority-based manner. The following
discussion explains this method of allocating processor time.

As an iRMX II application system runs, eve[ts occùr which cause tasks to pass from state
to state. The iRMX 1I Ope.ating System is, therefore, event-driven. Figure 3-1 shows the
paths of transition between states.

'fhe îofowing list describes, by number, the events that cause the tmnsitions in Figure 3-1.
In this list, the migating task is called "the task":

(1) When the task is created, it is placed in the ready state.

(2) The task goes from the ready state to the running state when one of the following
o@urs:

. The task has just become ready and has higher priority than any other ready task.

. The task is ready and no other task of equal or higher priority is before it in the
ready queue (see section, "Round-Robin Scheduling," for further explanation).

(3) The task goes from the mnning state to the ready state when the task is pre-empted
by a higher priority task that has just become ready or when the task is reschedùled
as a result of round-robin (see section "Round-Robin Scheduling'').

Nucleus Uset's Guide

TASK MANAGEMENT

(4) The task goes from the running state to the asleep state when one ol the following
occurs:

. The task puts itself to sleep (by the SLEEP system call).

. The task makes a request (for example, by issuing a RECEIVE$MESSAGE,
RECEM$UNITS, or LOOKUP$OBJECT system call) that cannot be ganted
immediately and expresses, in the request, its willingness to wait,

(5) The task goes frorn the asleep state to the ready state or from the asleep-susp€nded
state to the suspended staîe when one of the following occurs:

r The time period specified in the invocation of the SLEEP system call expires.

. The task's designated waiting period expires without its request being granted.

. The task's .eqùest is granted (because another task issued a systcm call such as
SEND$MESSAGE or SENrD$UNI'IS that sends a message, and the message was
received).

. The object at which the task was waiting was deleted (for example, mailbox).

(6) The task goes from the running state to the suspended statewhen the task suspends
itseff (by the SUSPEND$TASK or WAIT$INTERRUPT sysrem call).

(7) The task goes from the ready state to the suspended state or from the asleep state
to the asleep-susperÌded srate when the task is suspended by another task (by the
SUSPENDSTASK system call).

(8) The task remains in the suspended state or the asleep-suspended state when one of
the following occurs:

. The task is suspended by another task (by the SUSPEND$TASK system call).

. The task has a suspension depth greater than one and the task is resumed by
another îask (by the RESUME$TASK sysrem call).

(9) The task goes from the suspended state to the ready state or from the asleep-
suspended state to the aslecp statowhen the task has a suspension depth olone and
the task is resumed by another task (by the RESUME$TASK system ca[).

(10) The task goes from any state to non-existence when it is deleted (by the
DELETE$TASK DELETE$JOB, or RESET$INTERRUPT system call).

Nucleus Userrs Guide 3-3

TASK MA.NAGEMENT

,1(s)

\7)

lÍffiffiffl|.*' (6)
RUNNING SUSPENDED

(8)

l7)

ASLIEP.SUSPENO€O

FiguÌe 3.1. Task State Transition Diagram

3.5 ROUND-ROBIN SCHEDULING

As mentioned previously, the iRMX II Operating System schedule.s tasks based on
priority. Two tasks with the same priority compete for CPU resources, arid often one îask
is left waiting indefinitely. To p.event this from happening, the iRMX II Operating
System offers round-robin scheduling.

Round-robin scheduling is particularly desirable in a multi-user development
envftonment. It prevents one task irom monopolizing the CPU while other tasks wait
indefinitely.

There are a number of facto$ which can cause a task to lose conhol of the CPU.

. The task is pre-empted by a hardware inîerrupt.

3-4 Nucleus User's Guide

TASK MANAGEMENT

. The task is pre-empted by a higher priority task.

. Thc task p€rforms a system call that causes it to relinquish control of the CPU.

In the filst two cases, the task (relerred to throughout the text as task A) remains ir the
READY state. Without round-robin scheduling when the higher priority activity is
completed, task A regains control. Thus, any other tasks having the same priority as task
A will not run uritil task A performs a system call causing it to relinquish control of the
CPU.

With roùnd-robfur scheduling, task A is allocated a time quota. wh€n its time quota
expireq it is pre-empted- If there are other tasks ofthe same priority in the READY
statg task A loses control of the CPU to another tas(and is placed in the ready list after
all tasks of the same pdority. Task A regains c.ntrol orúy when it reaches the top of the
list.

Round-robir schedulirB aflepts only tasks that are of lower p.iority (numerically higher)
than a level you determine when configuring the system. The recoÍìmended threshold
priority level of 140 ensur€s that high-priority, time-critical tasks such as interrupt tasks
are not affected. The Nucleus always executes the highest priority task until it is p.e-
empted by a higher priority ready task or ùntil it relinquishes control.

The following example illustrates the advantage of using round-robin scheduling. Assume
you have tasks A, B, and C. Task C has priority 130, and tasks A and B have priority 200.
Round.robin scheduling has been configured with a time quota of 5 ticks and a threshold
priority of 140. Task A runs for 2 clock ticks when task C becomes ready. Task C
immediately gains control because of its higher priority. when task C relinquishes control
of the CPU, task A continues to run for its remaining 3 clock ticks. It is then pre-empted
and task B runs. After task B relinquishqs control or is cornpleted, task A is rescheduled
for another 5 clock ticks. Without round-.obin scheduling, rask B would not run as task A
would continue running until a higher pdority task became ready or it relinquished the
processor.

To implement round-robin scheduìing it is necessary to configure two parameten on the
"Nucleus" screen of the Interactive Configuration Utility, These parameters establish the
threshold priority level afld the time quota each task can run before it is pre-empted. The
default threshold priority is 255, which means round-robin is turned off. To use round-
robin, the recommended threshold priority is 140. The default time quota is 50
milliseconds. For more details on configuring the Nucleus, see the .RMX II Interactive
Cokigurudon Utîliry Relercnce Manwil.

Nndeùs Uset's Guide

TASK MANA.GEMENT

3.6 ADDITIONAL TASKAfiRIBUTES

In addition to priority, executior state, arid suspension depth, the Nucleus maintains
curent values of the following attributes for each existing task: containingjob, its register
context, starting address of its exception handler (see Chapter 8), its exc€ption mode (see
Chapter 8), whether or not it is an iotemrpt task (see Chapter 9) and whether the task
uses the Numeric Extension Processor lNPXl.

3.7 TASKRESOURCES

When a task is created, the Nucleus takes any Íesources that it needs ar that time (such as
memory for a stack) fiom the task's containingjob. If the task is subsequently deleted,
these resources are returned to the iob.

3,8 SYSTEM CALLS FORTASKS \-/

The following system calls are provided for task manipulation:
. CREATE$TASK--creates a task and returns a token for it.

o DELETE$TASK--deletes a non-interrupt task from the srstem.

. SUSPEND$TASK-irìcreases a task's sùspension depth by one; suspends the task if it
is not already suspended.

. RESUME$TASK--decreases a task's suspension depth by one; if the depth becomes
zero and the task was suspended, it then becomes ready; if the depth becomes zero
and the task was asleep-suspended, then it goes into the asleep state.

. SLEEP-places the caìIing task in the asleep state for a specified amount of time.

. GET$TASK$TOKENS--returns a token to the calling task for either the task, itsjob,
its job's parameter object, or the root job, depending on which option is specified io
the call.

. GET$PRIORITY-returrs the priority of the specified task. \--l

. SET$PRIORiTY--sets a task's priority to the specified level.

For a complete list and explanation of the iRMX 1I Nucleus system calls, see the iRMfII
Nucleus Ststem Calk Reference Manual.

Nucleus Usels Guide

4.1 INTRODUCTION

The iRMX II Nucleus provides exchanges to facilitate intertask communication,
syrichronization, and mutual exclusion. When a task uses an exchange, iî is always acting
either as a se[der or as a receiver. There are three kinds of exchanges: mailboxes,
semaphores, and regions. If the exchange is a mailbox, one task will send a message to the
mailbox; another task will go to the mailbox to receive the object's message. If the
exchange is a semaphorc, either a tqsk is receiving units from the semaphore, or it is
sending units to the semaphore. lf the exchange is a region, the data in the region can be
accessed by only one task at a time, and this task cannot be deleted or suspended until it
relinqui$hes control.

4.2 MAILBOXES

Mailboxes support furtertask communication. A serding task uses a mailbox to pass either
a token or a m€ssage of up to 128 bytes to arolher task. For example, thc objoct might be
that of a segnent containhg data needed by îhe receiving task.

4.2.1 Mailbox Queues

Each mailbox has two queues, one for tasks that are waiting to receive objects or
messages, the other for objects or messages that have been sent by tasks but have not yet
been received. The Nucleus sees that waiting tasks receive objects or messages as soon as
they are available, so, at any úefl time, at least one of the mailbox's queues is empry.

4.2.2 MailboxMechanics
'When

creating a mailbox, yoù must specit' whether the mailbox is a data mailbox or a
message mailbox. Data mailboxes are manipulated with the system calls SEND$DATA
and RECEI\B$DATA, whereas, message mailboxes are manipulated vr'ith the
SEND$MESSAGE and RECEM$MESSAGE system calls. If you try passing a message
îo a mailbox with the wrong system call, for example sending a token with SEND$DATA,
the Nucleus issues an E$TYPE exceotion code.

Nucleus Uset's Guide 4-1

EXCHANGE MANAGEMENT

When a task sends either a token or a data packet to mailbox, using the
SEND$MESSAGE or the SEND$DATA system call, one of two events occurs. If no
tasks are waiting at the mailbox, the message is placed at the rear of the rnessage queue
(which might be emp9. Message queues (objert or daîa queues) are processed in a first-
in/first-out (FIFO) manner, so the message remains in the queue until it moves to the
îront and is given to a task.

If there are tasks waiting, the receiving task, which has been adeep, goes eíther from the
asleep state to the ready state or ftom the asleep-suspended state to the suspended state.

{ NOTE
jji If the receiving task has a higher priority than the sending taslq then the
ii receiving task preempts the sender and becomes the runnmg task.
I

Wher a task attempts to receive a message from a mailbox via the
RECEM$MESSAGE or RECEM$DAT,{ system call, and îhe message qùeue at the
mailbox is not empty, the task rec€ives the message immediately and remains ready.
However, if there are no messages at the mailbox one of two evenîs occurs:

. If the task specifier in the time$limit parameter that it is willing to rvait, it is placed in
the mailbox's task queue and is put to sleep. If the desigoated waiting period elapses
before the task gets a messagg the task is made ready and receives an E$TIME
exceptional condition (see Appendix D for a list of error conditions).

. If the task specifies in the time$limit parameter that it is not willing to wait, it remains
ready and receives an E$TIME exceptional condition.

A task has the option, when using the SEND$MESSAGE system call, of speci&ing that it
wants acknowledgment from the receiving task. Thus, any task using the
RECEIVE$MESSAGE system call should check to see if an ackrowledgnent has been
requested. This option is riot available to a task using the SEND$DATA system call, For
details, see thdescriptioÌ of the s)stenÌ calls i,i the Ertended. iRMX II Nucleus Estern
C alls Refere nce M anual,

As stated earlier, îhe message queue for a mailbox is processed in a FIFO manler.
However, the task queue of a mai.lbox can be either FIFO or priority-based, with higher-
priority tasks toward the front of the queue. When a task creates a mailbox, the task
specifies which kind of task queue the mailbox is to have.

4.2.3 High-Performance Portion of Obiect Queue

The object queue of each mailbox is divided into two portions: a high-performance
portion and an overflow portion. The high-performance portion is direcdy associated
with each mailbox, while the overflow portion is created by the operating system as
needed.

Nucleus Uset's Guide

EXCHANGE MANAGEMEM

A task, when oearing a mailbox with CREATE$MAILBOX, can speciry the rumber of
objerts the high-performance portion can hold, from 4 to 60. By using this high-
p€rformance portion of the object message queue, the task can grea y iroprcve the
performance of SEND$MESSAGE and RECEM$MESSAGE when these calls actually
get or place objerts on the queue (the high-performance portion has no effect when tasks
are alr€ady waiting at the task queue). When more objects are queued at a mailbox than
the high-performance portion can hold, the objeats overflow into an efra buffer that
holds up to 100 messages. The ovedlow buffer is not deleted ulltil the object message
queue empties. Thus, the average slowdown experienced when the high-performance
portion overllows is almost oegligible.

The high-performance portion has high speed because the Nucleus allocates memory for
it while qeating the mailbox. The Nucleus allocaîes this memory perma[enîly to the
mailbox, evcn if no objects are queued there. No space ís allocated for the overllow
portion of the queue until the space is needed to contain objects. However, because an
overllow buffer is not created for every send/receive message, but rather for every 100
messages, there is alrnost rio effect on performance. Performance is affected only in the
worst-case when a SEND$MESSAGE sysrem call causes the allocation of an overflow
buffer. In this case, extra time is required for the allocation. If you know the number of
objects you will have, it is advisable to configure the high-performanc€ portion to hold
them.

4.2.4 System Calls for Mailboxes

The following system calls manipulate mailboxes:
. CREATE$MAILBOX-creates a mailbox arid retùms a tokén.

e DELETE$MAILBOX-deletes a mailbox from îhe system.
. SEND$DATA-sends a data packet of up to 128 bfes to a mailbox.
. SEND$MESSAGE -sends an object to a maflbox.

r RECEIVE$DATA-receives a data packet from a mailbox; the task has the option of
waiting if no data packets are present.

r RECEIVE$MESSAGE-receives an object from a mailbox; the task has the option of
waiting if no objects are present.

For a complerc lisî and explamtion of the iRMX II Nucleus system calls, see the Ettekded
|RMX II Nucleur S)stem Calk Refercnce Manual.

Nudeùs Uset's cuide 4-3

EXCIIA.NGE MAN,I.GEMENT

4.3 SEMAPHORES

A semaphore is a custodian of abstract units. A task uses a semaphore €ither by
requesting a specific number of units ftom it via the RECEM$UNITS sysîem call or by
releasing a specific number of units to it via the SEND$UNnS system call. Although
these operations do not support communicatiorì of data, they facilitate mutual exclusion,
slnchronization, and resource allocation,

4.3.1 Semaphore Queue

Semaphores have only one queue, a task queue. The task queue is either FIFO or
priority-based. The queueing scheme to be used ìs specified for each semaphore at the
time of ifs creation.

4.3.2 SemaphoreMechanics

Because tasks can reqùest more than one unit, a semaphore might simultaneously have
both tasks in its queue and units in its custody. That scheme is best uùderstood by
imagining that the semaphore is îrying, at all times, to satisù/ the requ€st of the task which
is at the front of the semaphore's task queue. Only when it can provide as many units as
the task requested does it award units, and then it does so immediately. A request made
to a semaphore is either granted in full or it is not graùted at all.

When a task uses the CREATE$SEMAPHORE system call, it mùst supply two values. ,,,/
One value specifies the initial numbcr of units to be in the new semaphoîe,s custoù. The
other value sets an upper limit on the nùmber of ùnits that the semaphore is allowed to
keep at any given time. The lower limit is automatically zero,

When a task requests units fiom a semaphore via the RECEIVE$UMIS system call, the
request must be within the specified ma,rimum for that semaphore; otherwise, the request
is invalid and causes an E$LIMIT exceptional condition. If a task,s request for units is
valid and if the size of the request is within the semaphore's current supply of units arid,
the task is at the fronî of the semaphore's task queue (or would be if queued), then the _/
request is granted immediarely and the task remains .eady. Otherwise, one of the
following applies:

. If the task specifies in its time$limit parameter that it is willing to wait, it is placed in
the semaphore's task queue and is put to sleep. If the designated waiting period
eÌapses before the task gets iîs requested units, the task is made ready and receives an
E$TIME exceptional condition.

. If the task specifies in its time$limit parameter that it is not willing to wait, it reÌnains
ready and receives an E$TIME exceptional condition.

4-4 Nucleus Usefs Guide

EXCIIANGE MANAGEMENT

For example, suppose that two tasks, A and B, arc waiting at a semaphore, with A at the
front of the qùeue. The semaphore has no units, A wants 3 units, and B wants 1 ùnit. The
follovr''ing thrce separate cases illùstmte the tnechanics of the semaphore:
. If the semaphore is sent 2 units, both A and B remain asleep in the semaphore's

queue. Note that B's modest request is not satisfied because A is ahead of B in the
queùe.

. Ifthe semaphore is sent 3 units, A receives the units and awakeng while B remains
asleep io the queue.

. If the semaphore is sent 4 units, A and B both receive their requested ùnits and are
awakened (A is awakened first).

When a task sends units to a semaphorg îhe task remains ready. Sending uniîs to a
semapho.e causes ari E$LIMIT exceptional condition if it pushes the semaphore,s supply
above the designated maximum. The number of units in the custody of thssemaDhore
remains unchansed.

NOTI
A task sending units to a semaphore can be pre-empted by a higher
priority task becoming ready as a result of receiving its requested units.

4.3.3 System Calls for Semaphores

The following system calls manipùlate semaphores:
. CREATE$SEMAPHORE-CieateS a semaphore and reîums a token for it.
. DELETE$SEMAPHORE-deIe!e$ a semaphore from îhe system.
. SEND$UMTS-adds a specific number of units to the supply of a semaphore.
r RECEIVE$UNITS-asks for a specific number of units from a semaphore.

For a complete list and explanation of the iRMX Il Nucleus system calls, see the Extended
|RMX II Nuclew Systeh Calls Reference Marual.

4.4 REGIONS

A region is an iRMX lI obje€t thar tasks can use ro guard a specific collection of shared
data. Each task desiring access to shared data awaits its turn at the region associated with
thaî data. When the task currently usìng the shared data no longer ne;ds access, it
notifies the operating system, which then allows the next task to access the shared data.

Regions should be restricted to specific uses. Misuse of regions can have profoùrid affects
on your application system.

Nucleus Usefs Guide 4.5

EXCIIANGE MANAGEMENT

4.5 RISKS INVOLVED IN SHARING DATA

Occasionally, several tasks in a sjrstem mùst share data. If the tasks run concurrently and
the data is subject îo change, access to the data must be restricted to one task at a time.
The followirg €xample illustrates the importance of controlling task access to data.

Suppose tasks A and B are both part of an air-traffrc-control applìcation system. Task A
runs at fixed time intervals and checks for any potential collisions. Task B runs as a result
of an hterrupt caused whenever the sweep of the radar detects an airoaft. Task B is of
higher priority than task A and is responsible for updatirig the position of the detected
aircraft. Potentially, task B could corrupt the data used by task A, For instancg suppose
that task A is in the procers of extrapolating the positíon of a particular aircraft. It first
fetches the craft's last-reported position and uses the craft's velocity to estimate the
position at some time in the near future. While task A fetches the X-coordinate of the
position it is pre-empted by task B before it can fetch the Y- aùd z- coordinates. Task B
now updates the craft's X-, Y-, and Z-coordinates to reflect the fresh information
gathered from îhe radar. Task B suffenderc the processor, and the system resumes
ruoning task A. Task A finishes fetching the craft's last-reported position but ends up
with cormpt information. Instead of using (old)i old Y, old Z) or (new X, new Y, new
Z), task A believes the last reported position to be (old)4, new Y, new Z). In this
application, this error could lead to disaster.

Corruption of data can occur in this manner whenever the following îhree conditions are
met:

. The data is shared between two or more tasks.

r The tasks sharing the data run concurrertly. (That is, one of the tasks could possibly
Pae-empt another.)

. At least ooe of the tasks changes the data,

Whenever all three of these conditions exist, you must take special precautions to prctect
the validiîy of the shared data. You must ensure that only one task has acce-ss to the
shared data at any instarlî, a.ld you must ensure that the task having access cannot be pre-
empted by other tasks desiring accers. This protocol for sharing data is called ouEal
exclusion.

4.6 MUTUAL EXCLUSION USING SEMAPHORES

Tasks can use semaphores to obtain mutùal exdusion. However, ùsing semaphores fo!
this purpos€ can lcad to two kinds of problems:

r Priority Botdenecks

Sùppose that three tasks, A, B and C, have low, medium and high priority,
respectively. lf these tasks employ a priorily-queued semaphore to ensure that llo

4-6 Nucleùs Usefs Guide

EXCIIANGE MANAGEMENT

more than one of them uses shared data at any ifistant, the following situation could
arise:

Task A (low priority) obtains access to the data ard continùes to îun,

Task C (high priority) atterrpts to gain access, but is forced to wait at the
semaphore until task A frees the data.

Task B (mediurn priority) avrakens from a timed sleep and pre-empts task A
(low priority).

In Step Z task C must wait for task A (which has lower priodty) to finish usirg
the shared data, since task A gained access to the data before task C. This kind
of delay is inherent in mutua.l exclusion.

In Step 3, however, the delay is unreasonable. Task C is foîced to wait for task
B (which has lower priority than task C) ever if task B does not use the shared
oaÉ.

r Tying Up ìhe Shared Data

If several tasks use a somaphore to gover[access to sharcd data, and the task
currently havirg access is suspended, the semaphore prevents ariy other tasks
from using the shared data. Only after the sùspended task is resumed can it
free the shared data for ùse by the other tasks.

li the task using îhe data is deleted, rather than merely b€ing suspended, the
situation is even worse. lhe governing semaphore ptevents any other tasks
from ever using the shared data.

i You can eliminate both of these kinds of problems by using regions rather than
i semaphores to govem the sharing ofdata.

4.7 MUTUAL EXCLUSION USING REGIONS

Tasks can ùse regions as well as semaphores to obtain mùtua1 exclusion. However, you
should tote these facts about regions:

r The priority of the task that currently has access to the shared data may temporadly
be raised. This happens automatically (at regions where the task queue is priority-
based) whenever the task at the head of the queue has a priority hígher thar that of
the task that has access. Under such circumstances, the priority of the task having
access is raised to match that of the task at the head of the queue. When the task
having access surleflders ac{ess, its priority automatically reverts to its original value.
This priority adjustment prevents the pdoÌity botdeneck that can occur when tasks use
semaphores to obtain mutual exdusion.

. Once a task gains access to shared data through a region, the task can not be
suspended or deleted (although it many still be pre-empted) by other îasks until it
surre[ders access. This charactedstic prevents îasks from îying up shared data.

t.

2.

3.

Nucleus Usels Guide 4-7

EXCHANGE MANAGEMENT

CAUTION
When a lask gains access through a region, it must not attempt to
suspend or delete ltsell. Any attempt to do so wí tock up th€
region, prev€ntin9 other iasks from accessing the data guarded by
the region. In addition, the task will nèvér run again and its memory
will not be returned to lhe memory pool. Also, it the task in the
region attempts to delete itself, all other tasks that tater attempt to
delete themselves will encounterthe same memory pool problèms,

You should avoid using regions In Human lnterface applications. It a
task In a Human Interfacè applicallon uses regions, the appllcation
cannot be stopped asynchronously (via CONTROL-C entered at a
terminal) while the task ls accessing data guarded by the region.

. When you create a region you must speciry which of r.Ío rules (FIFO or priority) is to
be used to determine which waiting task next gains access to the shared data.

4,8 USEFULNESS OF SEMAPHORES

Despite the seeming drawbacks of semaphores, there are three reasons to use them:

1. You can use semaphores to accomplish much more than mutual exclusion. For
example, with semaphore* you can slmchronize multiple tasks or allocate resources.
Regions, on îhe other hand, provide or y nìutual exclusion.

2. Because of the possibility of deadlock, regions should not be ùsed outside of
extensions to the operatillg system. Consequently, programmers not famíLiar with
operating system extensions must use semaphores to accomplish mùtual exclusiori.

3. Semaphores allow a task to set an upper limit on the amoùnt of time the task is
willing to wait for access. In contîast, regions provide no such option. Tasks using
regions for mutual exclusion have or y two choices:

. They can request immediate access (with the ACCEI'I$CoNTROI- system
call). If a task make6 such a reqùest and access is not available immediatelf the
task does flot wait at the region. Rather, it receives afi exception code and
continues to run.

. They càn request access as it becomes available ({.ith the
RECEM$CONTROL system call). This kind of request causes the task to
wait at the region until access becomes available. If access never bemmes
available, the task riever runs again.

4-8 Nucleus Uset's Guide

EXCHANGE MANAGEMENT

4.9 REGIONS AND DEADLOCK

A major concern in any multitasking system is avoiding deadlock. Deadlock occurs whcn
one or more tasks permanendy lock each other out of required resources. The following
h)?othetical situation illustrates how deadlock can occur in using nested regions and how
to avoid this situation.

NOTE
In the following example, the only system call used to gain access is the
RECEI!'E$CONTROL system call. Tasks usiíg rhe
ACCEPT$COMROL system call cannot possibly deadlock at a region
uíless they keep trying endlessly to accept control.

Suppose that two tasks, A (high priority) and B (low priority), both need access to trvo
collections of shared data, called Set 1 and Set 2. Access to each set is goverled by a
region (Region 1 and Regior 2).

Now sùppose that the following evelts take place in the order listed:

1. Task B requests access to Set 1 via Region 1. Access is granted.

2. Before task B can request access to Set 2, an interrupt occurs and task A pre-empts
task B.

3. Task A reqùests access to Set 2 via Region 2. Access is granted.

4. Task A requests access to Set 1 via Region 1. Task A must wait becaùse task B
akeady has access.

5. Task B resumes running and requests access to Set 2 via Region 2. Task B must
wait because task A already has access.

At this point task A is waiting for task B ard vice veîsa. Tasks A afld B are hopelessly
deadlocked, and any other tasks that request access to either set of data will also become
deadlockcd.

This team deadlock situation applies only to systems in which regions are nested. If your
system must use nested regions, yoù can prevent team deadlock by adhering to the
following rule:

Apply a stdct ordering to all the regioris in your system, and code tasks so that they
gain access according to the ordcr. For cxamplc, supposc that your systcm uscs 12
regions. Write the names of the regions on a piece of paper in any order, and number
them starti.g rii'ith 1 As yoÙ program a task that nests any of the regions (say Regions
3, 8, and 10), be sure that the task requests access in numerical order and relinquishes
the regions in reverse numerical order. The essential element of this technique is that

Nucleus Userls Guide 4-9

EXCIIA.NGE MANAGEMENT

all tasks must request access ifl a consistenî order. The precise order is unimportant
as long as all tasks obey it.

If you follow this rule consistently, you can safely nest regions to any depth.

4.10 CAUTIONARY NOTES ON USING REGIONS

Use of regions should be restricted to prograÌnmers that have a firm understariding of the
operating system and the entire application system. A less-knowledgeable programmer
can, by abusing regions, corrupt the interactiol between tasks io ao applicatioo system.
For instance, by creating a region and gaining access to ùone\istent shared data, a
programmer can make tasks immune to dclction. If they never surrender access, the tasks
can permanendy avoid deletion.

Abusing some of the ieatures described in this manual (such as regions) can affept the
integdty of the entire operating system. If you wish to preserve the integdty of your
applicatiori system, conîine îhe use of regions to programmers writing operating system
extensioris.

4.11 SYSTEM CALLS FOR REGIONS

The following system calls manipulate regions:

. ACCEPf$CONTROL-allows a task to gain access to shared data only wheri access is
immediately available. II a different task already has access, the requesting task
remains ready but receives an exception code.

. CREATE$REGION--creates a region and retums a token for it. One of the
parameteru passed duriog this call specifies the queuing rule (FIFO or priodty).

. DELET€$RECION--dclÈtcs a rcgion.

. RECEIVE$CONTROL-CauSeS a task to wait at the region unril the task gains access
to the shared data.

. SEND$CONTROL-when issued by a task, ftees the operaring system to granr a
differelt task acce.ss to the shared data.

For a complete Iist and explanation of the iRMX II Nucleus system ca1ls, see fhe Ettended
iRIvS II Nucleus System Calb Reference Manual.

4-10 Nucleus Uset's Guide

5.1 INTRODUCTION

Occasionally a task needs additional memory. The Free Space Manager in the Nucleus
supplies the run îime memory requted by the jobs iù an Extended iRMX II Operathg
System. All free space initially belongs to the root job. By usirig Nucleus system calls for
allocatfug arid deallocating memory tasks can usually satisry their memory needs.

5.2 SEGMENTS

Allocated memory is treated as a collection of segments. A segment is a contiguous
sequence of memory flot exceeding 64K bytes. A segmerit's physical starting addre.ss is on
arl even byte boundary (that is, it is divisible by 2). A segment is assigned à slot
(descliptor) in the GDT. That GDT slot servej as the segment token. You can a@ess a
segment by loading the specific slot number into a selector.

'When
a task needs a segnent, it can rcqucst one of the desired length via the

CREATE$SEGMENT system call. If enough memory is available, the Nucleus returns a
token for the sesment.

NOTE
llhe loken lor a segnent can be used as the selector of a poi er lo the
segment. Thus, the token can be used as a selector (as when wdting a
message in the segment) ol as an object r€f€rence (as when s€nding the
segment-with-message to a mailbox). The PL/M-286 SELECTOR data
type is especially useful in referring to the segmedt,

Nucleus Uset's Guide 5-1

MEMORY MANAGEMENT

5.3 MEMORY POOLS

A memory pool is the memory available to a job and its desceldants. Each job has a
memory pool. When a job is created, the memory for its pool is allocated from îhe pool
of its parent job. Thuq there is a tree-structured hierarchy of memory pools, identical in
sÍuctue to the hierarchy ofjobs. Memory that a job borrows from its paren! remains in
the pool of the parent as well as being in the pool of the child. Such mernory, however, is
only available to tasks in the child job, and not to tasks iù the parent job, until the child job
releases the boffowed metuory.

5.4 CONTROLLING POOL SIZE

Two parameteîs, pool$min and pool$max, of the RQE$CREATE$JOB system cal (and
CREATE$JOB, although it has been retained for compatibiLity only), dictate the range of
sizes of a new job's memorypool. The job's memory pool can be up to 16M bfes.
Initially, the memory pool is physically contiguous and is equal to pool$min, the pool
minimum. If the task needs more memory, it may borrow the memory from its parent
job. In this case, the memory requested is a contiguous memory block, but is is not
contiguoùs to the initial memory pool. The maxirnum amount of memory that may be
borrowed is equal to

poo$max - pool$min

Memory allocated to tasks in the child job is stll considered to be in rhe job's pool. A task
needing to know abouî its job's pool or another job's pool may use the
RQEGETPOOI"$ATTRIB system call to obtain pool$min, pool$max, the initial pool
size, the number of paragraphs currendy available, the number ol paragraphs currently
aìlocated, arid the amount of memory borrowed.

5.5 MOVEMENT OF MEMORY BETWEEN JOBS

When a task tries îo create a segment (or an object of any othe. type), and the
unallocated part of its job's pool is not sufficient to satisry the requesl, the Nucleus tries to
borrow more memory from the job's parent (and then, if necessary from its parent,s
parent, arid so on). Such borrowing increases the pool size of the borrowingjob and is
thus restricted by its pool maximum attribute, When a job is deleted, the memory ir its
pool becomes unallocated, and access to it is given back to the parent job.

Note that if ajob has equa.l pool minimum and pool maximum attributes, its pool is fixed
at thaî common value. This means that thejob may not bofiow memory from its parent.

5-2 Nucleus Uset's Guide

MEMORY MANAGEMENT

5.6 MEMORYALLOCATION

The memory pool of a job consists of rro classes of m€mory: afocated and unallocated.
Memory in a job is unallocated unless it has been requested, either explicitly or implicitlt
by tasks in the job or unless it is orr loat to a child job. ,4 task's request for memory is
explicit wheo it calls the CREATE$SEGMENI system call and implicit when the task
attempts to deate any t'?e ofobject other than a segment-

When a task requests memory the memory is allocated in segments 18 b)'tes longer than
the specified size. These 18 bytes are for ittemal use by the Nucleus. However, each
selector returned points to the first add.ess available to the task.

The Nucleus borrows small amounts of memory f.om a job's pool each time a task h that
job creates an object, This memory is needed for boolrkeeping purposes. When the
object is deleted, the borowed memory is retumed to the pool. Appendix B lisrs these
meftory requùements.

When a task no longer needs a segme[t, it can teturn the segmert to the unallocated part
of the job's pool by using the DELETE$SEGMENT system call. Because of the algorithm
used by the Free Space Manager for returning segments to the memory pool, memory
lragmentation is minjmal and has little effect on performance. Figure 5-1 shows how
memory "moves."

EIESSÉGrvlEN-r

>.

DEL
(B

DELE 'TESSEGMENT

Nucleus Userrs Guide

Figure 5-1, Memory MoYement Diagmm

MEMORY MANAGEMENT

5.6.1 Buffer Pools

Buffer Pools are holding areas for segments jwhich are used by tasks when needed.
Having a pool of memory readily available tqi tasks curs down on system overhead because
allocating the existing bulfers is faster than cleating and deleting segmeots.

Buffer pools are empty when created. The {rser gives segments ro the buffer pool. The
segments are created ùsing the the RQ$CREJTE$SEGMENT system call. The created
segments are given to a buffer pool by using ithe RQ$RELEASE$BUFFER system call.
The buffers are then used by tasks thaî require memory. Any task that reqùires frequent
creation and deletion of segments may improve performance by using a bulfer pool with
pre-allocated segnents.

Buffer pools incur a certair amount of system overhead in their creation. The following
formùla defines the amoufit of resources requircd.

(Max Bufîers * 4) + 108 bytes = the amount of memory used by any given buffer pool. \--'l

lvhen you create a buffer pool you specifu the following informatiol:

r the maximum number of buffers that can reside in the buffer Dool at anv one time
18192 maximùm.l

5.7 SYSTEM CALLS FOR MEMORY MANAGEMENT

The system calls for úemory management are

. CREATE$BUFFER$POOL-CreateS a buffer pool object.

. CREATE$SEGMEI',lT--creates a s€gment and returns a token for it.

. DELETE$BUFFER$POOL-DeIeIeS a buffer pool objept.

. DELETE$SEGMEM-returns a segment to the pool from $hich it was allocated.

. GET$SIZE-returns the size, in bytes, of a segnent.

r RQEGETPOOL$ATTRIB-IeIuInS the following memory pool atftibutes ofîhe
specified job: pool minimum, pool maximum, initial size, number of allocated
paragraphs, number of available paragraphs, and the arnourÌt of memory borrowcd.
Both pool minimum and pool maximum may be up to 16M bltes ofmemory.

. cEl$POOL$ATTRIB-returùs the following memory pool attributes of the calling
task's job: pool úinimum, pool maximum, initial size, number of allocaîed
paragraphs, and number of available paragraphs. Borh pool minimum arid pool
maximum are limited to 1M byte of memory. This system call is provided for
compatibility ,with the iRMX I Operating Sysrem. Ilov.€v€r, for new applicatioos use
RQEGETPOOL$ATTRIB.

. RELEASE$BUFFER-ReIuIn a (segment) buller to a previouù oeated buffer pool.

5-4 Nucleus Uset's Guide

MEMORY MANAGEMENT

. REQUEST$BUFFER-Get a buffer (segrient) ftom a buffer pool that has been
sùpplied with buffers via the RQ$CREAIE$SEGMENT system call.

For a complete list and explanation of the iRMX II Nucleus system calls, see the Extended
|RMX II Nucleus S)atern Calls Mercnce Manual.

Nucleus Uset's Guide 5-J

5.1 INTRODUCTION

The Nucleus provides the objects from which the other subsystems are constructed. The
Exended iRMX II Nucleus uses 16-bit values, called tokens, to manage the objects in the
system. Tokens, as defined by the iRMX II Operating System, are logical addresses.
They are selectors that reference an entry io the global descriptor table (cDT). It is the
GDT entry which contains the 24-bit physical address of the memory used by the object.

6.2 ACCESS RIGHTS

One of the protection leatures of fhe 80286 processor is the ac{€ss byte. This byte
contains the attributes of an 80286 segment, that is, it defines the way a segmelt can be
used by instructions in other 8028ó segments. When an iRMX II obje.t is created, its
corresponding segrnent is assigÌed a read/write access type. Beîore any operation is
performed, the hardrvare checks the access t,:pe, If yoù have entered the wlong access
type, the hardware causes an exception. The iRMX -ll Operating System has taken
advantage of this hardware feature by allowing a task to change an object's access type fot
segÌfleflt objects, descdptor objects or composire objects. Access rights for all other object
types fob, task, mailbox, semaphorg region and extension) cannot be changed.

Two system calls are provided for nanipulating the access blte.
RQEGETOBJECî$ACCESS supplies the value of the object's access bJte. The
RQE$CIJANGE$OBJECI$ACCESS system call allows you to change an object's access
dghts. It uses îhe access bte format provided by the 80286 processor for both code and
data segment descriptors. For a list of the possible ac4ess blte valùes, see the Extend,ed
iRlttx II Nucleus S,rstetu Calls Referekce Mahual.

NOTT
Do not try to change bits in a token. This may cause a hardware trap.

Nùcleùs Uset's Gnide 6-1

OBJECT MANA.GEMENT

6.3 OBJECTADDRESS

The RQEGETADDRESS system call mnverts ao object's logical addrcss into its 24-bit
physical address. The physical address may be nscessary when using device driveN or
when creaîing aliases as part of descriptor management (see Chapter 7).

6.4 TNQUIRING ABOUT OBJECT TYPES

The GET$TYPE system call enables a task to present a token to the Nucleus and get an
object's type code in return. (T)?e codes for Nucleus objects are listed in Appendix B.)
This is useful, for example, when a task is expecting to receive objects of several different
rypes. With the obje.t's t'?e code, the task can use the apprcpriate system calls for the
object.

6.5 USING OBJECT DIRECTORIES

Eachjob has its own object directory. An ertry in an object directory consists of a token
for an object and the object name. The name contains from one to twelve characters,
where a character is a one-b1te value (from 0 to oFFH). Such a feature is often needed
becaùse some tasks might only know some objects by their associated names.

By using the LOOKUP$OBIECT system call, a task can presenî the name of an object to
the Nucleùs. The Nucleus consults the object directory corresponding to the specifiedjob
and, if the object has been cataloged there, returns the token,

NOTE
In object dLectories, upper and lov.er case alphabetic characters are
treated as being different. The Nucleus sees the name as jùst a stritg of
b]'tes. It does not interpret these bytes as ASCII characters.

If the object has not yet been cataloged, and the task is not willing to wait, the task
remains ready and receives an E$TIME exceptional condition (unless the object diectory
is full, in which case the task receives an E$LIMIT condition code). However. if the task
is willing to wait, it is put to sleep; then two possibilities exisr:

. If the designated waiting period elapses before the task reaeives its requested token,
the task is made ready and receives an E$TIME exceptional condition (see Appendix
D).

. If the task receives its reqùested token withh the designated waiting period, it is made
ready with Do exceptional condition. This cese is possible because ariother task can
catalog the appropriate entry in the specified object directory while the requesting
task is waitine.

6-2 Nucleus Usefs cuide

OBJECT MANAGEMENT

í--\ When a task wants to share an object with the other tasks in a job (noî necessarily its own
job), it can use the CATALOG$OBJECT system call to pùt the object in that job,s object
directory. Trpicaly, this is done by the creator of the obj€ct. Likewise, entries can be
removed from a direrctory by the UNCATAIOG$OBJECT system call.

When using an object directory you must give the roken of the job whose dhectory is to
be used. The rootjob's object directory called the root object diectory, is special in thar
its token is easily accessible. Any task can call the GETSTASK$TOKENS system call to
obtain the token of the root iob.

6.6 SYSTEM CALLS FOR OBJECTS

The following system calls manipulate objects:

. cATALocgOBJECT-places an object in an object dire4tory,

r GET$TYPE-accepts a token for an object and returns its t)?e code.

. LOOKUP$OBJECT-acaepts a cataloged name of an object and rcturns a token for it.

. RQE$CHANGE$OBJECI$ACCESS--changeS the access byte of an object.

. RQEGETADDRESS-ietùrnS the physical address of an object.

. RQEGETOBJECI$ACCESS-reIuInS îhe value of an objert's access bfe.

r UNCATALOG$OBJECT-remoVeS aî object ftom an objept directory.

For a complete list and explanation of the iRMX Il Nucleus system calls, see the Extended
|RIUIX II Nucleu.s Systeh CaIk Reference Manual.

Nùcleùs Usefs Guide 63

7.1 INTRODUCTION

Descriptors are used to address an area of memory. Every segment must have at least
one descriptor or it is not addressable. Each descriptor is an entry in the GDT and
contains îhe physical address, the access rights, and the segment fmits.

The Nucleus assigns each object a descriptor when it is created. This g/pe of descriptor
may be thought of as an implicit descriptor. Implicit descriptors are managed by the
Operating System. Applicatiol programmers do not need any additional information
about descriptors and may want to skip the rest of this section.

7.2 EXPLICIT DESCRIPTORS

The system programmer should know that there is a second type of descriptor which can
be thought of as an explicit descripto.. Explicit descriptors aîe used primarily for the
following purposes:

. To gain addressabitty to areas of memory that are not defined when the system is
codigured and thùs, have no logical address,

. To create aliasg! to existìng segments- (AJiases are one of several descriptors tlat
may be necessary to define a diffeîent segment q?e or a different access right for the
same segment.)

. To add device drivers to the system. (See the Extehded LRMX II Batíc I/O Sfstem
User's Guide.)

You can manipulate descriptors like segments. You cao create, chalge and delete them.
In fact, to the operating system they look just like segments. If you call GEISTYPE on a
descriptor, the type code returned is for a segment.

Nucleus Usels cuide 7-l

DESCRIPTOR MANAGEMENT

Great care should be taken wheri cleatiflg a descriptor, By calling
RQE$CREATE$DESCRIPToR it is possible to create a descriptor for any physical
address. Aí elror in calculating the physical address may overwrite valuable system
information such as the GDT. When you create a descriptor a hardware slot is
established in the GDT with the required physical address. The Nucleus marks the object
as a d€scriptor. In this way, the Nucleus 'knoì,vs" that when the descriptor is deleted, using
RQE$DELETE$DESCRIPTOR, only the cDT slot is to be recycled, not the memory
addressed by the descriptor.

The iRMX tr Operating System also provides the RQE$CHANGE$DESCRIPTOR
system call which can be used to change the physical address of a descriptor and/or the
length of the segment addressed. This system call is particìiarly useful in applìcations that
include I/O drivers.

7.2.1 Descriptors with Aliases

As sîaîed abovg you can use descriptors with aliases and with areas of memory that were
not defined at configuration time. Aliases allow you to have several descriptors for the
same segment. They provide segments with alternate names in much the same \ì/ay as
people use nicknames. Deleting an alias descripîor does not delete the segmenî to which
it refers.

7.2.2 Descriptors lor Undefined Memory

Descriptors can also be used to gain addressability to areas of memory that wete not
defined when the system was configured and thus, have no logical address. These memory
areas are not allocated ftom thejob's mernory pool. When they are creatod thcy do not
reduce the size of the memory pool. Therefore, when they are deleted, they do not reîurn
memory to the memory pool.

7.3 CAUTIONARY NOTES ON USING DESCRIPTORS

Descriptors a.e a very powerful featu.e of the operating system. If they are úisused, they
can can affect the htegdty of the entirc operating system. If you wish to preserve the
int€grity of your application system, confine th€ use of descriptors to experienced
programmers who have a firm understanding of iRMX tr addressing. A less-
L'nowledgeable programmer can, by abusing descriptoG, coffupt the interasrion bot$/ccn
tasks in an application system.

7.4 SYSTEM CALLS FOR DESCRIPTOR MANAGEMENT

The following system calls manipulate desrTiptors.

Nucleus Uset's Guide

DESCRIPTOR MANAGEMENT

. RQB$CREATE$DESCRIPTOR-reIùrDS a segment token for an entry in the cDT.

. ROE$CIIANGFJDESCRIPTOR-ohangeS the physical address contained in the
GDT ard/or the size of the segment descdbed.

r RQE$DELETE$DESCRIPTOR-IeIurIS a slot from the cDT to the operating
system for reuse.

For a complete list and explanation of the iRMX II Nucleus system ca)ls, see the Extended
|RMX II Nucteus System Calk Relerence Manual.

Nucleus Uset's Guide

8.1 INTRODUCTION

lvhen a task ilrvokes an iRMX II system calt sometimes the results are riot what the task
is trying to achieve. For examplg a segment access may overflow its boundaries or a task
may request memory that is not available. In such cases, the operating system must
inform the task that an error occurred. Whenever a task makes a system call or the 8028ó
processor traps an illegal condition, the system uses a condition code to commudcate the
sùccess or failure of the call.

8.2 CONDITION CODE VALUES AND MNEMONICS

Condition codes are numeric values that represent unique conditions. Each condition
code al$o has a mnemonic (such as E$OK), to indicate the code's meaning. Appendix D
lists the condition codes v/ith their numeric values and mnemonics.

When writing application tasks, you can refer to the condition codes by their mnemonics
as long as you declare each mnemonic arìd its numeric code to be liaerally equal. Intel
supplies the /RMX286/INC/ERROR.LIT file which contains literal declarations of all
the iRMX II condition mde mnemomcs.

8.3 TYPES OF EXCEPTIONAL CONDITIONS

Conditions that represent failùre (or not complete success) are called exc€ptional
conditions. These conditions have two classifications: programmer errors and
environmental conditions. A plggqlqlqgrcllq! is a condition that the callfuig task can
preveùt. lrr contrast, an envtonmental condition adses outside the control of the calling
task. Se€ Appendix D for a completc list ol both programmer errofs and environmental
cofIditions.

8.4 CONDITION CODE RANGES

The values of condition codes fall into ranges based on the iRMX II layer which first
detects the condition. Table 8-1 lists the layers and theil respective tanges, with numeric
values expressed in hexadecimal notation.

Nucleus Uset's Gnid€ 8.1

Table 8-1, Condition Code Ranses

Environm€ntal Programming
Erors

Nucl€us 0H tooFH
l/O Sysi6ms
Application Load€r

lJniversal Dev€lopm€nt
lnt€rfac€

8000H to 800FH
20H ro sFH
6OH to 7FH
80H to AFH
CoH to DFH

EOH to 3FFFH
400oH to TFFFH

ao20H ro 805FH
8060H to 807FH
€O€OH to SOAFH
80@H to 80DFH

80E0H to BFFFH
C000H to FFFFH

EXCEPTIONAL CONDITION MANAGEMENT

8,5 EXCEPTION HANDLERS

The iRMX II Nucleus supports exception handlers which deal with the erors that tasks
encounter in making system calls. How an exception handler deals with an et(ceptional
condition is a matter of programmer discretion. In general, a handler pedorms one of îhe
following actions:

. Ings the error.

. Deletes or suspends the task that erred.

. Igrores the error. lf this option is taken, the system continues as if flo effor had
occurred. Continuing under such ciacumstances is generally unwise, however,

An exception handler is written as a procedure with four parameters passed in the
following order:

. The condition code IWORDì.

r A code (BYTE) indicating whích parameter, if any, was faulty in the call (1 for first, 2
for second, etc,, 0 if none).

. -A reserved (WORD) paîameter.

. A (WORD) parameter containing the Numeric Processor Extension (NPX) status
word. This paramctcr is valid only if the condition code is ENDPERROR,

8.6 ASSIGNING AN EXCEPTION HANDLER

A task may use the SET$EXCEPTION$iIAN.DLER system call to declare its own
exception handler. Otherwise, the task inherits the exception handle. of its job. A job can
receive its own exception handler at the time of its cleation_ lf it doesn,t, the job inherits
the system exception handler. Thus, the Nucleus can always find an exception handler for
the running îask.

8-2 Nucleus Usefs Guide

EXCEPIIONAL CONDITION MANAGEMEM

A system exception handler is provided as parr of rhe iRMX II Operating System. When
you configure the system, you may specily the System Debugger, SDB, as the system
exception handler (this is conveniont for debuÉging). In this case, Lhc iRMX II Operating
System lets the monitor and îhe SDB debugger take control of all the 80286 hardware
exceptions (except those that handle the Nùúeric Proc€ssor Extension). This means that
the monitor, in conjunction with the SDB debugger. will always handle hardware
exceptions (causing a break to the monitor, and sending a message to the console), even
for iRMX II task$ that speciry their own exception handler. A user-wdtten exception
handler may still be invoked to handle enors detected in the ìRMX Il system calls.

ff you want to write your own exception handlers, compile them using thepL/M-286
I-ARGE control, specifying the PUBLIC attribute, It is also possible to compile exception
handleîs using the COMPACT control, as long as the following conditions are met:
. One extra dummy word parameter is added to the calling sequence (at the end of the

parameter list).

. The exception handler must be in the same code segrient as the task it serves.

. The exception haDdler does not handle hardwate traps.

8.7 INVOKING AN EXCEPTION HANDLER

An exception handler ùormally r€ceives control when an excepîional coodition occurs.
However, Ìr'hen a task encounters an exceptional condition, it need not always have
conhol passed to its exception handler. The factor that determines whether control
passes to the exception handler is the task s exception mode. This attdbute has four
possible values, each of which speciiies the circumstarìces under which the exceptiot
haldler is to get control in the event of afl exceptional condition. These circumstances are
o Programmer errors only

. Environmental conditions only

. All exceptional conditions

. No excepîional conditions

When the Nucleus detects that a task has caused an exceptional condition in making a
system call, it compaîes the type of the condition with the calling task s exception mode.
If a transf€r of contlol is indicated, the Nucleus passes contaol to the exception handler on
behall of the task. The exception handler then deals with the problem, after which control
returns to the task, unless the exception handler deleted the task. When the exception
handler returns, the task can also detect that afl elror occured. because the wstem call's
except$ptr parameter por'nts to a word containing the condition code. While ihe
exceptiol handler is executing, the errant task is still regarded by the Nucleus to be the
running task. Therefore, the exception handler task uses the stack and envionment of
the eúaflt task.

Nucleus Uset's Guide 8-3

EXCEPTIONAL CONDITION MANAGEMENT

When a task is created, its exception mode is set to its job's default exc€ption mode. The
task can chaoge its exception handler and exceptioo mode attributes by using the
SET$EXCEPTION$IIANDLER system call.

8,8 HANDLING EXCEPTIONS IN.LINE

If a task's exception mode attribùte does not direat the Nucleus to transfer control to the
task's exception handler, the responsibility for dealing with an error falls on the task.

Each system call has as its last parameter a POINTER to a WORD. After a system call"
the Nucleus returns the resulting condition code to this WORD. By checking this WORD
atter each system call, a task cao determine whether or not the call was succe$sful. (See
Appendix D for condition codes.) If the call was not successful, the task can learn which
exc€ptional condition it caused. This information can somefimes enable the task to
recover. In other cases, more information is needed.

If a system call returns an exception code to indicate an unsuccessful call" all other output
parameters of that system call are undefined.

NOTE
If an invalid parameter causes an exceptioîal condition it should be
handled by an exception handler. When using Nucleus system calls, the
handler receives the parameter number of the first invalid parameter.

8.9 HANDLING EXCEPTIONS IN 80286 PROCESSOR SYSTEMS

The following sectiofls are particularly important for users who are familiar wiîh rhe
iRMX 86 Operating System. The increased protection îeatures of the 8028ó
microprocessor have resulted in a diîfcrcnt way of handling €xceptions and n€w exception
codes.

The operating system software "catches" and returns most of the exceptional conditions.
However, a few conditions occur because the mictoprocessor catches (or traps) an invalid
condition. The trap causes contrcl to be passed to special exception handling code which
the iRMX II Opefating System provides. This code examines the exception mode of the
current task and acts in one of the following ways.

. It may call a system-supplied exception handler-

. It may call a user-supplied exception handler.

. lt may .etum contol dftecdy to the faulting iRMX II task.

8-4 Nucleùs Uset's Gnide

EXCEPTIONAL CONDITION MANAGEMENT

For 80286 processod, a CPU trap sets the instruction pointer (IP) fegister to point to the
instruction that caused the CPU trap. This difference rneans that without an exception
handler, an 80286-based application can never gct past thc instruction that caused the
CPU trap. (Users familiar with 8086, 88, 186, or 188 processors will remember that with
these processors a CPU trap sets the IP register to point to the instruction after the one
that caused the CPU trap, This situation allows some applications to ignore errors and
continue processing.)

Therelorg for 80286-based systems, you should always designate an exception handler to
handle exception codes generated by CPU traps (programming errors), even if the
handler does nothing mo.e than increment the IP value that is pushed onto the task's
stack wheo the tmp occurs (thaî is, the retunì address). Without a handler of some kind,
yoùr application will get caught in an infinite loop in the event of a CPU trap.

Iî you use the exception handler supplied with the operating system to handle
programmer erors, your application will run the same, regardless of the CPU. However,
if you write your own exception handlers, you should include code to handle either of the
sitùations mentioned in this section.

Ifyou have user-written exception handlers that are being upgraded from the iRMX 86
Operating System to the iRMX II Operating System, be sure to change the code in
exception handlers for the divide by zero trap. In the iRMX 86 Opemting System after a
divide by zero, the Nucleus relurns to the next instruction whereas, in the iRMX II
Ope.ating System, the Nucleus rctums to the same instruction. If you do not ensure that
the retum address is the nelú instruction, you could get caùght up in an infinite loop. Intel
recommends that you upgrade all user-written exception handlers to enable them to
handle the new exception codes.

Table 8-2lists the conditions which may cause a trap and the instruction to lvhich it
returns. The table also compares the handling of an iRMX II exception with an iRMX 86
exception (if you are operating the iRMX 86 Operating System on an 80286 processor).
Some exceptions such as power failure do not return control to the faulting task. These
exceptions have been marked N/A (not applicable).

Nucleus Uset's Guide ù-5

Table 8-2. Retun Address aller an Exception

Int€rrupt
De8cription

lmtruclion R€tumed To

IRMX ll IRMX AO on ao2a6 Processor

0
I
2
3
4
5
6
7
I
9
1 0
t l

Divid€ by zero
Singls 6t€p
Pow€r failure (non-maskable)
One byte interupt inrtuciión
Interrupt on ovsrflow
Run time aray bound €Íor

NPX not preservNPx task sdtch
Doubte fauh
NPX segment overun
lnvalid Task Stat€ S€gmerìt
S€gm€nt not preserìt
Stack €xc€ption
G€nelal Protection
Procossor Extension Eíor

Sam€
Ned

N€xt
Same
Sam6
Same

N/A

Sam€

Sam6
N/A

Sam6
Nex

Next
Samg
Sam€
Sam6

N/A
N/A

Same

EXCEPTIONAL CONDITION MANAGEMENT

If your system supports an 80287 Numeric Processor Bxtensiol (NPX, some references to
NDP in the error codes are for cornpatibility reasons) exceptions 7, 9 and 16 may be of
special interest to yoù. Interrupt 7 may occur on systems that support an NPX and on
those that don't. If your system does not have an NPX and you receive interrùpî 7, treat it
as you would any other program exception. However, if your system has an NPX and
interrupt 7 occurs, do not try to serice it as Interrupt 7 is reserved for the system. A
conîext switch of the NPX environment takes place and the faultirig task continues.

ln the event of interrupts 9 or 16, the retum address is that of the cùrrent instructiofl
However, the exception was caused by the previous NPX instruction. This is true because
the 8ù287 NPX, unlike the 8087 NP)i, does not cause an exceDtion as soon as an crror
occurs. An excepîioîr occurs only when the nelt floatingpoini instruction in the same task
is executed.

8.10 SYSTEM CALLS FOR EXCEPTION HANDLERS

The following system calls manipulate exception handlers:
. SET$EXCEPîON$iIANDLER-seIs the exception haridler and exception mode

attributes of the calling task.

. GE]SEXCEP{ION$IIANDLER-retumS to the calling task the cùrrent values of its
exception ha[dler arld exception mode attributes.

For a compleîe list and explanation of the iRMX II Nùcleus system calls, see the Extended
íRMX 1I Nucleus System Calls Refere ce Manuùl.

8.6 Nucleus Uset's Guide

9.1 INTRODUCTION

Interrupts and interrupt processing are central to real-time computing. External events
occur asynchronouÙ with respect to the ilternal workings of an iRMX II application
system. An interrupt, signalling the occurrence of an efernal event, triggers an implicit
"call" using an address supplied in a section of memory known as the ioterrupt descriptor
table. This directs cortrol to a procedure called an interrupt handler. A.t this point, one
of t\r.o events occurs. lf handling thc int€rrupt takes little time and requires no system
calls other than certain interrupt-related system calls, the interrupt handler can process
the interrupt itself. Otherwise, the interrupt handler can invoke an interrupt task, which
deals.i/ith the interrupt. After the interrupt has been serviced by either the interrupt
handler or the interrupt task, control retuhs to the ready applic-ation task with highest
priority. See Figure q- 1 fo. a graphic representation of this interrupt process.

Nucleus Usels Guide 9.1

INTERRUPT MJ.N,4.GEMENT

IN fERRUPT
INÎERRUPT

IABLE

1 .
2.
3.
4.
5.
6.

7b.
8.

Note:

ProgÉmmable ld€rrupt Comroller (PlC) rec€ives an interupt
PIC signals the CPU.
CPU acknowledg€s the interupt.
PIC s6nds th€ interupt numberto the CPU.
CPIJ obtains the inteÍupt handl€r from the interupt descripror table (lDT). ..,-_,/
Control sent to the irìterupt handler.
Activat6 the intsrupt task.

Return to the interupted task.
R€turn to ih6 irú€rupt€d ta6k.

lhe 6olid arows (l> .) indicale sottware vectors;
the hollow arows (--\) ind:care l-a.dware vectors.' -'-v

Figure 9-1. Intenupt Processing Model

9,2 INTERRUPT MECHANISMS

This section discusses the major concepts of interrupt prccessing: interrupt controllers
and lines, interrupt levels, and the interrupt descriptor table. It also discusses assigning
inteîrupt levels to external sources and disabling interrupts.

Y E S - .

NO

9-2 Nucleus Userrs Guide

INTERRUPT MANAGEMENT

9.2.1 Interrupt Controllers and Interrupt Lines

Efernal interrupts are passed through programmable interrupt controllers (PICs) such as
the 82594 PIC. The iRMX Il Operating System supports îhe configuration described
here. Refer to the Exteíded |RMX II Inferactíve Confguration UtîtiE Reference Manuat
for information on configuring the operating system to support the hardware
configuration.

Under the iRMX II Opemting System, interrupts must be funreled though 8259A PIG.
In this environment, an individual master PIC can manage interrupts from as many as
eight extemal sources. However, the iRMX II Operating System also supports an
expanded (or cascaded) environment in which ùp to seven input lines of one master pIC
are connected to slave PICS (one input line from the master PIC must be connected
diectly to the system clock). In a cascaded envhonment, an input line of a master PIC
cÍìn connect either to an extemal interrupt or to a slave PIC, but not to both.

Because each of the slave PICS can manage eight inteÍupts, a cascaded envftooment
allows the operating sysîem to manage interrùpts from as many as 56 e\.temal soùrces
plus îhe system clock.

If your 80286 based system includcs an 80287 NPli you cannot connect the NPX to a
PIC. Instead of using the PlC, the NPX uses CPU interrupt traps 7 and 16 to
mmmunicate directly with the 80286 component. Figuîe 9-2 illustrates this situation.

9,2.2 Interrupt Levels

The interrupt lines of the master and slave PICS are associated with numbers called
inte[upt levels, as shown in Figure 9-2. An interrupt level names an interrupt line and
indicates the priority of the line (in general, rhe lower the number, the higher the
priority). The interrupt lines on the master PIC are numbered M0 through M7. The
interrupt lines on the slave PICS are numbered x0 through x7 (where x ranges ftom 0 to

I-ower-numbered interrùpî lines like M0 or M1 (or lines from slave PICS connected to
them) have higher priority than higher-level lines like M5 or M6 (or lines from slave PICs
connected to them). Therefore, if two interrupts occul simultanoously, the PIC ilforms
the CPU of the higher-prio.ity inteúupt first.

The Nucleus often disables low-prio.ity interrupts to allow tasks to service high-priority
interrupts. Refer to the nDisabling Interrupts" section of this chapter for more
information.

Nucleus Uset's Guide 93

INTERRUPT MANAGEMENT

8 0 2 8 7 N P X S L A V E 7 P I C

0 0
o f
a 2
0 3
o 4
0 5
0 6
o 7

w-0302

Figùre 9-2. 80286 Interrupt Lines

9.2.3 Inlerrupt Descriptor Table

When an interupt occurs, it triggers the processor to invoke a proccdure whosc addrcss is
listed in a section of memory called the interrupt descripto! table (IDT). You enter
interrupt addresses into the IDT when configùring the system or dynamically, using
SET$INTERRUPT. Wlen an inteÍrupt occurs, the processor uses the entry in the IDT as
a pointer to the interrupt handling code to be executed for the specific interrupt. Each
entry in the IDT is a descriptor that contains the physical address of the interupt
procedure that should be processed when the speciîied interrupt occurs. The IDT is
similar to the GDT ard LDT, except that it is referenced only as a result of an interupî
or a trap. The IDT may be located anlrurhere in the memory of the iRMX II Operating
System. For more details aboùt îhe IDT, see the íAPX 2Eó Prcgrammer's Reference
Manual.

C l o c k i s

9-4 Nucleus Usefs Guide

INTERRUPT MANAGEMENT

Many different events may cause an interrupt. To allow the cause of the interrupt to be
identified, the hardware assigns each interrupt cause a number and gives it an entry in the
IDT, The IDT is composed of up to 256 entries, numbered 0-255. you speciry the
number of entries your application needs when you configure the system. Most users will
not need more than 128 entries. If, for example, your system has only the 82594 pIC
master with no 8259A PIC slaves, and does not use software interruDts. the fhst 64 entîies
are enough. The iRMX II Nucleus does not use entrics 128-255. These entries are
available for users. The entries are allocated as shown in Table 9-1.

When an interrupt occurs on any master or slave level, the processor looks at the
corresponding entry in the interrupt descriptor table to deteîmine îhe address of the
prccedure to execute. The procedure that executes in response to an inteÍupt is called an
interrupt handler.

For examplg if a level M2 interrupt occurs, the processor examines interrupt descriptor
58 for the location of the interrupt handler for that lev€I. Then it traNlers contrcl to thc
hterrupt handler.

Table 9-1. Allocatior of Intenupt Entrles
Entry Number Description

0
1
2

3
4
5
ó
1
8
9
10
1 1
12
13

14-1,5
1.6

17-55
56-63

64-127
128-255

divide by zero
single step (used by the iSDM monitor)
power failure (non-maskable irterrùpt,used by the iSDM

monitor)
one-byte interrupt insbuction (used by the iSDM monitor)
inteúùpa on overflow
ruo{ime array bounds error
undefined opcode
NPX not present/NPx task switch
double fault
NPX segment overun
invalid TSS
segmenr not present
stack exception
general protection
resefved
NPX error

82594 PIC master (oúernal interrupts)
8259A?IC slaves (external interrupts)
unused

Nucleus Usefs Guide 9-5

INTERRUPT MANACEMENT

The Nucleus provides two system calls for setting ùp the interrùpt descriptor tabls
SET$INTERRUrr and RESET$INTERRUPT. SEI$INTERRUPT assigns an inteîrupt \---l
handler to an interrupt level by placing a pointer to the first instruction of the handler in
the apprcpriate descriptor. RESET$INTERRUPT cancels the assignment of an interrupt
handler by clearing out the appropriate entry in the interrupt descriptor table. With these
two system calls, you can set up the descriptor table to meet your needs.

9.2.4 Assigning Interrupt Levels to External Sources

You úust obey the following restrictions when assigring intemrpt levels to extemal
sources:

. You úust assign the system clock to a master interrupt level. The level number is a
configuration option and is described ia the Extended îRMX II Intercctire
Confgurat ion Utí18 Refercnce Manu4l.

. When you attach an interrupting device to a level on the master PIC, you cannot also \--l
attach a slave PIC to the same level. For example, suppose that you physically attach
the device to level M3. This means that ertry 59 (decimal) of the IDT must contain
the address of the interrupt handler for the device. It also means that entries 88
through 95 (decimal) of the IDT (the slave level entriès that correspond to master
level M3) will not be used.

9.2.5 Disabling Interrupts
_-/

Oscasioflally you may want to prevelt interrupt signals from causing an immediate
interrupt. For exaúple, yoù don't want low-priority interrupts to interfere with the
servicing of a high-priority interrupt. In the iRMX II Opemting System, each interrupt
level can be {!q!!g!. In some circumstances (described later), the Nucleus disables
Ievels. Tasks can also disable and enable levels by means of the DISABLE and ENABLE
system calls. However, the master level resered for the system clock shoùld flot be
disabled or enabled.

If an interrupt signal arrives at a level that is enabled, the operating system trarsfeÉ \._-/
control to the address mntained in the IDT entrv that corresDonds to the level on which
the interrupt occurred. If the level is disabled, tÉe interrupr iignal is blocked until the
level is enabled, at which îime the signal is recognized by the CPU. However, if the signal
is no longer emanating from its sourcg it is not recognized and the inteÍupt is not
handled.

An interrupt level can be disabled in four ways:

o A task can explicidy disable a specific interrupt level by invoking the DISABLE
system call. Later, a task can re-enable îhe level lry invoking the ENABLE system call.

. A task can invoke the SEI$INTERRUPT system call to designaîe itsef as the
interrupt task for a particular interrupt level. When it makes this designation, the task

0
?

9-6 Nucleus Uset's cuide

INTERRUPT MANAGDMENT

can speciry a fmit to the lùmber of interrupts that it v/ill queue. If enough ioterrupts
occur on the task's interrupt level, the queue can bepome full. \ryhenever this
happens, the operating system auromatically disables the inîelrupt level until the
queue ceases to be full.

Wheriever a task invokes the RESET$INTERRUPT system call to cancel the
assignment of a particular interrupt handler to a particular intemrpt level, the
operating system automatically disables that interrupl level.

To provide pre-emptive priority-based scheduling the operating system can
automatically disable or re-enable some interrupt levels whenever a task begins
running depending on the priority of the nevr running task and the priority of the
previous running task. This allows high-priority tasks to run faster, without hterrupts
from lower-priority external devices. Table 9-2 shows the correlation between the
levels disabled and the priority of the running task.

NOTE
A task that makes system calls when interupts are disabled should never
use the PL/M-286 DISABLE statement or the ASM286 CLI (clear
interrupt-enable flag) inst.uction to disable operating system interrupts.
Nucleus system calls may cause interupts to be enabled.

a'

Nucleus Uset's Guide 9-7

Table 9-2. Interrupt L€vels Disabl€d for Runnlng Task

INTERRUPî MÀ.NAGEMENT

34
56
73
910

1 & 1 4
15-16
17-18
1920
21-22
23-24
25-26
27-28
2930
31-32
33'34
35-36

39-40
4142
4344
45-46
4744
49-50
51-52
6154
5t56

s960
61€2
63€r

6$70
71-72
73'74

MO. M7
M 1 . M 7
M 1 - M 7
M 1 . M 7
M 1 - M 7
M 1 - M 7
M 1 . M 7
M 1 . M 7
M 1 - M 7
M2- M7
M 2 . M 7
M2, M7
M2.M7
M2.M7
M2. MI
M2.M7
M2. M7
M 3 - M 7
M3. M7
M 3 - M 7
M 3 - M 7
M 3 - M 7
M3- M7
M3- M7
M3- M7
M4. M7
M4. M7

M4- M7
M 4 - M 7

M 4 . M 7
M 5 - M 7
M 5 - M 7
M 5 . M 7
M 5 - M 7

ú - 7 7
0 1 - 7 7
0 2 - 7 7
0B-77
u-77
05 -77
(n-77

07 -77

10-77
1 1 - 7 7
1 2 - 7 7

1 4 - 7 7
1 5 - 7 7

1 6 - 7 7

20-77
21-77
2 2 - 7 7
2 3 - 7 7
2 4 - 7 7
25-77
26-77

n - 7 7
31-77
32-77
3 3 - 7 7
u - 7 7
its - 77
36-77
37 -77

40-77
41-77
4 2 - n
43-77
44-77

-.--continùed---

9-8 Nùcleus Uset's Gulde

INTERRUFT MANAGEMENT

9.3 INTERRUPT HANDLERS AND INTERRUPTTASKS
'Whether

an interrùpt handler services an interrupt level by itself or invokes an inteúupt
task to seryice the inte..upt depends on two factors:

. The kinds oî system cirlls needed

. The amount of time reqùired

Table 9-2. IÍterrupt Levels Disabled for Running Task (confinued)

Task Priority Disab!€d Levels
Slav6 L€vels Master Levels

77-78
79€0
81€2
4384
&5€6
87€8
8990
91-92
93€4
95€6
97€8
99-100
101-102
10310f
105,'t06
107-108
1 @ 1 1 0
111-112
1 1 3 1 1 4
1 f 5 - 1 1 6
117n 18
119120
121-122
123-124
125-t26
127-128
129255

4 5 - 7 7
8 . T T
47.TT
50-77
51-ì |7
52 -77

53 -TT

54 -77

57 -77

ú - 7 7
6 1 - 7 1
62-77

è 4 - 7 7

67 -77

70-T7
7 1 - 7 7
72- 77
73-77
74-77
75-77
76 -77

77
None

M 5 - M 7
M 5 - M 7
M 5 - M 7
M 5 - M 7
M6. M7
M6- M7
M6. M7
M6. M7
M6- M7
M 6 - M 7
M 6 - M 7
M 6 - M 7

M7
M7

M7
M7

None
None
None
None
Non€
None

None

Nudeus User's Guide 9.9

INTERRUPT MANÀ.GEMENT

Regarding the first factor, interrupt haÍdlers can make only the ENIER$INTERRUITf,
E)CT$INTERRUPT,GET$LEVEL,DISABLE,andSIGNAI-$INTERRUPTSySIem _-/
calls. If the handler requires other system calls to service the interrupt, it must invoke an
interrupt task

Regarding the second factor, an interrupt handler should always invoke an inteúupt task
unless the handler can service inteÍupts quickly. Time is importarÌt because an ùrterupt
signal disables all interrupts, and they remain disabled until the interrupt handler either
services the interrupt and exits or invokes an iriterrupt task. Invoking an interrupt task
allows higher priority inte(upts (and ill some cases, the same priodty interrupts) to be
accepted.

9.3.1 Setting Up an Interrupt Handler

Interrupt handlers are generally written as PL/M-286 interrupt procedures, but they can
be written in assembly language. Ifyou use assembly language, you must save and reslore \-
aU register values, as noted later.

Before an interupt handler cafl service an interrupt level, a task musl invoke the
SEI$INTERRUPT system call to bind the handler and an intem.pt task to an interrupî
level. SET$INîERRUPT operates as follows:

. One of the SET$INTERRUPT parameters, the inteÚupt$haridler parameter,
specifies the starting address of the interrupt handler. SET$INTERRUPT binds the
handler to a level by placing this starting address into the IDT at îhe eritry that __,
mrresponds to the level. When an interrxpt of that level occurs, control automatically
traflsiers through the IDT to the handler.

. Another pammeter in SET$INTERRUPT, the interrupt$task$flag paramete.,
detemines whether an interrupt task is associated with the level. If the
interrupt$task$flag parameter contains a zero, there is no interrupt îask for the
specified level. Otherwise, the calling task becomes the interîùpt task fo! the level.

If you want your interrupt handler to use another data segment, you can speciS the
selector ofthe interrupt handler's daîe segment in the interrupt$handler$ds parameter of v
SEI$INTERRUPT. The irterrupt haridler can later load this value into the DS register
by calling ENTER$INTERRUPT. Interrùpt handlers wdtter in PL/M-286 (including
COMPACT model) have their DS registers loaded automatically on invocation. In most
cases, an interrupt handler and an interrupt task are compled together and share the
same data areas.

9-10 Nudeùs Usefs Guide

INIERRUPI MANAGEMEM

When an iRMX II application system starts runnin& all inteffupt levels are disabled.
Before the operating system enables an interrupt level, a task must invoke
SET$INTERRUPL When SET$INTERRUPT binds an iùterruDt handler but not zur
interrupt task to a level, the operating system enables the level immediately. However, if
SET$INTERRUPI bhds the handler and an interrupt task to the level, the operating
iystem does not enable the level until that task invokes the WAIX$INTERRUPT or
RQE$TIMED$INTERRUPT system call (described later)- An inteîrupt task should not
enable its own level before making its first call to WAI$INTERRUPT or
RQE$TiMED$INTERRUPT,

A RESET$INTERRUPT system call cancels the link between an inteffupt level and its
intefiupt handler. Thc call also disables the specilied level, If there is an inteffupt task
for the level, RESET$INTERRUPT deletes it. DELETE$TASK does not delete
interrupt tasks.

9.3.2 Using an Interrupt Handler

ff an interrupt handler services interrupls for a given level wiahout invokhg an i errupl
task, the handler must assume one of two forms, depending on whether it requhes the
Nucleus to 6et up the sclcctor of its daîa segment.

If the hterrupt handler does not need to accsss the data segment, or if it can load the DS
register with the data segment selector, then it should perform the followir€ steps:

1, If in assembly language, save all register contents (PL/M does it lor yoù Ìvhen the
proc€dure is given the INTERRUPT attribute).

2. Service the interrupt.

3. CalÌ EXIT$INTERRUPI. (This sends an end-of-interrupt signal to the hardware.)

4. If in assembly language, restore all regi*er mntents.

5. Return.

In the rare case where you úay grant to use a special data segm€nt, call
ENTER$INTERRUPT immediately after step 1. An example of how to use
E)<IT$INTERRUPT is gwe'J r the Ertendcd |RMX II Nucleus Systern Calls Reference
Manual.

9.3.3 Using an Interrupt Task

If both an interrupî handler and an intemrpt task are associated v/ith a level, the hterrupt
handler invokes the interrùpt task by making a SIGNAUINTERRUPI system call If a
level has only an interrupt handler, however, the handler cannot call
STC NA.t $INTERRUPf without causins an E$CONTEXT error.

Nucleus Usefs Guide 9-ll

INTERRUPT M NAGEMENT

9.3.3.1 Duties of the Interrupt Handler

If an interrupt handler invok€s an interrupt task, the handler must perform the following
steos:

1. Il in assembly languagg save the register contents.

2. Optionally, do some servicing.

3. Optiona[t caù ENTER$INIERRUPT.

4. Optionally, begin servicing the interrupt without system calls.

5. Call SIGNAIJINTERRUPI, which starts the interrupt task and enables higher
(and possibly equal) priority interrupts.

6. Optionally, do some servicing.

7. lI in assernbly language, restore the register contents.

8. Retum.

An interrupt handler uses the resources of the interrupted task. The hterrupt task,
however, like any other task, has its own rcsources.

9.3,3.2 Duties of the Interrupt Task

An interrupt t3sk must perform the following functions in the indicated order, although
the first two functions may be interchanged:

Cal1 SETSINTERRUPT:

Do forever;
Call IiAIT9INTERRUPT (or RQE$TIMED$INTERRUPT) ;
Service the lnterrupt (systen cal ls al lowed);

End;

An interrupt tasl! once initialized, is always in one of two modes: it is either servicing an
interrupt or waiting for notificatiod of an interrupt.

9.3.3.3 Inlerrupt Task Prioriiies

When a task becomes an interrupt task by calling SEfiINTERRUPT, the Nucleus assigns
a priority to it according to the interupt level to be serviced. Table 9-3 shows the
relationship between interrupt levels and the priorities of tasks that service those levels.

Table 9-3 lists several other values for each interrupt level. Iî lists the encoding for the
interrupt level (the value used for the level parameter of SET$INTERRUPT), and the
number of the correspondidg IDT entry.

9-t2 Nucleus Use s Guide

INTERRUP/T MANAGEMENT

NOTE
If an interrupt task's pdority et(ceeds the maximum priority attdbute of its
job, the Nucleus retums an exceptional condition code. Prevent this by
giving the job a higher maximum priority

Table 9-3. InÉ€rrupt Level and Tssk Prlority Idfomation

Encoding
ldt€Íupt Level

tDT Stots
lfi€rrupt

Task Pfioiity
Masl6r Slave

00H
0 1 H
02H
03H
04H
05H
06H
07H

08H
1 0 H
1 1 H
12H
13H
14H
15H
16H
't7H

18H
20H
21H
22H
23H
24H

26H
27H

28H
30H
3 1 H
32H
33H
34H
35H

MO

M1

M2

00
01
02
03
04
06
06
07

10
1 1

1 4
1 5
1 6
1 7

20

22
23
24

26
27

30
3 r l
3 2 J
33 1
34 1
3 5 . 1
mnÍn

4
65

67
68
69
70
7 l

56

75
76
77
7A
79

57
80
81
82

84

87

88

90
91
92
93

ued)--

6

10
12
1 4
f 6
1 8

1 8
m

24
26
2A
30

34

u
36
3a
40
42
44
46
48
50

50
52
54
55
58
60
62

9.13Nudeus Uset's Guide

Encodìng
Interupt L€vel

IDT Slols
Intefupt

Task Priority
Master Slav6

36H
37H
38H
zroH
4 1 H
12H
43H
44H
45H
46H
47tl

,EH
50H
5 1 H
52H
53H
54H
55H
56H
57H

58H
60H
61H
62H
63H
64H
65H
66H
67H

68H
70H
7 1 H
72H
73H
74H
75H
76H
77H

7AH

M3
Q

41
12
43
44
45
46

M4
50
51
52
53
54
55

M5
60
61

63
64
65

M6
70
71
72
73
74
75
76
77

94
95

96
97
98
99
100
101
102
103

60
1Cr4
105
106
107
104
1Crg
1 1 0
1 t I

1 t 2
f 1 3
1 1 4
1 1 5
'fi6

117
1 1 8
1 1 9

62
120
121
122
123

125
126
127

63

4
66

6A
70

74

7A
80
a2

a2
84
86

90
92
94
96
98

98
1m
1 @
104
106
108
1 1 0
112
'l 14

114
1 1 6
1 1 8
120
122
124
126
128
130

130

INTERRUP'I MANAGEMENT

Table 9-3. Interrupt Level and Task Pdority Information (conthued)

9.14 Nucleus Useds Guide

INTERRUPî MANAGEMENT

9.3.4 Interrupt Servicing Patterns

Figur€ 9-3 illustrat€s the r elalionships between lhe servicing patrerns of interrupt handlers
and interruDt tasks.

Figure 9-3. Flow Chart of Interrupt Handling

Nucleus Uset's Guide 9-15

INTERRUPT M.{NAGEMENT

Note that an ínterrupt handler might call an int€rrupt task sometimes yet not call it at
other times, for qample an interrupt handler that puts characte$ entered aî a terminal \-,/'
into a buffer. Whenever a character is received, the interrupt handler is invoked, and it
puts the character in the line buffer. If the character is an end-of-line character, or if the
character count maintained by the interrupt handler indicate$ that the buffer is full, the
interrupt handler calls its interrupt task to process the contents ol the buffer, Otherwisg
the interrupt handler cals EXI$INTERRUPT and then retums control to application
tasks. The next section discusses this kind of interrupt servicing in more detail.

9.3.5 Uslng Multiple Buffers to Service lnterrupts

In certain instanc€s, as illustrated in Figure 9-3, both an interrupt handler and an
interrupt task are involved in servicing intermpts. The handler performs the simple, less
time-consurning functions and then signals an interrupt task to perform the more
complicated functions. ln doing îhis, the handler and the task usually exchange
information by sharing data buffers. The handler places information into the buffers and
the task uses that information. The number of br.rffers determines when and how
interrupts are disabled.

9.3.5,1 Single Buffer Example

An example of a single-buffer interrupt service mechanism is an interrupî handler that
reads data lrom an external device, character by character, and places the characters into
a buffer. When the buffer fills, the handler calls SIGNAI$INTERRUPI to signal an
interrupt task to further process the data. Since there is only one buffer for the daîa, the -
interrupt level associated with the interrupt task must be disabled while the task is
processing. The operating system, knowing (as a result of the task calling
SET$INTERRUPT with max$interrupts equal to 1) that îhere is only one buffer,
automatically disables the inter.upt level when the handler illvokes
SIGNA$INTERRUPT. This prevents the inteúupt handler from destroying the
cortents of the buffer by coùtinuing to place data into an akeady full buffer. Figure 9-4
illustrates this situation which indicates single buffering.

Ifyou require only single buffcring in interrupt senicing routines, you need not read the -

rest of this sectiorL (Ensurc that all inteFupt tasks speciry a value of 1, which indicates
sidgle buffering for the interrupt$task$flag parameter in the call to SET$INTERRUPT,)

9-16 Nùcleus Uset's Guide

INTERRUPT MANAGEMENT

6)uPoN coMPLEroN.

figure 9-4. Single-Buffer Interrupt Servicing

9.9.5.2 Multiple Buíer Example

Now suppose îhat the interrupt handler and the interrupt task provide the same functions
as in the first examplg but they use multiple buffers. In this case, the interrupt level
associated with the task need not always be disabled while the task runs. Instead, the task
can process a full buffer while the handler continues to accept interrupts. When the
handler fills a buffer, it calls SIGNALJINTERRUPT to start the interrupt task, as in the
ftst example. However, because of the multiple buffers, the interrupt level is not
disabled. Instead, the handler continues to accept interrupts, placing the data into the
next empty buffer.

Whle this occurs, the interrupt task processes the full bufîer. When the task completes
the processing, it calls WAIT$INTERRUPT or RQE$TIMED$INTERRUPT to indicate
that it is ready to accept another SIGNAI-$INTERRUPI request (another full buîfer)
and to hdicate that the buffer it just finished processing is available for reuse by the
handler. Figure 9-5 ustrates this multiple buffer situatioù.

') p ,ac : , oa ,a | - laù i rN BJFFEn rs FUL- .
I . I ' KANDL'R CALLS

Nucleus Useds Guide 9-17

INTERRUPT MANAGEMENT

o

. J t

@ crus
io wjiri irjì-riÈxr\

i iNfÉFAùer I @ PRocEssEs@

1 - - i - l
t l c

Figue 9-5. Mùltiple-Buffer lnterrupt Senicing

Because the handler and the task are running somewhat independeùdy, the ha[dler may
fill a buffer and call SIGNAIJINTERRUPT before the task has finished processing the \-/
previous buffer. To prevent the SIGNAI$INTERRUPI requesî from becoming lost, the
operatiog system maintains a coùnt of these rcquests. Each time the handler calls
SIGNAIJINTERRUPT, the count is incremented by one. Each time the task ca1ls
WAIT$INTERRUPI OR RQE$TIMED$INTERRUPI, the count is decremented by
one.

9-18 Nucleus Usels Guide

INTERRIJPT MANAGEMENT

If the count i$ still gîeater than zero after the interrupt task calls WAIT$INTERRUPT or
RQE$TIMED$INTERRUPT, the task does not wait for the ncxt SIGNAIJINTERRUPT
to occur before resuming execution. Instead, it realizes that outstanding requests exist
and immediately starts processing the next reqùest (the next full buffer). Thus, with
proper tuning neither the interrupt task nor the interrupt handler has to Ì/ait for the
other. The interrupt handler can mntinually respond to interrupts without having the task
disable the interrupt level. The interrupt task can continually process Ar[buffers of data
without waiting for the handler to call SIGNA$INTERRUPT.

9.3.5.3 Specwing The Count LimÌt

The interrupt task, when it initially calls SET$INTERRUPI, puts a limit on the maximum
number of outstanding SIGNAI-$INTERRUPI requests. The interrupt$taskgflag
parameter specifies this limit. When the inteÍupt handler calls SIGNAIJINTERRUPT,
causing the count to be incremenîed to the limit, two events happeri:

. The interrupt level is disabled, preventing the handler from accepting fuÍher
interrupts until the interrupt task makes its next WAfr$INTERRUPT or
RQE$TIMED$INIERRUm call.

. The E$INTERRUPT$SATURATION condition code is returned by
SIGNAIJINTERRUPf to the handler, indicating that the limit has been rcached.
This is an informative message only.

When the task calls WAIT$INTERRUPT or RQE$TIMED$INTERRUPT and
decrements the count below the limil the imerrupl level is enabled, allowirìg the handler
to resume accepting intenupts.

The task should always set the limit €qual to the number of buffers that the task and
handler use. If the task sets the limit larger than the number ofbuffers, the handler will
accept iflteÍupts when no buffers are available and data will be lost, If the task sets the
limit smaller than the number of buffers, there will always be empty buffers and space will
be wasted.

For examplg if one buffer is used, the task should set the limit to one, Iù this case, the
interrupt level is always disabled while the task is processing the buffer. Iî two buffers are
used, the task should set the limit to two. Then, the handler carì fill one buffer while the
task is proce.ssing the other. Additional buffers requìre correspondingly higher limits.
However, if the task sets the limit to zero, the interrupt handler operates without an
inîerruDt task.

NOTÉ
Whefl an interrupt task sets îhe count limit to oDe,
SIGNAIJINTERRUPT will ùot return the
E$INTERRUPX$SATURATION condition code.

Nucleus Uset's Guide 9-19

INTERRUPT MANA.GEMENT

Table 9-4 illustrates the situation described in this section. It shows the actions of the
handler and the task illustrated in Figurc 9-4. The table is broken up into three parts: \v.
actions of the interrupt handler, actions of the inteúupt task, and SIGNAIJINTERRUPT
count. The count limit is set to two. The table shows the actions of both the handler afld
the îask through timg altd the change in value of the count.

Table 9-4 documents two e{reme conditions, labeled A and B. At position A, the
interrupt handler fills its last available buffer and calls SIGNAI$INTERRUPT to notif
the task. However, the task has not finished processing the fi.st buffer, so the coùlt is
incremented to the limit and interrupts are disabled until the task finishes with the first
bùffer and calls WAIT$INTERRUPT.

At positior B, the opposite case exists. The task finishes processing its buffeî and calls
WAIT$INTERRUPT. However, the handler has not prccessed enough interrupts to fill a
bulfer, so the task must wait until the handler calls SIGNAI-$INTERRUSI.

CaII SET$INTERRUPT to
establish handler and task for lèvè|,
setting count limitto2.

Call WAIT$INTERRUPT
to wait for frst requesl from handler

lnfpt

ìntnt

lntrpt

Process inîerupt, stadflling first buffer,

Process idlerupt, continue f lling fksl buJf€r.

Process interupt. Bufier isfull. Call
SIGNAL$INTERRUPT.

Process intorupt. Start flling n€xt buff€r.

Process intorrupt. 8uÍer isfull. Call
SIGNAL$INTERRUPT. Count is at limit.
Inle.rupl level is disabled.

Table 9-4. Handler and Task Interaction throush Time

Interupt
Handler

SIGNAL$
Interupt INTERRUPT

Task Courìt

9-20

---(contin

Nncleus Uset's Guide

9.3.5.4 Enabling hterrupt Levels From Within a Task

Sometimes, an interrupt task may finish with a buffer of data before it finishes rts
processing. Al example ol this is a task that processes a buffer and then waits at a
mailbor, possibly for a message from a user terminal, before calling WAIT$INTERRUPT.
If other buffers of data are available to the handler (i.e., the count of outstanding
SIGNAL$INTERRUPI requests has not reached the limit), this does nor Dresenr a
problem. The handler can continue accepting interrupts and filling empry ùuffers.
However, if the interrupt task is processing the last available buffer (i.e., the coùnt limir
has been reached), the interrupt handler cannot accepr further interrupts because the
interrupt level is disabled. This may be an ùndesirable situation if the interrurrt task takes
a long time before calling \ryAI$INIERRUPT.

To prevent this situation, the inte.rupt task can invoke the ENABLE system call
immediately after it processes the buffer, enabling its associated interrupt level. This
means that while the task engages in its time-consuming activitieq the inteffupt handler
can accept further interupts and place the data into the buffer jùst released by the task.
(You can also use this technique whenever the count limit is one, whether or úot you use
a bufîer.)

However, if the interrupt handler fills the buffer and calls SIGNAIJINTERRUpT before
the task calls WAII$INTERRUPT, the tb owing events occur:
. The count of outstanding SIGNAIJINTERRUPI requests is incremenred, caùsing it

to exceed the user-specified limit,

. An exception code, E$INTERRUPT$OVERFLOW, is returned ro the interupr
handler to indicate this overflow.

INTERRUPT MANAGEMENT

Table 9-4. Handler and Task Irtenction úhruugh Time (continued)

I Ca||WA|Í$INIERRUPT. 1
I Task starts processing next futì

tJullèr immediatov and r6runs
emw bufier. ldt€rupt l6v€l is
enabl€d.

InÍpt I Process irìterupt. Siadfitting nen buffer.

CaIIWAIT$INTERRUPT. O
No full buffers ar€ available. fask
waits lor n€xt request.

lnfpt I Process inteftupt. Buff6risfull. Catl
SIGNAL$INIEBRUPT.

Start processing 1
next full buffer.

Nucleus Usefs Guide 9-21

INTERRUPT MANAGEMENT

. The interrupt level is again disabled. The interrupt task cannot explicitly enable the
level again until the count falLs to or below the limit.

If the interrupt task calls DNABLE when the count is below the limit, nothing happens
and no exception code is returned. However, if the intemrpt task tries to enable the
hterrupt level when the count is greater tha! the limit, the ENABLE system call retums
the E$CONTEXT exception code.

If a task other than an interrupt task tries to enable the level, one of three events may
occur:

If the level is already enabled, the ENABLE system cail retì.lrns rhe E$CONTEXT
condition code.

If the non-interrupt task tries to enable the level (presumably following a DISABLE)
and the interrupt task is not running (i.e., the iíte.rupt task has callcd
WAIT$INIERRUPT and is waiting lor a service request), the level is enabled
immediately.

If the interrupt task is running, the enable does not take affect until the intenupt task
next invokes WAITSINTERRUPT.

9,4 HANDLING SPURIOUS INTERRUPTS
'When a PIC receives a signal from an inteffupting device, it informs the operating system
of the interrupt level. lf the interrupting device sends interrupt signals of shoÍ duration
(that is, the input line ìs active for very short periods), the interrupt signal might be gone
when the PIC tries to determine the interrupt level. If this happens, the pIC cannot
detefininc thc interrupt level and thus treats the interrupt as a spurious inteÍupt.

Each time the PIC detects a spurious interrupt, it responds as if a level 7 interrupt had
occur.ed. I'l-ìus, if a master PIC detects a spudous interrupt, it responds as if the
interrupt occurred on level M7. lf a slave PIC detects a spurious interrupt (for example, a
slave connected to master level M3), it responds as if the correspondi[g level T interrupt
occurred (in this case, level37).

A spurious interrupt indicates a problem; the PIC detected an interrupt signal but was
unable to determine the level. Every application system should provide some means of
isolating spurious interrupts to prevent further problems (such as falsely responding to a
level 7 interrupt). This involvesjudiciously setecting interrupt levets and adding code to
all level 7 interrupt handlers (handlers that service master level M7 or slave levels x7,
where x ranges from 0 through 7). Once the spurious interrupt has been isolated, the lev€l
7 interrupt handler can either attempt to correct the problem or ignore the spurious
intefiupt and resume system processing.

a-'r, Nucleus Uset's Guide

INTDRRUPT MANAGEMENT

In either case, before the handler retums control it should call EXIT$INTERRUPT to
clear the hardware.

The following sections describe several options for isolating spurious inte.rupts.

9.4.1 GallingGET$LEVEL

One way that a level T interrupt handler can check for spurious interrupts is by invoking
îhe GET$LEVEL sFtem call as soon as the handler starts îuîning. GET$LEVEL
retums the level of the highest priority intenupt that a haridler has started but not yet
finished processing. If the level retumed is ùot the level associated with the interrupt
handler, the intemrpt is spurious.

This method is simple to implemert, bùt it does take more (handler) time to execute
GET$LEVEL, Some handlers may have speed requirements that prohibit the use of
GET$LE\EL.

9.4.2 Judicious Selection ol Interrupt Levels

Another way to isolate spurious interrupts is to avoid connecting devices to level T
interrupts (master level M7 and slave levels x7, where x ranges from 0 to 7). Ifyou have
no devices connected to îhese levels, and thus no handlers servicing them, spurious
inteÚupts will not affect system operation. Instead, each time a spurious ioterrupt occurs,
the PIC îeacts as if a level 7 interrupt had o<rcurrcd and sends control to the appropriate
IDT entry, Because no handlet is associated with level Z that entry contains a pointer to
the default handler, which retums control to the highest priority roady task.

9.4.3 Examining the In-Service Register

Another way that a level T interrupt handler can check for spurious interrupts is by
immediately readhg the ISR (In-Service Register) of the corresponding PIC. If the
BYTE value obtained from that register does not have a 1 in the high-order bit, the
interrupt is spurious, To read the value, the handler must know the port adùess of the
ISR. In PL/M-286, the following lines perform this cherk when placed at the beginning of
the hterlupt handler:

I I ((INPUT (port address of ISR)) AND 80H) = 0
THEN íocerrupt is spurlous

This method of isolating spurious interrupts should be used on-[y as a last resort. It
requires the handler to know îhe address of the ISR (which may vary from system to
svstem).

Nùcleùs Us€t's cuide 9.21

INTERRIJPT I\{ANACEMENT

9.5 EXAMPLES OF INTERBUPT SERVICING

Tables 9-5, 9-6, arid 9-7 should help you ùndelstarid the major points abeady described. "- '-l

Each table outlines the turning points in a scenario where an interrupt handler is assigned
to a level, an interupt arrives at that level and is serviced, and the assignment of an
interrupt handler is cancelled. The tables show the follov/ing cases:

r Table 9-5-the interrupt handler deals with the intemrpt (handler is assigned to
master level 4).

. Table 9-6-the inîelrupt handler invokes an interrupt task, either immediately or after
filling a single buffer of data (handler is assigned to master level4).

. Table 9-7-an interrupt handler aîd an interrupt task use multiple buffers to service
interrupts (handler is assigned to slave level35).

ln the right-hand column of each table, the phrase "interrupt levels necessarily disabled"
indicates that the events of the example cause certain levels to be enabled or disabled. \--,-/
Other events, outside the scope of the example, might cause other levels to be disabled as
well.

Table 9-5. Servicing Interrupts with an Interrupt Hàndler

Step Ev6nts Explanation
lnlerupt Levels

Disabled

2

3

5

6

7

RQSETINTERRUPT
(LEVEL$4,0,...);

L€v€l 4 d€vica
lnlerrupts

RQ$EXIT$INTERRUPT
(LEVEL$4,...);

Interupt handler

RQ$RESET$INTERRUPT
(LEVEL$4,...);

No int€rupt handler
a€signed to level M4.

A task assigns an
interupt handler to

An interupl arjves
at level M4.

The interupt is

int€rupt handler.

lnterupt hardware
reset by ìhe

Intgrupts are
re-enabl€d.

assignm€nt of an
int€rrupt handler to
levelM4.

M4

None

A

Atl

None

9-24 Nucleus Use s Guide

INTERRUPî MANAGEMENT

Table 9-6, Servicirg Intenupts with an Interrupt Task

Step Evéntè Explanation
Int€rupt Levels

Disablsd

3

5

6

7

8

RQSETINÎERRUPT
{LEVEL$a, 1,...);

RQ$WAIT$INfERRUPT
oT RQE$IIMED$-
INTEBRUPT
(LEVEL$a,...);

RO$SIGNAI.]îINIERRUPf
(LEVEL$4,...);

RO$WAIT$INTERRUPT
or ROE$TIMED$-
INTERRUPT
(LEVEL$4,...);

RQ$RESET$INIERRUPT
(LEVELt4,...);

No idlsrrupt handl€r
assign€d to l€v€l M4.

A lask ass;gns an interupt
handlerto lev€l M4 and
assigns itself to be the
intorupt iask for that level.

SIGNAL$INTERRUPT requ€st
can b6 outstanding.

Th€ imerupt task b€gins
to wait for an inteÍupt.

An interrupt arives at
l6vslM4. Th6 irìterupt
handler galns control and
optìonally, does some
seNicing. The handler may
seruic€ €eve.al interupts
by performing st€ps 4
through 6 ofTablè 95.

Th€ int€rupt handler
invok€s the imeff upt task

Thè inlerupt is
seNic6d by the
ifiefupt task

Th€ interupt task frnishes
and begins to wait fo.
anothsr level M4 intefupt
Comrol pass€s back to ihe
idt€rrupt handler and thsn
back to an application task.

assignm€ntofa
handler to M4.

M+M7

Non€

At!

5G77

M4'M7,
50-57

M4

Nucleus Uset's Guide 9.25

INTERRUPT MANAGEMENT

Table 9-7. Servicing Interrupts with an Interrupt Handler, an Interrupt Taslq and Mùltiple
Buffering

Step Ev6nts Explanation
Interupt Levels

Disabled

I

2

3

4

5

ROSETINTERRUPT
(LEVEL$35, 2, ...);

RQ$WAIT$INfERRUPI
oTRQE$TIMEDÈ
INTERRUPT
(LEVE$45,...);

Lovel 35 dsvic€

RQ$SIGNAL$INTERRUPT
(LEVEL03s,...);

No int€rupt handler
assignecl to l9v0l 35.

A task assigm an
int6Íupt handl€r lo
level 35 and a6sign8

inignupt task for that
l6v6l. lt sp€cifiss
two SIGNAL$INTERRUPT

olfstending (doubl€
bufferins).

The idt€Íupt task
b€gins to wait for
an interupt,

An ifieÍrupt ar v€s
al l€v€135. The
interrupl handler gains
conÍol and do€s som€

The handl€r seMces
all lfi€rupts, as
d6sc bed in st€ps
4 through 6 ofTab,e
95, unlillhe fìrst
buffor is tull.

The interupt handl6r
invokes th€ int€rupl

35

M4-M7,
&77

Non€

Atl

9-26 Nucleùs Uset's Guide

INTERRUPI MANAGEMENT

Table 9-7. Servlcing Interrupts with an Irternpt Handler, an InteÍupt Task, and
Multlple Bùfiering (continued)

St6p Ev€nts
Interupt Levels
Erplanation Nec€ssarily

Disabl€d

7

I

ROSWAIT$INTERRUPT
OT FQE$TIMED9
INTERRUPT
(LEVEL{35,...);

RO$RESET$INTERRUPI
(tÉvE1t35,....);

Th€ int€rupt task
processes th€ full

tha int€rrùpt handler

as d€scrib€d in st6ps
4 through 6 of Tabl6
9€, untiltho next
buffgl is tull.

The imerrupt ta6k

for another signal
from th€ interrupt
handler.
Control passos back to
th6 intefupt handler

applicationÈsk.

assignm€nt of an
intsrrupt handlerto
level35.

M+M7,
&77

None

9.6 SYSTEM CALLS FOR INTERRUPTS

The following system calls manipulate interrupts:

. SET$INTERRUPT--assigns an interrupt handler and, if desired, an interrupt task to
ao interupt level,

r RESET$INTERRUPT-cancels the assignment made to a level by
SET$INTERRUPT and, if applicable, deletes the interrupt task for that level.

. E)CT$INTERRUPT-uSed by hterrupt handlers to send an end-of-interrupt signal to
hardware.

. SIGNAISINTERRUPT-uSed by interupt handlers to invoke interrùpt tasks.

r RQE$TIMED$INTERRUPT-puIs the calling interrupt task to sleep for a specified
time. The task awakens either when the specified time elapses or a
SIGNAL$INTERRUI'I- system call is issued.

. WAIT$INTERRUPf-suspends the calling interrupt task until it is called into service
by an interrupt handler (via SIGNAII$INTERRUPT).

Nucleus Uset's Gúide 9-27

INTERRUPT MANAGEMENT

. ENABLE-enables an extemal interrupt level.

. DISABI,E-disables an e.temal interrupt level. t-'

. GET$I-E\rEL-returns the interrupt level of highest priodty foî which an interrupt
handler has started bùt has not yet finished processing

r ENIER$INTERRUPT-SeIS up a previously designated data segm€nt base address
for the calling inteFupt handler.

For a complete list of the iRMX tr Nucleus system cdls, see the E*endzd íRltD{ II
Nucleus Syslem Calh Rekrence Manual .

9-28 Nucleus Uset's Guide

10.1 INTRODUCTION

A feature of the Extended iRMX tr Operating System is that it can be exterded to include
customized objects and system calls. With this feature you can create aù operaung sysrcm
that precisely meets yoùr needs. This chapter explairs how to extend the iRMX II
Operating System to include your own system calls.

Material presented in this chapter is iîtende<I for programmers who write system
programs to extend the operating rystem. Users familiar with the iRMX I Operating
System should read this chapter carefully as the method of implementing operating
system extensions in the iRMX II Operating System is differerit.

10.2 THREE WAYS OF ADDING FUNCTIONALITY

If more than one job in your applicaîion system requires a function not supplied by the
iRMX II Operaring System, you have at least the follo,dng three ways of adding the
needed functiol:

Write the iunction as a procedure and place it in a ìibrary by using LIB2B6. After
compiling each job that requtes the function, use BND286 to bind the library to the
object module for thejob.

Write the function as a task and a.llow applicatioo tasks to invoke the functio[through
a mailbox interface.

Write the function as a procedure and add it to the iRMX II Operating System.
Appìication programs then invoke the function by means of a sysîem call.

The relative advantages and disadvantag€s of the three altematives are summaried in
Table 10-1.

The third alternative involves extending the operaîing system. The procedures that you
must add to the operating system in order to support the added function are called
operatinq wstem extensions or OS e\tensions. From the application programmer's
standpoint, an OS extensio[appears to be a coll€ction ol one or more customized system
cÍuls.

10-1Nucleus Uset's Guide

Table 10-1. Comparison of Techliques for Creating Common Functions

Library Task OS Extension

INTERFACE FOR
APPLICATION
PROGRAMS

sltt4PLE COMPLEX SI[,{PLE

RELATIVE
PENFORMANCE

GOOD
(for
all
tunctions)

POOR
{ror
quick
func-tions)
MODERATE
(f).

funclions)

I\4ODERATE
(for
qurck
tunctions)
GOOD
{for

tunclions)
SYNCHRONOUS

ASYNCHRONOUS
CALLS

BO-TH ASYNCHRONOUS
ONLY

BOTH

SYSTEM
PROGRAMI\4ING

NOT
REQUIRED

NOf
REQUIRED REOUIRED

DUPLICATE
CODE

Difficult lo
avoid

Easyto avoid Automalically

REQUIRES
RELINKING TO
CHANGE

YES NO NO

SUPPORTS
NEW OBJECI
IYPES

NO NO YÉS

OPER,à.TING SYSTEM EXTENSIONS

10.3 Creating an Operating System Extension

Creating an OS extension involves writing several procedures and establishing entry
poinîs or call-gates for îhem.

10.3.1 Procedures Used In Operating System Extensions

Every OS extension is composed of an interface and a furiction procedure. Figure 10-2
illustrates the simpÌest arrangement of these fùnctions.

Interface Procedure

An interface procedure connects the cùstomized system call to the operathg system.
For example, to issue a NEW$FUNCTION system call, an application task executes a
statement Ìike

cé.ll- NEW$FTTNCTION(......);

10-2 Nucleus Uset's Guide

OPERATING SYSTEM EXTENSIONS

This statement is, in fact, a call to an interface procedure, named NEW$FUNCTION,
that transfers control to the operating system. One interface procedure is required for
each customized system call.

Function Procedure

The function procedure does the important work of the system call. That is, it
performs the actions requested by the calling task. One function procedure is
required for each ostomized system call.

A third kind of procedure may also be employed, however, it is optional.

Entry Procedure

The entry procedure serves as a nìultiplexor for OS extensions supporting more than
one syslcm call. Figure 10-1 depicts a single OS extension with four system calls. The
primary purpose of the entry procedure is to route the call from the intedace
procedurc to the proper function procedure. Note that foùr interface procedures are
still required to support the four system calls. Users familiar with the iRMX I
Operating System should note that entry procedures are less important in the iRMX
Il Operating System because there are now 8K GDT slots in which to pùt the
extensions rather than 32 software interrupts.

Figure 10-2 depicts four OS extensions, each containing one system call. Note that the
interface procedures are part ofthe application software and the function procedures are
part of the system software. The application tasks are linked to the interface procedures,
bùt the inteface procedures are not linked to the function procedures. Instead, the
interface procedures pass control to the function procedures by way of a call-gate.

Call-gates are used to enter the OS extensions. They redirect flow within a task from one
code segnent to another. Each system call uses à cAll'grîe to transfer the program
diectly to the iRMX service routine requested. This makes it possible to go dfuectly ftom
the interface procedure to the function procedure. Call-gates are part of the descriptor
tables and can be rcseded when you configure the system- Since there are 8K slots in the
GDT, you have a great deal of flexibility when creating operating system extensions.

Figure 10-3 contains, in algo.ithmic form, summaries of these descriptions. Also, Chapter
11 contains an example of an OS extension that manages a cu$omized objecl g?e.

Nùcleùs flsefs Gùide 10-3

OPERATING SYSTEM EXTENSIONS

APPLICATION SOFTWANE

TASKS

CALL/REIURN

CALL/BETURN
VIA GATE

INTERFACE
PFOCEDUFES

ENTBY
PROCEDUFE

FUNCIION
PBOCEDURES

CALL/RETUNN-

Figure l0-1. OS Extensions with Entry Procedure

10-4 Nucleus Uset's Guide

OPERATING SYSTEM EXTENSIONS

APPLICATION SOFTWARE

IASKS

CALL/BETURN

INTERFACE
PROCEDURES

CALL/RETUFN
VIA GATE

FUNCI ION
PROCEDUFES

Nucleus Uset's Guide

Figue 10-2. OS Extensior ryithout Entry Procedure

l0-5

OPERATING SYSTEM EXTENSIONS

CALLING
TASK

INTERFACE
PROCEDUiE

(OPTIONAL)
EN'TRY

FUNCTION
PFOCEDURE

DO SOME PROCESSING
CALLANIN IERFACEPFOCEDURE - - - - - . - - - - .
DO SOME MORE PFOCESSING !

z.ooo3

Figure 10-3. Summary of Duties of Procedures in OS Extensions

LOAD INTO A SPECIFIC PAIR OF REGISIEFS A POINIER IO IHE
PARAMETERS ON THE IASKIS SIACK

IFTH€FE IS AN ENIFY PFOCEDUFE THEN
LOAD INIO A SPECIFIC REGISTEB A COOE IDENI IFYING THE FUNCTION
BEING CAL!ED

CALLACALLGAIETO CALLIHE ENTFY PFOCEOUREOR A FUNCTION
PROCEDURE

EXAMINETHECX REGISTER ÌOF
IF IHE CX CONTAINS A NONZEBO VALUE'THEN CAI . I . ROSEFROR TO i

INFORMfHEIASKOFIHEÉXCEPTION i
RETURN {RET)-- - : i

IF USING DEFAULI RO$ERFOR PROCEDURE ANO tF OESIREO, THEN SAVE
IASK'S EXCEPTION HANDLER {GET $EXCEPI IONSHANDLER} AND SÈI
I IP A TEMPONARY REPLACEMENT
(SET$EXCEPTION$HANDLER)

IF POSSIBI .E THEN
DO PROCÈSSING COMMON TO ALL FUNCI ION PROCEDURES IN T I I IS
OS EXTENSION

GET FUNCTION CODE STORED BY INIEFFACE PROCEDURE
CALL THE DESIGNATED FUNCTION PROCEDTJRÉ - - - - - - - -
IF EXCEPTION HAì IDLERS WERE SWITCt iED EABLIEB THEN AESTORE

OFIGINAL (SETSEXCEPTIONSHANDIÈB)
IF NOTIFIED OFAN EXCEPTION BYAFUNCf ION PBOCEDUBETHEN PLACE

EXCEPTION CODEIN CX REG!STEF
PLACE PARAMEIER IN OL REGISIER

RETURN (REI) . '

OATAIN INPUT PABAMETERS
PEFFOR M ACfIO N S EXPECTED BY CA LLING IASK
RETURN EXCEPTION CODE AND ANY VALUES EXPECTED

BY CALLING TASK
RETURN (R

10-6 Nucleus Usefs Guide

OPERATING SYSTEM EXTENSIONS

1 0.3,2 Intèrface Procedures

For each system call in your OS e.xtension. you must wite a re-entrant assembly language
interface procedwe. (For detailed information concerning the ASM286 Assembly
Language, refer to the ASM28óAtsetnblt langwge ReÍercnce Manual,) This procedure
ùses a call-gate to transfer control from the task that ftrvoked the system call to a function
procedure. When hansferring control to a function procedure whose call-gat€ number is
441H, for example, the ftrterface proc€dure calls GATE-0441which is the PUBLIC riame
for this gate. (You can lind a gate's PUBLIC name io the MP2 file generated by
BLD286.)

A second important function of the interface procedure is informing îhe calling task (or
its exceptiol handler) of any exceptional corditions that have occurred. The function
procedure commùnicates this information to the interface procedure by ptacing the
exception code in the CX register and the numbet of the parameter that caùsed the effor
in îhe DL register. The interface procedure then does the following:

Checks the CX register for the condition code. If this register contains a value other
than zoro (E$OK), an exc€ptional condition exists.

Calls a procedure named RQ$ERROR, if an exceptional condition exists.

The Nucleus interface library contains a default RQ$ERROR procedure or you may write
your own RQ$ERROR proccdure (further details are given in section, "RQ$ERROR
Procedure").

Another importaît function of interface procedures is that they make function procedures
independent of the PL/M-286 model being used to comple your application. This is done
by providing a library of interface procedures for each PL/M-286 model. The benefit of
this independence is that only one call-gate, and its related function procedurg is needed
for each additional application function. The call-gate and its function procedure are then
available for use by all PL/M-286 models-

10.3.3 Entry Procedures

Each OS extension comprising more than one system call may include a reentrant erÌtry
procedure, whose purpose is to route the call to the appropriate function procedure. As
sîated previoùsly, this procedure is optional in the iRMX ìI Operating System because
therc are BK GDT sloîs in Ìvhich to put exteosiolÌs.

Other possible functions of entry procedures are

To set up the exception handling mechanism for the OS extension, if this option is
required (see below).

To perform a routine common to all system calls in this OS erlension.

Nucleus Uset's Guide t0-7

OPERATING SYSTEM ERENSIONS

To transmit the exception incurred by the function procedure back to the interface
routine-in CX and DL registers as explained above.

Write the entry procedure in assembly language so that yo! can direcdy access the stack
and the registers. This gives you access to the inpùt parameters passed by the calling task
and the interface procedure. lt also allows yoù to set the CX and DL registers in the
event of an exceptional condition. To elable the entry procedure to route the call to the
appropriate function procedure, the interface procedure mr$t send a code identifying the
function procedure called by the entry procedure. The interface procedure does this by
loading the code into a previously designated register or onto the stack of the calling task.

10.3.4 Function Procedures

The duties of the function procedure are principally to perform the actions requested by
the calling task. If there is no entry procedùre, the functioo procedure should inlorm the
interface procedure of the system call's exception status. It does this by setting CX and
DL, as described in úe description of entry procedures. Function procedues should be
reeùtrant and can be written in PL/M-286 or assembly language.

10.3.5 RQ$ERROR And NUC$ERROR Procedures

The iRMX U Operating System has one interface library, RMXÌFC (or RM)CFL
depending on thc scgmcntation modcl) which contains both the RQ$ERROR and
NUC$ERROR procedures. These procedures invoke the task's exception handler.
NUC$ERROR is a procedure called by the Nucleus interface procedures $rhet an
exceptional condition occurs, and RQ$ERROR is a procedure called by the interface
procedures of all îhe other subsystems. For example, if your application îask makes a
SEND$MESSAGE system call to a non-existent mailbox, the Nucleus retums the error, in
the CX and DL registers, to the Nucleus interface library linked to your application task.
The procedure in the library then calls NUC$ERROR to process the error.

Every sùbsystem of the operating system that implements system calls also provides this
mechanism lor returning exceptions (because the Nucleus regards each subsystem as an
OS erlension). Ifan application task makes an I/O sjlstenl call (CREATE$FILE, for
example) and incurs an exceptional condition, the I/O System returns control to the I/O
System interface library linked to that îask. The interface procedure in îhat library calls
RQ$ERROR to process the e.ror.

l0-8 Nucleus Uset's Gulde

OPERATING SYSTEM EXTENSIONS

RQ$ERROR gets the exceprion code and parameter number from the CX and DL
registers and then makes a SIGNAI$EXCEPTION svstem call to inform the calline task
(or its exception handler) of the exception. when SlóNAIJEXCEPì-IoN rerurnsìo rhe
RQ$ERROR procedure, RQ$ERROR restore$ CX and DL with the exception code and
parameteÍ numtel and places a value of OFFFFH in the AX registcr. This version of
RQ$ERROR should be ljnked to application tasks to ensùre that rheir exception handlers
are called when exceptional conditions occur. Figure l0-4 illustrates the flo; of cantrol
from an application task to an exception handler when the task incurs an exception.

NUC$ERROR performs the same functions as ReSERROR. However, it do€s not call
SIGNAISEXCEPTION. Instead, when a Nucleus system call retùrns rvith an exceptional
cordition, the stack contains three (3) extra words to process the exceDtion. One word is
the exception mode and the other two conrain a pointer to the exception handler. ìtthe
exception mode inrjicates the need to call rhe exceprion handler, NUC$ERROR catts the
exception handler directly.

Ifyou do not wanî to use the default RQ$ERROR or NUC$ERROR procedures. vou can
write your own procedures. Your RO$ERROR procedure can peform any functions it
[eeds in order to inform the appLication task of the exceptional condition. The only
restriction placed on an RQ$ERROR procedure is that it should always return a value of
0FFFFH in the AX register (so that oFFFFH is retuhed as a function value for your
system calls that are qrped procedures). An example of an alternate Re$ERROR
pîoc€dure is one that simply places OFFFFH in AX and then issues a RBTURN,
retuming control directly to the application task to avoid the îask,s noÍnal exception
handler. Ifyou write your own NUCSERRORyou must always pop three extriwords
ftom the stack.

To ensure that your own procedure is called instead of the default version, link voùr
procedure directly to the interface prccf,dùre or jnclude it ir a lìbrary wirh rhe rest ofyour
interface procedures. When linking your modules together, this library should always
precede îhe Nucleus interface library in the link sequence.

Nucleus Uset's Guide 10"9

OPERATING SYSTEM EXTENSIONS

l"-".
I

N U C L E U S I N I E À F A C E L I E F A R Y

Figue 10-4. Handling Exceptions with an ExceptioÍ Handler

10-10 Nucleus Uset's Guide

OPERATING SYSTEM EXTENSIONS

10.4 ESTABLISHING EXCEPTION.HANDLING MECHANISMS

The following section rcferc to the OS exteneion code and the interface it uses to call
existing operating system calls (Nucleuq BIOS, etc.). The interfac€ discussed here is not
the interface (described at the beginning of this chapter) used by the applicetion task to
call the OS extension functions.

Exception handling in an OS extension carr be done in one of two ways, depending on
whether the OS extension has its own exception handler or whether it wants to handle
exceptions ifl-line. Using any other method results in unpredictable execution of the OS
extensío[code. If an exception occurs while the extension calls aa iRMX tr system call,
the flow within the exception code is dependent on the exception handler and mode of îhe
task invoking the qúension.

lf the OS extension has its own exception handler, the function procedurc must change
the exception handler from that of the calling task to an exception handler for the OS
extension. To make îhis change, the function procedure should first call
GET$EXCEPTION$IIANDIER to obtain and save the task's exception handler address
and exception mode. It then calls SET$EXCEPTION$HANTDLER to set new values foî
these enîities. Just before retuîning control to the interface, the function procedure again
cals SET$EXCEPTION$IIANDLER to restore the original values. L! case of ari entry
procedure, the entry procedure saves and restores the exception handler and mode.

If you want the OS extension to handle exceptions in-lire, you can follow the above
strategr, calling SET$EXCEPTîoN$HANDLERWith the EXCBPTION$MODE
paramete. set to NE\aER. This is the simplesî and most straightforward method.
However, it ccsts three (3) Nucleus c:lls (to get, set, and restore) for every extension call.
This is because it is done upon eùtry and exit from the function procedure.

Another way of handling exceptions in-line is to link your OS extension to your version of
RQ$ERROR or NUC$ERROR. The RQ$ERROR procedure may simply place
OFFFFH in the AX register (so that 0FFFFH is returned lbr system calls that are invoked
as functions) and then do a RETURN, to retum control direcdy to the interface library-
The interface library then retums control to your OS extension, allowing the OS extension
to process the exceptiol fur-line.

If you want to override NUC$ERROR with your owrl procedure, you should return from
your version of the NUC$ERROR procedure try using RET 6, to pop three (3) extra
words from the stack. These words are used by the Nucleus îo save the call to
RQ$SICNAL$EXCEPTION.

Nucleús User's Guide 10-11

OPERATING SYSTNM EXTENSIONS

Even though your OS extension processes its owr exceptions in-ling it will still want to
return exceptions to tasks (or other OS extensions) that invoke the customized system _/
calls. This means that the function procedure ofyour OS extension places the condition
code afld parameter number in CX and DL, and r€turns to the ilterfac€ linked to the
application task. The interface prccedure then calls RQ$ERROR in the event of an
exceptional condition. The RQ$ERROR procedure that gets called is the one in the
interface library linked to the calling task, not the one in the interface library linked to the
OS erateflsion.

Figure 10-5 illustrates the flow of control for an OS efension that incurs an exceptiooal
condiîioq processes the exception ifl-ling and then retums an exception to the
application task that called it. When examining the diagram follow the numbered aúows.
Notice that both the OS extension and the application task, although not linked together,
are each linked to interface libraries and an RQ$ERROR procedure. The RQ$ERROR
procedure linked to the OS exteùsion rclurns control to the OS extension. The
RQ$ERROR procedure linked to the application task is the defaùlt procedure which call$ __/
SIGNAIJEXCEPÎON.

10-12 Nucleus Useds cuide

OPERATING SYSTEM EXTENSIONS

CALLROSSENDSíÉSSAGE

î

Figùre 10-5. Control Flow for Handling Exceptions In-Line

Nucleus Uset's Guide 10-13

OPERATING SYSTEM EXTENSIONS

10.5 CUSTOMIZED EXCEPTION CODES

When adding OS extensions, you may want to add your own exceptional conditions and
\!-7

associated códes. Valucs availablc to uscrs for €xception codes are 4000H to TFFFH (for
environmental conditions) and 0C000H to oFFFFH (for programmer errors).

10,6 LINKING THE PROCEDURES

For each OS efension, you should produce several libraries of interface procedures. In
fact, you should produce one library for each PL/M-286 model in which the calling task
can be written. Within each library you should have one interface procedùre for each
system call of the OS extension. Each module in your system should be linked to the
appropriate interiace library lor each OS efension that is called.

For each OS extension, the functioù procedure (and the entry procedurg if any) should
all be linked together, along with any operating system interface Libraries îhat the \-__,/
procedures need. They should not be linked to any applicaîion code, since they are
connected to the app[cation tasks via call-gates.

Any RQ$ERROR (or NUC$ERROR) procedure that you write should be linked to the
appropriate routines. Ifyou write your own RQ$ERROR procedure to inform the
application task of an exception, you should place that RQ$ERROR procedùre in the
interface library you qeate. Ifyou write a RQ$ERROR (or NUC$ERROR) procedure
to process exceptions that your OS extension incurs, you should link this RQ$ERROR (or
NUC$ERROR) procedwe directly to the function procedures. \.--7

You should link the Nucleus interface library and the interface libraries for any of the
other subsystems thatyou use, to the application task and/or the OS extension, whichever
uses these subsystems. Ifyou provide your own RQ$ERROR (or NUC$ERROR)
procedure, either for your interface procedures to call or to process exceptions in your OS
exter$ion, this procedure must precede the Nucleus interface library in the link sequence.

10.7 INCLUDING OS EXTENSIONS

Before an interface procedure can successfully transfer control to an OS extension, a call-
gate mùst be established. There àre two ways of establishing call-gates, One way is to
include them dynamically using the system cal RQESETOS$EXTENSION. Ifyou use
RQESETOS$EXTENSION to designate the call-gate through which your OS extension
is îo be entered, you must speci& the gate number when you configure the system. Then
when you invoke the system call, enter the gate number and the start address of the ffust
instructioù.

l0-14 Nucleus Uset's Guide

OPERATING SYSIEM EXTENSIONS

OS extensions can also be configued into your system by using the "OS Extension" Screen
of the Interactive Configuration Utility (ICU). ln this case, the Nucleus initializes your
OS extensions. For more information see the íRMX II Inteructíve Confrguîation Utilily
Reference Manual.

10.8 PROTECTING RESOURCES FROM BEING DELETED

Normally, an object can be deleted by a call to îhe deletion system call corresponding to
the objecfs g?e. However, OS extensions can use the DISABLE$DELETION system
call to make the object immune to this kind of deletion. A sùbsequent call to
ENABLE$DELEION removes the irnmunity.

An object can have its deletion disabled more then once. Eech call to
DISABLE$DELEîON must be countered by a call to ENABLE$DELETION before the
object can be deleted. An object's disabling deoth at any given moment is de{ined to be
the number of times the object has had its deletion disabled minus the number of times its
deletion has been enabled. Usually, an object cannot be deleted until its disabling depth is
zero. The only exception is that a call to FORCE$DELETE delete$ objects whose
disabling depth is one. AIso, calling ENABLE$DELETION for an object whose deletiori
depth is zero îesults in the E$CONI EX I' exception code.

None of these system ca1Is-DISAILE$DELEIO\ ENAILE$DELETIO\ and
FORCE$DELETE-should be used in jobs that an operator invokes via a Humaù
Interface command. If a Human Intedace job contains objects whose disabling depths are
geat€r than one, the operator cannot cancel the commafld by entering CONTROLC.
For most commands, the abiÌity to cancel via CONTROLC is desirable, if not required.
To prevent other similar situations, it is recommended that you use
DISABLE$DELETION, ENABLE$DELETION, and FORCE$DELETE only in OS
extensions.

NOTE
When a task attempts to delete an object whose disabling depth is too high
to permit deletion, that task goes to sleep. The task îemains asleep until
the objecls deletion depth becomes small enough to permit deletion. At
that time, the object is deleted arid the task is awakened. Because these
circumstances can cause system deadlock, your tasks should exercise
caution when deleting objects and when disabling deletion.

10.9 SYSTEM CALLS FOR EXTENDING THE OPERATING SYSTEM

The following system calls are used e{ensively by OS extensioris:

DISABLE$DELETION-increases the deletion disabling depth of an object by one.

Nucleus Usèfs Guide 10-r5

OPERATING SYSTEM EXTENSIONS

ENABLE$DELETION-removes one level of deletion disabling from ari object,
reversing the effe.t of one DISABLE$DELETION call.

FORCE$DELETE--deletes objects whose disabling depths are one or zero.

RQESETOS$EXTENSION-aItaCheS the entry point address of the OS extension
to a call-gate. Users familiar with the iRMX 86 Operaîing System should be aware
that this system call replacrs SE IOSEXTENSION. When vriting an OS extgnsiori,
yoù !q!q! uso this system call.

SIGNAI"$EXCEPTION-adViSeS a task that an exceptional condition has occurred in
an OS €xtension that the task has called.

For a complete list and erplanation of the iRMX lI Nucleus s,st€m calls , see the LRMX II
Nucleus System Calb ReÍerence Mannl.

l0-16 Nucleùs Useis Gùide

I1.1 INTRODUCTION

The object types and system calls provided by the Nucleus and l/O Sysrem are sufficient
for many applìcations. However, some applications require additional object t ?es and
system calls for manipulating th€m. A gpe manager is an operating system extensioo that
provides these services.

If your system requires additional object types, you must wrilc a typc manager for each of
those types. The responsibilities of each type manager include

Implementing a new type by creating objects of the oew t,?e.

Providing a mechaoism for deleting objects of the new tlpe.

Optionally providing the system calls that application îasks can invoke to oeate,
manipulate, and delete objects of the new gpe.

This chapter describes creating and deleting objects of a new type. The end of this
chapter contains an example that extends the operating system and ceates and deletes
objects of a new t,?e.

11.2 CREATING NEW OBJECTS

Creating cùstomized objects is a two,step process:

1. Create the tlpe.

2. Create objects oi that qpe,

The CREATE$EXTENSION system call creat€s the tlpe. CREATE$EXTENSION
accepts a new tlpe code as a parameter arid returns a token for the new type. The token
rcpresenîs a license to create objects of the new grpe.

The CREATE$COMPOSITE system call creates objects of the nev/ q?e.
CREATE$COMPOSITE accepts as a parameter the token returned from
CREATE$EXTENSION. CREATE$COMPOSITE also accepts as input a list of tokens
for the objects that will compose the new object (the comoonent objects) and reîums a
token for the flew object, called a composite obiect.

Figure 11-l illustrates the creation process for composite objects.

Nucleus Userrs Guide l l - l

TYPE MA.NAGERS

S v s i e m C a l l O u i o u t

C R E A T E $ E X I E N S I O N - - - > - î o k . n f o r t y p €

T o k è n r ó r r v D è + C a E A I E S C O M P O S I T E > - T o k o n f o r n è w o b j e c t
..",,

L i s t o f c o m p o n e n r /
w-0303

Figure 11-1. Creation Sequence for Composite Objecas

Note these two facts when creating a composite object:

1. Its componentq called component objects, are alliRMX tr objects, either Intel- or
user-provided.

2. No structùre is imposed on coúiposite objects of a giver extension q?e. Two
objects of the same extension type can be completely different in structure or in the
number of components objects they compdse. This feature allows for maxunum
flexibility iri the creation of new objects.

Once a tlpe manager creates a new object type by calling CREATE$EXTENSIO\ that
type manager ofirs the type. Only the type manager can croat€ composite objects of that
type, In addition, when it creates composite objectq the t ?e manager can request that
the composite object be sent back to the type manager when the objept has to be deleted.
(L-ater sections describe this in detail.)

11,3 MANIPULATING COMPOSITE OBJECTS AND EXTENSION
ryPES

Two system calls manipulate existing composite objects: INSPEC'I$COMPOSITE and
ALTER$COMPOSITE. INSPECT$COMPOSITE returns a list of component tokerÌs for
a composite object. ALTER$COMPOSIIE replaces a token in the componenl lisl of a
composite object, with either anothe. token or a null.

rt-2 Nucleus Useis Guide

TYPE MANAGERS

11.4 DELETING COMPOSITE OBJECTS AND EXTENSION TYPES

Two systeú calls delete composite objects: DELETE$COMpOSITE and
DELETE$EXTENSION. DELETE$COMPOSITE deletes a particular composite object
(bùt not its components). DEiETE$EXTENSION deletes a specfied eytension type, and
either deletes all composites of that type or sends them to a deletion mailbox, in which
case the type manager must delete them.

A thid system call, DELETE$JO8, also deletes composite objects as a part of its
processing. Although DELBTE$JOB cannot delete extension q?es (iî returns a.l
exception code if the job contahs any extension objects), it can delete composites or send
them to deletion mailboxes where their g?e managers delete them.

The deletion$malbox parameter in the CREATE$EXTENSION system call dctcrmincs
whether DELETE$EXTENSION and DELETE$JOB delete composite objects or send
them to deletion mailboxes- This parameter has two options:

If you speciry SELECTOR$OF(NIL) for the pa.ameter, then
DELETE$EXTENSION and DELETE$JOB assume all responsibiliry for deleting
composite objects. The t,?e manager plays no part in the deletion process. h this
case, you can skip the ne\-t three sections of this chapter.

If you speci| a mailbox token for the paramerer, rhen DELETESEXTENSION aùd
DELETE$JOB send tokens for all composire objects of the indicared rype ro rhe
mailbox. The type manager is then responsible for deleting the composite obje.ts.

Two conditions must be met before the type manager receives tokens for composite
objects via the deletion mafbox:

The qpe manager,.rhen it calls CREATE$EXTENSION, must fill in the
deletion$mailbox parameter with a toke! for a mailbox.

A task must call DELETE$EXTENSION or DELETE$JOB.

The following sections describe the tt?e manager's responsibilities in more detail.

l1 .4.1 Type Manager Responsibilities During DELETE$JOB

When a task calls DELETE$JOB, the Nucleus normally deletes every object in the job.
However, if thejob contaiN a composito object whose eÀlension has a d€l€tion mailboó
the Nucleus sends the tokeri for the composite object to the deletion mailbox. The
Nucleùs then waits until the ty?e rnanager cals DELETE$COMPOSIIE before
continuing the d€letion prccess.

The type manager has the following responsibilìties for servicing the deletion mailbox:

1. It mùst wait at the deletion mailbox to receive the tokens for the obiects to be
deleted.

Nudeus Uset's Guide 11.3

TYPE MÀN,{GERS

2. It must perform any special processing required to delete the composite object. For
example, it might want to wait ù.ltil all tasks have stopped using the composite.

3. It has the option of deleting those component objects not contained in the job being
deleted. It cannot, however, delete any objects contained in the job being deleted or
it will incur an exceptional condition. (This is not a p.oblem be4ause the objects in
the job being deleted will automatically be deleted during the DELETE$JOB call.)

4. It should caII DELETE$COMPOSITE, which deletes the composite object (but not
the component objects) and informs the Nucleus that the tlpe manager has finished
the spe.cial processing that deletes the composite object. After the type manager
cals DELETE$COMPOSITE, the Nucleus resumes the DELETE$JOB proce.ssing.

The tlpe manager must call DELETE$COMPOSmE each time the Nucleus seÍds a
token for a composite object to the deletion mailbox because DELETE$COMPOSITE
retums cont.ol to the Nucleus. If the q?e manager fails to call DELETE$COMPOSITE,
the DELETE$JOB system call will not finish processing Figure 11-2 illushates the type
manage/s involvement in the DDLETE$JOB process.

Figùr€ 11-2. TlTe Manager Inyolyeúent in DELETE$JOB

11-4 Nucleus Usefs Guide

TYPE MANAGERS

Note that the type manager is not requùed to delete all component obje{ts. ln the course
ofDELETE$JOB, the Nucleus deletes any Nucleus objects in thejob. The Nucleus sends
the tokens for any I/O System, Extended I/O Sysrem, or Huma[Inrerface (all three are
OS extensions) objects to theh respective deletion mailboxes, where the subsystems
themselves d€lete the objects. The Nucleus scnds the tokens for all other composite
objects to their own deletion mailboxes, where their type managen are responsible for
deletion. Therefore, all the compoùent objects are eventually deleted, provided they are
in the job being deleted.

11,4,2 Type Manager Responsibilities During DELETE$EXTENSION

A task can call DELETE$EXTENSION to delete an extension type. This is useful when
the license to create composite objects of a given extensiori ty?e is no longer needed.
When a task calls DELETE$EXTENSION ard the extension has a deletion mailbo& the
Nucleùs sends îhe tokens for all composite objects of that extension tlpe to the deletion
mailbox. After sending a token for an object to the deletion mailbox, the Nucleus waits
until the type manager cals DELETE$COMPOSITE before sending the next c.mposite.

The type manager has responsibilities during DELETE$EXIENSION similar îo
DELETE$JOB. First, it must wait at the deletion mailbox for the objects' tokens. Th€n,
it must handle any special processing necessary to delete the object. Finally, it must call
DELETE$COMPOSIIE to delete the composite. As with DELETE$JOB, the gpe
manager must call DELETE$COMPOSIIE for each token it receives at the deletion
mailbox- If it does not do this, the DEI-ETE$F-XTENSTON system call will not linish
processing,

However, unlike DELETE$JOB processing, the t'?e manager has the choice during
DELETE$EXTENSION ofwhether or not to delete individual compolent objects. If it
wishes the component objects to be deleted, the ttpe manager must explicitly delete these
obje.ts. Unlike DELETE$JOB, DELETE$EXTENSION does not delete any component
objects.

l1 .4.3 Deletion of Nested Compositès

Since a composite object cao contain obj€cls of any kind, sr.rme of its @mponent object$
may be composite objects themselves. This can cause problems for type managers when
they delete the composite objects if the t,?e manager for any of the composite objects
depends on the eústence of any of the other composite objects to complete its processing.

For example, suppose objects A and B are composites in the same job. They have
different extension types, and B is a componenî of A. Each composite has a qpe manager
that performs special cleanup functions before it can delete the corresponding composite.
If neither type manager requires information contained in the other composite to perform
its special processing the deletion process can proceed without difficulty.

Nucleus Uset's Guide 1l-5

TI?E MANAGERS

However, if the t)?e manager for composite A reqùires some information contai[ed in
composite B to complete its processing the deletion process becomes more complex. For \-,
this deletion scheme to work, you must guarantee that composiîe A will be deleted before
composite B. Thus, you musî know the order in which the DELETE$JOB deletes objects
and sends composites to deletion mailboxes, so that you can set up your composites
correctly.

DELETE$JOB deletes composite objects before it deletes non-composite objerts. It
deletes composite objeats on a last-in-li$t-out basis; that is, in the reverse order fiom
\À/hich they were created. Therefore, a type manager can depend on receiving the tokens
for composite objects that it creates before the Nucleus deletes the component objects
contained in them. The only exception is when a composite (composite A) is cleated
before another composite (composite B), and composite B is inserted as a component
into composite A using AITER$COMPOSITE. In this case, composite B will be deleted
first, and the t)?e manager of composite A cannot rely on the existence of composite B
when it receives composite A for deletion.

11.5 WRITING ATYPE MANAGER

A type manager consists of two parts:

The initialization part creates the type and optionally creates a deletiol mailbox to
which the system can send tokens for objects*hen deleting eitherjobs or the qpc
itself.

The service part provides system calls so tasks can qeate and manipulate objects of
the type.

Because the initialization phase must be completed before any task attempts to obtain
tokens for objects, the initialization part should be written as a task that executes eaù in
the life of the system. To ensure early execution, the task should be part of the
initialization task ofa firstlevel use.job in thejob tree. Rleler to the íRMX II Interactive
Confgwatíon Utility Reference manual for information concerning iirst-level jobs.

The service part of the type manager is written as an operating system exterision. (Refer
'v

to Chapter 10 ior more information.)

The best way to learn about tlpe managers is to study an example. The following example
presents the main parts of a q?e manîger for ring buffers.

l1-6 Nùcleus Uset's Guide

TYPE MANAGERS

11.6 EXAMPLE-.4 RING BUFFER MANAGER

This exaúple shows thc most educational portions of a ring buffer managcr, It also serves
to illustrate the varioùs parts of an operating system extension. Be advised, however, that
the example is inmmplete and should be imitated with dissetion. In particulaq the
example has the following shortcomings:

The issue of exceptiol handling is nof addressed. Clearly the code supporting a
system call should examine each invocatiori for validity, but, for brevity, the ring buffer
example does not do this.

There are no saleguards against partial creation of an object. When ceating a
composite object, a type manager must fust create the components of the object.
Occasionally, after oeating some of the components, the manager might be unable to
cr€ate the others. A type manager should be able to recover from this situatioq
usually by deleting the components aheady created arid returriing an exception code to
the caller. the example, again for bre', ity, does not do this

The entry routine does not check the entry code for validitr.

The potential for problems with deletion is ignored. For this reason, you should
imagine that the envhonment of the example is constrained in at least two ways. Fftst,
only one task will eveî îry to delete a ring buffer and, when it does try, no other task
will be using that buffer. Second, when a job contairÌírig a task that created a ring
bulfer is deleted, no tasks in otheî jobs are using that ring buffer.

' The example las been desk-checked, but the example has riot actually beeri tested.

A ring buffer is a block of memory in which bltes of data are placed at successively higher
addresses. Interspersed with byte insertions are b''te removals, vr'ith the restdction that
the byte being removed must ahvays be the byte that has been ifl the buffer foÌ the longest
time. Thus, data enters and leaves a ring buffer in a FIFO manner. Ring buffers are so
named because the lowest address logically follows the hìghest address. That is, if the last
byte placed in (or retrieved from) the buffer is at its highest address, then the next bj/te to
be placed in it (or retrieved from it) is at the lowest address. As data enters and leaves
the buffer, the portion containing data "runsÍ around the ring, with the pointer to the last
byte out 'bhasing" the pointer to the last b,'te in. Figure 11-3 illùstrates these
characteristics.

Nucleùs Usefs Guide tl-7

TYPE M.{NAGERS

figure ll-3. A Ring B!fier

The main (service) part of the example consists of four proceduret: CREATE_RING
BUFFER, DELETE_RING_BUFFER, PUT_BYTE, and GET_BYTE. The last two
prccedures are for placing a character in a ring buffer and for retrieving a character,
resDectivelv.

1t-8 Nucleus Uset's Guide

IYPE MANAGERS

/*************************:t*:t**********it*********************************
* NOTE: The fol lowing common l í leral f i le (COMUON.LÌT) is included *
* in each of thc PLIM-286 porr ions of the exdple.
*********************x*x**//

DECLARE TOKEN]-ITERAILY 'SEI-ECTOR' ;
DECIARE forever LITERALLY ,ltHlLE 1,;
DECIAREindeftni tely LITERALLY.oFFFFfl , ;
DECIAREASTR$STRUC LIÎEMLLY'STRUCÎ'RE(

num$slors woRD,
numsco[ponents lrIoRD,
seg TOKEN,
enpry9cr ToKEN,
full$ct TOKEN), ;

DECIARE POINÎER$STRUC LIÎERALLY ' STRUCTURE(
offset WORD,
selector SELECTOR)' ;

DECI,ARE SEGMENT9STRUC LITERAI,LY ' STRÙCI'TIRE (
síze IùORD,
head t{oRD,
tai l WoRD,
buffer(1) sYIE)' ;

1 1 .6.1 Initialization

The initialization creates a region to protect data in ring buffers from being manipulated
by more than one task at a time. This part of the OS extension also creates the requted
exlension gpe, qeates a deletion mailbo! and then waits at the deletion mailbox. The
OS e\tension call-gates are established during configuration. For this example, they are
GDT slots 440H, 441H.44211 and 443Il' Cod€ lor the iniriirlizarion ircludes the
following:

$INCLUDE(| Ix: COI'ÍMON. LIT) ; /* Declares conrnon literals */

Nùcleus Uset's Guide 1t-9

TYPE N,TANACERS

RING$BUFFER$MANAGER: PROCEDT-EE EXTERNAI;
TND R]NCSBUFFER$MANACER :

DEoLARE rtng$buffer$Lype TOKEN puBllc;
DECI^AREring$buffer$iegion TOKENPUBLÍC;

R]NC-BÙFFER INIT:
PROCEDÙRÈ;
DECI,ARE delete$obj ecr ToREN;
DECI,ARE exceprion UORD;
DECIARE ftfo rITERALLY ,0' ;
DECLARE rb$code ITTnRALLY ,8000H' ;
DECLARE deletion$mbox TOKEN;
DECURE response$mbox TOKEN;

ríng$buffer$region = RQ$CREATEgREGÌoN (
f i f o ,
Gexcept ion);

deletion$nbox = RQ$CREATE$MAILBOX (\--l
f i f o ,
@except ion);

ring$buf fer$type-RQgCREATEgEXTENSION (
rb$code,
delet ion$mbox,
@èxcept ion);

CAI,L RQENDINIT$TASK;
DO |OREVER;

delete$object : RQ$RECETVEgMESSACE (
deletiongnbox, \---l

indefíni te1y,
@response$mbox
Gexceptton);

/:t*****!t****:t*****rt*************rt******************)t***:t*****************
* l f desired, delete the conponents of the conposite objecc. They are *
* not automacically delered Íhen DELETE$EXTENSIoN is called. See rhe *
* DELETE$RINGSBUFFER procedure, shown fater, for the code that does *
* this.
*:!*****************:t*)t***********)t*)r**********:t+:!***********************/ \--l

CALI, Rq$DELETE$COMPOSITE (
delece$object,
Gexcepcion);

END; /*' FOREVSR */
END RING.BUFFER-INIT;

1l-10 Nucleus Use s Guide

PUSH
M0v
PUSH
CALL
POP
RET
ENDP

TYPE MANAGERS

11.6.2 The Interface Library

The user interface library consists of four small procedures, ofle for each of the system
calls provided by the operating system qtension. The library supports application code
writteri in the PL/M-286 I-ARGE model. If a different model had been used for
compiling the application code, these interface procedures would be slightly different,
reflectiry the fact that, when making procedùre calls in othef modelq the stack is used
differendy than in the LARGE model. The interface procedures are as follows:

CREATERB PROC FAR
PÙBLIC CREATERB
EXÎRN GATE-440: FAR

BP
B P , S P
BP+6 ; paraneter-- the size of the r ing buffer
GATE_440 ; calt the Os-exÈension vie a call-gare
BP
2

buffer

CREATERB

DELETERB PROC FAR
PUBLIC DELETERB
EXTRN CÀTE_441.: FAR

PUSH
M0v
PUSH
CALL
POP
RET
ENDP

PROC FAR
?UBLIC CEÎR3fTE
EXTRN CATE 442: FAR

PUSH
t{ov
PUSH
CALL
POP
RET
ENDP
?ROC
PUBL]C
EXTRN

BP
B P , S P
BP+6 t
GATE-441
B?
2

paraneter--the rlng buffer to delete
; ca l l the os-extension wia a cal l gate

DELETERS

CETRBI"IE

BP

8?+6 ;
cÀ.TE_442
BP
2

FAR
PUTRS\"IE
GATE_443:

paraneter--ring buffer to read fron
; cal l thè Os-éxtension via a cal l -gate

GETRBYTE
PUTRBI'ÎE

FAR

Nucleùs Uset's Guide 11-11

TYPE MANAGERS

PUSH BP \-/
MOV BP,SP
PUSH BP+8 ; paraneter:--the char:acter to nr:ite
PÙSl{ ÀP+6 ; pataneter--ring buffer to grfte to
CALL CAîE 443 ; call Os-extenslon via a call-sate
POP BP
RXT 4

PUTRBYÎE END?

These interface proc€dures correspond to a set of external procedure dealaratior$ iri the
application PL/M-286 code:

CREATERB: PROCEDITRE(SIZe) ToKENEXTERNAL;
DECI,ARE size l{oRD;

END CREATIRB;

DELETERB: IROCEDI'RE (ring$buffer$token) EXTERNAL; \--"

DECLARE ring$buffer$token T0KEN;
END DELETERS;

GETRBBYTE: PRoCEDURE(riîgqbuffer$token) BYTE EXTERNAL;
DECLARE ring$bufferstoken TOKEN;

END GETRBBYIE;

PUTRBBYTE: PROCEDURE(Chat, ling$buffer$token) EXTERNAL;
DECI,ARE char BYTE;
DECI,ARE rtng$buffer$tokèn ToKEN;

\" -'

END PUTRBBYTE;

Lt-12 Nucleus Uset's Guide

11 .6.3 The Create Ring Buffer Procedure

The sole function of the CREATE-RING_BUFFER procedure is to create a ring buffer
for the calÌing task and to return to the task a token for the composite ring buffer object.

Each ring buffer consists of three objects: a segment and two semaphotes. The
supporting data structure, reqùired by the operating system for calls to
CREATE$COMPOSITE and INSPECI$COMPOSITE, has the fotlowing five fields:

The number of slots available for tokens in the following list of component object
tokens, B€cause ring buffers are composed of three objects and no comporrents will
be added, the number of slots is set to three.

The number of component objects actually in the composite object. In this casg the
numbea of components is three.

A token for a segment. The segrnent contains the ring buffer. The first word in the
segment contains the size of the actual ring buffer. The second word of the segment is
a pointer to the most recently entered b1'te in the buffer. The third word poiùts to the
oldest blte in the buffer. The remainder of the segmenr is used as rhe buifer itself,
Note that, in the program, a stucture reflecting the intended breakdown of the
segment is superimposed on the segmeùt.

A token for a semaphore. This semaphore is used to keep track of the number of
vacancies in the drg buffer. Thus, it is initialized to the size of the buftér.

A token for a semaphore. This semaphore is used to keep track of the number of
occupied bytes in the riry buffer. Thus, it is initia$zed to zerc.

The CREA'IE_RING-BUFFER routine creates the components of the composite ring
bùffer object, initiatizes the appropdate fields, then creates the composite object, as
follows:

TYPE MANAGERS

Nucleus Usefs Guide l1-13

TYPE MANAGERS

$INCLUDE(i I*: COMMoN, LIî) ; /* Deelares connon literé1s :t/
DECLARE ríng$buffergcype TOKEN EXTERNAL;

CREATE.RINC-BUFFER :
PRoCEDIIRE (stze) ToKEN PUBLIC REENTRANT;
DECI,ARE size tloRD
DECI,ARE seg$prr POINTER;
DECLAREptT$struc POINTER$STRUCA.T(Gseg$ptr);
DECI-ARE astr: AsTR$sTRUc;
DECIARE setnrent SEGMENT$STRUC BASED seg$ptr;
DECI,ARE exception 1,I0RD,
DECLARETtng$buffer TOKEN;
DECLARE prioricy LITERALIY '1';

astr.n\ndslots - 3;
astr. num$conponents - 3;
astr. seg - RQ$CREATE$SEGMENT (

slze+6,
Gexception);

astr. enpty$ct : RQ$CREATE$SEMPHoRE (

priori ty,
Gexception);

astr. full$ct : RQ$CREATE$SEMAPH0RE (
0 ,

priori ty,
@excepcion);

ptr$struc.base - astr. seg;
ptrqstluc. offsec = 0;
c a d n è h i c i z a - c i z o .

segnent.head = -1;
segnenc. tai l - 0;
Ein8$buffer : RQOCREAîE$CoMPoSITE (

v l ndq } | , , f f a rA t l h .

@astr,
@excepcion);

REî|RN ting$buffer;
END CREATE.RING-BUFFER;

The segment.head variable is set to -1 becausc thc PUT_BYTE procedure (shown later)
advances this pointer bgÍOlg placing a character ifl rhe buffer,

t7-74 Nucleus Uset's Guide

ÎYPE MANAGERS

11 .6.4 The Delete Ring Buffer Procedure

DELETE-RING-BUFFER, which can be called by any task, deletes a ring buffer.

$INCLUDE(:Fx:C0l ' fMON.LlT); /* Declares corìnon l i terals */
DECIARE rlng$buffer$tne ToKEN EXTERNAL;

DELETE_RING-BUFFER I
PROCEDURE(ring$buf fer$token) REENTR-ANT PùBLlc ;
DECI-ARE rlng$buffer$token BASED ToKEN;
DECLARI astr ASTR$STRUC;
DECI-ARE exceptlon WoRD;

astf , . nungslots - 3;
CALL RQ$INSPECT$COMPOSITE (

r i noSh , , f f è rS l . l ha

t l ndqh , ' f f aYq i ^Lan

@astr, @exception):
CALL RQ$DELETEICOMPOSITE (

rlng$bufferS cype,
' i hdqÀ" f f é rq r ^L - -

@€xception) ;
CALL RQ$DELETE$SEGMENT (

a s t r . s e g ,
@except ion);

CATL RQ$DELETE$SEMAPIIORE (
astr . enpty$ct,
Gexcept lon);

CALL RQ$DEIETE$SEMAPHORE (
a s t ! . f u 1 1 $ c c ,
Gexcèpt ion);

END DELETE-RING-BUFFER ;

11.6.5 The Put Byte Procedure

PUT_BYTE places a character in the buffer by advanciúg the pointer to the front of the
buîfer then placing the character in the byte being pointed to.

Nucleus Userrs Gulde 1I-15

TYPE MANAGERS

$INCLUDE(:Fx:COÌ4MoN.LIT); /* Declares connon l i terals */
DECL{RE rtng9buffer$type ToREN EXTERNAI;
DECI,ARE ring$bufferqreglon ToKEN EXîERNAL;

PUT-BYTE:
PROCEDURE(Char, ring$buffer$token) REENîRANT PUBLIC ;
DECIARE ring$buffer$token ToKEN,

char BYIE;
DECIARE size woI{D;
DECLARE Éeg$pt! PoINTER;
DECLAREptT$struc PoINîER9STRUCAT(@sèg$ptr);
DECLARE astr ASTR$STRUC;
DECIARE segnenc SECMENT$STRUC BASED seg$ptr;
DECIARE exception I.IORD,
DECIARE untrs$1eft Ì10RD,

, < r r n ' r - < . l ^ r . - ? .
CALL RQ$lNSPECî$CoMPOSITE (

ringSbufferg type,
parans. r lnggbuf f ergtoker. ,
Gasrr,
GexceptioD) ;

unlts$1eft - RQ9RECEIVE$UNITS (
astr . empty$c È,
1 ,
tndefíni te1y,
@except lon):

CALL RQ$RECEIVE$CONTROI, (
ring9buffer9reglon,
€except ion);

ptr$struc. base - asÈr. seg;
n r r A e i r ' , . ^ f f . è i = Ó .

segnent.head = ((segrnent.head + 1) UoD segmenr.size);
segr0ent . buffel (segment. head) = params.char;
CALL RQgSEND$CONTROL (

@except ion);
CALL RQ$SEND$I'NITS (

a s t r . f u l 1 S c r ,
1 ,
gexcept ior) ;

END PUT-BYTE;

Note that this procedure entels a regio[after obtaining the deshed unit. To reverse these
steps would create a deadlock situation, particularly if the same reversal occus in the
GET_BYfE routine (shown later).

1l-16 Nucleus Uset's Guide

TYPE MANAGERS

11.6.6 The Get Byte Procedure

GET_BYTE reúoves the oldest blte in the buffer then advances the segrnent.tail pointer.

gINCLUDE(:Ix:Col ' lMoN.LIT); /* Declares conmon l irerals */
DECI,ARE rlnggbuffeÌgtype ToKEN EXTERNAL;
DECI-ARE ríng$buffergregíon ToKEN EXTERNAL;

GET_BYTE : PRocEDuRE(ring$buffergroken) BYTE pUgLlC REENîRANr ;
DECIÀRE riîg$buffer$coken ToKEN:
DECLARE size WoRD;
DECLARE seg$prr ?OINîER;
DECI,ARBptrgsrruc POINTERgSTRUCAT(Gseggpcr);
DECTARE asrr ASTR$STRUC;
DECI-AREsegnent SEGMENT$STRUCBASEDseggptÍ;
DECI,ARE exceptíon WORD;
DECURE char BYTE;
DECLARE units$left woR!;

astr.nsqslots - 3;
cAtI RQ$INSPECT$CoM?OSITE (

rlng$buffer$type,
ringgbuffergtoken,
Gastr
@excepcior);

unics$1efr = RQ$RECEMgUNITS (
astr. ful l$ct,
1 ,
indefínítely,
GexceptÍon);

CA,LL RQ$RECETVE$CoNTROL (
ring$buffer$règion,
@exceprlon);

ptr$sttuc.base = astt.seg;
ptl$struc. offset = 0;
char = segnenr. buffer (segnenr. raí1) ;
sègnent. Èall - ((sepenr.rai l + 1) MOD segEenr.stze);
CALL RQ$SENDgCONTROI, (

@excepcion);
cAtL RqgsENDguNrîs (

as t r . e ,p t y$c t ,
I ,
@exception);

REîúRN char:
END CET-BYTE;

Nucleus User's Guide lt"t7

IYPE MANAGERS

't 1 .6.7 Epilogue

This completes the impo.taot parts of the example (.e.all that the example is not
complete). Any task in any job linked to these procedùres may call any one of the
procedures. The procedure names to be used in such calls are CREATE$RB,
DELETERB, GETRB$BYTE, and PUT$RB$BYIE. Note that application programs
cannot manipulate either ring buffers or their comporiett objects, except through these
system calls. In fact, application programmers need not be aware that ring buffe$ are
composed of several other objects. To them, ring buffers appear (exc€pt for the absence
of "RQ" ilr the procedure names) to be standard iRMX II objects.

11,7 SYSTEM CALLS FOR ryPE MANAGERS

The following sysîem calls enable type manageG to manipulate extension and composite
objects: */

AITER$COMPOSITE--replaces a compooent in a composite object with either a null
o. another object.

CREATE$COMPOSITE-CreateS a composite object of a specified extension gpe.

CREATE$EXTENSION -creates an extension object that may subsequently be used
as a license for creating composite objects. Inpùt may include a token for a mailbox
where these composite objects are seùt for deletion.

DELETE$COMPOSITE-deIeteS a composite object. ..-_-z
DELETE$EXTENSION-deIeteS ar extensioo object and optionally, sends all
composite objects of that extension gpe to the associated deletion mailbox.

INSPECT$COMPOSITÉ-IeturnS a list of the compooeot obiect tokeN contained in
a composite object.

For a complete list of the iRMX II Nùcleus system calls, see the iÀMX II Nucleus System
Calk Referchce MqmuL

11-18 Nucleus Uset's Gùide

12.1 INTRODUCTION

This chapter is intended for programmers who need to understand the basic concepts of
the MULîBUS II architecture as it relates to the Extended iRMX IL3 Operating
System. The following topics are discussed:

. Ao analory of how MULTIBUS II works

. An overview of MULTIBUS Il hardware

. An overview of Extended iRMX II Nucleus Communication Service

. Examples of using the Extended iRMX II MULTIBUS Il services

. A glossary ofterms used in this chapter

For a list of documents that contain more detailed discussions of the MULTIBUS II bus
architectu.e, see the Related Publications section in the Preface of thìs book.

Thrcughout this chapter, the term "agent" is used int€rchangeably with "board" to mean
any board that contains a Message Passing Coprocessor (MPC) and resides in one olthe
MULTIBUS II Parallel System Bus (iPSB) slots.

12.2 FEATURES OF MULTIBUS@ II SYSTEMS

Extended iRMX II and MULTIBUS II together form an easy-to-use and reliable
computer system. Among the features provided by this architecture are:

. Higb-performance 32-bit-wide reliable bus with a 40M bytes per second tmîsfer rate

. Multiprocessorsùpport

. lnterprocessor communication via message passing

. System calls that free the user from needing to know details of how data is seflt using
MULTIBUS II message passing

. 255 virtual ilterrupts per board

. Geogaphic addreésing of bus agents by cardslot number (ID)

Nucleus User's Guide t2.l

TXTENDED iRMX@ II MULTIBUS@ II SYSTEMS

12.3 AN ANALOGY OF HOW MULTIBUSO It SYSTEMS WORK

The MULTIBUS bus architecture defines a qq!4@ldqql€lq mode of data transfer. In
this type of data transfer, the information is sent in a lormaf called a lqgss4gg or
datagram. The principle of sending these me.ssages is simlar to sending a lett€r throùgh
the mail, You rrite a letter, put it in an €nvelopc and address it to the person that you
want to receive it. If you rùant to be certain that the person answers your leîter, you put
an RSVP and your retùm address in the letter. You drop your letter into a mailbox and
wait. The letter is delivered and answered using the information you provided. This is
conne.tionless because you do not check to see if the person in question still lives at the
sarne address before you send your letter. If the letter is Dot deliverable, it will be
rcturned to you.

System$ based on the MTILTIBUS II architeature perform data transfers between boards
in this corin€ctionless message format, All the informatio[needed to dilerr the data
(message) to its destination, explain what is wanted, and identiry where to send the
answer, is included in the messagc. Both the system's harór.are and operating system
perform functions in direding and moving this data.

In traditional architectures (ones that rely on eg4!gpdeg!), when processo! or controller
boards need to communicate they use shared memory. This shared memory is set aside
dudng the system confturatiofi and is avafable as "wake-up" addresses for both kinds of
devices. This type oi data transfer is similar to making a telephone call. First you dial the
number, wait for an answer on the other erid of the ling and then have your conversation.
While you are on the phone, neither party can make or accept ariy other phone calls.

In the telephone analogf abovg the phone line represents the system bus of a computer.
Whenever any two processors are involved in communication, the system throughput is
limited to the data tansfer rate of the slower device. MULTIBUS II systems overcome
this and other limitations of the shared memory approach.

The rest of this chapter divides the explanation of iRMX Il and MIILTIBUS II into fúst a
hardware overview. followed bv a sofware overview.

12-2 Nucl€us Us€t's Guide

EXTENDED iRìfi@ II MULTIBUS@ II SYSTEMS

I2.4 MULTIBUS@ II HARDWARE OVERVIEW

The MULTIBUS tr bus architecture consists of sh buses, as shown in Fture 12-1:
. The Parallel System Bus (iPSB) is a high-performance, general purpose, 32 bit bus

that provides system data movement and interprocessor communication facilities. It
can be thought of as the "message passing', bus.

. The Local Bus Extension (iLBX IIì is afi extension of the on-board processor bus that
provides arbitration-ùee, high banóridth access to local memory.

. The Sedal Svstem Bus (iSSB) is a low-cost, one-bit alternative to the ipSB bus that
adds flexíbility lo meet the requiremerits of a wide range of systems.

. The MULTICHANNEL DMA I/O Bus is retained from the MULTIBUS I bus
architecture. It allows high-speed block transfers of data over the shared data path
between custom peripherals and single board computers.

. The iSBX I/O Bxpansion Bus is retained from the MULTIBUS I bus architecture. It
allows incremental board expansion throùgh the addition of small iSBX
MULTIMODULE boards.

. The BITBUS Interconnect is a serial bus, optimized for the high-speed transfcr of
short coflîrol messages and implemented as a pair of twisted wires.

In additioo to the six buses, the MULTIBUS Il bus architecture consisrs of four seDarare
address spaces:

. Message address space is the range of addresses that iderti$' all ipSB agents that send
and receive messages. Each agent is assigned a one-byte message address that
uniquely identilies that board in the system. The term ,'host ID" is used
interchangeably with the term message address.

. Interconnect address soace is a set of 512 byte-wide registers that provide
identification and conliguration information for each message-passing agent. Each
board contains its own set of interconnect registers.

. l/O address soace is the I/O poft address range that serves as a system-wide iiterface
îo terminal cootrollers, mass storage devices, and other peripheral devices.

. Memorv address space is the address range for storing and retrieving data and code.
A MULTIBUS II system can have up to 4 gigabytes of memory. Each
Extended iRMX tr agent can have up to 16M bytes of memory for its own use.

Nucleus Uset's Guide 12.3

EXTENDED iRMX@ II MULTIBUS@ II SYSTEMS

x-5714

Figure l2-I. Simplilied MULTIBUS- II Bus Architectùre

MULTICHANNELTM DMA 8us

l/OController

i LB)C! l lBus

EITBUS'*

12.4.1 Central Services Module (CSM)

The iSBC CSM/001 Central Services Module, or CSM, is an agent that coordinates
certain system-level seflices and Îunction$ common to all agents. The CSM board must
be present tur every MULTIBUS II sysîem and must be installed in cardslot 0 of the
backplane. The CSM board provides these system services:

. It generates, on power-up or cold reset, the re!qeg93dd!9!S9! (qqalsle|lD) and
arbitration numbers (arbitraîion IDs) fot all agents connected to the iPSB bus.

. It provides a central source for the iPSB clock signals (BCLK* and CCLK*).

. It generates system wide reset signals on power-up (RST*), cold reset (CRST*), or
warm reset (WRST*).

. It moniton timeout error mnditions and genemtes the timeoùt error (TIMOUT*).

. It mainîains the system wide, battery backed-up, global time-of-day clock.

* A hardware siglal that is active when low (0 volts.)

12.4 Nucleus Uset's Guide

EXTENDED iRMP II MULITIBUS@ T SYSTEMS

12.4,1.1 Global Time-of-Day Clock

The CSM board maintains an on-board, banery backed-up global time-of-day clock. This
clock is used by every agent ill the system that requftes a clock. Agents in the system can
maintain a local time-of-day clock that is a copy of the global clock, Both the global and
local clocks keep track of:

. the curent day (day, month, and year)

. The current time (hoùrs, minutes, and se.onds)

The two tlpes of clocks are necessary beqruse accessing the global clock takes much
longer than accessing a local clock. Each agent with a local clock accesses the global clock
only on system reset or at the request of the user.

TWo Basic I/O rystem calls allow your application to read or set the global clock. See the
Extendad iRMX II Basîc I/O Estem Ca s Referchce Manual îoî informulion on these calls,

Two Ext€nded iRMX II Human Interface commands (DATE and TIME) can be used to
read or set the global clock from a terminal (for the super user only.) See the Operator,s
Guidz To Thz E tend,ed íRMX II Humqn Inteìface for infomation on these commands.

12.4.2 Interconnect Address Spacè

On each MULTIBUS II agent is an area called the interconnect space or interconnect
registers. This space is a set of 512 8-bit registe$ used for dynamic software.controlled
initialization, configuration, testing, and error diagnosis. Part of their function can be
described as electronic jumpels. With a MULTIBUS II board the board configuration is
changed by writing value; into interconnect registers, not by installhg or removing
physical jumper conrìections, Each interconnect register is addressable by its own 16-bit
interconnect addre^ss (interconriect ID) The interconnect ID consists of the cardslot ID
of the agent (0 through 19 for iPSB cardslots, 24 through 29 for iLBX II cardslots, and 3 1
lor the host processor board) and the interconnect register number (0 thîough 511).

Interconnect registers 0 and 1 conîain the Intel-assigoed vendor ID for the vendor of the
particular board. The vendor ID is read-only; wlite operations to these two registe$ are
ignored. Interconnect registers 2 through 511 contain such board specific attribùtes as
board ID, revision number, cardslot ID, type ofboard (e.g. processor, I/O controller), and
iPSB starting and ending addresses. The contents of these registers are board-dependent.
Register values are read and modified through the interconnept address space. Refer to
the board's hardware reference manual for details on intefcoonect register usage.

12-5Nùcleus Uset's Guide

EXIENDED iRMX6II MULTIBUSo II SYSTEMS

During power-up or cold reset and through each board's interconnect address space, the
Bootstrap Loader, the Root Job, and the system monitor can automatically configure îhe
boards in the system to the corfiguration you choose. During power-up the system
monitor can initialize any read/write intermnnect registeîs. Two system calls are
provided that allow programs to dynamically read (get) or wdte (set) the conteots of any
interconnect register on any board in the systefi. See the E$enàcd |RI'ÍX II Nu.leui
System Calls Reference Manual Íor tnfotmalion on these system calls.

12.4.3 Built-ln Self Tests (BIST)

Each board in a MULTIBUS Il system contains a set of firmware-based diagnostic tests
that, on po$rer-up, does some inte.nal checking and assigns a "go" or lno-gort condition to
the board based on the results of the test. These tests are called the Built-In Self Tests or
BIST.

On power-up, or cold reset, each board's BIST automatically invokes its initialization
checks and diagnostic t€sts. If successful, the BIST initializes tbe board to a predefined
state and clears its RSTNC* (reset-not-complete) signal. Hovr'ever, if a test fails, the BIST
assesses a "no-go" condition, flags the error, and ceases initialization of that board. After
an error, the BIST Test ID registe. (in the board's interconnect space) contains the
nùmber of the test that failed, so the problem can be idenîfied and corrected.

12.4.4 The MULTIBUS@ ll Message Passing Hardware and Message

The entire MULTIBUS II architecture of six buses and four qpes of address space was
designed to perform the function of sending data bet\reen agents through one of the local
buses in a traditional manner, or over one of the message passing buses in the form of
packets of iniormation called messages. A MULTIBUS II message is a variable length
seqùence of b'4es (called a packet) that provides a means for one bùs agent to
communicate with another. All the information needed to know which age[t sent the
message and what the sending agent wants is stored in the first "packet."

Each agent on the bus has a Message Passing Coprocessor (MPC) chip that performs the
message passing functions. When a message comes across the bus, each agent cheaks a
portiol of the message header that contaìns the message address of the destination agent.
It compares the destination address with iîs own agent ID, if they match it retrieves the
entire message packet ftom the bus. If the addresses do not match the message is
i8rìored.

When a message is retdeved from the bus, more bytes are examiÍed to determrne:

. The agent lD of the sending board.

. Is îhis message a reply to a previous message or is it a new communication being
started bv another asent.

12-6 Nucleus Usels Guide

EXTENDED iRMX@ II MIJLTIBUS@ II SYSTEMS

. Which port on the board is to receive the message?

. Is a response necessary?

. Are more "packeîs" coming that are part of the same message?

Figure 12-2 sho$'s a simplified MULTIBUS II message packet. Although the specific
format of messages is different for different types of messages, blocks of bytes can be
identified by what part of the entire system reads and uses those bytes.

4 BYTES

12 BYTES

16 BYTE S

Used by MPC

Used by
Nuc leus Communica t ions Serv ice

Ava i lab le fo r use
by user app l i ca t ions

Optional data part l6M bytes-1
maximum length

w.0304

Figùe U-2. A Sinplified MULTIBUS@ II Message

I2.5 EXTENDED |RMX@ II SOFTWARE OVERVIEW

The EÍended iRMX II Operating System is largely concerned with managing the
resources available to a single processor board. These resoùrces are I/O devices and
RAM board$ that are related to a processor board so that the the resources appear to be
physically on the processor board. For example, RAM boards are typically placed on the
I-ocal Bus Extension (iLBX) bus. Boards on this bùs appear to the processor to be a part
of its own board resources.

Nrcleus Uset's Guide t2-7

EXTENDED iRMX@ II MULTIBUS@ II SYSTEMS

12.5,1 The MULTIBUS@ ll Transport Protocol

Extended iRMX II also supports the concept of gaioing access to resources and services
on boards distributed on the MULTIBUS II Parallel System Bus (iPSB) bùs through a
new feature called the Nùcleùs Coúmunicaîions Service, which is an implementation of
Transport Protocol. The Transpo protocol is a softwar€ interface that works with the
MULTIBUS II message passing hardware. The Nucleus Communication layer is the
Extended iRMX II implementation of the MULTIBUS II T.arsport Protocol. Among
other things it provides:

. an interface that hides many of the details of sending data (messages) over the
message passing bus, the Parallel System Bus (iPSB).

r ability to address a particular task running on a particular board. Using just the
message passing hardware enables you to send and receive messages to a specific
agent (board) in a system. Using the Nucleus Communication System (transpot
protocol) enables you to send messages to a specific task (program) running on a
board.

. an "open software" approach. By developing a mntroller board that runs on
MULTIBUS II and conforms to transport protocol you ensure that your controller
can communicate with other boards in the same system using transport protocol, even
ifthe boards are not running the same operating system.

12.5.2 The Nucleus Communication Service

In an Exrended iRMX II system, the process of performing a disk read is largely the same
whether the device being read is "local" or on the iPSB bus. If you are familiar with the
iRMX system calls, you will be able to ùse them in the same manner as in the past. The
following paragraph provides an example situation.

Ifyour application needs to read data from a MULTiBUS II I/O device, such as the
iSBC 186/224A multi-peripheral controller, it makes one of the READ system calls. The
device driver for this device and the Nucleus Communication service (Extended iRMX II
implementation of Transport Protocol) t.anslate this read into a MULîBUS II message.
The I/O device's controller board receives this message and sends back a response
message to inform your processor that it eithet can or cannot perform the read. If the
I/O controller can fill the request, a series of messages is sent between the two agents
(boards) defining how the actual tead will be performed. When this short series of
messagcs is complete the actual data read is performed and the data is sent to your
application as another group of messages. When the e[îire process is complete, the MPC
on the board Ì/here your application is running sends an intcrrupt to the CPU informing it
of the completion of the data read. The entire message passing process is transparent to
your application-

t2-8 Nucleus Uset's Guide

EXTENDED iRMX@ II MULTIBUS@ II SYSTEMS

12.5.3 Nucleus Communication Obiects

T\vo objects and sysrem calls to manipulate them have been added to the Operating
System to provide an interface to the MULTIBUS [I hardware, The following sections
à?lain th€ port and the buffer pool, the new objects.

'12.5.3-l Port

A port is a bi-directional communications access point for tasks running on different
agents. Pofts provide a level of addressing that permits seoding data to a particular task
(program) running on a board. The port is the software interface to the message passing
hardware. All of the "send" and "receiven message system calls have parameters that
identit' the ports that are involved in the operation.

You qeate a port with the RQ$CREATE$PORT system call. Two q/pes of ports can be
ffeated, a dgjg!A!! that is used to send and receive relatively large amounts of data, and
a !ig!Alpe!! that is used to send and receive control signals only. The signal port is
provided for compatibility with systems that use the Message Interrupt Controller
(MC).The MIC is a subset of the MPC available on earlier products.

When you create a port you speciry the following information in the system call:

. The number ofsimùltaneous transactions that can be outstxndina at the Dort.
(Ignored for signal ports.)

. What q?c of messages this port can send and receive.

. Whether tasks waiting for messages will be queued in FIFO or priority order.

. A port ID, which is a number that udquely identifies this port on this board, The user
can enter this, or enter a zero which tells the Nucleus Commùnication Service to
create the port TD.

. What the system should do if an oùtgoing message is too large to fit in ary one buffer
available at the destination port. You can speciry that the message can or cannot be
broken into pieces if it is too large to fit in a single buffer. If you speciry that messages
cannot be broken into pieces, an error will be retumed if the situation occurs.

. 1\s with all system calls, you speci! wherc thc corÌdition code generated from the call
should be placed.

Ports are deleted from the system using the RO$DELETE$PORT system call.

System calls have been added to provide flexibility in manipulating po s. The iollo\'r'ing
paragraphs discuss these system calls.

t2-9Nucleus Uset's Guide

EXTENDED iRMI(O II MULTIBUSO II SYSTEMS

The BQIggNNEgI system call provides a method of specirying a default destination for
messages sent ftom a port. When a port issues this ca[, it is logicaly connected to \--l
another remote port. After issuing the RQ$CONNECT call, no remote destination
(socket, a two-rvord data structurc sho$n below) is specified when sending messages,
because the connected port (default) is assumed.

socket LITERALLY ' SîRUCTIIRE(
hosc_id woRD,
port_id IIORD)' ;

When receiving messages, any message thaî does not have this default port socket as its
source is ignored. This call affects only the port that issues it, not the po.t that is
connected. A remote port îhat is connected is not limit€d to sending and receiving
messages to the connecting port.

The RO$ATTACHSPORT svstem call Dermits rhe forwardins of messapes. A Dort mav
speciîy that all messages sent to it be forwarded to another port. In this arrangement, the
port that is fo.warding its messages is referred to as the !gU@!e!l ard the port that
receives the messages is referred to as the gi[k!eÉ. One level of forwarding is permitted,
that is a sink port may not fo.ward its messages. The message forwarding is canceled by
issuing an RQ$DETACH$PORT system ca[.

The RO$ATTACH$BUFFER$POOL sysrem call provides a port with memory resources
called butrer pools (discussed in a later section.) These mernory resources are used in
re.ceiving large data messages. These memory resources cÍrn be detached from the port by \ ?
using the RQ$DETACH$BUFFER$POOL system call

The ROCETPORT$ATTRIBUTES system call allows a task to get infomaîion about
any port. The information returned is the same inforúation discussed above as being
specified when a port is created, plus the following: does the port have a default socket
and is it forwarding its messages.

12.5.3,2 Buffer Pools

Buffer Pools are holdiùg areas for segments which in MULîBUS II systems are ùsually \---l

associated with a port. Having a pool of memory readily available to a port cuts down on
system overhead bepause allocating the existing buffers is faster than creating and deleting
seqnents.

12.10 Nucleus Uset's Guide

EXTENDED iRMX@ II MULTIBUS@ II SYSTEMS

Buffer pools are empty when created. The user gives segments to the bufrer pool The
segments are created using the the RQ$CREATE$SEGMENT system call The created
segments are given ro a buffer pool by using the Re$RELEASESBUFFER system call.
The buffers are then used by tasks that require memory. Both MULTIBUS I arld
MULTIBUS II systems cao use buffer pools. In MULTIBUS II systems, ports requte an
associated buffer pool as a holding area for messages. Any task that requires frequenr
creation and deletioù of segments may imptove performance by using a buffer pool with
pre-allocated segmerits.

Buffer pools incur a certain amount of system overhead in their creation. The following
formula defines the amount of resources required.

(Max Buffe$ * 4) + 108 bltes = the amount of memory used by any given buffer pool.

When you creato a buffer pool you specif the following information:
r The maximum number ol buffers that can reside in the buffer oool at anv one time

(8192 maÌimum.)

. \ryhether or not the buffer pool slpports data chains. Data chairis are a method of
receiving messages that are larger than any siogle buffer can hold. Note that data
chaining is one of two suppofed methods for receiving messages larger than any single
buffer. The other method is message fragmenration.

12532.1 System Calls for Bulfer Pools

The RO$CREATE$BUFFER$POOL sysrem call oeates a buffer pool object. Each
buffer pool obje.t acts as a holdirig area lor segme[ts (buifeN.) When a buffer pool is
c.eated it is ùot associated with any port, see RQ$ATIACHSBUFFER$pOOL in an
earlier section. Buffer pools are deleted using the RO$DELETE$BUFFER$pOOL
system call.

The RO$REOUEST$BUFFER system call gets a buffer from the specified buffer pool,
ldeally, the data will fit into an existing buffer; if this is not possiblq a special method
called data chaining is used. Buffers are rctumed to the buffer pool using the
RO$RELEASE$BUFFER system call.

125322 Data Chains

When a buffer pool is oeated, you can set a bit in the Ihg field that specifies suppof for
data chains. Data chaining is supported only on processor boards that contai[the ADMA
(Advanced Direct Memory Access) device.

Nucleùs Uset's Guide t2"tl

EXTENDED iRMX@ II M{JLTIBUSO II SYSTEMS

In buffer pools that support data chainin& if a message is too large îo fit in any single
buffer, the message can be broken into smaller pieces. These pieces are placed in smaller
flon-contiguous buffers and a data structure called a data chain block is used to keep track
of the different parts of the message. Data chains are created automatically by the
receiving board's hardwarg but the user must extract the data by using the information in
the data chain block. No element of a data chain can be longer than 64K-2 bj,tes. Figue
12-3 illustrates a data chain block and a data chain.

Data chains incur a certain amounî of system overhead ill thet creation. The rninimum
data chain block size can be computed by:

(Max_elements * 8) + 2 byter

Where:

Max elcments G a configuration option Maximum Data Chain Elements (MCE)
from the ICU Nucleus screen.

LENGIH
BLOCK0
PTB TO
q_19 r{ !

Rese rved
Word

LENGTH OF
BLOCK 1
PTR TO

BLOCK 1

R ese rved

FINAL BLOCK
LENGTH = O

DATA

Figure 12-3. A Data Chain Block and a Data Chair w.0307

t2-12 Nucleus Useds Guide

EXTENDED iRMX@ II MTJLTIBUS@ SYSTEMS

125323 Message Fragmentation

When settiog up a data port you can set a bit in the fl4g field that enables or disables a
method of breaking large messages into smaller pieces when no single buffer is large
enough for the message. For the port object, this process is called !0€ssagqtag!o@!a!ia!-
Messages can be fragmented by the sefrding board, send fragmentation or ftagmented by
the receiving board, receive fragmentation.

Message fragnentation is performed as a series of messages sent between the agent
sending the data and lhe agent rereiving the data. Becaùse Íiultiple messages must be
sent and received to perform message fragmeltation, îhere is more system ov€rhead
involved in message fragncntatiol than in data chaining.

12.5.4 System Calls to Work With MULTIBUS@ tl Message Space

In addition to the system calls that manipulate the MULTIBUS lI objects, system calls
that provide an interface to the four types of address spacq discussed in the hardware
overview, are provided. A complete interface to the MULIBUS fl bus architecture is
provided by these system calls.

12.5.4.1 System Calls for Interconnecl Spacs

The RO$GEfiINTERCONNECT system call reads the contents of one byte-wide
ilterconnect register on one board for each invocation of the call This call is used for,
among other things, finding out how many and what t'?e ofboards are in a systern, and
what îhe ÈOST$ID (message address of a board) is.

The ROSETINTERCONNECT system call writes over the contents of one brte-wide
interconnect register on one board for each invocation of the call. (Some interconnect
registers are read only.) One use for this call is to dyramically reconfigure a board.

12.5.4.2 System Calls tor Sending Messages through Message Space

The RqlSEllD system call sends a message to a remote host without any request for a
respon$e. The message can be a conhol message only or can be a coltrol message and
contain a POINTER to a data portion of the message.

The EQ$SEND|BSIA system call initiates a message interchange that is iued to send
large amounts of data from one board (host) to another. This call specifies that a reply is
requested.

The RO$SEND$REPLY system call is used to answer a previous RQ$SEND$RS\?
system call.

The RO$BROADCAST system call is used to send a control messagg to each board in the
system. Note that only one port on each board can receive îhis message.

Nucleus Uset's Guide 12-lJ

EXTENDED iRMII@ II MULTIBUS@ tr SYSTEMS

The ROSCANCEL system call cancels a m€ssage transmission. It is used to end data
transfer initiated b an RQ$SEND$RSVP system call

The RO$RECEIVB system call initiates a message receptio[at a port. If the message
contains a data portion, th€ rereiving pofi must have already allocated a buffer large
enough to hold the úessage before issuiíg the RQ$RECEIVE message. If no buffer is
allocated, or no buffer is large enough, the message is rejected by the rec€iving agent.

The RO$RECEIVE$REPLY system call accepts a reply to an earlier RQ$SEND$RS\?
message, Sink ports, any po that receives forwarded messages, cannot issue this call.

The ROSRECEn/EI$FRAGMENT system call accepts a part oi a message that was too
large to fit in any buffer available at the receívíng pofi. A buffer to receive the message
fragment is specified in the call.

Message Space Calls that Support the MIC Device

The two calls are available that support the MIC devic€ are:

The RO$SEND$SIGNAI system call sends a signal message (dataless message) to a
remote host (another board ilÌ îhe system.

The RO$RECEM$SIGNAL system call picks up a sigral message from the bu$.

These are should be used only with systems that contain the MIC device.

12.5.4.3 Calls For Getting Information About Messago Passing Agents (Boards)

The ROGETHOST$ID system call, retums îhe HOST$ID, the meésage address of the
calling task's board. It provides the host$id part of the host$id:port$id pair that makes up
a socket. A socket is defined as a DWORD structure of îhe followihs format:

12.5.5 The Nucleus Communlcatlons Service System Calls

This section goups the Nucleus Communications Senice system calls into functionally
related groups.

'12.5.5.1 Sysl€m calls used with bufer pool objects

RQ$CREATE$BUFFER$POOL Create or delete a buffer pool, a holding area
RQ$DELETE$BUFFER$POOL for buffer segments. These buffer pools are

used in conjunction with the port object as
buffer space for messages sent or received at a
DOtt.

t2-14 Nucleùs Uset's Guide

EXTENDED iRJ!ff@ IT MULTIBUS@ tr SYSTEMS

Request oî return a RAM buffer (segment)
that is associated with a particular buffer pool.
Buffers are created with the
RQ$CREATE$SEGMENT system call.

'f2.5.5.2 System calls used with the port object

Create or delete port objects, You speciry îhe
type of port, data or sig!4 h the
RQ$CREATE$PORT sysîem call.

Associate a port with a remote socket; such
that, when a message is sent from that port it
automatically goes to the cDnnected port.

Create or remove a message-forwarding link
between two ports. When a task issues the
"ATTACII'ca[the port that forwards its'
messages is known as the Sqlleg port. The
port that is attached by the call, receives the
forwarded messages, aIld is known as the giok
port.

RQ$ATIACH$BUFFER$POOL Attach or detach a pool ofbuffer segments to
RQ$DETACH$BUFFER$POOL the specified port(s). This area of RAM is used

as buffer space for messages sent to and from
the specified port(s)-

RQGETPORT$ATTRIBUTES Request information about a port. The
following information is returned: the po
qrpe, úaximum number of simultaneous
transactions and discipline (FIFO or priority).
Does it have a default sockeî, sink port, or
buffer pool associated with it? Is message
fragmentation supported?

12.5.5.3 System Calls Us€d to Sènd/Receivè Messages Through ports

RQ$REQUEST$BUFFER
RQ$RELEA.SE$BUFFER

RQ$CREATE$PORT
RQ$DELETE$PORT

RQ$CONNECT

RQ$ATTACH$PORT
RQ$DETACH$PORT

RQ$BROADCAST
RQ$SEND
RQ$SEND$RSVP
RQ$SEND$REPLY
RQ$CANCEL
RQ$RECEN'E
RQ$RECEI\€$REPLY
RQ$RECEIVE$FRAGMENT

These calls are used to send and receive
messages of the d4jq trarNport protocol type.
MULTIBUS 1I messages may consist of either:

control-onlv
32 b}tes
(unsolicited)

confol + data
32 bltes plus
up to 1ó Mb,.tes-1
of data (solicited)

Nucleus Use s Guide 12-15

EXTENDED iRVfX@ II MULTTBUS@ U SYSTEMS

RQ$SEND$SIGNAL These calls are used to seod and receive
RQ$RECEM$SICNAL messages of the signal or dataless gpe. They

should be used only in systems that contain the
MIC device.

12,5.5.4 System Cal|s used vyith the Interconnect Regiaters on a board

ROGEIINTERCONNECT these calls are used to read or write to the
RQSETINTERCONNECT interconnectregisterslocatedoneach

MULTIBUS II host board.

12.5-6 Examples Using Nucleus Communications Service Calls

This section provides a conceptual explanation of most of the examples provided with the
Operating System, The examples provide a more complete understanding of message
passing as it relates to the Extended iRMX II Operatirig System. Each example includes a \v/
brief description of the operatiori of the example and all of the PL/M 286 code for the
example.

All of the examples in this chapter are provided with the iRMX II Operating System. The
MULTIBUS Il examples discussed here are located in the path
/RMX286/DEMO/PLM/MB2/ÌNTRO. For a complete diagram of the iRMX II
directory strucîùrg see the Operator\ Guide to the Hunan Interface manual. When you
are ready to examine these examples, type:

ATTACHFTLE /FJfl.286 /DW|O /pt-rf/MB2lTNTRO <CR>

to attach to the dtectory containing the example prograrns. To geoel ate tlìe execùtable
modules for these examples rype:

SUBMIT COMPILE <CR>

These two commands must be q,ped in on both host terminals, assuming that each host
has its own disk.

Most of the examples use an external fle called DCOM.EXT and a literal file called
DCOM.LIT. Both of these files are presented at the end of this chapter.

The examples in this chapter are presented in an order similar to their use in a real
system. The examples step you through the following concepts;

1. Scannlng the system to determifle what boards are in the system. This example
runs independendy of all the other modùles.

2. Crcating a data traúspof protocol port to use in message passing. This example runs
indeDendendv of all îhe other modules.

12-16 Nucleus Usefs Guide

EXTENDED iRMX@ II MULTIBUS@ N SYSTEMS

3, S€nding an RSYP message to another board and waiting lor a reply. This module
must be run with example 4 io this list or with example 7 in this list.

4. Arcwerlng an RSVP message from the receiving board. This module must be run with
example 3 in this list.

5. Sending a data chain message. This example must be run with example 6 in this list.
6. Receivlng a daúa chaln messate. This example must be run ì/rith example 5 in this list.
7. Sending a fragmented message. This exampl€ must be run with example 3 in this list.

The examples listed above make ceÍain assumptions about the locations of the host
boards in îhe MULTTBUS II ststem that they run on. The Figure 12-4 shows the required
physical locations of the host boards (agents) in the system.

(Chassis not to scale)

Memory For
Host in S lo t 5

HOST BOARD
IN SLOT 5

Memorv Fo r
Hos t i n -S lo t 1

HOST BOARD
IN SLOT 1

CSM Board

Figure l2-4. Physical Location of Boards in the Example

È

Nucleus Uset's Guide t2-17

EXTENDED iRMX@ II MÙLTIBUS@ II SYSTEMS

The MULTIBUS II examples dtectory also contains a larger example that is not shown in
this chapter. This example implem€tts a "name server", a progam that permits the \--,,.
dynamic cataloging of all ports oeated in a system. A later s€ction of this chapter
discusses this example.

'12.5.6.1 Inlerconnect Space Example

Before passing messages between agenîs (boards) ir your system you rieed to determine
what boards are in your system and the message addresses for the boards (host$id or
cardslot number for boards on the iPSB bus.) You may also need to read or write the
contents of a particular interconnect iegister. Writing a board scanner task allows you to
dynamically determine host IDs, board g?e, and multiple occurrences (instances) of a
boaÌd type.

This s€ction pres€nts an €xample of g€tting the iotercorìnect inforination for an entire
system. The example pedorms the board scan, getting the slot number and board type of
each board in the system and places the information into an array of structures called
sys_map. When the board scan is completg sys_map is displayed on the console soeen.

Figure 12-5 presents a board-scanning algorithm. The "reads" in the Figure 12-5. Board
Scanning Algorithm refer to the RQGETINTERCONNECT system call. For a map or
template of a particular board's interconnect registers, refer to the board's hardware
reference manual.

FoR i = 0 to number of slots minus 1
D O ;

Read board i 's vendor ID register;
IF vendor ID c 0 then
D O ;

Read board i 's c lass and subclass ID ret isters , /* Deternine board t)?e */
WriLe Ehe board informatíon ínto the syslem map

END;
ELSE;

Write 'enpty' into the sys_nàp for thè sloc nuber
'J

END;
Cet lD of loca1 hosc

END;
FoR i - 0 to n(lrnber of slots ninus 1
D O :

Print s lot numbers and board È)?es to console screen
END;

Figue l2-5. Board Scanning Agorithm

t2-18 Nucleus Uset's Guide

EXTENDED IRMX@ II MULTIBUS@ tr SYSTEMS

In the fourth line of the board scariner algorithm, a vendor ID of 0 (for iPSB hosts only)
indicates that either the board was manufactuîed by a non-licensed vendor or the cardslot
is empty. Ifyou are also scanning the iLBX II bus, replace the 0 with oFFFFH.

To run the board scanner example type:

rc <cR>

t2-19Nucleus Uset's Guide

EXTENDED iRMI(@ II MI]LTIBUS@ II SYSIEMS

The following figure is an implementation of the board scanner algorithm.

9t i t le('1c - scan interconnect space and pr lnt r0ap of systen,)
SeonDacc

IN1EL CORPORATION PROPR]EÎARY INFORMATION

Ittis software is supplled under Che tenns of a
license agreement or nondísclosure agreenent nith
lnCel Corporacion and nay not be copieat or disclosed
except ln accordance lrith the terns of that agreenent.

Copyright Intel Corporat ion 1987, 1988
a l 1 r í o h i c r è a a n ' a . l

* For lntel custoDels licensed for the lRlO{ II operatíng
* System under an Intè1 Software License Agreenent, rhis source code and
* object code deríved therefrorn are l icensed for use on a stngle central
* processing unit for inte1:nal use on1y. Necessary backup copies and
* roulciple users are permit ted. Object Code derived fron rhis source code
* ls a Class I sofù,/ale produc! under the Intel Sofc\rare License Agreenent
* and is subject to the terns and condirions of rhar agreemenr

* Fol the ríght to make incorporacions, or ro transfer this soft\rare to \-7
:" third part ies, contact Intel corporatíon.

/********************:t************:k***********rt****:t*:t:t****************:trt**/

/********rt*rf************rt*rf***********************************)t*******

* MODULE NAI'fE: lcscan

*' DESCRIPTIoN: Scan the iPSB backplane, Record each board insrancè and \.-,-/
* slot nunìber in a system roap. Cet local host slot number
* and id and record in systen nap. pr int systen nap on console.
****************,***rl***********rt*******************************!t******/

i c : D O ;

$ include (/rnx2 86/inclrmxptn. ext)
$ include (/rnx2 86/lnc/error. 1ít)
$include (err. ext)

Figùre t2-6. Irnplemenfation of a Board Scanner (continued)

t2-20 Nucleus Uset's Guide

EXTENDDD iRMX@ II MULTIBUS@ II SYSTEMS

DECTÀRE /* llterals */

MAXSmTS LITERALIY '20',
/* araxinum nìrnlber of slots */

VENDoRIDREG LITERALLY '00', ,/* 1o\d byre of vendoi 1d .reg */
BoARDIDREG LITERALLY '02H' , /* regiscer offsec of boàrd id */
BOARDIDI,EN LITERALLY '10',

./* nurnber of byres ín loard td */
BUFLEN LITEMLLY ,11,, ,/* length of boatd id rrox string */
I,oCAIIIoST LITERATLY '31',

/* selects local host interconnect */
PSBCoNTROLREC I,ITERALLY tO6H, , /* psb control record valuè */
PSBSLOTIDOFF LITEMLLY ,02H' , /* offset of slor id reg ín psb conrrol rec *
NoEXCBPT LITERALLY '0',

,/* no exception handling by systen */
RECNoTFOLND LITERALLY ,oFFH,. /* indicates fnterconnecr record not found *

map_struc LITÈRALLY , STRUCIURE(
Id(BUFLEN) BYTE,

slot,nulr BYTE)' ;

DECI-ARE
c o n _ t a b (1 6) b y t e I N I T I A L (' 0 ' , ' , ' s ' , ' 6 ' , , 7 , , ' 8 , ,

' 9 " ' 4 " ' R " ' C ' . ' D " ' E " ' F .)

q c r l h i l i 1 a I ' f i n d z ó ^ ^ / / ì , \

* PROC NAME: find_record

* DESCRIPTION:
* Searches through thè interconnect space of rhe specified board
* (s1ot_nurber) until eíther the record type passed is found or the
x EOT (end of tenpfate) record is fourd. If the record ls found,
* then its record type and offset are returned. If the EOT record
* is found, then oFFH is r€turned.

* CAIL: record found : find record (slot_nunber, lecord_t]?e, rec_offse!_pÈr) j
* lNPfIs: slotlnumber Bltf containing slor number ól board
* recoid_type BYTE conuaínin! record tJ.pe Lo f ind
* RETURNS: tecord_found byte indicating I'hettrer record was found

contains oFFlt (EoT record type) if record nor found)
* oUTPUTS: record_offset prr PoINîER to WORD offser of record found

rt*rl*:l*********rV*r!*:t********:t*****rt*******************************:t****/

Figure 12-6. Implementation ofa Board Scanner (continued)

Nucleus Use/s Guide 12.21

find_record: PRoCEDURE (sloc_nunbe!, record_t)rye, rec_offset_ptr) SYTE ?uBLIc \-,,
REENTRANT;

EXTENDED iRMXó II MIJLTIBUSo SYSTEMS

DECI-ARE
slot_nunlber BYTE,
record_type BYTE,
f ó ^ ^ € f c A i

rec_offset BASEDrec_offsec_pr!woRD,
rèóord_found B\1tE,
status woRD;

DECIARE

EOî_REC LITERAtLif 'oFl'll', /* end of template]recotd */
HDRRECLENGTH LîTERAI-LY '2OH' , /* nunber of registers 1n header ì.ec */
RECLENREC LITERAI-LY '1';

/* recorà length reglster */ \--l

* Get record type for each lecord past che header
* record untí l the specif ied record ls found

rec_offset : HDRRECI-ENGTH;
record_found - rqget tnterconnect (s lot_nunber, rec_offset, Gstatus);
CALL error$check (100, srarus)
DO IrttILE (record_founal o rècord_t)rpe) AND (record-found o EOT-REC); \--7

* Get offset fof next recorat by addÍng length of curreDt lecord
* to prevíous record offset (add 2 to accounlr for type and length

rec_offsef: = rec_offset + 2 + tqgetinterconnect(s1ot_nunber,
rec_offser + RECLENREC ,
Gstatus);

CALI- errorqcheck (l lo , status);
\ -- l

recold_found = rqget interconnect (slot_number, rec_offset, Gstatus);
CALL error$check (120 , status);
END;

RETURN(record_f ound) ;

END find_record;

Figue 12-6, Implementation of a Board Scanner (continued)

12-22 Nucleus Uset's Guide

EXTENDED iRMX@ II MULTBUS@ N SYSTEMS

$subtit le ('out_byte - prlnt a byce on the console,)
/*********!t*rt*****:!*:!*:!*****!t**********************************:!tr*:t**

* pRoC NAME: out_byte

* DESCRIPTIoN: tirlte the hex repres€ntacion of hex byte to the console.

* CALL| CALL out_byte (hex_byte)

* INPUT: hex_byce - byte whose hex value is to be printed

* CLOBALS :
*
*****************x************>t*:t************************************/

^ our byre: procedure (hex_byce) publíc:

DECI,ARE
hex_byte BYTE,
hex_buf(3) BYTE,
cur_byte BYTE,
status tloRD;

cuÌ_byte - shr (hex_byre, 4);
hex_buf(o) - 2;
hex_buf(1) : con_tab (cur_byce) ;

- cur_byte - hex,byte AND oFH;
hex_buf(2) - con_reb (cur_byte) ;
cal l rqc$send$eo$response (NIL, 0 , Ghex_buf, @srarus) .

END ouc_byre;

* - r - n r i n rP L L r r L ' ! é P

/**********:l*:!***:l**,***tr*********)t*)t*****rt*************t<*)t*t<****rt*:t**
*
* PROC NAME: print_nap
*
* ABSTRACT: Write systen map to console

* CAI-L: CALL printmap (sys_map_ptr) ;

* INPUT: sys_map_pcr - pointei to systeú nap

X GI,OBALS:
*
* CALLS: rqcssendseo$response, out_byte

**************************)t******)t*)t*)t*)t*****************************/

Figure 12-6. IDplementation of a Board Scanner (continued)

n-23Nùcleùs Useds Guide

EXTENDED iRMXO II MULTIBUS€ II SYSTEMS

print_map: PROCEDURE(sys_map_ptr) PUBLIC; ..___/

DECI-ARE //,r parús */

sys_nap_ptr POINTER:

DECLARE /* Iocals */

sys_nap BASED sys_map_ptr(MAXSIiTS) map_srruc, /* systen map */
i BYIE, /* loca1 indèx */
status uoRD;

CALL rqc$send$eo$response (NIL, 0 , G (2 , odh, oah) , €scarus) ;
CAIL rqc$send$eo$response (NIL, 0 , @ (17 , , SYSTEM |, fAP, ,odh,oah) , @s rarus) ;
c A r , r - r q c $ s e n d $ e o $ r e s p o n s e (N I L , 0 , G (2 3 , , b o a r d s l o c , , O d h , O a h , O d h , O a h) ,

@sEarus) ;
Do i = 0 ro MAXstoTs -1; \!-/

CALL rqc$sèndgeo$response (NTL,0, @sys_nap (í) . íd,Gsratus) ;
CALL rqcgsendqeo$response (NIL, 0 , @ (5 , , ,) ,esratus);
CALL out_bytè (sye_Í,ap (i) . s ror_ntllì) ;
CALL rqcqsendeoresponse (NTL,0, @(2,oDH,oAh) , Gstatus) ;

END;

END princ_map;

DUCI,ARE /* g|obaLs */
\-,

iPsB_slot BYTE, /* psb slor currenrly scanned *,/
s ratus i ,ùoRD
count BYTE, ,/* index tnro id srring x/
vendor_id_1o BYTE, /* lorn'byte of vendor id */
vendor_id_hi BYTE,
id_char BYTE, /* char:acxer in board id */
local_slot BYTE, ,/* slot mrnrber of 1oca1 hosr */
psb_reg_off I{ORD, ,/x offset of psb control record */
r-tyPe 3YTE, /* record. type returned by ffnd_record */
sys_nap (uAxSmTS) map_struc;/* map of boards ín syscen */

/* becin main */

CALL set$except ion(NoEXCEPT) ;
DO lPSB_s1ot : 0 To MAXSLOTS - 1;

sys_map (iPsB_slot) . slot_num : iPSB_s1ot;
vendor_id_lo = rqget interconnect (ipSB s1or, VENDORIDREG. @status);
CALL error$check(130, status);

Figure 12-6. Implementation ofa Board Scl|nnet (continued)

t2-24 Nucleus Uset's Guide

EXTENDDD iRMP IT MULTIBUS@ n sYsTEMs

* Only check status after first call to get$ lnterconnect,
* co seè í f cal l is confígured (no other error is rèturned
* by geE$interconnecÈ)

vendor_id_hi - rqget tncerconnecr (ipsB_s1or, VENDORIDREG+I, Gscacus);
CALL error$check(140, sratus);

* If vendor_id is not equal to 0, then there ís a
*òoard in this s1ot, so get the boaÌd,s ld

IF ((vendor_id_hi 0R vèndor_id_lo) o 0) THEN DO;
count : o;
sys_nap (i!SB_s1ot) . fd (0) : BoARDIDLEN;
DO I{4iILE (count < BoARDIDLEN);

id_char - rq9get$ interconnect (iPSB_s1ot, BoARDIDREC+counc, @status)
CALL error$check (150 , status);
IF (id_char <- , ! ,) oR (id_char >- , t ,) rHEN

id_char = , , ;

sys_map (iPSB_s 1ot) . id(counr+1) - ld_char;
c o u n t = c o u n t + I ;

DND;

CALL novb(@(10,,EMpî| l ,) , Gsys_nap (tpsB_e1ot) . td, BoARDTDLEN+1);
END;
/*

* Nor' get slot uber and id of local hosr. To access loca1 irìcercon-
* nect, the special slot nullber, I,oCALHoST, nust be used

r_cype = fÍnd_record(IiCALI{OST,pSBCoNTROLREC,Gpsb_reg_off) ;
II r_type o RECNoTF0UND THEN Do;

local_s1or = rqsget$ inrerconnecr (I.OCALHOST, psb_reloff + pSBSLOTIDoFP,

END;
ELSE

@status) ;
CALL errorgcheck (160 , status);
loca1_slot = shÌ(1oca1_s1ot,3) ;
sys_nap(1oca1_slot) . slot_nun = Iocal_slor:
count - o;
D0 ilrItILE (count < BOARDIDLEN);

id_char - rqqget$interconnecr(IoCALHOS1, BOARDIDREC+couot, @srarus) ;
CALI- error$check (170, srarus);
lF (íd_char <= ,!,) OR (id_char >- ,),) THEN

id_char = ' ' ;

s y s _ n a p (l o c a l _ s l o r) . ' d (c o u n t + l) = i d _ c h a r ;
c o u n t = c o u n È + 1 ;

END;
END;
CALL prinr_nap (@sys_nap) ;
CALL rq$exitQio$j ob (0,NIL,@srarus) ;

END ic;

Nndeu! Uset's Guide

Figùre 12-6. Implemenfation of a Board Scanner

12-25

EXIENDED iRM)@ II MULTIBUS@ II SYSTEMS

Figure 12-7. Sample Screen Output Fmm the Interconnect Example

Figure 12-7 shows a sample output of the board scanner example.

12.5.6.2 Creating a Port for Message Sending and Receiving

Once you have ioformation on what boards are in your system, the next step is to create a
pofi for message passing and associate a buffer pool with it. The following example
creates a buffer pool, releases a number of 1K buffers to it, and then creates a data
transport type port and returns a TOKEN to use as a reference to the port.

This module is not run from the Human Interface. it is called by the other modules
described in this chapter.

12-26 Nucleus Useds Guide

EXTENDED iR]\fi@ II MULTIBUS@ II SYSTEMS

$tlt1e('crport - create a port end attach a buffer pool to ít ,)

/***rl*r!***rt***
* INTEL CORPORATION PROPRIETARY INFORI{ATION

* This sofcl{Étte is supplieal unater the tenns of Ér
* llcense agreelnent or nondisclosule agreenenc wich
* lnte1 Corporat ion and Ìnày not be copted or dtsclosed
* except in accordance wlth the terns of that €treemenc.

* Copyright lnte1 Corporat ion 1987, 1988
* All rights resefied

* For Incel customers licensed for the íRlfl{ II Operating
* Systern under an Intel Software License Agreenenc, this source code and
* object code deríved therefron are licensed for use on e single central
* processlng unit for internal use only. Necessary backup copies and
* nultípte perlllitled. Object Code der:iwed fron this source code
* is a Class I sofu,/are product under the Intel Sofcxrare License Agreement
* and is subject to the terrÌs and conditions of that agreenent.

* Fo! the right to nake lncorporations, or to transfer thís softsare to
* chlrd perÈles, contacc Intel corpofat ioo.

/***:l****rt*it***it*)t)t*rt*************************it*****:t**rt*******:t***********/

crPofc: D0;

tlncrude (/ rrú.y z ò 6/ l ncl rnxp rn . exr)
I include (/Ìnx28 6/1nclerror. 1it)
$include (dcon.1i t)
$include (err. ext)

DECI.\RE

NOEXCEPT LITERATLY '0'i /* no exception handling by system */

Figure 12-8. Creating a Data îlaùsport Protocol Port (continued)

Nùcleus Ilsefs Gùide t2-27

EXTENDED iRI{X@ II MULTIBUSo II SYSTEMS

l e J e c .
$ subt i t le (' create$bufqpool ')

**************.***************Jr*****

* PRoC NAMET crèategbufgpool

* DESCRIPîION: Creare a buffer pool \rirh rhe acrribures passed by che
a11er. Create an 1n1r1a1 number of 1K buffers and

* release thero to the buffer pool. Return a coken for
* the buffer pool to the cal ler.

* CALL: bufgpoolgtok = creategbufgpool (nax_bufs , inir_nurD_bufs,
t t rs, status_Ptf) ;

* INPUîS: nax_bufs - naximtrll nxnber of buffers for buffer pool
* inít_num_1,ufs - ínitial nuDber of buffèrs for buffer
* P o o l ,
* attrs - buffer pool creairion atrributes \.--l
x status_ptr - poínts to a status word

* RETURNS: bufspoolgtok - token for newly created buffer pool

*********:t**************)t*********rt******************************>t*>t*/

createbufpool: PROCEDURE (nax_bufs , i ír_num_bufs, arrrs, stacus_ptr) TOKEN
PUBLIC;

DECIARE /* Paraneters */

max_bufs WORD, /* maxirnunr nunber of buffers in buffer pool */
init_nw_bufs lrORD, /* tnitial number of buffers in pool */
attrs llORD, /* buffer pool creation atttibutes */
status_ptr PoINTER: , /* except lon póinter */

DECI,ARE /* Local Variables *'/

status BASED srarus_ptr WORD ,
buf_pool îOREN, /* buffèr pool conplere with buffers *,/v
buf_tok ToKEN, /* buffeÌ token */
i UoRD; /* local index */

DECLARE /* Líxerals */

BUFSIZE LITERAI-LY '1024' , /* b!îfer sj-ze */
BI'LAGS IITERAI,LY '0108,; ,/* single buffet, don,r release *,/

buf_poo1 : rq$create$buffer$pool (nax_bufs , attrs, status_ptr);
CAIL errorqcheck(10, stacus);

Figtlre l2-8. Creating a Data Transport Protocol Port (contirued)

72-28 Nucleus Useds cuide

EXIENDDD iRMX@ II MULTIBUS@ Il SYSTEMS

DO i : 1 to init_nutÌ_bufs;
buf_tok = lqgcreate$ segnent (BUFS IZE, statrs_ptr);
CALL error$check(20, status) ;
CALL rqqreleasegbuffer (buf_poo1 , buf_rok, BFtAcS, srarus_prr);
CAIL error$check(30, status) ;

END;
RETURN buf_poo1;

END createbufpoo1 ;

$eject
$ subttcle (' ret$dporÈ')
/********************rt*:t********************>t**************r!*********

PROC NAI4E: gèt$dport

DESCRIPTION: Thls procedufe creates a pott for data transport servlce.
A buffer pool is created and attached to the port .
A token for the newly crèated porÈ and buffer pool are
rètuhed to the cal1er. I f eí ther port or buffer
creaÈion fai1s, che call returns rrrlrh neither e buffer.
pool or port created.

CAIL: dport$cok : ger$dporr (porr_nun, buf_pool_prr, b_aftrs,
sratus_Ptr)

INPUTS: port_nur0 - port nunber asslgned to neÌ,r1y created port
b_attls - buffer pool creation arÈiibutes
scatus_ptr - polnts ro sracus word

OUTPUTS: buf_pool_ptr - points to buffer pool token attached to
the newly created port

RETURNS: dporr$tok - Èoken to newly created port

/* Paraúeters */

******x******)t****:r:t:r**:t*:t***x*:r*!r***************rr**************x****/

get$dport: PRoCEDURE (port_nun, bufu)oo1_ptr , b_arcrs , starus_?cr) ToKEN puBl-tc;

DECI,ARE

port_nun
buf_p óo1_p tr
b_attrs
stacus_Ptr

WORD,
POINTER,
INORD,
POINTER;

porc id for nelr port x/
points Èo buffer pool */

buf fer pool creat ion actr íbutes * /

Figure l2-8. Crcating a Data TEnsport Protocol Port (continued)

Nucleus Usefs Guide 12-29

EXTENDED iRTD(@ II MIJLTIBUSO T SYSTBMS

DECLARE /* Lltèrals * / _,.

NUU_TRANS LITERALLY '10', /* na-y nurlber outstandtng trens €t port */
DATACOM LITERALLY '2' , /* indícates data con port */
PFLAGS LITERALLY '0' , /* fifo, fragrnentation flags */
MAXBUFS LITERALLY '30', /* naxínun il buffers tn pool */
INITBUFS LITEMIIY '10'; /* initial nunber of buffèrs */

DECIARE /* Locals */

bpool BASED buf_pool_pcr ToKEN,
Port_t TOKEN, /x local por].- */
bufpool_c TOKEN, /* buîîex pool with inieial alloc of

buffers */
port_info porc_ínfo_s,
loc_status WORD, /* local stacus nord */
status BASED status_Prr woRD; -_-/

/* BeCin tet$dpott */

port_info . port_id = port_nun;
port_lnfo. type - DATACoM;

porE tnfo. rrags - vlr-Acs;
port_t : rq$create$port (NUM_TRANS , €port_lnfo, stàtus_ptÌ);
CALL error9check(40, status) ;
bufpool_t - creategbuf$pool(IIAXBUFS, INIîBUrS, b_attrs, status_pÈr) ;
CALL error$check(50, status) ;
bpool - bufpool_t;
CALL rqqattach9buffer$pool(bufpool_t, port_t, status_pÈr) ;
CALL error$check(60, status) ;
RETURN porr_t;

END get$dport;

END crport;
_,-/

Figùre U-8. Creating a Data Transport Prutocol Port

12-30 Nucleus Uset's Guide

EtrIENDED iRMX@ II MULTIBUS@ Il SYSTEMS

12.5,6.3 Sending Data Using RQ$SEND$RSVP

Now that you have information on the boards in the system and a data port you are ready
to send data in message form. The next example illustrates one of the most cornmon
message passing formats, the request/responsg typically used between two Extended
iRMX tr hosts. Tlvo terms used îo describe the boards involved in request/response
messages, are 9!949 which indicates the requesting board and sele! which indicates the
responding board.

Figùre l2-9 shows the logical represeotation of the message-passing model for a
request/rerponse transaction. A task on the client board initiates the hansaction by
sending an RQ$SEND$RSVP call to a well-knom port ofl the seryer board. Because the
ports on a remote board cannot be dynamically determined, this example assumes a port
that is created on all boards as a starting point for message passing. Once you have a
HOST$ID for a remote board you combine it with the PORT$ID of this ,'well-known"
po.t to create the socket for the destination of a message. When the server board
receives the message it replies with the RQ$SEND$REPLY call. The request/response
messages continue until the data requested in th€ original RO$SEND$RSVP system call
is received by the task on the client board.

For this example we are assuming the following:

. the port on the client board has a single buffer large enoùgh for the reqùested data

. the port receiving the RSVP message is not being ùsed as a sirlk port

Figure 12-10 is ari algorithm for this transaction and Figùre 12-4 Ehows the physical
location of the boards in a sysrem.

Nucleus Uset's Guide t23l

EXTE\DED iRVX@ II MTJLTTBUS€ U SYSTEMS

8US INTERFACE

RECEIVE

S E N D

- - n

Loca l CPU

BUS INTERFACE

R E C E I V E

f I n
S E N D

Loca l CPU

BOARD

CLIENT

I S S U I N GTHE FSVP CALL BOARD REPLYING TO THE RSVP CA
S ERVER BOAR DBOARD

Operations that are transpaaènt to cal l ing tasks
LEGEND

lll€sseg€ Pasling Bus

1 .

2.

3.

4.

5.

7.

8.

9.

10.

Th6 task onths Cli€nt board issues an RQ$SEND$RSVP call. In an RSVP/R EPLY fansaction. th€
board that issuesth6 s6nd RSVP isth€ cli€nt;the board that r€pli€s is the;erver.
The Nucl6us Communication Servic€tumsthe inlormation in th€'RSVP'system callinto a messag€,
and ssls up th€ buffer space for th6 sxp€cted reply.
Th€ MPC sends th6 messago across a m€€sage passing bus to the remote agerìr specifed in rho BSVP
syst€m call.
The CPU on th€ s€N€r board r€coives a PIC interupi informing itthata MULTTBUS llm6ssage has

The Nucleus Communication S€tuice onihe seNer boad dirgcts th€ message to the appropriat€ port
{and ther€for€ task.)
Task 2 responds with an RO$SEND$REPLY system callthat corìtains information about the data being
safi,
Th6 Nucleus Communication Seruic€ on ths s6N€a board turnsth€ information in tha
RQ$SEND$REPLY call into a message that is sent bythe MPC.
fh€ m€s6age travols across ths msssage passing bus, an operation that is transpar€nt to th€ op€Éting
systems on both boards.
Th€ ÀlPC on th€ clierìt board places the messag€ into ths buff€r that was set up in slep two, and thsn
sends an ìnterrupt to th6 CPU, informing it of the completion of the m€ssage transaction,

The Nucleus Communication S€rvice on th6 clieÍt board directs the messag€ to th€ cor€ct task
usìnglhs PORÍ$|0. The CPu on ths cli€nt board is 'aware' of onty th€ op€rations performed in steps
1,2,9, and 10.

Figure 12-9. An RSVP/REPLY Transaction betryeer T\yo Extended iRMlp II Hosts

12-32 Nucleùs Uset's Guide

EMENDED IRMX@ II MULTIBUS@ II SYSTEMS

Client board
CalI an external procedure called get$dport thar returns a TOKEN

for the 1oca1 porr ro be used in rhe RegSEND$RSVP caII.
Ini t la l ize the socket structure, declared external ly.
sec the nessate slze co be zero length.
Equate che global variable rs\rp_size to che LITEML RSVPB (128 bytes.)
lssue the RSVP systen cal l ustng rhe prevtously ínir ia l ized var iables.
Use the Rq$RECEM$REPLY sysrem call ro wait for an ans\.'er.
Send thé reply nessage, "This is a send$reply, ,message" to the console screen.
Exlt froro the éxamD1e.

Ftgùe 12-10. Algorithrh for RQ$SENDSRSYP Exampte

Ca1l an excernal procedure, get$dport, that relurns a TO(EN to
be used in thè RQ$RECEIVE and RQgSENDgREpLy calls.

PelforÍì an RQ$RECEM using rhe TOREN rerurned frorn ger$dporc
Perforo an RqSSEND$REPLY on successful conpletion of the RQ9RECEM

IF the daca ar.r iwes correcÈ1y. nsg_pcr I NIL
Retuh che buffer ro rhe buffer pool

End server procedure

Ftgùre l2-ll AlgorithtÍ for Server Board

This example must be run with the folloli,ing example shown in Figure 12-13. To run
these rwo examples, first on the host in slot five qrpe:

RC!'I,ISG <CR>

Then on the host in slot one type:

SNDRSV? <CR>

Nucleus Usels Guide t2-33

EXTENDED iRMX@ II MULTIBUSO II SYSTEMS

$t i t Ìè('sndtsvp - in i t iaté e request-rèsponse transact ion')

/***5t******)l$t******:l***)t*
* INTEL CORPORATION PRO?RIETARY INFOR}IATION

* This softuare is suppl ied under the terns of a
- t tcense agreenent or nondísclosure atreeoenl v l th
' l InLel Corporat ion and may not be copied or disclosec
* excepl 1n accordance wich the terns of that agteenent.

* copyright Intel cor iporat ion 1987, 1988
* Al l r ie l ÌÈs reserwed

* For Intel cuscomers licensed for the iRl{x II operatíng
* Systen under an lntel Sofbrare Lícense Agreement, thls source code and
* object code derived therefron ar:e l icensed fol use on a single cenEral
* processing unlt for lnternal use on1y. Necessary backup copies and
* mult iple users are perni t ted. object Code derived f lon this soulce code
* is a Class I sofùrare prodùct under. ttl€ Tntel Software Licènsè Agreenent
* and is subjecc to the teLns and conditions of that agreement.

* Ior the right to nake incorporations, ot to Cransfer this software to
' t thl ld parCíes, contact lntel corporat ion.

/:l*:l*****rt*********************rt******************:f************************/
.-/

/********rt*:l***

* MODULE NAME: sndls,"?

* DESCRIPTION: Send a transaction request to a lre1l-known socket. The request
rt is sent as an unsol ic iCed nessage, ie wich no dara parÈ. t tai t
* for a response and print the nessage o Lhe consoLe.

:t**********:t*:t***************:t*************)t*:t********rt********:t*/ \-/

sndrsvp: DO;

$include (/rmx286/ inc/rn <pIm. ext)
Sínclude (dcon. eÌt)
$include (dcom.1it)
$ incrude (/rnx28 6/ínclerror. 1í t)
$incÌude (err. ext)

Fi8ltrre 12-12, Client Board Codc for RQ$SEND$RXPLY Example (ContiÍued)

12-34 Nucleus Usels Guide

EXTENDED iRlfi@ II MULTIBUS@ I1 SYSTEMS

DECI,ARE /* Líterals */

REMPORT LITERALLY '801H,,
/* Porx íd of renote porE */

REMHOSTID LITERAI,LY '5t , /* hoscid of renoce hosc */
CONBUF LITERALLY '2O' , ,/* conrrol buffer size */
RSVPB LITERALLY 'L28', /* rs,1p b!îfel' síze */
TSTPORT LITERALLY '801H', /* Ì{el1-kîown polr */
NOEXCEPT LTTEMLLY ,0,, ,/* no exceprion handling by sysrèiÌ :r/
SFLAcS LITEMLLY ,000008,; , /* dara buffer, synch, rcvrepty ftags*/

DECIARE /* Clobal vars */

status ttoRD,
port-t TOKEN, ,/* Token for local porx */
nessock socket, /* socket ro which nessage is senr *
nsock DI,IORD AT (€messock>, /* dlioró alias for messock */
con_buf (CoNBUF) BYTE, /* control b\tffer */
rs'vT_buf (RSVPB) BYTE, /* rsvP buffei */
ness_size DWORD, ,/* nurnber of byres in dara úessaae *
rsq_slze DWORD, /* rsw buffer size */
rsw_prr PoINTER, /* poinrs ro rsw message */
lnfo rec_info, /* receive info block */
buf_pool ToKEN, ,/* buffer pool aÈrached ro porr */
trans_id WORD; /d rransacbior id ,r/

CALL setgexception(NoÉXCEPT) ;
port_t = get$dporr (TSTPORT , @buf_poo1, CHAIN, @starus);
nessock. host_id - REtfHoSTtD ;
nessock.port_ld = REMPORT;
mess_size - 0;
rsw_size = RSVPB;
trans_ld - .q$send$rsvp (porÈ_r , nsock, Gcon_buf, NIL,

ness_size, @rsw_buf , rsw_size, SFl,AcS, @status) ;
CALL error$check (100, status);
rslT_ptr : rq$receive$reply (port_c, rrans_id, I{AITFOREVER, Gínfo, Gsrarus);
CAI-I. errorgchéck (110 , starus);
cal l rqc$ sendeoresponse (NIl,0 , Qrsq_buf, @s racus) ;
CALL errorgcheck(120, sratus):
cal l rq$exir$io$job(0,NIL,Gsracus) ;

ènd sndrsvp;

Fig].úe 12-12. Client Board Code for Re$SEND$RSVp Exarnple

Nucleus Uset's Guide f2-35

EX-ITNDED iRMX@ II MULTIBUS@ fl SYSTEMS

$t i t le(' rcvrsvp - respond to a request-response transact iont) \ .__,/
9conpacÈ

/****rl***rt******)t*:l***tr***
*' INTEL CORPORATION PROPRIETARY TNFORMATTON

* This software ís supplied under the terins of a
* I icense €Breenent or nondisclosure aEreement ví th
* Tnteì Corporat ion and nay not be copied or disclosed
* excepc in accordance lrith the terns of that agreement.

: f copyright Intel corporat ion 1987, 1988
' I A l l r i t l r E s r e s e f v e d

à" For I$tel cuslroners licensed for the iRl,lx 11 Operating
* System under an Intel Softlrare License Agreenent, thts source code and
* ot ' ject code deríved therefron are l icersed for use on a single central
* processing unic for incernal use only. Necessary backup copies antl
* mult ip le users are perni t ted. Object Code derived fron thís source code
* ís a Class I softnare product under the Intel. SofÈsaÌe License Agreenent
* and is subjecc to the terms and condítíons of that agreenent.

* For the fight to nake Íncorporations, or to lransfer this software to
* third part ies, contact Intel corporat ion.

/*********:t*:t************************)t*************************************/ _-/

/****************)t*********************)t**:r**************************

* MODUIE NAME: rcvrsvp

' l DESCRIPTIoN: I lhen a ness-ge is received, send a response via rq$send$reply
* and exiE.

*:f*********:l**************)t***)t*)t************:t*:!************it****rt***
/

,,,t

rcvfsw i DO;

$include (/rnx2B6/ínc/rnxp1m. ext)
9include (dcon. èxt)
9include (dcon.1i t)
$ include (/rmx28 6/inclerror . 1it)
9ínclude (err. exi)

Figure 12-13. llre Server Board Code to Receive and Answer an RSVP Message (Corìtiùqed)

12.36 Nucleus Usels cuide

E)NENDED iRMX@ II MUI]TIBUS@ N SYSTEMS

DECI,ARE /* Llterals */

TSTPORT LTTEMLLY '801H"
/* \rel1-known porr */

SFLAGS LîîERALIY '000008', /* daxa b!îfer, synchronous flags*/
NoEXCEPT LITEMLI-Y '0 ' i

/* no except ion handlíng by system */

DECI-ARE /* clobal vars */

status woRD,
port_t ToKEN, /* Token for loca1 port */
ínfo rec_info, /* info block on nessage received */
buf_póo1 ÌoKEN, /* buffer pool attached to port */
nes_buf(*) BlaE iniÈial (30,.Thts ís a scnd$rep1y méssege. ,Odh,oah),
Èran_ld l{oRD,
con_buf (20) BYTE, /* control nessage buffer */
r0sg_ptr POINTER; /* polnter to received nessage */

CALL set9except ion(NoEXCEPT) ;
port_t - get$dport (îSTPORT , Gbuf_poo1, CHAIN, @srarus);
msg_pcr - tq$rece íve (por.È_t, I,IAITFoREVER, Gínfo, Gsratus);
C A L L e r r o r $ c h è c k (1 0 0 , s t a t u s)
cran_id = rq$send$reply (po{r_c, info . rengsocker,

info. t ransgid, @con_buf ,
faines_buf , SIZE(nes_buf), SFI,\GS, @status) :

C A L L e r r o r $ c h e c k (1 I 0 , s t a t u s) ;
II nsg_ptr o NII- THEN D0;

CALL rq$release$buffer (buf_pool , seleccorgof(nsg_prr) , (info.f lags AND 3),
Gstatus);

cALr èrror$check (100 , status);
END;
6ALL rq$exít$io$j ob(0,NIL,Gstatus) ;

END rcvrsvp;

FiguÌe 12-13. The Server Board Code to Receiye and Answer an RSVP Message

12.5.6.4 Sending a Data Chain Message

This sectioo pÍesents an example of sending and receiving a message that is in data chain
form. The example is presented fur two modules, one that sends the data chain and one
that leceives it. Note that a port's ability to receive messages in daîa chain form is set
according to the attdbutes of the port's associated bulfer pool.

This example must be run with the following example shown in Figure 12-15. To run
these example two commands must be typed, one on each host terminal. Fi6t, on the
host in slot five, type:

Nucleus Uset's Gulde 1237

EXTENDED |ITMX@ I I MULTIBUS@ Ir SYSTEMS

RCVI'ÍSG <CR> \-- -/

Second, on the host i.. rlot one, q/pe:

DCSNDMSG <CR>

The host terminal in slot five wilJ display:

This is a data chain message sent by server.

$ title (' dcsndnsg - send a data chaln nessage to a knol,'n port')

$compact

/:l*:!*:k****************************

* INTEL CORPORATION PROPRIETARY INFORMATION

* This softvare is suppÌied under the terns of a
* t icense agreement or nondisclosure agreemen! wi lh
* T n t e l C o r p o r a t í o n a n d m a y n o L b e c o p i e d o r d i s c l o s e d
* except in accordance lrith the cemts of that agreeúent.

; aopyright Intet cotporat ion 1987, 1988

:
O11 ríghts reserved \ /

* For Intel custoners licensed for the iRlfi Il Operating
* Systen undèr an Intel Soft\dare License Agreenent, this soù.ce code and
* object code derived therefrom are l ícensed for use on a síng1e cent lal
* processing unít for internal use only. Necessary backup copíes and
* nult ip le perni t ted. objecÈ Code derived fron this source code
* ís a Class I software product under the Intel Softlrare l-icense Agreenent
* and is subject to the terms and condítions of that agreeroenc.

* F o f t h e r i g h t t o Ì n a k e i n c o f p o r a t i o n s , o r t o t I a n s f e r t h i s s o f t w a r e t o
* third part ies, contact lntel corporar lon.

**********************************rf*rf*:t*Jl***************)t*:t******)t$l***:l**/

Figure 12-14. Data Chain Serd (continued)

12-t8 Nucleus Uset's Guide

EXTENDED iRMX@ II MI]LTIBUS@ N SYSTEMS

/*******:t************)t***:l*****rt*****)t****************)t**************

* MoDULE NAME: dcsndrosg

* DESCRIPTIoN: Send a data chain message.

:t***********************x************************x*xx****xx**rt*******/

dcsndmsg: Do;

$include (/rnx286llnclrnxplm. exc)

$ include (dcom.l i t)
$ lnclude (/rnx28 6/inclerror. lir)
$iDcÌude (err. exL)

DECIARE /* I-irefals */

dc_el LITERALLY 'STRUCTURE(
/* data chain elernent *,/
b _ s i z e Í J o R D , / * b \ t f e r s i z e * /
buf_ptr P0INTER, /* buffer poínrer */
les l ioRl) ' , /* reserved */

REMPORT LITERAI-LY ,801H',
, /* porc id of re ote porr * /

REMHOST LITERALLY '05' ,
/* Host id of remote host */

CONBUF LITERALLY '16' , /x slze of a control buffer */
TSTPORT LITERALT,Y '801H"

/* r,el1-known pofr */
MSIZE LITERALTY '46' , /* rf.èÉèage eize *//
BUFSIZE LITERALLY 'I00',

/* b!îfer síze j./
NOEXCEPT LITERALLY '0',

/* no excepÈion handling by systen */
DCBUFSIZE LITEMILY t8' i

, /* data chaiD buffer s ize *, /

DECIAE /* G1oba1 vars */

stacus itORD,
port_t TOKEN, , /* Token for 1ocal porc 'k l
nessock sockèt, /* socket to which nessage is sent */
nsock DI]ORD AT (@nessock), /* d\ i 'ord al ías for nessock */
con_buf (CONBUF) BYTE, /* control buffer * /
ness_size l,loRD, /* nurnber of bytès in data message */
bpool TOKEN, ,/* buffer pool arcached to porx */
offset WORD, /* buffer offset !ùhere chain buffer srarrs *
sf lags WoRD, /* Cransnission f lags */
dc_seg_size I,IORD, /* segUent size for daca chain */
dc_seg_t ToKEN, /* token for data chain segnent */
dc_ptr poINTER, /* poi cer Lo daÈa chain segÌnenc */
d_cheín based dc_ptr(1) dc_el, /* data c}.ain */
dc_idx I,IoRD, /* dara chain index */
t rans_id I ,ORD; /* t ransacLion id */

Nucleus Userts Guide

Figue 12"14. Data Chain Send (continued)

12-39

EXIENDED iRMX@ tr MULTIBUSo fi SVSTEMS

DTC L.AÎE

dc_buf (BUFSIZE) BYTE INITIAL
(45, 'Thís is a data chain nessage sent by server ' , odh, oah) ;

CALL setqexceptíon(NoEXCEPT) ;
port_t = get9dport (TSTPORT, Gbpool, CttAIN, @status);
nìessock. host_id - REMHOST;
nessock.port_ld - REMPoRT ;

/* eteaxe data chain with at least enough blocks for each message
buffer + a terninat ing block */

ness_size - SIZE(dc_buf) ;

* calculace the slze of the segnent that rri1l concain the data chaln.
* The message is divided lnto pieces lrhose size is DCBUFSIZE so the totel
* nunber of elements in the daia chain is ness-size/DCBUFSIZE + 2.

':-/

* The addit ional 2 includes one possible piece of the nessage less than
* DCBUFSIZE and the terninating data chain elenent.

dc_seg_size - (ness_size/DCBUFSIZE + 2)* (s ize (d_chain)) ;
d^_seg_t - rqScre€te$sègment(dc_seg_size. @status) ;
dc_ptr - build$ptr (dc_seg_t , 0) ;

/* Fill ín the fields of the data blocks for each buffer containing
a part of che message */ '.__-/

o f f s e t : 0 ;
dc_idx - 0;
DO lat lTLE offset < ness_size;

d _ c h a i n (d c _ i d x) . b _ s i z e - D C B U F S I z E :
d _ c h a i n (d c _ i d x) . b u l _ p t r - G d c _ b u f (o t r s e t) i
of fser = offsec + DCBUFSIZE;
d c _ i d x : d c _ i d x + 1 ;

END;
n . h , i n / , 1 . i à w \ h < i ? a : n. ' \ -
d_chain(dc_i dx) .buf_ptr - NIL;

/* send data chain */

sflags = DATACHAIN 0R SYNCHTRANS;
trans_id - rq$send (port_t, msock, @con_buf, @d_chain,

f ì e s s _ s i z e . s f l a g s , G s r a t u s) ;
C A L L e r r o r $ c h e c k (I 0 0 , s L a L u s) ,
CALL rq$exit$to$j ob(0,NIL,@staÈus) ;

END dcsndmsg;

Figure 12-14. Data Chain Send

t2-40 Nucleus Userrs Gùide

EXTENDED iRMX@ II MULTIBUS@ II SYSTEMS

$t i t le ('dcrcvÍ lsg - recelve a 2K data chain message,)
$conpact

/******:t********)t********************:l*************tr*>t*rt********:!***********
X INTEL CORPORATION PROPRÎETARY]NFOR!{ATTON

* Thls software is supplied under the terns of a
* llcense agreenent of nondisclosure agreenent with
* lnte1 Corporat ion and nay not be copied or dlsclosed
* èxcept tn accordancè wlrh rhe rerÌs of thar sgreenenc.

* copyríghr Inrel corporat ion 1987, 1988

;
O1l righcs reserved

* For Intel customers licensed for the iRIflt II Operarint
* System under an Intel Sofb/are License Agreement, this source code and
x object code derived therefroo are l icensed for use oo a single central
* processíîg unit for internal use on1y. Necessary backup copies and
* rDult ip le users ere perni tced. Object Code deÍ ived fron this sourcè code
* is a 01ass I sofLware producr under rhe tnrel Sofúrare Llcense Agreemenr
* and is subject to the terms and conditions of chat agreement.

* For the right to nake lncorporations, or to transfer this sofbrare to
* third pert les, contact Intel corporat ion.

/********************5t**************!r*rr************************************/

/********************:l**************r!*******************)t***:t****rt***

* MODULE N t{Er dcrcvmst

* DESCRIPTION: llhen a nessage is received, determine whether it is ln data
hain or buffer forn. If data chain, compress the chain into

* a s ingle segnenc. Expect a 2K nessage wi th a pr in table
* part at the firsc and second 1K + 2 boundaries. tfrice rhe
x pr intable par t to the console.

!t*)!**************>t*:t*:t*********:t**:t$t****************************/

dcrc1, Ì lsg: DO;

$ include (/rnx286/lnc/rroxp1m. ext)
$inc lude (dcon. exc)

$include (dcoro.l i t)
9 include (/ri[x286linclerror , 1ít)
9include (err. exc)

Figure 12-15. Receive a Message in Data Chain Form (continued)

Nucleus Uset's Guide t2-41

EXTENDED iRMX@ II MULTIBUSO II SYSTEMS

.:

DECI,ARE /* Llterals */ \?

îSîPORT IITDR.ÀILY '801H', /* ve1l-kno.lln port */
NoEXCEPT LITERATLY tot i /* no exception handlint by systen */

DECIARE /* G1oba1 vars :*/

status IIORD,
Port-t TOKEN ' /* Token for 1oca1 Port */
1oca1_hos! IioRD, /* 1oca1 host id */
tnfo rec_lnfo, /* lnfo block on Dessage tecelved */
bPool ToKEN, /* buffer Pool */
dcmsg_ptr P0INTER, /* poÍnter to data chaín message */
lrsg_ptr PoINTER, /* pointer to received message */
nsg BASED dcDsg_ptr (1) BYTE;

\-/$: u b l í l l e (' g e t $ d c $ d a t a ')
/******rt*:t******:t*****)t*****************************t<****************

* PROC NAì{E| get$dc9data

* DESCRIPTION: Thfs procedure takes a daca chairì and copies the daca described
* by it lnto a siogle segllent. this procedure only works if the
rt data ís less than 64K ln size. Data chaíns can describe data
* grearer rhan 64K.

:t CALL: nbuf_ptr - getdcdata(dc prr, status_ptr) \--

* T \ P r n S . d . n t r - n n i F r s L o a d a t a c h a í n
* scatus_ptr - polnts co a status word

:! RETURNS: nbuf_ptr - polnts to a segment containíng the data
* descr lbed by a data chajn
,t**************//

get$dcqdata: PRoCEDURE(dc_ptr, status_ptr) PoINTER PUBLIC;
*7

DECIaRE /* Parans */

dc_ptr PoINTER. /* points Lo data chain *, /
status_ptf PoINTÈR: /* polnts to status wofd */

DECI,ARE /* L/Jcals */

Figue 12-15. Receive a Message in Data Chain Form (continued)

12-42 Nucleus Uset's Guide

EXTENDED iRj\,fr@ II MULTIBUS@ II SYSTDMS

dc BASED dc_ptr (1) blk_struc,
status BASED status_pcr WORD,
num_bytes IIORD, /* nu.nber of bytes in dets chaln */
cpybuf_tok TOKEN, ,/* buffer to hold data chain data *,/
cpybuf_ptr: POINTER, /* points to cpyb\tf */
cpybuf BASED cpybuf_ptr c_buf,
I WORD, /* 1oca1 index */
cpyidx ITORD; ,/* iDdex into cpybuf'*/

nun_bytes - 0;
i : 0 ;

/* get the size of the data described by the data chaín */

DO ltt ILE dc(i).b_size c 0;

nun_bytes - nun_bytes + dc(i).b_size;

END;

/* add 2 to nun_byles for the síze field in c_buf */

nun_bytes - nun_bytes + 2:
cpybuf_cok = rq$creste$segnent (nun_bytes , statusjtr);
CALL error$check (100 , sraLus):
cpybuf_prr - òulld$prr(cpybuf_cok, 0) ;
cpybuf.slze - nun_bytes - 2;

i = 0 ;
cpyídx - 0;
DO iarHILE dc(í) .b_size o 0;

CALL novb(dc (i) .buf_ptr, ecpybuf ,buf (cpyidx), dc(i) .b_size) ;
c p y i d x - c p y i d . ! + d c (i) . b _ s i z e ;
I - i + 1 .

END;

RXrLEN cpybuf_ptt;
END getdcdata;

/* Staxx Î.aír, */

CALL set$exception(NoEXCEPT) ;
port_t = get$dport (TSTPoRT, Gbpool, CHAIN, @status);
mslpcr = rq$receive (port_t, WAITF0REVER, @info, @status);
CALL error$check(110, scaLus) ;
IF (info.ftags Al{D DATACHAIN) = DATACHAIN THEN Do;

dcnsg_pcr = get9dc$data(nsg_ptr, @status) ;
CALL error$check(120 , status);

Figue 12-15. Receive a Message in Data Chain Form (continued)

Nùcleùs Usels Gùide 12.43

EXTENDED iRMX6) II MULTIBUSo II SYSTEMS

:t print nessage that xras contained aÈ start of Èhe buffer
* hw rhè f írsr c lpmFnr ín the data chain

CALI- rqc$send$eoqresponse (NIL, 0 , @msg (2) , @status) ;
CALI- error$check (130 , status);

* prlnt nessage that was contalned ac start of the buffer described
* by the second elenent ln the data chaln

CALL rqc$send$eo$response (NIL, 0 , @rnsg (1026) , @status) ;
CALL error$check(140, status);

END;
EI,SE DO;

caLL rqc$send$eo$response (NIL,0, msgl, t r , @status) ;
CALL error$check(150 , status);

END: \.-_7

cAlL rq$release$buffer (bpoo1 , SELECToR$oF(nsg_pcr), (info.f lags AND 3),
@status);

CALL rqSexítioj ob(0,NIL,@stacus) ;
END dcÌca'nsg;

Figure 12-15. Receive a Message in Data Chain Form

12.5.6.5 Sending a Message in Fragmenis

This section presents an example of serding and receiving a message that is broke[into
Iragments. The example is presented in two modules, one thaî sedds the fragmented
message and ofle that receives it. Note that a port's ability to receive messages rn
ftagment form is set according to the attribìÌtes givcn to the port at the time of its
creation.

This example must be run vr'ith the RSVP procedure shown in Figure 12-12. To run this
example two commands must be typed, one on each host terminal. First, on the host in ._/
slot five, type:

SNDFRAC <CR>

This procedure will break the data into îragments artd send them to the processor board
in slot one.

Second, on the host in slot one, qpe:

SNDRSVP <CR>

This procedure will receive the fragmented data and display in on the termioa,.

The host terminal in slot one will display, "This is a reply sent in fragDents."

t2-44 Nucleùs UserJs Guide

EXTENDED iRMX@ II MULTIBUS@ tr SYSTEMS

$ t i l l e (r s n d f r a g - s e n d e f r a g n e n t e d D e s s a g e ,)

/**********************'t******:t*:t*:t**********:!*:!*:!*à!********:t*:!*:r***********
INTEL COR?ORATION IROPRIEÎARY INFORMATION

* This soffirare is supplied undet the terl[s of a
* license agteenent or nondisclosure agreement rrlth
* lntel Corporarion and nay noc be copied or disclosed
* except in accordance with the tenos of tbat agreenent.

x Copyrighr Intel Corporeri.on 1987, 1988

;
O11 righrs resened

* For Intel customers lícensed for the iRl0a lI Operating
* System under an Intel Software ticènsè Agreemenr, rhis source code and
* object code derived rherefron are ltcensed for use on a single central
* processing unlt for internal use on1y. Necessary backup copies and
* nult lp le users are perni t ted. Object Code derived f ton thís source code
:t is a Class I softùare product undet che Ince1 Software License Agleenent
* and is subject Èo the terns end condtrions of thar atreenenc.

* For the right to make incorporatlons, or to transfe! this soffidate to
* third part ies, contact Intel corporat ion.

//******************)t**:t***********rt*rt**********rt*rt*****************:t*:t*****//

/*****************x*x*:r****xrvx*****rt****xxx*x************************

UoDùLE NAME: sndfrag

DESCRIPTIoN: Receive a transaction request, send che reply ss a fragÌented
nessage.

********************************!r****+*************

sndfrag: DO;

$íùclltde < / rrl.x286 / inclrnxp1m. exr)
$includè (dcon. ext)
$include (dcon, l i t)
$ ínclude (/rmx28 6/ inclerror. 1ir)
$include (err. ext)

Figure 12.16. Send a Message in Fragments (continued)

Nucleus Uset's Guide t2-45

EXTENDED iRMX@ II MULTIBUS@ II SYSTEMS

DECLARE /* Lltetals */

FIAGLEN LITERALLY ,8r, ,/* fraefnencation buffer length */
TSTPoRT LITERALLY '801H',

/* well-known port */
EoTîlAGs LITERALLY '000008', /* send$reply flags for buffer, synch

ttan and eot */
NoEXCEPT LITERALLY '0' , ,/* no exception handling by systenì */
NOTEOTFI-AGS LITEMLLY '0200H'; /* sane as above except noc eoc */

DECLARE /* Global vars */

status ldoRD,
port-C ToKEN, /* Token for local port */
tnfo rec_info, ,/* irÉo block on nessage received */
buf_poo1 TOKEN, /* buffer pool actached xo port */
mes buf(*) BYTE lnittal (11:*::^1"":-.:t1y seoc in

úes-idx ÍIORD, /* nes_buf index */
mès_sizF WORID, /* síze of mes_buf x/
ftaS_síze IIORD, /* slze of fragment sent */
sflags IiORD, /* send nessage flags */
t ran_id I iORD, /* t ransacl ion id */
con_buf (20) BYTE, /* control rúessage buffer */
nsg_ptr POINTER; /+ pointer to rècèiwed úessage */

CAIL set$excepcton(NoExcEPT) ;
porc_t - get$dport (TSTPORT, @buf_poo1, NoCHAIN, Gstatus);
nsg_ptÉ - lq$rece ive (port_t, WAITFOREVER, @info, Gstatus);
CALL errorqcheck (100 , status);

IF info.status - E$oK THEN D0;
mes_size - size(nes_buf) ;
nes_idx = 0;
sflags - NoTEOTFI,AGS ;
frag_size = FRACLEN;

Figùe 12.16. Send a Message in Fmgments (continued)

12-46 Nucleus Uset's Guide

EXTENDED iRMX@ II MULTIBUS@ N SYSTEMS

/* Break nessage lnto fragments and send then */
DO MTLE ltres_idx < més_size;

IF nes_idx + FRAGLEN > nes_size THEN D0;
ftag_slze : úes_slze - roes_idx;
sflags - EOTFI,ACS ,

END;

tran_id - rq$ send$rep1y (porr_r, info. rengsocker, ínfo.rransgid,

9:îi.l"t;-9:.:-P:r(nes 1dx), rras size,
r ! r óÉ r r r c5LéLus / ,

CALL error$check(110, status);
nes_tdx : nes_idx + FRAGLEN;

END;
lF msg_ptr c NIL THEN D0,

CALL rq$releese$buffer(bufjoo1, selector$of (nsg_pcr), 0, @sratus) ;
CALI- errorgcheck (110, status);

END;
END;
CALL yq$exit$io$l oh(0,NTL,Gstàtus) ;

END sndfrag;

Figue 12-16. Send a Message in FragÌents

'12.5.6.6 Receiving a Message in Fragment Form

This section prcsents an example of sending a message and receiving it in fragment form.
The example is presented in t,ro modules, one, SFRAG, rhat initiates a transactior which
forces receiving to be done in fragment form. The other module, RCVFRAG which
receives the message and prints it on the console screen. To run this example two
commands must be tped:

First, on the host in slot five, type:

RCVERAG <CP!>

Second, on the host in slot ore, t'?e:

SFRAG <CR>

The host terminal in Slot one will display:

Thís is a reply Èo a fragnented nessage.

The host terminal ir Slot five will display:

îhis ts the second fregnent.

Nucleus Uset's Guide 12"47

EXIENDED iRMI@ II MIJLTIBUS@ II SYSTEMS

$tit lè('rcvfreg - receÍvè e fragnentèal ruessegè')
SconDact:

/********************************* *************x***********
* INTEL CORPORAT]ON PROPR]ETARY INFORMATION

* Itris software is supplied wúer the tenDs of a
* license egreenent or nondlsclosurè agrèenent wlth
* IÍtel Corporalrion ard nay not be copled or dlsclosed
* except ín accordance ldíth the Èerns of that agreenent,

* copyright Intè1 corporat ion 1987, 1988
tr A1l rtghÈs reserved

* For Intel custonels licensed for the iRlDt II operattng
* Systen uùder an lnte1 Softwale Llcense Agreeùent, this source code and
* object code derlved therefrorn are licensed for use on é single cenlral _,,,
* processirg unit for internal use on1y. Necessary backup copies aaal
' l nul t ip le users are pemltced. object Code deríved f lon this source code
* is a Class 1 softlrare product undel the Intel Softùare License Agreenent
* and is strbject to the terms and conditions of that agreenent,

x For the rlght to make incorporations, or to transfer this softvrare Èo
* third part ies, contact Intel corporat ion.

/:*************************5!***********************************rf************/ \-,

/**!t********)t*)t**rt*

* MODULE NAìIE: rcvfrag

* DESCRIPTIoN: Receive a fragmented nessage and princ the message contained
at the beginning of each fragment.

Îhe task leceives a printable nessage. lf chere is not enough
buffer space to recelve the entíre nessage, receive the message .-'
in fragrnents. (The info data structure associated with the
rq$recèíve call contains the nìessage length and lhe Cransaction
ld necessary co recelve che message in fragnenrs.) Pr inc
the nessage and send a printable nessage co the sender.

*************>t***************************************r!*:t*************/

Figure 12.17. Receive a Message in Fragments (continùed)

12-48 Nucleus Uset's Guide

EXTENDED iRMX@ II MULTIBUS@ Iì SYSTEMS

rcvfrag: DO;

$include (/rnx286/ínc/rmxp1m. ext)
q i n . l t ! ? ì ó , / 7 i ^ ^ ó À w r \

ì rncruoe(ocon. r l El
$ include (/rnx286/1nc/error . 1ít)
a i n . l , . . r è , / é r r - - ' \

DECI,ARE /* Lítèrals */

FRACLEN LITEMILY '1024' , /* fragmentacion buffer length */
BUFFRAG LIaERALLY 'O' , /* fragnenc ls buffer flag x/
TSTPORT LITEMLLY ' 801H' , /* r'el1-knoran por:t */
sFl-AGS LITERALLY '000008', /* data búffer, s lnchronous f lags*/
NOEXCEPî LITERAI-LY '0 ' ;

/* no except lon handl ing by syscem */

DECURE /* CIobaI vafs */

status WoRD,
p o r c _ t T O K E N . , / * T o k e n f o r l o c a l p o r t * /
info rec_info, /* info block on nessage received */
buf_pool TOREN, /* buffer pool attached t:o por:x */
rùes_buf(*) B\IE ini t ia l (41, ' f t is is a reply Èo a fra8 enced

n e s s a g e ' , o d h , o a h) ,
tran_id WORD, /* transaction id */
bytes_rec WORD, /* number of bytes received in ness fragrnents */
con_buf (20) ByIE, /* contÍol nessagè buffèr * /
frag_buf(FRAGLEN) BYTE, /* fragnentation buffer: */
nsg_ptr PoINTER; /* pointer to received message */

CALL set$except ion(NoEXCEPT) ;
port_t - get$dport (TSTPoRT, Qbuf_pool, NoCHAIN, Gstatus);
nsg_ptr = rq$receive (port_t , WAITFoREVER, @info, Gstatus);
CALL errorgchèck (100 , 5Èatus);
IF info.sÈatus: E$oK THEN D0; /* nessaBe may not be fragnented */

CALL rqc$ sendeoresponse (NIL, 0 , nsg_ptr , @s tatus) ;
CALL error$check (120 , srarus);
tran_id - rq$ send$reply (porr_r , info.rem$socke!,

í n f o . t r a n s $ i d , G c o n _ b u f ,
\ o m e s _ b u f , s i z e (n e s _ b u f) . S F I A C S . @ s t a r u s r ;

Figure 12-17. Receive a Message in Fragments (continued)

Nùcleus UsePs cuide 12-49

EXTENDED iRMI@ II MIJLTIBUS@ II SYSTEMS

CALL exror$check(130, status);
IF msg-ptr o NIL THEN D0,

CAI-L rq$release$buffèr (buf-pool , sElEcîoR$oF(nse-ptr) , (i Î1fo.f lags AND 3),
Gstatus) ;

CALL error$check (140 , status);
END;

END;

ELSE DO;
1î ínfo. status = E$NOSLoCAL$BUFFER THEN Do;

,/* receive ÎragnenLs and print Í Ìessage at beginning of fra&nents */
bYces-r:ec = 0;
D0 i{ùILE bytes_rec < info.daEa$Ienglh;

carl ' rq$receíwe$frasnent(port_t, info. rèm$socket, info. trans$íd,
Gfrag_buf, FMGLEN, BUFFRAC, @status) ;

CALL error$check (150 , status); \-- l
byces_rec : bytes_rec + FRAGLEN;
CALL rqc$sendqeo$response (NIL,0, Gfrag_buf, estatus) ;
cALr error9check(160 , status);

END;

,/* complete transaction by sendlng a printable message */
f ̂ (- - - r< f - - t y (po f r_ t , i n fo . rem$socke r ,

info. hrans$id, @con-buf .
Gmes_buf , size(mes_buf), SFI,AGS, @status) ;

CALL error$check(170, status); \ -/
END;
E]-SE

GALL rq$exit$1o$j ob(0,NIL,GsÈatus) ;
END;

cALl- rq$exit$io$job(0,NIL,Gststus) ;
END rcvfrag;

Figure 12-17. Receive a Message in Fragments

12,50 Nucleus Uset's Guide

EXTENDED iRMX@ II MULTIBUS@ SYSTEMS

gt i t le('sfrag - in i t iate a transact ion that forces receive fragmentat ion')
9conpact

/**************:!**5t*rl**********:l****
* INTET CORPOR]\TION PROPRIETARY INFORMATION

* Thís sofcrare is suppl ied snder the terns of a
* l icense agreenent ol nondisclosure agreenent Ìr í th
* lntel Corporatíon and nay not be copíed or disclosed
* except in accordaDce uith the teftns of that agfeement.

* copyright lncel gorporat lon 1987, 1988
x Al1 r iehts reserved

* For Tnt€l custoners licensed for the íRlO(II Operating
* Syscem under an lntel Software Lícense Agreement, Ehis soulce code and
* object code derived therefron are l icensed for use on a síngle central
* processing unit for internal use on1y, Necessary backup copies and
* mulciPÌe pèrni t tèd. Object code deriwéd froú this source code
* ís a Class I soft\,rare product under the Intel Soft\rare ricense Agreenent
* and is subject to the tèrms and coÌìdi t ions of that agreenent,

'* For the r íghÈ to nake incorporatíons, or to transfer this soft l rare to
* chird part íes, contacr lnre1 corporar ion.

//x*x***************rt*****)r***f

/x*******************:t*rt********)t**

* MODULE NAME i sfrag

* DESCRIPTIoN: Send a LransacEion request to a wel l -knotu'n socket.
x The requèst is s€nt with a data part to forcè récèive
* fragnentat ion i f the bùffers at the receive port are
* Iess than 2K. Llai t for a response and pr int the nessage
* on the cónso1e.

*:t** j!*****rt*rt************/

sfrag: D0;

$ incrude (/rnx2B 6/inclrmxplrn. ext)
$ include (dcon. e:t)
$include (dcon.1it)
$ incrude (/n0x28 6/inclerror. I i t)
$ ínc lude (err . exc)

Figure 12-18, Sending a Message that Requires Receive Fragmentation (continued)

Nucleus Usefs Guide 12.51

EXTENDED iRMX@ II MULTIBUS@ II SYSTEMS

DECIARE /+ LiteraLs */

REMPORT LITERALIY '801H' ,
/ * Por t íd of rèmote por t * /

REMHoSTID LITERALI-Y '5'
, /* hostid of renote host */

CoNBUF LITERALLY '2O' , /* control buffer síze ; . /
RSVPB LITERALLY ' t28' .

/* rsvp buffer s ize */
TSTPORT LITERAI,LY '801H' , /* nell-known porc */
NoEXCEPT LÍTERAI-LY 'O' , /* no exception haadling by systen */
SFI-A.GS LITERAI-LY '000008'; /* data buffer, synch, rcvreply flags*/

DECI-ARE /* Global vars :r/

s catus IIORD,
port_t TOKEN, ,/* Token for 1oca1 port */
rnessock socket, /* sockeL Eo Nhích nessage ls sent */
rnsock DlloRD AT (Gnessock), ,/* d\rord alias for nessock */
con_buf (C0NBUF) BYTE, /* control buffer */ ..-,-/
fs1p-buf (RSVPB) BYTE, /* rs-rp b\ffer */
mess_size DlloRD, ,/* number of bytes ín data rnessage */
rs!.Ii_size DIJORD, /* rsvp brlffer síze */
rsr?_ptf P0INTER, /* polnts ro rsvp ùìessage */
info rec_info, /* receive info block */
buf_pool TOKEN, /* buffer pool at tached to port * /
mbuf(2048) BYTE INITIAL(37, ' this was rècèived vía fragnentat ion, , oah, odh) ,
tràns_id l,lORD; /* rransacrton id */

CALI- set$exception(N0ExcEPT); \--l
port_t : getqdport (TSTPORT, @buf_pool, CHAIN, Gscarus);
messock.host_id = REMHoSTID;
messock.port_id : REMPORT;
rness_size - síze(mbuf) ;
rsr.? size = RSVPB;
CAIL M0VB(@(29, 'This ís the second fragnenr, ,odh, 0ah) , @nbuf(1024) , 30);
trans-íd : rq$ send$rsq (port_t , nsock, Gcon_buf, @mbuf,

ness _size, Grsvp_buf , r :svp_slze, SFIAGS, @status) ;
C A L L e r r o r $ c h e c k (1 0 0 , s r - a r u s ; ,
rsvp_ptI - rq$receive$rep1y(port_t, t rans_id, I 'ATTFOREVER, @ínfo, @status);
C A L I e r r o r g c h e c k (1 1 0 , s t é t u s) ;
CALI rqc$ s endeoresponse (NlL, 0 , Grsw_buf, @s rarus) ;
C A L L e r r o r 9 c h e c k (1 2 0 , s t a t u s) ;
cal l rq$ex1t$io$job(0,NIL,Qstarus) ;

END sfrag;

Figure 12-18. S€nding a Message that Requires Receive Fragmentation

Nucleus Useds cuide

EXTENDED iRMX@ II MIJLTIBUS@ II SYS'I'EMS

DECI,ARE

host lnfo

LITERAL]-Y ' STRUCTURE (
host_id
port_id

LITEML]-Y' STRUCTÎIRE (

WORD,
woRD), ,

th_count WoRD,
nexc_id woR),
hcounc i,]oRD,
res (2) BYîE,
hostids(10) woRD)' ,

porr_id !ùoRD,
type BYTE,

flags WoRD)' ,

flags WoRD,
status WoRD,
trans$id WORD,
data$fengclÌ Dt{oRD,
for$porc ToKEN,
ren$socket DWoRD,
con$nsg(2o) BYTE,
reserved(4) BYTE) ' ,

b_s ize
buf_ptr

s í z e
buf(1)

p o r c _ i n f o _ s L I T E M L L Y ' S T R U C T U R E (

r e c _ l n f o L I T E R A I - L Y , S T R U C î U R E (

blk struc L]TERALLY 'STRUCTURE(

LITERALLY ' STRUCTURE (c_buf

DEC'ARE
DATACHAIN
NODATACHAIN

CIIAIN
NOCHA]N

SYNCHTRANS
ASYNCHTRANS
RECRES
RECREPI,Y
NOTRAN
STATMESS
TREQÙEST
TRESPONSE

I{IORD,
POINTER,
woRD) , ,

INORD,
BYTE)' ;

LITERAL]-Y
LITERAL]-Y

LTTEMLIY
L]TEMLLY

LITEMLI-Y
LITERALI,Y
LITERALLY
LIÎEMLLY
]-ITERALLY
I-ITERAILY
]-ITERAI-LY
I-ITERALLY

llterals
,o001B, ,' 0 ' ,
, 0 1 0 8 , ,

' 0 ' ,
, 0 , ,, 010000B ' ,

'01000000008, ,
, 0 , ,, 0000000008 , ,

, 0000100008 , ,
,0001000003, ,
, 0010000008 , ;

/* data chain Dessage flag */

/* contiguous buffer ness flag */
/* daLa chain buf pool creation f.Lag */
/* ro data chain buî pool creaLÌolr flag

/* synchronous transmission flag :?/

,/* asynchronous transnlssion flag */

/* xeceíve used for send$rsyp */

/* receive$reply used for send$rs\,"p */

/* transactlonless rnessage */
/ * c i e i , , c n a < è r d a * /

,/* transactíon request nésseAè */

/* transaction response mess */

Nucleus Uset's Guide

Fisure 12-19. Literal File DCOM.LIT

l2-5-t

EJ'TNNDED iRMX@ II MIJLTIBUS@ II SYSTEMS

..--,/

create$bufqpool : PROCEDURE (nax_bufs , init_nun_bufs, ettrs, status_ptr) ToKEN
EXTERNAI,;

DDCIARE /* Pararleterc */

nax bufs WORD, /* naximun nunber of buffers in buffer pool */
init_nun_bufs lloRD, /* tnitial number of buffers in pool :t/
attrs l,ioRD, ,/* buffer pool creation attributes */
s L a l u s _ p L L P O T N T E R i / * e x c e p L i o n p o i n L e r * /

END cr:eaceSbufspool ;

getSdport: PROCEDùRE (port_id, buf_pool_ptr, b_atrrs , srarus_prt) ToKEN EXTERNAL;

DECIARE /* Paraneters *'/
__/

port_id t loRD,
buf_pool_ptr PoINTER,
b_attrs WoRD,
status_ptr PoINTER;

END get$dporÈ;

tr'igure 12-20. Extemal File DCOM,EXI

12.5.6,7 The Name Server ExamDle

This is the most complex example provided to the user with the Extended ìRMX tr
Operatirg System. This example implemcnls a table that is used to dynamically catalog
the names of all the ports created in a system. Two tasks, one for remote requests and
one for local requests, manage the name server table,

The remote se.ver task uses both control and data messages to service requests. The local \v/
server services requests through data mailboxes. Both tasks are needed because the
Nucleus Communication Service cannot be used for local communication. The name
sefler table itself is implemented as a circular list which is accessed by a group of
procedures that inse.t or delete port names, get or change socket information, and set up
the table for these accesses.

When a client board rnakes a reques! !o lhe name sewcr, tho request is sent, the calling
task waits ior a reply, and the name seper retums information specific to the request
(e.g., the result of modifying an entry in the table, or the socket for a remote port.)

In order to run the name se er example, the fofowing commands are necessary:

12-54 Nucleus Use/s Guide

E)ffENDED iRMX@ II MULTIBUS@ II SYSTEMS

ATTACHFILn /RtM286 /DEMO/ì:-[L/MB2INSER!R <CR>

This command makes the directory containing the name seNer example the current
directory. Next, qpe:

SUBMIT COMP]LE <CR>

This command invokes a Command Sequence Definition (CSD) file that generates the
executable name setver and all of its aequired modules.

Ihe name server can be run as a background job one of the processors. To sîdrt the name
server running as a backg.ound job gpe:

BACKEROUND NSERVR > NSERIR.DOC <CR>

See flre Extended |RMX II Operqtorh Guíde To The Human Interface t.narl]ual îor
informaîion on the background command.

Two modules are provided which demonstrate the use of tbe name server. NSSNDMSG
and NSRCVMSG which execute as a pair. NSRCVMSG must qecute fist, it posts a
socket with the nameserver under the name "receiver.', NSSNDMSG then executes,
sending the tameserver a look-up request on the name 'receiver.i NSSNDMSG then
sends a message to rrreceiver"; NSRCVMSG prints the message "This is a simple
messagerr, to the temínal console.

This process can be demorstrated on eiîher host board, but the order of module execution
cannot be chansed,

Nucleus Uset's Guide t2-55

E)|TENIIED iRMX@ II MI]LTIBUSO II SYSTEMS

12.6 GLOSSARY

AgCa!-Any board that is connected to the MULTIBUS II parallel system bus (iPSB).

bus interface-The Message Passing Coprocessor (MPC) chip is sometimes referred to as
the bus interface. The purpose of the MPC is to provide a transparent interface between
the local CPU and the parallel system bus (iPSB).

Q[9O!-A physical board (usually a processor board) that requests a service from another
board. During a read from a disk, the processor board that requests the read is the client.
See also Server.

clata chain-A method of receiving data messages that are larger than any one buffer can
hold. Data chaining is performed transparently by the system hardware.

d4.!4g!4q-The message format used by MULTIBUS II. Datagrams can be descdbed as
similar to mailing a letter. You write a letter, address it, put a stamp on it a place it in a
mailbox. You assume that the letter will get to its destination, or if a reply is needed, you
put an RSVP h the letter itsel|

Interconnect S''ace--A group of 512 registers that contain information about each board.
The primary use of this space is to replace physical jumpers. The configuration of a board
can be changed by writing to interconnect space rather than inserting or removing physical
jumpers.

4gggggg-All data and interrupts sent over the MULTIBIIS TT Paralel System Bus (iPSB).
Messages can be thought ofas a block of bytes sent over the bus that contains all ofthe
information needed to send the message to the intended destination agent (board) and
receive a reply, if requested. Two t)?es of messages are supported in MULTIBUS ,
solicited and ùnsolicited. See also ùnsolicited messages and solicited messages.

pe4-A data structure defined in the transport protocol that is used in passing messages.
It provides a level of addressing thar permits sending data to a particular îask (program)
running on a board.

$gryg-A physical board (frequently a cont.oller that provides data storage) that provides
a seNice to another board. During a r€ad from a disk, the controlleî board that does the
read and sends the data to the requestor is the serve-r. See also Client.

soli(ìted messages--Any data message that requires negotiatioÍ for buffer resources.
Solicited messages are used to send data, such as disk read and write data, from one
board to another. (See also, message and unsollcited message.)

12-56 Nucleus Uset's Guide

EXTENDED iRMX@ II MULTIBUS@ [SYSTEMS

source/destination address--An eight-bit field in every message passed on the paraÌlel
systen bus (iPSB). This eight-bit field alows the unsolicited message to act as a virtual
interrupt, this addressing scheme permits a total of 255 possible interlupts or board$, in a
single system.

unsolicited mersages--Any message that come$ over the iPSB bus that was not requested
by the receiving agent (board). Unsolicited messages are used as inteÍùpîs, or mntrol
signals, They relieve the local CPU from having to poll for messages coming over the bus.
The unsolicited message is 32 bytes long. (See also, message, solicited messagq and
sou.ce/destination address.)

virtual interrupt*A software-routed interrupt that is contained in a MLILTIBUS II
message. Each MULIBUS II message contains ao eight-bit field that specifies the
source and destination of the message. These souce and destination bits allow the
message to act as at interrupt to the Message Passing Coprocessor (MPC).

Nqcleus Uset's Guide l2-57

13.I INTRODUCTION

The Nucleus is a configurable part of the operating system, It contains severar opuons
that you can adjust to meet your specific needs. To help you make configuration choices,
Intel provides three kinds ofirformation:

. A list ofconfiguîable optioos

. Detailed information aboùt the options

. Procedures to help yoù speciry yoùr choices

The rest of this chapter provides the first category of information. To obtain the second
and thiÌd categories of information, refer to the ìRlvD{ II Intemctive Cotufrgumtion Utilíty
Rekrcnce Manual.

13.2 HARDWARE

The operating system supports a variety of hatdware envftonments. By using the ICU,
you can tailor the operating system to match your hardware. In particular, you can specily
information about the following hardware elements:

Timer You can speciry the timer's base port, interval between ports, clock
interrupt level, and clock frequency.

NPX You can specifu the addition of a Numeric Processor Extension for tasks
requùing floating point insîructions. The default option assùmes that no
NPX is present, If there is an NPX in youl system, bùt you do not indicate
it during configuration, your application camot use NPX instructions. If
you speciry an NPX during configuration and your system does not contaú
an NP)q you may cause unexpected results.

Nucleus Useds Guide 13-1

NT]CI,NUS CONI'IGfIRATION

1 3.3 SYSTEM CHARACTERISTICS

When you configlre the Nucleus, you can speciry a number of chaÌactedstics that affect
your system:

Parameter A systeú call validates input parameters by checking for the
Validation existence of objects and by verifing that the objects are the correct

t pe. If your system does not include the Basic I/O Slstem, you
carl exclude parameter validation from your system.

GDT Entdes Each iRMX II object requi.es one cDT eùtry. Therefore, you
need to configure the ùumber of GDT slots your system requtes.

IDT Entries You can allocate the number of IDT entdes, up to 256, that your
system needs in the interrupt descriptor table.

Default Exception You cafl choose from one of four options for your system default
Handler handler:

\'_ -'l

. Use the system default exception handler that deletes offending
tasks.

. Use the alternative system exception handler that sùspends
mther than deletes.

r Use the iRMX II System Debugger as the exception handler.

. Supply your own excepîioo handler. __/

Round Robin You can determine if round robin scheduling will be in effeat. lf
Scheduling so, you can set the priority below which tasks will be assigned

round robin scheduling, and the number of clock ticks each task
may run before being rescheduled.

Nucleus Userts Guide

NUCLEUS CONI'IGIJRATION

13.4 SYSTEM INITIALIZATION ERROR REPORTING

During the configuration process, you can elect to have initializstion errors reported for
each layer of the operating system. This is done by coofiguring Initializarion Error
Reporting (RIE) into your system v/hen you configùre the Nùdeus. Then, whenever the
operatidg system encounters an initialization error in a layer, it displays the following
message and relinquishes control to the monitor:

<layer nane> Initialization Error: <erfof code number>

lf Initialzation Error Reportiry is oot configured into the Nucleus and an initialization
error occurs, a code indicating the layer respoísible for the initialization effor and the
corespondiùg erîor code are placed in the first two words of the Nucleus data segment
(1E0:0000H). The NÌrcleus initialization task then goes into aù in{irfte loop.

The codes for the laye6 that can cause an initialization error are

1 = Nucleus failure

2 - BIOS failure

4 = Human Interface failure

Nucleus Usey's cuide 13-3

The Extended iRMX II Operating System recogúzes these data t pe.s:

BYTE

WORD

DWORD

INTEGER

POINTER

SELECTOR

TOKEN

An unsigned, eight-bit, binary number.

An unsigned, two-blte, binary number.

An unsign€d, 32-bit binary number, occupying two cootiguous
words ol memory.

A signed, two-byte, binary number sto.ed in two's complement
form.

Two words contaioing the segÍieùt selector and an offset, (offset
first).

A 16-bit quantity that is equivaleot to the selector portion of a
POINTER.

A word containilg îhe logical address of an object. Tokens are
selectors that reference an €ntry ift a descriptor table, The entry in
the descriptor table corÌtains th€ physical address of the object.

A seque[ce of consecutive bytes havilg this structure:

length BYTE,
chars (255) BYTE;

The filst b)'te contaiDs the length of the string (the number of
succeeding b,'tes).

The subscript of the chars field (255) is the maximum number of
bytes in arly string Note, that some system calls limit strhgs to
lengths shorter than 255 bytes.

STRING

Nucleus Uset's Guide a-l

8.1 INTRODUCTION

This appendix iists the type codes for all iRMX II objects. In addition, it documents the
amount of memory needed to create Basic I/O System objects.

8.2 OBJECTryPES

Each iRMX 1I object t}?e is known within iRMX lI systems by means of a numeric code.
Table B-1 lists the types with their codes.

Table B-1. Type Codes

OBJECT TYPE NUI\iIERIC CODE

Task

Maìlbox

Sehaphore

Region

S€gment

Extension

Connection

l/O Job

LogicalDevice

User-Created

Composhe

1

2

3

5

6

7

I

l CrO

1 0 1

300

301

vari€s from 8000H ro

oFFFFH depending on lhe value
speciried in C8ÉATE$EXTENSION

NOTE: L'sers and connectionÈ are desctibed inthe E tended LRMX II Btltíc I /O 9stem
User\ Guídz in Volume 2 l/O iobs and ioqicaldevicès erc deicribèdiî,tha ExÍended
|RMX II btekded I/O Ststem ReÍercnce Manual

Nùcleus Uset's Guide B-1

iRMX@ II OBJECT TYPES AND RESOURCE REQUIRXMENTS

8.3 RESOURCE REOUIREMENTS

The Basic I/O System obtains memory from the calling job's memory pool when creating
obje.cts. The values listed here refleci Release 3 of the iRMX II Operating System.

Object Number of 16-b1te paragraphs
required by the Basic I/O Syst€m

I/O Result 4 (5 for an intemal IORS that the Operating
Segment Systeú creates wheo attaching a device)

Connection (to 6
named îile)

Connectíon (to 4
physicalfile)

User object 3 (mínimum)

8.2 Nucleus Uset's Guide

C.1 INTRODUCTION

Table C-1 provides a c.mplete list of the Extended iRMX II condirion codes rhat can
occul during system operations. It lists the condition codes by layer with their numeric
values alld mnemonics.

--continued

Table C-1. Conditions ard Their Codes
Category/
Mnemonic Meaning

Numeric Code
Hex Decimal

E$OK The most recenî system call was
successful. OH 0

Nucleus Environmental Conditions
E$TlME

E$MEM

E$BUSY

E$LIMIT

E$CONTEXT

E$E)CST

A time limit (possibly a limit of
zero time) expired without a task's
request being satisfied.

There is not sufficient memory avail-
able to satisry a task's request.

Anofher task currently has access to
the data p.otected by a region.

A task artempted an operation which,
if it had been successful, would have
violated a Nucleus-enforced limit.

A system call was issued out of
co[text or the operating system was
asked to perform an impossible
operation.

A toke[pammeter has a value which
is not the token of an existing
oolect.

1H

2H

3H

4H

)t1

6H

Nucleus Uset's Guide c-l

EXCEPTION CODES

Table C-1. Conditions And Their Codes lcontinued)
Category/
Mnemonic Meaning

Numeric code
Hex Decimal

E$STATE

ENOTCON-
FIGURED

E$INTER-
RUPT$SAT-
URATION

E$INTER-
RUPî$OV.
ERFLOW

E$TRANS-
MISSION

E$SLOT

E$DATA$CI]AIN

A task attempted an operation which
would have caused an impossible
tîansition of a task's state.

This system call is not part of the
present mnfiguration.

An interrupt task has accumulated the
maximum aÌlowable number ol SIGNAL$-
INTERRUPT reqùests.

An intenupt task has accumulated
more than the maximum allowable
amount of SIGNAI-$INTERRUPI requests.

A NACK, tìmeout, or bus error occurred

There are no available GDT slots.

A data chain has been returned. The
token points to a data chain block.

'7

8

TH

8H

9H

OAH

OBH

0cH

ODH

10

11

12

Nucleus Communications System Environmental Conditions

E$CANCELLED

E$HOST$ID

ENOLOCAIT$-
BUFFER

ENOREMOTE$.
BUFFER

E$RESOURCE$-
LIMIT

A SEND$RS\ry transaction has been
remotely cancelled.

The host$id portion ofthe socket
parameter is not valid.

The local buffer is too small to
hold the message data.

The buffer on the remote agent is
too small to hold the message data.

Either the simultaneous messages, o!
or trarisactions is not adequate.

0081H 225

00E2H 226

00E3H 227

00F'tH 228

00E6H 230

--continùed-

c-2 Nucleus Userrs Guide

EXCEPTION CODES

Table C-1. Corditions And Theh Codes lcontinuedì
Category/
Mnemonic Meaning

Numeric Code
Hex Decimal

E$TRANS$ID

E$DISCON-
NECTED

E$TRANS$LIMIT

The transmission is already done, or
the specified trans$id is invalid.

The socket is zero and the local port

There has been a transmission
resource limitation.

OOESH

OOEgH

OOEAH

232

234

I/O System Environmental Conditions

E$FEXIST

E$FNEXIST

E$DEVFD

E$SUPPORT

E$EMPTY$-

EDIREND

E$FACCESS

E$F:TTPE

E$SHARE

E$SPACE

E$IDDR

E$IO

The specified file already exists.

The specificd file does not exist.

The device driver and file driver
are not compatible.

The combination of parameters
entered is not supported.

The specilied entry in a directory
file is empty.

The specified directory entry index
is beyond the end of the directory
file.

The connection does not have the
correct access to the file.

The requested operation is not valid
for this file type.

The requested operation attempted an
improper kind of file sharing.

There is no space left on the volume,

An invalid device driver request
occùrred.

An I/O error oc.curred.

20H

2r}l

22H

23H

UH

25H

26H

NH

28If

29Il

2AH

2BIf

33

35

37

38

39

40

41

43

Nucleus flse s Guide

-continued--

c.3

Table C.1. Conditions And Their Codes (continued)

Category I
Mnemonìc

EXCEPTION CODES

E$FLUSHING

E$ILLVOL

EDEVOFF-
LINE

E$IFDR

E$FRAGMENT-
ATION

EDIRNOT$.
EMPTY

ENOTFILE$-
CONN

ENOTDEV.
ICE$CONN

E$coN'l.I$NoT$-
OPEN

E$CONN$OPEN

E$BUFFERED$-
CONN

The mnnection specified in the call
was deleted before the operation
completed.

The device contains an invalid or
improperly formatted volùme.

The device being accessed is now
offline.

An invalid file driver request
occurred.

The file is îoo fragmented to be
extended.

The call is atte.npting to delete a
directory that is not empty.

The connection parameter is a device
connection, not a file connection.

The connection parameter is not a
device conlection.

The connection is not open for
reading writing or updating.

The task attempted to open a
connection that is already open.

The specified connection was opened
by the EIOS, and used by the BIOS
which is not allowed. Once you have
an open connectlon, you must
manipulate it with a system call
provided by the same I/O S1,stem.

A soft detach was specified, but
connectioDs to the device still
exist.

2CH

2Dtt

2EH

2FH

30H

31H

32Ij

33H

34H

35H

44

45

46

47

48

49

50

) I

52

53

E$OUTSTAND.
ING$CONNS

36H 54

c.4 Nucleus Uset's Guide

E$ALREADY$-
ATTACHED

EDEV-
DETACHING

ENOTSAME$-
DEVICE

The specified device is already
attached.

The file specified is on a device
that the operating system is in
the process of detaching.

The existing pathname and the new
pathname refer to different devices.
You cannot simultaneously rename a
file and move it to another device.

The call is attempting to rename a
directory to a new path containing
itself.

A strcam fiÌe request is out oi
context. Either it is a query
request and another query request
is already queued, or it is a
satis8' rcquest and either the
reques. queue N empry or a query
request is queued.

The connection refers to a file with
an invalid fnode. You should dclete
this file.

The specified pathname contains
invaÌid characters.

The volume aheady contains the
maximum number offiles- No more
fnodes are available for new files.

The specified pathname staÍs with a
colon (:), but it does not contain a
second, matching colon; the specified
pathname has more than 12 characters
or contains invalid characters.

The Basic I/O System has insuf-
ficient memory to proccss a request.

EXCEPTION CODES

38H 56

5739H

3AH

3BH

E$ILLOGICAIJ.
RENAME

56

59

E$STREAM$-
SPECIAL

3DH

3EH

E$INVALID$.
FNODE

E$PATHNAME$.
SYNTAX

E$FNODE$-
LIMIT

ELOGNAME$.
SYNIAX

E$IOMEM

60

o l

62

63

3CH

3FH

6440H

Table C-1. Conditions And Theh Codes lcontinued)

Nucleus Uset's Guide c-5

Table C-1. Conditions And Their Codes lcontinuedì

EXCEPTION CODES

E$MEDIA

ELOGNAME$-
NEXIST

The device containing a specified
file is not on-line.

The specified path contains an
explicit logical name, but the
Extended I/O System was unable to
lind the name in the object
directories of the local job, the
global job, and the rootjob.

The user who attempted to detach the
device is not the owner of the
device.

The Efended I/O System carinot
create an l/O job because the size
specified for the object directory

The User Delinition File is not
i . rhè. ;ohr f^r - " r

The user name specified in the call
is not listed in îhe Ilser DeJ:nition
File.

The user ID in the specified user
object does not match the ID listed
in the User Definitior File for the
corresponding user name.

The password specified in the call
does not match the one Iisted in the
User Dcfinition File for the corrcs-
ponding user name.

'I'he User Definition File specified
cannot be found.

An unknown type of I/O error
o@ufred.

A soft I/O error occurred. A retry
might be successful.

41H

48H

ENOTOWNER

EIOJOB

45H

'70

69

46H

71

EUDFFORMAT

E$NAME$.
NEXIST

EUIDNEXIST

72

't349H

4AH

E$PASSWORD.
$MISMATCH

EUDFIO

ErouNct-ass

EIOSOFT

75

76

80

48H

4CH

50H

51H

c-6 Nudeus Uset's Guide

EXCEPTION CODES

Table C.l, Conditions And Their Codes lcontinued)
Category/
Mnemonic Meaning

Nurneric Code
Hex Decimal

EIOIIARD

EIOOPRINT

EIOWRPROT

EIONO$DATA

EIOMODE

EIONO$.
SPARES

EroAr-T$-
ASSIGNED

A hard l/O error occuÍed. A retry
is probably useless.

The device was off-line. Operator
intervention is required.

The volume is ìryrite-protected.

A tape drive attempted to read the
nex1 iecord, but it found no data.

A tape drive attempted a read/write
operation before the previous wdte
(read) completed.

An attempt was made to assign an
altemate back, but no Ílore altemate
tracks were available.

An alternate track was assigned during
this I/O operation.

52H

53H

54H

55H

5óH

57I{

58H

82

83

84

85

E7

88

86

Application Loader Envùonmental Conditions

ENOLOAD.
ER$MEM

ENOSTART

EJOBSIZE

EBADHEADER

E$EOF

The object file contains an invalid
header record.

The Application Loader encountered
an uneripected end-of-file while
reading a record.

There is insufficient memory to
satisry the memory requirements
of the Application Loader.

The Application I-oader could riot
find the start addre.ss.

The maximum memory-pool size of the
job being loaded is smaller than the
amoult of memory required to load its
object file.

62Il

65H

98

101

67H

6CH

103

108

6DH 109

Nucleus Useas Guide

.continued

c-7

EXCEPTION CODES

Table C-1, Condltlons And Theh Codes (continuedl

Caregoryl
Mnemonic Meaning

Numeric Code
Hex Decimal

E$OVERI.AY

E$LOADER$.
SUPPORT

The overlay name does not match any
of the overlay module names.

The lile requires f€atures Irot
supported by the Application Loader
as configured.

6EH 110

6FH 111

Human Interface Envhonme[tal Conditions

E$LITERAI-

E$STRING$.
BUFFER

E$SEPARATOR

E$CONTINUED

E$INVAL]D$.
NUMERIC

E$LIST

E$WILDCARD

E$PREPOSI.
TION

E$PATI]

E$CONTROI"$C

E$CONTROL

The parsing buffer contains a
literal with no closing quote.

The string to be retúrned exceeds
the size of the buffer the user
provided in the call.

The parsing buffer contains a
comúand sepafator,

Tho paÉe buffer contains a
continuation character.

A numeric value contains invalid
characters.

A value in the value list is missing.

A wild-card character appears in an
invalid context, such as in an inter-
mediate component of a pathname.
the command line mntains an invalid
preposition.

The command lLre contaios an invalid
pathname.

The user typ€d a CONTROLC to abort
the command.

The command line contains an invalid
contrcL

12880H

81H

82H

83H

84H

85H

86H

87H

88H

89H

8AH

129

130

131

132

138

134

135

136

c-8

--confinued

Nucleus Uset's Guide

EXCEPIION CODES

--confinued

Table C.1. Conditions And Thetu Codes lcontinued)
Category/
MlIemonic Meaning

Numeric Code
Hex Decimal

E$UNMATCHED-
$LisTs

E$INVALID-
$DATE

ENOPARAM-
ETERS

E$VERSION

EGETPATH-
$ORDER

E$PERMISSION

E$]NVALID-
$TIME

The number of files in the input and
output pathname lists is not the
same.

The operator entered an invalid date.

A command experted parameterq but
the operator didn't sùpply any.

The Human Interface is not compatible
with the version of the command the
operator invoked.

A command called CGETOUTPUT$.
PATIINAME bef ore calling
CGETINPUfiPATTTNAME.

l'he user does not have permission to
to access the requested resource.

The operator entercd an invalid time.

8BH

8CIt

139

140

L44

145

8DH 1.41.

8EH 142

1438FH

90H

91H

UDI Environmental Conditions

E$UNKNOWN.
$EXIT

E$WARNING$-
EXIT

E$ERROR$E)flT

E$FATAT"$EXIT

E$ABORT$EXIT

EUDIINIER-
NAI-

The program exited normally.

The program issued warning messages.

The prognm detected effors.

A fatal error occr.rrred in the program.

The operating system aborted the
pfogram,

A UDI internal error occurred.

7920cOH

0c1H

0c2H

0c3H

0c4H

0c5H

193

194

195

196

197

Nucleus Uset's Guide c-9

Table C-I. C.onditions And Their Codes (continued)

Category/
Mnemonic Meaning

Numeric Code
Hex Decimal

Nucleus Proglammer Erro$

E$ZERO$-
DT!'IDE

E$OvERFLOW

A$PARAM

EBADCAIL

E$ARRAY$-
BOUND

ENDPERROR

E$ILLEGAI]$-
OPCODE

E$EMUI-ATOR$.
TRAP

E$CHECK$EX.
CEPTION

NDP$SEGMENT-
$OVERRUN

E$PROTECTION

ENOT-
PRESENT

A task attempted a divide in which
the quotient was larger than 16 biîs.

An overllow interrupt occurred.

A token relerred to an existing
object that is not of the required
qpe.

A parameter that is neither a token
nor an offset has an invalid value.

An OS extensiori received an invalid
function code.

Hardware or software has deteated ao
affay overflow.

A Numeric Processor (NPX) error has
occurred. OS extensions can return
the status of the NPX to the
exception handler.

The processor tded to execute an
invalid instruction.

An ESC instruction was encounteaed
vr'ith the emulator bit set in the
machilre status word.

A PASCAL task has exceeded the bounds
of a CASE statement.

The NPX tried to access an addrcss
that is out of segmeùt boundarie.s.

A general protection error.

A request has been made to load a
a segment register whose segment
is not present.

8000H

8001H

3n68

3n69

8002H

8004H

8005H

8006H

32770

32772

3n73

3n74

8007H

8008H

32775

3n16

8009H

8OOAH

80OBH

SOODH

32777

32778

32'179

3n8r

8OOEH

EXCEFTION CODES

c-10

---continued----

Nudeus Uset's Guide

-continùed--

EXCEPTION CODES

Ttble C-1. Conditions and Their Codes (corlinuedl

Categoryf
Mnemonic Meaning

Numeric Code
Hex Decimal

EBADADDR The logical address is illegal-
either the selector does not point
îo a valid segmeot or the offset is
not within the sesmelt boundaries. SOOFH 32783

Nucleus Communications Proqammer Errors
E$PROTOCOL

E$PORT$ID$.
USED

ENUCBAD$BL'F

The port specified is of the signal
type, not the data communicaîion tJpe,

The specified port$id is already in
use.

The buffer referred to is invalid, or
not large enough.

80E0H 32992

80E1H 32993

8082H 32994

I/O System Progrsmmer Errcrs

E$NOUSER

E$NOPREFIX

EBADBUFF

ENOTLOG$-
NAME

ENOTDE!'ICE

ENOTCON.
NECTION

No default user is dcfined.

No defar.rlt prefix is defined.

Illegal usage of memory buffers in
read or write requests.

The specified object is not a device
connection or file connection.

A token parameter referred to an
existing object that is not, but
should be, a device connection.

A token parameter referred to an
existing object that is not, but
should be, a file conlection.

8021H

8022Il

8023H

8040H

32801

32802

32803

32832

8041H 32833

328348042H

Application Loader Programmer EÍor
EJOBPARAM The maxirnum memory pool size

specified for the job is less than
the mìnimum pool size specified. 8060H 32864

Nucleus Uset's Guide c-11

Table C-1. Conditions antl Their Codes (continued)

Category /
Mnemonic Meaning

Numeric Code
Hex Decimal

Human Interfac€ Plosrammer Errors

E$PARSE$-
TABLES

EJOBTABLES

B$DEFAULT$SO

E$STRING

E$ERROR$.
OUTPUT

There is an error in the intemal
parse tables.

An internal Human lnterface table
was ovelwritten, caùsing it to
contain an invalid value.

The default output name stririg
is invalíd.

The pathname to be returned exceeds
255 characters in length.

The command invoked by C$SEND$-
COMMAND includes a call to C$SEND$-
EO$RESPONSE, but the comúand connec-
tion does not p€rmit C$SEND$EO$-
RESPONSE calls.

328968080H

8081H

8083H

8084H

32897

32899

32900

329018085H

UDI Programmer Erlors

E$RESERVE$.
PARAM

E$OPEN$PARAM

The calling program tried to reserve
memory for more than 12 files or
bùffers.

The calling program rcquested more
thari two buffers when opening a file.

80c6H 32966

80c7H 32967

EXCEPIION CODES

c-12 Nucleus Uset's Guide

A

access dghts
discussion of 6-1

aliases 7-1
allocating memory 5-3
analory of how MULTIBUS tr systems work 12-2
application$ 2-1
assigning levels to each interrupt 9-5

b

BmBUS interconnect l2-3
buffer pools 12-10
buffer pools 5-4
buffer pools, system calls for

CREATE$BUFFER$POOL 12.11
CREATE$BUFFER$POOL, DELETE$BL]FFER$POOL 12-14
REQUEST$BUFFER 12-11
REQUEST$BUFFE& RELEASE$BUFFER i2-15

Built-in Self Tests (BIST) 12-6

c
call gates 1-7
Call-gate,s arìd OS extensioN 1-3
case seNitivity of object directory names 6-2
childjob 2-1
comparison of procedures, tasks, and OS extensions 10-2
composite objeats

deleting 11-3
system calls for 11-2

composiîe objects 1-2

Nucleus Usefs Guide Index-l

INDEX

condition codes
oéÍnèd 8- l

literal file 8-1
Énges 8-1
types 8-1

conliguration of the Nucleus, see chapter 121
context switches 3-2
co[trollL€ memory pool size 5-2
deating an OS extension 1-2
creating riew operating system objects 11-1

D

data chain block 12-12
data chains 12-11
data tlpe, see Appendíx .{1
declaring your own exception handler 8-2

\ -'l

default time quota fo. round-robin scheduling 3-5
definitiod of

round-robin scheduling 3-4
deleted of riested composites 11-5
descriptor 1-6
descriptor table,s

gtobal 1-7
intenupt 1-7
local 1-7

descriptors
aliases 7-2
cautions on using 7-2
changing the address or length of 7-2
creat]lig'1.2
defining memory with 7-2
definition of 7-l
deletl')g 7-2 \,_,)
er?licit 7-1
system calls for 7-2
type code returned for 7-1

dtectory, objeat 1-4
disabling interrupts 9-6
discussion of round-robin scheduling 3-5

Index-2 Nùcleus User's Guide

erabling intcrrupts 9-21
entering an object's name in the object directory
examPlcs

inteúuptservicing 9-24
ring bufler manager 11-7

exception handlers
inherited 8-2
invoking 8-3

exception handlers 8-2
exception hardling

for 80286 processor 8-4
in-Ihe 8-4

exception mode 8-3
exceptional conditions

defined 8"1
EnYironmental B-1
progmmmor errols 8-1

exchange types 4-1
exe4ution states oftasks 3-1
extension objects 1-2

F

leatures of MULTIBUS II systems 12-1
four q?es of address space

rlo 123
interconnect 12-3
memory 12-3
message 12-3

Free Space Manager 5-1

G

getting ari object's name 6-2
getting an object's typ e code 6-2
global clocl! MULTIBUS li 12-5

H

handlers
exceptional 1-8
interrupt 1-8

handling spurious interrupts 9-22

6-3

INDEX

Nùcleus Usels Guide Inder-3

INDEX

I

in-service register, examining 9-23
Inlerconnect address space 12-5
interconnect space, calls for

GET$INTERCONNECT 12-13
SET$INTERCONNECT 12.13

interrupt controllers 9-3
inîerrupt descriptor table 9-4
interrupt handler, using 9- 11
interrupt handlers and tasks 9-9
interrupt levels 9-3
interupt lines 9-3
interrupt mechanisms 9-2
interrupt servicing, using multiple buffers 9-16
interrupt task priorities 9-12
interrupt task, using 9-11
interrupts

system calls for 9-27
inteúupts 9 or 16 8-6
interrupts, handling spÌrrious g-22
inte.rupts, limit on outstanding 9-19
iSBX I/O expamioo bus 12-3

J

job 2-1
job deletion 2-2
job tree 2-1

L

limit or outstanding inîerrupts 9-19

M

mailbox
discussion of queues 4-2
mechanics 4-1
queues 4-1

mailboxes
system calls for 4-3

Index-4 Nucleus Uset's Guide

1-\ mailboxes 4.1
. memory

how to allocate 5-3
returning to the system 5-3

memory allocation 1-5
memory allocation perfomance feature 5-4
memory maragement

system calls 5-4
memory needed to create an object, see Appendix 81
memory pool 1-4
memory pools 5-2
message agents, calls for getting information

. GET$HOST$ID 12-14
Message Fragmertation 12-13
message sPacg calls for

BRO{)CAST 12-13
CANCEL 12-14
RECEII'E 12-14
RECEIVE$FRAGMENT 12.14
RECEIVE$REPLY 12-14
SEND 12-13
SEND$REPLY 12-13
SEND$RSVP 12-13

Message Space Calls that Support the MIC D eelce 12-14
movement of memory between jobs 5-2
MULIBUS II hardware overview 12-3
MULTIBUS II systems, an analory of how rheywotk 12-2
MULTIBUS lI systemq featu.es ol 12-1
MLILTICIiANNEL DMS I/O bus 12-3
multiple buffers and interrupt servicing 9- 16

N

NUC$ERROR 1.8
Nucleùs Communication Service 12-8
number of interrupts possible on cascaded PICs 9-3
number of interrupts possible on one PIC 9-3
numeric codes foî obje.t types, see Appendix 81

o
object access 6"2
object diectories

using 6-2

INDEX

Nùcleùs Useds Gùide Index-5

INDEX

object dire{tory 1-4
enteri.g af! object's name 6-3

object qùeùes
high-performance poftion 4-2

object gpes 1-1
objects

extension and composite 1-6
job 1-3
mailbox 1-5
region 1-6
segrnent 1-5
semaphore 1-5
system calls to manipulate 6-3
tasks 1-2

objects 1-1
OS extension intedace procedures 10-7
OS extensions

and customized exception codes 10-14
and error procedues 10-B
entry procedures 10-7
exception handlidg in 10-11
function procedure 10-8
hrùctions of the interface procedures 10-7
including into your system 10-14
linking the procedures 10-14
making objects immune from deletion 10-15
procedures needed 1-2
system calls for 10-15

P

parallel system bus (iPSB) l2-3
pararneter objeat 2-2
parent job 2-l
port 12-9
ports, information pîovided on creatioù 12-9
port,system calls for

ATIACH$BUFFER$POOL 12.10
ATIACH$PORT 12.10
ATTACH$PORT, DETACH$PORT 12-15
CONNECT 12-10, 15
CREATE$PORT, DELETE$PORT 12-15
GET$PORT$ATTRIBUTES 12.10, 15

priority for tasks 3-1
procedures needed in an OS extension 1-2

Index-6 Nucleus Userrs Guide

R

regrons
cautionary notes 4-10
deadlock and 4-9
discussion of sharing data 4-6
mutual exclusion 4-7
system calls for 4-10

regions 4-5
relationships between interrupt tasks and handlers 9-15
resource sharing 2-1
restrictions when assigding interrupt levels 9-6
returning memory to the system 5-3
round-robin $cheduling 3-4
RQ$ERROR 10.8

s
segmeds 5-1
semaphores4

mutual exclusion 4-6
system calls for 4-5
task queue 4-4

semaphores 4-4
send$message

acknowledging 4-2
sedal system bus(iSSB) 12-3
services provided by the Central Services Module 12.4
setting up an intcrrupt handler 9-10
spurious interrupts, using GET$LEVEL to detect 9-23
system calls

for intenùpts 9-27
tlpe manager 11-18

system calls 1-2
system calls for

tasks 3-6
system calls for exception handle.s 8-6
system calls for memory management 5-4
system calls that manipulate the 80286 processor's a€cess byte 6-1
system calls to manipulat€jobs 2-2
system calls to manipulate objerts ó-3
system initialization error reporting 12-3

INSEX

Nucleus Uset's Guide Indef-7

INDEX

T - - .

rask artribùtes 3-6
!-i

task execution states 3-1
task priority 3-l
task resources 3-6
task state îransitioo 3-2
task states

asleep 3-1
asleep-suspended 3-2
ready 3-2
running 3-2
suspended 3-2

lasks 3-l
three ways to add functionality in iRMX 10-1
token l-2
tools for interrupts 9-2
Transport Protocol 12-8
two system calls that set ùp the interrupt descdptor table 9-6
rype manager

jobs during DELETE$EXTENSION 11-5
jobs during DELETE$JOB 1-3

typical actions of an exception handler 8-2

u
use of PL/M-286 DISABLE statement in tasks with interrupts diabled 9-7
using an irrtcrrupl handlcr g- | l
using an interrupt task 9-11

\ r

Index-8 Nùcleùs Uset's Guide

intel

EXTENDED iRMX@II
BASIC I/O SYSTEM

USER'S GUIDE

Intet Corporation
3065 Bowers Av€nue

Santa Ctara, Cali fornia 95051

Copyrgh't,r lga8, lntel Cofporatron,All Rlghts Reserved

Chapter 1

INTRODUCTION

This manual documents the Basic Ì/O System, one of the layers of the iRMX II Operating
System. The material contained herein is intended primarily as introductory and
background irìformation for using the system calls. you can find detailed information for
using these system calls in the Extended iRùÍX Il Basic I/O Sytem Calls Refercnce Manual.

Readers who are famiiÌar with the iRMX I Basic I/O Sysrem will also be familiar with the
iRMX ll version. The iRMX lI Operating System is hased on rhe iRMX I Operating
System.

READER LEVEL

This manual is intended for programmers who are familiar with the concepîs and
terminolos/ introduccd inthc Extend,ed, |RùIX II Nucleus Use's Guídc and with tlre PL/M-
286 programming language.

MANUAL ORGANIZATION

This manual is divided into eight chapters. Some ofthe chapters contain introouoory or
overview material that you do not need to read ifyou are aheady famitiar with the iRMX
II subsystems. Other chapters contain reference material that you will refer to as you
write your application ra!k\. You can use rhis chaprer ro determine which of rhe other
chapters you need to read. The manual organizatìon is as follows:

Chapter 2

This chapter describes the features ofthe Basic I/O Sysîem. You
should read this chapter ilyou are going through the manual for
the first time or ifyou have had very little previous exposute to the
Basic I/O System.

This chapter explains some basic terminoÌory associated with the
Basic l/O System, including the concepts of system progmmmer,
device, volume, file, and connection- You should read this chapter
ifyou are lookilg through the manuai for the first time or ifyoù
are unfamil iar with the Ba5ic l /O Svstem

Basic I/O Useds Guide lu

PREIACE

Chapter 3-5

Chapîer 6

Chapter 7

These chapters describe named, physical, and stream files and how
to use them. You should read one or more ofthese chapters,
depending on the kinds of files your application uses. The use of
remot€ files is rìot described in thìs nranual.

This chapter describes general information about synchronous and
asynchronous system c.dls.

This chapter lists the configuration options that pertain to the
Basic I/O System.

CONVENTIONS

This manual uses the following conventtons:

. 'l he term "iRMX II" refers to the Extended iRMX IT.3 Operating System.

. The term 'iRMX l" refers to the iRMX I (iRMX 86) Operarjng System.

. All iRMX II system calls begin with one of two standard prefixes: RQ$ or RQE$.
When referring to the system calÌs that begin with RQ$, this manual uses a shorthand
notation and omits the prefix. For example, S$CREATE$FILE means
RQSCREATE$FILE. The actual PLlM-286 externaì orocedrrre names used to
invoke these system calls are shown only in the Enended 'RMX 11 Errended I/O System
Calls Rekrcnce Manual, which lists the detaìled calling sequences.

. All iRMX II system calls begin with one oftwo standard prefi\es: RQg or RQES.
When referring to the system calls that begin with RQ$, this manual uses a shorthand
notation and omits the prefìx. For example, A$CREATE$FILE means
RQACREATE$FILE. The actual PL/M-286 external Drocedllre nîmes used to
invoke these system calls are shown only in the Ertended .RMX ll B&\ic I/O S)stem
CaIb Refercnce Manual, which lists the detailed calling sequences.

. When referring to system calls that begin wirh RQES, this manual spells out the
complete names, includjng the RQE$ characters.

r You can also invoke the system calls ftom assembly language, but to do so you must
obey the PL/M-286 calling conventions that are discrissed in the Errended. iRtltx
Progm m n i ng Tecl hi4ue: Manual.

Basic I/O Useis Gùide

CHAPTER 1
FEATUFES OF THE BASIC I/O SYSTEM

CHAPTER 2
FUNDAMENTAL CONCEPTS

PAGE

PAGE

Basic l/O Usey's Guide

CONTENTS

CHAPTER 3
NAMED FILES

PAGE

Basic I/O Us€r's Gùide

CHAPTER 3 (continued) PAGE

CHAPTER 4 PAGE

CHAPTER 5
STREAM FILES

CHAPTER 6 PAGE

CHAPTER 7 PAGE

APPENDIX A PAGE

CONTENTS

PAGE

Basi.I/O f lse/s Guide

C()NTENTS

APPENDIX B PAGE

APPENDIX C PAGE

APPENDIX D PAGE
EXCEPTION CODES

D.l Overview............. D-1
D.2 Sequential (Environmental) Exception Codes... D- l
D.3 Sequential (Programmer Error) Exception Codes-............... D-2
D.4 Concurrent (Environmental) Exception Codes... D-2
D.5 Concurrent (Programmer Error) Exception Code ... D-3

APPENDIX E PAGE

APPENDIX F
iRMX@ I AND iBMX(D IIi BASIC I/O SYSTEM DIFFERENCES

PAGE

v l l l Basic l/O Use/s Guide

CONTENTS

PAGETABLE

B-1 T)?e Codes B-1

FIGURES

FIGURE PAGE

2-l Layers of Interfacing Between Tasks and a Devicc2-3
2-2 Schematic of Software at Inir ial ization Time.... .2-4
2-3 A System with Device and File Connections.... .2-6
3-1 Example ofa Named-File Tree...._... . . .3-2
3-2 Computing the Access Mask for a Fi le Connection.... 3- 10
3 3 Chronolog of Frequenrly Used Systen Calls for Na[retl Fi les .. .3-20
6-1 Sample Named File Tree_ .. .6-5
6-2 Concurrent Behavior of an Asynchronous System Cal1... ._..._._._ 6-8

Basic I/O UseCs cuide

CHAPTER 1
r/o SYSTEM

1.1 INTRODUCTION

Because the iRMX II Operating System is designed for use by Original Equipment
Manufacturers (OEMs), it provides a iarge number of features-includÌng some that are
not generally found in operating systems aìmed at end users. These features include

. 16M-byte memory addressability

. Memory protection

. Synchronous and asvnchronous svstem calls

. Device independence

. Supporr for many LinJ" ot J<, iers

. Four distinct kinds of files

. File sharing and access control

. Separetion of file lookup and file open operations

. Control over fragmentation offiles

. Global tirne-of-day clock

. Disk integrity

Thìs chapter explains each of these features and familiarizes you wirh the terminolog' of
the Basic I/O System.

NOTt
All material on iRMX Networking Software (iRMX-NET) can be found in
the |RMX Netuorking Software (/ser'.s CuÌr1e. Thìs manual is not part of rhe
iRMX II manual set.

Basic I/O Us€r's Cuide l - l

T.EATURES OF THE BASIC I/O SYSTEM

1.2 16M-BYTE MEMORY ADDRESSABILITY

The iRMX II Operatiog System runs in Protected Virtual Address Mode (PVAM) ofthe
80286 or 80386 processors. As a result, it can acc€ss as much as 16M byres ofmemory.
The Basic I/O System takes advantage of this feature by allowing you to create I/O jobs
with memory pools ofup to l6M bytes. Therefore, tasks that invoke Basic I/O System
calls can have more code and can have more room for data than with ìRMX I

Applcation tasks must use logical addresses to access memory. Logical addresses take
the form:

selector:offset

Some device controllers also support a 16M-byte address space. These controllers use
physicnl addresses (dired 24,bit addresses) to refer to the memory space. lfyou l,lrire
youl own device drivers for these conîrollers, your devìce clrivers must know how to
convert logical addresses to physical addresses. 'Í\e

Ettended i&lvfx II Devíce Drivex
Usrr'r Gu,Ze discusses thìs technique-

1.3 PROTECTION FEATURES

Because the iRMX II Operating System accesses the processor in pVAM, ir benefits lrom
some of the inherent memory proteciion features of the processor. Thcsc fcaturcs
protect your code and dirta by preventing any task from readìng or writing buffers of
memory unless it has explicit access to those brrffers. They also prevent memory reads or
writes from crossing segment boundaries. The Operating System generales exception
codes if an attempted Drotection violation occurs.

The Operating System also checks svstem calÌ parameters fi)r protection vìolations and for
incorrect values. Appendix D lists the exception codes that can be returned.

1.4 SYNCHRONOUS AND ASYNCHRONOUS OPERATION

When you examine the EÌtended ilLtvlx II Basic I/O Slstem Calb Reference Manual,yo!
will îind that the system caÌls can be divided into two categories according to their names.
The first category consists of system calls having names ofthe form:

RQliXXXXX

whcrc XXXXX is a brief descrip tion ofwhat rhe sysrcm call does. The second category
consists of system calls having names of the fbrm:

RQAXXXXX

Basic I/O Usefs cuide

FEATURES OF THE BASTC I/O SYSTSNT

System calls of the firsÌ category, without the A, are synchronous calls. l hey hegin
running as soon as your appiication invokes them, and continue running until they detect
an error or ac€omplish everathìng they Írust do. Îìcn they return control to your
application. In other words, synchronous calls act like subroutines.

System calls of the seconci category (those with the A) are called asynchronous because
they accomplish their objectives by using tasks that run concurrently with your applicrrtion.
This allows your application to accomplish some work while the Basic I/O System deals
with devices such as disks or tape drives.

1.5 DEVICE INDEPENDENCE

The Basic I/O System provjdcs vou with one set of sysrcm calls thar can be used with any
collection of devices. Fo. instance, rather than using a TYPE sysiem call for output to a
terminal and a PzuNT system caÌl for output to a line printer, you can use a WzuTE
system call for output to any device.

This notion of one set of system calls for I/O to any collection ofdevices is called device
independence, and it allows your applicrtion much flexibility. For example, suppose that
your application logs events xs they occur. 'Ihe

device independence of the Basic I/O
System allows you to create an applicalion that can log the events on any device rather
lhan just one.

For instance, when the event application is running and circumstanccs forc€ an operatc'r
to reroute logging from the teletypewriter to the line printer, your application can be
written to do this

For a more detailed explanation of device independence, refer to the Introducti()n to thc
Ertendetl |RMX II Operating Sytem.

1.6 SUPPORT FOR MANY KINDS OF DEVICES

Although your application can be device independent, the Basic I/O System must be able
to communicàte with a wide variety of devices. To connect a particular devìce to the
Basic l/O System, you must have a device driver (a collection of software procedures)
designed especially for the device being connected.

The Basic f/O System provides device drivers ior many devices. 'fi\e Ettended íRMX II
[nteructive Configutatiotl Utìlity Reference Maradl lists these devices and describe-r how to
include their device drivers in your appìication system. Ifyou need drivers for other
devices, you musî supply lhe drivers. F.efer to the Ertended .RMX II Devíce Divers User's
C4Ue for instructions on how to write vour own device driver.

Iìasic I/O User's Guide

FEATURES OF THE BASIC I/O SYSTEIIÍ

1.7 FOUR DISTINCT KINDS OF FILES

Files in the Basic I/O System are byte-oriented (as oppos€d to record-oriented files). The
Svstem provides you with four kinds of filcs: namcd, physical, stream, and remote.

1 .7.1 Named Fi les

Named liles are intendcd lor usc with random-access, secondary storage devices such as
disks, diskettes, and bubble memories. They allow your applicarion to organize its files
into a treelike, hierarchical str ctnre that reflects the relationshjps between the files and
the application. Furthermore, only named files allow your application to store more than
one file on a device, and only named liles provide your application with ac{:ess control.
Named files also provide a good starting place for building custom acless methods such as
the indexed sequential access method (ISAM).

For more information regarding named files, refer to Chapter 4.

1 .7.2 Physical Files

Physical liles differ from named files in that each physical file occupies an entire device.
In lact, from the standpoint of rhe Basic I/O Syslem, a physical file is a devìce. yet with
the Basic I/O System, an application can deal with a physical file as if it were a string of
bytes.

Physical files provide several important advantages:

. An application can have direct control over a device.

. This direct control provides complete flexibility. For example, an application can
interpret volumes created by other systems.

. An application can conserve memory and still be able to communicate with devices
that do not need the power of named files. Examples of such devices include line
printers, display tubes, plotters, and robots.

The disadvantages of physical tiles, as compared to named îjles, are that hierarchical îile
structures and access control are not available.

1 .7.3 Stream Files

Stream fìles provide a means of intertask communication. Some tasks can write into a
stfeam lile while other tasks read from it concurrenrly. Srream files use no devices and
provide no access control. They are implemented in memory.

l-,1 Basic l/O Uset's cuide

FEATUR.ES OF THE BASIC I/O SYSTEM

1.7.4 Remote Files

The Basic I/O System san also aocess remote files through iRMX-NET. For more
information on accessing remote files, consult the |RMX Networking SoffÀ)arc User's Guide.

1,8 FILE SHARING AND ACCESS CONTROL

The Basic I/O System provides your application with the ability to share files and, in the
case ofnamed files, to control access to the files.

1.8.1 Fi le Sharing

In a multitasking system, it may be usefirl to have several tasks manipulating a ffe
sìmultaneously. Consider, for example. a transaction processing system in which a large
number of operators concurrently manipulate a common data base. If each terminal is
driven by a distinct task, the only way to implement an efficient transactìon system ls to
have the rasks share access ro the data base file. The iRMX II Operating System allows
multiple tasks to concurrently access the same file.

.8.2 Access Control

A-lso useful in a multitasking system is the ability to controì access to a file. For instance,
supposc that scvcral cnginccring departments share a computer. an engineer in one
department may want to reserve for himselfthe ability to delete his files, while ailowing
people in his department to write and read his file, and people in other departments to
only read the files. The Basic l/O system named files provide your applications with this
kind of access control.

1.9 SEPARATION OF FILE LOOKUP AND FILE OPEN OPERATIONS

Many operating systems waste valuable time by looking up a file whenever an application
tries to open one. The Basic I/O System avoids this by using a special type of object
(caled a connection) to represent the bond between thc file and a program.

Whenever your application softwîre creates a file, the Basic I/O System returns a
connectìon. Your application can then use the connection to open the file without
suffering the expense of having the Basic I/O System laokup the file. Even when yolrr
application wants to open an existing file, the àppÌication can present the connection and
blpass the file lookup process.

There are several other beneiits associated wìth connection objects. In the case of named
filcs, conneclions cmbody access rights to the fìle. This means that ac.cess need orìly be
computed once (when the connection is created) rather than each time the file is opened.

Basic I/O User's Guide l-5

FEATT]RES OF THE BASIC I/O SYSTEM

A second benefit ofconnections is that several connections can simultaneously exist for
the same file. This allows several tasks to concurrently access different locations in the
file. This is possible because each connec[ion maìntains a file pointer to keep track of the
locarion, within the f i le, where lhe task is reading or wrir ing.

1.10 CONTROL OVER INTERNAL FRAGMENTATION OF FILES

When information is stored on a mass storage device, space is aliocated in blocks.ather
than one byte at a time. These blocks are calJed granules, and rhe block size is called
granularity. There are three kinds ofgranularity that are jmportant.

device granularity

The devic€ granularity is hardware dependent and varies among individual mass storage
devices. lt represents the minimum amount of dala that the devìce can read or write
during one l/O operation. For disk med;a, a device gr:rnule is caùed a sector; therefore
the device granularìty is the scctor size. Each buffer that the Basic I/O System uses when
reading and writ ing data is equal in size to the device granularity.

volume granularity

Volume granularity is a muìtiple of the device granularity. It represents the mrnrmum
amount of spacc that can be allocate.l to a file ar one tinle. Tlìe Basic I/O Systenì us€s an
a]gorithm based on volume granularity when deciding where on the volume to allccate
this space Yorì snecify the volume granularity when you lbrmar the volume.

lile granùlaritJ

File granularity is a multiple of volLrme grarrularity which specifies the actual amount of
space on the mass storage devìce that the Basic l/O System allocates to a file at one time.
You assign the fiJe granularity on a per-file basis when you invoke A$CREATE$FILE to
create the files.

Bl' selectinS the proper granularity values, you can minimize fragmenrarion ofyour
volumes. Use the following guideìines when selecting these values:

. Device granularity depcrcìs on hard*,are. Ifyouf device supports multiple device
granularities, selectìng the larger value usually gives higher performance. Although
you can obtain greater pcrfbrmancc, you may \r'asie storagc space due to a few large
granules containing only a few bytes of data.

. For flexible diskettes, alù'itys set the volume granularity equal to the device
granularity, unless you plan to store many large files on the volume. Even then, don,t
select a volu[re gr anular itv largcr than 1K (1024 byr€s).

Ì -6 Basic I/O User's Guide

FEATURES OF THE BASIC I/O SYSTENI

For hard disks, set the volume granularity equal to the device granularity, unÌess the
device granularity is less than 1K. Then set the volume granularity to lK.

When creating a large file, assign a large file ganuÌarity to minimize the number of
noncontiguous blocks that make up the file. This decreases the fragmentation of the
volume. For smaller files, set the file granularity equal to the volume granularity to
minimize wasted space on the volume.

1.11 GLOBALTIME-OF.DAYCLOCK

Some boards supPoried by the iRMX II Operating System have an on-board, battery
backed-up, time-of-day clock. The Basic I/O System reads and writes the time of day,
taking advantàge of this clock feature. The global time-of-day clock is global ìn the sense
that it is the timekeeper for the entire system. The iRMX II Operaring System maintains
a "local" time-of-day clock of its own, which is a copy of the global clock. The global and
local clocks keep track of two ite s:

. The current date (day. month, and year)

. The current time (hours, minutes, and seconds)

The iRMX II Operating System needs two time-of-day clocks because it takes much
longer (100 milliseconds and up) to acr:ess thc global clock than the local clock
Therefore, the iRMX II Operating System maintains the local time-of-day clock for irs
date and time needs, and accesses the global tìme-of-day clock only during system
initialization or upon request liom the operator.

The iRMX ll tsasic l/O System provides two system calls rhar enable your applications to
read the global date and time and set them io new values. These system calls are
CET$GLOBAL$TIME and SET$GLOBAIIITIME. I! also Drovides rwo svstem calls for
manipularing the local clo. l : C ET"lTl l \4 E anrl ShT$Tl V E.

1.12 DISK INTEGRITY

In any computer system, there are many occurrences beyond the control of the program
or programmer that can cause damag€ to files or disk volumes. For example, power
outages can occurjust as a file is being wrìtten, or marginal disk sectors can suddenly
become unreliable. The Basic l/O System has several Ieatures tlìat enable programs to
maintain disk integrity and deterrnine whether fiìes or volumes have been corrupted. The
followiDg s€ctiotìs outlirìe thcse lealures.

Basic l/O User's Gùid€ t-7

r.f.aTtÌRFs oF THF] RASTC t/O SYSTEM

1 .12.'l Aftach Flags

The Basic l/O System maintains flags that can indicate the integrity of namecl volumes
nd named files. Whenever you attach a named volume, ihe Basic I/o System sets a flag

in the volume label to indicate that the volume is attached. Lilewise, when you attach a
named file, thc Basic I/O Systcm scts a flag in thc fnode (file dercriptor node) file to
indìcate that the file is attached. When you detach a volume o. file, the Basic I/O System
cìerrs the associat€cl flag, indicatjng that the file or volume was successfully detached.

Although the Basic l/O System doesn't check these flags to determine file or volume
iotegrity, you can check the condition of a volume by invoking the
AGETFILE$STATUS system call.

The Basic I/O System rkresn't provide a system call for checking the file flag. However,
you can write your o\yn pfograms to check this flag, or you can use the Disk Verificatior
Utility to examine the înode file.

1 .12.2 Fnode Checksum Field

The Basic T/O System uses the fnode file to keep track ol every named file on a volume.
The fnode îile lists such informàtion as the file name, the creation and last modificstion
dates, and the location of every disk sector that makes up the file. Whenever you access a
file, the Basic I/O System uses the fnode file to determine the file's ìocation on the
volume. Wlenever you create, modiry, or delete a file, the Basic I/O Systeù modifies the
fnode file to match the changes you made.

When the last connection to the file is deleted, the Basic I/O System writes to the inode
file, and it always calculates a checksum and writes that value in one of the fìelds of the
fnode file. This checksum can be used to determine irhether any data errors occurred
whcn the Basic I/O System wrote the frode file. AlrhouBh the Basis I/O System doesn'r
calculate another checksum and compare it against the originalwhen it next reads the file,
your programs can use the checksum field !o determine vrhether the fnode file has
becom€ corrupted. DISKVERIFY and SHUTDOWN can be used.

1 .12.3 Getting and Setting the Bad Track/Sector Information

It is not uncommon for a hard disk to have a few secîors or tracks that cannot reliably
store information Mrny of these (lisks have a record ofthese bad tracks written on the
second-highest cylinder of the disk. When rhe Basic l/O System formats a disk, it uses
this had track/sector information to assign alternate rracks or sectors for the bad
tracks/sectors listed. The A$SPECIAL system call also hls the ability to retrieve and set
the bad track/sector information on a volume. One subfunction allows you to retrieve the
current ìist of defective tracks or sectors. Aiother subfunction enables you to set up a
new bad track/sector list.

l -ll Basic I/O Useas cùide

2.1 INTRODUCTION

Before you use the Basic I/O System, you must undentand several fundamental mncepts.
Some of these concepts were presented in Chapter 2. The remaining concepts are

. System programmers

. Device controllers and device units

. Volumes

o Files

. Connections

The following sections explain these concepts.

2.2 SYSTEM PROGRAMMERS

There are two programming roles associated with the iRMX II Operating System. One
roÌe jnvolves using system calls and objects that affect only your own iRMX ll job, while
the other role involves manipulating system resources and characteristics. These two
roles are calletÌ applicalion programming and system programming.

Although the roles have different names, separate people are not required. One
individual can perform botlr roles. The reason for the distinction is that the actions of the
system programmer affect the perfoÍmance and security of the entjre system, whereas the
actions of the application programmer have a more limited effect.

The Extended. íRMX II Basíc I/O Systen Calls Reference Manual gives you several system
call descriptions that begin with caution notices. These system calls, if misused, can have
serious consequences for an application system. Therefore, you should consider these
system calls to be resered for the €xclusive use of system programmers.

2.3 DEVICE CONTROLLERS AND DEVICE UNITS

You are probabÌy familiar lvith îhe notion of a device; a hardware entity that tasks can use
to read or write information, or to do both. Devices hclude fleúble diskette drives, line
printers, terminals, card readers, and the like.

Basic l/O Use/s Guide

I'LNDAMENTAL CONCEPTS

In the iRMX II environment, it is convenient to make a distinction between devices and
the hardware interfaces that communicate djrectly with an iRMX Il application system. A
hardware entity that talks djrectly with iRMX Il software is a device controller. Devices
such as those named in lhe previous paragraph are device units. T)?ically, a device
controller acts as an interface between iRMX Il aDDlication software and several device
units. For example, an iSBC 214 Winchester Conirollcr board acts as all irtterface
between application softvr'are and from one to four Winchester disk drives (device units.)

2.4 VOLUMES

A volume is the medium used to store the information on a device unit. For example, if
the device unjt is a flexible disk drive, the volume is a diskettei if the device unit is a
bubble memory board, the volume is the blrbble memory; and if the device unit is a multi-
platter hard disk drive, the volume is the disk pack.

2.5 FILES

Some operating systems treat a lile as a device, while others treît a iiie as information
stored on a device. The Basic I/O Syst€m considers a file to be information.

The Basic l/O System supports four kinds offiles, and each has cheracteristics that make
it unique. Regardlcss oI lhc kind of file. rhe Basic I/O Sysrem provides information to
applications as a string ofbytes, rather than as a collection of records.

2.6 CONNECTIONS FOR TASKAND DEVICE.UNIT
COMMUNICATION

In complex environments such as those supported by the iRMX II Operating System,
several layers of software and hardware must be bound together before communication
between application tasks and device units can commence. Figure 2-1 shows these layers.

2-2 Basic I/O User's Guide

FUNDAMENTAL CONCEPTS

Figure 2-1. l,ayers of Interlhcing Behreen Tssks ond a Device

2.6.1 Interlayer Bonds Preceding Initialization

The bond between a device controller and the device units that it controls is a physical
bond, usually in the form of wires or cables. A device clriver is bound to device controllers
by data residing in a data structure known as a Device Unit Information Block IDUIB).
You supply the data for the DUIBS wher you use rhe Interactivc Configuration Utilìty
(ICU) to configure the Operaring System.

When your application starts up, there is a gap between the applìcation software and the
file drivers, and another gap between the file drivers and the device drivers. Figure 2-2
illustrates this situaiion. The new element, shown in the figure as the configuration
interface, is the "glue" that provides the final bonds.

Rasic I/O User's cuide

FIINDAMENTAI, CONCEPTS

2.6.2 Post-lnitialization Bond - the Configuration lnterface

The configuration interface provides two kinds of system calls. Beiore a task can use a
file, both of these kinds of calls must be invoked, and each Droduces a connection. These
connections are called device conneclions and file connectiòns, and several of them are
shown in Figure 2-3 as conduits and wires through the conduits, respectively.

Figùre 2-2. Schematic of Software at Init ial izal ion Time

2.6.2.1 Device Connections

lasks employ the configuration interface first by calling the
A$PHYSICAI$ATTACH$DEVICE system call, which returns a token for an iRMX lI
object tlpe called a device connection. This device connection is the apptication,s only
pathway to the device. Moreover, there can be only one device connection benveen a
dcvicc unit and all of the application tasks that lleed 1() usc the device.

Basic I/O User's Gùide

FUNDAMENTAL CONCEPTS

Because the device connection is so cenlrally important to the application, only tasks
written by a system programmer should call A$PHYSICAL$ATTACH$DEVICE. Such a
task could makc the device connection available to application tasks selecrively lry sending
it to certain mailboxes or by cataloging it in cerîain object directories. Or, to ensure that
all required device connections will be availabìe to all of the application tasks that nccd
them, the system programmer could provide an initialization task that c.eates all of those
device connections and catalogs them in the root object directory.

If and when the device is no longer needed by the application, an appropriate task can call
A$PHYSICAI-$DETACH$DEVICE to delete the device connection.

2.6.2.2 Fi le Connectlons

When an applicotion lask is ready to use a device unit, it must usc the device connection
for that device unit to obtain a file connection object, which is a connection to a particular
file on that der,,ice ùnit llow the task does this depends onwhether the file already exists.
If the file already exists, the task usually calls A$ATTACH$FILE, although it can also call
A$CREATE$FILE. If the file does nor yet exist, rhe task must call A$CREATE$FILE.

Basic I/O Usecs cuide 2-5

FUNDAMENTAI, CONCEPTS

Figure 2-3. A System with Device and File Connections

NOTE
trven though a îask can cal A$CREATE$FILE to obrain a file connection
for a file that already exists, it is not a good idea for a task to use
A$CREATE$FILE unless the task is certain that rhe filc docs not yct
exist. There are two reasons for this.

2-6 Basic I/O User's Guide

FUNDAMENTAL CONCEPTS

Filst, if a named file exisrs, then calling A$CREATE$FILE ro obtain a
connection to the file might càuse the file to be truncated. This could
cause problems for tasks haviìg oth€r conncctions to that file, because lhe
file pointers (discussed later in this section) for those other conne.tions
are not affected, even though thc cnd-of-file marker might be movcd
closer to the beginnitg of the file

Second, if a file exisas as eithet a physical or stream file, then it does not
matter whether new connections to the file are obtained by a call to
A$CREATE$FILE or A$ATTACH$FILE. However. it is Dossible that
the code that does thi. wil someda) be used to creare a connection to a
namcd file, and as you can see, this can cause problenìs.

Unlike device connections, there can be multiple file connections to a single file. Thjs
allows different tasks, if necessary, to have different kinds of access to the same file at the
same time, as the next paragraph shows.

AJter receiving a lile connection, a task caÌls A$OPEN to open the connection. In the call
to AgOPEN, the task specifies how it intends to use the lile connection and how it is
willing to share the file with other tasks using other connections, by passiag the following

. An open-mode indicator

The open-mode indicator tells the Basic I/O System how your application is going to
use the connection. This parameter can specily that the connection is open for
reading onìy, for wrìting only, or fbr both reading and writing.

. A sharc-modc indicator

The share-mode indicator specifies how other connections can share îhe file with the
connection being opened. I his parameter can specify that there can be no other open
connections to the iile, that other connections to the file can be op€ned for reading
only, that orher cornections ro rhe file can be opened for writing only, or that other
connections to the file can be opened fo. both readhg and wrìting.

For each open file connection to a random-access device unit, the Basic I/O System
maintains a file pointer. Thìs is a pointer that tells the Basic T/O Sysrem rhe logical
address of the byte where the next I/O operation on the file is to begin. The logical
addresses of the bytes in a iile begin with zero and increase sequentially through the
entire file. Normally the pointer for a file connection points at the next logical byte after
the one most recently read or written. However, a task can use the file connection, if
neecl be, to modiry the file pointer by means of the A$SEEK system call.

Basic l /O l)ser's Cuide

FUNDAMENTAL CONCEPTS

2.6.2.3 Some Observalions about Devices and Connections

Figure 2-3 is quite detailed and shows most ofthe situations that are possible for device
units and file connections to them. In particular, you can observe the following:

. Device connections extend from the application software to the individual device
units, and each passes through one and only one file driver.

. There is only one device connection to each connected device, and multiple file
connections can share the same device connection.

. Different device ùnits with the same controller can be connected via different file
drivers.

. Tasks can share access to the same device unit through the physical file driver, and
they can share access to the same files on the same device unit through the named file
driver.

. There is only one device connection through the stream file driver, reflecting the fact
that a singlc,logical device contains all stream files. There can be addilional stream
files in the application if more are needed.

. The configuration interface, which is depicted as a pile ofconduits, is off to one side.

. All but one of the device units are connected. The unconnected device unit is still
separated from the applicrtion sofrware by the configuraîion interface.

2-8 Basic I/O User's Guide

CHAPTER 3
NAMED FILES

3.1 INTRODUCTION

Named files are intended for use with random-access, secondary storalie devices such as
disks, diskettes, ancl bubble memories. Named files provide several features that are not
provided by physical or stream files. These features include

. Multiple Files on a Single Device

. Hìerarchical Nalì ing of FiÌes

. Access Control

. Extra Data in a File's Descf iùor

These features combine to make named fiies extremely useful in systems that support
more than one application and in applications that require more than one file

3.2 MULTIPLE FILES ON A SINGLE DEVICE

As shown in Figure 3-1, your application can use named files to implement more thsn one
lle on a single devicc. This can be very useful in applications requìring more than one
op(ratnr, :Uch r\ l r nn5.t . t iun ptoiessi lg \)stem5.

3-3 HIERARCHICAL NAMING OF FILES

Th€ iRMX lI n{med fles feature allows your application !o organize its files inro a
number of tree-like structures as depicted in Figure 3-1. Each such structure, called a file
tree, must be contained on a single device, and no two fiìe trees can share a device. In
other words, if a device contains any named tiles, the device contains exactly one file tree.
Named file trees must also fit on a single voÌume.

Basic I /O User 's Guide f,-1

-
\MEI) FILES

-;;;--
I oú Í j I---T-

; l
L]

l l

Iigure 3-1, Example ofa Named-File Tree

Each file tree consists of two caîegories of files-data files and di.ectories. Data files
(which are shown as triangles in Figure 3-1) conîain the informaîion that your application
manìpulates, such as inventories) accounts payable, transactions, text, source code, or
object code. ln contrast, dìrectory liles (shown as rectangles) contain only pointers to
olher files or direcrori€s. The purpose of the dilectory files is to provide you with
flexibiliry in organizing your file structure.

i

l_l l__l

Basic I/O Usefs Cuide

NAITED FILES

To ilÌustrate rhis flexibility, take a close look at Figure 3-1. This figure shows how named
liles can be useful in multi-user systems. Figure 3-1 is based on a collection of
hypothetical enginecrs *,ho work {or three d€paltnìenrs (Dcparrncnts 1, 2 and 3). Each
engineer is responsible for his own 1ììes. This multiperson organization is rellected in îhe
file tree. The uppermost dìrectory (called the device's root dirccrory) points to three
"department dire€tories." Each department diectory points to several "engineer's
directories." And the engineers can organize their files as they wish by using their own
diectories.

Each file (directory or data) has a unique shortest path connecting it to the root directory
of the device. For instance, in Figure 3-1, the lile called SIM-SOURCE hasrheparh
DEPTI/BILL/SIM-SOURCE. This notion oi "path" re8ects rhe hierarchical narure of
the named-file tree.

Anolher characteristic of hìerarchical file naming is rhat rhere is less chance lbr duplicate
file names. For example, note that Fieure 3 I contains directories fbr two individuals
named Bill. (These directories are on rhe extreme ieft and right of the third level of the
figure.) Even if the rightmost Biìl had a dîta file with the file name of SIM-oBJECT, its
path would differ from that leftmost Bill's SIM-OBJECT. Specifically, the lefrmost SIM-
OBJECI is identified byi

DEPTl/BILL/SIM-OBJECT

whereas the rightmost SIM-OBJECTwould be identilied by:

DEPT3/BILL/SIM-OBJ ECT

Whenever your application manipulates either kind of named file, the îpplication must
tell the Basic I/O System which file is to be manipulated. There are several ways to
specify a particular named file to the Basic I/O System, all ofwhich involve connections
and paths.

3.3.1 Connections

Once you have a connection to a parîicular named file, you can use the connection as the
PREFIX pa.ameter of any system call. If, in the same caì1, you set the SUBPATTI
parameter to NIL or SELECTOR$OF(NIL), the Basic I/O System will ignore the
SUBPATH and use only the PREFIX ro find that particular flle.

Basic I/O User's Cuide

N A NÍF:I) FILES

3.3.2 Paths

If you do not have a connection to the file, you can specily the file by using its path. To do
lhis, build an iRMX II string. (An iRMX lI string is a representation ofa character string.
To represent a string of n characters, you must use n+ l consecutive bytes. The first byte
contains thc character count, n. The following n bytes contain the ASCII codes for the
characters, in the same order as the string.) This string is called a path name. Then use a
pointer to this path name as the SUBPATH parameter in the system call, and use the
device connection as the PREFIX parameter in the system call.

For example, ifyour named îile tree is on Drive l, and ìt has the path name
DEPT2/HARRY/TEST-RESULTS, you can specii, the file by using the devrce
connection lbr Drive 1 as the PREFIX parameter and a pointer to the path name as the
SUBPATH parameter-

3.3.3 Prefix and Subpath

Once your application has obtained a connection to a directory file within a named file
tree, the application can use that conneclion as a basis for reaching all files thaî descend
from the directory.

For example, referring again to Figure 3-1, suppose your applicîtion has a connection to
Directory DEPTI/TOM. The application can refer to D:ìî, File BATCH-l by using both
the PREFIX and the SUBPATH parameters. The application should use the connection
to Directory DEPTl/TOM as the PREFIX, and it should use a pointer to a subpath name
as the SUBPATH. The subpath name is a string that connects Directory DEPIl/TOM to
Data File BATCH"1. For îhis example, the subpath name is TEST-DATA/BATCH-1.

3.3.4 Default Prefix

Within one iRMX IIjob. most refercnces to a named file tree a.e generally confined to
one branch of the tree. For example, in Figure 3- l, Tom will usually access the files in his
directory more frecluentlv than liles outside of his directory. Recognizing this clustering,
lhe Basic I/O System provides the notion of defauÌt prefix.

The Basic l/O System allows your appÌication ro spccify onc dcfault prefìx for each
iRMX II job. A default prefir is a connection to a directory at the head of the most
commonly ùsed hrrnch in vour nemed file tree. For instance, in Figùre 3-1, Tom's
appìication would probably use íl connection to Directory DEPTl/TOM as the default
prefir. To use the default prefil(, the application sets the PREFIX pa.ameter to NIL or
SELECTOR$OF(NIL),

Basic I/O Useis Gùide

NAMED FILES

A default prefìx provides a job with two advantages. First, by providing a reference point
within a named file tree, it alLows your application to use subpath names instead of path
namcs. Ifyour trcc is several levels deep, thìs can save prograrnrning tinre during
development. Second, and more significantly, a default prefir provides a means ofwriting
generalized application code that can work at any ofseveral locations within a trcc.

Consider an example. Suppose that an assembler (implemented as an iRMX IIjob) uses
a default prefir to find a location in a named file tree. The assembler could then Ltse a
subpath name of TEMP to find or create a temporary work fiìe. Before an application
invokes the assembler, it sets the default prefix of the assemblerjob to a directory in the
application's named file tree. This allows more than onejob to invoke the assembler
concurrenîly without the risk ofsharing temporary files.

The Basic I/O System keeps track of a job's default prefix by using thejob's otrject
directory. Whenever your tasks use the SET$DEFAULT$PREFIX system call to specify
a connection as being the default, the Basic I/O Systcm catalogs thc conncction undcr thc
name $ in thejob's object directory.

3.4 CONTROLLING ACCESS TO FILES

In most environments where files are shared among multiple users, it is necessary to have
a means of controlling which users have access to $hich files. Among userswho have
access to a given file, it is frequentiy necessary to grant different kinds of access to
different users. The iRMX II Operating Syste provides this control \ identifying users
with user IDs and embedding access rìghts for these lDs into the files. This secîion
describes the user ID and file access mechanisms.

3.4.1 Users and User Obiects

The iRMX II Operating Syst€m uses the concept of "user" to correlrte file a.cess to
people or to iRMX II jobs. But the precise definition of "user" depends on îhe nature of
your application.

Ifyour application allows several people to enter information (at terminals, for example),
you might want to consider each person (or smallgroup ofpersons) a user. This allows
each individual (or smallgroup) to maintain access different from other indivicluals (or
small groups).

Alternatively, ifyour application does not interact with people (or allows only one person
to interact), you mighl wish to consider each iRMX IIjob as a user. This setup would
allow your application to control the îiles that each job can access.

Basic I/O Uscr's Guide l-5

N \\IID I ' ILES

In more general terms, the set of entities thaî manipulate named files in your system is
the sct of all users. lî you want all of these entities to be able to access any file, you can
consider them to be a single user. Flowever, ifyou want to distribute different acress to
Lììllerent collections oflhese enlities, you musr divide the enaities ìnto subsets, each of
which is a separate user.

For cxemple, ìook at Figure 3-1. As mentioned earlier, all engineers are responsible for
their own files. lf engineers want Io have unique access îo their files (perhaps permitting
no one else to use their files), each engineer must be a separate user. Flowever, if all
engineers are wiLling to give uniform aocess to other members of the department, then the
oePartmenl can be a separate usef,

3 .4 .1 .1 Use r lDs

A user lD ìs a l6"bit number that represents any individual or collcctìon of indiriduals
requiring a separate identity for the purposc ofgaining access to files.

3.4.1.2 User Objects

The Basic I/O System Lrses a speciel type of object called a user object when determining
access rights to files. A user object contains a list of one or more user IDs. Wlten a tesk
altempts to manipul{te a f i le, i t must supply the îoken for a user object. lo determilre
access, îhe Operating System compares rhe IDs in the supplied user object with
ìnformation contained in the f i le i tself.

To understand user objects, consjder an application in which every person who accesses
the system is a separate user. In this sìtuation, every person would have a separate user
object. The user objecl represenls the person.

'l
he first lD in the user object is the owner ID. This is the ID of the user whom the object

represents. lf you think of a user object as a person, the owner ID represents the name of
that person. When a person creates files, the Opcrating System automatically embeds the
owner ID of that person's user objeca into the file, atlowing that person automatic access
to rhe lile.

The IDs that follow rhe owner lD represent additional kilds of access that the person has.
For exampÌe, people often belong to organizations sùch as athletic clubs and fraternal
croups which distribute identity cards to their members. To participate in the
organization, people must show their ìdentity cards to prove they are members. The user
IDs that follow the owner lD serve the same purpose. They jdentily the person as one of
a select group, all ofwhom have the same aoress to a certain set of files.

The Basic l/O System has three system calls that rnanipulate user objects:

. CREATE$USER creates a user object and returns to the calìing task a token for that
user object.

3-6 Basic I/O User's Guide

NAMED FILES

. DELETE$USER deleres a user objeo.

. INSPECT$USER returns to the calling rask the list oflDs in the user object specified
in the call.

3.4, t.3 Oefault User Oblect For a Job

Most l/O operations performed within a particular iRMX lljob are performed on behalf
of one user object. Recognizing this, the Basic I/O System allows your application to
designate a defauìt user object for eachjob. Wlenever your application invokes a Basic
I/o System call on behalfof the default user object, the application can use
SELECTOR$OF(ML) as rhe roken for the "user" paramerer. The Basjc l/O System
recognizes the SELECTOR$OF(NIL) as refeúing to the default user.

The Basic l/O System provides two system calls to manipulate a job's default user.
SET$DEFAULT$USER can be used either to change an existing defar.rlt user object or,
in the case ofjobs having no default user object, to establish one.
GET$DEFAULT$USER can be used to ascerrain rhe default user for a job.

The Basic I/O System uses thejob's object directory to keep track of thejob's default user
object. Whenever one ofyoùr tasks sets or gets a default user object, the Basic I/O
System either catalogs or looks up the entry for the default user object in the object
directory. It uses the name R?IOUSER to refer to the default user object. To prevent
problems, you should consider R?USER to be a reseraed name, and you should avoid
using it.

3.4.2 Types of Access lo Files

Each ofthe two kinds ofnamed files-directory îiles and data files-can be accessed il four
different ways.

Every directory file can porentially be accessed in one or more ofthe following ways:

Delete Delete the direcrory file with A$DELETE$FILE.

List Obtain the contents ofthe directory file with A$READ or
AGETDI R ECTORY$ENTRY,

Add Entry Add entries to the direoory with A$CREATE$FILE,
A$CREATE$DIRECTORY, or A$RENAME$FILE.

Change Entry Change the access rights of files lisred in the directory with
A$CIIANGE$ACCESS.

Basic I/O UsePs Guide

\,\MET' FILES

Every data file can potentially be aclessed in one or more ofthe following ways:

Delete Delete rhe file wirh A$DEI-ETE$FILE or rename ihe file with
A$RENAME$FILE.

Read Read the file wìth A$READ.

Append Add information to the end of the file with A$WRITE.

Update Change information in the file with A$WRITE or drop information with
A$TRUNCAI'E,

A uscr's access rights to a particular file depend on the access list associaied with that file.

3.4.3 File Access List

For each named file (data or directory), the Basic I/O Sysrem maintains an access list
which defines the users $ho have access and their acess rights. Each arcess ljst is a
collcction of up to three ordcred pairs haviDg the folltì

ID, access mask

'Ihe
ID portion is a user ID- The lìst of user IDs defìnes the users who can access tlte file.

1'he aocess mask portion defines the kind of file aqjess that the corresponding user has.
An aoccss musk is a bye in which inclividual bis represent the vaaious kinds of access
pcrmitted or denied that user. When such a bit is set to f. it signifies that the associated
kind of (ccess is permirted. Whcn sct to 0, the bit signifies rhat the associated kind of
access is denied.

The association between the bits ofthe access mask and the kinds of access they control
are as follows (where bìt 0 is the least-significant bìt):

Bit Directory Files Data Files

0 Delete Delete
1 List Rcad
2 Add Entry Append
3 Change Entry Update

The remaining bits in the access mask have no significance.

For example, an ̂ ccess list for a data file might look]ìke the following:

5B3 l 000011 l0
9F2C 00000010

3-8 Basic I/O User's Guide

NAMED FILES

where the ID nùr'nbcrs (left column) are in hexadecimal and the access masks (right
column) are in binary. This means thaî the ID number 5B31 has read, append, and
update acress rights, while thc lD numbcr 9F2C has the read access right.

The first entry in the file's access list is placed there automatically by the Basic I/O
System when it creates the file. The ID po.tion of that entry is the first ID number in the
user object specjfied in the call îo A$CREA-IE$FILE. That ID is known as the owner ID
for the file. The access rights portion is supplied as a parameter in the same call.

Tasks can alter the acress list of a file by means oîthe ASCIIANGE$ACCESS system
call. With A$CHANGE$ACCESS, you can add or delete ID-access pairs, and you can
change lhe access righrs oflDs already in the access list.

NOTÉ,
The user whose ID is the owner ID for a file has one advantage over other
users. Only a file's owner can use the A$CIIANGE$ACCESS system call
to modify the file's access list without being granied er?licit permission to
do so.

3.4.4 Computing Access for File Connections
'Whenever

a task calls A$CREATE$DIRECIORY, A$CREATE$FILE, or
A$ATTACH$FlLE, thc Basic l/O System constructs an access mask and binds it to the
file connection object returned by the call. This access mask is constant for the life of the
connection, even if thc acccss list for the file is subsequently altered. When rhe
connection is used to manipulaae the file, the access mask for the connection deterúines
how the file can be accessed. For example, if the computed access rigits for a connection
to a data file do not inclurle appending or updating, then that connection cannot be used
in an invocation ofA$WRITE.

When a task calls A$CREATE$DIRECIORY or A$CREATE$FILE, the access mask
for the connection is the same as the access mask that the task supplies in the "access"
parameter of the system call. However, when a task calls A$ATTACH$FILE, the Basic
I/O System compares rhe user object specified in the "user" parameter wìth the file's
access list and computes an aggregate mask.

Figure 3-2 illustrates the algorithm that the Basic I/O System uses drjring a call to
ASATTACH$F[LE. As the figure shows, the Basic I/O System compares the IDs in the
specified user object with the IDs in the file's access list. The access masks corresponding
to matching IDs are logically ORed, forming an aggregate mask.

Basic I/O User's Cùide 3-9

NAMED FILES

Figùre 3-2. Computidg the Access Mask for a File CoÍnectioú

Normally, the Basic I/O System uses the aggregate access mask embedded in the
connection to deterùine a task's ability to access a file. However, there are two
circùmstances in which the Basic I/O System computes access again: during
A$CI{ANGE$ACCESS and during A$DELETE$FILE. When a task invokes one ot
these system calls, the Basic I/O System comlutes the ac.ess to the target file (or to rhe
data file or directory specified in the "prefix" parameter, if the subpath portion is null). If
the user object specified in the system call does not have appropriate access rights, the
Basic I/O System denies the task the abiiìty to delete the file or change the access.

3-10 Basic I/O Usels Guide

NAMED FILES

NOTE
When computing access, the Basic I/O System checks the access only to
the last iile in the specified subpath and to the parent directory ofthe last
file. It does not check the access to any other directory files specified in
the path. If the subparh is null, the Basic I/O System checks the access to
the file indicated by the "prefix" parameter.

3.4.5 Special Users

There a.e two user IDs that can have special meaning to the Basic I/O System. One is
the number 0 (the system manager), which has special meaning to the Basic I/O Sysr€m.
The other is the number 0FFFFH (the WORLD user), which can have special meaning
based on the application.

3.4.5.1 System Manager User

Ifso indicated during the configuration process, user ID 0 represents the "system
manager." A user object containing this value is privileged in two respects. First, when it
is used to create or attach files, the resulting file connection automatically has read access
to data files and list access to directory files. This is true even ifa file,s access list does not
contain an lD-access mask pair whose ID value is 0. The second privilege granted such a
user object is that it can call A$CHANGE$ACCESS to change any file's access list.

3.4.5.2 World User

By convention, the user ID 0FFFFH represents WORLD (all users in the system). To
implement this convention, you should place the lD for WORLD in the list of user IDs for
every user objelt you create. This allows your application to set aside certain îiles as
public files, giving everyone Jìmited access. For example, your file system might contain a
series of utiJities, such as compilers or linkers, which all users need to access. Instead of
granting everyone access on an indìvidual basis (which is impossible ifyou have mote than
three users), you can grant the user WORLD access to the fiies. Since WORLD is on the
ID list of every user object, this grants everyone access to the files.

As a side eff€ct of ircludilg thc WORLD ID in every user object, any file whose owner ID
is 0FFFFH (WORLD) can have its access list modified by anyone. That is, any file
connection for rhar file can be used in a caìl to A$CHANGE$ACCESS.

3.4,6 Example

Ttre following example can help you understand how to use lDs, access masks, ac.cess lists,
and user objects to permit each user in a system to have exactly the kinds of access that
you want that user to have

llasic I/O Ilser's Cuide 3-11

NAMED FILES

Relèrring back to Figlre 3-1, suppose that Tom is to have all kjnds of access ro rhe file
BATCH-I, that Bill is to have read and append access only, and that the members of
Department 2 are to have read access only.

Tom (or whoever creates BATCH-I) can arrange for these kinds of access by doing the
fotlowing:

. Create a number ofuser objects, one for Tom, one for Bill, and one for each of the
members of Department 2 (Geofge, Harry, and Sam). When crearing rhe user
objects, assign unique owner IDs for each user. Assume that the ownea lD numbers
are 4000H for Tom and 8000H for Bill. Assign unique owner IDs for each of the
members of Department 2, but also include a common user ID (assume F000H for
this example) as an additional ID in each oftheir user objects.)

r Use A$CREATE$FILE to create the file BATCH-I. In rhe call ro
A$CREATE$FILE, úse the token for th€ user object containing th€ 4000H ID
number and speciry the access mask 00001111B. This call returns a file connection
that gives its ùser (Tom) all kìnds of access to BATCH-I. Ar this point, the access list
for BATCH-1 has just one lD-access mask pair.

. Use A$CHANGE$ACCESS to add an ID-access mask pair ro the access lis! of
BATCH-I. The ID should be 8000H and the access mask should be 000001108. This
gives Bill read and append access to Batch L Now rhc acccss Ìist for BATCII-1 has
two lD-access mask pairs.

. Use A$CHANGE$ACCESS to add a third pair to the access list ofBATCH-I. The
ID should be F000H and the access mask should be 000000108. This gives the people
in Dcpartment 2 read access to BATCH-1.

. lnform Bill that he can read the contents of BATCH-1 and append new informarion ro
it. Desqibe to him the prel ir and suhparh rhar are needed ró artrrch BATCH-r, ano
tell him to create a user object vr'ith the ID 8000H. Tell him to specify that user object
when altaching BATCH-1.

. Inform the members of Department 2 that they can read the contents of BATCH-I.
Describe for them the prefix and subpath needed to attach BATCH-1, and tell them
to create user objects that contaìn an entry for the ID F000H. Tell them to speciîy
those user objects when attaching BATCH-1.

When Bill attaches BATCH-1, hc receives a filc connefiion rhar he can use in calls to
A$READ. He also can use ASWRITE, provided rhar rhe file poinrer for that connection
is at the end of the file.

When a member of Department 2 attaches BATCH-1, he receives a lile connection that
he can use in calls to A$READ.

Note that this example shows that one ID number can be used to give certain access rights
to an individual and that another ID number can be used to give differenr access rights to
d collection of indivìduals.

Basic I/O Usels Guide

NAMED FILES

3.5 EXTENSION DATA

For cach named file on a randon access volurne, rhe Basic T/O Sysrem creares and
maintains a file descriptor on the same volume. The first portion of the descriptor
contains information for the Basic I/O System. The last portion, called cxtcnsion data, is
available to your operating system extension. You specily the number (from 0 to 255,
inclusive) ofbytes of extension data for each named file on the volume, when formatting
the volume with the FORMAT urility.

Ifyou are writing an operating system extension, and you want to record special
information in a file's descriptor, you can use ASETEXTENSION$DATA to plàce the
data into the trailing portion of the descriptor. AGETEXTENSION$DATA car be
used to access this data when it is needed later.

3.6 SYSTEM CALLS FOR NAMED FILES

Several system calls relate to iRMX II named files. Some ofthese calls are useful for hoth
data and directory files, some for only one kild of file, and sonre (such as
CREATE$USER) don'r rclate ro either kind of le.

The following sections brielly explain the purpose of each ofthe system caÌls. The
descriptions are grouped by function rather îhan alphabetically. These descriptions aae
very brlel. The Ertended iRlvlX II Baic I/O Svstm CaIb Refercnce Marudl conrains
dctailcd dcscriptions of the calls.

3.6.1 Obtaining and Deleting Connections

Six system calls pertain to obtaining or delcling connections.

. A$CREATE$FILE

This call applies only to data iiles. Your application must use this call to create a new
data file, and it can use this call to obtain a connection to an exìsting data file. lf rhe
application uses this call to create a new file, the Basic I/O System automatically adds
an entry in the parenr directory for rhis new file.

. A$CREATE$DIRECTORY

This call applies only to directory files. Your application must use rhis calì to cteaîe a
new directory file. The caÌlcannot be used to oblain a connection to an existing
directory. Th€ Basjc I/O SystÈnì autoln,llicaly adds an enlry in rhe parent direcrory
fbr this new directory.

. A$A'l ' IACH$FILE

This call applies to both data and directory files- Your application can use this call to
obtain a connection to an existing data or directory file.

Bàsic I/O fÌser's cuide

NAMED F'ILES

. A$DELETE$CONNECTION

This call applies to both data and directory files. Your application can use this call to
delete a connection to either kind ofnamed file. This call cannot be used to delete a
device connection.

. A$PHYSICAL$ATTACH$DEVICE

This call does not directly apply to either data or directory files. Your application uses
this call io obtain a connection to a device. Even though this connection is a device
connection, it can be used as the prefix for the root directory of the device. However,
using this system call c.auses a task to lose its devìce independence.

. A$PHYSICAIJDETACH$DE\{CE

This call does not directly apply to either data or directory files. Your appJìcation uses
this call to delete a conùection to a device.

3.6.2 User Obiects

Five system calls pertain directly to user objects. None of these calls are specìfically
related to data or directory files. The calls are:

. CREATE$USER

This call is used to create a user object.

. DELETE$USER

This call is used to delete a user object.

. INSPECT$USER

This call is used to ascertain a user obje,ct's id and to find out to which groups the user
belongs.

I SEfiDEFAULT$USER

Your application can use this call ro establish a defaulr user for any iRMX Iljob.

r GET$DEFAULT$USER

Your application can use this call to ascertain the default user for any iRMX IIjob.

3- 1,1 Basic I/O User's Cuide

NAMED FILES

3.6.3 Default Prefixes

Two calls pertain to default pr€fixes, and neirhcr ot thcsc crlls pertains direcrly to data
files or directory files. The calls are:

T SET$DEFAULT$PREFIX

Your application can use this call to set the default prefix for any iRMX TIjob.
I GET$DEFAULT$PREFIX

Your application can use this caU to ascertain the default prefix for any iRMX IIjob.

3.6.4 Manipulating Data

Eight system calls allow you to manipulate the data in a ffle. Four apply to both directory
and data files, two apply to data files only, and rwo are auxiliary calls that aid in the data
manipulation process. The system calls are:

. A$OPEN

This call applies to both data and directory files. Befote your application can use any
other system calls to manipLiate file data, the applicetion must open a connection ro
the file. This system call is the only way to open a conneclion.

. A$CLOSE

This call applies to both data and di.ectory files. AJter your application has finished
manìpulating a file, the application can use this system call to close the Îile connection.
Your application can elect !o leave rhe file open,letting the Basic I/O System close it
when the connection is deleted, but there is an advantage to closing colnections when
they are not being used.

This advantage derives from the fact that, when a connection is shared between two or
more applications, some of the applications can place restdctions on the manner of
sharing. For instance, an application can speciry sharing with writers only. By closing
connections, your appÌication can improve the likelihood that the connections can be
used by orher applications. A conne,ction is not closed until all pending I/O requests
have been handled.

. A$SEEK

This system call applies to both data and directory files. Whenever your application
reads, writes, or truncates a file, the applìcation must tell the Basic l/O System the
location in the file where the operation is to take place. To do this, your application
uses the A$SEEK system call to position the file pointer of the file connection. The
A$SEEK system call requùes that the file connection be open.

Basic l /O Usefs Guide 3-r5

NAMED FII,F]S

. A$READ

This system call applies to both data and directory files. Your application can use this
system call to read file data from the location indicated by the file pointer and place
the data in a memory buffer. Before using this system call, your application can use
the A$SEEK system call to position the file pointer. The A$READ system call
requires that the file connection be open. lt also requires that the segment ofmemory
to which you copy the data be a writable segment.

The outcome of this system call depends upon whether a data file or a directory is
being read. lfyour application reads a data file, the application will receive data that
makes up the file. If the application reads from a directory, the application will
receive data that represents the entries ofthe directory.

Each entry in a dùectory consists of 16 bytes. The first two bytes conrain a 16-bit file
descriptor number corresponding to the file descriptor number associated with the
AGETFILE$STATUS system call in the ÀÍentletl |RMX II Baric I/O Ststem Calk
Rekrence Manual. The remaining 14 b1'tes are the ASCII characters making up the
name of the file to which the directory entry points. (A file's name is the lasr
component of a path name.) The advantage in using the A$READ system call to read
a directory is that your application can obtain several entries with one operation.

. A$WRITE

This system call applies only to data files. Your application uses this system call to
copy information from a memory buffer and place it in thc filc. Bcfore using this call,
the application can use A$SEEK to position the file pointer at the location withil the
fiÌe to receive the information. The A$WRTTE system call requires that the file
connectìon be open. lt also requires that the segment of mertory from which you
copy the data be readable.

. A$TRUNCATE

This system call can be used only on data files. Your application can use this call to
trim information from the end of the file. To do so. the aDDlication first must use
A$SEEK to posit iun thÈ t i le loinrer ar rhe f inr hyre ro hJdropped. Thcn rhe
application invokes the A$TRUNCATE call to drop the specified byte and any b)'îes
Ìocated after the spccilicd bytc. The A$TRUNCATE system call requires rhat th€ file
connection be open.

. WAIT$IO

Your application can use this system call afrer callìng A$READ, ASWRITE. or
A$SEEK to receive the concurrent condition code of the prior systern call. WAIT$IO
can also return the number of bytes read or written.

.3-t6 Basic I/O User's cùid€

NAMED FILES

. A$UPDATE

This system call forces the Basic I/O System to transfer data remaining in internal
bufTers immediately to the files on a device. Your application can use this system call
to ensure that all files on remoiTable volumes lsuch as diskettes) are uDdated before
the operator removes the volume

3.6.5 Obtaining Status
'lhere are two status-related system calls, one for connections and one for files. The calls
are AGETFILE$STATUS and A$GET$CONNECTION$STATUS. Both of these calls
can be used wilh data files and directorv files

3.6.6 Reading Directory Entries

There are two system calls that your application can use to read entrìes liom a directory.
The A$READ system call (which can also be used to read a data lile) was discussed
earlier, under the heaLlirg "Manipulati g Data." Th€ second syslem call is
ACETDIRECTORY$ENTRY. This system call can be used only on dìrectory files,
,rnd can be used wjthout opening î connection.

3.6.7 Deleting and Renaming Files
The Basic I/O System provides one slstern call for deleting files and another for renaming

files. Both of these calls can be used with data files and diectorv files. The calls are:

. A$DEI-F.TE$FILE

Your application can use this system call to delete data files and directory files.
Ilovrever, any attempt to delete a directory that is Dot erìpty wìll result in an
exceptional condition.
'lhe process of deletìng a tile involves two stages. First, the applicatìon must call
A$DELETE$FILE. This causes the file to be marked for deletion. The second stagc,
which is perlbrmed by lhe Basic I/O System, involves deciditg when to deÌete rhe file.
The Basic l/O System deletes marked liles only after all connections to the file have
becn dclctcd. Rcfcr to thc A$DELETE$CONNECTION svstem call to see how to
delete connections.

. A$RENAMESFILE

Your application can use this system call to rename both data files and directory liles.
In renaming a file, your appiication can move the file to any directory in the samc
named file tree. For exampìe, you can rename A/B/C to be A/X/C. ln effect, this
example simply moves File C from Directory B to Directory X. This means that your
application can change every component of a file's pàth name.

Basic t/O User's Guid€ 3 - l 7

\A\tED FILES

3.6.8 Changing Access
'fhe Basic I/O System provides one systeú call to let your application change a file's
access list. This call is A$CI{ANCE$ACCESS, ard it applies to borh dara files aùd
directories. One rule govems the use ofA$CHANGE$ACCESS-onIy the owoer ofa file
or a user with change entry access to the directory containing the file can change the file,s
acress list.

3.6.9 ldentifying a File's Name

The Basic I/O System provides a system call to ler your application find out the last
component of a file's path name when the application has a connection to the file. The
system call is AGETPATH$COMPONENI, and you can use it on daîa files and
directories. For an explanation of how you can use this system call repeatedly to obtain
the entire path name for a file, see the description of this system call in the Extendert
|RMX II Basíc I/O System Calls Reference Manual.

3.6.10 Manipulating Extension Data

When you format a volume to accommodate named îiles, you have the option of allowing
each fìle to include extension data. The Basic l/O System provides two system calÌs that
albw you to get and set extension data. These calls apply to both data and directory files.

. ASETEXTENSIoN$DATA

This call provides a means ofwrjring extension data. ASETEXTENSION$DATA
can be used even if the file connection is not open.

. AGETEXTENSION$DATA

This callprovides a means of reading exrension data. AGETEXTENSTON$DATA
c;ln be used even ifthe file connection is not open.

3.6.11 Detecting Changes in Device Status

The Basic I/O System provides the A$SPECIAL sysrem call ro allow your appÌication to
detect a change in the starus ofthe device containing your named file tree. Specifically,
your application can use the "notify" lunction of the A$SPECLAL system call to establish a
mechanism tbr finding out if the device ceases to be ready. For more iaformation, reier
to dìe A$SPECIAL secrior o'l fhe Enended |RVIX II Basic I/O SJstefi CatL, Refercn e
tr[anual.

3 -18 Basic l/O Us€r's Cuide

NAMED FILES

3.7 ACCESSING THE GLOBAL TIME.OF-DAY CLOCK

The Basic I/O System provides one system call that obtains the rime of day from a
battery-powered time-of-day clocl, (called a global clock), if such a clock is available.
Another system call exists to set the global time-of-day ckrk. The system calls are

. GET$GLoBAL$TIME

This system call retu.ns the date and time value stored in the global time-of-day
system clock.

r SET$GLoBAr-$TIME

This call sets the global date and timE values in the gÌ!ìbal lime-of-Llay clock.

3.8 ACCESSING FILES THROUGH iRMX-NET

The Basic I/O System supports the iRMX NET local area network standard by allowing
you to configure the remote file driver and by providing the ENCRYPI system call. This
system call encrypts passwords as defined by the ìRMX-NET local area network
encry?tion standard.

3.9 CHRONOLOGICAL OVERVIEW OF NAMED FILES

The system calls that can be used with named files cannot be used in arbitrary order. This
section provides you with a sense of how the calls relate to one another.

3.9.1 Most Frequently Used System Calls

Figure 3-3 shows the chronological reÌltionships between the most frequently used Basic
l/O System calls. To use the figure, start with the leftmost box and follow the arrows.
Any path that you can trace is a legitimate sequence of system calls. Keep in mind that
this figure does not represent all possible sequences.

3.9.2 Calls Relating to User Objects

The system calls relating to user objects are completely independent oi other Basic I/O
System calÌs. With one exception, your application must have a user object before it can
trse any system call requiring a user object.

Five systeú calls p€rtain to user objects. Ofthe five, GET$DEFAULT$USER and
CREATE$USER can be invoked at any time. Two others, DELETE$USER and
INSPECT$USER, can be invoked only after user objects exist. The remaining call,
SET$DEFAULT$USER requires that both ajoh and a user ohject exist.

Basic I/O User's cuide 3-.19

NAMED FILES

f l
1

' "
' ' l . l [i + l [] f ;
- r { - l ' L i l L l l I^"ri:" f' . .

DATA FILES

D I R E C Î O R I E S

[-l [J rl
I . 4 r l ' l f t ! r ó + I

| | {_ti_l l

.]-.r
l ' . ' " " 1

. - l D r r r L I o t u r r

L----r _-1,-f___l
l - ' l

figure 3-3, Chronolos/ of Frequently Used System Calls for Named [iles

3.9.3 Calls Relating to Prefixes

The GET$DHFAULT$PREFIX system call can be invoked whenever a job exists. The
SÉ f$ DEFAULT$PREFIX. however. rcquires horh a job and c uscr ohject.

3.9.4 Calls Relating to Status

Both of the status-related system calls, AGETFILE$STATUS and
AGETCONNECTION$STATUS, can be invoked whenever your applìcation has a file
connection.

3.9.5 Calls Relating to Changing Access

The only system call related to changing access, A$CILANGE$ACCESS, can be invoked
whonever your application has both a user obj€cl and a path or conneclion to a file.

-ì.:0 Basic I/O User's Guid€

NAMED FILES

3.9.6 Calls for Monitoring Device Beadiness

There is only one syst€nì caLl tlìat lets your application monitor the readiness of a device,
the A$SPECIAL system call. Your application can use the "notiry" function of this call
any time after your application has obtained a dcvicc conncction.

3,9.7 Calls Relating to Extension Data

The two system calls relating to extension data, AGETEXTENSION$DATA and
ASETEXTENSION$DATA, can be invoked whenever your application has a
connection to a file-

3.9.8 Calls for Renaming Files

The one call for renaming a file, A$RENAME$FILE, can be used whenever your
application has a connection to the file to b€ renam€d, a user object, and a path that is to
become the new pathname.

3.9.9 Calls for ldentifying File Names

There is only one system call for finding out a file's name,
AGETPATH$COMPONENT. Your applìcation can use this callwhenever the
application has a connection to the file.

3.9.10 Cal ls for |RMX-NET

The BIOS system call ENCRYPT encrypts a password to enable remote file ac4ess
through iRMX NET. You must use this call to encrypt a password. The ENCRYPT
system call can also be used by any application that needs to perform password
encryption. Password decryption is not supported.

Rasic I/O flsefs Gùide 3-21

CHAPTER 4
PHYSICAL FILES

4.1 INTRODUCTION

The Basic I/O System provides physical files to allow your applications to .ead (or write)
strings of bltes from (or îo) a device. Aphysical lile occupies an entire device, and the
Basic I/O System provides your applications wjth the ability to capitalize on the physical
characteristics of the device-

4.2 SITUATIONS REQUIRING PHYSICAL FILES

The close relationship between a device and a physical file is particularly useful when your
application uses sequential devices. For example, you should use physical files to
communicate with line printers, djsplay tubes, plotters, magnetic tape unirs, and robots.

There are even some insÌances where you should use physical fiÌes to communicate with
random devices such as disks, diskettes, ànd bubble memories. For instance

. Formatting Volumes

Whenever you create an application to format a disk or diskette, the appÌication must
have access to every byte on the volume. Only physical files provide this kind of
access.

r Volumes in Formats Required by Other Systems

llyour application must read or write volumes that have been formatÌed lor systems
other than the Basic I/O System, you must use physical files. Your applicarion will
have to interpret such informalion as lobels and file structures. A physical file can
provide your application with access to the raw information.

r Implementing Your Own File Format

Suppose that your application requires a ìess sofhisticaîed file strùctùre than thxt
provicJed by iRMX Il named files. You can build a custom file structure usjng a
Dhvsical file as a lbundation.

Basic I/O User's Guide ,l-l

PI IYSICAL FILES

4.3 CONNECTIONS AND PHYSICAL FILES

Although there js a one{o-one correspondence between the bytes on a device and the
bytes of a physical file, the device connection is different than the file connection. The
Basic I/O System maintains this distinction to remain consistent with named files and
slream files. This consistenry helps you develop applic,ltions that can use any kind offile.

4.4 USING PHYSICAL FILES

Several system calls can be used with physical liles, but the order in which they are used is
not arbitrary. The following list provides a brief description (in chronological order) of
*,hat an applicatìon must do to use a physical file.

1. Obtain a device connection.

Your application must call A$PHYSICAL$ATTACH$DEVICE to obtain a device
connection îor the device. This needs t() be rlone only once for each deJr'ice and is
necessary for t\r'o reasons. When your application creates the physical file. the
device connection tells the Basic I/O System which device is to contain the file and
also that the file must be a physical file.

2 Obtain a file connection

lfyour application knows that the file has nor yet been created, it should use the
A$CREATE$FILE syst€nì call to ot,tdin a {ile connecrion. This witt work even if rhe
physical îile has already been creirted. Use the token of the device connection as the
PREFIX parameter to tell the Basic I/O System which device you want as your
physicaJ file.

If, on the other hand, your applicarion is certain that the file has already been
created, use the A$ATTACH$FILE system call to obtain the file connection. To do
this, your application can us€ either the device connection for th€ device or an
existjng file connection to the file as the PREFIX parameter in the system call.

This careful distinction between the AXiCREATE$FILE and the
A$ATTACH$FILE system calls is necessarv ro be consistent with named files. If
you want your application ro work with any kind of file, vou must maintain this
consistency.

3. Open the file connection.

Use the A$OPEN system call to open the connection. When opening the
connection, your application must specilJ, how thc file can be shared and how the
aDolication uses the conne,ction.

Basic I/O System Use.'s Guide

PHYSICAL FILES

4. Manipulate the file.

Four system calls can be used to read, wite, or otherwise manipulate your physical
file:

. The A$READ and A$WRITE system calls can be used to read from tlìe device
and write to the device, respectively.

. The A$SEEK system call can be used to manipulate the file conne.tion's file
pointer if the device is a random device such as disk, diskette, or bubble.

. The A$SPECIAL system call can be used to request device-dependenî functions
from the device driver. The precise nature of these functions depends upon the
kind of device and the number of special functions supported by the device
driver. Be aware that use of special functions can prevent an application from
being device-independent.

5. Close the file connection.

Use the A$CLOSE system cali to close the connecîion. This is particularly
important if the share mode of the connection restricts rhe use of rhe fite through
other connections. Note that your applicttion can repeat steps 2, 3, and 4 any
number of times.

6. Delete the file conneltion,

Use the A$DELETE$CONNECIION system call to delete rhe file connection.
This is only necessary ifyour application is complet€ly linished using the file.

7. Request that the device be detached.

Invoke the A$PHYSICAI$DETACH$DEVICE sysrem call to l€t the Operating
System know when your applicatìon is finished using the device. The Operating
System keeps track ofthe number of applications using the device and avoids
detaching it until it is no longer being used by any applicaîion. Only then does the
Operating System actually detach the device.

All of these system calls are described in the Extmded íRMX II Basic I/O System Calb
Reference Manual.

Basic I/O User's Cuide 4-3

5.1 INTRODUCTION

Stream files provide a means for one task to send large amounts of information to
another task. Be aware îhat this is one of several techniques forjob{o-job
communication. If you are not familiar with other techniques, refer to fhe E).fenled
.RMX II Programming Techniques Manual.

The aspect of stream files that makes them very useful is that lhey allow a task to
communicate with a second task as though the second task were a device. This extends
the notion of device independence to include tasks.

Because two tasks are involved in using each stream file, each task must perform one half
of a protocol. There are several protocols that work, but the following one is typical and
seÍves as a good illustration. Note that the two halves ofthe protocol can be performed in
either order or concurrently.

5.2 ACTIONS REQUIRED OF THE WRITING TASK

The writing task must perform seven steps in its halfofthe protocol to ensure that it has
established communication with the reading task The steps are

l. Obtain a connection to the stream lile device.

Although stream iiles do not actually requie a physical device, your application mtrst
ca A$PHYSICAL$ATTACH$DEVICE to obtain a device connection b€ror€
creating a stream tile. This is necessary because, when your application invokes the
A$CREATE$FILE system call, the device connection tells the Basic I/O System
what kind of file to creare.

The A$PHYSICAL$ATTACH$DEVICE system call requires a pa.ameter that
identifies the device to be attached. For stream files, there is only one device, and its
name is specified during the process of configuring the system. lntel recommends
the name "STREAM", but iî is possible that the person responsible tbr contigùring
your system changed this name. For the remainder of this discussion, this manual
assuuì€s lhat lhe nilrne ofyour slslem's rtream file device is "STREAM".

Basic I /O Useis Guide 5-1

STREAM F'I I ,ES

As with other devices, "STREAM" cannot be multiply attached, so the system
program should be written so as to call A$PHYSICAL$ATIACH$DEVICE or y
once. The program can then save the device connecîion and pass it to any
applicatjon program that requests it.

Create the stream file.

Use the A$CREATE$FILE system call with the device connection to create the
stream file and obtain a token for a file connection to the stream fìle. Use the token
for the device connection as the PREFIX parameter, in order to tell the Basic I/O
System to create a stream file.

Pass the file connection to the reading task.
'Ìhere are several ways of doing this, including the Ìrse of object directories and
mailboxes. For e{licit instructions, refer to the Er.tended iRMX II prcyamhíng
Techniques Manual.

Open the file for writìng.

Use the A$OPEN system call to open the file conne,ction for writing. Set the
CONNECTION parameter equal to the token for the fiìe connection; set the MODE
parameter for writing: and set the SHARE parameter for sharing only with readers.

Write information to the strcam fiìc.

Use the A$WzuTE system call as often as needed to write information to the stream
file. Use the îoken for the file connection as the CONNECTION parameter.

The Basic I/O System uses the concurrenr part of the AgWzuTE system call to
synchronize the writing and reading tasks on a call-by-caìÌ basìs. The Basic I/O
System does this by sending a response to each invocation of ASWRITE only after
the reading task has finished reading all information thar was written by the
A$WRITE call.

Close the connection.

When finished writing to the stream file, use the A$CLOSE systcm call to close the
connection. Note that after this step, the writing task can repeat steps 4, 5, and 6 as
many t imes as needed.

Delete the connection.

Use the A$DELETE$CONNECIION sysrem call to delete the connecrion to the
stream file.

5 .

2.

3 .

4 .

All of these system calls are described in the Ettended. íRIIX II Basic I/O Sy:tem Cath
Rekrence Manual .

Basic I/O Useds cuide

STRXAM FILES

5.3 ACTIONS REQUIRED OF THE READING TASK

The reading task must perform the following siy steps in its half of the protocol to
successfully read the information written by the writing task.

1. Cet the file connecrioo for the stream file.s-:

The technique used to accompiish this depends on how the writing task passed the
file connection.

2. Create a second file connection for the stream file.

The.e are two reasons for doing this. First, the reading task must have a dilferent
file pointer thar that of th€ \yriti,ìg task. Second, tle Basic I/O System rcjecls any
connecîions created in one.job but used by anoth€r to manipulate a file.

Obtain this new connection by using the A$ATTACH$FILE system call. Set the
PREFIX parameter to the token for the original file connection.

NOTE
The reading task can also use the A$CREATE$FILE system call to obtain
the new connection to the same stream file. The reason for this is that the
Basic I/O System examines the natur€ ofthe PREFIX parameter in the
A$CREATE$FILE system call. If the value provided is a device
corinection, the Basic I/O Systern will creote a new file and return a
connection for it. On tlìe other hand, il the valLre provided is d file
connection, the Basic I/O System will just cteate another connection to the
same file.

This careful distinction betw€en the A$CREATE$FILE and the
A$ATTACH$FILE system calls is necessary to be consistent with named
and physical files. If you want your application to work with any kind of
file, you must maintain lhis consìslency.

3. Open the new file connection for reading.

Use the A$OPEN system call to open the connection for reading. Set the
CONNECTION parameter equal to the bken for the new connection. Set the
MODE parameter for reading, and set the SHARE parameter for sharing with all
connections to the file-

4. Commence reading.

Use the A$RBAD system call to reiìd the lile until reading is no longer necessary or
until an end-of-file condition is detected bv the Basic I/O Svstem.

5. Close the new file connection.

Use the A$CLOSE system call to close the new file connection. Note that after this
step, the reading task can repeat steps 3, 4, and 5 as many times as needed.

Basic I/O Use/s Guide

S'TR,EAM FILES

6. Delete the new lile connection.

Use the A$DELETE$CONNECTTON system callto delete the new connechon to
the stream file. The writing task deletes the old connection, and, as soon as both
connections have been deleted, the Basic I/O System deletes the stream file.

All of these system cafs are descrìbed ìn the Extetule.l |RMX Il Basíc I/O System Colb
Referenae Manwl.

5-,1 Basic I/O Uset's cuide

5.1 INTRODUCTION

This chapter provides you with backgound information on the system calls of the Basic
I/O System. For detailed information on system call par arîe|ers, refeî 6 the E$ended
iRMX II Basic I/O Systen Calb Reference Manual.

BIOS syst.em calls can be divided into two caÌegories according to their names. The first
category consists ofsystem calls having names of the form

RQ$XXXXX

where XXXXX is a brief description of what the system call does. The second category
consists of system calls having nnmes of the form

RQAXXXXX

System calls of the first category, without the A, are synchronous calls. They begin
runnìng as soon as your application invokes them, and continue running until they detect
an error or accomplish eveq4hing they must do. Then they return control to your
application. In other words. synchronous calls act like srrbroutines.

System ci ls of the second category (those with the A) are called asynchronous because
they accomplish their objectives by using tasks that run concurrently with your appÌication.
This allows your application to accomplish some work while the Basic I/O System deals
with devices such as disk drives and tape drives.

6.2 SYNCHRONOUS SYSTEM CALLS

The following paragraphs explain properties ofcertain input parameters to synchronous
Basic I/O System calls.

Basic I/O User's Cùid€ 6.1

SY\CHRONOUS AND ASINCHRONOUS SYSTEM CALLS

6.2.1 User Parameter

This parameter is specified in many synchronous system calls (and il some asynchronous
ones as well). It contains a token designating the caller's uscr objcc!. A
SELECTOR$OF(NIL) specification designates the default user. The Basic I/O System
ignores this parameter for physicÀl and stream files.

6.2.2 File-Path Parameter(s) for Named Files

Named files are designated in system calls by specifying their path, that is, thei prefix and
subpath. The prefi\ pa.ameter can be a token designating an existing device conne.tion
or file connection. lf this parameter is SELECTOR$OF(ML), the default prefix for the
calling task'sjob is assumed.

For named files, the subpath parameter is a pointer to an ASCII string. The form ofthis
string is described in the following paragraph. The subpath can also be NIL or can point
to a null string, in which case a prefix indicares rhe desired connection. For physical and
stream files, the subpath parameter is always ignored.

NOTE
A file connection that was obtained in onejob cannot be used as a
connection by anotherjob- However, a file connection can be used as a
prefix by otherjobs in any call requiring prelix and subpath parameters.
(The only exceptions to this rule are that rhe otherjobs cannor use rhe
connection as a prefix while specilying a null subpath in calls to
A$CHANGE$ACCESS or A$DELETE$FILE.) This means that a file
connection can be passed to anotherjob and the otherjob can obtain its
own connection to the same file by calling A$AT-|'ACH$FILE, with the
passed file connection being used as the prefix paramet€r in the call.

6"2 Basic l/O User's cuide

SYNCHRONOUS AND ASYNCHRONOUS SYSTEM CALLS

System c{lls rcfcrring to named files can specify patlrs in the followilg forms:

Prefix

0

token

token

Subpath

a pomter
to a null string

Pointer to
ASCII string

a pcinter
to a null str ing

Pointer to
ASCII string

Desìgnated Connection

Connection whose token
is the deiault prefix.

ASCII string defines a
path from the connection
whose token is the
delàult prefix to the
target connection-

Connection whose token
is contained in the preîix.

Prefix parxmeter
contains a token for a
connection. ASCII string
deîines a path from thît
conneclion to the target
connection.

The subparh ASCII string is a lisr of file names seperated by slashes, terminating with the
desired file. A file name can be 1-14 ASCII characters, including any printîble ASCII
character except the slash (/) and up-arrow 0 or circumflex ("). In Figure 6-1, for
example, if the preîix is the token for directory OBSTETRICS and we wìsh to reference
lile OUT-PATIENT, the subpath paramerer must point to the srrjng

DELIVERY/POST-PARTUM/OUT.PATIENT

If the ASCII string begins with a slash, the prefir mcrcly dcsignatcs the tree and thc
subpath is assumed to start at the root directory of the tree associated with the prefix.
For example, if the prefix designares directory GYNECOLOGY in Figure 6- t, the
subparh ro oUT-PATIENT is

/OBSTETRICS/DELIVERY/POST.PARTUM/OUT-PATIENT

Named files can also be addressed relative to other files in the tr€e, using',î', or ,'/,'as a
patfì component. (These two symbols have the same meaning. Scme terminals do not
have the up-arrow key.) The " t " of "/" ref€rs lo the p{renr direcrory of the currenr file in
the path scan. For example, now rhat we have a connecrion to OUT-PATIENT in Figure
6-1, we can use thal connection to speciry a subparh to IN PATIEìVT. With thc rokcn for
the OUT-PATIENT connection as our prefix, the subpath srring would be

/IN-PATIENT

Basic I/O Usefs cuide

SYNCHRONOUS AND ASYNCHRONOUS SYSTEM CAI,I,S

Note that no slash follows the "/" in this example.

Of course an even simpler approach would be to designate diectory pOST-pARTUM as
the prefix, in which case the ASCII string becomes

lN.PATIENT

NOTE
The Basic I/O System does not distinguish bet\"reen uppcrcase and
lowercase characters in subpaths. For example, the subpath ,,xlz,,is
equivalent to the subpath "XYZ".

6.2.3 Response Mailbox Parameter

This parameter is specified only in asynchronous system calls. It contains a token
designating the mailbox thar is ro receive the result of the call. This information s
provided by tasks to synchronìze parallel operations. To receive the result of the call, a
task must either call RECEIVE$MESSAGE and wait at the desisnated mailbox or call
Vr'AIT$IO. Be aware that if seveÍal cills share rhe rÀme mailhoxl the resuLts mav be
received out of order-

Most asynchfolous system calls return only an I/O result segment to the response
mailbox. This segment contains an exception code and other intbrmation about the
operation. Appendix C describes the I/O rcsulr segment. Other systenì calls-
A$ATTACH$FILE, A$CREATE$DIRECTORY, A$CREATE$FILE, ANd
A$PHYSTCAI.$ATTACH$DEVICE-return to the mailbox a token for a connecrion if
the system callperforms successfully or an I/O result segment otherwise. After calling
RECEIVE$MESSAGE to obtain the result of one of these system calls, a task should
perform a GET$TYPE system call to ascertain the type of object feturned to the response
mailbox. The ertende d .RMX II Nucteus Use,"î Gu,de describes GET$TI?E in <letail.

NOTE
I/O resulî segments should be deleted when they are no longer needed
They remain in memory until deLeted.

6-.1 Basic I/O Useds cuide

SY'ì-CHRONOUS AND ASTNCHRONOUS SYSTEM CALLS

T

FiBurc ó-1. Sample Named Flle Tree

Basic I/O Useros cuide o-a

SYNCHRONOUS AND ASYNCHRONOUS SYSTEM CALLS

6.2.4 l/O Buffers

The A$READ and A$WzuTE system calls each require a buffer to read from or write to
while performing I/O. When you create these buffers, bear in mind the following
restrictions:

. T'he memory segEents used for lhe I/O buffers must have the appropriate access
rights. For example, if you are going to read data îrom an I/O device and place it into
a buffer, the mcmory segmenî must have write access. Likewise, if you are going to
take data from a buffer and write it to an I/O device, the memory segmett must have
read access.

. Once the I/O operation has been invoked, the tasks ofyoìr. application should avoid
changing the contents of the buffer until thc Basic I/O System finishes the operation.

. Ifyou use an iRMX II segment as a buffer, be sure that the br.rffer is not deleted while
an I/O operation is in progress.

. Ifyou choose to use an iRMX II segment as a buffer, you must ensure that rhe
segment is in the same job as the task performing the I/O operation. Using segments
from onejob as buffers îor I/O operations in a differentjob can lead to a problem.
For instance, suppose that Job A owns an iRMX II segment, and that Job B uses this
segment as a buffer for I/O. If Job A is delered, rhe iRMX II Operating System
automatically deletes the buller even ifJob B has l/O in progress.

Note that the problem of unintentional deletion of objects shared between jobs exists
for all objects when thejob rhat owns rhe object is deleîed.

6.3 ASYNCHRONOUS SYSTEM CALLS

Each asynchronous system call has two parts--one sequential, and one concuffent. As you
read the descriptions of the two parts, refer to Figùre 6-2 to see how the parts rclatc.
. the sequential part

The sequential part behaves ir much the same way that fully synchronous system calls
do. Its purpose is to veriry parameters, check conditions, and prepare the concùrrent
part of the system call. The sequential part then retums control to your application.

. the concuffent part

The concuíent part runs as an iRMX II task. The task is made ready by the
sequential part ofthe call, and it runs only when !h€ priority-based scheduling of úe
iRMX II Operating System gives it the processor.

6.6 Basic I/O Uset's Guide

SYNCHROn-OUS AND ASY^-CHRONOUS SYSTEM CALLS

The reason for spLitting the asynchronous calÌs into two parts is performance. The
functions performed by these calls are somewhat time-consuming because they usually
ìnvolve mcchanical devices. By performing these funclions concurrently with oth€r work,
the Basic I/O System auows your application ro run while the Basic I/O Sysrem waits fo.
thc mcchanical devìces to respond to your applicatioo's request.

I-et's look at a brief example showing how your application can use asynchronous calls.
Suppose your application requires some information that is stored on disk. The
application issues the A$READ sysrem call to have the Basic I/O Sysrem .ead the
information into memory. L€t's trace the action one step at a timel

1. Your applìcation issues the A$READ system call. This call requires, as do all
asynchronous calls, that your application specify a response mailbox for
communication with the concurrent part of the system call.

2. The sequential part of the A$READ call begins to run. This part checks the
parameters for validity.

3. If the sequential part of the call delects a problem, it signals an exception and returns
control to your application. lt does not make ready the Basic I/O System task to
perform the reading function.

4. Your application receives control. lts actions at this point depend on the condition
code retumed by the sequential part of the system call. Therefore, the appLcatron
tests tbe condition code. If the code is E$OK, the application continues running
until it must have the information from the disk. It is at this point that your
application can take advantage of the asynchronous and concurrent behavior ofthe
Basic I/O System.

For example, your application can implemenr double (or multiple) br-rffering by
issuing another (or seve.al) A$READ system call(s) while waiting for the first call to
finish running. Alternatively, your application can use this overlapping processing to
perform computations. The point is that you can decide what you want youl
applicalion lo do while the asynchronous system call is running.

On rhe other hand, ilyour application finds that the condition code returned tom
the sequential part ofthe system call is other than E$OIq the application can assume
that the Basic I/O System did not make ready a task to perform the function.

For the balance of this example, we will assume that the sequential part ofthe system
call returned an E$OK condition code.

Basic I/O Usefs cùide

SYNCI]RONOUS,4.ND ASYNCIIIIONOUS SYSTEM CN.LLS

f--ì;;-_-l
| *"'^" f

I *"r"J"' I----f---

-----r----

Figure 6-2. ConcuÍent Behavior of an Asynchronous Syst€m Call

6-8 Basic I/O User's cuide

S'I1\CHRONOUS AND ASYNCHRONOUS SYSTEM CALLS

5. Your application now must have the information. tsetore taking the inlbrmation
from the buffer, your application must verify that the concurrent part of the
A$ READ systenì call ran sucr,essfully. There are wo ways in which rhe rask can do
this. One way is for the application to issue a RECEIVE$MESSAGE system call ro
check the response mailbox rhat the applicarion specified when ir invoked the
A$READ system call. The other way (which can be used only after a call to
A$READ, A$WzuTE, or A$SEEK) is îor rhe applicarion to issue a WAIT$IO
system call, in which it passes a token for the response mailbox and receives the
concu.rent condition code directly.

By using the RECEI\E$MESSAGE system call, rhe application obtains a segment
that contains, among other things, a condirion code for the concurrent part ofthe
A$READ system call . l f this condit ion cocle is E$OK, rhen the reading operation
was successful, anrl the application can get the data from the buffer. On the other
hand, if the code is not E$OK. the applicarion should anallze the code and arrempr
to asceÍain why the readjng operation was not successful.

By using the WAIT$lO system call, the application receives directly the condifion
code lbr the concurrent parr of the A$READ systcm call. The application also
receives directly another value. Ii the concur.rent condition code for A$READ js
E$OK. then this other vaìue js the number of bfes successfully read; otherwise, this
other vaÌue has no significtnce.

In the foregoing example, we used a specific syslem call (A$READ) to show how
asynchronous calls allow your application to run concurrently wilh I/O operations. Now
let's look at some geneaalities about asynchronous calls.

r Aìl asynchronous system calls consist oî two parls-one sequential and one concurrent.
The Basic I/O System will activate the concurrent part only ifrhe sequentiàl part runs
successlully (returns E$OK).

. Every asynchronous system call allows vour application to designate a responsc
mailbox through which the application receives the resùlr ofthe concurrenr parr ofthe
system call.

. When€ver the sequcntial part of an asynchronous system call retutírs it condi{ion code
other than E$OK, your application should not attempt to receive a message liom the
response mailbox, nor should it call WATT$IO There can be no further inform^rion
ior the application because the Basic l/O System cannot run the concurrent part of
the system call.

. Whenever the seqìrential part ofan asynchronous system call runs successfulll,
(E$OK), your applicalion can count on the Basic I/O System running rhe concufrenr
part of the system call. Your application can take advanlage of the concurrenry by
doing some processing before receiving the message liom the response mailbox or
before calling WAIT$ÌO.

Brsic I/O User's Cuide 6-9

SYNCIIRONOUS AND ASYNCHRONOT]S SYSTEM CALLS

Whenever the concurrent part of a system call runs, the Basic I/O System signals its
complefion by sending an objecl to the response mailbox. The precise nature of the
object depends upon which system call your application invoked. You can find out
what kind of object comcs back from a particular system call by looking up the call in
the Ertended. .RMX II Ba.\ic I/O Sytem CaIb Reference Manual. lf more than one t)?e
of object can be returned. your appljcation can ascerlain the t)?e of the returned
object by calling GET$TYPE.

Whenever the Basic I/O System returns a segment to yoùr application's response
mailbox and the application calls RECEM$MESSAGE to obraiÍ information from
that segment, the application should delete the segment when the segment is no
longer needed. The Basic I/O System draws memory for such segments f.om the
memory pool of the calling task'sjob, so if thc application fails ro delere such
segments, large amounts of memory are wasted on unneeded segnìents.

Ilyour application calls \\AIT$ÌO to obtain the results of a call to A$READ,
A$WRITE, or A$SEEK, the application does not have access to the I/O result
segment and rherelbre cannot delete it. While this seems to be a problem at first
glance, i t is actualÌy an advantage. It enables the Basic I/O System to maintain a
supply of I/O rcsult scgments that it can us€ releatedly, ìnstead of c, eatin8 a separare
I/O result segment tor each A$READ, A$WRITE, or A$SEEK. Be.ause most I/O-
related cìperations are re.ds, úrites, or seeks, this means a signìfìcant performsnce
enhancement fbr vour rDDliciì t ion.

6.4 CONDtTtON CODES

The Basic I/O System returns a condition code when a system call is invoked. If the calì
eÌccutes without €rrLìr, the Basic l/O Sysrem returns lhe code ',ESOK.,' lf an errof is
encountered, some other code is returned.

For those system calls that do not require a response mailbox parameter, the Basic I/O
System returns the condition code to the word pointed to by the except$ptr parameter. If
an eÌceptional condition occurs, the Basic I/Cl System can then either return control to
the cirlling task or pass control to an exceptjon handler. See the E teruled iRMX II
Nucleus User's Guicle lor a detailed description of exception handling.

For those system calls that do require a response mailbox parameter (the asynchaonous
c.ìÌls), the Basic I/O System returns a condition code for the sequential Dortion of the call
to the word pointed to l)y the cxsep!$frr farrmeter anrl I con,. i i t ion corjè for the
concurrent portion of the call to the sratus field of the I/O result segment (see Appendi\
C). If a sequential exceptionaL condition oc.urs, thc Basic l/O Sysrem either rerurns
control to the calling task or passes control to an exception handler. It does not process
the asynchronous fortion of the c:ìll If a concu!.ent exceptional condition occurs, the
calÌing îask must sign{ì the exception handler o. process the exceptional condition in line.

6- l0 Basic I/O Us€/s cùide

7.1 INTRODUCTION

The Basic I/O System is a configurable layer of the iRMX II Operating System. Ir
contains several options that you can adjust to meet your specific needs. To help you
make configuration choices, Intelprovides three kinds of information:

r A list ofconfigurable options

. Detail€d information about tlìe options

. Procedures to allow you to specifu your choices

The balance of thjs chapter provides the first category of information. To obtain the
second and third categor ies of inîorllration, reîer ro rhe Extended iR]UIX II Inteructíve
Confrguration Utilit! Reference Manual.

7.2 BAS|C r/O SYSTEM CALLS

You can select the timers, clocks, and drivers required by your applìcation. The
advantage in being able to do thìs is that you can reduce the aùount ofBasic I/O System
code needed to support your application. Wiîh the Interactive Configuration Utility
(ICU), you can exclude enrire fìle drivers, such as the stream file driver.

7.3 |NTEL t/O DEVTCES

You must speciry which Intel I/O devices (controllers) are part ofyour hardware
configuration. The devices that you can speciry are listed in the Eltended ikMX II
Inteructive Confrgurutíon Utili, Refercnce Manual.

Fo. each device that you select, you must specjly a name, physicaÌ characteristics, and
desired operating modes.

7.4 BUFFERS

For each device, you must speciry the number ofbuffers that the Basic I/O System is to
manage during I/O operations on that device.

tslsic I/O Usefs Cuide 7 l

CO}-FICURING THE BASIC I/O SYSTEM

7.5 TIMING FACILITIES

You must speci8, whether you want your system to include the riúing facilities related to
thc SET$TIME, SET$GLOBAI$TIME, CET$TIME, and cET$GLoBAI,$TIME systern
calls.

7.6 SERVICE TASK PRIORITIES

You must specify the priorities of the Basjc I/O System tasks that attach devices and
delete connections.

7.7 CREATING A FILE WITH AN EXISTING PATHNAME

Occasionally, a task will call A$CREATE$FÌLE, specifying a parhname rhar is identical to
the pathname of a file that already exists. The Basic I/O System provides a configuration
parameter (called NO CREATE FILE) thàt enables you to specify what should happen in
this case.

If NO CREATE FILE is selected, a call îo A$CREATE$FILE wil return rhe exception
code E$FEXIST, regardlcss oI the value ofrhe must$create parameter in the call.

If NO CREATE FILE is not selected, then what happens depends upon the value ofthe
must$create patameter in the call to A$CREATE$FILE. If mustgcreate is true (oFFH),
then the Basic I/O System returns the E$FEXIST exception code. Tf mNtgcreare is false
(0), then the existing file is truncated or expanded, according to the size parameter in the
cal to A$CREATE$FILE.

7.8 SYSTEM MANAGER ID

You must specify whether you want a system managcr (user).

7.9 SYSTEM INITIALIZATION ERROR REPORTING

Du.ing the configuration process, you can elect to have the system report BIOS
initialization errors. Ilyou configure System Initialization Error Reporting (SIER) into
your application system when you conflguae the Nucleus, the Operating System reports
initialization errors from all layers of the Operating System. On encountering a BIOS
in;tialization error, ìt Bìves conrrol to the monitor after wrjting the following message to
the monitor consolel

Basic I/O User's Guide

CONFIGURING THE BASIC I/O SYSTEN{

BIOS lnit ial lzation Ertor: <er(or code nùùer>

lf System Initialization Error Reporting is not corifigured into the system, the original
BIOS initiali2ation task places the BIOS ID code (2) and the corresponding crror codc
irto the first two words of the Nucleus data segment (1E0t0000H). If no monitor is
configured, it then goes into an infinite error loop.

7.10 FACTORS AFFECTING BASIC I/O SYSTEM PERFORMANCE

The purpose of this section is to make you aware of the factors that have the greatest
impact on the performance (speed) of rhe Basic I/O Sysrem. Note that you determine
somc of these factors during software configuratior, bu! you determine other factors at
other times. The factors are as follows:

. Device granularity, which is the smallest number of bytes that can be read from or
written to a device in a single I/O operation. Ifthis value is selectable, you determine
it either byjumperìng hardware or by means of software, depending upon the device.

. Volume granularity, which is the smallest number of contiguous by'tes that can be
allocated from a volume in a single allocation. This value can vary from volume to
volume and must be a multiple of the device granularity. You specify it wtren
formatting the volume with the FORMAT command of the Human lntefiace.

r File granularity, which is the smallest number of bytes that can be allocnted to a file ifl
a single allocation. This value can vary from file to file and must be a multiple of rhe
volume granularity. You specify each file's granularity when creating the file with the
A$CREATE$FILE system call.

. The number of buffers for each device-unit. You sperily thisvaluewhen configuring
the Basic I/O System.

. The number of bytes to be read or written. You specily this value in calls ro ASREAD
and A$WRITE.

. The amount of time between updates perfbrmed by the fixed update and timeout
updale features- You specify these time intewals when configuring the Basic I/O
Systern. îìesc lwo kinds of updating are explairled in the E tended .RMX II Basíc I/o
System Calk Reference Marual in the description ofthe A$UPDATE system call.

For best results with these factors, you should begin by using your best judgment, Then,
using the resulting performance figures as a base. you can experiment by changing a few
(perhaps only one) factors at a tìme.

Obtaining the optimum combination of these factors is vital to the p€rformance of any
application of which I/O operations are a major part. Testing system performance with
various combinations can result in a system with higher perlormance.

Basic l /O User 's cuide

|BMX@ ll

4.1 DATATYPES

The following are the data types rhat are recogìized by the iRMX ÌI Operating Sysrem:

BOOLEAN A BYTE that is considered to have a value of TRUE if it is (}FFH, and
FAIJE if ir is 00H. In PL/M-286,

DECIARE BOOLEAN LITERALLY 'BYTE';

BYTE An unsigned eight-bit binary number.

DWORD An unsigned four-byte binary number.

INTEGER A signed two-byte binàry number that is stored in two,s complement form.

OFFSET A WORD whose vaÌue represents the distance from the base of an 80286
segment.

POINTER Two consecutive WORDs containing the selector of an 80286 segment and
an offset into that segùent. The offset must be in the word having the
lower address.

SELECTOR An index into a dercriptor table that identifies a partic:ular merrrory
segment. -l he descriptor table entry lists the segment,s base, limit, qpe,
and privilege level.

STRING A sequence ofconsecutive BYTES. The value contained il the first byte is
the number ol bj,tes that follow it in the string.

TOKEN A SELECIOR that contains the logical address of an object. The selector
rcfcrs ro an entry in rhe descrjpror table thar lisrs rhe physical address of
the ob.ject. A token must be declared literally a SELECTOR.

WORD An unsìgned two-byte binary number.

Basic I/O Usefs cuide A"t

8.1 INTRODUCTION

This appendir lists the Rpe codes for all iRMX II objects. In addition, it rJocuments the
amount of memory needed to create Basic I/O System objects.

8.2 OBJECT TYPES

Each iRMX Il object type is known within iRMX II systems by means of a numeric code-
Table B-l lists the tyDes with their codes.

Table B-1. Type Codes

OEJECT TYPE NUMERIC CODE

Task

RegÌon
Segment
Extension
Cornposile

l /O Job
Log calDevice
User Crealed
Composlie

1
2
3

5
6
7
I
100
1 0 1
300
301

variès lrom 80O0H to
oFFFFH depencling on the valu6
specified in CREATE$EXTENSION

lhe firsr € ght oqeds. plùs Lse.creareo composites, are desc'oed ltte Extended iRMX II
Nucleus Uter't Cuidc Use. a'ìd coîr edior oo €cÚypes are desc oed in Claprer 4 oflîis
manual. l/O jobs and log cal d€vices are described in rhe Extended ìRMX II Extended I/O
S\\km U:cr'r Gt'ide.

Basic I/O Usefs Cuide B-1

OtsJECT TYPES A\D RESOURCE R-EQUIREMENTS

8.3 RESOURCE REQUIREMENTS

The Basic I/O System obtains memory îrom the callingjob's memory pool when creating
objects. The values listed here reflect Release 3 of the iRMX II Operating System.

Object

I/O Result
Segment

Connection (to
named file)

Connectìon (to
physical file)

User object

Number of 16-b)1e paragraphs
required by the Basic I/O System

4 (5 for an internal IORS that the Operating
System creates when attaching a device)

6

4

3 (rrinimum)

B-2 Basic I/O Usefs Guide

c.1 ovERvtEw
Cerîain asynchronous I/O system calls return a data structure called an I/O Result
Segment to the mailbox specified by the "resp$mbox" parameter. The following system
calls can retuan such a segment:

A$ATTACH$FILE
A$CIIANCE$ACCESS
A$CLOSE
A$CREATE$DIRECTORY
A$CREATE$FILE
A$DELETE$CONNECTION
A$DELETE$FILE
A$OPEN
A$PHYSICAL$AT-IACH$DEVICE
A$PHYSICAI$DETACH$DEVICE
A$READ
A$ RENAME$FILE
A$SEEK
A$SPECIAL
A$TRUNCATE
A$UPDATE
A$WzuTE

Four of these system cals (A$ATTACH$FILE, A$CREATE$DIRECTORY,
A$CREATE$FILE, and A$PHYSICAI$ATTACH$DEVICE) can return either a
connection or an I/O result segrnent to the mailbox. Your application task can determine
which rype of object has been returned by making a GET$TYPE system call before trying
to examine the object.

Before waiting at the response mailbox to receive the I/O result segment, your application
task should examine the condition code returned in the word poiltEd to by the
"except$ptr" parameter. If this code is "E$OK", the task can wait at the mailbox.
However, if the code is not 'rE$OKr', an exceptional condition exists and nothing is sent to
the mailbox.

Bàsic I/O Use s Cuide c-1

I/O RESULT SECMENT

lmmediately after receiving the I/O result segm€nt, the task should examine the status
field. This field contains an "E$OK" if the system call was completed successfully or an
exceptional-condition code if an error occurred. The result segnent also contains the
actual numbcr oI bytes read or wtitten, if appropriate.

c.2 STRUCTURE OF t/O RESULTSEGMENT

The I/O result segment is structu.ed as followsl

DECIÀRE iors STRUCTURE(
statìrs UORD,
unirgsrarus WORD,
ac r ua l WORD. / ;

where

status Condition code indicating the outcome of the call. Appendix D lists these
asynchronous condition codes.

unit$status The lower four bits oî this fietd contain device-dependent error code
information that is meaninglul only if the status is E$IO. The codes, their
meanings. and their associated mnemonics are as foììows:

Code Mnemonic Meaning

0 IO$UNCI-ASS An error occurred for which
it was impossibl€ to ascertain
the cause.

1 IO$SOF| Soft error; the I/O sysrem
has retried the operation and
failed; another.etry is Íot
possible.

2 IO$HARD Hard error; a retry is not
possibÌe.

3 IO$OPRINT Operaro. intervention is
required.

4 IO$WRPROT lvrite-prorected volume.

5 IONODATA No dara on the next rape
record,

Basic I/O Usels Guide

I/O RESULT SEGMENT

Code Mnemonic Meaning

6 IO$MODE A read (or write) was
attempted beiore the
prcvious write (or read)
completed.

7 IONOSPARES An I/O error occurred
during disk formatting; no
alternate tracks were
available.

8 IOAITAS- An l/O error ou:urred
SIGNED during disk formatring; an

alteanate track was assigned.

actual The actual number of bytes transferred.

The I/O result segment conlains other fields which are of interest onty to the designer of
a device driver. Relel. ro fhe Extenrled \RMX lI Device Drivers Ltset's Guide for
ìnformation about thc rcmaining fields in the I/O rcsult seglìl€Dt.

C.3 UNIT STATUS FOR SPECIFIC DEVICES

You may need to know the informarion contained in the',unitgstatus,'field for the
foÌlowing devices.

C.3.1 |SBC@ 214/215c Controiler

Under certain circumstances, the iSBC 215 Winchester disk controller and the iSBC 214
diskette, disk, and tape controller place information in the high twelve bits of this word. If
the low four bits indicate IO$SOFI, rhe controller sets the high rwelve bits as follows:

Bit Interpretation

15 (leftmost) I =seek error
14 1=cylinder address miscompare
13 l=drive fault
12 l=lD field ECC error
11 l=data field ECC error
10-8 unused
I | = sector not found
6-4 unused

Basic t/O Usefs cuide c-3

r/O RNSULT SEGMENT

On the other hand, if the low four bits indicate IO$HARD, rhe iSBC 215c and iSBC 214
controllers set the hish 12 bits as follows:

Bir

1 5
14
13
12
1 l
10

ó
7
6
5
4

Inter?retation

I =invalid address
1=sector not fbund
I = invalid command
1= no index
1=diagnostic fault
1 = illegal sector size
1= end ofmedia
I = illegal format qpe
1 = seek in progress
1= ROM ef fot

1= RAM error
unused

Ifyou need more detailed information regarding the meaning of these errors, refer to the
iSBCols Wîhchester Disk Cotttroller Hardware Reference Manuel ot to the iSBC@2j4 Mutti-
Peipheml Cotrtroller Hctrdwarc Reference Manual.

C-,1 Basic I/O Usefs Guide

D.f OVERVIEW

This appendix lists two tlpes of €xception codes, Those detected synchronously with
system call invocation (sequential codes) and those detected during the asynchronous
portion of system call processing (concurrent codes). Exception conditjons are further
classified into programmer errors and environm€ntal conditions. A programmer error is
a condition that is preventable by the calling task. An environmental condition rs an
exc€ption condition caused by circumstances beyond the control of the caling task. The
sequential codes are returned to rhe locatìon addressed by the ',except$ptr" field ofthe
system call. The concurrent codes are returncd in an I/O result segment (see Appendix
C). This appendix Jìsts all codes with their decimal and hexadecirnal equivalents.

i
2
4
6
8

46
47
50
5 1

58
62

HEXADECIMAL

OH
l I I
2H
4H
6H
8H
23H
2EH
2FH
32H
33H
36H
3AH
3EH

D.2 SEQUENTIAL (ENVIRONMENTAL) EXCEPTION CODES

CODE

E$OK
E$TIME
E$MEM
E$I,IMIT
E$EXIST
ENOTCONFIGURED
E$SUPPORT
EDEVOFF$LINE
E$IFDR
ENOTFILE$CONN
ENOTDEvICE$CONN
E$BUFFERED$CONN
ENOTSAME$DEVICE
E$PATHNAME$SYNTAX

DECIMAL

Basic I/O Uset's Guide D- l

EXCEPTION CODES

D.3 SEQUENTTAL (PROGRAMMER ERROR) EXCEPT|ON CODES

D.4 CONCURRENT (ENVTRONMENTAL) EXCEPT|ON CODES

DECIMAL

0
2
32
33
31
35
36
37
38
39
40
4 1
42
,+3
41
4 5
4ó
47
48
49
50
5 1
52
53

55
56
5'7
58
59

CODE

E$TYPE
E$PARAM
E$NOUSER
E$NOPREFIX
EBADBUFF

CODE

E$OK
E$MEM
E$FEXIST
E$FNEXIST
E$DEVFD
E$SUPPORT
E$EMPTY$ENTRY
EDIREND
E$FACCESS
E$FTYPE
E$SHARE
E$SPACE
E$IDDR
E$to
E$FLUSHING
E$ILLVOL
EDEVOFFLINE
E$IFDR
E$FRAGMENTATION
EDIRNOT$trMPTY
ENOTFILE$CONN
ENOTDEVICE$CONN
E$CONN$NOT$OPEN
E$CONN$OPEN
E$BUFFERED$CONN
E$OUTSTANDING$CONNS
E$AIREADY$ATTACHED
EDEVDETACHINO
ENOTSAME$DEVICE
E$ILLOGICAL$RENAME

DECiMAL

32770
32'772
32801
32802
32803

IIEXADECIMAL

8002H
8004H
8021H
8022H
8023H

HEXADECIMAL

OH
2H

20H
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
3 1 H
32H
33H
34H
35H
36H
37H
3IJH
39H
3AH
]BH

D-2 Basic I/O User's Guide

EXCEPTION CODES

CODE

E$STREAM$SPECIAL
E$INVALID$FNODE
E$P THNAME$SYNTAX
E$FNODE$LIMIT
EIOIINCLASS
EIOSOFT
EIOHARD
EIOOPRINT
EIOWRPROT
EIONO$DATA
EIOMODE
EIONO$SPARES
EIOATT$ASSIGNED

HEXADECIMAL

3CH
3DH
3EH
3FH
50H
5lH
52H
53H
54H
55H
5óH
57H
58H

HEXADECIMAL

8004H

DECIMAL

ó0

80
8 1
82
83
84
85
86
E7
88

D.5 CONCURRENT (PROGRAMMER ERROR) EXCEPTION CODE

CODE

E$PARAM

DECIMAL

32172

Basic I/O Uset's Guide D-3

E.1 LOGICAL DEVICES

You can assign a logical name to any device with the I/O System call
LOGICAIJATTACH$DEVICE. This creates a logical device objeor, (TLOGDEV)
and catalogs the object in the root object directory.

Tlpically, yoll use these logical device objects with l/O System calls. However, Basic I/O
System calls also permit the prefix parameter to be a Ìogical device object. Whcn you use
a logical device object as tlìe prefir paramerer in Basic I/O Sysrem calls, the Basic I/O
System looks inside the logical device object to determine the device connection. In such
cases, you couÌd receive the exception code EDEVOFF$LINE. Ifyou receive this
exception code and the device is online, the device was never physically anached.

Before you can use a logically named device, the device must be made known to the
system (attached), with the Basic I/O System cal A$PHYSICAIJATTACH$DEVICE.
But when LOGICAL:$ATTACH$DEVICE is invoked, the system does not immediately
issue a call to A$PHYSICAL$ATTACH$DEVICE. Instead, physical attachment occurs
transparently during processing of any I/O System call which references the logical device
object.

You might create a logical device connection but not invoke any I/O System call to
perform the physical attach operation. Ifso, the Basic I/O System can rerurn
EDEVOFF$LINE. You can correct this situation by invoking at least one I/O System
call that refers to the logical device by ìts logical name (such as :F0:). However, your tasks
must reside in an I/O Job beîore they can invoke I/O System calls.

E.2 REFERENCES

For further information, refer to the descriptions of l/O Jobs,
LOGICAI$ATTACH$DEVICE, and A$PI IYSf CAL$ATTACH$DE\/ICE in the
Extended íRl,ÍX II Extended I /O System User'i Guid" .

Basic I/O User's Guide

F,1 INTRODUCTION

The iRMX ll Operating System is based on the iRMX I Operating System. Therefore,
the iRMX Il ve.sion of the Basic l/O System is alnost exactly like the iRMX I version.'lhe same sysîem calls are availabÌe, with no changes or additions. But there are
differences. This appendix outlìnes the differences between fhe two versions for readers
who are aheady familiar wirh rhe iRMX I Operating System. Those who aren't familiar
with the iRMX I Operating Sysîem can skip this appendix.

F.2 80285 CAPABILITIES

The major differences betsr'een the iRMX I and iRMX II versions of the Basic I/O
System are a result of the increased capabilities of the 80286/80386 processor-namely
16M-byte addressabìlity and memoryprotection.

F.2.1 16M-Byte Addressability

The 16M-byte addressability allows device drivers (both Intel-supplìed and user-written)
and application tasks to access a full 16M bytes of system memory. Application tasks
must use logicai addresses to access memory. Logical addresses take the form

selector:offset

On the other hand, device controllers continue to use physical addresses (16M-by,tes
requires a 24-bit address). Therefore your device drivers must know how to convert
logìcal addresses to physical addresses. 'îhe Extended íRLIX II Deice Dive6 lJser's Guíde
discusses this technique.

Basic I/O User's cuide F-1

iR]\TXO I AND iRMXO II BASIC I/O SYSTEM DIFTERNNCES

F.2.2 Memory Protection

The memory protection feature ofthe 80286/80386 processor protects your code and data
by preventing any task from rcading or writing a segment ofmemory unless it has explicit
access to that memory segment. It also pr€vents memory reads or writes from crossing
segment boundaries. Be.ause of this feature, any task that uses th€ A$READ system call
must have write access to the segment oi rnemory used as the memory buffer. Likewise,
any task that uses the A$WRITE system call must have read access to the segúent used
as the memory buffer. The A$SPECIAL system call also checks for the cotrect access and
issues an error code if the access t!?e is not appropriate for the intended operation.

F.3 DEVICE DRIVERS

Not alÌ the Intel-supplied device drivers for iRMX I are included in the iRMX Il
Operating System. Refer fo the Extended |RMX II I tetuctíve Confgurutíon tltility
Referehce Manual for information aboùt the Tnteì-supplied drivers that are available.

F.4 DISK INTEGRITY FEATURES

TIìree othsr features have been added to the Basic I/O System that have nothing to do
with the capabilities ofthe 80286/80386 processor. AII three help to improve the integrity
of data stored on namcd volumcs.

F.4.1 Attach Flags

The Basic I/O Systcm provides an indication ofthe integrity ofnarìed volurnes and
named files. Whenever you attach a named volume or a named file, the Basic I/O System
sets a flag to indicate that the volume or lile is atrached. The volume tlag is set in the
volume label; the file flag is set in the fnode file. When you detach a volume or file, the
Basic I/O System clears the associated flag. Although the Basic I/O System doesn,r check
these flags to determine lile or volume integrity, you can check the condition of a volume
by invokìng the AGETFILE$STATUS system call. If the flag js ser for a volume that
isn't currently attached, the setting could indicate a corrupted volume that wasn I
detached properly.

The Basic I/O System doesn't provide a system call for checking the file flag. However,
you can wnte your own pfogrdnÌs to check this flag, or you can use rhe Disk Veriiication
UtiÌìty to examine the fnode file.

F-2 Basic I/O Usefs Guide

iRMX@ I AND iRMX@ II BASIC I/O SYSTEM DIFFERENCES

F.4,2 Fnode Checksum Field

The Basic I/O Systcm has also added a checkum field to the fnode file. Thc tnodc lilc
stores the information that the Basic I/O System needs to a@ess any named file on the
volume. menever the Basic I/O System wrìtes the fnode file, it calculatcs a checksum
and stores it in the fnode file. Although the Basic I/O System doesn,t check the fnode file
against the checksum when it reads the fnode file, your programs (?n se the checksùm
field to determine whether the fnode file has become corrupted.

F.4.3 Getting and Setting the Bad Track/Sector Information

The A$SPECIAL system call has been enhanced to retrieve and set the bad track/sector
information on a volume. The bad track/sector infomation provides a list of the tracks
or sectors on the volume rhat are defective. One of the new A$SPECIAL subfunctions
allows you to retrieve the current list of defective tracks or sectors. The other new
subfunction enables you to set up a new bad track/sector list.

Basic I/O IJseÉs Guide F.3

A

Actions required of the reading task
close the new lile connection 5-3
create a second file connecrion for the steam file 5-3
delete the new file conneclion 5-4
get th€ file connection 5-3
open the new file conncction for reading 5-3
perforrn the required reads 5-3

Actions reqùired of the writing task
close the connection 5-2
create the stream file 5-2
delete the connection 5-2
obtain a connection to the stream file 5,1
open the file for writing 5-2
pass the file connection to the reading task 5-2
write the information to the stream file 5-2

Asynchronous system calls 6-6

B

Bad track and sector information 1-8
Basic l/O System features 1-1

16M-byte Memory addressability 1-2
access to files, controlling l-5
deviceindependence l-3
file sharing 1-5
lour lile t'?es 1rl

named files l-4
physical files 1-4
remote files 1-5
stream files 1-zl

protectionfeatures 1"2
separation of File Lookup and File Open Operations 1-5
support îor many kinds of devices 1-3
synchronous and asynchronous operation 1-2

Basic I/O Use/s Guide Index-1

I\DEX

BIOS performance factors 7-3
device granularity 7-3
file granularity 7-3
ti-rDe bctwccn updates 7-3
volume g anularity 7-3

c
Calls that return an I/O result segment C-1
Checking the condition code retumed from a call C-1
Concuftent programmer errors D-3
Condition codes 6-10
Connection between tasks and device-units 2-2
Connections and physical files 4-2
Controlling fragmentation of files 1-6
Creating a file with an existing pathname 7-2

D

Data tlpes (see Append;(A)
Dcvice connections 2-4
Device controllers and device units 2-l
Disk integrity l-7

E

E$IO codes returned in unit$starus C-2
Environmental errors D-2
Environmental exception codes D-1
Example of using asynchronous system calls 6-7
Exception codes (see Appendix D)

F

File connections 2-5
f i lc-path paramelers for named f i les o-l
Fiìes 2-2
Fligs for named volumes and files l-8
Fnode checksum field 1-8

G

Global clock l-7
Granularity for hard dìsks 1-7

lndex-2 Basic I/O User's Guide

I

I/O buffers for the A$READ and A$WRITE system calls 6-6
l/O result segment, structure C-2
ID, system manager 7 2
Intel devices 7-1

L

Logical devices E-l

M

Memory needed for objects B-2

N

Number of buffers for each device 7- 1

o
Object types B-1
Open-mode indicator 2-?

P

Paths for system calls referring to named files ó-3
Prefi\ parameterl

R

Respons€ mailbox parameter 6-4

s
Sequential programmer errors D-2
SeFr'ìc€ task prioritics 7-2
Share-mode indicator 2-7
Situations requiring physical files

formatting volumes 4-1
implementing your own file format 4-1
volumes formatted for other systems 4-1

TNDEX

Basic I/O I lsefs cìride Ind€x-]

INDEX

Steps for using physical files
close the file connection 4-3
deiete the file conne.ction 4-3
detach the device ,{-3
manipulate the file 4-3
obtain a device conr€ction ,l-2
obtain a iile connection 4-2
open the file connection 4-2

Stfucture ofthe l/O result segment C-2
Svnchronous system calls 6-1
System initialization error reporting 7-2
System manager 7-2

T

The two parts of asynchronous system calls
the concurent part 6-6
the sequential part 6-6

Three types of ganularity
device 1-6
file 1-6
volume 1-6

Timing facilities 7-2

U

Unit status errors for the iSBC 214/215c Controller C-3
L,ser param€ter 6-2
U\ing CET$TYPE ro dererm ine if a ionneclion L'r rn
I/O Result Segment has been returned C-1
Using physical files 4-2

V

volume granularity for flexible diskettes l-6
\ otumes l-2

fndex-4 Basic l/O User's cuide

intel"

EXTENDED iRMX@II
EXTENDED I/O SYSTEM

USER'S GUIDE

nte Corporation
306 5 Eowers Avenue

S a n t a C l a r a , C a l i f o r n a 9 5 0 5 7

Copyr qht . - 1988. ntel Corporai on, Al l Rrqhts Rese.ved

INTRODUCTION

This manual describes the iRMX@ II Extended l/O System. Although it contarns some
introductory and overview material, it is primarily a detailed description of the Extended
I/O System.

READER LEVEL

The manual is written for programmers who are aLeady famiÌiar with

. The concepts and terminologr introduce<] ;n the Extended iRÀ,lX II Nucleus Uset's
CuAe.

. The PL/M-286 pr ogramming language.

Readers need not be familiar with the iRMX l-t Basic t/O Sysrem.

MANUAL ORGANIZATION

This manual is

Chapter 1

Chapter 2

Chapter 3

divided into the fbllowing chapters and appendixes.

This chapter describes the difTerences between the Basic I/O
System and the Extended l/O System, You should read this
chapter if you are not certaìn which l/O system best meets your
requremenls.

This chapter describes the primary features of the Extended T/O
System. You will find this chapter particularly useful ifyou have
not used the Extended I/O System before.

This chapter explains some basic terminolos/ associated with the
Exlended I/O System, including the following terms: device,
volume, file, and connection. You should read this chapter if you
are looking through the manual fbr the first time or ifyou are
unfamiliar with the Extended I/O System.

These chapters describe named, physical, remote, and stream files
and how to use them. You should read one or more ofthese
chapters, depending on the kinds of files your application uses-

Chapters 4 6

Extended I/O User's Guide lll

I'RIFACE

Chapter 7 This chapter describes characteristics of the Extended I/O System
that you specif when you configure an iRMX II Operating Systeú.

Appendi\ A This appendix defines the formats ofthe data q?es used by the
Extended I/O System For example, it explains the format ofan
iRMX II STRING.

Appendix B This appendir provides a list ofthe q?es of objects created by rhe
Extended I/O System. It also discusses the resource requftements
of the Extended I/O System.

Appendix C This appencìix contains a list of the condition codes that the
Extended I/O System can return. The codes are listed rn
alphabetical order, and each entry in the list includes the
classification of the code (programmer error or environmental
condition) and the nìimeric value of the code.

Appendix D The Extended I/O System uses objecî directories extensively. This
appendix tells which entries are ùsed by the Extended I/O System.
It also tells you which entries you can change and which entries you
can't.

Appendix E This appenclix explains the incompaîibilities between the system
calls of the Basic I/O Svstem and rhe svstem calls of the Extended
I/O System.

AppcnrJix F This appendi.(lists the differences ber\À'een rhe iRMX II and
iRMX I versions of the Extended I/O Svstem.

CONVENTIONS

This manual uses the following conventions:

. The term "iRMX ll" refers to rhe Exr€nded iRMX IL3 Operating System.

. The term "iRMX I" refcrs !o thc iRMX I (iRMX 66) Operaling System.

. All iRMX I I system calls begin with one of two standard prefixesr RQg or RQE$.
When referring to the system calls thaî begin with RQ$, this manual uses a shorthand
notation and omits the prefix. For example, S$CREATE$FILE means
RQSCREATE$FILE. The actual PL/M-286 external procedure names used to
invoke these system calls are shown only in the EÍendcd \RMX II Extended I/O Synem
CaIs Rekrc & Manual, which lisrs rhe detailed calling sequences.

lv Extended I/O Use/s Guide

PREFACE

When referrirB to systcm calls rhat begin wirh RQE$, this manual spells out the
complete names, including the RQE$ characters.

There are some system calls whose names are identical except for the Re$ or ReEg
prefix lfor erample. the EIOS system calls Re$CREATE$lò$JOB and
RQE$CRbA] E$JOB). The difference between two similarly named system calls is
that the RQ$ version operates as it did under the iRMX I Operating System and is
availabìe for comparibility. The ReE$ version is updated to support new 802gó
features, such as 16M byte memory pools. Unless compatibility with iRMX I systems
is an issue, lntel rccommends rhat you use rhe sysî€m call with rhe ReE$ preface
instead ofthe one with the RQ$ preface.

Extended I/O Usefs cuidc

CHAPTEH 1
cHoostNG BETWEEN t/O SYSTEMS

CHAPTER 2
FEATURES OF THE EXTENDED I/O SYSTEM

PAGE

PAGE

Extended I/O llser's Guide

CONTENTS

CHAPTER 3 PAGE

CHAPTER 4
NAMED FILES

PAGE

vlll Extended I/O Uset's Guide

CHAPTER 4 (continued) PAGE

CHAPTER 5
PHYSICAL FILES

CHAPTER 6
STREAM FILES

CHAPTER 7
CONFIGURATION OF THE EXTENDED I/O SYSTEM

APPENDIX A
DATA TYf'ES

CONTENTS

PAGE

PAGE

PAGE

PAGE

Extended I/O Uset's cuide

CONTENTS

APPENDIX B PAGE

APPENDIX C PAGE

APPENDIX D PAGE

APPENDIX E PAGE
COMPATIBILITY BETWEEN THE TWO I/O SYSTEMS

E.1 Conpatibi i ì ty Between The Two l/O Systems.... .E-1

APPENDIX F
iRMX@ IAND iRMX@ II ETTENDED I/O SYSTEM DIFFERENCES

PAGE

Extended I/O Usefs Guide

CONTENTS

FIGUFE PAGE

3-l Layers of Interfacing Between Tasks and a Device ,., , . , , . , . 3 2
3-2 Schematic of Software at Inir ial izarion Time.... .-. 3-3
3-3 A System with Device and File Connections....-.3-4
4-l Example ofa Named File Tree.... , . . . , . 4-3
4-2 Computing the Access Mask for a Fi le Connection-...4-13
4 3 Chronology of FrcqucntÌy Used System Calls for Named Files4-20

Extended I/O User's Cuide

1,1 INTRODUCTION

The iRMX II Operating System provides you with a choice of two l/O systems. One of
these, the Extended l/O System, is described in this manual. The other, the Basic I/O
System, is described in the E te ded \RMX II Basic I/O gstem Use* Guide.

This chapter explains the reason for having two I/O systems and briefly describes the
differences between thcm. After reading rhis chapîer, you should be able to decide
whether your applicarion requires system calls from both systems or from just one. If one
of the T/C) systems is sufficient, you should be able to decide which one.

As you read this chaprer, remember that the Extended I/O System is built upon the Basic
I/O System. In other words, ifyou choose the Extended I/O System, you must also
include the Basìc I/O S),stem in your applicarion.

1.2 REASON FOR HAVTNG TWO t/O SYSTEMS

The iRMX II Operating System is designed ro provide Original Equipmcnt
Manufacturers (OEMs) wilh a variety of fearures that are useful ill building application
systems. Many of these features are useful in most, but not rll, applications. This is
espcc ia l ì y t r ue u f t ea ru r s5 r (l i l i ng rù i npu r and ou rpu l .

Most applications communjcate with external devices such as line printers, terminals, disk
drives, or bubble memories. Even so, not all applications have the same requirements.
The iRMX II Operating System provides two I/O systems to allow you to choose the one
that best satisfies the requirements ofyour application system. And, in the event that
both systems would prove useful in one applicarion, rhe iRMX II Operating System allows
you to use them both.

CHOOSING

Extended l/O Ilser's Cùide l t

CHOOSINC BETWEEN I/O SYSTEMS

NOTE
All information on iRMX Neîworking Software (iRMX-NET) can be
found in the ,RMX Networking Software UserS GarZ". CoÍsult this manual
for information on how to share files and data in a distributed
envftonment with separate iRMx-based workstations. The I'RMX
Netwo*jhg Softuare User'g GuAe ís nor part of the iRMX II
documentation set.

1 .2.1 Basic l/O Sysiem

The Basic l/O System is the more flexible ofthe two I/O systems. It provides very
powerful capabilities, ald it makes few assumptions about the requirements ofyour
application. The following features illustrate the fleribiìity of rhe Basic I/O System:

. AILOWS YOU TO DESIGN YOUR OWN BUFFERING AIcOzuTHM

Although many applications require buffered I/O, rhe Basic I/O Systefl does rìor
automatically provide ìt. Rather than require one parricular approach to buffered T/O
for all applications, the Basìc I/O System alows you to design and imptement your
own buffering method.

. SUPPLIES ASYNCHRONOUS SYSTEM CALLS

Rather than making assumptions about whether (and how) you wish to overlap your
I/O operations, the Basic I/O System allows you to explic;rly control the
synchronization of the system calls.

. GIVES YOUR TASK CONTROL OF DETAILS

The system calls of the Basic I/O System involve many paramerers. Using these
parameters, your tasks can closely tailor the behavior of each system call to rnatch the
requirements of your àpplic;ìtion system.

As these features show, the Basic l/O System emphasizes fleúbility rather than ease ol
use. By preserving flexibility, the Basic l/O System provides I/O features îhat are useful
in a wide range of applications.

Clearly, the Basic I/O System does have lìmitations. Many applications rhar perform I/O
do not need the control ofdetails afforded try tlìe Basic I/O Sysrem. For many
applications, the amount of time requir€d to develop the application system is more
critical than the ability to finely tune its pe.formancc. For thcse applications, the iRMX
Il Operating System provides the Efended I/O System.

t-2 Extended I/O User's Cuide

1.2.2 Extended l/O System

The Extended I/O System is designed to be easicr ro use rhan the Basic I/O System. Thc
following features ofthe Extended l/O System help make it easier to use:

r AUTOMATIC BUFFERING OF l/O OPERATIONS

The Extended I/O System provides you with automatic bLrfferìng of all I/O
operations. Aside from specif ing how many buffers the Extended l/O System uses,
your tasks need not become involved with buffering. Furthermore, ifyour application
system does not require buffering, your tasks can tell the Extended I/O System to use
no buffers.

. S\î.ICHRONOUS SYSTEM CALI.S

The Extended I/O System provides system calls that are synchronous. By freeing your
application software from the burden of explicitly synchronizing system calls, the
Extended I/O System reduces the complexity ofyour appìication system. This, in turn
helps reduce development costs. Although the system calls of the Extended t/O
System are synchronous, your application system can still use overlapped I/O
operations. To do so, your tasks need only tell the Extended I/O System to use
buffers, and the Extended I/O System will automatically overlap your l/O operarions.

. FREES YOUR TASKS OF TEDIOUS DETAILS

The system calls of the Exlended I/O System require fe$er pa.ameters than clo ihosc
of the Basjc I/O System. This simplifies your application system and reduces
dcvclopment costs.

1.3 MAKING THE DECISTON

At this point, you are faced with three alternatives. Should you use the Basic l/O System,
the Extended I/O System, or both? To make this decision, decide ifyou. application
system requires the Uexibilit), and fine tuning of the Basic I/O System, the ease of use of
the Extended I/O System, or a combinarion of both. Befbre)ou make the tinal decision,
consicler the following rwo factors.

CHOOSING BETWEEN I/O SYSTEMS

Extended I/O Usefs Guide l --l

CHOOSING BETWEEN I/O SYSTEMS

1 .3.1 Memory Requirements

The Extended I/O System software requires the Basic I/O System. The size of the
Extended I/O System software is approximately 19K byres. Ifyour application system is
pressed lbr memory and does not require features of the Exîended I/O System, you can
save the l9Kbytes of memory by using only the Basic I/O System.

However, ifyou decide to use the Basic I/O System even though your application system
needs the features of the Extended I/O System (such as buffering), you might end up
using all 19K b)'tes of memory implementing these same features on top ofthe Basic I/O
System.

Be aware that using both the Basic I/O and Extended I/O Systems rcquircs no more
memory than ùsing the Extended I/O System alone.

1 .3.2 Performance

Because the Basic l/O System gives your application system control of many details, you
can probably tune your application system to run faster with the Basic I/O System than
with the Extended I/O System. So if performance is more important than reduced
development costs, you should consider using the Basic l/O System. Ifyou decide to use
the Efended l/O System, you can improve performance by changing the buffer stzes.

1.4 EXAMPLES

The following examples illustrate the advantages of each of the I/O systems. The analysis
in each ejrample is based on the assumption that many copies of the applicarion sysrem
are to be oroduced.

1 .4.1 Application Systems Using Little t/O

Suppose that your application system requires very little I/O. For instance, suppose that
its only I/O activity is to occasionally log information ro a flexible disk.

Because this application system involves very few l/O-related system calls, the Basic I/O
System is preferable to the Extended I/O System_ The ease of use provided by the
Extended I/O System can save you very little manpower (hence money and time) during
development because the I/O-related part ofyour system requires so little time to
develop. This marginal benefit is of less use îo your applicaîion system than is the 19K
b).tes of memory saved by using lhe Basic I/O Sysrem.

l -;t Extended I/O User's Cuide

CHOOSING BETWEEN I/O SYSTE}IS

1 .4.2 Application Systems Using Onty Sequential t/O

Suppose that your application system requires a substanrial amount of sequential I/O. In
this t'?e of system, a large amount ofyour development resources will be expenclecl in
support ofI/O. This factor should make you consider using lhe Exrended IfO System to
reduce your staffing requìrements while developing the application system.

A second tactor should also steer you toward the Extended I/O System-the sequential
I/O. The br,rffering scheme used by the Extended I/O System is particularly efficient
while performing sequenliat I/O because it incorporates read-ahead and write-behincl
algorithms to overlxp I/O operations and processing.

These two factors, the amount of manpower required to implement I/O and the
sequential nature of the l/O, combine to make rhe Exrended I/O System the best choic€
for this application system.

1 .4.3 High Performance Applications Using Random l/O

Now suppose that your syslem performs a large amount of random-access I/O, and
suppose that performance is a critical consideration that overrìdes concerns aoour
conserving memory. You should consider the Extended I/O Sysîem because, in thìs
application system, it can substantially reduce your development costs. However, lwo
other factors combine to make the Basic I/O System another reasonable choice.

Th€ lirst factor is the random nature of lhe l/O. The read-ahead and write-behjnd
algorithm provided by the Extended I/O S),srem is not particularly efficient in random-
acccss I/O operations. The second factor is the lequirexr€rt tor pcrformancc. Using thc
Basic I/O Systeú as a foundation, you can build an I/O faciliry that takes advantage of
you. appljcation system's knowledge of the organization of data in the files. Although
such a faci[ty might be expensive to implement, it should run faster than the E\tended
I/O System in this application.

So in this case, you must weìgh the cost of development against the benefit ofbetter
performance. lf development costs are more important, you should use the Extended T/O
System. If performance is more important, you should use the Basic I/O System_ Atso,
don't ignore the option of using the Extended l/O System to create a prototype
application system and then later replacing the Extended I/O System with your custom
I/O faciiity.

Extended I/O UseÈs Guide t-5

CHOOSING BDTWEEN I/O SYSTEMS

1.5 SUMMARY

In general, you should consider the Basic I/O System for applications that require very
little I/O, o. for applications r€quiring finely-tuned performance while doing random-
access I/O. ln contrast, you shouìd consider the Extended I/O System when development
costs are critical, especially in applications that use seqùential I/O.

Finally, remember that there are circumstances where you should use both I/O systems.
One such sitùation occurs when your appÌication system uses I/O for several purposes,
some of which are best accomplished by the Basic l/O System, and others by the
Extended I/O System.

t-6 Extended I/O User's Cuide

2.1 INTRODUCTION

Because the Exiended iRMX II Extended 1/O System is designed primarily for use by
Original Equipment Manufacturers (OEMs), it provides a large number of features-
including some that are not generally fouÍd in operating systems aimed at end users.
These features include

. Memory protection

. Support for many kinds of devices

. Device independence

. Four distinct kinds of files

. File independence

. Separation of filc-lookup and file-open operations

. File sharirg and access control (support for iRMX-NET)

. Buffering wirh overlapped I/o

. Logical names for files and devices

. Automatic reattachment of devices

. 16M-byte memory addressabiliry

The first eight of these features are implemented by the Basic I/O Syst€m. Howcvcr,
because the Extended I/O Sysîem uses the facilities provided by the Basic I/O System,
the Extended I/O System also provides these features. The balance of the features are
available only with the Extended I/O System.

2.2 1 6M-BYTE MEMORY ADDRESSABILIW

The iRMX ll Operating System runs in the protected virtuaÌ address mode (PVAM) of
thc 80286 and {ì038ó proccssors. As a result, it can access as rnuch as lúM lrytes of
memory. The Extended I/O System takes advantage of this featr]re by allowing you to
create I/O jobs wìth memory pools of up to 16M bytes. Therefore, tasks that invoke
Erlended I/O System calls can have more code and can have more room for data.

E(ended I/O Uséris cuide

FEATfIRIS OF THE EXTENDED I/O SYSTEM

2.3 PROTECTION FEATURES

Because the iRMX II Operating System accesses the processor in PVAM, it benefits from
some of the inherent memory prorection features of lhe processor. These fealures
protect your code and data by preventing any task from reading or *riting buffers of
mcmory unless it has exTrlicit access to those buffers. They also prevent memory reads or
writes from crossing segmcnt boundaries. The Operating System generates exception
codes if an attempted protection vioiatioo occurs.

The Operating System also checks system call parameters for protection violations and for
incorrect values. Appendi\ C ìists the exception codes that can be returned.

2.4 SUPPORT FOR MANY KINDS OF DEVICES

The Extended I/O System supports a wide variety of devices. To connect a particular
device to the Extended l/O System, your.pplicxtion system must include a device driver
(a collection of software procedures iÌnplemented at the Basic I/O System level) for the
device being connected. The Operating System provides you with drivers for flexible and
hard disks, line printers, serial terminals, bubble memorìes, and many other devices. A
complete list of devices that are supported by the Operating System is ìncljded in the
Ettetvled iRMX II Inteructire Canfrguratian Utilù!- Reference ManuaL along with detailed
instructions for including specific drivers in your application sysrem.

Ifyou need drivers for devices other than those for which Intel supplies drivers, you can
writc drivcrs that are compatible $'ith the iRMX lI Operating Sysren'ì. For specific
instructions. refer to the Extended íRMX II Device Direrc User's Guíde.

2.5 DEVICE INDEPENDENCE

The Extended l/O System provides you with one set of system calls that can be used wirh
any collection ol devices. For ìnstance, rather than using a TYPE sysîem call for output to
a terminal and a PRINT svstem call for output to a line printer, you can use a WRITE
systcm call for output to any device.

This notion of one set ofsystem calls fbr I/O to anv collection of devices is called device
independence, and it provides your application with a lot of flexibility. For example,
suppose youl application Iogs evenls as they occur The device indepencìence ofthe
Extended I/O System aLlows you to create an application that can log the events on any
device rather than on just one- When the application is running and circumstances force
an operator to reroute logging from the tele5?ewriter to the line printer or disk, your
applìcation can easìly comply. For a more detailed explanation of device independence,
releî fo lhe Introduction to tlrc Ettended |RMX ll Operating stttem.

:- l Extended I/O User's Cuide

FEATURNS OF THE EXTENDED I/O SYSTEN'

2,6 FOUR KINDS OF FILES

The Basic I/O System implemellts four rJistincr kinds of files, and rhe Extended I/O
System supports all four. Each kind offile is byte-oriented, rather than record-oriented_

2.6.1 Named Files

Named files are intended for use with random-access. secondarv-storaqe devices such as
disk drives, diskette drives, ancì bubblc memories. Named fileslllowyirur application to
organize its files into a treeìike, hierarchical structure that reflects the relationships
between the files and the applicarion. Furthermore, only named files allow your
application to store more than one file on a device, and only named files provide your
application with access control. Named files also provìde you with a good foundatjon fbr
building custom access methods such as ISAM (indexed sequential access method).

For more detailed informatìon regarding named files, read Chapter 4 of this manual.

2.6.2 Physical Files

Physical files differ from named fiies in that physical files allow your application more
direct control over a device. Each physical file occupies an entire device, and applications
can deal with the file as though it were a srring of bytes. However, physical flles do not
provide access control. This more-basic relationship with a device provides your
application with flexibility. For exarlple, your applicarion can use a physìcal file ro
interpret volumes created on other systems.

Physical ffes also provide your applicarion with the ability to communicate with devices
that do not need the power of named files. Several examples of such devices are line
p.inters, dispìay tubes, plotters, and robots.

2.6.3 Stream Files

Stream files provide a means for t\yo tasks to communicate with each other. One task
writes into the file while the other task concurrently reads from it. Stream files use no
devices and provide no access control.

2.6.4 Remote Files

The Extend€d I/O System can also access remote files through OpenNET. For more
information on accessing remote files, consultfhe íRMX Netúorkíng Softuare User's (;uiLle.

Extended I/O User's cuide

[.EATURES OF THE EXTENDED I/O SYSTEM

2.7 FILEINDEPENDENCE

System calls for reading and writing work with any of the q?es of files described earlier.
This allows you to create tasks and applications that can be readily switched from one
kind of file to another.

For example, your application might involve two tasks that must communicate by using a
stream file. ln the process of developing the application system, you might implement the
writing task before you implement the reading task. For the purpose of debugging the
writing task, you can use a named file on a disk so you can examine the information being
written. L1ter, after you implement the reading task, you can route the ìnformation to the
stream file rather than the disk.

2.8 SEPARATION OF FILE LOOKUP AND FILE OPEN OPERATIONS

Many operating systems waste vaÌuable time by looking up a file whenever an apptication
tries to open one. The iRMX lI Extended I/O System avoids this overhead by using a
special type of iRMX ll object (called a file connection) to represent the bond between
the file and an application program.

Whenever your applìcation sottware creates a file, the iRMX Il Extended I/O System
returns a file connection. Your application can then use the connection to open the file
without sulfering the expense ofhaving rhe Extended I/O System look up the file. Even
when your application opens an exisling file, rhe applicrrion can presenr the file
connection and bl?ass the file-lookup proccss.

File connections provide a second benefit, one that reìates to ac.ess control Any
connection to a named file embodies the access rights to the file. This means thar the
Extended I/O System computes access only once (when the file connection is created).
rather than each time the file is opened.

Anolher benefit of file connections is that several oi them can simultaneously exist for the
same file. This allows several tasks to concurrenlly aeess ditferenr locations in the file.
This is possible because each file connection maintains a poinlea to keeD track of the
location wirhin the l i le whcre rhe rask is reaJing or wrir ing.

lfyou plan to access remote files through OpenNET, consult the |RMX Networkíng
Solírarc User's Guide. That manual explains how to aocess iRMX Il-bas€d files thar
aeside on remote hardware.

2.9 FILE SHARING AND ACCESS CONTROL

The Extended I/O System provides your applicarion with rhe abiliry to share files and, in
the case ofnamed files. to control access to files.

2-1 Extended I/O Useas cuidc

FEATURXS OF THE EXTENDED I/O SYSTEII

2.9.1 Fil6 Sharlng

In a multitasking system, it is oftel uselul to have several tasks manipularing a file
simultaneously. For example, consider a transaction processing system in which a large
numb€r of operators concurrendy manipulatc a common data base. If each terminal is
driven by a distinct task, the only way to irnplement an efficient transaction system is to
have the tasks share access to the data-base file. The Extended I/O Svstem allows
mult iple tasks to accesq the same fi le ar the same time.

2.9.2 Access Control

Also useful in a multitasking system is the ability to control access to a file. For instance,
suppose that several engineering departments share a computer. An engineer in one
department may want to control access to files as follows:

. Allow the ability to read, writc, and delete fil€s.

. Allow other engineers within the department to read and wriie the files, but deny
them permission to delete the files.

. Allow engineers of other departments to or y tead the files.

Named files provide your application with precisely this kind ofaccess control.

For more detailed information regarding access control, read Chapter 4 of this manual.

2.10 BUFFERING WITH OVERLAPPED I/O

The Extended I/O System provides buffering and overlapping of I/O operations.

2.10.1 Advantages Of Using Buffers

Whenever one ofyour application ptograms opens a connection, the program must
speciry the number of buîfers to be provided by the Extended I/O System. The number of
buffe.s thaf your program .equests affects the actions of the Extended I/O System as rt
reads and writes infotmation through the connection. SpecificLlly

. Zero Buffers

The Erfended I/O System actuàÌly accesses the file each time your application invokes
a read system call or a write system call. For example, if your application code asks
the Extended I/O System to read 30 bltes, the Erlended I/O System arcesses the file
and reads exactly 30 bytes. If the file resides on a physical device, such as a disk, the
Extended I/O System accesses the file for each read or write request.

Extended I/O User's cuide

FEATURES OF'THE EXTENDED I/O SYSTEM

One Buffer

The Extended I/O System reads and writes information one buffer at a time. For
instance, when your application program asks the Efended I/O System to read 30
bfes, the System instead reads enough information to fill the entire buffer. Using this
method, the Extended I/O Systen might be able to satisf several additional requests
without reading the file again.

This method oftransferring a firll buffer at a time is called blocking. Blocking can
significantly improve the performance of an application system by reducing the
number of times the Extended I/O System must actually transfer information to or
from a file on a device. In general, blocking is more valuable in sequential I/O than rn
random I/O.

Two or More Buffers

IIyour application requests two or moae buffers, the Extended I/O System can
overlap I/O operations by using read-ahead and write-behind algorithms.

Reading ahead and witing behind are techniques for allowing tasks to continue
running iahile the Extended I/O System is transferring ìnformation to or from devices.
Both techniques are particularly useful when your application is performing sequential
(rather than random-access) I/O. This is because the Extended I/O System can
accùrately determirìe, during sequeittial r€ading or writilg, the location of lhc ncx!
data required by the application.

When you configure the Operating System, you specify the maximum number of
buffers that the Ertended I/O System can use for files on a particular device. The
numbe. of buffers fhar the Exrended I/O System actually uses when reading or writing
a file is the lesser of this mzximum value and the number of buffers specified when the
file is opened. The S$OPEN call is described in the trrelded íRMX II Extetuled I/O
Svstem Calls Reference Mantnl.

2.10.2 Butfer Size

Ifyou are responsible for configuring your applicatìon system, you should be aware that
buffer sizes are, at least partially, a function ofsome parameters that you set during the
configuration process. The next two paragraphs discuss these parameters, However, if
you are not involved with configuration ofyour system. you can skip over these
paragraphs without missing any crucial information.

When your application requests one or more buffers, the Enended I/O System computes
the size of the buffers as a function oftwo configuration parameters--the granularity of
the device, and the internal bulter size ofthe Extended I/O System. The granularity is a
Basic I/O System configuration paramete., and the internal buifer size is an Erlended
I/O System conliguration parameter. For more inlormafion abou! configuration, refer to
Chapter 7.

2-6 Extended I/O Use/s Guide

FEATURXS OF THE EXTENDED I,/O SYSTIìN{

When your application program opens a connection, the Extended I/O System creates
buffers equal to the largest integral multiple of the device granularity that does not exceed
the inlernal buffer size. There are two exceptions to this rule:

. If the device granularity is zero, the Extended I/O System creates buffers equal to the
internal buffer size.

. If the device granularity is greater than the internal buffer size, the Extended I/O
System creates buffers equal to the internaÌ buffer size.

2.11 LOGICAL NAMES FOR FILES AND DEVICES

The Extended I/O System allows your application program to use logical names to refer
to files and devices. A logical name is a slring of characters that the Extended I/O System
associaîes with a particular file connection or device connection. (A device connection
rclates to deviccs in the same way that a file coonecrion relarcs ro filcs. Rcfcr ro
Chapter 3 ofthis manual for a precise definition.)

You can make a logical name availabie to onejob, to a group ofjobs, or to all jobs in the
system. This is aocomplished by cataloging the name in the localjob object dùectory, the
global job object directory, or the root job's object directory, respectively. (Chaprer 3
describes these dire.tories.)

2.12 AUTOMATIC REATTACHMENT OF DEVICES

The Extended I/O System constantly monitors the srarus of deviccs. Whcn an opcrator
removes a diskette (or any other removable media) from a drive that is capable of
detecting a volume being removed. the Extended I/O System detaches the device and
deletes all connections to files on the device. When the ooerator reDlaces the removed
media, the Extended I/o System automalically re-artach;s rhe devi;e as soon as it is
accessed, making it available to the tasks in your system.

Some devices, such as some 5.25-inch flexible diskette drives. cannot detect a volume
being removed from the drive. For these devices, the Extended I/O System cannot
pcrlbrm automatìc reattachmen!,

Extended I/O User's Gu;de

3.1 INTRODUCTION

Before you use the Extended I/O System, you should unde$tand several funclamentat
concepts. Some of those concepts were presented in Chapter 2. The remaining concepts
are

. Device Controllers and Device Units

. Volumes

. Files

. Connections

. I/o Jobs

. LogicalNames

The following sections explain these concepts.

3.2 DEVICE CONTROLLERS AND DEVICE UNITS

Devices are such things as flexible diskette drives, line printers, terminals, card readers,
and the like. A device is a hardware entity that tasks can use to read information, write
information, or do both. More precisely, these are device units.

The iRMX II Operating System distitguishes between device units and the hardwnre
intedaces that control device units. The latter interfaces are called device controllers.
Typically, a device controller allows iRMX Il application software to communicate wiîh
several device units. For example, an iSBC 214 Winchester Disk Controller board acrs as
an interface between application software and several Winchester disk drives (device
unlts).

3.3 VOLUMES

A voÌume is the medium uscd to store the information on a device unit. For exalì4rle, if
the device unit is a flexible disk drìve, the volume is a diskette; and if the device unit is a
multi-platter hard disk drjve, the volume is rhe disk pack.

Extended I/O User's Guide 3- l

FUNDAMENTAL CONCEPTS

3.4 FTLES

Some operating systems treat a file as a device, ìrhile others treat a file as information
stored on a device. The Extended I/O System considers a file to be information.

The Efended I/O System provides four kinds offiles: physical, named, stream, and
remote. Each kind has characteristics that make it unique. Chapter 2 provides general
information about each kind of file. Chapters 4, 5, and 6 provide more detail about
named, physical, and stream tiles. 'Ihe |RMX Netroking Sof,{are User's Guide pto'rides
detailed information about remote files-

Regardless ofthe kind of file, the Extended I/O System provides ìnformation to
applications as a strìng ofbt'tes, rather than as a collection ofrecords.

3.5 COMMUNICATION CONNECTIONS BETWEEN TASKS AND
DEVICE UNITS

In complex environments, such as those supported by the iRMX II Operating System,
several laye$ of software and hardware must be bound together before commrinication
betweer application tasks and device units can commence. Figùre 3-1 shows these layers.

Figure 3- l, Layers of Interfacing Between Tasks and a Device

Extended I/O Useas cuide

FUNDAMENTAL CONCEPTS

3.5.1 Interlayer Bonds Preceding Initialization

The honcl between a device controller and the d€vice units that it controls is g ohvsical
bond, ùsually in the form ofwires or cables.

A device driver is bound to device controllers by data residing in a data structure knowt
as a Device Unit Inforrnation Block (DUIB). You supply the data for DUIBS when
configuring the Operating System. Refer to the Etended íRMX Il Device Divers Llser's
6rode for more information about DUIBS.

Apptcation software is bound to the file driver during the tinking process. you supply the
information nccdcd to perform the binding process when configuring the sysrem.

When your application starts up, these three bonds are in place, Ieaving only one gap
between the layers. Figure 3 2 illustrates this situation. The nevr element, shown in the
figure as the configuration intertace, is the "glue" that provides the final bond.

^ 0 5 5

figure 3-2. Schematic of Softnare at Initialization Time

Extended I/O User's Cuide

FUNDAMENTAL CONCEPTS

3.5.2 Post-lnitialization Bond - the Configuration Interface

The configuration interface provides two kinds of system calls. Before a task can use a
file, both of these kjnds of calls must be invoked. One type of call produces a device
connection, and the other a lile connection. These two NDes ofconnections are shown in
Figure 3-3. Device connections are depicted as conrJuits (pipes): file connections are
shown as wies throush the conduits.

Figure 3-3, A System with Device and File Connections

H

3-4 Extended I/O User's Guide

FUNDAMENTAL CONCEPI'S

3.5.2.1 Oevice Conneclions

To use a device for Eferìded I/O Syst€m calls, tasks must first invoke the system clll
LOGICAL$ATTACH$DEVICE. which

. Creates an object type called a logical device object-also relèrred to as a device
connealion-' lhàî repre\ents thc Je\ ice.

. Catalogs a token for the new object under a logical name specified in the
LOGICAII$ATTACH$DEVICE caÌI. (A later section in this chapter discusses logicaÌ
names in detail.)

. Identilies the owner of the device connection, to prev€nt other users from detashing
devices that they do not own.

After LOGICAI$ATTACH$DEVICE is invoked, the logical name is associated in the
object directory with a token for the logical device object. The Extended I/O Systen
accesses the device by using this logical name.

3.5.2.2 Fi leConnections

When an application task accesses a device unit, it must use the logical name lor that
device unit to obtain a file connection object. The file connection represents a particular
file on a devic€ unit. How the tîsk ohta ins the connection depends on whether the fìle
already erists. If the file already exists, the task usually calls S$ATTACH$FILE, aÌrhough
it can also call S$CREATE$FILE. Ifthe file does not vet exist. the task must call
S$CREATE$FILE.

NOTE
You can call S$CREATE$FILE to obtain a file connection for a fiie that
already exists. But, for the following reason, you should avoid using
S$CREATE$FILE unless it is certain that the file does not yet exist.

Calling S$CREATtr$FÌLE to obtain a connection for a file rhat aLeady
exists truncates the iile to zero ìength. Even ifyou do this deliberately,
truncating causes problems for tasks having other connections to the file,
because the file pointers (discussed later in this section) for those other
conneltions are not affected, even though the end-of-îile marker is moved
to the beginning ofthe file.

You should observe this precaution even wlìen obtaining conncctions to
physical or stream fìles, because you might want to use the same code to
obtain connections to named files.

Unlike device connections. there can be multiple file connections to one file. This allows
different tasks to have different kinds ofaccess to the same flle at the same time, as the
next paragraph shows.

EYtended l/O Use s Guido

r-UNDAMENTAI CONCEPTS

After receiving a file connection, a task calls S$OPEN to open the connection,
Parameters in the call to S$OPEN speciry how the task inrends to use the file connection
and how it is willing to share the fìle with other tasks.

NOTE
If a task iú onejob obtains a file connection that was creared in a diîferent
job, the task cannot successfully use the connection to perform I/O
operations. However, the task can catalog the connection under a logical
name, and use the logicaÌ name in the ATTACH$FILE system call to
obtain a second connection that can be used without restriction.

3.5.2.3 File Pointers

The Erlended I/O System maintains a file pointer for each open file connection to a
random-access device unit. This file pointer telis the Extended I/O System the logical
address of the byte where the next I/O operation on the lile is to begin. The logicat
addresses of the bytes in a file begin with zero and increase sequentially through the
entire file. Normally the pointer for a file connection points at the next logical byte after
the one most recently read or written. However, a task can modi$ the file pointer by
invoking rhe S$SEEK system call. This seeking process is particula.ly useful when
performing random-access (as opposed to sequential) operations on a file.

3.5.2,4 Some Observations about Devices and Connections

Figure 3'3 is quite detailed and shows most of the situations that are possible for device
units and file connections to them. In pafticular, you can observe the following about the
figure:

. ì-)e,r,ice connections extend from the application software to the individual device
units, and each passes through one and only one file driver.

. There is only one d€vice coùÌecti()n to each connected device. However, multiple file
connections can share the same devtce connecuon.

. Different device units with the same controller can be connected via dìfferent file
drivets.

. Tasks can share access to rhe same devjce unit through the physical file driver, and
they can share access to the same files on the same device unit through the named fìle
driver.

r There is only one device connection through the stream file driver, because one logical
devìce contains all stream files.

. The configuration intcrface, which is depicted as a pile ofconduiîs, is off ro one side.

. All but one of the device units are connected. The unconnected device unit is still
separated from the application software by the configuration interface.

Extended I/O Us€r's Guide

FUNDAMENTAL CONCEPTS

3.6 LOGICAL NAMES

Logical namcs identify file connections or device conneoions. More specifically, you
catalog the tokens for file connections or device connections under ìogical names. This
section describes the syntax for logical names, and then describes the directories in *hich
you catalog connections under logical names.

3.6.1 Syntax for Logical Names

A logical name is a STRING of 12 or fewer characters with the following characterisrics:

. l he ASCII code lbr each character must be between 020h and 07Fh. You cannot use
a slash (/), ar up-arrow (r), or a circumflex (^) in the logical name A logical name
rnay be enclosed in colons, (for example, :f0:), but lhe colon character cannot be Llsed
as part of the logical name. If the logical name is to be used as a prefix to a pathname,
it must be enclosed in colons. (Prefixes are discussed in a lalcr sEclion of tn$
chapter.)

. Leading and embedded hlanks are significant. For example, if the STRING used to
define a logical name contains a leading blank followed by two X's, the logical narne is
nol simply two X's. Rather it is a blank followed by two X's.

. The Extended I/O System does not distinguish between uppercase and lowercase
letters in logical names. For example, the Extended I/O System consìders rlz and
XYZ to be the same logical name.

3.6.2 Logical Names and Object Directories

Every I/O job has three distinct tt?es of object directories in which objects can be
cataloged. (The specific characteristics oî an I/O job are described in the next section.)

When looking up a logical namc, the Exrended I/O Sysrem searches these directories ìn
the order they are listed here, and it stops when it finds the name. One effect ofthis
search scheme is that you can make a logical name available to only on€ job, to a group oI
jobs, or to alljobs in the system.

The object directories searched, and the order h which they are searched, are

1. The object directory of the locat job. The local job ìs the job containing rhe task rhat
requested the Exlended I/O System to find the logical name.

lfyou wish to share a connection wilh tasks in the samejob, but no! otherjobs,
catalog the token for the connection under a logical name in the local object
orfecrory.

Extended I/O User's cuide

[.UNDAMENTAL CONCEPIS

2. The object directory of the globaljob. An I/O job's global job is that job whose
token is cataloged under the name RQGLOBAI in the object directory of the I/O
job. For example, if the RQGLOBAL entry in Job A's objact directory is a token
for Jub B, Job B's objcct directory is the global direcrory.

Ifyou wish to share connections among tasks in severaljobs, designate one global
job. Then catalog tokens for shared connections in the globaljob object directory.

3. The object directory ofthe rootjob. The rootjob is the firstjob created when yorl:
system is started, All otherjobs in the rystem are offspring ofthe rootjob. The
rootjob object directory is available to every job in the system.

Ifyou wish to share certain connections with all tasks in the system, catalog tokens
for the connections in the rootjob's dilectory.

CAUTION
Before all I/O job exits, it must uncatalog any objects il cataloged ir olher
directories (global or mot). If, for example, a job catalogs the token for a
conn€ction in the root job object directory snd then exits without
uncataloging the tok€n, the logical nam€ and token reúain even thoùgh
the connection is deleted. From then on, using the connecfion or referring
to the logical name \vill cause an error,

3.7 r/o JOBS

Anyjob using Efended l/O System calls must be an I/O job. I/O jobs can be created
both when the system is initializcd, and when programs are running. During
configuration, you define the characteristics of I/O jobs îhat are created when the system
is initializecl. You use either the CREATEtOJOB or RQE$CREATE$IO$JOB system
call to create jobs while the system is runnìng. Both of these system calls perform the
same operations; the CREATEIOJOB system call is compatible with iRMX I systems
and reseÍves up to 1M byre for rhejobs memory pool, and the ReE$CREATE$IO$JOB
system call gives you the ability to reserve as much as lóM bytes for the job's memory
pool. Both system calls are described in the Etteaded íRtrlX II Extended I/O System CaIs
Refercnce Manual.

An l/O job (as opposed to a non-l/O job) must have

. A global job. A token for the global job musr be caraloged in the I/O job,s oolecr
directory under the name RQGLOBAL, as explained in the previous section.

. A default prefi{. The defìult prefix is a connection caraÌoged under the name g io
either the localjob object directory or the globaljob object directory. Default prefixes
are discussed in the nexî section of this chapter.

3-8 Extended I/O User's cuidc

FUNDAMENTAL CONCEPTS

. A default user object. l his user objecr must be cataloged in the I/O job's object
directory under the name R?IOUSER. A default user obiect is requled to access
named files via Exrended I/O System calls. Named files ind user ohjects are
thoroughly discussed in Chapter 4 ofthis manual.

ROE$CREATE$IO$JOB automarically inirializes the newjob with a default user obje,:jt,
globaljob, and default prefix ('Automaticall/' means rhat these characteristics of a new
l/O job are not specified with paramerers in rhe RQE$CREATE$IO$JOB system cali,
but are inherited from the parentjob. Other characteristics such as priority and stack size
can be explicitly specified as parameters in the RQE$CREATE$IO$JOB call.)

Any task that invokes the RQE$CREATESIO$JOB sysrem call must be runningwithin an
I/O job. This restriction leads to an obvious question. How can you create the first I/O
job? You can create it during rhe configuration ofyour applìcation system.

While configuring your application system (described in Chapter 7), you can specify rhc
characteristics ofone or mo.e I/O jobs that are created when the system is initialized.

3.8 PATH$PTR PARAMETERS AND DEFAULT PREFIXES

Some Extended I/O System calls refer to files rather than to connections. All such calls
require a path$ptr parameter to identili the tîe to be attached, created, or otherwise
manipulated.

The complete interpretation of the path$ptr parameter depends upon the kind of file
(named, physical, stream, or remote) being manipulated. Details about this parameter
are discussed in Chapter 4 (for named and remote files), in Chapter 5 (for physical files),
and in Chapte.6 (for stream files).

However, one aspect of the pathgptr parameter applies to all four kinds of files. If rhe
parameter is set to NIL, or if it points to a null STRING (an iRMX II STRING containing
zero characters), the Extended l/O Sysrem manipulates the file indicated by the default
prelt of lhe calling task'sjob.

The default prefir is an attribute of an I/O job, and it is a connection (either a device
connection or a file connection). It is cataloged under the name $ in either the local or
the global objert directory for thejob. Whenever a task invokes a system call bur does nol
speciry a logical name, the Extended l/O System looks up the default prefir and uses the
associated connection.

Ertcnded I/O User's cuide 3 9

4.1 OVERVIEW

Named files are intended for use with random-access, secondary-storage devices such as
disk drives, diskette drives, and bubble memories. Named files provide several features
that are not provided by physical or stream files. These features include
r Multiple Files on a Single Volume

r Hierarchical Naming of Files

. Access Control

These features combine to make named files extremely useful in systems supporting more
than one application and in applications thar require more than onc filc.

Named files can also reside on remote sy$tems. You access remote naúed files in the
same way you access local named files. To access remote files, you must be using the
iRMX Networking Sofnvare, which is available separately from the iRMX II Operatin-g
System.

4.2 MULTIPLE FILES ON A SINGLE VOLUME

As shown in Figure 4-1, 1,our application can use named files to implement more than one
file on a singìe volrrrne This can he very useful in applications requiring more than one
operator. 5uch as lrbn\action-fr,\ . isingryslem\.

EÍended I/O Use/s Guide ,t- l

NA]\fED FILES

4.3 HIERARCHICAL NAMING OF FILES

The named files feature allows your applicatjon to organize its files into a number oftree-
like structures, as depicted in Figure 4-1. Each such structure, called a file tree, must be
contained on a single volume, and no two file trees can share a volume. In other words, if
a volume contains any named files, the volume contains exactly one file tree-

Each file tree consists oftwo categories offiles-data files and directo.ies. Data files
(shown as triangles in Figure 4-1) contain the information that your applìcation
rnanipulates, such as inventories, accounts payable, transactions, text, source code, or
object code. In contrast, directory files (shown as rectangles) contain only pointers to
other files- The purpose of direcrory files is to give you flexibility in organizing your lile

T{) illustrate this flexibility, take a close look at Figure 4-1. It shows hownamed files can
be useful in multi-user systems. The figure is based on a collection of h)?othetical
engineers who work lor three departments (Departments 1, 2 and 3). Each engineer is
responsible for his own files.

4-2 Extended l/O User's Guide

NAMED FILES

l l

l l l \

ligùre 4-1. Example ofa Named File Tree

This multiperson organization is reflected in the file tree. The uppermost directory
(called the volurDe's rrx)1 directory) points to fhree "department direalories." Each
department directory points îo several "engineer's directories.', The engineers can
organize their files as they wish by using their own directories.

The root directory of a remote device is referred to as A virtual root. This is because the
remote system selects the directories and files to be made accessible over the OpenNET
network. Not all files and directories on a remote system are automatically accessible.

Each fìle (directory or data) has a unique shortest paîh connecting it to the root diectory
of the volume. For instance, in f,igure 4-1, the tile called SIM-SOURCE has the path
DEPTl/BILL/SIM-SOURCE, where the slash (/) is used ro separare the componenrs ot
the path. This notion of "path" reflects ihe hierarchical nature of lhe named-file lree.

Extended I/O Usefs Guide 4-3

NAMED FILES

Arother characteristic of hierarchical file naming is that there is less chance for duplicate
file names. For example, note that Figure 4-1 contains directories for two indiviouats
named Bill. (These directo.ies are on the extreme left and right of the third level of the
figure.)

Even ifthe rightmost Bill had a datà file with the file name ofSIM-OBJECT, its path
would differ from that leftmost Bill's SIM-OBJECT. Specificaly, rhe lefrmost SIM-
OBJECT is identified by

DEFTl/BILL/SIM-OBJECI

whereas the rightmost SIM-OBJECT would be identified by

DEPT3/BrLL/srM-OBJECT

Now that you knowwhat a named file is, let's look at how the tasks ofyour application tell
the Extended I/O System which named file to manipulate.

4.3.1 System Calls Requiring Connections

Once you have a file connection for a particular named file, you can use a token for the
connection as the connection parameter in any of the following system calls to perform
I/O through the connection:

s$closE
S$DELETE$CONNECTION
SGETCONNECTION$STATUS
S$OPEN
$READ$MOVE
S$SEEK
S$SPECIAL
S$TRUNCATE
S$WRITE$MOVE

However, if lhe connection was created by a task in a differentjob, your task should not
use the contection in any oîthese system calls. Rather, your task should first obtain a
new conncction to the same file by pcrforming the following steps:

L Catalog the current connection ill the object directory of your task's job. Thls
establishes a logical name for the current connection.

2. Using the newly-defined logical name, invoke the S$ATTACH$FILE system call to
obtain another connection to the same file. Your task can use this se€ond
connection to invoke any of the system calls listed above.

lfyour task does attempt to use a connection created in anotherjob, the Extended l/O
System will relum an exceplion code rather than performing the requested function.

Extended I/O User's Cuide

NAMED FII,ES

4.3.2 System Calls Requiring Paths

To use any ofthe following system calls, your tasks mùst usc an Extended I/O System
path, rather than a connection, ro tell the Efended I/O System which file vou wish to
manipulate:

S$ATTACH$FILE
S$CIIANGE$ACCESS
S$CREATE$DIRECTORY
S$CREATE$FILE
S$DELETE$FILE
SGETDIRECTORY$ENTRY
SGETFILE$STATUS
SGETPATI I$COMPONENT
S$RENAME$FILE

For named files, an Extended I/O Syslem path has rwo componenrs. The first componenr $
called a prefi{, and the second is called the subpath. Let's etamine these componenrs one ar a
l ime.

4.3.2.1 Prefixes

A prefix is a logical name for n connection to either a device, a named directory file, or a
named data file. The device may be either a local or remore device. The files may also be
either local or remote files. The purpose of the prefix is to tell the Extended I/O Sysrem
where to begin interpreting the subpath. The prefir is the only component rhat is ùsed to
distinguish a local connection from a remote connection. Let's look at each of the
possible interpretations that the Extended I/O System can derive from a prefir:

. If the prgfiLi! aiolledian to a local device, the Extended I/o system begins
scanning the sùbpath at the root directory of the device.

r If the plg|i2lj8le!4gdjprIa4 rcloo e device, the Extended I/O Sysrem begins
scanning the subpath at thè vìrtuàI root dircctory ofrhe device.

. If the prefix is a connection to a local or remote named directory file, the Extended
l/O System begins scanning the subpath at the specilìed directory.

. If the prefix is a colqectien to a local or remote named data file, the Extended I/O
System checks to see if the subpath is nul!. If it is, the Extended I/O Syst€m
manipulates the file indicated by the prefix. If the subpath is not null, the Extended
l/O System returns an exception code jndicating that your application program is
attempting to use a data file as rhough it were a directory file.

All other syntax applìes to both local and remote files. For more information on remote
files, see thc r'llMx Networkiùt Sofhrare Llset's Guide.

Extended I/O Useds cuide 4-5

NAMED FILES

4.3.2.2 SubDaths

A sùbpath is a data-file name or a sequence ofdirectory names optionally iollowed by a
data file name. For instancc, referring to Figure 4-1, TOM/TEST-DATA/BATCH,1 is a
subpath that leads from the DEPTl directory to the data file named BATCH-1.

Another example from the same figure is TOM, which is a sìrbpath that leads from the
directory named DEPT1 to the directory named TOM.

4.3.2.3 Using Prelixes in Conjunction With Subpaths

The tasks ofyour application system can use a prefix in conjunction with a subpath to
create a mmpleto path for a named file. The prefix generally refers to a di.ectory, aod
the subpath generally refers to a directory or data file that is a descendant of the directory
indicrìted by the prefix

4.3.2.4 Specifying Paths in System Calls

Those system calls that require paths have a path$ptr parameter. The tasks ofyour
applìcation system can use this path$ptr parameter, along with the default prefix, to
specily the file to be manipulated.

4.3.2.5 Path Syntax

When your application tasks invoke a system call that requires a path, the tasks must
provide a path$ptr parameter. When dealing with named files, this parameter is a
POINTER to a STRING (see Appendix A for a definition of STRING) that must be in
one of the following four forms:

. NULL STRING

lf the STRINC is zero characters long, the Extcnded I/O Sysrem will act on rhe file
indicated by the default prefix of the calling rask'sjob.

. LOclcAI NAME ONLY

If the STRING consists only of a logiad name enclosed in colons, rhe Extended I/O
System will look up the logical name and obtain the associated connection. Then,
because the subpath is empty, the Extended I/O System will act on the data file or
directory file indicated by the connection.

4-6 Extended I/O Usefs cuide

NAMED FILES

SUBPATH ONLY

The STzuNG can consist of a subpath without a prefix. The Extended I/O System
interprets such subpaths by starting at rhe directory indicared by the default prelix of
the calljng task's job. Then the Extended I/O System follows rhe subpath from
directory to directory until it reaches the final component of the subpath. This final
component is the file on which the Extended I/O System acts.

Be aware that whenever the STzuNG contains a subpath without a logical name, the
default prefix must be a logical name for a connection to a device or to a named
directory file. If, ìnstead, the default prefix represents a connection to a named data
file, the Extended I/O System returns an exception code indicating that your task is
attempting b use a data file as a directory.

The following subpath is an example of the most common form:

^/B/c/D

wh€re A, B, and C are the names of directory files, and D is the name of either a
directory or data file. This exampìe causes the Extended I/O System to start at the
defaull directory and descend to Directories A, B, and C in order. 'l'hen ìt acts on l).

An example of a less common form ofsubpath is
'| A/B/C/D

where the up-arrow (î) or circumflex (^) tells the hxtended l/O System to ascend one
level in the hìerarchy offiles. In other words, rhe Exrended I/O System would read
this example asr "Start with the directory indicated by the defaulr prcfix ancl ascencl to
its parent. Then descend to directories A, B, and C in order. Then act on File D.
'lhe Extended I/O System can also ac4ept consecutive up-arrows. For example

^^A lB lc

would cause the Extended I/O System to start with the directory indicated by the
default prefix and ascend two levels before interpreting the remainder of the subpath.

Another possibility is for the subparh to begin with a slash (/). For example

/AlB/C

Whenever the Extended I/O System detects a slash at the beginning of a subpath, the
Extended I/O System will start inrerpreting the remainder of the subpath at the root
directory of the device indicated by the prefix

Extended I/O User's Guide

NÀMED FILES

. LOGICAL NAME FOLLOWED BY SUBPATI]

Your application code can use a STRING consisting of a logical name (enclosed in
colons) followed immediately by a subpath. For example

:F0:A/B/C/D

The Extended I/O System interprets this example as follows. First, it looks up the
logical name F0 in the object directory of the localjob, or if necessary, the global or
rootjob. Then it follows the subpath from the directory associated with the
connection. So in the example, the Extended I/O System would find the directory
associated with F0, and it would srep rhrough Directories A, B, and C. Finally, the
Ertended I/O System would act on File D.

4.4 CONTROLLING ACCESS TO FILES

ln most envionments where files are shared among multiple users, it is necessary to have
a means of conttolling which users have access to which files. And among users who have
access to a given file, it is frequently necessary to grant different kinds of access to
different users. The iRMX ll Operating System provides this control by identilying users
with user lDs and by embedding access rights ior these lDs into the files. This section
describes the user ID ald filc acccss mechanisms.

4.4.1 Users and User Obiects

The iRMX II Opefatltg System uses the concept of "user" !o coúelate file access to
people or to jobs. But the precise definition of "user', depends on the nature of your
application.

Ifyour application allows a small g.oup ofpeople to enter information (at rerminals. for
example), you might want to consider each person (or small group ofpersons) a use..
This allows each individual (or small group) to maintain access different from othe.
individuals (or small groups).

Alternatively, ifyour application does not interact with people (or allows only one person
to interact), you might wish to consider each iRMX II job as a user. This setrjp would
allow your application to control the files that €ach job can access.

In more general terms, the set of entities that manipulate named files in your system is
the set of all users. Ifyou want all ofthese entities to be able to access any file, you can
consider them to be a single user. However, ifyou want to distribute diîferent access to
diff€.ent collections of these entities, you must divide the entities into subsets, each of
which is a separate ùser.

4-8 Extended I/O Uset's cuidc

NAMED FILES

For example,look at Figure 4-1. As mentioned earlier, all engineers are.esponsible for
their own files. If engineers want to have unique access to their files (perhaps permitting
no one else to usc th€ir files), each engineer mus! be a separate user. However, if all
engineers are willing to úe uniform access to othe. members ofthe department, then the
departmcnî can be a s€parate user,

4.4.1.1 User lDs

A user lD is a 16-bit number that represents any individual or collection ofindividuals
reqùi.ing a separate identity fo. the pu.pose ofgaining access to files.

4.4.1.2 User Obiects

The Extended I/O System uses a special [pe of obj€ct called a user object whcn
determining access rights to files. A user object contains a list of one or more user IDs.
Each T/O joh has a default ùser object which defines the access rights for all tasks in that
I/O job. When a task in an I/O job attempts to manipulate a file, the Operating Sysrem
computes aocess by comparing the user IDs listed in the default user object with
information contained in rhe file itseli

lo understand user objects, consider an application in which every person who accesses
the system has a separate I/O job and therefore a separate user object. The user object
represents the person.

The first ID in the user object is the owner lD. This is the ID of the user whom the objesl
represents. Ifyou think of a user object as a person, the owner [D represents the name oî
that person. When a person creates fiLes, the Operating System auîomàtically embeds rhe
owner ID of that person's user object into the file, allowing that person automatic access
to the file.

The IDs that follow the owner ID represent additional kinds of access that the person has.
For example, people often belong to organizaîions such as athletic clubs and traternal
groups which distribute identity cards to their members. To participate in the
organization, people must show their idendry cards !o prove they are members. The user
lDs that follow the owner ID serve the same purpose. They identify the person as on€ of
a select gIoup, all ofwhom havc thc same access to a certain set of files.

4.4,1.3 Default LJser Object for a Job

All I/O operations performed within a single l/O job are performed on behalf of one user
objet, which is called the default user object. The Extended I/O System assumes that the
user object cataloged in the I/O.iob's object directory under the name R?IOUSER is the
default user object for that I/O job.

Extended I/O Ilser's Cùide 4-9

NAMED FILES

Dudng the configuration ofthe Extended I/O System, you set up the default user objects
for your initial I/O jobs (the ones that start running immediately upon system
initialization). I-ater, when a task creates an I/O job (via the RQE$CREATE$IO$JOB
sysrem call), the new I/O job inherits the default user object ofits parent I/O job. That is,
the Extended I/O System automatically catalogs the parentjob's ùser object in the new
I/O job's object directory under the rarùe R?IOUSER- In rhis way, rJefault user objects
pass from parentjobs to offspring.

To prevent problems, you should consider R?IOUSER to be a reserved name and avoid
using it.

4.4.1.4 Supporting Dynamic Logon and iRMX.NET

In a system that supports the dynamic logon facilities ofthe Human lnterface or iRMX-
NET, a uscr dcfinition file (UDF) lists the user name, password (in encrypted form), usef
ID, and other information about everyone who is allowed to log onto the iRMX II system.
The Extended I/O System provides îhe GET$USER$IDS system call so that you can look
ùp the permitted user ID of any user whose user name you know. This system call is
useful for tasks that need to set up user objects based on the information list€d in the
UDF,

The Extended I/O System also helps control remote file access through the sysrem call
VERIFY$USER. This system call validates user names and passwords to ensure file
secud[y. As a aesult, the Extended I/O System allows users who log onto dynamic logon
terminals controlled by the Human Interface to access remote files.

4.4.2 Types of Access to Files

Each of the two kinds of named files-directory files and data files-can be accessed in four
different ways.

Every directory file can potentially be accessed in one or more of the following ways:

Delete

List

Add Entry

Change Entry

Delete the diredory file with S$DELETE$FILE or rename the
dire€tory file witl S$RENAME$FILE.

Obtain the contents ofthe direcrory file wirh S$READ$MOVE.

Add entries to the directorywith S$CREATE$FILE,
S$CREATE$DIRECTORY, or S$ RENAME$FIT.F-.

Change the aa:ess rights of files listed in the directory with
S$CI{ANGE$ACCESS.

Every data file can potentially be accessed in one or more of the following ways:

Delete Delete the file with S$DELETE$FILE or rename rhe file wlrn
S$RENAMESFILE.

,t-10 Extended I/O Use/s Guid€

NAMED FILES

Read

Append

Update

Read th€ file with S$READ$MoVE.

Add information to the end of the file with S$WzuTE$MOVE.

Change information in the file with S$WRITE$MOVE or drop
information with S$TRUNCATE$FIT.E.

A user's access rìghts to a particular file depend on the access list associated with that file.

Access rights to remote files are slightly different than for named files. For more
information on acaess rights to remote files, see the .RMX Networking Sofrware User't
Guide.

4.4.3 File Access List

For each named file (data or directory), the Operating Syst€m maintains an access lrst
which defines the users who have access and their ac,;ess rights. Each acr-css list is a
collection of up to three ordered pairs having the form

lD, access mask

The ID portion is a user ID. The list of user IDs defines the users who can access the lle.

The access mask portion defines the kind of file access that the corresponding user has.
An access mask is a byte in which individual bits represent the various kinds of access
permitted or denied that user. When such a ìrit is s€t to 1, it sigîifi€s that the associat€d
kind of access is permitted. Wlen set to 0, the bit signifies that the associated kind of
access is denied.

iRMX-NET uses a slightly different access mask for remote files than is used for local
files.

'lhe
association between the bits of the access mask and the kinds of access they controì

are as follows (where bit 0 is rhe least-signiîicant bit):

Bl Directory Files Data Files

0 Delete Delete
I List Read
2 Add Entry Append
3 Change Entry Update

The remaining bits in the access mask have no significance.

Extended I/O Uset's Guide 4-11

NAMED FILES

For example, an access list for a data file might look like the following:

5B31 00001110
9F2C 00000010

where the Tl) numbers (left colùmn) are in hs€decimal and the access masks (right
column) are in binary. This means that the ID number 5831 has read, append, and
update access rights, while the ID number 9F2C has rhe read ac.ess right.

The first entry in the file's access list is placed there automatically by the E\tended I/O
System when it creates the file. I he lD portion of that entry is the tirst ID number in the
default user object ofthe calling task's I/O job, That lD is known as the owner ID for the
tile. The Extended l/O System fills our lhe aocess righrs porlion !o granr lhe owner ID
full (unlimited) access to the file.

Tasks can alter the access list of a file by means of the S$CHANGE$ACCESS system call.
With S$CI{ANGE$ACCESS, you can add or delete Tl)-access pairs, and you can c.hange
the access riqhts ofIDs already in the access list.

NOTE
The user whose ID is the owner ID for a file has one advantage over other
users. Other than the system manager user (described later), only a file's
owner can use the S$CHANCE$ACCESS system call to modiry the file,s
access list without being granted explicit permission to do so.

4.4.4 Computing Access for File Connectíons
'Whenever

a task calls S$CREATE$DIRECTORY, S$CREATE$FILE, or
S$ATTACH$FILE, the Extended I/O System constructs an access mask and binds it to
the file connection object returned by the call. This acrcess mask is constant for the life of
the connection, even if the access list for the tjle is subsequently altered. When the
connection is used to manipulate the file, the access mask for the connection determines
how the file can be accessed. For example, if the computed access rights lbr a connection
to a data file do not include appending or updating, then that connection cannot be used
in an invocation of S$WzuTl$MOVE.

When a task calls S$CREATE$DIRECTORY or S$CREATE$FILE, the Exrended I/O
System supplies an access mask that grants full access to the connection. However, when
a task calls A$ATTACH$FILE, the Extended I/O System compares the default user
object with the file's access list and computes an aggregate mask.

4.12 Extended I/O Use/s Guide

NAMED FILES

Figure 4-2 illustrates the algorithm that the Exrended I/O System uses during a call to
S$ATTACH$FILE. As the figure shows, the Operating System compares the lDs in rhe
default user object with the IDs Ìn thc filc's acccss list. The access masks correspondìng to
matching IDs are logically ORed, forming an aggregate mask.

I * - ?'..i:3,i"1+Í."^î

Figùre 4-2. Cr|mnutinB lhe {cce(\ l \ lAsk f i r r a Fi le Connect ion

NormalÌy, the Extended l/O System uses the aggregate access mask embedded in the
connection to determine a task's ability to access a file. However. there are two
circumstances in which the Extended l/O System computes access again: during
S$CHANGE$ACCESS and during S$DELETE$FILE. when a task invokes one of rhese
system calls, the Extended I/O System computes the access ro rhe rarger file. If the
default user object does not have appropriate access rights, the Extended I/O System
denies the task the ability to delete the file or change the access.

Extended I/O User's Guide 4-13

NAMED FILES

NOTE
When computing access, the Extended I/O System checks the access only
to the last file in the specified pathnàme and to the par€nt directory of the
last file. It does not check the access to any other dhectory files specified
in the pathname. If the pathname is null, the Extended f/O System checks
the access to the file indicated bv the default orefix.

4.4.5 Special Users

There are two user IDs that can have special meaning to the Extended I/O System. One
is the number 0 (the system manager user) and the other is the number oFFFFH (the
WORLD user).

4.4.5.1 Sysiem Manager User

If so indicated during the configuration process, user ID 0 represents the 'system

manager,rr or 'rsuper user." A user object containing this value is privileged in two
respects. First, when it is used to create or attach files. the resulting file connection
automatically has read access to data files and list acless to directory files. This is true
even if a file's access list does not contain an ID-access mask pair whose lD value is 0.
The second privilege granted such a user ohjecr is that ir can aall S$CIIANGE$ACCESS
to change any file's access list.

4.4.5.2 World User

By convention, the user ID 0FFFFH represents WORLD (all users in the system). To
implement this convention. you should place rhe ID for WORLD in the list of user TDs for
the initial user objects]'ou set up during the conîiguration of the Extended I/O System.
Then, when your initial l/O jobs create new I/O jobs, rhe default user objects they inherit
will contain the WORLD ID.

By implementing the WORLD convention, your appÌication can set aside certain files as
public iiles, giving everyone limited access. For example, your file system might contain a
scries of utilities, such as compilers or linkers, which all uscrs need to access. Instead of
granting everyone access on an individual basis (which is impossible ifyou have rnore than
three use.s), you cxn granî the user WORLD scless to the files. Since WORLD is on thc
lD list of every user object, this grants everyone access to the files.

As a side effect of including the WORLD ID in every user object, any file whose owner ID
is oFFFFH (WORLD) can have irs access list modilìed by anyone. That is, any file
connectìon for that file can be used in a call to S$CHANGESACCESS.

4-r,t Extended I/O UseCs Guide

NAMED FILES

4.s EXTENDED r/O SYSTEM CALLS FOR NAMED FTLES

The Efiended I/O Syslem provides a number of system calls that relate to named files.
The following sections briefly explain the purpose of each of these system calls. The brief
descriptions are grouped by fulction rather than alphabetically. T\e Extentled \RMX II
Extended I/O Sytem Calk Refermce Manual contains complete descrìptions of the
Extended l/O System calls.

4.5.1 Obtaining and Deleting Connections

The Extended I/O System provides seven systcm calls thar rclarc to obraining ans
deleting connections.

. S$CREATE$FILE. This call applìes only to data files. Your application software
must use this call to create a new data file. When an application task invokes this call,
the Ext€nded I/O Systeù autonÌiilìcally adds an €ntry jn rhe par€nt directory lor this
new fiÌe.

. S$CRIATE$DI RECTORY. This call applies only to directory files. When your
application software needs to create a dire.tory, the software must use this system
call. The call cannot be used to obtain a connection to an existing d ectory. The
Extended I/O System automatically adds an entry in the parent directory for this neu
orIectory.

. S$ATTACH$FILE. This call îpplies to both data and directory files. Your
application !asks can use lbis call to obtain a connection to an existing data file or
directory.

. S$DELETE$CONNECTIoN. This call applies to both data and dire.tory files. Your
application tasks can use this call to delete a connection to either kind of named file.
This call cannot be used to delete a device connection.

r LOGICALI$ATTACH$DEVICE. This call does not directly apply to either data or
directory files. Your application software uses this call to obtain a connectiorì to a
local or remoîe device and to catalog the logical name for the device in the object
directory of the root job. Even though this connection ìs a device connection, it can be
used as the prefix (logical name) for the root directory of the device.

e LOGICAI$DETACH$DEVICE. This call does not directly apply to either data or
directory files. Your application software uses this call to delete a connection to a
device and remove the Ìogical name of the device from the object directory of the root
Joo.

. HYBRID$DETACH$DEVICE. This call is similar to
LOGTCAI^$DETACH$DEVICE in that it deletes a connection to a device. However.
HYBRID$DETACH$DEVICE does not remove the device's Ìogical name from the
object directory of the root.job. Your appljcation software uses this call when it wants
to temoorarilv attach a device in a different manner.

Extended I/O Usefs Guid€ 4 - 1 5

NAMEI) FILES

4.5.2 Manipulating Data

Six system calls allow tasks to manipulate the data in a file. All six can be used with data
files, while only four apply to directory files. The system caÌls are

. S$OPEN. This call applies to both data and directory files. Before your application
software can use any olher system calls to manipulate file data, the software must
open a connection to the file. This system call is the only way to open a conne4tion-

. S$CLOSE. This call applies to both data and directory files. After your application
software has finished manipulating a file, the applicatjon can use this system call to
cìose the file connection. Your application can elect to leave the file open, letting the
Extended I/O System close it when the connection is deleted, but closing a file
releases memory resources associated with the connection.

. S$SEEK. This system call applies to both data and directory files, and works the saúe
on both file t)?es. Whenever your application software reads, writes, or truncates a
file, the r€quested action takes place ftt the location specified by the connection's file
pointer. The applicatìon can tell the Extended t/O System where the operation is ro
take place. To do this, your application task uses the S$SEEK system call to position
the file pointer of the file connection. The S$SEEK system call requires that the file
conneclron oe open,

. S$READ$MOVE. This system call applies to both data and directory files. Your
application tasks can use this system call to read file data from the location indicated
by the fiìe pointer into a segment of memor].

Before using this system call, your appÌication software can use the S$SEEK system
callto position the file pointer. The S$READ$MOVE system call requires that the
file connection be open. Also, the segment of memory that receives the information
from the file must have write access, because the system call writes the information
from the file to memory.

r S$WRITE$MOVE. This system call applies only to data files. Your application
software can use this system call to transfer new information from a segment of
memory to the file. Before using this call, an application task can use S$SEEK to
position the file pointer to the location withìn the file to receive the informatìon.

The S$WRITE$MOVE system call requires that the file connectjon be open. Also,
the segment of memory originally containing the information must have read access,
because the system call reads the information from memory and writes it to the fite.

. S$TRUNCATE$FILE. This system call applies only to data files. Your application
software can use this call to trim information from the end of the file. To do so. the
application t.rsk first can use S$SEEK ro position the file poinrer to thc first bytc to bc
dropped. Then îhe application invokes the S$TRUNCATE$FILE call to drop all
bytes at or beyond the file pointer. The S$TRIJNCATE$FILE system call requires
that the file connection be open.

4-16 Extended I/O Uset's Cuide

NAMED FII,ES

4.5.3 Obtaining Status

There are three status-relaled system calls, one for connections, one for files, and one ior
devices. The calls are ScETFILE$STATUS, S$cET$CONNECTION$STATUS. and
GET$LOGICAL,l$DEVICE$STATUS. The first two calls can be used wirh Llala ànd
directory files. The third call retrieves iniormation about devices.

4.5.4 Deleting and Renaming Files

The Extended I/O System provides one system call fo. deleting files, and another for
renamìng fiÌes. Each of these calls can be used with data and direcîory files. Thc calls arc

. S$DELETE$FILE. Your application tasks can use this system call to delete data and
directory files. However, any atlempt ro delete a directory that is not empty will result
in an exceptional condition.

. S$RENAME$FILE. Your application tasks can use this system call to rename both
data and directory files- In renaming a file, an applicaîion task can move the file to
any directory in the same named file tree. For example, you can rename A/B/C to be
A/X/C. In efiect, this example simply moves File C from Directory B to Directory X.
This means that the application task can change every component of a file's path
name except the root directory.

4.5.5 Changing Access

The Extended I/O System provides one system call to let the tasks ofyour applicatiorì
changc a filc's acccss list. This call is S$CIIANCtr$ACCISS, and it applies ro boih d.ìr.ì
files and directories. One rule governs the use of S$CHANCE$ACCESS-only the owrer
of a file or a user with change entry access to the directory containing the fiìe can change
the file's access list.

4.5.6 Deleting Connections

The Extended l/O System provides one system call to delete connections to files. This is
the S$DELETE$CONNECTION system call.

4.5.7 Using Logical Names

The Extended l/O System provides three system cílls that relate to logical names. AlÌ
three oî these system calls are discussed in detatl infhe Exlended |RMX Il Extented I/O
Slstem CalL, Reference Ma Ltal.

. S$CATALOG$CONNECTION. This system call allows your application tasks to
create a logical name by cataloging a connection in the object directory of ajob.

Extended I/O User's Guide

N \\4[D FILES

. S$LOOKUP$CONNECTION. This system call accepts a logical name from an
application task, looks up the name in the object directories ofthe local, gobal, and
root jobs (in that sequence), and returns a token for the first connection found. In
other words, this is the system call that your application software uses to equate a
logical name to a connectjon.

r S$UNCATALOG$CONNECTION. This system call allows your application software
to delete a logical name from the object directory of ajob.

4.5.8 Creating and Deleting l/O Jobs

The Extended I/O System provides four system calls that relate to the creation and
deletion ofI/O jobs.

. CREATEIOJOB. Th;s system crll creates an I/O job while the system is running.
(You can also create one or more I/O jobs when the system is configured, so that they
exist when the system starts running.) This system call is available for compatibility
with the iRMX I Operating System. Iî you use thìs system call to create I/O jobs, the
memory pools associated with those I/O jobs cannot exceed 1 megabyte.

. RQE$CREATE$IO$JOB. This system call is just like CREATEIOJOB, except that
it permits you to assign memory pools of up to 16 megabytes in sìze. It is
recommended that you use this system call (insread of CREATEIOJOB) for all new
applications, because it takes full advantage of the iRMX Il features.

. STARTIOJOB. This call alloìrs you to start the inirial rask in an I/O job. When
you ì.lse CREATETOJOB, you specil, either that you want the inìtial task to start
running automatically, or that you want to wait until issujng STARTIOJOB.

. EXITIOJOB. This system call provides your application rasks wirh a sonvenienr
method for terminating an l/O job and informing the parentjob of the termination.

4.5.9 Performing Miscellaneous Functions

The Extended I/O System provides three system calls to perform miscellaneous
operations thàt do not fit into any other category. The calls are

. S$SPECIAL. Your application tasks can use this system call to perform functions that
ar e peculiar to a particular device. Formatlìng a disk is an example of such a function.
For more information, refer to the S$SPECIAL section of the Etrended íRMX II
Extended I/O Srstem Qtlls Reference Manuat.

r SGETDIRECTORY$ENTRY. Your application tasks can use this system call ro
look up the name of any file in a directory. This is the synchronous version of the
AGETDIRECIORY$ENTRY system call provided by the Basic I/O System.

4 -18 Extended I/O Use/s Guide

NAMED FILES

. SGETPATH$COMPONENT. Your application tasks can use this system call to
look up the name of a file as it is known in the file,s parent directory. This is the
synchronous version of the AGETPATTI$COMPONENT system call provided by
the Basic I/O System.

4.6 BASTC t/O AND NUCLEUS SYSTEM CALLS

Although the purpose of this manual is to describe the Extended l/O System, several
system calls provided by the Basic I/O System and by the Nucleus warrant mention here.
These calls allow you to specifically manipulate user objects and prefix obje,cts.

The default user and default prefir for each I/O job a.e cataloged in thejob,s object
directory, and ùsers of the Exîended I/O System do not noÍmally manipulate them.
Before using the following system calls to alter these objects, refer to Appendix D of thìs

. SET$DEFAULT$PREFIX (Basic I/O Sysrem)

o GET$DEFAULT$PREFIX (Basic I/O System)

. CRDATE$USER (Bas;c I/O Systelt

. DELETE$USER (Basic I/O Sysrem)

. INSPEC' USER (Basic l/O Systern)

. SET$DLFAULT$USER (Basic I/O Systent

. GET$DEFAULT$USER (Basic I/O System)

. CATAIOG$OBJECTlNucleusl

. UNCATALOG$OBJECT (Nuctcus)

. LOOKUP$OBJECT(Nucleus)

Reîet to lhe Extended íRMX II Batic I/O Ststem Calh Reference Manual and Extended.
iRlrIX II Nucleus Sysrem CalL Rekrence Marual for complere informarion on using these
calls.

4.7 CHRONOLOGICAL OVERVIEW OF NAMED FILES

Although many system calls can be used with named files, these system calls must be used
in a logical sequence.

Figure 4-3 shows the chronological rclationships b€lwc€n thc mosl frcqucntly uscd I/O
System calls. To use the figure, sta.t with the leftmost box and follow the arrows. Any
path that you can trace is a legitimatc acqucncc of systcm calÌs. This figurc is not a
complete representation of all possible system call sequences.

Extended I/O User's Gùide 4 t 9

NAMED FILES

DATA FILES
D IF ECTO R IES

[- l - {
-_ l

ì F f F | | o E l f E

t " l t " - " ' t

Figure 4-3. Chmnolog/ of Frequently Used System Calls for Named Files

4-21) Exfended l/O Us€r's Guidc

s.l oVERVIEW

The iRMX II Extended I/O System provides physical files to allow your applicatìons to
read (or write) strings of bytes from (or to) a device. In other words, a physical file
occupies an entire device (or the device's entire volume), and the Extended I/O System
provides your appiications with the ability to access the driver ofthe device directly.

5.2 SITUATIONS REQUIRING PHYSICAL FILES

The close relationship between a device and a physical file is particularly useful when your
application system uses sequentialdevices. For example, you should use physical files to
communicate with ljne printers, display tubes, plotters, and magnetic tape uoits.

There are even some instances where you should use physical files to communicate \À,ìth
random devices such as disk drives, diskette drives, and bubble memories. For instance

. Formatting Volumes

Whencvcr you crcatc an application task to format a disk or diskette, the task must
have access to every byte on the volume. Only physical files provide this kind of

. Using Volumes in Formats Required by Other Systems

lfyour application tasks must read or write volumes that have been formatted for
systems other than the iRMX II Operating System, you must use physical files. Your
tasks wiìl have to interpret information such as labels and file strùctures, but a physical
file can provide your tasks wilh àccess to the raw information.

. Implementing Your Own File Format

Sùppose that your application system requires a less sophisticated file structure than
that provided by iRMX II named files. YoÙ can build a custom file structùre using r
ohvsical file as a foun,-lation.

Extended I/O User's Guide

PHYSICAL FILES

5.3 CONNECTIONS AND PHYSICAL FILES

Although there is a one-to-one correspondence between the b,'tes on a device and the
bytes of a physical file, the device connection is different from the file connection. The
Extended I/O System maintains this distiÌrction to remain consistent with named files and
slrcàm files. This consislency helps you develop applications that can use any kind offile.

5.4 SUGGESTION FOR MAINTAINING FILE INDEPENDENCE

lfyou would like the tasks ofyour application to be able to use stream or named files in
addition to physical files, you should separate the creation ofthe connection from the use
ofthe connection. For instance, if your application perfo.ms I/O to a file, you should
consider using two distinct tasks rather than one. The first task would be responsible for
obaaining a connection to the file, and the second !ask would use the connection to
perform I/O. By maintaining this separation, you can design the second task to work with
any kind of filc.

lfyou choose to use this two-task approach, be sure that both tasks are in the samejob.
This will eliminate the difficulties associated with passing a file connection from onejob
to another.

5.5 USING PHYSICAL FILES

Several system calls can be used with physical files, however, the order in which thcy arc
used is not arbitrary. The following list provides a brief description (in chronological
order) ofwhat an application must do to use a physical file.

1. Obtain a device connection.

This ìs necessary for two reasons. When your task creates the physicalfile, the device
connection teÌls the Extended I/O System which device is to contain the file and that
the tile must be a physical fiìe.

You must create a program-here it is caÌled a "system proEam'!-that uses the
LOGICAL$ATTACH$DEMCE system call to obrain rhe device connecrion. When
issuing this caìI, the system program must use the device name that was assigned to
the device during s)'stem configuration. For instructions as to how to assign names to
devices, refer to the -Ettended ikùlx II Intemctive Conliguration Utitit Refercnce
Manua[.

Because devices cannot be multiply-attached, you must write your system program so
as to call LOGICAL$ATTACH$DEVICE only once. The
LOGICAI$ATIACH$DEVICE system call obtains a device connection and catalogs
the connection under the logical name provided by the system program. Other tasks
wishing to use the device connectìon can then look up the connection by usi_ng the
device's losical name.

Extended I/O Use/s Cuide

PHYSICAL FTLES

The LOGICALITATTACII$DEVICtr system call is described in -eÍerúecl |RMX II
Extended I/O System Calls Reference Manual.

2. Obtain a lile connection.

To obtain a file connection, your application task should use one of the following two
system callsr S$CREATE$FILE or S$ATTACH$FILE. The decision as to which
system call to use depends upon your task's awareness of the existerce of the file.

There are two circumstances under which your task should use S$CREATE$FILE to
obtain a connection. The fi-rst circumstance is when your task does not know whether
the file aheady exists, and the second is when your task knows that the file does not
yef exrsa.

When invoking the S$CREATE$FILE system call, set the path$ptr parameter to
point to a STzuNG containing the logical name ofthe device (enclosed in colons, as in
:F0:). This tells the Extended I/O System which device you want as your physical file.

If, on the other hand, your task is certain tha! the file already exists, use the
S$AfiACH$ FILE system call to obtair the file connection. Yoùr task can do this in
either of two v/aysl

. Iî can set the path$ptr parameter of the call to point to a STRING containing the
device's logical name surrounded by colons (as in tF0:).

. If the task knows a logical name for a connection to the file, it can set the path$lrlr
parameter of the call to point !o a STRING containing the connection's logical
name surrounded by colons (as ìn :DATABASE:).

Either way, the Extended I/O System returns a connection to the physical filr

TLis carelul Llislirction between the S$CREATE$FILE and lh€ S$ATTACH$FILE
system calls is necessary to be consistent with named files. If you want your
application to work with named files as well as physical files, you must maintain this
consistenry.

3. Open rhe file connection.

Use the S$OPEN system call to open the connection. When opening the connection,
your task must specil] whether the task plans to read, write, or do both using the
connection. The task must aiso speciry how many buffers the Extended I/O System is
to use when reading liom o. writing to the file. The Ertended |RMX II Ertended I/O
Slstem Calls Rekrence Mazaal explains how to do this.

4. Manipulate the file.

There are four system calls that can be used to read, wrìte, or otherwise manipuiate
your physical file:

. The S$READ$MOVE and S$WRITE$MO\aE system calls are used fo read and
write information from (to) the physical file.

Extended I/O Use/s Cùide 5-3

PIrySICAI, FII,ES

. The S$SEEK system call can be used to manipulate the file connection's file
pointer if the device is :ì random device such as disk, diskette, or bubble. (If you
arewritìng a device driver for a magnetic tape unit, you can design it to support
S$SEEK. Refer to the Exended LRMX II Detice Divefi Uset\ Guidz.)

. The S$SPECIAL system call can be used to request device dependent functions
from the device driver. For example, yoùr tasks can use the S$SPECIAL system
call to have the Extended I/O System format a disk for use with the iRMX II
Operating System. Be aware that use of special functions generally prevent a task
from being device independent.

All four of these system calls are described inthe Extended iRtulX btended I/O
Systetu CalLs Relercnce Manual.

Close the file connection.

Use the S$CLOSE systetÌì call to close the colloe€tioll. Nolc lhàt]our applicatio0 calÌ
repeat steps 2, 3, and 4 any number oi times. The S$CLOSE system call is described
in the Extendcd iRMX &tcndÌd I/O Slstcm Calb Rclerence Manual.

Delete the connection.

Use the S$DELETE$CONNECTION system call to delete the connection. This is
only necessary ifthe tasks ofyour application are completely finished using the file.
This system call is descîibed in the Extekàed íRMX II Extended I/O System Calk
Reference Manual.

Request that the device be detached.

Lct the system program know when your task no longer needs the device. The system
program can caìl LOGICAI-$DETACH$DE\"'ICE to derach the device. The
Operating System keeps track of the nÌrmber oftasks using the device and avoids
detaching the device until it is no longer being used by any task. Only then does the
Operating System actually delach the device.

5.

6.

7.

5-1 Extended l/O Usefs Guide

6.1 oVERV|EW

Sfeam files provide a means for one task to send large amoùnts of information to a
second task, even when lhe two tasks are in different jobs. Be aware that stream files are
only one of several techniques for job-to-job communication. lf you are not familiar wirh
othcr techniques, refer to the Extend,ed |RMX II Programníng Techtiques Refercnce
Mantnl.

The aspect of stream files that makes them very useful is that they allow a task to
communicate with a second task as though the second task were a device. This extends
the notion of device ìndependence to include tasks.

Srnce trvo tasks (called the reading task and the writing task) are involved in using each
stream file, the tasks must cooperate. There are a large number ofprotocols that work,
but. lhe ones provided later in this chapter serve as good ifustrations.

6.2 SUGGESTION FOR MAINTAINING FILE INDEPENDENCE

Ifyou would like your reading and writing tasks to be able to use named files or physical
files rather than only stream files, you should jncorporate a third task into the protocol.
The purpose of this third task is to perform the one part of the protocol that depends on
the kind of file being used-the creation of the file.

6.3 STREAM FILE PROTOCOLS

The interaction between the tasks is divided into three protocols--one each for the
creating, w.iting, and reading tasks. Ifyou choose to avoid using a separate task to create
the file, you can have the writing task perform the creating protocol before it performs the
writing protocol. However, by eliminating the creating task, you iorce the writing task to
require that only stream files be used. To allow both the reading and writing tasks to be
independent of the kind of file being used, you should use a separate creating task.

The followilg protocols work cvcn if thc thrcc tasks are in different jobs. They also work
resardless oithe order in which thev are executed.

Extended I/O Usefs Guide ó-t

STREAM FILES

5.3.1 Protocol for the Creating Task

The creating task is responsibÌe for obtaining a device connection to the stream file
pseudo device, and for cr€ating the str€am file. It also must catalog the file coînection
under a logical name so the reading and writing tasks can attach the file. Remember that
this task is not device independent-it works only for stream files. This protocol involves
rwo sreps:

1. Creating a stream file.

While configuring the Extended f/O Syst€m, the person that configures your system
must enter a configuration parameter that represents a logical name for the stream
file device. During system initialìzation, the Extended I/O System attaches the
stream file pseudo device and catalogs the device connection under that logical
name. Your tasks can then use the logical name to obtain the device connection.

To understand this protocol, assume that the logical name is STREAM. (Your
system might use a different logical name. To be sure, consult the person(s)
responsible for conîiguring your system.)

To create a stream file, the creating task need only invoke the S$CREATE$FILE
system call using a path$ptr parameter poiÌtting to a STRING of the following lorm:

:STREAM:

where STREAM is the logical name for the stream file device connection. The
S$CREATE$FILE system call, which is descîibed ìn the Extended |RMX II Ertended
I/O System Ca s Refercnce Manual rctrrns ^ connection to the newly created
stream file.

2. Catalog the file connection under a logical name.

The creating task should invoke the S$CATAIOG$CONNECTION system call to
establish a unique logical name (for example, SF23) for each specific stream flle.
The reading and writing tasks can then use the logjcal name to attach the fiìe. The
S$CATAIOG$CONNECTION system call is described in the tirended íRMX II
Extended I/O SJsten Calh Reference Manual.

6.3.2 Protocol for the Writing Task

The writing task must perform five steps in order to ensùre that it establishes
communicatìon with the reading task. The steps are

1. Obtain a connection to the stream file.

The writing task should use thc logical namc oî the file connection (for example
SF23) and invoke the S$ATTACH$FILE system call to obtain the file connection
To do this, the task should set the path$ptr parameter ofthe system call to point to
a STRING containing the file connection's logical name enclosed in colons (as in
rSF23 r).

6-2 Extend€d I/O User's cuide

STRIAM FILES

2. Open the file connectioo for writing.

Use the S$OPEN system call to open the file connection for writing. Set the
connection parameter to the token for the lile connection, and set the mode
parametef to write.

3. Write information to the stream file.

Use the S$WzuTE$MOVB system call as often as desired !o write information ro
the staeam lile. Use th€ token for the file connection as the connection parameter-

4. Close the connection.

When finished writing to the stream file, use the S$CLOSE system call to c.Iose the
connection. Note that after this step, the writing task can repeat steps 2, 3, and 4
any number of times.

5. Delete the connection.

Use the S$DELETE$CONNECTTON system call to delete the connection to the
stream file.

6.3.3 Protocol for the Reading Task

The readjng task must perform the following seven steps to successfully read the
inlormation wrilten by lhe wriring lask:

l. Obtain the file connection for the stream file.

The reading lask should use the file's logical name (for example, SF23) and invoke
the S$ATTACH$FTLE system call to obtain the file connection. To do this, the task
should set the path$ptr parameter of the system call to point to a STRING
containing the lile connection's logical name enclosed in colons (as in :SF23:).

2. Open the fiìe connection for reading.

The task should use the S$OP!,N system call to open the file connection for
reading. Sei the connection parameter to the token for the file connection, and set
the mod€ parameter to read,

3. Read information from the siream fiìe.

The task should use the S$READ$MOVE system calì as often as needed to read
information from the stream file. Use the token for the file connection as the
connecllon parameter,

4. Close the connection.

When finished reading from the stream file, the task should use the S$CLOSE
system call to close the connection. Note that after this step, the reading task can
repeat steps 2, 3, and 4 any number of times.

Extended I/O flsefs Gùide

STR,EAM FILES

5. Delete the connection.

The task shouÌd use the S$DELETE$CONNECTION system call to delete rne
connection to the stream file.

6. DeÌete the file's logical name created by the creating task.

The task should use the S$UNCATALOG$CONNECTION system call to delere
the logical name for the flle. In our example, this logical name is SF23. Do not
deletc thc logical name for the stream file device.

7. Delete the file connection created by the creathg task.

The reading task should use the S$DELETE$CONNECTION system call to delere
the file connection that the creatiog task obtained. Once this connection is deleted,
the Extended I/O System automatically deletes the stream file.

6-4 Extended I/O Usefs Guide

7,1 OVERVIEW

The Extended I/O System is a configurabìe layer of the Operating System. It contains
several options that you can adjust to meet your specific needs. To help you make
configuration cboices, Intel provides three kinds ol intbrmation:

. A list of configurable options

. Detailed information about the options

. Procedures to allow you to speciry your choices

The following scctions dcscribe the configurable options. To obtain the second and third
categories of information, refer to the Àrtended |RMX II húeructî\,e Confgumtion UtiliE
Reference Manual-

7.2 t/O JOB OBJECTS

When you conligure the Extended I/O System, you can speciry the following
characteristics that deal with iRMX lI objects:

. Default size of object directories for I/O jobs and for the Extended I/O System.

. User objects to be creried at initialization; each consists of e nsme for the user object
and one or more user lDs. See the section User Objects in Chapter 4 for more
information.

. Logical names for devices; these are cataloged in the rootjob's object dhectory.

7.3 INTERNAL BUFFER SIZE

You can specif] the size ol the internal buffers that the Extended I/O System uses to
transfer data from files.

Extcnded I/O User's Cuide 7-1

CONFIGURATION OF THE EXTENDED I/O SYSTEM

7.4 tlo JoB GHARACTERTSTTCS

When you conligure the Extended I/O System, you can create I/O jobs. When the
Operating System is initialized, these jobs are also created. (See the E\tended íRMX
Extended I/O System Calk Reference Manual for a description ofI/Ojobs.) You can
speciry as manyjobs as you need: the characteristics that you speci$ for each job
coÍespond to the parameters of the RQE$CREATE$IO$JOB system call. For each job,
you speci$

r Name of default prefix for thisjob

. Name of default user object for thisjob

. Minimum and maximum size of the I/O job's memory pool

r Address of, and mode of, the job's exception handler

. whether to include parameter validation for ùe I/O job

. Priority of inìtial task in job

. Task, data segment, and stack addresses

. Stack size for initial aask

. Whether floating-point instructions are used in thejob's initial task

7.5 AUTOMATIC BOOT DEVICE RECOGNITION

Yoù can configure the Extended I/O System so that it automatically attaches the device
from which the Operating System is bootstrap loaded. This device is then cataloged and
know as the system device. Automatic Boot Device Recognition allowsyou to refer to
files on the volume ftom which the device is bootstrap loaded without knowing the exact
physical device on which the files reside. Ifyou want to hclude this feature, you can
specifu the characteristics of the System Device.

Extended I/O Useis cuide

CONFIGURA.TION OF THE EXTENDED I/O SYSTEI,I

7.6 INITIALIZATION ERROR REPORTING

During lhe configuration process, you can elect to have the system report EIOS
initialization errors. Ifyou respond "Yes" to the Report Initialization Errors (RIE)
parametel on tlìe "Nucleus" screen, thc ol)srdling syslem rcports initializalion crrors from
all subsystems. On encountering a EIOS initialization error, the operating system returns
control to the monitor after writìng the following message to the console:

If Report Initialization Errors is not configured ìnto your system or the iSDM monitor is
not present, the initial EIOS task places the EIOS lD code (3) and the correspondiJìg
error code into the fi-rst two words ofthe Nucleus data segment (lE0:0000H). It then
gocs into an infinile error loop.

Ertended I /O Use' js Guid€

4.1 DATAWPES

The following data

BOOLEAN

BYTE

DWORT)

INTEGER

OFFSET

POINTER

R?es are reaognized by the iRMX II Operating System:

A byte that is considered to have a value of TRUE if ir is 0FFH,
and FAISE if i t is 00H. InPL/M286,

DECLARE BOOLEAN LITERAILY 'BYTE';

An unsigned eight-bit binary number.

A Lìnsigned four-byte binary number.

A signed two-byte binary number. Negative numbers are stored in
two's'complement form,

A word whose value represents the distance from the base of an
80286 segment.

Two consecutive words containing the selector of a segment and an
offset into the segment. The offset must be in the word having the
lower address.

An index into a descriptor table that ide[tifies a particular memory
segment The descriptor table entry lists the segment's base, ljmit,
qTe, and privilege level.

A scquence of consecutive b)'tes. îre value cunraincrl il the lirst
byte is the number ofbytes that follow it in the string.

A selector that contains the logical address of an obje,ct. The
selector refèrs to an entry in the descriptor table that lists the
physical address of the objecr. A roken musr be declared literalÌy a
SELECTOR,

An unsigned two-byte binary number.

SELECTOR

STRTNG

TOKEN

WORD

E\rended I/O Useds Cuide

OBJECT

B.1 OVERVIEW

This appendix lists the type codes for all iRMX II objects. In addirion, it documenrs rhe
resource requirements of the Extended I/O System.

8,2 OBJECTTYPES

Each iRMX II obj€ct type ìs kruwn wiLhin iRMX II syslems by means of a numeric code.
Table B-1 lìsts the types with their codes.

Table B-1. TlTe Codes
Objecl lype Numeric Code

Task

Semaphore
R6g on

Extension

Connectìon
l/O Job
LogicalD€vce
UseÉCreated

1
2
3

5
6
7
8
1 m
1 0 1
300
301

vafies fiom 8cìcrcH to
oFFFFH dépending on the

CREATE$EXTENSION

The first erghl obj€c1s, p us usef.created composi
Nucleus User's Guitle. l/O tobs and loqicald(
Usels and connections are d€scrib€cl in the LÌte
Guíde.

tes, are described î lhe Extende.d íRMX II
ryices are desc bed in Chaptef 3 oflhis manual.
,tded iRlrlx II Bdsic I/O Systent User's

Extended I/O User's Guide B I

OBJECT TYPF]S AND RESOI]RCE REQI]IREMENTS

8.3 RAM REQUIREMENTS

The following information helps estimate the amount of RAM needed to use the
Exterded I/O SysteÍr. The descriptioùs thal follow stdte €rplicilly from which pool the
RAM is taken. You should use this information when deciding how large to make the
memory pools of the jobs ìn your application. Be aware that this information applies only
to the current release of the iRMX II Operating System and may shrink or grow in iuture

8.3.1 Attaching a Logical Device

Each time one ofyoùr tasks uses the LOGICA$ATTACH$DE\4CE system call, the
Extended l/O System uses 98 (decimal) bytes ol RAM from yourjob's pool and 64
(decimal) bytes of RAM from the pool of the Extended I/O System job created durin-q the
configuration process. This RAM is in addition to the RAM required by the Basic I/O
System for a device connection.

Both quantities of RAM are eventually returned to the memory pools from whìch they
originated, but they are reaurned at different times. The memory taken from the
Extended I/O System pool is returned only when the device is detached. In contrast, the
memory taken from yourjob's pool is returned as soon thc
LOGICAI$ATTACH$DEMCE system call finishes running.

8.3.2 Creating an l/O Job

Whenever one olyour tasks creates an I/O job, the Ertended I/O System uses 176
(decimal) b)'tes of RA.M from the pool of the t/O job being created. This RAM is in
addition to the RAM used by the Nucleus to create the job. All of this memory returns to
the pool of the parent job after the I/Ojob has been deleted.

ln addition to the memory requirement, CREATEIOJOB and
RQE$CREATE$IO$JOB also require fjve entries in the object directory of rhe l/O job
being created. Refer to Appendi\ D to see how these entries are used.

B-2 Extended I/O User's Guide

OBJECT TYPES AND RESOURCE RTQUIRE\ÍI\TS

8.3.3 Opening a Connection

Whenever one ofyour rasks uses the S$OPEN system call ro open a file connection, the
Eferded I/O System uses some RAM from the pool of the callingjob to create objects.
The precise amount of RAM rcquired depends on whether the connection is opened for
buffered I/O or nonbuffered ì/O. lfthe connection is not buffered, the Efended l/O
System uses 64 (decimal) bytes of RAM. On the other hand, if the conne-ction is buffered,
you must use the following expression to compute the amount of RAM used as a function
ofthe buffer size in b)'tes (S) and the number ofbuffers (N):

number of bytes = 80 + 5N +N(S+64)

Regardless cfwhether the connection is buffered, all RAM returns to the memory pool
when the connecion is closed or deleted.

8.3.4 Other RAM Requirements

For system calls other than those discussed above, the Extended I/O System has varying
memory requirements. However, you can safely assume that when you make an Extended
I/O System cail, thc call requires no more than

. 300 (decimal) bytes of your job's memory pool.

. 400 (decimal) bytes of the calling task's stack.

This RAM returns to yourjob's pool as soon as each system call finishes running.

8.4 OBJECT COUNTS

Because eachjob has a m:r:ximum number of objects that it can own, you should know how
many objects the Extended l/O System creates while executing system calls. You can
assume that the Extended I/O System creates no more than 10 (decimal) objects dùring
the execution of any system call.

Furthermore, except in a lèw cases, all of these objects are deleted before the system call
has finished running. The few exceptions are the system calls that explicitly create objects
at the request ofyour application tasks. Two exaúples of system calls that explicitly
create objects are the S$ATIACH$FILE system call (which creates a file conne,ction) and
the LoGICAL$ATTACH$DE!'ICE system call (which creates a device connection).

Extended I/O Uscr's Cùidc B 3

c.1 oVERVTEW

The iRMX ll Extended I/O System uses condition codes to inform your tasks of any
problems that occur during lhe execution of a system call. If no problems occur and the
system call runs to completion, the Extended I/O System returns an E$OK condition
code. Otherwisc, thc Extcndcd I/O System returns an exceptional condition codc.

The meaning of a specifìc exceptional condition code depends upon the system calì thrt
returns the code. For this reason, this appendix does not list any interpretations.

This appendix provides you with the numeric value associated with each condition code
that the Extended I/O System can return. To use the exception code values in a symbolic
manner, you can assign (using the PL/M-286 "LITERALLY" statement) a meaningful
name to each of the codes, or you can use the ERROR.LIT file contained in the
:SD:/RMX286/INC direc!ory.

The following list correiates the name of the condition code to the value rhat rhe
Extended I/O System actùally returns. The list is divided into three parts; one for the
normal condition code, one for exception codes that indicate a programúing error, and
one lbr exception codes thaî indicate an envfuonmental condition. A programmer error ls
a condition that is preventable by the calling îask. An environmental condition is rn
exception condition caused by circumstances beyond the control ofthe calling task.
Condition codes are described in the tÌrended |RMX II Extended I/O fistem Calh
Reference Manual .

C.2 NORMAL CONDITION CODE

NAME OF CONDITIOT-

E$OK

HEXADECIMAL

OH

DECIMAL

0

Extended l/O Usefs Guide c-1

CONDITION CODES

C.3 PROGRAMMING ERRORS

NAME OF COND]TION

E$ZERO$DIVIDE
E$OVERFLOW
E$TYPE
E$PARAM
EBADCALL
E$NOUSER
E$NOPREFIX
EBADBUFF
ENOTLOG$NAME
ENOTDEVICE
DNOTCONNLCTION

DECIMAL

32168
32'769
32770
327',l2

32801
32802
32803
32432
32833
32831

HEXADECIMAL

8000H
8001H
8002H
8004H
8005H
8021H
8022H
8023H
EO4OH
8041H
8042H

HEXADECIMAL

I H
2H
4H
5H
6H
8H

20H
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
28H
2CH
2DH
2EH

C.4 ENVIRONMENTAL CONDITIONS

NAME OF CONDITION DECIMAL

E$TIME 1
E$MEM 2
E$LIMIT 4
E$CONTEXT 5
E$EXIST 6
ENOTCONFICURED 8
E$FEXIST 32
E$FNEXIST 33
E$DEVFD 34
E$SUPPORT 35
E$EMPTY$ENTRY 36
EDIREND 37
E$FACCESS 38
E$FTY?E 39
E$SHARE 40
E$SPACE 41
E$IDDR 42
E$ro 43
E$FLUSHING 44
E$ILLVOL 45
EDEVOFFLINE 46

Extended I/O uset's Guide

CONDITION CODES

C.4 ENVIRONMENTAL CONDITIONS (continued)

NAMF OF CO\DIT]ON DECIMAL

E$IFDR
E$FRAGMENTAT]ON
EDIRNOT$EMPTY
ENOTFILE$CONN
ENOTDEVICE
E$CONN$NOT$OPEN
E$CONN$OPEN
E$BUFFERED$CONN
E$OUTSTAN'DINO$CONNS
E$AIREADY$1\TTACHED
EDEVDETACHING
ENOTSAME$DEV
E$ILLOGICAT-$RENAME
E$STREAM$SPECIAL
E$INVALID$FNODE
E$PATI]NAME$SYNTAX
E$FNODE$LIMIT
ELOGNAME$SYNTAX
E$CANNOT$CLOSE
E$IOMEM
E$MEDIA
ELOGNAME$NEXIST
ENOTOWNER
EIOJOB
EUDFFORMAT
E$NAME$NEXIST
EUIDNEXIST
E$PASSWORD$MISMATCH
EIOUNCLASS
ErosoFr
EIOI]ARD
EIOOPRINT
EIOWRPROT
EIONO$DATA
EIOMODE
EIONO$SPARLS
EIOALT$ASSIGNED

48
49
50
:) l

52
) ,
54
)J

5'7
Jò

59
60
61
62
63
64
65
66
68
69
10
7 l
72
73

75
80
81
82
83
84
85
86
87
88

I{E)'ADECI À,LA.L

2FH
30H
3 l H
32H
33H
34H
35H
3óH
37H
38H
39H
3,AH
3BH
3CH
3DH
3EH
3FH
40H
41H
42H
44H
45H
46H
47H
48H
49H
4AH
4BH
50H
51H
52H
53H
54H
55H
56H
5',l]J
58H

Extended I/O User's cuide

APPENDIX D
USE OF OBJECT DIRECTORIES BY

THE EXTENDED UO SYSTEM

D.1 OBJECT DIRECTORIES

The Extended I/O System catalogs entries in the object directory of each I/O job and in
the object directory of the system's root job. This appendix provides a list of the names
that the Extended l/O System uses. Do not redefine any ofthe names listed in this
aDDendix.

RQGLOBAL The Extended I/O System uses this name to identifi the globaljob
for each I/O job. Wlenever you create an I/O job, the Extended
I/O System automatically catalogs the token for the globaljob in
the object directory of the I/O job, If you wish to redelìne this
namet you may. But doing so might alter the interpretation of any
logical names that are cataloged in the object directory ofyour
job's globaljob.

Whenever you create an I/O job, the Extended l/O System
catalogs an object under this name in the object directory of the
t/Ojob. Do not redefine this name!

Whenever you create an I/O job, the Exîended l/O System
cataìogs an object under this name in the object directory of the
I/O job. Do not redefine this namel

Whenever you create an I/O job, tlÌe ExtenderJ I/O System
catalogs an object under this name in the object directory oî the
l/O job. Do not redefine this name!

The Extended I/O System uses this name to catalog the default
prefi\ for each I/O job. If you modiry lhe definirion associared
with this name by invoking the CATALOG$OBJECT system call,
you change thejob's default prefix. Furthermore, ifyou catalog an
object other than a device connection or a fìle connection under
this name, the Extended I/O System generates an exceptional
condition code whenever you attempt to use the default prefix.

R?IOJOB

R?MESSAGE

With the exception of RQGLOBAL and $, you should not use the CATALOG$OBJECT
system call to modify any of the definitjons described here. If you do change any of them,
you might cause the Extended l/O System to behave in an unexpected, unpredictable, and
undeslable manner.

R?IOUSER

Extended I/O User's Cuide D - l

TISE OF OBJECT DIRECTORIES BY THE EXTENDED I/O SYSTEM

The Extended I/O System uses object directories for two other purposes:

. Whenever you use the CATAIOG$CONNECTION system call to define a logical
name for a connection. the Extended I/O System catalogs the connection in the object
dfuectory of thejob that you speciry.

. Whenever yolr use the LOGICAUATTACH$DEVICE systcm call, thc Extcndcd I/O
System catalogs the device connection in the object di.ectory of the system's rootjob.

n_ t Extended I/O Use/s cuide

E.1 COMPAT|BtLtW BETWEEN THE TWO t/O SYSTEMS

Many of the system calls in the Basic I/O System have counterparts in the Extended I/O
System. For example, the A$CREATE$FILE system call of the Basic l/O System
pedorms a function analogous to the S$CREATE$FILE system call of the Extended I/O
System. So it is reasonable to ask if connections created by one system can be used by the
otneI.

The answer is yes, unless the connection is open. For example, your application sysîetn
can use the S$CREATE$FILE Extended I/O Sysrem call ro creare a file and obtain a
connection to the filc. Bccause the connection is not open, your application systern can
use the connection wìth any Basic I/O System call that does not require an open
connection- For instance, the coonection can be used with A$RENAME$FILE or lvith
AGETFILE$STATUS because neither of these svstem calls require that the connecúon
be open. However. the connection cannot be use.l with a$ngaOor A$WRITE. hecause
both ofthese system calls require tha t lhe connert ion he nfen.

The same restriction applies if the connection is c.eated using the Basic I/O System. The
connection can be used with any Extended I/O System call as long as the system call does
nol requfe an open connectlon,

In general, you can creatc, dclete, check status, or attach using either kind ofsystenr call_
But once you have opened the connection, you must ùse a read, write, truncate, or special,
function system call provìded by the I/O System that you used to open rhe connection.
Then, once you have closed the connection, you can again use system calls from either
I/O System.

Extended I/O User's Guide E I

F.I INTRODUCTION

The iRMX ll Operating System is based on the iRMX I Operating System. Therefore,
the iRMX Il version of the Ertended I/O System operates alnost exacdy like its iRMX I
counterpart. However, there are a few differences between the two.

Thc following appendi! ourlines the differences between lhe two Extended I/O Systems.
These sections are intended for readers who are a]ready familiar with iRMX I and who
would like a quick overvicw of the differences. Those who a.en't familiar wirh eirher
Extended I/O System should skip this appendir.

F.2 EXTENDED MEMORY POOL SIZES

One of the major features of the iRMX II Operathg System is its support of the 16M-
byte memory-addressing capability of the 80286 processor. The Extended I/O System
takes advantage of this feature by allowing the I/O jobs you create to have memory pools
as large as 1óM bytes. A new system call, RQE$CREATE$IO$JOB, provides this ability.

RQE$CREATE$IO$JOB works exactly like the CREATEIOJOB sysrem caII available
with iRMX I systems. However, two of its parameters (pool$min and pool$max) have
been expanded from r&ORDs to DWORDs. This allows your memory pools to be as
large as 16M bytes.

RQE$CREATE$IO$JOB is not a replacement for CREATEIOJOB, but an additional
system call that has been added to the iRMX II Extended I/O System.
CREATEIOJOB is still available for compatibility with iRMX I systems. However, if
you use CREATEIOJOB, your memory pools witl be limited to 1M byte.

F.3 PROTECTION FEATURES

The iRMX II Extended I/O System, like the iRMX II Basic I/O System, gives you
increased protection. If you try to read from or write into memory segm€nts that do not
have the proper access tlpe, or ifyou attempt to read or write past the end of the
segment, you will receive a new exception code called EBADBUFF. The system calls
S$READ$MO\€ and S$WRITE$MOVE can eenerate this exceotion code.

Extended I/O Usefs Guide F-l

iR}fX@ I AND iRMX@ II EXTENDED I/O SYSTEM DIFFERXNCES

when you use S$READ$MOVE, the buffer of memory used to store the data read in
from the peripheral device must have write access (you are writilg information to thìs
memory segment). Likewise, when you use S$WRITE$MOVE, the buffer of m€mory
containing the data to be v.ritten must have .ead access (you are reading information
from the memory segment).

other Extended I/o System calls make additional protection checks on the parameters
you enter. Supplyìng incorrect parameters can cause E$PARAM exception codes.

F.4 NEW SYSTEM CALLS

Th€ iRMX II Extend€d I/O Systen has two systEnì calls that are not pr€sent in th€ iRMX
I Extended l/O System: SGETDIRECTORY$ENTRY and
SSGET$PATH$COMPONENT. SGETDIRECTORY$ENTRY lets you retrieve the
name of any file in a directory. SGETPATH$COMPONENT looks up the name of a
file as it is known in its parent directory. Both of these system c.llls provide synchronous
versions of services that are also available with the Basic I/O Svstem.

F-2 Extended I/O User's cuide

A

Access mask 4-11
bit mealings 4-11
example 4-12

Advantages of buffers 2-5
Applications using only sequential I/O l-5
Asynchronous system calls 1-2
Attaching a logical device B-2
Automatic boot device recognition 7-2
Automatic buffering of I/O requests 1 3

B

Bullèr size considerations 2-6

c
Characte.istics of l/o jobs 7-2
Choosing an I/O system 1-1 ro l-6
Compatibility between the BIOS and EIOS systems E-l
Computing access ior file connections 4-12
Condit ion codes (seeAppendix C) C-1

envúonmental u-2, J
normal c-1
programming codes C-2

Configuring the Extended I/O system, see chapter 71
Connections and physisal files 5-2
Connections between iasks and device unìts 3-2
ControÌling access to files 4-8

D

Dàla t)?es A-1
Default prefix 3 9, 4,19
Default user 4-19
Delault user object for a job ,{-9
Device connections 3-5
Device controllers and device units 3-1
Dynamic logon ficilities 4-10

Extended I/O l]sefs Guide Ind€x-1

INI)EX

E

EIOS algorithm for S$ATTACIJ$FILE system call 4-13
FTOS system calls for nimed files 4-15

changing access 4- 17
creating and deleting I/Ojobs 4-18
cleleting and renaming l i les 4-17
deleting connections 4- 17
manjpulatjng drta 4- 16
miscellaneous functions 4-18
obtaining and deleting connections 4-15
obtaining status 4-17
using logical names 4-17

ERROR.LIT f i le C-1
Frlended I/O System features

16M-Byte memory addressability 2-1
access control 2-5
automalic reattàchment of devices 2-7
buffering with over lapped I / O 2-5
device independence 2-2
file independence 2-4
Iile sharing 2-5
four file types 2-3

named files 2-3
physicalf i les 2-3
remole fìles 2-3
stream files 2-3

logìcal names for files and devices 2-7
protection fealures 2-2
separation of file lookup and file open operations 2-4
support of many kinds of devices 2-2

F

l ì i le access l ist 4- 11
Iìile connections 3-5
File pointers 3-6
Files 3-2
Formula for RAM used by buffered connection B-3
Four string forms permitted for the path$ptr parameter 4-6
Fundamental concepts of the EIOS, see chapter 31

G

General requirements for the EIOS B-3
Globaljob 3-8,9

Index-2 Extended I/O Uset's Guide

H

Hiererclical naming of file 4-2
High performance applications using Random I/O l-5

I

l/o jobs 3-B
exiting from 3-8

Internal buffer size 7-1
IRMX.N'ET 4.IO

L

Logical names 3-7
and object directories 3-7
non case sensitive 3-7
slartax for 3-7

Logical device object 3-5

M

Maintaining file independence 5-2, 6- 1
Memory requirements of the EIOS system 1"4
Multiple files on a single volume 4-1

o
Object directories 3-7, D-1

$ D"1
R?IOJOB D-1
R?IOUSER D.1
R?MESSAGE D-l
RQGLOBAI, D.I

Object t)?es, numeric codes B-1
Opening a connection B-3
Overview of named files 4-19

P

Path syntar 4-6
Path$ptr parameter 3-9, 4-6
Prefi\es

definition 4-5
Protocols for stream files 6-1

the creating task 6-2
the reading task 6-3
the writirg task ó-2

INDEX

Extended I/O User's Guide Index-3

INDEX

R

R?IOUSER 4.9
RAM needed for the EIOS B-2
Reason for having two I/O systems 1-1
Rootjob 3-8

s
S$CIIANGE$ACCESS system call 4-12
Special user IDs 4-14

system manager 4-14
woRLD 4-14

Stcps for obtaioing a ncw IiI€ conn€clion
Steps in using physical files 5-2
Stream files, see chapter 61
Subpaths 4-6
Synchronous system calls 1-3
System calls requiring connections 4-4
System calls requiring paths 4-5
System device 7-2
System initialization error reporting 7-3

T

Types of access to directories
add entry 4-10
change entry 4-10
delete 4-10
list 4-10

Typcs of acless to files 4-10
append 4-11
delete 4-10
read 4-11
updare 4-11

Typical number of objects created by the EIOS during system call execution B-3

U

Use.IDs 4-9
User objects 4-9
Use.s and user objects 4-8
Usiog onc buîI€r \yith lhe EIOS systcm 2-ó
Using physical files 5-2
Using prefl\es and subpaths together 4-ó
Using random access devices as physical files 5-1

formatting volumes 5-1
implementing your own file formar 5-l
using volumes formatted for other systems 5-1

Using two or more buffers with the EIOS system 2-6

lndex-4 Exteúded I/O Use/s Guide

v
VERIFY$USER system call 4-10
Volumes 3-1

INDEX

Extended I/O Usefs Guide Index-5

irÌt€l'

EXTENDED iRMX@II
HUMAN INTERFACE

USER'S GUIDE

Intel corpo.at on
3065 Bowers Avenue

5enta clara, Cal fornìa 95051

Copyrighto 1988, Intel Corporation,All R qhtsReserved

This manual documents the Human Interface, one of the layers of the Eltended jRMX II
Operaîing System. lt is intended for programmers who wish to write applicatiol
programs that can be load€d and executed via keyboard commands. This manual is
divided into the following chapters:

Chapters 1 and 2 Ovewiew of the Human Tnterface ancl discrrssion of the command
line interpreter-

Chapters 3
through 6

Chapter 8

Appendixes A
and B

Appendix C

lowercase

Discussions ofthe four general categories of Human Interface
system calls and how to use them when writing commands.

Description of the necessary elements of a Human Interface
command, as well as the required compilation and bind sequences.

Description of the configurable options of the Human Interface.

Listings of type definitions and string table tormat.

Listìng of the differences between the iRMX II Release 2 and the
iRMX 86 Release 7 Human Interface.

This manual does not describe the commands supplied with the Human Interiace. For
information about those commands, refer to the Operator't Guíde To The E te ded .RMX
II Human Interface.

CONVENTIONS

This manual is intended for the person who designs and implements the commands (the
paogrammer), not for the person who invokes the commands at the tetminal. Whenever
this manual describes how cerîain Human Interface features affect the person that
hvokes the commancls, it refers to that person explicitly as the operator.

This manual uses the following notational conventions to illustrate syntà(l

UPPERCASE Tn exîmples of system call syntax, ì.rppercase information must be
qped as shown. The programmer can, however, enter this
infoamation in uppercase or lowercase.

In examples of system call synîa\, lowercase fields indicate
informatìon to be supplied by the programmer. The programmer
must enter the appropriate value or symbol for lowercase fields.

lluman lnterfac€ Usefs Guide l l l

PREFACE

the Operating System. This information can vary fiom message to
message.

All numbers, unless otherwise noted, are assumed to be decimal. Hexadecimal numbers
include the "H" radix character (for example, oFFII).

RELATED PUBLICATIONS

The following manuals provide additional information that may be helpful to readers of
this manual.

. iRMX 286 Netwo.king Software User's Guide, Order Number: 122323

. i^PX 286 Utilities User's Guide, Order Number: 12193,1

Human Interface Use/s Cuide

CHAPTER 1
ovERvlEw

CHAPTER 2 PAGE

CHAPTER 3
COMMAND PARSING

PAGE

PAGE

Human Intefece Useds cuide

CONTENTS

CHAPTÉF 4 PAGE
r/o PRocEssrNG

4.1 Overview....4-1
4.2 Establishing Input And Output Connections.-.. . . .-.-. 4-1

4.2.1 Using CGETINPUT$CONNECTION.... .4-1
4.2.2 Using CGETOUTPUT$CONNECTIoN.... .4-2
4.2.3 Example Program Scenario4-2

4.3 Communicating With The Operator's Termina1.... .-. 4-3
4.4 Formatt ing Messages Based On Exception Codes.... 4-4

CHAPTER 5 PAGE

CHAPTER 6 PAGE

CHAPTER 7 PAGE

CHAPTER 8
CONFIGUBATION OF THE fIUMAN INTERFACE

PAGE

Human lnferface User's Cuide

CONTENTS

PAGEAPPENDIX A
HUMAN INTERFACE TYPE DEFINITIONS

A.1 Type De f in i t i ons A - l

APPENDIX B PAGE

Figure 2-1.
Figure 3-1.C$GETINPUT$PATHNAME and CcETOUTPUT$PATHNAME
Example
Figure 3-2. CGETPARAMETER Examp1e..3- 14
Figure 5-1. Command Connection Examples5-,1
Figure 6-1. A CONTROL-C Task 8xamp1e.. ó-4
Figure B-1. String Table Format.. ..8-l

User Fxtension Example (Continued)... 2-6

3-8

Human Inlerfàce I lseÉs Guìde

CHAPTER 1
OVERVIEW

1,1 OVERVIEW OF THE |RMX@ II HUMAN INTEBFACE

The Extended iRMX II Human Interface is a layer of the Operating System ihat allows
console operators to execute commands on two levels: the standard command line
interpreter level (CLI) and the Human Tnterface level (HI). When the Human Interfice
begins running, it does the following.

r Initiates a logon process that validaîes operators. On some terminals. this logon
process is invisible, because the terminal has been permanently associated with a
single operator. On other terminals (those that can be used by many different
operators), the logon process involves typing a logon nrme and î ptLssword before
gaining access to the system. lf an error occurs during initialiation, the Human
In te r face gen r r i r t cs i Ì n H l i n i t i a l i l . r l i on (, , r .

. Creates an iRMX II job for each operator logged ìnto rhe Human Tnterface. This job
(also called the interactivejob) furnishes the application environment with commands
fo execute,

. Assigns an area of memory for rhe operator (!his occurs when the interactive job is
created). Any commands that the operator runs use this area of memory. If there is
not enough memory in the system to initialize an operittor, lhe system assigns
whatever memory is available at the time anci issues a warning ntessa.ge to the
Iermrnal.

. Starts an initial progràm (this also occúrs \À,hen rhe inreraclivejob is created). The
initialprogam is the operator's interface to the Operaring Systenì. It is usuarry a
command line interpreter (CLI), a program that reads its instructions from the
te.minal. The Human Interface supplies a standard jnitialprogram which reads
commands from the terminal and executes the commands based on lhat termìnal
input. These commands can either be CLI commands (such as ALIAS and
BACKGROUND) which are executed in the operator's interactive job or Ht
commands (such as COPY, FORMAT, and PASSWORD) which run as offspringjobs
ofthe operator's ìnteractivejob. You can also supply y our own initial program. In
fact, therc can bc a separate initial program for each user.

Human Interface [Js€as Guid€ 1-1

OVER\TEW

When an operator enters information at a terminal, the operator communicates with the
initial program. With the standard initial program, the operator can invoke a CLI
command by entering the command name (optionally specirying parameters), or a HI
command by specifying !he parhname ofÌhe file thar contains the command (optionally
specifying parameters). The initial program reads the information from the terminal and
cxccutcs thc commands. If a HI command has been entered. the CLI invokes the }Iuman
Interface system calls to load the command into main memory ftom secondary storage,
create an iRMX IIjob for the command (as an offspring ofthe operator's interactive job),
and begin command execution. ff a CLI command has been entered, the CLI interprets
and executes the command within the CLI.

The Human Interface provides severalfeatures that aid both operators and programmers.
These features ilclude:

. A set of Intel-supplied commands.

. A group of system calls to aid programmers in writing their own commands.

. A logon facilìty to validate operators.

. A standard comúand line interpreter (CLI) with its own set ofcommands such as
AIIAS, HISTORY. and SET.

. Multi-accesssupport.

. Support for wild-card pathnames

1.2 RESIDENT HUMAN INTERFACE COMMANDS

In addition îo the resident Human Interface, Intel supplies a variety of commands which
can be used with any application system that ilcludes the Human Interface. lncluded are:

. CLI commands (such as ,\LI^S, HISTORY. SUBMIT, SUPER, and orhcrs)

. File management commands (such as COPY, DELETE, BACKUP, RESTORE, and
olners)

r Device and volume management commands (such as ATTACHDEVICE, FORMAT,
DISKVERIFY. and others)

. General Utility commands (srrch as DFBUG. DATE, and others)

T\e Operutor's Guíde to tlrc EfiekdediRMX II Human Inteface confa;ns complete
descriptiors of all commands supplied with the Human Interface.

1,3 HUMAN INTERFACE SYSTEM CALLS

The Human Intedace provides a set of system calls lhat programmers can use in
commands they write. The following categories of system calls are available:

t _ t Human Interface flser's Cuide

O}'ERvIEW

. Command-parsing system calls

. l/O and message processing system calls

. Command-processing system calls

. Program conlrol system call

The command parsing system calls providc thc ability to parse rhe command line, allowing
you to isolate and identi$, the parameters in a command line. They also allow you to
determine the command name and parse other buffers of text. Chapter 3 provides further
discussion of the command parsing system calls.

The I/O and message processing system calls allow you to establish connections to input
and output files, communicate with the terminal and format exception codes into a ready-
to-display form. Chapter 4 provides a further discussion of the I/O and message
processìng system calls.

The command processing system calls allow you to invoke interactive Human Interface
commands programmatically. Chaptcr 5 providcs a fr.rrther discussion ofthe command
processing system calls.

The program control system call allows you to override the default Control-C handling
task provided by the Human Intedace. Chapter 6 describes this in further detail.

1.4 LOGON FACILITY

Logon is the process that thc Human lnterface uses to vaìidate terminal operators. An
operator's view of the logon process diflèrs depending on how the terminal is confìgured.
Terminal ùsers can be configured in one oftwo {'ays: resident (or recovery resident) user
or nontesident user-

L4.1 Resident User

The resident user or recovery resident user (who gains control only if an initialization
error occurs in the configuration Iiles) is defined during system configuration. All of its
attributes are defined in îhe Human Interface memory during the configuration process
and are loaded with the system. A resìdent user does not use any of the system
configuration files.

1 .4.2 Nonresident User

A nonresident user and its terminal must be defined in iRMX TT system configuration files
prior to system execution. Nonresident user terminals can be configured in one of two
ways: static logon terminals or dl.namic logon terminals.

Hùnran lnterface Uset's Guide t-3

oveRvrEw

1.4.2.1 Static Logon Terminals

Each static logon terminal is configured to service a specific operator who can be either a
rcsidcnt or nonresident user. If the static terminal has a nonresident user. its attributes
are taken from the configuration files, :CONFIG:TERMINALS, :CONFlc:UDF, and
:CONFIG:USER/username during !ogon (see Chapt€r 4 in the Guí.le To The Ertended
iR)lX II Intemctive Confguntion Utílít! for rnore information). Therefore, when the
Human Interface starts running, it has information about the operator such as user ID,
the amount of memory available to this operator, and the priority. This means that the
logon process is automatic and invisible to the operator. The only way to change rhe
Human Intedace's assumptions about static logon terminals is to change the Operating
System's user configuration files and restart the Operating System.

1.4.2.2 Dynamic Logon Terminals

Dvnamic logon tefminals are configured to senice many different operators on a request-
by-reqùest hnsis To determ;ne \xhich operator wants access to the Operat;ng System via
a dynamic logon terminal, the Human lnterface requests information before allowing the
operator to access the system. This information consists of a logon name and a password.
The Human Interface verjfies that the information entered js valid by checking user
configuration files set up by the systen manager. Then it sets up the terminal based on
the information listed in those files.

Unlike sta(ic terminals, dynamic logon terminals have dvnamic memorv partitions. Thaî
is, the Human lnterface does not assign any memory to the terminal at system startup.
lnsteîd, it assigns the memory when an operator logs on. Thc amount assigned varies
depending on the operator's requirements (as listed in one of the configuration files).
The advantage of dynamic-partition îerminals js that the memory available to operators
varies depending on the needs of the operator.

When the operator logs off a dynamic logon terminal, the memory goes back into the
general free space pool. However, if there is no liee space left in the system, an operator
won't be able to logon.

'flrc Guide To The Ertud&I ifttLr II Interactir)e Canfguration Urlllo, describes how ro ser up
static and dynamic logon terminals with static and dynamic memory partitions,
respectively.

1.4.2.3 Network Access

lf the iRMX lI system is set up as a workstaîion on an iRMX-NET communications
network, any operator who logs onto the system on a dynamic logon terminal
automatically becomes a verified user of the network and can access remote files via the
iRMX-NET network. Refer ro the IRMXNeL*-ork Sot--are lJter's Guide foî more
informalion about the iRMX NET environment.

l-4 Human Interfaae User's Cuide

OVERI'IEW

1.4.2.4 Logging Oft

When operators of dynamic logon terminals finish accessing tlì€ Operarirìg Sysrem, they
can use the LOGOFF command to terminate their sessions. Other operators can then log
onto the same terminals.

1.5 STANDARD INITIAL PROGRAM

Once an operator logs onto the Human lnterface, the Human Interface assims an initial
program to the operaîor. This initial program is lhe first proUra m to ru n. The identity of
this initial program is determined by a privileged operator (normalty calÌed the system
manager) when adding new users to the system. This process js d es$lbed in the Extend.ed.
|RMX II Inteructíve Confrgurction Utitity Refere ce Manuat .

Aìthough the iniîial program can be almost anythìng - from an editor ro a Basic
interpreter - the Human Interface supplies a standard ìnitialprogram called the Human
Intedace Command Line Inte.preter (CLl). Ifyou have used Release 1 oithe iRMX II
Operating System (which is still available), nore that the CLI supplied with Release 2 has
been enhanced to include many new features. The function of the Humîn lnterface CLI
is to read input from the terminal, allowing the operator to edit that input ifnecessary,
and execute commands (either CLI or HT) based on the input. The CLI provides a
number ofadditional features such as aUasjng. hrckgrounjprocersing, anJ recalling ol
prevìously entered command lines. Chapter 2 discusses the standard CLI in further
dctail.

1.6 MULTI-ACCESS SUPPORT

The Basic I/O System supports multiple terminaìs by providing device drivers that
communicate with multiple-terminal hardware. The Human lnteriàce adds to this
support by providing identification and protection of users based on logon names and user
IDs. This support is called multi-access support.

With mulîi-access support, multiple operators can communicare with the Operating
System. At lo8on, the F{uman Interface associates eîch operator with an idcntification
called a user lD, and assigns each operator a separate area of memory in which to run
commands. When an operator creates files or attaches devices, the Human Interface
marks the operaîor as the owner of those files or devices. Access to the liles by other
users depends on the permission granted those users by the owner. The multi-access
Human Interface also provides the operator the capability to execute commands, run
development programs (like editors, compilers, and so on), and run other application
orosrams.

Hurnan Interface Usefs Guide

OVER\TEW

To run a multi-access Human Interface, the system manager must fùst set up the proper
directory structure and provide several files containing information about the operators
that can access the system. However, you can still tailor your system to meet your
individual needs lry selecti[8, for each operator, the inilial program thal runs when that
operator aclesses the Human Interface. You can choose the standard CLI (supplied with
the Human Interface) or a customized initialprogram. Thc uscr dcscription files
maintained by the system manager identify this choice to the Human Interface. This
process is described in the Eúended iRMX II Interaúive Confgìrration Lltílíty ReÍerence
Manual.

Programmers who write commands do not have to write their code differently foa a multi-
access Human Interface than for a single-acr:ess Human Interface. The only difference a
command might eÀ?erience in a multi-access environment that it wouldn't experience in a
single-access environment involves accessiÌtg files and devices. When a command is
iovoked by àn op€rat(rr, the command inherits the opera!or's user ID. Thus, the
command can perform operations only on files and d€vices to which the invoking operator
has access, In a multi nccess eîvironmcnt, a command misht not be able to access aÌl the
îiles or devices it wants to access.

1.7 WILD-CARD PATHNAMES

The Human Interface supports the use ofwild-card characters in file names. This gives
lhe operator a shorthand method ofspecirying several files in a single reièrence. The
wild-card characters supported by ihe Human Interface are

? Matches any single character

* Matches any sequence ofcharacters (including no characters)

The Operator's Guide To The Exle ded, íRMX II Human Inteface describes how an
operator can use wild-card characters when entering commands.

Programmers who write îheir own Human Interface commands do not have to provide
special code to support wild card pathnamcs as long as they use rhe Hùman Interface
system calls CGETINPUT$PATHNAME and C$GET$OUTpUT$PATTINAME to
obtain the file names from the command line. The Human lnterface contains the
mechanism to interpret the wild cards and return the correct file name to the calljng
command. Refer to Chapter 3 for more information about these system ctlls_

t-ó Human Infeface Use s Guide

2,1 INTRODUCTION

A Command Line Interpreter provides an interface between the operator's terminal and
the Operating System. The Command Line Interpreter is usually the means for executing
Human Interface commands, but it can be almost an).thing from a Basic inte.preter to an
editor. The Command Line lnterpreter is the operator's initial program. l he Human
lnterface suppìies a standard initìal program called the Human Interface Command Line
Inte.preter (CLI). When invoked the CLI providcs the opcrator with line-editing and
alias facilities, background processjng, session history, terminal definition and execution
of its own set of commands. The Human Interface can also operate Ìvith a user extension,
which allows you to add customized features to the standard CLI, or with a customized
CLI. This chapter explains the features and use of the standard CLT, expìains how to
incorporate user extensions, and lists the rules for writing a customized CLI.

2.2 CLI FEATURES

The Release 2 Human Interface CLI provides a number offeatures that make it a useful
tool in a development environment. They ar e listed hefe with a brief descrìption.

Line-editing

Aliasirg

Allows operator to re-edit input-

Allows the operator to abbreviate commonly used commands and
assign parameters to them. For example, the operator may define;

ALIAS PLM = :I-ANG:PLM286

Then when the operator enters PLM A.28, the CLI executes

:IANG:PLM286 A.28

Alias expanding can be repeated up to five times for ease ofuse.
An example of reiterative expansion is:

ALIAS PLM = :IANG:PLM2Só
ALIAS PNL=PLM #0.P28 NoLTST

When the operator enters: PNL SOURCE, fhe CLI
execules:

:l.ANG:PLM286 SOURCE.P28 NOLIST

Human Interface User's Cuide

THE COMMAND LINE INTERPRETER

Background Allows th€ operator to run jobs in a background envi.onment while
processirìg continuing to invoke commands at the terminal. The operator is

notified when a backgroundjob is started and when it finishes.It is
possible to request a list of the active backFoundjobs or cancel a
backgroundjob.

Session history Displays the last 40 commands and allows the operator to select
lines for re-editing.

I/O redirection Allows standard input and output to be directed somewhere other
than the operator's terminai.

Set Allows the operator to perform online changes to certain CLI
attributes such as, the prompt and the background memory pool
size.

The implementation of these features is possible with the following set of CLI commands:
ALIAS, BACKGROUN'D, DEALIAS, HISTORY, JOBS, KILL, LOGOFF, SET'
SUBMIT, and SUPER. All of the CLI commands are described in defatl in fhe Operator's
Guile To The Ertenderl íRMX II Human Interface. If the standartj CLI satisfies the needs
ofyour application, you can assign it to each operator as an initial program.

2.3 INITIALIZATION

The Human Intedace CLI can be invoked during either static or dynamìc logon. During
initialization, the Human Interface CLI performs the following operations:

. lnitializes the CLI environment

. Calls CLI e\tensions, i f necessary

. Displays a sign-on message

. Creates an iRMX II object called a command connection in which it places
information received from the terminal. Refer to Chapter 5 for more information
about command connections.

. Attaches or crealcs the operator's :PROG: directory

. Submits the file :PROG:R?LOGON fo. processing

After this initial processing, the CLI displays the Human Interface delault prompt (-) and
reads iopul lrom thc t€rmirlal. Input Irom the terminal can be a CLI command, a Human
Interface command, or a user application program that is to be executed.

Human Interface User's Guide

THE COM\,IAND LINE INTERPR.ETER

2.4 COMMAND INVOCATION

The CLI begins executing the command either after a carriage return or an ESCAIE has
been enter€d. However, before execution, the CLI allows the operator to edit the input
lile or recall previously entered lines When input is rerminated, the CLI performs the
following operationsl

. reads the command Line îrom the tefntinal into a CLI buffer

. expands all aliases

. handles any I/O redirection that may be necessary

. passes control to the user extension procedure Cllgusergprocess, if applcable (see
section on user extensions later il this chapter)

. searches for CLI commands (such as ALIAS, HISTORY, SET), or HI commands
(such as COPY, DISKVERIFY, FORMAT).

li the CLI encounters a CLI command, it parses the command within the CLIjob,
executes the action requested, and ifncccssary, caìls thc lluman lnterface system ca
C$SEND$COMMAND to continue the processing. If the CLI encounters a HI command
or any user applimtion p.ogram, it places the information it reads into the command
connection (using the Human Intedace command C$SEND$COMMAND). After
receiving a complete command, the command connection handler:

. Removes the command name portion

. Loads the file containing the command

. Passes the parameters to the command-

It may be necessary to conthue an HI command because of its length or sirnply for ease in
understanding. In this case, the CLI recognizes the ampersand (&) mark at the end ofa
command line as a continuation character, and displays a double asterìsk (**) on the
continuation line.

It is possible for the operator to recîll cithcr thc complcre continuation line or only part
of it. A double asterisk appears on the screen to indicate that a continuation line is being
recalled. The operrtor can then e.iit the relevant section ofthe line. However, after the
section has been edited, the entire command line is executed. For an example, see
Chapter 3 of the Operator's Guide To The Ertended IRMX II Human Intelace.

The CLI displays error messages for each command in the event ofcertain operator
errors. For a complete description ofthe CLI error messages, see the detailed
expÌanation of each CLI command given in the Operator's Guide To The Extended |RMX II
Hunnn Inteíace .

Human Interface Usefs Guide 2-3

TIIE COMMAND LINE INTERPRETER

2.5 USEB EXTENSIONS

The Human Interface CLI can be erlended to include customized functions. With this
feature, you can ùeate an initial program that takes advantage of the standard CLI
features, such as line-editing and aliasing, and still meets your precise needs. The
procedures that you add to the standard CLI to be able to parse commands differently or
implement youÍ own commands are called CLI user extensions. This section explains how
ro extend the CLI to inelude user extensions.

2.5.1 Creating User Extensions

Creating a user extension involves writing three procedures: an initiaìization proceoure, a
processing procedure, and an epilogue procedure. These procedures, described in the
following sections, can be combined into one module. Intel supplies an empty default
module called HCLUSR.P2S (located in :SD:RMX286/HI) whjch provides you with null
insîances of the three procedures. The Human Interface CLI has three entry points to
the user extensions, one before each procedure.

2.5.1.1 Init ial ization

When the CLI is initialized it first defines its own alias tables (the memory area where
user deiined aliases are stored) and data structures- It then calls the user supplìed
initial;ation procedure. Ifyou have tables or data structures to add during initialìzation,
they should be part of the initialization procedure. This procedure is called only once
during CLI initialization. The CLI enters the user extension by calling:

CALL CL I9USER$INTT(" \ cep t$p t r) ;

You can bind this procedure to the CLI library supplied with the Human Interface. An
erample of how to do this is given later in this secrion

2.5.1.2 Proc*sing

After each command line (entered either from a terminal or in a SUBMIT file), the CLI
translates all aliases, and checks again lbr user extensions. At this point, you can change a
command, perform additional functions before execution, or process the command. To
access your user €xteDsion, the CLI calls:

cont$f lag - CLISUSER$PROCESS(comand$ptr , èr .eptSpir) ;

where:

command$ptr a pointer to a STRING containing the expanded alias command
readv for execution

Human lnterface User's Guide

THE COM\{AND LI NE INTERPR,ETER

cont$flag a b)4€ indicating whether the CLI should continue executing the
command line modilied by the user ext€nsion, or ignore it and
continue to the user cxlcnsi{rn epilogue procedure-

2.5-f-3 Epilogue

When the CLI has executed a command (HI command, CLI command, or user supplied
command), it calls the epilogue procedure. This procedure can handle error conditions
or perform any oîher functions that cannot be performed until the command has been
executed. The epilogue procedure is called by:

CALL CLI$USER$EPILOG(excepr$prr);

This procedr.rre can be bound to the Human Interface CLI library as shown in the example
given later in this section.

2.5.1.4 Error Handling

Each of the three user extension proceduaes retuans an earor code in the exceptiori
pointer, except$ptr. lf the procedure returns anything other than E$OK, the CLI outputs
an error message in addition to the message issued by C$SEND$COMMAND or the CLI
command.

The CLI catalogs the error code generated by the last command under the name
R?ERROR in the global directory before executing the user epilo$re procedure. Yoù
can access this value and use it in your application. However, any changes to R?ERROR
are not recognìzed by the CLI. The following code enables you to access the value in
R?ERROR.

DECIARE error$È TOKEN,
BASED error$r UORD,

except woRD;
e r ro r$ r = RQ$LoOKUP$oBJEcT (SELECTOR$0F(N lL) , (3 (7 , ,R?ERROR,) ,0 ,eexcep t) ;

AJter execution of this system call, effor will contain the error code that the last command
sert to R?ERROR.

2.5.1.5 A Sample User Extension

The following example shows how to create a user ext€nsion using the three procedures
described above. The user extension illustrated here aììows you to measure the time
required to execute a CLI command, an HI command, or any apptcation program. The
code shown here is a straightforward example. Many specìal cases have been omitted.

Human lnaerface User's Guide t_<

THE COMMAND LINE INTERPRETER

/*************:t**********)t********* **********************

T I T L E t l R ì f i I l C L I u s e r e x r e n s i o n e x a m p l e : T I M E R

ABSTRACÎ:
A11o\r the user to neasure t ine required to execute a CLI

comaDd or any appl ical ioÌ ì pro8rau.

USAGE:
<co[mand> -T

uhèrF .òmm:nr l lÀ rnv coùìnand l lne rhar che ÍRMX I I CLI

*********5r**************:r*:t*:t*:!*:!***r!***+***************/

H C L U S R : D O ;

/* Elob^l declarat ions */
DECIARE

CR LITEMLLY 'ODH'

LF LTTERALLY 'OA}| '

TOKEN I-ITERALLY 'SELECTOR"

STRING L]TERALLY ' STRUCTURE (
length BYTE,
c h a t (1) B Y I E) ' ;

/* include f i les */

9include (/ rmx2 86l inclerror . l i r)
9 include (/ rmx2 8 6/ inclb ios . exr)
$ inc lude (/ rnx2 86/ incle ios . ext)

/* externals x/

cÒnvert$dw9dèc ina r : PRocEDURE(dest inar ion$p, de s t iner ion$nax,
dw$nunber, length, excep$p) EXTERNAL;

DECIARE
dest inaclon9p POINTER,
dest inat ion$nax WoRD ,
du$nunber DtJoRD,
length I,IORD,
excep$p PoINTER;

END conver tSdw$dec imal ;

Figure 2-1. User Extension Example (Continued)

2-6 Human Interface Uset's Guide

THE COMMAND LINE INTER}RETER

DECIARE
BOOLEAN LITERALLY ' B\"IE '
rALSE I,ITERALLY 'O' ,
TRÙE LTTERALLY 'OFzu'
usersco9t ToKEN,
no$co BooLEAN,
t ine! BOOLEAN,
t ine DWORD;

9 s u b t i t l e (' C L I 9 U s e r $ l n i t '
)

/*********************************:!**************************)t*************
î I T L E : C r . T $ l l s e r $ I n i t

CALLING SEQUENCE:

C A L L c L I $ u s e r $ l n i t (e x c e p $ p) ;

ABSTMCT: The iRÌ. fX I I CLI cal1s lhis procedure ar
ini t ia l izat ion, ro al lo ' , the user ro inir ia l ize
data stnrctures and variables

ALGORITTiì'I:
at lach and open a connect lon to :COl
signal (N09co f las) í f i t was opened successful ly

r!*)t*5t****:!*)r**//

CLI9userglni t : PROCEDURE (excep$p) REENTRANT PUBLIC;

DECI-ARE
excep$p P0INTER,
excep BASED excepgp l ioRD;

excep : E$oK;
no$co - FALSE;
u s e r $ c o q t - r q $ s S a t t a c h $ f i l e (@ (4 , , : c 0 : ,) , e x c e p 9 p) ;

IF excep - ESOK THEN
C A L L r q $ s $ o p e n (u s e r g c o g t , 3 , 0 , e x c e p g p) ;

lF excep .> E$OK THEN
nogco - TRUE;

RETURN;

E N D c L I $ U s e r $ l n l È ;

Figute 2.1. User Extension Example (Continued)

Human Interface l]ser's Guide

THE COMMAND I,INE INTERPRF]TT]R

9 s u b t i t l e (I C L I $ U s e r 9 P r o c è s s ')

/****************

TITLE: Cl- I$UsèrSProcess

CAIL]NC SEQUENCE:

cont inue - CLI$User$Process(conn$bufgp, excep$p) ;

ABSTMCT: The iRl, lx I I CLI ca1ls this procedure before execut ing
a conmand l ine, but af ter l ine-edi l ing and al ias
replacenenc, Èo al1ow corunand manipular lon. I f rhe CLT
is to cont inue processingJ thís procedure returns TRUE. I f
FALSE is returned, the CLI skips this comÌand and cal1s
t h e c L I $ u s e r $ e p i l o g ,

ALGORIÎHM:
I F - L o r - T i s F o u n d i n t h e c o f l m " n d l i n € T H E N
D O ;

get lhe system t ime;
remove r- t ' f ron the conmand l íne
se! t i r ìer - TRUE for use by the Cl lguser$epi log

END;

Tel l the CLI to cont inue processing RETURN (TRUE)
*******:l**********:r***:r*******:!**********:!*:t*:r.***:!***:!*:!*:!****,t***********/

CLI9user9Process: PRoCEDURE (conÌnbufp , excepgp) BYTE REENTRANT PUBLIC;

DECI,ARE
conmbufp PoINTER,
comn$buf BASED corùr$buf$p STRINC,
excep$p P0INTER,
excep BASED excep$p WORD;

DECLARE
index Ì,IoRD;

excep : E90K;
lF no9co

THEN RETLTRN(TRUE);
l i n e - 0 ;
r iner = FALSE;

Figure 2-1. User Extension Exampl€ (Continued)

t _ r Human Int€ ace Usefs Guide

THE COMMAND LTNE TI\TERPRETER

/ * s e a r c h f o t ' - t ' * /
índcx - F1NDB(lacom$buf . char, , , , comgbuf. lenrrh);
IF index a oFFFFH THEN
D O ;

IF comÍìgbuf. char (index + 1) - ,T, oR
comÌ$buf char(inde). + 1) : , r , THEN

D O ;
/* remove ' - t ' f ron the conurand */

conn$buf . chat (index) , conm$buf. char(index + l) - " ;
E i n e - r q 9 g e t $ t i m e (e x c e p $ p) ;
lF excep = E$oK THEN

tir ìer : TRUE;
END;

END; /* direct CLT to cont inuc comand processing*/
RETURN(TRUE) ;

E N D c L I $ U s e r $ P r o c e s s ;

$ s u b t i t l e (' C L I $ U s e r S E p i L o s ')

/*********************)y************:t******************ìt*ìt*****:t**ìt*ìt*ì!*ìt*ìt*
T I T L E T C L I $ u s e r $ E p 1 1 o g

CALLING SEQUENCE:

C A L L c L I g U s e r S E p i l o g (e x c e p g p) ;

ABSTRACT: The iRMX 1I CLI ca1ls rhis procedure afcer execucing a
comand l ine to perforn comànd épi logue funct ions.

ALGORITHM:]

lF there is no connect ion to :CO: or no t imer needed for
this comand THEN RETURN

. a l c u l a t e L h e r i m e e l a p s e d s i n . e C L I $ u s e r $ p L o c e s s
wr: i te rhe t ine message to the screen;

*****************:l************+***:!*:t*:!*:f***)9*********)L*******************/

cLI9UserSEpi log: PRoCEDURE (excep$p) REENTRAIT PUBLIC;

DECIARE
excep$p POINTER,
excep BASED excep$p l , lORD;

Figùre 2-1. User Extension Example (Continued)

Human Inaerf.ce Uset's Guide 2.9

THE COMMAND LINE INTERPRETER

DECI-ARE
actual i toRD,
cincgstr STRUCTL'RE(

length BYTE,
c h a r (1 4) B Y T E) ;

exceP : E9OK;
IF nogco OR NOî t iner THEN

RETURN;

t i n e $ s t r . I e n g t h - 0 ;

/* calculate rhe elapsed cine */
E i n e = r q $ g e t S t i n e (e x c e p q p) - t i n e ;
TF excèp o ESOK THEN

RETURN;
C A L L c o n v e r t $ d u s d e c ' n d l (@ t i m e S s ' r , s l z E l r i m F $. t r) , L i m e ,

S T z E (t i r ì è g s t r) - 2 , e x c e p g p) ;
IF excep = E$oK THEN
D O ;

a c t u a l : r q S s $ \ ' r r i t e $ m o v e (u s e r $ c o $ t , @ (' E r a p s e d r i m e : ') ,
1 4 , e x c e p $ p) ;

lF excep = E$oK THEN
actuar - rq$sqvri te$nove(usercoc, @tinìe9srr.char,

t i n e q s t r . l e n g t h , e r c e p $ p) ;
IF excep : E$oK îHEN
a c c u a l r q $ S $ u ! i L e $ m o v e / L s e r $ c o $ r , @ l s e c o n d s ' , c R , L r r ,

1 0 , e x c e p g p) ;
END;
RETURN;

END Cl- lSUsetSepi log;
END HCLUSR;

Figure 2-1. Uscr Extcnsion Example

2.5.2 Binding A User Extension

To use yoùr user extension, bind it to the Human Interface CLI Library using the
procedure shown below. (It is rccommenclecl that you combine the three procedures into
one module, but this is not necessary.) lfyou have called the user eltension module
MYEXT.P28, you can use this example exactly as it is writtcn. Othcrwise, replace
MYEXT.OBJ with the name of the obiect module vou wish to bind.

2-10 Human Interface Use/s Guide

THE COMTIAND LINE INTERPR,ETER

: LANG: BND286 &
MYLXT. OBJ, &
/Ryx286 /Hr /HCLI .LrB (HCLI) , &
/Rv,x286 /Hr /HCLI.LrB, &
/Rt'tx286 /HI /Hf .LrB , &
/RMX2 8 6/LIBlRrtr{r FC . LtB, e
/RMX2 86IHIIHUTI L. LIB, &
: IANG: Pl,l'f286 . LIB &
RENAMESEG(CODE TO CLI CODE,DATA TO HT DATA,HI CODF, TO CLI CODE, &
HI DATA TO CLI DATA) &
OBJECT(MYCLÌ) NOLOAD NODEBUC SECSIZE(STACK(2400H)) &
RC (Dl.r (I0000 ,0FFFFH))

MYCLI is the name you use to invoke this CLI. For a complete
explanation ofthe parameters, see Chapter T ot this manual.

Binding your extensions as shown abovc crcates a lluman Intcrface CLI with your user
extension. Ttr is ncu ly credred CLI can rhen be c.r lJc,J by i t . paLhnrme. MYCú|. rr a
nonresident CLI during the logon process- Ifyou want the default resident CLI to include
user extensions, you should specii, the pathname of the user extension module during
configuration. For more information see the Ertended. .RMX II Inteructive Confiwmtion
Utí IíE Refe rcnce Manual.

2.6 CUSTOMIZED INITIAL PROGRAM

If the standard iniliíl program or the standard initial program as modified by a user
extension does not meet your needs, you havc thc option ofproviding your own initial
program. The initial program may be similar to the Human Inrerface CLI, or it may be a
completely different kind of program For example, you could write a CLI that allows
access to liles in selected diectorìes only. This would prevent an operator from
accidentally modifying other files. Or if you want a particLrlar operator ro use only Basic-
language programs, a Basic interpreter might be the inirial program for that operaror.
You can select the inilial program for each operator. For example, you may continue
using the iRMX II Release 1 CLI as the initial program. To do rhis, you simply speciry
your selection in the user description files maintained by the system manager (refer to the
Ettended íRMX II Interucttue Configuration Utinry Reference Manual).

Ifyou providc your own initial program, the program must obey thc folowìng rulÈs:

. It must initialize its owrì data segment. The Human Inlerface does not set the DS
register for the CLL

. It must perform input and output via logical names :CI: and :CO:.

Human Interface flse/s Guide 2-11

TIIE COMMAND I, INE INTERPRETER

. Ilit requùes the ability to run Human lnterface commands, it must create an iRMX II
object called a command connection (via the
C$CREATE$COMMAND$CONNECTION system call). If the initial program does
nol create a command connection, it (and any other application tasks) cannot use the
following Human Interface system calls:

C$CETSINPUT$PATHNAME
CSCET$OUTPUT$PATHNAME
CGETINPUT$CONNBCTION
CGETOUTPUT$CONNECTION
C$SEND$CO$RESPONSE
C$SEND$EO$RESPONSE
C$SEND$COMMAND
CSETCONTROL$C
CSDELETESCOMMANDSCONNECTION

. If it doesn't create a command connection but still wishes to use the Human Intedace
syst€m calls CGETPARAMETER, CCETCHAR, and C$BACKUP$CIIAR, it
must first invoke the CSETPARSE$BUFFER system call.

. It must invoke the Extended I/O System call EXITIOJOB to terminate processing.
It must not use the PL/M-286 or ASM286 RETURN statement for this purpose.

Refet to the E tended iRtrlX II Hufian Inteface System CaIk Reference Manual for
detailed descriptions of th€ Human Interfsce system caÌls mentioned in this section.
Refer to the iRMX /1 Er.tended I/O System CalLt Referc ce Manual for information about
the EXITIOJoB system call.

Human Interface Userts Guide

3.1 oVERV|EW

Whenever an operator enters a Human Interface command from the terminal, an initial
progmm associated with that operator reads the information and causes the Operating
System to invoke the command. When it invokes the command, the Operating System
places the paramerers into a parsing buff€r. One of the first things that the command
must do is to read the parsing buffer, break the command line into individual parameters,
and determine the correct action to take based on the nurÌtbet and meanins oî rhe
parameters.

NOTE
The Human lnterface supplied initial program reads a command and
determincs ifi! is a CLI or a HI command before elecuring ir. CLI
commands are handled differently than Hl commands. This chapter deals
only with HI comúand parsing.

The Human Interface provides several system calls to parse command lines that folìow a
standard structure. It also provides other system calls to process nonstandard formats.
This chapterl

. Defines the standard strùcture ofcommand lines

. Describes the system calls used to parse commands having this structure

. Discusses how to switch from one parsing lruffet to another parsing buffer

. Describes system calls you can use to parse nonstandard commands

. Describes a system call that you can use to obtain the command name the operator
used when invoking the command

3.2 STANDARD COMMAND-LINE STRUCTURE

The staÍdard structure of a Human Interface command line consists of a number of
elements separated by spaces. It is recommended that your commaods follow this
structure to enable parsing by the Human Interface sysîem calls. However, if you require
a different structure, refer to the "Parsing Nonsîandard Command Lines" section ofthis
chapter.

Human Interface Usels Cuide 3-1

COI\fMANI) PARSING

The standard structure is as follows (square bràckets 0 indicate optional portions)l

command-name Iinpathlist [preposition outpathlist]l lparameters] <cr>

where:

command-name Pathname of thc file conlaining the command's cxelulable obj€cl
code. The pathname may consist of a prelix and a subpath. A
prefix is a logical name of a directory and is unique ifit is not
duplicated in one of the dire,ctories in the command search
sequence defined during configùration See the Ertcndcd |RMX
Inteructive Confrgurution Utility Refercnce Mafiral for more details
on directories, prefixes and logical names.

inpath-list One or more pathnames, separated by commas, of files that the
Human Interface reads as input during command execution.
Individual pathnames can contain wild-card characters to signiry
muìtiple îiles- Refer to the Op?mlorìî Guide To The F.xtcnded
|RMX Il Human Intetface for a description of the wild-card
characters and their usage. You can use the
CCETINPUT$PATIìNAME systern call io process this inpath-
l lsL

preposition A word that tells the Human Interface how to handle the output.
The standard structure supports the following prepositions:

TO The Human lnterface writes the output to a new file
indicated by the output pathname. If the file al.eady exists, the
Human Interface queries the operator as follows:

< parhname >, already exists, ovERwRITE?

If the operator enters a Y or an R (uppcrcase or lowercase), the
Human Int€rface overwrites any informaîion in the existing fjle
with the new output. (An R tells the Human Interface to continue
overwriting existing liles without prompting lbr permission.) Any
other character causes the Human Intedace to proceed with the
next pair of input and output files.

OVER The Human Inter{ace writes the output to the file
ìndicated by the output pathnxme. lt overwrites any information
that currently exists ìn the file-

AFfER The Human lnterface appends the output to the
end of the file indicated by the output pathname.

You can use the CGETOUTPUT$PATHNAME system call to
process the prepositìon.

Human Interface User's Guide

COMMAND PARSING

outpath-list Onc or more pathnamcs, s€parated by comnas, of lìles that are to
receive the output during command execution. The total number
ofpathnames in this list and the number ofwild,cards usect
depends on the inpathlist. Refer to the Opdrdtor's Guide To The
Extended |RMX II mtma l tefuce îor more information. You can
use the CcETOUTPUT$PATHNAME system call to process
the outpathJist.

parameters Paraúeters that cause the command to perform additional or
extended services during command execution. The standard
structure supports parameters with the following formats:

value-list The parameter consists solely of one or more groups of characters
(called values) separated by commas. When the value-list is
present in the command line, the command perfornìs the service
indicated by the values.

keyword=value-list A key$'ord with an associated value (or list ofvalues, separaîed by
commas). The kelvord portion identilies the kind of service to
perlorm, and each value suppÌies further information about lhe
seryice request.

ke)$/ord(valueJist) Alternate form of the previous format.

kelnrr'ord value-list A kelavord with an associated value (or list ofvaìLres, separated by
commas). Lìke the previous two formats, the kelvord portìon
identities the kind of service to perform and each value portion
provides more information about the service. However, the
kelvord must be identified to the command as a prepositìon (refer
to the description of the CGETPARAMETER system call in rhe
Ex.tended iRMX II Hutuan Interlace S]'.Jtem Calh Referctrce Munlutl
for more information). You use the CGETPARAMETER
system call to process the parameter.

cr Line terminator character The RETURN (or CARRIAGE
RETURN) key and NEW LINE (rr LINE FEED) key are both
line terminators.

The following examplcs show how you should ellter all Human Interface coÙrrnand usin8
the command structure described above.

caPY /rnx286/fílel TO /rù-/rik2 <cr>
FORMAT :f0: FILES-300 GRANULARITY-200 BS <cr>
UPCOPY :f1:nyfi le T0 /ne', ' ,dir loutf i le Q <cr>

For morc cxampÌcs scrjthe Opemtot's GuAe To TIE Ertended íRMX II Ilut útl It teface.

The Human Interface aìso supports the follo\À'ing speciaì chrrrcters:

Hùman lnterface User's Guide 3-3

CONIMAND PARSING

coniinualion
character

An ampersand character (&). When an operator includes an
ampersand in the command line as the last character before the
line terminator, the HLrman Interface assumes that the command
irvc'catiorì corìtinues on the next line. If the standard Human
Interface command line interpreter (or any custom command line
interpreter that uses C$SEND$COMI,L{ND to jnvoke commands)
processes the operator's command entry, îhe ampersand (and the
line termjnator that follows) are edjted out of the parsing buffer.
Then the continuation line is read and appended to the parsing
buflèr. This process contjnues until the operator enters a line
termjnated by a carriage return without a continuation character.
Therefore, when the command receives control, its parsing buffer
contains a singìe command invocatìon, without intermediate
continuation characters or l ine terminators.

A semicolon character (;). The Human Interface considers this
charactcr and all tcxt that follows it on a line to be a non-
executable comment. lf the standard Human Interface command
line interpreter (or any custom command line ìnterpreter that Lrses
C$SEND$COMMAND to invoke commands) processes the
operator's command entry, all comments are edited out of the
parsing buffer. Therefore, individual commands do not have to
search for and d;scard comments.

NOTE
CLI commands sìrch as ALIAS, SUBMIT and SUPER do not recognize
continuation characters. However, continuation characters are recognized
by all human Interfac€ commands found jn :SYSTEM:.

commenl cnaracler

3-,f Hunran Interfàce Useas Gùide

COMMAND PARSING

quoting characters Two single-quote (') or double-quote (,,) charact€rs remove the
semantics ofspecial characters they surround (but you must use
the same character for both lhe beginning and ending quote). If a
command line contains quoted characters, the Human Interface
system calls that invoke the command and parse the conìmand lin€
do not perform any special functions associated with the
surrounded characters, For example, an ampersand surrounded by
double quotes is interpreted as a single ampersand and not a
continuation character.
The quotes remove the semantics ofcharacters that are special to
the Human Interface but not special to other layers of the
Operating System. Therefore, quotes do not remove the semantiqs
ofcharacters such as :, /, and /, which are special to the l/O
System.
To include the quoting character in the quoted strin& the operator
must specily the character twice or use the other quoting character.
For example:

I c a n ' l ' o r r c a n ' t n

causes:

to be read in the command Ìine.

3.3 PABSING THE COMMAND LINE

When a Human Interface command begins executing, a parsing buffer associated with the
command contains all the parameters that the operator entered when invoking the
command (everything except the command-name portion of the invocation line). The
Human Interface maintains a pointer for this parsing buffer which initially points to the
first parameter. By invoking any of the following Human Interface system calls, the
command can read the parameters from the parsing buffer:

C$BACKUP$CIìAR
CGETINPUT$PATHNAME
CGETOUTPUT$PATI]NAME
CGETPARAMETER
CSGET$CHAR

The system calls CGETINPUT$PATHNAME, C$GET$OUTPUT$PATHNAME, and
CCETPARAMETER read an entire parameter and cause the Human Interface to
move the pointer to the next parameter. These system calls understand quoting
characters, remove the special meaning from quoted characters, and discard the quote
characters.

Human Interface UseÌ's Guide

COMTtrAND PARSING

The system calls, C$BACKUP$CHAR and CGETCHAR, see the parsing buffer as a
string of characters. They do not understand the notion ofquotìng characters; therefore
they do not remove the special meaning from quoted characters, nor do they skip over the
quotcs. C$BACKUP$CllAR causca thc Human Intcrfacc to movc thc pointcr onc
position backwards. CGETCrIAR reads a single character and causes the Human
Interface to move the pointer to the next character. Except for positioning the parsing
pointer to a particular place in the buffer, CGETCIIAR should not be used with
CGETINPUT$PATHNAME, C$GET$OUTPUT$PATHNAME, and
CGETPARAME'IER.

3.4 PARSING INPUTAND OUTPUT PATHNAMES

Ifyou restrict the invocation lines ofthe commAnds you wlite to a form that is similar to
the standard format discussed earlier in this chapter, you can use the system calls
CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME to identiry the
input an.l outpìrt pathnames in the crmmand line. Because the command line can contain
multiple pathnames, you might need to invoke these system calls several times to obtain
all the pathnames.

The first call to CGETINPUT$PATHNAME reads rhe enrire inparhlist (rhe list of
pathnames separated by commas) into a bìit1èr, moves the parsing poìnier to the next
parameter, and retuÍìs the first input pathname to the command- Likewise, the lirst call
ro CGETOUTPUT$PATHNAME notes the preposition (TO, OVER, or AFTER),
reads the entire outpath-list into a buffer, moves the parsing pointer to the parameter
atter the outpathlist, and returns the first output pathnamc to the command. Succeeding
CGETINPUT$PATHNAME and C$GET$OUTPUT$PAIINAME calls rerurn
additional pathnames from the buffe.s created previously, but they do not move the
parsing pointer to the next parametef

For example, if the parsing buffer contains:

A,B TO C,D

the first call to CGETINPUT$PATIINAME obrains borh inpur parhnanres (A and B),
retu.ns the ffust one (A) to the caller, and positions the pointer at the preposition TO.
The firsr call to CGETOUTPUT$PATHNAME obrains both outpur pathnames (c and
D) and returns the first one (C) to the caller. CGETOUTPUT$PATHNAME also
identifies TO as the preposition and posiîions the pointer on it The second calls to
CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME return B and D
resDectivelv to the caller.

3-6 Human Interface User's Cuide

COMMAND PARSING

These system calls handle single pathnames, lists ofpathnames, and pathnames containing
wild-card characters. However, because of this versatiliry and because output pathnames
are dependent on input pathnames when bofh use wild-card characters, you mÌrst make
cals to CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME in a
particular order. To use these system ca11s effectively, obey the following rules:

1. Always call CGETINPUT$PATHNAME ro obrain rhe input parhname before
callìng CGETOUTPUT$P^THNA.ME to obtain the corresponding outpìrt
pathname. This is necessary because with wild-card characters, the identity of the
output pathname depends on the identity of the input pathname. Therefore,
CGETOUTPUT$PATHNAME cannot determine the oùtout oathname untiÌ
CCETINPUT$PATIINAME determines rhe corresponding ìnput parhname.

2, Always alternate your calls to CGETINPUT$PATHNAME and
CGETOUTPUT$PATHNAME. This is necessary to handle wild card characters
and lists of pathnames. Ifyou invoke two calls to CGETINPUT$PATHNAME
without an jnrermediate call to CGETOUTPLIT$PATHNAME, you will not be
able to obtain the first output pathname. Similarly, if you invoke two calls to
CGETOUTPUT$PATHNAME without an intermediate call to
CCETINPUT$PATHNAME, the second caÌl returns invalìd information

CGETINPUI$PA I HNAMB and C$GET$OUTPUT$PATHNAME return the
pathnames in the form of iRMX lI strings. Each string is a group of bytes in which the
firsl byte contains the number ofASCII byres that follow. For lhese syslem calls, rhe
remaining bytes in the st.ing contain the pathname. If CGETINPUT$PATHNAME
returns a zerolength string (that is, the first byte is zero), you know that there are no
more pathnames to obtain.

After calling CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME to
obtain the input file and correspondjng output file, you can use the system calls
CCETINPUT$CONNECTION and C$GET$OUTPUT$CONNECTION ro obrain
connections to îhose files. Chapter 4 contains more information about
CGETINPUT$CONNECTION and C$GET$OUTPUT$CONNECrIoN. Upon
obtaining connections to the files, you can pertbrn the necessary l/O operations.

Figure 3-1 contains an example of a program that uses CCETINPUT$PATHNAME
and CGETOUTPUT$P^THNAME in ìts command-linc parsing (it also uscs
CGETINPUT$CONNECTION and C$GET$OUTPUT$CONNECTION to obtain
connections to the files). This program is a partial example of à COPY comm.nd that
vou could imDlement.

Human lnterface Usefs Guide

CO[fMAND PARSINC

//ar*-***********)t******:r*************
* This exanple demonstrates the use of the fol lovin8 Huan Incerfacè *
* s y s t e n c a l l s :
* *
* rqcget$ inpuc$pachnaÌne
' f rqcget$outpuÈ$pathname *
* rqccet$ input$connèct ion *
* rqccet$outputqconnectíon *
* *
* This prograrì is a possible iúplenentacion of a COPY ut i l i ty r . rhose
* purpose 1s to copy daÈa from successive input f i les to corresponding *
* n ' , r p , , r f i l e s E o r e x a m p l è , t o c ó p y f i l è A t ó f i l e B , f i l e C t o f i l e *
+ D, and f i le E Èo f i te F, an operator could specify the fol lowing *
* conùnand line: *
. * *
, I C O P Y A , C , E T O B , D , F

+++*+++++++****:,*:!*>t/

c o p y : D 0 ;

DECI,ARE token LITERALLY 'SELECTOR' ;
DECIARE (inputqpathname , output$pathnane) STRUCTURE (

length B\"TE,
c h a r (a l) B Y T E) ,

o\ l tputSprep BYTE,
f i r p u r s t o ! e n . o u t p u t $ t o k e n) T O y E N ,
excep i,ùoRD,
exitSexcep I ,ùORD;

Sinclude (/rnx286/ inclerror. 1i t)
$include (/r lnx2 B 6/ inclhi . exr)
$include (/rnx2 8 6/Ínc/e ios . ext)

/ r L e t r h e f i r s r í n p u p a t h n a m e s t r i r g * /
CALL rqC get$ input$pathnane (@input$parhnane , s IZE (inpurgpathnarÌe) , @excep);

IF excep <> E$OK THEN
C A L L r q q e x i t $ i o $ j o b (e x c e p , N I L , l Q e x i t $ e x c e p) ;

Figure 3-1. C$GETINPUT$PATHNAME and CGETOUTPUT$PATHNAME Exarnple

3-8 Human Intedace User's Guide

COMMAND PARSING

D0 l , IHlLE (input$pathnane . length <> 0); /* A zero length indícates no
morc Ínput paraneters. * /

/ * C e t t h e c o r r e s p o n d i n g o u L p u È p a t h n a m e s t r i n g * /
outputSprep - rqcget$output$pathnane (Goutpur$pathnarne,

SlZE(output$pathnane),
! a (7 , , T O : C O : ') , G e x c e P) ;

IF excep <> E90K THEN
CALL rq$exit$io$job (excep, NlL, laexi t$excep) ;

/* Establ ish connect ion wi lh the pair of input and output f i les */

inputStoken - rqcget9Ínput$connect ion (Ginpur9parhnane, Gexcep) ;
IF excep o E$oK THEN

c a L L r q î e ! i t $ i ó $ j o b (e x c e p , N I L , @ e ! i r 9 e x c e p) ;

output$loken - rq$cgetoutput$connect ion (@output$pathname,
o u t p u t q p r e p , G e x c e p) ;

lF excep c E$OK THEN
C A L L r q $ é x i r $ i o 9 j o b (e x c e p , N I L , G e x i È g e x c e p) ;

Codè to copy data and close both f í les

/ + C € L t h e n e x t : n p u L p a t h n a m e s r r i n g + /
CALL rqqcSgetS inputqpathnanìe (Ginputqpathnane ,

r IZE(input i jpathname), Gexcep) ;
lF excep <> E90K THEN

C A L L r q $ e x i t $ i ó $ j o b (e x c e p , N I L , @ è x i t $ e x . e p) ;

END /* D0 h'llllE */

/ * F ì n i c h Ì / n n f ^ . a c s i n o * /

cALl- rq$exit$iogjob (cxcep, NIL, Gexitgéxcep);

END copy;

Figure 3-1. CGETINPUT$PATHNAME and CSGET$OUTPUT$PATHNAME Example

Human Idterface lIser's Guide 3-9

COMMAND PARSINC

3.5 WILD.CARD CHARACTERS IN INPUTAND OUTPUT
PATHNAMES

wild-card characters provide a shorthand notation for specifying several files in a single
reference. The Human Interface supports two wild'card chaaacters for use in the last
compooeot (this ùrearìs the last parameter, Ilot just the last sharact€r) of irrput or output
pathnames. The wild-card characters are:

? The question mark matches any single character. For example, the name
"FILE?" could imply all of the following names (and more):

FILEl
FILE2
FILEX

* The asterisk matches any sequence ofcharacters (including zero
characters). For example, the name "*FTLE" could imply all ofthe
following files (and more):

OBJECTFILE
FILE
V1.2FILE
AFILE

The following example illustrates both the correct and incorrect usage of a wild-card as
the last component in a list ofpathnames. You can enter:

/f'.yLrb / r i,re*

/I iylrb/*.obj

Entering

/*r7h/îíLe7

will cause an error. Tl\e Operator's Guide To Tlrc Ertenrled íRMX II Human Inteface
descfibes how to ùse wild-card characters when entering commands. It also disc[sscs
restrictions and operational characteristics ofwhich an operator should be aware. Refer
to that manual for more information about using wild-card characters in file names.

The CGETINPUT$PATHNAME and C$cET$OUTPUT$PATHNAME system calls
automatically handle pathnames that contain ìrild-card characters. They treat a \rild-
carded pathname as a list ofpathnames.

CGETINPUT$PATHNAME matches wild cards. That is, each time you call it, it
compares the wild-carded component with the files in the specified directory and returns
the pathname of the next file that matches. For example, if an input pathname isl

3-10 Human lnterface Useas Guide

COMMAND PARSING

: PROG: PLM/A*'

CGETINPUT$PATHNAME searches the :PROG:PLM directory and returns the
pathname of the next file that begins with the letter "A".

CGETOUTPUT$PATHNAME generates wild cards. Each time you call it, it
compares the wild-carded output pathname with the wild-carded input pathname and with
the most recent pathname returned by CgcET$INPUT$PATI{NAME. Then it generates
a coúesponding output pathname based on that information. The output pathname could
refer to an odsting file or to a file that does not yet exist. As an example, suppose an
operator's default directory contains the following files:

ALPHA BETA
A l l 8 1 1
ADAM C1I

Now suppose that you have written a command called REFINE that reads some
information from an input file, adjusts that information in some manner, and writes the
information to an output file. Assuming that you interleaved the calls to
CcETINPUT$PAr HNAME and C$GETSOUTPUT$PATHNAME correcrly when
you wrote the command, an operator could enter a command line as follows:

REFINE A*,8* TO C*, D*

In this case, CGETINPUT$PATHNAME and C$GET$OUTPUT$PATI{NAME
return pathnames as follows:

Pathname lìst returned CorrcsponrJing pathname list
by CGETINPUT$PATHNAME returned by

CGETOUTPUT$PATHNAME

ALPIIA
A 1 l

ADAM
BETA
8 1 1

CLPHA
c 1 1

CDAM
DETA
D 1 1

Because the file Cl1 aheady exists, the Human lnterface would display the following
message before writing to the file:

Cl1, already exísts, OVERIÌRITE?

If the operator answers yes to the prompt, the Human Interface overwrites the file.

Hùman Infelace llser's Cuiil€ 3.11

COMMAND PARSING

3.6 PARSING OTHER PARAMETERS

The CGETPARAMETER system call is îlso available for parsing command lìnes of the
standard format. You can use this system call for the following purposes:

. To parse parameters which appear after the input and output pathnames.

. To parse all parameters, if the command does not use input and output files-

. To parse the input and output pathnames, if the command requires a prepositìon
other than TO, OVER, or AFTER.

Ifyou use CGETPARAMEIER to parse input and output pathnames, you must
provide additional code to handle wild-card characters that may appear in the command
line. This is unlike C$GEfiINPUfiPATHNAME and
CGETOUTPUT$PATHNAME which handle wild-card characters automatically. For
example, suppose a command line contains the pathname:

FILE*

Ifyou use CGETINPUT$PATHNAME to parse this parameter, the system c:ll
assumes that FILE* is a wild'carded pathname. It searches the operator's default
dìrectory and returns the pathname of the first file whose name starts with the characters
"FILE'. Subseqùent calls to CGETINPUT$PATHNAME return other pathnames that
meet these conditìons.

However, iî you use CGETPARAMETER to parse the same parameter, the system call
returns the valuel

FILE*

It does not know'that the characters reoresent a oathname. nor does it know that the
asterisk represents a wild card.

When caled, CGETPARAMETER parses a single parameter and moves the pointer of
the parsing buffer to the next parameter. The paramete. returned as a result of this call
can be in any ofthe following forms:

value'list A value or g oup of valucs scparated by commas. The system call
returns the entire list in the form oi a string table (described in
Appendi{ B). It places each of the values in the vnlue list in a
separate string.

1 - t t Human lnterface User's Cuide

keJword = valuclist
or kelword (value-
list)

CONIMAND PARSING

A kelword indicating the kind ofparameter, followed by a value
(or group of values,separated by commas). The presence ofthe
cqual sign or the parentheses lers the sysÌem call recognize
ke)rword parameters without foreknowledge of the ke)'!vords. It
also informs the system call that the characters following the equal
sign (or the characters in parenthesis) represent a value-list and
not a separate parameter. The system call returns the key,"vord in a
string and the valuelist in a string table.

A kelword indicating the kind ofparameter, followed by a value
(or group ofvalues, separated by commas). In this case, since the
kervord and valuelist are separated by spaces instead ofby an
equal sign or parentheses, the kefvord is referred to as a
preposition. In order for the system call to recognize that this
stÍucture is a ketrrord/value-list instead of two separate
p rarn€l€rs, you must supply, as input to th€ system callr a string
table containing all the possible plepositions thet coùld occur. The
system calJ checks this]jst to determine whether a group of
characters separated by spaces is a preposition keylvord or a
separate parameter

kelword valuelist

Individual parameters are separated by spaces.

In general, the valuelist of a parameter is either a single value or a lisl ofvalues separated
by commas. CGETPARAMETER returns each of these values as a string in a string
table. However, an individual value can itself consist ofa vaÌue-list. Ifa group ofvalues
(separat€d by €omnìàs) ;s encìosed ùÌ parenlhescs, CcETPARAMETER lrcars thc
values as a single value, returning them in a single string. For example, in the following
value-list:

A,(B,C,D),E

CGETPARAMETER considers "B,C,D" as a single value. Therefore, thevaluelist
consists of three vîlues: "A", "B,C,D", and "E".

Figure 3-2 contains an example of a program that uses CGETPARAMETER in its
command-line parsing.

Human Interface User's Guide 3-13

CONIMAND PARSING

/********************************* **********************
* This è).anple demonstrates the use of the fol lowing Huan lnlerface *
* systen cal l :
) r *
* r d q a q o À r q n , r r Ò a i a r *

* *
* This progran nakcs ucc of rqcgct$paranctcr to parsc a kclrord
:f paranèter in a corùnand 1ine. Here, the kelvord, "SIZE", is parsed *
* and i ts valuè port íon converted to a word walue and placed in
* "size$vat". For exaÍrple, an oper:ator: could specify the fol lo\r íng *
* connnand line: *

* PROG1 SIZE : 4OO

* \ n r p î h , r i ' i \ p ' i c l 7 _ i l e c € í v e s *

* a default value -
*******x*****)r*****x**/

p r o g l : D O ;

DECIARE token LITERALLY 'SELECTOR' ;

9 i . c r 1 i d é (/ r m x 2 8 6 / i n c l e r r o r l i t)
$ ínclude (/rnx286l inclhi . ext)
9include (/rnx286l incleios . ext)

DECIIRE STRTNC LITERALLY 'STRUCTURE (len BYTE,
s t r (r) B Y T E) ,

VALUE9 TABLE $M,A,I
DEFAULT$SIZE

DECIjRE vaÌue$rableSbuf (VALUE$TABLE$}IdT) BYTE,

STRING9TABLE

PAtA}tETER$KE1'1JORD$f.fr!(

LITERALLY'STRUCTURE (m], 'n$entr ies BYTE,
e n t r i e s (l) B Y T E) ' ,

L I T E R A L L Y ' 2 0 ' ,

L I T E R A L L Y ' 8 0 ' ,

LITERALLY ' 1OO' ;

/* Receives str ing table

valuegtable STRING$TABLE AT (Gwalue$rable$buf),
valuesrrptr POINTER,
vaÌue$scr BASED value$scr$ptr STRING; /* For refer.encing strrngs

i n t h e s t r i n g r a b l e * /

DECIARE paraneter$keyrord$buf (PARAMETLRSKUYI,/ORD$l{AX) BYTE, /* Receives
the ke)ryord
s t r i n a * /

parameterSke).word STRINC AT (Gparaneter$kelvord$buf),
excep WORD ,
noreSparam UoRD,
(size$wal, i) l . IoRD;

Figùre 3-2. CGETPARANÍ ETER Example

3-I,f Human Interface User's Cuide

CONfilfAND PARSING

/* GeE the next paral ìeter, i f present */
nìoIe$param = rqSc$ee t$paranìè tei (Gparane terSkeFord, PARAMETERSKE\uoRDgMÀ{,

Gvatueqrable, VALUEgTABLEgMAX,
N l L , N I L , @ e x c e p) ;

IF (excep = E9oK) AND (nore$paran) THEN
IF (paranèrer$kè)vord.srr(0) - ,S,) AND ,/* rs rhe kqvord, 'SrzD,? .r /

(paramerer$ke). \ , rord. str (1) = ,r ,) THEN
D O ;

v a l u e $ s t r $ p t r : @ v a f u e $ t a b l e . e n t r í e s ; / * P o i n r r o t s r e n c r y i n
rable */

s i z e $ v a 1 - 0 ;
DO i - 0 to value$str. len - 1; , /* Convert nurTber str ing to word

v d l u e + /
s i z F g v a l - s i z p S v a l * ì 0 ;
s i z e $ v a l - s i z e $ v a 1 + (v a l u e g s t r . s r r (i) - 3 0 H) ;

E N D ;
END;

EI-SE
s i z e 9 v a l - D E F A U L T $ S I Z E ; / * I f r h e , S I Z E , p a r a m e t e r i s n o r p r e s e n ! ,

use rhe default s ize. * /

. conrinue ùiÈh rhe r:esr of the progran

/* Finish I /0 processins , f /
C A L L r q g è x i t g i o $ j o b (e x c e p , N I L , @ e x i r g e x c e p) ;
E N D p r o g l ;

Figure J-2. CGETPAR NÍETER Example

3.7 PARSING NONSTANDARD COMMAND LINES

If the command line you write follows the recommended structure described eàrlier in this
chapter, you can use CGETINPUT$PATHNAME, C$GET$OUTPUT$PATHNAME,
ancl CGETPARAMETER to parse lhe command line. However, ifyou requirc irn
invocation line of a different form, you might not be able to use these system calls- The
following sections discuss two q4)€s of nonsrandartl command lines: one that is similar to
the standard and one that is completely dilferent.

Human Inteface Uset's Guide J-15

COMNIA.ND PA.RSINC

3.7.1 Variations On The Standard Command Line

The "Standard Command-Line Structure" section of this chapter recommends that the
first parametels ofyour conìnìarìds be a list of ilput patlìtalnes, a pleposition, aDd a list
of output pathnames. With this convention, commands always cail
CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME first, before
obtaining any optional parameters. Therefore, the input and output pathnames are the
only posit ion-dependent prrameters in your commands; other parrmeters can ,ì l fear in
any order and can be optional.

However, suppose you want to structure your commands so that other parameters appear
before the input and output pathnames. You can stìlluse CGETINPUT$PATHNAME
and C$GE'l$OU I PU I $PAl HNAME to parse the input and output pathnames. But, you
have to ensure that your command knows which of the parameters contain the input and
output pathnames. You calr do this in several ways. Two of them are:

. Enforce a rigid structure on the command line. For example, suppose you want two
parameters to appear before the input and outpul pathnames, such asl

command p1 p2 input-pathname prep output-pathname

Your command could use CGETPARAMETER to parse the first and second
parameters. Then it could use CGETTNPUT$P THNAME and
CGETOUTPUT$PATHNAME to parse the input and outpìrt pathnames. If you
do this, p1 and p2 are position-clependent parameters which must be ìncluded
whenever the command is invoked.

. Us€ a separate parameter as a switch to infor nr the corùrnand that th€ parallretErs that
follow are input and output pathnames. This method requires more code to
implement but it cen a[ow you to mrke all your p.ìrameters (including the input and
outpuî pathnames) position-independent.

For example, you could implement your command such that whenever the operator
entered a parameter called FROM, it \"-ould signal the command that the next
paramctcrs wcrc input and output pathnames. This command could contain a main
loop that used CGETPARAMETER to parse parameters. Whenever the command
received a parumeter whose value was "FROM", it could call another portion ofcode
that used CGETINPUT$PATHNAME and C$cBT$OUTPUfi PATIINAME.
After retrieving the input and output pathnames, !he code could return to the main
loop to continue processing parameters.

A hypothetical command of this sort might be calÌed RITRI[Vtr, a command that
retrieves jnformation from various data bases. The operaior could invoke this
command with a commantl line such as:

RETRIEVE NAMEs ADDRESSES PHoNES FRoM file I TO file2

In this command, operators can speciry v/hat thev want to retrieve before they speciry
where to get the information.

Human Inteface User's Cuide

COMMAND PARSING

3.7.2 Other Nonstandard Command Lines

In sorrre instances, you might want your command line to look completely different from
that described earlier in this chapter. For example, suppose you require a syntax in which
the following rulcs apply:

. Spaces have no significance and can be omitted between parameters.

. A prefix character must be before each parameter (a "g" indicates an input file, an ,,@,,

indìcates an output file, and a ',-" indicaîes all other parameters).

With this kind ofsyntax, a user could invoke a command (in this example the command is
called REFINE) as follows:

REFINT $infi le -mediumt11 oulf i le

where infile is the file from which to read informarion. outfile is the file in which REFINE
should place its outpuî, and medium is a parameter that further directs the processing.

lfyou require the syntax outlined in this example (or any other nonstandard syntax), you
cannot use CGETINPUT$PATHNAME, C$cET$OUTPUT$PATHNAME, and
CGETPARAMETER to parse the individualparamerers. Any of these system calls
would return the entire parameter list as a single parameter.

For cases such as this, you can use the CgBACKUP$CtlAR and the C$CET$CHAR
system calls to parse the command line. These sysrem calls perform a singlc, simplc
operation. C$BACKUP$CHAR moves the position pointer backwards one position.
CGETCHAR returns a sìngìe character from the command line and moves the pointer
to the next chiracîer. These system catls do not understand the notion ofparameters ns
erplained earlier in this chapter. Nor do they understand wild-card characters or quoting
chaaacters.

C$BACKUP$C[L{R and CcETCHAR require you to provide the parsing algorÌthm in
your own proglam, becaùse they make no assumptions about the structure or order of
parameters. However, by using these system calls, you can enforce any command syntax
you choose.

Because C$BACKUP$Cr{AR and CGETCFIAR move the pointer characrer by
character, not parameter by parameter, yorì should take care when using them in the same
program with CGETINPUT$PATHNAME, C$CET$OUTPUT$PATHNAME, and
CGETPARAMETER. You must ensure that C$BACKUP$CILAR and
CGETCHAR ìeave the pointer pointìng at the beginning of a parameter (or at blank
characters which immediately precede the parameter) before invoking flny olrhe other
system caÌls.

Human Interface User's Cuide

COMMAND PARSING

3.8 SWITCHING TO ANOTHER PARSING BUFFER

When a command begins execution, it has a parsing buffer that is set up by the Human
Interface to contain the parameters of the command. The command parsing system calls
listed in this chapter operate on that parsing buffer. This allows the command to parse its
parameters.

Some commands might require the ability to parse additional lines of text (for example,
an editor needs to parse individual editor commands) after the original command
invocation. A command such as this cannot use the Human Interface-provided parsing
bìrffer because it has no way ofplacing information in the buffer, and because rt cannot
reset the parsing pointer to the beginning of the buffer.

To meet the needs ofcommands such as this, the Human Interface provides a system call
to change îhe parsing buffer from the one the Human Interface provides to one that the
command provides. This system call, CSETPARSE$BUFFER, switches the parsing
buffcr ànd s€ls th€ parsìng pointer to the b€ginning of the bufter.

One of the parameters of the CSETPARSE$BUFFER system call (buff$p) is a pointer
to a buffer containing the text to be parsed. This buffer can contain text read from the
terminal, text read from a file. or even text that you "hard code" into the command. After
the call to CSETPARSE$BUFFER, the following command parsing system calls obtain
information from the new prrsing buffer:

CGETPARAMETER
C$GEÎ$CI'IAR
C$BACKUPSCI{AR

The other command parsing calls (CGETINPUT$PATHNAME and
CGETOUTPUT$PATHNAME) are not affected by calls to
CSETPARSE$BUFFER. These calls always obtain pathnames îrom the original
parsing buffer (the command line).

When you establish a new parsing buffer, CSETPARSE$BUFFER sets the parsing
pointer to the beginning of the butler. This alkrws you to use one bufler tbr parsing many
lines of text. For example, suppose your command has several sub-commands. Each time
the operator enters a sub-command, your command reads the sub,command inro a buffer,
cals CSETPARSE$BUFFER to reset the parsing pointer, and parses the sub-
command. The program flow for an operation ljke thjs could be:

1. Read the information from the terminal into a buffer (use
C$SENDIiCOtrjRESPONSE, C$SENDEORESPONSE, or an Extended l/O
System call).

2. Call CSETPARSE$BUFFER to set the parsing buflèr to the buffer contàr'ning
the sub-command. This sets the parsing pojnter to rhe beginning of the buffer.

3-18 Human Interface Usey's Cuide

3. Parse the sub-conmaod usiog CSGETSPARAMETER, C$BACKUP$CHAR or
CGETCHAR system calls.

4. Perform the operations requested by the sub-command.

5. Go back to step 1. Continue this loop until the operator ex;ts from the command.

Ifyou speciff ML or a zero value for the bufflp parameter of CSETPARSE$BUFFER,
the parsing buffer s\ritches back to the original command line buffer. However, the
parsing pointer does not reset to the beginnìng of the buffer; it remains pointing at the
next paramete. in the command line. lhis allows you, if you wish, to parse part of the
command line, switch buffers and parse a portion of another buffer, and switch back îo
the comnìand line.

There is one problem with switching back and forth between parsing buffcrs. Excepr
when you switch to the command line buifer, every time you call
CSETPARSE$BUFFER, the parsing pointer moves to the srart of rhe buffer.
Therefore, you lose your place in the buffer. However, CSETpARSE$BUFFER
returns, in its offset ptìrameter, a value that indicates the position of the pointer in the
previous buffer. This value specifies the offset of the pointer, in bytes, from the beginning
of the buffer. Ifyou intend to swiîch back to that builer (by again calling
CIiSET$PARSE$BUFFER), you can use this value to move the poinîer to its previous
posrtlon.

One way to do this is to use the CGETCIIAR system call to move the parsing pointer
back to its previous posirion. Afrcr switching back to the original buffer, calt
CGETCHAR the nlrmber of times specified in the ofl.set parameter of the first
CSETPARSE$RIIFFER ca[(not the one rhar s*,itched back to the buffer). This
positions the pointer to its previous location. You can then continue parsìng parameters
ftom th€ pojnt at which vou left ofi

Another way to do this is by îreatingyour parsing buffer as an array ofcharacters (an
array caled CHAR, lbr example). When you call CSETPARSE$BUFFER rhe first
t;me, you can specify the buf$p parameter to point to the first element of the array
(CHAR(o), for example). Then, when you switch parsing butiers,
CSETPARSE$BUFFER retu.ns, in the offset parameter, the number of bytes already
parsed. Wlcn you svritch back to the first parsiog buffer, you can use rhis offset value as
an index into the array; that is, have the buff$p parameter poinr ro CHAR(offset).

COMMAND PARSING

Human hterface Usels Gùide 3.19

COI\fMAND PARSING

3.9 OBTAINING THE COMMAND NAME

A user invokes a command by specilying the pathname ofthe file containing its object
code and any pai aor€t€r s the conìmand requires. The Hurrun Intcr facE places the
parameters in a parsing buffer. which the command can aocess by invoking the system
calls described earlier in this chapter. In addition, the Human Interface plîces the
command name in another buffer. The command can obtain this name by calling
C$CEfiCOMMAND$NAME.

C$GE]$COMMAND$NAME does not operate on the parsing bùffer used by the other
command parsing syst€m calls. Nor is jt affected by the CSETPARSE$BUFFER
system. lt can be called multiple times; each time it returns the same command name.

Ifthe operator enters the complete pathname of the command (including the logical
name), thc command-namc buffcr contains exactly what the operator ente.ed. However,
if the operator enters a command name without a logical name, the Human Interface
àutomatically searches a number of directories for the command. ln thìs case, the
command-name buffer contains not onÌy the nam€ the operator entered, but also the
directory containing the conmand (such as :SYSTEM:, TPROG:. or :$:).

Therefore, a command can use the value retumed by CGETCOMMAND$NAME and
the circumflex pathname separator (^) to access the directory in which it resides. For
example, if "command-name" is the name received from CGETCOMMA^-D$NAME, a
command could access its directory by using the pathname:

conmand,namel

It could access another file in the dìrertory by specirying the pathnamel

comrìand-nane/f i le

3-20 Human Interface User's Guide

4.1 OVERVIEW

The Human Interface provides seve.al system calls that establish connections to input and
output files, communicate with the opeaator's terminal, and format exception codes into
messages that can be sent to the operator. This chapter discusses these system calls.

4.2 ESTABLISHING INPUT AND OUTPUT CONNECTIONS

The Human lnterface provjdes two system calls for estab[shing connections to input and
output files: CGETINPUT$CONNECTION and CgGETSOUTPUT$CONNECTtON.
These system calls are structured so that you can use the output from
CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME as input to these
system calls.

4.2.1 Using CGETINPUT$CONNECTION

CGETINPUT$CONNECTION obtains a connection to a iile and oDens that
connection for reading. One of rhe para merers ol CGETINPUT$CòNNECIION is a
pointer to a string containing îhe pathname of the file for which the connection ìs sought.
This pathname can be the pathname returned by CGETÌNPUT$PATHNAME or it can
be the pathname of any other file to which you want a connection. If
C$CEfiINPUT$CONNECTION càoDd obrain a connecrion ro rhe specified file fo. any
reason, iî returns an exception code and writes a message to :CO: (normally the
operator's terminal) to indicate the tlpe ofproblem. For examplc, ifthc spccificd input
lile does not exist, CGETINPUT$CONNECIION displays the following message:

<pathname>, f i le not found

The system call displays similar messages in other situations. Refer to the description of
CGETINPUT$CONNECTION in the dxlended |RMX II Human Interface System Calh
Reference Manual îot more information.

Because CGETINPUT$CONNECTION returns messages to the operator in the event
of an exceptional condition, your command does not have to return addìtional messages
unìess you require them The command must decide only *'hether to abort or to continue
processing.

Human Interface lJsecs cuide 4-l

l /o PRoaEsslN(}

4.2.2 Using CGETOUTPUT$CONNECTION

CGETOUTPUT$CONNECTION obtains a connection to a file and opens that
conncction for writing. As iD the case of CGETINPUT$CONNECTION, one ofthe
parameters of CGETOUTPUT$CoNNECTIoN is a pointer to a string containing the
pathname of the file for which a connection is sought. This pathname can be the
pathname returned by CGEToUTPUT$PATHNAME or it can be the pathname of
any other file to which you want a connection. There is another parameter in
CGETOUTPUT$CONNECTION which specifies the tlpe of preposition to use when
writing to the output file (TO, OVER, or AFTER). This preposition governs how data
gets written to the file.

Ifyou speciry the TO preposition and the pathname of an existing fìle,
CGETOUTPUT$CONNECTION prompts the operator for permission to delete the
existing file. This prompt appears as:

<pathname>, aheady exists, OVERWRITE?

If the operator enterc a "Y" or "y" (for "yes"), the system call obtains the connection to the
existing file. If the operator enters an "R" or "r" (for "repeàt"), the system call also obtains
the connection to the existing file, and it gives the system callpermission to obtain
additional output connections, if necessary, without prompting for permission to delete
existing files. If the operator enters any other character, the system call returns an
exception code without obtaining a connection to the file.

Ifyou specify the OVER preposition, CGETOUTPUT$CONNECTIoN obtaìns the
connection without prompting the operator for permission.

Ifyou specif the AFTER preposition, C$GE I$OUTPUT$CONNECTION obtains the
connection without prompting the operator for permissìon. lt also seeks to the end of file
before returning control. Thus, any information you write to the file will not overwrite the
existing information. This is unlike TO and OVER which cause
CGETOUTPUT$CONNECTION to leave the file pointer at the beginning of the file.

If tlìe operator do€s not have th€ prop€r rcccss rights 1() thc lilc, or if for some reason
CGETOUTPUT$CONNECTION cannot obtain a connection to the file.
CGETOUTPUT$CONNECTION returns an exceptjon code and displays a message at
the operator's terminal. Refer to the description of CcETOUTPUT$CONNECIION
1n the Ertenrled iRùlX I Human Inteiarc S\,ttem Calls Reference Manual for more
information.

4.2.3 Example Program Scenario

A normal scenario for using CGETINPUT$CONNECTION and
CGETOUTPUT$CONNECTION is as followsl

1-2 Human Interface User's Guide

l/o PRocEssrNG

DO WHILE mo.e input and output files

Obtain input pathnanrc from command line wirh CGETINPUT$PATHNAME
Obtain output pathname f.om command line with

CGETOUTPUT$PATHNAME
Obtain connection to irput file with CGETINPUT$CONNECTION
Obtain conne.tion to output file with

C$ GET$OUTPUT$CONNECTTON
Read information from hput file
Perfoam command operations on infomation
Write information to output file
Delete connections to input and output files

END

The program listing in Figure 3-1 shows a partial implementatìon of this scenario.

4.3 COMMUNICATING WITH THE OPERATOR'S TERMINAL

The Human Interface provides two system calls that ease the process of communicating
with the operator's terminal. They are C$SEND$CO$RESPONSE and
C$SEND$EO$RESPONSE. Each of these system calls combines into a single system call
several operations that you would normally perform when communicating with the
terminal.

In its general form, C$SEND$CO$RESPONSE establishes connections to :CI: (console
input) and :CO: (console output), writes a message to :CO:, and reads a message from
:CI:. As input to this system call, you can specily the message to be sent, the size of the
message to be received, and the buffer to receive the message. Depending on the values
you choose for the parameters, you can erther:

o Send a message and receive a message

. Send a message \Àithout wait ing lo receive a me\\age

. Receive a message without sending a message

lfyou use C$SEND$CO$RESPONSE, you do not have to invoke other system calls to
attach, open, read from. or write to the operator's termìnal.

Human Inte ace User,s Cuide 4-3

I/O PROCESSTNG

There is a difference bemeen C$SEND$CO$RESPONSE and
C$SEND$EO$RESPONSE. C$SENDCORESPONSE deals specifically with the
logical names :CI: and :CO:. Therefore, its input and output can be redirected to files by
changing the pathnames represented by these logical names. 'lhis is what happens when
an operator places a command in a SUBMIT file; SUBMIT assumes that :CI: is the
SUBMIT tile and lhal :CO; is the outDut file sDelilied in the SUBMIT command. On the
other hand, while C$SEND$EO$RESPONSE performs the same operations as
C$SEND$CO$RESPONSE, C$SENDEO RESPONSE always reads information from
and writes information to the operator's terminal. Input and output cannot be tedirected
with C$SEND$EO$RESPONSE.

C$SEND$EO$RESPONSE is especially useful ifyou have multiple tasks communicating
with a single terminal- If a task uses either of these system calls and requests a response
from the terminal, no other output is displayed at the terminal until the operator enters a
response to the first system call. Atier the operator .esponds, tasks can send further
information to the terminal. This mechanism, when used by all the tasks whicb
communicate with the terminal, prevents the operator from receiving several requests for
inîormation before being able to respond to the first one.

4.4 FORMATTING MESSAGES BASED ON EXCEPTION CODES

Wlenever you include iRMX U system calls in the code of a command that you write, it is
possible for those system calls to encounter exceptional conditions. Exceptional
conditions are divided into two categories: programming errors and environrnental
conditions. Programming errors occur when the iRMX II Operating System detects a
condition that normally can be avoided by correct coding. Environmental conditions, in
contrast, are generally outside the corìtrol of thc applicaljon program.

Even the most thoroughìy dehrrgged commands can encounter exceptional conditions.
The exceptionaÌ conditions can arjse fiom invalid operator entries, lack of secondary
storage space, media errors, and other problems over which the command has no conîrol.

The Human lnteriace provides a default exception handler to handle exceptional
conditions in commands that you write. This exception handler receives control on the
occurrence of all exceptional conditions. It displays the exception code value and
mnemonic at the operator's termìnal and aborts the command.

ln many cases, you might want to provide your own cxccprion handling, either ro pass
additional information to the operator or to allow the operator another chance to enter
correct informrtion In sùch cases, you can rse the Nucleus system calls
GET$EXCEPTiON$HANDLER and SET$EXCEPTION$HAN'DLER to assrgn your
own exception handler or to cancel the effect of the default exception handler on some or
ail exceptions that occur il your command. Relet to fhe Exîended ikMX II Nucleus Sjstem
Calb Refercnce Manual for more information about these system calls.

4-4 Human Intedace User's Guide

I/O PROCESSING

When you pcrform your own exception handling, you will probably create special
messages that you return to the operator in the event of certain exceptional conditions.
However, you might not want to create messages for all possiblc cxccption codes. For this
situatior! the Human Interface provides the C$FORMAT$EXCEPTION system call.

C$FORMAT$EXCEPTION accepts an exception code value as input and returns a string
whose contents describe the exceptional condition. You can use this strhg as input to a
system call such as C$SEND$CO$RESPONSE to write ihe information ro rhe opetator's
terminal. By using C$FORMAT$EXCEPTIO\ you can rerurn a message ro rhe
operator fo. all exceptional conditions, but you do not have to enlarge your program by
including the text ofthese messages in the code ofyour command.

The text portion of the string produced by CgFORMAT$EXCEPTION consists of the
exception code value and mnemonic in the follo,ring format:

value : mnemonic

You can display this string as is, or you can place additional explanarory text in the string
betore displaying it. The following example shows you how to use
C$FORMAT$EXCEPTION. Suppose you have a procedure named DONOTHING that
waites an eÍor message to the screen whenever this ptocedure encounters an exception,
You can declare a message as follows:

DECIéRE
errorSnsg STRUCTURE(

length
c h a r (8 0) B Y T E) ,

f a i r e d (*) B Y T E D A T A (3 l , ' D O N O T H I N G p r o c e d u r e f a l r e d x) r x ,) ,
excep WORD,
tocalSèxcep WORD;

Now, whenever an exception is encountered during execution, you can caìl
C$FORMAT$EXCEPTION, as shown helow, to create the default message fbr the
exception contained in the excep variable and concatenate it to th€ faiìed message you
declared in the variable faled:

caLL MovB(GfaiLèd, @error$nss, fs i led(0)) ;

C A L L r q q c $ f o r n a t S e x c e p t i o n (G e r r o r S m s g , s I Z E (e r r o r g n s s) , e x c e p , 1 ,
G1oca1$èxcèp) i

You can w.ite the error$msg string to the screen. For example, if the excep variable
contains 05H, the string contained in error$msg wouìd be

' DONOTHINC procedure fal led : t* :r 0005: ESCoNTEXT,

Refer to the Z:rt€nded íLùlX II Hunatr Intedace Ststem Calls Rderence Mamnl fot 'l:lorc

information about C$FORMAT$EXCEPTION.

Human lnterface User's Cuide 4-5

5.1 oVERVIEW

When you write your own command, you migh! want to perform an operation that is
already provided in another command (such as copying one file to another, displaying a
directory, €tc.)- Instead of duplicating thc codc for this opcration in your command, you
can invoke Human Intedace system calls to issue the commands themselves. The effect
of making these system calls is the same as that produced by an operator entering a
Human Interface command at the terminal. The Human lnterface provides three system
calls to facilitate this process ofprogrammatic command invocation:
C$CREATE$COMMAND$CONNECTION, C$SEND$COMMAND, and
C$DELETE$COMMAND$CONNECTION.

Invoking commands programmatically involves the following operationsl

. Creating an object (called a command connection) to store the command invocation
l ines

. Sending the command line to the command connection and invoking the command

. Deleting the command connection

This chapter discusses these operations and providcs an cxamplc of how thc Extcndcd
iRMX Il system calls appear in a program.

5.2 CBEATING A COMMAND CONNECTION

Before you can send a command line to the Operating System to be invoked, you must
create an object (called a command connection) to store the command line. The
C$CREATE$COMMAND$CONNECTION system call creates this object and returns a
îoken for the coîúrand connection. The token can be used in calls to
C$SEND$COMMAND (to send command lines to the object) and in calls to
C$DELETE$COMN4,A.ND$CONNECTION (to deÌete the object after using it).

When you call C$CREATE$COMMAND$CONNECTION. you also specify tokens for
the connections that serve as command input and command output for the invoked
comùand. This allows you to redirect input and output for the invoked command to
secondary storage files. Or you can speliIy the normal :CI: and :CO:.

Human lnterface Uset's Guide 5-1

COMMAND PROCESSING

The command connection is necessary to support the processing ol multiple-line
commands without inîerference from other tasks. If not for the command connections.
the Operating System would be unable to determine which contituation line went with
which command when many tasks ìver€ sending command lines to be processed. Th€
command connection provides a place to store command lines until the command is
comDlete.

5.3 SENDING COMMAND LINES TO THE COMMAND
CONNECTION AND INVOKING THE COMMAND

The C$SEND$COMMAND system call sends command lines to a command connection
and, when the command inv(rcation is complete, invokes the command. One of the
parameters ofthis system call is the token for a command connection, which identifies the
command connection to us€. Anothef pafafirct€r is a pointer to a string which must
contain a command line. The fo.mat of the command line is the same as the format for
entering th€ command line at a terminal. The command can be any iRMX II Human
Interface command (as described in the Operator's Guide To The Extended iRl\,ÍX II
Human Interface) or any command that you write. However, it can not be a CLI
command. and it cannot use the alias feature ofthe CLl.

If the string specilied as a parameter to C$SEND$COMMAND contains a complete
command invocation, C$SEND$COMLtrAND places the command line in the command
connection and invokes the command.

However, ifthe string doca not contain the entire command invocation (that is, it contairs
the "&" as a continuation character), C$SEND$COMMAND places the command line in
the commadd connection without invoking the command. [t also returns an exception
code, E$CONTINUED, to infotm the calling program that the command is continued.
Additional C$SEND$COMMAND calls place continuaîion Iines in rhe command
connection, combining them with the command lines already there. When
C$SEND$COMMAND sends the last portion of the command hvocation (a line without
a continuation character), it invokes the entire command.

Once you call C$SEND$COMMAND enough times to place a complete command
invocation in the command connection, C$SEND$COMMAND invokes the command.
This involves loading the contmaod frorn s€condary storage and srarfitg iÍ running. The
C$SEND$COMMAND call that irìvokes the command does nor return control until the
invoked command finishes processing. Oncc thc command finishes proccssing, you can
use the command connection for invoking other commands.

5-2 Human Inteface User's Guide

COMMAND PROCESSING

Thc C$SEND$COMMAND system call contains two pointers to words that rcceive
iRMX II condition codes. One of tlÌese (called except$ptr in the system call description)
points to a word that receives the status of the C$SEND$COMMAND system call. An
E$OK indicates that C$SEND$COMMAND re.eived the iullcommand invocation and
invoked the command. An E$CONTINI IED indicates that the commancl invocation is
not complete (the last Line contained a continuation character). Other exception codes
indicate other problems with the system call.

The other poirter (called command$except$ptr in the system call description) points to a
wo.d that receives the status of the invoked command. This allows vou to determine the
status of the invoked command.

5.4 PRIORITY CONSIDERATIONS

Every command has a priority (usually based on the priority of the user who invoked the
command) that determines when the command will be able to run in relation to the other
tasks in the system. When commands are invoked via command connections, their
priorities are lowered (numerically increased) by one- This ensures that the calling task
(the one that created the command connection) retains control ovea the commands lt

As a result, a command invoked diectly at the terninal will have a higher pLiority (and
possìbly complete sooner) than the same command invoked via a command connectton.

5.5 DELETING THE COMMAND CONNECTION

After you have finished invoking commands programmatically, you should delete the
command connection. The C$DELEIE$COMMAND$CONNECTION system call
performs this operation. You do not need to delete the command connection after each
command invocation, because lhe command connection is .eusable. However, you should
delete the command connection after pedorming all C$SEND$COMNLAND operations.
This frees the memory used by the data structures of the command connection.

5.6 EXAMPLE

Figure 5-1 contains an example of a program that usesl

C$CREATE$COMMAND$CONNECTION
C$SEND$COMMAND
C$DELETE$COMMANDSCONNECTION

Tt invokes the Human Tnterface COPY commaîd Drocrammaticaììv.

Human Intedace User's Guide

COMMAND PROCESSINC

/***

* This exanple denonstrates the use

* rq$cQcreategconùnand$connect ion
* rqScSsen. l$.onm.nd
* rq$cqdeleteSconnand$connect ion

* ThÍs progran uses the previous systen cal1s to invoke rhe conmand *
* CoPY :F1:OLD to : F1:NEl,ù and then cont inues normal processing. *
* Thè prosran is inwoked vi th thc comand l íne:
* , !

* PROG2
*-*********************+**********:t*:9*:!*:t*********)k***:t*:!*:!**************/

p r o g 2 : D O ;

DECLARE token LITER-ALLY ' SELECTOR' ;

$include (/r ILy286l inclerror. 1i t)
9include (/r ì Ìx286/ inclr i . exr)
9include (/rnx286l incleios . ext)

DECLARE (ci$token, co$token, comrìandgconnecriongroken) T0KEN,
(excep, comexcep, e:<excep) LIoRD;

DECIARE oucput9prep BYTE;

/* lnvoke ut i l i ty to copy f i le OLD ro f i le NEW *,/

/* Get tokens for CI and CO */
c í $ t o k e n - r q $ C $ g e t $ i n p u r 9 c o n n e c r i o n (@ (4 , , : C r : ,) , G e x c e p) ;

o T l h p f . l l ó w i n o H " r , n l n l ' è r f . . p *

THEN
C A L L r q $ e x i t $ i o 9 j o b (e x c e p , N l L , l Q e x e x c e p) ;

c ó 9 t o k e n : r q $ c $ r e r $ o u r p u t 9 c o ù n e c r i o (€ (4 , , : c o : ') , o u r p u c g p r e p , G e x c e p) ;

I F e x c e p o E $ o K

lF excep <> E90K THEN
C A L L r q $ e x i t S i o S j o b (e x c e p , N l L , @ e x e x c e p) ;

Figùre 5-1. Command Connection Example (continued)

5-4 Human Interface Usels Gùide

COMMAND PROCESSINC

/* areaxe comaDd co oecLion */
connandqconnect ion$token - Èq$c9crearegcomandgconnecrion (ci9roken,

c ó $ t o k è n , 0 ,
G e x c e p) ;

IF excep o E9OK THEN
C A L L r q $ e x i t $ r o $ j o b (e x c e p , N I L , Q e x e x c e p) ;

/ * S e n d . ó m n , n d t o c o p y f i 1 è s * /
CALL rqgC$sendqconnand (conùnandgconnecriongroken,

G (2 3 , ' C O P Y : F l : O L D T O ì F l : N E I I ') ,
Gconexcep, @excep) ;

IF excep <> E$oK THEN
C A L L r q $. x i t $ i o 9 j o b (e x c e p , N l L , G e x e x c e p) ;

/* Delete connnand connect ion) t /
CALL rqQcSdelete9conlnand$connect ion (comand$ connec I iong roken, @excep);
lF excèp o E$OK THEN

cALl, ! r l$exiLSio$j ob (excep, NlL, r4exexcep) :

. n""a of program

/* Finísh I /0 processins */
c À L L r q $ e x i t S i o $ j o b (e r . c e p , N I L , G e x e x c e p) ;

E N D p r o g 2 :

Figùre 5-1. Command Connection Example

Humen Interfece Userrs Guide

6.1 oVERV|EW

Normally, when a Human Interface command is executing an operator cannot
communicate with the command (or with the application system in general) unless the
command initiates the communication by requesting inpùt from the termìnal. This can
present problems if an operator inadvertently enters the wrong command, or if the
operatoa decides while the command is executing that the command is unnecessary.
Under these cìrcumstances, there are a number ofways the operator can abort command
execution.

. lfthe command is executing interactively, the operator can enter a Control-C
character to abort a command.

. lfthe command is running in the background environment (exptained in Chapter 2),
the operator can enter the CLI commands JOBS and KILL to abort a job.

This chapter explains how to override the default Control-C mechaîìsm by providingyour
own code to process a Control-C character. For more information on aborting
background jobs, see the Operator's Guide To The Ertended íRMX II Human Interlace.

6.2 HOW THE DEFAULT CONTROL-C MECHANISM WORKS

When the operator enters a Control-C, the Operating System sends a unit to a
semaphore. In the default case, it sends the unit to a semaphore established by the
Human Interface. A Human Interface task waits at that semaphore to receive the unit.
When it receives the unit, jt aborts the command that is currently executing and returns
control to the operator. The Human Interface task then waits at the semaphore for
another unit.

This Controfc lasility allows operators to cancel commands while the commands are
executing. It is a valuable facility that can be used with your commands without requiring
you to provide special implcmcntation codc.

Human Interface User's Cuide 6-l

PROCRAM CONTROL

6.3 PROVIDING YOUR OWN CONTROL-C MECHANISM

With some commands that you write, you might want to override the default Control-C
mechanism. For example, suppose you write a text editor. An operator invokes the
editor with a Human Interface command and then specifies edit commands to enter text
into a buffer and modify that text.

While using the editor, the operator does not want a Control-C ch.racter to abort the
entire editing session, destroying text in the editing buffer that may have taken hours to
create. Instead, the operator might want a Controlc to abort a single editor command
only. In order to provide thìs lacilì5,, your Human Interface command (the editor) must
override the default Control-C mechanism and provide its own code to handle Control-C
entries.

To override the default Contol-C nìechanisn, you rìust change tlte senìaphofe to which
the Operatjng System sends the unit when the operator enters a Control-C. By changing
the semaphore to one thrt you create, you circumvent the Control-C task of thc Human
Interface. You can use the Human Interlace system call CSETCONTROL$C to
replace the Control-C semaphore. This system call chrnges the call ingjob's Control-C
semaphore to the semaphore you speci$. Tbere ìs only one parameter in this system call:
controlCsemaphore which is a token for your new Control-C semaphore. A sinlde unit
is sent to the new semaphore each time a Control-C is entered from the terminal. A
complete description of CSETCONTROL$C is in the Extended íRtúX II Humatl
Interface Sfstem Calls Refercnce Manual.

IIyour command replaces the default Control-C semaphore wilh ils own, it should also
seNice that semaphore. It can do this either by creating a task that waits continualÌy at
ihe semaphore for a unit or by containing inlinc codc that pcriodically checks the
semaphore.

ln either case, when a unit is sent to the semaphore, the command (or the task) must
pedorm the necessary Control-C operation.

The program flow oî such a command would be:

L Call CREATE$SEMAPHORE to create the Control-C semaphore.

2. Ifyou plan to crcatc a Control-C task to service thc semaphore, call
CATALOG$OBJECT to catalog the token for the semaphore in an objecr
directory.

3. lfyou plan to use a Control-C task, ìave the program call CREATE$TASK to start
the Conlrol-C !ask.

4. Call CSETCONTROI-$C to switch the Control-C semaphore kr the one jusr
created. Use the token for the semaphore you created in Step 1 as input.

6-2 Iluman Interface Usels Guide

PROCMM CONTROL

5. Continue with command processing. If you are servicing the Control-C semaphore
inJine, periodically check the semaphore (by calling RECEIVE$UMTS with rhe no
wait oplion) to determine if it contains any units. lf you obtain any units tiom the
semaphore, perform the necessary Control-C processing.

To service the Control-C with a task, the program flow of the Control-C task could be:

l. CaU LOOKUP$OBJEC f to obtain the token tbr the semaphore.

2. Do forever:

a. Call RECEIVE$UMTS (wirh rhe wait forever option, OFFFFH) ro obrain a unit
from the semaphore.

b. Perform the operation that must occur when the operator enters a Control-C.

Each method of se.vicing the Control-C semaphore has advantages and disadvantages.

Ifyoul code services the Control-C semaphore with inline code, you can perform any
operation you want, You can branch to various locations, you can start new tasks running.
you can abort the command, or you can perform any other function that you wish.
However, in order to service the Control-C semaphore with in-Jìne code, you must check
the semaphore periodically, to see if it contains a unit. When doing this, you must ensure
that you place the checks inside all program loops that perform operations an operator
might want to abort. Also, because yoìr can check the semaphore only periodically, you
cannot always guarantee a quick response to the Control-C.

Ifyou use a Control-C task, you can guarantee quick service because the tesk is always
waiting at the semaphore. However, because a separate rask services rhe Conrrol-C, you
can perform only a limited number ofoperations in response to the Control-C.

. The task call send i{ rìessage to the command, but then lhe command would have to
periodically check a mailbox. This has the same disadvantages as inJine servicing wìth
none of the advantages.

. The task can delete or suspeod the command. However, the task has no way of
knowing what operations the command was performingwhen the operator entered
the Control-C. If the command was updating an internal table, deleting îhe command
c{ruld corrupt your entirc lystcm- Suspending the command could allow the Contro!-C
task to interrogate the command's state. The Control-C task could delete the
command if appropriate, or it could allov/ thc command to .un until it was safc to be
deleted.

Once your command assigns a new Control-C semaphore, the semaphore remains
assigned until either of the following thÌngs occur:

. Your command invokes the Human Interface C$SEND$COMMAND system call.
Invoking this system call automatically reverts back to the default Control-C
mechanism. To continue using your own Control-C mechanism, invoke

Iluman Interface ùs€r's Cùide 6-3

PROCKA.M CÓNTROL

CSETCONTROL$C (o switch back to your Control-C semaphore) immediately
after invoking C$SEND$COMMAND.

r Your command is deleted. When this happens, the Human Interface aùtomatically
reactivates its default Control-C semaphore. For example, once the example text
editor described earlier in this chapter terminates, the Human Intedace resets the
semaphore so that Controlc again becomes active.

6.4 A SAMPLE CONTROL-C TASK

This section provides an example of a user-supplied Cont.ol-C mechanism.

/***:l****:l*:l*ìl**************)t*)Y**:!* +*+++***+***ìL*********

TITLET controlChandler

ABSTRACT:
T h i s L a s k r . r a i t s a t a s e m a p h o r e f o r a s i n g l e u n i t .
I f a unit is received, the culrerL job is Lerninated.

CALLING SEQUENCE:

C A L L r q $ c r e a t e $ t a s k (. . . , @ c o n t r o l $ C $ h a n d l e r , . . .) ;

ALGOR]THM:

LOOKUP$OBJECT for the Control-C seìrìaphore (should be catatoged
u n d e r ' S E l ' f A ')

;
DO FOREVER;

wait for uni t at Control-C semaphore;
i f a unit ís rècèíwed, terminote the jÒb ucing cxi tgiogjob;

E N D ;

*******:l********* **************:t*****x***)r***********:t**/

Figure 6-1. A CONTROLC Task Example (continued)

6"4 Human Interface User's Guide

PROGMM CONTROL

hcctask: D0;

$subri t le (' conrro 1Chandler ,)

contro 1Chandle r : PRoCEDURE
REENTR-ANT PUBLTC;

DECIaRE token LITERALLY'SELECTOR' ;

9include (/rmx286/ inclerror. 1i t)
$include (/rnx286l inc^i . ext)
0include (/rnx286/ inc/eíos. ext)

/* local varíables */
DECIARE

E$O(LTTEMLLY
locar$excep I .]oRD,
unlÈs l,iORD,

TNFINITE9I, IATT LITERALLY ' OFFFFH' ,
TOKEN;

sena - rqg lookupgobj ect (SELECToR$0F(NIL, @(4,,SEMA,), INFINITE$WAIT,
@ l o c a 1 $ e x c e p) ;

IF 1ocal9excèp o E$oK THEN
CALL rqSexit$ioSj ob(loca19excep,NIl- ,Gloca1$excep) ;

DO FOREVER;
units-rqqreceiwe$units (sena, 1, INFINITE$I, IAIT,

Q l o c a l $ e x c e p) ;
IF localgexcep : ESoK THEN

C A L L r q $ e x i t $ i o $ j o b (0 , N I L , G l o c a l $ e x c e p) ;
END;

END control Chandl er ;

END hcctask;

Figùre 6-1. A CONTROLC Task Example

Human Interface Uscr's (;uidc 6-5

7.1 oVERV|EW

This chapter discusses the steps that you must perform to create your own Human
Interface commands. lt discusses the necessary elements of a command as well as how to
compile (or assemble) and bind your code (using BND286).

To perlorm the operations described in this chapter, you must have either an Eo8ó-based
Microcomputer Deveìopment System (such as a Series IV) or an iRMX ll-based system
that includes the Human Intcrface commands. trither system must hav€ an Editor, the
necessary compiler or assembler, and the utility programs (such as BND286).

7.2 ELEMENTS OF A HUMAN INTERFACE COMMAND

This section discusses the rules that every user written command must obey. It also
suggests some programmng practices to make coding and usingyour commands easier.

NOTE
When coding your commands, be careful not to duplicate CLI command
names such as, ALIAS and SUBMIT. If you give a command a CLI
command name, you must execute it with the full pathname, for example,
rutjl:alias. Otherwise, rhe CLI command willbe executed instead ofyour
commano.

7.2.1 Parsing The Command Line

Ifyou are going to allow the operator to enter parameters when invoking the commàno,
the first thing your command should do is parse the command line. Chapter 3 describes
the Iluman Intcrface system calìs that you can use. To support lìsls ofparhnames and
wild"carded pathnames, the flow of a program rhat uses input and output files should be:

l. Calì C$GB Ì $INPUT$PATHNAME to obtain the entire lìst of input pathnames.

2. Call CGETOUTPUT$PATHNAME to obrain the D.eposirion and rhe enrire lisr
of outout Dathnames.

Human lnterface User's Cuide 1-1

CRE,dTING HUM.4.N INTERF,A.CE COMM,{NDS

3. Call C$GEISPARAMETER as many times as necessary to get all the parAmeters.

4. Do unti l no more input pathnames remain:

a. Call CGETINPUT$CONNECTIoN to obtain a connection to the input file.

b. Call CGETOUTPLn$CONNECTION to obtain a connection to the output
file.

c. Read the information from the input fìle, perform the command operations
based on that input, and wite the information to the output file.

d. Ca S$DELETE$CONNECTION (Extended I/O System call) to delete the
connections to the input and output files.

e. Ca[CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME to
obtain the next input and output pathnames.

7.2.2 Avoiding The Use of Certain System Calls

When you write the code for your Human Interface command, you can use any of the
iRMX II systern calls, dep€ndirg on the requilem€rts olyour coulnand. However, some
system calls are intended primarily for use in system-level jobs (thosejobs that you
configure into îhe Operating System rather than invoking as Humîn Interface
commands). In the descriptions of system calls, the iRMX II system call reference
manuals contain cautions concerning those system calls that you shouìd avoid using.

In particular, avoid iRMX II objects (and thei associated sysîem calls) that, by their use,
make your command immune to deletion. Regions and extension objects (described in
îhe Extended. íRMX II Nucleut User's Guide) are exampÌes of such objects. lf your
command becomes immune to deletion, a Control-C that an operator enters to cancel the
coúmand will have no effect; the operator's terminal may also lock when the command
finishes orocessins.

Human Interface Usey's Guide

CRXATING HUMAN INTERFACE COMMANDS

7.2.3 Terminating The Command

When the operator invokes a command, the Operating System loads the command into
memory and creates an I/O job as the environment in which the command runs. (The
E tehded |RMX II E tenlle.l I/O System User's Guide discusses I/O jobs.) The operator
can use the CLI BACKGROUND command to process commands h background mode,
and at the same time continue processing another command in the foreground. In order
to finish processing a foreground command correctly, any task in the command that exits
must do so by calling EXITIOJOB (an Extended I/O System call, described in the
E tekd.ed LRMX II Extended I/O Ststeh Cctlk Refercnce Manual). This system call causes
the Operating System to delete the I/O job containing the command, therefore returning
control !o lhe operalor- If the command running in the foreground omits the call to
EXITIOJOB, the operator might not be able to enter further commands. To terminate
a command before it reaches its normal completion, th€ operator should €nte
CONTROL-C to abort a command running in the foreground or the CLI KILL command
to abort a command running in the background envhonment.

7.2.4 Include Files

When ìr'riting the code for your commands, you must declare each iRMX II system call as
an external procedure. Insîead ofwriting these declarations yourself, you can use the
$INCLUDE statement. $INCLUDE statements make it possible to include code from an
efernal file into your program. The following information may be in an $INCLUDE file:
external declarations of system calls, Ìiteral definitions of exception codes, and common
literal definitions that you detlare.

the iRMX lI $INCLUDE liles are created during software installation and are located in
the |SD:RMX286/INC directory. There is an $INCLUDE file for each subsystem. This
file includes all the external declaraaions for all the sys[em calls of the subsystem. For
example, the $INCLUDE file for the Human Interface is :SDrRMX286/INC/HLEXT. It
contains all the exiernal dcclarations for the Human Interface syslem calls. To use these
files, simply determine the subsystem that your command requires and code $INCLUDE
stat€ments for the corresponding external declaration files into your source program.

You might also require literal definitions of exception codes so that you can refer to the
exception codes by their mnemonics instead ofby their values (for example, E$MEM
instead of 2H). After software installation, the :SDrRMX286/INC directory contains the
ERROR.LIT file consisting of LITERAILY declarations. The file defines all the iRMX
lI condition code mnemonics used. Refeî fo fhe Extended |RMX II Hardware and Software
Installatiok Guíde foî ll].formaîion about the release diskettes and the files contained in
them. Refer to the PL/M-28ó User's Guìde fot information about the $INCLUDE

Human Interface Uset's Guide

CREATING HI]MAN INTERFACE COMMANDS

7.3 PRODUCING AN EXECUTABLE COMMAND

AJter you have written the source code for your command, you must produce object code
that can be executed in an iRMX lI environm€nt. This involves the {ollowing proccdure:

L Compile (or assemble) the command using the appropriate translators. When you
do this, ensure that the names you speciry in $INCLUDE statements speciry the
correct devices and directories.

2. Using BND286, bind the code to iRMX II interface libraries (and any other
libraries that you require) and produce a relocatable object module that the
Operating System can load anyrvhere in memory. The format of the BND286
command is:

BND286 &
coronand-narne, &
: d i r : o t h e r . I i b , &
: SD: RlDt2 8 6/LIBIRIXIF* . LIB &; replace :r (c - CoMPACT, L : l lRcE)

RCONFIGURE (DYIqAMICMEM(nin,nax)) OBJECT (outpùt - pathnarìe) &
SEGSIZE (STACK(stacks ize))

wherel

command-name

:d i l l

other.lib

oulpul-pathname

stacksize

mrn max

conìplete pathnam€ of the lilc containing your compiled (or
assembled) command. You can bind in several files or lìbraries at
this point, if necessary.

A generic logical name you create for directories containing
miscellaneous libraaies.

Any other files or libraries that you need to bind with your
command, for example, PLM286.LIB.

Complete pathname of the file in which BND286 places the
command after binding.

Siz€, in blt€s, of the stack needed by the corrnraod and any systen
calls that the command makes. The Human Interface uses this
value when it creates a job for the command. Be sure the s!Ìck is
large enough to handle both user and system requirements. The
default value is 1200H Reîer tothe F.rtctu1e.1íRMX II
Prcgamminq Techniques Referehce Mamral for information about
stack requirements ofthe system calls.

Minimum and maximum amount of dynamic memory, in bltes,
required by the mmmand. The default value for both parameters
N Zero,

7-4 Human Inte ace Use/s Guide

CREATING HUMAN INTERFACE COMMANDS

The command uses this memory when it creates iRMX II objects.
The Application Loader uses the min and mar values when it loads
a job for the command. Be sure !ha! these values are large enough
to sadsry the needs ofyour command and small enough to allow
the command to be load€d irto the opetatof's ùtenrory partition.
For example, suppose a sort command requires at least 64K b),tes
of dynamic memory but can use any additionat dynamic memory
for buffers to increase performance. Ifyou do not define a
maximum memory parameter, all ofyour dynamic memory *ill be
allocated to the sort command, preventing you from executing
other commands at the same time. Therefore, assume that you
want to limit the max value to lM byte. Yor-r should specifu:

RCONFIGURE (DyNAr'fIOllU].l (l000Oft, I00000H))

Be sure to consider the following factors when calculating the
values for min and max.

. The value you give for min and the memory reqùired hy the
Human Interface program must fit into contiguous memory. If
there is not enough contiguous memory for them, you may not be
able to load your command.

. The max value should be large enough to ensure enough
memory fbr commands that request memory dynamically.

The command is now ready fo. execution. An operator can itvoke the command by
entering the pathname of the file contajnjng the command (the output-pathname in the
BND286 cornmand).

I[you are using an Intellec Microcomputer Development System to compile or bind your
command, you must connect the development system to your iRMX II application system
viù the iSDM monitor and usc thc Human Intcrfacc UPCóPY command to copy the
bound command from the development system disk to an iRMX ll secondary storage
device. The UPCOPY command is described n the Operator's Guide To 'fhe Extended
iRMX II Human Interface. AJter you translèr the bound command toan iRMXII
secondary storage device. an operator can invoke the command by entering its pathname
at the iRMX II terminal.

Hunan Interface Userrs Guide

8.1 oVERVIEW

The Human Interface is a conligurable layer of the Operating System. It contains sel,eral
optioN that you can adjust to meet your specific needs. To help you make configuration
choices, Int€l provides three kinds ofìnformation:

. A list ofconfigurahle options

. Detailed information about the options

. Procedures to allow you to specily your choices

The rest of this chapter describes the configurable options. For inlormation on the
second and third categories, refer to the Errendrd iRlvlx II Intetuctive Confrguratíon lJtiliîl
Reference Munuù.

Human Interface configuration consists of two parts: resident conlìguration and
nonresident configuration.

Resident configuration involves configuring the portion of the Human Interface that
resides in system memory at all times. This confìguration takes place during the
configuration of the entire Operating System, when you run the Interactive Configùration
Utility to adjust pa.ameters, include or exclude layers ofthe Operating System, and
generale an execufable version of the Operating System. You cannot change the r€sident
configuration without reconfiguring the entire Operating System-

Nonresident configr-rration involves setting up an iRMX II directory structure and placing
information about terminals and users into iRMX II files. The nonresident configuration
information must be present when the applìcation system starts running, but it can be
modified while the system is running. Changes to terminal configuration take effect the
next time you initialize your application system. Changes to user configurations take
place whenever the affected users logon to the application system.

8.2 RESIDENT CONFIGURATION

When you perform the resident Human Interface configuration, you can modily
parameters of the Human Interface that afîect all Human Interface users. These include:

Human Interface User's Guide 8 - l

CONFIGIIRATION OF THE HUMAN INTERFACE

. lnformation about the Human Interface's initial job, such as minimum and maximum
memory pool size and whetherjobs creatcd by the Humao Interface expect to use the
80287 Numeric Processor Extension.

. Information about the resident user (if applicable), including terminal name, terminal
device, user ID, madmum prioriry, pathname of initial program, and default dire.tory.
The resident user can be a normal resident user who has control as soon as the system
is booted or a recovery resident user who gahs control only when initialization errors
occur in the configuration fiìes. A system can have only one resident user.

. Information about thejobs created by the Human fnterface, including minimum and
maximum memory pool sizes.

. lnitial size of the buffer that the Human Interface uses when constructing commands.

. Maximum lenglh of a command pathname.

. List of diectories that îhe Human Tnterface automatically searches, in order, when
trying to find a command.

. Pathname ofthe di.ectory assigned to the logical name :SYSTEM: and a list of
pathnames and the logical names that you want the Human Interface to assign upon
initialization.

. Information about the default resident initial program including whether the fluman
Interface uses the Intel supplied CLI as ìts default initial program ot a customized
CLI. Ifa customized CLI is included, you must also specify its pathname.

. Information about user extensions. Ifyou specily the Intel-suppÌied CLI as the
resident initial program, you car spcciîy the pathname ofthe CLI user efension that
is to be incorporated. The default CLI does not contain user extensions.

8.3 NONRESIDENT CONFIGURATION

The nonresidenî configuration involves specilying information about the terminals and
users that access a multi-access Human lntertace.

For cach terminal in the system, you must specify:

r Termiaal device

. Terminal tlpe (name)

r The user name associat€d w;th a static logon t€rminal

For each user in th€ system, yolt should specify:

. Logon name

. User ID

. Encrvoterl Password

8-2 Human Interface Uset's Gùide

CONFIGURATION OF THE HUMAN INTERFACE

. Mhimum and maximum memory partition sizes

. Default dfuectory, whose pathname is assigned to the logical name :HOME:

. Pathname ofthe initial progam (optional)

. Ma\imum job priority

8.4 INITIALIZATION ERROR REPORTING

During the confìguration process, you can ele.t to have the system report Human
Interface initialization errors. Ifyou respond "Yes" to the Report Tnìtialization Errors
(RIE) parameter on the "Nucleus" screen, the Operating System reports initialization
errors from all subsystems. On encountering a Human Interface initialization error, the
Operatìng System returns control to the iSDM monitor after writing the following
message to the iSDM consolel

Hunan Interface Init ial ization Error: <error code number>

If Report Initialization Errors is not configured into your system or the iSDM monitor is
not present, the initial Human Interface task plàces the Human Interface ID code (4) and
the corresponding error code into the first two words ofthe Nucleus data segment
(lEo:0000H). It then goes into an infinite loop.

A complete list of iRMX lI error codes can be found in Appendix A ol fhe Operutor's
Guírle 7 o 'I he Extended |RMX II Human Inteíace.

Human Interfece Us€t's Guide 8-3

4.1 TYPE DEFINITIONS

The Extended iRMX ll Operating System recognizes these data q?es:

BYTE An unsigncd, eight-bit, binary number.

WORD An unsigned, 16-bit, binary number.

DWORD An unsigned, 32-biî binary number, occupying two contiguous
words of memory.

STzuNG

A signed, two-byte, binary number stored in two's complement
form.

Two words containing the segment selector and an offset into that
segment. The offset is in the WORD with the lowest address.

A l6-bit quantity that is equivalent to the selector portion of a
POINTER.

A word containing the logical address of an object. Tokens are
selectors that reference an entry in a descriptor table. The entry in
lhe descriptor table contains the physical address of the object.

A sequence ofconsecutive bytes having the structure:

length BYTE,
cha rs (2s5) BYTE;

The first byte contains the length of the string (the number of
succeeding bytes).

The subscript ol the chars field (255) is the marrimum number of
bytes in any string. Note, thst some system calls limit strings to
lengths shorter than 255 bytes. A zero count specifies a nùll string.

A count byte followed by a sequence of consecutive strings. The
value contailed in the count byte is the number of strings in the
rest of the string table. Since the string table contains only a single
byte in which to store the count, îhe ma\imum number of strings
that a string table can contain is 255. A zero coùnt specifies a null
string table.

STRING$TABLE

INTEGER

POINTER

SELECTOR

TOKEN

Hùman Interfare -À-t

8.1 STRING FORMAT

The Enended iRMX II Operating System uses structures called strings to store groups of
ASCII characters (such as pathnames). The Operating System assumes a string to be a
series ofconsecutive bytes broken into two portions: a count byte and text bytes. The first
byte in the string is the count byte; its value is set to the number ofbytes in the text
portion of the string. The text bytes contain the substance ofthe string.

The Operating System also uses another structure called a string table. A string table
consists of a count hyte and a series ofconsecutive srrings. As wiih rhe string, the firet
byte in the string table is the counr byte; its value is set to the number of strings in the
string table. The diagram in Figure B-1 shows the string$table parameter format.

BYTE: number of ent r ies (n)

STRING: s t r ing 1

STRING: s t r ing 2

STRING: s t r ing 3

STRING: s t r ing n

Extra space, i f any

Human Interface Usefs Gùide

Figure B.l. String Table Format

B-1

APPENDIX Br STRJNC T BLE FORM^T

EXAMPLEI

Assume you wish to generate a string table containing the words IIAPPY, GI-AD, and
SAD. The following declarations would be needed:

DECIARE
p$tablè(*) BYTE DATA(3, /* NUMBER OF STR]NGS */

5 , 'HAPPY' ,
4 , ' G I A D ' ,
3 , ' S A D ') ;

R _ t Human lnterface User's Cuide

$INCLUDE statement 7-3
. 1 - 6

? 1-6

A

aborting command execution 6-1
acccssing the values in R?ERROR 2-5
actions oî the Human lnterîace when started 1-1
AFTER preposition 4'2
AIIAS 1-2
amPersand character (&) 3-4
avoiding systemlevel commands in Human Interface commands 7-2

B

binding a Human Interface Command, example 7-4
binding a user extension 2-10
BND286 7-1,4

c
C$BACKI]P$CIIAR 3.6
C$CREAIE$COMMAND$CONNECTION 5- 1
C$FORMAT$EXCEI'TION 4.5
CGETCI{AR 3-6
CGETINPUT$CONNECTION 4.1
CGETINPUT$PATHNAME 3.5
CGETOUTPUT$CONNECTTON 4-2
CGETOUTPUI$PAI'HNAME 3-5, 11
CGETPARAMETER 3-5
C$SEND$CO$RESPONSE 4-3
C$SEND$COMMAND 5-2
C$SEND$EO$RESPONSE 4-4
csETcoNIRO$C 6-2
CATALOG$OB]ECT 6-2
cicumflex 3-20
CLI extensions 2-4
command connection 5-1

Hùman Interface Usefs Guide Index-l

INDEX

command connection, creating 5-1
command line interpreter (CLI), description of 1-1
command line, p.iority 5-3
command name, obtaining 3-20
command$except$ptr 5-3
command-Iine structure 3-1
command-name 3-2
comment character 3-4
communicating with the operator's terminal 4-3
configuring the Human Interface 8-l
continuation character 3-4
continuationcharacter 5-2
continuation mark for CLI commands 2-3
Control-C 6-1
CREATE$SEMAPHORE 6-2
CREATE$TASK 6.2
creating a command mnnection 5-1
creating I/O connectionsl
creating user extensions 2-4
custom CONTROL-C mechanism 6-2
olstom initial program 2-11

D

data t)?es A- 1
deleting a command connection 5-3
Device and volume management commands, [st of 1-2
dynamic logon terminals l-4
dynamic memory partitions 1-4

E

E$CONTINUED 5"2
elements of a Human Interface command 7- 1
error handling in the CLI 2-5
example

BND286 7-4
CONTROL-C task 6-4
string B-2
user extension 2-5

example code using command connections 5-3
example prognm flo\{ for a CONTROL-C mechanism 6-2
example program flow for a CONTROL-C task 6-3
examples

COPY3

Ind€x-2 Human Interface Userts Guide

INDEX

FORMAT3
qùoting characters 3-5
UPCOPY 3.3

EXITIOJOB 2.12
EXITIOJOB 7,3
efensions, of the CLI 2-4

F

features of the CLI
Aliasing 2-l
Background processing 2-2
1/O rcdireztion 2-2
Lioe-editing 2-1
Session history 2-2
Set 2-2

features ofthe Humao Interface 1-2
File management commands, list of 1 2
format of a string B-l
formatting messages based on exception codes 4-4

G

General Utility commands, list of 1-2

H

HISTORY 1-2
how CONTROL-C works 6-1
how the CLI parses command lines 2-3
how to create user extenstions 2-4
Human lnterface Calls

Command-parsing system calls 1-3
I/O and message processing system calls 1-3

Human Interface CallsCommand-processing system calls 1-3
Human Interface CallsProgram control system call 1-3
Human Intedace, configuring 8-1
Human Interface, features of 1-2

I

initial job 8-2
initial program

standard 1-5

Human hterface Usefs Guide Index-l

INDEX

initial program l-1,2
initial program 2- 11
initialization error reporting 8-3
initialization of the CLI 2-2
inpath-list 3-2
input and output connections 4-1
invoking CLI commands 2-3
iRMX.NET 1-4

J

JOBS 6-1

K

ke).llord = value-Iist or keyrvord (value-list) 3-13
ketq'ord vahre-list 3-3, 13
keyword(valueJist) 3-3
keyxord=value-list 3-3
KILL 6.1

L

I-AN support 1-4
Line terminator character 3-3
logging offa terminal 1-5
logical name

SYSTEM 8,2
logon 1-3
logon facility 1-3

M

multi-accesssupport 1-5
muldple terminal support l-5

Index-4 Human lnterfa.e User's Guide

N

nehvork aqless 1-4
Nonresident configuration 8-1, 2
nonrcsident information for each user in a system

Encry?ted Password 8-2
default 8-3
Logon name 8-2
Marimum job priority 8-3
Minimum and maximum memory partition sizes 8-3
Pathname of the initial program (optional) 8-3
User ID 8-2

nonresident information for terminals
fhe user name associated with a static logon terminal 8-2

nonresident user 1-3
nonstandard command iines 3-17

o
obtaining the commend name2o
ourpathiisr 3-3
OVER preposition 4-2

P

paÉmeters 3-3
parameters in a BND2Eó command 7-,1
parsing input and output pathnames 3-6
parsing nonstandard command lin€s 3-15
parsing other parameters 3-12
parsing the command line 7-l
parsing the command line 3-5
pathnames

wild-card 1-6
preposition

after 3-2
ove. 3-2
to 3-2

prepositior 3-2
priority ofthe command line 5-3
purposes of CGETPARAMETER 3-12

o
quoting characters 3-5

INDEX

Human Interfece Usels Cuide Index-5

INDEX

R

R?ERROR 2.5
RECEIVE$UMTS ó.3
Residett configuration 8-1
resident Human Interface Commands 1-2
resident user 1-3
restrictions on custom initial programs 2-12
ruÌes for custom initial program 2-11
rules for using GET$INPUT" and GET$OUTPUT$PATHNAME 3-7

s
semicolon character (4
sET 1-2
standard initial program 1-5
static logon tcrminals 1-4
steps for invoking commands from a program 5- 1
string example B-2
string format B-l
structure

message for error codes 4-5
switching to another parsing buffer 3- l8

T

terminals
dynamic logon 1-4
togging off 1-5
static logon 1-4
support for multipl€ 1-5

terminating a Human Intedace command 7-3
three procedurcs ofa CLI extenstion

epilogue 2-5
initialization 2-4
processing 2-4

t'?es of data A-1

rypical programming scenaio 4-2

Index-6 Human Int€face Usefs Guide

U

uset
non-resident 1-3
residenr 1,3

user extension
binding 2-10

user extension example 2-5
using the command connertion 5-2

V

value-list 3-3, 12
varialions ofthe slandard command line 3-16

w
wild card characters 3- 10
wild cards

asterisk 3-10
question mark 3- 10

wild-cards l-6
writing an executable command 7-4

INDEX

Human lrterface User,s Guide Ind€x-7

intel'

EXTENDED iRMX@II
APPLICATION LOADER

USER'S GUIDE

Intel Corporatron
3065 Bowers Avenue

Santa Clara, Cali forn a 95051

Copyriqht o 1988. Intel Corporat on. All Riqhts Reserved

This manual explains the operation of the Extended iRMX II Application Loader.
Application programmers who want to load programs from secondary storage ùnder the
control of extended iRMX II tasks shoùld read this manual. I'his mamral explains only
the general operations of the Application Loader. For detailed documentation on
extended iRMX II Application Loader system ca17s, consvlt the Ertendcd iRlvIX II
Applícation Loader Ststefi CaILt Referchce manual.

READER LEVEL

This manual assumes knowledge ofthe iRMX II Operating System and terminolog/
associated with it.

CONVENTIONS

All iRMX II system calls begin with one of two standard prefixes: RQg or RQES. When
referring to the system calls that begin with RO$, this manual uses a shorthand notarion
and omits the prefix. For example, S$OVERI,AY means RQ$S$OVERLAy. The actual
PL/M-286 externalprocedure names used to invoke these system calls are shown only in
lhe E'rtended |RMX II Application Loader Reference manual, which lisrs the detailed calling
sequences.

When referring to system calls that begin with RQE$, this manual spells out the complete
names, including the RQE$ charactcrs.

There are some system calls whose names are idenrical €xcept for the RQ$ or RQE$
prefix (for example, the Applìcation Loader system cals RQALOADIOJOB and
RQEALOADIOJOB). The difference between two similarly named system calls is
that the RQ$ version operates as ir did under rhe iRMX 86 Operating System and is
available for compatibiJity. The RQE$ version is updated to support new iAPX 286
features, such as 16M byte memory pools. Unless compatibitty with iRMX 86 systems is
an issue, Intel recommends that you use the system call with the RQE$ preface instead of
the one with the RQ$ preface.

Application lîader Usefs Guide l l l

CONTENTS

Application IÍader User's Guìd€

vi Application Loader Useas Guide

CHAPTER 1
INTRODUCTION TO THE

IRMX6 II APPLICATION LOADER

1.1 OVERVIEW

The Extended iRMX II Application Loader, a configurable layer of the iRMX ll
Operating System, loads programs under the control of iRMX II tasks or tasks that are
part of appljcation programs.

The Applicarion Loader provides system calls that load programs from secondary storage
into memory. Using the Application Loader provides several advantages:

. Allows paograms to run in systems with insufficient m€mory to aocommodate all
programs at one time.

. Allows programs that are seldom used to reside on secondary storage rather lhan in
memory.

. Makes it easier to add new programs to the system.

The Application Loader also enables you to implement large programs by usilg overlays.
For example, suppose that your application system includes a large data processor. By
dividing the data processor into severalparts, you can avoid keeping the entire data
processor in memory. One ofthe parts, called the root, remains in RAM as long as the
data processor is running. The root uses the Application Loader to load the othef parts,
called overlays, whenever they are needed.

This chapter will help you understand the capabilities of the Application Loader by
providing background infornation.

After reading this chapter, you should be able to understand the system calls desc.ribed in
the Ertetuled iRtúX Application Loader S$tem Calk Reference Manual.

Readers familiar with the iRMX 86 Application Loader may find it helpful to start by
reading Appendix B, which describes the main differences berween the iRMX 86 and
iRMX II AoDlication Loaders.

Application tóader Usrrts Gùide l - l

INTROI}IICTION TO TIIE iRMX@ II APPLICATION LO^DER

1.2 APPLICATION LOADER FEATURES

Several features: device independence, synchronous and asynchronous system calls,
overlaid pfoBrann supporq anrJ configurabiliry, make rhe iRMX II Applicarion tnader
valuable in any application system that loads programs ftom secondary storage into RAM.

1 .2.1 Device Independénce

The Application Loader can load object code ftom any device ii the device supports
iRMX II named files, and if an iRMX 1I device driver ìs available. Scc thc Extended
|RMX II Interactive Co frguration Utílit! Refercnce Manual for a cofiplete list of Intel
supplied device drivers

1 .2.2 Synchronous And Asynchronous System Calls

The Application I-oader provides both synchronous and asynchronous system calls. Ifyou
want your tasks to explicitly control the overlapping ofprocessing with loading operations,
you can use asynchronous system calls. Ifyou prefer ease of use to explicit control, you
can use synchronous system calls.

1 .2.3 Support For Overlaid Programs

The Application Loader contains a system call explicitly designed to simp]ìIy the process
ofloading overlay modules. By using the S$OVER[-AY system call, youÍ program can
easily load overlay modules contained in the same overlaid obiect file.

1 .2.4 Configurability

The Application Loader is configurable, that is, you can select the features of the
Applìcation Loader to meet your exact needs. For more details see Chapter 3 and the
betenlcd |RMX II Intetucùve Configutution Utilit! ReJerence ManuaL

1.3 PREPARING CODE FOR LOADING

To process your code so that the Application Loader can load it, first use an 80286
translator or assembler (e.g., PLM286, ASM286) to produce lìnkable object modules. If
your code uses only UDI system calls, it can be in any model of segmentation. If it uses
any other layer of iRMX II, the SMALL model of segmentation is not supported.

t-2 Application Loader User's Guide

INTRODUCTION TO THE iRMX@ II APPLICATION LOADER

Afler lranslaling your code, you must use BND2Eó to produce a load file ready to be
loaded. The load file must be an OMF-286 Single Task Loadable (STL) object file with
LODFIX records. This kird of load filc is produccd by BND286 using the
RCONFIGURE control. STL format is the only object code format supported by the
Application Loader. LODFIX records contain the locations of the selectors that are to be
updated after loading. LODFIX records are necessary because of the way the iRMX ll
Operating System functions.

BND286 assumes one I-ocal Descriptor Table (LDT) per task, and therefore, assigns
descriptor table entries to the application program in successive LDT slots. The iRMX II
Operating System cannot ensure that the same descriptor table entries will be allocated to
the application program, in fact it allocates cDT slots instead. LODFIX records are
required to allow the Application Loader to replace each selector in the object file with
the new GDT selcctor dssigned at random by the iRMX II Operatìng System at load time.

You can use the Human Interface IHI) DEBUG command to determine which GDT slors
were allocated fbr your program. For more details see the DEBUG command in the
Opemtor's Guide To The futended |RMX II Human lnteface.

Example:

The following example illustrates how an STL object file can be produced. It assumes that
the directory attached as :LANG: contains the compiler and the binder, and that the
directory attaohed as rLIB: contains iRMX II interface libraries. Assume that the source
code for the program is locatcd in a PL/M-286 filc namcd MY PROG.P28. This program
adheres to the COMPACT model of segmentation, and therefore vr'ill be linked to the
COMPACI interface library of ìRMX II (RMXIFC.LIB). To produce an object module
from the code in MY PROG.P28, use the following seqù€nce:

PLM286 MY_PROC. P28 COMPACT
BND286 &

MY_PROG, OBJ, &
:LANG:PLM286 . L IB , &
:L IB :RMXIFC. I - IB &
oBJECT(MY PROG) SECSIZE(STACK(+500H)) &
RCoNFtGURE (DYÌ{MTCMEM (5000H , 10000H))

Upon completion, the object module (MY PROG) is ready for loading. The next two
sections discuss the SECSIZtr control and DYNAMICMEM option ofthe
RCONFIGURE control in more detail.

Application toader User's Guide t--'!

fNTRODT]CTÍON TO THFJ iRMX@ II APPI,ICATION I]OAI}T]R

1 .3.1 Segsize Control

The SEGSIZE control should contain the stack size required by your program and the
iRMX II laycrs uscd. You must adjust thc stack sizc of your program to accommodate
the stack requirements of the highest iRMX II layer used. Table 1-1 lists the stack
requirements of each layer. Note that these requirements are in addition to the stack size
needed for your program. The value given as the minimum stack size includes the
requirements of all lower layers, e.g., ifyou use Nucleus, BIOS and EIOS, you should add
550 bytes to the stack.

Table l-1, iRMX@ II Stack Size

'| .3.2 Dynamicmem Option

DYNAMICMEM is an oprion of îhe BND2[36 RCONFIGURE control. The Application
Loîder ensures that your program has enough dynamic memory once it is loaded and
running. To do this, BND286 allows you to specify the amount of memory your program
wìll allocate dynamically. The value specified by MIN ìs always available for your
program, while the value specifìed by MAX allows your program to borrow from iîs
parent. Note that these terms apply only for progmms that are loaded as I/O jobs, that is,
usingA$LOAD$lOJOB, RQEA$LOAD$IOJOB, SLOADlOJOB, or
RQESLOADIOJOB,

Ef6nded iFMX ll Layer M nimum Stack Sìzs

250 bytes

350 bytes

550 byles

70O byl€s

150O byt€s

1750 bytss

l - 4 Application l-oader Userrs Cuide

2.1 oVERV|EW

The Application Loader system calls can be divided into three categories:

. RQ$ and RQE$ system calls

. I/Ojob and non-I/O job system ca[s

. Synchronous and asynchronous system calls

2.2 RQ$ AND RQE$ SYSTEM CALLS

The Application Loader has two system cslls prefaced by RQE thar allow you to speciry
memory pools up to 16M bytes (using DWORDS for pool parameten). For each RQE
system call there is a similar call prefaced by RQ Int€l recommends thar you use the
RQE version to allow you to take advantage of the iRMX II fearures. The RQ version
allows you to specily pools up to 1M byte only (using WORDS for pool parameters). The
following are the system call pairs:

RQ$AXiLOAD$-tO$JOB--RQE$A$LOAD$IO$JOB
RQSLOADIOJOB..RQESLOADIOJOB

(When refe.ring to the rystem calls that begin with RQ$, this manual uses a shorthand
notation and omits the prefiy.)

2.3 r/O JOB AND NON-|/O JOB SYSTEM CALLS

An l/O job is ajob that provides the environment for using the E\tended I/O System
(EIOS). A task can use EIOS system calls only if it is running in an I/O job environment.
Other than the A$LOAD system call, all Appticarion Loader system calls must be invoked
within an I/O job environment.

If you are unfamiliar with l/O jobs, refer to the Extended |RMX II Extended I/O System
User's Guíle for details.

Application lrader ltserJs Guide 2-l

APPLICATION LOADER SYSTENÍ CALLS

2.3.1 l/O Job System Calls

The iollowing system calls load programs within I/O jobs:

A$LOAD$IO$JOB
RQEAI-OADIOJOB
S$LOAD$IOSJOB
RQESLOADIOJOB

When one of these system calls is issued, the Application I-oader creates an I/O job in
which the initial task is a part of the Application Loader that loads the program. The
loaded code is another task in the newjob. Once the code is loaded, the Application
Loader task terminates itself, unless the new program cottains overlays. In this case the
Application Loader task waits for requests to load new overlays.

Pool Size tor lhe New Job

Wlen creating an I/O job the Application Loader must determine the size ofthe I/O
job's memory pool. The Application Loader uses the following information to compute
the size of the memory pool for the new I/O job:

. The pool$min input parameter, as a number of 16-byte paragraphs.

. The pool$max input parameîer, as a number of 16-byte paragraphs.

. A Loader configuration parameter spe.ifying the default dynamic memory
requirements. (Reîer to the Erte ded íRMX II Interactive Confguntion Utilitl
Reference Manual îor information about configuring the Loader.)

. Memory requirements specified in the target file by using the RCONFIGURE control
ofBND286 when creating the object file.

The Loader gives you two options for setting the size ofthe I/O job's memory pool:

1. You can set both pool$min and pool$max to 0. Ifyou do this, the l-oader decides
how large a memory pool to allocate to the new I/O job. The Loader uses the
requirements of the target file and the default memory pool size-establjshed when
the system is coniigured-to make this decision. Unless you have unusual
requirements, you should choose this option.

2. You can use either pool$min or pool$màÌ to overrìde the Loader's decision on pool
size. If the value you enter in pooÌ$min ìs less than what is required to ìoad the fìle,
the Application Loader ignores your input and sets pool$min to the minimum
amount of memory required by your file.

lfyou set pool$mtu\ to 0FFFFFH, the created l/O job has unlimited memory borrowing
from its parent.

Application l-oader Useis Guide

APPLICATION LOADER SYSTEM CALLS

You should be aware that thc pool size parameters in Application l,oader system calls are
specified in 16-blte paragraphs; however, the pool parameters in the RCONFIGURE
control ofBND286 are entered in BYTES.

2.3.2 Non-l/O Job System Calls

A$LOAD doca not crcate an I/O job. Instead, the Applicarion Loadef rask tlìar loads (he
program is running in the context of the caÌler's job. The Application Loader does not
create a task for the loaded code, but merely places it in memory, If you want this code to
run, you must explicitly create a task for it using the Loader Result Segment that you
receive on completion ofloading. For more details on the Inader Result Segment, see
the Ertehded íRMX II Applîcatíon Loeder System Calls Refercnce ManLral. Because no I/O
job is created, you can use A$LOAD in systems that were mnfiÉiured without the EIOS
layer.

2.4 SYNCHRONOUS AND ASYNCHRONOUS SYSTEM CALLS

The iRMX II Application Loader provides two rlpes of system calls: synchronous and
asynchronous. Synchronous calls return control to the calling task after all operations are
completed. Asynchronous calls are executed concurrently with your code.

2.4.1 Synchronous System Calls

These system calls return to the caller only after the service has completely finished, that
is, when loading finishes or terminates due to an error. In the first case, an E$OK code is
returned to the czdler via the exception pointer specified when the call is invoked. In the
second case, an error code is returned. The synchronous system calls are

S$LOAD$IO$JOB
RQESLOADIOJOB
S$OVERLAY

2.4.1.1 RO(E)SLOAD$|O$JOB

These two system calls load the file specified in the PATH$NAME parameter and qeate
an I/O job as the environment for the loaded code. Either call can immediately start or
delay execution of the loaded code, depending on the TASI($FI-AGS input paramerer. If
delayed execution is specified, STARTIOJOB must be called after rhe Application
Loader has successfully returned and you are ready to start the p.ogram. Another
pa.ameter, RESP$MBOX, serves as the exit mailbox for the newly created I/O job- The
EIOS sends an exit message to this mailbox when the loaded program (contained within
the newly created I/O job) terminates, by calling EXTTIOJOB. For more details see
CREATEIOJOB, STARTIOJOB anrl EXITIOJOB in the -eúenled LRMX II EIOS
Svstem calh Referchce m nual.

Application l-oader User's cuide

APPI,ICATION LOADER SYSTEM CALLS

2.4.1.2 S$OVERLAY

The term overlay reîers to logically independent subsections of a program. These
subsections are not all present in memory at the same time during program ex€cution.
Because only execùting program subsections (and not the entire program) use memory
space at a given phase of program execution, using overlays can reduce the memory space
required for a program to execute.

To correctly create programs with overlays on an Intel system, you must use OVI286 (the
80286 overlay generator) to produce the object files. The Application Loader assumes
that you have followed these rules when writing your overlaid program.

. The root ís always present in memory.

. No overlay, except the root, may be present in memory unless its parent is present in

. The only possible request, from any given overlay, is that a descendent (in the tree)
overlay be loaded.

. Any previously loaded sibling is no longer accessible once an overlay has been loaded.

. No assumptions are made about the preservation of data across multiple requests to
load the same overlay.

S$OVERI-AY is used whenever the loaded program requires that a new overlay be
present in memory. This call can be used only by an overlaid program. It can be issued by
any overlay (including the root) to load any ofits descendents. Although OVERLAY is
synchronous (i.e., returns or[y on completion ofservice), it can be used in conjunction
with the asynchronous Application Loader system calls. That is, A$LOAD$IO$JOB can
Ioad the file containing lhe program and S$O\.ERI-AY can load the required overlay into
memory.

2.4.2 Asynchronous System Calls

Each asynchronous system call has two parts: sequential and concurrent. The sequential
part bchaves in much the same fashion as the fully synchronous system calls. Itverifies
parameters, checks the file to be loaded, and prepares the concurrent part of the sysîem
call. If any problem is detected during the sequential pîrtt an error code is returned to
the caller via the exception pointer and the concurrent part is not started. If no error is
detected, an E$OK code is returned to the caller and the concurrent part is started.

The concur.ent part runs as an iRMX II task. The task is made ready by the sequential
part ofthe call and runs only when the priority-based scheduling of the iRMX II
Operating System úes it control of the processor. The concurrent part also returns a
condition code as part of a result segment that is sent to the response mailbox specified
when you invoke an asl,nchronous Application Loader call.

2-4 Application t oader Usefs Guide

APPLICATION LOADER SYSTEM CALLS

The asynchronous calls ar€ split into two parts !o improvc pcrformancc. The functions
performed by these calls are somewhat time-consuming be.ause they involve mechanical
devices such as disk drives. By performing these functions concurrently with othcr work,
the Applicatìon Loader allows your application to run while the Application I-oader waits
for the me.hanical devices to respond to l/O requests.

2.4.2.1 Example ol Asynchronous Calls

Let's look at a b.ief example showing how your application can use asynchronous calls.
Suppose your application must load a program stored on disk. The application issues the
A$LOAD system call to have the Loader load the program into memory, Let's t.ace the
actron one step at a trne,

L Your application issues the A$LOAD system call. (Asynchronous calls require that
your application speciry a response mailbox for communication with the concurrent
part of the system call.)

2. The sequential part of the A$LOAD call begins to run. This part checks the
parameters for validity.

3. If the operating system detects a problem, it places a sequential exception code in
the word to which your except$ptr parameter points. It then returns control to your
application. It does not make the Loader task ready.

4. Your application receives control. Its behavior at this point d€pends on th€
condition code retumed by the sequential part ofthe system calÌ. Therefore, the
application tests the sequentìal condition codc. lf thc codc is E$OK, thc app[cation
continues running until it must use the program loaded from the disk. At this point
your epplication can take advantage of the asynchronous and concurrent behavior
of the Loader. For example, your application can use this opportunity to perform
computations.

Ifyour application finds that the sequential condition code is other than E$OK, the
application csn assume that the Loader did not make ready a task to perform the
function.

For lhe balance of this example, you can assume that the sequential part ofthe
system call returned an E$OK sequential condition code.

5. Before your application can use the loaded program, it must verify that the
concurrent part of the A$LOAD system call ran successfuÌly. The application issues
a RECEIVE$MESSAGE system call to check the response mailbox that the
application specified when it invoked the A$LOAD system call.

6. When the result segment is received, and successful loading is indicated, your
application can use RQ$CREATE$TASK (using the entry point, data segment, and
stack segment, specified in the result segment) to activate the loaded program.

7. When the loaded program is no longer required, your application crn delete all the
segments that were qeated for this program by the Application Loader, using the

Application Loader Usels Guide 2-5

APPLICATION I,OADER SYSTEM CALLS

segment list in the end ofthe Inader Result Segment, then the.esult segment itself
can be deleted.

2.4.2,2 Generalitles Concerning Agynchrgnous Callg

The foregoing example used a specific system call (A$LOAD) to show how asynchronous
calls allow your application to run concurrently with loading operations. Now let's look at
some generalities about all iRMX II asfrchronous calls.

. All ofthe asynchronous system calls consist of two parts-one seqùential and one
concurrent. The Loader activates the concurrent part only if the sequential part runs
successfully (returns E$OK).

. Every asynchronous system c; l requires that your applicalion designate a rcsponsc
mailbox lor communication with the concurrent part ofthe system call.

. whenever the sequential part of an asynchronous system calÌ returns a condition code
other than E$OK, your application should not attempt to receive a message from the
response mailbox. No message exists because the Application Loader cannot run the
concurrent pa o[the system cal]

. whenever the sequential part ofan asynchronous system call returns E$OK your
application can count on the Loader running the concurrent pa.t ofthe system call.
Your application can take advantage ofthe concurrency by doing some processing
before receiving the message from the response mailbox.

. Whenever the concurrent part of a system call runs, the Loader signals its completion
by sending an object to the response mailbox. The precise nature ofthe object
depends on which system call your application invoked. You can find out what kind of
object comes back from a particular system call by looking up the call in fhe Extended
|RMX Applicatíon Loader System Calk Reîerehce Mahual.

. The Loader returns a segment to your application's response mailbox. Yoùr
application must delete the segment when it is no longer needed. The I-oader uses
memory for such segments, so ifyour application fails to delete the segment, it might
run short olmemory.

2.4.3 Response Mailbox Parameter

Whenever you issue an Application Loader System call (except to RQ$OVERI-AY), a
response mailbox parameter is specified. This mailbox has two different functions,
depending on the system call used.

For RQ(E)SLOADIOJOB this maitbox se.ves to receive the exit message from the
loaded I/O job. This exit message is sent by the Erlended I/O System to this mailbox,
when the loaded program terminates by issuing the RQ$EXIT$IO$JOB system call. For
more details on I/O jobs and how they terminate refer to the rÍer dcd iRÌt/lx II E\lended
I/O $'stem User's Guíde.

2-6 Application tîader Usey's Guide

APPLICATION LOADER SYSTEM CALLS

When an asynchronous system call is invoked (A$LOADA$LOADIOJOB,
RQEALOADIOJOB) this mailbox serves to allow the Loader to notify the caller that
the concurrent part of the syst€n call ìs finished. The l,oader sends a r€suh scgm€nt to
this mailbox on completion ofthe loading process.

In general, the l-oader Result Segment iÌrdicates the result of the loading operation. The
fo.mat of a Loader Result Segment depends upon which system call was invoked, details
on Loader Result Segments are included in descriptions of the A$LOAD and
A$LOAD$IO$JOB system calls in the drlerded íRMX II Applícation Loadcr System Calls
Reference Manual,

Ifyou use an Asynchronous I/O job system cal (e.g., RQ(E)ALOADlOJOB), the
same mailbox receives the Loader Result Segment as well as the exit message from the
newly created I/Ojob. Thereîore, you can wait at the salre Írailbox two tirrcs, first for
the result segment and then for the exit message, exactly in this order.

Avoid trsing the same response mailbox for more than one concurrent invocation of
asynchronous system calls because the Application Loader may return Loader Result
Segments in an order different than the order of invocation. On the other hand, it is safe
to use the same mailbox for multiple invocations of asynchronous system calls if the
following conditions are met:

. One task invokes the calls

. The task always obtains the result of one call via RECEIVE$MESSAGE before
making the next cal

ApDlication Loader Usey's Guide

ÀPPLICATION LOADER SYSTEM CALLS

2.5 EXAMPLE

$t i t le ('exnp: exaùrple of using the Appl icatton Loader ')

/*-_**:l*,k*** *

* ABSTRACT : This rnodule is an exarnple using tùo Appl icat ion Loader *
* syslen calls - - RQEALoAD$ Io$JoB and RQE$ s gl,oAD$ lo$JoB . *

ìf ***/

exfìp : D0;

DECI-ARE TOKEN LITEMLLY SELECTOR.

/*]NCLUDES */

$ ínctude (common.l i t)

STRUCTURES */

$include
$ includè
9include

: inc: loader. ext)
: í n c : e i o s . e x t)
: inc:nucfus. ext)

TOKEN,
E Y T E ,

/" , Loadet ResulÈ Segnent returned by rqealoadiojob */

DECIéRE ALOADRESSÎRUC I,ITERALLY' STRUCTURE (
r:eturnscode ITORD,
excep$code t loRD,
j obqtoken
nsg9ren
sect ion$count WORD,
errorsectyp BYTE,
undef$refs i,foRD,
nen$requested WoRD,
nengrecelved WoRD) ' ;

/* Exic nessagc sent by EIos on behalf oî ai 1/o job chat cal ls rqgexir9iogjob

DECI,ARE EXITMSGSTRUC L]TERALLY'STRUCTURE (
return$code LtORD,
excep$code woRD,
j ob$token
msg$1en
nss (89)

TOREN,

BYIE) ' ;

, /* Excepcion handler structurè */

2-tl Application t oader Usefs Guide

APPLICATION LOADER SYSTEM CALLS

DECIARE EXCEP$HANDLERgSTRUC LITERALLY'STRUCÎURE (
proc$pir POINTER,
node BYIE) ' ;

/* LTTEMLS */

DECIARE
NOSTIME$LIM]T LITEMLLY ' OFFFFH,,
UNLIMITED LITEMLLY 'OIFFFFH' ,
NO9DE1AY LITERALLY 'O' ,
DET"AY$REQ LITERALLY '2' ,
E$OK LITERALLY 'O' ,
TERMINATION9OK LITERALLY'OIOOH'
F]FO LITERALLY 'O';

/* VARIABLES */

DECIARE
(conn, aload9mbox, sload$mbox, aloadgjob, sload$job) roKEN,
(a l o a d q r € s S t , e x i t $ s e g g r) T o K E N ,
(poot9nln, pool$nex) DlroRD,
prio BYTE,
(status, job$f lags, rask9f lags) woRD;

DECL\RE
aroad$resgsèg BÀSED aload$fes9r ALOAT$RES I STRUC ,
exi t$nsg BASED exir$seg$È EXIT$MSG$STRUC,
èxcepqhandler EXCEP9HANDLER9STRUC;

/***************,t***************rv**x****rt**************rt*x***x*x*x*****)r
* ln i t íal ize except ion handler st lucture and create naí lboxes for ! \"7o *
* cal ls to lhe AppÌ icat ion Loader *
*****:t*************:t*******5t+************************:t*****************/

excepShandler.pr.oc$ptr : NIL;
excep9handler. node - 0;

aload$!ìbox : rq$createqnai lbox (FIFo, lQstarus) ;
l F s t a t u s o E $ O K T F E N G O T O e x i r ;

s load$mbox - rqqcreate$mailbox (FIFO, @sratus) ;
I F s L a t u s o E $ O K T H E N C O T O e x i r ;

ApDlication liader Use s Cuide

APPLICATIÒ\J LOADER SYSTEl,| CALLS

/*********************************
+ N o w c a Ì t r q e $ a $ l o a d 9 i o S i o b . F i r s t , o b È a t n a c o n n e c t i o n t o t h e f i l e , *
* then prepare the input parameters. Let the Appl icaÈion Loader decide *
* hor larCe a pool the job wirr hawe. l {hatever decision the Appl icat ion *
* Loader makes, i t r . , i11 not a1lov the new job to borrow nemory fron *
* i ts parenr, i .e. , \ r1t l set max equal !o i ts ùì in. The loaded code wi l l *
* slart executlon it ts in roemory and l'i1l have the naxirntlll *
* n r i ^ r i r w ^ f l t < h , r A h r

****:r***********rr********************** /

c o n n - r q $ s $ a t t a c h $ f i l e (r A (7 , ' n y p r o s ') , @ s t a t u s) ;
I F s l a L u s o E 5 0 K T H E N G O T O e x i t ;

poor$nin, poolSnax - 0;
p r i o : 0 ;
j o b $ f l , e s : 0 ;
task$f1ags - No$DE1,AY;

aload$job - rqe9a$loadiojob (conn, pool$nin, poolgnax, Gexcepqhandrer,
j o b $ f l a g s , p r i o , t a s k $ f 1 a g s , a l o a d g m b o x , G s r a r u s) ;- F s t € È u 6 < > E $ O K T H E \ C O T O c x i r ;

/:l*:9*************ìl*:l***:!*************************:t***************)k*)r*)r*)r**
* Since rqeqagloadiojob is asynchronous, at this poinr, only *
: ! i ls sequent ial part is executed and loadinA is sr i1l i l progress.
' t Prepare the paraneters foÈ rqes1oadiojob and cal l i r . Again
:! leÈ the Appl lcat ion Loader decíde how targe a pool !o al locare, *
* b u t n o w t h e j o b w i l l h a v e u n l i n i t e d ' c r € d i r ' a r r h e p a r e n r ' s p o o l . : v
' r In thls case oe vant execut lon of lhe code to be under our control , *
* i .e. , delayed. I t ls nosc l ikely chac now r\ , , ro ApplÍcat ion Loader
* systen cal ls wi l l load the sane f i le concurrenÈly. *
**************************ìt*******************************:!*************)t /

pool9max = UNLIMITED;
Èask$frags = DEIAY$REQ;
a l o a d $ j o b : r q e $ s $ r o a d $ i o $ j o b (@ (7 , , n y p r o g ,) , p o o l g n i n , p o o l g n a : .

@ è x c e p s h a n d r è r , j o b $ f I a g s , p r i o , r a s k g f t a s s , s l o a d g n b o x , G s t a r u s) ; r E s t a b ù s
a ESOK THEN CoTO exit i

/*)Y:l**************************:l:t*************)t*******************)t*)t******
: ! At rhis poinr, í r is knom char rqesloadgiogjob f in ished
* i ts vork, al though, nothing ís ye! known about rqegagloadglogjob. *
* So we Íai t at the specif ied mai lbox.
**********************:!*********)t*:t*:t*:!*******)t***:t******:!*:!****:t***:t****/

è1oadresr - rq$rece ive9me ssage (aload$nbox , NogTIì ' IESLTMTT, NtL, (asrarus) ; r] .
status o E90K THEN c0T0 exi t ;

2-|l) Application Loader Usels Guide

APPLICATION LOADER SYSTEM CALLS

/**************************:l*************************rl***********ìl******)t*
* At th is point Èhe Loadèr Resul t Setmenl can be inspected to detèrn ine *
* lhe merÌory pool s ize a l located to Èhe job, or i f an error
* occurred, see l ts nature etc. *
*****************:t**************** *******+*******:l*:r****/

IF a loadlesseg.return$code a TERÌ, I INATION$oK THEN GoTo exi t ;

/***********,1***)k*****
* I t is now known that rqeaload9io$job conpleted successful l -y, and
* the loaded prograrn is already waít ing to get hold of lhe CPù slnce
* no delay vas requested. The second copy of the progran is rair inS in :"
* menory for pernission to start , so let i r start .
*****************************+**********************)t*)t******)t****'L***-**;L/

C A L L r q g s t a r t $ i o 9 j o b (s l o a d $ j o b , G s t a t u s) ;

/*******************************)r.*
* The two loaded prograns are on and running, f í rst l ,a i ! for then to *
* t e r m i n a t e (i s s u e a n r q $ e x i t g i o $ j o b c a l l) , t h e n k i l l t h e m .
****)t***************************** **************-t*-**-**/

e x i t S s e g $ t : r q $ r e c e i v e $ n e s s a g e (a l o a d q n b o x , N O $ T I M E 9 L I M I î , N I L , ! 6 s E a E u s) ;
l F s t a t u s o E S O K T H E N C O T O e x i '

/ * H e r e w e c a n e x a m i n e t h e e x i t n a s s a g e . . . * /

CALL rqsdeleteqj ob (aload9job, @status);
I E s L a l u s o E S O K T H E N C O T O e x i l

exic$seggÈ : !q$recelveSrnessage(sload$Íìbox, N09TIME$LIMIT, NIL , (3sralus);
' I F

s l a l u s o E 9 0 K T H E N C 0 T 0 e x i L

CALL r:q$deleteSj ob (sload$job, GsÈarus);
T F s t a t u s o E S o K T H E N G O T O e x i c

e x i t :

C A L L r q 9 e x l c 9 l o S J o b (0 , N I L , @ s l a t u s) ;
TF scatus o E9OK THEN /* \ , le ate in big trouble.. . * /

CAUSESINTERRUPT(3);

/**********************************
x The encl, i f an error vas detected in lhÍs nodule, recovery can be
* attenpled, sornelhing can be pr inted to the terminal oì . che progranì
* can j ust terninate.
:!********:l*:l********:l*******/

END exmp;

Application toader User's Guide 2-l l

The Extended iRMX II Application Loader is à configurable layer of the operating
system. The iRMX II Operating System enables you to confÌgure the type of load
function required by your system. Your system may be configured for a load job, which
includes all the Application Loader system calls, or for load, which includes only the
A$LOAD systern call. If you choose all Application Loader system calls. the EIOS will be
incorporated into your system by the ICU.

You can configure the Application Loader read bulTer size to optimize loading time by
increasing or decreasilg the amount of memory used by this buffer. That is, a smaller
buffer size may cause a longer load time.

FinaIIy, you can configure the minimum memory pool size. This value is used by the
Application Loader while creating an I/O job for newly loaded programs. lf you speci$
zero in the pool minimum parameter, the Application Loacler computes the reqùired size.

For more information see the Extenrl.ed íRMX II Interuct e Confígurutíon Utility Reference
Manual.

Application l-oader User's Cuide

A.1 OVERVIEW

The Extended jRMX II Application lnader uses two kinds ofcondition codes to inform
your tasks of any problems that occur during the execution ola system call--sequenîial
condition codes and concurrent condition codes. The difference between the two kinds of
codes irvolvcs thc rnethod the Application Loader uses to return the code to the canng
task.

The meaning of a specific condition code depends on the system call that returns the
code. For this reason, this appendir does not list interpretations. Reler to the Extended
|RMX II Applicatiok Loader Slsîem Catlr Refererc? manual for an interpretation of the
cocles,

This appendix provides the numericvalue associated with each condition code the
Application Loader can return. To use the condition code values in a symbolic manner,
you can use the code values lntel supplies in the file ERROR.LIT. Alternatively, you can
assign (using dre PL/M-286 LITERAILY slalcmenl) a mcanin8ful ramc to each code,

The following three sections correlate the name ofa condition code with the value
returned by the Application Loader. One section lists the normal condition code, one lìsts
exception codes indicating a programming error, and one lists exception codes resulting
from environmental conditions. No distìnction is drawn between sequential and
concurrent eroas because most ofthe codes can be returned as either.

These sections cover only the condition codes returned by the system calls ofthe
Application Loader. Additional condition codes can be produced by other layers that are
used by the Application Loader while loading the file. For example, if a mistake is made
in the pathname of the load file, you will get an E$FNEXIST crror corJe issued by the I/O
system. A complete list of exception codes can be found in the eÍerdcd |RMX II Nucleus
User's Guid" .

Application t-oader Use/s Guide A-l

CONDITION CODES

A.2 NORMAL CONDITION CODES

A.3 PROGRAMMER ERROR CODES

NAME OP CONDITION

E$OK

NAME OF CONDITION

EJOBPARM

HEXADECIMAL VALUE

OH

HEXADECIMAL VALUE

8060H

A.4 ENVIRONMENTAL CONDITION CODES

NAME OF CONDITION

ENOTCONFIGURED
EBADHEADER
E$EOF
ENOLOADER$MEM
ENOSTART
E$]OB$SIZE
E$OVERLAY
E$LOADER$SUPPORT

HEXADECIMAL VALUE

08H
62H
65H
67If
6CH
6DH
6EH
6FH

A-2 Application lrader User's Guide

80286 translator o. assembler 1-2

A

A$LOAD 2-3
advantages of using the Application Loader 1-1
Application Ioader

three categories of system calls 2-1
Application Irader features

configurabiJ ity 1 2
deviceindependence 1-2
support ofprograms with overlays 1-2
s)mchronous and asynchronous system calls 1-2

Application Inader features l-2
asynchronous calls, facts about 2-6
asynchronous system calls 2-4

B

BND286
dynamicmem option 1-4
segsize control 1-4

c
COMPACT interface library 1-3
COMPACT model of segmentation 1-3
condition codes

eflv onmental A-2
normal A-2
pfogrammer errors A-2

condition codcs A-1

Application Loader Useis Cuide Index-l

INDEX (continued)

E

ERROR.LIT A-I
example

BIND 1-3
hovr to producc an Single Task l-oadable (STL) file 1-3

example ofasynchronous calls 2-5
EXITIOJOB system call 2-3

F

lèatures of the Application Loader l-2

G

GDT slots 1-3

H

Human Interface (HI) DEBUG command l-3

I

I/O job cals
A$LOAD$IO$JOB 2-2
RQE$LOAD$IO$JOB 2-2
S$LOAD$IO$JOB 2.2

I/O job cals 2-1

L

Loader configuration paramefer 2-2
Loader result segment 2-5
Local Descriptor Table (LDT) 1-3
LODFIX records 1-3

M

memory pooÌ size for a newjob 2-2

N

non-I/Ojob calls 2-1, 3
non-I/Ojob calls

A$LOAD 2.3

Index-2 Application toader User's Guide

o
OVL286 (the 80286 overlay generator) 2-4

P

pool$max 2-2
pool$max input parameter 2-2
pooumin input parameter 2-2
preparing code for loading by the Application lnader 1-2

R

RCONFIGURE 2-2
RECEIVE$MESSAGE system call 2-5
RESP$MBOX parameter 2-3
response mailbox parameter 2-6
RMXFC.LIB 1-3
RQ(E)$LOAD$IO$JOB 2.3
RQE$LOAD$IO$JOB 2-2

s
S$OVERI-AY, description 2-4
sequential and €oncurrent parts of asynchronous calls 2-4
SMALL model of segmentation 1-2
stack sizes required for each layer 1-4
STARTIOJOB 2-3
synchronous and asynchronous calìs 2-3
synchronoùs systern calls

RQESLOADIOJOB 2.3
S$LOAD$IO$JOB 2-3
S$OVERLAY 1-3

T

TASI$FLAGS input parameter 2-3
The difference between RQ$ and RQE$ system calls 2-1

U

use of LI'IERAILY to give a name to condition codes A-1

INDEX lcontinued)

Applicstion I-r)ader Usefs Guide Iridex-3

irÌtel'

EXTENDED iRMX"I I
UDI USER'S GUIDE

intel Corporation
3065 Bowers Avenue

Santa Clara, Cali forn a 95051

Copyriqht ! 1988, ntel Corporation, Alì Riqhts Reserved

This manual describes Intel's Universal Development Intedace as it applies to the
Extended iRMX@ ll Operating System. The manual includes a brief introduction to the
UDI and its relationship to the iRMX II Operating System.

UDI Usefs Guide l l l

CONTE

CHAPTEB 1 PAGE

CHAPTER 2
UDI SYSTEM CALLS IN AN iRMX@ II ENVIRONMENT

PAGE

PAGE

PAGE

CHAPTER 3,
UDI EXAMPLE

APPENDIX A, PAGE

APPENDIX B

UDI Uset's Guide

CONTENTS lconfinued)

Figure 1-1. The Application-Software-Hardware Model.-.-.-.-.-.-.-.-.-. . .-. 1- I
F igu re 2 -1 . Chrono logyo fSys temCa11s . 2 -2

UDI Usels Gùide

1.1 oVERV|EW

Intel's Unive.sal Development lnterface (UDI) is a set ofsystem calls compatible with
several oi lntel's operating systems. If an application program makes only UDI system
calls with no explicit calls to an individual Intel operating system, the application can be
transported between operating systems. Figure 1-1 illusuates the relationship between
application code, the processing hardware, and the layers ofsoftware that lìe between.

Applical ion Code in Intel Applicaìion Language(s)

Run.Time Libraries
For

Non.malhematical Feaiures
80287

of
80387

Support
Library

U0l Libraries

Operating System

80286 or 80386

f l 7a8 I

Figure l-1. The Application-Software-Hardware Model

UDI Use/s Guide l - l

INTROIìLICTTON TO THE IINIVTRSAI, IìEVEI,OPMNNT INTERF'ACE

1.2 EXAMPLE

In Figure 1-1, the downward arrows represent command flow and data flow from the
applicalion codc down !o the hardv"are, where the commands are ultlnately executed.
(Not shown in the figure is another set of arrows showing the upward flow ofdata from
the hardware to the application code.) Note that one ofthe downward arrows is crossed
out, signifying that the application code does not make direct calls to the operating
system. Rathe.. all inte.action hetw€en the epplication code and the operating system is
done through the UDI software.

the UDI serve as the link between an application and the operating system, yoù can
switch operating systems simply by changing the interface between the UDI and the
operating system. In other words, all you need to make an application transportable
behveen operating system environmefits is a UDI lìbrary for each operating system. This
library always presents the same interface to ùe application, but its interface with the
operating system is designed specifically and exclusively for that operating system. Intel
provides UDI libraries for thc iRMX 86, cxtandcd iRMX II, Scrics III, and Scrics IV
operating systems.

The UDI system calls, while presenting a standard interface to user programs, behave
somewhat differently when used in different operating system environments. This is
because each operating system has many unique characteristics, and some of them are
reflected in the results ofthe UDI calls.

The next chapter discusses the UDI in the context of the Extended iRMX II Operating
SYstem.

UDI Uset's Guide

2.1 oVERV|EW

This chapter describes the reqùirements and behavior of UDI system calls in the
bxtended iRMX It lI envtonment.

2.2 OVERVIEWOF UDI SYSTEM CALLS

This section discusses the functìons ofmany UDI system cals, highÌighting the
interrelationships, if any, among calls in various functional goups.

2.2.1 Memory Management Systsm Calls

When the iRMX II Operating System loads and .uns a program, the program is allocated
memory, in an amount that depends on how the program was configured. The portion of
memory not occupied by loaded mde and data-the free space pool-is available to the
program dynamically, that is, while the program runs. The operating system manages
memory as segments that programs can obtain, use, and return.

Programs can use the UDI system calls named DQ$ALLOCATE and $MALLOCATE to
get memory segments fronì the pool. They can use the systern calls DQ$FREE anrl
DQ$MFREE to return segments to the pool. They can also call DQGETSIZE and
DQGETMSIZE to receive information about allocated memory sesnents.

NOTE
The system calls DQ$MALLOCATE, DQ$MFREE, and
DQGETMSIZE are supported only for programs compiled ir the
COMPACT or I-ARGE segmcntation modcls.

The SMALL model of segmentation does not support the long pointers
used by these calls to identify the allocated memory.

UDI User's Guide

UDI SYSTEM CALLS IN AN iRM)€ II EÀI\4RONMENT

You can reserve memory for the Extended iRMX lI I/O System by using the system call
DQ$RESER\/E$IO$MEMORY and by declaring the maximum number oîbuflers and
files to be attached at any one time. This action ensures that the operating system
allocares sufficient memory to accommodate any I/O bulfer needed ro op€n a file. (The
I/O System creates buffers for every file it opens.)

DQ$RESERVE$IO$MEMORY is useful for an application program that has used all of
its available memory pool and wants to open a temporary file to store the data. Ifthe
application program has not previously invoked DQ$RESERVE$IO$MEMORY, the
operating system returns an E$MEM exception code when the progfam tries to create the
temporary file.

The E$MEM exception condition occurs because the operating system requires memory
ftom the application job to open and access the specified file. If the application job does
not hav€ any available memory, the operating system canno! open or access more files.
Bùt il the application program has called DQ$RESER!'E$IO$MEMORY previously, the
operating system can use the memory reserved by thk systcm call to manipulate the file.

SEEK
IRUNCAIE

DELEIE

Figùre 2-1. Chmnolos/ of System Calls

UDI Uset's Guide

UDI SYSTEM CALLS IN AN iRMXO II EI.{IIRONMENT

2.2.2 File-Handling System Calls

About one-half of the UDI system calls are used to manipulate files. Figure 2- 1 shows the
chronological relationships aúong the most frequently used file-handling system calls.

The key to using Extended iRMX Il files is the mnnection. A program wanting to use a
file first obtains (a token for') a conne.tion to the lile and then uses the connection to
perform operations on the file. Other programs can simultaneously have their own
connections to the same file. Each prograú having a connection to a file uses its
connection as ifit had exclusive access to the file.

A program obtains a connection by calling DQ$ATTACH (iI thc filc alrcady exists) or
DQ$CREATE (to create a new file). When the program no longer [eeds the connection,
it can call DQ$DETACH to delete the connection. To delete both the connection and the
file. the program calls DQ$DELETE.

Once a program has a connection, it can call DQ$OPEN to prepare the connection for
input/output ope.ations. The program performs input or output operations by calling
DQ$READ and DQ$WRITE. It can move the file oointer associated with the connecuon
by caling DQ$SEEK. lt can rruncare rhe file by calling DQ$TRUNCATE.

When the prog am has finìshed doing input and output to the file, it can close the
mnncction by calling DQ$CLOSE. Note that the program opens and closes the
connection, not the file. Unless the program deletes the connection, by calling
DQ$DETACH, it can continue to open and close the connection as necessary

If a progam calls DQ$DELETE to delete a file, the file cannot be deleted while other
connections and I/O requests attached to the file exist. In that case, the file is marked for
deletion and is not actually deleted until the last of the connections is deleted. During the
time that it is marked for deletion, no new connections or I/O requests to the file may be
$sued,

2.2.3 Program Control Calls

UDI provides two sysîem calls for program control: DQ$EXIT and DQ$OVERLAY.

DQ$EXIT terminates a program, closing all open files and freeing all allocated resources.
You should always include this system call as the last statemen! in your program.

DQ$OVERI,AY lets you take advantage ofthe overlay support provided by the operating
system. This system call loads an overlay into memory. The overlay must have been
prepared by the BND286 binder and the OVL286 overlay generator.

UDI Uset's Guide

UDI SYSTEM CALLS IN AN iRMX@ II ENITRONMENT

2.2.4 Utility and Command-Parsing Calls

UDI provides system calls for command parsing and for operations such as date and time
stamping and systcm identification. The system ca s ar€ DQCETTIME,
DQ$DECODE$TIME, DQGEISYSTEMID, DQGET$ARGUMENT, and
DQ$SWITCH$BUFFER.

DQGETTiME and DO$DECODE$TIME retu.n date and time information as
maintained by the operating system. Both system calls provide the same kinds of
information, but DQ$DECODE$TIME is a more general system call that should be used
instead of DQGETTIME whenever possible.

DQ$GEfiSYSTEM$ID retums a string rhat identifies the name of the operaring syslem.
This system call is useful for those programs that need to perform operating-system-
specilic functions.

DQGETARGUMENT and DQ$SWITCH$BUFFER enîble programs to retrieve
pnrameters from the command line (or from any other program buffer).
DQGETARGUMENT parses the command line, returning the next parameter in the
sequence. You can invoke it several times to retrieve all the parameters entered with a
command. DQ$SWITCH$BUFFER switches to a new buffer so that the next time you
call DQGETARGUMENT, you will retrieve a parameter from the new buifer.

2.2.5 Condition Codes And Exception-Handling Calls

Every UDI call except DQ$EXIT retuhs a numeric condition code specifying the result
of the call. Each condition code has a unique mnemonic name by which it is known. For
example, the code 0, indicating that there were no enors or unusual condìtions, has the
name E$OK. Aly other condition means there was a problem. These mndìtrons are
called exceptions.

Exceptional cóndjtions are classified as follows:

. Environmental Conditions. These are generally caused by conditions outside the
control ofa program; for example, device errors, incorr€ct file refererìces, ot
insufficient memory.

. Programmer Errors. These are typically caused by mistakes in programming.
Progmmmer errors can be subdivided into hardware errors and errors in
programming. Hardware errors can include such conditions as Divide-by-Zeao error,
Overflow error, General Protection error, er.ors detected by the 80287 Numeric
Processor Extension (hereafter referred to generically as the NPX), aùd others.
Errors in programming can consist ofconditions such as incorrect parameter t)?e,
invalid buffer. and others.

UDI Useds cuide

UDI SYSTEM CALLS IN AN iRM)@ II ENITRONMENT

If the System Debugger is configured into the application system, all hardware errols will
cause the system to break to the monitor. This enables the user to investigate the faulty
code using the capabilities of the iSDM 286 monitor and the System Debugger. The
break to the monitor will occur regardless of the exception handler and exception mode
that are in effect at the time ofthe exception. Ifthe System Debugger is not present in
the application system, UDl handles hardware eÍo.sjust like other progÉmmer errors.

There ù a .outine in the UDI interface library called RQ$ERROR that handles UDI
exceptions. This routine is called whenever an exception code is generated by a UDI
system call. RQ$ERROR performs the following operations:

. If an environmental condition occurs, the exception code is returned to the calling
program, which can handle the condition in-line.

. If a programmer error occurs, RQ$ERROR invokes the Nucleus system call
SIGNAL$EXCEPTION. The action that SIGNAIJEXCEPTION takes depends on
the configuration ofthe Nucleus (in particular, the setting of the EM parameter ofthe
Nucleus screen in the Interactive Configuration Utility). The EM (exception mode)
parameter determines when to transfer control to an exception handler. If the
exception mode is NEVER (the default) or ENVIRON, SIGNAIJEXCEPTTON
passes control back to the calling program so that it can process the exceptional
condition in-line. If the exception mode is AIL or PROGRAM,
SIGNAI-$EXCEPTION passes control to the exception handler that is in effect at lhe
time the exception occurs.

You can override the actions of RQ$ERROR by providing your own RQ$ERROR
routine and binding it to your programs. To override the default routine, your routine
must contain a PUBLIC proccdurc namcd RQ$ERROR, and you must bind th€ routine
to you. application code belbre binding the UDI interface library. That is, in the BND286
command, the name ofthe file containing your RQ$ERROR roùtine mùst appear before
the name of the interface library. This causes your RQ$ERROR routine to be bound
first, in place of default routine in the interface library. Your RQ$ERROR routine must
adhere to the model ofsegmentation (SMALL, COMPACT, or I-ARGE) used in the
application progam itself.

The source code of the default UDI RQ$ERROR routine is available in the
/RMX286/UDI directory. You can use this source code as an example when building
your own RQ$ERROR routine. The file UCERR.A28 appÌies to SMALL and
COMPACT applications. ULERR.A28 applies to LARGE applications.

UDI Usefs Guide

UDT SYSTEM CALLS IN AN iRMX@ II ENVIRONMENT

As explained earlier, when the RQ$ERROR procedure invokes SIGNAII$EXCEPTION,
control can pass to an excepfion handler. If the default system exception handler
(DEF.EXCEPTIONHANDLER) is in effect, it displays the appropriate error message at
the console and terminates the progam. Your program can establish its own exception
handler by calling DQ$TRAP$EXCEPTION. This exception handler will be called
whenever RQ$SIGNAUEXCEPTION is invoked, in the defaulr system this is on
programme. e.ror. DQ$DECODE$EXCEPTION returns a mnemonic description of any
condition code generated by a UDI system call. The rest of this section provides
info.mation that you need to write your own exception handler.

After an exception condition occurs and before you. exception handler gains control, the
Ertended iRMX Il Operating System does the following:

1. Pushes the condition code onto the stack of the program that made the system call
generating the exception code.

2. Pushes the number of the parameter that caused the exception onto the stack (1 for
the first param€ter,2 for the second, etc.).

3. Pushes a WORD onto the stack (reserved for future use).

4. Pushes a WORD fo. the NPX onto the stack.

5. Initiates a long call to the exception handler.

Ifthe condition was not caused by an erroneous parameter, the .esponsible parameter
number is zero. If the exception code is ENDPERROR, the fourth item pushed onto
the stack is the NPX status word, and the NPX exceptions have been cleared.

Programs compiled under the SMALL model of segmentation cannot have an alternate
exception handler because alternate exception handlers must have a LONG POINTER,
which is not available in the SMALL model. Therefore, progams compiled under the
SMALL model must ùse the defaulr system exception handler.

UDI also provides a method for programs to handle any CONTROL-C characters that
are t'?ed while the program is running. The default COMROL-C handler terminates
the program that was active when the CONTROL-C was entered However, a program
can override the default handler for the duration ofits executioo by calling
DQ$TRAP$CC and supplying a long pointe. to the new CONTROL-C handler. The
operating system will call this new CONTROL-C handler whenever a CONTROL-C is
g?ed at the terminal. The new handler remains in effect until the program calls
DQ$EXIT, or until it establishes another handler by catling DQ$TRAP$CC again.

2-6 UDI Uset's Guide

UDI SYSTEM CALLS IN AN iRMX@ II EITURONMENT

2.3 MAKING UDI CALLS FROM PLIM-286 AND ASM286
PROGRAMS

This section describes how to make UDI calls ftom a program, using the
DQ$ALLOCATE system caìl as an example. lhe information from this example will
enable you to make the other UDI calls. T\vo examples are presented: one for a call from
a PL/M-286 program and one for a call from an ASM286 program

This chapter shows the DQ$AILOCATE system call $'ntaj{ as follows:

sègStoken - DQSALI,oCATE (size, excepr$ptÌ);

The example that follows requests 128 bytes ofmemory. It expects a token for the l2E-
b)'te segment in ARRÀY BASE and a condition code in ERR.

2.3.1 Example PL/M-286 Calling Sequence

DECIARE ARRAY BASE TOKEN,
ERR WORD;

ARRAYBASE - DQSALLOCATE (128, @ERR);

2.3.2 Example ASM286 Calling Sequence

M O V A X , 1 2 8
PUSH AX ; f i rs! paraúeter
LEA AX, ERR
PUSH DS ; second paraneter
PUSH AX ;
CALI DOALINCATE
l,lov ARRAYBASE. AX : rerurned value

This example is applicable to programs that exfrect to use the COMPACT and I-ARGE
interface to UDI. For the SMALL interface, omit pLNhing the DS segment register.

2.4 Writing Portable Programs Using The UDI

Not all programs making IIDT calls will be portable across all UDI-supported operating
systems. However, you can employ the following programming techniques to ensure that
the programs you write are portable (or as portable as possible):

. Never examine filenames (and pathnames) in your program. The rules for forming
pathnames are operating-system-dependent.

UDI Uset's cuide

IIDI SYSTEM CAI,I,S IN ÀN |RMX@ II NNVIRONMENT

. Modiry f ename strings only by calling the UDI procedure
DQ$CIIANGE$EXTENSION.

. Wo.k only with pathnames supplied by the user, pathnames created by calling
DQ$CHANGE$EXTENSION, or predefined filenames.

. Always check the exception code to see ifa call failed.

r When handling error conditions, you should create the necessary file connections rn
the inítial part of progams or make a DQ$RESERVEÍIO$MEMORY call beiore
making any othe. UDI system call.

2-8 UDI Usefs Guide

3.1 oVERV|EW

This chapter presents an example oi UDI system calls. Following the program Ìisting is
the SUBMIT file that was used to create the executable module.

3.2 EXAMPLE LISTING

$conpact
9opt imize (3)

* Protian UPPER

* This progran denonstrates the use of UDI f i le-handl ing and
* comand-l ine-parsing sys.èn cal ls. The progran reads an input
* f i le of characters and converÈs al l lowercase alphabet ic characters
* to uppercase. The converted data are wrl t ten to a second f i le

* UPPER expects lhe coruìand line that fnvokes 1t to be of the forù!:

* UPPER infí le [To outf i le]

/***)t****)t***)r*
* *

* (I f " T 0 o u t f l l e " i s n o r s p e c i f i e d , : C 0 : i s a s s u n e d .) *
********************************** *********************/

upper: D0;

LITEMLLY
LITERALLY
LITERALLY
LITERALLY
LITEMLLY
I,ITER-AJ,LY
LlTERALLY
LIÎERALLY

DECI-ARE
CR
LF
TOKEN
BOOLEAN
E$oK
ESFATAL9EXIT
lrr i tè$only

, O D H ' ,
, OATI

"
,SELECTOR' ,
,BYTE' ,' 0 ' ,, 3 , ,' 2 ' ,

UDI Usefs Guid€ 3.1

T]IìI EXAMPLE

false LITEMLLY '0' ,
tIUE LITERA]-LY 'OFÍ.H' ;
co$conn TOKEN;

9include (/rnx286lincludi . ext)
9subtit le (' check$excep t íon')

/)k********************************
* P.ocedure to cÌreck aù excepcio& code. I f LlLe excepl- lon code is
' r not EgOK, pr int a nessage and exlc. *

**/

check$exception: PROCEDIIRE (exceptlon, lnfo$p) REENTRAÌfl;
DECL1RE

except ion WORD,
ínfóSp PoINTER,
info BASED info9p STRUCîI,RE (

COUNT BYTE,
c h a r (1) B Y T E) ,

exc$buf STRUCTURE (
COUNT BYTE,

c h a r (8 0) B Y î E) ,
I oca l$excep WoRD:

IF exceptÍon o E90K THEN
D O ;

CALI, dqSdecode$except ion (except ion, @exc$buf, GIocal$excep);
cALl dq$wríte (co$conn, Qexc$buf . char, exc$buf . count, @1ocal$excep) ;
c A L l - d q $ w r i t e (c o q c o n n , @ (' : ') , 2 , G l o c a l $ e x c e p) ;
CALL dqgwri te (cogconn, Ginfo.char, info.count, @localgexcep);
CALL dq$vrí te (co9conn, @(cR, 1,F), 2, Grocal$excep);
cALl, dq$e>.it (ESFATAL$EXIT) ;

END;

END check$except ion;
9 s u b t l È l e (' ì , f a Í n ')

/***********:!**
ì f - -- MArN PROCR_AÌ{ ---
**********************:!**)t/

DECI.ARE
single$buffer LITERALLY / 0 ' ,
d o u b l e $ b u f f e r L I T E R A L L Y ' 2 ' ,
status WORD;

DECI.ARE
tn$na!oe(5O) BYTE,
outgnane(50) BYTE.
in9conn ToREN,
out9conn TOKEN,

UDI Use/s Guide

UDI EXAMPLE

deI iÌn

DECI,ARD
buffer(1024)
lnScount
i.
not$done

BYTE;

HoRD,
I.IORD,
BOOLEAN;

c o g c o n n - d q $ c r e , l t e (@ (4 , ' ; c o : ') , G s t a t ú s) ;
CALL dq$operi (coqconn, wrt te9only, stngleqbuffer, Gstatus);

/*********************************
* Ignore the Daoe of the plogra$ (cl ìe f l rsc artuent)
******************:l*************** ***************rt***/

del ln * dqgetarsunent (@buffer, @status);
CALL check9excepcion (scatus, NIL);
IF del in ' CR THEN

CA.LI- dq$èri t (ESo():

/********************************* *******************+
* Attach the inpuc f iLe, and open ir .
********************************** **,r****************/

del in = dqgetargurnent (lQin$nane, @status) ;
CALL check9except ion (status, NIL) ;

in$conn - dqsattach (@in$nane, Gstatus);
CALL check9exceprion (status, Ginqnane) ;

C A L L d q S o p e n (i n $ c o n n , r e a d $ o n l y , d o u b l e s b u f f e r . G s t a t u s) i
CALI- check$excepÈion (status, @in$name) ;

/*********************************
* Find out i f there is an outpút f i lè specif ied. Tf so, at tach *
* a n d o p e n l t . I f n o t , u s e : C 0 : f o r o u t p u c .
***************** *,r*****************/

.> CR THEN

deliro - dqgecargì.nent (@buffer, @status) ;
CALL check$exception (status, NIL) ;

UDI Usefs Guide

UDI EXAMPLE

IF (del i ro - CR) 0R
(buffer(O) o 2) oR
(b u f f e r (1) c ' T ') o R
(b u f f e r (2) o ' o ')

THEN
D O :

CALL dq$\. ' r i !e (co$conn, @(' Invalíd output f i le ' , CR,
L F) , 2 1 , G s t a t u s) ;

CALT dq$exlC (E$FATAL$EXIT) ;
E N D ;

deltn - dqqget$argunenr (Gour$narne, @sratus) ;
CALL checkqexcept ion (status, NIL) ;

o u t g c o n n - d q $ c r e a t e (G o u r S n a m e , G s ! a t u s) i
cAlL check$excepÈion (status, eout$nane) ;

CArL dqgopen (outgconn, vr i te$only, 2, Gstatus);
C A L L c h e c k s e x c e p t i o n (s r a t u s . @ o u t s n a m e) :

END;

ELSE
out$conn = co$conn; /* Wri te Èo :CO: i f no f í Ie specif ied */

/;":!******)rr*,1**************************:t***:r****************************
* Read f ron input , converL , a d v r i re to oucpur
**************:k**************************************)r*,t****,r*********//

no!$done = true;

D0 trr Ì ì ILE not$done;
i n S c o u n t - d q g r e r . t l i n s . . n n . (a h u f r è r , s i z è (b u f f e r) ,

@ s t a t u s) ;
CALL check$exceptíon (status, @in$nane) :

lF inqcount - 0 THEN ,/* I f no characrers are in the, * /
n o t s d o n e - f a 1 3 è ; / / * f i I e , r h e n f 6 i 1 n e x È r e s t . * /

I F n o t s d o n e T H E N / * I f c h a r a c L e r s a l e l n t h e * /
D 0 ; , / * f Í l e , t h e n p r o c e s s t h e m . * /

DO t=0 TO Ín$count- l ;
I F (b u f f e r (t) > : ' a ') A N D (b u f f e r (i) < - ' 2 ,)
THEN buffer(i) - buffer(i)

END;

cALÌ, dq$lrr lEe (out$conn, ebuffer, ingcounc, !6slacus) ;
CALI, check$except ion (status, Gout$narne) ;

END;
END;

3-4 UDI Useis Cuide

UDI EXAMPLE

/***
* c lose inF[t and outpuÈ f i les, snd ert t *
***/

CALI- dqqclose (tn$conn, €status) ;
CALL chcck$cxccpt ion (st€Èus, @ingnde) ;

CALL dq$close (out$conn, @srarus) ;
CALL check9except ion (status, @out$nane) :

cAr,L dq$exic (E$OK) ;

END upper;

3,3 COMPILING AND BINDING THE EXAMPLE

Thc program UPPER was compiled and bound on an exrended iRMX Il-based sysrem
using the following commands:

pln286 upper.p28 <CR>
bnd286 upper. obj , & <CR>
: l ang : p Ìn286 . l l b , & <CR>
/rn.x296 / l íb /\d r i fc . l ib rc(dn(1000H,2000H)) & <cR>
ss (stack(2000H)) object(upper) <cF\>

These commands can be entered directly at the terminal, or placed in a file with a .CSD
extension and invoked by using the SUBMIT command.

3.4 UDI INTERFACE LIBRARIES

The interface libraries for the UDI are

UDIIFS.LIB SMALL model
UDIIFC.LIB COMPACTmodel
UDIIFL.LIB IARGE model

UDI Uset's Guide 3-5

The following data types are recognized by the iRMX 28ó Operatìng Sysrem.
BYTE

WORD

INTEGER

POINTER

TOKEN

DWORD

BOOLEAN

SELECTOR

An ùnsigned, eight-bit bilary number.

An unsigned. rwo-BYTE. binary number.

A signed, two-BYTE, binary number. Negative numbers are stored
in two's-complement fom.

Two consecutive WORDs containing the base selector of a (64K-
byte processor) segment and an offset into the segmont. The offset
is in the word having the lower address.

An index into a descriptor table that identifies a particular memory
segment. The descriptor table €ntry lists the segment's base, its
limit, its t)pe, and jts privilege level.

A SELECTOR that identifies an object. A token must be declared
literaly a SELECIOR.

A 4-BYTE unsigned binary number.

A BYTE that is considered to have a value ofTRUE ifir is oFFH,
and FALSE if it is 00H. A boolean must bc dcclarcd literally a
BYTE.

UDI Usefs Guide

This appendix lists the condition code nnges generated by each layer of the Extended
iRMX II Operating System. Exception codes are classified as either ',Environmental
Conditions" or "Programmer Errors,rr The latter classification includes certain hardware
effors as well as progaamming errors.

The values of these condition codes fall into ranges based on the Efended iRMX II layer
that fùst detects the condition. Table B-1 lists the layers and their ranges (in
hexadecimal). The table shows the layer(s) that could gcncrate the code, in case you wish
to refer to the appropriate manual.

'lhe Operutor's Guíde to îhe |RMX II Hut eh Inteface glves the val]ue of each code and its
associated mnemonic, as well as a short description ofits significance.

Table B-1. Conditiori Code Ranses

Leyer Environmerìtal Prcgramming

Nucleus

l/O Syrems

UniversalD6v6lopm€nt

Rgssrved lor Int6l

1H to 1FH

20H to 5FH

60H to 7FH

8OH to AFH

C,OH to DFH

EOH to 3FFFH

4MOH Io TFFFH

8000H to 801 FH

8020H to 805FH

€060H to €07FH

8O8OH to SOAFH

SOCOH io SOOFH

SOEOH to BFFFH

mH to FFFFH

UDI UsePs cuide B-1

80287 Numeric Processor Extension 2-4

A

Application-software-hardware model 1-1

B

BN'D286 2-3

c
Closing connections 2-3
Condition codes 2-4
Condition codes B-1

D

Data types A-1
Deletion of a file 2-3
Divide by Zero error 2-4
DQ$ALLOCATE 2-I, 7
DQ$ATTACH system cau 2-3
DQ$CLOSE system call 2-3
DQ$CREATE system call 2-3
DQ$DECODE$EXCEPTION systerh call 2-6
DQ$DECODE$TIME system call 2-4
DQ$DELETE system call 2-3
DQ$DETACH system call 2-3
DQ$EXIT system call 2-3, 4, 6
DQ$FREE system call 2-1
DQGETARGUMENT system call 2-4
DQGETSIZE system call 2-1
DQGETSYSTEM$ID system call 2-4
DQGETTIME system call 2-4
DQ$MALLOCATE systeft call 2-1
DQ$OPEN system call 2-3
DQ$O\€RI-AY system call 2-3
DQ$READ system call 2-3
DQ$RESERVE$IO$MEMORY system call 2-2, 8
DQ$SEEK system call 2-3

UDI User's Gùide Index-l

Index lcontinued)

DQ$SWITCH$BUFFER system call 24
DQ$TRAP$EXCEPTION system call 2-6
DQ$TRUNCATE system call 2-3
DQ$WRITE system cal 2-3

E

Environmental Conditions 2-4
Exampìe

ASM286 calling sequence 2-7
BIN'D 3.5
PL/M-286 calling sequenc€ 2-7

Exception
codes B-1
handling 2-4

F

File deletion 2-3
File-handling system calls 2-3
Free space pool 2-1

G

General Protection eÍor 2-4
Guidelines for writing portable programs 2-7

I

Interactive Configuration Utility 0CU) 2-5
Interface libraries for the UDI 3-5
ISDM monitor 2-5

M

Making UDI calls from PL/M-286 and ASM286 2-7
Memory management 2-1
Memory management system calls 2-l

N

NPX 2.4

o
Opening connections 2-3

Index.2 UDI User's Guide

Operating system actions after an eror occurs 2-ó
Operating systems, switching 1-2
Overflow error 2-4

P

Program control system calls 2-3
Program portabfity 2-7
Programmer errors 2-4

R

Reserving memory 2-2
RQ$ERROR 2.5

s
Seeking 2-3
Segments 2-l
SIGNAII$EXCEmON system c.all 2-5
Switching operating systems 1-2
System calls

exception handling 2-4
file-handling 2-3
memory managemenr 2-1
prograú controÌ 2-3
utility and command-parsing 2-4

System debugger 2-5

T

Temporary file 2-2
Transporting code 1-2
T)?es of data A-l

U

Utility and command-parsing 2-4

INDEX (continued)

UDI Usefs Guide Index-3

intet

EXTENDED IRMX@ II
DEVICE DRIVERS

USER'S GUIDE

Int€l Corporation
3065 Bowers Avenue

5anîa Clara, Cali fornta 95051

Copyriqhî o 1988, lntel Corporation. All Riqhrs Reserved

PREFACE

The I/O System is the part ofthe Extended iRMX lI Operating Sysîem that enables
access to files on peripherzrl devices. (The term "I/O System" encompasses both the Basic
I/O System and the Extended I/O System.) It is implemented as a set of file drivers and
a set ofdevice drivers. A file driver provides user access to a particular type offile,
independent of the device on which th€ file resides. A device driver provides a standard
interface between a pijrticular device and one or more file drivers. Thus, by adding device
drivers, your application system can support additional types of devices. It can do this
without changing the user interface, because the drivers remain unchanged.

This manual describes the differ€nt lypes of device drivers supported by the I/O System
(common, random access, terminal, and custom). It illustrates the basic concepts ofthese
drivers, and it describes how to write your own drivers ot' these types. In addition, it
discusses each of the Intel-supplied device drivers and provides any special information
needed to use those drivers.

Reader Level

To use the Intel-supplìed device drivers, this manual assumes you are îamiliar with these
Itemsl

. The PL/M-286 programming language and/or the ASM2fì6 Macro Assembly
l,anguage.

. The Extended iRMX II Operoting System and the concepts of operating system
tasks. segmenîs. and other ohjects.

. The I/O System, as described in lhe Eúended íRMX II Basic I/o Slstent User's
Guirle and the Extended |RMX II futended I/O Sytem User's Guide. These manuals
document the user interface to the I/O Sy'stem.

. The configuration process, as described inthe Ertended |RMX II InteracÍive
Confíguntion Utilit Rekrence manr?L

This manual assumes that ifyou are writing your o*n device drivers you are a systems-
level programmer experienced in dealing with I/O devices. ln particular, it assumes that
you are also familiar with the following:

. The hardware codes necessary tÒ perform actual read and write operafons on
your I/O rJevice. This manual does not documenl these device-dcpcndent
instructions.

. Regions, as described ir't the Extended |RMX II Nucleu,s Uset's Guide.

Devic€ DriY€6 User's Guide l l l

PREF,TCE

Convenlions

Whenever this manual describes I/o operations, it assumes that tasks use Basic I/O
System calls (such as RQAREAD, RQAWRI]E, and RQASPECIAL). Even
though not mentioned, the tasks can also use the equivalent Extended I/O System calls
(such as RQSREAD, RQSWRITE, and RQSSPECIAL) or UDI cals (DQ$READ
or DQ$WzuTE) to perform the same operations.

Device Drivers User'$ Guide

CHAPTER I
INTRODUCTION

CHAPTER 2 PAGE

PAGE

Device Drivers User's Guide

CONTENTS

CHAPTER 2 (conrinued) PAGE

2.3.4.2 Terminal Modes........,.......................... ,..,.,...........2- 18
2.3.4.3 Using an Auto-Answcr Modem with a Terminal...............................,,..2-44
2.3.4.4 Obtaining Information about a Terminal.. 2-48
2.3.4.5 Restricting the Use of a Terminal to One connectión....2-49
2.3.4.ó Programmatically Inserting Data into a Terminal's Input Stream ...-. 2-50

CHAPTER 3 PAGE

CTIAPTER 4 PAGE

vi Device Drivers UseÌ's Guide

CONTENTS

CHAPTER 5
WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

PAGE

CHAPTER 6
WFITING IERMINAL DRIVERS

PAGE

Device Driveró User's Cuide vll

CONTENTS

CHAPTER 6 (conlinued) PAGE

CHAPTER 7
WRITING A CUSTOM DRIVER

CHAPTER 8
HANDLING UO REOUESTS

PAGE

PAGE

vlll Device Drirers Usefs Guide

CONTENTS

CHAPTER 9 PAGE

APPENDIX A PAGE

APPENDIX C
SUPPORIING THE STANDARD DISKETTE FORMAT

APPENDIX D
INTERPRETING BAD TRACK INFORMATION

PAGE

PAGE

lxDevice Drivers UseÌ's Guide

CONTENTS

TABLE PAGE

FIGURE PAGE

FIGURES

Device Drivers Usels Cuide

CONTENTS

FIGUBE (continued) PAGE

9-5 UDS Device Information Screen for Interruotless Terminal f)evices S.11
9-6 UDS Device Information Screen for Random Ac.ess Device..,...,...,.,9-12
9-7 UDS Device Inforúation Screen for MULTIBUS@ II Message-Passing

Random Access Devìce.,................................... ..,.,.,,,,,.,.,,,,.,.,.9-12
9-8 UDS Device Info.mation Sc.een for General Device.. 9- 13
g-g UDS Unit Information Screen for Terminal Device,.....,.......................... 9 14
9-10 UDS Unit Information Screen {or Random Access Device.........,.,.,.,.,.,......,.,.....9- 14
9-11 UDS Unit Information Screen for General Device..,.,...9- 15
9-12 UDS Device-Unit Information Screen for T€rminal Device9-15
9-13 UDS Device-Unit Irformation Screen for Random Access Device....................9-16
9 14 UDS Device-Unit Information Soeen for General Device9-1ó
9-15 Example User Devices Screen ..,............ ..,...,.,.....................9-25
9-16 Computing Device and Device-UrÌit Numbers and BND286 Information.........9-28
9-16 Computing Device and Device-Unit Numb€rs and BND286 Information.........9-29
9-17 Public Declarations Needed for the DINFO and UINFO Tables........................ 9-31
9-18 Portion of the Motiif icd SUBMIT File9-32
A-1 Random Access Device Driver Initìalize I/O Procedure .. A-3
A-2 Random Access Device Driver Finish l/O Procedure..,{-6
A-3 Random Access Device Driver Queue I/O Procedure....,.....,........,.,...................... A-8
A-4 Random Access Device Driver Cancel I/O Procedure..A-10
A-5 Random Access Device Driver Interrupt Task..............,.........,.,............................. A- 12
B-1 Random Access Device Driver Init ialize I/O Procedure..B-2
B-2 Random Access Device Driver Finish I/O Procedure ..8 5
B-3 Random Access Device Driver Queue I/O Procedure ...B-7
B-4 Random Access Device Driver Messa{c Task.............................-........................... B-10
D-l Format ofBad Track Information:,........,.,.. D-3

Device Drivers lJser's Guide

The I/O System is implemented as a set of file drivers and a set of device drivers. FiÌe
drivers provide the support for particular types of files (for example, the named file driver
provides the support for named files). Device drivers provide the support for particular
devices (for example, a Mass Storage Controller device driver provides the facilities that
enable you to use an iSBC 214 Multi-Peripheral controller to control a rùinchester-q?e
drive, a flexible diskette drive, or a tape drive with the l/O System). Each tlpe of file has
its own file driver, and each device has iN own device driver.

One of the reasons that the I/O System is broken up in this manner is to provide device,
independent I/O. Appìication tasks communicate with file drìvers, not with device
drivers. This allows tasks to manipulate all files in the same manner, regardless ofthe
devices on v,'hich the files reside. File drivers, in turn, communicate with device drivers,
which provide the instructions necessary to manipulate physical devices.

When an application task wants to communicate with an I/O device, it must connect the
file driver it wants to use with the appropriate device driver. This connection occurs at
execution time when the task invokes either the Basic I/O System call
A$PHYSICAL$ATTACH$DEVICE or the Extended I/O System call
LOGICAL^$ATTACH$DEVICE. ln both of these calls, the task must specifo which file
driver and which dcvicc driver are being used together. Once this devic€ conn€€tron rs
established, application tasks can manipulate the device according to the file driver
assigned to it (named, physical, or stream), without concerning themselves about device
specifics. The device connection establjshed eariier enables the file driver to
communicate with the device driver and handle the device specifics automatically.

Figure 1-1 shows the levels of communication and how tasks connect file drivers and
device drivers to establish device-independent I/O.

Device Drivers Usey's Guide t - l

INTRODUCTION

APPLICATION TASK
:

RO$LOGICAL$ATIACH$DEVICE
Cat, o l d"v.!S$Igre .re$d ue')

Ro$PHYs'c jlf Arl9H$91c1

Fi le- independent Inlerf ace

Drve-rndependenl nterlace

Device Driver

Stream
F]e Driver Fi le Dr ver

Named
Fi le Df lver

Dev ce Driver

Device

Device Driver

Dev ce

x-1784

Flgure 1-1, Connectlng File and Device Ddverf

The I/O System provides a standard interface between file drivers and device drivers. To
a file driver, a device is merely a standard block of data in a table. To manipulate a
device, the file driver calls the device driver procedures lsted in the table. To a device
driver, all file drìvers seem the sarne. Every file driver calls device drivers in the same
manner. This means that the device d.iver does not need to mncern itselfwith the
concept of a file driver. It sees itself as being called by the I/O System, and it returns
information to the I/O System. This standard interface has the following advantages:

. The hardware configuration can change without extensive modifications to the
softwa.e. lnstead of modirying entire file drivers when you want to change devices,
you need only substitute a different device driver and modi$ the table.

. The I/O System can support a greater range ofdevices. It can support any device, as
Iong as you supply a dcvice drivcr that interfaces to the file drivers in the standard
manner.

t-2 Device Drivers Usefs Guide

INTRODUCTTON

1.1 t/O DEVTCES AND DEVTCE DRTVERS

Each I/O device consists of a controller and one or more units. A device as a whole is
identified by a unique device number. Units are identified by unit nurnber and by device-
unit number- The device number identiîies the controller among all the controllers in the
system, the unit number identifies the unit within the device, and the unique device-unit
number identifies the unit among all the units ofall of the devices. Figure l-2 contains a
simplified drawing of three I/O devices and their device, unit, and device-unit numbers.

There must be a device driver (either user-written or Intel-supplied) for every device in
the hardware configuration. That device driver must handle the I/O requests for all of
rhe ùnirs úe device supporrs. Diffe.ent devices can use different device drivers; or if rhey
are the same kind ofdevice, they can share the same device driver code. (For example,
rwo iSBC 214 controllers are two separate devices and each has its own device driver.
However, these device drivers can share common code.)

Figure 1.2. Device Numbering

DeYice DriYers Usels Cuide 1-3

INTRODUCTION

1.2 TYPES OF DEVICE DRIVERS

The I/O System supports four tlpes of device drivers: custoú, common, random access,
and rerminal. These foú tlpes are disdnguished by wheúer they have a dfuect interface
to the I/O System or whether they have an interface to Intel-supplied support code. They
are also distinguished by which set of support code they use as the interfac€. Iìigure 1-3
provides an overview ofthe interfaces,listing the procedures that the device drivers must
supply. The shaded portions of the figure represent the code that the user must write for
each g?e of device driver.

As Figure 1-3 shows, the hìghest-level interface between the I/O System and the device
driver consists of four procedures (known as lnitialize l/O, Finish l/O, Queue I/O, and
Cancel I/O) that the I/O System calls. Custom drivers must supply these four
procedures.

For random-access/common drivers and terminal drivers, the Operating System provides
support code that includes these high level procedures. The support code for each type of
driver provides features (such as queuing or baud rate control) needed by each driver of
that t'?e. 'fo ftke advantAge of these features when writing random-access/common
drivers and terminal drivers, you need to write only a set of lower-level procedures that
selve as the interface between the hardware and the support code. Figure l-3 shows these
pfocedures.

The lbllowing sections provide more information about each qpe of driveÍ.

'f .2.1 Custom Drivers

A custom device driver is one you creaîe in its entirety. This qpe of device drrver can
assume any form and provide any functions you wish, as long as the I/O System can
access il by calling four procedures, designated as

Initialize I/o
Finish I/O
Oueue I/O
Cancel I/O

Chapter 2 describes the advantages and disadvantages of witing a custoú driver.
Chapter 7 describes the interface to which the user-written procedures must adhere.

1-4 Device D vers UsePs Guide

INTRODUCTION

Bas i€ l /O Sys lem

Ba ndom Accegg
a n d

Common Df iver
Suppon Code

Initialize l/O
Finish l/O
Oueue l/O
Cancel l/O

Terminal
Driver

Suppon Code

Init ial ize l /O
F in i sh l /O
Queue l/O
Cancel l /O

Terminal
Driver

D e v i c e D e v ice Dev ice

Device Drivers User's Guide

Fieùre l-3. Device Driver Inferfaces

r-5

INTRODUCTION

1 .2.2 Random Access and Common Drivers

The operating System supplies support code that provides much ofthe highJevel code
(but not the device-spe,cific corJe) ncrcssary tor operatirlg devices classified as random
access or common.

A common device is a relatively simple device such as a line printer (but not a termìnaÌ).
Devices classified as common devices conform to the following conditions:

. A îirst-in/first-out mechanism for queuing requests is sufficient for accessing these
devices.

. Only one interrupt level is needed to service the device.

. Data either read or written by these devices does not need to be divided into blocks.

A random access device is one in which data can be read from or written to any address of
the device (a disk drive, for example). Devices classified as random access devices
conform to the following conditions:

. Or y one interrupt level is needed to service the device.

. I/O requests must be divided into blocks of a specific length.

. The device supports random access seek operations.

The Operating System provides a single set ofsupport code with the basic routines
needed by both common and random access devices. These support routines provide a
queuing mechanism, an interrupt handler, and other features needed by common and
random access devices. Chapter 2 gives more information about these features.

1-6 Device Drivers User's Guide

INTRODUCTION

Ifyou are writing a device drivcr for a rlevice that fits into either the common or random
access classifications, you don't need to write the entire driver. Instead, you can writejust
the following spe.cialized, device dependent procedurcs and sct up an intcrfacc besecn
them and the support code provided by the Operating System:

Device Initialize
Device Finish
Device Start
Device Stop
Device Interrupt

Chapter 5 describes more about these procedures.

1 .2.3 Terminal Drivers

As with common and random access devices, the I/O System provides the highJevel
support code needed to operate terminals. A terminal is classified as a device that reads
and writes single characters or blocks ofcharacters, with an interrupt for each charactef
or block of characters sent.

Thc lcatures provided by the I/O System's terminal support codc are described i-n
Chapter 2. If you are writing a driver for a device classified as a terminal, you don't need
to write thc cntùc drivcr. Instcad, you can take advantage of the l/O System's termmal
support code by writingjust the following device-speciiic routines:

Tefminal Initialize
Terminal Finish
Terminal setup
Terminal Answer
Terminal Hangup
Terminal Check
Terminal Output'lerminal

Utility

Chapter 6 describes more about these procedures.

1.3 r/O REQUESTS

To the device driver, an I/O request is a request by the I/O System for the device to
perform a certain function. Functions supported by the I/O System are

Device Drivers Usefs Guide

TNTRODIICÍION

Name Number Description
Attachd€vica 4 Prepare a d€vic6 ior us€,
Derachd€vicé 5 Disconnect a devic€,
Op€n 6 Preparethe device or a l5le on th€ d6vic€ for l/O op6rations.
Clos€ 7 T6rminat6l/O op€rations onlhe dsvic€ oron afrl€.
Read 0 Read îrom ths d€vice at the curerìt location.
Write 1 Wrhe to the devic€ at th6 cur6nt location,
Seek 2 Mov€ro a new location on th€ d€vice (random access devic€s only).
Special 3 Portom tunctions thr epply to some, blit not all, d€vic€s- fhe sp€cial tunctions

available includ€:

Name Derr ior ion

Format 0 Format afack on a mass-storagg
Ìrack devtq€,
Ou€ry 0 Obtain inlormation about sùoam-file requests.
Satisty I Artifcially salist a stream fil€ l/O requesr.
Notit 2 Request notilicaiion llfien a volume becomes

unavailable.
G€{ disk/ 3 Obiain inirmation abóut
rap€ dara Winchestsr disk6 (6uch eÉths numberoffix€d and

removable crind66, th€ numbq of s€ctors, and the
socrorsìz€)and abodiapes (such as whetherthe
tape is pres€íl and tho numb3r of ùacks).

Get 4 Obtatn informalion aboulth€
torrninat cur€nt confrguration ofa
data terminal (such as parity, baud rate, scho mod€, ancl

duplex).

Sel 5 Changethe curerìt clnfiguation
lerminat ofat6rminal.
dai,a

S€t signal 6 Designat€ a characl€r that, when lyped arthe
kelboard, ssnds a signaltothe system.

R€wind 7 R€wind atap€to its toad point.

Readlape 8 Mov€ rhetapototh€ n6xt fit6
lll€ mark mark onlhotapg.

Wito tap€ 9 wlit€ a lll€ mark at the curr6nt
fi16 mark position on th€ tap€.

1-8 Device Drivers Uset's Guide

INTRODUCTION

Name Numbe. Descriprion

R6t6nsion 10 Fast-forward the tape to th€ end
tap€ and th€n rewìnd the tap€ to rts load po nt.

Sdt bad 1 2 Write th€ local ons of bad tracks
rúack/ of seclofs to a specialarea of
seclor info ths volum€ lhat sloresìhat lnlormatlon.

G€t bad 13 Refieve the locat ons ot bad
tfeck/ fack6 or s€clors ftomthe
sector inlo intormation atoréd onlhe volume.

Funcfion numbers in the range 14 through 32,767
are fes€rved by Inrelfof tutufe use. Functìon
nu..bers in th€ Éngo 32,768 through 65,535 decima
might alsó denote specaltunctions. lhese numbers
aro ava able for user-specifìed spec al functions.

The l/O Sysîem makes an I/O request by sending to the device driver an I/O
request/result segnent (IORS) containing the necessary information. (The IORS is
described in detail in Chapter 4.) Indicated in the IORS is th€ t)?e of op€ration that nlust
be performed, the device, and other important information. The device driver must
translat€ this request into specific device commands to cause the device to perform the
requested operation (if the operation is valid for the requested device).

Llevice Drivers Ilserrs Guide I-9

This chapter describes the featur€s availablc with th€ different tlpes of drivers. For
random access, common, and terminal drivers, this chapter lists the capabilities provided
by the I/O System-supplied support cod€. For custom drivers, for which there rs no
suppof code provided, this chapter lists the advaritages and disadvantages of Miting a
múpÌete custom driver instead of adhering to one ofthe other categories and using the
I/O System-supplied support code.

2.1 CUSTOM DRIVERS

The most basic device driver interface is the custom interface. Wirh this interface. îhe
I/O System provides no assistance for standard operations (ior examplc, it docsn,t
automatically set up a queue to handle device requests). lnstead, the custom driver must
provide all the functions needed to control the device.

Chapter 7 describes the progtam interface between a custom driver and the I/O System.
The next few paragraphs discuss advantages and disadvantages ofwriting custom drivers.

2.1.1 Advantages of Custom Drivers

The most obvious advantage ofcustom drivers is they enable you to add support for
devices that don't fit into the common. random access. or teÍninal catecories. and for
which Intel doesn't already provitle a prewritten driver. The custom driver irterface
enables you to add support for any device you choose.

Another advantage ofcustom dtivers is they are not restricted to the limitations imposed
by the other driver interfaces. For example, the random access support code sets up a
queuing mechanism to handle requests for the device. In this queu€, requests are handled
in a way that minimjzes a disk's seÈk time. lfyou want to handle device requests based on
a priority basis instead, you can write a custom driver to provide that feature.

In summary, the custom driver interlàce enables you to provide support for any device
and in anv manner vou choose.

I)evice Drivers flser's Guide

FEATT'RES OF THE DRTVT:R I\TERFACFS

2.1 .2 Disadvantages of Custom Drivers

There are several disadvantages to writing custom drivers rather than using one of the
other driver interfaces.

First, custom drivers usually take lorger to write, because you must provide your o\ùfl
versions of the standard features that the I/O System already provides for common,
random access, and terminal devices.

Also, debugging time tends to increase for the same reason. r ith more code to write,
there is a greater chance of errors occurring.

Finally, unless you coordinale lhe desÌgn ofyour custom drivers to allow code sharing, the
code size of custom drivers tends to be larger. with .andom access drivers, all drivers use
the same random access support code. With most custom drivers, each driver must
provide all of its own functions, thereby duplicating the functions provided by other
clìstom drivers.

2.2 RANDOM ACCESS AND COMMON DRIVERS

The I/O System paovides support code that handles many of the standard func,tions
required by common and random access devices. If you use one of the lntel-supplied
common or random access drivers, or ifyou write your own driver and adhere to the
common/random access model, your drivers have access to all the capabilities of the l/O
System's support code.

The same support code handles both common and random access devices, and the
interface to the support code is the same for both kinds of devices (as described in
Chapter 6). The I/O System determines whether a device is a common device (lìke a line
printer) or a random access device (like a disk drive) by a value you supply in a table
(calÌed a device-unit information block or DUIB) that describes the device to the I/O
System. The DUIB is descrìbed in derail in Chapter 4.

The value that distinguishes common from random acccss drivcrs is callcd
NUM$BUFFERS. A nonzero value for NUM$BUFFERS indicates that the device is a
random access device and that the I/O System should use that many buffers ofmemory to
perform data blocking and deblocking operations. These blocking and deblocking
operations are special features ofthe random access suppoat code that guarantee that
read and write operations start on sector boundaries.

A zero value for NUM$BUFFERS tells the I/O System that the device is a common
device and that there is no need to worry about blocking and deblocking, or about any
o[her special fealure associated with aandom access devices.

Device Drivers User's Gùid€

FEATUR.ES OF THE DRIItsR INTERFACES

2,2.1 Features Common and Random Access Devices Can Access

Several fcaturca ofthe support code are available ro both conìmon and r-andou aci-css
devices.

2.2.1.1 lnterrupt Tasks and Interrupt Handlers

For common and random access devices, the support code creates an interrupt task and
an interrupt handler to communicate with the devices. Although the use.-written
procedures must provide the device-specific code, the support code sets up the structure
for the interrupt task and the interrupt handler.

The interrupt level for the handler and task is configurable. You specify the level when
you set up the device information table. Refer to Chapter 5 for more information.

2.2.1.2 Reouest Oueue

The support code sets up and manages a queue for handling device rcquests. Whenever î
task requests access to the device, the support code places the request in the queue. It
processes requests for common devices in a first-iÌr/fist-out manner. It processes
requests for random access devices in a modified first-in/first-out manner that minimies
the device's seek time (see the "Seek Optimizatjon" section later in this chapter).

2.2.1.3 Volume Change Notlfication

One of the options of the A$SPECIAL and S$SPECIAL rystem calls enables a rask ro be
notified whenever the volume on a device becomes unavailable (such as wheo swappirg
diskettes or changing tape cartridges). This feature requires that the device is capable of
detecting and signalingvolume changes or that the lowlevel device driver procedures can
recognie the change.

Altcr the task requests this notification, the support code signals the task wlteDever a
volume has been changed (or when the stop button has been pressed). This allows the
task to detach the device arìd attach it again, so as not to coÍupt rhe data on a new
volume by assuming the previous volume is stillpresent.

If the device itselfcan recognize when a volume has been changed (or when the stop
button has been pressed), all the user-written dtiver code must do is detect when a door-
open or other similar condition occurs and call the I/O System-supplied procedure
NOTIFY (described in Chapter 5). The support code handles the rest.

Once the support code notifies an application task that a volùme has been changed, the
application task can dctach thc device and reattach it.

Device Drivers Use/s Guide 2--ì

FEÀTURES OF THE DRTVER INTERFACES

2.2.1.4 Attach before Access

If a task attempts to perform an I/O operation on a common or random access device
before invoking either the PHYSICAL:$ATTACH$DEVICE or
LOGICAL$ATTACH$DEVICE system call, the support code re.ognizes that the device
hasn't been initialized. Instead of attempting to perform the operation, the support code
returns an E$IO exception code to the invoking task.

2.2.1.5 Long-Term Operations

Some I/O operations (such as rewinding a tape) take a considerable amount of time.
Instead of delaying I/O operations on all units of a device while a long-term operation
takes place, the support code provides a mechanism that enables drivers to specily when
long-term operations start and when they are complete. with this information, the
support code can process operations on other units ofthe same device while the long-term
operation is in progress.

For this mechanism to work, the user-written driver code must call the InteÌ-supplied
BEGIN$LONG$TERM$OP and END$LONG$TERM$OP procedures when starting and
finishing a long-term operation. Chapter 5 describes these procedures in detail.

Long-term operations on some units require multjple operations. For example, rewindifig
a tape might require separate rewind and read file mark operations. The support code
provides a mechanism that enables drivers to perform multiple operations before
notilying the support code that the long-term operation is complete. To use this
mechanism, the user-written driver code must ca[the Intel-supplied CET$IORS
procedure each time it wants to perform another intermediate ope.ation. Chapter 5
describes rhis CEfiIORS procedure.

2.2.2 Special Features for Random Access Devices

In addition to the features listed in the previous section, the I/O System's support code
suppÌies several other features that apply speciiically to random access devices.

2.2.2.1 Diyiding l/O Requests by Sector or by Track

As mentioned earlier, the random access support code can divide 1/O requests into
multiple requests, each of which reads or writes information starting at sector boundades.
This happens auiomatically, wirhour special coding in the user-written procedures.

A similar feature enables the I/O System to guarantee that no single I/O request cros3cs
a track boundary on devices with uniform granulariry. During device configuration, the
user can choose whether the support code provides this feature. When this feature is
activated, the support code specifies device addresses as track number/sectoa number.
Otherwise it specifies them just with a logical block number.

2-4 Device Drivers User's Guide

FEATURES OF THE DRIVER INTERFACES

2.2.2.2 Seek Optimlzation

The random access support code automatically orders read, write, anrl scek requesrs in a
way that minimizes overall device access time. For example, for disk drives, the requests
are ordered to minimize head movement. This imoroves oerformance ofthe entire
system.

2.2.2.3 Seek Ovèrlap

Random access devices can overlap seek operations (which take relatively long periods of
time) on one unit of a device with other operations on other units of the same device. To
facilitate !his, the support code can divide read and write operations into separate seek
operations followed by read or write operations. While the seek operation is taking place
or one unit, the support codc can start another operation on anotlter unit. For lhis to
work ho.ùever, the user-written d.iver code must call the Intel-supplied
SEEK$COMPLETE procedure when the seek operation is finished. Chapter 5 explains
the SEEK$COMPLETE procedure in more detail.

2.2.2.4 Relries

lfan l/O operation làils beaause of a sitùation that might not exist every time the
operation is attempted (controllers usually categorìze these as soft erro.s), the .andom
access support code doesn't return an exception code immediately. Instead, it retfies the
operation as many times as the user specifies during configuration. This process is
automatic and does not rcquire the user-written driver routines to include any special
code. All the driver routines must do is set the status code to E$IO (2BH) and the unit
status code to IO$SOFI 12) in the IORS.

2.3 TEBMINAL DRIVERS

Ifyou use one of the Intel-supplied terminal drivers, or ifyou write your own driver and
adhere to the terminal driver model, you have access to all of the capabilities ofthe l/O
Systern's Terminal Support Code.

These capabilities include using control characters to control terminal I/O, redefining
those control characters, setttng connection and terminal modes (including setting up
character translation and simulation), using an auto-answer modem, inquiring about the
current terminal setup, limiting a terminal to one connection, and programmatically
inserting text into the terminal's input stream.

The following pa.agraphs describe how to use the Terminal Support Code to control a
terminal.

Device DriYers Uset's Guide

F'EATURES OF THE DRIVER INTERFACES

2.3.1 Terminal l/O

There are three buffers involved whenever a task reads input from a terminal: the raw
input buffer, lhe Terminal support code input buffer, and the applicadon task's buffer.
Each terminal device-unit has its own raw hput buffer and its own Terminal Sùpport
Code input buffer. Each task that reads input from a terminal has its own buffer. Fìgure
2-1 shows how these bùffers interact.

r en na l9uppo f code

k) r ahenapp r i . a ron rask

Figure 2-1. Bùffers Used in Terminal I/O

As Figure 2-l shows, input characters pass through all three bulfers on thei way from the
terminal to the application task.

1. First, the terminal driver takes characte.s from the device (the terminal) and places
them into the raw input buffer.

2. When the devìce driver signals the Terminal Support Code that an input interrupt
has occurred. the Terminal Support Code transfe.s the characten from the raw
input buffer to the Terminal Support Code input buffer.

2-6 Device Drivers Userrs Guide

FEATURES OF THE DRIVER INTERFACES

3. When ùe l/O System passes a tead requesr to the Terminal Support Code
(because a task called A$READ or S$READ$MOVE and specified a connection to
a terminal), the Terminal Support Codc moves the characters from its input buffer
to the task buffer for this read request (the task spe.cified a pointer to this buifer in
its,A.$READ or S$READ$MOVE call).

2.3.1.1 Raw Input Buffer

The size of the raw input bufîer, and where the buffer resides, depends on the q?e of
terminal driver. For nonbuffered terminal devices (devices that do not have dual-porî
memory of their own), the terminal driver must create a logical segment for the raw input
buffer when it initializes the unit. For buffered terminal devices. the raw inout buffer
resides in the dual-po.t memory of the terminal conrroller board. Refer ro ihe "Terminal
Initialization Procedr.rre" seciion of Chaoter 6 to see how the raw inDut buffer is
initialized.

When the Terminal Support Code transfers characters ftom the raw input buffer to its
input buffer, the number ofcharacters in the raw input buffer depends on the t,?e of
terminal device.

tsut1èred terminal devices do not need to send an interruDt each time an inout character is
transmitted, so there might be many chararrers in lhe ra; input buffer when an input
inlerrupt occurs. The maximum number depends on the size of the buffered device's
input buffer for that device.

Nonbuffered devices must send one inteÍupt for each input characte., so there is usually
oDly one character in the raw input buffer at a time. However, the raw input buffer
enables othe. input characters to be sent while the Terminal Suppo.t Code is processing
the previous input character. Fo. nonbuffered devices, the size ofthe raw input buffer
provided by lntel-supplied drivers is 25ó bytes.

2.3.1.2 Terminal Suppon Code Input Buîfer

The sìze of the Terminal Support Code's input buffer is fixEd. The buffer for each
terminal device-unit is 256 decimal bytes long. Each Terminal Support Code input buffer
is divided into two logical buffers: a qpe-ahead buffer and a line edit buffer. How input
characters move through these logical buffers and into the application task's buffer
depends on the terminal's input mode.

If the terminal's input mode is line-edit mode, characters ftst move into the type-ahead
buffer. They move from the t,?e-ahead buffer to the line-edit buffer when the user
performs line-editing functions (the characters used to perfo.m line-editing functions are
described later in the "Line-Editing Functions" section of this chapter). When the
Terminal Support Code receives a read request ftom the I/O System, it moves the line-
edited characters to the requesting application task's buffer.

Device Drivers User's Cuide

FEATURES OF THE DRIVER INTERFACES

The maxirnum number ofcharacters that an application task can request of a terminal in
line-edit mode is 253 decimal. (This allows one character for a line terminator, usually a
carriage return or a line feed.) Ifthe terminal operator tries to type more than 253
characters before q?ing a line terminator, the Terminal Support Code discards each extla
character and echoes a bel (CONTROL-G) to the terminal.

If a terminal's inpùt mode is transparent or llush mode, the line-edit buffer is not used.
Characters move from the 9?e-ahead bùffer to the application task's buffer without being
line-edited. However, even though the chamcters aren't line-edited, the Terminal
Support Code still might modily some of the characters before placing them into the
application task's buffer. Output control characters, OSC sequences, and Terminal
Character Sequences can all be intercepted and modified by the Terminal Support Code,
depending on the termirial's current conneation modes. (kter se€tions in this chapter
describe these character sequences and the connection modes used to enable or disable
them.) lf you want to ensure that all qpes of characters can be received without
modification when the terminal is in transparent or flush mode, you must also set the
output control mode and the OSC control mode so that the Terminal Support Code does
not act on these characters when they appear in the input stream.

2,3.1,3 Difierence between Transparent and Flush Mode

The difference between transparent mode and flush mode is how the Terminal Support
Code treats read requests.

In flush mode, the read request returns immediately with as many characters as currently
reside in the Terminal Support Code's input buffer, up fo the number ofcharacteN
requested. This means that any numbea ofcharacters, from 0 to the number requested,
might move into the application task's buffer.

In transpare[t mode, the read request does not return until all the characters requested
by the application task are moved into the application task's buffer.

The maximum number ofcharacterc that can be read in one request, in either transparent
or flush mode, is 255 for nonbuffered devices and 255 Dlus the size of the devjce's dual-
pofi memory for buffeaed devices.

CAUTION
In tmnsparent mode, ifany chamctels become lost during transmission,
an input rrqùest can rcmain ùnsatislied. In this case, the terminal will
appear to be nodfunctional.

2-8 Device Drivers Usels Guide

FEATURXS OF THE DRIVER INTERtrACES

2.3.2 Controlling Terminal l/O

The Terminal Support Code supplies a set of control fùnctions thet, when placed in the
input stream of data, affect the manner in which data flows between the Basic I/O System
and a terminal. There are two kinds of control functioris: line-editing functions and
output functions. The control characters assigned to these functions are configurable
(refer to the "Control Character Redefinition" se.ction ofthis chapter), but a default set of
control characte.s is provided. The next two sections discuss these control characters.

Not all the chaaacters described in the next two sections îake effect when entered from a
terminal running under the Human Interface CLI. The only control functions that still
opcratc undcr th€ CLI are the delete character, line terminator character, empty q?e-
ahead buffer characte., start output chamcter, and stop output chamcter. Refer to the
Opemtor's Guide to the Ertcnded |RMX II Hunan lhteface for information conceming fhe
special characters that are available with the CLl.

In these two sections, the term "cu.rent line" refe.s to the set ofcharacters (possibly with
editing havìng been performed on them) that the operator has entered since the most
recently entered line terminator.

2.3.2.1 LineEditing Functions

Thc control functions that the Terminal Support Code uses to edit data in the line-edit
buffer are described in the next few paragraphs, along with the default control characters
assigned to perform those functions. Each control character described here can be
replaced with a different control character by means ofcontrol character redefinition,
which is described later in this chapter.

NOTÉ,
The line-editing control characters deseribed in the following paragraphs
are effective only when the terminal's mode is line-edít mode (the default
rnode) and when the characters appear in the input stream. The
characters have no effect when the terminal is in transoarent or flush
mode. or *hen the characters appear in rhe outpur .trÀur.

I)evice Drivers Uset's Cuide 2.9

Deflult
Control

Function Characl€lsl D€scriotion

L ne Cariag6 Î€rminat6s th6 cur€nt lin6. Ent€ ng shher a cariag€ roturn or a line leed calrses
terrainator R6tum or tho T6rminalSupport Cod€ to inssd a carriaqe rstum and a lin€ l6€d inlo lhe

Lin€ F€€d cur€nt lin€, Aft€r rcceiving a lin€ terminator, th6 fgrmìnal Support Code moves lhe
curent lin€ (orth6 numb€r ol charact6rs sp€cif6d intho input requ€st, ilth€ rèquesl
is for tew€r characlsrs than are in ìha clrsrìr line) from the typsah€ad buffer,
throughlh€ line€dit buffer (iflin€-editing mod€ is in €ffsct), rorhstaslds bull€r. lf
characi€rs romain in th€ lin+€dil bulf6r, th€ T€rminal Suppon Cod€ useslhem to
satist tho nexl roqu€r lcr input lrom tho tormanal.

Delete Rubout R€mov6s th€ last data characler ftom th€ current lins. That is, th€ rubout
charadsr characî€r and ùe dala charad€r imm€diat€ly proc€dingúe rubout characler ln lhe

current line are both r€movsd ftom th€ curont lin6. ll th€ terminal has a disolav
scrc€n, the chaacter combination (backspac€)(spac€)(backspace) is ochoed tothe
scr€€n. ll lhé l€fminal oLfput is hard copy, th6 delet€d character is displayed a
sscond tim6, suroundsd by '#' characters. For example, th€ saquenc€'CAT(ruboú)(rubout)(rubout)' $euld appear as CAT#TAC* and would enter and
aemov€ th€ l€tters C, A, and I from th6 cur€nt lin€.

O uot€ nért CONIROL-P Causes the n€xt characi€r €nt€r€d to b€ treatod a6 data, €v€n ìl that character
characl€r is normally a linè€diting contfol characi€r. (Odpul corììrol characl6rs, such as

CONTROL-S and CONÍROL'Q, perrorm their normaltunclions 6ven if pr€csded by
a CONTBOL-P.) Duíng lin6-édh mode, the TerminalSupport Code removes the
CONTROL-Plrom th€ cur€nt lin€ br,jt leaves the disabled characterthat follows in
th€ input slrcam. Neith€rrhe CONTROL,P northe character that immediately
follows n are disDlaved atth€t€rmrnat,

Redlsplay CONTROL-R Displays a'#'andlh€n skips ro th€ next line and displa!€ th€ currsnt lin€ wirh
hne editing alr6ady pedormed. This enables th€ terminal op€rator to see the ellects of

th€ €diting characlefs €mer€d sinc€ ths mosl r€c6nt lin6 terminalor. lf lh6 curent
lin€ is €mpty, CONTROL-R dlspla!€ th€ pravious line Morcóv€r, il an op€lator
snt€rs CONTROL-R ssveralllm€s successively, th€ T€rminalSuppo Cod€ dispLays
previous lin6s (skipping thosethat consist oJ cariag€ retum/lin6 f66d only)unUllt
canlfind any mor6lines;then ir fepeatedty disptays lh6 taEt tins tound forthe
r6maining CONTROL-R's.

E mpty type CONIROL-U lmmediarely empiies rh6 typèahead bufi€r rhe Terminat S upporr Code manages.

f,.E,ÀTURES O[' THE DRT!'ER INTERF'ACES

Delete [n6 CONTROL-X D6l6tes the cuffent line. CONIFOL-X discards att characters entercd since the
most fec€fi tin€ terrnlnalor and causes,*'lo b€ display€d,

E nd ol fle CONTROL-Z Terminates Ìh€ curent in€ (used to signify th6 6nd of fi16). CONTROL-Z differs
from Cariage ndurn and Line Fe6d in that CONTROL-Z do€s not become part ol
th€ cur€nt line. Consequ6nlly, €nt€ring CO NTROL Z causes a lask pending on an
AgREAD cellro have its read r6qu€st sarislt€d whhout transferring th€ €nd-ol,îte
charact€r 1o lh€ waiting task's buff€r, lf this characlsr is th€ only characl€r on a line,
no chalactels wittb€ s€nt in r€sponseto th€ read requesi.

Speciallin6 Non€ lerminatesth€ cur€nt lin€wilhorÌ inser ng a carriag€ return/line t66d lntothe
termlnatof teÍ tream. The T€fminal supporl code fansfefs this sp6ciat tin€ t€fminator 10 the

waiting task s bufier, but it do€s not €xpandthe lÌn€ terminator into acariage
return/ rh€ f€€d pai.

2-to Device Drivers Usefs Guide

FEATIJR.ES OF THE DRII'ER INTERFACES

2.3.2.2 Controlling Output to a Termlnal

When sending output to a tenninal, the Terminal Support Code always operates in one of
four modes. The current output mode can be switched dynamically to any of the othet
output modes by entering an output control character at the terminal. The output modes
and their characteristics are as follows:

Normal The Terúinal Support Code accepts output from tasks and immediately
passes the output to the terminal for display. This is the default mode.

Stopped The Terminal Support Code accepts output from tasks (limited by the size
ofthe output buffer), but it queues the output rather than immediately
passing it ro the terminal.

Scrolling The Terminal Support Code ac{epts output from tasks (limited by the size
ofthe output buff€r), and it queues the output as in the stopped mode.
However, rathe. than completely prevetting output from reaching the
terminal, it sends a predetermined number (called the scrolling count) of
lines to the terminal whenever an operator enters an appropriate oùtput
control chalactel a! th€ !€rminal.

Disca.ding The Terminal Support Code discards atl output for the terminal, rather
than queuing it or passing it to the terminal.

The following output control characters, when entered at the terminal, change the output
mode for the terminal. Like the input control cha.act€.s, each control character
described here is the default, and cach can bc rcplaccd with a diffcrcnt control charactcr
by means ofcontrol character redefinition (explained later in this chapter).

NOTI,
The output control characters described in the following paragraphs
pcrform thcir intcnded op€rations only when they appear in the input
stream. They have no effect when they appear in the output stream.

Device Drivers User's Guide 2-11

FEATUR-ES OF THE DRT!'ER I\TERFACES

Defauh

Function Charact€rls) D€scriotion

Discard CONTROL'O Plac€6 outpd into or out of discarding mod6. lfth6 outpui is not in discarding
outp!î mods, CoNTROL-O places or.nput irÌlo discarding mode. On lhe oth€r hand, if

orfput is in discarding mods, CONTROL-O places oúpLn intolhé mod€ hwas in
prior lo srìt€ring discarding mod€,

Stad CONTROL-Q Plac€s outpú into normal mode. How6v€r, il ths last outpLrt confol charact€r was
oLrtput CONTROLS, ths oulpú mod6 r6turns to *hat it was b€loro €ntering stopp€d

modo. Nots thar this implios th6 following:

. Th€ CONTROL.S, CONTROL-Q B€quenc€ ah{a}€ rstumsthg outpllt mode
to whal n was b€forg the 6equ€n@ was b€gun,
. Th€ CONTROL.O, CONÍROL-Q sequ€nc€ always places oulput into normal
mod€,

Stop CONTROL-S Places oLlput into stopped mode. Howev€r, if oulput was in the discarding mode,
outplrt CONTROL-S leaves it in discarding mode, but a subsequ€nt CONTROL-O placos ;t

in slooo€d mods.

Scro I one CONTROL,Í Places odpú irdo scrclling modó, tómpoarily s6ts the scrcll countto one, sends
lin€ on€ outpul lins to tha 16rminal, and plac€s odpllt ifno slopp€d mod6.

Scroln CONTROL-W Places output inlo scrolling mode and sends n lines io ihe terminal (wh€re n is
lines th€ curr€nt scfolllng count), and places output into stopped mod€.

2.3.3 Software Control Strings

The Terminal Support Code enables you to set terminal modes and inqr.rire as to their
current setting. The mechanism you use for setting or inquiring is the Software Control
String, as defined in the American National Standards Institute publication ANSI X3.64
(1979). There are two kinds of Software Control Strings: the Operating System
Command (OSC) sequence and the Application Progmm Command (APC) sequence.

2.3.3.1 OSC Sequence

The Operating System Command sequence, or OSC sequence, is used by a program or a
terminal ope.ator to comrnunicate with the Operating System via the Terminal Support
Code. You can use OSC sequences to set the mode ofthe terminal or to request
information about the current modes. The format of the OSC seouence is as follows:

2-t2 DeYice Drivers User's Guide

FEATURES OF THE DRI!'ER INTERFACES

The opening delimiter (Escape Right Bracket) informs the Terminal Support Code the
data that follows is an OSC sequence, and the closing delimiter (Escape Backslash)
indicates the end ofthe sequence.

The Terminal Support Code can b€ set up to accept OSC sequences as input from the
terminal operator, as output from a task (via A$WRITE or S$WRITE$MOVE, for
example), from both, or from neither. The 'Connection Modes" section of this chapter
describes how to set up the Terminal Support Code to accept OSC sequences.

When the Terminal Support Code is set up to accept OSC sequences, it strips the OSC
sequence from the input or output stream and performs the desired operation.

2.3.3.2 APC Sequence

The Application Progam Command sequence (or APC sequence), ìs used by the
Operatrng System (in this case, the Terminal Support Code) to send intbrmation to an
application program or terminal. For example, ifyou use an OSC sequence to request
inlormation about th€ current mode ofyour terminal, the Terminal Support Code
responds by sending an APC sequence containing the requested information. The format
of the APC sequcncc is as follows:

The opening delirniter (Escape Underline) informs the application program (or the
operator) the data that follows is an APC sequence, and the closing delimiter (Escape
Backslash) indicates the end of the sequence.

When sending an APC sequence, the Terminal Support Code inserts the characters that
makc up thc sequence into the terminal's input buffer,just as ifthe operator had typed
them. This allows the application progam to read the characters. The APC sequencc is
echoed at the terminal if echo mode is enabled la later section describes enablins and
disablins echo model.

Device Drivers Use/s Gulde

T.EATURES ÓF' THE DRI!'ER INTERT'ACES

2.3.4 Modes of Terminal Operation

A terminal supported by the Terminal Support code is governed by numerous modes of
opcration. Some oI thcse modes apply direcdy to the ienninal, and are irdependent of
the connection a task uses to communicat€ with the terminal. The remaining modes
depend entirely upon th€ conn€ction being used. The following sections discuss these
modes.

A terminal operator or a program can set these modes by issuing OSC sequences. Figure
2-2 shows an overall syntax diagam of the possible OSC sequences. the remainder of
this chapter discusses portions of the diagram in more detail. When reading the
remainder of this chapter, .emember you can combine individual portions of OSC
sequences as shown in Frgve2-2.

Instead ofusing OSC sequences, your programs can use the A$SPECIAL or S$SPECIAL
system call to set most of the modes described in this chapter. Those that A$SPECIAL
cannot set are noted when described.

When a terminal is attached (during system initialization or when logging onto the
system), its default terminal and connection modes are those that were assigned du.iîg
system configuration. The values specilied in the Unit Information Screen associated with
the terminal's DUIB are used as the default modes.

2-14 Devlce DriYers User's Guide

I.EATURDS OF THE DRI}'ER INTER.FACES

Figùre 2-2. Conposite OSC Sequence Diagram

Device Ddvers User's Guid€

FE,{TURES OF THE DR]ì'TR INTERT'ACES

2.3.4.1 Connection Modes

This section describes the modes that depend on the connection to the terminal, rather
ùan on the terminal itself. with these modes, when mulfiple connections to a terminal
exist, the terminal might operate one way when communicating via the first connection
and a different way whcn communicating via thc sccond conncction.

Each oîthese modes relates directly to one or more bits in the connection$flags word for
the connection (as defined in the Extended |RMX II Basic I/O SSrtem Calh mantal
description of the A$SPECIAL system call). The names of the modes, the single-letter
identification codes for the modes, the bits of the connection$flags word to which they
correspond, and a brief description of their functions are given in Table 2-1.

Assuming the OSC control mode is set appropriately, the modes a terminal inherits from
a connection can be altered. The syrtax of an OSC seguence that wiII change one or more
of these modes is as follows:

where

c:

mode id

decimal number

Indicates this sequence applies to a connection. You must include
the colon (:) after th€ C.

An ID letter from the list of modes given in Table 2-1.

The value to which you want to set the mode. This number must
be of the character data type.

TabÌe 2-1 contains a brief description ofthe modes and values. For a more complete
description, rei€r to the description of A$SPECIAL in the Exrende.d. íRMX II Basic I/O
S$îem Calls fi nral

2-16 Device Drivers Usefs Guide

FEATURES OF THE DRIVER INTERT'ACES

Table 2-1. Connection Modes
Mode Nam6 ID Bir(s) Descdption and Values

Input

E.ho

Input paÍty
sening

OutpLn parity
s6tting

Output control

OSC conlrol

I

E

o

c

G1

2

3

5

ÈT

Invalid €rtrv, This valu€ is reselved lor frlturs us€,

Transparert mode, Input is transrnined to the requesting task
w hoú b€ing hn€edhed Beror€ being lransminod, dala
accumulàes in a bufisr unlilthe nurnbor of .hara.ters €qualsthe
numb€r requested by th6lask in ils read call.

Lins sditing mod6. Inpú l6mains in the lin+èdit buffèr until a line
terminator is ènl6r6d- Whil€ in th€ liné-edit buff€r. inout control
charact6rc can b€ us6d lo €dit tho inpú, In line-6dlting rnode, the
T€rminalSuppon Code fsstricts inp'rt ilnesto2S4 charact€rs (plus
a line terminator, such as cariage return or line f€€d). lîan
op€raror €nters mor€ than 254 chafactefs b€lore atask makes an
inpú request, only the frct 254 are passed lo the r6questing task's
bufier. The remaining characters are lost. lfihere are mor€
charactèrs then requèst6d in th€ buffer when e linetB.minator ls
entered, onlylhe requested characiers are sent. The additlonal
characters remain ln th€ buferJorth€ neK input request-

Flush mode. Inpul isfansmised tothe requesting lask whhor,i
b€ing line €diied. Belore being transmitted, data accumulat€s in a
buff€r ufil an inpuî r€q|]€st occurs (hal is, alask issu€s a read
reques0. Then, the number oi charac-lers requesled is moved kom
the Tefminal Support Code npul bufertothe requestinglasks
buffer, lf charac-teF remain ln the buf6r, they are sav€d for th€
next input rcqu€st. lfnot enough characlers are in th€ buffer,lhe
r€quesl ls r€tLrrned immodiate y with all available characl€rs,
without waiting for th€ numb€r of charact€rs r€qu€r€d.

The T€ffninalSuooort Code echoos characlers to lho t6rm nal's

For chalaclers enlered at the terrn nal, the lerminalSupporl Code
sets the oarw bt to o.
fhe ferminalSupport Code does not alter th€ input pariiy bji.

Forcharaclors sent to the terminal,lhe TerminalSupport Code sets
tho parity bit to zero,
Tho TorminalSupporl Code does not aher th6 output parity bii.

The TerminalSuppo(Code recognizes and acts on outputcontrol
charactors in thg inpui stream,
The T€rmlnalSupport Code ignores oLltpLl conlrol characters in
the rnput sfeam.
The TerminalSupport Code r€cogniz€6 and acts on OSC
sequenceslhat app€ar in 6ilh6rthe input of outpú sfeam.
The TerminalSuppod Code acts on OSC sequgnces in the inpul

The Ter.,î inal Support Code acts on OSC s€quencss in th€ output

Th€ T€rminalSlpport Cod€ does not act on any OSC sequences.

D€vice Drivers User's Cuide 2-17

FEÀTURES OF THE DRIVER INTERFACES

NOTE
It is possible to ùse two or more connections concurrently to obtain input
from a single terminal. In such cases, the connection associated with the

last active read request always has its connection modes in effect. This
means that ifcharacters come in from the terminal before a[other
connection's read request has b€en íssued to teceive those characters, the
characters are processed in the Terminal Support Code's input buffer
according to the connection modes associated with the previous read
request. To prevent data loss or coruption of data when using
connections with different connection mode settings, ensure that read
reqùests occur before data comes in from the terminal.

2.3.4.2 TerminalModes

In addition to the modes a terminal inherits from a connection, a terminal has modes that
are the same regardless of the connection used to communicate with it. This section
desqibes these terminal modes.

Most of the terminal modes relate directly to information supplied as input to the
A$SPECIAL system call, either as one or more bits in the terminal$flags word for the
connection, or as other words in the terminal$attributes structure (reier to the description
of the A$SPECIAL systen call in the Extended .RMX Il Basic I/O Systetn Calb mat\ral lor
more information about this structure). IIowever, some ofthe modes have no relation to
A$SPECIAL. The names of the modes, the single-letter identification codes for the
modes, the bits of the terminal$flags word to which they correspond (if applicable), and a
brief description of their functions are given in Table 2-2. The modes that do not
correspond to options in A$SPECIAL are noted with asterisks (+) h Table 2-2.

Assuming that the OSC control mode is set app.opriately (see Table 2-1), a terminal's
modes can be altered using OSC sequences. The syntaÌ of an OSC sequence that changes
one or more of the modes covered in this section is as follows:

2.18 Devlce Drivers Usefs Guide

T:

mode id

n

FEATURXS OF THE DRIVER INTERFACES

Indicates this sequence applìes to a terminal. You must include the colon
lr) after the T.

An ID letter from the list ofmodes given in Table 2-2.

This parameter is valid only if the mode ID is C, E, or Z. It is the decimal
representation ofan ASCII code (if the mode ID is C or Z) or the number
of an escape sequence listed in Table 2-3 (ifthe mode ID ìs E)-

If the mode lD is C, this parameter represents a function code from Table
2-6. lf the modc ID is M, it is the number of a terminal character
sequence listed in Table 2-4. Ifthe mode ID is Z, it is an jnteger from 0 to
3 that specifies the index into the special character array. Otherwise it is
the value to which you want to change the mode, as listed in Table 2-2.

Device Drivers Usefs Guide 2-19

F'EATURES OF TIIE DRI!'ER INTERF"A.CES

Tsble 2-2. Terminal Modes lcontinued)
ID 8h(s) 0escription and Valu6s

Output medlum

handling

Outpú parity
handling

L

M

R

1

2

3

4-5

e8

1 = Half duplex.

0 - Video display terminaì.
1 = Prirìt€d (hard copy).

0 = No mod€m connéc1€d.
1 = lh€l€rminalis conn€cîgd toth6 hardware bya modem,

Fordriv€rsthat suppon link pelamel€ls, th6 ph)sicallink mode
(lD N)*h€n 6nabl€d overid€sthis setring. (Bit 15 ofth€ physical
link rÌeld enablès and disablesthat mod6.)

0 = Driver always ssts inpú parity bit 10 0. This yields 8-bÌt dala.

1 = D r v€r never aherc the inpú pafily bil. This i€lds &bh dala.

2 = Driver expecls even parity on inpui. fhis yislds 7-bitdala.

3 - Driver expects odd parity on inpu,Ì. Thisyields 7'bit data.

Except forthe Terminal Colnmunications ConùolÌ€r driver, il an
€nof occuls wh€n €v€n or odd parìry is s€1,lhe driversots thé
eighlh bit lo one. Erors inclld€ la) a parity €rror, (b) th€ r€c€iv€d
slop bl has a valLe of 0 (fa- ng eÍor). or (c) the previoLs
characler receivecl has not yel been I'rlly processed (ov€run ero4.
Forrhe Terminal Com nì un cations Conùoller drlv6r, ifa parity €ror
occurs, the character is discarded. lf aftaming eÍoroccurs, the
characl€r is raturned as an &bit null charact€r (ootl) without eror

For driversihat suppoit lnk paramelers,lhe physicallink mode
(lD N)when enabled overidesthis setting.

0 = Driver alwa)€ sets oúprlt parity bitto0. This yioldsS-bit data.

1 = Diver always sets the odpú parhy bnto 1. fhis yi€lds a bit

2 = D ver sets outpú parity bit to give 6ven padty. lhis yields 7-bil
dala,

3 = Driver sets output parity bitto giv6 odd parity. This yi€ds 7-bli
daìa.

4 = Driver does not change parity. This yields &bil data.

NOTE
lfyou set input or oLîput parity ro even orodd, you musl sel both
of lhem to th6 sam€ value. That is, ifyou sei mode l0 R lo 2 or3,
lou musl also set mods lDWto th€ sam€ valu€.

2--20 Device Drivers User's Guide

FEATURIS OF TIIE DRII'ER INTER.FACES

Table 2-2, Terminal Modes lcontinuedì
Mode Name ID Bi(s) Doscription and Valu€6

Translation

and orienlalion

Input baud rate

Scrolling number

Scrgen wdth

Scr€en Height

T

o

I

10-12

N/A

N/A

N/A

N/A

IndicSos whsther th€ T€rminalSupport Cod6 fcrthis lerminal
p€rflrms ianslaiion b€twoen ANSI Standad X3.64 escape
6€quencas and unjque terminal chafaclsf E€quenc€s.

0 = Oo not €nablè kan6lation.
1 = Enabl€ fanslation.

Each bit in this throabl fi€lci cor6spondsto a diferent funclion.
Entsr a valu€ (G7) accordingly.

Bit lG-tgrminal axis s€quenc€

0
I

= List or eíl€f lh€ horizontal coordinalo firsl,
= List or gnt€r Ìh€ vortical coordinat€ frst.

Brt 11-hori.ontel dis ori€ntetlon

0 = Numbe ng of coordinates incr€as6sftom l6ftlo right,
1 = Nlmbedng of coordinaies d6cr.as6É from l€ít to right.

Bit 12-verticalaxis o entelion

0 = Numbering of coordinat€s incr€as€s lrom top lo bottom,
1 = Numboring of coordinales d€creas€s ftomtopto botlom.

Cor€sponds to in$baud$rate fi eld of l€rminal$atlributes srudure
in A$SPECIAL.

0 = Not appliceble.
1 = Pedom an automatic baud rale 6€arch.
oth€r = Actualinput baud rats, such as2400.

corresponds 10 ourSbaud$rate fi6ld of rermina6anribules srrucrure
inASSPECIAL.

0 = Not applicabls.
1 = Us6 th6 input baud ral€ for oúpr.lt.
othor = Ac,tual outpr,it baud ratg, such as 9600.

Corr€sponds 1o scroll$linss field ofl€rminal$allributes sfucture in
A9SPECIAL. Specily the number of lines of oirtpLtl lo sènd lo lhe
t€rminal's display whsn€v€r ths op6ralor enlerslhe scrolling
control chafacler (default is coNTRoL-w)-

Corresponds to lo',^,"ord€r b,,t€ ol x$!6size f eld in A$SPEC|Ar s
t€rminal$attrìbd€s structure. This isth€ number of charactor
poshions on €ach line of lhe rcrminals screen.

Corresponds lo high'order byte of xysizs fsld in A$SPECIAL'S
terminal$attribLJtes sfuctur€. This is lho nuaaber ol linos on th€

Device Drivers User's Cuide 2-21

FEATURNS OF TIIE DRI!'ER INîERF.I,CES

Table 2-2. Tenninal Modes (coÍtirued)

ID Bit(s) Description and Valu€s

Cufsor address-
ing ofbel

Special characlsr

G

D

N/A

0

1

Cor€sponds to tow-ord6r byt6 of xyoíset feld in A$SPECIAL s
terminal$attribut€s Btructure. This valus starts th€ numbeing
s6qu6nc6 on bom ax6s,

Corèsponds lo high-ord€r b)î€ of xyofisel field in A$SPECIAL'S
lorminelsettib{n€s structuro. fhis istha value to which the
numbering of lh€ axes must'fallbacL att€r r€aching 127.

Corosoond6 to ffow controlbit in 6o€cialSmod€6 fr€ld of
terminal$atÎribut€s structur6 in A$SPECIAL. This bit spècifies
rrhether an ifit€llig€nt communications board (such as an
ISBC 544A, |SBC 184/4a, ilSBC 186/410, or |SBC 184/so board)
s€nds llow conlrol charact€rs to or€v€nt inout buftur ovedow.

0 = Disable flow control,
1 = Enablolow control,

Coresponds to sp€cial charactsf bil of sp€cial$modes i6ld ol
t€rnìinal$attributes sructur€ in A$SPECIAL. ll your devic€ supports
special charaders (cufen|y, onryrhe isBc 188/4a, isBc r 8a/56,
|SBC 186/410, |SBC 546, |SBC 547, and |SBC 548 boards do), the
d6v c€ can s€nd an interupl when€v€r a special characl€r (d€fìn6d
laler ìn the specialaray) btped.

Wh€n SpeciaL Characîor Mode is on, the d€vic€ uses interupislo
inform the Tefminalsuooon codeîhar soecial characlefs have
b€en 6nier€d. lf a sp€cial characl€r has also b€en dsflned as a
signal charact€r(r€f€rlothedescription of ASSPECIAL inlh€
Enended |RMX Basic l/O Syslem Cals manual), the lorminal
Support Cod6 s6nds a unitlorhe appropriale signals€maphore as
soon as h rec€iv€slhe special character interupl. This€nablesthe
specìal character lo be processed ah€ad ol charact€rs inlho input
blffsr that arc waiting to b€ process€d, Ho\{ever, the sp€cial
character rèmains in the inpd stream and rnust also be prccessed
in line wilh th€ r€st oflhe inout characters,

llth6 spocial charactér is noî *sgn6d as a sgnalcharacter, the
T€rminalSuppori Code discards th€ sp€cial chafacter aft€r
feceiving it.

Wh€n Special Characrer r.ode s off, the dovice s6nds special
characters through the normalinpú stream.

lhe sotting oflhis bit is as lollows:

0 = Disabl€ Special Characl6r Mod6.
1 = Enable Sp€cial Character Mode.

The Special Characler HighWater mark (A) is us€d in conjuncllon
with this li€ld to control Special Characls Mode.

2-22 Device Drivers Use/s Guide

FEATURES OF THE DRT'ER INTERFACES

Table 2-2. Terminal Modes lcontinued)
Mode Name ID 8rt(s) o$cription and Valu€s

High water mark

Stan inpú

Stop inpú

Physical llnk

J

K

o

N

N/A

N/A

N/A

Cor€sponds to high$war€6ma* fi€ld ol rsrminal$anriblr€s
structure in A$SPECIAL. This fi6ld sp€cifi6sth6 numberof b),1es
the tgrminal communication board's buffur must contain belore the
board s€nds th€ fiow control characl6r to slop input, [fhe
|SBC slaA board always u6€s a value of 20 for ihe high waler
mark. lt ignorcs lhis fi€ld.)

Cor63ponds to lo $wat€r$mark fiold ol t€rminaloattribut€s
structurs |nA$SPECIAL. Thls leld Ép€cifssth€ number of bytes
the tsrminal communication board's buffer must drop to bsfore the
boad 6€nds th€ flow @nlfol charactef to *aft ìnpul. (Ths
|SBC 5444 board always uÉ6s a valus of 20 fÍ ùe low water mark.
It ignorss this frold.)

Corr€sponds to lconchar feld of terminal$attriblx€s sructu re
in ASSPECIAL This d€cimalvalue spscifes an ASCII charactor
that the communicatìon board sendswhen th6 bulfer dropstothe
low waler mark. (lh6 iSBC 54.44 board always s€nds an XON

Corr€sponds to lc$offScha. fr €ld of 1€rminal$attribut6s structure
in A$SPECIAL. This d€cimalvalue speciî€s an ASCII characler
that the communiaauon boafd sènds wh6n th6 buffsr ris€6lolh€
high water mark. (The |SBC 544A board alweys sénds en XOFF

Coresponds to linkgparamot€i fisld of rcrminal$anribuÌss sruc1ure
in A$SPECIAL. fhis îeld sp€cif€s charact€ristics of ths physical
link botween the lerminal and a d€vic€, lt b not supported by all
device drivers. When €nabl€d for a supported drìv€f,lhis @ntrol
mods overrides the input and output parity modes (lDs R and w).

fho valu. in th€ two low-ord6r bhs {0 and 1) sp6cifes the inputand
o!Îput parity, as bllows:

0 = No Pafrty
1 = lnvalid value
2 = Ev€n parity
3 = Odd parity

fh€ value in the nen tuo bhs (2 and 3) specÌfies rhe character
l6ngth, as lollows:

1 = 7 bils/charactor
2 = 8 bils/characler
3 = Invalid value

DeYic€ D Yers ljser's Guide

F'EA.TURES OF THE DRI!'ER INTERFACES

Table 2-2. Terminal Modes (curtirùed)

Mode Name t0 Br(s) Description and Valu€6

Special high

* Control c

E

N/A

The valu€ in th€ nsÍ l\/\lo birs (4 and 5)indicar$fis numbsf of
stop bits, as follo\ /sl

0 = l B t o p b n
1 - 1ll2 stop bits
2 = 2 s t o p b Í 6
3 = Invalid valu6

Bhs 6ihrough 14 ar€ resoN6d and should b€ settozaro.

Bit 15 sp€cifiès *h6lh6r th6 physicallink is enabled or disabled.
S6tring thi6 bnto 1 ènabléEth6 ph!6icallink. Satting lhe bittoO
disables th€ foaturg.

Forths Tsrminal communications contloller dfiv€r, if a parity €rror
occufs on inpLrt, th€ charad6, is discardod. lf a ra.rìing €rrof
occurs, the character is returned as an 8'bh null charactef (oOH).
This msthod of error.epoding is dilterenl lhan th6 melhod used
when th6lEnMlNAL$FLAGS parity specification is in €fect.

Coresponds to spdhi$water$mark fr€ld in lorminal$an butos
sfucture of A$SPECIAL. This feld is u6ed in conjunction whh th6
Spècial Charact€G fi€ld (D)to @ntrol Sp€cial Chaacl€r Mod€.
When the device's inprJt buffer frllslo cofiain the nurnber of
charad€rs sp€cifed inlhis feld, Special Character Mod€ is
€nabled (assuminglh€ Spscial Charact€r fsld isturì6d on). llthe
nurnb€r of charact€rs in th€ d€vice'6 input bull€r iE less than th€
high watsr mark, Sp€cial Charac-ter Mode is disabled, even iflhe
S pecial Characler field isturned on.

lfth€ Sp€cial Character feld (D) is lurned off, this fi€ d has no

Mod fiesthe line.edit cha€ctér and óútpif cóntrolchaÉcter
assgnments. nel€r to lhe 'Contlol Characl€r R€d€fnition' seclion
fof mors informalion.

Paks an escape sequencewith alermina characl€r s€quenceto
translate orsimulate atermina function. Tables2-3 and 2-4listthe
values lou can em6f, Relor to ths "TÉnslalion and Simulalion'
section olthis chapter br mof6 intormatìon.

I Corresponds to an opt on not available via A$SPECIAL. Thé OSC Ouery soqu€nce does
not r6lum information aboL't this option.

2-24 Derice Drivers User's Guide

FEATURES OF THE DRII'ER INTERFACES

TRANSI-ATION AND SIMUI-ATION. The translation and simulatior capabilities of rhe
Terminal Support Code enable application programs to perform some terminal functions,
such as direct control of a terminal's cursor, setting tabs, and other functions, by using a
table ofpredefined escape sequences. This section describes these capabilities.

Intelligent terminals recognize certain ASCII codes (usually control characters or escape
codes) as instructions to perform terminal functions. This section refers to these codes as
terminal character sequences. Unfortunately, the function performed by a particular
terminal character sequence varies from terminal to terminal. For example, one t'?e of
terminal might interpret a CONTROL-P as a Cursor fught; a second type ofterminal
might interpret the same CONTROL-P as a Cursor Down. As a result, an application
program that uses terminal character sequences to manipulate terminals must be
modified whenever the program is used with a different t)?e of terminal.

The Terminal Support Code recognizes certain escape sequences (a sequence of
characters beginningwith the Escape character) as instructions to perform terminal
functions. Table 2-3 lists the escape sequences the Terminal Support Code supports.
These escape sequences remain the same regardless of the terminal you connect to your
system. To make your application programs terminal-independent, you can use escape
seouences to control vour terminal.

Tablc 2-2. Tcrmhal Modcs

ID Bir(s) Descrìplion and Val!6s

SpecialAray z Corresponds lo special$char aray of t€rminal$attribules fr€ld in
A$SPECIAL lhis aray can hold as many as iour characl€rs ihat
are defn6d as th€ dsvic€'s sp€cial cheraclers. lf Spscial Charador
Mod6 is on (and ih€ d€vic€ supports Spscial Characte. Mod€),
typing aóy of thss€ characl€rb al thè k€yboard gon€€t€s an
irìt€rrupt that immediately inicms lhe fsrr'inal Support Code that
a sp€cial characl€l has b€en €ntsred. lf the charact€r is a signal
charactsr,lhè TèrminalSuppoú Cod€ proé€ss€s it immediatoly. lf
th€ chalactd isn't a signal charact€r, the TerminalSupport Cod6
do€s nothing wfh th6 character,

Th€ lormat ofthis s€qusn€€ is Zn = m, wh6r6

m is en intsggf inù€ fang6 G3, spscifying lhis charaders index ln
lh€ so€cial charac-tgl arav,

n is a decimalvalu€ oith€ soecial characì€r's ASCII code-

lfyou defne less than lour special charact€rs, yóu musi fillih€
remaining slots ol the aray with duplicates ofthe last character you
dsfin€,

Device Drivers Uset's Guide 2-25

FEATURES OF THE DRIVER INTERFACES

The Terminal Support Code can transÌate these device-independent escape sequences
into device-dependent terminal character sequences. How this translation occurs depends
on an OSC sequence supplied either by an operator or by an application p.ogram. This
OSC seqùence forms an association betv/een a terminal character sequence and an escape
sequence. If translation for the terminal is tumed on, the Terminal Support Code
replaces the escape sequence with th€ equivalent terminal character sequence. If
translation for the terminal is turned off, or ifno association has been formed between the
cscapc sequence and a terrninal character sequ€nc€, th€ Terminal Support Cod€ passes
the escape sequence unchanged to the terminal.

The Terminal Support Code can also translate a single escape sequence into multíple
terminal character sequences. This operation is useful for simulating operations that the
terminal doesn't sùpport directly.

NOTE
The Terminal Support Code translates escape sequences into terminal
character sequences consisting of a single control character or an Escape
followed by a single character. lfyour terminal requies sequences that
are more complicated, or that requùe characters other than Escape as the
fist character in the sequence, you cannot use the Terminal Support Code
for yoùr translation. Your tasks must send the other sequences directly.
Table 2-4 lists the terminal character sequences that the Terminal Support
Code supports.

The concept of translation and simulation centers on the interrelation of three items:
terminal character sequencel escape sequence, and OSC seqùence.

TerminaÌ Character A sequence ofcharacters that is terminal-dependent. It is usually
Sequence a control character or an escape code. Table 2-4lists the terminal

character sequences that th€ Terminal Support Code supports.

For example, for a Hazeltine 1510 terminal, CONTROL-H (ASCII
hex code 8) is a terminal cha.acter sequence that means Cu.sor
Lefî. Esc followed by CONTROLE (ASCII hex code lB 5) is
another terminal character sequence that means read cursor
address, and so forth. For a different qT,e of terminal, the same
functions might require a different set of terminal character
sequences.

AlthoulCl all the terminal character sequences of the Hazeltine
1510 are supported by the Terminal Support Code, some terminals
have sequences that are not supported. For example, a Zentec 30
terminal uses the seqùence Esc G 2 (ASCII hex code lB 47 32) to
indicate blinking mode. This terminal character sequence is not
listed in Table 2-4, and therefore it is not supported.

2-26 Device Drivers User's Guide

FEATURES OF THE DRIVER INTERFACES

Escape Seq!€nce A terminal-independent sequence of characters beginning with an
Esc character. Table 2-3 defines the ANSI Standard X3.64 escape
scqucnccs that the Terminal Support Code recognizes. Each
escape sequence corresponds to a te.minal function. If translation
is turned on, whenever th€ escape sequence is sent to the terminal,
the Terminal Support Code replaces it with the functionally
equivalent terminal character sequence- Alternatively, the
Terminal Support Code can either pass the escape sequence to the
terminal as is, or it can discard the sequence.

OSC Sequence A sequence ofcharacters sent to the Terminal Support Code to
establish a pairing between rn escape sequence and a terminal
character sequence. As other se.tions in this chapter explain, OSC
sequences can also set othea attributes of the terminal and the
connecaron,

To send an OSC sequcncc, an operator can place the OSC
sequence in a file and copy the fle to :CO:, or a task can call
A$WRITE (or S$WRITE$MóVE) to send the OSC sequence to
the terminal. (The opemtor cannot enter the sequence directly
from the terminal.) The Terminal Support Code int€rcepts the
OSC sequence and establishes the desired pairin& regardless of
whether the OSC sequence comes from a file or a task.

PRXPARING THD TERMINAL SUPPORT CODE. OSC seouences can be Dlaced in a
fi le and copic. l lo lhe terminal. or they can be issued from a tàsk. To establi ih a pair irg.
the following conditions must exist:

r There must be a connection to the terminal, and it must be open for writing-

r The OSC control bits for that connertion must be set to permit the Terminal Support
Code to recognize and act upon OSC sequences on output. This feature can b€
configured into the system with the lCU, or a task can use rhe ASSPECIAL or
S$SPECLA.L system calls to enable the I/O System to act on OSC sequences on
output,

When these conditions exist, the operator can copy a file containing OSC sequences to the
terrninal, or a task can call A$WRITE to send lhe OSC sequences to the terminal

Regardless ofwhether the OSC sequ€nces came from a task or from copying a file to the
terminal, the Terminal Support Code intercepts the OSC sequence, removes it from the
input or output stream, and establishes the desired pairing.

SYNTAX. The syntax of an OSC sequence that establishes one or mofe €scape-
sequence/terminal-character-sequence pairings is as follows:

Device Drivers User's Guide

FE,A.TURES OF THE DRIT'ER INTERÍÀ.CES

where

T: Indicates that this sequence applies to the terminal. You must include the
colon (:) after the T.

E Indicates that this sequence applies to Escape sequences.

n The rlumber ofan escape sequencc listcd in Tablc 2-3.

m The number ofa terminal character sequence listed in Table 2-4.

For example, suppose a terminal interprets CONTROL-H (m=8 in Table 2-4) as a
tcrminal character sequence that causes the cursor to move backvrard one position. Tablc
2-3 shows that the Terminal Support Code uses the escape sequence "Esc I D" (n=3) to
mean the same thing. To establish a relatiooship betrveen m=8 for the terminal and n=3
for the Terminal Support Code, the operator or a task can send the following OSC
sequence:

Esc I T: E3-8 Esc\

Then, if translation is turned on for the terminal (Esc] T: T= 1 Esc\), whenever a task
writes the escape sequence "Esc [D" to the terminal, the terminal's cursor will move
backward one oosition. Fisure 2-3 illùstrates this situation.

-2--28 D€vice Drivers Usefs Gùide

FEATURES OF THE DRII'ER INTERFACES

l lN llllr)

Figùre 2-3. Escape Sequence Translation

TRÀ.NSLATIoN. If trenslation is turned on for a terminal. translation occurs when a task
calls A$WRITE to write an escape sequence. Instead of simply passing to the terminal an
escape sequence the terminal doesn't recognize. the Terminal Support Code intercepts
the escape sequence and sends the equivalent terminal character sequence in its place.
This equivalence is established by OSC sequences.

Translation also occurs when a task calls A$READ to read a terminal character sequence
for which an equivalen! escape sequence is establishecl.

Before translation can occur, the operator or the task must turn on Ìranslation for the
terminal by sending the following OSC sequence:

Esc I T r T :1 Esc \

Table 2-2 describes al l the terminal modes that can be cbanged.

If transhtion is turn€d off, the Terminal Support Code does not interoept escape
sequences. Instead, it passes them on unchanged to the terminal. Changing the "T= 1" to
"T=0" in the previous OSC sequence turns off translation mode.

TRANSLATION EXAMPLES. This section lists several translation examples for
H:rzeltine 1510 terminals. AlL numbers are in decimal urless specilìecl as hexadecimal.
These examples assume the terminal's switches are set to allow the Esc character (rather
than the tilde character) as the lead-in character of the terminal character sequence. The
Terminal Support Code cannot handle terminal character sequences that begin with the
tilde character. These examples also assume the following oSC sequence has been issued
to specify information about the terminal's coordinate system:

(Horizontal coordinates listed first, horizontal numberingincreases
left to right, vertical numbering increases top to bottom)

Device Drivers User's Guide 2-29

FE.\TUR-ES OF THE DRI!'ER INTER.F'ACES

U:96, (A\is numbering starts at 96)

v=32, (Axis numbering falls back to 32 after reaching 127)

x-80, (Screen width is 80 characters)

\-24, (Screen height is 24 lines)

E6:49, (Cursor-addressing terminal character sequence is Esc
coNTROL-O)

E31-47, (Terminal character sequence to clear a line is Esc CONTROL-O)

826-51 (Terminal character sequence to delete a line is Esc CONTROL-S)

Esc\

The "Cursor Positioning" section ofthis chapter provides more information about setting
up the terminal's coordinate system.

Example 1. Move the cursor to the posjt ion X=2, Y=2.

Escapcleqlgqgg-1lllLì TerminalCharacterSeouence(terminal)

E s c l 2 ; 2 H E s c C o N T R o L - Q a a
(ASCII Hex code IB 58 (ASCII Hex code 18 11 61 61)
32 3B 32 48>

Example 2. Clear the current line from the cursor position to th€ end of the line.

Escaoe seouence (task\ Terminal Character Seauence (te.minal)

E s c l 0 K E s c c o N T R o L - o
(ASCII Hex Code ìB 58 (ASCl l Hex Codé 18 0F)
30 48)

Example 3. Delete a line.

Escaoe seouence ltask) Terminal Character Seouence (terminall

2-30 Device Drivers Usefs Gùide

FEATUR.ES OF THE DRIVER INTERfACES

E s c [1 M
(A S C T T H e x c ó d e 1 8 5 8
3 1 4 D)

Esc CoNTRoL-S
(ASCr r Hèx Codè 18 13)

SIMULATION. Simulation orcurs when there is no single terminal character sequence
corresponding exactly to a given escape sequence. Simulation is necessary because some
terminals might not have terminal character sequences to pertbrm the functions indicated
by certain escape sequences. Therefore, the Terminal Support Code must simul.Lte that
function.

Simulation is performed only on output. That is, a task can call A$WRITE and simutation
will occur. Simulation does not occut when the task calls A$READ.

When a task calls A$WRITE to write an escape sequence corresponding to a simulated
iunction, the Terminal Support Code intercepts the escape sequence and figures out what
the task wants the terminal to do. Then the Terminal Support Code sends a se.ies of one
or ftore terminal character sequences that the terminal does recognize, producing the
desìred effect. Figure 2-4 illustrates this concept.

Figure 2-,1. Escape Sequence Simulation

For example, suppose the terminal does not support tab stops. If given the right
information about the terminal, the Terminal Support Code can simulate the tab stops,
crealing the impression the terminal does indeed support tab stops as if it were a
tlpewriter. All the Terminal Support Code must do to accomplish this is to

Device Drivers User's Cuide 2-31

FEATURES OF THE DRIVER INTERFACES

. Remember where the cursor is on the display.

. Remember where the tab stops are supposed to be.

. Be ablc to tcll thc tcrminal to movc thc cursor forward by one space.

In general, to support simulation of escape sequences, the terminal mùst have terminal
character sequences for the following cursor movementsi

. One position to the right

. One position to the left

. One position upward

. One position downward

The Terminal Support Code cannot simulnte all the escape sequences listed in Table 2-3.
It can simulate only the sequences numbered 0, 1, 6- 11, 13, 15, 18-20,22, and 23.

SIMUI"ATION EXAMPLES. This section lists three simulation examples for a
hypothetical terminal (all numbers are in decimal unless specified as hexadecìmal). These
examples assume the terminal has the following terminal character sequences for cuasor
movement:

Cursor Movemenl Terminal (harncrer Seouenlq

Cursor up CONTROL-L (ASCX Hex code 0C)

Cursor down CONTROL-K (ASCII Hex code 0B)

Cursor left CONTROL-H (ASC[Hex code 08)

Cursor right CoNTROL-J (ASCtr Hex code 0A)

Ir addition, the examples assume the lbllowing OSC sequence has been sent to translate
the right, left, up, and down cursor movements:

Esc I T : E2 -10 , E3 :8 , U4- I2 , t i 5 : Ì l Esc \

Examp le 1 Move thecu rso r tox -2 ,y=8 (assuming thecu r ren tpos i t i on j sx=1 .y=5) .

The escape sequences will then be simulated as iollows:

Device Drivers Use/s Guide

Escape Sequence
(Outout from Taskl

E s c [8 ; 2 H

FEATUR.ES OF THE I}R]VER INTERFACES

Terminal Character Sequence
(Actuall), Sent to Terminal)

CONTROL-J
CONTROL.K
CONTROL-K
CONTROL.K

(ASCII Hex code 0A 0B 0B 0B)(ASCII Hex code 1B
58 38 3B 32 48)

Example 2. Simulate tab stops-

Although the termìnal does have a terminal character sequence for movjng to the right
(m = l0 in Table 2-4, which corresponds to escape sequence n =2 in Table 2-3), it does not
support functions n= 10 (advancilg to the next tab stop) and n= 11 (setting a tab stop)
listed in Table 2-3. Therefore, the Terminal Support Code must simulate these functions.
The following OSC sequence sets up îhe terminal to support tabsl

Esc I T :E2=10 , E3 -8 , E4 :12 , E5 :11 , 810 :192 , E11 :192 Esc \

Before operators can set tab stops, they must provide the Terminal Support Code with the
location of the cursor. This can be done by resetting the terminal; that is, by sending the
following escape sequence to the terminal:

E s c c (n =0 ir Table 2-3)

Resetting the terminal works only if the terminal has a reset termiDal command and if the
operator has established a relationshìp between that command and the escape sequence
Esc c using an OSC sequence (Esc] T:E0=m Esc\, where m is the number of a terminal
character sequence listed in Table 2-4).

Having done this, you can set a horizontal tab stop by entering Esc [0 W at the terminal,
and you can advance the cursor to the ner1 tab stop by entering Esc [1 L The Termjnll
Support Code keeps track of the Iocations of the horizontal tab stops as well as the
posit ion of the cursor.

TABLE OF ESCAPE SEQUENCES. Table 2-3 lists the escape sequences you can pair
with terminal character sequences by merìns oî OSC sequences. The following renarks
apply to Table 2-31

. 'Ihe "Code" solurruì coolains codes used in the ANSI X3.ó4 documen!.

. The expression "99" represents any decimal number. Unless otherwise specified,
omitting the number causes the Terminal Support Code to supply a default value of 1.

Device Drivers Usefs Guide

FEATURXS OF THE DRN'ER INTEMACES

. In some cases, you càn combine multìple escape sequences into a single, compound
escape sequence. The table identilies these cases.

. The Terminal Support Code can simulate the escape sequences numbered 0, 1, 6
through 11, t3, 15, 18 through 20, 22, and 23. The remaìning esoape sequences can
only be translated.

. In almosl all cases, usks issue the escape sequences by calling A$WRITE. The
exceptions concern escape sequences 7 and 18, and they are described in the tabìe.

2-31 Device Drivers User's Gùide

FEATURXS OF THE DRII'ER INTERIACES

Trble 2-3. Escape Sequence (contlnued)

Cod€ Escape Sequenc6

î 0

î r

2

4

5

l 7

l 8

î s

f 1 0

11t

HTS

CUF

CUB

CUU

CUD

CUP

CHA

cHl

cTc

Rrs

CPR

CBT

Esc c

Esc [99; 99 R

Esc H

Esc f99 C

Esc [99 D

Esc [99 I

Esc f99 ; 99 H

Esc [99 G

Esc [93 |

Esc I0 w

Rsturns ihe terminal to hs initial slate. This consists of r6setting the
horizontaltab stops to four spaces apart, beginnlng wfh rhe first
spac€, and retuming th6 cursor lo lh6 upporl6fl corner ofih€
display.

Sets a horizontaltab at the curentcursor posrlion.

Moves the cursor foMard thè spècified numb€r ol posiuons.

Moves th€ cursor backward ths sp€cifrsd numb€r ol postions.

Moves th6 cursor upward the sp€cif€d number ofposhions.

Mov€s the cuÉor downward ths sp€cif€d number of po6itions.

Moves the cursortothe position specifìed bylhe decÌmalnumbers.
The firsl number speciîes the vedical coordlnate posÌlion, and the
second number specifesrhe horizontal coordinate position. The
hÒrizÒntal óordinates a.o numb€f€d fom leftto right, beginning
wth 1, and the verlical coordinalos ar€ number€d from topto
botiom, aso beginning with 1. lflh6 parameteG are o.nitled, thls
sequonco move6 th6 cursofioihe uppe.leftcornèr ofthe display.

Repods the coordinatos ofih€ curont cursor postion. The
TermlnalSuppon Cod6 pac6s this sequenc€ intotheterm nals
input stream ln r€sponseto s€quence number 19, which asks for
the cursois coordinates. The fìrst number specifies lhe venrcal
coordinate position, and the secorìd nurnb€r sp6cif€sthe
horizontal coordinate position, The horìzontal coordinal€s are
numbered fiom l€lt to riqht, b€qinninq with 1, and the vert cal
coordinates are numbersd from toplo bottom, also b€ginning wth
1 .

Moves the cursor backward byth6 specif6d number olhorizonta
tab stops. For example, ilth6 specifed numbgf is 2, th€ cursor
moyes backvard to the second lab stop it €ncount€rs.

Moves the cursortothe specified position in th6 cur€nt line.

Moves the cursor forward byths spec\ed numb€r ol horizontaltab
stops. For example, ifthe specilìed numbfi is 2,lhs cursor moves
foMard tothe secord tab stop that 1encoL1tels.

Ssts a hoizontaltab stop at th€ currentcursor position. You can
combinethis and any oìher CTC escape s€quenceto form a
clmpound CTC escape sequence. An example of such a
combinod èequ€nco i€ ESC [0;1 W, whioh sois both horizontal
and verticaltab stops at the cursor position,

t Funq on that can be srnìulated.

DeYice Drivers User's Guide

FEATI]RNS OT' THE DRIVT"R INTNRI'ACES

Table 2-3. Escape S(quences (conlinued)

Code Escape Sequence

1 2

'I 1 3

t 4

'I 1 5

16

1T

'I 1 8

t 9

.I 2Q

21

'I22

'I23

24

?5

crc

cTc

crc

cfc

cTc

crc

DA

DSR

lBc

fBc

lBc

TBC

TBC

DCH

E s c [2 W

E s c [3 W

E s c [4 W

E s c [5 W

E s c l 6 w

E s c [6 n

E s c [0 g

E s c [1 9

E s c [3 g

E s c [4 q

Es. I99 P

Sets a verticallab stop alrhe curenr cursor poshlon. Seelhe
description ol escape sequence number 11.

clears a horizontaltab stop it ther€ is one at th€ cufent cursor
position, Ss€ th€ d€scriplion ol escap€ sequonc€ number 11.

Cleals a v€rticaltab stop lllhere is one al lh6 curr6nt cursor
position. S6s th€ d€scrlpi on of escape sequenc6 numb€r 1 1 .

Clears all horizortal lab slops on rh€ line containlng the cursor.
See lhe descriptìon of escap€ s€quence number 11,

C ears a I horizontal and vedical tab stops. See the description of
escap€ sequence nurnber 11.

Cears allv€rlicaltab stops. See lhe descriplion of gscape
sequence numb€f 11,

Tasks sendthis sequence wilh the number0 to requestthè lD
nu mber of the terminal to which the requesl s being sént Ths
TermlnalSupportCodelnterceplsthergquestand r€rurnsrothe
requesring task an idenlicalsequence, except that the number
{which is greaterrhan 0) isth€ rsquestéd lD numbor.

Asksrhe lerminalSupport Code to reporllhe coordinates ofthe
curent cursor postlon. See sequen@ numb€r 7lo. a descriptlon

Clears a honzontallab stop ilthere is one at the cutent cursor
position. You can comblne thls and anyother TBC escape
sequenc€ to lorm a compound TBC escape sequence. An
example ot slch a combin€d sequence ls ESC [0;1 g, rhich
clears both horizontal and vertica iab stops from the curent cursor

Clears a verticaÌtab stop iflherc is one at the curent cursor
poéhion- See lhe desd pt on ot escape sequoîc€ number 20.

Clears allhoizornallab stops on the lin€ conrain ng the cursor.
Seelhe descrlplion of escape s€qu€nce number20.

Clears aL horizonta and vertlcaltab stops. Seeth€ description of
escape sequence number20.

C ears all vertical tab stops. Se6 the descr prlon ol éscapè
sequence numbef 20,

Deletes the sp€cifed nùmbsr ofcharact€rc, bèglnning ar th€
cuff eTd cursof locatron,

t Funcîion Urat cal LJe simLr ated.

2-36 Device Drivers Usefs Guide

FEATURES OF THE DRIIDR INTERFACES

Table 2-3. Escap€ Sequen.es (.ontinùéd)

Code EEcape Sequence Funclion

26

27

2A

29

30

31

33

34

35

39

40

DL

ECH

ED

ED

EO

EL

EL

EL

tcH

IL

N P

SO

SU

SGR

Esc [99 M

Esc [99 X

E s c [0 J

E s c [1 J

E s c [2 J

E s c [0 K

Escl l

E 6 c [2 K

Esc I99 @

Esc [99 L

Esc [99 U

Esc [99 v

Esc [99

Esc [99 S

Esc f99 m

D6let6sth6 sp€cifr€d numb€r oflin€s, beginning at th€ tin6
containing th6 cursor-

n€pbcésth€ spgcilî€d number ot charactors with blanks,
beginning al the cur€nt curEor location.

Plac€s blanks atallpo6itions ftomthe cursorlothe end of th€
display. You can combinethis and anyoth6r ED escape soquence
to form acompound ED escap€ sequence. An exarnple olsuch a
combined s€quence is ESC [0;1 J, which cloers ths sntire display.

Plac€s blanks at allpositions from th€ boginning ol th€ display to
th6 cursor. S6e the description ofescape sequenc€ number28.

Fills lhe entire display wilh blanks. See the desc ption ol escape
sequenc6 numbef 28.

Pìaces blanks at all positions ftofi the cursor to lhe end of the line.
You can combine th s and any othor EL€scape s€quencelo form
a compound EL escape sequence, An example ol such a
combined s€quence is ESC [0;1 K, which places blanks
throughoLllhe line curently containing the cu.sor,

Places blanks at allposiuons Jrom th€ b€ginning of th6lin€
Óntaining the corsor to thè culsor itself. See the desciprión Òf
€scap€ s€qu€nce numbs 31.

Placos blanks at all pGitìons in tho line containing thg cursor- Scc
tho desc ption of €scaps sequ€nc€ nurìb€r31.

Insensfie specif 6d numt'er of blanks, b6ginning atÌhe location of

Insertslhe specfi6d numb€r ol blank lin€s, béginning at th€
locai on of the curcor.

Moves th6 drsplayloMard in a mulliple-pag€ fìle by th€ sp€cified
numb€r ol pages. lf the specifiod number of pag6s is 0, the
display moves to lhe nen pag€.

Mov6s th€ d splay backward in a muhipl+pag€ fle byths specified
numb€r ol pages. lî the specified number ol pages is 0, the
display moves to th6 pr€vious page.

Moves th€ dlsplay downward (forward) byih€ specifiod number ot
lines. llthe sp€cified number of lines ls 0,lhe d splay moves to the

Moves the dìsplay upward (backward) bythe speciîed numberof
lines. lfth€ sp€cified numbér of lines ls 0.lhe dlsplay movés lo the

Sec thc @mmont following thislàblc.

Device Drive$ Useds Guide

FEATURES OF THE DRIWR INTERFACES

Table 2-3. Escspe S€quences {mrtinued)
Code Escape Sequence

42

43

45

46

48

49

50

5 l

52

53

55

56

57

58

59

00

62

RM

RM

RM

Rt\.1

RM

RM

RM

RM

RM

Rt\,1

RM

SM

E s c [0 |

E s c f l l

E s c l 2 |

Esc f3 |

E s c [4 |

E 6 c [5 |

E è c [6 |

E s c [7 |

E s c [8 |

Esc [9 ì

E s c [l 0 1

E s c [1 1]

E s c [1 2

E s c [1 3]

E s c I t 4 l

E s c l 1 5 l

E s c f 1 6 l

E s c [1 7 |

E 6 c [1 8 |

E s c f l 9 l

Esc [20 |

E s c [0 h

See ths comment followìng this tabl6.

U nloc*s th€ t€rminal's k€yboard, allowìng allcharacters to be

Prevents control characl6rs from boing displaysd, bú siÌllcauses
those charact€rs to hav€thei normal elfec-ts.t

Causes output charact€rs to ovoMril€ charad€rs on the display.*

S€€ the comment followìng this table.

Seethe comment lollowìng this tabl6.

Se€ th€ comment îollowing this table.

See the comment following thisÌabl€.

Sée the conînîodl following thistabl€.

Causes charactersto be d splayed on the terminal's display screen

Seethe comrnorn following this table.

Se€the comment fottowing this tabte.

See the comment folowing thistable.

See the comment bllowlng rh stable.

See the comment lollowing lhìstable.

Caùses hoizontaltab stopsto apply oquallyto a] nes, rarherthan
on a line-by,Ìine basis.r

causes dalaon the rcfmina s display scre€n to b€ feared as a
contrnuous sfeam, lathgrthan as a colleclion ofdisjoinl,
nd€pendent pag6s.r

Prcv€nts the line leed characterfom aulomalica ly p€lorming a
cariage return when s€nt to the lerminal. *

* This isthe normal (delauh) setting for mostterminals.

-2-38 Device Drivers Use/s Guide

FEATURXS OF THE DRIYER INTERFACES

Table 2-3. Escape S€quences

Code Escape Seq!ence Function

FA

65

66

67

68

69

7a

7 1

72

73

76

77

78

80

a2

S M

SÀ,1

S M

S M

SM

S M

S M

stv

S M

S M

S M

s[4

SM

SM

SM

stt4

S M

SM

sr\.{

S M

E s c t l h

Esc [3 h

E s c [4 h

E s c l 5 h

E s c [6 h

E s c [8 h

E s c [1 0 h

Esc |1 h

E s c [1 6 h

E s c f l T h

E s c l l S h

Esc [20 h

S€e the commenl lcllowing this table.

Locks th€ t€rminals ksyboard, prsventing characi€rs ftom being
received whon they aretypèd.

Elables the drsplay ol control characters for debJgging pu'poses.

Enables odpúcharacters to b6 insertéd in iho display, mlh6rlhan
always oveMriting 6xisting characters.

See the comment foliowing thistable.

Seethe comment icllowing this lable.

Seeihe commeni foÌlowing this table,

S€ethe comment lo lowing thislable.

Seeihe comment fo owÌng this rable.

Prevenls charaders Íronr Deirg displayed on rhe lerminals s!,eel
astheyarelyped.

See th6 comment follow ng thislable,

Sée the comment followlng lhislabl€,

Se€ the comm€nt Jollowrng th s tabl6,

Seelhe commentfollo' /ing th stable.

Se€ tho comm€nt lollowing thlstablo.

Causès horizontaltab stops to apply onlytothe liné on which they

Causes data to be tr€ated as a coll€cton ofdlsloint, independent
pages, In this kind ofenvironment, a terminal operaor typica y
accesses lhe various pages in a frle by pressing keys such as 'next
pag€', 'previous page', or'qo to paqe'.

CaLrses the line leed characlerlo automatically perform a carrage
return when sent lo lhetérminal,

Commsnl: This mode (or sequence or flnction) is included ior compleleness, but a descriplion is
beyond $e scope of lhis manual, For delais, referlolhe 1979 v€rsìon oflhe ANS|X3.64
sîanoafo.

flevice Drivers Usels Guide 2.39

FEATURES OF THE DRI!'ER INTERFACES

TABLE OF TDRMINAL CHARACTER SEQUENCES. Table 2-4 lists the terminal
character sequences that you cao pair with escape sequences via osc sequences. The
value "m" in the table is the decimal representation of the code the termjnal requires for
the given function. As th€ table shows, ifthe function requires a character plus a lead-in
Escape, add 32 to the character's decimal representation. Note that the ASCII code 1BH
(Escape) by itselfcannot be the result of a translation.

Recall the assignment portion of the proper OSC sequence has the form En=m, where n
is the escape sequence number and m is the terminal character sequence number.

Tabl€ 2-4. Terminal Ch.racter S€quences

Terminal Characler Sequenc€ or Sp€cial Instfttclions

1

2

0

27

28

29

30

3 1

32

33

1 5 9

160,191

192

193

Dlsablelhe translation ofescape sequence n, Thatis, passthe escape sequ€ncethrough
to the terminal wilhout Terminal Support Code lranslalion or simulatÌon-

01H (CONTROL,A)

02H (CONIBOL-B)

1AH (CONTROL-Z)

This t6rm Ìnal character 3eq uènce (1BH - Escape) is nol supported.

1CH (FS)

lDH (GS)

1EH (RS)

1FH (US)

Esc ooH

Esc 01H

Esc 7FH

Simulat€ the escape sequence.

Discard lhe escape sequénce. Thar is, do not translar€ or simulai€ ii, anddo nol pass ir
on to the terminal,

2.40 Device Drivers User's Guide

FEATURES OF THE DRIVER INTERFACES

CURSOR POSITIONING. Before the Terminal Suppofi Code can monitor or control the
position of a cursor, it must know the coordinate numbering conventions for that
terminal. The Terminal Support Code has its own "model" of the terminal coordinate
numbering scheme. As mentioned in Table 2-3, this model is the following:

. The horizontal coordinates are numbered from left to right, beginning with 1.

. The vertical coordinatcs arc numbcred from top to bottom, also beginning with 1.

Whenever programs reler to cursor positions, they shoùld use this convention.

Although this seems a reasonable way to refer to positions on a terminal screen, not all
terminals use this numbering scheme. But, the Terminal Support Code can translate the
terminal numbering scheme into its own model, as long as the terminal numbering slheme
obeys the following rules:

. The numbering of the axes can start at any point left or right, top or bottom.
However, the numbering ofboth ares must start with the same positive value.

. From there, numbering of both &\es must increase by ones until (or unless) it reaches
127.

. If lh€ numbcring oI an axis reaches 127, it must then "fall back" to a lower positive
value; whereafter, it must again increase by ones.

. If the numbering oiboth àries reaches 127, the numbering of each must fall back to the
same value,

Iî the terminal numbering scheme meets these criteria, you can set up the Terminal
Support Code (via OSC sequences) to handle that numbering scheme. The termìnal
modes F, U. V, X, and Y (as listed in Table 2-2) enable you to specify information about
the terminal numbering conventions. Once you send the proper OSC s€quenc€s, tbe
Terminal Support Code translates the terminal numbering conventions into its own
standard conventions. Then, your programs can use the Terminal Support Code stàndard
conventions when referring to all terminals.

For example, suppose the terminal horizontal positions (that is, its columns) are
numbered left to right as 80, 81, 82, ..., 127,16,17, 18, ...,31. Also, suppose its vertical
positions (its rows) are numbered top to bottom as 103, 102, 101, ..-, E0. Finally, suppose
that when referring to a particular position on the terminal screen, you must speciry the
vcrtical position first, foLlowed by the horizontal position. Note that this numbering
convention differs from the Terminal Support Code numbering conventions in the
folÌowing ways:

. The numbering on each a\is starts with 80, rather than starting with 1.

r The numbering of the horizontal axis, when it reaches 127, drops back to 16 before
resumins its climb.

Derire Drirers Uscr's Cuidc 2-4r

FEATURES OF THE DRII'ER INTERFACES

. The numbering of the vertical axis increases from bottom to top, rather than
increasing from top to bottom.

. The coordinates of a given screeo position are vertical coordÌnate fifst, then
horizontal coordinate, rather than being horizontal first and vertical second.

Althoùgh the numbering convention of this terminal is unorthodox, it does obey the rules
listed earÌier in this section. To set up this terminal for use with the Terminal Support
Code, you can issue the following OSC sequence:

Esc I T: F=5, U=80, V=16, X-64, Y-24 Esc\

The F=5 portion te[s the Tcrminal Support Codc thc vcrtical coordinatc is called out
first, the horizontal numbering increases from left to right, and the vertical numbering
incleases from bottom to top. The U=80 portion specifies the statting number, V= 16
indicates the "fall-back" value, X= 64 specifies the line length, and Y=24 specifies the
number oflines on the screen. Refer to Table 2-2 for more information about thesc
modes,

Table 2-5 lists OSC sequences you can use to set up the cu.sor positioning and control
characters of some common terminals. The OSC seouences listed in the table do not take
full advantages ofthe features ofthe terminals, bur ifyou connect lhe lermiîals to an
Intel integrated microsystem, such as the System 310, these OSC sequences enable you to
run thc RSAT system analysis test. You can add to these seqùences to support nlore
features of the terminals.

Table 2-5. Example OSC Sequences for Common Terúinals
Hazehino 1500,
1 5 1 0 , 1 5 2 0 ,

950' D€scription

l : T = 1 ,

U=96,
Y =32,
x=80,
Y 24,

E4=44,

E6 = 49,

u=32,
Y =32,
x=80,
Y :24 ,

E3 =08,
E 4 = 1 1 ,

E 3 1 = 1 €

(OSC sequsnce opening delimiter)

(Specify coordinate slstem ol tef minal)
(Stading valué ol numb€ing s€quenc€ of both axés)
(Fall back valuo when cLrrsor position r6aches 127 on €hhsr axis)
(Number of characler poshons per line)
(Numb€r ol lines per scrc€n)
(Cursor rlght)
(Cursor lefr)
(Clr|sor up)
(Culsof dowì)
(Cusor posiuon)
(Clear line, cursor to snd)
(OSC seqLrence closìng delimiter)

' Hazeltine and Ex€clrtive 80 are rademarks ofHazoltin€ CorooÉiion. Televid€o is a
fadenìark of Televid€o Svstems, Inc,

2-42 Device Drivers Uset's Guide

FEATURTS OF THE DRI!'ER INTERIACES

CONTROL CHARACTER RIDEFINITION. An earlier section of this chaoter listed the
default characters assigned to the line-editiîg and output control functions. The character
assignments for these control functions are not fired. You can dynamically assign any
control cha.acter to a control function provided by the Terminal Support Code, as
described in this section-

Ifyou assign a control character to a control function, the assignment applies only when
the character appears as inplt from the terminal. ln particular, assigìing a new control
character to be the Escape character does not change the Escape character Ìrsed for
output translation. It is still the ASCII ESC character, bexadecimal code lBH. Also, any
new Escape character you define cannot be used as part ofan OSC sequence.

The characters you can assign to control functions include the following:

Charac-t€r
coNTROL-@
coNÌaoL-A through
CONTROL,Z
ESC
FS
GS
RS
US
OEL

Decimal ASCII Code
0

1 - 2 6
27
28
29

3 1
1 2 7

Hexad€cimal ASCII Code
0

1 - l A H
1 8 H
1CH
I D H
1 E H
1 F H
7FH

The synt&Ì of the OSC sequence used to assign control characters to control functions is
as followsi

where

T:

0996

Indicates that this sequence applìes to the terminal. You must include the
colon (:) at the end.

lndicates that this sequence applies to control characters.

The decimal representation of the ASCII code for the desired control
character. This deciural value can bc in rhc rangc 0-31 or 127.

If this control character is already assigned as a signal character, this
assignment to a control function is ignored. (Refer to the description of
A$SPECIAL in the Erre ded|RMX II Baic I/O System Callr manual for
informaîion on assigning signal characters.)

C

n

Device Dri!€rs Use.'s Cuide 2 4 3

FEATURES OF THE DRIVER IN'I'ER!ACES

If this control character is assigned to anothe. controÌ function, this osc
sequence reassigns the charactef to a new function.

m A number indicating the function to assign to thc conlrol character. Table
2-6 lists these numbers, with their corresponding descriptions and defaults

For example, the following sequence cancels the default assignment of Rubout (DEL) as
the deletion character anrl assigns Backspace (BS) in its place:

Esc I T : c127 -0 , c8 -11 Esc \

2.3.4.3 Using an Auto-Answer Modem with a Terminal

The Terminal Support Code supports terminals that interface with an Extended iRMX II-
based application system through an auto"answer modem. It does this by controlling the
RS232 Data Terminal Ready (DTR) lìne and by providing OSC sequences to enable
handshakilg between a task and a terminal connected to a modem.

Ifyour system contains a modem, you can configlre the Basic I/O System to support
nrodenr corrtrol (rcfcr to lhe Extended |RMX II Interactive Confrguratiott Utilíly Reference
Mant&l). Onceyo]u do this, the Basic I/O System, during system initialization, establishes
the initial link to the modem. Or, your tasks can use OSC sequenc€s to establish modem
mode (the M mode listed in Table 2"2), to break the link (hang up), and to reestablish the
link (dial and answer). Other than these operations, tasks and terminals communicate
throueh a modem as iflinked bv a dedicated line.

Table 2-6, Mef|u of Codtrol Character Functions

Number Abbreviai€d D€scription D€fauh Assignm€nl

0

1
2
3

5
6
7
8
I
1 0
1 1
1 2
1 3
1 4

Pass characterlhrough

Stan oLtput
Discafd output
Scroll N lines
Scroll 1 lin€
Empty typeahead bufer
Escap€
Linelerminator
End of ll€
Quote next charader

Delete llne

S p6cial lin6 terrninator

All conlfol characlers nol assigned
d lin+ €dh, èscap€, or,lput control,
or signal charactors
CONTROL,S
CONTBOL-O
CONTROL,O
CONTROL-W
CONfROL.T
CONTROL-U
Escapé (ASCll 1BH)
CONIROL-J, CONTROL-M
CONTROL-Z
CONfBOL.P
Rubout (ASCllTFH)
CONTROL.X
CONTROL,N

2-44 Device Drivers User's Guide

FEATURXS OF THE DRI!'ER INTERIACES

Thc following diagram illustrates th€ syntal ofthe OSC sequences relating to modem
control. Unlike other OSC sequences, only tasks should send these OSC sequences to the
Terminal Support Code. An op€mtor at a terminal should never send them.

where

M :

H

o

x l 9 ! 5

Irìdicatcs thal this scqucnce applies to a modem. You must include the
colon (:) after the M.

Causes the Terminal Support Code to answer the phone (set the DTR line
active). This indicates that ihe task is ready to send or releive data.

Causes the Terminal Support Code to hang up the phone (clear the DTR
line). This breaks îhe phone link.

Queries the Terminal Support Code for the status of the modem. In
response, the Terminal Srpport Code sencìs an APC sequence in this
lorm:

Esc _ M:x Esc \

where x is either "A" ìf the modem is answered (DTR active) or "H" if the
modem is hung up (DTR clear).

Requests the Terminal Support Codc to notify thc task whcn thc motlcm is
in the proper state (only the "W" is required). "W = A" requests
notification when DTR becomes active (caused by an operator dialing up
the modem). "W = H" requests notìfication when DTR becomes cleirr
(caused by the operator hanging up the phone).

When the modem is in the proper state, the Terminal Support Code
inserts an PC sequence of the following form in the input stream:

Esc M:x Esc \

where x is either "An if the modem has been answered (DTR active) or "H"
if the modem has been hung up (DTR clear).

WA]T

The following example illustrates how a task can use the OSC modem sequences to
communicate with a terminrl via a modem.

DeYice Drivers User's Guide 2-13

FE,TTI]RES OF THE DRTI'ER INTERFACES

Assume that one task is dedicated to monitoring the modem and communicating through
it. Assume turther that the task has a connection to the modem and that the connection is
open for both reading and writirg. Tlpical protocol (using the mnnection) is the
following:

1. The task writes the followhg OSC sequence to the terminal:

E s c I H : H E s c \

This secluence hangs up the phone (breaks the link). It is an initialization step.

2. The task writes the following OSC sequence to the terminal:

Esc I c: T-1 , E-1 Esc\

This sets traÍsparent mode (so the task can later read a certain number of characters or
wait until they appear) and turns off echoilg to the tcrminal's slrccn. Thcsc changcs are
lbr this connection only, not for other connections (Ìfany) to the modem.

3. The task writes the following OSC sequence to the terminal:

Esc I M:WAIT-A Esc\

This requesîs that the Terminal Support Code return a notification (an APC
sequence) when the modem has been ansìxered (DTR becomes active).

4. The task issues a read request to read seven characters from the terminal.
Eventually, \ùhen DTR becomes active, the Terminal Support Code inserts an APC
sequence ofthe following form in the input stream:

Esc_ M:A Esc \

Thìs message means a terminal user has dialed up the modem and is ready to
communicate,

5. The task writes the following OSC sequence to the terminal:

Esc I M: l , lAIT=H Esc\

This causes the Terminal Support Code to send the APC sequence "Esc_ M:H
Esc\" to the task when the terminal user hangs up.

6. The terminal and the task communicate as if on a dedicated line for as long cs is
necessary. However, whenever the task receives input, it must scan the input for
the APC sequence "Esc_ M:H Fsc\ .

During this time, the task shoùld operate the modem in transparent or flush mode,
rathcr than line-edit mode. In line-edit mode, each line received from the mod€m
must be terminated with a line terminator (such as a carriage return/line feed).
However, the last set ofcharacters (the APC sequence) will probably not be
followed by a line terminator. Therefore, if the connection is operating in line-edit

2-46 Device Drivers Usefs Guide

FEATUR.ES OF THE DRIVER INTERFACES

mode, the application task will never receive the final hangup nrcssagc from thc
Terminal Support Code.

7. Eventually, the operator hangs up the phone. When this happens, the Terminal
Support Code inserts the following APC sequence in the input stream:

Esc_ M:H Esc \

lhis means the terminal user has hung up and the link is broken.

8. The task returns to step 2.

This protocol is offered as a model and is by no means the only one possible. Note,
however, that only the task, and nevet the terminal, should send OSC sequences to the
Terminal Support Code for modem control. This restriction does not apply to other OSC
sequences.

Under some circumstances, a task needs to find ou! whether a terminal is ready to talk to
the task via the modem. The task can ascertain the state of the modem (answered or
hung up) by perforrning the folìowing steps, in order:

1. Ca[A$WRITE to send the following OSC sequence to the modeml

Esc I C : T -1 , E - l Esc \

This sets transpafert rnorJe (rJisabling line editing) and turns off the echoing to the
terminal's screen. Note that this is for this connection only, not for other
connections (i f cn)) to the modem.

2. CaU A$WRITE to send the following OSC sequence to the modeml

Esc I M :Q Esc \

This requests information as to the status ofthe modem; that is, answered (A) or
hung up (H).

3. Ca[A$READ to read seven characters from the modem. This receives from the
Terminal Support Code an APC sequence ofthe form:

Esc_ lt : x Esc\

where x is "A" if the modem is answered and "H" if the modem is hung up. This
technique will work because the Terminal Support Code places the APC sequence,
withoùt a line terminator, at the front of the line buffer for the connection where
data (if any) is awaiting input requests from the task.

After performing these steps, the task can restore the connection's line editing and echo
modes to their original states.

Derice Drivers User's Guide

FEATUR.ES OF THE DRII'ER INTERIACES

2.3.4.4 Obtaining Information about a Terminal

ln addition to specifying information about your terminal, you can use OSC seque[ces to
request information about the terminal's current settìngs. The syntax of the Terminal
Query OSC sequence that requests information about the terminal is as follows:

where

Q Indicates that this sequence is a query for information.

In response to the Terminal Query OSC sequence, the Terminal Support Code sends an
APC sequence that lìsts the currenî values of all modes for a terminal and all modes ior
the connection through which the request was made- However, it does not .eturn
information about the escape-sequence/terminal-character-sequence pairings or about
the input/output control character assignments.

A task obtains the query information by performing the followìng steps, in orderl

1. Call A$WRJTE to send the following OSC sequence to the terminal:

Esc I Q Esc\

This queries the Terminal Support Code for information about the terminal. In
response, the Terminal Sùpport Code returns the requested information in the îorm
of an APC sequence (without a line terminator) at the front of the t)?eahead buffer
for the connection. If echoing mode is enabled, this information will echo at the
terminal when the task reads it.

2. CallA$READ to read the appropriate number ofcharacters from the connection.
the number of characters returned deDends on the values ofthe modes. and some
of these modes, such as the input baud rate (I) for the terminal, can vary in length.
You should allow two spaces for the "Esc_" at the beginning, two spaces for the
"Esc\" at the end, and enough spaces for the modes ifl between. A simple, safe way
to obtain this data is to read one byte at a time, until "Esc\'appears. The modes
are separated by commas and packed together without blanks. An example of a
returned APC sequence follows:

2-18 Device Drivers Useds Guide

FEATURXS OF THE DRII'ER INTERT'ACES

Esc_ C I T-2 , E:0 , R-0 ,lr-1 , O:0 , C-0 ;T : l-0 , H:0 , M=0 , R=2 , W-2 , T-1 , F:0 ,
r -9600 ,o=0 ,s -18 , [-64 ,y :24 ,U-80 ,v -16 ,c - l , J -0 ,K -0 , t ' - 0 ,Q=0 Esc \

2.3.4-5 Restricting the Use of a Terminal to Onè Connection

If there are multiple connections to a terminal, you can send OSC sequences via any one
of the connections to "lock" the terminal. When you do this, the terminal is temporarily
restrìcted from communicating via any other connection.

Tasks that communicate via the filst mnnection can use the connection according to how
it was opened, and I/O requests through that connection are processed normally,
However, iftasks make I/O requests via the locked-out connections, the Terminal
Support Co.ie queues those I/O requests until the terminal is unlocked.

The syntax ofthe Lock and Unlock OSC sequences are as follows:

L

U

Locks the terminal, temporarily preventing I/O via other connections.

Unlocks the termhal, allowing I/O to occur vÌa all connectioÍs to the
rermtnat

The only way to lock a terminal is for a task or a terminal operator to send the Lock OSC
scquence. However, there are two ways to unlock a terminal:

r A task (via the connection used to lock the terminal) or the terminal operatoa can
send the Unlock OSC sequence.

. A task can close the connection used to lock the terminal

After a terminal is unlocked, the queued I/O requests are processed in the order in which
they were queuecl.

Device Ddvers Use s cuide 2-49

FEATT]RES OF THE DRI!'ER INTERFACES

NOTE
If there is a chance of a terminal becoming locked, tasks should use care
when using BTOS system calls to communicate via other connections to the
terminal. If the tasks invoke system calls such as A$READ and
A$WRITE without specifying a response mailbox, a deadlock situation
could occur.

2.3.4.6 Programmatically Insening Oata into a Terminat's |nput Stream

A task can use an OSC sequence to insert (stuff) data into a terminal's input stream. This
process is useful when operators must enter large blocks of data that vary only slightly
from one occurrence to the next. The synta! of the Stuffing OSC sequence is as follows:

where

Sr Indicates that this sequence stuffs data into the input stream. You must
include the colon (:) after the S.

text Text (a maxìmum of 126 characters) to be placed in the terminal's input
strerm. If the connection's echo mode is enabled, the sruffed rext displ.rys
on the screen. Ifthe connection's line-editing mode is enabled, the
operatoa can edìt the stuffed text.

Ifyou send composite OSC sequences (multiple OSC sequences separated with
semicoÌons), the composite sequence can contain only one Stuffing OSC sequence, and
that subsequence must be the last subsequence.

2.50 Device Drivers Use/s Guide

The Operating System sùpplies a number of complere devjce drivers that support many
different devices. Instead ofwritingyour own device driver, you might be able to use one
ofthe Intel-supplied devjce dÍivers to commùnicare with the devices ìn your appljcation
syslem.

Some of these Intel-supplied device drivers fall into the random access or common
category, some fall into îhe terminal category, and some are custom drivers. This chapter
Ìisls the drivers by category and provides general intbrmation about each drìver. Table
3-1 lists the drivers included with the Extended iRMX II package.

Table 3-1. Intel.Supplied Device Drirers
lype Device Driver

Custom

iSBC 208 flex ble disk driver
Mass Storage Controll€r (MSC) driver i
iSBX 218A ffexibte disk driver
iSBC 220 SMD driver
|SBC 186/224A mulli per pheral driver
iSSX 251 bubble m€morydriver
|SAC 264 bubble memory driv€r
Line printer driverlor |SBX 350
Line pr nter driverlor |SBC286/10(A)
SCSI driver lor |SBC286/1mA

iSBC 186/410 term nal driver
Terminal Communicatìons Controll€r drtvèr
|SBC 534 lern Ìnal driver
|SBC 5444 term naldrivér
iSBX 351 telminaldriver
8274 terminaldriver
82530 termÌnaldriver

Blte bucket drivef

Sfeam tìle driver

* Suppor ls lhe iSBC214, ISBC2l5G, an. i SAX 217C cónrrot tèrs. t t a tso supporrs rhe
iSBX2lSAconlro l lerwhen i t is molnredonihe SBC215G board.

Device Drivers User's Guide

I NTEI-SUPPLIED DEVICE DRIVERS

3.1 RANDOM ACCESS AND COMMON DRIVERS

This section describes the random access and common drivers supplied with the
Operating System. These drivers are designed according to the guidelines listed in
Chapter 5 and they make use of the features supplied by the I/O System's support code
for random access and common devices.

For information on addìng any of these device drivers to your appìication system. refer to
the Extended. |RMX II Interactive Confrgurcttion UtíIít! Reference Manual.

3.1 .1 iSBC@ 208 Disk Driver

This driver supports flexible diskette drives connected to the iSBC 208 controller. The
driver supports up to lbur units (0-3) per controller.

The iSBC 208 flexible disk driver

. Supports both 8-inch and 5.25-inch disks (single- or double-sided, single- or double-
density).

. Supports the READ, Vr'RITE, SEEK, SPECIAL, ATTACH$DEVICE,
DETACH$DEVICE. and CLOSE functions.

. Acrcepts the OPEN function bur performs no operations for it.

This driver requires a 1K byte block of memory in the first megabyte to be reserved for
use by the driver. You can speci$ the physical address of this hlock wirh rhe ICU during
configu.ation. The default address is 1600H-

Track formatting and volume change notification are supported via the SPECIAL
runcfron.

The seek overlap capabilities of the iSBC 208 controller allow seek operations to occur
concurrently on multiple units ofthc samc dcvice, llowevet, concurrent seek operatlorÌs
cannot take place while any other operation is in progress.

Refer to the rSBC 208 Flexible Dí.sk Dive Controller Hardware Reference Manual îor rllorc
ir lormation about the iSBC 208 control ler.

3.1 .2 Mass Storage Controller (MSC) Driver

Thìs driver provides the means to control hard disk drives. flexible disk drives, and tape
drives. It can support either the iSBC 215c board or the iSBC 214 board as the base
controller.

Device Drivers User's Guide

INTELSUPPLIED DEI'ICE DRI!'ERS

The iSBC 2l5G board controls hard disk drives. t he iStsX 2lTC and iSBX 2l8A boards
can be attached to this boa.d, via iSBX connectors, to provide tape and fleibte disk
support, respectively. The iSBC 214 board provides all ofthe iSBC 2156, iSBX 217C, and
iSBX 218A features in a single board. However, hard disks formatted with eirher the
iSBC 215G or iSBC 214 controller will not work when connected to the other controller.

This driver requires 62 bytes ofmemory in the first megabyîe to be reserved for its use.
You can speci$ the physical address of this block with the ICU during configuration. The
default address is 1200H.

3.1.2.1 |SBC@ 2t5G Features

The iSBC 2l5G controller supports hard disk drives (usually Winchester technology) thar
are compatible with thc 5T506/412 interface and connected to the iSBC 215c controll€r.
The driver suppo.ts up to foùr units per controller.

For hard disks. this driver

. Supports the READ, WRITE, SEEK SPECIAL, ATTACH$DEVICE, and
DETACH$DEVICE functions.

. Accepts the OPBN and CLOSE functions but performs no operations for them.

Track formatting, volume change notificatior, gettil8 devic€ charactcrisrics, and gelling
and setting bad track information are supported via the SPECIAL function.

Improves hard disk integrity via rhe seek-on-detach feature, in which the disk heads seek
to the innermost rylinder (which is usually the diagnostic cylinder) in response to the
F$DETACH$DEV command.

'Ihe seek overlap capabiiities of the iSBC 215G controller allow seek operations to occur
on multiple units while a DMA transfer is occuúing on anothea Winchester unit.

Reièr to the iSBC 215 Geneic Wihchester Dkk Contoller Hardware Rekrcnce Manual lor
more information about the iSBC 215G controller.

3.1.2.2 isBxn. 217c Features

The iSBX 217C Magretic Cartridge Tape lnterface Board is an 8-bit, single-wide,
iSBX MULTIMODULE I/O expansion board for installarion on any 8- or 16-bit
ìSBC host board that has an iSBX connector. It provides an interface between a
MULTIBUS processor board and l/4-inch magnetic cartridge tape drives that corresponcl
to the QIC-02 interface-

Device D vers User's 6uide 3-3

INTELSUPPLIED DE!'ICE DRI'ERS

When the iSBX 217C MULTIMODULE board is attached to an iSBC 2l5G winchester
disk controller board, the driver supports up to four tape drives connected to the
MULîMODULE board, although only one tape dríve can be attached at a time. This
upe driver

. Supports the READ, WRITE, SPECIAL, ATTACH$DEVICE, DETACH$DEVICE,
and CLOSE functions.

. Accepts the OPEN function but performs no operations for it.

The driver supports the following subfunctions via the SPECL{L function:

Format
Get device characteristics
Rewind tape
Rcad tapc fi-lc mark
Write tape file mark
Retension tape

The or y Human Interface commands supported for tape d.ives are ATTACHDEVICE,
DETACHDEVICE, BACKUP, and RESTORE. After you issue a BACKUP or
RESTORE command, the software automatically rewinds the tape.

Refer to the iSBX217C Magnetíc Caftrdge Tape Inteface Multímodule Board Hardwarc
Reference Manual lor mor€ informalion about the iSBX 217C MULTIMODULE board.

3.1-2.3 iSBXrx 2í84 Features

The iSBX 218A board controls flexible disk drives that are compatible with the
54784/460 interface. The driver supports flexible disk drives connected to an iSBX 218,4
MULTIMODULE board, as long as that MULTIMODULE board is attached to an
iSBC 215G Winchester disk controller board. This driver

. Supports 8-inch flexible disks.

. Supports 5.25-inch flexible disks.

. Supports DMA transfers.

. Supports the READ, WRITE, SEEK SPECIAL, ATTACH$DEVICE, and
DETACH$DEVICE functions.

. Accepts thc OPEN and CLOSE functions but performs no operations for them.

The driver supports the following sùbfunctìons via the SPF-CIAL fùnclion:

Formatting tracks
Getting device characteristics
Vollme change notification (supported on 5.25-inch flexible disk
drives that have a "door-open" signal)

3-4 Device Drivers Useis Cuide

INTELSUPPLIED DEI'ICE DRI!'ERS

The seek overlap capabilities of the iSBC 2l5c/iSBX 2184 controllers allow seek
operations to occur on multiple diskette ùnits, even while a DMA transfer occurs on a
Winchestcr unit. However, all seek opcrations on <liskette units must be complele before
a DMA transfer can occur on any ofthe diskette units.

Refer to the r'S8X218,,1 Flexible Dí:kette ConÍoller Boa Hardta,arc Reference Mahual for
more information about the iSBX 218A controllers.

3.1.2.4 ISBC@ 214 Features

The iSBC 214 controller provides the features of the iSBC 215c, iSBX 217C, and
iSBX 218,4 controllers, all in a single board. The driver supports hard disk drives (5.25-
inch Winchester technologr drives only), 5.25-inch flexible disk drives, and tape drives
connectcd to thc iSBC 214 board in the same manner that it suDDorts those devices wherì
they are connected to the iSBC 215c/iSBX 2l7CliSBX 2l8A ;onrroller combinarion.

Improves hard disk integrity via the seek-on-detach feature, in which the disk heads seek
to the innermost cyljnder (which is usualty the diagnostic rylinder) in response to the
F$DETACH$DEV command.

Refer to the r.'BC 2/,1 Multi-Penpheral Controller Hardware ReJerence Manual lot morc
itformation about the iSBC 214 board.

^ 3.1.3 |SBX* 218A Disk Driver

The iSBX 218A flexible disk driver supports up to four flexible disk drives (units 0
through 3) connected to the iSBX 2l8A MULTIMODULE board, as long as rhe board is
mounted on an intelligent host CPU board that contains an iSBX connector. The
iSBX 218,4 driver

. Supports 5.25-inch flexible disks (single- or double-sided, single- or double-density).

. Does not support DMA transfers (interrupts are disabled during transfers)

. Supports the READ, WRrTtr, StrDK, SPECIAL, ATIACH$DEVICE, and
DETACH$DEVICE functions.

. Accepts the OPEN and CLOSE tunctions but perlbrms no operations for them.

. Supports these subfunctions via the SPECIAL function:

Fo.matting tracks
Getting device characteristics
Volume change notification (supported on 5.25-inch flexible disk
drives that have a "door'open" signal)

This driver operatcs ìn pollcd modc. lnterrupts are disabled during read, write, and
fbamat operations.

Device Drivers IÌsey's Guide

I NTELSI]PPLIEI) DEITCE DRWERS

Refer to the iSBX 2,18,4 Flexíble Ditkztte Contrcller Board Hardware Referck.e Manual lor
more information about the iSBX 218A controller.

3.1.4 isBc@ 220 sMD Disk Driver

This driver supports ùp to four Storage Module Device (SMD) disks connected to the
iSBC 220 controller. The driver

. Supports the READ, WRITE, SEEE SPECIAL, ATTACH$DEVICE, and
DETACH$DE\IICE functions.

. Accepts the OPEN and CLOSE functions but performs no operations for them.

This driver requires a block of rnemory in the first megabyte whose size depends on the
number ofunits configured into the system. The minimum size is 1152 bfes plus the
number of bytes equal to the device granularity mùltiplied by the number of units. You
can specifo the physical address and size ofthis block with the ICU during configuration.
The default location is l2l0H and the default size is 1480H b)'tes.

Track formatting volume changc notification, and getting device characteristics are
supported via the SPECIAL function

Improves hard disk inîegrity via the seek-on-detach feature, in which the disk heads seek
to the innermost .ylinder (which is usually the diagnostic cylinder) in response to the
F$DETACH$DEV command.

Refer to the !-SBC 220 SMD Disk ContrcIer Halrdware Refercnce Man /d/ fbr more
útormarion about the iSBC 220 controÌler.

3.1.5 iSBC@ 186/224 Multi-Peripheral Driver

The iSBC 186/224A multiperipheral controller is a MULTIBUS II board capable of
controlling 12 peripheral devices: four Winchester, four 5.25-inch flexible disk, and four
streaming tape drives. Equipped with DIN connectors, the controller provides 16-bit data
tines and 32-bit address lines. Two buscs, an ADMA-controlled I/O bus and a local bus,
enable the controller to communicate \rith the peripheral devices and the CPU host. The
jSBC 186/22.14 controller resides on the iPSB (parallel sysrem bus).

The iSBC 186/224A device driver is a random access driver that uses the message-passing
protocol ofthe iPSB. The iSBC 186/2244 device driver

. Supports up to four winchester disk drives that are compatible with the 5T506
interface and four flexible diskette drives (all units may be accessed simuhaneousryT

. Supports up to four streanìing tap€ drives (accesses only one tape drive at a dme)

. Uses the Extended iRMX Il transport protocol for sending and receiving both
solicited and unsolicited messages

3-6 Device Drivers Useis Guide

TNTELSUPPLIED DEVICE DRTVERS

. Supports the READ, WRITE, SEEI! SPECIAL, ATTACH$DEVICE, and
DETACH$DEVICE functions

. Accepts the OPEN lunction but performs no operation for it

. Accepts the CLOSE function but performs no operation for it (this function is
supported for tape drives only)

Supports the following subfunctions via the SPECIAL function:

Format
Cet device characteristics
Rcì,vind tape
Recalibrate disk drive
Read tape file mark (îorward searching only, one or more file marks)
Write tape file mark
Get bad track o. sector information
Set bad track or sector information
Retension tape

Improves hard disk integrity via the seek-on-detach feature, in which the disk heads seek
to the mnermost cylinder (whìch is usually the diagnostic cylinder) in response to the
F$DETACH$DEV command.

The only Human Interface commands supported for tape drives are ATTACHDEVICE,
DETACHDEVICE, BACKUP, RETENTTON, and RESTORE. After you issue a
BACKUP or RESTORE command, the software automatically rewinds the tape.

3.1 .6 iSBx'L 251 Bubble Memory Driver

The iSBX 251 driver supports the iSBX 251 magnetic bubble memory MULTIMODULE
board. The driver

. Supports the READ, WRITE, SEEK SPECIAL, ATIACH$DE\4CE, and
DETACH$DEVICE functions.

. Accepts functions OPEN and CLOSE but performs no operations fo. them.

Formatting is supported via the SPECIAL function.

Because of the lower performance of the iSBX 251 board, this boa.d does not work
reliably with Tntel CPU boa.ds that run at clock speeds greater than 6Mhz.

Refer to the ISBX 25.1 Magnetic Bubble Memory Multímodule Board Technîcal Reference
Manual for more inîormation about the iSBX 251 controller.

Devlce Drirers Usefs Guide

INTEf .SIIPPI,INN NEVICÉ DRIvF]RS

3.1.7 |SBC@ 264 Bubble Memory Dríver

The iSBC 264 driver supports the iSBC 264 bubble memory controller board. The driver
supports up to four boards per interrupt. Each board can represent a single unit of the
device, or a single unit can consist of one to four boards. Each board can have from one
to four Intel 7114 bubble devìces; however, all boards of a given unit must have the same
number of bubble devices. The driver includes these features:

. Suppons the READ, WRITE, SEEK SPECIAL, AT'IACH$DEVICE, and
DETACH$DEVICE functions.

. Accepts functions OPEN and CLOSE but perfoÌms no operations for them.

Formatting is supporled via the SPECIAL function, which performs no function on the
iSBC 264 board and immediately returns with the IORS.STATUS field set to E$SPACE.

Refer to the ,SBC 2ó4 Magnetíc Bubble Memory Multífiodule Board Technical Refercnce
Manual for moreinformation about the iSBC 264 controller.

3.1 .S |SBX* 350 Line Printer Driver

The line printer driver is a comoon driver that provides an interface between the Basic
I/O System's physical file driver and the 8255 parallel I/O port of an iSBX 350
MULTIMODULE board. A flat ribbon cable connects the board with a Centronics,fvoe
line printer. The line printer driver

. Supports the WRITE, ATTACI{$DEVICE, DET.4.CH$DEVICE functions.

. Accepts functions OPEN and CLOSE but performs no operations for them.

. Can be used only with the physical file driver.

3.1 .9 |SBC@ 286/10(A) Line Printer Driver

This line printer driver is a common driver that provides an intedace between the Basic
I/O System physical file driver and the 8255 parallel I/O port of the iSBC 286/10,
iSBC 286/10(A), and iSBC 286/12 boards. A flat ribbon cable connects this board wìrh a
Centronics-t)?e line printer. The line printer driver

. Supports the WRITE, ATTACH$DE\,TCE, DETACH$DEVICE functions.

. Accepts functions OPEN and CLOSE but perfornrs no operatioùs for them.

. Can be used only with the physical file driver.

3-8 Device Ddvers Uset's Gùide

INTELSUPPLIED DEVICE DRII'ERS

3.1 .10 SCSI Driver

The SCSI driver supports 5.25- and 8-inch Winchester and diskette controllers that meet
the Small Computer System Interface specifications described in the ANSI documert
ANSI X3T9.2/82-2. It also supports some Shugart Associates System Interface (SAST)
controllers. Thisdriver

. Works specifically with the iSBC 286/1004 proccssor board as a host.

. Supports the READ, WRITE, SEEK SPECIAL, ATTACH$DEWCE. and
DETACH$DEVICE functions.

. Accepts the OPEN and CLOSE functions but performs no operations lor them.

Track formatting is supported via the SPECIAL funcrion.

3.2 TERMINAL DRIVERS

This section describes rhe terminal drivers supplied wirh rhe Òperaring Sysrem. These
drìvers are designed according to the guidelines listed in Chapter 6. Unless otherwise
noted, the drivers in this section provide all the Terminal Support Code features listed in
Chapter 2.

For information on adding any ol these device drivers to you. application system, refer to
the Ettended |RMX II Inteructíve Conflgurution utílít! Reference Manlt4t.

3.2.1 |SBC@ 1 86/410 Terminat Driver

The ìSBC 186/410 terminal driver supports arynchronous terminals connected to the
iSBC 186/410 Serial ComrìurÌications Board. Each iSBC 186/410 conrroller supports si{
serial Iines.

The iSBC 186/410 driver

. supports thc READ, WRITE, SPECIAL, ATTACH$DEVICE, DETACH$DEVICE,
OPEN. and CLOSE functions

. Can be used with only the physical file driver

Gettirìg terrninal da!a, setting terminal data, setting signal characters, setting special
characters, setting link parameters, and enab)ing and disabling flow control are supported
via the SPECL L function.

Device Driverc User,s cuide 3"9

INTEL.SUPPLIED DEVICE DRff'ERS

The iSBC 186/410 controller is a buffered device sr.rpporting block input and output of
data via solicited and unsolicited messages. The iSBC 186/410 controller supports all
Terminal Support Code features including special-character interrupts. The only
buffered-device features it does not support are configurable start/stop input characters
and high/lorv-water marks (the controller always uses XoN aod XOFF for the start and
stop characters, and fi\ed values for high- and low-v/ater marks).

Multipìe hosts can share a single iSBC 186/410 controller, hut multiple hosts cannot
simultaneously share a serial line on the controller.

This driver does not support separate input and output baud rates for a single serial line.
The driver recognizes the baud rates 110, 150, 300, 600, 1200, 2400, 4800, 9600, and 19200.
llan unsupported baud rate ìs requested, the driver overrides it with the next higher
supported baud rate.

For more information about the iSBC 186/410 controlÌer, refer totheiSBC 18ó/410 Seríal
Communications Boaftl User's Guide.

3.2.2 Terminal Communications Controller Driver

The Terminal Communications Controller driver is a terminal driver that supports the
following intelligent communications controllers:

iSBC 188/48 controller
iSBC 188/56 controller
iSBC 546 controller
iSBC 547 conîrouer
iSBC 54E controller

All of these controllers are intelligent controllers that can manage buffcred input and
output. The iSBC 188/48 and iSBC 188/56 controllers can support up to 12 serial
communication channels per board The iSBC 546 controller can support up to four serial
communìcations channels plus one line printer port. The iSBC 547 and iSBC 548
controllers can support up to eight communications channels. The Terminal
Communications Controller driver

. Supports the READ, WRITE, SPECIAL, ATTACH$DEVICE, DET CH$DE!'ICE,
OPEN, and CLOSE functions.

. Can be used only wirh rhe physical file driver.

. Supports only asynchronous (RS232) communications.

Getting terminal data, setting terminal data. setting signal characters, setting special
characîers, serting link parameters, enabling and disabling input flow control, setting input
flow control start and stop characters, and setting high- and low-water marks are
sunDorted via lhe SPECIAL funct ion.

3-10 Derice Drivers User's Cuide

Thc controllcrs support€d by this driver are buffer€d controllers that support all the
features of the Terminal Support Code, including special character interrupts.

Although the driver supports baud-rate search and can recognize the baud rates 300, 600,
1200, 2400, 4800, 9600, and 19200, the firmware on the iSBC 188/48 board is ser up so
that baud-rate search works only ifthe terminal is set up for seven-bit characters and even
parity. At other settings, the baud-rate seatch fails to recognize the terminal.

The iSBC 188/48 and iSBC 188/56 inpur buffers are fixed at 1940 bytes. When setring up
the flow control paraúerers, you can speciry values in the range of 0-1936 fbr the Ìow-
water mark and values in the range of 8-1936 for the high-water mark. The TCC driver
divides the values you supply by eight before passing them to rhe controller as BYTE
values. The controlle. then multiplies the received value by eight to obtain the actual
value. Intel recommends a value of950 decimal for thc low-watcr mark and 1900 decimal
for the high-water mark. Refer to Chapter 2 for more information about flow control.

Refer to the /SBC l8BlL4dvanced Cornmuníuttí g Computer Hard,4,are Reference
Manuel lot more inîormation about the iSBC 188/48 controller. Reler to th€
íSBC 188/56 Ariyanced. Communications Computer Hardwerc Reference Manual lor mare
information about the iSBC 188/56 controller. Refer to the ISBC 5ló/517/548 High
Petfoftnahce lemi el Controllerc Hardware Reference Manual lor fiore information about
the iSBC 546, iSBC 547, and iSBC 548 controllers.

3.2.3 |SBC@ 534 Terminal Driver

The iSBC 534 driver is a terminal device driver that supports terminals connected to one
or more iSBC 534 Four-Channel Communicarions Expirnsion hoards. each of which has
four USARTS. As many as four iSBC 534 boards canìhare r single interrupr line, in
which case their USARTS are treated as separate units of a sirlele devicc.

The iSBC 534 driver

. Supports the READ, WRITE, SPECIAL, ATTACH$DEVICE, DETACH$DEVÌCE,
OPEN, and CLOSE functions.

. Can be used only with the physical device driver.

G€tting terminal data, setting terminal data, and setting signal characters are supported
via thc SPECIAL function.

The iSBC 534 board is not a buffered rlevice, so the features of the Terminal Support
Code that apply to buffered devices are not supported by the iSBC 534 driver. The only
other Terminal Support Code feature that this drive. does not support is separate input
and output baud rates. The driver supports baud-rate search and can recognize the baud
rates 110, 150,300,600, 1200,2400,9600, and 19200.

INTELSUPPLIED DEVICE DRTlTRS

Device Drivers Usey's Guide

INTEL.SUPPLIED DE!'ICE DRI!'ERS

Refer to the 'SBC 5Jl Four Channel Communícatìo6 Erpansíon Board Hardwarc
Reference Manual for more information about the iSBC 534 communications board.

3.2.4 :SBC@ 544A Terminal Driver

The iSBC 544A driver is a termhal device driver that supports te.minals connected to
one or more iSBC 544A Four-Channel lntelligent Communications Expansion boards.
Each iSBC 544.4 board can support iour serial lines. As many as four iStsC 544A boards
can share a single interrupt line, in which case their channels are treated as separate units
of a single device.

The iSBC 544A driver

. Supports the READ, WRITE, SPECIAL, ATTACH$DEVICE, DETACH$DEVICE,
OPEN. and CLOSE functions.

. Can be used only with the physical file driver.

Getting terminal data, setting terminal data, setting signal characters, and enabling and
disabhrg llow control ar€ supporl€d via the SPECIAL îunction.

The iSBC 5444. controller is a buffered device that incorporates an 8085,4 CPU for its on-
board processing. Therefore the iSBC 544A driver supports almost all ofthe features of
bulfered devices. The only buffered-device features it does not support are spe,cial
characte. interrupts, which the iSBC 544A fùmware cannot generate, and configurable
start/sîop input characte.s and high/low-water marks (the controller always uses XON
and XOFF for the start and stop characters, and fixed values for high- and low-water
marKsJ.

The only other Terminal Support Code feature that this driver does not support is
scparate input and output baud rates for a single serial line. The driver supports baud-
rate search and is capable of recognizing the baud rates 110, 150, 300, 600, 1200, 2400,
4800, 9600, and 19200.

Refer to the 'SBC 544,4 Intelwht Communicatiotls Controller Board Hardworc Refercnce
Mantal for more tnformation about the iSBC 544,4 controller.

3.2.5 |SBX* 351 Terminal Driver

The iSBX 351 Terminal Driver is a terminal driver that suooorts a terminal device
cunnected ro lhe \erialport ofan iSBX 351 À4[LTIMODijLE board, an
iSBC 386/2X(3X) board, or any board that contains an 8251A USART. The driver
requires two interrupt ìevels, one for input and one for output. The iSBX 351 terminal
drlver

Device Drivers Useis Guide

INTELSUPPLIED DEITCE DRIVERS

. Supports the READ, WRITE, SPECIAL, ATTACH$DEVICE, DETACH$DEVICB,
OPEN. and CLOSE functions.

. Can be used only with the physical file driver.

Getting terminal data, setting terminal data, and setting signal characters are supported
via the SPECIAL funcrion.

The devices supported by this driver are not buffered devices, so the features ofthe
Terminal Support Code thet apply to buffered devices do not apply to this driver. The
only other Terminal Support Code feature that the iSBX 351 driver does not support is
modem control. The driver supports baud-rate search and can recognize the baud rates
110, 150,300,600, 1200, 2400, 4800, 9600, and 19200.

3.2.6 8274 Tetminal Driver

The 8274 terminal driver supports a terminal device via either oftwo on-board serial
ports of an iSBC 286/10, iSBC 28ó/10A, o. iSBC 286/12 board. The driver supporrs a
single 8274 MPSC (multi-protocol serìal controller) with as many as two terrninal devices
connected to it. The 8274 MPSC must be configured in nonvectored mode. This means
that the 8274 does not send an inrerupt tjpe itself, but rather requests an 8259A pIC to
interrupt the processor.

The 8274 terminal driver

. Supports the RbAD, wRlTE, SPECIAL, ATTACH$DEVICE, DETACH$DEVICE.
OPEN, and CLOSE functions.

. Supports only asynchronous (RS232) communications.

. Can be used only with the physical file driver.

Getting terminaì data, setting terminîl data, and setting signal characters are support€d
via the SPECIAL function.

The 8274 MPSC is not a buffered device, so the features of the Terminal SuDDort Code
that apply to buffered devices are not supported by the 8274 drjver. The driver supporrs
all other Terminal Suppoat Code featuaes except modem control. The driver supports
baud-rate search and can re.ognize the baud rates 110, 150, 300, 600, 1200, 2400, 4800,
9600. and 19200.

Device DriYers Us€ls cùide

INTEI-.SUPPLIED DEITCE DRIVERS

3.2.7 82530 Terminal Driver

The 82530 terminal driver supports terminals via the 82530 Serial Communication
Controller ofthe iSBX 354 MULTIMODULE board or ùe 82530 SCC mounted on a
286/ 100A. processor board. The 82530 SCCS must be configured in nonvecto.ed mode.
Nonvectored mode means that the 82530 does not send aÍ interrupt t)?e itself, but rather
requests an 8259A PIC to interrupt the processor.

The 82530 terminal driver

. Supports a single 82530 scc component containing t\ro serial chaonels coÍfigured as
a single device and mounted on either an iSBX 354 MULTIMODULE board or a
2861100A processor board.

. Supports the READ, WRITE, SPECIAL, ATTACH$DEVICE, DETACH$DEVICE,
OPEN. and CLOSE functions.

. Supports only asynchronous (RS232) communications.

. Can be used onlywith the physical file driver.

Getting terminal data, setting terminal data, and setting signal characters are supported
via the SPECIAL function.

The 82530 is not a buffered device, so the features ofthe Terminal Support Code that
apply to buffered rJevices arc no! supported by thc 62530 driver. The only other Terminal
Support Code feature that this driver does not support is separate input and output baud
rates for a single serial Jìne. The driver supports baud rate search and can recognize the
baud rates 110, 150, 300, 600, 1200, 2400,4800, 9600, and 19200.

3.3 CUSTOM DRIVERS

This section describes the custom drivers supplied with the Operating System. These
drivers are designed according to the guidelines listed in Chapter 7. They don't use any of
the special features provided for random accesst common, or terminal drivers.

For information on adding any of these device drivers to your application system, reter ro
the F-rtehàcd |RMX I Intemctive Aùfguration Utiliry Referchce Manual.

3.3.1 Byte Bucket Driver

This driver provides a pseudo device interface for operations that don't requir€ device
activiîy. It is used for discarding output (bye bucket) and direct communication between
îasks (stream files). This driver

3-14 Device Drivers User's Cuide

INTELSUPPLIED DEITCE DRI\tsRS

Rclurns an cncl of lile for any READ operation and write completed for any WRITE
operatron.

Accepts all operations except SPECIAL (and SEEK in the case ofstream files) but
Derforms no ooerations for them.

3.3.2 RAM Driver

The RAM driver allows an area of RAM to be used fot temporary storage ofnamed or
physìcal iiles. l his memory is called a RAM-disk. When used in conjunctiod with the
LOCDATA and ADDLOC commands, the RAM-disk can be preloaded with Human
Interface commands for immediate access (see fhe Operctor's Guide to the Extended
|RMX II Hunan lkteface for more information). The RAM driver

. Supports the READ, WRITE, and SPECIAL functions.

. Accepts functions SEEK, ATTACH$DEVICE, DETACH$DEVICE, OPEN, and
CLOSE but pedorms no operations for them.

. Supports up to 16 units.

Because the RAM-disk emulates a disk storage device, you can attach and format the
RAM-disk after booting the system, and you can access the RAM-disk as ifit were an
ordinary disk (until the system is reset).

lfyou intend to preload the RAM-disk wirh Human lnterface commands, you must use
the LOCDA'IA command to create an object module (which contains an image of an
already-formatted RAM-disk) and use the ADDLOC command to add the moduÌe to the
booFloadable system file. This process allows rhe Bootstrap Loader to load the RAM-
disk.

Device Drivers Usefs Guide

Because a device driver is a coliection of software routines that manages a device at a
basic level, it must transform general instructions from the I/O System into deuce-
specific instructions it then sends to the device itself. Thus, a device driver has two t'?es
ol interfaces:

. An interface îo the I/O System, which is the same for all device drivers.

. An intcrface to the device itself, which varies according ro device.

Thìs chapter discusses both ofthese interfaces

4.1 t/O SYSTEM TNTERFACES

The interface between the device drjver and the I/O System consists of two data
structures: the device-unit information block (DUIB) and the I/O request/result segmenr
(roRs).

4.1.1 Device-Unit Informatíon Block (DUIB)

Thc DUIB is an interface berween a device driver and rhe l/O Svsrem. in that the DUIB
conta ins lhe addrrsses of one ol rhe fol lowing sets of rourines:

. The device driver routines (in the case of custom device drivers).

. The device driver supporî routines (in the case ofterminal drivers, common drjvers,
and random access drivers).

By accessing the DUIB fbr a unit, the I/O System can call the appropriate device driver or
device driver support routine. All devices, no matter how diverse, use this standard
interface to the l/O Syslem. You mus! provide a DUIB for each devic€-unit in your
hardware system. You supply the infotmation ior your DUIBS as part of the
configuration proccss.

4.1.1.1 DUIB Slructure

This section lìsts îhe elements that make up a DUIB. For devices supported by the
Interactive Configuration Utility (ICU), the ICU creates DUIBs based on information
you supply. For devices not supported by the lCU, you must create the DUIBS.

Device Drivers Use s Guide 4.1

I)EVICE I)RI!'ER INTERFACES

when creating DUIBS, code them in the format shown here (as assembly-language
structures). The ICU includes your DUIB file in the assembly of ?IDEVC.A28, a Basic
I/o System configuration file the ICU creates (the ? means that the first characîer of the
fìle can vary). /RMX2Eó/IOS/TDEVCF.INC contains the definition of the DUIB
sîructure.

DEFINE_DU]B <
& NAl ' fE (r4),
& FILE$DRIVERS,
& FUNCTS,
& FLACS,
& DEV$CRAN,
& D E V $ S I Z E ,
& D E V I C E ,
& U N I T ,
& DEV$UNIT,
& T N] T S I O ,
& F r N r s H $ 1 0 ,
& QUEUE$IO,
& CANCEL9TO,
& DEVICE$1NF0$P,
& U N I T $ I N F O $ P ,
& UPDATE9TIMEOUT,
& NUM$BUFFERS,
& PRIORITY,
& FIXED9UPDATE,
& MAXgBUFTIRS,
& RESERVED,
& >

; B Y T E (1 4)
;WORD
;BYTE
;BYTE
;WORD
;DWORD
;BYTE
;BYTE
;WORD
;i,rORD
;WoRD
;WORD
;ltORD
;POINTER
; POINTER
;WORD
;WORD
;BYTE
;BYTE

NAME A 14-BYIE array specirying the name of the DUIB. This name
uniquely identifies the device-unit to the I/O System. Use only the
first 13 trytes. The fourteenth is used by the I/O System. If the
name is less than 14 characters, it is extended with spaces.

You assign the name when configuring your application system.
Later, you speciry the DUIB name when àttaching a unit via the
RQAPHYSICATSATTACH$DEVICE system call. Device
drivers do read or write this field.

FILE$DRIVERS WORD specifying file driver validity. Serting bir number ,'i" of this
word implies that the corresponding file driver can attach rhis
device-unit. Clearing bit number "i" implies that the file dnver
cannot attach this device-unit.

The low-order bit is bit 0. The bits are associated with the file
drivers as follows:

Device Drivers Usefs Gùide

DEI'ICE DRIVER INTERFACES

Bit'f' File Driver

0 physical
I stream
3 named

The remaining bits of the word must be set to zero. Device drivers
do not read orwrite this field.

FUNCTS BYTE specirying the I/O function validity for this device-unit.
Setting bit number ,,i,, implies that the device-unit supports the
corresponding function. Clearing bit number "i', implies that the
device-unit does not sùpport the function. The low-order bit is bit
0. The bits are associated with the functions as follows:

0 read
I wtite
2 seek
3 special
4 attach device
5 detach device
6 open
7 close

Bits 4 and 5 should always be set. Every devìce driver requfes
these functions.

This field is used for informational purposes orìly. Setting or
clearing bits in this field does not limit the device driver from
performing any I/O function. In fact, each device driver must be
able to support any I/O function, either by pe.lbrming the function
or by returning a condition code indicating the inability ofthe
device to perfolm tha! function. However, to provide accumle
status information, this field should indicate the device,s ability to
perform the I/O functions. Dcvicc drivcrs do not read or write this
field.

FLAGS BYTE specirying characteristics of diskette devices. The
significance ofthe bits is as follows, with bit 0 being the low-order
D[:

Biî Meaning

0 0 = bits 1-7 are undefined
1 = bits 1-7 are defined as follows

I 0 = single density
1 = double density

Device Ddvers User's Guide 4-3

DEVICE DRT'ER INTERFACES

2 0 = single sided
I = double sided

3 0 = 8-inch diskettes
1 = 5 l/4-inch diskettes

4 0 = standard diskette, (track 0 is single-density
with 128-b)'te sectors)

1 = not a standard diskette or not a diskett"

5-1 Reserved; must be set to zero.

Ifbit 4 is set to 0. then a driver for the device has the information it
needs to read device information from track 0. Refer to
Appendix c for more information abou! the forma! of slandard
diskettes.

DEV$GRAN WORD specirying the device granularity, in byes. This parameter
applies to random access devices, and to some common deviccs
such as tape drives. lt specifies the minimum number of bytes ot
information the device reads or writes in one operation. If the
device is a disk, magnetic bubble device, or tape drive, you should
set this field equal to the sector size for the device. Otherwise, set
this field equal ro zero.

DEV$SIZE DWORD specifying the number ofbytes of irformation the device-
untt can store.

DEVICE BY]E speci8/ing the device number ofthe device with which this
device-unit is associated. Device drivers do not access this field.

IINIT BYTE specirying the unit number of this device-unit. This
distinguishes the unit from the other units of the device.

DEV$UMT WORD specirying th€ device-ulit oumber. This nurrrtrr
distinguishes the device-unit from the other units ìn the entire
hardware system. Device drivers can ignore this field.

INIT$IO WORD specifying the offset address of the I nitializ.e I/O
procedure associated wiÌh rhis unit (the base portion is the same as
the base of the DEVICE$INFO$P pointer). For user-written
custom device drivers, the user must supply this procedur€ (and the
FIMSH$IO, QUEUE$IO, and CANCELJIO procedures). For
common, random access, and terminal drivers (both user written
and Intel-supplied), the procedures are supplied with the I/O
System. When filling out the DUIB, enter the names of the
INIT$IO, FINISH$IO, QUEUE$IO, and CANCEL$IO procedures
to supply this information. Device drivers do not access this iield.

4-4 Device Drivers User's Guide

FINISH$IO

QUEUE$IO

CANCEL$IO

DEYICE DRIVER INTERFACES

WORD specifying thc offs€r address of the Finish I/O procedure
associated with this unit (the base portion is the same as the base
of the DEVICE$INFO$P pointcr). Device drivers do not access
this iield.

WORD specirying the offset address of the Queue I/O procedure
associated with this unit (the base portior is the same as the base
of the DEVICE$INFO$P pointer). Device drivers do not access
this field.

WORD specifing the offset address of the Cancel I/O procedure
associated with this unit (the base portion is the same as the base
of the DEVICE$INFO$P pohter). Device driv€rs do not access
this field.

POINTER to a structure containing additional jnformation about
the device. The common, random access, and terminal device
drivers require, for each device, a Device Information Table, in a
particular format.

Chapter 5 lists the structure of the Device Information Table used
with common and random access drivers. ChaDtcr 6lists thc
structure used with terminal drivers. lIyou ari writ ing a custom
driver, you can place information in the Device lniormation Table
according to the needs of your driver. Spe.iry a zero for this
parameter if the associated device driver does not use this field.

POIN'IER to a structure containing additional information about
the unit. Random access and terminal device drivers requie this
Unit Informaîion Table in a particular format. Chapter 5 describes
the format for random acc€ss dÍivers. Chapter 6 descaibes the
format for terminal drivers. If you are writing a custom device
driver, place information in this structure, depending on the rreeds
ofyour d.iver. Specib, a zero for this parameter if the associated
device driver does not use this field.

WORD specirying the number of system time units the I/O System
must wait before writing a partial sector after processing a write
request for a disk device. In the case of drivers for devices that are
neither disk nor magnetic bubble devices, set this field to 0FFFFH
during configuratìon. This field applies only to the device-unit
specified by tbis DUIB, and is ifldependent of updating done either
because of the value in the FIXED$UPDATE iield of the DUIB or
by means of the I/O Systcm A$UPDATE sysrem call. Device
drivers do not access this field.

DEVICE$-
INFO$P

UMT$.
INI. OIiP

UPDATE$.
TIMEOUT

Device Drivers Useis Guide 4-5

DEVICE DRIVER INTERI'ACES

RESERVED

WORD that, ifnot zero, both specifies the device is a random
access device and indicates the number ofbuffers of device-
granulariry size the I/O System allocates. The l/O System uses
these butlers to pertorm data blocking and deblocking operations.
That is, it guarantees that data is read or written beginning on
sector boundaries. If you desire, the random access support
routines can also guarantee that no data is witten or read across
track boundaries in a single reqùest (see the section on the Ur t
Inforúation Table in Chapter 3). A valùe ofzero indicates the
device is not a random access device. Devic€ drivers do not access
this field.

BYTE sp€cifying the priority ofthe I/O System service task for the
device. Device drivers do not access this field.

BYTE indicatjng whether the fi\ed update option was selected for
the device-unit when the application system was configured. This
option, when selected, causes the I/O System to finish any write
requests that had not been finished earlier because less than a full
sector remained to be written. Fi{ed updates are performed
throughout the entire system whenever a time interval (specified
during configuratìon) elapses. This is independent of the updating
indicated for a particular device (by the UPDATE$TIMEOUT
field of the DUIB) or th€ updaling of a parlicular tlcvicc indicatc<l
by the A$UPDATE system call ofthe l/O System.

A value of0FFH indicates fixed updating has been selected for this
devicel a value ofzero indicates it has not been seleated. Device
drivers do not access this field.

BYTE speci8,ing the maximum number ofbuffers the Extended
I/O System can auocate for a connection to this device-unit when
the connection is opened by a call to S$OPEN The value in this
field is specilied during configuration. Device drivers do not access
this field.

Intel reserves this BYTE for future ùse.

4.1.1.2 Using the DUIBS

To use the I/O System to communicate with files on a device-unit, you must first attach
the unit by invoking the RQAPHYSICAIJATTACH$DEVICE sysrem call (refer to
the Eitended iRLtX Bdsic I/O System Calb manual for a description of this system call).

PRIORITY

FIXED$.
UPDATE

NUM$.
BUFFERS

MAX$.
BUFFERS

4-6 Device Drivers Use/s Guide

DE}'ICE DRIVER INTERFACES

WÌren you attach a unit, the I/O System assumes the device-unit identified by the device
name field of the DUIB has the characteristics identilied in the remahder of the DUIB.
Thus, whenever the application software makes an I/O request via the connection to the
attached device-unit, the l/O System ascertains the charactedstics of that unit by
examining the associeted DUIB. The I/O System looks at the DUIB and calls the
appropriate device driver or device driver support routines listed there to process the I/O
request.

Ifyou want the I/O System to assume different characteristics at different times îor a
particular device-unit, you can supply multiple DUIBS, each containing identical deuce
number, unit numb€., and device-utit numb€r parameters, but different DUIB name
parameters. Then you can select one of these D Ultss by specitiing the appropriate
dev$name parameter in the RQ$A$PHYSICAIJATTACH$DEVICE system call.
Hovrever, before you can switch the DUIBS for a unit, you must detach the unit.

Figure 4- I illustrates this concept. It shows si,(DUIBS, two for each of thre€ units of one
device. The main difference within each pair of DUIBs in this figì.rre is the device
ganularity parameter, which is either 128 or 512. With this setup, a user can attach any
unit of this device with one of two device granularities. ln Figure 4-1, units 0 and 1 are
attached with a granularity of 128 and unit 2 with a granularity of512. To change this, the
user can detach the device and attach it asain usins the other DUIB name,

NOTÉ
When the l/O System accesses a device coltaining named files, it obtains
information such as !tranularity, density, size (5-1/4" or 8" for diskettes), or
the number of sides (single or double) from the volume label. Therefore it
is not necessary to supply a different DUIB for every kind ofvolume you
intend to use. However, for iRMX II applications, you must supply a
separate DUIB for every kind ofvolume you intend to format via the
FORMAT Human Interface command.

Device Drivers Useros Guide 4-7

DEVICE DRIVER INTERT'ACES

caLL cosAsPBYstcaL$aTTAcH$oEVtCE {UN| lÀ)

DEVICE.UNIT?

catL Ro iA$PHvsrcar$ar racHsDEvrcÉ lunrÚ. . . .)

CALL ROSA$PT IYS ICALSAT IACHSDEVICE {U I { ITC1)

Figure 4-1. Attachirg DeYices

4.1.1.3 Crealing DUIBS

During interactive configuration, you must provide the information for all of the DUIBs.
The configuration file, which the ICU produces, sets up the DUIBS when it executes.
Observe the following guidelines when supplying DUIB information:
. Specify a unique name for every DUIB, even those that describe the same device-unit.
o For every device-unit in the hardware configuration, provide information for at least

one DUIB. Because the DUIB contains the add.esses ofthe device driver routines,
this guarantees that no device-unit is left without a device driver ro handle its I/O.

. Make sure to speci! the same device driver procedures in all of the DUIBS associated
with a particular device. There is only one sct of device driver routines for a dven
device, and each DUIB for that device must speci! this unique set of routines.

. Ifyou write a common or random access device driver, you must supply a Device
Information Table for each device. Ifyou write a random access device driver, you
must also supply a Unir Informarion Table for each uni!. See Chaprer 5 fo.

DEVICE = 1

U N l f = 2

4-8 Device Drivers Usefs Guide

DEVICE DRIVER INTERFACES

spccifications of these tables. If you are using custom device drivers and they require
these or similar tables, you must supply them, as well.

. Ifyou *'rite a terminal driver, you must supply a terminal device informatiol table for
each terminal device driver, as well as a unit information table for each terminal. See
Chapter ó tor specilìcations ofthese tables.

4.1.2 l/O Request/Result Segment (tORS)

An IORS is the second structure that forms an interface betweeri a device driver and the
I/O System. The I/O System creates an IORS when an applìcation task requests an I/O
operation. The IORS contains information about the request and about the unit ori which
the operation is to be performed. The I/O Systern passes the IORS to one ofthe high-
level driver procedurcs (the Queue I/O Procedure), which then processes the requesf or
puts it in a queue for processing. After performing the requested operation, the device
driver must modiff the IORS ro indicate what it has done and send the IORS back to thc
response mailbox (exchange) indicated in rhe IORS.

Ifyou are writing a custom driver, the highlevel driver procedures you write (Initialize
I/O, Finish I/O, Queue I/O, and Cancel I/O) must be aware ofthe structure of the
IORS. If you are writing a common or random access driver, the procedures you write
must also be aware of the IORS structure, b€cause the high-level driver procedures
(supplied by the I/O System) pass the IORS on lbr further processing.

Ifyou are writing a tcrminal driver, your procedures do not need to be aware of th€
IORS. The highJevel terminal driver procedures (called the Terminal Sùppot Code)
transform the information they receive from the IORS into different structures they pass
on to your lower-level driver procedures. Refer to Chapter ó for information about the
structures used by termhal drivers.

The IORS is structured as follows:

Device Drivers Usefs cuide 4-9

DEVICE DRI!'ER INTERT'ACES

DECIARE
TORS

STATUS
UNIl9SÎATUS
ACTUAI,
ACTUAT-$ tr t-L
DEVICE
I]NIT
FUNCT
SUBFI]NCT
DEV$rnC

COUNÎ
COUNT$FILL
Arx$P
I-I NK$FOR
LlNK9BACK
RESP$MBoX
DONE
FILL
CANCEL$ID
coNN9T

STRUCTURE (
ITORD,
ÌTORD,
I,TORD,
I,IORD,
I,}ORD,
BYTE,
EYTE,
IiORD,
DWORD,
POINTER,
WORD,
I{ORD,
POINTER,
POÎNÎER,
POTNTER,
TOKEN,
BYTE,
BYTE,
TOKEN,
TOKEN) ;

STATUS

U\IiT$-
STATUS

WORD in which the device driver must Dlace the condition code
lbr the T/O oneration. The E$OK condit ion code indicates
successftrl completion of the operation. For a complete list of
possible condition cod es, see either the Ettended .RMX II
NUCLEUS SYSTEM CALLS r|'an\t^\. the Extended |RMX II BASIC
I/O Srstem Calh ma tal, or the Ertendzd íRMX II Extended I/O
Sjsîem Calb ma J^1.

WoRD in which the device driver must place additional status
information ifthe status parametet was set to indicate the E$IO
condition. The unit status codes and their descrìotions are as
follows:

Codc Mnemonic

O IO$UNCLASS
l lo$soFT
2 IO$IIARD
3 IO$OPRINT

4 IO$WRPROT

Description

Unclassified error
Soft error; a retry is possible
Hard error; a retry is impossible
operator inteÍention is
required (the device is offline)
Write-protected volume

4-10 Device Drive$ Use/s Guide

Code
5
6

Mnemonic
IONODATA
IO$MODE

DEVICE DRII'ER INTERFACES

Descriotion
No data orl the next tape record
A read (or write) was attempted
before the previous write (or
read) compl€ted.

7 IO$NOSPARES The number ofbad tracks or
sectors exceeds the nlrmber of
alternates available.

ACTUAI-

8 IOALTAS-
SIGNED

An alteanate track or sector was
assigned to replace a defective
one,

The l/O System reserves bits 0 through 3 (the least significant four
bits) of this field for unit sratus codes. The high 12 birs of rhis field
can be ìlsed for any other purpose. For more information about
the data returned by your device controller, refer to the hardware
reference manual for your controller.

WORD the device driver must updrte upon completion ofan I/O
operation to indicate the number ofbytes of data actually
transferred.

Reserved WORD.

WORD into which the I/O System places the number of lhe device
for which this request is intended.

BYTE into which the I/O System places the number of the unit ior
which this request is intended.

BY-[E into which the I/O Sysrem places the function code ior the
operation to b€ performed. Possible function codes are

Code Function

O F$READ
I F$WRITE
2 F$SEEK
3 F$SPECIAL
4 F$ATTACH$I]BV
5 F$DETACH$DEV
6 F$OPEN
7 F$CLOSE

WORD into which the I/O System plac€s the actual function code
of the operation, when the F$SPECIAL function code was placed
into the FUNCT field. The value in this field depends on the fìle
driver being used with this device. The possible subfunctions and
the driver typ€s to wlìich they apply are as follows:

ACTUAI$FILL

DEVICE

UNlT

FUNCT

SUBFUNCT

Device Drivers Usefs Guide 4-11

DEVICE DRII'ER INTERFÀCES

File Driver Subfunct
For Connection Value Functiol
Physical 0 Format t.ack
Stream 0 Query
Stream 1 Satisry
Physical or Named 2 Notify
Physical 3 Get disk/tape data
Physical 4 Gct tcrminal data
Physical 5 Set terminal data
Physical 6 Set signal
Physical 7 Reset (rewind tape or reset disk)
Physical 8 Read tape file mark
Physical 9 Write tape file mark
Physical 10 Retension tape

11 Reserved
Physical 12 Set bad t.ack information
Physical 13 Get bad track information

14-32761 Reserved for other Intel
proclucts

The values from 32768 to 65535 are available for user-
written/custom device drivers when used with the physical file
driver.

DEV$LOC DWORD into which the I/O System initially places the absolute
blte location on the I/O device where the operation is to be
performed. For example, for a write operation, this is the address
on the device where writing begins. The I/O System fills out this
information when it passes the IORS to the driver or the drìver
support routines.

If the device driver is a random access driver, the nndom access
suppo.t routines modi! the information in the DEV$LOC field
before passing the IORS on to driver procedures listed in Chapter
5. The value the random access support routines fiil out depends
upon the TRACK$SIZE field in the unit's Unit Information Table
(see Chapter 5).

r Ifthe TRACK$SIZE field is zero, the random access support
routines divide the value in DEV$LOC by the device granularity
and place that value (the absolute sector number) in the
DEV$LOC field.

4-t2 Device Drivers Useis Guide

DEVICE DRIVER INTERFACES

. If the TRACI$SZE field is nonzero, the random access
support routines divide the absolute byte number in DEV$LOC by
TRACK$SIZE to calculate the track and sector numbers. The
routines then place the track number in the high-order WORD (of
DEV$LOC) and the se€tor number in the low-order WORD (of
DEV$LOC).

BUFF$P POINTER the I/O System sets to indicate the internal buffer
where data is read from or written to.

COUNT WORD the l/O System sets to indicate rhe number of bytes to
ttansfer.

COUNT$FILL Reserved WORD.

AUX$P POINTER the I/O System can set to indicate rhe location of
auxiliary data. No.mally, the I/O System uses AUX$P to pass or
receive the additional data the various sublunctions of the
SPECIAL call requre.

The following paragraphs define the particular data structures
poinred to by AUXSP. The data structùre actually pointed to
depends upon rhe SUBFUNCT field of the IORS.

In a request to format a track on a disk or diskette, FUNCI equals
f$special, SUBFUNCT equals format track (0), and AUX$p points
to a structure of the form:

DECI.ARE FORXAT$TRACK STRUCTURE(
TRACKSNUI.ÍBER I'ORD,
INTERLEAVE \IOR-D,
TRACKSOFFSET I,JORD,
FILL$CHAR BYTE);

These fields are defined as follows:

track$number is the number ofthe track to be formatted.
Acceptable valu€s ar€ 0 to (nuîtber of track$ on the volume - 1).

interleave is the interleave factor for the track. (Thai is, the
number of physical sectors to advance when locating the next
logical sector.) The supplied value, before being used, is evaluated
MOD lhe number ofsectors per track.

track$offset is the number of physical sectors to advance when
locating the first logical sector on the next track-

fìllkhar is the BYTE vahe with which each sector is to be filled.

Device Drivers Uscr's Cuidc 4-13

DEVICE DRI!'ER INTERfACES

In a request to set up a mailbox in which the device driver sends an
object whenever a door to a flexible disk drive is opened or the
STOP button on a hard disk drive is pressed, FUNCT equals
f$special, SUBFUNCT equals notif (2), and AUX$P points to a
strùcture of the form:

DECI,ARE SETUPgNOTIFY STRUCTURE(
ì.ÍAILBOX TOKEN,
OBJECT TOKEN);

rrhere the fields are def]].ed :':'the Extendcd LRMX II Basíc I/o

S)J/en Callr rnanual in the desùiption of the A$SPECIAL system
call. Random access drivers do not need to create the mailbo\ but
they must send the object to the mailbox whenever they notice a
media change.

In a request to obtain information about iSBC 215G (supported)
disk dcvicca, FUNCT cquals f$spccial, SUBFUNCT equals get
device characteristics (3), and AUX$P points to a structure of the
form:

DECI-A.RE DlSKSDRIVE$DATA STRUCTURE(
CYLINDERS WORD,
FIXED BYTE,
REMOVÀBLE B\"IE,
SECTORS B\"TE,
sEcToR9SrZE WORD,
ALTERNATES BYTE);

where the fields are d eîrned 1n the Extended iRùÍX II Basíc I/O
Sytem Calrt manual in the description of the A$SPECIAL system
calì.

In a request to obtain information about iSBX 217C tape drives
(associated with an iSBC 2l5G board) or ìSBC 214 tape drives,
FUNCT equals 1$special, SUBFUNCT equals get device
characteristics (3), and AUX$P points to a structure of the form:

DECIARE TAPE$DRIVE$DATA STRUCTURE (
TAPE
R E S E R V E D (7)

Ef- IE,
BYTE) ;

where the fields are d eliierl ii the Extended |RMX II Basic I//O
Slstum Callr manual in the description ofthe A$SPECIAL system
call.

4-14 Device Drivers Usefs Guide

DEVICE DRIVER INTERTACES

In a requesî to read or write terminal mode information for a
terminal being driven by a te.minal driver, FUNCT equals
f$spe6ial, SUBFUNCT Èquals get lcrminal attributes (4) for
reading or set terminal attributes (5) for writing and AUX$P
points to a structure of thc form:

DECL{RE TERMINAL$ATTRIBUTES STRUCTIJRE(
NLÌ{$WORDS WORD,
NUtf$usED woRD,
CoNNECTTON$FrAGS IIORD,
TERMINAL$FIAGS IIORD,
TNSBAT]D9RATE WORD,
OUTgBAUD$RATE WORD,
SCRoLL$LINES WoRD,
xgYgslzE woRD,
X$Y9OFFSET WORD,
SPECIALSMODES t"tORD,
HIGHgIìATER$MAR(WORD,
rcW$L'ATER$MARK L'ORD,
FC9oN9CHAR L'oRD,
FCOFFCHAR I{ORD,
LINKOPAÀAXDTER IIORD,
sPcgHt$IiATER$I'{RK r,tORD,
SPEC]AL$CHAR(4) BYTE):

where the fields are defined ln the Extended \RMX II Ba:íc I/O
Slstem Calls manual in the description of the A$SPECIAL system
call. lfyou are using the Terminal Support Code, your driver does
not need to cortain special code to support this subfunction.

In a request to set up special character recognition in the input
stream of a terminal driver for signaling purposcs, FUNCT equals
f$special, SUBFUNCT equals signal (6), and AUX$P points to a
strùciure ofthe form:

DECINRE SIGNAL$CHARACTER STRUCTURE(
SEì'IAPHORE
CHARACTER

TOKEN,
BYTE) ;

where the fields are d eîined in the Extended iRlrlx II Basic I/O
Sysfem Cnllr manual in the description ofthe A$SPECIAL system
call. lfyou are using the Terminal Support Code, your driver does
not need to contain specialcode to support this subfunction.

In a request to read a tape file mark, FUNCI equals f$special,
SUBFUNCT equals read tape file mark (8), and AUX$P points to
a structure of the form:

Device Drivers Usefs Guide 4-t5

DEI'ICE DRIVER INTERT'ACES

DEC1ARE READ9FI]-E$UARR SîRUCT1IRE(
SEARCH BYIE,/,

where the field ìs defined]n the Eiended íRMX II Basic I/O System
Cal& manual in the description ofthe A$SPECIAL system call.

In a request to set or get bad track/sector information, FUNCT
equals f$special, SUBFUNCT equals set bad track/sector
information (12) or get bad track/sector information (13), and
AUX$P points to a structure ofthe following form:

DECI.ARE BAD$TRACK$INFO STRUCTURE(
RESERVED WORX,
COUNT I,IORI
BAD$TRACKS(255) DI,ùORD),

BAD$TMCKS(255) STRUCTURE(
CYLTNDER

Ilì1,
sEcToR B r-rEi

AT (GBAD$TRACK$ INFO . BAD$TRACRS) ;

where the fields are defiîed in the F,xtcrulp.d |RMX Badc I/O
S}J em Cark manual in the description ofthe A$SPECIAL system
call.

LINK$FOR POINTER the device driver or device driver support routines can
use to implement a request qùeue. This field points to the location
ofthe next IORS in the queue.

LINK$BACK POINTER the devìce drive. or device driver supporr roudnes can
use to implement a request queue. This field points to the location
of the previous IORS in the queuc.

RESP$MBOX TOKEN the I/O System fills with a token for the response
mailbox. On completion ofthe I/O request, the device driver or
device driver support routines must send the IORS to this response
mailbox or exchange.

DONE BYTE the device driver can set to TRUE (oFFH) or FAIJE
(00H) to indicate whether the entire request has been completed.

FILL Reserved BYTE.

CANCEL$ID TOKEN the I/O System fills in to identily queued I/O requests the
Cancel I/O procedure can removc from the queue. For I/O
operations that require multiple .equests (and therefore multiple
TORSs), the I/O System uses the same CANCEL$ID value in all
IORSs for that operation. This allows the Cancel I/O procedure to
remove all IORSs for a given operation.

4-16 Device Drivers Uset's Gùide

DEYICE DRIYER INTERFACES

CONN$T TOKEN used in requests to the I/O Sysrcm. This li€ld conrams
the token of the file connection through which the reqùest was
issued.

4.2 DUIB AND IORS FIELDS USED BY DEVICE DRIVERS

Tables 4-1, 4-2, and 4-3 indicate, for common, mndom access, and custom drivers, the
fields olDUIBs and IORSS with which user-written oortions of device drivers need to be
concerned. The user-written portions of terminal drivers do not need to use either of
these structures. Device drivers should not write information to these fields unless
specifically indicated in the tables.

Device Drivers Uset's Guide 4-17

I)EVICE DRTI'ER INTERFACES

Table,l-1, DUIB snd IORS trields Used bv Coúmon Device Ddve$
Attach D€tach
Device DevÌc€ Open Clos€ R6ad Wrhe S€€k Sp€cial

D U I B

File$drlvers

Flags
Devgsran
Dev$sÌze
Oevce
u n t
O6v$unil
lnit$io
Fìnish$o
0ueue$io
Cancè$o
Dev ce$info$p
Unit$lnfo$p
Updare$timeoul
NumSbuflers
Pror i ty
Fixed$updale

toRs

unit$status

AcJual$fill
Device
Unit

Subfuncr
Dev$loc
Buir$p
Count
Counl$lill
Aux$p
LÌnk$lor
L nk$back

Done
Fit l
Cance$d
Conn$t

r-is read byth€ device driver

w-is written bythe devico drv6r

m-mighi be read by some devic€ driv€rs

4-18 Device Drivers Usefs Guide

DEI'ICE DRIltsR INTERFACES

Table 4-2. DUIB and IORS Fi€lds Used by Random Access Deyice Drivers
Attach Detach
Dévicè Dévi@ Opsn Closs Rcad Wdr€ Seek Spècial

DUIE
Name
File$drlvers

Flags
Dév$s6n
D6!6size
D€vice
Unit
Dsv$unÌt
Init$io
Finlsh$io
0ueu€Sio
Cancel$io
Device$ nlogp
Unit$info$p
Update$t meout
Num$bulfers
Priority

Max$buffers

toas
Stalus
Unitsslatus

Aclual$fll
D€vice
Unit
Funcl

Dev$loc
Bufl$p

Count$fll

Link$for
LinkSback
Resp$mbox
Done
Fitl
Cancel$id
Conn$t

m m m m

tì

w w

r-b r€ad byth€ devic6 driver

w-rs wrin€n by rhé d€vic€ diver

m-might b€ read by some devÌc€ drivors

Device Drivers Uscr's Cuide 4.19

DEVICE DRIVER INTERFACES

Table 4-3. DUIB and IORS Fields Used bv Custon Device Drivers

oevic€ Devic6 Op6n Clos€ R6acl Wrir€ Sssk Sp€cial

DUIB
Nam€
File$drivsrs

Flags
D€v$gran

Devic6
Unh
D€v$unh
Init$io
Finish$io
Qu€ue$io
Cancel$io
Devics$info$p
Unit$inlqSp
Updat6$tim€our

Priority
Flxed$update

toRs
Status
Unit$status

Aclual$fill
Device
Unh

Subtunct

Buff$p
Courn
Cour,t$fìll

Link$fo.
Link$back
Resp$mbox
Done
Fitl
Canc6l9id
Conn$t

m m m m

w w

t t f t t t t l

I

a a a a

r-is r€ad by the devic€ driv€r

w-is written bylhe dsv ce driver

m-might b€ r€ad bysome d€vice driv€r6

a-available tor any purpos€ suhing lhe n€6ds ofthe device drivor

4-20 Device Drivers Usefs Guide

4.3 DEVICE INTERFACES

To carry out I/O requests, one or more of the routines in everv device driver must
actually send commands to the device irselJ. The steps a procedure of this soft musr go
through vary considerably, depending on the qpe ofl/O àevice. Some devices are
controlled by on-board firmware the driver communicates with bv sendins firmware
commands and receiving status. Other devices may require different meiiods. The I/O
System places no restrictions on the method of communicatinq with clevices. Use the
method the device requires.

However, a consideration that appJies to many device drivers is the manner in which
delices expect addresses to be presented. For example, the Operating Systcm expects all
addresses to be logical addresses of this fo.m:

seÌectololfset

on the orher hand, most device controllers expect addresses to be physical (24-bit)
addresses. To compensate for this difference, a device driver must convert irom one form
ofaddress to another when sending or receiving device information.

For example, writing information to a device usually involves giving the controller the
address of the data buffer that holds the information. To the device driver (or any other
progam that filìs the buffer), the buffer is known hy its logical address_ But the controller
erpe.ts the 24-bit physical address of the buffer. Therefore, the driver mùst convert the
buffer\ logical address to a physical address before passing the address to the device
controler.

The Operatìng System provides two ways ofconverting a logical address into a physical
address. The Nucleus provides one method with the sysrem call ReECETADDRESS.
The Basic I/O Systcm provides a similar but fasler merhod for use by device drivers.

The Basic l/O System method involves a procecjure called BIOSSGET$ADDRESS. This
procedure is located in the /RMX286/IOS/XDRI'L]T.LIB ljbrary. When you link your
driver code to this library and call the BIOSGETADDRESS proceclure, ihe procedure
converts logical addresses to physical addresses. Becaùse this mnversion Dros;am ls a
procedure, not a system call, it runs in rhe callirg progam,s environmenr ;ithout invoking
other Basic l/O System routines.

The calJing sequence for this procedure ìs as follows:

physical - BToSgcFjTgADDRESS (logicar, exceprgprr);

DE\TCE DRTVDR INTtrRFACES

where

physical A DWORD returned by the procedure that contains the 24-bit phvsical
address r lesiretl The high-or<jer hye of rhis DWORD isser rozero.

Device Drivers User's Guide 4-21

DE\TCE DRII'ER INTERFACES

logical A PoINTER specirying the logical address to be conveÍed. The pointer
must be in the fo.m selector:offset.

except$ptr A POINTER to a WORD containing a condition code returned by the
procedure. Possible condition codes include

E$oK No exceptional conditions occurred.

EBAD- The logical address is invalid. Either the
ADDR selector does not point to a valid segment, or the offset

is outside the segment boundaries.

The following example illustrates how a program declares and invokes
BIOSGETADDRESS:

9INoLvDE (/rùx2 8 6/ inclrnÌxp1n. ex !) /* Declares al l sysLen cat ls */

DECI,ARE phys$addr DWoRD;
DECIARE buff$ptr PoÌNîER;
DECI-ARE status$ptr P0INTER;

BIOSSGET$ADDRESS I PROCEDURE (tog$addr , except$ptr) DwoRD EXTERNAL;

DECI,ARE (1og$addr, e: .cept$ptr) P0INTER

END BIOS $GEÎ$ADDRESS ;

SAMPLE-PROCEDLTRE :
PROCEDURE;

. Typicat PL/M-286 slalements

phys$addr = BToS9GET9ADDRESS(buff$ptr , status$ptr) ;

. Typical Pl l l ' l - 286 statenents

END SAI,IPLE*PROCEDURE;

Converting from physical addresses to logical addresses is also necessary ifyou need to
have access to the information returned by a device controller. The Nucleus provides a
system call named RQE$CREATE$DESCRIPTOR that sets up an entry in the descriptor
table for any segment whose physical address and size you speciS. By setting up a
descriptor, you allow programs to acccss that mcmory with logical addrcsscs.

Device Drive$ Usefs Guide

This chapter describes how to write d€vice drivers for common and random access
devices. It lìsts the procedures the I/O System supplies, describes the data structures that
must exist, and includes the calling sequences for the procedures you must provide wheo
writing a common oÍ random access device driver. Where possible. descriotions of the
duties oI rhese procedures accompany lhe call ing sequences.

In addition, this chapter describes the purpose and calling sequence for five I/O System-
supplied procedures that random aoccss drivers call under certain condilions.

Throughout this chapter, dìîferences between message-passing and interrupt driven
devices are noted by the following conventions (refer to Appendixes A and B for
descriptions of these devices. Message-passing data structures and parameter
descriptions are shaded in gray where they differ from interrupt-drìven data structures
and parameter descriptìons. The terms interrupt and message (and variations of these
terms) are noted as "intearupt/message" where they mean that interrupt-driven rlevices
use an interrupt while message-passing devices use a message to accomplish the same
purpose.

s.1 r/o SYSTEM-SUPPL|ED ROUTTNES

For common and random access devices, the I/O System supplies the highest-level
procedures. It calls these procedures when processing l/O requests. Flow charts and
complete descriptions for these procedures appear in Appendites A (interrupt-driven
devices) and B (message-passing devices). The names ofthese procedures and the
general operations they pedo.m are as follows:

Procedule Function

INIT$IO

FIN]SH$IO

Creates the resources needed by the remainder ofthe driver
routines, creates an interrupt/messag€ task, arìd calls a user-
supplied routine that initializes the device itseli

Deletes the resources used by the other driver routines, deleîes the
interrupt/message task, and calls a user-supplied procedure that
p€rlbrms fiùal processing on the device itsell

I)evice Drivers Use/s Guide 5-l

WRJTINC COMMON OR RANDOM ACCESS DEVICE DRI!'ERS

QUEUE$IO Places I/O requests (IORSs) on a queue of requests. This
procedure starts the device processing the first request on the
queue.

Removes one or more requests from the request queue, possibly
stopping the processing of a request that has akeady b€en started.

CANCEL$IO

For Intel-suppted common or random access drivers, these high-level procedures call
other Intel-supplied procedures that communicate directly with specific devices. lf you
write your own common or random access device driver, these high-level procedures call
procedures that you must wdte. A later section of this chapter describes the intertaces to
these user-',\Ìitten procedures.

The INIT$IO, FINISH$IO, QUEUE$IO, and CANCEI-$IO procedures process I/O
requests lor both common and random access devices. They distingùish between gpes of
devices based on the value of the NUM$BUFFERS field in the unit's device-unit
information block (DUIB). (When calling each of these routines, the I/O System supplies
a pointer to the DUIB as one of the parameters.) If the NUM$BUFFERS field is
norizero, the routines assume the device is a random access device. Ifthe
NUM$BUFFERS field is zero, the routines assume the device is a common device.

5.1.1 Interrupt Task

In addition to the above routines, the I/O System supplies an interrupt haldler and an
interrupt task (called INTERRUPT$TASK) for interrupt-driven devices. The interrupt
handler and interrupt task respond to all interrupts generated by the units of a device,
process those interrupts, and start the device working on the next I/O request on the
queue. The INIT$IO procedure ueates the interrupt task.

After a device finishes processing a request, it sends an interrupt to the processor. As a
consequence, the processor calls the interrupt handler. This handler invokes the
SIGNAL-$INTERRUPI system call to tell a wairing interrupt task to process the
interrupt. The handler doesn't process the interrupt itselfbecause it is limited in the t;pes
of systern calls it can make and the number ofinterrupts that can be enabled while it is
processlng.

The intefiupt task feeds the.esults ofthe interrupt back to the I/O System (data from a
read operation, status from other types of operations). The interrupt task then gets the
n€xt I/O request lrom the qucu€ and starts the device processing this request. This cycle
conlinues unti l rhe device is de!ache(

Figure 5-1 shows the interaction between an interrupt task, an I/O device, an I/O request
queue, and the QUEUE$IO device driver procedu.e. The interrupt task in rhis figùre is
in a continual cycle ofwaiting for an interrupt, p.ocessing it, getting the next I/O request,
and starting up the device again. While this is goiag on, the QUEUE$IO procedure runs
in parallel, putting additional I/O requests on the queue.

Device Drive$ User's Guide

WRJTING COMMON OR RANDOM ACCESS DEVICE DRIVERS

_t-
_l

i l

Figure 5-1. InterÌùpt Task Interaction

5.'l .2 Message Task

In addition to IMT$IO, QUEUE$IO, CANCELJIO, and FINISH$IO, rhe I/O System
supplies a message task (called MESSAGE$TASK) for message-passing devices. The
message task responds to all messages generated by the units of a device, processes those
messages, and staÍs the device working on the unstarted I/O requests on the queue.

Figure 5-2 shows thc in(eraction berween a message task, afl I/O device, an I/O request
queue, the QUEUESIO device driver procedure, and user-supplied driver procedutes.
The messsge task aunning on the CPU board is in a continual cycle ofwaiting for a
message, processing it, then checking the next request on the I/O request queue. Ifthe
request is unstarted, the message task starts the device processing the request. Ifthe
request is ma.ked DONE, the message task removes it from the queue. While the
message task goes through this g,cle, the OUEUE$IO procedure runs in parallel, putting
additional I/O requests on the queue.

Device Drivers Userrs Guide

WRITING COMMON OR RANDOM ACCESS DEVICE DRI!'ERS

Message Task

e$ ln te r rup t

Control lèr
Board

B a s i c l / o s y s t è m

Q U E U E $ I O

D e v i c e

1 .
2.
3.

5.

6.

An l/O roquest comes in loihe OUEUE$IO procsdure.
The QUEUE$lO procedure placesthe request on the l/O.equssl queue.
The OUEUESIO pfocedure callsrhe user,supptied device stan procedure.
Th€ device start procedure sends a messagelolhe contfoller board.
Aiid processing th s devce drivà reqlesr, ihe conlrott€r board send6 a m€ssage rothe messago
task.
The messagetask callsthe usoÈsupp ed devce intgrrupt procedure rhatlracks wh ch IORS
cof€spondsto each l fansacl ion lD. l tasomarksrhel/or€questasDoNE,whenîhot/orequesrrs
complete. llth6l/O request is compl€re, the messagetask returns the |OBS lo the user who
originat€d the request_
The messag6 task callsthe device siari procedureto siadihe next available unsial(ed requesl on the
l/O request queu6- The message taskwais for a message from the confoJler.

Figure 5-2. Message Task Inleraction

5-,1 Device Drivers User's Guide

WRITING COMMON OR R{NDONÍ ACCESS DEVICE DzuVERS

5.2 I,/O SYSTEM ALGORITHM FOR CALLING DRIVER
PROCEDURES

The I/O System calls each of the four device driver procedures (INITSIO, eUEUEglO,
CANCEL$TO, and FINISH$IO) in response to specific conditions. Figure 5-3 is a flow
chart that illustrates the conditions under which three of the four procedures are cirlled.
The following numbered para!traphs discuss the portions ofFìgure 5-3 labeled witll
corresponding circled numbers.

1. To start I/O processing, an application task must make an I/O request. It can do
this by invoking any of a varìety of system calls. However, the first I/O request to
each device-unit must be an RQAPHYSICAT$ATTACH$DEVICE sysrem call.

2. If the request results ftom an RQAPHYSICAL$ATTACH$DEVICE system call,
thc I/O System checks to see if any other units of tlì€ d€vice ar e currerìtly arrachcd.
If no other units ofthe device are currently attached, the I/O System realjzes that
the device has not been initialized and calls the INIT$IO procedure firsr, before
queuing the request.

3. WÌretlÌer or not the I/O System called rhe lNtT$tO procedure, ir calÌs the
QUEUE$IO procedure to queue the request for execution.

4. lf the requestjust queued resulted from an
RQAPHYSICAL$DETACH$DEVICE system call, rhe I/O System checks ro see
if any other uniîs of the device are currently attached. If no other units of the
device are attached, the l/O System calls rhe FINISH$IO procedure to do any final
processing on tlìe device alld clcal up rcsourccs userl by the clevice driver routines.

The I/O System calls the fourth device driver procedure. the CANCELSIO procedure,
uncier the following conditions:

. If the user makes an RQAPHYSICAL$DETACH$DEVICE sysrem caÌl specilying
the hard detach option, to forcibly detach the connection objects associated with a
deviceunit.'fheExtcnded|RMXIlBasicI/OSystemCalls manr:al describes the hard
detach option.

. If thejob containing the task which made a request ìs deÌeted.

Device Drirers User's Guide

WRTTING COMMON OR RANDOM ACCESS DEITCE DRI!'ERS

iosr$HYsrcalmnac|ioryrcE

(3)

Calls the Device Driver PmceduresFigure 5-3, How the I/O System

Device Drivers Usefs Guide

WRJTINC COMMON OR RANDOM ACCESS DEVICE DRII'ERS

5.3 REOUIRED DATA STRUCTURES

The principal data structures supporting common and random access l/O are the Devìce
Unit Information Block (DUIB), the Device Information Table, and rhe Unir Informarion
Table (random access drivers only).

The DUIB is the primary interface between the device driver and the I/O System. Each
device-unit that communìcates via the I/O System has its own DUIB. Each DUIB
contains one pointer to a Device Information Table and another to a Unit Illformatton
Table. Chapter 4 describes all the fìelds that úake up the DUIB.

Ifyou write your o\rn common or random access driver procedurcs, rhe I/O System-
supplied routines INIT$lO, FINISH$lO, QUEUE$IO, and CANCE$IO must be able ro
call these routines- For this to happen, you must supply the addresses of these user
supplied routines. as well as other information, in a Device Information Table. Intel-
supplied device drivers also rrse Device lnformation Tables to supply information abou!
their lower-level routines. The "Device lnformation Table" section of this chapte.
describes the fields that make up the Device Iniormation Table.

In addition, random access drivers require Unit lnformation Tables for use in procrssing
I/O requests for devices wirh multiple units (sùch as a disk controller with multiple
drives) where the units have different characteristics. The "Unit lnformation Table"
scction of this chapter describes rhe fields that make up rhe Unir Informalion Table.

ln setting up DUIBS, those DUIBS that correspond to units ofthe same device shouÌd
point to the same Device Inforùation Table. But rhey should point to differeùt Unir
Information Tables if the units have different characteristics Figlrre 5-4 illustrates rhis.

Dcvice DriYers Usefs Guid€

WRITING COMMON OR RÀNDOM ACCESS DEVICE DRIIERS

t igure 5-4. DUIBS, Device and Unit Information Tabl€s

5.3.1 Device Information Table

Device Information Tables for comrnon and random access drivers contain thc same
fields in the same order. If you write your own device drivers, there are two ways ro ser
up Device Information Tables. The first way is to use the User Device Support (UDS)
utility to add support for your driver to the ICU. lf you use the UDS utility to modify the
ICU, you can choose your driver from an ICU menu and fill in the necessary information
just as you would when configuring an Inrel-supplied rìriver. Refer to Chapter 9 for more
inlbrmation about the UDS utilitv.

5-ó Device Drivers UseCs Guide

WRITING COMMON OR RANDOM ACCESS DEVICE DRIItsRS

The second way to set up Device Information Tables is to code them in the format shown
here (as assembly-language strùctures). With this merhod, you give the ICU the
pathnamc ofyour Device Information Table file, ard the ICU irìclurlcs the file in thc
assembly of ?ICDEV.Az8, a Basic I/O System codiguration file the ICU creates (the ?
means the first character of the file can vary). /RMX286/IOS/IDEVCF.INC contains
the definition ofthe structure. For more information on confizurinq user-written device
drivers. see Chapter 9.

The fields DEVICE$INIT, DEVICE$FIMSH, DEVICE$STARI DEVICE$STOP, and
DEVICE$INTERRUPT contain the names ofuser-supplied procedures whose duties are
described later in this chapter. Ifyou decide not to use the UDS utiliry to add
conliguration support to the lCU, specify external declarations for these user-supplied
procedures when creatiÌrg the file containing your Device Information Tables. This allows
the code for these user-supplied proceduaes to be included into îhe assembly ofthe I/O
System. For example, if your procedures are named SAMPLE$DEVICE$IMT,
SAMPLE$DEVICE$FINISH, SAMPLE$DEVICE$START, SAMPLE$DEVICD$STOP,
and SAMPLE$DEVICE$INIERRUPT, include the following declarations in the file
containing your Device Information Tables:

extrn sample$device $ ini t : near
extrn sanple$device $ f in ish: neat
extrn sanpleSdevice$start : near
extrn sampleQdevice$stop: near
exlrn sampleSdevice $ interrupt : near

Ifyou use the UDS ùtility, these external declarations are included automatically.

Ifyou set up your own file ofDevice Information Tables, use the following format when
coding vour Device Information Tables:

Device Drivers Uset's Guide 5-9

WRITING COMMON OR RANDOM ACCESS DEVICE DRI!'ERS

RADEV_DEV_]NFO <
& LEVEL,
& PRIORITY,
& STACK9STZE,
& DATA$S]ZE,

& D E V I C E $ I N I T ,
& D E V T C E 9 F t N T S H ,
& DEVTCE$START,
& DEVICE$STOP,
& DEVICE$ INTERRUPT ,
& TIMED$OUT,
& RESERVED$A,

WORD
B}"IE
IìORD
I,IORD
LtoRD
TIORD
I.IORD
I'ORD
I{tOR-D
I{ORD
t{toRD
WORD

WORD distinguishing message-passing devices from inteÍupt-
driven devices

For interrupt-driven devices, this field specifies an encoded
interrupt level at which the device will interrupt. The in(crrult
task uses this value to associate itselJ with the correct interrùpt
level. The values for this field are encoded as follows:

LEVEL

Dits

15

Value

If one, this is an extended device information structure.
That is, it contains the last three fields (TIMED$OUT,
RESERVED$A, and RESERVED$B). Ifzero, the
random access support code doesnl recognize those
fields, even if they are present.

0

First digit of the interrupt level (0-7).

If one, the level is a master level and bits 6-4 specily the
entire level number.

Ifzero, the level is a slave level and bits 2-0 speciry the
second digit.

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero.

& RESERVEDSB

5-10 Device Drivers Usefs Gùide

WRITING COMMON OR MNDOM ACCESS DE\TCE DRII'ERS

for interrupt-driven A BY-IE rng the rmtia
priority of the interrupt task. The actùal priority of an interrupt
task mìgha change because the Nucleus adjusts an interrupt task's
priorìty according îo the interrupt level it ser.vices. Refer to the
Exteruled |RMX II Nucleus User's Cuide îor îurther infornation
about this relationship between interrupt task priorities and

PRIORITY

STACK$SIZE

DATA$SIZE

NUM$UNITS

DE\'ICE$INIT

DEVICE$FINISH

hterruot levels.

WORD specirying the size, in bltes, of the stack for the user-
written device interrupt procedure (and procedures that it calls).
This number should not include stack requirements lor the I/O
System-supplied procedures. They add their requirements to this
figure.

WORD specifying the size, in bytes, ofthe user portion of rhe
device's data storage area. This figure should not include the
amount needed by the I/O System-supplied procedures; rather, it
should include only that amount needed by the user-written
toutlnes,

WORD specifying the number of units supported by the driver.
Units are assumed to be numbered consecutively, starting with
zero,

WORD specifying the offset address of a user-written device
initialization procedure. The format of this procedùre, which
INIT$IO calls, is desc.ibed later in this chapter.

WORD specifying thc offsct addrcss of a use.-written device finish
p.ocedure. The format of this procedure, which FIMSH$IO ca s,
is described later in this chapter.

Device Drivers User's Guide 5 . l l

\ \ 'RITINC COMMON OR RA\DOV ACCESS DE\4CE DRN'ERS

DEVICE$START WORD speci{ying the offset address of a user-written device start
procedure. The îormat of this proc€dure, which QUEUE$IO and
INTERRUPT$TASK/MESSAGE$TASK call. is described later in
this chapter.

DEVICE$STOP For interrupt-driven devices, a WORD specifuing the offset
address of a user-written device stop procedure. The format of this
procedure, which CANCEI-$IO calls, is descrìbed ìater in this
cnapaer,

For mc

DEVICE$- WORD specifying the offset address of a user-writtet device
INTERRUPT interrupt procedure. The format of this procedure, which

INTERRUPT$TASK/MESSAGE$TASK calls. is described later
in thjs chapter.

TIMED$OUT For ìnterrupt-driven devices, a WORD specifying the timeout
value for the TIMED$INTERRUPT system call. This value
represents the number of Nucìeus clock intervals the
TIMED$INTERRUPT system call waits without receiving an
interrupt before it returns with an error. lf LEVEL bit 15 is set to
zero, the default value for TIMED$OUT will be 0FFFFH. which
means the task will wait forever.

RESERVED$A
RESERVED$B

Intel reserves these WORDS for future use. Set these values to
zefo.

5-12 Device I)rivers UseCs Guide

WRITING COMMON OR RANDOM ACCESS DE\{CE DRII'ERS

Depending on the requiremerìts ofyour device, you can append additional information to
the RADDV*DI,V_INFO structur€. Fof exanÌplc, most d€viccs rcquire you ro append
the I/O port address to this structure, so that the user-written procedures have access !o
the device.

5.3.2 Unit Information Table

Ifyou have random access device drivers in your system, you must crcatc a Unit
lnlbrmation Table for each different g?e of unit in your system. Each random access
device-unit's DUIB must point to one IJnit Information Table, although multiple DUIBs
can point îo îhe same Unit Information Table. The Unit Information Table must include
all infor mati.rn rhal is unit dependÈn-.

As with Device Information Tables, there are two ways to create Unit Information Tables
to support user-written device drivers. 'Ihe

tirst way is to use the User Device Support
(UDS) utility to add support for your driver to the ICU. If you use the UDS utiliryto
modi! the ICU, you can choose your driver from an ICU menu and fill in the necessary
information just as you would when configuring an Intel-suppJied driver. Refer to
Chapter g for morc information about the UDS utility.

The second way to set up Unit Information Tables is to code them in the format shown
here (as assemblylanguage structures). Ifyou give the ICU the pathname ofyour Unit
Information Table file, the ICU includes the file in the assembly of ?ICDEV.A28, a Basic
l/O System configuration file that the ICU creates (the ? means that the first character of
the file name can vary). /RMX2IÌ6/IOSiIDEVCF.INC contaìns the definition of the
structùre. For more information on configuring user-witten devices, see Chapter 9.

The minimum r€quirements for the strusture of the Unit Information Table are as
follows:

I)evice Drivers User's Guide s.l-t

WRITING COMMON OR RANNOM ACCNSS DE!'ICE DRIVERS

RADEV_IJNTT_INFO <
& TRACK$SIZE, ; tJoRD
& MAX$RETRY, ; WORD
& CYLINDER9STZE ; WoRD
& >

TRACK$SIZE WORD specifying the size, in b),tes, of a single track of a volume
on the unit. If the devic€ controller supports .eading and rÀ.riting
across track boundaries, and your driver is a random-access driver,
place a zero in this field ln this case, the I/O System-supplied
random access support procedures place an absolute sector
number in the DEV$LOC field of the IORS. If you speci! a
nonzero value for this field, the random access support procedures
guaaantee that read and write requests do not qoss track
boundaries. They do this by placing the sector number in the low-
order word of the DEV$LOC field ofthe IORS and the track
number in the high-order word ofthe DEV$LOC field before
calling a user-written device start procedu.e. Instructions for
writing a device start procedure are contained later in this clrapter.

set thìs valu€ to zero.

MAX$RETRY For interrupt-driven devices, a WORD specirying the meximum
number of times an l/O request should be tried ifan error occurs.
Nine is the recommended value for this field. When this field
contains a nonzero value, the I/O System-supplied procedures
guarantee that read or write requests are retried ifthe user-
supplied device start or device interrupt procedures return an
IO$SOFT condition ìn the IORS.UMfiSTATUS field. (The
IORS.UNIT$STATUS ficld is described in the ̂ IORS Structure"
section oi Chapter 4.)

5"14 Device Drivers Usefs Guide

WRITING COMMON OR RANDOM ACCESS DEI'ICE DRII'ERS

CYLINDER$SIZE For interrupt-driven devices, a WORD whose meaning depends on
its value. as follows:

The random access support code never splits a read or
wite into a seek/read or a seek/write. Instead, either
it expects the device driver to request seek operations
whenever a read/write begins on a rylinder different
from the one associated with the current Dosition of the
read/write head (expticit seeks), or it expects the
controller to perform these seeks automatically
(implied seeks).

The I/O System automatically requests a seek
operation (to seek to thc correct cylinder) before
performing any read or write. The device driver for the
unir must call the SEEI($COMpLETE procedure
immediately followìng each seek operation.

Any other value specifies the number of sectors ìn a
cylinder on the unit. The I/O System uses this
information to determine when it should request seek
operations. It automatically requests a seek operation
whenever a requested read or wlite operation begins in
a different cylinder than that associated with the
current position ofthe read/write head. The device
driver for the unit must cal the SEEK$COMPLETE

urc immediatelv followine each seek ooeration

5.4 DEVICE DATA STORAGE AREA

The common and random access device drjvers are set up so that all data îhat is local to a
device is maintained in an area ofmemory. The IMfiIO procedure creates this device
data storage area, and the other procecìures of the driver atess and updale information
in it as needed. Storing the device-local data in a central area serves rwo purposes.

First, all device driver procedures that service individual units ofthe device can access ancl
update the same data. The IMfiIO procedure Dasses the address of the area back to the
I/O System, which in turn gives the aàdress ro the orher procedures of rhe driver.

'lhey can then place information relevant to the device as a whole into the area. The
identity of the first IORS on the request queue is maintained in this area, as well as the
atlachmen! sta!us of the individual units and a means of accessing the interrupt/message
task.

Other

Device Drivers User's Guid€

WRITINC COMMON OR RA,NDOM ACCESS DE\,'ICE DRIVERS

Second, several devices of the same t'?e can share the same device driver code and still
maintain separale device data areas. For example, suppose two iSBC 214 devices use the
same devìce driver code. The same INff$IO procedure is called for each device, and
each time it is called it obtains memory for the device data. However, the memory areas
that it creates are different. Only the routines that servìce units of a particular device are
able to access the device data area for tbat device.

Becaùse the common and random access device drivers provide this mechanism, you
might also want to include a device data storage area in any custom driver that you write.

5.5 INTRODUCTION TO PROCEDURES DRIVERS MUST SUPPLY

The routines provided by the I/o System and that the I/o System calls (INIT$IO,
FINISH$IO, QUEUE$IO, CANCEL$IO, and INTERRUPT$TASK/MESSACE$TASK)
constitute the bulk of a commod or random access device driver. These routines, in turn,
make calls to device dependent routines that you (if you are writing your own random
access or common driver) must supply. These device-dependent routines are described
here briefly and then are presented in detaiì:

A device initialization orocedure. This procedure must pedorm any ìnìtialization
functions necessary to get the device ready to process I/O requests. INIT$IO calls this
procedure.

A device finish orocedure. This procedure must perform any necessary final processing
on the d€vice so that the device can be detached. FIMSH$IO cals this procedure.

A dexjce start procedure. This procedure must start the devicc processing any possible
I/O function. QUEUE$IO and INTERRUPT$TASK/MESSAGE$TASK (the random
access-supplied interrupt/message task) call this procedure.

A device stoo orocedure. For interrùpt-driven drivers, this procedure must stop the
device from processing the current l/O function, if that lunction could take an indetinite
amount of time. CANCEL$lO calls the device stop procedure.

For message-passing drivers, all I/O functions are guaranteed to finish within a limited
îime. CANCEL:$IO does not call this procedure; therefore, this procedure does not need
to perform any operations.

A device interrupt procedure. This procedure must do all ofthe derice-rJependent
processing that results from the device's sending an interrupt/message.
TNTERRUPT$TASK/MESSAGE$TASK calls this procedure.

Figure 5-5 illustrates the relationship between lhese procedures and the hìgher-Ievel
procedures (INIT$IO, FINISH$IO, QUEUE$IO, and CANCEIJIO) supplied by the I/O
Systcm. The remaining sections ofthis chapter discuss the procedures in detail.

Device Driver3 Useis Guide

WRITING COMMON OR RANDOM ACCESS DEYICE DRII'ERS

Chapter 8 also provides information about these procerJures. Rcfcr to that chapt€r for
specifics on what the procedures must do when handling each q?e ofI/O request.

E
E
E
lr]

Figure 5-5, Relationships between Randod-Access Driver Procedurcs

5.6 DEVICE INITIALIZATION PROCEDURE

The IMT$IO procedure calls the user-written device initialization p.ocedure to initialize
the device. The format of the call to the user-written device initialization Drocedure is as
follows:

CALL device $ init (duib$p , ddata$p, statusSp);

where

device$init

duib$p

Name of the device initialization procedure. You can use any name for
this procedure, as long as it doesn't conflict with other procedùre names
and you include the name in the Device Information Table.

POINTER to the DUIB ofthe device-unit being attached. INIT$IO
supplies this pointer as an input parameter. From this DUIB, the device
initialization procedure can obtain the Device lnformation Table, where
information such as the I/o oort address is stored.

Device Drivers User's Guide 5-17

WRITING COMMON OR RANDOM ACCESS DEITCE DRI!'ERS

ddata$p POINTER to an area of memory suppìied by the random access support
code. This memory is the user portion ofthe device's data storage area.
You must specify the size of this area of memory in the Device
Information Table for this device. lle device initialization procedure can
use this data area for whatever purposes it chooses. Possible uses for this
data area include local flass and buffer areas.

slot$id

status$p POIN'|ER to a WORD that INIT$IO supplies as an output parameter.
The device initialization procedu.e must return the status of the
initialization operation in this word. It should retùrn the E$OK condition
code iî the initializatìon is successful. Otherwise. it should return the
appropriate exceptional condition code. If initialization does not complete
successfully, the device initialìzation procedure must ensure that any
resources it creates are deleted.

The device initialization procedure must do the followingl

. It mùst initialize any driver data structures ot flags.

For mcssogc-passing drivers, this proccdurc must initialize th€ PORT$T and
SLOT$ID fields of the device's data storage area. The device initialization procedure
must create a port, then store this TOKEN in the PORT$T field. This procedure
must also scan interconnect space for the board instance specified in the Device
Information Table and return its slot lD to the SLOT$ID field. Inrel has supplied
sample code implementing both ofthese steps on Release Diskette Number 19t
iRMX lI Demonstration Software that comes with your Extended iRMX II package.
For a description of these examples, se€ the Ereflded. íRMX II Nucleus User's Guide.

Ifyou have a device that does not need to be initialized before it can be used, you can
use DEFAULfiINIT, the default device initializatioo procedure supplied by rhe l/O
System. Specily this name in the Device Information Table. DEFAULfiIMT does
nothing but return the E$OK condition code.

. It must reset the board or device. Then it can wait for completion of the reset.

For interrupt-driven drivers, the device initialization procedure will not receive the
intcrrupt if the device sends an interrupt to indicate the reset is complere. For such
devices, either the devìce start or device interrupt procedure should contain spe.ial
code to oroccss thc reset interruDt.

5-18 Devic€ Drivers Usefs Gùide

WRITING COMMON OR RANDOM ACCESS DEYICE DRI!'ERS

For mcssage-passint drivers, the devÌce initii ization prNedure will receive
initialization responses from the controller. Either this procedure, the device start, or
device interrupt procedure can process such responses.

5,7 DEVICE FINISH PROCEDURE

The FINISH$IO procedure calls the user-wtitten device finish procedure to perform final
processing on the device, after the last I/O request has been processed. The format of the
call to the device finish proce<Jure rs as follows:

CALL dewices f in ish (duib 9p, ddatagp);

where

device$finish Name of the device finish procedure. You can use any name for this
procedure, as long as it doesn't conflict with other procedure names and
you ìnclude the name in the Device Information Table.

duib$p POINTER to the DUIB of the device-unit being detached. FIMSH$IO
supplies this parameter as an input parameter. From this DUIB, the
device finish procedure can obtain the Device Information Table. where
information such as the I/O port address is stored.

ddata$p POINTER to the user portion ofthe device's data storage area. This is an
input parameter supplied by FIMSH$IO. The device finish procedure
should obtain, ftom this data area, identification ofany resources other
user-wrinen procedures may have created, and delete these resources.

Ifyou have a device that does not requùe any finalprocessing you can use the default
device finish procedure supplied by the I/O System. The name of this procedure rs
DEFAULT$FIMSH. Speciiy this name in the Device lnformation Table.
DEFAULT$FIMSH merely returns control to the caller. lt is normally used when the
default initialization procedure DEFAULTSIMT is used.

5.8 DEVICE START PROCEDURE

QUEUE$IO and INTERRUPT$TASK/MESSAGE$TASK make cals ro the device start
procedure to start an I/O function. QUEUE$IO calls this procedure on receivilg an I/O
request when the request queue is empty. INTERRUPT$TASK/MESSAGE$TASK calls
the device start procedure after it finishes oùe I/O request ifthere are one or more I/O
requests on the queue. The format of the call to the device start procedure is as follows:

C A] I - d e v i c e $ s t a r t (i o r s 9 p , d u i b g p , d d a r a g p) ;

where

Device Drilers User's Guide 5-19

I4RTTINC COMMON OR RANDOM ACCESS DEI'ICE DRft'ERS

device$start Name of the device start procedure. You can use any name for thN
procedure, as long as it doesn't conflict with other procedr:re names and

iors$p

you include the name in the Device lnformation Table.

POINTER to the IORS ofthe request. This is an input paramete.
supplied by QUEUE$IO or INTERRUPT$TASK/MESSAGE$TASK.
The device staf prmedure must access the IORS to obtaìn information
such as the qpe ofI/O function requested, the address on the device of
the block (absolute sector) where I/O is to commence, and the buffer
address.

POINTER to the DUIB of the device-unit for which the I/O request ís
intended. This is an input parameter supplied by QUEUE$IO or
INTERRUPT$TASK/MESSAGE$TASK. The device start procedure can
use the DUIB to access the Device Information Table. where information
such as the l/O port address is stored.

POINTER to the user portÌon of the device's data storage area. This is an
input parameter supplied by QUEUE$IO or
INTERRUPT$TASK/MESSAGE$TASK. The device start procedure can
use this data area to set flass or store data.

duib$p

ddata$p

The device start procedùre must do the following:

. It must be able to start the device processing any of the I/O requests supported by the
device and recognize that requests for nonsupported functions are error conditions. It
must process the I/O requests as described in Chapter 8.

. If it îransfe.s any data, it must update the IORS.ACTUAL field to reflect the total
number of bltes of data transfeÍed (that is, if it transfers 128 bltes of data, it must
put 128 in the IORS.ACTUAL field,

. If an error occurs when the device start procedure tries to start the device (such as on
a write request to a w.ite-protected disk), the device start procedure must set the
IORS.STATUS field to hdicate an E$IO condition and the IORS.UNIT$STATUS
field to a nonzero value. The lower four bits of the IORS.UNI'I$STATUS field
should be set as indicated in the "IORS Structure" section of Chapter 4. The
remaining bits of the field can be set to any value (some device drivers return the
device's result byte in the remainder of this field). If the function completes without
an erro., the device start procedure must set the IORS.STATUS field to indicate an
ESOK condition.

. For message-passing devices, the devic€ start procedure must set the IORS.DONE
field to any even value between TRUE (oFFH) and FAIJE (0H) ifthe request has
been stafied and is in progress.

If the device start procedure determines that the l/O request has been processed
compleîely, either because of an error or because the request has completed
suu:cssfully, it must ser rhe IORS.DoNE field to TRUE. The l/o request will not

Device Drivers User's Guide

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

always be complered; it may take several calls to the device interrùpt procedure before
a request is completed. However, if the request is finished and the device start
procedure do€s not set the IORS.DONE field ro TRUE, the rundom access supporr
routines wait until the device sends an interrupt/message indicating the request is
finished and the device interrupt procedure sers IORS.DONE to TRUE, before
determining that the request is actually finished.

5.9 DEVICESTOP PROCEDURE

For interrupt-driven devices, the CANCEL-$IO procedure calls the user-written device
stop procedure to stop the device from performing the current l/O lunction. The tbrmat
of the call to the device stop procedure is as iollows:

cALr deviceSstop (iorsSp, duib9p, ddata$p);

device$stop Name of the device stop procedure. You can use any name for this
procedure, as long as it doesn't conflict with other procedure
names and you include this name in the Device Information Table.

POINTER to the IORS of the request. This is an input parameter
supplìed by CANCEL$IO. The device stop procedure needs this
information to determine what type of function to stop.

POINTER to the DUTB of the device-unit on which the I/o
function is being perform€d. This is an input parameter supplied
by CANCELI$IO.

POINTER to the user portion of the device's data storage area.
This is an input paramctcr suppljcd by CAI{CEI$IO. Thc dcvicc
stop procedure can use this area to store data, if necessary.

iors$p

duib$p

ddata$p

Ifyou have a device which guariLntees that all I/O requests will finish in an acceptable
amount of time, you can omit writing a device stop procedure (message-passing devices
are such devices). Instead, use DEFAULT$STOP, the default procedure supplied with
the I/O System. Specify this nam€ in the Device Information Table. DEFAULT$STOP
simply returns to the caller.

5.10 DEVICE INTERRUPT PROCEDURE

INTERRUPT$TASK/MESSAGE$TASK calls the user-written device interrupt
procedure to process an interrupt/message thatjust occurred.

For idterrupt-driven devices, the format ofthe call to the device interrupt procedure is
lbllowsl

Device Drivers Uset's Cuide s-21

\,VRITTNG COMMON OR RANDOM ACCESS DEI'ICE DRN'ERS

CALL dewtce$ interrupt (iorsgp, duib$p, ddata9p);

where

device$interrupt Name of the device interrupt procedure. You can use any name
for this procedure, as long as it docanl conflict with othcr
procedure names and you include this name in the Device
Information Table.

POINTER to the IORS ofthe requ€st being processed. This is an
input parameter suppJied by INTERRUPfiTASK. The device
inte.rupt procedure must update info.mation in this IORS. A
value of NIL for this pa.amete. indicates either that there are no
requests on the request queue and the interrupt is extraneous or
that the unit is completing a seek or other long-term operation-

POINTER to the DUIB ofthe device-unit on which the I/O
function was performed. This is an input parameter supplied by
INTERRUPT$TASK.

POINTER to the user portion ofthe device's data storage area.
This is an input parameter supplied by INTERRUFI$TASK. The
devic€ interrupt plocedure can updirt€ flags in this dàta ar€a or
retrieve data sent by the device.

iors$p

duib$p

ddara$p

For message-passing devices, the format to the call to the device interrupt procedure is as
follows:

CALL device$ interrup t (ne s sage$p , ddara$p, srarus$p);

where

device$interrupt Name of the device intcrrupt proccdure. You can use any name
for this procedure, as long as it doesn't conflict with other
procedure names and you include this name in the Device
Information Table.

Device Diivers Usefs Gúide

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

message$p A POINTER to a STRUCTURE of the following type:

STRUCTURE(
data$p POINTER,
flags WORD,
status WORD,
trans$id WORD,
data$length DWORD,
dummyl WORD,
socket DWORD,
control(20) BYTE,
dummy2(12) BYTtr);

wnere

data$p is a POINTER to the data message received. If the data
was received in a data chain, this is a pointer to the data chain. lf
the pointer value is NIL, then a control message contàining no data
was received.

llags is a WORD with the following encoded meaning:

Bit Name
0 datagqpe
l-2 receivegtype
3-15 reserved

where

dala$type defines whether data$ptr points to a data chain (18) or a
single buffer (08.)

receive$type is an indicator of the t]?e of message received as
follows:

Value Messase Tlrle

00B Transactionless message (RQ$SEND or similar ca)
018 Transmìssion or system status message
108 Transaction request message (RQ$SEND$RSVP or

similar cal l)
11B Transactionresponsemessage(RQ$SEND$REPLY

or similar call)

Device Drivers llsefs Guide

WRITING COMMON OR RANDOM ACCESS DEVICE DRI!'ERS

status contains the send message status returned by the Nucleus
Communications Service. The status codes are

Meaning

A new message has been successfully

A SEND$RSVP transaction has been
remotely canceled.

ENOLOCAII$- This error applies to two cases:
BUFFER Ifthe receive$gpe paramete. indicates

a request message, the local port's
buffer pool does not contain a buffer
large enough to hold the message so the
RQ$RECEIVE$FRAGMENT system
call is required (message
fragnenration.)

If the receive$qT,e parameter indicates
a response message, the RSVP buffer
supplied in the RQSSEN'D$RS\?
system call is not large enough to hold
the response.

ENOREMOTE$- The remote port's buffer pool
BUFFER does not have a buffer large enough to

hold the message and message
fragmentation is turned off.

E$TRANSMISSION A NACK (Negative Acknowledgment),
MPC Failsafe timeout, bus or agent
error, or retry expiration occurred
during the transmission ofthe message.

trans$id is a WORD that contains the transaction lD for this
message. Ifa transactionless message was received, trans$id is
invalid. The device interrupt procedure must map transgid to the
correct IORS. To do îhis mapping the driver must also maintain a
queue of all started requests along with their matching transaction
IDs.

Status

E$OK

E$CANCELED

5-24 Device DriYers User's Guide

WRJTING COMMON OR RANDOM ACCESS DEI'ICE DRIVERS

ddata$p

data$lengh is a DWORD tllat indicatcs thc length ofthe data
message received.

If receive$type indicates a newly received message, then
data$length contains the Iength of the sùccessfully
reaeived message.

If receive$type and status indic-ate request message
fragmentation, the data$lengîh contains the lengrh of
all the message fragments that wilÌ be received using
the RQ$RECEIVE$FRAGMENT system call.

dummyl is a WORD Intel reserves for future ùse. Set this value to
zefo.

socket is a DWORD containing the host$id:port$id that indicates
the message source.

control is the 20-byte long control part of a data message.

dumm12 is a reserved BYTE array. Set to zero.

POINTER to the user portion of rhe device's data storage area.
This is an input parameter supplied by MESSAGE$TASK. The
device interrupt proc€dure can update flags in this data aaea or
retrieve data sent by the device.

POINTER to a WóRD containing the device status code returned
by the user-supplied device interrupt procedure. This pa.ameter
should return an E$OK condition unless a board failure occurs.

status$p

The device interrupt procedure must do the following:

. For interrupt-driven devices, it must determine from the IORS it receives which unit
sent the interrupt and what action to take. For message-passing devices, it must
determine this information from the data message receìved.

. After determìning the device unit, thc dcvicc intcrrupt procedure must decidc
whether the request is finished. lf the request is finished, the device interrupt
procedure must set the IORS DONE field to TRUE.

. It must process the interrupt/message. This may involve setting flags in the user
portion ofthe data storage area, transf€ffing data written by th€ device to a bufîer, or
some other operation.

. lf an error has ocrurred, it must set the IORS.STATUS field to indicate an E$IO
condition and the IORS.UNIT$STATUS iield to a nonzero value. The lower four bits
of the IORS.UNIT$STATUS field shoutd be set as indicated in the "IORS Structure',
section oi Chapter 4. The remaining bits of the field can be set to any value (some
device drivers rcturn the device's result blte in rhe remainder of rhi$ tield). It must

Device Drivers User's cuide 5-t i

WRITINC COMMON OR RANDOM ACCESS DEVICE DRIWRS

also set the IORS.DONE field to TRUE, indicating that the request is finished
because of the error.

For message-passing drivers, STATUS$P retu.ns an error only ifan un.ecoverable
controlÌer failure orcurs. MESSAGE$TASK will mark all pending IORSS DONE with
thei status set to the error returned by STATUS$P, then flush them from the request
queue.

. If no error has occurred, it must set the IORS.STATUS field to indicate an E$OK
condition.

5,11 PROCEDURES RANDOM ACCESS DRIVERS MUST CALL

There are severàl procedures that random access drivers must call under ceÍtain well-
defined circumstances. They are NOTIFY, SEEK$COMPLETE, and procedures for the
long-term operations (BEGIN$LONG$TERMOP, ENDLONG$TERM$OP, and
GET$IORS).

5.11 .1 NOTIFY Procedure

Whenever a door to a flexible diskette drive is opened or the STOP button on a hard disk
drive is pressed, the device driver for that device must notify the I/O System that the
device is no longer available. The device driver does this by calling the NOTIFY
procedure. When called in this manner, the I/O System stops accepting I/O requests for
files on that device unit. Before the device unit can again be available for I/O requests,
the application must detach it by a call to A$PHYSICAIIIDETACH$DEVICE and
reattach it by a call to A$PHYSICAL$ATTACH$DE!'ICE. Moreover, the application
xrusl obl in new file connections for files on the device unit.

In addition to not accepting I/O requests for files on that device unit, the I/O System will
respond by sending an objed to a mailbox. For this to happen, however, the object and
the mailbox must have been established for this purpose by a prior call to A$SPECTAI-,
wìrh rhe spec$func argument eqùal to FS$NOIFY (2). (The A$SPECIAL system call is
described in the F,rtended |RMX II Basic I/O System Calls rn?.í\al.) The task that awaits
the object at the mailbox has the responsibility ofdetaching and reattaching the device
ùnit and ofcreating new file connections for fiÌes on the device unit.

The syntar of the NOTIFY procedure is as follows:

CALL NOTIFY(unit, ddatagp) ;

unit BYIE containing the unit number of the unit on the device that went off-
line.

Device Drivers Userrs Guide

WR]TING COMMON OR RANDOM ACCESS DEVICE DRTWRS

ddata$p POINTER to the u3cr portion ofthe device's data storage area. This is
the same pointer that is passed to the device driver by way ofeither the
device$start or the device$interrupt prmedure.

5.11 .2 SEEK$COMPLETE Procedure

Ìn most applications, it is d€sirable to overlap seek operations (which can takc rclatively
long periods of time) with other operations on other unìts of the same device. To
facilitate this, a device driver receiving a seek request can take the following actions in the
following order:

1. The devicc start procedure starts the requested seek operation.

2. Depending on the kind of device, either the device start procedure or the device
interrupt procedure sets the DONts flag in the IORS to TRUE (0FFH).

r Some devices send only one interrupt/message in response to a seek request--the
one that indicates the completion of the seek. If your device operates in this
manner! the device start procedure sets the DONE flag to TRUE (oFFH)
immediately.

o Some devices send two interrupts/messages in response to a seek request--one
upon receipt of the request and one upon completion of the seek. IIyour device
operates in this manner, the device start procedure leaves the DONE flag in the
IORS ser to FATSE (0).

When the first interrupt/message from the device arrives, the device interrupt
procedure sets the DONE flag to TRUE (oFFH).

3. when th€ interfupt/me$sage from the device arrives (the one that indicates the
completion of the seek), the device interrupt procedure calls the
SEEK$COMPLETE procedurc to signal the completion ofthe seek operation.

This process enables the device driver to handle I/O requests for orher units on the
device while the seek is in progess, thereby increasing rhe performance of the I/O
System.

The syntax of the call to SEEK$COMPLETE is as follows:

CALL SEEK$CoMPLETE (unit , ddatagp);

where

unit BYTE containing the number of the unit on the device on which the seek
oDeration iscomDleted.

ddata$p POINTER to the user portion ofthe device's data storage area. This is
the same pointer that the random access support routines passes to the
device start and device interrupt procedures

Device Drivers User's Guide <-r1

\IRITINC COMMON OR RANDOM ACCESS DE!'ICE DRIltsRS

Note that ifyour device driver calls the SEEI($COMPLETE procedure when a seek
operation is completed, ihe CYLINDER$SIZE field ofthe Unit Information Table for
the device unit should be configured $eater than zero. On the other hand, ifyou
configure C\'I-INDER$SIZE to zero (indicating that you don't want to ovcrlap scck
operations), your driver should never call SEEK$COMPLETE.

5.11.3 Procedures for Other Long-Term Operations

The Operating System provides three procedures which device drivers can use to overlap
long-term operations (such as tape rewinds) with other I/O operations. The procedures
are BEGIN$LONG$TERMOP, ENDLONG$TERM$OP, and GET$IORS. These
procedures are intended specifically for use with devic€s that do not support seek
operations (such as tape drives).

5.11.3.1 BEGINSLONGSTERMSOP Procedure

Thc BEGIN$LONG$TERM$OP procedure informs the random access support routines
that a long-term operation is in progress, and that the support routines do not have to
wait for the operation to complete before servicing other units on the device. Calling
BEGIN$LONG$TERM$OP allows the controller to service read and write reouests on
olher units of the device while the long-term operation is in progress.

To use BEGIN$LONG$TERM$OP, the device driver receiving the request for the long-
term operation should take the following actions:

1. The deJr'ice start procedure starts the long-term operation

2. Depending on the kind of device, either the device start procedure or the device
interrupt procedure sets the DONE flag in the IORS to TRUE (0FFH).

. Some devices send only one inîerrupt/message in response to a request îor a long-
term operation-the one that indicates the completion of the operation. lf your
device operaîes in this manner, the device start procedure sets the DONE flag to
TRUE (oFFH) immediately.

e Some devices send two interrupt/messages in response to a request for a long-
term operation-one upon receipt of the request and one upon completion ofthe
operation. Ifyour device operates in this manner, the device start procedure
leaves the DONE flag in the IORS set to FALSE (0). When rhe filsr
interrupt/message from the device arrives, the device interrupt procedure sets the
DONE flag ro TRUE (oFFH).

3. The procedure that just set the DONE flag to TRUE (either the device start or
device interrupt procedure) calls BEGIN$LONG$TERM$OP.

The syntax oI the call to BEGIN$LONG$TERM$OP is as follows:

5-28 Device Drivers Uset's Guide

WRTTING COMMON OR MNDOM ACCESS DEI'ICE DRII'ERS

CALL BEGINI,ONCTERM$0P (unit , ddara9p);

where

unit BYTE containing the number of the unit on the device that is performing
the long-term operation.

ddata$p POINTER to rhe user portion ofthe device,s data storage area. This is
the same pointer that the random access support routines pass to the
device start and device interrupt paocedures.

Ifyour driver calls BEGIN$LONG$TERM$OP, it must also call
END$LONG$TERM$OP when the device sends an interrupt/message ro indicate the
end of the long-term operation.

5.1 1.3.2 END$LONG$TERM$OP Procedure

The END$LONG$TERM$OP procedure informs the random access support routines
that a long{erm operation has completed. A driver that calls
BEGIN$LONG$TERM$OP must also call END$LONG$TERM$OP or rhe driver cannot
further access the unit that performed the longterm operation.

Specifically, when the unit sends an interrupt/message indicating the end of the long-term
operation, the device interrupt procedure must call END$LONG$TERM$OP.

The syntaÌ ofthe call to END$LONG$TERM$Op is as follows:

CALL END$mNGOTER}.I$oP(untt. ddarasp) ;

unit BYTE containing the number of the unit on the device that performed the
tong-term opera11on.

ddata$p POINTER to the user portion of the device's data storage area. This is
the same pointer that the random access support routines pass to the
device start and device interruDt Drocedures.

5.11,3.3 GET$IORS Procedure

Long-term operations on some units involve multiple operations. For examplc,
performing a rewind on some tape drives requires you to perform a rewind and a read file
mark. The GEfiIORS procedure allows your drìver procedrrres to handle this situation
without forcing you to write a custom driver for each device that is different.

5-29Device Drivers User's Guide

WRITINC COMMON OR RANDOM ACCESS DEI'ICE DRII'ERS

cET$IoRs allows your driver procedure to obtain the token of the IORS for the
previous Ìong-term iequest, so that it can modiry the IORS to initiate new I/O requests.
The driver cannot access the IORS without calling this procedure, because when the long-
term operation completes (and an interrupt/message occurs), the IORS$P that
INTERRUPî$TASK passes to the device interrupt procedure is set to zero (for units
busy performing a seek or other long term operation).

To use GET$IORS, the device driver performing the long-te.m operation should take the
following actions:

1. The device driver starts the long term operation and calls
BEGIN$LONG$TERM$OP in the usual manner (as described in the
"BEGIN$LONG$TERM$OP Procedure" section).

2. When the unit sends an interrupt/message indicating the end ofthe long-terú
opcration, thc dcvice intcrrupt proccdurc calls GET$IORS to obtain the IORS.

3. The device interrùpt procedure modifies the FUNCT and SUBFUNCT fields of the
IORS to speciry the next operation to perform. lt also sets the DONE flag to
FAIJE IOH).

4. The device interrupt procedure calls END$LONG$TERM$OP.

The synta\ ofthe call to GET$IORS is as followsl

iorsSbase - cET$IoRs (unit, ddata$p);

iors$base SELECTOR in which the random access support routines return the base
descriptor of the IORS. Use the PL/M-286 built-in procedure
BUILD$PTR (specifying an offset of 0) to obtain a pointe. to the IORS.

unit BYTE containing the number ofthe unit on the device which performed
the long-term operation.

ddata$p POINTER to thc uscr portion of the device's data storage area. This is
the same poìnter that the random access support routines pass to the
device start and device interruDt Drocedùres.

5.1 2 FORMATTING CONSIDERATIONS

Jfyou write a random access driver and you intend to use the Human Inte.face FORMAT
command to format volùmes on that device, your driver routines must set the status field
in lh€ IORS in the manner that the FORMAT command expecls.

5-Jl' Devlce Drivers Uset's Guide

When formatting volumes, the FORMAT comnìand issues system calls (ASSPECIAL or
S$SPECIAL) to format each track. It knows that formatting is complete when it receNes
an E$SPACE exception code in response. To be compatible with FORMAT, your driver
must also return E$SPACE when formatting is complete.

In particular, ilyour driver must perform some operation on the device to format it, your
device interrupt procedure must set the IORS.STATUS to E$SPACE after the last track
has been formatted.

However, illhe devìce requires no physical formatting (for example, when lbrmatting is a
null operation for that device), your device start procedure can set IORS,STATUS to
E$SPACE immediately after bcing called ro start ahe formarling operation.

The Human Interface FORMAT command can report the assignment ofalternate tracks,
or, if no alternate tracks are available, to mark all the sectors in the track being formatted
as unavailable via the bad block map. This enables you to see rhe strte of rhe media in
question and allows a disk with excess bad tracks (more than the available alte.nate tracks
can haridle) to contitue being used. For the FORMAT command to provide these
features, the random access driver must return these error codes in the followins
conditions:

. Wlenever the device driver is processing an F$SPECL{L (FSSFORMAT) command
and it allocates an alrernate track. it must return an EIOALT$ASSIGNED error
code in the IORS after marking the request DONE.

. Whenev€r the devìce driver is processing an F$SPECIAL (FSSFORMAT) command
and discovers the track is bad, but no alternate tracks are available for assignment, it
must return an ElONO$SPARES error code in the IORS after marking the requesr
DONE.

WRJTING COMMON OR RANDOM ACCESS DEVICE DRII'ERS

Device Drivers Usefs Cuide 5-31

WRITIN

The Basic I/O System provides an interface allowing tasks to use the po\ùer and
convenience of I/O System calls when communicating with terminals. To add support for
interrupt-driven or message-passing termhal controllers for which Intel has not supplied
device drivers, you can write yoùr own device drivers to provide the software link between
the Operatirig System software (called the Termhal Support Code) and the terminal.

This chapt€r €xplains lìow to write an inte[upf-driven or message-passing îeminal driver
whose capabilities irclude handling single-character or block-mode I/O, parity che€king,
answering and hanging up {unctions on a modem, and automatic baud rate recognitior for
each of several terminals. It describes the data structures used by terminal drivers, as well
as the procedures yoù must provide.

Throughout this chapter, differences between interrupt-driven and message-passing
devices are noted by the following conventions. Message-passing data structures and
parameter descriptions are shaded in gray where they differ from interrupt-driven data
structures and parameter descriptions. Sections in which no distinction is made apply to
both systems. The terms interrupt and message (and variations ofthese terms) are noted
as "ìnterrupt/message' where they mean that ioterrupt-driven devices use an interrupt
while message-passing devices use a message to accomplish the same purpose. Likewise,
thc terms port and mailbox appear as "port/mailbox' wh€rc thcy mean MULTIBUS II
drivers use a port to pass messages while MULTIBUS I interruptless drivers use
mailboxes.

6.1 TERMINAL SUPPORT CODE

As in the case oî common and random-access drivers, the I/O System Drovides rne
highest-level driver procedures that the I/O Sysrem invokei when perfàrming terminal
I/O. These procedures are known collecrively as lhe Terminal Support Code. Figùre ó-l
shows vjhematically the relationships between the vatious layers ofcode that are involved
in driving a terminal.

The Terrninal Support Code suppo.ts interrùpt-driven and message-passing terminal
drivers. It distinguishes between these drivers through the Device lnformation Table
described in this chapter. Among the duties performed by the Terminal Support Code
are managing buffers and maintaining several terminal-related modes.

Device DriveN Uset's Gùide 6-l

WRTTINC TERMINAL DRIVERS

6,2 DATA STRUCTURES SUPPORTING TERMINAL I/O

The principal data structu.es supporting terminal I/O are the Device-Unit Information
Block (DUIB), Device Information'l able, Unit lnformation Table, and the Terminal
Support Code (TSC) data structure. These data st.ùctures are defined in the next few
paragraphs.

If you write your own device drivers, there are two ways to create these structures. The
first way is to use the User Device Support (UDS) utility to add support for your driver to
the Interactive Configuration Utility (ICU). Ifyou use the UDS utiÌity to modiry the
lCU, you can choose your driver {rom an ICU menu and fill in the necessary information
just as you would when configudng an Intel-supplied driver. Refer to Chapter 9 for more
information about the UDS utility.

The second vr'ay to set up these structutes is to code rhem in the format shown in this
chapter (as assembly-language structures). With this method, you give the ICU the
pathname of the files containing these structures, and the ICU includes the files in the
assembly of ?ÌTDEV.A28 and ?ICDEV.A28, two Basic I/O System configurarion files the
ICU creates (the ? means that the first character of the file name can vary).
/RMX286/IOS/IDEVCF.INC contains the definition ofrhe structures described in rhis
chapter. For more information on configuring uset-written device drivers, see Chapter 9.

6-2 Device Drivers Uset's Guide

WRITING TERMINAL DRI!'ERS

APPLICATION TASK

BASIC I /O SYSTEM

TERMINAL SUPPORT
coDE (TSC)

TERMINAL DRIVER

Figùre 6-1. Software lryels Supporting Terúinal I/O

6.2.1 DUtB

This section lists the elements that makc up a DUIB for a device-unit that is a terminal.
lfyou decide not to use the UDS utility to add support to the ICU, code your DUIBS in
the format shown here (as assembly-langùage structures). The numbers and uppercase
words indicate items you should enter exactly as shown. The lower case words indicate
variable items. Refer to Chapter 4 for more information about the DUIB.

Ifyou give the ICU the pathname ofyour DUIB file, the ICU includes your DUIB file in
the assembly of ?ICDEV.A28, a Basic I/O Sysrem configuration file the ICU creates (the
? means that the first character of rhe name can vary). /RM)C86/IOS/IDEVCF.INC
conaains the definition of lhe DUIB srruqure.

TERMINAL

Device Drivers Usefs Guide 6--ì

WRITINC TERMINAL DRI!'ERS

DEFINE DIJIB <
& nane,
& 1 ,
& OFBH,
& 0 ,
& 0 ,
& 0 ,
& d e v i c e ,
& u n i t ,
& dèv$uni t ,
& T S I N I T I O ,
& TSFIN]SHIO,
& TSQUEUEIO,
& TSCANCEIIO,
& dèwrcèìanróìp,
&
& unit$info$p,
&
& OFFFFH,
& 0 ,
& p r i o r i l y ,
& 0 ,
& 0 ,
& RESERVED,

6.2.2 Device Informatlon Table

; BYTE (14)
; woRD - f i le9drivers - (pl ìysicar)

; BYIE - functs - (no seek)
: BYIE - f lags - (not disk)
I IJORD - dev$gr€n - lno! random access.t
; D W O R D - d e v s s l z e - (n o L s t o r a g e d e v i c e '
; BYTE - (device dependent)

; woRD ' (devicè and unít depéndent)
; I , IOm - lnic$io - (terminal device)
; w o R D - f i n i s h g l o - (t e r m l n a l d e v i c e)
; I ìORD - queuè$io - (terúína1 device)
; WoRD - cancel$to - (ter l l l lnal device)
; PoINTER - (addrèss of
; TERMTNAL$DEVICE$INFO)
; PoINTER - (address of
;TERMINAL$UNIT9TNFO)
; WoRD - update$t ir ìeout - (not disk)
; woRD - nw$buffers - (none)
; B\"TE - (I /0 Systen dependent)
; BYIE - f ixed$update - (none)
j BYIE - nax$buffers - (none)
; BYTE

A terminal's Device Information Table provides in{ornration atrout a tern iìal conlrollEr.
liyou decide not to use the UDS utility to add support to the ICU, code these tables in
the format shown here (as assernblylanguage declaratioos). lfyou give the ICU the
pathname ofyour Device Information Table file, the ICU includes the file in the assembly
of ?ITDEV.A2S, a Basic I/O System configuration file the lCfJ creates (the ? means rhat
the first character of the name can vary).

The fields TERM$INIT, TERM$FIMSH, TERM$SETUP. TERM$OUT.
TERM$ANSWER, TERM$HANGUP, TERM$UTILITY. and TERM$CHECK contain
the names ofuser-supplied procedures whose duties aae described later in this chapter.
When creating the file containingyour Device Informatìon Tables, speciiy external
dcclarations for these user-supplied procedures. This allows the code for these usea-
supplied procedures to be included in the generation ofthe I/O System. For example, if
your procedures are namcd SAMPLE$TERM$IMT, SAMPLD$TIRM$FINISII
SAMPLE$TERM$SETUP, SAMPLE$TERM$OUT, SAMPLE$TERM$ANSWER,
SAMPLE$TERM$HANGUP, SAMPLE$TERM$UTILITY. rnd
SAMPLE$IERM$CHECK, include the following declarations in the file containingyour
Device lnformation Tables:

6-4 Device Drivers User's Guide

WRJTINC TERMINAL DRIVERS

extrn sample$ tern$ lni ! : near
extrn sanple$termsfinish: neer
extrn sanPle$rerm$seruP: near
extrn sample$ ternoout : near
extin s ample9 Èefin$ansve r : neat
extr.n s anp le $ Eern$hangup : near
extrn sanple$lern$ut i l i ty : near
extrn sanp lè I !ern$check: near

Ifyou use the UDS utility to add support for your driver to the ICU, these declarations
are added automatically.

Ifyou set up your own file of Device Information Tables for interrupt-driven devrccs, use
this format when codingyour Device Information Tables:

TERMTNAL9DEVICE9 INFORXATION
DI,I NUM$UNTTS
DW DRIVER$DATA$SIZE
DLI STACK$SIZE
DW TERM9INIT
DL' TEzu9FINlSH
DI,I TERX$SETUP
DT,I TERM$OUT
DW TERMSANSWER
DW TERM$HANGUP
DW TERM$UTILITI
DI,ù N'1lM91NT ERRUPT S

lNTERRUPTS
DIì TNTERRUPT9LEVEL
DÍ TERr$CHECK

; def ine interrup!$level and
; tern$check for each ínterrupt
; I e v e I

DRIVER9]NFO
DB DRTVER$INFOgl
DB DRIVER$INFO$2

Ifyou set up your own file of Device Information Tables for message-passing devices, use
this format when coding your Device Information Tables:

Device Drivers UseCs Guide

WRITING TERMINAL DRI!'ERS

TERr'rrNAL$DEVTCE9INEORIfATI0N
DII NTJM$UNITS
DIì DRIVER9DAÎA$SIZE
DW STACK$SIZ[
DW TERÌ'I$1NIÎ
DI,I TERì{$FINISH
DU TFPMqSFÎ I IP

DW TERM$OUT
DW TERI9ANSWER
DW TERI,IgHANCUP
DII TERM$UTILITY

DRTVER$lNFO
DB DRIVER$INFO$1
DB DRIVER$INPO$2

NUM$UNITS

DRfVER$DATA$.
SIZE

STACK$SIZE

TERM$INIT

A WORD containing the number ofterminals on this terminal
controller.

A WORD containing the number of bltes in the driver's data area
pointed to by the USER$DATA$PTR field ofthe TSC dara
slfuctute.

A WORD containing the number ofbytes ofstack needed
collectively by the user-supplied procedures in this device drivcr.

A WoRD specilying the offset portion of the address ofthis
controllea's user-wi!îen terminal initialization paocedure. \ryhen
creating the Device Information Table, use the procedure name as
a variable to supply this information.

A WORD specirying the offset porrion ofthe address of this
controller's user-written terminal finish procedure. When creating
the Device Info.mation Table, use the procedure name as a
variable to supply this information.

A WORD specirying the offset portion of the address ofthis
controller's user-written terminaÌ setup procedure. When creating
the Device Information Table, use the procedure name as a
variable to supply this intbrmation.

TERM$FINISH

DW NUMSINTERRUP

6-6

TERM$SETUP

Device Drivers Usefs Cuide

WRITING TERMINAL DRIVERS

TERM$OUT A WORD specilying the oftset portion of the address of thrs
controller's user-written terminal output procedure. Wher.
creating the Device Information Table, use the procedure name as
a va.iable to supply this information.

TERM$ANSWER A WORD speciling the offset portion of the address of this
controller's user-written terminal answer procedure. When
qeating the Device lntormation Table, use the procedure name as
a variable to supply this information.

TERM$IIANGUP A WORD specifying the offset portion of the address of this
controller's user-written terminal hangup procedure. When
creating the Device lnformation Table, use the procedure name as
a variable to supply this information.

TERM$UTILIfi A WORD specifying the offset portion ofthe address of this
controller's user-written terminal utility procedure. When creatìng
the Device Information Table. use the orocedure name as a
variable to \uffly this information.

NUM$- A WORD by which the Terminal Support Code determines
INTERRUPTS whcthcr this is an interrupt-driven or message-passing device.

For interrupt-driven drivers, this word contains the number of
interrupt lines this controller uses. You must define an
INTERRUPT$LEVEL and TERM$CHECK word for eacn
mlerruDI.

INTERRT]PT$-
LEVEL

For interruptdriven drivers, WORDs containing the encoded level
numbers of the interrupts associated with the terminals driven by
this controlle.. You must supply one such word for each interrupt
the controll€r uses.

ro

.e-oassins dril

Llevice D veft {ls€rrs Gùide

WRITING TERMINAL DRT!'ERS

TERM$CHECK

PRIORITY

For interrupt-driven drivers, WORDs specilying the offset portions
of the addresses ofthis controller's user-written terminal check
procedures. Each TERM$CHECK field specifi€s the terminal
check procedure for the INTERRUPT$LEVEL immediately
preceding it. when creating the Device Info.mation Table, use îhe
procedure names as thc variables to supply this information. If any
of the TERM$CHECKwords equals zero, there is no
TERM$CHECK procedure associated with the corresponding
interrùpt level- Instead, interrupts on these levels are assumed to
be output ready interrupts which will cause TF-RM$OtlT to be
called.

For interrupt-driven drivers, this parameter is not present.

tRD speci$ing the prioù of

For message-passing drivers, WORDS Intel reserves for future use.
Set these words to zero.

BYTEs or WORDs containing driver-dependent information.

RESERVEDl
RESERVED2

DRIVER$INFO

NOTE
Usually, terminal drivers are concerned only with the DRI\IER$INFO
fields of the Device Information Table. Therefore, a terminal driver can
declare a structure of the following form when accessing this data:

DECIARE
TF,RMTNAL$DEVICE$INFO STRUCTURE (
FILLER(nbr9of$\rords) WORD,
DR]VER$INFOgI BYIE,
DRIVER$INFO92 B\"TE,

DRIVER$]NFO9N

6-8

BYTE) ;

Device Drivers Usefs Guide

WRITING TERMINAL DRII'ERS

nbrofìrords equals 11 + [2
* (number of intcrrupt levels used by the

driver)] ior interrupt-driven drivers.

Fot messa

You must supply the terminal initialization, terminal finish, terminal setup, terminal
output, terminal answer, terminal hangup, terminal utility, and terminal check procedures.
However, ifyour terminals are not used with modems, you can use the I/O System-
supplied TERM$NULL procedure iostead ofwritingyour own terminal answer and
terminal hangup procedures. Also, you can u$e TERM$NULL in place of the terminal
utilty procedure if your terminal is not a buffered device. Finally, you can use
TERM$NULL in place of the terminal finish procedure if your application does not need
to perform special processing when the last terminal on the controller is detached.
TERM$NULL merely returns control to the caller. To use this procedure, specify its
name in the Device Information Tabr€.

6.2.3 Unit Information Table

A terminal's Unit Information Table provides information about an individual terminal.
Although only one Device Information Table can exist for cach drivcr (controller), several
Unit Information Tables can exist if different terminals have different characteristics
(such as baud rate, dupìex, or parity, for example). Ifyou decide not to use the UDS
utility to add support to the ICU, code the Unit Information Tables in the format shown
here (as assemblyJanguage declarations). Ifyou give the ICU the pathname ofyour Unjt
Information Table field, the ICU includes the file in the assembly of ?ITDEV.A2S, a Basic
I/O System configuration file the ICU creates (the "?" means the first character ofthe
name can vary).

PUBLIC TER],IINALSUN]T$INIORXATlON
DW CONN$FTAGS
DW T ERJ,Í I NAL$ FIAG S
DI{' IN$RATE
DIN OUT$RATE
DI,i SCROLLSNUT4AT]R

coNN$Fttcs WORD specifying the default connection flags for this terminal.
Refer to the description ofthe A$SPECIAL system call in the
bdehded íkùlx II Basic I/O System Calls nanual for more
information about these flags. The flags are encoded as follows
(bit 0 is the low-order bit):

Device Drivers Useds Gùide 6-9

WRITING TERMINAL DRII'ERS

Bits Value and Meanins

0-1 Line editing control.

0 = Invalid Entry.

1 = No line editing (transparent mode).

2 = Line editing (normal mode).

3 = No linc cditing (flush mode).

2 Echo control.

0 = Echo.

1 = Do not echo.

3 Input parity control.

0 = Terminal Support Code sets pariry bit to 0.

I = Terminal Support Code does not alter parity bit.

4 Output parity control.

0 = Termìnal Support Code sets parity bit to 0.

I = Terminal Support Code does not alter parity bit.

5 Output control character control.

0 = Accept output control characters in the input
strcam-

1 = Jgnore output control characters in the input
slteam,

6-1 OSC control sequence conlro..

0 = Act upon OSC sequences that appear in either the
input or output stream.

1 = Acî upon OSC sequences in the input st.eam only.

2 = Act upon OSC sequences in the output stream
only.

6-10 Device Drivers Use/s Guide

WRITING TERMTNAL DRI!'ERS

Birs Value and Meaning

3 = Do not act upon any OSC sequences.

8-15 Reserved bits. For future compatibility, set to 0.

TERMINAf$- WORD specifying the rerminal connection flags for rhis terminal.
FLAGS Refer to the description ofrhe A$SPECIAL system call in rhe

Extended íRMX II Basíc I/O Slstem Ca .s rnanual for more
informarion about these flags. The flags are encoded as follows
(bit 0 is the low-order bir):

Bits Value and Meaning

0 Reserved bit. Set to 1.

1 Line protocol indicator.

0 = Full duplex.

1 = Halî duplet.

2 Output m€dium.

0 = Video display terminal (VDT).

1 = printed (Hard copy).

3 Modem indicator.

0 = Not used with a modem.

1 = Used with a modem.

4-5 lnput parity conrrol. For devices that support link
parameters, the LINK$PARAMETER field (when
enablcd) overrides this parity sctting.

0 = Driver always sets parity bit to 0 This yields 8-bit
data. This is true even if the LINK$PARAMETER is
enabled.

1 = Driver never alters the parity biî. This yields 8-bir
data.

Device Drivers Usefs Guide 6-11

WRITING TERMINAL DRII'ERS

Bits Value and Meanine

2 = Driver expects even parity on input. This yields 7-
bìt data. Except for the Terminal Communications
Controlle. driver, if an error occurs, the driver sets the
eighth bit to one. Errors include (a) a parity error, (b)
the received stop bit has a value of 0 (framing error) or
(c) the previous character received has not yet been
fully processed (overrun error).

3 = Driver expects odd parity on input. This yields 7-
bit data. Except for the Terminal Communications
Controller drìver, if an error occurs, the driver sets the
eighth bit to one. Errors include (a) a parity error, (b)
the received stop bit has a value of 0 (framing error) or
(c) the previous character received has not yet been
fully processed (overrun error). For the Terminal
Communications Controller driver, if a parity error
occurs, the character js discarded. If a framing error
occurs, the character is returned as an 8-bit null
character (00H) without error indication.

6-8 Output parity control. For devices that support link
parameters, the LINK$PARAMETER field (when
enabled) overrides this pa.ity setting.

0 = Driver always sets parity bit to 0. This yields 8-bit

1 = Drive. always sets parity bit to L This yields 8-bit
data.

2 = Drìver sets parity bit to give the byte even parity.
This yields 7-bit data.

3 = Drive. sets parity bit to give the byte odd pariry.
This yields 7-bit data.

4 = DriveÍ does not alter the parity bit. This yields 8-
bit data.

5-7 Invalid.

6-12 Device Drivers Use/s Guide

WRITING TERMINAL DRTITERS

NOTÉ
Ifbits 4-5 contain 2 or 3, and bits 6-8 also contain 2 or 3, then they must
both contain the same value. That is, they must both reflect the same
parity convention (even or odd).

Birs Value and Meaning

9 OSC Translation conuor

0 = Do not enable translation.

1 = Enable translation.

10 Terminal axes sequence control this specilies the
order in which Ca.tesian"like coordinates of elements
on a terminal's scrcen arc to be listed oa entered.

0 = List or enter the horizontal coordinate firs

I = List or enter the vertical coordinate first.

11 Ho.izontal axis orientation control. This specifies
whether the coordinates on th€ terminal's hotizontal
axis increase oa decrease as you move from teft to right
auuss the screen.

0 = Coordinates increase from left to dght.

1 = Coordinates dedease from left to right.

12 Vertical ads orientation control_ This specifies whether
the coordinates on the terminal's vertical axis illcrease
or decrease as yolr move from top to bottom across the
screcn,

0 - Coordinates increase from top to bottom.

1 =Coordinates decrease from top to bottom.

13-15 Reserved bits. For future compatibiliry, set to 0.

IN$RATE WORD indicating the input baud rare. The word is encoded as
follows:

0 = Invalid.

Device Drivers Use/s Guide

I = Perform an automatic baud mte search

6-13

WRITINC TERMINAL DRI!'ERS

OUT$RATE

Othe. = Actual input baud rate, such as 9600.

WORD indicating the output baud rate. The word is encoded as
follows:

0 or 1= Use the input baud rate for output.

Other = Actual output baud rate, such as 9600.

Most applications require the input and output baud rates to be
equal. In such caseq use IN$RA'IE to set the baùd rate and
specify a zero for OUT$RATE.

WORD specifying the nunìber oflines lhat are to be scn(to the
terminal each time the operator enters the approprìate control
character for scrolling (Control-W is the default).

scRoLt-$-
NUMBER

Depending on the requirements ofyour device, you can append additional driver-specific
bytes to the TERMINAIITUMT$INFORMATION srrucrure.

6.2.4 Terminal Support Code (TSC) Data Area

DUIBS, Device lnformation Tables, and Unit Information Tables are structures that you
or the ICU set up at configuration time to provide information about the initial state of
your terminals. During configuration, the ICU assembles the DUIB into the Basic I/O
System code segment and the Device Information and Unit Information Tables into the
Terminal Supporr Code code segment. Therefore, they remain fi\ed throughout the life
ol the application system.

However, the Basic I/O System also provides a structure in the data segment (this section
calls it the TSC Data Area) which changes to reflect the current state of rhe rerminal
controller and its units.

The TSC Data Area consìsts ofthree portions:

. A 3oH-byte controller portion which conraiîs information that applies to the device as
a whole.

. A 400I I-byte unit portion for each unit in the device. The NUM$UNITS field in the
Device Information Table specifies the number of unit portions that the Basic I/O
System creates.

. A user portion the user-witten driver routines can use in any manner they choose
(see the restriction below for MULTIBUS II message-passing terminal drivers). The
DRIVERIDATA$SIZE field in the Device Information Table specifies the lengrh of
this portion. Thc USER$DATA$F"IR field in the controller pofrion of rhe TSC dara
area points to the beginning of this field.

6-14 Device Drivers Uset's cuide

Figure ó-2 illustrates the TSC Data Area graphically.

WRITING TERMINAL DRII'ERS

Device Drivers UseÌ's Gùide

WRITING TERMINAL DRII'ERS

Fieure 6"2, TSC Data Area

when the Basic l/O System calls one ofyour uset-witten driver procedures, it passes, as
a parameter, a pointer either to the start of the TSC Data Area or to the start of one of
the uni(porrions of the TSC Data Area. Your driver routines can then obtain
information from the TSC Data Area or modify the information there.

A file named XTSDTN.LIT is located in /RMX286/IOS. This file declares the structure
ofthe TSC Data AJea, which always starts on a logical segnenl boundary, rs follows:

6-16 Device Drivers Use/s Guide

WRITING TERMINAL DRIVERS

DECIARE TSC$DATA STRUCTURE(
TOSSDATASSECMENT
STAÎUS
INTERIUPT9TYPE
INTERRUPTING$UNIT
DEV$INFO9PTR
USER9DÀTA$PTR
RESERVED (34)

SELECTOR,
IJORD,
BYTE,
BYTE,
POlNT'R,
POINTER,
BYTE) ;

DECI-ARE UNlT$DATA(*)
UNIT$INFO$PTR
TERMINAL9FIIGS

STRUCTURE(

IN$RAÎE
OUTSRATE
SCROLL9NUMBER
x9Y9srzE
X9Y9OfT'SET
RA\t$S r ZE
RAU9DATA$ P
RAw$1N
RAI{'$OUT

UNIT9NUMBER
RESERVED (890)
BUFFERED9DEVICE$DATA(105)

IOS$DATA$.
SEGMENT

STATUS

INTERRUPT$-
TYPE

POINTER,
woRD,
woRD,
ÌrtORD,
IIORD,
ttoRD,
I'ORD,
WORD,
POINTER,
WORD,
LIORD,
I{roRt,
BYTE,
BYTE,
BYTE) ;

A SELECTOR containhg the base descriptor of the I/O System's
data segment. The l/O System's terminal support routine
TSINITIO fills in this information during initialization.

A WORD in which the user-writteo termillal initialìzation
procedurc must rcturn status information,

A BYTE in which the user-written terminalcheck procedure must
return the encoded interrupt type. The possible values are

Bit Meaning

0 None

Input interrupt

Output interrupt

Ring interrupt

Carrier interrupt

Device Drivers User's Cuide 6-17

WRITINC TERMINAL DRIVERS

Bit Meanine

5 Delay interrupt

6 Special character interrupt

If the terminal check procedure cannot guarantee there are no
more interrupts to service, the terminal check procedure adds the
following value to the encoded interrupt tJ,?e it returns

8 Morc interrupts

For more information about these codes and their values. see the
description ofthe terminal cheak procedure in the next section.

INTERRUPTING$- A BYTE in which the user-\rritt€n terminal check procedure musr
UNIT return the unit number of the interrupting device. This value

identifies the unit that is interrupting.

DEV$INFO$PTR A POINTER to the Terminal Device Informarion Table for rhis
contfoller. Th€ I/O System's rerminal support routine TSIMTIO
fills in this data during initialization.

UStsR$DATA$PTR A POINTER to the beginning of the user portion of the TSC Data
Area. This user area can be used by the driver, as needed. The
I/O System's terminal support routine TSINITIO fills in ttus
pointer value du.ing initiaùzation.

RESERVED Intel reserves this BYTE array for future use, Device drivers
should not seî these bfes.

UNIT$DATA STRUCTURES containing unit portions of rhe TSC Data Area.
There is one structure for each unit lterminal) ofthe device.
When a user ataches the unil (via the
A$PHYSICAL$ATTACH$DEVICE system call or the
ATTACHDEVICE Human Intedace command, for example), the
I/O System's terminal sìrppo.t routines initialize the appropriate
UMT$DATA structure. They perform the initialization by filling
in all the fields of the UNIT$DATA srructure with information
from the DUIB and the Unit lnformarion Table.

UNIT$INFO$PTR A POINTER to the Unit Information Table for this termhal. This
is the same information as in the UNIT$INFO$P field of the
DUIB for this device-unit lterminalì.

6-r8 Device Drivers Uset's Cuide

TERMINALI'.
FI-AGS.
IN$RATE
OUT$RATE
SCROLI]$NUMBER

XYSIZE

XYOFFSET

RAW$SIZE

RAW$DATA$P

RAW$IN

WRITING TERMINAL DRI!'ERS

The TSQUEUEIO procedure fills in these fields with informarion
from the equivalent fields in the Unit Information Table when the
unit is attached. Refer to the previous section, "Unit Information
Table," for a description of these fields.

A WORD whose low-order byte specifies the number ofcharacter
positions on each line ofthe terminal screen. The high-order byte
specifies the number oflines on the terminal's screen. The
Terminal Support Code sets this ficld based on user input (OSC
sequences, A$SPECIAL caÌls, or SSSPECIAL calls).

A WORD whose low-order blte specifies the value that starts the
numbering sequence of both the X and Y a\is. The high-order byte
specifies the value to which rhe numbering of the axes must fall
back after reaching 127. The Terminal Support Code sets this field
bascd on user input (OSC sequences, A$SPECIAL calls, or
S$SPECLA.L calls). Refer to Chapter 2 for more informarion
about cursor positioning.

A WORD indicating the size of the unit's raw input buffer in bytes.
The user-written teaminal initialization procedure must set lhis size
during initialization. Intel-supplied drivers for message-passing
and nonbuffered devices alì,vays set this size to 256 decillral.
Device drivers for interrupt-driven buffered devices set this value
ac.ording to the sìze ofthe controller's on-board input buffer.

A POINTER to the unit's raw input buffer. The user-written
terminal initiirlization procedure must iririalize rhis poinrer.

For interrupt-driven buffered devices, this field should point to the
controller's on-board input buffer.

A WORD containing the offset from the RAW$DATA$P pointer
indicating the head of the circular raw input buffer. The us€r-
written termilal initializatíon procedure must initiaLze this value
lo zero. The terminal check procedure mùst update this value
whenever characters are moved into the raw input buffer.

Iìevice Drivers Userrs Gùide 6-r I

WRITING TERMTNAL DRI! 'ERS

RAw$oUT A WORD containing the oflset from the RAW$DATA$P pointer
indicating the tail of the circular raw input buffer. The user-written
terminal initialization procedure must initialize this value to zeto.
The Teaminal Support Code ùpdates this value whenever it moves
characte$ from the raw input buffer to the ttpe-ahead buffer. The
device driver shoukl usc lhg diffcrcnce bctween RAW$IN and
RAW$OUT to dete.mine how many characters are in the raw
input buffer. After initialization, the driver must never uPdate
RAW$OUT.

oUTPUT$- A WORD the Terminal Support Code updates to indicate the
SCROLL$COUNT number of output lines that have been displayed while in scrolling

mode. The terminal driver should not update this count.

Nonbuffered terminal drivers should not change this value-
Buffered terminal drivers must decrement this number, in the
TERM$UTILITY function 0, by the number of lines actually
ourpur.

UMT$NUMBER A BYTE the Terminal Support Code fills in with the unit number
of this unit.

RESERVED Intel reserves this BYTE array for future use. Device drivers
should not set these bltes.

BUFFERED$DE- BYTEs containing additional information that applies to drivers of
VICE$DATA buffereddevices(intelligentcommunicationsprocessorsthat

maintain their own internal memory buffers). Refer to the
"Additional Information for Buffered Devices" section to see how
to access these bvtes.

6.2.5 Additional Intormation for Buffered Devices

A buffered communications device is an intelligent communications processor, such as the
iSBC 544A and iSBC 186/410 boards, that manages its own buffers of data separately
from the ones managed by the Terminal Support Code. An off-board message-passhg
terminal controller must be a buffered device,

6-20 Device Drivers User's Guide

WRITING TERMINAL DRT'ERS

Interrupr-driven buffered device d.ivers differ from message-passing butlèred deuce
drivers in how they manage the raw input buffer. Because MULTIBUS I supports a
shared-memory architecture, an interrupt-driven terminal daiver can use the dual-port
input buffer on the controller as the raw input buffer. However, since MULTIBUS II
supports connectionlcss data transfers, a message-passing terminal dfiver îìust mainlain
its own circular raw input buffer in addition to the controller's input buffer. A
MIIT,TIBUS II controller uses the MULTIBUS II Transport prorocol to send data (via
messages) to the terminal driver, which translers the data to the raw input buffer it
maintains. Likewise, an interruptless MULTIBUS I message-passing terminal driver uses
a mailbox to send or receive data from anotherjob that manages data input and output.
Subsequently, the Terminal Support Code transfers the data irom the driver's raw input
buffer to its t,?e-ahead buffer. (For more information on message-passiog, see the
description of the Nucleus Communications S ervice in the Efiend,ed íRMX II Nucleus
User's GuAe.)

Ifyou are writing a drivcr for a buffered communicaaions device, your driver routines
must make use of the BUFFERED$DEVICE$DATA fields ofthe UMT$DATA
structure. In so doing, they should ifipose the following structure on those 105 b)4es:

DECI"\RE BUFFERED$DEVICE$DATA STRUCTURE(
BYTE,
l,toRD,
i,ùORD,
BYTE,
POINTER,
BYTE,
B\"TE,
WORD,
íORD,
I,IORD,
POINTER,
BYTE,
POTNÎER,
WORD,
i.toRD,
I,IORD,
I,JORD,
I,JORD,
WORD,
WORD,
I,IORD,
BTÎE,
BYTE,
B Y T E) ;

where

BUFFERED$DEV]CE
BUFF9INPUT9STATE
DUEF9OUTPÙT$STATE
sELEcr(2)
LlNERAMP
FUNCTION$ID
TN9COUNT
0uT$c0uNT
UNlTS$AVAIIABLE
OUTPUT9BUFFER9SIZE
USER$BUTFER9P

ECHO9BUFFER$P
RECEIVED$SPECIAL
SPEClAL9M0DES
H I GH9I,IATER$MARK
LOI,Í$WATER$MARK
FC90N$ CIjAR
FC9OFF$CHAR
LT NK9 PA.RA.I,IET ER
SPC9HI9I'ATER9MARK
SPECIAL$CHAR(4)
RESERVED (25)
DRTVERUSEoNLY(32)

Device Drive.s Usefs Cuide 6-21

\IRITINC TERMINAL DRt!'ERS

BUFFERED$-
DElTCE

BUFF$INPU'II.
STATE

A BYTE which the driver's terminal setup procedùre sets to
TRUE (oFFH) to indicate that the unit is a buffered device. If
BUFFERED$DEVICE is set to FAIJE (00H). none of the rest of
the fields in this structure are meaningful.

A WORD used tbr passing information about the input state
between the Terminal Support Code and the terminal driver. The
bits of this word are cncoded as follows (bit 0 is the low-order bit):

Bits Value and Meaning

0 The Terminal Support Code sets this bit to indicate
whether a modem is online. \ffhen set to one, a modem
is online and the driver should set DTR. When set to
zero, no modem is online and the driver should reset
DTR. The Terminal Support Code calls the terminal
ulility procedure to set or reset DTR.

1 The Terminal Support Code sets this bir after taking
characters from the raw input buffer. It then calls the
terminal utility procedure, which should reset the bit
after informing the firmware about the removal ofthe
characters. For example, the iSBC 544A driver sends
an input command to the firmware and, when an
interrupt indicates that the command has completed,
resets this bit.

6,7

3

Rcserved. The driver should not set these bits.

This bit should be cleared by the driver whenever it
sends an inpùt command to the firmware; othesise,
the TSC will not accept characters from the raw buffer,
if a type-ahead-buffer-full condition previously existed-

The TSC will set this flag when it finds rhe t)?e-ahead
bulfèr full; when it is no longer full, the TSC will call for
an input command from the driver. The driver must
clear ùe bit at this time.

6-22 Device Drivers Usefs Guide

WRITING TERMINAL DRIVERS

Value and Meaninp

The Terminal Support Codc s€ts this bil, based on user
input (OSC sequences, A$SPECIAL calls, or
S$SPECI^L catls), to indicate whethcr output control
characters are being processed. If set to zero, the
Terminal Sulport Code ìgnores output control
characters as they appear in the input stream. If set to
one, the Terminal Support Code processes output
control characters in the input stream. The device
driver can examine this bit and, if the controller's
fimware has the capability, direct the firmware to
process output control characters when they appear in
the input stream.

Available bits. The driver can use these bits to keelr
track of its input state. The Terminal Support Code
does not check or set these bits.

Value and Meaning

The terminal initialization or terminal setup procedure
sets this bit to indicate wherher rhe TerminalSupport
Code or the output device keeps track of the number of
characters availabìe in the device's output blrffer If set
to zero, the Terminal Support Code maintains this
count without requiring information from the device. If
set to one, the terminal driver (or the device's
firm*are) must keep track of the space remaining in
the output buffer. If the device is maintaining this
information, the terminal uriliry procedure must place
inro rhe UNITS$AVAItABLE fiÈld oI lhis strucrure
the number oi bytes of free space remaining in the
output buffer.

The Terminal Support Code sets this bit, based on
output control characters entered by the operator, to
indicate the output state. Il set to zero, output can
occur. If set to one, output is stopped. The device
driver must examine this bit when sending outpnt.

Bits

5

Bits

0

8-15

BUFF$OUTPUT$- A WORD used for passing information abour the output state
STATE b€tween the Terminal SuDDort Code and the terminal driver. The

bits of this worrl are encod;d as follo*s (bir 0 is rhe low-order bit):

Device Drivers Usefs Guide 6-23

WRITING TFRMf NAL DRI!'ERS

8-15

The Terminal Support Code sets this bit, based on
output control characters entered by the operator, to
indicate whether the output device is io scrolling mode.
lfset to one, the device is in scrolling mode (only a
certain number of characters appear on the screen; the
opcralor must press a key to see the next group of
characters). If set to zero, scrolling mode is not in
effect (characters appear on the screen without
stopping). The device driver must examine this bit
when sending output.

Reserved. Device driv€rs should not set these bits.

Available to the device driver lor keeping track of its
output state. The Terminal Support Code does not set
or check these bits.

A BYTE array the driver's terminal initialìzation procedure must
fill h to identìb, the board and Ìine number of this unit. The first
byte identifies the number of this unit's controller board (where 0
is the first board). The second byte identifies the lire number on
that board lwhere thc lirst linc is line 01.

For interupt-driven devices, a POINTER to the dual-port RAM
address ofthe specified line. The driver's terminal initialization
procedure must place this address here so that it doesn,t need to
calculate the address each lime it accesses the unìt.

A BYTE the Terminal Support Code fills in speci$ing a function
the driver's terminal utility procedure should perform. Refer to
the description ofthe terminal utility procedure for a description
oî the functions the Terminal Support Code can request.

A BYTE the Terminal Support Code fills in when calling the
driver's terminal utility procedure with the FUNCTION$ID field
set to 1. This field specifies the number ofbytes the Terminal
Support code has moved lrom the raw input buffer to the Terminal
Support Code's buffer.

A WORD the Terminal Support Code fills in when calling the
driver's terminal utility procedure wirh the FUNCTION$ID field
set to 0. This field specifies the number ofbltes to be rnoved from
the user's output buffer to the device's on-board output buffer.
This field must be decremented by the number ofbytes actually
ouaout.

SELECT(2)

LINERAMP

FUNCTION$ID

IN$COUNT

OUT$COUNT

6-24 Device Drivers Usels Guide

OUTPUT$-
BUFFER$SIZE

USER$BUFFER$P

UMTS$-
AVAIIABLE

RECEIVED$-
SPECIAL

WRITING TERMINAL DRII'ERS

A WORD used by drivei s keeping track of ths number ol
characters remaining in their output bufiers. When the Terminal
Support Code calls the terminal utility procedure to requcst thc
number ofcharacte$ reúaining (FUNCTTON$ID set to 5), the
terminal utility procedure must place that number in this field.

A WORD [sting the size of the buffered unir's ourpur buffer. The
driver's terminal inìtialization procedure must set this word to the
conect value.

A POINTER to the user's buffer. When the Terminal SuDoort
Code calls the driver's terminal uliliry procedure to transmìt output
characters (FUNCTION$ID set to 0), that procedure must transfer
the nùmber of characters specilied in OUT$COUNT from this
user buffer to the unit's output buffer.

A BYTE in which the Terminal Support Code places the number
ofcharacte.s the device's terminal utility procedure should echo to
the terminal (when FUNCTION$ID is set to 8). The terminal
utilìty p.ocedure gets these characters ftom the
ECHO$BUFFER$P buffer.

A POINTER in whjch the Terminal Support Code places the
address ol the characters to be echoed to the terminal (when
FUNCTION$ID is set to 8). The device's terminal utility
proceduae echoes these characters to the terminal.

This WORD is used by devices supporting Special Character
mode. When Special Character Mode is enabled and a special
character interrupt occurs, the driver's terminal check procedure
sets this fieÌd to indicate which special character was entered. The
terminal check procedure sets the low-order four bits of this word
(bits 0 through 3) to indicate which special character v/as entered.
Bit 0 corresponds to the fhst character defined in the
SpECIALI$CIÌAR array- Bit I corresponds ro the second
character, and so forth. The driver can ignore the other 12 bits.

A WORD indicating ìxhelher lhe terminal is using any special
modes. The Terminal Support Code sets this word based on user
input (OSC sequences, A$SPECIAL calts, or S$SPECIAL cals).
Encode the bits ofthis word as follows (bit 0 is the low-order bit):

ECHO$COI]NT

ECHO$BUFFER$P

SPECIAL$MODES

Device Drivers User's Cuide 6-25

WRITING TERMINAL DRTWRS

Bits Value and Meaning

0 Flow Control Mode. This bit specifies whether the
communications board sends flow control characters
(selected by FCONCHAR and FCOFFCHAR, but
usually XON and XOFF) to turn input on and off The
settings are as follows:

0 = Disable flow control.

I = Enable flow control.

When flow control is enabled, the communication
board can control the amount of data sent to it to
prevent buffer overfl ow.

I Special Character Mode. This bit is used in conjunction
with the SPCHIWATER$MARK field to specify
whether the Terminal Support Code responds to special
characters immediately as they are tt?ed (Special
Character Mode) or Ìr'hether the characters are
handÌed Ìr'hen received through the normal input
stream,

lfyour device supports special characters (currently,
only the iSBC 188/48, iSBC 188/56, iSBC 186/410,
iSBC 546, iSBC 547, and iSBC 548 boards do), the
device can send an interrupt whenever a special
character (defined later in the SPECIALJCHAR array)
is qped. When Special Character Mode is on, the
device's terminal check procedure sets the
RECEIVED$SPECIAL field whenever a special
character interrupt occurs. If lhe special character is
defined as a signal character, the Terminal Support
Cod€ sends a unit to the appropriate signal senraphor'e.

The setting of this bit is as follows:

0 = Disable Special Character Mode.

1 = Enable Special Character Mode.

The SPCHIWATER$MARK field is used in
conjunctìon with this bit to control Special Charactcr
Mode.

6-26 Device Drivers Usefs Guide

2-15 Reserved bits. The device driver should not set these
bits.

When the communication board's input buffer fills to contain the
number ofbfes specified in this WORD, the board sends the flow
control character to stop input. The Terminal Support Code sets
this field based on user input (OSC sequences, ASSPECIAL calls,
or S$SPECIAL calls).

Wàcn thc nÌrmber of b),tes in the communication boafd's input
buffer drops to the nìrmber specified in this WORD, rhe board
sends the flow control character to start input. The Terminal
Support Code sets this field based on user input (OSC sequelces,
A$SPECIAL calls. or SSSPFCIAI caU{.).

A WORD specifying an ASCII character the communication board
sends to the connecting devìce when the îurnbcr ofbytes in its
buffer drops to the value in LOW$WATER$MARK. Normally
this character tells the connecting device to resume sending data.
The Terminal Support Code sets this field based on user input
(OSC sequences. A$SPECIAL calls, or S$SPECIAL calls).

A WORD specirying an ASCII character the communication board
sends to the connccting dcvice when rhe number ofcharacters in its
buffer rises to the value in HIGH$WATER$MARK. Normally
this character tells th€ conne4ting device to stop sending data. The
Terminal Support Code sets this field based on user input (OSC
sequences, A$SPECIAL calls, or S$SPECIAL calls).

A WORD specil,ing the characteristics of the physical link
between the terminal and a device. The Terminal SuDoort Code
scts lhi\ f ielJ based on uqer input (OSC sequences. e$SPECLqL
calls, or S$SPECIAL calls). Physical link parameters are not
supported by all devices or device drivers. For supported drivers
(such as the TerminaÌ Comnunicatìons Controllcr driver), when
the physical link parameters are used (bit 15 set to one), the
Terminal Support Code pass€s the low order bt'te of the
LINK$PARAMETER field to the driver. which Dasses it directlv to
the control ler. The cnnrr^l ler rers the nhysical l jnk oppr"priately

ffien the physical link parameters are used, they override the
setting of input and output parìty in rhe TERMiNAIJFLACS
field. When the physical link parameters are not used, the
TERMINAL$FLAGS fields apply.

The bits of this word a.e encoded as follows lbit 0 is the low-order
bit):

WRITINC TERMINAL DRI\'ERS

HTGH$WATER$.
MARK

LOW$W TER$
MARK

FCONCI]AR

FCOFFCHAR

LINK$-
PARAMETER

Device Ddvers Usefs cùide 6-27

WRITING TERMINAL DRIVERS

Bits Value and Meaning

0-1 The value in these bits spe.ifies the input and output
parity, as follows:

0 = No parity

1 = Invalid value

2 = Even parity

3 = odd parity

2-3 The value in these bits spe.ifies the character length, as
follows:

0 = 6 bits/character

I = 7 bits/character

2 = 8 bits/character

3 = 5 bits/character

4-5 The value Ìn these bits indicatcs thc number of stop
bits, as follows:

0 = l s t o p b i r

1 = 1-112 stop bits

2 = 2 s t o p b ì t s

3 = Reserved-drivcrs should not set this bit

6 The value in this bit specifies how the transmitter and
receivea aae enabled, as follows:

0 = Transmitter and receiver unconditionally enabled

1 = CTS is rransmitter-enabÌe; CD is receiver-enable

7-8 The valìre in these bits specifies how receive errors
(parity, framing, or overrun errors) are handled, as
followsi

6-28 Device Driteff Useds Guide

WRITING TERMINAL DRIVf,RS

Bits Value and Meaning

0 = Replace erroneous cherecter by ASCII NUL (0H).

1 = Discard erroneous character.

2 = Prefìx errooeous character by the two-blte
sequence OFFH 00H. A valid oFFH character will be
replaced by the two-character sequence 0FFH 0FFH.

3 = Set the most significant bit of ettoneous character
to 1.

9-14 Reserved. Drivers should not set these bits.

15 Determines whether or not the link parameters are
used, as follows:

0 = The link parameters are not used. The Tenninal
Suppof Code does not pass the low-order b,,te ofthe
LINK$PAR {METER field to rhe cont.oller. The
ìnput and output parity applies from the setting of
TERMINAIJFI-AGS.

1 = The link parameters are used. The Terminal
Support Code passes rhe low-order byte ofthe
LINK$PAMMETER field to the controller, overiding
the pariry settings in TERMÌNAL"$FLAGS.

SPCHIWATER$- A WORD used in conjuncrion with the SPECIAL$MODES field ro
MARK control Special Character Mode. When the device's input buffer

fills to contain rhe number ofcharacten specified in this field,
Special Character Mode is enabled (assuming the
SPECIAI-$MODES lield has Special Character Mode rurneu on./.
Ifthe number ofcharacters in the device's input buffer is less than
the high water mark, Special Character Mode is disabled, even if it
is tu.ned on in the SPECIAL$MODES field. The Terminal
Support Code sets this field based on user input (OSC sequences,
A$SPECIAL ca[s, or S$SPECIAL calls).

If the Special Character Mode is turned off in the
SPECIAL$MODES field, this field has no effect.

Derice Drivers User's Guide 6,29

WRTTTN G TERMINAI, DRIVERS

SPECIAL$-
cHAR(4)

RESERVED(2s)

DRT\'ERUSE-
oNLY(32)

A BYTE array containing as many as four characters that are
defined as the device's special characters. IfSpecial Character
Mode is on, typing any ofthese characters at the keÉoard
generates a special-character interrupt. When this happ€ns, lhc
driver's terminal check procedure sets the RECEIVED$SPECIAL
fieÌd of this structurc to indicatc which spccial character was t)rped.
lfthe character is a signal character, the Terminal Support Code
processes it immediately. The Terminal Support Code sets this
field based on user input (OSC sequences). Ifyou define less than
four special characters, you must fill the remaining slots in the
array with duplicates ofthe last character you define.

Inîel reserves this BYTE array for future use. Device drivers
should not set these bfes.

A BYTE array reserved for use by the device driver. The Terminal
Support Code does not read or write these bytes.

6.3 TSC PROCEDURES TERMINAL DRIVERS MUSTCALL

Som€ user-written message-passing terminal drivers make calls to TSC routines. The
following paragrîphs describe the routines briefly. Sections that follow describe the
routines in more detail.

A terminal mutual excllNion procedure. The user-supplied terminal check procedure calls
this TSC procedure to provide mutual exclusion for the unit data structure of the
úessage-sending device.

A terminal set oùtput buffer size orocedure. The user-supplied terminal initialìzation
procedure calls this TSC proccdurc to communicate the size of the controller's output
buffer to the Terminal Support Code.

6.3.1 Terminal Mutual Exclusion Procedure

Used by message-passing drivers, this TSC-provided procedure gains exclusive access to
the UMT$DATA structure for the message-sending device. Thìs procedure must be
declared as an external procedure with one pointer parameter and be called by the user-
supplied terminal check procedure.

The syntax of a call to the TSC terminal mutual exclusion procedure is as follows:

CALL ts$nutex$unir(unit9data$p) ;

where

6-30 Device Driters Use/s Guide

unit$data$p POINTER ro the UMTJDATA structure for the message-scnding
unit. The terminal check procedure obtains this value by using the
pointer to the TSC Data Area.

6.3.2 Terminal Set Output Buffer Size Procedure

Ifthe terminal inìtialization procedure does not info.m the TSC ofthe controlle.,s outpur
buffer size, the user-supplied driver must call this procedure to do so when ths
information becomes available to it. For example, a message-passing driver that can
determine the size of the controller's output buffer only after the unit is attached must call
this procedure.

The user-supplied driver must declare the TSSETOUTBUFSIZE procedure as an
external procerJure with one poinrer paramerer. The syntaÌ of a call to the TSC terminal
set oùtput buffer size procedure is as follows:

CALL ts9sètoutbuf$size(udaragp, ourqbufgsize) ;

udata$p POINTER to the UMTSDATA structure for the auached unit.
outbufsize WORD containinq the controller's outDut buffer size for this unit.

6,4 PROCEDURES TERMINAL DRIVERS MUST SUPPLY

The routines that make up the Basic I/O System's Terminal Support Code constitute the
bulk of the terminal device r,lriver. These routines, in tuan, make calls to device-
depeodent routines that you must supply. The following paragraphs describe the routines
briefly. Sections that lbllow dcscribc thc routines in úore detail.

A terminal initialization Dlocedutg. This procedure must perform any inirializarion
functions necessary to get the terminal controller ready to process I/O requests.
TSINITIO calls this procedur€.

A terminal finish orocedure. This procedure must perform any final processing so that
the rerminal conrroller can be detached. TSFINISHIO calls this procedure.

A terminal setup procedurc. This procedure sets up the terminal in the proPer mode
(baud rate, parity, etc.). TSQUEUEIO and rhe Terminal Support Code's
interrupt/message task calls this procedure.

A terminal answer orocedure. This procedure sets the Data Terminal Ready (DTR) line
for modem support. TSQUEUEIO and the Terminal Support Code's interrupt/message
task calls this procedure.

WRITING TDRMINAL DRTVERS

Device Drivers User's Cuide 6-31

WRITING TERMINAL DRI!'ERS

A terminal hanguo procedure. This procedure clears the Data Terminal Ready (DTR)
line for modem suppoit. TSQUEUEIO and the Terminal Support Code's
interrupt/message task calls this procedure.

A terminal check procedure. This procedure determines which terminal sent an interrupt
signal and what qpe of interrùpt ìt is. The Terminal Support Code's interrupt
handler/message task calls this procedure.

NOTE
In interrupt-driven systems, the length ofthe terminal check p.ocedure
affeats interrupt latency since it is called from an interrupt handler and
runs with interrupts disabled. In message-passing systems, the length of
this ptocedure does not affect interrupt latency since it is called from a
task and runs with interrupts enabled.

A terminal outout procedure. This procedure displays a character at a terminal.
TSQUEUEIO and the Teminal Support Code's inter.upt task call this procedure.

A terminal utilitv procedure. The Terminal Support Code calls this procedure to perform
buffered-device operations.

When the Terminal Support Code calls these procedures, it passes, as a paramerer, a
pointer to the TSC Data Area described in the previous section. If the called procedure is
to perform duties on behalf of all the terminals connected to the controller, the Terminal
Support Code passes a pointer to the beginning of the TSC Data Area (the devtce
portion). However, if the procedure is to perform duties forjust a particular terminal, the
Terminal Support Code passes a pointer to the unit portion ofthe TSC Data Atea that
corresponds to the terminal.

Because the TSC Data Area starts at the beginning of a logical segment, a procedure that
receives a pointer to a ùnit portion of the data area can construct a pointer to the
beginning of the TSC Data Area. It does this by calling the pL/M-ig6 built-in procedure
BUILD$PTR using the base part of the pointer it received and an offset of 0. Also, if a
procedure, such as the terminal check procedure, receives a pointer to the beginning of
the TSC data area, jt can calculate where any unit portion of the data area starts by using
the following formula:

uniddata$p = base(of TSC data area):[30H + (unit number * 400H)]

6.4.1 Terminal Initialization Procedure

This procedìrre must initialjze the cont.oller. The nature of this initialization is device-
dependent. When finished, rhe terminal initializarion procedure must fill in the STATUS
îield of the TSC Data Area. as followù:

6-32 D€vice Drivers Userr$ Guide

WRITING TERMINAL DRTVERS

. lf initializatior is sùccessful, ir must ser STATUS to E$OK (0).

. lf initialization is not successful, it should normally set STATUS equal to E$IO (2BH).
However, it can set the STATUS field to any other value, in which case the Basic I/O
System returns that value to the task that is attempting to attach the device. (The
Human Interface ATTACHDEVICE command exDects the Drocedure to return the
E$lO starus if iniriatization is unsuccessful.)

In addition, the terminal initialization procedure must initialize the raw input buffer for
each unit of the device. How this operation is performed depends on whether your
systern is int€.rupt-driven or message-based and whether the device is buffered or
nonbuffered.

. Intenupt-driven bulfered devices. For each configured unit, the terminal
initialization procedure must place a poùfer to lhe unit's on-board input buffer in the
RAW$DATA$P field of that unit's UMT$DATA porrion of the TSC Data Area.

It must also set the RAW$SIZE field to the size ofthe inout buffer. and it should
init iatize RAW$lN and MwgOUT ro lero for rhe srar t òf rhe inpur buffer.

Firally, it must set the OUTPUT$BUFFER$SIZE field ofthe buffered device's
BUFFER$DEVICE$DATA structure to the size of the unit's outDut buffer. and the
BUFFERED$DEVICE field to TRUE to inform the Terminal SuDoort Cocle ro use
this buffer size. To preserve the ATTACH and DETACH signaling protocol,
lerminal Support Code wiI set the BUFFERED$DEVICE field to FAISE.

. Message-passing and nonbuffered devices. For each configîired unit, the terminal
initialiation procedure must create a logical segment for the unit's raw inpùt buffer.
Then it must place a pointer to the appropriate segment in the RAW$DATA$P field
of that unit's UMT$DATA portion of the TSC Data Area. It must also place the sìze
of the segment in the RA\ry$SIZE field, and it musr inirialize rhe RAW$IN and
RAW$OUT iields to zero (the oifset ior the start ofthe segment).

Although the terminal initialìzation procedure can choose any size fo. the raw input
buffer, it should not choose a value that is too large. (For nonbuffered devices, when
the q?e-ahead buffer fills up, the Terminal Support Code discards any b)'tes in the
raw input buffer that do not fit in the q?e-ahead buffer, so keeping the raw irput
buffer smaller minimizes data loss from type-ahead.) The recommended size for
message-passing devices and nonbuffered devices is 256 decimal b)'tes. The raw input
buffer should never be larger than 256 decimal b)'tes, because that is the size ofthe
Tcrminal Support CotJe's type-ahead buffer.

For message-passìng cìrivers, the terminal initialzation procedure must create the
port/mailbox the Terminal Support Code uses to receive messages. This token is passed
to the Terminal Support Code by PORT$TOKEN in the driver data portion of the TSC
Data Area,

The syntax of a call to the user-written terminal initialization procedure is as follows:

6-33I)evice Drivers Use/s Cuide

WRITING TERMINAL DRIVERS

CALI- ternglnít(tsc$datagptr) ;

term$init Name of the terminal initialization procedure. You can use any name for
this procedure, as long as it doesn't conflict with othcr procedure names
and you include the name in the Device Information Table.

tsc$data$ptr POINTER to the beginning of the TSC Data Area.

6.4.2 Terminal Finish Procedure

The Terminal Support Code calls this procedure when a user detaches the last terminal
unit on the terminal controller. The terminal finish procedure can simply do a RETURN;
it can clean up data structures foa the driver, or it can clear (he conlroller. I! should
delete any objects created by the othe. terminal procedures. The synta\ of a call to the
user-witten terminal finish procedure is as follows:

CAI,L term$ f inish (tsc$datagptr) ;

where

termljfinish Name of the terminal linish procedure. You can use any name for this
procedure, as long as it doesn't conflict with other procedure names and
you include the name in rhe Device Information Table.

tsc$data$ptr POINTER to the beginning of the TSC Data Area.

6.4.3 Terminal Setup Procedure

This procedure "sets up" a terminal accordÌng to the fields in the corresponding
UMT$DATA portion of the TSC Data Area. The Terminal Support Code calls this
procedure when attaching the unit the first time, when detaching the device (for buffered
devices only), and whenever the terminal's ìnput baud rate, output baud rate, read parity
checking and write parity checking attributes are changed and the line must be
reirìitialized.

When the terminal setup procedure receives control, it should initialìze the unit using the
information that already exists in the UNIT$DATA portion of the TSC Data Area.

If IN$RATE is 1, then the terminal setup procedure must start a baud rate search. (The
terminal check procedure usually finishes the search and then fills in IN$RATE with the
actual baud rate.) If OUT$RATE is 0 or 1, the terminal setup procedure assumes the
output baud rate is the same value as the input baud .ate.

6-34 D€vice Driveri U$e/s Guide

WR]TING TERMTNAL DRII'ERS

Ifthe terminal controller is a buffered device, the terminal setup procedur€ must set the
BUFFERED$DEVICE field to TRUE (0FFH). It should also fill in the other fields of
the BUFFERED$DEVICE$DATA srruclure (reter to the "Addirional Informaîion for
Buffered Devices" section). In addition, it should enable the communication device's on-
board r€ceiver interrupt (the one for the unit being artached) so that it can accept data
tiom the connected terminal.

When a user detaches a unit on a buffered device, the Terminal Support Code sets the
BUFFERED$DEVICE field to FAIJE (0H) and again calls the terminal setup
procedure. The terminal setup procedure should disable the communication device's on-
board receiver inter.upt (the one for the unit being detached) to prevent extrateous
characters from being aeceived.

To disdnguish between an "attach device", a "detach device', and a 'change terminal
characteristics" operation requiring reinitialization, the terminal setup procedure should
establish its ov/r irr€rnal fiag (one for each unit) in addirion ro the
BUFFERED$DEVICE fields. A user bit in BUFF$OUTPUT$STATE can be used for
this flag. The terminal setup procedure can use its internal flag as follows:

1. Initjally, the termìnal initialization procedure sets the flag of each ùnit to FAIJE to
indicar€ that no devices are attacheo.

2. When the Terminal Support Code calls the terminal setup procedure to attach a
unit, both the BUFFERED$DEVICE field and the internal flag are FALSE. The
terminal setup procedure recognizes hom this combination that the operation is an
"attach device."

3. The terminal setup procedure performs the "attach device" operations and sets the
internal flag and the BUFFERED$DEVICE flag to TRUE to indicare thar the
device is attached.

4. When the TerminalSupport Code calls the terminal setup procedure after attaching
the unit but before detaching it, both the BLIFFERED$DEVICE field and rhe
internal flag ar€ TRUE. This combination means that the line parameters (such as
baud rate or parity) have changed. The terminal setup procedure must reinitialize
the unit with the correct cha.acteristics.

5. When the unit is detached, the Terminal Support Code sers the
BUFFERED$DEVICE flag to FALSE and calls the rerminal setup procedure. In
this situation, the BUFFERED$DE\4CE field is FALSE, bu he iÍternal flag is
TRUE. The terminal setup procedure re.ogllizes from this combination that the
operation is a "detach device."

lfyour terminal driver supports a modem, the terminal setup procedure should also set
the Data Terminal Ready line to active. Refer to the "Terminal Hangup" section for úore
information.

I)evice Drivers Use/s Cuide

WRITING TERMINAL DRIVER,S

When a unit of a nonbuffer€d device is initialized, th€ t€rminal setup procedure should
notify the Terminal Suppo.t Code that the unit is ready to accept interrupts. lt does this
by calling the following procedure provided by the TermiÍal Support Code:

CALL xtssetoutput$waiting(unít$datasp) ;

where unit$data$p is the pointer to this unit's UNIT$DATA portion ofthe TSC Data
Area. The terminal setup procedure must declare the XTSSETOUTPLTI$WAITING
procedure as an extemal procedure with one pointer parameter. For buffered devices,
the XTSSETOUTPUT$WAITING procedure does not need to be called.

The syntax of a call to the user-witten terminal setup procedure is as follows:

c A L L t e r m $ s e l u p (u n i t S d a t a $ n $ p t r) .

where

term$setup Name ofthe terminal setup procedure. You can use any name for
this procedure, as long as it doesn't conflict with other procedure
names and you include the name in the Device Inlormation Table.

POINTER to the terminal\ UMT$DATA structure in rhe TSC
Data Area.

unit$data$n$ptr

6.4.4 Terminal Answer ProcedurE

This procedure activates the Data Terminal Ready (DTR) line for a particular terminal.
The Terminal Support Code calls the terminal answer procedure only when both ofthe
following conditions are true:

. Bit 3 of TERMINALI$FLAGS in the terminaÌ's UNIT$DATA structure lthe modem
indicator) is set to l-

r The Terminal Support Code has received a Ring Indicat€ signal (the phone is ringing)
or an answcr request (via an OSC mod€m ansv/er sequence) for the terminal. Rcfer
to Chapter 2 for more information about OSC sequences.

The syntax of a call to the user-written terminal answer procedure is as follows:

CALL term$answer (unir$ daranp) ;

where

team$answer Name of the terminal answer procedure. You can use any name
for this procedure, as long as it doesn't conllict with other
procedure names and you include the name in the Device
Information Table.

POINTER to the terminal's UMT$DATA structure in the TSC
Data Ar€a.

6-t6

unit$data$n$p

Device DriYers Useds Guide

WRITING TERMINAL DRIVERS

6.4.5 Terminal Hangup Procedure

This prmedrrre clears the Data Terminal Ready (DTR) Iine for a particular terminal.
The Terminal Support Code calls the terminal hangup procedure only when both of the
following are true:

r Bit 3 of TERMINAI$FI-{GS in the termhal's UMT$DATA structure lthe modem
indicator) is set to 1.

. The Terminal Support Code has received a Carrier Loss signal (the phone is hung up)
or a hangup reques! (via an OSC modem hangup sequence) for the terminal. Refer to
Chapter 2 for more information about OSC sequences.

The synta! of a call to the user-written terminal hangup procedure is as follows:

CALL ternghantup (unit9daEanp) ;

term$hangup Name ofthe terminal hangup procedure. You can use any name
for this procedure, as long as ir doesnt conflicr wilh orher
procedure names and you include the name in the Devrce
Information Tablc.

unit$data$n$p POINTER to the terminal's UMT$DATA siructure in the
'l eaminal SuDDort Code data Area.

NOTE
Some modem devices recognize only carrier detecî as an indication thaî
someone is calling and loss of carrier detect as an indication ofhangup.
However, most of these devices require the Data Terminal Ready line to
be active before they orn recognìze carrier detect- For these devices, the
lerminal setup procedure must activale the Dala Terminal Ready line.
Likewise, the terminal hangup procedure must clear the Data Terminal
Ready line for about one second then reactivate it.

6.4.6 Terminal Check Procedure

For internrpt-driven systems, the Terminal Support Code calls this procedure whenever
the device generates an interrupt, which usually indicates that a key on that terminal's
keyboard has been pressed. When called, the terminal check procedure should determine
the kind of interrùpt and the interrupting unit, as follows:

1. Check all terminals on the device for an input characler. Iffound, put ihe input
character in the unit's raw input buffer, updating R-AW$IN accordingly.

Device DriveN Usefs Gùide 6-37

WRITING TERMINAL DRI!tsRS

2. If no input character is available, check to see if any device is reaù to transmit
another character to the terminal.

3. If no device is ready to transmit a character to the terminal, and if this is a buffered
device for which special character mode is enabled, check for a special character.

4. If no special character is available, check for a change ;n status (such as a ring or
ca.rie. interrupt).

When the terminal check procedure finds the first valid inter.upt, it should quit scanning
other units. Then it should place the unit number ofthe inte.rupting unit in the
INTERRUPTING$UNIT field of the TSC Data Area.

For message-passing drivers, the Terminal Support Code receives a message from the
controller, then it calls the te.minal check procedure to identify the unit sending the
message and to process the message, as follows:

1. Examine the received message and place the ùnit number ofthe sending unit in the
INTERRUPTING$UMT field of ùc TSC Data Area.

2. To provide mutual exclusion to this unit's data structure, call the TSC'S terminal
mutual exclusion procedure. Fot a descrìption of this procedure see the "lSC
Procedures Terminal Drivers Musî Call" section in this chapter.

3. Copy any received characters into the device driver's raw input buffer (rernember
this is a circular buffer). Modily the parity bits appropriately. Update the head
pointer of the raw input buffer.

4. Perform any irnmediate processing appropriate to the received message- This step
may involve sending comúands to the controller.

5. Placc the INTERRUPT$TYPE corresponding to the messag€ io the TSC Dala
Area.

For inteÌrupt-driven and message-passing slst€rns, place the q?e of interrupt this
procedure will return in the INTERRUPT$TYPE field of the TSC Data Area. For both
t)?es ofsystems, the TerminaÌ Suppo.t Code expects the following values in this field:
0 No intenupt occurred.

I An input inte.rupt occurred.

2 An output inîe.rupt occurred. This signals the Terminal Support Code to call the
terminal output procedr.rre to display the output character at îhe terminal.

3 A ring interrupr o<rurred. II the TERMINAI^$FIAGS field in rhe unir's
UNIT$DATA structure indicates that the ùnit supports a modem, this sigrals the
Terminal Support Code to call the terminal answer procedure to activate the Data
Terminal Ready (DTR) line.

4 A carrier-loss interrupt occurred. If the TERMINAIJFI-AGS field in the unit,s
UNIT$DATA structure indicates that the unit supports a modem, this signals the

6-38 DeYice Drivers Usels Guide

WRITTNG TERMINAL DRIVERS

Te.minal Support Code ro call the terftìnal hangup procedure to reset the DTR
line.

5 A baud rate scan ìs in progress and the te.minal setup procedure needs more time
to determine the baud rate. This signals the Terminal Support Code to delay for
some time and call the terminal setup procedure again.

6 A special-character interrupt occurred. Only certain controllers, such As the
iSBC 188/48 inte igent communications controller, can generate these interrupts.
The terminal che.k procedure sets the RECEMD$SPECIAL field of the device's
BUFFERED$DEVICE$DATA srructure to identiry rhe character. If rhe character
is a signal character, this inter.upt qpe directs the Terminal Support Code to send a
unit to the appropriate signal semaphore.

If the device uses only a single interrupt, additional interrupt-causing events can
ocaur while the original interrupt is being processed. To avoid missing these
occuaaences, the termilal check procedure must add the following value to the value
it places in the INTERRUPT$fiPE field:

8 More interrupts are availahle

Adding this value signals the Terminal Support Code to call the terminal check
procedurc again after it processes the current interrupt.

Unless the controller hardware guarantees that an additional interrupt will be set after
one of multiple pending interrupts is serviced, the terminal check procedure should always
signal that more inîerrupts are available unless it cannot detect interrupts at all. That is, it
should always return one of the following values in rhe INTERRUpT$TypE field:
0H No interrupt occurred.

9H An input interrupt occurred, and more interrupts are available.

OAH An output interrupt occurred, and more interrupts are available.
OBH A ring interrupt occurred, and more interrupts arc availablc.

OCH A carrier-loss interrupt occurred, and more interrupts are available.
ODH The terminal check procedure wasn't able to determine the baud rate yet.

Call terminal setup again. More interrupts are available.

oEH A special character interrupt occurred, and more interrupts are available.

By returning these values, the terminal check procedute ensures the Terminal Support
Code calls it agail. Otherwise, the driver could lose characters, lf there are no mor€
interlupts to service, the terminal check procedure can return a zero value (no interrupt)
the last time it k called.

Ifyour terminal driver supports a baud rate search to determine the baud rate of an
individual terminal, the te.minalcheck procedule tÌìust ascertairì thc lcrminal's baud rate,
as iollows:

Device Drivers Usefs Guide 6-39

WRJTING TERMINAL DRIWRS

l. The first time the terminal check procedure encoùnters an input interrupt for a
particular terminal, it should examine the IN$RATE field of that terminal's
UNIT$DATA structure to determine the baud rate.

2. If the IN$RATE field is set to I (perform automatic baud rate search), the terminal
check procedure should examine the input character to determine if it is an
uppercase 'U". (It can usually check for 19200, 9600, and 4800 baud in one
attempt.)

3. If the terminal check procedùre dete.mines the baud rate, it should set the
IN$RATE field of the UNIT$DATA structure to reflect the actual input baud rate
and skip Steps 4 and 5.

4. If the terminal check procedure cannot determine the baud rate, it should
increment the IN$RATE field in the UNIT$DATA strùcture. rffhen the next input
interrupt occurs, the terminal check procedure can try again to determine the baud
rate. Refer to the example terminal driver on the "Examples" diskette to see how to
imDlement a baud rate scan.

5. Place a value of oDH in the INTERRUPI$TYPE field (delay interrupt plùs more).
The oDH value tells the Terminal Support Code that a baud rate scan is in progress.
The Terminal Support Code then waits a few clock cycles and calls the terminal
setup p.ocedure to "set up" the terminal for the new baud rate. When the next
interrupt occurs, the terminal check procedure can continue with the baud rate
scan.

Ifthe terminal check procedure encounters an input interrupt, its additional action
depends on whether it is supporting a buffered or nonbuffered device.

For ntessage-passing devices and nonbulfered devices, the terminal check procedure must
also read the input character, adjusting the parity bit according to bits 4 and 5 ofthe
TERMINAII$FLAGS field in the interrupting un;t's tINIT$DATA structure, and move
that input character into the raw input buffer pointed to by the RAW$DATA$P field of
the UNIT$DATA structure. When RAW$IN equals RAW$OUT minus 1, the circular
buffer is full. Message-passing devices can handle up to 256 characters per message.
Nonbuffered devices handle one character per interrupt.

For interrupt-driven bulfered devices, the terminal check procedure does not read the
irìpul character(s). Rather, the Terminal Supporr Code will call lhe terminal uriliry
procedure (with a function ID of l) to retrieve characters from the buffered device. If the
dcvice is capable of informing the Terminal Support Cod€ about the current values of
RAW$IN and RAW$OUT, the terminal check procedure doesn't need ro keep t.ack of
RAW$IN. hter the Terminal Support Code wiil csll the terminal utility procedure (with
a function ID of oAH) to update the P.{\V$IN field.

6-10 Device Drivers Usefs Guide

WRTTING TERMINAL DRIVERS

However, ifthe interrupt-driven buffered device is not capable ofinforming the driver
about the current values of the RAW$IN and RAW$OUT fields. the terminal check
proc€dur€ must keep tfack of thc RAW$IN valuc. It can either update the RAW$IN field
in the UN{T$DATA structure each time an input interrupt occurs (in which case function
ID oAH ofthe terminal utility procedure caus$ a null opcration), or it can maintain an
internal copy of RAW$IN and make the irfo.mation available to the terminal utility
procedùre

If the interrupt is a special character intemrpt, the terminal check procedure must set the
SPECIAII$RECEIVED field ofthe UMT$DATA structùre to identify the special
character. The four possible special characters are listed in the SPECIAIJCHAR array
of the UMT$DATA structure. If the special characier received is the first character
listed in the SPECIA$CHAR array, the terminal check procedure should set bit zero of
the SPECIAL$RECEI\ED tield. Ifthe special character is the second character listed in
SPECIAL$CIIAR, the terminal check procedure shoùld set bit 1 of
SPECIAII$RECEIVED. Bits 2 and 3 of SPECIAIJRECEIVED correspond to the third
and fourth special characters listed.

For líterrupt-driven drivers, the synta\ of the call to the user-written terminal check
procedure is as follows:

CArL terrn$chèck(csc$data$ptr) ;

For message-passing drivers, the syntax ofthe call to the termbal check procedure is as
follows:

CALL terr]]$check(tsc$data$ptr,nessase$ptr) ;

where

term$check The name of the terminal check procedure. You can use any name
for this procedure, as long as it doesn't mnflict with other
pnredure names and you include the name in the Devìce
lnlormation Tablc.

tsc$data$ptr A POINTER to the start ofthe Terminal Support Code Data
Area.

Device Drivers Uset's Guide 6-41

WRITINC TERMINAL DRI!'ERS

mElsage$ptr For m terminal d.ivers, a POINTER to the message
received ftom the controller via the RQ$RECEryE system call,
This parameter points to a st.ucture. as follo*s:

STRUC'I'URE(
da ra$pr r P0INTER.
flags l,IoRD,
status I.I0RD,
trarsgid WORt,
da L a$l ength DIJoRD.
forwarding$port TO(EN,
r è m o t e $ s o c k e (S O C H E T ,
c o n t r o l $ m s g (2 0) B Y T E .
r e s e r v e d (a) B Y T E :

where

data$ptr is a POINTER to the starting address oîthe data portion
(if any) of the received message. Ifthe data was received jn a data
chain, then this parameter points to the data chain block. lf this
parameter is NULL, there is no optional data portion lor this
message,

flags is a WóRD with the following encoderì meaning:

Bit Name

0-3 data$tt?e
4-1 receive$type
8-15 reserved

where

data$type defines whether data$ptr points to a data chain (018)
a single buffer (008.) Other values are reserved.

receive$type is an indicator of the t)?e of message r€ceived as
follows:

Value Message Tlpe

00008 Transactionless me\\age (RQ$SEND or similar
call)

0001B Transmisrion or system starus me\\age

00108 T ransac l i on reques lme(sagÈ(RO$SL\D$RS\?o r
\ imilàr c, l l)

01008 Transactionresponsemessage
(RQ$SEND$REPLY or similar call)

6-42 Device Drivers User's Guide

WRITING TERMINAL DRN'ERS

5-11Device Drivers Usefs Guide

WRITTN G TERMIN,A.L DRIVERS

6.4.7 Terminal Output Procedure

The Terminal Support Code calls this procedure to display a character at a terminal
connected to a nonbuffered device. The Terminal Support Code passes it the character
and a pointer to the terminal's UNIT$DATA structure. If bits 6 through 8 of the
TERMINAIJFIAGS field of the UMT$DATA sîructure so indicate, rhe terminal outpur
procedure should adjust the character's parity bit and then output the character to the
termìnal.

Thìs procedure is not needed for message-passing devices and interrupt-driven buffered
devices. They can send more than one output character at a time. Instead, the terminal
utility procedure is used to move characteF to the device's outl)u! buffcr.

The syntax of the call to the user-written terminal output procedure is as follows:

CALL terlr9out (uni t9datanp , ourpur$characrer);

where

term$out Name of the terminal output procedure. You can use any name
for this procedure, as long as it doesn't conflict with other
proccdurc names and you include the name in the Device
Informatìon Table.

unit$data$n$p POINTER to the terminal's UNIT$DATA structu.e in the TSC
Data Area.

output$character BYTE containing a character that the terminal output procedure
should send to the terminal.

6-14 Device Drivers Use s Guide

WRITING TERMINAL DR]VERS

6.4.8 Terminal Utility Procedure

The Terminal Support Code calls this procedure ro perform any of several opcrarions rha!
apply specifically to message-passing devices and interrupt-driven buffered devices. If
your device is a nonbuffered device, supply a null procedure for the terminal utilify
procedure.

When the Terminal Support Code calls the terminal utilìty procedure, it sets the
FUNCTION$ID field ofthe unit's BUFFERED$DEVICE$DATA srructure to indicate
the function it wants the terúinal utility procedure to perform. The function IDs and
their descriptions are as follows (unless otherwise stated, the fields mentioned in the
following descriptions all reside in the BUFFERED$DEVICE$DATA structure):

FUNCTION$ID
Value Descriotion

0 The terminal utility procedure mùst move the number ofcharacters
specified in the OUT$COUNT fìeld from the user,s output buffer (pointed
to by the USER$BUFFER$P field) to the unit's on-board outDut buffer.
For message-passing drivers, this step involves sending a message
containing the output dala to the controllel.

I The Terminal Support Code has moved a number ofcharacters (specified
in the IN$COUNT field) from the unit's raw ìnpùt buffer to rhe q'pe"
ahead buffer. If the device driver (or the device itsell) is keeping îrack of
the space remaining in the unit's input buffer, the terminal utility
procedure should Ìrpdate its count (or send a command to the device,s
firmware) indicating that IN$COUNT bltes have been removed from the
unit's input buffer. The driver should also decrement IN$COUNT.

2 When an input interrupt was received, the Terminal Support Code,s inpùt
buffer was full. Therefore it didn't move any characters from the device,s
raw input buffer to the t'?e-ahead buffer. The terminal utilìty procedure
must send a command to the device to send the input interrupt again.

3 The modem control bit in the TERMINAI-$FLAGS field of the unit's
UMT$DATA structure has changed. The terminal utiliry procedure
should set or reset DTR according to the setting of the bit.

4 One or more of the terminal attributes that apply specifically to buffered
devices have changed (in the BUFFERED$DEWCE$DATA structure,
these attributes are listed in the fields from SPECIAIJMODES rhrough
SPECIAIIICHAR). The terminal utility procedure should issue controller
or firmware commands to modib, the device attdbutes to match the values
listed in the BUFFERED$DEVICE$DATA structure.

Device Drivers Usefs Guide 6-45

WRITING TERMINAL DRI!'ERS

FUNCTION$ID
Value

5

Descriotion

The Terminal Support Code calls this function to find out the amount of
space available in the unit's otrtput buffer. When this function is called,
the terminal utility procedure must indicate how much room is left in the
output buffer for additional characters by placing the number of bltes in
the UMTS$AVAII}.BLE field.

Output has been cancelled, o. the Terminal Support Code has received a
discard output control character (normally Control-O). The terminal
utìlity procedure must clear the unit's output buffer.

The Terminal Support Code has received an output control character that
changes the output state of the termital. The terminal utility procedure
must examine the BUFF$OUTPUT$STATE field and set the oùtput stare
accordingly. For example, if an operator tr?es a CONTROL-S, the
Terminal Sùpport Code sets bit I in the BUFF$OUTPUT$STATE field to
1. In this case, the terminal utiliry procedure must stop output to the
terminal.

Characters must be echoed to the terminal. The terminal utiJìty procedure
must move the number ofcharacters specified in ECHO$COUNT from
the buffer pointed to by ECHO$BUFFER$P to rhe unit's on-board output
buffer. Any characters that the terminal utility procedure doesn't move
are lost. For message-passing drivers, this step involves sending a message
containing these characters to the controller.

Input has been cancelled. The terminal utility procedure must clear the
unit's raw input buffer and set RAW$OUT equal to RAW$IN.

The terminal utility procedure must update the RAW$IN field ofthe
IIMT$DATA strudure to the cor.elt value.

Intel rese.ves these fields for future use. Drivers do not set these values.

Ifyour controller does not automatically send output interrupts, the drive.
must .equest the controller to send an interrupt/message when the output
buffer on the controller is empty. The driver must then indicate an output
interrupt to the Terminal Support Code.

If your controller auîomatically sends response interrupts/messages when
an ouîpùt request is completed, ignore this function code.

OAH

OBH, OCH

ODH

The syntax of a call to the user-wrìtten terminal utility procedure is as follows:

C A L L L e I m $ u r i 1 i r y r u n i L $ d à r a S n S p) i

6.46 Device Drivers User's Guide

WRITTNG TERMINAL DRIVERS

unit$data$n$p POINTER to the terminal's UNIT$DATA structure in the
Terminal Suppon Code Data Area.

6.5 PROCEDURES'USE OF DATA STRUCTURES

Table 6-l helps you sort out the responsibilities of the various procedures in a terminal
device driver. In the table, the following codes refer to those procedures:

(1) terminal initializatior

(2) terminal finish

(3) terminal setup

(4) terminal answer

(5) terminal hangup

(6) terminal check

(7) terminal output

(8) terminal utility

Also, "System" and "ICU" are used in Table 6-1 to indicate the Extended iRMX II
software and the Efended iRMX II lnreractive Configuration Utiliry, respectively. In
addition, thc numbers following immediately after "Termgflags' are bit numbers in that
word.

Device Drivers Usels Guide 6-41

Table 6-1. Uses of Fields in Terminal Driver Data Structuies lcontinued)

Fill€d inlchanged by Can or will b6 Rsad by

TSC$DATA
IOS$DATA$SEGMENT
SIATUS
INÎENRUPT$IYPE
INTERRUPIING$UNIf
DEV$INFO$PTN
USERSDATA$PTF

UNITSDATA
UNIT9INFO$PTR
TERMINAL$FLAGS (G2)
TERMTNAI_$FLAGS (3)
TERMTNAL$FLAGS (4-5)
TERMINAL$FLAGS (€)
IN$RATE
OUI$RATE
SCROLI.]SNUMBER
xYsrzE
XYOFFSET

RAW$StZE

RAW$IN
RAW$OUT
OUTPUT$SCROLL$COUNT
UNIT$NUIi,4BER
BUFFERED$DEVICE$DATA

EUFFERED9DEVICE$DATA
BUFFEREO$DEVICE
EUFF$IN PUI$SfAfE
BUFF$OU-TPUT$STATE
SELECT
LINERAMP
FUNCTION$ID
IN$COUNT
OUT$COUNT
UNIIS$AVAITABLE
OUTPUI$BUFFER$SIZE
USER$BUFFER$P
ECHO$COUNT
ECHO$BUFFER$P
RECEIVEDSSPECIAL

S,st€m
(1),(s)

(6)
(6)

Slst€m

Systsm,lCU
Syst6m,lCU
Slstsm,lCU
Slstom,lCU
SyEtem,lCtJ

System,lCU,(3),(6)
Systom,lCU
Sysjem,lCU

System
Syst6m

(1)
(1)

(1),(8)
(1),(8) System

Systsm,{8)
Syst€m

(3)

(1),(3)

Systsm,(8)
Syst6m,(8)

(1)
(r)

Slsl€m

Slst€m,(8)
(8)
(1)

System
System
Syst6m

(6)

(1)-(7)
Sysì€m
Syl€m
Sylem
(1)-(7)
(1)-(7)

Sysl€m

{3),(8)
i3),(6)

(3),(6),(4
(3)
(3)

S)'stem
Systom
Syslem

SyElem,(6)
Sys16m,(6)
Sy3ì€m,(6)
S!€rém,(6)
Syst€m,(7)
S!€t6rì1, (1)

S!€t€m,(3),(8)

Slstem
(8)
(8)
(e)

SyÉtom,(1),(3),i8)
(8)
(8)
(8)

Systém
Slsrem,(8)
Slsl€m,(8)

(8)
(8)

Slsl€m,(6)

WRITING TERMINAI, DRIVTRS

6-48 Device Drivers Usefs Guide

Table 6-1. Uses of Flelds ln TerEhal Drlver Data Strùctures

Fill€d in/Chang6d by Can orWillb€ Read by

SPECIAL$MODES
HIGH$WATER$MAAK
LOW$WATER$MARK
FCIONOCHAN
FCOFFCHAR
LINK$PARAMETER
SPCHIWATER$MARK
SPECIAI..$CHAR

TERMINAL$DEVICE$INFORMATION
NUM$UNITS
ORIVER$DATA$SIZE
srAcK$stzE
TERM$INIÎ
TERM$FINISH
TEBI\,I$SETUP
TERM$OUT
TENM6ANSWER
TERM$HANGUP
TERMSUIILIIY
INTERRUPTS

INTERRUPTSLEVEL
TERMSCHECK

DRIVER$INFO

System
S!€tem

S'st€m

SyÉìt€m

System
Syst€m

lcu
tcu
rcu
rcu
tcu
rcu
tcu
rcu
rcu
tcu

rcu
rcu
rcu

Slsî€m, (6),(8)
(3)
(s)
(3)
(3)
(3)
(8)
(8)

System
Syst6m
Syst6nì
System
Systefn
System
System

System

St€tem
Syst6m
(1)-(7)

WRITING TERMINAL DRI!'ERS

Device Drivers Userrs Gùide 6,49

Custom device drivers are drivers you create in their ertirety because your device doesn,t
fit into the common, random access, or termital device category either because the
device requires a prìority-ordered queue, multiple interrupt levels, or because of some
other reasons that you have determined. When you write a custom device drivcr, you
must p.ovide all ofthe features ol the driver, including creating and deleting resources,
implementing a request queue, and creating an interrupt handler. You can do this in any
manner that you choose as long as you suppty rhe following four procedu.es for the I/O
System to call:

An Initialize I/O Procedure. This procedure must initialize the device and qeate any
resources needed by the procedures in the driver.

A Finish I /O Procedure. This procedure must perform any final processing on the device
and delete resources created by the remainder ofthe ptocedures in the driver

A Qneue I/O Procedure. This procedure must place the I/O requests on a queue of
some sort, so that the device can process them when it becomes available.

A Cancel I /O Procedure. This procedure must cancel a previously queued I/O request.

For the I/O System to communicate with your device driver procedures, you must place
the addresses ofthese four procedures in the DUIBS that correspond to the units ofthe
device.

The next fou. sections describe the formar of each ofthe I/O System calls to these four
procedures. Your proceduies rnust conform to these formats.

7.1 INITIALIZE I/O PROCEDURE

The I/O System calls the Initialize I/O procedure when an application task makes an
RQAPHYSICAL$ATTACH$DEVICE svstem call and no unirs ofthe device are
currently attached.

The lnitialize I/O procedure must perform any initial processing necessary for the device
or thc driver. If the device requires an interrupt task, region, or device data area, the
lnitialize I/O procedure should create them.

The format of the call to the Initialize I/O orocedure is as follows:

Device Drlvers Use/s Guide 7-l

duib$p

Name of the Initialize I/O procedure. You can use any rlame for this
procedure as long as it does not conflict with other procedure names. You
must, however, provide its starting address in the DUIBS ofall device-units
that it services.

POINTER to the DUIB ofthe device-unit for which the request is
intended. This is an input parameter supplied by the I/O System. The
init$io procedure uses this DUIB to determine the characteristics of the
unit.

POINTER to a TOKEN in which the init$io procedure can place the
location of a data storage area, if the device driver reeds such an area. If
the device driver requires that a data area be associated with a device lto
contain the head ofthe I/O queue, DUIB addresses, or status
information), the init$io procedure should create this area and save its
location via this pointer. If the driver does not need such a data area, the
init$io procedure should retu.n a NIL pointer in this variable.

POINTER to a WORD in which the init$io procedure must place the
status of the initialize operation. If the operation is completed
successfully, the init$io procedure must return the E$OK condition code.
Othe.wis€ it should return the appropriate exception code. Ifîhe init$io
procedure does not return the E$OK condition code, it must delete any
resources that it has created.

ddata$p

status$p

7,2 FINISH I/O PROCEDURE

The I/O System calls the Finish I/O procedure a{ter an application task makes an
RQAPHYSICAIJDETACH$DEVICE system call to detach the last unit of a device.

The Finish I/O procedure performs any necessary final processing on the device. It must
delete all resources created by other procedures in the device driver and must perform
final processing on the device itself, if the device requies such processing.

The format ofthe call to the Finish I/O procedure is as follows:

CALL f Ínish9 ío (duib$p , ddata9t);

WRITING A CIISTOM DE!ÍCE DRIVER

CALL lnit$10(duib$p, ddeta$p, stetusSp) ;

Name of the Finish I/O procedure. You can sperif any name for this
procedure as long as it does not conflict with other procedure names. Yoù
must, however, pìace its starting address in the DUIBs of all device-units
that it services.

where

init$io

where

finish$io

Device Drivers Usefs Guide

duib$p

ddata$t

duib$p

ddata$t

WRITING A CUSTOM DEYICE DRI!'ER

POINTER ro the DUIB of the device-unit of the device beins detached.
This is an input paramerer supptied by rhe l/O System. 1-he lìnish$io
procedure necds this DUIB to der€rnÌin€ thc device on which to perform
the final processing.

SELECTOR containing the location ofthe data storage area originally
c|eated by the init$io procedure (or SELECTOR$OF(NIL), if none was
created). This is an input parameter supplied by the 1/O System. The
finish$io procedure must delete this resource and any others created by
driver routines.

7.3 QUEUE t/O PROCEDUBE

The I/O System calls the Queue l/O procedure to place an I/O request on a queue, so
that it can be processed when the device is not busy. The Queue l/O procedure rnust
actually start the processing of the next I/O request on the queue if the device is not busy.
The format ofthe call to the Queue I/O procedure is as follows:

CALL queue9io (iors$r, duib$p, ddaragr);

where

queue$io Name of the Queue I/O procedure. You can use any name for this
procedure as long as it does not conflict with other procedure names. You
must, however, place its starting address in the DUIBS of all device-units
that it services.

SELECIOR containing the location oî an IORS. This is an input
parameter supplied by the I/O System. The IORS descrìbes the request.
When the recluest is processed, the driver must fill in the status fields and
send the IORS to the response mailbox indicated in the IORS. Chapter 4
describes the format of the IORS, It lists the information rhat rhe I/O
System supplies when it passes the IORS to the queue$io procedure and
indicates the fields ofthe IORS that the device driver must fill in.

POINTER to the DUIB of the device-unit for which the request is
intended. This is an input parameter supplied by rhe I/O System.

SELECTOR containing the location ol the data storage area originally
created by the init$io procedure (or SELECTOR$OF(NÌL), ifnone was
created). This is an input parameter supplied by the I/O System. The
queue$io procedure can place any lecessary information in this area to
update the request queue or status fields.

iors$t

Device Drivers User's Guide

WR]TINC A CUSTOM DEVICE DRIVER

7.4 CANCEL t/O PROCEDURE

The I/O System can call the Cancel l/O p.ocedure to cancel one or more previouù
queucd l/O requests. It cals Canc€l I/O under any of rhe following condirions:

. If the user invokes an RQAPHYSICAL$DETACH$DEVICE system call wirh a
hard detach option (refer to the Exte d.ed íRMX II Baic I/O System Callr manual ior
a description of this call). This system call forcibly detaches all objects associated wirh
a device-unit.

. If the job containing the task which made an I/O request is d€leted. The I/O System
calÌs the Cancel I/O procedure to remove any requests that tasks in the deletedjob
might have made.

. If the user deletes a connection to a device. The I/O System calls Cancel I/O to
remove any I/O requesîs pending for the device.

Ifthe device cannot guarantee a .equest will be finished within a ffted amount of time
(such as waiting for input from a terminal keyboard when the operator may or may not
supply that input), the Cancel I/O procedure must actually stop the device from
processing the request. If the d€vic€ guarantees that all requests finish in an acaeptable
amount of time, the Cancel I/O procedure does not have to stop the device itseH, but only
removes requests from th€ queue.

The format of the call to the Cancel I/O procedure is as follows:

CALL cance l$ io (cance l$ i d , du íbgp , dda rag r) ;

where

cancel$io Name ofthe Cancel I/O procedure. you can us€ aoy namc for this
procedure as long as it doesn't conflict with other procedure names. you
must, however, place its startihg address in the DUIBS of all device unìts
that it services.

cancel$id WORD conrainlÌg rh€ lD value for rhe I/O requests tha! are are to be
canceled. This is an input parameter supplied by the I/O System. Any
pending requests wirh rhìs ID value in the cancel$id fi€ld of th€ir IORSS
must be removed from the queue of requests by the Cancel I/O procedure.
Moreover, the I/O System places a CLOSE request with the same

duib$p

cancel$id value in the queue. The CLOSE request must not be processed
until all other requests with that cancel$id value have been removed from
the qùeue.

POINTER to the DUIB ofthc dcvice-unit for which the request
cancellation is intended. This is an input parameter supplied by the I/O
System.

7-4 Device Drivers Useas Guide

WRJTINC A CUSTOM DE}'ICE DRIVER

ddara$t SELECTOR containing the location of the data storage area originally
created by the init$io procedure (or SELECTOR$OF(NIL), if none was
cteated). This is an input parameter supplied by rhe I/O System. This
data storage area may contain the request queue.

7.5 IMPLEMENTING A REQUEST QUEUE

Making I/O requests via system calls and the actùal processing of these requests by I/O
devices aae asynchronous activities. When a device is processing one request, many more
can be accumulating. Unless the device driver has a mechanism for placing I/O requests
on a queue ol some sort, these requests will become lost. For common and random
access devices, the I/O System's support code forms this queue by creating a doubly-
Iinked list. The list is used by the QUEUE$IO and CANCELiTIO procedures, as well as
by INTERRUPT$TASK.

Using this mechanism of the doubly linked list, the common and random access support
code iúplements a FIFO queue for I/O requests- Tfyou are writing a custom rlevice
driver, you might want to take advantage ofthe LINI$FOR and LINII$BACK fields that
are provided in the IORS and implement a scheme similar to the following for queuhg
I/O requests.

Each time a user makes an l/O request, the I/O System passes an IORS for this request
to the device driver, in particulat to the Queue I/O procedure of the device driver. The
Queue I/O proccdure for common and random access drivers makes use of the
LINI$FOR and LINK$BACK fields of the IORS to link this IORS together with IORSs
for other requests that have not yet bccn proccsscd.

This queue is set up in the following manner. The device driver routine that actually
sends data to the controlleÍ accesses the first IORS on the queue. The LINI$FOR field
in this IORS points to the ne)l1 IORS on the queue. The LINKSFOR field in the second
IORS points to the third IORS on the queue, and so forth until, in the last IORS on the
queue, the LINK$FOR field points back to the first IORS on the queue. The
LINK$BACK fields operate in the same manner. The LINI($BACK field of the last
IORS on the queue points to the previous IORS. The LINK$BACK field of the second to
Ìast IORS points to the third îo lasr IORS on the queue, and so forth, until, in the first
IORS on the queue, the LINI$BACK field points to the last IORS in the queue. This
kind ofqueue is illustrated in Fjgure 7-1.

The device driver can add or remove requests from the queue by adjusting LIN]X$FOR
and LINK$BACK pointers in the IORSs.

Device Driverc Usefs Gùide

WRITING A CIISTOM IìEVICE DRIVÎN

Figure 7-1, Requ€st Queue

To handle the dual problems oflocating the queue and ascertaining whether the queue is
empty, you can use a variabìe such as head$queue. lf the queue is empty, head$queue
contaìns the value SELECTOR$OF(ML). Otherwise, head$queue contains the token for
îhe first IORS in the queue.

l inl,Sbràrk

7-6 Device D vers Uset's Guide

To perform I/O operations, tasks invoke Basic or Extended I/O System calls. This
chapter outlines the two basic steps involved in processing these system calls: which
device driver procedures the I/O System calls, and what operations the device driver must
perform after being called.

8.f t/o SYSTEM RESPONSES TO t/O SYSTEM CALLS

This section shows which device driver procedures the l/O System calls when it processes
each of the I/O System calls. When the l/O System calls multiple driver procedures, rhe
o.der of the calls is significant.

8.1 .1 Attach Device System Calls

For attach device system calls, the l/O System calls a different set ofprocedr:res
depending on whether other units ofthe device have already been attached.

When the I/O System receives the first attach device system call for a device, it calls the
inìtialize I/O procedr-rre to initialize the device as a whole and create îhe device data
storage area and interrupt task(s). Then the I/O System calls the queue I/O procedure,
with the FUNCT field of the IORS set ro F$ATTACH (4).

When the I/O System receives an attach device request system call that is not the first for
the device, it omits the call to lnitialize I/O, but still calls Queue I/O with the FUNCT
field of the IORS set to F$ATTACH f4).

8.1 .2 Detach Device System Calls

As with attach device system calls, circumstances dictate which procedures the I/O
System calls to detach a device

If there is more than one unit of the device attàched when the l/O System receives the
detach device request, the l/O System calls the queue I/O procedure, with the FUNCT
field ofthe IORS set to F$DETACH (5). The queue I/O procedure performs cleanup
operations on the selected unit, if necessary.

Device Drivers User's Guide 8-t

IIANDLING I/O REQUESTS

If there is only one attached unit on the device when the I/O System receives the detach
device system call, the l/O System calls two procedures. First it calls Queue I/O, as in the
previous case. Then it calls the finish I/O procedure to perform cleanup operations for
the device as a whole (if nec€ssary) and to delete any objects crEated by the initializ€ I/O
procedure.

8.1.3 Read, Write, Open, Close, Seek, and Special System Calls

When the I/O System receives a read, write, open, close, seek, or special system call, ìt
sets the FUNCT field of the IORS appropriately and calls the queue I/O procedure to
handle the operation. The "Actjons Required of the Device Driver" section of this
chapter explains the actions the queue I/O procedure must take

8.1 .4 Cancel Requests

When a connection is deleted while I/O is in progress, such .s when a joh is deleted, the
I/O Sysîem calls two device drìver procedures.

First it calls the cancel l/O procedure to remove fiom the request queue all requests that
conîaìn the same Cancel lD value as that in the current request (the I/O System fills in
the CANCEL$ID field of the IORS with the Cancel ID value). I he cancel l/O procedure
stops the processing of the curent request, if necessary.

Then the I/O System calls the queue I/O procedure wirh the FUNCI field of rhe IORS
s€t to F$CLOSE (7). When this request reaches the fronr of rhe queue, it is simply
returned to the indicated response mailbox.

8.2 ACTIONS REQUIRED OF THE DEVICE DRIVER

The I/O System can make eight tlpes of requests of a device driver. One of these
requests (SPDCIAL) has 14 separare subrequcsrs associated wilh ir. The I/O Sysrem
identifies the kind of request by setting the FUNCT field (and for SPECIAL requests, the
SUBFUNCT field) of the IORS. Then it passes the IORS ro thc device driver. This
chapter summarizes the actions required of a device driver whenever it receives any of
these reqùests or subrequests. Unless otheÍwise specified, all the actions listed in this
chapter rnust be performed by the Queue I/O procedure or a procedure it calls.

lf a driver does not support a particular function or subfunction, it must place the
E$IDDR exception code in the IORS.STATUS field before returning.

8-2 Device Drivers Uset's Guide

HANDLING I/O REQUESTS

As Chapler ó mentions, the Terminal Support Code does not pass IORSS to the terminal
driver procedu.es. However, if you write a custom driver for a terminal, youi driver must
proccss all IORSS dilectly. Random accoss and common drivers must also procoss most
IORSS (the .andom access support code processes a few itself). Unless otherrvise noted,
the following sections assume that your driver (either custom, random access, or
common) handles all th€ actions described.

8.2.1 F$READ--Function Code 0

The device driver must take the following actions to support F$READ requests:

1. Use the value in IORS.COUNT to determine the number of b\4es to read from the
device.

2. Read the bltes from the location specified in IORS.DEV$LOC. The location is
specified either as an absolute byte count, an absolute sector number, oa as the
track and sector numbers. Ifthe device is a flexible diskette drive formatted in the
lntel standard format, caÌculate the real location after accounting for the special
formatting on track 0 (refer ro Appendix C). Read lhe dala inro îhe memory
pointed to by the IORS.BUFF$P pointer.

The IORS.DEV$LOC field is not r-rsed \ drivers for terminal devices, nor by
common drivers such as tapr rJrivers.

3. Indìc.ate the number ofbytes read by placing that number into the IORS.ACTUAL
field. If no error occurred. this value should be the same as the value in the
IORS.COUNT fieìd. If an error occurred, the IORS.ACTUAL value will be less.

4. Place the read status into IORS.STATUS. This status should be E$OK (0) iî rhe
operation completed successfully. If an error occurred, place the general exception
code into IORS.STATUS and a soecific error code into TORS.IIMTISTATI iS

8.2.2 F$WRITE--Function Code 1

The device driver must take the following actjons to support F$WRITE requests:

1. Use the value in IORS.COUNT to determine the number of bytes to write to the
dcvicc.

2. Read the b,'tes from the area of memory pointed to by the IORS.BUFF$P pointer.

3. Write the bytes îo the location sperified in IORS.DEV$LOC. The location is
specified either as an absolute byte count, an absolute sector number, or as the
track and sector numbers. If the device is a flexible diskette drive formatted in the
lntel standard format, calculate the real location after aocounting for the special
formatting on track 0 (refer to Appendir C).

The IORS.DEV$LOC field is not used by drivers for terminal devices, nor by
common drivers such a5 taoe drivers.

Device Driverr User's Guide E-3

HANDLTNG I/O R.EQUESTS

5.

Indicate the number ofbytes written by placing that numbe. into the
IORS.ACTUAL field. lf no error occurred, this value should be the same as the
value in the IORS.COUNI field. Ifan error occuned. the IORS.ACTUAL value
$/ill be less.

Place the write sratus into IORS.STATUS. This status should be E$OK (0) if the
operation completed successfully. If an error occurred, place the general exception
code into IORS.STATUS and a specific eror code into IORS.UMT$STATUS.

8.2.3 F$SEEK--Function Code 2

The device driver must take the followìng actions to support F$SEEK requests:

1. Move the device's head to the location specified in IORS.DEV$LOC. The location
is specified either as an absolute b}'te count, an absolute sector number, or as the
track and sector numbers. Ifthe device is a flexible diskette drive formatted in the
Intel standard format, calculate the .eal location after accounting {or the special
formatting on track 0 (refer to Appendix C).

2. Place the seek status into IORS.STATUS. This status should be E$OK l0) if the
operation completed successfully. If an error occurred, place the general exception
code inro IORS.STATUS and a specific error code inro IORS.UMT$STATUS.

8.2.4 F$ATTACH-Function Code 4

The device driver must take the following actions to support F$ATTACH requestsl
L lnitialize the unit specified in the IORS.UNIT field. Also initialize any driver data

structures that are specific to that unit.

2. Set the IORS.STATUS field to E$OK (0) if the operation completed successfully.
If an error occurred, place the general exception code into IORS.ST^TUS and a
specific error code irto IORS.UNIT$STATUS.

8.2.5 F$DETACH-Function Code 5

The device driver must take the following actions to support F$DETACH requests:
1. Delete any drivEr data structures created by Ìhe device driver fhat are specific to the

unit listed in IORS.UNIT.

2. Set the IORS.STATUS field ro E$OK (0) if the operation completed successfully.
lf an error occurred, place the general exception code into IORS.STATUS and a
specific error code into loRS.UNIT$STATUS.

8.2.6 F$OPEN-Function Code 6

The device driver must take the following actions to support F$OPEN requestsl

4.

8-4 Device Drivers User's Guide

IIANDLING I/O REQUESTS

l. Prepare the unit for accessing a file. Usually, no processing is involved for this
ope.ation.

2. Place the open status into IORS.STATUS. This status should be E$OK (0) if the
opeÉtion completed successfully. If an error occurred, place the general exception
code into IORS.STATUS and a spepific error code into IORS.LIMT$STATUS.

8.2.7 F$CLOSE-Function Code 7
'lhe device driver must take the following actions to support F$CLOSE .equests:

1. Prepare the unit for closing a file. Usually, no processìng is involved for this
operatron.

2. Place the close sratus into IORS.STATUS. This status should b€ E$OK (0) if the
operation completed successfully. If an error occurred, place the general exception
code into IORS.STATLTS and a specifìc error code into IORS.UMfiSTATUS.

8.2.8 F$SPECIAL-Function Code 3

The device driver must take the following actions to support F$SPECL{L requesrsi

Examine the IORS.SUBFUNCT field to determine the action to take. lntel rcs€rv€s
subfunction numbers 0 through 32,767. User-defined subfunctions can have subfunction
numb€rs from 32,7ó8 through 65,535 and can be used with the physical file driver only.

Most subfunctions use auxiìiary information pointed to by the IORS.AUX$P pointer. The
format of this information depends on the subfunction invoked, The fotlowing paragraphs
describe the actions of the driver for each subfunction.

8.2.8.1 FS$FORMAT$TRACK-Subfunctlon 0

If the unit is a tape drive, perform the following steps:

1. Rewind the tape to BOT (b€ginning oirape).

2. Erase the entire tape.

3. Rewind the tape again.

If the unit is a disk drive, lormat a track according to the information pointed to by the
IORS.AUX$P pointer. This information has rhe following structure:

Device Drive$ Uset's cuide 8-5

HANDLING I/O REQUESTS

DECItrRE FOR}.{AT9TRACK STRUCTÙRE(
TRACK$N'1]MBER WORD,
INTERLEAVE WORD,
TRACK$OFFSET WORD,
FII-L$C}IAR B\"rE) ;

Use the following procedure to format the disk:

1. Ifthe value in the TRACK$NUMBER field ofthe FORMAT$TRACK strucrure is
geater than the highest track oÍ the disk, set the TORS.STATUS field to the
E$SPACE exception code.

2. Ifthe value in the TRACK$NUMBER field is valid, format the track using the
INTERLEAVE and FILL.$CllAR values îrom the FORMAT$TRACK srructure,
and using the device characteristjcs listed in the DUIB (DEV$GRAN and FILcS).
If necessary, also use the device-specific characteristics listed in the unit
information table.

3. lf the drive includes information about the bad sectors or bad tracks on the drive.
retrieve this information and assign alternate sectors or an alternate track for the
track listed in the FORMAT$TRACK structure. Depending on how the driver
works, it might not need to retrieve the data more than once. But it should check to
assign alternate sectors or an alternate track each time it formats a track. Refer to
Appendix D for information about the location and format of the bad sector
information.

4. If this is a flexible diskette drive and bir 4 of the FIAGS field in the DUIB is set to
zero (indicating standard formatting), track 0 must be forrnatted differently. Refer
to Appendix C for information about the standard diskette format.

5. Place the format status in the IORS.STATUS field. Set this field to E$OK (0) if no
errors @cur. Ifan errot occurred, place the general exception code ìnto
IORS.STATUS and a specific error code into IORS.UNTIT$STATUS.

8.2.8.2 FS$OUERY-Subf unction 0

This is a stream file op€ration handled rorally by rhe I/O Sysrem,s slream file driver.

8.2.8.3 FS$SATISFY-Subfunc-tión I

This is a stream file operation handled totally by the I/O System's stream file driver.

8.2.8.4 FS$NOTIFY-Subfunclion 2

For this sùbfunction, the IORS.AUX$P pointer poìnts to the following structure:

8-6 D€vice Drivers Uset's Guide

IIANDLING I/O REQUESTS

DECIARE SETUP$NOT]T"f SÌRUCTURE(
l.{A'I LBOX TOKEN
OBJECT TOKEN);

The random access support code handles FS$NOTIFY requests for random access and
common drivers. Ifthe driver is a custom driver, it must periorm the following steps:

1. Save the parameters passed in the SETUP$NOTIFY structure in variables for later
use.

2. Whenever a media change occurs, such as opening a diskette drive door or
removing a tape cartridge (these usually cause an interrupt that the driver can
identiry as a media-change interrupt), the driver must send the
SETUP$NOIFY.OBJECr token to the SETLIP$NOTIFY.MAILBOX mailbox.

If the driver is a random access driver, the I/O System doesn'r pass the FS$NOTIFY
request to the user-written driver code. However, the driver must call the I/O System-
supplied NOTIFY procedure whenever it detects a media change. This procedure sends
the object to the mailbox lor the driver.

8.2.8.5 FS0GET$DRIVE$DATA-Sublunclion 3

1. Copy the disk drive or tape drive characteristics (as obrained from rhe DUIB,
Device Ìnfbrmation Table, Unit Information Table, or the device itself) into the
structure pointed to by IORS.AUX$P. For disk drives, the structure is as follows:

DECURE DISK9DRIVE9DATA STRUCTURE(
CYLINDERS IIORD.

BYTE,
BYTE,
E Y I I ,

sEcToRgsIzE voRD,
AITERNATES BYTE);

For tape drives, the structure is as follows:

FlXED
REMOVABLE
SECTORS

DECI-ARE
TAPE

TAPE$DRIVE$DATA STRUCTURE (
BYTE,
B Y I E) ;RESERVED (7)

Refer to the description of the A$SPECIAL system call in rhe Àrrerdzd |RMX II
Basíc I/O System Calk manual for information about the contents ofthese
structures.

2. Ifthe operation completed sùccessfully, set the IORS STATUS field to E$OK (0)
If an error occurred, place the general exceptìon code into IORS.STATUS and a
specific error code into IORS.UMT$STATUS.

Device Drivers User's Guide a-7

HANDLING I/O REQUESTS

8.2.8.6 FSGETTERMINAL$ATTRIBUTES-Subfunction 4

For terminal drivers, the Terminal Support Code performs this operation without passing
it on to the user written driver code. Random access and common drivers do not suDDort
this operation and should set the IORS.STATUS field to indicate the E$IDDR excepiion
mde.

Ifcustom terminal drivers support this subfunction, they should place information about
the te.minal in the structure poìnted to by the IORSAUX$P pointer. The format of the
structure that other terminal drivers use is as follows:

DECI.ARE TER},I1NAL$ATTRIBUTES STRUCTURE(
WORD,
L'ORD,
LIORD,
WoRD,
TIORD,
IIORD,
ITORD,
I,IORD,
WORD,
I'ORD,
rìoRD,
!ùORD,
WORD,
WORD,
WORD,

SPCHIWATER$MARK WORD,
SPECTAL$CHAR(4)

NUn$lroRDS

coNNECTI0N9FI"ACS
TERMINAL$FIACS
IN$BAÙD$RAÎE
OUT9 BAUD 9P^î E
scRoLL9rrNEs
x9Y$SrZE
x9Y90FFSET
SPÈCIAL$MODES
HrcItswATDR9r.fARK
LOW9WATER$l,fARK
FC$ON9CHAR
FCOFFCRAR
LI NK$ PARAUETER

BYTE) ;

Refe. to Chapter 4 and to the Ertended .RMX II Basic I/O Systeír Ca,/lr manual ior more
information about the fields in this structure.

8.2.8.7 FSSSET$TERMINALSATTRIBUTES-Subfunclion 5

For terminal drivers, the Te.minal Support Code places the terminal attributes irl a
TERMINAIJATTRIBUTES structure that is pointed to by rh€ IORS.AUX$P poinre..
This is the same structure r.rsed by FS$GEfiTERMINAI-$ATTRIBUTES. The Terminal
Support Code calls the terminal check procedure changes in baud rate and parity
checking. It calls the terminal utility procedure for changes in rhose attributes that apply
spe.ifically to buffered devices (the SPECIAL$MODES through SPECIAL$CIIAR fietds
of the structure). The device driver procedure that receives control must examite the
structure and ensure that the device is set ìrp with the corresponding attributes.

Random access and common drivers do not support this operation and should set the
IORS.STATUS field to indicate the E$IDDR exception code.

8-8 Device Drivers User's Guide

}IANDLING I/O RXQUESTS

If custom terminal drive.s sùpport this subfunction, they should examine the structure
pointed to by the IORS.AUX$P pointer and act on the changes. Otherwise, they should
return an E$IDDR exception codÈ in the IORS.STATUS field.

8.2.8.8 FSSETSIGNAL-Sublunction 6

For lerminal drivers, the Termìnal Support Code performs this operation without passing
it on to the user-witten driver code. Random access and common drive$ do nor liuDDorl
this operation and should set the IORS.STATUS field to indicate the ESIDDR excepiion
cocle.

For custom tcrminal drivers, the IORS.AUX$P pointer points to a struclure ofthe
following format:

DECIARE SICNAL$CHARACTER STRUCTURE(
SEI4APHORE TOKEN,
CHARACTER SYTE);

To be compatible witlì thc Tcrminal Supporr Code (and rhùs atlow rhe Human Inrerface
CONTROL-C mechanism to operate properly), the driver must perform the following
operations. Otherwise, the driver can set up its own interpretation of signal charactcrs.

1. Save the parameters passed in the SIGNAL$CIIARACTER structure in driver
variables for later use. The drìver should accept
SIGNAIIîCHAMCTER.CHAMCTER values in the range of 0 through 31
decimal or 32 through 63 decirrìal.

. Ifthe value is in the range of 0 through 31 decimal, it is the ASCII code of rhe
signal character.

r If the value is in the range of 32 through 63 decimal, the driver must subtract
32 decimal from the value to obtain the ASCII code of the signal character. These
higher values ìndicate that the driver must flush the terminal's input buffer when it
receives the signal character.

r Ifthe value is greater than 63 der-imal, the driver can ignore rhe
FSSETSIGNAL request.

2. Whenever the character indicated ir the SIGNAL$CHARACTER.CIIARACTER
field is entered at the terminal. send a unit to the semaohore listed in
SIGNAI$CHARACTER.SEMAPHORE. If rhe signai character was originally
specified in the range 32 through 63 decimal, also flush the terminal's input buffer.

Ifthe driver doesn't support this subfunction, it should return an E$IDDR exception code
in the IORS.STATUS field.

8.2.8.9 FS$RESET-Subtunction 7

1. If the unit is a tape drive, rewind the tape.

Device Drivers Useds Guide 8-9

H 4N t)r,rNc t/O REQ ESTS

If the unit is a disk drive, recalibrate the disk (move the head or heads to track 0).

2. Ifthe operation mmpletes successfully, set the IORS.STATUS field ro E$OK (0).
Ifan error occurred, place the general exception code into IORS.STATUS and a
specifìc error code into IORS.UMT$STATUS.

8.2.S.10 FS$READ$FILE$MARK-Subfunction I

Ifthe unit is a tape unit, porform th€ following steps:

1. Move the tape to the next fil€ mark.

2. Ifthe operation completes successfully, set the IORS.STATUS fi€ld to E$OK (0).
If an error occurred, place the general exception code into IORS.STATUS and a
specific error code into IORS.UNIT$STATUS.

If the unit is not a tape drive, place an E$IDDR exception code in the IORS.STATUS
field and return.

8.2.8.1 I FS$WRITE$FILE$MAnK-Sublunclion I

Ifthe unit is a tape unit, perform the îollowing steps:

1. Write a file mark on the tape at the current tape position.

2. Ifthe operation completes successfully, set the IORS.STATUS field to E$OK (0).
Ifan error occurred, place the general exception code into IORS.STATUS and a
specific error code into IORS.UMT$STATUS.

If the unit is not a tape drive, place an E$IDDR exception code in rhe IORS.STATUS
field and return.

8.2.8.12 FS$RETENSION$TAPE-Subtunctlon 1 0

If the IORS.UNIT field indicates that this is a tape unit, perform the following steps to
ensure that the tape is wound evenly and is straight in the cartridge:

1. Rewind the tape.

?. Fast for.rard the tape to the end.

3. Rewind the tape again.

4. If the operation completes successfully, set the IORS.STATUS field ro E$OK (0).
If an error occurred, place the general exception code into IORS.STATUS and a
spe.ific error code into IORS.UMT$STATUS.

Ifthe unit is not a tap€ drive, place an E$IDDR exception code in the IORS.STATUS
field and relurn.

8-10 DeYice Drivers User's Guide

TIANDLING I/O REQUESTS

8.2.8.13 FSSETBAD$INFO-Subfunction 12

1 . Examine the DEV$GRAN field of the DUIB to determine the sector size of the
device.

2 Based on the sector size, move the head to the appropriate surface ofthe secondlo,
last rylinder, as follows:

128-b)'te sectors last sudace
25ó-b,,te sectors last sudace-1
512-b)'te sectors last sùrface-2
1024-byte sectors last surface-3

See Appendix D for more information,

3. Format the entire track.

4. Write the value OABCDH in the first word oî the track. Then w.ite the iniormation
from the BAD$TRACK$INFO structure (beginningwith the COUNT field) to the
track. Write the entire bad{rack information four times, as shown in Appendi'i D.

5. lI thc opcration completes successfully, set rhe IORS.STATUS field to E$OK (0).
If an error occur.ed, place the general exception code into IORS.STATUS and a
sp€cilic error code into IORS.UMT$STATUS.

8.2.8.1 4 FSSGETBADINFO-Sublunclion l3

1. Examine the DEV$GRAN field ofthe DUIB to determine the sector size ofthe
devìce-

2. Based on the sector size, úove the head to the appropriate surface of the second-to-
last cylinder, as lollows:

128-blte sectors last surface
256-byte sectors last surface-1
512-byte sectors last surface-2
1024-byte sectoas last surface-3

See Appendix D for more information.

3. Read the bad-track information into the BAD$TRACK$INFO structùre. The
format of the information is shown in Appendix D.

4. If the read operation completes successfully, set the IORS.STATUS field to E$OK
(0). If an I/O erro. occured, attempt to read the next copy of the badlrack
information. If I/O errors occur when reading all four copies of the information,
place thc general €xception code into IORS.STATUS and a specific error code into
IORS,UNIT$STATUS,

Device Drivers flsefs Gùide 8-l I

You can write the modules for your device driv€r in either PL/M-286 or in the ASM286
Macro Ass€mbly Language. However, you must adhere to the following guidelines:

. Il you use PL/M-2E6, you must define your routines as REENTRANT, PUBLIC
procedures, and compile them using the ROM and COMPACT controls.

. Ifyou use assembly language, your routines must follow the conditions and
conventions used by the PL/M-286 COMPACT size control. ln particular, your
routines must function irì the same manner as reentrant PLlM-286 Drocedures with
the ROM and COMPACT controls sct. îhc ASM286 I,!acro Assemblet Operating
Irntructiotu m,tnual lescribe$ rhese conditions and conventions.

There are two ways to use the iRMX II Interactive Configuration Urility to configure a
user-wrìtten driver into your application system. One way is to use the Intel-supplied
tools UDS and ICUMRG to modify the ICU so that it supports your device dnver
automatically. The second way is to add your driver as a custom driver, without first
modìrying the lCU. lVhichever method you use, you must perform these operations first:

. For each device driver that you have written, assemble or compile the code for the
driver.

. Put the resulting object modules for terminal drivers in a single library, such as
T[RMINAL,LIB,

. Put the resulting object modules for random/common/cùstom drivers in a single
module. such as DRIVER.LIB.

9.1 ADDING DRIVERS WITH THE UDS AND ICUMRG UTILITIES

The iRMX lI package contains two utilities that help you add support fo. user-written
device drivers to the Interactive Configuration Utility (ICU). With these utilities, you cao
add screens to the ICU so that configuring your device driver is simply a matter of
running the ICU and answering the appropriate questions. You can add device
information, unit information, and device-unit information screens for as many user-
written device drivers as vou wish.

Device Drivers lJser's Guide 9-1

CONFICURJNG A USER.WRIT'TEN DEI{CE DRIVTR

The two utilities are UDS (User Device Support) and ICUMRG (ICU Merge). The UDS
ùtility translbrms files of screen specifications into files thar are comparible with the ICU.
ICUMRG merges these new files into the ICU. Figùre 9- I is a flow chart that gives an
overview of ùsing these urililies. The following secrions describe rhe utilities in detail.
These sections assume that you are familiar with the general operation of the ICU. If you
arc not familiar with the ICU, refer to the Gaídz To Usíng The Ertendzd |RMX II
Intemctive Confguration UtiliE or the Ettended |RMX II Interactite Confguatia UtíIít,
Rekrence Manual îor more information.

9-2 Device Drivers Useas Guide

CONFIGURJNC A USER-WRITTEN DEVICE DRIWR

Creale or Modify

lor Inpul to UDS

Run UDS lo ProdLrce
SCI\,4 and .TPL Fi les

for User Dev ce

Examrne LSI F e
Generaled by UDS

New ICU
Screens
Corect?

Bun lcu[,f RG to Add
New Screens ro ICU

outpur of lclJÀrFG
is New .SCN,4 and

TPL Fi les thal
Describe New
Vers on of ICU

Figurc 9-1. Adding Drivers with UDS and ICUMRG

Device Drivers User's cùide 9.3

CONFIGURINC À USER WRITTEN DEVICE DRIVER

9.r.1 UDS UTtLtW

The UDS utility lets you set up a device information screen, a unit information screeri,
and a device-unit information screens for your user-witten driver. You set up these
screens by placing information ir a file that UDS reads. When you set up a screen, you
choose from a set of standard screens. For example, when describing a device
information screen, you can choose from three terminal support screens, two random
access support screens, ano a generar screen,

Auxiliary lines can also be added to the device information and unit info.mation sseens.
this allows your device-specific information to be entered during configuration. By
choosing the appropriate screens and adding the correct number of auriliary lines, you
can set up the ICU to handle the configuration of aÌmost any device driver. Depending on
the number of aù\iliary fields defined, you can provide the new auriliary fields with
descriptive names.

Using the input file you provide, the UDS r:tility creates t,ro files that define the neìt
screens you specified. These files have extensions .SCM and .TPL. Once these files are
created, the ICUMRG utiliry can be used to merge these fìl€s with the ICU. In addition
to the .SCM and .TPL files, the UDS produces a listing file that has a .I^ST eÉension.
The list file shows how the screens will look when added the the lCU.

9.1.1.1 UDS lnouî Fi le

Before invoking the UDS utility, you must create an input file that defines how the ICU
screens for your device driver should look. Figur€ 9-2 shows the format of that input file.
The information in brackets ([]) is therejust to describe the lines ofthe fil€; it is not pa
of the input file. The "xoo<" characters indicate thflt you must fill in a valuc thcrc.

Included with the UDS are two input file templates: TEMPI- .TE_I and TEMPI-4,TE_2.
These files contaÌn example UDS user input files. TEMPI-{TE_I.UDS is a basic file, and
contains no auxiliary help fields. TEMPI-{TE 2.UDS is a complere input file, and
contains examples of most auxiliary fields. You can modify these files to suit your
individual needs.

9-4 Device Drivers Useds Cuide

CONFIGURING A USER.WRII'TEN DEVTCE DRIVER

/ lversion - xxxx [1-4 character version nlrmber]
/ lname : xxxx [1-25 character nane]
/ labbr = xxx [l -3 character abbreviat ion]
/ la lr Íver - x Ldr iver type value, f ron 1 to / l
/ ldevice [start of device infornat ion]
/ ldev_aux : x! [núber of euxl l iér ies, f ron 0 to 20]
/1d01 - 'parameter nane' [1-41 chalacter paÍaneter narne, in quotes]
d01 help infornat ion [0-1024 character help infon0at ion]

A Íraxinurn of 1024 chars, hetp nsgs are required

. tnanes and help infornat ión for otherl

. lauxi l ia iy parameters l

/ i e n d l e n d o f d e v i c e i n f o r m a t i o n l
/ u n i c f s t a r t o f u n i t i n f o r m a l i o n l
/Éunlt_aux = xx lnlr l l lber of auxl l lar les, f rom O to 20]

/Éu01 : 'parameter nane' [1 '41 character paraneter nar lè, in quotes]

/h101 hè]p information [0-]024 character help inforroattonl
A naxinum of 1024 chars, help rnses are requlred

. tnanes and help Ínformation for othet l

. I a u x i l i a r y P a r a m e t e r s I

/ / e n d e n d o T u n í t i n f o r n a l l o n l
llduib
llduib_aux - 0
/ lend lend of device unit ínformation]

figùre 9-2. Syntax of UDS Input File

The lollowing paragraphs describe the individual lines of the input file.

#version This is a one- to four-character user version number that will be
used as the new version number of the ICU. By picking consistent
version numbers, you can always keep track ofthe latest version of
your ICU.

Device DriYers Useds Guide

CONFIGURING A USER.WRJTTEN DE\TCE DRI!tsR

It is important to enter meaningful data for the version number,
because the ICU uses the version to determine whether the
definition files are cùrrent. When the ICU is invoked by using an
existing definition file, the lclJ checks the version nùmber ofthe
definition file against the version number ofthe master .SCM alld
.TPL files. If an inmnsistenry occurs between these version
numbers the ICU displays the differing version numbers and asks if
you want to update the file. The version number that the ICU
displays is built from the value you specif here, plus the date and
time on which you run the ICUMRG utility. Relet lo the Etendcd
.RMX Il Inteructíve ConÍigumtíon Utility Refercnce Manual foî
information on updating definition files to newversions of the
ICU,

#name The l- to 25-character name ofthe driver being supported.

#abbr The 1- to 3-character abbreviation are used to form screen names
and abbreviations for all three driver screens as follows:

Screen Abbrevìation Screen Name

D_<abrv> <name> Driver
U_<abrv> <nrme> IInit Information
I < abw> <name> Device-unit Information

So, ifyou entered an abbreviation of "ABC" and a name of "High
Speed ABC," your screen abbrevjations would be'D,ABC,
"U_ABC," and "I-ABC., The screen names would be "High Speed
ABC Driver," "High Speed ABC Unit Information," and "High
Speed ABC Device-unit Information."

#driver The value you specify here indicates the kind of driver this is and
thus the kind of screens to display. The following values apply:

9-ó Device Ddvers Usefs Guide

CONFIGURING A USER-WRITTDN DEYICE DRIVER

Value Drlver

1 lorminal Suppoft d ver with one ifi€rupt l€v€l (see Figures $3,
98, and 911 lor scre€ns)

" lgH;,;ii#":i:"íJ"
* 't6fupr,€vE,s (3è6 Fisures s.4,

3 tntsrupless MULTIBUS| and MULTTBUS Fu tvlessage
Passing Terminalsupport drivsr (s€6 Figuros 95,98, and 911

4 Interupt Drivsn Random Access Supporl and common dÍvers
(s66 Figur€s 96, 99, and 912 icr scrsenE)

5 MULTIBUS tt Futt Messag€ passing Random Access devices.

6 Resetued

7 Generaldriver (see Figures$8,911, and 9i4 for Bcr€€ns)

#device This field indicates the start of the information that applies to the
device information screen. 'lhis information continues until a
#end field appears.

#dev_aux This field indicates the number of auxiliary parameters on the
device information screen. This value can range from 0 to 20, If
this value is four or less for terminal support devices or random
access devices, or 14 o.less for general devices, each auxiliary
parameter is displayed on a sepaaate line, and the parameter
names you speci$i in the #d fields are displayed there too. If more
auxiliary paranìet€l s are specificd, rhc parameters are displayed on
the device information screen in rows of five parameters each. ln
this case, there is no room for the parameter names and if any arc
entered, the UDS ignores th€m.

Wlen the ICU generates a system, ìt places the auxiliary
parameters from the device information screen in the
?ICDEVC.A28 or ?ITDEV"428 fil€s rlìar ir crearcs (whcrc ?
means the character can vary), immediately after the Device
lnformation structure. The file that is actually altered depends on
whether the device is a terminal l?ITDEV.A28ì or a
random/common (?ICDEV> A28) device.

#d01 Each oîthese fields (#d01 through #d20) identily auxiliar,
paramctcrs in the device information table. Although the
identifiers for these param€ters are fixed (D01 through D20), il the
auriliary parameters each fit on a single line, the 1- to 41-character
parameter name you speciry hete (as 'parameter name',
surrounded by quotes) will be included on the menu to describe the
au-rilìary Darameter.

Device Drivers UseCs Guide 9.7

CONFIGURING A USER.WRIT"TEN DEVICE DRII'ER

d01 help

Even ifyour device ìnformation table contains too many au\iliary
pffameters to include a parameter name for each, you must speaily
the #d field for a parameter ifyou plan to add help information for
thàt field. In such cases, you can speci! the #d field without a
parameter name, as follows:

#d03 -

You can also modiîy the parameter names and help information
for the standard parameters that normally appear on the devic€
information screen you selected. For example, ifyou are setting up
a random aocess device and you wanted to modify the parameter
name and help information for the DS field (see Figure 9-5), you
could include the following information in the input file:

l l d s - ' S i z e o f D e v í c e L o c a l D a t a [0 - o F F F F H] '

l his is the description of the DS field. You can modiry the other
fiekls in the same manner.

Thìs is the help information for the parameters. You MUST
include heìp information for all parameters. The UDS assumes
that the help information ends when a # appears at the start ofa
subsequent ìine, or when the maximum character count is reached.
The UDS displays help information when the ICU user requests
help for the corresponding parameter. Help information is limited
to a maximum of 1024 characters.

This field designates the end of the device, unit, or device-unit
ìnformation.

This field indicates the start of the information that applies to the
unit information screen. This information continues until an #end
field appears.

This field indicates the number of auxiliary parameters on the ùnit
information screen. This value can range from 0 to 20. If this
value is 10 or Ìess, each auxiliary parameter is displayed on a
separate line with the parameter names you specily. With more
than 10 auxiliary parameters, the parameters are displayed two to a
row, with no room for parameter names.

When the ICU generates a system, it places the auxiliary
parameters from the unit information screen in the ?ITDEV.A28
or ?ICDEV.A2S files it creates, immediately after the Unit
lnlbrmation structure. The file that is actually altered depends on
the rype of device: ?ICDEV.A28 for common and random devices,
?ITDEV.A2S for terminaì devices.

#end

#unit

#unit_aux

9-8 Device Drivers Use!'s Guide

#u01

u01 help

#duib

CONFIGURING A USER"WRITTEN DEI'ICE DRI}'ER

Each ofthese fields (#u01 through #u20) identiry auxiliary
parameters in the ùnit information screen. The identifiers for
these pa.ameters are fixed (U01 through U20). Ifthe auxiliary
parameters each fit on a single line, the 1- to 41-character
psrameter name you speairy here (as'parameter name',
surrounded by quotes) will be included on the menu to describe the
auxiliary parameter.

You can also use similar fields to change the patameter names and
help information for any of the standard parametcrs ofthc unit
information screen.

This is the help information for the parameters. You must include
help iÍformation for all parameters. The UDS assumes that the
help information ends wh€n a # appears at the start of a
subsequent line. The UDS displays the help information when the
ICU user requests help for the corresponding parameter. Help
information is limited to a maximum of 1024 characters.

This field indicates the start ofthe informatìon that applies to the
device-unit screen. The device-unit information continues until a
#cnd ficld is encountered.

This field indicates the number of auxiliary parameters on the
device-unit infbrmation screen. This value can range from 0 to 20.
Currently, the UDS does not support any auxiliary paramete.s;
therelore, set this field as follo\,r's:

#duib_aux

9.1,1.2 Device Information Screens

This section lists the different Device Information Screens that the UDS can generate.
When adding support foÍ your own driver, choose the screen that matches the way your
driver expects the Device Information Table to look. AII of the screens in this group can
also contain auriJìary parameter lines. You should set up auxiliary paramcter lines iI
none of the Device Information Screens listed contain enough fields to support the needs
of your driver. Figures 9-3 through 9-8 illustrate the screens available via the ttDS utility.
Figure 9-3 shows how one column of auxiliary parameter lines look ifyou do not add your
own parameter names. Figure 9-4 shtrws the arxilìary parameters look when multiple
columns are needed.

The meanings ofthe individual fields in these screens are the same as the fields in the
Device Information Table. Refer to Chapters 5 or 6 for more info.mation about those
tables.

Device Drivers flser's Guide 9-9

CONFIGURING A USER-WRIÎTEN DEVICE DRII'ER

(D_xxx) One-Interrupt Terminal Device Infotnatlon

(DEv)
(NT)
(D S)
(s s)

00
00000H
00000H

000H

00000H
00000H
00000H
00000H

Device Nane {1-16 chars l
Nunber of terÌninals on this control ler
Drlver Data Size [0-oFFFFH]
Drivers stack size [0-oFFFFH]

(lNl) Term_ini t Procedure Name f1-31 Charsl
(FIN) Term_finish Procedure Nane l1-31 Chars
(SET) Term_setup Procedure Nane I I-31 Chars]
(oUT) Tern-out Procedure Nane [1-3]. Charsl
(ANs) Term_answer Procedure Nane [1'31 chars
(HAN) Term_hangup Procedure Name [1-31 Chars
(UTI) Term_uti l i ty Procedure Nane l1-31 Charsl
(lL) Interrupt Lever lEncoded Level]
(CHK1) Terrn-check for this Level [1-31 Chars]
(D01) Auxl l iary 1
(D02) Auxi l iary 2
(D03) Aùxi1iàry 3
(D04) A.uxi l iary 4

Figure 9-3. UDS Device Information Screen for One-Interrupt Terminal

(D xxx) T\,ro-Interrupt Tèrninal Device lnformarion

(D E V) D e v i c e N a m e 1 1 - 1 6 c h a r s l
(NT) Nuber of temrinals on Èhls concrol ler
(D S) D r i v e r D a t a S i z e { 0 - o F F F F H I 0 0 0 0 0 H
(SS) Drivers Stack Size f0-oFFFFHI 0oo00H
(lNI) Tern- ini t Procedure Nane I1-31 Charsl
(FIN) Term-f inish Procedurè Nane [1-31 Chars]
(sET) Tern_setup Procedure Nanìe [1-31 Chars]
(oUT) Tern_out Procedure Nane [1-31 Chars]
(ANs) rerm_answer Procedure Nane [1-31 chars]
(HAN) Term_hangup Procedure Nane [1,31 chars]
(UTI) Tern_ut i l i ty Procedurè Nane [1-31 chars]
(Tr1) Fírst Inlerrupt l -eve1 lEncoded level]
(CKl) Tenn-check for First fevel [1 - 31 Chars]
l l L 2) s e c o n d I n L e r r u p r L e v e l I t r . o d e d] e v e l I
(CK2) Tern-check for Second Level {1 31 charsl
(D01) 00000H (D02) 00000H (D03) 00000H (D04)
(D06) 00000H (D07) 00000H (D08) 00000H (D09)
(D l l) 0 0 0 0 0 H (D 1 2) 0 0 0 0 0 H (D 1 3) 0 0 0 0 0 H (D 1 4)
(D 1 6) O 0 0 0 0 H (D 1 7) 0 0 0 O O H (D 1 8) O O 0 0 0 H (D 1 9)

0 0

000H

00000H

00000H (D05) 00000H
00000H (D10) 00000H
00000H (D15) 00000H
oooooi l (D20) oooooH

Figùre 9-4. UDS Device Information Screen for Tì*o-InternrDt Terminal

9.10 Device Drivers User,s Guide

CONFIGURING A USER.WRIÎ'îEN DEI'ICE DRII'ER

(D_xxx) Interrupt- less I , IULTIBUS I and MULTIBUS II Fult Message passíng
Ternì ina1 Device lnfornatÌor

(DEV)
(NT)
(D S)
(ss)
(I N I)
(FIN)
(sEr)
(our)
(ANS)
(HAN)
(U T I)
(l,rTP I
(cHK)
(D01)
(D02)
(D03)
(D04)

Figure 9-5, UDS Device Informafion Screen for Interrùptless Terminal D€vices

Device Name [1-16 Charsl
Nurnber: of terninals on this control ler
Driwer Data Size [0-oFFF|H]
Driwer Sta.k Size l0-OFFFzul
T e r m l n i t P r o c e d u r e N a m e | - j l C h a r s l
Tern-f lnish Procedure Nane l1-31 Charsl
Tern-setup Procedure Nane [1-31 Chars]
îern-out Procedure Nane [1-31 Charsl
T c r n a n s e e r P r o c e d u r e N a m e l I - 1 1 c h d r s l
Tern-hangup Pr:ocedur:e NarDe [1-31 Chars]
Tèrn-ut i l i ty Procedurè Nane l1-31 Charsl
l . {essage Task Prior i ty [0- 255]
T e r m - c Ì è c ! P r o c F d u r e N a m e [1 - 3 1 c h a r s]
Auxi l iary 1
Auxi l iary 2
AuxíI íaiy 3
Auxi l iary 4

000
00000H

000

00000tl
00000H
00000H
00000H

(D_xxx) MULTIBUS I Randon Access Devlce tnfornat lon

(D E v) D e v i c e N a n e [1 - 1 6 C h a r s]
(IL) Interrupt Lever IEncoded Level]
(I T P) l n t e r r u p È T a s k P r i o r i r y [0 - 2 5 5]
(SS) Interrupt Procedure Stack Size [0-oFFFzu]
(DS) Device Local Data Size [O-0FFFFH]
(MJ) Nunber of Units on this Device [0-255]
(TNl) Inl t la l lzaÈion Procedure Nane [1-31 Charsl
(FIN) FinÍsh Procedure Name [1-31 Chars]
(STR) stert Procedltrè NàÌne [1-31 chars]
(STP) Stop Procèdure Narne {1-31 chatsl
(lNT) Interrupt Procedure Nane {1-31 Charsl
(ITo) Interrupr Time our {o-oFFFFHI
(D01) Auxi l íary 1
(D02) Auxi l iary 2
(D 0 3) A u x i l i a r y 3
(D04) Auxi l iary 4

000H
000H
00000H
00000H
000H

00000H
00000H
00000H
00000H

Figure 9-6, UDS Device Information Screen for Random Access Device

Device Drivers Use/s Cuide 9-lt

CONFIGURING A USER.WRITTEN DEVICE DRI!'ER

(D_xxx)

(DEV) Device Nane [1-16 Chars]
(M T P) M e s s a g e T a s k P r i o r i t y [0 - 2 5 5]
(ss) Message Procedure Stack Size [0-oFFFFH]
(Ds) Device Local Daca size I0-oFFFFHI
r N U) N u r n b e r o f U n i c s o n t h í s D e v i c p [0 - 2 5 5]
(INI) Ini t Procedure Nane [l -31 Chars]
(FIN) Finish Procedure Narn€ [1-31 chars]
(STR) Start Procedure Nane [1-31 Chars]
(STP) SÈop Procealure Narne l1-31 Charsl
(MSG) Message Procedure Name [1-31 chars]
(MTo) Message Tine out [O-0FFFFH]
(MQL) Mèssage Queue]-ength [0-oFFFFH]
(BIN) Board Instance l0- oFFHI
(B l D) B o a r d I D . [1 ' 1 0 c h a r s]
(D01) Auxt l iary 1
(D02) Au: i l iary 2
(D03) Auxi l iary 3
(D04) Auxi l iary 4

000
00000H
00000H
000

00000H
00000H
000H

00000H
00000R
00000H
00000H

Figure 9-7. UDS Device Information Screen for MULTIBUS@ II Message-Passing Random
Access D€vice

(D_x:x) ceneraf Device. Device Infornat ion

Device Name [1'16 Chars]
Interrùpt Lewèl IEncoded Lewel]
I n t e r r u p t T a s k P r i o r i t y l 0 - 2 5 5 1
Auxi l iary I
Ar lx i l iary 2
Auxi l iary 3
Auri l iary 4
Auxi l iary 1
Auxi l iary 2
Auxi l iary 3
Auxi l iary 4
Auxl l tary 3
Auxi l íaty 4
Auxi l iàry I
Anxi l iary 2
Auxi l iary 3
Auxi l iary 4

Figùre 9-8. UDS l)evice Inforúafion Screen for G€n€rdl Device

(DEv)
(I L)
(I îP)
(D01)
(D02)
(D03)
(D04)
(D05)
(D06)
(D07)
(D08)
(D09)
(D10)
(D r r)
(D12)
(D13)
(D14)

000H
000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H

9-12 Device Drivers Useis Gùide

CONFIGURING A USER.WRITTEN DEVICE DRII'ER

9.1,1.3 Unit Inlormation Screens

This section lists the Unit Informalion Screens that the UDS can senerate. These screens
are defìned by placing information ìnto a user inpur file. which thà UDS reads. By
choosing the appropriate driver t)?e and addirg the correct number of au\iliary lines to
the driver's screens, the user can set up the ICU to handle the configuration of virtually
any driver. All screens in this group can contain auxiliary parameter lines. If none of the
Unit Information Screens listed contain enough lields to support your driver, set up
auxiliary parameter lines. Figures 9-9, 9-10, and 9-11 illùstrate the screens available via
the UDS utility.

The meanings ofthe individual fields in these screens are the same as the fields in the
Unit Information Table. Refer to Chaoters 5 or 6 for more information about those
tables.

(DEV)
(NAl'l)
(cNF)
(TRF)
(rBR)
(0BR)
(s N)
(u01)
(u02)
(u03)
(u04)
(u05)
(u06)
(u07)
(u08)
(u09)
(u10)

000H
000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H

TernínaI Support Unit Infornat ion

Devlce Nane l1-16 chars l
Unit lnfo Name [1-16 Chars]
conn€ct ion f làgs IEncÒdèd]
Terninal f lags IEncoded]
Input BAUD Rate [0-oFFFrl ì]
output BAUD Rate [0"oFFFFH]
scrol l Nrmber [0-OFFFFH]
Awil iory 1
Auxi l iary 2
Auxi l iary 3
Auxi l iary 4
Auxi l iary 5
Auxi l iary 6
Auxi l iary 7
Auxi l iary 8
Auxi l . iary 9
Auxi l iary 10

Fisurc 9-9. UDS Unit lnformatiori Screen for Terminal Device

Devicc Drivcrs UscCs Cuidc 9-13

CONF'ICURINC,1, USER-WRITTEN DEVICE DRI!'ER

(U_xxx) Randon Access Support Unit lnfornat ion

(DEV) Device Name [1-16 Chars]
(NAu) Unit Tnfo Nane 11-16 Charsl
(T S) T r a c k S i z € [0 - o F F F F H]
(l . fR) Ì laxlnun Re!r1es [0-oFFFFH]
(cs) cyÌ inder Size I0- 0FFFFHI
(u01) 00000H (u11)
(u02) 00000H (u12)
(u03) 00000H (u13)
(u04) o0o00H (ul4)
(u05) 00000H (u15)
(u06) 0000oH (ul6)
(u07) 00000n (u17)
(u08) 00000H (u18)
(u09) 00000H (u19)
(u10) 00000H (u20)

00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H

Figure 9-10. UDS Unit ldformation Scrcen for Random Access Device

ceneral

(DEV)
(NAl'f)
(u01)
(u02)
(u03)
(u04)
(u05)
(u06)
(u07)
(uo8)
(u09)
(u10)

Devicè l jnit Infornation

Device Nane l1- 16 Charsl
Unit Info Name [1-16 Chars]
Auri l iary 1
Auxit iary 2
Auxil iary 3
Auxíl iary 4
Auxíl iary 5
Auxil iary 6
Auxil iary 7
Auxil iary 8
Auxil lary 9
A$. i l iary 10

Figùre 9-ll. UDS Unit Information

00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H

Screelr for General Devlce

9-14 Device Drivers Usefs Guide

CONFIGURING A USER.WRIITEN DEYICE DRIVER

9.1.1,4 Device-Unil Inlormation Screens

This section lists the Dcvice-Unir Information Sc.eens thar rhe UDS senerates. When
adding support for your own driver, choose the screen that marches tie wav your driver
expects the DUIB to look. Nonc of the scr€ens in this group currentty al"í ou"itiary
parameter lines. Figures 9-12, 9-13, and 9-14 illustrate the sqeens available via the UDS
urility.

The meanings of the individual fields in these screens are the same as the fields in the
DUIB. Refer to Chapter 4 for more information abour the fields of rhe DUIB.

(I_xxx) TerÌnina1 Supporr Device-Unit Infornarion

(D E V) D e v i c e N a n e [1 - 1 6 c h a r s]
(N M) D e v i c e - U n i t N a n e [1 - 1 3 c h a r s]
(UN) Unlt Nurber on Èhis Device [0-0FFH]
(U T N) U n l t T n f o N a n e 1 1 - 1 6 c h a r s l
(l , fB) Max Buffers [0-oFFH]

000H

000H

Figure 9-12. UDS netice-Unit tnformation Screet for Terminal Device

All th.ee terminal driver tlpes use the same Device-Unit Information screen.

Device Drivers User's Guide 9-15

CONFIGURINC.A. USER.WRIT'TEN DEVICE DRI\,'ER

(I xxx) Randon Access Devlce-Unit Infornat lon

(DEV)
(NAM)
(PFD)
(NFD)
(SDD)
(sDs)
(E F I)
(SUF)
(GRA)
(D S Z)
(UN)
(UTN)
(RUT)
(NB)
(cuP)
(MB)

Device Narde [1-16 Chars]
Device-Unit Nane [1-13 Chars]
Physical Fl le Drtver Required lYes/Nol
Naned Fi le Driver Required {Yes/Nol
Slngle or Double Denslty Dlsks IStngle/Doubre]
single or Double Síded Disks {Single/Doublel
8 or 5 lnch Disks I8l51
Slandard or Uniforn Format I S tandard^ntforE]
Granular l ty [0-oFFFFFH]
DevÍce Size i0 'oFFFFFFFFHI
Unit Nurber on this Device [0-oFFH]
Unit lnfo Nane [1-16 chars]

No
Yes
Double
Double
5
Standarid
00000H
00000000H
000H

Request Update Timeout Io-oFFFFH] 00000H
Nlnùef of Buffers lnonrandon : o/rand - 1-oFFFzu] 00000H
comon Update [Yes/No] Yes
Max Buffers [0-0FFH] 000H

Fizure 9-13. Ut S Device-Unit Information Screen for R4ndom Access Device

(I_iw) Cenèra] Dewice-Unit Infornat ion

(DEv) Device Name I1-16 charsl
(NAM) Device-Unit Nane [1-13 Charsl
(FD) Fi Ie Drivers [o-oFFFFH Encoded]
(FNC) Funct ions [0-0Fnl Encoded]
(FLG) Ftags [0-oFFH Encoded]
(cRA) Granular i ty [0-0FFFFFHI
(DSZ) Devlce size [0-oFFFFFFFFF
(UN) Unit Nurber on this Device [0,0FFH]
(I N I) l n i t i a l i z e - I / o P r o c N a n e [1 - 3 1 c h a r s]
(F I N) F i n i s h - I / 0 P r o c e d u r e N a n e [1 - 3 1 C h a r s]
(QUE) Queue-I /o Procedure Name [1-31 chars]
(CL1' l) cancel-T/0 Procedur€ Nane [1-31 Chars]
(UIN) ùnit Info Name [1-16 chars]
(RUT) Request Update Timeout [0-oFFFFH]
(NB) Nunb€r of Buffers [nonrandon : o/rand -
(s T P) s è r v i è e î a s k P r i o r i t y [0 - 2 5 5]
(CUP) Condron Updace IYes/No]
(MB) Max Buffers [0-oFFH]

00000H
000H
000H
00000H
00000000H
000H

00000H
1-0FFFFHI 00000H

000H
Yes
000H

Figure 9-14. UDS Device-Unit Information Scre€n for c€neÍù Device

9-16 Device Drivers Uset's Gúide

CON|IGURTNG A USER.WRTTTEN DEI'ICE DRIVER

9.1.t.5 hvoking the UDS Uti l i ty

Once you have created an input file that specifies how the screens for your rJcvice rlrivcr
should appear, you are ready to invoke the UDS utility. To do this, ensure that the
diectory containing the UDS program also contains the UDS database file named
UDS.SCM. Then invoke the utility by tlTring:

UDS input- f i le TO output-f i le

where:

input-file The name of the file that contains the information that will be used
as input to the UDS utility. This is the file that was described in
the section entitled "UDS Input File."

The name portjon of the output files generated by UDS. UDS
adds three-character extensions to thìs name when generating its
output files. The two primary output files are output-file.SCM and
output-file.TPl-. You will use these output files as input to the
ICUMRG utility. The other output file is outpuFfile.ljl a listing
flle that shows exactly how the screens will appear when added to
the ICU.

Note that you should not name your UDS output files
ICU286.SCM or lCU286.TPL.

output-file

For example, suppose you created an input file called NEWDRIVER.TXT and wanted
the UDS utility to generate output files called SPECIAL.SCM and SPECIAL.TPL. To do
this, you would enter the following commandl

uds néwdr iwer. cxÈ co specià l

Part of the output of the UDS utility are two files with extensions .SCM and .TPL (in the
example, SPECIAL.SCM and SPECIAL.TPL). These files contain the definitions of the
ICU screens for your driver. After running the UDS utiliry, you will use the ICUMRG
utility to add these files to the ICU.

However, trefore running fCUMRc, examine the listing file (in the example,
SPECIAL.LST). This file shows how the device information screen, the unit information
screen, and the device unit information screen will look whcn addcd to thc ICU. If rhcrc
is a problem with the appearance of any of these files, you can catch the problem eaù
and rerun IIDS. instea(l of addins incorrect s{'reens to the ICU.

I)evice I) vers flser's Gùide 9-17

CONFIGURINC.{ U SER.WRJTTEN DE\,'IC[DRIVER

9.1.1.6 UDS Error Messages

Ifyou make a mistake when creating the files to use as input to UDS, the UDS utility will
generate an error message and display it on your screen, The following error messages
are displayed vrhen an exlernal îile or memory tlpe error occuru, and are preceded by the
crrot mcssage:

***Error in IJDS

The external file and memory t1rpe error messages are

. * * * c e n n o r A r e . h I n n , r r F i I e

You did not have the proper permission to access the fle containing the UDS
rnsfrucÌrons.

. *** not enough nemoly for buffers*

Your memory partition is not iarge enough to permit the UDS utility to run.
. *** Cannot Attach UDS SCM File

UDS needs to access a file called UDS.SCM, but you do not have read access to that
file.

. , t** Invalid uDs.scM File

The UDS file UDS.SCM has been corrupted.

. ***Cannot Create Ne\r SCM File

UDS cannot create the output file (output_file.ScM).

. ***Cennot Create New TPL Fi1è

UDS cannot create the output file (output_file.TPI-).

. ***CannoÈ Create LST File

UDS cannot create the listing file (output_file.LsT).

In addition to external file and memory type error messages, the UDS produces input file
erÍor messages, which are preceded by this message:

. *)r* Error in UDS Input Fl le on l ine <l ine-number>

Where < line-number > is the line number in the user input tile at which the error
occurred. lnput tile error messages can be any of the following:

. *** Missing User Versíon

There was no #version statement in your UDS input file. This statement is required.

. *** Tl legal Version

9-r8 Device Drivers User,s Guide

CONFIGURTNG A USER.WRITTEN DEI'ICE DRIVER

The #version number in the user input file is outside the legal range of 1 to 4
characters.

. * , t* Missing User Device Nane

The #name field is not in the UDS inpur file. This srarement is required.

. *** l l legal Device Nane

The #name identifier is of0length or greater than 25 characte.s in len$h.
. *** Ulsslng User Devlce Abbr

There was no #abbr identiiier in your UDS input file. This statement is required.
. *** I l legal Device Abbr

The #abbr value in the user input file is outside the legal range of 1 to 3 characters.

. *** Missing User Driver Type

The #driver identifier is missing from the user input file. This identifier is required.

. *** r1legal Driver TyPe

The #driver value in the user input file is outside the legal range of 1 to 7.

. *** Missing úser Device

The #device identifier is missing from the user input file. 'lhis
identiiier is required.

. *** Missíng Nùnlber of Dèvice Auxil íariès

The #dev_aux identifier is missing frorn the user input file. This identifier is.equted.

. *** l l issing usef unit

The #unit identifier is missing from the user input file. This identifier is required.

. ; t l * M i s q i n s r , J u r h è r n f t - i . a , r \ l I l a r i e s

The #unit_aux identifier is missing from the user input file.
. : t** Missing l jser Duib

The #duib identifier is missing from the user inpur file.
.) t** Missing Nunber of DUIB auxi l iaríes

The #duib aux identifier is missirg from the user input file. This identifier is
requied.

. *** DUIB Screen Can Not Have Auxi l iary F iè lds

The #duib aùÌ value in the user input file is set to a vaÌue other than zero (0).
. *** Missing Equal Sign

The equal sign is missing f.om an identifier that requies one.

. *** Line Too Long

Devic€ Driv€rs User's cùid€ 9.r9

CONFIGURINC A USER.WRII'TEN DEVICE DRIVER

A line in the user input file is longer than the allowable 132 characters.

. *** Mlssing Auxi l iary HeIp Message

An auxiliary parameter line was added without its requi.ed help message.

. *** Auxi l iary] - ine Out of Sequence

Auxiliary parameter lines must be listed sequentially, beginning with line 01.

. *** Less Auxi l iary Lines than Expected

The number of auxiliary lines is less than the value indicated in the)m(_aux vaÌue of
the user input file.

. *** l lore Auxi l íary L ines than Expected

The number of atrtilìary lines is more than the value indicated in the)oo. aux valùe of
the user input file.

. : t** l l1egal Tnput

Extra characters were entered on a line after the valid input.

. *** Inval id Abbreviat ion

The abbreviation for an auxiliary field is outside the legal range of I to 3 characters.

. *** Abbrevial ion Not Found

When changing a standard parameter line or its help message, the abbreviation was
entered incorrectly.

. *** Ntrlrber Exceeds ltlaximur

The value of dev_aux or unit_alx is grealer than 20.

. * t (* N "m} |p r F vnp . i a í l

A non-numeric value was entered.

. *** Syntax Error

The opening quote on a paramete. name line is missing.

. *** Do Not Use / l Sígn in Text

A parameter name contains a pound symbol (#).

. *** Do Not Use (Sign in Text

A parameter name contains a left parenthesis "(".

. *** ì , l iés i l rg End of Text Sign

The closing quote on a parameter name line is missing.

.) k * * î p Y r l i n a T ^ n l ^ n '

A parameter name exceeds 41 characters.

9-20 Device Drivers UserJs Guide

CONFIGURING A USER.WRJTTEN DE\TCE DRIVER

. *** Help l {essage is too LonS

The Help message you entered exceeds 1024 characters in len$h.

. *** Field Name ExPected

A blank line was detected iî the device, unit, or duib information.

. *** UnexPected eof

The user ìnput file ìs incomplete.

The following error message indicates that the specified file or directory lacks read or
creation permission.

. *) k * - I l O F r r n r í n I ' í l a f f i l, r _ e - n a n e l

9.1.2 ICUMRG UTILITY

After using UDS to generate .SCM and .TPL files lor your new driver, invoke the
ICUMRG utility to combine the information in these files with the information in the
ICU286.SCM and lCU286.TPL files (the files that contain the definitions of all the other
ICU screens). Before running ICUMRG, make sure that ICU286.SCM and ICU286.TPL
reside in the same directory as the ICUMRG command. Then, invoke the ICUMRG
utility as follows:

ICUMRG input f i le T0 output-f i le

Where:

input'file The name (minus the extension part) of the .SCM and .TPL files
generated by the UDS. For example, if the UDS utility created
files called SPECLA.L.SCM and SPECIAL.TPL, you would specify
the name SPECIAL here.

The name (minus the extension part) of new ICU iiles that
ICUMRG will create. For example, if you specified the name
ICUNEW, the ICUMRG utility tri[create fl€s caled
ICUNEW.SCM and ICUNEW.TPL. These new files will contain
the complete definition ofthe lCU, including the screens youjust
defìned for your new driver. By naming these files something other
than ICU286, you can presene the previous version ofthe ICU
files. HoweveÍ, to have the new files take effect when the ICU is
run, you must change their names to ICU286.SCM and
ICU286.TPL. For test purposes, you can change the name of the
ICU executable file to match the base name ofthe new file (e.g.,
rcuNEw).

ourPur-file

Device Drivers Uset's Cuide 9-21

CONFIGURINC A USER.WRITTEN I)E!'ICE DRIVER

Once you finish adding support for your drivers to the ICU with the UDS and ICUMRG
utilities, you can configure those drivers almost as you would any Intel-supplied drivers.
Simply invoke the ICU and go to the "(UDDM) UDS Device Drivers Module." Enter the
appropri.te drìver t)'pe (T)errninrl or (C)onmon and the firll pathname for the location
of the object code for your device driver. After you enter the correct value, choose the
device you want to configure. Then fill in the appropÍiate values when the ICU displays
the Device Information, Unit Informaîion, and Device-Unit lnformation screens.

9.1.2.1 UDS Modules Screen in the ICU

Driveì: iypè ,
(UDDM)

I 1 l

XoduIe*

Module*

You specify (C) for cornnon/random/custom Object Module pathname(s) and (T) for
terminal drivers.

All drivers added via the UDS must be placed in modules according to typ€. All of your
termìnal modules must be located in one module, all ofyour common/random/custom
drivers must be located in a separate module. For example, 1 = T, TERMINAL.LIB and
2 = C. DRIVER.LIB

NOTE

Before changing the name of any ICUMRG output files to ICU286.SCM and
ICU286.TPL, save the orìginal files by copyìng them to other files (such as
ICU286OLD.SCM and ICU286OLD.TPL). Although ICUMRG allows you to add
support for new drivers, once you add that support, there is no way to remove it. lf you
decide yoù don't want the ICU to display information about one ofyour drivers, or you
made a mistake when you added the driver support, you must revert back to the original
ICU28ó.SCM and ICU266.TPL files (or an intermediate version that didn't contain
support for that driver).

9.2 ADDING YOUR DRIVER AS A CUSTOM DRIVER

If you don't want to modify the lCU, you can add your driver as a custom device driver.
Perform the following steps to do this:

1. Ascertrin the delice numbers and device-unit numbers to use in the DUIBS for
your devices, as follows:

Device Drivers Usels Guide

b.

c.

CONFIGURING A USER.WRTTTEN DEI'ICE DRIVER

Use the ICU to configure a system containing all the Intel-supplied and ICU-
supported user drivers you require.

Use the G option to generate that system.

Use a text editor to examine the file ?ICDEV.A28 (the ? means the first lerter can
vary). Among other things, this file contains DUIBS for all the device-units you
defhed in your configuration.

Look for the TTDEVICETABLES macro that aDDears after all the
DEFI\F-Dl l lB stnrctures The second and rhi ià paramerers in that macro l isl
are the next available device-ùnit number and device number, respectively. For
exdmple. suppose lhe qDEVICETABLES macro appears as fol lows.

u DEVICETABLES (NUMDUIB, 0000CH, 005H, 003E8H)

In this case, the nexî available device-unit number is oCH and the next available
device number is 05H.

d.

e. Use the next available device number and device-unit number il your DUIBS.

2. Crente the following:

a. A file containing the DUIBS for all the device-units you are adding. Use the
DEFINE_DUIB structures shown in ChaDter 4. Place all the structures in the
same file. Later, the ICU includes this file in rhe assembly of rhe ?ICDEV.A28
file.

b. A file containing all the device information tables of the random/common/custom
type that you are adding. Use the RADEV-DEV_INFO structures shown in
Chapter 4 for any random access drivers you add. Use a structure similar to the
one shown in Chapter 6 for terminal drivers. Later, the ÌCU includes this file in
the assembly of the ?ICDEV.A28 file.

c. If applicable, any random access or common unit information table(s). Use the
RADEV UNIT INFO strùctures shown in Chaoter 4 for anv random access
driver\ you irdJ. Add lhcse ldhle\ to lhe [i]e creared in stepb.

d. l\ file containing all thc dcvice information rables of the tern nal g?e that you ale
adding. Use the RADEV_DEV_INFO structures shown in Chapter 4 ior any
random acc'ess drivers you add. Use a structure similar to the one sho\r.n in
Chapter 6 for terminal drivers. Later, the ICU includes this file in the assembly of
the ?lmEV.A28 file.

e. If applicable, any terminal unit information table(s). Use a structure similar to the
one shown in Chapter 6 for terminal drivers. Add rhcsc rables to the file created
in step b.

f. External declararions for any procedures that you write. The names of these
procedures appear in either the DUIB or the Device Information Table associated
with this dcvice driver. Add rhcs€ dcclaralions ro rhe file created in srep b arld d.

Device DÌivers Usecs Cuide 9-21

CONFIGURING A USER.WRITTEN DEI'ICE DRI!'ER

3. Use the ICU to configure you. final system. When doing so:

a. Answer "yes" when asked ifyou have any device drivers not supported by the lCU.

b. As input to the "Custom ljser Devicesn screen, enter the pathname of your

random/common/custom device driver library. This refers to the library built
earl ier: for example. :F1:DRIVER.LIB.

c. As input to the "Custom User Devices" screen, enter the pathname ofyour
terminal device driver library. This refers to the library built earlierj for cxamplc,
:FliTERMlNAL.LlB.

d. Also, enter the information the ICU needs to include your configuration data in
the assembly of ?ICDEV.A28 and ?ITDEV.A28. The information needed
irclurJes the following:

. DUIB source code pathname (the file created in step 2a),

. Device and Unit source code pathnames (the files created in steps 2b through

. Number of user defined devices.

. Number of user defìned device-units.

The ICU does the rest.

Figure 9-15 contains an example of the "Custom User Devices" scr€en. The bold text
represents user input to the ICU. In this example, the file :F1:DRMR.LIB contains the
object code for the random/common/custom drivers; the file :Fl:TERMINAL.LIB
contains the object code for the terminal driver. F1:DUIB contains the source code for
the DUIBS. and rF1:RINFO.INC contains the source code for the Device and Unit
Information Tables along with the necessary external procedure declarations for the
random/common/custom drivers. TINFO.INC contains the source code for the Device
and Unit Inlbrmation Tables and the necessary external Drocedure declarations for the
terminal driver.

The code in the DRM,R.LIB file supports one device with two units. The code in
TERMINAL.LIB supports one device with 2 units; therefore, the (ND) Numbe. oî User
Defined Devices [0-0FFH] field equals 2, the (NEU) Number of User Defined Derice-
Units [0-0FFH] field equals 4. Refer to the Extended iRMX II Interactive Configuration
Utility Reference Manual for instructions on how to use the ICU.

9.24 Device D vers Usefs Guide

CONFIGURING A USER.WRITTEN DEI'ICE DRII'ER

(USERD) User Devices
(oPN) Random Access object Code PaÈh Nane [1-45 Chars/NONE]

NONE
(ToP) Terninal object Code Path Nane [1-45 Chars/NoNE]

NONE
(oPN) Duib Source codè Path Nane [1-45 CharsAoNE]

NONE
(DUP) Random Access Device and Unit Source Code Parh Nane f t-4 chars/NONEI

NONE
(TUP) Terninal Device and ùnit source Code Parh Name [1-45 CharsAoNE]

NONE
(ND) Nlnber of Useri Defíned Dewices [0-OFíH] 0H
(NDU) Number of User Def ined Devlce-Unirs [0-0FrH] ol t

(N01) NONE (N02) NONE (N03) NONE
(N04) NoNE (N05) NoNE (N06) NoNE
(N07) NONE (N08) NoNE (N09) NONE
(NIO) NONE (N11) NONE (N12) NONE
(N13) NONE (N14) NONE (N15) NONE
(N16) NoNE (N17) NoNE (N18) NoNE

O?N = |F1: DRMIi. LIB <CR>
ToP - : Fl :TERIINAL, LIB <cR>
OPN = :FÌ:DUIB- INC <c8-!
DUP = : FI rRINFO. TNC <CR>
T U P - r F l : T I N F O , I N C < C R >
ND - 2 <CR>
NDU = 4 <CR>

Figure 9-15, Example User Deric€s Scrrrn

9.2.1 Example of Adding an Existing Driver as a Custom Driver

This section illustrates how to create the screens needed for adding the iSBC 544A. device
to you $,stem using the UDS. Because the configuration of devices in an iRMX system is
complex, this example covets the process in detail.

Device DriYers User's Guide 9.25

CONFIGURING A USER-\IRITTEN DE!'ICE DRIItsR

While reading this example keep in mind that the code for terminal drivers is in a
different segment than the code for random or common drives. Because of this split in
the segments, care must be taken to properly provide the coÍect PUBLICS, EXTRNS,
and NOPUBLICS EXCEPT, and also to properly bind the code segments together.

TOP was left at NONE in this example because the iSBC 544A driver code is already in
the driver library XCMDRV.LIB. If you were adding another module, you would enter
the location of the file as a full path name.

OPN and DIIP were left at NONE bec:ìuse the driver being configured is a terminal
driver, not a random access! common, or custom driver.

You can add up to 18 total Termhal DINFO and UINFO public names in this screen.

9.2.1.1 Contents of lhe OUtA.tNC fi te specifíed in the (DpN) parameter

This s€ction shovrs th€ contents of the file ríhos€ pathnaùe you supplied in rhe (DPN)
DIIIB Source Code Pathname parameter of the User Devices Screen. This assembly-
lAngùage file provides the information needed to define how the Operating System should
interface with this device.

Note the lines with arrows pointing to them. These are the device number and device-unit
number for this device. These numbers were taken from the ?ICDEV.A28 file as follows;

9-26 Device Driverc Usels Guide

CONFIGURING A USER.ìIRITTEN DEVICE DRIVER

1. Ensure that thc filcs you start with contain all of the Intel-suppJied and ICU-
sùpported drivers that you require. Ifyou haven't generated such a system use the
ICU to do so before continuing.

2. Use a text editor to examine rhe file ?ICDEV.A28 (the ? means that the first letter
can vary). You will find all of the DUIBS for your entire system in this file. Scan
this file for a line that srarts with %DEVICETABLE >

3. TTDEVICETABLE is a mac.o that appears below all ofthe systems,
DEFINE_DUIB structures. The second and third parameters in that macro are the
next available device-unit and device number, respeclively. For example, suppose
the %DEVICETABLE mac.o appears as follows:

IDEVÍCETABI-E (NUMDUÌB, 0002EH, 008H, 003E8H)

In this case, the next available device-unit number is 2EH and the next available device
number is 08H.

4. Use these numbers to fill in the two lines ofthe file indicated by the arrows.

At the end of this file are several more lines that should be noted. Be sure to examine the
last part ofthis figure and read the text that goes with it.

Device Drivers Usefs Gùide 9-27

CONFIGURING A USER.WRITTEN DEVICE DRIWR

DEFINE-DUIB <

& t f 2 t ,
& 00001N,

& 00,
& 00,
& 00,
& 00,
& 08N,
& 0H.

Put next .v.i lablè DÉVICE tulS€t h€r€

Put rext èv6itèbLe DEvtcE-uxtr rurBCt hefè& zEH,
& t s t I I I t 0 ,
& T S F I N t S [t O ,
& tsotiEuE I0,
& tsc^NceLto,

& unF0_544A,

& 0 ,
& 130,

& 0N,
& 0

DEFINE-OUIB <
& ' r l , ,
& 00001[,

& 00,
& 00,
& 00,
& 00,
& 00H,
& 0 Í ,

l he DEVICE-UNl l nu ì ìber (13) i s
oEVICE- l lN I l nhber o f , f2 , pLus& rs t x t r t o ,

& ISFI I I ISHIO,
& ISAUEUEIO,
& tsc lNcELt0,
t DI NF0_544^,

4 0 ,
& 110,
8 F ILSE !

E |]

lhè oEVICE [u 3ÈR is thè s. re

FigEe 9-16, Computiùg Device and Device-Unit Numbers
and BND286 Information (Continued)

9-28 Device Drivers Usefs Guid€

CONFIGURING A USER-WRITTEN DEI'ICE DRIVER

DTI I IT-DUIB <

& 00001N,
& 0t8Í,
& 00.
& 00,
& 00,
& 00,
E O8H,
I 0 H ,
& 508,

'rhè DEVICE NINBEi is thè safiÉ

'rhe
oEvlCE-UNIr niÈe. (I4) is equat

& lstu 0t
& t s f t N t s H l 0 ,
& tsolEuErot
& ISCANCELIO,

& 130,

& 0 [,
& 0

DEFINE-OI.]IB <
& , t 5 , ,
& 00001H,
& oFBl l ,
& 00,

& 00,
& 00,

oEvlcE' t lNl r nhber of , l3 , Dlus oné.

lhe DEVICE NUIIBER is the sm

Figure 9-16. Computing Device and Device-Unit Numbers
and BND286 Information (continued)

& 0a[!
& 0H,
& 31H, - . rhe DEvlcE_LJl [nuDbèr (f5) js equsL ro rhe
& TSINI Ì |o , DEVICE-UNIÍ nmber of ,111, ptus on. .
& rsr t NI s l o ,
& ISOUEUEIO,
& TSCATCELIO,

E O ,
& 1 3 0 ,
8 FALSE,
& 0N,
& 0

Device Drivcrs Uscfs Cuidc 9:29

CONFIGURING A USER WRIT'TEN DE\4CE DRT\'ER

BIOS_CODE
TSC_CODE

TSC_C0DE
BIOS CODE

ENDS <

DTNFO_544A
UINFO_544A

ENDS

SEGMENT ER

SEGMENT<

PUBLIC
: far
'. fat:

N e w p o r L l o n o f f i l e
to account for new segDent .

Figure 9-16. Computing Device and Device.Unit Numbers
ard BND286 Information

The lines starting with 'BIOS_CODE ENDS' rhrough "BIOS_CODE SEGMENT' must
be added to the end of the ffle. They provide BND286 with information on the locatior of
your information tables. You must provide an "cxtrn <MODULE NAME>: far'
declaration for each DINFO and UINFO public name specified heie. rhese names úust
be suppìied as parameters N01 through N18 above. This declaration is required because
all terminal information is stored in a different physical segnent than other driver
information, and a far call is required to access it.

9.2,1.2 Contents of the File Specified in the (TUP) Parameter

This section shows the contents of the file whose pathnameyoù supplied in the (TUP)
Terminal Device and Unit Source Code Path Name parameter of the User Devices
Screen. This assemblyJanguage file provides the information needed to define how the
Operating System should interface with this device.

9-30 DeYice Drivers Uset's Guide

CONFIGURING A USER.WRITTEN DEllCE DRII'ER

extrn I544FINISH : near
exth I544SETUP : near.
extrn I544CHECK : near
extrn I544ANSWER : near
exrrn I544HANGUP : near
extrn I544UTÌLITY : near

PUBLIC DTNFO-544A
DINFO_544A DIiI O4H
D W 9
DW 300
Diì I5441N17
DiI T544FINISH
DW I544SETUP
DW TERMNULL
DW I544ANSWER
DW I544IÌANCUP
DW I544UTILITY
Di,I I
DI,T O71H
Dtrr t544CHECK
DD OFEOOOOH
Dr,i 04000H
DB OIH

PUBLTC UINFO_544A
U1NFO.544A DW O1AH
DLÌ O1O9H
Dll 02580H
Dtr 00000H
Dtì 012H

Figure 9-lt. Public Declarations Needed for the DINFO and UINFO Tables

Provide the normal "extrn < MODULE NAME > : near', declarations for term$init.
term$linish procedures. You musr also-provide a PUBLTC<tablcname>., labelpriorto
each DINFO and UINFO rable specified.

9.2.1.3 Ponion of System ceneration SUBMTT Fite as Changed by this process

After completing the changes outlined above you must generate a new system using the
lCU. During the process of the system generation, information is sent to the screen- This
section presents those portions of the system generation that are changed by the steps
outlined above.

Device Drivers UseÌrs cuide 9-31

CONFIGURING A USER-WRITTEN DEVICE DRIVER

BIOS

:UNG:ASM286 ICDEV.A28
: IANG:ASl, l286 ITDEV.A28

: I ,ANC:bnd286 &
ITDEV.OBJ, &

îsccANcELro)
r I ,ANC:bnd286 &
I O S 1 .] - N K , &
T S C . L N K , &

USER SPECIFIED
USER SPEClFlED

PUBLIC DINFO
PUBLIC U]NFO

&
&
&
&

INCLUSION OF TSC SUBSYSTEM IN IOS
SYSTEM BIND

Figure 9-lt, Portion of the Modiffed SUBMIT File (.utinued)

r " _ - ì e a r l l e r r e l e a s e s
<.4) Ís now two files

OF TSC CODE SEGMENT

/Rroo 86/ros/xcMDRV. LrB (xTsrF) , &
/RÌ.o{2 8 6/rOSIXCMDRV. LrB (XTSTO) , &
/RÌ,rx2 8 6/ r0 s /xcMDRv . LrB, &
/RMX28 6/rOS/XDRWT . r-rB , &
: I ,ANG : PLM286. L]B, &
/RMX2 8 6/r,rBlRXXlrC . LlB &
RENAÌ"IESEC (CODE TO TSC_CODE, DATA TO TSC_DATA) &
OBJECT (TSC.LNK) NODEBUG NOTYPE SECSIZE(STACK(O)) &

NOLOAD NOPUB]-ICS EXCEPT(TSCINITIO, &
TSCFINISHIO, &
DINFO_o2H, &
urNFo_8251, &
DINFO-o3H, &
urNFo_18848, &
DINFO_o H, &
UINFO_546, &
urNfo_546cc, &
DINFO_o5H, &
UINFO-547A, &
DINFO_06H, &
UINFO_5478, &
DINFO O7H, &
UINFO_547C,
DINFO_544A,
UINFO_544A,
TSCQUEUEIO,

9-32 Device Drivers User's Guide

CONFIGURINC A USER.WRIT'IEN DEI'ICE DRI!'ER

ICDEV. OBJ, &
/Rl{x286lI0S/XCMDRV. LlB, &
/Rì{X2 86II0S/XDRWT . LtB , &
: IANC I PLM286.LIB, &
/RMX286/LrBlRMXlFC . LrB &
RENAHESEG (TSC_DATA TO DATA) &
OBJECT (TOS.LNK) NODEBUG NOTYPE SECSIZE(STACK(O)) &

N0LOAD NOPUBLICS EXCEPT (rqaiosini trask , &
ReqAtlachDevice , &

Figure 9-lt. Pofion of the Modified SUBMIT File

9 3 3Device Drivers Usefs cuide

In a MULTIBUS I system interrupt-driven devic€s can be either devices atrached dir€ctly
to the CPU board or separate controllers. In MULTIBUS ll systems these devices must
be attached directly to the CPU board. Interrupt,driven devices signal thc CPU host via
interrupts at a specified interrupt level.

This appendir describes, in general terms, the operations of the random access support
routines as they apply to interrupt-driven devices. The routines described include

INTNIO
FIMSH$IO
QUEUE$IO
CANCEI]iIO
INTERRUPT$TASK

These routines are supplied with the I/O System and are the device driver routines
actually called when an applÌcation task makes an I/O request to support a random access
o. common device. These routines ultimately call the device-specific device initialize,
device finish, device start, device stop, and device interrupt procedures.

This appendi,(provides descriptions of these routines to show yoll the steps that an actual
device driver follows. You can use lhis appendix to get a better understanding of the l/O
System-supplied portion of a device driver to make writilg the device-dependent portion
easicr. Or you can use it as a guideline for writing custom device drivers.

4.1 INIT$IO PROCEDURE

The I/O System calls IMT$IO when an application task makes an
RQAPHYSICAL$ATTACH$DEVICE svstem call and no units of the device arc
currently attached.

IMT$IO initializes objects used by the remainder ofthe driver routires, creates an
ìnterrupt task, and calls a user-supplied procedure to initialize the device itseli

Device Drivers Usefs Grìide A I

RA\IDOM ACCESS SUPPORT FOR INTERRUPT-DRTVEN DE\, ' ICES

When the I/O System calls IMT$IO, it passes the following parameters:

. A pointer to the DUIB of the device-unit to inirialie

. A pointer to the location where INIT$ÌO must return a token for a data segnent
(data sto.age a.ea) that it creates

. A pointer to the location where INIT$IO must return the condition mde

The following paragraphs show lhe general steps the IMT$IO procedure follows to
initialize the device. Figure A- l illustrates these steps. The numbem in the ligure
corresoond to the st€o numbcrs in thc text.

Device Drivers Uset's Guide

RANDOM ACCESS SUPPORT FOR INTERRUPT-DRIVEN DEVICES

I

o

o

ot----------r* * * * ^ t

Figure A-1. Rardom Access Device Driver Initialize I/O Procedule

Device D vels Uset's Guide A-3

MNDOM ACCESS SI]PPORT FOR INTERRUPI.DRII'EN DEI'ICES

1. It creates a data storage area to be used by all the procedures in the device driver.
The sìze ófthis area depends in part on the number of units in the device and any
special space requirements ofthe device. INIT$IO then begins initializing this area
and eventually places the following information there:

. A token for a region. Step 2 creates this region for mutual exclusion.

An array !o conlain lhe addresses of the DUIBS for the
device-units attached to this device. lNlT$IO places the
address of the DUIB for the first attaching d€vice unit into
this array.

A token for the interrupt task.

Other values indicating the queue is empty and the driver
is not busy.

It also reserues space in the data storage area for device data.

2. It creates a region. The other random access support routines receive control of
this region whenever they place a request on the queue or remove a request ftom
the queue. IMT$IO places îhe token for this region in the data storage area.

3. It enters the region to prevent the interrupt task from starting before initialization
ìs complete.

4. It creates an interrupt task to handle interrupts tenerated by this dcvicc. Whcn
INI'ISIO hvokes CREATE$TASK to create the interrupt task, it does not speciry
the task's data segment. Instead, it uses the data$seg parameter of
CREATE$TASK to pass the interrupt task a token for the data storage area. This
area is where the interrupt task will get information about the device. INII$IO
places the actual data segment value, as well as a token for the interrupt task, in the
oata storage afea.

5. It calls a device-sperific device ìnitialization procedure that initialìzes the device
itself. It gets the address of this procedure by oemining the Device Information
Table specified in the DUIB. Refer to Chapter 5 for information on how to write
this initialization procedure.

6. It €xits the region.

7. lt returns control to the l/O System, passing a token for the data storage area and a
condition code which indicates the success of the iltitialization operation.

If an error occurs at any point in these steps, the lNIfilO procedure exits the region,
deletes aII the objects it has created up to that point, and returns an error to the I/O
Svstem.

Device Drivers UseCs Guide

RANDOM ACCESS SUPPORT FOR INTERRUPT.DRIVEN DEVICES

4.2 FINISH$IO PBOCEDURE

The l/O System cells FINISH$IO when an application task makes an
RQAPHYSICAUDETACH$DE\,ICE system call and no orher units ofthe device are
currently attached.

FIMSH$IO calls a user-supplied procedure to perlorm final processing on the device
itself, deletes the ìnterrupt task, and deletes objects used by the other device driver
routines.

Wlen the I/O System calls FIMSH$IO, it passes the following parametersl

. A pointer to the DUIB of the device-unitjust detached

. A TOKEN for the data storage area created by IMT$IO

The followilg paragraphs show the general steps that the FINISH$IO procedure goes
through to terminate processing for a device. Figure A-2 illustrates these steps. The
numbers in the figure correspond to the step numbers in the text.

1. It calls a device-specific device finish procedute that performs any necessary final
processing on the device itself. FINISH$IO gets the address of this procedure by
examining the Device Information Table specified Ìn the DUIB. Refer to the
Chapter 5 for information about device information tables.

2. It deletes the interrupt task originally created for the device by rhe INIT$IO
procedure and cancels the assignment ofthe jnterrupt handler to the sperified
interrupt level.

3. It dclctcs thc rcgion and the data storage area originally created by rhe INIT$IO
procedure, allowing the operating system to reallocate the memory used by these
oDlects.

4. It returns control to the I/O System.

Device Drivers User's Guide A-5

RANDOM ACCESS SUPPORT FOR INTERRUPT.DRI!'EN DE!'ICES

CALLS USER.SUPPTIED
PROCEOUFÈ fO F INISH UP

PPOCESSING ON THF DEVICE

DELETES INTERRUP'T IASK FOR
DEVICE AND RESETS IN-TERRUPT

DEI€ ÌES REGION ANO DAÌA OBJECIS
USED BY IHIS OEVICE Df i IVER

FE' IUFNS TOTHE I /O SYSIEM

FINISHSIO

1 4 7 6

figure A-2. Random Access Device Driver Finish l/O Procedùre

A,3 QUEUE$IO PROCEDURE

The I/O System calls the QUEUE$IO procedure to place an l/O request on a queue of
requests. This queue has the structure ofthe doublylinked list shown in Figure 7-1. If
the device itself is not busy, QUEIIE$TO also stsrts the request.

A-t Device Drivers Uset's Guide

RANDOM ACCESS SUPPORT FOR INTERRUPT.DRIWN DE\{CES

When the I/O System cals QUEUESIO, it passcs thc follov/irig paramete$:

. A token for the IORS

. A pointer to the DUIB

. A token for the data srorage area odginaly created by INIT$IO

The following paragraphs show the general steps that the QUEUESIO procedure gocs
through to place a request on the I/O queue. Figure A-3 illustrates these steps. The
numbers in the figure correspond to the step numhers in the text-

1. It sets the DONE fi€ld in the IORS to 0H, indicating the request has not yet been
mmpletely processed. Other proceduros tlìat stal t the I/O rransfcrs and handle
interrupt processing also examine and set this field. It also sets IORS.STATUS to
E$OK and IORSACI-UAL to 0H.

2. It receives control of the region and thus access to the queùe. This allows
QUEUE$IO to adjust the queue withou! concern îhat other tasks might also b€
doing this at the same time.

3. It verifies that the request is within the range of zero to device size for this device.
lf the request is outside this range, QUEUE$IO rerurns E$PARAM. For a valid
.equest, it converts IORS.DEVIiLOC trom the absolute byte position on the device,
as passed by the BIOS, to the absolute block (sector) number (if track size equals
zero). Ifthe track size is not zero IORS.DEVgLOC is converted to the seqor ano
track number. Finally, it places the IORS on the queue in seek-optimized order.

4. Ifthe device is busy processing an I/O request, QUEUE$IO goes on to Step 5.
Otherwise, it calls the device-specific device start procedure to process the request
ar the head of the queue. This start ptocedure is described in Chapter 5.

5. It surrenders control of the region, thus allowing other routines to have access to
the queue.

NOTE
If the request is complete, QUEUE$IO retùrns the IORS to the response
mailbox; ifnot, the interrupt task returns it upon completion. The random
access support does not return a CLOSE request until all prior requests
for the same unit are coúpleted.

Device Drivers User's Guide A-7

MNDOM ACCESS SUPPORT FOR INTERRUPT.DRII'EN DE\ICES

AUEUE$IO

SETS SÍAIUS F ELDS
IN fHE IOFS

GA NS ACCESS
ÎO IHE FEG1ON

PLACES IHE OFS
ON IHE OUEUE

SIAB TS ÌBE PAOCESS NG OF fIJE
REQUES-I IF IHE DEV CE S NO-I BUSY

SURBENDÉRS ACCESS
rO ÌF]E FEG]ON

RE'TUBNS IO IHE l/O SYSTEM

Figure A-3. Random Access Deyice Driver Queue I/O Procedure

4.4 CANCEL$IO PROCEDURE

The I/O System calls CANCEL$IO to remove one or more reqùests from the queue and
possibly to sîop the processing of a request, il it has already been started. The l/O System
calls this procedure in one of two instances:

A-8 Device Drivers Usey's Guide

RANDOM ACCESS SUPPORT FOR INTERRUPT.DRIVEN DEITCES

. lf a task invok€s the RQAPHYSICAIJDETACH$DEVICE sysrem call and
specifies the hard detach option (refer to the Erîended \RMX II Batic I/O System CaIs
manual for information about this systcm call). The hard detach removes all requests
from the queue.

. If lhe job containing the task that makes an I/O request is deleted. In this case, the
I/O System calls CANCEUIO to remove all ofthat task's requesrs from the queue.

When the I/O System calls CANCEI]$IO, it passes the following parameters:
. An ID value that identifies requests to be canceled

. A pointer to the DUIB

. A token foa the device data storage area

The following paragraphs show the general steps thar the CANCEL$IO procedure goes
through to cancel an I/O request. Figure A-4 illustrates these steps. The nurnbers in the
figure correspond to the step numbers in the text.

l It receives access to the queue by gaining control of the region. This allows ir to
remove requests from the queue without concern that other tasks mìght also be
processing the IORS at the same trme.

2. It locates the request(s) to be canceled by looking at rhe cancel$id field ofrhe
queucd IORSS, starting at the front of the queu€.

3. If the request that is to be canceled is at the head of the queìle, that is, rhe device is
processing the reqùest, CANCEL$lO calls a device-specific device stop procedure
that stops the device from further processing. Refer to the Chapter 5 for
information on how to write this device srop procedure.

4. If the request is finished, or ifthe IORS is nor at rhe head of the queue,
CANCET$IO removes the IORS from the queue and sends it to the resoonse
mailbox indicated in the IORS. Itexaminestherestofthe requesrs on t-he queu€,
removing all ofthem whose cancelgid fields match the lD oi the canceled requesî.

5. It surrenders control ofthe region, thus allowing other procedures to gain access to
the queue.

NOTE

The additional CLOSE request supplied by the I/O System will not be
processed until all other requests with the given cancelgid value have been
dealt with.

Device Drivers Userjs Guide A-9

RANDOM ACCESS SUPPORT FOR INTTRRUPT-DRIYEN DE\TCES

^ . 1 1 1 0

Ftgure A-4. Raúdom Access Device Driver Cancel I/0 Procedure

A-10 Devlce DriYers Uset's Guide

RANDOM ACCESS SUPPORT FOR INTERR.UPî-DRII'EN DEITCES

4.5 INTERRUPT TASK (INTERRUPT$TASK)

As a part ofits processirg, the IMTgIO procedure creates an internìp! task for lhe entire
device. This interrupt task responds to all interupts generated by the units of the device,
processes those interrupts, and starts th€ device working on thc next I/O r€quest oD the
queue.

The following paragraphs show the general steps that the interrupt task for the random
access device driver goes through to process a device interrupt. Figure A-5 illustrates
these steps, The numbers in Figure A-5 correspond to the step numbers in the text.

1. It uses the contents ofthe processor's DS register to obtain a token (identifier) for
the device data sto.age area. This is possible becaùse of the following two teasons:

. When IMT$IO created lhe imerrupa task, instead of specirying the
interrupt task's DS register in the data$seg parameter of the
CREATE$TASK ca[, it passed the token ofthe data storaS€ ar€a iî rhis
parameter. Therefore, when the Nucleus created the task, it set the task's
DS register to the value of the token.

r When the IMT$IO procedure initialìzed the data storage area, it
included thc valuc of the Ìnterrupt task's DS register there.

When the interrupt task starîs running, it saves the contents of the DS register (to
use as the address of the data storage area) and sets the DS register to the value
listed in the data storage area. Thus thc DS register does point ro rhe task's data
segment, and the task also knows the address of the data storage area. This is th€
mechanism that is used to pass the address ofthe device's data stotage area from
the INIT$IO procedur€ ro rhe inl€rrupt task.

2. It invokes the RQSETINTERRUPI system call to indicate that it is an inrerrupt
task associated with the interrupt handler supplied with the random access device
driver. lt also indicates the interrupt level to which it will respond (ir obtains this
information from rhe Device Information Table).

3. lt b€gins an infinite loop by invoking the RQE$TIMED$INTERRUPT system call
to wait for an inter.upt of the specified level. If the time limit erpires before an
interupt occurs, the effect is the same as a null (or spurious) interrupt, and the task
waits for another inter.upt. By invoking a nunber of RQE$TIMED$INTERRUPT
calls, instead of a single WAIT$INTERRUPT, rhe task allows lower-priority tasks
to gain control between calls. For example, if an application attempts to send data
to a line printer that isn't connected, the user can press CONTROL-C to cancel the
operation.

Device Drivers Us€t's cùide ^ - t l

LA,NDOM À,CCESS SUPPORT FOR INTERRUPT.DRI!'EN DE\,'ICES

o

Figùre A-5. Random Accesg Device Driver Interrupt Tosk

A-12 Device Drive$ Usels Guide

RANDOM ACCESS SUPPORT FOR INTERRUPT-DRII'EN DEI'ICES

Via a region, it gains access to the request queue. This allows it to examine the first
entry in the request queue without concern that other tasks are modirying it at the
same time-

It calls a device-specific device,interrupt procedure to process the actual interupt.
This can involve verifying that the interrupt was legitimate or any other operation
that the device requires. This interrupt procedure is described further in
Chapter 5.

lf the request has been completely processed, (one request can require multiple
reads or writes, for example), the interrupt task removes the IORS from the queue
and sends it as a message to the response mailbox (exchange) indicated in the
IORS. If the reque$t is not completely processed, the interrupt task leaves the
IORS at the head ofthe queue.

Ifthere are requests on the queue, the inter.upt task initiates the processing of the
next l/O request by calling the device-specific device-start procedure.

ln any case, the interrupt task th€n surrendets access to the queue, allowing other
routines to modiry the queue, and loops back to wait for another interrupt.

4.

5 .

ó .

7.

Device Drivers Userrs cuid€ A-t3

In an interrupt-driven system, the CPU host and the controller communjcate via hardware
interrupts. In systems having full message-passing capabilìties, this communicaîion is
done via vitual interrupts (more precisely noted as messag€s throughout this appendix).
For an ov€rview and examples ofthe message-passing process, see the Extended \RMX II
Nucleus User's Guíde.

This appendix describes, in general terms, the operations of the random access support
routines as they apply to message-passing devices. The routines described include

IMT$IO
FIMSH$IO
QUEUE$IO
CANCEL$IO
MESSAGE$TASK

These routines are supplied with the l/O System and are the device driver routines
actually called when an application task makes an I/O request to support a random access
or common device. These routines ultimately call the device-specific device initialize,
device finish, device start, device stop, and device interrupt procedures.

This appcndix provides descriptions of these roùtines to show you the steps that an actual
device driver follows. You can use this appendi\ to ger a better understanding of the I/O
System-supplied portion of a device driver to make writing the device-dependent portion
easier. Or you can use it as a guideline for writing custom device drivers.

8.1 INIT$IO PROCEDURE

The I/O System calls INIT$IO when an application task makes an
RQAPHYSICAf$ATTACH$DEVICE system call and no units of the device are
currently attached.

INIT$IO initializes objects used by the remainder of the driver routines, creates a
message task, and calls a user-supplied procedure to initialize the device itself.

Wlen the I/O System calls INIT$IO, it passes the following parameters:

. A pointer to the DUIB of the device-unit to initialize

Device Driv€rs Useis Cuide B-l

RANDOM ACCESS SIIPPORT FOR MESSACE-PASSING DEVICES

. A pointer to the location where INIT$IO must return a token for a data segment
(data storage area) that it creates

. A pointer to the location where INIT$IO must retum the condition code

The following paragraphs show the general steps the IMT$IO procedure follows to
initialize the device. Figùre B-1 illustrates these steps. The numbers in the figure
correspond to the step numbers in the text.

r N r T $ r o

at

w-0311

Figure B-1. Random Access Device Driver Initiatize I/O prucedule

C F É A - T E S T H E O B J E C f F O R
O E V I C É A N D S I A F I S F I L L I N G I I

C R E A T E S f H E R E G I O N F O A
A A C E S S I O I H E Q U E U E

E N f E F S T H E B E G I O N

C F È A - T E S I H E
I N T E R N U P T l M E S S A G É

I A S K

a E f u F N s T o t / o S Y S T E M
P A S S I N G O A I A O B J E C I A N D

c o N D r - r t o N c o 0 É

U S E F . S U P P L I E O P F O C E D U R E
r o t N t T t a L r z E o E v t c É

A E G I O N

B-2 Device Drivers Usefs Guide

RANDOM ACCESS SUPPORT FOR MESSAGE.PASSING DEI'ICES

It caeates a dala storage area to b€ used by all the procedures in the device driver.
The size oîthis area depends in part on the number of units in the device and any
special space requifem€nts of the device. INIT$IO then begins inilializing rhis area
and eventually places the following information there:

. A token fo. a region. Step 2 creates this region for mutual exclusion.

. An array to contain the addresses ofthe DUIBS for the
device-units attached to this device. INIT$IO olaces the
addrers of rhe DUIB for rhe f irst atrachins device unit into
this array.

. A token for the message task.

. Other values indicating the queue is empty and the driver
ls noa Dusy,

. A port object used by the message task to receive
messages from the controller. The user-supplicd drivcr uses
rhis object to send messages to the controllei.

It also resewes space in the data storage area for device data.

It creates a region. The other random access suppoat routines receive control of
this region whenever they place a request od the queue or remove a request from
the queue. IMT$IO places the token for this region in the data storage area.

It enters the region to prevent the message task from starting before initializatÌon is
complete.

It calls a device-specific device initjalization procedure that initializes the device
itself. It gets the address of this procedure by examining the Device Information
Table spe.ified in the DUIB. Refer to Chapter 5 for information on how to write
this initialization procedure.

It creates a message task to handle messages generated by this device. When
IMT$IO invokes CREATE$TASK to create the message rask, it docs not spcciry
the task's data segrent. Instead, it uses the data$seg parameter of
CREATE$TASK to pass the message task a token for the data storage area. This
area is where the message task will get information about the device. INIT$IO
places the actual data segment value, as well as a token for the message task, in th€
data storaEe area.

t .

2.

3.

5 .

Device Drivers Userrs Guide R-3

RANDOM ACCESS SUPPORT FOR MESSAGE.PASSING DEVICES

6. It exits the region.

7. It returns control to the I/O System, passing a token for the data storage area and a
condition code which indicates the success ofthe initialization operatio[.

If an error occurs at any point in these steps, the IN{T$IO p.ocedure exits the region,
deletes all the objects it has created up to that point, and retums an error to the I/O
System.

8.2 FINISH$IO PROCEDURE

The I/O System calls FINISH$IO when an application task makes an
RQAPHYSICAI$DETACH$DEVICE svstem call and no other units of the device are
currentÌy attached.

FINISH$IO calls a user-supplied procedure to perform final processing on the device,
deletes th€ message taik, and deletes the objects used by the other device driver roufines.

When the I/O System calls FINISH$IO, it passes rhe following parameters:

. A pointer to the DUIB of the device-unit just detached

. A TOKEN for the data storage area qeated by INIT$IO

The following paragraphs show the general steps the FINISH$IO procedure follows to
terminate processing for a device. Figure B-2 illustrates these steps. The numbers in the
figure correspond to the step nunrbeis in the text.

1. It calls a device-specific device finish procedure that performs any necessary final
processing on the device itself. FINISH$IO gets the address of this procedure by
examining the Device Information Table specified in rhe DUIB. Refe. to Chaprer 5
for information about device informarion tables.

2. It deletes the message task originally created for the device by the INIIT$IO
proceduae.

3. It deletes the region and the data storage area originally created by rhe INIfiIO
procedure, aÌlowing the Operating System to reallocate the memory used by these
ooJects.

4. lt returns control to the I/O System.

B-4 D€vice Drivers Userrs Guide

MNDOM ACCESS SUPPORT FOR MESSAGE-PASSING DEVICES

F N t S H $ t O

C A L L S U S E R S U P P L I E D
P q O C E D U B E T O F I N i S H U P

P R O C E S S I N G O N T H E O E V I C E

e

Figure B-2. Random Access Device Driver Finlsh I/O Procedure

8.3 QUEUE$IO PROCEDUHE

For message-passing devices, the I/O System calls the QUEUE$IO procedure to place an
I/O rcquest on a queue of requests on a first-in-first-out basis. This quer-re has the
structure ofthe doubly-linked list shown in Figure 7-1. This procedure calls a user-
supplied procedure to start processing the I/O requests.

D E L E T E S M E S S A G E
T A S K F O R D E V I C E

D E L E T E S R E G I O N A N D O A I A O B J E C I S
U S E D B Y T H S D E V I C E D R I V E R

F É I U R N S I O T H E I / O S Y S T E M

Device Drive$ Userrs Gùide B-5

MNDOM ACCESS SUPPORT TOR MESSACE-PASSINC DEvICES

When the I/o System calls QUEUE$IO, it passes the following parameters:

. A token for the IORS

. A pointer to the DUIB

. A token for the data storage area originally c'eated by INIT$IO

The following paragaphs show the general steps the QUEUE$IO procedure goes through
to place a request on the I/O queue. Figure B 3 illustrates thes. steps. The numbers in
the figure correspond to the step numbers in the îext.

1. It sets the DONE field in the IORS to 0H, indicating tne request has nof yet been
completely processed. Other procedu.es that start lhe I/O transfers and provide
mcssagc handling also cxaminc and set this field. It also sets IORS.STATUS to
E$OK aùd IORS.ACTUAL to 0H.

2. It receives control of the region and thus access to the queue. Ihis allows
QUEUE$IO to adjust the queue without concern that other tasks might also be
doing this at the same lime.

3. lt verifies that the request is within the range of zero to device size for this device.
If the request is outside thìs range, QUEUE$IO returns E$PARAM. Then it places
the IORS on the queue.

4. QUEUE$IO calls the device-specific device start procedure to process the request
at the head of the queue. This start procedure is described in Chapter 5.

5. It surrenders control of the region, thus allowing other routines to have access to
the queue.

6. lt retuÍns control to the I/O Svstenr.

NOTT
If the request is complete, QUEUE$IO returns the IORS to the response
mailbox; ifnot, the message task returns it upon completion. lhe random
access support does not return a CLOSE request until all prior requests
for lhe same unit are completed.

B-6 Devic€ Drivers User's Cuide

RANDOM ACCESS SUPPORT FOR MESSAGE-PASSING DEVICES

O U E U E $ I O

w-0313

Figure B-3. Randorí Access Device Driver Queùe I/O Procedure

8.4 CANCEL$IO PROCEDURE

This procedure performs no operations for message-passing devices. The message task
sweeps through the request queue and starts all requests. Because of this feature, all I/O
requests are guaranteed to finish within a limited time.

S E - T S S T A T U S F I E L O S
T H E I O B S

G A I N S A C C E S S T O ' T H E
R E G I O N

P L A C E S T H E I O F S I N
. T H E

Q U E U E

S U R B E N D E R S A C C E S S f O - T H E

R E G I O N

R E Ì U R N S I O I H É

S Y S T E M

S I A R f S P R O C E S S I N G I H E
R E Q U E S T

Device Drivers Usefs Guide

RANI)OM ACCESS SUPPORT FOR MESSAGE.PASSING DEYICES

NOTE

The CLOSE request supplied by the I/O System is immediately sent to the
user-supplied device start procedure. However, the random access
support does not return it to the I/O System until all requests in the queue
have been completed.

8.5 MESSAGE TASK (MESSAGE$TASIO

The IMT$IO procedure creates a message task for the entir€ device This message task
responds to all messages generated by the units of the device, processes those messages,
and starts the device working on the unstarted I/O requests on the queue.

The following paragraphs show the general steps the message task for îhe random access
device driver follows to process a message liom the device. Figùre B-4 illustrates these
steps. The numbers in Figure B-4 correspond to the step numbers in the text.

1. lt uses the contents of the processor's DS register to obtain a token (identifier) for
the device data sîorage area. This is possible for these reasons:

. When INIT$IO created the message task, insread of specirying the
message task's DS register in the data$seg parameter of the
CREATE$TASK ca[, it passed the token of the data storage area in this
parameter. Therefore, when the NucÌeus created the task, it set the task's
DS register to the value of the token.

. When the TNIT$IO procedùre initialized rhe data storage area, it
included the value ofthe message task's DS register there.

When the message task starts rùnning, it saves the conlents oI the DS register (to
use as the address of the data storage area) and sets the DS regist€. to the value
listed in the data storage area. Thus the DS register does point to the task's data
segment, and the task also knows the address of the data storage area. This is the
mechanism used to pass the address of the derr';ce's dàta storag€ area from the
INIT$IO procedure îo the message task.

2. It bcgins an ìnfinite loop by invoking the RQ$SEND$RS\? catl ro wai! at lhc porr
for messages from the device. For more information on how to send and receile
messages to/from specific ports, see the description of the Nucleus
Communications Service inthe Efie ded .RMX II Nucleus Ilser's Guídc. For setting
the message task priority, see the descripîion ofthe "Nucleus Communications"
s$eeù in the Extended |RMX II Intemctive Cohfrgumtían Utíli, Refercrce manual.

3. Via a rcgion, it gains access to the request queue. This allows it to €xantine the first
entry in the request queue wìthout concern that other tasks are modilying it at the

4. It calls a user-written device-inîerrupt procedure to process the received message_
This irìterrupt proccdure is described further in Chapter 5.

B-8 Device Drivers Use/s Cuide

RANDOM ACCESS SUPPORT FOR MESSAGE.PASSING DEVICES

5 .

ó.

The message task check the status of the next request in the queue.

Ifthe request has been completely processed, (one request can require multiple
reads or writes, for example), the message task removes the IORS from the queue
and sends it as a message to the .esponse mailbox (exchange) indicated in the
IORS. If the request is not completely processed, the message task leaves the IORS
in the queue but checks to see if the reqùest has been started.

lf the request has not been started, the message task calls the user-supplied device
staat procedure to paocess the request.

In any case, the message task then suarenders access to the queue, allowing other
routines to modiry the queue, and loops back to wait for another messege from the
controller.

7.

8.

Device Drivers Use/s Guid€ B-9

RANDOM ACCESS SUPPORT FOR MESSACÌ].PASSING DEVICES

G E T S S E L E C T O R F O 8 D E V I C E D A T A
S T O R A G E A R E A F R O M O S F E G I S T E R e

o

e

W A I I S F O R M E S S A G E A I f H E

S P E C I F I E D P O R - T

G A I N S A C C E S S T O B E G I O N o
C A L L S I H E U S E R . W R I I I E \ I N I E F F I J P]

P R O C E D U R E f O P R O C E S S
T H E M E S S A G E

G F f I O R S F R O M f H E O U E U E o

E M O V E S T H E I O R S F R O M
' T H E

E U E A N O S E N D S A I ' I E S S A G E
f H E F E S P O N S E À 4 4 L B O X

Ì o

E S

"X
-_ t s
I H E F E O U E S T

S - T A R - T E O ?

N O

C A L L T H E U S E R , W S] T T E N
D E V I C E S I A N - T P R O C E D U R E
T O S T A R T T I I E R E O U E S T

E S

o

o
S U B B E N D E R S A C C E S S ' T O ' T H E B E G I O N o

M E S S A G E $ f A S K

Figure B-4. Random Access Device DÌiver Message Task

(t

B-10 DeYice Drivers U$efs Guide

For compatibility with ECMA (European Computer Manùfacturers Association) and ISO
(International Organization for Standardization), the Intel-supplied device drivers can
format the beginning tracks of all flexible diskettes in the same manne., regardless of the
format of the remainder of the diskette. This formattins is referred to as standa.d
formatting. The other option, in which all rracks of a diikerte have the same format, is
referred to as uniform formatting.

The standard formaning for cylinder 0 on flexible diskettes is as follows:

For 5-1l4" diskettes

. Cylinder 0, side 0 is formatted with 128-byte sectors, single densiry, 16 sectors per
îrack.

. If the diskette is double-sided, cylinder 0, side 1 is formatted like the resr ofîhe
t.acks on the diskette.

For 6' diskertes

o Cllinder 0, side 0 is formatted with 128-byte sectors, single density, 26 sectors per
track,

. If the diskette is double-sidecl, cylinder 0, side 1 is formatted with 256-byte sectors,
double density. 26 sectors per track.

The FIAGS field in a device's DUIB indicates whether that device expects (reads, writes,
and formats) diskettes in standard or uniform format.

To be consistent with the Intel-supplied drivers, and to be able to correctly access
standard format diskettes from other systems, random acccss diskctte drivers that you
write must be able to read, write, and format diskettes in this standard format.

To access standard-formaited diskeîtes, a device driver must be able to translate a logical
block number (as supplied to it in rhe DEV$LOC field of the IORS by the I/O System)
into a physical address (cylinder, head, and sector). It must take into consideration that
track 0 might be formatted differently than the rest of the diskette, and that rhere might
be a different mrmber of losical blocks on track 0.

Device Drivers User,s Guide c-r

SIIPPORTING THE STANDARD DISKETTE FORMAT

The following algorithm can be used to calculate the physical address for 5-1/4" fl€xible
diskette requests. It assumes the program has access to th€ IORS and the DUIB. A
similar algorithm can be used for 8" diskettes. (Remember, the algorithm for 8" diskettes
must also take into account the special formatting of cylinder 0, side 1 on double-sided
diskettes.)

/* Calculate the nll]nber of logtcal blocks on che standard - forr0atted
* track 0 usin8 the standard granular i ty and standard nunber of sectors
* per track.

track-0-blocks = (128 bytes/sector x 16 sectors/track)
(device - granular i ty ln by!es/sec!or)

/* Calculate Lhe nunber of blocks nlssing fron Èrack 0 (those that would
* be chere i f the diskette I 'ere uniformly fornatted). The noúna1 tr :ack
* size equals the nuinber of secÈors per track on the rest of the disk
* (obtaíned fron the dr lver-specif ic uni t infornat ion table).

track-0-blocks-nlssing : nornaf - t rack-size - t rack-0-blocks

/* l f the loglcal block nunber of this request lndlcates a track 0
* requesc, calculate the address.

IF block-nuber < treck-0-blocks THEN
DO

/* Set the cyl inder and head nmber to 0 because this is t rack 0

cyl inder-nun - 0
head-n(rll = 0

/* Add I to th{s equat ion because dtskette sectors start at
* 1 , n o c 0

seclor-nun - (block-number x device - granular i ty) + 1
(1 2 8 b y t e s / s e c t o r)

/* see i f the request goes beyond track 0

IF (byÈes - reque s !ed) > (track-0-blocks - btock-number) THEN

c-2 Device Ddverc Uset's Guide

SUPPORTING THE STANDARD DISKETÎE TORMAT

DO

/* I f th" tequest goèe beyond trsck O, thcn calculare rhe núbèr
* of bytes !o read o! l r r i te that are pasC Crack 0. Save the
* nunber unt i l t rack 0 operat ions aÌ:e conplece. Then use the
* number to complete rhe tead or wrí te operatfon.

renainder - bytes-requested - (t tack-0-blocks - btock-number)
x device - granularity

END

* Calculat ion of physical address is conplete for requests thar
* a c c e s s t r a c k 0 .

RE?URN
END

ELSE
DO

* I f che request is pasÈ Èrack 0, adjust the block nurnber for rhls
* request by addint the n({ùber of logical blocks nissing from Èrack
* 0 and calculacing the cyl lnder, head, and sector as i f rhÍs ! , , /ere
* a uniformly - fornatted f lexible disk.

adlusc-bÌock-nl-1ln - block-nunber + ÈÍack,0,blocks,nisslng

* F i r s ! c a f c u l a t e r h e c y L i n d e r n u n b e r o f r h i s r e q u e s l

cyl inder-nun - adjust -b1ock-nun
(!olal-num-of-heads x track sizc)

* Next caÌculate the head number

IF total-nurì-of-heads = 1 îHEN
DO

* This is a one-slded f lexible diskette

head-nm - 0
END

Device Drivers User's cuid€ c-l

SfIPPORTINC THE STANDARD DISKEÎfE FORMAT

* This is a double sídèd f lèxiblé diskètte

terop = adjus!-block-nìrn MOD (track-size x 2)
head-nun - tenp

t r a c k - s i z e
END

,. FinaIIy, calculate sector nurber for thts request, adding 1
* because f lexible diskette sectors star! at 1,

sector-nurn - temp MOD track-sizè + 1

DO

AND

c-1 Device Drivers Usefs Guide

Hard disk drives obtained from Intel (either separately or as part ofcomplere sysrems)
have recorded in special locations information about which tr;cks or whiih sectors ofthe
disk are unreliable and should not be used. When these hard disks are used with sralntel
iSBC 214, iSBC 215c, and iSBC 220 controllers, Intel-supplied device drivers can read
this bad track information and map ou! the unreliable areas when formatring the disk.

With the iSBC 214, iSBC 215G, and iSBC 220 conrrollers supporred by rhe I/O Sysrem,
the information on lhe disk must refer to entire tracks that are unrelable. The iSBC 214,
iSBC 215G, and iSBC 220 controlle.s format disks a track at a time, and thereforc are
capablc of mapping out only entire tracks.

To assist in adding this capabiìiry ro rhe drivers you write, this appendix describes rhe
format Intel uses when writing the bad track information. Any hard disk drivers you write
should be able to obtain this bad track information and map out the bad tracks wnenever
they format rhe disks.

The bad track intbrmation is recorded on the highest-numbered cylinder - I (the highest-
numbered cylinder is reserved for diagnostic tracks).

The last four tracks of that cylinder contain the bad track information. Each track
contains the same information but is formatted with a different sector sizer

Track

lnst cylinder - 1, l,ast su.face

I-ast cylinder - 1, hst surface - 1

Last cylinde. - 1, Inst surface - 2

Last cylinder - 1, Inst surface - 3

128 b,'tes/secto.

256 bytes/secror

512 bytes/sector

1024 bytes/sector

If a disk has less than four recording surfaces (and therefore less than fow tracks pcr
cylinder), the tracks on the next cylinder (last cylinder - 2) are used for the remaining bad
lrack information.

Devic€ Ddvers User,s Guide D.l

f NTERPRNTING BAII TRACK INÍ'ORMATION

Recording the inlormation in four different sector sizes allows the driver to access the
information during {ormat time, regardless of the sector size chosen by the user. For
example, if the user decides to format the disk with a volume granularity (sector size) of
512 b)'tes, the driver sets up the controller for 512-byte sectors and accesses the bad Íack
information from the location (last rylinder - l,last surface.2). Likewise, when
formatting in 1024-byte sectors, the driver obtains the bad track infolmation from the
location (last cflinder - 1,last surface - 3).

On each ofthose tracks, 1024 bytes ofbad track information is recorded foù times,
starting at sector 0, with a 1024-byte gap between each recording. The multiple
occurrences are insurance against bad spots in this area of the disk. If an eÍor occurs
r'r'hen the driver attempts to access the first occurrence of the bad track information, rr
tries again with the second occurrence, altd so forth.

The lormat of the bad track information is as follows:

WORD Must contain the value 0ABCDH
WORD Number ofbad tracks in this tist (maxilnum of255)

Then, for each bad track, the following information appearsl

WORD Cylinder number ofbad track
BYTE Surface number ofbad track
BYTE Scl this field to zero

Figùre D-1 illustrates the position of this bad track information on the disk.

D-2 Device DÌivers Userrs Gulde

INTERTRtrTING BAD TRACK INFORMATION

sqr .c .F1(r5ÈbnKbr r %

s q r r . ù 2 (5 , ! ! y ù - d ó d) %

surrc. n.3oo24bf. r.cro.)
%

sudHn..(at. rr.trb)

Fisure D-1. lbrmat ofBad Track Infomation

Device Drlvers User's Guide D-3

82530 lerminal driver 3-14
8274 terminal driver 3-13

A

APC sequences 2-13
attach device system calls 8-1
auto-ansìwer modem 2-44
axes sequence and orientation 2-21
axes sequence control 6-13

B

bad track information D-l
bad track/sector information 4-16
bad track and sectors 8-11
baud rate

input 2-21,6-13
output 2-21,6-14

BEGIN$LONG$TERM$OP procedure 5-28
BIOSGETADDRESS procedu.e 4-21
board lD 5-13
buffer

.aw inpùt 2.6
Terminal Support Code 2-7
type-ahead 2-7

buffered devices 6-20
buffers

number of 4-6
B)'te Bucket driver 3-14

c
cancel I/O procedur€ 7-1,4
cancel requests 8-2
CANCEL$IO 5-2
CANCELJIO procedure 4-5

interrupt-driven devices A-42
message-passing devices B-7

Device DriveB ljsér's cuide Index-l

character length 6-28
characteristics of diskettes 4-3
close system calls 8-2
closing liles E-5
common drivers 1-4,2-1,3-2, 5-1,
communication levels 1'1
configuring device drivers 9-1
connection flags 6 t
connection modes 2-16
conÍrol c-harac-ter redefinition 2-43
control characters 2-24

output 2-17
control strings 2-12
CONTROL-O character 2-12
CONTROL-Pcharacter 2-10
CONIROL-Q character 2-12
CONTROL-R character 2-10
CONTROL-S character 2-12
CONTROL-Tcharactcr 2-12
CONTROLUcharacter 2-10
CONTROL W character 2-12
CONTROL-X character 2-10
CONTROI--Z character 2-10
cursor addressing offset 2-22
cursorpositioning 2-41
custom drivers 1-4, 2-1, 3-14, 7 -l
cylinder size 5-15

D

delete character 2-10
deleting lines 2-10
detach device system calls 8-1
device data storage area 5-15
device driver configuration 9-l
device driver interfaces 4-1
device driver types 1-4
device drivers

Intel-supplied 3-1
device drivers 1-1
device lìnish procedure 5-11, 1-6, 9
device granularity 4-4
device information screens g-9
device information table 4-5, 5-8, 6-4, 18
device initialiation procedure 5-11, 16, 17

INDEX

Index-2 Device Drivers Usefs Guide

device interfaces 4-21
device interrupt proceútte 5-12, 16, 21
device numbcr l-3
device start procedure 5-12,16, L9
device stop procedure 5-12,16,21
device-unit information block

creating 4-8
device-unit information block (DUIB) 4-1, 6-3
device-unit information screens 9-16
device-unit number 1-3
discarding mode 2-11
discarding output 2-12
diskette characteristics 4-3
diskette fomat, standard C-l
drive characteristics 4- 14
drive characteristics E-7
driver interfaces 4-1
drivers

Intel-supplied 3-l
DUIB

creating 4-8
DUIB 4-1, 6-3
duplex 2-20,6-11

E

echo control ó-10
*hong 2-17
einptying t)pe-ahead buffer 2-10
end of file character 2-10
END$LONG$TERM$OP procedure 5-29
escape sequence 2-24, 2'1, 33
examples

simulation 2-32
translatioo 2-29

explicit seeks 5-15

F

F$ATTACH requests 8-4
F$CLOSE requests 8-5
F$DETACII requ€sts 8-4
F$OPEN requests 8-4
F$READ requests 8-3
F$SEEK requests 8-4

INDEX

Device Drivers Ilsey's Guid€ Index-3

INDEX

F$SPECIAL requests 8-5
F$WRITE requests 8-3
file drivers l-1, 4-2
file marks E-10
finish I/O procedure 4-5, 7-1, 2
FINTSH$IO 5-1
FIMSH$IO procedure 4-5

interrupt.driven devices A-39
message.passing devices B-4

fixed update 4.6
now c!ÍEol 2-22,6-26
flùsh mode 2-8, 17
formatting fracks 4-13, 8-5
FS$FORMAT$TRACK requests 8-5
FSGETBAD$INFO requests 8- 1 1
FSGETDRIVE$DATA requests 8-7
FSGETTERMINAf$ATTzuBUTES requests 6-E
FS$NOTIFY reqùests 8-6
FS$QUERY requcsts 8-6
FS$READ$FILE$MARK requests 8-10
FS$RESET reqùests 8-9
FS$RETENSION$TAPE .equests 8-10
FS$SATISFY requests 8-6
FSSETBAD$INFO requests 8- I 1
FSSETSIGNAI requests 8-9
FSSETTERMINAL$ATTzuBUTES requests 8-8
FS$WRITE$FILE$MARK requests 8- l0

G

GET$IORS procedure 5-29
granularity -4

H

high water mark 2-23, 6-27
high water mark, special 2-24

I

I/O request/rcsult segment (IORS) 4-9
I/O requests l-6,2-4, 8-l
ICU Merge (ICUMRG) utrlity 9-2, 9-4, 22
ICUMRG utitty 9-2, 4, 22
implied seeks 5-15

Irdex.4 Device Drivers UseCs Guide

INIT$rO 4-4, 5-1
INIT$IO procedure

interrupt-drivcn devices A-35
message-passing devices B- I

initialize I/O procedure 4-4, 7-1
input baud rate 2-21, 6-13
input parity 2-17,20, 6-10, 1,1,28
inserting data into the input stream 2-50
instance 5-13
Intel-supplied device drivers 3-1
interfaces

device 4-21
interfaces, driver 4-1
inte.rupt 5-l
interrupt handler 2-3
interrùpt lev€l 5-10, 6-7
interrupt lines 6-7
interrupt task 2'3,5 2, A 45
rnte..upt q/pe ó-17
INTE RRUPT$TASK 5-2, A-45
interrupt-driven devices 5-1, 6-1
introduction 1-1
invoking the UDS urility 9-18
IORS 4-9
iSBC 186/224A multi-peripheral driver 3-6
iSBC 186/410 terminal driver 3-9
iSBC 208 disk driver 3-2
iSBC 214 disk and tape cootroller 3-5
iSBC 215c disk controller 3-3
iSBC 217C tape controller 3-3
iSBC 220 SMD disk driver 3-6
iSBC 2ó4 bubble memory driver 3-8
iSBC 286/10(A) line printer driver 3-8
iSBC 534 terminal driver 3-11
iSBC 544A terminal driver 3-12
iSBX 218,4' diskette controller 3-4
iSBX 218,4 diskette driver 3-5
iSBX 251 bubble memory driver 3-7
iSBX 350line printer driver 3-8
iSBX 351 terminal driver 3-12

L

INDEX

levels of communication 1-1
line editing control 6-10

Device Drivers Use s Gùide Iídex.s

INDEX

line protocol 2-20
lhe plotocol indicator 6-11
lhe terminator 2-10
line terminator, special 2-10
line-edit buffer 2-7
line-editing functions 2-9
line-editing mode 2-17
link parameters 6-29
locking the terminat 2-49
logical addresses 4-21
long-term operatioN 2-4, 5.28
low water rnark 2-23,6-n

M

Mass Storage Controller (MSC) driver 3-2
message 5-1,5.23,6-42
message task 5-3, B-8
MESSAGE$TASK B-8
message-passing devices 5-1, 6-l
mode

flush 217
line-editing 2.17
special character 6-25, 30
terminal 4-15
transparent 2-E, 17

modem 2-44,22
modem indicator 2-20
modes

connection 2'16
terminal 2-18

MSC d.iver 3-2
MULTIBUS I interruptless drivers 6-1
MULTIBUS U drivers ó-1

N

normal mode 2-11
notification of drive door open 4-14
NOTIFY procedure 5-26
notiry requests 8-6
NUM$BUFFERS 2.2, 4-6

Irdex-6 Device Drivers Uset's Guide

INDEX

o
op€lÌ system calls 8-2
opening files 84
optimizing sccks 2-5
OSC control 2-17
OSC sequences 2-12, 26,27, 6-10
output baud úte 2-21, 6-14
outpùt control characters 2-77, 6-10, 23
output medium 2-20, 6-11
output mode 2-11
output Pariry 2-17, 20, 6-10, 12, 28
overflow offset 2-22
overlapping seeks 2-5

P

parity
'r,put 2-17,20,6-10,28
o[lpnt 2-17.2Ct, 6-10, 28

physicaladdresses 4-21
physical link 2-23
physical link parameters 6-27
port ó-1
positioning the cùrsor 2-41
priority 5-11

o
query reqùests 8-ó
queue I/O procedure 4-5, ?-1, 3
queue size 5-13
QUEUE$IO 5-2
QUEUE$lO procedure

interrupt-driven devices A-40
message-passing devices B-5

QUEUE$IO procedure 4-5
quoting character 2-10

R

RAM driver 3-15
random access drivers l-4, 2-1, 3-2, 5-l

Device Drivers UseÉs Guide Index-7

INDEX

random access support routines
interrupt-driven devices A-34
message-passing devices B-1

raw input buffer 2-ó, ó-19
read requests 8-3
rcad systcm calls 8-2
redefining control characteÉ 2-43
redisplayinglines 2-10
request queue 2-3, 7-5
retries 2-5
retrying I/O requests 5-14

s
satisÙ requests 8-ó
screen height 2-21
scrccn width 2-21
scrolling count 6-20
scrolling mode 2-11, 12
scrolling number 2-21, 6-14
SCSI driver 3'9
seek optimization 2-5
seek overlap 2-5
seek system calls 8-2
SEEK$COMPLETE procedure 5"15, 27
seeking 8-4
seeks

explicit 5-15
implìed 5-15

signal characters 4-15, 8-9
s'mùlal10n l-2), J I
software control strings 2-12
specral array 2-25
special cha.acter mode 6-25,26,30
special characters 2-22
special high water mark 2-24, 6-29
special line terminator 2-10
special system calls 8-2
stack size 5-11, 6-6
standard dìskette format C-1
starting output 2-12
stop bits 2-24, 6-28
stopping output 2-12
stuffing data into the inpùt stream 2-50

Inder-8 Device Drivers User's Guide

T

tape drive.s 4.14
tape file marks 4-15
tape requests 8-10
task

interfupt 5-2
message 5-3

terminal answer procedure 6-7, 31, 36
terminal attributes8
terminal character sequences 2-26, 40
terminal check procedure 6-8, 32, 37
Terminal Communications Controller driver 3-10
terminal drivers 7-4, 2-1, 3-9
terminal drivers ó-1
terminal finish proccdure ó-ó, 31, 34
te.minal flags 6-11
terminal hangup procedve 6-7, 32, 3'7
terminal I/O 2-6
terminal initialization procedure ó-6, 31, 32
terminal mode information 4-15
terminal modes 2-18
terminal mutual exclusion procedure 6-30
terminal output 2- 11
terminal output procedttre 6-7, 32, 44
terminal set output buffer size procedìire 6-30,31
terminal setup procedure 6-6, 31, 34
Terminal Support Code 6-1, 6-14
Terminal Support Code inpur buffer 2-7
t€minal utility procedvre 6-7,32, 15
t.ack formatting 4,13, 8-5
track size 5-14
translation 2-21, 25, 29, 6-13
t.ansparent mode 2-8, 17
q?e of terminal inte..upt 6-17
type-ahead buffer 2-7
types of device drivers l-4

INDEX

Devlce Drivers UserJs Gulde Irdex-g

INDEX

U

UDS error messages 9-19
UDS utility 9.2, 4
unit informatiol screens 9-14
unit information table 4-5,5-13, 6-9, lE
unit number l-3
unlocking the terminal 2-49
update timeout 4-5
User Device Support (UDS) utility 9-2
User Device Support Utility (UDS) 9-4

v
volume chaoge notfication 2-3

w
write requests 8-3
write system calls 8-2

Index-10 Device Drivers Useis Guide

INTERNATIONAL

INTEL CORPORATION
3065 BowertAvenue
Santa Clara, Cali fornia 95051

BELGIUM
Intel Corporatron SA
Rue des Cottages 65
8 -1180 Brusse ls

DENMARK
Inte{ DenrÍdrk AJ5
Glentevej6l-3rd Floor
dk-2400 Copenhagen

ENG LAN D

Intel Corporation (tJ. K.) LfD.

Swindon, Wiltshire 5N3 1RJ

F INLAND
Intel Finland OY
R!o5ilante 2
00390 He sinki

FR,ANCE
lntel Paris
1 Rue Edison'8P 303
78054 St.-Quentin"en-Yveline! Cedex

ISRAEL
Intel Semr(onducîorr LTD.
Atrdrm lndustrialPark
Neve Sharet
P .O .Box43202
Tel"Aviv 61430

IIALY
Intel Corporation 5.P.A.
Milandf iori , Palazzo E/4
20090 Assago (Milano)

SALES OFFICES

I n t e l J a p a n K . K .
Flower-Hi l l Shin-machi
1 - 2 3 - 9 , 5 h i n r n a (h i
Seîagaya-ku,-fokyo 15

NETHERLANDS
Intel Semi(ondudor (Netherland B V.)
Alexanderpoon Sui lding
Marten Meesweg 93
3068 Rotterdam

P O . 8 o x 9 2
Hvanìveien 4
N,2013, Skjetten

SPAIN
lntel lber ia

Cal le Zurbaran 28-IZQDA
28010 Madrid

SWE DEN
Ìnìel Sweden A.B.
Dalvée9en 24
S - 1 7 1 3 6 S o l n a

5WITZERLAND
lntel semi(onductor A.G_
lalaakerrtrósse 17
4125 Glattbrugg

CH-8065 zurich

WEST GERMANY
Intel 5emicondu(tor G N.8.H-

Seidlestrasse 27
D-8000 Munchen

intel ' iRMXo l r . 3
Volume 2

user's Guide5
461845-001REQUEST FOR READER'5 COMMENTS

lntel 5 fechnical Publications Deparrmentj attempt to provide publications thèt meet îhe needs of al l
lnlel product users. Thi5 form lets you partìcipate directly in the publication process. your (ommeots
wr I help us correat and improve our publi<ations please take a few m;nute5 to respond.

Please restr i(t your <omrnent5 to the usabil i ty, a(c!rdcy, organ zarion, dnd (ompleteness of rhis
pub icat on lf you have any comments on the produd that this publication dej(r ibeJ, please contad
vour ntel reoresentatrve.

1. Please descrrbe any errors you foLJnd in thiJ publication (in(lude page number).

2. Doesthis publication cover the information you expected or required? please make guggestions
for improvement.

3. ls thie the r ight type of publ car ion for yourneeds? t5 i t aÌ ìhe r ight level? What othertypesof
publ icat ions are needed?

4. Did you have any diff (ulty understandlng descript ions or wording? Where?

5. Please rate thls publi(at ion on a s(ale of 1 to 5 (5 being the best rating)

N A M E

TI-ILE
DATE

COMPANY NAME/DEPARTN,lENT

PHONE (

Pl€ase che(k here rf yÒ! .equrre a written reply !

Z P CODE

ADDRESS
c -fY 5TAIE

(COUNTRY)

WE'D LIKE YOUR COMMENTS . , .

This documenl is one ol a sorios doscribing Intel produots. Your comments on th€ back oî this form will
help us produce better manuals. Each reply willbe carefully reviewed bythe responsibls p€rson. All
comments and suggestions become the property of Intel Corporation.

ll you are in the United Stat€q use the preprinted address providsd on this lorm to return your
commenìs. No postage is required. lf you are not in the Unit€d States, return your conm€nts to th€ Intel
sales otfice in your country Foryour convonienc€, a list of international salgg otlices is provided dirèctly
b€fore this mail6r.

BUSINESS REPLY MAIL
FIRSI CLASS PENM|T NO 79 HILLSBORO OR

POSTAGE WILL BE PAID BY ADDRESSEE

lnlel Cofooration
OMO SW Technicel Publicetions. MS:
5200 N.E. Elam \bung Parkway
Hillsboro. OR 97124.9987

NO POSTAGE
NECESSARY
IF IIAILEO

IN IHE
UNIIEO SIAIES

-
-
-

-
HF3-60

| t t , , t , , , t , , , , , t , t , t , , , t , ,1, t,, t , , r, r,, , r, r,, r1

