iRMX™ 86 APPLICATION LOADER
REFERENCE MANUAL

CONTENTS

CHAPTER 1
INTRODUCTION TO THE APPLICATION LOADER
Loader Terminologyeseseenssccseascscscsescccsscsssosnscccacscscscccssscscns
Object CoOdEsecscnscessnsscsssscsscscssssscsesssscscssoscscsscsnssone
Types of ObjeCt Codeooo-ooo.ooo-.ooooooo.ooooo'ooo.ooooo.ooo.oooo
Absolute COdCecesseonosssessecssscsssscssncsscsscsssssssssssasasnse
POSition—Independent Code (PIC).........ooooooooooooo-ooooooo.o
Load-Time-Locatable (LTL) COdCeesvscovcsosoenssscsssscsscscosocnscoe
Synchronous and Asynchronous System CallSeecssscccccsssvscsssccssccns
I/O JOb-oooooaoooooooowoocooc-ooooocOObo-ooo-ooooooooooooo-oooooo
OVerlay.oocoooo-ooo'oon---oooo-...uoooooooooooocooooooooooooooooo
Loader FeatureSeecosecseceoosssssccsscscssssssccsssesscccssccscssssnsas
Device Independenceeececescesssccscsssscssssssscssccncssscsccssosscsscns
Synchronous and Asynchronous System CallSeececescscsscsccsscsssss
Support for Overlaid ProgramSessccescessesccssscsscscsssoscsccssona
COﬂfigurability-oo--oouoo...oo'.o..o'oc'o-'oo'otooooooooooooocoo-
Preparing Code for Loadingececececscesccesscscssssscccccsscocssssssee
PL/M-86 Models of Computation and Types of Object CodeSeeecsceses
Invoking IRMX"™ 86 System CallSesecesesssscccsscssscsccccsscsscscscss
Entry POINtSesseesesesceosccosessocssssssoscssscsossscssesssscesessss
Using a Main ModulEGeceoeescoososcccsoscsssescnsscscsssssscnsccscsscsse
Writing a Procedure to be Loaded by the Application Loadereeess
Stack SiZeSeeesesecccccosccssscsssssscsssssscsescssssssssssssssssssse

How the Loader WOTKSeesenosesesesscccsscsscnnsesssssssnsssscsscsocsse

CHAPTER 2
APPLICATION LOADER SYSTEM CALLS
Response MailboX Parametere esceccccccecsssscscsccscsecesccsccscsscsccnsce
Condition CodeSesessseosesesssosscscosssocsssssosscssssossossccssssssssss
Condition Codes for Synchronous System CallSeececscsccccoscccssccccss
Condition Codes for Asynchronous System CallSesssseccsccccccccces
Sequential Condition CoOdeSeeecccnccccsccccocscscscscsesscnccssccnsce
Concurrent Condition CodeSeeeccscsesssscssssscsscssssccscssscssas
System Call Dictionaryeecessecesscssccscssocscscscscsscccscsocsscsscces
ASLOADe s esossococsocscsscsssscscssosanssnsssscsscssscsssocssscsasccsss
A$LOAD$IO$JOB.........o.......-..............--..................
SSLOADSIOSJ0Be s oo oceosssscssoscssscsosccescsosssessscscssscsssssssncs

S$OVERLAY.............0..........0.......0..........'......'..'..

CHAPTER 3

CONFIGURATION OF THE APPLICATION LOADER

Types of Job Loading System CallSeeseessesscccsnccnccsscssscsccscnsee
Loader in ROMe eseoecccccconscsoscscascsencconcsncsscscscscsncsscsscscssscsscsconcss
Type of Code to be Loadedecececcscscsscscscscesscsccsccsccccsscsncnns
Default Memory PoOl SiZEessecscccscsccoosscsscccsscsccsccccssccnscsccnnos
Size of Application Loader BufferSe.sesscccssccsssscssssccsccscsscssscs

Application Loader iii

PAGE

] | I O T TR N T S T
O NNOO OO LUV U DN WWWNNN -

p—-l—l)—l—ln—dHHl—')—l—lp—lhl—aHh—Hl—lx—ni—Hl—‘l—lh—l

US|
N

N DN val? NN NN
WN = DLW DNDNN NN -

CONTENTS
(continued)

PAGE
APPENDIX A

DATA TYPES'..'........l.....'l..l.....‘l.........Q....I'..........l. A_l

APPENDIX B

CONDITION CODES

Normal Condition COdeseoeecsescscessssssssesssoscscssssssssssssssssse B-1
Programmer Error CodeSessesescssscessosssossssssorsssscsssssscsssscnse B-2
Environmental Problem COdeSeeesesesscsesccscsossccsssosssssscsssssnsce B-2

APPENDIX C
ASYNCHRONOUS SYSTEM CALI.IS.......'...0.00....0......'...Q.l.....".. C_l

TABLE

1-1. User Actions Required to Match Model of Segmentation
with Object Code Type..........-..-.......-.....--.-..... 1-7

FIGURE

c-1. Behavior of amn Asynchronous System Callecescencocsscsccnsoss c-2

kkk

Application Loader iv

CHAPTER 1
INTRODUCTION TO THE
APPLICATION LOADER

The Application Loader is a part of the Operating System, and is used to
load programs under the control of iRMX 86 tasks —— tasks that are part

of the Operating System, and tasks that are part of applications programs
you write.

The Loader provides system calls that load programs from secondary
storage into memory. The Loader system calls give you several
advantages. They allow programs to run in systems that haven't enough

memory to accommodate all of their programs at one time. They allow
programs that are seldom used to reside on secondary storage rather than

in primary memory. Finally, they make it easier for you to add new
programs to the system.

Also, the Loader allows you to implement large programs by using

overlays. For example, suppose that your application system includes a
large compiler. By dividing the compiler into several parts, you can

avoid keeping the entire compiler in RAM. One of the parts, called the
root, remains in RAM as long as the compiler is running. The root uses
the Loader to load the other parts, called overlays.
This chapter is designed to help you understand the capabilities of the
Loader by providing you with background information. The chapter
consists of five main parts:

° Loader terminology

° Loader features

° Configuration options

® Preparing code for loading

. How the Loader works

After reading this chapter, you should be able to understand the system
call descriptions in Chapter 2.

LOADER TERMINOLOGY

Before attempting to read about the system calls of the Loader, you must
become familiar with the terminology used to describe theme. The
following terms are used fairly frequently in describing system calls:

° object code, object module, and object file

° absolute code, position-independent code (PIC), and load-time
locatable code (LTL)

Application Loader 1-1

INTRODUCTION TO THE APPLICATION LOADER

) fixup

° synchronous system calls, and asynchronous system calls
e I/0 job

° overlay, root module, and overlay module

The following sections define these terms or refer you to documents in
which you can find definitions.

OBJECT CODE

The term object code is used to distinguish between the program that goes
into a translator (compiler or an assembler) and the program that comes
out of a translator. However, in this manual, object code refers to the
following three categories of code:

e output of a translator
e output of the LINK86 command
° output of the LOC86 command
An object module is the output of a single compilation, a single

assembly, or a single invocation of the LINK86 or LOC86 commands, and an
object file is a named file in secondary storage that contains object

code 1n one or more modules.

TYPES OF OBJECT CODE

The Loader can load absolute code, position-independent code, and
load-time-locatable code. These are defined here.

Absolute Code

Absolute code, and an absolute object module, is code that has been

processed by LOC86 to run only at a specific location in memory. The
Loader loads an absolute object module only into the specific location
the module must occupye.

Application Loader 1-2

INTRODUCTION TO THE APPLICATION LOADER

Position-Independent Code (PIC)

Position—-independent code (commonly referred to as PIC) differs from
absolute code in that PIC can be loaded into any memory location. The
advantage of PIC over absolute code is that PIC does not require you to
reserve a specific block of memory. When the Loader loads PIC, it
obtains iRMX 86 memory segments from the pool of the calling task's job
and loads the PIC into the segments.

A restriction concerning PIC is that, as in the PL/M-86 COMPACT model of
segmentation (described later in this chapter), it can have only one code
segment and one data segment, rather than letting the base addresses of
these segments, and therefore the segments themselves, vary dynamically.
This means that PIC programs are necessarily less than 64K bytes in
length.

PIC code can be produced by means of the BIND control of LINK86.

Load-Time-Locatable (LTL) Code

Load-time locatable code (commonly referred to as LTL code) is the third
form of object code. LTL code is similar to PIC in that LTL code can be
loaded anywhere in memory. However, when loading LTL code, the Loader
changes the base portion of pointers so that the pointers are independent
of the initial contents of the registers in the microprocessor. Because
of this fixup (adjustment of base addresses), LTL code can be used by
tasks having more than one code segment or more than one data segment.
This means that LTL programs may be more than 64K bytes in length.
FORTRAN 86 and Pascal 86 automatically produce LTL code, even for short
programs.

LTL code can be produced by means of the BIND control of LINK86.

SYNCHRONOUS AND ASYNCHRONOUS SYSTEM CALLS

A synchronous system call is one in which the calling task cannot
continue running while the invoked system call is running. For example,
if a task invokes a synchronous Loader system call, the calling task will
resume running only after the loading operation has either failed or
succeeded.

An asynchronous system call is one in which the calling task can run

concurrently with the invoked system call. For a detailed explanation of
the behavior of asynchronous system calls, refer to Appendix C.

Application Loader 1-3

INTRODUCTION TO THE APPLICATION LOADER

1/0 JOB

An I/0 job is a special type of job for tasks that perform I/0 using the
Extended I/0 Systems In fact, if a task is not in an I/0 job, it cannot
successfully use all of the system calls in the Extended I/0 System.

The notion of an I/0 job relates to the Loader because some of the system
calls provided by the Loader use the Extended I/0 System. Specifically,
the ASLOADSIOSJOB and the SSLOADSIOSJOB system calls can be invoked only
by tasks running in an I/0 job.

If you are unfamiliar with I/0 jobs, refer to the iRMX 86 EXTENDED I/O
SYSTEM REFERENCE MANUAL for a definition.

OVERLAY

The term “"overlay,” when used as a verb, refers to the process of loading
object code that generally resides in RAM only for short periods of
time. For example, suppose that you are building a compiler that is very
large. You can design the compiler in either of the following ways:

. The compiler can be structured as a monolithic program that
resides on secondary storage unit:il it is needed. Once needed,
the entire collection of object code must be loaded into RAM.

° If the compiler is an overlaid program, pieces (overlays) of the
compiler reside on secondary storage; individual overlays are
loaded as they are needed. In this way, the compiler can run in
a much smaller area of memory. Note that the compiler might be
slower if it uses overlays, depending upon how it uses the time
when the overlays are being loaded.

In order to implement an overlaid program using the Loader, you divide
the program into two kinds of modules —-- a root module, and one or more
overlay modules.,

A root module is an object module that controls the loading of overlays.
Let's again use an overlaid compiler as an example. Suppose that you are
developing an application system incorporating the compiler. When the
compiler is invoked, your application system can load the root module of
the compiler using ASLOADSIQ$JOB or SSLOAD$SIOS$JOB. (These system calls
are described in the next chapter.) The root module can then use the
SSOVERLAY system call to load overlay modules as they are needed.

For more information regarding the notion of overlays, root module, and
overlay module, refer to the iAPX 86,88 FAMILY UTILITIES USER'S GUIDE.

Application Loader 1-4

INTRODUCTION TO THE APPLICATION LOADER

LOADER FEATURES

The iRMX 86 Loader provides several features that make it valuable in any
application system that loads programs from secondary storage into RAM.
Some of these features are:

° Device Independence

° Synchronous and Asynchronous System Calls
° Support for Overlaid Programs

° Configurability

The following sections briefly discuss each of these features.

DEVICE INDEPENDENCE

The Loader can load object code from any device if the device supports
iRMX 86 named files and an iRMX 86-compatible device driver is available
for ite See the iRMX 86 CONFIGURATION GUIDE for a complete list of
devices for which Intel supplies device drivers. If you wish to load
from a device for which Intel does not yet supply a device driver, you
can write your own device driver. Refer to the GUIDE TO WRITING DEVICE
DRIVERS FOR THE iRMX 86 AND iRMX 88 I/0 SYSTEMS for directions.

SYNCHRONOUS AND ASYNCHRONOUS SYSTEM CALLS

The Loader provides you with both synchronous system calls and
asynchronous system calls. If you want your tasks to explicitly control
the overlapping of processing with loading operations, you can use
asynchronous system calls. On the other hand, if you prefer ease of use
to explicit control, you can use synchronous system calls.

SUPPORT FOR OVERLAID PROGRAMS

The Loader contains a system call that is explicitly designed to simplify

the process of loading overlay modules. By using the SSOVERLAY system
call, your root module can easily load overlay modules contained in the
same object file as the root module.

CONFIGURABILITY

The Loader is configurable. You can select the features of the Loader
that your application system needs. If you don't need all of the
capabilities of the Loader, you can leave out some options and use a
smaller, faster version of it. Configurable features are summarized in
Chapter 3 and are discussed in detail in the iRMX 86 CONFIGURATION GUIDE.

Application Loader 1-5

INTRODUCTION TO THE APPLICATION LOADER

PREPARING CODE FOR LOADING

Two factors govern the methods you must use to prepare code for loading.
They are:

e The PL/M-86 model of segmentation to which you are adhering.

e Whether you want the loaded calls to be able to invoke iRMX 86
system calls.,

In addition to these factors, you must ensure that the object code
specifies an entry point and deals with stack size. The following
sections address these issues.

PL/M~-86 MODELS OF SEGMENTATION AND TYPES OF OBJECT CODE

When you compile your source code, you must (explicitly or implicitly)
specify a PL/M-86 model of segmentation (specified at compile time by the
SIZE control). The model you specify affects the kind of object code
generated. The purpose of this section is to correlate the model of
segmentation with the kind of code generated.

The PL/M~86 programming language offers four models of segmentation:
SMALL, MEDIUM, LARGE, and COMPACT. The iRMX 86 Operating System does not
support the SMALL model. Do not use i to generate any code that you
plan to load with the Loader. Table 1-1 explains what you must (or must
not) do, in addition to selecting a model of segmentation, in order to
produce object code of a particular type.

For more information regarding models of segmentation and their effect on
the iRMX 86 Operating System, refer to the iRMX 86 PROGRAMMING TECHNIQUES
manual.

INVOKING iRMX™ 86 SYSTEM CALLS

If you want your loadable code to invoke iRMX 86 system calls, you must
use LINK86 to link the loadable object modules to the iRMX 86 interface
procedures. Refer to the iRMX 86 PROGRAMMING TECHNIQUES manual for
details.,

ENTRY POINTS

Generally, when your tasks invoke the Loader, the Loader must be able to
determine the entry point for the loaded object code. (The entry point,
also known as the start address, is the location at which execution is to
begin.) The Loader uses this information when creating a job in which
the loaded code is to run as a task.

Application Loader 1-6

INTRODUCTION TO THE APPLICATION LOADER

Table 1-1. User Actions Required To Match PL/M-86 Model Of
Segmentation With Object Code Type

Model of Segmentation

Code Type Medium or Large Compact
Use LINK86 without the Use LINK86 without the
Absolute BIND control to link code BIND control to link code
Code together. Use LOC86 to together. Use LOC86 to

locate the code absolutely. locate the code absolutely.,

Not applicable. That is, Use LINK86 with the BIND

Position- you cannot produce PIC control to link code
Independent using the MEDIUM or LARGE togethers Do not use the
Code model. INITIAL or DATA statement

to initialize a pointer.
Do not exceed 64K bytes.

Use LINK86 with the BIND Use LINK86 with the BIND

Load-Time control to link code control to link code
Locatable together. Do not locate togethers Either use the
Code with LOC86. INITIAL or DATA statement

to initialize a pointer
or exceed 64K bytes.

Using A Main Module

The easiest way to ensure that your object file contains an entry point
is to write your source code as a main module; a main module always
contains an entry point. Further, if your code is either PIC or LTL
code, it must be a main module.

Writing A Procedure To Be Loaded By The Loader

In certain unusual circumstances there are advantages to writing your
source code as a procedure rather than as a main module. Such code will
have to be loaded using the ASLOAD system calle The mechanics of this
loading method are outlined in the description of ASLOAD in the next
chapter.

Application Loader 1-7

INTRODUCTION TO THE APPLICATION LOADER

STACK SIZES

When linking (using the LINK86 command) or locating (using the LOC86
command) your code, you must use the SEGSIZE(STACK(...)) control to
assign an appropriate stack size. When linking, you must also use the
MEMPOOL control if your program issues any Nucleus system calls that
create iRMX 86 objects dynamically. The SEGSIZE control is described in
the iAPX 86,88 FAMILY USER'S GUIDE.

HOW THE LOADER WORKS

If the Loader is configured into your system, the root job will create
the Loader job during initialization of the systeme Once created, the
Loader job initializes the Loader code and then deletes itself. The
Loader code then remains in memory, where it executes as a task whenever
a Loader system call is invoked.

*kk

Application Loader 1-8

CHAPTER 2
APPLICATION LOADER SYSTEM CALLS

This chapter describes the PL/M-86 calling sequences for the system calls
of the Application Loaders The calls are listed alphabetically. For
example, ASLOAD precedes ASLOADSIO$JOB. This shorthand notation is
language—independent and should not be confused with the actual form of
the PL/M-86 call. The precise format of each call is defined as part of
the detailed descriptione.

These iRMX 86 system calls are declared external procedures in the
PL/M-86 language. When you write a program in PL/M-86, you use these
procedures to invoke the system calls of the Loader.

Although the system calls are described as PL/M-86 procedures, your tasks
can invoke these system calls from assembly language. Refer to the

iRMX 86 PROGRAMMING TECHNIQUES manual for information about making system
calls in assembly language.

PL/M-86 data types, such as BYTE, WORD, and SELECTOR, are used throughout
the chapter. They are always capitalized and their definitions are found
in Appendix A. Also, the iRMX 86 data type TOKEN is capitalized
throughout the chapter. If your compiler supports the SELECTOR data
type, a TOKEN can be declared literally as SELECTOR or WORD. The word
"token"” in lower case refers to a value that the iRMX 86 Operating System
returns to a TOKEN (the data type) when it creates the object.

RESPONSE MAILBOX PARAMETER

Two system calls described in this chapter are asynchronous. These are
the ASLOAD and the ASLOADSIO0$JOB system calls. Your task must specify a
mailbox whenever it invokes an asynchronous system call. The purpose of
this mailbox 1s to receive a Loader Result Segment.

In general the Loader Result Segment indicates the result of the loading
operation. The format of a Loader Result Segment depends upon which
system call was invoked, so details about Loader Result Segments are
included in descriptions of the ASLOAD and ASLOADSIOJOB system calls.

Avoid using the same response mailbox for more than one concurrent
invocation of asynchronous system calls. This is necessary because it is
possible for the Loader to return Loader Result Segments in an order
different than the order of invocation. On the other hand, it 1s safe to
use the same mailbox for multiple invocations of asynchronous system
calls if only one task invokes the calls and the task always obtains the
result of one call via RQSRECEIVESMESSAGE before making the next call.

Application Loader 2-1

APPLICATION LOADER SYSTEM CALLS

CONDITION CODES

The Loader returns a condition code whenever a system call is invoked.
If the call executes without error, the Loader returns the code ESOK. 1If
an error occurs, the Loader returns an exception code.

This chapter includes, for each of the Application Loader's system calls,
descriptions of the condition codes that the system call can return. The
system call chapters in manuals for the other layers of the iRMX 86
Operating System do the same thing for those layers. You can use the
condition code information to write code to handle exceptional conditions
that arise when system calls fail to perform as expected. See the

iRMX 86 NUCLEUS REFERENCE MANUAL for a discussion of condition codes and
how to write code to handle them.

CONDITION CODES FOR SYNCHRONOUS SYSTEM CALLS

For system calls that are synchronous (S$SLOADSIO$JOB and SSOVERLAY), the
Loader returns a single condition code each time the call is invoked. If
your system has an exception handler, it will receive these codes when

exceptional conditions occur, dependinz upon how the exception mode is
set.

CONDITION CODES FOR ASYNCHRONOUS SYSTEM CALLS

For system calls that are asynchronous (A$LOAD and ASLOADSIO$JOB), the
Loader returns two condition codes each time the call is invoked. One

code is returned after the sequential part of the system call is
executed, and the other is returned after the concurrent part of the call
is executed. Your task must process these two condition codes separately.

Appendix C describes the sequential and concurrent portions of
asynchronous system calls,

Sequential Condition Codes

The Application Loader returns the sequential condition code in the word
pointed to by the except$ptr parameter. If your system has an exception
handler, it will receive these codes when exceptional conditions occur,
depending upon how the exception mode is set.

Application Leoader 2-2

APPLICATION LOADER SYSTEM CALLS

Concurrent Condition Codes

The Loader returns the concurrent condition code in the Loader Result
Segment it sends to the response mailbox. If the code is ESOK, the
asynchronous loading operation ran successfully. If the code is other
than ESOK, a problem occurred during the asynchronous loading operation,
and your task must decide what to do about the problem. Regardless of

the exception mode setting for the application, the exception handler is
not invoked by concurrent condition codes, so your program must handle it.

SYSTEM CALL DICTIONARY

The following list is a summary of the iRMX 86 Loader system calls,
together with a brief description of each call and the page where the
description of the call begins.

Name Description Type Page

ASLOAD Loads object code or data into Asynchronous 24
memory.

ASLOADSIO$JOB | Creates an 1/0 job, loads the Asynchronous 2-15

job's code, and causes the job's
task to run.

SSLOAD$IOSJOB | Creates an 1/0 job, loads the Synchronous 2-25

job's code, and causes the job's
task to run.

SSOVERLAY Loads an overlay into memory. Synchronous 2-32

Application Loader 2-3

ASLOAD

)
<
(7))
-l
m
=
0
>
F
F
(7]

ASLOAD

The ASLOAD system call loads an object code or data file from secondary

storage into memory.

CALL RQS$SASLOAD(connection, responseSmbox, exceptSptr);

INPUT PARAMETERS

connection

response$mbox

OUTPUT PARAMETER

exceptSptr

A TOKEN for a connection to the file that the
Loader is to load. The connection must satisfy all
of the following requirements:

° It must have been created in the calling task's
job.

™ It must be a connection to a named file.

e When the file was created by CREATESFILE or

ATTACHSFILE, the specified user object must
have had READ access to the file.

° It must be closed.

If the connection does not satisfy all four of

these requirements, the Loader returns an exception
code.

A TOKEN for the mailbox to which the Loader sends
the Loader Result Segment after the concurrent part
of the system call finishes running. The format of
the Loader Result Segment i1s given in the following
DESCRIPTION secticn.

A POINTER to a WORD where the Loader is to place
the condition code generated by the sequential part
of the system call.,

Application Loader 2-4

ASLOAD

DESCRIPTION

ASLOAD allows your task to load object code files or data files from
secondary storage into main memory. Unlike the ASLOADSIOS$JOB and
SSLOAD$I0$JOB system calls, ASLOAD doesn't automatically cause the code
to be executed as a task. The calling task must explicitly cause the
code to be executeds The following sections explain how to use A$LOAD to

load main modules or to load procedures and they give guidelines for
calling CREATESTASK, CREATE$JOB, or CREATESIO$JOB to run the loaded code.

Using ASLOAD to Load a Main Module

If you are using the ASLOAD system call to load a main module that will
run as a task, there are two cases.

le The usual case is when you are loading PIC or LTL code, or you
are loading absolute code generated with the NOINITCODE control
of the LOC86 command. In this case, the Loader returns, in the
Loader Result Segment, parameters defining the entry point and
stack requirements for the loaded code. Your application needs
these parameters when invoking the CREATE$TASK, CREATESJOB, or
CREATESIO$JOB system call.

If the Loader has been configured to load only absolute code, it
will not load main modules generated with the NOINITCODE
controle In this event, the Loader returns the ESLOADERSSUPPORT
condition code. (See Chapter 3 and the iRMX 86 CONFIGURATION
GUIDE for information about configuring the Loader.)

2, The unusual case is when your object code is absolute code
generated without the NOINITCODE control of the LOC86 command.
In this case, you must allow the iRMX 86 Nucleus to create a
stack for yous To do this, specify 0:0 for the stack pointer
parameter of the CREATESTASK or the CREATES$JOB system call.

This action causes the Nucleus to create a stack for the loaded

code. However, because the loaded code contains a main module,

it also contains code that switches the stack register values so
the the Nucleus—created stack i1s ignored. This stack switching

allows the loaded code to use the stack allocated by the SEGSIZE
control,

To minimize the amount of memory wasted by stack switching,
specify a small stack size (128 decimal bytes) in CREATESTASK,
CREATESJOB, or CREATESIO$SJOB system calls., This stack need not
be large because it is used only if the task is interrupted and
stack switching occurs.

Application Loader 2-5

ASLOAD

)
ol
/)
-]
m
=
0
>
F
|~
V0

Stack switching has an undesirable but avoidable side effect. If
you use the iRMX 86 Debugger, it will always indicate that the
stack for the loaded code has overfloweds The overflow
indication is caused by the main module switching stacks, rather
than by an actual overflow. This means that you cannot tell
whether overflow actually has occurreds To avoid this side
effect, write your source code as a procedure or use the LOC86
NOINITCODE control.

Using ASLOAD To Load A Procedure

If you write code as a procedure that you intend to load and run, it can
be loaded only by ASLOAD. Although the process of loading a procedure is
more restrictive than that of loading a main module, you can avoid the
stack-switching side effects described in the previous section.

To successfully load code that is written as a procedure, adhere to the
following rules:

e Generate the procedure as absolute code and do not use the
NOINITCODE control of the LOC86 command.

e Adhere to the PL/M—86 LARGE model of segmentation. This means
that you must either compile the procedure using the LARGE size
control, or you must follow the calling conventions of the LARGE
models For information about the PL/M-86 LARGE model of
segmentation, refer to the PL/M-86 USER'S GUIDE.

e When invoking the LOC86 command to assign absolute addresses to
your object code, use the START control to select one of the
PUBLIC symbols in your procedure as an entry point. Also specify
SEGSIZE(STACK(0)) to set the stack to zero lengths For more
information about the START and SEGSIZE controls, refer to the
iAPX 86,88 FAMILY UTILITIES USER'S GUIDE.

e When you invoke the CREATESTASK, CREATE$JOB, or CREATESIO$JOB
system call, allow the Operating System to allocate a stack for
the new task. Do this by setting the stack pointer parameter to
0:0. Be certain that you specify a stack size parameter that is
large enough for the task. For guidelines to determining stack
sizes, refer to the iRMX 86 PROGRAMMING TECHNIQUES manual.

e When you invoke the CREATESTASK, CREATES$SJOB, or CREATESIOSJOB
system call, set the data segment base parameter to 0. The
reason for this i1s that a procedure adhering to the LARGE model
of segmentation always initializes its own data segment.

For information about the CREATESTASK or the CREATESJOB system calls
refer to the iRMX 86 NUCLEUS REFERENCE MANUAL. For information about the
CREATESIOSJOB system call, refer to the iRMX 86 EXTENDED I/0 SYSTEM
REFERENCE MANUAL. For information about the iRMX 86 Debugger, refer to
the iRMX 86 DEBUGGER REFERENCE MANUAL.

Application Loader 2-6

ASLOAD

Asynchronous Behavior

The ASLOAD system call is asynchronous. It allows the calling task to
continue running while the loading operation is in progress. When the
loading operation is finished, the Loader sends a Loader Result Segment
to the mailbox designated by the responseSmbox parameter. Refer to
Appendix C for an explanation of how asynchronous system calls work.,

File Sharing

The Loader does not expect exclusive access to the file. However, other
tasks sharing the file are affected by the following:

o The other tasks should not attempt to share the connection passed
to the Loader, but instead should obtain their own connections to
the file.

o The Loader specifies "share with readers only"” when opening the
connection, so, during the loading operation, other tasks can
access the file only for reading.

Considerations Relating To Code Type

If the file being loaded contains absolute code, the Loader will not
create iRMX 86 segments for the code. Rather, it will simply load the
program into the memory locations specified for the target file. It is
the user's responsibility to prevent code from loading over existing
information, including the Operating System code. Refer to the iRMX 86
CONFIGURATION GUIDE to see how to do this by reserving areas of memory.

In contrast, if the file being loaded is position-independent code or
load-time locatable code, the Loader will create iRMX 86 segments for
containing the loaded programe. However, the Loader does not delete these
segments; when your task no longer needs the loaded program, your task
should delete the segments.

Effects Of Model Of Segmentation

The Loader will return (in the Loader Result Segment) a token for each of
the code, data, and stack segments. This is enough segment information
for programs compiled as COMPACT, because only one segment of each type
will be createds But if the program adheres to the LARGE or MEDIUM model
of segmentation, more than one code segment and more than one data
segment can be created, although only one token will be returned for each
in the Loader Result Segment.

This means that if the code follows the LARGE or MEDIUM model, the
calling task cannot know the location of all of the loaded program's code
or data segments. Consequently, the calling task cannot delete all of
the data or code segments after the program has executed.

Application Loader 2-7

ASLOAD

7))
<
U]
wf
m
=
0
>
F
r
»

You can avoid this problem in either of two ways. FEither be certain that

the program being loaded adheres to the COMPACT model of segmentation, or
use the ASLOADSIOSJOB or SSLOADSIOS$JOB system calls instead of the ASLOAD
system call.

Format Of The ASLOAD Loader Result Segment

The Loader uses memory from the pool of the calling task's job to create
the Loader Result Segment for this system calle The calling task should
delete the segment after it is no longer needed. Creating multiple
segments without deleting them can result in an ESMEM exception code.

The Loader Result Segment has the following form:

STRUCTURE (exceptScode WORD,
recordScount WORD,
errorSrecStype BYTE,
undefined$ref WORD,
init$ip WORD,
code$segSbase WORD or SELECTOR,
stackSoffset WORD,
stack$segSbase WORD or SELECTOR,
stack$size WORD,
dataSseg$base WORD or SELECTOR);

where:
except$code A WORD containing the condition code for the

concurrent part of the system call. If the code is
other than ESOK, some problem occurred during the
loading operation.

record$count A WORD containing the number of records read by the
Loader on this invocation of ASLOAD. If the the
loading operation terminates prematurely,
recordScount contains the number of the last record
read.

errorSrecStype A BYTE identifying the type of record causing
premature termination of the loading operation,
except that a value of 0 means no record caused
premature termination. Object record types are
documented in the Intel publication 8086 RELOCATABLE
OBJECT MODULE FORMATS.,

undefined$- A WORD specifying whether the Loader found undefined
ref external references while loading the job. An
undefined external reference usually results from a
linking error. The Loader continues to run even if
a target file contains undefined external references.

Application Loader 2-8

init$ip

code$segShase

stack$offset

ASLOAD

The value of undefinedSref depends upon your
configuration of the Loader. (See Chapter 3 and the
iRMX 86 CONFIGURATION GUIDE for information about
configuring the Loader.)

e If the Loader is configured to load LTL and
overlay code, as well as PIC and absolute code,
undefinedSref contains the number of undefined
external references detected during the loading
operation. (Note that undefined$ref equals the
number of undefined external references even if
the Loader 1s loading PIC or absolute code.)

e If the Loader is configured to load only absolute
code or only PIC or absolute code, the Loader
sets undefinedS$ref to 1 or to 0. It is 1 if the
Loader finds undefined external references;
otherwise, it is O.

A WORD containing the initial value for the loaded
program's instruction pointer (IP register). The

calling task can use this information in either of
two ways:

e When invoking the CREATESTASK, CREATESJOB, or
CREATESIOSJOB system call.

® As the destination of a jump within the code
segment of the loaded program.

Init$ip is O if the file does not specify an initial

value for the instruction pointer, as can happen
when the file contains no main module.

A WORD or SELECTOR containing the base address for
the code segment with the entry point. The value in
code$segSbase can be used with init$ip as a POINTER
to the entry point of the loaded program. The
Loader places O into this field if the loaded
program does not contain a main module. If you are
using a compiler that supports the data type
SELECTOR, code$SsegSbase should be declared a
SELECTOR,

A WORD containing the offset of the bottom of the
stack, relative to the beginning of the stack
segment. The calling task can use the sum of this
value and the stack$size to initialize the stack
pointer (SP register).

The Loader sets stackSoffset to zero under each of
these circumstances:

Application Loader 2-9

ASLOAD

]
<
»
-y
m
2
0
>
F
F
(7]

stackSseg$base

stack$size

dataSsegSbase

e The stack actually starts at offset O.
e There is no main module.

e The loaded code is a main module that
dynamically initializes the SP and SS registers.

A WORD or SELECTOR containing the base of the stack

segment for the loaded program. The calling task
can use this value to initialize the stack segment
(SP register). Stack$segSbase should be declared a
SELECTOR if your compiler supports the SELECTOR
data type.

The Loader sets stackS$segSbase to 0 under each of
these circumstances:

e If there is no main module. (In this case, the
target file does not specify a stack base).

e If the loaded code is a main module that
dynamically initializes the SP and SS registers.

A WORD specifying the number of bytes required for
the loaded program's stacke. The calling task can
initialize the stack pointer (SP register) to the
sum of stack$offset and stackSsize when invoking
the CREATESTASK, CREATESJOB, or CREATESIOSJOB
system call.

The Loader sets this value to O whenever both the
stack$offset and stack$segSbase are O, When all
three stack—-related parameters are 0 and the target
file contains a main module, the loaded code must
set the stack pointer (SP register) and stack
segment (SS registaer).

A WORD or SELECTOE containing the initial base
address of the data segment (DS register). If your
compiler supports the SELECTOR data type,

dat a$segSbase should be declared a SELECTOR.

The Loader sets this value to 0 under each of these
circumstances:

® If the target file contains no main module.

° If the main module dynamically sets the DS
register after the program starts running.

Application Loader 2-10

ASLOAD

CONDITION CODES

The ASLOAD system call can return condition codes at two different

times. Codes returned to the calling task immediately after invocation
of the system call are sequential condition codes. Codes returned after
the concurrent part of the system call has finished running are
concurrent condition codes. The following list is divided into two parts
-~ one for sequential codes and one for councurrent codes:

Sequential Condition Codes

The Loader can return any of the following condition codes to the WORD
pointed to by the except$ptr parameter of this system call,

ESOK No exceptional conditions.

ESBADSHEADER The target file does not begin with a valid header
record for a loadable object module. Possibly the
file is a directory.

ESCHECKSUM The header record of the target file contains a
checksum error.

ESCONNSNOTSOPEN The Loader opened the connection but some other
task closed the connection before the loading
operation was begun.

ESCONNSOPEN The calling task specified a connection that was
already open.

ESEXIST At least one of the following is true:

e The connection parameter is not a token for an
existing object.

e The msgSmbox parameter did not refer to an
existing object.

ESFACCESS The specified connection did not have "read" access
to the file.

ESFLUSHING The device containing the target file is being
detached.

ESTOSHARD A hard I/0 error occurred. This means that another

try 1s probably useless.

ESIOSOPRINT The device containing the target file was
of f~line. Operator intervention is required.

ESIOSSOFT A soft I/0 error occurreds This means that the I/0

System tried to perform the operation and failed,
but another try might still be successful.

Application Loader 2-11

ASLOAD

ESIOSUNCLASS An unknown type of I/0 error occurred.
ESTIOSWRPROT The volume is write-protected.
ESLIMIT At least one of the following is true:

e The calling task's job has already reached its
object limit.

e Either the calling task's job, or the job's
default user object, is already involved in 255
(decimal) I/0 cperations.

ESLOADER$SUPPORT To load the target file requires capabilities not
configured into the Loader. For example, it might
be attempting to load PIC when configured to load
only absolute code.

ESMEM The memory available to the calling task's job or
the Basic I/0 System is not sufficient to complete
the call.

ESNOTSFILESCONN The calling task specified a connection to a device
rather than to a named file.

E$SHARE The calling task tried to open a connection to a
file already being used by some other task, and the
file's sharing attribute is not compatible with the
open request.

ES$SUPPORT The specified connection was not created by the
calling task's job.

»n
<
]
-
m
=
0
>
r
r
K'Y

ESTYPE The connection parameter is a token for an object
that is not a connectione.

Concurrent Condition Codes

After the Loader attempts the loading operation, it returns a condition
code in the exceptScode field of the Loader Result Segment. The Loader
can return the following condition codes in this manner.

ESOK No exceptional conditions.

E$BADSGROUP The target file contains an invalid group
definition record.

ESBADSSEGMENT The target file contains an invalid segment
definition record.

ESCHECKSUM At least one record of the target file contains a
checksum error.

Application Loader 2-12

ESEOF

ESEXIST

ESFIXUP

ESFLUSHING

ES$IOSHARD

ESIO$OPRINT

ESTIO$SOFT

ESTOSUNCLASS

ESTO$WRPROT

ESLIMIT

ESNOSL OADERSMEM

ESNOSMEM

ESNOSTART

E$PARAM

ESREC$FORMAT

ASLOAD

The call encountered an unexpected end-of-file.

At least one of the following is true:

° The mailbox specified in the response$mbox
parameter was deleted before the loading
operation was completed.

e The device containing the file to be loaded was
detached before the loading operation was
completed.

The target file contains an invalid fixup record.

The device containing the target file is being
detached,

A hard I/0 error occurreds This means that another

try is probably useless.

The device containing the target file was
of f-line. Operator intervention is required.

A soft I/0 error occurreds This means that the I/0
System tried to perform the operation and failed,
but another try might still be successful.

An unknown type of I/0 error occurred.
The volume is write-protected.

The calling task's job has already reached its
object limit.

The memory pool of the newly created I/0 job does
not currently have a block of memory large enough
to allow the Loader to rune.

The Loader attempted to load PIC or LTL groups or
segments, but the memory pool of the calling task's
job does not currently contain a block of memory
large enough to accommodate these groups or
segments.

The target file does not specify the entry point
for the program being loaded.

The target file has a stack smaller than 16 bytes.

At least one record in the target file contains a
format error.

Application Loader 2-13

)=

ASLOAD

]
=g
/]
-l
m
=
(Y
F
r
(7]

ESRECSLENGTH

ESRECSTYPE

ESSEGSBOUNDS

The target file contains a record longer than the
Loader's internal buffer. The Loader's buffer
length is specified during the configuration of the
Loader. See Chapter 3 and the iRMX 86
CONFIGURATION GUILE for information about
configuring the Loader.

At least one of the following is true:

e At least one record in the target file is of a
type that the Loader cannot process.

° The Loader encountered records in a sequence
that it cannot process.

The Loader created a segment into which to load

code. One of the data records specified a load
address outside of that segment.

Application Loader 2-14

ASLOADSIO$JOB

The ASLOADSIO$JOB system call reads the header record of an executable
file in secondary storage and creates an I/0 job. The job's initial task
then performs the concurrent part of the call, which is the loading of the
remainder of the file.

job = RQSASLOADSIO$JOB(connection, pool$lowerSbound, poolSupper$Sbound,
exceptShandler, jobS$flags, taskS$priority,
taskSf lags, msgSmbox, except$ptr);

INPUT PARAMETERS

connection A TOKEN for a connection to the file that the Loader
will loade The connection must be a connection to a
named file. Also, the connection must be closed,
the user object specified when the connection was
created must have had READ access, and the
connection must have been created in the calling
task's job.

The Loader opens the connection for sharing with
readers only, so, during the loading operation,
other tasks may access the file only for reading.

pool$lower$—- A WORD containing a value the Loader uses to
bound compute the pool size for the new I/0 job. See the
DESCRIPTION section for details.

poolSupper$-— A WORD containing a value the Loader uses to
bound compute the pool size for the new I/0 job. See the
DESCRIPTION section for details.

exceptShandler A POINTER to a structure of the following form:

STRUCTURE(
exceptionShandler$offset WORD,
exceptionShandler$base WORD or SELECTOR,
exception$mode BYTE)

The Loader expects you to designate one exception
handler to be used both for the new task and for
the new job's default exception handler. If you
want to designate the system default exception
handler, you can do so by setting
exception$handler$base to zero. If you set the
base to any other value, then the Loader assumes
that the first two words of this structure point to
the first instruction of your exception handler.

Application Loader 2-15

- ASLOADSIOSJOB

]
]
]
-l
m
=
0
>
F
r
«

jobS$flags

task$Spriority

task$flags

ExceptionShandler$base should be declared a

SELECTOR if the compiler you are using supports the
SELECTOR data types.

Set the exception$émode to specify when control is
to pass to the new task's exception handler.
Encode the mode as follows:

When Control Passes

Value To Exception Handler
0 Control never passes to handler
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

For more information regarding exception handlers
and the exception mode, refer to the iRMX 86
NUCLEUS REFERENCE MANUAL,

A WORD specifying whether the Nucleus is to check
the validity of objects used as parameters in
system calls. Setting bit 1 (where bit O is the
low-order bit) to O specifies that the Nucleus is
to check the validity of objects. All bits other
than bit 1 must be set to O.

A BYTE which,

e if equal to O, indicates that the new job's
initial task is to have a priority equal to the

maximum priority of the initial job of the
Extended I/0 System.

° if not equal to 0, contains the priority of the
initial task of the new jobe If this priority
is higher (numerically lower) than the maximum
priority of the initial job of the Extended I/0
System, an ESPARAM error occurse.

A WORD indicating whether the initial task uses
floating-point instructions, and whether to start
the task immediately.

Set bit O (the low-order bit) to 1 if the task uses
floating-point instructions; otherwise set it to O.

Bit 1 indicates whether the initial task in the job
should run immediately, or whether it should be
suspended until a STARTSIOSJOB system call is
issued to start it. Set it to O if the task is to
be made ready immediately; set it to 1 if the task
is to be suspended.

Set bits 2 through 15 to O.

Application Loader 2-16

ASLOADSIOSJOB

ms gSmbox A TOKEN for a mailbox that serves two purposes.
The first purpose is to receive the Loader Result
Segment after the loading operation is completed.
The format of the Loader Result Segment is provided
later in this description.

The second purpose is to receive an exit message
from the newly created I/0 job. The description of
the CREATESIOSJOB system call in the iRMX 86
EXTENDED I/0 SYSTEM REFERENCE MANUAL shows the
format of an exit message.

OUTPUT PARAMETERS

exceptSptr A POINTER to a WORD where the Loader is to place
the condition code generated by the sequential part
of the system call.

job A TOKEN, returned by the Loader, for the newly
created I/0 job. This token is valid only if the
Loader returns an E$OK condition code to the WORD
pointed to by the except$ptr parameter.

DESCRIPTION

This system call operates in two phases. The first phase occurs during
the sequential part of this system call. (Refer to Appendix C for a
discussion of the sequential and concurrent parts of an asynchronous
system call.) During this first phase, the Loader does the following:

® Checks the validity of the header record of the target file.

e Creates an I/0 job. This I/0 job is a child of the calling

task's job. (Refer to the iRMX 86 EXTENDED I/0 SYSTEM REFERENCE
MANUAL for a definition of I/0 jobs.)

e Returns a condition code reflecting the success or failure of the
first phase. The Loader places this condition code in the WORD
pointed to by the except$ptr parameter.

The second phase occurs during the concurrent part of the system call.
This part runs as the initial task in the new job and does the following:

e Loads the file designated by the connection parameter.

o Creates the task that will execute the loaded code. If there are
no errors while the file is being loaded and if bit 1 of the
task$flags parameter is O, the concurrent part makes the task in
the new job ready to run.

Application Loader 2-17

ASLOADSIOSJOB

. Sends a Loader Result Segment to the mailbox specified by the
msgSmbox parameter. One element in this segment is a condition
code indicating the success or failure of the second phase.

° Deletes itself.

Restriction
This system call should be invoked only by tasks running within I/0O

jobs. Failure to heed this restriction causes a sequential exception
condition.

Pool Size For The New Job

The Loader uses the following information to compute the size of the
memory pool for the new I/0 job:

e The poolSlowerSbound parameter, as a number of 16-byte paragraphs.

N The pool$upper$bound parameter, as a number of 16-byte paragraphs.

® A Loader configuration parameter specifying the default dynamic
memory requirements. (Refer to Chapter 3 and the iRMX 86
CONFIGURATION GUIDE for informat:ion about configuring the Loader.)

® Memory requirements specified in the target file.

»
.
)
-f
m
=2
0O
-]
r
-
»

The Loader gives you three options for setting the size of the I/0 job's
memory pool:

l. You can set both poolSlowerSbound and poolSupperSbound to 0. If
you do this, the Loader decides how large a pool to allocate to
the new I/0 job. The Loader uses the requirements of the target
file and the default memory pool size —— established when the
system is configured -~ to make this decision. Unless you have
unusual requirements, you should choose this option.

2. You can use either or both of the bound parameters to override

the Loader's decision on pool size. If the Loader's decision
lies outside the bound(s) that you specify, the Loader adjusts

its decision so that it complies with your bounds.

3. 1If you set poolSupper$bound to OFFFFH, the Loader allows the new
I/0 job to borrow memory from the calling task's job. The

initial size of the memory pool is based on the pool$lower$bound
parameter.

Application Loader 2-18

ASLOADSIOSJOB

If you select Option 1 or 2, the Loader creates an I/0 job with the
minimum pool size equal to the maximum pool sizes This means that the
new I/0 job will not be able to borrow memory from the calling task's
jobe If you want the I/0 job to be able to borrow memory, select
Option 3.

This system call is asynchronous. It allows the calling task to continue
running while the loading operation is in progress. When the loading
operation is finished the Loader sends a Loader Result Segment to the
mailbox designated by the msg$mbox parameter. Refer to Appendix C for a
detailed description of asynchronous system call behavior.

Format Of The Loader Result Segment

The Loader Result Segment has the form described below. This structure
is deliberately compatible with the structure of the message returned
when an I/0 job exits. (See the iRMX 86 EXTENDED I/0 SYSTEM REFERENCE
MANUAL for a description of exit messages.)

STRUCTURE (terminationScode WORD,
exceptScode WORD,
jobStoken TOKEN,
return$data$len BYTE,
recordScount WORD,
error$recStype BYTE,
undefinedSref WORD,
mem$requested WORD,
memSreceived WORD) ;

where:

termination$code A WORD indicating the success or failure of the
loading operation.

) A value of 100H indicates that the loading
operation succeeded.

° A value of 2 indicates that the loading
operation faileds In this case, your system
should delete the newly created I/0 job; the
Loader doesn't do so.

exceptScode A WORD containing the concurrent condition code.
Codes and interpretations follow this description.

jobStoken A TOKEN for the newly created I/0 job.

return$data$len A BYTE that is always set to 9.

Application Loader 2-19

ASLOADSIOSJOB

»n
<
»n
-f
m
=
0
>
r
r
(7]

recordS$count

errorSrec$type

undefineds$ -
ref

mem$requested

memSreceived

A WORD containing the number of records read by
the Loader. If the loading operation terminates
prematurely, this value indicates the last record
read,

A BYTE identifying the reason the loading
operation terminated.

o A value of O means that no record caused
termination.

° A non-0 value is the type of the record that
caused premature termination. Object record
types are documented in the Intel
publication 8086 RELOCATABLE OBJECT MODULE
FORMATS.

This value tells whether the Loader found
undefined extermal references while loading the
jobe An undefired external reference usually
results from a linking error. The Loader
continues to run even if an target file contains
undefined external references. The value of
undefined$ref depends upon the configuration of
the Loader. (Sce Chapter 3 and the iRMX 86
CONFIGURATION GUIDE for information about
configuring the Loader.)

® If the Loader is configured to load LTL
code, as well as PIC and absolute code,
undefinedSref contains the number of
undefined external references the Loader
detected during the loading operation.
(Note that undefined$ref equals the number
of undefined external references even if the
Loader is loading PIC or absolute code.)

® If the Loader is configured to load only PIC
or absolute code or only absolute code, the
Loader sets undefined$ref to 1 or to 0. It
is 1 if the Loader found undefined external
references; otherwise, it is O.

A WORD indicating the number of 16-byte
paragraphs the target file requested for the new
job, including the memory needed for all segments
and that needed for the job's memory pool.

A WORD indicating the number of 16-byte
paragraphs actually allocated to the new job.

Application Loader 2-20

ASLOADSIOSJOB

CONDITION CODES

This system call can return condition codes at two different times.

Codes returned to the calling task immediately after the invocation of
the system call are considered sequential condition codes. Codes
returned after the concurrent part of the system call has finished
running are considered concurrent condition codes. The following list is
divided into two parts —— one for sequential codes and one for concurrent
codes.,

Sequential Condition Codes

The Loader returns one of the following condition codes to the WORD
pointed to by the except$ptr parameter:

ESOK ' No exceptional conditions,.

ESBADSHEADER The target file does not begin with a valid
header record for a loadable object module.
Possibly the file is a directory.

ESCHECKSUM The header record of the target file contains a
checksum error.

ESCONNSNOTSOPEN The Loader opened the connection, but some other
task closed the connection before the loading
operation was begun.

ESCONNSOPEN The specified connection was already open.
E$SCONTEXT The calling task's job is not an I/O job.
ESEXIST At least one of the following is true:

° The connection parameter is not a token for

an existing object.

° The calling task's job has no global job.
Refer to the iRMX 86 EXTENDED I/0 SYSTEM
REFERENCE MANUAL for a definition of global
jObo

[The msgSmbox parameter does not refer to an
existing object.

ESFACCESS The specified connection does not have "read"
access to the file.

ESFLUSHING The device containing the target file is being
detached.

ESIOSHARD A hard I/0 error occurrede This means that

another try is probably useless.

Application Loader 2-21

ASLOADSIOSJOB

)
<
»n
-f
m
=
Y
>
r
F
»

ESIOSOPRINT

ESIO0S$SOFT

ESIOSUNCLASS
EIOSWRPROT

E$JOBSPARAM

ESJOBSSIZE

ESLOADERSSUPPORT

ESMEM

E$SNOSLOADERSMEM

ESNOTSCONFIGURED

ESNOTSFILESCONN

ESPARAM

E$SHARE

E$SUPPORT

ESTIME

ES$TYPE

The device containing the target file is
of f-line. Operator intervention is required.

A soft I/0 error occurreds This means that the
I/0 System tried to perform the operation and
failed, but another try might still be successful.

An unknown type of I/0 error occurred.
The volume is write—-protected.

The poolS$upperSbound parameter is both non-zero
and smaller than the pool$lower$bound parameter.

The poolSupper$Shound parameter is non—0 and too
small for the target file.

The target file requires capabilities not
configured into the Loader. For example, the
loader might be attempting to load PIC code when
configured to load only absolute code.

The memory available to the calling task's job or

the Basic 1/0 System is not sufficient to
complete the call.

The memory pool of the newly created I/0 job does
not currently have a block of memory large enough
to allow the Loader to run.

This system call is not part of the present
configuration.

The specified connection is to a device rather
than to a named file.

The value of the exceptSmode field within the

exceptShandler structure lies outside the range O
through 3.

The calling task tried to open a connection to a
file already being used by some other task, and

the file's sharing attribute is not compatible
with the open request.

The specified connection was not created in this
jobe.

The calling task's job is not an 1/0 job.

The connection parameter is a token for an object
that is not a connection.

Application Loader 2-22

ASLOADSIOSJOB

Concurrent Condition Codes

After the Loader attempts the loading operation, it returns a condition
code in the exceptScode field of the Loader Result Segment. The Loader
can return the following condition codes in this manner:

ESOK No exceptional conditions.

E$BADSGROUP The target file contains an invalid group
definition record.

ESBADSSEGMENT The target file contains an invalid segment
definition record.

ESCHECKSUM At least one record of the target file contains a
checksum error.

ESEOF The call encountered an unexpected end-of-file.

ESEXIST At least one of the following is true:

° The mailbox specified in the msg$mbox
parameter was deleted before the loading
operation was completed.

° The device containing the target file was
detached before the loading operation was
completed.

ESFACCESS The default user of the newly created I/0 job
does not have "read" access to the target file.

ESFIXUP The target file contains an invalid fixup record.

ESFLUSHING The device containing the target file is being
detached.

ESIOSHARD A hard I/0 error occurred. This means that
another try is probably useless.

ESTOSOPRINT The device containing the target file is
of f-line. Operator intervention is required.

ESI0$SOFT A soft I/0 error occurred. This means that the
I/0 System tried to perform the operation and
failed, but another try might still be successful.

ESIOSUNCLASS An unknown type of I/0 error occurred.

ESIOSWRPROT The volume is write-protected.

ESLIMIT At least one of the following 1s true:

Application Loader 2-23

ASLOADSIOSJOB

v
]
v
-
(]
=
0
>
F
r
(7

E$NOSLOADERSMEM

ESNOSMEM

ESNOSTART

ESPARAM

ESRE CSFORMAT

ESRECSLENGTH

ESRECSTYPE

ESEGBOUNDS

® The taskSpriority parameter is higher
(numerically lower) than the newly—created
I/0 job's maximum priority. This maximum
priority is specified during the
configuration of the Extended I/0 System (if
the job is a descendant of the Extended I/0
System) or during configuration of the Human
Interface (if the job is a descendant of the
Human Interface).

® Either the newly created I/0 job, or its
default user, is already involved in 255
(decimal) I/0 operations.

There is not sufficient memory available to the
newly created I/0 job or the Basic I/O System to
allow the Loader to run.

The Loader is attempting to load PIC or LTL
groups or segments, but the memory pool of the
newly created I/0 job does not currently contain
a block of memory large enough to accommodate
these groups or segments.

The target file does not specify the entry point
for the program being loaded.

The target file has a stack smaller than 16 bytes.

At least one record in the target file contains a
format error.

The target file contains a record longer than the
Loader's internal buffer. The internal buffer
length is specified during the configuration of
the Loader. Refer to Chapter 3 and the iRMX 86
CONFIGURATION GUIDE for information about
configuring the Loader.

At least one of the following is true:

) At least one record in the target file is of
a type that the Loader cannot process.

. The Loader encountered records in a sequence
that it cannot process.

The Loader created a segment into which to load

code. One of the data records specified a load
address outside of the new segment.

Application Loader 2-24

SSLOADSIO0$JOB

The SSLOADSIO$SJOB system call creates an I/0 job containing the Loader
task, which loads the code for the user task from secondary storage.

job = RQSSSLOADSIOS$JOB(path$ptr, poolSlowerSbound, poolSupperS$Sbound,
except$handler, job$flags, taskSpriority,
task$flags, msg$mbox, exceptSptr);

INPUT PARAMETERS

pathSptr A POINTER to a STRING containing a path name for the
named file with the object code to be loaded. The
path name must conform to the Extended I/0 System
path syntax for named files. If you are not
familiar with iRMX 86 path syntax, refer to the
iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL.

poolSlower$— A WORD containing a value that the Loader uses to
bound compute the pool size for the new I/0 jobs See the
DESCRIPTION section for details.
poolSupper$— A WORD containing a value that the Loader uses to
bound compute the pool size for the new I/0 job. See the

DESCRIPTION section for details.

exceptShandler A POINTER to a structure of the following form:

STRUCTURE (exceptionShandlerSoffset WORD,
exceptionShandler$base WORD or SELECTOR,
exception$mode BYTE)

The Loader expects you to designate an exception
handler to be used both for the new task and for
the new job's default exception handler. If you
want to designate the system default exception
handler, do so by setting exception$handler$base to
0. If you set the base to any other value, then
the Loader assumes that the first two words of this
structure point to the first instruction of your
exception handler.

ExceptionShandler$base should be declared as a

SELECTOR if the compiler you are using supports the
SELECTOR data type.

Application Loader 2-25

SSLOADSIOSJOB

)
.
/]
-
m
=
0
>
F
F
(7]

except$handler (continued)

job$flags

taskS$priority

task$flags

Set the exceptionSmode to tell the Loader when to
pass control to the new task's exception handler.
Encode the mode as follows:

When Control Passes

Value To Exception Handler
0 Control never passes to handler
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

For more information regarding exception handlers
and the exception mode, refer to the iRMX 86
NUCLEUS REFERENCE MANUAL,

A WORD specifying whether the Nucleus is to check
the validity of ohjects used as parameters in
system calls. Setting bit 1 (where bit 0 is the
low—order bit) to O specifies that the Nucleus is
to check the validity of objects. All bits other
than bit 1 must be set to O.

A BYTE which,

e 1if equal to 0, indicates that the new job's
initial task is to have a priority equal to the
the maximum priority of the initial job of the
Extended I/0 System.

° if not equal to O, contains the priority of the
initial task of the new jobe If this priority
is higher (numerically lower) than the maximum
priority of the initial job of the Extended I/0
System, an ESPARAM error occurs.

A WORD indicating whether the initial task uses
floating-point instructions, and whether to start
the task immediately.

Set bit O (the low—order bit) to 1 if the task uses
floating-point instructions; otherwise set it to O.

Bit 1 indicates whether the initial task in the job
should run immediately, or whether it should be
suspended until a STARTSIOSJOB system call is
issued to start it. Set bit 1 to 0 if the task is
to be made ready immediately; set it to 1 if the
task is to be suspended.

Set bits 2 through 15 to 0.

Application Loader 2-26

SSLOADSIOSJOE

ms gSmbox A TOKEN for a mailbox that receives an exit message
from the newly created I/0 job. The description of
the CREATESIOSJOB system call in the iRMX 86
EXTENDED I/0 SYSTEM REFERENCE MANUAL documents the
format of an exit message.

OUTPUT PARAMETERS

exceptSptr A POINTER to a WORD where the Loader is to place a
condition code.

job A TOKEN, returned by the Loader, for the newly
created I/0 job. This token is valid only if the
Loader returns an ESOK condition code to the WORD
specified by the exceptS$ptr parameter.

DESCRIPTION

This system call performs the same function as ASLOAD$IO0$JOB. The only
difference between the calls is that SSLOADSIOSJOB is synchronous. That
is, the calling task resumes running only after the call has completed
its attempt to create an 1/0 job and a user task in that job.

The Loader does not necessarily have exclusive access to the file being
loaded. During the loading operation, however, if other tasks are also
using the file, they may access the file only for reading.

NOTE

This system call should be invoked only
by tasks running within I/0 jobs.

Failure to heed this restriction causes

the Loader to return an ESCONTEXT
exception code.

Pool Size For The New Job

The Loader uses the following information to compute the size of the
memory pool for the new I/0 job:

e The poolSlower$bound parameter, as a number of l6-byte paragraphs.

e The poolSupper$bound parameter, as a number of 16-byte paragraphs.

e A Loader configuration parameter specifying the default dynamic
memory requirements. (Refer to Chapter 3 and the iRMX 86
CONFIGURATION GUIDE for information about configuring the Loader.)

e Memory requirements specified in the target file.

Application Loader 2-27

SSLOADSIOSJOB

]
<
/]
-
m
2 |
0
>
F
F
(]

The Loader gives you three options for setting the size of the I/0 job's
memory pool:

l. You can set both poolSlower$bound and poolSupper$bound to zero.
If you do this, the Loader decides how large a pool to allocate
to the new I/0 job. The Loader uses the requirements of the
target file and the default memcry pool size —— established when
the system is configured -— to make this decision. Unless you
have unusual requirements, you should choose this option.

2. You can use either or both of the bound parameters to override
the Loader's decision on pool size. If the Loader's decision
lies outside the bound(s) that you specify, the Loader adjusts it
to comply with your bounds.

3. If you set poolSupperSbound to CFFFFH, the Loader allows the new

I/0 job to borrow memory from the calling task's jobs The
initial size of the memory pool is equal to pool$lower$bound.

If you select Option 1 or 2, the Loader creates an I1I/0 job with the
minimum pool size equal to the maximum pool size. This means that the
new I1/0 job will not be able to borrow memory from the calling task's

jobe If you want the I/0 job to be able to borrow memory, select
Option 3.

CONDITION CODES

The Loader returns one of the following condition codes to the WORD
specified by the except$Sptr parameter of this system call:

ESOK No exceptional conditions.

E$BADSGROUP The target file ccntains an invalid group
definition record.

ESBADSHEADER The target file does not begin with a valid header
record for a loadable object module.

ESBADSSEGMENT The target file contains an invalid segment
definition record.

ESCHECKSUM At least one record in the target file contains a
checksum error.

ESCONTEXT The calling task's job is not an I/0O job.

ESEOF The call encountered an unexpected end-of-file,

Application Loader 2-28

ESEXIST

ESFACCESS

ESFIXUP

ESFNEXIST

ESFLUSHING

ESINVALID$SFNODE

ESTOSHARD

EIOJOB

ESIOSOPRINT

E$IOSSOFT

ESTO$UNCLASS

ESIO$WRPROT

E$SJOBSPARAM

ESJOBSSIZE

SSLOADSIOSJOB

At least one of the following is true:

e The msgSmbox parameter is not a token for an
existing object.

e The calling task's job has no global job.
(Refer to the iRMX 86 EXTENDED I/O SYSTEM
REFERENCE MANUAL for a definition of global
jObo)

® The device containing the target file was
detached.

The default user object for the new I/0 job does
not have "read" access to the specified file.

The target file contains an invalid fixup record.
The specified target file, or some file in the

specified path, does not exist or is marked for
deletion.

The device containing the target file is being
detached.

The fnode for the specified file is invalid, so the
file must be deleted.

A hard I/0 error occurreds This means that another
try is probably useless.

The calling task's job is not an I/0 job.

The device containing the target file is off-line.
Operator intervention is required.

A soft I/0 error occurred. This means that the I/0

System tried to perform the operation and failed,
but another try might still be successful.

An unknown type of I/0 error occurred.
The volume is write-protected.

The poolSupper$bound parameter is nonzero and
smaller than the pool$lowerS$bound parameter.

The poolSupper$Sbound parameter is nonzero and too
small for the target file.

Application Loader 2-29

SSLOADSIOSJOB

STIVO WALSAS

ESLIMIT

ESLOADERSSUPPORT

ESMEM

ESNOSLOADERSMEM

ESNOMEM

ES$NOSTART

ESNOT$CONFIGURED

ESPARAM

ESPATHNAMES -
SYNTAX

ESREC$FORMAT

At least one of the following is true:

e The taskSpriorxity parameter is higher
(numerically lower) than the newly-created I1/0
job's maximum priority. This maximum priority
is specified during the configuration of the
Extended I/0 System (if the job is a descendant
of the Extended I/0 System) or of the Human
Interface (1f the job is a descendant of the
Human Interface).

e Either the newly created I/0 job or its default
user object is already involved in 255
(decimal) I/0 operations.,

The target file requires capabilities not
configured into the Loader. For example, it might
be attempting to load PIC when configured to load
only absolute code.

The memory available to the calling task's job is
not sufficient to complete the call.

The memory pool of the newly created I/0 job does
not currently have a block of memory large enough
to allow the Loader to run.

The target file contains either PIC segments or
groups, or LTL segments or groups. In any case,
the memory pool of the new I/0 job does not have a
block of memory large enough to allow the Loader to
load these records.

The target file does not specify the entry point
for the program being loaded.

This system call is not part of the present
configuration.

At least one of the following is true:

e The value of the exceptSmode field within the

exceptShandler structure lies outside the range
0 through 3.

e The target file requested a stack smaller than
16 bytes.

The specified pathname contains one or more invalid
characters.

At least one record in the target file contains a
format error.

Application Loader 2-30

ESRECSLENGTH

ESRECSTYPE

ESSEGSBOUNDS

SSLOADSIOSJOB

The target file contains a record longer than the
Loader's internal buffer, The Loader's buffer
length is specified during the configuration of the
Loader. (See Chapter 3 and the iRMX 86
CONFIGURATION GUIDE for information about
configuring the Loader.)

At least one of the following is true:

® At least one record in the target file is of a
type that the Loader cannot process.

® The Loader encountered records in a sequence
that it cannot process.

The Loader created a segment into which to load
code. One of the data records specified a load
address outside of the new segment.

Application Loader 2-31

SSOVERLAY

)
-
/]
-
m
=
Y
>
r
r
]

SSOVERLAY

In programs with overlays, the root module of the program calls SSOVERLAY
to load overlay modules.

CALL RQS$SSOVERLAY(name$Sptr, except$ptr);

INPUT PARAMETER
name$ptr A POINTER to a STRING containing the name of an
overlay. The overlay name should have only
upper—case letters, both in this string and when
you specify the name in the LINK86 OVERLAY

control. For information about LINK86, refer to
the iAPX 86,88 FAMILY UTILITIES USER'S GUIDE.

OUTPUT PARAMETER

exceptSptr A POINTER to a WORD in which the Loader will place
a condition code.

DESCRIPTION

Root modules issue this system call when they want to load an overlay
module. Chapter 1 describes overlays.

Synchronous Behavior

This system call is synchronous. The calling task resumes running only
after the system call has completed its attempt to load the overlay.

File Sharing
The Loader does not expect exclusive access to the file containing the

overlay module. However, while the overlay is being loaded, if other
tasks are also using the file, they can access the file only for reading.

Application Loader 2-32

SSOVERLAY

CONDITION CODES

The Loader returns one of the following condition codes to the calling
task:

E$OK No exceptional conditions.

ESCHECKSUM At least one record in the target overlay contains
a checksum error.

ESEOF The call encountered an unexpected end-of-file.

ESEXIST The specified device does not exist.

ESFIXUP The target file contains an invalid fixup record.

ESFLUSHING The device containing the target file is being
detached.

ESTOSHARD A hard I/0 error occurred. This means that another
try is probably useless.

ESIOSOPRINT The device containing the target overlay is
of f-line. Operator intervention is required.

ESTO$SOFT A soft I/0 error occurred. This means that the I/0
System tried to perform the operation and failed,
but another try might still be successful.

ESIOSUNCLASS An unknown type of I/0O error occurred.

ESIOSWRPROT The volume is write—-protected.

ESLIMIT Either the calling task's job, or its default user
object, is already involved in 255 (decimal) I/O
operations.

ESNOMEM The overlay module contains either PIC segments or
groups, or LTL segments or groups. In any case,
the memory pool of the new I/0 job does not have a
block of memory large enough to allow the Loader to
load the overlay module.

ESNOTSCONFIGURED This system call is not part of the present
configuration.

ESRECSF ORMAT At least one record in the target overlay contains
a format error.

ESRECSLENGTH The target overlay contains a record longer than

the Loader's maximum record length. The Loader's
maximum record length is a parameter specified
during the configuration of the Loader.

Application Loader 2-33

SSOVERLAY

n
<
/)
-
m
=
0
»
F
r
v

ESRECSTYPE

ESOVERLAY

E$SEGSBOUNDS

At least one of the following is true:

® At least one record in the target overlay is of
a type that the Loader cannot process.

e The Loader encountered records in a sequence
that it cannot process.

The overlay name :indicated by the name$ptr
parameter does not match any overlay module name,

as specified with the OVERLAY control of the LINK86
command.

The Loader created a segment into which to load
codes One of the data records specified a load
address outside of the new segment.

*k%k

Application Loader 2-34

CHAPTER 3
CONFIGURATION OF THE
APPLICATION LOADER

The Application Loader is a configurable layer of the Operating System.
It contains several options that you can adjust to meet your specific
needs. To help you make configuration choices, the iRMX 86 manual set
provides three kinds of information:

e A list of configurable options.

° Detailed information about the options.

e Procedures to allow you to specify your choices.
The sections that follow describe the configurable options. To obtain

the second and third categories of information, refer to the iRMX 86
CONFIGURATION GUIDE.

TYPES OF JOB-LOADING SYSTEM CALLS

You can select the set of job-loading system calls in your configuration
of the Loader. You have these options:

e ASLOAD, which you can choose if you do not intend to load any IO
jobs,

e ASLOAD and ASLOADIOJOB, if you do intend to load IO jobs, and
if you intend to use only asynchronous loading operations.

e ASLOAD, ASLOAD$SIOSJOB, and SSLOADSIO$JOB, if you want all three
options.,

LOADER IN ROM

If you intend to place the Loader in ROM, you specify this when you
configure your system. If the Loader is not in ROM, it will itself have
to be loaded into RAM memory.

Application Loader 3-1

CONFIGURING THE APFLICATION LOADER

TYPE OF CODE TO BE LOADED

You can select the type of code that the Loader can loads The options
are:

e Absolute code only
® Position—independent code and absolute code

e Load-time locatable code, absolute code, and position-independent
code

. Overlays, as well as absolute, position-independent, and
load-time-locatable code

DEFAULT MEMORY POOL SIZE

You must specify the default size of the memory pool for jobs that are
created by the ASLOADSIOS$JOB and SSLOADSIOS$JOB system calls. This value
can be over-ridden by specifying the memory pool size when using LINK86.

SIZE OF APPLICATION LOADER BUFFERS

You can specify the size of two buffers that the Loader uses to load your

programs. The first is called the Read Buffer, and the second is called
the Internal Buffer.

LR

Application Loader 3-2

APPENDIX A
DATA TYPES

The following data types are recognized by the iRMX 86 Operating System:

BYTE

WORD

INTEGER

POINTER

OFFSET

SELECTOR

TOKEN

STRING

DWORD

An unsigned, eight-bit binary number.
An unsigned, two—byte, binary number.

A signed, two—byte, binary number. Negative numbers
are stored in two's-complement form.

Two consecutive words containing the base address of a
(64K-byte processor) segment and an offset in the
segment, The offset is in the word having the lower
address.,

A word whose value represents the distance from the
base address of a segment.

The base address of a segment.
A word or selector whose value identifies an object.

A token can be declared literally a WORD or a SELECTOR
depending on your needs.

A sequence of consecutive bytes. The value contained
in the first byte is the number of bytes that follow
it in the string.

A 4-byte unsigned binary number.

*k%k

Application Loader A-1

APPENDIX B
CONDITION CODES

The iRMX 86 Application Loader uses two kinds of condition codes to
inform your tasks of any problems that occur during the execution of a
system call —- sequential condition codes and concurrent condition
codes. The distinguishing feature between the two kinds of codes is the
method that the Loader uses to return the code to the calling task. For

a discussion of the difference between these kinds of codes, refer to
Appendix C.

The meaning of a specific condition code depends upon the system call
that returns the code. For this reason, this appendix does not list
interpretations. Refer to Chapter 2 for an interpretation of the codes.

The purpose of this appendix is to provide you with the numeric value

associated with each condition code the Loader can return. To use the
condition code values in a symbolic manner, you can assign (using the

PL/M~-86 LITERALLY statement) a meaningful name to each of the codes.

The following list correlates the name of a condition code with the value
returned by the Extended I/0 System. The list is divided into three
parts: one for the normal condition code, one for exception codes
indicating a programming error, and one for exception codes indicate an
environmental problem. No distinction is drawn between sequential and
concurrent errors because most of the codes can be returned as either.

Be aware that this list covers only the condition codes returned by the
system calls of the Loader. Additional condition codes can be found in
the appendices of one or more of the following manuals:

e 1RMX 86 NUCLEUS REFERENCE MANUAL

e iRMX 86 BASIC I/0 SYSTEM REFERENCE MANUAL

e IiRMX 86 EXTENDED I/0 SYSTEM REFERENCE MANUAL

NORMAL CONDITION CODE

NAME OF CONDITION HEXADECIMAL VALUE

E$OK OH

Application Loader B-1

CONDITION CODES

PROGRAMMER ERROR CODES

NAME OF CONDITION HEXADECIMAL VALUE

E$SJOBSPARAM 806 0H

ENVIRONMENTAL PROBLEM CODES

NAME OF CONDITION HEXADECIMAL VALUE
ESNOTSCONFIGURED 8H
ESI0OSJOB 47H
ESIOSUNCLASS 50H
E$TI0$SOFT 51H
ESIOSHARD 52H
ESIO$PRINT 53H
ESIOSWRPROT 54H
E$SABSSADDRESS 60H
E$BADS$GROUP 61H
E$SBADSHEADER 62H
ESBADSSEGDEF 63H
ESCHECKSUM 64H
ESEOF 6 5H
ESFIXUP 66H
ESJOBSSIZE 6DH
ESLOADERS SUPPORT 6FH
ESNOSLOADERSMEM 67H
ESNOSMEM 68H
ESNOSSTART 6CH
ESOVERLAY 6EH
ESRE CSFORMAT 69H
ESRECSLENGTH 6AH
ESRECSTYPE 6BH
ESSEGSBOUNDS 70H
k%

Application Loader B-2

APPENDIX C
- ASYNCHRONOUS SYSTEM CALLS

The iRMX 86 Application Loader provides two types of system calls:
synchronous and asynchronous. Synchronous calls return control to the

calling task after all operations are completed, either successfully or
unsuccessfully. But asynchronous calls are more complex. This Appendix

describes the operation of iRMX 86 asynchronous system calls.

Each asynchronous system call has two parts —— one sequential, and one
concurrent. As you read the descriptions of the two parts, refer to
Figure C-1 to see how the parts relate.

® the sequential part

The sequential part behaves in much the same way as the fully
synchronous system calls. Its purpose is to verify parameters,
check conditions, and prepare the concurrent part of the system
call. Also, it returns a condition code. The sequential part
then returns control to your application.

' the concurrent part

The concurrent part runs as an iRMX 86 task. The task is made
ready by the sequential part of the call, and it runs only when
the priority-based scheduling of the iRMX 86 Operating System
gives it control of the processor. The concurrent part also
returns a condition code.

The reason for splitting the asynchronous calls into two parts is
performances The functions performed by these calls are somewhat
time-consuming because they involve mechanical devices such as disk
drives. By performing these functions concurrently with other work, the
Loader allows your application to run while the Loader waits for the
mechanical devices to respond to your application's request.

Let's look at a brief example showing how your application can use
asynchronous calls. - Suppose your application must load a program that is

stored on disk. The application issues the ASLOAD system call to have
the Loader load the program into memory. Let's trace the action one step
at a time:

le Your application issues the ASLOAD system call. (Asynchronous
calls require that your application specify a response mailbox
for communication with the concurrent part of the system call.)

2. The sequential part of the ASLOAD call begins to rumn. This part
checks the parameters for validity.

Application Loader C-1

ASYNCHRONOUS

SYSTEM CALLS

APPLICATION CODE

INVOKE
ASLOAD

APPLICATION LOADER CODE

EXAMINE
CONDITION
CODE

> TESTFOR
VALIDITY
YES MAKE LOADER
TASK READY
NO
RETURN WITH

(SEQUENTIAL
CONDITION CODE)

DO
CONCURRENT
PROCESSING

RECEIVE
MESSAGE FROM
RESPONSE MAILBOX

EXAMINE
CONDITION
CODE

USE
LOADED
PROGRAM

Figure C-1,

DO ERROR
PROCESSING

(CONCURRENT
CONDITION CODE)

DO ERROR
PROCESSING

|

|

EXCEPTION |
CODE

|

|

RETURN WITH
ESOK

LOADER TASK
LOADS
PROGRAM

A

PUT STATUS
OF OPERATION
IN MESSAGE

y

SEND MESSAGE
TO RESPONSE
MAILBOX

LOADER TASK
DELETES
ELF

1695

Behavior Of An Asynchronous System Call

Application Loader C-2

3.

4

5e

ASYNCHRONOUS SYSTEM CALLS

If the Operating System detects a problem, it places a sequential
exception code in the word to which your except$ptr parameter
points. It then returns control to your application. It does
not make the Loader task ready.

Your application receives control. Its behavior at this point
depends on the condition code returned by the sequential part of
the system calls Therefore, the application tests the sequential
condition codes If the code is ESOK, the application continues
running until it must use the program loaded from the disk. It

is at this point that your application can take advantage of the
asynchronous and concurrent behavior of the Loader. For example,
your application can use this opportunity to perform computations.

On the other hand, if your application finds that the sequential
condition code is other than E$OK, the application can assume
that the Loader did not make ready a task to perform the function.

For the balance of this example, we will assume that the
sequential part of the system call returned an ESOK sequential
condition code.

Your application now may use the loaded program. But first, your
application must verify that the concurrent part of the ASLOAD
system call ran successfully. The application issues a
RECEIVESMESSAGE system call to check the response mailbox that
the application specified when it invoked the ASLOAD system call.

By using the RECEIVESMESSAGE system call, the application obtains
a Loader Result Segment containing a condition code for the
concurrent part of the ASLOAD system call. If this condition
code is E$OK, then the loading operation was successful, and the
application can use the loaded programe On the other hand, if
the code is not E$SOK, the application should analyze the code and
attempt to determine why the loading operation was not successful,

In the foregoing example, we used a specific system call (ASLOAD) to show
how asynchronous calls allow your application to run concurrently with
loading operations. Now let's look at some generalities about all

iRMX 86 asynchronous calls:

All of the asynchronous system calls consist of two parts —- one
sequential and one concurrent. The Loader will activate the
concurrent part only if the sequential part runs successfully
(returns ESOK).

Every asynchronous system call requires that your application

designate a response mailbox for communication with the
concurrent part of the system call.

Application Loader C-3

ASYNCHRONOUS SYSTEM CALLS

Whenever the sequential part of an asynchronous system call
returns a condition code other than ESOK, your application should
not attempt to receive a message from the response mailboxe

There can be no message because the Application Loader cannot run
the concurrent part of the system call.

Whenever the sequential part of an asynchronous system call
returns E$OK, your application can count on the Loader running
the concurrent part of the system calle Your application can
take advantage of the concurrency by doing some processing before
receiving the message from the response mailboxe.

Whenever the concurrent part of a system call runs, the Loader
signals its completion by sending an object to the response
mailboxe The precise nature of the object depends upon which
system call your application invoked. You can find out what kind
of object comes back from a particular system call by looking up
the call in Chapter 2 of this manual.

Whenever the Loader returns a segment to your application's
response mailbox, your application must delete the segment when
it is no longer needed. The Loader uses memory for such

segments, so if your application fails to delete the segment, it
might run short of memory.

*h%

Application Loader C-4

INDEX

Primary references are underscored.

ASLOAD system call 1-7, 2-4

ASLOADSIOS$JOB system call 1-4, 2-15

absolute code 1-2, 1-7, 2-5, 2-7

Application Loader 1-1

assembler 1-2

asynchronous system call 1-3, 1-5, 2-1, 2-2, 2-7, 2-17, C-1

BIND control 1-3, 1-7
buffer size 3-2

compiler 1-2

concurrent condition codes 2-2
condition codes 2-2, B-1
configuration 1-5, 3-1

data types 2-1, A-1
device independence 1-5
device drivers 1-5

entry points 1-6
Extended I/0 System 1-4

file sharing 2-7, 2-32
fixup 1-3

header record of a file 2-15, 2-17

initialization 1-8
1/0 job 1-4, 2-15, 2-17, 2-25

linking 1-6
load-time locatable code (LTL) 1-3, 1-7, 2-5, 2-7
Loader 1-1
in ROM 3-1
Loader Result Segment 2-1, 2-5, 2-8, 2-18
terminology 1-1
loading functions 1-1
locating code 2-6
LTL 1-3, 1-7, 2-5, 2-7

memory pool size 2-18, 2-27, 3-2
model of segmentation 1-6, 2-6, 2-7

NOINITCODE control 2-5

Application Loader Index-1

INDEX (continued)

object code 1-2, 1-6
object file 1-2
object module 1
overlay 1-4

-2

PL/M-86 1-6, 2-1, 2-6
position-independent code (PIC) 1-3, 1-7, 2-5, 2-7

response mailbox 2-1, 2-3
root module 1-4

S$SLOADSIO$JOB system call 1-4, 2-25
SSOVERLAY system call 1-4, 2-32
sequential condition codes 2-2

stack creation 2-5

stack size 1-8, 2-5

stack switching 2-5

synchronous system call 1-3, 1-5, 2-2
system calls 2-1

translator 1-2

Kkk
Application Loader Index-2

	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	3-01
	3-02
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	idx1
	idx2

