=T

IRMX 86 OPERATING SYSTEM |
PART 11 (I/O)

| WORKSHOP NOTEBOOK

VERSION 5.0 DECEMBER 1982

Copy right © 1982 Intel Corporat

el Corporation 30658 efsA uéS Cl a, Califor I9505

IRMX 86 OPERATING SYSTEM PART I | (1/0) WORKSHOP NOTEBOOK
By LUIS ZIEGENHIRT |

With contributions by Stan Mazor and layout and artwork by Mary Lou Faraco.

© 1982 INTEL CORPORATION

Intei Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

The fouow'ing are trademarks of intel Corporation' and may only be used to identify Intel Products:

BXP, CREDIT, i, ICE, '2 ICE, iCS, im, iMMX, Insite, INTEL,
intel, Intelevision, Intellec, intgligent Identifier™, intgligent
Programming™, Intellink, iOSP,iPDS, iRMS, iSBC,

iSBX, iSXM, Library Manager, MCS, Megachassis,
Micromainframe, MULTIBUS, Muitichannel™ Plug-A-Bubble,
MULTIMODULE, PROMPT, Promware, RMX/80, RUPI, System
2000, and UPI, and the combination of ICE, iCS, iRMX, iSBC,
MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS" is a registered trademark of
Mohawk Data Sciences Corporation. '

* MULTIBUS is a patented intel bus.

IRMX 86 OPERATING SYSTEM
PART 11 (1/0)

WORKSHOP NOTEBOOK

VERSION 5.0

DECEMBER 1982

CHAPTER

ll

2.

3.

4,

TABLE OF CONTENTS

IRMX 86 BASIC I/0 SYSTEM (APPLICATION

FILES. v v v v o700 v v v s
FILE CLASSES . .

1/0 OPERATIONS . « « + v v«
HIERARCHICAL FILE STRUCTURE, .

FILE CONNECTIONS . .

)

PROGRAMMER’S VIEW)

IRMX 86 BASIC 1/0 SYSTEM (SYSTEM PROGRAMMER’S VIEW)

DEVICE CONNECTIONS

USER OBJECTS . + » « v v v v v

FILE ACCESS LISTS. . .

SUMMARY. + v v v v v s v e e e e

LAB ONE: USING THE BIOS.

EXTENDED 1/0 SYSTEM (APPLICATION PROGRAMMER’S VIEW)
WHY USE THE EIOS?. + v v v v v v v v v v v v v a0

ACCESSING NAMES FILES.

EIOS BUFFERING . ,

FILE CREATION. + « v v v v v v v v v o 0 v 0 0 0 s

IRMX 86 EXTENDED 1/0 SYSTEM (SYSTEM PROGRAMMER’S VIEW)

LOGICAL NAMES . . .
DEVICE CONNEGTIONS. . .
I[/0 JOBS. . v . . v . v
DEFAULT TOKENS,
LAB TWO: USING THE EIOS . .

WRITING DEVICE DRIVERS
INDEPENDENT 1/0 ,
DRIVER COMPONENTS . , . . .
THEDUIB,

THE 1/0 REQUEST

DRIVER FUNCTIONS.

CUSTOM DEVICE DRIVERS

THE INTERRUPT TASK AND HANDLER,

THE QUEUE$IO PROCEDURE. .

RANDOM AND COMMON DEVICE DRIVERS
COMPONENTS, . . .

THE INTERRUPT PROCEDURE . ., . .

THE START PROCEDURE
DEVICE INFORMATION TABLE. . .
LAB THREE: WRITING A COMMON DEVICE DRIVER

L Y T T]

D L

THE INIT$IO PROCEDURE

s o

10.

11.

12,

13,

14,

BASIC I0 CONFIGURATION
TABLES, « v v v v v v v v v e
ICUBE . « v v v v v v v v v
LAB FOUR: BASIC I/0 SYSTEM GENERATION

EXTENDED 10 CONFIGURATION
TABLES. + v v v v v v v v v i e
ICUBG . v v v v v v v v i
LAB FIVE: BASIC 1/0 SYSTEM GENERATION

THE 1RMX 86 APPLICATION LOADER
LOADER FUNCTIONS, . . .+ . « v v v
TYPES OF LOADABLE CODE.
SYSTEMS WITHOUT THE EIOS.
LOADER RESULT SEGMENT
SYSTEMS WITH THE EIOS + . . .

APPLICATION LOADER CONGIGURATION
TABLES., « « v v v v v v o

LAB SIX: APPLICATION LOADER

IMMX 800

CHANNELS., + v « ¢« v v v v v v 0 0 v
IMMX SYSTEM CALLS . . .« v+ v v
THE IMMX JOB, . . . « . v v v v v o
LAB SEVEN: INTERDEVICE COMMUNICATION.

THE HUMAN INTERFACE

BASIC CONCEPTS. « + v v v v v v v v v

COMMANDS & v v v v v v v v e e
SYSTEM CALLS . . v v v v v v v v v v v e v s
THE RESIDENT USER, . . « v v v v v v v v o o
DEFINITION FILES . . « v v v v v v v v v v s
LAB EIGHT: HUMAN INTERFACE CONFIGURATION , ., .

UNIVERSAL DEVELOPMENT INTERFACE
SPECIFICATIONS . . . « v v v v v

LIBRARIES. . . v v v v v v v v o v v e 0w
DEVELOPMENT PROCESS. . . . + v v + .+

SYSTEM CALLS . . v v v v v v v v

APPENDICES

A
B
c

ALTER TEXT EDITOR
PL/M 86
BOOTSTRAP LOADER

[

MANUAL vs. AUTOMATIC TRANSMISSIONS

)

WHY BUY MANUAL?

o ECONOMICAL

(MINIMUM I CAN BUY THE CAR WITH)
(I.CAN SAVE ON GAS, IF I DON’'T ABUSE IT)
(1 DON'T NEED A BATTERY TO START THE CAR)

e PERFORMANCE

(I-AM A RACE CAR DRIVER)
(TERRAIN CALLS FOR IT, MOUNTAINOUS, HILLS....ETC.)

2 /]

o DISADVANTAGE

(NEED A SKILLED DRIVER)
(HAVE TO DO MORE WORK)
(CAN’T HOLD ON TO “PERSON” FRIEND WHILE DRIVING)

WHY BUY AUTOMATIC?

o LAZY
(LESS WORK, NO PUSHING-CLUTCH, NO CHANGING GEARS)

o SKILL
(DON'T NEED TO WORRY ABOUT ROLLING DJIWN HILLS)

o DISADVANTAGE
(COSTS MORE)

A CLOSER LOOK

AUTOMATIC

MANUAL

THE MANUAL OR "BASIC” THE MANUAL TRANSMISSION
TRANSMISSION IS "EXTENDED” BY ADDING
SOME “STUFF” TO IT

iii

SPEAKING OF BASIC AND EXTENDED

iRMX 86 LAYERS

EXTENDED UO Svsgm
eASIC VO SYSTEY
NUCLEUS

USER APBLICATIONS

iv

CHAPTER 1
RMX 86 BASIC I/0 SYSTEMS

-An Applications Programmer’s View
o FILES

FILE CLASSES

MANUAL

I/0 OPERATIONS

HIERARCHICAL FILE STRUCTURES }%:?/C\
-]
FILE CONNECTION % /

/

PROGRAMMING ROLES
THERE ARE TWO PROGRAMMING ROLES ASSOCIATED WITH
THE 1RMX 86 OPERATING SYSTEM.

- THE APPLICATION PROGRAMMER USES SYSTEM CALLS
AND OBJECTS THAT AFFECT ONLY HIS OWN JOB

- THE SYSTEM PROGRAMMER CONTROLS SYSTEM
RESOURCES AND CHARACTERISTICS

[/0 COMMUNICATION

¢ THROUGH RMX 86 1/0 SYSTEMS, TASKS COMMUNICATE WITH EACH OTHER
AND THE EXTERNAL WORLD.

WINNIE FLOPPY

TASKA | TS rind 105 TASK B

COMMUNICATION

TASKS MAKE “SYSTEM CALLS” TO THE BIOS TO COMMUNICATE
WITH THE FILE

FLOPPY
TASK CALL READ 1/0 ()
T SYSTEM
1-3

RMX 1/0-1S DONE TO/FROM FILES

0 1 2 3 4 5 6 ...

- A FILE IS AN UNBOUNDED SEQUENCE OF COMPONENTS

- FILES ARE USED FOR
- LONG TERM STORAGE
- TEMPORARY DATA STORAGE EXPANSION

[' THE FILE \

e FILES HAVE A FILE POINTER

FILE

*\‘BEGINNING END.//}

FILE POINTER

"1-5

CLASSES OF FILES

e PHYSICAL FILE - CONTINUOUS SEQUENCE OF BYTES ON A DEVICE WHERE NO
FILE STRUCTURE IS IMPOSED (E.G., PRINTER, TERMINAL)

e STREAM FILE - MEMORY BASED BYTE STREAMS. DESTRUCTIVE-READ
SERVES COMMUNICATION BETWEEN TASKS

e NAMED FILE - DATA FILES RESIDING ON RANDOM ACCESS STORAGE DEVICES.
ACCESSED VIA ASCII NAMES (E.G., FLOPPY DISK, HARD
DISK).

1-6

ACCESSING NAMED FILES

| READ"
OPEN \ 4 CLOSE
i FILE & WRITE ‘ FILE >
Lol SEEK
1-7
OPEN

AFTER A FILE CONNECTION HAS BEEN ESTABLISHED, THE RQ$ASOPEN

SYSTEM CALL OPENS A FILE FOR I/0 OPERATIONS

o OPEN FILE COMMANDS
READ
WRITE
SEEK

¢ THE RQ$ASOPEN SPECIFIES
- A FILE MAY BE
READ ONLY
WRITE ONLY
READ OR WRITE

- TYPE OF SHARING DESIRED = e

READERS
WRITERS
ALL

e
o

1-8

OPENING A FILE

CALL RQ$ASOPEN (FILESCONNECTIONS$TOKEN, MODE, SHARE, RESP$MBOX,aSTATUS:

MODE: MODE OF ACCESS DESIRED
VALUE MODE
1 OPEN FOR READING
2 OPEN FOR WRITING
3

OPEN FOR READING AND WRITING

SHARE: KIND OF SHARING DESIRED

0 PRIVATE USE ONLY

SHARE WITH READERS ONLY
SHARE WITH WRITERS ONLY
SHARE WITH ALL USERS

W N =

1-9

THE RQ$ASREAD SYSTEM CALL

o READ ‘COUNT' BYTES FROM AN OPEN FILE INTO THE BUFFER

o BYTES ARE READ STARTING AT FILE POINTER

CALL RQ$ASREAD (FILE$CONNECTIONSTOKEN, aBUFFER, COUNT, RSP$MBOX, aSTATUS):

THE RQ$ASWRITE SYSTEM CALL

¢ WRITE ANY NUMBER OF BYTES FROM A USER BUFFER
INTO AN OPEN FILE

e THE DATA IS WRITTEN BEGINNING AT THE CURRENT SETTING
OF THE FILE POINTER

CALL RQ$ASWRITE (FILE$CONNECTIONS$TOKEN, aBUFFER, COUNT, RESP$MBOX, aSTATUS);

THE RQASEEK SYSTEM CALL
o MOVES THE FILE POINTER TO ANY BYTE POSITION IN THE OPEN FILE

o HISPTR$MOVE, LOW$PTRSMOVE = WORD PAIR CONTAINING A 32-BIT
UNSIGNED NUMBER

CALL RQ$SEEK (FILE$CONNECTIONSTOKEN,MODE,PTR$MOVE,RESP$MBOX,aSTATUS);

MODE ACTION BY POINTER
1 BACKWARD BY PTR$MOVE (RELATIVE
2 EQUAL TO PTR$MOVE (ABSOLUTE)
3 FORWARD BY PTR$MOVE (RELATIVE)
4 TO EOF MINUS PTR$MOVE (ABSOLUTE)

THE R@$ASCLOSE SYSTEM CALL

e CLOSES AN OPEN FILE CONNECTION

o A FILE CONNECTION IS CLOSED BY THE APPLICATION PROGRAMMER
- WHEN 1/0 OPERATIONS ARE COMPLETE
- WHEN THE MODE OR SHARED STATUS IS TG BE CHANGED

CALL RQACLOSE (FILE$CONNECTION$TOKEN,RESP$MBOX, EXCEP$PTR);

1-13

BIOS 1/0 ASYNCHRONOUS

o EACH 1/0 OPERATION (OPEN, READ, WRITE, SEEK, CLOSE) SHOULD BE
FOLLOWED BY A “STATUS CHECK” {HANDSHAKE)

TASK BASIC 1/0

OPEN —
RECEIVE | “@—————(10RS)
READ ———
RECEIVE | <@————(]0RS)
SEEK —_—
RECEIVE | «emmem—ms (10RS)
READ —
RECEIVE | <@—————— (I0RS)

f .

RESULT OF I/0 OPERATION CALLS

o THE PROGRAM MAY RECEIVE AN [/0 RESULT SEGMENT* (IORS)
AFTER A FILE ACCESS CALL.

*SEE BASIC I/0 REFERENCE MANUAL FOR A DESCRIPTION OF
THE IORS STRUCTURE.

¢ THE PROGRAM WAITS AT THE RESPONSE MAILBOX SPECIFIED
IN THE CALL.

¢ AFTER EXAMINING THE STATUS FIELD IN THE IORS THE PROGRAMMER
MUST DELETE THE SEGMENT,

o IF THE RESPONSE MAILBOX PARAMETER IN THE CALL EQUALS @
THEN NO IORS WILL BE RETURNED BY THE 1/0 SYSTEM. (NOT RECOMMENDED)

EXAMPLE ACCESS CALL

CALL RQ$ASREAD (FILE$CONNECTIONSTOKEN, aBUFFER, 80, RSP$MBOX, aSTATUS);

’

IF STATUS <>E$0K THEN CALL ERROR; /*SYNCHRONOUS PART*/

OVERLAPPED PROCESSING

IORSSTOKEN = RQ$RECEIVESMESSAGE (RSP$MBOX,,aSTATUS):
IF STATUS<>E$0K THEN CALL ERROR; /*SYNCHRONOUS PART*/

IF 10RS.STATUS< >E$OK THEN CALL ERROR: /*ASYNCHRONOUS PART*/
CALL RQ$DELETE$SEGMENT (IORS$TOKEN,aSTATUS);

THE EASY WAY!

o FOR READ, WRITE, AND SEEK WE MAY USE THE RQ$WAIT$I0 SYSTEM CALL

e THE FORM OF THE CALL IS

[ACTUAL = RQ$NAIT$IO(CONNST,RSPMBOX,TIMELIMIT,aSTATUS);]

e BASIC I/0 DEALS WITH IORS‘S DIRECTLY
- EFFICIENT BECAUST IT KEEPS A SUPPLY OF I0RS’S AVAILABLE
- USER TASKS DO NOT HAVE TO DELETE THE IORS

FILE CONNECTION

FILE ACCESS

CREATE FILE
OR ATTACH
FILE

'
FlLE

Py

DELETE CONM
DELETE FILE

FILE ATTACH

e IF THE FILE ALREADY EXISTS THEN THE USER MAKES AN "ATTACHS$FILE”
SYSTEM CALL,

CALL RQ$ASATTACHS$FILE (USER$TOKEN, PREFIX, SUBPATH,

+ + ,8STATUS);

\

SEE BASIC 1/0 REFERENCE MANUAL FOR DETAILS,

® THE USER$TOKEN WILL BE DISCUSSED IN NEXT CHAPTER,

CALL RQ$ASATTACH$FILE (USER$OBJECT, DEVICE$CONNECTIONSTOKEN,
(25, 'SERVICE/TUNEUP/TUNESCHED'), RSP$MBOX, aSTATUS);

HIERARCHICAL FILE STRUCTURE

SERVICE

SALES
]

L

TUNEUPS
BODY
RECALLS
Y
TUNESCHED
PARTS

-

79-PARTS

80-PARTS

~

DIRECTORIES

A DATA FILES

EMPTY

—

RESCHED

EMPTY

PATHNAMES

o PATHNAMES ARE SPECIFIED BY A PREFIX AND A SUBPATH

PREFIX - TOKEN FOR AN EXISTING DEVICE CONNECTION OR FILE CONNECTION
- SPECIFIES THE STARTING POINT IN A DIRECTORY TREE SCAN

SUBPATH - ASCII STRING DESIGNATING THE REST OF THE PATH

E.G. - PREFIX DEVICE$CONNECT IONSTOKEN
- SUBPATH a(25, 'SERVICE/TUNEUPS/TUNESCHED')

——x L SO Dlﬂ-ﬂ

a1

FILE CREATION

e TO CREATE A FILE THE USER MAKES A "CREATE$FILE” SYSTEM CALL

CALL RQ$ASCREATESFILE (USER$TOKEN, PREFIX, SUBPATH, . . aSTATUS);

SEE BASIC 1/0 REFERENCE MANUAL FOR DETAILS ON PARAMETERS

1-22

RESULT OF FILE CONNECTION

¢ THE PROGRAMMER MUST WAIT AT THE RESONSE MAILBOX SPECIFIED IN THE
CREATESFILE OR ATTACH$FILE SYSTEM CALL.

CALL RQ$ASATTACHSFILE (, , , RSP$MBOX, aSTATUS);
FILESCONNECTIONSTOKEN = RQ$RECEIVESMESSAGE (RSP$MBOX, , , aSTATUS);

® SUCCESSFUL CONNECTION RETURNS FILE CONNECTION TOKEN (TYPE = 1@1H) -

® UNSUCCESSFUL CONNECTION RETURNS SEGMENT TOKEN (TYPE = 6)

- THE SEGMENT RETURNED IS AN IORS
- THE PROGRAMMER MUST DELETE THE IORS AFTER EXAMINING THE STATUS FIELD

EXERCISE (OPEN MANUAL)
o HOW LONG CAN AN ASCII NAME IN A SUBPATH BE?
o DESCRIBE PICTORIALLY AN IORS,

o FILL IN THE ELLIPSES:

OPEN
CREATE | Reap

| ATTACH "<:::::> "IWRITE [
SEEK
CLOSE

e A PREFIX CAN BE A OUR A

1-24

CHAPTER 2

RMX 86 BASIC I/0 SYSTEM

—-A System Programmer’s View

DEVICE CONNECTION
PHYSICAL ATTACHMENT
USER OBJECT

FILE ACCESS LIST

SUMMARY

DEVICE CONNECTION

o DEVICE CONNECTION AND USER TOKEN IS A ”"SYSTEM PROGRAMMERS”
RESPONSIBILITY.)

FILE ACCESS

CREATE | %
USER
=]
| | CREATE FILE DELETE COM
PHYS1CAL OR ATTACH % (5] E (] DELETE FILE
ATTACH FILE IH I

DEVICE

o "

SYSTEM APPLICATION
PROGRAMMER PROGRAMMER

2-1

LAYERS

¢ THE BASIC I/0 SYSTEM HAS TWO LAYERS OF SOFTWARE MODULES
SUPPLIED BY INTEL:

- FILE DRIVER INTERFACE
- DEVICE DRIVER INTERFACE

FILE
DRIVERS PHYSICAL NAMED STREAM

DEVICE

DRIvers I FLOPPY WINCHESTER BUBBLE STREAM USART

\

/

2-2

PHYSICAL ATTACHMENT

o AT RUN TIME THE FILE DRIVER IS “PHYSICALLY ATTACHED” TO THE
DEVICE DRIVERS THROUGH I/0 SYSTEM CALLS

USART -— &

PHYSICAL

WINCHESTER < ——

FLOPPY —
STREAM] MEMORY
POOL
STREAM -—

MORE . .
P DEVICE : : fr——
&\“ FILE DRIVERS DRIVERS DEVICES

NAMED

/ I\

2-3

INTEL SUPPLIED DEVICE DRIVERS
e THE BASIC 1/0 SYSTEM SUPPORTS SEVERAL DEVICES

- SOME EXAMPLES -

DEVICE CONTROLLER v DRIVER * !
iSBC 204 SS/128 UNIT @ "Fo’
iSBC 204 SS/512 UNIT @ 'FX@’
iSBC 208 DS/256 UNIT @ ' AFDD@’
ISBC 215/218 PRIAM 3450 UNIT @ 'INg’
iSBC 215/218 DS/256 FLOPPY UNIT @ 'WFDD@’
LINE PRINTER 'LP!

USART g

\ I :

2-4

PHYSICAL ATTACHMENT

CALL RQASPHYSICAL$ATTACHSDEVICE (DRVSNAME, FILES$DRIVER, RESP$MBOX, aSTATUS);

e A SUCCESSFUL “PHYSICAL ATTACH DEVICE” RETURNS A DEVICE CONNECTION
TOKEN (TYPE = 181H)

o AN UNSUCCESSFUL CONNECTION RETURNS A SEGMENT TOKEN (TYPE = 6)

- THE STRUCTURE OF THE SECMENT IS AN 1/0 REQUEST/RESULT SEGMENT
(10RS)

EXAMPLE “\\\\\

CALL RQAPHYSICALSATTACHSDEVICE(a(2, 'F@'), 4,RESPSMBCX,aSTATUS);

L]

* COVERLAPPED PROCESSING MAY OCCUR HERED

DEVICESCONNECT IONSTOKEN = RQ$RECEIVES$MESSAGE(RESPSMBOX,@FFFFH, aRESP, aSTATUS);

/* TEST FOR VALID CONNECTION OBJECT */

TYPESTOKEN = RQ$GETSTYPE(DEVICESCONNECTIONSTOKEN, aSTATUS);

IF TYPESTOKEN < > 101H THEN ERROR;

BASIC 1/0 SYSTEM CALLS FOR FILES

SYSTEM) APPLICATION
PROGRAMMER PROGRAMMER

CREATESUSER
PHYSICALSATTACHSDEVICE - CREATESFILE OR ATTACHSFILE
: . - OPEN
: - READ
i SEEK FILE
_ WRITE ACCESS

f \ - CLOSE
. - DELETE$CONNECTION OR

DELETESFILE -

PHYSICAL$DETACH$DEVICE
DELETESUSER

2-7

BASIC 1/0 EXERCISE

1) WRITE THE CODE NECESSARY TO WRITE A STRING OF DATA TO A FILE
ON A SBC204 SD/SS FLOPPY

~* GIVEN
- THE FLOPPY HAS ALREADY BEEN FORMATTED
THE NAME OF THE DEVICE IS FO
THE NAME OF THE FILE IS ’COMPANY/EMPLOYEE/PERSONAL’
THE FILE ALREADY EXISTS
THE DATA TO BE WRITTEN AT THE END OF THE FILE
THE DATA IS ‘L. JONES, 5050 MAIN DRAG, 3710217°

2-8

CONTROLLED ACCESS

o ONLY “NAMED FILES” PROVIDE CONTROLLED ACCESS TO FILES.

o CONTROL IS ACCOMPLISHED BY COMPARISON OF A USER ID$STRUCTURE
AND A FILE ACCESS LIST,

USER 1 USER 2 USER 3
D1 1D2 1D3
1D2

FILE ACCESS LIST

O ALL

102 READ ONLY

1D3 WRITE ONLY
2-9

THE USER ID STRUCTURE

o IDENTIFYING INFORMATION ABOUT A USER (JOB OR HUMAN)
o EACH ID$STRUCTURE CONTAINS AN ARRAY OF 16 BIT VALUES CALLED ID’S
® THE FIRST ID IN THE ARRAY IS CALLED THE QOWNER ID

o THE REMAINING ID’S DEFINE THE GROUPS OF WHICH THE USER IS A MEMBER OF

OWNER ID
1D

ID$STRUCTURE 1D

ID

cos et s s -
s lals e YRTNe>

2-10

USER TOKEN CREATION

¢ TO CREATE A USER TOKEN THE "SYSTEM PROGRAMMER” MAKES A CALL
TO THE 0.S. IN THE FORM

USERS$TOKEN = RQ$CREATESUSER (9ID$STRUCT, aSTATUS);

DECLARE ID$STRUCT STRUCTURE(LENGTH WORD,
COUNT WORD,
ID(*) WORD);

2-11

FILE ACCESS LIST
o A COLLECTION OF UP TO 3 PAIRS OF OWNER ID’S AND ACCESS MASKS
e THE ID'S REPRESENT USERS OR GROUP OF USERS

o THE ACCESS MASK REPRESENTS THE KINDS OF ACCESS TO THE FILE
THAT THOSE USERS OR GROUPS OF USERS ARE ALLOWED

OWNER 1D #1 ACCESS

ACCESS
LIST

o THE ACCESS LIST BELONGS TO THE FILE

2-12

ACCESS LIST CREATION
o TASKS CALLING CREATES$FILE PASS AN ACCESS MASK AND A USER$TOKEN

e THE I/0 SYSTEM PAIRS THE “"OWNER ID” AND “ACCESS MASK” AND
APPENDS THE PAIR TO THE FILE ACCESS LIST

[]
CALL RQ$CREATESFILE (USERSTOKEN, , ,ACCESS, . . .):
D 1D ACCESS .
STRUCTURE 1D LIST

o ACCESS IS ALSO IMBEDDED IN THE FILE CONNECTION TOKEN RETURNED
TO THE CALLING TASK VIA THE RESPONSE MAILBOX

ADDING ID’S TO THE ACCESS LIST
o THE RASACHANGE$ACCESS SYSTEM CALL WILL CHANGE THE ACCESS
RIGHTS TO A NAMED DATA OR DIRECTORY FILE.

o THE ID AND ACCESS SPECIFIED IN THE CALL WILL BE ADDED
TO THE ACCESS LIST IF THE ID IS NOT FOUND IN THE LIST.

e THE FORM OF THE CALL IS

CALL RQ$ASCHANGE$ACCESS (USERSTOKEN,...,ID, ACCESS,...)

2-14

COMPUTATION OF ACCESS DURING ATTACH FILE

o THE I/0 SYSTEM COMPARES THE ID’S IN THE USER ID STRUCTURE
WITH THE ID’S IN THE ACCESS LIST,

o THE ACCESS MASKS CORRESPONDING TO MATCHING ID!S ARE LOGICALLY
COMBINED, FORMING AN AGGREGARE MASK WITH COMBINED RIGHTS.

USER ID STRUCTURE ACCESS LIST
D1 J—MATCH~ |
ID6 101 READ >
D7 kﬂgm/ D3 WRITE »] OR
ID3 ‘
D8

¢ THE COMPUTED ACCESS IS IMBEDDED IN THE FILE CONNECTION TOKEN
RETURNED TO THE CALLING TASK VIA THE RESPONSE MAILBOX.

READ OR WRITE

LABS

*kkkkikk | AB ONE (BASIC I0 SYSTEM) ik
OBJECTIVES:

EXECUTE A STUDENT BASIC IO APPLICATION JOB IN AN RMX86 0.S. ENVIROMENT

INTRODUCE (BIOS) SYSTEM CALLS:

- RQSASPHYSICALS$ATTACH$DEVICE
RQ$ASCREATESFILE

RQ$ASOPEN

RQ$ASREAD

RQ$ASSEEK

RQSASWRITE

RQ$ASCLOSE

ROSWAITSIO

CREATE SOURCE CODE:
- A SOURCE FILE NAMED START.P86
- A SOURCE FILE NAMED BIOLAB.P86

COMPILE (PLM86), LINK, AND LOCATE AN APPLICATION J0B, THAT WILL CALL UPON
THE BIOS TO COMMUNICATE WITH A TERMINAL AND A FILE IN A FLOPPY

STEP1:

USE THE ATTACH$FILE COMMAND TO ATTACH THE DIRECTORY NAMED (/"TEAM NAME"/LAB1)
AS THE LOGICAL NAME (:LAB:)

- AFILE /"TEAM NAME"/LAB1 AS :LAB:
* FOR THE REST OF THIS LAB WE WILL USE THIS LOGICAL NAME *

LAB 1

(rRoOT)

(APPLICATION)

STARTY' BIOLAB
TASK TASK

LAB OBJECTIVE
¢ Use Basic 10 System Calls
o Read and write from/to a terminal & a floppy
o The student will be given the nucleus, BIOS and SDB

2-16

42

*xxxkkx | AB ONE (BASIC IO SYSTEM) kkdedskk

STEP2:

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:BIOLAB.P86
WITH THE “ALTER" TEXT EDITOR

- ALTER :LAB:BIOLAB.P86

* THIS SOURCE FILE IS THE APPLICATION TASK THAT CONFORMS TO THE FOLLOWING
FLOWCHART :

) WRITE TO TERMINAL */* (USE ROSWAITSIOV "

*NOTE1: WAIT FOR CONNECTION AND VALIDATE
*NOTE2: WAIT FOR IORS , VALIDATE IORS.STATUS , AND DELETE SEGMENT

THE SOURCE CODE SUPPLIED DOES NOT VALIDATE CONNECTIONS OR IORS'S
THE STUDENT MAY WISH TO IMPLEMENT THIS FUNCTIONALITY WHEN MODIFYING

THE SOURCE CODE
2-17

*xkkd** LAB ONE (BASIC IO SYSTEM) ks
STEP3:

* ROOT JOBS ABSOLUTELY ADDRESS THE STARTING LOCATION OF THE STUDENT'S

JOB CODE. THE ENTRY POINT MAY VARY IF INTERNAL PROCEDURES OR
CHARACTER CONSTANTS ARE USED.

FOR THIS REASON IT IS ADVISABLE TO CREATE AND LINK A START TASK TO

THE REST OF THE APPLICATION CODE TO FIX THE ENTRY POINT'S OFFSET
INTO THE CODE

* THIS APPLICATION JOB WILL BE A FIRST LEVEL JOB, THIS REQUIRES
THAT A TASK WITHIN THIS JOB MAKE A CALL TO RQ$ENDSINITSTASK
TO RESUME THE ROOT TASK

* IN ORDER TO DEBUG OUR CODE BEFORE IT "CRASHES" WE MAY WISH TO
INVOKE THE 957 MONITOR AT THE START OF OUR JOB'S EXECUTION.
THIS CAN EASILY BE ACCOMPLISHED BY PLACING A "CAUSESINTERRUPT(3)"
INSTRUCTION AT THE BEGINNING OF OUR CODE (IN OUR START TASK).

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOd) NAMED :LAB:START.P86
WITH THE "ALTER" TEXT EDITOR

- ALTER :LAB:START.P86

* THIS SOURCE FILE IS THE START TASK THAT CONFORMS TO THE FOLLOWING
FLOWCHART

D D e " . - - - =D En " WS P W WD WS TS P D WD W W G A T - - WO - = . G e G - . . =

[

-18

*kkkkxk | AB ONE (BASIC I0 SYSTEM) ‘dkkkik
STEP4:
"COMPILE THE SOURCE FILES {START.PBS AND BIOLAB.P86)

- PLM86 :LAB:START.P86
- PLM86 :LAB:BIOLAB.P86

* IF ANY ERRORS OCCURRED DURING COMPILATION , YOU MUST FIX AND
RECOMPILE BEFORE CONTINUING

* IF COMPILATION IS SUCCESFUL THE COMPILER WILL CREATE FOR EACH OF
THE SOURCE FILES:

- A LIST FILE NAMED ":LAB:{SOURCE).LST"
- AN OBJECT FILE NAMED ":LAB:(SOURCE).0BJ"

LINK THE OBJECTS WITH THE INTERFACE LIBRARIES NEEDED (LARGE)

LINK86 :LAB:START.0BJ,&
:LAB:BIOLAB.0OBJ,&
/RMX5.0/DUTILS/EPIFL.LIB,&
/RMX5.0/DUTILS/IPIFL.LIB,&
/RMX5,.0/DUTILS/RPIFL.LIB &

TO :LAB:JOB.LNK &
NOMAP

LOCATE THE LINKED MODULE TO AN’ ABSOLUTE ADDRESS

LOC86 :LAB:JOB.LNK &
TO :LAB:LABJOB &
SC(3) SEGSIZE(STACK(0)) &
ORDER (CLASSES(CODE,DATA,STACK)) &
ADDRESSES(CLASSES(CODE(1040H))) &
NOINITCODE & '
OC(PURGE)

AND FINALLY ADD THE LOCATED MODULE TO THE OTHER PRECONFIGURED
PARTS OF OUR SYSTEM :

LIB86

DELETE :LAB:RMX86(STARTMOD)

ADD :LAB:LABJOB to :LAB:RMX86
EXIT

*

IN THE LINKING PROCESS OBSERVE THAT WE LINKED THE START MODULE FIRST
* 111 NO WARNINGS OR ERRORS DURING LINK

*

111 SOME WARNINGS ARE OK DURING LOCATE (SEE INSTRUCTOR)

:LAB:RMX86 IS A "GIVEN" FILE THAT CONTAINS:
- A PRECONFIGURED NUCLEUS
- A PRECONFIGURED BIOS
- A PRECONFIGURED SDB
- A PRECONFIGURED ROOT JOB

THE STUDENT MAY "OPTIONALLY" USE A "GIVEN" SUBMIT FILE THAT WILL
COMPILE , LINK , LOCATE AND ADD THE FINAL MODULE TO THE SYSTEM

- SUBMIT :LAB:J0B.CSD

*

*

2-19

*kkkkkk | AB ONE (BASIC IO SYSTEM) *kiikxx
STEPS:

* A LOCATE MAP AND SOURCE LISTING WILL HELP YOU DEBUG YOUR CODE IF
PROBLEMS ARISE . THIS IS THE TIME TO GET THE LISTINGS OUT

YOU ARE NOW READY TO "BOOT" YOUR NEWLY CREATED SYSTEM

IF YOUR EXECUTION VEHICLE IS THE SAME AS THE DEVELOPMENT STATION .
THEN:

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM
.B /"TEAM NAME"/LAB1/RMX86

IF YOUR EXECUTION VEHICLE DIFFERS FROM THE DEVELOPMENT STATION
THEN: .

-COPY THE NEWLY CREATED BOOTABLE SYSTEM INTO A FLOPPY.
(COPY :LAB:RMX86 OVER :FDO:RMX86)

-PRESS INTERRUPT - ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM
.B /RMX86

* THE 957 DEBUG MONITOR IS PRESENT AND CAN BE USED TO DEBUG
YOUR CODE IF NESSESARY. PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

* GOOD LUCK...!

2-20

CHAPTER 3

RMX 86 EXTENDED /0O SYSTEM

—-An Application Programmer'’s View

wHY USE EIOS? AUTOMATIC
ACCESSING NAMED FILES
EIOS BUFFERING
FILE CREATION

”V WHY USE THE EXTENDED 1/0 SYSTEM?

ég%fj7 ,,xl__. ¢ REDUCE DEVELOPMENT COST
,’\,\;—:A

_—— o AUTOMATIC BUFFERING

o SYNCHRONOUS SYSTEM CALLS

o FREES PROGRAMMER FROM TEDIOUS DETAILS

SYNCHRONOUS LEVEL 1/0 OPERATIONS (EIOS)

o PROGRAMMER DOES NOT HAVE TO USE RESPONSE MAILBOXES
® SYSTEM CALLS REQUIRE FEWER PARAMETERS

o NEED TO CHECK ONLY ONE STATUS AFTER THE CALL

EIOS MEMORY REQUIREMENTS

e THE EIOS REQUIRES 12K BYTES ABOVE THE BIOS

3-3

ACCESSING NAMED FILES THROUGH EI0S

-» READ |—
o OPEN CLOSE .
FILE > WRITE FILE
L SEEK |~

3-4

r"> EIOS OPERATIONS

AFTER A FILE CONNECTION HAS BEEN ESTABLISHED,
THE RASOPEN SYSTEM CALL OPENS A CONNECTION
FOR 1/0 OPERATIONS.

o THE RQSOPEN SPECIFIES
- A FILE MAY BE
READ ONLY
WRITE ONLY
READ OR WRITE

- NUMBER OF BUFFERS DESIRED

¢ COMMANDS ON OPEN FILES
READ
WRITE
SEED

3-5

OPENING A FILE

CALL RQSOPEN (FILE$CONNECTIONSTOKEN, MODE, NUM$BUF,aSTATUS):

MODE: MODE OF ACCESS DESIRED
VALUE MODE
1 OPEN FOR READING
2 OPEN FOR WRITING
3 OPEN FOR READING AND WRITING

o CONTROL IS RETURNED ONLY AFTER I1/0 HAS BEEN PERFORMED,

3-6

THE RQSSREAD$MOVE SYSTEM CALL

o ALLOWS READING FROM AN OPEN FILE

e COUNT BYTES ARE READ STARTING AT FILE POINTER

[ACTUAL = RQSREAD$SMOVE (FILE$SCONNECTIONSTOKEN, aBUFFER, COUNT, SSTATUS);I

3-7

THE RQ$SSWRITESMOVE SYSTEM CALL
® ENABLES ANY NUMBER OF BYTES TO BE WRITTEN
FROM A USER BUFFER INTO AN OPEN FILE

® THE DATA IS WRITTEN BEGINNING AT THE CURRENT
SETTING OF THE FILE POINTER

ACTUAL = RQSWRITES$MOVE (FILESCONNECTION$TOKEN, aBUFFER, COUNT, aSTATUS);

EIOS BUFFERING

o THE EIOS PROVIDES AUTOMATIC BUFFERING OF 1/0 OPERATIONS

BUFFERING METHODS

o ONE BUFFER ONLY

- THE EIOS WILL WRITE OR READ INFORMATION ONE BUFFER AT
A TIME (BLOCKING),

¢ TWO OR MORE BUFFERS

- ALLOWS BLOCKING AND OVERLAPPED I1/0 BY USING READ-AHEAD,
WRITE-BEHIND ALGORITHMS.

¢ ZERO BUFFERS

- THE EIOS WILL ACCESS THE FILE EACH TIME THE APPLICATION
READS OR WRITES TO THE FILE,

THE RQSSEEK SYSTEM CALL

o MOVES THE FILE POINTER FOR AN OPENED FILE
TO ANY BYTE POSITION IN THE FILE

o HISPTRSMOVE, LOWSPTR$MOVE =
 WORD PAIR CONTAINING A 32-BIT UNSIGNED NUMBER

CALL RQ$SSSEEK (FILE$SCONNECTIONSTOKEN, MODE, HIPTRMOVE, LOWSPTR$MOVE, aSTATUS);|

MODE ACTION BY POINTER
1 BACKWARD BY PTR$MOVE (RELATIVE)
2 EQUAL TO PTR$MOVE (ABSOLUTE)
3 FORWARD BY PTR$MOVE (RELATIVE)
4 TO EOF MINUS PTR$MOVE (ABSOLUTE)

THE RQSCLOSE SYSTEM CALL

o CLOSES AN OPEN FILE CONNECTION

¢ A FILE CONNECTION IS CLOSED BY THE PROGRAMMER
- IF 1/0 OPERATIONS ARE COMPLETE

- IF THE OPEN MODE OR SHARED STATUS IS TO BE CHANGED

CALL RQSCLOSE (FILE$SCONNECTIONSTOKEN, EXCEPT$PTR);

EXAMPLE

ACTUAL = RQSREADSMOVE (FILE$SCONNECTIONSTOKEN, aBUFFER, 80, aSTATUS);

IF STATUS D@ THEN CALL ERROR;

o THE USER ONLY NEEDS TO CHECK STATUS

o AFTER RETURNING FROM THE CALL THE BUFFER WILL CONTAIN
THE INFORMATION

3-13

EIOS FILE CREATION

o TO CREATE A FILE THE USER MAKES A “CREATE$FILE" SYSTEM CALL

[FILE$CONNECTION$TOKEN = RQSCREATESFILE (PATH$PTR, aSTATUS);I

SEE -EIOS REFERENCE MANUAL FOR DETAILS ON PARAMETERS

3-14

EIOS FILE ATTACH

IF THE FILE ALREADY EXISTS THEN THE USER MAKES AN "ATTACH$FILE"
SYSTEM CALL,

FILESCONNECTIONSTOKEN = RQSSATTACHSFILE (PATH$PTR, aSTATUS);

SEE EIOS REFERENCE MANUAL FOR DETAILS.

3-15

EXAMPLE

F$CONN = RQ$SSATTACHS$FILE (a(19,':FO:SERVICE/TUNEUPS’), aSTATUS);

o [NOW HAVE A CONNECTION TO THE DIRECTORY

IITUNE UPS "
(JO— WIERMRCHICAL FILE STRUCTURE D
o _-——1 DIRECTORIES
i A DATA EILES
A

RESCHED.

79-PARIS
BO-FARIS]

3-16

EIOS SYSTEM CALLS FOR FILES

SYSTEM APPLICATION
PROGRAMMER) PROGRAMMER
- LOGICAL$ATTACHSDEVICE - CREATES$FILE OR ATTACHS$FILE
. - OPEN
' - READ
- SEEK FILE
.] - WRITE ACCESS
, - CLOSE
' - DELETE$CONNECTION OR
. DELETES$FILE
- LOGICALS$DETACHSDEVICE
317
EXERCISE

o DISCUSS THE DIFFERENCES IN THE TWO SYSTEM CALLS.

CALL RQASCREATESFILE (’
);

AND

CALL RQ$SSCREATESFILE ()

CHAPTER 4

RMX 86 EXTENDED 1I/0 SYSTEM

-A System Programmer’s View

LOGICAL NAMES
DEVICE CONNECTIONS
10 JOBS

DEFAULT TOKENS

Q: WHAT IS A LOGICAL NAME

IF 1 CATALOG THE DEVICE CONNECTION TOKEN IN MY JOB'S DIRECTORY
UNDER AN ASCII NAME, THEN THAT NAME WILL BE KNOWN TO THE EIOS
AS THE LOGICAL NAME FOR THAT FILE CONNECTION,

CALL RQ$CATALOGS$OBJECT (@, F$TOKEN, a(4,’AUTO’), aSTATUS)

JOB DIRECTORY

ASCII NAME OBJECT TOKEN
* INTES6STASK' 8CS8
' AUTO! 9usC
. .

EIOS AND LOGICAL NAMES

o PLACING COLONS AROUND AN ASCII STRING IDENTIFIES A
LOGICAL NAME TO THE EIOS

F$CONNS$1 = RQ$SSATTACH$FILE(a(15, ' :AUTO: TUNESCHED', aSTATUS);

(WIEMACHICAL FILE STRICTURE 7
oot nmmm————-—‘ . D DIRECTORIES
A DATA FILES

SERVICE
.

JUNEUPS
Y

PARTS ——---—l RESCHED i I

4-2

THE EIOS DEVICE CONNECTION

ROOT JOB DIRECTORY

ASCIT WAVE OBJECT TOKEN o THE EIOS PHYSICALLY
 INTESESTASK 058 ATTACHES TO THE DEVICE
e T o THEN CATALOGS THE
e mec DEVICE CONNECTION TOKEN

' * UNDER A LOGICAL NAME

FILE ACCESS

LOGICAL

_ =] -

[—] DELETE COM

OR ATTACH (R HHE T] peceTe FILE
FILE IH I

\ - 7 N\
SYSTEM APPLICATION
\ PROGRAMMER PROGRAMMER

EIOS LOGICAL ATTACHMENT

o LOGICAL ATTACH IS ACCOMPLISHED THROUGH

CALL RQSLOGICAL$SATTACHSDEVICE (LOGSNAME ,DRVSNAME, FILE$DRIVER, aSTATUS):

CALL RQALOGICALSATTACHSDEVICE (a(4’:F@:'), a(2,'F@'), 4, aSTATUS);

4-4

r/'”*

THE 10 JOB

e THE 10 JOB DIFFERS FROM A NORMAL JOB

- THERE ARE THREE ENTRIES IN THE OBJECT DIRECTORY
OF THE JOB UNDER THE NAMES “RQGLOBAL”, “$”, AND "R?USER”

JOB DIRECTORY
ASCIT NAPE BJECT TOKEN
/RQGLOBAL’ 8058
g qus(
'RUSER’ 9818
4-5

I0 JOB CREATION

TO CREATE AN I0 JOB

JOB$TOKEN = RQ$CREATE$I0$JOB (POOLS$MIN, POOL$MAX,
EXCEPT$HANDLER, JOBS$FLAGS,
TASK$PRIORITY, START$ADDRESS,
DATAS$SEG, STACK$PTR,
STACK$SIZE, TASK$FLAGS,
MSG$MBOX, aSTATUS);

REFER TO EXTENDED I0 SYSTEM REFERENCE MANUAL.

1/0 JOB DELETION

o TO DELETE AN 1/0 JOB
CALL RQ$EXIT$I10$JOB (USER$FAULT$CODE,

RETURNS$DATAS$PTR,
aSTATUS);

REFER TO EXTENDED 10 SYSTEM REFERENCE MANUAL.

4-7

"CATCH 22"

e AN I/0 JOB CAN ONLY BE CREATED BY AN 1/0 JOB

e THE SYSTEM PROGRAMMER DEFINES 1/0 JOBS DURING CONFIGURATION
OF THE EXTENDED I/0 SYSTEM (TO .BE DISCUSSED LATER)

e THESE 1/0 JOBS WILL BE CHILD JOBS OF THE EIOS

EIOS LOGICAL NAME SEARCH SEQUENCE
THE EIOS SEARCHES THREE OBJECT DIRECTORIES FOR THE
LOGICAL NAME
o FIRST, THE OBJECT DIRECTORY OF THE LOCAL JOB
o SECOND, THE OBJECT DIRECTORY OF THE GLOBAL JOB
- A JOB THAT HAS MORE “SCOPE"” THAN THE LOCAL JOB
BUT LESS “SCOPE” THAN THE ROOT JOB

e THIRD, THE OBJECT DIRECTORY OF THE ROOT JOB

THE DEFAULT PREFIX

THE DEFAULT PREFIX IS A DEVICE OR FILE CONNECTION TOKEN

IT IS CATALOGED IN THE LOCAL JOB DIRECTORY UNDER THE
ASCIT NAME “s”

IF A TASK FAILS TO SPECIFY A CONNECTION DURING A SYSTEM CALL
THAT REQUIRES 1T, THE EIOS USES THE DEFAULT PREFIX

4-10

THE DEFAULT USER

® THE DEFAULT USER IS A USER TOKEN

@ IT IS CATALOGUED IN THE LOCAL JOB DIRECTORY UNDER THE
ASCII NAME “R?USER”

o THE EIOS PERFORMS ALL OF THE 1/0 OPERATIONS WITHIN A JOB
ON BEHALF OF ONE USER TOKEN

4-11

EI0S EXERCISE

1) WRITE THE CODE NECESSARY TO WRITE A STRING OF DATA TO A FILE
ON A SBC204 SD/SS FLOPPY

* GIVEN
THE FLOPPY HAS ALREADY BEEN FORMATTED

THE NAME OF THE DEVICE IS F@

THE NAME OF THE FILE IS 'COMPANY/EMPLOYEE/PERSONAL'
THE FILE ALREADY EXISTS

- THE DATA TO BE WRITTEN AT THE END OF THE FILE

- THE DATA IS ‘L. JONES, 5050 MAIN DRAG, 3710217’

4-12

*kkkkkx | AB TWO (EXTENDED IO SYSTEM) sk
BJECTIVES:

EXECUTE A STUDENT EXTENDED IO APPLICATION JOB IN AN RMX86 0.S. ENVIROMENT

INTRODUCE (EIOS) SYSTEM CALLS:
- RQ$SSCREATESFILE
- RQSSOPEN

RQ$SSREADSMOVE

RQ$SSSEEK

RQ$SSWRITESMOVE

RQSCLOSE

RQSEXIT$I0$J08

CREATE SOURCE CODE:
- A SOURCE FILE NAMED START.P8A
- A SOURCE FILE NAMED EIOLAB.P86

COMPILE (PLM86), LINK, AND LOCATE AN APPLICATION JOB, THAT WILL CALL UPON
THE EIOS TO COMMUNICATE WITH A TERMINAL AND A FILE IN A FLOPPY

TEP1:

USE THE ATTACHSFILE MAND TO ATTACH THE DIRECTORY NAMED (/"TEAM NAME"/LAB2)
AS THE LOGICAL NAME %QwAB'?

- AFILE /"TEAM NAME » 1 AB2 AS :LAB:
* FOR THE REST OF THIS LAB WE WILL USE THIS LOGICAL NAME *

(ROOT)

Z AN
(APPLICATION)
EIOLAB
) [

LAB PURPOSE

¢ Use extended 10 system calls

e Read and write to/from a terminal and a floppy

® The student will be given the nucleus, BIOS, EIOS AND SDB
e The student will supp]y the LAB2JOB and LABZRJB

4-13

kxkkk |AB TWO (EXTENDED IO SYSTEM) ki
STEP2:

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:EIOLAB.P86
WITH THE "ALTER" TEXT EDITOR

- ALTER :LAB:EIOLAB.P86

* THIS SOURCE FILE IS THE APPLICATION TASK THAT CONFORMS TO THE FOLLOWING
FLOWCHART

S . D WD G . - S W - e S D WO D WD W D AP W GG S S ED S WS D R D MR SR SR D G SR SO WS G SR D R NS R @S SO N R e Gm Gn
--

- — - " . . - - > N . OB WS WP S W W S) o WS D W D D P P A W 4 G S G WD M G -, W - -

*NOTEl: VALIDATE BY CHECKING STATUS = ES$OK
THE SOURCE CODE SUPPLIED DOES NOT VALIDATE CONNECTIONS

THE STUDENT MAY WISH TO IMPLEMENT THIS FUNCTIONALITY WHEN MODIFYING
THE SOURCE CODE

4-14

*hkxkkk | AB TWO (EXTENDED I0 SYSTEM) ek
STEP3:

* ROOT JOBS ABSOLUTELY ADDRESS THE STARTING LOCATION OF THE STUDENT'S
JOB CODE. THE ENTRY POINT MAY VARY IF INTERNAL PROCEDURES OR
CHARACTER CONSTANTS ARE USED.

FOR THIS REASON IT IS ADVISABLE TO CREATE AND LINK A START TASK TO

THE REST OF THE APPLICATION CODE TO FIX THE ENTRY POINT'S OFFSET
INTO THE CODE

* THIS APPLICATION JOB WILL BE A SECOND LEVEL JOB. A TASK WITHIN THIS
JOB IS NOT REQUIRED TO MAKE A CALL TO RQSENDSINIT$TASK, THE EIOS CODE
SUPPLIES A TASK THAT CALLS RQENDINITSTASK

* IN ORDER TO DEBUG OUR CODE BEFORE IT "CRASHES" WE MAY WISH TO
INVOKE THE 957 MONITOR AT THE START OF OUR JOB'S EXECUTION.

THIS CAN EASILY BE ACCOMPLISHED BY PLACING A "CAUSESINTERRUPT(3)"
INSTRUCTION AT THE BEGINNING OF OUR CODE (IN OUR START TASK).

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:START.P86
WITH THE "ALTER" TEXT EDITOR '

- ALTER :LAB:START.P86

* THIS SOURCE FILE IS THE START TASK THAT CONFORMS TO THE FOLLOWING
FLOWCHART '

- - S - " - - - - - . = - - - . = e - - - - - - - - =
- . - - - - e - " - — D " P G e WP R TR =S - W An M N . P e T M G WD G W AR M e W N TR SR MR e

*xxxkkk | AB TWO (EXTENDED IO SYSTEM) #dkkkskk
STEP4:
COMPILE THE SOURCE FILES (START.P86 AND EIOLAB.P86)

- PLM86 :LAB:START.P86
- PLM86 :LAB:EIOLAB.P86

* IF ANY ERRORS OCCURRED DURING COMPILATION , YOU MUST FIX AND
RECOMPILE BEFORE CONTINUING

* IF COMPILATION IS SUCCESFUL THE COMPILER WILL CREATE FOR EACH OF
THE SOURCE FILES:

- A LIST FILE NAMED ":LAB:(SOURCE).LST"
- AN OBJECT FILE NAMED ":LAB:(SOURCE).OBJ"

LINK THE OBJECTS WITH THE INTERFACE LIBRARIES NEEDED (LARGE)

LINK86 :LAB:START.0BJ,&
:LAB:EIOLAB.0OBJ,&
/RMX5,0/DUTILS/EPIFL.LIB,&
/RMX5.0/DUTILS/IPIFL.LIB,&
/RMX5,0/DUTILS/RPIFL.LIB &

TO :LAB:JOB.LNK &
NOMAP

LOCATE THE LINKED MODULE TO AN ABSOLUTE ADDRESS

LOC86 :LAB:JOB.LNK & ;
TO :LAB:LABJOB &
SC(3) SEGSIZE(STACK(0)) &
ORDER(CLASSES(CODE,DATA,STACK)) &
ADDRESSES(CLASSES(CODE(1040H))) &
.NOINITCODE &

OC(PURGE)

AND FINALLY ADD THE LOCATED MODULE TO THE OTHER PRECONFIGURED
PARTS OF OUR SYSTEM

L1B86

DELETE :LAB:RMX86(STARTMOD)

éDD :LAB:LABJOB to :LAB:RMX86
XIT

* IN THE LINKING PROCESS OBSERVE THAT WE LINKED THE START MODULE FIRST
!11 NO WARNINGS OR ERRORS DURING LINK

*

*

111 SOME WARNINGS ARE OK DURING LOCATE (SEE INSTRUCTOR)

*

:LAB:RMX86 IS A "GIVEN" FILE THAT CONTAINS:
- A PRECONFIGURED NUCLEUS

A PRECONFIGURED BIOS

A PRECONFIGURED EIOS

A PRECONFIGURED SDB

A PRECONFIGURED ROOT JOB

* THE STUDENT MAY "OPTIONALLY" USE A "GIVEN" SUBMIT FILE THAT WILL
COMPILE , LINK , LOCATE AND ADD THE FINAL MODULE TO THE SYSTEM

- SUBMIT :LAB:JOB.CSD 4-16

*kkkkkk | AB TWO (EXTENDED I0 SYSTEM) kkdkkkik
STEPS:

* A LOCATE MAP AND SOURCE LISTING WILL HELP YOU DEBUG YOUR CODE IF
PROBLEMS ARISE . THIS IS THE TIME TO GET THE LISTINGS OUT

YOU ARE NOW READY TO "BOOT" YOUR NEWLY CREATED SYSTEM

IF YOUR EXECUTION VEHICLE IS THE SAME AS THE DEVELOPMENT STATION
THEN: - '

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM
.B /"TEAM NAME"/LAB2/RMX86

IF YOUR EXECUTION VEHICLE DIFFERS FROM THE DEVELOPMENT STATION
THEN:

-COPY THE NEWLY CREATED BOOTABLE SYSTEM INTO A FLOPPY.
(COPY :LAB:RMX86 OVER :FDO:RMX86)

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM
.B /RMX86

* THE 957 DEBUG MONITOR IS PRESENT AND CAN BE USED TO DEBUG
YOUR CODE IF NESSESARY. PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

* GOOD LUCK...!

4-17

CHAPTER 5

 WRITING DEVICE DRIVERS

-Generalities

INDEPENDENT 10
DRIVER COMPONENTS.
THE DUIB

THE 1/0 REQUEST
DRIVER FUNCTIONS

s

DEVICE INDEPENDENCE

FILE DRIVERS DEVICE DRIVERS HARDWARE

MEMORY
roOL

STREAM

o) — (S
PHYSICAL /
WINCHESTER ~~— 8
NAMED \
FLOPPY i E
STREAM
H ‘

DEVICE INDEPENDENT I/0

¢ APPLICATION TASKS COMMUNICATE WITH FILE DRIVERS
- THIS ALLOWS TASKS TO MANIPULATE ALL FILES IN THE SAME MANNER

o FILE DRIVERS COMMUNICATE WITH DEVICE DRIVERS
- THEY PROVIDE THE INTERFACE BETWEEN SOFTWARE AND HARDWARE

o THIS STANDARD INTERFACE HAS ADVANTAGES

- THE HARDWARE CAN BE CHANGED WITHOUT EXTENSIVE MODIFICATION
TO THE SOFTWARE

- THE 1/0 SYSTEM CAN SUPPORT A GREATER RANGE OF DEVICES.

5-2

DEVICE DRIVER COMPONENTS

INIT 10

|
1
10RS :

FINISH 10
PROC

i
i
1
I
2|
£ : o]
& | A o8 QUEUE 10
“ PROC
T —
[}
, 0
]
[}
]

{
(]
CANCEL IO m

PROC CONTROLLER

I

DEVICE

RUN TIME BINDING

o WHEN A TASK MAKES A RA$ASPHYSTCALSATTACH CALL THE BIOS BINDS

THE FILE DRIVER TO THE DEVICE DRIVER

DEVICE

FILE
DRIVER

DRIVER

5-4

THE DUIB STRUCTURE
(DEVICE UNIT INFORMATION BLOCK)

NAME (14) e

FILESDRIVERS |
FUNITS
[FLAGS
DEV$GRAN
LOWSDEV$S I ZE
HI GHDEVS I ZE
DEVICE
UNIT
DEVSUNIT
INIT$10
FINISH$I0
QUEUE$10
CANCEL IO
DEVICES$ INFO$PTR
UNITS$INFO$PTR
UPDATE $TIMEOUT
NUM$BUFFERS

[PRIORITY]

*REFER TO "GUIDE TO WRITING DEVICE DRIVERS” REFERENCE MANUAL.

5-5

THE DUIB

¢ THE DEVICE UNIT INFORMATION BLOCK IS A TABLE OF VALUES DESCRIBING
THE COMPONENTS OF A DEVICE DRIVER,

e IT IS CREATED BY THE SYSTEM PROGRAMMER DURING CONFIGURATION OF
THE BASIC 1/0.

® THE DUIB BINDS THE FILE DRIVER TO THE DEVICE DRIVER BY DESCRIBING
POINTERS TO THE DEVICE DRIVER PROCEDURES.

= ~PROC
0 DUIB v _ - [|PROC
FILE S

DRIVER L

5-6

THE DEVICE DRIVER “PROCEDURES”
e THE DEVICE DRIVER PROCEDURES ARE CALLED BY THE FILE DRIVER

o THESE PROCEDURES
- CONTAIN THE CODE NECESSARY TO COMMUNICATE WITH THE HARDWARE

- MAINTAIN THE QUEUE

o THE ADDRESSES OF THESE PROCEDURES ARE IMBEDDED IN THE DEVICE
UNIT INFORMATION BLOCK (DUIB)

) ‘DUIB
<

FILE ~

~
DRIVER LN ‘ﬁ)

5-7

THE 1/0 REQUEST

® WHEN THE APPLICATION TASK CALLS THE BASIC I1/0 SYSTEM
AN IORS IS GENERATED (1/0 REQUEST SEGMENT)

APPLICATION TASK "

BASIC 1/0

APPLICATION'S
MEMORY
POOL

5-8

THE REQUEST QUEUE
o THE FILE DRIVER SENDS IORS TO THE DEVICE DRIVER (QUEUE 10 PROC)

e IF THE DEVICE DRIVER IS “BUSY”, THE IORS IS PLACED AT THE
END OF THE QUEUE

I
T "o
X R
. S
|
-4] I
=) 0
%l R
= : S
I 0
| R
| 3 1
I R
|
I QUEUE
REGION
5-9
THE REGION

¢ PROTECTION OF THE QUEUE IS ACCOMPLISHED THROUGH A REGION

- THE TASK CALLS THE IRMX 0.S.
TO GAIN ACCESS TO THE QUEUE

IORS
- THE TASK MANIPULATES OBJECTS -_—
IN THE QUEUE
I0RS
- THE TASK THEN CALLS THE IRMX ||
0.S. TO RELEASE ACCESS TO I0RS
THE QUEUE
QUEUE
REGION

20 O

5-10

DEVICE DRIVER FUNCTIONS

e A DEVICE DRIVER MAY SUPPORT UP TO EI1GHT FUNCTIONS
- READ
WRITE
SEEK
SPECIAL
ATTACH
DETACH
OPEN .
CLOSE - 0000

1

]

/

SPECIAL FUNCTION = SCF
(STOP & CATCH FIRE!)

/—--‘—-—_-_—-\

QUEUE IMPLEMENTATION : “f\
o THE IORS STRUCTURE CONTAINS FORWARD AND BACKWARD POINTER FIELDS

T e = - - - e wn s wn omn e om = S wn - w—— — - ——

\
“ HEAD$POINTER \
. REARSPOINTER ,
| |
-— --- I
[}
| |READ SEEK READ CLOSF |
| |
1 | FORWARD FORWARD \EORWARD [* * \| FORWARD %
@ ~s—4— BACKWARD BACKWARD BACKWARD BACKWARD | -
| |
]
: |
[}
1}
~ JL '

”’V THE IORS STRUCTURE
(INPUT OUTPUT REQUEST SEGMENT)

STATUS
UNITS$STATUS

ACTUAL
ACTUALSFILL

DEVICE

UNIT
FUNCT
SUB$FUNCT
LOWSDEV$LOC
HIGHDEVLOC
BUF$PTR

COUNT

COUNTS$FILL
AUXS$PTR
LINK$FOR
LINK$BACK

RESPSMBOX

DONE
FILL

CANCEL 1D |

\\ *REFER TO “GUIDE TO WRITING DEVICE DRIVERS” REFERENCE MANUAL.

5-13

QUEUE PROTECTION

@ THE QUEUE IS A SHARED RESOURCE OF OTHER DEVICE DRIVER
COMPONENTS

¢ THE QUEUE CAN ONLY BE ACCESSED BY ONE OF THE DEVICE DRIVER
COMPONENTS AT A TIME —

® THAT COMPONENT MUST HAVE A KEY TO USE THE QUEUE

SOME FACTS ABOUT REGIONS

® ONCE A TASK GAINS ACCESS TO A REGION
- THE PRIORITY OF THE TASK MAY BE TEMPORARILY RAISED

- THIS OCCURS AUTOMATICALLY IF THE REGION IS PRIORITY BASED,
AND THERE IS A TASK OF HIGHER PRIORITY WAITING TO USE
THE REGION

- THE TASK CANNOT BE SUSPENDED OR DELETED UNTIL IT SURRENDERS
ACCESS TO THE REGION

SYSTEM CALLS FOR REGIONS

o REGION = RQ$SCREATESREGION (FLAGS, aSTATUS);
o CALL RQ$SEND$CONTROL (aSTATUS):

o CALL RQ$RECEIVES$CONTROL (REGION,aSTATUS);
o CALL RQS$ACCEPTS$CONTROL (REGION,aSTATUS);

o CALL RQ$DELETESREGION (REGION,@STATUS);

REFER TO SYSTEM PROGRAMMER’S REFERENCE MANUAL

5-16

-

THE (DIT) AND (UIT)
¢ ALL DUIB'S ARE FIXED LENGTH
e SOME DEVICE DRIVERS NEED MORE INFORMATION

@ THE SYSTEM PROGRAMMER MAY "OPTIONALLY” PROVIDE TWO EXTRA
TABLES OF UNBOUND LENGTH

DEVICE UNIT INFO BLOCK T DEVICE INFO TABLE v UNIT INFO TABLE
DUIB ,
DIT |
UIT
k ¢ THE DUIB CONTAINS POINTERS TO THESE TABLES
5-17
EXERCISE

¢ WHY ARE THE ADDRESS FIELDS IN THE DUIB, FOR THE DRIVER
PROCEDURES, ONLY WORD FIELDS AND NOT POINTER FIELDS?

o NAME SOME GENERAL DEVICE DRIVER COMPONENTS,

¢ NAME ONE ADVANTAGE OF A REGION vs. SEMAPHORE FOR RESOURCE
PROTECTION,

DEVICE DRIVER TYPES

e THERE ARE THREE TYPES OF DEVICE DRIVERS IN THE IRMX ENVIRONMENT
~ COMMON DEVICE DRIVER
- RANDOM ACCESS DEVICE DRIVER

- CUSTOM DEVICE DRIVER

5-19

CHAPTER 6

THE CUSTOM DEVICE DRIVER

f - THE DUIB STRUCTURE
(DEVICE UNIT INFORMATION BLOCK)

NAME (14) <=
FILESDRIVERS |

FUNITS
FLAGS
DEV$GRAN
LOWSDEV$SIZE
HIGHDEVSIZE
DEVICE
NIT
DEVSUNIT
INIT$10
FINISH$IO
QUEUESIO
CANCEL 10
DEVICE$INFO$PTR
UNITSINFO$PTR
UPDATES$TIMEOUT
NUM$BUFFERS

PRIORITY I

k\h‘ *REFER TO "GUIDE TO WRITING DEVICE DRIVERS” REFERENCE MANUAL.

6-1

THE CUSTOM DEVICE DRIVER

o THE CUSTOM DEVICE DRIVER IS NEEDED IF
- TWO OR MORE INTERRUPT LEVELS PER DEVICE ARE REQUIRED

- PRIORITY ORDERED REQUEST QUEUE IS REQUIRED

- THE DEVICE DOES NOT FIT INTO THE COMMON RANDOM ACCESS
DEVICE CATEGORY (TO BE DISCUSSED LATER)

DuIB

CUSTOM DEVICE DRIVER COMPONENTS

¢ TO WRITE A CUSTOM DEVICE DRIVER YOU MUST PROVIDE

AN INITIALIZE 1/0 PROCEDURE

]

A FINISH 1/0 PROCEDURE

A QUEUE 1/0 PROCEDURE

A CANCEL 1/0 PROCEDURE

A DEVICE INTERRUPT TASK AND HANDLER

RASIGNAL

~—

INIT
10
PROC

FINISH
10
PROC

QUEUE
10
PROC

CANCEL
10
PROC

6-3

-

THE DEVICE INTERRUPT HANDLER

e EXAMPLE INTERRUPT HANDLER

- WHEN THE DEVICE CONTROLLER FINISHES A REQUEST (READ,SEEK,.

IT GENERATES AN INTERRUPT.

~ THE INTERRUPT HANDLER THEN SIGNALS THE INTERRUPT TASK

HARDWARE
UNIT @

UNIT 1

HANDLER

RA$SIGNAL

\‘ CONTROLLER
TASK DEVICE

. JWRITE)

6-4

INTERRUPT TASK

o THERE ARE 3 PARTS TO AN INTERRUPT TASK

INTERRUPT

1 TASK ' THIS IS DONE ONLY ONCE
IDENTIF&CATION
THE RMX 0.S.

HANDLER

2)

: WAITINGYFOR
\\\\~ - THE

RQSIGNAL EVENT

3 WoRrK TO BE
DONE BY
THE TASK —

6-5

EXAMPLE DEVICE INTERRUPT TASK

IDENTIFY HANDLER & TASK TO THE RMX 86 0.S.
DO_FOREVER
WAIT FOR HANDLER TO SIGNAL
GAIN ACCESS TO REGION
REMOVE IORS FROM QUEUE
SEND IORS TO A RESPONSE MAILBOX (IMBEDDED IN IORS)
SEND COMMANDS TO DEVICE TO START NEXT REQUEST (IF ANY!)
SURRENDER ACCESS TO REGION Vs ,/]
e

e
- i
o,

i t £ N
oo N
- o ™

[, 10RS
a”,__-—-- HANDLER ’”ffﬁﬁupr I
[RQ$SIGNAL

10RS

\‘ : CONTROLLER
——
-{ﬂ TASK 170 COMMANDS

DEVICE

REGION

\\.> d: HOW DOES THE FIRST REQUEST GET STARTED? A//

6-6

THE QUEUE 1/0 PROCEDURE

e THE BASIC I/0 SYSTEM CALLS THE QUEUE 1/0 PROCEDURE
IN THE FOLLOWING MANNER

CALL QUEUES$IO(IORSS$T,DUIBSP,DDATAST);

WHERE:
- IORSS$T IS THE TOKEN FOR THE I1/0 REQUEST SEGMENT

- DUIB$P IS A POINTER TO THE DEVICE UNIT INFORMATION BLOCK
OF THE DEVICE
- D$DATAS$T IS A TOKEN FOR A DATA STORAGE AREA (CREATED BY THE
INIT 1/0 PROCEDURE), CONTAINS (HEAD OF QUEUE, REGION TOKEN,
. INTERRUPT TASK TOKEN, . . .ETC)

6-7

EXAMPLE - QUEUE I/0 PROCEDURE

SET THE STATUS FIELD IN THE IORS

GAIN ACCESS TO THE REGION

PLACE THE IORS ON THE QUEUE

DEVICE gS BUSY

] | THIS IS WERE
/////////// SEND COMMAND 4 THE FIRST REQUEST

T0 START REQUEST GETS STARTED
SURRENDER ACCESS TO REGION i

RETURN

6-8

THE INIT 1/0 PROCEDURE

o THE BASIC 1/0 SYSTEM CALLS THE INIT 1/0 PROCEDURE IN THE
FOLLOWING MANNER:

CALL INIT$I0(DUIBS$P,D$DATASP,STATUSSP);

WHERE: .
- DUIB$P IS A POINTER TO THE DEVICE UNIT INFORMATION BLOCK OF THE DEVICE

- D$DATASP IS A POINTER TO A WORD WHERE THE INIT [/0 PROCEDURE
PLACES THE TOKEN FOR A DATA STORAGE AREA

- STATUS$P IS A POINTER TO A WORD WHERE THE INIT $1/0 PROCEDURE
PLACES A STATUS OF THE INITIALIZE OPERATION (SUCCESSFUL OR NOT
SUCCESSFUL)

6-9

EXAMPLE INIT 1/0 PROCEDURE

CREATE THE DATA STORAGE AREA

CREATE THE REGION FOR ACCESS TO QUEUE

CREATE THE INTERRUPT TASK

INITIALIZE THE DEVICE

INITIALIZE THE DATA STORAGE AREA

RETURN

THE FINISH 1/0 PROCEDURE

® THE BASIC 1/0 CALLS THE FINISH I/0 PROCEDURE IN
THE FOLLOWING MANNER:

CALL FINISH$I0(DUIB$P,D$DATAST);

WHERE:

- DUIBSP IS A POINTER TO THE DEVICE UNIT INFORMATION
BLOCK OF THE DEVICE

- D$DATAST IS A TOKEN FOR THE DATA STORAGE AREA

EXAMPLE FINISH 1/0 PROCEDURE

SENDS COMMANDS (IF N
TO DE-PROGRAM DEV%EEED)

RESET/DELETE INTERRUPT TASK

DELETE REGION

DELETE DATA STORAGE AREA

RETURN

THE CANCEL 1/0 PROCEDURE

o THE BASIC 1/0 SYSTEM CALLS THE CANCEL I/0 PROCEDURE IN
THE FOLLOWING MANNER:

CALL CANCELS$IO(CANCELS$ID,DUIBP,DDATAST):

WHERE :

- CANCEL$ID IS A WORD CONTAINING THE ID # OF THE REQUESTS.
WAITING IN THE QUEUE, TO BE CANCELLED.

- DUIB$P IS A POINTER TO THE DEVICE UNIT INFORMATION BLOCK
OF THE DEVICE

- D$DATA$T 1S A TOKEN FOR THE DATA STORAGE AREA

EXAMPLE CANCEL 1/0 PROCEDURE

GAIN ACCESS TO THE REGION

DO WHILE IORS NEEDS TO BE CANCELLED

DEVICE CURRENTLY PRQ
FN I

SEND COMMANDS TO DEVICE TO STOP

ISOTHE REQUEST DONE
— T
REMOVE IORS FROM THE QUEUE

SEND IORS TO RESPONSE MBOX

SURRENDER ACCESS TO THE REGION

RETURN

RELATIONSHIP BETWEEN CALLS

o QUELE 10 | v
INTERRUPT INTERRUPT ¢
ASK~=~10 SYSTEM —_—
TASK HANDLER TASK
\CANCEL 10 ”T”

FINISH 10\

6-15

EXERCISE

o WRITE THE QUEUE$1/0 PROCEDURE HEADING AND DECLARATIONS
IN PL/M 86.

¢ WHAT IS A DATA STORAGE AREA?

® WHEN IS THE INIT$1/0 PROCEDURE CALLED?

o WHEN IS CANCEL$1/0 CALLED?

® HOW DOES THE INTERRUPT -HANDLER KNOW WHERE THE DATA STORAGE
AREA IS LOCATED?

6-16

CHAPTER 7

DEVICE DRIVERS

(Random Access and Common Device Drivers)

COMPONENTS

THE INTERRUPT PROCEDURE
THE START PROCEDURE
DEVICE INFORMATION TABLE

THE COMMON DEVICE DRIVER
e SIMPLE DEVICES
E.G. LINE PRINTERS, USART
e FIFO MECHANISM FOR QUEUING REQUESTS IS SUFFICIENT
e ONLY ONE INTERRUPT LEVEL IS NEEDED TO SERVICE A DEVICE

e DATA READ OR WRITTEN BY THESE DEVICES DOES NOT NEED TO BE
BROKEN UP INTO BLOCKS.

7-1

r"V THE RANDOM ACCESS DEVICE DRIVER
o COMPLEX DEVICES
E.G. HARD DISK, BUBBLE MEMORY, FLOPPY
o FIFO MECHANISM FOR QUEUING REQUESTS IS SUFFICIENT
¢ ONLY ONE INTERRUPT LEVEL IS NEEDED TO SERVICE A DEVICE
¢ 1/0 REQUESTS MUST BE BROKEN UP INTO BLOCKS OF SPECIFIC LENGTH

e THE DEVICE SUPPORTS RANDOM ACCESS SEEK OPERATIONS

o 10RS

RANDOM/COMMON DEVICE DRIVER COMPONENTS

INIT 10 DEVICE INIT
PROC
;<7

]
[}
—— i
RET Y —
| ! S
—CALL o [bEvICE FINISH S
\Flu‘gskgcxo — %6 ¥
B 4
10RS pi
\ousus 10 CALL , [DEVICE START |] *

|

PROC

CALL
ET

DEVICE STOP

CANCEL 10
PROC

1
|

]

]

]

1

I('] 10Rs

|

1

]

1

!

\ :
i _QUEUE

1

. REGION

RRUPT

DUIB

N v’
]
L / DEVICE
&
(DEVICE INTERRUPT ﬂ éf

-

1/0 SYSTEM SUPPLIED PROCS

THE BASIC 10 SYSTEM PROVIDES PROCEDURES THAT COMPRISE THE
BULK OF WRITING A RANDOM ACCESS OR COMMON DEVICE DRIVER.

- PROCEDURE NAMES -

o “RADSINIT$IO” OR “INIT$IO”

o “RADSFINISH$IO OR "FINISH$10"

o "RADSQUEUE$10” OR "QUEUE$IO”

o "RAD$CANCEL$IO” OR “CANCEL$10”

7-4

o THE INTERRUPT TASK, SUPPLIED BY THE 10 SYSTEM, CALLS THE INTERRUPT

THE DEVICES$INTERRUPT PROCEDURE \

PROCEDURE IN THE FOLLOWING MANNER:

CALL DEVICESINTERRUPT (IORS$P, DUIB$P, DDATASP);

WHERE :

-IORS$P

-DUIB$P

-DDATA$P IS A POINTER TO A USER REQUESTED RAM SEGMENT (SCRATCH PAD AREA)

IS A POINTER TO THE I/0 REQUEST SEGMENT

IS A POINTER TO THE DEVICE UNIT INFORMATION BLOCK

7-5

DEVICE DEPENDENT PROCS

e TO WRITE A RANDOM ACCESS OR COMMON DEVICE DRIVER
YOU MUST PROVIDE:

SYSTEM SUPPLIED DEVICE DEPENDENT
PROCS PROCS
AR
TR — T
PROC
A
gy 0| ——= (o)

QUELE 10
PROC

CANCEL 10
PROC

[,
DEVICE START

4—‘

DEVICE STOP

AR 4
——— 5 |DEVICE INTERRUPT

e A DEVICES$INIT PROCEDURE
o A DEVICES$FINISH PROCEDURE
o A DEVICE$START PROCEDURE

e A DEVICE$STOP PROCEDURE

o A DEVICES$INTERRUPT PROCEDURE

EXAMPLE DEVICES$INTERRUPT PROCEDURE

HANDLE THE INTERRUPT

REQUEST FINISHED
F ? T

10RS.,DONE FIELD=TRUH
gCCURRED

T
[ORS.STATUS FIELD=
ERROR

I0RS.DONE FIELD =
TRUE

RETURN

THE DEVICE$START PROCEDURE <‘\\

THE INTERRUPT TASK AND THE QUEUE$IO PROCEDURE, SUPPLIED BY THE
10 SYSTEM, CALLS THE DEVICE$START PROCEDURE IN THE FOLLOWING MANNER:

CALL DEVICE$START (IORS$P, DUIB$P, DDATASP);
WHERE :
- IORS$P IS A POINTER TO THE 1/0 REQUEST SEGMENT
- DUIB$P IS A POINTER TO THE DEVICE UNIT INFORMATION BLOCK

-DDATA$P IS A POINTER TO A USER REQUESTED RAM SEGMENT

7-8

/-

EXAMPLE DEVICE$START PROCEDURE

4;

VALID IORS.FUNCTION
2

F T
\ °
N READ ——— DO CASE IORS.FUNCTION
T |START [T SPECIALY arrach] Ty
DETACH [
READ START OPEN
v WRITE | START START START CLOSE
: SEEK (START‘ ATTACH B ETRCH %EEET —
5.5 D ors Fome CLOSE
L DONE I0RS
I =z D=0NE DONE I0RS
D

%////%

N
TRUE § TRUE I TRUE RONE
IF ERROR HAS OCCURRED
- T

IORS.STATUS = ERROR

IORS.DONT = TRUE

RETURN

.

7-9

WHERE :

THE DEVICE$INIT PROCEDURE

o THE INIT$IO PROCEDURE, SUPPLIED BY THE I0 SYSTEM,
CALLS THE DEVICE$INIT PROCEDURE IN THE FOLLOWING MANNER:

CALL DEVICE$INIT(DUIB$P,DDATA$P,STATUS$P);

-DUIB$P IS A POINTER TO THE DEVICE UNIT INFORMATION BLOCK
-DDATA$P IS A POINTER TO A USER REQUESTED RAM SEGMENT

-STATUS$P IS A POINTER TO A WORD WHERE THE RESULT OF THE CALL
WILL BE STORED BY THE USER

7-10

EXAMPLE DEVICERINIT PROCEDURE . \

DEVICE POWER IS ON
F ? T

INITIALIZE DEVICE

STATUS = ERROR

STATUS = OK
RETURN
7-11
THE DEVICE$FINISH PROCEDURE ﬂ‘\\

¢ THE FINISH $I0 PROCEDURE, SUPPLIED BY THE IO SYSTEM, CALLS
THE DEVICE$FINISH PROCEDURE IN THE FOLLOWING MANNER:

CALL DEVICESFINISH(DUIB$P, DDATA$P);

WHERE:
-DUIB$P IS A POINTER TO THE DEVICE UNIT INFORMATION BLOCK

-DDATA$P IS A POINTER TO A USER REQUESTED RAM SEGMENT

7-12

EXAMPLE DEVICES$FINISH PROCEDURE

FINAL
PROCESSING

S & CF INSTRUCTION

RETURN

THE DEVICE$STOP PROCEDURE ‘

THE CANCEL$I10 PROCEDURE, SUPPLIED BY THE 10 SYSTEM, CALLS
THE DEVICE$STOP PROCEDURE IN THE FOLLOWING MANNER:

CALL DEVICE$STOP (IORS$P, DUIB$P, DDATASP);

WHERE :
- IORS$P IS A POINTER TO THE I/0 REQUEST SEGMENT
- DUIB$P IS A POINTER TO THE DEVICE UNIT INFORMATION BLOCK

- DDATA$P IS A POINTER TO A USER REQUESTED RAM SEGMENT

7-14

EXAMPLE DEVICE$STOP PROCEDURE

STOP CURRENT 1/0

RETURN

(THE DEFAULT PROCEDURES \
® THE 1/0 SYSTEM PROVIDES THREE NULL PROCEDURES THAT
THE USER MAY USE.

THEY ARE:
- "DEFAULTSINIT”

- "DEFAULTS$FINISH”

- "DEFAULT$STOP”

DIT'S \

COMMON AND RANDOM ACCESS DEVICE INFORMATION TABLES ARE CREATED
BY THE SYSTEM'S PROGRAMMER DURING CONFIGURATION OF THE BASIC I/0 SYSTEM.

THE DIT BINDS THE 10 SYSTEM SUPPLIED PROCEDURE TO THE DEVICE
DEPENDENT PROCEDURES BY DESCRIBING POINTERS TO THEM,

-

THE DIT STRUCTURE
(DEVICE INFORMATION TABLE)

LEVEL]
PRIORITY [
STACK$SIZE
DATASSIZE
NUMSUNITS
DEVICESINIT
DEVICESFINISH
DEVICE$START
DEVICE$STOP
DEVICES$INTERRUPT

| _— USER maY
e | APPEND MORE FIELDS

¢ REFER TO “GUIDE TO WRITING DEVICE DRIVERS” REFERENCE MANUAL.

-

uIT’'S

e UNIT INFORMATION TABLES ARE CREATED BY THE SYSTEM PROGRAMMER
DURING CONFIGURATION OF THE BASIC IO SYSTEM.

(

TRACK$SIZE

MAX$RETRY

RESERVED

——USER MAY APPEND
—/
MORE FIELDS
7-19

TABLES AND CALLS \

NIT$10 ———-DEVICESINIT
7 T a DEVICE

QUEUE$IO—-——/-> gEVI CES$START
/
/INTERRUF;T $HANDLER #Iy’ERRUPTﬂ'ASK DEVICESINTERRUP

.

TASK—10$SYSTEM
/
/ AN
, CANCELsIo—///—//-—DEVICEsSTOP—/ UNIT
/ ;7 / -
/ S0 FINIsHS10 44—l DEVICESFINISH
// // / / /" / /
P W /S s g /7 7/
e
3 / 7 3 / //
Wi B s /., DeEvice iniT |y /
QUEBE 10 |,/ DEVICE START T, /s
CANCEL 10 L, DEVICE INTERRUPT //
FINISH 10 DEVICE STOP
DEVICE FiNsA |
UIT
ur__ ==
I
uth

7-20

*xkxkxk | AB THREE (COMMON DEVICE DRIVER) kkskx
JBJECTIVES:

EXECUTE A GIVEN APPLICATION JOB, THAT WILL CALL UPON THE BIOS
TO COMMUNICATE WITH A LIGHT BOX

THE STUDENT WILL WRITE A COMMON DEVICE DRIVER TO SUPPORT THE
LIGHT BOX HARDWARE

CREATE SOURCE CODE:
- A SOURCE FILE NAMED DEVDRV.P86
- A SOURCE FILE NAMED LBOXDUIB.SRC
- A SOURCE FILE NAMED LBOXDUIT.SRC .

STEPL:

USE THE ATTACH$FILE COMMAND TO ATTACH THE DIRECTORY NAMED (/"TEAM NAME"/LABB)
AS THE LOGICAL NAME (:LAB:)

- AFILE /"TEAM NAME"/LAB3 AS :LAB:]
* FOR THE REST OF THIS LAB WE WILL USE THIS LOGICAL NAME *

e Write a common device driver for the 1ight box

® The student will be given the nucleus, SDB, application and root

@ The student will supply init, start and interrupt procedures for
the driver

¢ The student will build a BIOS with preconfigured ITABLE.A86 and
IDEVCF.A86

7-21

*kkxkkx | AB THREE (COMMON DEVICE DRIVER) ik
STEP2:

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:LBOXDUIB.SRC
WITH THE "ALTER" TEXT EDITOR '

- ALTER :LAB:LBOXDUIB.SRC

* THIS SOURCE FILE CONTAIN PARTIALLY WRITTEN SOURCE CODE TO THE DUIB TABLES
NEEDED TO SUPPORT THE LIGHT BOX DRIVER ‘

STEP3:

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:LBOXDUIT.SRC
WITH THE "ALTER" TEXT EDITOR .

- ALTER :LAB:LBOXDUIT.SRC
* THIS SOURCE FILE CONTAIN PARTIALLY WRITTEN SOURCE CODE TO THE DIT TABLES
NEEDED TO SUPPORT THE LIGHT BOX DRIVER

STEP4:

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:DEVDRV.P86
WITH THE "ALTER"™ TEXT EDITOR

- ALTER :LAB:DEVDRV.P86

* THIS SOURCE FILE CONTAIN PARTIALLY WRITTEN SOURCE CODE TO THE FOLLOWING
PROCEDURES :

- A LIGHT BOX DEVICE INTERRUPT PROCEDURE

- A LIGHT BOX DEVICE START PROCEDURE
- A LIGHT BOX DEVICE INIT PROCEDURE

7-22

%%*k | AB THREE (COMMON DEVICE DRIVER) ¥

STEPS:
COMPILE THE SOURCE FILE DEVDRV.P86
- PLM86 :LAB:DEVDRV.P86

* IF ANY ERRORS OCCURRED DURING COMPILATION , YOU MUST FIX AND
RECOMPILE BEFORE CONTINUING

* IF COMPILATION IS SUCCESFUL THE COMPILER WILL CREATE FOR THE
SOURCE FILE:
- A LIST FILE NAMED ":LAB:(SOURCE).LST"
- AN OBJECT FILE NAMED ":LAB:(SOURCE).OBJ"

>TEP6:
* WE MUST NOW ADD THE OBJECT CODE THAT WE HAVE GENERATED TO
THE BIOS SYSTEM

* THEN WE MUST BUILD A LOADABLE SYSTEM THAT INCLUDES:
- THE NUCLEUS
- THE BIOS (YOU SUPPLY THE LIGHT BOX DRIVER)
THE SDB
THE APPLICATION JOB (SUPPLIED) THAT CALLS YOUR DRIVER
THE ROOT JOB

* THIS IS ACCOMPLISHED THROUGH SEVERAL LINKS, LOCATES AND FINALLY
USING THE LIB86 UTILITY

]

* A SUBMIT FILE IS SUPPLIED
- SUBMIT :LAB:ICU.CSD

yTEP7:
* A LOCATE MAP AND SOURCE LISTING WILL HELP YOU DEBUG YOUR CODE IF
PROBLEMS ARISE . THIS IS THE TIME TO GET THE LISTINGS OUT

REMEMBER THE MAP FILE IS :LAB:I0S.MP2
YOU ARE NOW READY TO "BOOT" YOUR NEWLY CREATED SYSTEM

%SEYOUR EXECUTION VEHICLE IS THE SAME AS THE DEVELOPMENT STATION
N:

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM
.B /"TEAM NAME"/LAB2/RMX86

IF YOUR EXECUTION VEHICLE DIFFERS FROM THE DEVELOPMENT STATION
THEN:

-COPY THE NEWLY CREATED BOOTABLE SYSTEM INTO A FLOPPY.
(COPY :LAB:RMX86 OVER :FDO:RMX86)

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM
.B /RMX86

* THE 957 DEBUG MONITOR IS PRESENT AND CAN BE USED TO DEBUG
YOUR CODE IF NESSESARY. PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

7-23

CHAPTER 8

BASIC I/0 SYSTEM

Configuration

® TABLES
e ICU8B

.

STEPS IN BUILDING THE BASIC 1/0 SYSTEM

1) TWO CONFIGURATION FILES ARE NEEDED (ITABLE.A86 AND IDEVCF.A86)
2) ASSEMBLE EACH CONFIGURATION FILE
3) LINK AND LOCATE THE BIOS

ITABLE IDEVCF) ALTER 1 . . .0A86
) S—— ‘ -
ASSEMBLER o ITABLE CONTAINS SYSTEM CALLS
10S. LIB T AND FILE DRIVERS AND TABLES
LINK o IDEVCF CONTAINS DEVICE DRIVERS
T INTO TABLES (DUIBS, DITS, UITS)
*LOCATE MAP LOCATE ® REFER TO CONFIGURATION MANUAL
/ T THROUGH THE REST OF THIS CHAPTER
103, MP2 10
8-1
ITABLE . A86

ZRQ_CREATE_USER
ZRA_INSPECT_USER
ZRQ_DELETE_USER
ZRQ_SET_DEFAULT_USER
ZRQ_SET_DEFAULT _USER
ZRQ_SET_DEFAULT_PREFIX
XRQ_GET_DEFAULT_PREFIX

ZRA_A_PHYSICAL_ATTACH_DEVICE
ZRA_A_PHYSICAL_DETACH_DEVIC

ZRQ_POWER_DOWN
ZRQ_POWER _UP

ZRQ_SET_TIHE
ZRQ_GET_T1 ME

ZINUM_FILE_DRIVERS (4

TATTACH_DEVICE_TASK_PRI0(129)

PARAMETER INTERFACE

E e CONFIGURATION INTERFACE
>~—POWER-FA1L INTERFACE

TIME INTERFACE

ZTIMER_TASK_PR10(129),

;DUMMY_TIMER
sNO_CREATE_FALSE
5 NO_TRUNCATE
; NU__ALLOCATE

END

HYS] CA
AME%

Iy

>—REQUEST & 10S FILE-DRIVER CONFICURATION TABLES

TREAM,

DEFINE FILE-DRIVER GLOBAL PARAM

OTHER FEATURES

IDEVCF.A86

EXTRN INITIO: NEAR
EXTRN FINISHIO: NEAR
EXTRN QUEUEIO: NEAR

EXTERNAL PROCEDURES
EXTRN 1204INIT: NEAR DEFINITIONS
EXTRN 1204START: NEAR

EXTRN 1204INTERRUPT: NEAR

IDEVCF.A86 (CONTINUED)
5 SPC 204 CONTROLLER UNIT @
DEFINE_DUIB

& 'F@’, 5 NAME (1w

& PPBH, s FILEDRIVERS

& OFFH, 5 FUNCTS

& OBH, . 5 FLAGS

& 128, ; DEV GRANULARITY

& DES@@H,@3H, ; DEV SIZE = 256256

&0, ; DEVICE #

& 0, 5 UNIT # buIB
& 8, 5 DEVICE-UNIT # DEFINITIONS
& INITIO, 5 DRIVER PROCS

& FINISHIO ,

& QUEUEIO, :

& CANCELIO,

& DINFO_204, ; DIT

& VINFO_SHUGART, ; UIT

& 100, ; UPDATE TIMEOUT

& 6, ; NUMBER OF BUFFERS

& %39 5 INITIAL TASK PRIORITY

&

8-4

IDEVCF,A86 (CONTINUED)

DINFO_204 RADEV_DEV_INFO

& 58H, 5 LEVEL

& 81H, 5 PRIORITY

& 209, 5 STACK SIZE

& 127, ; DATA SIZE

& 4, ; NUM UNITS DEVICE INFO TABLE

& I204INIT, ; DRIVER PROCS
& DEFAULTFINISH, ; o
& I204START,

& DEFAULTSTOP, ;

& I204INTERRUPT ;
&)

EXTRA INFG MAY BE
DW PAGH ; BASE ADDRESS =9 APPENDED HERE

IDEVCF.A86 (CONTINUED)

UINFO_SHUGART RADDEV_UNIT_INFOS
&26 * 128, ; TRACK SIZE

&9, ; MAX RETRY UNIT INFO TABLE
)
&

; 204 SPECIFIC
W 4 ; RESERVED ——0 , EXTRAINFO IS
DB @35H,@DH ; FIXED INIT VALUES APPENDED HERE
DB 8 ; STEP RATE
DB 8 ; SETTLE -
DB 39H ; ENT LOAD

.

10S.CSD

;ASSEMBLE THE TABLES
ASM86 /RMX/DBI10S/ITABLEAS6

THE SUBMIT FILE (86/330 STYLE)

WORKFILES (:WORK:, :WORK:)

ASM86 /RMX/DBIOS/IDEVCF.A86 WORKFILES(:WORK:,:WORK:)
sLINK THE BIOS
LINK 86 /RMX/DBIOS/10S,LIB(ISTART),g

,&
,&

»& ==————oFOUND 'IN MISCELLANEOUS DISKETTE

T0

LOCATE
TO

/RMX/DB10S/1TABLE,OBJ
/RMX/DBIOS/IDEVCF.0BJ
/RMX/DBIOS/ITDR. LIB

/RMX/DHI/HI , LIB(HCONTC)

/RMX/DBI0S/100PT1,LIB
/RMX/DBI0S/10S. LIB

/RMX/DNUCLUS/RPIFC, LIB

/RMX/DBI10S/10S. LNK

,

’

s

&
&
&

+& =—————e COMPACT!

&

NO PUBLICS EXCEPT(RQAIOSINITTASK,RQAIOSINITERROR)
;LOCATE THE BIOS '
/RMXDBI0S/10S . LNK

/RMX/DBI0S/10S, LNK

SEGSIZE(STACK(®))

ORDER(CLASSES (CODE,DATA))
ADDRESSES (CLASSES (CODE(%1))) &———q ADDRESS OF BIOS IS PASSED
NOINITCODE

2 go o

&

AS A PARAMETER

/

SEGMENT MAP

START

PP200H
#7194
14E86H
14E9UK
14E98H
14ESCH
14EAQH

14EBCH
14F7CH
15puCH
15@A0H
150B@H

G}

START

#@216H
14E85H
14E93E
14E97H
14B9BH
14E9FH
14EBBH

14F7BH
15@uBH
1509DH
150AFH
15@B@H
150BGH

LOCATE ADDRESSES

THE LOCATE PROGRAM GENERATES A MAP FILE CALLED
/RMX/DBI0S/10S.M12

LENGTH ALIGN NAME

P@17H
DCF6H
POPEF
2004H
2p@auH
@0a4H
#01CH

PaceH
@oDoH
90524
@a10H
2000H
PPoH

A

X X X X X E

T X O X X X

(ABSOLUTE)
CODE
PARAM_SEG
CONFIG_SEG
POWER_SEG
TIME_SEG
FILE_DRIVER_IN
-FO_SEG
REQ_TABLE
10S_TABLE
DATA
?7SEG
STACK
MEMORY

EXAMINING THE MAP WE OBTAIN THE ENDING ADDRESS OF THE BIOS
MEMORY MAP OF MODULE ISTART

CLASS

CODE
CODE
CODE
CODE
CODE
CODE

CODE
CODE
DATA

STACK
MEMORY

8-8

REMEMBER!

e ADD A ZJOB MACRO TO YOUR ROOT JOB

; 10S JOB

%JOB(8, %' OBJECT DIRECTORY SIZE e
#6004, BFFFFJ, %’ POOL SIZE (MIN, MAX)
@FFFFH, @FFFFH, %' MAX OBJECTS AND TASKS

2, %' MAX JOB PRIORITY

9:9, 2 %' EXCEPTION HANDLER ADDR, MODE

2, %' JOB FLAGS

138, %' INIT TASK PRIORITY

719:9 %' INIT TASK ENTRY ADDRESS

2, Z' INIT TASK DATA SEGMENT ADDRESS

3:0, 2084 Z' INIT TASK STACK ADDRESS, STACK SIZE
2) %! INIT TASK FLAGS

THAT’S ALL FOLKS!

THE GOOD NEWS!

e ICUWILL
-CREATE ITABLE AND IDEVCF
-CREATE A SUBMIT FILE TO ASSEMBLE
LINK AND LOCATE THE BIOS
-ADD A JOB MACRO TO THE ROOT JOB
-COMPUTE THE STARTING ADDRESS FOR
THE BIOS

IITABLE

ROOT

*kkkickx [AB FOUR (BIOS CONFIG THROUGH ICU) *ksxs
IBJECTIVES:

EXECUTE A GIVEN APPLICATION JOB, THAT WILL CALL UPON THE BIOS
TO COMMUNICATE WITH A LIGHT BOX

THE STUDENT WILL BUILD UPON LAB THREE TO CONFIGURE THE ALL THE
PARTS NESSESARY TO EXECUTE THAT LAB

THE STUDENT WILL USE THE INTERACTIVE CONFIGURATION UTILITY (ICU)
>TEP1:

USE THE ATTACH$FILE COMMAND TO ATTACH THE DIRECTORY NAMED (/"TEAM NAME"/LAB3)
AS THE LOGICAL NAME (:LAB:)

- AFILE /"TEAM NAME"/LAB3 AS :LAB:
* FOR THE REST OF THIS LAB WE WILL USE THIS LOGICAL NAME *

8-11

*kkxxkk LAB FOUR (BIOS CONFIG THROUGH ICU) iirx
STEP2:

THE (ICUY) IS INVOKED BY TYPING THE FOLLOWING
-I1CU86 :LAB:ICU.DEF

* WHERE ICU.DEF IS THE NAME OF THE FILE WE HAVE CHOSEN TO CONTAIN
THE INFORMATION NEEDED TO CONFIGURE OUR 0.S.

WHEN THE ICU SIGN ON ENTER THE COMMAND C , TO MODIFY THE SCREENS
STEP3:

* TRY FILLING THE SCREENS WITHOUT LOOKING AT THESE FIRST,
THEN MATCH YOUR ENTRIES TO THE ONES GIVEN HERE

* IF YOU DO NOT UNDERSTAND AN ENTRY TYPE ?
- E.G. OSP? Lcr>

* THE SCREEN FOR OUR LAB THREE CONFIGURATION FOLLOW

Hardware v

(OSP) 80130 Operating System Extension (Yes/No) No
(0TU) 80130 Timer Used (Yes/No) No
(OPU) 80130 PIC Used (Yes/No) - No
(0CD) 80130 Copyright = 1981 (Yes/No) Yes
(BL) 80130 Base Address Location (40h-OFFFFh) 0OOOH
(BP) 80130 Base Port Address (0-OFFFFH) 0000H
(MP) 8259A Master Port (0-OFFFFH) 00COH
(MPS) Master PIC Port Separation (0-OFFH) 0002H
(SIL) Slave Interrupt Levels (1-7/None) None
(LSS) Level Sensitive Slaves (1-7/None) None
gLSP\ Local Slave PICS (1-7/None) None
TP) 8253 Timer Port (0-OFFFFH) OODOH
(CIL) Clock Interrupt Level (0-7) 0002H
(CN) Timer Counter Number (0,1,2) 0000H
(CI} Clock Interval (0-OFFFFH msec) 000AH

"(CF) Clock Frequency (0-OFFFFH khz) 04CDH
(TPS) Timer Port Separation (0-OFFH) 0002H
(NPX) Numeric Processor Extension (Yes/No) Yes
(NIL) NPX Interrupt Level (Encoded) 0008H
Memory

Type : RAM = low, high

Type : ROM = low, high

Type : RAM = 0500H, F7FFH

8-12

*xkkkkk LAB FOUR (BIOS CONFIG THROUGH ICU) ***xxxx

Sub-systems
UDI) Universal Development Interface (Yes/No) No

HI) Human Interface (Yes/No) No -
(AL) Application Loader (Yes/No) No
(EI0) Extended I/0 System (Yes/No) ' No
(BIO) Basic I/0 System (Yes/No) Yes
(DB) . Debugger (Yes/No) No
(TH) Terminal Handler (Yes/No) No
(CA) Crash Analyzer (Yes/No) ‘ No
(UIR) UDI 1in ROM (Yes/No) No
(CAR) Crash Analyzer in ROM (Yes/No) No
(RIR) Root Job in ROM (Yes/No) No
310S .

(ASC2 A11 Sys Calls in BIOS (Yes/No) Yes
(ADP) Attach Device Task Priority (1-0FFH) 0081H
(TF) Timing Facilities Required Yes/No) Yes
(TTPY Timer Task Priority (0-OFFH) 0081H
(CON) Connection Job Delete Priority (0-OFFH) 0082H
(ACE) Ability to Create Existing Files (Yes/No) Yes
(SMI) System Manager ID (Yes/No) Yes
(CUT-) Common Update Timeout (0-OFFFFH) 03E8H
(CST) Control-Sequence Transiation fYes/No) Yes
(PMI) BIOS Pool Minimum (O-OFFFFH) OCOOH
(PMA) BIOS Pool Maximum (0-OFFFFH) 0COOH
'BIR) Basic I/0 System in ROM fYes/No) No

Jser Devices

'OPN) Object Code Path Name (1-45 characters)
:LAB:DEVDRV.0BJ

'DPN) Duib Source Code Path Name (1-45 characters)
:LAB:LBOXDUIB.SRC :

'DUP) Device and Unit Source Code Path Name (1-45 characters)

, :LAB:LBOXDUIT.SRC .
'ND) Number of User Defined Devices (0-OFFH). . 0001H
'NDU) Number of User Defined Device-Units (0-OFFH) 0002H

8-13

**x*xx* LAB FOUR (BIOS CONFIG THROUGH ICU) #*k#ikiks

Nucleus '

(ASC) A11 Sys Calls (Yes/No) Yes
(PV) Parameter Validation (Yes/No) Yes
(ROD) Root Object Directory Size (0 - OFFOh) 0028H

(MTS) Minimum Transfer Size (0-OFFFFH) 0040H
5 DEH) Default Exception Handler (Yes/No/Deb/Use) Yes
NEH) Name of Ex Handler Object Module (1-32chs)

(E

(N

M) Exception Mode (Never/Program/Environ/A11) Never
R) Nucleus in ROM (Yes/No) No

Fkdkk THIS JOB IS SUPPLIED TO CALL THE (BIQS) *¥*x

User Jobs

(0DS) Object.Directory Size (0-OFFOH) 0032H

(PMI) Pool Minimum (20H - OFFFFH) 0100H

(PMA) Pool Maximum (20H - OFFFFH) FFFFH

(MOB) Maximum Objects (1 - OFFFFH) . FFFFH

(MTK) Maximum Tasks (1 - OFFFFH) FFFFH

(MPR) Maximum Priority (0 - OFFH) 0000H

(AEH) Address of Exception Handler (CS:IP) 000OH : 0000H
(EM) Exception Mode (Never/Prog/Environ/Al11) Never

?PV) Parameter Validation (Yes/No) Yes

TP) Task Priority (0-OFFH) 009BH

(TSA) Task Start Address (CS:IP) o 0104H:0002H
gDSB Data Segment Base (0-OFFFFH) 0000H

SSA) Stack Segment Address (SS:SP) 0000H :0000H
(SS) Stack Size (0-OFFFFH) . 0200H

(NPX) Numeric Processor Extension Used (Yes/No) No

Fkkkhk THIS JOB SUPPLIES THE INTERRUPT FOR THE MONITOR ****
User Jobs

(0DS) Object Directory Size (0-OFFOH) 000AH
(PMI) Pool Minimum (20H - OFFFFH) 0030H
(PMA) Pool Maximum (20H - OFFFFH) FFFFH
(MOB) Maximum Objects (1 - OFFFFH) FFFFH
(MTK) Maximum Tasks (1 - OFFFFH) "~ FFFFH
(MPR) Maximum Priority (0 - OFFH) 0000H
(AEH) Address of Exception Handler (CS:IP) 0000H : 0000H
(EM) Exception Mode (Never/Prog/Environ/A11) Never
- (PV) Parameter Validation (Yes/No) Yes
(TP) Task Priority (0-OFFH) 0000H
(TSA) Task Start Address (CS:IP) 0080H :0002H
(DSB) Data Segment Base (0-OFFFFH) 0000H
(SSA) Stack Segment Address (SS:SP) 0000H : 0000H
(SS) Stack Size (0-OFFFFH) 0200H

(NPX) Numeric Processor Extension Used (Yes/No) No

8-14

**x%k%% | AB FOUR (BIOS CONFIG THROUGH ICU) *#wixx

Includes and Libraries
Path Name (1-45 Characters)
(UDF) UDI Includes and Libs ,
/RMX5.0/DUDI/
(HIF) Human Interface Includes and Libs
/RMX5.0/DINCLSLIBS/
(EIF) Extended I/0 System Includes and Libs -
/RMX5.0/DINCLSLIBS/
(ALF) Application Loader Includes and Libs
/RMX5.0/DLOADER/
(BIF) Basic I/0 System Includes and Libs
/RMX5.0/DINCLSLIBS/
(THF) Terminal Handler and Debugger Includes and Libs
/RMX5.0/DDEBTH/
(NUF) Nucleus and Root Job Includes and Libs
/RMX5.0/DNUCLUS/
(ILF) Interface Libraries
/RMX5.0/DUTILS/
(CAF) Crash Analyzer Includes and Libs
/RMX5.0/DUDI/
(DTF) Development Tools Path Names
/LANG/

senerate File Names

“ile Name (1-55 Characters)
(ROF) ROM Code File Name

:LAB : NONE
(RAF) RAM Code File Name
:LAB :RMX86
STEP4:
AFTER YOU ENTER ALL OF THE SCREENS ENTER G TO GENERATE

EXIT THE ICU

SUBMIT THE ICU.CSD FILE TO GENERATE YOUR SYSTEM
-SUBMIT :LAB:ICU.CSD

8-15

xxxwkxk | AB FOUR (BIOS CONFIG THROUGH ICU) *wsks
STEPS:

YOU MUST NOW ADD THE USER JOB , AND- THE SDB TO THE SYSTEM,
USING THE LIB86 UTILITY

-LIB86
DELETE :LAB:RMX86(STARTMOD)
ADD :LAB:LABJOB to :LAB:RMX86

DELETE :LAB:RMX86(INT3TASKMOD)
ADD /DINT3/INT3JOB to :LAB:RMX86
EXIT
STEP6:
YOU ARE NOW READY TO "BOOT" YOUR NEWLY CREATED SYSTEM

IF YOUR EXECUTION VEHICLE IS THE SAME AS THE DEVELOPMENT STATION
THEN:

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM '
.B /"TEAM NAME"/LAB3/RMX86

IF YOUR EXECUTION VEHICLE DIFFERS FROM THE DEVELOPMENT STATION
THEN:

-COPY THE NEWLY CREATED BOOTABLE SYSTEM INTO A FLOPPY.
(COPY :LAB:RMX86 OVER :FDO:RMX86)

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM
.B /RMX86

* THE 957 DEBUG MONITOR IS PRESENT AND CAN BE USED TO DEBUG
YOUR CODE IF NESSESARY. PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

8-16

CHAPTER 9

EXTENDED 1/0 SYSTEM

Configuration

¢ TABLES
¢ ICU86

“\\

STEPS IN BUILDING THE EXTENDED 1/0 SYSTEM
1) THREE CONFIGURATION FILES ARE NEEDED (ETABLE.AS6,EDEVCF,AS6,
EJOBCF. A86)
2) ASSEMBLE EACH CONFIGURATION TABLE
3) LINK AND LOCATE THE EI0S

ETABLE EDEVCF EJOBCF

A

[AASSEMBLER ® ETABLE CONTAINS SYSTEM CALLS
EDEVCF CONTAINS DEVICES TO
EI0S,LIB . o

BE LOGICALLY ATTACHED BY

LINK . EI0S

s o EJOBCF CONTAINS DESCRIPTION
LOCATE | OF CHILD 10 JOBS
® REFER TO CONFIGURATION
MANUAL THROUGH THE REST
E10S.MP2 EI0S] OF THIS CHAPTER

_/

ETABLE.A86 ﬂ‘\\

ZRACREATEIOJOB e »
ZRAEXITIOJOB JOB INTERFACE
ZRALOGICALATTACHDEVICE

ZRALOGICALDETACHDEVICE CONFIGURATION INTERFACE

%RASCREATEFILE
$RAATTACHFILE
ZRADELETECONNECTION
ZRALOOKUPCONNECTION
ZRACATALOGCONNECTION
ZRQAUNCATALOGCONNECTION
ZRASCREATED IRECTORY
ZRASDELETEFILE
ZRASRENAMEFILE
ZRASCHANGEACCESS
ZRASOPEN

ZRASCLOSE

ZRISOPEN

ZRASREADMOVE
ZRASWRITEMOVE

%RASSEEK
ZRQSTRUNCATEFILE
ZRASGETFILESTATUS
ZRQASGETCONNECTIONSTATUS)
ZRASSPECIAL

SYNCHRONOUS INTERFACE

9-2

EDEVCF . A86
BYTE-BUCKET
#DEV_INFO_BLOCK(’BB’, ‘BB’ ,PHYSICAL)
TERMINAL
ZDEV_INFO_BLOCK('T0, ‘TO’ ,;PHYSICAL)

; 215 WINCHESTER - PRIAM, UNIT @, DRIVE @

ZDEV_INFO_BLOCK(*WD@’,* WG ,NAMED) e OGICALLY ATTACH
215 WINCHESTER FLOPPY DS/DD, UNIT @, DRIVE ¢ I8 AS :WDB:
ZDEV- INFO-BLOCK(* FD@, *WFDD@, NAMED)
STREAM
ZDEV-INFO-BLOCK(*STREAM' , " STREAM’ , STREAM)
LP
ZDEV-INFO-BLOCK(*STREAM’, *STREAM’ , STREAM)
ZEND_DEV_CONF15(1024)

9-3

EJOBCF.A86

USER 'WORLD’ DEFINITION

#10_USER('WORLD‘, @FFFFH) e—— OWNER 1D

EICS TEST JOB

%10_JOB('TO’, 'WORLD’, 26@H, @FFFFH, 8:8, 3, 155, 2000:2, 9, 0:8, 1200, 0)

ZEND_IO_JOB_CONFIG(4@)

YOU PROVIDE ADDRESS

9-4

’f"

e THE LOCATE PROGRAM GENERATES A MAP FILE CALLED /RMX/DEIOS/EIO0S.MP2

rﬂ

LOCATE ADDRESSES

EXAMINING THE MAP WE OBTAIN THE ENDING ADDRESS OF THE EIOS
(USED FOR LOCATING THE NEXT JOB)
MEMORY MAP OF MODULE EIOENT
SEGMENT MAP
START STOP LENGTH ALIGN NAME CLASS
GU200H @2216H @PI7H A (ABSOLUTE)

N

182B0H 1DGD7H 2E28H W CODE CODE

1DgD8H 1DPDFH G@USH W JOB_SEG CODE

IDPEQH 1D117H @@38H W SYNCHRONOUS_SE CODE
-6

1D1184 1D11BH G@G4H W CONFIGURATION_ CODE
-SEG

IDIICH 1DI29H Q@OEH W GROUPUSER_SEG CODE

1DI2AH 1D133H GWGAH W ALLOCATION_SEG CODE

ID134H 1D143H OO1GH W DATA DATA

101504 1DISOH @@BOH 6 ?7SEG

1DI5QH 1D1SQH G@OH W STACK STACK

L IDISGH @O@GH W MEMORY MEMORY
9-5

THE SUBMIT FILE (86/330 STYLE)

ASMB6 /RMX/DEI0S/ETABLE330,A86 PRINT(/RMX/DEIOS/ETABLE338.LST) &
WORKFILES (:WORK: , : WORK:) OBJECT (/RMX/DEIOS/ETABLE.OBJ)

ASM86 /RMX/DEIOS/EDEVCF338 .A86 PRINT(/RMX/DEIOS/EDEVCF33@.LST) &
WORKFILES (:WORK: , :WORK:) OBJECT (/RMX/DEIOS/EDEVCF.0BJ)

ASM86 /RMX/DE10S/EJOBCF333.A86 PRINT (/RMX/DEI0S/EJOBCF333.LST) &
WORKFILES (:WORK: , :WORK:) OBJECT (/RMX/DEIOS/EJOBCF,0BJ)

5 LINK AND LOCATE EIOS INITIALIZATION CODE AND SYSTEM CALLS

LINK8E &
/RMX/DE1I0S/E10S . LIB(EIQOENT),
/RMX/DEIOS/ETABLE.OBJ,
/RMX/DE10S/EDEVCF,0BJ,
/RMX/DE10S/EJOBCF.0BJ,
/RMX/DE10S/EI0S, LIB,
/RMX/DE10S/EPIFC.LIB,
/RMX/DB10S/1PIFC.LIB,
/RMX/DNUCLUS/RPIFC.LIB &

TO /RMX/DEIOS/EI0S.LNK &
MAP PRINT (/RMX/DEI0OS/EI0S,MP1)&
NOPUBLICS EXCEPT(RQEIOSINITTASK, RQEIOSINITERROR)

RO RO RO Q0 o 20 Qo0

LOC86 &
/RMX/DE1OS/EIO0S . LNK TO /RMX/DEI0S/EIOS &
MAP PRINT (/RMX/DEI0S/EI0S,MP2) &

NOLINES NOCOMMENTS NOSYMBOLS &

SEGSIZE (STACK(B)))

ORDER (CLASSES (CODE, DATA)) 1)

ADDRESSES (CLASSES (CODE(921)))

9-6

ROOT JOB MACRO

¢ REMEMBER TO ADD A %JOB MACRO TO YOUR ROOT JOB

EIOS JOB
%JOB (18, %/OBJECT DIRECTORY SIZE
@1504, OFFFFH, 2'POOL SIZE (MIN , MAX)
OFFFFH, @FFFFH, %'MAX OBJECTS AND TASKS
139, #'MAX JOB PRIORITY
g:6, 3, %'EXCEPTION HANDLER ADDR, MODE
2, %'JOB FLAGS
150, #'INIT TASK PRIORITY
1A2B:3, Z'INIT TASK ENTRY ADDRESS
a, Z'INIT DATA SEGMENT ADDRESS
@:9, 250H, Z'INIT TASK STACK ADDRESS, STACK SIZE
@) Z'INIT TASK FLAGS

ICU 86

o [CUSE WILL

CREATE ETABLE, EDEVCF AND EJOBCF

CREATE A SUBMIT FILE THAT INCLUDES ASSEMBLY
LINKING AND LOCATION OF THE EIOS

ADD A JOB MACRO TO THE ROOT JOB
COMPUTE THE STARTING ADDRESS OF THE EIOS

I

9-8

*x#xkx% | AB FIVE (EI0S CONFIG THROUGH ICU) ke
)BJECTIVES:

EXECUTE A GIVEN APPLICATION JOB, THAT WILL CALL UPON THE EIOS TO
COMMUNICATE WITH A TERMINAL AND A FILE IN A FLOPPY

THE STUDENT WILL BUILD UPON LAB TWO TO CONFIGURE ALL THE
PARTS NESSESARY TO EXECUTE THAT LAB

THE STUDENT WILL USE THE INTERACTIVE CONFIGURATION UTILITY (ICU)
»TEPL:

. USE THE ATTACH$FILE COMMAND TO ATTACH THE DIRECTORY NAMED (/"TEAM NAME"/LAB2)
AS THE LOGICAL NAME (:LAB:)

- AFILE /"TEAM NAME"/LAB2 AS :LAB:

* FOR THE REST OF THIS LAB WE WILL USE THIS LOGICAL NAME *

(ROOT)

Z AN
(APPLICATION)
EIOLAB
IS

9-9

*xxdanx |AB FIVE (ETOS CONFIG THROUGH ICU) s
STEP2:

THE (ICU) IS INVOKED BY TYPING THE FOLLOWING
-ICU86 :LAB:ICU.DEF

* WHERE ICU.DEF IS THE NAME OF THE FILE WE HAVE CHOSEN TO CONTAIN
THE INFORMATION NEEDED TO CONFIGURE OUR 0.5.

WHEN THE ICU SIGN ON ENTER THE COMMAND C , TO MODIFY THE SCREENS
STEP3: |

* TRY FILLING THE SCREENS WITHOUT LOOKING AT THESE FIRST,
THEN MATCH YOUR ENTRIES TO THE ONES GIVEN HERE

. * IF YOU- DO NOT UNDERSTAND AN ENTRY TYPE ?
- E.G. 0sP?<er>

* THE SCREEN FOR OUR LAB TWO CONFIGURATION FOLLOW

Hardware
- (OSP) 80130 Operating System Extension (Yes/No) No
(0TU) 80130 Timer Used (Yes/No) No
(OPU) 80130 PIC Used (Yes/No) No
(0CD) 80130 Copyright = 1981 (Yes/No) Yes
(BL) 80130 Base Address Location (40h-OFFFFh) O0OOOH
gBP) 80130 Base Port Address (0-OFFFFH) 0000H
MP) 8259A Master Port (0-OFFFFH) 00COH
(MPS) Master PIC Port Separation (0-OFFH) 0002H
$SIL) Slave Interrupt Levels (1-7/None) None
LSS) Level Sensitive Slaves (1-7/None) None
(LSP) Local Slave PICS (1-7/None) None
(TP) 8253 Timer Port (0-OFFFFH) 0O0DOH
(CIL) Clock Interrupt Level (0-7) 0002H
(CN) Timer Counter Number (0,1,2) 0000H
(CI) Clock Interval (0-OFFFFH msec) 000AH
(CF) Clock Frequency (0-OFFFFH khz) 04CDH
(TPS) Timer Port Separation (0-OFFH) 0002H
(NPX) Numeric Processor Extension (Yes/No) Yes
(NIL) NPX Interrupt Level (Encoded) 0008H

9-10

*kkkkkk LAB FIVE (EIOS CONFIG THROUGH ICU) *iiksx

Yemory

Type : RAM = low, high

Type : ROM = low, high

lype : RAM = 0500H, F7FFH

Sub-systems

(UDI) Universal Development Interface (Yes/No) No

(HI) Human Interface (Yes/No) No

(AL) Application Loader (Yes/No) No

(EI0) Extended I/0 System (Yes/No) : Yes

(BI0) Basic I/0 System (Yes/No) Req

(DB) Debugger (Yes/No) No

(TH) Terminal Handler (Yes/No) No

CA) Crash Analyzer (Yes/No) No

UIR) UDI in ROM (Yes/No) No

[CAR) Crash Analyzer in ROM (Yes/No) ' No

(RIR) Root Job in ROM (Yes/No) No

:10S

(ASC) A11 Sys Calls in EIOS - Yes
(ABR) Automatic Boot Device Recognition (Yes/No) No

(DLN) Default System Device Logical Name (1-12 characters)
'DPN) Default System Device Physical Name (1-12 characters)
'DFD) Default System Device File Driver (Phys/Str/Named) Named

'DO) Default System Device Owners ID (0-OFFFFH) 0000H
'EBS) Internal Buffer Size (0-OFFFFh) 0400H
'DDS) Default I0 Job Directory Size (5-0FFOh) 0020H
"ITP) Internal EIOS Task's Priorities (0-OFFH) 0083H
'PMI) EIOS Pool Minimum (0-OFFFFH) 0180H
'PMA) EIO0S Pool Maximum (0-OFFFFH) FFFFH
'EIR) Extended I/0 System in ROM (Yes/No) ' No

9-11

**xxxxx . LAB FIVE (EIOS CONFIG THROUGH ICU) sk

1/0 Users

User : user name,Owner-ID (,ID,ID,ID,ID)
User : LAB2,0000H,FFFFH

Logical Names
Logical Name : logical_name,device_name,file_driver,owners-id
(1-12 Chars ,1-14 Chars ,Physical/Stream/Named, 0-OFFFFH)
Logical Name : BB, BB, Physical, O000H
Logical Name : STREAM, STREAM, Stream, NOOOH
Logical Name : TO, TO, Physical, 0000H
Logical Name : FDO, WFDDO, Named, OOOOH

I/0 Jobs

(I1JD) 1/0 Job Default Prefix (Logical Name) TO

(DU) Default User (1/0 User) LAB2

(PMI) Pool Minimum (20H - OFFFFH) 0260H

(PMA) Pool Maximum (20H - OFFFFH) FFFFH

(AEH) Address of Exception Handler (CS:IP) - 0O00H :0000H
(EM) Exception Mode (Never/Prog/Environ/A11) Never

(PV) Parameter Validation (Yes/No) Yes

(TP) Task Priority (0-OFFH) ' 009BH

(TSA) Task Start Address (CS:IP) 0104H:0002H
(DSB) Data Segment Base (0-OFFFFH) 0000H

(SSA) Stack Segment Address (SS:SP) 0000H : 0000H
555) Stack Size (0-OFFFFH) 0300H

(NPX) Numeric Processor Extension Used (Yes/No) No

BIOS

(ASC) A11 Sys Calls in BIOS (Yes/No) Yes
(ADP) Attach Device Task Priority (1-0FFH) 0081H
(TF) Timing Facilities Required (Yes/No) Yes
(TTP) Timer Task Priority (0-OFFH) 0081H

(CON) Connection Job Delete Priority (0-OFFH) 0082H
(ACE% Ability to Create Existin? Files (Yes/No) Yes

(SMI) System Manager ID (Yes/No Yes
(CUT) Common Update Timeout (0-OFFFFH) 03E8H
(CST) Control-Sequence Translation (Yes/No) Yes
(PMI) BIOS Pool Minimum (0-OFFFFH) 0COOH
(PMA) BIOS Pool Maximum (0-OFFFFH) 0COOH
(BIR) Basic I/0 System in ROM (Yes/No) No

9-12

Intel

TIL)
OIL)

UDP)
usp;
IRP

I1CP)
IRC

(IRM;
(ORP)
(0CP)
(ORC)
(ORM)

Intel
(NAM)
(LEM)
(ECH)
(IPC)
0PC)
0ce)
(0SC)
(DUP)
(TRM)
(MC)

(RPC)
(WPC)
(BR)

(SN)

Intel
(NAM)
(UN)
(UIN)
(MB)

#xxxkkk | AB FIVE (ETOS CONFIG THROUGH ICU) ks

Terminal Driver

Input Interrupt Level (Encoded)
Output Interrupt Level (Encoded)
USART Data Port (0-OFFFFH)

USART Status Port (0-OFFFFH)

8253 Input Rate Port (O-OFFFFH)
8253 Input Control Port (0-OFFFFH)
8253 Input Counter Number (0-2)
Input Rate Maximum (O-OFFFFFFFFH)
8253 Output Rate Port (0-OFFFFH)
8253 Output Control Port (0-OFFFFH)
8253 Output Counter Number (0-2)
Output Rate Maximum (O-OFFFFFFFFH)

Terminal Driver Unit Information
Unit Info Name (1-17 Chars)

Line Edit Mode (Trans/Norma1/F1ush)
Echo Mode (Yes/No)

‘Input Parity Control (Yes/No)

Qutput Parity Control (Yes/No)
Output Control in Input (Yes/No)

0SC Controls (Both/In/Out/Neither)
Duplex Mode (Full/Half)

Terminal Type (CRT/Hard Copy)

Modem Control (Yes/No)

Read Parity Checking (See Help/0-3)
Write Parity Checking (See Help/0-4)
Baud Rate (0-OFFFFH)

Scroll Number (0-OFFFFH)

Terminal Driver Device-Unit Information

Device-Unit Name (1-13 chars)

Unit Number on this Device (0-0OFFH)
Unit Info Name (1-17 Chars)

Max Buffers (0-0FFH)

0068H
0078H
00D8H
OODAH
00D4H
00D6H
0002H
00012CO0H
0000H
0000H
0000H
00000000H

t0_uinfo
Normal
Yes
No -

No

Yes
Both
Full
CRT

No
0000H
000CH
2580H
0012H

TO

0O0OOH
t0_uinfo
0000H

Intel iSBC 215/218 Driver
(IL) Interrupt Level (Encoded Level) 0058H
(ITP) Interrupt Task Priority (0-OFFH) 0082H
(WIP) Wakeup I1/0 Port (0-OFFFFH) 0100H
Intel iSBC 215/218 Unit Information
'NAM) Unit Info Name (1-17 Chars) uinfo_215fd
MR) Maximum Retries (0-OFFFFH) 0009H
CS) Cylinder Size (0-OFFFFH) 0000H
(NC) Number of Cylinders (0-OFFFFH) 004DH
(NFH) Number of Fixed Platters/Disk (0-OFFH) OOOOH
(NRH) Number of Remove Platters/Disk (0-OFFH) 0002H
(NS) Number of Sectors/Track (0-OFFFFH) 007 AH
(NAC) Number of Aux. Cylinders (0-OFFH) 0000H
(SSN) Starting Sector Number (0-OFFFFFFFFH) - 00000000H
(BTI) Bad Track Information (Yes/No) Yes
Intel iSBC 215/iSBX 218 Device-Unit Information
(NAM) Device-Unit Name (1-13 chars) ’
(PFD) Physical File Driver Required (Yes/No)
(NFD) Named File Driver Required (Yes/No)
(SDD)-Single or Double Density Disks (Single/Double)
(SDS) Single or Double Sided Disks (Single/Double)
gEFI% 8 or 5 Inch Disks (8/5)
GRA) Granularity (0-OFFFFH)
(DSZ) Device Size (O-OFFFFFFFFH)
(UN) Unit Number on this Device (0-OFFH)
(UIN) Unit Info Name (1-17 Chars)
(UDT) Update Timeout (0-OFFFFH)
(NB) Number of Buffers (nonrandom = O/rand = 1-OFFFFH)
(FUP) Fixed Update (True/False)
(MB) Max Buffers (0-OFFH)
Nucleus
(ASC) A11 Sys Calls (Yes/No) Yes
(PVY Parameter Validation (Yes/No) Yes
(ROD) Root Object Directory Size (0 - OFFOh) 0028H
(MTS) Minimum Transfer Size (0-OFFFFH) 0040H
(DEH) Default Exception Handler (Yes/No/Deb/Use) Yes
(NEH) Name of Ex Handler Object Module (1-32chs)
(EM) Exception Mode (Never/Program/Environ/A11) Never
(NR) Nucleus in ROM (Yes/No) No

xxkx% LAB FIVE (EIOS CONFIG THROUGH ICU) *¥*ikiskk

9-14

WFDDO

Yes

Yes
Double
Double

8

0100H
000F9700H
0008H
uinfo_215fd
0064H
0006H
True
00FFH

*xkkxxx LAB FIVE (EIOS CONFIG THROUGH ICU) #kkkkkx

Jser Jobs

'0DS) Object Directory Size (0-OFFOH) 000AH

;PMI; Pool Minimum (20H - OFFFFH 0030H

'PMA) Pool Maximum (20H - OFFFFH FFFFH

'MOB) Maximum Objects (1 - OFFFFH) FFFFH

'MTK) Maximum Tasks (1 - OFFFFH) FFFFH

'MPR) Maximum Priority (0 - OFFH) 0000H

'AEH) Address of Exception Handler (CS:IP) 0000H : 0000H
'EM) Exception Mode (Never/Prog/Environ/A11) Never

'PV) Parameter Validation (Yes/No) Yes

'TP) Task Priority (0-OFFH) 0000H

'TSA) Task Start Address (CS:IP) 0080H:0002H
'DSB) Data Segment Base (0-OFFFFH) 0000H
'SSA) Stack Segment Address (SS:SP) 0000H : 0000H
'SS) Stack Size (0-OFFFFH) 0200H

"NPX) Numeric Processor Extension Used (Yes/No) No

[ncludes and Libraries
Yath Name (1-45 Characters)
'UDF) UDI Includes and Libs
/RMX5.,0/DUD1/
'HIF) Human Interface Includes and Libs
/RMX5.0/DINCLSLIBS/
'EIF) Extended 1/0 System Includes and Libs
' /RMX5.0/DINCLSLIBS/
'ALF) Application Loader Includes and Libs
/RMX5.0/DLOADER/
‘BIF) Basic I/0 System Includes and Libs
JRMX5.0/DINCLSLIBS/
'THF) Terminal Handler and Debugger Includes and Libs
/RMX5.0/DDEBTH/
'NUF) Nucleus and Root Job Includes and Libs
/RMX5.0/DNUCLUS/
'ILF) Interface Libraries
/RMX5.0/DUTILS/
'CAF) Crash Analyzer Includes and Libs
, /RMX5.0/DUDI/
'DTF) Development Tools Path Names
: /LANG/

ienerate File Names
*ile Name (1-55 Characters)
'ROF) ROM Code File Name
:LAB :NONE
RAF) RAM Code File Name
:LAB:RMX86

9-15

*dkxxxk | AB FIVE (EIOS CONFIG THROUGH ICU) *ibksks
STEP4: | |
AFTER YOU ENTER ALL OF THE SCREENS ENTER G TO GENERATE
EXIT THE ICU
SUBMIT THE ICU.CSD FILE TO GENERATE YOUR SYSTEM
-SUBMIT :LAB:ICU.CSD

STEPS:

YOU MUST NOW ADD THE USER JOB AND THE SDB TO THE SYSTEM,
USING THE LIB86 UTILITY

-L1B86
DELETE :LAB:RMX86(STARTMOD)
ADD :LAB:LABJOB to :LAB:RMX86

DELETE :LAB:RMX86(INT3TASKMOD)
ADD /DINT3/INT3J0B to :LAB:RMX86
EXIT -
STEP6: :
YOU ARE NOW READY TO.“BOOT“-YOUR NEWLY CREATED SYSTEM

IF YOUR EXECUTION VEHICLE IS THE SAME AS THE DEVELOPMENT STATION
THEN:

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM
.B /"TEAM NAME"/LAB2/RMX86

IF YOUR EXECUTION VEHICLE DIFFERS FROM THE DEVELOPMENT STATION
THEN:

-COPY THE NEWLY CREATED BOOTABLE SYSTEM INTO A FLOPPY.
{ COPY :LAB:RMX86 OVER :FDO:RMX86)

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM
.B" /RMX86

* THE 957 DEBUG MONITOR IS PRESENT AND CAN BE USED TO DEBUG
YOUR CODE IF NESSESARY. PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

9-16

CHAPTER 10

THE iRMX 86 APPLICATION LOADER

LOADER FUNCTION

TYPES OF LOADABLE CODE
SYSTEMS WITHOUT THE EIOS
LOADER RESULT SEGMENT
SYSTEMS WITH THE EIOS

APP LOADER FUNCTION

e THE APP LOADER MOVES CODE FROM SECONDARY STORAGE INTO RAM

O o
l»]
o O
L9380
o © 4@},(
BUBBLES 5
ApP
NEW CODE) LOADER

>

1

<

m

C4< !

NEW
CODE

MY
| TASK

10-1

NAMED FILES

® THE APP LOADER CAN LOAD OBJECT CODE FROM ANY DEVICE

THAT SUPPORTS 1RMX 86 NAMED FILES

¢ THE iRMX 86 0.S. IS CURRENTLY DELIVERED WITH SUPPORT

FOR THE FOLLOWING DEVICES

1SBC 204 1SBC 218
1SBC 206 - 1SBC 220
ISBC 215 1SBC 254

o IT WILL ALSO SUPPORT CUSTOM DEVICES, FOR WHICH YOU

HAVE WRITTEN A DEVICE DRIVER

TYPES OF-LOADABLE CODE

® ABSOLUTE (ABS)

CODE IS LOCATED AT AN ABSOLUTE LOCATION IN MEMORY
WITH THE LOC86 UTILITY PROGRAM

THE USER "MUST” HAVE THIS LOCATION RESERVED
AT CONFIGURATION

THE LOADER ALWAYS LOADS THE CODE AT THE SAME
ABSOLUTE LOCATION

]

PL/M MODELS MAY BE MEDIUM, LARGE OR COMPACT

=
—
10-3
TYPES OF LOADABLE CODE (CONTINUED) \

e POSITION INDEPENDENT CODE (PIC)

CODE IS NEVER LOCATED, INSTEAD THE BIND OPTION IS USED
WHEN LINKING WITH THE LINK86 UTILITY PROGRAM

PIC CODE CAN BE LOADED INTO ANY MEMORY LOCATION

THE LOADER OBTAINS 1RMX 86 SEGMENTS “RUNTIME” AND
LOADS PIC INTO THE SEGMENTS

PIC IS RESTRICTED TO USE BY TASKS THAT HAVE ONLY
ONE CODE SEGMENT AND ONE DATA SEGMENT

, V)
PL/M MODEL IS COMPACT ONLY &g

N
—_

J

10-4

TYPES OF LOADABLE CODE (CONTINUED)

e LOAD TIME LOCATABLE (LTL)

- SIMILAR TO PIC CODE, LINK WITH BIND, CODE MAY BE
LOADED ANYWHERE IN MEMORY

- CAN BE USED BY TASKS HAVING MORE THAN ONE CODE
SEGMENT OR MORE THAN ONE DATA SEGMENT

- PL/M MODELS MAY BE MEDIUM, LARGE OR COMPACT

PL/M MODELS AND TYPES OF CODE

LARGE MEDI UM COMPACT
N

ABS LTL PIC

*LINK86 *LINK8E (BIND) *LINK86(BIND)
*L0C86 *DO NOT USE INITIAL OR DATA

TO INITIALIZE A POINTER
*USE NOINTVECTOR FOR ANY
INTERRUPT PROCEDURE

9

IF YOU DON'T HAVE AN 86-BASED DEVELOPMENT SYSTEM YOU CAN
GENERATE ONLY ABS CODE.

10-6

SYSTEMS WITHOUT THE EIOS

® THE APPLICATION LOADER LIVES IN YOUR SYSTEM AS
A FIRST LEVEL JOB.

ROOT
JOB

SDB USER LOADER | 4——e~
JOB #1

e YOU CALL THE LOADER THROUGH RQALOAD
o THE LOADER CALLS THE BIOS TO LOAD THE CODE

BIOS

10-7

LOADER SYSTEM CALLS

¢ RAALOAD SYSTEM CALL

- A SYNCHRONOUS
- LOADS FROM A FILE INTO MEMORY
- THE FORM OF THE CALL IS

CALL RQALOAD (FILE$CONN, RSP$MBOX, aSTATUS);

10-8

THE LOADER RESULT SEGMENT

e THE LDRS IS RETURNED TO THE RESPONSE MAILBOX AFTER THE
LOADER HAS COMPLETED THE LOAD FUNCTION.

EXCEPT$CODE
RECORD$COUNT
RECS$TYPE
NUMBER$UNDEFINED$REFS
TRITSIP
CODESEGBASE
STACKSEGBASE
STACKSOFFSET
STACKSEGBASE
STACKS$SIZE
CATASEGBASE

o THE LOADING TASK USES THE INFORATION IN THE LDRS TO
CREATE A TASK OR CREATE A JOB.

10-9

CODE ENTRY POINTS

e THE ENTRY POINT IS WHERE EXECUTION BEGINS AFTER THE
CODE IS LOADED.

e THE LOADER MUST GET THIS ENTRY POINT FROM THE LOADABLE CODE.

e THERE IS ONE CIRCUMSTANCE IN WHICH THE LOADER DOES NOT
REQUIRE AN ENTRY POINT,

- THE LOADABLE CODE IS ABSOLUTE, AND
- THE LOADING TASK KNOWS THE ENTRY POINT, AND
- THE LOADING TASK USES THE RQALOAD SYSTEM CALL

10-10

USING RQALOAD SYSTEM CALL <‘\\

AN

LARGE MEDIUM COMPACT
Y
ABS LTL PIC
(NO INI
MAIN

-SEGSIZE(STACK(#)) ON {LOC 86
-LORS IS OK TO CREATE

TASK OR JOB
WAIN

-SEGSIZE (STACK (#))ON LOC86

-LDRS IS OK TO CREATE

TASK R 08 V MuST Bspﬁg;EE:sg

-USE DYNAMIC STACK,SIZE=128 ' RGE MODEL

~-*DEBUGGER OVERFLOW -USE START (PUBLIC SYMBROL)
ON LOC86

-USE DYNAMIC STACK,SIZE=512
-SEGSIZE (STACK(2))ON LOC86 44‘/}

10-11

LOADABLE PROCEDURES

e WRITE SOURCE CODE AS A PROCEDURE ONLY IF:

- CODE IS (ABS), WITHOUT USING NOINITCODE IN LOC86
- YOU ARE LOADING A TASK(S) AND NOT A JOB
- YOU ARE USING THE RQALOAD SYSTEM CALL

¢ PROCEDURE EXAMPLE

FLASHMOD :DO;
$INCLUDE (/RMX/DNUCLUS/NUCLUS.EXT)
DECLARE STATUS WORD;
FLASHTASK: PROCEDURE PUBLIC:
DO FOREVER:
OUTPUT (9CH) = OFFH;
CALL RQSLEEP(53, aSTATUS):
OUTPUT (9CH) = G;
CALL RQSLEEP(5D. aSTATUS);
END; /*END OF FOREVER*/
END; /*END OF TASK*/
END; /*END OF MODULE*/

10-12

LOADABLE MAIN MODULES
e [IF CODE IS LTL OR PIC THEN CODE MUST BE A MAIN MODULE -

o A MAIN MODULE CONTAINS EXECUTABLE STATEMENTS AT THE ‘OUTERMOST
LAYER OF THE MODULE

® WHEN LINKING OR LOCATING USE "“SEGSIZE(STACK(###))" TO
ASSIGN THE APPROPRIATE STACKSIZE

) MAIN MODULE EXAMPLE :
FLASHMOD: DO;
$INCLUDE (/RMX/DNUCLUS/NUCLUS . EXT)
DECLARE STATUS WORD;

DO FOREVER;
OUTPUT(@9CH) = OFFH;
CALL RQSLEEP(25, QSTATUS);
OUTPUT(@9SCH) = @:
CALL RQSLEEP(25, aSTATUS):

END; /*END OF FOREVER*/

END; /*END OF MODULE*/

10-13

QuIZ!

1) NAME TYPES OF CODE

2) WHERE DOES THE LDRS COME FROM? "

3) NAME ONE ADVANTAGE OF USING A PROCEDURE OVER A MAIN MODULE?

10-14

SYSTEMS WITH THE EIOS (THE EASY WAY)

ROOT |
JOB

SDB LOADER EIOS / BIOS

USER
JOB

o THE USER CALLS THE LOADER THROUGH RQALOADIOJOB OR RASLOADIOJOB
e THE LOADER CALLS THE ‘EIOS ON YOUR BEHALF (YOU MUST BE AN 10JOB),
TO LOAD THE CODE

10-15

SYNCHRONOUS LOADER SYSTEM CALL

o RQSLOADIOJOB

- SYNCHRONOUS
- LOADS CODE INTO MEMORY, STARTS NEW 10 JOB
- THE FORM OF THE CALL IS

JOB$TOKEN = RQSLOADIOJOB (a(10,’:FD@:FLASH'), /*PATH PTR*/

@,@FFFFH, /*POOL LOWER,UPPER*/
g, /*EXCEPT HANDLER*/
2, /*JOB FLAGS*/

130, /*TASK PRIORITY*/

2, /*TASK FLAGS*/
RSPMBOX, /*RESPONSE MAILBOX*/
aSTATUS);

10-16

THE TERMINATION MESSAGE

e WHEN THE NEWLY CREATED IO JOB MAKES AN RQEXITIOJOB CALL

- THE PARENT JOB RECEIVES A TERMINATION MESSAGE
- THE PARENT JOB WAITS AT THE RSPMBOX FOR THIS MESSAGE
- THE FORMAT OF THE MESSAGE IS

TERMINATION CODE
USER$FAULT$CODE
JOB$TOKEN

DATASLENI

DATA(*) =

o REFER TO RQCREATEIOJOB IN EIOS REFERENCE MANUAL.

10-17
RQSLOADIOJOB
LARGE MEDI UM COMPACT
I ><— |
~
<.}
ABS LTL PIC
(NO INITCODE)
1]
MAIN
-SEGSIZE (STACK (#))

10-18

CHAPTER 11

APPLICATION LOADER

Configuration

STEPS IN BUILDING THE APPLICATION LOADER \
1) A CONFIGURATION FILE IS NEEDED (LCONFG,P86)
2) COMPILE (PLM86) THE CONFIGURATION FILE
3) LINK AND LOCATE THE APP LOADER
LCONFG. P85 | } ALTER LCONFG.P86
1
PLMSS
fLOADER.LIB ‘
LINK
® REFER TO CONFIGURATION
GUIDE THROUGH THE REST
LOCATE OF THIS CHAPTER
LOADER.MP2 LOADER
11-1
LCONFG. P86
LOADER$CONFIG: DO; THE SIZE OF THE
DECLARE BUF$SIZE LITERALLY '1@24'; /* BYTES */ LOADER INTERNAL
DECLARE RDBUF$SIZE LITERALLY ‘1@24'; /* BYTES */ BUFFERS FOR OBJECT
RECORDS.
DECLARE LBUF$SIZE WORD PUBLIC DATA(BUF$SIZE + 11);
DECLARE L$RDBUF$SIZE WORD PUBLIC DATA(RDBUF$SIZE);——e THE SIZE OF THE

INPUT BUFFERS
DECLARE$DEFAULT$MEMPOOL WORD PUBLIC DATA(20@H); /*PAGES*/

END LOADER$CONFIG;

L$DEFAULT$MEMPOOL SELECTS THE DYNAMIC MEMORY
(MEMPOOL) REQUIREMENT FOR THE OBJECT-FILE
BEING LOADED,
NOTE: THIS VALUE IS SPECIFIED IN PAGES
(1 PAGE = 16 BYTES).

THIS PARAMETER HAS NO EFFECT ON
'RA$ASLOAD’ SYSTEM CALL.

,ﬂ'ﬁ

THE SUBMIT FILE (86/330 STYLE)

PLM86 /RMX/DLOADER/LCONFG33@.P86 COMPACT OPTIMIZE(3) NOTYPE ROM &
OBJECT (/RMX/DLOADER/LCONFG.0BJ) PRINT (/RMX/DLOADER/LCONFG33@,LST) WORKFILES (:WORK:,:WORK:)

LINK86 /RMX/DLOADER/LOADRZ LIB(LDRINT), & CP2 =CONFIGURATION- PARAMETER 2)

/RMX/DLOADER/LCONFG, 0BJ : A - ABSOLUTE

/RMX/DLOADER /LOADS P - ABSOLUTE + PIC
/RMX/DLOADER/LJBCREDLIB, g L - ABSOLUTE + PIC + LTL
/RX/DLOADER/LOADIGRLTE 0 - ABSOLUTE + PIC + LTL WITH

OVERLAYS
/RMX/DEI0S/EPIFC.LIB,

/RMX/DBIOS/IPIFC.LIB, & CP3 =CONFIGURATION PARAMETER 3
/RMX/DNUCLUS/RPIFC. LIB 8 N - NO LOAD-JOB FUNCTION

TO /RMX/DLOADER/LOADER. LNK & A - ASYNCHRONOUS LOAD-JOB FUNCTION
PRINT (/RMX/DLOADER/LOADER . MP1)) S - ASYNCHRONOUS + SYNCHRONOUS LOAD-

JOB FUNCTION
NOPUBLICS EXCEPT(RILOADERINITTASK, RQLOADERINITERROR)

LOC86 /RMX/DLOADER/LOADER.LNK TO /RMX/DLOADER/LOADER &
MAP PRINT (/RMX/DLOADER/LOADER.MP2) &
NOLINES NOCOMMENTS NOSYMBOLS &
ORDER(CLASSES(CODE, DATA)) &
SEGSIZE(STACK(@), DATA(2)) &

ADDRESSES (CLASSES (CODE(@L))———2 LOCATE ADDRESS

“SUBMIT /RMX/DLOADER/LOADER(DATE, LOC_ADR, CP2, CP3)

LOCATE ADDRESSES

e THE LOC86 PROGRAM GENERATES A MAP FILE CALLED
/RMX/DLOADER/LOADER . MAP

p EXAMINING THE MAP WE OBTAIN THE ENDING ADDRESS OF THE LOADER
(USED FOR LOCATING THE NEXT JOB)

MEMORY MAP OF MODULE LDRINT

SEGMENT MAP

START STOP LENGTH ALIGN NAME CLASS
$0200H ©0216H @@17H A (ABSOLUTE)

1DISGH 1F432H 22E3H W CODE CODE
IFULQH 1F441H QOG2H G DATA DATA
IF4S@H 1F4SOH OOOBH G 27SEG

IF45PH 1FUSOH GOUGH W STACK STACK
QF450)) 1FUSOH GOOBH W MEMORY MEMORY

11-4

DON’T FORGET ROOT JOB MACRO!

@ ADD A %ZJOB MACRO TO YOUR SYSTEM ROOT JOB

o MUST BE BETWEEN 10S AND EIOS ZJOB MACROS

g)

;APP LOADER
%JOB(@, %'0BJECT DIRECTORY SIZE
- 20H,2¢H, Z'POOL SIZE (MIN, MAX)
58,5, %'MAX OBJECTS AND TASKS
a, %'MAX JOB PRIORITY
0:0,0, %’'EXCEPTION HANDLER, MODE
@, %Z'JOB FLAGS
130, Z'INIT TASK PRIORITY
1p15:@, - Z'INIT TASK ENTRY
g, %'INIT TASK DATA SEGMENT ADDRESS
@,160, Z'INIT TASK STACKADDRESS, STACKSIZE
@) Z'INIT TASK FLAGS
11-5
[CU86
e ICU8E WILL

1

CREATE LCONFG.P86

CREATE A SUBMIT FILE THAT INCLUDES COMPILING
LINKING AND LOCATING OF THE APP LOADER

ADD A JOB MACRO TO THE ROOT JOB
COMPUTE THE STARTING ADDRESS OF THE LOADER

*xkkkkk | AB SIX (APP LOADER SYSTEM) ks
)BJECTIVES:

EXECUTE A STUDENT APP LOADER APPLICATION JOB IN AN RMX86 0.S. ENVIROMENT

INTRODUCE (EIOS) SYSTEM CALLS:
- RQ$SSLOAD$10$J0B

USE ICU TO BUILD A SYSTEM CONTAINING:

"= A NUCLEUS
- A BIOS

- AN EIOS
- AN APPLICATION LOADER

CREATE SOURCE CODE:

- A SOURCE FILE NAMED START.P86
- A SOURCE FILE NAMED LDRLAB.P86

COMPILE (PLM86), LiNK, AND LOCATE AN APPLICATION JOB, THAT WILL CALL UPON
THE EIOS TO COMMUNICATE WITH A FILE IN A FLOPPY, CONTAINING A LOADABLE

JOB, LOAD THE JOB AN EXECUTE
THE LOADABLE JOB WILL CONTAIN A SIMPLE TASK THAT FLASHES THE LIGHTS IN
THE LIGHT BOX

yTEP1:

USE THE ATTACH$FILE COMMAND TO ATTACH THE DIRECTORY NAMED (/“TEAM NAME"/LAB6)
AS THE LOGICAL NAME (:LAB:)

- AFILE /"TEAM NAME"/LAB6 AS :LAB:

* FOR THE REST OF THIS LAB WE WILL USE THIS LOGICAL NAME *

LAB 6 (PART A)

ICLEDD (ROOT)

L

‘: SD8) -4E108) |

APPLICATION)

(FLASHJOB) | |

© LAB OBJOECTIVE
USE THE APPLICATION LOADER TO LOAD A MAIN MODULE (JOB), SYNCHRONOUSLY USING THE EIO0S
FI0S, B10S, SDB

L
© THE STUDENT WILL BE GIVEN THE NUCLEUS,
© THE STUDENT WILL SUPPLY APPLICATION, ROOT, LOADER AND WILL BUILD AND PLACE FLASH JOB

11-7

*xkxkkx | AB SIX (APP LOADER SYSTEM) kskdkidkk
STEP2:

BUILD A SYSTEM CONTAINING THE APPLICATION LOADER

* WE WILL USE THE SYNCHRONOUS LOADER CALL TO LOAD AN IO JOB FROM
A FLOPPY INTO MEMORY

* SINCE THIS REQUIRES THAT OUR SYSTEM INCLUDE THE EXTENDED IO, WE
WILL USE THE SYSTEM WE ALREADY BUILT IN LAB FIVE.

THE (ICU) IS.INVOKED BY TYPING THE FOLLOWING
-ICU86 /RII5.0/LAB5/ICU.DEF TO-:LAB:ICU.DEF

* WHERE ICU.DEF IS THE NAME OF THE FILE WE HAVE CHOSEN TO CONTAIN
THE INFORMATION NEEDED TO CONFIGURE OUR 0.S.

WHEN THE ICU SIGN ON ENTER THE COMMAND C , TO MODIFY THE SCREENS
APP LOADER SCREENS:

Application Loader

(IBS) Internal Buffer Size (0 - OFFFFh) 0400H

(RBS) Read Buffer Size (0 - OFFFFh) ' 0400H

(LJT) Load Job Type (None/Async/Sync) Synchronous and Asyncronous
$DMP) Default Memory Pool Size (0 - OFFFFh) 0100H

CT) Code Type (Abs/Pic/Lt1/0vr) Overlay, LTL, PIC and Abs
(ALR) Application Loader in ROM (Yes/No) No
STEP3:

AFTER YOU ENTER ALL OF THE SCREENS ENTER G TO GENERATE
EXIT THE ICU

SUBMIT THE ICU.CSD FILE TO GENERATE YOUR SYSTEM
-SUBMIT :LAB:ICU.CSD |

11-8

*xxkkx%x LAB SIX (APP LOADER SYSTEM) **kkxik

STEP4:
BUILD THE RESIDENT JOB

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:LDRLAB.P86
WITH THE “ALTER" TEXT EDITOR

- ALTER :LAB:LDRLAB.P86

* THIS SOURCE FILE IS THE APPLICATION TASK THAT CONFORMS TO THE FOLLOWING
FLOWCHART

--
--
--
--
--
--
--

- G - - . L D D W R D G En R D D D R D W L R 4B W S e S M S G A E En Em B AD W b ER R SN @6 S TS M e an e - -

11-9

#xxxkkk LAB SIX (APP LOADER SYSTEM) wkdekk

STEPS:

* ROOT JOBS ABSOLUTELY ADDRESS THE STARTING LOCATION OF THE STUDENT'S
JOB CODE. THE ENTRY POINT MAY VARY IF INTERNAL PROCEDURES OR
CHARACTER CONSTANTS ARE USED.

FOR THIS REASON IT IS ADVISABLE TO CREATE AND LINK A START TASK TO
THE REST OF THE APPLICATION CODE TO FIX THE ENTRY POINT'S OFFSET
INTO THE CODE ,

* THIS APPLICATION JOB WILL BE A SECOND LEVEL JOB. A TASK WITHIN THIS
JOB IS NOT REQUIRED TO MAKE A CALL TO RQENDINIT$TASK THE EIOS CODE
SUPPLIES A TASK THAT CALLS RQ$ENDSINIT$TASK

* IN ORDER TO DEBUG OUR CODE BEFORE IT "CRASHES" WE MAY WISH TO

INVOKE THE 957 MONITOR AT THE START OF OUR JOB'S EXECUTION.

THIS CAN EASILY BE ACCOMPLISHED BY PLACING A "CAUSE$INTERRUPT(3)"
INSTRUCTION AT THE BEGINNING OF OUR CODE (IN OUR START TASK).

* WE WILL USE THE SAME START TASK THAT WE USED IN LAB TWO
-COPY /RII5.0/LAB2/START.P86 TO :LAB:START.P86

11-10

*kkxxkkk [AB SIX (APP LOADER SYSTEM) sk

STEP6:
COMPILE THE SOURCE FILES (START.P86 AND LDRLAB.P86)

- PLM86 :LAB:START.P86
- PLM86 :LAB:LDRLAB.P86

* IF ANY ERRORS OCCURRED DURING COMPILATION , YOU‘MUST FIX AND
RECOMPILE BEFORE CONTINUING

* IF COMPILATION IS SUCCESFUL THE COMPILER WILL CREATE FOR EACH OF
THE SOURCE FILES:

- A LIST FILE NAMED ":LAB:(SOURCE).LST"
- AN OBJECT FILE NAMED ":LAB:(SOURCE).0BJ"

LINK THE OBJECTS WITH THE INTERFACE LIBRARIES NEEDED (LARGE)

LINK86 :LAB:START.0BJ,&
:LAB:LDRLAB.0BJ,& :
/RMX5,0/DUTILS/EPIFL.LIB,&
/RMX5,0/DUTILS/IPIFL.LIB,&
/RMX5,0/DUTILS/LPIFL.LIB,&
/RMX5,0/DUTILS/RPIFL.LIB &

TO :LAB:JOB.LNK &
NOMAP

LOCATE THE LINKED MODULE TO AN ABSOLUTE ADDRESS

LOC86 :LAB:JOB.LNK &
TO :LAB:LABJOB &
SC(3) SEGSIZE(STACK(0)) &
ORDER(CLASSES(CODE,DATA,STACK)) &
ADDRESSES(CLASSES(CODE(1040H))) &
NOINITCODE &
OC(PURGE)

YOU MUST NOW ADD THE USER JOB AND THE SDB’TO THE SYSTEM,
USING THE LIB86 UTILITY

-LIB86
DELETE :LAB:RMX86(STARTMOD)
ADD :LAB:LABJOB to :LAB:RMX86

DELETE :LAB:RMX86(INT3TASKMOD)
ADD /DINT3/INT3J0OB to :LAB:RMX86
EXIT

* THE STUDENT MAY "OPTIONALLY" USE A "GIVEN" SUBMIT FILE THAT WILL
COMPILE , LINK , LOCATE AND ADD THE FINAL MODULE TO THE SYSTEM

- SUBMIT :LAB:J0B.CSD

11-11

*xk*kk%* LAB SIX (APP LOADER SYSTEM) *¥kkdik
STEP6:
BUILD THE NON RESIDENT JOB

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:FLASHJOB.P86
WITH THE "ALTER" TEXT EDITOR

- ALTER :LAB:FLASHJOB.P86

* THIS SOURCE FILE IS THE NON RESIDENT TASK THAT CONFORMS TO THE FOLLOWING
FLOWCHART '

--

P e i e R e R e e L e L L L L L L T T T e

STEP7:
COMPILE THE SOURCE FILES (FLASHJOB.P86)
- PLM86 :LAB:FLASHJOB.P86

* TF ANY ERRORS OCCURRED DURING COMPILATION , YOU MUST FIX AND
RECOMPILE BEFORE CONTINUING :

* IF COMPILATION IS SUCCESFUL THE COMPILER WILL CREATE

- A LIST'FILE NAMED ":LAB:(SOURCE).LST"
- AN OBJECT FILE NAMED “:LAB:(SOURCE).0BJ"

LINK THE OBJECTS WITH THE INTERFACE LIBRARIES NEEDED (LARGE)
LINK86 :LAB:FLASHJOB.O0BJ, &
/RMX5.0/DUTILS/RPIFL.LIB &
TO :LAB:FLASHJOB &
NOMAP SEGSIZE(STACK(512)) BIND
COPY THE JOB INTO A FILE ON THE FLOPPY

COPY :LAB:FLASHJOB OVER :FDO:FLASHJOB

11-12

*xkkkkk | AB SIX (APP LOADER SYSTEM) *kkkxs

STEP8:

* A LOCATE MAP AND SOURCE LISTING WILL HELP YOU DEBUG YOUR CODE IF
PROBLEMS ARISE . THIS IS THE TIME TO GET THE LISTINGS OUT

YOU ARE NOW READY TO "BOOT" YOUR NEWLY CREATED SYSTEM

IF YOUR EXECUTION VEHICLE IS THE SAME AS THE DEVELOPMENT STATION
THEN:

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM '
.B /"TEAM NAME"/LAB6/RMXS6

IF YOUR EXECUTION VEHICLE DIFFERS FROM THE DEVELOPMENT STATION
THEN:

-COPY THE NEWLY CREATED BOOTABLE SYSTEM INTO A FLOPPY.
(COPY :LAB:RMX86 OVER :FDO:RMX86)

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM
.B /RMX86

* THE 957 DEBUG MONITOR IS PRESENT AND CAN BE USED TO DEBUG
YOUR CODE IF NESSESARY. PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

.* GOOD LUCK...!

11-13

CHAPTER 12
iMMX 800

Multi Message eXchange Software

o BASIC CONCEPTS
¢ CHANNELS
e MMX SYSTEM CALLS

® THE MMX JOB

iMMX 800
MESSAGE TRANSFER
MESSAGE SENDING AND RECEIVING MODEL

SENDING TASK RECEIVING TASK
TASK ENTRY POINT TASK ENTRY POINT
INITIALIZE TASK INITIALIZE TASK
> PERFORM FUNCTION .-~y WAIT FOR MESSAGE
SEND MESSAGEZ =~ PERFORM FUNCT ION
——HAIT FOR RESEONSE(Z::‘_'Z—— SEND_RESPONSE

RMX SOFTWARE IMPLEMENTS THIS MODEL OF INTER TASK COMMUNICATION
BETWEEN TASKS RESIDING ON THE SAME DEVICE (BOARD).

1MMX SOFTWARE GENERALIZES THE MODEL TO ACCOMODATE INTERDEVICE
COMMUNICATION,

12-1

BASIC CONCEPTS

e DEVICE - A PROCESSOR BOARD IN A SYSTEM

e PORT - A LOGICAL DELIVERY MECHANISM WHICH UTILIZED FIFO
ORDER (QUEUE)

oewiceo T loevieer . — }
| '
| vask| |rask il TASK TASK |
| 11 PORT |
| PORT port | |eomT EE?; ropT |
! 1 |
l r MIP taciiity] M l MIP tacility ll
L H)

R | | N
< MuLTIBUS)
h J L L 4

- i r MIP facility J}
| PORT |
| ' |
l n?xl |
| ' |
|oewee2]

12-2

(DATA BASE APPLICATION EXAMPLE

o 2 OPERATORS - 2 TERMINALS ACCESSING DATA FILES
e THE TERMINALS CONTROLLED BY RMX 80
e THE DATA BASE ("WINCHESTER") CONTROLLED BY RMX 86 BASIC 1/0 SYSTEM

85
())
: - -
< e :

seC™ 18

!
|
|
|
I
!
l
f
|
—_——

CHANNELS

o COMMUNICATION BETWEEN DEVICES IS IMPLEMENTED USING CHANNELS

- A CHANNEL CONSISTS OF A PAIR OF QUEUES
- ONE CHANNEL MUST BE DEFINED FOR EACH DEVICE PAIR
WHICH WILL COMMUNICATE WITH EACH OTHER

Enqueue . o
{owner) pu— RaD[*—— 3 8 M“ '
givel | take S —
rooo Request Queue
Descriptor { RaD
Sowrce | Requust Qveve | o] | oae RoEf- naE RQE
RQE
-
OEVICE oevice | Request Queue /1
— Entries '
ROE—1AGE | ROk nqe |-Reausst Queve | Source RQE
RQE
|| L&
toke | | give 16 bytes
N - ——t
. “Jreof = | towren

CHANNELS

e A CHANNEL MUST RESIDE IN A MEMORY SEGMENT ACCESSIBLE

BY BOTH DEVICES WHICH USE THAT CHANNEL

- GLOBAL MEMORY
- DUAL PORT MEMORY

| Device n I l Device m |
=T
MULTIBUS
12-5

MESSAGE TRANSFER (FULL DELIVER)

e 1) MESSAGE IS COPIED ON SEND

2) MESSAGE IS COPIED ON RECEIVE

188C* S8/124 ADORESSES
/ RIUX™ 30 MESSAGE ——
1) cory mlnuuu.s

\

RMX™ 88 SEGMENT

IMMX 800
MESSAGE TRANSFER

Ling
) N
T THMX 800 MESSAGE MANAGERS X &
GESPINSE EXCHANGE 1 4
e % e
1R S0/88 PESSAGE

HEADERS ARE NOT PASSED BETWEEN DEVICES
MEMORY SEGMENTS FOR MESSAGES ARE ALLOCATED BY
- IRMX 86 NUCLEUS :
- IRMX 80/88 FREE SPACE MANAGER (PMM)
TWO TRANSMISSION MODES ARE AVAILABLE
- TRANSPARENT
*MESSAGE RESIDES IN NON-SHARED MEMORY
*MESSAGE IS COPIED PRIOR TO TRANSMISSION
*COPIED ALSO AT RECEIPT
- NON-TRANSPARENT
*MESSAGE IS ACCESSIBLE BY BOTH DEVICES
*COPY ONLY ON RECEIPT

SUPPORTED SINGLE BOARD COMPUTERS

IRMX 80 IRMX 88 IRMX 86
OPERATING OPERATING OPERATING
SYSTEM SYSTEM SYSTEM
1SBC 80/24 ISBC 86/05 ISBC 86/05
ISBC 80/30 ISBC 86/12A | 1ISBC 86/12A
ISBC 544 ISBC 86/14 ISBC 86/14
ISBC 569 ISBC 86/30 ISBC 86/30
ISBC 88/25 ISBC 88/25
ISBC 88740 ISBC 88/40
ISBC 88/45 ISBC 88/45

12-8

IMMX 800

o COMES IN THREE VERSIONS

- OPERATION UWDER IRMX 80 NUCLEUS
*1MMX 800/80

- OPERATION UNDER IRMX 88 NUCLEUS
*IMMX 800/880 FOR NON-MEGABYTE SUPPORT
*IMMX 800/881 FOR MEGABYTE SUPPORT

-OPERATION UNDER 1RMX 86 NUCLEUS
*IMMX 800/86

o ALL THREE VERSIONS PRESENT IDENTICAL USER INTERFACES

12-9

SOFTWARE MEMORY REQUIREMENTS

EXECUTIVE K BYTES
IRMX 80 OPERATING SYSTEM 3,7K BYTES
IRMX 88 OPERATING SYSTEM
128K SUPPORT 4,8K BYTES
1MB SUPPORT
“COMPACT” 5.5K BYTES
“|ARGE” 6.3K BYTES
1RMX 86 OPERATING SYSTEM 6.6K BYTES

12-10

4 APPLICATION EXAMPLE x

® WHEN AN OPERATOR ENTERS A REQUEST AT A TERMINAL, THE FOLLOWING
SEQUENCE OCCURS:
1. A TASK ON THE ISBC 80/24 BOARD IN THE TERMINAL BUILDS A MESSAGE
THAT MEETS IRMX 80 MESSAGE-FORMAT REQUIREMENTS AND ISSUES A
CAXFER CALL TO MMX 80. (CQXFER IS THE NAME OF THE IMMX 80
TRANSFER PROCEDURE).

MMX 80 TRANSFERS THE MESSAGE TO MMX 86 ON THE 1SBC 86/12A BOARD,
MMX 86 REFORMATS THE MESSAGE AND PASSES IT TO AN IRMX 86 TASK.
THE 1/0 SYSTEM PERFORMS THE NECESSARY 1/0 OPERATIONS FOR THE TASK.

THE TASK PUTS THE DATA IN A MESSAGE THAT SATISFIES RMX 86 FORMAT
CONVENTIONS AND ISSUES A CQXFER CALL TO MMX 86.

MMX 86 TRANSFERS THE MESSAGE TO MMX 80 ON THE 1SBC 80/24 BOARD.

MMX 80 REFORMATS THE MESSAGE TO MEET IRMX 80 FORMAT REQUIREMENTS
AND PASSES IT TO THE IRMX 80 TASK.

8. THE TASK EXTRACTS THE DATA FROM THE MESSAGE AND SENDS IT TO
THE TERMINAL.

e WwN

N o

12-11

(: IMMX SYSTEM CALLS \

FUNCTION NAME DESCRIPTION

FIND PORT CQFIND FIND A PORT AND RETURN A CONNECTION-ID.

ACTIVATE PORT - CQACTV ACTIVATE A PORT FOR RECEIVING MESSAGES FROM
OTHER TASKS.

TRANSFER MESSAGE COXFER TRANSFER A MESSAGE TO A PORT IDENTIFIED BY
THE CONNECTION-ID.

DEACTIVATE PORT CQDACT DEACTIVATE PORT. FURTHER MESSAGES ARE
RETURNED TO THE SENDER.

LOSE CQLOSE LOSES A CONNECTION TO A PORT.

12-12

WHAT IS MIP?

® THE MULTIBUS INTERPROCESSOR PROTOCOL (MIP) IS A SPECIFICATION
FOR A SET OF MECHANISMS AND PROTOCOLS.

e PROVIDES AN EXCHANGE OF DATA AMONG TASKS EXECUTING ON VARIOUS
SINGLE-BOARD COMPUTERS.

Non-MIP Device Non-MIP Device

12-13

MESSAGE MANAGER

o FUNCTIONALITY FROM USER VIEWPOINT

PRODUCER _ CONSUMER
ACTIVATE
| . SYSTEM PORT
FIND A
CONNECT ION RECEIVE
TRANSFER MESSAGE
A MESSAGE
CLOSE THE
CONNECTION
]
t-ACTIVATE
y SYSTEM PORT
Y

12-14

THREE-LEVEL INTERFACE STRUCTURE

o THE VIRTUAL LEVEL, BY WHICH USER TASKS INTERACT WITH THE MIP FACILITY.

® THE PHYSICAL LEVEL, BY WHICH THE MIP FACILITIES ON DIFFERENT DEVICES
INTERACT WITH EACH OTHER.

@ THE LOGICAL LEVEL, WHICH TRANSLATES BETWEEN THE VIRTUAL LEVEL AND

THE PHYSICAL LEVEL. |

VIRTUAL LEVEL LOGICAL LEVEL PHYSICAL LEVEL
Ineomln‘o

l Queves
Device 0
I Port

Queue

i)

Interface] TA’;K Device 1

Pracedures

t
ACTIVATE | l

Device n

Queue Turnaround
Queue I

Outoing
Request
Queues

DEACTIVATE

User Task

|
|
| 3
FIND |
Sending |] Device 0
|
|

=

TRANSFER Command

Ready |
Queue
7 our
TASK

Device 1

Device n

|
|
|
|

i

“\\

12-15

SIGNALING

o IMMX SOFTWARE SUPPORTS FOUR DIFFERENT SIGNALING MECHANISMS:

- MULTIBUS INTERRUPTS

- MEMORY MAPPED INTERRUPTS
- 10-PORT MAPPED INTERRUPTS
- POLLING

o A SOFTWARE HANDSHAKE THAT USES FLAGS IS ALSO EMPLOYED FOR
MORE EFFICIENT THROUGH PUT.

" - E.c. A QUEUE KNOWN TO BE EMPTY IS NOT EXAMINED BY INSTASK.

12-16

(THE USER APP JOB AND MMX 800/86

o A USER JOB MUST LINK TO A SET OF INTERFACE PROCEDURES

o THESE PROCEDURES ARE IN A LIB NAMED R4LINF.LIB OR R4CINF.LIB

1///’7

USER APP 1

RUXINF.LIB

12-17

(, IMMX 800 IN AN RMX86 ENVIRONMENT

L

N\

ANNNNNNNNNNN

21716/

Z 2 USER USER
j MMX APP APP
% 1 2

o MMX SOFTWARE IS A JOB IN THE SYSTEM

® THERE IS AN MMX JOB IN EACH SYSTEM OF EACH DEVICE

_

"12-18

STEPS IN BUILDING THE MMX JOB
1. BUILD A CONFIGURATION FILE NAMED ‘RUCNFG.P86.
2. COMPILE AND PRODUCE AN OBJECT MODULE.
3. LINK THE MODULE TO A SET OF MMX LIBS.
4, LOCATE THE LINKED MODULE TO AN ABSOLUTE ADDRESS.
5, ENTER A "USER JOB” IM ICU86 FOR THE MMX JOB.

12-19

THE CONFIGURATION MODULE (R4CNFG.P86)

o THE CONFIGURATION MODULE IS A SET OF STRUCTURES.

o THESE STRUCTURES CONTAIN INFORMATION ABOUT THE CONFIGURATION
AND REQUIREMENTS OF YOUR SYSTEM.

o THESE STRUCTURES FALL INTO THREE CATERORIES:

- SYSTEM LEVEL DECISIONS
- DEVICE LEVEL DECISIONS
- PORT LEVEL DECISIONS

12-20

EXERCISE

¢ THE CONFIGURATION CHAPTER IN THE LMMX800 REFERENCE
MANUAL DESCRIBES EACH OF THE STRUCTURES IN DETAIL,

¢ WITH THE AID OF YOUR INSTRUCTOR FILL IN THE BLANKS

TO ACCOMODATE THE TWO RMX86 DEVICE EXAMPLE,

12-21

AN EXAMPLE CONFIGURATION FOR TWO RMX86 DEVICES

o MEMORY MAP FOR OUR EXAMPLE:

SBC 964

SHARED
MEMORY

(DEVICE g) 1D00BH

FFFFH | mem pooL
ROOT JOB
MMX JOB PRIVATE

APP JOB

NUCLEUS

on | VECTOR TABLE o

FFFFH

SBC 86/12A

(DEVICE 1)

MEM POOL

ROOT JOB

MMX JOB

APP JOB

NUCLEUS

VECTOR TABLE

SBC 86/12A

PRIVATE

12-22

~

EXAMPLE CONFIGURATION FOR TWO RMX86 DEVICES

® SEND/RECEIVE ARCHITECTURE

~—+ REQUEST QUELE

—— IMMX PORT
RMX 86 RMX 86
 PRODUCER st & M-e{consumer
M M
X X
CONSUMER [+ o PRODUCER
12-23

EXERCISE (CONTINUED)

DECLARE CQDVCS BYTE PUBLIC
DATA ()

DECLARE CQSKTS BYTE PUBLIC
DATA ();

DECLARE CAPRTS BYTE PUBLIC
DATA ()
DECLARE CQMDLY WORD PUBLIC

DATA ();

DECLARE CQITWT WORD PUBLIC
DATA ();

12-24

EXERCISE (CONTINUED)

DECLARE DSDT () DSD$ENTRY$TYPE
PUBLIC
DATA (___)
);
DECLARE LPT$ROM () LPT$ROMSENTRYS$TYPE
PUBLIC
DATA ()
DECLARE LPT$RAM (_____) LPT$RAMSENTRYS$TYPE
PUBLIC;
12-25
EXERCISE (CONTINUED)
DECLARE DCM$ROM () DM$ROMSENTRYS$TYPE
PUBLIC
DATA (,
);
DECLARE DCM$RAM () DM$RAMSENTRY$TYPE
PUBLIC;
DECLARE CQSGLY WORD PUBLIC
DATA ();
DECLARE CQIDPD WORD PUBLIC

DATA (

_)

12-26

EXERCISE (CONTINUED)

DECLARE SFT () SFT$ENTRY$TYPE
PUBLIC
DATA (

7

vl

4

@@CEH,
@034
@0H,
@0ggH,
Q000H,
@ogH,
(000H,
0008H) ;

DECLARE CIDSS BYTE PUBLIC
DATA ();

DECLARE IDST () IDSS$ENTRYS$TYPE
PUBLIC
DATA ()i

12-27

EXERCISE (CONTINUED)

DECLARE CAPLHS BYTE PUBLIC

DATA ()
DECLARE PLHTBL () POOLSENTRYS$TYPE PUBLIC;
DECLARE CQBLKS BYTE PUBLIC
DATA ();
DECLARE BLKTBL BLOCKS$ENTRYS$TYPE
PUBLIC
DATA (s

¥

12-28

*kkadkk | AB SEVEN (MMXB00/86 SYSTEM) PART A kkikssk
JBJECTIVES:
EXECUTE A STUDENT MMX800/86 APPLICATION JOB IN AN RMX86 0.S. ENVIROMENT
INTRODUCE (MMX800/86) SYSTEM CALLS:
- CQ$ACTV
- CQ$FIND
- CQ$XFER

CREATE SOURCE CODE:

- A SOURCE FILE NAMED START.P86

- A SOURCE FILE NAMED MMXLAB.P86
COMPILE (PLM86), LINK, AND LOCATE AN APPLICATION JOB, THAT WILL CALL UPON
THE MMX800/86 TO COMMUNICATE WITH AN EXTERNAL DEVICE

(THE TRUTH IS THAT WE WILL ONLY USE ONE DEVICE , AND THAT DEVICE WILL
COMMUNICATE WITH ITSELF...)

STEP1:

USE THE ATTACH$FILE COMMAND TO ATTACH THE DIRECTORY NAMED (/"TEAM NAME"/LAB7)
AS THE LOGICAL NAME (:LAB:)

- AFILE /"TEAM NAME"/LAB7 AS :LAB:
* FOR THE REST OF THIS LAB WE WILL USE THIS LOGICAL NAME *

=

(root)

APPLI-

MMX
CATION (SDB)

800

Light Box

e USE MMX 800/86 SYSTEM CALLS
o COMMUNICATION TO A LIGHT BOX
e SIMULATE INTERDEVICE COMMUNICAT ION

¥kkkkkx | AB SEVEN (MMX800/86 SYSTEM) PART A *k¥kikx
STEP2:

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:MMXLAB.P86
WITH THE “"ALTER" TEXT EDITOR

- ALTER :LAB:MMXLAB.P86

* THIS SOURCE FILE IS THE APPLICATION TASK THAT CONFORMS TO THE FOLLOWING
FLOWCHART

———
--
--
--
--
--

- s e - An G D D S P W D P G WD P W R A S R S D R S WD R S T . GR D W D R eD R R S T R WD S R W e e e

* DELETE SELF **

12-30

STEP3:

*xkxdxk | AB SEVEN (MMX800/86 SYSTEM) PART A. *¥kikx

ROOT JOBS ABSOLUTELY ADDRESS THE STARTING LOCATION OF THE STUDENT'S
JOB CODE. THE ENTRY POINT MAY VARY IF INTERNAL PROCEDURES OR
CHARACTER CONSTANTS ARE USED.

FOR THIS REASON IT IS ADVISABLE TO CREATE AND LINK A START TASK TO
THE REST OF THE APPLICATION CODE TO FIX THE ENTRY POINT'S OFFSET
INTO THE CODE

THIS APPLICATION JOB WILL BE A FIRST LEVEL JOB, THIS REQUIRES
THAT A TASK WITHIN THIS JOB MAKE A CALL TO RQ$SENDSINIT$TASK
TO RESUME THE ROOT TASK

"IN ORDER TO DEBUG OUR CODE BEFORE IT “CRASHES" WE MAY WISH TO

INVOKE THE 957 MONITOR AT THE START OF OUR JOB'S EXECUTION.

THIS CAN EASILY BE ACCOMPLISHED BY PLACING A "CAUSE$INTERRUPT(3)"
INSTRUCTION AT THE BEGINNING OF OUR CODE (IN OUR START TASK).

WE WILL USE THE SAME START TASK THAT WE USED IN LAB TWO

-COPY /RII5.0/LAB2/START.P86 TO :LAB:START.P86

12-31

akwkkk LAB SEVEN (MMXS00/86 SYSTEM) PART A ks
STEP4:

COMPILE THE SOURCE FILES (START.P86 AND MMXLAB.P86)
- PLM86 :LAB:START.P86
- PLM86 :LAB:MMXLAB.P86

* IF ANY ERRORS OCCURRED DURING COMPILATION , YOU MUST FIX AND
RECOMPILE BEFORE CONTINUING :

* IF COMPILATION IS SUCCESFUL THE COMPILER WILL CREATE FOR EACH OF
THE SOURCE FILES:
- A LIST FILE NAMED ":LAB:(SOURCE).LST"
- AN OBJECT FILE NAMED ":LAB:(SOURCE).0BJ"

LINK THE OBJECTS WITH THE INTERFACE LIBRARIES NEEDED (LARGE)

LINK86 :LAB:/START.0BJ,%
:LAB:/MMXLAB.0BJ,%
/MMX86 /RALINF.LIB,&
/RMX5.0/DUTILS/EPIFL.LIB,&
/RMX5.0/DUTILS/IPIFL.LIB,&
/RMX5.0/DUTILS/RPIFL.LIB &

. TO :LAB:/JOB.LNK &

NOMAP

LOCATE THE LINKED MODULE TO AN ABSOLUTE ADDRESS

LOC86 :LAB:/JOB.LNK &
TO :LAB:/LABJOB &
SC(3) SEGSIZE(STACK(0)) &
ORDER(CLASSES(CODE,DATA,STACK)) &
ADDRESSES(CLASSES(CODE(1040H))) &
NOINITCODE &
OC(PURGE)

AND FINALLY ADD THE LOCATED MODULE TO THE OTHER PRECONFIGURED
PARTS OF OUR SYSTEM

LIB86

DELETE :LAB:RMX86(STARTMOD)

ADD :LAB:LABJOB to :LAB:RMX86
EXIT

* :LAB:RMX86 IS A "GIVEN" FILE THAT CONTAINS:
- A PRECONFIGURED NUCLEUS

A PRECONFIGURED MMX800/86
A PRECONFIGURED ROOT JOB
A PRECONFIGURED SDB

* THE STUDENT MAY "OPTIONALLY" USE A "GIVEN" SUBMIT FILE THAT WILL
COMPILE , LINK , LOCATE AND ADD THE FINAL MODULE TO THE SYSTEM

- SUBMIT :LAB:JOB.CSD

12-32

*xkkkkk | AB SEVEN (MMX800/86 SYSTEM) PART A whkkrek
>TEPS:

* A LOCATE MAP AND SOURCE LISTING WILL HELP YOU DEBUG YOUR CODE IF
PROBLEMS ARISE . THIS IS THE TIME TO GET THE LISTINGS OUT

YOU ARE NOW READY TO "BOOT" YOUR NEWLY CREATED SYSTEM

IF YOUR EXECUTION VEHICLE IS THE SAME AS THE DEVELOPMENT STATION .
- THEN:

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM
.B /"TEAM NAME"/LAB7/RMX86

IF YOUR EXECUTION VEHICLE DIFFERS FROMlTHE DEVELOPMENT STATION
THEN:

-COPY THE NEWLY CREATED BOOTABLE SYSTEM INTO A FLOPPY.
(COPY :LAB:RMX86 OVER :FDO:RMX856)

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM
.B /RMX86

* THE 957 DEBUG MONITOR IS PRESENT AND CAN BE USED TO DEBUG
YOUR CODE IF NESSESARY. PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

12-33

kkkkx LAB SEVEN (MMX800/86 SYSTEM) PART B **¥kixx
OBJECTIVES:
EXECUTE A STUDENT MMX800/86 APPLICATION JOB IN AN RMX86 0.S. ENVIROMENT

LEARN HOW TO BUILD A CONFIGURATION FILE , AND AN MMX86 JOB TO REPLACE THE
. ONE GIVEN IN THE PREVIOS LAB (LAB SEVEN PART A)

CREATE SOURCE CODE:
- A SOURCE FILE NAMED RACNFG.P86

STEP1:

USE THE ATTACH$FILE COMMAND TO ATTACH THE DIRECTORY NAMED (/"TEAM NAME"/LAB7)
AS THE LOGICAL NAME (:LAB:)

- AFILE /"TEAM NAME"/LAB7 AS :LAB:
* FOR THE REST OF THIS LAB WE WILL USE THIS LOGICAL NAME *

STEP2:

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED. FOR YOU) NAMED :LAB:R4CNFG.P86
WITH THE "ALTER" TEXT EDITOR

- ALTER :LAB:R4CNFG.P86
* THIS SOURCE FILE IS THE MMX86 CONFIGURATION FILE

12<34

**kxxxx | AB SEVEN (MMX800/86 SYSTEM) PART B *kkxk
>TEP3:

COMPILE THE SOURCE FILE (R4CNFG.P86)
- PLM86 :LAB:RACNFG.P86

~* IF ANY ERRORS OCCURRED DURING COMPILATION » YOU MUST FIX AND
RECOMPILE BEFORE CONTINUING

* ELSE THE FOLLOWING FILES WILL BE CREATED

- A LIST FILE NAMED ":LAB:(SOURCE).LST"
- AN OBJECT FILE NAMED ":LAB:(SOURCE).0BJ"

LINK THE OBJECTS WITH THE INTERFACE LIBRARIES NEEDED (LARGE)

LINK86 /MMX86/R4DRVR.LIB(MBEGIN) ,&
:LAB:R4CNFG.0BJ,&
/MMX86 /R4DRVR.LIB
/MMX86 /R4XMGR.L 1B
/MMX86/R4957P.L1B
/MMX86 /R4PMM.LIB R
/MMX86 /R4UTIL.LIB
/RMX5.0/DUTILS/RPIFC. LIB &
TO :LAB:JOB.LNK &
NOMAP NOTYPE

2°(2°7‘2° Qo o

LOCATE THE LINKED MODULE TO AN ABSOLUTE ADDRESS

LOC86 :LAB:JOB.LNK &
TO :LAB:MMXJOB &
SC(3) SERSIZE(STACK(0)) &
ORDER(CLASSES(CODE,DATA,STACK)) &
ADDRESSES(CLASSES(CODE(3000H)\)
NOINITCODE &
OC(PURGE)

AND FINALLY ADD THE LOCATED MODULE TO THE OTHER "PRECONFIGURED
PARTS OF OUR SYSTEM

.IB86

JELETE :LAB:RMX86(MBEGIN) .

\D?T :LAB:MMXJOB to :LAB:RMX86
X

* THE STUDENT MAY "OPTIONALLY" USE A "GIVEN" SUBMIT FILE THAT WILL
COMPILE , LINK , LOCATE AND ADD THE FINAL MODULE TO THE SYSTEM

- SUBMIT :LAB:MMXJOB.CSD

12-35

*x*Fkxkx |AB SEVEN (MMX800/86 SYSTEM) PART B ki

STEPS:

* A LOCATE MAP AND SOURCE LISTING WILL HELP YOU DEBUG YOUR CODE IF
PROBLEMS ARISE . THIS IS THE TIME TO GET THE LISTINGS OUT

YOU ARE NOW READY TO "BOOT" YOUR NEWLY CREATED SYSTEM

IF YOUR EXECUTION VEHICLE IS THE SAME AS THE DEVELOPMENT STATION
THEN:

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM
.B /"TEAM NAME"/LAB7/RMX86

IF YOUR EXECUTION VEHICLE DIFFERS FROM THE DEVELOPMENT STATION
THEN:

-COPY THE NEWLY CREATED BOOTABLE SYSTEM INTO A FLOPPY.
(COPY :LAB:RMX86 OVER :FDO:RMX86)

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM
.B /RMX86

* THE 957 DEBUG MONITOR IS PRESENT AND CAN BE USED TO DEBUG
YOUR CODE IF NESSESARY. PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

12-36

CHAPTER 13

HUMAN INTERFACE

e COMMANDS
o SYSTEM CALLS
e THE RESIDENT USER

e DEFINITION FILES

’/’f

PERIPHERAL

/o]=

HUMAN INTERFACE COMMANDS\

RMX BOX

o COMMANDS ARE PROGRAMS (COPY, RENAME

«veaETCY)

¢ THESE PROGRAMS ARE JOBS CREATED BY THE H.I.
e LOADED BY THE HUMAN INTERFACE UPON OPERATOR‘S REAQUEST.

INTEL PROVIDES A SET OF COMMANDS

ATTACHDEVICE DIR
ATTACHFILE DISKVERIFY
BACKUP DOWNCOPY
CoPY FORMAT
CREATEDIR INITSTATUS
DATE

DEBUG

DELETE

DETACHDEVICE

DETACHFILE

JOB DELETE
LOCK
PERMIT
RENAME
RESTORE
SUBMIT
SUPER
TIME
UPCOPY
VERSION

e A COMPLETE DESCRIPTION OF THESE COMMANDS ARE FOUND IN THE

IRMX 86 OPERATOR’S MANUAL.

SYSTEM CALLS

A SET OF CALLS ARE AVAILABLE TO AID IN THE CREATION OF CUSTOM
COMMANDS .

CGETINPUT $CONNECTION C$GET$COMMAND $NAME

CGETOUTPUT$CONNECTION C$FORMAT$EXCEPTION
CGETCHAR C$SEND$CO$RESPONSE
CGETINPUT$PATHNAME C$SENDEORESPONSE
CGETPARAMETER C$CREATE$COMMAND$CONNECTION
CGETOUTPUT $PATHNAME C$DELETE$COMMAND$CONNECTION
CSETPARSE$BUFFER ’ C$SEND$COMMAND

A COMPLETE DESCRIPTION OF THESE H.I, SYSTEM CALLS ARE FOUND IN
THE IRMX86 HUMAN INTERFACE REFERENCE MANUAL.

HUMAN INTERFACE INITIAL PROGRAM

o INTEL PROVIDES THE DEFAULT RESIDENT INITIAL PROGRAM.

¢ THIS PROGRAM IS A STANDARD COMMAND LINE INTERPRETER,

o YOU MAY PROVIDE YOUR OWN INITIAL PROGRAM DURING CONFIGURATION,

THE RESIDENT USER

¢ THE RESIDENT USER MAY BE:

~THE ONLY USER IN THE SYSTEM
-THE FIRST USER IN A MULTI-ACCESS SYSTEM

o RESIDENT USER IS DEFINED DURING CONFIGURATION BY:

-TERMINAL DEVICE NAME
-MAX TASK PRIORITY
-USER 1D

~INITIAL PROGRAM
-DEFAULT PREFIX

-POOL SIZE

MULTI-ACCESS USER DEFINITION

e OTHER USERS ARE DEFINDED IN FILES THAT DESCRIBE THE
OPERATOR AND HIS TERMINAL.

e THE PATHNAMES FOR THESE FILES ARE:

CONF1G/TERMINALS (TERMINAL DEFINITION FILE)
CONF1G/USER/ID# (USER DEFINITION FILE)

¢ ID# IS THE ACTUAL ID NUMBER FOR THAT PARTICULAR USER
-E.G. CONFIG/USER/0@82

o IF THESE FILES DO NOT EXIST, THE HUMAN INTERFACE WILL
COME UP IN SINGLE-ACCESS MODE.

TERMINAL DEFINITION FILE

o # OF TERMINALS
o DEVICE - NAME
* USER - ID
o PARTITION - SIZE :SD: CONF1 G/TERMINALS
o MAX - PRIORITY EXAMPLE OF FOUR TERMINALS
o UNIT - PATHNAME 4
‘ T1,42,98 <CR>
10,65535,80,210, :SD:SPECLI <CR>
73,85,64,220 <CR>
72,85,64,225 <CR>
13-7
USER DEFINITION FILE
o USER-ID
o PASSWORD
o DEFAULT-PARTITION
o MAX-PARTITION
o MAX-PRIORITY :SD: CONF16/USER /65535
L EXAMPLE OF ONE USER
o INIT-PATHNAME 65535, PASS, 614 <CR>
120 <CR>
190 <CR>

:SD: USER/65535 <CR>

A COMPLETE DESCRIPTION OF THESE FILES IS FOUND IN THE IRMX 86
CONFIGURATION GUIDE,

*xkkkkx | AB EIGHT (H.I. CONFIG THROUGH ICU) *¥*sk
JBJECTIVES:

THE STUDENT WILL USE THE INTERACTIVE CONFIGURATION UTILITY (ICU)
TO CREATE A SINGLE ACCESS SYSTEM

THIS SYSTEM WILL CONTAIN
.- A NUCLEUS JoB

A BIOS JOB

A EIOS J0B

A LOADER JOB

A HUMAN INTERFACE JOB

STEP1:

USE THE ATTACH$FILE COMMAND TO ATTACH THE DIRECTORY NAMED (/"TEAM NAME"/LABS8)
AS THE LOGICAL NAME (:LAB:)

- AFILE /"TEAM NAME"/LABS AS :LAB:

* FOR THE REST OF THIS LAB WE WILL USE THIS LOGICAL NAME *

13-¢

*xkdkkkk LAB EIGHT (H.I. CONFIG THROUGH ICU) *#kxkx
STEP2:

THE (ICU) IS INVOKED BY TYPING THE FOLLOWING
-1CU86 :LAB:ICU.DEF

* WHERE ICU.DEF IS THE NAME OF THE FILE WE HAVE CHOSEN TO CONTAIN .
THE INFORMATION NEEDED TO CONFIGURE OUR 0.S.

WHEN THE ICU SIGN ON ENTER THE COMMAND C , TO MODIFY THE SCREENS
STEP3:

* TRY FILLING THE SCREENS WITHOUT LOOKING AT THESE FIRST,
THEN MATCH YOUR ENTRIES TO THE ONES GIVEN HERE

* TF YOU DO NOT UNDERSTAND AN ENTRY TYPE ?
- E.G. osP?<cr>

* SOME OF THE SCREENS NEEDED FOR OUR LAB EIGHT CONFIGURATION FOLLOW

Type : RAM = 0104H, 24FFH
Type : RAM = 26B6H, F7FFH

Human Interface

(ICL) Initial Command Line Size (0-OFFFFH) 0100H
(CNM) Command Name Length (0-255) . 0030H
(SYS) System Directory (1-45 characters)

+SD:SYSTEM

(DRP) Default Resident Initial Program (Yes/No) Yes
(RIP) Resident Initial Program (1-45 characters)

Default
(CDN) Configuration Device Name (1-14 chars) :SD:

(PMI) Human Interface Pool Minimum (0-OFFFFH) 0260H
(PMA) Human Interface Pool Maximum (O-OFFFFH) FFFFH

(HIR) Human Interface in ROM (Yes/No) No

HI Jobs

(MIN) Jobs Minimum Memory (0-OFFFFH pages) 0200H
(MAX) Jobs Maximum Memory (0-OFFFFH pages) 0000H

{NPX) Numeric Processor Extension Used (Yes/No) Yes

Resident User

(TDN) Terminal Device Name (1-12 Characters) TO
(MTP) Maximum Task Priority (0-OFFH) OOAOH
(UID) User ID Number (0-OFFFFH) 0000H
(MIN) Minimum Memory Required (0-OFFFFH) 1000H
(MAX) Maximum Memory Required (0-OFFFFH) FFFFH
(IPP) Initial-Program Pathname (RESIDENT/1-45 Characters)
RESIDENT
(DEF) Default Directory (1-45 characters)
:SD:USER

13-10

*kkkxkk | AB EIGHT (H.I. CONFIG THROUGH ICU) *xxikskx

Prefixes

Prefix : 1-45 characters
Prefix : :9$:

Prefix : :PROG:

Prefix : :SYSTEM:

Prefix : :LANG:

Prefix :

HI Logical Names
Logical Name : logical_name,path_name
(1-12 Chars ,1-45 Chars)

Logical Name : WORK, :SD:USER/WORK
Logical Name : LANG, :SD:LANG
Logical Name : PROG, :SD:USER/PROG

E10S _
(ASC) A11 Sys Calls in EIOS) Req
(ABR) Automatic Boot Device Recognition (Yes/No) Yes

(DLN) Default System Device Logical Name (1-12 characters) SD
(DPN) Default System Device Physical Name (1-12 characters) IWO
?DFD) Default System Device File Driver (Phys/Str/Named) Named

(DO) Default System Device Owners ID (0-OFFFFH) 0000H
(EBS) Internal Buffer Size (0-OFFFFh) 0400H
(DDS) Default IO Job Directory Size (5-OFFOh) 0020H
(ITP) Internal EIOS Task's Priorities (0-OFFH) 0083H
(PMI) EIOS Pool Minimum (0-OFFFFH) ' 0180H
(PMA) EIOS Pool Maximum (O-OFFFFH) 01804
(EIR) Extended I1/0 System in ROM (Yes/No) No

Logical Names
Logical Name : logical_name,device name,file_driver,owners-id
(1-12 Chars ,1-14 Chars ,Physical/Stream/Named, O-OFFFFH)
Logical Name : BB, BB, Physical, OOOOH
Logical Name : STREAM, STREAM, Stream, 0OOOH
Logical Name : FDO, WFDDO, Named, FFFFH

Intel Terminal Driver

(IIL) Input Interrupt Level (Encoded) 0068H
(OIL) Output Interrupt Level (Encoded) 0078H
(UDP) USART Data Port (0-OFFFFH) 0OD8H
(USP-) USART Status Port (0-OFFFFH) OODAH
SIRP) 8253 Input Rate Port (0-OFFFFH) 00D4H
(ICP) 8253 Input Control Port (0-OFFFFH) 00D6H
(IRC) 8253 Input Counter Number (0-2) 0002H
(IRM) Input Rate Maximum (0-OFFFFFFFFH) 00012CNOH
(ORP) 8253 Qutput Rate Port (0-OFFFFH) 0000H
(OCP) 8253 Output Control Port (0-OFFFFH) 0000H
(ORC) 8253 Qutput Counter Number (0-2) 0000H
(ORM) Output Rate Maximum (0-OFFFFFFFFH) 00000000H
Intel iSBC 215/218 Driver .

(IL) Interrupt Level (Encoded Level) 0058H
(ITP) Interrupt Task Priority (0-OFFH) 0082H
(WIP) Wakeup I/0 Port (O-OFFFFH) 0100H

13-11

xxkkkx LAB EIGHT (H.I. CONFIG THROUGH ICU) #¥dikkix _

iSBC 215/218 Unit Information
Unit Info Name (1-17 Chars)
Maximum Retries (0-OFFFFH)
Cylinder Size (0-OFFFFH)
Number of Cylinders (0-OFFFFH)

uinfo_215gen
0009H
0000H
0001H

Number of Fixed Platters/Disk (0-OFFH) 0001H
Number of Remove Platters/Disk (0-OFFH) 0O0OOH

Number of Sectors/Track (0-OFFFFH)

) Number of Aux. Cylinders (0-0FFH)

Starting Sector Number (0-OFFFFFFFFH)
Bad Track Information (Yes/No)

iSBC 215/218 Unit Information
Unit Info Name (1-17 Chars)
Maximum Retries (O-OFFFFH)
Cylinder Size (0-OFFFFH)
Number of Cylinders (0-OFFFFH)

000CH
0001H

00000000H
Yes

uinfo_215w
0009H
0000H
0208H

Number of Fixed Platters/Disk (0-OFFH) 0OOS5H
Number of Remove Platters/Disk (0-OFFH) 0OOOH

Number of Sectors/Track (0-OFFFFH)
Number of Aux. Cylinders (0-OFFH)

Starting Sector Number (0-OFFFFFFFFH)
Bad Track Information (Yes/No)

iSBC 215/218 Unit Information
Unit Info Name (1-17 Chars)

Maximum Retries (0-OFFFFH)
Cylinder Size (0-OFFFFH) '
Number of Cylinders (0-OFFFFH)

000CH
000AH

00000000H
Yes

uinfo_215pt
0009H
0000H
01D2H

Number of Fixed Platters/Disk (0-OFFH) 0O003H
Number of Remove Platters/Disk (0-OFFH) OOOQH

~ Number of Sectors/Track (0-OFFFFH)
} Number of Aux. Cylinders (0-0FFH)

Starting Sector Number (0-OFFFFFFFFH)
Bad Track Information (Yes/No)

iSBC 215/218 Unit Information

) Unit Info Name (1-17 Chars)

Maximum Retries (0-OFFFFH)
Cylinder Size (0-OFFFFH)
Number of Cylinders (0-OFFFFH)

000CH
0006H

00000000H
Yes

uinfo_215f
0009H
0000H
004DH

) Number of Fixed Platters/Disk (0-OFFH) 0O0OOH

Number of Remove Platters/Disk (0-OFFH) 0001H

Number of Sectors/Track (0-OFFFFH)
Number of Aux. Cylinders (0-0FFH)
Starting Sector Number (0-OFFFFFFFFH)
Bad Track Information (Yes/No)

001AH
00OO0H
00000000H
Yes

13-12

- Unit Info Name (1-17 Chars)

Jedekkededkok

iSBC 215/218 Unit Information

Maximum Retries (0-OFFFFH) 0009H
Cylinder Size (0-0FFFFH) 0000H
Number of Cylinders (0-OFFFFH) 004DH

) Number of Fixed Platters/Disk (0-OFFH) OOOOH
Number of Remove Platters/Disk (0-OFFH) 0002H
Number of Sectors/Track (0-OFFFFH) 001AH
Number of Aux. Cylinders (0-OFFH) 0000H
Starting Sector Number (0-OFFFFFFFFH) 00000000H
Bad Track Information (Yes/No) Yes

iSBC 215/iSBX 218 Device-Unit Information
Device-Unit Name (1-13 chars)

) Physical File Driver Required (Yes/No)

Named File Driver Required (Yes/No)
Single or Double Density Disks (Single/Double)

) Single or Double Sided Disks (Single/Double)

8 or 5 Inch Disks (8/5)
Granularity (0-OFFFFH)
Device Size (0-OFFFFFFFFH)

Unit Number on this Device (0-0FFH)
Unit Info Name (1-17 Chars)

) Update Timeout (0-OFFFFH)

Number of Buffers (nonrandom = O/rand = 1-OFFFFH)

) Fixed Update (True/False)

Max Buffers (0-0FFH)

iSBC 215/iSBX 218 Device-Unit Information
Device-Unit Name (1-13 chars)

) Physical File Driver Required (Yes/No)

Named File Driver Required (Yes/No)

Single or Double Density Disks (Single/Double)
Single or Double Sided Disks (Single/Double)

8 or 5 Inch Disks (8/5)

Granularity (0-OFFFFH)

Device Size (0-OFFFFFFFFH)

Unit Number on this Device (0-OFFH)

Unit Info Name (1-17 Chars)
Update Timeout (0-OFFFFH)
Number of Buffers (nonrandom =
Fixed Update (True/False)

Max Buffers (0-OFFH)

O/rand = 1-0OFFFFH)

13-13

uinfo_215fd

LAB EIGHT (H.I. CONFIG THROUGH ICU) ik

WO

Yes

Yes |
Single
Single

8

0400H
00000400H

- 0000H

uinfo_215gen
0064H
0006H
True
OOFFH

TWO
Yes
Yes
Single
Single
8

0400H
01DE2000H
0000H
uinfo_215w
0064H
0006H

True

OOFFH

*xkkxxx |AB EIGHT (H.I. CONFIG THROUGH ICU) **kkkk*

iSBC 215/1SBX 218 Device-Unit Information

) Device-Unit Name (1-13 chars)

Physical File Driver Required (Yes/No)

Named File Driver Required (Yes/No)

Single or Double Density Disks (Single/Double)
Single or Double Sided Disks (Single/Double)

8 or 5 Inch Disks (8/5)

Granularity (0-OFFFFH)

Device Size (0-OFFFFFFFFH)

Unit Number on this Device (0-0FFH)

Unit Info Name (1-17 Chars)
Update Timeout (0-OFFFFH)
Number of Buffers (nonrandom =

0/rand = 1-0FFFFH)

) Fixed Update (True/False)

Max Buffers (0-0FFH)

iSBC 215/1SBX 218 Device-Unit Information
Device-Unit Name (1-13 chars)

Physical File Driver Required (Yes/No)

Named File Driver Required (Yes/No)

Single or Double Density Disks (Single/Double)
Single or Double Sided Disks (Single/Double)

8 or 5 Inch Disks (8/5)

Granularity (0-OFFFFH)

Device Size (0-OFFFFFFFFH)

Unit Number on this Device (0-0OFFH)

) Unit Info Name (1-17 Chars)

Update Timeout (0-OFFFFH)
Number of Buffers (nonrandom =
Fixed Update (True/False)

Max Buffers (0-0OFFH)

O/rand = 1-OFFFFH)

iSBC 215/iSBX 218 Device-Unit Information -
Device-Unit Name (1-13 chars)

Physical File Driver Required (Yes/No)

Named File Driver Required (Yes/No)

Single or Double Density Disks (Single/Double)

) Single or Double Sided Disks (Single/Double)

8 or 5 Inch Disks (8/5)
Granularity (0-OFFFFH)

Device Size (0-OFFFFFFFFH)

Unit Number on this Device (0-0FFH)
Unit Info Name (1-17 Chars)

) Update Timeout (0-OFFFFH)

Number of Buffers (nonrandom =
Fixed Update (True/False)
Max Buffers (0-OFFH)

0/rand = 1-0FFFFH)

13-14

PWO

Yes

Yes ‘
Single
Single

8

0400H
0102CO00H
0000H
uinfo_215pt
0064H
0006H
True
OOFFH

WFO
Yes
Yes
Single
Single
8

0080H
0003E900H
0008H
uinfo_215f
0064H

- 000€H

True
OOFFH

WFDO

Yes

Yes
Double
Single

8

0100H
0007C500H
0008H
uinfo_215f
0064H
0006H
True
Q0FFH

*xxxxxx | AB EIGHT (H.I. CONFIG THROUGH ICU) ****xxx

.ntel iSBC 215/iSBX 218 Device-Unit Information

'NAM) Device-Unit Name (1-13 chars) WFDDO

'PFD)} Physical File Driver Required (Yes/No) Yes

'NFD) Named File Driver Required (Yes/No) Yes

'SDD) Single or Double Density Disks (Single/Double) Double

'SDS) Single or Double Sided Disks (Single/Double) Double

'EFI) 8 or 5 Inch Disks (8/5) 8

'GRA) Granularity (0-OFFFFH) 0100H

'DSZ) Device Size (0-OFFFFFFFFH) : 000F9700H

"UN) Unit Number on this Device (0-OFFH) 0008H

"UIN) Unit Info Name (1-17 Chars) uinfo_215fd

"UDT) Update Timeout (O-OFFFFH) 0064H

"NB) Number of Buffers (nonrandom = O/rand = 1-OFFFFH) 0006H

'FUP) Fixed Update (True/False) , True

'MB) Max Buffers (0-OFFH) O00FFH
*ekkdek THIS JOB SUPPLIES THE INTERRUPT FOR THE MONITOR *%%*

Jser Jobs

;ODS% Object Directory Size (0-OFFQOH) 000AH

'PMI) Pool Minimum (20H - OFFFFH) 0030H

'PMA) Pool Maximum (20H - OFFFFH) FFFFH

;MOB% Maximum Objects (1 - OFFFFH) FFFFH

'MTK) Maximum Tasks (1 - OFFFFH) FFFFH

"MPR) Maximum Priority (0 - OFFH) 0000H

'AEH) Address of Exception Handler (CS:IP) 0000H : 0000H

EM) Exception Mode (Never/Prog/Environ/A17) Never

'PV) Parameter Validation (Yes/No) Yes

'TP) Task Priority (0-OFFH) 0000H

"TSA) Task Start Address (CS:IP) 0080H:0002H

DSB) Data Seament Base (0-OFFFFH) 0000H

;SSA) Stack Segment Address (SS:SP) 0000H : 0000H

'SSY Stack Size (0-OFFFFH) 0200H

'NPX) Numeric Processor Extension Used (Yes/No) No

[nclﬁdes and Libraries
Yath Name (1-45 Characters)

(UDF)
(HIF)
(EIF)
(ALF)
(BIF)
(THF)
(NUF)
(ILF)
(CAF)
(DTF)

UDI Includes and Libs
/RMX5.0/DUD1/
Human Interface Includes and Libs
/RMX5.,0/DINCLSLIBS/
Extended I/0 System Includes and Libs
/RMX5.0/DINCLSLIBS/
Application Loader Includes and Libs
/RMX5,0/DLOADER/
Basic I/0 System Includes and Libs
/RMX5.0/DINCLSLIBS/
Terminal Handler and Debugger Includes and Libs
/RMX5.0/DDEBTH/
Nucleus and Root Job Includes and Libs
; /RMX5.0/DNUCLUS/
Interface Libraries
/RMX5.0/DUTILS/
Crash Analyzer Includes and Libs
/RMX5.,0/DUDI/
Development Tools Path Names

/LANG/
13-15

*xkkkkx | AB EIGHT (H.I. CONFIG THROUGH ICU) ¥k

STEP4:
AFTER YOU ENTER ALL OF THE SCREENS ENTER G TO GENERATE

EXIT THE ICU
SUBMIT THE ICU.CSD FILE TO GENERATE YOUR SYSTEM
-SUBMIT :LAB:ICU.CSD
STEPS:

YOU MUST NOW ADD THE SDB TO THE SYSTEM,
USING THE LIB86 UTILITY

-L1B86
DELETE :LAB:RMX86(INT3TASKMOD)
ADD /DINT3/INT3JOB to :LAB:RMX86
EXIT .
STEPG:
YOU ARE NOW READY TO "BOOT" YOUR NEWLY CREATED SYSTEM

IF YOUR EXECUTION VEHICLE IS THE SAME AS THE DEVELOPMENT STATION
THEN: ‘

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM
.B /"TEAM NAME"/LAB8/RMX86

IF YOUR EXECUTION VEHICLE DIFFERS FROM THE DEVELOPMENT STATION
THEN:

-COPY THE NEWLY CREATED BOOTABLE SYSTEM INTO A FLOPPY.
(COPY :LAB:RMX86 OVER :FDO:RMX86)

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM
.B /RMX86

13-16

CHAPTER 14

UNIVERSAL DEVELOPMENT INTERFACE

" SPECIFICATIONS

LIBRARIES |
DEVELOPMENT PROCESS
SYSTEM CALLS

WHAT /WHY UDI?
UNIVERSAL DEVELOPMENT INTERFACE

UDT IS A SPECIFICATION OF A SET OF PROCEDURE CALLS THAT ARE
USED TO REQUEST OPERATING SYSTEM FUNCTIONS.

FUNCTIONS ARE IMPLEMENTED BY MODULES THAT TRANSLATE FROM THE
UDI STANDARD TO THE ACTUAL OPERATING SYSTEM CALLS.

EACH INTEL OPERATING SYSTEM FOR THE 1APX 86,88 FAMILY PROVIDES
A UNIVERSAL DEVELOPMENT INTERFACE OR A SUBSET THEREOF.

UDI ™ ArqPFLLCATION PROGRAM

14-1

UDI FUNCTIONS

THE KINDS OF FUNCTIONS THAT ARE AVAILABLE THROUGH UDI PROCEDURE
CALLS INCLUDE:

CREATING AND BREAKING CONNECTIONS TO DATA FILES

OPENING, READING, SEEKING, WRITING, AND CLOSING DATA FILES
CONTROLLING PROGRAM EXECUTION

CONTROLLING MEMORY ALLOCATIONS

HANDLING SYSTEM EXCEPTION CONDITIONS

CONTROLLING THE PROCESSING OF CONSOLE INPUT & PARSING
COMMAND LINES '

e FETCHING THE CURRENT DATE AND TIME

14-2

LIBRARIES

THE IRMX 86 OPERATING SYSTEM SUPPORTS UDI BY PROVIDING
UDI INTERFACE LIBRARIES,

r
Lk | INTEL APPLICATION LANGUAGES (ASSEMBLY, PLM, PASCAL, FORTRAN)
\ RUN-TIME LIBRARIES
r
UDI JOB
LINK ¢
OPERATING SYSTEM
.
1APX 86, 88 HARDWARE
14-3
(SOFTWARE DEVELOPMENT PROCESS

(| CAREFUL!)

o YOU CAN MAKE OPERATING SYSTEM CALLS DIRECTLY FROM YOUR
APPLICATION (SUBJECT TO SYSTEM AND LANGUAGE RESTRICTIONS).

e IF YOU DO SO, HOWEVER, YOU MAY NOT BE ABLE TO TRANSPORT
YOUR APPLICATION TO ANOTHER OPERATING ENVIRONMENT.

o ADHERING TO UDI SPECIFICATIONS ENSURES THAT YOUR APPLICATION
REMAINS OPERATING-SYSTEM INDEPENDENT AND TRANSPORTABLE.

14-5

”" THE iRMX OPERATING SYSTEM CONSISTS OF A NUMBER OF SUBSYSTEMS ﬂ‘\\
RMX LAYERS DESCRIPTION
NUCLEUS THE CORE OF THE iRMX 86 OPERATING SYSTEM
AND IS REQUIRED FOR EVERY APPLICATION
SYSTEM
TERMINAL HANDLER PROVIDES A REAL-TIME INTERFACE BETWEEN
YOUR TERMINAL AND OTHER SOFTWARE.
BASIC 1/0 SYSTEM PROVIDES ASYNCHRONOUS FILE ACCESS
CAPABILITIES
EXTENDED 1/0 SYSTEM PROVIDES HIGH LEVEL, SYNCHRONOUS FILE
ACCESS CAPABILITIES '
APPLICATION PROVIDES THE CAPABILITY TO LOAD OBJECT
LOADER FILES INTO MEMORY FROM DISK
HUMAN- INTERFACE PROVIDES AN INTERACTIVE INTERFACE BETWEEN
\\“ A USER AND SOFTWARE

14-6

4 | . N
UDI CALLS AND iRMX 86 SYSTEM CALLS
UDI CALLS {RMX 86 SYSTEM CALLS SUBSYSTEMS
DQ$ALLOCATE RQ$CREATE$SEGMENT NUCLEUS
DQSATTACH RASSSATTACHSFILE EXTENDED 1/0 SYSTEM
DOSCHANGESEXTENSION | (NONE) (NONE)
DA$CLOSE RA$S$CLOSE EXTENDED 1/0 SYSTEM
DQ$CREATE RQ$SSCREATESFILE EXTENDED 1/0 SYSTEM
RA$SSGETSFILESSTATUS
DQ$DECODESEXCEPTION | RO$CSFORMATSEXCEPTION HUMAN INTERFACE
DQ$DELETE RQSDELETESFILE EXTENDED 1/0 SYSTEM
DQ$SDETACH RQ$SSDELETESCONNECTION | EXTENDED 1/0 SYSTEM
RASCLOSE
DA$FREE RQ$DELETE$SEGMENT NUCLEUS
- Y,
14-7
4 UDI CALLS AND iRMX 86 SYSTEM CALLS “‘\
UDI CALLS * TRMX86 SYSTEM CALLS SUBSYSTEMS
DAGETARGUMENT ROSCSGETSCHAR HUMAN INTERFACE
DOSGETSCONNECT IONSSTATUS | RQS$SSGETSCONNECTIONSSTATUS | EXTENDED 1/0 SYSTEM
: RSASGETSF ILESSTATUS BASIC 1/0 SYSTEM
DASGETSEXCEPTIONSHANDLER | RQ$GETSEXCEPT IONSHANDLER NUCLEUS
DASGET$SIZE RQSGET$SIZE NUCLEUS
DASGET$SYSTEMS ID (NONE) (NONE)
DQ$GETST IME RASGETSTIME BASIC 1/0 SYSTEM
D$OPEN RQ$SSOPEN EXTENDED 1/0 SYSTEM
DASOVERLAY RA$SSSOVERLAY APPLICATION LOADER
DQ$READ RQ$S$READSMOVE EXTENDED 1/0 SYSTEM
DA$SRENAME RQ$SSRENAMESFILE EXTENDED 1/0 SYSTEM
DA$SEEK RASSSSEEK EXTENDED 1/0 SYSTEM
DA$SPECIAL RASSSSPECIAL EXTENDED 1/0 SYSTEM
DQ$SHITCHSBUFFER RQ$SETSSPARSESBUFFER HUMAN INTERFACE
DQ$STRAPSEXCEPT ION RA$SSTRUNCATESFILE EXTENDED 1/0 SYSTEM
_ DOSKRITE RASSSHRITESMOVE EXTENDED 1/0 SYSTEM ~J

14-8

EXAMPLE CALL TO REQUEST MEMORY

DECLARE STATUS . WORD;
DECLARE ARRAY_BASE SELECTOR;

ARRAY_BASE = DQ$ALLOCATE(128, aSTATUS);

o [F THE REQUEST FAILS THEN
ARRAY_BASE EQUALS BFFFFH
AND STATUS = ESMEM

14-9

ERROR REPORTING

UDI PROCEDURES RETURN A CONDITION CODE THAT INDICATES THE RESULTS

OF EXECUTING A UDI PROCEDURE.

e YOU MUST CHECK THE CONDITION CODE AFTER EACH UDI CALL TO
ENSURE PROPER RESULTS

TABLE 6-2. 1RMX 86 EXCEPTION CODES AND MNEMONICS

HEX CODE MNEMONIC HEX CODE MNEMONIC

0000 E$0K 0065 ESEOF

0oo1 ESTIME 0066 ESFIXUP

0002 E$MEM 3067 E$NOSLOADERSMEM

(SEE COMPLE%E LISTING IN RUN TIME SUPPORT MANUAL)

14-10 .

OTHER UDI FACTS

INTERRUPT HANDLING

PROGRAMS THAT RUN UNDER THE 1RMX 86 OPERATING SYSTEM SHOULD
USE IRMX 86 INTERRUPT MANAGEMENT TECHNIQUES TO HANDLE INTERRUPTS,

e THE UDI LIBRARIES DO NOT INCLUDE INTERRUPT MANAGEMENT.
REENTRANCY

UDI LIBRARIES ARE FULLY REENTRANT WITH THE FOLLOWING RESTRICTIONS:
e EACH JOB MUST HAVE ITS OWN COPY OF THE UDI INTERFACE LIBS.

MULTITASKING

o THE UDI LIBRARIES ARE FULLY COMPATIBLE WITH A
MULTITASKING ENVIRONMENT., HOWEVER, THERE ARE NO UDI
CALLS TO CREATE AND DELETE TASKS.

14-11

LOGICAL NAMES
THE UDI USES CERTAIN LOGICAL NAMES TO MEAN SPECIAL THINGS.
FOR EXAMPLE, :LP: MEANS “LINE PRINTER”, :C0: MEANS “CONSOLE
OUTPUT”, AND “CI” MEANS “CONSOLE INPUT",

REQUIREMENTS

A UDI JOB MUST BE CONFIGURED IN YOUR SYSTEM WITH I.C.U.86.

14-12

~ APPENDIX

APPENDIX A

ALTER EDITOR

o INSERTION
o CORRECTING MISTAKES

o ENDING THE EDITING SESSION

INVOCATION

- RUN ALTER :F1:LAB1,ASM

ALTER IS MENU DRIVEN

INITIAL SCREEN

EOF MARKER—g—-&
~
CURSOR
TEXT AREA = —
MESSAGE LINE MESWALTERVID
MENU__— ——hgan Block Delete Execute Find g Get —more~

e —— . =
ey

e TO GET NEXT MENU:

TAB

A-1

Find Hing Get

—more-

Other Quit Replace

~more--

THE MENUS
MENU 1
TAB Mom Gect Daies Execete
MENU 2
TAB sz:‘_m o~ oo
MENU 3
TAB ' L:EELz. ™ Ve

TO INVOKE A COMMAND, KEY THE FIRST LETTER OF THE COMMAND.

Y

INSERTING NEW TEXT

Hex | Insert) Jump Macro

e TO INSERT TEXT, TYPE I

INSERTION

KEYSTROKES SCREEN

I ’ :‘,—-EOF

\cuason

MESSAGE LINE —> [lnsert]
INSERTION
KEYSTROKES SCREEN
Now is the time | RET Now is the time
EOF
for all good mend for ali good mend : /
®— CURSOR

| e

A"'3\

CORRECTING MISTAKES

KEYSTROKES SCREEN

RUBOUT)
Now is the time

for all good men:

ENDING INSERTION

KEYSTROKES SCREEN

ESC Now is the time

for all good men:

MENU & Block Delete Execute

CURSOR CONTROL

D= 3

o ARROW KEYS MOVE CURSOR ONE SPACE OR LINE FOR EDITING

DELETING TEXT

DELETES CHARACTER AT CURSOR
E] DELETES LINE ON WHICH CURSOR IS POSITIONED

EJ_] UNDO-RESTORES DELETED CHARACTERS

THESE ALSO WORK DURING INSERTION

(EXITING ALTER

KEYSTROKESI

Q
i Tn:er.t -.Iump Macro Other [Quit \Replace
EXITING ALTER, CONT.
KEYSTROKES
E

nit

A-6

ADVANCED ALTER FEATURES

e EDITING MULTIPLE FILES DURING
ONE' SESSION

e BLOCK MOVES

(ALTER BUFFERS

START

p PRIMARY BUFFER

BLOCK,DELET
OTHER ~®™ COMMANDS BLOCK BUFFER
e’/ COMMAND
|)
®

Q“‘\w

SECONDARY BUFFER < ©
&

¢ SECONDARY BUFFER ALLOWS SEARCHING AND BORROWING FROM ANOTHER FILE

e BLOCK BUFFER USED FOR MOVING OR DELETING BLOCKS OF TEXT

-

(ALTER INVOCATION

- RUN ALTER INPUT FILE [,OTHER INPUT FILE] R)
e OTHER INPUT FILE IS FILE TO BE EDITED IN SECONDARY BUFFER
EXAMPLES :
- RUN ALTER :F1:LAB1.ASM <CRD>
-~ RUN ALTER :F1:LABL.ASM,:FL:LABL.LST R
OR

- RUN ALTER :F1:LABL.ASM-LST <CRD

ALTER MODES

(INSERT MODE)

|
I sC
& FIRST LETTER
Y OF COMMAND
START UP ——C MAIN MENU) <ESCY OR #C_ (coMMADs)
X CEsC>
Y

C XCHANGE MODE)

ESCY EXECUTES COMMAND & RETURNS TO MAIN MENU
\ fC ABORTS COMMAND

~

XCHANGE MODE

¢ ALLOWS 'TYPING OVER’ OF TEXT

o <ESC> RETURNS ALTER TO MAIN COMMAND LEVEL

CURSOR MOVEMENT AND PAGING

HOME [———J - MOVES CURSOR TO END OF LINE

F-!OME (4—-—:} - MOVES CURSOR TO BEGINNING OF LINE

|
HOME (1 j - PAGES DOWN
[HOME 1 (14] - PAGES UP
I

ALTER COMMANDS

DELETE

KEYSTROKES SCREEN
INTEL CORPORATION
D ANTEL CORPORATION
— 33TEL CORPORATION
aNTEL CORPORATIONa
D

o DELETES AND MOVES TEXT TO BLOCK USING BEGIN AND END MARKERS (2)

o RETRIEVE TEXT WITH GET COMMAND

A-10

KEYSTROKES

B

BLOCK -- FOR COPYING TEXT

SCREEN

INTEL CORPORATION
SNTEL CORPORATION
2aTEL CORPORATION
aNTEL CORPORATIONa

INTEL CORPORATION

COPIES TEXT TO BLOCK BUFFER USING BEGIN & END MARKERS (a)

RETRIEVE TEXT WITH GET COMMAND

GET -- RETRIEVING THE BLOCK BUFFER

KEYSTROKES

6 ESC

¢ RETRIEVES BLOCK BUFFER TO CURRENT CURSOR POSITION

NOTE: MAY ALSO BE USED TO ‘GET' DISK FILES

A-11

FINDING A STRING

‘KEYSTROKESI
F #STRING® @

o SEARCHES FORWARD FOR FIRST OCCURENCE OF “STRING” AND
MOVES CURSOR IF FOUND

¢ -F COMMAND SEARCHES BACKWARDS

REPLACING TEXT

KEYSTROKES

R "OLD STRING'NEN STRING* | ESC

o REPLACES FIRST OCCURENCE OF “OLD STRING” WITH “NEW STRING” AND
MOVES CURSOR IF FOUND

e ? REPLACE PROMPTS YOU: 5
OK TO REPLACE? (Y OR IND)

A-12

REPEAT FUNCTION

o OPTIONAL FACTOR THAT INDICATES THE NUMBER OF TIMES TO
EXECUTE A COMMAND

¢ PRECEDES ENTERING OF COMMAND LETTER

® / - MEANS REPEAT FOREVER

EXAMPLE:
10F “sAmM” CESCD

FINDS TENTH OCCURENCE OF SAM

JUMPING TO BEGINNING OR END OF FILE

KEYSTROKES

JS
OR
JE

¢ JS MOVES CURSOR TO BEGINNING OF FILE

o JE MOVES CURSOR TO END OF FILE

A-13

INSERTING CONTROL CHARACTERS

KEYSTROKES

H 1 "HEX VALUE” @

¢ INSERTS CONTROL CHARACTER AT CURRENT CURSOR POSITION AND
DISPLAYS IT AS ? ‘

EXAMPLE :
H1 @C - INSERTS A FORM FEED CHARACTER

DISPLAYING CONTROL CHARACTERS

KEYSTROKES

HO| ESC

DISPLAYS HEXADECIMAL VALUE OF CHARACTER AT CURRENT CURSOR POSITION

A-14

(' QuIT

KEYSTROKES MENU PROMPT LINE
Q ABORT EXIT INIT UPDATE WRITE
SUBCOMMANDS :
A - ABORT -~ ALL CHANGES LOST; RETURN TO OPERATING SYSTEM
E - EXIT - RETURN TO OPERATING SYSTEM; FILE IS UPDATED
[- INIT - RESTARTS EDITING SESSION; ALL CHANGES LOST
U - UPDATE - UPDATES FILE: DOES NOT RETURN TO OPERATING SYSTEM
W - WRITE - PROMPTS YOU FOR NEW FILE TO WRITE TO; DOES NOT
RETURN TO OPERATING SYSTEM
’f"] OTHER ALTER FEATURES
e MACROS
e DISK 1/0
e TAGS

® ENVIRONMENT SETTINGS

A-15

APPENDIX B

PL/M OVERVIEW

-

MY$PROG :

PL/M IS A BLOCK STRUCTURED LANGUAGE

DO;
DECLARAT]ONS ® RESERVE SPACE IN MEMORY

® GIVE A NAME TO THAT SPACE
EXECUTABLE o CAUSE WORK TO BE PERFORMED
STATEMENTS
END;

PL/M STATEMENT FORMAT

e FREE FORMAT
o ENDS WITH A SEMICOLON

o COMMENTS
- MAY BE USED WHEREVER A SPACE IS LEGAL
- /* THIS IS A COMMENT */

- ‘ N

BASIC PL/M CONSTRUCTS

¢ SEQUENTIAL “ o CONDITIONAL e LOOPING
il el St
| | l ¢« |
[|a=as12; C=INPUT(1);
I I l A=A+]1;]
| i | |
| | |
| B=B-u0;| | | A=A+12; B=B-40; | I
I ' |

(/,, PL/M <‘\\
SAMPLE PROGRAM

SERIES-III PL/M-86 V1.0 COMPILATION OF MODULE SAMPLE1L
OBJECT MODULE PLACED IN :Fl:PROGL.OBJ
COMPILER INVOKED BY: PLMB86.86 :F1:PROGL.PLM

/* THIS PROGRAM ADDS TWO NUMBERS */

1 SAMPLES1:

DO;
2 1 DECLARE NUMS1 BYTE,
NUMS2 BYTE,
SUM BYTE;

NUMS1 = 3;
NUMS2 = 2;
SUM = NUMS1 + NUMS2;

o [")
=

1 END SAMPLES1;

MODULE INFORMATION:

CODE AREA SIZE = 0018H 24D
CONSTANT AREA SIZE = 0000H oD
VARIABLE AREA SIZE = 0003H 3p
MAXIMUM STACK SIZE = 0000H on

15 LINES READ
: 0 PROGRAM WARNINGS :
\ 0 PROGRAM ERRORS e

A VARIABLE HAS:

/ A
A =] CONTENTS
NAME
NAME - FIXED THRUOUT PROGRAM
CONTENTS - TRANSIENT .
VARIABLE DECLARATIONS
o BEFORE ANY VARIABLE CAN BE USED IT MUST
BE DEFINED IN A DECLARATION STATEMENT
 VARIABLE DECLARATIONS
- RESERVE SPACE IN MEMORY
- ASSOCIATE AN IDENTIFIER WITH THAT SPACE
- PRECEDE EXECUTABLE STATEMENTS
PROG: DO; MEMORY
12,6543 2,411
DECLARE SPOT BYTE;

SPOT =5:

END;
SPOT J00000101

B-3

PL/M VARIABLE TYPES

DATA TYPES ,
BYTES RANGE
PL/M-80 PL/M-86
BYTE BYTE 1 0 T0 255
ADDRESS WORD 2 0 TO 65,535
DWORD 4 070232 -1
INTEGER 2 -32,768 10
+32,767
REAL 4 1.17x10 8,
3.37x10 8
POINTER 2 0R 4 TO_BE DISCUSSED
OINTE LATER =
SELECTOR 2 0 10 65,535
DECLARATION FORMATS
DECLARE A BYTE; DECLARE A BYTE,
DECLARE B BYTE: | = B BYTE, | = | DECLARE (A,B.C) BYTE:
DECLARE C BYTE: C BYTE:

B-4

o SIMPLIFY PROGRAM UPDATES:
DECLARE BUFFER$SIZE LITERALLY ‘256’;

DECLARE COUNT WORD;

DECLARE BUFFER(BUFFER$SIZE) BYTE:

COUNT = BUFFERS$SIZE;/*SAME AS:

.

o IMPROVE DOCUMENTATION:
DECLARE SPACE

LITERALLY 20

H';

counT =256.*%/

-

DECLARE CR LITERALLY ‘@DH;
DECLARE LF LITERALLY ‘BAW'; A‘//
OPERATOR PRECEDENCE
OPERATOR
CLASS OPERATOR PRECEDENCE
PRECEDENCE () HIGHEST
A
UNARY s
ARITHMETIC Tl MoD
RELATIONAL <, =, >, <=, >=, <>,
NOT
LOGICAL AND v
OR, XOR LOWEST

e EXPRESSIONS WITH OPERATORS OF EQUAL PRECEDENCE ARE EVALUATED

LEFT TO RIGHT

_/

4 B

ARITHMETIC EXPRESSION SUMMARY

VARIABLE TYPE KIND OF OPERAND ARITHMETIC RESULT
PL/M-80 PL/M-86 ARITHMETIC TYPE * | OPERATION
BYTE AND BYTE AND UNSIGNED 1 BYTE, 1 BYTE] +,-,*,/,M00 | 1 BYTE
ADDRESS WORD 2 BYTE

1 BYTE, 2 BYTE} +,-.%,/,M0D | 2 BYTE

2 BYTE, 2 BYTE] +.-,*./.,MOD | 2 BYTE

DWORD UNSIGNED 1 DYTE,L BYTES § +,-,*,/.M0D | 4 -DYTES
2 BYTE,4 BYTES 4 RYTES
4 DYTE, 4 DYTES 4 BYTCS
INTEGER SIGNED INTEGER, INTEGE] +,-,*,/,MOD | INTEGER
REAL FLOATING REAL,REAL +,-.%/ REAL
POINT

_ —

LOGICAL AND RELATIONAL EXPRESSION SUMMARY
VARIABLE TYPE OPERAND RELATIONAL LOGICAL
PL/M-80 PL/M-86 TYPE RESULT RESULT
BYTE AND BYTE AND 1 BYTE, 1 BYTE 1 BYTE 1 BYTE
ADDRESS WORD
1 BYTE, 2 BYTE 1 BYTE 2 BYTE
2 BYTE, 2 BYTE 1 BYTE 2 BYTE
1 BYTE, 4 BYTES 1 BYTE 4 BYTES
DWORD 2 BYTES, 4 BYTES | 1 i nnYTES
4 BYTES, 4 BYTES | 1 BYTE 4 BYTES
INTEGER INTEGER, INTERER | 1 DYTE ILLEGAL
REAL REAL, REAL 1 BYTE ILLEGAL

rf’”"

PORT INPUT AND OUTPUT
DATA IS "READ" FROM OR "WRITTEN" TO SPECIFIED PORT

“‘\\

F

o STATEMENTS EXECUTE AS LONG AS < EXPRESSION> EVALUATES 7O A NUMBER WITH
BIT B=1

PL/M 80 PL/M 86
1 BYTE READ OR 1 BYTE READ OR | <VARIABLE> = [NPUT &PORTSEXPR >);
WRITTEN WRITTEN
OUTPUT (KPORTSEXPR >) = | <VARIABLESEXPR>
CONSTANT i
<VARIABLE> = INWORD (<PORT$EXPR>);
2 BYTES READ OR | OUTHORD(CPORTSEXPR>) = | <VARIABLESEXPR> |
<PORTSEXPR>
PL/M-80 PL,/M-86
® MUST BE A ® CAN BE A
NUMBER OR A NUMBER, CONSTANT
CONSTANT EXPRESSION, OR
EXPRESSTON EXPRESSION
o 0< PORT$EXPR o < PORT$EXPRS
\ <255 65535 /
DO WHILE BLOCKS
[<LABELNAME> :] DO WHILE <EXPRESSIOND> ;
[<STATEMENT>! ;
<STMT>
: <STMT>
END [<LABELNAME>] ;
<EXPR> T

(ITERATIVE ‘DO’ BLOCKS

DO <COUNTERSVARIABLE > = <STARTEXP> TO < LIMITEXP> [BY < STEPEXP> 1;
[<STATEMENT > 1 ’ ' o
END;

WHERE
<COUNTER$VARIABLE> IS A 1 BYTE OR 2 BYTE VARIABLE

<STARTEXP> , < LIMITEXP> AND < STEPEXP>
ARE EXPRESSIONS Y

UPDATE
COUNT

<STMT >
< STMT >

e STATEMENTS WITHIN AN ITERATIVE DO BLOCK ARE EXECUTED REPEATEDLY

/ IF. . THEN

THE CONDITIONAL STATEMENT TESTS AN EXPRESSION FOR TRUE OR FALSE

AND CAUSES CODE TO BE EXECUTED OR BYPASSED ACCORDINGLY.

<EXPRD>

F

< STMT >

IF <expression> THEN ‘j
<STATEMENT>

[AN EXPRESSION IS TRUE IF pivd = 1. |

~

B-8

IF. . THEN. .ELSE \

"ELSE” CAUSES AN ALTERNATE STATEMENT
TO BE EXECUTED

IF <EXPRESSIOND>

THEN
< STATEMENT]> ;

[ELSE ,
< STATEMENT2 >;]

<STMT2> <STMT1>

H/

THE ‘DO CASE’

[<LaBeLNAME> :]DO CASE <EXPRESSION> ;

C¢STATEMENT> /®EXECUTED WHEN EXPRESSION = £ */
[<STATEMENT>] /® EXECUTED WHEN EXPRESSION = 1 */
[<eTaTEMENTS] /* EXECUTED WHEN EXPRESSION = N */

END [<LABELNAME>] ;

IMPORTANT: NO RAMGE CHECK IS PERFORMED ON THE VALUE OF THE EXPRESSION
AFTER IT IS COMPUTED. IF THE VALUE COMPUTED IS GREATER THAN THE
NUMBER OF ‘BASIC$STATEMENTS', THE PROGRAM CRASHES.

B-9

DO CASE
"N" LEGAL CASES

DO CASE <EXPR>

=f =N+1
=l =N
=2
STMT STMT . STHT STMT ¢
CRASH!
DO CASE EXAMPLE
DO CASE (STOP$L]G;T$VALUE);
Do; /* CASE @ */
CURRENT$STATE = GREENSLIGHT;
TIME = SHORT;
END;
DO; /* CASE 1 */
CURRENT$STATE = YELLOWSLIGHT;
TIME = GOTCHA;
END;
DO; /% CASE 2 */

CURRENT$STATE = REDSLIGHT;
TIME = ETERNITY;
END;
;
CURRENT$STATE = BLINKSYELLOW;
END;

~

/* CASE 3 IS NuLL */
/* CASE 4 */

B-10

\

ARRAYS CAN BE USED TO MANIPULATE
GROUPS OF RELATED DATA ITEMS
o AN ARPAY QOF BOXES FOR EACH STREET

o EACH ARPAY HAS A MAME

!

REFER TO BOX FOR MO.4 HIGH STREET:

HIGH(4)

ALL MEMBERS OF AN ARRAY MUST BE OF
THE SAME TYPE

DECLARE vicTor1A(129) BYTE;

DECLARE wiew (81) BYTE;

_/

STORAGE OF DATA INPUT FROM TEMPERATURE SENSOR

DATASIN:

.DO;
DECLARE READY LITERALLY ‘01';
DECLARE TEMP$BUFFER(256) BYTE;
DECLARE TEMP$BUFFER$PTR BYTE;

DO TEMP$BUFFER$PTR = 0 TO 255;

DO WHILE INPUT (4)<>READY;
END;

TEMP$BUFFER(TEMP$BUFFERSPTR) = INPUT (8);
END;
END;

B-11

ARRAY DECLARATIONS

DECLARE <ARRAY$NAME> (<ARRAY$CONST>) | [INTEGER
PL/M-86 ONLY=" \j5

BYTE
WORD

EAL
OINTER

DECLARE 1nput$BUFFER (128) BYTE;

1
’

*

- YIS
INPUT $BUFFER (D) SN SSNSNNNSNN
" INPUT$BUFFER(1)
CONTIGUOUS BLOCK
OF 128 BYTES
W\/\/\N‘
M\/_/\/j
INPUT$BUFFER(127) ~,
SNOUOSONONNNNNN
* LATER
STRUCTURES

o LOGICAL AND PHYSICAL GROUPS OF DISSIMILIAR, RELATED DATA ITEMS

o A STRUCTURE MAY CONTAIN DATA ITEMS OF DIFFERENT TYPES

DECLARE a1rpLane STRUCTURE(
speep BYTE,
ALTITUDE WORD);

AIRPLANE,SPEED —3

AIRPLANE, ALTITUDE —>

——]
et

B-12

ARRAY OF STRUCTURES

DECLARE a1reLaNE (5) STRUCTURE (
sPEED BYTE, .
ALT1TUDE WORD); ////
AIRPLANE(@).SPEED‘/’/////;a AL ‘
AIRPLANE(G).ALTITUDE"/’J? ‘ ‘

[[]]
AIRPLANE(l).SPEED"‘f”’;? \ k %}

)

\ AIRPLANE (@)
T .
/

} AIRPLANE (1)
\
AIRPLANE(Q).SPEED\).//// /
AIRPLANE(Q).ALTITUDE~\\\ﬁ§‘ \%‘ .} AIRPLANE (4)

AIRPLANE (1), ALTITUDE

STRUCTURE WITH AN ARRAY AS AN ELEMENT

DECLARE atrprane STRUCTURE(
sPeeD BYTE,
ALTITUDE WORD,
ENGINE (4) BYTE);

AIRPLANE.SPEED —

AIRPLANE. ALTITUDE =

AIRPLANE.ENGINE(B)™

AIRPLANE,ENGINE(1)— ////////[
a1rpLANE . ENGINE (2)— N\ ||\
AIRPLANE, ENGINE (3)— /////]//

B-13

PROCEDURE DECLARATION

MODULE $NAME :
DO; .
[< DECLARATIONSSTATEMENTS>]

PROCEDURESNAME : PROCEDURE ;
> [<DECLARATIONSSTATEMENT >] ..

< EXECUTABLESSTATEMENT> ...
<END [<PROCEDURESNAME>] ;

[<DECLARATIONSSTATEMENTS > |
[KEXECUTABLESSTATEMENTS > |

PROCEDURE HEADING

END;

DECLARATION PART

EXECUTABLE PART

MAIN:

PARAMETERLESS PROCEDURE

Do;
DECLARE (ResuLT, oPl, op2, ANswer) BYTF;

sum: PROCEDURE; /* PROCEDURE DEFINITION */
RESULT = opl + opP2;
END sum;

orl = 4 /* START OF MAIN */
opP2 = 5; '
CALL sum; /* PROCEDURE INVOCATION */

ANSWER = RESULT;
END maIn;

o PROCEDURE ACCESSES
GLOBAL VARIABLES

B-14

PROCEDURE WITH PARAMETERS

MaIN: DO;
DECLARE (x, v, Aanswerl) BYTE;
DECLARE (A, B, ANSWER2) BYTE;
DECLARE RresuLT BYTE;

sum: PROCEDURE (orl, oP2); /* PROCEDURE DEFINITION */
DECLARE (orl, op2) BYTE;
RESULT = op]l + or2;

END sum;

CALL sum(x, v); /® PROCEDURE INVOCATION */
ANSWER] = RESULT;
CALL sum (a-3,8-2); /* PROCEDURE INVOCATION */
ANSWERZ = RESULT;

EiND MAIN;

o THO INPUT PARAMETERS
o PROCEDURE OUTPUT IS RETURNED IN A GLOBAL VARIABLE

TYPED PROCEDURES “\\\

A SINGLE VALUE IS RETURNED

MAIN: DO;
DECLARE (X,Y,ANSWER) BYTE:

SUM: PROCEDURE (OP1, OP2) BYTE; /* PROCEDURE DEFINITION */
DECLARE (OP1, OP2) BYTE;

RETURN OP1 + OPZ;
END SUM;

X
Y

3;
2;

ANSKWER = SUM (X.Y); /* PROCEDURE INVOCATION */

END MAIN;

B-15

MAIN:

[BUFF 1S "GLOBAL" k<

VARIABLES: GLOBAL vs, LOCAL

DO;

FILLSBUFFER:

— DECLARE BUFF(128) BYTE:

“1" AND PORT$IN
ARE “LOCAL" TO
FILL$BUFFER

CALL FILLSBUFFER;

—t END;

PROCEDURE;

[“ DECLARE I BYTE;
PORTSIN: [PROCEDURE BYTE;

END;

BUFF (1)=PORTS$IN;
END;

SCOPE OF VARIABLES

e THE SCOPE OF A VARIABLE IS THE FULL LENGTH OF THE BLOCK, UNLESS IT
IS REDECLARED WITHIN A NESTED BLOCK.

o TO DETERMINE IF A VARIABLE/LABEL CAN BE USED IN A BLOCK:

1) IF IT IS NOT DECLARED IN THE BLOCK, GO TO THE NEXT OUTER BLOCK..
2) 1F DEFINED, THE SCOPE IS SET, ELSE REPEAT 1) AND 2).

3) IF REACH THE OUTER MOST BLOCK WITHOUT ENCOUNTERING THE
DECLARATION, THE VARIABLE/LABEL CANNOT BE USED.

B-16

(| ' SYNTAX)

o DECLARE <VARIABLESNAME> BASED <POINTER$VARIABLE>

BYTE
WORD
[(<ARRAYS$CONSTANT>)] (INTEGER 3
REAL
= STRUCTURE
o EXAMPLE
SUM: PROCEDURE (OP1_PTR, OP2_PTR, RSLT_PTR);
DECLARE OP1-PTR POINTER,
0P2_PTR POINTER, /* ADDRESS FOR PL/M-80 */

RSLT_PTR POINTER:

DECLARE OP1 BASED OP1_PTR (6) BYTE,

| BASED VARIABLE| |BASE| |DIMENSION SPECIFIER OF BASED VARIABLE|

OP2 BASED OP1_PTR (6) BYTE,
RESULT BASED RSLT_PTR (6) BYTE:

[PROGRAM TO SUM TWO ARRAYS USING BASED VARIABLES \

ARRAY$SUM: DO;

DECLARE ANSWER (6) BYTE, TOTAL (8) BYTE,
X (6) BYTE, A (8) BYTE,
Y (6) BYTE, B (8) BYTE:

SUM: PROCEDURE (OP1_PTR, OP2_PTR, RSLT_PTR, ARRAYSIZE);
DECLARE OP1_PTR POINTER,
0P2_PTR POINTER,
RSLT_PTR POINTER, /* ADDRESS FOR PL/M-80 */
ARRAYSIZE BYTE:

DECLARE OP1 BASED OP1_PTR (1) BYTE,
0P2 BASED OP2_PTR (1) BYTE,
RESULT BASED RSLT_PTR (1) BYTE;

DECLARE I BYTE:

DO I = @ TO ARRAYSIZE;

RESULT (1) = OPI(1) + OP2(I) NOTE: IN PL/M-80, USE
END; “." INSTEAD OF 3",
END SUM:

k\~‘ CALL SUM(aX, aY, RANSWER, LAST(ANSWER));

CALL SUM (aA, aB, aTOTAL, LAST(TOTAL));
END ARRAYS$SUM; J/

B-17

A "BASED VARIABLE” IS A PROCEDURE’S MOVABLE TEMPLATE FOR “\\
A DATA STRUCTURE DECLARED IN A CALLING PROGRAM,

MAIN:

DO;

DECLARE ARRAY$1 (6) BYTE,
ARRAY$2 (4) BYTE:

ARRAYS$HANDLER:
DECLARE ARRAY$PTR POINTER:

DECLARE BLOCK BASED ARRAY$PTR (1) BYTE;

/* EXECUTABLE STATEMENTS */

END ARRAY$HANDLER:
CALL ARRAY$HANDLER (2ARRAY$1);

CALL ARRAY$HANDLER (3ARRAY$2);

END MAIN;

PROCEDURE (ARRAY$PTR);

_

SOME PRIMARY CONTROL NAMES

HOPRINT / PRINT (SOURCESFILE.LST)*
SYMBOLS / NOSYMBOLS*

XREF / NOXREF*

DEBUG / NODEBUG*

PL/M-86 ONLY

OPTIMIZE (8 7 1* / 2 / 3)

ROM/RAM*
TYPE*/NO TYPE
SMALL* /COMPACT / MEDIUM / LARGE

DEFAULT CONDITION

DESTINATION OF LISTING
GENERATE SYMBOL TABLE LISTING
GENERATE CROSS REFERENCE LIST
RETAINS SYMBOL TABLE

@ MINIMAL CODE OPTIMIZATION

1: CONSTANT & COMMON EXPRESSIONS

2: #1 PLUS LOCAL CODE OPTIMIZATION

3: #2 PLUS FURTHER OPTIMIZATION
PLACEMENT OF CONSTANTS IN CODE SEGMENT

(SEE P. 8-6)

B-18

PL/M COMPILER OPERATION

COMMAND SYNTAX:
PLM8E
PLMBO! <SOURCESFILE> [<CONTROLS>]

[:<DEVICE>]

<CONTROLS> 1S A SEQUENCE OF EITHER

" <PRIMARY$CONTROLS> WHICH MUST OCCUR BEFORE SOURCE CODE
<GENERALSCONTROLS> WHICH MAY OCCUR ANYWHERE (INVOCATION
OR IMBEDDED WITHIN THE SOURCE CODE.)

SOME GENERAL CONTROL NAMES

LIST* / NOLIST SUSPEND / RESUME LISTING

CODE / NOCODE* GENERATE OBJECT CODE INTERLIST
EJECT /7 -* GENERATE PAGE EJECT

INCLUDE / -* INCLUDE CONTENTS OF ANOTHER FILE
OVERFLOW / NOOVERFLOW® (PL/M-86 ONLY) INTEGER OVERFLOW DETECT CODE

(REQUIRES USER SUPPLIED TYPE 4
INTERRUPT SERVICE PROCEDURE.
DISCUSSED IN CH, 16)

-* NO DEFAULT

B-19

> PLM86

COMPILER CONTROL USAGE

IN THE SOURCE FILE WE HAVE THE FOLLOWING:

'$' MUST
APPEAR IN
COLUMN 1

$CODE

:F1:ALICE.SRC DEBUG SYMBOLS OPTIMIZE(2)

BIGSTIME: DO;

$INCLUDE (:Fl:PREAMB.LIT)‘{//;Zi///

$EJECT

COMPILATION FAILS
IF :FI: NOT READY

OR IF :FI: PREAMB.LIT

DOES NOT EXIST

DECLARE CAROL BYTE;
$EJECT

$NOLIST

(<EXECUTABLES$STATEMENTS>]

END;

- PL/M-86: SIZE CONTROL SWITCH

ALLOCATION OF MEMORY AND THE WAY IN WHICH LOCATIONS ARE REFERENCED BY A
PROGRAM IS DETERMINED BY THE SIZE CONTROL SWITCH.

1. 'SMALL’ - FOR PROGRAMS WITH LESS THAN 64K BYTES OF CODE AND LESS
THAN 64K BYTES OF DATA. (MAXIMUM OF 128K BYTES.)

2, 'COMPACT’ - FOR PROGRAMS WITH A MAXIMUM OF 64K BYTES EACH OF CODE,

'DATA, AND STACK.

3. 'MEDIUM’ - FOR PROGRAMS WITH MORE THAN 64K BYTES OF CODE AND LESS
THAN 64K BYTES OF DATA.

4, 'LARGE’ - FOR PROGRAMS WITH MORE THAN 64K BYTES OF CODE AND MORE THAN
64K BYTES OF DATA.

FOR GREATEST EFFICIENCY, USE THE SMALL CASE WHEN POSSIBLE.

PROGRAMS MUST USE THE 'SMALL’ CASE.

UPGRADED PL/M-80

"“‘\\

J

B-20

APPENDIX C

THE iRMX 86 BOOTSTRAP LOADER

&

o

WHY THE NEED FOR A BOOTSTRAP LOADER?

® MAINTENANCE COSTS GREATLY REDUCED

- MINIMIZE THE NEED TO MANUFACTURE ROM CHIPS

- SOFTWARE UPGRADES AND BUG FIXES ARE EASILY INSTALLED
AND DELIVERED

(G N ST
3 : 9
SOFTWARE

FUNCTION AND CONTROLLERS

e THE BOOTSTRAP LOADER FUNCTION

- LOAD THE RMX86 0.S AND APPLICATION SOFTWARE FROM
SECONDARY STORAGE INTO RAM

e SECONDARY STORAGE SUPPORT ‘
- THE RMX86 PRODUCT INCLUDE BOOTSTRAP LOADER DEVICE
DRIVERS FOR THE FOLLOWING CONTROLLERS:
1) 1ISBC 204
2) 1SBC 208
3) ISBC 206
4) ISBC 215
5) 1ISBC 218
6) ISBC 254

C-1

STAGES

e THERE ARE TWO PARTS TO THE APPLICATION LOADER
- THE FIRST STAGE AND THE SECOND STAGE

(ROM)

1ST STAGE

® RUNS UPON SYSTEM RESET
e FINDS DEVICE TO LOAD

FROM

e LOADS PART OF 2ND
STAGE AND TRANSFERS

CONTROL

(RAM)

2ND

PASSES

STAGE

TR

o FINISHES LOADING

ITSELF

¢ FINDS FILE TO LOAD

FROM

D
PPLICATIONA

o LOADS FILE AND TRANSFERS

CONTROL

THE SECOND STAGE

® A VOLUME MAY BE FORMATTED WITH THE HUMAN INTERFACE OR
THE FILES UTILITIES.

® THE FORMATTING PROCESS WILL PLACE THE SECOND STAGE ON
THE VOLUME WITH NO EFFORT ON YOUR PART,

® THE SECOND STAGE IS = 6K OF LTL CODE.

C-2

THE FIRST STAGE
THE FIRST STAGE CONSISTS OF TWQ PARTS
THE FIRST STAGE RESIDES IN ROM

DEVICE DRIVER SOFTWARE (PART 1)

- SIZE DEPENDS ON HOW MANY DEVICE DRIVERS YOU CHOOSE
TO INCLUDE. (EACH DRIVER 300 TO 500 BYTES)

BOOT LOADER CORE (PART 2)
- THIS PART LOADS THE 2ND STAGE

- SIZE DEPENDS ON HOW MANY QPTIONS YOU CHOOSE.
(SIZE 100 TO 500 BYTES)

 FIRST STAGE OPTIONS
THE LOCATION OF THE FIRST STAGE

THE LOCATION WHERE THE FIRST STAGE LOADS THE SECOND STAGE
- (USUALLY IN THE FREE SPACE OF THE FINAL SYSTEM TO BE LOADED)

‘METHOD TO BE USED FOR DEVICE SELECTION

- NO SELECTION
- AUTO SELECTION
- MANUAL SELECTION

METHOD TO BE USED FOR FILE SELECTION

- LOADING A DEFAULT FILE NAME
- ALLOWING THE 'END USER TO SPECIFY A FILE NAME

c-3

DEVICE SELECTION

e NO SELECTION

- BOOTSTRAP LOADER ALWAYS USES SAME DEVICE
- IF DEVICE IS NOT READY, LOADER TERMINATES

@ AUTO DEVICE SELECTION

- YOU PROVIDE A LIST OF DEVICES
- THE LOADER CYCLES THROUGH THE LIST UNTIL IT
FINDS A READY DEVICE

¢ MANUAL DEVICE SELECTION

- THE LOADER PROMPTS THE USER AT THE TERMINAL (*)

- THE USER ENTERS A DEVICE NAME (E.G. :F@:)

- IF NAME IS NOT FOUND THEN LOADER SWITCHES TO AUTO
DEVICE SELECTION

FILE SELECTION
e THE LOADABLE FILE MUST BE A NAMED FILE

o LOADING A DEFAULT FILE
- THE DEFAULT FILE IS (/SYSTEM/RMX86)

e SPECIFYING A FILE NAME

- DEVICE DELECTION MUST BE MANUAL
- (E.6. :YES:LIFE/IS/HARD/IN/THE/FAST/LANE)

c-4

PROBLEMS

WHAT IF:

o | AM NOT USING ONE OF THE BOOTSTRAP DEVICE
DRIVERS SUPPLED WITH THE RMX86 PRODUCT?

® 1 DO NOT HAVE THE STANDARD 957B “TERMINAL” SUPPORT?

A

WAIT--DON'T DO IT ! ! o

WRITING YOUR OWN DEVICE DRIVER

¢ A DEVICE DRIVER FOR THE BOOTSTRAP LOADER CONSISTS OF
TWO PROCEDURES:

- DEVICESINIT AND DEVICE$READ
® THE PROCEDURES MUST BE WRITTEN IN THE PLM86 LARGE MODEL.

o THE RMX86 LOADER REFERENCE MANUAL SUPPLIES MORE SPECIFIC
INFORMATION ABOUT THESE PROCEDURES.

C-5

CUSTOM TERMINAL SUPPORT

e THERE IS INTEL PROVIDED SOURCE CODE (MODIFIABLE TO YOUR
NEEDS) FOR TERMINAL COMMUNICATION SUPPORT.

o YOU CAN ALWAYS WRITE YOUR OWN CODE.

QuIz!

o 1 CAN CHOOSE ANY FILE NAME TO BE LOADED? T ORF

o WHAT IS THE MAX NUMBER OF DEVICES I CAN SPECIFY
IN AUTO SELECTION?

® WHAT ARE POSSIBLE ERROR CAUSES IF BOOTSTRAP LOADER

LOOPS IN 2ND STAGE?

HINT -- LOOK IN THE LOADER MANUAL ! ‘ '

intel WorksHoPs

Self-Study Introduction to Microprocessors
" Introduction to Microprocessors

MCS™-48/49 Microcontrollers

MCS*-51 Microcontrollers

MCS*-80/85 Microprocessors .

iAPX 86,88,186 Microprocessors, Part |

iAPX 86,88,186 Microprocessors, Part Il

iAPX 286 Architecture '

Software for Non-Programmers.
PL/M Programming
Pascal Programming for Mtcrocomputers
Ada* Programming :
iRMX™86 Operating System Part |

. iRMX™86 Operating System Part Il (1/O)
iRMX™88,80 Operating System

System 86/300 Users

NDS-II Network Development System Superuser
Transaction Processing System (iTPS)

Terminal Application Processing System (iTAPS)
iDBP™ Database Processor

8086-Based Personal Computers

Peripheral Chips/Data Communications
Speech Communication with Computers
2920 Signal Processor

Boston Area :
27 Industrial Avenue, Cheimsford, MA 01824 (617) 256-1374

Chicago Area
Gould Center, East Tower .
2550 Golf Road, Suite 815. Rolling Meadows, IL 60008 (312) 981-7250

Dallas Area
12300 Ford Rd., Suite 380, Dallas, TX 75234 (214) 241-8087

San Francisco Bav Area
1350 Shorebird Way. Bldg. B., Mt. View, CA 94043 (415) 940-7800

" INTEL Corporation, 3065 Bowers Avenue, Santa Clara; CA 95051 « (408) 987-8080

.) o % i . N) . .{", 5 Wivi ‘,{;-gj.'l,., e
~ Printed in U.S.A./350/383/210487/LZ/MLF/ND" .

