
iRMX™ 86 HUMAN INTERFACE
REFERENCE MANUAL

Copyright © 1981, 1982, Intel Corporation Order Number: 9803202-03
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

iRMX™ 86 HUMAN INTERFACE
REFERENCE MANUAL

Order Number: 9803202-03

Copyright © 1981, 1982, Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

ii

REV. REVISION HISTORY

-01 Original Issue.

-02 Adds information about the Disk Verification
Utility, the BACKUP and RESTORE commands,
and exceptional condition codes~ changes
information about the SUBMIT and FORMAT
commands~ corrects technical and typographical
errors~ and documents Release 4 of the iRMX 86
Operating System.

-03 Removes information about commands
(iRMX™86 OPERATOR'S MANUAL now
contains this information), adds intoductory
chapters, describes wild-card support, corrects
technical and typographical errors, and documents
Release 5 of the iRMX™86 Operating System.

Additional copies ofthis manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers A venue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

PRINT
DATE

5/81

11/81

11/82

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update nor to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied
in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software i'icense, or as defined in
ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without prior
written consent oflntel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify
Intel products:

BXP
CREDIT
i
ICE
iCS
I2_ICE
im
iMMX

Insite
Intel
Intel
Intelevision
inteligent Identifier
inteIigent Programming
Intellec
IntelIink
iOSP
iPDS

iRMX
iSBC
iSBX
iSXM
Library Manager
MCS
Megachassis
Micromainframe
Micromap

Multibus
Multichannel
Multimodule
Plug-A-Bubble
PROMPT
RMX/80
RUPI
System 2000
UPI

IUSA/OM-048/6.SK/0683/WCPI

PREFACE

This manual documents the Human Interface, one of the layers of the iRMX
86 Operating System. It is intended for programmers who wish to write
application programs that can be loaded and executed via keyboard
commands. This manual is divided into the following chapters:

Chapters 1 and 2 Overview of the Human Interface and
discussion of the multi-access support.

Chapters 3 through 6 Discussions of the four general categories
of Human Interface system calls and how to
use them when writing commands.

Chapter 7

Chapter 8

Chapter 9

Appendixes A
through C

Description of the necessary elements of a
Human Interface command, as well as the
required compilation and link sequences.

Detailed description of the Human Interface
System calls.

Description of the configurable options of
the Human Interface.

Listings of type definitions, exception
codes, and string table format.

This manual does not describe the commands supplied with the Human
Interface. For information about those commands, refer to the iRMX 86
OPERATOR'S MANUAL (see "Related Publications" section for publication
number).

CONVENTIONS

This manual is intended for the person who designs and implements the
commands (the programmer), not for the person who invokes the commands at
the terminal. Whenever this manual describes how certain Human Interface
features affect the person that invokes the commands, it refers to that
person explicitly as the operator.

This manual uses the following notational conventions to illustrate
syntax:

UPPERCASE In examples of system call syntax, uppercase
information must be entered exactly as shown. The
programmer can, however, enter this information in
uppercase or lowercase.

iii

lowercase

<>

PREFACE (continued)

In examples of system call syntax, lowercase fields
indicate information to be supplied by the
programmer. The programmer must enter the appropriate
value or symbol for lowercase fields.

Angle brackets surround variable fields in messages
displayed by the Operating System. This information
can vary from message to message.

All numbers, unless otherwise noted, are assumed to be decimal.
Hexadecimal numbers include the "h" radix character (for example OFFh).

RELATED PUBLICATIONS

The following manuals provide additional background and reference
information.

• Introduction to the iRMX'" 86 Operating Sys tem, Order Number:
9803124

• iRMX'" 86 Operator's Manual, Order Number: 144523

• iRMX'" 86 Nucleus Reference Manual, Order Number: 9803122

• iRMX~ 86 Basic I/O System Reference Manual, Order Number: 9803123

• iRMX'" 86 Extended I/O System Reference Manual, Order Number:
143308

• iRMX'" 86 Loader Reference Manual, Order Number: 143318

• iRMX'" 86 Configuration Guide, Order Number: 9803126

• iRMX'" 86 Programming Techniques, Order Number: 142982

• User's Guide for the iSBC® 957B iAPX 86,88 Interface And
Execution Package, Order Number: 143979

• iAPX 86,88 Family Utilities Users' Guide, Order Number: 121616

• iMMX'" 800 Multibus® Message Exchange Reference Manual, Order
Number: 144912

iv

CHAPTER 1
OVERVIEW

CONTENTS

PAGE

Supplied Commands.. 1-2
Human Interface System Calls....................................... 1-2
Standard Initial Program... 1-3
Multi-Access Support... 1-3
Wild-Card Pathnames.. 1-4

CHAPTER 2
SUPPORTING MULTIPLE TERMINALS
Communicating with Terminals via the Basic and Extended I/O Systems 2-1
Using the Multi-Access Human Interface............................. 2-1

Standard Initial Program... 2-2
Customized Initial Program....................................... 2-3

CHAPTER 3
COMMAND PARSING
Standard Command-Line Structure ••••••••••••••••••••••••••••••••••••
Parsing the Command Line •••
Parsing Input and Output Pathnames •••••••••••••••••••••••••••••••••
Wild-Card Characters in Input and Output Pathnames •••••••••••••••••
Parsing Other Parameters •••
Parsing Nonstandard Command Lines ••••••••••••••••••••••••••••••••••

Variations on the Standard Command Line ••••••••••••••••••••••••••
Other Nonstandard Command Lines ••••••••••••••••••••••••••••••••••

Changing the Parsing Buffer ••
Obtaining the Command Name •••

CHAPTER 4
I/O AND MESSAGE PROCESSING
Establishing Input and Output Connections ••••••••••••••••••••••••••

Using CGETINPUT$CONNECTION •••••••••••••••••••••••••••••••••••••
Using CGETOUTPUT$CONNECTION ••••••••••••••••••••••••••••••••••••
Example Program Scenario •••

Communicating with the Operator's Terminal •••••••••••••••••••••••••
Formatting Exception Codes into Messages •••••••••••••••••••••••••••

CHAPTER 5
COMMAND PROCESSING

3-1
3-5
3-5
3-8
3-10
3-13
3-13
3-15
3-15
3-17

4-1
4-1
4-1
4-2
4-3
4-4

Creating a Command Connection...................................... 5-1
Sending Command Lines to the Command Connection and Invoking the

Command. • 5-2
Deleting the Command Connection.................................... 5-3
Example. • 5-3

v

CHAPTER 6
PROGRAM CONTROL

CONTENTS (continued)

PAGE

How the Default Control-C Mechanism Works.......................... 6-1
Providing Your Own Control-C Mechanism............................. 6-1

CHAPTER 7
CREATING HUMAN INTERFACE COMMANDS
Elements of a Human Interface Command ••••••••••••••••••••••••••••••

Parsing the Command Line •••
Avoiding the Use of Certain System Calls •••••••••••••••••••••••••
Terminating the, Command ••
INCLUDE Files .. .

Producing an Executable Command ••••••••••••••••••••••••••••••••••••

CHAPTER 8
HUMAN INTERFACE SYSTEM CALLS
C$CREATE$COMMAND$CONNECTION ••
C$DELETE$COMMAND$CONNECTION ••
C$FORMAT$EXCEPTION •••
C$GET $CHA.R •••
CGETCOMMAND$NAME •••
CGETINPUT$CONNECTION •••
CGETINPUT$PATHNAME •••
CGETOUTPUT$CONNECTION ••
CGETOUTPUT$PATHNAME ••
CGETPARAMETER ••
C$SEND$COMMAND •••
C$SEND$CO$RESPONSE •••
C$SEND$EO$RESPONSE •••
CSETPARSE$BUFFER •••

CHAPTER 9
CONFIGURATION OF THE HUMAN INTERFACE
Resident Configuration •••
Nonresident Configuration ••

APPENDIX A
HUMAN INTERFACE TYPE DEFINITIONS •••••••••••••••••••••••••••••••••••

APPENDIX B
HUMAN INTERFACE EXCEPTION CODES ••••••••••••••••••••••••••••••••••••

vi

7-1
7-1
7-2
7-2
7-2
7-3

8-4
8-8
8-9
8-11
8-13
8-15
8-20
8-25
8-31
8-34
8-38
8-45
8-48
8-51

9-1
9-2

A-I

B-1

CONTENTS (continued)

PAGE

APPENDIX C
STRING TABLE FORMAT.. C-l

8-1.
A-I.
B-1.
B-2.
B-3.

·3-1.
3-2.
5-1.
C-l.

TABLES

System Call Dictionary •••••••••••••••••••••••••••••••••••••
Type Definitions •••
Human Interface Exception Codes ••••••••••••••••••••••••••••
Exception Code Ranges ••••••••••••••••••••••••••••••••••••••
iRMX'" 86 Condition Codes •••••••••••••••••••••••••••••••••••

FIGURES

CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME Example •••••
CGETPARAMETER Example ••••••••••••••••••••••••••••••••••••
Command Connection Example •••••••••••••••••••••••••••••••••
String Table Format ••

vii

8-2
A-I
B-1
B-2
B-3

3-7
3-12
5-3
C-l

CHAPTER 1. OVERVIEW

The iRMX 86 Human Interface is a layer of the Operating System that
allows console operators to load and execute program files (also called
commands) from terminals. When the Human Interface begins running, it:

• Creates an iRMX 86 job for each terminal configured in the Human
Interface. This job (also called the interactive job) is the
application environment; all commands entered by the operator run
as offspring jobs of the operator's interactive job.

• Assigns an area of main memory for the operator (this occurs as
part of creating the interactive job). Any commands that the
operator runs use this area of memory.

• Starts an initial program (this also occurs as part of creating
the interactive job). The initial program is the operator's
interface to the Operating System. It is a command line
interpreter (CLI), a program that reads its instructions from the
terminal. The Human Interface supplies a standard initial
program which reads commands from the terminal and invokes the
commands based on that terminal input. You can also supply your.
own initial programs. In fact t there can be a separate initial
program for each terminal t if necessary.

When an operator enters information at a Human Interface terminal, the
operator communicates with the initial program. With the standard
initial program, the operator invokes a command by specifying the
pathname of the file that contains the command (and optionally specifying
parameters). The initial program reads the information from the terminal
and invokes Human Interface system calls to load the command into main
memory from secondary storage t create an iRMX 86 job for the command (as
an offspring of the operator's interactive job), and begin command
execution.

The Human Interface provides several features that aid both operators and
programmers. These features include:

• A set of Intel-supplied commands.

• A group of system calls to aid programmers in writing their own
commands.

• A standard command line interpreter (CLI).

• Multi-access support.

• Support for wild-card pathnames.

This chapter provides an overview of these features.

1-1

OVERVIEW

SUPPLIED COMMANDS

In addition to the code for the resident Human Interface, Intel supplies
a variety of commands which you can use on any application system that
includes the Human Interface. Included are:

• File management commands (such as COPY, DELETE, BACKUP, RESTORE,
.and others)

• Device and volume management commands (such as ATTACHDEVICE,
FORMAT, DISKVERIFY, and others)

• General Utility commands (such as DEBUG, DATE, SUBMIT, and others)

The iRMX 86 OPERATOR'S MANUAL contains complete descriptions of all
commands supplied with the Human Interface.

HUMAN INTERFACE SYSTEM CALLS

The Human Interface provides a set of system calls that programmers can
use in commands they write. The following categories of system calls are
available:

• Command-parsing system calls

• I/O and message-processing system calls

• Command-processing system calls

• Program control system calls

The command parsing system calls provide the ability to parse the command
line, allowing you to determine the parameters that the operator entered
when invoking the command. They also allow you to determine the command
name and parse other buffers of text. Chapter 3 provides further
discussion of the command parsing system calls.

The I/O and message processing system calls allow you to establish
connections to input and output files, communicate with the terminal, and
format exception codes into a ready-to-display form. Chapter 4 provides
a further discussion of the I/O and message processing system calls.

The command processing system calls allow you to invoke interactive
commands programmatically. Chapter 5 provides a further discussion of
the command processing system calls.

The program control system call allows you to override the default
Control-C handling task provided by the Human Interface. Chapter 6
provides a further discussion of program control.

1-2

OVERVIEW

STANDARD INITIAL PROGRAM

As stated previously, when an operator activates a terminal, the Human
Interface assigns an initial program to the operator. This initial
program is the first program to run. The identity of this initial
program is determined by a privileged operator (normally called the
system manager) when adding new users to the system. This process is
described in the iRMX 86 CONFIGURATION GUIDE.

Although the initial program can be almost anything -- from an editor to
a Basic interpreter -- the Human Interface supplies a standard initial
program called the Human Interface command line interpreter (CLI). The
function of the Human Interface CLI is to read input from the terminal
and invoke commands based on that input. This CLI (or a user-supplied
CLI) is required to allow an operator to invoke commands.

MULTI-ACCESS SUPPORT

The Basic I/O System supports multiple terminals by providing device
drivers· that communicate with multiple-terminal hardware. The Human
Interface adds to this support by providing identification and protection
of users based on user IDs. This support is called multi-access support.

With multi-access support, multiple operators can communicate with the
Operating System. The Human Interface assigns each operator a unique
identification, called a user ID, and a separate area of memory in which
to run commands. When an operator creates files or attaches devices, the
Human Interface marks the user as the owner of those files or devices.
Access to the files by other users depends on the permission granted
those users by the owner.

In order to run a multi-access Human Interface, a privileged operator
(the system manager) must first set up the proper directory structure and
provide several files containing information about the operators that can
access the system. This process is described in the iRMX 86
CONFIGURATION GUIDE.

Programmers who write Human Interface commands do not have to write their
code differently for a multi-access Human Interface than for a
single-access Human Interface. The only difficulty a command might
experience in a multi-access environment that it wouldn't experience in a
single-access environment involves accessing files and devices. When a
command is invoked by an operator, the command inherits the operator's
user ID. Thus the command can perform operations only on files and
devices to which the invoking operator has access.

1-3

OVERVIEW

WILD-CARD PATHNAMES

The Human Interface supports the use of wild-card characters in file
names when the file names are parameters of most commands. This gives
the operator a shorthand method of specifying several files in a single
reference. The wild-card characters supported by the Human Interface are:

? Matches any single character

* Matches any sequence of characters (including zero characters)

The iRMX 86 OPERATOR'S MANUAL describes how an operator can use wild-card
characters when entering commands.

Programmers who write their own Human Interface commands do not have to
provide special code to support wild-card pathnames as long as they use
the Human Interface system calls CGETINPUT$PATHNAME and
CGETOUTPUT$PATHNAME to obtain the file names from the command line.
The Human Interface contains the mechanism to interpret the wild cards
and return the correct file name to the command. Refer to Chapter 3 for
more information about these system calls.

1-4

CHAPTER 2. SUPPORTING MULTIPLE TERMINALS

The iRMX 86 Operating System provides two ways for you to implement
multiple-terminal support on your application system. You can:

• Write application tasks that use the system calls of the Basic
and Extended I/O Systems to communicate directly with multiple
terminals.

• Use the multi-access Human Interface.

This chapter discusses both methods.

COMMUNICATING WITH TERMINALS VIA THE BASIC AND EXTENDED I/O SYSTEMS

One method of providing multiple terminal support is to omit the Human
Interface from your system, write your own application programs that
access the terminals directly, and configure these programs as tasks in
the Operating System. The Basic I/O System provides device drivers that
allow tasks to communicate with multiple terminals. Therefore, if your
system contains the necessary hardware, your application tasks can use
Basic and Extended I/O System calls to communicate with each terminal in
your system.

If you communicate with the terminals directly, without using the Human
Interface, you can tailor your terminal interface to meet your exact
needs. This might result in smaller, faster code than the Human
Interface (but at the expense of an increased program development
effort). This method requires you to write a great deal of code that the
Human Interface already supplies.

If you plan to use this method of providing multiple terminal support,
none of the information contained in this manual applies to you. Refer
to the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL and the iRMX 86 EXTENDED
I/O SYSTEM REFERENCE MANUAL for information about the system calls you
can use to communicate with terminals.

USING THE MULTI-ACCESS HUMAN INTERFACE

The other method of providing multiple-terminal support is to use the
multi-access support provided by the Human Interface. The multi-access
support includes code required to communicate with multiple terminals.
It uses the same Basic and Extended I/O System calls that you would have
to use if you implemented the method described in the previous section.
However, the multi-access Human Interface also provides high-level
support for this communication. For example, from a terminal in a
multi-access system, an operator can execute commands, run development
programs (like editors, compilers, and so on), and run other application
programs.

2-1

SUPPORTING MULTIPLE TERMINALS

If you decide to use the multi-access support features of the Human
Interface, you can still tailor your system to meet your individual
needs. An important way of doing this is by selecting, for each
operator, the initial program that runs when that operator accesses the
Human Interface. There are two choices: the initial program supplied

. with the Human Interface (the standard CLI) or initial programs that you
write. The user description files maintained by the system manager
identify this choice to the Human Interface (refer to the iRMX 86
CONFIGURATION GUIDE for more information). By selecting the initial
program, you can greatly influence the operator's interface to the Human
Interface.

STANDARD INITIAL PROGRAM

The Human Interface supplies a command line interpreter (CLI) as the
standard initial program. During initialization, the Human Interface CLI
performs the following operations:

• Displays a sign-on message.

• Creates an iRMX 86 object called a command connection in which it
places information received from the terminal. Refer to Chapter
5 for more information about command connections.

• Attaches or creates the operator's :PROG: directory.

• Submits the file :PROG:R?LOGON for processing.

After this initial processing, the Human Interface CLI performs the
following operations:

• Displays the Human Interface prompt (-) and reads input from the
terminal (using the Human Interface system call
C$SEND$CO$RESPONSE).

• Places the information it reads into the command connection
(using the Human Interface system call C$SEND$COMMAND). After
receiving a complete command, the command connection removes the
command name portion, loads the file containing the command, and
passes the parameters to the command.

• Recognizes continuation lines and displays a different prompt
(**) when a continuation line is required.

• Displays error messages in the event of certain operator errors.

This is the environment described in the iRMX 86 OPERATOR'S MANUAL. If
it satisfies the needs of your application system, you can assign the
Human Interface CLI to each operator as an initial program.

2-2

SUPPORTING MULTIPLE TERMINALS

CUSTOMIZED INITIAL PROGRAMS

If the standard initial program does not meet your needs, you have the
option of providing your own initial programs. These initial programs
might be similar to the Human Interface CLI, or they might be completely
different kinds of programs. For example, you could write a CLI that
allows access to files in selected directories only. This would prevent
an operator from accidentally modifying other files. Or if you want a
particular operator to use only Basic-language programs, a Basic
interpreter might be the initial program for that operator. You can
select the initial program for each operator. You specify this selection
in the user description files maintained by the system manager (refer to
the iRMX 86 CONFIGURATION GUIDE).

If you provide your own initial program, this program must obey the
following rules:

• It must perform input and output via logical names :CI: and :CO:.

• If it requires the ability to run Human Interface commands, it
must create an iRMX 86 object called a command connection (via
the C$CREATE$COMMAND$CONNECTION system call). If the initial
program does not create a command connection, it (and any other
application tasks) cannot use the following Human Interface
system calls:

CGETINPUT$PATHNAME
CGETOUTPUT$PATHNAME
C$SEND$CO$RESPONSE
C$SEND$EO$RESPONSE
C$SEND$COMMAND
C$DELETE$COMMAND$CONNECTION

• If it does not create a command connection but still wishes to
use the Human Interface system calls CGETPARAMETER and
CGETCHAR, it must first invoke the CSETPARSE$BUFFER system
call.

• If it receives an end-of-file indication from the terminal, it
must terminate processing.

• It must invoke the Extended I/O System call EXITIOJOB to
terminate processing. It must not use the PL/M-86 or ASM86
RETURN statement for this purpose.

Refer to Chapter 8 for detailed descriptions of the Human Interface
system calls mentioned in this section. Refer to the iRMX 86 EXTENDED
I/O SYSTEM REFERENCE MANUAL for information about the EXITIOJOB system
call.

2-3

CHAPTER 3. COMMAND PARSING

Whenever a Human Interface operator enters characters at a terminal to
invoke a command, an initial program associated with that operator reads
that information and causes the Operating System to invoke the command.
When it invokes the command, the Operating System places the parameters
into a parsing buffer. One of the first things that the command must do
is to read the parsing buffer, break the command line into individual
parameters, and determine the correct action to take based on the number
and meaning of the parameters.

The Human Interface provides several system calls to parse command lines
that follow a standard structure. It also provides other system calls to
process nonstandard formats. This chapter:

• Lists the standard structure of command lines

• Describes the system calls used to parse commands of this
structure

• Discusses how to switch the parsing buffer

• Describes the system calls that you can use to parse nonstandard
commands

• Describes a system call that you can use to obtain the command
name the operator used when invoking the command

STANDARD COMMAND-LINE STRUCTURE

The standard structure of a Human Interface command line consists of a
number of elements separated by spaces. It is recommended that your
commands follow this structure. However, if you require a different
structure, refer to the "Parsing Nonstandard Command Lines" section of
this chapter. The standard structure is as follows (square brackets []
indicate optional portions):

command-name [inpath-list [preposition outpath-list]] [parameters] cr

where:

command-name Pathname of the file containing the command's
executable object code.

3-1

inpath-list

preposition

outpath-list

COMMAND PARSING

One or more pathnames, separated by commas, of files
that the Human Interface reads as input during command
execution. Individual pathnames can contain wild-card
characters to signify multiple files. Refer to the
iRMX 86 OPERATOR'S MANUAL for a description of the
wild-card characters and their usage. You can use the
CGETINPUT$PATHNAME system call to process this
inpath-list.

A word that tells the Human Interface how to handle
the output. The standard structure supports the
following prepositions:

TO

OVER

AFTER

The Human Interface writes the output
to a new file indicated by the output
pathname. If the file already exists,
the Human Interface queries the
operator as follows:

<pathname), already exists, OVERWRITE?

If the operator enters a Y or an R
(uppercase or lowercase), the Human
Interface replaces the existing file
with the new output. Any other
character causes the Human Interface to
proceed with the next pair of input and
output files.

The Human Interface writes the output
to the file indicated by the output
pathname. It overwrites any
information that currently exists in
the file.

The Human Interface appends the output
to the end of the file indicated by the
output pathname.

You can use the CGETOUTPUT$PATHNAME system call to
process the preposition.

One or more pathnames, separated by commas, of files
that are to receive the output during command
execution. The total number of pathnames in this list
and the number of wild cards used depends on the
inpath-list. Refer to the iRMX 86 OPERATOR'S MANUAL
for more information. You can use the
CGETOUTPUT$PATHNAME system call to process the
outpath-list.

3-2

parameters

cr

COMMAND PARSING

Parameters that cause the command to perform
additional or extended services during command
execution. The standard structure supports parameters
with the following formats:

value-list The parameter consists solely of
one or more groups of characters
(called values) separated by
commas. When the value-list is
present in the command line, the
command performs the service
requested by the values.

keyword=value-list A keyword with an associated value
(or list of values, separated by
commas). The keyword portion
identifies the kind of service to
perform, and each value supplies
further information about the
service.

keyword(value-list) Alternate form of the previous
format.

keyword value-list A keyword with an associated value
(or list of values, separated by
commas). Like the previous two
formats, the keyword portion
identifies the kind of service to
perform and each value portion
provides more information about
the service. However, the keyword
must be identified to the command
as a preposition (refer to the
description of the CGETPARAMETER
system call for more information).

You use the CGETPARAMETER system call to process the
outpath-list.

Line terminator character. The RETURN (or CARRIAGE
RETURN) key and NEW LINE (or LINE FEED) key are both
line terminators.

The Human Interface also supports the following special characters:

continuation
character

An ampersand character (&). When an operator includes
an ampersand in the command line as the last character
before the line terminator, the Human Interface
assumes that the command invocation continues on the
next line. If the standard Human Interface command
line interpreter (or any custom command line
interpreter that uses C$SEND$COMMAND to invoke
commands) processes the operator's command entry, the
ampersand (and the line terminator that follows) are

3-3

comment
character

quoting
characters

COMMAND PARSING

edited out of the parsing buffer. Then the
continuation line is read and appended to the parsing
buffer. This process continues until the operator
enters a line without a continuation character.
Therefore, when the command receives control, its
parsing buffer contains a single command invocation,
without intermediate continuation characters or line
terminators.

A semicolon character (j). The Human Interface
considers this character and all text that follows it
on a line to be a non-executable comment. If the
standard Human Interface command line interpreter (or
any custom command line interpreter that uses
C$SEND$COMMAND to invoke commands) processes the
operator's command entry, all comments are edited out
of the parsing buffer. Therefore, individual commands
do not have to search for and discard comments.

Two single-quote (') or double-quote (") characters
remove the semantics of special characters they
surround (but you must use the same character for both
the beginning and ending quote). If a command line
contains quoted characters, the Human Interface system
calls that invoke the command and parse the command
line do not perform any special functions associated
with the surrounded characters. For example, an
ampersand surrounded by double quotes is interpreted
as a single ampersand and not a continuation character.

The quotes remove the semantics of characters that are
special to the Human Interface but not special to
other layers of the Operating System. Therefore
quotes do not remove the semantics of characters such
as :, /, and A, which are special to the I/O System.

To include the quoting character in the quoted string,
the operator must specify the character twice or use
the other quoting character. For example:

'can"t' or "can't"

causes:

can't

to be entered in the command line.

3-4

COMMAND PARSING

PARSING THE COMMAND LINE

When a command begins executing, a parsing buffer associated with the
command contains all the parameters that the operator entered when
invoking the command (everything except the command-name portion of the
invocation line). The Human Interface maintains a pointer for this
parsing buffer which initially points to the first parameter. By
invoking any of the following Human Interface system calls, the command
can read the parameters from the parsing buffer:

CGETINPUT$PATHNAME
CGETOUTPUT$PATHNAME
CGETPARAMETER
CGETCHAR

Each of the first three system calls.reads an entire parameter and causes
the Human Interface to move the pointer to the next parameter. These
system calls understand quoting characters, remove the special meaning
from quoted characters, and discard the quote characters.

The last system call, CGETCHAR, sees the parsing buffer as string of
characters. It reads a single character and causes the Human Interface
to move the pointer to the next character. It does not understand the
notion of quoting characters; therefore it does not remove the. special
meaning from quoted characters, nor does it skip over the quotes. Except
for positioning the parsing pointer to a particular place in the buffer,
CGETCHAR should not be used with the first three system calls.

PARSING INPUT AND OUTPUT PATHNAMES

If you restrict the invocation lines of the commands you write to a form
that is similar to the standard format discussed earlier in this chapter,
you can use the system calls CGETINPUT$PATHNAME and
CGETOUTPUT$PATHNAME to identify the input and output pathnames in the
command line. Since the command line can contain multiple pathnames, you
might have to invoke these system calls several times to obtain all the
pathnames. However, the first call to CGETINPUT$PATHNAME reads the
entire inpath-list (the list of pathnames separated by commas) into a
buffer, moves the parsing pointer to the next parameter, and returns the
first pathname to the command. Likewise, the first call to
CGETOUTPUT$PATHNAME notes the preposition (TO, OVER, or AFTER), reads
the entire outpath-list into a buffer, moves the parsing pointer to the
parameter after the outpath-list, and'returns the first pathname to the
command. Succeeding CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME calls
return additional pathnames from the buffers created previously, but they
do not move the parsing pointer to the next parameter.

For example, if the parsing buffer contains:

A,B TO C,D

3-5

COMMAND PARSING

the first call to CGETINPUT$PATHNAME obtains both input pathnames (A
and B) and returns the first one (A) to the caller. The first call to
CGETOUTPUT$PATHNAME obtains both output pathnames (C and D) and returns
the first one (C) to the caller. CGETOUTPUT$PATHNAME also identifies
TO as the preposition.

These system calls handle single pathnames, lists of pathnames, and
pathnames containing wild-card characters. However, because of this
versatility and because output pathnames are dependent on input pathnames
when both use wild-card characters, you must make calls to
CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME in a particular order. To
use these system calls effectively, obey the following rules:

1. Always call CGETINPUT$PATHNAME to obtain the input pathname
before calling CGETOUTPUT$PATHNAME to obtain the corresponding
output pathname. This is necessary because with wild-card
characters, the identity of the output pathname depends on the
identity of the input pathname. Therefore, CGETOUTPUT$PATHNAME
cannot determine the output pathname until CGETINPUT$PATHNAME
determines the corresponding input pathname.

2. Always interleave your calls to CGETINPUT$PATHNAME and
CGETOUTPUT$PATHNAME. This is necessary to handle wild-card
characters and lists of pathnames. If you invoke two calls 'to
CGETINPUT$PATHNAME without an intermediate call to
CGETOUTPUT$PATHNAME, you will not be able to obtain the first
output pathname. Similarly, if you invoke two calls to
CGETOUTPUT$PATHNAME without, an intermediate call to
CGETINPUT$PATHNAME, the second call returns invalid information.

CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME return the pathnames in
the form of strings. Each string is a group of bytes in which the first
byte contains the number of bytes that follow. For these system calls,
the remaining bytes in the string contain the pathname. If
CGETINPUT$PATHNAME returns a zero-length string (that is, the first
byte is zero), you know that there are no more pathnames to obtain.

After calling CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME to obtain
the input file and corresponding output file, you can use the system
calls CGETINPUT$CONNECTION and C$GET$OUTPUT$CONNECTION to obtain
connections to those files. Chapter 4 contains more information about
CGETINPUT$CONNECTION and C$GET$OUTPUT$CONNECTION. Upon obtaining
connections to the files, you can perform the necessary I/O operations.

Figure 3-1 contains an example of a program that uses
CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME in its command-line
parsing (it also uses CGETINPUT$CONNECTION and C$GET$OUTPUT$CONNECTION
to obtain connections to the files. This command is a partial example of
a COpy command that you could implement.

3-6

COMMAND PARSING

1***
* This example demonstrates the use of the following Human Interface *
* system calls: *
*
*
*
*
*
*

rqCget$input$pathname
rqCget$output$pathname
rqCget$input$connection
rqCget$output$connection

*
*
*
*
*
*

*
*
*
*
*
*

This program is a possible implementation of a COpy utility whose *
purpose is to copy data from successive input files to corresponding *
output files. For example, to copy file A to file B, file C to file *
D, and file E to file F, an operator could specify the following *
command line: *

* * COpy A,C,E TO B,D,F *
***1

copy: DO;

$include (hexcep.lit)
$include (iexioj.ext)
$include (hgticn.ext)
$include (hgtipn.ext)
$include (hgtocn.ext)
$include (hgtopn.ext)

DECLARE (input$pathname, output$pathname) structure (
length
char (41)

output$prep byte,
(input$token, output$token)
excep word,
exitexcep word;

word,

1* Get the first input pathname string *1

byte,
byte),

CALL rqCget$input$pathname (@input$pathname, SIZE(input$pathname),
@excep);

IF excep <> E$OK THEN
CALL rq$exit$io$job (exitexcep, 0, @excep);

DO WHILE (input$pathname.length <> 0); 1* A zero length indicates no more
input parameters. *1

1* Get the corresponding output pathname string *1
output$prep = rq$Cgetoutput$pathname (@output$pathname,

SIZE(output$pathname),
@(7,'TO :CO:'), @excep);

IF excep <> E$OK THEN
CALL rq$exit$io$job (exitexcep, 0, @excep);

Figure 3-1. CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME Example

3-7

•

•

COMMAND PARSING

1* Establish connection with the pair of input and output files *1

input$token = rq$Cgetinput$connection (@input$pathname, @excep);
IF excep <> E$OK THEN

CALL rq$exit$io$job (exitexcep, 0, @excep);

output$token = rq$Cgetoutput$connection (@output$pathname,
output$prep, @excep);

IF excep <> E$OK THEN
CALL rq$exit$io$job (exitexcep, 0, @excep);

Code to copy data and close both files

1* Get the next input pathname string *1
CALL rqCget$input$pathname (@input$pathname, SIZE(input$pathname),

@excep);
IF excep <> E$OK THEN

CALL rq$exit$io$job (exitexcep, 0, @excep); .

END 1* DO WHILE */

1* Finish 1/0 processing */
CALL rq$exit$io$job (exitexcep, 0, @excep);

END copy;

Figure 3-1. CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME Example
(continued)

WILD-CARD CHARACTERS IN INPUT AND OUTPUT PATHNAMES

Wild-card characters provide a shorthand notation for specifying several
files in a single reference. The Human Interface supports two wild-card
characters for use in the last component of input or output pathnames.
The wild-card characters are:

? The question mark matches any single char~cter. For example,
the name "FILE?" could imply all of the following names (and
more):

FILEI
FILE2
FILEX

3-8

COMMAND PARSING

* The asterisk matches any sequence of characters (including
zero characters). For example, the name "*FILE" could imply
all of the following files (and more):

OBJECTFILE
FILE
VI.2FILE
AFILE

The iRMX 86 OPERATOR'S MANUAL describes how to use wild-card characters
when entering commands. It also discusses restrictions and operational
characteristics of which an operator should be aware. Refer to that
manual for more information about using wild-card characters in file
names.

The CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME system calls
automatically handle pathnames that contain wild-card characters. They
treat a wild-carded pathname as a list of pathnames.

CGETINPUT$PATHNAME matches wild cards. That is, each time you call it,
it compares the wild-carded component with the files in the specified
directory and returns the pathname the next file that matches. For
example, if an input pathname is:

:PROG:PLM/A*

CGETINPUT$PATHNAME searchs the :PROG:PLM directory and returns the
pathname of the next file that begins with the letter "A."

CGETOUTPUT$PATHNAME generates wild cards. Each time you call it, it
compares the wild-carded output pathname with the wild-carded input
pathname and with the most recent pathname returned by
CGETINPUT$PATHNAME. Then it generates a corresponding output pathname
based on that information. The output pathname could refer to an
existing file or to a file which does not yet exist.

As an example, suppose an operator's default directory contains the
following files:

ALPHA
All
ADAM

BETA
Bil
CII

Now suppose that you have written a command called REFINE that reads some
information from an input file, adjusts that information in some manner,
and writes the information to an output file. Assuming that you
interleaved the calls to CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME
correctly when you wrote the command, an operator could enter a command
line as follows:

REFINE A*,B* TO C*,D*

3-9

COMMAND PARSING

In this case, CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME return
pathnames as follows:

Pathname list returned
by CGETINPUT$PATHNAME

ALPHA
All
ADAM
BETA
BII

PARSING OTHER PARAMETERS

Corresponding pathname list
returned by CGETOUTPUT$PATHNAME

CLPHA
CII
CDAM
DETA
DII

The CGETPARAMETER system call is also available for parsing command
lines of the standard format. You can use this system call for the
following purposes:

• To parse parameters which appear after the input and output
pathnames.

• To parse all parameters, if the command does not use input and
output files.

• To parse the input and output pathnames, if the command requires
a preposition other than TO, OVER, or AFTER.

If you use CGETPARAMETER to parse input and output pathnames, you must
provide additional code to handle wild-card characters that may appear in
the command line. This is unlike CGETINPUT$PATHNAME and
CGETOUTPUT$PATHNAME which handle wild-card characters automatically.
For example, suppose a command line contains the pathname:

FILE*

If you use CGETINPUT$PATHNAME to parse this parameter, the system call
assumes that FILE* is a wild-carded pathname. It searches the operator's
default directory and returns the pathname of the first file whose name
starts with the characters "FILE". Subsequent calls to
CGETINPUT$PATHNAME return other pathnames that meet the conditions.

However, if you use CGETPARAMETER to parse the same parameter, the
system call returns the value:

FILE*

It does not know that the characters represent a pathname, nor does it
know that the asterisk represents a wild card.

When called, CGETPARAMETER parses a single parameter and moves the
pointer of the parsing buffer to the next parameter. The parameter
returned as a result of this call can be in any of the following forms:

3-10

value-list

keyword = value-list
or

keyword (value-list)

keyword value-list

COMMAND PARSING

A value or group of values separated by
commas. The system call returns the entire
list in the form of a string table
(described in Appendix C). It places each
of the values in the value list in a
separate string.

A keyword indicating the kind of parameter,
followed by a value (or group of values,
separated by commas). The presence of the
equal sign or the parentheses lets the
system call recognize keyword parameters
without foreknowledge of the keywords. It
also informs the system call that the
characters following the equal sign (or the
characters in parenthesis) represent a
value-list and not a separate parameter.
The system call returns the keyword in a
string and the value-list in a string table.

A keyword indicating the kind of parameter,
followed by a value (or group of values,
separated by commas). In this case, since
the keyword and value-list are separated by
spaces instead of by an equal sign or
parentheses, the keyword is referred to as a
preposition. In order for the system call
to recognize that this structure is a
keyword/value-list instead of two separate
parameters, you must supply, as input to the
system call, a string table containing all
the possible prepositions that could occur.
The system call checks this list to
determine whether a group of characters
separated by spaces is a preposition keyword
or a separate parameter.

Individual parameters are separated by spaces.

In general, the value-list of a parameter is either a single value or a
list of values separated by commas. CGETPARAMETER returns each of
these values as a string in a string table. However, an individual value
can itself consist of a value-list. If a group of values (separated by
commas) is enclosed in parentheses, CGETPARAMETER treats the values as
a single value, returning them in single string. For example, in the
following value-list:

A,(B,C,D),E

CGETPARAMETER considers "B,C,D" as a single value. Therefore, the
value-list consists of three values: "A", "B,C,D", and "E".

Figure 3-2 contains an example of a program that uses CGETPARAMETER in
its command-line parsing.

3-11

COMMAND PARSING

/***
* This example demonstrates the use of the following Human Interface *
* system call: *
* *
*
*
*
*
*
*
*
*
*
*

rqCget$parameter

This program makes use of rqCget$parameter to parse a keyword
parameter in a command line. Here, the keyword, "SIZE", is parsed
and its value portion converted to a word value and placed in
"size$val". For example, an operator could specify the following
command line:

PROGI SIZE = 400

*
*
*
*
*
*
*
*
*
* * Note that if the "SIZE" parameter is not present, "size$val"receives *

* a default value. *
***/

progI: DO;

$include (hexcep.lit)
$include (hgtpar.ext)

DECLARE STRING LITERALLY 'STRUCTURE (len BYTE, str (1) BYTE)',
STRING$TABLE LITERALLY 'STRUCTURE (num$entries BYTE,

entries (1) BYTE)',
PARAMETER$KEYWORD$MAX LITERALLY '20',
VALUE$TABLE$MAX LITERALLY '80',
DEFAULT$SIZE LITERALLY '100';

DECLARE value$table$buf (VALUE$TABLE$MAX) BYTE, /* Receives
value */

value$table STRING$TABLE AT (@value$table$buf),
valuestrptr POINTER,

string table

value$str BASED value$str$ptr STRING; /* For referencing strings
in the string table */

DECLARE parameter$keyword$buf (PARAMETER$KEYWORD$MAX) BYTE, /* Receives
the keyword
string */

parameter$keyword STRING AT (@parameter$keyword$buf),
excep WORD,
(size$val, i) WORD;

Figure 3-2. CGETPARAMETER Example

3-12

COMMAND PARSING

/* Get the next parameter, if present */
IF (rqCget$parameter (@parameter$keyword, PARAMETER$KEYWORD$MAX,

@value$table, VALUE $ TABLE $ MAX ,
0,0,
@excep)) THEN

IF (parameter$keyword.str(O) = 'S') AND /* Is the keyword 'SIZE'? */
(parameter$keyword.str(1) = 'I') THEN

DO;
valuestrptr = @value$table.entries; /* Point to 1st entry in

table */
size$val = 0;
DO i = 0 to value$str.len - 1;

size$val = size$val * 10;

/* Convert number string to word
value */

size$val = size$val + (value$str.str(i) - 30H);
END;

END;
ELSE

size$val = DEFAULT$SIZE; /*If the 'SIZE' parameter is not present,
use the default size. */

Continue with the rest of the program

Figure 3-2. CGETPARAMETER Example (continued)

PARSING NONSTANDARD COMMAND LINES

If the command lines of the commands you write follow the recommended
structure described earlier in this chapter, you can use
CGETINPUT$PATHN~m, C$GET$OUTPUT$PATHNAME, and CGETPARAMETER to parse
the command line. However, if you require the invocation line to be of a
different form, you might not be able to use these system calls. The
following sections discuss two types of nonstandard icommand lines: one
that is similar to the standard and one that is completely different.

VARIATIONS ON THE STANDARD COMMAND LINE

The "Standard Command-Line Structure" section of this chapter recommends
that the first parameters of your commands be a list of input pathnames,
a preposition, and a list of output pathnames. This convention allows
your commands to know when to use CGETINPUT$PATHNAME and
CGETOUTPUT$PATHNAME system calls and when to use CGETPARAMETER system
calls. With this convention, commands always call CGETINPUT$PATHNAME

3-13

COMMAND PARSING

and CGETOUTPUT$PATHNAME first, before obtaining any optional
parameters. Therefore, the input and output pathnames are the only
position-dependent parameters in your commands; other parameters can
appear in any order and can be optional.

However, suppose you want to structure your commands so that other
parameters appear before the input and output pathnames. You can still
use CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME to parse the input and
output pathnames. But, you have to ensure that your command knows which
of the parameters contain the input and output pathnames. You can do
this in several ways. Two of them are:

• Enforce a rigid structure on the command line. For example,
suppose you want two parameters to appear before the input and
output pathnames, such as:

command pI p2 input-pathname prep output-pathname

Your command could use CGETPARAMETER to parse the first and
second parameters. Then it could use CGETINPUT$PATHNAME and
CGETOUTPUT$PATHNAME to parse the input and output pathnames.
If you do this, pI and p2 are position-dependent parameters which
must be included whenever the command is invoked.

• Use a separate parameter as a switch to inform the command that
the parameters that follow are input and output pathnames. This
method requires more code to implement but it can allow you to
make all your parameters (including the input and output
pathnames) position-independent.

For example, you could implement your command such that whenever
the operator entered a parameter called FROM, it would signal the
command that the next parameters were input and output
pathnames. This command could contain a main loop that used
CGETPARAMETER to parse parameters. Then, whenever it received
a parameter whose value was "FROM", it could call another portion
of code that used CGETINPUT$PATHNAME and
CGETOUTPUT$PATHNAME. After retrieving the input and output
pathnames, the code could return to the main loop to continue
processing parameters.

A hypothetical command of this sort might be called RETRIEVE, a
command that retrieves information from various data bases. The
operator could invoke this command with a command line such as:

RETRIEVE NAMES ADDRESSES PHONES FROM filei TO file2

In this command, operators can specify what they want to retrieve
before they specify where to get the information.

3-14

COMMAND PARSING

OTHER NONSTANDARD COMMAND LINES

In some instances t you might want your command line to look completely
different from that described earlier in this chapter. For example t
suppose you require a syntax in which the following rules apply:

• Spaces have no significance and can be omitted between parameters.

• You must place a prefix character before each parameter (a $
indicates an input filet an @ indicates an output filet and a -
indicates all other parameters.

With this kind of syntax t a user could invoke a command (in this example
the command is again called REFINE) as follows:

REFINE $infile-medium@outfile

Where infile is the file from which to read information, outfile is the
file in which REFINE should place its output t and medium is a parameter
that further directs the processing.

If you require the syntax outlined in this example (or any other
nonstandard syntax), you cannot use CGETINPUT$PATHNAME,
CGETOUTPUT$PATHNAME, and C$GET$PARAMETER to parse the individual
parameters. Any of these system calls would return the entire parameter
list as a single parameter.

For cases such as this t you can use the CGETCHAR system call to parse
the command line. This system call performs a single, simple operation.
It returns a single character from the command line and moves the pointer
to the next character. It does not understand the notion of parameters
as explained earlier in this chapter. Nor does it understand wild-card
characters or quoting characters.

CGETCHAR requires you to provide the parsing algorithm in your own
program, because it makes no assumptions about the structure or order of
parameters. However t by using CGETCHAR you can enforce any command
syntax you choose.

Because CGETCHAR moves the pointer character by character, not
parameter by parameter t you should take care when using CGETCHAR in the
same program with CGETINPUT$PATHNAME t C$GET$OUTPUT$PATHNAME, and
CGETPARAMETER. You must ensure that CGETCHAR leaves the pointer
pointing at the beginning of a parameter (or at blank characters which
immediately precede the parameter) before invoking any of the other
system calls.

CHANGING THE PARSING BUFFER

When a command begins execution t it has a parsing buffer that is set up
by the Human Interface to contain the parameters of the command. The
command parsing system calls listed in this chapter operate on that
parsing buffer. This allows the command to parse its parameters.

3-15

COMMAND PARSING

Some commands might require the ability to parse additional lines of text
(for example, an editor needs to parse individual editor commands). A
command such as this cannot use the Human Interface-provided parsing
buffer because it has no way of placing information in the buffer, and
because it cannot reset the parsing pointer to the beginning of the
buffer.

To meet the needs of commands such as this, the Human Interface provides
a system call to change the parsing buffer from the one the Human
Interface provides to one that the command provides. This system call,
CSETPARSE$BUFFER, switches the parsing buffer and sets the parsing
pointer to the beginning of the buffer.

One of the parameters of the CSETPARSE$BUFFER system call (buff$p) is a
pointer to a buffer containing the text to be parsed. This buffer can
contain text read from the terminal, text read from a file, or even text
that you "hard code" into the command. After the call to
CSETPARSE$BUFFER, the following command parsing system calls obtain
information from the new parsing buffer:

CGETPARAMETER
CGETCHAR

The other command parsing calls (CGETINPUT$PATHNAME and
CGETOUTPUT$PATHNAME) are not affected by calls to CSETPARSE$BUFFER.
These calls always obtain pathnames from the original parsing buffer (the
command line).

When you establish a new parsing buffer, CSETPARSE$BUFFER sets the
parsing pointer to the beginning of the buffer. This allows you to use
one buffer for parsing many lines of text. For example, suppose your
command has several sub-commands. Each time the operator enters a
sub-command, your command reads the sub-command into a buffer, calls
CSETPARSE$BUFFER to reset the parsing pointer, and parses the
sub-command. The program flow for an operation like this could be:

1. Read the information from the terminal into a buffer (use
C$SEND$CO$RESPONSE, C$SENDEORESPONSE, or an Extended I/O System
call).

2. Call CSETPARSE$BUFFER to set the parsing buffer to the buffer
containing the sub-command. This sets the parsing pointer to the
beginning of the buffer.

3. Parse the sub-command using CGETPARAMETER or CGETCHAR system
calls.

4. Perform the operations requested by the sub-command.

5. Go back to step 1. Continue this loop until the operator exits
from the command.

3-16

COMMAND PARSING

If you specify a zero value for the buff$p parameter of
CSETPARSE$BUFFER, the parsing buffer switches back to the original
command line buffer. However, the parsing pointer does not reset to the
beginning of the buffer; it remains pointing at the next parameter in the
command line. This allows you, if you wish, to parse part of the command
line, switch buffers and parse a portion of another buffer, and switch
back to the command line.

There is one problem with switching back and forth between parsing
buffers. Except when you switch to the command line buffer, every time
you call CSETPARSE$BUFFER, the parsing pointer moves to the start of
the buffer. Therefore, you lose your place in the buffer. However,
CSETPARSE$BUFFER returns, in its offset parameter, a value that
indicates the position of the pointer in the previous buffer. This value
specifies the offset of the pointer, in bytes, from the beginning of the
buffer. If you intend to switch back to that buffer (by again calling
CSETPARSE$BUFFER), you can use this value to move the pointer to its
previous position.

One way to do this is to use the CGETCHAR system call to move the
parsing pointer back to its previous position. After switching back to
the original buffer, call CGETCHAR the number of times specified in the
offset parameter of the first CSETPARSE$BUFFER call (not the one that
switched back to the buffer). This positions the pointer to its previous
location. You can then continue parsing parameters from the point at
which you left off.

Another way to do this is by treating your parsing buffer as an array of
characters (an array called CHAR, for example). When you call
CSETPARSE$BUFFER the first time, you can specify the buff$p parameter
to point to the first element of the array (CHAR(O), for example). Then,
when you switch parsing buffers, CSETPARSE$BUFFER returns, in the
offset parameter, the number of bytes already parsed. When you switch
back to the first parsing buffer, you can use this offset value as an
index into the array; that is, have the buff$p parameter point to
CHAR(offset).

OBTAINING THE COMMAND NAME

A user invokes a command by specifying the pathname of the file
containing its object code and any parameters the command requires. The
Human Interface places the parameters in a parsing buffer, which the
command can access by invoking the system calls described earlier in this
chapter. In addition, the Human Interface places the command name in
another buffer. The command can obtain this name by calling
CGETCOMMAND$NAME.

CGETCOMMAND$NAME does not operate on the parsing buffer used by the
other command parsing system calls. Nor is it affected by the
CSETPARSE$BUFFER system. It can be called mUltiple times; each time it
returns the same command name.

3-17

COMMAND PARSING

If the operator enters the complete pathname of the command (including
the logical name), the command-name buffer contains exactly what the
operator entered. However, if the operator enters a command name without
a logical name, the Human Interface automatically searches a number of
directories for the command. In this case, the command-name buffer
contains not only the name the operator entered, but also the directory
containing the command (such as : SYSTEM: , :PROG:, or :$:).

Therefore, a command can use the value returned by CGETCOMMAND$NAME and
the ampersand pathname separator (A) to access the directory in which it
resides. For example, if "command-name" is the name received from
CGETCOMMAND$NAME, a command could access its directory by using the
pathname:

command-name A

It could access another file in the directory by specifying the pathname:

command-nameAfile

3-18

CHAPTER 4. I/O AND MESSAGE PROCESSING

The Human Interface provides several system calls that establish
connections to input and output files, communicate with the operator's
terminal, and format exception codes into messages that can be sent to
the operator. This chapter discusses these system calls.

ESTABLISHING INPUT AND OUTPUT CONNECTIONS

The Human Interface provides two system calls for establishing
connections to input and output files: CGETINPUT$CONNECTION and
CGETOUTPUT$CONNECTION. These system calls are structured so that you
can use the output from CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME as
input to these system calls.

USING CGETINPUT$CONNECTION

CGETINPUT$CONNECTION obtains a connection to a file and opens that
connection for reading. One of the parameters of CGETINPUT$CONNECTION
is a pointer to a string containing the pathname of the file for which
the connection is sought. This pathname can be the pathname returned by
CGETINPUT$PATHNAME or it can be the pathname of any other file to which
you want a connection. If CGETINPUT$CONNECTION cannot obtain a
connection to the specified file for any reason, it returns an exception
code and writes a message to :Co: (normally the operator's terminal) to
indicate the type of problem. For example, if the specified input file
does not exist, CGETINPUT$CONNECTION displays the following message:

<pathname>, file not found

The system call displays similar messages in other situations. Refer to
the description of CGETINPUT$CONNECTION in Chapter 7 for more
information.

BecauseCGETINPUT$CONNECTION returns messages to the operator in the
event of an exceptional condition, your command does not have to return
additional messages unless you require them. The command only has to
decide whether to abort or to continue with processing.

USING CGETOUTPUT$CONNECTION

CGETOUTPUT$CONNECTION obtains a connection to a file and opens that
connection for writing. Like CGETINPUT$CONNECTION, one of the
parameters of CGETOUTPUT$CONNECTION is a pointer to a string containing
the pathname of the file for which a connection is sought. This pathname

4-1

I/O AND MESSAGE PROCESSING

can be the pathname returned by CGETOUTPUT$PATHNAME or it can be the
pathname of any other file to which you want a connection. There is
another parameter in CGETOUTPUT$CONNECTION which specifies the type of
preposition to use when writing to the output file (TO, OVER, or AFTER).
This preposition governs how data gets written to the file.

If you specify the TO preposition and the pathname of an existing file,
CGETOUTPUT$CONNECTION prompts the operator for permission to delete the
existing file. This prompt appears as:

<pathname), already exists, OVERWRITE?

If the operator enters a "Y" or "y", the system call obtains the
connection to the existing file. If the operator enters "N" or "n", the
system call returns an exception code without obtaining a connection to
the file.

If you specify the OVER preposition, CGETOUTPUT$CONNECTION obtains the
connection without prompting the operator for permission.

If you specify the AFTER preposition, CGETOUTPUT$CONNECTION obtains the
connection without prompting the operator for permission. It also seeks
to the end of file before returning control. Thus any information you
write to the file will not overwrite the existing information. This is
unlike TO and OVER which cause CGETOUTPUT$CONNECTION to leave the file
pointer at the beginning of the file.

If the operator does not have the proper access rights to the file, or if
for some reason CGETOUTPUT$CONNECTION cannot obtain a connection to the
file, CGETOUTPUT$CONNECTION returns an exception code and displays a
message at the operator's terminal. Refer to the description of
CGETOUTPUT$CONNECTION in Chapter 7 for more information.

EXAMPLE PROGRAM SCENARIO

A normal scenario for using CGETINPUT$CONNECTION and
CGETOUTPUT$CONNECTION is as follows:

DO;

Obtain input pathname from command line with CGETINPUT$PATHNAME

Obtain output pathname from command line with
CGETOUTPUT$PATHNAME

Obtain connection to input file with CGETINPUT$CONNECTION

Obtain connection to output file with CGETOUTPUT$CONNECTION

Read information from input file

Perform command operations on information

4-2

I/O AND MESSAGE PROCESSING

Write information to output file

Delete connections to input and output files

UNTIL no more input and output pathnames remain

The program listing in Figure 3-1 shows an implementation of this
scenario.

COMMUNICATING WITH THE OPERATOR'S TERMINAL

The Human Interface provides two system calls that ease the process of
communicating with the operator's terminal. They are C$SEND$CO$RESPONSE
and C$SEND$EO$RESPONSE. Each of these system calls combines into a
single system call several operations that you would normally perform
when communicating with the terminal.

In its general form, C$SEND$CO$RESPONSE establishes connections to :CI:
(console input) and :CO: (console output), writes a message to :CO:, and
reads a message from :CI:. As input to this system call, you can specify
the message to be sent, the size of the message to be received, and the
buffer to receive the message. Depending on the values you choose for
the parameters, you can either:

o Send a message and receive a message

o Send a message without waiting to receive a message

o Receive a message without sending anything

If you use C$SEND$CO$RESPONSE, you do not have to invoke other system
calls to attach, open, read from, or write to the operator's terminal.

There is only one difference between C$SEND$CO$RESPONSE and
C$SEND$EO$RESPONSE. C$SENDCORESPONSE deals specifically with the
logical names :CI: and :CO:. Therefore, its input and output can be
redirected to files by changing the pathnames represented by these
logical names. This is what happens when an operator places a command in
a SUBMIT file; SUBMIT assumes that :CI: is the SUBMIT file and that :CO:
is the output file specified in the SUBMIT command. On the other hand,
while C$SEND$EO$RESPONSE performs the same operations as
C$SEND$CO$RESPONSE, C$SENDEORESPONSE always reads information from and
writes information to the operator's terminal. Input and output cannot
be redirected with C$SEND$EO$RESPONSE.

C$SEND$CO$RESPONSE and C$SENDEORESPONSE are especially useful if you
have multiple tasks communicating with a single terminal. If a task uses
either of these system calls and requests a response from the terminal,
no other output is displayed at the terminal until the operator enters a
response to the first system call. After the operator responds, tasks
can send further information to the terminal. This mechanism prevents
the operator from receiving several requests for information before being
able to respond to the first one.

4-3

I/O AND MESSAGE PROCESSING

FORMATTING EXCEPTION CODES INTO MESSAGES

Whenever you include iRMX 86 system calls in the code of a command that
you write, it is possible for those system calls to encounter exceptional
conditions. Exceptional conditions are divided into two categories:
programming errors and environmental conditions. Programming errors
occur when the iRMX 86 Operating System detects a condition that normally
can be avoided by correct coding. Environmental conditions, in contrast,
are generally outside the control of the application program.

Even the most thoroughly debugged commands can encounter exceptional
conditions. The exceptional conditions can a~ise from invalid operator
entries, lack of secondary storage space, media errors, and other
problems over which the command has no control. The Human Interface
provides a default exception handler to handle exceptional conditions in
commands that you write. This exception handler receives control on the
occurrence of all exceptional'conditions. It displays the exception code
value and mnemonic at the operator's terminal and aborts the command.

In many cases, you might want to provide your own exception handling,
either to pass additional information to the operator or to allow the
operator another chance to enter correct information. In such cases, you
can use the Nucleus system calls GET$EXCEPTION$HANDLER and
SET$EXCEPTION$HANDLER to assign your own exception handler or to cancel
the effect of the default exception handler on some or all exceptions
that occur in your command. Refer to the iRMX 86 NUCLEUS REFERENCE
MANUAL for more information about these system calls.

When you perform your own exception handling, you will probably create
special messages that you return to the operator in the event of certain
exceptional conditions. However, you might not want to create messages
for all possible exception codes. For this situation, the Human
Interface provides the the C$FORMAT$EXCEPTION system call.

C$FORMAT$EXCEPTION accepts an exception code value as input and returns a
string whose contents describe the exceptional condition. You can use
this string as input to a system call such as C$SEND$CO$RESPONSE to write
the information to the operator terminal. By using C$FORMAT$EXCEPTION,
you can return a message to the operator for all exceptional conditions,
but you do not have to enlarge your program by including the text of
these messages in the code of your command.

The text portion of the string produced by C$FORMAT$EXCEPTION consists of
the exception code value and mnemonic in the following format:

value : mnemonic

'You can display this string as is, or you can place additional
explanatory text in the string before displaying it.

4-4

CHAPTER 5. COMMAND PROCESSING

When you write your own command, you might want to perform an operation
that is already provided in another command (such as copying one file to
another, displaying a directory, etc.). Instead of duplicating the code
for this operation in your command, you can invoke Human Interface system
calls to issue the commands themselves. The Human Interface provides
three system calls to facilitate this process of programmatic command
invocation: C$CREATE $COMMAND$CONNECTION, C$SEND$COMMAND, and
C$DELETE$COMMAND$CONNECTION.

Invoking commands programmatically involves the following operations:

• Creating an object (called a command connection) to store the
command invocation lines

• Sending the command line to the command connection and invoking
the command

• Deleting the command connection

This chapter discusses these operations and provides an example of how
the iRMX 86 system calls appear in a program.

CREATING A COMMAND CONNECTION

Before you can send a command line to the Operating System to be invoked,
you must create an object (called a command connection) to store the
command line. The C$CREATE$COMMAND$CONNECTION system call creates this
object and returns a token for the command connection. The token can be
used in calls to C$SEND$COMMAND (to send command lines to the object) and
in calls to C$DELETE$COMMAND$CONNECTION (to delete the object after using
it).

When you call C$CREATE$COMMAND$CONNECTION, you also specify tokens for
the connections that serve as command input and command output for the
invoked command. This allows you to redirect input and output for the
invoked command to secondary storage files. Or you can specify the
normal :CI: and :CO:.

The command connection is necessary to support the processing of
multiple-line commands without interference from other tasks. If not for
the command connections, the Operating System would be unable to
determine which continuation line went with which command when many tasks
were sending command lines to be processed. The command connection
provides a place to store command lines until the command is complete.-

5-1

COMMAND PROCESSING

SENDING COMMAND LINES TO THE COMMAND CONNECTION AND INVOKING THE COMMAND

The C$SEND$COMMAND system call sends command lines to a command
connection and, when the command invocation is complete, invokes the
command. One of the parameters of this system call is the token for a
command connection, which identifies the command connection to use.
Another parameter is a pointer to a string which must contain a command
line. The format of the command line is the same as the format for
entering the command line at a terminal. The command can be any iRMX 86
Human Interface command (as described in the iRMX 86 OPERATOR'S MANUAL)
or any command that you write.

If the string specified as a parameter to C$SEND$COMMAND contains a
complete command invocation, C$SEND$COMMAND places the command line in
the command connection and invokes the command.

However, if the string does not contain the entire command invocation
(that is, it contains the "&" as a continuation character),
C$SEND$COMMAND places the command line in the command connection without
invoking the command. It also returns a condition code informing the
calling program that the command is continued. This allows the calling
program to change the system prompt (if reading the command invocation
from a terminal) and to make additional calls to C$SEND$COMMAND.
Additional C$SEND$COMMAND calls place continuation lines in the command
connection, combining them with the command lines already there. When
C$SEND$COMMAND sends the last portion of the command invocation (a line
without a continuation character), it also invokes the entire command.

Once you call C$SEND$COMMAND enough times to place a complete command
invocation in the command connection, C$SEND$COMMAND invokes the
command. This involves loading the command from secondary storage and
starting it running. The C$SEND$COMMAND call that invokes the command
does not return control until the invoked command finishes processing.
Once the command finishes processing, you can use the command connection
for invoking other commands.

The C$SEND$COMMAND system call contains two pointers to words that
receive iRMX 86 condition codes. One of these (called except$ptr in the
system call description) points to a word that receives the status of the
C$SEND$COMMAND system call. An E$OK indicates that C$SEND$COMMAND
received the full command invocation and invoked the command. An
E$CONTINUED indicates that the command invocation is not complete (the
last line contained a continuation character). Other exception codes
indicate other problems with the system call.

The other pointer (called command$except$ptr in the system call
description) points to a word that receives the status of the invoked
comman4. This allows you to determine the status of the invoked command.

5-2

COMMAND PROCESSING

DELETING THE COMMAND CONNECTION

After you have finished invoking commands programmatically, you must
delete the command connection. The C$DELETE$COMMAND$CONNECTION system
call performs this operation. You do not need to delete the command
connection after each command invocation, because the command connection
is re-usable. However, you should delete the command connection after
performing all C$SEND$COMMAND operations. This frees the memory used by
the data structures of the command connection.

EXAMPLE

Figure 5-1 contains an example of a program that uses
C$CREATE$COMMAND$CONNECTION, SEND$COMMAND, and DELETE$COMMAND$CONNECTION.
It invokes the Human Interface COpy command programmatically.

/***
* * * This example demonstrates the use of the following Human Interface *
* advanced standard functions: *
* * * rqCcreate$command$connection *
* rqCsend$command *
* rqCdelete$command$connection *
* * * This program uses the previous system calls to invoke the COpy *
* command from within and then continue normal processing. The *
* program is invoked with the command line: *
* * * PROG2 *
***/

prog2: DO;

$include (hexcep.lit)
$include (hcrccn.ext)
$include (hsndcmd.ext)
$include (hdlccn.ext)
$include (iexioj.ext)
$include (hgtincn.ext)
$include (hgtocn.ext)

DECLARE (ci$token, co$token, command$connection$token) WORD,
(excep, comexcep, exexcep) WORD;

DECLARE output$prep BYTE;

Figure 5-1. Command Connection Example

5-3

COMMAND PROCESSING

/* Invoke utility to copy file OLD to file NEW */

/* Get tokens for CI and CO */
ci$token = rq$Cgetinput$connection(@(4,':CI:'), @excep);
IF excep <> E$OK THEN

CALL rq$exit$io$job (excep, 0, exexcep);
co$token = rq$Cgetoutput$connection(@(4,':CO:'), output$prep, @excep);
IF excep <> E$OK THEN

CALL rq$exit$io$job (excep, 0, exexcep);

/* Create command connection */
command$connection$tok = rqCcreate$command$connection (@ci$token,

co$token, 0,
@excep);

/* Send command to copy files */
CALL rqCsend$command (command$connection$tok,

@(23,'COPY :F1:0LD TO :F1:NEW'),
@comexcep, @excep);

IF excep <> E$OK THEN
CALL rq$exit$io$job (excep, 0, exexcep);

/* Delete command connection */
CALL rqCdelete$command$connection (command$connection$tok, @excep);
IF excep <> E$OK THEN

CALL rq$exit$io$job (excep, 0, exexcep);

Rest of program

/* Finish I/O processing */
CALL rq$exit$io$job (excep, 0, @exexcep);

END prog2;

Figure 5-1. Command Connection Example (continued)

5-4

CHAPTER 6. PROGRAM CONTROL

Normally, when a Human Interface command is executing, an operator cannot
communicate with the command (or with the application system in general)
unless the command initiates the communication by requesting input from
the terminal. This can present problems if an operator inadvertently
enters the wrong command, or if the operator decides while the command is
executing that the command is unnecessary. Under these circumstances,
the operator can enter a Control-C character. In the default case, the
Control-C causes the Human Interface to abort the currently-executing
command. However, you can override the default Control-C mechanism by
providing your own code to process Control-C characters. This chapter
discusses how to do this.

HOW THE DEFAULT CONTROL-C MECHANISM WORKS

When the operator enters a Control-C, the Operating System sends a unit
to a semaphore. In the default case, it sends the unit to a semaphore
established by the Human Interface. A Human Interface task waits at that
semaphore to receive the unit. When it receives the unit, it aborts the
command that is currently executing and returns control to the operator
at the Human Interface level. The Human Interface task then waits at the
semaphore for another unit.

This Control-C facility allows operators to cancel commands while the
commands are executing. It is a valuable facility that can be used with
your commands without requiring you to provide special implementation
code.

PROVIDING YOUR OWN CONTROL-C MECHANISM

With some commands that you write, you might want to override the default
Control-C mechanism. For example, suppose you write a text editor. An
operator invokes the editor with a Human Interface command and then
specifies edit commands to enter text into a buffer and modify that
text. While using the editor, the operator does not want a Control-C
character to abort the entire editing session, destroying text in the
editing buffer that may have taken an hour or more to create. Instead,
the operator might want a Control-C to abort an individual editor
command, but not abort the entire editor. In order to provide this
facility, your Human Interface command (the editor) must override the
default Control-C mechanism and provide its own code to handle Control-C
entries.

To override the default Control-C mechanism, you must change the
semaphore to which the Operating System sends the unit when the operator
enters a Control-C. By changing the semaphore to one that you create,
you circumvent the Control-C task of the Human Interface.

6-1

PROGRAM CONTROL

You can use the S$SPECIAL system call of the Extended I/O System to
change the Control-C semaphore. This system call is described in the
iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL. However, it has three
parameters that are important when changing the semaphore. They are:

connection

function

data$ptr

This parameter should contain the token for a
connection to the operator's terminal.

This parameter should contain the value 6 to indicate
the set signal character function.

This parameter should point to a structure of the
following form:

DECLARE signal$pair
semaphore
character

STRUCTURE (
WORD,
BYTE);

where:

semaphore

character

A token for your new Control-C
semaphore.

The character code for the
Control-C character. If you use
the ASCII code (03), the Operating
System will place a unit in the
semaphore when an operator enters
Control-C. If you use the ASCII
code plus 20H (23H), the Operating
System clears out the terminal's
input buffers in addition to
placing the unit in the semaphore.

If your command switches the Control-C semaphore, it must ,also service
that semaphore. It can do this either by creating a task that waits
continually at the semaphore for a unit or by containing in-line code
that periodically checks the semaphore.

In either case, when a unit is sent to the semaphore, the command (or the
task) must perform the necessary Control-C operation.

The program flow of such a command would be:

1. Call CREATE$SEMAPHORE to create the Control-C semaphore.

2. If you plan to create a Control-C task to service the semaphore,
call CATALOG$OBJECT to catalog the token for the semaphore in an
object directory.

3. Call S$ATTACH$FILE to obtain a connection to the terminal. Use
logical name :CI: as the pathname parameter.

4. Call S$OPEN to open the connection to the terminal for reading
only (mode 1).

6-2

PROGRAM CONTROL

5. If you plan to use a Control-C task, call CREATE$TASK to start
the Control-C task.

6. Call S$SPECIAL to switch the Control-C semaphore to the one just
created. Use the token for the connection to the terminal as
input.

7. Continue with command processing. If you are servicing the
Control-C semaphore in-line, periodically check the semaphore (by
calling RECEIVE$UNITS) to determine if it contains any units. If
you obtain a unit from the semaphore, perform the necessary
Control-C processing.

If you service the Control-C with a task, the program flow of the
Control-C task "would be:

1. Call LOOKUP$OBJECT to obtain the token for the semaphore.

2. Do forever:

a. Call RECEIVE$UNITS to obtain a unit from the semaphore.

b. Perform the operation that must occur when the operator
enters a Control-C.

Each method of servicing the Control-C semaphore has advantages and
disadvantages.

If you service the Control-C semaphore with in-line code, you can perform
any operation that you want. You can branch to various locations, you
can start new tasks running, you can abort the command, or you can
perform any other function that you wish. However, in order to service
the Control-C semaphore with in-line code, you must check the semaphore
periodically, to see if it contains a unit. When doing this, you must
ensure that you place the checks inside all program loops that perform
operations an operator might want to abort. Also, because you can check
the semaphore only periodically, you cannot guarantee a quick response to
the Control-C in all cases.

If you use a Control-C task, you can guarantee quick service because the
task is always waiting at the semaphore. However, because a separate
task services the Control-C, you can perform only a limited number of
operations in response to the Control-C.

• The task can send a message to the command, but then the command
would have to periodically check a mailbox. This has the same
disadvantages as in-line servicing with none of the advantages.

• The task can delete the command. However, the task has no way of
knowing what operations the command was performing when the
operator entered the Control-C. If the command was updating an
internal table, deleting the command could corrupt your entire
system.

6-3

I
PROGRAM CONTROL

Therefore, unless you have a specific reason for using a Control-C task,
this manual recommends that you use in-line code to service the Control-C
semaphore.

6-4

CHAPTER 7. CREATING HUMAN INTERFACE COMMANDS

This chapter discusses the steps that you must perform to create your own
Human Interface commands. It discusses the necessary elements of a
command as well as how to compile (or assemble) and link your code.

To perform the operations described in this chapter you must have either
an iAPX 86-based Microcomputer Development System (such as a Series III)
or an iRMX 86-based system that includes the Human Interface commands.
Either system must have an editor, the necessary compiler or assembler,
and the utility programs (such as LINK86).

ELEMENTS OF A HUMAN INTERFACE COMMAND

This section discusses the rules that every command you write must obey.
It also suggests some programming practices to make coding and using your
command easier.

PARSING THE COMMAND LINE

If you are going to allow the operator to enter parameters when invoking
the command, the first thing your command should do is parse the command
line. Chapter 3 describes the Human Interface system calls that you can
use for this. To support lists of pathnames and wild-carded pathnames,
the flow of a program that uses input and output files should be:

1. Call CGETINPUT$PATHNAME to obtain the first input pathname.

2. Call CGETOUTPUT$PATHNAME to obtain the preposition and first
output pathname.

3. Call CGETPARAMETER as many times as necessary to get all the
parameters.

4. Do until no more input pathnames remain:

a. Call CGETINPUT$CONNECTION to obtain a connection to the
input file.

b. Call CGETOUTPUT$CONNECTION to obtain a connection to the
output file.

c. Read the information from the input file, perform the command
operations based on that input, and write information to the
output file.

7-1

CREATING HUMAN INTERFACE COMMANDS

d. Call S$DELETE$CONNECTION (Extended I/O System call) to delete
the connections to the input and output files.

e. Call CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME to obtain
the next input and output pathnames.

AVOIDING THE USE OF CERTAIN SYSTEM CALLS

When you write the code for your Human Interface command. you can use any
of the iRMX 86 system calls, depending on the requirements of your
command. However, some system calls are intended primarily for use in
systemrlevel jobs (those jobs that you configure into the Operating
System rather than invoking as Human Interface commands). In the
descriptions of system calls, the iRMX 86 reference manuals contain
cautions concerning those system calls that you should avoid using.

In particular, avoid iRMX 86 objects (and their associated system calls)
that, by their use, make your command immune to deletion. Regions and
extension objects (described in the iRMX 86 NUCLEUS REFERENCE MANUAL) are
examples of such objects. If your command becomes immune to deletion, a
Control-C that an operator enters to cancel the command will have no
effect; also the operator's terminal may deadlock when the command
completes processing.

TERMINATING THE COMMAND

When the operator invokes a command, the Operating System loads the
command into memory and creates an I/O job as the environment in which
the command runs. (The iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL
discusses I/O jobs.) Until the command finishes processing, the operator
is unable to run any other commands. In order to finish processing
correctly, any task in the command that exits must do so by calling
EXITIOJOB (an Extended I/O System call, described in the iRMX 86
EXTENDED I/O SYSTEM REFERENCE MANUAL). This system call causes the
Operating System to delete the I/O job containing the command, therefore
returning control to the operator. If the command omits the call to
EXITIOJOB, the operator might not be able to enter further commands.

INCLUDE FILES

When you write the source code for your commands, you can use $INCLUDE
statements to include the following kinds of information: external
declarations of system calls, literal definitions of exception codes, and
common pieces of code that you declare.

7-2

CREATING HUMAN INTERFACE COMMANDS

As part of writing the code for your commands, you must declare each
iRMX 86 system call as an external procedure. Instead of writing this
code yourself, you can use the $INCLUDE statement to include this
information from files on one of the iRMX 86 release diskettes. This
diskette contains a file for each system call, with the external
declaration of that system call as the contents of the file. To use
these files, simply determine the system calls that your command uses and
place into your source code $INCLUDE statements for the corresponding
external declaration files.

You also require literal definitions of exception codes so that you can
refer to the exception codes by their mnemonics instead of by their
values (for example, E$MEM instead of 2H). The Include Files release
diskette contains several files (one for each layer of the Operating
System) consisting of LITERALLY statements. Each file defines all the
iRMX 86 condition code mnemonics used in that layer. You should copy
these files~ delete entries if you can guarantee that the deleted
exception codes will never appear, and use $INCLUDE statements to include
them in the compilation of your command.

Refer to the iRMX 86 INSTALLATION GUIDE for information about the release
diskettes and the files contained in them. Refer to the PL/M~86 USER'S
GUIDE for information about the $INCLUDE statement.

PRODUCING AN EXECUTABLE COMMAND

After you have written the source code for your c~nd. you au.t produce
object code that can be executed in an iRHX 86 environ.ent. This
involves the following procedure:

1. Compile (or assemble) the command using the appropriate
translators. When you do this, ensure that the name. you .pecify
in $INCLUDE statements specify the correct devices and
directories.

2. Using LINK86, link the code to iRHX 86 interface I1brarie. (and
any other libraries that you require) and produce a relocatable
object module that the Operating System can load anywhere in
memory. The format of the LINK86 command is:

LINK86 &
command-pathname, &
:dir:HPIFC.LIB, &
:dir:LPIFC.LIB, &
:dir:EPIFC.LIB, &
:dir:IPIFC.LIB, &
:dir:RPIFC.LIB, &
:dir:other.lib &

TO output-pathname &
PRINT(mapfile-pathname) SYMBOLCOLUMNS(2) &
OBJECTCONTROLS(PURGE) &
BIND SEGSIZE(STACK(stacksize)) MEMPOOL(minsize,maxsize)

7-3

CREATING HUMAN INTERFACE COMMANDS

where:

command­
pathname

other. lib

output­
pathname

mapfile­
pathname

stacksize

minsize
maxsize

Complete pathname of the file containing your
compiled (or assembled) command. You can 'link in
several files or libraries at this point, if
necessary.

Any other files or libraries that you need to
link with your command.

Complete pathname of the file in which LINK86
places the linked command.

Complete pathname of the file on which LINK86
places the link map.

Size, in bytes, of the stack needed by the
command and any system calls that the command
makes. The Human Interface uses this value when
it creates a job for the command. Be sure the
stack is large enough to handle both user and
system requirements. Refer to the iRMX 86
PROG&Mfi1ING TECHNIQUES manual for information
about stack requirements of the system calls.

Minimum and maximum amount of dynamic memory,
in bytes, required by the command. The command
uses this memory when it creates iRMX 86
objects. The Human Interface uses the minsize
and maxsize values when it creates a job for the
command. Be sure that these values are large
enough to satisfy the needs of your command and
small enough to allow the command to be loaded
into the operator's memory partition.

This command produces relocatable code that the Operat!ng
System can load into any available memory. If you require
your command to be available as absolute code,' you can use
LINK86 and LOC86 to produce this code. Refer to the
iAPX 86, 88 FAMILY UTILITIES USER'S GUIDE for more
information about LINK86 and LOC86. If you require absolute
code for your commands, you must also configure the Operating
System in such a way that it reserves the memory locations
required by the command. If it does not, the command, when
loaded into the system, could overwrite Operating' System or
user information. Refer to the iRMX 86 CONFIGURATION GUIDE
for more information about Operating System configuration.

If you are using an iRMX 86-based system to compile and link your
command, the command is now ready for execution. An operator can invoke
the command by entering the pathname of the file containing the linked
command (the output-pathname in the LINK86 command).

7-4

CREATING HUMAN INTERFACE COMMANDS

If you are using a Microcomputer Development System to compile or link
your command, you must connect the development system to your iRMX 86
application system via the iSBC 957B package and use the Human Interface
UPCOpy command to copy the linked command from the development system
disk to an iRMX 86 secondary storage device. The iSBC 957B package is
described in the USER'S GUIDE FOR THE iSBC 957B iAPX 86,88 INTERFACE AND
EXECUTION PACKAGE. The UPCOPY command is described in the iRMX 86
OPERATOR'S MANUAL. After you transfer the linked command to an iRMX 86
secondary storage device, an operator can invoke the command by entering
its pathname.

7-5

CHAPTER 8. HUMAN INTERFACE SYSTEM CALLS

The Human Interface system calls described in this chapter are presented
in alphabetical sequence without regard to functional organization. A
functional grouping of the calls according to type is provided in the
System Call Dictionary in Table 8-1. For each call t the information is
organized into the following categories:

• Brief functional description.

• Calling sequence format.

• Input parameter definitions t if-applicable.

• Output parameter definitions t if applicable.

• Considerations and consequences of call usage.

• Potential exception codes t and their possible causes.

This chapter refers to PL/M-86 data types such as BYTE t WORD t and
SELECTOR and iRMX 86 data types such as STRING. These words t when used
as data types t are always capitalized; their definitions are found in
Appendix A. This chapter also refers to an iRMX 86 data type called
TOKEN. If your compiler supports the SELECTOR data type t you can declare
a TOKEN to be literally a SELECTOR or a WORD. The word "token" in lower
case refers to a value that the iRMX 86 Operating System assigns to an
object. The Operating System returns this value to a TOKEN (the data
type) when it creates the object.

If you are a new user of the Human Interface calls t it is suggested that
you review the parsing considerations in Chapter 3 before writing your
source code. You should also review the format of the released Human
Interface commands. They are described in the iRMX 86 OPERATOR'S MANUAL.

This chapter assumes that you are familiar with a number of terms and
concepts that are common to the iRMX 86 Operating System. If you are
not t you should read INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM and the
chapters in the iRMX 86 NUCLEUS REFERENCE MANUAL that refer to the terms
"memory pool" and "catalog."

8-1

I

I

I

I

I

HUMAN INTERFACE SYSTEM CALLS

Table 8-1. System Call Dictionary

System Call Synopsis

I/O Processing Calls

CGETINPUT$CONNECTION Return an EIOS connection for
the specified input file.

CGETOUTPUT$CONNECTION Return an EIOS connection for
the specified output file.

CGETCHAR

CGETINPUT$PATHNAME

CGETPARAMETER

CGETOUTPUT$PATHNAME

CSETPARSE$BUFFER

C$GET $ COMMAND $ NAME

C$FORMAT$EXCEPTION

C$SEND$CO$RESPONSE

C$SEND$EO$RESPONSE

Command Parsing Calls

Get a character from the command line

Parse the command line and return an
input pathname.

Parse the command line for the next
parameter and return it as a
keyword name and a value.

Parse the command line and return
an output pathname.

Parse a buffer other than the
current command line.

Return the command name by which the
the current command was invoked

Message Processing Calls

Create a default message for an
exception code and place it in a
user buffer.

Send a message to the command
output (CO) and read a response
from the command input (CI).

Send a message to the operator's
terminal and return a response from
that terminal.

8-2

Page

8-15

8-25

8-11

8-20

8-34

8-31

8-51

8-13

8-9

8-45

8-48

HUMAN INTERFACE SYSTEM CALLS

Table 8-1. System Call Dictionary (continued)

System Call Synopsis ,Page

Command Processing Calls

C$CREATE$COMMAND$CONNECTION Create a command connection and
return a token. 8-4

C$DELETE$COMMAND$CONNECTION Delete a specific command
connection. 8-8

C$SEND$COMMAND Concatenate command lines into
the data structure created by
CREATE$COMMAND$CONNECTION and
then invoke the command.

8-3

8-38

I

I

C$ CREATE $ COMMAND$CONNECT ION

C$CREATE$COMMAND$CONNECTION, a command processing call, creates an iRMX
86 object called a command connection that is required in order to invoke
co ... nda programmatically.

co ... nd$conn • RQ$C$CREATE$COHMAND$CONNECTION(default$ci, default$co,
reserved$word,
except$ptr);

INPUT PARAMETERS

default$ci

default$co

reserved$word

OUTPUT PARAMETERS

command$conn

except$ptr

DESCRIPTION

A TOKEN for a connection that is used as the :CI:
(console input) for any commands you invoke using
this command connection.

A TOKEN for a connection that is used as the :Co:
for any commands you invoke using this command
connection.

A WORD reserved for future use. Its value should
be zero (0).

A TOKEN which receives a token for the new command
connection.

A POINTER to a WORD in which the Human Interface
returns a condition code.

You can use this call when you want to invoke a command programmatically
instead of interactively. It provides a place to store command lines
until the command invocation is complete.

The call creates an iRMX 86 object called a command connection and
returns a token for that command connection. The C$SEND$COMMAND system
call can use this token to send command lines to the command connection,
where they are stored until the command invocation is complete. The
command connection also defines default :CI: and :CO: connections that
are used by any commands invoked via this command connection.

8-4

Although a job can contain multiple command connections, the tasks in a
job cannot create command connections simultaneously. Attempts to do
this result in an E$CONTEXT exception code. Therefore, it is advisable
for one task to create the command connections for all tasks in the job.

EXCEPTION CODES

E$OK

E$CONTEXT

E$DEVFD

E$FNEXIST

E$IFDR

No exceptional conditions were encountered.

At least one of the following situations occurred.

• The Operating System detected two command
connections being created simultaneously by two
tasks in the same job. This condition occurred
because a programmer miscalculated or disrupted
a synchronized use of the command connection.

I

• The Operating System detected the : STREAM:
device, the default$ci device, or the default$co I
device in the process of being detached.

• The job containing the task which invoked this
system call was not an I/O job. (Refer to the I
iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL for
information about I/O jobs.)

• While creating a STREAM file, the Extended I/O
System was unable to attach the : STREAM: device
because another task had already invoked a Basic
I/O system call to attach the : STREAM: device.

The Extended I/O System attempted the physical
attachment of the : STREAM: device. This device had
formerly be.en only logically attached. In the
process, the Extended I/O System found that the
device and the device driver specified in the
logical attachment were incompatible. The
Operating System would not have returned this
exception code if the : STREAM: device had been
properly configured in the Extended I/O and/or the
Basic I/O Systems.

The : STREAM: file does not exist or is marked for
deletion.

The Extended I/O System attempted to obtain
information about the default$ci or default$co
connection. However, the request for information
resulted in an invalid file driver request.

8-5

<Z$CREA'FE$COMMAND$CONNECTION

I

I

E$IOMEM

E$LIMIT

ELQGNAME
$NEXIST

E$MEM

ENOPREFIX

The Basic I/O System job does not currently have a
block of memory large enough to allow the Human
Interface to create a stream file.

At least one of the following situations occurred.

• The Operating System detected that the object
directory of the calling task's job has already
reached the maximum object directory size.

• The Operating System detected that the calling
task's job has exceeded its object limit.

• The calling task's job (or that job's default
user object) is currently involved in more than
255 (decimal) I/O operations.

• The job containing the task which invoked this
call was not an I/O job. (Refer to the ~ 86
EXTENDED I/O SYSTEM REFERENCE MANUAL for
information about I/O jobs.)

The Extended I/O System was unable to find the
IOlical name : STREAM: in the object directories of
the local job, the global job, and the root job.

The memory pool of the job whose task invoked this
call does not currently have a block of memory
large enough to allow this system call to run to
completion.

The calling task's job does not have a valid
default prefix.

ENOTCONNECTION The token specified in either the default$ci or
default$co parameter does not refer to a valid
connection.

ENOTLOG$NAME

E$.NO$USER

The logical name :STREAM: does not refer to a valid
connection.

At least one of the following situations occurred.

• The calling task's job does not have a default
user.

• The calling task's job has a default user, but
it is not a user object.

8-6

E$PARAM

E$SUPPORT

C$CREATE$COMMAN'DSCONNECT'ION

The system call forced the Extended I/O System to
attempt the physical attachment of the :STREAM:
device. The device had formerly been only logically
attached. In the process, the Extended I/O System
found that the stream file driver is not configured
into your system. Hence the physical attachment is
not possible.

Either the default$ci or default$co connection was
not created by a task in the calling task's job.

8-7

I

I

I

_ J _, ,: A,' l). CO~ l\ ECTIO:\

C$DELETE$COMMAND$CONNECTION

C$DELETE$COMMAND$CONNECTION, a command processing call, deletes a command
connection object and frees the memory used by the command connection's
data structures.

CALL RQCDELETE$COMMAND$CONNECTION(coamand$conn, except$ptr);

INPUT PARAMETER

command$conn

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A TOKEN for a valid command connection.

A POINTER to a WORD in which the Human Interface
returns a condition code.

This call deletes a command connection object previously defined in a
C$CREATE$COMMAND$CONNECTION call and releases the memory used by the
command connection's data structures.

EXCEPTION CODES

E$OK

E$EXIST

E$TYPE

No exceptional conditions were encountered.

The command connection parameter is not the token
for an existing object.

The command connection parameter refers to an
object that is'not a command connection object.

8-8

(' FOR \L\T EX ' , ,~

C$FORMAT$EXCEPTION

C$FORMAT$EXCEPTION, a message processing call, creates a default message
for a given exception code and writes that message into a user-provided
string.

CALL RQCFORMAT$EXCEPTION(buff$p, buff$max, exception$code,
reserved$byte, except$ptr);

INPUT PARAMETERS

buff$max

exception$code

reaerved$byte

OUTPUT PARAMETER

buff$p

exc@pt$ptr

DESCRIPTION

A WORD that specifies the maximum number of bytes
that may be contained in the string pointed to by
buff$p.

A WORD containing the exception cod@ value for which
a message is to be created.

A BYTE reserved for future use. Ita value .ust b.
one (1).

A POINTER to a STaING into which the Huaan Interface
concatenate. the formatted exception mes.a,e.

A POINTER to a WORD in which the Human Interface
returns a condition code.

C$FORMAT$EXCEPTION causes the Human Interface to create a message for the
exception code. The messa,. consists of the exception code value and
exception code mnemonic in the following format:

value : mnemonic

where the mnemonics are provided by the Human Interface from an internal
table and are listed in Appendix B of this manual.

The call concatenates the message to the end of the string pointed to by
the buff$p pointer and updates the count byte to reflect the addition. If
a string is not already present in the buffer, the first byte of the
buffer must be a zero. The message added by C$FORMAT$EXCEPTION will not
be longer than 30 characters (not including the length byte).

8-9

I

I

I

I

EXCEPTION CODES

E$OK

E$PARAM

E$STRING

No exceptional conditions were encountered.

An unknown exception code value was given.

The message to be returned exceeds the length limit
of 255 characters.

E$STRING$BUFFER The buffer pointed to by the buff$p parameter is
not large enough to contain the exception message.

8-10

CGETCHAR

CGETCHAR, a command parsing call, gets a character from the parsing
buffer.

char = RQCGET$CHAR(except$ptr);

OUTPUT PARAMETERS

char

except$ptr

DESCRIPTION

A BYTE in which the Human Interface places the next
character of the parsing buffer. A null (OOH)
character is returned when parsing buffer's pointer
is at the end of the buffer.

A POINTER to a WORD in which the Human Interface
returns a condition code.

When an operator invokes a command, the command's parameters are placed
in a parsing buffer. The CGETCHAR system call gets a single character
from that buffer and moves the parsing pointer to the next character.
Consecutive calls to CGETCHAR return consecutive characters from the
parsing buffer.

EXCEPTION CODES

E$OK

E$CONTEXT

E$LIMIT

No exceptional conditions were encountered.

The Operating System detected a zero value for the
object directory size. This indicates that your
task's job is not an I/O job. Refer to the iRMX 86
EXTENDED I/O SYSTEM REFERENCE MANUAL for
information about I/O jobs.

At least one of the following situations occurred.

• The Operating System detected that the object
directory of the calling task's job has already
reached the maximum object directory size.

• The Operating System detected that the calling
task's job has exceeded its object limit.

8-11

I

CGETCHAR

E$MEM

• The calling task's job is not an I/O job. Refer
to the iRMX 86 EXTENDED I/O SYSTEM REFERENCE
MANUAL for information about I/O jobs.

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

8-12

(. $<; l: ',' $(' <) '1 '1,\ :\ I) $:\ :\ 'll~

CGETCOMMAND$NAME

CGETCOMMAND$NAME, a command parsing call, obtains the pathname of the
command that the operator used when invoking the command.

CALL RQCGET$COMMAND$NAME (path$name$p, name$max, except$ptr)j

INPUT PARAMETER

name$max

OUTPUT PARAMETERS

path$name$p

except$ptr

DESCRIPTION

A WORD that specifies the length in bytes of the
string pointed to by the path$name$p parameter.

A POINTER to a STRING that receives the name of the
command (the last component of the pathname).

A POINTER to a WORD in which the Human Interface
returns a condition code.

If a command needs to know the name under which it was invoked, the
CGETCOMMAND$NAME returns this information. This information is
available to each command and is stored in a buffer that is separate from
the parsing buffer. Therefore, calling CGETCOMMAND$NAME does not
obtain information from the parsing buffer, nor does it move the parsing
pointer.

If the operator invokes the command without specifying a logical name,
the Human Interface automatically searches a number of directories for
the command. In such cases, the value returned by CGETCOMMAND$NAME
also includes the directory name (such as : SYSTEM: , :PROG:, or :$:) as a
prefix to the command name.

EXCEPTION CODES

E$OK

E$LIMIT

No exceptional conditions were encountered.

The calling task's job was not created by the Human
Interface.

8-13

CGETCOMMAND$NAME

E$STRING$BUFFER The buffer pointed to by the path$name$p parameter
is not large enough to contain the command name.

E$TIME The calling task's job was not created by the Human
Interface.

8-14

C$(~ ET$I '\ Pl T$CO~ '\ ECTI()'\

CGETINPUT$CONNECTION

CGETINPUT$CONNECTION, an I/O processing call, returns an Extended I/O
System connection to the specified input file.

connection = RQCGET$INPUT$CONNECTION(path$name$p, except$ptr);

INPUT PARAMETER

path$name$p

OUTPUT PARAMETERS

connection

except$ptr

DESCRIPTION

A POINTER to a STRING containing the pathname of
the file to be accessed.

A TOKEN in which the Operating System returns the
token for the connection to the specified pathname.

A POINTER to a WORD in which the Human Interface
returns a condition code.

CGETINPUT$CONNECTION obtains a connection to the specified file. This
connection is open for reading and has the following attributes:

• Read only

• Accessible to all users

• Has two 1024-byte buffers

CGETINPUT$CONNECTION causes an error message to be displayed at the
operator's terminal (:CO:) whenever the Operating System encounters an
exceptional condition. The exceptional condition that triggers the error
message can either be one of those listed for CGETINPUT$CONNECTION or
it can be one of those associated with the Extended I/O System calls
S$ATTACH$FILE and S$OPEN. The following messages can occur:

• <pathname>, file does not exist

The input file does not exist.

8-15

CGETINPUT$CONNECTION

• <pathname>, invalid file type

The input file was a data file and a directory was required, or
vice versa.

• <pathname>, invalid logical name

The input pathname contains a logical name that is longer than 12
characters, that contains unmatched colons, or that contains
invalid characters.

• <pathname>, logical name does not exist

The input pathname contains a logical name that does not exist.

• <pathname>, READ access required

The user does not have read access to the input file.

• <pathname>, <exception value>:<exception mnemonic>

An exceptional condition occurred when CGETINPUT$CONNECTION
attempted to obtain the input connection. The <exception value>
and <exception mnemonic> portions of the message indicate the
exception code encountered. Refer to "Exception Codes" in this
call description and to the descriptions of S$ATTACH$FILE and
S$OPEN in the iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL.

EXCEPTION CODES

E$OK

E$CONTEXT

No exceptional conditions were encountered.

At least one of the following situations occurred.

• The device specified in the path$name$p
parameter is in the process of being detached.

• The calling task's job is not an I/O job.
(Refer to the iRMX 86 EXTENDED I/O SYSTEM
REFERENCE MANUAL for more information about I/O
jobs.)

• The Extended I/O System attempted to logically
attach the device containing the file specified
in the path$name$p parameter. However, the
device is already attached.

• The Extended I/O System attempted to attach a
stream file and in so doing issued an invalid
stream file request.

8-16

E$DEVFD

E$EXIST

E$FACCESS

E$FNEXIST

E$FTYPE

CGETINPUT$CONNECTION

The Extended I/O System attempted the physical
attachment of a device that had formerly been only
logically attached. In the process, the Extended
I/O System found that the device and the device
driver specified in the logical attachment were
incompatible. The Operating System would not have
returned this exception code if the device referred
to by the path$name$p parameter had been properly
configured in the Extended I/O and/or the Basic I/O
Systems.

At least one of the following situations occurred.

• When attempting to obtain a connection to a
file, the Operating System discovered that the
connection to the device containing that file is
invalid.

• The calling task's job was not created by the
Human Interface.

The access rights embedded in the connection have
prohibited you from opening the file in the read
mode. This exceptional condition can arise only
when the connection refers to named files.

At least one of the following circumstances
occurred.

• A file in the specified pathname (referred to by
the path$name$p parameter), or the target file
itself, does not exist or is marked for
deletion. For example, in the pathname A/B/C,
this exception code would be returned if A, B,
or C was marked for deletion or did not exist.

• While attaching the file pointed to by the
path$name$p parameter, the Extended I/O System
attempted the physical attachment of the device
as a named device. (This device had formerly
been only logically attached.) It could not
complete this process because the device's
physical name does not exist.

The Operating System detected an error in the
pathname specified by the path$name$p parameter.
The pathname included the name of a data file as a
directory. For example, the pathname A/B/C assumes
that A and B are names for directories. This
exception code would have been returned if either A
or B was actually a data file.

8-17

CGETINPUT$CONNECTION

I

E$ILLVOL

EIOHARD

E$IOMEM

EIOOPRINT

EIOSOFT

EIOUNCLASS

E$LIMIT

ELOGNAME$­
NEXIST

ELOGNAME$­
SYNTAX

While attaching the file pointed to by the
path$name$p parameter, the Extended I/O System
attempted the physical attachment of the device as
a named device. This device had formerly been only
logically attached. In the process, the Extended
I/O System examined the volume label and found that
the volume did not contain named files. This
prevented the Extended I/O System from completing
physical attachment because the named file driver
was requested during logical attachment.

While attempting to access the file specified in
the path$name$p parameter, the Operating System
detected a hard I/O error.

While attempting to create a connection, memory
from the Basic I/O subsystem's memory pool was
needed. However, the Basic I/O System job does not
currently have a block of memory large enough to
allow this system call to run to completion.

While attempting to access the file specified in
the path$name$p parameter, the Operating System
detected that the device was off-line. Operator
intervention is required. C$FORMAT$EXCEPTION
returns the value EIONOT$READY for this code.

While attempting to access the file specified in
the path$name$p parameter, the Operating System
detected a soft I/O error. It tried the operation
again but was unsuccessful.

An unknown type of I/O error occurred while trying
to access the file given in the path$name$p
parameter.

At least one of the following situations occurred.

• The Operating System detected either the calling
task's job or the job's default user object as
being involved in more than 255 (decimal) I/O
operations.

• The calling task's job was not created by the
Human Interface.

The pathname for the specified device (referred to
by the path$name$p parameter) contains an explicit
logical name. The Extended I/O System was unable
to find this name in the object directories of the
local job, the global job, and the root job.

The pathname pointed to by the path$name$p parameter
contains a logical name. However, the logical name
contains unmatched colons, is longer than 12
characters, or contains invalid characters.

8-18

E$MEDIA

E$MEM

ENOPREFIX

ENOTLOG$NAME

ENOUSER

E$PARAM

E$SHARE

CGETINPUT$CONN~CTIUN

The Operating System detected that the device
containing the specified file (referred to by the
path$name$p parameter) was not online.

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

The pathname specified in the path$name$p parameter
of this call contained no explicit prefix (no
logical name), so the Extended I/O System attempted
to use the default prefix. However, the default
prefix is either undefined, or it is not a valid
device connection or file connection.

The pathname specified in the path$name$p parameter
contains an explicit logical name. This logical
name does not refer to a valid connection.

The job containing the task which invoked this call
does not have a default user or the default user of
this calling task's job was not a user object.

At least one of the following situations occurred.

• The system call forced the Extended I/O System
to attempt the physical attachment of the device
referenced by the path$name$p parameter. The
device had formerly been only logically
attached. In the process, the Extended I/O
System found that the logical attachment
referred to a file driver (named, physical, or
stream) that is not configured into your
system. Hence the physical attachment is not
possible.

• The connection to the specified file cannot be
opened for reading.

The Operating System detected another task using
the I/O System to manipulate the file through
another connection. That task requested that the
I/O System restrict the sharing of the file to
certain modes. Your task is not allowed to read
the file.

8-19

I

I

I

CGETINPUT$PATHNAME

CGETINPUT$PATHNAME, a command parsing call, gets a pathname from the
list of input pathnames in the parsing buffer.

CALL RQCGET$INPUT$PATHNAME(path$name$p, path$name$max, except$ptr);

INPUT pARAMETER

path$name$max

OUTPUT PARAMETERS

path$name$p

except$ptr

DESCRIPTION

A WORD that specifies the length in bytes of the
string pointed to by the path$name$p parameter.
The maximum length that you can specify is 256
bytes (255 characters for the pathname and one byte
for the count).

A POINTER to a STRING which receives the next
pathname in the pathname list. A zero-length
string indicates that there are no more pathnames.

A POINTER to a WORD in which the Human Interface
returns a condition code.

The first call to CGETINPUT$PATHNAME retrieves the entire input
pathname list and moves the parsing pointer to the next parameter.
CGETINPUT$PATHNAME stores the list in an internal buffer and returns
the first pathname to the string pointed to by the path$name$p
parameter. Succeeding calls to CGETINPUT$PATHNAME return additional
pathnames from the input pathname list but do not move the parsing
pointer. CGETINPUT$PATHNAME denotes the end of the pathname list by
returning a zero-length string.

CGETINPUT$PATHNAME accepts wild-card characters in the last component
of a pathname. It treats a wild-carded pathname as a list of pathnames.
To obtain each pathname, it searches in the parent directory of the
wild-carded component, comparing the wild-carded name with the names of
all files in the directory. It returns the next pathname that matches.

The pathname returned by CGETINPUT$PATHNAME can be used for any
purpose. However, it is most often used in a call to
CGETINPUT$CONNECTION, to obtain a connection.

8-20

EXCEPTION CODES

E$OK

E$CONTEXT

E$DEVFD

E$EXIST

E$FACCESS

E$FLUSHING

'-"''''''-.JIIIA. __- - - --r- ---

No exceptional conditions were encountered.

At least one of the following situations occurred.

• The device pointed to by the path$name$p
parameter is in the process of being detached.

• The calling task's job is not an I/O job.
(Refer to the iRMX 86 EXTENDED I/O SYSTEM
REFERENCE MANUAL for more information about I/O
jobs.)

• The Extended I/O System attempted to logically
attach the device containing the file pointed to
by the path$name$p parameter. However, the
device is already attached.

• The Extended I/O System attempted to attach a
stream file and in so doing issued an invalid
stream file request.

• The task called CGETOUTPUT$PATHNAME before
calling CGETINPUT$PATHNAME.

The Extended I/O System attempted the physical
attachment of a device that had formerly been only
logically attached. In the process, the Extended
I/O System found that the device and the device
driver specified in the logical attachment were
incompatible. The Operating System would not have
returned this exception code if the device referred
to by the path$name$p parameter had been properly
configured in the Extended I/O and/or the Basic I/O
subsystems.

At least one of the following situations occurred.

• When attempting to obtain a connection to the
parent directory of the file pointed to by the
path$name$p parameter, the Operating System
discovered that the connection to the device
containing that directory is invalid.

• The calling task's job was not created by the
Human Interface.

The directory's access rights have prohibited you
from opening the directory in the read mode.

The device containing the directory was in the
process of being detached.

8-21

~i)\J ~ 1 i)ll~ r U 1 i)r Al Hl~ A1Vl~

E$FNEXIST

E$FTYPE

E$IFDR

E$ILLVOL

EIOHARD

E$IOMEM

At least one of the following circumstances
occurred.

• A file in the specified pathname (pointed to by
the path$name$p parameter), or the target file
itself, does not exist or is marked for
deletion. For example, in the pathname A/B/C,
this exception code would be returned if A, B,
or C was marked for deletion or did not exist.

• While attaching the parent directory of the file
pointed to by the path$name$p parameter, the
Extended I/O System attempted the physical
attachment of the device as a named devic~.
(This device had formerly been only logically
attached.) It could not complete this process
because the device's physical name does not
exist.

The Operating System detected an error in the
pathname pointed to by the path$name$p parameter.
The pathname included the name of a data file as a
directory. For example, the pathname A/B/C assumes
that A and B are names for directories. This
exception code would have been returned if either A
or B was actually a data file.

The file listed as the parent directory of the
path$name$p file is a data file instead of a
directory.

While attaching the parent directory of the file
pointed to by the path$name$p parameter, the
Extended I/O System attempted the physical
attachment of the device as a named device. This
device had formerly been only logically attached.
In the process, the Extended I/O System examined
the volume label and found that the volume did not
contain named files. This prevented the Extended
I/O System from completing physical attachment
because the named file driver was requested during
logical attachment.

While attempting to access the parent directory of
the file pointed to by the path$name$p parameter,
the Operating System detected a hard I/O error.

While attempting to create a connection, memory
from the Basic I/O subsystem's memory pool was
needed. However, the Basic I/O System job does not
currently have a block of memory large enough to
allow this system call to run to completion.

8-22

EIOOPRINT

EIOSOFT

EIOUNCLASS

E$LIMIT

E$LIST

ELOGNAME$­
NEXIST

ELOGNAME$­
SYNTAX

E$MEDIA

E$MEM

CSGET$INPUT$PATHNAME

While attempting to access the parent directory of
the file pointed to by the path$name$p parameter,
the Operating System detected that the device was
off-line. Operator intervention is required.
C$FORMAT$EXCEPTION returns the value EIONOT$READY
for this code.

While attempting to access the parent directory of
the file pointed to by the path$name$p parameter,
the Operating System detected a soft I/O error.
The error also occurred during retry.

An unknown type of I/O error occurred while trying
to access the parent directory of the file pointed
to by the path$name$p parameter.

At least one of the following situations occurred.

• The object limit of the calling task's job has
been exceeded.

• The Operating System detected either the calling
task's job or the job's default user object as
being involved in more than 255 (decimal) I/O
operations.

• The calling task's job was not created by the
Human Interface.

The last value of the input pathname list is
missing. For example, "ABLE ,BAKER, II has no value
following the second comma.

The pathname for the specified device (pointed to by
the path$name$p parameter) contains an explicit
logical name. The Extended I/O System was unable
to find this name in the object directories of the
local job, the global job, and the root job.

The pathname pointed to by the path$name$p parameter
contains a logical name. However, the logical name
contains unmatched colons, is longer than 12
characters, or contains invalid characters.

The Operating System detected that the device
containing the specified file (pointed to by the
path$name$p parameter) was not online.

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

8-23

CGETINPUT$PAT HN AM~

ENOPREFIX

ENOTLOG$NAME

ENOUSER

E$PARAM

E$PARSE$TABLES

The pathname pointed to by the path$name$p parameter
of this call contained no explicit prefix (no
logical name), so the Extended I/O System attempted
to use the default prefix. However, the default
prefix is either undefined, or it is not a valid
device connection or file connection.

The pathname pointed to by the path$name$p parameter
contains an explicit logical name. This logical
name does not refer to a valid connection.

The job containing the task which invoked this call
does not have a default user or the default user of
this calling task's job was not a user object.

At least one of the following situations occurred.

• The Extended I/O System to attempted the physical
attachment of the device pointed to by the
path$name$p parameter. The device had formerly
been only logically attached. In the process,
the Extended I/O System found that the logical
attachment referred to a file driver (named,
physical, or stream) that is not configured into
your system. Hence the physical attachment is
not possible.

• The connection to the parent directory cannot be
opened for reading.

The Human Interface detected an error that should
not occur unless someone inadvertently alters an
internal table used by the Human Interface.

E$SHARE The Operating System detected another task using the
I/O System to manipulate through another connection
the parent directory of the file pointed to by the
path$name$p parameter. That task requested that the
I/O System restrict the sharing of the file to
certain modes. Therefore your task cannot access
the file.

E$STRING The pathname to be returned exceeds the length limit
of 255 characters.

E$STRING$BUFFER The buffer pointed to by the path$name$p parameter
was not large enough for the pathname to be returned.

E$SUPPORT The Operating System attempted to read the parent
directory of the pathname pointed to by the
path$name$p parameter. However, the file driver
corresponding to that directory does not support
this operation.

E$WILD$CARD The pathname to be returned contains an invalid
wild-card specification.

8-24

CGETOUTPUT$CONNECTION

CGETOUTPUT$CONNECTION, an I/O processing call, parses the command line
and returns an Extended I/O System connection referring to the requested
output file.

connection = RQCGET$OUTPUT$CONNECTION(path$name$p, preposition,
except$ptr);

INPUT PARAMETERS

path$name$p

preposition

OUTPUT PARAMETERS

connection

except$ptr

DESCRIPTION

A POINTER to a STRING containing the pathname of
the file to be accessed.

A BYTE that defines which preposition to use to
create the output file. Use one of the following
values to specify the preposition mode:

Value

o

1
2
3

4-255

Meaning

Use same preposition as was
returned by the last
GET$OUTPUT$PATHNAME call

TO ~

OVER
AFTER
Undefined, results in an error

A TOKEN in which the Human Interface returns a
token for the connection to the output file.

A POINTER to a WORD in which the Human Interface
returns a condition code.

CGETOUTPUT$CONNECTION obtains a connection to the specified file. This
connection is open for writing and has the following attributes:

• Write only

• Accessible to all

• Has two l024-byte buffers

8-25

I

CGETOUTPUT$CONNECTION

If the call to CGETOUTPUT$CONNECTION specifies the TO preposition and
the output file already exists, CGETOUTPUT$CONNECTION issues the
following message to the terminal (:CO:):

<pathname>, already exists, OVERWRITE?

If the operator enters Y, y, R, or r,CGETOUTPUT$CONNECTION returns a
connection to the existing file, allowing the command to write over the
file. Any other response causes CGETOUTPUT$CONNECTION to skip over the
pathname.

CGETOUTPUT$CONNECTION causes an error message to be displayed at the
operator's terminal (:CO:) whenever an exceptional condition occurs. The
exceptional condition that triggers the error message can be either one
of those listed for CGETOUTPUT$CONNECTION or one of those associated
with an Extended I/O System call. The following messages can occur:

• <pathname), DELETE access required

The user does not have delete access to the file or directory.

• <pathname), directory ADD entry access required

The user does not have add entry access to the directory.

• <pathname), file does not exist
..

The output file does not exist,

• <pathname), invalid file type

The output file was a data file and a directory was required, or
vice versa.

• <pathname), invalid logical name

The output pathname contains a logical name that is longer than
12 characters, that contains unmatched colons, or that contains
invalid characters.

• <pathname), logical name does not exist

The output pathname contains a logical name that does not exist.

8-26

L:$(J_Kr$UlJTPlJT$L:UNN~L:TIUN

• <pathname>, <exception value>:<exception mnemonic>

An exceptional condition occurred when CGETOUTPUT$CONNECTION
attempted to obtain the input connection. The <exception value>
and <exception mnemonic> portions of the message indicate the
exception code encountered. Refer to "Exception Codes" in this
call description and to the iRMX 86 EXTENDED I/O SYSTEM REFERENCE
MANUAL.

EXCEPTION CODES

E$OK

E$CONTEXT

E$DEVFD

E$EXIST

E$FACCESS

No exceptional conditions were encountered.

At least one of the following situations occurred.

• The calling task's job was not created by the
Human Interface.

• The device referred to by the path$name$p
parameter was in the process of being detached.

• The Extended I/O System was unable to attach the
device containing the file because the Basic I/O
System has already attached the device.

• The Extended I/O System attempted to attach a
stream file and in so doing issued an invalid
stream file request.

The Extended I/O System attempted the physical
attachment of the device referenced by the
path$name$p parameter. This device had formerly
been only logically attached. In the process, the
Extended I/O System found that the device and the
device driver specified in the logical attachment
were incompatible. The Operating System would not
have returned this exception code if the device
referenced by the path$name$p parameter had been
properly configured in the Extended I/O and/or the
Basic I/O Systems.

When attempting to obtain a connection to a file,
the Operating System discovered that the connection
to the device containing that file is invalid.

At least one of the following situations occurred.

• The user did not have update access to an
existing file and/or add-entry access to the
parent directory.

• The TO or OVER preposition was specified and the
user did not have the .ability to truncate the
file.

8-27

I

CGETOUTPUT$CONNECTION

E$FNEXIST

E$FTYPE

E$IFDR

E$ILLVOL

I EIOHARD

E$IOMEM

EIOOPRINT

At least one of the following situations occurred.

• A file in the pathname specified by the
path$name$p parameter does not exist or is
marked for deletion. For example, in the
pathname A/B/C, this exception code would be
returned if A, B, or C was marked for deletion
or did not exist.

• While attaching the file pointed to by the
path$name$p parameter, the Extended I/O System
attempted the physical attachment of the device
asa named device. (This device had formerly
been only logically attached.) It could not
complete this process because the device's
physical name does not exist.

The Operating System detected an error in the
pathname specified by the path$name$p parameter.
The pathname included the name of a data file as a
directory. For example, the pathname A/B/C assumes
that A and B are names for directories. This
exception code would have been returned if either A
or B was actually a data file.

The Extended I/O System attempted to obtain
information about the path$name$p connection.
However, the request for information resulted in an
invalid file driver request.

The Extended I/O System attempted the physical
attachment of the device referred to by the
path$name$p parameter. (This device had formerly
been only logically attached.) In the process, the
Extended I/O System examined the volume label and
found that the volume does not contain named
files. This prevented the Extended I/O System from
completing physical attachment because the named
file driver was requested during logical attachment.

While attempting to access the file specified in
the path$name$p parameter, the Operating System
detected a hard I/O error.

The memory required to create a connection was part
of a Basic I/O System memory pool. However, the
Basic I/O System job does not currently have a
block of memory large enough to allow this system
call to run to completion.

While attempting to access the file specified in
the path$name$p parameter, the Operating System
detected that the device was off-line. Operator
intervention is required. C$FORMAT$EXCEPTION
returns the value EIONOT$READY for this code.

8-28

EIOSOFT

EIOUNCLASS

EIOWRPROT

E$LIMIT

ELOGNAME$­
NEXIST

ELOGNAME$­
SYNTAX

E$MEDIA

E$MEM

ENOPREFIX

CGETOUTPUT$CONNECTION

While attempting to access the file specified in
the path$name$p parameter, the Operating System
detected a soft I/O error. The error also occurred
during retry.

An unknown type of I/O error occurred while trying
to access the file given in the path$name$p
parameter.

While attempting to obtain an input connection to
the file specified in the path$name$p parameter,
the Operating System detected that the volume
containing the file is write-protected.

At least one of the following situations occurred.

• The Operating System detected either the calling
task's job or the job's default user object as
being involved in more than 255 (decimal) I/O
operations.

• The calling task's job was not an I/O job.
(Refer to the iRMX 86 EXTENDED I/O SYSTEM
REFERENCE MANUAL for more information about I/O
jobs.)

The pathname specified in the path$name$p parameter
contains an explicit logical name. The Extended
I/O System was unable to find this name in the
object directories of the local job, the. global
job, and the root job.

The pathname pointed to by the path$name$p parameter
contains a logical name. However, the logical name
contains unmatched colons, is longer than 12
characters, or contains invalid characters.

The device specified by the path$name$p parameter
was off-line.

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.
Usually, this means the Operating System was unable
to create or attach a file.

The pathname specified by the path$name$p parameter
of this call contained no explicit prefix (no
logical name), so the Extended I/O System attempted
to use the default prefix. However, the default
prefix is either undefined, or it is not a valid
device connection or file connection.

8-29

CGETOUTPUT$CONNECTION

ENOTLOG$NAME

ENOUSER

E$PARAM

E$PREPOSITION

E$SHARE

E$SPACE

I

The pathname specified in the path$name$p parameter
contains an explicit logical name. This logical
name does not refer to a valid'connection.

The calling task's job does not have' a default user
or the default user of the calling task's job was
not a user object.

The system call forced the Extended I/O System to
attempt the physical attachment of the device
referenced by the path$name$p parameter. The device
had formerly been only logically attached. In the
process, the Extended I/O System found that the
logical attachment referred to a file driver
(named, physical, or stream) that is not configured
into your system. Hence the physical attachment is
not possible.

One of the following situations occurred.

• The command line contained an invalid
preposition value (a value greater than 3).

• The command line contained a zero as the
preposition value. This indicated that the same
preposition was to be used as in the last
CGETOUTPUT$PATHNAME call. Unfortunately,
CGETOUTPUT$PATHNAME has not been called.

While attempting to open a connection to the file,
the Operating System detected another task writing
to the file through another connection. However,
when the connection was created, the owner
specified that it could not be shared with
writers. Therefore your task cannot access the
file.

One of the following situations occurred.

• While attempting to create a file or write into
a file, the Operating System detected that there
was no more space on the volume.

• While attempting to create a file, the Operating
System detected that the volume already
contained the maximum number of files.

8-30

('$(. ET$Ol'TPl'T$PAT H N A:\l E

CGETOUTPUT$PATHNAME

CGETOUTPUT$PATHNAME, a command parsing call, gets a pathname from the
list of output pathnames in the parsing buffer.

preposition = RQCGET$OUTPUT$PATHNAME(path$name$p, path$name$max,
default$output$p, except$ptr);

INPUT PARAMETERS

path$name$max A WORD that specifies the length in bytes of the
string pointed to by the path$name$p parameter.
The maximum length that you can specify is 256
bytes (255 characters for the pathname and one byte
for the count).

I

default$output$p A POINTER to a STRING containing the command's
default standard output. If the first invocation I
of this system call does not encounter a
TO/OVER/AFTER preposition, the text of this
parameter will be used as though it had appeared in

OUTPUT PARAMETERS

preposition

path$name$p

except$ptr

the command line. The text must specify TO, OVER,
or AFTER for the output mode. Examples: TO :CO:
or TO :LP:.

A BYTE describing the preposition type that
CGETOUTPUT$PATHNAME encountered. You can pass
this value to CGETOUTPUT$CONNECTION when
obtaining an output connection to the file. The
value will be one of the following:

Value

1
2
3

Meaning

TO
OVER
AFTER

A POINTER to a STRING that receives the next
pathname in the pathname list.

A POINTER to a WORD in which the Human Interface
returns a condition code.

8-31

I

CGETOUTPUT$PATHNAME

DESCRIPTION

You should not call CGETOUTPUT$PATHNAME before first calling
CGETINPUT$PATHNAME.

The first call to CGETOUTPUT$PATHNAME retrieves the preposition
(TO/OVER/AFTER) and the entire output pathname list; it then moves the
parsing pointer to the next parameter. If the parsing buffer does not
contain a preposition and pathname list, CGETOUTPUT$PATHNAME uses the
default pointed to by the default$output$p parameter (and does not move
the parsing pointer). After retrieving the pathname list,
CGETOUTPUT$PATHNAME stores it in an internal buffer, returns the first
pathname in the string pointed to by the path$name$p parameter, and
returns the preposition in the preposition parameter. Succeeding calls
to CGETOUTPUT$PATHNAME return additional pathnames from the output
pathname list (as well as the preposition), but they do not move the
parsing pointer. CGETINPUT$PATHNAME denotes the end of the pathname
list by returning a zero-length string in the string pointed to by
path$name$p.

CGETOUTPUT$PATHNAME accepts wild-card characters in the last component
of a pathname. It generates each output pathname based on this
wild-carded pathname, the corresponding wild-carded pathname that was
input to CGETINPUT$PATHNAME, and the most recent input pathname
returned by CGETINPUT$PATHNAME.

The pathname returned by CGETOUTPUT$PATHNAME can be used for any
purpose. However, it is most often used in a call to
CGETOUTPUT$CONNECTION to obtain a connection to the file. In such a
case, CGETOUTPUT$CONNECTION processes the TO/OVER/AFTER preposition.
If the pathname is used as input to a system call other than
CGETOUTPUT$CONNECTION, the interpretation of the TO/OVER/AFTER
preposition is the user's responsibility.

EXCEPTION CODES

E$OK

E$CONTEXT

E $ DE FAULT $ SO

No exceptional conditions were encountered.

The calling task's job was not created by the Human
Interface.

The parsing buffer did not contain a preposition
and output pathnames, so CGETOUTPUT$PATHNAME
attempted to use the default pointed to by
default$output$p. However, this string contained
an invalid preposition or pathname.

8-32

E$LIMIT

E$MEM

E$STRING

E$STRING$­
BUFFER

E$UNMATCHED$­
LISTS

E$WILDCARD

L~{jET~UUTl"UT~l"Al'HNA1Vl.E

At least one of the following situations occurred:

• While creating an object, the Operating System
detected a job's object limit having been
exceeded. The job contained the task which
invoked this system call.

• The calling task's job was not created by the
Human Interface.

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

The pathname to be returned exceeds the length
limit of 255 characters.

The buffer pointed to by the path$name$p parameter
was not large enough for the pathname to be
returned.

The number of files in the input and output pathname
is not the same.

The output pathname contains an invalid wild-card
specification.

8-33

I

I

C$GE~$PARAMETER

GET$PARAMETER, a command parsing call, gets a parameter from the parsing
buffer.

more = RQCGET$PARAMETER(name$p, name$max, value$p, value$max,
index$p, predict$list$p, except$ptr);

INPUT PARAMETERS

name$max

value$max

predict$list$p

OUTPUT PARAMETERS

more

name$p

value$p

A WORD that specifies the length in bytes of the
string pointed to by the name$p parameter. ~he
maximum length is 256 bytes (255 characters for the
name and one byte for the count).

A WORD that specifies the length in bytes of the
string pointed to by the value$p parameter. The
maximum length is 65535 decimal bytes.

A POINTER to a STRING$TABLE, as described in
Appendix C, that specifies the values that this
system call accepts as prepositions. The
predict$list$p POINTER should be zero if you do not
intend to retrieve parameters that use prepositions.

A BYTE value that indicates whether or not the
current call to CGETPARAMETER returned a
parameter. A value of OOh indicates that there are
no more parameters (and that no parameter was
returned); a value of OFFh indicates that a
parameter was returned.

A POINTER to a STRING that receives the keyword
portion of the parameter. If this parameter does
not contain a keyword portion, the Human Interface
returns a null (zero-length) string.

A POINTER to a STRING$TABLE, as described in
Appendix C, that receives the value portion of the
parameter. If the value portion contains a list of
values separated by commas, the Human Interface
returns the values to the string table one value
per string.

8-34

index$p

except$ptr

DESCRIPTION

CGETPARAMETER

A POINTER to a BYTE that receives the index to the
list of prepositions pointed to by predict$list$p.
This index identifies the name$p keyword as a
preposition and identifies it out of the list of
possible prepositions. If the predict$list$p list
is empty, or if the keyword name is not contained
in the predict$list$p list, the system call returns
a value of zero for the index. That is, the index
will be non-zero only if a keyword exists and it is
one of the prepositions in the predict$list$p list.

A POINTER to a WORD in which the Human Interface
returns a condition code.

CGETPARAMETER retrieves one parameter from the parsing buffer and moves
the parsing pointer to the next parameter. The parameter can be one of
the following:

• keyword/value-list parameter using parentheses
• keyword/value-list parameter using an equal sign
• keyword/value-list parameter with the keyword as a preposition
• value-list without a keyword

A description of the types, format, and syntax of acceptable parameters
is provided in Chapter 2.

CGETPARAMETER places the keyword portion of the parameter in the string
pointed to by name$p; it places the keyword list in the string table
pOinted to by value$p.

Without input from you, CGETPARAMETER cannot determine whether groups
of characters separated by spaces are separate parameters or a single
parameter that uses a preposition. CGETPARAMETER uses the list of
prepositions that you supply in the string table pointed to by
predict$list$p to determine the prepositions that can appear. When
CGETPARAMETER retrieves a parameter, it obtains from the parsing buffer
the next group of characters that are separated by spaces. Then it
checks those characters against those in the predict$list$p list. If the
characters match one of the values in the list, CGETPARAMETER realizes
that the characters represent a preposition and not an entire parameter;
it then obtains the next group of characters separated by spaces as the
value portion of the parameter.

EXCEPTION CODES

E$OK No exceptional conditions were encountered.

8-35

I E$CONTEXT

E$CONTlNUED

E$LIMIT

E$LIST

I

I
E$LITERAL

E$MEM

E$PARAM

The calling task's job was not an I/O job. Refer
to the iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL
for information about I/O jobs.

The Operating System detected a continuation
character in the parse buffer while performing the
system call. This condition should only occur
while parsing the contents of a buffer other than
the command line buffer.

At least one of the following situations occurred.

• While creating an object, the Operating System
detected that the object limit of the calling
task's job had been reached.

• The calling task's job was not an I/O job.
Refer to the iRMX 86 EXTENDED I/O SYSTEM
REFERENCE MANUAL for information about I/O jobs.

At least one of the following situations occurred.

• The parameter contains an unmatched parenthesis.

• A value in the value list is missing or an
improper value was entered. Examples of both
these conditions follow:

Value

A,B,
A,B=C,D

A,B(C,E),F

Comments

No value following second comma.
The equal sign can not be used
unless it is between quotes: 'B=C'
is valid.
The parentheses can not be used in
a value unless it is between
quotes. However, A,B,(C,E),F is
valid.

The Operating System detected a literal (quoted
string) in the parsing buffer with no closing
quote. This condition should only occur while
parsing the contents of a buffer other than the
command line buffer.

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

The predict$list$p parameter pointed to a string
table, but the index$p parameter was specified as
zero.

8-36

E$PARSE$TABLES

E$SEPARATOR

E$STRING

E$STRING$BUFFER

The Human Interface detected an error that should
not occur unless someone inadvertently alters an
internal table used by the Human Interface.

The Operating System detected an invalid command
separator in the parsing buffer while performing
this system call. This condition should only occur
while parsing the contents of a buffer other than
the command line buffer. The following is a list
of invalid command separators: ><, <>, / /, /, [,
and].

One or more of the following conditions exist:

• The string to be returned as the parameter name
exceeds the length limit of 255 characters.

• One of the parameter values to be returned
exceeds 255 characters in length.

One or more of the following conditions exist:

• The string to be returned as the parameter name
exceeds the buffer size provided by the user in
the call.

• The parameter values to be returned exceed the
value-buffer size provided by the user in the
call.

8-37

I

('$SEN D$('OM 1\1 AN D

I

I

C$SEND$COMMAND

C$SEND$COMMAND, a command processing call, sends command lines to a
command connection created by C$CREATE$COMMAND$CONNECTION and, when the
command is complete, invokes the command.

CALL RQCSEND$COMMAND{command$conn, line$p, command$except$ptr,
except$ptr);

INPUT PARAMETERS

command$conn

line$p

OUTPUT PARAMETERS

command$ex­
cept$ptr

except$ptr

DESCRIPTION

A TOKEN for the command connection that receives
the command line.

A POINTER to a STRING containing a command line to
execute.

A POINTER to a WORD in which the Human Interface
returns a condition code indicating the status of
the invoked command. This parameter is undefined
if an exceptional condition code is returned in the
word pointed to by except$ptr.

A POINTER to a WORD in which the Human Interface
returns a condition code indicating the status of
the C$SEND$COMMAND system call.

You can use this system call when you want to invoke a command
programmatically instead of interactively. It stores a command line in
the command connection created by the C$CREATE$COMMAND$CONNECTION call,
concatenates the command line with any others already stored there, and
(if the command invocation is complete) invokes the command. The command
can be any standard Human Interface command (as described in the 1RMX 86
OPERATOR'S MANUAL) or a command that you create.

As described in greater detail in Chapter 3, a command invocation can
contain several continuation marks. The continuation mark (&) indicates
that the command line is continued on the next line. If the command line
sent by C$SEND$COMMAND is continued on another line (that is, contains a
continuation mark), the Human Interface returns an E$CONTINUED exception
code and does not invoke the command. You can then call C$SEND$COMMAND
any number of times to send the continuation lines.

8-38

C$SEND$COMMAND

C$SEND$COMMAND concatenates the original command line and all
continuation lines into a single command line in the command connection.
It removes all continuation marks and all comments from this ultimate
command line.

When the command invocation is complete (that is, the line sent by
C$SEND$COMMAND does not contain a continuation mark) the Human Interface.
parses the command pathname from the command line. If no exception
conditions halt the process at this point, the Human Interface requests
the Application Loader to load and execute the command.

An Application Loader call creates an I/O job for the command. Then the
Application Loader validates the header, group definition and segment
definition records of the command's object file. Refer to the 8086
FAMILY UTILITIES USER'S GUIDE for explanations of segments, groups and
object file formats.

C$SEND$COMMAND returns two condition codes: one for the C$SEND$COMMAND
call and one for the invoked command. The word pointed to by the
except$ptr parameter returns the C$SEND$COMMAND conditions, as described
under the EXCEPTION CODES heading in this command description. The word
pointed to by the command$except$ptr returns the invoked command's
condition codes; the values returned depend on the command invoked. The
E$CONTROL$C exception code can be returned at either place.

EXCEPTION CODES

E$OK

EBADGROUP

EBADHEADER

EBADSEGMENT

E$CHECKSUM

E$CONTEXT

No exceptional conditions were encountered.

The object file represented by the command's
pathname contained an invalid group definition
record.

The object file represented by the command's
pathname does not begin with a header record for a
loadable object module.

The object file represented by the command's
pathname contains an invalid segment definition
record.

At least one record of the object file represented
by the command's pathname contains a checksum
error. This situation could occur if the CHECKSUM
amount calculated during the read operation did not
match the CHECKSUM field of the record being read.

At least one of the following situations occurred.

• The calling task's job was not created by the
Human Interface.

• The device containing the object file was in the
process of being detached.

8-39

I

L~~EN U~LUIVIIVIAN U

I
E$CONTINUED

E$DEVFD

E$EOF

E$EXIST

E$FACCESS

E$FlXUP

I
E$FLUSHING

I

• The Extended I/O System was unable to attach the
device containing the object file because the
Basic I/O System has already attached the device.

The Operating System detected a continuation
character while scanning the command line pointed
to by the line$p parameter. This condition should
occur if the command line is to continue on the
next line.

The Extended I/O System attempted the physical
attachment of a device that had formerly been only
logically attached. In the process, the Extended
I/O System found that the device and the device
driver specified in the logical attachment were
incompatible. The Operating System would not have
returned this exception code if the device referred
to by the line$p parameter had been properly
configured in the Extended I/O and/or Basic I/O
subsystems.

The Application Loader encountered an unexpected
end of file on the object file represented by the
command's pathname.

At least one of the following situations occurred.

• The Operating System detached the device
containing the object file before it completed
the loading operation.

• The token contained in the command$conn
parameter was not the token for a command
connection.

The Operating System detected the user as not
having READ access to the object file.

When the Application Loader loads an LTL
(load-time-locatable) program, the Loader must
adjust some of the addresses used in the code to
reflect actual loaded code addresses. This
adjustment is known as a fixup and is contained on
a fixup record. The Application Loader detected an
invalid fixup record in the object file. Refer to
the iRMX 86 LOADER REFERENCE MANUAL for an
explanation of LTL code.

The Operating System detected that the device
containing the object file was in the process of
being detached.

8-40

E$FNEXIST

E$FTYPE

E$ILLVOL

EIOHARD

E$IOMEM

EIOOPRINT

EIOSOFT

EIOUNCLASS

C$SEND$COMMANll

At least one of the following situations occurred.

• A file in the command's pathname is either
marked for deletion or does not exist. For
example, the pathname A/B/C assumes that A and B
are names for directories and C is the name of
an object file. This exception code would be
returned if A, B, or C was marked for deletion
or did not exist.

• While attaching the file specified in the line$p
parameter, the Extended I/O System attempted the
physical attachment of the device as a named
device. (This device had formerly been only
logically attached.) It could not complete this
process because the device's physical name does
not exist.

The command's pathname included the name of a data
file as a directory. For example, the pathname
A/B/C assumes that A and B are names for
directories. This exception code would be returned
if either A or B was something other than a
directory.

The Extended I/O System attempted the physical
attachment of a device that had formerly been only
logically attached. During this process, the
Extended I/O System examined the volume label and
found that the volume does not contain named
files. This prevented the Extended I/O System from
completing physical attachment, because the named
file driver was requested during logical attachment.

While attempting to access the object file, the
Operating System detected a hard I/O error.

The Basic I/O System does not currently have a
block of memory large enough to allow the Human
Interface to create the connection necessary to
allow this call to run to completion.

While attempting to access the object file, the
Operating System detected that the device was
off-line. Operator intervention is required.
C$FORMAT$EXCEPTION returns the value EIONOT$READY
for this code.

While attempting to access the object file, the
Operating System detected a soft I/O error. The
error also occurred during retry.

An unknown type of I/O error occurred while trying
to access the object file.

8-41,

I

\...i)~~l"l U'!)LUIVIIVIA1~ U

I

EIOWRPROT

E$LIMIT

E$LITERAL

ELOGNAME$­
NEXIST

ELOGNAME$­
SYNTAX

E$MEDIA

E$MEM

While attempting to obtain an input connection to
the object file, the Operating System detected that
the volume containing the file is write-protected.

At least one of the following situations occurred.

• While creating the objects needed by this call,
the Operating System detected the calling task's
job already having reached the maximum number of
objects that can exist simultaneously.

• The calling task's job, or the job's default
user object, is currently involved in more than
255 (decimal) I/O operations.

• Either the newly created I/O job, or its default
user, is currently involved in more than 255
(decimal) I/O operations.

• The calling task's job is not an I/O job. Refer
to the iRMX 86 EXTENDED I/O SYSTEM REFERENCE
MANUAL for information about I/O jobs.

The Operating System detected a literal (quoted
string) with no closing quote while scanning the
contents of the command line pointed to by the
line$p parameter.

The command's pathname contains an explicit logical
name but the Extended I/O System was unable to find
this name in the object directories of the local
job, the global job, and the root job.

The command's pathname contains a logical name.
However, the logical name contains unmatched
colons, is longer than 12 characters, or contains
invalid characters.

The device containing the object file was off-line.

At least one of the following situations occurred.

• The memory pool of the calling task's job does
not currently have a block of memory large
enough to allow this system call to run to
completion.

• The memory pool of the newly-created I/O job
does not currently have a block of memory large
enough to allow the initial task to start
running.

• The memory pool of the Basic I/O System job does
not currently have a block of memory large
enough to allow the Application Loader to run.

8-42

ENOLOADER$MEM At least one of the following situations occurred.

• The memory pool of the newly-created I/O job
does not currently have a block of memory large
enough to allow the Loader to run.

• The memory pool of the Basic I/O System's job
does not currently have a block of memory large
enough to allow the Application Loader to run.

ENOMEM The Application Loader attempted to load PIC or LTL
groups or segments. However, the memory pool of
the newly-created I/O job does not currently
contain a block of memory large enough to
accommodate these groups or segments. Refer to the
iRMX 86 LOADER REFERENCE MANUAL for an explanation
of loading PIC or LTL groups or segments.

ENOPREFIX The command's pathname contained no explicit prefix
(no logical name), so the Extended I/O System
attempted to use the default prefix. However, the
default prefix is either undefined, or it is not a
valid device connection or file connection.

ENOSTART The object file represented by the command-pathname
does not specify the entry point for the program
being loaded.

ENOTCONNECTION The token specified in either the default$ci or
default$co parameter of the system call
C$CREATE$COMMAND$CONNECTION no longer refers to a
valid connection.

ENOTLOG$NAME

ENOUSER

E$PARAM

The Operating System detected that the command
pathname contains a logical name. The logical name
refers to an object that is neither a device
connection nor a file connection.

The calling task's job does not have a valid
default user.

The Extended I/O System attempted the physical
attachment of a devi~e containing the object file.
This device had formerly been only logically
attached. While attempting this, the Extended I/O
System found that the logical attachment referred
to a file driver (named, physical, or stream) that
is not configured into your system. Hence the
physical attachment is not possible.

8-43

I

E$PARSE$TABLES

ERECFORMAT

ERECLENGTH

ERECTYPE

The Human Interface has detected an error that
should not occur unless someone alters an internal
table used by this subsystem.

At least one record in the object file contains a
record format error.

The object file contains a record that is longer
than the Loader's maximum record length. The
Loader's maximum record length is a parameter
specified during the configuration of the Loader.
Refer to the iRMX 86 CONFIGURATION GUIDE for
details.

The Application Loader detected one of the
following situations while attempting to load the
object file.

• At least one record in the file being loaded is
of a type that the Loader cannot process.

• The Loader has encountered records in a sequence
that it cannot process.

ESEGBOUNDS The Application Loader created multiple segments in
which to load information. One of the data records
in the object file specified a load address outside
of the created segments.

E$SEPARATOR The Operating System detected an invalid separator
while scanning the command line. The following is
a list of the invalid command separators: ><, <>,
II, I, [, and].

E$STRING The size of the command's pathname exceeds the
length limit of 255 (decimal) characters.

E$STRING$BUFFER The size of the command's pathname exceeds the size
of the command name buffer specified during the
configuration of the Human Interface.

E$TlME The Extended I/O System was unable to start the
command because the calling task's job was not
created by the Human Interface subsystem.

E$TYPE The command$conn parameter contains a token for an
object that is not a command connection.

8-44

C$SEND$CO$RESPONSE

C$SEND$CO$RESPONSE, a message processing call, sends a message to :CO:
and reads a response from :CI:.

CALL RQCSENDCORESPONSE(response$p, response$max, message$p,
except$ptr) ;

INPUT PARAMETERS

message$p

response$max

OUTPUT PARAMETERS

response$p

except$ptr

DESCRIPTION

A POINTER to a STRING containing the message to be
sent to :CO:. If zero, no message is sent.

A WORD that specifies the length in bytes of the
string pointed to by the response$p parameter. If
response$max is zero, no response from :CI: will be
requested; control returns to the calling task
immediately.

A POINTER to a STRING that receives the operator's
response from :CI:.

A POINTER to a WORD in which the Human Interface
returns a condition code.

When used with all its features, C$SEND$CO$RESPONSE sends the string
pointed to by message$p to :CO: and waits for a response from :CI:. It
places this response in the string pointed to by response$p. However, If
message$p is zero, C$SENDCORESPONSE omits sending the message to :CO:;
if either response$max or response$p is zero, it does not wait for a
response from :CI:. Therefore, the operations performed by
C$SEND$CO$RESPONSE depend on the values of the message$p and response$max
parameters, as follows:

messa~e$E resEonse$max Action

zero zero Perform no I/O
zero non-zero Send no message, wait for input
non-zero non-zero Send message, wait for input
non-zero zero Send message, don't wait

I

If C$SEND$CO$RESPONSE requests a response from :CI:, no other output can
be displayed at :CO: until C$SEND$CO$RESPONSE receives a line terminator
from :CI:. However, the operator can choose to ignore the displayed
message by entering a line terminator only.

The main distinction between C$SEND$CO$RESPONSE and C$SENDEORESPONSE
calls is that C$SEND$EO$RESPONSE always sends messages to and receives
messages from the operator's terminal; input and output cannot be
redirected to another device. In contrast, C$SEND$CO$RESPONSE sends
messages to :Co: and receives messages from :CI:; therefore, programs
such as SUBMIT can redirect this input and output.

EXCEPTION CODES

E$OK

E$CONTEXT

E$EXIST

E$FLUSHING

EIOHARD

EIOOPRINT

No exceptional conditions were encountered.

At least one of the following situations occurred.

• The Operating System detected a zero value for
the object directory size. This indicates that
the calling task's job was not created by the
Human Interface.

• The connection to :CI: was not open for reading
or the connection to :Co: was not open for
writing.

• The connection to :CI: or :Co: was not open.

• The Operating System detected that the
connections to :CI: and :CO: were opened with
A$OPEN rather than S$OPEN.

• When attempting to read or write to :CI: or
:CO:, the Extended I/O System issued an invalid
stream file request.

The file representing :CI: or :CO: is marked for
deletion or does not exist.

The Operating System detected that the device
containing the :CI: and :CO: files was in the
process of being detached.

While attempting to access the :CI: or :CO: file,
the Operating System detected a hard I/O error.

While attempting to access the :CI: or :CO: file,
the Operating System detected that the device was
off-line. Operator intervention is required.
C$FORMAT$EXCEPTION returns the value EIONOT$READY
for this code.

8-46

EIOSOFT

EIOUNCLASS

EIOWRPROT

E$LIMIT

E$MEM

C$SEND$CO$RESPONSE

While attempting to access the :CI: or :CO: file,
the Operating System detected a soft I/O error.
The error also occurred during retry.

An unknown type of I/O error occurred while trying
to access the :CI: or :Co: file.

While attempting to obtain a connection to the :CO:
file, the Operating System detected that the volume
containing the file is write-protected.

At least one of the following situations occurred.

• The calling task's job contains the maximum
number of objects that can exist simultaneously.

• The calling task's job, or the job's default
user object, is currently involved in more than
255 (decimal) I/O operations.

• The calling task's job was not created by the
Human Interface.

The memory pool of the calling task's job does not
currently have block of memory large enough to
allow this system call to run to completion.

ENOTCONNECTION Although the Operating System obtained a token for
a connection to :CI: and :CO:, at least one of
these tokens does not represent a valid connection.

E$PARAM

E$SPACE

E$SUPPORT

E$TIME

The Operating System detected an attempt to write
beyond the end of a physical file.

One of the following situations occurred.

• While processing a write call, the Operating
System detected a full volume. Therefore, the
Extended I/O System was unable to complete the
requested writing operation.

• The Operating System detected an attempt to
write beyond the end of a physical file.

The connection to :CI: or :Co: was created by a
task that is not contained in the calling task's
job.

The calling task's job was not created by the Human
Interface.

8-47

('$SEN D$E()$RESPONSE

I
C$SEND$EO$RESPONSE

C$SEND$EO$RESPONSE, a message processing call, sends a message to and
reads a response from the operator's terminal.

CALL RQCSENDEORESPONSE(response$p, response$max, message$p,
except$ptr) ;

INPUT PARAMETERS

message$p

response$max

OUTPUT PARAMETERS

response$p

except$ptr

DESCRIPTION

A POINTER to a STRING containing the message to be
sent to the operator's terminal. If zero, no
message is sent.

A WORD that specifies the length in bytes of the
string pointed to by the response$p parameter. If
response$max is zero, no response from the
operator's terminal will be requested; control
returns to the calling task immediately.

A POINTER to a STRING that receives the operator's
response from the terminal.

A POINTER to a WORD in which the Human Interface
returns a condition code.

When used with all its features, C$SEND$EO$RESPONSE sends the string
pointed to by message$p to the operator's terminal and waits for a
response from the operator. It places this response in the string
pointed to by response$p. However, if message$p is zero,
C$SEND$EO$RESPONSE omits sending the message to the operator; if either
response$max or response$p is zero, it does not wait for a response.
Therefore, the operations performed by C$SEND$EO$RESPONSE depend on the
values of the message$p and response$max parameters, as follows:

message$p

zero
zero
non-zero
non-zero

response$max

zero
non-zero
non-zero
zero

8-48

Action

Perform no I/O
Send no message, wait for input
Send message, wait for input
Send message, don't wait

If C$SEND$EO$RESPONSE requests a response from the terminal, no other
output can be displayed at the terminal until C$SEND$EO$RESPONSE receives
a line terminator from the operator. However, the operator can choose to
ignore the displayed message by entering a line terminator only.

The main distinction between C$SEND$CO$RESPONSE and C$SENDEORESPONSE
calls is that C$SEND$EO$RESPONSE always sends messages to and receives
messages from the operator's terminal; input and output cannot be
redirected to another device. In contrast, C$SEND$CO$RESPONSE sends
messages to :Co: and receives messages from :CI:; therefore programs such
as SUBMIT can redirect this input and output.

EXCEPTION CODES

E$OK

E$CONTEXT

E$EXIST

E$FLUSHING

EIOOPRINT

No exceptional conditions were encountered.

At least one of the following situations occurred.

• The Operating System detected a zero value for
the object directory size. This indicates that
the calling task's job was not created by the
Human Interface.

• The connection to the terminal was not open for
reading or for both reading and writing.

• The connection to the terminal was closed.

• The Operating System detected that the
connection to the terminal was opened with
A$OPEN rather than S$OPEN.

• When attempting to read or write to the
terminal, the Extended I/O System issued an
invalid stream file request.

The connection to the terminal is marked for
deletion or does not exist.

The Operating System detected that the terminal was
in the process of being detached.

While attempting to access the terminal, the
Operating System detected that the device was
off-line. Operator intervention is required.
C$FORMAT$EXCEPTION returns the value EIONOT$READY
for this code.

8-49

C$SEND$EO$RESPONSE

E$LIMIT

E$MEM

At least one of the following situations occurred.

• The calling task's job contains the maximum
number of objects that can exist simultaneously.

• The calling task's job, or the job's default
user object, is currently involved in more than
255 (decimal) I/O operations.

• The calling task's job was not created by the
Human Interf ac.e.

The memory pool of the calling task's job does not
currently have block of memory large enough to
allow this system call to run to completion.

ENOTCONNECTION Although the Operating System obtained a token for
a connection to the terminal the token does not
represent a valid connection.

E$PARAM

E$SUPPORT

E$TIME

The Operating System detected an attempt to write
beyond the end of a physical file.

The connection to the terminal was created by a
task that is not contained in the calling task's
job.

The calling task's job was not created by the Human
Interface.

8-50

CSETPARSE$BUFFER

CSETPARSE$BUFFER, a command parsing call, permits parsing the contents
of a buffer other than the command line buffer whenever the parsing
system calls are used.

offset = RQCSET$PARSE$BUFFER(buff$p, buff$max, except$ptr);

INPUT PARAMETERS

buff$p

buff$max

OUTPUT PARAMETERS

offset

except$ptr

DESCRIPTION

A POINTER to a buffer containing the text to be
parsed. If the buff$p is zero, the buffer used for
parsing reverts to the command line buffer and the
buff$max parameter is ignored.

A WORD that specifies the length in bytes of the
string pointed to by the buff$p parameter.

A WORD in which the Human Interface places the byte
offset from the start of the parsing buffer of the
last byte parsed in the previous parsing buffer.

A POINTER to a WORD in which the Human Interface
returns a condition code.

CSETPARSE$BUFFER allows you to parse buffers other than the command
line. You can change buffers at will; you can also revert to the command
line parsing buffer by calling CSETPARSE$BUFFER with buff$p=O.
However, only one parsing buffer per job can be active at any given time.

When called, CSETPARSE$BUFFER sets the parsing pointer to the beginning
of the specified buffer. However, it also returns a value (in the offset
parameter) that identifies the last byte parsed in the previous parsing
buffer. This gives you the ability, when switching back to the previous
buffer, of positioning the parsing pointer to its previous position with
successive calls to CGETCHAR.

Note that CSETPARSE$BUFFER does not affect the buffer from which
CGETINPUT$PATHNAME and C$GET$OUTPUT$PATHNAME retrieve pathnames. These
system calls always obtain their pathnames from the command line.

8-51

I

:SETPARSE$BUFFER

EXCEPTION CODES

E$OK

I E$CONTEXT

E$LIMIT

E$MEM

No exceptional conditions were encountered.

The calling task's job is not an I/O job. Refer to
the iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL
for information about I/O jobs.

At least one of the following situations occurred.

• The calling task's job contains the maximum
number of objects that can exist simultaneously.

• The Operating System detected an object
directory that has already reached the maximum
object directory size. This indicates that the
calling task's job was not created by the Human
Interface.

The memory pool of the calling task's job does not
currently have block of memory large enough to
allow this system call to run to completion.

8-52

CHAPTER 9. CONFIGURATION OF THE HUMAN INTERFACE

The Human Interface is a configurable part of the Operating System. It
contains several options that you can adjust to meet your specific
needs. To help you make configuration choices, Intel provides three
kinds of information:

• A list of configurable options

• Detailed information about the options

• Procedures to allow you to specify your choices

The balance of this chapter provides the first category of information.
To obtain the second and third categories of information, refer to the
iRMX 86 CONFIGURATION GUIDE.

Human Interface configuration consists of two parts: resident
configuration and nonresident configuration. Resident configuration
involves configuring the portion of the Human Interface that resides in
system memory at all times. This configuration takes place during the
configuration of the entire Operating System, when you adjust parameters,
include or exclude layers of the Operating System, and generate an
executable version of the Operating System. You cannot change the
resident configuration without reconfiguring the entire Operating
System. Nonresident configuration involves setting up an iRMX 86
directory structure and placing information about users into iRMX 86
files. The nonresident configuration information must be present when
the application system starts running, but you can modify the information
in the nonresident configuration files while the system is running. For
the new nonresident configuration to take effect, you must reinitialize
your application system.

RESIDENT CONFIGURATION

When you perform the resident Human Interface configuration, you can
modify parameters of the Human Interface that affect all Human Interface
users. These include:

• Information about the Human Interface's initial job, such as
minimum and maximum memory pool size and whether jobs created by
the Human Interface expect to use the 8087 Numeric Processor
Extension.

• Information about the initial user (or single user, if a
single-access system), including terminal name, user ID, maximum
priority, pathname of initial program, and default directory.

9-1

CONFIGURATION OF THE HUMAN INTERFACE

• Information about the jobs created by the Human Interface,
including minimum and maximum memory pool sizes.

• Initial size of the buffer that the Human Interface uses when
constructing commands.

• Maximum length of a command pathname.

• List of directories that the Human Interface automatically
searches, in order, when trying to find a command.

• Pathname of the directory assigned to the logical name : SYSTEM:
and a list of pathnames and the logical names that you want the
Human Interface to assign upon initialization.

• Whether the Human Interface includes an initial program that is
linked to the Human Interface and used for all operators
(resident initial program), or whether a separate initial program
is used for each operator. If you include a resident initial
program, you can also specify its pathname.

NONRESIDENT CONFIGURATION

The nonresident configuration involves specifying information about the
terminals and users that access a multi-access Human Interface.

For each terminal in the system you can specify:

• Terminal name

• Associated user name

• Memory partition size

• Maximum priority

• Pathname of the initial program

For each user in the system you can specify

• User ID

• Password

• Memory partition size

• Default prefix

• Pathname of the initial program

• Maximum job priority

9-2

APPENDIX A. HUMAN INTERFACE TYPE DEFINITIONS

The type definitions used in Human Interface system call description are
defined in Table A-I.

Table A-I. Type Definitions

Type Definition

BYTE

WORD

INTEGER

POINTER

SELECTOR

TOKEN

STRING

STRING$TABLE

An unsigned, eight-bit, binary number.

An unsigned, two-byte, binary number.

A signed, two-byte, binary number that is stored in
two's complement form.

Two consecutive words containing the base of a segment
and the offset into that segment. The offset must be
in the word having the lower address.

A I6-bit quantity that is equivalent to the base
portion of a pointer. Your PL/M compiler may not
support this data type.

A word or selector whose value identifies an object.
A TOKEN can be declared literally a WORD or a
SELECTOR, depending on your needs.

A sequence of consecutive bytes. The value contained
in the first byte is the number of bytes in the rest
of the string. Since a string contains only a single
byte in which to store the count, the maximum number
of characters that a string can contain is 255. A
zero count specifies a null string.

A count byte followed by a sequence of consecutive
strings. The value contained in the count byte is the
number of strings in the rest of the string table.
Since the string table contains only a single byte in
which to store the count, the maximum number of
strings that a string table can contain is 255. A
zero count specifies a null string table.

A-I

APPENDIX B. HUMAN INTERFACE EXCEPTION CODES

Like other iRMX 86 software systems, the Human Interface returns a
condition code whenever a Human Interface call is invoked. If the call
executes without error, the Human Interface returns the code E$OK. When
an error is encountered during call execution, an exceptional condition
code is returned. The exceptional condition code may be returned either
from the Human Interface or from one of the other iRMX 86 layers residing
below it.

The exception codes listed in Table B-1 are unique to the Human Interface.

Table B-1. Human Interface Exception Codes

Programmer Errors:

E$PARSE$TABLES 8080h
EJOBTABLES 8081h
E$DEFAULT$SO 8083h
E$STRING 8084h

Environmental Errors:

E$OK OOOOH
E$LITERAL 0080H

~

E$STRING$BUFFER 008IH
E$SEPARATOR 0082H
E$CONTINUED 0083H
E$INVALID$NUMERIC 0084H
E$LIST 0085H
E$WILDCARD 0086H
E$PREPOSITION 0087H
E$PATH 0088H
E$CONTROL$C 0089H
E$CONTROL 008AH
E$UNMATCHED$LISTS 008BH

Other exception codes may be issued during Human Interface operations.
The hexadecimal values of these exception conditions fall into ranges
based on the iRMX 86 layer that first detects the condition. Table B-2
lists the layers and their respective ranges.

B-1

I

I
I

I

I

HUMAN INTERFACE EXCEPTION CODES

Table B-2. Exception Code Ranges

System Environmental Programming

Nucleus 0 to 1FH 8000 to 801FH

Basic I/O System 20 to 3FH 8020 to 803FH

Extended I/O System 40 to 5FH 8040 to 805FH

Application Loader 60 to 7FH 8060 to 807FH

Human Interface 80 to AFH 8080 to 80AFH

Universal Development CO to DFH 80CO to 80DFH
Interface

Reserved * 130 to 14FH 8130 to 814FH

* Exception codes in this range could occur if you are a user of an
iRMX system with iMMX 800 software. Refer to iMMX 800 MULTIBUS
MESSAGE EXCHANGE REFERENCE MANUAL for an explanation of exception
conditions within this range.

Table B-2 provides a minimum of information about an exception
condition. In most cases, the exception condition must be considered in
terms of the unique circumstances that caused the condition. Table B-3
is provided to guide you to the most appropriate manual. The appropriate
iRMX 86 manuals have more detailed descriptions of the meanings. The
appropriate manual is listed in the column marked "Manuals".

B-2

HUMAN INTERFACE EXCEPTION CODES

Table B-3. iRMX~ 86 Condition Codes

Hex. Mnemonic
Value

OH E$OK

Manuals
N BEL H

* * * * *

Meaning

No exceptional conditions (normal)

Environmental Conditions

1H

2H

3H

4H

5H

6H

7H

8H

9H

OAH

E$TIME * * * * *

E$MEM * * * * *

E$BUSY *

E$LIMIT * * * * *

E$CONTEXT * * * * *

E$EXIST * * * * *

E$STATE *

ENOTCON- * * * * *
FIGURED

E$INTERRUPT$- *
SATURATION

E$INTERRUPT$- *
OVERFLOW

A time limit (possibly a limit of
zero time) expired without a task's
request being satisfied.

Insufficient available memory to
satisfy a task's request.

Another task currently has access to
data protected by a region.

A task attempted an operation which,
if it had been successful, would have
violated a Nucleus-enforced limit.

A system call was issued out of
proper context.

A token parameter has a value which
is not the token of an existing
object.

A task attempted an operation which
would have caused an impossible
transition of a task's state.

This system call is not part of the
present configuration.

An interrupt task has accumulated the
maximum allowable amount of
SIGNAL$INTERRUPT requests.

An interrupt task has accumulated
more than the maximum all-owable amount
of SIGNAL$INTERRUPT requests.

N Nucleus Reference Manual L
B Basic I/O System Ref Manual H
E Extended I/O Sys Ref Manual

Loader Reference Manual
Human Interface Reference Manual

B-3

I

I

Hex.
Value

20H

, 21H

22H

23H

24H

25H

26H

27H

28H

29H

2AH

2BH

2CH

2DH

2EH

2FH

HUMAN INTERFACE EXCEPTION CODES

Table B-3. iRMX- 86 Condition Codes (continued)

Mnemonic Manuals
N BEL H

Meaning

Environmental Conditions (continued)

E$FEXIST

E$FNEXIST

E$DEVFD

I E$SUPPORT

E$EMPTY$­
ENTRY

I EDIREND

E$FACCESS

E$FTYPE

E$SHARE

E$SPACE

E$IDDR

E$IO

E$FLUSHING

E$ILLVOL

EDEVOFF­
LINE

E$IFDR

* *
* * * *

* * *

* * * *

* *

* *

* * * *

* * *

* * * *

* *

* *
* * * *

* * * *

* * *

*

* *

File already exists.

File does not exist.

Device and file driver are
incompatible.

Combination of parameters not
supported.

The specified slot in a directory file
is empty.

The specified slot is beyond the end
of a directory file.

File access not granted.

Incompatible file type.

Improper file sharing requested.

No space left.

Invalid device driver request.

An I/O error occurred.

Connection specified in call was
deleted before the operation was
completed.

Invalid volume name.

The device being accessed is now
offline.

Invalid file driver request.

N Nucleus Reference Manual L Loader Reference Manual
B Basic I/O System Ref Manual H Human Interface Reference Manual
E Extended I/O Sys Ref Manual

B-4

Hex.
Value

40H

41H

42H

44H

45H

46H

47H

50H

51H

52H

53H

54H

HUMAN INTERFACE EXCEPTION CODES

Table B-3. iRMXm 86 Condition Codes (continued)

Mnemonic Manuals
N BEL H

Meaning

Environmental Conditions (continued)

ELOGNAME$­
SYNTAX

E$CANNOT$­
CLOSE

E$IOMEM

E$MEDIA

ELOGNAME$­
NEXIST

ENOTOWNER

EIOJOB

EIOUNCLASS

EIOSOFT

EIOHARD

EIOOPRINT

EIOWRPROT

*

*

*

*

*

*

*

*

* *

* *

* *

* *

*

*

*

*

The specified pathname contains a
logical name, but the logical name
has an invalid syntax.

The Extended I/O System was not able
to transfer remaining data in buffers
to output device.

The Basic I/O System has insufficient
memory to process a request.

The device containing a specified
file is not online.

The Extended I/O System was unable
to find a specified logical name in
the object directories that it checks.

The user who attempted to detach the
device is not the owner of the device.

The Extended I/O System cannot create
an I/O job because the size specified
for the object directory is too small.

An unknown type of I/O error occurred.

A soft I/O error occurred. A retry
might be successful.

A hard I/O error occurred. A retry
is probably useless.

The device was off-line. Operator
intervention is required.
C$FORMAT$EXECEPTION returns the value
EIONOT$READY for this code.

The volume is write-protected.

N Nucleus Reference Manual L Loader Reference Manual
B Basic I/O System Ref Manual H Human Interface Reference Manual
E Extended I/O Sys Ref Manual

B-5

I

I

I

Hex.
Value

60H

61H

62H

63H

64H

65H

66H

67H

68H

69H

6AH

6BH

6CH

HUMAN INTERFACE EXCEPTION CODES

Table B-3. iRMX'JI 86 Condition Codes (continued)

Mnemonic Manuals
N BEL H

Meaning

Environmental Conditions (continued)

EABSADD­
RESS

EBADGROUP

EBAD­
HEADER

EBADSEG­
DEF

E$CHECKSUM

E$EOF

E$FIXUP

ENOLOADER
$MEM

ENOMEM

ERECFOR­
MAT

EREC­
LENGTH

ERECTYPE

ENOSTART

*

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

An absolute object program was loaded
into system protected memory area.

Invalid group component in the a
group definition record.

Invalid header record in the object
file.

Invalid segment definition record.

A checksum error occurred while
reading an object record.

Unexpected end of file encountered
while reading object records.

Invalid fixup record in the object
file.

Insufficient memory to satisfy
loader dynamic memory requirements.

Insufficient memory to createJPIC/LTL
segments.

Invalid record format encountered.

Record length of an object record
exceeds configured loader-buffer size.

Invalid record type encountered in
the object file.

Start address not found.

N Nucleus Reference Manual L Loader Reference Manual
B Basic I/O System Ref Manual H Human Interface Reference Manual
E Extended I/O Sys Ref Manual

B-6

HUMAN INTERFACE EXCEPTION CODES

Table B-3. iRMX~ 86 Condition Codes (continued)

Hex. Mnemonic
Value

Manuals
N BEL H

Meaning

Environmental Conditions (continued)

6DH

6EH

6FH

70H

80H

81H

82H

83H

84H

85H

86H

EJOBSIZE

E$OVERLAY

E$LOADER
$ SUPPORT

ESEG
BOUNDS

E$LITERAL

E$STRING$­
BUFFER

E$SEPARA­
TOR

E$CONTINUED

E$INVALID$­
NUMERIC

E$LIST

E$WILDCARD

* *

*

* *

*

*

*

*

*

*

*

*

N Nucleus Reference Manual
B Basic I/O System Ref Manual
E Extended I/O Sys Ref Manual

Maximum job-size specified is less
than the memory requirement specified
in the object file.

Overlay name does not match with any
of the overlay module names.

The object file being loaded requires
features not supported by the
configured loader.

One of the data records in a module
loaded by the Application Loader
referred to an address outside the
segment created for it.

The parse buffer contains a literal
with no closing quote.

The string to be returned as the
parameter name exceeds the size of
the buffer the user provided in the
call.

The parse buffer contains a command
separator.

The parse buffer contains a
continuation character.

A numeric value contains invalid
characters.

The last value of the value list is
missing.

A wild-card character appears in an
invalid context, such as an
intermediate component of a pathname.

L
H

B-7

Loader Reference Manual
Human Interface Reference Manual

I

I

I

I

I

Hex.
Value

87H

88H

89H

8AH

8BH

8000H

800lH

8002H

8003H

8004H

HUMAN INTERFACE EXCEPTION CODES

Table B-3. iRMX~ 86 Condition Codes (continued)

Mnemonic Manuals
N BEL H

Meaning

Environmental Conditions (continued)

E$PREPOSI­
TION

E$PATH

E$CONTROL$C

E$CONTROL

E$UNMATCHED
$LISTS

*

*

*

*

*

The same preposition as on the the
command line was indicated t but can
not be used.

The command line specifies an invalid
pathname.

The user typed CONTROL-C while the
command was being loaded.

The command line contains an invalid
control.

There were no more input pathnames
although the output pathname list was
not empty.

Programmer Errors

E$ZERO$- *
DIVIDE

E$OVERFLOW *
E$TYPE * * * * *

E$BOUNDS *

E$PARAM * * * * *

A task attempted to divide by zero.

An overflow interrupt occurred.

A token parameter referred to an
existing object that is not of the
required type.

A task attempted to access beyond the
end of a segment.

A parameter which is neither a token
nor an offset has an invalid value.

N Nucleus Reference Manual L Loader Reference Manual
B Basic I/O System Ref Manual H Human Interface Reference Manual
E Extended I/O Sys Ref Manual

B-8

HUMAN INTERFACE EXCEPTION CODES

Table B-3. iRMX~ 86 Condition Codes (continued)

Hex. Mnemonic
Value

Manuals
N BEL H

Meaning

Programmer Errors (continued)

8005H

8006H

8007H

8008H

8021H

8022H

8040H

8041H

8042H

8060H

8080H

EBADCALL * *

E$ARRAY$- *
BOUNDS

ENDP- *
STATUS

E$CHECK$EX- *
CEPTION

E$NOUSER

E$NOPREFIX

ENOTLOG$­
NAME

ENOT­
DEVICE

ENOTCON­
NECTION

EJOBPARAM

E$PARSE$­
TABLES

* *
* *

*

*

*

*

*
*

* *

*

N Nucleus Reference Manual
B Basic I/O System Ref Manual
E Extended I/O Sys Ref Manual

The I/O System code has been damaged,
probably due to a bug in an
application task. Recovery is not
possible.

Hardware or software has detected an
array overflow.

An 8087 Numeric Processor Extension
error has been detected; Operating
System extensions can return the
status of the 8087 to the exception
handler.

A software interrupt 17 has occurred.

No default user.

No default prefix.

Specified object is not a device
connection or file connection.

A token parameter referred to an
existing object that is not, but
should be, a device connection.

A token parameter referred to an
existing object that is not, but
should be, a file connection.

The maximum job-size specified is
less than the minimum job-size.

There is an error in the internal
parse tables.

L Loader Reference Manual
H Human Interface Reference Manual

B-9

I

I

Hex.
Value

808IH

8083H

8084H

HUMAN INTERFACE EXCEPTION CODES

Table B-3. iRMXm 86 Condition Codes (continued)

Mnemonic

EJOB­
TABLES

E$DEFAULT$SO

E$STRING

Manuals
N BEL H

Meaning

Programmer Errors (continued)

*

*

*

An internal Human Inte~face table was
overwritten, causing it to contain an
invalid value.

The default output name STRING is
invalid.

The pathname to be returned exceeds
255 characters in length.

N Nucleus Reference Manual L Loader Reference Manual
B Basic I/O System Ref Manual H Human Interface Reference Manual
E Extended I/O Sys Ref Manual

B-IO

APPENDIX C. STRING TABLE FORMAT

The iRMX 86 Operating System uses structures called strings to store
groups of ASCII characters (such as pathnames). The Operating System
assumes a string to be a series of consecutive bytes broken into two
portions: a count byte and text bytes. The first byte in the string is
the count byte; its value is set to the number of bytes in text portion
of the string. The text bytes contain the substance of the string.

The Operating System also uses another structure called a string table.
A string table consists of a count byte and a series of consecutive
strings. As with the string, the first byte in the string table is the
count byte; its value is set to the number of strings in the string
table. The diagram in Figure C-l shows the string$table parameter format.

BYTE: number of entries (n)

STRING: string 1

STRING: string 2

STRING: string 3

STRING: string n

Extra space, if any
1119

Figure C-l. String Table Format

C-l

I

STRING TABLE FORMAT

EXAMPLE:

Assume you wish to generate a string table containing the words HAPPY,
GLAD, and SAD. The following declarations would be needed:

DECLARE
p$table(*) BYTE DATA(3,

5, 'HAPPY',
4, 'GLAD' ,
3, 'SAD');

/* NUMBER OF STRINGS */

C-2

INDEX

Underscored entries are primary references.

AFTER preposition 3-2
ampersand (&) 3-3

Basic I/O System 2-1
BYTE A-I

C$CREATE$COMMAND$CONNECTION system call 2-3, 5-1, 8-4
C$DELETE$COMMAND$CONNECTION system call 2-3,5-3, 8-8
C$FORMAT$EXCEPTION system call 4-4, 8-9
CGETCHAR system call 3-15, 3-17, 8-11
CGETCOMMAND$NAME system call 3-17, 8-13
CGETINPUT$CONNECTION system call 3-6, 4-1, 8-15
CGETINPUT$PATHNAME system call 1-4, 2-3, 3-5, 8-20
CGETOUTPUT$CONNECTION system call 3-6, 4-1, 8-~
CGETOUTPUT$PATHNAME system call 2-3, 3-5, 8-~
CGETPARAMATER system call 2-3, 3-10, 8-34----
changing the parsing buffer 3-15 ----
characters 8-11
:CI: 8-45
CLI 1-1, 2-2
:CO: 8-45
command connection 2-2, 5-1, 8-38

creating 8-4
deleting 8-8
sending commands 8-38

command creation 7-1
command line

interpreter 1-1, 2-2
parsing 3-1, 7-1
structure 3-1

command name 3-1, 3-17, 8-13
command processing system calls 5-1
commands 1-1
comment characters 3-3
communicating with the terminal 4-3
condition codes B-1
configuration 9-1
connections 4-1

input 8-15
output 8-25

continuation characters 3-3, 8-38
continuation lines 2-2
Control-C handling 6-1
CREATE$COMMAND$CONNECTION system call 2-3, 5-1, 8-4
creating command connections 5-1, 8-4
creating commands 7-1
C$SEND$CO$RESPONSE system call 2-2, 4-3, 8-45'

Index-l

INDEX (continued)

C$SEND$COMMAND system call 2-2, 2-3, 3-3, 5-2, 8-38
C$SEND$EO$RESPONSE system call 4-3, 8-48
CSETPARSE$BUFFER system call 2-3, 3-16, 8-51
customized initial program 2-3

DELETE$COMMAND$CONNECTION system call 2-3, 5-3, 8-8
deleting command connections 5-3, 8-8
dictionary of system calls 8-2
displaying exception codes 4-4, 8-9
dynamic memory size 7-4

errors B-1
exception code formatting 4-4, 8-9
exception codes B-1
EXITIOJOB system call 2-3, 7-2
Extended I/O System 2-1
extension objects 7-2

FORMAT$EXCEPTION system call 4-4, 8-9

GET$CHAR system call 3-15, 3-17, 8-11
GET$COMMAND$NAME system call 3-17, 8-13
GET$EXCEPTION$HANDLER system call 4~
GET$INPUT$CONNECTION system call 3-6, 4-1, 8-15
GET$INPUT$PATHNAME system call 1-4, 2-3, 3-5, 8-20
GET$OUTPUT$CONNECTION system call 3-6, 4-1, 8-~
GET$OUTPUT$PATHNAME system call 2-3, 3-5, 8-~
GET$PARAMATER system call 2-3, 3-10, 8-34--

I/O and message processing 4-1
INCLUDE files 7-2
initial program 1-1, 1-3, 2-2

customized 2-3
standard 2-2

inpath-list 3-2
input

connections 4-1, 8-15
pathnames 8-20

INTEGER A-I
interactive job 1-1

keyword 3-3, 3-11, 8-34

LINK86 command 7-3
LOC86 7-4
logon file 2-2

message processing system calls 4-1
messages 8-9, 8-15, 8-26
multi-access support 1-3, 2-1

nonresident configuration
nonstarndard command lines

9-2
3-13

Index-2

INDEX (continued)

object code 7-3
outpath-list 3-2
output

connection 4-1, 8-25
pathnames 8-31

OVER preposition 3-2
overview 1-1

parameters 3-2, 8-34
parsing

buffer 3-1, 3-15, 8-51
commands 3-1, 7-1
input and output pathnames 3-5
nonstandard command lines 3-13
parameters 3-10

pathnames
input 8-20
output 8-31

POINTER A-I
preposition 3-2, 3-3, 3-11, 8-31, 8-35
:PROG: directory 2-2
program control 6-1

quoting characters (' or ") 3-4

R?LOGON file 2-2
ranges of exception codes B-2
regions 7-2
resident configuration 9-1
restricted system calls 7-2

S$SPECIAL system call 6-2
SELECTOR A-I
semaphore 6-1·
semicolon (j) 3-3
SENDCORESPONSE system call 2-2, 4-3, 8-45
SEND$COMMAND system call 2-2, 2-3, 3-3, 5-2, 8-38
SENDEORESPONSE 4-3, 8-48
sending command lines to command connections 5-2
SET$EXCEPTION$HANDLER system call 4-4
SET$PARSE$BUFFER system call 2-3, 8-51
stack size 7-4 ----
standard initial program 1-3, 2-2
STRING$TABLE A-I, C-l
strings 3-6, A-I
structure of command lines 3-1
supplied commands 1-2
supporting multiple terminals 2-1
system call dictionary 8-2
system calls 1-2, 8-1

command-parsing 1-2, 3-1
command-processing 1-2, 5-1
I/O and message-processing 1-2, 4-1
program control 1-2, 6-1

system manager 1-3

Inder3

terminal
communications 4-3
messages 8-45, 8-48

terminating the command 7-2
TO preposition 3-2
TOKEN A-I
type definitions A-I

user IDs 1-3

value 3-3, 3-11, 8-34

INDEX (continued)

wild-card character~ 1-4, 3-8, 8-20
WORD A-I

Index-4

iRMXTM 86 Human Interface
Reference Manual

9803202-03

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel
product users. This form lets you participate directly in the publication process. Your comments will help
us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). ________ _

NAME ___ ___ DATE ________ _
TITLE __________ --------__ __

COMPANYNAME/DEPARTMENT _____________________________ __
ADDRESS ___ _

CITY _______________________ _ STATE ___________ __ ZIP CODE _________ _
(COUNTRY)

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of I ntel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

OMO Technical Publications

111111 NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

