
"

'.' :'. """,' ,~'" ,'. .' "",

, OfderNumbet:' 1450;~1,,'
.,~ , .. ,' "." '. '

.1 I

REV~
:'<":

REVISION ,HISTORY

:'ooT";" ·~"·OrigiriaJ.Isslle

i Additional c?pie~ otthj~m~~~.,l·o~ other Ini'el!iJ~ature may be obtained from:
",', ~: :'," .' . ,"

Literat'ureiDepaftmeni
Intel (Corporallon
3065 Bowers Avenue

. Santa Clara, CA 9SQSl

". The information in this docu~~nt;i~, subj~ti~,change without notice.

PRIST
DATE

.9/82

'._ .t"-"

Intei Corporation mak~:no"'~:~i~ty of , any kind with rega!d' to "this' material, including, but not
limited to, the implied wwranti,es. Qf merchantability~d J'it9ess'for a panicular purpose. Intel

: Col"J'Oration assumes 9Pre~POD:sibiJj~ for :~y ... errors ')hat may appear in this document. Intel
Corporation makes.no···comrnitn)ent ·to. update nor' to keep . current the information contained in this
document. . f, . • i:,;;~'

Intel Corporation assumes no' responsibility for the use of any circuitry other than circuitry embodied
in an Intel product. ~o Qther circuit patent licen~es are implied.

Intel softw~e. Products".,e, CQPyri8ht~·by . and" shall" remain the propeny of Intel Cotp9ration. Use.
:: :.·dup1ieation.~!, •. tU~J.()sure ~ 5E;~~~J.~~om.-staMEJ-in-·lnteJ·s-s:oft~·are license. or" as defined in

,;,,;;.'A$P~'7-1a;.~~~~, (T~:' ~ ''':. ":'i/~;;f~~Li~r:; '.' '., 1 ,';.::. ;.'~ ·':;;:j:.,:l ::<1 '\

NopaTi'O{~tli~'doc~riterit -inay't;e'::Opi;i '~r reproduced in any fonn or by any means without prior
written consent. oHnte) Corporation.

The following are trademarks:of Inlet,<;9~ration::aild its affiliates and may be used only to identify
Inlel products:. .

~XP , ~:."': .. f~t;e. ;~ .. ~~.':::.;'-,t·k';' . ,:~p~:~ (:', ,'. '} I,;, ~CJq:~Pf~ '/ ,z. ':: '.'. m""F""""-"' UU\L"

i Inltol iSBC
P-ICE
ICE

"~:r
iJri

;,~~; ..

Inteleviaion iSBX
lDtell« ' iSx.\i ,
~,~liRent l~",tif*r :. ~ ; Librar§M~it'j

!) iD~iigent Programming MCS
Int.ellink Megachusl!'

'." jOSP ·.,r.~" rl MicrOlD.irifi~~ t·
..~ r:·· ~; r:r¥~ '::

Micromap
Multibus
Muluc:hannel
Multimodule
Plug-A-Bubble
PROMPT'
RMX/BO
RUPI
Sy5tem2000
UPI" , .,).t;.

,,"---;..,. -------'

PREFACE

This manual is a self-co~tained guide to using the'iR,MX 86 PC Operat.;l.ng
System, (PC - Preconfigured). The Preconfigured.Op~r~ting System is a
readrto-use version of Int~l'.s ·conf;lgu,rable,.: 1Qult1 __ t~s~1ng iRMX 86
Operating System. Ready-.~o~se means that a,n Intel engineer has already
configured the system (ptl·t.toge'therthesubsystems and drivers) so that
you don't have to pex:fot:~ "~h~.configUration pro6e$s.·

WHAT YOU GET

The' Preface Figure sho.ws- the contents of the iRMX 86 PC product.

Preface Figure:'" The IRMx"\';86: PG··Produ,ct·,
'".} ..

The 1RMX 86 PC Rele.ase Package contains:

• The Sys tem Diske'tte, labeled:;'Preconfigured i.RMx 86 Operating
"System .

• The Include File Diskette, labeled: iRMX lf6 'Include Files

• Four EPROM,de:v.ices which condiinthe Monitor"and a Bootstrap
Loader

• This manual

• One Software Problem Report. Form .and one Software Registration
Card.

11i

1.

2.

Prepare the h~rdware on which the system will run.
,this manu~rl" ;e;xpi.ins ·ho~",to' do" so.

:, '.: i~~:··~>~~,~t~~!1 j':. l'" . L, " :'.!~~ i

A chapter in

Bootstrap, 'lbad.,: :t:h~';syst-em .. ,;:,: Whe'n", yt)u' 'have prepared your
~ ha:rdware:,::' y:ou;"te::a,n:;' boot'Sl!rapload~J the iRMX 86 PC System Diskette.

Backtip'~ the' SY$,:teb:i"'Dlskette~Once 10u 'have bootstrap loaded the
, systEmcyou~'canmcike:= a backup copy of the" System Diskette. The

, , System"DisKett'eG incl'udes" a file' of corinna'nds (a SUBMIT file) that
performs nearly all of the process.

·Adjus,tCCdtifi@rat!on;';'Fiies,:', Alth~ughthe Operating System is
alread'Y'conf:tgured'~' you can customize the system to match
optional hardware that you have in your system. To do so, you
chil'nge: parameters'~<H(configuration files that define the
c:haracteris'tics of your particular system. For example, the
~:System Diskette supports' only one keyboard terminal, but the
iRMX 86 PC System can handle four more terminals using an
optional controller board. You,can change ,one value in a file
t'Ot include other tertittnals. -,' ,i,-"

If' ybu, recei've this:manual as part of anqther product, the diskettes and
EPROM: devices a,re not necessarily part of the other product.

~~ ;:~ CONTENT'S'" OF THI S MANUAL

Except for Chapter 5, this· manual is written for application programmers
who will use the Operating System. Chapter 5 is written for a technician
or engineer who asse~bles the hardware.

Here is how the manual is o~ga~i~ed.

Chapter 1,

Chapter 2

'0vEitv!EW~ 1'- fni's '-Chapter .'describes the general
char~cte~istic$ of t.he1RMX 86 PC Operating System.
It shows:ho,", t'o ini tialize (boot,strap load) the
system, and how to start USing sys'tem commands from
terminals.

f; "':~:"~} '"1 C· , t

USING THE SYSTEM. This chapter provides detailed
"information -, about the:: iRMx 86 fil~ system. The
~ chapter contains many" e~amples, sb.9~ing how to use
, fRMx'8(f commanas'~t;:~ a~'keyboard,,' t~·p;unal.

: \.}L _ ,t,

iRMX 86 COMMANDS. This chapter;; !79ntains individual
descriptlons:(jfLthe '1.RMx '86 C()mmands arranged
alphabetically.

'iv

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Appendix A

Appendix B

Appendix C

,PREFACE (continued)

UDI SYSTEM CALLS. This chapter con(~~het 'gi!nerat'
information about the Universal Development Interface
(UDI) , followed by, descr,~ptions,·o~f'~each UDI System'
Call.

PREPARING ,YOUR HARD.wARE:~; .. ::rhisc

" ch.apter des cri bes the
hardware required to run the Operating System, and
describes jumpers:that. mus;t.:,be; 1n~talledon Intel
boards to match ~' 86:'·PC~:;~Jia·raci:·eristics.

SYSTEM ~MANAGEMENT., ", Thi$' chapter d~$cri bes ,how;:to set
up the system. to suppoif':muli.ip~e terini.-nals and users,
and how to, prevent user~ frot;n" cor~uptingthe file
system.

DOCUMENTATION.. In, this chapter; ,we describe the
manuals tl)at'relate to:'ihe iR}.1XB6 :pC System.

This appendix lists th~ ~ode§ that the, iRMX 86
Operating System uses to ind~~a~e exceptipnal
conditions, such as hardware fa~lures and JDistakes in
how a program uses the "system. '

"I'This appendix descri.bes the sub-'sy~,teDl$ of the iRMX 86
Opera ting Sys tem and provides a list of It internal"
iRMX 86 System Calls." You do not ,need tnes:e; sys'tem
calls to write and run programs. ,.,But the information
in this appendix provides an overview of the services
provided by the iRMX 86 Operating System.

This appendix describes how to use the monitcrr"that is
delivered as part of the iRMX 86 PC Sys tem.' '

RELATED PUBLICATIONS

The following manuals provide additiona!' t~f~~~tio'-~"'t:kt may be
helpful. Many of these manuals a~edescrribe~,.-i,!lJ' C!tarpter 7.

•

•
•
•

•

Introduction to the iRMX
lIo 86 6p~r~,iing~';$'ys't~m, Order

Number: 9803124

iRMX 1
.. 86 Nucleus Reference Manual, Ord'~~':~~ber: 9803122

" , ,{:,.:r:.:, :. : ,;
iRMX

lIo

86 B~sic I/O System Reference ,Manual" .',.order Number: 9803123
~ ""1 ".

iRMX'" 86 Eitended I/O Sys,tem :R.e,~~i~nc~ }1an~~1, Order
Number: 14j~08

!'" ~'. ~:p : t
iRMX

1
.. 86 i,g~det Reference ~~nual, Order ;Number: 143318

PREFACE (continued)

• 1RMX- 86 Human Interface Reference Manual, Order Number: 9803202

• iRMX- 86-0perators Manual, Order Number: 144523

• 1RMX- 86 ConfigUration Guide, Order Number: 9803126

• iRMX- 86 Debugger Reference Manual, Order Number: 143323

. • iRMX- 86 Crash Analyz'er Reference Manual, Order Number: 144522

• iRMX- 86 Programming Techniques, Order Number: 142982

• Guide to Writing Device Drivers for the iRMX- 86 and iRMX- 88 I/O
Systems, Order Number: 142926

• 1RMX- 86 Terminal Handler Reference Manual, Order Number: 143324

• iRMX- 86 Disk Verification Utility Reference Manual, Order
Number: 144133

• Run-Time Support Manual for 1APX 86,88 Applications, Order
Number: 121776

• iRMX 86 Installation Guide, Order Number: 9803125

• ASM86 Macro Assembler Operating Instructions, Order Number: 121628

• Users Guide for the iSBc8 957B iAPX 86, 88 Interface and
Execution Package, Order Number: 143979

• iSBC8 86/12A Single Board Computer Hardware Reference Manual,
Order Number: 9803074

• iSBC8 86/14 and iSBc8 86/30 Single Board Computer Hardware
Reference Manual, Order Number: 144044

• iSBC8 337 Multimodule- Numeric Data Processor Hardware Reference
Manual, Order Number: 142887

• Guide to Configuring Multibus~-Based Systems, Order Number: 144788

• 1SBce 680/681 Multistore User System Package Hardware Reference
Manual, Order Number: 162432

• 1SBC8 208 Flexible Disk Controller Hardware Reference Manual,
Order Number: 143078

• 1SBce 215 Generic Winchester Disk Controller Hardware Reference
Manual, Order Number: 144780

. vi

PREFACE (continued)

• iSBX· 218 Flexible Disk Controller Hardware Reference Manual,
Order Number: 121583

• is Bee 534 Four Channel Communications Expansion Board Hardware
Reference Manual, Order Number: 9800450

• iSBC8 032/048/064 Random Access Memory Boards Hardware Reference
Manual, Order Number: 9800488

• iSBC8 016A/032A/064A/028A/056A RAM Boards Hardware Reference
Manual, Order Number: 143572

vii

CONTENTS

CHAPTER 1
SYSTEM OVERVIEW
Hardware Environment For the iRMX- 86 PC System ••••••••••••••••••••

Required Hardware •••• ~ •••
Optional Hardware ••
Memory Layout ••

The UDI and Language Products ••••••••••••••••••••••••••••••••••••••
How to Initialize the System •••••••••••••••••••••••••••••••••••••••
Starting to Use a Terminal •••
Setting the Date and Time ••
The Multi-Access Human Interface •••••••••••••••••••••••••••••••••••

Interactive Job ••
User ID and Owner ID •••

iRMX- 86 Files •••
Selective Error Processing •••
Summ.ary ••

CHAPTER 2
USING THE SYSTEM
Invoking iRMX- 86 Comm.ands •••

Example: DIR and COpy Commands ••••••••••••••••••••••••••••••••••
Syntax of Commands •••

Using iRMX- 86 Files •••
Types of Files •••
File Tree Structure ••
Pathnames ••
Example: Directory of iRMX- 86 PC Files ••••••••••••••••••••••••••
Example: SUPER Command and Changing the Default Directory ••••••••
Default Directory ••
Logical Names ••

Logical Names for Devices ••••••••••••••••••••••••••••••••••••••
Logical Names for Files ••

SYSTEM CONFIGURATION DIRECTORY (:CONFIG:) ••••••••••••••••••••••••
Example:

More About
Example:
Order of
Example:

Installing Utilities on the System ••••••••••••••••••••••
iRMX- 86 Commands •••••••••••••••••••••••••••••••••••••••
Copying the UDI Libraries to the System Disk ••••••••••••
Directory Search by the Human Interface •••••••••••••••••
Creating a Private Disk ••••••••••••••••••••••••••••••••

Line Editing Controls ••••••••••••••••••••••••••••••••••••••• ~ ••••
Controlling Input from a Terminal ••••••••••••••••••••••••••••••
Controlling Output to a Terminal •••••••••••••••••••••••••••••••
Type-Ahead •••
Escape Sequences •••

Wild Cards •••
Comm.and Line Options •••

Commands that Require More than One Line •••••••••••••••••••••••
Quoting Characters in a Command ••••••••••••••••••••••••••••••••
Prepositions and Pathlists •••••••••••••••••••••••••••••••••••••
Inpath-List and Outpath-List •••••••••••••••••••••••••••••••••••

ix

PAGE

1-2
1-4
1-4
1-5
1-5
1-6
1-9
1-9
1-10
1-10
1-11
1-11
1-12
1-12

2-2
2-2
2-4
2-5
2-6
2-7
2-7
2-8
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-18
2-18
2-20
2-20
2-22
2-22
2-23
2-24
2-24
2-25
2-27
2-27
2-27
2-27
2-29

CONTENTS (continued)

CHAPTER 3
HUMAN INTERFACE COMMANDS
Human Interface Command Dictionary •••••••••••••••••••••••••••••••••
Error Messages •••
Command Syntax Schemati~s ••
ATTACHDEVICE •••
ATTACHFILE •••
BACKUP •••
COpy •••
CREATEDIR •••••••••.•••
DATE •••
DEBUG ••
DELETE •••
DETACHDEVICE •••
DETACHFlLE •••
DIR ••
DISKVERIFy •••
DOWNCOPY •••
FORMAT •••
INITSTATUS •••
JOBDELETE ••
LOCK •••
PERMIT •••
RENAME e •••••••••••••.•••

RESTORE ••
SUBMIT •••••••••••••• : ••
SUPER ••
TIME •••
UPCOpy ••••••••••••••••••••••••••••••• •.•••••••••••••••••••••••••••••
VERSION ••

CHAPTER 4
UDI SYSTEM CALLS
Using the UDI ••

Exceptional Conditions •••
UDI Libraries ••
Include Files ••
Data Types •••

Descriptions of System Calls •••••••••••••••••••••••••••••••••••••••
Memory Management System Calls •••••••••••••••••••••••••••••••••••
File-Handling System Calls •••••••••••••••••••••••••••••••••••••••
Exception-Handling System Calls ••••••••••••••••••••••••••••••••••

System Calls •••
DQ$ALLOCATE ••

-DQ$ATTACH ••
DQ$CHANGE$ACCESS •••
DQ$CHANGE$EXTENSION ••
DQ$CLOSE •••
DQ$CREATE ••

x

PAGE

3-1
3-4
3-5
3-7
3-12
3-15
3-23
3-27
3-28
3-30
3-32
3-34
3-37
3-39
3-48
3-53
3-56
3-63
3-65
3-67
3-69
3-74
3-77
3-83
3-87
3-90
3-92
3-95

4-1
4-2
4-2
4-3
4-4
4-4
4-5
4-5
4-6
4-7
4-10
4-12
4-13
4-15
4-16
4-17

CONTENTS (continued)

CHAPTER 4 (continued)
DQ$DECODE$EXCEPTION ••
DQ$DECODE$TlME •••
DQ$DELETE ••
DQ$DETACH ••
DQ$EXIT •••••••••••••• : •••
DQ$FILE$INFO ••••••.••••••••••••• " ••••••••••••••••••••••••••••••••••
DQ$FREE ••
DQGETARGUMENT ••
DQGETCONNECTION$STATUS •••
DQGETEXCEPTION$HANDLER •••
DQGETSIZE ••
DQGETSYSTEM$ID •••
DQGETTlME ••
DQ$OPEN ••
DQ$OVERLAY •••
DQ$RE.AD ••
DQ$REN.AME ••
DQ$RESERVE$IO$MEMORY •••
DQ$SEEK ••
DQ$SPECIAL •••
DQ$SWITCH$BUFFER •••
DQ$TRAP$CC •••
DQ$TRAP$EXCEPTION ••
DQ$TRUNCATE ••
DQ$WRITE •••

Example Program ••

CHAPTER 5
PREPARING YOUR HARDWARE
The iRMX~ 86 PC Hardware Environment •••••••••••••••••••••••••••••••

Required Hardware ••
Optional Hardware ••
Single Board Computer ••
Flexible Diskette Controllers and Drives •••••••••••••••••••••••••
Winchester Disk Drive ••
Line Printer •••
Additional Terminals •••
Memory •••
iSBc® 957B Package •••

Modifying Boards •••
Hints about the Multibus@ ••

Bus Priority Resolution ••
Bus Electrical Noise •••

,Modifying the iSBCCU> 215 Winchester Disk Controller •••••••••••••••
Modifying the iSBX~ 218 Disk Controller ••••••••••••••••••••••••••
Modifying the iSBc® 208 Flexible Disk Controller •••••••••••••••••
Modifying the iSB~ 534 Four Channel Communications

Expansion Board ••

xi

PAGE

4-18
4-19
4-21
4-22
4-23
4-24
4-26
4-27
4-29
4-31
4-32
4-33
4-34
4-35
4-37
4-39
4-41
4-42
4-43
4-45
4-47
4-48
4-49
4-50
4-51
4-53

5-2
5-2
5-3
5-3
5-4
5-4
5-5
5-6
5-6
5-6
5-6
5-7
5-7
5-8
5-8
5-9
5-9

5-10

CONTENTS (continued)

CHAPTER 5 (continued)
Modifying the iSBC8 86/12A Single Board Computer •••••••••••••••••

Interrupt Level Jumpers ••
Additional Jumpers •••
Parallel Port ••
Switch Settings •••• ~ •••
Devices ••

Modifying the iSBc® 86/14 Single Board Computer ••••••••••••••••••
Jumpers ••
Devices ••

Modifying the iSB~ 86/30 Single Board Computer ••••••••••••••••••
Jumpers ••
Devices ••

Convenience Charts •••

CHAPTER 6
SYSTEM MANAGEMENT
Copying the iRMX- 86 PC System Diskette ••••••••••••••••••••••••••••
iRMX- 86 PC System Diskette ••
Editing the Terminal and User Definition Files •••••••••••••••••••••

Terminal Definition Files •••••••••••••••••• ~ •••••••••••••••••••••
Omitting Unnecessary Parameters ••••••••••••••••••••••••••••••••
Order of Terminal Definition Lines "',;. ••••••••••••••••••••••••
User Definition Files ••

Other System Management Functions ••••••••••••••••••••••••••••••••••
Attaching Hardware Devices •••••••••••••••••••••••••••••••••••••••
Shutting Down the System •••

CHAPTER 7
DOCUMENTATION
This Manual ••
iRMX- 86 Manuals •••
Language Translators and Utilities Manuals •••••••••••••••••••••••••
Hardware Manuals •••

Computers ••
Disk Controllers •••
Communication Expansion Board ••••••••••••••••••••••••••••••••••••
Memory Boards ••
Chassis/Power Supply •••

APPENDIX A
iRMX- 86 EXCEPTION CODES •••

xii

PAGE

5-11
5-11
5-11
5-12
5-12
5-13
5-14
5-14
5-15
5-16
5-16
5-17
5-18

6-2
6-5
6-7
6-8
6-10
6-10
6-10
6-12
6-12
6-12

7-1
7-1
7-3
7-5
7-5
7-6
7-6

,7-6
7-6

A-I

CONTENTS (continued)

APPENDIX B
iRMX'" 86 SYSTEM CALLS
Layers of the iRMX1M 86 System ••••••••••••••••••••••••••••••••••••••
Nucleus System Calls •••
Basic I/O System Calls •••
Extended I/O System Calls ••
Human Interface System Calls ••••• · ••••••••••••••••••••••••••••••••••

APPENDIX C
MONITOR COMMANDS
Command Structure ••

Byte and Word Variables ••••••••••• ' •••••••••••••••••••••••••••••••
Numeric (Real, Integer and BCD) Variables ••••••••••••••••••••••••
Address Specification ••
Mult~ple Commands on a Single Line •••••••••••••••••••••••••••••••

iAPX 86 and iAPX 88 CPU Registers ••••••••••••••••••••••••••••••••••
NPX Registers ••
Errors •••
Entering Commands ••
Command Descriptions •••

2-1.
3-1.
3-2.
3-3.
4-1.
4-2.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
5-11.
5-12.
5-13.
5:-14.
5-15.
5-16.
5,-17.

TABLES

Input Pathname and Output Pathname Combinations ••••••••••••
Human Interface Command Dictionary •••••••••••••••••••••••••
Physical Device Names for the iRMX1M 86 PC System •••••••••••
Directory Listing Headings •••••••••••••••••••••••••••••••••
System Call Dictionary ••••••••••••• · ••••••••••••••••••••••••
Command Parsing Example ••••••••• · •••••••••••••••••••••••••••
Single Board Computers •••••••••••••••••••••••••••••••••••••
Line Printer Pin Assignments •••••••••••••••••••••••••••••••
iSB~ 215 Jumpers ••
Jumpering for the iSBX1M 218 Multimodule1M •••••••••••••••••••
iSB~ 208 Jumpers ••
iSB~ 534 Interrupt and Base Address Jumpers •••••••••••••••
iSBC8 534 DIP Header Jumpers for RS232C Protocol •••••••••••
Interrupt Jumpers for iSB~ 86/12A •••••••••••••••••••••••••
Other iSBc8 86/12A Jumpers •••••••••••••••••••••••••••••••••
iSB~ 86/12A Parallel Port Jumpers •••••••••••••••••••••••••
iSB~ 86/12A Switch 1 ••••••••••••••• ~ ••••••••••••••••••••••
iSB~ 86/12A Devices •••••••••••••••••••••••••••••••••••••••
Interrupt Jumpers for iSB~ 86/14 ••••••••••••••••••••••••••
iSB~ 86/14 Parallel Port Jumpers ••••••••••••••••••••••••••
Other iSBC@ 86/14 Jumpers ••••••••••••••••••••••••••••••••••
iSBc8 86/14 On-Board Devices •••••••••••••••••••••••••••••••
Interrupt Jumpers for iSB~ 86/30 •••••••• ~ •••••••••••••••••

xiii

PAGE

B-1
B-3
B-7
B-8
B-9

C-2
C-2
C-3
C-6
C-7
C-8
C-8
C-9
C-9
C-ll

2-29
3-2
3-9
3-45
4-8
4-28
5-3
5-5
5-8
5-9
5-9
5-10
5-10
5-11
5-11
5-12
5-12
5-13
5-14
5-14
5-15
5-15
5-16

5-18.
5-19.
5-20.
5-21.
5-22.
5-23.
5-24.
5-25.-
5-26.
5-27.
5-28.
5-29.
5-30.
5-31.
5-32.
5-33.
A-I.
A-2.
C-l.
C-2.
C-3.
C-4.

Pref.
1-1.
1-2.
1-3.
1-4.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
4-1.
5-1.
6-1.
6-2.

TABLES (continued)

iSBce 86/30 Parallel Port Jumpers ••••••••••••••••••••••••••
Other iSBce 86/30 Jumpers ••••••••••••••••••••••••••••••••••
iSB~ 86/30 On-Board Devices •••••••••••••••••••••••••••••••
iSB~86/12A Jumpers (Condensed) •••••••••••••••••••••••••••
iSBce 86/12A Devices (Condensed) •••••••••••••••••••••••••••
iSBC8 86/12A Switch 1 (Condensed) ••••••••••••••••••••••••••
iSB~ 8&/14 Jumpers (Condensed) •••••••••••••••••••••••• }~ ••
iSBdi 86/14 Devices (Condensed) ••••••••••••••••••••••••••••
iSBC~ 86/30 Jumpers (Condensed) ••••••••••••••••••••••••••••
iSB~ 86/30 Devices (Condensed) ••••••••••••••••••••••••••••
iSB~ 215 Jumpers (Condensed) ••••••••••••••••••••••••••••••
Jumpering for the iSBX® 218 Multimodule- (Condensed) •••••••
iSBC~ 534 Jumpers (Condensed) ••••••••••••••••••••••••••••••
iSBC~ 534 DIP Header Jumpers, RS232C (Condensed) •••••••••••
iSB~ 208 Jumpers (Condensed) ••••••••••••••••••••••••••••••
Line Printer Pin Assignments (Condensed) •••••••••••••••••••
Exception Code Ranges ••••••••••••••••••••••••••••••••••••••
iRMX- 86 Condition Codes •••••••••••••••••••••••••••••••••••
NPX Data Types •••••••••••••••••••••••••••••••••• · •••••••••••
iAPX 86, 88 CPU Registers ••••••••••••••••••••••••••••••••••
NPX Registers ••
Summary of Loader and Monitor Commands •••••••••••••••••••••

FIGURES

The iRMX- 86 PC Product ••••••••••••••••••••••••••••••••••••
iRMX- 86 Operating System Subsystems •••••••••••••••••••••••
iRMX- 86 PC Hardware Environment •••••••••••••••••••••••••••
Memory Layout of iRMX- 86 PC System ••••••••••••••••••••••••
Initializing the System ••••••••••••••••••••••••••••••••••••
Using the iRMX- 86 Operating System from a Terminal ••••••••
Example Human Interface Commands •••••••••••••••••••••••••••
Syntax Diagram of COpy Command •••••••••••••••••••••••••••••
An iRMX- 86 Named File Structure •••••••••••••••••••••••••••
Directory Listings of iRMX- 86 PC Files ••••••••••••••••••••
Examples: Changing Default Directory and SUPER Command •••••
Installing Intel Utilities on System Disk ••••••••••••••••••
Copying Utilities to the System Disk ••••••••••• ' ••••••••••••
Transferring UDI Files to System Disk ••••••••••••••••••••••
Creating a Private Disk •••••••••••••••••••••••• ~~ ••••••••••
Sample DEBUG Display ••••••••••••••••••••••••••••••• ~ •••••••
FAST Directory Listing Example (Default Listing Format) ••••
SHORT Directory Listing Example ••••••••••••••••••••••••••••
LONG Directory Listing Example •••••••••••••••••••••••••••••
EXTENDED Directory Listing Example •••••••••••••••••••••••••
INITSTATUS Display •••
Chronology of System Calls •••••••••••••••••••••••••••••••••
The iRMX- 86 PC Hardware •••••••••••••••••••••••••••••••••••
:SD:BACKUPSYS ••
File Structure of the System Device ••••••••••••••••••••••••

xiv

PAGE

5-16
5-17
5-17
5-19
5-19
5-19
5-20
5-20
5-21
5-21
5-22
5-22
5-23
5-23
5-24
5-24
A-I
A-2
C-4
C-8
C-9
C-l1

iii
1-1
1-3
1-5
1-8
2-1
2-2
2-5
2-6
2-8
2-10
2-16
2-17
2-19
2-21
3-31
3-42
3-43
3-43
3-44
3-63
4-5
5-1
6-4
6-5

CHAPTER 1. SYSTEM OVERVIEW

Intel has configured the iRMX 86 PC Operating System as an efficient
program development base for languages and other software utilities.
Figure 1-1 shows the subsystems of the iRMX 86 Operating System. The
Preconfigured Operating System includes all of the subsystems shown plus
software to support many I/O devices.

USER APPLICATIONS x-306

Figure 1-1. iRMX- 86 Operating System Subsystems

This chapter describes the most important characteristics of the
Preconfigured iRMX 86 Operating System. Major subjects of the chapter
are:

• Hardware Environment. The iRMX 86 PC System is designed to run
on particular hardware; some of the hardware is required and some
is optional. The iRMX 86 PC Operating System supports up to five
terminals simultaneously, as well as three iSBC 86 Single Board
Computers, various disk and diskette drives, and a line printer •

. The first section of the chapter describes this hardware.

• The UDI and Language Products. A standard software interface
the Universal Development Interface -- simplifies addition of
software packages to your iRMX 86 PC system. Many software
packages are available from Intel and from independent software
vendors.

• How to Initialize.the System. This section shows how to
bootstrap load the operating system.

1-1

SYSTEM OVERVIEW

• Starting to Use iRMX 86 Commands. Once the system is
initialized, you can enter commands at terminals.

• Setting the Date and Time. This is the first of many examples in
the manual using Human Interface Commands.

• The Multi-Access Human Interface. The iRMX 86 PC Operating
System can be accessed simultaneously by up to five users at
terminals. We describe how the Human Interface manages terminals.

• iRMX 86 Files. This section gives an overview of the Operating
System file structure. Chapter 2 describes the file structure in
detail.

• Selective Error Ptocessing. You can let the Operating System
handle errors or you can let the Operating System detect the
error and pass control to your own error-handling routines.

HARDWARE ENVIRONMENT FOR THE 1RMX- 86 PC SYSTEM

In order to configure the iRMX 86 PC system, Intel engineers had to make
some assumptions about the Intel boards (single board computers, disk
controllers, and so on) that will be used to run the Operating System.
This section describes that hardware. Chapter 5, PREPARING YOUR
HARDWARE, is a guide to setting up the hardware.

I

Figure 1-2 on the next page shows a typical iRMX 86 PC hardware system
with a flexible disk drive, a Winchester hard disk drive, and multiple
terminals. Following the figure is a description of hardware that is
required to run the Preconfigured Operating System, and a description of
optional hardware.

1-2

INTELLEC'
DEVELOPMENT

SYSTEM

SYSTEM OVERVIEW

iSBC· 957B cable
c::-\

\ \

\
\

LINE PRINTER:
CENTRONICS· compatible

CHASSIS/POWER SUPPLY

FLEXIBLE DISK
CONTROLLER

2732A EPROMS -----+--4------=:~..u1.,:.
(with Bootstrap Loader

and Monitor)

Backplane with
MULTIBUS'
Connectors

COMMUNICATIONS
BOARD

Figure 1-2. iRMX- 86 PC Hardware Environment

1-3

x-325

SYSTEM OVERVIEW

REQUIRED HARDWARE

The Preconfigured iRMX 86 Operating System requires the following
hardware:

• Single-Board Computer. An Intel iSBC 86/12A, iSBC 86/14, or
iSBC 86/30 Single Board Computer.

• Flexible Disk Drive. A flexible diskette controller with at
least one 8-inch drive.

This disk drive should conform to the size and recording density
of the diskettes on which you receive the Pre configured iRMX 86
Operating System (the format is defined in Chapter 5, PREPARING
YOUR HARDWARE).

Although you can boot and run the system with one flexible
diskette drive, you will need at least one other disk drive to do
useful work with the system.

• Keyboard Terminal. A keyboard terminal connected to the serial
line on your single-board computer.

• Chassis. An appropriate chassis/cardcage/power-supply unit.

• Memory. The Operating System requires 256K bytes of memory.

OPTIONAL HARDWARE

You can include the following optional hardware in your system:

• Four More Terminals. An iSBC 534 Four Channel Communications
Expansion Board with one to four keyboard terminals.

• Winchester Disk. A Winchester hard disk drive connected to an
iSBC 215 Disk Controller.

• Total of Eight Flexible Disk Drives. Up to four flexible
diskettes connected to an iSBC 208 Flexible Disk Controller and
up to four flexible disk drives connected to an iSBX 218 Flexible
Disk Controller Multimodule. You can use the iSBC 218
Multimodule only if you also have an iSBC 215 Disk Controller.

• . Line Printer or Microcomputer Development System. Either a line
printer or an iSBC 957B hardware/software package connected
through the parallel port on your single board computer. The
iSBC 957B package allows you to connect your system directly to
an Intellec Microcomputer Development System. Neither the line
printer nor the iSBC 957B package is required to run the
Operating System.

1-4

SYSTEM OVERVIEW

MEMORY LAYOUT

Figure 1-3 shows a memory layout. The area labeled FREE SPACE is where
programs and iRMX 86 commands run (commands are described in Chapters 2
and 3). The question mark (?) on the drawing indicates that you can
decide how much free space you have on your system. You will need about
32K-bytes of free space to run most iRMX 86 commands, and more memory to
run Intel compilers.

ADDRESS
(hex)

FFFF~ F-------~

FCOOO

?

BOOTSTRAP AND

MONITOR (ROM)

, " UNPOPULATED:::>"

ADDRESS

SPACE

FREE SPACE
(RAM)

40000 t----------f'

iRMX T
.. 86

OPERATING SYSTEM
(RAM)

00000 --______ rI

SIZE

} 16K BYTES

} 256KBYTES

x-305

Figure 1-3. Memory Layout of fRMX- 86 System

THE UDI AND LANGUAGE PRODUCTS

The iRMX 86 PC Operating System includes the Universal Development
Interface (UDI), which provides standard system calls for software
(your's, Intel's, and vendors') to communicate with the Operating
System. Three important advantages to using UDI software are:

• Independence from Operating System Changes. The set of system
calls for UDI remains stable regardless of changes in the
Operating System.

• Portability. If your software uses only the UDI system calls to
communicate with the underlying operating system, you can easily
move software packages from one operating system to another.

• Independent Vendor's Software. The UDI standard gives you access
to independent software vendors' programs that run on the iRMX 86
Operating System.

1-5

SYSTEM OVERVIEW

To develop programs, you need language translators and utilities that
allow you to comp~le or assemble source code, to link programs together,
to assign absolute addresses, and to create libraries of programs.
Software packages available from Intel include:

EDIT The standard iRMX 86 editor.

ASM86 The 8086/8087/8088 macro assembler.

PLM86 The PL/M-86 compiler.

LINK86 The 8086 Linker, which combines individual object
modules into a single, relocatable object module.

LOC86 The 8086 t Locater, which assigns absolute addresses to
relocatable object modules.

LIB86 The 8086 Librarian, which creates and maintains object
module libraries.

OH86 A program which converts absolute object modules to
hexadecimal format.

Pascal-86 A Pascal compiler that is a strict implementation of the
proposed ISO standard. It also provides extensions of
the language for microcomputers.

FORTRAN-86 A FORTRAN compiler that is compatible with existing
FORTRAN-86 code, and also includes new FORTRAN-77
language features.

With these products you can create executable programs that can be
invoked from the terminal. If you are an OEM (original equipment
manufacturer) you can include these languages with your end product.

Refer to the GUIDE TO USING iRMX 86 LANGUAGES for general information
about invoking language products in an iRMX 86 environment. For detailed
information about the software products listed here, you should refer to
the manuals for the individual products (see Chapter 7 for a list of
these manuals.)

HOW TO INITIALIZE THE SYSTEM

This section shows you how to bootstrap load the iRMX 86 PC Operating
System. Bootstrap loading (booting) is the process of reading the
iRMX 86 PC Operating System into memory from a disk and giving it control
of the processor. The bootstrap loader program is in the EPROM
components you receive with the iRMX 86 PC product.

The EPROM devices also contain the monitor. With the monitor, you can
examine memory, set breakpoints, and (with a hardware package available
separately) communicate between your system and an Intellec Microcomputer
Development System. Appendix C describes monitor commands.

1-6

SYSTEM OVERVIEW

When the Operating System starts running, it initializes itself. Then it
is ready to accept commands typed from a keyboard terminal. The next
section describes how to use a terminal (start an interactive job).

If you have installed the EPROM components on your single board computer,
bootstrap the system as follows (refer to Figure 1-4.)

1. Turn on power to the disk drive, processor and to the system
terminal -- the one connected to the single board computer.

2. Insert a copy of the System Diskette into Disk Drive O. We show
you later how to copy the Diskette you receive.

3. When you see a series of asterisks appear on the display screen,
type a single upp~rcase

u

The system repeatedly sends characters to the screen until you
type a U. The U is not echoed to the screen. What character is
sent to the screen depends upon the baud rate, and we show
asterisks (*) in our example -- the character displayed at 9600
baud. A hand points to where the U is typed.

4. You will see a message identifying the Monitor, followed on the
next line by a prompt of ". II (period).

5. Respond by typing a single

B

meaning boot. You can also use a lowercase b.

6. Now the Bootstrap Loader reads the Operating System into memory
from your diskette, and passes control to it~ (This usually
takes less than a minute.)

Figure 1-4 shows the screen display when the system is booted.

If your system has a button connected to the RESET line on the single
board computer, you can re-boot by using the button. The system will
again display asterisks, and you continue from step 3.

I~
To prevent destroying data on your
disks when re-booting, allow 2 seconds
to elapse after the last I/O operation
from commands or programs that access
the disk. This also applies when
removing diskettes from drives and when
turning off power.

1-7

*********** --
iAPX 86,88 Monitor Vl.2
.b --

SYSTEM OVERVIEW

iRMX 86 HI CU, V2.0: USER = 65535 6
:prog:r?logon, file not found "f,l\,
- DATE
01 JAN 78, 00:00:00
- DATE 14 FEB 82
14 FEB 82. 00:00:00
-TIME 9:12:05
14 FEB 82, 09:12:05
- DIR
14 FEB 82 09:12:52
DIRECTORY OF $ ON VOLUME 145122
PROG Spitting

last command

Figure 1-4. Initializing the System

NOTE

In iIIuslrations of video screens, what
the operator types (console input) is
shown in this typeface.

Messages displayed by the system (con­
sole output) are shown in this typeface.

Input and output lines in illustrations
are not proportional to an actual video
display.

1-8

SYSTEM OVERVIEW

STARTING TO USE A TERMINAL

When you have successfully booted the system, you can begin entering
commands at any terminal. That is, you can start an interactive
session. How to do so is shown in Figure 1-4 and explained following the
figure. From this point, the system terminal is used the same as any
other terminal.

Here is how to start.

1. Type an uppercase U; it is not seen on the screen. A hand on
Figure 1-4 shows where it is typed. The system reads the ··U"
character to determine the data baud rate of your terminal, and
then adjusts the computer rate to match it -- a process called
automatic baud-rate selection.

2. The iRMX 86 Command Line Interpreter (CLI) begins running and
displays its header (and the terminal bell rings):

iRMX 86 HI CLI, V2.0: USER 65335

In Figure 1-4, V2.0 is the version number of the CLI, and 65535
is the user ID assigned to the terminal. While you are using a
terminal, a user ID is your identification to the Operating
System. The next section will deal with user IDs and why they
are important.

3. Next, the CLI searches for the logon file. Each user ID can have
a unique logon file. If you do not have a file named R?LOGON,
the system will display a message such as:

:prog:r?logon, file not found

The logon file is optional. If it finds a logon file for a
terminal, the CLI automatically SUBMITs the file (reads each line
in the file and executes the line as a command). Using a logon
file, you can start processes automatically when the Operating
System first recognizes your terminal. The system recognizes the
name :prog:r?logon as a logon file. Chapter 2 explains iRMX 86
file names.

4. After processing the commands in the logon file, the eLI issues
its prompt (-) and returns control to you. At this point you can
enter Human Interface commands and invoke programs.

SETTING THE DATE ~~ TIME

In this section, we show how you can set the system time and date. The
TIME and DAT~ commands are shown first because it is a good idea to set
the system time and date as soon as the system is bootstrap loaded. In
Figure 1-4, the operator typed DATE in response to the first Human
Interface prompt (-).

1-9

SYSTEM OVERVIEW

Without parameters, the DATE command simply displays the date. In this
case, the system displays the default date and time that indicates it
hasn't been set since the system was booted.

The next line shows the operator setting the date to Valentine's Day of
1982, and the system responds by displaying the new date and old time.

The next lines shows a similar sequence for the TIME command. System
time is set to 12 minutes and 5 seconds after 9 AM, and the system
confirms the new time.

Finally, the command DIR is typed, and the system shows the file~ that
are in the user's directory. The next chapter describes the DIR
(directory) command.

If you don't set the system time or date, the iRMX 86 Operating System
will not maintain the system clock. Two results of this are:

1. Whenever you interrogate the system to determine the time-of-day
by commands or with system calls, the time remains at 00:00:00.

2. When you display the contents of a directory, the line with the
date and time will not be shown. Note that the time and date is
displayed in the example DIR command, because the time was set.

If you type a CTRL/z in response to the Human Interface prompt (-), you
will reinitialize the interactive job and take up at step 2. (CTRL/z is
the letter z typed while holding down the CONTROL key.) If you turn your
terminal off but the system remains running, you can turn the terminal
back on and continue as though you had not turned it off. Or you can
turn it back on and type CTRL/z. Re-initializing the interactive job
destroys any logical names you have created during the session. (Logical
names are defined in the next chapter.)

THE MULTI-ACCESS HUMAN INTERFACE

The iRMX 86 Human Interface (Figure 1-1) allows several users to access
the Operating System at the same time. Each terminal has an associated
interactive job and user ID, as explained next.

INTERACTIVE JOB

When the system is initialized, the iRMX 86 Human Interface assigns an
interactive job to each terminal. The interactive job consists of an
identifier (user ID), a program that runs immediately (initial program),
and an area of memory in which the programs can run. User IDs and the
initial job are described in the next two sections.

The Operating System also provides a names for the individual terminal
keyboard and terminal screen being used. These are logical names and are
described in the LOGICAL NAMES section of Chapter 2.

1-10

SYSTEM OVERVIEW

USER ID AND OWNER ID

As part of creating the interactive job, the Human Interface assigns a
user ID to the terminal. This user ID is your "identity" in the system.
It determines your access to files and to devices. When you create
files, you are the owner of the file and control the file.

Two special user IDs are:

•

•

WORLD

System
Manager

iRMX- 86 FILES

The user ID called WORLD has a numerical value of 65535
(OFFFFh). WORLD represents all users of the system.
Every user has complete access to files owned by WORLD;
files owned by WORLD can be read, written, and deleted
by any other user. So if you wish to restrict access
to a file, your user ID should not be WORLD.

User ID 0 designates the system manager. The system
manager can read all files on the system and can list
every directory on the system. The system manager can
also change the access of any file on the system. The
iRMX 86 PC System is delivered with files that are
owned by the system manager.

Chapter 6 of this manual is about the system manager
and explains such things as how to add new terminals to
the system, how to change the user ID of a terminal,
and how to copy the System Diskette.

A basic function of the iRMX 86 PC Operating System is to provide a file
system. You can manipulate these files with iRMX 86 commands invoked
from a terminal, as described in Chapter 2. Programs access files with
the UDI system calls described in Chapter 4.

To manipulate iRMX 86 files and directories at a terminal, you run
programs as commands. The iRMX 86 Operating System provides commands to
perform operations that are usually necessary in a development system. A
few of these are:

• COPY, which copies files.

• DIR, which displays the contents of a particular directory.

• CREATEDIR, which creates a new file directory.

• SUBMIT, which automatically executes other commands contained in
a file.

• FORMAT, which prepares a new disk, diskette, or other mass
storage volume for file data.

• SUPER, which assigns a special user ID to the terminal, allowing
unlimited access to files.

1-11

SYSTEM OVERVIEW

Programs must be able to manipulate files. An assembler, for example,
must open and read source files, and it must create object files.
Programs can read, write, delete, and otherwise deal with files by using
UDI system calls. Chapter 4 tell how you can use UDI system calls that
are provided with the iRMX 86 PC Operating System.

SELECTIVE ERROR PROCESSING

When a program or user at a terminal causes an error that the Operating
System detects (for example, a program might request memory that is not
available) the iRMX 86 PC Operating System's default exception handler
terminates the program and displays one of the exception codes listed in
Appendix A.

If you want to provide your own exception handler rather than using the
default exception handler, the Operating System provides a mechanism for
transferring control to your exception handler. The system calls used to
write an exception handler are described in Chapter 4, UDI SYSTEM CALLS.

SUMMARY

The iRMX 86 Operating System is a flexible multi-tasking, multi-user
operating system used for many types of systems. This chapter has
discussed features that directly relate to using the iRMX 86 PC Operating
System.

The next chapter explains how to use Human Interface commands at a
terminal and how to run your programs as commands. Much of Chapter 2 is
a description of the iRMX 86 file structure, because most Human Interface
commands (the subject of Chapter 3) and most UDI system calls (Chapter 4)
are used for file operations.

1-12

CHAPTER 2. USING THE SYSTEM

You communicate with the iRMX 86 Operating System by using commands
entered at a terminal keyboard (Figure 2-1); the Operating System
communicates with you by displaying messages on the terminal screen.

Figure 2-1. Using The iRMX- 86 Operating System From A Terminal

In this chapter, we describe how to use the Operating System by using
many examples of iRMX 86 commands and system responses. Chapter 3
describes in detail all of the commands that Intel provides with the
iRMX 86 PC System.

This chapter is organized as follows:

• INVOKING iRMX 86 COMMANDS. This is general information about how
to use iRMX 86 commands.

• SYNTAX OF CO~~S. This describes, with examples, the general
syntax of iRMX 86 commands. It also shows an example of the type
of syntax diagram that is used in Chapter 3 to describe commands.

• USING iRMX 86 FILES. This section of the chapter introduces the
important concepts about the iRMX 86 file system, and shows
examples of commands that manipulate files.

• MORE ABOUT iRMX 86 COMMANDS. This explains capabilities of the
iRMX 86 PC System that you will want to use after you are
familiar with the basic concepts.

2-1

USING THE iRMX~ 86 PC SYSTEM

INVOKING iRMX'" 86 COMMANDS

This section describes how to invoke Human Interface commands.

EXAMPLE: DIR AND COpy COMMANDS

Figure 2-2 shows examples of the DIR"(directory) and COpy commands. The
individual commands are described on the next page.

- DIR
14 FEB 82
DIRECTORY OF
PROG

09:12:52
$ ON VOLUME

Spitting

first command

143774

- COpy Spitting TO Image second command
Spitting copied TO Image
- DIR third command
14 FEB 82 09:13:12
DIRECTORY OF $ ON VOLUME 143774
PROG Spitting Image

- DIR SHORT ONE
SHORT, file does not exist
-OIR :$: SHORT ONE
14 FEB 82 09:13:27
DIRECTORY OF $ ON
NAME AT
PROG DR
Spitting
Image

3 FILES

VOLUME
ACC
DLAC
DRAU
DRAU

fourth command

fifth command

143774
BLKS

1
1
1

3 BLKS 348

LENGTH
240

54
54

BYTES

Figure 2-2. Example Human Interface Commands

NOTE

To help explain these example screens,
we show comments (to; first command,"
etc.) as part of commands the operator
types. A command line can have a
comment at the end of the line preceded
by a semicolon. Comments are typically
used with SUBMIT files (described
later). You probably won't type
comments while entering commands
interactively, but doing so is OK.

2-2

first command

second command

third command

fourth command

fifth command

USING THE iRMX- 86 PC SYSTEM

DIR shows all of the files in a directory named
:$:. This is your directory, your default
directory. We will eA~lain more about this and
other directories later. The system responds by
showing that :$: contains two files or
directories (we can't tell which) called PROG and
Spitting.

This COPY command creates a new copy of the file
Spitting, and calls it Image.

A DIR command shows that :$: now contains three
files.

Without any listing options, the DIR command
lists only file and directory names, as in the
first command in Figure 2-2. We don't know
whether each entry in the directory is a file or
another directory (iR}cr 86 directories can
themselves contain other directories). So we use
a parameter, SHORT, to ask for a directory
display that shows more information about the
contents of the directory. We also ask for a
ONE-column listing format. (Chapter 3 describes
every DIR listing format.)

The fourth command, as typed, makes the system
think that we want to list ~ directory named
SHORT. This shows what happens when you type a
command that the Human Interface cannot
understand. The system responds by displaying an
error message.

To correct this, we identify the directory :$:
before the parameters SHORT and ONE. The system
responds by again showing the files in the
default directory (:$:), but also shows that PROG
is a directory (DR in the ATTributes column) and
that Spitting and Image are files (blank in ATT
column). The size of each is also shown as
blocks and as bytes.

The ACCess column describes the access allowed
for the user ID at this terminal.

For directories

D = Delete
L = List
A = Append
C = Change

For files

D = Delete
R = Read
A = Append
U = Update

The owner (user ID that created the file or directory) has full access to
the file. You can selectively allow access to files that you own, using
the PE~T command described in Chapter 3.

2-3

USING THE iRMX- 86 PC SYSTEM

SYNTAX OF COMMANDS

This section describes the general structure of a command. A command can
contain the following elements:

command-name inpath-list preposition outpath-list parameters

Except for the command name, the elements in a command are optional for
some commands and required for others, or simply don't apply to certain
commands. For example, the DATE command does not have an inpath-list or
outpath-list, but does have an optional parameter (QUERY).

A RETURN key or LINE FEED key terminates each command.

The meaning of each elemerlt is described here.

command-name

inpath-list

preposition

outpath-list

parameters

Name of the program file to be executed. After the
command is entered, the Operating System loads the
program file into memory from the disk and executes
the command. In Figure 2-2, the first command name is
DIR.

One or more pathnames (iRMX 86 file names are called
pathnames) to be used as input during command
execution. Multiple pathnames in an input file list
must be separated by commas. You can type spaces
(blanks) between pathnames. In the second command in
Figure 2-2, the inpath-list is

Spitting

A word that tells the executing command how you want
the output handled. The four prepositions used in
iRMX 86 commands are TO, OVER, AFTER, and AS. In the
second command in Figure 2-2, the preposition is TO.

One or more pathnames for the files that receive the
output or are changed in some way. As with the
inpath-list, multiple files names must be separated by
commas, and embedded spaces are optional. In the
second command of Figure 2-2, the outpath-list is:

Image

Most commands have a default form but also offer one
or more optional ways in which the system can execute
the command. You specify options with one or more
parameters at the end of a command. Individual
descriptions of commands in Chapter 3 define the
effect of parameters. In the fifth command in Figure
2-2, the parameters are SHORT and ONE.

The Human Interface makes no distinction between cases when it reads
command line items, so you can enter elements of a command line in
uppercase characters, lowercase characters, or a mixture of both.

2-4

USING THE iRMX~ 86'PC SYSTEM

Figure 2-3, a "railroad track" syntax diagram for the COpy command, gives
you a preview of how Chapter 3 describes commands. Each command in
Chapter 3 includes one of these diagrams. The diagram is read left to
right.

I"path-llst

r----(TO 1---.......

Figure 2-3. Syntax Diagram of COpy Command

USING iRMX'" 86 FILES

One important use of Human Interface commands is to manipulate files. To
use Human Interface commands and to use the UD! system calls, you need to
understand the iRMX 86 file structure.

If you are reading simply to understand the major characteristics of the
iRMX 86 PC System, you may wish to skim through the following discussion
of the file system. Later, when you are ready to use the system, you can
read the details in this section. Briefly, the section describes:

TYPES OF FILES

FILE TREES

PATHNAHES

LOGICAL NAMES

There are three: physical files, named files, and
stream files. Named files, the most;,frequently used
file type, provide file trees on a d~vice.

The iruLX 86 Operating System supports an open-ended
structure of files and directories starting with a
root directory. Directories can contain both files
and other directories. Figure 2-4 in the following
section shows a file tree.

These are names for files in a named file structure:
a pathname describes a path from one directory
through each lower-level directory to the file. For
example, in Figure 2-4, the pathname of the file
with the name r?logon is:

:SD:USER/l/PROG/r?logon.

Logical names simplify the way you refer to a path
through the file tree, and the way you refer to
devices. The Operating System has some built-in
names for your convenience.

2-5 J

USING THE iRMX- 86 PC SYSTEM

TYPES OF FILES

Most of this discussion of iRMX 86 files is about named files, because
that is the type used most frequently with Human Interface commands and
with the UDI system calls.

The named file structure divides data on mass storage devices into
individually-accessible files and directories, as shown in Figure 2-4.
Commands and programs refer to these files by name when they want to
access information stored in them.

BOOTSTRAP

6
LOADABLE

FILE: Comes with IRMX860.S.
iRMX·· 86 PC
system

~ FILE: Does not come ,:;':.

with iRMX' 86
PC system

i D DIRECTORY

iRMX''' 86
COMMANDS

, 30e

Figure 2-4. An iRMX- 86 Named File Structure

2-6

USING THE iRMX- 86 PC SYSTEM

The other types of files are:

Physical Files

Stream Files

FILE TREE STRUCTURE

A physical file is an entire I/O device, represented
as a single file. The Operating System accesses
backup volumes (like tapes), as well as line
printers and terminals as physical files.

Stream files are software mechanisms that can be
used only with iRMX 86 Basic I/O or Extended I/O
system calls.

An iRMX 86 file tree has two kinds of files: data files and
directories. Data files (shown as triangles in Figure 2-4) contain
programs and the information that you manipulate-with programs (for
example, inventory control programs, text, source code and object code).
Directories, (shown as recta~gles in Figure 2-4) contain pointers to
named files or other directories.

The iRMX 86 Operating System allows you to have multiple directories on a
mass storage device. Instead of having a single directory containing all
of the files on the device, you can group files into several directories.
Duplicate file names are permitted unless the files reside in the same
directory. For example, the file tree in Figure 2-4 contains two
directories named PROG. However, they are unique because each resides in
a different directory.

The uppermost point of each file tree is a special directory called the
root directory, which contains all other files and directories on the
device. A file tree cannot extend to more than one volume, and one
device must be" the system device (root directory named :SD:).

PATHNAMES

In a file tree, each file and directory has a unique path connecting it
to the root directory. When you want to perform a file operation, you
must specify not only the file's name, but the path through the file tree
to the file. This is called the file's pathname. For example, in Figure
2-4, :SD:USER/l/PROG/r?logon is the pathname of the logon file for user
ID 1. The path from the root directory (:SD:) to the file goes through
directory USER, through directory 1, through directory PROG, and finally
stops at data file r?logon.

Slashes (/) separating individual components of the pathname tell the
Operating System that the next component is down one level. You can use
a circumflex (A) between path components to refer to the next higher
level.

A later section, LOGICAL NAMES, shows how you can assign a short-hand
name to a file for convenience.

2-7

USING THE !RMX- 86 PC SYSTEM

EXAMPLE: DIRECTORY OF iRMX
1M 86 PC FILES

Figure 2-5 shows some commands that operate on the iRMX 86 PC file
structure shown in Figure 2-4. Figure 2-4 shows a recommended file
structure for the iRMX 86 PC system. This is the structure of the System
Diskette that Intel delivers to you as part of the iRMX 86 PC product.
Some files and directories shown in the figure are not provided with the
iRMX 86 PC system, but are included for discussion purposes.

The example commands shown in the remainder of this chapter represent a
single terminal session. That is, each screen takes up where the
previous one left off. Figure 2-5 and the following screens in this
chapter assume that the terminal has been assigned user ID 1. Some
example screens introduce concepts or terms that are only briefly
explained with the exampl~, but are described in detail later.

- DIR :$: SHORT ONE first command
14 FEB 82 09:13:27
DIRECTORY OF $ ON VOLUME

AT
145122

NAME
PROG
Spitting
Image

c DIR :SO:
14 FEB 82 09:13:39
DIRECTORY OF :SO:
GSYS.020 SYSTEM
LANG UTllS

- DIR :SO: I
14 FEB 82 09:13:44

DR

3 FilES

ACC
OLAC
ORAU
ORAU

2nd command

ON VOLUME 145122
CONFIG USER
BACKUPSYS

3rd command

DIRECTORY OF :SO: ON

BlKS
1
1
1

3 BlKS

R?SPACEMAP R?NODEMAP
CONFIG USER

VOLUME 145122
R ?BADBlOCKMAP
WORK

GYSYS.020
LANG

BACKUPSYS

lENGTH
240

54
54

348 BYTES

WORK

SYSTEM
UTllS

Figure 2-5. Directory Listings of iRMX- 86 PC Files

The effect of each command is described here (commands are identified by
the comment at the end of the command line).

2-8

first command

second command

third command

USING THE iRMX~ 86 PC SYSTEM

This is the same command seen at the end of the
previous example screen, Figure 2-2.

This command shows how to list the directories
and files in the root directory of· the system
device. This DIRectory listing reveals three
files not shown in Figure 2-4:

• GSYS.020, a file that identifies the
iRMX 86 PC Operating System. A later example
shows the contents of this file.

• BACKUPSYS, which is used to backup the system
diskette. How to backup the system diskette
is explained in Chapter 6.

• CONFIG, a directory that is used for system
management. Chapter 6 describes the files in
this directory.

The root directory (:SD:) also contains some
"invisible" files: files that the Human Interface
does not normally show in directory listings. To
the Operating System, any file name starting with
R? is invisible. For example, the logon file for
user 10 1 -- r?logon in Figure 2-4 -- is
invisible.

This is the same command, but with an added
parameter, I (meaning Invisible). The command
could have been typed without abbreviating
Invisible:

OIR :SO: INVISIBLE

Command parameters may be abbreviated. You
abbreviate a command parameter by typing enough
of the parameter name to make it unique among
other parameters for the command. No other DIR
parameter starts with the letter I, so I is a
valid abbreviation for "Invisible". Remember
that you can use either uppercase or lowercase
letters for elements in a command.

The three invisible files in the root directory
are: R?SPACEMAP, R?NODEMAP, and R?BADBLOCKMAP.

These three files were created when the disk was
formatted, and are used by the 1RMX 86 Operating
System. A later example shows how to format a
disk or other mass storage volume.

2-9

USING THE iRMX- 86 PC SYSTEM

EXAMPLE: SUPER COMMAND AND CHANGING THE DEFAULT DIRECTORY

- ATTACHFILE :SD: AS $
:SO: . attached as :$:
. DIR

09:14:26

first command

2nd command
14 FEB 82
DIRECTORY OF
GSYS.020
LANG

$ ON
SYSTEM
UTILS

VOLUME 145122
CONFIG
BACKUPSYS

USER WORK

- COPY GSYS.020 TO :CO:
:SD:GSYS.020, READ access required
- SUPER
enter password:.

3rd

4th

command

command

super- COpy GSYS.020 TO :CO: 5th command
Preconfigured iRMX 86 Operating System V2.0 (143774)
GSYS.020 copied TO :CO:
super- EXIT 6th command

Figure 2-6. Examples: Changing Default Directory and SUPER Command

first command

2nd command

3rd command

This command changes the default directory for
user ID 1, so that the default directory is now
the root directory (:SD:). You can change your
default directory whenever it is convenient to do
so. One reason to change your default directory
is to do work (create or edit files, run
programs, etc.) in a different directory. If you
don't want to type the pathname of the directory
each time you refer to it, you can make the
directory your new default directory.

Immediately following the explanation of this
screen is a discussion of the important facts
about default directories and the name :$:.

This DIRectory shows that the default directory
has indeed become :SD:. The effect of the
command is the same as the command: DIR :SD:
shown in Figure 2-5.

This command attempts to display the contents of
the system identification file (GSYS.020) on the
terminal screen. The system responds with an
error message explaining that this user ID
doesn't have READ access to this file. The owner
of a file can selectively restrict or allow
access to the file using the PERMIT command, a
feature called access control.

2-10

4th command

5th command

6th command

DEFAULT DIRECTORY

USING THE iRMX~ 86 PC SYSTEM

To assume the user ID 0 (user ID 0 has full
access to all files on the system), the operator
uses the SUPER command and the system prompts for
a password. When the password is typed, it is
not displayed on the video screen. The hand in
the illustration shows where the password is
typed.

Although the Human Interface doesn't normally
distinguish between uppercase and lowercase
letters, the password is an exception; it must be
typed exactly as defined. The system manager is
responsible for defining the password.

When the password is successfully typed, the
system prompt changes to super- and the user ID
becomes zero.

This displays the contents of GSYS.020 on the
screen. The command could have been typed

COpy GSYS.020

because if you do not type a preposition and
output pathname with the COpy command, it assumes
TO :CO: (to your console output device).

The file GSYS.020 is an identification file, and
contains one line of text. This file should be
be kept on copies of the system disk, so that if
you need to contact Intel regarding the Operatipg
System, you can positively identify the product.

The EXIT command returns the user ID to its
original value, and the normal prompt (-) is
displayed on the next line.

When the system is initialized (bootstrap loaded), the Human Interface
assigns a user ID to each terminal, and each user ID is aSSigned a
default directory. The name of the default directory is :$:. This means
that when user ID 65535 refers to :$:, the Human Interface uses
:SD:USER:65335. When user ID 1 refers to :$:, the Human Interface uses
:SD:USER/l.

The iRMX 86 Operating System provides default directories for your
convenience. When performing file operations (using commands, using
interpreters, compilers, or your own programs) you can specify the name
only of files that are in your default directory, rather than the
complete pathname of the files.

Being able to change your default directory (see the first command in
Figure 2-6) extends the value of this feature.

2-11

USING THE iRMX" 86 PC SYSTEM

NOTE

This manual uses the term :$: to refer to
the default directory for a particular
user ID. This is to remind you that it
is a logical name (logical names are
described in the next section). But for
speed or convenience you can use $
without colons. For instance:

DIR $ S

gives a SHORT directory listing of the
default .directory.

A change in your default directory assignment remains in effect until
the system is re-initialized or until you change the assignment by using
another ATTACHFILE command. You can easily return :$: to its initial
assignment by typing the command ATTACHFILE without parameters. This is
shown in a later example.

Intel delivers the iRMX 86 PC System with unique user IDs assigned to
each terminal. But you may change these assignments, and may also
specify which directory is initially assigned as a user ID's default
directory. How to do so is explained in Chapter 6, SYSTEM MANAGEMENT.

LOGICAL NAMES

Although you can always identify files with pathnames, you can also
create logical names for files and directories, and for devices. This
makes it easy to refer to files and devices that you use frequently.
For example, you could assign the name : SOURCE: to the file
:SD:USER/PROG/PASC/MYPROG.PAS. You may then refer to the file as
: SOURCE: (you can still refer to it by its pathname).

You establish logical names for devices with the ATTACHDEVICE command,
and for files and directories with the ATTACHFlLE command. The
Operating System creates certain logical names when it is initialized.
(:SD: and :$: are two of these names; the others are described later.)
You can have both ATTACHDEVICE and ATTACHFILE commands in a logon file
if you want to automatically name devices and files when the system is
booted. A later example shows how to create a logon file.

A logical name contains 1 to 12 ASCII characters surrounded by colons
(the colons do not count in the 12); the value of each character must be
between 020h and 07Fh inclusive (the printing characters and the
space). Logical names cannot include the colon (:), slash (/), up-arrow
or circumflex (A), asterisk (*), or question mark (?).

2-12

USING THE iRMX- 86 PC SYSTEM

Logical Names for Devices

The Preconfigured iRMX 86 Operating System creates certain logical names
for devices when the system starts running. You can establish other
logical names for new or existing devices by invoking the ATTACHDEVICE
command. By using a device logical name as the first element in a
pathname, you can refer to any file on any device. Suppose your system
contains two flexible disk drives for which you have established logical
names :FO: and :Fl: (in other words, you used the ATTACHDEVICE command to
attach the devices as :FO: and :Fl:). If you have a diskette containing
the file DEPT2/HARRY, you could place the diskette in drive :FO: and
access the file with the pathname:

:FO:DEPT2/HARRY

If you put the same diskette in drive :Fl:, you could access the file by
specifying the pathname:

:Fl:DEPT2/HARRY

For devices containing named files, the device logical name is also a
name for the root directory on that device. If you enter the command

DIR :Fl:

you will see a listing of the files in the root directory of :Fl:.

These logical names for devices are already defined when the iRMX 86 PC
system is initialized:

:SD: The system device. This logical name refers to the disk
drive from which the Bootstrap Loader read the Operating
System file. :SD: refers to the same device for all users
on the system.

:CI: The terminal keyboard (or command input). Each user's
:CI: refers to the terminal associated with that user.

:CO: The terminal screen (or command output). Each user's :CO:
refers to the terminal associated with that user.

:LP: The logical name of the line printer.

Also, the Operating System provides two useful simulated devices (they do
not exist as actual I/O devices) identified by these logical names:

:BB: An infinite sink (byte bucket). Anything written to :BB:
disappears, and a read from :BB: returns an end-of-file.

A later example demonstrates how the ATTACHDEVICE command makes a device
known to the system by a logical name.

2-13

USING THE iRMX~ 86 PC SYSTEM

Logical Names for Files

A logical name for a file (or named file directory) provides a shorthand
way of accessing that file. For example, suppose you have a file that
resides several levels down in a file tree, such as:

:FI:DEPTI/TOM/TEST-DATA/BATCH-2

where :FI: is logical name for the device that contains the file. You
might find it inconvenient to continually enter so many characters. If
so, you can establish a logical name for this pathname, such as :BATCH:.
(This is the same as saying that you attached the file with the logical
name :BATCH:.) Then, whenever you want to refer to the file in a
command, you can specify the logical name instead of the pathname. ,

If a logical name refers to directories instead of data files, you can
use the logical name in the prefix portion of a pathname. For example,
consider the same pathname:

:Fl:DEPTl/TOM/TEST-DATA/BATCH-2

Suppose you have attached the pathname :Fl:DEPTl/TOM/TEST-DATA as logical
name :TEST:; therefore it is a logical name for the directory TEST-DATA.
To refer to file BATCH-2, you could enter:

:TEST:BATCH-2

Logical names for files come into existence in two ways. One way is for
you to invoke the ATTACHFILE command. The other way is for the Operating
System to create them. The iRMX 86 PC Operating System establishes
certain logical names for files and directories, and these are described
next.

SYSTEM DEVICE (:SD:). Not only is this the logical name for the system
device, as described in the previous section, but :SD: is also the
logical name for the root directory that contains all other directories
and files on the system device.

SYSTEM DIRECTORY (:SYSTEM:). This directory contains the following
directories and files:

• iRMX 86 COMMAND PROGRAMS. When you invoke an iRMX 86 Command at
a terminal, one of the programs in this directory is loaded and
run. For example, the command "COpY" runs the program of the
same name. Only a few representative command files are shown in
Figure 2-4. All of these commands are described in Chapter 3.

• OPERATING SYSTEM. The file :SD:RMX86 contains the iRMX86 PC
Operating System; this is the file that is read in by the
Bootstrap Loader.

2-14

USING THE iRMX- 86 PC SYSTEM

DEFAULT PREFIX (:$:) AND HOME DIRECTORY (:HOME:). An earlier section
describes the default directory logical name: :$:. In summary. :$: can
refer to a different directory for each user 10. If you don't specify a
logical name at the beginning of a pathname, the Operating System assumes
that the file is in the directory corresponding to :$:.

When you first start using the Human Interface, the logical names :HOME:
and :$: represent the same directory. You can easily re-establish your
original :$: logical name using the command ATTACHFILE and no parameters.

PROGRAM DIRECTORY (:PROG:). You can use this directory for programs that
you write. The Operating System automatically finds and runs programs in
this directory. •

Like :$:, :PROG: refers to a different directory for each user ID. In
Figure 1.4, the directory :SD:USER/l/PROG is the directory -- the Program
Directory -- for user 10 1. The directory :SD:USER/65535/PROG is the
Program Directory for WORLD.

The file R?LOGON is a file that runs when a user begins using a terminal.

PROGRAM DEVELOPMENT DIRECTORIES. The iRMX 86 PC Operating System is a
program development environment in which language processors, editors,
and other utilities are used to create, install, .and run programs. Three
empty directories exist on the iRMX 86 PC System diskette to support
program development:

• Language Directory (:LANG:). This is a directory used to store
language products, such as assemblers, compilers, and linkers.
In the figure, the directory contains the Intel 8086 Assembler as
file ASM86.

• Utility Directory (:UTILS:). This directory is used to store
utilities, such as those shown as examples in Figure 2-3: the
Intel Linker (LINK86). Locater (LOC86) and editor (EDIT).

• WORK DIRECTORY (:WORK:). Compilers, interpreters, editors,
linkers, and other development utilities need to create temporary
files while they are running. This directory is specifically
provided for that use.

SYSTEM CONFIGURATION DIRECTORY (:CONFIG:)

This directory is used to inform the Operating System of the
characteristics of your installation, for example, how many terminals are
connected to the system. The configuration directory contains: the
terminal definition file,_ and user definition files. These are described
in Chapter 6, SYSTEM MANAGEMENT.

2-15

USING THE iRMX- 86 PC SYSTEM

EXAMPLE: INSTALLING UTILITIES ON THE SYSTEM

This example shows how to get the Intel linker, locator, and editor onto
your system disk. These utilities are available from Intel as part of
the product iRMX 860. Assume for this example that you have inserted a
copy of the iRMX 860 diskette into a second flexible disk drive.

Figure 2-7 shows how to attach the drive and get a directory listing of
the files on the iRMX 860 diskette. The example following this one,
Figure 2-8, shows how to copy the utilities that you want onto the system
diskette •

• ATTACHDEVICE
AFD 1 , attached
• DIR :F1:
14 FEB 82
DIRECTORY OF
ed
loc86.011
cref86.011

AFD1 AS F1
as :F1:, id = 1

09:15:19
:F1:

link86
lib86.011
oh86.011

ON VOLUME 144790
locB6
ed.011

lib86
cref86

first command

second command

linkB6.011
ohB6

Figure 2-7. Installing Intel Utilities on System Disk

first command This command allows the Operating System to use a
second disk drive; it tells the system that you
will be using the device AFDI, and that it will
be referred to in subsequent commands as :Fl:.
The physical name (AFD1) is one of many names
specified when the iRMX 86 PC System was
configured by Intel. See the description of
ATTACHDEVICE in Chapter 3 for a complete list of
these physical names.

second command

Because the device was attached by user ID 1
(confirmed on the line following the command), it
can be detached only by user ID 1 or by the
system manager (see the DETACHDEVICE command in
Chapter 3).

This command shows contents of the diskette
except for the invisible files).

The next example screen, Figure 2-8, continues this sequence by copying
selected utilities to the :UTILS: directory on the system disk.

2-16

USING THE iRMX- 86 PC SYSTEM

- COpy :Fl:* TO :UTILS:* QUERY
:F1 :ed copy TO :UTILS:ed Y

third command

:F1 :ed copied TO :UTILS:ed
:F1 :ed.011 copy TO :UTILS:ed.011? Y
:F1:ed.011 copied TO :UTILS:ed.011
:F1 :link86 copy TO :UTILS:link86? Y
:F1 :link86 copied TO :UTILS:link86
:F1:loc86 copy TO :UTILS:loc86? Y
:F1 :loc86 copied TO :UTILS: loc86
:F1 :lib86 copy TO :UTILS:lib86? N
:F1 :link86. 011 copy TO :UTILS:link86.011? Y
:F1 :link86.011 copied TO :UTILS:link86.011
:F1 :loc86.011 copy TO :UTILS:loc86.011? Y
:F1 :loc86.011 copied TO :.tJTILS:loc86.011
:F1 :cref86 copy TO :UTILS:cref86? E
- DIR :UTILS: ; fourth command
14 FEB, 8'2 09:17:17
DIRECTORY OF : UTILS: ON VOLUME 145122

ed ed.011 Iink86.011 loc86.011 link86
loc86

Figure 2-8. Copying Utilities to the System Disk

third command This command uses two features that haven't been
shown yet: wild cards, and copying with the QUERY
parameter.

fourth command

Wild Cards: The asterisks (*) in the inpath name
and outpath name are wildcards. A later section
explains wildcards in detail. Ignoring the
effect of the QUERY parameter, the command says
to, "Copy all files and directories from :F1:
into the :UTILS: directory and give the copied
files the same names."

Effect of QUERY: The QUERY parameter tells the
Human Interface to prompt before copying a file.
For example, the first prompt asks if the
operator wishes to transfer the editor to the
system disk, and the operator replied Y (Yes).
The Operating System copies the file, confirms
it, and then asks if the operator wants the file
link86.011. The process continues. The file
lib86 is passed over (N = No). When the operator
replies with E (meaning Exit), the copy command
terminates without copying any more files.

The DIRectory listing shows that the files are in
the :UTILS: directory. The editor, for example,
is : UTILS : ed.

2-17

USING THE iRMX- 86 PC SYSTEM

MORE ABOUT iRMX- 86 COMMANDS

This section contains additional information about using iRMX 86
commands, and contains the following three sub-sections:

• ORDER OF DIRECTORY SEARCH BY THE HUMAN INTERFACE. Commands are
simply program files, and the Human Interface will search certain
directories to find the command.

• LINE EDITING CONTROLS. These are special characters that you can
enter at the terminal to correct typing errors, and to control
how the screen displays information.

• WILDCARDS. You can specify any of a group of files having
similar names by means of special characters called wildcards.

• COMMAND LINE OPTIONS. When we described the general format of
iRMX 86 commands, we did not tell you how to continue commands
beyond one line, or how to designate that a special character can
be used in a command line. You can do both.

EXAMPLE: COPYING THE UDI LIBRARIES TO THE SYSTEM DISK

You receive two diskettes with the iRMX 86 PC product: the System
Diskette and an Include File Diskette. To use the UDr system calls, you
will need two types of files from the Include File Diskette. You need
one include file for each UDr system call that you use. And you need
three interface libraries. Both types of files are described in the
beginning of Chapter 4.

The Include File Diskette also contains include files and interface
libraries for all iRMX 86 subsystems (Nucleus, Basic I/O System, Extended
I/O System, Application Loader, and Human Interface).

If you use iRMX 86 system calls other than the UDI calls, you lose some
of the advantages of the UDI. And of course you need the reference
manuals that describe the system calls. The manuals are described in
Chapter 7. The system calls for iRMX 86 subsystems are listed in
Appendix B.

Figure 2-9 shows how to transfer the UDr files from the Include File
Diskette to the system disk. The steps shown in the example are:

1. Creating a directory on the system disk for the UD1 files.

2. Copying the include files to the system disk.

3. Copying the interface libraries to the system disk.

4. Displaying the contents of a typical include file (for the UDr
system call DQ$ALLOCATE.

2-18

USING THE iRMl- 86 PC SYSTEM

• CREATEDIR UDI
UDI, directory created
- COpy :Fl:U*. * TO UDlI*. *
:Fl :ualloc.ext copied to UDlIuaUoc.ext
:Fl:uexcep.lit copied to UOl/uexcep.lit

:Fl :uwrite.ext copied to UOl/uwrite.ext

first command

2nd command

- C.OPY :F1:SMALL.LlB, :F1:COMPAC.UB, :F1:LARGE.LlB "
TO UDI/SMALL.LlB, UDIICOMPAC.LlB "

** UDIlLARGE.LlB • ; 3nt (three lines)
:Fl :SMALL. LIB copied TO UOI/SMALL.LlB
:Fl:COMPAC.LlB copied TO UDl/COMPAC.LlB
:F1 :LARGE. LIB copied TO UDi/LARGE.LlB
- COpy UDl/uafloc.ext 4th command
$SAVE NOLIST

dQSallocate: PROCEDURE{ size, except$ptr) TOKEN EXTERNAL;

DECLARE size WORD.
except$ptr

END dQ$allocate;
$RESTORE

POINTER;

UDllualloc.ext copied TO :CO:

Figure 2-9. Transferring UDI files to System Disk

first command This creates a directory on the system disk for
the UDI files. Because the default directory is
still :SD:, the directory pathname is :SD:UDI.

2nd command Because of the wild cards asterisks, this single
command transfers every UDI include file to the
system disk. Because of how many files are
transferred (one per UDI system call), the figure
indicates most of the transfer with vertical dots.

3rd command This command transfers the three UDI interface
libraries, and also shows how you can continue
commands beyond one" line by typing an ampersand
before the RETURN. This and other line editing
features are described in a later section.

4th command A typical include file for DQ$ALLOCATE -- is
displayed on the screen. Note that TO :CO:
doesn't have to be typed, it is the default
preposition and output pathname for COPY.

2-19

USING THE 1RMX- 86 PC SYSTEM

ORDER OF DIRECTORY SEARCH BY THE HUMAN INTERFACE

~~en you enter a command name, you can enter the complete pathname of the
command or you can enter just the last component of the pathname.

• If you enter the complete pathname of the command (that is, if
you include a logical name as the prefix portion of the
pathname), the Operating System searches only the device and
directory you specify for the command. If it cannot find the
command there, it returns an error message.

• If you enter only.the last component of the pathname (such as
COPY instead of :Fl:SYSTEM/COPY), the Operating System
automatically searches certain directories for the command. It
does not return art error message unless it has searched each of
the directories without finding the command file. The Operating
System searches the following directories, in order, for commands:

: $:
:PROG:
: SYSTEM:
: LANG:
:UTILS:

When writing your own commands, you can take advantage of the order in
which the Operating System searches directories. For example, suppose
you write your own copy command, one that provides more or different
functions than the Human Interface COpy command. If you want to invoke
your program whenever you type COPY, you can place your file called COpy
in your default directory (:$:). Because the Operating System searches
the default directory before searching the : SYSTEM: directory (which
contains the Human Interface COpy command), it will invoke your copy
program.

If you still want to be able to invoke the Human Interface COpy command,
you can do so by entering: : SYSTEM: COPY.

EXAMPLE: CREATING A PRIVATE DISK

The following example, Figure 2-10, shows how to prepare a disk that one
programmer uses for developing programs. The example shows how to:

1. Format the disk (we assume it is a flexible diskette. and use the
default FORMAT parameters).

2. Create a directory on the disk named PROG.

3. Create a directory within the new PROG directory named TEST.

4. Make the directory PROG the default directory.

5. Use the DrR command to confirm that everything worked.

2-20

USING THE iRMX~ 86 PC SYSTEM

- FORMAT :F1:mydisk
volume (mydisk) will be

granularity
interleave

formatted
256

5

; first command
as a NAMED volume
sides 1
density
disk size

double
standard files

extensionsize
volume size

50
3

497 K

(S")

volume formatted
• CREATEDIR :Fl:PROG
PROG. directory created

2nd command

• CREATEDIR :F1:PROGITEST 3rd command
TEST. directory created
• ATTACH FILE :F1:PROG AS :$: 4th command
:F1:PROG. attached as :$:
• DIR 5th command
14 FEB S2 09:24:01
DIRECTORY OF $ ON VOLUME mydisk
TEST

first command

second command

third command

fourth command

fifth command

Figure 2-10. Creating A Private Disk

This shows how to format a diskette. Remember
that the second flexible disk drive on the system
was attached as :Fl: in a previous example.

When you format a disk or other mass storage
device, the system destroys any data that was on
the device and writes onto the disk information
needed by the iRMX 86 file system, including the
root directory and three invisible "bitmap" files
that were shown in a previous DIR example. In
Chapter 6, we show how to format flexible
diskettes and Winchester disks.

The system displays a message describing the
format characteristics. This example uses the
default values (like interleave = 5), but you can
specify other values by means of parameters to
the FORMAT command.

This command creates a directory named PROG on
the newly formatted disk.

This creates a directory named TEST in the new
directory PROG.

The PROG directory is attached as this user ID's
default directory.

A directory listing confirms that the PROG
directory is the default directory, and that it
contains the directory TEST.

2-21

USING THE iRMX- 86 PC SYSTEM

LINE EDITING CONTROLS

The examples shown in this chapter imply that no typing errors.occur.
This is unrealistic, and the iRMX 86 Operating System provides extensive
line editing controls to allowing you to correct typing mistakes. Line
editing controls also include a variety of other capabilities, including
control over how the system sends output to your console terminal. These
functions work nearly any time you are entering text at a terminal (for
example, while using the Intel editor).

This section describes how to use each control feature. The best way to
understand line editing controls is to try them at a terminal.

Controlling Input to a Terminal

You can use several characters to control and edit terminal input. Some
of these characters correspond to single keys on your terminal (such as
carriage return or rubout). For others, called control characters, you
must press the CTRL key, and while holding it down, also press an
alphabetical key. This manual designates control characters as follows:

CTRL/character

The editing and control characters for terminal input are:

CARRIAGE RETURN
or

LINE FEED

RUB OUT

CTRL/r

CTRL/u

CTRL/x

Terminates the current line and positions the cursor
at the beginning of the next line. Entering either
of these characters adds a carriage return/line
feed pair to the input line.

Deletes (or rubs out) the previous character in the
input line. Each RUBOUT removes a character from
the screen and moves the cursor back to that
character position.

If the current input line is not empty, this
character reprints the line with editing already
performed. This enables you to see the effects of
the editing characters entered since the most
recent line terminator. If the current line is
empty, this character reprints the previous line,
up to the point of the line terminator. Additional
CTRL/r characters display previous lines until
there are no more lines that have been saved.
Subsequent CTRL/r characters display the last line
found. Trying the feature is the best way to
understand how it works.

Discards the current line and the entire contents
of the type-ahead buffer.

Discards the current input line. This character
echoes the •. , •. character, followed by a carriage
return/line feed, at the terminal.

2-22

USING THE iRMX~ 86 PC SYSTEM

Controlling Output to a Terminal

Output to a terminal operates in one of four modes. You can switch the
current output mode dynamically to any of the other output modes by
entering output control characters. The output modes and their
characteristics are as follows:

Normal

Stopped

Scrolling

Discarding

The Terminal Support Code accepts output from the
application system and immediately passes the output
to the terminal for display.

The Terminal Support Code accepts output from the
application system, but it queues the output rather
than immediately passing it to the terminal •

•
The Terminal Support Code accepts output from the
application system, and it queues the output as in
the stopped mode. However, rather than completely
preventing output from reaching the terminal, it
sends a predetermined number of lines (called the
scrolling count) to the terminal whenever the
operator enters a control character at the terminal.

The Terminal Support Code discards output from the
application system without displaying or queuing the
output.

The following control characters, when entered at the terminal, change
the output mode for the terminal.

CTRL/o

CTRL/q

CTRL/s

Places the terminal in discarding mode if the
terminal is in a mode other than discarding mode. If
the terminal is already in discarding mode, the
CTRL/o character returns the terminal to its previous
output mode.

Resumes previous output mode. If you enter this
character after stopping output with the CTRL/s
character, output continues in the same manner as
before you entered the CTRL/s (that is, if your
terminal was in scrolling mode before you entered
CTRL/s, output resumes in scrolling mode). Entering
CTRL/q at any other time places your terminal in
normal mode (that is, all output is displayed at the
terminal without waiting for permission to continue).
Therefore, you can use CTRL/q to reverse the effect
of a CTRL/w and get your terminal out of scrolling
mode.

Places the terminal in stopped mode (stops output).
You can resume output without loss of data by
entering the CTRL/q character. If the terminal is in
discarding mode (as a result of a CTRL/o character),
the CTRL/s character has no effect on output.

2-23

CTRL/t

CTRL/w

USING THE iRMX- 86 PC SYSTEM

Places the terminal in scrolling mode and sets the
scroll count to one. This means that you must enter
another CTRL/t character after each displayed line in
order to continue the display.

Places the terminal in scrolling mode. In this mode,
the terminal displays output several lines at a time
(usually, enough lines to fill the screen) and then
waits for user input to continue. When you enter
another CTRL/w character, the terminal displays the
next screen of information. The scrolling count is
selectable; refer to the iRMX 86 BASIC I/O SYSTEM
REFERENCE MANUAL f.or more information •

•
Entering the CTRL/w character while the terminal is
already in scrolling mode increments the scrolling
count by the original scrolling count value.
Therefore, you can use CTRL/w to increase the number
of lines the terminal displays before stopping.
Entering an input line resets the scroll count to its
original value.

The following two control characters can affect output to the terminal:

CTRL/c

CTRL/z

Type-Ahead

Deletes the type-ahead buffer and causes the
Operating System to abort the currently-executing
program. If you enter a Human Interface command to
initiate a program, you can enter CTRL/c to stop it.

If typed in response to the Human Interface prompt,
this will re-initialize the interactive job for the
terminal (as described in Chapter 2, in the section
SETTING THE DATE AND TIME).

Sometimes a person will type faster than the iRMX 86 Operating System can
process the input. Because of type-ahead, commands and data typed ahead
of processing will not be lost. (Characters typed ahead are not echoed
on the screen.) The Operating System starts processing the first line,
and saves additional lines in a type-ahead buffer. It reads subsequent
lines from the type ahead buffer. If the type-ahead buffer becomes full,
the Terminal Support Code sounds the terminal bell.

Escape Sequences

The control characters listed are appropriate for all but the most
unusual applications. But if you wish to re-define any of these
characters (for example, to set the number of lines that the screen
scrolls), you can do so with escape sequences. Refer to the iRMX 86
BASIC I/O SYSTEM REFERENCE MANUAL for detailed information~

2-24

USING THE i&~- 86 PC SYSTEM

WILD CARDS

Wild cards provide a shorthand notation for specifying several files in a
single reference when entering commands. You can use either of two
special wild card characters in the last component of a pathname to
replace some or all characters in that component.

The wild card characters are:

? The question mark matches any single character. The Human
Interface allows any character to appear in that character
position. It selects every file that meets this
requirement. For example, the name "FILE?" could imply all
of the following files:

*

FILEI FILE2 FILEA

The asterisk matches any number of characters (including zero
characters). The Human Interface allows any number. of
characters to appear in that character position. It selects
every file that meets this requirement. For example, the
name "FILE*" could imply all of the following files:

FILE!
FILE.OBJ
FILE
FILECHANGE

You can use multiple wild cards in a single pathname. For example, the
name:

?PIF?*

matches every file whose second through fourth characters are "PIF" and
whose sixth character is a period. These files could include all of the
folluwing names (or more):

RPIFC.LIB
EPIFL.TXT
HPIFC.

You can use wild cards in both input pathnames (files that commands read
for information) and output pathnames (files into which commands write
information). 'For example, in the command:

COPY A* TO B*

the A* represents the input pathname and B* represents the output
pathname. The Human Interface searches the appropriate directory for all
files that begin with the "A" character. Then it copies each file to a
file of the same name, but beginning with the "B" character.

Figures 2-8 and 2-9 show examples of using wild cards to copy multiple
files.

2-25

USING THE iRMX- 86 PC SYSTEM

Be aware t when using wild cards t that:

• Wild cards are valid in the last component of the pathname only.
Therefore t :FI:SYSTEM/APPI/FILE* is a valid pathname t but
:FI:SYSTEM/APP*/FILEI is not valid.

• You can negate the meaning of a wild card character by enclosing
it in quotes, either single (') or double C'). See LINE EDITING
earlier in this section.

• When you specify input and output pathnames in commands, you can
specify lists of pathnames t separated by commas. For example:

COPY A,B,C TO D,E,F

copies A to D, B to E, and C to F. If you use a wild cards in
anyone of the output pathnames, you must use the same wild cards
in the same order in the corresponding input pathname. The term
"same order" means that if you use both the "*" and the "?"
characters, their ordering must be the ~ame in both the input and
output pathnames. For example, the following is valid:

COpy A*B?C* TO *DE?FGH*I

However, the following is not valid because the wild cards are
out of order:

COpy A*B?C* TO *DE*FGH?I

• If you use wild cards in an input pathname, you can omit all wild
cards from the corresponding output pathname to cause the Human
Interface to perform file concatenation. For example, suppose a
directory contains files AI, BI, and Cl. The following command
is valid:

COpy *1 TO X

It copies files in the following manner:

Al TO X
BI AFTER X
CI AFTER X

• The "*" character matches as close to the end of the pathname as
possible. For example, suppose the directory contains the file
"ABXCDEFXGH", and you enter the command:

COpy *X* TO *1*

This command copies:

ABXCDEFXGH TO ABXCDEFIGH

The first asterisk matches the characters "ABXCDEF", and the
second asterisk matches the characters "GH".

2-26

USING THE iRMX~ 86 PC SYSTEM

COMMAND LINE OPTIONS

In entering commands from a terminal, you may occasionally need to know
about the following command line options.

Commands That Require More Than One Line

An ampersand character (&) indicates that the command continues on the
next line. When you include the ampersand character, the Human Interface
displays two asterisks (**) on the next line to prompt for the
continuation line. All characters appearing after the continuation mark
but before the line terminator are interpreted as comments. After you
enter the line terminator vithout a preceding ampersand character, the
invoked command receives the entire command string as a single command.

Although the Human Interface places no restriction on the number of
characters in a command, each terminal line can have a maximum of 255
characters, including any punctuation, embedded blanks, continuation
mark, non-executable comments, and carriage return. If your command
requires more characters, use continuation lines. Within available
memory limits, you can use as many continuation lines for a given command
as you desire.

Quoting Characters in a Command

Two single-quote (') or double-quote (tl) characters remove the semantics
of special characters they surround. For example, if you surround an
ampersand character (&) with single quotes, the ampersand is not
recognized as a continuation character. The same holds for other
characters such as asterisk (*), question mark (?), equals (=), semicolon
(;), and others. The only special characters not affected by the quoting
characters are the pathname separators (/ and A), semicolon (:), and
dollar sign ($). Although you can use either single quotes or double
quotes as quoting characters, you must use the same quoting character at
the beginning and at the end of your quoted string. To include the
quoting character inside a quoted string, you can either specify the
character twice, or use the other quoting character. For example:

'can"t' or "can't"

Prepositions and Path Lists

Earlier we showed the general form of iRMX 86 commands:

command-name inpath-list preposition outpath-list parameters

This section contains more information about prepositions, and about
inpath-lists and outpath-lists.

2-27

USING THE iRMX- 86 PC SYSTEM

PREPOSITIONS. Preposition parameters in a command line tell the command
how you want it to process the output file or files. The Human Interface
commands usually provide three options in the choice of a preposition:
TO, OVER, and AFTER. The preposition AS is also available for use in the
ATTACHDEVICE and ATTACHFILE commands. The TO preposition and :CO:
(console screen) will be used by default if you do not specify a
preposition and an output file.

The prepositions have the following meaning:

TO Causes the command to send the processed output to new files;
that is, to files that do not already exist in the given
directory. If a listed output file already exists, the
command displays the following query at the console screen:

OVER

AFTER

(pathname), already exists, OVERWRITE?

Enter a Y or y if you wish to write over the existing file.
Enter any other character if you do not wish the file to be
overwritten. In the latter case, the command does not
process the corresponding input file but rather goes to the
next input file in the command line. Commands process input
files and write to output files on a one-for-one basis. For
example:

COpy A,B TO C,D

copies file A to file C and file B to file D.

Causes the command to write your input files to the output
files in sequence, destroying any information currently
contained in the output files. It creates new output files
if they do not exist already. For example:

COpy SAMPl,SAMP2 OVER OUTl,OUT2

copies the data from file SAMPI over the present contents of
file OUTI, and copies the data of S~~2 over the contents of
file OUT2.

Causes the command to append the contents of one or more
files to the end of one or more new or existing files (file
concatenation). For example:

COpy INI,IN2 AFTER DESTl,DEST2

appends the contents of file INl to the the end of file
DESTl, and appends the contents of IN2 to the end of DEST2.

AS A special preposition used with the ATTACHDEVICE and
ATTACHFILE commands. When you use the AS preposition, the
Operating System does not assume that the command contains
input pathnames and output pathnames. Rather, it sees the
parameters as entities that it must associate (for example,
ATTACHFILE associates a pathname with a logical name).

2-28

USING THE iRMX- 86 PC SYSTEM

Inpath-List and Outpath-List

An inpath-list specifies the files on which a command is to operate. An
outpath-list defines the destination or destinations of the processed
output. Each inpath-list or outpath-list consists of a pathname (or
logical name) or list of pathnames. If you specify multiple pathnames,
you must separate the individual pathnames with commas. Embedded blanks
between pathnames are optional. You can also use wild cards to indicate
multiple pathnames (refer to the "Wild Cards" section of this chapter).

Usually when you specify multiple pathnames. each pathname in the
inpath-list has a corresponding pathname in the outpath-list. For
example, the command:

COpy A, B TO C, D

copies file A to file C and also copies file B to file D. Therefore, A
and C are corresponding pathnames, and so are Band D. However, there
are some instances when the number of input pathnames you enter differs
from the number of output pathnames. The validity of the operation
depends on whether the pathname lists contain single pathnames, lists of
pathnames, a wild-card pathname, or lists of wild-card pathnames. Table
2-1 lists the possibilities and describes the Human Interface's action in
each instance. The following sections discuss the Human Interface's
actions in more detail.

Table 2-1. Input Pathname and Output Pathname Combinations

Human Interface
Inpath-list Outpath-list Action

single pathname single pathname one-far-one match
single pathname list of pathnames error
single pathname wild-card pathname error
single pathname list of wild cards error

list of pathnames single pathname concatenate
list of pathnames list of pathnames one-far-one match
list of pathnames wild-card pathname error
list of pathnames list of wild cards error

wild-card pathname single pathname concatenate
wild-card pathname list of pathnames error
wild-card pathname wild-card pathname one-far-one match
wild-card pathname list of wild cards error

list of wild cards single pathname concatenate
list of wild cards list of pathnames concatenate
list of wild cards wild-card pathname concatenate
list of wild cards list of wild cards one-far-one match

2-29

USING THE iRMX'OI 86 PC SYSTE~1

ONE-FOR-ONE MATCH. The combinations in Table 2-1 that are marked
"one-for-one match" are those in which each element in the inpath-list is
matched with an element of the outpath-list. An example of this is the
command:

COpy A*, B* TO C*, D*

In this case, the Human Interface copies all files beginning with the
character "A" to corresponding files beginning with the character "C".
When it finishes this operation, it advances past the comma to the next
set of pathnames (copies all files beginning with "B" to corresponding
files beginning with "D").

CONCATENATE. The combinations in Table 2-1 that are marked "concatenate"
are those in which there are mUltiple input pathnames that correspond to
a single output pathname": In this situation, the Operating System
automatically appends the remaining input files to the end of the
specified output file, regardless of the preposition you specify.

This allows you to combine one-for-one file operations (as in TO or OVER
preposition) with file concatenation (as in the AFTER preposition) in a
single command, and thus avoid entering an extra command to perform a
separate concatenation operation. For example:

COpy A,B,C TO D

copies file "A" to file "D" and appends files "B" and "C" to the end of
file ·'D. It

Notice that this concatenation occurs only when there are multiple
elements in the inpath-list that correspond to a single element of the
outpath-list. This means that the following commands are invalid:

COpy A, B, C TO D, E INVALID COMMAND

COpy A*, B*, C* TO D*, E* INVALID COMMAND

ERROR CONDITIONS. The combinations in Table 2-1 that are marked "error"
indicate invalid operations. For these combinations, the Human Interface
returns an error message without performing the requested operation.

2-30

CHAPTER 3. HUMAN INTERFACE COMMANDS

The commands described in this chapter are supplied by Intel with the
Preconfigured iRMX 86 Operating System. You can use these commands to
perform a number of highly convenient file management and system
functions. When you invoke a command,

1. You type the command name and parameters (e.g., "COpy FIRST TO
SECOND").

2. The Operating System loads the appropriate command file (for
example, :SD:SYSTEM!COPY) and executes the program the way that
you specify in the command line.

The bulk of this chapter contains descri.ptions, arranged alphabetically,
of each Human Interface command.

If you are a new user of the Human Interface, we suggest that you review
the information on iRMX 86 commands and files in Chapter 2.

Human Interface commands are program files in the SYSTEM directory. When
you type a command on the terminal, the Operating System looks for the
file in a series of directories. The directories, listed in the order
they are searched by the Human Interface~ are:

:$:
:PROG:
: SYSTEM:
:LANG:
:UTILS:

You can place commands in any directory that the Human Interface
automatically searches, and invoke the command with" its name. You can
also invoke commands that are not in directories searched by the Human
Interface.

HUMAN INTERFACE COMMAND DICTIONARY

The Human Interface Command Dictionary, Table 3-1, briefly describes each
command and gives its page number. The Dictionary divides the commands
into functional groups:

File management commands

Volume management commands

Multi-access commands

General utility commands

3-1

Command

ATTACHFILE

COpy

CREATEDIR

DELETE

DETACHFILE

DIR

DOWN COpy

PERMIT

RENAME

UPCOpy

ATTACHDEVICE

BACKUP

DETACHDEVICE

DISKVERIFY

HUMAN INTERFACE COMMANDS

Table 3-1. Human Interface Command Dictionary

Synopsis Page

File Management Commands

Associates a logical name with an existing file. 3-13

Creates new data files, or copies files to
other pathnames.

Creates one or more new directories.

Deletes data files and empty directories from a
volume on secondary s'torage.

Removes the association of a logical name with
a file.

Lists a directory's filenames (and optionally,
file attributes).

Copies files and directories from an iRMX 86
volume mounted on a secondary storage device to
an ISIS-II secondary storage device.

Grants or rescinds user access to a file.

Renames files or directories.

Copies files and directories from an ISIS-II
secondary storage device to an iRMX 86 volume
mounted on a secondary storage device.

Volume Management Commands

Attaches a new physical device to the system
and associates its physical name with a logical
name..

Copies named files to a backup volume.

Removes a physical device from system use and
deletes its logical name.

Verifies the data structures of named and
physical volumes.

3-2

3-24

3-28

3-33

3-38

3-40

3-53

3-69

3-74

3-92

3-7

3-16

3-35

3-48

HUMAN INTERFACE COMMANDS

Table 3-1. Human Interface Command Dictionary (continued)

Command

FORMAT

RESTORE

INITSTATUS

JOBDELETE

LOCK

SUPER

DATE

DEBUG

SUBMIT

TIME

VERSION

Synopsis

Volume Management Commands (continued) .

Formats an iRMX 86 volume.

Copies files from a backup volume to a named
volume.

Multi-Access Commands

Displays the initialization status of Human
Interface terminals.

Deletes a running interactive job.

Prevents the Human Interface from automatically
creating an interactive job after the job has
been deleted.

Changes the operator's user ID into that of
the system manager (user ID 0) and grants the
ability to change to other user IDs.

General Utility Commands

Sets or resets the system date, or displays the
current date and time.

Transfers control to the iSBC 957B package to
debug an iRMX 86 application program.

Reads, loads, and executes a string of commands

Page

3-56

3-77

3-63

3-65

3-67

3-87

3-29

3-31

from secondary storage instead of the keyboard. 3-83

Sets or resets the system clock, or displays the
current system date and time. 3-90

Displays the version number of command programs. 3-95

3-3

HUMAN INTERFACE COMMANDS

ERROR MESSAGES

Each command can generate a number of error messages which indicate
errors in the way you specified the command. The messages that apply to
a specific command are listed with that command. However, the following
are general error messages that can appear with many of the commands:

• command not found .
There is no file whose pathname is the same as the command name
you specified, nor can the Human Interface find the file in any
of the directories it automatically searches.

• <logical name), device does not belong to you

The device you specified was originally attached by a user other
than WORLD or you.

• <pathname), file does not exist

The pathname you specified does not represent an existing file.

• <pathname), invalid file type

You specified a data file for an operation that required a
directory, or vice versa.

• <logical name), invalid logical name

The logical name you specified contains unmatched colons, is
longer than 12 characters, or contains invalid characters.

• <pathname), invalid pathname

The pathname you specified contains invalid characters or a
component of the pathname (other than the last one) does not
exist or does not represent a directory.

• <logical name), is not a device connection

The logical name you specified does not represent a connection to
a physical device.

• <logical name), logical name does not exist

The logical name you specified does not exist.

3-4

HUMAN INTERFACE COMMANDS

• parameters required

The command you specified cannot be entered without parameters.

• program version incompatible with system

The command and the Operating System are not compatible. The
command expects'to obtain information from internal tables that
are not present. Therefore the command cannot run successfully.

• <control>~ unrecognized control

The control you entered is not valid for the specified command.

• <exception value> : <exception mnemonic> while loading command

The Operating System encountered an exceptional condition while
attempting to load the command into memory from secondary
storage. The message lists the exception code encountered.

• <exception value> : <exception mnemonic>

An operational error occurred during the execution of the
command. The <exception value> and <exception mnemonic> portions
of the message indicate the exception code encountered.

• <parameter>~ <exception value> : <exception mnemonic>

The command encountered an exceptional condition while attempting
to process the <parameter> portion of the command. The
<exception value> and <exception mnemonic> portions of the
message indicate the exception code encountered.

COMMAND SYNTAX SCHEMATICS

The syntax for each command described in this chapter is presented by
means of a "railroad track" schematic~ with syntactic elements scattered
along the track. Your entrance to any given schematic is always f~om
left to right, beginning with some command name entry.

Elements shown in uppercase characters must be typed in a command line
exactly as shown in the command schematics except that you can type them
either in uppercase or lowercase characters; the Human Interface makes no
distinction between cases in alphabetic characters. Syntactic elements
shown in lowercase characters are generic terms, which means that you
supply the specific item, such as the pathname for a file.

3-5

HUMAN INTERFACE COMMANDS

The vertical dotted line separates the position-dependent parameters from
those that are position-independent. Parameters to the left of the
dotted line must be entered in the order listed (from left to right).
Parameters to the right of the dotted line can be entered in any order
(as long as they obey the rest of the syntax).

The example that follows shows all possible paths through a railroad
track schematic. Notic~ that the main track goes through required
elements in a given command.

"Railroad sidings" go through optional parameter elements. In some
cases, you have a choice of going through one of several possible sidings
before returning to the main track. In still other cases, the main track
itself diverges into two separate tracks, which means that you must
select one parameter or the other but not both.

(START)

x-224

In this example:

• A is a required element. It is position-dependent; it must be
entered first.

• Either B or C is required but not both. These elements are also
position-dependent. Whichever element you enter must follow A
immediately.

• D, E, or F are all optional but only one can be selected. These
are position-independent elements. If you select one of these
elements, you can enter it before or after G.

• G is required. It is a position-independent parameter. You can
enter it before or after D, E, or F.

3-6

ATTACHDEVICE-

This command attaches a physical device to the Operating System,
associates a logical name with the device, and makes the logical name
accessible to all users. The logical name is used in all other commands
to refer to the devi~e. The format of the command is as follows:

INPUT PARAMETERS

physical name

AS

:logical name:

NAMED

PHYSICAL

Physical device name of the device to be attached
to the system. This name must be one of the names
in Table 3-2.

Preposition; required for the command.

A 1- to 12-character name, that represents the
logical name to be associated with the device.
Colons surrounding the logical name are optional;
however, if you use colons, you must use matching
colons. After ATTACHDEVICE attaches and catalogs
the device, any command you enter or program code
you run must specify the logical name in order to
access the device

Specifies that the volume mounted on the device is
already formatted for NAMED files. Examples of
volumes that can contain named files are diskettes
or hard disk platters. If neither NAMED nor
PHYSICAL are specified, NAMED is the default. See
the FORMAT command in this chapter for a further
description of NAMED files.

Specifies that the volume mounted on the logical
device is considered to be a single, large file.
Examples include line printers and terminals. See
the FORMAT command in this chapter for a further
description of PHYSICAL volumes.

3-7

x-192

WORLD

DESCRIPTION

Specifies that user ID WORLD (65535 decimal) is the
owner of the device. This implies that any user can
detach the device. If you omit this parameter, your
user ID is listed as the owner of the device. In this
case, only you and the system manager can detach the
device.

ATTACHDEVICE attaches a device to the system and associates a logical
name for the device. The logical name is the means by which all users
can access the device.

Devices must have their characteristics defined at configuration time
before they can be attached with the ATTACHDEVICE command. Table 3-2
lists the physical device names available for the Preconfigured iRMX 86
Operating System.

One frequent use of the ATTACHDEVICE command is to attach a new device,
such as a new disk drive or a line printer, without having to reconfigure
portions of the Operating System. (See the DETACHDEVICE command in this
chapter for a description of how to detach a device from the system
without reconfiguri.ng.)

Unless you have a user ID of WORLD (65535) or specify the WORLD
parameter, once you attach a device, only you and the system manager can
detach the device. This prevents users from detaching devices belonging
to other users and prevents you from accidentally detaching system
volumes. However, if you have a user ID of WORLD or specify the WORLD
parameter, any device that you attach can be detached by any other user.
Refer to the DETACHDEVICE command for more information.

When the device attachment is completed, the ATTACHDEVICE command
displays the following message:

<physical name>, attached as <logical name>, id = <user id>

where <physical name> and <logical name> are as specified in the
ATTACHDEVICE command and <user id> is your user ID (or WORLD, if you
specify the WORLD parameter).

3-8

,A.'l-l'At.;.tllJl:!,;V 1C1:.::

Table 3-2. Physical Device Names for the iRMX- 86 PC System

8-inch Flexible Disk Drives

Device ISBC@ Device Unit Sides/ Bytes-per
Name Controller Type Number Density Sector

AFO 208 Shugart SA800 0 I/Single 128
AFI 208 Shugart SA800 1 I/Single 128
AFDO 208 Shugart SA800 0 I/Double 256
AFDI 208 Shugart SA800 1 I/Double 256
AFD2 208 Shugart SA800 2 I/Double 256
AFD3 208 Shugart SA800 3 l/Double 256
AFDDO 208 Shugart SA850 0 2/Double 256
AFDDI 208 Shugart SA850 1 2/Double 256
AFDXO 208 Shugart SA850 0 2/Double 1024
AFDXl 208 Shugart SA850 1 2/Double 1024
WFO 218 Shugart SA800 0 I/Single 128
WFI 218 Shugart SA800 1 I/Single 128
WFDO 218 Shugart SA800 0 I/Double 256
WFDI 218 Shugart SA800 1 I/Double 256
WFD2 218 Shugart SA800 2 I/Double 256
WFD3 218 Shugart SA800 3 I/Double 256
WFDDO 218 Shugart SA850 0 2/Double 256
WFDDI 218 Shugart SA850 1 2/Double 256
WFDXO 218 Shugart SA850 0 2/Double 1024
WFDXl 218 Shugart SA850 1 2/Double 1024

,~

5 1/4-inch Flexible Disk Drives

Device iSBc® Device Unit Sides/ Bytes-per
Name Controller Type Number Density Sector

AMFDO 208 Shugart SA450 0 2/Double 256
AMFDI 208 Shugart SA450 1 2/Double 256
AMFD2 208 Shugart SA450 2 2/Double 256
AMFD3 208 Shugart SA450 3 2/Double 256
AMFDDO 208 Shugart SA460 0 2/Double 512
AMFDDI 208 Shugart SA460 1 2/Double 512
WHO 0 218 Shugart SA450 0 2/Double 256
WMDI 218 Shugart SA450 1 2/Double 256
WMD2 218 Shugart SA450 2 2/Double 256
WMD3 218 Shugart SA450 3 2/Double 256
WMDDO 218 Shugart SA460 0 2/Double 512
WMDDI 218 Shugart SA460 1 2/Double 512

3-9

[TACHDEVICE

Table 3~2. Physical Device Names for the iRMX- 86 PC System
(continued)

Winchester Disk Drives

Device
Name

iSBC
Controller

Device
Type

Unit
Number

Sides/ Bytes-per
Density Sector

IWO
MWO
PWO
SWO

215
215
215
215

Priam 3450
Memorex 101
Pertec DaOOO
Shugart SA1002/1004

Other Devices

1024
1024
1024
1024

BB
STREAM
TO
T1-T4
LP

Byte bucket
Stream file device
Terminal connected to Single Board Computer
Terminals connected to iSBC 534 Ports, 0-3 respectively
Line Printer

ERROR MESSAGES

• <device name>, cannot be ATTACHED as <type>

The device specified by <device name> cannot support the type of
files specified by <type> (NAMED or PHYSICAL). ATTACHDEVICE does
not attach the device. For example, the NAMED option is not
valid for a device such as a line printer.

• <device name>, device already attached

The specified device has already been attached. ATTACHDEVICE
does not attach the device.

• <device name>, device does not exist

The physical device name you specified does not correspond to a
name the Operating System recognizes. That is, the name is not
in Table 3-2. ATTACHDEVICE does not attach the device.

3-10

ATrACHDEVICE

• <logical name>, logical name already exists

The specified logical name is already defined for some other
device, or for a file. ATTACHDEVICE does not attach the device.

• 0085: E$LIST, too many device names

You tried to attach more than one physical device with a single
ATTACHDEVICE command. ATTACHDEVICE does not attach a device.

• <logical name>, volume is not a NAMED volume

•

•

•

•

ATTACHDEVICE attempted to attach a devi.ce as a named device and
discovered a physical volume on the device. However"
ATTACHDEVICE does attach the device. You can use the device
after formatting the volume as a named volume or after inserting
a named volume in the device.

<logical name>, volume not formatted
<logical name>, <exception value> : <exception mnemonic>

ATTACHDEVICE attempted to attach a device as a named device and
encountered an I/O error while searching for the volume's root
directory. Thi.s usually indi.cates that the volume is not
fOI'1Jlatted. However, ATTACHDEVICE does attach the device.

<logical name>, volume not mounted

The specified device does not contain a volume. However,
ATTACHDEVICE does attach the device.

<exception value>
name

(exception mnemonic>, while collecting device

ATTACHDEVICE encountered an exceptional condition while searching
for the device name in the tables maintained by the Basic I/O
System. This message lists the resulting exception code.

<exception value>
logical name

<exception mnemonic>, while collecting

ATTACHDEVICE encountered an exceptional condition while
attempting to assign the logical name to the device. This
message lists the resulting exception code.

3-11

ATTACHFILE

This command allows you to associate a logical name with an existing
file. The format of this command is as follows:

INPUT PARAMETERS

x-193

pathname Pathname of the file to which the Human Interface
associates a logical name.

:logical name: 1- to 12-character name that represents the
logical name to be associated with the file.
Colons surrounding the logical name are optional;
however, if you use colons, you must use matching
colons. If you omit this parameter, the default
logical name is :$:.

If you enter the ATTACHFILE command without parameters, the default is:

ATTACHFlLE : HOME: AS : $:

DESCRIPTION

The ATTACHFILE command allows you to associate a logical name with an
existing file. After making this association, you can use the logical
name, instead of the entire pathname, to refer to the file.

When the attachment is complete, ATTACHFILE displays the following
message:

<pathname>, attached AS <logical name>

where <pathname> and <logical name> are as specified in the ATTACHFILE
command.

ATTACHFILE makes the association between a file and a logical name, and
makes the name known to any program that you run at your terminal. If
another file is known by the logical name, ATTACHFILE deletes the
previous association in order make the new one.

The logical name is known only within your interactive job. Therefore,
several users can specify the same logical name without affecting each
other.

3-12

If you specify a pathname for a file but omit the logical name,
ATTACHFILE attaches the file as :$:. This allows you to change your
default prefix. Changing your default prefix can be useful when you want
to manipulate files that reside in a directory other than the one
specified by your original default prefix. For example, suppose you have
a file that you normally refer to as:

:PROG:SOURCE/PLM/INTERRUPT/TEST.P86

You can change your default prefix with the command:

ATTACHFILE :PROG:SOURCE/PLM/INTERRUPT

Then, you can refer to the file as simply:

TEST.P86

When you finish using the files in directory :PROG:SOURCE/PLM/INTERRUPT,
you can return your default prefix to its original setting by entering:

ATTACHFILE

This is the same as entering:

ATTACHFILE :HOME: AS :$:

: HOME: is a logical name that refers to the same directory as your
original default prefix. Therefore, you can change your default prefix
as much as you like with ATTACHFILE and return to the original setting by
making reference to :HOME:. However, you cannot use ATTACHFILE to change
the meaning of :HOME:. (Also, you cannot use ATTACHFILE to change the
meaning of :CI: and :CO:.)

The logical name created with ATTACHFILE remains valid until one of the
following situations occur:

• A DETACHFILE command (described later in this chapter) dissolves
the association between file and logical name.

• The interactive session that specified the ATTACHFILE command
terminates processing. This occurs when a user, in response to
the Human Interface prompt, enters a Control-Z character to
reinitialize the interactive job. In this case, the Operating
System deletes the interactive job and then recreates it. This
restores the interactive job to its initial state.

• A task deletes the connection to the file via a Basic I/O System
or Extended I/O System call (refer to Appendix B for descriptions
of the iRMX 86 I/O Systems).

• A user forcibly detaches the volume containing the file via the
DETACHDEVICE command (described later in this chapter).

3-13

,TfACHFILE

ERROR MESSAGES

• <pathname>, list of logical names not allowed

You entered more than one logical name as input to ATTACHFILE.

• <logical name>, list of pathnames not allowed

You entered more than one pathname as input to ATTACHFILE.

• <logical name>, logical name not allowed

You attempted to attach a file using a logical name :HOME:, :CI:,
or :Co:. You cannot change the meaning of these logical names.

• <logical name>, not a file connection

The logical name you specified, <logical name>, is already
cataloged in object directory of the session and does not
represent a file.

• <logical name>, too many logical names

ATTACHFILE is unable to catalog the filers name in the object
directory because an internal Operating System table is full.

3-14

BACKUP

This command saves files from a named volume by copying them to a
physical volume which serves as a backup volume. Later, you can use the
RESTORE command (described later in this chapter) to retrieve these files
and copy them to named volumes.

The format of this command is as follows:

INPUT PARAMETERS

pathname

'dd month year'

Pathname of a file on the source volume. BACKUP
saves files from the branch of the file tree that
begins with the specified file. If you specify
the logical name of the device only, BACKUP saves
all files in the volume, beginning with the root
directory.

One form of the date parameter that BACKUP uses,
in conjunction with the time parameter, to
determine which files to save. BACKUP saves only
those files that have been modified since the
specified date and time. If you use this form of
the date parameter, you must enclose the date
parameter in single quotes. The individual fields
of this parameter are:

dd Two-digit number that specifies the day of
the month.

month Designation for the month. You can enter
the whole name (such as AUGUST) or enough
characters to distinguish one month from
another (for example, AU, to distinguish
AUGUST from APRIL). ,You can use this form
for specifying the month only when using
the tOdd month year tO format.

3-15

.-194

~CKUP

mm/dd/year

hh:mm:ss

QUERY

year Designation for the year. You can enter
this as a two- or four-digit number, as
follows:

entered year

o through 77
78 through 99
100 through 1977
1978 through 2099
2100 and up

actual year

2000 through 2077
1978 through 1999
error
1978 through 2099
error

If you omit the date parameter but specify the
time parameter, the date defaults to the current
system date. If you omit both the date and time
parameters, the date defaults to 1 JAN 78.

Alternate form of the date parameter. If you use
this form, you do not have to surround the
parameter with quotes. The individual fields of
this parameter are:

mm Numerical designation for the month (for
example: 1 represents January, 2
represents February, etc.). You can use
this form for specifying the month only
when using the "mm/dd/year" format.

dd Same as in the previous form of the date
parameter.

year Same as in the previous form of the date
parameter.

Time parameter that BACKUP uses, in conjunction
with the date parameter, to determine which files
to save. BACKUP saves only those files that have
been modified since the specified date and time.
The individual fields of this parameter are:

hh Hours specified as 0-24.

mm Minutes specified as 0-59.

ss Seconds specified as 0-59.

If you omit this parameter, the time defaults to
00:00:00.

Causes the Human Interface to prompt for
permission to save each file. The Human Interface
prompts with one of the following queries:

3-16

OUTPUT PARAMETER

:backup device:

DESCRIPTION

(pathname), BACKUP data file?

or

(pathname), BACKUP directory?

Enter one of the following responses to the query:

Entry

Y or y

E or e

R or r

Any other
character

Action

Save the file.

Exit from the BACKUP command.

Continue saving files without
further query.

If data file, do not save the
file; if directory file, do
not save the directory or any
file in that portion of the
directory tree. Query for
the next file, if any.

Logical name of the device to which BACKUP copies
the files.

BACKUP is a utility which saves named files on backup volumes, such as
diskettes. BACKUP saves the following information for each file:

• File name

• Access list, including owner

• Extension data

• File granularity

• Contents of the file

You can copy this information back to a named file by using the RESTORE
utility, described later in this chapter.

3-17

ACKUP

Before a volume can be used as a backup volume. the volume must be
formatted. Although BACKUP will accept both physical and named volumes.
it is recommended that you use freshly-formatted physical volumes or old
backup volumes for this purpose. BACKUP issues a message before
continuing if the backup volume you supply is anything other than a
freshly-formatted physical volume. When BACKUP copies files to the
backup volume. it overwrites any information that currently exists on the
volume.

In order for BACKUP to save files from a named volume. you must have read
access to the files and to the directories that contain them.

You can limit the files which BACKUP processes in the following ways:

• If you specify a complete directory name instead of just the
device's logical name in the invocation line. BACKUP limits its
processing to the specified directory and its subdirectories.

• If you specify the date and time parameters. BACKUP processes
only those files modified since the specified time.

• If you specify the QUERY parameter. BACKUP asks permission before
saving each file. If you deny permission for BACKUP to save a
data file. BACKUP skips the file and continues with the next
file. If you deny permission for BACKUP to save a directory
file. BACKUP skips the directory and all files contained in the
directory or its subdirectories.

When you enter the BACKUP command. BACKUP displays the following sign-on
message:

iRMX 86 DISK BACKUP UTILITY. Vx.y

where Vx.y is the version number of the utility. It then displays the
following message:

all files modified after <date>. <time> will be saved

where <date> and <time> are the values you specified in the date and time
parameters (or the defaults). Then BACKUP prompts you for a backup
volume.

Whenever BACKUP requires a new backup volume. it displays the following
message:

<backup device>. mount backup volume #<nO>. enter Y to continue:

where <backup device> indicates the logical name of the backup device and
<nn> the number of the requested volume. (BACKUP in some cases displays
additional information to indicate problems with the current volume.) In
response to this message. place a volume in the backup device and enter
one of the following:

3-18

Entry

Y, y, R or r

E or e

Any other
character

Action

Continue the backup process.

Exit from the BACKUP command.

Invalid entry; reprompt for entry.

BACKUP continues prompting for a backup volume until you supply one that
it can access.

If the backup volume you supply is not a freshly-formatted physical
volume, but one that BACKUP can access (such as a named volume, a
previously-used backup volume, or a physical volume containing data),
BACKUP informs you of this with one of the following messages:

or

or

<backup device>, not a physical volume, enter Y to overwrite:

<backup device>, backup volume #<nn>, <date>, <time>, enter Y to
overwrite:

<backup device>, named volume, <volume name>, enter Y to continue:

where <backup device> is the logical name of the backup device, <volume
name> is the volume name of the named volume, <nn> is the volume number
of the backup volume, and <date> and <time> are the date and time on
which the previous backup was performed. In response to these messages,
enter one of the following:

Entry

Y, y, R, or r

E or e

Any other
character

Action

Use the volume as a backup volume, overwriting the
information currently stored on the volume.

Exit from the BACKUP command.

Reprompt for another volume.

As BACKUP saves each file in the source volume, it displays one of the
following message at your console output device (:CO:):

<pathname>, saved

or

<pathname>, directory saved

3-19

.BACKUP

ACKUP

When the backup process is complete, BACKUP displays the number of data
files saved, as follows:

files saved = <num>

If your backup volume becomes full and you supply additional backup
volumes, you should write the numbers of the backup volumes on the volume
labels. Later, when you restore files to a named volume with the RESTORE
utility, you must supply the backup volumes in order.

ERROR MESSAGES

• <backup device>, backup operation not completed

When BACKUP requested a new backup volume, you specified an tiE"
to exit BACKUP. This message is a reminder that the backup
operation is not complete. The last file on the last backup
volume may be incomplete.

• <backup device>, backup volume #<nn>, <date>, <time>, enter Y to
overwrite:

•

•

The backup volume you supplied already contains backup
information. BACKUP lists the logical name of the backup device,
the volume number, and the date on which the original backup
occurred. It overwrites this volume if you enter Y, y, R, or r.

<backup device>, cannot attach volume
<backup device>, <exception value> : <exception mnemonic>

<backup device>, mount backup volume #<nn>, enter Y to continue:

BACKUP cannot access the backup volume. This could be because
there is no volume in the backup device or because of a hardware
problem with the device. The second line of the message
indicates the iRMX 86 exception code encountered. BACKUP
continues to issue this message until you supply a volume that
BACKUP can access.

<pathname>, <exception value>
up file

<exception mnemonic>, cannot back

For some reason BACKUP could not copy a file from the named
volume, possibly because you do not have read access to the file
or because there is a faulty area on the named volume. The
message lists the pathname of the file and the exception code
encountered. BACKUP copies as much of the file as possible and
continues with the next file.

3-20

• <backup device>, device in use
<backup device>, <exception value> : <exception mnemonic>

The device you specified for the backup device is the same device
that contains your input pathname. Continuing would result in
damage to the files on the input volume.

• <backup device>, error writing volume label
<backup device>, <exception value> : <exception mnemonic>

• <backup device>, mount backup volume #<nO>, enter Y to continue:

•

•

•

When BACKUP attempted to write a label on the backup volume, it
encountered an error condition, possibly because of a faulty area
on the volume, or because the volume is write-protected. The
second line of the message indicates the iRMX 86 exception code
encountered. BACKUP reprompts for a different backup volume.

<backup device>, input and output are on same device

The device you specified for the backup device is the same device
that contains your input pathname. Continuing would result in
damage to the files on the input volume.

<backup device>, invalid backup device

The logical name you specified for the backup device was not a
logical name for a device. Examples of invalid names are :CI:,
:CO:, and :HOME:.

<exception value> : <exception mnemonic>, invalid DATE or TIME

For either the DATE or TIME parameter, you entered a value that is
out of range (such as 31 FEB 81 or 26:03:62). The message lists
the exception code encountered as a result of this entry.

• <backup device>, named volume, <volume name>, enter Y to overwrite:

The backup volume you supplied is a named volume. BACKUP lists
the logical name of the device containing the volume and the
volume name. It overwrites this volume if you enter Y, y, R, or r.

• <backup device>, not a physical volume, enter Y to overwrite:

The backup volume you supplied is a formatted volume, but it has a
label that is not readable. BACKUP will overwrite this volume if
you enter Y, y, R, or r.

3-21

BACKUP

• output specification missing

You did not supply the logical name of the backup device when you
entered the BACKUP command.

• <exception value> : <exception mnemonic>, requested date/time
later than system date/time

The date and time you specified is more recent than the current
system date and time (as set by the DATE and TIME commands).
Either the date and time you specified in the BACKUP command are
in error or you did not set the system date and time.

• <pathname>, too many input pathnames

You attempted to enter a list of pathnames or use a wild-carded
pathname as the input pathname. You can enter only one pathname
per invocation of BACKUP.

• <pathname>, too many output pathnames

You attempted to enter a list of logical names for the backup
device. You can enter only one output logical name per
invocation of BACKUP.

• <pathname>, unable to complete directory

BACKUP encountered an error when accessing a file in the
<pathname> directory. It skips the rest of the files in the
directory and goes on to the next directory. This error could
occur if you do not have list access to the directory.

• <backup device>, volume not formatted

<backup device>, mount backup volume #<nn>, enter Y to continue:

The backup volume you supplied was not formatted. BACKUP
continues to issue this message until you supply a formatted
backup volume.

• <backup device>, write error on backup volume
<backup device>, <exception value> : <exception mnemonic>

BACKUP encountered an error condition when writing information to
the backup volume. The second line of the message lists the
exception code encountered. This error is probably the result of
a faulty area on the volume.

3-22

COpy

This command reads data from the specified input source or sources and
writes the output to the specified destination file or files.

The format of the command is as follows:

INPUT PARAMETERS

inpath-list

QUERY

x-317

One or more pathnames for the files to be copied.
Multiple pathnames must be separated by commas.
Separating blanks are optional. To copy files on
a one-far-one basis, you must specify the same
number of files in the inpath-list as in the
outpath-list.

Causes the Human Interface to prompt for
permission to copy each file. Depending on the
specified preposition (TO, OVER, or AFTER), the
Human Interface prompts with one of the following
queries:

<pathname), copy TO <out-pathname)?

<pathname), copy OVER <out-pathname)?

<pathname), copy AFTER <out-pathname)?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry Action
Y or y Copy the file.
E or e Exit from COpy command
R or r Continue copying files without

further query.
Any other Do not copy this file; go to the
character next file in the input list.

3-23

urI

OUTPUT PARAMETERS

TO

OVER

AFTER

outpath-list

DESCRIPTION

Writes the listed input files to named new
output files. The specified output file or
files should not already exist. If they do,
COpy displays the following message:

(pathname>, already exists, OVERWRITE?

Enter Y, y, R, or r if you wish to write over
the existing file. Enter an "N" (upper or lower
case) or a carriage return alone if you do not
wish to overwrite the existing file. In the
latter case, the COpy command will pass over the
corresponding input file without copying it, and
will attempt to copy the next input file to its
corresponding output file.

If you specify multiple input files and a single
output file, COpy appends the remaining input
files to the end of the output file.

Writes the input files over (replaces) the
existing output files on a one-for-one basis,
regardless of file size. If an output file does
not already exist, its corresponding input file
is written to a new file with the corresponding
output file name. If you specify multiple input
files and a single output file, COpy appends
the remaining input files to the end of the
output file.

Appends the input file or files to the current
data in the existing output file or files. If
the output file does not already exist, all
listed input files will be concatenated into a
new file with the listed output file name.

One or more pathnames for the output files.
Multiple pathnames must be separated by commas.
Separating blanks are optional. If you omit the
preposition and outpath-list parameters, COpy
displays the output at your console screen (TO
:CO:).

The COpy command can be used to perform several different operations.
Some of these include:

3-24

• Creating new files (TO preposition).

• Copying over existing files or creating new files (OVER
preposition).

• Adding data to the end of existing files (AFTER preposition).

• Copying a list of files to another list of files on a
one-for-one basis.

• Concatenating two or more files into a single output file.

As each file is copied, the COpy command displays one of the following
messages:

<pathname), copied TO <out-pathname)

<pathname), copied OVER <out-pathname)

<pathname), copied AFTER <out-pathname)

When you copy files, the number of input pathnames you specify must
equal the number of output pathnames, unless you specify only one
output pathname. In the latter case, COpy appends the remainder of the
input files to the end of the ouput file. As each file is appended,
the following message is displayed on the console screen:

<pathname), copied AFTER <output-file)

If you specify multiple output files, and there are more input files
than output files, or if you specify fewer input files than output
files, COpy returns an error message.

Also, if you specify a wild card character in an output pathname, you
must specify the same wild card character in the corresponding input
pathname. Other combinations result in error conditions.

You cannot successfully use COpy to copy a directory to a data file or
to another directory. Although a directory can be copied, the
attributes of the directory are lost. That is, the directory can no
longer be used as a directory. However, a file listed under one
directory can be copied to another directory. For example:

COpy SAMP/TEST/A TO :Fl:/ALPHA/BETA

This would copy the A data file to a different volume, directory, and
filename, where the new file's pathname would be :Fl:/ALPHA/BETA.

The user ID of the user who invokes the COpy command is considered the
owner of new files created by COPY. Only the owner can change the
access rights associated with the file (refer to the PERMIT command
later in this chapter).

3-25

ut'Y

When COpy creates new files, it sets the access rights and list of
accessors as follows:

• It sets the file for ALL access (delete, read, append, and
change).

• It sets the owner as the only accessor to the file.

Refer to the PERMIT command for more information about access rights
and the list of accessors.

ERROR MESSAGES

• <pathname>, output file same as input file

You attempted to copy a file to itself.

• <pathname>, UPDATE or ADD access required

Either you cannot overwrite the information in a file because
you do not have update access to it, or you cannot copy
information to a new file because you do not have add entry
access to the file's parent directory.

3-26

CREATEDIR

This command creates one or more iRMX 86 user directories. The format is
as follows:

INPUT i>ARAMETER
\

inpaih::list

~~~ 

DESCRIPTION 

x-318 

One or more pathnames of the iRMX 86 directories 
to be created. Multiple pathnames must be 
separated by commas. Embedded blanks between 
commas and pathnames are optional. 

CREATEDIR creates a directory with all access rights available to you, 
the owner. That is, you can delete, list, add, and change the contents 
of the directory you created with CREATEDIR. Other users (except the 
system manager) have no access to the directory unless you use the PERMIT 
command (described later in this chapter) to change the access rights and 
list of accessors. 

The following message is displayed if a directory is successfully created: 

<directory-name), directory created 

You can create new directories that are subordinate to other directories. 
For example: 

CREATEDIR AB/DC/EF/GH 

causes the newly-created directory GH to be nested within existing 
directory EF, which in turn, is nested within directory DC, and so on. 
The directories AB, DC, and EF must already exist before entering this 
command. 

You can check the contents of the directory at any. time by using the DIR 
command to list the directory (see the OIR command in this chapter). 

ERROR MESSAGE 

• <directory-name),file already exists 

The pathname of the directory to be created already exists. 

3-27 



DATE 

This command sets a new system date or displays the current date and 
time. The format is as follows: 

INPUT PARAMETERS 

dd 

month 

mm 

year 

QUERY 

mm/dd/year 

QUERY 
x-195 

Two-digit number that specifies the day of the 
month. 

Designation for the month. You can enter the whol 
name (such as AUGUST) or enough characters to 
distinguish one month from another (for example, 
AU, to distinguish AUGUST from APRIL). You can us 
this form for specifying the month only when using 
the "dd month year" format. 

Numerical designation for the month (for example: 
represents January, 2 represents February, etc.). 
You can use this form for specifying the month on] 
when using the IOmm/dd/year lO format. 

Designation for the year. You can enter this as ~ 

two- or four-digit number, as follows: 

entered year . 

o through 77 
78 through 99 
100 through 1977 
1978 through 2099 
2100 and up 

actual year 

2000 through 2077 
1978 through 1999 
error 
1978 through 2099 
error 

Causes DATE to prompt for the date by issuing the 
following message: 

DATE: 

DATE continues to issue this prompt until you ent 
a valid date. 

3-28 



DESCRIPTION 

If you set one date parameter, you must set all three; there are no 
default settings for individual date parameters. You must separate the 
dd, month, and year entries with single blanks. 

If you omit the date parameters, DATE displays the current date and time 
in the following form: 

dd mmm yy, hh:mm:ss 

When the Operating System displays the date, it displays only the first 
three characters of the month and the last two digits of the year. It 
separates the hours, minutes, and seconds of the time with colons. 

If you request the date on a non-timing system, DATE displays the 
following message: 

00:00:00 

Refer to the TIME command in this chapter if you wish to set the system 
clock while setting the date. 

ERROR MESSAGES 

• <date>, invalid date 

You entered an invalid date. This could result from specifying a 
day that is invalid for the month you specified (such as 31 FEB 
82), entering characters for the year parameter that do not fall 
into the legitimate ranges listed under the year parameter, 
entering a month parameter that does not uniquely identify the 
month, or entering invalid characters. 

• <parameter), invalid syntax 

You specified both a date and the QUERY parameter in the DATE 
command. 

3-29 



DEBUG 

This command allows you to debug your iRMX 86 application jobs in 
conjunction with the iSBC 957B hardware package and monitor. 

INPUT PARAMETERS 

x-196 

pathname Pathname of the file containing the application 
program to be debugged. 

parameter-string String of required, optional, and default 
parameters that can be used in the command line to 
load and execute the application program. 

DESCRIPTION 

DEBUG loads your specified application program into main memory and 
transfers control to the iSBC 957B monitor. You can then use the iSBC 
957B monitor to single-step, display registers, and set breakpoints 
within the program. Refer to Appendix C for a summary of monitor 
commands, and to the USER'S GUIDE FOR THE iSBC 957B iAPX 86, 88 INTERFACE 
AND EXECUTION PACKAGE for a complete description of the iSBC 957B 
functions. 

When you invoke the DEBUG command, it displays the following message: 

DEBUG file, <pathname) 

where <pathname) is the pathname of the file containing the application 
job to debug. Then DEBUG loads the application job and displays 
information about the location of the job's segments and groups. Figure 
3-1 shows an example of this output. 

The first line of the display lists the token for the application job. 
The remaining lines list the base portions of all segments and groups 
created by LINK86 when the code was linked. The S(n) and G(n) values are 
the same as those that appear on the link map. Therefore, you can match 
the base values shown in this display with the offset values shown in the 
link map to determine the exact location of a symbol listed in the link 
map. Refer to the iAPX 86, 88 FAMILY UTILITIES USER'S GUIDE for 
information about LINK86 and the link map. 

3-30 



SEGMENT AND GROUP MAP FOR JOB: A88F 

NAME BASE NAME BASE NAME BASE NAME BASE NAME BASE 

S(l) 9E4E S(2) 9E32 S(3) 9CFF S(5) 9CEC S(6) A863 
S(7) A229 S( 8) .Aff'4D S( 9) A152 S(13) 9C91 S(15) 9C85 
S(17) 9C67 S(18) 9C5C 

G(l) A229 G(2) A152 

Figure 3-1. Sample DEBUG Display 

When DEBUG executes, the iSBC 957B package disables interrupts. This 
causes the time-keeping function to stop when code is not executing. 
This slowing of the timing function: 

• Affects the ability of the Operating System to keep track of the 
time-of-day and write its data structures to secondary storage. 

• Stops type-ahead from working (see LINE EDITING in Chapter 2). 

• Affects the ability of the system to execute time-out tasks that 
have provided time limits to system calls (this applies to users 
that are interfacing to the Operating System with system calls 
other than the UDI system calls. 

Unless you use the monitor's NQ command to single-step through code, the 
iSBC 957B package cannot tolerate interrupts while single-stepping. The 
NQ command disables interrupts while single-stepping, allowing you to 
single-step through code without being interrupted by the system clock. 

When DEBUG is invoked to debug an application program, it loads the 
application program into its own dynamic memory. This means that the 
application program obtains dynamic memory from the memory pool of DEBUG, 
not from the memory pool of the user session. Therefore, programs that 
experience problems with insufficient memory when run independently might 
not experience those problems when run under the control of DEBUG. 

ERROR MESSAGE 

• (exception value> : (exception mnemonic>, command aborted by EH 

While processing, the DEBUG command encountered an exceptional 
condition. Therefore, the Human Interface's exception handler 
aborted the command. The message lists the exception code that 
occurred. 

3-31 

1J~HUGr 



DELETE 

This command removes data files and empty directories from secondary 
storage. The format is as follows: 

INPUT PARAMETERS 

inpath-list 

. QUERY 

DESCRIPTION 

x-319 

One or more pathnames for the named data files or 
empty directories to be deleted. Multiple 
pathname entries must be separated by commas. 
Separating blanks are optional. 

Causes the DELETE command to ask for your 
permission to delete each file in the list. Prior 
to deleting a file, the DELETE command displays 
the following query: 

<pathname), DELETE? 

Enter one of the following (followed by a carriage 
return) in response to the query: 

Entry 

Y or y 

E or e 

R or r 

Any other 
character 

Action 

Delete the file. 

Exit from DELETE command. 

Continue deleting without further 
query. 

Do not delete file; query for next 
file in sequence. 

The DELETE command allows you to release unused secondary storage space 
for new uses by removing empty directories and unneeded data files. To 
delete a file, you need not be the owner of the file; however you must 
have delete access to the file. If a command or other program is 
accessing the file (has a connection to the file) when you enter the 
DELETE command, DELETE marks the file for deletion and deletes it when 
all connections to the file are gone. 

3-32 



Non-empty directories cannot be deleted. If you wish to delete a 
directory that contains files, you must first delete all its contents. 
For example, if you wish to ·delete a directory named ALPHA whose entire 
contents consist of a directory BETA containing a data file SAMP, you 
would enter the following command: 

DELETE ALPHA/BETA/ SAMP, ALPHA/BETA, ALPHA 

This would delete all the files contained under ALPHA before deleting the 
directory itself. 

DELETE displays the following message as it deletes each file or marks 
the file for deletion: 

<pathname), DELETED 

ERROR MESSAGE 

• <pathname), DELETE access required 

You do not have permission to delete the specified file. 

3-33 

DELETE 



DETACHDEVICE 

This command detaches the specified devices and deletes their logical 
names. The format of this command is as follows: 

INPUT PARAMETER 

logical-name­
list 

FORCE 

DESCRIPTION 

One or more logical names of the physical devices 
that are to be detached. Colons surrounding each 
logical name are optional; however, if you use 
colons, you must use matching colons. Multiple 
logical names must be separated by commas. 

Causes DETACHDEVICE to detach the device even if 
connections to files on the device currently exist. 

The DETACHDEVICE command allows you to detach a device. After a device 
is detached, no volume mounted on that device is accessible for system 
use. 

Unless you are the system manager (user ID 0), you can detach only the 
following devices: 

• Devices that were attached with your user ID or WORLD (65535) as 
the owner ID 

• Devices you originally attached using the ATTACHDEVICE command 

• Devices originally attached using the WORLD parameter of 
ATTACHDEVICE 

DETACHDEVICE returns an error message if you attempt to detach devices 
originally attached by other users. This prevents users from detaching 
devices belonging to other users and from accidentally detaching system 
volumes. However, the system manager can detach all devices. 

3-34 

~197 



DETACHDEVICE 

Unless you specify the FORCE parameter, you cannot detach a device if any 
connections exist to files on the device (that is, if other users are 
currently accessing the device). However, the FORCE parameter causes 
DETACHDEVICE to delete all connections to files on the device before 
detaching the device. 

After detaching the device and deleting its logical name, the 
DETACHDEVICE command displays the following message: 

<logical-name>, detached 

ERROR MESSAGES 

NOTE 

Using the DETACHDEVICE command to 
detach the device containing your Human 
Interface commands prevents using Human 
Interface functions until the system is 
reinitialized. 

• (logical name>, can't detach device 
(logical nam~>, (exception value> : (exception mnemonic> 

An exceptional condition occurred which prevented DETACHDEVICE 
from detaching the device. This message lists the resulting 
exception code. 

• (logical name>, device does not belong to you 

The device was originally attached by a user other than WORLD or 
you. Thus you cannot detach the device. 

• (logical name>, device has outstanding file connections 

There are existing connections to files on the device. Because 
you did not specify the FORCE parameter, DETACHDEVICE does not 
detach the device. 

• (logical name>, device is in use 

Another user or program is accessing the device (has a connection 
to a file). Therefore, you must specify the FORCE parameter in 
order to detach the device. 

3-35-



ETACHDEVlCE 

• <logical name>, outstanding connections to device have been 
deleted 

There were outstanding connections to files on the volume. 
However, because you specified the FORCE parameter, DETACHDEVICE 
deleted those connections. This is a warning message that does 
not prevent DETACHDEVICE from detaching the device. 

3-36 



DETACHFILE 

This command allows you to terminate the association of a logical name 
with a file. The format of this command is as follows: 

x-198 

INPUT PARAMETER 

logical-name-list List of logical names~ separated by commas, that 
represent the files to be detached. Each logical 
name must be contain 1 to 12 characters. Colons 
surrounding each logical name are optional; 
however~ if you use colons~ you must use matching 
colons. 

DESCRIPTION 

You establish an association between a file and a logical name. by 
entering the ATTACHFILE command. DETACHFILE breaks this association. It 
does this by deleting the logical name. When DETACHFILE detaches a file 
in this manner, it displays the following message: 

(logical name>, detached 

where (logical name> is the name you specified. 

You cannot use DETACHFILE to detach devices. DETACHFILE returns an error 
message if you make such an attempt. 

You cannot use DETACHFILE to detach logical names originally created by 
other users. DETACHFILE searches for logical names associated with your 
interactive job only. 

ERROR MESSAGES 

• (exception value> : (exception mnemoniC> invalid global job 

The Human Interface encountered an internal system problem when 
it attempted to remove the logical name from the global job's 
object directory. The message lists the resulting exception code. 

3-37 



t,;'l 'A C .ttl'J..L.t.; 

HUMAN INTERFACE COMMANDS 

• <logical name>, logical name does not exist 

The logical name is not part of your interactive job. 

• <logical name>, logical name not allowed 

The logical name you specified was either :$:, :HOME:, :CI:, or 
:CO:. You cannbt detach the files associated with these logical 
names. 

• <logical name>, not a file connection 

The logical name you specified is not the logical name of a file. 

3-38 



DIR 

This command lists the names and attributes of the data and directory 
files contained in a given directory. The format of the command is as 
follows: 

INPUT PARAMETERS 

inpath-list 

FAST 

SHORT 

ONE 

One or more pathnames of the directories to be 
listed (the pathnames can represent data files if 
the PARENT parameter is also specified). Multiple 
directory pathname entries must be separated by 
commas. Separating blanks are optional. If no 
pathname is specified, the user's default 
directory is listed. 

Lists only the filenames and directory names in 
the directory. The output format contains five 
columns of filenames unless you also specify the 
ONE parameter (see Figure 3-2 at the end of this 
command description). FAST is the default if you 
omit the listing format. 

Lists the file information in a two-column format 
(see Figure 3-3 at the end of this command 
description). 

Lists the output of a FAST or SHORT listing in 
single-column format. ONE is the default number 
of columns for EXTENDED or LONG listings. 

3-39 

x-199 



m 

LONG 

EXTENDED 

INVISIBLE 

PARENT 

04 
04 
04 
~ 
~ 
ilia 
> 
~ 
004 

~ QUERY -3 
rj 
C 
rj 
t> 
~ 
~ 
:'j 
~ 
~. 
~ 
l> 
Z 
=' :n 

OUTPUT PARAMETERS 

TO 

Lists file information in a one-line format (see 
Figure 3-4 at the end of this command description). 

Lists all available information for each data file 
or directory file in the directory. The first 
line for each file is the same as for the LONG 
form. The second line contains the last access 
date, creation date, and the accessor list. The 
listing is in a double-column format (see Figure 
3-5 at the end of this command description). 

Lists the invisible files (those beginning with 
the characters "R?" or ee r ?,,) in addition to the 
rest of the files in the directory. If you omit 
this parameter, DIR does not display invisible 
files. 

Causes DIR to display an entry for the directory 
specified in the inpath-list in addition to the 
files contained in the directory. This parameter 
is useful for obtaining information about the root 
directory of a volume when using the LONG or 
EXTENDED parameters. 

Causes the DIR command to prompt you for 
permission to list a directory by issuing the 
following message: 

<pathname), DIR? 

Enter one of the following (followed by a carriage 
return) in response to the query: 

Entry 

Y or y 

E or e 

R or r 

Any other 
character 

Action 

List the directory. 

Exit from DIR command. 

Continue listing directories without 
further query. 

Do not list directory; query for the 
next directory, if any. 

Copies the directory listing to the specified 
destination data file. If the destination file 
already exists, DIR displays the following 
information: 

<pathname>, already exists, OVERWRITE? 

3-40 



OVER 

AFTER 

outpath-list 

DESCRIPTION 

Enter Y, y, R, or r if you wish to delete the 
existing file. Enter any other character if you 
do not wish to delete the file. 

If you omit the TO/OVER/AFTER preposition and the 
output pathname, TO :CO: is the default. 

Copies the directory listing to the specified 
output file and writes over (replaces) the 
previous contents. 

Appends the directory listing to the current 
contents of the specified output file. 

One or more pathnames of the files to receive the 
directory listing. Multiple pathname entries must 
be separated by commas. Separating blanks are 
optional. If you omit the preposition and the 
outpath-list, the default destInation is the 
user's console screen (TO :CO:). 

You do not need to be the owner of a directory to list its contents with 
DIR; however, you must have LIST access to the directory. 

The amount of information listed for each file depends upon what listing 
format you specify (FAST, SHORT, LONG, or EXTENDED) in the DIR command. 
An example of each type of listing format is provided at the end of the 
DIR command description in Figures 3-2 through 3-5 respectively. Table 
3-3, which follows the figures, provides an explanation of the 
illustrated headings. 

If you want to list the default user directory but also wish to specify a 
listing format other than FAST, use the default directory name 
explicitly. For example: 

DIR :$: EXTENDED 

displays a listing of the default directory in the EXTENDED format. Note 
that your default directory is determined by your user ID. 

Figures 3-2, 3-3, 3-4, and 3-5 show output examples for FAST, SHORT, 
LONG, and EXTENDED listing formats respectively. Table 3-3 defines the 
displayed column headings. 

If a file name begins with the characters "R?" or lOr?", it is an 
invisible file. Normally DIR does not display invisible files. However, 
you can specify the INVISIBLE parameter to display these files. 

3-41 

DIR, 



m 

If you do not know the name of the directory that contains a file (the 
file's parent directory), you can still display its contents by using the 
PARENT parameter. Rather, it displays the parent directory of the file 
you specify. 

If you use the TO preposition to copy the output of the DIR command to a 
file and specify the pathname of an existing file, DIR displays the 
following information: 

(pathname), already exists, OVERWRITE? 

Enter Y, y, R, or r if you wish to delete the existing file. Enter any 
other character if you do not wish to delete the file. 

-DrR alpha 

03 MAR 82 04:25:40 
DIRECTORY OF alpha ON mvol 

fnamel fname2 fname3 fname4 fname5 
fname6 fname7 fname8 fname9 fnamelO 
f name 1 1 

Figure 3-2. FAST Directory Listing Example (Default Listing Format) 

3-42 



-DIR !ldirectorI2 S 

03 MAR 82 21:55:24 
DIRECTORY OF mydirectory2 ON myvol 

NAME AT ACC BLKS LENGTH NAME AT ACC BLKS LENGTH 
append -R-- 2 1425 alpha.obj DRAU 
REFERENCE DR -L-- 1 10 DATA DR DLAC 
LEMONADE IT DRAU 123456789 123456789 
time DRAU 6 5374 detachdevice DRAU 
test -R-- . 5 4415 schedule --U 
testprog.a86 -RA- 2 2040 DATABASE.LST -RAU 
EXPERIMENTAL DR -LAC 1 20 BACKUP DR DLAC 

13 FILES 44 BLOCKS 36895 BYTES 

Figure 3-3. SHORT Directory Listing Example 

-DIR !ldirectoryl L 

03 MAR 82 21:55:24 
DIRECTORY OF mydirectoryl ON myvol 

NAME AT 
ed 
programs DR 
fmat 
OBJFILE 
ALPHAl.P86 
ALPHA1.MP1 
manuals DR 

7 FILES 

ACC BLKS 
-R-- 11 
DL-- 30 
DRAU 1 
---U 3 
DLAC 2 
DLAC 6 
-L-- 1 

54 BLOCKS 

LENGTH 
1057 

30185 
39 

2895 
1304 
5397 

304 

41181 BYTES 

GRAN 
VOL FIL OWNER 

1024 1 II 47 
1024 1 1/ 47 
1024 1 1/ 655535 
1024 1 II 47 
1024 1 II 50 
1024 1 # 50 
1024 1 II 47 

Figure 3-4. LONG Directory Listing Example 

3-43 

3 2871 
1 4 

4 3414 
7 6976 

11 10336 
1 10 

LAST MOD 
02 MAR 82 
03 MAR 82 
08 NOV 81 
18 DEC 81 
22 OCT 81 
22 OCT 81 
02 JUL 80 

DIR 



m 

-DIR mIdir E 

03 MAR 82 21:55:24 
DIRECTORY OF mydir ON myvol 

GRAN 
NAME AT ACC BLKS LENGTH VOL FIL OWNER LAST MOD 

programs DR DL-- 30 30185 1024 1 II 47 03 MAR 82 
CREATION: 01 JAN 81 04:05:44 ACCESSORS ACC 
LAST ACC: 03 MAR 82 05:52:33 II 47 DL--
LAST MOD: 03 MAR 82 05:52:33 II 50 -LA-

II 82 -L--
ed -R-- 11 1057 1024 1 II 47 02 MAR 82 

CREATION: 11 NOV 81 12:24:05 ACCESSORS ACC 
LAST ACC: 02 MAR 82 14:22:16 II 47 -R--
LAST MOD: 02 MAR 82 14:22:16 

fmat DRAU 1 39 1024 1 II 65535 08 NOV 81 
CREATION: 01 NOV 81 08:54:39 ACCESSORS ACC 
LAST ACC: 03 MAR 82 14:56:59 II 65535 DRAU 
LAST MOD: 08 NOV 81 20:44:01 

testdir DR DLAC 1 32 1024 1 1147 01 MAR 82 
CREATION: 02 FEB 82 15:02:42 ACCESSORS ACC 
LAST ACC: 03 MAR 82 09:32:53 II 47 DLAC 
LAST MOD: 01 MAR 82 13:13:07 # 50 -LA-

II 65535 -L--

4 FILES 43 BLOCKS 32213 BYTES 

Figure 3-5. EXTENDED Directory Listing Example 

3-44 



Heading 

NAME 

AT 

ACC 

BLKS 

LENGTH 

VOL 

FIL 

OWNER 

LAST MOD 

LAST ACC 

CREATION 

Table 3-3. Directory Listing Headings 

Meaning 

14-character field for the file name. 

File attribute, where: 
DR = Directory 
MP ~ Bit map file 
blank = Data file 

File access rights of the user who entered the DIR command, 
where: 

Directories: 

Data Files: 

------- Delete 

,
------ List 
----- Add I r---- Change 

DLAC 

. DRAU 

I I
l--- Update 
----- Append 

------ Read 
------- Delete 

Up to nine-digit number (five digits on SHORT listing) 
giving the volume-granularity units allocated to the file. 
On the SHORT display, if the number of digits exceeds five, 
DIR displays the file in the nine-digit form (see the 
LEMONADEIT file in Figure 3-3). 

IO-digit number (7 digits on SHORT listing) giving the 
length of the file in bytes. On the SHORT form, if the 
number of digits exceeds 7, the file is displayed in the 
IO-digit form (see the LEMONADEIT file in Figure 3-3). 

Five-digit number giving the volume granularity in bytes. 

Three-digit number giving the granularity of the file in 
multiples of volume granularity. 

14-character, alphanumeric owner name. 

Date of last file modification. 

Date of last file access. 

Date of file creation. 

3-45 

DIR 



ffi 

Table 3-3. Directory Listing Headings (continued) 

Heading Meaning 

ACCESSORS User IDs of users who have access to the file. 

ACC Access rights of the corresponding user. The format of 
this field is identical to ACC as described previously. 

ERROR MESSAGES 

• no directory files found 

None of the files you specified were directories. 

• <pathname), READ access required 

You do not have read (list) access to the directory. 

• <pathname), UPDATE or ADD access required 

EXAMPLES 

Either you cannot overwrite the information in a file because you 
do not have update access to it, or you cannot copy information 
to a new file because you do not have add entry access to the 
file's parent directory. 

The examples that follow show how a directory's files are listed when you 
use your default prefix in a directory's pathname. In the examples, 
directory names are enclosed in triangles; data file names are enclosed 
in rectangles. 

Assume you have the following directory structure for your files: 

3-46 



x-324 

Example 1: 

Suppose your default prefix is :FO:Q. This example shows the files 
that would be listed in response to various DIR commands. It shows 
the pathnames that you could enter and the resulting files that DIR 
would list. 

Pathname Files Listed 

omitted A, f 
f not allowed because f is a data file 
A bb, CB, d 
A/d not allowed because d is a data file 
A/CB e, f 
A/CB/e not allowed because e is a data file 

Example 2: 

Suppose your default prefix is :FO:Q/A. This example also shows the 
files that would be li~ted in response to various DIR commands. 

Pathname 

omitted 
A 

CB 

Files Listed 

bb, CB, d 
not allowed because directory A does not 
contain an entry A 
e, f 

3-47 

DIH. 



DISKVERIFY 

This command invokes a utility which verifies the data structures of 
iRMX 86 physical and named volumes. This utility can also be used to 
reconstruct portions of the volume and perform absolute editing on the 
volume. The format of the DISKVERIFY command is as follows: 

:Iogical nam.: 

INPUT PARAMETERS 

: logical-name: 

DISK 

Logical name of the secondary storage device 
containing the volume. 

Displays the attributes of the volume (such as 
type of volume, device granularity, block size, 
number of blocks, interleave factor, extension 
size, volume size, and number of fnodes) and 
returns control to you at the Human Interface 
level. You can then enter any Human Interface 
command. 

If you omit this parameter (and the VERIFY 
parameter), the utility displays a sign-on message 
and the utility prompt (*). You can then enter 
individual disk verification commands. These 
commands are described in the iRMX 86 DISK 
VERIFICATION UTILITY REFERENCE MANUAL. 

3-48 



VERIFY or V 

NAMEDI or Nl 

NAMED or N 

ALL 

NAMED2 or N2 

PHYSICAL 

Performs a verification of the volume. If you 
specify this parameter and omit the options, the 
utility performs the NAMED verification. 

If you specify this parameter, the utility 
performs the verification function and returns 
control to you at the Human Interface level. You 
can then enter any Human Interface command. 

DISKVERIF) 

If you omit this parameter (and the DISK 
parameter), the utility displays a sign-on message 
and the utility prompt (*). You can then enter 
individual disk verification commands. These 
commands are described in the iRMX 86 DISK 
VERIFICATION UTILITY REFERENCE MANUAL. 

VERIFY option that applies to named volumes only. 
This option checks the fnodes of the volume to 
ensure that they match the directories in terms of 
file type and file hierarchy. (Refer to the 
description of the FORMAT command for more 
information about fnodes.) This option also 
checks the information in each fnode to ensure 
that it is consistent. As a result of this 
option, DISKVERIFY displays a list of all files on 
the volume that are in error, with information 
about each file. Refer to the iRMX 86 DISK 
VERIFICATION UTILITY REFERENCE MANUAL for more 
information. 

VERIFY option that performs both the NAMEDI and 
NAMED2 verification functions on a named volume. 
If you omit the VERIFY option, NAMED is the 
default option. 

VERIFY option that applies to both named and 
physical volumes. For named volumes, this option 
performs both the NAMED and PHYSICAL verification 
functions. For physical volumes, this option 
performs only the PHYSICAL verification function. 

VERIFY option that applies to named volumes only. 
This option checks the allocation of fnodes on the 
volume, checks the allocation of space on the 
volume, and verifies that the fnodes point to the 
correct locations on the volume. Refer to the 
iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL 
for more information. 

VERIFY option that applies to both named and 
physical volumes. This option reads all blocks on 
the volume and checks for I/O errors. 

3-49 



DISKVERIFY 

t:t= 
~ 

~ 
~ 

Z 
1-3 
t:rj 
~ 
~ 
:> 
CJ 
t:rj 

CJ 
0 

== 
~ 
Z 
tj 
00 

LIST 

OUTPUT PARAMETERS 

TO 

OVER 

AFTER 

outpath 

DESCRIPTION 

VERIFY option that you can use with other VERIFY 
options that, either explicitly or implicitly, 
specify the NAMEDl option. When you use this 
option, the file information generated by VERIFY 
is displayed for every file on the volume, even if 
the file contains no errors. Refer to the iRMX 86 
DISK VERIFICATION UTILITY REFERENCE MANUAL for 
more information. 

Copies the output from the disk verification 
utility to the specified file. If the file 
already exists, DISKVERIFY displays the following 
information: 

<pathname), already exists, OVERWRITE? 

Enter Y, y, R, or r to write over the existing 
file. Enter any other character if you do not 
wish to overwrite the file. 

If no preposition is specified, TO :CO: is the 
default. 

Copies the output from the disk verification 
utility over the specified file. 

Appends the output from the disk verification 
utility to th~ end of the specified file. 

Pathname of the file to receive the output from 
the disk verification utility. If you omit this 
parameter and the TO/OVER/AFTER preposition, the 
utility copies the output to the console screen 
(TO :CO:). You cannot direct the output to a file 
on the volume being verified. If you attempt 
this, the utility returns an error message. 

When you enter the DISKVERIFY command, the utility responds by displaying 
the following line: 

iRMX 86 DISK VERIFY UTILITY, Vx.y 

where Vx.y is the version number of the utility. If you specify the 
VERIFY or DISK parameter in the DISKVERIFY command, the utility performs 
the operation specified in the parameter and copies the output to the 
console (or to the file specified by the outpath parameter). 

3-50 



Refer to the iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL for a 
description of the output. After generating the output, the utility 
returns control to, the Human Interface, which prompts you for more Human 
Interface commands. The following is an example of a DISKVERIFY command 
that uses the VERIFY option: 

-DISKVERIFY :F1: VERIFY NAMED2 
iRMX 86 DISK VERIFY UTILITY, Vx.y 

DISKVERIFY 

DEVICE NAME = Fl : DEVICE SIZE = 0003E900 BLOCK SIZE = 0080 

'NAMED2' VERIFICATION 
BIT MAPS O.K. 

The following is an example of a DISKVERIFY command that uses the DISK 
option: 

-DISKVERIFY :F2: DISK 
iRMX 86 DISK VERIFY UTILITY, Vx.y 
Device name = WFO 

Named disk, Volume name = UTILS 
Device gran = 0080 
Block size = 0080 

No of blocks = 0000072D No of Free blocks = 00000408 
Volume size = 0003E900 
Interleave = 0005 

Extension size = 03 
No of fnodes = 0038 No of Free fnodes = 0022 

However, if you omit the VERIFY and DISK parameters from the DISKVERIFY 
command, the utility does not return control to the Human Interface. 
Instead, it issues an asterisk (*) as a prompt and waits for you to enter 
individual DISKVERIFY commands. The following is an example of such a 
DISKVERIFY command: 

-DISKVERIFY : F 1 : 

* 
After you receive the asterisk prompt, you can enter any of the 
DISKVERIFY commands listed in the iRMX 86 DISK VERIFICATION UTILITY 
REFERENCE MANUAL. 

ERROR MESSAGES 

• argument error 

The VERIFY option you specified is not valid. 

• command syntax error 

You made a syntax error when entering the command. 

3-51 



·DISKVERIFY 

• device size inconsistent 
size in volume label - <valuel> : computed size = <value2> 

When the disk verification utility computed the size of the 
volume, the size it computed did not match the information 
recorded in the iRMX 86 volume label. It is likely that the 
volume label contains invalid or corrupted information. This 
error is not a fatal error, but it is an indication that further 
error conditions may result during the verification session. You 
may have to reformat the volume or use the disk verification 
utility to modify the volume label. Refer to the iRMX 86 DISK 
VERIFICATION UTILITY REFERENCE MANUAL for more information about 
the disk verification utility commands. 

• not a named disk 

You tried to perform a NAMED, NANEDl, or NAMED2 verification on a 
physical volume. 

The NAMEDl, NAMED2, and PHYSICAL verification options can also produce 
error messages. Refer to the ~ 86 DISK VERIFICATION UTILITY REFERENCE 
MANUAL for more information about these messages. 

EXAMPLE 

The following command performs both named and physical verification of a 
named volume. 

-DISKVERIFY :F1: VERIFY ALL 

iRMX 86 DISK VERIFY UTILITY, Vx.y 
DEVICE NAME = F1 DEVICE SIZE = 0003E900 BLK SIZE = 0080 

'NAMEDl' VERIFICATION 

'NAMED2' VERIFICATION 
BIT MAPS O. K. 

'PHYSICAL' VERIFICATION 
NO ERRORS 

3-52 



DOWNCOPY 

This command copies files from a volume on an iRMX 86 secondary storage 
device to a volume on an ISIS-II secondary storage device via the 
iSBC 957B Interface and Execution package. The format is as follows: 

INPUT PARAMETERS 

inpath-list 

QUERY 

x-320 

One or more iRMX 86 pathnames for files, separated 
by commas, that are to be copied to ISIS-II 
secondary storage. Separating blanks between 
pathnames are optional. The files may be copied 
in the listed sequence either on a one-for-one 
basis or concatenated into one or more files. 

Causes the Human Interface to prompt for 
permission to copy each iRMX 86 file to the listed 
ISIS-II destination file. Depending on which 
preposition you specify (TO, OVER, or AFTER), the 
Human Interface prompts with one of the following 
queries: 

<pathname), copy down TO <outfile)? 

<pathname), copy down OVER <outfile>? 

<pathname), copy down AFTER <outfile)? 

Enter one of the following in response to the 
query: 

Entry 

Y or y 

E or e 

R or r 

Any other 
character 

3-53 

Action 

Copy the file. 

Exit from the DOWNCOPY command. 

Continue copying files without 
further query. 

Do not copy this file; query 
for the next file in sequence. 



DOWNCOPY 

OUTPUT PARAMETERS 

TO 

OVER 

AFTER 

outfile-list 

DESCRIPTION 

Reads iRMX 86 files and copies them TO new ISIS-II 
files in the listed sequence. If the specified 
output files already exist in the ISIS-II 
directory when the TO parameter is used, DOWNCOPY 
displays the following message: 

<filename>, already exists, OVERWRITE? 

Enter Y, y, R, or r if you wish to delete the 
existing file. Enter any other character if you 
do not wish the existing file to- be deleted. 

If 'no preposition is specified, TO :CO: (ISIS-II 
console screen) is the default. If more input 
files than output files are specified, the 
remaining input files are appended to the end of 
the last-specified ISIS-II file. 

Copies the iRMX 86 input files OVER the existing 
ISIS-II destination files in the specified 
sequence. If you specify multiple input files and 
one output file, DOWNCOPY appends the remaining 
input files to the end of the output file. 

Copies the fRMX 86 input files, in sequence, AFTER 
the end of data on the existing ISIS-II 
destination files. 

One or more ISIS-II filenames for the output 
files. Multiple filenames must be separated by 
commas. Separating blanks are optional. If the 
preposition and output file defaults are used in 
the command line, the output goes to the ISIS-II 
console screen. 

The DOWNCOPY command cannot be used to copy directories from an iRMX 86 
system to a Series III microcomputer development system; only files can 
be copied. 

Before you enter a DOWNCOPY command on the iRMX 86 console keyboard, your 
target system must be connected to a Series III system via the iSBC 957B 
package, and the package must be running. To do this, you must start 
your iRMX 86 system from the Series III terminal (either by loading the 
software into the target system and using the monitor G command to start 
execution, or by using the monitor B command to bootstrap load the 
software). DOWNCOPY does not function if you start up your system from 
the iRMX 86 terminal or if you establish the link between the Series III 
system and target system after starting up your iRMX 86 system. 

3-54 



When DOWNCOPY copies files to the development system, it turns off all 
ISIS-II file attributes. 

As each file in the input list is copied, one of the following messages 
will be displayed on the Human Interface console output device ( : CO:) : 

<pathname>, copied down TO <out-filename> 

<pathname>, copied down OVER <out-filename> 

<pathname>, copied down AFTER <out-filename> 

When the DOWNCOPY command is executing, the iSBC 957B package disables 
interrupts. This affects services such as the time-of-day clock. Also, 
the Operating System is unable to receive any characters that you 
type-ahead while the DOWNCOPY command is executing. 

ERROR MESSAGES 

• <pathname>, DELETE access required 

DOWNCOPY could not replace an existing ISIS-II file because the 
file is write-protected. 

• <pathname>, ISIS ERROR: <nnn> 

An ISIS-II Operating System error occurred when DOWNCOPY tried to 
transfer the file to the Microcomputer Development System. Refer 
to the INTELLEC SERIES III MICROCOl1PUTER DEVELOPMENT SYSTEM 
CONSOLE OPERATING INSTRUCTIONS for a description of the resulting 
error code. 

• ISIS link not present 

The iRMX 86 system is not connected to the development system via 
the iSBC 957B package. 

3-55 

DOWNCOPY 



FORMAT 

This command formats or reformats a volume on an iRMX 86 secondary 
storage device, such as a diskette, hard disk, or bubble memory. The 
format is as follows: 

INPUT PARAMETERS 

: logical-name: 

volume-name 

FILES=num 

Logical name of the physical device-unit to be 
formatted. You must surround the logical name 
with colons. Also, you must not leave space 
between the logical name and the succeeding volume 
name parameter. 

Six-character, alphanumeric ASCII name, without 
embedded blanks, to be assigned to the volume. If 
you include this parameter, .you must not leave 
spaces between the logical name and the volume 
name. 

Defines the maximum decimal number of user files 
that can be created on a NAMED volume. (This 
parameter is not meaningful when formatting a 
PHYSICAL volume and is ignored if specified for 
such volumes~) FORMAT uses the information 
specified in this parameter to allocate space for 
the number of files that will be created on the 
NAMED volume. The range for the FILES parameter 
is 1 through 32,761, although the maximum number 
of user files you can define depends on the 
settings of the GRANULARITY and EXTENSIONSIZE 
parameters (as explained in the "Description" 
portion of this command write-up). When you use 
this parameter, FORMAT creates room for six 
additional files for internal system use. If not 
specified, the default is 50 user files. 

3-56 

x-200 



FORCE 

GRANULARITY=num 

Forcibly deletes any eXisting connections to files 
on the volume before formatting the volume. If 
you do not specify FORCE, you cannot format the 
volume if any connections to files on the volume 
still exist. 

Volume granularity; the minimum number of bytes to 
be allocated each time a file's size is increased 
on a NAMED volume. (This parameter is not 
meaningful for PHYSICAL volumes, and is ignored if 
specified for such volumes.) FORMAT rounds the 
value you specify up to the next multiple of the 
device granularity. Then it places the de~imal 
number in the header of the volume, where it 
be~omes the default file granularity when a file 
is created on the volume. The range is 1 through 
65,535 (decimal) bytes, although the maximum 
allowable volume granularity depends on the 
settings of the FILES and EXTENSIONSIZE parameters 
(as explained in the "Description" portion of this 
write-up). If not specified, the default 
granularity is the device granularity. Once the 
volume granularity is defined, it applies to every 
file created on that volume. 

NOTE 

Using a large volume granularity 
(in excess of 1024), might cause 
users to exceed their memory limits 
when executing programs that reside 
on the volume. This can occur 
because the Operating System uses 
the volume granularity as a minimum 
buffer size when reading and 
writing files. 

EXTENSIONSIZE=num Size, in bytes, of the extension data portion of 
each file. (This parameter is not meaningful for 
PHYSICAL volumes, and is ignored if specified for 
such volumes.) The range is 0 through 255 
(decimal), although the maximum allowable 
extension size depends on the settings of the 
FILES and GRANULARITY parameters (as explained in 
the "Description" portion of this write-up). If 
not specified, the default extension size is 3 
bytes. 

INTERLEAVE=num Interleave factor for a NAMED or PHYSICAL volume. 
Acceptable values are 1 through 255 decimal. If 
not specified, the default value is 5. See the 
interleave discussion under ""Description"" in this 
command write-up. 

3-57 

FORMAT 



FORMAT 

NAMED 

PHYSICAL 

DESCRIPTION 

The volume can store only named files; that is, 
the volume can hold many files (up to the number 
of fnodes allocated), each of which can be 
accessed by its pathname. A diskette or hard disk 
surface are examples of devices that would be 
formatted for named files. If neither NAMED nor 
PHYSICAL is specified, the volume is formatted for 
the file specified when you attached the device 
(with the ATTACHDEVICE command). 

The volume can be used only as a single, physical 
file. The GRANULARITY and FILES parameters are 
not meaningful when PHYSICAL is specified for the 
volume. If neither NAMED nor PHYSICAL is 
specified, the volume is formatted for the file 
type specified when you attached the device (with 
the ATTACHDEVICE command). 

Every physical device-unit used for secondary storage must be formatted 
before it can be used for storing and then accessing its files. For . 
example, every time you mount a previously unused diskette into a drive, 
you must enter a FORMAT command to format that diskette as a new volume 
before you can create, store and access files on it. 

Once a volume is formatted, its name becomes a volume identifier when you 
display the root directory of the volume, and the name appears in the 
directory's heading. Although the Human Interface uses the volume name 
in its own internal processing when you access the volume, you need not 
specify the volume name in any subsequent command after the volume is 
formatted. You must specify only the logical name of the secondary 
storage device that contains the volume. 

Volume Name 

The volume name allows you to identify a mass storage volume by a 
recorded name. You will see this name when you ask for a DIRectory 
listing of any directory on the volume. For diskettes, a volume name 
gives you a method for identifying a volume in case the stick-on label on 
the diskette gets lost or destroyed. 

Once the volume is formatted, you do not need to specify the volume name 
in commands -- you identify the volume with its logical name. 

3-58 



Files 

You can specify the number of files reserved for user files with the 
FILES parameter. Each time you create a file on the volume t the 
Operating System records information about the file in an unused area of 
the volume t and later uses this information to determine the location of 
the file on the volume. 

Internal Files 

When you format a named volume, FORMAT creates six internal system 
files. It names three of these files and lists their names in the root 
directory of the volume. -The files are: 

file 

R?SPACEMAP 
R?FNODEMAP 
R?BADBLOCKMAP 

description 

Volume free space map 
Free fnodes map 
Bad blocks map 

It grants the user WORLD read access to these files. Refer to the 
iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL for more information 
about these files. 

Root Directory 

The root directory lists the user who formats the volume as the owner~ 
giving that user all access rights. No other user has access to the root 
directory until the owner explicitly grants access. The owner can grant 
other users access to the volume via the PERMIT command described later 
in this chapter. However t because the owner has all access rights to the 
root directory, the owner can obtain exclusive access to the volume, and 
can obtain delete access to any file created on the volume, even files 
created by other users. 

Extension Data 

Each file contains a field that stores extension data for its associated 
file. An operating system extension can access and modify this extension 
data by invoking the A$GET$EXTENSION$DATA and A$SET$EXTENSION$DATA system 
calls (refer to the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL for more 
information). When you format a volume, you can use the EXTENSIONSIZE 
parameter to set the size of the extension data field in each fnode. 
Although you can specify any size from 0 to 255 bytes, the Human 
Interface requires all fnodes to have at least 2 bytes of extension data. 

, 
3-59 

FORMAT 



FORMAT 

Volume Granularity 

The default volume granularity is always the granularity of the physical 
device for the volume. For example, if the default granularity for a 
device is 128 bytes of secondary storage, the I/O System will 

,automatically allocate permanent storage to each new file you create on 
that volume in multiples of 128 bytes, regardless of whether the file 
requires the full amount. 

Relationship between FILES, GRANULARITY, and EXTENSIONSIZE 

Although the FILES, GRANULARITY, and EXTENSIONSIZE parameters have 
maximum values which are 1isted in the parameter descriptions, the 
combination of these parameters must also satisfy the following formula: 

(87 + EXTENSIONSIZE) x (FILES + 6) / GRANULARITY ~ 65535 

where all numbers are decimal. FORMAT displays an error message if the 
combination of parameter values exceeds the limit. 

Interleave Factor 

The interleave factor applies to volumes formatted either for NAMED or 
PHYSICAL files. The interleave factor specifies the logical sector 
sequence. The interleave specification maximizes access speed for the 
files on a given volume by matching the time it takes to read sequential 
sectors to time it takes the system to process the data. For example, an 
interleave factor of 5 for a flexible disk drive means that, for each 
file, the I/O System reads and writes every fifth sector on the diskette, 
starting with an index of 1. (Hard disk systems may be different.) With 
the appropriate interleave factor, the I/O System does not need to wait 
for the disk to make a complete revolution before it accesses the next 
sector; the next sector by an increment of 5 is ready to be accessed for 
read/write by the time the previously accessed sector has been processed. 

Output Display 

The FORMAT command displays one of the following messages when volume 
formatting is completed. For physical volumes: 

volume «volume name» 
device gran. 
interleave 
volume size 

volume formatted 

will be formatted as a PHYSICAL volume 
- <number> 
= <number> 
= <k-number> K (or M) 

3-60 



For named volumes: 

volume «volume name» 
granularity 
interleave 

will be formatted 
. = <number> 
= <number> 
= <number> 
= <number> 

as a NAMED volume 
sides = <sides> 
density = <density> 
disk size = <d-size> files 

extensionsize 
volume size = <k-number> K (or M) 

volume formatted 

where: 

<volume name> Vo~ume name specified in the FORMAT command • 

<number> 

<k-number> 

<sides> 

<density> 

<d-size> 

ERROR MESSAGES 

. Decimal number as specified in the command (or the 
default) 

Volume size in K (1024-byte units) or M 
(1048576-byte units). FORMAT displays the volume 
size in Kbyte units unless the size is greater 
than 25 Mbytes. 

Number of sides of the volume that will be 
formatted (lor 2). This field is displayed only 
for flexible diskettes in which FORMAT can 
recognize this characteristic. 

Density at which the volume will be formatted 
(single or double). This field is displayed only 
for flexible diskettes in which FORMAT can 
recognize this characteristic. 

Size of the volume (8 or 5.25). This field is 
displayed only for flexible diskettes in which 
FORMAT can recognize this characteristic. 

• <logical name>, can't attach device 
<logical name>, <exception value> : <exception mnemonic> 

FORMAT cannot attach the device for formatting, or it cannot 
re-attach the device (that is, restore it to its original 
condition) after formatting takes place. 

• <logical name>, can't detach device 
<logical name>, <exception value> : <exception mnemoniC> 

FORMAT cannot detach the device for formatting, which means that 
the volume does not exist, the volume is busy, or the device on 
which the volume is mounted is not currently attached to the 
system. 

3-61 

FORMAT 



FORMAT 

• <logical name>, device is in use 

You cannot format the volume because there are outstanding 
connections to files on the volume and you did not specify the 
FORCE parameter. 

• <vol-name>, fnode file size exceeds 65535 volume blocks 

The values you specified for fnode size, granularity, and 
extension data size cause the formula listed in the "Description" 
section to exceed its limit. 

• <number>, invalid'number 

• 

• 

You specified an out-of-range number for any of the FILES, 
GRANULARITY, EXTENSIONSIZE, or INTERLEAVE parameters. 

<logical name>, outstanding connections to device have been 
deleted 

There were outstanding connections to files on the volume. 
However, because you specified the FORCE parameter, FORMAT 
deleted those connections. This is a warning message that does 
not prevent FORMAT from formatting the volume. 

0085 : E$LIST, too many values 

You entered multiple logical-name/volume-name combinations 
separated by commas. FORMAT can format only one volume per 
invocation. 

• <volume name>, volume name is too long 

FORMAT requires the volume name you specify to be 6 characters or 
less. 

3-62 



. INITSTATUS 

This command displays the initialization status of Human Interface 
terminals. The format of this command is as follows: 

DESCRIPTION 

INITSTATUS displays at the user terminal the initialization status of all 
Human Interface terminals. Figure 3-6 illustrates the format of the 
INITSTATUS display. 

TERMINAL CONFIG DEVICE INIT USER JOB USER 
DEVICE NAME EXCEP EXCEP EXCEP STATE ID ID 
.TO. 0000 0000 0000 LE 1 65535 
.Tl. 0000 0000 0000 -E 2 1 
• T3. 0000 0002 
• T4. 0021 

Figure 3-6. INITSTATUS Display 

The columns listed in Figure 3-6 contain the following information. 

TERMINAL 
DEVICE NAME 

The physical name of the terminal, as defined when the 
iRMX 86 PC System was configured. Periods surround 
each name. 

CONFIG EXCEP Hexadecimal condition code that the Human Interface 
received when it attempted to,interpret the terminal 
definition and user definition files (refer to 
Chapter 6 for more information). A zero value 
indicates a normal condition. Nonzero values indicate 
exceptional conditions. Refer to Appendix B for a 
list of exception codes. 

DEVICE EXCEP Hexadecimal condition code that the Human Interface 
received when it originally attached the terminal as a 
physical device. 

3-63 



INITSTATUS 

INIT EXCEP 

USER STATE 

JOB ID 

USER ID 

ERROR MESSAGE 

Condition code that the Human Interface received 
when it created a job for the interactive session. 

Two characters that indicate the current state of 
the terminal. The first character can be either: 

L The terminal is locked and cannot be 
reinitialized (refer to the LOCK command 
later in this chapter). 

The terminal is unlocked. 

The second character can be either: 

E The Human Interface created the 
interactive job associated with this 
terminal and the job exists. 

The interactive job does not exist. 

A sequential number that the Human Interface 
assigns to the interactive job during 
initialization. You must specify this number as a 
parameter in the JOBDELETE command in order to 
delete the corresponding interactive job. 

User ID associated with the interactive job. This 
is the identification of the user that the Human 
Interface associates with the job when the user 
begins a Human Interface session. 

• not a multi-access system 

The Human Interface cannot return information about terminals 
because it 1s not configured for multi-access. This message will 
not be returned for the Preconfigured iRMX 86 Operating System. 

~-64 



.... "", ~ . ~~~ 

JOBDELET 

JOB DELETE 

This command deletes a running interactive job. The system manager can 
use this command to delete any interactive job. Other users can delete 
only those interactive jobs that have the same user ID that they have. 
The format of this command is as follows: 

where: 

job-id-list 

DESCRIPTION 

x-202 

One or more job IDs, separated by commas, of the 
interactive jobs to be deleted. You can obtain 
the IDs of jobs by invoking the INITSTATUS command 
(described earlier in this chapter). 

The JOBDELETE command allows users to delete interactive jobs. Deleting 
an interactive job causes the Human Interface to terminate the 
corresponding user session. 

When JOBDELETE attempts to delete a job, it first attempts to delete the 
job's offspring jobs (for example, a SUBMIT file). It deletes multiple 
levels of offspring jobs. However, JOB DELETE cannot delete any 
interactive job (or offspring) that contains extension objects. Refer to 
the iRMX 86 NUCLEUS REFERENCE MANUAL for information about extension 
objects. 

Normally, when a user's interactive job is deleted, the Human Interface 
recreates the interactive job, thus restarting the user session. 
However, if the LOCK command (described later in this chapter) has been 
specified for the user's terminal, the Human Interface does not 
automatically recreate the user's interactive job after a JOBDELETE 
command. Therefore, the system manager can use the combination of LOCK 
and JOBDELETE to remove users from the system prior to a system shutdown. 

As JOBDELETE deletes each job, it displays the following message at the 
user terminal (:CO:): 

<job-ID>, deleted 

where <job-ID> is the identifier of the deleted job. 

3-65 



JOBDELETE 

ERROR MESSAGES 

• <job-In>, does not exist 

The interactive job associated with the identifier <job-In> does 
not exist. It has already been deleted. 

• <job-ID>, invalid job id 

The number <job-ID> is not a job ID that is associated with any 
terminal managed by the Human Interface. 

• <job-ID>, job does not belong to you 

The user who attempted to delete the interactive job does not 
have the same user ID as the interactive job or is not the system 
manager. 

• <job-ID>, not deleted 
<job-In>, <exception value> : <exception mnemonic> 

An exceptional condition occurred, preventing JOBDELETE from 
deleting the job <job-In>. JOBDELETE displays the exception code 
that resulted. 

3-66 



LOCK 

This command prevents the Human Interface from automatically recreating 
the interactive job for a terminal once that interactive job has been 
deleted. This process is called locking the terminal. The system 
manager can use this command to lock any terminal. Other users can lock 
only those terminals whose interactive jobs have the same user ID that 
they have. The format of this command is as follows: 

where: 

terminal-name-

* 

DESCRIPTION 

x-203 

One or more terminal device names, separated by 
commas, of the terminals to be lo-cked. You can 
obtain the terminal device names by invoking the 
INITSTATUS command (described earlier in this 
chapter). 

A special character indicating that all configured 
terminals should be locked. 

The system manager can use the LOCK command in conjuction with the 
JOBDELETE command either to selectively delete users from the system or 
to shut down the entire system. LOCK prevents the Human Interface from 
recreating a user's interactive job once that job has been deleted. 
Interactive jobs can be deleted in any of the following ways: 

• As a result of the JOBDELETE command (described earlier in this 
chapter) 

• By entering an end-of-file character (CTRL/z) at the terminal 

As LOCK locks each terminal, it displays the following message to the 
user terminal (:CO:): 

<terminal-name>, locked 

where <terminal-name> is the terminal device name of the locked terminal. 

3-67 



LOCK 

ERROR MESSAGES 

• lock not allowed 

You attempted to lock your own terminal. Only system managers 
can lock their own terminals. 

• (terminal-name), .not found 

A terminal with device name (terminal-name) is not configured 
into your application system. 

• not a multi-access system 

The LOCK command does not function if the Human Interface is 
configured for Single-access only. 

3-68 



PERMIT 

This command allows you to grant or revoke user access to files that you 
own. The format of this command is as follows: 

INPUT PARAMETERS 

pathname-list 

access 

One or more pathnames, separated by commas, of the 
files that are to have their access rights or list 
of accessors changed. 

Access characters that grant or rescind the 
corresponding access to the file, depending on the 
value parameter that follows. The possible values 
include: 

value 

D 

L or R 

A 

C or U 

N 

3-69 

access 

Delete 

List (for directories) and 
read (for data files) 

Add entry (for directories) 
and append (for data files) 

Change (for directories) and 
Update (for data files) 

Rescinds all access not 
explicitly granted (used 
without an accompanying value) 

.-204 



PERNUT 

value 

user-list 

DATA 

DIRECTORY 

If specified without an accompanying value, each 
access character grants the specified access. 
Specifying N alone rescinds all access and removes 
the users specified with the USER parameter from 
the file's access list. Specifying N with other 
characters grants the access specified by those 
characters and rescinds all other access. You can 
use Land R interchangeably for both data files 
and directories; likewise C and U. 

Value which specifies whether to grant or rescind 
the associated access right. Possible values 
include: 

value meaning 

o Rescind the access right 

1 Grant the access right 

The default value is 1. That is, specifying an 
access character without a value grants the 
corresponding access. 

User IDs for whom the previously-specified access 
rights apply. Two special values are also 
acceptable for this parameter. They are: 

WORLD 

* 

Special user ID (OFFFFh) giving all 
users access to the file. 

Designator indicating that the 
access rights apply to all users 
currently in the file's access list. 

The Operating System limits each file to three 
user IDs in the access list. If you omit this 
parameter, PERMIT assumes the user ID associated 
with your interactive job. 

Specifies that the access information applies to 
the data files in the pathname list. If you omit 
both the DATA and DIRECTORY parameters, PERMIT 
assumes both. 

Specifies that the access information applies to 
the directories in the pathname list. If you omit 
both the DATA and DIRECTORY parameters, PERMIT 
assumes both. 

3-70 



QUERY 

DESCRIPTION 

Causes PERMIT to prompt for permission to modify 
the access rights associated with each file. It 
does this by displaying the following message: 

<pathname), 
accessor = <new id), <new access), PERMIT?--

Enter one of the following (followed by a carriage 
return) in response to the query: 

Entry 

Y or y 

E or e 

R or r 

Any other 
character 

Action 

Change the access. 

Exit from the PERMIT command. 

Change the access and continue 
with the command without 
further query. 

Do not change access; continue 
with PERMIT command and query 
for next access change, if any. 

You can use the PERMIT command to update the access information for the 
following files: 

• Files for which you are listed as the owner. 

• Files for which you have change-entry access to the file's 
directory. 

You cannot change the access information for other files. PERMIT can 
perform the following functions: 

• Adding or subtracting users from a file's list of accessors. 
This list determines which users have access to the file. 

• Setting the type of access (access rights) granted to the users 
in the accessor list. 

Currently the ,Operating System allows only three user IDs in the list of 
accessors, but one of these IDs can be the special ID WORLD, which grants 
access to all users. 

You specify the type of access to be granted or rescinded by means of 
access characters and values. You can concatenate access characters and 
values together or you can, separate the individual access specifications 
with commas. For e'xample, if you want to grant delete access and rescind 
add and update access, you could enter any of the following combinations: 

3-71 

PERM!] 



PERNUT 

AODUO 
AO,D,UO 
AODIUO 
AOtDI,UO 

As you can see from the previous lines, D is equivalent to Dl. Also, the 
order in which you specify access characters is not important. 

If there are multiple occurrences of an access character in the PERMIT 
command, PERMIT uses the last such character to determine the access. 
For example, the combination: 

DO,Al,Rl,Dl 

is the same as the combination: 

AI,RI,Dl 

In the first combination, the Dl overrides the DO. 

You can use the N character to rescind all access to the file. If 
specified alone t it removes user IDs from the accessor list. However, 
the N character can also be useful when changing access rights, if you 
don't remember the specified user's current access rights. In this case 
you can specify the N character first, to clear all the access rights, 
and follow it with other characters to grant the desired access. For 
example, if you want to grant list access only, instead of specifying: 

DOAOCOL 

you could specify: 

NL 

After changing the access information for a file, PERMIT displays the 
following information: 

<pathname>, 
accessor = <accessor ID>, <access> 

where <pathname) is the pathname of the specified file, <accessor ID> is 
the user ID of one of the files accessors, and <access> indicates the 
access rights that the corresponding user has. PERMIT displays the 
access rights as access characters: DLAC for directories and DRAU for 
data files. If a particular access right is not allowed, the display 
replaces the corresponding character with a dash (-). For example, the 
display: 

-L-C 

indicates that the corresponding user has list and change access. 

3-72 



ERROR MESSAGES 

• <pathname), accessor limit reached 

The Operating System permits only three IDs in the accessor list 
of a file. Before you can add another accessor, you must remove 
one of the current accessors by setting its access rights to N. 

• <pathname), directory CHANGE access required 

Either you are not the owner of the file specified by <pathname), 
or you do not have change access to the file's parent directory. 
You must satisfy one of these two conditions in order to use the 
PERMIT command. 

• <user ID), duplicate USER control 

• 

• 

You must specify the keyword and parameter combination USER = 
userlist only once during the PERMIT command. However, you can 
specify multiple user IDs by separating them with commas in the 
userlist. PERMIT exits without updating the access rights. 

<character), invalid access switch 

The character you entered to indicate the access rights for the 
file was not a valid access character. PERMIT exits without 
updating the access rights. 

<invalid id), invalid user id 

The user IDs you supply with the USER parameter must consist of 
decimal or hexadecimal characters, the characters WORLD, or the 
character *. PERMIT exits if supplied other characters. 

• missing access switches 

You must specify one or more access characters with the PERMIT 
command. PERMIT exits without updating the access rights. 

• no files found 

There were no files of the type you specified (data, directory, 
or both) in the pathname list. 

3-73 

PERMIT 



RENAME 

This command allows you to change the pathname of one or more data files 
or directories. RENAME is effective across directory boundaries on the 
same volume. The format is as follows: 

INPUT PARAMETERS 

inpath-list 

QUERY 

OUTPUT PARAMETERS 

TO 

x-321 

One or more pathnames, separated by commas, of 
files or directories that are to be renamed. 
Blanks between pathnames are optional separators. 

Causes the Human Interface to prompt for 
permission to rename each pathname in the input 
list by issuing one of the following messages: 

<oldname>, rename TO <newname>? 

<oldname>, rename OVER <newname>? 

Enter one of the following (followed by a carriage 
return) in response to the query: 

Entry 

Y or y 

E or e 

R or r 

Any other 
character 

Action 

Rename the file. 

Exit from RENAME command. 

Continue renaming without further 
query. 

Do not rename file; query for the next 
file in sequence. 

Moves the data to the new pathnames in the output 
list. A new-pathname in the output list should 
not already exist. If the output pathname already 
exists, RENAME displays the following message: 

3-74 



OVER 

outpath-list 

DESCRIPTION 

<pathname>, already exists, DELETE? 

Enter Y, y, R, or r to delete the eXisting file. 
Enter any other character if you do not wish tp 
delete the file. In the later case, RENAME skips 
over the specified file without changing it and 
attempts to rename the next pathname in the list. 

Changes each old pathname in a list to the 
corresponding new pathname, even if the new 
pathname already exists. OVER cannot be 'used to 
rename a non-empty directory over another 
non-empty directory. 

Li~t of new pathnames. Multiple pathnames must be 
separated by commas. Separating blanks are 
optional. 

The primary distinction between the RENAME command and the COpy command 
is that, as the RENAME command runs, it releases the pathnames of the 
input files for new uses without performing any further operation on the 
files. 

Another distinction between RENAME and COpy is that RENAME cannot be used 
across volume boundaries; that is, you cannot use the RENAME command to 
rename a file or move data from a volume located on one secondary storage 
device to a volume located on another secondary storage device (for 
example, from one diskette to another). An attempt to do so causes an 
error message. Use the COpy command or a combination of COpy and DELETE 
commands if you wish to rename files or move data across volume 
boundaries. 

To use RENAME, you must have delete access to the current file and 
add-entry access to the destination directory. If you rename a file OVER 
an existing file, you must also have delete access to the second file. 

Although RENAME can be used to rename an existing directory pathname TO a 
new pathname, it cannot be used to rename an existing directory OVER 
another existing directo.ry. For example: 

-RENAME ALPHA TO DELTA ; allowed 
-RENAME ALPHA OVER BETA ;not allowed (unless BETA is empty) 
-RENAME ALPHA/SAMPI OVER BETA/TESTI ; allowed 

3-75 

RENAME 



RENAME 

NOTE 

Changing the name of a directory also 
changes the path of all files listed in 
that directory. All subsequent 
accesses to those files must specify 
the new pathnames for the files. 

As each file in a pathname list is renamed, the RENAME command displays 
one of the following messages, as appropriate: 

<old pathname>, renamed TO <new pathname> 
or 

<old pathname>, renamed O~R <new pathname> 

·ERROR MESSAGES 

• <old pathname>, DELETE access required 

You cannot rename a file unless you have delete access to that 
file. 

• <new pathname>, directory ADD ENTRY access required 

You cannot rename a file unless you have add-entry access to the 
destination directory. 

• <new pathname), new pathname same as old pathname 

You specified the same name for the input pathname as you did for 
the output pathname. 

• TO or OVER preposition expected 

Either you used the AFTER preposition with the RENAME command or 
the number of files in your inpath-list did not match the number 
in your outpath-list. 

3-76 



RESTORE 

This command restores files to a named volume by copying them from a 
backup volume. 

The format of this command is as follows: 

INPUT PARAMETERS 

:backup devic~: 

QUERY 

x-322 

Logical name of the backup device from which 
RESTORE restores files. 

Causes the Human Interface to prompt for 
permission to restore each file. The Human 
Interface prompts with one of the fol~owing 
queries: 

<pathname>, RESTORE data file? 

or 

<pathname>, RESTORE directory? 

Enter one of the following responses to the query: 

Entry 

Y or y 

E or e 

R or r 

Any other 
character 

3-77 

Action 

Restore the file. 

Exit from the RESTORE command. 

Continue restoring files without 
further query. 

If data'file, do not restore the 
file; if directory file, do not 
restore the directory or any 
file in that portion of the 
directory tree. Query for the 
next file, if any. 

RESTORE: 



RESTORE 

OUTPUT PARAMETERS 

TO 

O~R 

pathname 

DESCRIPTION 

Restores the files from the backup volume to new 
files on the named volume, if the files do not 
already exist on the named volume. If a file 
being restored already exists on the named volume, 
RESTORE displays the following message: 

<pathname), already exists, OVERWRITE? 

Enter one of the following in response to the 
query: 

Entry 

Y, y, R, or r 

E or e 

Any other 
character 

Action 

Delete the file and replace 
it with the one from the 
backup volume. 

Exit from the RESTORE 
command. 

Do not restore the file; go 
on to the next file. 

Restores the files from the backup volume over 
(replaces) the files on the named volume. If a 
file does not exist on the named volume, RESTORE 
creates a new file on the named volume. 

Pathname of a file which receives the restored 
files (you must specify a directory pathname when 
restoring more than one file). If you specify a 
logical name for a device, RESTORE places the 
files under the root directory for that device. 
However, the device must contain a volume 
formatted as a named volume. If you wish to 
restore files to the directory in which they 
originated, you should specify the same pathname 
parameter as you used with the BACKUP command. 

RESTORE is a utility which copies files from backup volumes (where the 
BACKUP command originally saved them) to named volumes. RESTORE copies 
the files to any directory you specify, maintaining the hi~rarchical 
relationships between the backed-up files. 

Normally, when RESTORE copies files, it copies only those files to which 
you have access. When it copies these files to the named volume, it 
establishes your user ID as the owner ID (regardless of what the previous 
owner ID was). However, if you are the system manager (user ID 0), 
RESTORE restores all files from the backup volume and leaves the owner ID 
the same as it was. 

3-78 



When copying files, RESTORE restores the following information: 

• File name 

• Access list 

• Extension data 

• File granularity 

• Contents of the file 

RESTORE changes the creation, last modification, and last access dates of 
the file to the current d~te. 

Each backup volume which is used as input to the RESTORE command must 
contain files placed. there by the BACKUP command. In addition, if the 
backup operation required mUltiple backup volumes, you must restore these 
volumes in the same order as they were backed up. 

The output volume which receives the restored files must be a named 
volume. You must have sufficient access rights to the files in that 
volume to allow RESTORE to perform all necessary operations. For RESTORE 
to create new files on a named volume, you must have add entry access to 
directories on that volume. For RESTORE to restore files over existing 
files, you must have add entry and change entry access to directories in 
that volume and delete, append, and update access to data files. 

When you enter the RESTORE command, RESTORE displays the following 
sign-on message: 

iRMX 86 DISK RESTORE UTILITY Vx.y 

where Vx.y i~ the version number of the utility. Then it prompts you for 
a backup volume. 

Whenever RESTORE requires a new backup volume, it issues the following 
message: 

<backup device>, mount backup volume #<nn> , enter Y to continue: 

where <backup device> indicates the logical name of the backup device and 
<nn> the number of the requested volume. (RESTORE in some cases displays 
additional information to indicate problems with the current volume.) In 
response to this message, place the backup volume in the backup device 
(make sure that the volume number is correct if the backup operation 
involved multiple volumes). Enter one of the following: 

Entry 

Y, y, R, or r 

E or e 

Any other 
character 

Action 

Continue the restore process. 

Exit from the RESTORE command. 

. Invalid entry; reprompt for entry. 

3-79 

RESTORE 



RESTORE 

RESTORE continues prompting you until you supply the correct backup 
volume. 

As it restores each file~ RESTORE displays one of the following messages 
at the Human Interface console output device (:CO:): 

<pathname>, restored 

or 

<pathname>, directory restored 

ERROR MESSAGES 

• 

• 

• 

<pathname>~ access to directory or file denied 

RESTORE could not restore a file, either because you did not have 
add entry access to the file's parent directory or because you 
did not have update access to the file. RESTORE continues with 
the next file. 

<backup device>, backup volume #<nn>, <date>, mounted 
<backup device>, backup volume #<nn>, <date>, required 

<backup device>, mount backup volume #<nn>, enter Y to continue: 

RESTORE cannot continue because the backup volume you supplied is 
not the one that RESTORE expected. Either you supplied a volume 
out of order or you supplied a volume from a different backup 
session. RESTORE reprompts for the correct backup volume. 

<backup device>, cannot attach volume 
<backup device>~ <exception value> : <exception mnemoniC> 

<backup device>, mount backup volume I<nn>, enter Y to continue: 

RESTORE cannot access the backup volume. This could be because 
there is no volume in the backup device or because of a hardware 
problem with the device. The second line of the message 
indicates the iRMX 86 exception code encountered. RESTORE 
continues to issue this message until you supply a volume that 
RESTORE can access. 

• <pathname>, <exception value> : <exception mnemonic>, error 
during BACKUP, file not restored 

When the BACKUP utility saved files, it encountered an error when 
attempting to save the file indicated by this pathname. RESTORE 
is unable to restore this file. The message lists the iRMX 86 
exception code encountered. 

3-80 



• <pathname>, <exception value> : <exception mnemonic>, error 
during BACKUP, restore incomplete 

When the BACKUP utility saved the files, it encountered an error 
when attempting to save the file indicated by this pathname. 
RESTORE restores as much of the file as possible to the named 
volume. The message lists the iRMX 86 exception code encountered. 

• <backup device>, error reading backup volume 

• 

• 

<backup device>, <exception value> : <exception mnemonic> 

RESTORE tried to read the backup volume but encountered an error 
condition, possibly because of a faulty area on the volume. The 
second line of the message indicates the iRMX 86 exception code 
encountered. 

<pathname>, <exception value> : <exception mnemonic), error 
writing output file, restore incomplete 

RESTORE encountered an error while writing a file to the named 
volume. This message lists the iRMX 86 exception code 
encountered. RESTORE writes as much of the file as possible to 
the named volume. 

<pathname>, extension data not restored, <nn> bytes required 

The amount of space available on the named volume for extension 
data is not sufficient to contain all the extension data 
associated with the specified file. The value <nn> indicates the 
number of bytes required to contain all the extension data. This 
message indicates that the named volume on which RESTORE is 
restoring files is formatted differently than the named volume 
which originally contained the files. To ensure that you restore 
all the extension data from the backup volume, you should restore 
the files to a volume formatted with an extension size set equal 
to the largest value reported in any message of this kind. Refer 
to the description of the FORMAT command for information about 
setting the extension size. 

• <backup device>, invalid backup device 

The logical name you specified for the backup device was not a 
logical name for a device. 

• <backup device>, not a backup volume 

<backup deVice>, mount backup volume H<nn>, enter Y to continue: 

The volume you supplied on the backup device was not a backup 
volume. RESTORE continues to issue this message until you supply 
a ba~up volume. 

3-81 

RESTORE 



RESTORE 

• <pathname), not restored 

For some reason, RESTORE was unable to restore a file from the 
backup volume. RESTORE continues with the next file. Another 
message usually precedes this message to indicate the reason for 
not restoring the file. 

• output specification missing 

You did not specify a pathn~e to indicate the destination of the 
restored files. 

• <pathname), READ access required 

• 

You do not have read access to a file on the backup volume; 
therefore RESTORE cannot restore the file. 

<pathname), too many input pathnames 

You attempted to enter a list of logical names as logical names 
for' backup devices. You can enter only one input logical name 
per invocation of RESTORE. 

3-82 



SUBMIT 

This command reads and executes a set of commands from a file in 
secondary storage instead of from the console keyboard. To use the 
SUBMIT command you must first create a data file that defines the command 
sequence and formal parameters (if any). The format of the command is as 
follows: 

INPUT PARAMETERS 

pathname 

parameter-list 

OUTPUT PARAMETERS 

TO 

Name of the file from which the commands will be 
read. This file may contain nested SUBMIT files. 

Actual parameters that are to replace the formal 
parameters in the SUBMIT file. You must surround 
this parameter list with parentheses. You can 
specify as many as 10 parameters, separated by 
commas, in the SUBMIT command. If you omit a 
parameter, you must reserve its position by 
entering a comma. If a parameter contains a 
comma, space, or parenthesis, you must enclose the 
parameter in single quotes. The sum of all 
characters in the parameter list must not exceed 
512 characters. 

Causes the output from each command in the SUBMIT 
file to be written to the specified new file 
instead of the console screen. If the output file 
already exists, the SUBMIT command displays the 
following message: 

<pathname>, already exists OVERWRITE? 

3-83 

SUB "-
":~ 



SUBMIT 

OVER 

AFTER 

out-pathname 

DESCRIPTION 

Enter Y, y, R, or r if you wish the existing 
output file to be deleted. Enter any other 
character if you do not wish the existing file to 
be deleted. A response other than Y or y causes 
the SUBMIT command to be terminated and you will 
be prompted for a new command entry. 

Causes the output for each command in the SUBMIT 
file to be written over the specified existing 
file instead of the console screen. 

Causes the output from each command in the SL~MIT 
file to be written to the end of an existing file 
instead of the console screen. 

Pathname of the file to receive the processed 
output from each command executed from the SUBMIT 
file. If no preposition or output file is 
specified, TO :CO: is the default. 

Any program that reads its commands from the console input (:CI:) can be 
executed from a SUBMIT file. If another SUBMIT command is itself used in 
a SUBMIT file, it causes another SUBMIT file to be invoked. You can nest 
SUBMIT files to any level of nesting until memory is exhausted (each 
level of SUBMIT requires approximately 10K of dynamic memory). When one 
nested SUBMIT file completes execution, it returns control to the next 
higher level of SUBMIT file. 

If, during the execution of SUBMIT (or any nested SUBMIT), you enter the 
CTRLlc character to abort processing, all SUBMIT processing exits and 
control returns to your user session. 

When you create a SUBMIT file, you indicate formal parameters by 
specifying the characters %n, where n ranges from 0 through 9. When 
SUBMIT executes the file, it replaces the formal parameters with the 
actual parameters listed in the SUBMIT command (the first parameter 
replaces all instances of %0,_ the second parameter replaces all instances 
of %1, and so forth). If the actual parameter is surrounded by quotes, 
S'UBMIT removes the quotes before performing the substitution. If there 
is no actual parameter that corresponds to a formal parameter, SUBMIT 
replaces the formal parameter with a null string. 

When you specify a preposition and output file (other than :CO:) in a 
SUBMIT command, only your SUBMIT command entry will be echoed on the 
console screen; the individual command entries in the submit file are not 
displayed on the screen as they are loaded and executed. 

The SUBMIT command will display the following message when all commands 
in the submit file have been executed: 

END SUBMIT <patbname) 

3-84 



ERROR MESSAGES 

• <pathname), end of file reached before end of command 

The last command in the input file was not specified completely. 
For example, the last line might contain a continuation character. 

• <parameter), incorrectly formed paramete'r 

You separated the individual parameters in the parameter list 
with a separator character other than a comma. 

• <pathname), outpu~ file same as input file 

• 

• 

• 

EXAMPLE 

You attempted to place the output from SUBMIT into the input file. 

<pathname), too many input files 

You specified more than one pathname as input to SUBMIT. SUBMIT 
can process only one file per invocation. 

<parameter), too many parameters 

You specified more than 10 parameters in your parameter list. 

<pathname), UPDATE or ADD access required 

SUBMIT cannot write its output to the output file because you do 
not have update access to the file (if it already exists) or 
because you do not have add access to the file's parent directory 
(if the f~le does not currently exist). 

This example shows a SUBMIT file that uses formal parameters and the 
command that you can enter to invoke this SUBMIT file. The SUBMIT file, 
which resides on file :Fl:MOVE$FILE, contains the following lines: 

ATTACHDEVICE Fl AS %0 
CREATEDIR %0/%1 
UPCOpy :Fl:%2 TO %0%1/%2 

The SUBMIT file contains three formal parameters, indicated by %0, %1, 
and %2. The %0 indicates the logical name of an iRMX 86 device; the %1 
indicates the name of a directory on that device; the %2 indicates the 
name of a file which will be copied from an ISIS-II disk to the iRMX 86 
device. 

3-85 

SUBMIT 



SUBMIT 

The SUBMIT command used to invoke this file is as follows: 

-SUBMIT :FO:MOVE$FILE (:Fl:, PROG, FILEI) 

The command sequence created and executed by SUBMIT is shown as it would 
be echoed on the console "output device. 

-ATTACHDEVICE Fl AS :Fl: 
FI, attached as :Fl: 
-CREATEDIR :Fl:/PROG 
:Fl:PROG, directory created 
-UPCOPY :FI:FILEI TO :Fl:PROG/FILEl 
:Fl:FILEl up copied TO :Fl:PROG/FILEl 
END SUBMIT :FO:MOVE$FILE 

3-86 



SUPER 

This command allows operators who are designated as system managers to 
change their user IDs to the system manager user ID (user ID 0). Having 
entered the SUPER command, these users can invoke a sub-command to change 
to any other user ID. The format of this command is as follows: 

----~~ SUPER ~~----
x-206 

DESCRIPTION 

SUPER allows you to change your user ID to that of the system manager. 
It has two sub-commands (CHANGEID and EXIT) that are available only after 
you have invoked SUPER. CHANGEID allows you to change your user ID to 
any valid number. EXIT exits the SUPER utility. 

In order to invoke SUPER, you must know a password associated with the 
system manager. This password is stored in the user definition file for 
user ID 0 (refer to Chapter 6). After you enter the SUPER command, SUPER 
prompts for the password by displaying: 

ENTER PASSWORD: 

You must then enter the correct password. Although the Human Interface 
doesn't usually distinguish between uppercase and lowercase letters, the 
password is an exception. It must be exactly the same as the password in 
the user definition file. (SUPER does not echo your input at the 
terminal.) After you enter the correct password, SUPER changes your user 
ID to user ID 0 and issues the following prompt. 

super-

This prompt is a new system prompt (replacing the "_") that appears 
whenever the Human Interface is ready to accept input. At this point, 
you can enter any Human Interface commands and access any files available 
to the system manager. If you create new files, they will be listed as 
owned by user ID O. You can also invoke the sub-commands available with 
SUPER. 

SUBCOMMANDS 

There are two sub-commands available with SUPER: CHANGEID and EXIT. You 
can invoke these sub-co~ands only after first invoking the SUPER command. 

The CHANGEID sub-command allows you to change your current user ID to any 
value between 0 and 65535 decimal. The format of the CHANGEID 
sub-command is as follows: 

3-87 



SUPER 

where: 

id 

x-207 

Value to which you want to change your user ID. 
This can be any numeric value from 0 to 65535 
decimal. or the characters "WORLD" which specifies 
ID 65535 decimal. If you omit this value. 
CHANGEID sets your user ID to that of the system 
manager (user ID 0). 

If you change your user ID to anything other than that of the system 
manager (user ID 0), the system prompt changes to the following: 

super(id)-

where id is the decimal equivalent of your new user ID (or the characters 
"WORLD") • 

The EXIT sub-command exits from the SUPER utility. The format of this 
sub-command is as follows: 

---<C EXIT ~ ... --
x-208 

After you enter this sub-command, the Human Interface changes your user 
ID back t·o the ID you had before entering the SUPER command. It also 
changes the system prompt back to the "-" value. To change your user ID 
again, you must invoke the SUPER command. 

ERROR MESSAGES 

• <exception value> : <exception mnemonic> cannot set default user 

An internal system problem prevented the Human Interface from 
changing your user ID. 

• <user-id>, invalid user id 

The user ID you specified contained invalid characters or was not 
in the range 0 to 65535 decimal. 

3-88 



• invalid password 

The password you entered does not match the password associated 
with the system manager that is listed in the user definition 
file. 

• <exception value> : (exception mnemoniC>t SUPER is un-available 

The Human Interface encountered an error while reading the 
password you entered or while accessing the system manager's user 
definition file (to determine if the password is correct). This 
message lists the exception code that occurs. 

3-89 

SUPEF 



TIME 

This command sets the system clock. If no new time is entered, the TIME 
displays the current system date and time. The format is as follows: 

x-209 

INPUT PARAMETERS 

hh Hours specified as 0 through 24. 

mm Minutes specified as o through 59. If you omit 

8S 

QUERY 

DESCRIPTION 

this parameter, 0 is assumed. 

Seconds specified as o through 59. If you omit 
this parameter, 0 . 1s assumed • 

Causes TIME to prompt you for the time by issuing 
the following message: 

TIME: 

TIME continues to issue this message until you 
enter a valid time. 

You must separate the individual time parameters with colons. 

If you omit the time parameters, TIME displays the current date and time 
in the following format: 

dd mmm yy, hh:mm:ss 

where dd mmm yy indicates the date and hh:mm:ss indicates the time. 

3-90 



In order to obtain the correct time when you enter the TIME command 
without parameters, you must initially set the time. If you request the 
time on a system in which you haven't already set the time (or on a 
non-timing system), TIME command displays the following message: 

00:00:00 

See also the DATE command in this chapter if you wish to set the date in 
conjunction with the system clock. 

ERROR MESSAGES 

• <time>, invalid time 

• 

You specified an invalid or out-of-range entry for one or more of 
the time parameters. 

<parameter>, invalid syntax 

You specified both a time and the QUERY parameter in the TIME 
command. 

3-91 

TIME 



UPCOpy 

This command copies files from a volume on ISIS-II secondary·storage to a 
volume on iRMX 86 secondary storage via the iSBC 957B Interface and 
Execution package. 

INPUT PARAMETERS 

inpath-list 

QUERY 

x-323 

List of one or more filenames of the ISIS-II files 
that are to be copied to fRMX 86 secondary 
storage. either on a one-for-one basis or 
concatenated into one or more iRMX 86 output files. 

Causes the Ruman Interfac~ to prompt for 
permission to copy each ISIS-II file to the listed 
iRMX 86 output file. Depending on which 
preposition you specify (TO, OVER, or AFTER), the 
Human Interface prompts with one of the following 
queries: 

<in-pathname>, copy up TO <out-pathname>? 

<in-pathname>, copy up OVER <out-pathname>? 

<in-pathname>, copy up AFTER <out-pathname>? 

Enter one of the following (followed by a carriage 
return) in response to the query: 

Entry 

Y or y 

E or e 

R or r 

Any other 
character 

Action 

Copy the file. 

Exit from the UPCOPY command. 

Continue copying files without 
further query. 

Do not copy this file; go to 
the next file in sequence. 

3-92 



OUTPUT PARAMETERS 

TO 

OVER 

AFTER 

outpath-list 

DESCRIPTION 

Copies the ISIS-II file or f.iles TO a new iRMX 86 
file or files in the listed sequence. If the 
output file already exists, UPCOPY displays the 
the following message: 

<pathname), already exists, OVERWRITE? 

Enter Y, y, R, or r if you wish to write over the 
existing file. Enter any other character if you 
do not wish the file to be overwritten. 

If no preposition 1s specified, TO :CO: is the 
default. If more input files than output files 
are specified in the command line, the remaining 
input files will be appended to the end of the 
last listed output file. 

Copies the listed ISIS-II input file or files OVER 
existing iRMX 86 destination files in the listed 
sequence. If more input files than output files 
are listed in the command line, the remaining 
input files will be appended to the end of the 
last listed output file. 

Appends the listed ISIS-II input file or files 
AFTER the end-of-data on an existing iRMX 86 
output file or files in the listed sequence. 

One or more pathnames of the iRMX 86 destination 
files. Multiple pathnames must be separated by 
commas. Separating blanks are optional. If the 
preposition and output parameter defaults are used 
in the command line, the output will go to the 
iRMX 86 console screen. 

Before you enter an UPCOPY command on the iRMX 86 console keyboard, you 
must have your target system connected to a development system via the 
iSBC 957B package, and the package must be running. To do this, you 
must start your iRMX 86 system from the development system terminal 
(either by loading the software into the target system and using the 
monitor G command to start execution, or by using the monitor B command 
to bootstrap load the software). UPCOPY does not function if you start 
up your system from the iRMX 86 terminal or if you establish the link 
between development system and target system after starting up your iRMX 
86 system. 

The user ID of the user who invokes the UPCOPY command is considered the 
owner of new files created by UPCOPY. Only the owner can change the 
access rights associated with the file (refer to the PERMIT command). 

3-93 

upcopy 



UPCOpy 

As it copies each ISIS-II file in the input list, UPCOPY displays one of 
the following messages at the terminal, as appropriate: 

<in-pathname), copied up TO <out-pathname) 

<in-pathname), copied up OVER <out-pathname) 

<in-pathname), copied up AFTER <out-pathname> 

When the UPCOPY command is executing, the iSBC 957B package disables 
interrupts. This affects services such as the time-of-day clock. Also, 
the Operating System is unable to receive any characters that you 
type-ahead while the UPCOPY command is executing. 

ERROR MESSAGES 

• <pathname), ISIS ERROR: <nnn> 

An ISIS-II Operating System error occurred when UPCOPY tried to 
transfer the file to the Microcomputer Development System. Refer 
to the INTELLEC SERIES III MICROCOMPUTER DEVELOPMENT SYSTEM 
CONSOLE OPERATING INSTRUCTIONS for a description of the resulting 
error code. 

• ISIS link not present 

The the iRMX 86 system is not connected to the development system 
via the iSBC 957B package. 

• <pathname), UPDATE or ADD access required 

Either you cannot overwrite the information in a file because you 
do not have update access to it, or you cannot copy information. 
to a new file because you do not have add entry access to the 
file's parent directory. 

3-94 



VERSION 

This command displays the version number of a command or other program, 
if that command has a version number encoded in its object code. The 
format of this command is as follows: 

---c:c VERSION ~lhname-I~)OO--

INPUT PARAMETER 

pathname-list 

DESCRIPTION 

x-210 

One or more pathnames, separated by commas, of 
commands for which a version number is desired. 

When you enter the VERSION command, it displays the version number of 
each command, if there is one, in the following format: 

<pathname), <command-name) version is x.y 

where: 

<pathname) 

<command-name) 

xxxx 

Pathname of the file containing the command. 

Name of the specified command; Intel-supplied 
commands have names as listed in this manual. 

Version number of the command. 

You can use VERSION to determine the version number of any Human 
Interface command. You can also use it to determine the version numbers 
of commands that you write. However, for VERSION to work on your 
commands, you must include a literal string in the command's source code 
to specify the name of the command and its version. The string must 
contain the following information: 

'command version number=xxxx', 
'command name=yyyy ••• yyy',O 

where: 

command version number- You must specify this portion exactly as 
shown (lower case, underscore separating the 
words, no spaces). 

3-95 

VERSION __ 



VERSION 

xxxx 

command name= 

yyyy ••• yyy 

° 

Version number of the product. This can be any 
four characters, but it must be exactly four 
characters long. 

This portion is optional. However, if you want 
VERSION to recognize and display the program name, 
you must specify this portion exactly as shown. 

Name of the command. This can be any number of 
characters. 

The literal string must be terminated with a byte 
of binary zero. 

An example of such a literal string is: 

DECLARE version (*) BYTE DATA('program version number=V8.S', 
'program name=MYPROGRAM',O); 

If your program includes this declaration, when you invoke VERSION, it 
will display the folloWing information: 

<pathname> , MYPROG version is VS.S 

A literal string that does not include the program name is: 

DECLARE vers2(*) BYTE DATA('program_version_number=1983',O); 

If your program includes this declaration, when you invoke VERSION, it 
will display the following information: 

<pathname>, version is 1983 

*** 

3-96 



CHAPTER 4. UDI SYSTEM CALLS 

Programs request iRMX 86 PC Operating System services through the 
Universal Development Interface (UDI) system calls. This chapter 
describes the set of system calls that are available to iRMX 86 PC 
programs. Although the iRMX 86 Operating System can recognize many other 
system calls, (these are listed in Appendix B) you can perform all normal 
operations with UDI calls. This is a design characteristic of the UDI; 
it provides a standard interface by which your programs send requests to 
the Operating System, and through which the Operating System returns 
information to programs. 

This chapter contains these four sections: 

• USING THE UDI. This section outlines general programming 
considerations for using the Universal Development Interface. 
For example, this section explains how to use UDI libraries and 
how to deal with errors in programs. 

• TYPES OF UDI SYSTEM CALLS. This section explains certain 
concepts about UDI File Management and Memory Management system 
calls. For example, the concept of a file connection is 
explained here. 

• DESCRIPTIONS OF SYSTEM CALLS. This section is the heart of the 
chapter. Each UDI system call is described in detail, with an 
explanation of how the call is invoked. The calls are arranged 
alphabetically for quick reference. At the beginning of this 
section you will find a System Call Dictionary: a brief listing 
of system calls arranged into functional groupings. 

• EXAMPLE PROGRAM. At the end of the chapter is a sample program 
using the UDI system calls. 

USING THE UDI 

This section contains information about: 

• Exceptional conditions that can occur when you use UDI system 
calls 

• UDI Libraries and INCLUDE files 

• Special data types referred to in descriptions of UDI system calls 

4-1 



UDI SYSTEM CALLS 

EXCEPTIONAL CONDITIONS 

Every UDI call except DQ$EXIT returns a condition code which specifies 
the status of the call. Each condition code has a unique numeric value, 
and an associated mnemonic by which it is known. For example, the code 
indicating that there were no errors or unusual conditions has the 
numeric value zero (0) and the name E$OK. Any code other than E$OK 
returned from a system call means there was an exceptional condition. 

Exception codes are classified as: 

• Environmental Exceptions. These are generally caused by 
conditions outside the control of a program; for example, device 
errors or insufficient memory. 

• Programmer Errors. These are typically caused by coding errors 
(for example, "bad parameter"), but "divide-by-zero", "overflow", 
"range check", and errors detected by the 8087 Numeric Processor 
Extension are also classified as avoidable. 

When an error is detected, the normal (default) system action is to 
display on the console terminal an error message, and terminate the 
program. However, you may establish your own routine to handle 
exceptions by using the UDI system calls DQ$TRAP$EXCEPTION and 
DQ$DECODE$EXCEPTION. 

Appendix A contains a list of exception codes that the iRMX 86 Operating 
System can return, with the numeric value, mnemonic, and meaning of each 
code. 

UDI LIBRARIES 

To execute a program which uses UDI system calls, you must link the 
program to one of three iRMX 86 UDI libraries. These libraries are 
called LARGE.LIB, COMPAC.LIB, and SMALL.LIB. If your program corresponds 
to the LARGE or MEDIUM models of segmentation, link it to LARGE. LIB. If 
your program corresponds to the SMALL or COMPACT models of segmentation, 
link it to SMALL. LIB or COMPAC.LIB, respectively. 

This chapter will assume that the libraries have been transferred to the 
directory :SD:UDI (from the Include Files Diskette delivered with the 
iRMX 86 PC product). The pathname for the COMPACT library, for example, 
is :SD:UDI/COMPAC.LIB. 

The iRMX 86 PROGRAMMING TECHNIQUES manual discusses selecting a model of 
segmentation. While these models deal with the PL/M 86 language, they 
apply to assembly language as well. In contrast, Pascal-86 and 
FORTRAN-86 require the LARGE library. 

4-2 



UDI SYSTEM CALLS 

INCLUDE FILES 

You must declare each UDI procedure used in your PL/M-86 programs as an 
EXTERNAL PROCEDURE. Each UDI system call has a corresponding file on the 
Include File Diskette sent by Intel (see Preface); the file contains a 
PL/M-86 EXTERNAL PROCEDURE statement for that system call. You can build 
a single file to INCLUDE the files that are for the system calls used in 
your programs. 

All Universal Development Interface (UDI) System Call Declarations are 
contained in the following files. The name of the system call is listed 
first, followed by the name of the file containing the external 
declaration for the call. The list is alphabetical by system call name, 
and is printed in groups of five for readability. 

ALLOCATE UALLOC.EXT 
ATTACH UATACH.EXT 
CHANGE$ACCESS UCHAC.EXT 
CHANGE $ EXTENS ION UCHEXT.EXT 
CLOSE UCLOSE.EXT 

CREATE UCREAT.EXT 
DECODE$EXCEPTION UDCEX.EXT 
DECODE$TIME UDCTIM.EXT 
DELETE UDELET.EXT 
DETACH UDTACH.EXT 

EXIT UEXIT.EXT 
FILE$INFO UFLINF.EXT 
FREE UFREE.EXT 
GET$ARGUMENT UGTARG.EXT 
GET$CONNECTION$STATUS UGTCN.EXT 

GET$EXCEPTION$HANDLER UGTEXH.EXT 
GET$SIZE UGTSIZ.EXT 
GET$SYSTEM$ID UGTSID.EXT 
GET$TIME UGTTIM.EXT 
OPEN UOPEN.EXT 

OVERLAY UOVLY.EXT 
READ UREAD.EXT 
RENAME URENAM.EXT 
RESERVE$IO$MEMORY URSIOM.EXT 
SEEK USEEK.EXT 

SPECIAL USPECL.EXT 
SWITCH$BUFFER UTRUNC.EXT 
TRAP$CC UTRAPC.EXT 
TRAP$EXCEPTION UTRPEX.EXT 
WRITE UWRITE.EXT 

4-3 



UDI SYSTEM CALLS 

DATA TYPES 

The following data types are referred to in the descriptions of system 
calls: 

BYTE 

WORD 

STRING 

POINTER 

SELECTOR 

TOKEN 

An 8-bit item. 

A two-byte item. 

A 32-bit integer. 

A sequence of bytes, the first of which contains the 
number of characters in the STRING. 

Equivalent to PL/M-86 type POINTER. It is two bytes 
under the small model of segmentation; four bytes in 
other cases. 

A 16-bit iAPX 86,88 paragraph number (the base portion of 
a four-byte pointer). 

A value passed between a program and the Operating System 
to represent an object. You can declare TOKEN to be a 
SELECTOR if your compiler supports the SELECTOR data 
type; otherwise declare it to be a WORD. 

DESCRIPTIONS OF SYSTEM CALLS 

This section contains descriptions of each UDI system call. The calls 
are arranged alphabetically. Before the first system call description, a 
System Call Dictionary (Table 4-1) shows the calls arranged in functional 
groups, with a short description of each call and the page n~mber of the 
description. 

Every system call description contains the following information in the 
order listed here: 

• The name of the system call. 

• A brief summary of the function of the call. 

• The form of the call as it is invoked from a PL/M-86 program, 
with symbolic names for each parameter. (Calling sequences show 
formal parameters in lower case.) 

• Definition of input and output parameters. 

• A complete explanation of the system call, including any 
information you will need to use the system call. 

4-4 



UDr SYSTEM CALLS 

NOTE 

The first system call described, 
DQ$ALLOCATE, also includes an actual 
PL/M-86 invocation of the system call 
(as opposed to formal invocation) and 
an ASM-86 calling sequence. These 
examples are shown only once because 
they are typical of all system calls. 

MEMORY MANAGEMENT SYSTEM CALLS 

When the iRMX 86 Operating System loads and runs a program, the program 
is allocated a specific amount of memory. The portion of memory not 
occupied by loaded code and data -- the free space pool -- is available 
to programs dynamically, i.e., while the program is running. The 
Operating System manages memory as segments of the size a program 
requests. 

Your programs can use the UDI system calls DQ$ALLOCATE, and DQ$FREE, 
respectively, to get a memory segment from the pool, and to return the 
segment to the pool. You can use the call DQ$GET$SIZE to receive 
information about an allocated memory segment. 

FILE-HANDLING SYSTEM CALLS 

About one-half of UDI system calls are used to manipulate files. Figure 
4-1 shows the chronological relationship between the most frequently used 
file-handling system calls. 

ATTACH 

CREATE 

OPEN 
READ WRITE 

SEEK 
TRUNCATE 

CLOSE DETACH 

Figure 4-1. Chronology Of System Calls 

4-5 

DELETE 

x-327 



UDI SYSTEM CALLS 

The iRMX 86 Operating System distinguishes between: 

• Establishing the association between a program and a data file 

• Operating on the data file 

The association between a program and a data file is a connection, and is 
represented in your programs by a token of type CONNECTION. 

Your programs establish a connection by using the system calls DQ$ATTACH 
or DQ$CREATE and break the connection with DQ$DETACH. When your program 
establishes a connection via DQ$ATTACH or DQ$CREATE, it receives a 
CONNECTION token from the operating system. You use this token in all 
further communications with the operating system to identify the file. 

You use the procedure DQ$OPEN to prepare an established connection for 
input/output operations. You perform the actual input or output 
operations with DQ$READ and DQ$WRITE. You can move the file pointer with 
the DQ$SEEK call. When input/output is finished, you close the'file 
connection with DQ$CLOSE. Note that you open and close connections, not 
files. Closing a file connection frees buffer space. Once a connection 
is established, it may be opened and closed as often as necessary. 

DQ$DETACH is the call that eliminates a connection, and DQ$DELETE deletes 
a file. If a file has connections attached when a program issues 
DQ$DELETE, the Operating System will mark for deletion the file. That 
is, the file is not actually deleted until all connections are detached. 

This section describes the major File Handling system calls. Refer the 
System Call Dictionary for a complete list. 

EXCEPTION-HANDLING SYSTEM CALLS 

When an exceptional condition occurs while the iRMX 86 Operating System 
is running a user program, the default exception handler (part of the 
Operating System) will terminate the program and display a message on the 
terminal identifying the exception code. You can write a program to 
handle exception codes, rather than using the default exception handler. 
In this case, the Operating System will not terminate your program, but 
will pass control to your exception handler. Three system calls are used 
to define and use your own exception handler: 

• DQ$ TRAP $ EXCEPTION , which is used to identify an exception handler 
that you provide. 

• DQ$GET$EXCEPTION$HANDLER, which is an informative system call 
returning the address of the current exception handler: either 
the default system handler, or one you specify with 
DQ$TRAP$EXCEPTION. 

• DQ$DECODE$ EXCEPTI ON , which converts an exception numeric code 
into its equivalent mnemonic. 

4-6 



UD! SYSTEM CALLS 

Before your exception handler gets control, the iRMX 86 Operating System 
does the following: 

1. Pushes the condition code onto the stack. 

2. Pushes the number of the parameter that caused the exception onto 
the stack (1 for the first parameter, 2 for the second, etc.). 

3. Pushes a word onto the stack (reserved for future use). 

4. Pushes a word for the 8087 Numeric Processor Extension onto the . 
stack. 

5. Initiates a long call to the exception handler. 

If the condition was not caused by an erroneous parameter, the 
responsible parameter number is zero. If the exception code is E$NDP, 
the fourth item pushed onto the stack is the 8087 status word, and 8087 
exceptions have been cleared. 

Programs compiled under the SMALL model of segmentation cannot have an 
alternate exception handler, but must use the default system exception 
handler. This is because the exception handler must have a LONG POI~7ER, 
which is not available with SMALL segmentation. 

SYSTEM CALLS 

This section lists contains descriptions of every UDI system call. Table 
4-1 contains lists the calls by functional classes, and includes, for 
each call: 

• The name of the call 

• A brief description of the call 

• The page number of the description 

4-7 



SYSTEM CALL 

DQ$EXIT 

DQ$OVERLAY 

DQ$TRAP$CC 

DQ$ATTACH 

DQ$CHANGE$­
ACCESS 

DQ$CHANGE$­
EXTENSION 

DQ$CLOSE 

DQ$CREATE 

DQ$DELETE 

DQ$DETACH 

DQ$GET$CON­
NECTION$STATUS 

DQ$FILE$INFO 

DQ$OPEN 

DQ$READ 

DQ$RENANE 

DQ$SEEK 

DQ$SPECIAL 

DQ$TRUNCATE 

DQ$WRITE 

UDr SYSTEM CALLS 

Table 4-1. System Call Dictionary 

FUNCTION PERFORMED 

PROGRAM CONTROL CALLS 

Exits from the current application job. 

Causes the specified overlay to be loaded. 

Captures control when CTRL/c is typed. 

FILE-HANDLING CALLS 

Creates a connection to a specified file. 

Changes the access rights associated with a 
file or directory. 

Changes the extension of a file name in memory. 

Closes the specified file connection. 

Creates a file for use by the application. 

Deletes a file. 

Closes a file and deletes its connection. 

Returns status of a file connection. 

Returns data about a file connection. 

Opens a file for a particular type of access. 

Reads the next sequence of bytes from a file. 

Renames the specified file. 

Moves the current position pointer of a file. 

Sets terminal line-edit/transparent mode. 

Truncates a file to the specified length. 

Writes a sequence of bytes to a file. 

4-8 

PAGE 

4-23 

4-37 

4-48 

4-12 

4-13 

4-15 

4-16 

4-17 

4-21 

4-22 

4-29 

4-24 

4-35 

4-39 

4-41 

4-43 

4-45 

4-50 

4-51 



UDI SYSTEM CALLS 

Table 4-1. System Call Dictionary (continued) 

SYSTEM CALL 

DQ$ALLOCATE 

DQ$FREE 

DQ$GET$SIZE 

DQ$RESERVE$­
IO$MEMORY 

DQ$DECODE$­
EXCEPTION 

DQ$GET$EXCEPT­
ION$HANDLER 

DQ$TRAP$­
EXCEPTION 

DQ$DECODE$TlME 

DQ$GET$ARGUMENT 

DQ$GET$­
SYSTEM$ID 

DQ$GET$TIME 

FUNCTION PERFORHED PAGE 

MEMORY MANAGEMENT CALLS 

Requests a memory segment of a specified size. 4-10 

Returns a memory segment to the system. 4-26 

Returns the size of the specified segment. 4-32 

Requests that memory be set aside for 4-42 
I/O operations overhead. 

EXCEPTION-HANDLING CALLS 

Converts an exception numeric code into its 
equivalent mnemonic. 

Returns a POINTER to the address of the 
program currently being used to process 
errors. 

Identifies a custom exception processing 
program for a particular type of error. 

UTILITY AND COMMAND PARSING 

Returns system time and date in binary and 
in ASCII character format. 

Returns an argument from a STRING. 

Returns the name of the underlying 
operating system supporting the UDI. 

(Obsolete: included for compatability.) 

4-18 

4-31 

4-49 

4-19 

4-27 

4-33 

4-34 

DQ$SWITCH$BUFFER Selects a new buffer from which to process 
commands. 4-47 

4-9 



'>--_ -1 ~. ~ .. ~, _ ~ 

Q$ALLOCATE 

DQ$ALLOCATE 

DQ$ALLOCATE requests a memory segment from the free memory pool. 

base$addr = DQ$ALLOCATE (size, except$ptr); 

INPUT PARAMETER 

size 

OUTPUT PARAMETERS 

base$addr 

except$ptr 

DESCRIPTION 

A WORD which, 

• if not zero, contains the size, in bytes, of the 
requested segment. If the size parameter is not 
a multiple of 16, it will be rounded up to the 
nearest multiple of 16. 

• if zero, indicates that the size of the request 
is 65536 (64K) bytes. 

A SELECTOR in which the Operating System places the 
base address of the memory segment. If the request 
fails because the memory requested is not 
available, this argument will be OFFFFH, and the 
system will return an E$MEM exception code. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

The DQ$ALLOCATE system call is used to request additional memory. You may 
use this call for dynamically creating buffer space. 

EXAMPLE CALL PROCEDURES 

These examples are included only for DQ$ALLOCATE. Their form is typical 
of all system calls. 

Both examples request 128 (decimal) bytes of memory, and point to a word 
named "ERR" for receiving the condition code). 

4-10 



Example PL/M-86 Calling Sequence 

DECLARE ARRAY BASE 
ERR 

WORD, (or SELECTOR) 
WORD; 

ARRAYBASE - DQ$ALLOCATE (128, @ERR); 

Example ASM86 Calling Sequence 

MOV 
PUSH 
LEA 
PUSH 
PUSH 
CALL 
MOV 

AX;128 
AX 
AX,ERR 

first parameter 

DS second parameter 
AX 
DQALLO CAT E 
ARRAYBASE,AX returned value 

DQ$ALLOCATE 

This example is applicable to programs assembled according to the COMPACT, 
MEDIUM, and LARGE models of segmentation. For the SMALL model, you would 
not push the segment register before the POINTER offset. 

4-11 



DQ$ATTACH 

The DQ$ATTACH system call creates a connection to an existing file. 

connection -DQ$ATTACH (path$ptr, except$ptr)j 
P. 

INPUT PARAMETER 

path$ptr 

OUTPUT PARAMETERS 

connection 

except$ptr 

DESCRIPTION 

A POINTER to a STRING containing the pathname for 
the file to be attached. 

The TOKEN for the connection to the file; returned 
by the iRMX 86 Operating System. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

This system call allows a program to obtain a connection to any file. 
Attaching a file that is already attached is valid. A connection to the 
existing file is made, and all prior connections remain established. 

4-12 



DQ$CHANGE$ACCESS 

The DQ$CHANGE$ACCESS allows you to change the access rights of the owner 
of a file, or of WORLD. 

CALL DQ$CHANGE$ACCESS (path$ptr, user, access, except$ptr); 

INPUT PARAMETERS 

path$ptr 

user 

access 

OUTPUT PARAMETER 

except$ptr 

A POINTER to a STRING containing the pathname of 
the file. 

A BYTE specifying the type of user whose access is 
to be changed: 

Value 

zero 
one 
2 -255 

Meaning 

owner of the file 
WORLD (all users on the system) 
reserved by Intel 

A BYTE specifying the type of access to be granted 
to the user. The flags in this word are encoded 
as follows. (Bit 0 is the low-order bit.) 

Bit Meaning 

o User can delete the file or directory 
1 Read (file) or List (directory) 
2 Append (file) or Add entry (directory) 
3 Update (read and write: file) or 

Change Access (directory) 
4-7 should be zero 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

4-13 



DQ$C~GE$ACCESS 

DESCRIPTION 

You can use this system call to change the access rights of a filee You 
must have Change Access rights to the directory in which the file or 
directory is contained. This call affects only connections made after 
the call is issued, but does not affect current connections to the file. 

4-14 



DQ$CHANGE$EXTENSION 

DQ$CHANGE$EXTENSION changes or adds the extension at the end of a file 
name stored in memory (it doesn't affect the file name on the mass 
storage volume). 

CALL DQ$CHANGE$EXTENSION (path$ptr. extension$ptr. except$ptr); 

INPUT PARAMETERS 

path$ptr 

extension$ptr 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A POINTER to a STRING that specifies the path for 
the file to be renamed. 

A POINTER to a series of three bytes containing 
the characters that are to be added to the 
pathname. This is not a STRING. You must include 
three bytes, even if some are blank_ 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

This system call is used to change a file name extension, or add an 
extension to the file name in memory. For example: :AFD1:FILE.SRC can be 
changed to :AFD1:FILE.OBJ by a compiler when the compiler creates a file 
in which the object file is written. 

The three character extension may not contain delimiters recognized by 
DQ$GET$ARGUMENT but may contain trailing blanks. If the first character 
addressed by extension$ptr is a space. the system call will delete any 
prior extension (including the preceding period). 

4-15 



DQ$CLOSE 

DQ$CLOSE waits for completion of I/O operations taking place on the file 
(if any), empties output buffers, and frees any buffers associated with 
the CONNECTION. 

CALL DQ~CLOSE (connect10n, excepc$pcr)j 

INPUT PARAMETER 

connection 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A TOKEN for a file CONNECTION that is currently 
open. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

The DQ$CLOSE system call closes a connection that has been opened by the 
DQ$OPEN system call. It performs the following steps: 

1. It waits until all currently running I/O operations for the file 
are completed. 

2. It ensures that any information in a partially filled output 
buffer is written to the file. 

3. It releases any buffers associated with the file. 

4. It closes the connection to the file. The connection is still 
valid, and can be re-opened if necessary. 

Access Control 

The Operating System performs no access checking before closing the 
connection. 

4-16 



DQ $ CREATE 

DQ$CREATE creates a new file and establishes a connection to that file. 

connection - DQ$CREATE (path$ptr, except$ptr); 

INPUT PARAMETER 

path$ptr 

OUTPUT PARAMETERS 

connection 

except$ptr 

DESCRIPTION 

A POINTER to a STRING that specifies the path of 
the file to be created. 

The TOKEN for the connection to the file; returned 
by the iRMX 86 Operating System. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

This call creates a new file with the name you specify and returns the 
CONNECTION to your program. If a file of the same name already exists it 
is truncated (the data is destroyed). 

To prevent accidentally destroying a file, issue DQ$ATTACH before issuing 
DQ$CREATE. If the file does not exist, you receive an exception code of 
E$FNEXIST upon return from DQ$ATTACH. 

4-17 



DQ$DECODE$EXCEPTION 

DQ$DECODE$EXCEPTION translates an exception code into an ASCII string. 

CALL DQ$DECODE$EXCEPTION (except$code, buff$ptr, except$ptr)j 

INPUT PARAMETER 

except$code 

OUTPUT PARAMETERS 

buff$ptr 

except$ptr 

DESCRIPTION 

A WORD that contains the numeric exception code 
that is to be interpreted. 

A POINTER to a buffer (at least 81 bytes long) in 
which the system will return a STRING. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

Your program provides the Operating System with the numeric value of an 
exception code, and the iRMX 86 Operating System returns the mnemonic and 
hex value of this code. For example, if you pass DQ$DECODE$EXCEPTION a 
value of 2 in except$code, the system will return the following string: 

0002: E$MEM 

The hex values and mnemonics for exception codes are listed in Appendix A. 

4-18 



;~ <' '-'~,::<'c~~k ~~I~:'\~ ~'''*~'~i;:;;~:~"',:~-~ ~'>i' 

riQ$DECODE'$TiME~~ 
..... ~ , .'~ ... ~ -;. 

DQ$DECODE$TlME 

DQ$DECODE$TlME returns the current system time and date as a Double Word 
integer and as a series of ASCII character bytes. 

CALL DQ$DECODE$TlME (time$ptr t except$ptr); 

INPUT PARAMETER 

time$ptr A POINTER to a buffer of the following structure: 

DECLARE DT STRUCTURE 
(SYSTEM$TIME 

DATE (8) 
TIME (8) 

DWORD 
BYTE t 
BYTE); 

DATE and TIME are returned by this system call t as described below. 
If SYSTEM$TlME is not zero when you call DQ$DECODE$TlME t it is 
converted (decoded) to a series of ASCII bytes representing the date 
and time. 

If SYSTEM$TlME is zero t the current system clock time (number of 
seconds since January It 1978) is first returned and then decoded 
into DATE and TIME. 

OUTPUT PARAMETERS 

time$ptr 

except$ptr 

DESCRIPTION 

The buffer described above is used to return 
either: 

• The current system time as a DWORD integer t and 
as a series of ASCII bytes decoded from the 
DWORD value. 

• The ASCII bytes representing the value you 
passed in the SYSTEM$TlME parameter. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

This system call returns the current date and timet each as a series of 
bytes (note that this is ~ a STRING). 

4-19 



DQ$DECODE$TUME 

DATE has the form MM/DD/YY for month, day, and year. The two slashes (/) 
are in the third and sixth bytes. For example, the date January 15th of 
1982 would be returned as: 

01/15/82 

TIME has the form HH:MM:SS for hours, minutes, and seconds, with 
separating colons (:). The value for hours ranges from 0 through 23. 
For example, the time 20 seconds past 3:12 PM would be returned as: 

15:12:20 

If, when you call DQ$DECODE$TlME, the SYSTEM$TlME parameter is zero, the 
call will first get the system time (number of seconds since January 1, 
1978) and then decode it into the series of bytes described above. 

But if SYSTEM$TlME is not zero, the system call will simply convert it to 
the series of bytes. You can use the system call DQ$FILE$INFO to get two 
DWORD values associated with a file (the last time the file was updated, 
the time the file was created) and use DQ$DECODE$TlME to convert the 
dates to a series of bytes. 

4-20 



DQ$DELETE 

DQ$DELETE eliminates an existing file. 

CALL DQ$DELETE (path$ptr, except$ptr); 

INPUT PARAMETER 

path$ptr 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A POINTER to a STRING that specifies the pathname 
of the file to be deleted. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

A program can use this system call to delete a file. This system call 
will mark for deletion the specified file. This means that the system 
may actually postpone deletion if there are other connections to the file 
and delete the file only when all connections are closed and detached. 

4-21 



DQ$DETACH 

DQ$DETACH breaks the connection established by DQ$ATTACH or DQ$CREATE. 

CALL DQ$DETACH (connection, except$ptr)j 

INPUT PARAMETER 

connection 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A TOKEN for the file CONNECTION to be deleted. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

This system call deletes a file CONNECTION. If the CONNECTION is open, 
the DQ$DETACH system call automatically closes it first (see DQ$CLOSE). 
DQ$DETACH will also delete the file if it has been marked for deletion 
and this is the last CONNECTION to the file. 

4-22 



DQ$EXIT 

DQ$EXIT returns control from your program to the Operating System. 

CALL DQ$EXIT (end$code); 

INPUT PARAMETERS 

end$code 

DESCRIPTION 

A WORD containing the encoded reason for 
termination of the program. You must include this 
code, but currently the iRMX 86 Operating System 
does not check this value. The standard codes are: 

VALUE 

o 
1 
2 
3 
4 

INTERPRETATION 

Termination was normal. 
Warning messages were issued. 
Errors were detected. 
Fatal errors were detected. 
The job was aborted. 

DQ$EXIT terminates a program. All connections are detached, all files 
are closed, and any memory allocated to the program with DQ$ALLOCATE is 
returned to the memory pool. 

Calling DQ$EXIT cannot result in an exception code. 

4-23 



DQ$FILE$INFO 

DQ$FILE$INFO returns information about a particular file. 

CALL DQ$FILE$INFO (connection, mode, file$info$ptr, except$ptr); 

INPUT PARAMETERS 

connection 

mode 

OUTPUT PARAMETERS 

file$info$ptr 

where: 

OWNER 

TYPE 

A WORD representing the connection for the file. 

A BYTE specifying whether to return the User ID of 
the owner of the file. Set as follows: 

Value Meaning 

o 
1 

2-255 

do not return owner's User ID. 
Return the owner's User ID. 
Reserved by Intel 

A POINTER to a buffer into which the Operating 
System returns the information requested. The 
structure of this buffer is: 

DECLARE FDATA STRUCTURE 
(OWNER(15) STRING, 
LENGTH DWORD, 
TYPE BYTE, 
OWNER$ACCESS BYTE, 
WORLD$ACCESS BYTE, 
CREATE$TIME DWORD, 
LAST$MOD$TlME DWORD, 
RESERVED(20) BYTE); 

A STRING containing the User ID of the file owner. 

A number indicating the type of file, as follows: 

o data file 
1 directory 

4-24 



OWNER$ACCESS 

WORLD$ACCESS 

CREATE$TlME 

LAST$MOD$TlME 

except$ptr 

DESCRIPTION 

DQ$FILE$INFO 

A BYTE specifying the type of access granted to 
the owner. The flags in this word are encoded as 
follows. (Bit 0 is the low-order bit.) 

Bit Meaning 

o Delete 
1 Read (data file) or Display (directory) 
2 Append (data file) or Add Entry (directory) 
3 Update (read and write: file) or Change 

Access (directory) 

A BYTE specifying the type of access granted to 
the WORLD (all users on the system). The flags in 
this word are encoded as follows. (Bit 0 is the 
low-order bit.) 

Bit Meaning 

o Delete 
1 Read (data file) or Display (directory) 
2 Write (data file) or Add Entry (directory) 
3 Update (read and write: file) or Change 

Access (directory) 

The date and time that the file was created, 
expressed as the number of seconds since Jan. 1, 
1978. 

(You can convert this date/time to ASCII 
characters, use the system call DQ$DECODE$TlME.) 

The date and time that the file or directory was 
last modified. For data files, modified means 
written or truncated; for directories, modified 
means and entry was changed or an entry was added. 

(You can convert this date/time to ASCII 
characters, use the system call DQ$DECODE$TlME.) 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

The DQ$FILE$INFO allows a program to obtain information about a file or a 
directory. 

4-25 



1-

DQ$FREE 

DQ$FREE returns to the Operating System a segment of memory acquired 
earlier by DQ$ALLOCATE. 

CALL DQ$FREE (base$addr, except$ptr)j 

INPUT PARAMETER 

base$addr 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A TOKEN for the base address of the segment that 
is to be deleted. This is the base-address 
returned to your program by DQ$ALLOCATE. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

The DQ$FREE system call returns the specified segment to the memory pool 
from which it was allocated. 

4-26 



DQ$GET$ARGUMENT 

The DQ$GET$ARGUMENT system call is used to return successive arguments 
from a command line. 

delimit$char = DQ$GET$ARGUMENT (argument$ptr, except$ptr)j 

INPUT PARAMETER 

argument$ptr 

OUTPUT PARAMETERS 

delimit$char 

except$ptr 

DESCRIPTION 

A POINTER to a buffer in which the system will 
return the argument STRING. The buffer must be at 
least 81 bytes long. 

This is a single BYTE in which the system returns 
the delimiter character. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

GET$ARGUMENT is called to get successive arguments from a command line. 
The command line may be the same one that invoked the program containing 
this call. But if the UDI system call DQ$SWITCR$BUFFER is called before 
DQ$GET$ARGUMENT, the command line can be anywhere that you specify. 

A delimiter is returned only if the exception code is zero. The 
following delimiters are recognized by the iRMX 86 Operating System: 

) ( = /I $ % \ + - > (-
as well as a space ( ) and any characters with hexadecimal values between 
o and 20R. 

The Operating System strips out ampersands (&) and semicolons (j). 

4-27 



DQ$GET$ARGtJMENT 

Before your program runs, the Operating System Command Line Interpreter 
(CLI) pre-edits the command line to remove comments and continuation 
characters. The Operating System also makes the following changes to the 
command line: 

o Multiple adjacent blanks separating two arguments are treated as 
one blank. One or more blanks adjacent to any other delimiter 
are removed. A tab is treated as a blank and returned as a blank. 

o Lower case characters are converted to upper case unless part of 
a quoted string. 

o Strings enclosed within a matching pair of single or double 
quotes are considered literals. The enclosing quotes are not 
returned as part of the argument. 

EXAMPLE 

The following example illustrates the arguments and delimiters 
returned by successive calls to DQ$GET$ARGUMENT. The ARGUMENT LENGTH 
value is in the first byte of the string returned, the contents of each 
string is listed in the column ARGUMENT VALUE, and the delimiter returned 
in the byte delimit$char is in the column DELIMITER. 

Note that the last delimiter for each example is a carriage return (CR); 
this is how a program determines that there are no more arguments in the 
command line. 

Table 4-2. Command Parsing Example 

PLM86 LINKER.PLM PRINT(:LP:) NOLIST 

ARGUMENT 
LENGTH VALUE 

8 
10 

5 
4 
6 

PLM86 
LINKER.PLM 
PRINT 
:LP: 
NOLIST 

4-28 

DELIMITER 

(space) 
(space) 

( 
) 
CR 



DQ$GET$CONNECTION$STATUS 

The DQ$GET$CONNECTION$STATUS system call returns information about a file 
connection. 

CALL DQ$GET$CONNECTION$STATUS (connection, info$ptr, except$ptr); 

INPUT PARAMETER 

connection 

OUTPUT PARAMETERS 

info$ptr 

A WORD containing a token for the CONNECTION whose 
status is desired. 

A POINTER to a structure in which the Operating 
System will place the status information. The 
structure pointed to by info$ptr should be: 

DECLARE INFO STRUCTURE 
(OPEN 
ACCESS 
SEEK 
FILE$PTR$ 

BYTE, 
BYTE, 
BYTE, 
DWORD; 

These fields are interpreted as follows: 

OPEN 

ACCESS 

1 if connection is open, otherwise 2. 

Access privileges of the connection. 
The right is granted if the 
corresponding bit is set. 

BIT ACCESS 

0 delete 
1 read 
2 write 
3 update (read and write) 

4-29 



DQ$GET$CONNECTION$STATUS 

except$ptr 

DESCRIPTION 

SEEK Types of seek supported. 

VALUE 
o 
3 

MEANING 
no seek allowed 
seek forward and backward 

Values of 1 and 2 are not meaningful to 
the iRMX 86 Operating System. 

FILE$PTR This Double Word integer marks the 
current position in the file. The 
position is expressed as the number of 
bytes from the beginning of the file, 
the first byte being byte 0 (zero). 
This field is undefined if the file is 
not open or if seek is not supported by 
the device (for example, seek operations 
are not valid for a line printer.) 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

DQ$GET$CONNECTION$STATUS is used to obtain information about a file 
CONNECTION. For example, you can use the system call if your program has 
performed a number of read or write operations and it is necessary to 
determine where the file pointer is now located. 

4-30 



DQ$GET$EXCEPTION$HANDLER 

DQ$GET$EXCEPTION$HANDLER returns the address of the current exception 
handler. 

CALL DQ$GET$EXCEPTION (address$ptr, except$ptr); 

OUTPUT PARAMETERS 

address$ptr 

except$ptr 

DESCRIPTION 

A POINTER to a POINTER in which the Operating 
System returns the entry point of the current 
exception handler. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

DQ$GET$EXCEPTION$HANDLER is an system call that returns to your program 
the address of the current exception handler. This is the address 
specified in the last call to DQ$TRAP$EXCEPTION, if it has been called, 
otherwise the value returned is the address of the system default 
exception handler. 

This routine always returns a two-word pointer, even if called from a 
program compiled under the SMALL model of segmentation. 

DQ$GET$EXCEPTION$HANDLER is used in conjunction with DQ$TRAP$EXCEPTION 
and DQ$DECODE$EXCEPTION. See the descriptions of these calls for more 
information. 

4-31 



DQ$GET$SIZE 

DQ$GET$SIZE returns the size of an allocated memory segment. 

size = DQ$GET$SIZE (base$addr, except$ptr); 

INPUT PARAMETER 

base$addr 

OUTPUT PARAMETERS 

size 

except$ptr 

DESCRIPTION 

A TOKEN (WORD or SELECTOR) for the base address of 
a segment of memory that was allocated with the 
DQ$ALLOCATE call. This is the same address that 
is returned by DQ$ALLOCATE when the segment was 
allocated. 

A WORD which the Operating System sets as follows: 

• if not zero, contains the size, in bytes, of 
the segment identified by the base$addr 
parameter 

• if zero, indicates that the size of the segment 
is 65536 (64K) bytes. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

The GET$SIZE system call returns the size, in bytes, of a segment. You 
identify the segment of memory with a base address SELECTOR that is 
returned by the DQ$ALLOCATE system call when the segment is allocated. 

The size of the segment may not be exactly what you requested with the 
DQ$ALLOCATE call. The Operating System allocates memory in 16-byte 
paragraphs. If you request a segment whose size is not a multiple of 16, 
the system increases the size to the next 16-byte boundary. This larger 
size is reflected in the size returned by DQ$GET$SIZE. 

4-32 



DQ$GET$SYSTEM$ID 

DQ$GET$SYSTEM$ID returns a string that identifies the operating system. 

CALL DQ$GET$SYSTEM$ID (id$ptr, except$ptr); 

OUTPUT PARAMETERS 

id$ptr 

except$ptr 

DESCRIPTION 

POINTER to a 21-byte buffer in which the Operating 
System will place a STRING identifying the 
Operating System. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

This system call returns the following STRING: 

iRMX 86 

4-33 



DQ$GET$TIME 

DQ$GET$TIME returns the current date and time in character format. 

CALL DQ$GET$TIME (buff$ptr, except$ptr); 

This system call is included here for compatability with previous 
versions of the UDI. You should use the system call DQ$DECODE$TIME for 
this function. 

4-34 



DQ$OPEN 

The DQ$OPEN system call is used to inform the Operating System how your 
program is going to access a file, and to identify the buffers you will 
use. 

CALL DQ$OPEN (connection, access, num$buf, except$ptr); 

INPUT PARAMETERS 

connection 

access 

num$buf 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A TOKEN for the file connection to be opened. 

A BYTE telling how your program is going to use 
the CONNECTION. You should set the BYTE as 
follows: 

Value 

1 
2 
3 

Meaning 

Read only 
Write only 
Update (both reading and writing) 

A BYTE containing the number of buffers that you 
want the Operating System to allocate for this 
connection. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

This system call prepares a connection for read, write, and seek 
commands. Your program can have as many connections open at one time as 
memory allows. 

4-35 



DQ$OPEN 

DQ$OPEN: 

1. Creates the number of buffers requested. 

2. Sets the. connection's file pointer to zero. This is the pointer 
that tells the Operating System where in the file to perform an 
operation. 

3. Starts reading ahead if num$buf is greater than zero and the 
access parameter is "Read only" or "Update." 

Selecting Access Rights 

The system will not allow your program to read using a connection open 
for writing only, nor to write using a connection open for reading only. 
If you are not certain how the connection will be used, specify both 
reading and writing.· 

Selecting the Number of Buffers 

The process of deciding how many buffers to allocate is based on three 
considerations -- compatibility, memory, and performance. 

COMPATIBILITY. If you expect to run your program on other systems using 
UDI, you should use no more than two buffers. 

MEMORY. The amount of memory used for buffers is directly proportional 
to the number of buffers. So you can save memory by using fewer buffers. 

PERFORMANCE. The performance consideration is more complex. Up to a 
certain point, the more buffers you allocate, the faster your program can 
run. The actual break-even point, the point where more buffers don't 
improve performance, depends on many variables. Be aware that in order 
to overlap I/O with computation, you must specify at least two buffers. 
If performance is not at all important and memory is, use zero buffers. 

Specifying zero buffers means that no buffering should occur; each 
DQ$READ or DQ$WRITE should result in a physical I/O operation. 
Interactive programs should open :CI: and :CO: with num$buf set to zero 
to eliminate buffering. 

If you normally seek before doing a read or write, num$buf should be 1. 

4-36 



DQ$OVERLAY 

The DQ$OVERLAY system call is invoked by a root module to load an overlay 
module. 

CALL DQ$OVERLAY (name$ptr, except$ptr)j 

INPUT PARAMETER 

name$ptr 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A POINTER to a STRING that contains the name of an 
overlay module. The name must be in upper-case. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

This system call is invoked by a root module whenever the root module 
wishes to load an overlay module. 

If your assembly language or PL/M-86 programs use the DQ$OVERLAY 
procedure, you should take care to ensure that you link the UDI library 
to your program correctly. The 1APX 86, 88 FAMILY UTILITIES USER'S GUIDE 
contains an example of linking an overlay program. This example lists a 
two-step link process, as follows: 

1. Link the root and each of the overlays separately, specifying the 
OVERLAY control, but not the BIND control, in each LINK86 command. 

2. Link all the output modules together in one module, specifying 
the BIND control, but not the OVERLAY control. 

This is the same process that you should use when linking your iRMX 86 
overlay programs. However, you must ensure that you link the entire UDI 
library to the root portion of the program and not to any of the 
overlays. To do this, use the INCLUDE control to include the UDI 
externals file with the assembly or compilation of the root portion of 
the program. By including this file with the root, you make external 
references to all UDI routines from that root. 

4-37 



DQ$OVERLAY 

Then when you link the root to the UDI library, LINK86 pulls in all of 
the UDI routines, not just the ones called in the root. Since you are 
linking the UDI library to the root only, this prevents you from having 
unsatisfied external references when you link the root to the overlays. 

For example, suppose your program consists of three files, ROOT.OBJ, 
OVIA.OBJ, and OV2A.OBJ, the root and overlay files, respectively. You 
have compiled these program modules with the PL/M-86 compiler and 
included the UDI externals file UDI.EXT with the compilation of. the 
root. Assuming that LINK86 resides on the system device (:SD:) in the 
directory UTI~Sand that the object files reside in the directory PROG, 
the following LINK86 commands will link the overlay program and produce 
an executable module. This happens in two steps. 

1. The first three LINK86 commands separately link the root and 
overlay portions of the program. The root portion of the program 
is linked to the UDI library (underlined entries are your 
commands). 

-LINK86 PROG/ROOT.OBJ, & 
**:SD:UDI/LARGE.LIB OVERLAY 

iRMX 86 8086 LINKER Vx.y 

-LINK86 PROG/OVIA.OBJ OVERLAY(OVERLAYI) 

iRMX 86 8086 LINKER Vx.y 

-LINK86 PROG/OV2A.OBJ OVERLAY(OVERLAY2) 

2. The next LINK86 command links together in one module all the 
output modules produced in the first step. 

-LINK86 PROG/ROOT.LNK, & 
**PROG/OVIA.LNK, & 
**PROG/OV2A.LNK & 
**TO PROGRAM 1 BIND MEMPOOL(+2000H) 

4-38 



DQ$READ 

The DQ$READ moves a number of bytes from a file to a buffer. Your 
calling program must specify the connection, the number of bytes, and the 
buffer to receive the information. 

bytes$read = DQ$READ (connection, buff$ptr, bytes$max, 
except$ptr); 

INPUT PARAMETERS 

connection 

buff$ptr 

bytes$max 

OUTPUT PARAMETERS 

bytes$read 

except$ptr 

DESCRIPTION 

A TOKEN for the connection to the file. This 
connection must be open for reading or for both 
reading and writing, and the file pointer of the 
connection must point to the first byte to be read. 

A POINTER to a buffer that will receive the data 
that the Operating System reads from the file. 

A WORD containing the maximum number of bytes you 
expect to read from the file. 

A WORD containing the actual number of bytes 
read. This number is always equal to or less than 
the bytes$max. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

This system call reads a collection of contiguous bytes from the file 
associated with the connection. These bytes are placed in a buffer 
specified by the calling program. 

The Buffer 

The buff$ptr parameter tells the Operating System where to place the 
bytes after they are read. This is a buffer you create, and if it is not 
long enough, the Operating System overwrites the area beyond the buffer. 

4-39 



DQ$READ 

Number of Bytes Read 

The number of bytes that your program requests is the maximum number of 
bytes that the Operating System places in the buffer. However, there are 
two circumstances under which the system reads fewer bytes. 

• First, if the Operating System detects an end of file before 
reading the number of bytes requested, it will return only those 
bytes preceding the end of file. The bytes$read parameter can be 
less than the bytes$desired parameter, and no exceptional 
condition will be indicated. 

• Second, if an exceptional condition does occur during the reading 
operation, information in the buffer and the value of the 
bytes$read parameter are meaningless. 

Access Control 

If the connection is not opened for reading or both reading and writing, 
the Operating System returns an exceptional condition. 

4-40 



DQ$RENAME 

The DQ$RENAME system call changes the pathname of a file. 

CALL DQ$RENAME (path$ptr, new$path$ptr, except$ptr); 

INPUT PARAMETERS 

path$ptr 

new$path$ptr 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A POINTER to a STRING that specifies the pathname 
for the file to be renamed. 

A POINTER to a STRING that specifies the new 
pathname for the file. This path cannot refer to 
an existing file. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

This system call allows your programs to change the pathname for a file 
or a directory. Be aware that when you rename a directory, you are 
changing the pathnames of all files contained in the directory. When you 
rename a file to which a connection exists (this is valid) the connection 
to the renamed file remains established. 

Your program can change any aspect of the pathname so long as the file or 
directory remains on the same volume. 

4-41 



DQ$RESERVE$IO$MEMORY 

The DQ$RESERVE$IO$MEMORY allows you to reserve enough memory to ensure 
that you will be able to OPEN and ATTACH the files that this program uses. 

CALL DQ$RESERVE$IO$MEMORY (number$files, number$buffers, except$ptr)j 

INPUT PARAMETERS 

number$files 

number$buffers 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

The number of files that you expect the program 
will have attached simultaneously. 

The total number of buffers that will be needed at 
one time. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

DQ$RESERVE$IO$MEMORY ensures that, as your program requests memory 
segments (using DQ$ALLOCATE), you will not use up memory that you will 
later need for attaching and opening files. For example, if your program 
will attach and open two files at the same time, each of which has two 
buffers, (specified when the DQ$OPEN call is issued), number$files should 
be two and number$buffers four. 

Your program should issue DQ$RESERVE$IO$MEMORY before the first 
DQ$ALLOCATE system call is issued. 

If you issue this call more than once in a program, it simply changes the 
amount of memory reserved. 

RESTRICTION 

This system call 1s effective as long a8 you use only UDr system calls to 
communicate with the 1RMX 86 Operating System. 

4-42 



DQ$SEEK 

DQ$SEEK changes the file position pointer. 

CALL DQ$SEEK (connection, mode, move$count, except$ptr) 

INPUT PARAMETERS 

connection 

move$count 

mode 

A TOKEN for an open connection whose file pointer 
you wish to move. 

A DWORD (Double Word) integer that tells the 
Operating System how many bytes to move the file 
pointer. 

A BYTE containing a value that controls the nature 
of the movement of the file pointer. Any of the 
following values are valid: 

Mode Meaning 

1 Move the pointer backward by the 
specified move count. If the move 
count is large enough to position the 
pointer past the beginning of the file, 
set the pointer to the first byte 
(position zero). 

2 Set the pointer to the position 
specified by the move count. Position 
zero is the first position in the 
file. Moving the pointer beyond the 
end of the file is valid. 

3 Move the file pointer forward by the 
specified move count. Moving the 
pointer beyond the end of the file is 
valid. 

4 First move the pointer to the end of 
the file and then move it backward by 
the specified move count. If the 
specified move count would position the 
pointer beyond the front of the file, 
set the pointer to the first byte in 
the file (position zero). 

4-43 



DQ$SEEK 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

When performing non-sequential I/O, your programs must use this system 
call to position the file pointer before using the DQ$READ, DQ$TRUNCATE, 
or DQ$WRITE system calls. The location of the file pointer tells the 
Operating System where in the file to begin reading, truncating, or 
writing information. If your program is performing sequential I/O on a 
file, they do not need to use this system call. 

As mentioned previously, it is legitimate to position the file pointer 
beyond the end of file. If your program does this and then invokes the 
DQ$READ system call, the Operating System behaves as though the read 
operation began at the end of file. 

Also, it is possible to invoke the DQ$WRITE system call with the file 
pointer beyond the end of the file. If your program does this, the 
Operating System attempts to expand the file. Be aware that if you 
expand your file in this manner, the expanded portion of the file not 
written to will contain undefined information. 

4-44 



DQ$SPECIAL 

DQ$SPECIAL specifies whether line editing is to be performed by the 
Operating System on console input. 

CALL DQ$SPECIAL (mode, conn$ptr, except$ptr)j 

INPUT PARAMETERS 

mode 

conn$ptr 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A BYTE used to change the mode of terminal input. 
The values and their meanings are: 

Value Meaning 

1 Transparent 

2 Line editing 

3 Immediate Transparent 

Each of these types is explained in the 
description. 

A POINTER to a TOKEN for the connection to the 
file. The connection must be a connection to :CI: 
established by DQ$ATTACH. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

This system call is used to change the technique by which your program 
receives input from a console input device. Unless you have issued this 
system call since the system was bootstrap loaded, the mode will be line 
editing. But by using DQ$SPECIAL you can change from line editing to one 
of the transparent modes, or back to line editing. 

4-45 



DQ$SPECIAL 

The meanings of the type parameter are as follows. 

Value 

1 

2 

3 

Meaning 

Transparent. Interactive programs often need to obtain 
characters from the console exactly as they are typed. 
This is made possible by transparent mode. In transparent 
mode, all characters are placed in the buffer specified by 
the call to DQ$READ. (The only exception are CTRL/C, 
which will terminate the program, and CTRL/D, which has no 
effect on the system.) The Operating System returns 
control to the calling program when the number of 
characters typed equals the number of characters specified 
in the DQ$READ system call. 

Line Editing. This means that the console operator has 
the opportunity to correct typing errors with special keys 
(like RUBOUT) before the application program receives the 
characters typed. Line editing characters and their 
effects are described in Chapter 2. 

Immediate Transparent. This is nearly the same as 
Transparent 1 mode, except that in Transparent 3 mode the 
Operating System returns control to your program 
immediately after the DQ$READ call, whether or not any 
characters have actually been typed since the last 
DQ$READ. If no characters have been typed, this w-ill be 
indicated by the bytes$read parameter of the DQ$READ 
call. Characters that are typed between successive calls 
to read the terminal are held in the "type-ahead" buffer. 

4-46 



,-t~>:"';'"~~":'':; ,.- ,~." --..':. ...... ( ~ "' ......... '\ .t}J.!.f'~ - it. ~f 

p'~~S~~~B~~ 
'I' , • '< ''''''>:;; 

DQ$SWITCH$BUFFER 

DQ$SWITCH$BUFFER is used with DQ$GET$ARGUMENT to get arguments from a 
command line contained within your program. 

offset - DQ$SWITCH$BUFFER (buff$ptr, except$ptr); 

INPUT PARAMETERS 

buff$ptr 

OUTPUT PARAMETERS 

offset 

except$ptr 

DESCRIPTION 

A POINTER to a STRING containing the text to be 
parsed. 

A WORD that the Operating System sets equal to the 
number of bytes from the beginning of ~he buffer 
to first character in an argument in the buffer. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

DQ$SWITCH$BUFFER is used to point to a command line other than the line 
that invoked this program. Typically, you will first call 
DQ$ SWITCH$ BUFFER , and then make a series of calls to DQ$GET$ARGUMENT. 
Each call to DQ$GET$ARGUMENT fetches an argument from the line pointed to 
by buff$ptr. 

The parameter offset will be zero (0) upon return from call to 
DQ$SWITCH$BUFFER. 

You can use DQ$SWITCH$BUFFER any number of times to point to different 
strings in your program. However, you cannot use DQ$SWITCH$BUFFER to 
return to the command line that invoked the program. So you should use 
DQ$GET$ARGUMENT to parse all elements of the command line before issuing 
the first call to DQ$SWITCH$BUFFER. 

4-47 



DQ$TRAP$CC 

The DQ$TRAP$CC allows you to specify a procedure (handler) to be entered 
if a user types CTRL/c at the keyboard terminal. 

CALL DQ$TRAP$CC (entry$pnt, except$ptr); 

INPUT PARAMETERS 

entry$pnt 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A POINTER to the entry point of your CTRL/C 
handler. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

DQ$TRAP$CC is used if you do not want the Operating System to abort the 
current program that is being run from the the terminal (:CI:) when the 
user types CTRL/c. 

For example, if you have a special message that you want to display on 
the users terminal, or if you want the Control/c character to have a 
meaning different than the normal one (see the description of CTRL/c in 
Chapter 2), you can use this system call to identify the procedure to 
which to transfer control when CTRL/c is typed. 

4-48 



DQ$TRAP$EXCEPTIQN 

DQ$TRAP$EXCEPTION substitutes an alternate exception handler for the 
default exception handler provided by the operating system. 

CALL DQ$TRAP$EXCEPTION (address$ptr, except$ptr); 

INPUT PARAMETERS 

address$ptr 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A POINTER to a POINTER containing the entry point 
of the alternate exception handler. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

DQ$TRAP$EXCEPTION is used to inform the Operating System that when an 
exceptional condition occurs, the Operating System is to pass control to 
your exception handler. An exceptional condition is defined as a return 
from a system call with a condition code other than E$OK (see Appendix A 
for exception code meanings). 

See the section EXCEPTION-HANDLING SYSTEM CALLS at the beginning of this 
chapter for an explanation of the conditions of the stack when your 
exception handler receives control. 

4-49 



DQ$TRUNCATE 

DQ$TRUNCATE removes information from the position of the file pointer to 
the end of the file. 

CALL DQ$TRUNCATE (connection, except$ptr); 

INPUT PARAMETER 

connection 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A TOKEN for a connection to the named data file 
that is to be truncated. The file pointer of this 
connection tells the Operating System where to 
truncate the file. The BYTE indicated by the 
pointer is the first byte to be dropped from the 
file. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

This system call truncates a file at the current setting of the file 
pointer and frees all space beyond the pointer. If the pointer is at or 
beyond the end of file, no truncation will be performed. Unless the file 
pointer is already where you want it, your program should use the DQ$SEEK 
system call to position the pointer before using the DQ$TRUNCATE system 
call. 

The CONNECTION should have write, or read and write access rights, 
established when the connection is opened. 

4-50 



... ,.:!:\." , ::~:·\./""': .,~."" .. \;.~::.:/. --: 

DQ$WRITE 
.. ; \<0/ 'i ..... 

DQ$WRITE 

The DQ$WRITE system call moves a collection of bytes from a buffer into a 
file. 

CALL DQ$WRITE (connection, buff$ptr, count, except$ptrj 

INPUT PARAMETERS 

connection 

buff$ptr 

count 

OUTPUT PARAMETERS 

except$ptr 

DESCRIPTION 

A WORD containing a token for the CONNECTION to 
the file in which the information is to be written. 

A POINTER to a buffer containing contiguous bytes 
that are to be written to the specified file. 

A WORD containing the number of bytes to be 
written from the buffer to the file. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix A. 

This system call causes the Operating System to write the specified 
number of bytes from the buffer to the file. 

Access Control 

In order to write information into a file. The file must be open for 
writing, or for reading and writing (update access). Whenever your 
program attempts to write over information in a file via a connection 
that does not have update access, the Operating System does not write any 
data to the file but returns an exception code. The description of 
DQ$OPEN explains how access is established. 

4-51 



DQ$~ 

Number of Bytes Written 

Occasionally, the Operating System writes fewer bytes than requested by 
the calling program. This happens under two circumstances. The first 
circumstance is when the Operating System encounters an I/O error (an 
exception code is returned). . 

The second circumstance is when the volume to which your program is 
writing becomes full. The Operating System informs your program of this 
condition by returning an E$SPACE exception code. 

Where the Bytes Are Written 

The Operating System writes the bytes starting at the location specified 
by the connection's file pointer. (The pointer indicates where the first 
byte is to be written.) The pointer is updated as the bytes are 
written. After the writing operation is completed, the file pointer 
points to the byte immediately following the last byte written. 

If your program must reposition the file pointer before writing, it can 
do so by using the DQ$SEEK system call. 

4-52 



EXAMPLE PROGRAM 

This program provides an example of UDI system calls. 

After the program listing we have listed the compiler and linker commands 
used to build for program, and a listing of the linker map. 

$compact 
$optimize(3) 
/* •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.•••••. 
* 

Program UPPER * 
* 
* 
* 
* 
* 
* 
* 
* 

This program demonstrates the use of UDI file handling and 
command line parsing system calls. The program reads an input 
file of characters and converts all lower-case alphabetic characters 
to upper-case. The converted data are written to a second file. 

UPPER expects the command line that invokes it to be of the form: 

* UPPER infile [TO outfile] 
* * (If "TO outfile" is not specified, :CO: is assumed.) 

* .•............•.......................................................... 
*/ 

upper: DO; 

/* These include files are described at the beginning of the chapter */ 

$include(:include:ltksel.lit) 
$include(:include:uexit.ext) 
$include(:include:uclose.ext) 
$include(:include:uwrite.ext) 
$include(:include:uread.ext) 
$include(:include:uopen.ext) 
$include(:include:ucreat.ext) 
$include(:include:ugtarg.ext) 
$include(:include:uatach.ext) 
$include(:include:udcex.ext) 

DECLARE 
CR 
LF 
E$OK 

DECLARE 
co$conn 

LITERALLY 'ODH', 
LITERALLY 'OAH', 
LITERALLY '0'; 

TOKEN; 

4-53 



EXAMPLE PROGRAM (continued) 

$subtitle('check$exception') 

1* •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••• 
* Procedure to check an exception code. If the exception code is 
* not E$OK, print a message and exit. 
* .•.......•........•.................... ; ............................... . 
*1 

check$exception: PROCEDURE(exception, info$p) REENTRANT; 
DECLARE 

exception 
info$p 
info 

count 
char(l) 

exc$buf 
count 
char(80) 

dummy 

WORD, 
POINTER, 
BASED info$p STRUCTURE( 

BYTE, 
BYTE) J 

STRUCTURE ( 
BYTE, 
BYTE) , 

WORD; 

IF exception <> E$OK THEN 
DO; 

CALL dq$decode$exception(exception, @exc$buf, @dummy); 

CALL dq$write(co$conn, @exc$buf.char, exc$buf.count, @dummy); 

CALL dq$write(co$conn, @(': '), 2, @dummy); 

CALL dq$write(co$conn, @info.char, info. count , @dummy); 

CALL dq$write(co$conn, @(CR, LF), 2, @dummy); 

CALL dq$exit(3); 
END; 

END check$exception; 

$subtitle('Main') 
I*~ ••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••• 
* 
* 
* 

--- MAIN PROGRAM ---

* .................................................... e ••••••••••••••••••• 

*1 

DECLARE s t WORD; 

DECLARE 
in$name(50) 
out$name(50) 
in$conn 
out$conn 
delim 

BYTE, 
BYTE, 
TOKEN, 
TOKEN, 
BYTE; 

4-54 



EXAMPLE PROGRAM (continued) 

DECLARE 
buffer(I024) 
in$bp 
in$char 
nextchar 
in$count 
i 

BYTE, 
POINTER, 
BASED in$bp BYTE, 
BASED in$bp (2) BYTE, 
WORD, 
WORD; 

1* •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••• 
* Create a connection to :CO: (console output). 
* ................................................................... . 
*1 

co$conn = dq$create(@(4, ':CO:'), @st); 

CALL dq$open(co$conn, 2, 0, @st); 

1* •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••• 
* Ignore the name of the program (the first argument). 
* ...........•......••.•..•...•.•..••.•...•.•.....•..........•........ 
*1 

delim = dq$get$argument(@buffer, @st); 
CALL check$exception(st, 0); 
IF delim = CR THEN 

CALL dq$exit(O); 

/* ................................................................... . 
* Attach the input file, and open it. 
* •.•.•..•.•...•....•.•••...•.•.•.•..•.•.•...•.•...••............•.... 
*1 

delim = dq$get$argument(@in$name, @st); 
CALL check$exception(st, 0); 

in$conn = dq$attach(@in$name, @st); 
CALL check$exception(st, @in$name); 

CALL dq$open(in$conn, 1, 2, @st); 
CALL check$exception(st, @in$name); 

4-55 



EXAMPLE PROGRAM (continued) 

/* •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
* Find out if there is an output file specified. If so, attach 
* and open it. If not, use :CO: for output. 
* ......••.......•.•......•...............•.............•••........... 
*/ 

IF delim <> CR THEN 
DO; 

delim = dq$get$argument(@buffer, @st); 
CALL check$exception(st, 0); 
IF (delim = CR) OR 

(buffer(O) <> 2) OR 
(buffer(l) <> 'T') OR 
(buffer(2) <> '0') THEN 

DO; 

END; 

CALL dq$write(co$conn, @('Invalid output file', CR, 
LF), 21, @st); 

CALL dq$exit(3); 

delim = dq$get$argument(@out$name, @st); 
CALL check$exception(st, 0); 

out$conn = dq$create(@out$name, @st); 
CALL check$exception(st, @out$name); 

CALL dq$open(out$conn, 2, 2, @st); 
CALL check$exception(st, @out$name); 

END; 
ELSE 

out$conn = co$conn; 

/ * ........................................................................ . 
* Read from input, convert, and write to output 
* ••••.•••.••••••••••.•.•••••••••••••.••...••••.••..••...•.•..•....... 
*/ 

DO WHILE 1; 
in$count = dq$read(in$conn, @buffer, size(buffer), @st); 
CALL check$exception(st, @in$name); 
IF in$count = 0 THEN 

GOTO end$of$file; 

DO i=O TO in$count-1; 

END; 

IF (buffer(i) >= 'a') AND (buffer(i) <= 'z') THEN 
buffer(i) = buffer(i) + 'A'-'a'; 

CALL dq$write(out$conn, @buffer, in$count, @st); 
CALL check$exception(st, @out$name); 

END; 
end$of$file: 

4-56 



EXAMPLE PROGRAM (continued) 

/* •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
* Close input and output files and exit 
* ............................................... e' •••••••••••••••••••• 

*1 

CALL dq$close(in$conn, @st); 
CALL check$exception(st, @in$name); 

CALL dq$close(out$conn, @st); 
CALL check$exception(st, @out$name); 

CALL dq$exit(O); 

END upper; 

/* •••••••••••••••••••••••••••••••••.•••••.•••••••••••••••••••••••••••• 
*/ 

The program UPPER was compiled and built with the following commands: 

plm86 upper.p86 
link86 upper.obj, :lib:compac.lib to upper bind mempool(5000H) 

The linker map is on the next page. 

4-57 



iRMX 86 8086 LINKER, V2.0 

INPUT FILES: UPPER.OBJ, :LIB:COMPACoLIB 
OUTPUT FILE: UPPER 
CONTROLS SPECIFIED IN INVOCATION COMMAND: 

BIND MEMPOOL(5000H) 
DATE: 14/02/82 TIME: 12:05:37 

LINK MAP OF MODULE UPPER 

LOGICAL SEGMENTS INCLUDED: 
LENGTH ADDRESS ALIGN SEGMENT 

02F6H ------ W CODE 
OOlEH ------ W CONST 
0475H ------ W DATA 
0454H ------ W STACK 
OOOOH ------ W MEMORY 
OOOOH ------ G ??SEG 

INPUT MODULES INCLUDED: 
UPPER.OBJ(UPPER) 
:LIB:COMPAC.LIB(DQATTACH) 
:LIB:COMPAC.LIB(DQCLOSE) 
:LIB:COMPAC.LIB(DQCREATE) 
:LIB:COMPAC.LIB(DQDECODEEXCEPTION) 
:LIB:COMPAC.LIB(DQEXIT) 
:LIB:COMPAC.LIB(DQGETARGUMENT) 
:LIB:COMPAC.LIB(DQOPEN) 
:LIB:COMPAC.LIB(DQREAD) 
:LIB:COMPAC.LIB(DQWRITE) 
:LIB:COMPAC.LIB(SYSTEMSTACK) 

GROUP MAP 

GROUP NAME: CGROUP 
OFFSET SEGMENT NAME 
OOOOH CODE 

GROUP NAME: DGROUP 
OFFSET SEGMENT NAME 
OOOOH CONST 
OOlEH DATA 

SYMBOL TABLE OF MODULE UPPER 

BASE OFFSET TYPE SYMBOL 

G(l) 0293H PUB DQATTACH 
G(l) 02A9H PUB DQCREATE 
G(l) 02BFH PUB DQEXIT 
G(l) 02D5H PUB DQOPEN 
G(l) 02EBH PUB DQWRITE 

CLASS 
CODE 
CONST 
DATA 
STACK 
MEMORY 

OVERLAY 

BASE OFFSET TYPE SYMBOL 

G(l) 029EH PUB DQCLOSE 
G(l) 02B4H PUB DQDECODEEXCEPTION 
G(l) 02CAH PUB DQGETARGUMENT 
G(l) 02EOH PUB DQREAD 
S(4) 006CH PUB SYSTEMSTACK 

*** 
4-58 



CHAPTER 5. PREPARING YOUR HARDWARE 

This chapter describes how to prepare the hardware devices on which the 
iRMX 86 PC Operating System runs (see Figure 5-1). The iRMX 86 PC 
product is a version of the iRMX 86 Operating System that has been 
prepared by Intel to run on the hardware described here. 

iSBC' 957B cable ~\ 

:~~\ 
INTELLEC· 

DEVELOPMENT 
SYSTEM 

ISBX·· 218 
FLEXIBLE DISK 
CONTROLLER 

2732A EPROMS -----+-t----=::::~~ 
(with Bootstrap Loader 3··., 

and Monitor) .. "'. ~ '. "~ 

Backplane with 
MULTIBUS' 
Connectors 

MEMORYBOAR~S) / 

ISBC" 534 

LINE PRINTER: 
CENTRONICS· compatible 

CHASSIS/POWER SUPPLY 

SYSTEM DISKETIE 
single-side. double-density. 
256 bytes per sector 

COMMUNICATIONS x-326 
BOARD 

Figure 5-1. The iRMX- 86 PC Hardware 

5-1 



PREPARING YOUR HARDWARE 

This chap·ter is organized as follows: 

• THE iRMX 86 PC HARDWARE ENVIRONMENT. A section describing 
hardware on which the iRMX 86 PC will run. 

• MODIFYING BOARDS. A section describing how to modify your 
iAPX 86-based Single Board Computer, and how to modify the 
iSBC 208 Disk Controller board. 

• CONVENIENCE CHARTS. To make the process of preparing your 
hardware easier, we have included (for each board described in 
this chapter) a single-page condensed summary of modifications 
required for that board. You can remove the page and refer to it 
as you work on the devices. These charts are the last pages in 
this chapter. 

THE iRMX'" 86 PC HARDWARE ENVIRONMENT 

To use the iRMX 86 PC Operating System, some hardware is required, and 
some is optional. 

REQUIRED HARDWARE 

The Preconfigured iRMX 86 Operating System requires the following 
hardware: 

• Single-Board Computer. An Intel iSBC 86/12A, iSBC 86/14, or 
iSBC 86/30 Single Board Computer. 

• Flexible Disk Drive. A flexible diskette controller with at 
least one 8-inch drive. 

This disk drive should conform to the size and recording density 
of the diskette on which you receive the Preconfigured iRMX 86 
Operating System (8-inch, single-sided, double-density, 256 bytes 
per sector). 

Although you can boot and run the system with one flexible 
diskette drive, you will need at least one other disk drive to do 
useful work with the system. 

• Keyboard Terminal. A keyboard terminal connected to the serial 
line on your single-board computer. 

• Chassis. An appropriate chassis/cardcage/power-supply unit. 

• Memory. At least 256 K-bytes. 

5-2 



PREPARING YOUR HARDWARE 

OPTIONAL HARDWARE 

You can include the following optional hardware in your system: 

• Four More Terminals. An iSBC 534 Four Channel Communications 
Expansion Board with one to four keyboard terminals. 

• Winchester Disk. A Winchester hard disk drive connected to an 
iSBC 215 Disk Controller. 

• Total of Eight Flexible Disk Drives. Up to four flexible 
diskettes connected to an iSBC 208 Flexible Disk Controller and 
up to four flexible disk drives connected to an iSBX 218 Flexible 
Disk Controller Mu1timodu1e. You can use the iSBC 218 
Mu1timodu1e only if you also have an iSBC 215 Disk Controller. 

There are some restrictions about size, density, number~of-sides, 
and bytes-per-sector of these drives. These restrictions are 
explained later. 

• Line Printer or Microcom uter Deve10 ment S stem. Either a line 
printer or an iSBC 957B hardware software package connected 
through the parallel port on your Single-Board Computer. The 
iSBC 957B package allows you to connect your system directly to 
an INTELLEC Microcomputer Development System. Neither the line 
printer nor the iSBC 957B package is required to run the 
Operating System. 

SINGLE BOARD COMPUTER 

The iRMX 86 PC Operating System runs on any of these Intel Single Board 
Computers: iSBC 86/12A, iSBC 86/14, or iSBC 86/30. The characteristics 
of these computers are summarized in Table 5-1. 

Table 5-1. Single Board Computers 

Single Board On-board Multimodule lll Clock 
Computer Memory Memory (optional) Frequency 

iSBC@ 86/12A 32 K-bytes 64 K-bytes 5MHZ 

iSBC@ 86/14 32 K-bytes 64 K-bytes 5 or 8 MHZ 

iSBC· 86/30 128 K-bytes 256 K-bytes 5 or 8 MHZ 

5-3 



PREPARING YOUR HARDWARE 

FLEXIBLE DISKETTE CONTROLLERS AND DRIVES 

You can connect flexible disk drives to your system using an iSBC 208 
Controller Board, an iSBC 218 Multimodule Controller Board, or both. If 
you use the iSBC 218 Controller, it must be mounted on an iSBC 215 
Winchester Controller Board. The following applies to the iSBC 208 and 
to the iSBC 218 Controllers: 

• It will accept drives and diskettes of many recording formats: 
single- and double-density, single- and double-sided, and sector 
sizes of 128, 256, and 1024 bytes. 

• The controller will handle up to four drives. The third and 
fourth drives on a·controller must be 8-inch, standard format 
drives. (Standard-format is explained in the note below.) 

• The system uses soft-sectored diskettes, which means that you 
must format new diskettes using the FORMAT command described in 
Chapter 3. 

NOTE 

The iRMX 86 PC System is delivered on 
standard format diskettes: 8-inch 
double-density, single-sided diskettes 
having 256 bytes-per-sector. 

Physical names for iRMX 86 PC disk 
drives, including Winchester drives, 
are listed in Chapter 3 in the 
description of the ATTACHDEVICE 
command. Chapter 6, SYSTEM MANAGEMENT, 
describes how to make a copy of the 
System Diskette. 

WINCHESTER DISK DRIVE 

You can connect one Winchester Disk to your system using the iSBC 215 
Disk Controller Board. (This also allows you to use the iSBC 218 
Flexible Disk Controller described in the previous section.) You have a 
choice of four types of drives. 

• Priam 3450: approximately 35 MB capacity 

• Pertec D8000: approximately 20 MB 

• Memorex 101: approximately 10 MB 

• Shugart SA1002: approximately 5 MB (you can use an SAI004, but 
only 5 MB of the disk will be used). 

5-4 



PREPARING YOUR HARDWARE 

LINE PRINTER 

You can use any line printer that recognizes the Centronics signal/pin 
standard. The line printer is connected to the parallel port on the 
processor board you use. 

Table 5-2 shows the signals. that are present on pins at the: 

• 50-Pin iSBC Connector: The Single Board Computer parallel port 
connector (J1). 

• 50-Pin Edge Connector: A standard 50-pin edge connector used as 
a cable-end; mates to the iSBC Connector described in 1. 

• 30-Pin Connector: The Centronics-standard plug and connector at 
the line printer. 

50-Pin 
iSBC@ 
ConnectoI 

24 
26 
28 
30 
34 
36 
38 
40 
42 
44 
46 
48 

Table 5-2. Line Printer Pin Assignments 

50-Pin 
Edge 
Connector 

23 
25 
27 
29 
33 
35 
37 
39 
41 
43 
45 
47 

-- CENTRONICS-Standard --
30-Pin 
Connector 

1 
13 
12 
10 

9 
8 
7 
6 
5 
4 
3 
2 

Signal 

Character strobe to printer 
SLCT (Select) 
Paper Out 
ACKNOWLEDGE from printer 
Data Bit 7 
Data Bit 6 
Data Bit 5 
Data Bit 4 
Data Bit 3 
Data Bit 2 
Data Bit 1 
Data Bit 0 

Notes: iSBC Connector: All odd pin numbers are grounded. 

Edge Connector: All even-numbered pins grounded. 

Centronics LP Connector: 

5-5 

Pins 19-29 Protective grounds 
Pin 16 Logic Ground 
Pin 17 Chassis Ground 



PREPARING YOUR HARDWARE 

ADDITIONAL TERMINALS 

You can connect up to four keyboard terminals, using the serial ports on 
an iSBC 534 Communication Expansion Controller. If you connect less than 
four terminals to the board, use the ports in ascending order, starting 
at Port 0 (zero). For example, if you use only two terminals, use Ports 
o and 1. 

MEMORY 

The iRMX 86 PC Operating System requires at least 256K bytes of memory. 
In addition, you will need sufficient memory to run programs, system 
utilities, and language processors. Some memory is on-board the iSBC 86 
Single Board Computer, with the remainder on one or more memory boards. 
On-board memory may include a RAM expansion module; with a RAM expansion 
module the iSBC 86/30 has enough memory to run the Operating System. 

iSBC@ 957B PACKAGE 

You can use the parallel port for copying files to and from an Intellec 
Development System using an iSBC 957B hardware/software package. This 
chapter describes changes to your Single Board Computer required to 
support the iSBC 957B package. Refer to the USERrS GUIDE FOR THE 
iSBC 957B iAPX 86, 8& INTERFACE AND EXECUTION PACKAGE for information 
about how to connect your system to a Development System. 

MODIFYING BOARDS 

This section gives some hints about installing boards in a Multibus 
backplane, and describes how to modify the following boards: 

• iSBC 208 and iSBX 218 Flexible Diskette Controllers 

• iSBC 215 Generic Winchester Controller Board 

• iSBC 86/12A, iSBC 86/14, and iSBC 86/30 Single Board Computers 

• iSBC 534 Communications Expansion Board 

In discussions of how to modify boards, the term "modify" means 
installing non-standard jumpers and installing components on the board 
(such as the EPROMs that come as part of the iRMX 86 PC System). The 
discussions in this chapter assume that you have a hardware reference 
manual for the board you are modifying, and that you start with boards 
having only factory-installed jumpering in place. 

5-6 



PREPARING YOUR HARDWARE 

To modify a Single Board Computer to support the iRMX 86 PC Operating 
System, you must know: 

• Whether you are using the parallel port for a line printer or for 
an iSBC 957B package. 

• Whether your board has an iSBC 337 Multimodule Numeric Data 
Processor ("NDP~·). 

• Whether the board has a RAM expansion module. 

• Whether you are using serial bus priority resolution (the factory 
default in all cases) or parallel priority resolution. 

The instructions for the individual boards note when a particular jumper 
or device is affected by these variables. Comments describing the 
effect of jumpers are very brief; more· complete descriptions are in the 
appropriate hardware reference manual. 

HINTS ABOUT THE MULTIBUS@ 

When installing boards in the Multibus backplane, you must be sure that 
bus master boards are set up properly to resolve bus priority, and you 
should take precautions to avoid bus noise problems. Here are brief 
helps regarding each, and a recommendation for a booklet that explains 
more about each. 

Bus Priority Resolution 

Each Multibus master board contains hardware that automatically resolves 
bus priority. There are two techniques that this hardware can use: 
serial resolution or parallel resolution. When you put together your 
hardware system, you must ensure that all master boards in your system 
use the same technique. 

If you fail to do this, the individual boards will be able to perform 
on-board operations correctly, but will be unable to perform operations 
that require more than one board. Two symptoms are being able to access 
on-board memory but not being able to access memory on another board, and 
not being able to process bus-vectored interrupts. 

These are guidelines for deciding whether to use serial or parallel bus 
priority: 

• Serial Priority Resolution: It is the easiest to use, requiring 
no modifications to the boards or the backplane. You can have up 
to three bus master boards in your system. 

• Parallel Priority Resolution: This allows up to 16 master 
boards. Parallel priority resolution is more complex to set up, 
and requires special backplane hardware. 

5-7 



PREPARING YOUR HARDWARE 

Bus Electrical Noise 

Signal-to-signal coupling and other noise-inducing phenomena are usually 
not a problem with Multibus-based systems. But if your system is failing 
for reasons you can't identify, here are some precautions you can use. 

• Place BCLK/ and CCLK/ generators and receivers as close as 
possible to the,Multibus terminators. 

• Place any board receiving a signal as close as possible to the 
board generating the signal. 

• If you have empty slots in the backplane, install the boards near 
the Multibus terminator, leaving the empty slots toward the 
unterminated end of the backplane. Avoid leaving empty slots 
between boards. 

Refer to the Intel publication USER'S GUIDE TO CONFIGURING MULTIBUS-BASED 
SYSTEMS for more detailed explanations of these Multibus considerations. 

MODIFYING THE iSB~ 215 WINCHESTER DISK CONTROLLER 

Regardless which processor board you are using in your system, the 
iSBC 215 Controller is jumpered the same way. The jumpers are shown in 
Table 5-3. 

Table 5-3. iSBCe 215 Jumpers 

Remove Jumper Add Jumper 

W19, C-5 W19, C-4 
W18, 1-2 
W20, 1-3 
W21, 1-3 
Wll, 1-3 

Function/Description 

Interrupt Level 4 
16-bit bus compatibility 
16-bit bus compatibility 
16-bit bus compatibility 
If iSBC 218 board is used 

Notes: Switches 1 and 2 should be set as follows: 
Switch 1 Segment 8 ON, all other segments OFF 
Switch 2 Segments 1 and 2 ON, all others OFF 

You will have to perform 'Osignal scrambling" for the type of 
drive you use. Refer to the hardware reference manual for 
instructions. 

The iSBC 215 Controller is documented in the iSBX 215 GENERIC WINCHESTER 
DISK CONTROLLER HARDWARE REFERENCE MANUAL. 

5-8 



PREPARING YOUR HARDWARE 

MODIFYING THE iSBX1 
.. 218 DISK CONTROLLER 

If you want to aqd the iSBX 218 multimodule to your iSBC 215 board, you 
must plug the iSBX 218 multimodule into socket J4 of the iSBC 215 board 
and modify jumpers on the iSBC 218 board as described in Table 5-4. For 
jumpering 5 1/4-inch drives, refer to the individual hardware manual. 

Table 5-4. Jumpering for the iSBX'" 218 Multimodule'" 

Add Jumper Function/Description 

WI, A-B direct memory access 

W3, A-C 8-inch disk drives· 
W4, A-C II II .. 
W5, A-C II .. .. 
W6, A-C .. .. .. 
W7, A-C II .. .. 

The controller is documented in the iSBX 218 FLEXIBLE DISK CONTROLLER 
HARDWARE REFERENCE MANUAL. 

MODIFYING THE iSBC® 208 FLEXIBLE DISK CONTROLLER 

Regardless which Single Board Computer you are using for your system, the 
iSBC 208 Disk Controller is jumpered the same way. The jumpers are shown 
in Table 5-5. 

Table 5-5. iSBC~ 208 Jumpers 

Remove Jumper Add Jumper Function/Description 

E79-E84 Interrupt level 5 

E45-E49 E41-E45 16-bit I/O address decoding. 

E48-E52 E44-E48 Set I/O port address to 180h 
E61-E69 E54-E61 
E77-E78 Only if parallel bus priority resolution 

is used. 

The controller is documented in the iSBX 208 FLEXIBLE DISK DRIVE 
CONTROLLER HARDWARE REFERENCE MANUAL. 

5-9 



PREPARI~G YOUR HARDWARE 

MODIFYING THE iSBCe 534 FOUR CHANNEL COMMUNICATIONS EXPANSION BOARD 

You must install jumpers on your iSBC 534 Expansion Board to establish 
the I/O base address and the interrupt level. These jumpers are shown in 
Table 5-6. 

Table 5-6. iSBC@ 534 Interrupt and Base Address Jumpers 

Remove Jumper Add Jumper Function/Description-

131-140 131-138 Interrupt level 3 
132-140 132-138 

123-126 Base Port Address: 30 

Each serial port that you use on the Expansion Board must match the 
characteristics of the device connected to that port. Although many 
variations are possible, the most common way of using a port is to 
connect it to a terminal and to use RS232C protocol. You must prepare 
one DIP header assembly for each port that you use. Table 5-7 shows how 
to wire the pins on an 18-pin DIP header assembly for the most common 
RS232C hookup. 

Table 5-7. iSB~ 534 DIP Header Jumpers for RS232C Protocol 

Jumper Description, (with RS232C signals) 

4 to 5 
6 to 7 
8 to 10 
9 to 11 
12 to 13 
14 to 15 

Signal Names: 

Board DSR to Board DTR 
Board RTS to board CTS 
Board RXD to terminal TXD 
Board TXD to terminal RXD 
Terminal RTS to terminal CTS 
Terminal DSR to terminal DTR 

TXD: Transmit Data 
DTR: Data Terminal Ready 
RTS: Request to Send 

RXD: Receive Data 
DSR: Data Set Ready 
CTS: Clear to Send 

For any other configuration (current loop, modem hookup, etc.) refer to 
the iSBC 534 FOUR CHANNEL COMMUNICATIONS EXPANSION BOARD HARDWARE 
REFERENCE MANUAL. 

5-10 



PREPARING YOUR HARDWARE 

MODIFYING THE iSBee 86/12A SINGLE BOARD COMPUTER 

The following tables list the modifications necessary to support the 
iRMX 86 PC Operating System with an iSBC 86/12A Microcomputer. 

Interrupt Level Jumpers 

Table 5-8 summarizes jumpers that establish interrupt levels. 

Table 5-8. Interrupt Jumpers for iSBC~ 86/12A 

Add Jumper Function/Description 

E81-El Interrupt Level 0, iSBC 337 (1) 
E72-E89 Level 1, Non-Maskable Interrupt 
E80-E84 Level 1, Line Printer 
E79-E83 Level 2, System Clock (2) 
E70-E73 Level 3, iSBC 534 controller 
E69-E77 Level 4, iSBC 215/218 controller 
E68-E76 Level 5, iSBC 208 controller (2) 
E75-E82 Level 6, Terminal Driver (Read) 
E74-E90 Level 7, Terminal Driver (Write) 

Notes: (1) This jumper is for an iSBC 86/12A with PWA number of 
142977-XXX. 

(2) Factory-installed jumpers. 

Additional Jumpers 

Table 5-9 summarizes additional jumpering of the iSBC 86/12A. 

Table 5-9. Other iSBC~ 86/I2A Jumpers 

Remove Jumper Add Jumper Function/Description 

E51-E52 Clear To Send signal capability 
E125-E126 E127-E128 Set dual-port RAM address 

E12-E21 Only if iSBC 337 is not used 
E97-E98 E97-E99 Required by Monitor EPROMs 

E5-E6 Unpopulated memory or port time-out 
EI51-E152 Only for parallel priority resolution 

5-11 



PREPARING YOUR HARDWARE 

Parallel Port 

Table 5-10 summarizes jumper setting for the iSBC 86/12A Parallel Port, 
which can be used for either a line printer or an iSBC 957B package. 

Table 5-10. iSBC. 86/12A Parallel Port Jumpers 

iSBC. 957B Line Printer 

Remove Add Remove Add 
Jumper Jumper Jumper Jumper 

E13-E14 E13-E27 EI3-E14 E22-E32 
E19-E20 E14-E30 E32-E33 
E21-E25 E18-E3I 
E26-E27 E20-E33 
E30-E31 E25-E3I 
E32-E33 

Switch Settings 

Table 5-11 Shows the settings for each position (segment) of Switch 1. 

Table 5-11. iSBC. 86/12A Switch 1 

Position Setting Position Setting 

1 ON 5 OFF 
2 (1) 6 OFF 
3 OFF 7 ON 
4 OFF 8 OFF 

Note: (1) Switch 2 must be OFF if you are using an iSBC 300 RAM 
Expansion Module, otherwise ON. 

5-12 



PREPARING YOUR HARDWARE 

Devices 

Table 5-12 describes the devices that must be installed on your 
iSBC 86/12A Board. 

Table 5-12. iSBC@ 86/12A Devices 

Device Part Number Socket 

2732A EPROM 145374-001 A28 
2732A EPROM 145375-001 A29 
2732A EPROM 145376-001 A46 
2732A EPROM 145377-001 A47 
iSBC 902 Resistor packs 4500645-01 AI0, A12, A13 
7438 IC 100908-001 All (1) 
Status Adapter 1002129 All (2) 

Notes: (1) If parallel port is used for line printer. 
(2) If parallel port is used for iSBC 957B package. 

The iSBC 86/12A is documented in the iSBC 86/12A SINGLE BOARD COMPUTER 
HARDWARE REFERENCE MANUAL. 

5-13 



PREPARING YOUR HARDWARE 

MODIFYING THE iSBCe 86/14 SINGLE BOARD COMPUTER 

The following tables list modifications necessary to support the 
iRMX 86 PC Operating System with an iSBC 86/14 Single Board Computer. 

Jumpers 

Table 5-13 summarizes jumpers that establish interrupt level jumpers, 
Table 5-14 summarizes parallel port jumpers, and Table 5-15 shows all 
other jumpers that must be installed on the iSBC 86/14 Board. Asterisks 
(*) note indicate factory-installed jumpers. 

Table 5-13. Interrupt Jumpers for iSBCe 86/14 

Remove Jumper Add Jumper Function/Description 

E165-E166 Interrupt Level 0, iSBC 337 
E144-E145 E145-E149 Levell, Non-Maskable Interrupt 

E132-E164 Levell, Line Printer 
E147-E158 Level 2, System Clock * 
E136-E159 Level 3, If iSBC 534 board used 
E157-E162 Level 5, If iSBC 215/218 board used 
E151-E152 Level 5, iSBC 208 * 
E153-E155 Level 6, Terminal Driver (Read) 
E134-E154 Level 7, Terminal Driver (Write) 

Table 5-14. 1SBCe 86/14 Parallel Port Jumpers 

If iSBC@ 957B is used If Line Printer is used 

Remove Add Remove Add 
Jumper Jumper Jumper Jumper 

E44-E53 E44-E59 E44-E53 E60-E63 
E45-E54 E45-E50 E51-E60 
E46-E55 E45-E54 
E48-E57 E46-E51 
E50-E59 E48-E53 
E51-E60 E50-E52 
E52-E61 

5-14 



Remove Jumper 

E219-E225 

E26-E27 
E33-E34 

E111-E112 

E210-E211 

PREPARING YOUR HARDWARE 

Table 5-15. Other iSBC~ 86/14 Jumpers 

Add Jumper 

E76-E77 

E61-E62 

E36-E37 
E124-E125 
El12-El13 
E119-E120 
E230-E231 
E232-E233 

Function/Description 

Clear To Send signal capability. 
Set dual-port RAM address 
Only if iSBC 337 is not used. 
Enable Non-Maskable Interrupt 
Non-bus vector interrupt 
Selects 5MHz clock (1) 
Selects 2732-type EPROM 
2732 EPROM address range 
If RAM Expansion Module is used 
If RAM expansion module not used 
Dual-port Ram Addressing 
For parallel priority resolution 

Note: (1) 5 MHz required if iSBC 337 NDP is used. 

Devices 

Table 5-16 describes the devices that must be installed on your 
iSBC 86/14 Board. 

Table 5-16. iSBC@ 86/14 On-Board Devices 

Device Part Number Socket 

2732A EPROM 145374-001 U57 
2732A EPROM 145375-001 U58 
2732A EPROM 145376-001 U39 
2732A EPROM 145377-001 U40 
902 Resistor Packs 4500645-01 U18, U20, U21 
7438 IC 100908-001 U19 If Line Printer used 
Status Adapter 1002129 U19 If iSBC 957B used 

The iSBC 86/14 Single Board Computer is documented in the iSBC 86/14 AND 
iSBC 86/30 SINGLE BOARD COMPUTER HARDWARE REFERENCE MANUAL. 

5-15 



PREPARING YOUR HARDWARE 

MODIFYING THE iSBC8 86/30 SINGLE BOARD COMPUTER 

The following tables list modifications necessary to support the 
iRMX 86 PC Operating System with an iSBC 86/30 Single Board Computer. 

Jumpers 

Table 5-17 summarizes jumpers that establish interrupt level jumpers, 
Table 5-18 summarizes parallel port jumpers, and Table 5-19 summarizes 
all other jumpers that must be installed on your iSBC 86/30 Board. 
Asterisks (*) mark factory-installed jumpers. 

Table 5-17. Interrupt Jumpers for iSBC8 86/30 

Remove Jumper Add Jumper Function/Description 

E165-E166 Interrupt Level 0, iSBC 337 
E144-E145 E145-E149 Levell, Non-Maskable Interrupt 

E132-E164 Levell, Line Printer 
E147-E158 Level 2~ System Clock * 
E136-E159 Level 3, iSBC 534 Controller 
E157-E162 Level 5, iSBC 215/218 Controller 
E151-E152 Level 5, iSBC 208 * 
E153-E155 Level 6, Terminal Driver (Read) 
E134-E154 Level 7, Terminal Driver (Write) 

Table 5-18. iSBC8 86/30 Parallel Port Jumpers 

If iSBC8 957B is used If Line Printer 1s used 

Remove Add Remove Add 
Jumper Jumper Jumper Jumper 

E44-E53 E44-E59 E44-E53 E60-E63 
E45-E54 E45-E50 E51-E60 
E46-E55 E45-E54 
E48-E57 E46-E51 
E50-E59 E48-E53 
E51-E60 E50-E52 
E52-E61 

5-16 



PREPARING YOUR HARDWARE 

Table 5-19. Other iSBCe 86/30 Jumpers 

Remove Jumper Add Jumper Function/Description 

E76-E77 Clear To Send signal capability. 
E219-E225 Set dual-port RAM address 

E61-E62 Only if iSBC 337 is not used. 
E26-E27 Enable Non-Maskable Interrupt 
E33-E34 Non-bus vector interrupt 

E36-E37 Selects 5MHZ clock (I) 
E124-E125 Selects 2732-type EPROM 

EII1-EI12 E112-El13 2732 EPROM address range 
El19-E120 If RAM Expansion Module ~ used 
E232-E233 If RAM expansion module ~ used 

E210-E211 For parallel priority resolution 

Note: (1) 5 MHz required if iSBC 337 NDP is used. 

Devices 

Table 5-20 describes the devices to be installed on an iSBC 86/30 board. 

Table 5-20. iSBCe 86/30 On-Board Devices 

Device Part Number Socket 

2732A EPROM 145374-001 U57 
2732A EPROM 145375-001 U58 
2732A EPROM 145376-001 U39 
2732A EPROM 145377-001 U40 
902 Resistor Packs 4500645-01 U18, U20, U21 
7438 IC 100908-001 U19 If Line Printer used 
Status Adapter 1002129 U19 If iSBC 957B used 

The iSBC 86/30 Single Board Computer is documented in the iSBC 86/14 AND 
iSBC 86/30 SINGLE BOARD COMPUTER HARDWARE REFERENCE MANUAL. 

5-17 



PREPARING YOUR HARDWARE 

CONVENIENCE CHARTS 

The next pages are printed for your convenience in working with the the 
boards that you must modify. You are invited to remove these pages and 
use them as work guides. There is one page each for the following boards: 

• iSBC 86/12A Single Board Computer 

• iSBC 86/14 Single Board Computer 

• iSBC 86/30 Single Board Computer 

• iSBC 534 Communications Expansion Board 

• iSBC 215 Generic Winchester Controller Board 

• iSBX 218 Flexible Disk Controller 

• iSBC 208 Flexible Disk Controller 

The iSBC 208 page also includes Centronics and parallel port signal 
definitions. 

5-18 



iSBC® 86/12A 

Table 5-21. iSBC8 86/12A Jumpers (Condensed) 

Remove Add Function/ 
Jumper Jumper Description 

E81-El Interrupt Level 0, iSBC 337 (1) 
E72-E89 Level I, Non-Maskable Interrupt 
E80-E84 . Level I, Line Printer 
E79-E83 Level 2, System Clock (factory-installed jumper) 
E68-E76 Level 5, iSBC 208 (factory-installed jumper) 
E75-E82 Level 6, Terminal Driver (R.€ad) 
E74-E90 Level 7, Terminal Driver (Write) 

E51-E52 Clear-To-Send signal capability_ 
E125-E126 E127-E128 Set dual-port RAM address 
E97-E98 E97-E99 Required for Monitor in EPROMs 

E12-E21 Only if iSBC 337 is ~ used. 
E5-E6 Unpopulated memory or port time-out 

E151-E152 Only for parallel priority resolution 

E13-E14 E13-E27 If parallel port is used for 957B 
E19-E20 E14-E30 
E21-E25 E18-E31 
E26-E27 E20-E33 
E30-E31 E25-E31 
E32-E33 

E13-E14 E22-E32 If parallel port is used for line printer 
E32-E33 

(1) Applies only to iSBC 86/12A with PWA of 142977-XXX 

Table 5-22. iSBc8 86/12A Devices (Condensed) 

Device Part Number Socket 

2732A EPROM 145374-001 Al8 
2732A EPROM 145375-001 A29 
2732A EPROM 145376-001 A46 
2732A EPROM 145377-001 A47 
902 Resistor Packs 4500645-001 AI0, A12, A13 
7438 IC 100908 All Parallel port used for line printer 
Status Adapter 1002129 All Parallel port used for iSBC 957B 

Table 5-23. ISBc«' 86/12A Switch 1 (Condensed) 

Segment Setting Segment Setting 

1 ON 5 OFF 
2 OFF (*) 6 OFF * If iSBC 300 RAM expansion module is 
3 OFF 7 ON ~ used, this position ON 
4 OFF 8 OFF 

5-19 



iSBC®86/14 

Table 5-24. iSBC. 86/14 Jumpers (Condensed) , 

Remove 
Jumper 

E144-E145 

E219-E225 
E26-E27 
E33-E34 

Elll-E1l2 
E210-E211 

E44-E53 
E45-E54 
E46-E55 
E48-E57 
E5O-E59 
E51-E60 
E52-E61 

E44-E53 
E51-E60 

Device 

Add 
Jumper 

E165-E166 
E145-E149 
E132-EI64 
E147-E158 
E151-E152 
E153-E155 
E134-E154 
E76-E77 

E61-E62 
E36-E37 
E124-E125 
E112-E1l3 

E1l9-E120 
E232-E233 

E23O-E231 
E232-E233 

E44-E59 
E45-E50 
E45-E54 
E46-E51 
E48-E53 
E50-E52 

E60-E63 

2732A EPROM 
2732A EPROM 
2732A EPROM 
2732A EPROM 
902 Resistor Packs 
7438 IC 
Status Adapter 

Function/ 
Description 

Interrupt Level 0, iSBC 337 
Levell, Non-Maskable Interrupt 
Levell, Line Printer 
Level 2, System Clock (factory-installed jumper) 
Level 5, iSBC 208 (factory-installed jumper) 
Level 6, Terminal Driver (Read) 
Level 7, Terminal Driver (Wr~te) 
Clear-To-Send signal capability 
Set dual-port RAM address 
Enable Non-Maskable Interrupt 
Non-bus vector interrupt 
If iSBC 337 is not used. 
Selects 5KHz cloc~ (required if iSBC 337 ~ used) 
Selects 2732-type EPROM 
EPROM address range 
Only for parallel priority resolution 

86/14 ~ iSBC 300A RAM expansion module 

86/14 without RAM expansion module 

If parallel port is used for 957B 

If parallel port is used for line printer 

Table 5-25. iSBC8 86/14 Devices (Condensed) 

Part Number Socket 

145374-001 U57 
145375-001 U58 
145376-001 U39 
145377-001 U40 
4500645-01 U18, U20, U21 
100908-001 U19 If parallel port used for Line Printer 
1002129 U19 If parallel port used for iSBC 957B 

5-20 



Remove 
Jumper 

Add 
Jumper 

Table 5-26. iSBce 86/30 Jumpers (Condensed) 

Function/ 
Description 

Interrupt Level 0, iSBC 337 
Levell, Non-Maskable Interrupt 
Levell, Line Printer 
Level 2, System Clock (factory-installed jumper) 
Level 5, iSBC 208 (factory-installed jumper) 
Level 6, Terminal Driver (Read) 
Level 7, Terminal Driver (Write) 
Clear-To-Send signal capability 
Set dual-port RAM address 
Enable Non-Maskable Interrupt 
Non-bus vector interrupt 
If iSBC 337 is not used. 
Selects 5MHz clock (required with iSRC 337) 
Selects 2732-type EPROM 
EPROM address range 
Only for parallel priority resolution 

86/30 ~ iSBC 304 RAM expansion module 

~--------~--------------~-------,--------------------------------------------~ 
86/30 without RAM expansion module 

I----------~--------------~-----------------------------------,----------·------~ 
If parallel port is used for 957B 

If parallel port is used for line printer 

Table 5-27. iSBce 86/30 Devices (Condensed) 

Device Part Number Socket 

2732A EPROM 145374-001 U.57 
2732A EPROM 145375-001 U58 
2732A EPROM 145376-001 U39 
2732A EPROM 145377-001 U40 
902 Resistor Packs 4500645-01 U18, U20, U21 
7438 IC 100908-001 U19 If parallel port used for Line Printer 
Status Adapter 1002129 U19 If parallel port used for iSBC 957B 

5-21 

iSBC®S6/30 



iSBC®215 

Table 5-28. iSBce 215 Jumpers (Condensed) 

Remove Jumper Add Jumper Function/Description 

W19, C-5 W19, C-4 Interrupt Level 4 
WI8, 1-2 16-bit bus compatibility 
W20, 1-3 16-bit bus compatibility 
W21, 1-3 16-bit bus compatibility 
WIl, 1-3 If iSBC 218 board is used 

Notes: Switches 1 and 2 should be set as follows: 
Switch 1 Segment 8 ON, all other segments OFF 
Switch 2 Segments 1 and 2 ON, all others OFF 

You will have to perform "signal 6cra.mbling" for the type of 
drive you use. Refer to the hardware reference manual for 
instructions. 

iSBXTM 218 

Table 5-29. Jumpering for the iSBX™218 Multimodule™(Condensed) 

Add Jumper Function/Description 

WI, A-B direct memory access 

W3, A-C 8-inch disk drives 
W4, A-C " " .. 
W5, A-C " " " 
W6, A-C " " " 
W7, A-C " " " 

5-22 



iSBC® 534 

Table 5-30. iSBc8 534 Jumpers (Condensed) 

Remove Jumper Add Jumper Function/Description 

131-140 131-138 Interrupt level 3 
132-140 132-138 

123-126 Base Port Address: 30 

Table 5-31. iSBC8 534 DIP Header Jumpers. RS232C (Condensed) 

Jumper Description. (RS232C Signal Names) 

4 to 5 Board DSR to Board DTR 
6 to 7 Board RTS to board CTS 
8 to 10 Board RXD to terminal TXD 
9 to 11 Board TXD to terminal RXD 
12 to 13 Terminal RTS to terminal CTS 
14 to 15 Terminal DSR to terminal DTR 

Signal Names: TXD: Transmit Data RXD: Receive Data 
DTR: Data Terminal Ready DSR: Data Set Ready 
RTS: Request to Send CTS: Clear to Send 

5-23 



iSBC®208 

Table 5-32. 1SBce 208 Jumpers (Condensed) 

Remove Jumper Add Jumper Function/Description 

E79-E84 Interrupt level 5 

E45-E49 E41-E45 16-bit I/O address decoding. 

E77-E78 Only if parallel bus priority resolution 
is used. (Factory sends board with this 
jumper installed. for serial bus 
priority resolution). 

Line Printer 

Table 5-33. Lin.e 'Prj.nter. Pin Assignm.ents (Condensed) 

50-Pin SO-Pin -- CENTRONICS-Standard -- 1 
iSBC Edge 30-Pin 
Connector Connector Connector Signal 

24 23 1 Character strobe to printer 
26 25 13 SLCT (Select) 
28 27 12 Paper Out 
30 29 10 ACKNOWLEDGE from printer 
34 33 9 Data Bit 7 
36 35 8 Data Bit 6 
38 37 7 Data Bit 5 
40 39 6 Data Bit 4 
42 41 5 Data Bit 3 
44 43 4 Data Bit 2 
46 45 3 Data Bit 1 
48 47 2 Data Bit 0 

GROUNDS: 

iSBC Connector: All odd pin numbers are grounded. 
Edge Connector: All even-numbered pins grounded. 
Centronics LP Connector: Pins 19-29 Protective grounds 

Pin 16 Logic Ground 
Pin 17 Chassis Ground 

*** 
5-24 



CHAPTER 6. SYSTEM MANAGEMENT 

This chapter is addressed to the system manager -- the person who is 
responsible for managing an iRMX 86 PC System. To the Operating System, 
the system manager is s~mply anyone with user ID 0 (zero). As the system 
is delivered from Intel, however, user ID 0 is not automatically assigned 
to a terminal. To assume user ID 0, an operator uses the SUPER command 
(see Chapter 3) and must know the password associated with SUPER. When 
Intel sends you the System Diskette, the SUPER password is null, so you 
reply to the prompt for a password by typing a carriage return. 

Beginning here, this chapter assumes that you are the system manager in 
both senses of that term, that is, you are responsible for managing your 
system, and you operate with user ID O. 

The important considerations about your installation of the iRMX 86 PC 
package are the following: 

• Will your system support multiple terminals? 

• Will more than one user be using the system? 

• Do you wish to protect files and devices from unauthorized 
access? "Unauthorized access" means both deliberate attempts to 
access files and accidental access. Naive or careless users, as 
well as hostile users, should be prevented from deleting or 
corrupting files on a system used by more than one person. The 
iRMX 86 PC system contains software mechanisms to make possible a 
protected environment. Even if your system has only one keyboard 
terminal, but more than one person uses it, protection features 
can prevent unauthorized access. 

This chapter contains these major sections: 

• How to coPY the System Diskette. 

• iRMX 86 PC System Diskette: The contents of the diskette that 
Intel sends you. The term System Diskette designates the 
diskette that Intel delivers as part of the iRMX 86 PC product, 
or a copy of this diskette. (The entire package is described in 
the Preface.) 

• Editing Terminal and User Definition Files: How to change the 
files and directories to meet the requirements of your individual 
system. 

• Other System Management Functions: How to attach hardware 
devices and close down a multi-user system. 

6-1 



SYSTEM MANAGEMENT 

NOTE 

After a system is bootstrap loaded, the 
logical name (prefix) :SD: designates 
the disk from which the system was 
booted. 

COPYING THE iRMX- 86 PC SYSTEM DISKETTE 

When you receive the iRMX 86 PC product, and have prepared the hardware 
on which it will run, you should bootstrap load the system (described in 
the beginning of Chapter 1) and backup the System Diskette. Then store 
the Intel-supplied System Diskette in a safe place. 

On the System Diskette is a file, :SD:BACKUPSYS that will automatically 
create a new system disk with the correct directories and files. To use 
this file, you: 

1. Type SUPER and respond to the password prompt with a RETURN key. 

2. Attach the disk drive to which you will copy the disk. Attach it 
as :Fl:. 

3. Format the disk. 

4. SUBMIT the file BACKUPSYS, which contains all other commands 
necessary to complete the backup process. (If you are not 
familiar with the SUBMIT command, it is described in Chapter 3.) 

Here is a detailed description of these steps: 

1. Assume user ID O. Type SUPER, and reply to the password prompt 
with a carriage return (RETURN key). The System Diskette is 
delivered without a password; we show later how to establish a 
password. 

2. Attach the disk drive. Issue an appropriate ATTACHDEVICE command 
to attach the disk drive on which you will create the new system 
diskette. Attach the drive as logical name :Fl:. By 
appropriate, we mean with the correct physical name for the 
drive. These physical names are listed with the description of 
the ATTACHDEVICE command in Chapter 3. If you are not familiar 
with the ATTACHDEVICE command, you should refer to the 
description. 

Two examples show how to type the ATTACHDEVICE command. Assume 
that you have bootstrap loaded the Operating System from Drive 0 
connected to an iSBX 218. If you intend to copy to the second 
drive on the same controller, you will issue the following 
command: 

6-2 



SYSTEM MANAGEMENT 

ATTACHDEVICE WFDI AS Fl 

But if you intend to copy to a Priam 3450 Winchester Disk, issue: 

ATTACHDEVICE IWO AS Fl 

If the diskette in the second drive has not been formatted, you 
will receive an, error message on the screen saying something like 

Fl volume not formatted 

followed by one more line of error information. Ignore the 
messages; the drive is attached anyway. 

3. Format the disk. If you are formatting another flexible 
diskette, the following command is appropriate: 

FORMAT :Fl:NEWDSK FILES = 100 INTERLEAVE = 7 

If you are formatting a Winchester disk, the following command is 
generally appropriate: 

FORMAT :Fl:newsys FILES = 5000 INTERLEAVE = 4. 

Note that the FORMAT command for the flexible disk specifies an 
interleave value of 7. This is because if you did not specify a 
value, the FORMAT command uses a default value of 5. With an 
interleave factor of 5, booting the system from a flexible 
diskette can take nearly three minutes, instead of about one-half 
minute for a diskette formatted with an interleave factor of 7. 

You may wish to adjust the FILES parameter if you have unusual 
file system requirements. But the values shown are proper for 
most installations. 

4. SUBMIT the file :SD.:BACKUPSYS. It creates the correct 
directories on the new device, copies all of the proper files, 
and establishes the owner and access rights for each. 

6-3 



SYSTEM MANAGEMENT 

Figure 6-1 shows the commands in BACKUPSYS. 

COpy :SD:GSYS.020 TO :Fl:GSYS.020 
CREATEDIR : F 1 : SYSTEM 
CREATEDIR : Fl : CONFIG 
CREATEDIR : PI: CONFIG /USER 
CREATEDIR :Fl:USER . 
CREATEDIR : F 1 : WORK 
CREATEDIR :Fl:LANG 
.CREATEDIR :Fl:UTILS 
COpy :SYSTEM:* TO :Fl:SYSTEM/* 
COpy :SD:CONFIG/TERMINALS TO :Fl :CONFIG/TERMINALS 
COpy :SD:CONFIG/USER/* TO :Fl:CONFIG/USER/* 
PERMIT :Fl:USER L USER- WORLD 
PERMIT :Fl:SYSTEM L USER - WORLD 
PERMIT :Fl :UTILS L USER- WORLD 
PERMIT :Fl : LANG L USER- WORLD 
PERMIT : Fl : WORK DLAC USER- WORLD 
PERMIT :Fl:SYSTEM/* R USER-WORLD 
PERMIT : Fl : SYSTEM/RMX86 N USER-WORLD 
PERMIT :Fl: L USER - WORLD 
COpy :SD:BACKUPSYS TO :Fl:BACKUPSYS 
PERMIT : F 1 : BACKUPSYS R USER - WORLD 
PERMIT :Fl:GSYS.020 R USER - WORLD 
CREATEDIR :Fl:USER/O 
CHANGE!D 1 
CREATEDIR :Fl:USER/l 
CHANGE!D 2 
CREATEDIR :Fl:USER/2 
CHANGE!D 3 
CREATEDIR :Fl:USER/3 
CHANGE!D 4 
CREATEDIR :Fl:USER/4 
CHANGE!D 65535 
CREATEDIR :Fl:USER/65535 

Figure 6-1. ':SD:BACKUPSYS 

When you have an editor installed on your system, you may wish to change 
the password on the copy of the System Diskette. This will prevent 
unauthorized users from using the the copy to gain access to files that 
you want protected. We do not recommend creating a password on the 
System Diskette you receive from Intel; keeping it in a secure place is 
safer than .odifying the diskette. 

The password used with SUPER is in the user definition file for user ID 
O. This file is described in a later section, EDITING TERMINAL AND USER 
DEFINITION FILES, which explains how to protect your system from 
accidental or deliberate access. 

6-4 



SYSTEM MANAGEMENT 

iRMI- 86 PC SYSTEM DISKETTE 

This section describes the file structure of the System Diskette, by 
listing the names of the files, describing the information in these 
files, and describing the directory structure. 

Figure 6-2 shows the directories and data files that exist on the 
1RMX 86 PC System Diskette. The figure also shows: , 

• Owner's User ID. The owner is important because that user always 
has the ability to change the access rights associated with the 
file. Therefore the owner can always access the file and, if it 
is a directory, any files at lower levels in the file tree. 

• Access Rights of WORLD. WORLD access is important because it 
indicates the access rights of all other users. 

user-written utility 
programs 

( 
O=owner ) 

WORLD=R 

D = dll'Ktory 

6 = datafl .. 

L = list ac:c:.ss 
R =~access 

N = no access 

language 
products 

( O=owner ) 
\WORLD=R 

(
0: attaching user) 

0= owner 
WORLD: L 

:so: 

Human Interface 
Commands 

( 
O=owner ) 

WORLD=R IRMX·· 86 
( O=owner ) 
\WORLD=N 

x-262 

(
id(1 I = owner ) (1d(21 = owner ) (Idtnl=owner) 
WORLD = N WORLD = N WORLD'~ N 

o ld(1) iden) 

( 
O=owner ) ( O~ owner ) ( 0 c owner ) 

WORLD = N WORLD ~ N WORLD N 

Figure 6-2. File Structure of the System Device 

6-5 



SYSTEM MANAGEMENT 

In the figure, :SD: indicates the root directory of the device. You can 
bootstrap load the system from any disk on your system; the Bootstrap 
Loader recognizes the device from which it loads and causes that device 
to be assigned logical name :SD:. You can attach other devices after the 
system has been booted by a procedure described in a later section. 

User ID 0 (the system manager) is the owner of t.he :SD: device. This 
prevents users other than the system manager from detaching the system 
device. Only user 0 has all access rights to the root directory. Other 
users have List access to allow them to view the files in the root 
directory. However, they do not have change entry access to the root 
directory, nor do they have delete access or add entry access. 

Three first~level directories list~d in Figure 6-2 are used for commands, 
for language processors such as compilers, and for utilities. They are 
SYSTEM, LANG, and UTILS respectively. User ID 0 should be the owner of 
these directories and the files they contain. To protect language 
processors and utilities, other users should have List access to the 
directories (to be able to see what is available) and Read access to the 
command files (to be able to run the commands). 

The directory WORK is used by language utilities for creating temporary 
files. 

User ID 0 is the owner of the bootstrap-Ioadable iRMX 86 PC Operating 
System (the file RMX86 in the SYSTEM directory), and other users have no 
access to it. This prevents users from creating their own system 
volumes. 

The first-level directory USER contains the directories which are the 
default prefixes of the users. User ID 0 is the owner of USER and other 
users have only List access. However, the directories contained in USER 
are owned by the corresponding user IDs with no access to other users. 
By owning their default prefix directory, a user can change the access 
rights. This allows one to permit other users to access files in the 
default directory. However, since no other users have automatic access 
to the default directory, the user can maintain privacy If desired. 

The figure only generally shows the user directories. The System 
Diskette contains user directories for IDs 0 through 4, and 65535 (WORLD). 

The other first-level directory (CONFIG) contains the terminal and user 
definition files, also called configuration files. User ID 0 is the 
owner of the directory and the files contained in it. Other users have 
no access to the directory or to the files ~t contains. This prevents 
everyone but the system manager from modifying the terminal and user 
configuration. It also prevents users from discovering the system 
manager's password. The CONFIG directory and the files described here 
mUst reside on the :SD: device. 

Two files not shown in the figure are in the root directory: BACKUPSYS, 
and GSYS.020. BACKUPSYS is described earlier in the chapter. GSYS.020 
is the identifier file for the iRMX 86 PC Operating System. An example 
command in Chapter 2 shows its contents. 

6-6 



SYSTEM MANAGEMENT 

EDITING THE TERMINAL AND USER DEFINITION FILES 

To control file access and terminals assignments on a system, you edit a 
few files to make changes and then re-boot the system. This discussion 
assumes that you have copied your System Diskette, and have installed an 
editor on your system. 

If only one person acce~ses your $ystem, that user requires access to all 
files and all devices in the system, and there is no need to restrict 
access to files or devices. 

However, with more than one person using the system, file and device 
access becomes an issue. Some reasons for this are the following: 

• To maintain system security, you should limit access to the 
Configuration Files. 

• Some users might want to prohibit other users from reading their 
files or viewing their directories. However, some users might 
want to grant other users the ability to access their files. To 
do this, users should be the owners of the directories that serve 
as their default prefixes. 

• All users should be able to run Human Interface commands, and be 
able to use software packages that you install on your system 
(such as compilers or editors). To do so, they require the 
ability to read the files containing the commands and utilities. 
However, to protect the files from damage, you should restrict 
other types of access to these files. 

• Some devices (such as a hard disk or the device that serves as 
the system device) should be available to all users. However, to 
protect users who access these devices, only the system manager 
should be able to detach the devices. 

To create a multi-access system that protects files and directories, 
someone (normally the system manager) must set up the correct file 
structure before allowing other users to access the system. The 
following sections describe this process. 

In this section we describe in detail: 

• The general format of the terminal definition file and of the 
user definition files. 

• The contents of these files on the System Diskette you receive 
from Intel. 

• How to change parameters to make changes in the operation of your 
system. For example, by editing these files you can change the 
amount of memory allocated to a particular terminal user; set the 
SUPER password, and you can specify which terminals are used. 

6-7 



SYSTEM MANAGEMENT 

The two kinds of files that the system manager edits to control users and 
terminals are: the terminal definition file, and user definition files 
(one for each user). The pathnames of the files are: 

file pathname 

Terminal definition file CONFIG/TERMINALS 

User definition files CONFIG/USER/id 

Where id is the User ID of the corresponding user. The iRMX 86 PC System 
Diskette contains one user definition file for'each of the following User 
IDs: 

o (system manager) 
1 
2 
3 
4 
65535 (WORLD) 

TERMINAL DEFINITION FILES 

The terminal definition file (:SD:CONFIG/TERMINALS) defines all terminals 
through which users intend to access the Human Interface. The file 
consists of several lines of information which can be divided into two 
parts: 

1. One line consisting of an integer, indicating the number of 
terminals to be connected. This is the first line of the file. 

2. Device name and attributes of the terminals, one terminal per 
line. 

The following is a list of the contents of the terminal definition file 
on the iRMX 86 PC System Diskette: 

1 
TO,65535,64,200 
Tl,I,225,200 
T2,2,64,200 
T3,3,64,200 
T4,4,64,200 

The first line in the file, 1, defines how many terminals are active, and 
therefore how many interactive jobs to create when the system is 
initialized. Each succeeding line defines one terminal. You receive the 
System Diskette with only the first terminal (TO) activated. If you 
change this number to 3, you activate TO, Tl, and T2. Changing the 
number to 5 activates all the terminals that the iRMX 86 PC System can 
support. 

6-8 



SYSTEM MANAGEMENT 

The device name and attributes of a terminal must reside on a single line. 
with commas separating the individual elements. Only the first two 
elements are required. Embedded blanks are not allowed. For example. the 
terminal connected to the Port 0 on an iSBC 534 controller board is 
defined by the third line of the file: 

T1,1.200,200 

The following general description will help you can edit the file to make 
it fit your system. A terminal definition line consists of the following 
parameters: 

device-name.user-id.partition-size,max-priority,init-pathname 

where: 

device-name 

user-id 

partition­
size 

max-priority 

init-pathname 

Name of the terminal; in the example: T1. The 
names were established when the iRMX 86 PC 
Operating System was configured. These names, 
corresponding hardware ports, are: 

and 

TO Serial port on iSBC 86 Single Board Computer 
T1 Serial Port 0, iSBC 534 Controller 
T2 Serial Port 1. iSBC 534 Controller 
T3 Serial Port 2. iSBC 534 Controller 
T4 Serial Port 3, iSBC 534 Controller 

Decimal number in the range 0 through 65535 that 
represents the ID of the user associated with this 
terminal; in the example: 1. You can assign the 
same User ID to more than one terminal. For any 
value you specify in this field, there must be a 
corresponding user definition file. (The next 
section describes user definition files.) 

Size, of the memory partition assigned to this 
user, specified in 1024-byte (lK) units; in the 
example: 64. The memory partition is an area of 
memory in which the user can load and run 
programs. In order to run compilers, you will need 
225K bytes. As we send you the system. the user 
assigned to the terminal on the single board 
computer is allocated 64K bytes. This is to ensure 
that you will'be able to boot the the system with 
the minimum memory required on the system. This 
field for Terminal 1 is given 225K bytes, but is 
not active when you boot the system. 

Decimal number specifying the maximum priority that 
any 'tasks associated with this user can have; in 
the example: 200. 

Pathname of the file containing the user's initial 
program; this parameter is not in the example. This 
is the program that begins running when the Human 
Interface creates the interactive job for the user. 

6-9 



SYSTEM MANAGEMENT 

Omitting Unnecessary Parameters 

Remember that only device-name and user-id are required. The rules for 
omitting values are: 

• If you omit one of the intermediate optional parameters but 
specify a later one, you must include a comma as a place holder 
for the parameter. For example, if for T1 you specify an initial 
program pathname, but do not want to specify partition-size or 
max-priority, the line might look like: 

T1,1",MYFlLE 

• If you omit a value, the Human Interface uses the value specified 
in the user definition file for this User ID. (The next section 
describes the user definition file.) If the terminal definition 
file and a user definition file conflict, the Human Interface 
uses the value specified in the the terminal configuration file. 

Order of Terminal Definition Lines 

When the Human Interface starts running, it creates jobs for the 
terminals in the order they are specified in the terminal definition 
file. You should define the terminals in order of their importance to 
guarantee that the most important terminals have access to the system. 
If there is no order of importance, you should specify the terminals in 
order of their partition sizes, with largest partition sizes first. 

User Definition Files 

User definition files define the attributes of Human Interface users. 
There must be a separate file for each user. Each file contains 
information (called attributes) for the user. The attributes can be 
separated by commas or appear on separate lines. When separated by 
commas, embedded blanks are not allowed. 

For example, the contents of the user definition file for User ID 1 on 
the iRMX 86 PC System Diskette (:SD:CONFIG/USER/1) contains the following 
data: (the description refers to this example). 

1,,64,128,190,:SD:USER/1 

The general format of each user definition file is as follows: 

user-id 
password 
default-partition-size 
maximum-partition-size 
max-priority 
default-prefix-pathname 
init-pathname 

6-10 



where: 

user-id 

password 

default­
partition­
size 

maximum­
partition­
size 

max-priority 

default-prefix­
pathname 

init-pathname 

SYSTEM MANAGEMENT 

Decimal number in the range 0 through 65535 that 
represents the ID of the user; in the example, 1. 

A one- to eight-character password that is 
associated with this user. Currently, this field 

,applies only to User ID 0; and is the password 
that a user must enter to use the SUPER command. 
For user IDs other than 0, this field is reserved 
for future use; enter a null value (comma or 
carriage return used as a place holder), as shown 
in the example. 

Size, in 1024-byte units, of the memory partition 
that the Human Interface assigns to the user's 
interactive job. This value is used unless 
overridden by the value in the terminal 
definition file. In the example, the value is 64. 

Size, in 1024-byte units, of the largest memory 
partition that the Human Interface can assign 
to the user's interactive job. The suggested 
value for users who run only standard Human 
Interface commands is 32. Users who run language 
products (such as compilers or linkers) require a 
larger value. In the example, the size is 128. 

Number specifying the maximum priority that any 
tasks associated with this user can have. This 
value is used unless overridden by the value in 
the terminal definition file. The value is in 
the example is 190. 

Pathname of the directory that serves as this 
user's default prefix (corresponding to the 
:HOME: and initial :$: directory). The directory 
specified in this field must exist or the user 
will be unable to access the Human Interface. In 
the example, the default prefix directory is 
:SD:USER/l. 

Pathname of the file containing the user's 
initial program. This is the program that begins 
running when the Human Interface creates the 
interactive job for the user. If you omit this 
value, the Human Interface uses its standard 
command line interpreter (CLI) as the initial 
program. It is omitted for all users on the 
iRMX 86 PC System Diskette. 

6-11 



SYSTEM MANAGEMENT 

Following is a list of the contents of each user definition file that you 
receive with the iRMX 86 PC System Diskette. 

User ID 

o 
1 
2 
3 
4 
WORLD 

File 

:SD:CONFIG/USER/O 
:SD:CONfIG/USER/1 
:SD:CONFIG/USER/2 
:SD:CONFIG/USER/3 
:SD:CONFIG/USER/4 
:SD:CONFIG/USER/65535 

OTHER SYSTEM MANAGEMENT FUNCTIONS 

Contents 

O,,64,128,190,:SD:USER/O 
1,,64,128,190,:SD:USER/1 
2,,64,128,190,:SD:USER/2 
3,,64,128,190,:SD:USER/3 
4,,64,128,190,:SD:USER/4 
65535,,64,128,190,:SD:USER/65535 

You should consi·er at least two other system manager functions: attaching 
hardware devices and shutting down the system in an orderly fashion. 

ATTACHING HARDWARE DEVICES 

After the system is initialized you can add any new devices to the system 
with the ATTACHDEVICE command. If you have many devices that must be 
attached to the system, you may wish to attach them with a submit file. 
This could be the logon file for the User ID of the system terminal (the 
terminal connected to the serial line on the Single Board Computer. The 
iRMX 86 PC System Diskette assigns WORLD to the system terminal, which 
means that if you include the ATTACHDEVICE commands in the logon file for 
this user (:SD:USER/65535/PROG/R?LOGON), any user can detach the device. 
If you want to restrict who can detach devices, you can build a separate 
SUBMIT file which only you can access. You then manually issue SUPER to 
become User ID 0, and then SUBMIT the file. 

Another handy arrangement is to assign each user a flexible disk drive. 
When the user starts a terminal session, the logon file can attach the 
device. 

SHUTTING DOWN THE SYSTEM 

You can methodically shut down a multi-user system by the following 
process: 

1. Issue INITSTATUS to get the identifying number of each job. 

2. Issue LOCK. 

3. Use JOB DELETE to delete each job. 

4. Use DETACHDEVICE with FORCE to detach the devices. 

*** 
6-12 



CHAPTER 7. DOCUMENTATION 

This chapter lists and briefly describes documentation that applies to 
the iRMX 86 PC Operating System. We have included descriptions of 
1RMX 86 software manuals, as well as manuals describing hardware that can 
be used with the iRMX 86 PC product. 

THIS MANUAL 

The GETTING STARTED WITH THE Release 5 iRMX 86 SYSTEM is a self-contained 
summary of information you need to use the fRMX 86 PC Operating System. 
Much of the information in this manual is repeated in some form in other 
manuals described here. 

iRMX- 86 MANUALS 

These are the manuals that document the iRMX 86 Operating System. 

• INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM 

This manual ts designed to introduce engineers and managers to 
the 1RMX 86 Operating System. It describes how the iRMX 86 
Operating System can help you develop your application system in 
less time and at less expense. 

• iRMX 86 NUCLEUS REFERENCE MANUAL 

This manual documents the Nucleus, the central portion of the 
iRMX 86 Operating System required by all application systems. It 
provides overview information, discusses the functions of the 
Nucleus in detail, and contains detailed descriptions of the 
system calls available to application programmers. 

• iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL 

This manual describes the Basic I/O System, a layer of the iRMX 
86 Operating System that provides flexible I/O features that are 
useful in a broad range of applications. It contains some 
introductory and overview material as well as detailed 
descriptions of the system calls available to application 
programmers. 

7-1 



DOCUMENTATION 

• iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL 

This manual describes the Extended I/O System, a layer of the 
iRMX 86 Operating System that provides easy-to-use, 
more-automatic I/O features. It contains some introductory and 
overview material as well as detailed descriptions of the system 
calls available to application programmers. 

• iRMX 86 OPERATOR'S MANUAL 

This manual describes the iRMX 86 commands -- the same commands 
described in Chapter 3 of this manual. In addition, the manual 
describes how to use the Files Utility and the Patch Utility. 

• iRMX 86 HUMAN INTERFACE REFERENCE MANUAL 

This manual documents the Human Interface, the layer of the 
iRMX 86 Operating System that provides an interactive interface 
between the user and the application system. It provides 
introductory and overview information, describes the commands 
available with the Human Interface (the same commands described 
in Chapter 3 of the manual you are reading), discusses the 
process of creating your own commands, and describes Human 
Interface system calls. 

• iRMX 86 LOADER REFERENCE MANUAL 

This manual describes the two loaders available with the iRMX 86 
Operating System: the Bootstrap Loader and the Application 
Loader. It contains some introductory and overview material as 
well as detailed descriptions of the system calls available with 
the Application Loader. 

• iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL 

This manual documents the Disk Verification Utility. The 
DISKVERIFY command (see Chapter 3 of the manual you are reading) 
invokes this utility. The DISK VERIFICATION UTILITY REFERENCE 
MANUAL provides more in-depth information, including detailed 
descriptions of the structure of iRMX 86 files. 

7-2 



DOCUMENTATION 

• iRMX 86 PROGRAMMING TECHNIQUES MANUAL 

This manual provides a number of programming techniques that can 
reduce the amount of time you spend designing and implementing 
your ~ 86-based application system. It includes discussions' 
on ~L/M-86 size controls, interface procedures, INCLUDE files, 
timer routines, assembly language programming, job communication, 
configuration, peadlock, terminal I/O, and stack sizes. 

• GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 AND iRMX 88 I/O 
SYSTEMS 

For the programmer who is using the configurable iRMX 86 
Operating System, this manual shows how to incorporate a custom 
driver into the system. This applies to devices for which the 
~ 86 Operating System does not already supply device drivers. 

• iRMX 86 CONFIGURATION GUIDE 

Again, for the programmer who is using the configurable iRMX 86 
Operating System, this manual describes how to define the 
characteristics of iRMX 86 layers that are appropriate a 
particular application. 

• iRMX 86 INSTALLATION GUIDE 

This manual contains hardware information for the configurable 
iRMX 86 Operating System (equivalent to the hardware information 
in this manual) and a description of the iRMX 86 Patching Utility. 

LANGUAGE TRANSLATORS AND UTILITIES MANUALS 

The following manuals document the language products that can be used 
with your iRMX 86 PC Operating System. 

• EDIT REFERENCE MANUAL 

This manual documents EDIT, an iRMX 86-based text editor. It 
contains introductory and tutorial material as well as detailed 
descriptions of all EDIT commands. 

7-3 



DOCUMENTATION 

• GUIDE TO USING iRMX 86 LANGUAGES 

This manual provides an overview of the language products that 
run in an iRMX 86 environment. It shows how to invoke the 
products from the Human Interface and lists the invocation 
controls for each product. It then refers you to other language 
and utilities manuals for detailed information about the 
products. You ~hould read this manual before you read the other 
language and utilities manuals, because this manual provides 
information that you need to run the language products in an 
iRMX 86 environment. It also identifies portions of the other 
manuals that do not apply to the iRMX 86 versions of the language 
products. 

• ASM86 LANGUAGE REFERENCE MANUAL 

This manual documents the 8086/8087/8088 ·macro assembly language, 
ASM86. It describes the assembly language instructions and the 
macro processing language. 

• ASM86 MACRO ASSEMBLER OPERATING INSTRUCTIONS FOR 8086-BASED 
DEVELOPMENT SYSTEMS 

This manual describes how to invoke the assembler, and how to 
link assembly language programs with PL/M-86 programs. 

• PL/M-86 USER'S GUIDE 

This manual describes the PL/M-86 language and use of the PL/M-86 
compiler. It describes language statements, discusses compiler 
invocation, and documents each compiler control. 

• 1APX 86,88 FAMILY UTILITIES USER'S GUIDE 

This manual contains descriptions of the program development 
utilities: 

• LINK86 , which links 8086 object modules together and resolves 
global references between modules 

• LOC86, which changes 8086 relocatable object modules into 
absolute modules 

.LIB86, a utility that creates and maintains object libraries 

• OH86 , which converts 8086 absolute object modules to 
hexadecimal format 

7-4 



DOCUMENTATION 

• PASCAL-86 USER'S GUIDE 

This manual describes the Pascal language and the use of the 
Pascal-86 compiler. It provides complete descriptions of all 
Pascal language statements, discusses compiler invocation, and 
documents each of the compiler controls. The Pascal-86 compiler 
is a strict implementation of the proposed ISO standard that also 
provides extens~ons of the language oriented toward 
microcomputers. 

• FORTRAN-86 USER'S GUIDE 

This manual describes the FORTRAN language and the use of the 
FORTRAN-86 compiler. It provides complete descriptions of all 
FORTRAN language statements, discusses compiler invocation, and 
documents each of the compiler controls. This FORTRAN-86 
compiler produces code that is compatible with existing 
FORTRAN-86 code and includes many new features of the FORTRAN-77 
standard. 

• USER'S GUIDE FOR THE iSBC 957B iAPX 86, 88 INTERFACE AND 
EXECUTION PACKAGE 

This manual provides general information, interfacing 
instructions, and programming information for the iSBC 957B 
loader and monitor. It provides detailed descriptions of the 
loader and monitor commands and describes how to connect an Intel 
development system to an iAPX 86-based boards. It also contains 
configuration information, which may be of little importance to 
you since the monitor is already configured and available in PROM 
as part of the iRMX 86 PC package. 

HARDWARE MANUALS 

These manuals document hardware that you can use with your iRMX 86 PC 
Operating System. 

COMPUTERS 

• iSBC 86/12A SINGLE BOARD COMPUTER HARDWARE REFERENCE MANUAL and 

• iSBC 86/14 and iSBC 86/30 SINGLE BOARD COMPUTER HARDWARE 
REFERENCE MANUAL 

These two manuals describe, for each computer, principles of 
operation and how to incorporate iSBC Multimodule units (like 
on-board RAM and and the 8087 Numeric Processor Extension). 

7-5 



DOCUMENTATION 

DISK CONTROLLERS 

• iSBX 208 FLEXIBLE DISK CONTROLLER HARDWARE REFERENCE MANUAL 

• iSBC 215 GENERIC WINCHESTER DISK CONTROLLER HARDWARE REFERENCE 
MANUAL 

• iSBX 218 FLEXIBLE DISK CONTROLLER HARDWARE REFERENCE MANUAL 

These manuals describes specifications, jumper configurations, 
programmin£ considerations, and principles of operation of the 
respective Disk Controllers. 

COMMUNICATION EXPANSION BOARD 

• iSBC 534 FOUR CHANNEL COMMUNICATIONS EXPANSION BOARD HARDWARE 
REFERENCE MANUAL 

MEMORY BOARDS 

• iSBC 016A/032A/064A/028A/056A RAM MEMORY BOARD HARDWARE REFERENCE 
MANUAL 

• iSBC 016A/032A/064A/028A/056A RAM BOARDS HARDWARE REFERENCE MANUAL 

These manuals describe specifications, jumper configurations, 
programming considerations, and principles of operation of the 
respective memory boards. 

CHASSIS/POWER SUPPLY 

• iSBC 680/681 MULTISTORE USER SYSTEM PACKAGE HARDWARE REFERENCE 
MANUAL 

This manual provides information about the iSBC 680-series 
module, which is a chassis containing a power supply and Multibus 
card cage in which you can install your Intel iSBC boards. 

You can order any manual described in this chapter from: 

Literature Department 
Intel Corporation 
3065 Bowers Avenue 
Santa Clara, CA 95051 

*** 
7-6 



APPENDIX A. iRMX~ 86 EXCEPTION CODES 

This appendix contains the exception codes that are generated by the 
iRMX 86 Operating System. Exception codes are any condition codes other 
than E$OK, the normal code. Exception codes are classed as either 
''Environmental Conditions" or "Programmer Errors", although the latter 
includes certain hardware errors. 

The values of these exception codes fall into ranges based on the layer 
which first detects the condition. Table A-I lists the layers and their 
respective ranges, with numeric values expressed in hexadecimal notation. 

Table A-I. Exception Code Ranges 

Layer Environmental Programming 

Nucleus 0 to IFH 8000 to 801FH 

Basic I/O System 20 to 3FH 8020 to 803FH 

Extended I/O System 40 to 5FH 8040 to 805FH 

Application Loader 60 to 7FH 8060 to 807FH 

Human Interface 80 to AFH 8080 to 80AFH 

Universal Development CO to DFH 80CO to 80DFH 
Interface 

Reserved 130 to I4FH 8130 to 814FH 

Table A-2 shows the value of each code, the associated mnemonic, and a 
descriptive meaning. In addition, the table shows the the layer(s) of 
the system that could generate the code, in case you wish to refer the 
the appropriate manual. 

A-I 



iRMX- 86 EXCEPTION CODES 

Table A-2. iRMX- 86 Condition Codes 

Hex. Mnemonic 
Value 

OH E$OK 

Manuals 
N BEL H 

* * * * * 

Meaning 

No exceptional conditions (normal) 

Environmental Conditions 

IH 

2H 

3H 

4H 

5H 

6H 

7H 

8H 

9H 

E$TlME 

E$MEM 

E$BUSY 

E$LIMIT 

E$CONTEXT 

E$EXIST 

E$STATE 

E$NOT$CON­
FIGURED 

E$INTER­
RUPT$SAT­
URATION 

* * * * * 

* * * * * 

* 

* * * * * 

* * * * * 

* * * * * 

* 

* * * * * 

* 

N Nucleus Reference Manual 
B Basic I/O System Ref Manual 
E Ext.ended I/O Sys Ref Manual 

A time limit (possibly a limit of 
zero time) expired without a task's 
request being satisfied. 

Insufficient available memory to 
satisfy a task's request. 

Another task currently has access to 
data protected by a region. 

A task attempted an operation which, 
if it had been successful, would 
have violated a Nucleus-enforced 
limit. 

A system call was issued out of 
proper context. 

A token parameter has a value which 
is not the token of an existing 
object. 

A task attempted an operation which 
would have caused an impossible 
transition of a task's state. 

This system call is not part of the 
present configuration. 

An interrupt task has accumulated the 
maximum allowable amount of 
SIGNAL$INTERRUPT requests. 

L Loader Reference Manual 
H Human Interface Reference Manual 

A-2 



iRMX- 86 EXCEPTION CODES 

Table A-2. iRMX- 86 Condition Codes (continued) 

Hex. Mnemonic 
Value 

Manuals 
N BEL H 

Meaning 

Envitonmental Conditions (continued) 

OAH 

20H 

21H 

22H 

23H 

24H 

25H 

26H 

27H 

28H 

29H 

2AH 

2BH 

2CH 

2DH 

2EH 

E$INTER­
RUPT$­
OVERFLOW 

E$FEXIST 

E$FNEXIST 

E$DEVFD 

E$SUPPORT 

E$EMPTY$­
ENTRY 

E$DIR$END 

E$FACCESS 

E$FTYPE 

E$SHARE 

E$SPACE 

E$IDDR 

E$IO 

E$FLUSHING 

E$ILLVOL 

E$DEV$OFF­
LINE 

* 

* * 

* * * * 
* * * 

* * * * 

* * 

* * 

* * * * 

* * * 
* * * * 

* * 

* * 
* * * * 

* * * * 

* * * 

* 

N Nucleus Reference Manual 
B Basic I/O System Ref Manual 
E Extended I/O Sys Ref Manual 

An interrupt task has accumulated 
more than the maximum allowable 
amount of SIGNAL$INTERRUPT requests. 

File already exists. 

File does not exist. 

Device and file driver are 
incompatible. 

Combination of ~arameters not 
supported. 

The specified slot in a directory 
file is empty. 

The specified slot is beyond the end 
of a directory file. 

File access not granted. 

Inco~patible file type. 

Improper file sharing requested. 

No space left. 

Invalid device driver request. 

An I/O error occurred. 

Connection specified in call was 
deleted before the operation was 
completed. 

Invalid volume name. 

The device being accessed is now 
offline. 

L Loader Reference Manual 
H Human Interface Reference Manual 

A-3 



Hex. 
Value 

2FH 

40H 

41H 

42H 

44H 

45H 

46H 

47H 

50H 

51H 

52H 

iRMX- 86 EXCEPTION CODES 

Table A-2. iRMX- 86 Condition Codes (continued) 

Mnemonic Manuals 
N BEL H 

Meaning 

Enviwonmental Conditions (continued) 

E$IFDR 

E$LOG$NAME$­
SYNTAX 

E$CANNOT$­
CLOSE 

E$IOMEM 

E$MEDIA 

E$LOG$NAME$­
NEXIST 

E$NOT$OWNER 

E$IO$JOB 

E$IO$UNCLASS 

E$IO$SOFT 

E$IO$HARD 

* * 

* 

* 

* 

* 

* 

* 

* 

* 

* * 

* * 

* 

* 

* 

* 

Invalid file driver request. 

The specified path starts with a 
colon (:) but does not contain a 
second, matching colon. 

The Extended I/O System was not 
able to transfer remaining data in 
buffers to output device. 

The Basic I/O System has 
insufficient memory to process a 
request. 

The device containing a specified 
file is not online. 

The Extended I/O System was unable 
to find a specified logical name in 
the object directories that it 
checks. 

The user who attempted to detach 
the device is not the owner of the 
device. 

The Extended I/O System cannot 
create an I/O job because the size 
specified for the object directory 
is too small. 

An unknown type of I/O error 
occurred. 

A soft I/O error occurred. A retry 
might be successful. 

A hard I/O error occurred. A retry 
is probably useless. 

N Nucleus Reference Manual L Loader Reference Manual 
B Basic I/O System Ref Manual H Human Interface Reference Manual 
E Extended I/O Sys Ref Manual 

A-4 



Hex. 
Value 

53H 

54H 

60H 

61H 

62H 

63H 

64H 

65H 

66H 

67H 

68H 

69H 

6AH 

iRMX~ 86 EXCEPTION CODES 

Table A-2. iRMX~ 86 Condition Codes (continued) 

Mnemonic Manuals 
N BEL H 

Meaning 

Environmental Conditions (continued) 

E$IO$OPRINT 

E$IO$WRPROT 

E$ABS$ADo­
RESS 

E$ BAD$ GROUP 

E$BAD$­
HEADER 

E$BAD$SEG­
DEF 

E$CHECKSUM 

E$EOF 

E$FIXUP 

E$NO$LOADER 
$MEM 

E$NO$MEM 

E$REC$FOR­
MAT 

E$REC$­
LENGTH 

* * The device was off-line. Operator 
intervention is required. 

* * The volume is write-protected. 

* An absolute object program was loaded 
into system protected memory area. 

* * Invalid group component in the a group 
definition record. 

* * Invalid header record in the object 
file. 

* * Invalid segment definition record. 

* * A checksum error occurred while 
reading an object record. 

* * Unexpected end of file encountered 
while reading object records. 

* * Invalid fixup record in the object 
file. 

* * Insufficient memory to satisfy 
loader dynamic memory requirements. 

* * Insufficient memory to create PIC/LTL 
segments. 

* * 

* * 

Invalid record format encountered. 

Record length of an object record 
exceeds configured loader-buffer size. 

N Nucleus Reference Manual L 
B Basic I/O System Ref Manual H 
E Extended I/O Sys Ref Manual 

Loader Reference Manual 
Human Interface Reference Manual 

A-5 



Hex. 
Value 

6BH 

6CH 

6DH 

6EH 

6FH 

70H 

80H 

81H 

82H 

83H 

84H 

1RMX- 86 EXCEPTION CODES 

Table A-2. iRMX- 86 Condition Codes (continued) 

Mnemonic Manuals 
N BEL H 

Meaning 

Environmental Conditions (continued) 

E$REC$TYPE 

E$NO$START 

E$ JOB$ SIZE 

E$OVERLAY 

E$LOADER 
$ SUPPORT 

E$SEG$ 
BOUNDS 

E$LITERAL 

E$STRING$­
BUFFER 

E$SEPARA­
TOR 

E$CONTINUED 

E$INVALID$­
NUMERIC 

* * Invalid record type encountered in the 
object file. 

* * Start address not found. 

* * Maximum job-size specified is less 
than the memory requirement specified 
in the object file. 

* Overlay name does not match with any 
of the overlay module names. 

* * The object file being loaded requires 
features not supported by the 
configured loader. 

* One of the data records in a module 
loaded by the Application Loader 
referred to an address outside the 
segment created for it. 

* The parse buffer contains a literal 
with no closing quote. 

* The string to be returned as the 
parameter name exceeds the size of the 
buffer the user provided in the call. 

* The parse buffer contains a command 
separator. 

* The parse buffer contains a 
continuation character. 

* A numeric value contains invalid 
characters. 

N Nucleus Reference Manual L 
B Basic I/O System Ref Manual H 
E Extended I/O Sys Ref Manual 

Loader Reference Manual 
Human Interface Reference Manual 

A-6 



iRMX- 86 EXCEPTION CODES 

Table A-2. iRMX- 86 Condition Codes (continued) 

Hex. Mnemonic 
Value 

Manuals 
N BEL H 

Meaning 

Environmental Conditions (continued) 

85H 

86H 

87H 

88H 

89H 

8AH 

8BH 

E$LIST 

E$WILDCARD 

E$PREPOSI­
TION 

E$PATH 

E$CONTROL$C 

E$CONTROL 

E$UNMATCHED 
$LISTS 

N Nucleus Reference Manual 

* 

* 

* 

* 

* 

* 

* 

B Basic I/O System Ref Manual 
E Extended I/O Sys Ref Manual 

The last value of the value list is 
missing. 

A wild-card character appears in an 
invalid context, such as an 
intermediate component of a pathname. 

The same preposition as on the the 
command line was indicated, but can 
not be used. 

The command line specifies an invalid 
pathname. 

The user typed CONTROL-C while the 
command was being loaded. 

The command line contains an invalid 
control. 

There were no more input pathnames 
although the output pathname list was 
not empty. 

L Loader Reference Manual 
H Human Interface Reference Manual 

A-7 



Hex. 
Value 

8000H 

800lH 

8002H 

8003H 

8004H 

8005H 

8006H 

8007H 

8008H 

8021H 

8022H 

8040H 

iRMX- 86 EXCEPTION CODES 

Table A-2. iRMX- 86 Condition Codes (continued) 

Mnemonic Manuals 
N BEL H 

Meaning 

Programmer Errors 

E$ZERO$- * 
DIVIDE 

E$OVERFLOW * 

E$TYPE * * * * * 

E$BOUNDS * 

E$PARAM * * * * * 

E$BAD$CALL * * 

E$ARRAY$- * 
BOUNDS 

E$NDP$- * 
STATUS 

E$CHECK$EX- * 
CEPTION 

E$NOUSER 

E$NOPREFIX 

E$NOT$LOG$­
NAME 

* * 
* * 

* 

* 
* 

* 

A task attempted to divide by zero. 

An overflow interrupt occurred. 

A token parameter referred to an 
existing object that is not of the 
required type. 

A task attempted to access beyond the 
end of a segment. 

A parameter which is neither a token 
nor an offset has an invalid value. 

The I/O System code has been damaged, 
probably due to a bug in an 
application task. Recovery is not 
possible. 

Hardware or software has detected an 
array overflow. 

An 8087 Numeric Processor Extension 
error has been detected; Operating 
System extensions can return the 
status of the 8087 to the exception 
handler. 

A software interrupt 17 has occurred. 

No default user. 

No default prefix. 

Specified object is not a device 
connectiori or file connection. 

N Nucleus Reference Manual L Loader Reference Manual 
B Basic I/O System Ref Manual H Human Interface Reference Manual 
E Extended I/O Sys Ref Manual 

A-8 



Hex. 
Value 

804IH 

8042H 

8060H 

8080H 

808IH 

8083H 

8084H 

iRMX~ 86 EXCEPTION CODES 

Table A-2. iRMX~ 86 Condition Codes (continued) 

Mnemonic 

E$NOT$-
DEVICE 

E$NOT$CON-
NECTION 

E$JOB$PARAM 

E$PARSE$-
TABLES 

E$JOB$-
TABLES 

E$DEFAULT$SO 

E$STRING 

Manuals 
N BEL H 

Meaning 

Programmer Errors (continued) 

* 

* 

* * 

* 

* 

A token parameter referred to an 
existing object that is not, but 
should be, a device connection. 

A token parameter referred to an 
existing object that is not, but 
should be, a file connection. 

The maximum job-size specified is 
less than the minimum job-size. 

There is an error in the internal 
parse tables. 

An internal Human Interface table was 
overwritten, causing it to contain an 
invalid value. 

* The default output name STRING is 
invalid. 

* The pathname to be returned exceeds 
255 characters in length. 

N Nucleus Reference Manual L Loader Reference Manual 
B Basic I/O System Ref Manual 
E Extended I/O Sys Ref Manual 

H Human Interface Reference Manual 

*** 
A-9 





APPENDIX B. iRMX- 86 SYSTEM CALLS 

This chapter describes the system calls that the iRMX 86 Operating System 
recognizes. If you wish to use any of these calls with the iRMX 86 PC 
System, you must to obtain the manual that describes the system call 
(manuals are listed in Chapter 6) and you must link your programs to the 
appropriate library on the Include Diskette supplied with the iRMX 86 PC 
System. This Appendix lists the iRMX 86 System calls and briefly 
describes each call. The first section describes each subsystem of the 
Operating System. 

LAYERS OF THE iRMX- 86 SYSTEM 

The iRMX 86 Operating System consists of a number of layers. The 
Operating System can be configured to include or exclude certain layers 
(the Nucleus is always included) and to include or exclude optional 
features. (The configuration process has already been accomplished for 
users of the 1RMX 86 PC Operat~ng System.) 

The layers of the iRMX 86 Operating System are: 

Nucleus The Nucleus is the core of the iRMX 86 Operating 
System and is required by every application system. 
It provides facilities that perform processor 
management and scheduling, interrupt management, 
memory management, object control, and error 
management. Refer to the iRMX 86 NUCLEUS REFERENCE 
MANUAL for detailed information about the Nucleus. 

Basic I/O The Basic I/O System provides an extensive facility 
System for device-independent I/O. It supplies all file 

drivers and a number of device drivers. It implements 
an asynchronous interface to I/O operations, allowing 
tasks explicitly to overlap I/O functions with other 
operations. Refer to the iRMX 86 BASIC I/O SYSTEM 
REFERENCE MANUAL and the iRMX 86 SYSTEM PROGRAMMER'S 
REFERENCE MANUAL "for more information. 

Extended I/O The Extended I/O System provides a higher-level 
System interface to files than the Basic I/O System 

provides. The Extended I/O System provides a simple, 
synchronous interface to I/O operations, one which 
automatically performs read-ahead and write-behind 
buffering. This synchronous interface also allows 
tasks to use logical names to refer to files. All of 
the UDI File Management system calls (see Chapter 4 of 
this manual) are accomplished by the Extended I/O 
System. 

B-1 



Application 
Loader 

Bootstrap 
Loader 

Human 
Interface 

iRMX- 86 SYSTEM CALLS 

Refer to the iRMX 86 EXTENDED I/O SYSTEM REFERENCE 
MANUAL and the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE 
MANUAL for more information. 

The Application Loader provides a simple mechanism 
mechanism for loading application code and data files 
from I/O devices into system memory. It can load 
abso~ute code into fixed locations, relocatable code 
into dynamically-allocated memory locations, and it 
can load files containing overlays. 

The Bootstrap Loader provides a means of loading 
the Operating System into system memory from an I/O 
device. It can also load a file you specified at the 
terminal. The Bootstrap Loader is in the EPROMs 
supplied with your iRMX 86 PC System. 

The Human Interface is the uppermost layer of the 
iRMX 86 Operating System. It is an interactive 
interface between you and the application system. 
Using the Human Interface, you can invoke a program 
from the terminal by specifying the name of the file 
that contains the program. A set of programs, the 
Human Interface Commands, are supplied with the 
Operating System. These are the commands documented 
in Chapter 3 of this manual. 

The Human Interface also provides a number of system 
calls that the application program can invoke to 
access Human Interface services. Refer to the iRMX 86 
HUMAN INTERFACE REFERENCE MANUAL for more information. 

B-2 



iRMX- 86 SYSTEM CALLS 

NUCLEUS SYSTEM CALLS 

The Nucleus system calls are listed here. 

ACCEPT$CONTROL 

CATALOG$OBJECT 

CREATE$JOB 

CREATE$MAILBOX 

CREATE$SEGMENT 

CREATE$SEMAPHORE 

CREATE$TASK 

DELETE$JOB 

DELETE$MAILBOX 

DELETE$SEGMENT 

DELETE $ SEMAPHORE 

DELETE$TASK 

DISABLE 

ENABLE 

EXIT$INTERRUPT 

GET$LEVEL 

Gains control of a region only if the 
region is immediately available. 

Enters a name and token for an object into 
the object directory of a job. 

Creates an environment for a number of 
tasks and other objects, as well as 
creating an initial task and its stack. 

Creates a mailbox with queues for waiting 
tasks and objects with FIFO or PRIORITY 
discipline. 

Dynamically allocates a specified number 
of 16-byte paragraphs. 

Creates a semaphore for synchronizing 
access to resources. 

Creates a task with the specified priority 
and stack area. 

Deletes a Job and all the objects 
currently defined within its bounds only 
if that Job does itself not contain any 
other jobs. All memory used is returned 
to the containing job. 

Deletes a mailbox. 

Deletes the specified segment by 
deallocating the memory. 

Deletes a semaphore. 

Deletes a task from the system, and 
removes it from any queues in which it may 
be waiting. 

Disables the hardware from accepting 
interrupts at or below a specified level. 

Enables the hardware to accept interrupts 
from a specified level. 

Used by an interrupt handler to relinquish 
control of the System. 

Returns the number of the highest priority 
interrupt level currently being processed. 

B-3 



GET$POOL$ATTRIBUTES 

GET$PRIORITY 

GET$SIZE 

GET$TASK$TOKENS 

GET$TYPE 

LOOKUP$OBJECT 

OFFSPRING 

RECEIVE$MESSAGE 

RECEIVE$UNITS 

RESET$INTERRUPT 

RESUME$TASK 

SEND$CONTROL 

SEND$MESSAGE 

SEND$UNITS 

iRMX- 86 SYSTEM CALLS 

Returns attributes such as the minimum and 
maximum, as well as current size of the 
memory in the environment of the calling 
task's job. 

Obtains the current priority of a 
specified task. 

Returns the size (in bytes) of a segment., 

Gets the token for the calling task or 
associated objects within its environment. 

Returns a code for the type of object 
referred to by the specified token. 

Returns a token for the object with the 
specified name found in the object 
directory of the specified job. 

Provides a list of all the current Jobs 
created by the specified job. 

Attempts to receive an object from a 
specified mailbox. The calling task may 
choose to wait fora specified number of 
system time units if no object is 
available. 

Attempts to gain a specified number of 
units from a semaphore. If the units are 
not immediately available, the calling 
task may choose to wait. 

Disables an interrupt level, and cancels 
the assignment of the interrupt handler 
for that level. If an interrupt task was 
assigned, it is deleted. 

Resumes a task. If the task had been 
suspended multiple times, the suspension 
depth is reduced by one, and it remains 
suspended. 

Relinquishes control of a region. 

Sends an object to a specified mailbox. 
If a task is waiting, the object is passed 
to the appropriate task according to the 
queuing discipline. If no task is 
waiting, the object is queued at the 
mailbox. 

Increases a semaphore counter by the 
specified number of units. 

B-4 



SET$INTERRUPT 

SET$POOL$MIN 

SET$PRIORITY 

SIGNAL$INTERRUPT 

SLEEP 

SUSPEND$TASK 

UNCATALOG$OBJECT 

WAIT$INTERRUPT 

iRMX- 86 SYSTEM CALLS 

Assigns an interrupt handler and, if 
desired, an interrupt task to the 
specified interrupt level. Usually the 
calling task becomes the interrupt task. 

Dynamically changes the minimum memory 
requirements of the job environment 
containing the calling task. 

Dynamically alters the priority of the 
specified task. 

Used by an interrupt handler to signal the 
associated interrupt task that an 
interrupt has occurred. 

Causes a task to enter the ASLEEP state 
for a specified number of system time 
units. 

Suspends the operation of a task. If the 
task is already suspended, its suspension 
depth is increased by one. 

Removes an object and its name from a 
job's object directory. 

Used by an interrupt task to SLEEP until 
the associated interrupt handler signals 
the occurrence of an interrupt. 

These system calls are considered System Programmer calls because of 
their global effect on the system. 

A$GET$ EXTENS ION$ DATA Returns from the I/O System extension data 
stored with a file. 

A$PHYSICAL$ATTACH$DEVICE Attaches a device to the Basic I/O System. 

A$PHYSICAL$DETACH$DEVICE Detaches a device from the Basic I/O 
System. 

A$SET$EXTENSION$DATA 

ACCEPT$CONTROL 

ALTER$COMPOSITE 

CREATE $ COMPO SITE 

Sets the extension data for a file from 
the I/O System. 

Requests access to data protected by a 
region only if access is immediately 
available. 

Alters the component list of a composite 
object. 

Creates a composite object. 

B-5 



CREATE$EXTENSION 

CREATE$REGION 

CREATE$USER 

DELETE$COMPOSITE 

DELETE$EXTENSION 

DELETE$REGION 

DELETE$USER 

DISABLE$DELETION 

ENABLE$DELETION 

FORCE$DELETE 

I NSPECT$COMPOS ITE 

INSPECT$USER 

LOGICAL$ATTACH$DEVICE 

LOG ICAL$ DETACH$ DEVICE 

RECElVE$CONTROL 

SEND$CONTROL 

SET$OS$EXTENSION 

SET$PRIORITY 

SET$TIME 

S IGNAL$ EXCEPTION 

iRMX- 86 SYSTEM CALLS 

Creates a new extension-object type. 

Creates a region. 

Creates a user object. 

Deletes a composite object. 

Deletes an extension type. 

Deletes a region. 

Deletes a specified user object. 

Increases the deletion disabling depth of 
an object by one. 

Decreases the deletion disabling depth of 
an object by one. 

Forces the deletion of an object even if 
the object has had its deletion disabled 
once. 

Returns a list of the component object 
tokens contained in a composite object. 

Returns a list of the ID's in a user 
object. 

Attaches a device to the Extended I/O 
System. 

Detaches a device from the Extended I/O 
System. 

Requests eventual access to data protected 
by a region. 

Relinquishes access to data protected by a 
region. 

Allocates and deallocates extension 
entries in the interrupt vector table. 

Changes the priority of a task dynamically. 

Sets the time and the date. 

Signals the occurrence of an exceptional 
condition. 

B-6 



iRMX- 86 SYSTEM CALLS 

BASIC I/O SYSTEM CALLS 

These are the Basic I/O System calls. 

A$ATTACH$FILE 

A$CHANGE$ACCESS 

A$CLOSE 

A$CREATE$DIRECTORY 

A$CREATE$FILE 

A$DELETE$CONNECTION 

A$GET$FILE$STATUS 

A$OPEN 

A$READ 

A$SEEK 

A$WRITE 

Creates a connection to an existing file 
and returns its token identifier. 

Changes the types of accesses permitted to 
the specified user(s) for a specific file. 

Closes the connection to the specified 
file so that it may be used again, or so 
that the type of access may be changed. 

Creates a Named File used to store the 
names and locations of other named files, 
and returns a token identifier for the 
connection to the new file. 

Creates a data file with the specified 
access rights, and returns a token 
identifier for the connection to the new 
file. 

Deletes the connection to the specified 
file. 

Returns the current status of a specified 
file. 

Opens a file for either read, write, or 
update access. 

Reads a number of bytes from the current 
position in a specified file. 

Moves the current data pointer of a named 
or physical file. 

Writes a number of bytes at the current 
position in a file.-

B-7 



iRMXlII 86 SYSTEM CALLS 

EXTENDED I/O SYSTEM CALLS 

These are the Extended I/O System calls. 

CREATE $ 10$ JOB 

EXIT$IO$JOB 

S$ATTACH$FILE 

S$ CATALOG$ CONNECTION 

S$CHANGE$ACCESS 

S$CLOSE 

S$CREATE$DlRECTORY 

S$CREATE$FILE 

S$CREATE$IO$JOB 

S$DELETE$CONNECTION 

S$DELETE$FILE 

S$EXIT$IO$JOB 

S $GET$CONNECTION$ STATUS 

S$GET$FILE$STATUS 

S$LOOK$UP$CONNECTION 

S$OPEN 

S$READ$MOVE 

S$RENAME$FILE 

Creates an I/O job with one task. 

Sends a message to a previously designated 
mailbox and deletes the calling task. 

Creates a connection to an existing file. 

Creates a logical name for a connection by 
cataloging the connection in the object 
directory of a specific job. 

Changes the access list for a named file. 

Closes an open connection to a named, 
physical or stream file. 

Creates a new directory file. 

Creates a new physical, stream, or named 
data file. It cannot create a named 
directory file. 

Creates an I/O job containing one task. 

Deletes a file connection. It cannot 
delete a device connection. 

Deletes a stream, physical, or named file. 

Sends a message to a previously designated 
mailbox and deletes the calling task. 

Provides status information about file and 
device connections. 

Allows a task to obtain information about 
a physical, stream, or named file. 

Searches through an I/O job's local, 
global, and root object directories to 
find the connection associated with a 
logical name. 

Opens a connection to a named, physical, 
or stream file. 

Reads a number of bytes from a file to a 
buffer. 

Changes the path of a named file. It 
cannot be used for stream or physical 
files. 

B-8 



iRMX- 86 SYSTEM CALLS 

S$SEEK 

S$SPECIAL 

S$TRUNCATE$FILE 

S$UNCATALOG$CONNECTION 

S$WRITE$MOVE 

HUMAN INTERFACE SYSTEM CALLS 

Moves the file pointer. 

Allows your task to perform functions 
that are peculiar to a specific device. 

Removes information from the end of a 
named data file. 

Deletes a logical name from the object 
directory of "a specific job. 

Wr.ites a collection of bytes from a 
buffer to a file. 

These are the Human Interface System Calls. 

C$CREATE$COMMAND$CONNECTION Creates a command connection and 
returns a token. 

C$DELETE$COMMAND$CONNECTION Deletes a specific command connection. 

C$FORMAT$EXCEPTION Formats a default message into a user 
buffer for a given exception code. 

C$GET$CHAR Gets a character from the command line. 

C$GET$INPUT$CONNECTION Returns an EIOS connection for the 
specified input file. 

C$GET$INPUT$PATHNAME Parses the command line return a 
pathname that will identify the 
Standard Input file. 

C$GET$OUTPUT$CONNECTION Returns an EIOS connection for the 
specified output file. 

C$GET$OUTPUT$PATHNAME Parses the command line and returns a 
pathname that will identify the 
Standard Output file. 

C$GET$PARAMETER Parses the command line for the next 
parameter and returns it as a keyword 
name and a value. 

C$SEND$CO$RESPONSE Sends a message to the command output 
(CO) and reads a response from the 
command input (CI). 

C$SEND$COMMAND Concatenates command lines into the 
data structure created by CREATE$COM­
MAND$CONNECTION and then executes 
command. 

B-9 



C$SEND$EO$RESPONSE 

C$SET$CONTROL$C 

C$SET$PARSE$BUFFER 

iRMX- 86 SYSTEM CALLS 

Sends a message to the error output 
device (EO) and returns a response from 
the error input device (EI). 

Changes calling program's CONTROL C 
semaphore to the specified semaphore. 

Parses a buffer other than the current 
command line. 

*** 
B-IO 



APPENDIX C. MONITOR COMMANDS 

The iRMX 86 PC Operating System includes the iSBC 957B Monitor, which 
resides in EPROM on the processor board. This appendix describes the 
Monitor commands, which allow you to do such things as: 

• Set breakpoints in programs 

• Single-step through your programs 

• Examine and modify registers and memory 

• Perform I/O via 8086 input and output ports 

• Move and compare blocks of memory 

Also, by connecting your hardware to an Intel Microcomputer Development 
System (using the iSBC 957B package), you can use the monitor from the 
Development System. Chapter 5, PREPARING YOUR HARDWARE, describes the 
jumpering and devices required on your Single Board Computer to support 
this feature. The USER'S GUIDE FOR THE iSBC 957B iAPX 86, 88 INTERFACE 
AND EXECUTION PACKAGE describes the iSBC 957B package. 

You can get to the monitor in any of these ways: 

• By booting the system (as described in Chapter 2), and when the 
period (.) prompt is displayed, the Monitor is ready to accept 
commands. 

• By using the Human Interface DEBUG command, specifying a program 
file. This loads a program into memory and gives control to the 
monitor, permitting you to examine the program in detail. The 
DEBUG command is described in Chapter 3. 

• By pressing 'a button connected to the nonmaskable interrupt of 
your Single Board Computer. This interrupts the application 
system and gives control to the monitor, which prompts with a 
period (.) and waits for your entry. 

I~ 
To prevent destroying data on your 
diskettes, wait at least 2 seconds 
after your last iRMX 86 command before 
you interrupt the computer. 

In this chapter, the 8087 Numeric Processor Extension is referred to as 
"NPX. " 

C-l 



MONITOR COMMANDS 

COMMAND STRUCTURE 

Responses to the monitor's command-level prompt are line-oriented, as 
opposed to the more traditional character-oriented monitor input. This 
allows for command-line editing capabilities. 

Each monitor command includes a key letter, which is suggestive of the 
function of the command" such as D for displaying memory and S for 
substituting memory. Some commands have one or more additional letters 
which specify variations of the general function. 

Following the key letter or letters of a command are zero or more 
arguments. The arguments can be addresses, data, register names, 
strings, or punctuation symbols dpending on the command. 

In the remainder of this manual, the following syntax conventions are 
used: 

[A] indicates that "A" is optional 
[A]* indicates zero or more optional iterations of "A" 
<B> indicates that "B" is a variable 
{AlB} indicates "A" or "B" 
<cr> indicates a carriage return 

Variables in commands include numbers, registers, expressions, and 
addresses. The BYTE and WORD variables are defined in the following 
sections. 

BYTE AND WORD VARIABLES 

<dec digit>::= {OI1121314151617181 9} 
<hex digit>::= {<dec digit>IAIBICIDIEIF} 
<dec number>::= {<dec digit><dec number> I <dec digit>} 
<hex number>::= {<hex digit><hex number> I <hex digit>} 
<number>: : = {<hex number> I <dec number>T} 
<register>::= {AXIBXICXIDXISPIBPISIIDIICSIDSISSIESIIPIFL} 
<term>::= {<number>l<register>} 
<expr>::= {<term> I <expr> {+I-} <term>} 
<addr>::= {[ <expr>: ] <expr>} 
<range>::= {<addr>l<addr>#<number>} 

The range of byte values is OO-OFFH. Larger numbers can be entered but 
only the last two digits are significant because the number is evaluated 
modulo 256. The range of word values is OOOO-OFFFFH. Larger numbers can 
be entered, but only the last four hex digits are significant because the 
number is evaluated modulo 65536. Leading zeros can be omitted for both 
types of values. 

Byte and word values are assumed to be in hexadecimal. However, decimal 
values can be entered if they end with a "T". The trailing "Hn that 
sometimes indicates hexadecimal is not allowed for byte or word values. 

C-2 



MONITOR COMMANDS 

When word values are displayed, the contents of the high byte of the 
address location is displayed, followed by the contents of the low byte 
of the address location. Similarly, when entering word values, the high 
byte is followed by the low byte. If necessary, leading zeros are 
appended to the value by the monitor. Assume, for example, that the byte 
values C4, 26, F2, and 3D are in consecutive locations beginning at 
246B:26. A display of those locations in bytes looks like: 

246B:0026 C4 26 F2 3D 

while the corresponding display in words looks like: 

246B:0026 26C4 3DF2 

NUMERIC (REAL, INTEGER AND BCD) VARIABLES 

<sign>::= [{+I-}] 
<npx dec number>::= <sign><dec number> 
<npx hex number>::= <hex number>H 
<scientific number>::= {<npx dec number>[.<dec number>] I 

<sign>.<dec number>} [E<npx dec number>] 
<int number>::= {<npx dec number> I <npx hex number>} 
<BCD number>::= {<npx dec number>l<npx hex number>} 
<real number>::= {<scientific number> I <npx dec number> I <hex number>R} 
<npx register>::= {CWISWITWIOPIDP} 
<npx stack register>::= ST[({011121314151617})] 

Numeric variables refer to the data types supported by the 8087 Numeric 
Processor Extension (NPX). There are three types of numeric variables: 
integer, packed binary coded decimal (BCD), and real. Of these three 
basic types, the integer and real types have three sub-types. All seven 
numeric data types are described in Table C-l. For the remainder of this 
manual, the seven numeric variables are referred to as "NPX data types." 

See the 8086 FAMILY USER'S MANUAL NUMERICS SUPPLEMENT for more details on 
the NPX data types. Also, note the section on "Constants" in the 
8086/8087/8088 MACRO ASSEMBLY LANGUAGE REFERENCE MANUAL. For other NPX 
related details, refer to the Application Note, Getting Started With the 
Numeric Data Processor. 

C-3 



MONITOR COMMANDS 

Table C-l. NPX Data Types 

Significant 
Explicit Digits Approximate Range 

Data Type Suffix Bits (Decimal) (Decimal) 

Word integer H 16 4 -32,768 < X < +32,767 

Short integer H 32 10 -2xl09 < X < +2xl09 

Long integer H 64 19 -9xl018 < X < +9xlOI8 

Packed decimal H 80 18 -99 •• 99 < X < +99 •• 99(18 digits) 

Short real* R 32 6-7 8.43xl0-37 < IXI < 3.37xl038 

Long real* R 64 15-16 4.19x10-307 < IXI < 1.67xl0308 

Temporary real R 80 19 3.4xl0-4929 < IXI < 1.2xl04929 

* The short and long real data types correspond to the single and double 
precision data types defined in other Intel numeric products. 

The suffixes used when entering the NPX data types differ from the 
suffixes for word and byte variables. If the no suffix is given when 
entering an NPX data type, the number is assumed to be a decimal number. 
A decimal number is defined for the real NPX data types as a value 
entered as a' scientific number. This allows values like 4, 1.2, -1.2, 
-.3, -.3E-44, -1.56E-999 or 5.67E55 to be entered. A decimal number is 
defined for the integer and BCD NPX data types as a value entered as a 
scientific number that will evaluate to an i.nteger value. This allows 
numbers like 12, -12, 4E2 or 4.0El to be entered but won't allow the 
entry of numbers like 1.2, -1.2 or -1.56E-999. In the valid cases, the 
monitor will place the hexadecimal equivalent of the input decimal number 
in~o iAPX 86, 88 memory. However, if an integer or BCD number is entered 
with its explicit suffix "H" or a real number is entered with its 
explicit suffix "R", the monitor places the number, as it is entered at 
the console, into iAPX 86, 88 memory. In this case explicit signs 
(+ or -) are not allowed, the hexadecimal number, entered at the console, 
indicates the sign of the number in the sign bit, the most significant 
bit. 

C-4 



MONITOR COMMANDS 

When NPX data types are displayed, the address of the data type is 
displayed and then the value is displayed in hexadecimal form. The 
number is then displayed as the equivalent decimal number if it has an 
equivalent decimal value. For example, the long real number 11223344, is 
displayed in form: 

1111:0 4165682600000000R 11223344 
, 

The long integer, 11223344, is displayed in the form: 

1111:0 0000000000AB4130H 11223344 

The BCD number, 11223344, is displayed in the form: 

1111:0 00000000000011223344T 11223344 

In the remainder of this manual this display form is referred to as "NPX 
number format". If the memory value is a special bit pattern identifying 
non-numeric values like Not-A-Number (NAN) or Infinity, the address and 
the hexadecimal number are displayed and then the meaning is shown as NAN 
or Infinity instead of the decimal value. Examples of these displays 
using a long real number are: 

0080:0000 
0080: 0008 

FFFFOOOOOOOOOOOOR -NAN 
7FFOOOOOOOOOOOOOR +Infinity 

Special cases of numeric values are also identified. A negative zero is 
dislayed as -0. Pseudo zeroes (zero fraction with non-zero exponent) are 
shown as OEexp, where exp is the base 10 power equivalent of the binary 
exponent in the number. Numbers which are not normalized (I bit is zero) 
are displayed with their hexadecimal value and a "Bit" value which is a 
count of how many leading zeroes existed in the number. This "Bit" value 
indicates how many times the fractional part of the number must be 
shifted to the left to normalize it. An example of this display using a 
temporary real number is: 

0080:000 3FFF199999999999999AR .2 UNNORM 3 BITS 

Decimal values can be displayed in any of four different formats. The 
format used depends on the range of the number and its value. Numbers 
which are exact integers and fit in the field size of 16 digits are 
displayed as integers with no trailing decimal point or O. An example of 
this display using a long real number is: 

0080:0000 43118B54F22AEBOOR 1234567890123456 

Values which appear as integers, within the limits of the field size, but 
are not exact integers are displayed as XXXXX.O. The.O suffix indicates 
that the value is close to an integer but not exactly. An example of 
this display using a long real number is: 

0080:0000 42DC12218377DE46R 123456789012345.0 

C-5 



MONITOR COMMANDS 

If the magnitude of-a number is greater than or equal to 0.1 and is less 
than 10**<field size), the number is displayed as XXXX.XXX. An example 
of this display using a long real number is: 

0080:0000 41D26480B487E69BR 1234567890.12345 

Finally, very large or very small numbers are displayed in scientific 
number format X.XXXXXEexp. An example of this display using a long real 
number is: 

0080:0000 492C2916217B84B7R 3.14E+44 

Trailing zeroes after the decimal point are also suppressed. 

When NPX data types are displayed, the most-significant byte of the 
memory address (in hexadeximal notation) is displayed in the leftmost 
position, followed by bytes of decreasing significance with the least 
significant byte in the right most position. Similarly, when entering 
NPX data types in hexadecimal or decimal, the first digit entered has the 
greatest significance and successive digits entered have decreasing 
significance. If less than the NPX data type's number of significant 
digits is entered, the monitor will append leading zeros. When entering 
a value for an NPX date type in scientific number format, the number is 
converted to its hexadecimal equivalent and is then stored in iAPX 86, 88 
memory in that format. 

ADDRESS SPECIFICATION' 

A complete address argument consists of a base and an offset separated by 
a colon (:). If the optional base portion is omitted, the contents of 
the iAPX 86, 88 CS register are used as a default base, except as noted 
in the command descriptions that follow. If an entire address is 
omitted, but an address is needed in the command, the contents of the CS 
and IP registers are used, respectively, as base and offset, except as 
noted in the command description. 

There are two ways of denoting a range of addresses. One way is to list 
both the starting and ending addresses, with an exclamation point between 
them. An example is 30:46D ! 30:4FE. The other way is to list the 
starting address and the length in bytes, with a pound sign (#) between 
them. An example equivalent to the earlier one is 30:46D # 92. 

If the ending address in a range lacks an explicit base part, the base of 
the starting address is assumed. The ending address may not contain a 
base part which differs from the base part of the starting address. 

The largest count or the maximum number of bytes specified by a range is 
OFFFFh. When a range is expected and neither an ending address nor a 
length is specified, the range is taken to be a single byte. 

C-6 



MONITOR COMMANDS 

MULTIPLE COMMANDS ON A SINGLE LINE 

There are two mechanisms for putting more than one command on a command 
line. First, separate commands may be in the same command line if they 
are separated by semicolons (;). Second, by enclosing a command in angle 
brackets «command» and by placing a decimal repetition factor ahead of 
the first bracket, you can specify that the command be repeated the 
desired number of times., A repetition factor of n says "do this command 
n times." For example, 

5 <12 <G, CS:3B7) ; D DS:4A> 

is a valid command line that is built from the commands G, CS:3B7 and D 
DS:4A. The command G, CS:3B7 is repeated 12 times, then the D DS:4A is 
performed once. This entire sequence is repeated 5 times so the G, 
CS:3B7 command is repeated at total of 60 times while the D DS:4A command 
is repeated a total of only 5 times. Note that this use of angle 
brackets is NOT the same as the use of angle brackets in the syntax 
definition. 

Closely related to repetition, but differing, is continuation. By 
putting a decimal continuation factor, n, immediately ahead of a 
command's key letter or letters, you are directing the monitor to "do 
this command for n items at a time." For example, the command D 200:14 
directs the monitor to display the byte at address 200:14, while 20D 
200:14 causes the display of 20 consecutive bytes, beginning at address 
200:14. In contrast, 20 <D 200:14) causes the byte at 200:14 to be 
displayed 20 times. 

NOTE 

Both repetition and continuation 
factors are written as positive decimal 
integers with no "T" suffix. The range 
of these factors is 1 through 65,535. 
In any other part of a command using 
byte or word variables, however, 
decimal integers must have a "T" 
suffix, such as 127T. 

C-7 



MONITOR COMMANDS 

iAPX 86 AND iAPX 88 CPU REGISTERS 

The iAPX 86 and iAPX 88 CPUs include the 14 registers listed in Table 
C-2. The abbreviations used in the table are those used in the command 
syntax. 

Table ~-2. iAPX 86, 88 CPU Registers 

Register Name Abbreviation 

Accumulator AX 
Base BX 
Count ex 
Data DX 
Stack Pointer SP 
Base Pointer BP 
Source Index SI 
Destination Index DI 
Code Segment CS 
Data Segment DS 
Stack Segment SS 
Extra Segment ES 
Instruction Pointer IP 
Flag FL 

NPX·REGISTERS 

The NPX includes the eight 80-bit individually-addressable stack 
registers plus the status word, control word, tag word, instruction 
pointer, data pointer. and instruction opcode field listed in Table C-3. 
The abbreviations used in the table are those used in the command 
syntax. Note that the NPX instruction pointer listed in Table C-3 is not 
the iAPX 86, 88 instruction pointer. The monitor contains no command to 
modify the NPX instruction pointer. 

C-8 



MONITOR COMMANDS 

Table C-3. NPX Registers 

Register Name Abbreviation 

NPX State N 
Status Word SW 
Control Word CW 
Tag Word TW 
Instruction Pointer IP 
Data Pointer DP 
Instruction Opcode OP 
Stack Register 0 St (0) 

· · · · · · Stack Register 7 St( 7) 

ERRORS 

Each line input to the monitor is checked for validity. If the command 
is invalid or impossib+e to execute, an explanatory error message is 
displayed. If the command line contain~ng the error consists of multiple 
commands, any valid commands prior to the error are executed. 

Three error messages - "Bad EMDS Connection", "Bad Patch Byte=hex 
number", and XISIS Abort" - are all indicative of hardware problems. To 
recover, check your hardware, restart monitor, and try again. 

ENTERING COMMANDS 

The monitor's command line editor responds to input as follows: 

• Digits, upper and lower 
keyboard characters are 
printed on the console. 
indistinguishable to the 
monitor in upper case. 

case letters, and all other standard 
accepted into the command line and are 

Upper and lower case letters are 
monitor, all display is done by the 

• RUBOUT deletes the most recently entered character (with 
backspace, space, backspace) from both the command line and the 
display. An attempt to rubout the prompt causes a beep to be 
sounded. 

C-9 



MONITOR COMMANDS 

• CNTRL/C directs the monitor to abort its current command and 
issue a prompt. However, if your program is running and is in a 
loop, CNTRL/C has no effect. 

• CNTRL/R displays at the console the current command line. If the 
console terminal is in transparent mode, however, control-R has 
no effect. 

• CNTRL/X deletes the current command line and displays a pound 
sign (II). 

• CNTRL/S causes the console output to be suspended at the current 
cursor position. No output is lost by this command. 

• CNTRL/Q causes the console output, suspended by Control-S, to be 
resumed beginning at the current cursor position. 

• CARRIAGE RETURN (CR) signals the completion of the command line, 
which is then read and acted upon. 

• Other characters have no effect. Spaces may be included anywhere 
in the command line except within lexical elements. 

• NPX data types may be entered only on the substitute (nSn) or 
nXST(n)n command line and may appear in no other command line. 

Command lines may be up to 255 characters in length. An attempt to 
exceed this limit will be unsuccessful and will cause the terminal to 
beep. 

C-IO 



MONITOR COMMANDS 

COMMAND DESCRIPTIONS 

The MOnitor commands are summarized in Table C-4. 

Table C-4. Summary of Loader And Monitor Commands 

COMMAND 

L Load 

G Go 

R Load and Go 

T Upload 

N Single Step 

X Examine 

D Display 

S Substitute 

M Move 

F Find 

C Compare 

FUNCTION AND SYNTAX 

Loads an absolute object file from Intellec into iAPX 
86, 88 memory. L <filename> '<cr> 

Transfers control of the CPU to the user program. 
G [<start-addr>][, <break-addr>l<range> ]<cr> 

Loads an absolute object file from Intellec into iAPX 
86, 88 memory and begins execution. 
R<filename><cr> 

Loads a block of iAPX 86, 88 memory into an Intellec 
file. 
T<range> , <filename> [, <start-addr>]<cr> 

Displays and executes one instruction at a time. 
[<cont>] N [0] [P] [Q] [<start-addr>][,]<cr> 

Displays or modifies iAPX 86, 88 or NPX registers. 
X[ <reg> [=<expr> ] ]<cr> 
X{NI[<npx register>[=<hex number>]] I 
[<npx stack register>[=<real number>]]}<cr> 

Displays contents of a memory block. 
[<cont>] D [{WIIISIILIITISRILRITRIX}] [<range>][,]<cr> 

Displays/modifies memory locations. 
[<cont>] S [W]<addr>[=<expr>][/<expr>]*[,]<cr> 
[<cont>] S [{IISIILI}] <addr>[=<int number>] 

[/<int number>]*],[<cr> 
{<cont>] S [{SRILR1TR}]<addr>[=<real number>] 

[/<real number>]*[,]<cr> 
[<cont>] S [T]<addr>[=<BCD number>] [/<BCD 

number>]*[,]<cr> 

Moves the contents of a memory block. 
M<range> , <dest-addr><cr> 

Searches a memory block for a constant. 
F<range> , <data><cr> 

Compares two memory blocks. 
C<range> , <dest-addr><cr> 

C-ll 



MONITOR COMMANDS 

Table C-4. Summary of Loader And Monitor Commands (continued) 

COMMAND FUNCTION AND SYNTAX 

I Input 

o Output 

P Print 

E Exit 

* Comment 

B Bootstrap 

Inputs' and displays data from input port. 
[repeat] I [W] <port-addr><cr> 

Outputs data to output port. 
[repeat] 0 [W]<port-addr> t <data> <cr> 

Prints values or literals. 
P [{TISIQ}][{<addr>l<expr>l<literal>}] [, 

{<addr>l<expr>l<literal>}]*<cr> 

Exits the loader program and returns to ISIS-II. 
E<cr> 

Rest of line is a comment. 
* <comment><cr> 

Bootstraps code from iRMX 86 or 88 file compatible 
peripherals. 
B [ <pa thname> ] 

C-12 



INDEX 

8087 Numeric Processor Extension 4-7, 7-5 

:$: (default directory) 2-3, 2-11, 2-20, 3-1 
:BB: (Byte Bucket) 2-13, 3-10 
:CI: (Console Input device) 2-13, 3-13, 3-14 
:Co: (Console Output device) 2-13, 3-13, 3-14 
:CONFIG: (Configuration directory) 2-15, 6-6, 6-8 
:HOME: (Home Directory) 2-15, 3-12, 3-13, 3-14 
: LANG: (Language Directory) 2-15, 2-20, 3-1, 6-6 
:LP: (Line Printer) 2-13, 3-10 
:PROG: (Program Directory) 2-15, 2-20, 3-1 
:SD: (System Devic,e) 2-13, 6-2, 6-6 
: STREAM: (Stream Files) 2-5, 2-7, .3-1,0 
: SYSTEM: (System Directory) 2-14, 2-20, 3-1, 6-6 
:UTILS: (Utilities Directory) 2-15 thru 2-17, 2-20, 3-1, 6-6 
: WORK: (Work Directory) 2-15, 6-6 

abbreviation of command parameters 2-9 
aborting an executing program (CTRL/c) 2-24, 3-84 
absolute address 1-6 
access 2-3, 3-69, 4-13 thru 4-14, 6-5 thru 6-6 (also see PERMIT) 

control 2-10 
directories 3-27 
files 3-25 

address, absolute 1-6 
AFTER preposition 2-4 
ALL parameter 3-49 
allocation, 

buffer 4-10, 4-36 
memory 4-5, 4-10, 4-23, 4-32, 4-36 

Append access: see PERMIT 
Application Loader 7-2, B-2 
application program debugging 3-31 
argument 4-27, 4-47 
AS preposition 2-4 
ASM86 assembler 1-6, 7-4 
ATTACHDEVICE 3-2, 3-7 thru 3-11, 6-2 thru 6-3, 6-12 
ATTACHFILE 2-10, 3-2, 3-12 thru 3-14 
automatic baud-rate selection 1-9 

backplane hardware 5-7, 5-8 
BACKUP command 3-2, 3-15 thru 3-22, 3-78 
BACKUPSYS file 6-2, 6-3, 6-6 
bad blocks map 3-59 
Basic I/O System 7-1, B-1 

calls 3-13, B-7 
baud-rate 1-7, 1-9 
board modification 5-2, 5-6 thru 5-17 
Bootstrap Loader iii, 1-6 thru 1-8, 2-11, 2-14, 6-2, 6-6, 7-2 
breakpoints 1-6, 3-30 

Index-1 



INDEX (continued) 

buffer allocation 4-10, 4-16, 4-36 
bus electrical noise 5-8 
bus priority resolution 5-7 
BYTE data ,type 4-4 
byte bucket (:BB:) 2-13, 3-10 

cardcage 1-4, 5-2, 7-6 
carriage return (RETURN) 2-4, 2-22 
Centronics standard signal/pin assignments 5-5 
Change access: see PERMIT 
change file extension 4-15 
character matching: see wild cards 
chassis 1-4, 5-2, 7-6 
chronology of system calls 4-5 
CLI (Command Line Interpreter) 1-9, 4-28 
clock, system 3-31, 3-90 thru 3-91, 4-19 
commands, 

continuing on next line 2-27 
directories 6-6 
file 6-6 (also see SUBMIT) 
file management 3-1, 3-2 
general utility 3-1, 3-3 
invoking 2-1, 2-2 thru 2-3, 3-1 
iRMX 86 Human Interface 1-2, 2-1 to 2-5, 2-18 to 2-30, Chapt. 3, 7-2 
line interpreter (CLI) 1~9, 4-28 
line options 2-18, 2-27 thru 2-30 
monitor Appendix C 
parameter abbreviation 2-9 
parsing system calls 4-9 
syntax 2-1, 2-4 thru 2-5, 3-5 thru 3-6 
version: see VERSION 
volume management 3-1, 3-2 thru 3-3 

communication expansion board 7-6 (also see iSBC 534) 
COMPAC.LIB, 4-2 
compilers 1-6, 6-6 
concatenation of files 2-29, 2-30 (also see COpy) 
condition codes 4-2, 4-7, Appendix A 
CONFIG directory 2-15, 6-6, 6-8 
CONFIG EXCEP (INITSTATUS command) 3-63 
configuration files iii, 2-15, 6-6, 6-7 
connection, 

closing 4-16, 4-21 
creating 4-12, 4-17, 4-35 thru 4-36 
deleting 3-13, 3-32, 3-35, 3-57, 4-22 
status 4-29 

Console Input device (:CI:), 2-13, .3-13, 3-14 
Console Output device (:CO:), 2-13, 3-13, 3-14 
continuation of command lines 2-27 
control (CTRL) characters 2-22 thru 2-24 

c (abort) 2-24, 3-84, 4-8, 4-16, 4-48 
d (no effect) 4-46 
o (discard mode) 2-23 
q (resume previous output) 2-23 
r (reprint) 2-22 
s (stop output) 2-23 

Index-2 



INDEX (continued) 

control (CTRL) characters" (continued) 
t (scroll) 2-24 
u (discard) 2-22 
w (scroll) 2-24 
x (discard) 2-22 
z (as :CI: end-of-file) 3-67 
z (to reinitialize interactive job) 1-10, 3-13 

controllers, disk 1-4, 5-4, 7-6 
convenience charts 5-12,"5-18 thru 5-24 
COpy command 1-11, 2-2, 2-28, 3-2, 3-23 thru 3-26, 3-75 
copy, 

iRMX86 file to ISIS II file, 3-53 (also see DOWNCOPY) 
from ISIS II file to iRMX 86 file 3-92 (also see UPCOPY) 
System Diskette 6-1, 6-2 thru 6-4 
to a file: see COpy 
to a physical volume: see BACKUP, 
UDI libraries to system disk 2-18 thru 2-19 

CREATEDIR 1-11, 3-2, 3-27 
creating files 3-25 (also see COpy) 
CTRL: see control characters 

DATA file access 3-69, 3-70 
data 

files 2-7 
structures verification: see DISKVERIFY 
types 4-4 

DATE command 1-2, 1-9 thru 1-10, 3-28 thru 3-29, 3-90 thru 3-91, 4-19, 
4-34 

DEBUG command 3-30 thru 3-31 
default 

directory 2-3, 2-10, 2-11 thru 2-12 
exception handler 1-12, 4-6 
prefix 2-15, 3-13 

DELETE command 3-2, 3-32 thru 3-33 
Delete access: see PERMIT 
delete, 

file 4-6, 4-17, 4-21 
job: see JOBDELETE 

delimiters 4-27 
DETACHDEVICE 3-2, 3-8, 3-13, 3-34 thru 3-36, 6-12 
DETACHFILE 3-2, 3-13, 3-37 thru 3-38 
device independent I/O B-1 
device, 

attaching: see ATTACHDEVICE 
detaching: see DETACHDEVICE 
drivers 7-2 
formatting 3-56 thru 3-62 
logical name 2-12, 2-13, 3-7 thru 3-8 
names 3-9 thru 3-10, 6-9 
secondary storage 3-86 

dictionary, 
Human Interface command 3-1 
System Call 4-4, 4-8 thru 4-9 

Index-3 



INDEX (continued) 

DIR 1-10, 1-11, 2-2 thru 2-3, 2-8 thru 2-11, 3-2, 3-39 thru 3-47 
directories 2-7 

: HOME: 2-15, 3-12, 3-13, 3-14 
:LANG: 2-15, 2-20, 3-1, 6-6 
:PROG: 2-15 
:SD: (system device) 2-14, 2-20, 3-1 3-1 
: SYSTEM: (System) 2-14, 2-20, 3-1, 6-6 
: WORK: 2-15, 6-6 
:UTILS: 2-15 thru 2-17, 2-20, 3-1, 6-6 
access rights 3-27 (also see PERMIT) 
configuration (CONFIG) 2-15, 6-6, 6-8. 
creating: see CREATEDIR 
default 2-3, 2-10, 2-11 thru 2-12 
listing 3-27, 3-45 (also see DIR) 
order of search 2-18, 2-20, 3-1 
root 2-7, 2-14, 3-59, 6-6 
user's 1-10 
utility 2-15 thru 2-17, 2-20, 3-1, 6-6 

discarding output 2-23 
disk 

attaching: see ATTACHDEVICE 
controllers 1-4, 5-4, 7-6 
creating a private 2-20 thru 2-21 
drive 1-2, 1-4, 3-9 thru 3-10, 6-2 

diskette, 
Include Files 4-2 
soft-sectored 5-4 
system 6-2 thru 6-6 

DISKVERIFY 3-2, 3-48 thru 3-52, 7-2 
documentation Chapter 7 
DOWNCOPY 3-2, 3-53 thru 3-55 
DQ$ALLOCATE 4-5, 4-9, 4-10 thru 4-11, 4-23, 4-26, 4-32, 4-42 
DQ$ATTACH 4-6, 4-8, 4-12, 4-56 
DQ$CHANGE$ACCESS 4-8, 4-13 thru 4-14 
DQ$CHANGE$EXTENSION 4-8, 4-15 
DQ$CLOSE 4-8, 4-16, 4-57 
DQ$CREATE 4-6, 4-8, 4-17, 4-55 
DQ$DECODE$EXCEPTION 4-2, 4-6, 4-9, 4-18, 4-31, 4-54 
DQ$DECODE$TIME 4-9, 4-19 thru 4-20, 4-25 
DQ$DELETE 4-6, 4-8, 4-21 
DQ$DETACH 4-6, 4-8, 4-22 
DQ$EXIT 4-2, 4-8, 4-23, 4-54, 4-55, 4-57 
DQ$FILE$INFO 4-8, 4-20, 4-24 thru 4-25 
DQ$FREE 4-5, 4-9, 4-26 
DQ$GET$ARGUMENT 4-9, 4-27 thru 4-28, 4-47, 4-56 
DQ$GET$ CONNECTION$ STATUS 4-8, 4-29 thru 4-30 
DQ$GET$EXCEPTION$HANDLER 4-6, 4-9, 4-31 
DQ$GET$SIZE 4-5, 4-9, 4-32 
DQ$GET$SYSTEM$ID 4-9, 4-33 
DQ$GET$TIME 4-9, 4-34 
DQ$OPEN 4-6, 4-8, 4-35 thru 4-36, 4-42, 4-51, 4-55, 4-56 
DQ$OVERLAY 4-8, 4-37 thru 4-38 
DQ$READ 4-6, 4-41 
DQ$RENAME 4-8, 4-41 
DQ$RESERVE$IO$MEMORY 4-9, 4-42 

Index-4 



INDEX (continued) 

DQ$SEEK 4-6 t 4-8, 4-43 thru 4-44, 4-50 t 4-52 
DQ$SPECIAL 4-8 t 4-45 thru 4-46 
DQ$SWITCH$BUFFER 4-9, 4-27, 4-47 
DQ$TRAP$CC 4-8, 4-48 
DQ$TRAP$EXCEPTION 4-2, 4-6, 4-9, 4-31, 4-49 
DQ$TRUNCATE 4-8, 4-44, 4-50 
DQ$WRITE 4-6, 4-8, 4-44, 4-51 thru 4-52 t 4-54, 4-56, 4-57 
drives 1-2, 1-4, 3-9 thru 3-10, 6-2, 7-2 

flexible diskette 5-4 
Winchester 5-4 

DWORD 4-4 

EDIT 1-6, 7-3 
editing, 

line 2-18, 2-22, 3-31, 4-45 
terminal and user definition files 6-7 thru 6-12 
volume: see DISKVERIFY 

editor 2-16 thru 2-17 
end-of-file character (CTRL/z) 3-67 
environment, protected 6-1, 6-7 
environmental exceptions 4-2 
EPROM devices iii, 1-6, 5-6 
error conditions 2-30 
error messages, 

ATTACHDEVICE . 3-10 thru 3-11 
ATTACHFILE 3-14 
BACKUP 3~20 thru 3-22 
COpy 3-26 
CREATEDIR 3-27 
DATE 3-29 
DEBUG 3-31 
DETACHDEVICE 3-35 thru 3-36 
DETACHFILE 3-37 thru 3-38 
DIR 3-46 
DISKVERIFY 3-51 thru 3-52 
DOWNCOPY 3-55 
FORMAT 3-61 thru 3-62 
general 3-4 thru 3-5 
PERMIT 3-73 
RENAME 3-76 
RESTORE 3-80 thru 3-82 
UPCOPY 3-94 
INITSTATUS 3-64 
JOBDELETE 3-66 
LOCK 3-68 
SUBMIT 3-85 
SUPER 2-10, 3-88 thru 3-89 
TIME 3-91 

error processing 1-2 
escape sequences 2-24 
exception 

code 4-2, 4-18, Appendix A 
handler 1-12, 4-6 thru 4-7, 4-18, 4-31, 4-49 
handling system calls 4-6 thru 4-7, 4-9 

exceptional conditions, UDI 4-2 

Index-5 



INDEX (continued) 

EXIT 2-11, 3-87 thru 3-88 
EXTENDED 3-39, 3-40 thru 3-42, 3-4 
Extended I/O System 7-2, B-1 

calls, 3-13, B-8 thru B-9 
extension 

data 3-57, 3-59 
changing 4-15 

EXTENSIONSIZE 3-56 thru 3-57, 3-59 
EXTERNAL PROCEDURE 4-3 

FAST 3-39 thru 3-43 
file 1-2, 1-11 thru 1-12, 2-5 thru 2-6 

access 1-11, 2-3, 4-35, (also see PERMIT) 
attaching: see ATTACHFILE 
creation 3-25, 4-17 (also see COpy) 
data 2-7 
deletion 4-6, 4-17, 4-21 
granularity 3-57, 3-60 
handling system calls 4-5 thru 4-6, 4-8 
logical name 2-5, 2-12, 2-14, 3-12 
logon 1-9, 6-12 
management commands 3-1, 3-2 
named 2-5, 2-6, 3-7 
ownership 2-3, 3-25 
pathnames 2-5 
physical 2-5, 2-7, 3-7 
pointer positioning 4-6, 4-29 thru 4-30, 4-43 thru 4-44 
reading from 4-39 thru 4-40 
structure 1-2 
iRMX 86 System 2-10 
terminal definition 2-15, 6-1, 6-4, 6-6, 6-7 thru 6-12 
transferring 2-19 
tree 2-5, 2-7 
truncating 4-50 
types 2-5 thru 2-6 
user 3-59 
user definition 2-15, 6-1, 6-4, 6-6, 6-7 thru 6-12 
utility 7-2 
writing to 4-51 thru 4-52 

FILES parameter, FORMAT command, 3-56, 6-3 
flexible disk drive 1-2, 1-4, 3-9, 5-2, 5-3, 5-4, 6-12 
FORCE parameter 3-34, 3-35, 3-56 thru 3-57, 6-12 
formal parameter 3-83, 3-84 
FORMAT 1-11, 3-3, 3-56 thru 3-57, 6-12 
formatting, 

disk 1-11, 2-20 thru 2-21, 3-18 
FORTRAN-86 1-6, 4-2, 7-5 
free memory pool 1-5, 3-31, 4-5, 4-10, 4-23 

general utility commands 3-1, 3-3 
GRANULARITY 3-56 thru 3-57 
granularity 3-57, 3-60 
group map 3-30, 3-31 
GSYS.020 2-10 thru 2-1 thru 2-122, 6-6 

Index-6 



INDEX (continued) 

handler (CTRL/c) 4-48 
hardware, 

attaching 6-12 
for iRMX 86 PC System 1-1, 1-2 thru 1-5, 5-2 thru 5-6 
manuals 7-5 thru 7-6 
optional, iRMX 86 PC System 1-4, 5-3 
preparing Chapter 5 
required, iRMX 86 PC System 1-4, 5-2 

home directory (:HOME:) 2-15, 3-12, 3-13, 3-14 
Human Interface 1-2, Chapter 3, B-2 

commands 1-9, Chapter 2, Chapter 3, B-2 
command dictionary 3-1, 3-2 thru 3-3 
directory search 2-18, 2-20, 3-1 
manual 7-2 
system calls B-9 thru B-I0 

I/O (input/output), 
Basic 7-1, B-1 
Extended, 7-2, B-1 

identification, 
file 2-11 (also see GSYS.020) 
of monitor 1-7 
of operating system 4-33 

include files 2-18, 4-3 
Include Files Diskette iii, 2-18, 4-2, 4-3 
independent software vendor (ISV) 1-5 
infinite sink (:BB:) 2-13 
init-pathname 6-9, 6-11 
initial program 1-10 
initialization, 

of operating system 1-1, 2-11 (also see bootstrap loader) 
of disk: see formatting 

INITSTATUS 3-3, 3-63 thru 3-64, 6-12 
inpath-list 2-4, 2-29 thru 2-30 
input, terminal 2-22 
installation, 

guide 7-3 
utilities 2-16 

INTELLEC 1-4, 1-6, 5-6 
interactive session 1-9, 3-13 
interactive job 1-7, 1-10 thru 1-11, 3-12, 3-65, 6-8, 6-9 
interface 

libraries 2-18 
software 1-1 (also see UDI) 

INTERLEAVE parameter, FORMAT command 3-56 thru 3-57, 3-60, 6-3 
interrupts, 

while debugging 3-31 
while downcopying 3-55 
while upcopying 3-94 

INVISIBLE (files) 2-9, 3-39, 3-40, 3-41 
iRMX 86 PC Product iii, 2-18 
iRMX 86 PC System Diskette: see System Diskette 
iRMX 86 commands 1-2, 1-9, Chapter 3, 7-2, Appendix B 
iSBC 208 1-4, 5-2, 5-3, 5-4, 5-6, 7-6 

modification, 5-9 

Index-7 



INDEX (continued) 

iSBC 215 1-4, 5-4, 5-6, 7-6 
modification, 5-8 

iSBC 534 1-4, 5-6, 7-6 
modification, 5-10 

iSBC 86/12A 1-4, 5-2, 5-3, 5-6, 7-5 
modification 5-11 thru 5-13 

iSBC 86/14 1-4, 5-2, 5-3, 5-6, 7-5 
modification 5-14 thru 5-15 

iSBC 86/30 1-4, 5-2, 5-3, 5-6, 7-5 
modification 5-16 thru 5-17 

iSBC 680 7-6 
iSBC 957B 1-4, 5-6, 5-7, 7-5 

for UPCOpy 3-92 thru 3-94 
monitor 3-30 

iSBX 218 1-4, 5-3, 5-6, 7-6 
modification 5-9 

ISV (Independent Software Vender) 1-5 

JOB ID 3-64 
JOBDELETE 3-3, 3-65 thru 3-66, 6-12 
jumpers, boards 5-6 

keyboard terminal 1-4, 5-2 

language 
directory 2-15, 6-6 
processors 6-6 
products 1-1, 1-5 thru 1-6 
translators 7-3 thru 7-5 

LARGE.LIB 4-2 
layers of Operating System B-1 (also see subsystems) 
LIB86 7-4 
libraries 1-6, 2-18 

interface 2-18 
object module 7-4 
UDI 4-2 

line editing controls 2-18, 2-22, 3-31, 4-45 
line feed, 2-4, 2-22 
line printer, 1-4, 2-13, 3-10, 5-3, 5-5 
link map 3-30, 4-58 
LINK86 1-6, 2-16, 3-30, 4-58, 7-4 

with overlays 4-37 thru 4-38 
List access: see PERMIT 
LIST 3-50 
loader, 

Application B-2 
Bootstrap iii, 1-6 thru 1-8, 2-11, 2-14, 6-2, 6-6, 7-2, B-2 

LOC86 1-6, 7-4 
locator 2-16 (also see LOC86) 
LOCK 3-3, 3-67 thru 3-68, 6-12 
logical names 1-10, 2-5, 2-12 thru 2-15, 3-2 

for devices 2-13, 3-8, 3-34 
for files 2-14, 3-12 thru 3-13, 3-37 
predefined 2-13 
syntax rules 2-12 

Index-8 



INDEX (continued) 

logical sector sequence 3-60 
logon file 1-9, 6-12 
LONG parameter 3-39, 3-40 thru 3-42, 3-44 
:LP: (line printer) 3-10 

manuals v, Chapter 7 
mark for deletion 4-6, 4-21, 4-22 
mass storage volume 3-58 
matching characters: see wild cards 
max-priorty 6-9 
memory, 

allocation 4-10, 4-23, 4-32, 4-36 
bubble - 3-56 
boards 1-3, 5-1, 7-6 
dynamic 3-31 
examining 1-6 
freeing 4-23, 4-26 
layout 1-5 
management system calls 4-5, 4-8 
pool 3-31, 4-10, 4-23 
reading operating system into 1-7 
required 5-2, 5-6 
reserving 4-42 
segment 4-5, 4-10 
user's 6-9 

Microcomputer Development System 1-4, 5-3 
modification, of board 5-2, 5-6 thru 5-24 
monitor 1-6 

commands Appendix C 
for DEBUG 3-30 thru 3-31 
for DOWNCOPY 3-54 
for UPCOPY 3-93 
identification of version 1-7 

multi-access commands 3-1, 3-3 
Multibus 5-7 

card cage 7-6 
multimodule numeric data processor (NDP) 5-7 

N (NAMED) 3-49 
N1 (NAMED1) 3-49 
N2 (NAMED2) 3-49 
NAMED 3-7, 3-56, 3-58 
named files 2-5, 2-6 
NAMED 1 3-49 
NAMED 2 3-49 
NDP (Numeric Data Processor) 5-7 
noise, bus 5-8 
Nucleus iRMX 86 7-1, B-1 

system calls B-3 thru B-6 

object modules 1-6 
OEM (Original Equipment Manufacturer) 1-6 
offspring jobs 3-65 
OH86 1-6, 7-4 
ONE parameter 2-3, 3-39 

Index-9 



INDEX (continued) 

Operating System, 
initialization 1-1, 1-6 thru 1-8, 2-11 
subsystems 1-1, 2-18, Appendix B 

order of directory search 2-18, 2-20, 3-1 
Original Equipment Manufacturer (OEM) 1-6 
outpath-list 2-4, 2-29 thru 2-30 
output terminal 2-23 thru 2-24 
OVER parameter 2-4 
overlays 4-37 thru 4-38 
Owner ID 6-5 (also see user ID) 

parallel priority resolution 5-7 
parameters, 2-4, 3-6, 3-83, 3~84 
partition size 6-9, 6-10 
Pascal-86 1-6, 4-2, 7-5 
patch utility 7-2 
path-lists 2-27, 2-29 
pathname 2-4, 2-5, 2-7, 2-29 thru 2-30, 4~41 
PC (Preconfigured) iii, 1-1 
performance 4-36 
PERMIT 2-3, 2-10, 3-2, 3-49, 3-56, 3-58 
physical device 

attaching: see ATTACHDEVICE 
names 3-9 thru 3-10 

physical files, 2-5, 2-7 
PL/M 86 1-6, 4-2, 7-4 
POINTER da ta type 4-4 
portable software 1-5 
position-dependent parameters 3-6 
position-independent parameters 3-6 
power supply 1-4, 5-2, 7-6 
Preconfigured iRMX 86 Operating System (iRMX 86 PC) iii, 1-1 
prefix, pathname 2-15, 3-13 
prepositions 2-4, 2-27 thru 2-28 
priority 6-9, 6-11 
priority resolution 5-7 
procedure handler (CTRL/c) 4-48 
processors, language 6-6 
program directory (:PROG:) 2-15 
program files 3-1 
program 

command 1-11 
control calls 4-8 
debugging 3-31 
for file operations, 
example 4-53 to 4-58 

programmer errors 4-2 
programming techniques 7-3 
prompt 

command line interpreter (CLI) 1-9 
super 3-87, 3-88 

protected environment 6-1, 6-7 
publications v, Chapter 7 

QUERY 2-17 (also see specific commands) 
quoting characters 2-26, 2-27 

Index-l0 



INDEX (continued) 

R?BADBLOCKMAP 2-9, 3-59 
R?FNODEMAP 2-9, 3-59 
R?LOGON 1-9, 2-5, 2-15 
R?SPACEMAP 2-9, ·3-59 
railroad track schematic 2-5, 3-5 thru 3-6 
RAM boards, manual 7-6 
RAM expansion module 5-6 
Read access: see PERMIT 
reading a file . 4-39 thru 4-40 
re-boot 1-7 
reconstructing a volume 3-48 
registers, displaying 3-30 
reinitialization character (CTRL/z) 1-10, 3-13 
RENAME 3-2, 3-74 thru 3-76 
RESET 1-7 
resolution 5-7 
RESTORE 3-3, 3-15, 3-77 thru 3-82 
RETURN 2-4, 2-22 
root directory 2-7, 2-14, 3-59, 6-6 
RUBOUT key 2-22, 4-46 

scrolling 2-23 thru 2-24 
secondary storage device 3-56 
sectors 3-60 
segment 4-5 

allocation 4-5, 4-10 
map 3-30, 3-31 
return 4-26 
size 4-32 

segmentation 4-2, 4-11 
SMALL 4-7 

selective error processing 1-12 
SELECTOR data type 4-4 
serial bus priority resolution 5-7 
SHORT parameter 2-3, 3-39 thru 3-43 
shutting down the system 3~67, 6-12 
signal/pin standard, line printer 5-5 
signal-to-signal coupling 5-8 
single board computer (SBC) 1-4, 5-2 
single-step 3-30 thru 3-31 
SMALL. LIB 4-2 
software 

independent vendors (ISV) 1-5 
Intel packages 1-6 

soft-sectored diskette 5-4 
standard format 5-4 
stopped output 2-23 
stream files 2-5, 2-7, 3-10 
STRING data type 4-4 
SUBMIT 1-11, 2-2, 3-83 thru 3-89, 6-1, 6-2, 6-4 

of logon file 1-9 
subsystems 1-1, 2-18, Appendix B 
SUPER command 2-10 thru 2-11, 3-3, 3-87 thru 3-89, 6-1, 6-2, 6-4 
syntax of commands 2-1, 2-4 thru 2-5, 3-5 thru 3-6 
SYSTEM directory (:SYSTEM:) 2-14, 3-1 

Index-II 



INDEX (continued) 

System Diskette (iRMX 86 PC) iii, 1-1, 2-8, 2-18, 6-1, 6-2 thru 6-6 
file structure 2-8, 6-5 thru 6-6 
using to boot system 1-7 

system calls, 2-18 
Basic I/O 3-13, B~7 
chronology of 4-5 
dictionary (UDI) 4-4, 4-8 thru 4-9 
exception-handling 4-6 thru 4-7, 4-9 
Extended I/O 3-13, B-8 thru B-9 
file-handling 4-5 thru 4-6, 4-8 
Human Interface B-9 thru B-I0 
iRMX 86, Appendix B 
memory management 4-5, 4-9 
Nucleus B-3 thru B-6 
parsing 4-9 
UDI 2-18, Chapter 4 
utility and command parsing 4-9 

system clock 3-31, 3-90 thru 3-91, 4-19 
system device (:SD:) 2-13, 2-14, 3-8, 3-34 
system directory (:SYSTEM:) 2-14 
system identification file: see GSYS.020 
system initialization 1-1 
system manager 1-11, 3-87 thru 3-89, Chapter 6 
system prompt 1-9 
system shutdown 3-67, 6-12 
system terminal 1-9 

TO-T4 3-10, 3-63 
terminal 1-2, 3-10 

additional 1-4, 5-3, 5-6 
definition file 2-15, 6-1, 6-6, 6-7 thru 6-12 
initializing status: see INITSTATUS 
input 2-22 
keyboard 1-4, 1-10, 5-2 
lock 3-67 
logical name 1-10, 2-13 
name 6-9 
output 2-23 thru 2-24 
screen 1-10, 2-1 
support code 2-23 

terminal mode, 
line-edit 3-31, 4-45 
output 2-23 thru 2-24 
transparent 4-45 thru 4-46 

TIME 1-2, 3-3, 3-90 thru 3-91, 4-19, 4-34 
affects on 3-31, 3-55, 3-94 
default 1-10 
setting 1-9 thru 1-10 

TO parameter 2-4 
TOKEN data type 4-4 
transparent mode 4-45 thru 4-46 

immediate 4-46 
tree, file 2-5, 2-7 
truncating a file 4-50 
type-ahead 2-24, 3-31, 3-55, 3-94, 4-46 

Index-12 



INDEX (continued) 

UDI system calls 1-1, 1-5 thru 1-6, 1-12, 2-18, 2-19, Chapter 4 
example program 4-53 thru 4-57 
exception handling 4-6 thru 4-7, 4-31, 4-49 
exceptional conditions 4-2 
file handling 4-5 thru 4-6, 4-8 
include files 4-3 
libraries 2-18, 4-2 
memory management 4-5, 4-8 
program control 4-8 
Dictionary 4-4, 4-8 thru 4-9 
utility and Command Parsing 4-9 

Universal Development Interface: see UDI 
UPCOPY 3-2, 3-92 thru 3-94 
user definition files, 2-15, 6-1, 6-4, 6-6, 6-7 thru 6-12 
User ID ° 3-87 thru 3-89, Chapter 6 
User-ID 3-64 

system manager, 1-11 
WORLD, 1-11 

utilities 6-6, 7-3 
directory (:UTILS:) 2-15, 2-17 thru 2-20, 3-1, 6-6 
general commands 3-1, 3-3 
installation 2-16 
system calls 4-9 

UTILS (utilities directory) 2-15 thru 2-17, 2-20, 3-1, 6-6 

v (VERIFY) 3-49 
verification of volume 3-49, 7-2 
VERIFY 3-49 
VERSION 3-3, 3-95 thru 3-96 
volume 

free space map 3-59 
granularity 3-57 thru 3-60 
management commands 3-1, 3-2 thru 3-3 
mass storage 3-58 
name 3-58 
NAMED 3-7 
PHYSICAL 3-7 

wild cards 2-17 thru 2-19, 2-24 thru 2-26, 2-29, 3-25 
Winchester disk 1-2, 1-4, 3-10, 5-3 
WORD data type 4-4 
work directory (:WORK:) 2-15, 6-6 
WORLD (User ID 65535) 3-7 

access rights 6-5 
user ID 1-11 

write to a file 4-51 thru 4-52 

*** 
Index-13 





REQUEST FOR READER'S COMMENTS 

GETTING STARTED WITH THE RELEASE 5 
iRMXTII 86 SYSTEM 

145073-001 

ntel Corporation attempts to provide documents that meet the needs of all tntel product users. This form lets 
'ou participate directly in the documentation process. 

)Iease restrict your comments to the usability, accuracy, readability, organization, and completeness of this 
iocument. 

!. Please specify by page any errors you found in this manual. 

~. Does the document cover the information you expected or required? Please make suggestions for 
improvement. 

'. Is this the right type of document for your needs? Is it at the right level? What other types of documents are 
needed? 

. Did you have any difficulty understanding descriptions or wording? Where? 

. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _ 

AME ___________________________ DATE ______ _ 

ITLE __________________________________________ ___ 

OMPANV NAME/DEPARTMENT ______________________________________________ _ 

DDRESS ______________________________________________________________ __ 

lTV _______________ ~ _____ STATE ___ ZIP CODE ___ __ 

lease check here if you require a written reply. 0 



WE'D LIKE YOUR COMMENTS ... 

This document is one of a series describing I ntel products. Your comments on the back of this form 
will help us produce better manuals. Each reply will be carefully reviewed by the responsible 
person. All comments and suggestions become the property of I ntel Corporation. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR 

POSTAGE WILL BE PAID BY ADDRESSEE 

Intel Corporation 
5200 NaEa Elam Young Pkwy. 
Hillsboro, Oregon 97123 

OMO Technical Publications 

111111 NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 


