STARTW WITHTHE
Y RELEASE'S |
|RMX”‘ 86 SYSTEM

Order Number 145073—001

Es— Copyright © 1982 ineél GoRpSrator
lmeICOtporamn 3065 Bowers Avenué, Santa Clara, Calnfomaa95051

Trev. | f * REVISION msrony | PRINT

001 Ongmal Issue o - - 9/82

: 'Addmonal copnei of thxs manual or oxhcr lnrel hterature may be obtained from:

L Lneramre:[)epaﬂmem
Intel Corpofa;:on Cer
- 3065 Bowers Avenue .

. Santa‘Clara. CA 95051-

- The mformauon in.this documem is subgect o change without notice.

lntel Corporanon makes 1o uarramy of any kind with regard to thls material, including, but not
limited to, the implied warranties. of merchantability and Ti itness “for a particular purpose. Intel

- Corporation assumes np- rcsponsxbxhtv for .any .errors that may appear in this document. Intel.

- document. . ,’ Yo

Corporation- makes n0 ;ommnmcm 10, update nor'to keep current the information contained in this

Intel Corporation assumes no resporisibility for the use of any circuitry other than circuitry embodied
in an Intel product No other circuit patent llcenses are implied.

Intel sofma:e products -are. copyrighted -by and shall-remain the property of Intel Corporation. Use,

~duplication or. disclosure is, W Mucuonswmd«ur-lmel s‘”sofmarc license, or as defined in
'.Asmmewta’)‘@r“"_" o

A AR

No pan ‘of Uix§'documem inay be (’:opled'or rcproduced in any form or by any means without prior

written consent. of Intel Corporauon

The follomng are trademarks’ of Ingel, Corporanon and its afﬁha(es and may be used only to identify

- Intel products::. . . ’

BXP LABDS Lo o e ‘Micromap
C’REDFT d . : ©iRMKT Multibus -
i S Intel iSBC - . Multichannel
FICE , Intelevision iSBX Multimodule
ICE . Intellec iSXM Plug-A-Bubble

N . thgemuenufm -2} Library Managét PROMPT

“ s * " inteligent Programming MCS RMX/80
im _Inteliink Megachassis) RUPI
G 1o te. Micromaiifraie [System 2000

UPL.. i &ee

~ PREFACE

This manual is a self-contained guide to using the iRMX 86 PC Operating
System, (PC = Preconfigured). The Preconfigured Operating System 1s a
ready-to-use version of Intel's -configurable,. multi*tasking iRMX 86
Operating System. Ready-to-use means that an Intel engineer has already
configured the system (put together: the subsystems and drivers) so that
you don't have to perform. the conflguration prOcess. ;

WHAT YOU GET -

The Preface Figure shows the éontents of the iRMX 86‘PC product.

Preféce Figure.’ Thé_IRﬁXTf86§PGmP:06gCt;

The iRMX 86 PC'ReleaseaPackagewcontains:

o - The System Diskette, labeled. Preconfigured iRMX 86 Operating
System ‘ , 3 :

e The Include.File.Diskette; labeléd: iRMXVBEFInclude Files

° Four EPROM devices whlch contain the. Monitor and a Bootstrap
Loader

° This manual

] One Software Problem Report Form and one Software Registration
Card.

111

. PREFACE (continued)

GETTING STARTED i

PR S

Radd

To start using thﬁ,system,;yOu‘need otily:--

1. Prepare the hardware on which the system will run. A chapter in
: .this manual explains how ‘to do 80, '

&Ll gy

f2‘.« Bootstrap load“the‘system. When you have prepared your
.hardware;: you i&an- bootstrap load” the 1{RMX 86 PC System Diskette.

+3. .. Backup" the" Syeteﬁ'DiSkette.' Once‘you have bootstrap loaded the
.- system ybucan make-a backup copy of the System Diskette. The
- System Digkeétté”includes a file of commands (a SUBMIT file) that
performs nearly all of the process. -

@4:‘--Adjust‘Cohfigurétion"Files;, Alth0ugh the Operating System is
already configured, you can customize the system to match
optional hardware’ that you have in your system. To do so, you
change parametéri®ifi configuration files that define the
characteristics of your particular system. For example, the
“System Diskétte supports only one keyboard terminal, but the
-iRMX 86 PC System can handle four more terminals using an
optional controller board. You can change one value in a file
'tOJincIude other termlnals. o ST A

If: you receive this manual as part of another product, the diskettes and
EPROM devices are not necessarily part of the other product.

TR

2> CONTENTS™ OF THIS MANUAL

Except for Chapter 5, this manual is written for application programmers
who will use the Operating System. Chapter 5 is written for a technician
or engineer who assembles the hardware.

Here is how the manual is organized.

Chapter 1- OVERVIEW: " This ‘thapter describes the general
characteristics of the iRMX 86 PC Operating System.
1t shows how to fnitialize (bootstrap load) the
system, and how to start using system commands from

Chapter 2 USING THE SYSTEM.\ This chapter provides detailed

“information about the iRMX 86 file system. The
_chapter contains ‘many examples showing how to use
"{RMX 86" commands “at a keyboard. terminal.

Chapter 3 iRMX 86 COMMANDS. This chapter contains individual
' e descriptions of“the 1RMX 86 Commands arranged
alphabetically.

“iv

., PREFACE (continued)

Chapter 4 UDI SYSTEM CALLS. This chapter contdins general
information about the Universal Development Interface
(UDI), followed by descriptions of:each UDI System
Call.

Chapter 5 * PREPARING YOUR HARDWARE. . This chapter describes the
hardware required to run the Operating System, and
describes jumpers that must: be installed on Intel
boards to match iRMX 86 PC.characteristics.

Chapter 6 SYSTEM MANAGEMENT. . This chapter describes how-to set
up the system to support multiple terminals and users,
and how to. prevent users from corruptlng the file
system. : Pih IT '

Chapter 7 . DOCUMENTATION. 1In. this chapter; we describe the
‘manuals that ‘relate to. the iRMX ‘86 PC System.

Appendix A This appendix lists the,codeglthat the iRMX 86
Operating System uses to indicate exceptional
conditions, such as hardware failures and mistakes in
how a program uses the. system..A‘x: :

Appendix B "“This appendix describes the sub-systems of the iRMX 86
Operating System and provides a list of “internal”
iRMX 86 System Calls. . You do not need these system
calls to write and run programs. But the information
in this appendix provides an overview of the services
provided by the iRMX 86 Operating System.

Appendix C This appendix describes how to use the monltor that is
delivered as part of the iRMX 86 PC System. =

RELATED PUBLICATIONS

The following manuals provide additibhaiufﬁfdtmetieﬁwt%;t‘meyfge
helpful. Many of these manuals are described in Chapter 7. :

) Introduction to the iRMX 86 Operating System, Order
Number: 9803124 ' .

° iRMX" 86 Nucleus Reference Manual, btée;TNﬁmber. 9803122
° iRMX" 86 Basic I1/0 System Reference Manual Order Number. 9803123

° iRMX" 86 Extended 1/0 System Refe;ence Manual Order
Number: 143308

o 1RMX" 86 Loader Reference Manual, Order Number: 143318

PREFACE (continued)

iRMX; 86 Hu;éﬁri;te;féée Reference Manual, Order‘Number: 9803202
1RMX™ 86‘Operatofs Manual, Order Numberi 144523

iRMX™ 86 Configﬁration Guide, Order Number: 9803126

iRMX™ 86 Debugéér’Reference Manual, Order Number: 143323

iRMX™ 86 Crash Analyzer Reference Manual, Order Number: 144522
iRMX™ 86 Programming Techniques, Order Number: 142982

Guide to Writing Device Drivers for the iRMX™ 86 and iRMX™ 88 I/0
Systems, Order Number: 142926

iRMX™ 86 Terminal Handler Reference Manual, Order Number: 143324

iRMX™ 86 Disk Verification Utility Reference Manual, Order
Number: 144133

Run-Time Support Manual for iAPX 86,88 Applications, Order
Number: 121776

iRMX 86 Installation Guide, Order Number: 9803125
ASM86 Macro Assembler Operating Instructions, Order Number: 121628

Users Guide for the iSBC® 957B iAPX 86, 88 Interface and
Execution Package, Order Number: 143979

iSBC® 86/12A Single Board Computer Hardware Reference Manual,
Order Number: 9803074

1SBC® 86/14 and iSBC® 86/30 Single Board Computer Hardware
Reference Manual, Order Number: 144044

iSBC® 337 Multimodule”™ Numeric Data Processor Hardware Reference
Manual, Order Number: 142887

Guide to Configuring Multibus®-Based Systems, Order Number: 144788

iSBC® 680/681 Multistore User System Package Hardware Reference
Manual, Order Number: 162432

iSBC® 208 Flexible Disk Controller Hardware Reference Manual,
Order Number: 143078

iSBC® 215 Generic Winchester Disk Controller Hardware Reference
Manual, Order Number: 144780

vl

PREFACE (continued)

1SBX™ 218 Flexible Disk Controller Hardware Reference Manual,
Order Number: 121583

1SBC® 534 Four Channel Communications Expansion Board Hardware
Reference Manual, Order Number: 9800450

1SBC® 032/048/064 Random Access Memory Boards Hardware Reference
Manual, Order Number: 9800488

1SBC® 016A/032A/064A/028A/056A RAM Boards Hardware Reference
Manual, Order Number: 143572

vii

CONTENTS

CHAPTER 1
SYSTEM OVERVIEW
Hardware Environment For the iRMX™ 86 PC SySteMeeececescscscscscsess
Required Hardware...
Optional HAardwWar@eeeeecseocscosescsccsccsssscassscnscscscsoscsssocse
‘Memory LayOUteescsesseceascscscscesoscsscsccscsccssscscscncsosscsscnse
The UDI and Language ProducCtSesscccccccecsccsscssecsssccscscscsccocsns
How to Initialize the System......-......-.........................
Starting to Use a Terminaleececcecscccccsccscscssscsssccscscscsscscsscsse
Setting the Date and Time.ccecssesccsscccscscccccssssccccccssncoccsne
The Multi-Access Human Interfacececccscccesrsccsccsscsvsscssssscsces
Interactive Jo‘b...U.....Q.C.Q."‘.ll....'.&QOC...‘...'O...'....'0
User ID and OWner ID..cceccsccoccsssossccscssrcoscssossssscsncsescscs
IRMX™ 86 FileSeceesoeocccovrtoscoasscsesacsessoscsssssssssassscasaces
Selective Error Processingececcscsscescsscscscoscssescssocccssscssscscscs

Summary........0..0..Q'..‘.‘......0....O....O...“...........I..C..

CHAPTER 2
USING THE SYSTEM
Invoking iRMX™ 86 COMMANAS.ecceccscccscsoracossacsacsscsccssccsnsscs
Example: DIR and COPY CommandS«svescecssccssccsccsccscscscsnsscssccs
Syntax o0f ComMAandSeeecececcscscossocoscssssssssscssscsscacsanasscsss
Using iRMX" 86 FileSeeesosecocecscsscccsscscscsssscsscvcsssssnscsces
TYpPeS Of FileSeeeseeccaacssesoscscscssasnsosnssassscsassancsassnsssnnee
File Tree StTUCtUT@ecsceccsscssccsssccsccsessososscscscnsocscsncsasnses
Pathnames..
Example: Directory of iRMX" 86 PC FileSeecscecsccccscscoscscacces
Example: SUPER Command and Changing the Default Directoryeeceeceess
Default DirecCtOrYeccecescesocsessccossccsccssscscssssscscssssscscsssces
Logical Names.‘.."‘00...'....00...'..Q.........l...0.0...O.‘....
Logical Names for DevicCeSsesecscscescsssssscsscssscsoscsssssnsos
Logical Names for FileS.seseesvsecscsacscacccsscscsscscssacscscssscsasosses
SYSTEM CONFIGURATION DIRECTORY (:CONFIG:)ecssosccccscaccsscsccsas
Example: Installing Utilities on the SysSteMisecccsccccscecccccces
More About iRMX™ 86 COMMANAS«eccecsscccsccssssssesscscscoscssoccscas
Example: Copying the UDI Libraries to the System DisSkeceeossosocee
Order of Directory Search by the Human Interfacesccecccccsccsccces
Example: Creating a Private DiSKeeeeeoossosecsososcccssscscsscces
Line Editing ControlSceccsececesccccccsossccsscessscsacscsossccscscsos
Controlling Input from a2 Terminal.seceeecccscccccsccsscscccccscses
Controlling Output to a Terminalecececcscccossccssccccscsscoscnss
Type—Ahead.................................o......-..........-.
Escape SequenCeSsscecscscccescsccsscssccscscscsccscccssccscssssssscsss
Wild Cards..ooooooooooooooonoooooooooo-o-ooooo--ooooo-oo-o..-.ooo
Command Line OptionS.ccececccccscsessceccsscccsccscssscscscscsscscscsvosse
Commands that Require More than One Lin€.ccsccccccsscccccccsces
Quoting Characters in a Commandeeccccocesssccscscscesossoscssnscsse
Prepositions and PathlisStSe.eccececcccccsccsccsscscccsscscccssnsce
Inpath-List and Outpath—LiSteecccececvscesccoveecssscccsescncssssoe

ix

PAGE

1 1

1
= OOV N

I
(@]

el R T S e T
I |
o

—
[}
=
—

1-12
1-12

2=5

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-18
2-18
2-20
2-20
2-22
2-22
2-23
2=24
2-24
2-25
2-27
2-27
2=27
2-27
2-29

CONTENTS (continued)

CHAPTER 3

HUMAN INTERFACE COMMANDS

Human Interface Command Dictionaryeeeccceccccesscccosccscccccssssos
Error MessageSoooooo-ooooooooo-o-ooooooooooooooooooooooocoooooo-ooo
Command Syntax SchematiCSeesccescccccsceccsccaceccocccccssssccsccne
ATTACHDEVICE...'.....".........._...........'....'....'.........‘..

ATTACHFILE cececsescooocscsosccsscscccsosossccssssscscsscsscsscssncsssncssscccs
BACKUPeeeesoosoescssocssssscsscecsssacsssnccssossscscscsosscscsscsnssosvns
COPY.Q....0'l...........ll.........l...'.l...'........;QQ..O......O
CREATEDIRcccsccocevecccsccssoscsccscsosscsnssosososcsscssscsescssssessacssssoss
DATE-..ooooo0000-00000000oooooooo--oooooo-ooooooooo.oooo-ootqooooo.
DEBUGeeeccecccscccscosssscssscssncssscssscsoscconscsnscssccsocsscessosnessossce
DELETEccesccccocccsoccccossccsccoscsosscsncscsnsescosscossscscscscsnsccsssonscse
DETACHDEVICE ceceecoeccscescscscsccsososcscscsscosnscscscscnscscsacsssncssssssce
DETACHFILE«cceceesscevsscssasosnsccscscssscccsncsescsscssssccsscsovnaccncns
DIReccecccecocssceccccccsososcoscsocscsssscssncsssccssssssscsccccsosocoscsssesces
DISKVERIFYceescoeccocccoosoosoncecacscssonsctscsscsosnosscscconscsosssscssnce
DOWNCOPY e ceooocecsosscsoscssecssccscscssossscsssssosesssscscccscssscsassacscoss
FORMAToooooooo-ooo-ocooqoooo.ocooooc-oooooooo--oo'oooo..oouoooooo-o
INITSTATUS e cocsscessoccssscscsocssssccsccscsscsccsssoscscscsscscssosssone
JOBDELETE e ceeccccccccccsocscsscscsscsccsosscssosscsosscscssesosscsssoocse
LOCKeceooooscscossnssenssccsscscscsccscososcscssoscsacsossssscsssoscscsssose
PERMITQQ....oo..ooo.ooo..‘...ooo.--.n.oooooo.oo0‘00..0.0000...0.0..0
RENAME ¢ ccececacssccsccssccsssccscscsssscscscsccoscscsessssosssscsssssesossscse
RESTOREccececccncocssceccosccsccscseosscsscasssccscsesssssosesssscssssssscse
SUBMIT ceecceoccccaccsosscscsscccsoscscscscnsoscscsosssscccscssssscesccscsssscsss
SUPERccesecocecocsosssssossesscncsscssccsssnssssascsscssecsssncsascsons
TIMEeeeooooessocescscsscsoscsscossccscsoncssscscsosncscsssssssssssscscscsssnsnsce
UPCOPYccecocococovrccscscsosscosscscssossnsosesoscsessosscsscscsscsossossscsscssscs

VERSIONIQ.'.......'O....'....'......0‘I.......Q.......Q......O.....

CHAPTER 4
UDI SYSTEM CALLS
Using the UDI..'........‘....O'....0.........0'.......'..........'.
Exceptional ConditionSeeccecsccsscscceccessccscssncsccscsscsccccccce
’ UDI Libraries.r..........l“....."...'...........Q.".....O‘.0.0.
Include FileSecesesveoccosccccesccscscscscscssesscssnsssesscscscsconce
Data Types..O..l..........O’....Q....Q....O......'...O....0......
Descriptions of System CallSeeceeccsccccccccccsscssocssccscsoccscscssse
Memory Management System CallSecececcccceccccscccscscsscsscccssscss
File—Handling System Calls....-.................................o
Exception-Handling System CallSccccscccccscoceccscsacsccscccscosscne
System CallSececececsssoceccoscescscoscsscsnsccsssavsescscoscscsassascsss
DQ$ALLOCATE..Q......Q.I..‘....O............Q"O....O.C...l......‘
‘DQsA'ITACH....0.0.........0.0.0‘0...'....Q.O.‘O.......O..........O
DQSCHANGESACCESS ccsoesesosecccscccccsscccoscscsscssscsscsssscsssscsssss
DQSCHANGESEXTENSION.o-ou-oo~-ooooooccoooo.oooooooo-oooo.ooooooooo'

DQSCLOSEO..........".........O...‘...'.............0'..'...'...I

DQSCREATE..00.00....00..000.0.0..0.......0.....0.....0-..0.0.0..0

PAGE

3~1

3-4

3-5

3-7

3-12
3-15
3-23
3-27
3-28
3-30
3-32
3-34
3-37
3-39
3-48
3-53
3-56
3-63
3-65
3-67

- 3-69

3-74
3=77
3-83
3-87
3-90
3-92
3-95

4-10
4-12
4-13
4-15
4-16
4-17

CONTENTS (continued)

CHAPTER 4 (continued)

DQsDECODEsEXCEPTION......C........‘....‘..."........‘......’....
DQ$DECODE$TIM.......‘........“....0“.0...'...'................

DQ$DELETEO........'....!........0‘00....0.........O.........'O...
DQ$DETACH.Q'.....IQI.'...QOOI'..O.I'.'0..'0......00'000.....-...0
DQSEXITeeeeesosaoassnssaacassssacsonsassansssssasscsascssscannsas
DQSFILESINFOceoeecocovococscsscascsssscsscassnccsccscscsnsscsnocs

DQSFREE................’.Q......Q...........Q'........'......'I..

DQSGETSARGUMENT ¢ « e e e e e veecccacsoonsacasscscesnnssossnsssesnsannes
DQSGETSCONNECTIONSSTATUS ceevescecsscescsscssssccccccsscscscssccce
DQSGETsEXCEPTIONSHANDLER-oooo-oooooooooooooo.oooooooo-ooo-ooooo.o
DQSGETSSIZEceeeccocosssscoccccscssssccscsosssssssssosnccscssscsase
DQSGETsSYSTEMsID....-.o----oo-.oooccoooooooooooooooooaooooo-Q-oco
DQSGETSTIME cecesocevoccsoccrsoscoscssccssccscsosascsocssccssensocsce
DQSOPEN........Q......ooooooooo.ooo-co-oooo-ooooo.-ooo-.ooo..-coo
DQSOVERLAY...-oooo.oooooooooooo.ooooooooooooo.o-o-o.ooo-ooooo.ooo
DQ$READ..-.-.oooooo-ocoo..ooo......-o-o..;-n-oo.aooo.oooooooooo.o
DQSRENAME.oooooooooooo.oooooocoo-oooooo-o-oo-o.oooooooo-ooooooooo
DQ$RESERVE$IO$MEMORY-o-coo.-oooooo-coc-o.ooooooo.-o.ooooooooooo-.
DQSSEEK . ¢ e e eeseeeccosscescseacesosesssesscesosacssscssnssssoaness

DQ$SPECIAL.....'.'.Q...o..o.'..c..o....ooo...t..o.o..o.o.o.......

DQSSWITCHSBUFFER: cccecccscccccccessossscscscsscssscacscscsccsssce
DQSTRAPSCCeceecoccscossosccscsoocsssssccsccscscssssscnsscssscsncscscsss
DQSTRAPsEXCEPTION......................‘........'................
DQ$TRUNCATE...QO..O......I....‘.......‘..................I.......

DQSWRITE..................O'........l..l...'l....................

Example Program..O...............Q'......IO....'...Q.......‘..'....

CHAPTER 5

PREPARING YOUR HARDWARE ;

The iRMX™ 86 PC Hardware Environment..csecececccesscscscessscssscssss
Required Hardwaresessececesococecccccscsscscsescscscsccssscscsscsscosne
Optional HardWare€.eescceessesscccsccsossssscsessssnscsssscssascsccs
Single Board COmMPULEresscecssccscsocssosessccsscssccscsssocssssosss
Flexible Diskette Controllers and DriveSeececcccccssscscsoscossaces
Winchester DiSk Driveecececscessesssssocsccsocsscsscscccscsccssssssscscs
Line Printer..O...................l..................".......0.0
Additional TerminalS.eccecccsccescccccscscssscsssscsscscscscsnscsansse
MemMOTrYeceeosesecocccossscvscscsosscossscssosssosscsscssssscsssossscssssosse
iSB@ 957B Package...................................C...........

MOdiinng Boards..-.-........
Hints about the Multibus®P..cececescccsscecesssscssscscascscacccanse

Bus Priority ResolutiONececcccssccscscccccssccscsccsosscsoncscnce

Bus Electrical NOiSE@eeeccoscesasasesscssessscscsscsscsnscossonssoces
.Modifying the iSBC® 215 Winchester Disk Controller.e.esecscscscscss
Modifying the iSBX™ 218 Disk Controllereececeecsesecscsccscscccoscanse
Modifying the i1SBC® 208 Flexible Disk Controller..ceecececessccsss
Modifying the iSBC® 534 Four Channel Communications

Expansion Boardececscccccccccsesscsscccsossscscccscscscsanccsance

xi

PAGE

4-18
4-19
4-21
4-22
4-23
4=24
426
4-27

4-29

4-31
4-32
4-33
4-34
4-35
4=37
4-39
4-41
4-42
4-43
4-45
4-47
4~48
4-49
4-50
4-51
4-53

MWMUL{!UMMUI
WO WO~NNAASO O

5-10

CONTENTS (continued)

CHAPTER 5 (continued)

Modifying the iSBC® 86/12A Single Board COmMpULEr.scssscccsccasses
Interrupt Level JUmMpEIrScecccecsceccsscssesscsccsssscsssssscssssos
Additional JUmpPEerSseecccccscesecscscccoscscccsoscscscoscscssasscossse
Parallel Port....l.l............'.......'..Q..‘O...-.."......0
SWitch settings....‘....'..............'l.......I....I...I......
DevicCeSeesecseosccescssssscoscescnsesvccsnscsssscscscsscsnsssosces

Modifying the iSBC® 86/14 Single Board Computereeecescsscscsccses
JUMPErSeescecvesevscossscsessscsccssesesscssscsssssscsaccsssscsccscss
DeviceS'........l....l.......OQ....'....l..'....0.........'....

Modifying the iSBC® 86/30 Single Board COmMpUt@Tesecesececscsscecssecs
Jumpers.....o...-..

Devices......0.0.0l'o.‘o........c.lo..oo.....0......0'0...0.0.0

Convenience ChartSoionl...0.....-0...00....0.0000-.0..0....-...00..

CHAPTER 6
SYSTEM MANAGEMENT
Copying the iRMX" 86 PC System DiSKett@eeseeccccscscccscscscscsscnes
iRMX™ 86 PC System DisSkettEeeseecessescescsssosccsscsssssssccssscas
Editing the Terminal and User Definition FileSesceecscsssccocccccss
Terminal Definition Files.'........‘Q.......’.....0."............
Omitting Unnecessary ParameterScescesceccccscssccsccessscscsssvconse
Order of Terminal Definition LineSe..ccaseccocescscessccssosscsse
User Definition Files.........-.................................
Other System Management FUunctionSeeesecssssecccsscesesscssessccccnss
Attaching Hardware DeviCeS.cecsesecccccsssssscsscsscccscssesscoscs
Shutting Down the SySteMecccesscssoscccsscscscscscccscsssocsssnsnse

CHAPTER 7
DOCUMENTATION

This Manual........o..-....'..
iRMX" 86 Manuals....0..Q.Q.O.'......'....‘.O...O.Q..........O'..ll.
Language Translators and Utilities ManualS.eceecccccsssoscccccccssse
Hardware ManualSeeceeccesescccccascscsscessccscscccsscssacscscscnsscces
COMPULErSeeeseosssccsoscsscescnsccsssssscsssssssssssssssecssssscssosses
Disk Controllers....O.....Q..'.Q..O....O....'.0.........‘0.......
Communication Expansion Boardeecececcscecccccccscoocsccccscssossccsccsose
MemoTry BoardScescesccscescsovscsccsoscsccsssocssnsscsccssscssssosses

Chassis/PowWer SUPPlYeececcccsessesscsscsscsscscscsccsscsccscsscsss

APPENDIX A
imm 86 EXCEPTION CODES...............‘...'.................'.....

xii

PAGE

5-11
5-11
5-11
5-12
5-12
5-13
5-14
5-14
5-15
5-16
5-16
5-17
5-18

6-5
6-7

6-10
6-10
6-10

6-12

6-12
6-12

7-1
7-1
7-3
7=5
7-5
7-6
7-6

- 7-6

7-6

CONTENTS (continued)

APPENDIX B

iRMX™ 86 SYSTEM CALLS

Layers of the iRMX™ 86 SYSteMeseccecscccssosccccscssscsssssssssscss
Nucleus System CallSeecececcccscccscsccscssccccsccssncccsscscssossscsscconsse
Basic I/0 System CallSeeecescccececosccsoscsccsssscosssssasscsssosansse
Extended I/O System Calls........................a.................
Human Interface System CallSeecscesecscsscscscscescscssscsscccsnnssssce

APPENDIX C

MONITOR COMMANDS

Command StrUCLUICececesescscvscscsssscsccssssscsssncsssconscsascscssosse
Byte and Word VariableSeesecccccccsocsscssscsscsccsccsccsoscccscsccscsncs
Numeric (Real, Integer and BCD) VariableS.ecceessceccscocsccscssase
Address SpecificatiONececcccecssscocsscsccvssssccsccscscsscssnnss
Multiple Commands on a Single LiNEeecessecescccssccscsssccccsccce

iAPX 86 and iAPX 88 CPU RegiSterScecccceccccsssccccsccscscsscsssocses

NPX RegisterSO........l.....l.........‘I..'.OQ.O......l....'.‘.....

Errors................................l.'.............Q.........Q..

Entering CommandSQon'0...'0'.0.0'..0.........o..l.o..l.c...oo...o..
Command DescriptionSOCQOQOQOOnola'.‘.ou‘........l.lo...lb....0-..0.

TABLES

2-1. Input Pathname and Output Pathname CombinationSeescecccsces
3-1. Human Interface Command Dictionaryecesccsesccccssssccccosscs
3-2. Physical Device Names for the iRMX™ 86 PC SySteMecececescses
3-3. Directory Listing HeadingSeeceecessessssccccsccsscssssncssnocscs
4-1. System Call Dictionaryeececcecscsesccccccesesscoscscsccscscacscncs
4-2. Command Parsing Examplecceccscecsssccssscsescsscsscsccccsncsse
5-1. Single Board Computers............,........................
5-2. Line Printer Pin AssignmentScesceccccccsccccccccccccccccsccas
5—3' 1SBC® 215 Jumpers..
5-4., Jumpering for the iSBX™ 218 Multimodule™eecescsssccacsscnes
5-5. iSBC® 208 Jumpers-.-.......................................

5-6. iSBC® 534 Interrupt and Base Address JUmpe@rS.ecescccccsccss
5-7. iSBC® 534 DIP Header Jumpers for RS232C Protocol.icecesccese
5-8. Interrupt Jumpers for iSBC® 86/12Accecccscessccssscccssccss
5~9. Other iSBC® 86/12A JUMPEISecsccsscscccossccsscsscssncsasces
5-10. iSBC® 86/12A Parallel POrt JUmPEISesescccsosccscssscsssssas
5-11. 1iSBC® 86/12A SwitcCh leeecececccsccocccsscsocsccscsccscscnsocnscse
5-120 iSBC® 86/12A DevViCeBeceesecesesossscssscscsssossossnsscssossccsse
5-13. Interrupt Jumpers for i1SBC® 86/l4cceccecccccccsccccanscccsecs
5-14. 1iSBC® 86/14 Parallel Port JUMPETrSeeeesscsssscoscssscsssscnce
5-15. Other iSBC® 86/14 JUMPEISececcscsscascsscssosscnssscsscsccsscse
5-16. 1SBC® 86/14 On~Board DeviCeSeescsessessccsoscscssososcscnss
5-170 Interrupt Jumpers for iSBC® 86/30'...‘Q..;l................

xiii

PAGE

B-1
B-3
B-7
B-8
B-9

c-2
c-2
c-3
C-6
c-7
Cc-8
c-8
Cc-9
c-9
Cc-11

2-29
3-2
3-9
3-45
4-8
4-28
5-3
5=5
5-8
5-9
5-9
5-10
5~10
5-11
5-11
5-12
5-12
5-13
5-14
5-14
5-15
5-15
5-16

5-18.
5-19.
5-20.
5-21.
5-22.
5-23.
5-24.

5-25 .

5-260
5-27.
5-28.
5-29.
5-300
5-31.
5-32.
5-33.
A—lo
A-2.
c-1.
c-2.
C-3.
C-4.

R PR

. TABLES (continued)

1SBC® 86/30 Parallel Port JUMPEISececccscscscscsscssccsccsnsse
Other iSBC® 86/30 JUMPEIScecscesescsscsscsccscssssssssscanss
iSBC® 86/30 On"Board DeViceS-.............‘.........-.......
iSB@86/12A Jumpers (Condensed)......‘...'....0...........
1SBC® 86/12A Devices (Condensed)eesscccesscccccsssssscscsss
iSBC® 86/12A Switch 1 (Condensed)eeceecescescsccccssccsacsscs
iSBC® 86/14 Jumpers (Condensed)eesececsssssscccssscssccspss
iSBC® 86/14 Devices (Condensed)ecececcesscccccsccscsscssnsne
iSBC® 86/30 Jumpers (Condensed).........................-.-
1SBC® 86/30 Devices (Condensed)-ooooooo.oooooo-ooooooooooo-
iSBC® 215 Jumpers (Condensed)sceceececscsccscsscsccssscscscs
Jumpering for the iSBX® 218 Multimodule™ (Condensed).eeses.
iSBC® 534 Jumpers (Condensed)eeceececcccscscscssscssessscsscs
iSBC® 534 DIP Header Jumpers, RS232C (Condensed)sscecscsces
1SBC® 208 Jumpers (Condensed)ecceccessccccccscscccsscscsccscce
Line Printer Pin Assignments (Condensed)ccececccecscsecccss
Exception Code RangeSeceeccccccccescssssscscsscosssossssascsss
iRMX™ 86 Condition COdeSescececscecccsssssssscssssssssssass
NPX Data Types............................'.....\‘..".....'
iAPX 86, 88 CPU RegisterSececcseccccccccscssccsccscscsccsscsncocs
NPX RegisterSceccscecescecccsccccccscsssccsccscssscncsscnsnssscnse
Summary of Loader and Monitor CommandSeecscccscccscccscscsoscs

FIGURES

The iRMX™ 86 PC ProduClecscssccescccssscscsscscanssssascacs
iRMX™ 86 Operating System SubSyStemSeescsecscsccccccssscases
iRMX™ 86 PC Hardware Environment..ecececescsccscscscccsscescs
Memory Layout of iRMX" 86 PC SySteMececescscscsccscccscscsss
Initializing the SysteMececccscccccesssscssscscssscscsscessccse
Using the iRMX" 86 Operating System from a Terminaleeeeccese
Example Human Interface CommAandS.cecsccccscsoscscscscscsscccse
Syntax Diagram of COPY Commandesceccecessosscscocssscccccscs
An iRMX™ 86 Named File StTUCLUT€ececescsccsscscssscscascsse
Directory Listings of iRMX"™ 86 PC FileSececeeecosccsccscsss
Examples: Changing Default Directory and SUPER Commandeee..
Installing Intel Utilities on System Diskeecesoscessscccccee
Copying Utilities to the System DisKeseescoccesccsicccscacs
Transferring UDI Files to System Diskesececcescssccssceccsce
Creating a Private Diskececesscccsecccecoscscscccsccaccoccces
Sample DEBUG Display.....n.....-........................o.
FAST Directory Listing Example (Default Listing Format)....
SHORT Directory Listing Examplecccccceccccscscocscsccsnsesss
LONG Directory Listing Examplecscceccscccccsssccsoscccscsscse
EXTENDED Directory Listing Exampleccccccccccccccccscsscscsscs
INITSTATUS DiSPlaY¥ecececcscccocscocssccssasssnscansacancsss
Chronology of System CallSecececcccssscccccssccccscccsccncsasse
The imm 86 PC Hardwarel..'.........I..‘...'......Q.......
:SD:BACKUPSYS.....O....Q.O....O.Q......O‘......Q..'..0.000.
File Structure of the System DevicCe€eeccecsceccccesscoccccne

*dk
xiv

PAGE

5-16
5-17
5-17
5-19
5-19
5-19
5-20
5-20
5-21
5-21
5-22
5-=22
5-23
5=23
5-24
5-24
A-1

A-2

C-4

c-8

c-9

c-11

2-10
2-16
2-17
2-19
2-21
3-31
3-42
3-43
3-43
3-44
3-63
4-5

5-1

6-4

CHAPTER 1. SYSTEM OVERVIEW

Intel has configured the iRMX 86 PC Operating System as an efficient
program development base for languages and other software utilities.
Figure 1-1 shows the subsystems of the iRMX 86 Operating System. The
Preconfigured Operating System includes all of the subsystems shown plus
software to support many I/0 devices.

r | <)
o= |

Ju}

<\ UNIVERSAL DEVELOPMENT INTERT: oy ~)
S e T AN. INTERFACE — [
- '
EXTENDED /O SYSTEN ‘
APPLICATION —

BAS‘C [1Ie] SYSTEM Lvoﬁ?

1‘ NUCLEUS

USER APPLICATIONS X-306

. J

Figure 1-1. iRMX"™ 86 Operating System Subsystems

This chapter describes the most important characteristics of the
Preconfigured iRMX 86 Operating System. Major subjects of the chapter
are:

e Hardware Environment. The iRMX 86 PC System is designed to run
on particular hardware; some of the hardware is required and some
is optional. The iRMX 86 PC Operating System supports up to five
terminals simultaneously, as well as three iSBC 86 Single Board
Computers, various disk and diskette drives, and a line printer.

. The first section of the chapter describes this hardware.

e The UDI and Language Products. A standard software interface --
the Universal Development Interface -- simplifies addition of

software packages to your iRMX 86 PC system. Many software
packages are available from Intel and from independent software

vendors.

e How to Initialize the System. This section shows how to
bootstrap load the operating system.

1-1

SYSTEM OVERVIEW

e Starting to Use iRMX 86 Commands. Once the system is
initialized, you can enter commands at terminals.

e Setting the Date and Time. This is the first of many examples in
the manual using Human Interface Commands.

¢ The Multi-Access Human Interface. The iRMX 86 PC Operating
System can be accessed simultaneously by up to five users at
terminals. We describe how the Human Interface manages terminals.

° iRMX 86 Files. This section gives an overview of the Operating
System file structure. Chapter 2 describes the file structure in
detail.

° Selective Error Ptocessing. You can let the Operating System
handle errors or you can let the Operating System detect the
error and pass control to your own error-handling routines.

HARDWARE ENVIRONMENT FOR THE iRMX™ 86 PC SYSTEM

In order to configure the iRMX 86 PC system, Intel engineers had to make
some assumptions about the Intel boards (single board computers, disk
controllers, and so on) that will be used to run the Operating System.
This section describes that hardware. Chapter 5, PREPARING YOUR
HARDWARE, is a guide to setting up the hardware.

Figure 1-2 on the next page shows a typical iRMX 86 PC hardware system
with a flexible disk drive, a Winchester hard disk drive, and multiple
terminals. Following the figure is a description of hardware that is
required to run the Preconfigured Operating System, and a description of
optional hardware.

1-2

SYSTEM OVERVIEW

iSBC" 9578 cabie

LINE PRINTER:
CENTRONICS - compatible

PARALLEL PORT

WINCHESTER DISK DRIVE

INTELLEC®
DEVELOPMENT
SYSTEM
CHASSISIPOWER SUPPLY

FLEXIBLE DISK
CONTROLLER \

) 2732A EPROMS SYSTEM DISKETTE
{with Bootsir:%‘ Loq;der) single-side, double-density,
an onntor,

256 bytes per sector

Backplane with
MULTIBUS"
Connectors

WINCHESTER
DISK CONTROLLER

PROCESSOR BOARD

MEMORY BOARD(S)

COMMUNICATIONS x-325
BOARD

Figure 1-2. 1iRMX" 86 PC Hardware Environment

1-3

SYSTEM OVERVIEW

REQUIRED HARDWARE

The Preconfigured iRMX 86 Operating System requires the following
hardware:

Single-Board Computer. An Intel iSBC 86/12A, iSBC 86/14, or
iSBC 86/30 Single Board Computer.

Flexible Disk Drive. A flexible diskette controller with at
least one 8-inch drive.

This disk drive should conform to the size and recording density
of the diskettes on which you receive the Preconfigured iRMX 86
Operating System (the format is defined in Chapter 5, PREPARING
YOUR HARDWARE). ° '

Although you can boot and run the system with one flexible
diskette drive, you will need at least one other disk drive to do
useful work with the system.

Keyboard Terminal. A keyboard terminal connected to the serial
line on your single-board computer.

Chassis. An appropriate chassis/cardcage/power-supply unit.

Memory. The Operating System requires 256K bytes of memory.

OPTIONAL HARDWARE

You can include the following optional hardware in your system:

Four More Terminals. An iSBC 534 Four Channel Communications
Expansion Board with one to four keyboard terminals.

Winchester Disk. A Winchester hard disk drive connected to an
iSBC 215 Disk Controller.

Total of Eight Flexible Disk Drives. Up to four flexible
diskettes connected to an iSBC 208 Flexible Disk Controller and
up to four flexible disk drives connected to an iSBX 218 Flexible
Disk Controller Multimodule. You can use the iSBC 218
Multimodule only if you also have an iSBC 215 Disk Controller.

. Line Printer or Microcomputer Development System. Either a line

printer or an iSBC 957B hardware/software package connected
through the parallel port on your single board computer. The
iSBC 957B package allows you to connect your system directly to
an Intellec Microcomputer Development System. Neither the line
printer nor the iSBC 957B package is required to run the
Operating System.

SYSTEM OVERVIEW

MEMORY LAYOUT

Figure 1-3 shows a memory layout. The area labeled FREE SPACE is where
programs and iRMX 86 commands run (commands are described in Chapters 2
and 3). The question mark (?) on the drawing indicates that you can
decide how much free space you have on your system. You will need about
32K-bytes of free space to run most iRMX 86 commands, and more memory to
run Intel compilers.

(’ ADDRESS ‘\

(hex) - SIZE

FFFFF (=
BOOTSTRAP AND } 16K BYTES
FC000 | MONITOR (ROM)

- ADDRESS
SPACE

FREE SPACE
(RAM)

40000

256K BYT
iRMX™ 86 } BYTES

OPERATING SYSTEM
(RAM)

00000

k x-305)

Figure 1-3. Memory Layout of iRMX™ 86 System

THE UDI AND LANGUAGE PRODUCTS

The iRMX 86 PC Operating System includes the Universal Development
Interface (UDI), which provides standard system calls for software
(your's, Intel's, and vendors') to communicate with the Operating
System. Three important advantages to using UDI software are:

6 Independence from Operating System Changes. The set of system
calls for UDI remains stable regardless of changes in the
Operating System.

e Portability. If your software uses only the UDI system calls to
communicate with the underlying operating system, you can easily
move software packages from one operating system to anocther.

] Independent Vendor's Software. The UDI standard gives you access
to independent software vendors' programs that run on the iRMX 86
Operating System.

1-5

SYSTEM OVERVIEW

To develop programs, you need language translators and utilities that
allow you to compile or assemble source code, to link programs together,
to assign absolute addresses, and to create libraries of programs.
Software packages available from Intel include:

EDIT ‘The standard iRMX 86 editor.

ASM86 The 8086/8087/8088 macro assembler.

PLM86 The PL/M-86 compiler.

LINK86 .The 8086 Linker, which combines individual object

modules into a single, relocatable object module.

LOC86 The 8086 'Locater, which assigns absolute addresses to
relocatable object modules.

LIB86 The 8086 Librarian, which creates and maintains object
module libraries.

OH86 A program which converts absolute object modules to
hexadecimal format.

Pascal-86 A Pascal compiler that is a strict implementation of the
proposed ISO standard. It also provides extensions of
the language for microcomputers.

FORTRAN-86 A FORTRAN compiler that is compatible with existing
FORTRAN~-86 code, and also includes new FORTRAN-77
language features.

With these products you can create executable programs that can be
invoked from the terminal. If you are an OEM (original equipment
manufacturer) you can include these languages with your end product.

Refer to the GUIDE TO USING iRMX 86 LANGUAGES for general information
about invoking language products in an iRMX 86 environment. For detailed
information about the software products listed here, you should refer to
the manuals for the individual products (see Chapter 7 for a list of
these manuals.)

HOW TO INITIALIZE THE SYSTEM

This section shows you how to bootstrap load the iRMX 86 PC Operating
System. Bootstrap loading (booting) is the process of reading the

iRMX 86 PC Operating System into memory from a disk and giving it control
of the processor. The bootstrap loader program is in the EPROM
components you receive with the iRMX 86 PC product.

The EPROM devices also contain the monitor. With the monitor, you can
examine memory, set breakpoints, and (with a hardware package available
separately) communicate between your system and an Intellec Microcomputer
Development System. Appendix C describes monitor commands.

1-6

SYSTEM OVERVIEW

When the Operating System starts running, it initializes itself. Then it
is ready to accept commands typed from a keyboard terminal. The next
section describes how to use a terminal (start an interactive job).

If you have installed the EPROM components on your single board computer,
bootstrap the system as follows (refer to Figure 1-4.)

1.

2.

3.

4.

5.

Turn on power to the disk drive, processor and to the system
terminal -- the one connected to the single board computer.

Insert a copy of the System Diskette into Disk Drive 0. We show
you later how to copy the Diskette you receive.

When you see a segies of asterisks appear on the display screen,
type a single uppercase

U

The system repeatedly sends characters to the screen until you
type a U. The U is not echoed to the screen. What character is
sent to the screen depends upon the baud rate, and we show
asterisks (*) in our example —— the character displayed at 9600
baud. A hand points to where the U is typed.

You will see a message identifying the Monitor, followed on the
next line by a prompt of "." (period).

Respond by typing a single
B
meaning boot. You can also use a lowercase b.
Now the Bootstrap Loader reads the Operating System into memory

from your diskette, and passes control to it. (This usually
takes less than a minute.)

Figure 1-4 shows the screen display when the system is booted.

If your system has a button connected to the RESET line on the single
board computer, you can re-boot by using the button. The system will
again display asterisks, and you continue from step 3.

To prevent destroying data on your
disks when re-booting, allow 2 seconds
to elapse after the last I/0 operation
from commands or programs that access
the disk. This also applies when
removing diskettes from drives and when
turning off power.

SYSTEM OVERVIEW

-

iAPX 86,88 Monitor V1.2
.b

-

iRMX 86 HI CL, va2.0: USER 65535
-prog:r?logon, file not found SN
- DATE

1t

01 JAN 78, 00:00:00

-DATE 14 FEB g2

14 FEB 82, 00:00:00

-TIME 9:12:05

14 FEB 82, 09:12:05

-DIR ; last command
14 FEB 82 09:12:52

DIRECTORY OF § ON VOLUME 145122

PROG Spitting

x-309

Figure 1-4,

Initializing the System

NQOTE

In illustrations of video screens, what

the operator types (console input) is
shown in this typeface.

Messages displayed by the system (con-
sole output) are shown in this typeface.

Input and output lines in illustrations

are not proportional to an actual video
display.

1-8

SYSTEM OVERVIEW

13

STARTING TO USE A TERMINAL

When you have successfully booted the system, you can begin entering
commands at any terminal. That is, you can start an interactive

session.
figure.

How to do so is shown in Figure 1-4 and explained following the
From this point, the system terminal is used the same as any

other terminal.

Here is how to start.

1.

Type an uppercase U; it is not seen on the screen. A hand on
Figure 1-4 shows where it is typed. The system reads the "U"
character to determine the data baud rate of your terminal, and
then adjusts the computer rate to match it -=— a process called
automatic baud-rate selection.

The iRMX 86 Command Line Interpreter (CLI) begins running and
displays its header (and the terminal bell rings):

iRMX 86 HI CLI, V2.0: USER 65335

In Figure 1-4, V2.0 is the version number of the CLI, and 65535
is the user ID assigned to the terminal. While you are using a
terminal, a user ID is your identification to the Operating
System. The next section will deal with user IDs and why they
are important.

Next, the CLI searches for the logon file. Each user ID can have
a unique logon file. If you do not have a file named R?LOGON,
the system will display a message such as:

:prog:r?logon, file not found

The logon file is optional. If it finds a logon file for a
terminal, the CLI automatically SUBMITs the file (reads each line
in the file and executes the line as a command). Using a logon
file, you can start processes automatically when the Operating
System first recognizes your terminal. The system recognizes the
name :prog:r?logon as a logon file. Chapter 2 explains iRMX 86
file names.

After processing the commands in the logon file, the CLI issues
its prompt (-) and returns control to you. At this point you can
enter Human Interface commands and invoke programs.

SETTING THE DATE AND TIME

In this section, we show how you can set the system time and date. The
TIME and DATE commands are shown first because it is a good idea to set
the system time and date as soon as the system is bootstrap loaded. In
Figure 1-4, the operator typed DATE in response to the first Human
Interface prompt (-).

SYSTEM OVERVIEW

Without parameters, the DATE command simply'displays the date. 1In this
case, the system displays the default date and time that indicates it
hasn't been set since the system was booted.

The next line shows the operator setting the date to Valentine's Day of
1982, and the system responds by displaying the new date and old time.

The next lines shows a similar sequence for the TIME command. System
time is set to 12 minutes and 5 seconds after 9 AM, and the system
confirms the new time.

Finally, the command DIR is typed, and the system shows the files that
are in the user's directory. The next chapter describes the DIR
(directory) command.

L]

If you don't set the system time or date, the iRMX 86 Operating System
will not maintain the system clock. Two results of this are:

l. Whenever you interrogate the system to determine the time-of-day
by commands or with system calls, the time remains at 00:00:00.

2. When you display the contents of a directory, the line with the
date and time will not be shown. Note that the time and date is
displayed in the example DIR command, because the time was set.

If you type a CTRL/z in response to the Human Interface prompt (-), you
will reinitialize the interactive job and take up at step 2. (CTRL/z is
the letter z typed while holding down the CONTROL key.) If you turn your
terminal off but the system remains running, you can turn the terminal
back on and continue as though you had not turned it off. Or you can
turn it back on and type CTRL/z. Re-initializing the interactive job
destroys any logical names you have created during the session. (Logical
names are defined in the next chapter.)

THE MULTI-ACCESS HUMAN INTERFACE

The iRMX 86 Human Interface (Figure 1-1) allows several users to access
the Operating System at the same time. Each terminal has an associated
interactive job and user ID, as explained next.

INTERACTIVE JOB

When the system is initialized, the iRMX 86 Human Interface assigns an
interactive job to each terminal. The interactive job comsists of an
identifier (user ID), a program that runs immediately (initial program),
and an area of memory in which the programs can run. User IDs and the
initial job are described in the next two sections.

The Operating System also provides a names for the individual terminal
keyboard and terminal screen being used. These are logical names and are
described in the LOGICAL NAMES section of Chapter 2.

1-10

SYSTEM OVERVIEW

USER ID AND OWNER ID

As part of creating the interactive job, the Human Interface assigns a
user ID to the terminal. This user ID is your "identity”™ in the system.
It determines your access to files and to devices. When you create
files, you are the owner of the file and control the file.

Two special user IDs are:

e WORLD The user ID called WORLD has a numerical value of 65535
(OFFFFh). WORLD represents all users of the system.
Every user has complete access to files owned by WORLD;
files owned by WORLD can be read, written, and deleted
by any qther user. So if you wish to restrict access
to a file, your user ID should not be WORLD,

. System User ID O designates the system manager. The system
Manager manager can read all files on the system and can list
every directory on the system. The system manager can
also change the access of any file on the system. The
iRMX 86 PC System is delivered with files that are
owned by the system manager.

Chapter 6 of this manual is about the system manager
and explains such things as how to add new terminals to
the system, how to change the user ID of a terminal,
and how to copy the System Diskette.

iRMX™ 86 FILES

A basic function of the iRMX 86 PC Operating System is to provide a file
system. You can manipulate these files with iRMX 86 commands invoked
from a terminal, as described in Chapter 2. Programs access files with
the UDI system calls described in Chapter 4.

To manipulate iRMX 86 files and directories at a terminal, you run
programs as commands. The iRMX 86 Operating System provides commands to

perform operations that are usually necessary in a development system. A
few of these are:

e COPY, which copies files.
e DIR, which displays the contents of a particular directory.
° CREATEDIR, which creates a new file directory.

e SUBMIT, which automatically executes other commands contained in
a file.

e FORMAT, which prepares a new disk, diskette, or other mass
storage volume for file data.

° SUPER, which assigns a special user ID to the terminal, allowing
unlimited access to files.

1~-11

SYSTEM OVERVIEW

Programs must be able to manipulate files. An assembler, for example,
must open and read source files, and it must create object files.
Programs can read, write, delete, and otherwise deal with files by using
UDI system calls. Chapter 4 tell how you can use UDI system calls that
are provided with the iRMX 86 PC Operating System.

SELECTIVE ERROR PROCESSING

When a program or user at a terminal causes an error that the Operating
System detects (for example, a program might request memory that 1is not
available) the iRMX 86 PC Operating System's default exception handler
terminates the program and displays one of the exception codes listed in
Appendix A. *

If you want to provide your own exception handler rather than using the
default exception handler, the Operating System provides a mechanism for
transferring control to your exception handler. The system calls used to
write an exception handler are described in Chapter 4, UDI SYSTEM CALLS.

SUMMARY

The iRMX 86 Operating System is a flexible multi-tasking, multi-user

operating system used for many types of systems. This chapter has
discussed features that directly relate to using the iRMX 86 PC Operating
System.

The next chapter explains how to use Human Interface commands at a
terminal and how to run your programs as commands. Much of Chapter 2 is
a description of the iRMX 86 file structure, because most Human Interface
commands (the subject of Chapter 3) and most UDI system calls (Chapter 4)
are used for file operations.

k%

1-12

CHAPTER 2. USING THE SYSTEM

You communicate with the iRMX 86 Operating System by using commands
entered at a terminal keyboard (Figure 2-1); the Operating System
communicates with you by displaying messages on the terminal screen.

\-

Figure 2-1. Using The iRMX™ 86 Operating System From A Terminal

In this chapter, we describe how to use the Operating System by using
many examples of iRMX 86 commands and system responses. Chapter 3
describes in detail all of the commands that Intel provides with the
iRMX 86 PC System.

This chapter is organized as follows:

INVOKING iRMX 86 COMMANDS. This is general information about how

to use iRMX 86 commands.

SYNTAX OF COMMANDS. This describes, with examples, the general

syntax of iRMX 86 commands. It also shows an example of the type
of syntax diagram that is used in Chapter 3 to describe commands.

USING iRMX 86 FILES. This section of the chapter introduces the

important concepts about the iRMX 86 file system, and shows
examples of commands that manipulate files.

MORE ABOUT iRMX 86 COMMANDS . This explains capabilities of the

iRMX 86 PC System that you will want to use after you are
familiar with the basic concepts.

2-1

USING THE iRMX™ 86 PC SYSTEM

:

INVOKING iRMX" 86 COMMANDS

This section describes how to invoke Human Interface commands.

EXAMPLE: DIR AND COPY COMMANDS

Figure 2-2 shows examples of the DIR (directory) and COPY commands. The
individual commands are described on the next page.

-DIR ; first command
14 FEB 82 09:12:.52

DIRECTORY OF $ ON VOLUME 143774
PROG Spitting

- COPY Spitting TO Image ; second command
Spitting copied 7O Image

-DIR ; third command
14 FEB 82 09:13:12

DIRECTORY OF $ ON VOLUME 143774

PROG Spitting Image

-DIR SHORT ONE ' ; fourth command
SHORT, file does not exist
-DIR :$: SHORT ONE
14 FEB 82 09:13:27
DIRECTORY OF § ON VOLUME 143774

; fifth command

NAME . AT ACC BLKS LENGTH
PROG DR DLAC 1 240
Spitting DRAU 1 54
Image _ DRAU 1 54
_ 3 FILES 3 BLKS 348 BYTES

Figure 2-2. Example Human Interface Commands

NOTE

To help explain these example screens,
we show comments ("; first command,”
etc.) as part of commands the operator
types. A command line can have a
comment at the end of the line preceded
by a semicolon. Comments are typically
used with SUBMIT files (described
later). You probably won't type
comments while entering commands
interactively, but doing so is OK.

2-2

USING THE iRMX™ 86 PC SYSTEM

first command DIR shows all of the files in a directory named
:$:. This is your directory, your default
directory. We will explain more about this and
other directories later. The system responds by
showing that :$: contains two files or
directories (we can't tell which) called PROG and
Spitting.

second command This COPY command creates a new copy of the file
Spitting, and calls it Image.

third command A DIR command shows that :8: now contains three
: files.
fourth command Without any listing options, the DIR command

lists only file and directory names, as in the
first command in Figure 2-2. We don't know
whether each entry in the directory is a file or
another directory (iRMX 86 directories can
themselves contain other directories). So we use
a parameter, SHORT, to ask for a directory
display that shows more information about the
contents of the directory. We also ask for a
ONE-column listing format. (Chapter 3 describes
every DIR listing format.)

The fourth command, as typed, makes the system
think that we want to list a directory named
SHORT. This shows what happens when you type a
command that the Human Interface cannot
understand. The system responds by displaying an
error message.

fifth command To correct this, we identify the directory :$:
before the parameters SHORT and ONE. The system
responds by again showing the files in the
default directory (:$:), but also shows that PROG
is a directory (DR in the ATTributes column) and
that Spitting and Image are files (blank in ATT
column). The size of each is also shown as
blocks and as bytes.

The ACCess column describes the access allowed
for the user ID at this terminal.

For directories For files
D = Delete D = Delete
L = List R = Read
A = Append A = Append
C = Change U = Update

The owner (user ID that created the file or directory) has full access to
the file. You can selectively allow access to files that you own, using
the PERMIT command described in Chapter 3.

2-3

USING THE iRMX™ 86 PC SYSTEM

SYNTAX OF COMMANDS

This section describes the general structure of a command. A command can
contain the following elements:

command-name inpath-list preposition outpath-list parameters

Except for the command name, the elements in a command are optional for

some commands and required for others, or simply don't apply to certain

commands. For example, the DATE command does not have an inpath-list or
outpath-list, but does have an optional parameter (QUERY).

A RETURN key or LINE FEED key terminates each command.
The meaning of each elemert is described here.

command-name Name of the program file to be executed. After the
command is entered, the Operating System loads the
program file into memory from the disk and executes
the command. In Figure 2-2, the first command name is
DIR.

inpath-list One or more pathnames (iRMX 86 file names are called
pathnames) to be used as input during command
execution. Multiple pathnames in an input file list
must be separated by commas. You can type spaces
(blanks) between pathnames. In the second command in
Figure 2-2, the inpath-list is

Spitting

preposition A word that tells the executing command how you want
the output handled. The four prepositions used in
iRMX 86 commands are TO, OVER, AFTER, and AS. In the
second command in Figure 2-2, the preposition is TO.

outpath-list One or more pathnames for the files that receive the
output or are changed in some way. As with the
inpath-list, multiple files names must be separated by
commas, and embedded spaces are optional. In the
second command of Figure 2-2, the outpath-list is:

Image

parameters Most commands have a default form but also offer one

: or more optional ways in which the system can execute
the command. You specify options with one or more
parameters at the end of a command. Individual
descriptions of commands in Chapter 3 define the
effect of parameters. In the fifth command in Figure
2-2, the parameters are SHORT and ONE.

The Human Interface makes no distinction between cases when it reads

command line items, so you can enter elements of a command line in
uppercase characters, lowercase characters, or a mixture of both.

2-4

USING THE iRMX™ 86 PC SYSTEM

Figure 2-3, a "railroad track” syntax diagram for the COPY command, givés
you a preview of how Chapter 3 describes commands. Each command in

Chapter 3 includes one of these diagrams. The diagram is read left to
right. '

®

outpath-list

Figure 2-3. Syntax Diagram of COPY Command

USING iRMX"™ 86 FILES

One important use of Human Interface commands is to manipulate files. To
use Human Interface commands and to use the UDI system calls, you need to
understand the iRMX 86 file structure.

If you are reading simply to understand the major characteristics of the
iRMX 86 PC System, you may wish to skim through the following discussion
of the file system. Later, when you are ready to use the system, you can
read the details in this section. Briefly, the section describes:

TYPES OF FILES There are three: physical files, named files, and .
stream files., Named files, the most&frequently used
file type, provide file trees on a device.

FILE TREES The iRMX 86 Operating System supports an open—ended
structure of files and directories starting with a
root directory. Directories can contain both files
and other directories. Figure 2-4 in the following
section shows a file tree.

PATHNAMES These are names for files in a named file structure:
a pathname describes a path from one directory
through each lower-level directory to the file. For

example, in Figure 2-4, the pathname of the file
with the name r?logon is:

:SD:USER/1/PROG/r?logon.
LOGICAL NAMES Logical names simplify the way you refer to a path
through the file tree, and the way you refer to

devices. The Operating System has some built-in
names for your convenience. :

2=5

USING THE iRMX™ 86 PC SYSTEM

. TYPES OF FILES

Most of this discussion of iRMX 86 files is about named files, because

that is the type used most frequently with Human Interface commands and
with the UDI system calls.

The named file structure divides data on mass storage devices into
individually~-accessible files and directories, as shown in Figure 2-4.
Commands and programs refer to these files by name when they want to
access information stored in them.

/"

. . ROOT DIRECTORY

:SD: W (system Device)

[| ‘ I I
SYSTEM

BOOTSTRAP
LOADABLE
A FILE: Comes with 1RMX86 O S.
iIRMX™™ 86 PC
system

A FILE: Does not come

with iRMX ™ 86
PC system

D DIRECTORY

iRMX™ 86
COMMANDS

x 308

Figure 2-4. An iRMX" 86 Named File Structure

2-6

USING THE iRMX™ 86 PC SYSTEM

The other types of files are:

Physical Files A physical file is an entire I/0 device, represented
as a single file. The Operating System accesses ‘
backup volumes (like tapes), as well as line
printers and terminals as physical files.

Stream Files Stream files are software mechanisms that can be
used only with iRMX 86 Basic I/0 or Extended I/0
system calls.

FILE TREE STRUCTURE

An iRMX 86 file tree has two kinds of files: data files and
directories. Data files (shown as triangles in Figure 2-4) contain
programs and the information that you manipulate with programs (for
example, inventory control programs, text, source code and object code).
Directories, (shown as rectangles in Figure 2-4) contain pointers to
named files or other directories.

The iRMX 86 Operating System allows you to have multiple directories on a
mass storage device. Instead of having a single directory containing all
of the files on the device, you can group files into several directories.
Duplicate file names are permitted unless the files reside in the same
directory. For example, the file tree in Figure 2-4 contains two
directories named PROG. However, they are unique because each resides in
a different directory.

The uppermost point of each file tree is a special directory called the
root directory, which contains all other files and directories on the
device. A file tree cannot extend to more than one volume, and one
device must be the system device (root directory named :SD:).

PATHNAMES

In a file tree, each file and directory has a unique path connecting it
to the root directory. When you want to perform a file operation, you
must specify not only the file”s name, but the path through the file tree
to the file. This is called the file”s pathname. For example, in Figure
2-4, :SD:USER/1/PROG/r?logon is the pathname of the logon file for user
ID 1. The path from the root directory (:SD:) to the file goes through
directory USER, through directory 1, through directory PROG, and finally
stops at data file r?logon.

Slashes (/) separating individual components of the pathname tell the
Operating System that the next component is down one level. You can use
a circumflex (") between path components to refer to the next higher
level.

A later section, LOGICAL NAMES, shows how you can assign a short—hand
name to & file for convenience. .

USING THE iRMX™ 86 PC SYSTEM

EXAMPLE: DIRECTORY OF iRMX™ 86 PC FILES

Figure 2-5 shows some commands that operate on the iRMX 86 PC file
structure shown in Figure 2-4. Figure 2-4 shows a recommended file
structure for the iRMX 86 PC system. This is the structure of the System
Diskette that Intel delivers to you as part of the iRMX 86 PC product.
Some files and directories shown in the figure are not provided with the
iRMX 86 PC system, but are included for discussion purposes.

The example commands shown in the remainder of this chapter represent a
single terminal session. That is, each screen takes up where the
previous one left off. Figure 2-5 and the following screens in this
chapter assume that the terminal has been assigned user ID l. Some
example screens introduce concepts or terms that are only briefly
explained with the example, but are described in detail later.

-DIR :§: SHORT ONE . first command
14 FEB 82 09:13:27
DIRECTORY OF § ON VOLUME 145122

NAME , AT ACC BLKS LENGTH
PROG DR DLAC 1 240
Spitting DRAU 1 54
Image DRAU 1 54

3 FILES 3 BLKS 348 BYTES

-DIR :SD: ; 2nd command

14 FEB 82 09:13:39

DIRECTORY OF :SD: ON VOLUME 145122

GSYS.020 SYSTEM CONFIG USER WORK
LANG UTILS BACKUPSYS

-DIR :SD: 1 ; 3rd command
14 FEB 82 09:13:44

DIRECTORY OF :SD: ON VOLUME 145122
R?SPACEMAP R?NODEMAP R?BADBLOCKMAP GYSYS.020 SYSTEM
CONFIG USER WORK LANG UTILS
BACKUPSYS

Figure 2-5. Directory Listings of iRMX™ 86 PC Files

The effect of each command is described here (commands are identified by
the comment at the end of the command line).

2-8

first command

second command

third command

USING THE iRMX™ 86 PC SYSTEM

3

This is the same command seen at the end of the
previous example screen, Figure 2-2.

This command shows how to list the directories
and files in the root directory of the system
device. This DIRectory listing reveals three
files not shown in Figure 2-4:

e GSYS.020, a file that identifies the
iRMX 86 PC Operating System. A later example
shows the contents of this file.

e BACKUPSYS, which is used to backup the system
diskette. How to backup the system diskette
is explained in Chapter 6.

e CONFIG, a directory that is used for system
management. Chapter 6 describes the files in
this directory.

The root directory (:SD:) also contains some
“"invisible"” files: files that the Human Interface
does not normally show in directory listings. To
the Operating System, any file name starting with
R? is invisible. For example, the logon file for
user ID 1 -~ r?logon in Figure 2-4 — is
invisible.

This is the same command, but with an added
parameter, I (meaning Invisible). The command
could have been typed without abbreviating
Invisible:

DIR :SD: INVISIBLE

Command parameters may be abbreviated. You
abbreviate a command parameter by typing enough
of the parameter name to make it unique among
other parameters for the command. No other DIR
parameter starts with the letter I, so I is a
valid abbreviation for "Invisible”. Remember
that you can use either uppercase or lowercase
letters for elements in a command.

The three invisible files in the root directory
are: R?SPACEMAP, R?NODEMAP, and R?BADBLOCKMAP,

These three files were created when the disk was
formatted, and are used by the iRMX 86 Operating
System. A later example shows how to format a
disk or other mass storage volume.

USING THE irRMX™ 86 PC SYSTEM

EXAMPLE: SUPER COMMAND AND CHANGING THE DEFAULT DIRECTORY

- ATTACHFILE :SD: AS §
:SD: , attached as :§:
- DIR ; 2nd command

14 FEB 82 09:14:26

DIRECTORY OF $ ON VOLUME 145122 :
(GSYS.020 : SYSTEM CONFIG USER WORK

; first command

LANG UTILS BACKUPSYS

-COPY GSYS.020 TO :CO: : 3rd command
:SD:GSYS.020, READ access required

- SUPER . ; 4th command
enter password: .

super- COPY GSYS.020 TO :CO: ; 5th command

Preconfigured iRMX 86 Operating System V2.0 (143774)
GSYS.020 copied TO :CO: :
super- EXIT ; 6th command -

x-312

Figure 2-6. Examples: Changing Default Directory and SUPER Command

first command This command changes the default directory for
user ID 1, so that the default directory is now
the root directory (:SD:). You can change your
default directory whenever it is convenient to do
so. One reason to change your default directory
is to do work (create or edit files, run
programs, etc.) in a different directory. If you
don't want to type the pathname of the directory
each time you refer to it, you can make the
directory your new default directory.

Immediately following the explanation of this
screen is a discussion of the important facts
about default directories and the name :$:.

2nd command This DIRectory shows that the default directory
has indeed become :SD:. The effect of the
command is the same as the command: DIR :SD:
shown in Figure 2-5.

3rd command This command attempts to display the contents of
the system identification file (GSYS.020) on the
terminal screen. The system responds with an
error message explaining that this user ID
doesn't have READ access to this file. The owner
of a file can selectively restrict or allow
access to the file using the PERMIT command, a
feature called access control.

2-10

USING THE iRMX™ 86 PC SYSTEM

4th command To assume the user ID O (user ID 0 has full
access to all files on the system), the operator
uses the SUPER command and the system prompts for
a password. When the password is typed, it is
not displayed on the video screen. The hand in
the illustration shows where the password is
typed.

Although the Human Interface doesn't normally
distinguish between uppercase and lowercase
letters, the password is an exception; it must be
typed exactly as defined. The system manager is
responsible for defining the password.

When the password is successfully typed, the
system prompt changes to super— and the user ID
becomes zero.

5th command This displays the contents of GSYS.020 on the
screen. The command could have been typed

COPY GSYS.020

because if you do not type a preposition and
output pathname with the COPY command, it assumes
TO :CO: (to your console output device).

The file GSYS.020 is an identification file, and
contains one line of text. This file should be
be kept on copies of the system disk, so that if
you need to contact Intel regarding the Operating
System, you can positively identify the product.

6th command The EXIT command returns the user ID to its
original value, and the normal prompt (-) is
displayed on the next line.

DEFAULT DIRECTORY

When the system is initialized (bootstrap loaded), the Human Interface
assigns a user ID to each terminal, and each user 1D is assigned a
default directory. The name of the default directory is :$:. This means
that when user ID 65535 refers to :$:, the Human Interface uses
:SD:USER:65335. When user ID 1 refers to :$:, the Human Interface uses
:SD:USER/1.

The iRMX 86 Operating System provides default directories for your

convenience. When performing file operations (using commands, using
interpreters, compilers, or your own programs) you can specify the name
only of files that are in your default directory, rather than the
complete pathname of the files.

Being able to change your default directory (see the first command in
Figure 2-6) extends the value of this feature.

2-11

USING THE iRMX™ 86 PC SYSTEM

NOTE

This manual uses the term :$: to refer to
the default directory for a particular
user ID. This is to remind you that it
is a logical name (logical names are
described in the next section). But for
speed or convenience you can use $
without colons. For instance:

DIR § S

gives a SHORT directory listing of the
default directory.

A change in your default directory assignment remains in effect until
the system is re—initialized or until you change the assignment by using
another ATTACHFILE command. You can easily return :$: to its initial
assignment by typing the command ATTACHFILE without parameters. This is
shown in a later example.

Intel delivers the iRMX 86 PC System with unique user IDs assigned to
each terminal. But you may change these assignments, and may also
specify which directory is initially assigned as a user ID”s default
directory. How to do so is explained in Chapter 6, SYSTEM MANAGEMENT.

LOGICAL NAMES

Although you can always identify files with pathnames, you can also
create logical names for files and directories, and for devices. This
makes it easy to refer to files and devices that you use frequently.
For example, you could assign the name :SOURCE: to the file
:SD:USER/PROG/PASC/MYPROG.PAS. You may then refer to the file as
:SOURCE: (you can still refer to it by its pathname).

You establish logical names for devices with the ATTACHDEVICE command,
and for files and directories with the ATTACHFILE command. The
Operating System creates certain logical names when it is initialized.
(:SD: and :$: are two of these names; the others are described later.)
You can have both ATTACHDEVICE and ATTACHFILE commands in a logon file
if you want to automatically name devices and files when the system is
booted. A later example shows how to create a logon file.

A logical name contains 1 to 12 ASCII characters surrounded by colons
(the colons do not count in the 12); the value of each character must be
between 020h and O7Fh inclusive (the printing characters and the

space). Logical names cannot include the colon (:), slash (/), up—arrow
or circumflex (°), asterisk (*), or question mark (?).

2-12

USING THE iRMX™ 86 PC SYSTEM

Logical Names for Devices

The Preconfigured iRMX 86 Operating System creates certain logical names
for devices when the system starts running. You can establish other
logical names for new or existing devices by invoking the ATTACHDEVICE
command. By using a device logical name as the first element in a
pathname, you can refer to any file on any device. Suppose your system
contains two flexible disk drives for which you have established logical
names :FO: and :Fl: (in other words, you used the ATTACHDEVICE command to
attach the devices as :F0: and :Fl:). If you have a diskette containing
the file DEPT2/HARRY, you could place the diskette in drive :F0: and
access the file with the pathname:

:FO:DEPT2/HARRY

L]

If you put the same diskette in drive :Fl:, you could access the file by
specifying the pathname:

:F1:DEPT2/HARRY

For devices containing named files, the device logical name is also a
name for the root directory on that device. If you enter the command

DIR :Fl:
you will see a listing of the files in the root directory of :Fl:.

These logical names for devices are already defined when the iRMX 86 PC
system is initialized:

:SD: The system device. This logical name refers to the disk
drive from which the Bootstrap Loader read the Operating
System file. :SD: refers to the same device for all users
on the system.

:CI: The terminal keyboard (or command input). Each user's
:CI: refers to the terminal associated with that user.

:CO: The terminal screen (or command output). Each user's :CO:
refers to the terminal associated with that user.

:LP: The logical name of the line printer.

Also, the Operating System provides two useful simulated devices (they do
not exist as actual I/0 devices) identified by these logical names:

:BB: An infinite sink (byte bucket). Anything written to :BB:
disappears, and a read from :BB: returns an end-of-file.

A later example demonstrates how the ATTACHDEVICE command makes a device
known to the system by a logical name.

2-13

USING THE iRMX™ 86 PC SYSTEM

13

Logical Names for Files

A logical name for a file (or named file directory) provides a shorthand
way of accessing that file. For example, suppose you have a file that
resides several levels down in a file tree, such as:

:F1:DEPT1/TOM/TEST~DATA/BATCH-2

where :Fl: is logical name for the device that contains the file. You
might find it inconvenient to continually enter so many characters. If
so, you can establish a logical name for this pathname, such as :BATCH:.
(This is the same as saying that you attached the file with the logical
name :BATCH:.) Then, whenever you want to refer to the file in a
command, you can specify the logical name instead of the pathname.

If a logical name refers to directories instead of data files, you can
use the logical name in the prefix portion of a pathname. For example,
consider the same pathname:

:F1:DEPT1/TOM/TEST-DATA/BATCH-2

Suppose you have attached the pathname :F1:DEPT1/TOM/TEST-DATA as logical
name :TEST:; therefore it is a logical name for the directory TEST-DATA.
To refer to file BATCH-2, you could enter:

:TEST :BATCH-2

Logical names for files come into existence in two ways. One way is for
you to invoke the ATTACHFILE command. The other way is for the Operating
System to create them. The iRMX 86 PC Operating System establishes
certain logical names for files and directories, and these are described
next.

SYSTEM DEVICE (:8D:). Not only is this the logical name for the system
device, as described in the previous section, but :SD: is also the
logical name for the root directory that contains all other directories
and files on the system device.

SYSTEM DIRECTORY (:SYSTEM:). This directory contains the following
directories and files:

° iRMX 86 COMMAND PROGRAMS. When you invoke an iRMX 86 Command at
a terminal, one of the programs in this directory is loaded and
run. For example, the command “"COPY" rums the program of the

same name. Only a few representative command files are shown in
Figure 2-4., All of these commands are described in Chapter 3.

e OPERATING SYSTEM. The file :SD:RMX86 contains the iRMX86 PC
Operating System; this is the file that is read in by the
Bootstrap Loader.

2-14

USING THE iRMX™ 86 PC SYSTEM

DEFAULT PREFIX (:$:) AND HOME DIRECTORY (:HOME:). An earlier sectiomn
describes the default directory logical name: :$:. In summary, :S: can
refer to a different directory for each user ID. If you don't specify a
logical name at the beginning of a pathname, the Operating System assumes
that the file is in the directory corresponding to :$:.

When you first start using the Human Interface, the logical names :HOME:
and :$: represent the same directory. You can easily re-establish your
original :$: logical name using the command ATTACHFILE and no parameters.

PROGRAM DIRECTORY (:PROG:). You can use this directory for programs that
you write. The Operating System automatically finds and rums programs in
this directory.)

Like :§:, :PROG: refers to a different directory for each user ID. 1In
Figure 1.4, the directory :SD:USER/1/PROG is the directory —— the Program
Directory -- for user ID l. The directory :SD:USER/65535/PROG is the
Program Directory for WORLD.

The file R?LOGON is a file that runs when a user begins using a terminal.

PROGRAM DEVELOPMENT DIRECTORIES. The iRMX 86 PC Operating System is a
program development environment in which language processors, editors,
and other utilities are used to create, install, and run programs. Three
empty directories exist on the iRMX 86 PC System diskette to support
program development:

e Language Directory (:LANG:). This is a directory used to store
language products, such as assemblers, compilers, and linkers.
In the figure, the directory contains the Intel 8086 Assembler as
file ASMS86.

e Utility Directory (:UTILS:). This directory is used to store
utilities, such as those shown as examples in Figure 2-3: the
Intel Linker (LINK86), Locater (LOC86) and editor (EDIT).

e WORK DIRECTORY (:WORK:). Compilers, interpreters, editors,
linkers, and other development utilities need to create temporary
files while they are running. This directory is specifically
provided for that use.

SYSTEM CONFIGURATION DIRECTORY (:CONFIG:)

This directory is used to inform the Operating System of the
characteristics of your installation, for example, how many terminals are
connected to the system. The configuration directory contains: the
terminal definition file, and user definition files. These are described
in Chapter 6, SYSTEM MANAGEMENT.

2-15

USING THE iRMX™ 86 PC SYSTEM

EXAMPLE: INSTALLING UTILITIES ON THE SYSTEM

This example shows how to get the Intel linker, locator, and editor onto
your system disk. These utilities are available from Intel as part of
the product iRMX 860. Assume for this example that you have inserted a
copy of the iRMX 860 diskette into a second flexible disk drive.

Figure 2-7 shows how to attach the drive and get a directory listing of
the files on the iRMX 860 diskette. The example following this one,

Figure 2-8, shows how to copy the utilities that you want onto the system
diskette.

- ATTACHDEVICE AFD1 AS F1 ;. first command
AFD1, attached as :F1:, id=1
-DIR :F1: ; second command

14 FEB 82 09:15:19
DIRECTORY OF :F1: ON VOLUME 144790

ed link86 loc86 lib86 link86.011
l0c86.011 1ib86.011 ed.011 cref86 oh86
cref86.011 0h86.011

Figure 2-7. Installing Intel Utilities on System Disk

first command This command allows the Operating System to use a
second disk drive; it tells the system that you
will be using the device AFDl, and that it will
be referred to in subsequent commands as :Fl:.
The physical name (AFDl) is one of many names
specified when the iRMX 86 PC System was
configured by Intel. See the description of
ATTACHDEVICE in Chapter 3 for a complete list of
these physical names.

Because the device was attached by user ID 1
(confirmed on the line following the command), it
can be detached only by user ID 1 or by the
system manager (see the DETACHDEVICE command in
Chapter 3).

second command This command shows contents of the diskette
except for the invisible files).

The next example screen, Figure 2-8, continues this sequence by copying
selected utilities to the :UTILS: directory on the system disk.

2-16

USING THE iRMX™ 86 PC SYSTEM

-COPY :F1:* TO :UTILS:* QUERY ; third command
:Fi:ed copy TO :UTILSed Y

:F1.ed copied TO :UTILS:ed

‘F1:ed.011 copy TO :UTILS:ed.011? Y

:F1:ed.011 copied TO :UTILS:ed.011

:F1:link86 copy TO :UTILS:link86? Y

:F1:link86 copied TO :UTILS:link86

" :F1:loc86 copy TO :UTILS:loc86? Y

:F1:loc86 copied TO :UTILS:loc86

:F1:1ib86 copy TO :UTILS:ib86? N

:F1:1ink86.011 copy TO :UTILS:ink86.011? Y

:F1:link86.011 copied TO :UTILS:link86.011

:F1:loc86.011 copy TO :UTILS:loc86.011? Y

:F1:10c86.011 copied TO :UTILS:loc86.011

:F1:cref86 copy TO :UTILS.cref86? E

-DIR :UTILS: ; fourth command
14 FEB 82 09:17:17

DIRECTORY OF :UTILS: ON VOLUME 145122

ed.011 link86.011 i0c86.011 ed link86
loc86 '

Figure 2-8. Copying Utilities to the System Disk

third command This command uses two features that haven't been
shown yet: wild cards, and copying with the QUERY
parameter.

Wild Cards: The asterisks (*) in the inpath name
and outpath name are wildcards. A later section
explains wildcards in detail. Ignoring the
effect of the QUERY parameter, the command says
to, "Copy all files and directories from :Fl:
into the :UTILS: directory and give the copied
files the same names."”

Effect of QUERY: The QUERY parameter tells the
Human Interface to prompt before copying a file.
For example, the first prompt asks if the
operator wishes to transfer the editor to the
system disk, and the operator replied Y (Yes).
The Operating System copies the file, confirms
it, and then asks if the operator wants the file
1ink86.011. The process continues. The file
1ib86 is passed over (N = No). When the operator
replies with E (meaning Exit), the copy command
terminates without copying any more files.

fourth command The DIRectory listing shows that the files are in
: the :UTILS: directory. The editor, for example,
is :UTILS:ed.

2-17

USING THE iRMX™ 86 PC SYSTEM

MORE ABOUT iRMX™ 86 COMMANDS

This section contains additionmal information about using iRMX 86
commands, and contains the following three sub-sections:

e ORDER OF DIRECTORY SEARCH BY THE HUMAN INTERFACE. Commands are
simply program files, and the Human Interface will search certain
directories to find the command.

e LINE EDITING CONTROLS. These are special characters that you can
enter at the terminal to correct typing errors, and to control
how the screen displays information.

e WILDCARDS. You can specify any of a group of files having
similar names by mneans of special characters called wildcards.

e COMMAND LINE OPTIONS. When we described the general format of
iRMX 86 commands, we did not tell you how to continue commands
beyond one line, or how to designate that a special character can
be used in a command line. You can do both.

EXAMPLE: COPYING THE UDI LIBRARIES TO THE SYSTEM DISK

You receive two diskettes with the iRMX 86 PC product: the System
Diskette and an Include File Diskette. To use the UDI system calls, you
will need two types of files from the Include File Diskette. You need
one include file for each UDI system call that you use. And you need
three interface libraries. Both types of files are described in the
beginning of Chapter 4.

The Include File Diskette also contains include files and interface
libraries for all iRMX 86 subsystems (Nucleus, Basic I/0 System, Extended
1/0 System, Application Loader, and Human Interface).

If you use iRMX 86 system calls other than the UDI calls, you lose some
of the advantages of the UDI. And of course you need the reference
manuals that describe the system calls. The manuals are described in
Chapter 7. The system calls for iRMX 86 subsystems are listed in
Appendix B.

Figure 2-9 shows how to transfer the UDI files from the Include File
Diskette to the system disk. The steps shown in the example are:

l. Creating a directory on the system disk for the UDI files.
2. Copying the include files to the system disk.
3. Copying the interface libraries to the system disk.

4, Displaying the contents of a typical include file (for the UDI
system call DQSALLOCATE.

2-18

USING THE iRMX™ 86 PC SYSTEM

- CREATEDIR Ut ; first command
UDI, directory created

-COPY :F1u*.* TO UuDI*.”) ; 2nd command
:Ft:ualloc.ext copied to UDi/uallec.ext =~ ~

:F1:uexcep.lit copied to UDI/uexcep.lit

:Fl:uwrite.ext copied to UDI/uwrite.ext

-COPY :F1:SMALL.LIB, :F1:COMPAC.LIB, :F1.LARGE.LIB &

b TO UDI/SMALL.LIB, UDI/COMPAC.LIB &

. UDI/LARGE.LIB ; 3rd (three lines)
:F1:SMALL.LIB copied TO UDI/SMALL.LIB

:F1:COMPAC.LIB copied TO UDI/COMPAC.LIB

:F1:LARGE.LIB copied TO UDVLARGE.LIB .

- COPY UDl/ualloc.ext ; 4th command
$SAVE NOLIST J

dqSallocate: PROCEDURE(size, exceptSptr) TOKEN EXTERNAL:

DECLARE size WORD,
except$ptr POINTER;

END dqSallocate;
$RESTORE

UDl/ualloc.ext copied TO :CO:

Figure 2-9. Transferring UDI files to System Disk

x-315

first command This creates a directory on the system disk for
the UDI files. Because the default directory is
still :8D:, the directory pathname is :SD:UDI.

2nd command Because of the wild cards asterisks, this single
command transfers every UDI include file to the
system disk. Because of how many files are
transferred (one per UDI system call), the figure
indicates most of the transfer with vertical dots.

3rd command This command transfers the three UDI interface
libraries, and also shows how you can continue
commands beyond one line by typing an ampersand
before the RETURN. This and other line editing
features are described in a later section.

4th command A typical include file —— for DQSALLOCATE — is
displayed on the screen. Note that TO :CO:
doesn't have to be typed, it is the default
preposition and output pathname for COPY.

2-19

USING THE iRMX™ 86 PC SYSTEM

ORDER OF DIRECTORY SEARCH BY THE HUMAN INTERFACE

When you enter a command name, you can enter the complete pathname of the
command or you can enter just the last component of the pathname.

e If you enter the complete pathname of the command (that is, if
you include a logical name as the prefix portion of the
pathname), the Operating System searches only the device and
directory you specify for the command. 1If it camnnot find the
command there, it returns an error message.

e If you enter only the last component of the pathname (such as
COPY instead of :Fl:SYSTEM/COPY), the Operating System
automatically searches certain directories for the command. It
does not return an error message unless it has searched each of
the directories without finding the command file. The Operating
System searches the following directories, in order, for commands:

:$:
:PROG:

s SYSTEM:
:LANG:
sUTILS:

When writing your own commands, you can take advantage of the order in
which the Operating System searches directories. For example, suppose
you write your own copy command, one that provides more or different
functions than the Human Interface COPY command. If you want to invoke
your program whenever you type COPY, you can place your file called COPY
in your default directory (:$:). Because the Operating System searches
the default directory before searching the :SYSTEM: directory (which
contains the Human Interface COPY command), it will invoke your copy
program.

If you still want to be able to invoke the Human Interface COPY command,
you can do so by entering: :SYSTEM:COPY.

EXAMPLE: CREATING A PRIVATE DISK

The following example, Figure 2-10, shows how to prepare a disk that ome
programmer uses for developing programs. The example shows how to:

1. Format the disk (we assume it is a flexible diskette, and use the
default FORMAT parameters).

2. Create a directory on the disk named PROG.
3. Create a directory within the new PROG directory named TEST.
4. Make the directory PROG the default directory.

5. Use the DIR command to confirm that everything worked.

2-20

TEST

- FORMAT :F1:mydisk ; first command
volume (mydisk) will be formatted as a NAMED volume
granularity = 256 sides = 1
interleave = 5 density = double
files = 50 disk size = standard (8")
extensionsize = 3
volume size = 497 K
volume formatted
- CREATEDIR :F1:PROG ; 2nd command
PROG, directory created .
- CREATEDIR :F1:PROG/TEST ; 3rd command
TEST, directory created
- ATTACHFILE :F1:PROG AS :§: ; 4th command
:F1:PROG, attached as :$:
-DIR s ; 5th command
14 FEB 82 09:24:01

DIRECTORY OF $ ON VOLUME mydisk

USING THE iRMX™ 86 PC SYSTEM

x-316

Figure 2-10. Creating A Private Disk

first command

second command

third command

fourth command

fifth command

This shows how to format a diskette. Remember
that the second flexible disk drive on the system
was attached as :Fl: in a previous example.

When you format a disk or other mass storage
device, the system destroys any data that was on
the device and writes onto the disk information
needed by the iRMX 86 file system, including the
root directory and three invisible "bitmap” files
that were shown in a previous DIR example. In
Chapter 6, we show how to format flexible
diskettes and Winchester disks.

The system displays a message describing the
format characteristics. This example uses the
default values (like interleave = 5), but you can
specify other values by means of parameters to
the FORMAT command.

This command creates a directory named PROG on
the newly formatted disk.

This creates a directory named TEST in the new
directory PROG.

The PROG directory is attached as this user ID's
default directory.

A directory listing confirms that the PROG
directory is the default directory, and that it
contains the directory TEST.

2-21

USING THE iRMX" 86 PC SYSTEM

LINE EDITING CONTROLS

The examples shown in this chapter imply that no typing errors occur.
This is unrealistic, and the iRMX 86 Operating System provides extensive
line editing controls to allowing you to correct typing mistakes. Line
editing contrels also include a variety of other capabilities, including
control over how the system sends output to your console terminal. These
functions work nearly any time you are entering text at a terminal (for
example, while using the Intel editor).

This section describes how to use each control feature. The best way to
understand line editing controls is to try them at a terminal.

Controlling Input to a Terminal

You can use several characters to control and edit terminal input. Some
of these characters correspond to single keys on your terminal (such as
carriage return or rubout). For others, called control characters, you
must press the CTRL key, and while holding it down, also press an
alphabetical key. This manual designates control characters as follows:

CTRL/character
The editing and control characters for terminal input are:

CARRIAGE RETURN Terminates the current line and positions the cursor
or at the beginning of the next line. Entering either
LINE FEED of these characters adds a carriage return/line
feed pair to the input line.

RUBOUT Deletes (or rubs out) the previous character in the
input line. Each RUBOUT removes a character from
the screen and moves the cursor back to that
character position,.

CTRL/r If the current input line is not empty, this
character reprints the line with editing already
performed. This enables you to see the effects of
the editing characters entered since the most
recent line terminator. If the current line is
empty, this character reprints the previous line,
up to the point of the line terminator. Additiomal
CTRL/r characters display previous lines until
there are no more lines that have been saved.
Subsequent CTRL/r characters display the last line
found. Trying the feature is the best way to
understand how it works.

CTRL/u Discards the current line and the entire contents
of the type—ahead buffer.

CTRL/x Discards the current input line. This character
echoes the "#" character, followed by a carriage
return/line feed, at the terminal.

2-22

USING THE iRMX™ 86 PC SYSTEM

Controlling Output to a Terminal

Output to a terminal operates in one of four modes. You can switch the
current output mode dynamically to any of the other output modes by
entering output control characters. The output modes and their
characteristics are as follows:

Normal

Stopped

Scrolling

Discarding

The Terminal Support Code accepts output from the
application system and immediately passes the output
to the terminal for display.

The Terminal Support Code accepts output from the
application system, but it queues the output rather
than immediately passing it to the terminal.

The Terminal Support Code accepts output from the
application system, and it queues the output as in
the stopped mode. However, rather than completely
preventing output from reaching the terminal, it
sends a predetermined number of lines (called the
scrolling count) to the terminal whenever the

operator enters a control character at the terminal.

The Terminal Support Code discards output from the
application system without displaying or queuing the
output.

The following control characters, when entered at the terminal, change
the output mode for the terminal.

CTRL/o

CTRL/q

CTRL/s

Places the terminal in discarding mode if the
terminal is in a mode other than discarding mode. If
the terminal is already in discarding mode, the
CTRL/o character returns the terminal to its previous
output mode.

Resumes previous output mode. If you enter this
character after stopping output with the CTRL/s
character, output continues in the same manner as
before you entered the CTRL/s (that is, if your
terminal was in scrolling mode before you entered
CTRL/s, output resumes in scrolling mode). Entering
CTRL/q at any other time places your terminal in
normal mode (that is, all output is displayed at the
terminal without waiting for permission to continue).
Therefore, you can use CTRL/q to reverse the effect
of a CTRL/w and get your terminal out of scrolling
mode.

Places the terminal in stopped mode (stops output).
You can resume output without loss of data by
entering the CTRL/q character. If the terminal is in
discarding mode (as a result of a CTRL/o character),
the CTRL/s character has no effect on output.

2-23

USING THE iRMX™ 86 PC SYSTEM

CTRL/t Places the terminal in scrolling mode and sets the
scroll count to one. This means that you must enter
another CTRL/t character after each displayed line in
order to continue the display.

CTRL/w : Places the terminal in scrolling mode. In this mode,
the terminal displays output several lines at a time
(usually, enough lines to fill the screen) and then
waits for user input to continue. When you enter
another CTRL/w character, the terminal displays the
next screen of information. The scrolling count is
selectable; refer to the iRMX 86 BASIC I/0 SYSTEM
REFERENCE MANUAL for more information.

Entering the CTRL/w character while the terminal is
already in scrolling mode increments the scrolling
count by the original scrolling count value.
Therefore, you can use CTRL/w to increase the number
‘of lines the terminal displays before stopping.
Entering an input line resets the scroll count to its
original value.

The following two control characters can affect output to the terminal:

CTRL/c Deletes the type—ahead buffer and causes the
Operating System to abort the currently—-executing
program. If you enter a Human Interface command to
initiate a program, you can enter CTRL/c to stop it.

CTRL/z If typed in response to the Human Interface prompt,
this will re—-initialize the interactive job for the
terminal (as described in Chapter 2, in the section
SETTING THE DATE AND TIME).

Type-Ahead

Sometimes a person will type faster than the iRMX 86 Operating System can
process the input. Because of type-ahead, commands and data typed ahead
of processing will not be lost. (Characters typed ahead are not echoed
on the screen.) The Operating System starts processing the first line,
and saves additional lines in a type~ahead buffer. It reads subsequent
lines from the type ahead buffer. If the type-ahead buffer becomes full,
the Terminal Support Code sounds the terminal bell.

Escape Sequences

-The control characters listed are appropriate for all but the most
unusual applications. But if you wish to re-define any of these
characters (for example, to set the number of lines that the screen
scrolls), you can do so with escape sequences. Refer to the iRMX 86
BASIC I/0 SYSTEM REFERENCE MANUAL for detailed information.

2-24

USING THE iRMX™ 86 PC SYSTEM

WILD CARDS

Wild cards provide a shorthand notation for specifying several files in a
single reference when entering commands. You can use either of two
special wild card characters in the last component of a pathname to
replace some or all characters in that component.

The wild card characters are:

? The question mark matches any single character. The Human
Interface allows any character to appear in that character
position. It selects every file that meets this
requirement. For example, the name "FILE?"” could imply all
of the following files:

FILEl FILE2 FILEA

The asterisk matches any number of characters (including zero
characters). The Human Interface allows any number of
characters to appear in that character position. It selects
every file that meets this requirement. For example, the
name "FILE*" could imply all of the following files:

FILEL
FILE.OBJ
FILE
FILECHANGE

You can use multiple wild cards in a single pathname. For example, the
name:

?PIF?.*

matches every file whose second through fourth characters are "PIF" and
whose sixth character is a period. These files could include all of the
following names (or more):

RPIFC.LIB
EPIFL.TXT
HPIFC.

You can use wild cards in both input pathnames (files that commands read
for information) and output pathnames (files into which commands write
information). For example, in the command:

COPY A* TO B*

the A* represents the input pathname and B* represents the output
pathname. The Human Interface searches the appropriate directory for all
files that begin with the "A" character. Then it copies each file to a
file of the same name, but beginning with the "B" character.

Figures 2-8 and 2-9 show examples of using wild cards to copy multiple
files.

2-25

USING THE iRMX™ 86 PC SYSTEM

Be aware, when using wild cards, that:

Wild cards are valid in the last component of the pathname only.
Therefore, :F1:SYSTEM/APP1/FILE* is a valid pathname, but
:F1:SYSTEM/APP*/FILEl is not valid.

You can negate the meaning of a wild card character by enclosing
it in quotes, either single (') or double ("). See LINE EDITING
earlier in this section.

When you specify input and output pathnames in commands, you can
specify lists of pathnames, separated by commas. For example:

COPY A,B,C TO D,E,F

copies A to D, B to E, and C to F. If you use a wild cards in
any one of the output pathnames, you must use the same wild cards
in the same order in the corresponding input pathname. The term
“"same order” means that if you use both the "*” and the "?"
characters, their ordering must be the 'same in both the input and
output pathnames. For example, the following is valid:

COPY A*B?C* TO *DE?FGH*I

However, the following is not valid because the wild cards are
out of order:

COPY A*B?C* TO *DE*FGH?I

If you use wild cards in an input pathname, you can omit all wild
cards from the corresponding output pathname to cause the Human
Interface to perform file concatenation. For example, suppose a
directory contains files Al, Bl, and Cl. The following command
is valid:

COPY *1 TO X
It copies files in the following manner:
Al TO X
Bl AFTER X
Cl AFTER X

The "*" character matches as close to the end of the pathname as
possible. For example, suppose the directory contains the file

. "ABXCDEFXGH", and you enter the command:

COPY *X* TO *]*
This command copies:
ABXCDEFXGH TO ABXCDEFIGH

The first asterisk matches the characters “ABXCDEF", and the
second asterisk matches the characters "GH".

2-26

USING THE iRMX™ 86 PC SYSTEM

COMMAND LINE OPTIONS

In entering commands from a terminal, you may occésionally need to know
about the following command line options.

Commands That Require More Than One Line

An ampersand character (&) indicates that the command continues on the
next line. When you include the ampersand character, the Human Interface
displays two asterisks (**) on the next line to prompt for the
continuation line. All characters appearing after the continuation mark
but before the line terminator are interpreted as comments. After you
enter the line terminator ‘without a preceding ampersand character, the
invoked command receives the entire command string as a single command.

Although the Human Interface places no restriction on the number of
characters in a command, each terminal line can have a maximum of 255
characters, including any punctuation, embedded blanks, continuation
mark, non-executable comments, and carriage return. If your command
requires more characters, use continuation lines. Within available
memory limits, you can use as many contlnuation lines for a given command
as you desire.

Quoting Characters in a Command

Two single—quote () or double—quote (") characters remove the semantics
of special characters they surround. For example, if you surround an
ampersand character (&) with single quotes, the ampersand is not
recognized as a continuation character. The same holds for other
characters such as asterisk (*), question mark (?), equals (=), semicolon
(5;), and others. The only special characters not affected by the quoting
characters are the pathname separators (/ and "), semicolon (:), and
dollar sign ($). Although you can use either single quotes or double
quotes as quoting characters, you must use the same quoting character at
the beginning and at the end of your quoted string. To include the
quoting character inside a quoted string, you can either specify the
character twice, or use the other quoting character. For example:

o,

“can”"t” or "can't"

Prepositions and Path Lists
Earlier we showed the general form of iRMX 86 commands:
command-name inpath—list preposition outpath—list parameters

This section contains more information about prepositions, and about
inpath-lists and outpath—lists.

2-27

USING THE iRMX™ 86 PC SYSTEM

PREPOSITIONS. Preposition parameters in a command line tell the command
how you want it to process the output file or files. The Human Interface
commands usually provide three options in the choice of a preposition:
TO, OVER, and AFTER. The preposition AS is also available for use in the
ATTACHDEVICE and ATTACHFILE commands. The TO preposition and :CO:
(console screen) will be used by default if you do not specify a
preposition and an output file.

The prepositions have the following meaning:

TO Causes the command to send the processed output to new files;
that is, to files that do not already exist in the given
directory. If a listed output file already exists, the
command displays the following query at the console screen:

<{pathname>, already exists, OVERWRITE?

Enter a Y or y if you wish to write over the existing file.
Enter any other character if you do not wish the file to be
overwritten. In the latter case, the command does not
process the corresponding input file but rather goes to the
next input file in the command line. Commands process input
files and write to output files on a one-for—one basis. For
example:

COPY A,B TO C,D
copies file A to file C and file B to file D.

OVER Causes the command to write your input files to the output
files in sequence, destroying any information currently
contained in the output files. It creates new output files
if they do not exist already. For example:

COPY SAMP1,SAMP2 OVER OUT1,0UT2

copies the data from file SAMPl over the present contents of
file OUT1, and copies the data of SAMP2 over the contents of
file OUT2.

AFTER Causes the command to append the contents of one or more
files to the end of one or more new or existing files (file
concatenation). For example:

COPY IN1,IN2 AFTER DEST1,DEST2

appends the contents of file IN1 to the the end of file
DEST1, and appends the contents of IN2 to the end of DESTZ.

AS A special preposition used with the ATTACHDEVICE and
ATTACHFILE commands. When you use the AS preposition, the
Operating System does not assume that the command contains
input pathnames and output pathnames. Rather, it sees the
parameters as entities that it must associate (for example,
ATTACHFILE associates a pathname with a logical name).

2-28

USING THE iRMX™ 86 PC SYSTEM

Inpath-List and Outpath-List

An inpath-list specifies the files on which a command is to operate. An
outpath-list defines the destination or destinations of the processed
output. Each inpath-list or outpath-list consists of a pathname (or
logical name) or list of pathnames. If you specify multiple pathnames,
you must separate the individual pathnames with commas. Embedded blanks
between pathnames are optional. You can also use wild cards to indicate
multiple pathnames (refer to the "Wild Cards” section of this chapter).

Usually when you specify multiple pathnames, each pathname in the
inpath-list has a corresponding pathname in the outpath-list. For
example, the command:

COPY A, B TO C, D °

copies file A to file C and also copies file B to file D. Therefore, A
and C are corresponding pathnames, and so are B and D. However, there
are some instances when the number of input pathnames you enter differs
from the number of output pathnames. The validity of the operation
depends on whether the pathname lists contain single pathnames, lists of
pathnames, a wild-card pathname, or lists of wild-card pathnames. Table
2-1 lists the possibilities and describes the Human Interface's action in
each instance. The following sections discuss the Human Interface's
actions in more detail. '

Table 2-1. Input Pathname and Output Pathname Combinations

Inpath-list

Outpath-list

Human Interface
Action

single pathname
single pathname
single pathname
single pathname

list of pathnames
list of pathnames
list of pathnames
list of pathnames

wild-card pathname

wild-card pathname
wild-card pathname

wild-card pathname

list of wild cards
list of wild cards
list of wild cards
list of wild cards

single pathname
list of pathnames
wild-card pathname
list of wild cards

single pathname
list of pathnames
wild-card pathname
list of wild cards

single pathname
list of pathnames
wild-card pathname
list of wild cards

single pathname
list of pathnames
wild-card pathname
list of wild cards

one-for-one match
error
error
error

concatenate
one—-for-one match
error

error

concatenate

error

one—-for-one match
error

concatenate
concatenate
concatenate
one~for—-one match

2-29

USING THE iRMX™ 86 PC SYSTEM

ONE-FOR-ONE MATCH. The combinations in Table 2-1 that are marked
“one-for-one match” are those in which each element in the inpath-~list is
matched with an element of the outpath-list. An example of this is the
command:

COPY A*, B* TO C*, D*

In this case, the Human Interface copies all files beginning with the
character “A" to corresponding files beginning with the character “C".
When it finishes this operation, it advances past the comma to the next
set of pathnames (copies all files beginning with "B" to corresponding
files beginning with "D").

CONCATENATE. The combinations in Table 2-1 that are marked "concatenate”
are those in which there are multiple input pathnames that correspond to
a single output pathname. In this situation, the Operating System
automatically appends the remaining input files to the end of the
specified output file, regardless of the preposition you specify.

This allows you to combine one-for-one file operations (as in TO or OVER
preposition) with file concatenation (as in the AFTER preposition) in a
single command, and thus avoid entering an extra command to perform a
separate concatenation operation. For example:

COPY A,B,C TO D

copies file "A" to file "D" and appends files "B" and “C" to the end of
file "D.”

Notice that this concatenation occurs only when there are multiple
elements in the inpath-list that correspond to a single element of the
outpath—-list. This means that the following commands are invalid:

COPY A, B, C TO D, E s INVALID COMMAND

COPY A*, B*, C* TO D*, E* ; INVALID COMMAND

ERROR CONDITIONS. The combinations in Table 2-1 that are marked “error"”
indicate invalid operations. For these combinations, the Human Interface
returns an error message without performing the requested operation.

kkk

2-30

CHAPTER 3. HUMAN INTERFACE COMMANDS

The commands described in this chapter are supplied by Intel with the
Preconfigured iRMX 86 Operating System. You can use these commands to
perform a number of highly convenient file management and system
functions. When you invoke a command,

1. You type the command name and parameters (e.g., "COPY FIRST TO
SECOND").

2. The Operating System loads the appropriate command file (for
example, :SD:SYSTEM/COPY) and executes the program the way that
you specify in the command line.

The bulk of this chapter contains descriptions, arranged alphabetically,
of each Human Interface command.

If you are a new user of the Human Interface, we suggest that you review
the information on iRMX 86 commands and files in Chapter 2.

Human Interface commands are program files in the SYSTEM directory. When
you type a command on the terminal, the Operating System looks for the
file in a series of directories. The directories, listed in the order
they are searched by the Human Interface, are:

:$:

:PROG:

¢ SYSTEM:

:LANG:

sUTILS:
You can place commands in any directory that the Human Interface
automatically searches, and invoke the command with its name. You can

also invoke commands that are not in directories searched by the Human
Interface.

HUMAN INTERFACE COMMAND DICTIONARY
The Human Interface Command Dictionary, Table 3-1, briefly describes each
command and gives its page number. The Dictionary divides the commands
into functional groups:

File management commands

Volume management commands

Multi-access commands

General utility commands

HUMAN INTERFACE COMMANDS

Table 3-1. Human Interface Command Dictionary
Command Synopsis Page
File Management Commands

ATTACHFILE Associates a logical name with an existing file.| 3-13
CoPY Creates new data files, or copies files to

other pathnames. 3-24
CREATEDIR Creates one or more new directories. 3-28
DELETE Deletes data files and empty directories from a

volume on secondary storage. 3-33
DETACHFILE Removes the association of a logical name with

a file. 3-38
DIR Lists a directory's filenames (and optionally,

file attributes). 3-40
DOWNCOPY Copies files and directories from an iRMX 86

volume mounted on & secondary storage device to

an ISIS-II secondary storage device. 3-53
PERMIT Grants or rescinds user access to a file. 3-69
RENAME Renames files or directories. 3-74
UPCOPY Copies files and directories from an ISIS-II

secondary storage device to an iRMX 86 volume

mounted on a secondary storage device. 3-92

Volume Management Commands

ATTACHDEVICE Attaches a new physical device to the system

and associates its physical name with a logical

name. 3-7
BACKUP Copies named files to a backup volume. 3-16
DETACHDEVICE Removes a physical device from system use and

deletes its logical name. 3-35
DISKVERIFY Verifies the data structures of named and

physical volumes. 3-48

HUMAN INTERFACE COMMANDS

Table 3-1. Human Interface Command Dictionary (continued)
Command Synopsis Page
Volume Management Commands (continued)

FORMAT Formats an iRMX 86 volume. 3-56

RESTORE Copies files from a backup volume to a named

volume. ' 3-77

Multi-Access Commands

INITSTATUS Displays the initialization status of Human

Interface terminals. 3-63
JOBDELETE Deletes a running interactive job. 3-65
LOCK Prevents the Human Interface from automatically

creating an interactive job after the job has

been deleted. 3-67
SUPER Changes the operator's user ID into that of

the system manager (user ID 0) and grants the

ability to change to other user IDs. 3-87

General Utility Commands

DATE Sets or resets the system date, or displays the

current date and time. 3-29
DEBUG Transfers control to the iSBC 957B package to

debug an iRMX 86 application program. 3-31
SUBMIT Reads, loads, and executes a string of commands

from secondary storage instead of the keyboard. 3-83
TIME Sets or resets the system clock, or displays the

current system date and time. 3-90
VERSION Displays the version number of command programs. |3-95

HUMAN INTERFACE COMMANDS

ERROR MESSAGES

Each command can generate a number of error messages which indicate
errors in the way you specified the command. The messages that apply to
a specific command are listed with that command. However, the following
are general error messages that can appear with many of the commands:

command not found
There is no file whose pathname is the same as the command name

you specified, nor can the Human Interface find the file in any
of the directories it automatically searches.

<logical name>, device does not belong to you

The device you specified was originally attached by a user other
than WORLD or you.

<pathname>, file does not exist

The pathname you specified does not represent an existing file.

{pathname>, invalid file type

You specified a data file for an operation that required a
directory, or vice versa.

<logical name>, invalid logical name

The logical name you specified contains unmatched colons, is
longer than 12 characters, or contains invalid characters.
<pathname>, invalid pathname

The pathname you specified contains invalid characters or a
component of the pathname (other than the last one) does not
exist or does not represent a directory.

<logical name>, is not a device connection

The logical name you specified does not represent a connection to
a physical device.

<logical name>, logical name does not exist

The logical name you specified does not exist.

HUMAN INTERFACE COMMANDS

e parameters required

The command you specified cannot be entered without parameters.

e program version incompatible with system
The command and the Operating System are not compatible. The
command expects to obtain information from internal tables that
are not present. Therefore the command cannot run successfully.

e <control>, unrecognized control

The control you entered is not valid for the specified command.

o <exception value> : <exception mnemonic> while loading command

The Operating System encountered an exceptional condition while
attempting to load the command into memory from secondary
storage. The message lists the exception code encountered.

e <exception value> : <exception mnemonic>
An operational error occurred during the execution of the
command. The <exception value> and <exception mnemonic> portions
of the message indicate the exception code encountered.

e <parameter>, <exception value> : <exception mmemonic>
The command encountered an exceptional condition while attempting
to process the <parameter> portion of the command. The

<{exception value> and <{exception mnemonic> portions of the
message indicate the exception code encountered.

COMMAND SYNTAX SCHEMATICS

The syntax for each command described in this chapter is presented by
means of a "railroad track” schematic, with syntactic elements scattered
along the track. Your entrance to any given schematic is always from
left to right, beginning with some command name entry.

Elements shown in uppercase characters must be typed in a command line
exactly as shown in the command schematics except that you can type them
either in uppercase or lowercase characters; the Human Interface makes no
distinction between cases in alphabetic characters. Syntactic elements
shown in lowercase characters are generic terms, which means that you
supply the specific item, such as the pathname for a file.

HUMAN INTERFACE COMMANDS

The vertical dotted line separates the position—dependent parameters from
those that are position—independent. Parameters to the left of the
dotted line must be entered in the order listed (from left to right).
Parameters to the right of the dotted line can be entered in any order
(as long as they obey the rest of the syntax).

The example that follows shows all possible paths through a railroad
track schematic. Notice that the main track goes through required
elements in a given command.

"Railroad sidings” go through optional parameter elements. In some
cases, you have a choice of going through one of several possible sidings
before returning to the main track. In still other cases, the main track
itself diverges into two separate tracks, which means that you must
select one parameter or the other but not both.

(START)

x-224

In this example:

e A is a required element. It is position—-dependent; it must be
entered first.

e¢ Either B or C is required but not both. These elements are also
position—-dependent. Whichever element you enter must follow A
immediately.

e D, E, or F are all optional but only one can be selected. These
are position—independent elements. If you select one of these
elements, you can enter it before or after G.

e G is required. It is a position-independent parameter. You can
enter it before or after D, E, or F.

ATTACHDEVICE-

This command attaches a physical device to the Operating System,
associates a logical name with the device, and makes the logical name
accessible to all users. The logical name is used in all other commands

to refer to the device.

Eeroeres> B>
1
<=

INPUT PARAMETERS

physical name

AS

:logical name:

NAMED

PHYSICAL

The format of the command is as follows:

Physical device name of the device to be attached
to the system. This name must be one of the names
in Table 3-2.

Preposition; required for the command.

A 1- to l12-character name, that represents the
logical name to be associated with the device.
Colons surrounding the logical name are optional;
however, if you use colons, you must use matching
colons. After ATTACHDEVICE attaches and catalogs
the device, any command you enter or program code
you run must specify the logical name in order to
access the device

Specifies that the volume mounted on the device is
already formatted for NAMED files. Examples of
volumes that can contain named files are diskettes
or hard disk platters. If neither NAMED nor
PHYSICAL are specified, NAMED is the default. See
the FORMAT command in this chapter for a further
description of NAMED files.

Specifies that the volume mounted on the logical
device is considered to be a single, large file.
Examples Iinclude line printers and terminals. See
the FORMAT command in this chapter for a further
description of PHYSICAL volumes.

x-192

TITACHDEVICHK

~

WORLD Specifies that user ID WORLD (65535 decimal) is the
owner of the device. This implies that any user can
detach the device. If you omit this parameter, your
user ID is listed as the owner of the device. In this
case, only you and the system manager can detach the
device.

DESCRIPTION

ATTACHDEVICE attaches a device to the system and associates a logical
name for the device. The logical name is the means by which all users
can access the device. '

Devices must have their characteristics defined at configuration time
before they can be attached with the ATTACHDEVICE command. Table 3-2
lists the physical device names available for the Preconfigured iRMX 86
Operating System.

One frequent use of the ATTACHDEVICE command is to attach a new device,
such as a new disk drive or a line printer, without having to reconfigure
portions of the Operating System. (See the DETACHDEVICE command in this
chapter for a description of how to detach a device from the system
without reconfiguring.)

Unless you have a user ID of WORLD (65535) or specify the WORLD
parameter, once you attach a device, only you and the system manager can
detach the device. This prevents users from detaching devices belonging
to other users and prevents you from accidentally detaching system
volumes. However, if you have a user ID of WORLD or specify the WORLD
parameter, any device that you attach can be detached by any other user.
Refer to the DETACHDEVICE command for more information.

When the device attachment is completed, the ATTACHDEVICE command
displays the following message:

<physical name>, attached as <logical name>, id = <user id>
where <physical name> and <{logical name> are as specified in the

ATTACHDEVICE command and <{user id> is your user ID (or WORLD, if you
specify the WORLD parameter).

3-8

ATTACHDRVICE

Table 3-2. Physical Device Names for the iRMX" 86 PC System
8-inch Flexible Disk Drives

Device iSBC® Device Unit Sides/ Bytes-per

Name Controller Type Number Density Sector
AFO 208 Shugart SA800 0 1/single 128
AF1 208 Shugart SA800 1 1/Single 128
AFDO 208 Shugart SA800 0 1/Double 256
AFD1 208 Shugart SA800 1 1/Double 256
AFD2 208 Shugart SA800 2 1/Double 256
AFD3 208 Shugart SA800 3 1/Double 256
AFDDO 208 Shugart SA850 0 2/Double 256
AFDD1 208 Shugart SA850 1 2/Double 256
AFDXO0 208 Shugart SA850 0 2/Double 1024
AFDX1 208 Shugart SA850 1 2/Double 1024
WFO 218 Shugart SA800 0 1/Single 128
WF1 218 Shugart SA800 1 1/Single 128
WFDO 218 Shugart SA800 0 1/Double 256
WFD1 - 218 Shugart SA800 1 1/Double 256
WFD2 218 Shugart SA800 2 1/Double 256
WFD3 218 Shugart SA800 3 1/Double 256
WFDDO 218 Shugart SA850 0 2/Double 256
WFDD1 218 Shugart SA850 1 2/Double 256
WFDXO0 218 Shugart SA850 0 2/Double 1024
WFDX1 218 Shugart SA850 1 2/Double 1024

¥
5 1/4-inch Flexible Disk Drives

Device iSBC® Device Unit Sides/ Bytes—per

Name Controller Type Number Density Sector
AMFDO 208 Shugart SA450 0 2/Double 256
AMFD1 208 Shugart SA450 1 2/Double 256
AMFD2 208 Shugart SA450 2 2/Double 256
AMFD3 208 Shugart SA450 3 2/Double 256
AMFDDO 208 Shugart SA460 0 2/Double 512
AMFDD1 208 Shugart SA460 1 2/Double 512
WMDO 218 Shugart SA450 0 2/Double 256
WMD1 218 Shugart SA450 1 2/Double 256
WMD2 218 Shugart SA450 2 2/Double 256
WMD3 218 Shugart SA450 3 2/Double 256
WMDDO 218 Shugart SA460 0 2/Double 512
WMDD1 218 Shugart SA460 1 2/Double 512

3-9

HUMAN INTERFACE COMMANDS

~r—ma -

[TACHDEVICE

Table 3-2. Physical Device Names for the iRMX™ 86 PC System

(continued)
Winchester Disk Drives

Device iSBC Device Unit Sides/ | Bytes—-per

Name Controller Type Number Density Sector
IWO 215 Priam 3450 1024
MWO 215 Memorex 101 1024
PWO 215 Pertec D800O : 1024
SWO 215 Shugart SA1002/1004 1024

Other Devices

BB Byte bucket

STREAM Stream file device

TO Terminal connected to Single Board Computer

T1-T4 Terminals connected to iSBC 534 Ports, 0-3 respectively

LP Line Printer

ERROR MESSAGES

{device name>, cannot be ATTACHED as <type>
The device specified by <device name> cannot support the type of
files specified by <type> (NAMED or PHYSICAL). ATTACHDEVICE does

not attach the device. For example, the NAMED option is not
valid for a device such as a line printer.

<device name>, device already attached

The specified device has already been attached. ATTACHDEVICE
does not attach the device.

{device name>, device does not exist

The physical device name you specified does not correspond to a

name the Operating System recognizes. That is, the name is not
in Table 3-2. ATTACHDEVICE does not attach the device.

3-10

ATTACHDEVICE

<logical name>, logical name already exists

The specified logical name is already defined for some other
device, or for a file. ATTACHDEVICE does not attach the device.

0085 : ESLIST, too many device names

You tried to attach more than one physical device with a single
ATTACHDEVICE command. ATTACHDEVICE does not attach a device.

<logical name>, volume is not a NAMED volume

ATTACHDEVICE attempted to attach a device as a named device and
discovered a physical volume on the device. However,
ATTACHDEVICE does attach the device. You can use the device
after formatting the volume as a named volume or after inserting
a named volume in the device.

<logical name>, volume not formatted
<logical name>, <exception value> : <exception mnemonic>

ATTACHDEVICE attempted to attach a device as a named device and
encountered an I/0 error while searching for the volume's root
directory. This usually indicates that the volume is not
formatted. However, ATTACHDEVICE does attach the device.

{logical name>, volume not mounted

The specified device does not contain a volume. However,
ATTACHDEVICE does attach the device.

<{exception value> : <exception mnemonic>, while collecting device
name

ATTACHDEVICE encountered an exceptional condition while searching
for the device name in the tables maintained by the Basic I/0
System. This message lists the resulting exception code.

<exception value> : <exception mnemonic>, while collecting
logical name
ATTACHDEVICE encountered an exceptional condition while

attempting to assign the logical name to the device. This
message lists the resulting exception code.

3-11

HUMAN INTERFACE COMMANDS

SANVININOD HOVIYALNI NVINOH

ATTACHFILE

This command allows you to associate a logical name with an existing
file. The format of this command is as follows:

ATTACHFILE

pathname

slogical name:

x-193

INPUT PARAMETERS

pathname Pathname of the file to which the Human Interface
assocliates a logical name.

tlogical name: 1- to l2-character name that represents the
logical name to be associated with the file.
Colons surrounding the logical name are optional;
however, if you use colons, you must use matching
colons. If you omit this parameter, the default
logical name is :$:.

If you enter the ATTACHFILE command without parameters, the default is:

ATTACHFILE :HOME: AS :§:

DESCRIPTION

The ATTACHFILE command allows you to associate a logical name with an
existing file. After making this association, you can use the logical
name, instead of the entire pathname, to refer to the file.

When the attachment is complete, ATTACHFILE displays the following
message:

<{pathname>, attached AS <logical name>

where <pathname> and <logical name> are as specified in the ATTACHFILE
command.

ATTACHFILE makes the association between a file and a logical name, and

makes the name known to any program that you run at your terminal. If
another file 18 known by the logical name, ATTACHFILE deletes the
previous association in order make the new one.

The logical name is known only within your interactive job. Therefore,
several users can specify the same logical name without affecting each
other.

3-12

ATTACHFILE

If you specify a pathname for a file but omit the logical name,
ATTACHFILE attaches the file as :$:. This allows you to charge your
default prefix. Changing your default prefix can be useful when you want
to manipulate files that reside in a directory other than the one
specified by your original default prefix. For example, suppose you have
a file that you normally refer to as:

:PROG: SOURCE/PLM/INTERRUPT/TEST.P86

You can change your default prefix with the command:
ATTACHFILE :PROG:SOURCE/PLM/INTERRUPT

Then, you can refer to the file as simply:
TEST.P86

When you finish using the files in directory :PROG:SOURCE/PLM/INTERRUPT,‘
you can return your default prefix to its original setting by entering:

ATTACHFILE
This is the same as entering:
ATTACHFILE :HOME: AS :$:

tHOME: is a logical name that refers to the same directory as your
original default prefix. Therefore, you can change your default prefix
as much as you like with ATTACHFILE and return to the original setting by
making reference to :HOME:. However, you cannot use ATTACHFILE to change
the meaning of :HOME:. (Also, you cannot use ATTACHFILE to change the
meaning of :CI: and :CO0:.)

The logical name created with ATTACHFILE remains valid until one of the
following situations occur:

e A DETACHFILE command (described later in this chapter) dissolves
the association between file and logical name.

e The interactive session that specified the ATTACHFILE command
terminates processing. This occurs when a user, in response to
the Human Interface prompt, enters a Control-Z character to
reinitialize the interactive job. In this case, the Operating
System deletes the interactive job and then recreates it. This
restores the interactive job to its initial state.

e A task deletes the connection to the file via a Basic I/0 System
or Extended I/0 System call (refer to Appendix B for descriptions
of the iRMX 86 I/0O Systems).

e A user forcibly detaches the volume containing the file via the
DETACHDEVICE command (described later in this chapter).

3-13

HUMAN INTERFACE COMMANDS

TTACHFILE

v w mm m o hr ————

~eaa

ERROR MESSAGES

<{pathname>, list of logical names not allowed

You entered more than one logical name as input to ATTACHFILE.

<logical name>, list of pathnames not allowed

You entered more than one pathname as input to ATTACHFILE.

{logical name>, logical name not allowed

You attempted to attach a file using a logical name :HOME:, :CI:,
or :C0:. You cannot change the meaning of these logical names.
<logical name>, not a file connection

The logical name you specified, <logical name>, is already
cataloged in object directory of the session and does not
represent a file.

<logical name>, too many logical names

ATTACHFILE is unable to catalog the file's name in the object
directory because an internal Operating System table is full.

3-14

BACKUP

This command saves files from a named volume by copying them to a
physical volume which serves as a backup volume. Later, you can use the
RESTORE command (described later in this chapter) to retrieve these files
and copy them to named volumes.

The format of this command is as follo&s:

INPUT PARAMETERS

pathname

'dd month year'

mm/dd/year

Pathname of a file on the source volume. BACKUP
saves files from the branch of the file tree that
begins with the specified file. If you specify
the logical name of the device only, BACKUP saves
all files in the volume, beginning with the root
directory.

One form of the date parameter that BACKUP uses,
in conjunction with the time parameter, to
determine which files to save. BACKUP saves only
those files that have been modified since the
specified date and time. If you use this form of
the date parameter, you must enclose the date
parameter in single quotes. The individual fields
of this parameter are:

dd Two~digit number that specifies the day of
the month.

month Designation for the month. You can enter
the whole name (such as AUGUST) or enough
characters to distinguish one month from
another (for example, AU, to distinguish
AUGUST from APRIL). - You can use this form
for specifying the month only when using
the "dd month year” format.

3-15

HUMAN INTERFACE COMMANDS

WNAAN V & um s s

\CKUP

mm/dd/year

hh:mm:ss

QUERY

year Designation for the year. You can enter
this as a two- or four-digit number, as

follows:
entered year actual year
0 through 77 2000 through 2077
78 through 99 1978 through 1999

100 through 1977 error
1978 through 2099 1978 through 2099
2100 and up error

If you omit the date parameter but specify the
time parameter, the date defaults to the current
system date. If you omit both the date and time
parameters, the date defaults to 1 JAN 78.

Alternate form of the date parameter. If you use
this form, you do not have to surround the
parameter with quotes. The individual fields of
this parameter are:

mm Numerical designation for the month (for
example: 1 represents January, 2
represents February, etc.). You can use
this form for specifying the month only
when using the "mm/dd/year” format.

dd Same as in the previous form of the date
parameter.

year Same as in the previous form of the date
parameter.

Time parameter that BACKUP uses, in conjunction
with the date parameter, to determine which files
to save. BACKUP saves only those files that have
been modified since the specified date and time.
The individual fields of this parameter are:

hh Hours specified as 0-24.
mm Minutes specified as 0-59.
ss Seconds specified as 0-59.

If you omit this parameter, the time defaults to
00:00:00.

Causes the Human Interface to prompt for

permission to save each file. The Human Interface
prompts with one of the following queries:

3-16

<{pathname>, BACKUP data file?

or

<pathname>, BACKUP directory?

Enter one of the following responses to the query:

Entry
Yory

E or e

Rorr

Any other
character

OUTPUT PARAMETER

Action

Save the file.
Exit from the BACKUP command.

Continue saving files without
further query.

If data file, do not save the
file; if directory file, do
not save the directory or any
file in that portion of the
directory tree. Query for
the next file, if any.

c:backup device: Logical name of the device to which BACKUP copies

the files.

DESCRIPTION

BACKUP is a utility which saves named files on backup volumes, such as
diskettes. BACKUP saves the following information for each file:

e File name

e Access 1list, including owner
e Extension data

e File granularity

° Contents of the file

You can copy this information back to a named file by using the RESTORE

utility, described later in this chapter.

3-17

BAUKUY

HUMAN INTERFACE COMMANDS

ACKUP

Before a volume can be used as a backup volume, the volume must be
formatted. Although BACKUP will accept both physical and named volumes,
it is recommended that you use freshly-formatted physical volumes or old
backup volumes for this purpose. BACKUP issues a message before
continuing if the backup volume you supply is anything other than a
freshly~formatted physical volume. When BACKUP copies files to the
backup volume, it overwrites any information that currently exists on the
volume.

In order for BACKUP to save files from a named volume, you must have read
access to the files and to the directories that contain them.

You can limit the files which BACKUP processes in the following ways:

e If you specify a complete directory name instead of just the
device's logical name in the invocation line, BACKUP limits its
processing to the specified directory and its subdirectories.

° If you specify the date and time parameters, BACKUP processes
only those files modified since the specified time.

e If you specify the QUERY parameter, BACKUP asks permission before
saving each file. If you deny permission for BACKUP to save a
data file, BACKUP skips the file and continues with the next
file. If you deny permission for BACKUP to save a directory
file, BACKUP skips the directory and all files contained in the
directory or its subdirectories.

When you enter the BACKUP command, BACKUP displays the following sign-on
message:

iRMX 86 DISK BACKUP UTILITY, Vx.y

where Vx.y is the version number of the utility. It then displays the
following message:

all files modified after <date>, <time> will be saved

where <date> and <{time> are the values you specified in the date and time

parameters (or the defaults). Then BACKUP prompts you for a backup
volume.

Whenever BACKUP requires a new backup volume, it displays the following
message:

<backup device>, mount backup volume #<nn>, enter Y to continue:

where <backup device> indicates the logical name of the backup device and
<nn> the number of the requested volume. (BACKUP in some cases displays
additional information to indicate problems with the current volume.) In
response to this message, place a volume in the backup device and enter
one of the following:

3-18

Entry Action

Y, vy, Rorr Continue the backup process.

E or e Exit from the BACKUP command.

Any other Invalid entry; reprompt for entrye.
character -

BACKUP continues prompting for a backup volume until you supply one that
it can access.

If the backup volume you supply is not a freshly-formatted physical
volume, but one that BACKUP can access (such as a named volume, a
previously-used backup volume, or a physical volume containing data),
BACKUP informs you of this with one of the following messages:

<backup device>, not a physical volume, enter Y to overwrite:
or

<backup device>, backup volume #<nn>, <date>, <time>, enter Y to
overwrite:

or
<backup device>, named volumé, <volume name>, enter Y to continue:

where <backup device> is the logical name of the backup device, <volume
name> is the volume name of the named volume, <nn> is the volume number
of the backup volume, and <date> and <{time> are the date and time on
which the previous backup was performed. In response to these messages,
enter one of the following:

Entry Action
Y, vy, R, or r Use the volume as a backup volume, overwriting the

information currently stored on the volume.

E or e Exit from the BACKUP command.
Any other Reprompt for another volume.
character

As BACKUP saves each file in the source volume, it displays one of the
following message at your console output device (:CO:):

<{pathname>, saved
or

<{pathname>, directory saved

3-19

BACKUP

HUMAN INTERFACE COMMANDS

ACKUP

Y eANAnANAls wa & w ¥

AINALAW ¥V N RN WSS AN

When the backup process is complete, BACKUP displays the number of data
files saved, as follows:

files saved = <num>

If your backup volume becomes full and you supply additional backup
volumes, you should write the numbers of the backup volumes on the volume

labels.

Later, when you restore files to a named volume with the RESTORE

utility, you must supply the backup volumes in order.

ERROR MESSAGES

<backup device>, backup operation not completed

When BACKUP requested a new backup volume, you specified an "E”
to exit BACKUP. This message is a reminder that the backup
operation is not complete. The last file on the last backup
volume may be incomplete.

<backup device>, backup volume #<nn>, <date>, <time>, enter Y to
overwrite: :

The backup volume you supplied already contains backup

information. BACKUP lists the logical name of the backup device,

the volume number, and the date on which the original backup
occurred. It overwrites this volume if you enter Y, y, R, or r.

<{backup device>, cannot attach volume :
<backup device>, <exception value> : <exception mnemonic>

<backup device>, mount backup volume #<nn>, enter Y to continue:

BACKUP cannot access the backup volume. This could be because
there is no volume in the backup device or because of a hardware
problem with the device. The second line of the message
indicates the iRMX 86 exception code encountered. BACKUP
continues to issue this message until you supply a volume that
BACKUP can access.

<pathname>, <exception value> : <exception mnemonic>, cannot back
up file

For some reason BACKUP could not copy a file from the named
volume, possibly because you do not have read access to the file
or because there is a faulty area on the named volume. The
message lists the pathname of the file and the exception code
encountered. BACKUP copies as much of the file as possible and
continues with the next file.

3-20

<backup device>, device in use
<backup device>, <exception value> : <exception mnemonic>

The device you specified for the backup device is the same device
that contains your input pathname. Continuing would result in
damage to the files on the input volume.

<backup device>, error writing volume label
<backup device>, <exception value> : <exception mnemonic>

<backup device>, mount backup volume #<nn>, enter Y to continue:

When BACKUP attempted to write a label onn the backup volume, it
encountered an error condition, possibly because of a faulty area
on the volume, or because the volume is write-protected. The
second line of the message indicates the iRMX 86 exception code
encountered. BACKUP reprompts for a different backup volume.

<backup device>, input and output are on same device

The device you specified for the backup device is the same device
that contains your input pathname. Continuing would result in
damage to the files on the input volume.

<backup device>, invalid backup device

The logical name you specified for the backup device was not a
logical name for a device. Examples of invalid names are :CI:,
:CO:, and :HOME:.

<{exception value> : <exception mnemonic>, invalid DATE or TIME
For either the DATE or TIME parameter, you entered a value that is

out of range (such as 31 FEB 81 or 26:03:62). The message lists
the exception code encountered as a result of this entry.

<backup device>, named volume, <{volume name>, enter Y to overwrite:

The backup volume you supplied is a named volume. BACKUP lists
the logical name of the device containing the volume and the

volume name. It overwrites this volume if you enter Y, y, R, or r.

<backup device>, not a physical volume, enter Y to overwrite:

The backup volume you supplied is a formatted volume, but it has a

label that is not readable. BACKUP will overwrite this volume if
you enter Y, y, R, or r.

3-21

BACKUF

HUMAN INTERFACE COMMANDS

ACKUP

v emeaenrase s 4w Y = ma -

Ve mmm s nr ~ma

[y

output specification missing

You did not supply the logical name of the backup device when you
entered the BACKUP command.

<{exception value> : <{exception mnemonic>, requested date/time
later than system date/time

The date and time you specified is more recent than the current
system date and time (as set by the DATE and TIME commands).
Either the date and time you specified in the BACKUP command are
in error or you did not set the system date and time.

<pathname>, too many input pathnames

You attempted to enter a list of pathnames or use a wild—-carded

pathname as the input pathname. You can enter only one pathname
per invocation of BACKUP.

<{pathname>, too many output pathnames

You attempted to enter a list of logical names for the backup

device. You can enter only one output logical name per
invocation of BACKUP.

<pathname>, unable to complete directory

BACKUP encountered an error when accessing a file in the
<pathname> directory. It skips the rest of the files in the
directory and goes on to the next directory. This error could
occur if you do not have 1list access to the directory.

<backup device>, volume not formatted
<{backup device>, mount backup volume #<nn>, enter Y to continue:
The backup volume you supplied was not formatted. BACKUP

continues to issue this message until you supply a formatted
backup volume.

<backup device>, write error on backup volume
<backup device>, <exception value> : <exception mnemonic>

BACKUP encountered an error condition when writing information to
the backup volume. The second line of the message lists the
exception code encountered. This error is probably the result of
a faulty area on the volume.

3-22

COPY

This command reads data from the specified input source or sourceé and
writes the output to the specified destination file or files.

The format of the command is as follows:

INPUT PARAMETERS

inpath-list

QUERY

One or more pathnames for the files to be copied.
Multiple pathnames must be separated by commas.
Separating blanks are optional. To copy files on
a one-for—-one basis, you must specify the same
number of files in the inpath-list as in the
outpath-list.

Causes the Human Interface to prompt for
permission to copy each file. Depending on the
specified preposition (TO, OVER, or AFTER), the
Human Interface prompts with one of the following
queries:

<{pathname>, copy TO <{out-pathname>?

<pathname>, copy OVER <out—-pathname>?

<{pathname>, copy AFTER <out—pathname>?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry Action

Yory Copy the file.

E or e Exit from COPY command

Rorr Continue copying files without

further query.
Any other Do not copy this file; go to the
character next file in the input list.

3-23

AN
Q
Z
E
=
Q
Q
3
Q
&
e
2
&
2
=
=)
o)

urx

CAJUAANYL Y N WP LAY LARS YV LANALAlass A A w

OUTPUT PARAMETERS

TO

OVER

AFTER

outpath-list

DESCRIPTION

Writes the listed input files to named new
output files. The specified output file or
files should not already exist. If they do,
COPY displays the following message:

<{pathname>, already exists, OVERWRITE?

Enter Y, y, R, or r if you wish to write over
the existing file. Enter an "N" (upper or lower
case) or a carriage return alone if you do not
wish to overwrite the existing file. 1In the
latter case, the COPY command will pass over the
corresponding input file without copying it, and
will attempt to copy the next input file to its
corresponding output file.

If you specify multiple input files and a single
output file, COPY appends the remaining input
files to the end of the output file.

Writes the input files over (replaces) the
existing output files on a one~for—one basis,
regardless of file size. If an output file does
not already exist, its corresponding input file
is written to a new file with the corresponding
output file name. If you specify multiple input
files and a single output file, COPY appends
the remaining input files to the end of the
output file.

Appends the input file or files to the current
data in the existing output file or files. If
the output file does not already exist, all
listed input files will be concatenated into a
new file with the listed output file name.

One or more pathnames for the output files.
Multiple pathnames must be separated by commas.
Separating blanks are optional. If you omit the
preposition and outpath-list parameters, COPY
displays the output at your console screen (TO
:CO:).

The COPY command can be used to perform several different operations.

Some of these include:

3-24

wuur 1

3

e Creating new files (TO preposition).

e Copying over existing files or creating new files (OVER
preposition).

® Adding data to the end of existing files (AFTER preposition).

° Copying a list of files to another list of files on a
one~-for-one basis.

® Concatenating two or more files into a single output file.

As each file is copied, the COPY command displays one of the following
messages:

<pathname>, copied TO <out-pathname>
<pathname>, copied OVER <out-pathname>
<{pathname>, copied AFTER <out-pathname)

When you copy files, the number of input pathnames you specify must
equal the number of output pathnames, unless you specify only one
output pathname. In the latter case, COPY appends the remainder of the
input files to the end of the ouput file. As each file is appended,
the following message 1s displayed on the console screen:

<pathname>, copied AFTER <output-file>

If you specify multiple output files, and there are more input files
than output files, or if you specify fewer input files than output
files, COPY returns an error message.

Also, if you specify a wild card character in an output pathname, you
must specify the same wild card character in the corresponding input
pathname. Other combinations result in error conditioms.

HUMAN INTERFACE COMMANDS

You cannot successfully use COPY to copy a directory to a data file or
to another directory. Although a directory can be copied, the
attributes of the directory are lost. That is, the directory can no
longer be used as a directory. However, a file listed under one
directory can be copied to another directory. For example:

COPY SAMP/TEST/A TO :Fl:/ALPHA/BETA

This would copy the A data file to a different volume, directory, and
filename, where the new file's pathname would be :Fl:/ALPHA/BETA.

The user ID of the user who invokes the COPY command is considered the
owner of new files created by COPY. Only the owner can change the
-access rights associated with the file (refer to the PERMIT command
later in this chapter).

3-25

ury

When COPY creates new files, it sets the access rights and list of
accessors as follows:

° It sets the file for ALL access (delete, read, append, and
change).

e It sets the owner as the only accessor to the file.

Refer to the PERMIT command for more information about access rights
and the list of accessors.

ERROR MESSAGES
o <pathname>, output file same as input file

You attempted to copy a file to itself.

e <pathname>, UPDATE or ADD access required

Either you cannot overwrite the information in a file because
you do not have update access to it, or you cannot copy
information to a new file because you do not have add entry
access to the file's parent directory.

3-26

CREATEDIR

This command creates one or more iRMX 86 user directories. The format is
as follows:

CREATEDIR @

x-318
INPUT PARAMETER
\
inpathQJist One or more pathnames of the iRMX 86 directories
T to be createds Multiple pathnames must be
S separated by commas. Embedded blanks between

commas and pathnames are optional.

DESCRIPTION

CREATEDIR creates a directory with all access rights available to you,
the owner. That is, you can delete, list, add, and change the contents
of the directory you created with CREATEDIR. Other users (except the
system manager) have no access to the directory unless you use the PERMIT
command (described later in this chapter) to change the access rights and
list of accessors.

The following message is displayed if a directory is successfully created:
{directory-name>, directory created

You can create new directories that are subordinate to other directories.
For example:

CREATEDIR AB/DC/EF/GH
causes the newly—created directory GH to be nested within existing
directory EF, which in turn, is nested within directory DC, and so on.
The directories AB, DC, and EF must already exist before entering this
command.

You can check the contents of the directory at any time by using the DIR
command to list the directory (see the DIR command in this chapter).

ERROR MESSAGE
o <directory—name>, file already exists

The pathname of the directory to be created already exists.

3-27

HUMAN INTERFACE COMMANDS

o
§
2
:
>
Q
&
Q
Q
=
=
o>
Z
=
67]

DATE

This command sets a new system date or displays the current date and
time. The format is as follows:

DATE’

INPUT PARAMETERS

dd

month

year

QUERY

mm/dd/year

x-195

Two-digit number that specifies the day of the
month.

Designation for the month. You can enter the whol
name (such as AUGUST) or enough characters to
distinguish one month from another (for example,
AU, to distinguish AUGUST from APRIL). You can us
this form for specifying the month only when using
the "dd month year” format.

Numerical designation for the month (for example:
represents January, 2 represents February, etc.).
You can use this form for specifying the month onl
when using the "mm/dd/year” format.

Designation for the year. You can enter this as ¢
two— or four—digit number, as follows:

entered year actual year

0 through 77 2000 through 2077
78 through 99 1978 through 1999
100 through 1977 error

1978 through 2099 1978 through 2099
2100 and up error

Causes DATE to prompt for the date by issuing the
following message:

DATE:

DATE continues to issue this prompt until you ent
a valid date.

3-28

DESCRIPTION

If you set one date parameter, you must set all three; there are no
default settings for individual date parameters. You must separate the
dd, month, and year entries with single blanks.

If you omit the date parameters, DATE displays the current date and time
in the following form:

dd mmm yy, hh:mm:ss
When the Operating System displays the date, it displays only the first
three characters of the month and the last two digits of the year. It

separates the hours, minutes, and seconds of the time with colons.

If you request the date on a non—timing system, DATE displays the
following message:

00:00:00

Refer to the TIME command in this chapter if you wish to set the system
clock while setting the date.

ERROR MESSAGES
e <date>, invalid date

You entered an invalid date. This could result from specifying a
day that is invalid for the month you specified (such as 31 FEB
82), entering characters for the year parameter that do not fall
into the legitimate ranges listed under the year parameter,
entering a month parameter that does not uniquely identify the
month, or entering invalid characters.

o <parameter>, invalid syntax

You specified both a date and the QUERY parameter in the DATE
command.

3-29

DALL

HUMAN INTERFACE COMMANDS

SANVININOD HOVAHHLNI NVINIH

DEBUG

This command allows you to debug your iRMX 86 application jobs in
conjunction with the iSBC 957B hardware package and monitor.

@ . pathname

INPUT PARAMETERS

parameter-string

x-196

pathname Pathname of the file containing the application
program to be debugged.

parameter—string String of required, optional, and default
parameters that can be used in the command line to
load and execute the application program.

DESCRIPTION -

DEBUG loads your specified application program into main memory and
transfers control to the iSBC $57B monitor. You can then use the iSBC
957B monitor to single-step, display registers, and set breakpoints
within the program. Refer to Appendix C for a summary of monitor
commands, and to the USER'S GUIDE FOR THE iSBC 957B iAPX 86, 88 INTERFACE
AND EXECUTION PACKAGE for a complete description of the iSBC 957B
functions.

When you invoke the DEBUG command, it displays the following message:

DEBUG file, <pathname>

where <{pathname> is the pathname of the file containing the application
job to debug. Then DEBUG loads the application job and displays
information about the location of the job's segments and groups. Figure
3-1 shows an example of this output.

The first line of the display lists the token for the application job.
The remaining lines list the base portions of all segments and groups
created by LINK86 when the code was linked. The S(n) and G(n) values are
the same as those that appear on the link map. Therefore, you can match
the base values shown in this display with the offset values shown in the
link map to determine the exact location of a symbol listed in the 1link
map. Refer to the iAPX 86, 88 FAMILY UTILITIES USER'S GUIDE for
information about LINK86 and the link map.

3-30

SEGMENT AND GROUP MAP FOR JOB: A88F
NAME BASE NAME BASE NAME BASE NAME BASE NAME BASE
S(1) 9E4E S(2) 9E32 S(3) 9CFF S(5) 9CEC S(6) A863
S(7) A229 S(8) .A84D S(9) Al52 S(13) 9cIl S(15) 9c85
S(17) 9cé67 S$(18) 9csC
G(1) A229 G(2) Al52
Figure 3-1. Sample DEBUG Display

When DEBUG executes, the iSBC 957B package disables interrupts. This
causes the time-keeping function to stop when code is not executing.
This slowing of the timing function:

e Affects the ability of the Operating System to keep track of the
time—of-day and write its data structures to secondary storage.

e Stops type—ahead from working (see LINE EDITING in Chapter 2).

e Affects the ability of the system to execute time—out tasks that
have provided time limits to system calls (this applies to users
that are interfacing to the Operating System with system calls
other than the UDI system calls.

Unless you use the monitor's NQ command to single-step through code, the
iSBC 957B package cannot tolerate interrupts while single-stepping. The
NQ command disables interrupts while single-stepping, allowing you to
single-step through code without being interrupted by the system clock.

When DEBUG is invoked to debug an application program, it loads the
application program into its own dynamic memory. This means that the
application program obtains dynamic memory from the memory pool of DEBUG,
not from the memory pool of the user session. Therefore, programs that
experience problems with insufficient memory when run independently might
not experience those problems when run under the control of DEBUG.

ERROR MESSAGE
o <exception value> : <exception mnemonic>, command aborted by EH

While processing, the DEBUG command encountered an exceptional

condition. Therefore, the Human Interface's exception handler
aborted the command. The message lists the exception code that
occurred.

3-31

DEBUG

HUMAN INTERFACE COMMANDS

DELETE

This command removes data files and empty directories from secondary
storage. The format is as follows:

x-319

INPUT PARAMETERS

inpath-1list One or more pathnames for the named data files or
empty directories to be deleted. Multiple
pathname entries must be separated by commas.
Separating blanks are optional.

- QUERY Causes the DELETE command to ask for your
permission to delete each file in the list. Prior
to deleting a file, the DELETE command displays
the following query:

<pathname>, DELETE?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry Action

Yory Delete the file.

Eore Exit from DELETE command.

Rorr Continue deleting without further
query.

Any other Do not delete file; query for next
character file in sequence.

DESCRIPTION

The DELETE command allows you to release unused secondary storage space
for new uses by removing empty directories and unneeded data files. To
delete a file, you need not be the owner of the file; however you must
have delete access to the file. If a command or other program is
accessing the file (has a connection to the file) when you enter the
DELETE command, DELETE marks the file for deletion and deletes it when
all connections to the file are gone.

3-32

Non—empty directories cannot be deleted. If you wish to delete a
directory that contains files, you must first delete all its contents.
For example, if you wish to delete a directory named ALPHA whose entire
contents consist of a directory BETA containing a data file SAMP, you
would enter the following command:

DELETE ALPHA/BETA/SAMP, ALPHA/BETA, ALPHA

This would delete all the files contained under ALPHA before deleting the
directory itself.

DELETE displays the following message as it deletes each file or marks
the file for deletion:

<{pathname>, DELETED
ERROR MESSAGE

e <pathname>, DELETE access required

You do not have permission to delete the specified file.

3-33

DELETE

HUMAN INTERFACE COMMANDS

@ logical-name-list

DETACHDEVICE

This command detaches the specified devices and deletes their logical
names. The format of this command is as follows:

INPUT PARAMETER

logical-name— One or more logical names of the physical devices

list that are to be detached. Colons surrounding each
logical name are optional; however, if you use
colons, you must use matching colons. Multiple
logical names must be separated by commas.

FORCE Causes DETACHDEVICE to detach the device even if
connections to files on the device currently exist.

DESCRIPTION

The DETACHDEVICE command allows you to detach a device. After a device

is detached, no volume mounted on that device is accessible for system
use.

Unless you are the system manager (user ID 0), you can detach only the
following devices:

e Devices that were attached with your user ID or WORLD (65535) as
the owner ID

e Devices you originally attached using the ATTACHDEVICE command

e Devices originally attached using the WORLD parameter of
ATTACHDEVICE

DETACHDEVICE returns an error message if you attempt to detach devices
originally attached by other users. This prevents users from detaching
devices belonging to other users and from accidentally detaching system
volumes. However, the system manager can detach all devices.

3-34

x-197

DETACHDEVICE

Unless you specify the FORCE parameter, you cannot detach a device if any
connections exist to files on the device (that is, if other users are
currently accessing the device). However, the FORCE parameter causes
DETACHDEVICE to delete all connections to files on the device before
detaching the device.

After detaching the device and deleting its logical name, the
DETACHDEVICE command displays the following message:

<logical-name>, detached

NOTE

Using the DETACHDEVICE command to
detach the device containing your Human
Interface commands prevents using Human
Interface functions until the system is
reinitialized.

ERROR MESSAGES

<logical name>, can't detach device
<logical name>, <exception value> : <exception mnemonic>

An exceptional condition occurred which prevented DETACHDEVICE
from detaching the device. This message lists the resulting
exception code.

{logical name>, device does not belong to you

The device was originally attached by a user other than WORLD or
you. Thus you cannot detach the device.

<logical name>, device has outstanding file connections

There are existing connections to files on the device. Because
you did not specify the FORCE parameter, DETACHDEVICE does not
detach the device.

<logical name>, device is in use

Another user or program is accessing the device (has a connection

to a file). Therefore, you must specify the FORCE parameter in
order to detach the device.

3-35

HUMAN INTERFACE COMMANDS

ETACHDEVICE

AJVALY V N RN R s mans

<logical name>, outstanding connections to device have been
deleted

There were outstanding connections to files on the volume.
However, because you specified the FORCE parameter, DETACHDEVICE
deleted those connections. This is a warning message that does
not prevent DETACHDEVICE from detaching the device.

3-36

DETACHFILE

This command allows you to terminate the association of a logical name
with a file. The format of this command is as follows:

Commacnnie S——ogeamaneis >

x-198

INPUT PARAMETER

logical-name~list List of logical names, separated by commas, that
represent the files to be detached. Each logical
name must be contain 1 to 12 characters. Colons
surrounding each logical name are optional;
however, if you use colons, you must use matching
colons.

DESCRIPTION

You establish an association between a file and a logical name by
entering the ATTACHFILE command. DETACHFILE breaks this association. It
does this by deleting the logical name. When DETACHFILE detaches a file
in this manner, it displays the following message:

<logical name>, detached
where <logical name> is the name you specified.

You cannot use DETACHFILE to detach devices. DETACHFILE returns an error
message if you make such an attempt.

You cannot use DETACHFILE to detach logical names originally created by

other users. DETACHFILE searches for logical names associated with your
interactive job only.

ERROR MESSAGES

o <exception value> : <exception mnemonic> invalid global job
The Human Interface encountered an internal system problem when

it attempted to remove the logical name from the global job's
object directory. The message lists the resulting exception code.

3-37

HUMAN INTERFACE COMMANDS

ETACHYILE

HUMAN INTERFACE COMMANDS

<logical name>, logical name does not exist

The logical name is not part of your interactive job.

{logical name>, logical name not allowed

The logical name you specified was either :$:, :HOME:, :CI:, or
:CO:. You cannbt detach the files associated with these logical
names.

<logical name>, not a file connection

The logical name you specified is not the logical name of a file.

3-38

DIR

This command lists the names and attributes of the data and directory
files contained in a given directory. The format of the command is as

follows:

@ inpath-list

e
N <>

w
o

LONG

EXTENDED J

J

—

INPUT PARAMETERS

inpath—-1list

FAST

SHORT

ONE

One or more pathnames of the directories to be
listed (the pathnames can represent data files if
the PARENT parameter is also specified). Multiple
directory pathname entries must be separated by
commas. Separating blanks are optional. If no
pathname 1s specified, the user's default
directory is listed.

Lists only the filenames and directory names in
the directory. The output format contains five
columns of filenames unless you also specify the
ONE parameter (see Figure 3-2 at the end of this
command description). FAST is the default if you
omit the listing format.

Lists the file information in a two—column format
(see Figure 3-3 at the end of this command
description).

Lists the output of a FAST or SHORT listing in
single~column format. ONE is the default number
of columns for EXTENDED or LONG. listings.

3-39

HUMAN INTERFACE COMMANDS

SUNVINNUY AU VHAMWLINL IN V ¥uiiia

LONG

EXTENDED

INVISIBLE

PARENT

QUERY

OUTPUT PARAMETERS

TO

Lists file information in a one-line format (see
Figure 3-4 at the end of this command description).

Lists all available information for each data file
or directory file in the directory. The first
line for each file is the same as for the LONG
form. The second line contains the last access
date, creation date, and the accessor list. The
listing is in a double~column format (see Figure
3-5 at the end of this command description).

Lists the invisible files (those beginning with
the characters "R?" or “r?") in addition to the
rest of the files in the directory. If you omit
this parameter, DIR does not display invisible
files.

Causes DIR to display an entry for the directory
specified in the inpath-list in addition to the
files contained in the directory. This parameter
is useful for obtaining information about the root
directory of a volume when using the LONG or
EXTENDED parameters.

Causes the DIR command to prompt you for
permission to list a directory by issuing the
following message:

<{pathname>, DIR?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry Action

Yory List the directory.

E ore Exit from DIR command.

Rorr Continue listing directories without

further query.

Any other Do not list directory; query for the
character next directory, if any.

Copies the directory listing to the specified
destination data file. If the destination file
already exists, DIR displays the following
information:

<{pathname>, already exists, OVERWRITE?

3-40

Enter Y, y, R, or r if you wish to delete the
existing file. Enter any other character if you
do not wish to delete the file.

If you omit the TO/OVER/AFTER preposition and the
output pathname, TO :CO: is the default.

OVER Copies the directory listing to the specified
output file and writes over (replaces) the
previous contents.

AFTER Appends the directory listing to the current
contents of the specified output file.

outpath-list One or more pathnames of the files to receive the
directory listing. Multiple pathname entries must
be separated by commas. Separating blanks are
optional. If you omit the preposition and the
outpath—-list, the default destination is the
user's console screen (TO :CO:).

DESCRIPTION

You do not need to be the owner of a directory to list its contents with
DIR; however, you must have LIST access to the directory.

The amount of information listed for each file depends upon what listing
format you specify (FAST, SHORT, LONG, or EXTENDED) in the DIR command.
An example of each type of listing format is provided at the end of the
DIR command description in Figures 3-2 through 3-5 respectively. Table
3-3, which follows the figures, provides an explanation of the
illustrated headings.

If you want to list the default user directory but also wish to specify a
listing format other than FAST, use the default directory name
explicitly. For example:

DIR :$: EXTENDED

displays a listing of the default directory in the EXTENDED format. Note
that your default directory is determined by your user ID.

Figures 3~2, 3-3, 3-4, and 3-5 show output examples for FAST, SHORT,
LONG, and EXTENDED listing formats respectively. Table 3-3 defines the
displayed column headings.

If a file name begins with the characters "R?” or "r?", it is an

invisible file. Normally DIR does not display invisible files. However,
you can specify the INVISIBLE parameter to display these files.

3-41

DIR

HUMAN INTERFACE COMMANDS

» . -

MIVALL V FUF U \/A/ WAL ¥ LACAL LWL SR A% v

If you do not know the name of the directory that contains a file (the
file's parent directory), you can still display its contents by using the

PARENT parameter.
you specify.

Rather, it displays the parent directory of the file

If you use the TO preposition to copy the output of the DIR command to a
file and specify the pathname of an existing file, DIR displays the
following information:

Enter Y, y, R, or r if you wish to delete the existing file.
other character if you do not wish to delete the file.

<{pathname>, already exists, OVERWRITE?

Enter any

-

-DIR alpha

03 MAR 82 04:25:40
DIRECTORY OF alpha ON mvol

fnamel fname2 fname3 fname4 fname5
fname6 fname7 fname8 fname9 fnamelO

fnamell . .

J

- Figure 3-2.

3-42

FAST Directory Listing Example (Default Listing Format)

=DIR mydirectory2 §

.

03 MAR 82 21:55:24
DIRECTORY OF mydirectory2 ON myvol

NAME AT ACC BLKS LENGTH NAME AT © ACC BLKS LENGTH
append -R-—- 2 1425 alpha.obj DRAU 3 2871
REFERENCE DR ~L-- 1 10 DATA DR DLAC 1 4
LEMONADEIT DRAU 123456789 123456789
time DRAU 6 5374 detachdevice DRAU 4 3414
test -R-—- - 5 4415 schedule -—U 7 6976
testprog.a86 -RA- 2 2040 DATABASE.LST ~RAU 11 10336
EXPERIMENTAL DR ~LAC 1 20 BACKUP DR DLAC 1 10

13 FILES 44 BLOCKS 36895 BYTES

Figure 3-3. SHORT Directory Listing Example

-DIR mydirectoryl L

03 MAR 82 21:55:24
DIRECTORY OF mydirectoryl ON myvol

GRAN

NAME AT ACC BLKS LENGTH VOL FIL OWNER LAST MOD
ed -R-- 11 1057 1024 1 # 47 02 MAR 82
programs DR DL-- 30 30185 1024 1 # 47 03 MAR 82
fmat DRAU 1 39 1024 1 # 655535 08 NOV 81
OBJFILE --=U 3 2895 1024 1 # 47 18 DEC 81
ALPHAl.P86 - DLAC 2 1304 1024 1 # 50 22 OCT 81
ALPHAl.MP1 DLAC 6 5397 1024 1 # 50 22 OCT 81
manuals DR ~-L—- 1 304 1024 1 # 47 02 JUL 80

7 FILES 54 BLOCKS 41181 BYTES

Figure 3-4. LONG Directory Listing Example

3-43

HUMAN INTERFACE COMMANDS

MALAY V F RS B\ Al LAERS ¥ e emmmmeee e

=-DIR mydir E
03 MAR 82 21:55:24
DIRECTORY OF mydir ON myvol
GRAN
NAME AT ACC BLKS LENGTH VOL FIL OWNER LAST MOD
programs DR DL-- 30 30185 1024 1 # 47 03 MAR 82
CREATION: Ol JAN 81 04:05:44 ACCESSORS ACC
LAST ACC: 03 MAR 82 05:52:33 # 47 DL--
LAST MOD: 03 MAR 82 05:52:33 # 50 ~LA-
82 =L~-
ed =R-- 11 1057 1024 1 # 47 02 MAR 82
CREATION: 11 NOV 81 12:24:05 ACCESSORS ACC
LAST ACC: 02 MAR 82 14:22:16 # 47 -R-—-
LAST MOD: 02 MAR 82 14:22:16
fmat DRAU 1 39 1024 1 # 65535 08 NOV 81
CREATION: Ol NOV 81 08:54:39 ACCESSORS ACC
LAST ACC: 03 MAR 82 14:56:59 # 65535 DRAU
LAST MOD: 08 NOV 81 20:44:01
testdir DR DLAC 1 32 1024 1 # 47 01 MAR 82
CREATION: 02 FEB 82 15:02:42 ACCESSORS ACC
LAST ACC: 03 MAR 82 09:32:53 # 47 DLAC
LAST MOD: Ol MAR 82 13:13:07 # 50 ~LA-
65535 =L--
4 FILES 43 BLOCKS 32213 BYTES
Figure 3-5. EXTENDED Directory Listing Example

3-44

Table 3-3. Directory Listing Headings

Heading Meaning

NAME l4-character field for the file name.

AT File attribute, where:

DR = Directory
MP = Bit map file
blank = Data file

ACC File access rights of the user who entered the DIR command,
where:

------- Delete
N I List
Directories: l ----- Add
l[-——- Change
DLAC
" DRAU
ll--- Update
Data Files: }|'==——= Append
——=—=== Read
——————— Delete

BLKS Up to nine-digit number (five digits on SHORT listing)
giving the volume-granularity units allocated to the file.
On the SHORT display, if the number of digits exceeds five,
DIR displays the file in the nine—-digit form (see the
LEMONADEIT file in Figure 3-3).

LENGTH 10-digit number (7 digits on SHORT listing) giving the
length of the file in bytes. On the SHORT form, if the
number of digits exceeds 7, the file is displayed in the
10-digit form (see the LEMONADEIT file in Figure 3-3).

VOL Five-digit number giving the volume granularity in bytes.

FIL Three—digit number giving the granularity of the file in
multiples of volume granularity.

OWNER l4-character, alphanumeric owner name.

LAST MOD Date of last file modification.

LAST ACC Date of last file access.

CREATION Date of file creation.

3-45

DIR

HUMAN INTERFACE COMMANDS

VN mw W e ——

(VAR 'Y

Table 3-3. Directory Listing Headings (continued)

Heading Meaning

ACCESSORS User IDs of users who have access to the file.

ACC Access rights of the corresponding user; The format of
this field is identical to ACC as described previously.

ERROR MESSAGES

e no directory files found

None of the files you specified were directories.

e <pathname>, READ access required

You do not have read (list) access to the directory.

e <pathname>, UPDATE or ADD access required

Either you cannot overwrite the information in a file because you
do not have update access to it, or you cannot copy information
to a new file because you do not have add entry access to the
file's parent directory.

EXAMPLES

The examples that follow show how a directory's files are listed when you
use your default prefix in a directory's pathname. In the examples,
directory names are enclosed in triangles; data file names are enclosed
in rectangles.

Assume you have the following directory structure for your files:

3-46

x-324

J

Example 1:

Suppose your default prefix 1s :F0:Q. This example shows the files
that would be listed in response to various DIR commands. It shows
the pathnames that you could enter and the resulting files that DIR
would list.

Pathname Files Listed

omitted A, £

f not allowed because £ is a data file
A bb, CB, d

A/d not allowed because d is a data file
A/CB e, f

A/CB/e not allowed because e is a data file

Example 2:

Suppose your default prefix is :F0:Q/A. This example also shows the
files that would be listed in response to various DIR commands.

Pathname Files Listed

omitted bb, CB, d

A not allowed because directory A does not
contain an entry A

CB e, £

3-47

DIR

HUMAN INTERFACE COMMANDS

SANVININOD IDVAYHLNI NVINIH

—(msxvemr\D—Qoglcu nam:)— @
')
(oven) outpath

DISKVERIFY

This command invokes a utility which verifies the data structures of
iRMX 86 physical and named volumes. This utility can also be used to
reconstruct portions of the volume and perform absolute editing on the
volume. The format of the DISKVERIFY command is as follows:

INPUT PARAMETERS

NAMED1

2l

tlogical-name: Logical name of the secondary storage device

containing the volume.

DISK Displays the attributes of the volume (such as
type of volume, device granularity, block size,
number of blocks, interleave factor, extension
size, volume size, and number of fnodes) and
returns control to you at the Human Interface
level. You can then enter any Human Interface

command.

If you omit this parameter (and the VERIFY
parameter), the utility displays a sign—on message

and the utility prompt (*).

You can then enter

individual disk verification commands. These
commands are described in the iRMX 86 DISK
VERIFICATION UTILITY REFERENCE MANUAL.

3-48

VERIFY or V

NAMEDI or NI

NAMED or N

ALL

NAMED2 or N2

PHYSICAL

DISKVERIFY

Performs a verification of the volume. If you
specify this parameter and omit the options, the
utility performs the NAMED verification.

1f you specify this parameter, the utility
performs the verification function and returns
control to you at the Human Interface level. You
can then enter any Human Interface command.

If you omit this parameter (and the DISK
parameter), the utility displays a sign-on message
and the utility prompt (*). You can then enter
individual disk verification commands. These
commands are described in the iRMX 86 DISK
VERIFICATION UTILITY REFERENCE MANUAL.

VERIFY option that applies to named volumes only.
This option checks the fnodes of the volume to
ensure that they match the directories in terms of
file type and file hierarchy. (Refer to the
description of the FORMAT command for more
information about fnodes.) This option also
checks the information in each fnode to ensure
that it is consistent. As a result of this
option, DISKVERIFY displays a list of all files om
the volume that are in error, with information
about each file. Refer to the iRMX 86 DISK
VERIFICATION UTILITY REFERENCE MANUAL for more
information.

VERIFY option that performs both the NAMED! and
NAMED2 verification functions on a named volume.
If you omit the VERIFY option, NAMED is the
default option.

VERIFY option that applies to both named and
physical volumes. For named volumes, this option
performs both the NAMED and PHYSICAL verification
functions. For physical volumes, this option
performs only the PHYSICAL verification function.

VERIFY option that applies to named volumes only.
This option checks the allocation of fnodes on the
volume, checks the allocation of space on the
volume, and verifies that the fnodes point to the
correct locations on the volume. Refer to the
iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL
for more information.

VERIFY option that applies to both named and

physical volumes. This option reads all blocks on
the volume and checks for I/0 errors.

3~49

HUMAN INTERFACE COMMANDS

DISKVERIFY

SANVININOD HOVAYHLNI NVINOH

LIST

OUTPUT PARAMETERS

TO

OVER

AFTER

outpath

DESCRIPTION

VERIFY option that you can use with other VERIFY
options that, either explicitly or implicitly,
specify the NAMED] option. When you use this
option, the file information generated by VERIFY
is displayed for every file on the volume, even if
the file contains no errors. Refer to the iRMX 86
DISK VERIFICATION UTILITY REFERENCE MANUAL for
more information.

Copies the output from the disk verification
utility to the specified file. If the file
already exists, DISKVERIFY displays the following
information:

<{pathname>, already exists, OVERWRITE?

Enter Y, y, R, or r to write over the existing
file. Enter any other character if you do not
wish to overwrite the file.

If no preposition is specified, TO :CO: is the
default.

Copies the output from the disk verification
utility over the specified file.

Appends the output from the disk verification
utility to the end of the specified file.

Pathname of the file to receive the output from
the disk verification utility. If you omit this
parameter and the TO/OVER/AFTER preposition, the
utility copies the output to the console screen
(TO :C0:). You cannot direct the output to a file
on the volume being verified. If you attempt
this, the utility returns an error message.

When you enter the DISKVERIFY command, the utility responds by displaying
the following line:

iRMX 86 DISK VERIFY UTILITY, Vx.y

where Vx.y is the version number of the utility. If you specify the
VERIFY or DISK parameter in the DISKVERIFY command, the utility performs

the operation specified in the parameter and copies the output to the
console (or to the file specified by the outpath parameter).

3-50

DISKVERIFY

Refer to the iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL for a
description of the output. After generating the output, the utility
returns control to, the Human Interface, which prompts you for more Human
Interface commands. The following is an example of a DISKVERIFY command
that uses the VERIFY option:

-DISKVERIFY :Fl: VERIFY NAMED2
iRMX 86 DISK VERIFY UTILITY , Vx.y '
DEVICE NAME = Fl ¢ DEVICE SIZE = 0003E900 : BLOCK SIZE = 0080

'NAMED2' VERIFICATION
BIT MAPS 0O.K.

The following is an example of a DISKVERIFY command that uses the DISK
option:

=DISKVERIFY :F2: DISK
iRMX 86 DISK VERIFY UTILITY, Vx.y
Device name = WFO

Named disk, Volume name = UTILS

Device gran = 0080
Block size = 0080
No of blocks = 0000072D : No of Free blocks = 00000408
Volume size = 0003ES00
Interleave = 0005
Extension size = 03
No of fnodes =

0038 : No of Free fnodes = 0022

However, if you omit the VERIFY and DISK parameters from the DISKVERIFY
command, the utility does not return control to the Human Interface.
Instead, it issues an asterisk (*) as a prompt and waits for you to enter
individual DISKVERIFY commands. The following is an example of such a
DISKVERIFY command:

-DISKVERIFY :Fl:
*

After you receive the asterisk prompt, you can enter any of the
DISKVERIFY commands listed in the iRMX 86 DISK VERIFICATION UTILITY
REFERENCE MANUAL.

ERROR MESSAGES
e argument error

The VERIFY option you specified is not valid.

° command syntax error

You made a syntax error when entering the command.

3-51

HUMAN INTERFACE COMMANDS

DISKVERIFY

SANVININOD HOVAYHLNI NVINNH

e device size inconsistent
size in volume label = <valuel> : computed size = <value2>

When the disk verification utility computed the size of the
volume, the size it computed did not match the information
recorded in the iRMX 86 volume label. It is likely that the
volume label contains invalid or corrupted information. This
error is not a fatal error, but it is an indication that further
error conditions may result during the verification session. You
may have to reformat the volume or use the disk verification
utility to modify the volume label. Refer to the iRMX 86 DISK
VERIFICATION UTILITY REFERENCE MANUAL for more information about
the disk verification utility commands.

s

° not a named disk

You tried to perform a NAMED, NAMED1, or NAMED2 verification on a
physical volume.

The NAMED1, NAMED2, and PHYSICAL verification options can also produce
error messages. Refer to the iRMX 86 DISK VERIFICATION UTILITY REFERENCE
MANUAL for more information about these messages.

EXAMPLE

The following command performs both named and physical verification of a
named volume.

—DISKVERIFY :Fl: VERIFY ALL

iRMX 86 DISK VERIFY UTILITY, Vx.y
DEVICE NAME = Fl : DEVICE SIZE = 0003E900 : BLK SIZE = 0080

'NAMED1' VERIFICATION
'NAMED2' VERIFICATION
BIT MAPS O.K.

'PHYSICAL' VERIFICATION
NO ERRORS

3-52

DOWNCOPY

This command copies files from a volume on an iRMX 86 secondary storage
device to a volume on an ISIS-II secondary storage device via the
iSBC 957B Interface and Execution package. The format is as follows:

DOWNCOPY inpath-list

INPUT PARAMETERS

inpath-list

QUERY

One or more iRMX 86 pathnames for files, separated
by commas, that are to be copied to ISIS-II
secondary storage. Separating blanks between
pathnames are optional. The files may be copied
in the listed sequence either on a one-for-one
basis or concatenated into one or more files.

Causes the Human Interface to prompt for
permission to copy each iRMX 86 file to the listed
ISIS-II destination file. Depending on which
preposition you specify (TO, OVER, or AFTER), the
Human Interface prompts with one of the following
queries:

<{pathname>, copy down TO <outfile>?
<pathname>, copy down OVER <outfile>?
<pathname>, copy down AFTER <outfile>?

Enter one of the following in response to the
query:

Entry Action

Yory Copy the file.

E or e Exit from the DOWNCOPY command.

Rorr Continue copying files without
further query.

Any other Do not copy this file; query

character for the next file in sequence.

3-53

HUMAN INTERFACE COMMANDS

DOWNCOPY

SUNVININOD HOVIHALNI NVINNH

OUTPUT PARAMETERS

TO Reads iRMX 86 files and copies them TO new ISIS-II
files in the listed sequence. If the specified
output files already exist in the ISIS-II
directory when the TO parameter is used, DOWNCOPY
displays the following message:

<filename>, already exists, OVERWRITE?

Enter Y, y, R, or r if you wish to delete the
existing file. Enter any other character if you
do not wish the existing file to be deleted.

If ‘no preposition is specified, TO :C0: (ISIS-II
console screen) is the default. If more input
files than output files are specified, the
remaining input files are appended to the end of
the last-specified ISIS-II file.

OVER Copies the iRMX 86 input files OVER the existing
ISIS~II destination files in the specified
sequence. If you specify multiple input files and
one output file, DOWNCOPY appends the remaining
input files to the end of the output file.

AFTER Copies the iRMX 86 input files, in sequence, AFTER
the end of data on the existing ISIS-II
destination files.

outfile-list One or more ISIS-II filenames for the output
files. Multiple filenames must be separated by
commas. Separating blanks are optional. If the
preposition and output file defaults are used in
the command line, the output goes to the ISIS-II
console screen.

DESCRIPTION

The DOWNCOPY command cannot be used to copy directories from an iRMX 86
system to a Series III microcomputer development system; only files can
be copied.

Before you enter a DOWNCOPY command on the iRMX 86 console keyboard, your
target system must be connected to a Series I1I system via the iSBC 957B
package, and the package must be running. To do this, you must start
your iRMX 86 system from the Series III terminal (either by loading the
software into the target system and using the monitor G command to start
execution, or by using the monitor B command to bootstrap load the
software). DOWNCOPY does not function if you start up your system from
the iRMX 86 terminal or if you establish the link between the Series III
system and target system after starting up your iRMX 86 system.

3-54

When DOWNCOPY copies files to the development system, it turns off all
ISIS-II file attributes.

As each file in the input 1list is copied, one of the following messages
will be displayed on the Human Interface console output device (:CO:):

<pathname>, copied down TO <out-filename>

<{pathname>, copied down OVER <out-filename>

<{pathname>, copied down AFTER <out-filename>
When the DOWNCOPY command is executing, the iSBC 957B package disables
interrupts. This affects services such as the time-of-day clock. Also,

the Operating System is unable to receive any characters that you
type—~ahead while the DOWNCOPY command is executing.

ERROR MESSAGES

e <pathname>, DELETE access required
DOWNCOPY could not replace an existing ISIS-II file because the
file is write-protected.

e <pathname>, ISIS ERROR: <nnn>
An ISIS-II Operating System error occurred when DOWNCOPY tried to
transfer the file to the Microcomputer Development System. Refer
to the INTELLEC SERIES III MICROCOMPUTER DEVELOPMENT SYSTEM
CONSOLE OPERATING INSTRUCTIONS for a description of the resulting
error code.

e ISIS link not present

The iRMX 86 system is not connected to the development system via
the iSBC 957B package.

3-55

DOWNCOPY

HUMAN INTERFACE COMMANDS

o
c
=
o>
z
4
=
!
=
<
>
Q
&
Q
=)
2
=
>
Z
=)
n

FORMAT

This command formats or reformats a volume on an iRMX 86 secondary
storage device, such as a diskette, hard disk, or bubble memory. The

format is as follows:

J

volume-name

num

\—

INPUT PARAMETERS

tlogical-name:

volume—name

{

\.

Logical name of the physical device-unit to be
formatted. You must surround the logical name
with colons. Also, you must not leave space
between the logical name and the succeeding volume
name parameter.

Six-character, alphanumeric ASCII name, without

_embedded blanks, to be assigned to the volume. If

FILES=num

you include this parameter, you must not leave
spaces between the logical name and the volume
name.

Defines the maximum decimal number of user files
that can be created on a NAMED volume. (This
parameter is not meaningful when formatting a
PHYSICAL volume and is ignored if specified for
such volumes.) FORMAT uses the information
specified in this parameter to allocate space for
the number of files that will be created on the
NAMED volume. The range for the FILES parameter
is 1 through 32,761, although the maximum number
of user files you can define depends on the
settings of the GRANULARITY and EXTENSIONSIZE
parameters (as explained in the "Description”
portion of this command write-up). When you use
this parameter, FORMAT creates room for six
additional files for internal system use. If not
specified, the default is 50 user files.

3-56

x-200

FORCE

GRANULARITY=num

EXTENSIONSIZE=num

INTERLEAVE=num

Forcibly deletes any existing connections to files
on the volume before formatting the volume. If
you do not specify FORCE, you cannot format the
volume if any connections to files on the volume
still exist.

Volume granularity; the minimum number of bytes to
be allocated each time a file's size is increased
on a NAMED volume. (This parameter is not
meaningful for PHYSICAL volumes, and is ignored if
specified for such volumes.) FORMAT rounds the
value you specify up to the next multiple of the
device granularity. Then it places the decimal
number in the header of the volume, where it
be¢omes the default file granularity when a file
is created on the volume. The range is 1 through
65,535 (decimal) bytes, although the maximum
allowable volume granularity depends on the
settings of the FILES and EXTENSIONSIZE parameters
(as explained in the "Description” portion of this
write—up). If not specified, the default
granularity is the device granularity. Once the
volume granularity 1s defined, it applies to every
file created on that volume.

NOTE

Using a large volume granularity
(in excess of 1024), might cause
users to exceed their memory limits
when executing programs that reside
on the volume. This can occur
because the Operating System uses
the volume granularity as a minimum
buffer size when reading and
writing files.

Size, in bytes, of the extension data portion of
each file. (This parameter is not meaningful for
PHYSICAL volumes, and is ignored if specified for
such volumes.) The range is 0 through 255
(decimal), although the maximum allowable
extension size depends on the settings of the
FILES and GRANULARITY parameters (as explained in
the "Description” portion of this write-up). If
not specified, the default extension size is 3
bytes.

Interleave factor for a NAMED or PHYSICAL volume.
Acceptable values are 1 through 255 decimal. If
not specified, the default value is 5. See the
interleave discussion under “"Description” in this
command write—up.

3-57

FORMAT

HUMAN INTERFACE COMMANDS

FORMAT

SANVIWINOD HOVIHALNI NVIN(H

NAMED The volume can store only named files; that is,
the volume can hold many files (up to the number
of fnodes allocated), each of which can be
accessed by its pathname. A diskette or hard disk
surface are examples of devices that would be
formatted for named files. If neither NAMED nor
PHYSICAL is specified, the volume is formatted for
the file specified when you attached the device
(with the ATTACHDEVICE command). '

PHYSICAL The volume can be used only as a single, physical
file. The GRANULARITY and FILES parameters are
not meaningful when PHYSICAL is specified for the
volume. If neither NAMED nor PHYSICAL is
spécified, the volume is formatted for the file
type specified when you attached the device (with
the ATTACHDEVICE command).

DESCRIPTION

Every physical device—unit used for secondary storage must be formatted
before it can be used for storing and then accessing its files. For
example, every time you mount a previously unused diskette into a drive,
you must enter a FORMAT command to format that diskette as a new volume
before you can create, store and access files on it.

Once a volume is formatted, its name becomes a volume identifier when you
display the root directory of the volume, and the name appears in the
directory's heading. Although the Human Interface uses the volume name
in its own internal processing when you access the volume, you need not
specify the volume name in any subsequent command after the volume is
formatted. You must specify only the logical name of the secondary
storage device that contains the volume.

Volume Name

The volume name allows you to identify a mass storage volume by a
recorded name. You will see this name when you ask for a DIRectory
listing of any directory on the volume. For diskettes, a volume name
gives you a method for identifying a volume in case the stick—-on label on
the diskette gets lost or destroyed. '

Once the volume is formatted, you do not need to specify the volume name
in commands -- you identify the volume with its logical name.

3-58

Files

You can specify the number of files reserved for user files with the
FILES parameter. Each time you create a file on the volume, the
Operating System records information about the file in an unused area of
the volume, and later uses this information to determine the location of
the file on the volume.

Internal Files

When you format a named volume, FORMAT creates six internal system
files. It names three of these files and lists their names in the root
directory of the volume. °‘The files are:

file description
R?SPACEMAP Volume free space map
R?FNODEMAP Free fnodes map
R?BADBLOCKMAP Bad blocks map

It grants the user WORLD read access to these files. Refer to the
iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL for more information
about these files.

Root Directory

The root directory lists the user who formats the volume as the owner,
giving that user all access rights. No other user has access to the root
directory until the owner explicitly grants access. The owner can grant
other users access to the volume via the PERMIT command described later
in this chapter. However, because the owner has all access rights to the
root directory, the owner can obtain exclusive access to the volume, and
can obtain delete access to any file created on the volume, even files
created by other users.

Extension Data

Each file contains a field that stores extension data for its associated
file. An operating system extension can access and modify this extemsion
data by invoking the ASGETSEXTENSIONSDATA and ASSETSEXTENSIONSDATA system
calls (refer to the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL for more
information). When you format a volume, you can use the EXTENSIONSIZE
parameter to set the size of the extension data field in each fnode.
Although you can specify any size from 0 to 255 bytes, the Human
Interface requires all fnodes to have at least 2 bytes of extemsion data.

3-59

FORMAT

HUMAN INTERFACE COMMANDS

FORMAT

SANVIWINOD HOVAYHLNI NVINIH

Volume Granularity

The default volume granularity is always the granularity of the physical
device for the volume. For example, if the default granularity for a
device is 128 bytes of secondary storage, the I/0 System will

~automatically allocate permanent storage to each new file you create on

that volume in multiples of 128 bytes, regardless of whether the file
requires the full amount.

Relationship between FILES, GRANULARITY, and EXTENSIONSIZE

Although the FILES, GRANULARITY, and EXTENSIONSIZE parameters have
maximum values which are listed in the parameter descriptioms, the
combination of these parameters must also satisfy the following formula:

(87 + EXTENSIONSIZE) x (FILES + 6) / GRANULARITY < 65535

where all numbers are decimal. FORMAT displays an error message if the
combination of parameter values exceeds the limit.

Interleave Factor

The interleave factor applies to volumes formatted either for NAMED or
PHYSICAL files. The interleave factor specifies the logical sector
sequence. The interleave specification maximizes access speed for the
files on a given volume by matching the time it takes to read sequential
sectors to time it takes the system to process the data. For example, an
interleave factor of 5 for a flexible disk drive means that, for each
file, the I/0 System reads and writes every fifth sector on the diskette,
starting with an index of 1. (Hard disk systems may be different.) With
the appropriate interleave factor, the 1/0 System does not need to wait
for the disk to make a complete revolution before it accesses the next
sector; the next sector by an increment of 5 is ready to be accessed for
read/write by the time the previously accessed sector has been processed.

Output Display

The FORMAT command displays one of the following messages when volume
formatting is completed. For physical volumes:

volume (<volume name>) will be formatted as a PHYSICAL volume
device gran. <number>
interleave <number>
volume size <k-number> K (or M)

volume formatted

3-60

For named volumes:

volume (<volume name>) will be formatted as a NAMED volume

granularity . = <number> sides = <gides>
interleave = <{number> density = <{density>
files = <number> disk size = <{d-size>
extensionsize = <{number>

volume size <k-number> K (or M)

volume formatted

where:

<{volume name> - Volume name specified in the FORMAT command.

<number> .Decimal number as specified in the command (or the

default)

<k-number> Volume size in K (1024-byte units) or M

(1048576-byte units). FORMAT displays the volume
size in Kbyte units unless the size is greater
than 25 Mbytes.

<sides> Number of sides of the volume that will be

formatted (1 or 2). This field is displayed only
for flexible diskettes in which FORMAT can
recognize this characteristic.

{density> Density at which the volume will be formatted

(single or double). This field is displayed only
for flexible diskettes in which FORMAT can
recognize this characteristic.

{d-size> Size of the volume (8 or 5.25). This field is

displayed only for flexible diskettes in which
FORMAT can recognize this characteristic.

ERROR MESSAGES

<logical name>, can't attach device
<logical name>, <exception value> : <exception mnemonic>

FORMAT cannot attach the device for formatting, or it cannot
re—attach the device (that is, restore it to its original
condition) after formatting takes place.

{logical name>, can't detach device
<logical name>, <exception value> : <exception mnemonic>

FORMAT cannot detach the device for formatting, which means that
the volume does not exist, the volume is busy, or the device on
which the volume is mounted is not currently attached to the
system.

3-61

FORMAT

HUMAN INTERFACE COMMANDS

FORMAT

SANVINNOD HOVIYHLNI NVINOH

<logical name>, device is in use
You cannot format the volume because there are outstanding

connections to files on the volume and you did not specify the
FORCE parameter.

{vol-name>, fnode file size exceeds 65535 volume blocks

The values you specified for fnode size, granularity, and
extension data size cause the formula listed in the "Description”
section to exceed its limit.

<number>, invalid ‘number

You specified an out-of-range number for any of the FILES,
GRANULARITY, EXTENSIONSIZE, or INTERLEAVE parameters.

<logical name>, outstanding connections to device have been
deleted

There were outstanding connections to files on the volume.
However, because you specified the FORCE parameter, FORMAT

deleted those connections. This is a warning message that does
not prevent FORMAT from formatting the volume.

0085 : ESLIST, too many values

You entered multiple logical-name/volume-name combinations
separated by commas. FORMAT can format only one volume per
invocation.

<volume name>, volume name is too long

FORMAT requires the volume name you specify to be 6 characters or
less.

3-62

. INITSTATUS

This command displays the initialization status of Human Interface
terminals. The format of this command is as follows:

x-201

DESCRIPTION

INITSTATUS displays at the user terminal the initialization status of all gg
Human Interface terminals. Figure 3-6 illustrates the format of the

INITSTATUS display. g

N -

Q

O

=

TERMINAL CONFIG DEVICE INIT USER JOB USER Q

DEVICE NAME EXCEP EXCEP EXCEP STATE ID ID <

.TO. 0000 0000 0000 LE 1 65535 é

.Tl, 0000 0000 0000 ~-E 2 1 Eﬂ

.T3. 0000 0002 - Z

—— L]

. T4, 0021 o

<

=

=)

o)

Figure 3-6. INITSTATUS Display

The columns listed in Figure 3-6 contain the following information.

TERMINAL The physical name of the terminal, as defined when the
DEVICE NAME iRMX 86 PC System was configured. Periods surround
each name.

CONFIG EXCEP Hexadecimal condition code that the Human Interface
received when it attempted to-interpret the terminal
definition and user definition files (refer to
Chapter 6 for more information). A zero value
indicates a normal condition. Nonzero values indicate
exceptional conditions. Refer to Appendix B for a
list of exception codes.

DEVICE EXCEP Hexadecimal condition code that the Human Interface
received when it originally attached the terminal as a
physical device.

3-63

INITSTATUS

SANVININOD HOVAYHALNI NVINNH

INIT EXCEP

USER STATE

JOB ID

USER ID

ERROR MESSAGE

Condition code that the Human Interface received
when it created a job for the interactive session.

Two characters that indicate the current state of
the terminal. The first character can be either:

L The terminal is locked and cannot be
reinitialized (refer to the LOCK command
later in this chapter).

- The terminal is unlocked.

The second character can be either:

E The Human Interface created the
interactive job associated with this
terminal and the job exists.

- The interactive job does not exist.

A sequential number that the Human Interface
assigns to the interactive job during
initialization. You must specify this number as a
parameter in the JOBDELETE command in order to
delete the corresponding interactive job.

User ID associated with the interactive job. This
is the identification of the user that the Human
Interface associates with the job when the user
begins a Human Interface session.

® not a multi-access system

The Human Interface cannot return information about terminals
because it is not configured for multi-access. This message will
not be returned for the Preconfigured iRMX 86 Operating System.

3-64

JOBDELETE

This command deletes a running interactive job. The system manager can
use this command to delete any interactive job. Other users can delete
only those interactive jobs that have the same user ID that they have.
The format of this command is as follows:

JOBDELETE @

x-202

where:
job~id-1list One or more job IDs, separated by commas, of the
interactive jobs to be deleted. You can obtain
the IDs of jobs by invoking the INITSTATUS command
(described earlier in this chapter).
DESCRIPTION

The JOBDELETE command allows users to delete interactive jobs. Deleting
an interactive job causes the Human Interface to terminate the
corresponding user session.

When JOBDELETE attempts to delete a job, it first attempts to delete the
job's offspring jobs (for example, a SUBMIT file). It deletes multiple
levels of offspring jobs. However, JOBDELETE cannot delete any
interactive job (or offspring) that contains extension objects. Refer to
the iRMX 86 NUCLEUS REFERENCE MANUAL for information about extension
objects.

Normally, when a user's interactive job is deleted, the Human Interface
recreates the interactive job, thus restarting the user session.

However, if the LOCK command (described later in this chapter) has been
specified for the user's terminal, the Human Interface does not
automatically recreate the user's interactive job after a JOBDELETE
command. Therefore, the system manager can use the combination of LOCK
and JOBDELETE to remove users from the system prior to a system shutdown.

As JOBDELETE deletes each job, it displays the following message at the
user terminal (:CO:):

<job-ID>, deleted

where <job~ID> is the identifier of the deleted job.

3-65

HTITMAN TNITIIRT AN MO AT

JOBDELETE

SANVINNOD HOVAYALNI NVINOQH

ERROR MESSAGES

<job-ID>, does not exist

The interactive job associated with the identifier <{job-ID> does
not exist. It has already been deleted.

<{job-1ID>, invalid job id

The number {job-ID> is not a job ID that is associated with any
terminal managed by the Human Interface.

<{job-1ID>, job does not belong to you

The user who attempted to delete the interactive job does not
have the same user ID as the interactive job or is not the system
manager.

<{job~ID>, not deleted
<job-1ID>, <exception value> : <exception mnemonic>
An exceptional condition occurred, preventing JOBDELETE from

deleting the job <job-ID>. JOBDELETE displays the exception code
that resulted.

3-66

LOCK

This command prevents the Human Interface from automatically recreating
the interactive job for a terminal once that interactive job has been
deleted. This process is called locking the terminal. The system
manager can use this command to lock any terminal. Other users can lock
only those terminals whose interactive jobs have ‘the same user ID that
they have. The format of this command is as follows:

al-name-list
(%)
u x-203

where:
terminal-name- One or more terminal device names, separated by
commas, of the terminals to be locked. You can
obtain the terminal device names by invoking the
INITSTATUS command (described earlier in this
chapter).
* A special character indicating that all configured
terminals should be locked.
DESCRIPTION

The system manager can use the LOCK command in conjuction with the
JOBDELETE command either to selectively delete users from the system or
to shut down the entire system. LOCK prevents the Human Interface from
recreating a user's interactive job once that job has been deleted.
Interactive jobs can be deleted in any of the following ways:

o As a result of the JOBDELETE command (described earlier in this
chapter)

e By entering an end-of-file character (CTRL/z) at the terminal

As LOCK locks each terminal, it displays the following message to the
user terminal (:C0:): '

<{terminal—-name>, locked

where {terminal-name> is the terminal device name of the locked terminal.

3-67

n
%
=
3
S
=
®
<
=
=
=
5
as)

LOCK

SANVININOD HOVAYHLNI NVINIH

ERROR MESSAGES

¢ lock not allowed
You attempted to lock your own terminal. Only system managers
can lock their own terminals.

e <terminal-name>, not found
A terminal with device name <{terminal~name> is not configured
into your application system.

e not a multi-access system

The LOCK command does not function if the Human Interface is
configured for single—access only.

3-68

PERMIT

This command allows you to grant or revoke user access to files that you
own. The format of this command is as follows:

USER=userlist

=4
O,

J

INPUT PARAMETERS

pathname-1list One or more pathnames, separated by commas, of the
files that are to have their access rights or list
of accessors changed.

access Access characters that grant or rescind the
corresponding access to the file, depending on the
value parameter that follows. The possible values

include:
value
D

LorR

Cor U

3-69

access

Delete

List (for directories) and
read (for data files)

Add entry (for directories)
and append (for data files)

Change (for directories) and
Update (for data files)

Rescinds all access not
explicitly granted (used
without an accompanying value)

HUMAN INTERFACE COMMANDS

PERMIT

SANVININOD HOVAHHLNI NVINNH

value

user—list

DATA

DIRECTORY

If specified without an accompanying value, each
access character grants the specified access.
Specifying N alone rescinds all access and removes
the users specified with the USER parameter from
the file's access list. Specifying N with other
characters grants the access specified by those
characters and rescinds all other access. You can
use L and R interchangeably for both data files
and directories; likewise C and U.

Value which specifies whether to grant or rescind
the associated access right. Possible values
include:

* value meaning
0 Rescind the access right
1 Grant the access right

The default value is l. That is, specifying an
access character without a value grants the
corresponding access.

User IDs for whom the previously—-specified access
rights apply. Two special values are also
acceptable for this parameter. They are:

WORLD Special user ID (OFFFFh) giving all
users access to the file.

* Designator indicating that the
access rights apply to all users
currently in the.file's access list,

The Operating System limits each file to three
user IDs in the access list. If you omit this
parameter, PERMIT assumes the user ID associated
with your interactive job.

Specifies that the access information applies to
the data files in the pathname list. If you omit
both the DATA and DIRECTORY parameters, PERMIT
assumes both.

Specifies that the access information applies to
the directories in the pathname list. If you omit
both the DATA and DIRECTORY parameters, PERMIT
assumes both.

3-70

PERMI'i

QUERY Causes PERMIT to prompt for permission to modify
the access rights associated with each file. It
does this by displaying the following message:

" {pathname>,
accessor = <new id>, <new access>, PERMIT?—-

Enter one of the following (followed by a carriage
return) in response to the query:

Entry Action
Yory Change the access.

. Eore Exit from the PERMIT command.
Rorr Change the access and continue

with the command without
further query.

Any other Do not change access; continue

character with PERMIT command and query
for next access change, if any.

DESCRIPTION

You can use the PERMIT command to update the access information for the
following files:

e Files for which you are listed as the owmer.

e Files for which you have change-entry access to the file's
directory.

HUMAN INTERFACE COMMANDS

You cannot change the access information for other files. PERMIT can
perform the following functions:

e Adding or subtracting users from a file's list of accessors.
This list determines which users have access to the file.

. Setting the type of access (access rights) granted to the users
in the accessor list.

Currently the Operating System allows only three user IDs in the list of
accessors, but one of these IDs can be the special ID WORLD, which grants
access to all users.

You specify the type of access to be granted or rescinded by means of
access characters and values. You can concatenate access characters and
values together or you can separate the individual access specifications
with commas. For example, if you want to grant delete access and rescind
add and update access, you could enter any of the following combinations:

« 3-71

PERMIT

SANVIINOD HOVAYHLNI NVINNH

AODUO
A0,D,UO
AOD1UO
A0,D1,U0

As you can see from the previous lines, D is equivalent to Dl. Also, the
order in which you specify access characters is not important.

If there are multiple occurrences of an access character in the PERMIT
command, PERMIT uses the last such character to determine the access.
For example, the combination:

DO,Al,RL,Dl
is the same as the combination:
Al,R1,Dl
In the first combination, the Dl overrides the DO.

You can use the N character to rescind all access to the file. If
specified alone, it removes user IDs from the accessor list. However,
the N character can also be useful when changing access rights, if you
don't remember the specified user's current access rights. In this case
you can specify the N character first, to clear all the access rights,
and follow it with other characters to grant the desired access. For
example, if you want to grant list access only, instead of specifying:

DOAOCOL
you could specify:

NL /
After changing the access information for a file, PERMIT displays the
following information:

<{pathname>, :
accessor = <accessor ID>, <access>

where <pathname> is the pathname of the specified file, <{accessor ID> is
the user ID of one of the files accessors, and <{access> indicates the
access rights that the corresponding user has. PERMIT displays the
access rights as access characters: DLAC for directories and DRAU for
data files. If a particular access right is not allowed, the display
replaces the corresponding character with a dash (-). For example, the
display:

-L-C

indicates that the corresponding user has list and change access.

3-72

ERROR MESSAGES

<pathname>, accessor limit reached
The Operating System permits only three IDs in the accessor list

of a file. Before you can add another accessor, you must remove
one of the current accessors by setting its access rights to N,

<pathname>, directory CHANGE access required

Either you are not the owner of the file specified by <pathname>,

or you do not have change access to the file's parent directory.
You must satisfy one of these two conditions in order to use the
PERMIT command.

<user ID>, duplicate USER control

You must specify the keyword and parameter combination USER =
userlist only once during the PERMIT command. However, you can
specify multiple user IDs by separating them with commas in the
userlist. PERMIT exits without updating the access rights.

<{character>, invalid access switch

The character you entered to indicate the access rights for the
file was not a valid access character. PERMIT exits without
updating the access rights.

<invalid id>, invalid user id

The user IDs you supply with the USER parameter must consist of
decimal or hexadecimal characters, the characters WORLD, or the
character *. PERMIT exits if supplied other characters.
missing access switches

You must specify one or more access characters with the PERMIT
command. PERMIT exits without updating the access rights.

no files found

There were no files of the type you specified (data, directory,
or both) in the pathname list.

3-73

PERMIT

HUMAN INTERFACE COMMANDS

RENAME

This command allows you to change the pathname of one or more data files
or directories. RENAME is effective across directory boundaries on the
same volume. The format is as follows:

inpath-list

x-321

INPUT PARAMETERS
inpath-1list One or more pathnames, separated by commas, of
’ files or directories that are to be renamed.

Blanks between pathnames are optional separators.

QUERY Causes the Human Interface to prompt for
permission to rename each pathname in the input
list by issuing one of the following messages:

<oldname>, rename TO <newname>?

{oldname>, rename OVER <newname>?

Enter one of the following (followed by a carriage
return) in response to the query:

SANVIWINOD HOVAHALNI NVINOH

Entry Action

Yory Rename the file.

E or e Exit from RENAME command.

Rorr Continue renaming without further
query.

Any other Do not rename file; query for the next
character file in sequence.

OUTPUT PARAMETERS

TO Moves the data to the new pathnames in the output
list. A new pathname in the output list should
not already exist. If the output pathname already
exists, RENAME displays the following message:

3-74

<{pathname>, already exists, DELETE?

Enter Y, y, R, or r to delete the existing file.
Enter any other character if you do not wish tp
delete the file. In the later case, RENAME skips
over the specified file without changing it and
attempts to rename the next pathname in the list.

OVER Changes each old pathname in a list to the
corresponding new pathname, even if the new
pathname already exists. OVER cannot be used to
rename a non—empty directory over another
non-empty directory.

outpath-list Ligt of new pathnames. Multiple pathnames must be
separated by commas. Separating blanks are
optional.
DESCRIPTION

The primary distinction between the RENAME command and the COPY command
is that, as the RENAME command runs, it releases the pathnames of the
input files for new uses without performing any further operation on the
files.

Another distinction between RENAME and COPY is that RENAME cannot be used
across volume boundaries; that is, you cannot use the RENAME command to
rename a file or move data from a volume located on one secondary storage
device to a volume located on another secondary storage device (for
example, from one diskette to another). An attempt to do so causes an
error message. Use the COPY command or a combination of COPY and DELETE
commands 1if you wish to rename files or move data across volume
boundaries.

To use RENAME, you must have delete access to the current file and
add—entry access to the destination directory. If you rename a file OVER
an existing file, you must also have delete access to the second file.

Although RENAME can be used to rename an existing directory pathname TO a
new pathname, it cannot be used to rename an existing directory OVER
another existing directory. For example:

-RENAME ALPHA TO DELTA ;allowed
-RENAME ALPHA OVER BETA snot allowed (unless BETA is empty)
-RENAME ALPHA/SAMP1 OVER BETA/TEST1 sallowed

3-75

RENAME

HUMAN INTERFACE COMMANDS

RENAME

NOTE
Changing the name of a directory also
changes the path of all files listed in
that directory. All subsequent

accesses to those files must specify
the new pathnames for the files.

As each file in a pathname list is renamed, the RENAME command displays
one of the following messages, as appropriate:
<old pathname>, renamed TO <{new pathname>

or
<old pathname>, renaméd OVER <new pathname>

ERROR MESSAGES

e <old pathname>, DELETE access required

You cannot rename a file unless you have delete access to that
file.

<new pathname>, directory ADD ENTRY access required

You cannot rename a file unless you have add-entry access to the
destination directory.

] <new pathname>, new pathname same as old pathname

You specified the same name for the input pathname as you did for
the output pathname.

SANVININOD HOVAYHLNI NVINIH
[]

e TO or OVER preposition expected
Either you used the AFTER preposition with the RENAME command or

the number of files in your inpath—list did not match the number
in your outpath-list.

3-76

RESTORE |

RESTORE

This command restores files to a named volume by copying them from a
backup volume.

The format of this command is as follows:

:backup device:

x-322

INPUT PARAMETERS

tbackup device: Logical name of the backup device from which
RESTORE restores files.

QUERY Causes the Human Interface to prompt for
permission to restore each file. The Human
Interface prompts with one of the following
queries:
<{pathname>, RESTORE data file?

or

<{pathname>, RESTORE directory?

HUMAN INTERFACE COMMANDS

Eanter one of the following responses to the query:

Entry Action

Yory Restore the file.
E ore Exit from the RESTORE command.

Rorr Continue restoring files without
further query.

Any other If data file, do not restore the

character file; if directory file, do not
restore the directory or any
file in that portion of the
directory tree. Query for the
next file, if any.

3-77

RESTORE

SANVININOD HOVAYHLNI NVINNH

OUTPUT PARAMETERS

TO Restores the files from the backup volume to new
files on the named volume, if the files do not
already exist on the named volume. If a file
being restored already exists on the named volume,
RESTORE displays the following message:

<{pathname>, already exists, OVERWRITE?

Enter one of the following in response to the

query:
Entry Action
Y, v, R, or r Delete the file and replace
it with the one from the
backup volume.
E or e Exit from the RESTORE
command.
Any other Do not restore the file; go
character on to the next file.
OVER Restores the files from the backup volume over \

(replaces) the files on the named volume. If a
file does not exist on the named volume, RESTORE
creates a new file on the named volume.

pathname Pathname of a file which receives the restored
files (you must specify a directory pathname when
restoring more than one file). If you specify a
logical name for a device, RESTORE places the
files under the root directory for that device.
However, the device must contain a volume
formatted as a named volume. If you wish to
restore files to the directory in which they
originated, you should specify the same pathname
parameter as you used with the BACKUP command.

DESCRIPTION

RESTORE is a utility which copies files from backup volumes (where the
BACKUP command originally saved them) to named volumes. RESTORE copies
the files to any directory you specify, maintaining the hierarchical
relationships between the backed-up files.

Normally, when RESTORE copies files, it copies only those files to which
you have access. When it copies these files to the named volume, it
establishes your user ID as the owner ID (regardless of what the previous
owner ID was). However, if you are the system manager (user ID 0),
RESTORE restores all files from the backup volume and leaves the owner ID
the same as it was.

3-78

When copying files, RESTORE restores the following information:
e File name
e Access list
e Extension data
e File granularity
e Contents of the file

RESTORE changes the creation, last modification, and last access dates of
the file to the current date.

Each backup volume which is used as input to the RESTORE command must
contain files placed there by the BACKUP command. In addition, if the
backup operation required multiple backup volumes, you must restore these
volumes in the same order as they were backed up.

The output volume which receives the restored files must be a named
volume. You must have sufficient access rights to the files in that
volume to allow RESTORE to perform all necessary operations. For RESTORE
to create new files on a named volume, you must have add entry access to
directories on that volume. For RESTORE to restore files over existing
files, you must have add entry and change entry access to directories in
that volume and delete, append, and update access to data files.

When you enter the RESTORE command, RESTORE displays the following
sign—-on message:

iRMX 86 DISK RESTORE UTILITY Vx.y

where Vx.y is the version number of the utility. Then it prompts you for
a backup volume.

Whenever RESTORE requires a new backup volume, it issues the following
message:

<backup device>, mount backup volume #<nn>, enter Y to continue:

where <backup device> indicates the logical name of the backup device and
<nn> the number of the requested volume. (RESTORE in some cases displays
additional information to indicate problems with the current volume.) In
response to this message, place the backup volume in the backup device
(make sure that the volume number is correct if the backup operation
involved multiple volumes). Enter one of the following:

Entry Action

Y, y, R, or r Continue the restore process.

E or e Exit from the RESTORE command.
Any other ‘Invalid entry; reprompt for entry.
character

3-79

RESTORE

HUMAN INTERFACE COMMANDS

RESTORE

SANVININOD HOVAYHLNI NVINNH

RESTORE continues prompting you until you supply the correct backup
volume.

As it restores each file, RESTORE displays one of the following messages
at the Human Interface console output device (:C0:):

<pathname>, restored
or

<{pathname>, directory restored

ERROR MESSAGES .
e <pathname>, access to directory or file denied

RESTORE could not restore a file, either because you did not have
add entry access to the file's parent directory or because you
did not have update access to the file. RESTORE continues with
the next file.

e <backup device>, backup volume #<nn>, <date>, mounted
<backup device>, backup volume #<nn>, <date>, required

<backup device>, mount backup volume #<{nn>, enter Y to continue:

RESTORE cannot continue because the backup volume you supplied is
not the one that RESTORE expected. Either you supplied a volume
out of order or you supplied a volume from a different backup
session. RESTORE reprompts for the correct backup volume.

e <backup device>, cannot attach volume
<backup device>, <exception value> : <exception mnemonic>

<backup device>, mount backup volume #<nn>, enter Y to continue:

RESTORE cannot access the backup volume. This could be because
there is no volume in the backup device or because of a hardware
problem with the device. The second line of the message
indicates the iRMX 86 exception code encountered. RESTORE
continues to issue this message until you supply a volume that
RESTORE can access.

e <pathname>, <exception value> : <exception mnemonic>, error
during BACKUP, file not restored

When the BACKUP utility saved files, it encountered an error when
attempting to save the file indicated by this pathname. RESTORE
is unable to restore this file. The message lists the iRMX 86
exception code encountered.

3-80

<{pathname>, <exception value> : <{exception mnemonic>, error
during BACKUP, restore incomplete

When the BACKUP utility saved the files, it encountered an error
when attempting to save the file indicated by this pathname.
RESTORE restores as much of the file as possible to the named
volume. The message lists the iRMX 86 exception code encountered.

<backup device>, error reading backup volume
<backup device>, <exception value> : <{exception mmemonic>

RESTORE tried to read the backup volume but encountered an error
condition, possibly because of a faulty area on the volume. The
second line of the message indicates the iRMX 86 exception code

encountered.

<{pathname>, <exception value> : <exception mnemonic>, error
writing output file, restore incomplete

RESTORE encountered an error while writing a file to the named
volume. This message lists the iRMX 86 exception code]
encountered. RESTORE writes as much of the file as possible to
the named volume.

<pathname>, extension data not restored, <nn> bytes required

The amount of space available on the named volume for extension
data is not sufficient to contain all the extension data
associated with the specified file. The value <nn> indicates the
number of bytes required to contain all the extension data. This
message indicates that the named volume on which RESTORE is
restoring files is formatted differently than the named volume
which originally contained the files. To ensure that you restore
all the extension data from the backup volume, you should restore
the files to a volume formatted with an extension size set equal
to the largest value reported in any message of this kind. Refer
to the description of the FORMAT command for information about
setting the extension size.

<backup device>, invalid backup device

The logical name you specified for the backup device was not a
logical name for a device.

<backup device>, not a backup volume

<backup device>, mount backup volume #<nn>, enter Y to continue:
The volume you supplied on the backup device was not a backup

volume. RESTORE continues to issue this message until you supply
a backup volume.

3-81

RESTORE

HUMAN INTERFACE COMMANDS

RESTORE

SANVININOD HOVAYULNI NVIN(H

<{pathname>, not restored

For some reason, RESTORE was unable to restore a file from the
backup volume. RESTORE continues with the next file. Another
message usually precedes this message to indicate the reason for
not restoring the file.

output specification missing

You did not specify a pathname to indicate the destination of the
restored files.

<{pathname>, READ dccess required

You do not have read access to a file on the backup volume;
therefore RESTORE cannot restore the file.

<{pathname>, too many input pathnames

You attempted to enter a list of logical names as logical names

for backup devices. You can enter only one input logical name
per invocation of RESTORE.

3-82

SUBMIT

This command reads and executes a set of commands from a file in
secondary storage instead of from the console keyboard. To use the
SUBMIT command you must first create a data file that defines the command
sequence and formal parameters (if any). The format of the command is as

follows:

= e

INPUT PARAMETERS

pathname

parameter—list

OUTPUT PARAMETERS

TO

Corn >
ﬁ ‘.205

Name of the file from which the commands will be
read. This file may contain nested SUBMIT files.

Actual parameters that are to replace the formal
parameters in the SUBMIT file. You must surround
this parameter list with parentheses. You can
specify as many as 10 parameters, separated by
commas, in the SUBMIT command. If you omit a
parameter, you must reserve its position by
entering a comma. If a parameter contains a
comma, space, or parenthesis, you must enclose the
parameter in single quotes. The sum of all
characters in the parameter list must not exceed
512 characters.

Causes the output from each command in the SUBMIT
file to be written to the specified new file
instead of the console screen. If the output file
already exists, the SUBMIT command displays the
following message:

<{pathname>, already exists OVERWRITE?

3-83

n
a
Z
<
=
=
Q
(&)
=
Q
<
=
~
=
B~
&
z
=
o)
an

SUBMIT

¥

Enter Y, y, R, or r if you wish the existing
output file to be deleted. Enter any other
character if you do not wish the existing file to
be deleted. A response other than Y or y causes
the SUBMIT command to be terminated and you will
be prompted for a new command entry.

OVER Causes the output for each command in the SUBMIT
file to be written over the specified existing
file instead of the console screen.

AFTER Causes the output from each command in the SUBMIT
file to be written to the end of an existing file
instead of the console screen.

out—pathname Pathname of the file to receive the processed
output from each command executed from the SUBMIT
file. If no preposition or output file is
specified, TO :CO: is the default.

DESCRIPTION

Any program that reads its commands from the console input (:CI:) can be
executed from a SUBMIT file. If another SUBMIT command is itself used in
a SUBMIT file, it causes another SUBMIT file to be invoked. You can nest
SUBMIT files to any level of nesting until memory is exhausted (each
level of SUBMIT requires approximately 10K of dynamic memory). When one
nested SUBMIT file completes execution, it returns control to the next
higher level of SUBMIT file.

If, during the execution of SUBMIT (or any nested SUBMIT), you enter the
CTRL/c character to abort processing, all SUBMIT processing exits and
control returns to your user session.

SANVININOD HDOVAYHLNI NVINOH

When you create a SUBMIT file, you indicate formal parameters by
specifying the characters %n, where n ranges from O through 9. When
SUBMIT executes the file, it replaces the formal parameters with the
actual parameters listed in the SUBMIT command (the first parameter
replaces all instances of %0, the second parameter replaces all instances
of X1, and so forth). If the actual parameter is surrounded by quotes,
SUBMIT removes the quotes before performing the substitution. If there
is no actual parameter that corresponds to a formal parameter, SUBMIT
replaces the formal parameter with a null string.

When you specify a preposition and output file (other than :CO:) in a
SUBMIT command, only your SUBMIT command entry will be echoed on the
console screen; the individual command entries in the submit file are not
displayed on the screen as they are loaded and executed.

The SUBMIT command will display the following message when all commands
in the submit file have been executed:

END SUBMIT <pathname>

3-84

ERROR MESSAGES

o <pathname>, end of file reached before end of command
The last command in the input file was not specified completely.
For example, the last line might contain a continuation character.

e <parameter>, incorrectly formed parameter
You separated the individual parameters in the parameter list
with a separator character other than a comma.

e <pathname>, output file same as input file

You attempted to place the output from SUBMIT into the input file.

e <pathname>, too many input files

You specified more than one pathname as input to SUBMIT. SUBMIT
can process only one file per invocation.

e <parameter>, too many parameters

You specified more than 10 parameters in your parameter list.

e <pathname>, UPDATE or ADD access required

SUBMIT cannot write its output to the output file because you do
not have update access to the file (if it already exists) or
because you do not have add access to the file's parent directory
(if the file does not currently exist).

EXAMPLE

This example shows a SUBMIT file that uses formal parameters and the
command that you can enter to invoke this SUBMIT file. The SUBMIT file,
which resides on file :F1:MOVESFILE, contains the following lines:

ATTACHDEVICE Fl1 AS %0
CREATEDIR %0/%1
UPCOPY :Fl1:%2 TO 7%0%1/%2

The SUBMIT file contains three formal parameters, indicated by %0, %1,

and %Z2. The %0 indicates the logical name of an iRMX 86 device; the %1
indicates the name of a directory on that device; the %2 indicates the

name of a file which will be copied from an ISIS-II disk to the iRMX 86
device.

3-85

SUBMIT

HUMAN INTERFACE COMMANDS

SUBMIT

The SUBMIT command used to invoke this file is as follows:

~SUBMIT :FO:MOVESFILE (:Fl:, PROG, FILEl)

The command sequence created and executed by SUBMIT is shown as it would
be echoed on the console output device.

-ATTACHDEVICE F1 AS :Fl:

Fl, attached as :Fl:

-CREATEDIR :Fl:/PROG

:F1:PROG, directory created _
-UPCOPY :F1:FILEl TO :Fl1:PROG/FILE1l
:F1:FILEl upcopied TO :F1:PROG/FILE]
END SUBMIT :FO:MOVESFILE

SANVININOD HOVIUHLNI NVINNH

3-86

SUPER

This command allows operators who are designated as system managers to
change their user IDs to the system manager user ID (user ID 0). Having
entered the SUPER command, these users can invoke a sub~command to change
to any other user ID. The format of this command is as follows:

x-206

DESCRIPTION

SUPER allows you to change your user ID to that of the system manager.

It has two sub—commands (CHANGEID and EXIT) that are available only after
you have invoked SUPER. CHANGEID allows you to change your user ID to
any valid number. EXIT exits the SUPER utility.

In order to invoke SUPER, you must know a password associated with the
system manager. This password is stored in the user definition file for
user ID O (refer to Chapter 6). After you enter the SUPER command, SUPER
prompts for the password by displaying:

ENTER PASSWORD:

You must then enter the correct password. Although the Human Interface
doesn't usually distinguish between uppercase and lowercase letters, the
password is an exception. It must be exactly the same as the password in
the user definition file. (SUPER does not echo your input at the
terminal.) After you enter the correct password, SUPER changes your user
ID to user ID O and issues the following prompt.

super—

This prompt is a new system prompt (replacing the "-") that appears
whenever the Human Interface is ready to accept input. At this point,
you can enter any Human Interface commands and access any files available
to the system manager. If you create new files, they will be listed as
owned by user ID O. You can also invoke the sub—commands available with
SUPER.

SUBCOMMANDS

There are two sub-commands available with SUPER: CHANGEID and EXIT. You
can invoke these sub~commands only after first invoking the SUPER command.

The CHANGEID sub—command allows you to change your current user ID to any

value between 0 and 65535 decimal. The format of the CHANGEID
sub~command is as follows:

3-87

)
%
=
Q
Q
~
2
=
2
&
:
-
o)

SUPER

SANVININOD HOVAYALNI NVIANIH

CHANGEID
o x-207

where:

id Value to which you want to change your user ID.
This can be any numeric value from O to 65535
decimal, or the characters "WORLD" which specifies
ID 65535 decimal. If you omit this value,

CHANGEID sets your user ID to that of the system
manager (user ID 0). ,

If you change your user ID to anything other than that of the system
manager (user ID 0), the system prompt changes to the following:

super(id)-

where id is the decimal equivalent of your new user ID (or the characters
“"WORLD™).

The EXIT sub~command exits from the SUPER utility. The format of this
sub~command is as follows:

— o >

x-208

After you enter this sub-command, the Human Interface changes your user
ID back to the ID you had before entering the SUPER command. It also
changes the system prompt back to the "-" value. To change your user ID
again, you must invoke the SUPER command. :

ERROR MESSAGES

o <exception value> : <exception mnemonic> cannot set default user

An internal system problem prevented the Human Interface from
changing your user ID.

e <user—id>, invalid user id

The user ID you specified contained invalid characters or was not
in the range 0 to 65535 decimal.

3-88

invalid password

The password you entered does not match the password associated
with the system manager that is listed in the user definition
file.

<{exception value> : <exception mnemonic>, SUPER is un—available

The Human Interface encountered an error while reading the
password you entered or while accessing the system manager's user
definition file (to determine if the password is correct). This
message lists the exception code that occurs.

»

3-89

SUPEF

HUMAN INTERFACE COMMANDS

v
c
=
>
E
Z
=
=
o
D>
Q
&
Q
QS
=
=
B>
2
)
167]

TIME

This command sets the system clocke If no new time is entered, the TIME
displays the current system date and time. The format is as follows:

INPUT PARAMETERS

hh

QUERY

DESCRIPTION

u x-209

Hours specified as 0 through 24.

Minutes specified as O through 59. If you omit
this parameter, 0 is assumed.

Seconds specified as 0 through 59. If you omit
this parameter, 0 is assumed.

Causes TIME to prompt you for the time by issuing
the following message:

TIME:

TIME continues to issue this message until you
enter a valid time.

You must separate the individual time parameters with colons.

If you omit the time parameters, TIME displays the current date and time
in the following format:

dd mmm yy, hh:mm:ss

where dd mmm yy indicates the date and hh:mm:ss indicates the time.

3-90

In order to obtain the correct time when you enter the TIME command

without parameters, you must initially set the time. If you request the

time on a system in which you haven't already set the time (or on a

non—-timing system), TIME command displays the following message:
00:00:00

See also the DATE command in this chapter if you wish to set the date in
conjunction with the system clock.

ERROR MESSAGES
e <time>, invalid time
You specified an invalid or out—of-range entry for one or more of
the time parameters.
e <parameter>, invalid syntax

You specified both a time and the QUERY parameter in the TIME
command.

3-91

TIME

HUMAN INTERFACE COMMANDS

 UPCOPY |

SANVININOD HDVAHHLNI NVINNH

UPCOPY

This command copies files from a volume on ISIS-II secondary storage to a
volume on iRMX 86 secondary storage via the iSBC 957B Interface and

Execution package.

INPUT PARAMETERS

inpath-list

QUERY

x-323

List of one or more filenames of the ISIS-II files
that are to be copied to iRMX 86 secondary

storage, either on a one—for—one basis or
concatenated into one or more iRMX 86 output files.

Causes the Human Interface to prompt for
permission to copy each ISIS~II file to the listed
iRMX 86 output file. Depending on which
preposition you specify (TO, OVER, or AFTER), the
Human Interface prompts with one of the following
queries:

<{in—-pathname>, copy up TO <out-pathname>?
<{in-pathname>, copy up OVER <out-pathname>?
<{in-pathname>, copy up AFTER <out-pathname>?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry Action

Yory Copy the file.

E or e Exit from tﬁe UPCOPY command.
Rorr Continue copying files without

further query.

Any other Do not copy this file; go to
character the next file in sequence.

3-92

OUTPUT PARAMETERS

TO Copies the ISIS-1I file or files TO a new iRMX 86
file or files in the listed sequence. If the
output file already exists, UPCOPY displays the
the following message:

<{pathname>, already exists, OVERWRITE?

Enter Y, y, R, or r if you wish to write over the
existing file. Enter any other character if you
do not wish the file to be overwritten.

If no preposition is specified, TO :CO: is the
default. If more input files than output files
are specified in the command line, the remaining
input files will be appended to the end of the
last listed output file.

OVER Copies the listed ISIS-II input file or files OVER
existing iRMX 86 destination files in the listed
sequence. If more input files than output files
are listed in the command line, the remaining
input files will be appended to the end of the
last listed output file.

AFTER Appends the listed ISIS-II input file or files
AFTER the end-of-data on an existing iRMX 86
output file or files in the listed sequence.

outpath-list One or more pathnames of the iRMX 86 destination
files. Multiple pathnames must be separated by
commas. Separating blanks are optional. If the
preposition and output parameter defaults are used
in the command line, the output will go to the
iRMX 86 console screen.

DESCRIPTION

Before you enter an UPCOPY command on the iRMX 86 console keyboard, you
must have your target system connected to a development system via the
iSBC 957B package, and the package must be runninge. To do this, you
must start your 1RMX 86 system from the development system terminal
(either by loading the software into the target system and using the
monitor G command to start execution, or by using the monitor B command
to bootstrap load the software). UPCOPY does not function if you start
up your system from the iRMX 86 terminal or if you establish the link

between development system and target system after starting up your iRMX
86 system.

The user ID of the user who invokes the UPCOPY command is considered the

owner of new files created by UPCOPY. Only the owner can change the
access rights associated with the file (refer to the PERMIT command).

3-93

UPCOPY

HUMAN INTERFACE COMMANDS

UPCOPY

SANVININOD IOVIAHHLNI NVINNH

As it copies each ISIS-II file in the input list, UPCOPY displays one of
the following messages at the terminal, as appropriate:

<{in-pathname>, copied up TO <out-pathname>

<{in-pathname>, copied up OVER <out-pathname>

{in-pathname>, copied up AFTER <out-pathname>

When the UPCOPY command is executing, the iSBC 957B package disables
interrupts. This affects services such as the time-of-day clock. Also,
the Operating System is unable to receive any characters that you
type—ahead while the UPCOPY command is executing.

.

ERROR MESSAGES

<pathname>, ISIS ERROR: <nnn>

An ISIS-II Operating System error occurred when UPCOPY tried to
transfer the file to the Microcomputer Development System. Refer
to the INTELLEC SERIES III MICROCOMPUTER DEVELOPMENT SYSTEM
CONSOLE OPERATING INSTRUCTIONS for a description of the resulting
error code.

ISIS 1link not present

The the iRMX 86 system is not connected to the development system
via the iSBC 957B package.

<pathname>, UPDATE or ADD access required

Either you cannot overwrite the information in a file because you
do not have update access to it, or you cannot copy information

to a new file because you do not have add entry access to the
file's parent directory.

3-94

VERSION

This command displays the version number of a command or other program,
if that command has a version number encoded in its object code. The
format of this command is as follows:

1IIIIE==i:nIIIID pathname-list

x-210

INPUT PARAMETER

pathname-list One or more pathnames, separated by commas, of
commands for which a version number i3 desired.

DESCRIPTION

When you enter the VERSION command, it displays the version number of
each command, if there is one, in the following format:

<{pathname>, <command-name> version is X.y

where:
<{pathname> Pathname of the file containing the command.
<command-name> Name of the specified command; Intel-supplied
commands have names as listed in this manual.
XXXX Version number of the command.

You can use VERSION to determine the version number of any Human
Interface command. You can also use it to determine the version numbers
of commands that you write. However, for VERSION to work on your
commands, you must include a literal string in the command's source code
to specify the name of the command and its version. The string must
contain the following information:

'command version number=xxxx',
'command name=yyyy...yyy',0 :
where:
command version number= You must specify this portion exactly as

shown (lower case, underscore separating the
words, no spaces).

3-95

@
Q
g
=
S
3]
=
3)
pr
=
&2
&=
=
&
as)

VERSION

SANVININOD HDVAYHLNI NVIN(IH

XXXX Version number of the product. This can be any
four characters, but it must be exactly four
characters long.

command name= This portion is optional. However, if you want
VERSION to recognize and display the program name,
you must specify this portion exactly as shown.

YYYYe oo VYY Name of the command. This can be any number of
characters.
0 The literal string must be terminated with a byte

of binary zero.

An example of such a literal string is:

DECLARE version (*) BYTE DATA('program version number=V8.5',
'program name=MYPROGRAM',0);

If your program includes this declaration, when you invoke VERSION, it
will display the following information:

{pathname>, MYPROG version is V8.5
A literal string that does not include the program name is:
DECLARE vers2(*) BYTE DATA('program version number=1983',0);

If your program includes this declaration, when you invoke VERSION, it
will display the following informatiomn:

<{pathname>, version is 1983

k%%

3-96

CHAPTER 4. UDI SYSTEM CALLS

Programs request iRMX 86 PC Operating System services through the
Universal Development Interface (UDI) system calls. This chapter
describes the set of system calls that are available to iRMX 86 PC
programs. Although the iRMX 86 Operating System can recognize many other
system calls, (these are listed in Appendix B) you can perform all normal
operations with UDI calls. This is a design characteristic of the UDI;
it provides a standard interface by which your programs send requests to
the Operating System, and through which the Operating System returns
information to programs.

This chapter contains these four sections:

e USING THE UDI. This section outlines general programming
considerations for using the Universal Development Interface.
For example, this section explains how to use UDI libraries and
how to deal with errors in programs.

e TYPES OF UDI SYSTEM CALLS. This section explains certain
concepts about UDI File Management and Memory Management system
calls. For example, the concept of a file comnection is
explained here.

) DESCRIPTIONS OF SYSTEM CALLS. This section is the heart of the
chapter. Each UDI system call is described in detail, with an
explanation of how the call is invoked. The calls are arranged
alphabetically for quick reference. At the beginning of this
section you will find a System Call Dictionary: a brief listing
of system calls arranged into functional groupings.

e EXAMPLE PROGRAM. At the end of the chapter is a sample program
using the UDI system calls.

USING THE UDI

This section contains information about:

e Exceptional conditions that can occur when you use UDI system
-calls

. UDI Libraries and INCLUDE files

° Special data types referred to in descriptions of UDI system calls

UDI SYSTEM CALLS

EXCEPTIONAL CONDITIONS

Every UDI call except DQSEXIT returns a condition code which specifies
the status of the call. Each condition code has a unique numeric value,
and an associated mnemonic by which it is known. For example, the code
indicating that there were no errors or unusual conditions has the
numeric value zero (0) and the name E$OK. Any code other than ESOK
returned from a system call means there was an exceptional condition.

Exception codés are classified as:
] Environmental Exceptions. These are generally caused by

conditions outside the control of a program; for example, device
errors or insufficient memory.

. Programmer Errors. These are typically caused by coding errors
(for example, "bad parameter”), but "divide-by-zero”, "overflow",
“range check”, and errors detected by the 8087 Numeric Processor
Extension are also classified as avoidable.

When an error is detected, the normal (default) system action is to
display on the console terminal an error message, and terminate the
program. However, you may establish your own routine to handle
exceptions by using the UDI system calls DQ$TRAPSEXCEPTION and
DQ$DECODESEXCEPTION.

Appendix A contains a list of exception codes that the iRMX 86 Operating
System can return, with the numeric value, mnemonic, and meaning of each
code. .

UDI LIBRARIES

To execute a program which uses UDI system calls, you must link the
program to one of three iRMX 86 UDI libraries. These libraries are
called LARGE.LIB, COMPAC.LIB, and SMALL.LIB. If your program corresponds
to the LARGE or MEDIUM models of segmentation, 1link it to LARGE.LIB. If
your program corresponds to the SMALL or COMPACT models of segmentationm,
link it to SMALL.LIB or COMPAC.LIB, respectively.

This chapter will assume that the libraries have been transferred to the
directory :SD:UDI (from the Include Files Diskette delivered with the
iRMX 86 PC product). The pathname for the COMPACT library, for example,
is :SD:UDI/COMPAC.LIB.

The iRMX 86 PROGRAMMING TECHNIQUES manual discusses selecting a model of
segmentation. While these models deal with the PL/M 86 language, they

apply to assembly language as well. In contrast, Pascal-86 and
FORTRAN-86 require the LARGE library.

UDI SYSTEM CALLS

INCLUDE FILES

You must declare each UDI procedure used in your PL/M-86 programs as an
EXTERNAL PROCEDURE. Each UDI system call has a corresponding file on the
Include File Diskette sent by Intel (see Preface); the file contains a
PL/M-86 EXTERNAL PROCEDURE statement for that system call. You can build
a single file to INCLUDE the files that are for the system calls used in
your programs.

All Universal Development Interface (UDI) System Call Declarations are
contained in the following files. The name of the system call is listed
first, followed by the name of the file containing the external
declaration for the call. The 1list is alphabetical by system call name,
and is printed in groups of five for readability.

ALLOCATE UALLOC.EXT
ATTACH UATACH.EXT
CHANGESACCESS UCHAC.EXT

CHANGESEXTENSION UCHEXT .EXT
CLOSE UCLOSE.EXT
CREATE UCREAT.EXT
DECODESEXCEPTION UDCEX.EXT

DECODESTIME UDCTIM.EXT
DELETE UDELET.EXT
DETACH UDTACH.EXT
EXIT UEXIT.EXT

FILESINFO UFLINF.EXT
FREE UFREE.EXT

GETSARGUMENT UGTARG.EXT
GETSCONNECTIONSSTATUS UGTCN.EXT

GETSEXCEPTIONSHANDLER UGTEXH.EXT
GETS$SIZE UGTSIZ.EXT
GET$SYSTEMSID UGTSID.EXT
GETSTIME UGTTIM.EXT
OPEN UOPEN. EXT

OVERLAY UOVLY.EXT

READ UREAD.EXT

RENAME URENAM.EXT
RESERVESIO$MEMORY URSIOM.EXT
SEEK USEEK.EXT

SPECIAL USPECL.EXT
SWITCHSBUFFER UTRUNC .EXT
TRAPSCC UTRAPC.EXT
TRAPSEXCEPTION UTRPEX. EXT
WRITE UWRITE.EXT

DATA TYPES

UDI SYSTEM CALLS

The following data types are referred to in the descriptions of system

calls:
BYTE
WORD
DWORD

STRING

POINTER

SELECTOR

TOKEN

A two—byte item.
A 32-bit integer.

A sequence of bytes, the first of which contains the
number of characters in the STRING.

Equivalent to PL/M-86 type POINTER. It is two bytes
under the small model of segmentation; four bytes in
other cases.

A 16-bit 1APX 86,88 paragraph number (the base portion of
a four-byte pointer).

A value passed between a program and the Operating System
to represent an object. You can declare TOKEN to be a
SELECTOR if your compiler supports the SELECTOR data
type; otherwise declare it to be a WORD.

DESCRIPTIONS OF SYSTEM CALLS

This section contains descriptions of each UDI system call. The calls
are arranged alphabetically. Before the first system call description, a
System Call Dictionary (Table 4-1) shows the calls arranged in functional
groups, with a short description of each call and the page number of the

description.

Every system call description contains the following information in the
order listed here:

¢ The name of the system call.

® A brief summary of the function of the call.

o The form of the call as it is invoked from a PL/M-86 program,
‘with symbolic names for each parameter. (Calling sequences show
formal parameters in lower case.)

o Definition of input and output parameters.

e A complete explanation of the system call, including any
information you will need to use the system call.

4-4

UDI SYSTEM CALLS

NOTE

The first system call described,
DQSALLOCATE, also includes an actual
PL/M-86 invocation of the system call
(as opposed to formal invocation) and
an ASM-86 calling sequence. These
examples are shown only once because
they are typical of all system calls.

MEMORY MANAGEMENT SYSTEM CALLS

When the iRMX 86 Operating System loads and rums a program, the program
is allocated a specific amount of memory. The portion of memory not
occupied by loaded code and data —— the free space pool —-— is available
to programs dynamically, i.e., while the program is running. The

Operating System manages memory as segments of the size a program
requestse.

Your programs can use the UDI system calls DQSALLOCATE, and DQSFREE,
respectively, to get a memory segment from the pool, and to return the
segment to the pool. You can use the call DQSGETSSIZE to receive
information about an allocated memory segment.

FILE-HANDLING SYSTEM CALLS

About one-half of UDI system calls are used to manipulate files. Figure
4-1 shows the chronological relationship between the most frequently used
file—handling system calls.

4)

ATTACH

(__J

READ WRITE
OPEN > SEEK L CLOSE »{ DETACH DELETE
TRUNCATE

e | (=] —

x-327

_ Y,

Figure 4-1. Chronology Of System Calls

4-5

UDI SYSTEM CALLS

The iRMX 86 Operating System distinguishes between:
e Establishing the association between a program and a data file
e Operating on the data file

The association between a program and a data file is a connection, and is
represented in your programs by a token of type CONNECTION,

Your programs establish a connection by using the system calls DQSATTACH
or DQSCREATE and break the connection with DQSDETACH. When your program
establishes a connection via DQSATTACH or DQSCREATE, it receives a
CONNECTION token from the operating system. You use this token in all
further communications with the operating system to identify the file.

You use the procedure DQSOPEN to prepare an established comnection for
input/output operations. You perform the actual input or output
operations with DQ$READ and DQSWRITE. You can move the file pointer with
the DQSSEEK call. When input/output is finished, you close the file
connection with DQSCLOSE. Note that you open and close connections, not
files. Closing a file connection frees buffer space. Once a connection
is established, it may be opened and closed as often as necessary.

DQSDETACH is the call that eliminates a connection, and DQSDELETE deletes
a file. If a file has connections attached when a program issues
DQSDELETE, the Operating System will mark for deletion the file. That
is, the file is not actually deleted until all connections are detached.

This section describes the major File Handling system calls. Refer the
System Call Dictionary for a complete list.

EXCEPTION-HANDLING SYSTEM CALLS

When an exceptional condition occurs while the iRMX 86 Operating System
is running a user program, the default exception handler (part of the
Operating System) will terminate the program and display a message on the
terminal identifying the exception code. You can write a program to
handle exception codes, rather than using the default exception handler.
In this case, the Operating System will not terminate your program, but
will pass control to your exception handler. Three system calls are used
to define and use your own exception handler:

e DQSTRAPSEXCEPTION, which is used to identify an exception handler
that you provide.

e DQSGETSEXCEPTIONSHANDLER, which is an informative system call
returning the address of the current exception handler: either

the default system handler, or one you specify with
DQSTRAPSEXCEPTION.

e DQSDECODESEXCEPTION, which converts an exception numeric code
into its equivalent mnemonic.

4-6

UDI SYSTEM CALLS

Before your exception handler gets control, the iRMX 86 Operating System
does the following:

l. Pushes the condition code onto the stack.

2. Pushes the number of the parameter that caused the exception onto
the stack (1 for the first parameter, 2 for the second, etc.).

3. Pushes a word onto the stack (reserved for future use).

4. Pushes a word for the 8087 Numeric Processor Extension onto the
stack.

5. Initiates a long call to the exception handler.

If the condition was not caused by an erroneous parameter, the

_responsible parameter number is zero. If the exception code is ESNDP,
the fourth item pushed onto the stack is the 8087 status word, and 8087
exceptions have been cleared.

Programs compiled under the SMALL model of segmentation cannot have an
alternate exception handler, but must use the default system exception
handler. This is because the exception handler must have a LONG POINTER,
which is not available with SMALL segmentation.

SYSTEM CALLS

This section lists contains descriptions of every UDI system call. Table
4-~1 contains lists the calls by functional classes, and includes, for
each call:

° The name of the call
e A brief description of the call

e The page number of the description

UDI SYSTEM CALLS

Table 4-1. System Call Dictionary

SYSTEM CALL FUNCTION PERFORMED PAGE
PROGRAM CONTROL CALLS

DQSEXIT Exits from the current application job. 4-23

DQSOVERLAY Causes the specified overlay to be loaded. 4-37

DQSTRAPSCC Captures control when CTRL/c is typed. 4-48
FILE-HANDLING CALLS

DQSATTACH Creates a connection to a specified file. 4-12

DQSCHANGES- Changes the access rights associated with a

ACCESS file or directory. 4-13
DQ$SCHANGES-

EXTENSION Changes the extension of a file name in memory. 4-15
DQSCLOSE Closes the specified file connection. 4~16
DQSCREATE Creates a file for use by the application. 4-17
DQSDELETE Deletes a file. 4-21
DQSDETACH Closes a file and deletes its connection. 4-22
DQSGETSCON-

NECTIONSSTATUS | Returns status of a file connection. 4-29
DQSFILESINFO Returns data about a file connection. 4-24
DQSOPEN Opens a file for a particular type of access. 4-35
DQSREAD Reads the next sequence of bytes from a file. 4-39
DQSRENAME Renames the specified file. 4-41
DQSSEEK Mcoves the current position pointer of a file. 4-43

DQS$SSPECIAL Sets terminal line-edit/transparent mode. 4=-435
DQSTRUNCATE Truncates a file to the specified length. 4-50
DQSWRITE Writes a sequence of bytes to a file. 4-51

4-8

UDI SYSTEM CALLS

Table 4~1. System Call Dictionary (continued)

SYSTEM CALL FUNCTION PERFORMED PAGE
MEMORY MANAGEMENT CALLS
DQSALLOCATE Requests a memory segment of a specified size.| 4-10
DQSFREE Returns a memory segment to the system. 4-26
DQSGETSSIZE Returns the size of the specified segment. 4-32
DQSRESERVES— Requests that memory be set aside for 4=42
IOSMEMORY I1/0 operations overhead.
EXCEPTION~HANDLING CALLS
DQSDECODES - Converts an exception numeric code into its
EXCEPTION equivalent mnemonic. 4-18
DQSGETSEXCEPT- Returns a POINTER to the address of the
IONSHANDLER program currently being used to process
errors., 4-31
DQSTRAPS~ Identifies a custom exception processing
EXCEPTION program for a particular type of error. 4-49
UTILITY AND COMMAND PARSING
DQSDECODESTIME Returns system time and date in binary and
in ASCII character format. 4-19
DQSGETSARGUMENT Returns an argument from a STRING. 4=-27
DQSGETS$~- Returns the name of the underlying
SYSTEMSID operating system supporting the UDI. 4-33
DQSGETSTIME (Obsolete: included for compatability.) 4-34
DQSSWITCHSBUFFER| Selects a new buffer from which to process
commands. 4-47

4-9

'TQ$ALLOCATE’

DQSALLOCATE

DQSALLOCATE requests a memory segment from the free memory pool.

base$addr = DQSALLOCATE (size, except$ptr);

INPUT PARAMETER

size

OUTPUT PARAMETERS

base$addr

exceptSptr

DESCRIPTION

A WORD which,

e 1if not zero, contains the size, in bytes, of the
requested segment. If the size parameter is not
a multiple of 16, it will be rounded up to the
nearest multiple of 16.

e 1if zero, indicates that the size of the request
is 65536 (64K) bytes.

A SELECTOR in which the Operating System places the
base address of the memory segment. If the request
fails because the memory requested is not
available, this argument will be OFFFFH, and the
system will return an ESMEM exception code.

A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix A.

The DQ$ALLOCATE system call is used to request additional memory. You may
use this call for dynamically creating buffer space. '

EXAMPLE CALL PROCEDURES

These examples are included only for DQSALLOCATE. Their form is typical

of all system calls.

Both examples request 128 (decimal) bytes of memory, and point to a word
named “ERR" for receiving the condition code).

4~-10

DQ$ALLOCATE

Example PL/M-86 Calling Sequence

DECLARE ARRAY BASE WORD, (or SELECTOR)
ERR WORD;

ARRAYBASE = DQSALLOCATE (128, @ERR);

Example ASM86 Calling Sequence

MOV AX;128

PUSH AX ;s first parameter
LEA AX,ERR

PUSH DS s second parameter
PUSH AX ;

CALL DQALLOCATE
MOV ARRAYBASE ,AX ; returned value

This example is applicable to programs assembled according to the COMPACT,
MEDIUM, and LARGE models of segmentation. For the SMALL model, you would
not push the segment register before the POINTER offset.

4-11

DQ$ATTACH

The DQSATTACH system call creates a connection to an existing file.

connection = DQSATTACH (path$ptr, except$ptr);

INPUT PARAMETER

path$ptr A POINTER to a STRING containing the pathname for
the file to be attached.

OUTPUT PARAMETERS

connection The TOKEN for the connection to the file; returned
by the iRMX 86 Operating System.

exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix A.

DESCRIPTION

This system call allows a program to obtain a connection to any file.
Attaching a file that is already attached is valid. A connection to the
existing file is made, and all prior connections remain established.

4-12

DQ$CHANGESACCESS

The DQS$CHANGESACCESS allows you to change the access rights of the owner
of a file, or of WORLD.

CALL DQ$SCHANGES$ACCESS (path$ptr, user, access, except$ptr);

INPUT PARAMETERS

pathSptr A POINTER to a STRING containing the pathname of
the file.
user A BYTE specifying the type of user whose access is

to be changed:

Value Meaning
zero owner of the file
one WORLD (all users on the system)

2 =255 reserved by Intel

access A BYTE specifying the type of access to be granted
to the user. The flags in this word are encoded
as follows. (Bit O is the low—order bit.)

Bit Meaning
0 User can delete the file or directory
1 Read (file) or List (directory)
2 Append (file) or Add entry (directory)
3 Update (read and write: file) or
Change Access (directory)
4-7 should be zero
OUTPUT PARAMETER
exceptS$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix A.

4-13

¥ p
-
=
<
)
=
=
Lo
N
o
7

DQ$CHANGESACCESS

DESCRIPTION

You can use this system call to change the access rights of a file. You
must have Change Access rights to the directory in which the file or
directory is contained. This call affects only connections made after
the call is issued, but does not affect current connections to the file.

4-14

DQ$CHANGESEXTENSION

DQ$CHANGESEXTENSION changes or adds the extension at the end of a file
name stored in memory (it doesn't affect the file name on the mass
storage volume).

CALL DQ$CHANGESEXTENSION (path$ptr, extension$ptr, except$ptr);

INPUT PARAMETERS

pathSptr A POINTER to a STRING that specifies the path for
the file to be renamed.

extension$ptr A POINTER to a series of three bytes containing
the characters that are to be added to the
pathname. This is not a STRING. You must include
three bytes, even if some are blank.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

DESCRIPTION

This system call is used to change a file name extension, or add an
extension to the file name in memory. For example: :AFD1:FILE.SRC can be

changed to :AFDI1:FILE.OBJ by a compiler when the compiler creates a file
in which the object file is written.

The three character extension may not contain delimiters recognized by
DQSGETSARGUMENT but may contain trailing blanks. If the first character
addressed by extension$ptr is a space, the system call will delete any
prior extension (including the preceding period).

4-15

DQ$CLOSE

DQ$CLOSE waits for completion of I/0 operations taking place on the file
(if any), empties output buffers, and frees any buffers associated with
the CONNECTION.

CALL DQSCLOSE (connection, exceptyptr);

INPUT PARAMETER

connection A TOKEN for a file CONNECTION that is currently
open.

OUTPUT PARAMETER
exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix A.

DESCRIPTION

The DQSCLOSE system call closes a connection that has been opened by the
DQSOPEN system call. It performs the following steps:

l. It waits until all currently running I/O operations for the file
are completed.

2. It ensures that any information in a partially filled output
buffer is written to the file.

3. It releases any buffers associated with the file.

4, It closes the connection to the file. The comnection is still
valid, and can be re-opened if necessary.

Access Control

The Operating System performs no access checking before closing the
connection.

4-16

DQSCREATE

DQSCREATE creates a new file and establishes a connection to that file.

connection = DQSCREATE (path$ptr, except$ptr);

INPUT PARAMETER

path$ptr

OUTPUT PARAMETERS

connection

except$ptr

DESCRIPTION

A POINTER to a STRING that specifies the path of
the file to be created.

The TOKEN for the connection to the file; returned
by the iRMX 86 Operating System.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

This call creates a new file with the name you specify and returns the
CONNECTION to your program. If a file of the same name already exists it
is truncated (the data is destroyed).

To prevent accidentally destroying a file, issue DQSATTACH before issuing
DQ$CREATE. If the file does not exist, you receive an exception code of
E$FNEXIST upon return from DQSATTACH.

4-17

n
—
=
<
>
2
)
n
£
T

DQ$DECODE$EXCEETION

DQSDECODESEXCEPTION translates an exception code into an ASCII string.

CALL DQS$DECODESEXCEPTION (except$code, buff$ptr, except$ptr);

INPUT PARAMETER

except$code

OUTPUT PARAMETERS

buff$ptr

except$ptr

DESCRIPTION

A WORD that contains the numeric exception code
that is to be interpreted.

A POINTER to a buffer (at least 81 bytes long) in
which the system will return a STRING.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A. :

Your ﬁrogram provides the Operating System with the numeric value of an
exception code, and the iRMX 86 Operating System returns the mnemonic and

hex value of this code.

For example, if you pass DQSDECODESEXCEPTION a

value of 2 in except$code, the system will return the following string:

0002: ESMEM

The hex values and mnemonics for exception codes are iisted in Appendix A.

4-18

DQ$DECODESTIME

DQSDECODESTIME returns the current system time and date as a Double Word
integer and as a series of ASCII character bytes.

CALL DQ$DECODESTIME (time$ptr, except$ptr);

INPUT PARAMETER
time$ptr A POINTER to a buffer of the following structure:

DECLARE DT STRUCTURE
(SYSTEMSTIME DWORD
DATE (8) BYTE,
TIME (8) BYTE);

DATE and TIME are returned by this system call, as described below.
If SYSTEMSTIME is not zero when you call DQ$DECODESTIME, it is
converted (decoded) to a series of ASCII bytes representing the date
and time.

If SYSTEMSTIME is zero, the current system clock time (number of

seconds since January 1, 1978) is first returned and then decoded
into DATE and TIME.

OUTPUT PARAMETERS

time$ptr The buffer described above is used to return
either:

e The current system time as a DWORD integer, and
as a series of ASCII bytes decoded from the
DWORD value.

o The ASCII bytes representing the value you
passed in the SYSTEMSTIME parameter.

except$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix A.

DESCRIPTION

This system call returns the current date and time, each as a series of
bytes (note that this is not a STRING).

4-19

DQ$DECODES$TIME

DATE has the form MM/DD/YY for month, day, and year. The two slashes (/)
are in the third and sixth bytes. For example, the date January l5th of
1982 would be returned as:

01/15/82

TIME has the form HH:MM:SS for hours, minutes, and seconds, with
separating colons (:). The value for hours ranges from O through 23.
For example, the time 20 seconds past 3:12 PM would be returned as:

15:12:20

If, when you call DQSDECODESTIME, the SYSTEMSTIME parameter is zero, the
call will first get the system time (number of seconds since January 1,
1978) and then decode it into the series of bytes described above.

But if SYSTEMSTIME is not zero, the system call will simply convert it to
the series of bytes. You can use the system call DQSFILESINFO to get two
DWORD values associated with a file (the last time the file was updated,
the time the file was created) and use DQSDECODESTIME to convert the
dates to a series of bytes.

4-20

DQ$DELETE

DQSDELETE eliminates an existing file.

CALL DQSDELETE (path$ptr, except$ptr);

INPUT PARAMETER

pathSptr

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A POINTER to a STRING that specifies the pathname
of the file to be deleted.

A POINTER to a WORD where the system places the
condition code.

Appendix A.

Condition codes are described in

A program can use this system call to delete a file. This system call
will mark for deletion the specified file. This means that the system

may actually postpone deletion if there are other connections to the file

and delete the file only when all connections are closed and detached.

4-21

—
—
<
-
>
n
=
n

s
-’
7,
=
—
~
>
-
r

DQ$DETACH

DQSDETACH breaks the connection established by DQSATTACH or DQ$CREATE.

CALL DQ$DETACH (connection, exceptS$ptr);

INPUT PARAMETER

connection

OUTPUT PARAMETER

exceptSptr

DESCRIPTION

A TOKEN for the file CONNECTION to be deleted.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

This system call deletes a file CONNECTION. If the CONNECTION is open,
the DQSDETACH system call automatically closes it first (see DQSCLOSE).
DQSDETACH will also delete the file if it has been marked for deletion
and this is the last CONNECTION to the file.

4-22

DQSEXIT

DQSEXIT returns control from your program to the Operating System.

CALL DQSEXIT (end$code);

INPUT PARAMETERS

end$code A WORD containing the encoded reason for
termination of the program. You must include this
code, but currently the iRMX 86 Operating System
does not check this value. The standard codes are:

VALUE INTERPRETATION
0 Termination was normal.
1 Warning messages were issued.
2 Errors were detected.
3 Fatal errors were detected.
4 The job was aborted.

DESCRIPTION

DQSEXIT terminates a program. All connections are detached, all files

are closed, and any memory allocated to the program with DQSALLOCATE is
returned to the memory pool.

Calling DQSEXIT cannot result in an exception code.

4-23

s
-
s
|7
v‘—
L~
g
—
i

DQSFILES$SINFO

DQSFILESINFO returns information about a particular file.

CALL DQS$FILESINFO (connection, mode, file$infoS$ptr, exceptS$ptr);

INPUT PARAMETERS

connection A WORD representing the connection for the file.
mode : A BYTE specifying whether to return the User ID of
the owner of the file. Set as follows:
Value Meaning
0 do not return owner's User ID.
1 Return the owner's User ID.
2-255 Reserved by Intel
OUTPUT PARAMETERS

file$SinfoSptr A POINTER to a buffer into which the Operating

System returns the information requested. The
structure of this buffer is:

DECLARE FDATA STRUCTURE

(OWNER(15) STRING,
LENGTH DWORD,
TYPE BYTE,
OWNERSACCESS BYTE,
WORLDSACCESS BYTE,
CREATESTIME DWORD,
LASTSMODSTIME DWORD,
RESERVED(20) BYTE) ;
where:
OWNER A STRING containing the User ID of the file owmer.
TYPE A number indicating the type of file, as follows:
0 data file

1 directory

4-24

OWNER$ACCESS

WORLD$ACCESS

CREATESTIME

LASTMODTIME

exceptSptr

DESCRIPTION

DQS$FILESINFO

A BYTE specifying the type of access granted to
the owner. The flags in this word are encoded as
follows. (Bit O is the low—order bit.)

Bit Meaning

Delete

Read (data file) or Display (directory)
Append (data file) or Add Entry (directory)
Update (read and write: file) or Change
Access (directory)

W~ O

A BYTE specifying the type of access granted to
the WORLD (all users on the system). The flags in
this word are encoded as follows. (Bit O is the
low-order bit.)

Bit Meaning

Delete

Read (data file) or Display (directory)
Write (data file) or Add Entry (directory)
Update (read and write: file) or Change
Access (directory)

W= O

The date and time that the file was created,

expressed as the number of seconds since Jan. 1,
1978.

(You can convert this date/time to ASCII
characters, use the system call DQSDECODESTIME.)

7>
—
-
=
-/
=
et
n
=
N

The date and time that the file or directory was
last modified. For data files, modified means
written or truncated; for directories, modified
means and entry was changed or an entry was added.

(You can convert this date/time to ASCII
characters, use the system call DQ$DECODESTIME.)

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

The DQ$FILESINFO allows a program to obtain information about a file or a

directory.

4-25

DQ$FREE

DQSFREE returns to the Operating System a segment of memory acquired
earlier by DQSALLOCATE.

CALL DQ$FREE (base$addr, excepﬁSptr);

INPUT PARAMETER
baseSaddr A TOKEN for the base address of the segment that

is to be deleted. This is the base. address
returned to your program by DQSALLOCATE.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
4 Appendix A.
DESCRIPTION

The DQSFREE system call returns the specified segment to the memory pool
from which it was allocated.

4-26

DQSGETSARGUMENT

The DQGETARGUMENT system call is used to return successive arguments
from a command line.

delimit$char = DQSGETSARGUMENT (argument$ptr, except$ptr);

INPUT PARAMETER
argument$ptr A POINTER to a buffer in which the system will

return the argument STRING. The buffer must be at
least 81 bytes long.

OUTPUT PARAMETERS

delimit$char This is a single BYTE in which the system returns
the delimiter character.

except$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix A.

DESCRIPTION

GETSARGUMENT is called to get successive arguments from a command line.
The command line may be the same one that invoked the program containing
this call. But if the UDI system call DQ$SWITCHSBUFFER is called before
DQ$GETSARGUMENT, the command line can be anywhere that you specify.

A delimiter is returned only if the exception code is zero. The
following delimiters are recognized by the iRMX 86 Operating System:

») (= # 1 $ Z \ + - > <K~

as well as a space () and any characters with hexadecimal values between
0 and 20H.

The Operating System strips out ampersands (&) and semicolons (;).

4-27

7
—
-
=<
-/
>
7
‘o
£

DQGETARGUMENT

i
v
P
—
~
}.
—
 —
S

Before your program runs, the Operating System Command Line Interpreter
(CLI) pre—edits the command line to remove comments and continuation
characters. The Operating System also makes the following changes to the
command line:

o Multiple adjacent blanks separating two arguments are treated as
one blank. One or more blanks adjacent to any other delimiter
are removed. A tab is treated as a blank and returned as a blank.

o Lower case characters are converted to upper case unless part of
a quoted string.

o Strings enclosed within a matching pair of single or double
quotes are considered literals. The enclosing quotes are not
returned as part of the argument.

EXAMPLE

The following example illustrates the arguments and delimiters

returned by successive calls to DQSGETSARGUMENT. The ARGUMENT LENGTH
value i1s in the first byte of the string returned, the contents of each
string is listed in the column ARGUMENT VALUE, and the delimiter returned
in the byte delimitSchar is in the column DELIMITER.

Note that the last delimiter for each example is a carriage return (CR);
this is how a program determines that there are no more arguments in the
command line.

Table 4-2. Command Parsing Example

PLM86 LINKER.PLM PRINT(:LP:) NOLIST

ARGUMENT ,
LENGTH VALUE DELIMITER
8 PLM86 (space)
10 LINKER.PLM (space)
5 PRINT (
4 :LP:)
6 NOLIST CR

4-28

DQSGETSCONNECTIONSSTATUS

The DQSGET$CONNECTION$STATUS system call returns information about a file
connection.

CALL DQ$GETSCONNECTIONSSTATUS (connection, info$ptr, except$ptr);

INPUT PARAMETER

connection A WORD containing a token for the CONNECTION whose
status is desired.

OUTPUT PARAMETERS
info$ptr A POINTER to a structure in which the Operating
System will place the status information. The
structure pointed to by info$Sptr should be:

DECLARE INFO STRUCTURE

(OPEN BYTE,
ACCESS BYTE,
SEEK BYTE,
FILESPTRS DWORD ;

These fields are interpreted as follows:
OPEN 1 if connection is open, otherwise 2.

ACCESS Access privileges of the connection.
The right is granted if the
corresponding bit is set.

BIT ACCESS
0 delete
1 read
2 write
3 update (read and write)

4-29

7
—
=<
-t
=
-
o
7
-~
T

DQSGET$CONNECTIONS$STATUS

SEEK Types of seek supported.
VALUE MEANING
0 no seek allowed
3 seek forward and backward

Values of 1 and 2 are not meaningful to
the iRMX 86 Operating System.

FILESPTR This Double Word integer marks the
current position in the file. The
position is expressed as the number of
bytes from the beginning of the file,
the first byte being byte O (zero).

This field is undefined if the file is
not open or if seek is not supported by
the device (for example, seek operations
are not valid for a line printer.)

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

DESCRIPTION

DQSGETSCONNECTIONSSTATUS is used to obtain information about a file
CONNECTION. For example, you can use the system call if your program has
performed a number of read or write operations and it is necessary to
determine where the file pointer is now located.

s
-
.
—
<
~

4-30

DQSGETSEXCEPTIONSHANDLER

DQ$GETSEXCEPTIONSHANDLER returns the address of the current exception
handler.

CALL DQSGETSEXCEPTION (address$ptr, except$ptr);

OUTPUT PARAMETERS

address$ptr A POINTER to a POINTER in which the Operating
System returns the entry point of the current
exception handler.

exceptSptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

DESCRIPTION

DQSGETSEXCEPTIONSHANDLER is an system call that returns to your program
the address of the current exception handler. This is the address
specified in the last call to DQSTRAPSEXCEPTION, if it has been called,
otherwise the value returned is the address of the system default
exception handler.

This routine always returns a two-word pointer, even if called from a
program compiled under the SMALL model of segmentation.

DQSGET$EXCEPTIONSHANDLER is used in conjunction with DQ$TRAP$SEXCEPTION

and DQSDECODESEXCEPTION. See the descriptions of these calls for more
information.

4-31

B
—
—
<
-/
>
"
n

DQSGETSSIZE

DQSGETSSIZE returns the size of an allocated memory segment.

size = DQSGETSSIZE (base$addr, exceptSptr);

INPUT PARAMETER

base$addr A TOKEN (WORD or SELECTOR) for the base address of
a segment of memory that was allocated with the
DQSALLOCATE call. This is the same address that
is returned by DQSALLOCATE when the segment was
allocated.

OUTPUT PARAMETERS

size A WORD which the Operating System sets as follows:

e 1if not zero, contains the size, in bytes, of

the segment identified by the base$addr
parameter

e 1if zero, indicates that the size of the segment
is 65536 (64K) bytes.

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

DESCRIPTION

The GETS$SIZE system call returns the size, in bytes, of a segment. You
identify the segment of memory with a base address SELECTOR that is
returned by the DQSALLOCATE system call when the segment is allocated.

The size of the segment may not be exactly what you requested with the
DQSALLOCATE call. The Operating System allocates memory in l6-byte
paragraphs. If you request a segment whose size is not a multiple of 16,
the system increases the size to the next l6~byte boundary. This larger
size is reflected in the size returned by DQ$GETSSIZE.

4-32

DQSGETS$SYSTEMSID

DQ$GETSSYSTEMSID returns a string that identifies the operating system.

CALL DQGETSYSTEMSID (id$ptr, except$ptr);

OUTPUT PARAMETERS

idSptr POINTER to a 21-byte buffer in which the Operating
System will place a STRING identifying the
Operating System.

exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix A.

DESCRIPTION

This system call returns the following STRING:

iRMX 86

4-33

7))
-
<
o
= |
’
T

DQSGETS$TIME

DQSGETSTIME returns the current date and time in character format.

CALL DQ$GETSTIME (buff$ptr, except$ptr);

This system call is included here for compatability with previous

versions of the UDI. You should use the system call DQSDECODESTIME for
this function.

4-34

DQSOPEN

The DQSOPEN system call is used to inform the Operating System how your
program is going to access a file, and to identify the buffers you will

use.

CALL DQ$OPEN (comnection, access, num$buf, exceptS$ptr);

INPUT PARAMETERS
connection

access

numS$buf

OUTPUT PARAMETER

except$Sptr

DESCRIPTION

A TOKEN for the file connection to be opened.

A BYTE telling how your program is going to use
the CONNECTION. You should set the BYTE as
follows:

Value Meaning
1 Read only
2 Write only
3 Update (both reading and writing)

A BYTE containing the number of buffers that you
want the Operating System to allocate for this
connection.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

This system call prepares a connection for read, write, and seek
commands. Your program can have as many connections open at one time as

memory allows.

4-35

N
—
[
V<.
-
=
'-'-‘-,
-
N
o
T

DQ$OPEN

-
.
—
Rer
g
—
_A
,*»>
‘—
M
e

DQSOPEN:
l. Creates the number of buffers requested.
2. ‘Sets the connection's file pointer to zero. This is the pointer
that tells the Operating System where in the file to perform an

operation.

3. Starts reading ahead if num$buf is greater than zero and the
access parameter is "Read only” or "Update."”

Selecting Access Rights
The system will not allow your program to read using a connection open
for writing only, nor to write using a connection open for reading only.

If you are not certain how the connection will be used, specify both
reading and writing.

Selecting the Number of Buffers

The process of deciding how many buffers to allocate is based on three
considerations -- compatibility, memory, and performance.

COMPATIBILITY. If you expect to run your program on other systems using

UDI, you should use no more than two buffers.

MEMORY. The amount of memory used for buffers is directly proportional

to the number of buffers. So you can save memory by using fewer buffers.

PERFORMANCE. The performance consideration is more complex. Up to a

certain point, the more buffers you allocate, the faster your program can
run. The actual break—even point, the point where more buffers don't
improve performance, depends on many variables. Be aware that in order
to overlap I/0 with computation, you must specify at least two buffers.
If performance is not at all important and memory is, use zero buffers.

Specifying zero buffers means that no buffering should occur; each
DQSREAD or DQS$WRITE should result in a physical I/0 operation.
Interactive programs should open :CI: and :CO: with num$buf set to zero
to eliminate buffering.

If you normally seek before doing a read or write, num$buf should be 1.

4-36

DQ$OVERLAY

The DQSOVERLAY system call is invoked by a root module to load an overlay
module. ‘

CALL DQ$OVERLAY (name$ptr, except$Sptr);

INPUT PARAMETER

name$ptr A POINTER to a STRING that contains the name of an
overlay module. The name must be in upper-case.

OUTPUT PARAMETER
exceptSptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix A.

DESCRIPTION

n
-
—
=z
-
Z.
a
o
o
o
n

This system call is invoked by a root module whenever the root module
wishes to load an overlay module.

If your assembly language or PL/M-86 programs use the DQSOVERLAY
procedure, you should take care to ensure that you link the UDI library
to your program correctly. The 1APX 86, 88 FAMILY UTILITIES USER'S GUIDE
contains an example of linking an overlay program. This example lists a
two—-step link process, as follows:

1. Link the root and each of the overlays separately, specifying the
OVERLAY control, but not the BIND control, in each LINK86 command.

2. Link all the output modules together in one module, specifying
the BIND control, but not the OVERLAY control.

This is the same process that you should use when linking your iRMX 86
overlay programs. However, you must ensure that you link the entire UDI
library to the root portion of the program and not to any of the
overlays. To do this, use the INCLUDE control to include the UDI
externals file with the assembly or compilation of the root portion of
the program. By including this file with the root, you make external
references to all UDI routines from that root.

4-37

DQSOVERLAY

Then when you link the root to the UDI library, LINK86 pulls in all of
the UDI routines, not just the ones called in the root. Since you are
linking the UDI library to the root only, this prevents you from having
unsatisfied external references when you link the root to the overlays.

For example, suppose your program consists of three files, ROOT.OBJ,
OV1A.0BJ, and OV2A.0BJ, the root and overlay files, respectively. You
have compiled these program modules with the PL/M-86 compiler and
included the UDI externals file UDI.EXT with the compilation of the
root. Assuming that LINK86 resides on the system device (:SD:) in the
directory UTILS and that the object files reside in the directory PROG,
the following LINK86 commands will link the overlay program and produce
an executable module. This happens in two steps.

l. The first three LINK86 commands separately link the root and
overlay portions of the program. The root portion of the program

is linked to the UDI library (underlined entries are your
commands).

-LINK86 PROG/ROOT.OBJ, &
*%:SD:UDL/LARGE.LIB OVERLAY

iRMX 86 8086 LINKER Vx.y

-LINK86 PROG/OV1A.OBJ OVERLAY(OVERLAY1)

iRMX 86 8086 LINKER Vx.y

~-LINK86 PROG/OV2A.0BJ OVERLAY(OVERLAY2)

2. The next LINK86 command links together in one module all the
output modules produced in the first step.

o
=
o
ﬁ
=
~
>
—
g

x

-LINK86 PROG/ROOT.LNK, &
**PROG/OVIA,LNK, &
**PROG/OV2A.LNK &

**TQ PROGRAM1 BIND MEMPOOL(+2000H)

4-38

DQSREAD

The DQ$READ moves a number of bytes from a file to a buffer. Your
calling program must specify the connection, the number of bytes, and the
buffer to receive the information.

bytesSread = DQSREAD (connection, buff$ptr, bytes$max,
except$ptr);

INPUT PARAMETERS

connection A TOKEN for the connection to the file. This
connection must be open for reading or for both
reading and writing, and the file pointer of the
connection must point to the first byte to be read.

buff$ptr A POINTER to a buffer that will receive the data
that the Operating System reads from the file.

bytes$max A WORD containing the maximum number of bytes you
' expect to read from the file.

OUTPUT PARAMETERS

bytes$read A WORD containing the actual number of bytes
read. This number is always equal to or less than
the bytesSmax. ‘

exceptSptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

DESCRIPTION

This system call reads a collection of contiguous bytes from the file
associated with the connection. These bytes are placed in a buffer
specified by the calling program.

The Buffer

The buff$ptr parameter tells the Operating System where to place the
bytes after they are read. This is a buffer you create, and if it is not
long enough, the Operating System overwrites the area beyond the buffer.

4-39

7p
-
-
=
&)
b
€34
e
2]
>v
n

DQ$READ

Number of Bytes Read

The number of bytes that your program requests is the maximum number of
bytes that the Operating System places in the buffer. However, there are
two circumstances under which the system reads fewer bytes.

e First, if the Operating System detects an end of file before
reading the number of bytes requested, it will return only those
bytes preceding the end of file. The bytesS$read parameter can be

less than the bytesSdesired parameter, and no exceptional
condition will be indicated.

e Second, if an exceptional condition does occur during the reading
operation, information in the buffer and the value of the
bytes$read parameter are meaningless.

Access Control

If the connection is not opened for reading or both reading and writing,
the Operating System returns an exceptional conditiom.

Al

4-40

DQSRENAME

The DQSRENAME system call changes the pathname of a file.

CALL DQSRENAME (pathptr, newpath$ptr, except$ptr);

INPUT PARAMETERS

path$ptr

new$pathSptr

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A POINTER to a STRING that specifies the pathname
for the file to be renamed.

A POINTER to a STRING that specifies the new
pathname for the file. This path cannot refer to
an existing file.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

This system call allows your programs to change the pathname for a file

or a directory.

Be aware that when you rename a directory, you are

changing the pathnames of all files contained in the directory. When you
rename a file to which a connection exists (this is valid) the connection
to the renamed file remains established.

Your program can change any aspect of the pathname so long as the file or
directory remains on the same volume.

4=41

7
—
—
<
@
F.
7,
-
n

R e oy

DQ$SRESERVESIOSMEMORY

The DQSRESERVE$IOSMEMORY allows you to reserve enough memory to ensure
that you will be able to OPEN and ATTACH the files that this program uses.

CALL DQSRESERVESIO$MEMORY (number$files, number$buffers, except$ptr);

INPUT PARAMETERS

number$files The number of files that you expect the program

will have attached simultaneously.
number$buffers The total number of buffers that will be needed at
one time.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

DESCRIPTION

DQSRESERVESIOSMEMORY ensures that, as your program requests memory
segments (using DQSALLOCATE), you will not use up memory that you will
later need for attaching and opening files. For example, if your program
will attach and open two files at the same time, each of which has two
buffers, (specified when the DQSOPEN call is issued), number$files should
be two and numberSbuffers four.

Your program should issue DQSRESERVESIOSMEMORY before the first
DQSALLOCATE system call is issued.

If you issue this call more than once in a program, it simply changes the
amount of memory reserved.

RESTRICTION

This system call is effective as long as you use only UDI system calls to
communicate with the iRMX 86 Operating System.

4=42

DQ$SSEEK

DQSSEEK changes the file position pointer.

CALL DQS$SEEK (connection, mode, move$count, except$ptr)

INPUT PARAMETERS

connection A TOKEN for an open connection whose file pointer
you wish to move.

move$count A DWORD (Double Word) integer that tells the
Operating System how many bytes to move the file
pointer.

mode A BYTE containing a value that controls the nature

of the movement of the file pointer. Any of the
following values are valid:

Mode Meaning

1 Move the pointer backward by the
specified move count. If the move
count is large enough to position the
pointer past the beginning of the file,
set the pointer to the first byte
(position zero).

2 Set the pointer to the position
specified by the move count. Position
zero is the first position in the
file. Moving the pointer beyond the
end of the file is valid.

3 Move the file pointer forward by the
specified move count. Moving the
pointer beyond the end of the file is
valid.

4 First move the pointer to the end of
the file and then move it backward by
the specified move count. If the
specified move count would position the
pointer beyond the front of the file,
set the pointer to the first byte in
the file (position zero).

4-43

n
—
-
<
)
>
fnd
o~

DQ$SEEK

OUTPUT PARAMETER

except$ptr : A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

DESCRIPTION

When performing non-sequential I/0, your programs must use this system
call to position the file pointer before using the DQSREAD, DQSTRUNCATE,
or DQSWRITE system calls. The location of the file pointer tells the
Operating System where in the file to begin reading, truncating, or
writing information. If your program is performing sequential I/0 on a
file, they do not need to use this system call.

As mentioned previously, it is legitimate to position the file pointer
beyond the end of file. If your program does this and then invokes the
DQSREAD system call, the Operating System behaves as though the read
operation began at the end of file.

Also, it is possible to invoke the DQSWRITE system call with the file
pointer beyond the end of the file. If your program does this, the
Operating System attempts to expand the file. Be aware that if you
expand your file in this manner, the expanded portion of the file not
written to will contain undefined information.

4-44

DQ$SPECIAL

DQSSPECIAL specifies whether line editing is to be performed by the
Operating System on console input.

CALL DQ$S?ECIAL (mode, conn$ptr, exceptSptr);

INPUT PARAMETERS

mode A BYTE used to change the mode of terminal input.
The values and their meanings are:

Value Meaning

1 Transparent
2 Line editing
3 Immediate Transparent

Each of these types is explained in the
description.

conn$ptr A POINTER to a TOKEN for the connection to the
file. The connection must be a connection to :CI:
established by DQSATTACH.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A. ’

DESCRIPTION

This system call is used to change the technique by which your program
receives input from a console input device. Unless you have issued this
system call since the system was bootstrap loaded, the mode will be line
editing. But by using DQSSPECIAL you can change from line editing to one
of the transparent modes, or back to line editing.

4-45

DQ$SPECIAL

The meanings of the type parameter are as follows.

Value

1

Meaning

Transparent. Interactive programs often need to obtain
characters from the console exactly as they are typed.
This is made possible by transparent mode. In transparent
mode, all characters are placed in the buffer specified by
the call to DQSREAD. (The only exception are CTRL/C,
which will terminate the program, and CTRL/D, which has no
effect on the system.) The Operating System returns
control to the calling program when the number of
characters typed equals the number of characters specified
in the DQSREAD system call.

Line Editing. This means that the console operator has

the opportunity to correct typing errors with special keys
(like RUBOUT) before the application program receives the
characters typed. Line editing characters and their
effects are described in Chapter 2.

Immediate Transparent. This is nearly the same as

Transparent 1 mode, except that in Transparent 3 mode the
Operating System returns control to your program
immediately after the DQSREAD call, whether or not any
characters have actually been typed since the last
DQSREAD. If no characters have been typed, this will be
indicated by the bytesS$read parameter of the DQSREAD
call. Characters that are typed between successive calls
to read the terminal are held in the "type—ahead” buffer.

4-46

DQ$SWITCHSBUFFER

DQSSWITCHSBUFFER is used with DQGETARGUMENT to get arguments from a
command line contained within your program.

offset = DQSSWITCHSBUFFER (buff$ptr, except$Sptr);

INPUT PARAMETERS

buff$ptr A POINTER to a STRING containing the text to be
parsed.

OUTPUT PARAMETERS

offset A WORD that the Operating System sets equal to the
number of bytes from the beginning of the buffer
to first character in an argument in the buffer.

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

DESCRIPTION

DQS$SWITCHSBUFFER is used to point to a command line other than the line
that invoked this program. Typically, you will first call
DQSSWITCHSBUFFER, and then make a series of calls to DQSGET$ARGUMENT.
Each call to DQSGETSARGUMENT fetches an argument from the line pointed to
by buff$ptr.

The parameter offset will be zero (0) upon return from call to
DQ$SSWITCHSBUFFER.

You can use DQ$SWITCHSBUFFER any number of times to point to different
strings in your program. However, you cannot use DQ$SWITCHSBUFFER to
return to the command line that invoked the program. So you should use
DQ$GETSARGUMENT to parse all elements of the command line before issuing
the first call to DQSSWITCH$BUFFER.

4~47

i
—
<
R
=
==
e
n
-~
N

DQ$TRAPSCC

The DQSTRAPSCC allows you to specify a procedure (handler) to be entered
if a user types CTRL/c at the keyboard terminal.

CALL DQSTRAPSCC (entry$pnt, except$ptr);

INPUT PARAMETERS

entry$pnt A POINTER to the entry point of your CTRL/C
handler.

OUTPUT PARAMETER
except$ptr A POINTER to a WORD where the system places the

condition code. Condition codes are described in
Appendix A.

DESCRIPTION

DQSTRAPSCC is used if you do not want the Operating System to abort the
current program that is being run from the the terminal (:CI:) when the
user types CTRL/c.

For example, if you have a special message that you want to display on
the users terminal, or if you want the Control/c character to have a
meaning different than the normal one (see the description of CTRL/c in
Chapter 2), you can use this system call to identify the procedure to
which to transfer control when CTRL/c is typed.

4-48

DQSTRAPSEXCEPTION

DQSTRAPSEXCEPTION substitutes an alternate exception handler for the
default exception handler provided by the operating system.

CALL DQSTRAPSEXCEPTION (address$ptr, except$ptr);

INPUT PARAMETERS

address$ptr A POINTER to a POINTER containing the entry point
of the alternate exception handler.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

DESCRIPTION

DQSTRAPSEXCEPTION is used to inform the Operating System that when an
exceptional condition occurs, the Operating System is to pass control to
your exception handler. An exceptional condition is defined as a return
from a system call with a condition code other than ESOK (see Appendix A
for exception code meanings).

See the section EXCEPTION-HANDLING SYSTEM CALLS at the beginning of this

chapter for an explanation of the conditions of the stack when your
exception handler receives control.

4-49

DQSTRUNCATE

DQSTRUNCATE removes information from the position of the file pointer to

the end of the file.

CALL DQ$TRUNCATE (connection, except$ptr);

INPUT PARAMETER

connection

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A TOKEN for a connection to the named data file
that is to be truncated. The file pointer of this
connection tells the Operating System where to
truncate the file. The BYTE indicated by the
pointer is the first byte to be dropped from the
fileo

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

This system call truncates a file at the current setting of the file
pointer and frees all space beyond the pointer. If the pointer is at or
beyond the end of file, no truncation will be performed. Unless the file
pointer is already where you want it, your program should use the DQ$SEEK
system call to position the pointer before using the DQSTRUNCATE system

call.

The CONNECTION should have write, or read and write access rights,
established when the connection is opened.

4-50

DQSWRITE

The DQSWRITE system call moves a collection of bytes from a buffer into a
file.

CALL DQSWRITE (connection, buff$ptr, count, except$ptr;

INPUT PARAMETERS

connection A WORD containing a token for the CONNECTION to
the file in which the information is to be written.

buff$ptr A POINTER to a buffer containing contiguous bytes
that are to be written to the specified file.

count A WORD containing the number of bytes to be
written from the buffer to the file.

OUTPUT PARAMETERS

except$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

DESCRIPTION

This system call causes the Operating System to write the specified
number of bytes from the buffer to the file.

Access Control

In order to write information into a file. The file must be open for
writing, or for reading and writing (update access). Whenever your
program attempts to write over information in a file via a connection
that does not have update access, the Operating System does not write any
data to the file but returns an exception code. The description of
DQSOPEN explains how access is established.

4-51

DQ$WRITE

s
e
T
=
Z
L —
:A
>
. —
-
i

Number of Bytes Written

Occasionally, the Operating System writes fewer bytes than requested by
the calling program. This happens under two circumstances. The first
circumstance is when the Operating System encounters an I/0 error (an
exception code is returned). '

The second circumstance is when the volume to which your program is
writing becomes full. The Operating System informs your program of this
condition by returning an ESSPACE exception code.

Where the Bytes Are Written

The Operating System writes the bytes starting at the location specified
by the connection's file pointer. (The pointer indicates where the first
byte is to be written.) The pointer is updated as the bytes are

written. After the writing operation is completed, the file pointer
points to the byte immediately following the last byte written.

If your program must reposition the file pointer before writing, it can
do so by using the DQSSEEK system call.

4-52

EXAMPLE PROGRAM

This program provides an example of UDI system calls.

After the program listing we have listed the compiler and linker commands
used to build for program, and a listing of the linker map.

$compact
Soptimize(3)
/*'.....‘.....l...............QO......0.0.......'.......................00
*

* Program UPPER

*

* This program demonstrates the use of UDI file handling and

* command line parsing system calls. The program reads an input

* file of characters and converts all lower-case alphabetic characters
* to upper-case. The converted data are written to a second file.

*

* UPPER expects the command line that invokes it to be of the form:

*

* UPPER infile [TO outfile]

*

* (If "TO outfile"” is not specified, :CO: is assumed.)
*..........‘..........l.....O.........I‘............Q....l..........l.."I
*/

upper: DO;
/* These include files are described at the beginning of the chapter */

$include(:include:1ltksel.lit)
$include(:include:uexit.ext)
$include(:include:uclose.ext)
$include(:include:uwrite.ext)
$include(:include:uread.ext)
$include(: include:uopen. ext)
$include(:include:ucreat.ext)
$include(:include:ugtarg.ext)
$include(:include:uatach.ext)
$include(:include:udcex.ext)

DECLARE
CR LITERALLY 'ODH',
LF LITERALLY 'OAH',
ESOK LITERALLY '0';
DECLARE
co$conn TOKEN;

4~53

EXAMPLE PROGRAM (continued)

$subtitle('check$exception')

/*.................‘.'...'.l.'........"...'..‘.0..00'................'0..

* Procedure to check an exception code. If the exception code is
* not ESOK, print a message and exit.
*

00 00000 000 0000000000000 00000000000000000C0CL0OCRESICEEE000OCESIEORCEOIOIONEBEESIECIIOEDCTLS

*/

check$exception: PROCEDURE(exception, info$p) REENTRANT;
DECLARE

exception WORD,

infoSp POINTER,

info BASED info$p STRUCTURE(
count BYTE,
char(l) BYTE),

excSbuf - STRUCTURE(
count BYTE,
char(80) BYTE),

dummy WORD;

IF exception <> ESOK THEN
DO;
CALL dq$decode$exception{exception, @exc$buf, @dummy);

CALL dqS$write(co$conn, @exc$buf.char, exc$buf.count, @dummy);
CALL dq$write(co$conn, @(': '), 2, @dummy);

CALL dq$write(co$conn, @info.char, info.count, @dummy);

CALL dqSwrite(coSconn, @(CR, LF), 2, @dummy);

CALL dq$exit(3);
END;

END check$exception;

S$subtitle('Main')

/*‘..'.............'..............................'....Q.'.Q....l.....‘.l'.

*
* -—— MAIN PROGRAM ——-
%
*

P 00 00 000000000 000000000200 DS0SP0COIEOEOOLRDPOECEOOCESLIOEOOCEOECONCOOROSEOEOIOCIOEOROCEOIONSIECOINOTDOTES

*/

DECLARE st WORD;

DECLARE
in$name(50) BYTE,
out$name(50) BYTE,
in$conn TOKEN,
out$conn TOKEN,
delim BYTE;

4-54

EXAMPLE PROGRAM (continued)

DECLARE
buffer(1024) BYTE,
in$bp POINTER,
in$char BASED in$bp BYTE,
nextchar BASED in$bp (2) BYTE,
in$count WORD,
i WORD;

/*..."..‘..'.....'...-........................"............I...I....
* Create a connection to :C0: (console output).

*Q..0...'...0..........‘...0.Q.....I.l'........'........0.....‘...t..

*/
coSconn = dq$create(@(4, ':C0:'), @st);

CALL dq$open(co$conn, 2, 0, @st);

/*....‘....Q........"..‘..OI......QQI..QC.....‘.......‘..I..‘....l‘..
* Ignore the name of the program (the first argument).

*.‘..Ootloooo...o.o.!....‘....oo.00.00..0..."...0..0-.00.0.00.0.0000

*/

delim = dq$getSargument(@buffer, @st);
CALL checkSexception(st, 0);
IF delim = CR THEN

CALL dq$exit(0);

/*..’...................Q..I..'..........'......Q......‘..'...........
* Attach the input file, and open it.

*0...Q....o.o....00..‘0‘0‘..00‘0.'.0‘-0000‘0.000.....o.o.ooo'o.t...oo

*/

delim = dq$getSargument(@in$name, @st);
CALL check$exception(st, 0);

inSconn = dq$attach(@inSname, @st);
CALL check$exception(st, @in$name);

CALL dq$open(in$conn, 1, 2, @st);
CALL check$exception(st, @in$name);

4-55

EXAMPLE PROGRAM (continued)

/*..."'.......Q....'.l.’.'..’...'...".OQ..I..'.‘l......o’.‘...‘.....

* Find out if there is an output file specified. If so, attach
* and open it. If not, use :CO: for output.

*00000..0000t......o.oo..oo.o..t..oO.IOQ...oooo.c..t.o.o...‘o‘...oo.c

*/

IF delim <> CR THEN
DO;
delim = dq$getSargument(@buffer, @st);
CALL check$exception(st, 0);
IF (delim = CR) OR
(buffer(0) <> 2) OR
(buffer(l) <> 'T') OR
(buffer(2) <> '0') THEN
DO;
CALL dqS$write(co$conn, @('Invalid output file', CR,
LF), 21, @st);
CALL dq$exit(3);
END;

delim = dqgetargument(@out$name, @st);
CALL check$exception(st, 0);

out$conn = dq$create(@outSname, @st);
CALL checkS$exception(st, @out$name);

CALL dq$Sopen(out$conn, 2, 2, @st);
CALL check$exception(st, @out$name);
END;
ELSE
outSconn = co$conn;

/*.....l..........'..‘......‘.....‘.....'l...'...'....0.0..00..00....0
* Read from input, convert, and write to output

*...o....o.........o...oo......Qo........o.co.lo.'..on..o..olooool..o

*/

DO WHILE 1;
inScount = dqS$read(in$conn, @buffer, size(buffer), @st);
CALL check$exception(st, @in$name);
IF inScount = 0 THEN
GOTO endSoffile;

DO i=0 TO in$count-1;
IF (buffer(i) >= 'a') AND (buffer(i) <= 'z') THEN
buffer(i) = buffer(i) + 'A'-'a';
END;

CALL dqSwrite(outSconn, @buffer, inScount, @st);
CALL check$exception(st, @out$name);
END;
endoffile:

4-56

EXAMPLE PROGRAM (continued)

/*o...00...0.0.lo.o.o....0..000.........'.0..-..oo....ll...l...o.ool.o

* Close input and output files and exit
*

® 0000 000000000000 000000000000 00000000060006008000000000006006000C0O0CDCIEGIIOGIEOETSDS

*/

CALL dq$close(in$conn, @st);
CALL checkS$exception(st, @in$name);

CALL dqS$close(out$conn, @st);
CALL check$exception(st, @outS$name);

CALL dqSexit(0);

END upper;

/*0.0oooooooooo'n...o..o.'oo'...o-.o.-.ooo-oo.'uoc..'og...o'o..oooc...

*/

The program UPPER was compiled and built with the following commands:

plm86 upper.p86
1ink86 upper.obj, :1lib:compac.lib to upper bind mempool(5000H)

The linker map is on the next page.

4-57

iRMX 86 8086 LINKER, V2.0

INPUT FILES: UPPER.OBJ, :LIB:COMPAC.LIB
OUTPUT FILE: UPPER

CONTROLS SPECIFIED IN INVOCATION COMMAND:
BIND MEMPOOL(5000H)

DATE: 14/02/82 TIME: 12:05:37
LINK MAP OF MODULE UPPER

LOGICAL SEGMENTS INCLUDED:

LENGTH ADDRESS ALIGN SEGMENT CLASS
02F6H —-——=—=- W CODE CODE
00lEH —==~—- W CONST CONST
0475H —-——- W DATA DATA
0454H -~~——~ W STACK STACK
0000H ——-~—- W MEMORY MEMORY
0000H -==——- G ?1SEG

INPUT MODULES INCLUDED:
UPPER.OBJ(UPPER)
:LIB:COMPAC.LIB(DQATTACH)
:LIB:COMPAC.LIB(DQCLOSE)
:LIB:COMPAC.LIB(DQCREATE)
:LIB:COMPAC.LIB(DQDECODEEXCEPTION)
:LIB:COMPAC.LIB(DQEXIT)

¢ LIB:COMPAC.LIB(DQGETARGUMENT)
:LIB:COMPAC.LIB(DQOPEN)
:LIB:COMPAC.LIB(DQREAD)
:LIB:COMPAC.LIB(DQWRITE)
:LIB:COMPAC.LIB(SYSTEMSTACK)

GROUP MAP

GROUP NAME: CGROUP
OFFSET SEGMENT NAME
0000H CODE

GROUP NAME: DGROUP
OFFSET SEGMENT NAME
O00OOH CONST
O0lEH DATA

SYMBOL TABLE OF MODULE UPPER

BASE OFFSET TYPE SYMBOL BASE
G(1) 0293H PUB DQATTACH G(1)
G(1) 02A9H PUB DQCREATE G(1)
G(1) 02BFH PUB DQEXIT G(1)
G(1) 02D5H PUB DQOPEN G(1)
G(1) 02EBH PUB DQWRITE S(4)

%k k

4-58

OVERLAY

OFFSET

029EH
02B4H
02CAH
02EOH
006CH

TYPE SYMBOL

PUB
PUB
PUB
PUB
PUB

DQCLOSE
DQDECODEEXCEPTION
DQGETARGUMENT
DQREAD
SYSTEMSTACK

CHAPTER 5. PREPARING YOUR HARDWARE

This chapter describes how to prepare the hardware devices on which the
iRMX 86 PC Operating System runs (see Figure 5-1). The iRMX 86 PC
product is a version of the iRMX 86 Operating System that has been
prepared by Intel to run on the hardware described here.

4 B

LINE PRINTER:
CENTRONICS - compatible

PARALLEL PORT

WINCHESTER DISK DRIVE
INTELLEC *
DEVELOPMENT
SYSTEM
CHASSIS/IPOWER SUPPLY
™\,
isBx™ 218 ’

—
FLEXIBLE DISK >
CONTROLLER ~~—___| > —

. 2732A EPROMS SYSTEM DISKETTE
(with Bootstrap Loader single-side, double-density,
and Monitor) 256 bytes per sector
Backplane with
MULTIBUS*

Connectors

iISBC* 215
WINCHESTER
DISK CONTROLLER

iSBC" 86/12A
86/14, or 86/30
PROCESSOR BOARD

MEMORY BOARD(S)

ISBC"® 534
COMMUNICATIONS x-326
BOARD

Figure 5-1. The iRMX" 86 PC Hardware

5-1

PREPARING YOUR HARDWARE

This chapter is organized as follows:

THE iRMX 86 PC HARDWARE ENVIRONMENT. A section describing

hardware on which the iRMX 86 PC will run.

MODIFYING BOARDS. A section describing how to modify your
{APX 86-based Single Board Computer, and how to modify the
iSBC 208 Disk Controller board.

CONVENIENCE CHARTS. To make the process of preparing your

hardware easier, we have included (for each board described in
this chapter) a single-page condensed summary of modifications
required for that board. You can remove the page and refer to it
as you work on the devices. These charts are the last pages in
this chapter.

THE iRMX™ 86 PC HARDWARE ENVIRONMENT

To use the iRMX 86 PC Operating System, some hardware is required, and
some is optiomnal.

REQUIRED HARDWARE

The Preconfigured iRMX 86 Operating System requires the following
hardware:

Single-Board Computer. An Intel iSBC 86/12A, iSBC 86/14, or
iSBC 86/30 Single Board Computer.

Flexible Disk Drive. A flexible diskette controller with at
least one 8-inch drive.

This disk drive should conform to the size and recording density
of the diskette on which you receive the Preconfigured iRMX 86
Operating System (8-inch, single-sided, double-density, 256 bytes
per sector).

Although you can boot and run the system with one flexible
diskette drive, you will need at least one other disk drive to do
useful work with the system.

Keyboard Terminal. A keyboard terminal connected to the serial
line on your single~board computer.

Chassis. An appropriate chassis/cardcage/power-supply unit.

Memory. At least 256 K-bytes.

5-2

PREPARING YOUR HARDWARE

OPTIONAL HARDWARE
You can include the following optional hardware in your system:

° Four More Terminals. An 1iSBC 534 Four Channel Communications
Expansion Board with one to four keyboard terminals.

e Winchester Disk., A Winchester hard disk drive connected to an
iSBC 215 Disk Controller.

e Total of Eight Flexible Disk Drives. Up to four flexible
diskettes connected to an iSBC 208 Flexible Disk Controller and
up to four flexible disk drives connected to an 1SBX 218 Flexible
Disk Controller Multimodule. You can use the iSBC 218
Multimodule only if you also have an 1SBC 215 Disk Controller.

There are some restrictions about size, density, number;of-sides,
and bytes-per—sector of these drives. These restrictions are
explained later.

e Line Printer or Microcomputer Development System. Either a line
printer or an iSBC 957B hardware/software package connected
through the parallel port on your Single-Board Computer. The
iSBC 957B package allows you to connect your system directly to
an INTELLEC Microcomputer Development System. Neither the line
printer nor the iSBC 957B package is required to run the
Operating System.

SINGLE BOARD COMPUTER

The iRMX 86 PC Operating System runs on any of these Intel Single Board
Computers: iSBC 86/12A, iSBC 86/14, or iSBC 86/30. The characteristics
of these computers are summarized in Table 5-1.

Table 5-1. Single Board Computers

Single Board On~board Multimodule™ Clock
Computer Memory Memory (optional) Frequency
1SBC® 86/12A 32 K-bytes 64 K-bytes SMHZ
iSBC® 86/14 32 K-bytes 64 K-bytes 5 or 8 MHZ
1SBC® 86/30 128 K-bytes 256 K-bytes 5 or 8 MHZ

PREPARING YOUR HARDWARE

FLEXIBLE DISKETTE CONTROLLERS AND DRIVES

You can connect flexible disk drives to your system using an iSBC 208
Controller Board, an iSBC 218 Multimodule Controller Board, or both. If
you use the iSBC 218 Controller, it must be mounted on an 1iSBC 215
Winchester Controller Board. The following applies to the iSBC 208 and
to the iSBC 218 Controllers:

e It will accept hrives and diskettes of many recording formats:
single- and double-density, single~ and double-sided, and sector
sizes of 128, 256, and 1024 bytes.

e The controller will handle up to four drives. The third and
fourth drives on a controller must be 8~inch, standard format
drives. (Standard-format is explained in the note below.)

e The system uses soft—sectored diskettes, which means that you
must format new diskettes using the FORMAT command described in
Chapter 3.

NOTE

The iRMX 86 PC System is delivered on
standard format diskettes: 8-inch
double-density, single-sided diskettes
having 256 bytes—per-sector.

Physical names for iRMX 86 PC disk
drives, including Winchester drives,
are listed in Chapter 3 in the
description of the ATTACHDEVICE
command. Chapter 6, SYSTEM MANAGEMENT,
describes how to make a copy of the
System Diskette.

WINCHESTER DISK DRIVE
You can connect one Winchester Disk to your system using the 1iSBC 215
Disk Controller Board. (This also allows you to use the iSBC 218
Flexible Disk Controller described in the previous section.) You have a
choice of four types of drives.

e Priam 3450: approximately 35 MB capacity

e Pertec D8000: approximately 20 MB

e Memorex 10l: approximately 10 MB

e Shugart SAl002: approximately 5 MB (you can use an SA1004, but
only 5 MB of the disk will be used).

PREPARING YOUR HARDWARE

LINE PRINTER

You can use any line printer that recognizes the Centronics signal/pin
standard. The line printer is connected to the parallel port on the
processor board you use.

Table 5-2 shows the signals that are present on pins at the:

e 50-Pin iSBC Connector: The Single Board Computer parallel port
connector (Jl).

e 50-Pin Edge Connector: A standard 50-pin edge connector used as
a cable-end; mates to the iSBC Connector described in 1.

e 30-Pin Connector: The Centronics—standard plug and connector at
the line printer.

Table 5-2. Line Printer Pin Assignments

50-Pin 50-Pin — CENTRONICS-Standard --—
iSBC® Edge 30-Pin
Connector] Connector Connector Signal
24 23 1 Character strobe to printer
26 25 13 SLCT (Select)
28 27 12 Paper Out
30 29 10 ACKNOWLEDGE from printer
34 33 9 Data Bit 7
36 35 8 Data Bit 6
38 37 7 Data Bit 5
40 : 39 6 Data Bit 4
42 41 5 Data Bit 3
44 43 4 Data Bit 2
46 45 3 Data Bit 1
48 47 2 Data Bit 0

Notes: 1SBC Connector: All odd pin numbers are grounded.
Edge Connector: All even—numbered pins grounded.
Centronics LP Connector: Pins 19-29 Protective grounds

Pin 16 Logic Ground
Pin 17 Chassis Ground

PREPARING YOUR HARDWARE

ADDITIONAL TERMINALS

You can connect up to four keyboard terminals, using the serial ports on
an iSBC 534 Communication Expansion Controller. If you connect less than
four terminals to the board, use the ports in ascending order, starting
at Port 0 (zero). For example, if you use only two terminals, use Ports
0 and 1.

MEMORY

The iRMX 86 PC Operating System requires at least 256K bytes of memory.
In addition, you will need sufficient memory to run programs, system
utilities, and language processors. Some memory is on—board the iSBC 86
Single Board Computer, with the remainder on one or more memory boards.
On-board memory may include a RAM expansion module; with a RAM expansion
module the iSBC 86/30 has enough memory to run the Operating System.

iSBC® 957B PACKAGE

You can use the parallel port for copying files to and from an Intellec
Development System using an iSBC 957B hardware/software package. This
chapter describes changes to your Single Board Computer required to
support the iSBC 957B package. Refer to the USER'S GUIDE FOR THE

iSBC 957B iAPX 86, 88 INTERFACE AND EXECUTION PACKAGE for information
about how to connect your system to a Development System.

MODIFYING BOARDS

This section gives some hints about installing boards in a Multibus
backplane, and describes how to modify the following boards:

e 1SBC 208 and iSBX 218 Flexible Diskette Controllers

e 1iSBC 215 Generic Winchester Controller Board

e 1iSBC 86/12A, iSBC 86/14, and iSBC 86/30 Single Board Computers

e 1iSBC 534 Communications Expansion Board
In discussions of how to modify boards, the term “"modify"” means
installing non—-standard jumpers and installing components omn the board
(such as the EPROMs that come as part of the iRMX 86 PC System). The
discussions in this chapter assume that you have a hardware reference

manual for the board you are modifying, and that you start with boards
having only factory-installed jumpering in place.

5-6

PREPARING YOUR HARDWARE

To modify a Single Board Computer to support the iRMX 86 PC Operating
System, you must know:

® Whether you are using the parallel port for a line printer or for
an 1SBC 957B package.

e Whether your board has an iSBC 337 Multimodule Numeric Data
Processor ("NDP").

e Whether the board has a RAM expansion module.

e Whether you are using serial bus priority resolution (the factory
default in all cases) or parallel priority resolution.

The instructions for the individual boards note when a particular jumper
or device is affected by these variables. Comments describing the
effect of jumpers are very brief; more complete descriptions are in the
appropriate hardware reference manual.

HINTS ABOUT THE MULTIBUS®

When installing boards in the Multibus backplane, you must be sure that
bus master boards are set up properly to resolve bus priority, and you
should take precautions to avoid bus noise problems. Here are brief
helps regarding each, and a recommendation for a booklet that explains
more about each.

Bus Priority Resolution

Each Multibus master board contains hardware that automatically resolves
bus priority. There are two techniques that this hardware can use:
serial resolution or parallel resolution. When you put together your -
hardware system, you must ensure that all master boards in your system
use the same technique.

If you fail to do this, the individual boards will be able to perform
on-board operations correctly, but will be unable to perform operations
that require more than one board. Two symptoms are being able to access
on—board memory but not being able to access memory on another board, and
not being able to process bus-vectored interrupts.

These are guidelines for deciding whether to use serial or parallel bus
priority:

e Serial Priority Resolution: It is the easiest to use, requiring
no modifications to the boards or the backplane. You can have up
to three bus master boards in your system.

e Parallel Priority Resolution: This allows up to 16 master
boards. Parallel priority resolution is more complex to set up,
and requires special backplane hardware.

5-7

PREPARING YOUR HARDWARE

Bus Electrical Noise

Signal-to~signal coupling and other noise-inducing phenomena are usually
not a problem with Multibus~based systems. But if your system is failing
for reasons you can't identify, here are some precautions you can use.

e Place BCLK/ and CCLK/ generators and receivers as close as
possible to the Multibus terminators.

e Place any board receiving a signal as close as possible to the
board generating the signal.

e If you have empty slots in the backplane, install the boards near
the Multibus terminator, leaving the empty slots toward the

unterminated end of the backplane. Avoid leaving empty slots
between boards.

Refer to the Intel publication USER'S GUIDE TO CONFIGURING MULTIBUS-BASED
SYSTEMS for more detailed explanations of these Multibus considerations.

MODIFYING THE iSBC® 215 WINCHESTER DISK CONTROLLER

Regardless which processor board you are using in your system, the

iSBC 215 Controller is jumpered the same way. The jumpers are shown in
Table 5-3.

Table 5-3. 1SBC® 215 Jumpers

Remove Jumper | Add Jumper Function/Description
w19, C-5 W19, C-4 Interrupt Level 4
w18, 1-2 16-bit bus compatibility
w20, 1-3 16-bit bus compatibility
w21, 1-3 16-bit bus compatibility
wlli, 1-3 If 1SBC 218 board is used

Notes: Switches 1 and 2 should be set as follows:
Switch 1 Segment 8 ON, all other segments OFF
Switch 2 Segments 1 and 2 ON, all others OFF

You will have to perform "signal scrambling” for the type of
drive you use. Refer to the hardware reference manual for
instructions.

The iSBC 215 Controller is documented in the iSBX 215 GENERIC WINCHESTER
DISK CONTROLLER HARDWARE REFERENCE MANUAL.

PREPARING YOUR HARDWARE

MODIFYING THE iSBX"™ 218 DISK CONTROLLER

If you want to add the 1SBX 218 multimodule to your iSBC 215 board, you
must plug the iSBX 218 multimodule into socket J4 of the iSBC 215 board
and modify jumpers on the iSBC 218 board as described in Table 5-4. For
jumpering 5 1/4-inch drives, refer to the individual hardware manual.

Table 5-4. Jumpering for the iSBX" 218 Multimodule”

Add Jumper Function/Description

Wl, A-B direct memory access

w3, A-C 8-inch disk drives
Wi, A-C . " "
W5, A-C . . .
w6, A-C " " "
W7, A-C . " "

The controller is documented in the iSBX 218 FLEXIBLE DISK CONTROLLER
HARDWARE REFERENCE MANUAL.

MODIFYING THE i1SBC® 208 FLEXIBLE DISK CONTROLLER

Regardless which Single Board Computer you are using for your system, the

iSBC 208 Disk Controller is jumpered the same way. The jumpers are shown
in Table 5-5.

Table 5-5. iSBC¥ 208 Jumpers

Remove Jumper | Add Jumper Function/Description
E79-E84 Interrupt level 5
E45-E49 E41-E45 16-bit 1/0 address decoding.
E48-E52 E44~E48 Set I/0 port address to 180h
E61-E69 E54-E61
E77-E78 Only if parallel bus priority resolution
is used.

The controller is documented in the iSBX 208 FLEXIBLE DISK DRIVE
CONTROLLER HARDWARE REFERENCE MANUAL.

5-9

PREPARING YOUR HARDWARE

MODIFYING THE iSBC® 534 FOUR CHANNEL COMMUNICATIONS EXPANSION BOARD

You must install jumpers on your iSBC 534 Expansion Board to establish

the I/0 base address and the interrupt level. These jumpers are shown in
Table 5-6.

Table 5-6. iSBC® 534 Interrupt and Base Address Jumpers

Remove Jumper | Add Jumper Function/Description
131-140 131-138 Interrupt level 3
132-140 132-138

123-126 Base Port Address: 30

Each serial port that you use on the Expansion Board must match the
characteristics of the device connected to that port. Although many
variations are possible, the most common way of using a port is to
connect it to a terminal and to use RS232C protocol., You must prepare
one DIP header assembly for each port that you use. Table 5-7 shows how

to wire the pins on an 18-pin DIP header assembly for the most common
RS232C hookup.

Table 5-7. 1SBC® 534 DIP Header Jumpers for RS232C Protocol

Jumper Description, (with RS232C signals)
4 to 5 Board DSR to Board DTR
6 to 7 Board RTS to board CTS
8 to 10 Board RXD to terminal TXD
9 to 11 Board TXD to terminal RXD
12 to 13 Terminal RTS to terminal CTS
14 to 15 Terminal DSR to terminal DTR
Signal Names: TXD: Transmit Data RXD: Receive Data
DTIR: Data Terminal Ready DSR: Data Set Ready
RTS: Request to Send CTS: Clear to Send

For any other configuration (current loop, modem hookup, etc.) refer to

the 1SBC 534 FOUR CHANNEL COMMUNICATIONS EXPANSION BOARD HARDWARE
REFERENCE MANUAL.

5-10

PREPARING YOUR HARDWARE

MODIFYING THE iSBC® 86/12A SINGLE BOARD COMPUTER

The following tables list the modifications necessary to support the
iRMX 86 PC Operating System with an 1SBC 86/12A Microcomputer.

Interrupt Level Jumpers

Table 5-8 summarizes jumpers that establish interrupt levels.

. Table 5-8. Interrupt Jumpers for iSBC® 86/12A
Add Jumper Function/Description
E81-El Interrupt Level 0, iSBC 337 (1)
E72-E89 Level 1, Non-Maskable Interrupt
E80-E84 Level 1, Line Printer
E79-E83 Level 2, System Clock (2)
E70-E73 Level 3, 1iSBC 534 controller
E69-E77 Level 4, iSBC 215/218 controller
E68-E76 Level 5, 1iSBC 208 controller (2)
E75-E82 Level 6, Terminal Driver (Read)
E74-E20 Level 7, Terminal Driver (Write)

Notes: (1) This jumper is for an iSBC 86/12A with PWA number of
142977-XXX.

(2) Factory-installed jumpers.

Additional Jumpers

Table 5-9 summarizes additional jumpering of the iSBC 86/12A.

Table 5-9. Other iSBC® 86/124 Jumpers

Remove Jumper | Add Jumper Function/Description
E51-E52 Clear To Send signal capability
E125-E126 E127-E128 Set dual-port RAM address
El12-E21 Only if iSBC 337 is not used
E97-E98 E97-E99 Required by Monitor EPROMs
E5-E6 Unpopulated memory or port time-out
E151-E152 Only for parallel priority resolution

5~11

PREPARING YOUR HARDWARE

Parallel Port

Table 5-10 summarizes jumper setting for the iSBC 86/12A Parallel Port,
which can be used for either a line printer or an iSBC 957B package.

Table 5-10. 1iSBC® 86/12A Parallel Port Jumpers

iSBC® 957B Line Printer
Remove Add Remove Add
Jumper Jumper Jumper Jumper
E13-El4 E13-E27 E13-El4 E22-E32
E19-E20 E14-E30 E32-E33
E21-E25 E18-E31
E26-E27 E20-E33
E30-E31 E25-E31
E32-E33

Switch Settings

Table 5-11 Shows the‘settings for each position (segment) of Switch 1.

Table 5-11. 1SBC® 86/12A Switch 1

Position Setting Position Setting
1 ON 5 OFF
2 (D 6 OFF
3 OFF 7 ON
4 OFF 8 OFF

Note: (1) Switch 2 must be OFF if you are using an iSBC 300 RAM
Expansion Module, otherwise ON.

5-12

' PREPARING YOUR HARDWARE
Devices
Table 5-12 describes the devices that must be installed on your

iSBC 86/12A Board.

Table 5-12. 1SBC® 86/12A Devices

Device Part Number Socket

2732A EPROM 145374~-001 A28

2732A EPROM 145375-001 A29

2732A EPROM 145376-001 A46

2732A EPROM 145377-001 A47

iSBC 902 Resistor packs 4500645-01 Al10, Al2, Al3
7438 1IC 100908-001 All (1)
Status Adapter - 1002129 All (2)

Notes: (1) If parallel port is used for line printer.
(2) 1If parallel port is used for iSBC 957B package.

The 1iSBC 86/12A is documented in the 1SBC 86/12A SINGLE BOARD COMPUTER
HARDWARE REFERENCE MANUAL.

5-13

PREPARING YOUR HARDWARE

MODIFYING THE iSBC® 86/14 SINGLE BOARD COMPUTER

The following tables list modifications necessary to suppofﬁ the
iRMX 86 PC Operating System with an iSBC 86/14 Single Board Computer.

Jumpers

Table 5-13 summarizes jumpers that establish interrupt level jumpers,
Table 5-14 summarizes parallel port jumpers, and Table 5-15 shows all
other jumpers that must be installed on the iSBC 86/14 Board. Asterisks
(*) note indicate factory-installed jumpers.

Table 5-13. Interrupt Jumpers for iSBC® 86/14

Remove Jumper Add Jumper Function/Description
E165-E166 Interrupt Level 0, iSBC 337
E144-E145 E145-E149 Level 1, Non-Maskable Interrupt
E132-E164 Level 1, Line Printer
E147-E158 Level 2, System Clock *
E136-E159 Level 3, If iSBC 534 board used
E157-E162 Level 5, If iSBC 215/218 board used
E151-E152 Level 5, 1SBC 208 *
E153-E155 Level 6, Terminal Driver (Read)
E134-E154 Level 7, Terminal Driver (Write)

Table 5-14. iSBC® 86/14 Parallel Port Jumpers

If iSBC® 957B is used If Line Printer is used
Remove Add Remove Add
Jumper Jumper Jumper Jumper
E44-E53 E44-E59 E44-E53 E60-E63
E45~E54 E45-E50 E51-E60
E46-ES55 E45-E54
E48-E57 E46-E51
E50-E59 E48-E53
E51-E60 E50-E52
E52-E61

5-14

PREPARING YOUR HARDWARE

Table 5-15. Other 1SBC® 86/14 Jumpers
Remove Jumper| Add Jumper Function/Description
E76-E77 Clear To Send signal capability.
E219-E225 Set dual-port RAM address
E61-E62 Only if iSBC 337 1is not used.
E26-E27 Enable Non-Maskable Interrupt
E33-E34 Non~bus vector interrupt
E36-E37 Selects 5MHz clock (1)
E124-E125 Selects 2732-type EPROM
El111-El112 E112-E113 2732 EPROM address range
E119-E120 If RAM Expansion Module is used
E230-E231 If RAM expansion module not used
E232-E233 Dual-port Ram Addressing
E210-E211 For parallel priority resolution
Note: (1) 5 MHz required if iSBC 337 NDP is used.
Devices .

Table 5-16 describes the devices that must be installed on your

iSBC 86/14 Board.

Table 5~16. 1SBC® 86/14 On-Board Devices
Device Part Number Socket
2732A EPROM 145374-001 u57
2732A EPROM 145375-001 U58
2732A EPROM 145376-001 U39
2732A EPROM 145377-001 U40
902 Resistor Packs 4500645-01 ul8, V20, U2l ‘
7438 IC 100908-001 Ul9 If Line Printer used
Status Adapter 1002129 Ul9 TIf iSBC 957B used

The iSBC 86/14 Single Board Computer is documented in the iSBC 86/14 AND
iSBC 86/30 SINGLE BOARD COMPUTER HARDWARE REFERENCE MANUAL.

5-15

PREPARING YOUR HARDWARE

MODIFYING THE iSBC® 86/30 SINGLE BOARD COMPUTER

The following tables list modifications necessary to support the
iRMX 86 PC Operating System with an iSBC 86/30 Single Board Computer.

Jumpers

Table 5-17 summarizes jumpers that establish interrupt level jumpers,
Table 5-18 summarizes parallel port jumpers, and Table 5-19 summarizes
all other jumpers that must be installed on your 1SBC 86/30 Board.
Asterisks (*) mark factory-installed jumpers.

Table 5~17. Interrupt Jumpers for iSBC® 86/30

Remove Jumper Add Jumper Function/Description

E165-E166 Interrupt Level O, iSBC 337

El44-E145 E145-E149 Level 1, Non-Maskable Interrupt
E132-El64 Level 1, Line Printer
E147-E158 Level 2, System Clock *
E136-E159 Level 3, iSBC 534 Controller
E157-E162 Level 5, iSBC 215/218 Controller
E151-E152 Level 5, iSBC 208 *
E153-E155 Level 6, Terminal Driver (Read)
El134-E154 Level 7, Terminal Driver (Write)

Table 5-18. 1SBC® 86/30 Parallel Port Jumpers

If iSBC® 957B is used If Line Printer is used
Remove Add Remove Add
Jumper Jumper Jumper Jumper
E44-E53 E44-E59 E44-E53 E60-E63
E45-E54 E45-E50 E51-E60
E46-E55 E45-E54
E48-E57 E46-E51
E50-E59 E48~E53
E51-E60 E50-E52
E52-E61

5-16

PREPARING YOUR HARDWARE

Table 5~19. Other iSBC® 86/30 Jumpers
Remove Jumper] Add Jumper Function/Description

E76-E77 Clear To Send signal capability.
E219-E225 Set dual-port RAM address

E61-E62 Only if iSBC 337 is not used.
E26-E27 Enable Non-Maskable Interrupt
E33-E34 Non~-bus vector interrupt

E36-E37 Selects 5MHz clock (1)

E124-E125 Selects 2732-type EPROM
E111-El112 E112-E113 2732 EPROM address range

E119-E120 If RAM Expansion Module is used

E232-E233 If RAM expansion module not used
E210-E211 For parallel priority resolution

Note: (1) 5 MHz required if 1SBC 337 NDP is used.

)

Devices

Table 5~20 describes the devices to be installed on an iSBC 86/30 board.

Table 5-20. 1SBC® 86/30 On-Board Devices

Device Part Number Socket
2732A EPROM 145374-001 us7

2732A EPROM 145375-001 us8

2732A EPROM 145376-001 U39

2732A EPROM 145377-001 U40

902 Resistor Packs 4500645-01 U18, U020, U21

7438 IC 100908-001 Ul9 If Line Printer used
Status Adapter 1002129 Ul9 1If 1SBC 957B used

The iSBC 86/30 Single Board Computer is documented in the 1iSBC 86/14 AND
1SBC 86/30 SINGLE BOARD COMPUTER HARDWARE REFERENCE MANUAL.

5-17

PREPARING YOUR HARDWARE

CONVENIENCE CHARTS

The next pages are printed for your convenience in working with the the
boards that
use them as

iSBC

iSBC

1SBC

iSBC

iSBC

iSBX

iSBC

you must modify. You are invited to remove these pages and
work guides. There is one page each for the following boards:

86/12A Single Board Computer

86/14 Singlé Board Computer

86/30 Single Board Computer

534 Communications Expansion Board

215 Generic Winchester Controller Board
218 Flexible Disk Controller

208 Flexible Disk Controller

The iSBC 208 page also includes Centronics and parallel port signal

definitions.

5-18

Table 5-21. 1SBC® 86/12A Jumpers (Condensed)
Remove Add Function/
Jumper Jumper Description
E81-El Interrupt Level O, 1SBC 337 (1)
E72-E89 Level 1, Non-Maskable Interrupt
E80-E84 ‘ Level 1, Line Printer
E79-~E83 Level 2, System Clock (factory-installed jumper)
E68-E76 Level 5, iSBC 208 {(factory~installed jumper)
E75-E82 Level 6, Terminal Driver (Read)
E74~E90 Level 7, Terminal Driver (Write)
E51-E52 Clear-To-Send signal capability.
E125-E126 | E127-E128 Set dual-port RAM address
E97-E98 E97-E99 Required for Monitor in EPROMs
El12-E2] Only if 1SBC 337 is not used.
E5-E6 Unpopulated memory or port time-out
E151-E152 Only for parallel priority resolution
E13-El4 E13-E27 If parallel port is used for 957B
E19-E20 E14-E30
E21-E25 E18-E31
E26-E27 E20-E33
E30-E31 E25-E31
E32-E33
E13-El4 E22-E32 If parallel port is used for line printer
E32-E33

(1) Applies only to 1SBC 86/12A with FWA of 142977-XXX

Table 5-22. 1iSBC® 86/12A Devices (Condensed)

Device Part Number Socket

2732A EPROM 145374-001 A28

2732A EPROM 145375-001 A29

2732A EPROM 145376~001 A46

2732A EPROM 145377-001 A47

902 Resistor Packs 4500645-001 Al10, Al2, Al3

7438 1IC 100908 All Parallel port used for line printer

Status Adapter 1002129 All Parallel port used for iSBC 957B
Table 5-23. 4SBC® 86/12A Switch 1 (Condensed)

Segment | Setting Segment Setting

1 ON 5 OFF

2 OFF (*) 6 OFF * If 1SBC 300 RAM expansion module is

3 OFF 7 ON not used, this position ON

4 OFF 8 OFF

5-

19

iSBC® 86/12A

iSBC® 86/14

Table 5-24. 1SBC® 86/14 Jumpers (Condensed)

Remove Add Function/
Jumper Jumper Description
E165-E166 Interrupt Level 0, 1SBC 337
E144-E145| E145-E149 Level 1, Non~Maskable Interrupt
E132-E164 Level 1, Line Printer .
E147-E158 Level 2, System Clock (factory-installed jumper)
E151-E152 Level 5, 1SBC 208 (factory-installed jumper)
E153-E155 Level 6, Terminal Driver (Read)
E134-E154 Level 7, Terminal Driver (Write)
E76-E77 Clear-To-Send signal capability
E219-E225 Set dual-port RAM address
E26-E27 Enable Non-Maskable Interrupt
E33-E34 Non-bus vector interrupt
E61-E62 If iSBC 337 is not used.
E36-E37 Selects 5MHz clock (required if 1iSBC 337 is used)
E124-E125 Selects 2732-type EPROM
E111-E112| E112-El113 EPROM address range
E210-E211 Only for parallel priority resolution
E119-E120 86/14 with 1SBC 300A RAM expansion module
E232-E233
E230-E231 86/14 without RAM expansion module
E232-E233 -
E44-E53 E44~E59 If parallel port is used for 957B
E45-E54 E45-E50
E46-E55 E45-E54
E48-ES57 E46-E51
E50~E59 E48-E53
E51-E60 ESO0-E52
E52-E61
E44~E53 E60-E63 If parallel port is used for line printer
E51-E60 .
Table 5-25. 1SBC® 86/14 Devices (Condensed)
Device Part Number Socket
ﬁ —
2732A EPROM 145374~001 us7
2732A EPROM 145375-001 U58
2732A EPROM 145376-001 U39
2732A EPROM 145377-001 u40
902 Resistor Packs 4500645-01 vis, v20, v21
7438 IC 100908-001 Ul9 If parallel port used for Line Printer
Status Adapter 1002129 Ul9 1If parallel port used for iSBC 957B

5-20

Table 5-26. 1SBC® 86/30 Jumpers (Condensed)
Remove Add . Function/
Jumper Jumper Description
E165-E166 Interrupt Level O, 1iSBC 337
E144-E145| E145-El149 Level 1, Non-Maskable Interrupt
E132-E164 Level 1, Line Printer
E147-E158 Level 2, System Clock (factory-installed jumper)
E151-E152 Level 5, 1SBC 208 (factory-installed jumper)
E153-E155 Level 6, Terminal Driver (Read)
E134~E154 Level 7, Terminal Driver (Write)
E76-E77 Clear-To-Send signal capability
E219-E225 Set dual-port RAM addrass
E26-E27 Enable Non-Maskable Interrupt
E33-E34 Non-bus vector interrupt
E61-E62 If 41SBC 337 1is not used.
E36-E37 Selects 5MHz clock (required with 18BC 337)
E124-E125 Selects 2732-type EPROM
E111-E112| EI112-Ell3 EPROM address range
E210-E211 Only for parallel priority resolution
E119~E120 86/30 with 1SBC 304 RAM expansion module
E232-E233 86/30 without RAM expansion module
E44-E53 E44-E59 If parallel port is used for 957B
E45-ES54 E45-E5Q
E46-E55 E45-E54
E48-ES57 E46-E51
ES50-E59 E48-E53
ES51-E60 ES50-E52
E52-E61
E44~E53 E60~-E63 If parallel port is used for line printer
E51-E60
Table 5-27. 1SBC® 86/30 Devices (Condensed)
Device Part Number Socket
2732A EPROM 145374-001 Us?
2732A EPROM 145375-001 Us8
2732A EPROM 145376001 839
2732A EPROM 145377-001 U40
902 Resistor Packs 4500645-01 v18, U20, U21
7438 IC 100908-001 Ul9 1I1f parallel port used for Line Printer
Status Adapter 1002129 Ul9 If parallel port used for 1SBC 957B

5-21

iSBC® 86/30

iSBC®215

iSBX™ 218

Table 5-28. 1SBC® 215 Jumpers (Condensed)
Remove Jumper | Add Jumper Function/Description
w19, C-5 w19, C-4 Interrupt Level 4
wi8, 1-2 16~bit bus compatibility
w20, 1-3 16-bit bus compatibility
w21, 1-3 16~bit bus compatibility
wil, 1-3 If 1SBC 218 board is used

Notes: Switches 1 and 2 should be set as follows:

Switch 1

Segment 8

ON, all other segments OFF

Switch 2 Segments 1 and 2 ON, all others OFF

You will have to perform “signal scrambling” for the type of

drive you use.

Refer to the hardware reference manual for

instructions.

Table 5-29. Jumpering for the 1SBX™218 Multimodule™(Condensed)
Add Jumper Function/Description

Wl, A-B direct memory access

w3, A-C 8~inch disk drives

w4 R A~C . " "

W5, A=C " - “

w6, A-C " - "

W7, A-C " “ "

5=-22

Table 5-30. 1SBC® 534 Jumpers (Condensed)

Remove Jumper | Add Jumper Function/Description

131-140 131-138 Interrupt level 3

132-140 132-138

123-126 Base Port Address: 30

Table 5~31. 1SBC® 534 DIP Header Jumpers, RS232C (Condensed)
Jumper Description, (RS232C Signal Names)

4 to 5 Board DSR to Board DTR

6 to 7 Board RTS to board CTS

8 to 10 Board RXD to terminal TXD

9 to 11 Board TXD to terminal RXD

12 to 13 Terminal RTS to terminal CTS

14 to 15 Terminal DSR to terminal DTR

Signal Names:

TXD: Transmit Data RXD: Receive Data
DTR: Data Terminal Ready DSR: Data Set Ready
RTS: Request to Send CTS: Clear to Send

5-23

iSBC® 534

iISBC® 208

Line Printer

Table 5-32. 1SBC® 208 Jumpers (Condensed)

Remove Jumper | Add Jumper Function/Description
E79-E84 Interrupt level 5
E45-E49 E41-E4S 16-bit I/0 address decoding.
E77-E78 Only if parallel bus priority resolution

is used. (Factory sends board with this
jumper installed, for serial bus
priority resolution).

Table 5-33. Line Printer Pin Assignuents (Condensed)

50-Pin 50-Pin -- CENTRONICS-Standard —
1SBC Edge 30-Pin
Connector| Connector Connector Signal
24 23 1 Character strobe to printer
26 25 13 SLCT (Select)
28 27 12 Paper Out
30 29 10 ACKNOWLEDGE from printer
34 33 9 Data Bit 7
36 35 8 Data Bit 6
38 37 7 Data Bit 5
40 39 6 Data Bit 4
42 &1 5 Data Bit 3
44 43 4 Data Bit 2
46 45 3 Data Bit 1
48 47 2 Data Bit 0
GROUNDS :

i1SBC Connector: All odd pin numbers are grounded.
Edge Connector: All even—numbered pins grounded.
Centronics LP Connector: Pins 19-29 Protective grounds

Pin 16 Logic Ground
Pin 17 Chassis Ground

*k%k

5-24

CHAPTER 6. SYSTEM MANAGEMENT

This chapter is addressed to the system manager — the person who is
responsible for managing an iRMX 86 PC System. To the Operating System,
the system manager is simply anyone with user ID O (zero). As the system
is delivered from Intel, however, user ID O is not automatically assigned
to a terminal. To assume user ID O, an operator uses the SUPER command
(see Chapter 3) and must know the password associated with SUPER. When
Intel sends you the System Diskette, the SUPER password is null, so you
reply to the prompt for a password by typing a carriage return.

Beginning here, this chapter assumes that you are the system manager in
both senses of that term, that is, you are responsible for managing your
system, and you operate with user ID O.

The important considerations about your installation of the iRMX 86 PC
package are the following:

e Will your system support multiple terminals?
® Will more than one user be using the system?

® Do you wish to protect files and devices from unauthorized
access? “Unauthorized access” means both deliberate attempts to
access files and accidental access. Naive or careless users, as
well as hostile users, should be prevented from deleting or
corrupting files on a system used by more than one person. The
iRMX 86 PC system contains software mechanisms to make possible a
protected environment. Even if your system has only one keyboard
terminal, but more than one person uses it, protection features
can prevent unauthorized access.

This chapter contains these major sections:

e How to copy the System Diskette.

] iRMX 86 PC System Diskette: The contents of the diskette that
Intel sends you. The term System Diskette designates the
diskette that Intel delivers as part of the iRMX 86 PC product,
or a copy of this diskette. (The entire package is described in
the Preface.)

¢ Editing Terminal and User Definition Files: How to change the
files and directories to meet the requirements of your individual
system.

¢ Other System Management Functions: How to attach hardware
devices and close down a multi-user system.

SYSTEM MANAGEMENT

NOTE

After a system is bootstrap loaded, the
logical name (prefix) :SD: designates
the disk from which the system was
booted.

COPYING THE iRMX™ 86 PC SYSTEM DISKETTE

When you receive the iRMX 86 PC product, and have prepared the hardware

on which it will run, you should bootstrap load the system (described in
the beginning of Chapter 1) and backup the System Diskette. Then store

the Intel-supplied System Diskette in a safe place.

On the System Diskette is a file, :SD:BACKUPSYS that will automatically
create a new system disk with the correct directories and files. To use
this file, you:

1.

2.

3.

4,

Here is

2,

Type SUPER and respond to the password prompt with a RETURN key.

Attach the disk drive to which you will copy the disk. Attach it
as :Fl:.

Format the disk.

SUBMIT the file BACKUPSYS, which contains all other commands
necessary to complete the backup process. (If you are not
familiar with the SUBMIT command, it is described in Chapter 3.)

a detailed description of these steps:

Assume user ID 0. Type SUPER, and reply to the password prompt

with a carriage return (RETURN key). The System Diskette is
delivered without a password; we show later how to establish a
password.

Attach the disk drive. Issue an appropriate ATTACHDEVICE command

to attach the disk drive on which you will create the new system
diskette. Attach the drive as logical name :Fl:. By
appropriate, we mean with the correct physical name for the
drive. These physical names are listed with the description of
the ATTACHDEVICE command in Chapter 3. If you are not familiar
with the ATTACHDEVICE command, you should refer to the
description.

Two examples show how to type the ATTACHDEVICE command. Assume
that you have bootstrap loaded the Operating System from Drive 0
connected to an 1iSBX 218. 1If you intend to copy to the second
drive on the same controller, you will issue the following
command :

3.

4,

SYSTEM MANAGEMENT

ATTACHDEVICE WFDl AS Fl
But if you intend to copy to a Priam 3450 Winchester Disk, issue:
ATTACHDEVICE IWO AS Fl

If the diskette in the second drive has not been formatted, you
will receive an error message on the screen saying something like

Fl volume not formatted

followed by one more line of error information. Ignore the
messages; the drive is attached anyway. ’

Format the disk. If you are formatting another flexible

diskette, the following command is appropriate:
FORMAT :F1:NEWDSK FILES = 100 INTERLEAVE = 7

If you are formatting a Winchester disk, the following command is
generally appropriate:

FORMAT :Fl:newsys FILES = 5000 INTERLEAVE = 4,

Note that the FORMAT command for the flexible disk specifies an
interleave value of 7. This is because if you did not specify a
value, the FORMAT command uses a default value of 5. With an
interleave factor of 5, booting the system from a flexible
diskette can take nearly three minutes, instead of about one-half
minute for a diskette formatted with an interleave factor of 7.

You may wish to adjust the FILES parameter if you have unusual
file system requirements. But the values shown are proper for
most installationse.

SUBMIT the file :SD:BACKUPSYS. It creates the correct

directories on the new device, coples all of the proper files,
and establishes the owner and access rights for each.

SYSTEM MANAGEMENT

Figure 6-1 shows the commands in BACKUPSYS.

-

COPY :SD:GSYS.020 TO :F1:GSYS.020
CREATEDIR :F1:SYSTEM

CREATEDIR :F1:CONFIG

CREATEDIR :F1:CONFIG/USER
CREATEDIR :F1:USER

CREATEDIR :F1:WORK

CREATEDIR :Fl:LANG

CREATEDIR :F1:UTILS

COPY :SYSTEM:* TO :F1:SYSTEM/*

PERMIT :F1:USER L USER= WORLD
PERMIT :F1:SYSTEM L USER = WORLD
PERMIT :F1:UTILS L USER= WORLD
PERMIT :F1:LANG L USER= WORLD
PERMIT :F1:WORK DLAC USER= WORLD
PERMIT :F1:SYSTEM/* R USER=WORLD
PERMIT :F1:SYSTEM/RMX86 N USER=WORLD
PERMIT :Fl: L USER = WORLD

COPY :SD:BACKUPSYS TO :F1:BACKUPSYS
PERMIT :F1:BACKUPSYS R USER = WORLD
PERMIT :F1:GSYS.020 R USER = WORLD
CREATEDIR :F1:USER/O

CHANGEID 1

CREATEDIR :F1:USER/1

CHANGEID 2

CREATEDIR :F1:USER/2

CHANGEID 3

CREATEDIR :F1:USER/3

CHANGEID 4

CREATEDIR :F1:USER/4

CHANGEID 65535

CREATEDIR :F1:USER/65535

COPY :SD:CONFIG/TERMINALS TO :F1:CONFIG/TERMINALS
COPY :SD:CONFIG/USER/* TO :F1:CONFIG/USER/*

Figure 6-1. :SD:BACKUPSYS

_/

When you have an editor installed on your system, you may wish to change

the password on the copy of the System Diskette.

This will prevent

unauthorized users from using the the copy to gain access to files that

you want protected. We do not recommend creating a password on the

System Diskette you receive from Intel; keeping it in a secure place is

safer than modifying the diskette.

The password used with SUPER is in the user definition file for user ID
0. This file 18 described in a later section, EDITING TERMINAL AND USER

DEFINITION FILES, which explains how to protect your system from

accidental or deliberate access.

6-4

SYSTEM MANAGEMENT

iRMX™ 86 PC SYSTEM DISKETTE

This section describes the file structure of the System Diskette, by
listing the names of the files, describing the information in these
files, and describing the directory structure.

Figure 6-2 shows the directories and data files that exist on the
iRMX 86 PC System Diskette. The figure also shows:

e Owner's User ID. The owner is important because that user always
has the ability to change the access rights associated with the
file. Therefore the owner can always access the file and, if it
is a directory, any files at lower levels in the file tree.

® Access Rights of WORLD. WORLD access is important because it
indicates the access rights of all other users.

0= attaching user
0 = owner

WORLD =L
:SD:
|] |]
UTILS LANG SYSTEM USER CONFIG
0=owner 0=owner o—owne 0=owner Q=owner
WORLD=L WORLD=L WORLD L WORLD=L WORLD=N
USER
(0=owner)
user-written utility Human Intertace WORLD=N
"'°9""" TERMINALS
0 owner 0=owner 0=owner
WORLDSR WORLD=R WORLD=R) inmx~ 86 (wonua=~)
0 owner)
WORLD N
x-262
Iid(l I I I Iui(n l
id(1)= owner id(2) =owner 1d(n) =owner
WORLD= N WORLD=N WORLD=N
[-
A = data file
L =listaccess ° W) id(n)
R =readaccess 0=owner) (0+~ owner (0- owner)
N =no WORLD=N/J \WORLD=N WORLD N

Figure 6-2. File Structure of the System Device

6~5

SYSTEM MANAGEMENT

In the figure, :SD: indicates the root directory of the device. You can
bootstrap load the system from any disk on your system; the Bootstrap
Loader recognizes the device from which it loads and causes that device
to be assigned logical name :SD:. You can attach other devices after the
system has been booted by a procedure described in a later sectionm.

User ID O (the system manager) is the owner of the :SD: device. This
prevents users other than the system manager from detaching the system
device. Only user O has all access rights to the root directory. Other
users have List access to allow them to view the files in the root
directory. However, they do not have change entry access to the root
directory, nor do they have delete access or add entry access.

Three first-level directories listed in Figure 6-2 are used for commands,
for language processors such as compilers, and for utilities. They are
SYSTEM, LANG, and UTILS respectively. User ID 0O should be the owner of
these directories and the files they contain. To protect language
processors and utilities, other users should have List access to the
directories (to be able to see what is available) and Read access to the
command files (to be able to run the commands).

The directory WORK is used by language utilities for creating temporary
files.

User ID O is the owner of the bootstrap—loadable iRMX 86 PC Operating
System (the file RMX86 in the SYSTEM directory), and other users have no
access to it. This prevents users from creating their own system
volumes.

The first-level directory USER contains the directories which are the
default prefixes of the users. User ID O is the owner of USER and other
users have only List access. However, the directories contained in USER
are owned by the corresponding user IDs with no access to other users.
By owning their default prefix directory, a user can change the access
rights. This allows one to permit other users to access files in the
default directory. However, since no other users have automatic access
to the default directory, the user can maintain privacy if desired.

The figure only generally shows the user directories. The System
Diskette contains user directories for IDs O through 4, and 65535 (WORLD).

The other first-level directory (CONFIG) contains the terminal and user
definition files, also called configuration files. User ID O is the
owner of the directory and the files contained in it. Other users have
no access to the directory or to the files it contains. This prevents
everyone but the system manager from modifying the terminal and user
configuration. It also prevents users from discovering the system
manager's password. The CONFIG directory and the files described here
must reside on the :SD: device.

Two files not shown in the figure are in the root directory: BACKUPSYS,
and GSYS.020. BACKUPSYS is described earlier in the chapter. GSYS.020
is the identifier file for the iRMX 86 PC Operating System. An example
command in Chapter 2 shows its contents.

SYSTEM MANAGEMENT

EDITING THE TERMINAL AND USER DEFINITION FILES

To control file access and terminals assignments on a system, you edit a
few files to make changes and then re-boot the system. This discussion
assumes that you have copied your System Diskette, and have installed an
editor on your system.

If only one person accesses your system, that user requires access to all
files and all devices in the system, and there is no need to restrict
access to files or devices.

However, with more than one person using the system, file and device
access becomes an issue. Some reasons for this are the following:

® To maintain system security, you should iimit access to the
Configuration Files.

e Some users might want to prohibit other users from reading their
files or viewing their directories. However, some users might
want to grant other users the ability to access their files. To
do this, users should be the owners of the directories that serve
as their default prefixes.

e All users should be able to run Human Interface commands, and be
able to use software packages that you install on your system
(such as compilers or editors). To do so, they require the
ability to read the files containing the commands and utilities.
However, to protect the files from damage, you should restrict
other types of access tc these files.

° Some devices (such as a hard disk or the device that serves as
the system device) should be available to all users. However, to
protect users who access these devices, only the system manager
should be able to detach the devices.

To create a multi-access system that protects files and directories,
someone (normally the system manager) must set up the correct file
structure before allowing other users to access the system. The
following sections describe this process.

In this section we describe in detail:

e The general format of the terminal definition file and of the
user definition files.

° The contents of these files on the System Diskette you receive
from Intel.

e How to change parameters to make changes in the operation of your
system. For example, by editing these files you can change the
amount of memory allocated to a particular terminal user; set the
SUPER password, and you can specify which terminals are used.

SYSTEM MANAGEMENT

The two kinds of files that the system manager edits to control users and
terminals are: the terminal definition file, and user definition files
(one for each user). The pathnames of the files are:

file pathname
Terminal definition file CONFIG/TERMINALS
User definition files CONFIG/USER/id

Where id is the User ID of the corresponding user. The iRMX 86 PC System
Diskette contains one user definition file for each of the following User
IDs:

0 (system manager)
1
2
3
4
6

5535 (WORLD)

TERMINAL DEFINITION FILES

The terminal definition file (:SD:CONFIG/TERMINALS) defines all terminals
through which users intend to access the Human Interface. The file
consists of several lines of information which can be divided into two
parts:

l. One line consisting of an integer, indicating the number of
terminals to be connected. This is the first line of the file.

2. Device name and attributes of the terminals, one terminal per
line.

The following is a list of the contents of the terminal definition file
on the iRMX 86 PC System Diskette:

1
T0,65535, 64,200
T1,1,225,200
T2,2,64,200
T3,3,64,200
T4 ,4,64,200

The first line in the file, 1, defines how many terminals are active, and
therefore how many interactive jobs to create when the system is
initialized. Each succeeding line defines one terminal. You receive the
System Diskette with only the first terminal (TO) activated. If you
change this number to 3, you activate TO, Tl, and T2. Changing the
number to 5 activates all the terminals that the iRMX 86 PC System can
support.

SYSTEM MANAGEMENT

The device name and attributes of a terminal must reside on a single line,
with commas separating the individual elements. Only the first two
elements are required. Embedded blanks are not allowed. For example, the
terminal connected to the Port 0 on an iSBC 534 controller board is
defined by the third line of the file:

T1,1,200,200

The following general déscription will help you can edit the file to make
it fit your system. A terminal definition line consists of the following
parameters:

device-name,user-id,partition—size,max-priority,init—-pathname

where:

device-name Name of the terminal; in the example: Tl. The
names were established when the iRMX 86 PC
Operating System was configured. These names, and
corresponding hardware ports, are:

TO Serial port
T1 Serial Port
T2 Serial Port
T3 Serial Port
T4 Serial Port

n iSBC 86 Single Board Computer
iSBC 534 Controller
iSBC 534 Controller
iSBC 534 Controller
iSBC 534 Controller

wNh= OO0
-

user—-id Decimal number in the range O through 65535 that
represents the ID of the user associated with this
terminal; in the example: 1. You can assign the
same User ID to more than one terminal. For any
value you specify in this field, there must be a
corresponding user definition file. (The next
section describes user definition files.)

partition—~ Size of the memory partition assigned to this

size user, specified in 1024-byte (1K) units; in the
example: 64. The memory partition is an area of
memory in which the user can load and run
programs. In order to run compilers, you will need
225K bytes. As we send you the system, the user
assigned to the terminal on the single board
computer is allocated 64K bytes. This is to ensure
that you will be able to boot the the system with
the minimum memory required on the system. This
field for Terminal 1 is given 225K bytes, but is
not active when you boot the system.

max—priority Decimal number specifying the maximum priority that
any tasks associated with this user can have; in
the example: 200.

init-pathname Pathname of the file containing the user's initial
program; this parameter is not in the example. This
is the program that begins running when the Human
Interface creates the interactive job for the user.

6-9

SYSTEM MANAGEMENT

Omitting Unnecessary Parameters

Remember that only device—name and user—-id are required. The rules for
omitting values are:

e If you omit one of the intermediate optional parameters but
specify a later one, you must include a comma as a place holder
for the parameter. For example, if for Tl you specify an initial
program pathname, but do not want to specify partition-size or
max—-priority, the line might look like:

T1,1,,,MYFILE

° If you omit a value, the Human Interface uses the value specified
in the user definition file for this User ID. (The next section
describes the user definition file.) If the terminal definition
file and a user definition file conflict, the Human Interface
uses the value specified in the the terminal configuration file.

Order of Terminal Definition Lines

When the Human Interface starts running, it creates jobs for the
terminals in the order they are specified in the terminal definition
file. You should define the terminals in order of their importance to
guarantee that the most important terminals have access to the system.
If there is no order of importance, you should specify the terminals in
order of their partition sizes, with largest partition sizes first.

User Definition Files

User definition files define the attributes of Human Interface users.
There must be a separate file for each user. Each file contains
information (called attributes) for the user. The attributes can be
separated by commas or appear on separate lines. When separated by
commas, embedded blanks are not allowed.

For example, the contents of the user definition file for User ID 1 on
the iIRMX 86 PC System Diskette (:SD:CONFIG/USER/1) contains the following
data: (the description refers to this example).

1,,64,128,190,:SD:USER/1
The general format of each user definition file is as follows:

user-id

password
default-partition—-size
maximum-partition-size
max-priority
default-prefix-pathname
init-pathname

6-10

where:

user-id

password

default-
partition-
size

maximum—
partition-~
size

max-priority

default-prefix—
pathname

init-pathname

SYSTEM MANAGEMENT

Decimal number in the range O through 65535 that
represents the ID of the user; in the example, 1.

A one- to eight-character password that is
associated with this user. Currently, this field

.applies only to User ID 0; and is the password

that a user must enter to use the SUPER command.
For user IDs other than 0, this field is reserved
for future use; enter a null value (comma or
carriage return used as a place holder), as shown
in the example.

Size, in 1024-byte units, of the memory partition
that the Human Interface assigns to the user's
interactive job. This value is used unless
overridden by the value in the terminal
definition file. In the example, the value is 64.

Size, in 1024-byte units, of the largest memory
partition that the Human Interface can assign

to the user's interactive job. The suggested
value for users who run only standard Human
Interface commands is 32. Users who run language
products (such as compilers or linkers) require a
larger value. In the example, the size is 128.

Number specifying the maximum priority that any
tasks associated with this user can have. This
value is used unless overridden by the value in
the terminal definition file. The value is in

the example is 190.

Pathname of the directory that serves as this
user's default prefix (corresponding to the
tHOME: and initial :$: directory). The directory
specified in this field must exist or the user
will be unable to access the Human Interface. 1In
the example, the default prefix directory is
:SD:USER/1.

Pathname of the file containing the user's
initial program. This is the program that begins
running when the Human Interface creates the
interactive job for the user. If you omit this
value, the Human Interface uses its standard
command line interpreter (CLI) as the initial
program. It is omitted for all users on the
iRMX 86 PC System Diskette.

6-11

SYSTEM MANAGEMENT

Following is a list of the contents of each user definition file that you
receive with the iRMX 86 PC System Diskette. ‘

User ID File Contents
0 :SD:CONFIG/USER/O .. 0,,64,128,190,:SD:USER/0
1 :SD:CONFIG/USER/1 1,,64,128,190,:SD:USER/1
2 :SD:CONFIG/USER/2 2,,64,128,190, :SD:USER/2
3 :SD:CONFIG/USER/3 3,,64,128,190, :SD:USER/3
4 :SD:CONFIG/USER/4 . 4,,64,128,190, :SD:USER/4
WORLD :SD: CONFIG/USER/65535 65535, ,64,128,190, : SD:USER/65535

OTHER SYSTEM MANAGEMENT FUNCTIONS

You should consi’er at least two other system manager functions: attaching
hardware devices and shutting down the system in an orderly fashion.

ATTACHING HARDWARE DEVICES

After the system is initialized you can add any new devices to the system
with the ATTACHDEVICE command. If you have many devices that must be
attached to the system, you may wish to attach them with a submit file.
This could be the logon file for the User ID of the system terminal (the
terminal connected to the serial line on the Single Board Computer . The
iRMX 86 PC System Diskette assigns WORLD to the system terminal, which
means that if you include the ATTACHDEVICE commands in the logon file for
this user (:SD:USER/65535/PROG/R?LOGON), any user can detach the device.
If you want to restrict who can detach devices, you can build a separate
SUBMIT file which only you can access. You then manually issue SUPER to
become User ID 0, and then SUBMIT the file.

Another handy arrangement is to assign each user a flexible disk drive.

When the user starts a terminal session, the logon file can attach the
device.

SHUTTING DOWN THE SYSTEM

You can methodically shut down a multi-user system by the following
process:

l. 1Issue INITSTATUS to get the identifying number of each job.
2. Issue LOCK.

3. Use JOBDELETE to delete each job.

4, Use DETACHDEVICE with FORCE to detach the devices.

%%k

6-12

CHAPTER 7. DOCUMENTATION

This chapter lists and briefly describes documentation that applies to
the iRMX 86 PC Operating System. We have included descriptions of

iRMX 86 software manuals, as well as manuals describing hardware that can
be used with the iRMX 86 PC product.

THIS MANUAL

The GETTING STARTED WITH THE Release 5 iRMX 86 SYSTEM is a self-contained
summary of information you need to use the iRMX 86 PC Operating System.
Much of the information in this manual is repeated in some form in other
manuals described here.

iRMX™ 86 MANUALS

These are the manuals that document the iRMX 86 Operating System.
e INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM

This manual is designed to introduce engineers and managers to
the iRMX 86 Operating System. It describes how the iRMX 86
Operating System can help you develop your application system in
less time and at less expense.

e 1RMX 86 NUCLEUS REFERENCE MANUAL

This manual documents the Nucleus, the central portion of the
iRMX 86 Operating System required by all application systems. It
provides overview information, discusses the functions of the
Nucleus in detail, and contains detailed descriptions of the
system calls available to application programmers.

e iRMX 86 BASIC I/0 SYSTEM REFERENCE MANUAL

This manual describes the Basic I/0 System, a layer of the iRMX
86 Operating System that provides flexible I/0 features that are
useful in a broad range of applications. It contains some
introductory and overview material as well as detailed
descriptions of the system calls available to application
programmers.

DOCUMENTATION

iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL

This manual describes the Extended I/0 System, a layer of the
iRMX 86 Operating System that provides easy-to—use,
more-automatic I/0 features. It contains some introductory and
overview material as well as detailed descriptions of the system
calls available to application programmers.

iRMX 86 OPERATOR'S MANUAL

This manual describes the iRMX 86 commands —- the same commands
described in Chapter 3 of this manual. In addition, the manual
describes how to use the Files Utility and the Patch Utility.

iRMX 86 HUMAN INTERFACE REFERENCE MANUAL

This manual documents the Human Interface, the layer of the
iRMX 86 Operating System that provides an interactive interface
between the user and the application system. It provides
introductory and overview information, describes the commands
available with the Human Interface (the same commands described
in Chapter 3 of the manual you are reading), discusses the
process of creating your own commands, and describes Human
Interface system calls.

iRMX 86 LOADER REFERENCE MANUAL

This manual describes the two loaders available with the iRMX 86
Operating System: the Bootstrap Loader and the Application
Loader. It contains some introductory and overview material as
well as detailed descriptions of the system calls available with
the Application Loader.

iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL

This manual documents the Disk Verification Utility. The
DISKVERIFY command (see Chapter 3 of the manual you are reading)
invokes this utility. The DISK VERIFICATION UTILITY REFERENCE
MANUAL provides more in—depth information, including detailed
descriptions of the structure of iRMX 86 files.

DOCUMENTATION ‘ !

iRMX 86 PROGRAMMING TECHNIQUES MANUAL

This manual provides a number of programming techniques that can
reduce the amount of time you spend designing and implementing
your iRMX 86-based application system. It includes discussions"
on PL/M-86 size controls, interface procedures, INCLUDE files,
timer routines, assembly language programming, job communication,
configuration, deadlock, terminal I/0, and stack sizes.

GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 AND iRMX 88 I/0
SYSTEMS

For the programmer who is using the configurable iRMX 86
Operating System, this manual shows how to incorporate a custom
driver into the system. This applies to devices for which the
iRMX 86 Operating System does not already supply device drivers.

iRMX 86 CONFIGURATION GUIDE

Again, for the programmer who is using the configurable iRMX 86
Operating System, this manual describes how to define the
characteristics of iRMX 86 layers that are appropriate a
particular application.

iRMX 86 INSTALLATION GUIDE

This manual contains hardware information for the configurable
iRMX 86 Operating System (equivalent to the hardware information
in this manual) and a description of the iRMX 86 Patching Utility.

LANGUAGE TRANSLATORS AND UTILITIES MANUALS

The following manuals document the language products that can be used
with your iRMX 86 PC Operating System.

EDIT REFERENCE MANUAL

This manual documents EDIT, an iRMX 86-based text editor. It
contains introductory and tutorial material as well as detailed
descriptions of all EDIT commands.

¢ DOCUMENTATION

GUIDE TO USING iRMX 86 LANGUAGES

This manual provides an overview of the language products that
run in an iRMX 86 environment. It shows how to invoke the
products from the Human Interface and 1lists the invocation
controls for each product. It then refers you to other language
and utilities manuals for detailed information about the
products. You should read this manual before you read the other
language and utilities manuals, because this manual provides
information that you need to run the language products in an
iRMX 86 environment. It also identifies portions of the other
manuals that do not apply to the iRMX 86 versions of the language
products. ’

ASM86 LANGUAGE REFERENCE MANUAL
This manual documents the 8086/8087/8088 macro assembly language,

ASM86. It describes the assembly language instructions and the
macro processing language.

ASM86 MACRO ASSEMBLER OPERATING INSTRUCTIONS FOR 8086-BASED
DEVELOPMENT SYSTEMS

This manual describes how to invoke the assembler, and how to
link assembly language programs with PL/M-86 programs.

PL/M~-86 USER'S GUIDE
This manual describes the PL/M-86 language and use of the PL/M-86

compiler. It describes language statements, discusses compiler
invocation, and documents each compiler control.

iAPX 86,88 FAMILY UTILITIES USER'S GUIDE

This manual contains descriptions of the program development
utilities:

e LINK86, which links 8086 object modules together and resolves
global references between modules

e LOC86, which changes 8086 relocatable object modules into
absolute modules

e LIB86, a utility that creates and maintains object libraries

e OH86, which converts 8086 absolute object modules to
hexadecimal format

DOCUMENTATION

PASCAL-86 USER'S GUIDE

This manual describes the Pascal language and the use of the
Pascal-86 compiler. It provides complete descriptions of all
Pascal language statements, discusses compiler invocation, and
documents each of the compiler controls. The Pascal-86 compiler
is a strict implementation of the proposed ISO standard that also
provides extensjions of the language oriented toward
microcomputers.

FORTRAN-86 USER'S GUIDE

This manual describes the FORTRAN language and the use of the
FORTRAN-86 compiler. It provides complete descriptions of all
FORTRAN language statements, discusses compiler invocation, and
documents each of the compiler controls. This FORTRAN-86
compiler produces code that is compatible with existing
FORTRAN-86 code and includes many new features of the FORTRAN-77
standard.

USER'S GUIDE FOR THE iSBC 957B iAPX 86, 88 INTERFACE AND
EXECUTION PACKAGE

This manual provides general information, interfacing
instructions, and programming information for the i1SBC 957B
loader and monitor. It provides detailed descriptions of the
loader and monitor commands and describes how to connect an Intel
development system to an iAPX 86-based boards. It also contains
configuration information, which may be of little importance to
you since the monitor is already configured and available in PROM
as part of the iRMX 86 PC package.

HARDWARE MANUALS

These manuals document hardware that you can use with your iRMX 86 PC
Operating System.

COMPUTERS

iSBC 86/12A SINGLE BOARD COMPUTER HARDWARE REFERENCE MANUAL and

iSBC 86/14 and iSBC 86/30 SINGLE BOARD COMPUTER HARDWARE
REFERENCE MANUAL

These two manuals describe, for each computer, principles of

operation and how to incorporate iSBC Multimodule units (like
on—board RAM and and the 8087 Numeric Processor Extension).

7-5

DOCUMENTATION

DISK CONTROLLERS
e iSBX 208 FLEXIBLE DISK CONTROLLER HARDWARE REFERENCE MANUAL

e 1iSBC 215 GENERIC WINCHESTER DISK CONTROLLER HARDWARE REFERENCE
MANUAL

e iSBX 218 FLEXIBLE DISK CONTROLLER HARDWARE REFERENCE MANUAL
These manuals describes specificationms, jumpef configurations,

programming considerations, and principles of operation of the
respective Disk Controllers.

COMMUNICATION EXPANSION BOARD

° iSBC 534 FOUR CHANNEL COMMUNICATIONS EXPANSION BOARD HARDWARE
REFERENCE MANUAL

MEMORY BOARDS

e iSBC 016A/032A/064A/028A/056A RAM MEMORY BOARD HARDWARE REFERENCE
MANUAL

e iSBC 016A/032A/064A/028A/056A RAM BOARDS HARDWARE REFERENCE MANUAL
These manuals describe specifications, jumper configurationms,

programming considerations, and principles of operation of the
respective memory boards.

CHASSIS/POWER SUPPLY

] iSBC 680/681 MULTISTORE USER SYSTEM PACKAGE HARDWARE REFERENCE
MANUAL

This manual provides information about the iSBC 680-series
module, which is a chassis containing a power supply and Multibus
card cage in which you can install your Intel iSBC boards.

You can order any manual described in this chapter from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

k%

APPENDIX A. iRMX™ 86 EXCEPTION CODES

This appendix contains the exception codes that are generated by the
iRMX 86 Operating System. Exception codes are any condition codes other
than E$OK, the normal code. Exception codes are classed as either
“Environmental Conditions"” or "Programmer Errors”, although the latter
includes certain hardware errors.

The values of these exception codes fall into ranges based on the layer
which first detects the condition. Table A-1 lists the layers and their
respective ranges, with numeric values expressed in hexadecimal notation.

Table A-1. Exception Code Ranges

Layer Environmental Programming
Nucleus 0 to I1FH 8000 to 80IFH
Basic I/0 System 20 to 3FH 8020 to 803FH
Extended 1I/0 System 40 to 5FH 8040 to 805FH
Application Loader 60 to 7FH 8060 to 807FH
Human Interface 80 to AFH 8080 to 80AFH
Universal Development CO to DFH 80C0 to 8ODFH

Interface
Reserved 130 to 14FH 8130 to 814FH

Table A-2 shows the value of each code, the associated mnemonic, and a
descriptive meaning. In addition, the table shows the the layer(s) of
the system that could generate the code, in case you wish to refer the
the appropriate manual.

iRMX™ 86 EXCEPTION CODES

Table A-2. iRMX™ 86 Condition Codes
Hex. Mnemonic Manuals Meaning
Value NBELH
OH ESOK * % k& X % No exceptional conditions (normal)
Environmental Conditions
1H ESTIME * k% ok % A time limit (possibly a limit of
zero time) expired without a task's
request being satisfied.
2H ESMEM * * k % % Insufficient available memory to
satisfy a task's request.
3H ESBUSY * Another task currently has access to
:) data protected by a region.
4H ESLIMIT * k %k % % A task attempted an operation which,
if it had been successful, would
have violated a Nucleus—enforced
limit.
5H ESCONTEXT * k k& % A system call was issued out of
proper context.
6H ESEXIST * k k k % A token parameter has a value which
is not the token of an existing
object.
7H ESSTATE * A task attempted an operation which
would have caused an impossible
transition of a task's state.
8H ESNOTSCON- | * * % * % . This system call is not part of the
FIGURED present configuration.
9H ESINTER~- * An interrupt task has accumulated the
RUPTS$SAT- maximum allowable amount of
URATION SIGNALSINTERRUPT requests.

"N Nucleus Reference Manual
B Basic I/0 System Ref Manual
E Extended I/0 Sys Ref Manual

L Loader Reference Manual
H Human Interface Reference Manual

iRMX™ 86 EXCEPTION CODES

Table A-2. 1iRMX™ 86 Condition Codes (continued)
Hex. Mnemonic Manuals Meaning
Value NBELH
Envitonmental Conditions (continued)
OAH ESINTER- * An interrupt task has accumulated
RUPTS- more than the maximum allowable
OVERFLOW amount of SIGNALSINTERRUPT requests.
20H ESFEXIST * % File already exists.
21H ESFNEXIST LR File does not exist.
22H ESDEVFD * % * Device and file driver are
incompatible.
23H ESSUPPORT * k k % Combination of parameters not
supported.
24H ESEMPTYS- * % The specified slot in a directory
ENTRY file is empty.
25H ESDIRSEND * % The specified slot is beyond the end
of a directory file.
26H ESFACCESS * %k * % File access not granted.
27H ESFTYPE * % % Incompatible file type.
28H E$SSHARE * k Kk k Improper file sharing requested.
29H E$SPACE * % No space left.
2AH E$IDDR * * Invalid device driver request.
2BH ESIO * % * % | An I/0 error occurred.
2CH ESFLUSHING * % % % Connection specified in call was
deleted before the operation was
completed.
2DH ESILLVOL * k% Invalid volume name.
2EH ESDEVSOFF~ * The device being accessed is now
LINE offline.

N Nucleus Reference Manual
B Basic I/0 System Ref Manual
E Extended I/0 Sys Ref Manual

L Loader Reference Manual
H Human Interface Reference Manual

iRMX™ 86 EXCEPTION CODES

Table A-2. iRMX™ 86 Condition Codes (continued)
Hex. Mnemonic Manuals Meaning
Value NBELH
Environmental Conditions (continued)
2FH ESIFDR * % Invalid file driver request.
40H ESLOGSNAMES - * * The specified path starts with a
SYNTAX colon (:) but does not contain a
second, matching colon.
41H ESCANNOTS- * The Extended 1/0 System was not
CLOSE able to transfer remaining data in
buffers to output device.
42H ESIOMEM * % The Basic I/0 System has
insufficient memory to process a
request.
44H ESMEDIA * % The device containing a specified
file is not online.
45H ESLOGSNAMES— * 0% The Extended I/0 System was unable
NEXIST to find a specified logical name in
the object directories that it
checks.
46H ESNOTSOWNER * The user who attempted to detach
the device is not the owner of the
device.
47H ESIO$JOB * The Extended 1/0 System cannot
create an I/0 job because the size
specified for the object directory
is too small.
50H ESIOSUNCLASS * An unknown type of I/0 error
occurred.
S51H ESIOS$SOFT * % A soft I/0 error occurred. A retry
might be successful.
52H ESIOSHARD * % A hard I/0 error occurred. A retry

is probably useless.

N Nucleus Reference Manual

B
E

Basic I/0 System Ref Manual
Extended 1/0 Sys Ref Manual

L
H

Loader Reference Manual
Human Interface Reference Manual

iRMX™ 86 EXCEPTION CODES

Table A-2. iRMX" 86 Condition Codes (continued)
Hex. Mnemonic Manuals Meaning
Value NBELH
Environmental Conditions (continued)
53H ESIOSOPRINT * % The device was off-line. Operator
intervention is required.
54H ESIOSWRPROT * % The volume is write-protected.
60H ESABSSADD— * An absolute object program was loaded
RESS into system protected memory area.
61H E$BADSGROUP * * Invalid group component in the a group
definition record.
62H E$BADS- * * | Invalid header record in the object
HEADER file.
63H E$BADSSEG~ * * | Invalid segment definition record.
DEF
64H E$CHECKSUM * * | A checksum error occurred while
reading an object record.
65H ESEOF * * | Unexpected end of file encountered
while reading object records.
66H ESFIXUP * * | Invalid fixup record in the object
file.
67H ESNOSLOADER * % | Insufficient memory to satisfy
SMEM loader dynamic memory requirements.
68H ESNOSMEM * * | Insufficient memory to create PIC/LTL
| segments.
69H ESRECSFOR- * % | Invalid record format encountered.
MAT
6AH ESRECS~- * * | Record length of an object record
LENGTH exceeds configured loader-buffer size.

N Nucleus Reference Manual

B Basic I/0 System Ref Manual
E Extended I/0 Sys Ref Manual

L Loader Reference Manual
H Human Interface Reference Manual

iRMX™ 86 EXCEPTION CODES

Table A-2. iRMX™ 86 Condition Codes (continued)

Hex. Mnemonic Manuals Meaning
Value NBELH
Environmental Conditions (continued)
6BH ESRECSTYPE * % Invalid record type encountered in the
object file.
6CH ESNOSSTART * % | Start address not found.
6DH ESJOBSSIZE * * | Maximum job—size specified is less
than the memory requirement specified
in the object file.
6EH ESOVERLAY * Overlay name does not match with any
of the overlay module names.
6FH ESLOADER * * | The object file being loaded requires
$SUPPORT features not supported by the
configured loader.
70H ESSEGS * One of the data records in a module
BOUNDS loaded by the Application Loader
referred to an address outside the
segment created for it.
80H ESLITERAL * | The parse buffer contains a literal
with no closing quote.
81H E$STRINGS—- * | The string to be returned as the
BUFFER parameter name exceeds the size of the
buffer the user provided in the call.
82H E$SEPARA- * | The parse buffer contains a command
TOR separator.
83H ESCONTINUED * The parse buffer contains a
continuation character.
84H ESINVALIDS- * 1 A numeric value contains invalid
NUMERIC characters.
N Nucleus Reference Manual L Loader Reference Manual

B
E

Basic I/0 System Ref Manual
Extended 1/0 Sys Ref Manual

H Human Interface Reference Manual

iRMX™ 86 EXCEPTION CODES

Table A-2. iRMX™ 86 Condition Codes (continued)
Hex. Mnemonic Manuals Meaning
Value NBELH
Environmental Conditions (continued)

85H ESLIST * The last value of the value list is
missing.

86H ESWILDCARD * A wild-card character appears in an
invalid context, such as an
intermediate component of a pathname.

87H ESPREPOSI- * The same preposition as on the the

TION command line was indicated, but can

not be used.

88H ESPATH * The command line specifies an invalid
pathname.

89H ESCONTROLSC * The user typed CONTROL-C while the
command was being loaded.

8AH ESCONTROL * The command line contains an invalid
control.

8BH ESUNMATCHED * There were no more input pathnames

$LISTS although the output pathname list was

not empty.

N Nucleus Reference Manual
B Basic I/0 System Ref Manual
E Extended I/0 Sys Ref Manual

L Loader Reference Manual
H Human Interface Reference Manual

iRMX™ 86 EXCEPTION CODES

Table A-2. iRMX"™ 86 Condition Codes (continued)
Hex. Mnemonic Manuals Meaning
Value NBELH
Programmer Errors
8000H ESZEROS- * A task attempted to divide by zero.
DIVIDE
8001H ESOVERFLOW | * An overflow interrupt occurred.
8002H ESTYPE ¥ %k % % % A token parameter referred to an
existing object that is not of the
required type.
8003H E$SBOUNDS * A task attempted to access beyond the
end of a segment.
8004H ESPARAM ¥ %k & % A parameter which is neither a token
nor an offset has an invalid value.
8005H ESBADSCALL | * # The I/0 System code has been damaged,
probably due to a bug in an
application task. Recovery is not
possible.
8006H ESARRAYS~- * Hardware or software has detected an
BOUNDS array overflow.
8007H ESNDPS$- * An 8087 Numeric Processor Extension
STATUS error has been detected; Operating
System extensions can return the
status of the 8087 to the exception
handler.
8008H ESCHECKSEX-| * A software interrupt 17 has occurred.
CEPTION ‘
8021H ESNOUSER * k% No default user.
8022H ESNOPREFIX * * * No default prefix.
8040H ESNOTS$LOGS~ * % Specified object is not a device
. NAME connection or file connection.

N Nucleus Reference Manual

B Basic I/0 System Ref Manual
E Extended I/0 Sys Ref Manual

L Loader Reference Manual
H Human Interface Reference Manual

iRMX™ 86 EXCEPTION CODES

Table A-2. iRMX™ 86 Condition Codes (continued)

Meaning

Programmer Errors (continued)

Hex. Mnemonic Manuals
Value NBELH
8041H E$NOTS$- *
DEVICE

8042H ESNOTSCON~ *
NECTION

8060H | E$SJOBSPARAM * *

8080H ESPARSES~ *
TABLES

8081H ESJOBS—- *
TABLES

8083H ESDEFAULTSSO *

8084H ES$STRING *

A token parameter referred to an
existing object that is not, but
should be, a device connection.

A token parameter referred to an
existing object that is not, but
should be, a file connection,

The maximum job-size specified is
less than the minimum job-size.

There is an error in the internal
parse tables.

An internal Human Interface table was
overwritten, causing it to contain an
invaiid wvalue.

The default output name STRING is
invalid.

The pathname to be returned exceeds
255 characters in length.

N Nucleus Reference Manual
B Basic I/0 System Ref Manual
E Extended 1/0 Sys Ref Manual

L Loader Reference Manual
H Human Interface Reference Manual

Kk

A-9

APPENDIX B. iRMX" 86 SYSTEM CALLS

This chapter describes the system calls that the iRMX 86 Operating System
recognizes. If you wish to use any of these calls with the iRMX 86 PC
System, you must to obtain the manual that describes the system call
(manuals are listed in Chapter 6) and you must link your programs to the
appropriate library on the Include Diskette supplied with the iRMX 86 PC
System. This Appendix lists the iRMX 86 System calls and briefly
describes each call. The first section describes each subsystem of the
Operating System.

LAYERS OF THE iRMX~ 86 SYSTEM

The iRMX 86 Operating System consists of a number of layers. The
Operating System can be configured to include or exclude certain layers
(the Nucleus is always included) and to include or exclude optional
features. (The configuration process has already been accomplished for
users of the iRMX 86 PC Operating System.)

The layers of the iRMX 86 Operating System are:

Nucleus The Nucleus is the core of the iRMX 86 Operating
System and is required by every application system.
It provides facilities that perform processor
management and scheduling, interrupt management,
memory management, object control, and error
management. Refer to the iRMX 86 NUCLEUS REFERENCE
MANUAL for detailed information about the Nucleus.

Basic I/0 The Basic I/0 System provides an extensive facility

System for device-independent I/0. It supplies all file
drivers and a number of device drivers. It implements
an asynchronous interface to I/0 operations, allowing
tasks explicitly to overlap I/0 functions with other
operations. Refer to the iRMX 86 BASIC I/0 SYSTEM
REFERENCE MANUAL and the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL for more information.

Extended I/0 The Extended 1/0 System provides a higher-level

System interface to files than the Basic I/0 System
provides. The Extended I/0 System provides a simple,
synchronous interface to I/0 operations, one which
automatically performs read—-ahead and write—behind
buffering. This synchronous interface also allows
tasks to use logical names to refer to files. All of
the UDI File Management system calls (see Chapter 4 of
this manual) are accomplished by the Extended I/0
System.

Application
Loader

Bootstrap
Loader

Human
Interface

iRMX™ 86 SYSTEM CALLS

Refer to the iRMX 86 EXTENDED I1/0 SYSTEM REFERENCE
MANUAL and the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE
MANUAL for more information.

The Application Loader provides a simple mechanism
mechanism for loading application code and data files
from I/0 devices into system memory. It can load
absolute code into fixed locations, relocatable code
into dynamically-allocated memory locations, and it
can load files containing overlays.

The Bootstrap Loader provides a means of loading

the Operating System into system memory from an I/0
device. It can also load a file you specified at the
terminal. The Bootstrap Loader is in the EPROMs
supplied with your iRMX 86 PC System.

The Human Interface is the uppermost layer of the
iRMX 86 Operating System. It is an interactive
interface between you and the application system.
Using the Human Interface, you can invoke a program
from the terminal by specifying the name of the file
that contains the program. A set of programs, the
Human Interface Commands, are supplied with the

Operating System. These are the commands documented
in Chapter 3 of this manual.

The Human Interface also provides a number of system
calls that the application program can invoke to
access Human Interface services. Refer to the iRMX 86
HUMAN INTERFACE REFERENCE MANUAL for more information.

NUCLEUS SYSTEM CALLS

iRMX™ 86 SYSTEM CALLS

The Nucleus system calls are listed here.

ACCEPTS$CONTROL
CATALOGSOBJECT

CREATE$JOB

CREATE$MAILBOX

CREATE$SEGMENT
CREATES SEMAPHORE
CREATE$TASK

DELETESJOB

DELETESMAILBOX

DELETESSEGMENT
DELETES$ SEMAPHORE
DELETESTASK
DISABLE

ENABLE
EXITSINTERRUPT

GETSLEVEL

Gains control of a region only if the
region is immediately available.

Enters a name and token for an object into
the object directory of a job.

Creates an environment for a number of
tasks and other objects, as well as
creating an initial task and its stack.

Creates a mailbox with queues for waiting
tasks and objects with FIFO or PRIORITY
discipline.

Dynamically allocates a specified number
of l16-byte paragraphs.

Creates a semaphore for synchronizing
access to resources.

Creates a task with the specified priority
and stack area.

Deletes a Job and all the objects
currently defined within its bounds only
if that Job does itself not contain any
other jobs. All memory used is returned
to the containing job.

Deletes a mailbox.

Deletes the specified segmént by
deallocating the memory.

Deletes a semaphore.
Deletes a task from the system, and
removes it from any queues in which it may

be waiting.

Disables the hardware from accepting
interrupts at or below a specified level.

Enables the hardware to accept interrupts
from a specified level.

Used by an interrupt handler to relinquish
control of the System.

Returns the number of the highest priority
interrupt level currently being processed.

B-3

GETSPOOLSATTRIBUTES

GETSPRIORITY

GETSSIZE

GET$TASK$TOKENS

GET$TYPE

LOOKUPSOBJECT

OFFSPRING

RECEIVESMESSAGE

RECEIVESUNITS

RESETSINTERRUPT

RESUMESTASK

SEND$CONTROL

SENDSMESSAGE

SEND$UNITS

iRMX™ 86 SYSTEM CALLS

Returns attributes such as the minimum and
maximum, as well as current size of the
memory in the environment of the calling
task's job.

Obtains the current priority of a
specified task.

Returns the size (in bytes) of a segment.

Gets the token for the calling task or
associated objects within its environment.

Returns a code for the type of object
referred to by the specified token.

Returns a token for the object with the
specified name found in the object
directory of the specified job.

Provides a list of all the current Jobs
created by the specified job.

Attempts to receive an object from a
specified mailbox. The calling task may
choose to wait for ‘a specified number of
system time units if no object is
available.

Attempts to gain a specified number of
units from a semaphore. If the units are
not immediately available, the calling
task may choose to wait.

Disables an interrupt level, and cancels
the assignment of the interrupt handler
for that level. If an interrupt task was
assigned, it is deleted.

Resumes a task. If the task had been
suspended multiple times, the suspension
depth is reduced by one, and it remains
suspended.

Relinquishes control of a region.

Sends an object to a specified mailbox.

If a task is waiting, the object is passed
to the appropriate task according to the
queuing discipline. If no task is
waiting, the object is queued at the
mailbox.

Increases a semaphore counter by the
specified number of units.

B-4

iRMX™ 86 SYSTEM CALLS

SETSINTERRUPT

SETSPOOLSMIN

SET$PRIORITY

SIGNALSINTERRUPT

SLEEP

SUSPENDSTASK

UNCATALOGSOBJECT

WAITS INTERRUPT

Assigns an interrupt handler and, if
desired, an interrupt task to the
specified interrupt level. Usually the
calling task becomes the interrupt task.

Dynamically changes the minimum memory
requirements of the job environment
containing the calling task.

Dynamically alters the priority of the
specified task.

Used by an interrupt handler to signal the
associated interrupt task that an
interrupt has occurred.

Causes a task to enter the ASLEEP state
for a specified number of system time
units.

Suspends the operation of a task. If the
task is already suspended, its suspension
depth is increased by one.

Removes an object and its name from a
job's object directory.

Used by an interrupt task to SLEEP until
the associated interrupt handler signals
the occurrence of an interrupt.

These system calls are considered System Programmer calls because of
their global effect on the system.

ASGET$SEXTENSIONSDATA

ASPHYSICALSATTACHSDEVICE

ASPHYSICALSDETACHSDEVICE

ASSETSEXTENSIONSDATA

ACCEPT$CONTROL

ALTERSCOMPOSITE

CREATESCOMPOSITE

Returns from the I/0O System extension data
stored with a file.

Attaches a device to the Basic I/0 System.

Detaches a device from the Basic 1/0
System.

Sets the extension data for a file from
the I/0 System.

Requests access to data protected by a
region only if access is immediately
available.

Alters the component list of a composite
Obj ect.

Creates a composite object.

CREATESEXTENSION
CREATE$REGION
CREATES$USER
DELETE$COMPOSITE
DELETESEXTENSION
DELETESREGION

- DELETE$USER

DISABLESDELETION
ENABLESDELETION

FORCESDELETE

INSPECTSCOMPOSITE

INSPECTSUSER

LOGICALSATTACHSDEVICE

LOGICALSDETACHSDEVICE

RECEIVESCONTROL
SENDSCONTROL
SETSOSSEXTENSION

SET$PRIORITY
SETSTIME

SIGNALSEXCEPTION

iRMX™ 86 SYSTEM CALLS

Creates a new extension object type.
Creates a region.

Creates a user object.

Deletes a composite object.

Deletes an extension type.

Deletes a region.

Deletes a specified user object.

Increases the deletion disabling depth of
an object by one.

Decreases the deletion disabling depth of
an object by one.

Forces the deletion of an object even if
the object has had its deletion disabled

oncee.

Returns a list of the component object
tokens contained in a composite object.

Returns a list of the ID's in a user
Object.

Attaches a device to the Extended I/0
System.

Detaches a device from the Extended I/0
System.

Requests eventual access to data protected
by a region.

Relinquishes access to data protected by a
region.

Allocates and deallocates extension
entries in the interrupt vector table.

Changes the priority of a task dynamically.
Sets the time and the date.

Signals the occurrence of an exceptional
condition.

BASIC I/0 SYSTEM CALLS

iRMX™ 86 SYSTEM CALLS

These are the Basic I/0 System calls.

ASATTACHSFILE

AS$CHANGESACCESS

ASCLOSE

ASCREATESDIRECTORY

ASCREATESFILE

ASDELETE$CONNECTION

ASGETSFILESSTATUS

ASOPEN

ASREAD

AS$SEEK

ASWRITE

.

Creates a connection to an existing file
and returns its token identifier.

Changes the types of accesses permitted to
the specified user(s) for a specific file.

Closes the connection to the specified
file so that it may be used again, or so
that the type of access may be changed.

Creates a Named File used to store the
names and locations of other named files,
and returns a token identifier for the
connection to the new file.

Creates a data file with the specified
access rights, and returns a token
identifier for the connection to the new
file.

Deletes the connection to the specified
file.

Returns the current status of a specified
file.

Opens a file for either read, write, or
update access.

Reads a number of bytes from the current
position in a specified file.

Moves the current data pointer of a named
or physical file.

Writes a number of bytes at the current
position in a file.

B-7

iRMX™ 86 SYSTEM CALLS

EXTENDED I/0 SYSTEM CALLS

These are the Extended I/0 System calls.

CREATE$IO0$JOB Creates an I/0 job with one task.
EXIT$SI0S$JOB Sends a message to a previously designated
mailbox and deletes the calling task.
SSATTACHSFILE Creates a connection to an existing file.
SSCATALOGSCONNECTION Creates a logical name for a connection by
cataloging the connection in the object
directory of a specific job.
SSCHANGESACCESS Changes the access list for a named file.
SSCLOSE Closes an open connection to a named,
physical or stream file.
SSCREATESDIRECTORY Creates a new directory file.
SSCREATESFILE Creates a new physical, stream, or named
data file. It cannot create a named
directory file.
SSCREATES$I0S$JOB Creates an 1/0 job containing one task.
SS$DELETESCONNECTION Deletes a file connection. It cannot
delete a device connection.
SSDELETESFILE Deletes a stream, physical, or named file.
SSEXIT$IO0$JOB Sends a message to a previously designated

SSGET$CONNECTIONSSTATUS

mailbox and deletes the calling task.

Provides status information about file and
device connections.

SSGETSFILESSTATUS Allows a task to obtain information about
a physical, stream, or named file.

SSLOOKSUP$CONNECTION Searches through an I/0 job's local,
global, and root object directories to
find the connection associated with a
logical name.

SSOPEN Opens a connection to a named, physical,

' or stream file.

S$READSMOVE Reads a number of bytes from a file to a
buffer.

S$RENAMESFILE Changes the path of a named file. It

cannot be used for stream or physical
files.

B-8

iRMX™ 86 SYSTEM CALLS

S$SEEK

S$SPECIAL

SSTRUNCATESFILE

SSUNCATALOGSCONNECTION

SSWRITES$MOVE

HUMAN INTERFACE SYSTEM CALLS

Moves the file pointer.

Allows your task to perform functions
that are peculiar to a specific device.

Removes information from the end of a
named data file.

Deletes a logical name from the object
directory of a specific job.

Writes a collection of bytes from a
buffer to a file.

These are the Human Interface System Calls.

CS$CREATE$COMMANDS CONNECTION

C$DELETE$COMMANDS CONNECTION

C$FORMATSEXCEPTION

C$GETSCHAR

CSGETSINPUT$CONNECTION

CSGETSINPUT$PATHNAME

C$GETSOUTPUTSCONNECTION

CSGETSOUTPUT$PATHNAME
CGETPARAMETER
C$SENDSCOSRESPONSE

C$SEND$COMMAND

Creates command connection and
returns a token.

[+

Deletes a specific command comnection.

m

Formats a default message into a user
buffer for a given exception code.

Gets a character from the command line.

Returns an EIOS connection for the
specified input file.

Parses the command line return a
pathname that will identify the
Standard Input file.

Returns an EIOS connection for the
specified output file.

Parses the command line and returns a
pathname that will identify the
Standard Output file.

Parses the command line for the next
parameter and returns it as a keyword
name and a value.

Sends a message to the command output
(CO) and reads a response from the
command input (CI).

Concatenates command lines into the
data structure created by CREATESCOM-
MANDSCONNECTION and then executes
command.

B-9

iRMX™ 86 SYSTEM CALLS

CSSENDSEOSRESPONSE Sends a message to the error output
device (EO) and returns a response from
the error input device (EI).

CSSETSCONTROLSC Changes calling program's CONTROL C
semaphore to the specified semaphore.

CS$SETSPARSESBUFFER) Parses a buffer other than the current
~ command line.

k%

B-10

APPENDIX C. MONITOR COMMANDS

The iRMX 86 PC Operating System includes the iSBC 957B Monitor, which
resides in EPROM on the processor board. This appendix describes the
Monitor commands, which allow you to do such things as:

° Set breakpoints in programs

] Single-step through your programs

e Examine and modify registers and memory

e Perform I/0 via 8086 input and output ports
° Move and compare blocks of memory

Also, by connecting your hardware to an Intel Microcomputer Development
System (using the iSBC 957B package), you can use the monitor from the

Development System. Chapter 5, PREPARING YQUR HARDWARE, describes the

jumpering and devices required on your Single Board Computer to support
this feature. The USER'S GUIDE FOR THE iSBC 957B 1APX 86, 88 INTERFACE
AND EXECUTION PACKAGE describes the iSBC 957B package.

You can get to the monitor in any of these ways:

e By booting the system (as described in Chapter 2), and when the
period (.) prompt is displayed, the Monitor is ready to accept
. commands.

] By using the Human Interface DEBUG command, specifying a program
file. This loads a program into memory and gives control to the
monitor, permitting you to examine the program in detail. The
DEBUG command is described in Chapter 3.

° By pressing 'a button connected to the nonmaskable interrupt of
your Single Board Computer. This interrupts the application
system and gives control to the monitor, which prompts with a
period (.) and waits for your entry.

To prevent destroying data on your
diskettes, wait at least 2 seconds
after your last iRMX 86 command before
you interrupt the computer.

In this chapter, the 8087 Numeric Processor Extension is referred to as
"NPX."

MONITOR COMMANDS

COMMAND STRUCTURE

Responses to the monitor’s command-level prompt are line-oriented, as
opposed to the more traditional character-oriented monitor input. This
allows for command-line editing capabilities.

Each monitor command includes a key letter, which is suggestive of the
function of the command,, such as D for displaying memory and S for
substituting memory. Some commands have one or more additional letters
which specify variations of the general function.

Following the key letter or letters of a command are zero or more
arguments. The arguments can be addresses, data, register names,
strings, or punctuation symbols dpending on the command.

In the remainder of this manual, the following syntax conventions are
used:

[A] indicates that "A" is optional

[A]* indicates zero or more optional iterations of "A"
 indicates that "B" is a variable

{A1B} indicates "A" or "B"

Lcr> indicates a carriage return

Variables in commands include numbers, registers, expressions, and
addresses. The BYTE and WORD variables are defined in the following
sections.

BYTE AND WORD VARIABLES

{dec digit>::= {0]1]1213141516171819}

<hex digit>::= {<dec digit>]A|B|C|D|E|F}

<dec numberd::= {<dec digit><{dec number>|<dec digit>}
<hex number>::= {<hex digit><hex numberd|<hex digitd}

<number>: := {<hex number>|<dec number>T}

<{register>::= {AX|BX|CX|DX|SP|BP|SI|DI|CS|DS|SS|ES|IP|FL}
<term>: := {<number>|<register>}

<expr>::= {<term> |<expr>{+|-}<term>}

<addr>::= {[<expr>:]<expr>}

<range>::= {<addr>|<addr>#<number>}

The range of byte values is 00-OFFH. Larger numbers can be entered but

only the last two digits are significant because the number is evaluated
modulo 256. The range of word values is 0000-OFFFFH. Larger numbers can
be entered, but only the last four hex digits are significant because the
number is evaluated modulo 65536. Leading zeros can be omitted for both

types of values.

Byte and word values are assumed to be in hexadecimal. However, decimal
values can be entered if they end with a "T". The trailing "H" that
sometimes indicates hexadecimal is not allowed for byte or word values.

MONITOR COMMANDS

When word values are displayed, the contents of the high byte of the
address location is displayed, followed by the contents of the low byte
of the address location. Similarly, when entering word values, the high
byte is followed by the low byte. If necessary, leading zeros are
appended to the value by the monitor. Assume, for example, that the byte
values C4, 26, F2, and 3D are in consecutive locations beginning at
246B:26. A display of those locations in bytes looks like:

246B:0026 C4 26 F2 3D
while the corresponding display in words looks like:

246B:0026 26C4 3DF2

NUMERIC (REAL, INTEGER AND BCD) VARIABLES

<signd::= [{+|-}]
<npx dec number>::= <sign><dec number>
<npx hex number>::= <hex number>H
<{scientific numberd>::= {<npx dec number>[.<dec number>]]|
<{sign>.<dec number>}[E<npx dec number>]
<int number>: {<npx dec number>|<npx hex number>}
<BCD number>: {<npx dec number>|<npx hex number>}
<real number>::= {<scientific number>|<npx dec number>]|<hex number>R}
<npx register>::= {CW|SW|{TIW|OP|DP}
<npx stack register>::= ST[({0]1{21314]15(617})]

Numeric variables refer to the data types supported by the 8087 Numeric
Processor Extension (NPX). There are three types of numeric variables:
integer, packed binary coded decimal (BCD), and real. Of these three
basic types, the integer and real types have three sub-~types. All seven
numeric data types are described in Table C-1l. For the remainder of this
manual, the seven numeric variables are referred to as "NPX data types."

See the 8086 FAMILY USER’S MANUAL NUMERICS SUPPLEMENT for more details on
the NPX data types. Also, note the section on "Constants" in the
8086/8087/8088 MACRO ASSEMBLY LANGUAGE REFERENCE MANUAL. = For other NPX
related details, refer to the Application Note, Getting Started With the
Numeric Data Processor.

MONITOR COMMANDS

Table C~1. NPX Data Types

Significant

Explicit Digits Approximate Range
Data Type Suffix Bits (Decimal) (Decimal)
Word integer H 16 4 -32,768 < X < 432,767
Short integer H 32 10 -2x107 < X < +2x109
Long integer H 64 19 -9x1018 ¢ x < +9%x1018
Packed decimal] H 80 18 -99..99 < X < +99..99(18 digits)
Short real* R 32 6~7 8.43x10737 < X < 3.37x1038
Long real% R 64 15-16 4.19x107307 ¢ |xj < 1.67x10308
Temporary real| R 80 19 3.4x1074929 ¢ x| < 1.2x104929

* The short and long real data types correspond to the single and double
precision data types defined in other Intel numeric products.

The suffixes used when entering the NPX data types differ from the
suffixes for word and byte variables. If the no suffix is given when
entering an NPX data type, the number is assumed to be a decimal number.
A decimal number is defined for the real NPX data types as a value
entered as a scientific number. This allows values like 4, 1.2, -1.2,
-.3, —.3E-44, -1.56E-999 or 5.67E55 to be entered. A decimal number is
defined for the integer and BCD NPX data types as a value entered as a
scientific number that will evaluate to an integer value. This allows
numbers like 12, -12, 4E2 or 4.0El to be entered but won’t allow the)
entry of numbers like 1.2, -1.2 or -1.56E-999. 1In the valid cases, the
monitor will place the hexadecimal equivalent of the input decimal number
into iAPX 86, 88 memory. However, if an integer or BCD number is entered
with its explicit suffix "H" or a real number is entered with its
explicit suffix "R", the monitor places the number, as it is entered at
the console, into iAPX 86, 88 memory. In this case explicit signs

(+ or =) are not allowed, the hexadecimal number, entered at the console,
indicates the sign of the number in the sign bit, the most significant
bit‘

MONITOR COMMANDS

When NPX data types are displayed, the address of the data type is
displayed and then the value is displayed in hexadecimal form. The
number is then displayed as the equivalent decimal number if it has an
equivalent decimal value. For example, the long real number 11223344, is
displayed in form:

1111:0 4165682600000000R 11223344
The long integer, 112233h4, is displayed in the form:

1111:0 0000000000AB4130H 11223344
The BCD number, 11223344, is displayed in the form:

1111:0 00000000000011223344T 11223344

In the remainder of this manual this display form is referred to as '"NPX
number format'". If the memory value is a special bit pattern identifying
non-numeric values like Not—A-Number (NAN) or Infinity, the address and
the hexadecimal number are displayed and then the meaning is shown as NAN
or Infinity instead of the decimal value. Examples of these displays
using a long real number are:

0080:0000 FFFFO000000000000R -NAN
0080:0008 7FF0000000000000R +Infinity

Special cases of numeric values are also identified. A negative zero is
dislayed as -0. Pseudo zeroes (zero fraction with non—zero exponent) are
shown as OEexp, where exp is the base 10 power equivalent of the binary
exponent in the number. Numbers which are not normalized (I bit is zero)
are displayed with their hexadecimal value and a "Bit" value which is a
count of how many leading zeroes existed in the number. This "Bit'" value
indicates how many times the fractional part of the number must be
shifted to the left to normalize it. An example of this display using a
temporary real number is: '

0080:000 3FFF199999999999999AR .2 UNNORM 3 BITS

Decimal values can be displayed in any of four different formats. The
format used depends on the range of the number and its value. Numbers
which are exact integers and fit in the field size of 16 digits are
displayed as integers with no trailing decimal point or O. An example of
this display using a long real number is:

0080:0000 43118B54F22AEBOOR 1234567890123456

Values which appear as integers, within the limits of the field size, but
are not exact integers are displayed as XXXXX.0. The .0 suffix indicates
that the value is close to an integer but not exactly. An example of
this display using a long real number is:

0080:0000 42DC12218377DE46R 123456789012345.0

MONITOR COMMANDS

If the magnitude of a number is greater than or equal to 0.l and is less
than 10**<{field size>, the number is displayed as XXXX.XXX. An example
of this display using a long real number is:

0080:0000 41D26480B487E69BR 1234567890.12345

Finally, very large or very small numbers are displayed in scientific
number format X.XXXXXEexp. An example of this display using a long real
number is: '

0080:0000 492C2916217B84B7R 3.14E+44

Trailing zeroes after the decimal point are also suppressed.

When NPX data types are displayed, the most-significant byte of the
memory address (in hexadeximal notation) is displayed in the leftmost
position, followed by bytes of decreasing significance with the least
significant byte in the right most position. Similarly, when entering
NPX data types in hexadecimal or decimal, the first digit entered has the
greatest significance and successive digits entered have decreasing
significance. If less than the NPX data type’s number of significant
digits is entered, the monitor will append leading zeros. When entering
a value for an NPX date type in scientific number format, the number is
converted to its hexadecimal equivalent and is then stored in iAPX 86, 88
memory in that format.

ADDRESS SPECIFICATION'

A complete address argument consists of a base and an offset separated by
a colon (:). If the optional base portion is omitted, the contents of
the iAPX 86, 88 CS register are used as a default base, except as noted
in the command descriptions that follow. If an entire address is
omitted, but an address is needed in the command, the contents of the CS
and IP registers are used, respectively, as base and offset, except as
noted in the command description.

There are two ways of denoting a range of addresses. One way is to list
both the starting and ending addresses, with an exclamation point between
theme An example is 30:46D ! 30:4FE. The other way is to list the
starting address and the length in bytes, with a pound sign (#) between
them. An example equivalent to the earlier one is 30:46D # 92.

If the ending address in a range lacks an explicit base part, the base of
the starting address is assumed. The ending address may not contain a
base part which differs from the base part of the starting address.

The largest count or the maximum number of bytes specified by a range is
OFFFFh. When a range is expected and neither an ending address nor a
length is specified, the range is taken to be a single byte.

MONITOR COMMANDS

MULTIPLE COMMANDS ON A SINGLE LINE

There are two mechanisms for putting more than one command on a command
line. First, separate commands may be in the same command line if they
are separated by semicolons (;). Second, by enclosing a command in angle
brackets (<command>) and by placing a decimal repetition factor ahead of
the first bracket, you can specify that the command be repeated the
desired number of times. A repetition factor of n says '"do this command
n times." For example,

5 <12 <G, CS:3B7> ; D DS:4A>

is a valid command line that is built from the commands G, CS:3B7 and D
DS:4A. The command G, CS:3B7 is repeated 12 times, then the D DS:4A is
performed once. This entire sequence is repeated 5 times so the G,
CS:3B7 command is repeated at total of 60 times while the D DS:4A command
is repeated a total of only 5 times. Note that this use of angle
brackets is NOT the same as the use of angle brackets in the syntax
definition.

Closely related to repetition, but differing, is continuation. By
putting a decimal continuation factor, n, immediately ahead of a
command’s key letter or letters, you are directing the monitor to "do
this command for n items at a time." For example, the command D 200:14
directs the monitor to display the byte at address 200:14, while 20D
200:14 causes the display of 20 consecutive bytes, beginning at address
200:14, 1In contrast, 20 <D 200:14> causes the byte at 200:14 to be
displayed 20 times.

NOTE

Both repetition and continuation
factors are written as positive decimal
integers with no "T" suffix. The range
of these factors is 1 through 65,535.
In any other part of a command using
byte or word variables, however,
decimal integers must have a "T"
suffix, such as 127T.

MONITOR COMMANDS

iAPX 86 AND iAPX 88 CPU REGISTERS

The iAPX 86 and iAPX 88 CPUs include the 14 registers listed in Table
C-2. The abbreviations used in the table are those used in the command
syntax.

Table C~2. 1iAPX 86, 88 CPU Registers

Register Name Abbreviation
Accumulator AX
Base BX
Count cX
Data DX
Stack Pointer SP
Base Pointer BP
Source Index SI
Destination Index DI
Code Segment cs
Data Segment DS
Stack Segment S8
Extra Segment ES
Instruction Pointer IP
Flag FL

NPX REGISTERS

The NPX includes the eight 80~bit individually-addressable stack
registers plus the status word, control word, tag word, instruction
pointer, data pointer and instruction opcode field listed in Table C-3.
The abbreviations used in the table are those used in the command

syntax. Note that the NPX instruction pointer listed in Table C-3 is not
the iAPX 86, 88 instruction pointer. The monitor contains no command to
modify the NPX instruction pointer.

MONITOR COMMANDS

Table C-3. NPX Registers

Register Name Abbreviation

NPX State N

Status Word SW

Control Word Cw

Tag Word v
Instruction Pointer IP

Data Pointer DP
Instruction Opcode opP

Stack Register O St (0)
Stack Register 7 st(7)

ERRORS

Each line input to the monitor is checked for validity. If the command
is invalid or impossible to execute, an explanatory error message is
displayed. If the command line containing the error consists of multiple
commands, any valid commands prior to the error are executed.

Three error messages — '""Bad EMDS Connection", "Bad Patch Byte=hex

number", and XISIS Abort" - are all indicative of hardware problems. To
recover, check your hardware, restart monitor, and try again.

ENTERING COMMANDS

The monitor’s command line editor responds to input as follows:

° Digits, upper and lower case letters, and all other standard
keyboard characters are accepted into the command line and are
printed on the console. Upper and lower case letters are
indistinguishable to the monitor, all display is done by the
monitor in upper case.

° RUBOUT deletes the most recently entered character (with
backspace, space, backspace) from both the command line and the
display. An attempt to rubout the prompt causes a beep to be
sounded.

MONITOR COMMANDS

° CNTRL/C directs the monitor to abort its current command and
issue a prompt. However, if your program is running and is in a
loop, CNTRL/C has no effect.

) CNTRL/R displays at the console the current command line. If the
console terminal is in transparent mode, however, control-R has
no effect.

) CNTRL/X deletes the current command line and displays a pound
sign (#).

® CNTRL/S causes the console output to be suspended at the current
cursor position. No output is lost by this command.

° CNTRL/Q causes the console output, suspended by Control-S, to be
resumed beginning at the current cursor position.

e CARRIAGE RETURN (CR) signals the completion of the command line,
which is then read and acted upon.

° Other characters have no effect. Spaces may be included anywhere
in the command line except within lexical elements.

e NPX data types may be entered only on the substitute ("S") or
"XST(n)" command line and may appear in no other command line.

Command lines may be up to 255 characters in length. An attempt to

exceed this limit will be unsuccessful and will cause the terminal to
beep.

Cc-10

MONITOR COMMANDS

COMMAND DESCRIPTIONS

The Monitor commands are summarized in Table C-4.

Table C-4. Summary of Loader And Monitor Commands

COMMAND

FUNCTION AND SYNTAX

L

G

Load

Go

Load and Go

Upload

Single Step

Examine

Display

Substitute

Move

Find

Compare

Loads an absolute object file from Intellec into iAPX
86, 88 memory. L <filename> <cr>

Transfers control of the CPU to the user program.
G [<start-addr>][, <break-addr>|<range>]<cr>

Loads an absolute object file from Intellec into iAPX

86, 88 memory and begins execution.
R<filename><cr>

Loads a block of iAPX 86, 88 memory into an Intellec
file.
T<range> , <filename> [, <{start-addr>]<cr>

Displays and executes one instruction at a time.
[<cont>] N [0] [P] [Q] [<start=addr>}[, I<cr>

Displays or modifies iAPX 86, 88 or NPX registers.
X[<reg>[=<expr>]li<cr>

X{N| [<npx register>[=<hex number>]]|

[<npx stack register>[=<real number>]]}<cr>

Displays contents of a memory block.
[<cont>] D [{W]I|SI|LI|T|SRILR|TR{X}] [<range>][,]<cr>

Displays/modifies memory locations.

[<cont>] S [W]<addr>[=<expr>][/<expr>]*[, I<cr>

[<cont>] S [{I|SI|LI}] <addr>[=<int number>]
[/<int number>]*],[<cr>

[<cont>] S [{SRILR|TR}]<addr>[=<real number>]
[/<real number>]*[,]<cr>

[<cont>] S [T]<addr>[=<BCD number>][/<BCD
number> J*[, J<cr>

Moves the contents of a memory blocke.
M<range> , <dest-addr><cr>

Searches a memory block for a constant.
F<range> , <data><cr>

Compares two memory blocks.
C<range> , <dest=-addr><cr>

C-11

MONITOR COMMANDS

Table C~4. Summary of Loader And Monitor Commands (continued)

COMMAND FUNCTION AND SYNTAX
I Input Inputs(and displays data from input port.

[repeat] I [W]<port=-addr><cr>
0 Output Outputs data to output port.

[repeat] O [Wl<port=addr> , <data> <cr>
P Print Prints values or literals.

P [{TI1SI1Q}]}[{<addr>|<expr>|<literald}] [,

{<addr> |<expr>|<{literald} [*<cr>

E Exit Exits the loader program and returns to ISIS-II.

* Comment

B Bootstrap

E<cr>

Rest of line is a comment.
* <{comment><cr>

Bootstraps code from iRMX 86 or 88 file compatible
peripherals.
B[<pathname>]

c-12

INDEX

8087 Numeric Processor Extension 4-7, 7-5

:$: (default directory) 2-3, 2-11, 2-20, 3-1

:BB: (Byte Bucket) 2-13, 3-10

:CI: (Console Input device) 2-13, 3-13, 3-14

:CO0: (Console Output device) 2-13, 3-13, 3-14
:CONFIG: (Configuration directory) 2-15, 6-6, 6-8
:HOME: (Home Directory) 2-15, 3-12, 3-13, 3-14
:LANG: (Language Directory) 2-15, 2-20, 3-1, 6-6
:LP: (Line Printer) 2-13, 3~10

:PROG: (Program Directory) 2-15, 2-20, 3-1

:SD: (System Device) 2-13, 6-2, 6-6

:STREAM: (Stream Files) 2-~5, 2-7, 3-10

:SYSTEM: (System Directory) 2-14, 2-20, 3-1, 6-6
sUTILS: (Utilities Directory) 2-15 thru 2-17, 2-20, 3-1, 6-6
:WORK: (Work Directory) 2-15, 6-6

abbreviation of command parameters 2-9
aborting an executing program (CTRL/c) 2-24, 3-84
absolute address 1-6
access 2-3, 3-69, 4-13 thru 4-14, 6-5 thru 6~6 {(also see PERMIT)
control 2-10
directories 3-27
files 3-25
address, absolute 1-6
AFTER preposition 2-4
ALL parameter 3-49
allocation,
buffer 4-10, 4-36
memory &4-5, 4-10, 4-23, 4-32, 4-36
Append access: see PERMIT
Application Loader 7-2, B-2
application program debugging 3-31
argument 4-27, 4~47
AS preposition 2-4
ASM86 assembler 1-6, 7-4 -
ATTACHDEVICE 3-2, 3-7 thru 3-11, 6-2 thru 6-3, 6-12
ATTACHFILE 2-10, 3-2, 3-12 thru 3-14
automatic baud-rate selection 1-9

backplane hardware 5-7, 5-8
BACKUP command 3-2, 3-15 thru 3-22, 3-78
BACKUPSYS file 6-2, 6-3, 6-6
bad blocks map 3-59
Basic I/0 System 7-1, B-1
calls 3-13, B-7
baud-rate 1-7, 1-9
board modification 5-2, 5-6 thru 5-17
Bootstrap Loader 1ii, 1-6 thru 1-8, 2-11, 2-14, 6-2, 6-6, 7-2
breakpoints 1-6, 3-30 :

Index-1

INDEX (continued) .

buffer allocation 4-10, 4-16, 4-36
bus electrical noise 5-8

bus priority resolution 5-7

BYTE data type 4—4

byte bucket (:BB:) 2-13, 3-10

cardcage 1-4, 5-2, 7-6
carriage return (RETURN) 2-4, 2-22
Centronics standard signal/pin assignments 5-5
Change access: see PERMIT
change file extension 4-15
character matching: see wild cards
chassis 1-4, 5-2, 7-6
chronology of system calls 4-5
CLI (Command Line Interpreter) 1-9, 4-28
clock, system 3-31, 3-90 thru 3-91, 4-19
commands,
continuing on next line 2-27
directories 6-6
file 6-6 (also see SUBMIT)
file management 3-1, 3-2
general utility 3-1, 3-3
invoking 2-1, 2-2 thru 2-3, 3-1
iRMX 86 Human Interface 1-2, 2-1 to 2-5, 2-18 to 2-30, Chapt. 3, 7-2
line interpreter (CLI) 1-9, 4-28
line options 2-18, 2-27 thru 2-30
monitor Appendix C
parameter abbreviation 2-9
parsing system calls 4-9
syntax 2-1, 2-4 thru 2-5, 3-5 thru 3-6
version: see VERSION
volume management 3-1, 3-2 thru 3-3
communication expansion board 7-6 (also see iSBC 534)
COMPAC.LIB, 4-2 '
compilers 1-6, 6-6 :
concatenation of files 2-29, 2-30 (also see COPY)
condition codes 4-2, 4-7, Appendix A
CONFIG directory 2-15, 6-6, 6-8
CONFIG EXCEP (INITSTATUS command) 3-63
configuration files iii, 2-15, 6-6, 6-7
connection,
closing 4-16, 4-21
creating 4-12, 4-17, 4-35 thru 4-36
deleting 3-13, 3-32, 3-35, 3-57, 4-22
status 4-29
Console Input device (:CI:), 2-13, .3-13, 3-1i4
Console Output device (:C0:), 2-13, 3-13, 3-14
continuation of command lines 2-27
control (CTRL) characters 2-22 thru 2-24
(abort) 2-24, 3-84, 4-8, 4-16, 4-48
(no effect) 4-46
(discard mode) 2-23
(resume previous output) 2-23
(reprint) 2-22
(stop output) 2-23

nHO0 AN

Index-2

INDEX (continued)

control (CTRL) characters (continued)
t (scroll) 2-24
u (discard) 2-22
w (scroll) 2-24
x (discard) 2-22
z (as :CI: end-of-file) 3-67
z (to reinitialize interactive job) 1-10, 3-13
controllers, disk 1-4, 5-4, 7-6
convenience charts 5-12, 5-18 thru 5-24
COPY command 1-11, 2-2, 2-28, 3-2, 3-23 thru 3-26, 3-75
copy, :
iRMX86 file to ISIS II file, 3-53 (also see DOWNCOPY)
from ISIS II file to iRMX 86 file 3-92 (also see UPCOPY)
System Diskette 6-1, 6-~2 thru 6-4
to a file: see COPY
to a physical volume: see BACKUP,
UDI libraries to system disk 2-18 thru 2-19
CREATEDIR 1-11, 3-2, 3-27
creating files 3-25 (also see COPY)
CTRL: see control characters

DATA file access 3-69, 3-70

data
files 2-7
structures verification: see DISKVERIFY
types 4-4
DATE command 1-2, 1-9 thru 1-10, 3-28 thru 3-29, 3-90 thru 3-91, 4-19,
4-34
DEBUG command 3-30 thru 3-31
default

directory 2-3, 2-10, 2-11 thru 2-12
exception handler 1-12, 4-6
prefix 2-15, 3-13
DELETE command 3-2, 3-32 thru 3-33
Delete access: see PERMIT
delete,
file 4-6, 4-17, 4-21
job: see JOBDELETE
delimiters 4-27
DETACHDEVICE 3-2, 3-8, 3-13, 3-34 thru 3-36, 6-12
DETACHFILE 3-2, 3-13, 3-37 thru 3-38
device independent 1/0 B-1
device,
attaching: see ATTACHDEVICE
detaching: see DETACHDEVICE
drivers 7-2
formatting 3-56 thru 3-62
logical name 2-12, 2-13, 3-7 thru 3-8
names 3-9 thru 3-10, 6-9
secondary storage 3-86
dictionary,
Human Interface command 3-1
System Call 4-4, 4-8 thru 4-9

- Index~3

INDEX (continued)

DIR 1-10, 1-11, 2-2 thru 2-3, 2-8 thru 2-11, 3-2, 3-39 thru 3-47
directories 2-7
:HOME: 2-15, 3-12, 3-13, 3-14
:LANG: 2-15, 2-20, 3-1, 6-6
:PROG: 2-15
:SD: (system device) 2-14, 2-20, 3-1 3-1
:SYSTEM: (System) 2-14, 2-20, 3-1, 6-6
:WORK: 2-15, 6-6
sUTILS: 2-15 thru 2-17, 2-20, 3-1, 6-6
access rights 3-27 (also see PERMIT)
configuration (CONFIG) 2-15, 6-6, 6-8.
creating: see CREATEDIR
default 2-3, 2-10, 2-11 thru 2-12
listing 3-27, 3-45 (also see DIR)
order of search 2-18, 2-20, 3-1
root 2-7, 2-14, 3-59, 6-6
user's 1-10
utility 2-15 thru 2-17, 2-20, 3-1, 6-6
discarding output 2-23
disk
attaching: see ATTACHDEVICE
controllers 1-4, 5-4, 7-6
creating a private 2-20 thru 2-21
drive 1-2, 1-4, 3-9 thru 3-10, 6-2
diskette,
Include Files 4-2
soft-sectored 5-4
system 6-2 thru 6-6
DISKVERIFY 3-2, 3-48 thru 3-52, 7-2
documentation Chapter 7
DOWNCOPY 3-2, 3-53 thru 3-55
DQSALLOCATE 4~5, 4-9, 4-10 thru 4-11, 4-23, 4-26, 4-32, 4-42
DQSATTACH 4-6, 4-8, 4-~12, 4~56
DQSCHANGESACCESS 4-8, 4-13 thru 4-14
DQSCHANGESEXTENSION 4-8, 4-15
DQSCLOSE 4-8, 4-16, 4-57
DQSCREATE 4-6, 4-8, 4-17, 4-55 _
DQ$SDECODESEXCEPTION 4-2, 4-6, 4-9, 4-18, 4-=31, 4-54
DQ$DECODESTIME 4-9, 4-19 thru 4-20, 4-25
DQSDELETE 4-6, 4-8, 4-21
DQ$DETACH 4-6, 4-8, 4-22
DQSEXIT 4~2, 4~8, 4~23, 4~54, 4-55, 4-57
DQSFILESINFO 4-8, 4-20, 4-24 thru 4-25
DQSFREE 4-5, 4-9, 4-26
DQSGETSARGUMENT 4-9, 4-27 thru 4-28, 4-47, 4-56
DQSGET$CONNECTIONSSTATUS 4-8, 4-29 thru 4-30
DQSGETSEXCEPTIONSHANDLER 4-6, 4-9, 4-31
DQSGETS$SIZE 4-5, 4-9, 4-32
DQSGET$SYSTEMSID 4-9, 4-33
DQSGETSTIME 4-9, 4-34
DQSOPEN 4-6, 4-8, 4-35 thru 4-36, 4-42, 4-51, 4-55, 4-56
DQSOVERLAY 4-8, 4-37 thru 4-38
DQSREAD 4-6, 4-41
DQSRENAME 4-8, 4-41
DQSRESERVESIOSMEMORY 4~9, 4-42

Index-4

INDEX (continued)

DQSSEEK 4-6, 4-8, 4-43 thru 4-44, 4-50, 4-52
DQSSPECIAL 4-8, 4-45 thru 4-46
DQSSWITCHSBUFFER 4-9, 4-27, 4-47
DQSTRAPSCC 4-8, 4-48
DQSTRAPSEXCEPTION 4-2, 4-6, 4-9, 4-31, 4-49
DQSTRUNCATE 4-8, 4~-44, 4-50
DQSWRITE 4-6, 4-8, 4-44, 4-51 thru 4-52, 4-54, 4-56, 4-57
drives 1-2, 1-4, 3-9 thru 3-10, 6-2, 7-2
flexible diskette 5-4
Winchester 5-4
DWORD 4-4

EDIT 1-6, 7-3
editing,
line 2-18, 2-22, 3-31, 4-45
terminal and user definition files 6-7 thru 6-12
volume: see DISKVERIFY
editor 2-16 thru 2-17
end-of-file character (CTRL/z) 3-67
environment, protected 6~-1, 6-7
environmental exceptions 4-2
EPROM devices iii, 1-6, 5-6
error conditions 2-30
error messages,
ATTACHDEVICE 3-10 thru 3-11
ATTACHFILE 3-14
BACKUP 3-20 thru 3-22
COPY 3-26
CREATEDIR 3-27
DATE 3-29
DEBUG 3-31
DETACHDEVICE 3-35 thru 3-36
DETACHFILE 3-37 thru 3-38
DIR 3-46
DISKVERIFY 3-51 thru 3-52
DOWNCOPY 3-55)
FORMAT 3-61 thru 3-62
general 3-4 thru 3-5
PERMIT 3-73
RENAME 3-76
RESTORE 3-80 thru 3-82
UPCOPY 3-94
INITSTATUS 3-64
JOBDELETE 3-66
LOCK 3-68
SUBMIT 3-85
SUPER 2-10, 3-88 thru 3-89
TIME 3-91
error processing 1-2
escape sequences 2-24
exception
code 4-2, 4-18, Appendix A
handler 1-12, 4~6 thru 4-7, 4-18, 4-31, 4~-49
handling system calls 4-6 thru 4-7, 4-9
exceptional conditions, UDI 4-2

Index-5

INDEX (continued)

EXIT 2-11, 3-87 thru 3-88
EXTENDED 3-39, 3-40 thru 3-42, 3-4
Extended I/0 System 7-2, B-1

calls, 3-13, B-8 thru B-9
extension

data 3-57, 3-59

changing 4-~15
EXTENSIONSIZE 3-56 thru 3-57, 3-59
EXTERNAL PROCEDURE 4-3

FAST 3-39 thru 3-43
file 1-2, 1-11 thru 1-12, 2-5 thru 2-6
access 1-11, 2-3, 4-35, (also see PERMIT)
attaching: see ATTACHFILE
creation 3-25, 4-17 (also see COPY)
data 2-7
deletion 4-6, 4-17, 4-21
granularity 3-57, 3-60
handling system calls 4~5 thru 4-6, 4-8
logical name 2-5, 2-12, 2-14, 3-12
logon 1-9, 6-12
management commands 3-1, 3-2
named 2-5, 2-6, 3-7
ownership 2-3, 3-25
pathnames 2-5
physical 2-5, 2-7, 3-7
pointer positioning 4-6, 4-29 thru 4-30, 4-43 thru 4-44
reading from 4-39 thru 4-40
structure 1-2
iRMX 86 System 2-10
terminal definition 2-15, 6-1, 6-4, 6-6, 6~7 thru 6-12
transferring 2-19
tree 2-5, 2-7
truncating 4-50
types 2-5 thru 2-6
user 3-59
user definition 2-15, 6-1, 6-4, 6-6, 6—7 thru 6-12
utility 7-2
writing to 4-51 thru 4-52
FILES parameter, FORMAT command, 3-56, 6-3
flexible disk drive 1-2, 1-4, 3-9, 5-2, 5-3, 5-4, 6~12
FORCE parameter 3-34, 3-35, 3-56 thru 3-57, 6-~12
formal parameter 3-83, 3-84
FORMAT 1-11, 3-3, 3-56 thru 3-57, 6-12
formatting,
disk 1-11, 2-20 thru 2-21, 3-18
FORTRAN-86 1-6, 4-2, 7-5
free memory pool 1-5, 3-31, 4-5, 4-10, 4-23

general utility commands 3-1, 3-3
GRANULARITY 3-56 thru 3-57

granularity 3-57, 3-60

group map 3-30, 3-31

GSYS.020 2-10 thru 2-1 thru 2-122, 6-6

Index-6

INDEX (continued)

handler (CTRL/c) 4-48
hardware,
attaching 6-12
for iRMX 86 PC System 1-1, 1-2 thru 1-5, 5-2 thru 5-6
manuals 7-5 thru 7-6
optional, iRMX 86 PC System 1-4, 5-3
preparing Chapter 5
required, iRMX 86 PC System 1-4, 5-2
home directory (:HOME:) 2-15, 3-12, 3-13, 3-14
Human Interface 1-2, Chapter 3, B-2
commands 1-9, Chapter 2, Chapter 3, B-2
command dictionary 3-1, 3-2 thru 3-3
directory search 2-18, 2-20, 3-1
manual 7-2
system calls B-9 thru B-10

1/0 (input/output),
Basic 7-1, B-1
Extended, 7-2, B-1
identification,
file 2-11 (also see GSYS.020)
of monitor 1-7
of operating system 4-33
include files 2-18, 4-3
Include Files Diskette 4iii, 2-18, 4-2, 4-3
independent software vendor (ISV) 1-5
infinite sink (:BB:) 2-13
init-pathname 6-9, 6-11
initial program 1-10
initialization,
of operating system 1-1, 2-11 (also see bootstrap loader)
of disk: see formatting
INITSTATUS 3-3, 3-63 thru 3-64, 6-12
inpath-list 2-4, 2-29 thru 2-30
input, terminal 2-22
installation,
guide 7-3
utilities 2-16
INTELLEC 1-4, 1-6, 5-6
interactive session 1-9, 3-13
interactive job 1-7, 1-10 thru 1-11, 3-12, 3-65, 6-8, 6-9
interface ’
libraries 2-18
software 1-1 (also see UDI)
INTERLEAVE parameter, FORMAT command 3-56 thru 3-57, 3-60, 6-3
interrupts,
while debugging 3-31
while downcopying 3-55
while upcopying 3-94
INVISIBLE (files) 2-9, 3-39, 3-40, 3-41
iRMX 86 PC Product iii, 2-18
iRMX 86 PC System Diskette: see System Diskette
iRMX 86 commands 1-2, 1-9, Chapter 3, 7-2, Appendix B
isBC 208 1-4, 5-2, 5-3, 5-4, 5-6, 7-6
modification, 5-9

Index~7

INDEX (continued)

iSBC 215 1-4, 5-4, 5-6, 7-6
modification, 5-8

isBC 534 1-4, 5-6, 7-6
modification, 5-10

iSBC 86/12A 1-4, 5-2, 5~3, 5-6, 7-5
modification 5-11 thru 5-13

isBC 86/14 1-4, 5-2, 5-3, 5-6, 7-5
modification 5-14 thru 5-15

iSBC 86/30 1-4, 5-2, 5-3, 5-6, 7-5
modification 5-16 thru 5-17

iSBC 680 7-6

iSBC 957B 1-4, 5-6, 5-7, 7-5
for UPCOPY 3-92 thru 3-94
monitor 3-30

iSBX 218 1-4, 5-3, 5-6, 7-6
modification 5-9

ISV (Independent Software Vender) 1-5

JOB ID 3-64
JOBDELETE 3-3, 3-65 thru 3-66, 6-12
jumpers, boards 5-6

keyboard terminal 1-4, 5-2

language
directory 2-15, 6-6
processors 6-6
products 1-1, 1-5 thru 1-6
translators 7-3 thru 7-5
LARGE.LIB 4-2
layers of Operating System B-~1 (also see subsystems)
LIB86 7-4
libraries 1-6, 2-18
interface 2-18
object module 7-4
UDI 4-2
line editing controls 2-18, 2-22, 3-31, 4-45
line feed, 2-4, 2-22
line printer, 1-4, 2-13, 3-10, 5-3, 5-5
link map 3-30, 4-58
LINK86 1-6, 2-16, 3-30, 4-58, 7-4
with overlays 4-37 thru 4-38
List access: see PERMIT
LIST 3-50
loader,
Application B-2
Bootstrap iii, 1-6 thru 1-8, 2-11, 2-14, 6-2, 6-6, 7-2, B-2
LOC86 1-6, 7-4
locator 2-16 (also see LOC86)
LOCK 3-3, 3-67 thru 3-68, 6-12
logical names 1-10, 2-5, 2-12 thru 2-15, 3-2
for devices 2-13, 3-8, 3-34
for files 2-14, 3-12 thru 3-13, 3-37
predefined 2-13
syntax rules 2-12

Index—-8

INDEX (continued)

logical sector sequence 3-60

logon file 1-9, 6-12

LONG parameter 3-39, 3-40 thru 3-42, 3-44
:LP: (line printer) 3-10

manuals v, Chapter 7
mark for deletion 4-6, 4-21, 4-22
mass storage volume 3-58
matching characters: see wild cards
max-priorty 6-9
memory, v
allocation 4-10, 4-23, 4-32, 4-36
bubble = 3-56
boards 1-3, 5-1, 7-6
dynamic 3-31
examining 1-6
freeing 4-23, 4-26
layout 1-5
management system calls 4-5, 4-8
pool 3-31, 4-10, 4-23
reading operating system into 1-7
required 5-2, 5-6
reserving 4-42
segment 4-5, 4~10
user's 6-9
Microcomputer Development System 1-4, 5-3
modification, of board 5-2, 5-6 thru 5-24
monitor 1-6
commands Appendix C
for DEBUG 3-30 thru 3-31
for DOWNCOPY 3-54
for UPCOPY 3-93
identification of version 1-7
multi-access commands 3-1, 3-3
Multibus 5-7
card cage 7-6
multimodule numeric data processor (NDP) 5-7

N (NAMED) 3-49

N1 (NAMED1l) 3-49

N2 (NAMED2) 3-49

NAMED 3-7, 3-56, 3-58

named files 2-5, 2-6

NAMED1 3-49

NAMED2 3-49

NDP (Numeric Data Processor) 5-7

noise, bus 5-8

Nucleus iRMX 86 7-1, B-1
system calls B-3 thru B-6

object modules 1-6

OEM (Original Equipment Manufacturer) 1-6
offspring jobs 3-65

OH86 1-6, 7-4

ONE parameter 2-3, 3-39

Index-9

INDEX (continued)

Operating System,
initialization 1-1, 1-6 thru 1-8, 2-11
subsystems 1-1, 2-18, Appendix B
order of directory search 2-18, 2-20, 3-1
Original Equipment Manufacturer (OEM) 1-6
outpath-list 2-4, 2-29 thru 2-30
output terminal 2-23 thru 2-24
OVER parameter 2-4
overlays 4-37 thru 4-38
Owner ID 6-5 (also see user ID)

parallel priority resolution 5-7
parameters, 2-4, 3-6, 3-83, 3-84
partition size 6-9, 6-10
Pascal-86 1-6, 4-2, 7-5
patch utility 7-2
path-lists 2-27, 2-29
pathname 2-4, 2-5, 2-7, 2-29 thru 2-30, 4-41
PC (Preconfigured) iii, 1-1
performance 4-36
PERMIT 2-3, 2-10, 3-2, 3-49, 3-56, 3-58
physical device
attaching: see ATTACHDEVICE
names 3-9 thru 3-10
physical files, 2-5, 2-7
PL/M 86 1-6, 4-2, 7-4
POINTER data type 4-4
portable software 1-5
position-dependent parameters 3-6
position-independent parameters 3-6
power supply 1-4, 5-2, 7-6
Preconfigured iRMX 86 Operating System (iRMX 86 PC) iii, 1-1
prefix, pathname 2-15, 3-13
prepositions 2-4, 2-27 thru 2-28
priority 6-9, 6-11
priority resolution 5-7
procedure handler (CTRL/c) 4-48
processors, language 6-6
program directory (:PROG:) 2-15
program files 3-1
program
command 1-11
control calls 4-8
debugging 3-31
for file operations,
example 4~53 to 4-58
programmer errors 4-2
programming techniques 7-3
prompt
command line interpreter (CLI) 1-9
super 3-87, 3-88
protected environment 6-1, 6-7
publications v, Chapter 7

QUERY 2-17 (also see specific commands)
quoting characters 2-26, 2-27

Index-10

INDEX (continued) ¢

R?BADBLOCKMAP 2-9, 3-59

R?FNODEMAP 2-9, 3-59

R?LOGON 1-9, 2-5, 2-15

R?SPACEMAP 2-9, -3-59

railroad track schematic 2-5, 3-5 thru 3-6
RAM boards, manual 7-6

RAM expansion module 5-6

Read access: see PERMIT

reading a file ' 4-39 thru 4-40

re~boot 1-7

reconstructing a volume 3-48

registers, displaying 3-30
reinitialization character (CTRL/z) 1-10, 3-13
RENAME 3-2, 3-74 thru 3-76

RESET 1-7

resolution 5-7

RESTORE 3-3, 3-15, 3-77 thru 3-82

RETURN 2-4, 2-22

root directory 2-7, 2-14, 3-59, 6-6
RUBOUT key 2-22, 4-46

scrolling 2-23 thru 2-24
secondary storage device 3-56
sectors 3-60
segment 4-5
allocation 4-5, 4-10
map 3-30, 3-31
return 4-26
size 4-32
segmentation 4-2, 4-11
SMALL 4-7
selective error processing 1-12
SELECTOR data type &4-4
serial bus priority resolution 5-7
SHORT parameter 2-3, 3-39 thru 3-43
shutting down the system 3-67, 6-12
signal/pin standard, line printer 5-5
signal-to—-signal coupling 5-8
single board computer (SBC) 1-4, 5-2
single-step 3-30 thru 3-31
SMALL.LIB 4-2
software
independent vendors (ISV) 1-5
Intel packages 1-6
soft-sectored diskette 5-4
standard format 5-4
stopped output 2-23
stream files 2-5, 2-7, 3-10
STRING data type 4-4
SUBMIT 1-11, 2~-2, 3-83 thru 3-89, 6-1, 6-2, 6-4
of logon file 1-9
subsystems 1-1, 2-18, Appendix B
SUPER command 2-10 thru 2-11, 3-3, 3-87 thru 3—89 6-1, 6-2, 6-4
syntax of commands 2-1, 2-4 thru 2-5, 3-5 thru 3-6
SYSTEM directory (:SYSTEM:) 2-14, 3-1

Index—11

: INDEX (continued)

System Diskette (iRMX 86 PC) iii, 1-1, 2-8, 2-18, 6-1, 6-2 thru 6-6
file structure 2-8, 6-5 thru 6-6
using to boot system 1-7
system calls, 2-18
Basic I/0 3-13, B~7
chronology of 4-5
dictionary (UDI) 4-4, 4-8 thru 4-9
exception~handling 4-6 thru 4-7, 4-9
Extended I/0 3-13, B-8 thru B-9
file-handling 4-5 thru 4-6, 4-8
Human Interface B-9 thru B-10
iRMX 86, Appendix B
memory management 4-5, 4-9
Nucleus B-3 thru B-6
parsing 4-9
UDI 2-18, Chapter 4
utility and command parsing 4-9
system clock 3-31, 3-90 thru 3-91, 4-19
system device (:SD:) 2-13, 2-14, 3-8, 3-34
system directory (:SYSTEM:) 2-14
system identification file: see GSYS.020
system initialization 1-1
system manager 1-11, 3-87 thru 3-89, Chapter 6
system prompt 1-9
system shutdown 3-67, 6-12
system terminal 1-9

TO~T4 3-10, 3-63

terminal 1-2, 3-10
additional 1-4, 5-3, 5-6
definition file 2-15, 6-1, 6-6, 6-7 thru 6-12
initializing status: see INITSTATUS

input 2-22

keyboard 1-4, 1-10, 5-2
lock 3-67

logical name 1-10, 2-13
name 6-9

output 2-23 thru 2-24
screen 1-10, 2-1
support code 2-23
terminal mode,
line-edit 3-31, 4-45
output 2-23 thru 2-24
transparent 4-45 thru 4-46
TIME 1-2, 3-3, 3-90 thru 3-91, 4-19, 4-34
' affects on 3-31, 3-55, 3-94
default 1-10
setting 1-9 thru 1-10
TO parameter 2-4
TOKEN data type 4-4
transparent mode 4-45 thru 4-46
immediate 4-46
tree, file 2-5, 2-7
truncating a file 4-50
type~ahead 2-24, 3-31, 3-55, 3-94, 4-46

Index—12

INDEX (continued)

UDI system calls 1-1, 1-5 thru 1-6, 1-12, 2-18, 2-19, Chapter 4
example program 4-53 thru 4-57
exception handling 4-6 thru 4-7, 4-31, 4-49
exceptional conditions 4-2
file handling 4-5 thru 4~6, 4-8
include files 4-3
libraries 2-18, 4-2
memory management 4-5, 4-8
program control 4-8
Dictionary 4-4, 4-8 thru 4-9
utility and Command Parsing 4-9
Universal Development Interface: see UDI
UPCOPY 3-2, 3-92 thru 3-94
user definition files, 2-15, 6-1, 6-4, 6-6, 6~7 thru 6-12
User ID 0 3-87 thru 3-89, Chapter 6
User-ID 3-64
system manager, 1-11
WORLD, 1-11
utilities 6-6, 7-3
directory (:UTILS:) 2-15, 2-17 thru 2-20, 3-1, 6-6
general commands 3-1, 3-3
installation 2-16
system calls 4-9
UTILS (utilities directory) 2-15 thru 2-17, 2-20, 3-1, 6-6

V (VERIFY) 3-49
verification of volume 3-49, 7-2

VERIFY 3-49
VERSION 3-3, 3-95 thru 3-96
volume

free space map 3-59

granularity 3-57 thru 3-60

management commands 3-1, 3-2 thru 3-3
mass storage 3-58

name 3-58

NAMED 3-7

PHYSICAL 3-7

wild cards 2-17 thru 2-19, 2-24 thru 2-26, 2-29, 3-25
Winchester disk 1-2, 1-4, 3-10, 5-3
WORD data type 4-4
work directory (:WORK:) 2-15, 6-6
WORLD (User ID 65535) 3-7
access rights 6-5
user ID 1-11
write to a file 4-51 thru 4-52

* k%

Index-13

‘ GETTING STARTED WITH THE RELEASE 5

in ® iRMX™ 86 SYSTEM

tel 145073-001
REQUEST FOR READER'S COMMENTS

ntel Corporation attempts to provide documents that meet the needs of all intel product users. This form lets
rou participate directly in the documentation process.

>lease restrict your comments to the usability, accuracy, readability, organization, and completeness of this
jocument.

I. Please specify by page any errors you found in this manual.

'. Does the document cover the information you expected or required? Please make suggestions for
improvement.

. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

. Did you have any difficulty understanding descriptions or wording? Where?

. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

AME ___ DATE

ITLE

OMPANY NAME/DEPARTMENT

DDRESS

ITY , STATE_______ ZIP CODE

lease check here if you require a written reply. 0O

WE'D LIKE YOUR COMMENTS . ..

This document is one of aseries describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

! " " I A NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNOC.79 BEAVERTON,OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

OMO Technical Publications

