
iRMX™ 86
PROGRAMMING TECHNIQ'UES

Copyright © 1980, 1981, 1982, Intel Corporation Order N umber: 1 42982-003
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

iRMX™ 86
PROGRAMMING TECHNIQUES

Order Number: 142982-003

Copyright © 1980, 1981,1982, Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 L

REV. REVISION HISTORY PRINT
DATE

-001 Original Issue 11/80

-002 Updated to reflect the changes in version 3.0 of the 5/81
iRMX 86 software.

-003 Reflects version 5.0 ofiRMX 86 software

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

9/82

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update nor to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied
in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in
ASPR 7-104.9(a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify
Intel products:

BXP
CREDIT
i
ICE
iCS
I2_ICE
iLBX
im
iMMX

Insite
Intel
Intel
Intelevision
inteligent Identifier
inteligent Programming
Intellec
Intellink
iOSP
iPDS

ii

iRMX
iSBC
iSBX
iSXM
Library Manager
MCS
Megachassis
Micromainframe
Micromap

Multibus
Multichannel
Multimodule
Plug-A-Bubble
PROMPT
RM2C/80
RUPI
System 2000
UPI

Printed in USA/OM-060/3.5K/0883/AP

PREFACE

This manual summarizes techniques that will be useful to you as you
produce an application system based upon the the iRMX 86 Operating
System. The techniques described here will help you save time and avoid
problems during the development process.

CHAPTER OUTLINE

In order to help you quickly decide whether a particular technique is of
use to you, all chapters are organized as follows:

• Assumptions about the Reader: A section that identifies readers
that are likely to be interested in the content of the chapter,
and specifies any knowledge that readers should have to
understand the chapter.

• Intent of the Chapter: A brief explanation of the contents of
the chapter. This section allows you to quickly decide if the
information applies to your situation. For example, if you are
not yet concerned with stack sizes, you may want to skip this
chapter until later.

• Technique or Explanation: The "meat" of the chapter. This is
the information you will need if the chapter applies to your
situation.

• Additional Reading This is a bibliography of reading material
that applies to the chapter.

A typical development process goes through these stages:

• Dividing the application into jobs and tasks.

• Writing the code for tasks.

• Writing interrupt handlers.

• Configuring and starting up the system.

• Debugging an application.

Appendix A describes which chapters of this manual will be useful during
each of these development phases.

iii

CONTENTS

CHAPTER 1
SELECTING A PL/M-86 SIZE CONTROL
Purpose of This Chapter ••
Making the Selection •••

Ramifications of Your Selection ••••••••••••••••••••••••••••••••••
Restrictions Associated with Compact •••••••••••••••••••••••••••
Restrictions Associated with Medium ••••••••••••••••••••••••••••

Decision Algorithm •••
Bi bliography ••• 0 •••••

CHAPTER 2
INTERFACE PROCEDURES AND LIBRARIES
Purpose of This Chapter ••
Definition of Interface Procedure ••••••••••••••••••••••••••••••••••
Interface Libraries ••
Bibliography •••

CHAPTER 3
TIMEl{ ROUTINES
Purpose of This Chapter ••
Procedures Implementing the Timer ••••••••••••••••••••••••••••••••••
·Restrictions •••

Call init time First •••
Only One Timer ••• -

Source Code ••••••• .
Bibliography •••••• .
CHAPTER 4
ASSEMBLY LANGUAGE SYSTh~ CALLS
Purpose of This Chapter ••
Calling the System •••
Selecting a Size Control •••
B i bliogr aphy ••••..•••••••.•.••.•••••••••••••••.•••••••••••••••••.•.

CHAPTER 5
COMMUNICATION BETWEEN iRMXTM 86 JOBS
Purpose of This Chapter ••
Passing Large Amounts of Information Between Jobs ••••••••••••••••••
Passing Objects Between Jobs •••••••••••••••••••••••••••••••••••••••

Passing Objects Through Object Directories •••••••••••••••••••••••
Passing Objects Through Mailboxes ••••••••••••••••••••••••••••••••
Passing Parameter Objects ••
Avoid Passing Objects Through Segments or Fixed Memory Locations.
Comparison of Object-Passing Techniques ••••••••••••••••••••••••••

Bibliography •••

v

PAGE

1-1
1-1
1-2
1-2
1-2
1-2
1-5

2-1
2-1
2-3
2-5

3-1
3-1
3-2
3-2
3-2
3-3
3-8

4-1
4-1
4-2
4-2

5-1
5-1
5-3
5-3
5-5
5-5
5-6
5-6
5-6

CONTENTS (continued)

CHAPTER 6
SIMPLIFYING CONFIGURATION DURING DEVELOPMENT
Purpose of this Chapter ••
Summary of Configuration •••
Configuration and Debugging ••
The Technique ••

Freezing the Base of the Data Segment ••••••••••••••••••••••••••••
Freezing the Entry Points ••

Bibliography •••

CHAPTER 7
DEADLOCK AND DYNAMIC MEMORY ALLOCATION
Purpose of This Chapter ••
How Memory Allocation Causes Deadlock ••••••••••••••••••••••••••••••
System Calls That Can Lead to Deadlock •••••••••••••••••••••••••••••
Preventing Memory Deadlock •••
Bibliography ••••••••••••••••••••••.••••••••••••••••••••••••••••••••

CHAPTER 8"
GUIDELINES FOR STACK SIZES
Purpose of This Chapter ••
Stack Size Limitation for Interrupt Handlers •••••••••••••••••••••••
Stack Guidelines for Creating Task~ and Jobs •••••••••••••••••••••••
Stack Guidelines for Tasks to be Loaded or Invoked •••••••••••••••••
Arithmetic Technique ••••••••••••• : •••••••••••••••••••••••••••••••••

Stack Requirements for Interrupts ••••••••••••••••••••••••••••••••
Stack Requirements for System Calls ••••••••••••••••••••••••••••••
Computing the Size of the Entire Stack •••••••••••••••••••••••••••

Empirical Technique ••
Bi bliography ...•......•.•.....•......•........••••.•.........•.•...

APPENDIX A
WHEN IS EACH CHAPTER USEFUL?
Dividing an Application Into Jobs and Tasks ••••••••••••••••••••••••
Writing the Code for Tasks •••
Writing Interrupt Handlers •••
De bugging ••••••••••••••••••••••.•••••••••••••••••••••••••••••••••••
Configuration and System Startup •••••••••••••••••••••••••••••••••••

vi

PAGE

6-1
6-2
6-2
6-2
6-2
6-4
6-6

7-1
7-1
7-2
7-3
7-3

8-1
8-1
8-2
8-2
8-2
8-3
8-3
8-5
8-5
8-6

A-I
A-I
A-I
A-2
A-2

2-1.
8-2.

1-1.
2-1.
2-2.
2-3.
6-1.
6-2.
6-3.

TABLES

Interface Libraries and iRMXTH 86 Subsystems ••••••••••••••••
Stack Requirements for System Calls ••••••••••••••••••••••••

FIGURES

Decision Algorithm for Size Control ••••••••••••••••••••••••
Direct Location-Dependent Invocation •••••••••••••••••••••••
Complex Location-Independent Invocation ••••••••••••••••••••
Simple Invocation Using an Interface Procedure •••••••••••••
How to Freeze the Base of the Data Segment •••••••••••••••••
Special Module Freezes Entry Points ••••••••••••••••••••••••
Location of the Special Module •••••••••••••••••••••••••••••

vii

PAGE

2-4
8-4

1-4
2-2
2-2
2-3
6-3
6-4
6-5

CHAPTER 1. SELECTING A PL/M-86 SIZE CONTROL

This chapter applies to you only if you have d~cided to program your
iRMX 86 tasks using PL/M-86. In order to understand the following
explanation, you should be familiar with

• The PL/M-86 programming language

• PL/M-86 models of segmentation

• iRMX 86 jobs, tasks, and segments

If you are unfamiliar with any of these items, refer to the bibliography
at the end of this chapter for titles of manuals that can provide
background information.

PURPOSE OF THIS CHAPTER

Whenever you invoke the PL/M-86 Compiler, you must specify (either
explicitly or by default) a program size control (SMALL, COMPACT, MEDIUM,
or LARGE). This size control determines which model of segmentation the
compiler uses a~d, consequently, greatly affects the amount of memory
required to store your application's object code.

The following section explains which size control to use in order to
produce the smallest object program while still satisfying the
requirements of your system.

MAKING THE SELECTION

When you compile your programs using the PL/M-86 SMALL control, all
POINTER values are 16 bits long. This leads to a number of restrictions,
including the inability to address the contents of an iRMX 86 segment
that has been received from another job. Because of these restrictions,
the iRMX 86 Operating System is currently not compatible with PL/M-86
procedures compiled using the SMALL size control.

Since you cannot use the SHALL size control, you must choose between
CO'1PACT, HEDIUM and LARGE. The algorithm for selecting a size control is
presented later in this chapter. However, before you examine the
algorithm, you should be aware that your choice can place restrictions on
your system.

1-1

SELECTING A PL/M-86 SIZE CONTROL

RAMIFICATIONS OF YOUR SELECTION

If you decide to use the COMPACT or MEDIUM size controls, the
capabilities of your system will be slightly restricted. Only the LARGE
size control preserves all of the features of the system.

Restrictions Associa.ted with Compact

If you decide to use PL/M-86 C~1PACT, you will not be able to use
exception handlers. However, you can still process exceptional
conditions by dealing with them in your task's code.

Restrictions Associated with Hedium

If you decide to use PL/M-86 MEDIUM, you lose the option of having the
iRMX 86 Operating System dynamically allocate stacks for tasks that are
created dynamically. This means that you must anticipate the stack
requirements of each such task, and you must explicitly reserve memory
for each stack during the process of configuring the system.

DECISION ALGORITm1

Before you attempt to use the flowchart (Figure 1-1) to make your
decision, note that three of the boxes are numbered. Each of these three
boxes asks you to derive a quantity that represents a memory requirement
of your im1X 86 job. In order to derive the quantity requested in each
of the boxes, follow the directions provided below in the section having
the same number as the box.

1 • COMPUTE MEMORY REQUIREMENTS FOR STATIC DATA

Box 1 asks for an estimate of the amount of memory required to
store the static data for all the tasks of your iRMX 86 job.
Static data consists of all variables other than:

• parameters in a procedure call

• variables local to a reentrant PL/H-86 procedure

• PL/M-86 structures that are declared to be BASED

To obtain an accurate estimate of this quantity, use the COMPACT
size control to compile the code for each task in your job. For
each compilation, find the MODULE INFORMATION area at the end of
the listing. Within this area is a quantity labeled VARIABLE
AREA SIZE and another labeled CONSTANT AREA SIZE.

Now you must compute the static data size for each individual
compilation by adding the VARIABLE AREA SIZE to the CONSTANT AREA
SIZE.

1-2

SELECTING A PL/M-86 SIZE CONTROL

Once you have computed the static data size for each compilation
in the job. add them to obtain the static data size for the
entire job.

2. COMPUTE MEMORY REQUIREMENTS FOR CODE

Box 2 asks for an estimate of the amount of memory required to
store the code for all the tasks of your iRMX 86 job. To obtain
this estimate, perform the following steps:

• Using the COMPACT size control, compile the code for each
task in your job.

• For each compilation. find the MODULE INFORMATION area at the
end of the listing. In this area is a value labeled CODE
AREA SIZE. This value is the amount of memory required to
store the code generated by this individual compilation.

• Sum the code requirements for all the compilations in the
job. The result is the code requirement for the entire job.

3. COMPUTE MEMORY REQUIREMENTS FOR STACK

Box 3 asks for an estimate of the amount of memory required to
store the stacks of all the tasks in your iRMX 86 job. If you
plan to have the iRMX 86 Operating System create your stacks
dynamically, your stack requirement (for the purpose of the
flowchart) is zero.

If, on the other hand, you plan to create the stacks yourself,
you can estimate the memory requirements by perfol:'ming the
following steps. Refer to the MODULE INFORMATION AREA of the
compilation listings that you obtained while working with Box 2.
Within this area is a value labeled MAXll1UM STACK SIZE. To this
number, add the system stack requirement that you can determine
by following the procedure in Chapter 8 of this manual. The
result is an estimate of the stack requirement for one
compilation. To compute the requirements for the entire job,
just sum the requirements for all the compilations in the job.

1-3

COMPUTE
MEMORY

REQUIREMENTS
FOR STATIC

DATA

COMPUTE
MEMORY

REQUIREMENTS
FOR CODE

SELECTING A PL/M -·86 SIZE CONTROL

SEE (j) ON
PAGE 2-2

YES

SEE~ON
PAGE 2-3

YOU MUST
USE

LARGE ~------------~(, ____ ST_O_P ____ ~:>
L..-_____ --'

r-------------,*
YES CHOOSE BETWEEN ()

>-;-=:'-------------Jl~ MEDIUM AND ~------------~ STOP

COMPUTE
MEMORY

REQUIREMENTS
FOR STACK

ADD STATIC
DATA TO

STACK REQMT

CHOOSE BETWEEN
COMPACT

AND
MEDIUM

SEEQ)ON
PAGE 2-3

LARGE , __________ _

,...--------.*

*SEE
RAMIFICA nONS
ON PAGE 2-2

x-295

Figure 1-1. Decision Algorithm for Size Control

1-4

SELECTING A PL/M-86 SIZE CONTROL

BIBLIOGRAPHY

The following literature contains information that you might need to be
acquainted with before you select a PL/N-86 size control:

• PL/M-86 USER'S GUIDE, Order Number 121636

This manual describes the PL/M-86 language as it is supported on
development systems that incorporate an iAPX 86 microprocessor.
It also contains a discussion of the differences between the
various PL/M-86 size controls (or models of segmentation).

• iRMXTH 86 NUCLEUS REFERENCE HANUAL, Order Number 9803122

This manual contains detailed descriptions of iRMX 86 segments,
jobs and tasks. It also explains how you can tell the iRMX 86
System to create a task's stack dynamically.

• Chapter 8 of this manual, GUIDELINES FOR STACK SIZES

Chapter 8 explains how to compute the amount of stack that the
iRMX 86 Operating System requires.

1-5

I

CHAPTER 2. INTERFACE PROCEDURES AND LIBRARIES

This chapter is for anyone who writes programs that use iRMX 86 system
calls. In order to understand this chapter, you should be familiar with
the following concepts:

• the notion of system call

• the process of linking object modules

• the notion of an object library

• PL/M-86 size control

If you are unfamiliar with any of these concepts, refer to the
bibliography at the end of this chapter for additional reading.

PURPOSE OF THIS CHAPTER

Familiarity with interface procedures is a prerequisite to understanding
several of the programming techniques discussed later in this manual.
The primary purpose of this chapter is to define the concept of an
interface procedure and explain how it is used in the iRMX 86 Operating
System.

DEFINITION OF INTERFACE PROCEDURE

The iRMX 86 Operating System uses interface procedures to simplify the
process of calling one software module from another. In order to
illustrate the usefulness of interface procedures, let's examine what
happens without them.

Suppose you are writing an application task that will run in some
hypothetical operating system. Figure 2-1 shows your application task
calling two system procedures. If the system calls are direct (without
an interface procedure serving as an intermediary), the application task
must be bound to the system procedures either during compilation or
during linking. Such binding causes your application task to be
dependent upon the memory location of the system procedures.

2-1

INTERFACE PROCEDURES AND LIBRARIES

APPLICATION SOFTWARE OPERATING SYSTEM

APPLICATION TASK PROC ABC
CALL ABC (...)

-~
PROC OEF

~

Figure 2-1. Direct Location-Dependent Invocation

Now suppose that someone updates your operating system. If, during the
process of updating the system, some of the system procedures are moved
to different memory locations, then your application software must be
relinked to the new operating system.

There are techniques for calling system procedures that do not assume
unchanging memory locations. However, most of these techniques are
complex (Figure 2-2) and assume that the application programmer is
intimately familiar with the interrupt architecture of the proc~ssor.

APPLICATION SOFTWARE OPERATING SYSTEM

APPLICATION TASK

Oij
VISIBLE TO APPLICATION CODE

x-296

x-297

Figure 2-2. Complex Location-Independent Invocation

2-2

INTERFACE PROCEDURES AND LIBRARIES

The iRMX 86 Operating System uses interface procedures to mask the
details of location-independent invocation from the application software
(Figure 2-3). Whenever application programmers need to call a system
procedure from application code, they use a simple procedure call (known
as a system call). This system call invokes an interface procedure
which, in turn, invokes the actual system procedure.

A
.----------, CALL

RQ$ABC

CALL
RQ$DEF

INTERFACE PROCEDURES

Figure 2-3. Simple Invocation Using an Interface Procedure

INTERFACE LIBRARIES

x-298

The iRMX 86 Operating System provides you with a set of object code
libraries containing PL/H-86 interface procedures. These procedures
preserve address independence while allowing you to invoke system calls
as simple PL/M-86 procedures.

During the process of configuring an application system you must link
your application software to the proper object libraries. Table 2-1
shows the correlation between subsystems of the iRHX 86 Operating System,
the PL/M-86 size control, and the interface libraries. To find out which
libraries you must link to, find the column that specifies the PL/M-86
size control that you are using, and the rows that specify the subsystems
of the iRMX 86 Operating System that you are using. You must link to the
libraries that are named at the intersections of the column and the rows.

2-3

INTERFACE PROCEDURES AND LIBRARIES

Table 2-1. Interface Libraries and iRMXTH 86 Subsystems

COMPACT LARGE OR
MEDIUM

NUCLEUS RPIFC.LIB RPIFL.LIB

BASIC I/O IPIFC.LIB IPIFL.LIB
SYSTEH

EXTENDED EPIFC.LIB EPIFL.LIB
I/O SYSTEM

APPLICATION LPIFC.LIB LPIFL.LIB
LOADER

HUMAN HPIFC.LIB HPIFL.LIB
INTERFACE

I THE UNIVERSAL COMPAC.LIB LARGE. LIB
DEVELOPl1ENT

INTERFACE

2-4

INTERFACE PROCEDURES AND LIBRARIES

BIBLIOGRAPHY

The following reading material contains information that relates to
interface procedures and libraries.

• Chapter 1 of this manual, SELECTING A PL/M-86 SIZE CONTROL

This chapter contains an algorithm for selecting a PL/M-86 size
control.

• INTRODUCTION TO THE iRMX~ 86 OPERATING SYSTEM,
Order Number: 9803124

This manual provides a general discussion of system calls.

• iRMX~ 86 CONFIGURATION GUIDE, Order Number: 9803126

•

This manual discusses the entire process of configuring an
iRMX 86-based application system, including details about linking
interface libraries to application systems.

iAPX 86,88 FAMILY UTILITIES USER'S GUIDE, Order Number: 121616

This manual describes the process of using libraries and the
process of linking software modules on development systems that
incorporate an iAPX 86 microprocessor.

2-5

I

CHAPTER 3. TIMER ROUTINES

This chapter is for anyone who writes programs that must determine
approximate elapsed time. In order to make use of this chapter, you
should be familiar with the following concepts:

• INCLUDE files

• iRHX 86 interface procedures

• iRMX 86 tasks

• initialization tasks

• using the LINK86 utility

Furthermore, if you,want to understand how the timer routines work, you
must be fluent in PL/M-86 and know how to use iRMX 86 regions. The
bibliography at the end of this chapter refers to text that discusses
these topics.

PURPOSE OF THIS CHAPTER

The iRMX 86 Basic I/O System provides GET$TIME and SET$TIME system
calls. These two calls supply your application with a timer having units
of one second. However, if your application requires no features of the
Basic I/O System other than the timer, you can reduce your memory
requirements by dropping the Basic I/O System altogether and implementing
the timer in your application.

This chapter provides the source code needed to build a timer into your
application.

PROCEDURES IMPLEMENTING THE TIMER

Four PL/M-86 procedures are used to implement the timer. In brief, the
procedures are:

This procedure requires no input parameter and returns a double
word (POINTER) value equal to the current contents of the timer
in seconds. This procedure can be called any number of times.

3-1

TIMER ROUTINES

• set time

This procedure requires a double word (POINTER) input parameter
that specifies the value (in seconds) to which you want the timer
set. This procedure can be called any number of times.

• init time

This procedure creates the timer, initializes it to zero seconds,
and starts ~t running. This procedure requires as input a
POINTER to the WORD which is to receive the status of the
initialization. This status will be zero if the timer is
successfully created and nonzero otherwise. This procedure
should be called only once.

• maintain time

This procedure is not called directly by your application.
Rather, it runs as an iRMX 86 task that is created when your
application calls init_time. The purpose of this task is to
increment the contents of the timer once every second.

RESTRICTIONS

There are two important restrictions that you should keep in mind when
using the timer routines:

CALL init time FIRST

Before calling set_time or get_time, your application must call init
time. You can accomplish this by calling the init time procedure from
your job's initialization task.

ONLY ONE TIMER

These procedures implement only one timer. They do not allow you to
maintain a different timer for each of several purposes. For example,if
one job changes the contents of the timer (by using the set time
procedure), all jobs accessing the timer will be affected. -

3-2

TIMER ROUTINES

SOURCE CODE

You can compile the following PL/M-86 source code as a single module.
This will yield an object module that you can link to your application
code. However t before compiling these procedures t you must create files
containing the external procedure declarations for the iRMX 86 interface
procedures. The names of these files are specified in the $INCLUDE
statements below.

$title('INDEPENDENT TIMER PROCEDURES')
/***
* *
*
*
*
*
*
*
*
*
*
*

This module consists of four procedures which implement a timer *
having one-second granularity. The outside world has access to only *
three of these procedures- *

init time
set time
get_time

The fourth procedure, maintain_time, is invoked by init_time and
is run as an iRMX 86 task to measure time and increment the time

*
*
*
*
*
*
*

* * counter.
***/

timer: DO;

/***
* The following LITERALLY statements are used to improve the *
* readability of the code. *
***/

DECLARE
FOREVER
DWORD
TOKEN
REGION
E$OK
PRIORITY_QUEUE
TASK

LITERALLY 'WHILE OFFH',
LITERALLY 'POINTER',
LITERALLY 'WORD't
LITERALLY 'TOKEN',
LITERALLY 'OOOOOH't
LITERALLY '1' t
LITERALLY 'TOKEN';

3-3

TIMER ROUTINES

1***

*
*
*
*
*

The following INCLUDE statements cause the external procedure
declarations for some of the iRMX 86 system calls to be included
in the source code.

*
*
*
*
*

***/

$INCLUDE(:fl:icrtas.ext) /~
$INCLUDE(:fl:icrreg.ext) /*
$INCLUDE(:fl:isleep.ext) /*
$INCLUDE(:fl:idereg.ext) /*
$INCLUDE(:fl:iregio.ext) /*

/* and

rq$create$task interface
rq$create$region to

rq$sleep
rq$delete$region
rq$send$control
rq$receive$control to

proc.*/
" */

*/
*/
*/
*/

$subtitle('Local Data')
/***
* The following variables can be accessed by all of the procedures *
* in this module. *
***/

DECLARE
time_region

time in sec

time-in sec 0

REGION,

D~IORD ,

STRUCTURE (
low WORD,
high WORD)

/* Guards access to time in
sec.*/

/* Contains time in seconds.*/

/* Overlay */
1* used to obtain */
1* high and low */
/* order words. */

AT (@time in_sec),

POINTER, /* Used to obtain loc of data
seg.*/

STRUCTURE (/* Overlay used to */
offset WORD,/* obtain loc of */
base WORD)/* data segment. */
AT (@data_seg_p);

3-4

TIMER ROUTINES

$subtitle('Time maintenance task')
/***
* maintain time *

* *
*
*
*
*
*
*
*
*
*
*
*
*

This procedure is run as an iRMX 86 task. It repeatedly
performs the following algorithm-

Sleep 1 second.
Gain exclusive access to time in sec.
Add 1 to time in sec.
Surrender exclusive access to time in sec.

If the last three steps in the preceding algorithm require
more than one nucleus time unit, the time in sec counter
will run slow.

*
*
*
*
*
*
*
*
*
*
*
*

* This procedure must not be called by any procedure other than *
* init time. *
***/

maintain time: P~OCEDURE REENTRANT;
DECLARE status WORD;

timer_loop:
DO FOREVER;

CALL rq$sleep(100, @status); /* Sleep for one
second. */

CALL rq$receive$control /* Gain exclusive */
(time_region, @status); /* access. */

time in sec o.low =
time in sec_o.low +1;

IF (time_in_sec_o.low = 0)
THEN time_in_sec_o.high

time_in_sec_o. high + 1;

CALL rq$send$control(@status);

END timer_loop;
END maintain_time;

3-5

/* Add 1 second */
/* to low order */
/* half of timer.*/

/* Handle overflow.*/

/* Surrender access*/

TIMER ROUTINES

$subtitle('Get Time')
/***
* get time *

* *
* This procedure is called by the application code in order to *
* obtain the contents of time in sec. This procedure can be *
* called any number of times. *
***/

get_time: PROCEDURE DWORD REENTRANT PUBLIC;

DECLARE time DWORD,
status WORD;

CALL rq$receive$control
(time_region, ~status);

CALL rq$send$control(@status);

RETURN (time);

/* Gain exclusive */
/* access. */

/* Surrender access.*/

$subtitle('Set Time')
/***
* set time *

* *
* Application code can use this procedure to place a specific *
* double word value into time in sec. This procedure can be *
* called any number of times.- - *
***/

set_time: PROCEDURE(time) REENTRANT PUBLIC;

DECLARE time DWORD,
status WORD;

CALL rq$receive$control /* Gain exclusive access.*/
(time_region, @status);

time_in_sec = time; /* Set new time. */

CALL rq$send$control(@status); /* Surrender access. */

3-6

TIMER ROUTINES

$subtitle('Initialize Time')
1***
* init time *
*
*
*
*
*
*
*
*
*

This procedure zeros the timer. creates a task to
maintain the timer. and a region to ensure exclusive
access to the timer. This procedure must be called
before the first time that get_time or set_time is
called. Also. this procedure should be called only
once. The easiest way to make sure this happens is
call init time from your initialization task.

* The timer task will run in the job from which this
* procedure is called.

to

*
*
*
*
*
*
*
*
*
*
*

* * * If your application experiences a lot of interrupts, *
* the timer may run slow. You can rectify this *
* problem by raising the priority of the timer *
* task. To do this. change the 128 in the *
* rq$create$task system call to a smaller number. *
* This change may slow the processing of your *
* interrupts. *
***1

init_time: PROCEDURE(ret_status-p) REENTRANT PUBLIC;

DECLARE ret_status_p
ret status
timer task t
local-status

time in sec = 0;

POINTER.
BASED ret_status-p WORD,
TASK.
WORD;

time_region = rq$create$region 1* Create a region. *1

IF (ret_status
RETURN;

(PRIORITY_QUEUE, ret_status_p);

E$OK) THEN
1* Return wi error. *1

1* Get contents of
DS register. *1

timer task t rq$create$task 1* Create timer task. *1
(128. 1*
@maintain_time. 1*
data_seg_p_o.base, 1*
0, 1*
512. 1*
0. 1*
ret_status-p) ;

3-7

priority *1
start addr *1
data seg base
stack ptr
stack size
task flags

*1
*1
*1
*1

I

I

TIMER ROUTINES

IF (ret_status E$OK) THEN
CALL rq$delete$region

(time_region, @local_status);
/* Since could not */
/* create task, ,* /
1* must delete */
/* region. */

END init_time;

END timer;

BIBLIOGRAPHY

The f,ollowing reading material contains information that relates to
interface procedures, INCLUDE files, the PL/M-86 language, iRMX 86
configuration, iRMX 86 tasks, and the LINK86 command:

• Chapter 2 of this manual, INTERFACE PROCEDURES AND LIBRARIES

•

This chapter provides a discussion of iRMX 86 interface
procedures.

PL/M-86 USER'S GUIDE, Order Number: 121636

You should refer to this manual for a discussion of the concept
of using INCLUDE files to add source statements to the file
currently being compiled.

• iRMX'H 86 CONFIGURATION GUIDE, Order Number: 9803126

This manual describes the process of configuring an application
system that uses the iRMX 86 Operating System. Included in this
description is a discussion of initialization tasks.

• iRMX~ 86 NUCLEUS REFERENCE MANUAL, Order Number: 9803122

•

This manual thoroughly describes the concept of an iRMX 86 task.

iAPX 86,88 FM1ILY UTILITIES USER'S GUIDE, Order Number: 121616'

You should refer to this manual for a discussion of the LINK86
command., which, you must use to link this timer module to your
application software.

3-8

CHAPTER 4. ASSEMBLY LANGUAGE SYSTEM CALLS

This chapter is for anyone who wants to use iRMX 86 system calls from
programs written in ASM86 assembly language. In order to be ab1e to use
system calls from assembly language, you should be familiar with the
following concepts:

• iID1X 86 system calls

• iRMX 86 interface procedures

• PL/M-86 size controls

You should also be familiar with PL/M-86 and fluent in ASM86 assembly
language. If you are unfamiliar with any of this information, refer to
the bibliography at the end of this chapter for additional reading.

PURPOSE OF THIS CHAPTER

The purpose of this chapter is twofold. First, it briefly outlines the
process involved in using an iRMX 86 system call from an assembly
language program. Second, it directs you to other INTEL manuals that
provide either background information or details concerning interlanguage
procedure calls.

CALLING THE SYSTEM

If you read Chapter 2 of this manual, you found that your programs
communicate with the iRMX 86 System by calling interface procedures that
are designed for use with programs written in PL/M-86. So the problem of
using system calls from assembly language programs becomes the problem of
making your assembly language programs obey the procedure-calling
protocol used by PL/M-86. For example, if your ASM86 program uses the
SEND$MESSAGE system call, then you must call rq$send$message interface
procedure from your assembly language code.

4-1

I

I

ASSEMBLY LANGUAGE SYSTEM CALLS

NOTE

The techniques for calling PL/M-86
procedures from assembly language are
completely described in the manual
ASM86 HACRO ASSEMBLER OPERATING
INSTRUCTIONS for 8086-BASED DEVELOPMENT
SYSTEMS.

SELECTING A SIZE CONTROL

Before writing assembly language routines that call PL/M-86 interface
procedures, you must select a size control (COMPACT, MEDIUM, or LARGE)
because conventions for making calls depend upon the model of
segmentation.

If all of your application is written in assembly language, you can
arbitrarily select a size control and use the libraries for the selected
control. However, you can obtain a size and performance advantage by
using the COMPACT interface procedures, since their procedure calls are
all NEAR. The LARGE interface, which has procedures that require FAR
procedure calls, is only advantageous if your application code is larger
than 64K bytes.

On the other hand, if some of your application code is written in
PL/M-86, your assembly language code should use the same interface
procedures as are used by your PL/M-86 code.

BIBLIOGRAPHY

The following reading material contains information that relates to
iRMX 86 interface procedures, iRMX 86 system calls, the PL/M-86 language,
the ASM86 assembly language, and techniques for calling procedures of one
language from the other:

• Chapter 2 of this manual, INTERFACE PROCEDURES AND LIBRARIES

•

This chapter discusses iRMX 86 interface procedures.

ASM86 MACRO ASSEMBLER OPERATING INSTRUCTIONS FOR
8086-BASED DEVELOPMENT SYSTEMS, Order Number: 121628

This is the primary source of information about how modules
written in assembly language can communicate with modules written
in PL/M-86.

4-2

ASSEMBLY LANGUAGE SYSTEM CALLS

• iRMX'" 86 NUCLEUS REFERENCE HANUAL, Order Number: 9803122

This manual provides the names of many iRMX 86 system calls as
well as a description ot each of the required parameters and the
order in which the parameters must appear.

• iRHX'" 86 BASIC I/O SYSTEM REFERENCE MANUAL, Order Number: 9803123

This manual provides the names of many iRMX 86 system calls as
well as a description of each of the required parameters and the
order in which the parameters must appear.

• iRMX'" 86 EXTENDED I/O SYSTEM REFERENCE MANUAL,
Order Number: 143308

This manual provides the names of many iRMX 86 system calls as
well as a description of each of the required parameters and the
order in which the parameters must appear.

• iRMX'" 86 LOADER REFERENCE MANUAL, Order Number: 143318

This manual provides the names of many iRMX 86 system calls as
well as a description of each of the required parameters and the
order in which the parameters must appear.

• iRMX~ 86 HUMAN INTERFACE REFERENCE MANUAL, Order Number: 9803202

•

•

This manual provides the names of many iRMX 86 system calls as
well as a description of each of the required parameters and the
order in which they must appear.

PL/H-86 USER'S GUIDE, Order Number: 121636

This manual describes procedure-calling conventions used by the
PL/H-86 compiler, and discusses PL/M-86 size controls and the
PL/M-86 language.

A~f86 LANGUAGE REFERENCE MANUAL, Order Number: 121703

You should refer to this manual for a discussion of the ASM86
assembly language.

4-3

I

I

CHAPTER 5. COMMUNICATION BETWEEN iRMX'" 86 JOBS

This chapter applies to anyone who wants to pass information from one
iRMX 86 job to another. In order to understand this chapter, you must be
familiar with the fo'llowing concepts:

• iRMX 86 jobs, including object directories

• iRMX 86 tasks

• iRMX 86 segments

• the root job of an iRMX 86-based system

• iRMX 86 mailboxes

• iRMX 86 physical files or named files

• iRMX 86 stream files

• iRMX 86 type managers and composite objects

If you are unfamiliar with any of these concepts, refer to the
bibliography at the end of this chapter for additional reading.

PURPOSE OF THIS CHAPTER

In multiprogramming systems, where each of several applications is
implemented as a distinct iRMX 86 job, there is an occasional need to
pass information from one job to another. This chapter describes several
techniques that you can use to accomplish this.

The techniques are divided into two collections. The first collection
deals with passing large amounts of information from one job to another,
while the second collection deals with passing iRMX 86 objects.

PASSING LARGE AMOUNTS OF INFORMATION BETWEEN JOBS

There are three methods for sending large amounts of information from one
job to another:

1) You can create an i~lX 86 segment and place the information in
the segment. Then, using one of the techniques discussed below
for passing objects between jobs, you can deliver the segment.

5-1

COMMUNICATION BETWEEN iRMXTH 86 JOBS

The advantages of this technique are:

• Since this technique requires only the Nucleus, you can
use it in systems that do not use other iRMX 86 subsystems.

• The iRMX 86 Operating System does not copy the information
from one place to another.

The disadvantages of this technique are:

• The segment will occupy memory until it i's deleted, either
explicitly (by means of the DELETE$SEGMENT system call),
or implicitly (when the job that created the segment is
deleted). Until the segment is deleted, a substantial
amount of memory is unavailable for use elsewhere in the
system.

• The application code may have to copy the information into
the segment.

2) You can use an iRMX 86 stream file.

The advantages of this technique are:

• The data need not be broken into records.

• This technique can easily be changed to Technique 3.

The disadvantage of this technique is that you must configure one
or both I/O systems into your application system.

3) You can use either the Extended or the Basic I/O System to write
the information onto a mass storage device, from which the job
needing the information can read it.

The advantages of this technique are:

• Many jobs can read the information.

• This technique can easily be changed to Technique 2.

• The information need not be divided into records.

The disadvantages of this technique are:

• You must in.corporate one or both I/O systems into your
application system.

• Device I/O is slower than reading and writing to a stream
file.

5-2

COMMUNICATION BETWEEN i~IX~ 86 JOBS

PASSING OBJECTS BETWEEN JOBS

Jobs can also communicate with each other by sending objects across job
boundaries. You can use any of several techniques to accomplish this t

and you should avoid using one seemingly straightforward technique. In
the following discussions you will see how to pass objects by using
object directories, mailboxes t and parameter objects. You will also see
why you should not pass object tokens by embedding them in an iRMX 86
segment or in a fixed memory location.

Although you can pass any object from one job to another t there is a
restriction pertaining to connection objects. When a file connection
created in one job (Job A) is passed to a second job (Job B) the second
job (Job B) cannot successfully use the object to perform I/O. Instead t

the second job (Job B) must create another connection to the same file.
This restriction is discussed in the iRMX 86 BASIC I/O SYSTEM REFERENCE
MANUAL and in the iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL.

PASSING OBJECTS THROUGH OBJECT DIRECTORIES

For the purpose of this discussion, consider a hypothetical system in
which tasks in separate jobs must communicate with each other.
Specifically, suppose that Task B in Job B must not begin or resume
running until Task A in Job A grants permission.

One way to perform this synchronization is to use a semaphore. Task B
can repeatedly wait at the semaphore until it receives a unit, and Task A
can send a unit to the semaphore whenever it wishes to grant permission
for Task B to run. If Tasks A and B are within the same job, this would
be a straightforward use of a semaphore. But the two tasks are in
different jobs, and this causes some complications.

Specifically, how do Tasks A and B access the same semaphore? For
instance, Task A can create the semaphore and access it, but how can Task
A provide Task B with a token for the semaphore? The trick is to use the
object directory of the root job.

In the following explanation, each of the two tasks must perform half of
a protocol. The process of creating and cataloging the semaphore is one
half, and the process of looking up the semaphore is the other.

In order for this protocol to succeed t the programmers of the two tasks
must agree on a name for the semaphore, and they must agree which task
performs which half of the protocol. In this example, the sema,phore is
named permit_sem. And, because Task B must wait until Task A grants
permission, Task A will create and catalog the semaphore, and Task B will
look it up.

5-3

Ca1NUNICATION BETWEEN iRHXT" 86 JOBS

Task A performs the creating and cataloging as follows:

1) Task A creates a semaphore with no units by calling the
CREATE$SEMAPHORE system call. This provides Task A with a token
for the semaphore.

2) Task A calls the GET$TASK$TOKENS system call to obtain a token
for the root job.

3) Task A calls the CATALOG~OBJECT system call to place a token for
the semaphore in the object directory of the root job under the
name perIni t _ sem.

4) Task A continues processing, eventually becomes ready to grant
permission, and sends a unit to permit_sem.

Task B performs the look-up protocol as follows:

1) Task B calls the GET$TASK$TOKENS system call to obtain a token
for the root job.

2) Task B calls the LOOKUP$OBJECT system call to obtain a token for
the object named permit_sem. If the name has not yet been
cataloged, Task B waits until it is.

3) Task B calls the RECEIVE$UNITS system call to request a unit from
the semaphore. If the unit is not available then Task A has not
yet granted permission, and Task B waits. When a unit is
available, Task A has granted permission, and Task B becomes
ready.

There are several aspects of this technique that you should be aware of:

• In the example, the object directory technique was used to pass a
semaphore. The same technique can be used to pass any type of
iRMX 86 object.

• The semaphore was passed via the object directory of the root
job. The root job's object directory is unique in that it is the
only object directory to which all jobs in the system can gain
access. This accessibility allows one job to "broadcast" an
object to any job that knows the name under which the object is
cataloged.

• The object directory of the root job must be large enough to
accommodate the names of all the objects passed in this manner.
If it is not, it will become full and the iRMX 86 Operating
System will return an exception code when attempts are made to
catalog additional objects.

5-4

COMMUNICATION BETWEEN iRMXT" 86 JOBS

• If you use this technique to pass many objects, you could have
problems ensuring unique names. If name management becomes a
problem, different sets of jobs can adopt the convention of using
an object directory other than that of the root job. To
accomplish this, one of the jobs catalogs itself in the root
job's object directory under an agreed-upon name. The other jobs
can then look up the cataloged job and use its object directory
rather than that of the root job.

• In the example, the object-passing protocol was divided into two
halves--the create-and-catalog half, and the look-up half. The
protocol works correctly regardless of which half starts to run
first.

PASSING OBJECTS THROUGH MAILBOXES

Another means of sending objects from one job to another is to use a
mailbox. This is a two-step process in that the two jobs using the
mailbox must first use the object directory technique to obtain mutual
access to the mailbox, and then they use the mailbox to pass additional
objects.

PASSING PARAMETER OBJECTS

One of the parameters of the CREATE$JOB system call is a parameter
object. The purpose of this parameter is to allow a task in the parent
job to pass an object to the newly created job. Once the tasks in the
new job begin running, they can obtain a token for the parameter object
by calling GET$TASK$TOKENS. This technique is illustrated in the
following example:

Suppose that Task 1 in Job 1 is responsible for spawning a new job
(Job 2). Suppose also that Task 1 maintains an array that is needed by
Job 2. Task 1 can pass the array to Job 2 by putting the array into an
iRMX 86 segment, and designating the segment as the parameter object in
the CREATE$JOB system call. Then the tasks of Job 2 can call the
GET$TASK$TOKENS system call to obtain a token for the segment.

In the foregoing example, the .parameter object is a segment. However,
you can use this technique to pass any kind of iRMX 86 object.

5-5

COMMUNICATION BETWEEN iRHXT" 86 JOBS

AVOID PASSING OBJECTS THROUGH SEGMENTS OR FIXED MEMORY LOCATIONS

In the current version of the iRMX 86 Operating System, tokens remain
unchanged when objects are passed from job to job. However, Intel
reserves the right to modify this rule. In other words, if you pass
objects from one job to another and you want your software to be able to
run on future releases of the iRMX 86 System, obey the following
guidelines:

• Never pass a token from one job to another by placing the token
in an iRMX 86 segment and then passing the segment.

• Never pass a token from one job to another by placing the token
in any memory location that the two jobs both access.

COMPARISON OF OBJECT-PASSING TECHNIQUES

There are several guidelines to consider when deciding how to pass an
object between jobs:

• If you are passing only one object from a parent job to a child
job, use the parameter object when the parent creates the child.

• If you are passing only one object but not from parent to child,
use the object directory technique. It is simpler than using a
mailbox.

• If you need to pass more than one object at a time, you can use
any of the following techniques:

Assign an order to the objects and send them to a mailbox
where the receiving job can pick them up in order.

Give each of the objects a name and use an object directory.

Write a simple type manager that packs and unpacks a set of
objects. Then pass the set of objects as one composite
object.

,-

BIBLIOGRAPHY

The following reading material contains information that relates to
iRMX 86 jobs, tasks, segments, mailboxes, files, type managers, and
composite objects:

• iRMX~ 86 NUCLEUS REFERENCE MANUAL, Order Number: 9803122

This manual describes iRMX 86 jobs, tasks, segments, and
mailboxes as well as the system calls that manipulate them.

5-6

COMHUNICATION BETWEEN iRMXT" 86 JOBS

• INTRODUCTION TO THE iRMX~ 86 OPERATING SYSTEM,
Order Number: 9803124

This manual contains a general discussion of inter-job
communication.

• iRMXT" 86 BASIC I/O SYSTEM REFERENCE MANUAL, Order Number: 9803123

This manual describes iRMX 86 stream, physical, and named files.
It also explains the restriction about passing a file connection
obj~ct from one job to another.

• iRMXT" 86 EXTENDED I/O SYSTEM REFERENCE MANUAL,
Order Number: 143308

This manual describes iRMX 86 stream, physical,and named files.
It also explains the restriction about passing a file connection
object from one job to another.

• iRMXT" 86 CONFIGURATION GUIDE, Order Number: 9803126

This manual describes the iRMX 86 root job.

5-7

CHAPTER 6. SIMPLIFYING CONFIGURATION DURING DEVELOPMENT

This chapter is for anyone who writes procedures that run as initial
tasks during the system initialization process. In order to understand
this chapter, you should be familiar with the following information:

• the iRMX 86 configuration process and Interactive Configuration
Utility (ICU)

• the use of LINK86

• the use of LOC86

If you are unfamiliar with any of these concepts, refer to the
bibliography at the end of this chapter for additional reading.

PURPOSE OF THIS CHAPTER

While you are creating your application jobs, you will probably use the
following iterative procedure to remove bugs from your code:

1) Configure your system.

2) Test the system to find bugs.

3) If any bugs are found, modify the application code to eliminate
the bugs and go to Step 1.

In order to remove most of the bugs from your application software, you
might have to loop several times through these three steps.
Consequently, you may spend a substantial amount of effort configuring
your system.

The purpose of this chapter is to show you how to simplify the process of
configuring your system during development. By using the techniques
presented here, you can reduce the time you spend in configuration and
increase the time available for debugging.

6-1

I

I

I

SIMPLIFYING CONFIGURATION DURING DEVELOPMENT

SUMMARY OF CONFIGURATION

Configuration is a three-phase process:

1) Using the Interactive Configuration Utility (ICU) , select the
iRMX 86 software that meets the needs of your application.

2) Decide where in memory to place your code modules and data
segments, then link and locate the code and data.

3) Tell the ICU where the code and data are located.

Once you have performed these four phases, you need only load the code
and start up the root job in order to get the entire system running.

CONFIGURATION AND DEBUGGING

During the process of debugging an application, you generally perform
Phase 1 of configuration only once, and Phases 2 through 4 repeatedly.
You need not repeat Phase 1 because your application generally uses the
same set of ~RMX 86 system calls throughout debugging. On the other
hand, Phases 2 through 4 are generally repeated because the application
software modules change frequently during debugging.

By using a special method during the coding of your initial task
software, you can freeze the locations of your application software
modules and data segments. This reduces the probability of your
repeating Phases 2 and 4 of the configuration process.

THE TECHNIQUE

The %JOB macro used during the configuration process requires three
parameters that are very volatile during development. These parameters
are exception_handIer_entry, init_task_entry, and data_segment_base.

During debugging, as you modify code and (consequently) change the size
of your code modules, the values that you must assign to these three
parameters are very likely to change. By heeding the following two
suggestions, you can significantly reduce the likelihood of changing
these parameters and, hence, you can retest your revised application job
after merely linking and loading.

FREEZING THE BASE OF THE DATA SEGMENT

If, during development, you locate your job's data segment after your
job's code segment, you c~n freeze the base of the data segment by
padding the code segment. Consider the following two situations.

6-2

SIMPLIFYING CONFIGURATION DURING DEVELO~1ENT

In Job A (Figure 6-1), the code modules are located contiguously, with
the data segment immediately following the last module. If any of the
modules in Job A grow or shrink as a result of debugging, you must
relocate the data segment. This involves changing the data segment base
parameter of the %JOB macro for the job and regenerating the root job.

In contrast, Job B (Figure 6-1) is designed to accommodate modification.
The modules are still located contiguously, but some unused memory has
been left between the code segment and the data segment. This unused
memory, called padding, allows the modules in the code segment to grow
without causing a change in the base address of the data segment.

JOB A

MODULE
1

MODULE
2

•
•
•

MODULE
n-1

MODULE
n

DATA
SEGMENT

LOWER ADDRESSES

CODE SEGMENT

ROOM FOR
GROWTH

HIGHER ADDRESSES

" ,

JOB B

MODULE
1

MODULE
2

•
•
•

MODULE
n-1

MODULE
n

PADDING

DATA
SEGMENT

PADDING

1145

Figure 6-1. How to Freeze the Base of the Data Segment

You must decide how much padding to leave between the code and data
segments. In general, the less stable the code is, the more padding you
should leave. If you are uncertain, try starting with 1000 bytes.

6-3

I

SIMPLIFYING CONFIGURATION DURING DEVELOPMENT

In order to obtain the padding between the code and data segments you can
use the address control of the LOC86 command. For example,

ADDRESSES(CLASSES(CODE(aaaaa), DATA(bbbbb»)

where aaaaa is the address at which you want to place the job's code
segment, and bbbbb is the address at which you want to place the job's
data segment. You can compute bbbbb by adding the size of the padding to
the address of the end of the code segment. It is also a good idea to
pad the data segment.

FREEZING THE ENTRY POINTS

The ICU requires the addresses of two entry points, one for the job's
initial task, and one for the job's exception handler. Because these
addresses are expressed as offsets from the base of the job's code
segment, you can freeze the addresses by preventing the offsets from
changing.

The easiest way to accomplish this is to create a special module that
contains new entry points for the initial task and the exception
handler. This special module, if located at the front of your code
segment, provides entry points that are completely independent of changes
made to other modules.

Within this special module, each entry point must be coded as a procedure
containing only a procedure call followed by a return instruction. The
purpose of the procedure call is to invoke a secondary, external
procedure that actually contains the initial task or the exception
handler. Figure 6-2 illustrates the special module in pseudo-code.

SPECIAL MODULE INIT TASK MODULE

NEW_INIT _TASK. --. INILTASK. ,.
CALL INIT _TASK.
RETURN.

• • •
NEW....EX....HANDLER.

CALL EX....HANDLER.
RETURN. ~ EX HANDLER MODULE

EX....HANDLER.

• • •

x-3UO

Figure 6-2. Special Module Freezes Entry Points

6-4

SIMPLIFYING CONFIGURATION DURING DEVELOPMENT

You can place the special module at the front of your code segment
(Figure 6-3) by linking it first during the linking process. This will
ensure that the new entry points for the initial task and the exception
handler are ahead of the code modules that are subject to change. This,
in turn, ensures that the new entry points will remain a fixed distance
from the base of the code segment, and that you will not need to modify
the exception_handIer_entry or the init_task_entry parameters.

LOWER
ADDRESSES

HIGHER
ADDRESSES

SPECIAL
MODULE

MODULE
1

•
•
•

MODULE
n

PADDING

DATA
SEGMENT

AHEAD OF
ALL OTHER
MODULES

x-301

Figure 6-3. Location of the Special Module

6-5

I

SIMPLIFYING CONFIGURATION DURING DEVELOPMENT

BIBLIOGRAPHY

The following reading material contains information that relates to
configuration of iRMX 86-based systems and to the LINK86 and LOC86
commands:

• iRMX~ 86 CONFIGURATION GUIDE, Order Number: 9803126

•

This manual provides a detailed discussion of the process of
configuring an iRMX 86-based system. This includes instructions
on how to use the Interactive Configuration Utility, as well as
definitions of the initial task and the root job. The manual
also gives explicit directions for deciding where to place the
root job in memory.

iAPX 86,88 FAMILY UTILITIES USER'S GUIDE, Order Number: 121616

You should refer to this manual for a discussion of the LINK86
and LOC86 commands.

6-6

CHAPTER 7. DEADLOCK AND DYNAMIC MEMORY ALLOCATION

This chapter is for anyone who writes tasks which dynamically allocate
memory, send messages, create objects, or delete objects. In order to
understand this chapter, you should be familiar with the following
concepts:

• memory management in the iRMX 86 Operating System

• using either iRMX 86 semaphores or regions to obtain mutual
exclusion

If you are unfamiliar with any of these concepts, refer to the
bibliography at the end of this chapter for additional reading.

PURPOSE OF THIS CHAPTER

Memory deadlock is not difficult to diagnose or correct, but it is
difficult to detect. Because memory deadlock generally occurs under
unusual circumstances, it can lie dormant throughout development and
testing, only to bite you when your back is turned. The purpose of this
chapter is to provide you with some special techniques that can prevent
memory deadlock.

HOW MEMORY ALLOCATION CAUSES DEADLOCK

The following example illustrates the concept of memory deadlock and
shows the danger that iRMX 86 tasks can face when they cause memory to be
allocated dynamically.

Suppose that the following circumstances exist for Task A and B which
belong to the same job:

• Task A has lower priority than Task B.

• Each task wants two iRMX 86 segments of a given size, and each
asks for the segments by calling the CREATE$SEGMENT system call
repeatedly until both segments are acquired.

• The job's memory pool contains only enough memory to satisfy two
of the requests.

• Task B is asleep and Task A is running.

7-1

DEADLOCK AND DYNAMIC MEMORY ALLOCATION

Now suppose that the following events occur in the order listed:

1) Task A gets its first segment.

2) An interrupt occurs and Task B is awakened. Since Task B is of
higher priority than Task At Task B becomes the running task.

3) Task B gets its first segment.

The two tasks are now deadlocked. Task B remains running and continues
to ask for its second segment. Not only are both of the tasks unable to
progress, but Task B is consuming a great deal, perhaps all, of the
processor time. At best, the system is seriously degraded.

This kind of memory allocation deadlock problem is particularly insidious
because it quite likely would not occur during debugging. The reason for
this is that the order of events is critical in this deadlock situation.

Note that the key event in the deadlock example is the awakening of Task
B just after Task A invokes the first CREATE$SEGMENT system call, but
just before Task A invokes the second CREATE$SEGMENT call. Because this
critical sequence of events occurs only rarely, a "thoroughly debugged"
system might, after a period of flawless performance, suddenly fail.

Such intermittent failures are costly to deal with once your product is
in the field. Consequently, the most economical method for dealing with
memory deadlock is to prevent it.

SYSTEM CALLS THAT CAN LEAD TO DEADLOCK

A task cannot cause memory deadlock unless it causes memory to be
allocated dynamically. And the only means for a task to allocate memory
is by using system calls. If your task uses any of the following system
calls, you must take care to prevent deadlock:

• any system call that creates an object

• any system call belonging to a subsystem other than the Nucleus

• SEND$MESSAGE

• DELETE$JOB

• DELETE$EXTENSION

If a task uses none of the preceding system calls, it cannot deadlock as
a result of memory allocation.

7-2

DEADLOCK AND DYNAMIC HEMORY ALLOCATION

PREVENTING MEl-lORY DEADLOCK

Using anyone of the following techniques, you can eliminate memory
deadlock from your system:

• When a task receives an E$MEM condition code, the task should not
endlessly repeat the system call that led to the code. Rather,
it should repeat the call only a predetermined number of times.
If the task still receives the E$MEM condition, it should delete
all its unused objects, and try again. If the E$MEM code is
still received, the task should sleep for a while and then
reissue the system call.

• If you have designed your system so that a job cannot borrow
memory from the pool of its parent, you can use an iRMX 86
semaphore or region to govern access to the memory pool. Then,
when a task requires memory, it must first gain exclusive access
to the job's memory pool. Only after obtaining this access may
the task issue any of the system calls listed above.

The task's behavior should then depend upon whether the system
can satisfy all of the task's memory requirements:

If the system cannot satisfy all requirements, the task
should delete any objects that were created and surrender the
exclusive access. Then the task should again request
exclusive access to the pool.

If, on the other hand, all requests are satisfied, the task
should surrender exclusive access and begin using the objects.

This technique prevents deadlock by returning unused memory to
the memory pool, where it may be used by another task.

• If you have designed your system so that a job cannot borrow
memory from the pool of its parent, prevent the tasks within the
job from directly completing for the memory in the job's pool.
You can do this by allowing no more than one task in each job to
use the system calls listed earlier.

BIBLIOGRAPHY

Refer to the following manual for further information.

• iRMX'" 86 NUCLEUS REFERENCE MANUAL, Order Number: 9803122

This manual contains a discussion of memory management in the
iRMX 86 Operating System. It also provides detailed information
regarding the use of semaphores and regions.

7-3

CHAPTER 8. GUIDELINES FOR STACK SIZES

This chapter is for three kinds of readers:

• Those who write tasks that create iRMX 86 jobs or tasks.

• Those who write interrupt handlers.

• Those who write tasks that are to be loaded by the Application
Loader or tasks to be invoked by the Human Interface.

In order to understand all of this chapter, you must. be familiar with the
iRMX 86 Debugger, and you must know which system calls are provided by
the various subsystems of the iRMX 86 Operating System. You also must
know the difference between maskable and nonmaskable interrupts.
Finally, if you are writing an interrupt handler, you must know what an
interrupt handler is. The bibliography at the end of this chapter lists
the documents in which you can find this information.

PURPOSE OF THIS CHAPTER

This chapter has three purposes. If your are writing a task that creates
a job or another task, the purpose of this chapter is to help you compute
the amount of stack that you must specify in the system call that
performs the creation. If you are writing an interrupt handler, the
purpose of this chapter is to inform you of stack size limitations to
which you must adhere. If you are writing a task that is to be loaded by
the Application Loader or invoked by the Human Interface, the purpose of
this chapter is to show you how much stack to reserve during the linking
and locating process.

STACK SIZE LIMITATION FOR INTERRUPT HANDLERS

Many tasks running in the iRMX 86 Operating System are subject to two
kinds of interrupts -- maskable, and nonmaskable. When these interrupts
occur, the associated interrupt handlers use the stack of the interrupted
task. Consequently, you must know how much of your task's stack to
reserve for these interrupt handlers.

The iRMX 86 Operating System assumes that all interrupt handlers,
including those that you write, require no more than 128 (decimal) bytes
of stack, even if a task is interrupted by both a maskable and a
nonmaskable interrupt. If when writing an interrupt handler you fail to
adhere to this limitation, you expose your system to the risk of stack
overflow.

8-1

GUIDELINES FOR STACK SIZES

In order to stay within the 128 (decimal) byte limitation, you must
restrict the number of local variables that the interrupt handler stores
on the stack. For interrupt handlers serving maskable interrupts, you
may use as many as 20 (decimal) bytes of stack for local variables. For
handlers serving the nonmaskable interrupt, you may use no more than 10
(decimal) bytes. The balance of the 128 bytes is consumed by the
SIGNAL$INTERRUPT system call, and by storing the registers on the stack.

For more information about interrupt handlers, refer to the iffi1X 86
NUCLEUS REFERENCE MANUAL.

STACK GUIDELINES FOR CREATING TASKS AND JOBS

Whenever you invoke a system call to create a task, you must specify the
size of the task's stack. And, since every new job has an initial task
that is created simultaneously with the job, you must also designate a
stack size whenever you create a job.

When you specify a task's stack size, you should do so carefully. If you
specify a number that is too small, your task might overflow its stack
and write over information following the stack. This situation can cause
your system to fail. On the other hand, if you specify a number that is
too large, the excess memory will be wasted. So ideally, you should
specify a stack size that is only slightly larger than what is actually
required.

This chapter provides you with two techniques for estimating the size of
your task's stack. One technique is arithmetic, and the other is
empirical. For best results, you should start with the arithmetic
technique and then use the empirical technique for tuning your original
estimate.

STACK GUIDELINES FOR TASKS TO BE LOADED OR INVOKED

If you are creating a task that is to be loaded by the Application Loader
or invoked by the Human Interface, you must specify the size of the
task's stack during the linking or locating process. The arithmetic and
empirical techniques in this manual will help you estimate the size of
your task's stack.

ARITffi1ETIC TECHNIQUE

This technique provides you with a reasonable overestimate of your task's
stack size. After you use this technique to obtain a first
approximation, you may be able to save several hundred bytes of memory by
using the empirical technique described later in this chapter.

8-2

GUIDELINES FOR STACK SIZES

The arithmetic technique is based on the fact that there are at most
three factors affecting a task's stack. These factors are:

• interrupts

• iRHX 86 system calls

• requirements of the task's code
(For example, the stack used to pass parameters to procedures or
to hold local variables in reentrant procedures.)

You can estimate the size of a task's stack by summing the amount of
memory needed to accommodate these factors. The following sections
explain how to compute the stack requirements for the first three factors.

STACK REQUIREMENTS FOR INTERRUPTS

Whenever an interrupt occurs while your task is running, the interrupt
handler uses your task's stack while servicing the interrupt.
Consequently, you must ensure that your task's stack is large enough to
accommodate the needs of two interrupt handlers -- one for maskable
interrupts, and one for nonmaskable interrupts. All interrupt handlers
used with the iRMX 86 Operating system are designed to to ensure that,
even if two interrupts occur (one maskable, one not), no more than 128
(decimal) bytes of stack are required by the interrupt handlers.

STACK REQUIREMENTS FOR SYSTEM CALLS

·When your task invokes an iRNX 86 system call, the processing associated
with the call uses some of your task's stack. The amount of stack
required depends upon which system calls you use.

Table 8-1 tells you how many bytes of stack your task must have to
support various system. calls. To find out how much stack you must
allocate for system calls, compile a list of all the system calls that
your task uses. Scan Table 8-1 to find which of your system calls
requires the most stack. By allocating enough stack to satisfy the
requirements of the most demanding system call, you can satisfy the
requirements of all system calls used by your task.

8-3

GUIDELINES FOR STACK SIZES

Table 8-1. Stack Requirements for System Calls

BYTES
SYSTEM CALLS (DECIMAL)

S$SEND$COMMAND 800
CGETINPUT$PATHNAME
CGETOUTPUT$PATHNAME
CGETINPUT$CONNECTION
CGETOUTPUT$CONNECTION

ALL OTHER
HUMAN INTERFACE 600
SYSTEM CALLS

S$LOAD$IO$JOB 440

A$LOAD$IO$JOB 400
A$LOAD
S$OVERLAY

EXTENDED I/O 400
SYSTEM CALLS

BASIC I/O 300
SYSTEM CALLS

CREATE $ JOB 225
DELETE$EXTENSION
DELETE$JOB
DELETE$TASK
FORCE$DELETE
RESET$INTERRUPT

ALL OTHER NUCLEUS CALLS 125

8-4

GUIDELINES FOR STACK SIZES

COMPUTING THE SIZE OF THE ENTIRE STACK

To compute the size of the entire stack, add the following three numbers:

• the number of bytes required for interrupts (128 decimal bytes)

• the number of bytes required for system calls

• the amount of stack required by the task's code segment

You can use the sum of these three numbers as a reasonable estimate of
your task's stack requirements. If you desire more accuracy, use the sum
as a starting point for the empirical fine tuning described later in this
chapter.

EMPIRICAL TECHNIQUE

This technique starts with an overly large stack and uses the iRMX 86
Debugger to determine how much of the stack is unused. Once you have
found out how much stack is unused, you can modify your task- and
job-creation system calls to create smaller stacks.

The cornerstone of this technique is the iRMX 86 Debugger. In order to
use the Debugger, you must include it when you configure your application
system. Information on how to do this is provided in the iRMX 86
CONFIGURATION GUIDE.

The Inspect Task command of the Debugger provides a display that includes
the number of bytes of stack that have not been used since the task was
created. If you let your task run a sufficient length of time, you can
use the Inspect Task command to find out how much excess memory is
allocated to your task's stack. Then you can adjust the stack-size
parameter of the system call to reserve less stack.

The only judgment you must exercise when using this technique is deciding
how long to let your task run before obtaining your final measurement.
If you do not let the task run long enough, it might not encounter the
most demanding combination of interrupts and system calls. This could
cause you to underestimate your task's stack requirement and could,
consequently, lead to a stack overflow in your final system.

Underestimation of stack size is a risk inherent in this technique. For
example, your task might be written so as to use its peak demand for
stack only once every two months. Yet you probably don't want to let
your system run for two months just to save several hundred bytes of
memory. You can avoid such excessive trial runs by padding the results
of shorter runs. For instance, you might run your task for 24 hours and
then add 200 (decimal) bytes to the maximum stack size. This padding
reduces the probability of overflowing your task's stack in your final
system.

8-5

GUIDELINES FOR STACK SIZES

BIBLIOGRAPHY

The following manuals explain how to use the Debugger, tell which system
calls are provided by each subsystem of the iffi1X 86 Operating System,
explain the difference between maskable and nonmaskable interrupts, and
discuss interrupt handlers.

• iRMXT" 86 DEBUGGER REFERENCE MANUAL, Order Number: 143323

This manual explains how to use the iRMX 86 Debugger "Inspect
Task" command.

• iRMXT" 86 NUCLEUS REFERENCE MANUAL, Order Number: 9803122

This manual describes most of the Nucleus system calls and
explains the purpose of an interrupt handler.

• iRMXT" 86 BASIC I/O SYSTEM REFERENCE MANUAL, Order Number: 9803123

This manual describes most of the system calls provided by the
Basic I/O System.

• iRMXT" 86 EXTENDED I/O SYSTEM REFERENCE MANUAL,
Order Number: 143308

This manual describes most of the system call provided by the
Extended I/O System.

• iRMXT" 86 LOADER REFERENCE MANUAL, Order Number: 143318

This manual describes all of the system calls provided by the
Application Loader.

• iRMXT" 86 HUMAN INTERFACE REFERENCE MANUAL, Order Number: 9803202

This manual describes all of the system call provided by the
Human Interface.

8-6

APPENDIX A. WHEN IS EACH CHAPTER USEFUL?

The purpose of this appendix is to show you which chapters are most
useful to you at any phase of the development of your system.

DIVIDING AN APPLICATION INTO JOBS AND TASKS

Chapter 5
Communication Between iRMX 86 Jobs

Chapter 7
Deadlock and Dynamic Hemory Allocation

Chapter 8
Guidelines for Stack Sizes

WRITING THE CODE FOR TASKS

Chapter 1
Selecting a PL/M-86 Model of Computation

Chapter 2
Interface Procedures and Libraries

Chapter 3
Timer Routines

Chapter 4
Calling the iRMX 86 System from Assembly Language

Chapter 5
Communication Between iRMX 86 Jobs

Chapter 6
Simplifying Configuration During Development

Chapter 7
Deadlock and Dynamic Hemory Allocation

Chapter 8
Guidelines for Stack Sizes

WRITING INTERRUPT HANDLERS

Chapter 8
Guidelines for Stack Sizes

A-I

WHEN IS EACH CHAPTER USEFUL?

DEBUGGING

Chapter 6
Simplifying Configuration During Development

CONFIGURATION AND SYSTEM STARTUP

Chapter 6
Simplifying Configuration During Development

A-2

INDEX

Underscored entries are primary references. Multiple pages about one
subject are designated ff.

%JOB macro 6-2

algorithm for selecting model of segmentation I-Iff
application 5-2, A-I
Application Loader 2-4, 8-4
asleep, task state 7-1
ASM86 assembler 4-1ff
assembly language system calls 4-1ff

base, data segment 6-2
Basic I/O System 2-4, 3-1, 5-2, 8-4

CATALOG$OBJECT system call 5-4
cataloging objects 5-4
code size 1-3
communication between im1X 86 jobs 5-1
COHPAC.LIB 2-4
COMPACT model of segmentation I-Iff, 4-2
compilation 2-1
computing stack size 8-2
configuration 6-1ff
CREATE$JOB system call 5-5
CREATE$SEGMENT system call 7-1

deadlock 7-1ff
debugging 6-1
DELETE$JOB system call 7-2
DELETE$SEGMENT system call 5-2
DELETE$SEGMENT system call 7-2
direct linking, disadvantages 2-1
dynamic memory allocation 7-1ff

E$MEM exception code 7-3
entry points, freezing locations of 6-4
EPIFC.LIB 2-4
EPIFL.LIB 2-4
exception handler 6-5
Extended I/O System 2-4, 5-2, 8-4

fixed memory locations 5-6
freezing data segment 6-2
freezing entry point locations 6-4

Index-1

INDEX (continued)

get time procedure 3-lff
GET$TASK$TOKEN system call 5-4
GET$TASK$TOKENS system call 5-5

HPIFC.LIB 2-4
HPIFL.LIB 2-4
Human Interface 2-4, 8-4

ICU 6-2
init time procedure 3-2f£
initialize time 3-7
inter-job communication 5-1
Interactive Configuration Utility (ICU) 6--2
interface prcocedures and libraries 2-1ff, 4-1
interrupts, interrupt handler 7-2, 8-1
IPIFC.LIB 2-4
IPIFL.LIB 2-4
iRMX 86 Operating System

interface libraries 2-3£f
job 5-lff
mailbox 5-5
objects 5-1
object directory 5-3
segment 5-1
semaphore 5--3
stream file 5-2
subsystem (layer) 5-2
tasks 5-3

job 5-lff

LARGE model of segmentation I-Iff, 4-2
LARGE. LIB 2-4
linking 2-1
LOC86 6-4
location-dependent system procedures 2-2
LOOKUP$OBJECT system call 5-4
LPIFC.LIB 2-4
LPIFL.LIB 2-4

mailboxes 5-5
maintain_time procedure 3-2ff
MEDIUM model of segmentation I-Iff, 4-2
memory

borrowing 7-3
computing size' 1-2ff
deadlock 7-1£f
padding 6-:3

models of segmentation I-Iff
multiprogramming 5-1

Nucleus 2-4, 5-2, 8-4

object code libraries 2-3
object directory 5-3

Index-2

INDEX (continued)

padding, memory
passing between

connections
objects 5-3
connections

PL/M-86

segments
jobs

5-3

5-3

6-3ff

models of segmentation I-Iff
size control I-Iff, 2-3

priority, tasks 7-1

RECEIVE$UNITS system call 5·-4
restriction (passing connections between jobs) 5-3
RPIFC.LIB library 2-4
RPIFL LIB library 2-4
rq$send$message interface procedure 4-1
running, task state 7-1

segment 5-1
segmentation model, choosing 2-1
selecting model of segmentation I-Iff
semaphore 5-3
SEND$MESSAGE system call 4-1, 7-2
set_time procedure 3-2ff
SMALL model of segmentation 1-1
source code, timer procedures 3-3ff
stack

requirements for system calls 8-3ff
size, overflow 1-3, 8-1ff

static data size 1-2, 6-2

task priority 7-1
tasks 5-3, A-I
techniques for computing stack size 8-5ff
timer procedures 3-1ff
UDI 2-4, 8-4
UNIVERSAL DEVELOPMENT INTERFACE 2-4, 8-4
upward-compatability 5-6

Index-3

REQUEST FOR READER'S COMMENTS

iRMXTM 86
Programming Techniques

142982-003

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel
product users. This form lets you participate directly in the publication process. Your comments will help
us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). ________ _

; NAME ________________________ __ DATE ____________ _
, TITLE ___ __

COMPANYNAME/DEPARTMENT ____________________________________ ~ ______________ __
ADDRESS __ _

CITY _______________________ _ STATE ______ _ ZIP CODE _________ _
(COUNTRY)

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ...

. This document is one of a series describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of I ntel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

I ntel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

OMO Technical Publications

111111 NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

