
I 

iRMX 86™ 
INSTALLATION GUIDE 

Order Number: 9803125-04 

Copyright © 1980, 1981, Intel Corporation 
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I 



REV. REVISION HISTORY PRINT 
DATE 

-001 Original Issue 4/80 

-002 Update to reflect Release 2 of the iRMX 86 10/80 
software and hardware requirements. 

-003 Update to reflect changes to support 5/81 
Release 3 of the iRMX 86 Operating System; 
new chapter for the Start-Up System; the 
Files Utility chapter is moved to Chapter 8; 
new hardware information to support new 
controller boards; various minor technical 
and typographical errors are corrected. 

-004 Update to reflect changes to support 11/81 
Release 4 of the iRMX 86 Operating System; 
change to the Patching Utility; and new 
hardware information, to support new con-
troller boards. 

Additional copies of this manual or other Intel literature may be obtained from: 

Literature Department 
Intel Corporation 
3065 Bowers Avenue 
Santa Clara, CA 95051 

The information in this document is subject to change without notice. 

Intel Corporation makes no warranty of any kind with regard to this material, including, but 
not limited to, the implied warranties of merchantability and fitness for a particular purpose. 
Intel Corporation assumes no responsibility for any errors that may appear in this document. 
Intel Corporation makes no commitment to update nor to keep current the information 
contained in this document. 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry 
embodied in an Intel product. No other circuit patent licenses are implied. 

Intel software products are copyrighted by and shall remain the property of Intel 
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software 
license, or as defined in ASPR 7-104.9(a)(9). 

No part of this document may be copied or reproduced in any form or by any means without 
the prior written consent of Intel Corporation. 

The following are trademarks of Intel Corporation and its affiliates and may be used only to 
identify Intel products: 

BXP 
CREDIT 
i 
ICE 
iCS 
im 
INSITE 
Intel 
Intel 

Intelevision 
Intellec 
iRMX 
iSBC 
iSBX 
Library Manager 
MCS 
Megachassis 
Micromainframe 

Micromap 
Multibus 
Multimodule 
Plug-A-Bubble 
PROMPT 
Promware 
RMX/SO 
System 2000 
UPI 
pScope 

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix. 

I A648/6821 4 K Dol 



PREFACE 

The iRMX 86 Operating System is a software package that provides a 
real-time, multitasking environment for Intel iAPX 86,88-based single I 
board computers. This manual provides you with the information required 
·to install your first operating system. 

NOTE 

Although you can configure an iRMX 86 
system for use with an iSBC 86/05, 
88/25, or 88/40 board, this manual 
assumes that you will be installing 
your first system using the iSBC 86/12A 
board, and much of the installation 
instruction is based upon that 
premise. Therefore, not all of the 
material given in the manual is 
applicable if you plan to build a 
custom board from components. In any 
event, use of the iSBC 86/12A board is 
suggested for system prototyping and 
debugging purposes. Portions or all of 
the information in the following 
chapters is relevant for component 
users: 

• Chapter 1. Introduction 

• Chapter 2. iRMX 86 Development 
Environment 

• Chapter 5. Start-Up System 

• Chapter 6. Patching Utility 

• Chapter 7. iRMX 86 Development 
Procedures 

0 Chapter 8. Files Utility System 

The minimum hardware requirements for 
custom boards that utilize the iAPX 86 
microprocessor for an iRMX 86 
application system are defined in 
Appendix C. 

iii 

I 



The manual offers the following information: 

• Introduces you to the Operating System and shows how it is 
packaged. 

• Defines the hardware and software environment in which 
application systems are developed. 

• Describes how to perform the required hardware modifications to 
support the iRMX 86 Op~rating System, and shows how to assemble 
the various hardware pieces. 

• Explains how to install and use the demonstration system. This 
is a tested and debugged iRMX 86 application system. 

• Describes the Start-Up System and Files Utility and how to use 
these subsystems to format iRMX 86 disks, create and delete 
files, and transfer information between ISIS-II disks and iRMX 86 
disks. 

• Describes how to use the Patching Utility to replace obsolete or 
flawed relocatable object modules by overlaying Intel-supplied or 
user-created replacement modules over the old code. 

• Outlines the process for developing your own iRMX 86-based 
application system. 

READER LEVEL 

This manual assumes that you are already familiar with the following 
Intel software and hardware elements: 

• The INTELLEC Microcomputer Development System and the ISIS-II 
Operating System 

• The ASM86 Macro Assembly Language and/or the PL/M-86 programming 
language 

• Either the ICE-86 In-Circuit Emulator or the iSBC 957A/B 
Interface and Execution Package 

• The individual hardware components that make up an iRMX 86 target 
system 

It is also assumed that you have read the INTRODUCTION TO THE iRMX 86 
OPERATING SYSTEM manual. 

iv 



RELATED PUBLICATIONS 

The following manuals provide additional background and reference 
information: 

Manual 

Introduction to the iRMX- 86 Operating System 

iRMX- 86 Configuration Guide 

iRMX- 86 Nucleus Reference Manual 

iRMX- 86 Terminal Handler Reference Manual 

iRMX- 86 Debugger Reference Manual 

iRMX- 86 Basic I/O System Reference Manual 

iRMX- 86 Extended I/O System Reference Manual 

Guide to Writing Device Drivers for the iRMX- 86 
and iRMX 88- I/O Systems 

iRMX- 86 Loader Reference Manual 

iRMX- 86 Human Interface Reference Manual 

iRMX- 86 System Programmer's Reference Manual 

iRMX- 86 Programming Techniques 

ISIS-II User's Guide 

INTELLEC Series III Microcomputer Development System 
Console Operating Instructions 

ICE-86 In-Circuit Emulator Operating Instructions for 
ISIS-II Users 

iSBC- 957AINTELLEC -- iSBC- 86/12A Interface and 
Execution Package User's Guide 

Users Guide for the iSBC- 957B iAPX 86, 88 Interface and 
Execution Package 

iSBC- 86/12A Single Board Computer Hardware Reference Manual 

iSBC- 86/05 Single Board Computer Hardware Reference Manual 

iSBC- 88/25- Single Board Computer Hardware Reference Manual 

v 

Number 

9803124 

9803126 

9803122 

143324 

143323 

9803123 

143308 

142926 

143318 

9803202 

142721 

142982 

9800306 

121609 

9800714 

142849 

143979 

9803074 

143153 

143825 

I 

I 

I 

I 



I 

I 

I 

I • 

RELATED PUBLICATIONS (continued) 

Manual 

iSBCM 88/40 Measurement and Control Computer Hardware 
Reference Manual 

iSBCM 337 MultimoduleM Numeric Data Processor Hardware 
Reference Manual 

iCSM 80 Industrial Chassis Hardware Reference Manual 

iSBCM 660 System Chassis Hardware Reference Manual 

iSBCM 680/681M MultistoreM User System Package Hardware 
Reference MAnual 

iSBC M 204 Flexible Diskette Controller Hardware 
Reference Manual 

iSBC M 206 Disk Controller Hardware Reference Manual 

iSBCM 208 Flexible Disk Controller Hardware Reference Manual 

Number 

142978 

142887 

9800799 

9800505 

162432 

9800568 

9800567 

143078 

iSBC M 215 Winchester Disk Controller Hardware Reference Manual 121593 

iSBXM 218 Flexible Disk Controller Hardware Reference Manual 121583 

iSBCM 220 SMD Disk Controller Hardware Reference Manual 

iSBCM 254 Bubble Memory Technical Manual 

iSBCM 032/048/064 Random Access Memory Boards Hardware 
Reference Manual 

iSBC M 016A/032A/064A/028A/056AM RAM Boards Hardware 
Reference Manual 

8086/8087/8088 Macro Assembly Language Reference Manual 
for 8086-Based Development Systems 

8086/8087/8088 Macro Assembler Operating Instructions 

ASM86 Language Reference Manual 

vi 

121597 

112179 

9800488 

143572 

121627 

121628 

121703 



CONTENTS 

CHAPTER 1 
INTRODUCTION TO THE iRMX 86 PACKAGE 
Inventory •••••••••••••••••••••••••••••••••••••••••••••••• ' •••••••••• 
Recommendations ••••••• · ••••••••••••••••••••••••••••••••••••••••••••• 

CHAPTER 2 
iRMX 86 DEVELOPMENT ENVIRONMENT 
General Requirements ••••••••••••••••••••••••••••••••••••••••••••••• 

Development System ••••••••••••••••••••••••••••••••••••••••••••••• 
Target System •••••••••••••••••••••••••••••••••••••••••••••••••••• 

Application-Dependent Requirements ••••••••••••••••••••••••••••••••• 

CHAPTER 3 
HARDWARE CONSIDERATIONS 
Board Modifications •••••••••••••••••••••••••••••••••••••••••••••••• 

iSBC 86/12A Board Modifications •••••••••••••••••••••••••••••••••• 
iSBC 204 Board Modifications ••••••••••••••••••••••••••••••••••••• 
iSBC 206 Board Modifications ••••••••••••••••••••••••••••••••••••• 
iSBC 208 Board Modifications ••••••••••••••••••••••••••••••••••••• 
iSBC 215 and iSBX 218 Board Modifications •••••••••••••••••••••••• 
iSBC 220 Board Modifications ••••••••••••••••••••••••••••••••••••• 
iSBC 254 Board Modifications ••••••••••••••••••••••••••••••••••••• 
Memory Board Jumper Connections •••••••••••••••••••••••••••••••••• 

Chassis Board Arrangement •••••••••••••••••••••••••••••••••••••••••• 
Cable Connections •••••••••••••••••••••••••••••••••••••••••••••••••• 
Logical and Physical Device Names •••••••••••••••••••••••••••••••••• 

CHAPTER 4 
NUCLEUS DEMONSTRATION SYSTEM 
Hardware Requirements •••••••••••••••••••••••••••••••••••••••••••••• 
Loading the Nucleus Demonstration System ••••••••••••••••••••••••••• 
Using the Nucleus Demonstration System ••••••••••••••••••••••••••••• 

Operating Modes •••••••••••••••••••••••••••••••••••••••••••••••••• 
Changing Statement Lines ••••••••••••••••••••••••••••••••••••••••• 
Variables •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Constants •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Expres s ions •••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Statements and Functions ••••••••••••••••••••••••••••••••••••••••••• 
Basic Statements ••••••••••••••••••••••••••••••••••••••••••••••••• 

FOR NEXT ••••••••••••••••••••••••••••••••••••••••••••••••••• 
GOSUB •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
GOTO ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
IF ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
INPUT •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
LET •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
LIST ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
NEW •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

vii 

PAGE 

1-2 
1-3 

2-2 
2-2 
2-2 
2-3 

3-1 
3-2 
3-3 
3-4 
3-5 
3-5 
3-6 
3-6 
3-6 
3-6 
3-7 
3-8 

4-1 
4-2 
4-3 
4-3 
4-4 
4-4 
4-5 
4-5 
4-5 
4-7 
4-7 
4-8 
4-8 
4-8 
4-9 
4-9 
4-10 
4-10 



CHAPTER 4 
DEMONSTRATION SYSTEM 

CONTENTS (continued) 

Basic Statements (continued) 
PRINT .......................................................... . 
REM ............................................................ . 
RETURN ......................................................... . 
RUN ••••••••••••••••••••••• ' ..................................... . 
STOP ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Basic Functions •••••••••••••••••••••••••••••••••••••••••••••••••• 
ABS ••••••••• ~ •••••••••••••••••••••••••••••••••••••••••••••••••• 
RND ••••••••••••• .; .............................................. . 
SIZE •••••••••••••••••••••••••••••••••••••••••••••• · ••••••••••••• 

iRMX 86 Statements and Functions ••••••••••••••••••••••••••••••••• 
CATAI..OG •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
CRTMBOX •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
CRTSEGM •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
CRTSEMA. •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
CRTTASK •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
DEIMBOX •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
DELSEGM •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
DELSEMA •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
DELTASK •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
GETTKNS •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
LOOPKUPO ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
RCVUNIT •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
RECVl-iSG· ••••••••••••••••••••••••••••••••••••••••••••••••••••.•••• 
RESTASK •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SENDMSG •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SLEEP ••••••••••••••••••••••••••••••••••••••••••••••••• ~ •••••••• 
SNDUNIT •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUSTASK •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
UNCATLG •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

CHAPTER 5 
S TART-UP SYSTEM 
Functions Provided • . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 
Hardware Required •••••••••••••••••••••••••••••••••••••••••••••••••• 
Using the Start-Up System •••••••••••••••••••••••••••••••••••••••••• 

Getting Started •••••••••••••••••••••••••••••••••••••••••••••••••• 
Start-Up System Commands ••••••••••••••••••••••••••••••••••••••••• 

File Management Commands ••••••••••••••••••••••••••••••••••••••• 
Additional Services •••••••••••••••••••••••••••••••••••••••••••• 

Special Use Restrictions ••••••••••••••••••••••••••••••••••••••••• 

viii 

PAGE 

4-10 
4-11 
4-11 
4-11 
4-11 
4-11 
4--11 
4-12 
4-12 
4-12 
4-13 
4-13 
4-14 
4-14 
4-15 
4-16 
4-16 
4-17 
4-17 
4-17 
4-18 
4-19 
4-19 
4-20 
4-21 
4-21 
4-22 
4-22 
4-23 

5-1 
5-2 
5-2 
5-2 
5-4 
5-4 
5-5 
5-5 



CHAPTER 6 
PATCHING UTILITY 

CONTENTS (continued) 

Invoking the Patching Utility •••••••••••••••••••••••••••••••••••••• 
Patching Procedures •••••••••••••••••••••••••••••••••••••••••••••••• 

Jump Instruction Patch ••••••••••••••••••••••••••••••••••••••••••• 
In-Place Patch •••••••••••••••••••••••.•••••••••••••••••••••••••••• 
Patching Library Modules ••••••••••••••••••••••••••••••••••••••••• 
Listing Translator Header Records •••••••••••••••••••••••••••••••• 

Error Messages ••••••••••••••••••••••••••••••••••••••••••••••••••••• 

CHAPTER 7 
iRMX 86 DEVELOPMENT PROCEDURES ••••••••••••••••••••••••••••••••••••• · 

CHAPTER 8 
FILES UTILITY SYSTEM 
Functions Provided ••••••••••••••••••••••••••••••••••••••••••••••••• 
Har dware Required ••.•••••••••••••••••••••••••••••••••••••••••••••••• 
Starting the Files Utility ••••••••••••••••••••••••••••••••••••••••• 
Using the Files Utility •••••••••••••••••••••••••••••••••••••••••••• 

Changing Diskettes ••••••••••••••••••••••••••••••••••••••••••••••• 
Commands ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

ATTACHDEV •••••••••••••••••••••••••••••••••••••••••••••••••••••• 
BREAK •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
CREATEDIR •••••••••••••••••••••••••••••••••••••••••••••••••••••• 
DELETE ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
DETACH ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
DIR •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
DOWNCOPY ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
FORM.AT ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
HELP ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
UPCOpy ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Error Messages ••••••••••••••••••••••••••••••••••••••••••••••••••• 

APPENDIX A 
ORIGINAL BOARD JUMPER CONNECTIONS •••••••••••••••••••••••••••••••••• 

APPENDIX B 
iRMX 86 CONDITION CODES SUMMARy •••••••••••••••••••••••••••••••••••• 

APPENDIX C 
HARDWARE REQUIREMENTS FOR CUSTOM CONFIGURATIONS •••••••••••••••••••• 

APPENDIX D 
iRMX ,86 SOFTWARE VERSION NUMBERS ••••••••••••••••••••••••••••••••••• 

ix 

PAGE 

6-2 
6-3 
6-3 
6-4 
6-5 
6-6 
6-5 

7-1 

8-1 
8-1 
8-2 
8-3 
8-3 
8-3 
8-3 
8-4 
8-4 
8-4 
8-5 
8-5 
8-5 
8-6 
8-7 
8-8 
8-8 

A-I 

B-1 

C-l 

D-l 



2-1. 

2-1. 
3-1. 
3-2. 
4-1. 
A-1. 
A-2. 
A-3. 
A-4. 
A-5. 
A-6. 
A-7. 
A-8. 
A-9. 
B-1. 
D-1. 

FIGURES 

iRMX 86 m Development Environment Example ••••••••••••••••••• 

TABLES 

Memory Requirements •••••••••••••••••••••••••••••••••••••••• 
Parallel I/O Connector J1 Pin Assignments •••••••••••••••••• 
iRMX 86 Physical Device Names •••••••••••••••••••••••••••••• 
Statement and Function Dictionary •••••••••••••••••••••••••• 
Original iSBC 86/12A Jumpers ••••••••••••••••••••••••••••••• 
Original iSBC 204 Jumpers •••••••••••••••••••••••••••••••••• 
Original iSBC 206 Pin Connections (Channel Board) •••••••••• 
Original iSBC 20~ Jumpers •••••••••••••••••••••••••••••••••• 
Original iSBC 215A Jumpers ••••••••••••••••••••••••••••••••• 
Original iSBC 215B Jumpers ••••••••••••••••••••••••••••••••• 
Original iSBC 218 Jumpers •••••••••••••••••••••••••••••••••• 
Original iSBC 220 Jumpers •••••••••••••••••••••••••••••••••• 
Original iSBC 254 Pin Connections •••••••••••••••••••••••••• 
iRMX 86 Condition Codes •••••••••••••••••••••••••••••••••••• 
iRMX 86 Software Version Numbers •••••••••• " ••••••••••••••••• 

x 

PAGE 
2-1 

2-4 
3-3 
3-9 
4-6 
A-1 
A-2 
A-2 
A-2 
A-2 
A-3 

. A-3 
A-3 
A-3 
B-1 
D-1 



CHAPTER 1. INTRODUCTION TO THE iRMXm 86 PACKAGE 

The iRMX 86 Operating System is a real-time, multitasking operating 
system for iAPX 86,88-based microcomputers. The system consists of a 
Nucleus and various optional subsystems, as follows: 

• Nucleus 
System. 

the central control element of the Operating 
It coordinates system activities. 

• Terminal Handler -- provides the interface between an executing 
application program and the terminal. 

• Basic I/O System -- provides generalized but powerful file and 
device access capabilities, while making few or no assumptions 
about an application's specific requirements. 

• Extended I/O System -- features ease-of-use, buffering, 
synchronization, and shorter parameter lists for system calls. 

• Human Interface -- provides an interactive command set for 
performing file management and various utility functions. Also 
provides a set of system calls that expedite creation of new 
non-resident application programs that can be loaded and 
executed by keyboard commands. 

• Application Loader -- loads absolute files, load-time locatable 
files, and position-independent code files into memory from 
secondary storage. 

• Bootstrap Loader 
system startup. 

loads executable modules into memory at 

• Debugger -- provides monitoring and debugging capabilities 
during program development. 

• Other available software includes the Start-Up System, a Files 
Utility system, a Patching Utility, and a Universal Development 
System Interface-

The software that you write runs under the supervision of the Nucleus and 
in conjunction with any desired optional subsystems. 

When you receive them from Intel, the iRMX 86 Nucleus and other Operating 
System software modules reside on diskettes as relocatable libraries. 
You use an INTELLEC Development System to combine this iRMX 86 code with 
your application code to produce object code that executes on an 
iAPX 86-based microcomputer. The end result is an iRMX 86 application 
system that is configured to your specific requirements. 

1-1 



INTRODUCTION TO THE iRMXlII 86 PACKAGE 

INVENTORY 

Your shipment of iRMX 86 materials includes fourteen manuals (including 
this one) and ten diskettes. The manuals are: 

• iRMX 86 INSTALLATION GUIDE -- This manual which you are now 
reading helps you to make specific iRMX 86-required hardware 
modifications, install and run the demonstration system, and use 
the iRMX 86 Start-Up System, Files Utility, and Patching Utility. 

• INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM This manual 
introduces you to the iRMX 86 product. Read this manual before 
any other in the supplied set. 

• iRMX 86 NUCLEUS REFERENCE MANUAL -- This manual is the primary 
reference source for the Nucleus. Knowledge of the Nucleus 
architecture and its interaction with other system modules is 
essential. 

• iRMX 86 TERMINAL HANDLER REFERENCE MANUAL -- This manual contains 
both operator instructions and programming information for 
iRMX 86 systems that use a terminal. 

• iRMX 86 DEBUGGER REFERENCE MANUAL -- This manual describes the 
use and capabilities of the iRMX 86 Debugger. 

• iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL -- This manual is the 
primary reference source for the Basic I/O System. Both this 
manual and the iRMX EXTENDED I/O SYSTEM REFERENCE MANUAL should 
be studied before you come to a decision as to which I/O system 
best meets your application requirements. 

o iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL -- This manual is 
the primary reference source for the Extended I/O System. Since 
the Extended I/O System is a superset of the Basic I/O System, 
you should also read the the BASIC I/O SYSTEM REFERENCE MANUAL 
(the Basic I/O System calls may be ignored) before installing the 
Extended I/O System on your configuration. 

• iRMX 86 LOADER REFERENCE MANUAL -- This manual describes the 
Bootstrap Loader, which can load and start iRMX 86 application 
systems, and the Application Loader, which enables application 
systems to perform loading under iRMX 86 control. 

• iRMX 86 HUMAN INTERFACE REFERENCE MANUAL -- This manual is the 
primary reference source both for using the Human Interface 
commands to perform file management and utility functions, and 
for using the Human Interface system calls to write new 
applications that can be invoked by interactive keyboard commands. 

• iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL - This manual 
describes selected features of the Operating System, not covered 
in the other manuals, which are for use by system programmers 
only. 

1-2 



INTRODUCTION TO THE iRMX- 86 PACKAGE 

• iRMX 86 PROGRAMMING TECHNIQUES - This manual provides system and 
application programmers with techniques that reduce development 
time. 

• GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 AND iRMX 88 I/O 
SYSTEMS - This manual describes how to write device drivers that 
interface with the iRMX 86 I/O System. 

• iRMX 86 CONFIGURATION GUIDE - This manual describes how to build 
a software application system by combining the Operating System 
and application software. 

• iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL - This manual 
describes how to use the disk verification utility and describes 
the structure of an iRMX 86 volume that contains named files. 

Nine of the ten diskettes in your iRMX 86 package will be in either 
double-density or single-density ISIS-II format, depending on which 
version you specified when you ordered your system (each version has its 
own Product Order Number). Both sets have the same contents. The 
remaining diskette, that containing the Start-Up System, is 
single-density, with iRMX 86 format. 

The nine ISIS-II diskettes included in either set are as follows: 

• Nucleus diskette 

o Terminal Handler, Debugger diskette 

o Basic I/O System diskette 

o Extended I/O System diskette 

• Loader diskette (Application and Bootstrap Loaders) 

o Human Interface diskette 

• Nucleus Demonstration diskette 

• Utilities diskette 

• Universal Development System Interface diskette 

RECOMMENDATIONS 

To prevent the possibility of accidentally destroying system software, 
you should make at least one backup copy of each ISIS-II and iRMX 86 
diskette that you are planning to use. Keep the Intel-supplied diskettes 
as masters. Use the copies for system development. 

1-3 

I 





CHAPTER 2. iRMXlII 86 DEVELOPMENT ENVIRONMENT 

The development of an iRMX 86-based application system requires several 
hardware and software components. Some of these components are always 
required and others are a function of the particular application system. 
Figure 2-1 shows a typical development hardware environment. 

DISKETTE DRIVES 

KEYBOARD 

IRMX 86 
RELEASE 

DISKETTES 

OR 

+ 

ICE-86 

iSBC 957A/B 

INTELLEC DEVELOPMENT SECONDARY STORAGE 
SYSTEM CONTROLLER "'--------

I' 
I \ 
I \ 
I \ 
~ \ 

\~-rr7-r+r\ 

\ I 
\ 

fL--
TARGET . 
SYSTEM 
CHASSIS 

SECONDARY 
STORAGE 

DEVICE 

PROCESSOR BOARD 

TTY OR 
CRT 

Figure 2-1. iRMX~ 86 Development Environment Example 

2-1 

t 



iRMX- 86 DEVELOPMENT ENVIRONMENT 

Figure 2-1 illustrates the interface between the INTELLEC Development 
System, where the software is developed, and the target system where the 
application system actually runs. The figure shows devices that are 
commonly attached to the target system. However, you can also attach 
other available devices. 

GENERAL REQUIREMENTS 

The following items are required in the development of any iRMX 86-based 
application system. 

DEVELOPMENT SYSTEM 

• An INTELLEC Development System with CRT, keyboard, at least four 
disk drives, and 64K bytes of RAM. 

• A diskette containing the ISIS-II Operating System. 

• An ASM86 Macro Assembler and/or PL/M-86 compiler, as well as the 
ASM86 Software Development Utilities, on diskette. 

• Diskettes containing the Intel-supplied iRMX 86 software. 

TARGET SYSTEM 

• An iAPX 86,88-based microprocessor, which is the basic element of 
the application system. You can use 8086, 8284A, 8259A, 8253, 
and 825lA components for your target system. However, "the 
iSBC 86/12A board is suggested for prototyping and debugging. 

• A chassis to supply power to the processor board and any other 
system boards. 

• Enough memory to contain the Nucleus, selected subsystems, and 
your application jobs. 

• If your application uses the Application Loader, the Human 
Interface, or the Bootstrap Loader, you must have secondary 
storage device(s) and appropriate controllers. 

You configure all of your software with the Development System and then 
transfer it to the target system for execution. You can use any of the 
following products to transfer code to the target system RAM: 

• The ICE-86 In-Circuit Emulator 

• The iSBC 957A/B Interface and Execution Package 

• The Bootstrap Loader 

2-2 



iRMXm 86 DEVELOPMENT ENVIRONMENT 

The lCE-86 In-Circuit Emulator and the iSBC 957A/B Interface and 
Execution Package transfer code from an ISIS-II diskette on the INTELLEC 
Development System, while the Bootstrap loader transfers code from an 
iRMX 86 diskette in a target system drive. 

After you have tested the code, you can burn it into PROM and place the 
PROM on the target system to eliminate using the ICE-86 emulator or the 
iSBC 957A/B package to load the code. 

If you do n~t wish to burn the code into PROM or ROM, use either the 
Start-Up System or the Files Utility with the iSBC 957A/B package to 
place your tested code on an iRMX 86 formatted diskette or in bubble 
memory, and then use the Bootstrap Loader to load the code directly into 
memory. 

APPLICATION-DEPENDENT REQUIREMENTS 

You may need ad~itional hardware for your target system, depending on 
your application requirements: 

• If your application includes the Terminal Handler or the 
Debugger, connect an RS232 interface terminal to the serial I/O 
port of the iSBC 86/12A board. 

• If your application includes the I/O System and you intend to use 
named or physical files, place at least one controller board in 
the chassis with the iSBC 86/12A board. You can use any of the 
following controller boards: 

iSBC 204 
iSBC 206 
iSBC 208 
iSBC 215A or iSBC 215B 
iSBX 218 
iSBC 220 
iSBC 254 

Connect the controllers to their associated secondary storage devices. 
If only stream files are used, the I/O System can be used without a 
controller board. 

If your application system includes the I/O System and you are using 
disks, you must also use the Start-Up System, the Files Utility, or the 
Human Interface subsystem to format disks for use in your target system 
disk drives. These systems are described later in this manual. 

Target system memory requirements vary, depending on the type of software 
included. Table 2-1 lists the maximum memory requirements for 
Intel-supplied products. These requirements are divided into ROM and RAM 
requirements; however, if you first test your system in RAM, RAM must be 
large enough to satisfy all memory requirements. 



iRMX- 86 DEVELOPMENT ENVIRONMENT 

Table 2-1. Memory Requirements 

Code and Constants Static- Dynamic-
Minimum Maximum Data Data 

Size Support Size Support Memory Memory 

Nucleus 12.6K N/A 24.3K N/A 2 Bytes 1.9K* 

Terminal Handler 2.7K 14.5K 2.7K 14.8K .2K 1.4K 

Debugger 28.3K 15.8K 28.3K 16.1K 1.2K 6.0K 

Basic I/O System 24.5K 14.6K 49.0K 19.6K .1K 2.8K 

Extended I/O System 7.3K 64.0K 11.6K 69.7K .1K 1.5K 

Application Loader 3.9K 64.0K 9.0K 79.4K .1K .5K 

Bootstrap Loader .4K N/A 1.9K N/A 6.4K*** N/A 

Human Interface 15.8K** 90.8K 16.5K** 91.1K .1K 8.0K 

* 
** 

*** 

Does not include memory required for the user-defined Root Object 
Directory. 
Does not include non-resident commands which range in size from 
3K to 12K. 
Available to Nucleus for allocation as Dynamic-Data Memory. 

Explanation of Headings and Symbols: 

Code and Constants: 

Static-Data Memory: 

Memory required to hold code and the constants 
associated with code. This memory may be ROM, 
PROM, or RAM 

Memory required to hold variables associated 
with code. This memory is not dynamically 
allocated by the operating system and must be 
RAM. 

Dynamic-Data Memory: Memory required to execute the code. This 
memory is dynamically allocated during 
operating system initialization and must be 
RAM. 

Support: The minimum number of bytes of other iRMX 86 
components required to support the indicated 
iRMX 86 component. 

K: 1024 bytes. 

2-4 



iRMX· 86 DEVELOPMENT ENVIRONMENT 

There will also be application-related memory in your system. This 
memory is required for application code, constants, variables, and 
dynamically allocated structures. The latter includes both memory 
explicitly allocated by the application and memory implicitly allocated 
as the result of calls to iRMX 86 functions. This memory is divided 
between RAM and ROM. 

2-5 





CHAPTER 3. HARDWARE CONSIDERATIONS 

This chapter describes the hardware modifications and installation 
procedures that apply specifically to iRMX 86 systems that are to run on 
iSBC 86/12A boards. Topics covered include the following processes: 

• Modifying the iSBC 86/12A board and other associated boards by 
connecting jumper posts and setting switches. 

• Arranging the boards in the chassis. 

• Installing the cables. 

Although this chapter contains instructions on how to modify hardware 
components, it is primarily useful in regard to the modifications needed I 
to enable the Start-Up System or the Files Utility to run. It will also 
allow you to use the line printer driver. Furthermore, it is assumed 
that the boards have not previously been modified; that is, that the 
factory jumpers, and only the factory jumpers, are in place. Appendix A 
contains a list of factory-installed jumpers for each of the iS~C 86/12A, 
204, 206, 208, 215A, 215B, 220, 254 and iSBX 218 boards. I 
You might have to make additional changes to support specific hardware, 
such as a particular brand of disk drive. When you begin development, 
your jumpering requirements will depend upon your application. 
Information of this type is not included here but can be found in the 
appropriate hardware reference manuals. I 

BOARD MODIFICATIONS 

Before you insert your iSBC 86/12A board, controller boards, and memory 
boards into the chassis, you must modify certain jumper connections and 
switch settings on these boards. The following sections describe the 
modification process. Each section on a controller board assumes that 
you are using only that type of controller with the iSBC 86/12A board. 

3-1 



I 

I 

I 

HARDWARE CONSIDERATIONS 

iSBC 86/12A BOARD MODIFICATIONS 

Jumpering is the means whereby interrupt levels are assigned to their 
various purposes. The Start-Up System 1 s Terminal Handler uses master level 
6 for reading and master level 7 for writing; controllers use master levels 
3, 4, and 5; and the system clock uses level 2. To support these interrupt 
assignments, make all of the following jumper connections: 

Level 
2 
3 
4 
5 
6 
7 

Connection 
79-83 (default) 
70-78 
69-77 
68-76 (default) 
75-82 
74-90 

Most of the jumpering necessary to support timing and the USART is done at 
the factory. The only additional jumper that is needed is 51-52. 

To place the dual port RAM in the correct 128K byte area of the 1-megabyte 
address space, remove jumper 125-126 and install jumper 127-128. 

The switch settings on switch S1 must be set as follows: 

Switch 
1 
2 
3 
4 
5 
6 
7 
8 

Setting 
ON 

OFF with iSBX 300 multimodule; otherwise, ON 
OFF 
OFF 
OFF 
OFF 
ON 
OFF 

Additional jumper changes are required if your are using either the iSBC 
957A or the iSBC 957B package. The iSBC 957A package requires that the 
factory-installed jumpers 94-96 and 97-98 be in place. The iSBC 957B 
package requires that the factory installed jumpers 94-96 be in place, that 
the jumper 97-98 be removed, and that jumper 97-99 be installed. If 
sockets A28, A29, A46, and A47 of your iSBC 86/12A board contain memory 
other than the iSBC 957A or iSBC 957B PROMs, consult the iSBC 86/12A SINGLE 
BOARD COMPUTER HARDWARE REFERENCE MANUAL for information regarding the 
setting of switches 7 and 8 and the jumpering of posts 94 through 99. 

Jumper posts 7 through 34 are related to parallel port I/O configuration 
and, in general, can be connected as you wish. However, if you are using 
the iSBC 957A/B package, you must use it with the parallel port and make 
the appropriate jumpering connections as described in either the iSBC 957A 
INTELLEC -- iSBC 86/12A INTERFACE AND EXECUTION PACKAGE USER'S GUIDE or the 
USER'S GUIDE FOR THE iSBC 957B iAPX 86,88 INTERFACE AND EXECUTION PACKAGE. 

Jumper 12-21 must not be installed if there is an iSBC 337 multimodule on 
the iSBC 86/12A board. Otherwise, the jumper 12-21 (ground to TEST/pin) 
must be in place. Master interrupt level 0 is recommended for an 

3-2 



HARDWARE CONSIDERATIONS 

iSBC 337. Use interrupt pin E81 to support this level. Refer to the I 
iSBC 337 MULTIMODULE NUMERIC DATA PROCESSOR HARDWARE REFERENCE MANUAL for a 
description of the installation procedure. 

All of the remaining factory-installed jumpers are appropriate for use with 
the Start-Up System and the Files Utility. You may change these jumpers to 
meet special conditions, such as an unusual bus priority resolution scheme. 

Making the changes that allow the use of the line printer driver may be one 
such special condition. To use the line printer driver, the following 
changes must be made to the iSBC 86/12A board. 

Master interrupt level 1 is used by the line printer. To support this 
interrupt level connect jumpers E84 and E80. It is also necessary to 
remove the jumpers E13-E14 and E32-E33 and install a jumper E22-E32. You 
will also need to plug the driver IC, 7438 (P.N. 100908-001), into location 
All and the terminator packs, iSBC 902 (P.N. 4500645-01), into locations 
A10, A12, and Al3. The parallel connection to the iSBC 957A/B monitor can 
not be used if the line printer is used - so whatever changes were made for 
parallel port usage will have to be returned to the orginal factory 
settings. 

~he line printer driver interfaces the Basic I/O system physical file 
driver to the 8255 parallel I/O port connected to a Centronix type line 
printer. In order to connect the iSBC 86/12A board and the Centronix type 
printer, a cable with the following pin assignments must be used. 

Table 3-1. Parallel I/O Connector J1 Pin Assignments 

Pin Function Pin Function 

23 Character strobe to printer 37 Data Bit 5 
25 Printer ready (online) 39 Data Bit 4 
27 Paper error status 41 Data Bit 3 
29 Character acknowledge from 43 Data Bit 2 

printer 45 Data Bit 1 
33 Data Bit 7 47 Data Bit 0 
35 Data Bit 6 

All even pin numbers are tied to ground as logic ground returns. 

iSBC 204 BOARD MODIFICATIONS 

The iRMX 86 software expects interrupts from the iSBC 204 board to come 
in at level 5. To prepare for this, remove jumper 63-67 (for level 2) 
and install jumper 67-71. 

3-3 



I 

HARDWARE CONSIDERATIONS 

Select an iSBC 204 base address of OAOH by setting the S2 switches as 
follows: 

Switch 
4 
5 
6 
7 

Setting 
~F 

ON 
OFF 
ON 

Because the Basic I/O System configuration for the Start-Up System and 
Files Utility supports only 8-inch diskette devices, you must leave 
jumpers 23-24 and 37-38 in place. 

No other jumpering is required, but you might want to expand the port 
address availability of the iSBC 204 board on the MULTIBUS interface by 
setting it for 12-bit addressing. This is done by removing jumper B-C 
from pad WI and replacing it with jumper A-B. 

If your iSBC 204 board has two 8271 Floppy Disk Controller chips, remove 
jumpers 75-76 and 77-78. 

iSBC 206 BOARD MODIFICATIONS 

Set the iSBC 206 channel board to interrupt the iSBC 86/12A board at 
level 4. This. is done by setting rotary switch S2 to position 4. 

The required base address of 68H is set by making the following SI switch 
settings on the channel board: 

Switch Settins 
1 OOF 
2 ~F 

3 ON 
4 ~F 

5 OFF 
6 ON 
7 ON 
8 OFF 

The settings of switches SWI and SW2 on the interface board are 
device-dependent. The physical names of your devices depend upon the 
size of the sectors on the devices. If you use 512-byte sectors, the 
physical name of the device is DO, whereas if you use 128-byte sectors, 
the physical name of the device is DSO. (Table 3-2 contains complete 
information concerning physical device names.) The SW2 switch settings 
are as follows: 

Switch 
1 to 4 
5 to 8 
5 to 8 

Sector Size 
128 or 512 

512 
128 

3-4 

Settins 
OFF 
ON 
OFF 



HARDWARE CONSIDERATIONS 

iSBC 208 BOARD MODIFICATIONS 
, 

The iRMX 86 software expects interrupts from the iSBC 208 board to come 
in at levelS. To prepare for this, install a jumper from E79 to E84. 

Select an iSBC 208 base address of OOOOH. This is the way it comes from 
the factory. 

You should expand the port address availability of the iSBC 208 board on 
the MULTIBUS interface by setting it for 16-bit addressing. This is done 
by removing the shorting plug connecting E45 and E49 and installing the 
plug between E41 and E45. 

Because the Basic I/O System configuration for the Start-Up System and 
Files Utility support only 8-inch diskette devices, terminal posts E4 and 
E5 must be left in the standard factory configuration (jumper link 
removed). 

iSBC 215 AND iSBX 218 BOARD MODIFICATIONS 

Your i8BC 215 board should be set for level 4 interrupts. This is done 
by removing jumper C-5 (for levelS) on pad WI9 and installing jumper C-4. 

The wake-up address of 0100H is set at switches Sl and S2. The Sl I 
switches 1 through 7 should be OFF, as should the S2 switches 3 through 
10. 81 switch 8 should be ON. 

To provide 16-bit bus compatibility, S2 switches 1 and 2 should be ON and 
the following jumper connections should be made: 

Pad Connection 
W18 1-2 
W20 1-3 
W21 1-3 

The jumpering of pads W1, W2, W5 through W10, W13 through W17, and W22 
depends upon the type of Winchester disk device being used with the 
iSBC 215 board. Refer to the iSBC 215 WINCHESTER DISK CONTROLLER 
HARDWARE REFERENCE MANUAL for instructions as to these jumpers. 

The iSBX 218 multimodule must be plugged into socket J4 of the iSBC 215 
board. Related to this, the default jumpering on pads W3, W4, W11, and 
W12 is appropriate for the iRMX 86 environment, except that you must 
install jumper 1-3 on pad W11. 

On the iSBX 218 board, you must install jumper A-B on pad WI to support I 
direct memory access. In addition, install jumper A-C on each of the 
pads W3 through W7 to support 8-inch drives. 

3-5 



I 
I 

I 

HARDWARE CONSIDERATIONS 

iSBC 220 BOARD MODIFICATIONS 

Your iSBC 220 board should be set for level 4 interrupts. This is done 
by installing· the jumper link between W4-c and W4-4. 

The wake-up address of 0100H is set at switches SI and S2. The SI 
switches 1 through 7 should be OFF, as should the S2 switches 3 through 
10. SI switch 8 should be ON. To provide 16-bit bus compatibility, S2 
switches 1 and 2 should be ON. . 

iSBC 254 BOARD MODIFICATIONS 

Set your iSBC 254 board for level 3 interrupts. Do this by removing 
jumpers 67-68 and 75-76, and installing jumper 73-74. Later, when you 
prepare your hardware for purposes other than running the Start-Up System 
or Files Utility, use interrupt level 0, 1, 2, or 3 with this board. 

The board must be set up for a base address of 800R, with 12-bit 
addressing. To arrange this, remove jumper 45-46,install jumper 47-48, 
and leave jumper 29-30 installed. 

MEMORY BOARD JUMPER CONNECTIONS 

Connect the jumpers on your iSBC 032/048/064 RAM boards or your 
016A/032A/064A/028A/056A Ram boards to assign memory to the correct 
memory locations. Refer to the iSBC 032/048/064 RANDOM ACCESS MEMORY 
BO~~~S F_~F~W~RE FEFEFENCE ~_A~U~L or the iSBC 016A/032A/064A/028A/056A p~~ 
BOARDS HARDWARE REFERENCE MANUAL for the procedure. 

CHASSIS BOARD ARRANGEMENT 

A typical hardware environment for iRMX 86 applications includes several 
master boards, which contend for control of the MULTIBUS· interface, In 
order to prevent conflict, it is necessary (even if you have only one 
master board) to assign a bus contention priority to each master board in 
your system. The possible master boards in an iRMX 86 environment are· 
the iSBC 86/12A, 204, 206 channel, 208, 215A, 215B, 220, and 254 boards. 
Two priority schemes are available: serial, which supports up to three 
bus masters; and parallel, which supports an unlimited number of bus 
masters but is more difficult to implement. 

The following paragraphs assume the use of an iSBC 604 Cardcage/
Backplane, optionally with an iSBC 614 Expansion Cardcage/Backplane. 
These cardcage/backplanes are used in the iSBC 655, iSBC 660, and ICS 80 
chassis. 

3-6 



HARDWARE CONSIDERATIONS 

In the serial priority scheme, the top slot (J2) of the cardcage has the 
highest priority, and the rest of the slots have progressively lower 
priorities, with slot J5's priority being the lowest. To implement the 
serial priority scheme, ground the BPRN/ signal of the highest priority 
bus master by jumpering between posts Band N on an iSBC 604 
Cardcage/Backplane or between posts Band L on an iSBC 614 Expansion 
Cardcage/Backplane. If you need to leave a slot empty, jumper the 
priority signal around the slot, as described in the iSBC 86/12A SINGLE 
BOARD COMPUTER HARDWARE REFERENCE MANUAL. 

If you find it necessary to use the parallel priority scheme, the 
procedure for implementing it can be found in the iSBC 86/12A SINGLE 
BOARD COMPUTER HARDWARE REFERENCE I{ANUAL, and also in the reference 
manuals for the iSBC 660 and iCS 80 chassis. 

The order in which you arrange the boards in the cardcage depends upon 
the type and number of bus masters in your system and upon their physical 
placement requirements. Physical requirements include placing the 
iSBC 206 channel and interface boards in adjacent slots and, if you are 
using the ICE-86 In-Circuit Emulator, placing the iSBC 86/12A board in 
the top slot. Moreover, if you are using an ICE-86 emulator with an 
iCS 80 chassis, you will need an extender card in the top slot. 

In general, the following guidelines can help you assign priorities to 
bus masters: 

o The iSBC 204 board lacks the ability to wait for access to the 
MULTIBUS interface, so it should be highest in priority.' 

• The iSBC 208 board lacks the ability to wait long for access to 
the MULTIBUS, so it should occupy a high priority slot. 

o The iSBC 254 board has only limited ability to wait for access, 
so it should be high in priority. 

• The iSBC 206, 215 (including the iSBX 218), and 220 boards can 
wait for access, so they need not be high in priority. 

• The iSBC 86/12A board should be lowest in priority. 

You should be prepared to experiment with various board arrangements in 
the chassis, perhaps even to violate these guidelines. 

CABLE CONNECTIONS 

After you have placed the boards in the chassis, install the cables that 
join the boards to various parts of the system. If you are using the 

I 

Terminal Handler, Debugger, I/O System Terminal Driver, or Start-Up I 
System, connect the terminal of your iRMX 86 system to the serial I/O 
port of the iSBC 86/12A board. The iSBC 86/12A SINGLE BOARD COMPUTER 
HARDWARE REFERENCE MANUAL describes the procedure. 

3-7 



I 

HARDWARE CONSIDERATIONS 

If you are using the I/O System with secondary storage devices, connect 
the drives to their associated I/O connectors on the controllers boards. 

Connect the cables for the ICE-86 In-Circuit Emulator or the iSBC 957A/B 
package, depending on which package you use to load your software. If 
you use the ICE-86 Emulator to load your software, install the ICE-86 
boards in the Development System chassis and connect the ICE-86 cable to 
the 8086 socket on the iSBC 86/12A board. Refer to the ICE-86 IN-CIRCUIT 
EMULATOR OPERATING INSTRUCTIONS FOR ISIS-II USERS for a description of 
this process. 

If you use the iSBC 957A/B package to load your software, install the 
PROM set on the iSBC 86/12A board and use the cable to connect the UPP 
output on the Development System to the parallel I/O port on the 
iSBC 86/12A board. If you are not using the target system terminal, you 
can connect to either the serial or the parallel I/O port on the 
iSBC 86/12A board. Refer to the iSBC 957A INTELLEC -- iSBC 86/12A 
INTERFACE AND EXECUTION PACKAGE USER'S GUIDE or the USER'S GUIDE FOR THE 
iSBC 957B iAPX 86,88 INTERFACE AND EXECUTION PACKAGE for a description of 
this process. 

LOGICAL AND PHYSICAL DEVICE NAMES 

When using the Start-Up System or the Files Utility, you reference files 
by means of a device name/file name (or path name) combination. The 
device name is a "logical" name of your choice that is assigned when the 
devic~ is being attached (ATTACHDEV in the Files Utility and ATTACIIDEVICE 
in the Start-Up System). Before these assignments are made; the iRMX 86 
Operating System knows devices by their "physical" names, which are given 
in Table 3-2 for each applicable device. These physical names are 
associated with logical names by means of an attach device command. 

Suppose, for example, that you want to copy the file JOBA from an ISIS-II 
diskette on unit I of an INTELLEC Development System to a file of the 
same name on an iRMX 86 diskette on unit 0 of a Shugart SA800 drive 
interfaced with an iSBC 204 controller that is jumpered for 128-byte 
sectors. Suppose further that the Shugart device (whose physical name is 
FO) has been given the logical name :DRIVE3:. To initiate the copy 
operation with the Files Utility, enter the following: 

UPCOPY :Fl:JOBA TO :DRIVE3:JOBA 

3-8 



HARDWARE CONSIDERATIONS 

Table 3-2. iRMX- 86 Physical Device Names 

Device Device Unit Bytes per 
Names Type Number Sides Density Sector 

Flexible Disk Drives 

FO 204 Shugart SA800 0 1 Single 128 
Fl 204 Shugart SA800 1 1 Single 128 
FXO 204 Shugart SA800 0 1 Single 512 
FXl 204 Shugart SA800 1 1 Single 512 
AFO 208 Shugart SA800 0 1 Single 128 
AFI 208 Shugart SA800 1 1 Single 128 
AFDO 208 Shugart SA800 0 1 Double 256 
AFDI 208 Shugart SA800 1 1 Double 256 
AMFO 208 Shugart SA410 0 1 Double 256 
AMFI 208 Shugart SA410 1 1 Double 256 
AFDDO 208 Shugart SA850 0 2 Double 256 
AFDDI 208 Shugart SA850 1 2 Double 256 
AFDXO 208 Shugart SA850 0 2 Double 1024 
AFDXl 208 Shugart SA850 1 2 Double 1024 
WFO 218 Shugart SA800 0 1 Single 128 
WFI 218 Shugart SA800 1 1 Single 128 
WFDO 218 Shugart SA800 0 1 Double 256 
WFDI 218 Shugart SA800 1 1 Double 256 
WMFO 218 Shugart SA410 0 1 Double 256 
WMFI 218 Shugart SA410 1 1 Double 256 
WFDDO 218 Shugart SA8s0 0 2 Double 256 
WFDDI 218 Shugart SA850 1 2 Double 256 I 
WFDXO 218 Shugart SA850 0 2 Double 1024 
WFDXl 218 Shugart SA850 1 2 Double 1024 

Hard Disk Drives 

DO 206 0 512 
Dl 206 1 512 
DSO 206 0 128 
DSI 206 1 128 

3-9 



HARDWARE CONSIDERATIONS 

Table 3-2. iRMXm 86 Physical Device Names (continued) 

Device Device Unit Bytes per 
Names Type Number Sides Density Sector 

Winchester Disk Drives 

IWO 215 Priam 3450 1024 
MWO 215 Memorex 101 1024 
PWO 215 Pertec D8000 1024 
SWO 215 Shugart SAI002 1024 

Storage Module Disk Drives 

SMDO 220 0 1024 
SMDI 220 1 1024 

Bubble Memory Drive 

BO 254, 4 bubbles 256 

In addition, the byte bucket has the physical device name BB, and the 
terminal has the name TO. 

3-10 



CHAPTER 4. NUCLEUS DEMONSTRATION SYSTEM 

The Nucleus demonstration system is contained on one of the diskettes 
shipped with the iRMX 86 package. It can be used to familiarize yourself 
with system operation and to test system performance. 

The Nucleus demonstration diskette contains a complete configuration 
module for an application system. This application system consists of 
the Nucleus, the Debugger, the root job, and an application job called 
TBASIC, a BASIC interpreter which allows you to write programs that 
manipulate iRMX 86 objects. This chapter describes what hardware and 
software you need to run the Nucleus demonstration system, how to load 
the system, and how to use it. 

HARDWARE REQUIREMENTS 

You need the following equipment to run the Nucleus demonstration system: 

o An INTELLEC Microcomputer Development System with CRT, keyboard, 
and at least two disk drives 

o An iSBC 86/12A board and chassis 

o 128K of contiguous RAM, starting at address 0, for use in the 
target system 

o A RS232 protocol terminal 

o Either the lCE-86 In-Circuit Emulator or the iSBC 957A/B package 

You need the terminal in order to communicate with the application 
system, and either the ICE-86 emulator or the iSBC 957A/B package to load 
the system from diskette to memory. 

Since you are using the Debugger in this system, make sure that the 
iSBC 86/12A board is jumpered to support the interrupt levels that the 
terminal uses. 

The Nucleus demonstration system assumes that your terminal operates at 
9600 baud. If it operates at a different baud rate, you must reconfigure 
the Debugger and specify the correct rate. Refer to the iRMX 86 
CONFIGURATION GUIDE fo.r the procedures. 

4-1 



I 

I 

I 

NUCLEUS DEMONSTRATION SYSTEM 

LOADING THE NUCLEUS DEMONSTRATION SYSTEM 

You can use either the ICE-86 In-Circuit Emulator or the iSBC 957A/B 
package to load the Nucleus demonstration system from diskette to 
memory. Using either product, load the following files from diskette to 
memory: 

NUCLUS.DMO 
DEBGGR.DMO 
TBASIC.DMO 
ROOTJB.DMO 

Load file ROOTJB.DMO last because it contains instructions that 
initialize iAPX86 registers to their proper values. 

To load and start the Nucleus demonstration system with the ICE-86 
Emulator, place a system diskette containing ICE-86 software in drive FO 
of the Development System and the Nucleus demonstration diskette in drive 
Fl. Enter the following commands at the keyboard of the Development 
System (the files are already located): 

ICE86 
LOAD :FI:NUCLUS.DMO 
LOAD :FI:DEBGGR.DMO 
LOAD :FI:TBASIC.DMO 
LOAD :Fl:ROOTJB.DMO 
GO 

Refer to the ICE-86 IN-CIRCUIT EMULATOR OPERATION INSTRUCTIONS FOR 
ISIS-II USERS for complete instructions on the use of the ICE-86 Emulator. 

To load and start the Nucleus demonstration system with the iSBC 957A/B 
package, place a system diskette containing the iSBC 957A/B software in 
drive FO of the Development System and the Nucleus demonstration diskette 
in drive Fl. Enter the following commands at the keyboard of the 
Development System if you are using the iSBC 957B package: 

APXLOD 
L :FI:NUCLUS.DMO 
L : FI:DEBGGR.DMO 
L :FI:TBASIC.DMO 
L : FI:ROOTJB.DMO 
G 

If you are using the iSBC 957A package, enter "SBC861" instead of 
"APXLOD". The remaining commands stay the same. Refer to the iSBC 957A 
INTELLEC -- iSBC 86/12A INTERFACE AND EXECUTION PACKAGE USER'S GUIDE or 
the USER'S GUIDE FOR THE iSBC 957B iAPX 86,88 INTERFACE AND EXECUTION 
PACKAGE for complete instructions on the use of the iSBC 957A/B package. 

4-2 



NUCLEUS DEMONSTRATION SYSTEM 

A few seconds after you have entered the GO (or G) command at the 
Development System keyboard to start execution of the system, the 
following message appears on the terminal connected to the iSBC 86/12A 
computer, indicating that the TBASIC interpreter is ready for use: 

iRMX 86 TINY BASIC DEMO. V2.0 
READY 

USING THE NUCLEUS DEMONSTRATION SYSTEM 

After you have initiated execution of the Nucleus demonstration system, 
the TBASIC interpreter displays a "greater than" (» prompt at the 
terminal to indicate that it is ready for use. The characteristics of 
the TBASIC interpreter are similar to those of most BASIC interpreters. 
It allows you to enter and run a subset of BASIC language statements. It 
either interprets the statements as they are entered, or it stores: the 
statements in memory and processes them as a complete program. The 
TBASIC interpreter also contains commands and functions that perform such 
iRMX 86 functions as creating tasks and sending messages. The following 
sections describe the operations of the TBASIC interpreter. 

OPERATING MODES 

The interpreter has two operating modes: interactive and deferred. In 
interactive mode you enter an individual statement followed by a carriage 
return. The interpreter processes the statement and then prompts you for 
a new statement line. In deferred mode, you create entire programs by 
entering a series of statements that are stored by the interpreter. 
Interpretation and execution of the stored statements is deferred until 
you enter a RUN statement. 

You specify either the interactive or deferred mode by the absence or 
presence of a preceding line number for each statement line you enter. 

For the interactive mode, enter a statement line without a preceding line 
number. (Some statements, such as RUN, LIST and NEW can only be entered 
in interactive mode.) For example, the statements: 

RUN carriage return 
or 

NEW carriage return 

would be interpreted in interactive mode. As soon as the interpreter 
executes either statement, it will prompt you for a new statement. 

For deferred mode, enter a series of statement lines, each with a
preceding line number, space once, and enter a statement line. Line 
numbers are normally entered in sequential increments of 10. For 
example, the numbered statement lines: 

4-3 



NEW 
10 REM 

NUCLEUS DEMONSTRATION SYSTEM 

THIS IS A DEFERRED MODE EXAMPLE 
20 LET T = CRTSEGM (128,.S) 

70 GOTO 40 

RUN 

would be stored as part of a program, and the interpretatio~ and execution 
of all numbered statement lines would be deferred until the RUN statement 
was encountered. When you enter the RUN statement, the program statements 
are interpreted in sequential order (which is not necessarily the order in 
which you entered the statements). 

CHANGING STATEMENT LINES 

You can change a line of a program by entering a new line with the same 
line number. The interpreter disregards all but the last occurrence of a 
line with a given line number. You can delete a line by entering the line 
number alone, followed by a carriage return. The interpreter treats a line 
containing only a line number as a null operation. 

VARIABLES 

TBASIC supports two kinds of variables. A variable can be either a single 
alphabetic character (A-Z) or an array element. The intepreter does not 
distinguish between uppercase and lowercase characters. You can use one 
array only: the special character n@" followed by an index. The 
interpreter dynamically allocates space for this array. You can determine 
the amount of space available in the array by calling the SIZE function 
described later in this chapter. 

Examples: 

The following are acceptable variable names: 

A 
F 
@(3) 

@(expression) where expression is a BASIC expression as described 
later in this chapter 

4-4 



NUCLEUS DEMONSTRATION SYSTEM 

The following are not acceptable as variable names: 

5 
AB 
2C 
INTEG 
F(2) 

CONSTANTS 

The interpreter supports integer constants in the range -32768 through 
+32767. It always interprets constants as decimal numbers. 

EXPRESSIONS 

Valid expressions can be built from the following: 

• Integers (from -32768 to +32767) 

• Variables (A-Z) 

• Array elements (@(expression» 

• Arithmetic operators (+, - /, *) 

• Relational operators (>, <, >=, <=, -, # (not equal to» 

STATEMENTS AND FUNCTIONS 

The TBASIC interpreter contains a number of statements and functions. Some 
of these are normally associated with any BASIC interpreter and others 
perform iRMX 86 Nucleus operations. The following sections describe these 
statements and functions. Table 4-1 provides a convenient dictionary that 
lists all of the TBASIC statements and functions in alphabetical order. 

The following conventions are used in the descriptions of all statements 
and functions in this chapter. 

[parameter] 

I parameters I 
The brackets are used to delimit optional parameters. 

The vertical lines delimit a number of parameters 
separated with commas. You have the choice of entering 
anyone, but only one, of the delimited parameters. 

NOTE 
When entering TBASIC and iRMX 86 
functions, do not put any spaces 
between the delimiting parentheses. 

4-5 



NUCLEUS DEMONSTRATION SYSTEM 

Table 4-1. Statement And Function Dictionary 

Language 
Element Definition 

ABS Returns an absolute value. 

CATALOG Catalogs an object. 

CRTMBOX Creates a mailbox. 

CRTSEGM Creates a segment. 

CRTSEMA Creates a semaphore. 

CRTTASK Creates a task. 

DELMBOX Deletes a mailbox. 

DELSEGM Deletes a segment. 

DELSEMA Deletes a semaphore. 

DELTASK Deletes a task. 

FOR Starts a loop. 

GETTKNS Gets a token for an object •. 

GOSUB Transfers control to a subroutine. 

GOTO Transfers control to a line. 

IF Processes a statement conditionally. 

INPUT Allows variable assignment from the console. 

LET ~ Assigns a value to a variable. 

LIST Lists the current program. 

LO OKUP 0 Looks up a name in an object directory. 

NEW Clears memory of all source statements. 

NEXT Provides looping control. 

PRINT Prints a line at the console. 

RCVUNIT Receives units from a semaphore. 

RECVMSG Receives an object from a mailbox. 

4-6 

Page 

4-11 

4-13 

4-13 

4-14 

4-14 

4-15 

4-16 

4-16 

4-17 

4-17 

4-7 

4-17 

4-8 

4-8 

4-8 

4-9 

4-9 

4-10 

4-18 

4-10 

4-7 

4-10 

4-19 

4-19 



NUCLEUS DEMONSTRATION SYSTEM 

Table 4-1. Statement And Function Dictionary (continued) 

Language 
Element Definition 

REM Indicates a comment line. 

RESTASK Resumes a task. 

RETURN Returns control from a subroutine. 

RND Generates a random number. 

RUN Runs the stored program. 

SENDMSG Sends an object to a mailbox. 

SIZE Returns the size of the available array storage space. 

SLEEP Places the interpreter in the asleep state. 

SNDUNIT Sends units to a semaphore. 

STOP Stops program execution. 

SUSTASK Suspends a task. 

UNCATLG Deletes a name from an object directory. 

BASIC STATEMENTS 

This section describes the statements available with the TBASIC 
interpreter that are normally a part of any BASIC interpreter. 

FOR ••• NEXT 

4-11 

4-20 

4-11 

4-12 

4-11 

4-21 

4-12 

4-21 

4-22 

4-11 

4-22 

4-23 

These statements provide looping control. The formats are as follows: 

FOR var-name = start-val TO end-val [STEP inc-val] 

NEXT var-name 

where: 

var-name Variable used as a loop counter. 

4-7 



start-val 

end-val 

incr-val 

NUCLEUS DEMONSTRATION SYSTEM 

Starting value of the loop counter. 

Ending value of the loop counter. 

Amount that the loop counter increments each time a 
loop begins. If STEP inc-val is not specified, the 
default value is 1. 

The interpreter performs all statements delimited by the FOR and NEXT 
statements until the value of var-name is greater than end-val. You can 
use nested loops. 

GOSUB 

This statement transfers control to a subroutine. The format is as 
follows: 

GOSUB line-number 

where: 

line-number Line number containing the first statement of the 
subroutine. 

Subroutines may be recursive. 

GOTO 

This statement transfers control to another statement. The format is as 
follows: 

GOTO line-number 

where: 

line-number 

IF 

Line number of the statement to which GOTO transfers 
control. 

This statement provides for conditional execution of a statement. The 
format is as follows: 

IF condition statement 

~8 



where: 

condition 

statement 

INPUT 

NUCLEUS DEMONSTRATION SYSTEM 

Expression containing a relational operator. If 
condition is true, statement is executed; otherwise, 
control passes to the next line. 

A TBASIC statement that is executed only if condition 
is true. 

This statement halts a running program until you enter a numerical value 
through the keyboard. The value you enter is assigned to the variable in 
the statement, and the program resumes execution. The format is as 
follows: 

INPUT var-name 

where: 

var-name Variable name which is assigned a value from the 
console. 

When execution is halted, the interpreter displays the following prompt: 

var-name : 

and then waits for your input which it assigns to var-name. 

LET 

This statement assigns a value to a variable. The format is as follows: 

[LET] var-name = expression 

where: 

var-name Variable to which a value is assigned. 

expression Expression whose value is assigned to var-name. 

The word LET is optional. 

4-9 



NUCLEUS DEMONSTRATION SYSTEM 

LIST 

This statement lists part or all of the program currently in memory. You 
can enter this statement in interactive mode only. The format is as 
follows: 

LIST [line-number] 

where: 

line-number 

NEW 

Line number at which you want the listing to begin. 
LIST lists the remainder of the program. If you omit 
this parameter, the entire program is listed. 

This statement clears memory of all stored statements. You can enter 
this statement in interactive mode only. The format is as follows: 

NEW 

Failure to clear memory before entering a new program in deferred mode 
causes unpredicable results when the new program is executed. 

PRINT 

This statement prints a line at the console. The format is as follows: 

PRINT [field-width] >expression , "quoted-string"> [, • • .] 

where: 

field-width Decimal value indicating the width of the field for 
numeric 'output. Output is right-justified in this 
field. If this value is not specified, a default 
field width of 6 is assumed. 

expression Any legitimate expression; the expression is evaluated 
before printing. 

"quoted-string" A string of characters enclosed in double quotes; the 
string is printed exactly as ent"ered. 

• • • Indicates that a number of expressions and quoted 
strIngs, separated in the command by commas, can be 
printed on the same line. 

If you do not specify any parameters, the interpreter prints a blank line. 

4-10 



NUCLEUS DEMONSTRATION SYSTEM 

REM 

This statement allows you to place non-executable remarks in your source 
code. The format is as follows: 

REM comment 

where: 

comment Any comment you wish to place in your program list. 

RETURN 

This statement returns control from a subroutine. The format is as 
follows: 

RETURN 

RUN 

This statement starts the execution of the program currently stored in 
memory. You can enter this statement in interactive mode only. Its 
format is as follows: 

RUN 

STOP 

This statement stops the execution of the program. The format is as 
follows: 

STOP 

BASIC FUNCTIONS 

This section describes the functions available with the TBASIC 
interpreter that are normally a part of any BASIC interpreter. The 
functions can be used anywhere that TBASIC expressions can be used. 

ABS 

This function returns the absolute value of an expression. The format is 
as follows: 

ABS (expression) 

4-11 



where: 

expression 

~D 

NUCLEUS DEMONSTRATION SYSTEM 

Any valid TBASIC expression for which the absolute 
value is desired. 

This function returns a random number between 1 and the value of an 
expression. The format is as follows: 

RND (expression) 

where: 

expression 

SIZE 

Any valid TBASIC expression. RND returns a random 
number between 1 and expression. 

This function returns the current size (in bytes) of the available array 
storage space. This value is twice the number of elements available in 
array @. Since the interpreter uses a fixed amount of memory to store 
both programs and data, a large program is allowed fewer array elements 
than a small program. The format is as follows: 

SIZE 

iRMX 86 STATEMENTS AND FUNCTIONS 

This section describes the TBASIC statements and functions that allow you 
to make iRMX 86 system calls. The parameters for these statements and 
functions are very similar to the parameters for the equivalent Nucleus 
system calls. If you are unsure about the parameters for any of these 
BASIC statements and functions, refer to the iRMX 86 NUCLEUS REFE~NCE 
MANUAL for complete descriptions. 

Many of these statements and functions require you to supply a variable 
in which the interpreter returns the status of the iRMX 86 system call. 
Any variable you enter on the right-hand side of an equal sign (=) must 
be preceded by a period (.) if TBASIC is to return a value. You need 
not include the period when you later reference the variable. 

The functions in this section are described as if they are part of 
assignment statements. However, they can be used anywhere that a TBASIC 
expression can be used. 

4-12 



NUCLEUS DEMONSTRATION SYSTEM 

CATALOG 

This statement catalogs a named object in a given object directory. The 
format is as follows: 

CATALOG (job$token,object$token,"name",.stat$var) 

where: 

job$token Token for the job in whose object directory the object 
is to be cataloged. A zero value for this parameter 
indicates that the calling task's object directory is 
used. 

object$token Token for the object to be cataloged. 

"name" One- to twelve-ASCI I-character name under which the 
object is cataloged. This name must be enclosed in 
double quotes • 

• stat$var Variable in which the interpreter returns the status 
of the catalog operation. 

Example: 

The following statement catalogs an object as MYTASK in the object 
directory of the calling task's job (the interpreter's job). Variable T 
contains a token for the object to be cataloged. The status of the 
catalog operation is returned in variable S: 

CATALOG (0, T , '"MYTASK" , • S) 

CRTMBOX 

This function creates a mailbox and returns a token for it. The format 
is as follows: 

mbox$token 

where: 

mbox$token 

mbox$~lags 

CRTMBOX (mbox$flags,.stat$var) 

Variable in which the interpreter returns a token for 
the newly created mailbox. 

Value indicating how tasks are to be queued at the new 
mailbox. Possible values include: 

o First-in, first-out 

1 Priority 

4-13 



.stat$var 

Example: 

NUCLEUS DEMONSTRATION SYSTEM 

Variable in which the interpreter returns the status 
of the create mailbox operation. 

The following function creates a mailbox with priority-based queuing and 
returns a token for it in variable M. It returns the status of the 
create operation in variable S: 

LET M = CRTMBOX (1,.S) 

CRTSEGM 

This function creates a segment and returns a token for it. The format 
is as follows. 

seg$token 

where: 

seg$token 

size 

• stat$var 

Example: 

CRTSEGM (size,.stat$var) 

Variable in which the interpreter returns a token for 
the newly created segment. 

Size in bytes of the segment. A zero indicates that a 
64K-segment is requested • 

Variable in which the interpreter returns the status 
of the create segment operation. 

The following function call creates a 128-byte segment and returns a 
token for it in variable T. It returns the status of the create 
operation in variable S: 

LET T = CRTSEGM (128,.S) 

CRTSEMA 

This function creates a semaphore. The format is as follows: 

sema$token = CRTSEMA (init$value,max$value,sema$flags,.stat$var) 

where: 

sema$token 

init$value 

Variable in which the interpreter returns the token of 
the newly-created semaphore. 

Initial value of the semaphore. 

4-14 



max$value 

sema$flags 

.stat$var 

Example: 

NUCLEUS DEMONSTRATION SYSTEM 

Maximum value of the semaphore. 

Value indicating how tasks are to be queued at the new 
semaphore. Possible values are: 

° First-in, first-out 

1 Priority 

Variable in which the interpreter returns the status 
of the create semaphore operation. 

The following function call creates a semaphore with priority-based 
queuing, with initial and maximum values of 1, and returns a token for it 
in variable T. It also returns the status of the create operation in 
variable S: 

LET T = CRTSEMA (1,1,1,.S) 

CRT TASK 

This function creates a task and returns a token for that task. The 
format is as follows: 

task$token = CRTTASK(pri,@start$addr,data$seg,@stack$ptr, 
stack$size,O,.stat$var) 

where: 

task$token 

pri 

@start$addr 

data$seg 

@stack$ptr 

stack$size 

• stat$var 

Variable in which the interpreter returns a token for 
the created task. 

Priority of the task. 

Pointer indicating the task's starting address. 

Base value of the task's data segment. A zero 
indicates that the task dynamically initializes the 
data segment register. 

Pointer indicating the address of the stack segment. 
A value of 0:0 indicates that the Nucleus assigns a 
stack segment when the task is created. 

Size of the stack, in bytes • 

Variable in which the interpreter returns the status 
of the create task operation. 

4-15 



NUCLEUS DEMONSTRATION SYSTEM 

Example: 

The following function 'call creates a task with a priority of 129, a 
start address of 14AO:343 (obtained from the locate map for that task), 
and a stack size of 600. The task creates the data segment and the stack 
segment. The interpreter returns a token for the newly-created task in 
variable T, and the status of the operation in variable S: 

LET T = CRTTASK (129,@14AO:343,O,@O:O,600,O,.S) 

DELMBOX 

This statement deletes a mailbox. The format is as follows: 

DELMBOX (mbox$token,.stat$var) 

where: 

mbox$token 

• stat$var 

Example: 

Token of the mailbox to be deleted • 

Variable in which the interpreter returns the status 
of the delete mailbox operation. 

The following statement deletes a mailbox and returns the status of the 
delete operation in variable S. Variable T contains a token for the 
mailbox: 

DELMBOX (T,.S) 

DELSEGM 

This statement deletes a segment. The format is as follows: 

DELSEGM (seg$token,.stat$var) 

where: 

seg$token 

• stat$var 

Example: 

Token for the segment being deleted • 

Variable in which the interpreter returns the status 
of the delete segment operation. 

The following statement deletes a segment and returns the status in 
variable S. Variable T contains a token for the segment: 

DELSEGM (T,.S) 

4-16 

( 



NUCLEUS DEMONSTRATION SYSTEM 

DELSEMA 

This statement deletes a semaphore. The format is as follows: 

DELSEMA (sema$token,.stat$var) 

where: 

sema$token 

• stat$var 

Example: 

Token for the semaphore to be deleted • 

Variable in which the interpreter returns the status 
of the delete semaphore operation. 

The following statement deletes a semaphore and returns the status in 
variable S. Variable T contains a token for the semaphore: 

DELSEMA (T,.S) 

DEL TASK 

This statement deletes a task. The format is as follows: 

DELTASK (task$token,.stat$var) 

where: 

task$token 

stat$var 

Example: 

Token of the task to be deleted. 

Variable in which the interpreter returns the status 
of the delete task operation. 

The following statement deletes a task and returns the status of the 
delete operation in variable S. Variable T contains a token for the task 
to be deleted: 

DELTASK (T,.S) 

GETTKNS 

This function returns a token for an object. The format is as follows: 

obj$token = GETTKNS (select$val,.stat$var) 

4-17 



where: 

obj$token 

select$val 

• stat$var 

Example: 

NUCLEUS DEMONSTRATION SYSTEM 

The requested token. 

Value indicating the object for which a token is 
requested. Possible values are: 

0 Token for the interpreter task. 

1 Token for the interpreter- task's job. 

2 Token for the interpreter job's parameter object. 

3 Token for the root job • 

Variable in which the interpreter returns the status 
of the operation. 

The following function call returns a token for the root job in variable 
T and returns the status of the operation in variable S: 

LET T = GETTKNS (3,.S) 

LOOKUPO 

This function looks up a name in an object directory and returns a token 
for that object. The format is as follows: 

obj$token = LOOKUPO (job$token,"name",time$limit,.stat$var) 

where: 

obj$token 

job$token 

"name" 

time$limit 

• stat$var 

Variable in which the interpreter returns a token for 
the object. 

Token for the job in whose object directory the 
function searches for the name. A zero indicates that 
the interpreter's job is searched. 

Name under which the object is c~taloged. This name 
must be enclosed in double quotes. 

Number of system time units that the function is 
willing to wait for the name to become available • 

Variable in which the interpreter returns the status 
of the lookup operation. 

4-18 

( 
\ 



NUCLEUS DEMONSTRATION SYSTEM 

Example: 

The following function call looks up the name MYTASK in the interpreter's 
object directory, does not wait if the name is not there, and, if the 
desired entry is found, returns a token for the object in variable T. It 
returns the status of the operation in variable S: 

LET T = LOOKUPO (0, "MYSTASK", 0, .S) 

RCVUNIT 

This function receives units from a semaphore and returns the new value 
of the semaphore. The format is as follows: 

value = RCVUNIT (sema$token,units,time$limit,.stat$var) 

where: 

value 

sema$token 

units 

time$limit 

• stat$var 

Example: 

Variable in which the interpreter returns the number 
of units remaining in the custody of the semaphore 
after the units have been received. 

Token for the semaphore. 

Number of units to be received from the semaphore. 

Number of system time units the interpreter is to wait 
for the units • 

Variable in which the interpreter returns the status 
of the receive units operation. 

The following function call receives one unit from a semaphore and does 
not wait for the unit to become available. It returns the new value of 
the semaphore in variable V and the status of the receive operation in 
variable S. Variable T contains a token for the semaphore: 

LET V = RCVUNIT (T,1,O,.S) 

RECVMSG 

This function waits for an object at a mailbox and returns a token for 
the object if one is available. The format is as follows: 

mess$token = RECVMSG (mbox$token,time$limit,.resp$var,.stat$var) 

4-19 



where: 

mess$token 

mbox$token 

time$limit 

• resp$var 

• stat$var 

Example: 

NUCLEUS DEMONSTRATION SYSTEM 

Variable in which the interpreter returns a token for 
the object. 

Token for the mailbox. 

Number of system time units the interpreter is to wait 
for the object • 

Variable in which the interpreter returns a token for 
the response mailbox or semaphore, if a response is 
requested • 

Variable in which the interpreter returns the status 
of the receive message operation. 

The following function call receives an object from a mailbox without 
waiting, returns a token for the object in variable T, returns a token 
for the response mailbox in variable R, and returns the status of the 
receive operation in variable S: 

LET T = RECVMSG (H,O, .R, .S) 

RESTASK 

This statement resumes a suspended task. The format is as follows: 

RESTASK (task$token,.stat$var) 

where: 

task$token 

• stat$var 

Example: 

Token of the task to be resumed • 

Variable in which the interpreter returns the status 
of the resume operation. 

The following statement resumes a suspended task and returns the status 
of the resume operation in variable S. Variable T contains a token for 
the suspended task: 

RESTASK (T,. S) 

4-20 



NUCLEUS DEMONSTRATION SYSTEM 

SENDMSG 

This statement sends a message (in the form of an object) to a mailbox. 
The format is as follows: 

SENDMSG (mbox$token,obj$token,response$token,.stat$var) 

where: 

mbox$token 

obj$token 

Token of the mailbox to which the message is being 
sent. 

Token of the object being sent. 

response$token Token of the desired response mailbox or semaphore. A 
zero indicates that no response is desired • 

• stat$var 

Example: 

Variable in which the interpreter returns the status 
of the send message operation. 

The following statement sends an object to a mailbox and specifies a 
response mailbox at which the receiving task can acknowledge receiving 
the object. Variable M contains a mailbox token, variable A contains an 
object token, and variable R contains a response mailbox token. The 
interpreter returns status in variable S: 

SENDMSG (M,A,R,.S) 

SLEEP 

This statement places the calling task (the TBASIC interpreter) in the 
asleep state. The format is as follows: 

SLEEP (units,.stat$var) 

where: 

units 

• stat$var 

Example: 

Number of system time units that the interpreter task 
is willing to sleep. A zero value places the task on 
the ready task queue • 

Variable in which the interpreter returns the status 
of the sleep operation. 

The following statement places the interpreter in the asleep state for 
one second and returns status of the sleep operation in variable S: 

SLEEP (100,.S) 

4-21 



NUCLEUS DEMONSTRATION SYSTEM 

SNDUNIT 

This statement sends units to a semaphore. The format is as follows: 

SNDUNIT (sema$token,num$units,.stat$var) 

where: 

sema$token 

num$units 

• stat$var 

Example: 

Token of the semaphore to which units are being sent. 

Number of units to be sent to the semaphore. 

Variable in which the interpreter returns the status 
of the send units operation. 

The following statement sends one unit to a semaphore and returns the 
status of the operation in variable S. Variable T contains a token for 
the semaphore: 

SNDUNIT-(T,l,.S) 

SUSTASK 

This statement suspends a task. The format is as follows: 

SUSTASK (task$token,.stat$var) 

where: 

task$token 

• stat$var 

Exanlple: 

Token of the task to be suspended • 

Variable in which the interpreter returns the status 
of the suspend operation. 

The following statement suspends a task and returns the status of the 
suspend operation in variable S. Variable T contains a token for the 
task to be suspended: 

SUSTASK (T,.S) 

4-22 

( 



NUCLEUS DEMONSTRATION SYSTEM 

UNCATLG 

This statement deletes an entry from an object directory. The format of 
this statement is as follows: 

UNCATLG (job$token,"name",.stat$var) 

where: 

job$token 

"name" 

• stat$var 

Example: 

Token for the job from whose object directory the name 
is to be deleted. A zero indicates the object 
directory of the job containing the calling task. 

Name to be deleted from the object directory. This 
name must be enclosed in double quotes • 

Variable in which the interpreter returns the status 
of the uncatalog operation. 

The following statement removes the entry with the name MYTASK from the 
interpreter's object directory and returns the status of the operation in 
variable S: 

UNCATLG (0, "MY TASK" , • S ) 

4-23 



( 



CHAPTER 5. START-UP SYSTEM 

The Start-Up System is provided for two purposes. First, it allows you 
to become familiar with some of the capabilities of the Human Interface, 
a major iRMX 86 subsystem. Second, it enables you to manipulate files on 
iRMX 86 diskettes; such manipulation is not possible on an INTELLEC 
Development System. 

Included in your iRMX 86 package is another facility for manipulating 
iRMX 86 files on secondary storage devices. It is the Files Utility, 
which is described in Chapter 8 of this manual. Generally, the Start-Up 
System is the preferred file manipulator, because of the following 
reasons: 

• For users who plan to use the Human Interface subsystem, it is 
desirable to gain experience with some Human Interface 
capabilities. 

• The Start-Up System has a facility that allows users to add 
commands to the system's command set. 

• Because its commands are not resident in memory, the Start-Up 
System's memory requirements are not proportional to the number 
of commands it offers. 

The principal reason for choosing the Files Utility over the Start-Up 
System is that the latter is initially configured for use with only 
8-inch, single-density diskettes. The Files Utility imposes no such 
medium constraint. 

FUNCTIONS-PROVIDED 

The Start-Up System is an iRMX 86 application system that allows you to 
perform the following operations: 

• Format iRMX 86 diskettes. 

• Copy files from ISIS-II diskettes to iRMX 86 diskettes. 

• Copy files from iRMX 86 diskettes to ISIS-II diskettes. 

• Copy files between iRMX 86 diskettes. 

• Delete files from iRMX 86 diskettes. 

• Create directories on iRMX 86 diskettes. 

• Display, on the application system terminal, the contents of 
directories on iRMX 86 diskettes. 

5-1 



I 

I 

I 

START-UP SYSTEM 

HARDWARE REQUIRED 

The Start-Up System requires the following hardware: 

• An INTELLEC Development System with at least 64K bytes of memory 
and at least one flexible disk drive and one other drive. 

• An iSBC 86/12A Single Board Computer with at least 192K of 
contiguous random access memory (RAM) starting at address O. For 
certain operations, more than 192K of RAMi's required; for 
example, if you plan to execute nested SUBMIT files, you will 
need more than 192K. 

• An iSBC 957A/B INTELLEC --- Interface and Execution Package. The 
cable in the package should be installed for parallel interfacing 
between the iSBC 86/12A board and the INTELLEC Development 
System. The PROMs in the package should be installed in the iSBC 
86/12A board. 

• An iSBC 204, iSBC 208, or iSBC 215/218 controller set for 8-inch 
drives and 128 bytes per sector. 

• At least one 8-inch diskette drive. 

• A cable for connecting the controller to the diskette device. 

• An iRMX 86 diskette containing the Start-Up System. 

• An ISIS-II Utilities diskette containing the Start-Up System. 

= A terminal set for 9600 baud and no parity checking. 

• A cable for connecting the terminal to the serial port of the 
iSBC 86/12A board. 

USING THE START-UP SYSTEM 

The following sections describe how to initiate the Start-Up Syste~, list 
the available commands, and enumerate some special use restrictions that 
do not normally apply to the Human Interface. 

GETTING STARTED 

After assembling your hardware as indicated in Chapter 3 and turning on 
the power, perform the following steps: 

1. Look at the display of your application terminal. If asterisks 
(*) are gradually filling the screen, your system is ready for 
use. Otherwise, reset the system. This should start your screen 
to fill with asterisks. If this doesn't work, you have a 
hardware problem that must be fixed before you can continue. 

5-2 



START-UP SYSTEM 

2. Insert an ISIS-II system diskette with the iSBC 957B software in I 
drive 0 of your INTELLEC Development System. Insert the ISIS-II 
Utilities diskette in drive 1 of your development system. Insert 
the iRMX 86 diskette containing the Start-Up System in drive 0 of 
your application system hardware. If applicable, insert another 
diskette in drive 1 of your application system hardware. 

3. At your development system terminal, enter 

APXLOD <cr> 

This causes the following display at the development system 
terminal: 

ISIS-II iAPX 86, 88 LOADER Vx.x 

iAPX 86, 88 Monitor, Vx.x 

followed by the monitor prompt, a period (.). 

4. At your development system terminal, enter the letter r, followed 
by the name :Fl:BSl and <cr>. This bootstraps the Start-Up 
System into the application system memory. 

5. When an asterisk (*) appears, enter <cr>. This initiates the 
Start-Up System. After a short wait, the following display will 
appear on the application system terminal: 

iRMX 86 HUMAN INTERFACE, Vx. x: user = WORLD 

followed by the Human Interface prompt, a hyphen (-). You are 
now ready to begin entering Human Interface commands. 

An alternative to steps 3, 4, and 5 is to enter, at the development 
system, the ISIS-II command 

SUBMIT :Fl:SUPLD(:Fl:) 

This causes the following display at the development system terminal: 

apx10d 
ISIS-II iAPX 86, 88 LOADER, Vx.x 
iAPX 86, 88 MONITOR Vx.x 

.1 : Fl:nuc1us 

.1 :Fl:ios 

.1 :Fl:eios 

.1 :Fl:10ader 

.1 : Fl :hi 

.1 : Fl :sroot 

.e 

followed by the ISIS prompt, a hyphen (-). 

5-3 

I 

I 



START-UP SYSTEM 

At your develpment system terminal, enter 

APXLOD <cr> 

and the letter g to initialize the Start-Up System. 

START-UP SYSTEM COMMANDS 

The commands that are supplied as part of the Start-Up System are 
described here in very general terms. For details concerning the effects 
of these commands, and their syntax requirements, refer to the iRMX 86 
HUMAN INTERF ACE REFERENCE MANUAL. 

File Management Commands 

The following commands are available for managing files and related 
activities. 

ATTACHDEVICE 

CREATEDIR 

COpy 

DELETE 

DETACHDEVICE 

DIR 

DOWNCOPY 

FORMAT 

RENAME 

UPCOPY 

Attaches an application system drive, which then can 
be addressed for purposes of file manipulation. 
Drives FO, F1, WFO, and WF1 need not be attached, 
because this is done automatically during 
initialization of the Start-Up System. Refer to Table 
3-1 of this manual when using this command. 

Creates one or more new directories. 

Creates new data files, or copies files to new 
filenames. 

Deletes data files or empty directories. 

Detaches an application system drive. The drive must 
be reattached before it can be used for file 
manipulation. 

Lists a directory's file names (and, optionally, file 
attributes). 

Copies files and directories from an iRMX 86 volume to 
an ISIS-II secondary storage volume. 

Formats an iRMX 86 diskette. 

Renames files or directories. 

Copies files and directories from an ISIS-II secondary 
storage volume to an iRMX 86 volume. 

5-4 

( 



START-UP SYSTEM 

Additional Services 

The following commands provide additional services: 

DATE 

DEBUG 

SUBMIT 

TIME 

Sets or resets the system date, or displays the current 
date. 

Transfers control to the iSBC 957A/B package, usually 
for the purpose, of debugging an iRMX 86 application 
program. 

Loads and executes a sequence of commands from an 
iRMX 86 file on a secondary storage device. 

Sets or resets the system clock, or displays the 
current system time. 

The following SUBMIT files also provide additional services: 

SGEN.CSD 

SUPLD.CSD 

SMAKE.CSD 

Allows you to customize your own Start-up System. 

Uploads the Start-up System into the application system 
memory. 

Makes an iRMX 86 Start-up System diskette by taking the 
following steps: 

1. Formats the iRMX 86 diskette in drive FO. 

2. Creates the SYSTEM directory on drive FO. 

3. Up copies the Start-up System copy submit file 
SCOPY.CSD and changes it name to STARTUPCOPY. 

4. Upcopies all of the system commands and the 
Bootstrap Load file. 

STARTUPCOPY Formats an iRMX 86 diskette and copies all system 
start-up files to this diskette from another iRMX 86 
diskette. 

SPECIAL USE RESTRICTIONS 

The following paragraphs describe some use restrictions that are not 
generally true of application systems that include the Human Interface. 

The logical names : SYSTEM: and :PROG:, which, in the Human Interface 
subsystem, refer respectively to the system's collection of commands and 
your collection of special-purpose .commands, are not available in the 
Start-Up System. However, you can achieve the effects of using :SYSTEM: 
and :PROG:, as they are described in the iRMX 86 HUMAN INTERFACE 
REFERENCE MANUAL, by using SYSTEM/ and PROG/ instead of : SYSTEM: and 
:PROG:, respectively. 

5-5 



START-UP SYSTEM 

If your application hardware has iSBC 215/218 controllers, each filename 
(including command names, because each command is a file) must be 
preceded by the logical name :WFn:, where n is 0 or 1, depending upon 
which drive contains the file. If other controllers are used instead, 
use the logical name that was specified when the ATTACHDEVICE command was 
entered." 

5-6 



CHAPTER 6. PATCHING UTILITY 

The 8086 Patching Utility provides you with a method of modifying 
relocatable object modules with software updates or repair code. The 
process requires that the replacement code must first be generated with 
the ASM86 Assembler. 

You can update a module to a newer version or add repair code in two ways: 

• As a patch that generates a jump instruction to the replacement 
code and appends the replacement code to the end of the original 
module. 

• As an in-place patch that directly overlays the replacement code 
on that of the original module. 

An example of each technique is provided later in this chapter. 

The replacement code itself may be supplied by Intel in either of two 
forms: 

• An Intel-supplied object file, on diskette. In this case, all of 
the coding and assembly has been done; you need only invoke the 
Patching Utility to effect the replacement. 

• An Intel-supplied source code listing with instructions for 
inserting the replacement code; in this case, much of the 
preliminary work has been done and you need little or no 
knowledge of ASM86 Macro Assembly Language to generate the 
replacement object module. 

You can use the Patching Utility to modify your application modules by 
creating your own replacement module; in this case, a working knowledge 
of ASM86 Macro Assembly Language is required. 

Version 1.0 of the Patching Utility is designed to run on an INTELLEC 
Series II or Series III Microcomputer Development System and version 2.0 
of" the Patching Utility is designed to run on an iRMX 86 system with at 
least one disk drive. 

A patched module retains translator header record names for the original 
module, plus the names for the patch modules. By using either version of 
the Patching Utility, you can display the complete list of names to 
determine a module's update status. By using the iRMX 86 version of the I 
Patching Utility you can also display translator header record names for 
all modules in a library. This allows you to determine the update status 
of a library. 

6-1 



I 

I 

I 

I 

I 

PATCHING ·UTILITY 

INVOKING THE PATCHING UTILITY 

You prepare to invoke the Patching Utility by placing a diskette 
containing the INTELLEC version of the utility in drive 0 of your 
INTELLEC Development System. If you are using the iRMX 86 version of the 
Patch Utility, then you can invoke the utility by upcopyirig the Patch 
Utility file (PTCH86.R86) from diskette to aniRMX 86 secondary storage 
peripheral. In either case, the next step is to call the Patching 
Utility by entering the PTCH86 command in the form: 

PTCH86 filename [segmentname segmentattribute] 

where: 

filename 

segmentname 

segmentattribute 

Name of file containing an 8086 object module 
produced by PL/M-86, ASM86, or LINK86. 

Name of the segment whose combined-type parameter 
is to be modified. The name must be a valid 
segment name. The attributes listed between the 
brackets are optional. If segmentname is used, 
then segmentattribute must be used also. 

Keyword switch that determines the combine-type 
attribute given to the named segment. You must 
specify the attribute as either COI1MON or PUBLIC. 
The COMMON attribute allows patch code to be 
overlayed on the segment. The PUBLIC attribute 
returns the segment to the combination mode 
normally given by the PL/M-86 compiler. 

See the 8086/8087/8088 MACRO ASSEMBLY LANGUAGE 
REFERENCE MANUAL FOR 8086-BASED DEVELOPMENT 
SYSTEMS for a more detailed explanation of 
combine-type segments. 

The INTELLEC version of the Patching Utility responds by displaying 

8086 OBJECT PATCHING UTILITY, VI.O 

on the INTELLEC console. The iRMX 86 version of the Patching Utility 
responds by displaying 

iRMX 86 8086 OBJECT PATCH UTILITY, V2.0 

on a console under the control of the iRMX 86 Human Interface. In either 
case, this display is followed by an indication of the outcome of the 
patch operation and then the Operating System prompt. If the invocation 
line contained the optional segmentname and segmentattribute, the message 
"ATTRIBUTE MODIFIED" is displayed. If the invocation line contained only 
the filename, the translator header records within the named object file 
or library are displayed. These translator header records serve to 
identify the patches which have been made to a module (described later in 
this chapter). Otherwise, the patch operation failed and an 

6-2 



PATCHING UTILITY 

error message is displayed. Listing of translator header records in a 
library is supported only on the iR}0( 86 version of the Patching Utility. 

PATCHING PROCEDURES 

Repair modules that you insert into existing modules must be gen~rated 
with the ASM86 Assembler. To patch an independent object module 
containing errors (patehing library modules is described later in this 
chapter), you invoke the Patching Utility to modify the combine-type 
attribute in the desired module segment to COMMON. This step allows you 
to use LINK86 to overlay the repair module on the segment to be patched. 
After linking with the repair module, you then use the Patching Utility 
to restore the PUBLIC attribute to the segment. The following example 
illustrates the steps for repairing independent object module files: 

1. Enter the PTCH86 command to set the CODE segment combine-type 
attribute to COMMON, for example: 

PTCH86 badmodule CODE COMMON 

2. Enter the LINK86 command to overlay the repair object module on 
the original version, for example: 

LINK86 badmodule, repairmodule TO newmodule 

3. Enter the PTCH86 command to restore the CODE segment to PUBLIC, 
for example: 

PTCH86 newmodule CODE PUBLIC 

Typical examples of jump instruction overlays, in-place patch overlays, 
library module patching, and listing module header records are given in 
the following sections. 

JUMP INSTRUCTION PATCH 

In the following example, the module generates a patch that overlays a 
jump instruction on offset 0100H through Ol02H of the original module. 
The jump transfers control to repair code at offset 0500H. The repair 
code is appended to the end of the module and is thus appended to that 
module. 

6-3 

I 



PATCHING UTILITY 

EXAMPLE: 

NAME REPAIR VOOOOI ; Identifying module name. 

CODE SEGMENT 
CGROUP GROUP 

ASSUME 

ORG 

JMP 

RETURN LABEL 

ORG 

REPAIRCODE: 

WORD COMMON 
CODE 

'CODE' 

CS : CGROUP 

OIOOH Offset of area in original 
module to be patched. 

REPAIRCODE 

NEAR Return here from repair area. 

0500H Offset of end of original 
module. 

(Repair goes here) 

JMP 

CODE ENDS 
END 

I N-PLACE PATCH 

RETURN Return control to original 
module. 

The following example generates an in-place patch that directly overlays 
repair code on a module's previous code. 

EXAMPLE: 

NAME REPAIR V00002 ; Module name identification. 

CODE SEGMENT WORD COMMON 'CODE' 
CGROUP GROUP CODE 

ASSUME CS : CGROUP 

ORG 0200H Offset of the original 
operand. 

ADD AX, 3 Replaces the original value 
with a "3" 
(the new instruction must be 
the same . size as the original , 
instruction). 

CODE ENDS 

END 

6-4 



PATCHING UTILITY 

PATCHING LIBRARY MODULES 

To patch an object module that is located in a library» use, the SUBMIT 
file (PATCH.CSD) supplied on your Utilities diskette. When invoked, the 
SUBMIT file will perform the following steps: 

1. Enters a LINK86 command to separate the module to be patched from 
the library and put it in a temporary file. 

2. Enters the PTCH86 command to set the CODE segment combine-type 
attribute to COMMON. 

3. Enters a LINK86 command to overlay the replacement object module 
on the original version. 

4. Enters the PTCH86 command to restore the CODE segment PUBLIC 
attribute. 

5. Enters a LIB86 command to replace the original module in the 
library with the updated version. 

6. Deletes the temporary files when the replacement is completed. 

To invoke the SUBMIT file» enter the command in the following format. 
Note that the parentheses enclosing the parameter string and the embedded 
commas are required; embedded blanks are optional: 

SUBMIT PATCH(library» oldmodule, segment, newmodule) 

where: 

library 

oldmodule 

segment 

newmodule 

Name of library containing the old module to be 
replaced. 

Name of the module to be replaced. 

Name of the segment whose combine-type attribute 
is to be set to COMMON. 

Name of the file containing the replacement module 
code. 

6-5 



I 

PATCHING UTILITY 

LISTING TRANSLATOR HEADER RECORDS 

If you want the Patching Utility to list an object module's translator 
header records on the console screen, enter the PTCH86 command without 
specifying the segment name or segment attribute. The listed records 
allow you to identify the patches that have been made to the module. A 
typical PTCH86 command entry and resulting header record display is as 
follows: 

PTCH86 FILE.OBJ 
ORIGINALMODULE 
ORIGINALMODULE REPAIR V030-01 
ORIGINALMODULE-REPAI R-V03 0-02 

The "030" stands for version 3.0 of the software being patched, and "01" 
and "02" are the patch numbers of the Intel-supplied patches that have 
been made to the module. The iRMX 86 version of the Patching Utility can 
perform this listing operation on both object modules and libraries. 

ERROR MESSAGES 

When the Patching Utility encounters an error condition during a mddule 
repair session, it displays one of the following error messages: 

ERROR nnn 

A system call returned a non-zero error status, given as nnn. See the 
ISIS-II USER'S GUIDE for an explanation of numbered error messages in 
this form. 

If you are using the iRMX 86 version of the Patch Utility, this type of 
error would appear as: 

nnnn exception code mnemonic 

See Table B-1 in this manual for a summary of these numbered error 
messages. See the appropriate iRMX 86 manual for detailed descriptions 
of iRMX 86 exception codes. 

INVALID MODULE TYPE 

The file specified is not suitable for the segment attribute modification 
and subsequent patching. 

6-6 



PATCHING UTILITY 

INVALID RECORD TYPE 

The object file contains an invalid record type for the object module 
format. Perhaps the wrong filename was entered,orthe file contains 
code other than object code. 

INVALID SYNTAX 

The command line contains an error that was caused by a missing filename 
or a missing or misspelled keyword. 

SEGfENT NOT FOUND 

The desired record was not found before the end of the module. 

6-7 





CHAPTER 7. iRMX1It 86 DEVELOPMENT PROCEDURES 

In order to produce a final iRMX 86-based application system for your 
users, you must go through two phases: a development phase and a 
production phase. During.the development phase you design, build, and 
debug your system. In the production phase you produce. the final systems 
for your users. This chapter outlines the steps you need to follow as 
you develop your iR~~ 86-based application system. The steps illustrate 
the main points of the development process. 

1. Define your application. 

2. Do the high-level design, as follows: 

• Identify ·your hardware requirements. 

• Determine which of the iRMX 86 subsystems you need. The 
configurable nature of the iRMX 86 software allows you to 
select. the parts that your application requires. It is 
recommended that you include the Debugger in your application 
system until it is fully developed. When you have completed 
the development process, you can remove the Debugger from 
your sys.tem to reduce memory requirements •. 

• Divide your application into jobs and tasks. Assign task 
priorities, identify exchanges used for intertask 
communication, and determine the methods of interrupt 
handling and exception processing. Refer to. the INTRODUCTION 
TO THE iRMX 86 OPERATING SYSTEM, iRMX 86 NUCLEUS REFERENCE 
MANUAL, iRMX 86 TERMINAL HANDLER REFERENCE MANUAL, and 
iRMX 86 DEBUGGER REFERENCE MANUAL for more information about 
these processes. 

3. Write and debug the task code. As you finish writing each task, 
you can use either the ICE-86 In-Circuit Emulator or the 
iSBC 957A/B package to debug the task independently. Later, you 
can use the Debugger to debug the entire application. 

4. Configure the application system. Do this by creating a system 
configuration file and an individual configuration file for each 
part of the Operating System. Assemble and compile all of the 
code, link it in the correct manner, and locate it at the proper 
addresses. See the iRMX 86 CONFIGURATION GUIDE for a detailed 
description of this process. 

5. Assemble your hardware for testing the system. 

6. If you are using the I/O Systems in your application, load the 
Start-Up System or the Files Utility System, format your iRMX 86 
disks, and copy any necessary information to them. 

7-1 



I 

iRMX- 86 DEVELPHENT PROCEDURES· 

7. ~oad your code into memory using one of the following: . 

• The ICE-86 In-Circuit Emulator 

• The iSBC.957AINTELLEC -. iSBC 86/12A Interface and Execution 
Package. -

-. The iSBC 9 57BINTELLEC -- iAPX 86,88 Interface and Execution 
Package· 

• The Bootstrap Loader 

• The Application Loader 

• The Human Interface ·(which calls the Application Loader) 

8. Test and debug your system using the Debugger and either the 
ICE-86 In-Circuit Emulator or the iSBC 957A/B Interface and 
Execution package. Continue performing steps 3~ 4~ and 7 until 
you are satisfied with your system. 

9. Unless you want the Debugger to be a permanent part of your 
system, perform step 4 again. but omit the Debugger. 

10. Burn your debugged code into PROM and place it on your 
iAPX 86-based microcomputer system, or place your debugged code 
on an iRMX formatted diskette and use the Bootstrap Loader to 
load the code directly into memory. 

Note that you can use the Bootstrap Loader to load your code at any stage 
of the development procedures, including the debugging stage (see the 

, iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL for information on using the 
Bootstrap Loader). 

7-2 



CHAPTER 8. FILES UTILITY SYSTEM 

The INTELLEC Microcomputer Development System does not recognize iRMX 86 
diskette files. Consequently you cannot read, write~ or format iRMX 86 
diskettes directly from the ISIS-II operating system. However t you can 
perform these operations indirectly from the Development System by using 
the iRMX 86 Files Util~ty System. 

FUNCTIONS PROVIDED 

The iRMX 86 Files Utility System is an iRMX 86 application system that 
allows you to perform the following operations: 

• Format an iRMX 86 diskette. 

• Copy a file from an ISIS-II diskette to an iRMX 86 diskette. 

• Copy a file from an iRMX 86 diskette to an ISIS-II diskette. 

• Delete a file from an iRMX 86 diskette. 

• Create a directory on an iRMX 86 diskette. 

• Display, on the Development System terminal, the contents of a 
directory of an iRMX 86 diskette. 

HARDWARE REQUIRED 

The Files Utility System requires the following hardware: 

• A Microcomputer Development System having at least 64k bytes of 
memory and at least one disk drive (hard or flexible). 

• An iSBC 86/12A Single Board Computer with at least 192k bytes of 
memory and at least one disk drive (hard or flexible). 

• The iSBC 957A INTELLEC -- iSBC 86/12A Interface and Execution 
Package or the iSBC 957B INTELLEC -- iAPX 86,88 Interface and 
Execution Package. 

8-1 

I 



FILES UTILITY SYSTEM 

STARTING THE FILES UTILITY 

Before you can enter commands to the Files Utility, you must start it 
up. This involves connecting certain hardware modules and then entering 
appropriate commands on the INTELLEC Microcomputer Development System 
terminal. 

After you have assembled your hardware, perform the following steps: 

1. Place an ISIS-II system diskette containing the iSBC 957A/B 
software into drive 0 of your INTELLEC Microcomputer Development 
System and the Utilities diskette into any other drive. 

2. Load the ISIS-II system. 

3. Enter the following ISIS-II command: 

SUBMIT :fx:FILES (:fx:) 

where: 

fx Identifier of the diskette drive containing the 
Files Utility -diskette. 

When you enter this command, the ISIS-II operating system reads and 
processes the commands contained on the FILES.CSD file. These commands 
instruct the iSBC 957A/B monitor to load the Files Utility System from a 
diskette on the INTELLEC system into RAM on the iSBC 86/12A board. 

After the ISIS-II system finishes processing the commands in the submit 
file, the system prompts for another command. Respond by entering 

SBC861 

This command instructs the ISIS-II system to connect you to the iSBC 957A 
monitor. If you are using the iSBC 957B package, the following command 
instructs the ISIS-II system to connect you to the iSBC 957B monitor. 

APXLOD 

In either case, the monitor signals you that it is ready to accept your 
next command by displaying a period (.) on the screen of your INTELLEC 
system. When the period appears, enter 

G 

This causes the Disk Utility System to begin running. The screen of your 
INTELLEC system should display the heading 

iRMX 86 FILES UTILITY Vx.x 

The Files Utility signals that it is ready to accept your next command by 
displaying an asterisk (*) on the screen of the INTELLEC system. 

8-2 



FILES UTILITY SYSTEM 

USING THE FILES UTILITY 

The Files Utility provides 10 file management commands, as follows: 

ATTACHDEV 
BREAK 
CREATEDIR 
DELETE 
DETACH 

DIR 
DOWN COpy 
FORMAT 
HELP 
UPCOPY 

The commands are described in alphabetical sequence later in this 
chapter. However, before actually using the commands, you should 
understand the diskette handling procedures and how the Files Utility 
System handles errors. 

CHANGING DISKETTES 

When the Files Utility is running and you have already performed an 
operation on a particular diskette, you cannot simply remove that 
diskette from the drive and replace it with another. The Utility System 
is not aware of diskette changes and treats the second diskette as if it 
were the first, and thereby possibly writes over or destroys valuable 
information. To change diskettes in a drive, you must enter a DETACH 
command to logically detach the drive from the system, change diskettes, 
and then (with one exception) enter an ATTACHDEV command to again 
logically attach the device. 

The one exception to this command entry sequence is the FORMAT command. 
As described later in this chapter, this command writes iRMX 86 
formatting information on blank diskettes. Since the FORMAT command 
always expects a blank diskette and a detached drive, you can replace 
diskettes in a drive any number of times if you use only the FORMAT 
command before entering the ATTACHDEV command. The FORMAT command will 
destroy the information, if any, previously contained on the diskette. 

COMMANDS 

This section provides descriptions of the Files Utility commands and 
their parameters in alphabetical sequence. Each command has a 
two-character abbreviation. You can use either the full name or its 
abbreviation when entering a command. 

ATTACHDEV (AD) 

This command attaches a physical device to the system and associates a 
logical name with the device. The command can also be used to display 
the current attachment of a logical name. The format is as follows: 

8-3 



FILES UTILITY SYSTEM 

AD :logicalname:[= physicalname] 

where: 

: logicalname: 

= 

physicalname 

BREAK (BR) 

A I-to l2-character ASCII name, surrounded by 
colons. 

If used, there must be no spaces surrounding the 
equal sign. 

Physical device name as configured in the I/O 
System (see Table 5-1). If physical name is 
omitted, the current attachment is displayed by 
default; for example: 

AD :FO: (command entry) 
:FO: = FXO (displayed output) 

This command causes an exit from the Files Utility System to the 
iSBC 957A/B monitor. The format is as follows: 

BR 

CREATEDIR (CD) 

This command creates an iRMX 86 directory file. The format is as follows: 

CD rmx-pathname 

where: 

rmx-pa thname 

DELETE (DE) 

Path name of the iRMX 86 directory file to be 
created. 

This command removes the specified iRMX 86 file from the directory where 
it is listed. The format command is as follows: 

DE rmx-pathname 

where: 

rmx-pathname Path name of the iRMX 86 file to be deleted. 

8-4 



FILES UTILITY SYSTEM 

DETACH (DT) 

This command detaches a logical name from the system. The command is 
used for changing diskettes, prior to entering a FORMAT command, or to 
reconfigure a device to a different sector size. The format is as 
follows: 

DT :logical-devicename: 

where: 

:logical-devicename: The logical name you assigned to a physical 
device via an ATTACHDEV command. 

DIR (DI) 

This command lists an iRMX 86 directory file at the Development System 
console. The format is as follows: 

DI rmx-pathname [S] 

where: 

rmx-pathname 

S 

Path name of the iRMX 86 directory file to be 
listed. 

Switch that causes a "long" or expanded display of 
directory file that includes: file type (a "DR" 
heading for a directory file or a blank heading for 
a data file), number of blocks, and number of bytes. 
in file. If S is not specified, a "fast" format 
will be displayed, consisting of file names only 

The directory file listing includes a line that lists the size of the 
directory. This line appears as: 

n FILES 

In this line, n specifies the number of entries currently present in the 
directory. 

DOWNCOPY (DC) 

This command creates an ISIS-II file and copies the specified iRMX 86 
file to it. If the ISIS-II file already exists, it is written over. The 
format is as follows: 

DC rmx-pathname TO isis filename 

8-5 



FILES UTILITY SYSTEM 

where: 

rmx-pathname Path name of the iRMX 86 file to be copied. 

isis-filename Name of the ISIS-II file to be created. 

FORMAT (Fa) 

This command writes iRMX 86 formatting information on a diskette. All 
information previously contained on the diskette will be destroyed by the 
formatting operation. Each diskette must be formatted before it can be 
used by the iRMX 86 Operating System. 

The FORMAT command expects an unattached drive. The drive device can 
either be unattached at system start up, or you can detach it by entering 
a DETACH command prior to entering the FORMAT command. Since the device 
remains unattached after FORMAT completes execution, you must attach the 
device by entering an ATTACHDEV command before entering any other Utility 
command except another FORMAT command. (See also the "Changing 
Diskettes" section in this chapter, and the ATTACHDEV and DETACH command 
descriptions.) 

The FORMAT command contains parameters that are specified in the form 
'Keyword=value". There must not be any spaces surrounding the equal 
sign. Also, you can abbreviate each of these keywords as shown. The 
abbreviations and the format of this command are as follows (brackets [] 
indicate optional parameters): 

FO physicalname volumename [GRANULARITY=gran] 
[INTERLEAVE=ileave] [NUMBERFNODES=nodes] [switch] 

or 

FO physicalname volumenname [GR=gran] [IL=ileave] 
[NF=nodes] [switch] 

where: 

physicalname 

volumename 

Physical device name for the drive, as configured 
in the I/O System, that denotes the iRMX 86 drive 
on which the diskette resides. Possible values are 
itemized in Table 3-1. 

A 1- to la-character volume name that identifies 
the diskette. Decimal digits, uppercase and 
lowercase letters, and the following special 
characters can be used in the volume names: 

& 

% 

, 
( 
) 

* 
+ 

. , 
/ 
= ? 

~6 

( 



gran 

ileave 

nodes 

switch 

HELP (HE) 

FILES UTILITY SYSTEM 

The granularity, in bytes, for this volume. The 
granularity is the number of bytes obtained during 
each diskette access. If you omit this parameter, the 
default volume granularity is the device granularity 
(the number of bytes in a physical sector). 
Specifying any value less than the device granularity 
causes the default to be used. Any non-multiple of 
device granularity (such as 128 or 512) is rounded 
upward to the next higher multiple of device 
granularity. 

To format a double density, two sided diskette with a 
granularity of 512 or 1024, use the FORMAT command in 
the Start-up System or the iRMX 86 Human Interface 
subsystem. 

The interleave factor for the volume, or the number of 
physical sectors between logical sectors. You can 
specify any integer from 1 to 13 for this value. If 
you omit this parameter, a default value of 1 is 
assumed. 

The number of files that can be created on this 
volume. If you omit this parameter, a default value 
of 100 is assumed. 

A switch that indicates the support option for this 
volume. One value can be entered for the switch: 

NAMED The volume is created for 
the named file driver. The ROOT 
directory is initialized. 

If you omit this switch, the volume is created for the 
physical file driver. In this case, FORMAT records the 
interleave information on the diskette but does not 
initialize any of the iRMX 86 file structures. 

This command displays a list of the available Files Utility commands and 
their syntax on the console screen. The format is as follows: 

HE 

8-7 

I 



I 

FILES UTILITY SYSTEM 

UPCOPY (UC) 

This command creates an iRMX 86 file and copies the specified ISIS-II 
file to it. If the iRMX 86 file already exists, it is written over. The 
format is as follows: 

UC isis filename TO rmx pathname 

where: 

isis filename Name of the ISIS-II file to be copied. 

rmx pathname Path name of the iRMX 86 file to be created. 

ERROR MESSAGES 

The Files Utility displays all error messages on the screen of the 
INTELLEC System. These messages can be in any of three forms. If the 
message is 

UNRECOGNIZED COMMAND 

the Files Utility does not recognize the spelling of your command and 
prompts for another command. 

The Files Utility actually uses the ISIS-II operating system to read and 
write diskettes attached to the INTELLEC system. If the ISIS-II system 
detects any errors, it returns an error code to the Files Utility. 
Whenever the Files Utility receives an ISIS-II error, it displays the 
following message: 

ISIS ERROR # nnn 

where nnn is in decimal. To interpret this error message, refer to the 
ISIS-II USER'S GUIDE. Fatal errors require you to restart the Files 
Utility System by using the FILES.CSD file, as described earlier in this 
chapter. 

8-8 



FILES UTILITY SYSTEM 

When reading or writing on drives attached to the iSBC 86/12A board, the 
Files Utility System uses the iRMX 86 Nucleus and the iRMX 86 I/O 
System. If either of these modules returns an exceptional condition code 
to the Files Utility, the following message is displayed: 

RMX EXCEPTION # mmmm 

where mmmm is in hexadecimal. For a brief explanation of such an error 
message, refer to Appendix B. For more detailed information, refer to 
the iRMX 86 NUCLEUS REFERENCE MANUAL, the iRMX 86 BASIC I/O SYSTEM 
REFERENCE MANUAL, or the iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL. 
After this message is displayed, the Files Utility prompts for the next 
command. 

8-9 

I 





APPENDIX A. ORIGINAL BOARD JUMPER CONNECTIONS 

This appendix contains lists of the jumper connections that are made on 
the iSBC 86/12A, 204, 206, 208, 215, 218, 220, and 254 boards at the I 
factory. The iRMX 86 Operating System is designed to run with 
factory-jumpered boards that have been modified as described in this 
manual. To ensure that ·your boards are jumpered correctly, first restore 
them to the condition indicat"ed in this appendix. Then modify them-as 
recommended in Chapter 3 of this manual. 

5-6 
15-16 
24-35 
32-33 
56-57 
87-89 

103-104 
143-144 

Table A-I. Original iSBCm 86/12A Jumpers 

Pin 

7'-8 
17-18 
26-27 
39-40 
59-60 
92-93 

105-106 
151-152 

Jumper Pad 

WI 
W2 
W3 
W4 
W5 
W6 
W7 
W8 
W9 

Connections 

A-I 

7-10 
19-20 
28-29 
42-43 
68-76 
94-96 

125-126 

Connection 

A-B 
A-B 
A-B 
A-B 
A-B 
A-B 
A-C 
A-D 
A-C 

13-14 
21-25 
30-31 
54-55 
79-83 
97-98 

129-130 



I 

ORIGINAL BOARD JUMPER CONNECTIONS 

Table A-2. Original iSBC'" 204 Jumpers 

Pin Connections 

1-8 19-20 23-24 26-27 
37-38 45-47 55-56 63-67 
75-76 77-78 

JumEer Pad Connection 

WI B-C 

Table A-3. Original iSBC'" 206 Jumpers (Channel Board) 

4-5 

E18 - E19 
E38 - E39 

Jumper Pad 

WI 
W3 
W4 
W5 
W6 
W7 
W8 

9-11 13-17 

Table A-4 Original iSBC'" 208 Jumpers 

Pin Connections 

E21 - E22 
E45 - E49 

E25 - E26 
E77 - E78 

Table A-5. Original iSBC· 215A Jumpers 

Connection 

1-3 
1-2 
1-2 
1-3 
1-3 
1-3 
1-3 

A-2 

Jumper Pad 

W9 
W10 
W13 
W14 
W16 
\0117 
W22 

15-16 

E31 - E32 

Connection 

1-2 
1-2 
1-2 
1-2 
1-2 
1-2 
1-2 

I 

( 



JU!!!Eer Pad 

WI 
W3 
W4 
W5 
W6 
W7 
W8 

ORIGINAL BOARD JUMPER CONNECTIONS 

Table A-6. Original iSBC· 215B Jumpers 

Connection Ju~er Pad 

1-2 WI0 
1-2 W13 
1-2 W14 
1-2 W15 
1-2 W16 
1-2 W17 
1-2 W22 

Table A-7. Original iSBC· 218 Jumpers 

Jumper Pad 

W2 
W8 

Connection 

A-C 
A-B 

Table A-8 Original iSBC· 220 Jumpers 

Connection 

1-2 
1-2 
1-3 
1-2 
1-2 
1-2 
1-3 

WI-2 to WI-C 
W4-5 ·to W4-C 
E41 to E42 

W2-2 to W2-C 
W6-1 to W6-C 

ll3-2 to W3-C 
E39 to E40 

2-3 
27-28 
67-68 

Table A-9. Original iSBC· 254 Jumpers 

5-6 
29-30 
75-76 

A-3 

8-9 
45-46 

11-12 
63-64 

I 

I 

I 





APPENDIX B. iRMXtII 86 CONDITION CODES SUMMARY 

Table B-1 provides a list of the iRMX 86 condition codes that may be 
encountered during system installation processes. It is not a complete 
list of all possible iRMX 86 condition codes. See the appropriate 
iRMX 86 manual for a more detailed description of the meanings. The 
appropriate manual is listed in the column marked "Manual". 

Table B-1. iRMXtII 86 Condition Codes 

Numeric Code 
Hex. Dec. 

Mnemonic Manual 
N B E 

Meaning 

OH 

1H 

2H 

3H 

4H 

o 

1 

2 

3 

4 

E$OK * * * No exceptional conditions 
(normal) 

Environmental Conditions 

E$TIME * * * 

E$MEM * * * 

E$BUSY SPM 

E$LIMIT * * * 

A time limit (possibly a limit of 
zero time) expired without a 
task's request being satisfied. 

Insufficient available memory to 
satisfy a task's request. 

Another task currently has access 
to data protected by a 
region 

A task attempted an operation 
which, if it had been successful, 
would have violated a 
Nucleus-enforced limit. 

N iRMX 86 Nucleus Reference Manual 
B iRMX 86 Basic I/O System Reference Manual 
E iRMX 86 Extended I/O System Reference Manual 
SPM iRMX 86 System Programmer's Reference MAnual 

B-1 



iRMX1II 86 CONDITION CODES SUMMARY 

Table B-1. iRMX1II 86 Condition Codes 

Numeric Code 
Hex. Dec. 

Mnemonic Manual 
N B E 

Meaning 

5H 

6H 

7H 

8H 

9H 

OAH 

20H 

21H 

22H 

23H 

24H 

25H 

26H 

5 

6 

7 

8 

9 

10 

32 

33 

34 

-- 35 

36 

37 

38 

Environmental Conditions (continued) 

E$CONTEXT 

E$EXIST 

E$STATE 

E$NOT$CON
FIGURED 

E$INTER
RUPT$SAT
URATION 

E$INTER
RUPT$
OVERFLOW 

E$FEXIST 

E$FNEXIST 

E$DEVFD 

E$SUPPORT 

E$EMPTY$
ENTRY 

E$DIR$END 

E$FACCESS 

* * * 

* * * 

* 

* * * 

* 

* 

* * 

* * 
* * 

* * 

* * 

* * 

* * 

A system call was issued out of 
proper context. 

A token parameter has a value 
which is not the token of an 
existing object. 

A task attempted an operation 
which would have caused an impos
sible transition of a task's state. 

This system call is not part of 
the present configuration. 

An interrupt task has accummulated 
the maximum allowable amount of 
SIGNAL$INTERRUPT requests. 

An interrupt task has accummulated 
more than the maximum allowable 
amount of SIGNAL$INTERRUPT 
requests. 

File already exists. 

File does not exist. 

Device and file driver are 
incompatible. 

Combination of parameters not 
supported. 

The specified slot in a directory 
file is enpty. 

The specified slot is beyond the 
end of a directory file. 

File access not granted. 

N iRMX 86 Nucleus Reference Manual 
B iRMX 86 Basic I/O System Reference Manual 
E iRMX 86 Extended I/O System Reference Manual 

B-2 



iRMXM 86 CONDITION CODES SUMMARY 

Table B-1. iRMXM 86 Condition Codes (continued) 

Numeric Code 
Hex. Dec. 

Mnemonic Manual 
N B E 

Meaning 

27H 

28H 

29H 

2AH 

2BH 

2CH 

2DH 

2EH 

40H 

41H 

42H 

44H 

45H 

39 

40 

41 

42 

43 

44 

45 

46 

64 

65 

66 

68 

69 

Environmental Conditions (continued) 

E$FTYPE * * 
E$SHARE * * 
E$SPACE * * 
E$IDDR * * 
E$IO * * 
E$FLUSHING * * 

E$ILLVOL SPM 

E$DEV$OFF- * 
LINE 

E$PREFIX$- * 
SYNTAX 

E$CANNOT$
CLOSE 

E$IOMEM 

E$MEDIA 

E$LO G$NAME
NEXIST 

* 

* 

* 

* 

Incompatible file type. 

Improper file sharing requested. 

No space left. 

Invalid device driver request. 

An I/O error occured. 

Connection specified in call was 
deleted before the operation was 
completed. 

Invalidly named volume. 

The device being accessed if now 
offline. 

The specified path starts with a 
colon (:) but does not contain a 
second, matching colon. 

The Extended I/O System was not 
able to transfer remaining data 
in buffers to output device. 

The Basic I/O System has 
insufficient memory to process a 
request. 

The device containing a specified 
file is not online. 

The Extended I/O System was 
unable to find a specified 
logical name in the object 
directories that it checks. 

N iRMX 86 Nucleus Reference Manual 
B iRMX 86 Basic I/O System Reference Manual 
E iRMX 86 Extended I/O System Reference Manual 
SPM iRMX 86 System Programmer's Reference Manual 

B-3 



iRMXlII 86 CONDITION CODES SUMMARY 

Table B-1. iRMXlII 86 Condition Codes (continued) 

Numeric Code 
Hex. Dec. 

Mnemonic Manual 
N B E 

Meaning 

Programmer Errors 

8000H 32768 

8001H 32769 

E$ZERO$
DIVIDE 

* 

E$OVER-FLOW * 

8002H 32770 E$TYPE * * * 

8003H 32771 E$BOUNDS * 

8004H 32772 E$PARAM * * * 

8005H 32773 E$BAD$CALL * * 

8020H 32800 E$IFDR * * 
8021H 32801 E$NOUSER * * 
8022H 32802 E$NO$PREFIX * * 

8040H 32832 E$NOT$PREFIX * 

8041H 32833 E$NOT$DEVICE * 

8042H 32834 E$NOT$CON- * 
NECTION 

A task attempted to divide by 
zero. 

An overflow interrupt occurred. 

A token parameter referred to an 
existing object that is not of 
the required type. 

A task attempted to access beyond 
the end of a segment. 

A parameter which is neither a 
token nor an offset has an 
invalid value. 

The I/O System code has been 
damaged, probably due to a bug in 
an application task. Recovery is 
not possible. 

Invalid file driver request. 

No default user. 

No default prefix. 

Specified object not a device 
connection or file connection. 

A token parameter referred to an 
existing object that is not, but 
should be, a device connection. 

A token parameter referred to an 
existing object that is not, but 
should be, a file connection. 

N iRMX 86 Nucleus Reference Manual 
B iRMX 86 Basic I/O System Reference Manual 
E iRMX 86 Extended I/O Syste~ Reference Manual 

B-4 



APPENDIX C. HARDWARE REQUIREMENTS FOR CUSTOM CONFIGURATIONS 

The minimum hardware requirements for installing the iRMX 86 Nucleus on 
custom boards built from components are defined below: 

• iAPX 86. 

• 8253 Programmable Interval Timer (PIT). 

• 8259A Programmable Interrupt Controller (PIC). 

• 24K bytes ROM (for a fully-configured Nucleus). 

• 2600 bytes RAM, of which 1024 bytes must be'contiguous and must 
start at address O. 

To run the Terminal Handler or Debugger, an 825LA Programmable 
Communications Interface (PCI) is required, as well. 

C-1 





APPENDIX D. iRMX1II 86 SOFTWARE VERSION NUMBERS 

The version numbers for all required and optional software that comprise 
Release 3.0 of the iRMX 86 Operating System are listed in Table D-1. 

Table D-1. iRMX· 86 Software Version Numbers 

iRMX 86 
l10dule 

Nucleus 
Terminal Handler 
Debugger 
Basic I/O System 
Extended I/O System 
Application Loader 
Bootstrap Loader 
Human Interface 
Files Utility 
Patching Utility 
Start-Up System 
Disk Verify 
Disk Backup 
Disk Restore 
Universal Development 

System Interface 

D-1 

Version 
Number 

4.0 
3.0 
3.0 
3.1 
1.0 
2.1 
3.0 
1.1 
3.0 
1.0 & 2.0 
2.0 
1.0 
1.0 
1.0 

1.1 





INDEX 

Primary references are underscored. 

8255 parallel I/O port 3-3 

ABS function 4-11 
altering TBASIC statement lines 4-4 
Application Loader 1-1, 2-2, 2-4, 7-2 
application-dependent requirements 2-3 
application system 2-1, 4-1, 5-1, 7-1 
arrays 4-4 

storage space 4-12 
ASM86 Macro Ass'embler 2-2, 6-1 
ASM86 Software Development Utilities 2-2 
ATTACHDEV command 3-8, 8-3 
ATTACHDEVICE command 3-S:-5-4 

backplane 3-6 
base address 

BASIC 

iSBC 204 3-4 
iSBC 206 3-4 
iSBC 208 3-5 
iSBC 254 3-6 

functions 
statements 

Basic I/O System 
baud rate 4-1 

4-11 
4-7 
1-1, 2-4, 3-3 

board 
arrangement in the chassis 3-6 
jumpering A-I 
modifications 3-1 

Bootstrap Loader 1-1, 1-2, 2-3, 2-4, 7-2 
BPRN/ signal 3-7 
BREAK command 8-4 
BSl.CSD file 5-3 
burn into PROM 2-3, 7-2 
bus master priority 3-7 

cable connections 3-7 
CATALOG statement 4-13 
changing diskettes 8-3 
chassis arrangement 3-6 
COMMON attribute 6-2 
components iii, 2-2, 3-1, C-l 
condition codes 8-9, B-1 
constants 4-5 
COpy command 5-4 
CREATEDIR command 5-4, 8-4 

Index-l 



INDEX (continued) 

CRTMBOX function 4-13 
CRTSEGM function 4-14 
CRTSEMA function 4-14 
CRTTASK function 4-15 
custom boards iii, C-1 

DATE command 5-5 
Debugger 1-1, 1-2, 2-4, 3-7, 4-1, 7-1 
deferred mode 4-3 
DEBGGR.DMO 4-2 
DEBUG command 5-5 
DELETE command 5-4, 8-4 
DELMBOX statement 4-16 
DELSEGM statement 4-16 
DELSEMA statement 4-17 
DELTASK statement 4-17 
demonstration system 4-1 
DETACH command 8-5 
DETACHDEVICE command 5-4 
development 

environment 2-1 
process 2-2, 7-1 

Development System 1-1, 2-2, 3-8, 4-1, 5-2, 6-2, 8-1 
dictionary of statements and functions 4-6 
DIR command 5-4, 8-5 
disk drives 2-2, 3-9, 3-10 
disk identifier 8-6 
diskettes 1-3, 2-2, 5-1, 8-1, 8-3~ 8-6 
DOWNCOPY command 5-4, 8-5 

error messages 6-6, 8-8 
expressions 4-5 
Extended I/O System 1-1, 2-4 

factory-installed jumpers 3-1, A-1 
file management commands 5-4, 8-3 
Files Utility System 1-1, 1-2, 3-8, 5-1, 7-1, 8-1 
FlLES.CSD file 8-2 
FOR statement 4-7 
FORMAT command 5-4, 8-6 
functions 4-11 

general requirements 2-2 
GETTKNS function 4-17 
GOSUB statement 4-8 
GOTO statement 4-8 
granularity 8-6 

hardware 
considerations 2-3, 3-1 
requirements 4-1, 5-2, 7-1, 8-1, C-1 

header records 6-1, 6-2, 6-6 
HELP command 8-7 ---
Human Interface 1-1, 2-4, 5-1, 6-2, 7-2, 8-7 

Index-2 



INDEX (continued) 

iAPX 86, 88 1-1, 5-3 
ICE-86 In-Circuit Emulator 2-2, 2-3, 3-7, 3-8, 4-2, 7-1 
iCS 80 chassis 3-6, 3-7 
IF statement 4-8 
INTELLEC Development System 1-1, 2-2, 2-3, 3-8, 4-1, 5-2, 6-2, 8-2 
in-place patch 6-1, 6-3, 6-4 
INPUT statement 4-9 
interactive mode 4-3, 4-10 
interleave factor 8-7 
interrupt levels 3-2, 3-3, 3-4, 3-5, 3-6 
introduction to the RMX/86 package 1-1 
INVALID MODULE TYPE error message 6-6 
INVALID RECORD TYPE error message 6-7 
INVALID SYNTAX error message 6-7 
inventory 1-2 
iRMX 86 

development environment 2-1 
operating system 1-1 
package 1-1 
software version numbers' D-l 
statements and functions 4-12 

iSBC 032/048/064 RAM board 3-6 
iSBC 016A/032A/064A/028A/056A RAM board 3-6 
iSBC 204 

board 2-3, 3-1, 3-9, 5-2, A-2 
modifications 3-3 

iSBC 206 
board 2-3, 3-1, 3-7 
modifications 3-4 

iSBC 208 
board 2-3, .3-1, 3-9, 5-2, A-2 
modifications 3-5 

iSBC 215 
board 2-3, 3-1, 3-10, 5-2, A-2 
modifications 3-5 

iSBC 220 
board 2-3, 3-1, 3-10, A-3 
modifications 3-6 

iSBC 254 
board 2-3, 3-1, 3-10, A-3 
modifications 3-6 

iSBC 604 cardcage/backplane 3-6 
iSBC 614 expansion cardcage/backplane 3-6 
iSBC 655 chassis 3-6 
iSBC 660 chassis 3-6 
iSBC 86/12A 

board 2-3, 3-1, 3-7, 3-8, 5-2, 8-1, A-I 
modifications 3-2 

iSBC 902 terminator pack 3-3 
iSBC 957A/B package 2-3, 3-2, 4-2, 5-2, 7-1, 7-2, 8-1, 8-2 
iSBX 218 

board 2-3, 3-1, 3-9, 5-2, A-3 
modifications 3-5 

iSBC 337 multimodule 3-2 
ISIS-II errors 8-8 
ISIS-II operating system 2-2, 8-1, 8-8 

Index-3 



INDEX (continued) 

Jl pin assignments 3-3 
jump instruction patch 6-3 
jumper connections 3-1, 3-6, A-I 

LET statement 4-9 
library module patching 6-3 
line printer 3-3 
LINK86 command 6-2, 6-3, 6-5 
LIB86 command 6-5 
LIST statement 4-10 
loading the demonstration system 4-2 
LOOKUPO function 4-18 

mailbox 4-13, 4-16, 4-19, 4-21 
manuals 1-2, 3-1 
memory board jumper connections 3-6 
memory requirements 2-4, 5-2, 7-1 
messages 4-21, 8-8 
modes 4-3 
MULTIBUS contention 3-5 

named file driver 8-7 
NEW statement 4-10 
NEXT statement 4-7 
Nucleus 1-1, 1-2, 2-4, 4-1, C-l 
Nucleus Demonstration System 4-1 
NUCLUS.DMO 4-2 

object 4-13, 4-17, 4-19, 4-21 
object directory 2-4, 4-13, 4-18, 4-23 
operating modes 4-3 

Patching Utility 1-1, 6-1 
PATCH.CSD file 6-4 
physical device names 3-4, 3-8, 3-9, 3-10 
PL/M-86 compiler 2-2, 6-2 
priority 3-6, 3-7 
PRINT statement 4-10 
PROG/ logical name 5-5 
program storage 4-3 
protecting system software 1-3 
PTCH86 command 6-2, 6-5 
PTCH86.R86 file 6-2, 6-3 
PUBLIC attribute 6-2, 6-3, 6-5 

RAM requirements 2-3, 2-4, C-l 
RCVUNIT function 4-19 
recommendations 1-3 
RECVMSG function 4-19 
REM statement 4-11 
RENAME command 5-4 
replacement code 6-1 
RESTASK statement 4-20 

,RETURN statement 4-11 

Index-4 



INDEX (continued) 

RND function 4-12 
ROM requirements 2-3, 2-4, C-l 
ROOTJB .DMO 4-2 
RS232 interface 2-3, 4-1 
RUN statement 4-11 

segment 4-14, 4-16 
SEGMENT NOT FOUND error message 6-7 
semaphore 4-14, 4-15, 4-17, 4-19, 4-22 
SENDMSG statement 4-21 
serial priority scheme. 3-7 
SGEN.CS file 5-5 
SIZE function 4-12 
SLEEP statement 4-21 
SMAKE.CSD file 5-5 
SNDUNIT 4-22 
starting the Files Utility 8-2 
Start-Up System 1-1, 1-2, 1-3, 2-3, 3-1, 3-8, 5-1, 7-1, 8-7 
STARTUPCOPY.CSD file 5-5 
statements and functions 4-5, 4-12 

dictionary 4-6 
STOP statement 4-11 
storing programs 4-3 
SUBMIT files 

BSI 5-3 
FILES 8-2 
PATCH 6-5 
SUPLD 5-3 
SGEN 5-5 
SMAKE 5-5 
STARTUPCOPY 5-5 

SUPLD.CSD file 5-3 
support option 8-7 
SUSTASK statement 4-22 
SYSTEM/ logical name 5-5 
system software protection 1-3 

target system 2-2, 4-1 
task 4-15, 4-17, 4-20, 4-21, 4-22 
TBASIC.DMO 4-2 
TBASIC interpreter 4-1, 4-3, 4-5 
Terminal Handler 1-1, 1-2, 2-4, 3-2, 3-7 
TIME command 5-5 
token 4-13, 4-14, 4-15, 4-17, 4-18, 4-19 
translator header record 6-1, 6-2, 6-6 

UNCATLG statement 4-23 
units 4-19, 4-22 
UNRECOGNIZED command 8-8 
UPCOpy command 3-8, 5-4, 8-7 
using the demonstration system 4-3 
using the Files Utility 8-3 

Index-5 



variables 4-4 
version numbers D-1 
volume 
granularity 8-6 
name 8-6 

wake-up address 
iSBC 215 3-5 
iSBC 220 3-6 

INDEX (continued) 

Index-6 



REQUEST FOR READER'S COMMENTS 

iRMX 86T 
.. 

Installation Guide 
9803125-04 

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets 
you participate directly in the documentation process. 

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this 
document. 

1. Please specify by page any errors you found in this manual. 

2. Does the document cover the information you expected or required? Please make suggestions for 
improvement. 

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are 
needed? 

4. Did you have any difficulty understanding descriptions or wording? Where? 

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _ 

NAME _____________________________________ DATE __________ __ 

TITLE _______________________________________________________________________________________________________________ __ 

COMPANY NAME/DEPARTMENT ______________________________________________ ___ 

ADDRESS __________________________________________________________ . ___________________ __ 

CITY ___________________________ STATE ___ ZIP CODE ______ _ 

Please check here if you require a written reply. 0 



WE'D LIKE YOUR COMMENTS ... 

This document is one of a series describing Intel products. Your comments on the back of this form 
will help us produce better manuals. Each reply will be carefully reviewed by the responsible 
person. All comments and suggestions become the property of Intel Corporation. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR 

POSTAGE WILL BE PAID BY ADDRESSEE 

Intel Corporation 
5200 N.E. Elam Young Pkwy. 
Hillsboro, Oregon 97123 

O.M.S. Technical Publications 

111111 NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 



INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080 

Printed in U.S.A. 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	D-01
	D-02
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	replyA
	replyB
	xBack

