
.

iRMX 86™
PROGRAMMING TECHNIQUES

Manual Number: 142982-002

. .

Copyright © 1980. 1981. Intel Corporation
1 Intel Corporation. 3065 Bowers Avenue. Santa Clara. California 95051 I

REV. REVISION HISTORY PRINT
DATE

-001 Original Issue 11180

-002 Updated to reflect the changes in 5/81
version 3.0 of the iRMX 86 software.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software
license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

BXP
CREDIT
i
ICE
iCS
im
Insite
Intel

Intel
Intelevision
lntellec
iRMX
iSBC
iSBX
Library Manager
MCS

Megaehassis
Mirromap
Multibus
Multimodule
PROMPT
Promware
RMX/80
System 2000
UPI
,uScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, iMMX or RMX and a numerical
suffix.

11 I A382/681/SK DD I

t1

PREFACE

The techniques presented in this manual relate to one or more of the
following phases of system development:

• Dividing an application into jobs and tasks.

• Writing the code for tasks.

• Configuring and starting up the system.

• Debugging an application.

• Writing an interrupt handler.

Because of the time and effort that these techniques can save, you should
refer to this manual as you enter each of these phases in the development
of your system.

iii

I

CONTENTS

CHAPTER 1
ORGANIZATION OF THIS MANUAL
Chapter Outline ••
Indexe s

CHAPTER 2
SELECTING A PL/M-86 SIZE CONTROL
Purpose of This Chapter ••••••••.••••..••••••..••.••••.•.•••••••••••
Making the Selection........................

Ramifications of Your Selection e, ••••••••

Restrictions Associated with Compact •••••••••••••••••••••••••••
Restrictions Associated with Medium •••••••.••••••••••••••••••••

Decision Algorithm •••••••.•••••••.•
Bi bi i ogra phy " ...

CHAPTER 3
INTERFACE PROCEDURES AND LIBRARIES
Purpose of This Chapter ... ".
Definition of Interface Procedure ••••••••••••••••••••••••••••••••••
Interface Libraries •••••••••••••••.•
Bib liography " " ,

CHAPTER 4
EDITING INCLUDE FILES
Purpose of This Chapter •..•.•.•.•.•.•...•...••.••.••...•.•••.••••••
Being Selective

The Singleton Method ...•.......•..................•••......•.....
The Special-Case Method e •••••••

Two Other Reasons for Editing Include Files •••..•••••••••••••.•••
Finding Errors During Compilation ••••••••••••••••••••••••••••••••
Enforcing the Distinction Between System and Application

Progr ammer s. . . . • • . • . • • . . • . • •.••••......•..•.......•..
Bibliography .. .

CHAPTER 5
TIMER ROUTINES
Purpose of This Chapter
Procedures Implementing the Timer ••••••••••••••••••••••••••••••.•••
Restrictions •••••••••••••••••.•••••••

init time First •••••••••••••••
One Time r .•..•.••••.••.....••.

Call
Only

Source Code ••
Biblio~raphy •••

iv

PAGE

1-1
1-1

2-1
2-1
2-2
2-2
2-2
2-2
2-5

3-1
3-1
3-4
3-5

4-1
4-2
4-2
4-3
4-3
4-3

4-3
4-4

5-1
5-1
5-2
5-2
5-2
5-3
5-8

CONTENTS (continued)

CHAPTER 6
CALLING THE iRMX 86~ SYSTEM FROM ASSEMBLY LANGUAGE
Purpose of This Chapter ...••............••...........
Calling the
Selecting a

System .•..........•.................................
Size Control•...............•.............

Bibliography .. .

CHAPTER 7
COMMUNICATION BETWEEN iRMX 86 JOBS
Purpose of This Chapter
Passing Large Amounts of Information Between Jobs ••••••••••••••••••
Passing Objects Between Jobs

Passing Objects Through Object Directories ••.••••••••••••••••••••
Passing Objects Through Mailboxes ••••••••••••••••••••••••••••••••
Pas sing Parameter Db jec ts•.•........••.....•.•.•.......•..
Avoid Passing Objects Through Segments or Fixed Memory Locations.
Comparison of Object-Passing Techniques ••••••••••••••••••••••••••

Bi hliography•.....•.•.•............

CHAPTER 8
SIMPLIFYING CONFIGURATION DURING DEVELOPMENT
Purpose of This Chapter •••••••••••••••••••••••••
Summary of Configuration ..•.....•.•.....•..........................
Configuration and Debugging ••••••••••••••••••••••••••••••••• ~ ••••••
The Technique •..•..•••...•....•••••......•............••••...•••••.

Freezing the Base of the Data Segment ••••••••••••••••••••••••••••
Freezing the Entry Points

Bibliography•.......•........•.•.............

CHAPTER 9
DEADLOCK AND DYNAMIC MEMORY ALLOCATION
Purpose of This Chapter ...•..
How Memory Allocation Causes Deadlock ••••.•••••••••••••••••••••••••
System Calls That Can Lead to Deadlock •••••••••••••••••••••••.••.•••
Preventing Memory Deadlock .. .
Bibliography ...•.........••

CHAPTER 10
PROCEDURES FOR I/O USING A TERMINAL
Purpose of This Chapter •••••••••••
Ove rvi ew •...••••.•........••..•••.•.•.•••••••...•.•.•.•.••••.••••.•
Elementary Procedures •••••••••••••
Advanced Procedure s•..........................•.......

Procedures for Numbers .. .
Procedures for Hexadecimal Numbers •••••••••••••••••••••••••••••
Procedures for Decimal Numbers •••.•...•••.•.••.•••••••••.•••••.

v

PAGE

6-1
6-1
6-2
6-2

7-1
7-1
7-3
7-3
7-5
7-5
7-6
7-6
7-6

8-1
8-1
8-2
8-2
8-2
8-4
8-5

9-1
9-1
9-2
9-3
9-3

10-1
10-1
10-2
10-2
10-2
10-3
10-3

CONTENTS (continued)

CHAPTER 10 (continued)
Procedures for Strings •••

Procedures for iRMX 86 Strings •••••••••••••••••••••••••••••••••
A Procedure for Null-Terminated Strings ••••••••••••••••••••••••

Bibliography•..............•.............................

CHAPTER 11
GUIDELINES FOR STACK SIZES
Purpose of This Chapter•.............................. '
Stack Size Limitation for Interrupt Handlers •••••••••••••••••••••••
Stack Guidelines for Creating Tasks and Jobs •••••••••••••••••••••••
Stack Guidelines for Tasks to be Loaded or Invoked •••••••••••••••••
Ari thmetic Technique •..•...

Stack Requirements for Interrupts ••••••••••••••••••••••••••••••••
Stack Requirements for System Calls •••••••••.••••••••••••••••••••
Computing the Size of the Entire Stack •••••••••••••••••••••••••••

Empir.ica 1 Technique ..•.•.•................•........................
Bib liography .. .

INDEX A
WHEN IS EACH CHAPTER USEFUL?
Dividing an Application Into Jobs and Tasks ••••••••••••••••••••••••
Writing the Code for Tasks •••••••••••.•.•.••••••.••••••••••..••.••.
Debugging•.•..•..•............•..........•......•...•....
Configuration and System Startup •••••••••••••••••••••••••••••••••••
Writing Interrupt Handlers ..•.•......•......••.......•..........•..

2-1.
3-1.
3-2.
3-3.
8-1.
8-2.
8-3.

3-1.

4-1.

11-2.

FIGURES

Decision Algorithm for Size Control ••••••••••••••••••••••••
Direct Location-dependent Invocation •••••••••••••••••••••••
Complex Location-independent Invocation ••••••••••••••••••••
Simple Invocation Using an Interface Procedure •••••••••••••
How to Freeze the Base of the Data Segment •••••••••••••••••
Special Module Freezes Entry Points ••• ' •••••••••••••••••••••
Location of the Special Module •••••••••••••••••••••••••••••

TABLES

Interface Libraries as a Function of PL/M-86 Size Control
and iRMX 86 Subsystems ••.•••..••.•••••••••.••.•......•.•.

Correlation Between iRMX 86m Subsystems and INCLUDE
Files That Declare System Calls ••••••••••••••••••••••••••

Stack Requirements for System Calls ••••••••••••••••••••••••

vi

PAGE

10-4
10-4
10-4
10-5

11-1
11-1
11-2
11-2
11-2
11-3
11-3
11-5
11-5
11-6

A-I
A-I
A-2
A-2
A-2

2-4
3-2
3-3
3-3
8-3
8-4
8-5

3-4

4-2
11-4

CHAPTER 1. ORGANIZATION OF THIS MANUAL

This manual provides a number of techniques to reduce the amount of time
and effort you must spend designing and implementing your iRMX 86-based
application system. Each chapter either provides background information
or directly attacks a specific type of problem.

CHAPTER OUTLINE

In order to help you quickly decide whether a particular technique 1S of
use to you, all the chapters (with the exception of this one) are
organized as follows:

1) Assumptions about the Reader

This section describes the readers that are likely to be
interested in the content of the chapter. This section also
specifies any prerequisite knowledge that readers must possess 1n
order to thoroughly understand the chapter.

2) Intent of the Chapter

This section briefly explains how the contents of the chapter
might apply to your situation. After reading only one or two
paragraphs, you will be able to decide whether to continue reading.

3) Technique or Explanation

This part of the chapter, which may consist of one or more
sections,provides the information promised as being the purpose
of the chapter.

4) Additional Reading

INDEXES

This section contains a list of reading material that provides the
prerequisite knowledge required for the chapter. Chapters
requiring no prerequisite knowledge have no bibliography.

This manual is equipped with two indexes. The first one, Index A, lists
the chapters according to when they might be useful to you. For instance,
chapters useful during debugging are listed in one place, while chapters
useful during configuration are listed in another. Whenever you move from
one phase of system development to another, you should consult this index.

The second index, Index B, provides the conventional alphabetical listing
of topics and the pages on which they are discussed or significantly
mentioned.

1-1

CHAPTER 2. SELECTING A PL/M-86 SIZE CONTROL

This chapter applies to you only if you have decided to program your
iRMX 86 tasks using PL/M-86. In order to understand the following
explanation, you should be familiar with

• The PL/M-86 programming language

• PL/M-86 models of computation

• iRMX 86 jobs, tasks, and segments

If you are unfamiliar with any of these items, refer to the bibliography
at the end of this chapter for titles of manuals that can provide
background information.

PURPOSE OF THIS CHAPTER

Whenever you invoke the PL/M-86 Compiler, you must specify (either
explicitly or by default) a program size control (SMALL, COMPACT, MEDIUM,
or LARGE). This size control determines which model of computation the
compiler uses and, consequently, greatly affects the amount of memory
required to store your application's object code.

The following section explains which size control to use in order to
produce the smallest object program while still satisfying the
requirements of your system.

MAKING THE SELECTION

When you compile your programs using the PL/M-86 SMALL control, all
POINTER values are 16 bits long. This leads to a number of restrictions,
including the inability to address the contents of an iRMX 86 segment
that has been received from another job. Because of these restrictions,
the iRMX 86 Operating System is currently not compatible with PL/M-86
procedures compiled using the SMALL size control.

Since you cannot use the SMALL size control, you must choose between
COMPACT, MEDIUM and LARGE. The algorithm for selecting a size control 1S

presented later in this chapter. However, before you examine the
algorithm, you should be aware that your choice can place restrictions on
your system.

2-1

SELECTING A PL/M-86 SIZE CONTROL

RAMIFICATIONS OF YOUR SELECTION

If you decide to use the COMPACT or MEDIUM size controls, the
capabilities of your system will be slightly restricted. Only the LARGE
size control preserves all of the features of the system.

Restrictions Associated with Compact

If you decide to use PL/M-86 COMPACT, you will not be able to use
exception handlers. However, you can still process exceptional
conditions by dealing with them in your task's code.

Restrictions Associated with Medium

If you decide to use PL/M-86 MEDIUM, you lose the option of having the
iRMX 86 Operating System dynamically allocate stacks for tasks that are
created dynamically. This means that you must anticipate the stack
requirements of each such task, and you must explicitly reserve memory
for each stack during the process of configuring the system.

DECISION ALOGRITHM

Before you attempt to use the flowchart (Figure 2-1) to make your
decision, note that three of the boxes are numbered. Each of these three
boxes asks you to derive a quantity that represents a memory requirement
of your iRMX 86 job. In order to derive the quantity requested in each
of the boxes, follow the directions provided below in the section having
the same number as the box.

1. COMPUTE MEMORY REQUIREMENTS FOR STATIC DATA

Box 1 asks for an estimate of the amount of memory required to
store the static data for all the tasks of your iRMX 86 job.
Static data consists of all variables other than:

• parameters in a procedure call

• variables local to a reentrant PL/M-86 procedure

• PL/M-86 structures that are declared to be BASED

To obtain an accurate estimate of this quantity, use the COMPACT
size control to compile the code for each task in your job. For
each compilation, find the MODULE INFORMATION area at the end of
the listing. Within this area is a quantity labeled VARIABLE
AREA SIZE and another labeled CONSTANT AREA SIZE.

Now you must compute the static data size for each individual
compilation by adding the VARIABLE AREA SIZE to the CONSTANT AREA
SIZE.

2-2

SELECTING A PL/M-86 SIZE CONTROL

Once you have computed the static data size for each compilation
in the job, add them to obtain the static data size for the
entire job.

2. COMPUTE MEMORY REQUIREMENTS FOR CODE

Box 2 asks for an estimate of the amount of memory required to
store the code for all the tasks of your iRMX 86 job. To obtain
this estimate, perform the following steps:

• Using the COMPACT S1ze control, compile the code for
each task 1n your job.

• For each compilation, find the MODULE INFORMATION area
at the end of the listing. In this area is a value
labeled CODE AREA SIZE. This value is the amount of
memory required to store the code generated by this
individual compilation.

• Sum the code requirements for all the compilations in
the job. The result is the code requirement for the
entire job.

3. COMPUTE MEMORY REQUIREMENTS FOR STACK

Box 3 asks for an estimate of the amount of memory required to
store the stacks of all the tasks in your iRMX 86 job. If you
plan to have the iRMX 86 Operating System create your stacks
dynamically, your stack requirement (for the purpose of the
flowchart) is zero.

If, on the other hand, you plan to create the stacks yourself,
you can estimate the memory requirements by performing the
following steps. Refer to the MODULE INFORMATION AREA of the
compilation listings that you obtained while working with Box 2.
Within this area is a value labeled MAXIMUM STACK SIZE. To this
number, add the system stack requirement that you can determine
by following the procedure in Chapter 11 of this manual. The
result is an estimate of the stack requirement for one
compilation. To compute the requirements for the entire job,
just sum the requirements for all the compilations in the job.

2-3

COMPUTE
MEMORY

REQUIREMENTS
FOR STATIC

DATA

COMPUTE
MEMORY

REQUIREMENTS
FOR CODE

COMPUTE
MEMORY

REQUIREMENTS
FOR STACK

ADD STATIC
DATA TO

STACK REQMT

CHOOSE BETWEEN
COMPACT

AND
MEDIUM

SELECTING A PL/M~86 SIZE CONTROL

SEE(j) ON
PAGE 2-2

YES

SEE~ON
PAGE 2-3

SEE@ON
PAGE 2-3

YOU MUST C)
USE ~----------~~ STOP LARGE __________ "

'--------'

r--------.,*

r--------,*

STOP

STOP

*SEE
RAMIFICA nONS
ON PAGE 2-2

Figure 2-1. Decision Algorithm for Size Control

2-4

SELEQTING A PL/M-86 SIZE CONTROL

BIBLIOGRAPHY

The following literature contains information that you might need to be
acquainted with before you select a PL/M-86 size control:

• PL/M-86 PROGRAMMING MANUAL FOR 8080/808S-BASED DEVELOPMENT SYSTEMS
Manual Number 9800466

This manual describes the PL/M-86 language as it is supported on
development systems that do not incorporate an iAPX 86
microprocessor.

• PL/M-86 USER'S GUIDE FOR 8086-BASED DEVELOPMENT SYSTEMS
Manual Number 121636

This manual describes the PL/M-86 language as it is supported on
development systems that incorporate an iAPX 86 microprocessor.
It also contains a discussion of the differences between the
various PL/M-86 size controls (or models of computation).

• PL/M-86 COMPILER OPERATING INSTRUCTIONS FOR 8080/808S-BASED
DEVELOPMENT SYSTEMS

•

Manual Number 9800478

This manual describes the differences between the var10US PL/M-86
S1ze controls (or models of computation).

iRMX 86'· NUCLEUS REFERENCE MANUAL
Manual Number 9803122

This manual contains detailed descriptions of iRMX 86 segments,
jobs and tasks. It also explains how you can tell the iRMX 86
System to create a task's stack dynamically.

• Chapter 11 of this manual

Chapter 11 explains how to compute the amount of stack that the
iRMX 86 Operating System requires.

2-5

I

CHAPTER 3. INTERFACE PROCEDURES AND LIBRARIES

This chapter is for anyone who writes programs that use iRMX 86 system
calls.· In order to understand this chapter, you should be familiar with
the following concepts:

• the notion of system call

• the process of linking object modules

• the notion of an object library

• PL/M-86 size control

If you are unfamiliar with any of these concepts, refer to the
bibliography at the end of this chapter for additional reading.

PURPOSE OF THIS CHAPTER

Familiarity with interface procedures is a prerequisite to understanding
several of the programming techniques discussed later in this manual.
The primary purpose of this chapter is to define the concept of an
interface procedure and explain how it is used in the iRMX 86 Operating
System.

DEFINITION OF INTERFACE PROCEDURE

The iRMX 86 Operating System uses interface procedures to simplify the
process of calling one software module from another. In order to
illustrate the usefulness of interface procedures, let's examine what
happens without them.

Suppose you are wr~t~ng an application task that will run in some
hypothetical operating system. Figure 3-1 shows your application task
calling two system procedures. If the system calls are direct <without
an interface procedure serving as an intermediary), the application task
must be bound to the system procedures either during compilation or
during linking. Such binding causes your application task to be
dependent upon the memory location of the system procedures.

3-1

INTERFACE PROCEDURES AND LIBRARIES

APPLICATION SOFTWARE OPERATING SYSTEM

APPLICATION TASK PROC ABC
CALL ABC (...)

~ (...)
PROC OEF

f.,.

Figure 3-1. Direct Location-dependent Invocation

Now suppose that someone updates your operating system. If, during the
process of updating the system, some of the system procedures are moved
to different memory locations, then your application software must be
relinked to the new operating system.

There are techniques for calling system procedures that do not assume
unchanging memory locations. However, most of these techniques are
complex (Figure 3-2) and assume that the application programmer is
intimately familiar with the interrupt architecture of the processor.

3-2

INTERFACE PROCEDURES AND LIBRARIES

APPLICATION SOFTWARE OPERATING SYSTEM

APPLICATION TASK

[~
VISIBLE TO APPLICATION CODE

Figure 3-2. Complex Location-independent Invocation

The iRMX 86 Operating System uses interface procedures to mask the
details of location-independent invocation from the application software
(Figure 3-3). Whenever application programmers need to call a system
procedure from application code, they use a simple procedure call (known
as a system call). This system call invokes an interface procedure
which, in turn, invokes the actual system procedure.

CALL
RQ$ABC

CALL
RQ$DEF

INTERFACE PROCEDURES

Figure 3-3. Simple Invocation Using an Interface Procedure

3-3

I

I

INTERFACE PROCEDURES AND LIBRARIES

INTERFACE LIBRARIES

The iRMX 86 Operating System provides you with a set of object code
libraries containing PL/M-86 interface procedures. These procedures
preserve address independence while allowing you to invoke system calls
as simple PL/M-86 procedures.

During the process of configuring an application system you must link
your application software to the proper object libraries. Table 3-1
shows the correlation between subsystems of the iRMX 86 Operating System,
the PL/M-86 size control, and the interface libraries. To find out which
libraries you must link to, find the column that specifies the PL/M-86
size control that you are using, and the rows that specify the subsystems
of the iRMX 86 Operating System that you are using. You must link to the
libraries that are named at the intersections of the column and the rows.

Table 3-1. Interface Libraries as a Function of PL/M-86 Size Control
and iRMX 86~ Subsystems

COMPACT LARGE OR
MEDIUM

NUCLEUS RPIFC.LIB RPIFL.LIB

BASIC I/O IPIFC.LIB IPIFL.LIB
SYSTEM

EXTENDED EPIFC.LIB EPIFL.LIB
I/O SYSTEM

APPLICATION LPIFC.LIB LPIFL.LIB
LOADER

HUMAN HPIFC.LIB HPIFL.LIB
INTERFACE

3-4

INTERFACE PROCEDURES AND LIBRARIES

BIBLIOGRAPHY

The following reading material contains information that relates to
interface procedures and libraries.

• Chapter 2 of this manual

This chapter contains an algorithm for selecting a PL/M-86 s~ze
control.

• INTRODUCTION TO THE .iRMX 86'" OPERATING SYSTEM
Manual Number 9803124

•

This manual provides a general discussion of system calls.

iRMX 86'" CONFIGURATION GUIDE
Manual Number 9803126

This manual discusses the entire process of configuring an
iRMX 86-based application system, including the details about
linking interface libraries to application systems.

• iAPX 86, 88 FAMILY USER'S GUIDE FOR 8086-BASED DEVELOPMENT SYSTEMS
Manual Number 121616

This manual describes the process of using libraries and the
process of linking software modules on development systems that
incorporate an iAPX 86 microprocessor.

• 8086 FAMILY UTILITIES USER'S GUIDE FOR 8080/808S-BASED
DEVELOPMENT SYSTEMS
Manual Number 9800639

This manual describes the process of using libraries and the
process of linking software modules on development systems that
do not incorporate an iAPX 86 microprocessor.

• iRMX 86'" SYSTEM PROGRAMMER'S REFERENCE MANUAL
Manual Number 142721

This manual describes interface procedures in more detail.

3-S

I

CHAPTER 4. EDITING INCLUDE FILES

This chapter is for anyone who writes PL/M-86 programs that use iRMX 86
system calls. In order to understand this chapter, you should be
familiar with the following concepts:

• system calls

• INCLUDE files

• external procedures

• system configuration

• text editors

If you are unfamiliar with any of these concepts, refer to the
bibliography at the end of this chapter for additional reading.

PURPOSE OF THIS CHAPTER

You received, as part of the iRMX 86 product, several INCLUDE files
(Table 4-1). Each of these files is associated with one iRMX 86
subsystem, and each file contains the PL/M-86 external procedure
declarations for all of the system calls provided by the associated
subsystem.

When writing application code in PL/M-86, you must add to your source
code an external procedure declaration for each iRMX 86 system call used
by your code. The INCLUDE files provide a means of incorporating all of
the system calls associated with any particular subsystem of the
Operating System. However, if you do include all of the external
procedure declarations (rather than including only those that your code
actually uses), you may cause the PL/M-86 Compiler to run out of dynamic
memory. This, in turn, will cause the compilation to terminate
unsuccessfully.

This chapter tells you how to avoid overloading the PL/M-86 Compiler.

4-1

I

I

EDITING INCLUDE FILES

Table 4-1. Correlation Between iRMX 86- Subsystems and Include Files
That Declare System Calls

NAME OF NAME OF
SUBSYSTEM INCLUDE FILE

NUCLEUS NUCLUS.EXT

BASIC I/O SYSTEM lOS .EXT

EXTENDED EIOS.EXT
I/O SYSTEM

APPLICATION LOADER. EXT
LOADER

HUMAN HI. EXT
INTERFACE

BEING SELECTIVE

You can reduce the probability of using up all of the Compiler's dynamic
memory if you are selective about which declarations you incorporate into
your source code. For instance, if the code you are compiling does not
use the SEND$UNITS system call, you need not incorporate into your source
the declaration of the RQ$SEND$UNITS procedure.

Since the INCLUDE files supplied by INTEL contain all of the declarations
for each iRMX 86 subsystem, you cannot INCLUDE theS;-files and be
selective. In order to allow selective inclusion, you must divide the
provided INCLUDE files into customized files. There are two methods you
should consider.

THE SINGLETON METHOD

You can use a text editor (CREDIT for example) to divide each of the
large INCLUDE files into many small INCLUDE files, each of which contains
only one procedure declaration. Then, when you write application code,
you selectively INCLUDE only the files that contain procedure
declarations required by the code.

4-2

EDITING INCLUDE FILES

The advantage of this technique is that once all the small files have
been created, no programmers need ever perform the division process
again. The disadvantages are that someone must initially divide the
large INCLUDE files into smaller files and that more INCLUDE statements
are required.

THE SPECIAL-CASE METHOD

An alternative to the singleton method is to create one INCLUDE file that
contains only the system calls required by the code being written. This
method has the advantage of requiring less time initially. However, if
at some later time you write more code that uses different system calls,
you must invest additional time to create another special-case INCLUDE
~ile.

TWO OTHER REASONS FOR EDITING INCLUDE FILES

There are two other reasons why you may want to edit INCLUDE files.

FINDING ERRORS DURING COMPILATION

If you edit your INCLUDE files to support only the system calls
configured into your system, you can detect during compilation some
errors that would otherwise appear only at runtime. Consider the
following hypothetical example.

Suppose that your system does not use semaphores and that your system's
configuration does not include any system call associated with
semaphores. Also suppose that one of your programmers is unaware of this
restriction and attempts to create and use semaphores. If external
procedure declarations for semaphore-related system calls have not been
INLCUDED in your source code, this oversight will be detected (as
references to undefined symbols) when the source code is compiled. If,
on the other hand, the declarations have been INCLUDEd, the error will
not be detected until the system is run and an E$NOTCONFIGURED
exceptional condition is generated.

ENFORCING THE DISTINCTION BETWEEN SYSTEM AND APPLICATION PROGRAMMERS

By editing the INCLUDE files, you can enforce the distinction between
system programmers and application programmers. To accomplish this,
create two collections of procedure declarations -- one for each type of
programmer. Then, if application programmers attempt to use restricted
system calls, the compiler will mark the illicit system calls as
references to undefined symbols.

4-3

I

EDITING INCLUDE FILES

BIBLIOGRAPHY

The following reading material contains information that relates to
INCLUDE files, iRMX 86 system calls, PL/M-86 external procedures, system
configuration, and text editors:

• INTRODUCTION TO THE iRMX 86~ OPERATING SYSTEM
Manual Number 9803124

This manual provides a general discussion of iRMX 86 system calls.

• PL/M-86 USER'S GUIDE FOR 8086-BASED DEVELOPMENT SYSTEMS
Manual Number 121636

This manual discusses the concept of using INCLUDE files to add
source statements to a file being compiled on a development
system that incorporates an iAPX 86 microprocessor. It also
describes the PL/M-86 language and contains an explanation of
external procedures.

• PL/M-86 COMPILER OPERATING INSTRUCTIONS FOR 8080/8085-BASED
DEVELOPMENT SYSTEMS
Manual Number 9800478

This manual discusses the concept of using INCLUDE files to add
source statements to a file being compiled on a development
system that does not incorporate an iAPX 86 microprocessor.

• PL/M-86 PROGRAMMING MANUAL FOR 8080/8085-BASED DEVELOPMENT SYSTEMS
Manual Number 9800466

•

This manual describes the PL/M-86 language and contains an
explanation of external procedures.

iRMX 86~ CONFIGURATION
Manual Number 9803126

This manual discusses the process of configuring an iRMX 86-based
system.

• ISIS-II CREDIT (CRT-BASED TEXT EDITOR) USER'S GUIDE
Manual Number 9800902

This manual explains how to use the CREDIT text editor.

4-4

CHAPTER 5. TIMER ROUTINES

This chapter is for anyone who writes programs that must determine
approximate elapsed time. In order to make use of this chapter, you
should be familiar with the following concepts:

• INCLUDE files

• iRMX 86 interface procedures

• iRMX 86 tasks

• initialization tasks

• using the LINK86 command of the MCS-86 Software Development
Utilities

Furthermore, if you want to. understand how the timer routines work, you
must be fluent in PL/M-86 and know how to use iRMX 86 regions. The
bibliography at the end of this chapter refers to text that discusses
these topics.

PURPOSE OF THIS CHAPTER

The iRMX 86 Basic I/O System provides GET$TIME and SET$TlME system
calls. These two calls supply your application with a timer having units
of one second. However, if your application requires no features of the
Basic I/O System other than the timer, you can reduce your memory
requirements by dropping the Basic I/O System altogether and implementing
the timer in your application.

This chapter provides the source code needed to build a timer into your
application. I

PROCEDURES IMPLEMENTING THE TIMER

Four-PL/M-86 procedures are used to implement the timer. In brief, the
procedures are:

This procedure requires no input parameter and returns a double
word (POINTER) value equal to the current contents of the timer
in seconds. This procedure can be called any number of times.

5-1

TIMER ROUTINES

• set time

This procedure requires a double word (POINTER) input parameter
that specifies the value (in seconds) to which you want the timer
set. This procedure can be called any number of times.

• init time

This procedure creates the timer, initializes it to zero seconds,
and starts it running. This procedure requires as input a
POINTER to the WORD which is to receive the status of the
initialization. This status will be zero if the timer is
successfully created and nonzero otherwise. This procedure
should be called only once.

• maintain time

This procedure is not called directly by your application.
Rather, it runs as an iRMX 86 task that is created when your
application calls init time. The purpose of this task is to
increment the contents-of the timer once every second.

RESTRICTIONS

There are two important restrictions that you should keep 1n mind when
using the timer routines:

CALL init time FIRST

Before calling set time or get time, your application must call init
time. You can accomplish this-by calling the init time procedure from
your job's initialization task.

ONLY ONE TIMER

These procedures implement only one timer. They do not allow you to
maintain a different timer for each of several purposes. For example, if
one job changes the contents of the timer (by using the set time
procedure), all jobs accessing the timer will be affected. -

5-2

TIMER ROUTINES

SOURCE CODE

You can compile the following PL/M-86 source code as a single module.
This will yield an object module that you can link to your application
code. However, before compiling these procedures, you must create files
containin~ the external procedure declarations for the iRMX 86 interface
procedures. The names of these files are specified in the $INCLUDE
statements below.

$title('INDEPENDENT TIMER PROCEDURES')
/***
* *
* This module consists of four procedures which implement a timer *
* having one-second granularity. The outside world has access to only *
* three of these procedures- *
*
*
*
*
*

init time
set time
get_time

*
*
*
*
* * The fourth procedure, maintain time, is invoked by init_time and *

* is run as an iRMX 86 task to m;asure time and increment the time *
* counter. *
***/

timer: DO;

/***
* The following LITERALLY statements are used to improve the *
* readability of the code. *
***/

DECLARE
FOREVER
DWORD
TOKEN
REGION
E$OK
PRIORITY QUEUE
TASK -

LITERALLY 'WHILE OFFH' ,
LITERALLY 'POINTER',
LITERALLY 'WORD',
LITERALLY 'TOKEN',
LITERALLY'OOOOOH',
LITERALL Y '1',
LITERALLY 'TOKEN';

5-3

TIMER ROUTINES

/***

*
*
*
*
*

The following INCLUDE statements cause the external procedure
declarations for some of the iRMX 86 system calls to be included
in the source code.

*
*
*
*
*

***/

$INCLUDE(:fl:icrtas.ext) /* rq$create$task interface proc.*/
$INCLUDE(:fl:icrreg.ext) /* rq$create$region " " */
$INCLUDE(:fl:isleep.ext) /* rq$sleep " " */
$INCLUDE(:fl:idereg.ext) /* rq$delete$region " " */
$INCLUDE(:fl:iregio.ext) /* rq$send$control " " */

/* and rq$receive$control " " */

$subtitle('Local Data')
/***
* The following variables can be accessed by all of the procedures *
* in this module. *
***/

DECLARE
time_region

time in sec

time-in sec 0

REGION,

DWORD,

STRUCTURE (
low WORD,
high WORD)

/* Guards access to time 1n
sec.*/

/* Contains time in seconds.*/

/* Overlay */
/* used to obtain */
/* high and low */
/* order words. */

AT (@time in_sec),

POINTER, /* Used to obtain loc of data
seg.*/

STRUCTURE (/* Overlay used to */
offset WORD,/* obtain loc of */
base WORD)/* data segment. */
AT (@data_seg-y);

5-4

TIMER ROUTINES

$subtitle('Time maintenance task')
/***
* maintain time *
*
*
*
*
*
*
*
*
*
*
*
*
*

This procedure is run as an iRMX 86 task. It repeatedly
performs the following algorithm-

Sleep 1 second.
Gain exclusive access to time in sec.
Add 1 to time in sec.
Surrender exclusive access to time_in_sec.

If the last three steps in the preceding algorithm requ~re
more than one nucleus time unit, the time in sec counter
will run slow.

*
*
*
*
*
*
*
*
*
*
*
*
*

* This procedure must not be called by any procedure other than *
* ~n~t time. *
***/

maintain time: PROCEDURE REENTRANT;
DECLARE status WORD;

timer_loop:
DO FOREVER;

CALL rq$sleep(100, @status); /* Sleep for one
second. */

CALL rq$receive$control /* Gain exclusive */
(time_region, @status); /* access. */

time in sec o.low = /* Add 1 second */
time in sec o.low +1; /* to low order */

/* half of timer.*/

IF (time in sec o.low = 0) /* Handle overflow.*/
THEN-time_in_sec_o.high =

time_in_sec_o.high + 1;

CALL rq$send$control(@status); /* Surrender access*/

END timer_loop;
END maintain_time;

5-5

TIMER ROUTINES

$subtitle('Get Time')
/***
* get time *
* *
* This procedure is called by the application code in order to *
* obtain the contents of time in sec. This procedure can be *
* called any number of times. *
***/

get_time: PROCEDURE DWORD REENTRANT PUBLIC;

DECLARE time DWORD,
status WORD;

CALL rq$receive$control
(time_region, @status);

CALL rq$send$control(@status);

RETURN(time);

/* Gain exclusive */
/* access. */

/* Surrender access.*/

$subtitle('Set Time')
/***
* set time *

* *
* Application code can use this procedure to place a specific *
* double word value into time in sec. This procedure can be *
* called any number of times.- - *
***/

set_time: PROCEDURE(time) REENTRANT PUBLIC;

DECLARE time
status

DWORD,
WORD;

CALL rq$receive$control /* Gain exclusive access.*/
(time_region, @status);

time_in_sec = time; /* Set new time. */

CALL rq$send$control(@status); /* Surrender access. */

5-6

TIMER ROUTINES

$subtit1e(ilnitia1ize Time')
/***
* init time *
*
*
*
*
*
*
*
*
*
*
*
1r

*
*
*
*
*
*

This procedure zeros the timer, creates a task to
maintain the timer, and a region to ensure exclusive
access to the timer. This procedure must be called
before the first time that get time or set time is
called. Also, this procedure ;hou1d be called only
once. The easiest way to make sure this happens 1S

call init time from your initialization task.

The timer task will run in the job from which this
procedure is called.

If your application experiences a lot of interrupts,
the timer may run slow. You can rectify this
problem by raising the priority of the timer
task. To do this, change the 128 in the
rq$create$task system call to a smaller number.
This change may slow the processing of your

*
*
*
*
*
*

to *
*
*
*
*
*
*
*
*
*
*
*

* interrupts. *
***/

init_time: PROCEDURE(ret_status_p) REENTRANT PUBLIC;

POINTER, DECLARE ret_status-y
ret status
timer task t
loca1-stat;s

BASED ret_status-y WORD,
TASK,
WORD;

time in sec 0;

= rq$create$region /* Create a region. */

IF (ret status
RETURN;

timer task t

(PRIORITY_QUEUE, ret_status-y);

E$OK) THEN

rq$create$task
(128,
@maintain_time,
data_seg_p_o.base,
0,
512,
0,
ret_status-y) ;

5-7

/* Return w/ error. */

/* Get contents of
DS register. */

/* Create timer task.
/* priority
/* start addr
/* data seg base
/* stack ptr
/* stack size
/* task flags

*/
*/
*/
*/
*/
*/
*/

TIMER ROUTINES

IF (ret status E$OK) THEN
CALL rq$delete$region

(time_region, @local_status);

END init_time;

END timer;

BIBLIOGRAPHY

/* Since could not */
/* create task, */
/* must delete */
/* region. */

The following reading material contains information that relates to
interface procedures, INCLUDE files, the PL/M-86 language, iRMX 86
configuration, iRMX 86 tasks, and the LINK86 command:

• Chapter 3 of this manual

This chapter provides a discussion of iRMX 86 interface
proce dure s •

• PL/M-86 OPERATING INSTRUCTIONS FOR 8080/808S-BASED DEVELOPMENT
SYSTEMS
Manual Number 9800478

If your development system does not contain an iAPX 86
microprocessor, you should refer to this manual for a discussion
of the concept of using INCLUDE files to add source statements to
the file currently being compiled.

• PL/M-86 PROGRAMMING MANUAL FOR 8080/808S-BASED DEVELOPMENT SYSTEMS
Manual Number 9800466

If your development system does not contain an iAPX 86
microprocessor, you should refer to this manual for a discussion
of the PL/M-86 programming language.

• PL/M-86 USER'S GUIDE FOR 8086-BASED DEVELOPMENT SYSTEMS
Manual Number 121636

If your development system does contain an iAPX 86
microprocessor, you should refer to this manual for a discussion
of the PL/M-86 programming language and of the concept of using
INCLUDE files to add source statements to the file currently
being compiled.

5-8

•

•

TIMER ROUTINES

iRMX 86~ CONFIGURATION GUIDE
Manual Number 9803126

This manual describes the process of configuring an application
system that uses the iRMX 86 Operating System. Included in this
description is a discussion of initialization tasks.

iRMX 86~ NUCLEUS REFERENCE MANUAL
Manual Number 9803122

This manual thoroughly describes the concept of an iRMX 86 task.

• iAPX 86, 88 FAMILY USER'S GUIDE FOR 8086-BASED DEVELOPMENT SYSTEMS
Manual Number 121616

If your development system contains an iAPX 86 microprocessor,
you should refer to this manual for a discussion of the LINK86
command, which you must use to link this timer module to your
application software.

• 8086 FAMILY USER'S GUIDE FOR 8080/8085-BASED DEVELOPMENT SYSTEMS
Manual Order 9800639

If your development system does not contain an iAPX 86
microprocessor, you should refer to this manual for a discussion
of the LINK86 command, which you must use to link this timer
module to your application software.

• iRMX 86~ SYSTEM PROGRAMMER'S REFERENCE MANUAL
Manual Number 142721

This manual explains the use of iRMX 86 regions.

5-9

•

•

CHAPTER 6. CALLING THE iRMX 86 m SYSTEM FROM ASSEMBLY LANGUAGE

This chapter is for anyone who wants to use iRMX 86 system calls from
programs written in MCS-86 assembly language. In order to be able to use
system calls from assembly language, you should be familiar with the
following concepts:

• iRMX 86 system calls

• iRMX 86 interface procedures

• PL/M-86 size controls

You should also be familiar with PL/M-86 and fluent in MCS-86 assembly
language (ASM86). If you are unfamiliar with any of this information,
refer to the bibliography at the end of this chapter for additional
reading.

PURPOSE OF THIS CHAPTER

The purpose of this chapter is twofold. First, it briefly outlines the
process involved in using an iRMX 86 system call from an assembly
language program. Second, it directs you to other INTEL manuals that
provide either background information or details concerning interlanguage
procedure calls.

CALLING THE SYSTEM

If you read Chapter 3 of this manual, you found that your programs I
communicate with the iRMX 86 System by calling interface procedures that
are designed for use with programs written in PL/M-86. So the problem of
using system calls from assembly language programs becomes the problem of
making your assembly language programs obey the procedure-calling
protocol used by PL/M-86. For example, if your ASM86 program uses the
SEND$MESSAGE system call, then you must call rq$send$message interface
procedure from your assembly language code.

6-1

CALLING THE iRMX 86 m SYSTEM FROM ASSEMBLY LANGUAGE

NOTE
The techniques for calling PL/M-86
procedures from assembly language are
completely described in several
manuals. If your development system
contains an iAPX 86 microprocessor,
refer to the 8086/8087/8088 MACRO
ASSEMBLER OPERATING INSTRUCTIONS FOR
8086-BASED DEVELOPMENT SYSTEMS and to
the PL/M-86 USER'S GUIDE FOR 8086-BASED
DEVELORMENT SYSTEMS. On the other
hand, if your development system does
not contain an iAPX 86 microprocessor,
refer to the 8086/8087/8088 MACRO
ASSEMBLER OPERATING INSTRUCTIONS FOR
8080/808S-BASED DEVELOPMENT SYSTEMS and
to the PL/M-86 COMPILER OPERATING
INSTRUCTIONS FOR 8080/808S-BASED
DEVELOPMENT SYSTEMS.

SELECTING A SIZE CONTROL

Before you begin wr1t1ng your assembly language calls to the PL/M-86
interface procedures, you should be aware that the conventions used to
communicate between the two languages depend upon the size control
(COMPACT, MEDIUM, or LARGE) of the interface procedures you use.
Consequently, you must select a size control before you write your
interlanguage procedure calls.

If all of your application is written in assembly language, you can
arbitrarily select a size control and use the libraries for the selected
control. However, you can obtain a size and performance advantage by
using the COMPACT interface procedures, since their procedure calls are
all NEAR. The LARGE interface, which has procedures that require FAR
procedure calls, is only advantageous if your application code is larger
than 64K bytes.

On the other hand, if some of your application code is written in
PL/M-86, your assembly language code should use the same interface
procedures as are used by your PL/M-86 code.

BIBLIOGRAPHY

The following reading material contains information that relates to
iRMX 86 interface procedures, iRMX 86 system calls, the PL/M-86 language,
the MCS-86 assembly language, and techniques for calling procedures of
one language from the other:

6-2

CALLING THE iRMX 86m SYSTEM FROM ASSEMBLY LANGUAGE

• Chapter 3 of this manual

•

•

This chapter discusses iRMX 86 interface procedures.

iRMX 86 m NUCLEUS REFERENCE MANUAL
'Manual Number 9803122

This manual provides the names of many iRMX 86 system calls as
well as a description of each of the required parameters and the
order in which the parameters must appear.

iRMX 86 m BASIC I/O SYSTEM REFERENCE MANUAL
Manual Number 9803123

This manual provides the names of many iRMX 86 system calls as
well as a description of each of the required parameters and the
order in which the paramters must appear.

• iRMX 86 m SYSTEM PROGRAMMER'S REFERENCE MANUAL
Manual Number 142721

This manual provides the names of some iRMX 86 system calls as
well as a description of each of the required parameters and the
order in which they must appear.

• iRMX 86m EXTENDED I/O SYSYEM REFERENCE MANUAL
Manual Number 143308

This manual provides the names of many iRMX 86 system calls as
well as a description of each of the required parameters and the
order in which the paramters must appear.

• iRMX 86m LOADER REFERENCE MANUAL
Manual Number 143318

This manual provides the names of many iRMX 86 system calls as
well as a description of each of the required parameters and the
order in which the paramters must appear.

• iRMX 86m HUMAN INTERFACE REFERENCE MANUAL
Manual Number 9803202

This manual provides the names of many iRMX 86 system calls as
well as a description of each of the required parameters and the
order in which they must appear.

6-3

I

I

CALLING THE iRMX 86m SYSTEM FROM ASSEMBLY LANGUAGE

• PL/M-86 USER'S GUIDE FOR 8086-BASED DEVELOPMENT SYSTEMS
Manual Number 121636

If your development system contains an iAPX 86 microprocessor,
you should refer to this manual for a discussion of
procedure-calling conventions used by the PL/M-86 compiler.
These are the conventions that your assembly language program
must follow when it uses iRMX 86 system calls. The manual also
discusses PL/M-86 size controls and the PL/M-86 language.

• PL/M-86 COMPILER OPERATING INSTRUCTIONS FOR 8080/8085-BASED
DEVELOPMENT SYSTEMS
Manual Number 9800478

If your development system does not contain an iAPX 86
microprocessor, you should refer to this manual for a discussion
of procedure-calling conventions used by the PL/M-86 compiler.
These are the conventions that your assembly language program
must follow when it uses iRMX 86 system calls. The manual also
discusses PL/M-86 size controls.

• PL/M-86 PROGRAMMING MANUAL FOR 8080/8085-BASED DEVELOPMENT SYSTEMS
Manual Number 9800466

If your development system does not contain an iAPX 86
microporcessor, you should refer to this manual for a discussion
of the PL/M-86 programming language.

• 8086/8087/8088 MACRO ASSEMBLER OPERATING INSTRUCTIONS FOR
8080/8085-BASED DEVELOPMENT SYSTEMS
Manual Number 121624

If your development system does not contain an iAPX 86
microprocessor, you should refer to this manual for an
explanation of how modules written in assembly language can
communicate with modules written in PL/M-86.

• 8086/8087/8088 MACRO ASSEMBLER OPERATING INSTRUCTIONS FOR
8086-BASED DEVELOPMENT SYSTEMS
Manual Number 121628

If your development system contains an iAPX 86 microprocessor,
you should refer to this manual for an explanation of how modules
written in assembly language can communicate with modules written
in PL/M-86.

• 8086/8087/8088 MACRO ASSEMBLY LANGUAGE REFERENCE MANUAL FOR
8086-BASED DEVELOPMENT SYSTEMS
Manual Number 121627

6-4

CALLING THE iRMX 86~ SYSTEM FROM ASSEMBLY LANGUAGE

If your development system contains an iAPX 86 microprocessor,
you should refer to this manual for a discussion of the MCS-86
assembly language.

• 8086/8087/8088 MACRO ASSEMBLY LANGUAGE REFERENCE MANUAL FOR
8080/8085-BASED DEVELOPMENT SYSTEMS
Manual Number 121623

If your development system does not contain an iAPX 86
microprocessor, you should refer to this manual for a discussion
of the MCS-86 assembly language.

6-5

CHAPTER 7. COMMUNICATION BETWEEN iRMX 86- JOBS

This chapter applies to anyone who wants to pass information from one
iRMX 86 job to another. In order to understand this chapter, you must be
familiar with the following concepts:

• iRMX 86 jobs, including object directories

• iRMX 86 tasks

• iRMX 86 segments

• the root job of an iRMX 86-based system

• iRMX 86 mailboxes

• iRMX 86 physical files or named files

• iRMX 86 stream files

• iRMX 86 type managers and composite objects

If you are unfamiliar with any of these concepts, refer to the
bibliography at the end of this chapter for additional reading.

PURPOSE OF THIS CHAPTER

In multiprogramming systems, where each of several applications is
implemented as a distinct iRMX 86 job, there is an occasional need to
pass information from one job to another. This chapter describes several
techniques that you can use to accomplish this.

The techniques are divided into two collections. The first collection
deals with passing large amounts of information from one job to another,
while the second collection deals with passing iRMX 86 objects.

PASSING LARGE AMOUNTS OF INFORMATION BETWEEN JOBS

There are three methods for sending large amounts of information from one
job to another:

1) You can create an iRMX 86 segment and place the information in
the segment. Then, using one of the techniques discussed below
for passing objects between jobs, you can deliver the segment.

7-1

COMMUNICATION BETWEEN iRMX 86~ JOBS

The advantages of this technique are:

• Since this technique requires only the Nucleus, you can
use it in systems that do not use other iRMX86 subsystems.

• The iRMX 86 Operating System does not copy the information
from one place to another.

The disadvantages of this technique are:

• The segment will occupy memory until it is deleted, either
explicitly (by means of the DELETE$SEGMENT system call),
or implicitly (when the job that created the segment is
deleted). Until the segment is deleted, a substantial
amount of memory is unavailable for use elsewhere in the
system.

• The application code may have to copy the information into
the segment.

I 2) You can use an iRMX 86 stream file.

I

The advantages of this technique are:

• The data need not be broken into records.

• This technique can easily be changed to Technique 3.

The disadvantage of this technique is that you must configure one
or both I/O systems into your application system.

I 3) You can use either the Extended or the Basic I/O System to write
the information onto a mass storage device, from which the job
needing the information can read it.

•

The advantages of this technique are:

• Many jobs can read the information.

• This technique can easily be changed to Technique 2.

• The information need not be divided into records.

The disadvantages of this technique are:

• You must incorporate one or both I/O systems into your
application system.

• Device I/O is slower than reading and writing to a stream
file.

7-2

COMMUNICATION BETWEEN iRMX 86 m JOBS

PASSING OBJECTS BETWEEN JOBS

Jobs can also communicate with each other by sending objects across job
boundaries. You can use any of several techniques to accomplish this,
and you should avoid using one seemingly straightforward technique. In
the following discussions you will see how to pass objects by using
object directories, mailboxes, and parameter objects. You will also see
why you should not pass object tokens by embedding them in an iRMX 86
segment or in a fixed memory location.

Although you can pass any object from one job to another, there is a
restriction pertaining to connection objects. When a file connection
created in one job (Job A) is passed to a second job (Job B) the second
job (Job B) cannot successfully use the object to perform I/O. Instead,
the second job (Job B) must create another connection to the same file.
This restriction is discussed in the iRMX 86 BASIC I/O SYSTEM REFERENCE
MANUAL and in the iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL.

PASSING OBJECTS THROUGH OBJECT DIRECTORIES

For the purpose of this discussion, consider a hypothetical system in
which tasks in separate jobs must communicate with each other.
Specifically, suppose that Task B in Job B must not begin or resume
running until Task A in Job A grants permission.

One way to perform this synchronization is to use a semaphore. Task B
can repeatedly wait at the semaphore until it receives a unit, and Task A
can send a unit to the semaphore whenever it wishes to grant permission
for Task B to run. If Tasks A and B are within the same job, this would
be a straightforward use of a semaphore. But the two tasks are in
different jobs, and this causes some complications.

Specifically, how do Tasks A and B access the same semaphore? For
instance, Task A can create the semaphore and access it, but how can Task
A provide Task B with a token for the semaphore? The trick is to use the
object directory of the root job.

In the following explanation, each of the two tasks must perform half of
a protocol. The process of creating and cataloging the semaphore is one
half, and the process of looking up the semaphore is the other.

In order for this protocol to succeed, the programmers of the two tasks
must agree on a name for the semaphore, and they must agree which task
performs which half of the protocol. In this example, the semaphore 1S

named permit sem. And, because Task B must wait until Task A grants
permission, Task A will create and catalog the semaphore, and Task B will
look it up.

7-3

COMMUNICATION BETWEEN iRMX 86m JOBS

Task A performs the creating and cataloging as follows:

1) Task A creates a semaphore with no units by calling the
CREATE$SEMAPHORE system call. This provides Task A with a token
for the semaphore.

2) Task A calls the GET$TASK$TOKENS system call to obtain a token
for the root job.

3) Task A calls the CATALOG$OBJECT system call to place a token for
the semaphore in the object directory of the root job under the
name permit_sem.

4) Task A continues processing, eventually becomes ready to grant
permission, and sends a unit to permit_sem.

Task B performs the look-up protocol as follows:

1) Task B calls the GET$TASK$TOKENS system call to obtain a token
for the r.oot job.

2) Task B calls the LOOKUP$OBJECT system call to obtain a token for
the object named permit sem. If the name has not yet been
cataloged, Task B waits-until it is.

3) Task B calls the RECEIVE$UNITS system call to request a unit from
the semaphore. If the unit is not available then Task A has not
yet granted permission, and Task B waits. When a unit is
available, Task A has granted permission, and Task B becomes
ready.

There are several aspects of this technique that you should be aware of:

• In the example, the object directory technique was used to pass a
semaphore. The same technique can be used to pass any type oJ
iRMX 86 object.

• The semaphore was passed via the object directory of the root
job. The root job's object directory is unique in that it is the
only object directory to which all jobs in the system can gain
access. This accessibility allows one job to "broadcast" an
object to any job that knows the name under which the object is
cataloged.

• The object directory of the root job must be large enough to
accommodate the names of all the objects passed in this manner.
If it is not, it will become full and the iRMX 86 Operating
System will return an exception code when attempts are made to
catalog additional objects.

7-4

COMMUNICATION BETWEEN iRMX 86~ JOBS

• If you use this technique to pass many objects, you could have
problems ensuring unique names. If name management becomes a
problem, different sets of jobs can adopt the convention of using
an object directory other than that of the root job. T~
accomplish this, one of the jobs catalogs itself in the root
job's object directory under an agreed-upon name. The other jobs
can then look up the cataloged job and use its object directory
rather than that of the root job.

• In the example, the object-passing protocol was divided into two
halves--the create-and-catalog half, and the look-up half. The
protocol works correctly regardless of which half starts to run
first.

PASSING OBJECTS THROUGH MAILBOXES

Another means of sending objects from one job to another is to use a
mailbox. This is a two-step process in that the two jobs using the
mailbox must first use the object directory technique to obtain mutual
access to the mailbox, and then they use the mailbox to pass additional
objects.

PASSING PARAMETER OBJECTS

One of the parameters of the CREATE$JOB system call is a parameter
object. The purpose of this parameter is to allow a task in the parent
job to pass an object to the newly created job. Once the tasks in the
new job begin running, they can obtain a token for the parameter object
by calling GET$TASK$TOKENS. This technique is illustrated in the
following example:

Suppose that Task 1 in Job 1 is responsible for spawning a new job
(Job 2). Suppose also that Task 1 maintains an array that is needed by
Job 2. Task 1 can pass the array to Job 2 by putting the array into an
iRMX 86 segment, and designating the segment as the parameter object in
the CREATE$JOB system call. Then the tasks of Job 2 can call the
GET$TASK$TOKENS system call to obtain a token for the segment.

In the foregoing example, the parameter object is a segment. However,
you can use this technique to pass any kind of iRMX 86 object.

7-5

I

I

COMMUNICATION BETWEEN iRMX 86m JOBS

AVOID PASSING OBJECTS THROUGH SEGMENTS OR FIXED MEMORY LOCATIONS

In the current version of the iRMX 86 Operating System, tokens remain
unchanged when objects are passed from job to job. However, Intel
reserves the right to modify this rule. In other words, if you pass
objects from one job to another and you want your software to be able to
run on future releases of the iRMX 86 System, obey the following
guidelines:

• Never pass a token from one job to another by placing the token
in an iRMX 86 segment and then passing the segment.

• Never pass a token from one job to another by placing the token
in any memory location that the two jobs both access.

COMPARISION OF OBJECT-PASSING TECHNIQUES

There are serveral guidelines to consider when deciding how to pass an
object between jobs:

•

•

•

If you are passing only one object from a parent job to a child
job, use the parameter object when the parent creates the child.

If you are passing only one object but not from parent to child,
use the object directory technique. It is simpler than using a
mailbox.

If you need to pass more than one object at a time, you can use
any of the following techniques:

Assign an order to the objects and send them to a mailbox
where the receiving job can pick them up in order.

Give each of the objects a name and use an object directory.

Write a simple type manager that packs and unpacks a set of
objects. Then pass the set of objects as one composite
object.

BIBLIOGRAPHY

The following reading material contains information that relates to
iRMX 86 jobs, tasks, segments, mailboxes, files, type managers, and
composite objects:

• iRMX 86-NUCLEUS REFERENCE MANUAL
Manual Number 9803122

This manual describes iRMX 86 jobs, tasks, segments, and
mailboxes as well as the system calls that manipulate them.

7-6

•

COMMUNICATION BETWEEN iRMX 86~ JOBS

iRMX 86~ BASIC I/O SYSTEM REFERENCE MANUAL
Manual Number 9803123

This manual describes iRMX 86 stream, physical, and named files.
It also explains the restriction about passing a file connection
object from one job to another.

• iRMX 86~ EXTENDED I/O SYSTEM REFERENCE MANUAL
Manual Number 143308

This manual describes iRMX 86 stream, physical, and named files.
It also explains the restriction about passing a file connection
object from one job to another.

• iRMX 86~ CONFIGURATION GUIDE
Manual Number 9803126

This manual describes the iRMX 86 root job.

• iRMX 86~ SYSTEM PROGRAMMER'S REFERENCE MANUAL
Manual Number 142721

The manual describes type managers and composite objects.

7-7

I

CHAPTER 8. SIMPLIFYING CONFIGURATION DURING DEVELOPMENT

This chapter is for anyone who writes procedures that run as initial
tasks during the system initialization process. In order to understand
this chapter, you should be familiar with the following information:

• the iRMX 86 configuration process

• the use of LINK86

• the use of LOC86

If you are unfamiliar with any of these concepts, refer to the
bibliography at the end of this chapter for additional reading.

PURPOSE OF THIS CHAPTER

While you are creating your application jobs, you will probably use the
following iterative procedure to remove bugs from your code:

1) Configure your system.

2) Test the system to find bugs.

3) If any bugs are found, modify the application code to eliminate
the bugs and go to Step 1.

In order to remove most of the bugs from your application software, you
might have to loop several times through these three steps.
Consequently, you may spend a substantial amount of effort configuring
your system.

The purpose of this chapter is to show you how to simplify the proce'ss of
configuring your system during development. By using the techniques
presented here, you can reduce the time you spend in configuration and
increase the time available for debugging.

SUMMARY OF CONFIGURATION

Configuration is a four-phase process:

1) Select the iRMX 86 software that meets the needs of your
application.

2) Decide where in memory to place the modules of code and the data
segments.

8-1

SIMPLIFYING CONFIGURATION DURING DEVELOPMENT

3) Link and locate the code and data.

4) Tell the root job where the code and data are located.

Once you have performed these four phases, you need only load the code
and start up the root job in order to get the entire system running.

CONFIGURATION AND DEBUGGING

During the process of debugging an application, you generally perform
Phase 1 of configuration only once, and Phases 2 through 4 repeatedly.
You need not repeat Phase 1 because your application generally uses the
same set of iRMX 86 system calls throughout debugging. On the other
hand, Phases 2 through 4 are generally repeated because the application
software modules change frequently during debugging.

By using a special method during the coding of your initial task
software, you can freeze the locations of your application software
modules and data segments. This reduces the probability of your
repeating Phases 2 and 4 of the configuration process.

THE TECHNIQUE

The %JOB macro used during the configuration process requires three
parameters that are very volatile during development. These parameters
are exception_handIer_entry, init_task_entry, and data_segment_base.

During debugging, as you modify code and (consequently) change the size
of your code modules, the values that you must assign to these three
parameters are very likely to change. By heeding the following two
suggestions, you can significantly reduce the likelihood of changing
these parameters and, hence, you can retest your revised application job
after merely linking and loading.

FREEZING THE BASE OF THE DATA SEGMENT

If, during development, you locate your job's data segment after your
job's code segment, you can freeze the base of the data segment by
padding the code segment. Consider the following two situations.

In Job A (Figure 8-1), the code modules are located contiguously, with
the data segment immediately following the last module. If any of the
modules in Job A grow or shrink as a result of debugging, you must
relocate the data segment. This involves changing the data segment base
parameter of the %JOB macro for the job and regenerating th; root job.

8-2

SIMPLIFYING CONFIGURATION DURING DEVELOPMENT

In contrast, Job B (Figure 8-1) is designed to accommodate modification.
The modules are still located contiguously, but some unused memory has
been left between the code segment and the data segment. This unused
memory, called padding, allows the modules in the code segment to grow
without causing a change in the base address of the data segment.

JOB A

MODULE
1

MODULE
2

•
•
•

MODULE
n-1

MODULE
n

DATA
SEGMENT

LOWER ADDRESSES

CODE SEGMENT

ROOM FOR
GROWTH

HIGHER ADDRESSES

JOB B

MODULE
1

MODULE
2

•
•
•

MODULE
n-1

MODULE
n

PADDING

DATA
SEGMENT

Figure 8-1. How to Freeze the Base of the Data Segment

You must decide how much padding to leave between the code and data
segments. In general, the less stable the code is, the more padding you
should leave. If you are uncertain, try starting with 1000 bytes.

In order to obtain the padding between the code and data segments you can
use the address control of the LOC86 command. For example,

ADDRESSES(CLASSES(CODE(aaaaa), DATA(bbbbb»)

where aaaaa is the address at which you want to place the job's code
segment, and bbbbb is the address at which you want to place the job's
data segment. You can compute bbbbb by adding the size of the padding to
the address of the end of the code segment.

8-3

SIMPLIFYING CONFIGURATION DURING DEVELOPMENT

FREEZING THE ENTRY POINTS

The %JOB macro requires the addresses of two entry points, one for the
job's initial task, and one for the job's exception handler. Because
these addresses are expressed as offsets from the base of the job's code
segment, you can freeze the addresses by preventing the offsets from
changing.

The easiest way to accomplish this is to create a special module that
contains new entry points for the initial task and the exception
handler. This special module, if located at the front of your code
segment, provides entry points that are completely independent of changes
made to other modules.

Within this special module, each entry point must be coded as a procedure
containing only a procedure call followed by a return instruction. The
purpose of the procedure call is to invoke a secondary, external
procedure that actually contains the initial task or the exception
handler. Figure 8-2 illustrates the special module in pseudo-code.

SPECIAL MODULE IN IT TASK MODULE

NEW_INILTASK. ...lo INILTASK.
CALL INILTASK.
RETURN.

• • •
NEW-ElLHANDLER.

CALL EX.JiANDLER.
RETURN. ~ EX HANDLER MODULE

EX.JiANDLER.

• • •

Figure 8-2. Special Module Freezes Entry Points

You can place the special module at the front of your code segment
(Figure 8-3) by linking it first during the linking process. This will
ensure that the new entry points for the initial task and the exception
handler are ahead of the code modules that are subject to change. This,
in turn, ensures that the new entry points will remain a fixed distance
from the base of the code segment, and that you will not need to modify
the exception_handler_entry or the init_task_entry parameters.

8-4

SIMPLIFYING CONFIGURATION DURING DEVELOPMENT

LOWER
ADDRESSES

HIGHER
ADDRESSES

SPECIAL
MODULE

MODULE
1

•
•
•

MODULE
n

PADDING

DATA
SEGMENT

AHEAD OF
ALL OTHER
MODULES

Figure 8-3. Location of the Special Module

BIBLIOGRAPHY

The following reading material contains information that relates to
configuration of iRMX 86-based systems and to the LINK86 and LOC86
commands:

• iRMX 86- CONFIGURATION GUIDE
Manual Number 9803126

This manual provides a detailed discussion of the process of
configuring an iRMX 86-based system. This discussion includes
definitions of initial task and the root job, as well as an
explanation of the %JOB macro. The manual also gives explicit
directions for deciding where to place the root job in memory.

• iAPX 86, 88 FAMILY USER'S GUIDE FOR 8086-BASED DEVELOPMENT SYSTEMS
Manual Number 121616

If your development system contains an iAPX 86 microprocessor,
you should refer to this manual for a discussion of the LINK86
and LOC86 commands.

8-5

I

SIMPLIFYING CONFIGURATION DURI~G DEVELOPMENT

• 8086 FAMILY USER'S GUIDE FOR 8080/8085-BASED DEVELOPMENT SYSTEMS
Manual Number 9800639

If your development system does not contain an iAPX 86
microprocessor, you should refer to this manual for a discussion
of the LINK86 and LOC86 commands.

8-6

CHAPTER 9. DEADLOCK AND DYNAMIC MEMORY ALLOCATION

This chapter is for anyone who writes tasks which dynamically allocate
memory, send messages, create objects, or delete objects. In order to
understand this chapter, you should be familiar with the following
concepts:

• memory management in the iRMX 86 Operating System

• using either iRMX 86 semaphores or regions to obtain mutual
exclusion

If you are unfamiliar with any of these concepts, refer to the
bibliography at the end of this chapter for additional reading.

PURPOSE OF THIS CHAPTER

Memory deadlock is not difficult to diagnose or correct, but it is
difficult to detect. Because memory deadlock generally occurs under
unusual circumstances, it can lie dormant throughout development and
testing, only to bite you when your back is turned. The purpose of this
chapter is to provide you with some special techniques that can prevent
memory deadlock.

HOW MEMORY ALLOCATION CAUSES DEADLOCK

The following example illustrates the concept of memory deadlock and
shows the danger that iRMX 86 tasks can face when they cause memory to be
allocated dynamically.

Suppose that the following circumstances exist for Task A and B which
belong to the same job:

• Task A has lower priority than Task B.

• Each task wants two iRMX 86 segments of a given size, and each
asks for the segments by calling the CREATE$SEGMENT system call
repeatedly until both segments are acquired.

• The job's memory pool contains only enough memory to satisfy two
of the requests.

• Task B is asleep and Task A is running.

9-1

DEADLOCK AND DYNAMIC MEMORY ALLOCATION

Now suppose that the following events occur in the order listed:

1) Task A gets its first segment.

2) An interrupt occurs and Task B is awakened. Since Task B is of
higher priority than Task A, Task B becomes the running task.

3) Task B gets its first segment.

The two tasks are now deadlocked. Task B remains running and continues
to ask for its second segment. Not only are both of the tasks unable to
progress, but Task B is consuming a great deal, perhaps all, of the
processor time. At best, the system is seriously degraded.

This kind of memory allocation deadlock problem is particularly insidious
because it quite likely would not occur during debugging. The reason for
this is that the order of events is critical in this deadlock situation.

Note that the key event in the deadlock example is the awakening of Task
B just after Task A invokes the first CREATE$SEGMENT system call, but
just before Task A invokes the second CREATE$SEGMENT call. Because this
critical sequence of events occurs only rarely, a "thoroughly debugged"
system might, after a period of flawless performance, suddenly fail.

Such intermittent failures are costly to deal with once your product is
in the field. Consequently, the most economical method for dealing with
memory deadlock is to prevent it.

SYSTEM CALLS THAT CAN LEAD TO DEADLOCK

A task cannot cause memory deadlock unless it causes memory to be
allocated dynamically. And the only means for a task to allocate memory
is by using system calls. If your task uses any of the following system
calls, you must take care to prevent deadlock:

• any system call that creates an object

• any system call belonging to a subsystem other than the Nucleus

• SEND$MESSAGE

• DELETE$JOB

• DELETE$EXTENSION

If a task uses none of the preceding system calls, it cannot deadlock as
a result of memory allocation.

9-2

DEADLOCK AND DYNAMIC MEMORY ALLOCATION

PREVENTING MEMORY DEADLOCK

Using anyone of the following techniques, you can eliminate memory
deadlock from your system:

• When a task receives an E$MEM condition code, the task should not
endlessly repeat the system call that led to the code. Rather,
it should repeat the call only a predetermined number of times.
If the task still receives the E$MEM condition, it should delete
all its unused objects, and try again. If the E$MEM code is
still received, the task should sleep for a while and then
reissue the system call.

• If you have designed your system so that a job cannot borrow
memory from the pool of its parent, you can use an iRMX 86
semaphore or region to govern access to the memory pool. Then,
when a task requires memory, it must first gain exclusive access
to the job's memory pool. Only after obtaining this access may
the task issue any of the system calls listed above.

The task's behavior should then depend upon whether the system
can satisfy all of the task's memory requirements:

If the system cannot satisfy all requirements, the task
should delete any objects that were created and surrender the
exclusive access. Then the task should again request
exclusive access to the pool.

If, on the other hand, all requests are satisfied, the task
should surrender exclusive access and begin using the objects.

This technique prevents deadlock by returning unused memory to
the memory pool,. where it may be used by another task.

• If you have designed your system so that a job cannot borrow
memory from the pool of its parent, prevent the tasks within the
job from directly completing for the memory in the job's pool.
You can do this by allowing no more than one task in each job to
use the system calls listed earlier.

BIBLIOGRAPHY

The following reading material contains information that relates to
iRMX 86 memory management, and the use of regions and semaphores.

• iRMX 86- NUCLEUS RE¥ERENCE MANUAL
Manual Number 9803122

This manual contains a discussion of memory management in the
iRMX 86 Operating System. It also provides detailed information
regarding the use of semaphores.

9-3

I

DEADLOCK AND DYNAMIC MEMORY ALLOCATION

• iRMX 86- SYSTEM PROGRAMMER'S REFERENCE MANUAL
Manual Number 142721

This manual discusses iRMX 86 regions and mutual exclusion.

• INTRODUCTION TO THE iRMX 86- OPERATING SYSTEM
Manual Number 9803124

This manual explains how you can use a semaphore to obtain mutual
exclusion.

9-4

CHAPTER 10. PROCEDURES FOR I/O USING A TERMINAL

This chapter is for anyone who creates programs which read (or write)
numbers'or character strings from (or to) a terminal. In order to use
the information in this chapter, you must be familiar with one of the
following techniques for communicating with a terminal:

• the iRMX 86 Terminal Handler

• the 957A CO and CI procedures

• the 957A CO procedure in combination with the 957A READ procedure

• sending characters to and getting characters from the terminal's
I/O port

If you are not familiar with any of these techniques, refer to the
manuals listed in the bibliography at the end of this chapter.

PURPOSE OF THIS CHAPTER

This chapter outlines a strategy for wr1t1ng a collection of procedures
that simplify input from and output to a terminal. Rather than providing
the source code, this chapter only describes the function of each
procedure.

You can use these descriptions to write procedures that communicate with
terminals attached directly to your application hardware or to your
Intellec microcomputer development system. Furthermore, you can use
these procedures in conjunction with any of the terminal I/O techniques
listed earlier in this chapter.

OVERVIEW

Sometimes, either within your application or while you are debugging it,
you will find a need to read or write numbers and character strings from
a terminal. For'instance, suppose that while you are debugging you need
to display the contents of a WORD each time a specific mailbox is used.
If you attempt to use one of the basic terminal I/O techniques (listed
earlier) to do this, you must first convert the number to ASCII-encoded
decimal or hexadecimal, and you must send it to the terminal.

The situation is even more complex for input. If you want to read a
number from the terminal, you must scan the line to find the beginning of
the number, and then you must convert from the ASCII representation to
binary.

10-1

PROCEDURES FOR I/O USING A TERMINAL

The following procedures eliminate much of this difficulty. Built upon
the basic terminal I/O techniques listed earlier in this chapter, these
procedures allow you, with very few lines of code, to read and write
individual characters, hexadecimal numbers, decimal numbers, and strings
of characters. Furthermore; when these procedures read or write numbers,
they return the value of the number, rather than the ASCII representation.

ELEMENTARY PROCEDURES

If you write the following two elementary procedures, you can use them to
construct the more advanced terminal I/O procedures:

• GET CHAR is a procedure that reads a single character from the
keyboard and returns a BYTE containing the ASCII representation
of the character to the calling procedure. The form of the call
in PL/M-86 is

When you write this procedure, you should consider echoing the
character to the terminal. If the character is not echoed, the
operator may become confused.

• PUT CHAR is a procedure that requires a BYTE as an input
par~eter. It displays the contents of the BYTE as an ASCII
character on the terminal. The call has the following form in
PL/M-86:

CALL PUT CHAR(value);

These two procedures are important because they provide your more
advanced procedures with some degree of device independence. Regardless
of which basic terminal I/O technique you use to implement GET_CHAR and
PUT_CHAR, you can use the same collection of advanced procedures.

ADVANCED PROCEDURES

Once you have programmed GET CHAR and PUT CHAR, you can build a
collection of more powerful procedures that support terminal I/O for
numbers and character strings.

PROCEDURES FOR NUMBERS

There are four useful procedures for reading and displaying numbers via a
terminal. Two of the procedures are for hexadecimal value., and two are
for decimal.

10-2

PROCEDURES FOR I/O USING A TERMINAL

Procedures for Hexadecimal Numbers

The following procedures are for reading and displaying hexadecimal
numbers.

• GET HEX is a parameterless procedure that reads hexadecimal
digits from the keyboard and places the corresponding binary
value in a WORD. The form of the call in PL/M-86 is

This procedure should use GET CHAR to skip characters until a
hexadecimal character (0-9, A~F, or a-f) is found. Then it
should read until one of the following conditions is met:

Four hexadecimal characters have been read.

A nonhexadecimal character has been read.

GET HEX should then convert the hexadecimal characters from
ASCII-encoded hexadecimal to binary and return to the calling
procedure.

• PUT HEX requires a WORD as an input parameter and returns no
output value. It displays on the terminal the contents of the
WORD in hexadecimal. The form of the call in PL/M-86 is

CALL PUT_HEX (value);

PUT HEX should convert the contents of the WORD to four
ASCII-encoded hexadecimal characters and should use PUT CHAR to
display the characters on the terminal.

Procedures for Decimal Numbers

The following procedures are for reading and displaying decimal numbers.

• GET DEC is a parameter less procedure that reads a decimal number
from the keyboard and places the corresponding value in a WORD.
The form of the PL/M-86 call is

value ... GET_DEC;

This procedure should use GET CHAR to skip all characters other
than digits. Once GET DEC finds a digit, it should read until
one of the following conditions is met:

Five digits have been read.

A character other than a digit has been read.

10-3

PROCEDURES FOR I/O USING A TERMINAL

GET DEC should then convert the digits to a 16-bit binary number
and-return to the caller. Since 65535 is the largest decimal
number that fits into a 16-bit WORD, GET DEC should return this
value whenever it reads a number greater-than 65535.

• PUT DEC requires a WORD as an input parameter, returns no output
val~e, and displays the contents of the WORD on the terminal in
decimal. The form of the call in PL/M-86 is

CALL PUT_DEC(value);

This procedure must first convert the contents of the WORD to
ASCII-encoded decimal and then must use PUT CHAR to display the
results.

PROCEDURES FOR STRINGS

There are three procedures for reading and displaying strings. Two are
for strings in the form required by the iRMX 86 Operating System, and one
is for null-terminated strings.

Procedures for iRMX 86 Strings

The two procedures for reading and displaying iRMX 86 strings are:

• GET STR, which requires a POINTER as an input parameter, and
reads characters from the keyboard until a carriage return is
detected. The procedure then places a character count into the
byte indicated by the POINTER, and places the characters (in
ASCII, one per byte) in the bytes immediately following the
count. The form of the call in PL/M-86 is

CALL GET_STR(@string);

• PUT STR, which requires a POINTER as an input parameter, displays
the-iRMX 86 string indicated by the POINTER. The string must
consist of a byte (containing a character count) followed by the
characters to be displayed. The form of the call in PL/M-86 is

CALL PUT_STR(@string);

A Procedure for Null-Terminated Strings

Because iRMX 86 strings require a character count, they can be cumbersome
for use with large quantities of text. If you foresee a need for
displaying large amounts of text, you can avoid manually counting
characters by writing a procedure to display a null-terminated string.

10-4

PROCEDURES FOR I/O USING A TERMINAL

The PUT NT STR procedure displays a string that, instead of being
preceded by a count, is terminated by a byte containing zero (the ASCII
null character). The procedure requires, as an input parameter, a
pointer that indicates the first character of the string to be
displayed. The form of the call in PL/M-86 is

BIBLIOGRAPHY

The following manuals contain information about the basic terminal I/O
techniques listed earlier in this chapter:

• iRMX 86- TERMINAL HANDLER REFERENCE MANUAL
Manual Number 143324

This manual explains how to use the iRMX 86 Terminal Handler to
communicate with a terminal attached to your application system.

• iSBC 957A INTELLEC - iSBC86/12A INTERFACE AND EXECUTION PACKAGE
USER'S GUIDE
Manual Number 142849

This manual explains how to use the 957A CO and CI procedures to
communicate with your development system terminal under the
control of your application system software. It also explains
how to use the READ procedure to read edited lines from the
terminal.

10-5

I

I

CHAPTER 11. GUIDELINES FOR STACK SIZES

This chapter is for three kinds of readers:

• Those who write tasks that create iRMX 86 jobs or tasks.

• Those who write interrupt handlers.

• Those who write tasks that are to be loaded by the Application
Loader or tasks to be invoked by the Human Interface.

In order to understand all of this chapter, you must be familiar with the
iRMX 86 Debugger, and you must know Which system calls are provided by
the various subsystems of the iRMX 86 Operating System. You also must
know the difference between maskable and nonmaskable interrupts.
Finally, if you are writing an interrupt handler, you must know what an
interrupt handler is. The bibliography at the end of this chapter lists
the documents in which you can find this information.

PURPOSE OF THIS CHAPTER

The purpose of this chapter is threefold. If your are writing a task
that creates a job or another task, the purpose of this chapter is to
help you compute the amount of stack that you must specify in the system
call that performs the creation. If you are writing an interrupt
handler, the purpose of this chapter is to inform you of stack size
limitations to which you must adhere. If you are writing a task that is
to be loaded by the Application Loader or invoked by the Human Interface,
the purpose of this chapter is to show you how much stack to reserve
during the linking and locating process.

STACK SIZE LIMITATION FOR INTERRUPT HANDLERS

Many tasks running in the iRMX 86 Operating System are subject to two
kinds of interrupts -- maskable, and nonmaskable. When these interrupts
occur, the associated interrupt handlers use the stack of the interrupted
task. Consequently, you must know how much of your task's stack to
reserve for these interrupt handlers.

The iRMX 86 Operating System assumes that all interrupt handlers,
including those that you write, require no more than 128 (decimal) bytes
of stack, even if a task is interrupted by both a maskable and a
nonmaskable interrupt. If when writing an interrupt handler you fail to
adhere to this limitation, you expose your system to the risk of stack
overflow.

11-1

I

GUIDELINES FOR STACK SIZES

In order to stay within the 128 (decimal) byte limitation, you must
restrict the number of local variables that the interrupt handler stores
on the stack. For interrupt handlers serving maskable interrupts, you
may use as many as 20 (decimal) bytes of stack for local variables. For
handlers serving the nonmaskable interrupt, you may use no more than 10
(decimal) bytes. The balance of the 128 bytes is consumed by the
SIGNAL$INTERRUPT system call, and by storing the registers on the stack.

For mor information about interrupt handlers, refer to the iRMX 86
NUCLEUS REFERENCE MANUAL.

STACK GUIDELINES FOR CREATING TASKS AND JOBS

Whenever you invoke a system call to create a task, you must specify the
size of the task's stack. And, since every new job has an initial task
that is created simultaneously with the job, you must also designate a
stack size whenever you create a job.

When you specify a task's stack size, you should do so carefully. If you
specify a number that is too small, your task might overflow its stack

I and write over information following the stack. This situation can cause
your system to fail. On the other hand, if you specify a number that is
too large, the excess memory will be wasted. So ideally, you should
specify a stack size that is only slightly larger than what is actually
required.

This chapter provides you with two techniques for estimating the size of
your task's stack. One technique is arithmetic, and the other is
empirical. For best results, you should start with the arithmetic
technique and then use the empirical technique for tuning your original
estimate.

STACK GUIDELINES FOR TASKS TO BE LOADED OR INVOKED

If you are creating a task that is to be loaded by the Application Loader
or invoked by the Human Interface, you must specify the size of the
task's stack during the linking or locating process. The arithmetic and
empirical techniques in this manual will help you estimate the size of
your task's stack.

ARITHMETIC TECHNIQUE

This technique provides you with a reasonable overestimate of your task's
stack size. After you use this technique to obtain a first
approximation. you may be able to save several hundred bytes of memory by
using the empirical technique described later in this chapter.

11-2

GUIDELINES FOR STACK SIZES

The arithmetic technique is based on the fact that there are at most
three factors affecting a task's stack. These factors are:

• interrupts.

• iRMX 86 system calls.

• requirements of the task's code. (For example, the stack used to
pass parameters to procedures or to hold local variables in
reentrant procedures.)

You can estimate the size of a task's stack by summing the amount of
memory needed to accommodate these factors. The following sections
explain how to compute the stack requirements for the first three factors.

STACK REQUIREMENTS FOR INTERRUPTS

Whenever an interrupt occurs while your task is running, the interrupt
handler uses your task's stack while servicing the interrupt.
Consequently, you must ensure that your task's stack is large enough to
accommodate the needs of two interrupt handlers -- one for maskable
interrupts, and one for nonmaskable interrupts. All interrupt handlers
used with the iRMX 86 Operating system are designed to to ensure that,
even if two interrupts occur (one maskable, one not), no more than 128
(decimal) bytes of stack are required by the interrupt handlers.

STACK REQUIREMENTS FOR SYSTEM CALLS

When your task invokes an iRMX 86 system call, the processing associated
with the call uses some of your task's stack. The amount of stack
required depends upon which system calls you use.

Table 11-1 tells you how many bytes of stack your task must have to
support various system calls. To find out how much stack you must
allocate for system calls, compile a list of all the system calls that
your task uses. Scan Table 11-1 to find which of your system calls
requires the most stack. By allocating enough stack to satisfy the
requirements of the most demanding system call, you can satisfy the
requirements of all system calls used by your task.

11-3

I

I

GUIDELINES FOR STACK SIZES

Table 11-1. Stack Requirements for System Calls

BYTES
SYSTEM CALLS (DECIMAL)

S$SEND$COMMAND 800

ALL OTHER
HUMAN INTERFACE 600
SYSTEM CALLS

S$LOAD$IO$JOB 440

A$LOAD$IO$JOB 400
A$LOAD
S$OVERLAY

EXTENDED I/O 400
SYSTEM CALLS

BASIC I/O 300
SYSTEM CALLS

CREATE$JOB
DELETE$EXTENSION
DELETE$JOB 225
DELETE$TASK
FORCE$DELETE
RESET$INTERRUPT

ANY OTHER NUCLEUS 125
SYSTEM CALLS

11-4

GUIDELINES FOR STACK SIZES

COMPUTING THE SIZE OF THE ENTIRE STACK

To compute the size of the entire stack, add the following three numbers: I • the number of bytes required for interrupts (128 decimal bytes)

• the number of bytes required for system calls

• the amount of stack required by the task's code segment

You can use the sum of these three numbers as a reasonable estimate of •
your task's stack requirements. If you desire more accuracy, use the sum
as a starting point for the empirical fine tuning described later in this
chapter.

EMPIRICAL TECHNIQUE

This technique starts with an overly large stack and uses the iRMX 86
Debugger to determine how much of the stack is unused. Once you have
found out how much stack is unused, you can modify your task- and I
job-creation system calls to create smaller stacks.

The cornerstone of this technique is the iRMX 86 Debugger. In order to
use the Debugger, you must include it when you configure your application
system. Information on how to do this is provided in the iRMX 86
CONFIGURATION GUIDE. I

The Inspect Task command of the Debugger provides a display that includes
the number of bytes of stack that have not been used since the task was
created. If you let your task run a sufficient length of time, you can
use the Inspect Task command to find out how much excess memory is
allocated to your task's stack. Then you can adjust the stack-size
parameter of the system call to reserve less stack.

The only judgment you must exercise when using this technique is deciding
how long to let your task run before obtaining your final measurement.
If you do not let the task run long enough, it might not encounter the
most demanding combination of interrupts and system calls. This could I
cause you to underestimate your task's stack requirement and could,
consequently, lead to a stack overflow in your final system.

Underestimation of stack size is a risk inherent in this technique. For
example, your task might be written so as to use its peak demand for
stack only once every two months. Yet you probably don't want to let
your system run for two months just to save several hundred bytes of
memory. You can avoid such excessive trial runs by padding the results
of shorter runs. For instance, you might run your task for 24 hours and
then add 200 (decimal) bytes to the maximum stack size. This padding
reduces the probability of overflowing your task's stack in your final
system.

11-5

GUIDELINES FOR STACK SIZES

BIBLIOGRAPHY

The following manuals explain how to use the Debugger, tell which system
calls are provided by each subsystem of the iRMX 86 Operating System,
explain the difference between maskable and nonmaskable interrupts, and
discuss interrupt handlers.

• iRMX 86- DEBUGGER REFERENCE MANUAL
Manual Number 143323

This manual explains how to use the Debugger's Inspect Task
command.

• iRMX 86- NUCLEUS REFERENCE MANUAL
Manual Number 9803122

This manual describes most of the Nucleus system calls and
explains the purpose of an interrupt handler.

• iRMX 86- BASIC I/O SYSTEM REFERENCE MANUAL
Manual Number 9803123

This manual describes most of the system calls provided by the
Basic I/O System.

• iRMX 86- EXTENDED I/O SYSTEM REFERENCE MANUAL
Manual Number 143308

This manual describes most of the system call provided by the
Extended I/O System.

• iRMX 86- LOADER REFERENCE MANUAL
Manual Number 143318

This manual describes all of the system calls provided by the
Application Loader.

• iRMX 86- HUMAN INTERFACE REFERENCE MANUAL
Manual Number 9803202

This manual describes all of the system call provided by the
Human Interface.

• iRMX 86- SYSTEM PROGRAMMER'S REFERENCE MANUAL
Manual Number 142721

This manual describes the reserved system calls of the Extended
and Basic I/O Systems and the Nucleus.

• iSBC 86/12A SINGLE BOARD COMPUTER HARDWARE REFERENCE MANUAL
Malnual Order Number 9803074

This manual explains the difference between maskab1eand
nonmaskab1e interrupts.

11-6

INDEX A. WHEN IS EACH CHAPTER USEFUL?

The purpose of this index is to help you find out which chapters are most
useful to you at any given phase of the development of your system.

DIVIDING AN APPLICATION INTO JOBS AND TASKS

Chapter 3
Communication Between iRMX 86 Jobs

Chapter 9
Deadlock and Dynamic Memory Allocation

Chapter 11
Guidelines for Stack Sizes

WRITING THE CODE FOR TASKS

Chapter 2
Selecting a PL/M-86 Model of Computation

Chapter 3
Interface Procedures and Libraries

Chapter 4
Editing INCLUDE Files

Chapter 5
Timer Routines

Chapter 6
Calling the iRMX 86 System from Assembly Language

Chapter 7
Communication Between iRMX 86 Jobs

Chapter 8
Simplifying Configuration During Development

Chapter 9
Deadlock and Dynamic Memory Allocation

Chapter 10
Procedures for I/O Using a Terminal

Chapter 11
Guidelines for Stack Sizes

Index A-l

I

WHEN IS EACH CHAPTER USEFUL?

DEBUGGING

Chapter 8
Simplifying Configuration During Development

Chapter 10
Procedures for I/O Using a Terminal

CONFIGURATION AND SYSTEM STARTUP

Chapter 8
Simplifying Configuration During Development

I
WRITING INTERRUPT HANDLERS

Chapter 11
Guidelines for Stack Sizes

Index A-2

INDEX B

Underscored entries are primary references.

application loader 3-4, 4-2
application programmers 4-3
assembly language 6-1 to 6-5

Basic I/O System 3-4, 4-2

CATALOG$OBJECT 7-4
chapter outline 1-1
compilation 4-3
configuration 3-4, 4-3, 8-1 to 8-6
connection objects 7-3
CREATE$JOB 7-5
CREATE$SEGMENT 9-2
CREATE$SEMAPHORE 7-4
CREDIT 4-4

deadlock 9-1 to 9-4
debugging 8-1 to 8-6, 9-2, 10-1, 11-6
DELETE$SEGMENT 7-2
DELETE$EXTENSION 9-2
DELETE$JOB 9-2
dynamic memory allocation 9-1 to 9-4

EIOS.EXT 4-2
elapsed time 5-1 to 5-9
EPIFC.LIB 3-4
EPIFL.LIB 3-4
Extended I/O System 3-4, 4-2

files 4-1 to 4-4

GET$TASK$TOKENS 7-4 to 7-5
GET$TIME 5-1
GET CHAR 10-2
GET-DEC 10-3
GET-HEX 10-3
GET STR 10-4
get_time 5-1, 5-6

HI. EXT 4-2
HPIFC.LIB 3-4
HPIFL.LIB 3-4
Human Interface 3-4, 4-2

Index B-1

iRMX 86 strings 10-4 to 10-5
INCLUDE files 4-1 to 4-4

related reading 4-4
indexes 1-1
init time 5-2, 5-7 to 5-8
initIal tasks 8-4
interface procedures 3-1 to 3-5

definition 3-1
libraries containing 3-4
related reading 3-5

interrupt handlers 11-1, 11-3
interrupts and stack sizes 11-3
IOS.EXT 4-2
IPIFC.LIB 3-4
IPIFL.LIB 3-4

%JOB macro 8-2 to 8-4
jobs 7-1 to 7-7, 11-2

libraries 3-4
LOADER. EXT 4-2
LOOKUP$OBJECT 7-4
LPIFC.LIB 3-4
LPIFL.LIB 3-4

mailbox 7-5
maintain time 5-2, 5-5
maskable-interrupts -rr-2, 11-3
memory allocation 9-1 to 9-4
memory deadlock 9-1 to 9~4

nonmaskable interrupts 11-2, 11-3
nucleus 3-4, 4-2
NUCLUS.EXT 4-2
null-terminated strings 10-4

object directories 7-3 to 7-5

parameter object 7-5

INDEX B

PL/M-86 2-1 to 2-5, 4-1 to 4-4
program size control 2-1 to 2-5, 6-2

COMPACT 2-1, 2-2
LARGE 2-1
MEDIUM 2-1, 2-2
ramifications of your selection 2-2
related reading 2-5
selection algorithm 2-2 to 2-4
SMALL 2-1

PUT CHAR 10-2
PUT-DEC 10-4
PUT-HEX 10-3
PUT-NT STR 10-5
PUT-STR 10-4

Index B-2

RECEIVE$UNITS 7-4
region 5-4 to 5-8
root job 7-3 to 7-4, 8-2
RPIFC.LIB 3-4
RPIFL.LIB 3-4

segments 7-1 to 7-2, 7-6
semaphore 7-3 to 7-4, 9-3
SEND$MESSAGE 9-2, 11-3
SET$TIME 5-1
set time 5-2, 5-6
SIGNAL$INTERRUP~11-2
stacks 2-3, 11-1 to 11~6
stream files 7-2
strings 10-4
synchronization 7-3

INDEX B

system calls 4-1 to 4-4, 6-1 to 6-5
effect on stack sizes 11-3, 11-5
examples of use 5-3 to 5-8
that can cause deadlock 9-2

system programmers 4-3

tasks 11-1 to 11-6
terminal 10-1 to 10-5
timer procedures 5-1 to 5-9

related reading 5-8 to 5-9
tokens 7-6
type manager 7-6

Index B-3

REQUEST FOR READER'S COMMENTS

iRMX 86'·
Programmi11g Techniques

142982-002

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and compieteness of this
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _

NAME _____________________________________ DATE _____ . ____ _

TITLE ___ _

COMPANY NAME/DEPARTMENT __ _

ADDRESS __ _

CITY _____ -:--____________________________ STATE ___ ZI P CODE _____ _

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS . ..

This document is one of a series describing Intel products. Your comments on the back of this
form will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

O.M.S. Technical Publications

111111 NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

