L—

GUIDE TO WRITING
DEVICE DRIVERS FOR THE
iIRMX 86™ I/O SYSTEM

Manual Order Number: 142926-002

Copyright © 1981, Intel Corporation
intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

—— |

REV. . REVISION HISTORY PRINT

DATE
-001 Original Issue 11/80
-002 Updated to reflect the changes in 5/81

version 3.0 of the iRMX 86 software.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel’s software
license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

BXP Intel Megachassis
CREDIT Intelevision Micromap

i Intellec Multibus
ICE iRMX Multimodule
iCS iSBC PROMPT
im : iSBX Promware
Insite Library Manager RMX/80
Intel MCS . System 2000

: UPI
uScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.
' A367/681/5K DL

ii

PREFACE

The I/0 System is the part of the iRMX 86 Operating System that provides
you with the capability to access files on peripheral devices. It is
implemented as a set of file drivers and a set of device drivers. A file
driver provides user access to a particular type of file, independent of
the device on which the file resides. A device driver provides a
standard interface between a particular device and one or more file
drivers. Thus, by adding device drivers, your application system can
support additional types of devices. And it can do this without changing
the user interface, since the file drivers remain unchanged.

This manual describes how to write device drivers to interface with the
I1/0 System. It illustrates the basic concepts of device drivers in an
iRMX 86 environment and describes the different types of device drivers
(common, random access, and custom).

READER LEVEL

This manual assumes that you are a system programmer experienced in
dealing with I/0 devices. 1In particular, it assumes that you are
familiar with the following: '

e The iRMX 86 Operating System and the concepts of tasks,
segments, and other objects.

e The I/O System, as described in the iRMX 86 Basic I/0 SYSTEM
REFERENCE MANUAL. This manual documents the user interface to
the I/0 System.

e Regions, as described in the iRMX 86 SYSTEM PRCGRAMMER'S
REFERENCE MANUAL,

e The PL/M-86 programming language and/or the MCS-86 Macro
Assembly Language.

e The hardware codes necessary to perform actual read and write

operations on your I/0 device. This manual does not document
these device-dependent instructions.

iii

RELATED PUBLICATIONS

The following manuals provide additional information that may be helpful
to users of this manual,

‘Manual ' Number

iRMX 86 Nucleus Reference Manual 9803122
iRMX 86 Basic I/0 System Reference Manual 9803123
iRMX 86 Extended I/0 System Reference Manual 143308
iRMX 86 Loader Reference Manual 143318
iRMX 86 System Programmer's Reference Manual 142721
iRMX 86 Configuration Guide 9803126
PL/M~-86 Programming Manual for 8080/8085-Based Development

Systems 9800466
PL/M-86 Compiler Operating Instructions for 8080/8085-Based

Development Systems 9800478
PL/M-86 User's Guide for 8086-Based Development Systems 121636

8086/8087/8088 Macro Assembly Language Reference Manual
for 8080/8085-Based Development Systems 121623

8086/8087/8088 Macro Assembly Language Reference Manual
for 8086-Based Development Systems 121627

8086/8087/8088 Macro Assembler Operating Instructions
for 8080/8085-Based Development Systems 121624

8086/8087/8088 Macro Assembler Operating Instructions
for 8086-Based Development Systems 121628

8086 Family Utilities User's Guide for 8080/8085-Based
Development Systems 9800639

1APX 86 Family Utilities User's Guide for 8086-Based
Development Systems 121616

iv

CONTENTS

PAGE
CHAPTER 1

INTRODUCTION
I/O Devices and Device Drivers.'.Q...'..'."......'.'..............

I/O Requests..0..0....00.00-.00.000..00..0..oo.ou...oo.l.....o.on..

Components 0f a Device Driveressesesescecscscsesecenccscscacsccases
Initialize I/Ol............'...I...Q........‘.......O......'Q...v.

FiniSh I/Oo.c...c.‘otoo..o.o.o.o-........0'000.00.0".0.‘.'.0...0

Queue I/Oo.o...no..o.-too...'...O000.0.0..0000000000.000000000000.
Cancel I/0¢.ieesescsessocncesoscsessassscscsacsasoncsscasacsanosnes
Interrupt Handlers and Interrupt TaskSeeesssscsscasscascscscsaccas
Calling the Device Driver ProceduUreS..csesccecccecsceccccocasacscss
Types Of Device DrivVerSceceesssscessseccsssssoscssrsasesscssssonasssansas
COmMMON DeVICESs saeassassssesscssasascassssssosnsssscsssoasssasssse
Random AccesS DevViCeSsseeseesssssesscccssasecsscsssccncncssscsccsss
CUSLOM DeViCeSeeeessssesssossssosasssssessossorsessssssasosasssnsns

r—-.—-u—-an-—-r—-v—-l-l-'»—u—- s
| O I |
PRI N« YN, I S A S S S SURN FUN)

CHAPTER 2
DEVICE DRIVER INTERFACES
I/0 System INterfaceSeeecsceccecesescscsssasoossssecsscssssasasssnnae
Device-Unit Information Block (DUIB)eeesssssescsassssssesccscscas
DUIB StruUCtUTECaeeseecsssssccessssossssssssssscsccsasssocsacssns
Using the DUIBSeesecesosssccssscessscssossssnscnssssssossssssacss
Creating DUIBS.eecessceceassoasosescsssssesssssessasssssssasssseas
I/0 Request/Result Segment (IORS).eceseessessccssccnsccssccsssenss
JORS StrUCEUTEseesessssssscscsscncosssssssssssssasssssansennssne
Implementing a Request QUEUE.scessceesoscacsssssssssssscscsncsss
Device Data ObJeCtsseseeessocesscssasasscsasssscscsossssscnanas
Device INterfaCesSecececesescscsesscessescnsosscssnsascocssssasessscnsncssce

[}
P s S OY U e e

(=]

NN NN t\')N NN NN

NN

CHAPTER 3

WRITING A COMMON DEVICE DRIVER

Requirements for Using the Common Device Driver Support Routines...

I/0 System—Supplied ROULINESssecescscesesccsscsossssssssasnsscssanscs

User—Supplied ROULINES: coesesososscscansososnsssosssassssssssasssssss
Device Information Table for Common DeviC@Seecssssssssssssscsanss
Device Initialization ProcedUr€esesecccscscsscssscsssssssassssane
Device Finish ProcCedur@eecessecscesssssstcssssssssoscscscscssscssancss
Device Start ProcedUr€.ccecessccssescacssssscsssscasssssassaassassses
Device StOp ProceduUrCeeecseseoscscssscccccosccscscnsssasscssssssnssnsasas
Device Interrupt ProcedUre.ecessesssssescsscossossscssssssssesscss

uwwwtf WL ww
OO WN -

CHAPTER 4
WRITING A RANDOM ACCESS DEVICE DRIVER
Requirements for Using The Random Access Device Driver

SUPPOrt ROULINESessscosocscssssescsssssssssssssssesncsssssasess
I/0 System=Supplied ROULINESeeseessescccsssesssssssesssosscnsssnses
User—Supplied RoOULINESeeeesosessccsssccssssosssrsossosssssasccsscsaancsse

-J-\-li\-&-\
N b =

CONTENTS (continued)

CHAPTER 4 (continued)

Device and Unit Information Tables for Random Access DeviceSe..se
Device Information Table for Random Access DeviCe€Seeesscssccces
Unit Information Table for Random Access DeviCeSeeeeesesscssces

Device Initialization ProcCeduUre.ececeeeccecessccsccssscossscscsans

Device Finish Procedureeecsccecccecsccsascescsscsassscsssssscascosssnsse

Device Start Procedur@eececssssecescscssrcccsscssstsocscscssscsnsnonnse

Device Stop ProcedUreececcecesccsscssssssscssscsssossccossoscscns

ngice Interrupt Procedurecsececescscssessssosssscsscscsscancssae

CHAPTER 5

WRITING A CUSTOM DEVICE DRIVER

Initialize I/0 Procedure.eeesseeessseessecncsccsasssanssssannnasans
Finish I/O Procedureescecccsccsesccccsscssscscossscsnssccstonnscsssssscsese
Queue I/0 ProcedUre.cececececscescesssssscasesssscscsssascsssssncee
Cancel I/0 Procedurececccccesssescsscssssssssacscscscesccccoscsssasce

CHAPTER 6
LINKING DRIVER ROUTINES TO THE I/O SYSTEM..Cl....l......."....'...

APPENDIX A

COMMON DRIVER SUPPORT ROUTINES
INIT$IO Procedure..
FINISHSIO ProCeduressccscsccecsssesssssasscsescsssessossacsssscssccossssss
QUEUESIO ProcCedurescsssssssssssssssnssseccssscnsssesssoscccassannee
CANCELsIO Procedure..

Interrupt TaSk (INTERRUPTsTASK)..t.Q.o.nQo.ooo.t.t.o.‘..o.c..t.oo.o

APPENDIX B
FOld Out Figures.o"oo..o'oool'oo.oo....ot.o0.0..0.0'00......!0....

FIGURES

1-1. Communication LevelsS.sseeescesssceosscoscssccssassssconnsas
1-2. Device Numberingeeecsseessessscesssesscosscsssscssccsscnnss
1-3. Interrupt Task InterractioN.eesscecessescscssssccssasssncss
2-1. Attaching Devices..............}g....-...............-.....
2-2, Request QUeUE: cecessssssescscssassssessscscnscscassssascnsas
4-1., = DUIBs, Device and Unit Information TableSeeceseceesccccsccses
A-1, Common Device Driver Initialize I/0 ProcedurC.cescececececes
A-2. Common Device Driver Finish I/0 Procedurecceccecscecccscscass
A-3, Common Device Driver Queue I/0 Procedure..cececeseceeccocscss
A-4, Common Device Driver Cancel I/0 Procedur€.cescesssssssscses
A-5, Common Device Driver INterrupt TasSKeeeeceecosseessssscccoosss
B-1. Calling the Device Driver Procedure€Seecesecsscssesscssccscsss

vi

PAGE

4-5
4-5
4-7
4-8
4-9

4-11
4-12

6-1

A-1
A-3
A-5
A-7
A-9

A-10
B-2

CHAPTER 1. INTRODUCTION

The I/0 System is implemented as a set of file drivers and a set of
device drivers. File drivers provide the support for particular types of
files (for example, the named file driver provides the support needed in
order to use named files). Device drivers provide the support for
particular devices (for example, an iSBC 206 device driver provides the
facilities that enable an iSBC 206 disk drive to be used with the I/0

System). Each type of file has its own file driver and each device has
its own device driver.

One of the reasons that the I/0 System is broken up in this manner is to
provide device-independent I/0. Application tasks communicate with file
drivers, not with device drivers. This allows tasks to manipulate all
files in the same manner, regardless of the devices on which they
reside. File drivers, in turn, communicate with device drivers, which
provide the instructions necessary to manipulate physical devices.
Figure l-1 shows these levels of communication.

APPLICATION TASK

file independent intertace

FILE DRIVER

device independent interface

DEVICE DRIVER

DEVICE

Figure 1-1. Communication Levels

1-1

INTRODUCTION

The I/0 System provides a standard interface between file drivers and
device drivers. To a file driver, any device is merely a standard block
of data in a table. In order to manipulate a device, the file driver
calls the device driver procedures listed in the table. To a device
driver, all file drivers seem the same. Every file driver calls device
drivers in the same manner. This means that the device driver does not
need to concern itself with the concept of a file driver. It sees itself
as being called by the I/0 System and it returns information to the I/0
System. This standard interface has the following advantages:

e The hardware configuration can be changed without extensive
modifications to the software. Instead of modifying entire file
drivers when you want to change devices, you only have to
substitute a different device driver and modify the table.

e The I/0 System can support a greater range of devices. It can

support any device as long as you can provide for the device a
driver that interfaces to the file drivers in the standard manner.

I1/0 DEVICES AND DEVICE DRIVERS

Each I/0 device consists of a controller and one or more units. A device
as a whole is identified by a device number. Units are identified by
unit number and device-—unit number. The unit number identifies the unit
within the device and the device-unit number identifies the unit among
all the units of all of the devices. Figure 1-2 contains a simplified
drawing of three I/0 devices and their device, unit, and device-unit
numbers., '

DEVICE 0 DEVICE 1 DEVICE 2
CONTROLLER CONTROLLER CONTROLLER
UNIT 0 - UNIT 1 UNIT 0 UNIT 1 UNIT 2 UNIT 0
DEVICE- DEVICE- DEVICE- DEVICE- DEVICE- DEVICE-
UNIT 0 UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5

Figure 1-2. Device Numbering

INTRODUCTION

You must provide a device driver for every device in your hardware
configuration. That device driver must handle the I/0 requests for all
of the units the device supports. Different devices can use different
device drivers; or if they are the same kind of device, they can share
the same device driver code. (For example, two iSBC 206 controllers are
two separate devices and each has its own device driver. However, these
device drivers share common code.)

I/0 REQUESTS

To the device driver, an I/0 request is a request by the I/0 System for
the device to perform a certain operation., Operations supported by the
I1/0 System include:

Read

Write

Seek

Special
Attach device
Detach device
Open

Close

The I/0 System makes an I/0 request by sending an I/0 request/result
segment (IORS) containing the necessary information to the device
driver. (The IORS is described in Chapter 2.,) The device driver must
translate this request into I/0 port read and write commands in order to
cause the device to perform the requested operation.

COMPONENTS OF A DEVICE DRIVER

At its highest level, a device driver consists of four procedures which
are called directly by the I/0 System. These procedures can be
identified according to purpose, as follows:

Initialize I/0
Finish I/0
Queue I/0
Cancel I/0

When a task makes an I/0 System call to manipulate a device, the I/0
System ultimately calls one or more of these procedures, which operate in
conjunction with an interrupt handler to coordinate the actual I/0
transfers, This section provides a general description of each of these
procedures and the interrupt handler.

INTRODUCTION

INITIALIZE I/0

This procedure creates all of the iRMX 86 objects needed by the device .
driver. It typically creates an interrupt task and a segment to store
data local to the device. It also performs device initialization, if any
is necessary. The I/0 System calls this procedure when an application
task makes an RQ$ASPHYSICALSATTACHSDEVICE system call to attach a unit of
a device and there are no units of the device currently attached. Refer

to the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL for a description of
the system call.

FINISH I/0

The I/0 System calls this procedure when an application task makes an
RQSASPHYSICALSDETACHSDEVICE system call to detach a unit of a device and
that unit is the only unit of the device currently attached (refer to the
iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL for a description of the
system call). The Finish I/0 procedure performs any necessary final
processing on the device and deletes all of the objects created by the
Initialize I/0 procedure, including the interrupt task and the segment
containing the data local to the device.

QUEUE I/0

This procedure places I/0 requests on a queue, so that they can be
processed when the appropriate unit becomes available. If the device is

not busy, the Queue I/0 procedure starts the request after placing it on
the queue.

CANCEL I/0

This procedure cancels a previously queued I/0 request. This function is
useful, for example, when a request can take an unacceptable amount of
time to process (such as keyboard input from a terminal).

INTERRUPT HANDLERS AND INTERRUPT TASKS

After a device finishes processing an I/0 request, it sends an interrupt
to the processor. As a consequence, the processor calls the interrupt
handler. This handler either processes the interrupt itself or signals
an interrupt task to process the interrupt. Since an interrupt handler
is limited in the types of system calls that it can make and the number
of interrupts that can be enabled while it is processing (refer to the
iRMX 86 NUCLEUS REFERENCE MANUAL for a description of this), an interrupt
task usually services the interrupt. The interrupt task feeds the
results of the interrupt back to the I/O System (data from a read
operation, status from other types of operations). The interrupt task

1-4

"INTRODUCTION

then gets the next I/0 request from the queue and starts the device pro-
cessing this request. This cycle continues until the device is detached.
The interrupt task is normally created by the Initialize I/O procedure.

Figure 1-3 shows the interaction of an interrupt task, an I/0 device, an
I/0 request queue, and a Queue I/0 device driver procedure. The interrupt
task in this figure is in a continual cycle of waiting for an interrupt,
processing it, getting the next I/0 request, and starting up the device
again. While this is going on, the Queue I/O procedure runs in parallel
puttlng additional I/0 requests on the queue.

REQUEST QUEUE INTERRUPT TASK
START DEVICE
1/0 REQUEST < @service | ®
" () GET REQUEST INTERRUPT

1/0 REQUEST

!§§\§-~
(D INTERRUPT
\

QUEUE 1/0 PROCEDURE

s
| VO REQUEST |5 r REQUESTS ON QUEUE

Figure 1-3. Interrupt Task Interaction

CALLING THE DEVICE DRIVER PROCEDURES

The I/0 System calls each one of the four device driver procedures in
response to specific conditions. Figure B-1 is flow chart that
illustrates the conditions under which three of the four procedures are
called. You can unfold this figure in order to follow along with the
.discussion of it. The following numbered paragraphs discuss the portions
of Figure B-1 labeled with corresponding circled numbers.

1. 1In order start I/0 processing, the user must make an I/0 request.
This can be done by making a variety of system calls. However,
the first I/0 request to each device-unit must be the
RQSASPHYSICALSATTACHSDEVICE system call.

2. 1If the request results from an RQAPHYSICALSATTACH$DEVICE system
call, the I/0 System checks to see if any other units of the
device are currently attached. If no other units of the device
are currently attached, the I/0 System realizes that the device
has not been initialized and calls the Initialize I/0 procedure
first, before queueing the request.

1-5

INTRODUCTION

3. Whether or not the I/0 System called the Initialize I/O
procedure, it calls the Queue I/0 procedure to queue the request
for execution.

4. If the request just queued resulted from an
RQSA$SPHYSICALSDETACHSDEVICE system call, the I/0 System checks to
see if any other units of the device are currently attached. If
no other units of the device are attached, the I/0 System calls
the Finish I/0 procedure to do any final processing on the device
and clean up objects used by the device driver routines.

The I/0 System calls the fourth device driver procedure, the Cancel I/0
procedure, under the following conditions:

° If the user makes an RQ$ASPHYSICALSDETACHS$DEVICE system call
specifying the hard detach option, in order to forcibly detach
the connection objects associated with a device-unit. The
iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL describes the hard
detach option.

e If the job containing the task which made a request is deleted.

TYPES OF DEVICE DRIVERS

The I/p System supports three types of device drivers: custom, common,
and random access. A custom device driver is one that the user creates
in its entirety. This type of device driver can be in any form or
provide any functions that the user wishes, as long as the I/0 System can
access it by calling four procedures, designated as Initialize I/O0,
Finish I/0, Queue I/0, and Cancel I/O.

The I/0 System provides the basic support routines for the common and
random access device driver types. These support routines provide a
queueing mechanism, an interrupt handler, and other features common to
random access or common devices. If your device fits into the random
access or common device classification, you need to write only the
specialized, device-dependent procedures and interface them to the ones
provided by the I/0 System in order to create a complete device driver.

COMMON DEVICES

Common devices are relatively simple devices, such as line printers, that
conform to the following conditions:

e Data either read or written by these devices does not need to be
broken up into blocks.

e A first in/first out mechanism for queuing requests is sufficient
for accessing these devices.

e Only one interrupt level is needed to service a device.

1-6

INTRODUCTION

If you have devices that fit into this category, you can save the effort
of creating an entire device driver by using the common driver routines
supplied by the I/0 System. Chapter 3 of this manual describes common
device drivers in detail.

RANDOM ACCESS DEVICES
A random access device is a device such as a disk drive in which data can
be read from or written to any address of the device. The support
routines provided by the I/0 System for random access assume the
following conditions:

e The device supports random access seek.

e Only one interrupt level is needed to service the device.

e I/0 requests must be broken up into blocks of a specific length.
If you have devices that fit into the random access category, you can

take advantage of the random access support routines provided by the I/0
System. Chapter 4 describes random access device drivers in detail,

CUSTOM DEVICES

If your device fits neither the common nor the random access category,
you must write the entire driver for that device. Custom device drivers
are discussed in Chapter 5.

1-7 -

CHAPTER 2. DEVICE DRIVER INTERFACES

Since a device driver is a group of software routines which manages a
device at a basic level, it must transform general instructions that it
receives from the I/0 System into device specific ‘instructions which it
then sends to the device itself. Thus a device driver has two types of
interfaces: an interface to the I/0 System, which is the same for all
device drivers, and an interface to the device itself, which varies
according to device. This chapter descusses these interfaces.

I/0 SYSTEM INTERFACES

The interface between the device driver and the I/0 System consists of
two data structures, the device-unit information block (DUIB) and the I/0
request/result segment (IORS).

DEVICE-UNIT INFORMATION BLOCK (DUIB)

The DUIB is an interface between a device driver and the I/O System in
the sense that the DUIB contains the addresses of the device driver
routines. By accessing the DUIB, the I/0 System can call a device
driver. Actually, the DUIB is the interface between the I/O System and
the device itself. It is a part of a table that contains (or points to)
all of the information that the I/0 System knows about a particular unit -
of a device. All devices, no matter how diverse, use this standard
interface to the I/O System. You must provide a DUIB for each
device-unit in your hardware system.

DUIB Structure

The structure of the DUIB is defined as follows:

DEVICE DRIVER INTERFACES

DECLARE
DEV$UNITS INFOSBLOCK STRUCTURE(
NAME(14) BYTE,
FILESDRIVERS WORD,
FUNCTS BYTE,
FLAGS BYTE,
DEV$GRAN WORD,
LOWSDEVSSIZE WORD,
HIGH$DEVSSIZE - WORD,
DEVICE BYTE,
UNIT BYTE,
DEVS$UNIT WORD,
INITSIO WORD,
FINISHS$IO WORD,
QUEUE$ IO WORD,
CANCELSIO WORD,
DEVICES$ INFOSP - POINTER,
UNITSINFOSP POINTER,
UPDATEST IMEQUT WORD,
NUMS$BUFFERS WORD,
PRIORITY BYTE) ;
where:
NAME BYTE array specifying the name of the DUIB., This
name uniquely identifies the device-unit to the I/O
System. When you attach a device using the
RQSA$SPHYSICALSATTACHSDEVICE system call, you must
specify this name as a parameter. Device drivers
can ignore this field,
FILE$DRIVERS WORD specifying file driver validity. Setting bit

number i of this word implies that file driver
number i+l can attach this device-unit. Clearing
bit number i implies that file driver i+l cannot
attach this device-unit. Bits are numbered from
right to left, starting with bit 0. The bits are
associated with the file drivers as follows:

bit file driver
0 physical (no. 1)
1 stream (no. 2)
3 ﬁamed (no. 4)

The remainder of the word must be set to zero.
Device drivers can ignore this field.

FUNCTS

FLAGS

DEVSGRAN

DEVICE DRIVER INTERFACES

BYTE specifying the I/0 function validity for this
device-unit, Setting bit number i implies that
this device-unit supports function number 1i.
Clearing bit number i implies that the device-unit
does not support function number i. Bits are num-
bered from right to left, starting with bit 0. The
bits are associated with the functions as follows:

o
[V
(3

function

F$READ
F$WRITE
F$SEEK
F$SPECIAL
FSATTACHS$DEV
F$DETACHS$DEV
F$OPEN
F$CLOSE

N oM pPpwLON—~O '

Bits 4 and 5 should always be set. Every device
driver requires these functions.,

This field is used for informational purposes only;
for example, the RQSGET$FILESSTATUS system call
(refer to the iRMX 86 BASIC I/0 SYSTEM REFERENCE
MANUAL) uses this field. The setting or clearing
of bits in this field does not limit the device
driver from performing any I/O function. In fact,
each device driver must be able to support all of
the I/0 functions, either by performing the
function or by returning a condition code
indicating the inability of the device to perform
that function. However, in order to provide
accurate status information, this field should
indicate the device's abiiity to perform the I/0
functions.

BYTE specifying characteristics of diskette de-
vices. The significance of the bits is as follows:

bit meaning

0 reserved

1 0 = single density; 1 = double density
2 0 = single sided; 1 = double sided

3-7 reserved

WORD specifying the device granularity in bytes.
This parameter is most important for random access
devices. It specifies the minimum number of bytes
of information that the device reads or writes in
one operation. You should set this value equal to
the volume granularity specified when the volume
was formatted. For example, if you format an

iRMX 86 disk and set its granularity to 128, you
should also set the device granularity to 128.

2-3

LOW$DEVSSIZE
HIGHDEVSIZE

DEVICE
UNIT
DEVSUNIT
INITSIO
FINISHS$IO
QUEUES$ IO

CANCELS$IO

DEVICE$ INFO$P

UNITS INFOSP

UPDATE$TIMEOUT

DEVICE DRIVER INTERFACES

WORD specifying the number of bytes of information
that the device-unit can store.

BYTE specifying the device number of the device
with which this device-unit is associated. Device
drivers can ignore this field.

BYTE specifying the unit number of this
device~unit. This distinguishes this unit from the
rest of the units of the device.

WORD specifying the device-unit number. This
number distinguishes the device-unit from the rest
of the units in the entire hardware system. Device
drivers can ignore this field.

WORD specifying the offset in the code segment of
this unit's Initialize I/0 device driver procedure.

WORD specifying the offset in the code segment of

- this unit's Finish I/0 device driver procedure.

WORD specifying the offset in the code segment of

this unit's Queue I/0 device driver procedure.

WORD specifying the offset in the code segment of
this unit's Cancel I/0 device driver procedure.

POINTER to a structure which contains additional
information about the device. The command and
random access device drivers require device
information structures of a particular format.
These structures are described in Chapters 3 and
4, 1f you are writing a custom driver, you can
place information in this structure depending on
the needs of your driver. Specify a zero for this
parameter if the associated device driver does not
use this field.

POINTER to a structure that contains additional
information about the unit. Random access device
drivers require this unit information structure in
a particular format. Refer to Chapter 4 for
further information. If you are writing a custom
device driver, place information in this structure
depending on the needs of your driver. Specify a
zero for this parameter if the associated device
driver. does not use this field.

WORD specifying the number of system time units
that the I/0 System is to wait before writing a
partial sector after processing a write request for
a disk device. Device drivers can ignore this
field. '

DEVICE DRIVER INTERFACES

NUMSBUFFERS WORD which, if not zero, specifies that the device
' is of the random access variety and indicates the

number of buffers the random access device driver
support routines may allocate. The I/O System uses
these buffers to perform data blocking and
deblocking operations. That is, it guarantees that
data is read or written beginning on sector !
boundaries. If you desire, these procedures can
also be made to guarantee that ho data is written
or read across track boundaries in a single request
(see the section on the unit information table in
Chapter 4). A value of zero indicates that the
device is not a random access device. Device
drivers can ignore this field.

PRIORITY BYTE specifying the priority of the I/0 System
service task for the device. Device drivers can
ignore this field.

Using the DUIBs

In order to use the I/0 System to connect your application software and
any files on a device, you must first attach the device. You do this by
using the RQSAS$PHYSICALSATTACHSDEVICE system call (refer to the iRMX 86
SYSTEM PROGRAMMER'S REFERENCE MANUAL for a description of this system
call), One of the things that this system call does is to associate a
particular device-unit with a DUIB. This is done when you specify the
DUIB name as the dev$name parameter of RQ$ASPHYSICALSATTACHSDEVICE.

When you do this, the I/0 System assumes that the device-unit identified
by the device number, unit number, and device-unit number fields of the
DUIB has the characteristics identified in the remainder of the DUIB.
Thus, whenever the application software makes any 1/0 requests using the
connection to the attached device-unit, the I/0 System assumes thaZ the
characteristics of that unit, including which device driver procedures to
call in order to actually process the I/0 request, are those of the
associated DUIB. The I/0 System looks at the DUIB and calls the
appropriate device driver routine listed there in order to process the
I/0 request.

If you would like the I/0 System to assume different characteristics at
different times for a particular device-unit, you can accomplish this by
providing alternate DUIBs for the device-unit. If you supply multiple

" DUIBs, each containing identical device number, unit number, and
device-unit number parameters, but different DUIB name parameters, you
~can choose which DUIB to associate with a device-unit that you are
attaching by specifying different dev$name parameters on the
RQSASPHYSICALSATTACHSDEVICE system call.

Figure 2-1 illustrates this concept. It shows six DUIBs, two for each of
three units of one device. The main difference within each pair of DUIBs
in this figure is the device granularity parameter, which is either 128
or 512. With this setup, a user can attach any unit of this device with

2-5

DEVICE DRIVER INTERFACES

one of two device granularities. In Figure 2-1, units 0 and 1 are
attached with a granularity of 128 and unit 2 with a granularity of 512,
To change this, the user can call the RQAPHYSICAL$DETACHS$DEVICE system
call to detach the device, and attach it again with RQSA$PHYSICALSAT-
TACH$DEVICE using the other DUIB name.

name = UNITA name = UNITA1
dévgran = 128 dev$gran = 512

: ; DUIBS for
device = 1 deévice = 1 device-unit 6
unit = 0 unit = 0
dev$unit = 6 dev$unit = 6

t |
CALL RQ$ASPHYSICALSATTACHSDEVICE (UNITA,...)

name = UNITB name = UNITB1
dev$gran = 128 devégran = 512

; : DUIBs for
device = 1 device = 1 device-unit 7
unit = 1 unit = 1
dev$unit = 7 dev$unit = 7

! 1
CALL RQSPHYSICALSATTACHSDEVICE (UNITB,...)

name = UNITC name = UNITC1
dev$gran = 128 dév$gran = 512

: : DUIBS for
device = 1 device = 1 device-unit 8
unit = 2 unit = 2
dev$unit = 8 dev$unit = 8

CALL RASASPHYSICALSATTACHSDEVICE (UNITCT,...)

Figure 2-1. Attaching Devices

Creating DUIBs

Before the system starts running, you must create all of the DUIBs that

you will ever need. You cannot create additional ones at run time.

Place the DUIBs in the I/0 System configuration file as a part of the I/O
I System configuration process. The iRMX 86 CONFIGURATION GUIDE describes

this procedure. Observe the following guidelines when creating DUIBs:

‘@ Specify a unique name for every DUIB, even those that describe
the same device-unit.

e Create at least one DUIB for every deévice-unit in the hardware
configuration. Since the DUIB contains the addresses of the
device driver routines, this guarantees that no device=-unit is
left without a device driver to handle its I/O.

e Make sure to specify the same device driver procedures in all of
the DUIBs associated with a particular device. A device driver
processes 1/0 for a device as a whole.

2-6

DEVICE DRIVER INTERFACES

e If you are using a common or random access device driver, you
must create a device information table for each device and a unit
information table for each type of unit (see Chapter 4). Place
pointers to these tables in the deviceS$info$p and unit$info$p
fields of the appropriate DUIBs. If your custom device drivers
require these tables, you must create them at this time.

1/0 REQUEST/RESULT SEGMENT (IORS)

An I/0 request/result segment (IORS) is an iRMX 86 object that the I/O
System creates when a user requests an 1/0 operation. It is a data
structure that contains information about the request and about the unit
on which the operation is to be performed. The I/0 System passes the
token for the IORS to the appropriate device driver which then must
process the request. When the device driver performs the operation
indicated inrthe IORS, it must modify the IORS to indicate what it has
done and send the IORS back to the response mailbox indicated in the IORS.

IORS Structure

The IORS is the only mechanism that the I/0 System uses to transmit
requests to device drivers., Its structure is always the same. Every
device driver must be aware of this structure and must update the
information in the IORS after performing the requested function. The
IORS is structured as follows:

DECLARE
IO0RS STRUCTURE (
STATUS WORD,
UNIT$STATUS WORD,
ACTUAL WORD,
ACTUALSFILL WORD,
DEVICE WORD,
UNIT BYTE,
FUNCT BYTE,
SUBFUNCT WORD,

LOWS$DEVSLOC WORD,
HIGH$DEVSLOC WORD,

BUFFS$P POINTER,
COUNT WORD,
COUNTSFILL WORD,
AUX$P POINTER,
LINKS$FOR POINTER,
LINK$BACK POINTER,
RESP$MBOX WORD,
DONE BYTE,
FILL BYTE,
CANCEL$ID WORD) ;

where:

STATUS

UNIT$STATUS

ACTUAL
ACTUALSFILL
DEVICE

UNIT

FUNCT

DEVICE DRIVER INTERFACES

WORD in which the device driver must place the
condition code for the I/0 operation. The E$OK
condition code indicates successful completion of
the operation.

WORD in which the device driver must place
additional status information if the status
parameter was set to indicate the E$IO condition.
The unit status codes and their descriptions are as
follows:

code : mnemonic description
0 IOSUNCLASS Unclassified error
1 I0$SOFT Soft error; a retry is
possible
2 IOSHARD Hard error; a retry is
impossible
3 IO$OPRINT Operator intervention is
: required.
4 IOS$SWRPROT Write-protected volume

The I/0 System reserves values 0 through 15 (the
rightmost four bits) of this field for unit status
codes. The high 12 bits of this field can be used
for any other purpose that you wish. For example,
the iSBC 204 and iSBC 206 drivers place the result
byte in the high eight bits of this field. Refer
to the hardware reference manuals for the iSBC 204
and iSBC 206 for further information on the result
byte.

WORD which the device driver must update on the
completion of an I/O operation to indicate the
number of bytes of data actually transferred.

Reserved WORD,

WORD in which the I/0 System places the number of
the device for which this request is intended.

BYTE in which the I/0O System places the number of
the unit for which this request is intended.

BYTE in which the I/0 System places the function
code for the operation to be performed. Possible
function codes are:

SUBFUNCT

LOW$DEVS$LOC
HIGHDEVLOC

BUFF$P

COUNT

COUNTSFILL

AUX$P

DEVICE DRIVER INTERFACES

function code
FSREAD 0
FSWRITE 1
FSSEEK 2
F$SPECIAL 3
FSATTACHSDEV 4
FSDETACHSDEV 5
F$OPEN 6
F$CLOSE 7

WORD in which the I/O System places the actual
function code of the operation, when the F$SPECIAL
function code was placed in the FUNCT field. The
value in this field depends on the device driver.
The random access device driver currently supports
the following two special functions:

function code
FORMAT/QUERY 0
SATISY 1
NOTIFY 2

To maintain compatibility with a random access
device driver, dther drivers should avoid using
these codes for other functions.

WORDs in which the I/0 System places the absolute
byte location on the I/0 device where the operation
is to be performed. For example, for the FS$WRITE
operation, this is the address on the device where
the write begins. If a random access device driver
is used and the track$size field in the unit's unit
information table contains a value greater than
zero, this field contains the track number (in
HIGHSDEVSLOC) and sector number (in LOWS$DEVSLOC).
If track$size contains zero, this field contains a
32-bit sector number.

POINTER which the I/0 System sets to indicate the
buffer in iRMX 86 memory where data is read from or

written to.

WORD which the I/0 System sets to indicate the
number of bytes to transfer.

Reserved WORD.

POINTER which the I/O System sets to indicate the

location of auxiliary data. This data is used when
the request calls the F$SPECIAL function, in order
to pass special function data. For example, to
format a track on a hard disk, set FUNCT equal to

"F$SPECIAL, set SUBFUNCT equal to 0, and set AUXS$P

to point to a structure of the form:

DEVICE DRIVER INTERFACES

DELCARE FORMATSTRACK STRUCTURE(

TRACK$NUMBER WORD,
INTERLEAVE - WORD,
TRACK$OFFSET WORD,
FILL$CHAR WORDK,,

The other F$SPECIAL options do not have predefined
structures.

LINK$FOR POINTER that the device driver can use to implement
a request queue, Random access and common drivers
use this field to point to the location of the next
IORS in the queue.

LINK$BACK POINTER that the device driver can use to implement
a request queue. Random access and common drivers
use this field to point to the location of the
previous IORS in the queue,

RESP$MBOX WORD that the I/O System fills with a token for the
response mailbox. Upon completion of the I/O0
request, the device driver must send the IORS to
this response mailbox.

DONE BYTE that the device driver can set to TRUE (OFFH)
or FALSE (O0OH) to indicate whether or not the
entire request has been completed. Random access
and common drivers use this byte in this fashion.

FILL Reserved BYTE.

CANCELSID WORD used to identify queued I/0 requests that are
to be removed from the queue by the CANCEL$IO
procedure.

Implementing a Request Queue

Making I/0 requests via system calls and the actual processing of these
requests by I/0 devices are asynchronous activities. When a device is
processing one request, many more can be accumulating. Unless the device
driver has a mechanism for placing I/0 requests on a queue of some sort,
these requests will become lost. The random access and common device
drivers form this queue by creating a doubly linked list.,

Each time a user makes an I/0 request, the I/0 System passes an IORS for
this request to the device driver, in particular to the Queue I/0
procedure of the device driver. The random access and common driver
Queue I/0 procedures make use of the LINKSFOR and LINK$BACK fields of the
IORS to link this IORS together with IORSs for other requests that have
not yet been processed.

2-10

DEVICE DRIVER INTERFACES

This queue is set up in the following manner. The device driver routine
‘that is actually sending data to the controller accesses the first IORS
on the queue. The LINKSFOR field in this IORS points to the next IORS on
the queue. The LINK$FOR field in the second IORS points to the third
IORS on the queue, and so forth until, in the last IORS on the queue, the
LINK$FOR field points back to the first IORS on the queue. The LINK$BACK
fields operate in the same manner. The LINK$BACK field of the last IORS
on the queue points to the previous IORS, The LINKSBACK field of the
second to last IORS points to the third to last IORS on the queue, and so
forth, until, in the first IORS on the queue, the LINK$BACK field points
back to the last IORS in the queue. A queue of this sort is illustrated
in Figure 2-2,

First IORS Second IORS Third IORS Last IORS

on queue on queus on queue on queue
link$tor linkstor . link$for ® o 0 flink$tor —

" link$back “link$back ‘ link$back link$back

Figure 2-2. Request Queue

The device driver can add or remove requests from the queue by adjusting
LINKSFOR and LINKSBACK pointers in the IORSs.

Using this mechanism of the doubly linked list, the random access and
common device drivers implement a FIFO queue for I/0O requests. If you
are writing a custom device driver, you may want to take advantage of the
LINKSFOR and LINK$SBACK fields that are provided in the IORS and implement
a similar scheme for queuing I/0 requests.

2-11

DEVICE DRIVER INTERFACES

Device Data Object

The common and random access device drivers are set up so that all data
which is local to a device is maintained in an iRMX 86 segment. This
segment is called a device data object. The Initialize I/O procedure
creates this device data object and the other procedures of the driver
access and update information in it as needed. Two purposes are served
by keeping the device-local data in a segment,

First, all device driver procedures which service individual units of the
device can access and update the same data. The Initialize I/O0 procedure
passes a token for the segment back to the I/0 System, which in turn’
gives the token to the other procedures of the driver. They can then
place information relevant to the device as a whole into the segment.

The identity of the first IORS on the request queue is maintained in this
segment, as well as the attachment status of the individual units and a
token for the interrupt task.,

Second, several devices of the same type can share the same device driver
code and still maintain separate device data areas. For example, suppose
two iSBC 204 devices use the same device driver code, The same
Initialize I/0 procedure is called for each device, and each time it 1is
called it creates a segment for the device data. However, the segments
it creates are different. Only the incarnations of the routines that
service units of a particular device are able to access the device data
object for that device. “

Although the common and random access device drivers already provide this
mechanism, you may want to include a device data object in any custom
driver that you write.

DEVICE INTERFACES

One or more of the routines in every device driver must actually send
commands to the device itself in order to carry out I/0 requests. The
steps that a procedure of this sort must go through vary considerably,
depending on the type of I/0 device. Procedures supplied with the I/0
System to manipulate devices such as the iSBC 204 and iSBC 206 devices
use the PL/M-86 builtins INPUT and OUTPUT to transmit to and receive from
I1/0 ports. Other devices may require different methods. The I/0 System
places no restrictions on the method of communicating with devices. Use
the method that the device requires.

2-12

CHAPTER 3. WRITING A COMMON DEVICE DRIVER

Common devices are simple devices, such as line printers, that do not
require a great deal of manipulation by a device driver. They are
generally sequential devices that do not have sector or track data
formatting requirements. The I/0 System supplies a number of the support
procedures necessary to implement a device driver for these common
devices. These support procedures handle the creation and deletion of
objects needed by the driver, interrupts, and queuing of requests. By
using the I/0 System-supplied support procedures, you can save the time
and expense of creating your own procedures to perform the same
functions. All you need to do is supply the device-~dependent routines
which initialize the device, send data to the device, respond to
interrupts, and close down the device.

The remainder of this chapter contains the requirements for using the
common device driver support routines supplied by the I/O System, a list
of these routines, and the requirements of the user~supplied routines. A
discussion of the common driver routines supplied by the I/O System is
contained in Appendix A,

REQUIREMENTS FOR USING THE COMMON DEVICE DRIVER SUPPORT ROUTINES

Any device can make use of the common device driver support routines, as
long as the device can conform to the following conditions:

e Data written or read by this device does not need to conform to
sector or track boundaries. The common driver support routines
do not guarantee that data starts at sector or track boundaries.

e A first in/first out queuing mechanism is sufficient for making '
I/0 requests.

e Only one interrupt level is necessary in order to service the

device. The common device driver support routines do not support
separate input and output interrupt levels, for instance.

I1/0 SYSTEM-SUPPLIED ROUTINES

The I/0 System supplies each of the highest-level common device driver
procedures. These procedures are:

INITSIO Initialize I/0 procedure
FINISHS$IO Finish I/0 procedure
QUEUESIO _ Queue 1/0 procedure
CANCELS$IO Cancel I/0 procedure

3-1

WRITING A COMMON DEVICE DRIVER

Use these names when creating DUIBs for devices that make use of the
common device driver,

Each one of these procedures calls additional procedures, some of which
are supplied by the I/0 System and some of which must be supplied by
you.. The following sections discuss the routines that you must supply.
Appendix A contains a further discussion of the I/0 System-supplied
procedures.

USER-SUPPLIED ROUTINES

The routines provided by the .I/0 System for the common device driver make
up a majority of the routines in a common device driver. However, these
routines make calls to device-dependent routines that you must supply.
These device-dependent routines are:

A device initialization procedure. This procedure must perform any
initialization functions necessary to get the device ready to process
I/0. INIT$IO calls this procedure.

A device finish procedure. This procedure must perform any
necessary final processing on the device so that the device can be
detached. TFINISH$IO calls this procedure.

A device start procedure. This procedure must start the device
processing any possible I/0 function. QUEUE$IO and INTERRUPT$TASK
(the I/0 System—-supplied interrupt task) call this procedure.

A device stop procedure. This procedure must stop the device from
processing the current I/0 function, if that function could take an
indefinite amount of time. CANCEL$IO calls this procedure.

A device interrupt procedure. This procedure must do all of the
device-dependent processing that results from the device sending an
interrupt. INTERRUPT$TASK calls this procedure,

You can write these routines in either PL/M-86 or assembly language.
However, you must adhere to the following guidelines:

e If you use PL/M-86, you must define your routines as reentrant
procedures, and compile them using the ROM and COMPACT controls.

e If you use assembly language, your routines must follow the
conditions and conventions used by the PL/M-86 COMPACT case. In
particular, your routines must function in the same manner as
reentrant PL/M-86 procedures with the ROM and COMPACT controls
set. The 8086/8087/8088 MACRO ASSEMBLER OPERATING INSTRUCTIONS
FOR 8080/8085-BASED DEVELOPMENT SYSTEMS and the 8086/8087/8088
MACRO ASSEMBLER OPERATING INSTRUCTIONS FOR 8086-BASED DEVELOPMENT
SYSTEMS describe these conditions and conventions.

WRITING A COMMON DEVICE DRIVER

In order for the I/O System-supplied routines to be able to call the
user-supplied routines, you must include the addresses of these
user-supplied routines in a common device information table. Each DUIB
contains a pointer to a device information table (refer to Chapter 2).
This table contains not only the addresses of the user-supplied routines,
but also other device-specific information.

DUIBs which correspond to units of the same device should point to the
same device information table.

DEVICE INFORMATION TABLE FOR COMMON DEVICES

You must place the device-specific information for each common device in
a device information table, as follows:

DECLARE
COMMONS$DEVICESINFO STRUCTURE (
LEVEL WORD,
PRIORITY BYTE,
STACKSSIZE WORD,
DATASSIZE WORD,
NUMSUNITS WORD,
DEVICESINIT WORD,
DEVICESFINISH WORD,
DEVICES$START WORD,
DEVICES$STOP WORD,
DEVICE$INTERRUPT WORD) ;
where:
LEVEL WORD specifying an encoded interrupt level at which

the device will interrupt. The interrupt task uses
this value in order to associate itself with the
correct interrupt level. The values for this field
are encoded as follows:

Bits Value

15-7 0 :
6~4 First digit of the interrupt level (0-7)
3 If one, the level is a master level and

bits 6-4 specify the entire level number.
If zero, the level is a slave level and
bits 2-0 specify the second digit,

2-0 Second digit of the interrupt level
(0-7), if bit 3 is zero.

PRIORITY

STACK$SIZE

DATASSIZE

NUM$UNITS

DEVICESINIT

DEVICESFINISH

DEVICES$ START

DEVICE$STOP

DEVICESINTERRUPT

WRITING A COMMON DEVICE DRIVER

BYTE specifying the initial priority of the
interrupt task. The actual priority of the
interrupt task may change due to the fact that the
Nucleus adjusts an interrupt task's priority
according to the interrupt level that it services,
Refer to the iRMX 86 NUCLEUS REFERENCE MANUAL for
further information about this relationship between
interrupt task priorities and interrupt levels.

WORD specifying the size in bytes of the stack for
the user-written device interrupt procedure (and
procedures that it calls). This number should not
include stack requirements for the I/0
System-supplied procedures. They add their
requirements to this figure.

WORD specifying the size in bytes of the user
portion of the device's data object. This figure
should not include the amount needed by the I/0
System—-supplied procedures, but only that amount
needed by the user-written routines. This then is
the size of the read or write buffers plus any
flags that the user-written routines need.

WORD specifying the number of units supported by
the driver. Units are assumed to be numbered
consecutively, starting with zero.

WORD specifying the start address of a user-written
device initialization procedure. The format of
this procedure is described later in this chapter.

WORD specifying the start address of a user-written
device finish procedure. The format of this
procedure is described later in this chapter.

WORD specifying the start address of a user-written
device start procedure. The format of this
procedure is described later in this chapter.

WORD specifying the start address of a user-written
device stop procedure. The format of this
procedure is des¢ribed later in this chapter.

WORD specifying the start address of a user-written
device interrupt procedure. The format of this
procedure is described later in this chapter.

WRITING A COMMON DEVICE DRIVER

Depending on the requirements of your device, you can append additional
information to this COMMONS$DEVICESINFO structure. For example, most
devices require that the I/0 port address be appended to this structure,
so that the user-written procedures can access the device.

You must create device information tables as a part of the I/0 System
configuration process. The iRMX 86 CONFIGURATION GUIDE describes this
procedure.

DEVICE INITIALIZATION PROCEDURE

The INITSIO procedure calls the user-written device initialization
procedure in order to initialize the device. The format of the call to
the user-written device initialization procedure is as follows:

CALL device$init(duib$p, ddata$p, status$p);

where:

deviceS$init Name of the device initialization procedure. You
can use any name for this procedure, as long as it
doesn't conflict with other procedure names and you
include the name in the device information table.

duib$p POINTER to the DUIB of the device-unit being
attached., From this DUIB, the device
initialization procedure can obtain the device
information table, where information such as the
I1/0 port address is stored.

ddata$p POINTER to the user portion of the device's data
: object. You must specify the size of this portion
in the device information table for this device.
The device initialization procedure can use this
data area for whatever purposes it chooses.
Possible uses for this data area include local
flags and buffer areas.

status$p POINTER to a WORD in which the device initial-
ization procedure must return the status of the
initialization operation., It should return the
ESOK condition code if the initialization is
successful ; otherwise it should return the appro-
priate condition code. If initialization does not
complete su: c¢ssfully, the device initialization
procedure must ensure that any data areas it
initializes are reset.

If you have a device that does not need to be initialized before it can
be used, you can use the default device initialization procedure supplied
by the I/0 System. The name of this procedure is DEFAULTS$INIT. Specify
this name in the device information table. DEFAULT$INIT does nothing but
return the ESOK condition code. '

3-5

WRITING A COMMON DEVICE DRIVER

DEVICE FINISH PROCEDURE

The FINISH$IO procedure calls the user-written device finish procedure in
order to perform final processing on the device, after the last I/0O
request has been processed. The format of the call to the device finish
procedure is as follows: '

CALL device$finish(duib$p, ddata$p);
where:

device$finish Name of the device finish procedure. You can usé
any name for this procedure, as long as it doesn't
conflict with other proceduré names and you include
the name in the device information table.

duib$p POINTER to the DUIB of the device-unit being
' detached. From this DUIB, the device finish
procedure can obtain the device information table,
where information such as the I/0 port address is
stored.

ddata$p POINTER to the user portion of the device's data
object. The device finish procedure should obtain,
from the data object, tokens for any objects that
other user-written procedures may have created, and
delete these objects.

If you have a device that does not require any final processing, you can
use the default device finish procedure supplied by the I/0 System. The
name of this procedure is DEFAULT$FINISH. Specify this name in the
device information table. DEFAULT$FINISH merely returns to the caller
and is normally used when the default initialization procedure
DEFAULTS$INIT is used.

DEVICE START PROCEDURE

Both QUEUE$IO and the interrupt task make calls to the device start
procedure in order to start an 1/0 function. QUEUE$IO calls this
procedure on receiving an I/0 request when the request queue is empty.
-The interrupt task calls the device start procedure after it finishes one
I/0 request if there are more I/0 requests on the queue. The format of
the call to the device start procedure is as follows:

CALL device$start(iors$p, duib$p, ddata$p);
where:
device$start Name of the device start procedure. You can use
any name for this procedure, as long as it doesn't

conflict with other procedure names and you include
the name in the device information table.

3-6

WRITING A COMMON DEVICE DRIVER

iors$p POINTER to the IORS of the request. The device

start procedure must access the IORS in order to
obtain information such as the type of I/0 function
requested, the address on the device of the byte
where I/0 is to commence, and the buffer address.

duib$p POINTER to the DUIB of the device-unit for which

the I/0 request is intended. The device start
procedure can use the DUIB to access the device
information table, where information such as the
I/0 port address is stored.

ddata$p POINTER to the user portion of the device's data

object. The device start procedure can use this
data area to set flags or store data.

The device start procedure must do the following:

It must be able to start the device processing any of the

functions supported by the device and recognize that requests for
nonsupported functions are error conditions.

If it transfers any data, it must update the IORS.ACTUAL field to
reflect the total number of bytes of data transferred (that is,
if it transfers 128 bytes of data, it must put 128 in the
IORS.ACTUAL field).

If an error occurs when the device start procedure tries to start
the device (such as on an FSWRITE request to a write-protected
disk), the device start procedure must set the IORS.STATUS field
to indicate an E$IO condition and the IORS.UNIT$STATUS field to a
nonzero value. The lower four bits of the field should be set as
indicated in the "IORS Structure" section of Chapter 2. The
remaining bits of the field can be set to any value (for example,
the iSBC 204 and 206 device drivers return the device's result
byte in the remainder of this field). The device start procedure
must also set the IORS.DONE field to TRUE, indicating that the
request is done because of the error. If the function completes
without an error, the device start procedure must set the
IORS.STATUS field to indicate an E$OK condition.

If the device start procedure determines that the I/0 request has
been processed completely, either because of an error or because
the request has been successfully completed, it must set the
IORS.DONE field to TRUE. The I/O request will not always be
completed; it may take several calls to the device interrupt
procedure before a request is completed., However, if the request
is finished and the device start procedure does not set the
IORS.DONE field to TRUE, the common device driver support
routines will wait until the device sends an interrupt and the
device interrupt procedure sets DONE to TRUE, before determining
that the request is actually finished.

3-7

WRITING A COMMON DEVICE DRIVER

DEVICE STOP PROCEDURE

The CANCEL$IO procedure calls the user-written device stop procedure in
order to stop the device from performing the current I/0 function. The
format of the call to the device stop procedure is as follows:

CALL device$stop(iors$p, duib$p, ddata$p);

where:
device$stop Name of the device stop procedure. You can use any
- name for this procedure, as long as it doesn't

conflict with other procedure names and you include
this name in the device information table.

iors$p POINTER to the IORS of the request. The device
stop procedure needs this information to determine
what type of function to stop.

duib$p POINTER to the DUIB of the device-unit on which the
I/0 function is being performed,

ddata$p POINTER to the user portion of the device's data

object. The device stop procedure can use this
area to store data, if necessary.

If you have a device which guarantees that all I/0 requests will finish
in an acceptable amount of time, you can omit writing a device stop
procedure and use the default procedure supplied with the I/0 System.
The name of this procedure is DEFAULT$STOP. Specify this name in the
device information table. DEFAULT$STOP simply returns to the caller.

DEVICE INTERRUPT PROCEDURE

The interrupt task calls the user-written device interrupt procedure to
.process an interrupt that just occurred. Whereas the device start
procedure is called to start the device performing an I/0 function, the
device interrupt procedure is called when the device finishes performing
the function. The format of the call to the device interrupt procedure
is as follows: '

CALL device$interrupt(iors$p, duib$p, ddata$p);

where:

device$interrupt Name of the device interrupt procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and you
include this name in the device information table.

WRITING A COMMON DEVICE DRIVER

iors$p ‘ POINTER to the IORS of the request being

processed. The device interrupt procedure must
update information in this IORS. A value of zero
for this parameter indicates that there are no
requests on the request queue and that the
interrupt is extraneous.

duib$p POINTER to the DUIB of the device-unit on which the

I/0 function was performed.

ddata$p POINTER to the user portion of the device's data

object. The device interrupt procedure can update
flags in this data area or retrieve data sent by
the device.

device interfupt procedure must do the following:

It must determine whether the interrupt resulted from the
completion of an I/0 function by the correct device-unit.

If the correct device-unit did send the interrupt, the device
interrupt procedure must determine whether the request is
finished. If the request is finished, the device 1nterrupt
procedure must set the IORS.DONE field to TRUE.

It must process the interrupt. This may involve setting flags in
the user portion of the data object, tranferring data written by
the device to a buffer, or some other operation.

If an error has occurred, it must set the IORS.STATUS field to
indicate an E$I0 condition and the IORS.UNIT$STATUS field to a
nonzero value. The lower four bits of the field should be set as
indicated in the '"IORS Structure" section of Chapter 2. The
remaining bits of the field can be set to any value (for example,

"the iSBC 204 and 206 device drivers return the device's result

byte in the remainder of this field). It must also set the
IORS.DONE field to TRUE, indicating that the request is finished
because of the error.

If no error has occurred, it must set the IORS.STATUS field to
indicate an ESOK condition.

CHAPTER 4. WRITING A RANDOM ACCESS DEVICE DRIVER

Random access devices are 1/0 devices, such as disk drives, bubble
memories, and other such devices from which data can be read, onto which
data can be written, and on which you can seek to any memory location in
order to perform these operations. The I/0 System supplies a number of
the support procedures that are necessary to implement a random access
device driver. These support procedures provide the same features and
procedure interfaces as the I/0 System—supplied common device driver
support procedures supply: the creation and deletion of objects needed by
the driver routines, an interrupt handler, and queuing of requests.
Moreover, the random access driver procedures supplied by the I/0 System
guarantee that I/0 requests conform to sector and track requirements of
the deVi ce.

In order to use the random access devicée driver support procedures, you
must create the device-dependent routines which initialize the device,
send data to the device, respond to an interrupt, and close down the
‘device. You must combine these with the I/0 System-supplied support
procedures.

The remainder of this chapter contains the requirements for using the

random access device driver routines supplied by the I/0 System, a list
of these routines, and the requirements for the user-supplied routines.

REQUIREMENTS FOR USING THE RANDOM ACCESS DEVICE DRIVER SUPPORT ROUTINES

Devices can make use of the random access device driver support routines
if they conform to the following conditions:

e The device must support random access seek operations.

e A first in/first out queuing mechanism is sufficient for making
I/0 requests. The random access device driver support routines
maintain the I/0 request queue as a FIFO queue.

e Only one interrupt level is necessary to support the device., The

random access device driver routines do not support separate
input and output interrupt levels.

I/0 SYSTEM-SUPPLIED ROUTINES

The I/0 System supplies each of the highest-level random access device
driver procedures. These procedures are:

WRITING A RANDOM ACCESS DEVICE DRIVER

INITS$IO Initialize I/0 procedure
FINISH$IO Finish I/0 procédure
QUEUESIO Queue I/0 procedure
‘CANCELSIO = Cancel I/0 procedure

Use these names when creating DUIBs for devices that make use of the
random access driver.

In addition to these procedures, the I/0 System contains a NOTIFY
procedure that drivers should call when a unit goes off-line. In
particular, NOTIFY should be called by a device driver when a diskette is
released from a drive that is attached. The device driver should declare
the NOTIFY procedure as follows:

NOTIFY: PROCEDURE (UNIT, DDATA$P) EXTERNAL;

DECLARE
UNIT BYTE,
‘ DDATASP POINTER;
END NOTIFY:
where:
UNIT BYTE containing the unit number of the unit that has
gone off-line.
DDATASP POINTER to the user portion of the device's data

object. The driver will have received this value
previously from the I/O System; see the description of
the device$start procedure later in this chapter.

After the call to NOTIFY, whenever ther is an I/0 request for the device
(other than detach$device), the device driver should update the I/0 -
result segment by placing an E$IO condition code in its STATUS field and
IO$OPRINT in its UNIT$STATUS field. This must remain the case until the
device is detached and reattached.

AEach of the random accesé driver procedures calls additional procedures,
some of which the I/0 System supplies, and some of which you must
supply. The following sections describe the routines that you must

supply.

USER-SUPPLIED ROUTINES

The routines provided by the I/0 System for the random access device
driver make up the majority of the routines needed for this device
driver. However, these routines make calls to device-dependent routines
that you must supply. These device-dependent routines include:

WRITING A RANDOM ACCESS DEVICE DRIVER

A device initialization procedure. This procedure must perform any
initialization functions necessary to get the device ready to process
I/0. RADS$INITSIO calls this procedure.

A device finish procedure., This procedure must perform any
necessary final processing on the device so that it can be detached.
RADSFINISHSIO calls this procedure.

A device start procedure. This procedure must start the device
processing any possible I/O function. RADSQUEUE$IO and

RAD$ INTERRUPTS$TASK (the I/0 System-supplied interrupt task) call this
procedure.

A device stop procedure. This procedure must stop the device from
processing the current I/0 function, if that function could take an
unacceptable amount of time. RADSCANCELS$IO calls this procedure,

A device interrupt procedure. This procedure must do all of the
device-dependent processing that results from the device sending an
interrupt. RAD$INTERRUPT$TASK calls this procedure.

You can write these routines in either PL/M-86 or assembly language.
However, you must adhere to the following guidelines:

e If you use PL/M-86, you must define your routines as reentrant
procedures, and compile them using the ROM and COMPACT controls.

e If you use assembly language, your routines must follow the
conditions and conventions used by the PL/M-86 COMPACT case. In
particular, your routines must function in the same manner as

. reentrant PL/M-86 procedures with the ROM and COMPACT controls
set. The 8086/8087/8088 MACRO ASSEMBLER OPERATING INSTRUCTIONS
FOR 8080/8085~BASED DEVELOPMENT SYSTEMS and the 8086/8087/8088
MACRO ASSEMBLER OPERATING INSTRUCTIONS FOR 8086~BASED DEVELOPMENT
SYSTEMS describe these conditions and conventions.

In order for the I/0 System—supplied routines to be able to call the
user-supplied routines, you must include the addresses of these
user-supplied routines in a device information table., &Each DUIB contains
a pointer to a device information table (refer to Chapter 2). This table
contains not only the addresses of the user-supplied routines, but also
other device-specific information.

Each DUIB also contains a pointer to a unit information table. You must
place specific information about the unit of the device, such as the
track size, in the unit information table.

DUIBs which correspond to units of the same device should point to the
same device information table, but they can point to different unit
information tables, if the units have different characteristics. Figure
4-1 illustrates this.

WRITING A RANDOM ACCESS DEVICE DRIVER

DuiB1
Device = 1
Unit = 0
UNITS$INFO$1 DEVSINFO$1
Unit
[)
DEVSINFOS$1 Deyice
UNITSINFOS1 uni
DUIB2
Device = 1
Unit = 1
DEVSINFO$1
 UNITSINFOS2
UNITSINFO$2 DUIB3 "DEVSINFO$2
Device = 2 Unit
Unit = 0 0
Device
2
© DEVSINFOS2
" UNITSINFOS2

Figure 4-1. DUIBs, Device and Unit Information Tables

Figure 4-1 shows the DUIBs and tables for two devices, The first device,
device 1, has two units and thus two DUIBs. Each of the DUIBs for device
1 point to DEVSINFO$1l, the device information table for that device. The
units of device 1 have slightly different characteristics, however, and
the DUIBs point to different unit information tables, each for the
appropriate unit. Device 2 has only one unit, and therefore only one
DUIB. That DUIB points to DEVSINFO$2, the device information table for
device 2. Since this single unit of device 2 has the same
characteristics as a unit of device 1, the DUIB can point to the same
unit information table as a DUIB for device 1.

The following sections describe the structure of the device and unit
information tables for random access devices and the required formats of
the user-supplied routines.

bty

WRITING A RANDOM ACCESS DEVICE DRIVER

DEVICE AND UNIT INFORMATION TABLES FOR RANDOM ACCESS DEVICES

You must place the device-specific information for each random access
device in a device information table and the unit-specific information in
unit information tables,

The following sections describe the structures of the device and unit
information tables for random access devices.

Device Information Table for Random Access Devices

You must create a device information table for each random access dev1ce
in your system as follows:

DECLARE
RAD$DEVICES$ INFO STRUCTURE (
LEVEL WORD,
PRIORITY BYTE,
STACK$SIZE. WORD,
DATAS$SIZE WORD,
NUMSUNITS WORD,
DEVICE$INIT WORD,
DEVICESFINISH WORD,
DEVICE$START WORD,
DEVICES$ STOP WORD,
DEVICES$INTERRUPT WORD) ;
vhere:
LEVEL WORD specifying an encoded interrupt level at which

the device will interrupt. The interrupt task uses
this value in order to associate itself with the
correct interrupt level. The values for this field
are encoded as follows:

Bits Value
15-7 0
6-4 First digit of the interrupt level
(0~7)
3 If one, the level is a master level

and bits 6~4 specify the entire
level number.
If zero, the level is a slave level
and bits 2-0 specify the second
digit.

2-0 Second digit of the interrupt level
(0-7), if bit 3 is zero.

WRITING A RANDOM ACCESS DEVICE DRIVER

PRIORITY

STACK$SIZE

DATASSIZE

NUMSUNITS
DEVICESINIT
DEVICE$FINISﬁ
DEVICE$START

~ DEVICE$STOP

DEVICE$ INTERRUPT

BYTE specifying the initial priority of the
interrupt task. The actual priority of the
interrupt task may change due to the fact that the
Nucleus adjusts an interrupt task's priority
according to the interrupt level that it services.
Refer to the iRMX 86 NUCLEUS REFERENCE MANUAL for
further information about this relationship between
interrupt task priorities and interrupt levels.

WORD specifying the size in bytes of the stack for
the user-written device interrupt procedure (and
procedures that it calls). This number should not
include stack requirements for the I/0
System—-supplied procedures. They add their
requirements to this figure.

WORD specifying the size in bytes of the user
portion of the device's data object. This figure
should not include the amount needed by the I/0
System~supplied procedures, but only that amount
needed by the user-written routines. This then is
the size of the read or write buffers plus any
flags that the user-written routines need.

WORD specifying the number of units supported by
the driver. Units are assumed to be numbered
consecutively, starting with zero.

WORD specifying the start address of a user-written
device initialization procedure. The format of
this procedure is described later in this chapter.

WORD specifying the start address of a user-written
device finish procedure. The format of this
procedure is described later in this chapter.

WORD specifying the start address of a user-written
device start procedure. The format of this
procedure is described later in this chapter.

WORD specifying the start address of a user-written
device stop procedure. The format of this
procedure is described later in this chapter.

WORD specifying the start address of a user-written
device interrupt procedure. The format of this
procedure is described later in this chapter,

WRITING A RANDOM ACCESS DEVICE DRIVER

Depending on the requirements of your device, you can append additional
information to this RAD$DEVICE$INFO structure. For example, most devices
require that the I/0 port address be appended to this structure, so that
the user-written procedures can access the device.

You must create device information tables as a part of the I/0 System
configuration process. The iRMX 86 CONFIGURATION GUIDE describes this
procedure.

[

Unit Information Table for Random Access Devices

You must create a unit information table for each different type of unit
in your system. Although each DUIB must point to a unit information
table, several DUIBs can point to the same unit information table. The
structure of the unit information table is as follows:

DECLARE
RAD$UNITSINFO STRUCTURE (
TRACK$SIZE WORD,
MAXS$ RETRY WORD,
RESERVED WORD) ;

where:

TRACKS$SIZE WORD specifying the size in bytes of a single track
of a volume on the unit. If the device controller
supports reading and writing across track
boundaries, place a zero in this field. If you
specify a zero for this field, the I/O
System=-supplied procedures place a 32-bit sector
number in the HIGHS$DEVSLOC and LOWSDEVSLOC fields
of the IORS., If you specify a nonzero value for
this field, the I/0 System—-supplied procedures
guarantee that read and write requests do not cross
track boundaries. They do this by placing the
sector number in the low order word of the DEV$LOC
field of the IORS and the track number in the high
order word before calling a user-written device
start procedure. Instructions for writing a device
start procedure are contained later in this
chapter.

MAX$RETRY WORD specifying the maximum number of times an I/O
request should be tried if an error occurs. A
value of nine is recommended for this field. When
this field contains a nonzero value, the I/0
System-supplied procedures guarantee that read or
write requests are retried if the user-supplied
device start or device interrupt procedures return
IO$SOFT conditions in the IORS.UNITSSTATUS field.
(The IORS.UNIT$STATUS field is described in the
"IORS Structure" section of Chapter 2.)

RESERVED Reserved WORD.

4-7

WRITING A RANDOM ACCESS DEVICE DRIVER

Depending on the requirements of your device, you can append additional
information to this RAD$UNITSINFO structure. For example, the iSBC 204
driver requires that drive characteristics information be appended to
this structure.

You must create unit information tables as a part of the I/0 System
configuration process, The iRMX 86 CONFIGURATION GUIDE describes this
procedure. '

DEVICE INITIALIZATION PROCEDURE

The RADSINIT$IO procedure calls the user-written device initiglization
procedure in order to initialize the device., The format of the call to
the device initialization procedure is as follows:

CALL device$init(duib$p, ddata$p, status$p);
where:

device$init Name of the device initialization procedure. You
can use any name for this procedure, as long as it
doesn't conflict with other procedure names and you
include the name in the device information table.

duib$p POINTER to the DUIB of the device-unit being
attached. From this DUIB, the device
initialization procedure can obtain the device
information table, where information such as the
1/0 port address is stored.

ddata$p POINTER to the user portion of the device's data
object. You must specify the size of this portion
in the device information table for this device.
The device initialization procedure can use this
data area for whatever purposes it chooses,
Possible uses for this data area include local
flags and buffer areas,

status$p POINTER to a WORD in which the device
initialization procedure must return the status of
the initialization operation. It should return the
E$OK condition code if the initialization is
successful, otherwise it should return the
appropriate condition code. If initialization does
not complete successfully, the device
initialization procedure must ensure that any data
areas it initializes are reset.

If you have a device that does not need to be initialized before it can
be used, you can use the default device initialization procedure supplied
by the I/0 System. The name of this procedure is DEFAULT$INIT. Specify
this name in the device information table., DEFAULTS$INIT does nothing but
return the ESOK condition code. ' N

" 4-8

WRITING A RANDOM ACCESS DEVICE DRIVER

DEVICE FINISH PROCEDURE

The RADSFINISH$IO procedure calls the user-written device finish
procedure in order to perform final processing on the device, after the
last I/0 request has been processed. The format of the call to the
device finish procedure is as follows:

CALL device$finish(duib$p, ddata$p);
where:

device$finish Name of the device finish procedure. You can use
any name for this procedure, as long as long as it
doesn't conflict with other procedure names and you
include the name in the device information table.

.duib$p POINTER to the DUIB of the device-unit being
detached. From this DUIB, the device finish
procedure can obtain the device information table,
where information such as the I/0 port address is
stored.

ddata$p POINTER to the user portion of the device's data
object. The device finish procedure should obtain,
from the data object, tokens for any objects that

other user-written procedures may have created, and
delete these objects,

If you have a device that does not require any final processing, you can
use the default device finish procedure supplied by the I/0 System. The
name of this procedure is DEFAULT$FINISH. Specify this name in the
device information table. DEFAULTSFINISH merely returns to the caller.

DEFAULTS$FINISH is normally used when the default initialization procedure
DEFAULTSINIT is used.

DEVICE START PROCEDURE

Both RADSQUEUESIO and the interrupt task make calls to the device start
procedure in order to start an I/0 function. RADSQUEUE$IO calls this
procedure on the first I/0 request for a device and on other I/0 requests
when the request queue is empty. The interrupt task calls the device
start procedure after it finishes one I/0 request if there are more I/0
requests on the queue or if the driver has broken up the request into

multiple requests. The format of the call to the device start procedure
is as follows: :

CALL device$start(iors$p, duib$p, ddata$p);

where: -

WRITING A RANDOM ACCESS DEVICE DRIVER

device$start Name of the device start procedure. You can use

any name for this procedure, as long as it doesn't
conflict with other procedure names and you include
this name in the device information table.

iors$p POINTER to the IORS of the request. The device

start procedure must access the IORS in order to
obtain information such as the type of I/0 function
requested, the address on the device of the byte
where 1/0 is to commence, and the buffer address.
If you speclfled a non-zero track size for the
device in the unit information table, the DEV$LOC
field of the IORS contains the device location in
the following form:

LOW$DEVSLOC sector number
HIGH$DEVSLOC track number
If you specified a zero for the track size in the

unit information table, the DEVSLOC field contains
a 32-bit sector number.

duib$p ~ POINTER to the DUIB of the device-unit for which

the I/0 request is intended. The device start
procedure can use the DUIB to access the device
information table, where information such as the
1/0 port address is stored.

ddata$p POINTER to the user portion of the device's data

object. The device start procedure can use this
data area to set flags or store data.

The device start procedure must do the following:

It must be able to start the device processing any of the
functions supported by the device and recognize that requests for
nonsupported . functions are error conditions.

If it transfers any data, it must update the IORS.ACTUAL field to
reflect the total number of bytes of data transferred (that is,
if it transfers 128 bytes of data, it must add 128 to the value
in the IORS.ACTUAL field).

If an error occurs when the device start procedure tries to start
the device (such as on an F$WRITE request to a write protected

disk), the device start procedure must set the IORS.STATUS field
to indicate an ES$IO condition and the IORS.UNIT$STATUS field to

indicate the appropriate unit status. The lower four bits of the

- IORS.UNIT$STATUS field should be set as indicated in the '"IORS

Structure'" section of Chapter 2. The remaining bits of the field
can be set to any value (for

4-10

WRITING A RANDOM ACCESS DEVICE DRIVER

example, the 1SBC 204 and 206 drivers return the device's result
byte in these remaining bits). If the device start procedure sets
the IORS.UNIT$STATUS field to indicate an IO$SOFT condition, the
random access driver will retry the I/0 operation until .the retry
limit specified in the unit information table is reached. (The
retry limit is described in the "Unit Information Table for
Random Access Devices" section of this chapter.) The device
start procedure must also set the IORS,DONE field to TRUE,
indicating that the request is finished because of the error., If
no error occurs, the device start procedure must set the
IORS.STATUS field to indicate an E$OK condition.

If the device start procedure determines that the I/0 request is
finished, either because of an error or because the request has
been successfully completed, the device start procedure must set
the IORS.DONE field to TRUE. The I/0 request will not always be
completed; it may take several calls to the device start
procedure before a request is completed. However, if the request
is finished and the device start procedure does not set the
IORS.DONE field to TRUE, the random access driver support
routines will wait until the device sends another interrupt
before ‘determining that the request is actually finished.

DEVICE STOP PROCEDURE :

The RAD$CANCELSIO procedure calls the user-written device stop procedure
in order to stop the device from performing the current I/0 function.
The format of the call to the device stop procedure is as follows:

CALL device$stop(iors$p, duib$p, ddata$p);

where:

device$stop =~ Name of the device stop procedure. You can use any
name for this procedure, as long as it doesn't
conflict with other procedure names and you include
the name in the device information table.

iors$p POINTER to the IORS of the request. The device =
stop procedure needs this information to determine
what type of function to stop.

duib$p POINTER to the DUIB of the device-unit on which the
I/0 function is being performed.

ddata$p POINTER to the user portion of the the device's

data object., The device stop procedure can use
this data area to set flags, if necessary.

4-11

WRITING A RANDOM ACCESS DEVICE DRIVER

If you have a device which guarantees that all I/0 requests will finish
in an acceptable amount of time, you can omit writing a device stop
procedure and use the default procedure supplied with the I/O System.
The name of this procedure is DEFAULT$STOP. Specify this name in the
device information table. DEFAULT$STOP simply returns to the caller. °

DEVICE INTERRUPT PROCEDURE

The interrupt task calls the user-written device interrupt procedure to
process an interrupt that just occurred. Whereas the device start
procedure is called to start the device performing an I/0 function, the
device interrupt procedure is called when the device finishes performing
the function. The format of the call to the device interrupt procedure
is as follows:

CALL deviceS$interrupt(iors$p, duib$p, ddata$p);
where:

device$interrupt Name of the device interrupt procedure. You can
use any name for this procedure, as long as it does
not conflict with other procedure names and you
include the name in the device information table.

iors$p POINTER to the IORS of the request being
processed. The device interrupt procedure must
update information in this IORS. A value of zero
for this parameter indicates that there are no
requests on the request queue and that the
interrupt is extraneous.,

duib$p POINTER to the DUIB of the device-unit on which the
I/0 function was performed.

ddataSp POINTER to .the user portion of the device's data
object. The device interrupt procedure can update
flags in this data area or retrieve data sent by
the device.

The device interrupt procedure must do the following:

e It must determine whether the interrupt resulted from the
completion of an I/0 function by the correct device-unit.

o If the correct device-unit did send the interrupt, the device
interrupt procedure must determine whether the request is
finished., If the request is finished, the device interrupt
procedure must set the IORS.DONE field to TRUE.

° 1t must process the interrupt. This may involve setting flags in

the user portion of the data object, tranferring data written by
the device to a buffer, or some other operation.

4-12

WRITING A RANDOM ACCESS DEVICE DRIVER

If an error has occurred, it must set the IORS.STATUS field to
indicate an E$IO condition and the IORS.UNIT$STATUS field to a
nonzero value. The lower four bits of the IORS,UNITSSTATUS field
should be set as indicated in the "IORS Structure" section of
Chapter 2. The remaining bits of the field can be set to any
value (for example, the iSBC 204 and 206 drivers return the
device's result byte in these remaining bits). If the device
interrupt procedure sets the IORS.UNIT$STATUS field to indicate
an IO$SOFT condition, the random access driver will retry the I/0
operation until the retry limit specified in the unit information
table is reached. (The retry limit is described in the "Unit
Information Table for Random Access Devices" section of this
‘chapter.) The device interrupt procedure must also set the
IORS.DONE field to TRUE, indicating that the request is finished
because of the error.

If no error has occurred, it must set the IORS.STATUS field to
indicate an ESOK condition.

4-13

CHAPTER 5. WRITING A CUSTOM DEVICE DRIVER

Custom device drivers are drivers that you create in their entirety
because your device doesn't fit into either the common or random access
device category, either because the device requires a priority-ordered
queue, multiple interrupt levels, or because of some other reasons that
you have determined. When you write a custom device driver, you must
provide all of the features of the driver, including creating and
deleting objects, implementing a request queue, and creating an interrupt
handler. You can do this in any manner that you choose as long as you
divide your driver up into the following four procedures that the I/0
System can call:

An Initialize I/0 Procedure. This procedure must initialize the
device and create any objects needed by the procedures in the driver,

A Finish I/0 Procedure. This procedure must perform any final
processing on the device and delete objects created by the remainder
of the procedures in the driver.

A Queue I/0 Procedure. This procedure must place the I/O requests on
a queue of some sort, so that the device can process them when it
becomes available.

A Cancel I/0 Procedure. This procedure must cancel a previously
queued I/0 request.

The I/0 System provides these four procedures for random access and
common device drivers. However, if your device does not fit into either
of those categories, you must create the procedures yourself.

You can write these routines in either PL/M-86 or assembly language.
However, you must adhere to the following guidelines:

e If you use PL/M-86, you must define your routines as reentrant
procedures, and compile them using the ROM and COMPACT controls.

° If you use assembly language, your routines must follow the
conditions and conventions used by the PL/M-86 COMPACT model of
computation. In particular, your routines must function in the
same manner as reentrant PL/M-86 procedures with the ROM and
COMPACT controls set. The 8086/8087/8088 MACRO ASSEMBLER
OPERATING INSTRUCTIONS FOR 8080/8085-BASED DEVELOPMENT SYSTEMS
and the 8086/8087/8088 MACRO ASSEMBLER OPERATING INSTRUCTIONS FOR
8086-BASED DEVELOPMENT SYSTEMS describe these conditions and
conventions.

WRITING A CUSTOM DEVICE DRIVER

In order for the I/0 System tc communicate with your device driver
procedures, you must include the addresses of these four procedures in
the DUIBs which correspond to the units of the device. The procedure for
creating DUIBs is contained in the iRMX 86 CONFIGURATION GUIDE.

The following sections describe the format of the I/0 System calls to

these four procedures. You/ﬁust make your procedures conform to these
formats.

INITIALIZE 1/0 PROCEDURE

The I/0 System calls the Initialize I/0 procedure when an application
task makes an RQSASPHYSICALSATTACH$DEVICE system call and no units of the
device are currently attached. In this case, the I/0 System calls the
Initialize I/0 procedure before calling any other driver procedure. The
Initialize I/0 procedure must perform any initial processing necessary
for the device or the driver. If the device requires an interrupt task,
the Initialize I/0 procedure should create it. The format of the call to
the Initialize 1/0 procedure is as follows:

CALL init$io(duib$p, ddata$p, status$p);
where:

init$io Name of the Imitialize I/0 procedure. You can use
any name for this procedure as long as it does not
conflict with other procedure names. You must,
however, include its starting address in the DUIBs
of all device-units that it services.

duib$p POINTER to the DUIB of the device-unit for which
the request is intended. The init$io procedure
uses this DUIB to determine the characteristics of
the unit.

ddata$p POINTER to a WORD in which the init$io procedure
can place a token for a data object, if the device
driver needs such a data object. If the device
driver requires that a data object be associated
with a device (to contain the I/0 queue, DUIB
addresses, or status information), the init$io
procedure should create this object and save a
token for it via this pointer. If the driver does
not need such a data object, the init$io procedure
should return a zero via this pointer.

status$p POINTER to a WORD in which the init$io procedure
must place the status of the initialize operation.
If the operation completes successfully, the
init$io procedure must return the E$OK condition
code. Otherwise it should return the appropriate
exception code. If the init$io procedure does not

5-2

WRITING A CUSTOM DEVICE DRIVER

return the E$OK condition code, it must delete any
objects that it has created and leave all data
fields with exactly the same information that they
contained prior to the call to initS$io.

FINISH I/0 PROCEDURE

The I/0 System calls the Finish I/0 procedure after the user makes an
RQ$ASPHYSICALSDETACHS$DEVICE system call to detach the last unit of a
device. When the I/0 System determines that all units of a device have

" been detached, it calls the Finish I/0 procedure to perform any necessary
final processing on the device. The Finish I/0 procedure must delete all
objects created by other procedures in the device driver and must perform
final processing on the device itself, if the device requires such
processing. The format of the call to the Finish I/0 procedure is as
follows:

CALL finish$io(duib$p, ddata$t);
where:

finish$io Name of the Finish I/0O procedure., You can specify
any name for this procedure as long as it does not
conflict with other procedure names. You must,
however, include its starting address in the DUIBs
of all device-units that it services.

duib$p POINTER to the DUIB of the last device-unit
detached. The finish$io procedure needs this DUIB
in order to determine the device on which to
perform the final processing.

ddata$t WORD containing a token for the data object
' originally created by the init$io procedure. The
finish$io procedure must delete this object and any
others created by driver routines,

QUEUE I/0 PROCEDURE

The I/0 System calls the Queue I/0 procedure to place an I/0 request on a
queue, so that it can be processed when the device is not busy. It is
recommended that the Queue I/0 procedure actually start the processing of
the I/0 request if the device is not busy. The format of the call to the
Queue I/0 procedure is as follows:

CALL queue$io(iors$t, duib$p, ddata$t);

5-3

WRITING A CUSTOM DEVICE DRIVER

where:

queue$io Name of the Queue I/0 procedure., You can use any
name for this procedure as long as it does not
conflict with other procedure names. You must,
however, include its starting address in the DUIBs
of all device-units that it services.

iors$t WORD containing a token for an IORS., This IORS

describes the request. When the request is
finished, the driver (though not necessarily the
queue$io procedure) must fill out the status fields
and send the IORS to the response mailbox indicated
in the IORS. Chapter 2 describes the format of the
IORS. It lists the information that the I/0 System
supplies when it passes the IORS to the queue$io

- procedure and indicates the fields of the IORS that
the device driver must fill out.

duib$p POINTER to the DUIB of the device-unit for which
the request is intended.

ddata$t WORD containing a token for the data object
originally created by the init$io procedure. The
. queue$io procedure can place any necessary
information in this object in order to update the
request queue or status fields.

CANCEL I/0 PROCEDURE

The I/0 System calls the Cancel I/0 procedure in order to cancel one or
more previously queued I/0 requests. This is done under one of the
following two conditions:

e If the user makes an RQSASPHYSICALSDETACHS$DEVICE system call and
specifies the hard detach option (refer to the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL for a description of this call).
This system call forcibly detaches all objects associated with a
device-unit.

e If the job containing the task which made an I/0 request is
deleted. The I/0 System calls the Cancel I/0 procedure to remove
any requests that tasks in the deleted job might have made.

If the device cannot guarantee that a request will be finished within a
fixed amount of time (such as waiting for input from a terminal
keyboard), the Cancel I/0 procedure must actually stop the device from
processing the request. If the device guarantees that all requests
finish in a finite amount of time, the Cancel I/0 procedure does not have
to stop the device itself, only remove requests from the queue. '

Currently, only the physical file driver calls the Cancel I/0 procedure.

WRITING A CUSTOM DEVICE DRIVER

The format of the call to the Cancel I/Q procedure is as follows:

CALL cancel$io(cancel$id, duib$p, ddata$t);

where:

cancelS$io

cancel$id

duib$p

ddata$t

Name of the Cancel I/0 procedure. You can use any
name for this procedure as long as it doesn't
conflict with other procedure names. You must,
however, include its starting address in the DUIBs
of all device-units that it services.

WORD containing the id value for the I/0 requests
that are are to be cancelled. Any pending requests
with this value in the cancel$id field of their
IORS's must be removed from the queue of requests
by the Cancel 1/0 procedure. Moreover, the I/0
System places a CLOSE request with the same
cancel$id value in the queue. The CLOSE request
must not be processed until all other requests with
that cancel$id value have been returned to the I/0
System.

POINTER to DUIB of device-unit for which the
request cancellation is intended.

WORD containing a token for the data object
originally created by the init$io procedure. This
object may contain the request queue.

CHAPTER 6. LINKING DRIVER ROUTINES TO THE I/0 SYSTEM

After you have created your device driver procedures and compiled or
assembled them, you must link the object code to the I/O System. If you
have written driver procedures for several types of devices, you may want
to place all of these routines in a library and link this library to the
I1/0 System. This allows you to maintain one file of driver routines and
still link in only those routines that satisfy external references. The
LIB86 command which allows you to create libraries of object modules is
described in the 8086 FAMILY UTILITIES USER'S GUIDE FOR 8080/8085-BASED
DEVELOPMENT SYSTEMS and the iAPX 86 FAMILY UTILITIES USER'S GUIDE FOR
8086-BASED DEVELOPMENT SYSTEMS.

The process of linking your driver procedures to the I/O System occurs at
I/0 System configuration time., The iRMX 86 CONFIGURATION GUIDE contains
a description of this process. However, because the order in which you
link the modules is important, this chapter contains a brief description
of the LINK86 command.

The command used to link the I/0 System is as follows:

LINK86 &
:£x:ITABLE.OBJ, &
: fx : IDEVCF ,OBJ, &
:fx:driver.obj, &
:£fx:I00PT1,LIB, &
:fx:I10S.LIB,- &
:fx:RPIFC.LIB &
TO :fx:ios.lnk (linker options)
where:
fx The appropriate disk mnemonic, indicating where the
file resides.
ITABLE.OBJ The assembled I/0 System configuration files.
IDEVCF,0BJ
driver.ob]j The compiled or assembled code for your device
drivers. This can be a library of procedures.
I0S.LIB 1/0 System library.
IOOPT1.LIB I/0 System options library.
RPIFC.LIB Interface library.

Refer to the iRMX 86 CONFIGURATION GUIDE for a complete description of
the I/0 System configuration process.

6-1

APPENDIX A. COMMON DRIVER SUPPORT ROUTINES

This appendix describes, in general terms, the operations of the common
device driver support routines. The routines described include:

INIT$IO
FINISH$IO
QUEUES$ IO
CANCEL$IO
INTERRUPTSTA SK

These routines are supplied with the I/0 System and are the device driver
routines actually called when an application task makes an I/0 request of
a common device. These routines ultimately call the user-written device
initialize, device finish, device start, device stop, and device
interrupt procedures.

This appendix provides descriptions of these routines in order to show
you the steps that an actual device driver follows. You can use this
appendix to get a better understanding of the I/0 System-supplied portion
of a device driver in order to make writing the device-dependent portion
easier (the random access driver support routines follow essentially the
same pattern). Or you can use it as a guideline for writing custom
device drivers. ‘

INIT$SIO PROCEDURE

The I/0 System calls INITSIO when an application task makes an
RQSASPHYSICALSATTACHSDEVICE system call and there are no units of the
device currently attached. INIT$IO initializes objects used by the
remainder of the driver routines, creates an interrupt task, and calls a
user-supplied procedure to initialize the device itself.

When the I/0 System calls INIT$IO, it passes the following parameters:
® A pointer to the DUIB of the device-unit to initialize

e A pointer to the location where INIT$IO must return a token for a
data segment that it creates

® A pointer to the location where INIT$IO must return the condition
code

The following paragraphs show the general steps that the INIT$IO
procedure goes through in order to initialize the device. Figure A-1
illustrates these steps. The numbers in the figure correspond to the
step numbers in the text.

COMMON DRIVER SUPPORT ROUTINES

INIT$10

Creates data object for de-
vice and starts filling it.

Creates the region for ac-
cess to the queue

Creates the interrupt task

Calls user-supplied proce-
dure to initialize device.

Returns to 1/0 System,
passing data object and
condition code

Figure A-1. Common Device Driver Initialize I/0 Procedure

It creates a data segment which will be used by all of the
procedures in the device driver. The size of this segment
depends in part on the number of units in the device and any
special space requirements of the device, INIT$IO then begins
initializing this segment and eventually places the following
information in this segment:

COMMON DRIVER SUPPORT ROUTINES

e The value of the DS (data segment) register
® A token for a region

e The address of the DUIB for this device-unit
® A token for the interrupt task

e Other values indicating that the queue is empty and the
segment is not busy

INIT$IO also reserves space in the data object for device data.

2. It creates a region. The other procedures of the device driver
gain access from this region whenever they place a request on the
queue or remove a request from the queue. INIT$IO places a token
for this region in the data object.

3. It creates an interrupt task. This interrupt task handles the
interrupts generated by the device for which INIT$IO was called.
INIT$IO places a token for this task in the data object.

4., It calls a user-written device initialization procedure that
initializes the device itself. It gets the address of this v
procedure by examining the device information table portion of
the DUIB. Refer to Chapter 3 for information on how to write
this initialization procedure.

5. It returns control to the I/O System, passing a token for the

data object and a condition code which indicates the success of
the initialize operation. :

FINISH$IO PROCEDURE

The I/0 System calls FINISH$IO when an application task makes an
RQSASPHYSICALSDETACH$DEVICE system call and there are no other units of
the device currently attached. It deletes the objects used by the other
device driver routines, deletes the interrupt task, and calls a
user-supplied procedure to perform final processing on the device itself.

When the I/0 System calls FINISH$IO, it passes the following parameters:
e A pointer to the DUIB of the device-unit just detached

'@ A pointer to the data segment created by INIT$IO

The following paragraphs show the general steps that the FINISHS$IO
procedure goes through in order to terminate processing for a device.
Figure A-2 illustrates these steps. The numbers in the figure correspond
to the step numbers in the text.

3.

4.

COMMON DRIVER SUPPORT ROUTINES

It calls a user-written device finish procedure that performs any
necessary final processing on the device itself. FINISHSIO gets

‘the address of this procedure by examining the device information

table portion of the DUIB. Refer to the Chapter 3 for
information on how to write this procedure.

It deletes the interrupt task originally created for the device
by the INIT$IO procedure and cancels the assignment of the
interrupt handler to the specified interrupt level.

It deletes the region and the data segment originally created by
the INIT$IO procedure, allowing the operating system to
reallocate the memory used by these objects.

It returns control to the I/O System.

FINISH$10

Calls user-supplied
procedure to finish up
processing on the device

Deletes interrupt task for
device and resets interrupt

Deletes region and data
objects used by this device
driver

Returns to the 1/0 System

Figure A-2. Common Device Driver Finish I/0 Procedure

A4

COMMON DRIVER SUPPORT ROUTINES

QUEUESIO PROCEDURE

The I/O System calls the QUEUE$IO procedure in order to place an I/0
request on a queue of requests. This queue has the structure of the
doubly linked list shown in Figure 2-2, If the device itself is not
busy, QUEUES$IO also starts the request.

When the I/0 System calls QUEUE$IO, it passes the following parameters
e A token for the IORS
® A pointer to the DUIB
e A token for the data object ofiginally created by INIT$IO

The following paragraphs show the general steps that the QUEUE$IO
procedure goes through in order to place a request on the I/0 queue.
Figure A~3 illustrates these steps. The numbers in the figure correspond
to the step numbers in the text.

1. It sets various fields in the IORS to indicate that the request
has not yet been completely processed. Other procedures that
start the I/O transfers and handle interrupt processing also
examine and set these fields.

2. It receives access to the queue from the region. This allows
QUEUE$IO to adjust the queue without concern that other tasks
might also be doing this at the same time.

3. It places the IORS on the. queue.

4. It calls an I/0 System-supplied procedure in order to start the
processing of (the request. - This results in a call to a
user-written device start procedure which actually sends the data
to the device itself. This start procedure is described in
Chapter 3. If the device is already busy processing some other
request, this step does not start the data transfer.

5. It surrenders access to the queue, allowing other routines to
insert or remove requests from the queue.

COMMON DRIVER SUPPORT ROUTINES

QUEUES$IO

Sets status fields in the
IORS

Gains access from the
region

Places the IORS on the
queue

Starts the processing of the
request, if the device.is not
busy

Surrenders access to the
region

Returns to the 1/0 System

Figure A-3. Common Device Driver Queue I/0 Procedure

A-6

COMMON DRIVER SUPPORT ROUTINES

CANCEL$I10 PROCEDURE

The I/0 System calls CANCELSIO to remove one or more requests from the
queue and possibly to stop the processing of a request, if it has already
been started. The I/0 System calls this procedure in one of two instances:

e If a user makes an RQSASPHYSICALSDETACH$DEVICE system call and
specifies the hard detach option (refer to the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL for information about this system
call). The hard detach removes all requests from the queue.

o If the job containing the task that makes an I/0 request is
deleted. 1In this case, the I/0 System calls CANCEL$IO to remove
all of that task's requests from the queue.

When the I/0 System calls CANCEL$IO, it passes the following parameters:
e An id.value tﬁat identifies requests to be cancelled
e A pointer to the DUIB
e A token for the device data object

The following paragraphs show the general steps that the CANCEL$IO
procedure goes through in order to cancel an I/0 request. Figure A-4
illustrates these steps. The numbers in the figure correspond to the step
numbers in the text.

1. It receives access to the queue from the region. This allows it
to remove requests from the queue without concern that other tasks
might also be processing the IORS at the same time.

2. It locates a request that is to be cancelled by looking at the
cancel$id field of the queued IORs, starting at the front of the
queue.

3. If the request that is to be cancelled is at the head of the
queue, that is, the device is processing the request, CANCEL$IO
calls .a user-written device stop procedure that stops the device
from further processing. Refer to the Chapter 3 for information
on how to write this device stop procedure.

4. If the request is finished, or if the IORS is not at the head of
the queue, CANCEL$IO removes the IORS from the queue and sends it
to the response mailbox indicated in the IORS.

5. It surrenders access to the queue, allowing other procedures to
insert or remove requests from the queue.

NOTE

The additional CLOSE request supplied
by the I/O System will not be processed
until all other requests with the given
cancel$id value have been dealth with.

A-7

COMMON DRIVER SUPPORT ROUTINES

CANCEL$10

GAINS ACCESS
FROM THE REGION

|
Y

Obtain IORS
with specified
CANCELSID value

Is

the device yes

currently

the request
2

Calls the user-written
device stop procedure
no

Is

) yes the
request done

2

Removes the IORS
from the queue

|

Sends the IORS
to the response
mailbox

Surrenders access
to the region

Returns 1o the
1O System

Figure A-4. Common Device Driver Cancel I/0 Procedure

A-8

COMMON DRIVER SUPPORT ROUTINES

INTERRUPT TASK (INTERRUPT$TASK)

As a part of its processing, the INIT$IO procedure creates an interrupt
task for the entire device. This interrupt task responds to all
interrupts generated by the units of the device, processes those
interrupts, and starts the device working on the next I/O request on the
queue.

The following paragraphs show the general steps that the interrupt task
for the common device driver goes through in order to process a device

interrupt. Figure A-5 illustrates these steps. The numbers in Figure

A-5 correspond to the step numbers in the text.

l. It uses the contents of the iAPX 86 DS register to obtain a token
for the device data object. This is possible because of the
following two reasons:

e When INITSIO created the interrupt task, instead of
specifying the correct contents of the DS register, it passed
the address of the data object as the contents of the task's
DS register.

e When the INIT$IO procedure created the data object, it
included the correct contents of the DS register in one of
the fields.

When the interrupt task starts running, it saves the contents of
the DS register (to use as the address of the data object) and
sets the DS register to the value listed in the field of the data
object. Thus the task has the correct value in its DS register
and it has the address of the data object. This is the mechanism
that is used to pass the device's data object from the INITSIO
procedure to the interrupt task.

2. It makes an RQ$SETSINTERRUPT system call to indicate that it is
an interrupt task associated with the interrupt handler supplied
with the common device driver. It also indicates the interrupt
level to which it will respond.

3. It begins an infinite loop by waiting for an interrupt of the
specified level.

4, Via a region, it gains access to the request queue. This allows
it to examine the first entry in the request queue without
concern that other tasks are modifying it at the same time.

5. It calls a user-written device interrupt procedure to process the
actual interrupt. This can involve verifying that the interrupt
was legitimate or any other operation that the device requires.
This interrupt procedure is described further in Chapter 3.

COMMON DRIVER SUPPORT ROUTINES

INTERRUPT $TASK

Adjusts DS register to obtain
the data object for the device

Y

Sets interrupt fevel at which to
respond and indicates device
handler

|
Y

Waits for interrupt of the
specified level

Gains access from region

I

Calls the user-written interrupt
procedure to process the
interrupt

1s es
the request ¥

done +
?

Removes the IORS from the
queue and sends a message to
the response mail box

Starts the next request

¥

Surrenders access to the region

Figure A-5. Common Device Driver Interrupt Task

A-10

6.

7.

COMMON DRIVER SUPPORT ROUTINES

If the request has been completely processed, (one request may
require multiple reads or writes, for example), the interrupt
task removes the IORS from the queue and sends it as a message to
the response mailbox indicated in the IORS. If the request is
not completely processed, the interrupt task leaves the IORS at
the head of the queue,

If there are requests on the queue, the interrupt task initiates
the processing of the next I/O request.

In any case, it then surrenders access to the queue, allowing

other routines to modify the queue, and loops back to wait for
another interrupt.

A-11

APPENDIX B, FOLD-OUT FIGURES

This appendix contains fold-out figures which have been referred to
elsewhere in this manual. To use the figures in this appendix, unfold
them and refer to them while you read related text from the previous
chapters. '

FOLD-OUT FIGURES

The user makes an /O request
via a system call

Does
this request
resuit from an
RQS$ASPHYSICALSATTACH
$DEVICE System
call
?

yes

Are

No
any units
- ye of the device
currently
attached
?
1/0 System calls the Initiatize
1/0 procedure to initialize the
device
-
Y

1/0 System calls the Queue 1/0
procedure to place the request
on the queue

Does
this request
result from an
RQSASPHYSICALS
DETACHS$DEVICE
system call

Are
any other
‘units of the
device currently
attached
?

yes

I/O System calis the Finish 1/0
procedure to ciean up the
device and delete objects

Figure B-1l, Calling the Device Driver Procedures

B-2

INDEX

For most topics with multiple-page references, the primary reference is
underscored.,

Cancel 1/0 procedure 1-4, 5-4
CANCEL$IO 3-1, A-7
common device driver 3-1
device information table 3-3
support routines A-l
common device 1-6
communication levels 1-1 :
components of a device driver 1-3
creating DUIBs 2-6
custom device drivers 5=1
custom devices 1-7

data object 2-12
default finish procedure 3-6, 4-9
default initialization procedure 3-5, 4-8
default stop procedure 3-8, 4-12
DEFAULTSFINISH 3-6, 4-9
DEFAULT$INIT 3-5, 4-8
DEFAULT$STOP 3-8, 4-12
device

granularity 2-3

interfaces 2-12

number 1-2
device data object 2-12, 5-3, 5-4, 5-5, A-3, A-9
device driver

components 1-3

interfaces 2-1

type 1-6 .
device finish procedure 3-2, 3-6, 4-3, 4-9, A-4
device information table 2-4, 3-3, 4-5
device initialization procedure 3-2, 3-5, 4-3, 4-8, A-3
device interrupt. procedure 3-2, 3-8, 4=3, 4-12, A-9
‘device start procedure 3-2, 3-6, 4-3, 4-9, A-5
device stop procedure 3-2, 3-8, 4-3, 4-11, A-7
device-unit information block 2-1
device-unit number 1-2
doubly linked list 2-10
DUIB - 2-1, 5-2, 5~-3, 5-4, 5-5

creation 2-6

structure 2-1

Finish I/0 procedufe 1-4, 5-3

FINISH$IO 3-2, 4-2, A-3
functions 2-3, 2-8

granularity 2-3

INDEX

Initialize I1/0 procedure 1-4, 5-2
INITSIO 3-2, 4=2, A-1
Intel-supplied routines 3-1
interfaces to the device driver 2-1
interrupt

handlers and tasks 1-4

level 3-3, 4-5

task A-3

task priority 3-4, 4-6
INTERRUPTSTASK A-9 .
T1/0 System interfaces 2-1
I/0 System-supplied routines 3-1, 4-1
I1/0 functions 2-3, 2-8
1/0 request/result segment 1-3, 2-7
1/0 requests 1-3
IORS 1-3, 2-7, 5-4, 5-5, A-5, A-7

structure 2-7 '

levels of communication 1-1
link procedures 6-1

linked list 2-10

LINK86 6~1 '

NOTIFY procedure 4-2
numbering of devices 1=2

priority 3-4, 4-6

Queue I/0 procedure 1-4, 5-3

QUEUESIO 3-1, 4-2, A-5

random access device drivers 4-1

random access devices 1-7

request queue 2-10

requests 1-3

requirements for using the common device driver
retry limit 4-7

stack size 4-6

track size 4-7
types of device drivers 1-6

unit information table 2-4, 4-3, 4-7
unit number 1-2 T
unit status codes 2-<8

user-supplied routines 3-2, 4=2
using the DUIBs 2-5

3-1

. ® ' . Guide to Writing Device Drivers
lntd for the iRMX 86™ 1/0 System
o 142926-002

REQUEST FOR READER’S COMMENTS

intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
document. :

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
- improvement.

3. Is this the right type of document for your needs? Is it atthe right level? What other types of documents are
needed? : '

4. Did you have any difficulty understanding desc'riptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME ~ DATE
TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

CITY STATE________ ZIP CODE

Please check here if you require a written reply. O

.

8
WE'D LIKE YOUR COMMENTS . . . -
This document is one of a series describing Intel products. Your comments on thé back of this

form will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

M e
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.79 BEAVERTON,OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

0.M.S. Technical Publications

inte|®
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

