

MOD

4-46

PL/M-86 usage example:

mqerMOD: PROCEDURE (V,X) REAL EXTERNAL;
DECLARE (V,X) REAL;

END mqerMOD;

DECLARE V REAL;
DECLARE LAST_THREE_DIGITS REAL;

V = 456789.00; 1* Test vaLue * 1

1* The Line sets LAST_THREE_DIGITS to V MOD
1000. If V is a positive integer, then the answer is
the number formed by the Last three decimaL digits of
V. * 1

LAST_THREE_DIGITS = mqerMOD(y,1000.)i

1* With the test vaLue, LAST THREE DIGITS is now 789.00 *1

ASM-86 usage example:

; This EXTRN must appear outside of aLL SEGMENT-ENDS
; pairs:
EXTRN mqerMOD: FAR

LAST THREE DIGITS
V - -

ONE GRAND

DQ ?
DQ 181137.00

DO 1000.00

initiaLization is a
test vaLue
constant for
caLcuLation beLow

The foLLowing code caLcuLates V MOD 1000, as in the PLIM
exampLe above, except with LONG REAL variabLes

FLO V Load first parameter onto 8087
stack

FLO ONE GRAND Load moduLus 1000 onto 8087 stack
CALL mqerMOD take the moduLus
FSTP LAST_THREE DIGITS ; store answer and pop the

- ; 8087

With the test vaLue, is 137.00

(

(

/

mqerRMD x = (y mod x), close to 0

Input parameters: (x) is the top number on the 8087 stack; (y) is the next number
on the 8087 stack.

Function: mqerRMD returns the answer (y - (x * mqerIEX(y/x». In more intuitive
terms, this is the "remainder" left when (y) is divided by (x). The answer is always
exact; there is no roundoff error.

mqerRMD always returns the same values when (x) is negative as for the corre­
sponding positive input (-x). Whenever (x) is mentioned in the following
paragraphs, we are really talking about the absolute value of (x).

mqerRMD is calculated by subtracting an integer multiple of (x) from the input (y),
to bring it down to within (x) units of zero. The choice of which integer multiple to
subtract determines the range of possible values the function can yield. For
mqerRMD, the integer is mqerlEX(y/x), which is the value (y/x) rounded to the
nearest integer. Thus the range of answers is from (-xl2) to (xl2).

For example, suppose (x) equals either -5 ot 5. Then the value of mqerRMD(y,5)
ranges from -2.5 to 2.5. mqerRMD(-7,5) is -2; mqerRMD(-1O,5) is 0;
mqerRMD(-19.99,5) is +0.01; mqerRMD(2,5) is 2; mqerRMD(4,5) is -1;
mqerRMD(44.75,5) is -0.25.

When the input (y) is an odd integer mUltiple of (xl2), the answer returned by
mqerRMD can be either (xl2) or (-xl2). The number chosen is determined by
the convention of mqerIEX, which rounds to the even integer in case of a tie. This
results in values alternating between (-xl2) and (xl2). Inputs (y) which yield (x/2)
form the series C .. -7xl2, -3xl2, xl2, 5xl2, 9xl2, ... }. Inputs (y) which yield
(-xl2) form the series C .. -5xl2, -xl2, 3xl2, 7xl2, llxl2, ... }. For example,

-mqerRMD(2.5,5) is 2.5; mqerRMD(7 .5,5) is -2.5.

It is legal to have infinite (x) inputs. In that case, mqerRMD simply returns (y), if (y)
is finite and normal. If (y) is unnormal, the normalized (y) is returned. If (y) is
denormal, the result depends on the setting of the 8087's normalization mode, as
determined by the "D" error masking flag. If in normalizing mode ("D"
unmasked), the result is 0 with no error. If in warning mode ("D" masked), the
result is the unchanged denormal (y), also with no error.

It is often legal to have unnormal and denormal (y) inputs. The cases with infinite (x)
are discussed in the above paragraph. If (y) is unnormal, and if the normalization of
(y) does not produce a denormal, then (y) is legal, and the normalized input is used.

Output: The 8087 stack pops once, with the answer replacing the two inputs.

Errors: First, the inputs are checked to see if either is a NaN. If so, an "I" error is
given. If "I" is masked, the input NaN is returned (if both inputs are NaN's the
larger NaN is returned).

If (x) is unnormal, denormal, or any zero value, an "I" error is given. Also, if (y) is
infinite, an "I" error is given. If "I" is masked, the value INDEFINITE is returned.

If "I" is unmasked for any of the above errors, the trap handler is called with the
inputs still on the 8087 stack, and the number 27 A hex in the 8087 opcode register.

RMD

4-47

RMD

4-48

A "U" error is given when (y) is unnormal, and the normalization of (y) produces a
denormal. A "U" error is also given if (y) is already denormal. If "U" is masked,
an answer of 0 is returned. If "U" is unmasked, the trap handler is called, with the
value 17A hex placed in the 8087 opcode register; but the inputs are not on the 8087
stack. Instead, the correct answer is given, with a "wrapped" exponent. To obtain
the correct exponent, subtract the decimal number 24576 from the given exponent.

PL/M-86 usage example:

mqerRMD: PROCEDURE (Y,X> REAL EXTERNAL;
DECLARE (Y,X> REAL;

END mqerRMD;

DECLARE TWO PI LITERALLY '6.283185307179586476925';
1* 2 *-PI -- a full circle expressed in radians *1

DECLARE THETA REAL; 1* angle to be reduced *1

THETA = 6.; 1* Test value *1

1* The following line reduces THETA to a principal value
a value between -PI and PI. *1

THETA = mqerRMD(THETA, TWO_PI);

1* Now THETA is 6 radians, reduced to the principal value:
about -0.2831853 *1

ASM-86 usage example:

; This EXTRN must appear outside of all SEGMENT-ENDS
; pairs:
EXTRN mqerRMD: FAR

THETA DQ -6.00 ; initialization is a test value

The following code performs the same reduction of an
angle to a principal value as the PL/M code above,
except with a LONG REAL variable.

FLD THETA
FLOP I
FADO ST,ST
CALL mqerRMD
FSTP THETA

angle parameter onto 8087 stack
constant PI onto stack
2 * PI
modulus is taken
principal value is stored, 8087
stack is popped

With the test value, THETA is now about 0.2831853

mqerSGN x = (y with x's sign)

Input parameters: (x) is the top number on the 8087 stack; (y) is the next number
on the 8087 stack.

Function: If (x) is greater than or equal to zero, mqerSGN returns the absolute
value of (y). If (x) is less than zero, mqerSGN returns the negative of the absolute
value of (y).

The positive absolute value of (y) is returned for all values of (x) which are zeroes or
pseudo-zeroes; even if (x) is equivalent to -0.

Unnormal values of (x) are legal. If (x) is not a pseudo-zero, only the sign of (x) is
relevant to the final answer.

Infinite values of (x) are allowed. The sign of the infinity determines the sign on the
answer, even when the 8087 is in projective (unsigned infinity) mode.

Any input (y) is legal, including NaN's, unnormals, denormals, and infinities. The
only part of (y) whkh might be changed upon output is the sign.

Output: The 8087 stack pops once, with the answer replacing the two inputs.

Errors: If (x) is a denormal, the "D" error is given by an FTST instruction within
the interior of mqerSGN. If the 8087 is in warning mode (" D" is masked),
mqerSGN will use the denormal to determine the sign of the answer. If the 8087 is in
normalizing mode ("D" is unmasked), the "D" trap handler will be called with the
input still on the 8087 stack. Most trap handlers will normalize the argument, reper­
form the FTST instruction, and continue with the computation of mqerSGN. The
trap handler provided by EH87.LIB, described in Chapter 5, will replace the den or­
mal with O. Thus, the absolute value of (y) will be returned by mqerSGN.

If (x) is a NaN, an "I" error results. If "I" is masked, (x) is returned. If "I" is
unmasked, the trap handler is called with the inputs still on the 8087 stack; and the
8087 opcode register set to 264 hex.

PL/M-86 usage example:

mqerSGN: PROCEDURE (Y,X) REAL EXTERNAL;
DECLARE (Y,X) REAL;

END mqerSGN;

DECLARE THETA REAL;
DECLARE Y_COOR REAL;
DECLARE PI LITERALLY '3.14159265358979323';

Y COOR = -0.0000001; 1* Test vaLue *1

1* The foLLowing code returns either the vaLue PI or -PI.
If Y COOR is positive, it returns PI. If Y COOR is
negative, it returns -PI. *1

THETA = mqerSGN(PI,Y_COOR);

1* With the test vaLue, THETA now is -PI. *1

SGN

4-49

SGN

4-50

ASM-86 usage example:

; This EXTRN must appear outside of all SEGMENT-ENDS
; pairs:
EXTRN mqerSGN: FAR

OQ ? THETA
Y COOR OQ -0.001 initialized to a test value

The following code -0.001
value

; initialized to a test

The following code returns PI with the sign of Y_COOR,
just as in the PL/M example above.

FLOP I
FLO Y COOR

CALL mqerSGN

FSTP THETA

first parameter PI onto 8087 stack
second parameter Y COOR onto 8087
stack -
combine sign of Y_COOR with magnitude
of PI
store answer and pop the 8087 stack

With the test case, THETA is now PI.

(

mqerSIN x = sine(x)

Input parameter: (x) is the top number on the 8087 stack.

Function: mqerSIN returns the trigonometric' sine of x, where x is an angle
expressed in radians. All input zeroes, pseudo-zeroes, and denormals return the
input value. Also, unnormals whose value is less than 2-63 return the input value.

Output: The answer replaces the input on the 8087 stack.

Errors: An "I" error is given for input infinities and NaN's. An "I" error is also
given for unnormals which do not represent values less than 2-63 .

If "I" is unmasked, the trap handler is called with the input still on the stack, and
the 8087 opcode register set to 171 hex. If "I" is masked, the answer is the input for
NaNs; the answer is the value INDEFINITE for other invalid inputs.

PL/M-86 usage ~xample:

mqerSIN: PROCEDURE (THETA) REAL EXTERNAL;
DECLARE THETA REAL;

END mqerSIN;

DECLARE (POLAR R, POLAR THETA) REAL;
DECLARE REC Y REAL; -
DECLARE PI TITERALLY 13.14159265358979 1;
DECLARE DEG_TO_RAD LITERALLY 'PI/180. I;

POLAR_R = 2.; POLAR_THETA = 30.; 1* Test values *1

1* The following line computes the V-coordinate of a
polar-to-rectangular conversion. The input angle is in
degrees, so it must be converted to radians. *1

1* Now in the test case, REC_Y = 1. *1

ASM-86 usage example:

; This EXTRNc must appear outside of all SEGMENT-ENDS
; pairs:
EXTRN mqerSIN: FAR

POLAR THETA
POLAR~)

REC Y
DE()O RAD

DQ 30.0
DQ 2.0

DQ ?

; the above initializations are test
; values.

DT 3FF98EFA351294E9C8AER the constant
PI/180.

SIN

4-51

SIN

4-52

The following lines compute theY-coordinate of a
polar-to-rectangular conversion, as in the PL/M
example above; except that the variables are
LONG REAL.

FLO POLAR THETA
FLO OEG TO RAO
FMU L --
CALL mqerSIN
FMUL POLAR R
FSTP REC Y-

degrees angle onto 8087 stack

converted to radians
sine is taken
answer scaled to correct radius
V-coordinate stored and stack is
popped

With the test case, REC Y is now 1.

(,
\

(

(

mqerSNH x = hyperbolic sine(x)

Input parameter: (x) is the top number on the 8087 stack.

Function: mqerSNH returns the hyperbolic sine of x, where x is an angle expressed
in radians. All input zeroes, pseudo-zeroes, and denormals return the input value.
Also, un normals whose value is less than 2-63 return the input value.

Infinite inputs are legal, and return the input value.

Output: The answer replaces the input on the 8087 stack.

Errors: An "I" error is given for input NaN's. An "I" error is also given for
unnormals which do not represent values less than 2-63 .

If "I" is unmasked, the trap handler is called with the input still on the stack. If "I"
is masked, the answer is the input for NaNs; the answer is the value INDEFINITE
for other invalid inputs.

mqerSNH will give an "0" overflow error if the input is greater than about 11355.
When "0" is masked, the value +INFINITY is returned. Likewise, "0" is given for
inputs less than about -11355, with -INFINITY returned for masked "0". When
"0" is unmasked, the trap handler is called with the input still on the 8087 stack.

When either trap handler is called, mqerSNH first sets the 8087 opcode register to
16E hex.

PL/M-86 usage example:

mqerSNH: PROCEDURE (THETA) REAL EXTERNAL;
DECLARE THETA REAL;

END mqerSNH;

DECLARE (INPUT_VALUE, OUTPUT_VALUE) REAL;

INPUT_VALUE = 2.7; 1* Test value *1

OUTPUT_VALUE = mqerSNH(INPUT_VALUE);

1* Now with the test input, OUTPUT VALUE is about
14.812526 *1

ASM-86 usage example:

; This EXTRN must appear outside of all SEGMENT-ENDS
; pairs:
EXTRN mqerSNH: FAR

INPUT VALUE

OUTPUT_VALUE

DQ -2.7

DQ ?

initialization is a test
value

SNH

4-53

SNH

4-54

The following code duplicates the above PllM
assignment statement,

except with LONG_REAL variables.

fLO INPUT_VALUE

CALL mq e r S N H
FSTP OUTPUT_VALUE

load the parameter onto the 8087
; stack
; take the hyperbolic sine

store the answer and pop the
8087 stack

; With the test input, OUTPUT_VALUE is now about
-14.812526

(

(

(

\

mqerTAN x = tangent(x)

Input parameter: (x) is the top number on the 8087 stack.

Function: mqerT AN returns the trigonometric tangent of x, where x is an angle
expressed in radians. All input zeroes, pseudo-zeroes, and denormals return the
input value. Also. unnormals whose value is less than 2-63 return the input value.

Output: The answer replaces the input on the 8087 stack.

Errors: An "I" error is given for input infinities and NaN's. An "I" error is also
given for unnormals which do not represent values less than 2-63 •

If "I" is unmasked, the trap handler is called with the input still on the stack, and
the 8087 opcode register set to 173 hex. If "I" is masked, the answer is the input for
NaNs; the answer is the value INDEFINITE for other invalid inputs.

A "Z" error is given when the input number is an exact odd multiple of the closest
TEMP _REAL number to n/2. When "Z" is masked, the answer
+INFINITY is returned. When "Z" is unmasked, the trap handler is called with the
input still on the 8087 stack, and the 8087 opcode register set to 173 hex.

PL/M-86 usage example:

mqerTAN: PROCEDURE (THETA) REAL EXTERNAL;
DECLARE THETA REAL;

END mqerTAN;

DECLARE PI LITERALLY 13.14159265358979';
DECLARE DEG_TO_RAD LITERALLY 'PI/180.';
DECLARE THETA_DEGREES REAL;
DECLARE SLOPE REAL;

THETA_DEGREES = 135.0; /* Test value */

/* The following line computes the tangent of the angle
THETA DEGREES. The answer is called SLOPE because it is
the sTope of a line which is displaced by THETA_DEGREES
from the X-axis. *1

SLOPE = mqerTAN(THETA_DEGREES * DEG_TO_RAD);

/* Now with the test value, SLOPE = -1. */

ASM-86 usage example:

; This EXTRN must appear outside of all SEGMENT-ENDS
; pairs:
EXTRN mqerTAN: FAR

DQ 45.00

DQ ?

; initialization is a test
; value

THETA_DEGREES

SLOPE
DEG_TO_RAD DT 3FF98EFA351294E9C8AER the constant

PI/180.

TAN

4-55

TAN

4-56

The following code computes the tangent just as in
the Pl/M example above, except with LONG_REAL
variables.

FLO THETA DEGREES

FLO DEG TO RAD
FMUl --
CALL mqerTAN

FSTP SLOPE

load the first parameter onto
the 8087 stack

convert from ~egrees to radians
tBke the tangent of the radians
vaLue
store the answer and pop the
8087 stack

With the test input, SLOPE is now 1.00

(

mqerTNH x = hyperbolic tangent(x)

Input parameter: (x) is the top number on the 8087 stack.

Function: mqerTNH returns the hyperbolic tangent of x, where x is an angle
expressed in radians. All input zeroes, pseudo-zeroes, and denormals return the
input value. Also, unnormals whose value is less than 2-63 return the input value.

Infinite inputs are allowed. Input +INFINITY gives an answer of +1; -INFINITY
gives -1. The sign of the infinity is significant even if the 8087 is in projective
(unsigned infinity) mode.

Output: The answer replaces the input on the 8087 stack.

Errors: An "I" error is given for input NaN's. An "I" error is also given for
unnormals which do not represent values less than 2-63 •

If "I" is unmasked, the trap handler is called with the input still on the stack, and
the 8087 opcode register set to 170 hex. If "I" is masked, the answer is the input for
NaNs; the answer is the value INDEFINITE for illegal unnormals.

PL/M-86 usage example:

mqerTNH: PROCEDURE (THETA) REAL EXTERNAL;
DECLARE THETA REAL;

END mqerTNH;

DECLARE (INPUT_VALUE, OUTPijT_VALUE) REAL;

INPUT_VALUE = 0.62; 1* Test value *1

OUTPUT_VALUE = mqerTNH(INPUT_VALUE);

1* Now with the test input, OUTPUT_VALUE is about
0.55112803 *1

ASM-86 usage example:

; This EXTRN must appear outside of all SEGMENT-ENDS
; pairs:
EXTRN"mqerTNH: FAR

INPUT_VALUE

OUTPUT_VALUE

OQ -0.62

DQ ?

initialization is a test
value

The following code duplicates the above PL/M
assignment statement, except with LONG_REAL
variables.

TNH

4-57

TNH

4-58

F to INPUT_VALUE

CAll mqerTNH
fSTP OUTPUT_VALUE

load the parameter onto the 8087
stack

i take the hyperbolic tangent
store the answer and pop the
8087 stack

With the test input, OUTPUT_VALUE is now about
-0.55112803

(

/

mqerY2X x = yX

Input parameters: (x) is the top number on the 8087 stack; (y) is the next number
on the 8087 stack.

Function: mqerY2X computes (y) to the (x) power; neither (y) nor (x) is required to
be an integer. For most inputs, the formula used is 2(x*LG2(y)).

The base (y) must be positive for the logarithmic formula to have any meaning.
There are some cases, however, in which (y) is allowed to be non-positive.

• If (x) is positive, a zero (y) gives a zero answer, with no error.

• If (x) is zero, (y) can be negative; the answer is 1.

• If (x) is an integer, (y) can be negative. The function is evaluated using the
absolute value of (y). The result is the answer if (x) is even; it is the negative of
the answer if (x) is odd.

Inputs which are zero, infinite, unnormal, or denormal are accepted under certain
conditions.

When either input is denormal, it is replaced with an alternate value. The value
selected depends on the setting of the 8087 "0" masking bit. If the 8087 is in nor­
malizing mode ("D" is unmasked), the input is replaced by o. If the 8087 is in warn­
ing mode ("D" is masked), the input is replaced by the equivalent unnormal. Note
that even though mqerY2X references the "0" masking bit, it never ·gives a "0"
error, and it never calls the "0" trap handler.

An unnormal (y) input is legal only if (x) is a normal iriteger or infinite value. If (x) is
infinite, the function is evaluated as if (y) were the equivalent normal value. If (x) is
zero, (y) must be nonzero; in that case, the answer is 1. If (x) is any other integer, it
must fit into 32 bits; in that case, the function mqerYI4 is called to obtain the
answer.

An unnormal (x) input is legal only if it is non-zero, and if (y) is infinite or zero. In
those cases, (x) is replaced by its normal equivalent.

When the 8087 is in affine (signed infinity) mode, there are a number of cases in
which mqerY2X allows infinite inputs:

• If (y) is -INFINITY, then (x) must be a non-zero integer. The magnitude of the
answer is then INFINITY if (x) is positive; zero if (x) is negative. The sign of the
answer is positive if (x) is even; negative if (x) is odd.

• If (y) is +INFINITY, then any non-zero (x) is legal. The answer is +INFINITY
if (x) is positive; zero if (x) is negative.

• If (x) is +INFINITY, then (y) must be positive or any zero, and not equal to 1.
The answer is zero if (y) is less than 1, and + INFINITY if (y) is greater than 1.

• If (x) is -INFINITY, then (y) must likewise be positive or any zero, and not
equal to 1. The answer is +INFINITY if (y) is less than I, and -INFINITY if (y)
is greater than 1.

When the 8087 chip is in projective (unsigned infinity) mode, there is only one case
in which any infinite input is allowed. This occurs when (y) is infinite, and (x) is a
non-zero integer. The result is the same as if the 8087 were in affine mode.

Output: The 8087 stack pops once, with the answer replacing the two inputs.

Y2X

4-59

Y2X

4-60

Errors: mqerY2X first checks for NaN inputs. If either input is a NaN, an "I"
error is given. If "I" is masked, the input NaN is returned (the larger NaN is
returned if both inputs are NaN's).

The legal cases involving unnormal inputs, infinite inputs, and negative (y) inputs
are described above. Illegal cases yield an "I" error. If "I" is masked, the value
INDEFINITE is returned. The case (y = 1) and (x infinite), among others, falls into
this category.

It is illegal for both (x) and (y) to have zero values. This too gives an "I" error, with
an INDEFINITE answer if "I" is masked.

If (y) is any zero and (x) is any negative value (induding negative infinity), then a
"Z" error is given. If "Z" is masked, the value +INFINITY is returned.

The "0" overflow or "U" underflow error occurs when (yX) cannot be represented
by the TEMP _REAL exponent. If "0" is masked, an overflow will return the
answer +INFINITY. In underflow cases, if "U" is masked, the correct answer is
given if it can be represented by a denormal; otherwise, 0 is given.

All of the errors, "I", "Z", "0", and "U", will cause the trap handler to be called
when the corresponding exception bit is unmasked. mqerY2X leaves the input
numbers on the 8087 stack, and places the value 26A hex into the 8087 opcode
register before calling the trap handler.

PL/M-86 usage example:

mqerY2X: PROCEDURE (Y,X> REAL EXTERNAL;
DECLARE (Y,X) REAL;

END mqerY2X;

DECLARE CUBE ROOT REAL;
DECLARE INPUT VALUE REAL;

INPUT_VALUE = 17.00; 1* Test value *1

1* The following line takes the cube root of the positive
value INPUT_VALUE. *1

CUBE_ROOT = mqerY2X(INPUT_VALUE, 1./3.);

1* With the t~st input, INPUT_VALUE is now about
2.5712816 *1

ASM-86 usage example:

; This EXTRN must appear outside of all SEGMENT-ENDS
; pairs:
EXTRN mqerY2X: FAR

INPUT VALUE OQ 64.00 . initialization is a test , - . value ,
CUBE ROOT OQ ?
ONE_THIRD DT 0.333333333333333333333 constant . used below ,

(

(
\,

c

The foLLowing Lines take the cube root just as in the
PL/M exampLe above, except with LONG REAL variabLes.

F LD INPUT VALUE Load first parameter onto
8087 stack

F LD ONE THIRD Load second parameter onto
8087 stack

CALL mqerY2X exponentiate
FSTP CUBE ROOT store the answer and pop the

8087 stack

; ·With the test input, CUBE_ROOT is now about 4.00

Y2X

YI2

4-62

mqerYI2 x = X ** AX

Input parameters: (x) is the top number on the 8087 stack. The power to which (x)
is raised is the 8086 AX register, interpreted as a twos-complement signed integer.

Function: mqerYI2 raises the real input (x) to an integer power. If the integer is
zero, the answer is 1. In this case, no error is given, even if (x) is a NaN.

If AX is not zero, the input (x) is first checked for unusual values.

If (x) is +INFINITY, the answer is +INFINITY for positive AX; +0 for negative
AX. There is no error.

If (x) is -INFINITY, the magnitude of the answer is INFINITY for positive AX; 0
for negative AX. The sign of the answer is positive for even AX; negative for odd
AX. .

Zero (x) input is legal if AX is positive. The answer is -0 if (x) is -0 and AX is odd;
the answer is +0 in all other cases.

If (x) is denormal, no error is given. However, the 8087 "0" error masking bit is
checked to see what action to take. If the 8087 is in normalizing mode ("0" is
unmasked), (x) is replaced by zero. If the 8087 is in warning mode ("0" is masked),
(x) is replaced by the unnormal number with the same numeric value as the denor­
mal. The evaluation of mqerYI2 proceeds with the new (x).

If (x) is unnormal and AX is negative, then (1Ix) is computed, preserving the
number of bits of unnormalization. Then the positive power is computed by
successive squaring and multiplying by (x).

If (x) is unnormal and AX is positive, then the power is computed by successive
squaring and multiplying by (x).

For normal, non-zero values of (x), computation of the power proceeds according to
the value of the integer power AX.

If the integer power is 64 or greater, or -64 or less, the answer is computed with
logarithms. The answer is 2 ** (AX * LG2(x».

If the integer power is from 1 to 63, the answer is computed by successively squaring
and mUltiplying by (x) to achieve the correct power.

If the integer power is from -63 to -1, mqer YI2 determines if any exceptions would
occur if the expression 1 I (x * x * ... x) were evaluated. If not, the expression is
evaluated and the answer is returned. If so, then the expression (I/x) * (1Ix) * ... *
(I/x) is evaluated. If the second expression causes exceptions, the trap handler is
called.

The maximum number of multiplications performed for any of the above squaring­
and-multiplying algorithms is 9.

Output: The answer replaces the input (x) on the 8087 stack. The AX input is
destroyed, as allowed by PL/M-86 procedure conventions.

(

\

(

<.

(

\

Errors: As stated above, there can be no errors if AX is O. Otherwise, errors occur
in the following cases:

If (x) is a NaN, an "I" error is given. If "I" is masked, the input NaN is returned as
the answer.

A "U" underflow error occurs when the answer computed is too close to zero to be
represented by the exponent. If "U" is masked, the answer is replaced by the
equivalent denormal if it exists; 0 otherwise.

An "0" overflow error occurs when the magnitude of the answer is too great to b~
represented by the exponent. If "0" is masked, the answer is INFINITY with the
appropriate sign.

If any of the "I", "0", or "U" errors occurs with the error unmasked, the trap
handler is called. Before calling the trap handler, mqerYI2 sets the 8087 opcode
register to 27C hex and leaves the inputs on the 8087 stack. The integer power is con­
verted to TEMP_REAL and pushed onto the top of the 8087 stack. The base (the
original (x)) becomes the second stack element.

PL/M-86 usage example:

For PL/M-86, the 16-bit input parameter should be on the 8086 stack rather than in
the AX register. Therefore, use mqerYIS (instead of mqerYl2) in PLlM-86
programs.

ASM-86 usage example:

; This EXTRN must appear outside of all SEGMENT-ENDS
; pairs:
EXTRN mqerYI2: FAR

POWER
REAl BASE

OW 9 ; exponent whi ch wi II be used
o Q 1.3 ; numb e r w hi c h will be r a i sed to

; POWER

;

; the above initializations are test
; values

OQ ?

The following code multiplies POWER copies of REAL BASE
together, and stores the answer in REAL_OUTPUT.

FLO REAl_BASE base parameter goes onto the 8087
stack

MOV AX,POWER exponent goes into the AX
register

CAll mqerYI2 REAL BASE ** POWER is now on 8087
stack

FSTP REAL_OUTPUT store the answer and pop the 8087
stack

With the test inputs, REAL_OUTPUT is now about 10.604499

YI2

4-63

YI4

4-64

mqerYI4 x = X ** DXAX

Input parameters: (x) is the top number on the 8087 stack. The power to which (x)
is raised is a 32-bit twos complement value in the 8086 DX and AX registers. DX is
the most significant half, and AX is the least significant half.

Function: mqerYI2 raises the real input (x) to an integer power. The input integer is
presented in a 32-bit format. Note, however, that 32 bits are rarely necessary to
represent an integer exponent. Raising a number to a power greater than 32768
rarely gives meaningful results. Thus mqerYI2 is sufficient for almost every applica­
tion in which mqerYI4 might be used. We have provided mqerYI4 mainly for com­
patibility with the 32-bit integer types found in Pascal-86 and FORTRAN-86.

If the input integer power is zero, the answer is 1, no matter what (x) is. In this case,
no error is given, even if (x) is a NaN.

If DXAX is not zero, the input (x) is first checked for unusual values.

If (x) is +INFINITY, the answer is +INFINITY for positive DXAX; +0 for negative
DXAX. There is no error.

If (x) is - INFINITY, the magnitude of the answer is INFINITY for positive DXAX;
o for negative DXAX. The sign of the answer is positive for even DXAX; negative
for odd DXAX.

Zero (x) input is legal if DXAX is positive. The answer is -0 if (x) is -0 and DXAX
is odd; the answer is +0 in all other cases.

If (x) is denormal, no error is given. However, the 8087 "D" error masking bit is
checked to see what action to take. If the 8087 is in normalizing mode ("D" is
unmasked), (x) is replaced by zero. If the 8087 is in warning mode ("D" is masked),
(x) is replaced by the unnormal number with the same numeric value as the denor­
mal. The evaluation of mqerYI2 proceeds with the new (x).

If (x) is un normal and DXAX is negative, then (l/x) is computed, preserving the
number of bits of unnormalization. Then the positive power is computed by
successive squaring and multiplying by (x).

If (x) is unnormal and DXAX is positive, then the power is computed by successive
squaring and multiplying by (x).

For normal, non-zero values of (x), computation of the power proceeds according to
the value of the integer power DXAX.

If the integer power is 64 or greater, or -64 or less, the answer is computed with
logarithms. The answer is 2 ** (DXAX * LG2(x».

If the integer power is from 1 to 63, the answer is computed by successively squaring
and multiplying by (x) to achieve the correct power.

If the integer power is from -63 to -1, mqerYI4 determines if any exceptions would
occur if the expression 1 / (x * x * ... x) were evaluated. If not, the expression is
evaluated and the answer is returned. If so, then the expression (l/x) * (l/x) * ... *
(l/x) is evaluated. If the second expression causes exceptions, the trap handler is
called.

The maximum number of multiplications performed for any of the above squaring­
and-multiplying algorithms is 9.

\

(

Output: The answer replaces the input (x) on the 8087 stack. The DXAX input is
destroyed, as allowed by PL/M-86 procedure conventions.

Errors: As stated above, there can be no errors if DXAX is O. Otherwise, errors
occur in the following cases:

If (x) is a NaN, an "I" error is given. If "I" is masked, the input NaN is returned as
the answer.

A "U" underflow error occurs when the answer computed is too close to zero to be
represented by the exponent. If "U" is masked, the answer is replaced by the
equivalent denormal if it exists; 0 otherwise.

A "0" overflow error occurs when the magnitude of the answer is too great to be
represented by the exponent. If "0" is masked, the answer is INFINITY with the
appropriate sign.

If any of the "I", "0", or "U" errors occurs with the error unmasked, the trap
handler is called. Before calling the trap handler, mqerYI2 sets the 8087 opcode
register to 27C hex and leaves the inputs on the 8087 stack. The integer power is con­
verted to TEMP _REAL and pushed onto the top of the 8087 stack. The base (the
original (x)) becomes the second stack element.

PL/M-86 usage example:

Since PL/M-86 does not support a 32-bit integer data type, mqerYI4 cannot be used
by PL/M programs. You should use either mqerYIS or mqerY2X.

ASM-86 usage example:

; This EXTRN must appear outside of aLL SEGMENT-ENDS
; pairs:
EXTRN mqerYI4: FAR

POWER
REAL_BASE

REAL OUTPUT

DO
DQ

DQ

9
1.3

?

exponent which wi L L be used
number w hi c h w ilL be raised to
POWER
the above initializations are
test values

The foLLowing code mUltiplies POWER copies of REAL BASE
together, and stores the answer in REAL_OUTPUT.

FLO REAL_BASE

MOV AX, WORD PTR POWER

MOV OX, WORD PTR (POWER+2)
CALL mqerYI4

FSTP REAL OUTPUT

base parameter goes onto
the 8087 stack
Low 16 bits of exponent
to AX
---high 16 bits to OX
REAL BASE ** POWER is
now on 8087 stack
store the answer and pop
the 8087 stack

With the test inputs, REAL OUTPUT is now about 10.604499

YI4

4-65

VIS

4-66

mqerYIS x = X ** STK

Input parameters: (x) is the top number on the 8087 stack. The power STK to
which (x) is to be raised is a 16-bit twos-complement integer that is pushed onto the
stack before mqerYIS is called.

Function: mqerYIS raises the real input (x) to an integer power. If the integer is
zero, the answer is 1. In this case, no error is given, even if (x) is a NaN.

If STK is not zero, the input (x) is first checked for unusual values.

If (x) is +INFINITY, the answer is + INFINITY for positive STK; +0 for negative
STK. There is no error.

If (x) is -INFINITY, the magnitude of the answer is INFINITY for positive STK; 0
for negative STK. The sign of the answer is positive for even STK; negative for odd
STK.

Zero (x) input is legal if STK is positive. The answer is -0 if (x) is -0 and STK is odd;
the answer is +0 in all other cases.

If (x) is denormal, no error is given. However, the 8087 "D" error masking bit is
checked to see what action to take. If the 8087 is in normalizing mode ("0" is
unmasked), (x) is replaced by zero. If the 8087 is in warning mode ("0" is masked),
(x) is replaced by the unnormal number with the same numeric value as the denor­
maL The evaluation of mqerYIS proceeds with the new (x).

If (x) is unnormal and STK is negative, then (lIx) is computed, preserving the
number of bits of unnormalization. Then the positive power is computed by sue··
cessive squaring and multiplying by (x).

If (x) is unnormal and STK is positive, then the power is computed by successive
squaring and mUltiplying by (x).

For normal, non-zero values of (x), computation of the power proceeds according to
the value of the integer power STK.

If the integer power is 64 or greater, or -64 or less, the answer is computed with
logarithms. The answer is 2 ** (STK * LG2(x».

If the integer power is from 1 t063, the answer is computed by successively squaring
and multiplying by (x) to achieve the correct power.

If the integer power is from -63 to -1, mqerYIS determines if any exceptions would
occur if the expression 1 I (x * x * .. , x) were evaluated. If not, the expression is
evaluated and the answer is returned. If so, then the expression (lIx) * (lIx) * ... *
(I/x) is evaluated. If the second expression causes exceptions, the trap handler is
called.

The maximum number of multiplications performed for any of the above squaring­
and-multiplying algorithms is 9.

Output: The answer replaces the input (x) on the 8087 stack. mqerYIS returns with
the value STK popped off the 8086 stack, so it no longer exists.

I

\~

(

\

/

Errors: As stated above, there can be no errors if STK is o. Otherwise. errors occur
in the following cases:

If (x) is a NaN, an "I" error is given. If "I" is masked. the input NaN is returned as
the answer.

A "U" underflow error occurs when the answer computed is too close to zero to be
represented by the exponent. If "U" is masked. the answer is replaced by the
equivalent denormal if it exists; the answer is 0 otherwise.

An "0" overflow error occurs when the magnitude of the answer is too great to be
represented by the exponent. If "0" is masked, the answer is INFINITY with the
appropriate sign.

If any of the "I". "0". or "U" errors occurs with the error unmasked, the trap
handler is called. Before calling the trap handler, mqerYIS sets the 8087 opcode
register to 27C hex and leaves the inputs on the 8087 stack. The integer power is con­
verted to TEMP_REAL and pushed onto the top of the 8087 stack. The base (the
original (x» becomes the second stack element.

PL/M-86 usage example:

mqerYIS: PROCEDURE (Y,I) REAL EXTERNAL;
DECLARE Y REAL, I INTEGER;

END mqerYISi

DECLARE INTEREST RATE REAL;
DECLARE NUMBER OF PERIODS INTEGER;
DECLARE START AMOUNT REAL;
DECLARE fINISH_AMOUNT REAL;

INTEREST RATE = 0.015;
NUMBER OF PERIODS = 12;
START_AMOUNT = 1000.00;

1* Test value *1
1* Test value *1

1* Test value *1

1* The following line calculates compound interest for the
given NUMBER_Of_PERIODS, given the rate INTEREST_RATE
for each period. INTEREST_RATE is presented as a
fraction of 1; for example, the value 0.015 represents
1.5 percent interest for each time period. *1

fINISH AMOUNT = START AMOUNT* mqerYIS
- (1.+INTEREST_RATE, NUMBER_Of_PERIODS);

1* With the test inputs, FINISH_AMOUNT is now about
1195.62. This is the balance of an unpaid loan of
$1000.00 after one year, if the loan accumulates 1.5
percent interest every month. *1

ASM-86 usage example:

; This EXTRN must appear outside of all SEGMENT-ENDS
; pairs:
EXTRN mqerYIS: fAR

VIS

4-67

VIS

4-68

INTEREST RATE
NUMBER oT PERIODS
START_AMOUNT

FINISH AMOUNT

DQ
OW
DQ

DQ
,

0.015
12
1000.00
the above initializations are test
values
?

The following code implements the above PL/M example in
assembly language, with LONG REAL variables.

FLD1 1 onto 8087 stack
FADD INTEREST RATE (1 + 1) is on stack
PUSH NUMBER oT PERIODS exponent parameter goes onto

8086 stack
CALL mqerYIS (1 + I) ** N is on 8087 stack
FMUL START AMOUNT scaled up by the amount of

money
FSTP FINISH AMOUNT store result and pop the 8087

stack
NOTE: Do not explicitly POP the NUMBER OF PERIODS from
the 8086 stack -- mqerYIS does that f~r ~ou.

8087 Support Library The Common Elementary Function Library

Linkage of CEL87.LIB to Your Program Modules

The final action you must take to use CEL87.LIB in your programs is to include the
file name CEL87.LIB into an appropriate LINK86 command.

CEL87 requires either the 8087 component or the 8087 emulator. If the component
is present, you must also link in 8087.LIB. If the emulator is used, you must link in
both E8087 and E8087.LIB.

If you are also using EH87.LIB, you must give the name EH87.LIB after
CEL87.LIB. If you put EH87.LIB before CEL87.LIB, the program will link with no
error messages, but it will halt after the first CEL87 function is called.

Following is the suggested order for object modules in your LINK86 statement.

Your object modules
DCON87.LIB if you are using it
CEL87.LIB
EH87 .LIB if you are using it
8087 .LIB if you are using the component, or
E8087, E8087 .LIB if you are using the emulator

As an example, if you are linking your PLlM-86 modules MYMODl.OBJ and
MYMOD2.0BJ into a program using the 8087 emulator and the error handler, issue
the command

If you have a single ASM-86-generated object module :Fl :MYPROG.OBJ to be
executed in a system with an 8087 chip, issue the command

4-69

(

(

CHAPTER 5
THE ERROR HANDLER MODULE

Overview

This chapter describes EH87.LIB, a library of five utility procedures which you can
use to write trap handlers. Trap handlers are procedures which are called when an
unmasked 8087 error occurs.

EH87.LIB also contains a set of "dummy" public symbols for all the functions of
CEL87.LIB. These symbols save you code when you do not use all the functions of
CEL87.LIB. Their presence, however, makes it absolutely necessary that you link
EH87.LIB and CEL87.LIB in the correct order. The last section of this chapter tells
you how to do so.

EH87.LIB also contains a set of alternate public names for its procedures, which are
used by some Intel translators. They are listed in Appendix F.

The 8087 error reporting mechanism can be used not only to report error conditions,
but also to let software implement modes and functions not directly supported by
the chip. This chapter defines three such extensions to the 8087: normalizing mode,
non-trapping NaN's, and non-ordered comparison. The utility procedures support
these extra features.

DECODE is called near the beginning of the trap handler. It preserves the complete
state of the 8087, and also identifies what function called the trap handler, with what
arguments and/or results. DECODE eliminates much of the effort needed to deter­
mine what error caused the trap handler to be called.

NORMAL provides the "normalizing mode" capability for handling the "0"
exception (described in the following section). By calling NORMAL in your trap
handler, you eliminate the need to write code in your application program which
tests for non-normal inputs.

SIEVE provides two capabilities for handling the "I" exception. It implements non­
trapping NaN's and non-ordered comparisons (both described in the following
sections). These two IEEE standard features reduce the incidence of mUltiple error
reports for a single bad input.

ENCODE is called near the end of the trap handler. It restores the state of the 8087
saved by DECODE, and performs a choice of concluding actions, by either retrying
the offending function or returning a specified result. ENCODE provides a common
path for exiting the trap handler and resuming execution of the user program.

FILTER calls each of the above four procedures. If your error handler does nothing
more than detect fatal errors and implement the features supported by SIEVE and
NORMAL, then your interface to EH87.LIB can be accomplished with a single call
to FILTER.

Normalizing Mode

Normalizing mode allows you to perform floating point operations without having
to worry about whether the operands are in normal form. All denormal inputs will
be normalized before the operation, without any user intervention.

The 8087 provides the "0" error, which warns you that an operand is not normal.
You can implement normalizing mode in software by unmasking the "0" error, and
providing a "0" trap handler. The handler should perform the needed normaliza-

5-1

The Error Handler Module 8087 Support Library

5-2

tion, and then retry the operation. We have provided NORMAL, which gives nor­
malizations adequate for a majority of applications.

Non-Trapping NaN's

The large number of representations for NaN's gives you the chance to put
diagnostic information into a NaN. The information can be passed along as the NaN
undergoes multiple floating point operations. The information can not only tell
where the NaN came from, but also control further error action.

EH87.LIB adopts the convention that the top bit of the fractional part of a NaN is a
control bit, to be used in the following way: if the bit is I, the NaN is to be con­
sidered a "non-trapping NaN", for which no further error need be explicitly
reported. You can return a non-trapping NaN as the result of an invalid operation.
Then when the NaN passes through more arithmetic, there will be no more errors
reported. You thus avoid multiple error messages which really come from only one
error.

The 8087 does not distinguish between trapping and non-trapping NaN's. All NaN's
will generate an "I" error when they are used. However, you can provide an "I"
trap handler which distinguishes between trapping and non-trapping NaN's. The
procedure SIEVE does this for you.

Non-Ordered Comparisons

When you are testing two floating point numbers for equality, you mayor may not
want an error to be reported if those numbers are NaN's. The 8087 provides the
FCOM and FTST instructions, which report an "I" error if they are given a NaN
input.

To suppress error reporting for NaN's in FCOM and FTST, we recommend the
following convention: if either FCOM or FTST is followed by a MOV AX,AX
instruction (8BCO hex), then the "I" trap handler should treat non-trapping NaN's
as legal inputs. It should return the answer NON-ORDERED (C3 = CO = 1), even if
the two inputs are the same NaN, and act as if no "I" error had occurred. The pro­
cedure SIEVE follows this suggested convention.

Note that comparisons coded in PL/M-86 generate FCOM and FTST instructions
which are not followed by a MOV AX,AX instruction. Therefore, according to the
EH87.LIB convention, PL/M-86 comparisons of non-trapping NaN's are not con­
sidered legal. There is no way to cause PLlM-86 to insert a MOV AX,AX instruc­
tion after a comparison.

The ESTATE87 Data Structure

EST ATE87 is a 144-byte data structure created by DECODE,and used by the other
EH87.LIB utility procedures. It contains most of1he information your trap handler
will need to provide customized error recovery: the state of the 8087, the identity of
the offending operation, the values and formats o(the operands, and possible
already-calculated results.

You will typically receive an ESTATE87 structure from DECODE, and pass it back
to ENCODE mostly unchanged. You do not need to become familiar with those
parts of EST A TE87 which you do not change.

Following is a description of each of the fields of the structure EST ATE87. The off­
sets mentioned are decimal numbers which give the number of bytes from the begin­
ning of EST A TE87 to the beginning of the field.

(
\,

c

8087 Support Library The Error Handler Module

OPERA nON is a WORD, offset 0, which contains an error code identifying which
procedure or 8087 instruction caused the error. The error codes for 8087 instructions
are given in Appendix D. The error codes for CEL87 functions are the last two digits
of the codes given in Appendix E. The error code for all DCON87 functions isOC8
hex.

ARGUMENT is a BYTE, offset 2, which identifies the types and locations of the
arguments of the interrupted operation. See figure 5-1 for the layout of the bit fields
within the ARGUMENT byte. The 3-bit fields ATYPEI and ATYPE2 indicate the
types of ARG 1 and ARG2, according to the following codes:

o no operand
1 top of 8087 stack: ST(O)
2 next element on 8087 stack: ST(l)
3 the element of the 8087 stack specified by REGISTER
4 a number in 8086 memory of a type given by FORMAT
5 a TEMP_REAL operand
6 a 64-bit integer operand
7 a binary-coded decimal operand

The PUSH ONCE bit is 1 if the result is pushed onto the 8087 stack (rather than
replacing one or two of the input arguments).

For example, ARGUMENT would equal 21 hex if the instruction FPREM caused
the error, since the arguments to FPREM are the top two elements on the 8087
stack, and the result replaces the inputs rather than causing the 8087 stack to be
pushed.

ARG 1(5) is a WORD array, offset 3, which gives the first argument of the opera­
tion, in the format specified by ARGUMENT.

ARG1_FULL is a boolean BYTE, offset 13, whose bottom bit is 1 if ARGI is pres­
ent. If the error handler is called after the offending operation is done, the argument
may no longer exist.

ARG2(5) is a WORD array, offset 14, which gives the second argument of the
operation, in the format specified by ARG UMENT.

ARG2_FULL is a boolean BYTE, offset 24, whose bottom bit is 1 if ARG2 is pres­
ent. If there is only one argument, or if the error handler is called after the offending
operation is done, then this argument may not exist.

RESULT is a BYTE, offset 25, which identifies the types and locations of the results
of the interrupted operation. See figure 5-2. The 3-bit fields RTYPEI and RTYPE2
use the same codes as the corresponding fields in the ARGUMENT byte. The POP
ONCE bit is set if the operation causes the 8087 stack to pop exactly once; the POP
TWICE bit is set if the operation causes the 8087 stack to pop twice (i.e., the opera­
tion is FCOMPP.)

I UNS~61 :ATYPE2: I b~~~ I :ATYPE 1:

Figure 5-1. Bit Fields of the ARGUMENT Byte in EST A TES7 121725-2

I T~96E I :RTYPE 2: I cf~6E I : RTYPE 1:

Figure 5-2. Bit Fields of the RESULT Byte in EST A TES7 121725-3

5-3

The Error Handler Module 8087 Support Library

5-4

RESl(5) is a WORD array, offset 26, which gives the first result of the operation, in
the format specified by RESULT.

RESl_FULL is a boolean BYTE, offset 36, whose bottom bit is 1 if RESI is pres­
ent. If the error handler is called before the offending operation is done, the result
does not yet exist.

RES2(5) is a WORD array, offset 37, which gives the second result of the operation,
in the format specified by RESULT.

RES2_FULL is a boolean BYTE, offset 47, whose bottom bit is 1 if RES2 is pres­
ent. If there is only one result, or if the error handler is called before the offending
operation is done, then this result does not exist.

FORMAT is a BYTE, offset 48, which specifies the memory data type when a field
of ARGUMENT or RESULT has value 4. (There is never more than one such field.)
The possible values of FO~MA T are as follows:

o for SHORT_REAL (32 bits)
1 for a 32-bit integer
2 for LONG_REAL (64 bits)
3 for a 16-bit integer

REGISTER is a BYTE, offset 49, which specifies the 8087 stack element number
when a field of ARGUMENT or RESULT has the value 3. (No more than one such
field can have this value.) The values of REGISTER range from 0 for the top stack
element to 7 from the bottom-most stack element.

SA VE87(47) is a WORD array. offset 50, which contains the state of the 8087, as
defined by the 8087 FSA VE instruction. Since DECODE is called after the 8087
exceptions have been cleared, the 8087 status word stored into SA VE87 differs from
the status word as it existed when the trap handler was invoked. This former value
must be maintained separately from ESTATE87; it appears as the parameter
ERRORS87 in all the EH87 .LIB routines.

How To Write an Exception Handler in ASM-86
USing EH87.LIB

By using EH87. LIB, you eliminate the difficult aspects of interfacing to the 8087 for
your error recovery. However, there remains a strict protocol which must be fol­
lowed. Following is a template of coding structure for an 8087 error handler written
in ASM-86. If your customized error recovery is limited to errors which do not
examine the EST ATE87 structure, you can follow the simpler template given under
FILTER.

1. The handler procedure must be an INTERRUPT procedure. The 4-byte pointer
is placed into the fixed slot for interrupt 16 (00040 hex).

2. If you expect to return to the code which caused the handler to be called, you
must preserve all 8086 registers. The 8086 flags are automatically saved and
restored because this is an interrupt routine.

3. The first floating point instruction of the handler should be an FNSTSW
instruction, which stores the 8087 status word into a 16-bit memory location.
This status word is the parameter ERRORS87 given to the EH87.LIB
procedures.

4. To insure synchronization with the 8087 at this point, there must be an arbitrary
access to the 8086 memory space. We recommend a PUSH AX instruction
followed by a POP AX instruction.

(

8087 Support Library The Error Handler Module

5. There should follow an FNCLEX instruction, to clear the 8087 exceptions. The
exceptions must be cleared for the following EH87 .LIB calls to work properly.

6. The parameters to DECODE should be pushed onto the 8086 stack, and
DECODE should be called.

7. If you intend to use NORMAL and SIEVE, their calls should come immediately
after the call to DECODE. You should not have" intervening code that alters
ESTATE87. NORMAL and SIEVE require ESTATE87 to be defined by
DECODE. If ESTATE87 does not have values which could be output by
DECODE, the results of NORMAL and SIEVE are undefined.

8. If you have any customized code in your error handler, it should appear here.

9. If the handler is returning to the calling environment, the parameters to
ENCODE should be pushed onto the 8086 stack, and ENCODE should be
called.

10. The 8086 registers which were saved at the beginning of the exception handler
should now be restored.

11. The exception handler should be exited using an IRET instruction. A simple
RET instruction will not do because the 8086 pushes its flags onto its stack when
the interrupt is executed.

You should also remember that if there is the possibility of a recursive call to the
error handler (which can happen if ENCODE retries an instruction with exceptions
unmasked), then all data storage used by your handler must be allocated on the 8086
stack. This includes the ERRORS87 word, and the entire EST ATE87 structure.

An Example of an Exception Handler
Written in ASM-86

NAME HANDLER 87

EXTRN DECODE: FAR
EXTRN SIEVE: FAR
EXTRN ENCODE: FAR
EXTRN NORMAL: FAR

INTERRUPT TABLE SEGMENT AT 0
ORG 4 *-16
DO TRAP HANDLER

INTERRUPT=TABLE ENDS

CODE SEGMENT PUBLIC
ASSUME CS:CODE

EQU

STACK LAYOUT STRUC

OPERATION

ARGUMENT
ARG1
ARG1 FULL

0001H

OW ?

DB ?
OW 5 DUP(?)
DB ?

Position of "I"
error bit and "I"
mask

Pointed at by BP
during TRAP_HANDLER

ESTATE87 tempLate
begins with this
Line

5-5

The Error Handler Module 8087 Support Library

5-6

ARG2
ARG2 FULL
RESULT
RES1
RES1 FU LL -RES2
RES2 FULL
FORMAT
REGISTER
CONTROL WORD

STATUS WORD

TAG_WORD
ERROR POINTERS
STACKS7

RETRY_CONTROL

RETRY FLAG -
ERRORS87

OW 5
DB ?
DB ?
OW 5
DB ?
OW 5
DB ?
DB ?
DB ?
OW ?

OW ?

OW ?
OW 4
DT 8

OW ?

DB ?

OW ?

DUP(?)

DUP(?)

DUP(?)

DUP(?)
DUP(?)

Start of 94-byte
FSAVE template
As it exists after
clearing exceptions

Last line of FSAVE
and of ESTATE87
Retry 8087 Control
setting for ENCODE
Boolean parameter to
ENCODE
8087 Status Word
before clearing

You can place additional stack-allocated variables here,
for your custom code. You refer to them as
[BPJ.your var name. If the number of bytes of inserted
space is odd,-you should eliminate the following dummy
variable.

DUMMY EVEN ALIGN DB ? Not used; filler to
keep SP even

REGISTERS 86 OW 8 DUP(?) Pushed by
PUSH REGISTERS

FLAGS 86 OW ? Pushed by 8086 when
interrupt called

RET ADDRESS DO ? From TRAP HANDLER

STACK_LAYOUT ENDS

TRAP HANDLER is a functioning 8087 exception handler
written in ASM-86, using the procedures of EH87.LIB. It
assumes that the only unmasked exceptions are "1" and
"0", though we indicate below where you could insert
code to handle other exceptions.

TRAP_HANDLER PROC FAR

CALL PUSH REGISTERS

SUB SP,OFFSET REGISTERS 86

MOV BP,SP

FNSTSW [BPJ.ERRORS87

PUSH AX

POP AX
FNCLEX

This interrupt wi II
preserve 8086 registers
Allocate room for
STACK LAYOUT
Set up indexing into
STACK LAYOUT
Save the errors that
caused the exception
Arbitrary memory access
to synchronize

with the 8087
Clear the exceptions so

(

\

\

8087 Support Library The Error Handler Module

CALL PUSH_ESTATE ERRORS

CALL DECODE

MOV AX, [BP) .CONTROL_WORD

MOV [BP).RETRY_CONTROL,AX

MOV [BP).RETRY_FLAG,OFFH

CALL PUSH ESTATE ERRORS

CALL NORMAL
RCR AL,1

JC ENCODE EXIT

OR [BP) .RETRY CONTROL, I MASK
CALL PUSH_ESTATE ERRORS­
CALL SIEVE

RCR AL,1

JC ENCODE EXIT

TEST [BP).ERRORS87,I_MASK
JNZ ACTUAL_I_ERROR

handler tan use 8087
Push parameters to
DECODE onto stack·
EST A TE 87 i s now f ill e d
with valid data
Existing control word is
the default for

any ENCODE retry
attempt

Default setting: retry
wi II take place
Push parameters to
NORMAL onto stact
Handle "0" errors
Test boolean answer: was
"0" the 'Only error?

; If so then no other
ch~cting is necessary

Mask "1" exception
Push parameters to SIEVE
Check for legal non-
T rap pin g N'a N
Test boolean answer: was
there such a Na~?
If so th~n we can exit;
"1" has been cleared

Was "1" error bit set?

Here you could insert code to examine [IP).ERRORS87 to
d e t e c t e x c e p t ion sot her t han II I II 0 r "0 ". 1ft h 0 s e
other exceptions are det~cted, you can provide your
own code to handle them.

JMP ENCODE EXIT

ACTUAL I ERROR:

Here you may place your own customized ~od~ to deal
with "1" exceptions other than legal non-trapping
NaN's and denormalized inputs. The following lines set
the "1" error bit, mask the "1" exception, and drop
t h r 0 ugh toE NCO 0 E E X IT. T his s i mu l ate s the ma s ked .. I II
exception, but with non-trapping NaN's implemented.
The user program must unmask the "1" exception when it
tests and clears the "1" error bit.

OR [BP) .STATUS WORD, I MASK
OR [BP).CONTROL_WORD,I_MASK

ENCODE EXIT:
CALL-PUSH ESTATE ERRORS

PUSH [BP) .RETRY CONTROL

PUSH WORD PTR [BP).RETRY FLAG

CALL ENCODE

Set the "1" error bit
Mask the "1" exception

Push first two ENCODE
parameters
Push ~hird ENCODE
parameter
Push fourth ENCODE
parameter
Restore post-exception

5-7

The Error Handler Module 8087 Support Library

5-8

8087 state
ADD SP,OFFSET REGISTERS_86

CALL POP REGISTERS

Release the STACK LAYOUT
storage
Restore the eight 8086
registers

I RET

TRAP HANDLER ENDP

Restore 8086 flags;
long-return to caller

PUSH ESTATE ERRORS causes the two parameters
ESTATE87 PTR and ERRORS87 to be pushed onto the 8086
stack, prior to a calL to one of the EH8?LIB procedures
which caLL for these parameters.

PUSH ESTATE ERRORS PROC NEAR - -
POP DX
PUSH SS

LEA AX, [BP] .OPERATION

PUSH AX
PUSH [BP].ERRORS87

JMP DX

PUSH ESTATE ERRORS ENDP

save the return address
push the segment half of
ESTATE87 PTR
push the-offset half of
ESTATE8? PTR

--push complete
ERRORS87 is the bottom
half of this byte
this is the RETURN from
PUSH ESTATE ERRORS

PUSH REGISTERS causes the eight 8086 registers
SI,DI,ES,BP,DX,CX,BX,AX to be pushed onto the 8086
stack. The registers can be popped off with a call to
POP REGISTERS.

PUSH REGISTERS PROC NEAR
PUSH DI
PUSH ES
PUSH BP
PUSH DX
PUSH CX
PUSH BX
PUSH AX
MOV BP,SP

XCHG SI,[BP+14]

JMP SI

PUSH REGISTERS ENDP

Get stack pointer into an index
register
Exchange the return address with
SI which is being saved
This is the RETURN of the
procedure

; POP REGISTERS causes the eight registers which were
; pushed by PUSH REGISTERS to be popped, restoring them to
; their original-values.

POP_REGISTERS PROC NEAR
POP SI HoLd this call's return address

temp r a r i L yin S I
MOV BP,SP Get the stack pointer into an

index register
XCHG SI,[BP+14] Restore SI, and position the

return address (

8087 Support Library The Error Handler Module

POP AX
POP BX
POP CX
POP OX
POP BP
POP ES
POP 01
RET

POP REGISTERS ENDP

CODE ENDS

END

Return address is in position due
to above XCHG

How To Write an 8087 Exception Handler in
PL/M-86 Using EH87.LIB

Following is a template of coding structure for any 8087 error handler written in
PL/M-86. Note that many of the protocols required for an ASM-86 error handler
are not needed in PL/M-86. They are provided automatically by PLlM-86 and its
built-in functions.

If you customized error recovery is limited to errors which do not examine the
EST ATE87 structure, you can follow the simpler template given under FILTER.

1. Your error handler procedure must have the attribute INTERRUPT 16.

2. You must declare the structure ESTATE87, and the WORD variable
ERRORS87.

3. If you use any other variables in your error handler, they should also be
declared within the procedure. All data must be declared within the procedure
for the error handler to be reentrant.

4. You should make the assignment ERRORS87 = GET$REAL$ERROR.

S. You should call DECODE with the approriate parameters.

6. If you intend to use NORMAL and SIEVE, their calls should come immeditely
after the call to DECODE. NORMAL and SIEVE require EST ATE87 to be
defined by DECODE. If ESTATE87 does not have values which could be out­
put by DECODE, the results of NORMAL and SIEVE are undefined.

7. If you have any customized code in your error handler, it should appear here.

8. If the handler is returning to the calling environment, you should call ENCODE
with the appropriate parameters.

An Example of an 8087 Exception Handler Written in
PL/M-86

HANDLER_MODULE: DO;

DECODE: PROCEDURE (ESTATE87_PTR,ERRORS87) EXTERNAL;
DECLARE (ESTATE87_PTR POINTER, ERRORS87) WORD;

END;

ENCODE: PROCEDURE (ESTATE87 PTR,ERRORS87,CONTROL87,
RETRY FLiG) EXTERNAL;

DECLARE EStATE87 PTR POINTER;
DECLARE ERRORS87-WORD;

5-9

the EtrorHandler Module

DECLARE CONTROlS7 WORD;
D~CLARE RETRY_FLAG BYTE;

END;

8087 Support Library

NORMAL: PROCEDURE (ESTATE87_PTR,ERRORS87) BYTE EXTERNAL;
DECLARE (ESTATE87_PTR POINTER, ERRORS87) WORD;

END;

SIEVE: PROCEDURE (ESTATE87 PTR,ERRORS87) 6YTE EXTERNAL;
DECLARE (ESTATE87. PTR POYNTER, ERRORS87) WORD;

END;

1* TRAP_HANDLER is a functioning 8087 exceptiO'n handler
written in PL/M-86, using the procedures of EHS7.LIB.
It assumeS that the only unmasked exceptiO'ns are "I"
and "0"; thO'ugh we indicate below where you CO'uld
insert code to handle other exceptions. *1

DECLARE UERROR$BlT LITERALLY '0001H'; 1* To set the "I"
error bit *1

DECLARE TRUE LITERALLY rOFFH';

TRAP_HANDLER: PROCEDURE INTERRUPT 16~

DECLARE ESTATE87 STRUCTURE
OPERA TI ON WORD,
ARGUMENT BYTE,
ARG1(S) WORD, ARG1 FULL BYTE,
ARG2(S) WORD, ARG2-FULL 8YTE,
RESULT BYTE, -
RES1 (S) WORD, RES1 FULL BYTE,
RES2(S) WORD, RES2:FULL 8YTE,
FORMAT BYTE,
REGISTER BytE,
CONTROL_WORD WORD,
STATUS_WORD WORD,
TAG_WORD WORD,
ERROR_POINTERS(4) WORD,
STACK_87(40) WORD);

DECLARE ERRORS87 BYTE;
DECLARE CONTROl87 WORD;
DECLARE RETRY_FLAS BYTE;

ERRORS87 = GETSRtALSERROR;
CALL DECODE(iESTATE87,ER~ORS87J;
CONTROL87 :: ESTATE87. COfHROl-,-,WORDi
RETRY_FLAG = tRUE;

IF NOT NORMAL(iESTATE87(E~RORS'7)
TH'EN DO;

CONTROL87 = CO~TROL87 ORr'ERROR$8Il;
IF NOT SIEVE(iESTATE87,ERRORS87)

THEN 00;
IF ERRORS8?

THEN IlO':
1* Here you may place your O'wn' customrzed, cOGe to

deal with ~I" exctptlo~1 ot~er than nO'n­
tra;ppfng Na'N's an'a denormaLized inputS. The
folclowiing lines set the "I" error bit, mask tlte
"Itt exception, a:(ja' drop t~r"ough to' the RETRY

(

"

(

8087 Support Library The Error Handler Module

exit. This simulates the masked "I" exception,
but with non-trapping NaN's implemented. The
user program must unmask the "I" exception when
it tests and clears the "I" error bit. *1

ESTATE87.STATUS WORD = ESTATE87.STATUS WORD OR
- ISERRORSBIT;-

ESTATE87.CONTROL_WORD = CONTROL87;
END;

ELSE DO;
1* Here you could insert code to examine ERRORS87

to detect exceptions other than "I" and "0". If
those other exceptions are detected, you can
provide your own code. *1

END;
END;

END;

CALL ENCODE(~ESTATE87,ERRORS87,CONTROL87,RETRY_FLAG);

END TRAP_HANDLER;

END HANDLER_MODULE;

5-11

DECODE

5-12

DECODE Decode trapped operation and save
8087 status

Input: Two parameters, totalling six bytes, must be pushed onto the 8086 stack
before calling DECODE.

First, the four-byte pointer ESTATE87_PTR is pushed. As usual, the segment of
EST A TE87 _PTR is pushed first, followed by the offset. DECODE will send its
output to the 144-byte memory buffer pointed to by ESTATE87_PTR.

Second, a two-byte quantity whose bottom byte is ERRORS87 is pushed onto the
stack. ERRORS87 is the bottom byte of the 8087 status word as it existed when the
trap handler was called, before the exceptions were cleared. The top byte of the two­
byte quantity is ignored.

Function: DECODE provides, in a standardized format, all the information an
exception handler might need to deal with the error condition. This includes the
complete state Of the 8087, the identity of the offending operation, and the
existence, formats, and values of any arguments or results.

We have programmed into DECODE the error calling specifications of all 8087
instructions and all CEL87.LIB functions. Once DECODE has identified the inter­
rupted operation, it uses these specifications to fill EST A TE87 with the correct
arguments and results.

An exception to the programming specifications occurs for the CEL87 functions
that return values in 8086 registers. These functions are mqerIA2, mqerIA4,
mqerIC2, mqerIC4, mqerIE2, and mqerIE4. The results are specified by DECODE
to go to the 8087 stack, not to 8086 registers.

DECODE identifies DCON87 errors by setting OPERATION to OC8 hex, but no
information about DCON87 arguments or results is available, because they reside in
a location on the 8086 stack unknown to DECODE.

Note that for FCOMP and FCOMPP instructions with denormal arguments, the
trap handler is called with the inputs already popped off the 8087 stack. DECODE
recovers these arguments from the bottom of the 8087 stack, and pushes them back
onto the stack top.

Output: All output is performed through the 144-byte memory buffer pointed at by
the input parameter ESTATE87_PTR. The fields of the ESTATE87 structure are
described in the section "The EST A TE87 Data Structure", at the beginning of this
chapter.

The 8087 itself is left completely cleared to its initialized state. This is the input state
expected by the other procedures of EH87.LIB.

PL/M-86 declaration and calling sequence:

DECODE: PROCEDURE (ESTATE87_PTR,ERRORS87) EXTERNAL;
DE<LARE ESTATE87_PTR POINTER, ERRORS87 WORD;

EN D;

1* Assume ESTATE87 is already declared as presented
earlier in this chapter *1

(

(

DECODE

DECLARE ERRORS87 WORD;

/* Assume ERRORS87 has been set to the value of the bottom
part of the 8087 status word before exceptions were
cleared. */

CALL DECODE(@ESTATE87, ERRORS87);

ASM-86 declaration and calling sequence:

the folLowing line must occur outside of all SEGEMENT­
ENDS pairs

EXTRN DECODE: FAR

ESTATE TEMPLATE STRUC
DB -144 DUP(?)

ESTATE TEMPLATE ENDS

DATA SEGMENT

The individuaL fields of ESTATE87
can be declared
as in STACK LAYOUT at the
beginning of this chapter.

ESTATE 87 ESTATE TEMPLATE
ERRORS87 OW ?

DATA ENDS

the following code assumes that OS contains the segment
of ESTATE87

ASSUME DS:DATA
PUSH OS

MOV AX,OFFSET(ESTATE87)
PUSH AX

MOV AL,ERRORS87
PUSH AX
CALL DECODE

push the segment of
ESTATE87 onto the stack

4-byte pointer is now
pushed onto stack
second parameter

-- pushed onto stack
ESTATE87 is now fi lled
with information

5-13

ENCQ:DE

5-14

:ENCODE Restore 8087 slalusand operation
environment .

Input: ENCODE expects the 8087 to be .completely cleared to its initialized state.
Information about the 8087 is obtained from EST A TES?, not from the entry state
of the 8087 itself.

Four parameters, totalling ten bytes, must be pushed onto the 8086 stack before·caH­
ing ENCODE. The first parameter is four bytes, and each of the other three
paramet.ers is two bytes.

Thefirst parameter, EST A TE87 _PTR, points to the 144-byte EST A TE87 structure
which was filled by a previous call to DECODE, and possibly modified by interven­
ing code. EST A TE87 _PTR is a four~byte pointer, with the segment pushed first
and the offset pushed next.

The second parameter pushed onto the stack is ERRORS87. ERRORS87 is a
WORD parameter whose bottom byte is the bottom byte of the 8087 status word as
it existed when the trap handler was called, before the exceptions were cleared. The
top byte of ERRORS87 is ignored.

The third parameter, CONTROL87, is a WORD parameter. It contains the value
which the caller wants to place into the 8087 control word before retrying the func­
tion when RETRY_FLAG is true. If RETRY_FLAG is false, CONTROL87 is
ignored.

The fourth and last parameter pushed onto the stack is RETRY _FLAG.
RETRY_FLAG is a BYTE parameter, the bottom half of the WORD which is
pushed onto the 8086 stack (the top half is ignored). RETRY _FLAG is a boolean
control input which tells ENCODE what action to take after restoring the 8087
environment, as described below.

Function: ENCODE restores the 8087 to a state representing the completion of the
operation which caused an error trap. This is accomplished by restoring the 8087 to
the state stored in the EST A TE87 structure, after performing one of two actions,
depending on RETRY_FLAG.

I f the bottom bit of RETR Y _FLAG is 0, the operation is assumed to have already
been performed, and the results are assumed to be in EST A TE87. The results are
copied to their destination. If insufficient results are available in EST A TE87, the
value INDEFINITE may be used.

If the bottom bit of RETRY_FLAG is 1, the operation is identified from
EST A TE87, and reperformed using operands as specified in EST A TE87. The
parameter CONTROL87 is used as the 8087 control word for the retry; you can thus
select which exceptions will be unmasked. After the retry is complete, the 8087 con­
trol word as it exists in EST ATE87 is restored.

If the operation being retried is a load or store that merely moves data without
transforming it, ENCODE will perform the operation with exceptions masked,
using the ARGUMENT and RESULT information of EST A TE87. This allows you
to call ENCODE with true RETRY_FLAG in all cases when NORMAL returns
TRUE, without fear that the retry will repeat the "D" error.

Note that ENCODE cannot be called with RETRY _FLAG true if the error came
from DCON87, since EST ATE87 does not contain enough information about
DCON87.For the same reason, ENCODE cannot retry the CEL87 functions
mqerlC2, mqerIC4, mqerIE2, or mqerIE4 after a "P" precision error.

(

(

/

ENCODE

ENCODE can perform the retry for "I" errors coming from the above four CEL87
functions, as well as mqt?rIA2 and mqerIA4, but the results will go to the 8087 stack
and not tot,he correct 8086 registers. Your code must identify these functions and
pop the answer from the ·8087 to the correct destination in order to resume execution
of the trapped program.

If your CONTROL87 parameter contains unmasked exceptions, it is possible for an
exception handler to be called during the retry, and for ENCODE to be invoked
recursively. If you unmask· the exception that caused the error, you should have
modified the original arguments or results to avoid an infinite recursion.

Output: ENCODE returns with the 8087 restored to the appropriate post-exception
state, as indicated by EST A TE87 and the effects of either the retry or of the move­
ment of results to their destination. Also, the input parameters are popped from the
8086 stack. .

PL/M-86 declaration and calling sequence:

ENCODE: PROCEDURE (ESTATE87 PTR,ERRORS87,CONTROL87,
RETRY_FLAG) EXTERNAL; -

DECLARE ESTATE87_PTR POINTER;
DECLARE ERRORS87 WORD;
DECLARE CONTROL87 WORD;
DECLARE RETRY FLAG BYTE;

EN 0; -

1* Assume ESTATE87 is already declared as presented
earlier in this chapter. *1

DECLARE ERRORS87 WORD;
DECLARE CONTROL87 WORD;
DECLARE RETRY_FLAG BYTE;

1* Assume that all the parameters have been fi Lled with
values. *1

CALL ENCODE(@ESTATE87, ERRORS87, CONTROL87, RETRY_FLAG);

1* The 8087 has now been returned to an appropriate post­
exception state. */

ASM-86 declaration and calling sequence:

the following line must occur outside of all SEGEMENT­
ENDS pai rs

EXTRN ENCODE: FAR

DATA SEGMENT
ESTATE 87 ESTATE TEMPLATE
ERRORS87 OW ? -

DATA ENDS

The following code assumes that OS contains the segment
of ESTATE87. It also assumes that the parameters to
ENCODE have been set to appropriate values.

5-15

ENCODE

5-16

ASSUME DS:DATA
PUSH OS

MOV AX,OFFSETCESTATE87)
PUSH AX

MOV AX,ERRORS87
PUSH AX

MOV AX,CONTROL87
PUSH AX
MOV AL, RETRY_FLAG
PUSH AX
CALL ENCODE

push the segment of
ESTATE87 onto the stack

4-byte pointer is now
pushed onto stack

second parameter is
pushed onto stack
load third parameter
push onto stack
last parameter
-- pushed onto stack

the 8087 is now restored to an appropriate post­
exception state

(

\

/

FILTER Filter denormals and non-trapping NaN's from
user error handling

Input: The two-byte quantity whose bottom byte is ERRORS87 is pushed onto the
8086 stack before calling FILTER. ERRORS87 is the bottom byte of the 8087 status
word as it existed when the trap handler was called, before the exceptions were
cleared. The top byte of the two-byte quantity is ignored.

Function: FILTER provides a single interface to EH87.LIB which calls all of the
other four functions DECODE, SIEVE, NORMAL, and ENCODE. If ERRORS87
indicates that a "D" error caused the trap handler to be called, the denormal argu­
ment is found and normalized. If an "I" error caused the trap, FILTER indicates
whether the exception was caused by a legal non-trapping NaN.

FILTER is a boolean function. It returns TRUE if the trap was indeed caused by one
of the above-mentioned "I" or "D" cases. TRUE means that you may return im­
mediately from the trap handler. FILTER returns FALSE if it has not handled the
error. If FILTER returns FALSE, your trap handler should execute appropriate
customized error recovery.

Output: The boolean value of FILTER is output as the bottom bit of the AL
register. The input word ERRORS87 is popped from the 8086 stack upon return.

If FILTER returns FALSE, the 8087 is returned to the same state that it was prior to
the call to FI~ TER.

If FILTER returns TRUE, the 8087 is changed to reflect a retry of the instruction
with normal operands (in case of "D" error) or "I" masked (in case of "I" error).

PL/M-86 programming example:

FILTER_MODULE: DO;

FILTER: PROCEDURE (ERRORS87) BYTE EXTERNAL;
DECLARE ERRORS87 WORD;

END;

1* SIMPLE_TRAP_HANDLER is an floating point exception
handler which provides a bare minimum interface to
EH87.LIB. If the error which caused this interrupt has
been handled by FILTER, then the interrupt returns to
the user program immediately. Otherwise, your inserted
custom code is executed. *1

SIMPLE_TRAP HANDLER: PROCEDURE INTERRUPT 16;

DECLARE ERRORS87 WORD;

IF FILTER (ERRORS87 := GETSREALSERROR) THEN RETURN;

1* Here you could place code to handle exceptions other
than the denormals and non-trapping NaN's handled by
FILTER. *1

END SIMPLE_TRAP_HANDLER;

END FILTER_MODULE;

FILTER

5-17

FILTER

5-18

ASM-86 programming example:

NAME FILTER_MODULE

EXTRN FILTER: FAR

INTERRUPT TABLE SEGMENT AT 0
ORG 4 *-16
DO SIMPLE TRAP HANDLER

INTERRUPT TABLE ENDS

CODE SEGMENT PUBLIC
ASSUME CS:CODE

STACK LAYOUT STRUC ; Pointed at by BP during
; SIMPLE_TRAP_HANDLER

You can place additional stack-allocated variables here,
for your custom code. You refer to them as
BP.your_var_name.

ERRORS87 DW ? 8087 status word before
clearing

REGISTERS 86 DW 8 DUP(?) Pushed by PUSH_REGISTERS
FLAGS 86 DW ? Pushed by 8086 when interrupt

called
RET ADDRESS DD ? From SIMPLE_TRAP HANDLER

STACK LAYOUT ENDS -
SIMPLE TRAP HANDLER is an floating point exception
handler which provides a bare minimum interface to
EH87.LIB. If the error which caused this interrupt has
been handled by FILTER, then the interrupt returns to
the user program immediately. Otherwise, your inserted
custom code is executed.

SIMPLE TRAP HANDLER PROC FAR - -

CALL PUSH_REGISTERS
SUB SP,OFFSET REGISTERS 86

MOV BP,SP

FNSTSW [BPJ.ERRORS87

MOV AX,[BPJ.ERRORS87
PUSH AX

FNCLEX

CALL FILTER

RCR AL,1
JC TRAP EXIT

Save the 8086 registers
Allocate room for stack
layout
Set up indexing into
STACK LAYOUT
Save The errors that caused
the exception
Fetch the status word

... and store it as FILTER
parameter

Clear the exceptions so
handler can use 8087
Check for denormal or non­
trapping NaN
Was error handled?
If so then do nothing more

Here you could place code to handle exceptions other
than the denormals and non-trapping NaN's handled by
FILTER.

TRAP EX IT:
CALL POP_REGISTERS
IRET

Restore the 8086 registers

SIMPLE_TRAP HANDLER ENDP

PUSH_REGISTERS causes the eight 8086 registers
SI,DI~ES,BP,DX,CX,BX,AX to be pushed onto the 8086
stack. The registers can be popped off with a call to
POP_REGISTERS.

PUSH REGISTERS
PUSH 01

PROC NEAR

PUSH ES
PUSH BP
PUSH OX
PUSH CX
PUSH BX
PUSH AX
MOV BP,SP

XCHG SI, [BP+14]

JMP SI ,
PUSH_REGISTERS ENDP

Get stack pointer into an index
register
Exchange the return address with SI
which is being saved
This is the RETURN of the procedure

; POP_REGISTERS causes the eight registers which were
; pushed by PUSH_REGISTERS to be popped, restoring them to
; their original values.

POP REGISTERS PROC NEAR
POP SI Hold this call's return address

temp 0 r a r i l yin S I
MOV BP,SP Get the stack pointer into an index

register
XCHG SI, [BP+14] Restore SI, and position the return

address
POP AX
POP BX
POP CX
POP DX
POP BP
POP ES
POP DI
RET ; Return address is in position due to above

; XCHG
POP REGISTERS ENDP

CODE ENDS

END

FILTER

5-19

NORMAL

5-20

NORMAL Detect and normalize "0" error non-normal
arguments

Input: NORMAL expects the 8087 to be completely cleared to its initialized state.
Information about the 8087 is obtained from EST A TE87, not from the entry state
of the 8087 itself.

Two parameters, totalling six bytes, must be pushed onto the 8086 stack before call­
ing NORMAL.

First, the four-byte pointer EST A TE87 ~PTR is pushed. The segment of
EST A TE87 ~PTR is pushed first, followed by the offset. EST A TE87 _PTR points
to the 144-byte EST ATE87 structure which was filled by a previous call to
OECOOE.

Second, a two-byte quantity whose bottom byte is ERRORS87 is pushed onto the
stack. ERRORS87 is the bottom byte of the 8087 status word as it existed when the
trap handler was called, before the exceptions were cleared. The top byte of the two­
byte quantity is ignored.

Function: NORMAL first checks ERRORS87 to see if the "0" error bit is the only
unmasked error bit which is set. If this is not the case, NORMAL immediately
returns FALSE, indicating that no normalization retry is to take place.

If "0" is set, and no other unmasked error bits are set, NORMAL returns TRUE. If
the operation that caused the "0" error was a load operation, the non-normal
arguments are left unchanged. If the operation was not a load operation, NORMAL
modifies the denormal arguments. Oenormal SHORT_REAL and LONG_REAL
arguments are normalized; denormal TEMP_REAL arguments are converted to
zero. Only the copies of arguments in ESTATE87's ARGI and ARG2 fields are
modified.

Whenever NORMAL returns TRUE, you should call ENCODE with
RETRY_FLAG set to TRUE. You may leave "0" unmasked, using the same con­
trol word in effect when the trap handler was called. If the operation was a load
instruction, ENCOOE will perform the load with "0" masked, and not cause a
repeat of the "0" error.

Note that NORMAL always returns FALSE if the operation that caused the trap is
DCON87 or a CEL87 function. Only individual 8087 instructions can cause a "0"
error.

Output: NORMAL returns normalized, arguments by modifying ESTATE87. In
addition, it returns a boolean value in the AL register indicating further action to be
taken. If the bottom bit of AL is 1, then a normalization has taken place, and
NORMAL is requesting the caller to retry the offending operation by calling
ENCOOE with a true RETRY_FLAG. If the bottom bit of AL is 0, no such retry is
requested.

NORMAL returns the 8087 itself to the same cleared state it had upon entry.
(

\

NORMAL

PL/M-86 declaration and calling sequence:

NORMAL: PROCEDURE (ESTATE87 PTR,ERRORS87) BYTE EXTERNAL;
DECLARE ESTATE87_PTR POINTER, ERRORS87 WORD;

END;

1* Assume ESTATE87 is already declared as presented
earlier in this chapter *1

DECLARE ERRORS87 WORD;
DECLARE NORM_RETRY BYTE;

NORM_RETRY = NORMAL(@ESTATE87, ERRORS87);

1* Now NORM RETRY is true if a retry of the operation
should be made *1

ASM-86 declaration and calling sequence:

the following line must occur outside of all SEGEMENT­
ENDS pairs

EXTRN NORMAL: FAR

DATA SEGMENT
ESTATE 87
ERRORS87
NORM RETRY

DATA ENDS

ESTATE_TEMPLATE
DW ?
DB ?

; the following code assumes that DS contains the segment
; of ESTATE87

ASSUME DS:DATA
PUSH DS ; push the segment of ESTATE87 onto

; the stack
MOV AX,OFFSET(ESTATE87)
PUSH AX 4-byte pointer is now pushed onto

MOV AL,ERRORS87
PUSH AX
CALL NORMAL
MOV NORM_RETRY,AL

stack
second parameter
-- pushed onto stack

AL now tells whether to retry
boolean answer stored in NORM_RETRY

5-21

SIEVE

5-22

SIEVE Detect non-trapping NaN's which should
be ignored

Input: SIEVE expects the 8087 to be completely cleared to its initialized state.
Information about the 8087 is obtained from EST A TE87, not from the entry state
of the 8087 itself.

Two parameters, totalling six bytes, must be pushed onto the 8086 stack before call­
ing SIEVE.

First, the four-byte pointer ESTATE87_PTR is pushed. The segment of
EST A TE87 _PTR is pushed first, followed by the offset. EST A TE87 _PTR points
to the 144-byte EST ATE87 structure which was filled by a previous call to
DECODE.

Second, a two-byte quantity whose bottom byte is ERRORS87 is pushed onto the
stack. ERRORS87 is the bottom byte of the 8087 status word as it existed when the
trap handler was called, before the exceptions were cleared. The top byte of the two­
byte quantity is ignored.

Function: SIEVE signals those cases in which the" I" exception should not have
been given because the argument was a legal non-trapping NaN. This detection
applies to all arithmetic operations which check for NaN inputs.

SIEVE follows the conventions described in the sections titled "N on-Trapping
NaN's" and "Non-Ordered Comparisons" towards the beginning of this chapter. If
it is determined that this "I" error should not have taken place because the NaN
arguments are non-trapping and the operation is not an ordered comparison, then
SIEVE returns TRUE. In this case, the caller should retry the offending operation
by calling ENCODE with a true RETRY _FLAG, and CONTROL87 modified so
that "I" is masked. ENCODE will restore the original control word, with "I"
unmasked, after the retry is executed.

If it is determined that this" I" error should still be flagged (for example, a stack
error has occurred), SIEVE returns FALSE. Some appropriate "I" error recovery
action should be performed.

Note that if the operation which caused the trap is DCON87 or a CEL87 function,
SIEVE will always return FALSE. All legal non-trapping NaN situations arise from
individual 8087 instructions.

Output: The boolean answer is returned as the bottom bit of the AL register. I f this
bit is 1, the "I" error should not have taken place, according to the non-trapping
NaN conventions described earlier in this chapter.

SIEVE leaves the 8087 in the same cleared state it had upon entry. The structure
EST ATE87 is also unchanged by SIEVE.

PL/M-86 declaration and calling sequence:

SIEVE: PROCEDURE (ESTATE8? PTR,ERRORS8?) BYTE EXTERNAL;
DECLARE ESTATE8? PTR POINTER, ERRORS8? WORD;

END;

1* Assume ESTATE8? is already declared as presented
earlier in this chapter *1

DECLARE ERRORS87 WORD;
DECLARE LEGAL_NAN BYTE;

LEGAL_NAN = SIEVE(@ESTATE87, ERRORS87);

/* Now LEGAL NAN is true if there shouLd not have been an
"I" error */

ASM-86 declaration and calling sequence:

the foLLowing Line must occur outside of aLL SEGEMENT­
ENDS pairs

EXTRN SIEVE: FAR

DATA SEGMENT
ESTATE 87 ESTATE_TEMPLATE
ERRORS87 DW ?

DATA ENDS

the foLLowing code assumes that DS contains the segment
of ESTATE87

ASSUME DS:DATA
PUSH DS ; push the segment of ESTATE87 onto

; the stack
MOV AX,OFFSET(ESTATE87)
PUSH AX 4-byte pointer is now pushed onto

MOV AL,ERRORS87
PUSH AX
CALL SIEVE
MOV LEGAL_NAN,AL

stack
second parameter

-- pushed onto stack
AL now contains booLean answer
LEGAL NAN true if there is no
"I" error

SIEVE

5-23

The Error Handler Module 8087 Support Library

5-24

Linkage of EH87.lIB to Your Program Modules

This section tells how to link EH87.LIB into your program using a LINK86
command.

If you are linking both CEL87.LIB and EH87.LIB, it is absolutely necessary that
EH87.LIB appear after CEL87.LIB in the LINK86 command for this reason:
EH87.LIB contains references to all the functions of CEL87 .LIB. However, if there
are any unused CEL87 functions, they do not need to be linked for EH87.LIB to
work correctly. We have therefore provided public symbols for CEL87.LIB in
EHS7.LIB, all of which point to an SOS6 HLT instruction. CELS7.LIB must appear
first in the LINKS6 invocation to pick up the actual references to CELS7 functions;
then EHS7.LIB will supply HL T references (which do not add to the code size) for
all unused CEL 7 symbols.

If you mistakenly put CELS7.LIB after EHS7.LIB in your link invocation, the link
will be performed without any visible problems. But all your calls to CELS7 .LIB will
go to a HL T instruction. When you attempt to execute your program, the NDP will
halt the first time a CELS7 function is called.

EHS7.LIB requires either the SOS7 component or the SOS7 emulator. If the com­
ponent is present, you must link in SOS7.LIB. If the emulator is used, you must
instead link in ESOS7 and ESOS7.LIB.

Following is the recommended ordering of modules in the LINKS6 statement:

Your object modules
DCONS7.LIB if your program uses it
CELS7.LIB if your program uses it
EHS7.LIB
8087.LIB if you are using the component, or
ESOS7, ESOS7. LI B if you are using the emulator

Examples:

If your modules are MYMODI.OBJ and MYMOD2.0BJ and you are using the
SOS7 emulator, issue the command

If you have a single module MYPROG.OBJ, are using the SOS7 component, and do
not use any libraries other than EHS7.LIB, issue the command

(

CHAPTER 6
IMPLEMENTING THE IEEE STANDARD

The N DP, together with the 8087 Support Library, provides an implementation of
"A Proposed Standard for Binary Floating Point Arithmetic", Draft 8.0 of IEEE
Task P754, Computer, March 1981, pp. 51-62.

This chapter describes the relationship between the NDP and the IEEE Standard. It
gives the choices we have made in the places where the Standard has options. It pilJ­
points two areas in which we do not conform to the Standard. If your application
requires it, you can provide software to meet the Standard in these areas. We
indicate how to write this software.

This chapter contains many terms with precise technical meanings, as specified by
the Standard. We follow the Standard's convention of emphasizing the precision of
our meaning by capitalizing those terms. The glossary in Appendix A provides the
definitions for all capitalized phrases in this chapter.

Options We Have Chosen

Our SHORT_REAL and LONG_REAL formats conform perfectly to the
Standard's Single and Double Floating Point Numbers, respectively. Our
TEMP __ REAL format is the same as the Standard's Double Extended format. The
Standard allows a choice of Bias in representing the exponent; we have chosen the
Bias 16383 decimal.

For the Double Extended format, the Standard contains an option for the meaning
of the minimum exponent combined with a non-zero significand. The Bias for this
special case can be either 16383, as in all the other cases, or 16382, making the
smallest exponent equivalent to the second-smallest exponent. We have chosen the
Bias 16382 for this case. This allows us to distinguish between Denormal numbers
(integer part is zero, fraction is non-zero, Biased Exponent is 0) and Unnormal
numbers of the same value (same as the denormal except the Biased Exponent is 1.)

The Standard endorses the support of only one extended format, and that is all we
provide.

The Standard allows us to specify which NaN's are Trapping and which are non­
Trapping. EH87.LlB, which provides a software implementation of non-Trapping
NaN's, defines the distinction. If the most significant bit of the fractional part of a
NaN is 1, the NaN is non-Trapping. If it is 0, the NaN is Trapping.

When a masked "I" error involves two NaN inputs, the Standard lets us set the rule
for which NaN is output. We choose the NaN whose absolute value is greatest.

Areas Which Need the Support Library to
Meet the Standard

There are five features of the Standard which are not implemented directly on the
8087.

1. The Standard recommends (but does not absolutely require) that a Normalizing
Mode be provided, in which any non-normal operands to functions are
automatically normalized before the function is performed. The NPX instead
has a "D" exception, not mentioned in the Standard, which gives the exception

6-1

Implementing the IEEE Standard 8087 Support Library

6-2

handler the opportunity to perform the normalization specified by the
Standard. The "0" exception handler provided by EHS7.LIB implements the
Standard's Normalizing Mode completely for Single and Double precision
arguments. Normalizing mode for Double Extended operands is implemented
with one non-Standard feature, mentioned in the n~xt section.

2. The Standard specifies that the "=" comparison test yield ali answer of FALSE,
with no "I" error, if the relation between the input operands is "unordered".
The SOS7 FCOM and FTST instructions issue an "I" error for this case. The
error handler EHS7.LIB filters out the" I" error, using the followingconven­
tion: whenever an FCOM or FTST instruction is followed by a MOV AX,AX
instruction (8BCO hex), and neither argument is a trapping NaN, the error
handler will assume that a Standard "=" comparison was intended, and return
the correct answer with "I" erased. Note that "I" must be unmasked for this
action to occur.

3. The Standard requires that two kinds of NaN's be provided, Trapping and
non-Trapping. Non-Trapping NaN's will not cause further "1" errors when
they occur as operands to calculations. The NPX directly supports only Trapp­
ing NaN's. The error handler module EH87.LIB implements non-Trapping
NaN's by returning the correct answer with "I" erased. Note that "I" must be
unmasked for this action to occur.

4. The Standard requires that all functions which convert real numbers to integer
formats automatically normalize the inputs if necessary. The 8087 FIST instruc­
tion does not do so. CELS7.LIB's integer conversion functions fully meet the
Standard inthis aspect.

5. The Standard specifies the remainder function which is provided by mqerRMD
in CEL87.LIB. The 8087 FPREM instruction returns answers in a different
range.

Further Software Required to Fully
Meet the Standard

There are two cases in which you will need to provide further software to meet the
Standard. We have not provided this software because we feel that a vast majority
of applications will never encounter these cases.

1. Non-Trapping NaN's are not implemented when "I" is masked. Likewise, the
Standard's "=" function is not implemented when "I" is masked. You can
simulate the Standard's concept of a masked "I" exception by unmasking the
SOS7 "I" bit, and providing an "I" trap handler which supports non-Trapping
NaN's and the "=" function, but otherwise acts just as if "I" were masked.
Chapter 5 contains examples in both ASM-86 and PLlM-86 for doing this.

2. Denormal operands in the TEMP _REAL format are converted to 0 by the
EHS7.LIB Normalizing Mode, giving sharp Underflow to O. The Standard
specifies that the operation be performed on the real numbers represented by the
denormals, giving gradual Underflow. To correctly perform such arithmetic,
you will have to normalize the operands into a format identical to
TEMP _REAL except for two extra exponent bits, then perform the operation
on those numbers. Thus your software must manage the 17-bit exponent
explicitly.

We felt that it would be disadvantageous to most users to increase the size of the
Normalizing routine by the amount necessary to provide this expanded arithmetic.
Remember that the TEMP _REAL exponent field is so much larger than the
LONG_REAL exponent field that it is extremely unlikely that you will encounter
TEMP _REAL Underflow. Remember further that the Standard does not require

(

(

8087 Support Library Implementing the IEEE Standard

Normalizing mode. If meeting the Standard is a more important criterion to you
than the choice between Normalizing and warning modes, you can select warning
mode ("0" masked), which fully meets the Standard.

If you do wish to implement the TEMP_REAL arithmetic with extra exponent bits,
we list below some useful pointers about when the "0" error occurs:

a. TEMP __ REAL numbers are considered Oenormal by the NPX whenever the
Biased Exponent is 0 (minimum exponent). This is true even if the explicit
integer bit of the significand is 1. Such numbers can occur as the result of
Underflow.

b. The 8087 FLO instruction can cause a "0" error if a number is being loaded
from memory. It cannot cause a "0" error if it is coming from elsewhere in the
8087 stack.

c. The 8087 FCOM and FTST instructions will cause a "0" error for unnormal
operands as well as denormal operands.

d. In cases where both "0" and "I" errors occur, you will want to know which is
signalled first. When a comparison instruction is issued between a non-existent
stack element and a denormal number in 8086 memory, the "0" and "I" errors
are issued simultaneously. In all other situations, a stack "I" error takes
precedence over a "0" error, and a "0" error takes precedence over a non­
stack "I" error.

6-3

(

(

APPENDIX A
GLOSSARY OF 8087 AND

FLOATING-POINT TERMINOLOGY

We continue in this appendix the convention of Chapter 6, capitalizing terms which
have precise technical meanings. Such terms appear as entries in this glossary. Thus
you may interpret any non-standard capitalization as a cross-reference.

Affine Mode: a state of the 8087, selected in the 8087 Control Word, in which
infinities are treated as having a sign. Thus the values +INFINITY and -INFINITY
are considered different; and they can be compared with finite numbers and with
each other.

Base: (1) a term used in logarithms and exponentials. In both contexts, it is a
number which is being raised to a power. The two equations (y = log base b of x) and
(bY = x) are the same.

Base: (2) a number which defines the representation being used for a string of
digits. Base 2 is the binary representation; Base 10 is the decimal representation;
Base 16 is the hexadecimal representation. In each case, the Base is the factor of
increased significance for each succeeding digit (working up from the bottom).

Bias: the difference between the unsigned Integer which appears in the Exponent
field of a Floating Point Number and the true Exponent that it represents. To obtain
the true Exponent, you must subtract the Bias from the given Exponent. For
example, the Short Real format has a Bias of 127 whenever the given Exponent is
non-zero. If the 8-bit Exponent field contains 10000011, which is 131, the true
Exponent is 131-127, or +4.

Biased Exponent: the Exponent as it appears in a Floating Point Number, inter­
preted as an unsigned, positive number. In the above example, 131 is the Biased
Exponent.

Binary Coded Decimal: a method of storing numbers which retains a base 10
representation. Each decimal digit occupies 4 full bits (one hexadecimal digit). The
hex values A through F (1010 through 1111) are not used. The 8087 supports a
"Packed Decimal" format which consists of 9 bytes of Binary Coded Decimal (I8
decimal digits), and one sign byte.

Binary Point: an entity just like a decimal point, except that it exists in binary
numbers. Each binary digit to the right of the Binary Point is multiplied by an
increasing negative power of two.

C3-CO: the four "condition code" bits of the 8087 Status Word. These bits are set
to certain values by the compare, test, examine, and remainder functions of the
8087.

Characteristic: a term used for some non-Intel computers, meaning the Exponent
field.of a Floating Point Number.

Chop: to set the fractional part of a real number to zero, yielding the nearest
integer in the direction of zero.

Control Word: a 16-bit 8087 register that the user can set, to determine the modes
of computation the 8087 will use, and the error interrupts that will be enabled.

Denormal: a special form of Floating Point Number, produced when an
Underflow occurs. On the 8087, a Denormal is defined as a number with a Biased
Exponent which is zero. By providing a Significand with leading zeros, the range of

A-I

Glossary pf8087 and Floating-Point Terminology 8087 Support Library

A-2

possible negative Exponents can be extended by the number of bits in the Signifi­
cando Each leading zero is a bit of lost accuracy, so the extended Exponent range is
obtained by reducing significance.

Double Extended: the Standard's term for the 8087 Temporary Real format, with
more Exponent and Significand bits than the Double (Long Real) format,and an
explicit Integer bit in the Significand. .

Double Floating Point Number: the Standard's term for the 8087's 64-bit Long
Real format.

Environment: the 14 bytes of 8087 registers affected by the FSTENV and
FLDENV instructions. It encompasses the entire state of the 8087, except for the 8
Temporary Real numbers of the 8087 stack. Included are the Control Word, Status
Word, Tag Word, and the instruction, opcode, and operand information provided
by interrupts.

Exception: any of the six error conditions (I, D, 0, U, Z, P) signalled by the 8087.

Exponent: (1) any power which is raised by an exponential function. For example,
the operand to the function mqerEXP is an Exponent. The Integer operand to
mqerYI2 is an Exponent.

Exponent: (2) the field of a Floating Point Number which indicates the magnitude
of the number. This would fall under the above more general definition (1), except
that a Bias sometimes needs to be subtracted to obtain the correct power.

Floating Point Number: a sequence of data bytes which, when interpreted in a
standardized way, represents a Real number. Floating Point Numbers are more ver­
satile than Integer representations in two ways. First, they include fractions. Second,
their Exponent parts allow a much wider range of magnitude than possible with
fixed-length Integer representations.

Gradual Underflow: a method of handling the Underflow error condition which
minimizes the loss of accuracy in the result. If there is a Denormal number which
represents the correct result, that Denormal is returned. Thus digits are lost only to
the extent of denormalization. Most computers return zero when Underflow occurs,
losing all significant digits.

Implicit Integer Bit: a part of the Significand in the Short Real and Long Real for­
mats which is not explicitly given. In these formats, the entire given Significand is
<:onsidered to be to the right of the Binary Point. A single Implicit Integer Bit to the
left of the Binary Point is always 1, except in one case. When the Exponent is the
minimum (Biased Exponent is 0), the Implicit Integer Bit is O.

Indefinite: a special value that is returned by functions when the inputs are such
that no other sensible answer is possible. For each Floating Point format there exists
one non-Trapping NaN which is designated as the Indefinite value. For binary
Integer formats, the negative number furthest from zero is often considered the
Indefinite value. For the 8087 Packed Decimal format, the Indefinite value contains
aliI'S in the sign byte and the uppermost digits byte.

Infinity: a value which has greater magnitude than any Integer, or any Real
number. The existence of Infinity is subject to heated philosophical debate.
However, it is often useful to consider Infinity as another number, subject to special
rules of arithmetic. All three Intel Floating Point formats provide representations
for +INFINITY and ~ INFINITY. They support two ways of dealing with Infinity:
Projective (unsigned) and Affine (signed).

(

8087 Support Library Glossary of 8087 and Floating-Point Terminology

Integer: a number (positive, negative, or zero) which is finite and has no fractional
part. "Intege,r" can also mean the computer representation for such a number: a
sequence of data bytes, interpreted in a standard way. It is perfectly reasonable for
Integers to be represented iIi a Floating Point format; this is what the 8087 does
whenever an Integer is pushed onto the 8087 stack.

Invalid Operation: the error condition for the 8087 which covers all cases not
covered by other errors. Included are 8087 stack overflow and underflow, NaN
inputs, illegal infinite inputs, out-of-range inputs, and illegal un normal inputs.

Long Integer: an Integer format supported by the 8087 which consists of a 64-bit
Two's Complement quantity.

Long Real: a Floating Point Format supported by the 8087, which consists of a
sign, an II-bit Biased Exponent, an Implicit Integer Bit, and a 52-bit Significand; a
total of 64 explicit bits.

Mantissa: a term used for some non-Intel computers, meaning the Significand of a
Floating Point Number.

Masked: a term which applies to each of the six 8087 Exceptions I,D,Z,Q,U,P. An
exception is Masked if a corresponding bit in the 8087 Control Word is set to I. If an.
exception is Masked, the 8087 will not generate an interrupt when the error condi­
tion occurs; it will instead provide its own error recovery.

NaN: an abbreviation for "Not a Number"; a Floating Point quantity which does
not represent any numeric or infinite quantity. NaN's should be returned by func­
tions which encounter serious errors. If created during a sequence of calculations,
they are transmitted to the final answer, and can contain information about where
the error occurred.

NDP: Numeric Data Processor. This is any iAPX86 or iAPX88 system that con­
tains an 8087 or the full 8087 emulator.

Non-Trapping NaN: a NaN in which the most significant bit of the fractional part
of the Significand is 1. By convention, these NaN's can undergo certain operations
without visible error. Non-Trapping NaN's are implemented for the 8087 via the
software in EH87.LIB.

Normal: the representation of a number in a Floating Point format in which the
Significant! has an Integer bit I (either explicit or Implicit).

Normalizing Mode: a state, recommended by the Standard, in which non-normal
inputs are automatically converted to normal inputs whenever they are used in
arithmetic. Normalizing Mode is implemented for the 8087 via the software in
EH87.LIB.

NPX: Numeric Processor Extension. This is either the 8087 or the full 8087
emulator.

Overflow: an error condition in which the correct answer is finite, but has
magnitude too great to be represented in the destination format.

Packed Decimal: an Integer format supported by the 8087. A Packed Decimal
number is a lO-byte quantity, with nine bytes of 18 Binary Coded Decimal digits,
and one byte for the sign.

Pop: to remove from a stack the last item that was placed on the stack.

A-3

Glossary of 8087 and Floating-Point Terminology 8087 Support Library

A-4

Precision Control: an option, programmed through the 8087 Control Word, which
allows all 8087 arithmetic to be performed with reduced precision. Since no speed
advantage results from .this option, its only use is for strict compatibility with the
Standard, and with other computer systems.

Precision Exception: an 8087 error condition which results when a calculation does
not return an exact answer. This exception is usually Masked and ignored; it is used
only in extremely critical applications, when the user must know if the results are
exact.

Projective Mode: a state of the 8087, selected in the 8087 Control Word, in which
infinities are treated as not having a sign. Thus the values +INFINITY and
-INFINITY are considered the same. Certain operations, such as comparison to
finite numbers, are illegal in Projective Mode but legal in Affine Mode. Thus Pro­
jective Mode gives you a greater degree of error control over infinite inputs.

Pseudo Zero: a special value of the Temporary Real format. It is a number with a
zero significand and an Exponent which is neither all zeroes or all ones. Pseudo­
zeroes can come about as the result of multiplication of two Unnormal numbers; but
they are very rare.

Real: any finite value (negative, positive, or zero), which can be represented by a
decimal expansion. The fractional part of the decimal expansion can contain an
infinite number of digits. Reals can be represented as the points of a line marked off
like a ruler. The term "Real" can also refer to a Floating Point Number which
represents a Real value.

Short Integer: an Integer format supported by the 8087 which consists of a 32-bit
Two's Complement quantity. Short Integer is not the shortest 8087 Integer format­
there is the 16-bit Word Integer.

Short Real: a Floating Point Format supported by the 8087, which consists of a
sign, an 8-bit Biased Exponent, an Implicit Integer Bit, and a 23-bit Significand; a
total of 32 explicit bits.

Significand: the part of a Floating Point Number which consists of the most
significant non-zero bits of the number, if the number were written out in an
unlimited binary format. The Significand alone is considered to have a Binary Point
after the first (possibly Implicit) bit; the Binary Point is then moved according to the
value of the Exponent.

Single .Extended: a Floating Point format, required by the Standard, which pro­
vides greater precision than Single; it also provides an expiicit Integer Significand
bit. The 8087's TemporaryReal format meets the Single Extended requirement as
well as the Double Extended requirement.

Single Floating Point Number: the Standard's term for the 8087's 32-bit Short
. Real format.

Standard: "a Proposed Standard for Binary Floating-Point Arithmetic," Draft 8.0
of IEEE Task P754, Computer, March 1981, pp. 51-62.

Status Word: A 16-bit 8087 register which can be manually set, but which is usually
controlled by side effects to 8087 instructions. It contains condition codes, the 8087
stack pointer, busy and interrupt bits, and error flags.

Tag Word: a 16-bit 8087 register which is automatically maintained by the 8087.
For each space in the 8087 stack, it tells if the space is occupied by a number; if so, it
gives information about what kind of number.

(

(

8087 Support Library Glossary of 8087 and Floating-Point Terminology

Temporary Real: the main Floating Point Format used by the 8087. It consists of a
sign, a IS-bit Biased Exponent, and a Significand with an explicit Integer bit and 63
fractional-part bits.

Transcendental: one of a class of functions for which polynomial formulas are
always approximate, never exact for more than isolated values. The 8087 supports
trigonometric, exponential, and logarithmic functions; all are Transcendental.

Trapping NaN: a NaN which causes an "I" error whenever it enters into a calcula­
tion or comparison, even a non-ordered comparison.

Two's Complement: a method of representing Integers. If the uppermost bit is 0,
the number is considered positive, with the value given by the rest of the bits. If the
uppermost bit is 1, the number is negative, with the value obtained by subtracting
(2bit count) from all the given bits. For example, the 8-bit number 11111100 is -4, ob­
tained by subtracting 28 from 252.

Unbiased Exponent: the true value that tells how far and in which direction to
move the Binary Point of the Significand of a Floating Point Number. For example,
if a Short Real Exponent is 131, we subtract the Bias 127 to obtain the Unbiased
Exponent +4. Thus the Real number being represented is the Significand with the
Binary Point shifted 4 bits to the right.

Underflow: an error condition in which the correct answer is non-zero, but has a
magnitude too small to be represented as a Normal number in the destination
Floating Point format. The Standard specifies that an attempt be made to represent
the number as a Denormal.

Unmasked: a term which applies to each of the six 8087 Exceptions I,D,Z,O,U,P.
An exception is Unmasked if a corresponding bit in the 8087 Control Word is set to
O. If an exception is Unmasked, the 8087 will generate an interrupt when the error
condition occurs. You can provide an interrupt routine that customizes your error
recovery.

Unnormal: a Temporary Real representation in which the explicit Integer bit of the
Significand is zero, and the exponent is non-zero. We consider Unnormal numbers
as distinct from Denormal numbers.

Word Integer: an Integer format supported by both the 8086 and the 8087 that con­
sists of a 16-bit Two's Complement quantity.

Zerodivide: an error condition in which the inputs are finite, but the correct
answer, even with an unlimited exponent, has infinite magnitude.

A-5

(

(

APPENDIX B
EXTERNAL SYMBOLS USED

BY THE 8087 EMULATOR

Intel translators put into generated object modules a number of special external
symbols when the NPX is used by programs. These symbols are explained and listed
in this appendix, so that you can recognize them in listings issued by LINK86 and
LOC86.

The machine code generated by an 8087 instruction for the 8087 component is
usually the WAIT opcode, followed by an ESCAPE opcode, followed by further
code which identifies the operands and 1 or the specific instruction. (See the
80861808718088 Macro Assembly Language Reference Manual for the details of
these opcodes).

The emulator can be called using the same amount of code. Instead of the WAlT
and ESCAPE opcodes, a two-byte call to an 8086 interrupt routine is used. The
interrupt routines are written to decode the remaining instruction bytes in the same
way that the 8086/8087 decodes them.

Thus, for each 8087 instruction, there are two opcode bytes which differ when the
emulator is used instead of the chip. Each two-byte pattern for the 8087 chip is
stored under a special name in 8087.LIB. The corresponding two-byte pattern for
the emulator is stored under the same name in E8087.LIB. The special names are
built into all Intel translators that support the 8087. Instead of issuing the opcode
for an 8087 instruction, the translator issues the appropriate external name. LINK86
then supplies the correct opcodes when the externals are satisfied, either by
8087.LIB or E8087 .LIB.

87NULL.LIB satisfies the external names with the same opcodes as 8087.LIB. It is
up to the user program to insure that any resulting 8087 instructions are never
executed.

Here are the special names. The colon given is part of the name; it exists to make it
impossible for the name to be generated by any Intel translators.

M: N C S
M: N D S
M: N E S
M: N S S
M:_NST
M: we S
M:-WDS
M:-WES
M:-WSS
M: WS T
M: WT

3-1

I
.~

(

APPENDIX C
SUMMARY OF 8087 FLOATING

POINT FORMATS

The 8087 supports three formats for real numbers. All formats are in reverse order
when stored in 8086 memory. That is, the first byte (lowest memory address) is the
least significant byte of the Significand; the last byte (highest memory address) con­
tains the sign and the top seven bits of the Exponent.

The three formats supported are the 32-bit Short Real, the 64-bit Long Real, and the
80-bit Temporary Real.

Short Real:
I-bit Sign
8-bit Exponent:
O-bit Implicit Integer Bit:
23-bit Fractional Part:

Long Real:
I-bit Sign
II-bit Exponent:
O-bit Implicit Integer Bit:
52-bit Fractional Part:

Temporary Real:
I-bit Sign
IS-bit Exponent:
I-bit Explicit Integer Bit
63-bit Fractional Part:

Bias 126 if Exponent zero; 127 if non-zero
o if Exponent zero; 1 if non-zero
digits to the right of the Binary Point

Bias 1022 if Exponent zero; 1023 if non-zero
o if Exponent zero; I if non-zero
digits to the right of the Binary Point

Bias 16382 if Exponent zero; 16383 if non-zero

digits to the right of the Binary Point

Special Values in All Three Formats:
Infinity: maximum exponent and zero Significand
NaN: maximum exponent and non-zero Significand
Zero: minimum exponent and zero Significand
Denormal: minimum exponent and non-zero Significand

C-I

APPENDIX D
SUMMARY OF 8087 INSTRUCTIONS

On the following pages you will find a reference chart of NPX instructions. Here is
an explanation of each column of the chart.

Opcode: This column gives the machine codes generated by ASM86 and LINK86
for the given instruction. Digits and upper-case letters "A" through "F" are hexa­
decimal digits. In addition, the following special codes are used:

• "i" denotes a 4-bit quantity whose top bit is 0, and whose bottom three bits give
the 8087 stack element number for the instruction.

• "j" denotes "i" plus 8. It is a 4-bit quantity whose top bit is 1, and whose
bottom three bits give the 8087 stack element number for the instruction.

• "I" followed by a digit denotes a MODRM byte, as described in the ASM86
language manual. The digit gives the value of the middle REG field of the byte
(bits 5,4,3). The MOD field (bits 7,6) can be any of the values 00,01, or 10. The
RIM field (bits 2,1,0) can be any of the 8 possible values. For some values of
MOD and RIM, there will be one or two immediate displacement bytes follow­
ing the MODRM byte, as defined by the 8086 architecture.

The machine codes are those for the 8087 component, produced by linking 8087.LIB
to your ASM-86 object modules. If there is a segment override byte, it goes between
the first (W AIT or NOP) byte and the second (ESCAPE) byte.

The code for the 8087 emulator, produced by linking E8087.LIB, differs as follows:
The FW AIT instruction produces a NOP (90 hex) byte instead of the 8086 WAIT
(9B hex) byte. All other instructions produce a first byte of CD hex, the 8086 INT
instruction, instead of the WAIT or NOP byte produced for the 8087. If there is no
segment override byte, the second byte's top hexadecimal digit is "1" instead of
"D", giving an 8086 interrupt number between 18 hex and IF hex. The remaining
parts of the instruction are the same. If there is a segment override byte, the byte is
replaced by an interrupt number between 14 hex and 17 hex, as shown below. The
third ESCAPE byte remains the same, and is interpreted by the emulator.

Interrupt
14
15
16
17

Qverrlde
ES
CS
SS
OS

Instruction: This column gives the 8087 instruction just as it appears in an ASM-86
program. Operands which begin with "mem" can be replaced with any memory
operand denoting a data area of the correct number of bytes. The number following
"mem" gives the decimal number of memory bytes acted upon. A trailing "r" in the
name denotes a REAL format, "i" denotes an INTEGER format, and "d" denotes
a Binary Coded Decimal format.

Function: This column gives a concise description of the function performed by the
instruction.

Clocks: This column gives the typical number of clock cycles used by the 8087 chip
to execute the instruction. It is not an exact number. If a MODRM byte is involved,
a typical time of 9 cycles is added for calculating the effective address of the memory
operand.

0-1

Summary of 8087 Instructions 8087 Support Library

ErrID: This column gives the hexadecimal value returned by the procedure
DECODE in the library EH87.LIB, described in Chapter 5. The value indicates the
type of instruction which caused an error, and is returned in the OPERATION field
of the structure EST A TE87.

Errors: This column lists the possible exceptions which can occur if the instruction
is executed.

Opcode Instruction Function Clocks ErrlD Errors

98 D9 FO F2XM1 ST -(2 h ST) - 1 500 19 UP
98 D9 E1 FABS ST-ISTI 14 01 I
98 DE C1 FADD ST(l) -ST(l) + ST, pop 90 05 IDOUP
98 DC Ci FADD ST(i),ST STU) -ST(i) + ST 85 05 IDOUP
98 D8 Ci FADD ST,ST(i) ST -ST(i) + ST 85 05 IDOUP
98 D8 10 FADD mem4r ST -ST + mem4r 114 05 IDOUP
98 DC 10 FADDmem8r ST -ST + mem8r 119 05 IDOUP
98 DE Ci FADDP ST(i),ST ST(i) -ST(i) + ST, pop 90 05 IDOUP
98 DF 14 FBLD mem10d push, ST -mem10d 309 10 I
98 DF 16 FBSTP mem10d mem10d -ST, pop 539 OF I
98 D9 EO FCHS ST--ST 15 02 I
98 D8 E2 FCLEX clear exceptions 5
98 D8 D1 FCOM compare ST - ST(l) 45 03 ID
98 D8 Di FCOM ST(i) compare ST - ST(i) 45 03 ID
98 D8 12 FCOM mem4r compare ST - mem4r 74 03 ID
98 DC 12 FCOM mem8r compare ST - mem8r 79 03 ID
98 D8 D9 FCOMP compare ST - ST(l), pop 47 03 ID
98 D8 Dj FCOMPST(i) compare ST - ST(i), pop 47 03 ID
98 D8 13 FCOMPmem4r compare ST - mem4r , pop 77 03 ID
98 DC 13 FCOMPmem8r compare ST - mem8r , pop 81 03 ID
98 DE D9 FCOMPP compare ST - ST(l), pop 2 50 03 ID
98 D9 F6 FDECSTP decrement stack pointer 9
98 D8 E1 FDISI set interrupt mask 5
98 DE F1 FDIV ST(l) -ST(l) I ST, pop 202 09 IDZOUP (98 DC Fj FDIV ST(i),ST STU) - ST(i) I ST 198 09 IDZOUP
98 D8 Fi FDIV ST,ST(i) ST ST 1 ST(i) 198 09 IDZOUP
98 D8 16 FDI\lmem4r ST ST 1 mem4r 229 09 IDZOUP
98 DC 16 FDIV mem8r ST -ST 1 mem8r 234 09 IDZOUP
98 DE Fj FDIVP ST(i),ST ST(i) -ST(i) I ST, pop 202 09 IDZOUP
98 DE Fl FDIVR ST(l) ST I ST(l), pop 203 OA IDZOUP
98 DC Fj FDIVR ST(i),ST STU) -ST 1 ST(i) 199 OA IDZOUP
98 D8 Fj FDIVR ST,ST(i) ST -ST(i) I ST 199 OA IDZOUP
98 D8 17 FDIVRmem4r ST -mem4r I ST 230 OA IDZOUP
98 DC 17 FDIVR mem8r ST -mem8r 1 ST 235 OA IDZOUP
98 DE Fi FDIVRP ST(i),ST ST(i) ST I ST(i), pop 203 OA IDZOUP
98 D8 EO FENI clear interrupt mask 5
98 DD Ci FFREE ST(i) emptyST(i) 11
98 DE 10 FIADDmem2i ST - ST + mem2i 129 05 IDOP ~ 98 DA 10 FIADDmem4i ST - ST + mem4i 134 05 IDOP
98 DE 12 FICOM mem2i compare ST - mem2i 89 03 ID
98 DA 12 FICOMmem4i compare ST - mem4i 94 03 ID
98 DE 13 FICOMP mem2i compare ST - mem2i , pop 91 03 ID
98 DA 13 FICOMP mem4i compare ST - mem4i , pop 96 03 ID
98 DE 16 FIDIV mem2i ST -ST - mem2i 239 09 IDZOUP
98 DA 16 FIDIVmem4i ST ST - mem4i 245 09 IDZOUP
98 DE 17 FIDIVR mem2i ST - mem2i I ST 239 OA IDZOUP
98 DA 17 FIDIVR mem4i ST - mem4i 1 ST 246 OA IDZOUP
98 DF 10 FILD mem2i push, ST - mem2i 59 10 I
98 D8 10 FILD mem4i push, ST - mem4i 65 10 I
98 DF 15 FILD mem8i push, ST - mem8i 73 10 I
98 DE 11 FIMULmem2i ST - ST • mem2i 139 08 IDOP
98 DA 11 FIMULmem4i ST - ST • mem4i 145 08 IDOP
98 D9 F7 FINCSTP increment stack pOinter 9
98 D8 E3 FINIT initialize 8087 5
98 DF 12 FISTmem2i mem2i-ST 95 OF IP
98 D8 12 FISTmem4i mem4i ST 97 OF IP
98 DF 13 FISTPmem2i mem2i - ST, pop 97 OF IP
98 D8 13 FISTPmem4i mem4i - ST, pop 99 OF IP C 98 DF 17 FISTPmem8i mem8i - ST, pop 109 OF IP
98 DE 14 FISU8mem2i ST ST - mem2i 129 06 IDOP

D-2

8087 Support Library Summary of 8087 Instructions

Opcode Instruction Function Clocks ErrlD Errors

98 OA 14 FISUBmem4i ST <- ST - mem4i 134 06 lOOP
98 OE 15 FISUBR mem2i ST <- mem2i - ST 129 07 lOOP
98 OA 15 FISUBR mem4i ST <- mem4i - ST 134 07 lOOP
98 09 Ci FLDST(i) push, ST <- old STeil 20 10 I
98 08 15 FLDmeml0r push, ST <- meml0r 66 10 10
98 [)9 10 FLDmem4r push, ST <- mem4r 52 10 10
98 00 10 FLOmem8r push, ST <- mem8r 55 10 10
98 09 E8 FLDl push, ST <-1.0 18 11 I
98 09 15 FLDCWmem2i control word <- mem2i 19
98 09 14 FLDENV mem14 environment <- mem14 49
98 09 EA FLDL2E push, ST <- log base 2 of e 18 13 t
98 09 E9 FLDL2T push, ST <- log base 2 of 10 19 12 I
98 09 EC FLDLG2 push, ST <- log base 10 of 2 21 15 I
98 09 EO FLDLN2 push, ST <- log base e of 2 20 16 I
98 09 E8 FLDPI push, ST <- Pi 19 14 I
98 09 EE FLOZ push, ST <- +0.0 14 17 I
98 OE C9 FMUL ST(l) <- ST(l) • ST, pop 142 08 IDOUP
98 OC Cj FMUL ST(i),ST ST(i) <- STeil • ST 138 08 100UP
98 08 Cj FMUL ST,ST(i) ST <- ST • STeil 138 08 100UP
98 08 11 FMULmem4r ST <- ST • mem4r 127 08 100UP
98 OC 11 FMULmem8r ST <- ST • mem8r 170 08 100UP
9B OE Cj FMULP ST(i),ST ST(i) <- ST(i) • ST, pop 142 08 100UP
90 OB E2 FNCLEX nowait clear exceptions 5
90 DB El FNOISI nowait set interrupt mask 5
90 DB EO FNENI nowait clear interrupt mask 5
90 08 E3 FNINIT nowait initialize 8087 5
9B 09 00 FNOP no operation 13
90 00 16 FNSAVE mem94 nowait mem94 <- 8087 state 219
90 09 17 FNSTCW mem2i nowait mem2i <- control word 24
90 09 16 FNSTENV mem14 nowait mem14 <- environment 54
90 00 17 FNSTSW mem2i nowait mem2i <- status word 24
9B 09 F3 FPATAN ST <- arctan(ST(l lOST), pop 650 10 UP
9B 09 F8 FPREM ST <- REPEAT(ST - ST(l)) 125 iE IDU
98 09 F2 FPTAN push, ST(l)/ST +- tan(old ST) 400 1C IP
98 09 FC FRNDINT ST <- roundeST) 45 1F IP
98 00 14 FRSTOR mem94 8087 state +- mem94 219
98 00 16 FSAVE mem94 mem94 <- 8087 state 219
98 09 FO FSCALE ST <- ST * 2 ** ST(l) 35 18 IOU
98 09 FA FSQRT ST <- square root of ST 183 OC IDP
98 00 Oi FSTST(i) STeil -ST 18 OF I
98 09 12 FSTmem4r mem4r-ST 96 OF IOUP
98 00 12 FSTmem8r mem8r<- ST 109 OF IOUP
98 09 17 FSTCWmem2i mem2i <- control word 24
98 D9 16 FSTENV mem14 mem14 <- environment 54
98 00 OJ FSTPST(i) STeil - ST, pop 20 OF I
98 08 17 FSTP meml0r meml0r <- ST, pop 64 OF I
98 09 13 FSTPmem4r mem4r - ST, pop 98 OF IOUP
98 00 13 FSTPmem8r mem8r - ST, pop 111 OF IOUP
98 00 17 FSTSWmem2i mem2i - status word 24
98 OE E9 FSUB ST(l) - ST(l) - ST, pop 90 06 100UP
98 OC Ej FSU8 ST(i),ST STeil - STeil - ST 85 06 IDOUP
98 08 Ei FSU8 ST,ST(i) ST - ST - STeil 85 06 100UP
98 08 14 FSUBmem4r ST - ST - mem4r 114 06 IDOUP
98 OC 14 FSUBmem8r ST <- ST - mem8r 119 06 100UP
98 DE Ej FSU8P ST(i),ST STeil - STeil - ST, pop 90 06 100UP
98 OE El FSU8R ST(l) - ST - ST(l), pop 90 07 IDOUP
98 DC Ei FSUBR ST(i),ST STeil - ST - ST(i) 87 07 100UP
98 08 Ej FSUBR ST,ST(i) ST - STeil - ST 87 07 100UP
98 08 15 FSUBR mem4r ST <- mem4r - ST 114 07 100UP
98 OC 15 FSUBR mem8r ST - mem8r - ST 119 07 100UP
98 OE Ei FSUBRP ST(i),ST STeil - ST - ST(i), pop 90 07 100UP
98 09 E4 FTST compare ST - 0.0 42 04 10
98 FWAIT wait for 8087 ready
98 D9 E5 FXAM C3-CO <- type of ST 17
98 09 C9 FXCH exchange ST and ST(l) 12 OE I
98 09 Cj FXCHST(i) exchange ST and STeil 12 OE I
98 09 F4 FXTRACT push, ST(l) <- expo, ST <- sig 50 OB I
98 09 F1 FYL2X ST <- ST(l) * log2(ST), pop 950 1A P
98 09 F9 FYL2XP1 ST - ST(l) • log2(ST +1), pop 850 18 P

D-3

APPENDIX E
SUMMARY OF SUPPORT

LIBRARY FUNCTIONS

The following pages give condensed summaries of the procedures and functions of
the three libraries DCON87.LIB, CEL87.LIB, and EH87.LIB. You can use this
appendix as a quick reference guide after you have assimilated the material in the
main part of this manual.

The 8087 Emulator is summarized in Appendix D, the table of 8087 instructions.

E-\

DCON87.LIB

E-2

All input parameters to DCON87.LIB are 4-byte long pointers to 8086 memory buf·
fers which contain the inputs and outputs. The pointer(s) are pushed onto the 8086
stack, high byte first, before calling the procedure. The procedure returns with the
pointer(s) popped off the 8086 stack.

The first three procedures have one input pointer. The last four procedures have two
input pointers.

mqcBIN~DECLOW (Convert binary number to decimal string)

Input: BIN~DECLOW ~BLOCK~PTR --
4-byte BIN~PTR -- input binary number.
I-byte BIN~TYPE: 0 for SHORT~REAL

1 for LONG~REAL
2 for TEMP ~REAL

I-byte DEC~LENGTH: length of output field
4-byte DEC~PTR -- output decimal significand, decimal point at right
2-byte DEC~EXPONENT: base ten exponent of output
I-byte DEC~SIGN: sign of output, in ASCII

Sign and digits output for unusual inputs:
NaN =" .. "
+INFINITY = "++"
-INFINITY = "--"
+0 = "0 "
-0 = "-0"

Errors: I,D,P

mqcDEC~BIN (Convert decimal string to binary number)

Input: DEC~BIN~BLOCK~PTR--
4-byte BIN~PTR -+ output binary number.
I-byte BIN~TYPE: 0 for SHORT~REAL

I for LONG~REAL
2 for TEMP ~REAL

I-byte DEC~LENGTH: length of input field
4-byte DEC~PTR -+ input string.

Errors: O,U,P

mqcDECLOW~BIN (Convert decimal string, low-level interface, to binary
number)

Input: DECCLOW ~BIN~BLOCK~PTR --
4-byte BIN~PTR -+ output binary number.
I-byte BIN~ TYPE: 0 for SHORT ~REAL

1 for LONG~REAL
2 for TEMP ~REAL

I-byte DEC~LENGTH: length of input field
4-byte DEC~PTR -- input string, stripped down to decimal digits
2-byte DEC~EXPONENT: base ten exponent, with decimal point to

right of input
I-byte DEC~SIGN: sign of input, in ASCII

Errors: O,U,P

,
/

mqcLONG_ TEMP (Convert LONG_REAL to TEMP_REAL)

Inputs: LONG_REAL_PTR -+ input number
TEMP _REAL_PTR output number

Error: D

mqcSHORT_TEMP (Convert SHORT_REAL toTEMP _REAL)

Inputs: SHORT_REAL_PTR"'" input number
TEMP _REAL_PTR output number

Error: D

mqcTEMP _LONG (Convert TEMP_REAL to LONG_REAL)

Inputs: TEMP _REAL_PTR input number
LONG_REAL_PTR output number

Errors: I,O,U,P

mqcTEMP~SHORT (Convert TEMP_REAL to SHORT_REAL)

Inputs: TEMP _REAL_PTR input number
SHORT_REAL_PTR"'" output number

Errors: I,O,U,P

DCON87.LIB

E-3

CEL87.LIB

E-4

"x" denotes the 8087 stack top ST.

"y" denotes the 8087 next stack element ST(l).

"STK" denotes a 2-byte integer pushed onto the 8086 stack.

All 8086 and 8087 stack inputs are popped on successful return.

The errors columns give the hexadecimal code left in the II-bit 8087 opcode register.
along with the possible errors the function can produce. Unmasked errors will trap
with the input(s) on the 8087 stack if under the "Inputs" column; with the output(s)
on the 8087 stack if under the "Outputs" column. The first of the three hex digits
tells how many numbers are on the 8087 stack when a trap handler is called.

Errors, trap with:
Name Function Inputs Outputs

mqerACS x = arc cosine(x) 175 I
mqerASN x = arc sine(x) 174 I
mqerAT2 x = arc tangent(y/x) 277 I 2n U
mqerATN x = arc tangent(x) 176 I
mqerCOS x = cosine(x) 172 I
mqerCSH x = hyperbolic cosine(x) 16F 10
mqerDIM x = max(y-x, +0) 265 I 265 OU .
mqerEXP X= e" x 168 IOU
mqerlA2 AX = roundaway(x) 17E I
mqerlA4 DXAX = roundaway(x) 168 I
mqerlAX x = roundaway(x) 167 I
mqerlC2 AX= chop(x) 17E I 17E P
mqerlC4 DXAX = chop(x) 179 I 179 P
mqerlCX x = chop(x) 166 I 166 P
mqerlE2 AX = roundeven(x) 180 I 180 P
mqerlE4 DXAX = roundeven(x) 178 I 178 P
mqerlEX x = roundeven(x) 178 I 178 P
mqerLGD x = common log(x) 160 IZ
mqerLGE x = naturallog(x) 16C IZ
mqerMAX x = max(x,y) 282 I
mqerMIN X= min(x,y) 281 I
mqerMOO x = (y mod x), has sign(y) 269 I 269 U
mqerRMD x = (y mod xl, close to 0 27A I 27A U
mqerSGN x = (y with x's sign) 264 I
mqerSIN X= sine(x) 171 I
mqerSNH x = hyperbolic sine(x) 16E 10
mqerTAN x = tangent(x) 173 IZ
mqerTNH x = hyperbolic tangent(x) 170 I
mqerY2X x=y" x 26A IZOU
mqerYI2 x =x'* AX 27C IOU
mqerYI4 x=x**OXAX 27C IOU
mqerYIS x=x'* STK 27C IOU

* mqerDIM, mqerMAX, mqerMIN and mqerSGN can produce "0" errors from
within their interiors.

/1
i
~

(

EH87.LIB

All EH87.LIB procedures operate on a structure EST A TE87, summarized below.

Elements of EST A TE87:

OPERATION WORD
ARGUMENT BYTE

ARG1(5) WORD
ARG1_FULL BYTE
ARG2(5) WORD
ARG2_FULL BYTE
RESULT BYTE

RES1(5) WORD
RES1_FULL BYTE
RES2(5) WORD
RES2 FULL BYTE
FORMAT BYTE

REGISTER BYTE

CONTROL_WORD WORD
STATUS_WORD WORD
TAG_WORD WORD
ERROR_POINTERS(5) WORD

STACK_87(40) WORD

instruction or procedure which caused error
two nibbles, each coded:

O=no operand
1=ST(0)
2=ST(1)
3=ST(REGISTER)
4=see FORMAT
5=TEMP REAL
6=64-bit integer
7=BCD

bit 3 means push once
value of bottom-nibble argument
true if ARG1 contains a value
value of top-nibble argument
true if ARG2 contains a value
formats of result, as in ARGUMENT; except

bit 3 on means pop once, bit 7 on means
pop twice

value of bottom-nibble result
true if RES1 contains a value
value of top-nibble result
true if RES2 contains a value
format of type 4 ARGUMENT or RESULT:

0=32-bit real
1 =32-bit integer
2=64-bit real
3=16-bit integer

8087 stack register number for type 3
ARGUMENT or RESULT

8087 control word
BOB7 status word
B087 tag word
80B7 instruction pointer, opcode, operand

pointer
8087 stack of B temporary real values

DECODE: Push 4-byte EST ATE87 __ PTR and 2-byte ERRORS87 before calling.
DECODE fills EST A TE87 with information about the 8087 error that caused the
exception.

ENCODE: Push 4-byte ESTATE87_PTR, 2-byte ERRORS87, 2-byte
CONTROL_WORD, I-byte RETRY_FLAG before calling. ENCODE restores
the 8087 to the state indicated by ESTATE87; if RETRY _FLAG is true it retries the
error operation using CONTROL_WORD.

FILTER: Push 2-byte ERRORS87 before calling. FILTER calls DECODE,
NORMAL, SIEVE, and ENCODE. FILTER returns AL TRUE if either NORMAL
or SIEVE returned TRUE.

NORMAL: Push 4-byte ESTATE87_PTR and 2-byte ERRORS87 before calling.
NORMAL returns AL TRUE if "0" was the only error in ERRORS87; it also nor­
malizes arguments if operation was not a load operation.

SIEVE: Push 4-byte EST A TE87 _PTR and 2-byte ERRORS87 before calling.
SIEVE returns AL TRUE if there was a non-trapping NaN which should not have
caused an "I" error.

E-5

(

(

APPENDIX F
PUBLIC SYMBOLS IN THE

SUPPORT LIBRARY

Each of the three libraries DCON87.LlB, CEL87.LlB, and EH87.LlB contain
public symbols other than the names of the procedures documented in this manual.
They are internal names, used either within the libraries or by Intel translators.

You should not use any of these names in your programs.

There are no extra public names in the 8087 emulator or interface libraries, other
than those listed in Appendix B. The names in Appendix B cannot be generated by
Intel translators, so there is no possibility of conflict.

Following is a list of all public names, both documented and undocumented, for
each library.

DCON87.LIB
CHK_UNMSKD_O_U_ERR
MQCBINDEC
MQCBIN_DECLOW
MQCDBX
MQCDBXDB
MQCDECBIN
MQCDECBINLO
MQCDECLOW _BIN
MQCDEC_BIN
MQCLONG_ TEMP
MQCSHORT_TEMP

CEL87.LlB
MQERACS
MQERAIN
MQERANT
MQERASN
MQERAT2
MQERATN
MQERCI2
MQERCOS
MQERCSH
MQERDIM
MQEREXP
MQERIA2
MQERIA4
MQERIAX
MQERIC2
MQERIC4
MQERICX
MQERIE2
MQERIE4
MQERIEX
MQERINT
MQERIRT
MQERLGD
MQERLGE
MQERMAX

MQERMIN
MQERMOD
MQERNI2
MQERNIN
MQERRI2
MQERRMD
MQERRNT
MQERSGN
MQERSIN
MQERSNH
MQERTAN
MQERTNH
MQERY2X
MQERYI2
MQERYI4
MQERYIS
MQ_l
MQ_2XMl
MQ_63U
MQ_63Ul
MQ_63UPI2
MQ_AT2
MQ_CONST
MQ_COS
MQ_CP2N63

MQCSNGXDB
MQCSNX
MQCTEMP _LONG
MQCTEMP _SHORT
MQCXDB
MQCXDBDB
MQCXDBSNG
MQCXSN
POWER_OF _10
UNMSKD_OV _OR_UN
XCPTN_RTRN

MQ_DECIDE
MQ_EXIT
MQ_EXMl
MQ_I
MQ_IRCHK
MQ_LOG
MQ_LOGlO
MQ_LOGDN
MQ_MQRPI
MQ_NAN
MQ_NOF
MQ_NORM
MQ_NQ
MQ_OF
MQ_PO
MQ_PI2
MQ_PII
MQ_Q
MQ_RAD
MQ_RERR
MQ_SIN
MQ_TXAM
MQ_UO
MQ_YL2X

F-\

Public Symbols in the Support Library

F-2

.EH87.LIB

DECODE
ENCODE
FILTER
FQFORTRANSTATUSCHECK
MQERACS
MQERAIN
MQERANT
MQERASN
MQERAT2
MQERATN
MQERCI2
MQERCOS
MQERCSH
MQERDIM
MQEREXP
MQERINT
MQERIRT
MQERLGD
MQERLGE
MQERMAX
MQERMIN
MQERMOD
MQERN12
MQERNIN
MQERR12
MQERRMD
MQERRNT

8087 Support Library

MQERSGN
MQERSIN
MQERSNH
MQERTAN
MQERTNH
MQERY2X
MQERY14
NORMAL
SIEVE
TQDECODE87
TQENCODE87
TQFETCH_AND_STORE
TQINSTRUCTlON_RETRY
TQNANFILTER
TQNORM87
TQNORMALIZE
TQPOP _THE_TOP
TQREALMATHFIL TER
TQRESTORE_PTRS
TQSA VE_PTRS
TQUNPOP _THE_TOP
TQ_312
TQ_320
TQ_322
TQ_324
TQ_326

(

(

SOS7.LIB, 2-3
S7NULL.LIB, 2-3, 2-4

Accuracy of decimal conversions, 3-4
ACS, 4-7
Affine mode, A-I
Arc cosine, 4-7
Arc sine, 4-9
Arc tangent, 4-11, 4-14
ASN,4-9
AT2,4-11
ATN, 4-14

Base, A-I
Bias, A-I
Biased exponent, A-I
BIN_DECLOW, 3-7
Binary Coded Decimal, A-I
Binary point, A-I
Binary to decimal conversion, 3-7

Calls to PL/M-S6 functions, 4-5
CEL87.LIB, 4-lff, E-4
Characteristic, A-I
Chop,A-1
Chop functions, 4-26, 4-2S, 4-30
Chopping functions, list of, 4-1
Common Elementary Function Library, 4-lff
Common logarithm, 4-37
Control word, 8OS7, 4-6, A-I
COS,4-16
Cosine, 4-16
CSH,4-IS

D exception, 4-11, 5-1, 6-3
DCONS7.LIB, E-2
DEC_BIN,3-10
Decimal conversion, 3-lff
Decimal logarithm, 4-37
Decimal to binary conversion, 3-10, 3-12
Declarations, ASM-S6, 3-1,4-2
Declarations, PL/M-S6, 3-2, 4-3
DECLOW_BIN,3-12
DECODE,5-12
Denormal, iii, A-I
Difference, positive, 4-19
DIM,4-19
Double extended format, 6-1, A-2
Double floating point number, A-2

E8087.LIB,2-3
EH87.LIB, E-5
Emulator,2-lff
Emulator, symbols used, B-1
ENCODE, 5-14
Environment, A-2
Error handler module, 5-lff

_ Error reporting, 3-5, 4-6
ESTATE87, 5-2, 5-12

INDEX

Exception, definition, A-2
Exception handler, in ASM-S6, 5-4
Exception handler, in PLlM-S6, 5-9
Exceptions, emulation of, 2-1
EXP, 4-21
Exponent, A-2
Exponential function, 4-21
Exponential function, any base, 4-59
Exponential functions, list of, 4-1

FILTER, 5-17
Floating point number, A-2
Format of decimal numbers, 3-5
Format, C-I
FSTP-generated errors, 4-5

Gradual underflow, A-2

Hyperbolic cosine, 4-IS
Hyperbolic functions, list of, 4-1
Hyperbolic sine, 4-53
Hyperbolic tangent, 4-57

IA2,4-23
IA4,4-24
iAPX convention, v, vi
lAX, 4-25
lC2,4-26
IC4,4-2S
lCX, 4-30
IE2,4-32
IE4,4-34
IEEE Standard, 3-4, 6-1 ff
lEX, 4-35
Implicit integer bit, A-2
Indefinite, A-2
Infinity format, C-I
Infinity, A-2
lNITS7, 2-2, 2-3
INITFP, 2-2, 2-3
Initializing the SOS7, 2-2
Instruction address register, 8087, 4-6
Instruction set, SOS7, D-I ff
Integer power, 4-62, 4-64, 4-66
Integer, A-3
Interrupts, 2-2
Invalid operation, A-3
Inverse cosine, 4-7
Inverse hyperbolic sine, example, 4-40
Inverse sine, 4-9
Inverse tangent, 4-11, 4-14

LGD,4-37
LGE, 4-39
Linkage, 2-3, 3-22,4-69,5-24
Logarithm, common, 4-37
Logarithm, natural, 4-39
Logarithmic functions, list of, 4-1
Long integer, A-3

Index-I

Index

LONG_TEMP, 3-14
Long real format, C-I

Mantissa, A-3
Manuals, related, v
MAX, 4-41
Maximum function, 4-41
MIN, 4·43
Minimum function, 4c43
MOD, 4-45
Modulus function, 4c45, 4-47

NaN format, C-I
NaN, A-3
Natural logarithm, 4-39
NDP, vi, A-3
Need for Support Library,I-1
Nomenclature for 8086 family, v
Non-ordered comparisons, 5-2
Non-trapping NaN's, 5-2, 5-17, 5-20, A-3
NORMAL, 5-20
Normal distribution, example, 4-21
Normal number, A-3
Normalizing mode. 5-1, 5-17, 5-20, A-3
Notational conventions, iv
NPX, vi, A-3

Ope ode register, 8087, 4-6
Overflow, A-3

Packed decimal, A-3
Partial em ulator, 2-1
PE8087,2-1
PLlM·86 function calis, 4-5
Polar-to-rectangular conversion, example, 4·16, 4·51
Pop, A-3
Positive difference, 4-19
Power function, 4-62, 4-64, 4-66
Precision control, A-4
Precision exception, A-4
Projective mode, A-4
Pseudo zero, v, A-4
Public symbols, F-I
Publications, related, v

Real number, A-4
Recovery of error information, 5-12
Rectangular-to-polar conversion, 4-11
Register usage, 4-6
Remainder function, 4-45, 4-47

Index-2

8087 Support Library

Returning from exception handler, 5-14
RMD,4-47
Roundaway function, 4-23 thru4-25
Roundeven function, 4-32, 4-34,4\..35
Rounding functions,. list of, 4-1

SGN,4-49
Short integer, A-4
Short real format, C-I
SHORT_TEMP, 3-16
SIEVE, 5-22
Sign transfer function, 4-49
Significand, A-4
SIN, 4-51
Sine, 4-51
Single extended format, Ac4
Single floating point number, A-4
SNH,4-53
Stack requirements, 2-2, 3-4, 4-5
Standard, A-4
Status word, A-4
System software, I-I

Tag word, A-4
TAN, 4-55
Tangent, 4-55
TEMP_LONG,3-18
Temporary real format, C-I
TEMP_SHORT,3-20
TNH,4-57
Transcendental, A-5
Trapping Nan, A-5
Trigonometric functions, list of, 4-1
Truncation functions, list of, 4-1
Twos complement, A-5

Unbiased exponent, A-5
Underflow, A-5
Unmasked exception, A-5
Unnormal, v, A-5

Word integer, A-5

Y2X, 4-59
YI2,4-62
YI4,4-64
YIS, 4-66

Zerodivide, A-5

8087 Support Library Reference Manual
121725-001

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide documents that meet the needs of all Intel
product users. This form lets you participate directly in the documentation process. Your comments will
'help us correct and improve our manuals. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document. If you have any comments on the equipment software itself, please contact your Intel
representative. If you wish to order manuals contact the Intel Literature Department (see page ii of this
manual).

1. Please describe any errors you found in this manual (include page number).

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). ________ _

NAME __ ___ DATE ________ _

TITLE ____________________________________ __

COMPANYNAME/DEPARTMENT ___ ~

ADDRESS _________________ ~~ __ __

CITY _______ "'--______ __ STATE ___________ __ ZIP CODE ______ _

(COUNTRY)

Please check here if you require a written reply. D

WE'D LIKE YOUR COMMENTS •••

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

IIIII NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

c

(

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

