§
in
4

[ELLEC" SERIES Il
ICROCOMPUTER
DEVELOPMENT

121632-001 |

7 A guide 1o
INTELLEC" SERIES Ill
MICROCOMPUTER

DEVELOPMENT
SYSTEMS

121632-001

Copyright © 1981 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products: :

BXP intel Megachassis
CREDIT Intelevision Micromap
i Intellec Multibus
ICE iRMX Muitimodule
iCS iSBC PROMPT
im iSBX Promware
Insite Library Manager RMX/80
Intel MCS System 2000
UPI
uScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

PREFACE

This book is a welcome mat for the Intellec Series Il Microcomputer Development System. It is
also an introduction to the world of software development for micro-applications. We assume
that you have some basic knowledge of microprocessors and their applications, but few
demands are made on that knowledge. We do not assume that you have had exposure to any
particular programming language. This book can be useful to beginners, and even
sophisticated readers should find it rewarding to skim through.

This book is a tutorial for using the Series Ill system, especially the ‘8086 side’’ of it (the 8086
execution environment). The ‘8085 side’’ is similar to a Series |l system, which is described in
A Guide to Intellec Microcomputer Development Systems by Daniel McCracken.

We lead you through a typical software development process by providing an example of a
micro-application: a climate control system for a building. To keep the example easy to
understand, we only describe the software development effort, assuming that the hardware for
the climate system is being developed simultaneously. In fact, we illustrate some typical prob-
lems in software development that occur as a result of changing hardware designs.

Chapter 1 gives an overall view of the Series Ill system and the application example. It also
describes top-down design, stepwise refinement, modular programming, design considera-
tions, and how to choose the proper software language for each module.

Chapter 2 is a step-by-step tutorial on the Series Il operating system, showing typical
operations.

Chapter 3 is a step-by-step tutorial on CREDIT, and it incidently shows the process of stepwise
refinement of the application’s main control algorithm.

Chapter 4 describes Pascal-86 programming, structured and modular design, parameter pass-
ing, data typing, and the Pascal-86 compiler.

Chapter 5 describes PL/M-86 programming, and it shows a sample PL/M-86 routine used in the
application. It also briefly describes the PL/M-86 compiler and the 8086/8087/8088 Macro
Assembiler.

Chapter 7 describes program debugging with DEBUG-86 and hardware emulation with the
ICE-88 emulator.

There is also a bibliography of related material, and a list of Intel manuals supplied with the
Intellec Series Il Microcomputer Development System.

CONTENTS

Page

CHAPTER1: THE SOFTWARE DEVELOPMENTPROCESSccoiviiiinnann.. 1
Defining the Product’s Softwareo 3
Choosing the Software Development TOOIS ..ottt 5
LA GUAGE S ottt e e e 5
Modular Programming ... e 6
Debugging and In-Circuit Emulation i 7
Using Your Final Product e e e 8
CHAPTER2: OPERATING THESERIESIISYSTEM i 9
Turning On YouUr SyStem ... e 9
The Directory Listingoo i e e e 10
Formatting DiskSoi i s 13
Hard Disk Subsystem Users i e 13
Flexible Disk USers ... e e e e 14
Filenames, Pathnames, and File Attributes i i 15
Renamingand Deleting Files ... o 18
Copying Files to Disks and DeVICESoiii i e e e 19
Executing Commands and Programsttt 22
Summary of the Series lll Operating System i 25
CHAPTER 3: TEXTEDITING ... e et 27
Creatinga TextFile and Inserting Text i e 28
Moving Aroundinthe TextFile i 32
Finding Old Text and Substituting New Text i 33
Macros and Command lteration i 36
Ending a Tex{ Editing Session and Managing Backup Files 38
Displayingand Printing Text Files ... e s 39
From JTextto Program e s 39
CHAPTER4: PROGRAMMING INPASCAL-86ccooviiiiinniainiiinnaaaanns 4
Translating Pidgin PascaltoPascal-86 i 41
Pascal-86 Data TyPesoinitii it e 45
Another Look at Modularizing .and Hiding Information, 46
Passing Data to Other Modules—Parameter Passing Techniques 48
The Interface Specification i s 49
Test Version of the Climate Control System i i 49
The PasCal-86 COMPIIEr vttt e et et e e e e e e e e et 55
T2 14T 2 61
CHAPTERS5: PROGRAMMING IN OTHERLANGUAGEScoiiiiiiii.. 63
Another Look at Choosing Languages forModules ...t 63
Programming in PL/M-86 s 64
Programming in 8086/8087/8088 Assembly Languagecooiiiiiiiiiiiin, 69

Programming For the Series lll Environment i, 70

vi

CONTENTS (Cont’d.)

PAGE
CHAPTER 6: USING UTILITIES TO PREPARE EXECUTABLE PROGRAMS 75
Preparing a Library of ProgramModules ... 76
Linking Modules to Form a Locatable Programt 77
Locating and RUnning Programsu et 78
CHAPTER7: DEBUGGING AND EXECUTING PROGRAMScoivan.. 81
Using DEBUG-86 For Symbolic Debugging ...t i 82
Using ICE-88, an In-Circuit Emulator et 92
EXecUtion ENVIFONMENtS ..o o i e 95
BIBLIOG RAPHY .. e 97
IND E X ittt e e 99
THE INTELLEC® SERIES |l PUBLICATIONS LIBRARY
ILLUSTRATIONS
FIGURE TITLE PAGE
1-1 Developing Software on the SeriesllISystem oL 2
1-2 Block Diagram of Our Climate Control Systemt 3
1-3 Nassi-Schneiderman Chart for Our Climate Control Software 4
31 The CREDIT VIideo Displayttt i eeeas 28
3-2 The Series L Keyboard i i 29
41 Algorithm for the Climate Control MainModuleooven... 42
4-2 First Try at Coding the Main Program i i, 43
4-3 Second Try at Coding the Main Programottt 47
4-4 The Interface Specification i 50
4-5 Test Version of Our Climate Control System i, 51
4-6 Lisingsof QurTestModules i e e 57
5-1 The PL/M-86 Typed Procedure THERMOSTATS$SETTINGSFROMS$PORTS 64
5-2 The PL/M-86 Typed Procedures
TEMP$DATASFROMSPORTS and INTERPOLATE 66
5-3 Listing of PLMDATA with the CODE Controlcoiiiiiiiiinnnn 71
6-1 Using Utilities to Prepare Executable Programsooiiit, 75
6-2 Main Module with Subordinate Modules ... 7
7-1 Climate Control Program Listingand Sample Run i, 85
7-2 Listing of the Modified PLMDATAModUIEciiiiiiiiiiii i 92
7-3 Possible Execution Paths for Pascal-86 Programs 96

CHAPTER 1
THE SOFTWARE DEVELOPMENT PROCESS

‘‘Hardware is computing potential; it must be harnessed and driven by software to be useful.”
--Andrew S. Grove, President of Intel Corp.

The Intellec Series Il Microcomputer Development System is more than a keyboard, a video
display, an integral disk drive, and a box with two microprocessors. It is a useful tool for
designing microcomputer software for the iAPX 86,88 processor family or for the 8080/8085 pro-
cessors. You can choose the appropriate language (PL/M, FORTRAN, Pascal, macro-
assembly language) for each piece of software, debug these pieces separately, and link them
in different ways for different applications. The applications can then be run on this system or
any other system that is based on the iAPX 86,88 or 8080/8085 families of processors.

Intel’s iIAPX microprocessor family provides an architecture best suited for modular software
development using high-level languages. The Intellec Series |l Microcomputer Development
System takes full advantage of this architecture to provide a more cost effective programming
environment that guarantees a shorter development cycle.

To design a product that will contain a microprocessor, you must coordinate two efforts: the
design of the hardware that surrounds the microprocessor, and the design of the software that
controls the microprocessor. Hardware development involves planning the interaction of the
microprocessor, the associated memory and peripheral circuits, and the specialized
input/output circuits and processors. Software development involves programming the
microprocessor with instructions that will eventually be stored in the product’s memory.
These instructions must be designed to correctly perform the required tasks.

It is possible to carry out these development efforts independently--the hardware develop-
ment separate from the software development. In practice, however, it takes a long time to
develop error-free software on prototype hardware. To achieve good system integration and to
save time, software debugging must usually begin long before prototype hardware is available
to test the software.

The Intellec Series Ill with in-circuit emulation (ICE) is a development solution because it pro-
vides support for parallel hardware and software development efforts. Using the ICE-86 or
ICE-88 emulator, you can emulate parts of your prototype hardware in order to test your soft-
ware in a stable environment that resembles your final product. The ICE-86 or ICE-88 emulator
also allows you to substitute memory and other resources from the Series lll system for the
memory and resources missing in your prototype hardware. With the ICE-86 or ICE-88
emulator, prototype hardware can be added to your product as you are designing it, and soft-
ware and hardware testing can occur simultaneously (thereby speeding up the entire develop-
ment process).

CHAPTER 1

The chart in figure 1-1 summarizes a software development process, starting with an idea for a
final product. Such a process always starts with an idea, which you refine step by step until
you can define the actual product’s environment, hardware, and logic.

To provide a tutorial on using the Intellec Series lll system, and to show how Intel’s software
development tools are used in a development situation, we provide a simple software applica-
tion for the iIAPX 88 microsystem, at the heart of which is an 8088 microprocessor. The applica-
tion is a climate control system for a building that uses a solar collector for heating and cool-
ing, with backup methods of heating and cooling when the solar collector is not adequate. All
methods use water, storage tanks, and a water-to-air exchanger or heat pump.

USING INTEL'S UNIVERSAL PROM
PROGRAMMER TO PROGRAM PROMS

START WITH DESIGN * PROTOTVEE
] HARDWARE
1DEA HARDWARE 'T
MODULES AARDWARS
INTEGRATE MANUFACTURE
OEFINE PRODUCT [t | ANDDEBUG PRODUCT
USING ISIS-Il OPERATING SYSTEM
AND CREDIT™ EXIT EDITOR
DESIGN SOFTWARE DO STEPWISE CHOOSE
L] ATHiGHEST f—»| REFiNEMENTOF L] LaNGuAGEs
LEVEL SOFTWARE DESIGN FOR MODULES
USING TOP-DOWN DESIGN TECHNIQUES USING INTEL
cam RS o, USING INTEL'S PROGRAMMING LANGUAGES; LINKING,
COMPILED LOCATING, AND LIBRARY MANAGEMENT UTILITIES: AND
SEPARATELY DEBUGGING TOOLS, INCLUDING ICE™ IN-CIRCUIT EMULATORS

USE CREDIT™ LINK MODULES, USE DEBUGGER

TO WRITE
REFINE AND
ALGORITHMS MODULES RUN THE PROGRAM EMULATOR

Figure 1-1. Developing Software on the Series Ill System 1216321

SOFTWARE DEVELOPMENT PROCESS

Several decisions about this climate control system can be deferred to a later date. For exam-
ple, by designing the system’s software in a modular fashion, we can add more methods of
heating or cooling as necessary, and we can decide how to handle water pumps and valves ata
later date. We know now that the software’s primary purpose is to choose a method of heating
or cooling hased on temperature data, and to operate the climate system’s pumps and valves.
Figure 1-2 is a simplified block diagram of the application.

DEFINING THE PRODUCT’S SOFTWARE

As you define your product’s hardware, you must also define the purpose of its software. For
example, the purpose of the software for our application is to gather and store the appropriate
temperature data, decide on a heating or cooling method based on that data, implement the
method in the climate system, and maintain the operation of the climate system. Each task can
be designed as a piece of software called a module. By keeping tasks modular, you can
change the details of any task without affecting the details of the other tasks.

Keep in mind that software provides the capability to change or add to the product. The entire
product could consist of hardware and logic circuits, but then you might have to rebuild each
unit to add more capabilities or change the flow of the logic. Software that is not modular and
easy to maintain does not solve this problem; therefore, you must define the entire purpose of
the software, with an eye to the future of your product. Keep it modular so that you can replace
modules easily without rewriting modules that already work.

For our climate control system, we defined the software to be a set of modules that receive and
store data, decide heating or cooling methods based on that data, and decide how to operate
the hardware associated with the climate system.

At this time, we do not need a more detailed definition; in fact, more detail would hinder our
process of step by step refinement. It is important to realize the order for these actions: first,
the software has to start up the climate system. Once started, the software has to do several
things over and over (unless the system shuts down): (1) read the various temperatures, (2)
store the data for future reference, (3) decide on a heating or cooling method to use, and (4)
operate- the climate system to provide heating or cooling and.to maintain the system (e.g.,
maintain heat gain).

DATA CONTROLLING SOFTWARE CLIMATE SYSTEM

THERMOSTAT ———> > SOLAR COLLECTOR

[WATER TANKS
AIR TEMPERATURE =i

MINIMUM SETTINGS,
TEMPERATURE COMPARISONS | EXCHANGER

TO DETERMINE METHODS
WATER TEMPERATURE ———] oC'{EATING AND COOLING,

INTERACTIVE CONSOLE, oy
AND FILE TO STORE ALL DATA HEAT PUMP
AMOUNT OF SUNLIGHT]
> CIRCULATION VALUES
AND PUMPS
TIME OF DAY ———— L > INDICATOR LIGHTS

Figure 1-2. Block Diagram of Our Climate Control System 121632-2

CHAPTER 1

A good software definition breaks the problem into solvable tasks. The order in which these
tasks must occur also determines the structure of the software. If the structure is simple to

understand, it will be that much easier to implement and maintain.

A Nassi-Shneiderman Chart (shown in figure 1-3) is useful for showing structured blocks of
software. Use whatever charts you find useful, but hide many of the details so that you are not
locked into doing things a certain way. In our application, we hid all details about data types,
input and output, and actual heating or cooling methods. It is most important that we design
each module to be self-reliant; that is, a module should not have to know about details hidden

in another module, especially details that might change in the future.

OPERATING =TRUE; PANIC=FALSE

WHILE OPERATING DO BEGIN

DETERMINEMETHOD (DATA)
DEMAND FOR HEATING/COOLING?

NO) YES

WATER HOT/COLD ENOUGH?

(NO METHOD)
YES NO

OPERATING =FALSE;
PANIC =TRUE

OPERATION MODULE

|:| MAIN MODULE

GETDATA MODULE
Heating Methods Data
Collector To Exchanger InsideTemp
Tank To Exchanger ThermostatSetting
Collector To Heat Pump CollectorWaterTemp
Tank To Heat Pump TankWaterTemp
Heated Tank To Heat Pump HeatedTankTemp

No Method (No heating demand)

AmountOfSun (for collector operation)

Hour, Minute (for collector and immersion heater operation)

Figure 1-3. Nassi-Schneiderman Chart for Our Climate Control Software 121632-3

SOFTWARE DEVELOPMENT PROCESS

CHOOSING THE SOFTWARE DEVELOPMENT TOOLS

It is unfortunate but common in this industry to find software development systems sorely
lacking in the tools of the trade. There are some systems that force you to put together a whole
program in the limited space they allow, and they don’t provide the facility to create a library of
canned routines that you could use with many different programs.

The Intellec Series lll system provides both the ability to put together partial programs, and the
facilities to build libraries of routines that you can link to different programs. The concept of
module is inherent in this system. Whenever you build a partial program, it is a module; and
the module can refer to procedures, functions, and variables in other modules found in
libraries.

For our application, we do not have to decide on one programming language—the Intellec
Series lll system supports several, including the high-level languages PL/M-86, Pascal-86, and
FORTRAN-86. We can, however, decide whether or not to use modules that already exist, and
design our application with that decision, or change the decision later and create another
module to replace it.

For example, we already have a module written in PL/M-86 that performs a routine to convert
thermocouple voltage into degrees Celsius. We can decide now to tentatively use it, thereby
saving time by not coding this routine into our main program. We can also decide, at a later
time, not to use it, and substitute our own module to do it. The decision to link which module
does not have to be made until the main program is finished!

By choosing the right tools you can save time and defer decisions on specific details until you
are ready to deal with the details. By deferring such decisions, you keep your software
development effort from becoming too cluttered with rigid design decisions, and you keep the
effort flexible enough to accept change.

The right tools are (1) appropriate high-level languages to choose from, (2) a way to manage
libraries of canned routines, (3) a linker that allows you to link finished (or unfinished) modules
in different ways for different applications, (4) a locater that will locate programs in memory for
you, yet give you the opportunity to specify locations for sections of the program, (5) a sym-
bolic debugger you can use to test modules and partial programs easily, and (6) an in-circuit
emulator to emulate parts of your final product before they exist. The Intellec Series |l
Microcomputer Development System supports all of these tools.

LANGUAGES

When designing a system using top-down techniques, you think in and express concepts in
the highest-level language possible at each refinement step in order to expose the logical con-
cepts and conceal the details.

How can you tell whether you are thinking in a language that is ‘‘high-level’’? A language is
“high-level” for a given application if you use it to define the overall structure of the software.
You use a lower-level language to express in great detail each piece of code. With a high-level
language you gain a clear understanding of the control structures of the system at the highest
level, and you expose logical flaws in the structure that would have led to subtle bugs in the
code. With these advantages in mind, it makes sense to start your programming with the
highest-level language: English. After you have defined the software in English, you can use a
high-level programming language like Pascal, which allows you to express more detailed code
in alanguage that resembles English.

CHAPTER1

In Chapter 3, we refine our climate control algorithm step by step. We use as a language
something called Pidgin Pascal, which is really a language of concise declarative English
sentences. Since our control structures can be translated easily from English into Pascal, we
decided to use Pascal-86 for our main climate control module (this decision does not have to
be final). We do not start the translation into Pascal-86 until after we have tested the logic of our
Pidgin Pascal algorithm.

Pascal is a language that resembles the control structures of human thought. We don’t think in
terms of GO TO branches normally; we consider a job to be a set of tasks to DO WHILE
something is true, or to DO UNTIL something is done. IF something is true or false, THEN do
one thing; ELSE do another thing. In the CASE of several different problems, solve each one
accordingly. Occasionally we might need a disaster bail-out (GO TO a panic routine), but we
should be planning our algorithm to take care of disasters elegantly.

The point is: we should think about control structures of a system as structures, not as
individual branch statements. Pascal is one language that was designed to express control
structures; PL/M is another, and some new versions of FORTRAN can be structured
accordingly.

‘Another point should now be obvious: you should choose the language best suited for the
algorithm. For example, our module that operates the climate system has to manipulate pumps
and valves to implement a chosen heating or cooling method. This operation module receives
the data from the decision-making main module written in Pascal. The operation module might
use bits in a word as control signals to send to the procedure that actually interfaces to the
hardware of the climate system.

We can code this operation module in assembly language or PL/M, since both languages can
easily manipulate bits in a byte or word and respond with appropriate actions based on the
pattern of bits. Our final decision will be made later; in the meantime, we will use a test version
of the operation module, until prototype hardware for the climate system is ready. Our test ver-
sion will be written in Pascal, and it will simply display appropriate test information at the
console. .

Itis most likely that the final version of the operation module will not be written in Pascal, since
Pascal does not provide bit manipulation operations. We can also guess that the module will
not be written in FORTRAN--the advantage FORTRAN has over PL/M is its ability to express
complex mathematical formulas. Our climate control system has no complex mathematical
formulas.

We would code the final version of the operation module in assembly language if the applica-
tion required the most efficient use of processor time and memory; however, PL/M program-
ming saves development and maintenance time since it is easier to learn and the programs are
easier to read and maintain. The only drawback to PL/M is that it is not as efficient in time or
memory, and it cannot compute decimal or real arithmetic. These are not drawbacks in our
application, since we do not need decimal or real arithmetic, nor do we have severe speed and
memory constraints. The advantage of saving development time and maintenance costs with
PL/M far outweigh the advantages of using assembly language.

MODULAR PROGRAMMING

The Intellec Series Il system has the linking and locating tools to support modular pro-
gramming, and the library utility to maintain libraries of canned routines. The decisions we
make at this time are not binding, but they can be very helpful: we can decide now what types

SOFTWARE DEVELOPMENT PROCESS

of routines will be separated into which modules. We have several design criteria for making
these decisions. We must be able to (1) write the routines of one module with little knowledge
of the code in other modules, and (2) reassemble and replace any module without affecting
other modules. Each module of our climate control system will contain design decisions that
are hidden from the other modules so that the decisions are not binding.

With these criteria in mind, we designed our system to have several modules: the GetData
module gets and stores our data, the Operation module performs the actual climate system
operation (turning pumps and valves on and off, etc.), and the Main module makes the high-
level decisions.

The only binding decisions to be made at this time concern the data passed between modules.
We try to keep data passing to a minimum, or we try to enforce a data-passing standard that is
easy to comply with. In our climate system, we only need to pass a reference to a data record
to the other modules; the other modules must know what to do with the reference. This data-
passing technique is one of the two we can use: pass-by-reference and pass-by-value, which
are described in more detail in Chapter 4.

With the Intellec Series Ill system capabilities, we can design different versions of the same
module, test each version, and decide at a later time which version to link with the other
modules. We can also defer decisions about the physical memory locations (locations in our
final product’s memory) for these modules until after we have debugged our prototype hard-
ware with an in-Circuit Emulator (ICE-86 or ICE-88). In some applications, you never have to
decide physical memory locations; the Intellec Series lll locater can decide them for you.

DEBUGGING AND IN-CIRCUIT EMULATION &

At any time during software development, you can test a compiled module using DEBUG-86. In
certain cases you will want to alter the module to be self-contained; for example, our main
module needs the appropriate data from the GetData module, but the GetData module is not
yet written. We can quickly write a procedure that obtains the data from an interactive session
at the console, link this temporary data acquisition module to our main module, and test our
main module using DEBUG-86.

When we have our modules coded and compiled, we can test the modules in an ICE-86 or
ICE-88 session that can emulate the final product’s processor. We can use an ICE-86 emulator
if our final product will contain an 8086 processor, or use an ICE-88 emulator if it will contain an
8088 processor (remember, our iIAPX 86, 88 applications software can run on either an 8086 or
an 8088).

For example, our data module will read data from ports of an 8088 processor in our final prod-
uct. The ICE-88 emulator can emulate those ports before we ever have a prototype of the final
product. Using ICE-88, you can begin testing your software before any prototype hardware
exists. As portions of your prototype become available, you can use them and still borrow
resources like memory from your Series lll system.

With in-circuit emulation, you control, interrogate, revise, and completely debug your product
in its own environment, or in a stable environment that emulates the final product’s environ-
ment. Symbolic debugging is one of the key features of Intellec microcomputer development
systems and in-circuit emulators. Symbolic debugging allows you to debug your program
using its own symbols and line numbers—you do not have to convert your symbols to physical
memory addresses.

CHAPTER 1

USING YOUR FINAL PRODUCT

Intel supplies other tools to help you put together your final product. If you designed your
product to have its software in ROM (read-only memory), you can use Intel’s Universal PROM
Programmer (UPP) with its Universal PROM Mapper (UPM) software to create the PROM
(programmable read-only memory) device to hold the software. You can then install your
device in an SDK-86 or SDK-88 (System Design Kit with an 8086 or 8088 processor), or in an iSBC
(Single Board Computer) system.

You can also run your software in other systems, or in dedicated application environments. For
example, you could transfer your software to RAM (random-access memory) on an SDK-86 or
SDK-88, or to RAM on an iSBC 86/12A (Single Board Computer system with an 86/12A board),
by first using the OH86 utility described in the iAPX 86,88 Family Utilities User’s Guide for 8086-
Based Development Systems to convert the program to hexadecimal object format. You would
then use an appropriate tool to load the software into your execution board (the ICE-86
In-Circuit Emulator, the SDK-C86 Software and Cable Interface, or the iSBC 957 Interface and
Execution Package).

You can also use your Series |l development system as the environment for your final soft-
ware product. The Series lll system has an 8086 processor (the ‘8086 side’’ or 8086 execution
environment) to run iAPX 86, 88 applications software. As soon as you have debugged your
software, it is ready to be used in any Series Il system. Chapter 6 describes the run-time
libraries you use to run your Pascal-86 programs in the Series Ill environment; you can also
supply your own versions of these libraries to run these programs in another execution
environment. Chapter 6 also shows how you can link modules and locate them in Series Il
memory in one easy step to prepare them for execution in the Series Ill system.

Whatever environment you choose for your final product, intel provides the appropriate hard-
ware and software tools to develop, debug, and produce your final product. The Intel
environments that are suitable for final software products are excellent investments which can
be upgraded for the software of the future.

CHAPTER 2
OPERATING THE SERIES Ill SYSTEM

“The benefits of using a standardized operating system should prove to be as significant as
the benefits of using standardized microcomputer hardware. Development and programming
costs will be reduced substantially, and you will have an upward compatible interface for future
products.”

—Andrew S. Grove, President of Intel Corp.

As you learned in Chapter 1, the Intellec Series Il Microcomputer Development System con-
tains the tools you need to develop software for your application. To use these tools, you must
operate the system; that is, use the system’s commands and utility programs.

A large multi-user computer system can serve as a useful analogy to point out the difference
between programming the system and using the system. A working system usually supports
both kinds of activities. In such a large system, one or more programmers might be designing
programs to run on the system. One or more users (who might also be programmers) might be
simply using the programs that have already been developed for the system. Obviously, a user
does not need to know complicated details about the system to use it, whereas a programmer
needs to know such details to write programs for the system.

The Series Ill system has most of the capabilities of larger systems, but it is only used by one
person at a time. This person could be using the system and its programs, or writing programs
for the system.

We wrote this chapter for people who need to know how to use the system. This information is
important to anyone using or programming the system, but it is not burdened with details that a
first-time user does not need. As we describe system commands and utility programs, keep in
mind that we swept the more complicated details under the rug to keep the chapter easy to
read. For more details on all of the system commands, see the Intellec Series Il Micro-
computer Development System Console Operating Instructions.

TURNING ON YOUR SYSTEM

Every microcomputer has something called an operating system, which is sometimes called a
supervisor or monitor. It is usually the first piece of software you use—the software thatis con-
trolling your computer when you first turn it on, and the software that responds to your first
typed command. Typically, you type a command to ask the computer for a list of the files you
have on disk, or to execute a particular program.

When you turn on the Intellec Series |l Microcomputer Development System, the following
message appears on your screen:

SERIES II MONITOR, Vx.y

CHAPTER 2

10

This message tells you that the monitor is up and running (the x and y represent version
numbers). The monitor is a piece of software that gives you direct control of the Series Il hard-
ware. Although you can use the monitor for debugging and other operations, for your pur-
poses the monitor performs one quick activity: it loads the operating system from the system
disk in drive 0 into the computer when you push the RESET button.

To load or “‘boot’’ the system, you need a system disk: a disk that holds the operating system
files. Intel supplies a flexible disk labeled “‘ISIS-ll Operating System’’ which is your system
disk. One of the first operations you will perform is a formatting operation to create another
copy of the system disk—a copy designed to be used with the examples in this book.

You insert the ““ISIS-ll Operating System’’ disk into flexible disk drive 0, and push the RESET
button (for more detailed instructions, see the Intellec Series Ill Microcomputer Development
System Console Operating Instructions). The following message should appear on your
screen:

ISIS-I1, Vx.y

The operating system for the Intellec Series |l Microcomputer Development System is called
ISIS-II(““ISIS” stands for Intel Systems Implementation Supervisor). The x ahd y represent ver-
sion numbers. ISIS-Il is actually a version of the ISIS operating system that runs on older
Intellec systems (the Inteliec Microcomputer Development System and the Intellec Series ||
Microcomputer Development System).

ISIS-Il manages your use of the software tools supplied with the system. Using ISIS-Il, you can
run utility programs like CREDIT (a text editor) to write programs, or LINK86 to link program
modules into a final program. You also use ISIS-ll to run compilers like the Pascal-86 and
PL/M-86 compilers, and to run your own developed programs. You can also make copies of
programs and control the devices attached to your system by using ISIS-Il commands.

In most computer operations, you manipulate files, which are collections of information. Every
file has a name, called a filename. Files and filenames are described in detail after an introduc-
tion to the most popular operating system command—the DIR command.

You use the DIR command to display a directory of filenames on a certain disk. You use other
commands to perform file management operations. For example, you use the COPY command
to make copies of files, or to send copies of files to the printer to be printed. You use the
RENAME command to change a file’s filename. This chapter explains some of these
commands.

THE DIRECTORY LISTING

The first command to learn is the easiest to use—the DIR command. When your system is up
and running, you will see a dash (-) on the left side of the screen. This dash is called a prompt,
and it tells you that the system is ready for your next command. You can now type the DIR com-
mand by typing the letters ‘DIR”’, and execute the DIR command by pressing the RETURN
key. The following example is shown in blue to show that it is something you type; the part of
the example that is in ordinary black shows what the system displays. The symbol “‘<cr>"
means that you must press the RETURN key (“‘cr’’ stands for the ‘‘carriage return’’ key found
on most typewriters).

OPERATING THE SERIES Ii}

-DIR<cr>

DIRECTORY OF :F0:970003.06

NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
SYSTEM.LIB 24 2849 WS FPAL .LIB 74 9125 W
PLM80 .LIB 45 5615 W

1317/4004 BLOCKS USED

When you execute the DIR command, the system displays a list of filenames called a directory
listing. These filenames are the names of the files that are stored on the disk in drive 0. The
DIR command displays the directory for the disk in drive 0 unless you specify another drive
number with the command, as explained in the next paragraph. Disk drive 0 is usually the drive
that holds the system disk (the disk that contains the system files), so by executing the DIR
command by itself, you get a directory listing of some of the files on the system disk in drive 0
(not all, because some files are invisible).

You can use the DIR command to display the directory listing for disks in other disk drives, and
for a hard disk subsystem, by specifying the drive number with the DIR command. For exam-
ple, to see a directory listing for a disk in drive 1, insert the ‘‘CREDIT ISIS-Il CRT-Based Text
Editor’’ disk in drive 1, and type the following command:

-DIR 1<cr>

DIRECTORY OF :F1:970049.02

NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
CREDIT 156 19470 CREDIT.HLP 25 2985 W
ADDS .MAC 3 171 W MICROB.MAC 3 158 W
VT52 .MAC 3 163 W VT100 .MAC 3 190 w
15107 .MAC 3 165 W 1510E .MAC 3 170 W
LEAR .MAC 2 123

201

310/4004 BLOCKS USED

The Intellec Series Ill Microcomputer Development System Console Operating Instructions
give details about typical hard disk and flexible disk configurations, and the associated drive
numbers.

On each line of the directory listing, you are shown the name of a file. Some of these filenames
are followed by a three-character extension, which is an optional identifier used to show types
of files. These extensions are sometimes required for certain files that are used with certain
programs. The section on filenames (following disk formatting) explains some of these
extensions.

Following each filename entry are three columns labeled ‘“BLKS’’, “LENGTH", and “ATTR’.
The ‘‘BLKS’’ column tells you how many ‘‘blocks’’ of space the file occupies, where one block
equals 128 bytes. The “LENGTH"’ column gives the actual number of bytes occupied by the
file. At the bottom of the listing appears a message showing how many blocks are used out of
the total number of blocks available on the disk. You can use block figures to describe file
sizes and to determine whether a file of a given size (in blocks) will fit on a disk.

The ““‘ATTR’’ column might be empty, or it may contain a ““W’’, *‘S”’, or both. This column tells
you the attributes of each file—certain characteristics that govern the file’s use. If a file has the
““W’’ attribute, it is write-protected; that is, you cannot write to or delete (overwrite) the file. If a

1

CHAPTER 2

12

file has the ‘S’ attribute, it is a system file that occurs on most system disks. You use the
ATTRIB command and file attributes to protect your files from inadvertant delete or write
operations, and to designate certain files as system files (as shown in the next section).

There are other files not displayed through normal use of the DIR command. These files are
invisible; that is, they have the | attribute. You can see them if you use a special form of the DIR
command:

-DIR I<cr>

DIRECTORY OF :F0:970003.06

NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS .DIR 26 3200 IF ISIS .MAP 5 512 IF
ISIS .70 24 2944 IF ISIS .LAB 54 6784 IF
ISIS .BIN 94 11740 SIF ISIS .CLI 20 2407 SIF
ATTRIB 40 4909 WwsSI coPY 69 8489 WSI
DELETE 39 4824 WSI DIR 55 6815 WSI
EDIT 58 7240 WSI FIXMAP 52 6498 WSI
HDCOPY 48 5994 WSl HEXO0BJ 34 4133 WSI
IDISK 63 7895 WSI FORMAT 62 7794 WSI
LIB 82 10227 WSI LINK 105 13074 WS1
LINK .0VL 37 4578 WSl LOCATE 120 15021 WSI
OBJHEX 28 3337 WSI RENAME 20 2346 WSI
SUBMIT 39 4821 WSI SYSTEM.LIB 24 2849 WS
FPAL .LIB 74 9125 W PLM80 .LIB 45 5615 W
1317

1317/4004 BLOCKS USED

The “I” is called a switch, and it displays files that have the invisible attribute. When you
specify the “I’’ switch in a DIR command, the DIR command displays all of the filenames,
including ones that are invisible. The files that weren’t displayed during the execution of a nor-
mal DIR command are now displayed, along with their attributes (one of which is the “‘I”’
attribute). The ‘F’’ attribute is reserved for system files that are used to format the disk. These
files are called format files, and you should never alter their attributes.

You should practice using the DIR command, and at the same time, take a look at the directory
listings for each disk you received. Take each flexible disk, insert it into drive 1, and type ‘‘DIR
1"’ to see the directory listing.

NOTE
If you have a hard disk subsystem with only one flexible disk drive, use the following
form of the DIR command:

-DIR P<cr>
LOAD SOURCE DISK, THEN TYPE (CR)

Take out the system disk and insert the disk whose directory you want to display,
then press the RETURN key. After the directory listing, the following message
appears:

LOAD SYSTEM DISK, THEN TYPE (CR)

Put the system disk back into the flexible drive. To see other disk directory listings,
repeat these steps for each disk.

OPERATING THE SERIES 11l

FORMATTING DISKS

We present in this section a typical scheme for storing copies of your Intel-supplied files on
either hard disk or flexible disk. Subsequent examples in this book assume that certain pro-
grams reside in hard disk drives 0 and 1, or flexible disk drives 0 and 1. You may use your own
scheme and distribute files over disk drives as you wish, but in order to type the examples as
they are, you must use the scheme presented here. If you understand the use of pathnames as
described in this chapter, and if you use the COPY command correctly, you can copy files to
disks in any distribution scheme you choose, and still use the examples in this book as long as
you substitute your own pathnames.

If you are using a hard disk subsystem, you must follow the procedures in the Intellec Series Iil
Microcomputer Development System Console Operating Instructions to install your disk plat-
ters and prepare them for use. If you are using flexible disk drives, you should refer to the
same manual for instructions on the care and insertion of flexible disks. This section shows
you how to prepare one hard disk platter or one flexible disk as the system disk, and another
hard disk or flexible disk as a non-system disk (to hold your files and other programs).

Hard Disk Subsystem Users

Follow the instructions in the Intellec Series Ill Microcomputer Development System Console
Operating Instructions to install and power-up your hard disk subsystem. When the hard disk
subsystem is ready, insert your ““ISIS-Il Operating System’’ flexible disk into the flexible disk
drive of your computer, and hit the RESET button. When the dash (-) prompt is displayed (after
the ISIS-Il message appears), type the following command:

-:F4:FORMAT :FO:SYSTEM.HDK S FROM 4<cr>

This command prepares (‘‘formats’’) drive 0 of the hard disk to be the system disk. We chose
“*SYSTEM.HDK" for its name, but you can use any name that has at most six characters to the
right of the period, and three to the left. When this operation is finished, and the system
displays the dash (-) prompt, use the following command to transfer your system files to drive 0
of the hard disk:

-:F4:COPY :Fbh:*x_.x TO :FO0:<cr>

This command will copy all of the files from the ““ISIS-lIl Operating System’’ disk in the flexible
disk drive (called drive 4) to the hard disk drive 0. When this operation is finished, you can
remove the flexible disk from drive 4 and insert another flexible disk. In addition to the “‘ISIS-I|
Operating System’’ disk, you should also copy files from the ‘‘CREDIT ISIS-ll CRT-Based Text
Editor’’ disk, the ‘‘Resident 8086/8087/8088 Macro Assembler’’ disk, and the ‘‘Resident
8086/8088 Utilities and Linkage Libraries’ disk. For each flexible disk, execute the following
command:

-COPY :F4:*x_.x TO :FO:<cr>

This command copies all files from the flexible disk to drive 0 of the hard disk. If you insert
each flexible disk you received and perform this operation, you will have in drive 0 all of the
files from those flexible disks. If you want to be more selective about the files you are copying
to drive 0, read the ‘‘Copying Files’’ section in this chapter.

13

CHAPTER 2

14

You should also copy files to drive 1 of the hard disk subsystem. First, you must prepare drive 1
by typing the following command:

~FORMAT :F1:PR0OG86.HDK<cr>

We chose ‘““PROG86.HDK"’ for its name, because we intend to use it for our iAPX 86,88 applica-
tion programs. If you are a Pascal-86 user, insert the ‘‘Pascal-86 Compiler and Run-Time
Libraries’ disk into flexible disk drive 4 and copy all of the files to the hard disk drive 1:

=COPY :F4:*x_.*x TO :F1:<cr>

Do the same operation with your PL/M-86 flexible disk, and any other disks you have for your
Series lil system. The hard disk platters have plenty of room for your own files.

Flexible Disk Users

This section assumes that you have at least two double-density fiexible disk drives. If you have
single-density drives, you may run out of room if you try these examples. Refer to instructions
in the Intellec Series Ill Microcomputer Development System Console Operating Instructions
for information about flexible disks.

To bring up your system, insert the ‘‘ISIS-ll Operating System’’ disk into drive 0 and push the
RESET button. The ISIS-Il message should appear, followed by the dash (-) prompt. Insert a
blank disk into drive 1, and type the following FORMAT command:

-FORMAT :F1:SYSTEM.FLX S<cr>

This command creates a new system disk and automatically copies from drive 0 all files that
have the ‘S’ attribute. When this operation is finished, you can test your new system disk by
removing the ““ISIS-Il Operating System’’ disk from drive 0, inserting your new system disk into
drive 0, and pushing the RESET button to restart the system.

With your new system disk in drive 0, insert the ‘‘CREDIT ISIS-Il CRT-Based Text Editor’’ disk
into drive 1, and type the following command:

-COPY :F1:CREDIT TO :FO:<cr>

This command copies the program CREDIT to our system disk in drive 0. Remove the CREDIT
disk from drive 1 and insert the ‘‘Resident 8086/8087/8088 Macro Assembler’’ disk into drive 1.
Type the following command:

=COPY :F1:RUN.* TO :F0:<cr>
:F1:RUN COPIED TO :FO:RUN
:F1:RUN.OVO COPIED TO :FO:RUN.OVO

This command copied two files at once—RUN and RUN.OV0—from drive 1 into drive 0. You
need both files in order to use the special RUN command described later.

OPERATING THE SERIES IlI

Remove the flexible disk from drive 1 and replace it with the ‘‘Resident 8086/8088 Utilities and
Linkage Libraries’’ disk. Now type the following commands:

-COPY :F1:LIB86.86 TO :F0:<cr>
:F1:L1B86.86 COPIED TO :F0:LIB86.86
-COPY :F1:L0C86.86 TO :F0:<cr>
:F1:L0C86.86 COPIED TO :F0:L0C86.86
-COPY :F1:LINK86.86 TO :F0:<cr>
:F1:LINK86.86 COPIED TO :FO:LINK86.86

You now have a system disk that is complete for the examples in this book. You still need
another disk for the Pascal-86 compiler if you have one, to hold the compiler, the run-time
libraries, and your sample program used in examples in this book. To prepare a blank disk to
be a non-system disk, insert the blank disk into drive 1 and type the following command:

-IDISK :F1:PASC86.FLX<cr>
NON-SYSTEM DISK

The IDISK command can prepare both system and non-system disks, but it does not
automatically copy files except the ISIS-1l format (“‘F”’) files.

With the new blank disk in drive 1 and the system disk in drive 0, you could put the ‘‘Pascal-86"’
disk in drive 2 (if you have a drive 2). The following example assumes that you only have drive 0
and 1. To copy the files from the ‘‘Pascal-86" disk, first type the following command (don’t
forget the “P’’!l):

-COPY *_.x TO :F1: P<cr>
LOAD SOURCE DISK, THEN TYPE (CR)

The system pauses (because you specified a *‘P’’ at the end of the command), and waits for
you to insert the ‘‘source’’ disk into drive 0. The ‘‘source’’ disk in this case is the ‘‘Pascal-86"’
disk, assuming you are a Pascal-86 user (if you’re using PL/M-86 only, you would substitute
your PL/M-86 disk in this example). Insert this flexible disk into drive 0 and press the RETURN
key.

LOAD OUTPUT DISK, THEN TYPE (CR)

Since the disk to receive the Pascal-86 files is already in drive 1, you only have to press
RETURN. The system should then display the above messages (along with the ‘“COPIED”’
messages) every time it returns to drive 0 to copy more files—all you have to do is continue to
press RETURN until the entire copy operation is finished.

You can repeat these steps with another blank disk for the PL/M-86 compiler. After these for-
matting and copying operations, you should have disks that match the ones we used for the
examples in this book.

FILENAMES, PATHNAMES, AND FILE ATTRIBUTES

Most operating system commands manipulate files. A file can be any collection of information
including text, numeric data, program instructions, and combinations of all of these. You refer
to afile by using a filename, and filenames follow certain naming conventions so that the name
of a file also tells you the probable use of the file.

15

CHAPTER 2

16

Filenames can have six or fewer characters, followed by an optional period and three-
character extension. Extensions (and filenames themselves) follow certain conventions, but
there are no fixed rules. Certain extensions are necessary for certain programs, as you shall
see in the following discussion. The file naming conventions are relaxed so that you have the
flexibility to create your own file naming conventions for your particular application.

The term filename refers to both the name of the file and the extension, if any. Each new file
you create must have a unique name for that disk (that is, you can have two files with the same
name on two different disks, but not on the same disk). Some extensions have specific mean-
ings to utility programs in the system, but these should not cramp the style with which you
impose your own naming conventions. Here are the extensions that mean something to Intel-
supplied programs:

e The ‘“.BAK’’ extension denotes a backup of a text file created by CREDIT, the text editor
described in Chapter 3. For example, LETTER.BAK is the backup file for the text file
LETTER.TXT (a text file does not need a particular extension, but ““TXT’’" helps identify it).

e The ‘“.MAC’’ extension denotes a ‘“‘macro’’ file used with certain programs like CREDIT.
The **.MAC"’ files supplied with CREDIT enable you to use CREDIT on other non-Intel con-
soles connected to Intel m_icrocomputers.

e The ““.0V0" extension denotes an ‘‘overlay’’ file used with certain programs.

e The ‘“.OBJ”’ extension denotes an object module, which is created by a compiler or
assembler, as described in Chapters 4 and 5. Compilers and assemblers also create files
with the ‘“.LST”’ extension to denote program listings (also described in Chapters 4 and
5). Examples are PROG1.0BJ and PROG1.LST.

e The ‘““.LNK’ extension denotes a collection of object modules that were linked together
by the linker utility program, described in Chapter 6. When you run the locater utility pro-
gram on a file with the *.LNK’’ extension, the locater strips the ‘‘*.LNK’’ extension away,
leaving only the file’s name without an extension.

e The ““.LIB” extension denotes a library module that is maintained by the library utility.
Library modules are described in Chapter 6.

e The ‘.86 extension denotes a program that should be executed in the 8086 execution
mode (the ‘8086 side’’ of the system). Examples are PASC86.86 and PROG1.86.

Most completed programs have either the ‘“.86"’ extension (if they run in the 8086 execution
mode, described later in this chapter), or no extension. For example, the DIR command is
actually a program named ‘‘DIR’’ without any extension.

In addition to the above extensions, we use the “*.SRC’’ extension to denote a special text file
that holds program instructions called source statements. A *“.SRC"’ (for ‘‘source’’) file can be
created by CREDIT and filled with assembly language, PL/M, or Pascal source statements; you
can then compile this file to create an object module (‘*.OBJ"’ file), as described in Chapters 4
and 5.

You can find more extensions explained in the Intellec Series Ill Microcomputer Development
System Console Operating Instructions.

You can display the directory information for a single file by using a version of the DIR com-
mand, DIR FOR:

-DIR FOR SUBMIT<cr>

DIRECTORY OF SYSTEM.FLX

NAME .EXT BLKS LENGTH ATTR
SUBMIT 39 4821

OPERATING THE SERIES 11l

The file SUBMIT is in the directory for drive 0, so the DIR command had no trouble finding it.
However, if SUBMIT happened to be on another disk in drive 1, you would have to tell DIR to
look in drive 1 for the file. To do this, you use a pathname—a filename with a directory
specifier. Whenever you specify a filename for a command or utility program, if the filename is
in the directory for drive 0, you only have to specify the filename. If the filename is not in the
directory for drive 0, you have to specify a pathname.

A pathname consists of a directory specifier and a filename:

:F1:PROGT.SRC

The ‘“:F1:” part of the pathname is the directory specifier. The ‘“1’’ stands for disk drive 1.
Therefore, to get the directory information for the file PROG1.SRC on the disk in drive 1, type
the following command:

-DIR FOR :F1:PROG1.SRC<cr>

The number of separate disk drives depends on the configuration of your system. The format
for directory specifiers is:

tFn:

where n can be any drive number from 0 to 9 (0 would refer to drive 0, which does not have to be
specified).

If you type a directory specifier that is incorrect, you get an error message. For example, sup-
pose you typed the following DIR command with an incorrect directory specifier in the
pathname for PROG1.SRC:

-DIR FOR :G1:PROG1.SRC<cr>
:61:PROG1.SRC, UNRECOGNIZED DEVICE NAME

The “UNRECOGNIZED DEVICE NAME"' is the ‘“:G1:" directory specifier. ISIS-ll thinks you are
referring to a device by that name, and there is no device by that name. You will find legal
device names in the section that describes copying files.

Another common error occurs when you forget to use the word FOR in the DIR command when
you are trying to get the directory information for one file. For example, you might type this
command:

-DIR :F1:PROGT.SRC<cr>

and get this error message:

:F1:PROG1.SRC, UNRECOGNIZED SWITCH
Since you forgot the word FOR, ISIS-Il thinks you are trying to specify a switch to the DIR com-
mand—and it doesn’t recognize ‘:F1:PROG1.SRC"’ as a switch! Switches are usually only one

letter or number. Valid switches are described with the DIR command in the Intellec Series Ill
Microcomputer Development System Console Operating Instructions.

17

"CHAPTER 2

18

The ATTRIB command assigns attributes to files. You use file attributes to protect your files
from accidental deletions or modifications. You use the ATTRIB command to turn on or off the
file attributes that are described below:

o ““W” for write-protected (The file cannot be written to, modified, renamed, or deleted
unless this attribute is turned off.)

e “I"” forinvisible (The file’s name and information is only displayed when you execute the
DIR command with the “‘I’” switch.)

o S for system files (System files on a source disk are automatically copied to the output
disk in a FORMAT operation with the *‘S’’ switch.)

o “F” for format files (Format files are automatically copied by the FORMAT and IDISK
commands to format disks. Do not turn off this attribute, nor use it with your own files,
unless you’ve read its description in the Intellec Series Il Microcomputer Development
System Console Operating Instructions.)

For example, to turn on the ‘“W’’ (write-protected) attribute for file CREDIT, type the following
command:

-ATTRIB CREDIT W1l<cr>
FILE CURRENT ATTRIBUTES
tFO:CREDIT W

To turn off the *“W’’ attribute, specify a 0 instead of a 1:

-ATTRIB CREDIT WO<cr>
FILE CURRENT ATTRIBUTES
:FO:CREDIT

RENAMING AND DELETING FILES

Occasionally you will have a file with a name that needs to be changed for some reason. For
example, you could rename LIB86.86 to LIBRY.86 by using the RENAME command:

-RENAME LIB86.86 TO LIBRY.86<cr>

The RENAME command always expects to see the original name first, followed by a space,
then the keyword TO, followed by another space, and finally the new name. Both names must
be legal Series il filenames or pathnames. You cannot RENAME a file in one directory to a
name with a different directory specifier—the new name must have the same directory
specifier.

If you actually renamed LIB86.86 to LIBRY.86, you should rename it back to LIB86.86, the name
used foritin future examples.

The DELETE command is very simple. Since there are no files in your system disk that you can
delete, we’ll use in this example a file that doesn’t actually exist on your disk:

-DELETE SAMPLE.TXT<cr>
:FO:SAMPLE.TXT DELETED

The DELETE command will irrevocably delete the file you specify. When you DELETE a file,
you cannot retrieve it—it’s gone. Use DELETE with caution.

OPERATING THE SERIES 11}

To delete a file on a disk in a drive other than drive 1, simply use the appropriate pathname for
the file. For example, suppose the file JUNK.TXT existed on the disk in drive 1. You would use
this command to delete it:

-DELETE :F1:JUNK.TXT<cr>
tF1:JUNK.TXT DELETED

You can also delete many files at once. As you will see in Chapter 3, CREDIT creates a backup
file with a *“.BAK’’ extension for every file you edit. At some point (to utilize disk space), you
might want to delete all of your backup files at once. For example, to delete all of the backup
files on the disk in drive 1, use the following command:

-DELETE :F1:*.BAK<cr>

The asterisk (*) matches any name, and the ‘“.BAK’ extension matches only filenames with
that extension. This ‘‘filename matching’’ technique is shown in more examples to come.

COPYING FILES TO DISKS AND DEVICES

The COPY command is useful for several operatioﬁs:

¢ Tomake acopy of afile

¢ Tosendacopy of afile to another hard or flexible disk

* Tosendacopy of afile to adevice like a printer or a paper tape punch
e Toreceive afile from a sending device like a paper tape reader

e Tocopyall non-system files from one disk to another

The COPY command is similar to the RENAME command. For example:

-COPY :F1:PROG1.SRC TO :F1:PROG1T1.BAK<cr>
COPIED :F1:PROG1.SRC TO :F1:PROG1.BAK

The COPY command expects to see the name of the source file or device (the source of the
information to be copied, not to be confused with a source file of program source statements),
followed by a space, then the keyword TO, followed by a space, and then the name of the out-
put file or device (the destination of the copied information). After the output (or destination)
file or device name, you can optionally specify a switch like ‘*‘P’’ for pause, or ‘*‘U’’ for update
(these switches are explained in the Intellec Series Ill Microcomputer Development System
Console Operating Instructions).

More frequent uses of the COPY command are copying to devices, copying files onto other
disks, and copying all the files in one disk to another disk. In all of these cases, you must
specify the device or disk that is the source of the information, and the device or disk that will
receive the copied information. For example, the RENAME program is in the directory for drive
0. If you want to put a copy of it on the disk in drive 1, you would type the following command:

-COPY RENAME TO :F1:<cr>
COPIED :FO:RENAME TO :F1:RENAME

When the source file is in the directory for drive 0, you don’t have to specify :F0: for the file,
because :F0: is the default directory if none is specified. When the destination is a disk in
another drive, you have to specify the directory (in this case, :F1:) for the destination file.

19

CHAPTER 2

20

In the example above, the file RENAME was copied to the disk in drive 1, and the drive 1 ver-
sion has the same name. When you make copies of files for other disks, you will probably want
the files on the other disks to have the same name. To keep the same name for the copy,
specify only the destination directory without a new filename, as we did in the above example.

To change the name for the copy, specify a different name with the destination directory. For
example, if you want to use RNAM as the name of the new copy in drive 1, use this command:

-COPY RENAME TO :F1:RNAM<cr>
:FO:RENAME COPIED TO :F1:RNAM

In the last two examples, the RENAME file was copied from drive 0 to drive 1. To demonstrate
another feature of the COPY command, we will first copy a file from drive 1 to drive 0 (you
should aiso try this example):

~COPY :F1:PROG1.SRC TO :FQ0:<cr>
:F1:PROG1.SRC COPIED TO :FO0:PROG1.SRC

Let’s suppose that we used CREDIT (described in the next chapter) to modify the new copy of
PROG1.SRC on the disk in drive 0 (:FO:PROG1.SRC), and that we want to copy the newly-
modified PROG1.SRC to the disk in drive 1. Since we already have a PROG1.SRC on the disk in
drive 1, we might want to DELETE that one first, then COPY the newly-modified one to the disk
in drive 1. However, let’s suppose that we forgot to DELETE the old one first, or that we don’t
even know the old one exists on the disk in drive 1. We would type the following COPY com-
mand:

-COPY PROG1.SRC TO :F1:<cr>
:F1:PROG1.SRC FILE ALREADY EXISTS
DELETE?

The COPY command found :F1:PROG1.SRC, and now it is asking us if we want to delete it in
order to replace it with the newly-modified :FO:PROG1.SRC. We type a ‘Y’ (or ‘‘y”’) to delete
the old one and replace it with the new one, or type an ‘N’ (or ‘‘n’’ or any other letter) to keep
the old one and abort the copy operation. In this case, we want to replace the old
:F1:PROG1.SRC with the newly-modified :FO:PROG1.SRC, so we type a ‘‘Y"’ foliowed by the
RETURN key:

DELETE?Y<cr>
:FO:PROG1.SRC COPIED TO :F1:PROG1.SRC

By using this feature of the COPY command, you can selectively update existing files by typing
Y (or “‘y”’) for the ones you want to update, and ““N’’ (or ‘‘n”’) for the ones you don’t want to
update.

To send a file to a device like a line printer or a paper tape punch, specify the device name as
the destination device:

-COPY PROG1.SRC TO :LP:<cr>
:FO:PROG1.SRC COPIED TO :LP:
-COPY PROG1.SRC TO :HP:<cr>
:FO:PROG1.SRC COPIED TO :HP:

The device name :LP: is the name of the line printer. The second example sends the file to the
high-speed paper tape punch, whose device name is :HP:. For other device names, see the
Intellec Series Ill Microcomputer Development System Console Operating Instructions.

OPERATING THE SERIES Ili

The COPY command can also be used to copy several files at once, if you make use of wild
card filenames. You can specify a wild card filename with the DELETE, RENAME, COPY, DIR,
HDCOPY, and ATTRIB commands. A wild card filename matches a group of filenames in order
to perform the action on several files at once. For example:

-COPY *.%x TO :F1:<cr>

This command copies all of the files in directory :FO0: to directory :F1:.

NOTE

To perform this example, you should insert a new disk into drive 1 and use the IDISK
command (described in the next section in more detail) to prepare the new disk in
drive 1 before copying all of the files in drive 0 to it.

The above example demonstrates use of the wild card filename ‘“*.*’*. The first asterisk will
match any number of characters in the name, and the second asterisk will match any three
characters in the extension of the filename.

You can also specify some of the characters of a filename in a wild card filename. For example,
if you wanted to copy all of the files that have ‘“.SRC’’ as an extension, you would use this
COPY command:

-COPY *.SRC TO :F1:<cr>

There are other wild card filenames that are described in detail in the Intellec Series il
Microcomputer Development System Console Operating Instructions.

There are several ways to copy entire disks. The IDISK and FORMAT commands are used to
prepare (‘‘format’’) disks for use in the Series Il system. The IDISK command will simply for-
mat the disk as a system or non-system disk, copying over to the new disk only the format
(““F’) files that are needed to format the new disk as a system or non-system disk.

The FORMAT command will format a new disk as a system or non-system disk depending on
the source disk implied (drive 0) or specified (using FROM). The FORMAT command will also
copy certain files from the source disk. FORMAT with the *‘S’’ switch copies all files from the
source drive that have the ‘S’ (system) attribute. See the previous section on formatting disks
for an example of the FORMAT command with the ‘‘S’’ switch.

To copy all of the files from the source disk, use the ““A’’ switch. To show an example of the
FORMAT command with the ‘““A’’ switch, insert another blank disk into drive 1, and type this
command:

~FORMAT :F1:SYSTEM.BAK A<cr>
SYSTEM DISK

In this example, the FORMAT command formats the disk in drive 1 as a system disk because
the source disk in drive 0 is a system disk. The new disk is called SYSTEM.BAK. The “A”
switch specified that a// files from the source disk in drive 0 should be copied to SYSTEM.BAK
indrive1.

So far, all of the FORMAT examples used the disk in drive 0 as the source disk. If, for example, -
you have more disk drives and you want to FORMAT a disk in drive 1 using as a source a disk in
drive 2, you would specify FROM 2 as in the following example:

-~FORMAT :F1:MYDISK A FROM 2<cr>

2

CHAPTER 2

22

In a previous section on formatting disks, we described formatting operations to prepare your
disks in a way that conforms with our examples. We do not necessarily recommend this for-
matting scheme for your particular configuration. Chapter 2 of the Intellec Series Ill Micro-
computer Development System Console Operating Instructions gives you the specific details
for setting up disks in any Series Ill configuration, using the IDISK, FORMAT, and HDCOPY
commands.

EXECUTING COMMANDS AND PROGRAMS

The Series |ll has two processors: the 8085 (8-bit processor), and the 8086 (16-bit processor).
You can execute 8085-based programs in the 8085 environment (which is called the 8085 execu-
tion mode or ‘‘8085 side’’), and execute 8086-based (or 8088-based) programs in the 8086
environment (which is called the 8086 execution mode or ‘8086 side’’). When you type the
filename of a program as a command (as you have been doing when you type ‘“DIR” or
“COPY”’), you are executing the program in the 8085 execution mode. In order to execute a
program or command in the 8086 execution mode, you must prefix the command RUN to the
program or command you wish to execute. For example, if you want to execute LIB86.86, the
8086 librarian (which can only be run in the 8086 execution mode), you would type the following:

-RUN LIB86<cr>

You should notice two things that are different: the use of the command RUN, and the fact that
you do not have to supply the *.86’’ extension for LIB86.86 when you RUN it.

The RUN command is actually a program supplied on the system disk that activates the 8086
execution mode. When you supply a filename with no extension, the RUN command
automatically attaches the ‘“.86"" extension to the name you supplied, and looks for the file by
that name (i.e., the name with the ‘*.86"" extension). This is a protection feature you can use for
your 8085 and 8086 programs: you can use the same name for both, with an **.86’’ extension for
the 8086 program and no extension for the 8085 program. When you specify filenames without
extensions, RUN only looks for files that are supposed to run in the 8086 execution mode; i.e.,
files with the ‘*.86’’ extension. This protection feature assumes that you would put the *.86"
extension on files that are meant to run in the 8086 execution mode.

If you actually executed LIB86.86, the following would appear on your screen:

-RUN LIB86<cr>
SERIES III 8086 LIBRARIAN, Vx.y

*

The LIB86.86 program is now in control. To leave this program and return to the operating
system, use the librarian’s EXIT command:

*EXIT<cr>

You can, of course, supply an extension with the filename you supply to the RUN command,
and the RUN command would not supply the **.86’’ extension. For example, if you have an 8086
program called MYPROG.PRG and you want to run it in the 8086 execution mode (on the ‘‘8086
side’’), you would type the following:

-RUN MYPROG.PRG<cr>

OPERATING THE SERIES llI

You can also RUN a program whose filename has no extension. However, you must supply a
period to show that there should be no extension (i.e., to keep RUN from supplying the ‘*.86"
extension). The following is an example, assuming that the name of the program is not
MYPROG.PRG but is MYPROG:

-RUN MYPROG.<cr>

When you use RUN as a command (as in the examples above), the 8086 execution mode is
turned on for program execution, and when the program terminates, the 8086 execution mode
also terminates, returning you to the 8085 execution mode. The 8085 execution mode is con-
trolled by ISIS-ll, which signifies its control by displaying the dash (-) prompt. You can,
however, use RUN as a program and stay in the 8086 execution mode.

To use RUN as a program, simply type RUN:

-RUN<cr>
ISIS-II RUN 8086, Vx.y
>

The RUN program displays a sign-on message and its own prompt, the right angle (>) bracket,
to signify that the RUN program is now in control. This mode is called the interactive 8086
mode, and you use it to execute more than one program. When you get the angle (>) prompt,
you can type the filename of a program in order to execute the program. The rule stated above
about the use of the ‘.86’ extension still applies.

The following example shows the execution of several 8086-based programs: PASC86.86 (the
Pascal-86 compiler), LINK86.86 (the linker and binder), and PROG1.86 (the assembled, linked,
and bound program). If your Pascal-86 disk (containing the compiler, run-time libraries, and
sample PROG1.SRC) is in drive 1, and LINK86.86 is on the disk in drive 0, you can type this
example exactly as presented. The LINK86.86 command line shows use of the ““&’’ continua-
tion character that allows you to type commands over several lines without executing them.
The EXIT command turns off the 8086 execution mode and returns you to ISIS-Il and the 8085
execution mode:

-RUN<cr>
ISIS-II RUN 8086, V1.0
>:F1:PASC86 :F1:PROGT1.SRC<cr>

This executes PASC86.86 to compile
PROG1.SRC, both of which are on the
disk in drive 1. The Pascal-86

compiler displays some information.

>LINK86 :F1:PROG1.0BJ,:F1:P86RNO.LIB,:F1:P86RN1.LIB,&<cr>
>>:F1:P86RN2.LIB,:F1:P86RN3.LIB,:F1:E8087.LIB,&<cr>
>>:F1:E8087,:F1:LARGE.LIB TO :F1:PR0OG1.86 BIND<cr>

. This example shows use of the ''&'’

. command line continuation character.

. The entire command links the object
program with the run-time libraries,
and binds the linked module to form
an executable program called
PROG1.86

CHAPTER 2

24

>:F1:PROG1<cr> This command executes :F1:PR0OG1.86
Farenheit temperature is:72<cr>

PR0OG1.86 is a temperature conversion
program. When it asks for more
input, you can stop the program by
typing ''N'"'.

Another temperature input? :N<cr>

>EXIT<cr> This terminates the 8086 execution
mode and returns you to the 8085
execution mode.

In the above examples, commands and programs were executed directly by typing the com-
mand name or program name (sometimes followed by the name of a file to be acted upon by
the command or program,; this is called an actual parameter). When you execute a program or
command directly, itis called interactive execution.

In many cases you will want to submit a batch of commands or programs to be executed in a
sequence. The SUBMIT command allows you to submit a file of commands as a job to be
handied by the system without any interaction on your part. This is called non-interactive
execution.

You use SUBMIT by first providing a file of commands to be executed—a command sequence
definition file, which has the extension ‘*.CSD’’. This file can contain operating system com-
mands, parameters for the commands, and comments—any line starting with a semicolon (;),
or any text following a semicolon, is a comment, not an executable command. In the following
example, note that the first command is the RUN command, which starts the 8086 execution
mode, and that blank spaces in command lines are allowed to improve readability:

CSD file to SUBMIT for linking a Pascal-86 object module
to run-time support libraries (with E8087 emulator)

Parameter 0
Parameter 1

:fn:myprog
drive containing run-time Llibraries

s we we we ms we we ws

RUN

LINK86 %0.0BJ, &
:F%1:P86RN0O.LIB,
:F%1:P86RN1.LIB,
:F%1:P86RN2.LIB,
:F%Z1:P86RN3.LIB,
:F%1:E8087.LIB, &
:F%1:£8087, &
tF%Z1:LARGE.LIB TO %0.86 BIND

Q0 Q0 Q0 Qo

H
; Returns to 8085 execution mode.
H

OPERATING THE SERIES i

When this file, called LNKBND.CSD, is submitted, the system will execute the RUN command,
then the LINK86.86 program (the 8086 linker), and finally the EXIT command to leave the ‘‘8086
side’’ and return to the 8085 execution mode.

The percent symbols (%) indicate the use of formal parameters. When you execute the
SUBMIT command, you supply actual parameters for each of these formal parameters. The
following is an example:

-SUBMIT LNKBND(:F1:PROG1,1)<cr>

The SUBMIT command first looks for LNKBND.CSD (it supplies the missing ‘‘.CSD’’ exten-
sion), and then it substitutes the first actual parameter (: F1:PR0OG1) for ““%0’’ and the
second actual parameter (1) for ““%1’’. The resulting command sequence is as follows:

RUN
LINK86 :F1:PROG1.0BJ, &
:F1:P86RNO.LIB, &
:F1:P86RN1.LIB, &
:F1:P86RN2.LIB, &
:F1:P86RN3.LIB, &
:F1:€E8087.LIB, &
:F1:E8087, &
:F1:LARGE.LIB TO :F1:PROG1.86 BIND

EXIT

The SUBMIT program creates another file with a ¢“.CS’’ extension to hold the resulting com-
mand sequence. You should not modify this file.

SUMMARY OF THE SERIES Il OPERATING SYSTEM

The Series lll system has two execution environments: the 8085 environment (the ‘8085 side’’)
where the ISIS-Il commands and 8080/8085 programs run, and the 8086 environment (the ‘8086
side’’), activated by the RUN program, where 8086 and 8088 programs run. Programs that run in
the ‘8086 side’’ usually have an ‘.86’ extension in their filenames. The RUN program actually
looks for an ‘“.86’’ extension if you specify a filename without an extension.

You use the Series lll operating system and its tools to develop software, but there is another
way to use it: your software products can use it as an execution vehicle. The Intellec Series Il
Programmer’s Reference Manual describes the “‘innards’’ of the Series lll operating system
and how your programs can make use of sections of the system. By using PL/M or assembly
language, you can call operating system procedures directly (as described in the summary of
Chapter 5) from your program. Pascal-86 programs automatically use the operating system pro-
cedures by using run-time libraries which interface between the Pascal-86 programs and the
Series lll system.

The Series lll system has a standard set of procedures that your software products can use; by
using this standard programming interface, you can be sure that your future programs will
remain compatible with present and future Intel operating systems.

There are a few more commands that were not introduced because they are used infrequently,
or they are easy to use. These commands are adequately introduced in the Intellec Series Il
Microcomputer Development System Console Operating Instructions. You should consult this
manual anyway, to be aware of details not mentioned in this tutorial.

25

CHAPTER 3
TEXT EDITING

‘A good workman is known by his tools.”” —proverb

You use a text editing program to create any kind of document, including a document that con-
sists of program instructions. CREDIT is a text editor that takes advantage of the capabilities
you have with CRT screens to:

e Display and scroll text on the screen

¢ Rewrite text by typing new letters over old ones

* Rearrange lines of text and insert new lines of text between old lines

* Move to any position in the text file or to any point on the screen instantly
e Correcttyping mistakes easily as you type

To simplify everyday text editing operations, CREDIT also provides features that allow you to:
e Save both the newly edited version and the old unedited version of the same document
* Find any string of characters and substitute another string of characters automaticaily

e Copy sections of adocument to use in another document

e Create macros to execute several commands at once, or to repeat sets of commands
(command iteration)

CREDIT is useful for all documents; for example, we used CREDIT to write this book. CREDIT is
more often used to write the Pascal statements, PL/M statements, and assembly language
instructions that comprise program modules. Text files created by CREDIT are called
documents if they are meant to be read by humans; and they are also called source programs if
they consist of program statements (Pascal, PL/M, or FORTRAN statements, or assembly
language instructions) that are read by compilers or assemblers in order to be compiled or
assembled into working programs.

In the following examples, we show you how to create and edit a text file consisting of English
sentences that you can transiate (eventually) into Pascal-86 statements. As described in
Chapter 1, this step of generating Pidgin Pascal (English sentences describing a Pascal pro-
gram) is a very important one in program development, because the program logic expressed
in English sentences closely resembles human thinking and is therefore easier to debug.

27

Chapter 3

CREATING A TEXT FILE AND INSERTING TEXT

When you run CREDIT, you also specify the name of a file to be edited. If CREDIT can find the
file you are specifying, it will open the file for editing. If CREDIT cannot find the file you are
specifying, it will create a new file by that name.

For example, let's create a file called PIDGIN.TXT in the directory for drive 0. To create and edit
PIDGIN.TXT, type the following command:

-CREDIT PIDGIN.TXT<cr>
CREDIT responds with:

ISIS-I1 CRT-BASED TEXT EDITOR V2.0
NEW FILE 1982 FREE DISK BLOCKS

The number of free disk blocks depends on the number of files on your disk and the size of
your disk—you do not have to worry about it unless you get a ‘*‘DISK FULL’’ warning. If you get
such a warning, terminate your CREDIT session by typing ‘‘EX"’ (followed by RETURN), and
specify another disk (like :F1:) for your text file.

The screen is partitioned into two areas, as shown in figure 3-1.

Notice the vertical line ‘| " in the text area? This symbol marks the end of the text in the file.
Since the file is new and holds no text yet, this symbol appears at the beginning of the file. As
you type text into the file, the symbol moves and continues to mark the end of the text.

The blinking cursor sits underneath this vertical line. You can immediately type text into the
file:

just typet]|

As you type, you can make changes to the text you already typed by moving the cursor back to
the previous text and typing over it. Move the cursor by using the cursor control keys that sur-
round the HOME key (do not use the HOME key yet!). If you inadvertantly typed the HOME key,
hold down the CNTL key and type a V (Control-V) to return the cursor to the text body.

IS1S-1l CRT-BASED EDITOR V2.0
NEW FILE 1982 FREE DISK BLOCKS

justtype!|

COMMAND AREA

N

TEXT AREA

Figure 3-1. The CREDIT™ Video Display 121632-4

28

Text Editing

You end each line of text with a carriage return by typing the RETURN key, just like a
typewriter. CREDIT displays the carriage return operation as an uparrow (1). The carriage
return operation is actually performed by two ASCIl codes: one for the carriage return
character, and one for the line feed character. CREDIT uses one symbol, the uparrow (t), for
both characters. This symbol is called the /ine terminator.

There are several keys used often in editing:

e The RPT (Repeat) repeats whatever key you hold down. For example, hold down both the
RPT key and a cursor movement key, and the cursor will move faster. Use the RPT key
with RUBOUT to erase aline.

e The TPWR (Typewriter) key, when in the down position, displays every character in lower
case like a typewriter. When in the up position, all characters are in upper case.

* The ESC (Escape) key will cause a break in an executing command.

If your keyboard seems to freeze and does not display characters, you probably moved the
cursor past the vertical line. You cannot type any characters after the vertical line, since the
vertical line marks the end of the text. You can move the cursor to the vertical line and type,
thereby moving the vertical line, or you can move the cursor to any position before the vertical
line and type over the previously typed characters.

The ISIS-Il CREDIT (CRT-Based Text Editor) User’s Guide contains an interesting tutorial ses-
sion. Before you learn how to use some of CREDIT’s powerful editing commands, you should
learn how to end a CREDIT session properly, without losing the edits you have made. Figure
3-1 shows the layout of the screen; in the Command Area you'll find an asterisk. To move the
cursor to this asterisk, press the HOME key.

CURSOR
ESCAPE CONTROL
(ESC) KEYS

CONTROL REPEAT HOME TYPEWRITER
MODE

(CNTL) (RPT)
(TPWR)

Figure 3-2. The Series |l Keyboard 121632-5

29

Chapter 3

30

When the cursor appears after the asterisk, you can type a CREDIT command. The EX (exit)
command terminates a CREDIT session properly. Type “‘EX”’, followed by RETURN:

*EX<cr>

CREDIT will clear the screen and display the following message:

EDITED TO :FO:PIDGIN.TXT

By using the DIR command, you can see that the directory listing for :FO: now contains a new
file called PIDGIN.TXT.

You can use CREDIT to edit PIDGIN.TXT by invoking CREDIT again:
-CREDIT PIDGIN.TXT<cr>

This time, CREDIT does not have to create the file, because it already exists in the directory for
the disk in drive 0. CREDIT responds with:

ISIS-II CRT-BASED TEXT EDITOR V2.0
OLD FILE SIZE=2 1980 FREE DISK BLOCKS

The text you typed during the last example appears under this message. The message tells
you that PIDGIN.TXT is an old file, its size is 2 blocks (a block is 128 bytes), and you have 1980
free disk blocks in which to expand the file (these numbers vary depending on the space taken
up by files on your disk). If you do not have enough free disk blocks to expand the file, CREDIT
displays a warning message.

You can continue to experiment with CREDIT by typing and retyping lines of text. When you
are finished typing extraneous characters and are ready to type meaningful English
sentences, move the cursor to the first character or screen position, and type CNTL and Z
(hold down the CNTL key and type Z). The @ symbol will replace the character. Now move the
cursor to the end of the text—to the vertical line—and type CNTL and Z together again. ZAP!
You just deleted all the text you typed. All of the characters between the two @ symbols were
deleted, and you are left with an empty text file again.

Let’s start with the simple problem definition. Type the following sentence:

Maintain the climate of a building using a system comprised of?t
heating and cooling methods.t
+

NOTE

The uparrow (t) stands for the RETURN key. Use the RETURN key to end each line of
text, including blank lines.

Using CREDIT, you can type the sentences you know you need, and insert more sentences
later. For example, you know you need the following sentences:

Based on temperature data, see if there is a demand,?
and determine the type of demand.t
If there is no demand, simply continue operating the climate system.?t
If there is a demand for heat, determine the heating method,?*
and operate the system with this method.?®
If there is a demand for cold, determine the cooling method,?®
and operate the system with this method.?t

Text Editing

Two questions should immediately come to mind: what information does the program need,
and what else would a climate control program do? Let’'s add new sentences by using
CREDIT’s insert capability. Here is our text file so far:

Maintain the climate of a building using a system comprised of?t
heating and cooling methods.?*
+
Based on temperature data, see if there is a demand,*
and determine the type of demand.?t
If there is no demand, simply continue operating the climate system.?®
If there is a demand for heat, determine the heating method,?®
and operate the system with this method.?®
If there is a demand for cold, determine the cooling method,*
and operate the system with this method.?®

Move the cursor to the beginning of the fourth line of text (the line that begins with
‘‘Based on ...”"). Hold down the CNTL key and type A (CNTL-A). The rest of the text disap-
pears, and you are now able to type sentences. Type the following sentences and blank lines:

+
Startup the climate system.?t

N

While the system is operating, do (and repeat) the following:?t
+

Get the data needed for each pass: the time, the temperatures,?t
the weather, the state of the solar collector, etc.?®

Store this data.?

"

Now type CNTL and A together again. The rest of the text file reappears with the new lines
inserted in their proper places. By typing CNTL and A together, you turn on the Add Text
Mode; by typing them again, you turn off Add Text mode. Here is your text file with the newly
inserted lines:

Maintain the climate of a building using a system comprised of*

heating and cooling methods.?

+

Startup the climate system.?

N

While the system is operating, do (and repeat) the following:*

+

Get the data needed for each pass: the time, the temperatures,?

the weather, the state of the solar collector, etc.?

Store this data.?t

*

Based on temperature data, see if there is a demand,*

and determine the type of demand.?t

If there is no demand, simply continue operating the climate system.?t

If there is a demand for heat, determine the heating method,t
and operate the system with this method.?*

If there is a demand for cold, determine the cooling method,*
and operate the system with this method.?®

31

Chapter 3

32

MOVING AROUND IN THE TEXT FILE

Using the cursor movement keys, you can move the cursor anywhere within a screenful of
text. If the text file is larger than twenty lines, it will not fit entirely in one screen—you have to
scroll the screen by using the scrolling commands.

The scrolling commands only operate when the cursor is in the text area (when the cursoris in
the text area, you are in screen mode). Refer to figure 3-1 for an illustration of the text and com-
mand areas. When the cursor is in the command area (command mode), you can only execute
command mode commands; to move into screen mode (and move the cursor to the text area),
type CNTL-V (hold down the CNTL key and type V).

The scrolling commands are CNTL-N (to see the next screenful of text), and CNTL-P (to see
the previous screenful of text). You can also use CNTL-V to see which character CREDIT is cur-
rently pointing to, and to move into screen mode. If you experiment with CNTL-V, you will
notice that the first use of CNTL-V moves the cursor to the character that CREDIT’s pointer is
pointing to (more on this pointer in the next paragraph). Subsequent executions of CNTL-V
rearrange the lines of text so that the line that contains the character pointed to by CREDIT
becomes the third line in a screenful of text. This is very useful for partial scrolling. You can
use these commands without fear, since they do not modify the text.

NOTE

The CNTL key, when used with another key (e.g., CNTL-V), is sometimes
represented by the uparrow (1) symbol in our manuals and pocket references. For
example, CNTL-V is shown as 1V, and CNTL-A is shown as tA.

The character pointer mentioned above is a reference point for all of CREDIT’s commands. In
screen mode, the cursor represents the pointer. It is sometimes called ‘‘the CP’’. Most text
editors have some pointer or marker that points to a place in the file, and commands that insert
characters, delete characters, or search for characters use this pointer to find the place in the
file to perform their operations. CREDIT’s pointer points to a single character, and this pointer
moves whenever you move the cursor within the text area. When you type the HOME key and
move the cursor to the command area, the pointer stays where it is, pointing to the character in
the text area. The CNTL-V command moves the cursor back to the text area and back to the
character pointed to.

In screen mode, the cursor movement keys and the scrolling commands move this pointer. In
command mode, all editing changes are made relative to the position of this pointer. Deleting a
single character, for example, erases the character pointed to by the pointer, and moves the
pointer to the next character. When you insert text, the text is inserted preceding this pointer.
Many other commands also move this pointer. CNTL-V will always move the cursor to the
character pointed to by this pointer.

One command that always moves the pointer is the J (jump) command. You can only use the J
command in command mode, and the J command leaves you in command mode (so you have
to do another CNTL-V to get into screen mode). You can jump to any location relative to the
pointer, or you can jump to specific locations called tags. You can set your own tags by using
the TS (tag set) command, and delete tags by using the TD (tag delete) command. There are
two permanent tags that need not be set, and that cannot be deleted: the beginning of the file,
known as TT (tag for top), and the end of the file, known as TE (tag for end). For example:

*JTT<cr>

This command moves the pointer to the top of the text file (the beginning of the first line).

Text Editing

Since CREDIT usually puts the pointer at the top of the file when you start an editing session,
the JTT command (jump to tag for top of file) is more useful during an edit session. The JTE
command (jump to tag for end of file) is useful at any time:

*JTE<cr>

After using the J command, you are still left in command mode. Use the CNTL-V command to
return to screen mode, and to return the cursor to the character pointed to by the CP.

Use the JTE command (jump to tag for end of file), followed by a CNTL-V command to return to
screen mode, in order to add a sentence to the end of our Pidgin Pascal software definition.
The following example shows the execution of the JTE command, followed by a CNTL-V
(displayed as tV), followed by a display of the current text file with the added sentence at the
end:

*JTE<cr>
*1V

Maintain the climate of a building using a system comprised of*

heating and cooling methods.?®

+

Startup the climate system.t

+

While the system is operating, do (and repeat) the following:?t

+

Get the data needed for each pass: the time, the temperatures,?t

the weather, the state of the solar collector, etc.t

Store this data.t

N

Based on temperature data, see if there is a demand,?t

and determine the type of demand.?t

If there is no demand, simply continue operating the climate system.?t

If there is a demand for heat, determine the heating method,*
and operate the system with this method.?®

If there is a demand for cold, determine the cooling method,*
and operate the system with this method.?t

+

If no method is possible (abnormal conditions),?t

shut down the climate system.?t

L)

FINDING OLD TEXT AND SUBSTITUTING NEW TEXT

There will be numerous occasions when you will want to find a specific word or group of
words, and move the character pointer at the same time. There will also be times when you will
want to substitute a new word or group of words for an old one. For example, you might write a
program that displays the name of your product (for example, ‘‘ACME Solar Controller’’) in
several different places. Sometime later, you find out that the marketing people changed the
name to ‘‘ACME Climate Controller’’. With one simple CREDIT command, you could substitute
the new word (‘‘Climate’’) for the old word (‘‘Solar’’) wherever the old word occurs in the text
file. You would only have to make sure that you specified the old name using upper and lower
case characters as they appear in the file, and that the new name looks exactly as it should
look.

33

Chapter 3

34

The F (Find) command finds any string (group of characters) you specify. The S (Substitute)
command finds the old string you specify and substitutes the new string you specify, and rear-
ranges the text so that spaces aren’t introduced into the file. The SQ (Substitute after Query)
command finds the old string you specify, then asks you for a yes-or-no answer: a yes tells
CREDIT to substitute the new string you specified, and a no tells CREDIT not to substitute the
new string. If you executed the SQ command iteratively (see next section), CREDIT would con-
tinue looking for more instances of the old string.

To show examples of these commands, we’ll return to our Pidgin Pascal text file to add some
new text and substitute a new word for an old one. Use the F command to find the string
‘‘simply continue’’:

*F/simply continue/<cr>

When the F command finishes, it displays the asterisk once again. To see where it put the
character pointer, type CNTL-V. The cursor should be under the space after the last letter of
‘‘continue.”” We want to rewrite the sentence so that ‘‘no method’’ is one of the methods used
to operate the climate system.

At this point, it is easy to move the cursor to the appropriate place to insert new text. You can
type over the old text, and use the RETURN key to continue typing a line. You can also use the
CNTL-A combination to insert a lot of text. After inserting the new text, the sentences should
read as follows:

If there is no demand, choose ''no method'' as the method,?®
and operate the system with this method.?®

If there is a demand for heat, determine the heating method,?*
and operate the system with this method.?®

If there is a demand for cold, determine the cooling method,?*
and operate the system with this method.?

+

If no method is possible (abnormal conditions),*

shut down the climate system.?t

To illustrate use of the S and SQ commands, we will substitute the word ‘‘request’’ for
‘‘demand’’ throughout our text file (and thereby make our program more polite). First, use the
JTT command to move the character pointer to the beginning of the file; then use the S com-
mand in the following manner:

*JTT<cr>
*S/demand/request/<cr>

The S command found the first instance of ‘‘demand’’ and substituted ‘‘request’’ for it. Check
to see the result by typing CNTL-V:

Based on temperature data, see if there is a request,?t
and determine the type of demand.?t

Note that S command only found the first instance of ‘‘demand’’ and substituted ‘‘request’’ for
it only. Note also that the S command must have moved the comma after the first ‘‘demand’’ in
order to fit the word ‘‘request’’ in that place.

Text Editing

To execute the S or SQ commands repeatedly, you would use a form of command iteration.
The SQ command performs the same operation as the S command if you answer with a yes; on
a no answer, the SQ command does not substitute text. Here is an example of the SQ com-
mand, with a sneak preview of the easiest form of command iteration:

*1<SQ/demand/request/><cr>

The angle brackets around the entire SQ command, in conjunction with the exclamation point,
cause the SQ command to be executed repeatedly until the command reaches the end of the
text file. Do not be confused by the angle brackets surrounding the “‘cr’’—that is the symbol
depicting use of the RETURN key. Angle brackets delimit the command to be executed
iteratively, and the exclamation point replaces a number that would specify the number of
iterative executions. This is explained in more detail in the next section.

The SQ command displays the line that contains the old text, and then displays a question
mark. You must respond with a ‘Y’ for yes, oran ‘N’ for no:

and determine the type of demand.?®
7Y

You do not have to type RETURN after typing the ‘Y’ or “N’’, because CREDIT is expecting
such an answer. The SQ command goes on to find more instances of ‘‘demand’’:

If there is no demand, choose ''no method'' as the method,*
?Y

If there is a demand for heat, determine the heating method,*
7Y

If there is a demand for cold, determine the cooling method,?*
7Y

*

When the SQ command has found the end of the text file, the condition for iterative execution
is satisfied, and the execution ends. Type CNTL-V, followed by a CNTL-P, to see the previous
page and the substitutions:

Maintain the climate of a building using a system comprised of?t

heating and cooling methods.?®

b

Startup the climate system.?t

+

While the system is operating, do (and repeat) the following:?t

+

Get the data needed for each pass: the time, the temperatures,?t

the weather, the state of the solar collector, etc.?t

Store this data.t

+

Based on temperature data, see if there is a request,?t

and determine the type of request.?t

If there is no request, choose '‘'no method'' as the method,?*
and operate the system with this method.?®

If there is a request for heat, determine the heating method,*
and operate the system with this method.?®

If there is a request for cold, determine the cooling method,?*
and operate the system with this method.?®

1

If no method is possible (abnormal conditions),?t

shut down the climate system.?t :

N

35

Chapter 3

36

MACROS AND COMMAND ITERATION

Our Pidgin Pascal program still needs a modification that will vastly improve its readability. We
need to indent all of the sentences that occur after the sentence ‘“While the system is
operating, do (and repeat) the following:”’. This will improve the readability, since it will then
be obvious that the indented sentences are the actions that have to be repeated.

To make this improvement, we will define a macro to hold several editing commands that will
be executed iteratively. Rather than explain the process of defining macros and the syntax for
command iteration, we'll show you the steps to take to make this improvement to our text file,
and then we’ll explain them.

To begin, move the cursor (in screen mode, so that it also moves the character pointer) to the
beginning of the blank line that follows the sentence ‘‘While the system is operating...”’. Your
cursor (and the character pointer) should now be at the beginning of this blank line, as shown
by the underscore ‘‘_"’ symbol:

Maintain the climate of a building using a system comprised of?t
heating and cooling methods.?t

*

Startup the climate system.?t

1

While the system is operating, do (and repeat) the following:*t

Now type the HOME key to return to command mode.

You can only define macros while in command mode. We will now define a macro called X that
will make the improvement. Here is our definition of X:

*MSXaL0;%<L;1/00000/;P>a<cr>

Type this macro definition exactly as it is shown above (the “(0” symbol stands for a
space—type five spaces—and the ‘‘<cr>’’ stands for the RETURN key). When CREDIT finishes
digesting this definition, it displays the asterisk again. Now type the following command:

*MFX(13)<cr>

You will see each line following the sentence ‘“While the system is operating...”’ being acted
upon by macro X. All of the lines following that sentence are now indented by five spaces, as
shown below:

Maintain the climate of a building using a system comprised of?t
heating and cooling methods.*
N
Startup the climate system.?t
"
While the system is operating, do (and repeat) the following:?t
t
Get the data needed for each pass: the time, the temperatures,t
the weather, the state of the solar collector, etc.?
Store this data.?t
+
Based on temperature data, see if there is a request,?t
and determine the type of request.?t
If there is no requesf, choose ''no method'' as the method,?®
and operate the system with this method.?t

Text Editing

If there is a request for heat, determine the heating method,*
and operate the system with this method.?®
If there is a request for cold, determine the cooling method,?*
and operate the system with this method.t
*
I1f no method is possible (abnormal conditions),?®
shut down the climate system.?®
k)

““What was that gibberish | typed?”’ To answer your question, display the macro definition
again by typing the following command in command mode:

*?7M<cr>
XLO;%<L;1/ /; P>

The display is exactly what you typed before, without the ‘@’ symbols. The “@"’ symbols
were used to define the macro—they delimit the actual text of the macro, so they are not
necessary in this display (therefore CREDIT does not display them).

The macro starts with its name: X. Following the name is the first command in the macro: the
L0 command, which moves the character pointer (called CP from now on) to the beginning of
the current line (the line that the CP is currently sitting on—this line changes every time the
entire macro executes). Following the LO command is a semicolon, which separates one
command from the next.

The next command in macro X is a set of commands to be executed repeatedly, or iteratively.
The ““%’’ (percent) symbol is a special one in this case, and is explained in the next paragraph.
You saw the angle brackets in the last section—they delimit the set of commands to be
executed repeatedly. The commands to be executed repeatedly are the L command (move CP
to the beginning of the next line), the | command (insert the text that is specified within the
following ‘“/’’ (slash) symbols), and the P command (display the current line). The text within
the ““/"’ (slash) symbols consists of the five spaces we need to insert in order to indent the
lines.

Now we’ll explain the ‘%"’ (percent) symbol. When you typed the command to execute macro
X, you typed:

*MFX(13)<cr>

The “MF” command executes the macro ‘“X’’. The number 13 in parentheses is called a
parameter—the MF command substitutes the parameter you specify (in this case, 13) for the
“%"" (percent) symbol. The result is that the iterative command set (*'<L;l/ [,P>") is
executed 13 times. Why did we pick 13? Because there were only 13 lines ahead of the
character pointer to be indented. We could have specified a *‘!"’ (exclamation point) symbol to
execute the iterative command set over and over until it reached the end of the file, but we
chose this method to show you the use of parameters in macros, and to make sure that the last
two lines would not be indented.

We also chose to use the ““@’’ symbol to delimit the entire macro, but you can use any symbol
that is not used within the macro.

Obviously, there are more details you should learn before using macros and other advanced
editing features. However, you do not need these features to perform simple editing opera-
tions. They exist only to make your text editing sessions easier, if you first learn how to use
them.

37

Chapter 3

38

ENDING A TEXT EDITING SESSION AND MANAGING
BACKUP FILES

When you are editing text, the edited text is in the computer’s memory, but itis not yet on disk.
To update the text file with the edited text, you have to end your text editing session properly.
The EX command properly replaces the old text in the file with the newly edited text, and it also
saves the old version of the file in another file called a backup file. When the edit session ends,
control of the system returns to the operating system (ISIS-Il). '

If you have been following the examples in this chapter, you are now in CREDIT with your
edited text, and you are ready to end your edit session. If you are not in command mode (with
the asterisk prompt), use the HOME key to get into command mode. When you are in com-
mand mode, type the following command:

*EX<cr>
The text on the screen should disappear, and another message should appear:
EDITED TO :FO:PIDGIN.TXT

The file PIDGIN.TXT, on the disk in drive 0, now contains the newly edited text. Use the DIR
command to see the directory for drive 0. In the directory listing, you should see the filename
PIDGIN.BAK. CREDIT created this file to be the backup file that contains the old unedited ver-
sion of PIDGIN.TXT. Every time you use the EX command by itself, CREDIT automatically
creates a backup file with the ‘.BAK’’ extension to contain the previous version of the file.

NOTE

You should not execute CREDIT to edit a backup file (a file with the ‘*.BAK’’ exten-
sion), because the EX command would first put the new edits into the ‘“.BAK"’ file,
then it would overwrite the ‘*.BAK’’ file with the previous (unedited) version of it. Use
the REN (rename) command to rename the file before editing it, or use the filename
option with the EX command, described in the next paragraph.

You can optionally specify a filename with the EX command, so that the newly edited text
becomes a new text file, and the old text file remains unedited. For example, if you had typed
the following version of the EX command (rather than the preceding version):

*EX NEW.TXT<cr>
the following message would appear:
EDITED TO :FO:NEW.TXT

The file NEW.TXT would contain the newly edited text, and the old PIDGIN,TXT would not have
been updated (and PIDGIN.BAK would not have been created as a backup file).

NOTE

If you type “‘EXIT’’ rather than “EX’’, CREDIT assumes that you want to store the
newly edited text in the file IT (:FO:IT).

Another way to end an edit session is to use the EQ (quit) command. The EQ command will
keep all files unchanged, as if nothing had happened. All edits you made while in the edit ses-
sion vanish, and the text and backup files (if they exist) remain unchanged. If you use the EQ
command in a session that created the text file, the new text file would not exist.

Text Editing

To keep you from making a mistake, the EQ command will first ask you for a Y or N answer
before it ends the session:

*EQ<cr>
QUIT?Y

If you reply with anything otherthana ‘‘Y’’ or ‘‘y’’, the EQ does not end the edit session.

DISPLAYING AND PRINTING TEXT FILES

Now that you have a text file, we can show you how to display the file on your screen and copy
the file to a printing device. You can display the text file on your screen without using CREDIT
by using the COPY command and the device name :CO: (for ‘‘console output’’):

-COPY PIDGIN.TXT TO :C0:<cr>

To print the text file PIDGIN.TXT, you use the COPY command to copy the file to the device
name :LP: (for “line printer’’), or to the device name :TO: (for ‘‘teletype output’). You can
COPY a file to any output device. You can find a complete list of device names in the Intellec
Series Ill Microcomputer Development System Console Operating Instructions. This example
assumes that you have an :LP: device to receive a copy of the file :FO:PIDGIN.TXT:

-COPY PIDGIN.TXT TO :LP:<cr>

FROM TEXT TO PROGRAM

Your PIDGIN.TXT text file now contains an algorithm that is actually a program in disguise (the
disguise is English, or Pidgin Pascal). You should keep a copy of it somewhere, perhaps on
another disk (or leave it in drive 0 if you have a hard disk subsystem). To use this algorithm in
the next chapter, you will want to copy the text file to the Pascal-86 disk, and call it MAIN.SRC,
since it will become the source file of your main control algorithm:

-COPY PIDGIN.TXT TO :F1:MAIN.SRC<cr>
:FO:PIDGIN.TXT COPIED TO :F1:MAIN.SRC

The examples in this and subsequent chapters assume that you either have a hard disk sub-
system, or at least two double-density flexible disk drives. If you have single-density flexible
disk drives, you should have more than two of them; in this case, you should put your program
on the third disk, since it probably will not fit on the Pascal-86 disk in drive 1.

Although MAIN.SRC only has Pidgin Pascal statements at this time, you will edit them to make
them real Pascal-86 statements as they appear in figures in Chapter 4.

39

CHAPTER 4
PROGRAMMING IN PASCAL-86

“‘One of the most important aspects of any computing tool is its influence on the thinking
habits of those who try to use it...”"
—E. W. Dijkstra

The Series |l Microcomputer Development System was designed to support a variety of pro-
gramming techniques with several programming languages. The preceding chapters give you
the background you need to use this system wisely, and this and the following chapters help
you decide the criteria for decomposing your application into modules and picking the
appropriate language to use for each module.

One popular approach to programming is the top-down approach, where you define the prob-
lem completely, design an abstract algorithm to solve the problem, and refine this algorithm
into self-supporting modules that can be coded and compiled separately. Typically, the main
module would contain the most abstract algorithm—the control algorithm at the top of the
design that solves the entire problem. The subordinate modules perform the procedures
dictated by the main module.

Pascal-86 is a language that is ideal for the main module of such a modular solution. Using
Intel’s Pascal-86 compiler, you can decompose a program into modules that can be compiled
separately, whereas other Pascal compilers only compile whole programs which have to be
tailored to fit into microprocessor environments.

Perhaps the most important reason for Pascal’s wide acceptance is the fact that it is a
language that closely resembles English. In the past, programmers had to keep their algorithm
designs well within the constraints of programming languages that were designed to express
mathematical equations. In other words, at the outset they had to think in terms of the pro-
gramming language available to them. This approach reinforced the practice of giving
implementation (‘“how to’’) information in the problem definition (for example, ‘‘the input to
this program is to be formatted on cards in columns 0-15..."”).

In Chapter 3 we designed an algorithm for the climate control of a building using English, which
we jokingly call Pidgin Pascal. Since our control structures are in English, we have been able
to communicate this algorithm easily and test its logic before translating it into Pascal-86. By
now we should have a complete problem definition and a clean algorithm that could be
translated into any programming language.

TRANSLATING PIDGIN PASCAL TO PASCAL-86

Figure 4-1 shows the main climate control algorithm, described in Pidgin Pascal. Several
assumptions are made: that another subordinate module will operate the climate system, that
yet another module will access and store the data, and that the data itself will be in the form of
arecord, which will be available to this algorithm.

41

CHAPTER 4

As in typical development situations, a change has just occurred in our climate system that we
software engineers have to accomodate: the first version of our climate system will not have
cooling methods—only heating methods. We must design the software to make room for cool-
ing methods in the future.

We made another change to the algorithm to accomodate a ‘‘panic’’ condition. An algorithm is
not complete unless it can handle any situation; remember, Murphy said that if it can go wrong,
it will. Therefore, we added a test to see if the climate system can handle the request for heat.
If neither the collector water nor the tank water is hot enough to heat the building, a panic con-
dition occurs that stops the normal operation of the climate system. At this time, it is sufficient
to simply stop the program and output warning messages; later, we can add more procedures
to handle such panics.

Using CREDIT (as described in Chapter 3), you can change this algorithm into Pascal-86 by
adding the Pascal-86 statements and using comment symbols to turn the English sentences
into program comments. The (* and *) symbols tell the Pascal-86 compiler to ignore whatever is
between them. Some comments are only a few words surrounded by the (* and *) symbols, but
comments can take up many lines, as shown at the end of the program in figure 4-2. As soon as
the compiler sees the (* symbols, it ignores the characters and lines following it until it sees
the *) closing symbols.

These comments are carried over with the program statements to the listing file produced by
the compiler. You use the listing file as documentation for the program. You’ll see a listing file
later in this chapter.

Figure 4-2 shows the same algorithm expressed in Pascal-86 statements, with the English
sentences masquerading as program comments. We also added more comments. It is a good
practice to write the comments of a program before writing the actual program statements.

Maintain the climate of a building using a system comprised of
heating methods.

Startup the climate system.
While the system is operating, do (and repeat) the following:

Get the data needed for each pass: the time, the temperatures,
the weather, the state of the solar collector, etc.
Store this data.

Based on temperature data, see if there is a request

for heat.

If there is no request, choose ''no method'' as the method,
and operate the system with this method.

If there is a request for heat, determine whether the
system can handle the request. If not, cause a panic.
Otherwise, determine the heating method,
and operate the system with this method.

If no method is possible (panic or abnormal conditions),
shut down the climate system.

Figure 4-1. Algorithm for the Climate Control Main Module

PROGRAMING IN PASCAL-86

(**xType and variable declarations to be supplied laterxx)

(«*%xPublic procedures external to this program will be supplied later*x*)

PROGRAM MainControl (INPUT,OQUTPUT);

BEGIN (**Main Control Algorithm#x)
StartUpSystem; (*procedure to start up the climate system*)
Operating:=TRUE;
Panic:=FALSE;
WHILE Operating DO (*While the system is operating, do
(and repeat) the following:x)
BEGIN
GetData(CurrentData);
(xGet data needed for each pass: temps, time, etc.*)
StoreData(CurrentData); (*Store this data as record*)

(xxIf there is a request for heat, determine whether the system
can handle the request. If not, cause a panic.
Otherwise, determine the heating method,
and operate the system with this method.

If there is no request for heat, choose ''no method,"''
and operate the system with this method. *%)

WITH CurrentData DO
BEGIN
IF InsideTemp<ThermostatSetting THEN (*if request*)
BEGIN
IF CollectorWaterTemp>MinimumForExchanger THEN
BEGIN ChosenMethod:=CollectorToExchanger;
OperateSystem(CurrentData);
END
ELSE IF CollectorWaterTemp>MimimumForHeatPump THEN
BEGIN ChosenMethod:=CollectorToHeatPump;
OperateSystem(CurrentData);
END
ELSE IF TankWaterTemp>MinimumForExchanger THEN
BEGIN ChosenMethod:=TankToExchanger;
OperateSystem(CurrentData);
END
ELSE IF TankWaterTemp>MimimumForHeatPump THEN
BEGIN ChosenMethod:=TankToHeatPump;
OperateSystem(CurrentData);
END
ELSE IF HeatedTankTemp>MinimumForHeatPump THEN
BEGIN ChosenMethod:=HeatedTankToHeatPump;
OperateSystem(CurrentData);
END
ELSE Panic:=TRUE; Operating:=FALSE;
END (*if heating requestx)
ELSE (*no heating requestx)
BEGIN ChosenMethod:=NoMethod;
OperateSystem(CurrentData);
END;
END; (*End routine WITH CurrentDatax)
END; (*While operating*)
ShutDownSystem(CurrentData); (* panic or abnormal condition *)
END.

Figure 4-2. First Try at Coding the Main Program

43

CHAPTER4

44

(x*The following are only comments:

The following procedures will be coded in another module
called the Operation Module:

PROCEDURE OperateSystem(CurrentData)

This procedure Wwill operate the system and constantly
maintain heat gain in the system. Depending on the
heating method chosen, it opens certain valves and
closes others, and turns on certain pumps and turns
off others. It also maintains a flow of heated water
to the storage tank.

NOTE: for our testing purposes, a dummy OperateSystem
procedure will only display messages telling us what
heating method was chosen, and temperature data.

PROCEDURE ShutDownSystem(CurrentData)

This procedure will perform an orderly shut down if a
panic or abnormal condition occurs. The shut down must
keep warm water flowing through the solar collector and
close any extraneous valves, etc. It must also send a
warning messages tc the console, advising manual operation
of the furnace, etc.

NOTE: for our testing purposes, a dummy ShutDownSystem
procedure will only display data and a shutdown message.

PROCEDURE StartUpSystem

This procedure will start the climate system (cold start,
or after ShutDownSystem occurs), open necessary valves,
etc. It will also display a startup message.

NOTE: for our testing purposes, a dummy StartUpSystem
procedure will only display a startup message.

The following procedures will be coded in another module
called the GetData Module:

PROCEDURE GetData(CurrentData)

This procedure will obtain the data from a PL/M-86 module
called PLMDATA that accesses ports to obtain temperature
data. Data other than temperature data will come from
ports via port input/output procedures in this Pascal-86
module.

NOTE: for our testing purposes, a dummy GetData procedure
will obtain all data from the console.

Figure 4-2. First Try at Coding the Main Program (Cont’d.)

PROGRAMING IN PASCAL-86

PROCEDURE StoreData(CurrentData)
This procedure will store the data record CurrentData in a

file (the file would probably reside in non-volatile bubble
memory) .

NOTE: for our testing purposes, a dummy StoreData procedure
will simply output the data to the console.

This is the last line of comments.**)

Figure 4-2. First Try at Coding the Main Program (Cont’d.)

This guide cannot possibly explain Pascal syntax—there are several books mentioned in the
Bibliography that can give you the background you need, and the Pascal-86 User’s Guide pro-
vides all the information you need to use Intel’s extensions to standard Pascal.

PASCAL-86 DATATYPES

A major advantage that Pascal has over other high-level languages is its strong type checking
mechanisms that enforce data typing. By using Pascal’s data types, you avoid some of the
classic causes of errors in programs—the ambiguities involved with using simple X and Y
variables to hold truly non-numeric data, the mistakes that occur when you attach arbitrary
meanings to numeric data, and the complexities that are magnified by ambiguous variable
names.

An example is worth a thousand explanations. In the Pascal-86 algorithm in figure 4-2, we make
assignments like this one:

ChosenMethod:=TankToExchanger;

If ChosenMethod and TankToExchanger are declared properly in the module heading (not
shown in figure 4-2, but shown later in this section), the Pascal-86 compiler will know their
meanings. When you read this assignment, you know exactly what heating method has been
chosen. The data type is a type of heating method, not an integer representing a method. In
other programming languages you might be able to have a variable named ‘“‘ChosenMethod”’
and another variable named ‘‘TankToExchanger’’, but you would also have to be sure to assign
proper numeric or string values to them. A typical way of expressing the above assignment in
PL/M would be:

CHOSENSMETHOD = 2
/*where 2 is the appropriate method*/

or
CHOSENSMETHOD = TSTOSEXCH

/*where TSTOSEXCH has already been assigned the appropriate
valuex/

45

CHAPTERA4

46

In both cases, you have to know a numeric code for the heating method. In Pascal, however,
you only have to define a set of heating methods, and pick one for the assignment. Here is an
example of such a definition:

TYPE HeatingMethods = (CollectorToExchanger,
CollectorToHeatPump,
TankToExchanger,
TankToHeatPump,
HeatedTankToHeatPump,
NoMethod);

(*xThe above defines the data type HeatingMethods, which is
used to define the variable ChosenMethod below.*)

VAR ChosenMethod : HeatingMethods;

In order to assign a value to ChosenMethod, the program must assign one of the methods in
the set of type HeatingMethods. Any other assignment would cause a compiler error message
to occur. By enforcing this data typing mechanism, the Pascal-86 compiler reduces the number
of run-time errors by flagging the data type errors early in the game.

There are several standard Pascal data types that are useful. For example, you can define a
variable to be of type BOOLEAN, which means that the only values that can be assigned to the
variable are the values TRUE and FALSE. The variables Operating and Panic are of type
BOOLEAN; they are either TRUE or FALSE.

Note that ChosenMethod and CHOSENMETHOD would refer to the same variable, since lower
case characters are treated as upper case. This feature allows you to create long identifying
names with combinations of upper and lower case characters that are easy to read and
understand.

ANOTHER LOOK AT MODULARIZING AND HIDING INFORMATION

The programming technique called information-hiding is not an excuse for designers to
withhold information from their documentors—it is more akin to a technique we use to hold a
lot of information in our minds. When we have to interface with several different organizations
within a company in order to get a job done, we don’t pay attention to the inner workings of an
organization; we simply assume that the organization will do its job, and we define our inter-
face with the organization. Their organization is one module, and ours is another module; the
job gets done because the modules know how to communicate to each other without interfer-
ing in each other’s details.

Most logical algorithms are designed with assumptions about working modules. In our
algorithm in figure 4-2, we assume that the procedures StartUpSystem, GetData, StoreData,
OperateSystem and ShutDownSystem will work as planned, even though they are not yet writ-
ten. We also assume that another group may write them. We can make these assumptions
because we designed our main module to hide most of the details about choosing heating
methods.

So far, the main module’s algorithm decides the appropriate heating method based on a set of
data. Once the algorithm is written, it may never change; and if it had to change, its change
should not affect the other modules. However, we could change the control algorithm so that
changes to the heating methods, or additional heating methods, would not even affect the
main control algorithm. A simple way to do this would be to turn the heating method determina-

PROGRAMING IN PASCAL-86

tion algorithm into an independent procedure called DetermineMethod, extract from this
algorithm the calls to OperateSystem, and put the call to OperateSystem in the control
algorithm.

The resulting main module is shown in figure 4-3. We added the module heading, but we still
need the interface specification and variable declarations (shown later).

MODULE MainControl;

(x Interface specification goes here, to be supplied later. *)
(* Type definitions and variable declarations to be supplied later. *)

PROGRAM MainControl (INPUT,QUTPUT);

PROCEDURE DetermineMethod(VAR CurrentData : SystemData);

BEGIN
WITH CurrentData DO
BEGIN
IF InsideTemp<ThermostatSetting THEN
BEGIN

IF CollectorWaterTemp>MinimumForExchanger THEN
ChosenMethod:=CollectorToExchanger

ELSE IF CollectorwaterTemp>MinimumForHeatPump THEN
ChosenMethod:=CollectorToHeatPump

ELSE IF TankWaterTemp>MinimumForExchanger THEN
ChosenMethod:=TankToExchanger

ELSE IF TankWaterTemp>MinimumForHeatPump THEN
ChosenMethod:=TankToHeatPump

ELSE IF HeatedTankTemp>MinimumForHeatPump THEN
ChosenMethod:=HeatedTankToHeatPump

ELSE Panic:=TRUE; Operating:=FALSE;

END
ELSE (*no heating request*)ChosenMethod:=NoMethod
END; (*With CurrentDatax)
END; (*xDetermineMethod)

(kkkkkkkkkkkokk MAIN PROGRAM *kkkkkkhkkkkhkkkhhhkkkkhkkkkkkkkkk ke k)

BEGIN
StartUpSystem;
Operating:=TRUE;
Panic:=FALSE;
WHILE Operating DO (*while system is operating, do:x)
BEGIN
GetData(CurrentData); (*Get the temps, time, etc.*)
StoreData(CurrentData); (*Store this data as recordx)
DetermineMethod(CurrentData); (xthis detects a panicx)
OperateSystem(CurrentData);
END; (*while operating*)
ShutDownSystem(CurrentData);
END. (*Main Control Algorithmx)

Figure 4-3. Second Try at Coding the Main Program

47

CHAPTER4

48

The DetermineMethod procedure now hides all the information about choosing the
appropriate heating method. We could also rewrite it to include cooling methods, or to change
the heating methods. The procedure expects to receive the record CurrentData, and it only
changes the value of the variable ChosenMethod.

The OperateSystem procedure will not be written until more facts are known about the hard-
ware of the actual climate system. However, we already know that if we make a decision about
a chosen method, include that method in the data record CurrentData, and send that data
record to the OperateSystem procedure properly, the OperateSystem procedure will know
how to operate the system. We defer these details to a later time when we’ll have a prototype
system to operate.

PASSING DATATO OTHER MODULES—PARAMETER PASSING
TECHNIQUES

We designed our main module so that it will receive a record of information. A Pascal-86 record
is much like a PL/M-86 structure which can be defined to hold certain data types. We have to
define this record in order to write the main module, but we can defer decisions about obtain-
ing the data in order to preserve our options.

A PL/M-86 procedure could easily obtain the data and build the structure according to inter-
face specifications; so could an 8086/8087/8088 Macro Assembly Language program, or an 8089
Assembly Language program. In fact, we might be able to use existing routines to obtain the
data, and simply write another routine to structure the data accordingly.

In any case, we only have to pass the address of the structure to the Pascal-86 main module,
which knows what to do with it. This parameter-passing technique is known as pass by
reference, because the main module only needs a reference to the address of the structure in
order to treat the structure as a Pascal record.

Another parameter-passing technique is pass by value, where a procedure calls another pro-
cedure and sends it a value rather than an address. We don’t use this technique in our applica-
tion, since our procedures need to access data in the record. We decided against passing
specific values from this data record, and decided instead to make the entire data record
available to the appropriate procedures.

To define the data record properly and still provide the ability to change it easily, we created a
data type for the record:

TYPE (xdefinitions publicly defined in this modulex)

SystemData = RECORD
ChosenMethod : HeatingMethods;
InsideTemp,
ThermostatSetting : AirTemperature;

CollectorWaterTemp,
TankWaterTemp,

HeatedTankTemp : WaterTemperature;
AmountOfSunlight : Integer;
Hour : 00..24;
Minute : 00..59;

END (*SystemDatax);

PROGRAMING IN PASCAL-86

Using the data type SystemData, we defined the variable CurrentData to be of that type:

VAR
CurrentData : SystemData;

We pass the variable CurrentData to other procedures. If we were to change the data fields in
the record, we would only have to change the definition of SystemData; we would not have to
change any of the calls that pass the variable CurrentData. If the data fields kept the same
names (ChosenMethod, ThermostatSetting, etc.), we would not have to change the routines
that use those data fields.

THE INTERFACE SPECIFICATION

A module that calls a procedure in another module must have some information about where
the other procedure is, and it must provide some information to the other procedure about the
data being passed. Intel’s Pascal-86 provides a mechanism for supplying the appropriate
information to all modules that are to be linked to form a program—it is called an interface
specification.

The interface specification typically holds the type definitions and variable declarations that
are needed by all modules, and it also contains the names of procedures (with their
parameters) that are public to other modules; that is, they can be called from other modules.
Each module of the entire program contains this information. Figure 4-4 shows the interface
specification for our program.

In addition to PUBLIC definitions in the interface specification, a module can have PRIVATE
type definitions and variable declarations for variables used only within the module. Our
Operation module will have a PRIVATE section for all variables that are only used within the
module, but our MainControl main module does not need one. In Pascal-86, a PRIVATE
heading is used in non-main modules instead of a PROGRAM heading.

Several enumerated types are defined in our program: AirTemperature and WaterTemperature
are defined as types that can only have values in the ranges specified. The variables Hour and
Minute are also of enumerated types, but since their ranges do not change, their types are not
defined separately. By defining the temperature types separately, we can easily change their
ranges without affecting the data record.

By defining the data record as type SystemData, we can easily change data fields in the record
without changing the CurrentData declaration. By defining and declaring types and variables in
the interface specification, we can maintain the interface specification separately (and change
definitions and declarations) without affecting the procedures.

TEST VERSION OF THE CLIMATE CONTROL SYSTEM

Since our hardware designs are not yet firm, we should put together a test version of our
system that does not interact with any prototype hardware. This version should include
dummy procedures for the procedures that would normally rely on 8088 ports and other
hardware.

49

CHAPTER4

PUBLIC MainControl; (*section of interface specificationx)
CONST (xdeclarations declared publicly in this modulex)

MinimumForExchanger = 35;(xdegrees Celsius*)
MinimumForHeatPump 13;

TYPE (xdefinitions publicly defined in this modulex)

AirTemperature =-20..120; (xdegrees in Celsiusx)
WaterTemperature =0..120;
HeatingMethods =(CollectorToExchanger,

CollectorToHeatPump,
TankToExchanger,
TankToHeatPump,
HeatedTankToHeatPump,
NoMethod) ;

SystemData = RECORD
ChosenMethod : HeatingMethods;
InsideTemp,
ThermostatSetting : AirTemperature;

CollectorWaterTemp,
TankWaterTemp,

HeatedTankTemp : WaterTemperature;
AmountOfSunlight : Integer;
Hour : 00..24;
Minute : 00..59;

END (*SystemDatax);
VAR (*variables publicly defined in this module.*)

CurrentData : SystemData;
Operating, Panic : BOOLEAN;

PUBLIC GetData; (*GetData Module containing GetData & StoreDatax)

PROCEDURE GetData(VAR CurrentData:SystemData);
PROCEDURE StoreData(VAR CurrentData:SystemData);

PUBLIC Operation; (*Operation Module containing OperateSystem,
StartUpSystem and ShutDownSystemx)
PROCEDURE StartUpSystem;
PROCEDURE OperateSystem(VAR CurrentData:SystemData);
PROCEDURE ShutDownSystem(VAR CurrentData:SystemData);

Figure 4-4. The Interface Specification

50

PROGRAMING IN PASCAL-86

The dummy versions are shown in figure 4-5. You should type these versions exactly as you
see them, with the StartUpSystem, OperateSystem, and ShutDownSystem dummy procedures
in the dummy Operation module stored in the file :F1:DUMOP.SRC, and GetData and StoreData
dummy procedures in the dummy GetData module stored in the file :F1:DUMDAT.SRC. The
MainControl module should be stored in :F1:MAIN.SRC, and the interface specification shown
in figure 4-4 should be typed into the file :F1:INSPEC.SRC. If you cannot fit all of these files on
the disk in drive 1, you should put all of them on another disk—and use your own pathname
(:Fn:) for the *“.SRC"’ files. For our examples we assume that these files are on the disk in drive
1, along with the Pascal-86 compiler and run-time libraries.

Figure 4-5 shows each module and the dummy procedures. Since the interface specification is
repeated in each module, we use a shortcut when compiling the modules by putting the com-
mon interface specification in a seperate file (:F1:INSPEC.SRC), and we use the INCLUDE con-
trolin acontrol line as shown:

$INCLUDE(:F1:INSPEC.SRC)

If you put INSPEC.SRC on a disk in a drive other than drive 1, use your own pathname instead
of :F1:INSPEC.SRC.

MODULE MainControl;

(* Interface specification common to all modules *)
SINCLUDEC:F1:INSPEC.SRC)

PROGRAM MainControl (INPUT,OUTPUT);

(* end of interface specification x)

PROCEDURE DetermineMethod(VAR CurrentData : SystemData);
BEGIN
WITH CurrentData DO
BEGIN
IF InsideTemp<ThermostatSetting THEN
BEGIN

IF CollectorWaterTemp>MinimumForExchanger THEN
ChosenMethod:=CollectorToExchanger

ELSE IF CollectorWaterTemp>MinimumForHeatPump THEN
ChosenMethod:=CollectorToHeatPump

ELSE IF TankWaterTemp>MinimumForExchanger THEN
ChosenMethod:=TankToExchanger

ELSE IF TankWaterTemp>MinimumForHeatPump THEN
ChosenMethod:=TankToHeatPump

ELSE IF HeatedTankTemp>MinimumForHeatPump THEN
ChosenMethod:=HeatedTankToHeatPump

ELSE Panic:=TRUE; Operating:=FALSE;

END
ELSE (*no heating request*)ChosenMethod:=NoMethod
END; (*With CurrentDatax)
END; (*DetermineMethod)

Figure 4-5. Test Version of Our Climate Control System

51

CHAPTER 4

(*kxkkkkkkkkkkkx MAIN PROGRAM *kkhkkkkkkkkkkkkkkkhhkkkkkkkkk kA kA k&)

BEGIN
StartUpSystem;
Operating:=TRUE;
Panic:=FALSE;
WHILE Operating DO (*while system is operating, do:*)
BEGIN
GetData(CurrentData); (*Get the temps, time, etc.*)
StoreData(CurrentData); (*Store this data as recordx)
DetermineMethod(CurrentData); (*this detects a panic¥*)
OperateSystem(CurrentData);
END; (*while operating*)
ShutDownSystem(CurrentData);
END. (*Main Control Algorithm*)

(*This is a dummy GetData module, with dummy GetData
and StoreData procedures, for use with MainControl
module in testing phases. It only performs console
input to get Celsius temperatures, the time of day,
and the amount of sunlight (insolation) for the
solar collector. Use PLMDATA module for real
application.x)

MODULE GetData;
(* Interface specification common to all modules *)
$INCLUDE(C:F1:INSPEC.SRC)

PRIVATE GetData;
(* end of interface specification %)

PROCEDURE GetData(VAR CurrentData:SystemData);
BEGIN
WITH CurrentData DO BEGIN

WRITE('Type the thermostat setting in degrees Celsius:');
READLN(ThermostatSetting); WRITELN;
WRITE('Type the inside temperature reading in Celsius:');
READLN(InsideTemp); WRITELN;
WRITE('Type the temperature of the collector water in Celsius:');
READLN(CollectorWaterTemp); WRITELN;
WRITE('Type the temperature of the tank water in Celsius:');
READLN(TankWaterTemp); WRITELN;
WRITE('Type the temperature of the heated tank water in Celsius:');
READLN(HeatedTankTemp); WRITELN;
WRITE('Type the hour of day, as in 04 or 24:');
READLN(Hour); WRITELN;

Figure 4-5. Test Version of Our Climate Control System (Cont’d.)

52

PROGRAMING IN PASCAL-86

WRITE('Type the minute of the hour, as in 01 or 59: ');
READLN(Minute); WRITELN;
WRITE('Type the amount of sunlight, any integer will do for now:');
READLN (AmountOfSunlight); WRITELN;
END; (*with CurrentDatax)
END;
PROCEDURE StoreData(VAR CurrentData:SystemData);
BEGIN
(*Dummy procedure, eventually will store CurrentData in a filex)
WITH CurrentData DO BEGIN

WRITELN (! —mm s mmmmmommm oo 0
WRITELN('CURRENT DATA IS AS FOLLOWS:');
MRITELN (! ==ommmmmmmomoooomooc oo n;

WRITELN('Thermostat Setting is ',ThermostatSetting,'C');
WRITELN('Inside temperature is ',InsideTemp,'C');
WRITELN('Temperature of collector water is ',CollectorWaterTemp,'C');
WRITELN('Temperature of tank water is ',TankWaterTemp,'C');
WRITELN('Temperature of the heated tank water is ',HeatedTankTemp,'C');
WRITELN('Time of day is ',Hour,':',Minute);
WRITELN('Amount of sunlight is ',AmountOfSunlight);
WRITELN; (*a blank linex)
END; (xwith CurrentDatax)
END.

(*xThis is a dummy Operation module, with dummy StartUpSystem,
ShutDownSystem, and OperateSystem procedures,

for use with MainControl module in testing phases.*)

MODULE Operation;

(* Interface specification common to all modules *)
$INCLUDE(:F1:INSPEC.SRC)

PRIVATE Operation;

(x end of interface specification *)

PROCEDURE StartUpSystem;

BEGIN
WRITELN ('Climate system is now on.');
WRITELN ('-=--mcmrmecm i m e e e '
WRITELN;

END;

PROCEDURE OperateSystem(VAR CurrentData:SystemData);
BEGIN
WITH CurrentData DO BEGIN
WRITELN('==========z===z======s====ss==========z======z====') ;
WRITELN('The Climate System is now operating.');

Figure 4-5. Test Version of Our Climate Control System (Cont’d.)

53

CHAPTER 4

WRITELN;
WRITELN('The Time is ', Hour,':',Minute);
WRITELN('The inside temperature is ',InsideTemp,'C');
WRITELN('The thermostat setting is ',ThermostatSetting,'C');
WRITE('Method chosen to heat the building: ');
CASE ChosenMethod OF
CollectorToExchanger: WRITE('Solar Collector to Exchanger');
CollectorToHeatPump : WRITE('Solar Collector to Heat Pump');

TankToExchanger : WRITE('Tank to Exchanger');
TankToHeatPump : WRITE('Tank to Heat Pump');
HeatedTankToHeatPump: WRITE('Heated Tank to Heat Pump');
NoMethod : WRITE('No heat required');
END;
WRITELN;
WRITELN('==========s=========s==s=s==s=====================') H
WRITELN; (*write a blank line.x*)

END;
END; (*xOperateSystemx)

PROCEDURE ShutDownSystem(VAR CurrentData:SystemData);

BEGIN

WRITELN(':sssszzozrsssssossrsssossssrsassassessanssssssses’);
IF Panic THEN WRITELN('PANIC occurred, NORMAL shutdown.')

ELSE WRITELN('No panic occurred, ABNORMAL shutdown.')
WRITELN('::szoszzoossssssssssssssssssssssssssssssssssas’)
WITH CurrentData DO BEGIN

WRITE('Last chosen heating method was: ');

CASE ChosenMethod OF
CollectorToExchanger: WRITE('Solar Collector to Exchanger');
CollectorToHeatPump : WRITE('Solar Collector to Heat Pump');

TankToExchanger . WRITE('Tank to Exchanger');
TankToHeatPump : WRITE('Tank to Heat Pump');
HeatedTankToHeatPump: WRITE('Heated Tank to Heat Pump');
NoMethod : WRITE('No heat required');

END;

WRITELN;

WRITELN('Thermostat Setting is ',ThermostatSetting,'C');
WRITELN('Inside temperature is ',InsideTemp,'C');
WRITELN('Temperature of collector water is ',CollectorWaterTemp,'C');
WRITELN('Temperature of tank water is ',TankWaterTemp,'C');
WRITELN('Temperature of the heated tank water is ',HeatedTankTemp,'C');
WRITELN('Time of day is ', Hour,':',Minute);
WRITELN('Amount of sunlight is ',AmountOfSunlight);

END; (*with CurrentData*)

WRITELNC scscccccscoassasssssssnsoascnsosrozesezossescrs 2eet)e

WRITELN;

WRITELN('Goodnight, Irene...');

END.(*ShutDownSystem*)

Figure 4-5. Test Version of Our Climate Control System (Cont’d.)

54

PROGRAMING IN PASCAL-86

THE PASCAL-86 COMPILER

A compiler is a program that translates your high-level language statements into machine
code. Machine code, sometimes called object code, consists of the instructions that machines
understand, whereas high-level language statements are instructions that humans under-
stand. You must translate your high-level language statements into machine code by compil-
ing your high-level language program.

The Pascal-86 statements we typed (using CREDIT) are program source statements. We now
have three source files: :F1:MAIN.SRC (for the MainControl module), :F1:DUMDAT.SRC (for
the dummy GetData module), and :F1:DUMOP.SRC (for the dummy Operation module). To
translate these source statement modules into object code modules, we must compile each
source module separately.

The Pascal-86 compiler is supplied as the file PASC86.86. You invoke the compiler by using the
RUN command to load and execute it in the ‘8086 side’’ (8086 execution mode) of the Series Ill
system. The compiler usually produces two files: a listing file that contains a listing of the
source program as the compiler saw it, and an object file that contains the actual machine
code. The listing file usually contains a listing of the source statements, additional information
about the compilation, and any errors that occurred during the compilation.

For example, assume that MAIN.SRC, the first module, is in directory :F1:. The Pascal-86
Compiler, PASC86.86, is also in directory :F1:. To compile this module, use the following
command:

-RUN :F1:PASC86 :F1:MAIN.SRC DEBUG<cr>

Let’s analyze this command line. RUN is the command used to execute the program in the
‘8086 side’’ of the system. :F1:PASC86 is the pathname (without the ‘*.86’’ extension) of the
Pascal-86 Compiler (RUN supplies the ‘*.86’’ extension). :F1:MAIN.SRC is the pathname for the
MAIN.SRC module. Finally, DEBUG is a compiler control which tells the compiler to do
something special (described later).

This compilation produced two files: :F1:MAIN.LST is the listing file, and :F1:MAIN.OBJ is the
object file that contains the object code. :F1:MAIN.SRC is still in drive 1. All of these files are in
directory :F1:, since thatis where MAIN.SRC resides.

Compiler controls tell the compiler to perform certain operations. Most controls have default
settings that you do not have to specify. For example, the PRINT control is always on unless
you specify NOPRINT. The PRINT control tells the compiler to produce a listing file, and use
the name of the source file with an ‘“.LST’’ extension (e.g., :F1:MAIN.LST). We could have
used this version of the PRINT control:

-RUN :F1:PASC86 :F1:MAIN.SRC DEBUG PRINT(:LP:)<cr>

This version of the PRINT control sends the listing to the line printer (:LP:), rather than creating
:F1:MAIN.LST as a listing file.

Most of the compiler control default settings are useful for everyday compiling; that is, there is
no need to learn how to use the compiler controls unless you want to do something special.
For example, if you want the compiler to issue a warning message whenever it sees a non-
standard Pascal statement (an Intel extension to the standard Pascal language), use the
NOEXTENSIONS control.

55

CHAPTER4

56

We used the DEBUG control for a good reason: we want to do symbolic debugging while the
program is running (using DEBUG-86, described in Chapter 7). You will want to do symbolic
debugging during the first run of your program. Use the DEBUG control to prepare your pro-
gram for symbolic debugging unless your program is extremely large.

Most compiler controls can be specified in the invocation line as we show above. Most com-
piler controls can also be imbedded in the source file—as control lines. For example, we used
the INCLUDE control in a control line:

$INCLUDE(:F1:INSPEC.SRC)

The INCLUDE control allows you to insert source statements from another file into this com-
pilation. In this case, we wanted to insert the common interface specification (in
:F1:INSPEC.SRC) into our compilation. The INCLUDE control saved us from typing the same
interface specification for all three source files.

We also need to compile the other modules separately. The following invocation line compiles
our GetData module in DUMDAT.SRC:

-RUN :F1:PASC86 :F1:DUMDAT.SRC DEBUG<cr>
SERIES III Pascal-86 v1.0

PARSE

68 99 0 O
***WARNING, input: 'YEND '!
***xwas repaired to: ''END ;'

END PARSE(1), ANALYZE(O), NOXREF, OBJECT

COMPILATION OF GETDATA COMPLETED, 1 ERROR DETECTED.
END OF Pascal-86 COMPILATION.

The compiler displays a sign-on message, then the word ‘‘PARSE’’ to show that it is parsing
the program statements. During the parsing phase, the compiler discovered an error—the
“END "’ statement was not punctuated correctly. The compiler repairs our error, and con-
tinues to compile. Each phase of compiling is displayed with a number in parentheses—the
number of errors detected during the phase. The compiler only detected that one error,
and since the error was easily repaired, the compilation was successful. We now have
:F1:DUMDAT.OBJ containing the object module.

To compile our dummy Operation module, we use the following invocation line:

-RUN :F1:PASC86 :F1:DUMOP.SRC DEBUG<cr>

The listing files :F1:MAIN.LST, :F1:DUMDAT.LST, and :F1:DUMOP.LST are shown in figure 4-6.

PROGRAMING IN PASCAL-86

SERIES-III Pascal-86,

Source Filae:
ObJect File:

Controls Specified:

xC31

F1:MAIN,SRC
F1:MAIN.2BJ

STMT LINE NESTING
1 1.0 0

H

we

~o

16
17

18

19
20

21
22
24

25

2

~o

N
~—

0

co

o oo o oco

ocoooco

coco o vo © oo

RN

-

O =

0

oo

O

oo o oo

R N =]

wow oW W

o=nNw

coo o
"

DEBUG.

SJQURCE TEXT: :F1:MAIN,SRC
MOJULE MainControl;

(* Interface specification common to all modules *)

$INCLUDE(:F13INSPEC.SRC)

PU3LIC MainControl; (*section of interface specificationw)
CONST (*declarations declarsd publicly in this module=*)

MinimumForZxchanger = 35;(*degreas Calsiusw)

MinimumFor<eatPump = 135

TYPE (»definitions publicly defined in this modula+)

AirTemperature ==20..120/(*degrees in Coelsius+)

WaterTamperature =0..120;

AeatingMethods =(CollectorToExchanger,
CollectorToHeatPump,
TankToSxchanger,
TankToHeatPump,
HeatedTankToHeatPump,
NoMethod)

SystemData = RECORD
ChosenMethod
InsideTemp,
TharmostatSetting
CollectorwaterTemp,
TankWaterTemp,

HeatingMethods’

AirTemperature;

HeatedTankTemp : WaterTemperature;
AmountOfSunlight : Integer;
Hour : 00..245
Minute : 00..59:

END (xSystemDataw);
VAR (*variables publicly defined in this module.*)

CurrentData : SystemData;
Jperating, Panic : BOOLEANS

PUBLIC GetDatas (xGetData Module containing GetData & StoreDatax)

PROCEDURE GetData(VAR CurrentData:SystemData);
PROCEDURE Storeldata(VAR CurrentData:SystemData)’
PYy3LIC Jperation; (*Jperation Module containing OperateSystem,
StartUpSystem and ShutDownSystem#)
PROCSDURE StartUpSystem,
PRICEZOURE OparateSystem(VvAR Currentlata:SystemData);
PROCEDURE ShutlownSystem(VAR CurrentData:SystemCbata),

PROGRAM MainContrpl (INPUT,JUTPUT);

(* 2nd of interfac2 specification =)

PROCEDURE DetermineMethod(VAR Currentlata : SystemData);

3EGIN
WITH Currantdata D2
3EGIN
IF InsideTemp<ThermostatSetting THEN
SEGIN

IF CollectorWaterTemp>MinimumForExchanger THEN
ChosenMethod:=CollectorToExchanger

ELSE IF CollactorwWaterTemp>MinimumForHeatPump THEN
ChosenMethod:=CollectorToHeatPump

ELSE IF TankWaterTemp>MinimumForExchanger THEN
ChosenMethod:=TankToExchanger

SLSE IF TankWaterTemp>MinimumForHeatPump THEN
ChosenMethod:=TankToHeatPump

ELSE IF HeatedTankTemp>MinimumForHeatPump THEN
ChosenMethod:=HeatedTankToHeatPump

ELSE Panic:=TRUE; Operating:=FALSE;

END
ELSE (*no heating request*)ChosenMethod:=NoMethod
END; (#With CurrentData*)
ENC; (*DetermineMethod)

Figure 4-6. Listings of Our Test Modules

09701780

PAGE 1
MAINCONTROL

57

CHAPTER4

(kdxunnrnnknnnkx MAIN PROGRAM Atk hrkkkrth kA akh ARk kAR kR AR KA R IAN)

BEGIN
45 37 StartUpSystem;
46 38 Operating RUE?
47 39 Panic:=FALSE;
48 40 WHILZ Operating 00 (*while system is operating, do:%)
49 41 BEGIN

GetData(Currentlata); (*Get the temps, time, etc.*)
StoreData(Currentdata); (*Store this data as recordx*)
DetermineMethod(CurrentData); (*this detects 2 panic#)
OperataSystem(CurrentData)l’
END; (*while oparatingx)
ShutlSownSystem(Currentdata)’
END. (*Main Control Algorithmx)

&

©

&~

~
0Ooo0o0OLOOOOOO
LA NN S

Summary Information:

PRJCEDURE OFFSET €opsz slze OATA SIZE STACK SIZE
DETERMINEMETHOD 0011H Q0B8FH 143D 0006H 6D
Total 01474 3270 0016H 22D J04CH 760

94 Lines Read.
0 Errors Detected.

33% Utilization of Memory.

SERIES-III Pascal-36, x331

Source File: :F1:DUMDAT.SRC
Jdbject File: :F1:DUMDAT.OBJ
Controls Specified: 0Z3UG.

STMT LINE NESTING SOURCE TEXT: :F1:DUMDAT.SRC

1 1t 0 0 (*This is a dummy GetData module, with dummy GetData
and StoreData procedures, for use with MainControl
module in testing phases. It only performs console
input to get Zelsius temperatures, the time of day,
and the amount of sunlight (insolation) for the
solar collector. Use PLMB63DATA module for real
application.*)

MJDULE GetData;
(* Intarface specification common to 21l modules *)

SINCLUDE(:F1:INSPEC.SRC)
PU3LIC MainControl; (*section of interface specification*)

3 2 0 0=
=1 CONST (*declarations declared publicly in this modulex)
=1
=1 MinimumForSxchanger = 35;(xdegrees Celsiusx*)
“ 6 0 0 =1 MinimumFor4eatPump = 13}
5 7 0 0=1
=1 TYPE (*definitions publicly defined in this module+)
=1
=1 AirTemperature ==20..120;(*degrees in Celsiusx)
6 11 0 0 =1 WaterTemperature =0..120;
7 12 0 0 =1 HeatingMethods =(CollectorToExchanger,
=1 CollectorToHeatPump,
=1 TankToExchanger.,
=1 TankToHeatPump,
=1 HeatedTankToHeatPump,
=1 NoMethod);
8 18 0 0 =1
=1 SystemData = RECORD
8 20 0 1 =1 ChosenMethod : HeatingMethods’
9 21 ¢ 1 =1 InsideTemp,
=1 ThermostatSetting : AirTemperature;
10 23 0 1 =1 CollectorWaterTemp,
=1 TankWaterTemp,
=1 HeatedTankTemp WaterTemperature;
1" 26 0 1 =1 AmountO0fSunlight Integer’
12 27 0 1 =1 Hour : 00..24;
13 28 0 1 =1 Minute : 00..59;
14 29 0 1 =1 IND (#*SystemDatax)/

Figure 4-6. Listings of Our Test Modules (Cont’d.)

09701782 PAGE

58

PROGRAMING IN PASCAL-86

16
17

18

69

30

34
35

37

39
40

42
44
46

©o oo

ococo © oo

O S

-

[Y

o

ooo o oo

SO OLCNNNNNRNNNRNNNNNRNRNRN = O

SBRONNNN N NN NN N

*x*WARNING, input:

***was repaired to
0

70

Summary Information:

PROCEDU
STOREDA
GETDATA

Total

104 Lines Read.
1 Error Detected.

58

RE
TA

VAR (*variables publicly defined in this module.*)

Currentdata : SystemData;
Operating, Panic : BOOLEAN/

PUBLIC GetData; (*GetData Module containing GetData & StoreDatax)

PROCEDURE GetData(VAR CurrentData:SystemData);
PROCEDURE StoreDatal(VAR CurrentData:SystemData)’;

PUBLIC QOperation; (*Operation Module containing OperateSystem,
StartUpSystem and ShutDownSystem*)
PROCEDURE StartUpSystem;
PRCCEDURE OperateSystem(VAR CurrantData:SystemData);
PROCEDURE ShutDownSystem(VAR CurrentData:SystemData);

PRIVATE GetData/

(* end of interface specification *)

PROCEDURE GetData(VAR CurrentData:SystemData);
BEGIN
WITH CurrentData D0 3EGIN
WRITE(Type the thermostat setting in degrees Celsius:’);
READLN(ThermostatSetting); WRITELN,
WRITE(Type the inside temperature reading in Celsius:’);
READLN(InsideTemp); WRITELN/;
WRITE(“Type the temperature of the collector water in Celsius:’)’
READLN(ColliectorWaterTemp); WRITELN/
WRITE(Type the temperature of the tank water in Celsius:’);
READLN(TankWaterTemp); WRITELN;
WRITE(‘Type the temperature of the heated tank water in Celsius:’);
READLN(HeatedTankTemp); WRITELN;
WRITE('Type the hour of day, as in 04 or 24:°);
READLN(Hour); WRITELN;
WRITE(Type the minute of the hour, as in 01 or 59: °);
READLN(Minute); WRITELN;
WRITE(Type the amount of sunlight, any integer will do for now:’)/;
READLN(AmountOfSunlight); WRITELN;
END; (*with CurrentDatax)
END;

PROCEDURE StoreData(VAR CurrentData:SystemData)’

8EGIN

(xDummy précedure, eventually will store CurrentData in a filex)
WITH CurrentData DC BEGIN

WRITELNC® -)
WRITELNC CURRENT DATA IS AS FOLLOWS:");
WRITELN(==mmecmececeaaan eemmmmam———)}

WRITELN(Thermostat Setting is “,ThermostatSetting,"C’)’;
WRITELN(Inside temperature is ‘,InsideTemp,’C’);
WRITELN(Temperature of collector water is “,CollectorWaterTemp, C*);
WRITELN(Temperature of tank water is ‘,TankWaterTemp,’C");
WRITELN(‘Temperature of the heated tank water is ‘,HeatedVankTemp,’C*);
WRITELN(Time of day is ‘,Hour,’:’,Minute)’
WRITELNC Amount of sunlight is ‘,AmountOfSunlight)’
WRITELN; (*a blank linex)
END; (*with CurrentData¥)
END

wenp
YEND 5 "

OFFSET CODE SIZE DATA SIZE STACK SIZE
J4DSH 0222H 5460 0010H 16D
C294H 02414 577D 00104 160

06F7H 17830 0Q000H 00 0020H 320

33% utilization of Memory.

Figure 4-6. Listings of Our Test Modules (Cont’d.)

59

CHAPTER 4

SERIES-III Pascal-86, X031 09701/80 PAGE

Source File: :F1:DUMOP.SRC
Object File: :F1:0UMJP.0BJ
Controls Specified: DEBUG.

STMT LINE NESTING SOURCE TEXT: :F1:JDUMOP.SRC
1 1.0 0 (*xThis is a dummy Jperation module, with dummy StartUpSystem,
ShutDownSystem, and OperateSystem procedures,
for use with MainControl module in testing phases.

*)
MCOULE Operation;
2 7 0 0
(x Interface soecification common to all modules *)
SINCLUDE(:F1:INSPEC.SRC)
=1 PUSLIC MainControl; (*section of interface specificationx*)
3 2 0 0=
=1 CONST (*declarations declared publicly in this modulex)
=1
=1 MinimumSorZxchanger = 35;(*degrees Celsiusw*)
4 6 0 0 =1 MinimumForHeatPump = 13;
5 7 0 0 =1
=: TYPE (*definitions publicly defined in this modulex)
=1 AirTemperature =-20..120/ (*degrees in Celsius*)
6 110 9 =1 WatarTempsrature =0..1207
7 12 0 0 =1 Heating¥etnods =(CollectorToExchanger,
=1 CollectorToYeatPump,
=1 TankTofxchanger,
=1 TankToHeatPump,
=1 HeatedTankToHeatPump,
=1 NoMathod)/
8 18 0 0 =1
=1 Systemlata = RECORD
8 20 0 1 =1 ChosenMethod : HeatingMethods’
9 21 0 1 =1 InsideTemp,
=1 TharmostatSetting : AirTemperature’
19 23 0 1 =1 CollactorWaterTemp,
=1 TankWaterTemp,
=1 HeatedTankTemp WaterTemperature’
11 26 3 1 =1 AmountlfSunlight Integer;
12 27 0 1 =1 Hour 00,.247
13 28 0 1 =1 Minute : 00..597
14 29 2 1 =1 END (*Systemlatax*);
15 30 0 0 =1
=1 VAR (*variables publicly defined in this module.*)
=1
=1 CurrentData : SystemData’
16 34 0 0 =1 Zperating, Panic : BIOLEANS
17 35 0 ¢ =1
=1 PUBLIC Getlata, (*GetDats Module containing GetData & Storelataw)
13 37 2 0 =1
=1 PR2OCZDURE Getdatsa(VAR CurrentData:Systemdata)/
19 39 2 T =1 PRICIDURE StoreData(VAR CurrentData:SystemData);
20 4% 2 3 =1
= PUBLIC Jperation; (xJperation Module containing OperateSystem,
21 42 0 0 = StartUpSystem and ShutDownSystem#*)
=1 PRJICEDURE StartUpSystem;
22 46 0 0 =1 PROCEDURE OperateSystem(VAR CurrentData:SystemData)’
23 45 0 0 =1 PROCEDURE ShutDownSystem(VAR CurrentData:SystemData);
4 46 0 0 =1

PRIVATE QOperation;
25 13 0 0

(* 2nd of interface specification *)

PROCEDURE StartUpSystem;

26 18 1 0 BEGIN
26 19 1 1 WRITELN (“Climate system is now on.’)7
27 20 1 1 WRITELN (‘==r== =)
28 21 1 1 WRITELNS
29 22 1 1 END;
30 23 0 0
PRJICEDURE OperateSystem(VAR CurrentData:SystemData);
31 26 1 0 BEGIN
31 27 1 1 WITH CurrentData 02 B3EGIN
32 28 1 2 WRITELN(=
33 29 1 2 WRITELN(The Climate System is now operating.
34 30 1 2 WRITELN;
35 31 1 2 WRITELN(“The Time is ‘,Hour,":‘,Minute)’
36 32 1 2 WRITELN(’Ths inside temperature is ‘,InsideTemp,“C°);
37 33 1 2 WRITELN(The thermostat setting is “,ThermostatSetting,"C");
38 34 1 2

WRITE(Method chosen to heat the building:)’

Figure 4-6. Listings of Our Test Modules (Cont’d.)

60

PROGRAMING IN PASCAL-86

39 35 1 2 CASE ChosenMethod OF
40 36 13 CollectorToExchanger: WRITE(’Solar Collector to Exchanger’);
41 37 13 CollectorToHeatPump : WRITE(“Solar Collector to Heat Pump’);
42 38 1 3 TankToExchanger : WRITE(“Tank to Exchanger?®);
43 39 1 3 TankToHeatPump : WRITE(Tank to Heat Pump®);
44 40 1 3 HeatedTankToHeatPump: WRITE(Heated Tank to Heat Pump’);
45 41 1 3 NoMethod : WRITE('No heat required”)’
46 42 1 3 END/
48 43 1 2 WRITELN;
49 44 1 2 WRITELN(=====s=z=z===ssz=z==z===zz==sz=zssz=zszz=z=z=z=zzz=z=zzzz=2z2°);
50 45 1 2 WRITELN; (*uwrite a blank line.*)
51 46 1 2 END;
53 47 1 1 END; (*DperateSystemx)
54 48 0 0
PROCEDURE ShutDownSystem(VAR CurrentData:SystemData);
55 51 1 0 8EGIN
55 s2 1 1 WRITELNC”
56 53 1 1 IF Panic THEN WRITELN(’PANIC occurred, NORMAL shutdown.’)
57 54 1 1 ELS HRXTELN(No panxc occurred, ABNORMAL shu!dewn.)
59 55 1 1 WRITELN(": : °y;
60 56 1 1 WITH CurrentData 00 N
61 57 1 2 WRITE(Last chosen heating method was: *);
62 58 1 2 CASE ChosenMethod OF
63 59 1 3 CollectorToExchanger: WRITE(“Solar Collector to Exchanger®);
64 60 1 3 CollectorToHeatPump : WRITE(’Solar Collector to Heat Pump’);
65 61 1 3 TankToExchanger : WRITE(°Tank to Exchanger”®);
66 62 1 3 TankToHeatPump : WRITE(Tank to Heat Pump®);
67 63 1 3 HeatedTankToHeatPump: WRITE(Heated Tank to Heat Pump’);
68 66 1 3 NoMethod : WRITE(°No heat required”);
69 65 1 3 END;
71 66 1 2 WRITELN;
72 67 1 2 WRITELN(Thermostat Setting is ‘,ThermostatSetting,‘C*);
73 68 1 2 WRITELN(Inside temperature is ‘,InsideTemp,"C");
74 69 1 2 WRITELN(Temperature of collector water is “,CollectorWaterTemp,“C’);
75 70 1 2 WRITELN(Temperature of tank water is “,TankWaterTemp,°C”);
76 711 2 WRITELN(Temperature cf the heated tank water is “,HeatedTankTemp,’C’);
77 72 1 2 WRITELN(Time of day is ‘,Hour,’:’,Minute);
78 73 1 2 WRITELN(Amount of sunlight 15 ‘,Amount0fSunlight);
79 74 1 2 END; (*with CurrentDatax)
81 75 1 1 WRITELN(z:zzssssssssssssssssssssozssrssssassssssssssssszasazas’)s
82 76 1 1 WRITELN/
83 77 1 1 WRITELN(Goodnight, Irene...”)’
84 78 1 1 END
***WARNING, input: "ZND "
***yas repaired to "IND ; "

85 78 0 «(*ShutDownSystemx)

Summary Information:

PROCEDURE CFFSET cope SIZE DATA SIZE STACK SIZE

SHUTDOWNSYSTEM 06984 03981 9209 0010H 160
OPERATESYSTEM 0440H 0258H 60CD 0010H 160
STARTUPSYSTEM 032K 00SEH 940 0010H 160
Total 0a30H 26382 000024 0D 0030H 48D

125 Lines Read.
1 Error DJetected.
33% utilization of Memory.

Figure 4-6. Listings of Our Test Modules (Cont’d.)

Summary

We now have three Pascal-86 modules: MainControl, GetData, and Operation. Two of these
modules, GetData and Operation, are dummy versions that do not interact with any hardware
except the Series lll system; we will use them for examples in subsequent chapters. The Main-
Control module can remain unchanged even in our final application.

The final application will probably use an 8088 processor. In Chapter 5, we show PL/M-86 pro-
cedures we can use to obtain data from thermocouples via the input/output ports on the 8088.
Since you probably do not have prototype climate control hardware with an 8088, we will not
include these procedures in our test versions for execution on a Series Ill system; never-
theless, they are good examples of PL/M-86 procedures.

Our Pascal-86 modules cannot run by themselves on a Series lll. Certain built-in procedures
(like WRITELN and READLN) rely on run-time support software, which consists of public
modules that contain the software needed to perform console input/output and other opera-
tions. In Chapter 6, we’ll show you how to link the run-time support libraries to these Pascal-86
modules to make them executable on a Series Il system.

61

CHAPTER 5
PROGRAMMING IN OTHER LANGUAGES

““It is possible by ingenuity and at the expense of clarity ... [to do almost anything in any

language]. However, the fact that it is possible to push a pea up a mountain with your nose
does not mean that this is a sensible way of getting it there.”

—Christopher Strachey

NATO Summer School in Programming

The Intellec Series lll system also supports PL/M, FORTRAN, and assembly language pro-
gramming for iAPX 86,88 and 8080/8085 applications. In the previous chapter we used Pascal-86
for our main control algorithm, but a modular strategy might take advantage of other languages
for other modules.

ANOTHER LOOK AT CHOOSING LANGUAGES FOR MODULES

In the best of all possible worlds, would we all speak the same language? Tower of Babel
enthusiasts would have us coding our entire program in one language—but which? We do not
want to return to the stone age and lose cultural variety and language diversity. There are
expressions that can only be expressed in Chinese characters, and there are problem-solving
statements that are better expressed in PL/M than in FORTRAN. A good carpenter should
have more tools than nails and a hammer; a good programmer should be fluent in several pro-
gramming languages.

When you design an algorithm, design it using a comfortable language. You will find the
algorithm easier to debug, and you will notice the paradigm inherent in your design. When you
are ready to translate your algorithm into code for a computer, use the language best suited for
the paradigm.

If you have many algorithms that must work together, you should keep the communication
among them simple. With simple interfaces, you can code each algorithm in the language best
suited for the algorithm. In some cases, you can use an algorithm that has already been
developed for use in another application—another reason for keeping your algorithms and
interfaces simple. With the Intellec Series Il development tools, you can link these algorithms
in different configurations to form several applications. |

For example, we chose to write our main control algorithm for the climate system in Pascal-86.
We still need an algorithm for retrieving the data and converting it to Celsius temperatures. We
decided to write a simple Pascal-86 routine for testing purposes only (this routine only
retrieves the data from the Series lll console); however, our final product will rely on ther-
mocouples and other sources of data, and we will need an algorithm to convert thermocouple
voltages to degrees Celsius. Fortunately, we already have a routine in PL/M-86 that performs
this activity, and we can save development time and money by using it.

63

Chapter5

64

PROGRAMMING IN PL/M-86

PL/M is renowned for its structure and versatility. PL/M is one of the only structured high-level
languages that allow you to manipulate bits with AND, OR, and shift (SHR for ‘‘shift right’’ and
SHL for “shift left”’) operations. PL/M’s data types are not as strictly enforced as
Pascal’s—PL/M’s BYTE, WORD (ADDRESS), and POINTER types have loose definitions so
that you can use them for different kinds of data. For this reason, PL/M is easier to use for
system programming (designing computer systems or control mechanisms), yet harder to use
in application programming where enforced data typing makes it easier to write error-free
programs.

In our climate control system, there are two routines whose paradigms lend themselves easily
to PL/M: the routine to get BCD digits from a thermostat device and convert them to a Celsius
temperature, and the routine to get voltage data from a thermocouple and convert the voltages
to Celsius temperatures. Figure 5-1 shows the algorithm and the actual PL/M-86 code for the
routine to retrieve data from a thermostat device. You are already familiar with comments in
Pascal programs that occur between the (* and *) symbols; in PL/M, comments occur between
the /* and */ symbols.

A PL/M typed procedure is like a Pascal or FORTRAN function: it is called in an assignment
statement (as in X:=FUNCTION(Y)), and it returns a value (X receives the value of
FUNCTION(Y)). In figure 5-1, the typed procedure THERMOSTAT$SETTINGSFROM$PORTS
returns the value of THERMOS$SETTING, which it computes by accessing the two ports
HIGH and LOW and converting the BCD digits to a Celsius temperature. The value of
THERMOSSETTING is assigned to ThermostatSetting in the GetData procedure’s assignment
statement:

ThermostatSetting:=THERMOSTATSSETTINGSFROM$SPORTS(StatPort1,Stat Port2);

PLMDATA: DO;

/* This module holds the procedures THERMOSTATSSETTINGSFROM$PORTS,
TEMPSDATASFROMSPORTS, and INTERPOLATE (a procedure used by
TEMPSDATASFROMSPORTS) . These will be used in the final testing
phase of the climate control system (when prototype hardware is
available). For intermediate testing (and examples in this book),
do not use this module; use the dummy GetData module. */

] *
The algorithm for getting a Celsius temperature from a thermostat
device that can send BCD digits to two ports of the 8088:

The final version of the GetData procedure (to be
written in Pascal-86) will use this statement to get
the thermostat reading:

ThermostatSetting:=THERMOSTATSSETTINGSFROMSPORTS(StatPort1,StatPort2);

A PL/M-86 typed procedure called THERMOSTATSSETTINGSFROMSPORTS
receives two port numbers from GetData: StatPort1 and StatPort2.
THERMOSTATSSETTINGSFROMSPORTS must access these ports, convert
the BCD digits to a Celsius temperature, and return the
temperature.

Figure 5-1. The PL/M-86 Typed Procedure THERMOSTATSSETTING$SFROM$PORTS

Other Languages

INPUTS

THERMOSTATSSETTINGSFROMSPORTS:

Formal parameters HIGH and LOW receive port numbers as actual
parameters.

Input ports HIGH and LOW: Three BCD digits for the thermostat setting:

Port HIGH, bits 3-0: hundred's digit
Port LOW, bits 7-4: ten's digit
Port LOW, bits 3-0: unit's digit

OUTPUT

THERMOSTATSSETTINGSFROMSPORTS: Return WORD with Celsius temperature
*/

/*Here is the typed procedure THERMOSTATSSETTINGSFROMSPORTS:*/

THERMOSTATSSETTINGSFROMSPORTS:
PROCEDURE (HIGH, LOW) WORD;
DECLARE (HIGH, LOW) WORD;
DECLARE C(INSPORTSHIGH, INSPORTSLOW) BYTE;
DECLARE THERMOSSETTING WORD;
DECLARE C(HUNDREDS, TENS, UNITS) BYTE;

INSPORTSHIGH = INPUTC(HIGH);

INSPORTSLOW = INPUTC(LOW);

HUNDREDS = INSPORTSHIGH AND 000011118;

TENS = SHRCINSPORTSLOW, 4&4);

UNITS = INSPORTSLOW AND 000011118;
THERMOSSETTING = UNITS + 10*TENS + 100*HUNDREDS;

RETURN THERMOSSETTING; /*this returns the temperaturex/
END THERMOSTATSSETTINGSFROMSPORTS;

More procedures follow--see figure 5-2.

Figure 5-1. The PL/M-86 Typed Procedure THERMOSTATSSETTINGSFROMS$SPORTS (Cont’d.)

There are notable similarities between Pascal and PL/M. Most notable are the logical struc-
tures that can occur in both languages—both have the DO WHILE and IF-THEN-ELSE con-
structs. The languages are lexically and syntactically different in data declarations, procedure
headings, and other constructs, but they are logically similar. By conforming to a logical struc-
ture, you make your program readable and easier to debug.

65

Chapter 5

66

The data declarations in both languages are very similar. In both languages, you must declare
your data identifiers to be of some type before using the identifiers. In Pascal, you define data
types or use predefined Pascal data types. In PL/M, you are restricted to the acceptable PL/M
data types, but they are loosely defined. A BYTE can be any value expressed in eight bits, and
a WORD in PL/M-86 (ADDRESS in PL/M-80) can be any value expressed in sixteen bits; both
types of values are treated as unsigned integers. PL/M-86 offers several more types: INTEGER
(for signed integers), REAL (for floating point numbers), and POINTER (for 8086 and 8088
addressing).

PL/M-86 offers many features useful for system programming— arrays and structures, based
variables, easy type conversion, built-in procedures for manipulating strings, setting and
disabling interrupts, accessing the 8086 or 8088 hardware stack pointer and base registers, and
performing bit shift and rotate operations. We use the AND and SHR operators in the
THERMOSTATSSETTINGSFROMS$PORTS procedure in figure 5-1.

We also use PL/M-86 procedures to obtain temperature data from thermocouple voltage
data. the GetData procedure in our GetData module (written in Pascal-86) calls the
PL/M-86 procedure TEMP$DATASFROMSPORTS to obtain the temperatures InsideTemp,
CollectorWaterTemp, TankWaterTemp, and HeatedTankTemp using these assignment
statements:

InsideTemp:=TEMPSDATASFROMSPORTS(InsidePort1,InsidePort2);
CollectorWaterTemp:=TEMPSDATASFROMSPORTS(CollectPortl,CollectPort2);
TankWaterTemp:=TEMPSDATASFROMSPORTS(TankPort1,TankPort2);
HeatedTankTemp:=TEMP$DATASFROMSPORTS(HotTankPort1,HotTankPort2);

In all four assignments, the Pascal-86 identifiers on the left side of the := symbols receive the
values from the PL/M-86 typed procedure TEMP$DATA$FROMS$PORTS. Figure 5-2 shows
TEMP$DATASFROMSPORTS.

/*

The typed procedure TEMPSDATASFROMSPORTS receives two port numbers:
HIGH and LOW. These ports are accessed for the binary ADC output
from a thermocouple device: HIGH gets the high-order 8 bits, and
LOW gets the low-order 8 bits. TEMP$SDATASFROM$PORTS then uses

the typed procedure INTERPOLATE, a routine that interpolates a
Celsius temperature from a thermocouple voltage using two tables.
TEMPSDATASFROMSPORTS sends a WORD with the input voltage to
INTERPOLATE. INTERPOLATE returns a Celsius temperature, which

is returned to the GetData procedure (written in Pascal-86).

INPUTS

TEMPSDATASFROMSPORTS:

Formal parameters HIGH and LOW receive port numbers as actual
parameters.

Input port HIGH: Binary ADC output of thermocouple, high-order 8 bits
Input port LOW: Binary ADC output of thermocouple, low-order 8 bits

Figure 5-2. The PL/M-86 Typed Procedures TEMP$SDATASFROMS$PORTS and INTERPOLATE

Other Languages

OUTPUT

TEMPSDATASFROMSPORTS: Return WORD with temperature in Celsius
*/

/* INTERPOLATE is declared first, then its calling procedure
TEMPSDATASFROMSPORTS is declared. */

/* INTERPOLATE is a typed procedure that receives thermocouple
voltage and returns temperature in Celsius using an
interpolation routine. */

INTERPOLATE:
PROCEDURE(VOLTSIN) WORD;
DECLARE VOLTS(*) WORD DATA(0,51,102,154,206,258,365,472);
DECLARE T$CEL(x) WORD DATA(0,10,20,30,40,50,70,90);
DECLARE (I, VOLTSIN, NUMERATOR) WORD;

1 =0;
IF VOLTSIN=0 THEN RETURN TSCEL(I);
DO WHILE VOLTS$IN > VOLTS(I);
1 =1+ 1;
END;
/* Shift for rounding, and return Celsius temperature */

NUMERATOR = SHLC(VOLTSIN-VOLTS(I-1))*(T$CEL(I)- TSCEL(I-1)),

RETURN TSCEL(I-1) + SHR(NUMERATOR/(VOLTS(I)- VOLTS(I-1))+1,

END INTERPOLATE;

1);
1);

[k kkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkkhhkhkhkkhkkkkkhhhkhkkkhkkkkkkkk /

/* TEMPSDATASFROMSPORTS */

TEMPSDATASFROMSPORTS:
PROCEDURE(HIGH,LOW) WORD;
DECLARE (HIGH,LOW) WORD;
DECLARE INSPORTSHIGH WORD;
DECLARE INSPORTSLOW BYTE;
DECLARE (THERMOCOUPLESQUTPUT, TEMPERATURE) WORD;

INSPORTSHIGH = INPUTC(HIGH);

INSPORTSLOW = INPUTC(LOW);

THERMOCOUPLESOUTPUT = SHLCINSPORTSHIGH, 8) OR INSPORTSLOW;
TEMPERATURE = INTERPOLATE(THERMOCOUPLESOUTPUT);

RETURN TEMPERATURE;

END TEMPSDATASFROMSPORTS;

Figure 5-2. The PLM-86 Typed Procedures TEMP$DATASFROM$PORTS
and INTERPOLATE (Cont’d.)

67

Chapter 3

68

Let’s look closely at the following statemént, which appears in the procedure
TEMP$DATASFROMSPORTS shown in figure 5-2:

THERMOCOUPLESOUTPUT = SHL(INSPORTSHIGH, 8) OR INSPORTSLOW;

The variable INSPORT$HIGH was declared as a WORD with 16 bits, and the variable
INSPORT$LOW was declared as a BYTE with 8 bits. The thermocouple voltage data from an
analog-to-digital converter can have up to 13 bits, but our procedure was originally written to
access 8-bit ports. To assemble the 13 bits, we use the SHL (shift to the left) built-in procedure
to shift the rightmost 8 bits of INSPORT$HIGH to the left, and we OR this shifted value with
INSPORTSLOW.

The INTERPOLATE procedure uses a more complicated expression that includes both the SHL
(shift to the left) and SHR (shift to the right) built-in procedures. The INTERPOLATE procedure
also uses two tables, orarrays. They are declared in the following statements:

DECLARE VOLTS(*) WORD DATA(0,51,102,154,206,258,365,472);
DECLARE TS$SCEL(*) WORD DATA(0,10,20,30,40,50,70,90);

In both declarations, the arrays VOLTS and T$CEL are assigned actual values through the use
of DATA initializations. The DATA initialization allocates storage for the array and assigns the
values specified in parentheses after the word DATA in a single step.

The values chosen for the VOLTS array are from the National Bureau of Standards; they repre-
sent the output (in millivolts) of type J thermocouples that corresponds to the Celsius
temperature range assigned to the T$CEL array. For example, a thermocouple output of 102
millivolts should correspond roughly to 20 degrees Celsius. The INTERPOLATE procedure
uses these tables to arrive at an approximate Celsius temperature value for a known ther-
mocouple output value. Our calculations would be more accurate if the ranges between values
within each table were smaller.

Compiling a PL/M-86 program is very similar to compiling a Pascal-86 program. We execute the
PL/M-86 compiler in the 8086 execution environment by using the Series Il RUN command.
The PL/M-86 compiler is supplied in the file PLM86.86 on the PL/M-86 disk. We inserted a copy
of this disk into drive 1 (we also put our source program on the same disk). In the following
example, we execute the PLM86.86 using the RUN command. We do not have to supply the
*.86’’ extension, since RUN already assumes that the file you specify has that extension. The
following example shows the RUN command line for compiling the module PLMDATA, which is
in a source file called PLMDAT.SRC (PLMDAT.SRC and the PL/M-86 compiler are both in direc-
tory :F1:):

-RUN :F1:PLM86 :F1:PLMDAT.SRC CODE LARGE<cr>

This compiler invocation produces two output files: :F1:PLMDAT.OBJ to hold the compiled
object module, and :F1:PLMDAT.LST to hold the listing. The listing is shown in figure 5-3 (in the
next section).

Two compiler controls, CODE and LARGE, were also specified. The CODE control tells the
compiler to list the approximate assembly language instructions that would be necessary to
implement the PL/M-86 statements—this is useful for many reasons, some of which are
described in the next section. The LARGE control is needed here because Pascal-86 modules
are compiled with a default size control that is equivalent to the PL/M-86 LARGE model. All
modules of a program must conform to the same size control, so our PL/M-86 module must be
compiled as a LARGE module to conform to the default size of Pascal-86 modules.

Other Languages

You need to know more about the PL/M-86 language and compiler than the brief introduction
provided in this guide. Intel provides a manual for the PL/M-86 language and compiler
(PL/M-86 User’s Guide for 8086-Based Development Systems). Intel also supplies two manuals
for PL/M-80 program development (PL/M-80 Programming Manual and [SIS-II PL/M-80
Compiler Operator’s Manual) in the 8085 execution environment of the Series lll. For tutorial
information on the PL/M language, see A Guide to PL/M Programming For Microcomputer
Applications by Daniel McCracken (listed in the Bibliography). '

PROGRAMMING IN 8086/8087/8088 ASSEMBLY LANGUAGE

So far we have described high-level languages that are translated by compilers into machine
code; namely, Pascal-86 and PL/M-86. Another high-level language not described in this book
is FORTRAN, which is also translated by a compiler into machine code. Other high-level
languages like BASIC-80 are translated by interpreters into machine code.

An assembly language program is translated into machine code by an assembler. Intel pro-
vides the 8086/8087/8088 Macro Assembler, which is described in this section, to translate
8086/8087/8088 Assembly Language programs. It is called a macro assembler because it will
also translate macro definitions written in the Macro Processor Language, which is described
with the 8086/8087/8088 Assembly Language.

The common denominator of all these languages is the machine code, which is the binary
language of ones and zeros that only the processor can ‘‘speak’’ well. The following is an
example of machine code, with comments to explain what action each code performs:

Memory Address Memory Contents Comments
(Hexadecimal) (Binary) (English)

00000 11100101 Read word into reg. AX...
00001 00000101 ...frominput port5.
00002 01000000 Increment contents of AX.
00003 11100111 Write word from reg. AX...
00004 00000010 ...to output port 2.
00005 11101011 Repeat by jumping...
00006 11111001 ...back seven bytes.
00007

This machine code (sometimes called object code) is the code that the processor executes.
All languages are eventually translated into this type of code.

A program written in assembly language is a symbolic representation of machine code. The
relation between assembly language instructions and the resulting machine code is usually
very obvious; the relation between statements in a high-level language and the resulting
machine code is often not obvious (with some exceptions in the PL/M-86 language). '

Assembly language gives you complete control over the resulting machine code and thereby
allows you to generate very efficient machine code. There are times when this control is
desirable, and other times when you want to be free of such details. Most high-level language
compilers are efficient enough for microcomputer applications; in fact, some compilers are
more efficient than most humans.

69

Chapter 5

70

Assembly language is the closest language to machine code, but it does allow you to use sym-
bolic names. Here is a rewrite of the machine code instructions shown before, using
8086/8087/8088 Assembly Language (comments follow the semicolons):

CYCLE: IN AX,5 ;Read word from port 5 into reg. AX.
INC AX ;Increment the contents of reg. AX.
ouT 2,AX ;Write word from reg. AX to port 2.
JMP CYCLE ;Jump to beginning and repeat.

This program fragment is simpler to read because it uses symbolic names like CYCLE instead
of binary and hexadecimal numbers. The 8086/8087/8088 Assembly Language also provides
sophisticated code and data structuring mechanisms usually found only in high-level
languages. The assembler enforces some consistency in data types to prevent inadvertent
errors, yet it also allows some deliberate ways to override data types.

The 8086/8087/8088 Macro Assembler also processes macro definitions. A macro is a short-
hand function name for a string of instructions. First you define a macro, using the Macro Pro-
cessing Language, to be a sequence of assembly language instructions. Once defined, you
can specify the macro name in an assembly language program, and the macro assembler
automatically replaces the macro name with the actual sequence of instructions from the
definition. Using this facility you can create many macros and use them in many programs.

There are many times when an assembly language version of a routine runs faster and takes
up less space than a high-level language version. Intel’s compilers can produce a listing of the
assembly language instructions that are approximately the ones you would use to implement
the compiled high-level language routine in assembly language. For example, we used the
CODE control in the previous section when we compiled the PL/M-86 program PLMDAT.SRC.
The CODE control produced the listing shown in figure 5-3.

PROGRAMMING FOR THE SERIES Il ENVIRONMENT

Assembly language and PL/M give you more di<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>