IAPX 86,88 FAMILY UTILITIES
USER’S GUIDE

" Order Number: 121616-004

Copyright © 1980, 1981, 1982 Intel Corporation
intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051

L

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli-
cation or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used to identify Intel
products:

BXP intel iSBC MULTICHANNEL
CREDIT Intelevision iSBX MULTIMODULE

i intcligent Identifier iSXM Plug-A-Bubble
PPICE intligent Programming Library Manager PROMPT

ICE Intellec MCS RMX/80

iCS Intellink Megachassis RUPI

im iOSP MICROMAINFRAME System 2000

iMMX iPDS MULTIBUS UPI

Insite iRMX

A749/1082/5K DD

REV. REVISION HISTORY DATE
-001 Original issue. 9/80
-002 Adds information to support V2.0 of LINKS6, 11/81
LOCS86, and LIB86 and V1.0 of CREF86; corrects
technical and typographical errors.
-003 Adds examples for iRMX 86 operating environment. 5/82
-004 Adds examples for Series IV operating environment. 10/82

iii

PREFACE

This manual describes how to use the iAPX 86,88 Family utilities:

e LINKS86
* CREF86
e LIB86

¢ LOC86
e OHS86

These products run on 8086- and 8088-based systems. They are used by program-
mers developing programs with ASM86, ASMS89, PL/M-86, PASCAL-86,
FORTRAN-86, or any other language translator that produces object code compat-
ible with the iAPX 86,88 Family of processors. The iAPX 86,88 Family of pro-
cessors inlcudes 8086, 8088, 8087, and 8089 processor chips. Because the 8086 is the
first member of this family, this manual uses 8086 generically to represent the entire
family.

This manual presumes familiarity with the conventions of the operating system
under which the IAPX 86,88 utilities are being executed. It also presumes familiarity
with the basic requirements of individual languages and translators.

This manual is divided into the following chapters:

e Chapter 1, Introduction: a summary of the relationship among the utilities and
basic concepts governing their use

e Chapter 2, LINK86: how to invoke, use the controls for, and read the printed
listing from LINK86

* Chapter 3, CREF86: how to invoke, use the controls for, and read the output
listing from CREF86

e Chapter 4, LIB86: how to invoke and use the commands for LIB86

. e Chapter 5, LOC86: how to invoke, use the controls for, and read the printed
listing from LOC86

* Chapter 6, OH86: how to invoke OH86

This manual also contains several appendixes, meant for quick access to the follow-
ing information:

* iAPX 86,88 absolute object file format definitions (Appendix A)
e Hexadecimal-decimal conversion information (Appendix B)

®* The effect of available memory on the performance of LINK86, CREFS86,
LIB86, and LOC86 (Appendix C)

¢ Summaries of iAPX 86,88 Family utility controls and error messages:
e LINK86 (Appendix D)
* CREF86 (Appendix E)
e LIB86 (Appendix F)
e LOCS86 (Appendix G)
* OHS86 (Appendix H)

vi

NOTE

The following appendixes address issues dependent on specific
operating systems, such as operating environments, related
publications, and examples. These appendixes contain foldout
pages, designed to be opened out to your right and used in conjunc-
tion with general instructions provided in the chapters and other
appendixes. On these foldout pages you will find sample invoca-
tions for the IAPX 86,88 Family utility controls and commands.

e Additional information for Series III users (Appendix I)
e Additional information for iRMX 86 users (Appendix J)
e Additional information for Series IV users (Appendix K)

Once you have gained sufficient familiarity with the basic principles of iAPX 86,88
Family utilities operation, you will find the following publication convenient for
quick syntax reference: ©

e jAPX 86,88 Family Utilities Pocket Reference, order number 121669

Before reading this manual, ensure that you are familiar with the following terms

and conventions.

Notational Conventions

punctuation

{}

[]

UPPERCASE

italic

pathname

directory-name

filename

other than the following must be entered if required by the
control syntax.

indicates that one and only one of the syntactic items
contained within the braces is required.

indicates that the syntactic item or items contained within the
brackets are optional.

indicates that the preceding syntactic item may be repeated an
indefinite number of times. (The ellipsis is often used within
brackets and with a comma ““[,...]”" to indicate that preceding
item may be repeated, but each repetition must be separated
by a comma.)

separates various options within the brackets [] or braces

{}.

indicates that these characters must be entered exactly as
shown.

indicates a meta symbol that may be replaced with an item
that fulfills the rules for that symbol. The actual symbol may
be any of the following:

is a valid designation for a file; in its entirety, it consists of a
directory-name and a filename.

is that portion of a pathname that acts as a file locator by
identifying the device and/or directory containing the
filename .

is a valid name for the part of a pathname that names a file.

minimum-size
maximum-size
paragraph
offset
address

segment name
module name
class name
group name
overlay name
public symbol
variable name

black
system-id
pathnamef,

pathname2, ...

Vx.y

are numbers and must follow Intel standards for number
representation (see PL/M-86 or ASM86). Use the H suffix for
hexadecimal, B suffix for binary, O or Q suffix for octal and
D or nothing for decimal.

are defined by the 8086 object file formats described in
Appendix A. They may be up to forty characters
long and may contain any of the following characters in any
order:

A,B,C,D,E,F,G,H,LJ,K,L,M,N,0,P,Q,R,S, T,U, V,
W’ X’ Y’ Z’ 0’ 1, 2’ 3’ 49 5’ 6’ 7’ 8’ 9, ?) @9 :’ *y —

Black background is used in examples to indicate the user’s
entries.

is a generic label placed on sample listings where an operating
system-dependent name would actually be printed.

are generic labels placed on sample listings where one or more
user-specified pathnames would actually be printed.

is a generic label placed on sample listings where the version
number of the product that produced the listing would
actually be printed.

vii

CONTENTS

CHAPTER 1 PAGE
INTRODUCTION
Program Developmentcccoiviiinnn. 1-1
Overview of the Utilitiesooiu. 1-2
External References and Public Symbols 1-2
Useof Librariescoiiimiinriiiiinann, 1-3
Relative Addressingc.c.coeiniiiiiiann, 14
The LINK86/LOC86 Process 1-4
An 8086 OVErviewcceiiieniiinnnnenenns 1-5
MemoOrycooiiiiii i i i e 1-5
8086 Addressing Techniques 1-5
SegMENtSttt e 1-6
Segment Alignment, 1-7
Segment Combining 1-8
Segment Locating, 1-8
ClasseS ottt it i et i e, 1-9
(€ (03107 A 1-9
Overlaysoviiiiiii i i i 1-10
Position-Independent-Code and Load-Time-
LocatableCode 1-10
CHAPTER 2
LINKS86
LINKS86 InvocationLinecoo... 2-1
LINK86 Controlsccciiiiiiiiiennnnnnn. 2-2
ASSIGN L. e e 2-4
ASSUMEROOT ... it 2-5
BIND/NOBIND iiiiiiiiiiiennnn. 2-6
COMMENTS/NOCOMMENTS 2-7
FASTLOAD/NOFASTLOAD 2-8
INITCODEt 29
LINES/NOLINES it 2-10
MAP/NOMAP ... i iiiiiiiianen 2-11
MEMPOOL ... i 2-12
NAME ... e 2-13
OBJECTCONTROLSo, 2-14
ORDER ... i i 2-15
OVERLAY/NOOVERLAY 2-16
PRINT/NOPRINT it 2-17
PRINTCONTROLS, 2-18
PUBLICS/NOPUBLICSccoiian... 2-19
PUBLICSONLYciiiiiiiiiiiiiiinnnnn. 2-20
PURGE/NOPURGEcoiia... 2-21
RENAMEGROUPSiiiiiiiiiiiee. 2-22
SEGSIZE ...ttt ittt iiiiann 2-23
SYMBOLS/NOSYMBOLS 2-24
SYMBOLCOLUMNSot 2-25
TYPE/NOTYPE i 2-26
LINK86’sPrintFilecooiiiiin.e, 2-27
TheHeader it 2-27
TheLinkMapo iiiiiiiiiiaa.. 2-27
TheGroupMapcooviiiiiieiiiinnnnnnnn. 2-28
TheSymbolTable 2-29
Error Messagesoceveeineennenennnnnan 2-30

CHAPTER 3 PAGE

CREF86

CREF86 InvocationLine 3-2

CREF86Controlsoiiiiiiiiiaan.. 3-2
PAGELENGTHc.iiiiiiaae.. 3-3
PAGEWIDTH cciiiu... 3-4
PRINT ... i i i 3-5
TITLE . i i e e e 3-6

CREF86’sPrintFile 3-7
Headercoiiiiiiiiiiiiiiiinienn.. 3-7
Warningsoiiiiiiiiii i 3-7
ModuleList i, 3-8
Symbol Cross-Reference Information 3-8

CHAPTER 4

LIB86

LIB86Invocationcoiiiinninninnnn. 4-1

LIB86 Commandsccovvruninn... 4-1
ADD i 4-2
CREATE i i it 4-3
DELETE i i 4-4
EXIT o e e e 4-5
LIST .o e 4-6

CHAPTER 5

LOCS86

LOCS86 InvocationLine 5-1

LOC86Controlscovviiiiin i, 5-1
ADDRESSES i 5-3
BOOTSTRAP ...t i iiieanns 5-4
COMMENTS/NOCOMMENTS 5-5
INITCODE/NOINITCODE 5-6
LINES/NOLINES iiioa... 5-7
MAP/NOMAP ... i 5-8
NAME ... i it it 5-9
OBJECTCONTROLS, 5-10
ORDER it i i 5-11
PRINT/NOPRINTo, 5-12
PRINTCONTROLS i, 5-13
PUBLICS/NOPUBLICS 5-14
PURGE/NOPURGE 5-15
RESERVE i, 5-16
SEGSIZE i e 5-17
START .. i it e 5-18
SYMBOLS/NOSYMBOLS 5-19
SYMBOLCOLUMNSo, 5-20

LOC86’sPrintFilecoiiio.... 5-21
TheSymbolTableottt 5-21
TheMemoryMapcooiiiia... 5-23
Error and Warning Messages 5-24

.LOC86’s Algorithm for Locating Segments 5-24

Absolute Segments 0., 5-24
SegmentOrdering 5-24

ix

CONTENTS (Cont’d.)

Assigning Addresses to Relocatable Segments 5-25
LOC86’s Algorithm for Locating Modules
Containing Overlays 5-25

CHAPTER 6
OH86

APPENDIX A
iAPX 86,88 ABSOLUTE OBJECT
FILE FORMATS

APPENDIX B
HEXADECIMAL-DECIMAL
CONVERSION

APPENDIX C

THE EFFECT OF AVAILABLE
MEMORY ON LINK86, CREF86,
LIB86, AND LOC86

APPENDIX D
LINK86 CONTROLS AND
ERROR MESSAGES

APPENDIX E
CREF86 CONTROLS AND
ERROR MESSAGES

APPENDIX F
LIB86 COMMANDS AND
ERROR MESSAGES

APPENDIX G
LOC86 CONTROLS AND
ERROR MESSAGES

APPENDIX H
OH86 ERROR MESSAGES

APPENDIX I
ADDITIONAL INFORMATION FOR
INTELLEC SERIES III USERS

APPENDIX J
ADDITIONAL INFORMATION FOR
iRMX 86 USERS

APPENDIX K
ADDITIONAL INFORMATION
FOR SERIES IV USERS

TABLES

TABLE TITLE

2-1 Summary of LINK86 Controls

31 Summary of CREF86 Controls
4-1 Summary of LIB86 Commands
5-1 Summary of LOC86 Controls

D-1 Summary of LINK86 Controls

TABLE TITLE

E-1 Summary of CREF86 Controlsc......
F-1 Summary of LIB86 Commands
G-1 Summary of LOC86 Controls

J-1 iRMX 86 Memory Requirements

FIGURE

ILLUSTRATIONS

TITLE PAGE

The iAPX 86,88 Family Development

ProCess ...ccoceviircemccmencencneccrmerenecenseenenes 1-1
Library Linkage by LINKS86 1-3
The LINK86/LOC86 Process 14
8086 Addressing .. 1-6
Segment Physical Relationships 1-7
Segment Alignment Boundaries 1-8
Memory Configuration of Program

with Overlaysccocoeeeeevniencnieccnccaenes

LINKS86 Input and Output Files ...
LINKS86 Print File Headerccucuuuene.

LINK86 Link Map ...cc.cocevcrveevcreeeeccnccnenaee
LINK86 Group Map
LINK86 Symbol Table
CREF86 Input and Output Files
Header of Cross-Reference Listing 37
Warning Messages on CREF86 Listing 3-7
Module List on CREF86 Listing 3-8
Symbol Cross-Reference Information 39
LOCS86 Input and Output Files 5-1
LOC86 Symbol Tableccceceeorocnieceacne 5-22
LOC86 Memory Mapccccceececeevcncncncccnne 5-23
LOC86’s Address Assignments for

Overlays 5-26
OHB86 Input and Output Files 6-1
LINKS86 Print File for Bound

Object Moduleoooeoeieneiiiiicccceaees I3
LOC86 Print File for Bound Object

Moduleoeviimiiiteeciieeciess st e 14

FIGURE

I-3
I-5
I-6
I-7
I-8
19
J1
J-2

J3

K-1

K-6
K-7
K-8

TITLE PAGE

LINK86 Default Print File I-5
CREF86 Cross-Reference Listing I-6
LINKS86 Listing for Program with

Overlays ... I-9
LOC86 Listing for Program with

OVerlaysccocvvvieinrennerccncniccnieceecesesaeee I-10
LINK86 Map for Root Filec...c.c...... I-11
Module Information for Overlays I-12
Memory Organization for Example 6 I-13
CREF86 Cross-Reference Listing J-4
LINKS86 Listing for Program with

Overlays reeeaeeteeeeaeeenaeeean J-7
LOCS86 Listing for Program with

OVErIAYS ..c.covveminiincccitnee e eaes J-8
LINK86 Map for Root Filecccoceeenncne J-9
Module Information for Overlays J-10
Memory Organization for Example 4 J-11
LINKS86 Print File for Bound

Object Modulecccoovevceneeriieniecieeenane K-3
LINK86 Default Print File K-5
CREF86 Cross-Reference Listing K-5
LINKS86 Listing for Program with

OVErIAYS ...oooeeeceeiieeeeieeie e eermeeaes K-8
LOCS86 Listing for Program with

OVeErlaysccooveeenieneenerrcnneenieecneecireenene K-10
LINK86 Map for Root File K-11
Module Information for Overlays K-12
Memory Organization for Example 6 K-13

Xi

CHAPTER 1
INTRODUCTION

Program Development

Program development is a process of varying complexity. The complexity depends
on the language used to develop code, the complexity of the end product, and the
tools chosen.

Figure 1-1 shows the development process and the tools available for development
of an iAPX86,88 Family-based product.

The tools described in this manual are:
e LINKS86, which is a linkage and binding tool

¢ CREF86, which provides a cross-reference of information on symbols in several
modules

¢ LIB86, which is the librarian function for 8086 object modules
¢ LOCS86, which is the relocation tool

* (OHS86, which converts 8086 absolute object information to the hexadecimal
format

rem———— -
o]
1 LOADER 1
[4
pe=————— 1
WITH BIND LTL 1 DEBUGGER H
I —»| OBJECT |—] OR H
MODULE | MONITOR
‘ [L)
re————— - [1 [P S . Fem————— .
1] OBJECT 1 1 LINKED 1 1 ABSOLUTE 1]
SOURCE 1 1 1 OBJECT ! 1 o1 IN-CIRCUIT 1
ouRs JTRANSLATOR;—>| MODULES v LINkes -] LASECl - L0Css | OBJECT 1 PoRCaR
H H .0BJ H H A H H MODULE H H
A a L-“f--“. : | S 4 Lbecccaa- 4
LIBRARY
FILE s
Pt —— - rrm—————— 1
1 1 1 1
———»! CREF86 ! > OH86 |
1 1 L} 1
I.---;---J I.-..-.‘._...l
CROSS- ABSOLUTE
REFERENCE HEX FILE
LISTING “ HEX"
P 1 pam——— -
H -~ HET
1 [}
———>: LIB86 i ! LOADER 1
femmm——— I []

Figure 1-1. The iAPX86,88 Family Development Process

1216

16-1

1-1

Introduction iAPX 86,88 Family Utilities

Overview of the Utilities

ASM86, ASM89, PL/M-86, PASCAL-86, FORTRAN-86, and other translators as
well as LINK86 and LOC86 produce 8086 object modules. The language translators
produce 8086 relocatable object modules that must usually be processed by utilities
before execution. (Under certain circumstances the translators can produce absolute
object modules, but this is rare and does not contribute to modular design.) LINK86
combines 8086 object modules, and LOC86 converts relocatable object modules into
absolute object modules. OH86 converts 8086 absolute object modules to 8086 hexa-
decimal format.

LINK86 combines a list of 8086 object modules into a single object module and
attempts to match all external symbol declarations with their public symbol defini-
tions in library modules. (LIB86 is the utility used to create and maintain program
libraries.) The output of LINK86 is a relocatable object module. However, when
specified in the controls, LINK86 produces a load-time-locatable (LTL) object
module; an LTL module can be executed on an 8086-based system. (See the descrip-
tion of LTL modules later in this chapter.) Whether the LINK86 output is an LTL or
arelocatable object module, it can serve as input to LOC86.

CREF86 provides a means for producing a cross-reference listing of public and
external symbols in multiple 8086 object modules. The object modules may include
library modules. The output produced by CREF86 should help the programmer to
identify how symbols will be resolved by LINK86, given the same input files.

LOCS86 converts relocatable (or LTL) object modules to absolute object modules.
Absolute object modules contain references that require the module segments to be
placed at particular places in 8086 memory.

The sequence in which the segments in the input modules are combined and absolute
addresses assigned to segments is determined by the controls supplied and the order
in which the modules are listed in the LINK86 and LOC86 invocations.

External References and Public Symbols

An address field that refers to a location in a different object module is called an
external reference. An external reference differs from a relative address because the
translator that generates the modules knows nothing about the location of the
referenced symbol. You must declare these references as external when coding a pro-
gram. This tells the translator, and subsequently the relocation and linkage (R&L)
utilities, that the target of the reference is in a different module.

A module that contains external references is called an unsatisfied module. To
satisfy the module, a module with a public symbol that matches the external symbol
must be found. Associated with a public symbol in a module is an address that
allows other modules, with the appropriate external reference, to reference the
module with the public symbol. You must define these symbols as public when
coding the program. This tells the source translator and the R&L utilities that other
modules can reference the symbol.

If there are external references that are not satisfied by public symbols, warning
messages are issued and the resulting module remains unsatisfied.

1-2

iAPX 86,88 Family Utilities Introduction

Use of Libraries

Libraries aid in the job of building programs. The library manager program, L1IB86,
creates and maintains files containing object modules.

LINK86 and CREF86 treat library files in a special manner. If you specify a library
file in the input to these utilities, they search the library for modules that satisfy
unresolved external references in the input modules already read. This means that
libraries should be specified after the input modules that contain external references.
If a module included from the library has an external reference, the library is
searched again to try to satisfy the reference. This process continues until all external
references have been the subject of a search of all public symbols in the library
modules.

When LINK86 and CREF86 search a library, they normally include only library
modules that satisfy external references in the output. If no external references are
satisfied by a library, no modules from the library are included in the LINK86 out-
put module or the CREF86 output listing. However, LINK86 and CREF86 provide
the means to unconditionally include a library module even if there is no external
reference to it. Figure 1-2 shows LINK86 handling of a library file.

INPUTS
MODA1
EXT. REF. C
EXT. REF. G
MOD2
EXT. REF.C OUTPUT
MODULE
MoD3 EXT. REF. C
EXT. REF. G
EXT. REF. X
EXT. REF. C
LIBRARY | LINK 86 —><
MOD A PUBLIC A EXT. REF. X
MODB PUBLICS . (UNRESOLVED)
MODC PUBLICC MODC PUBLIC C
MOD D PUBLIC D monG | |_PusLicG
MODE PUBLIC E
MoDF | PUBLICF >
MOD G PUBLIC G
MODH PUBLIC H
MOD | PUBLIC I
MODJ PUBLIC J
MOD K PUBLIC K
y,
Figure 1-2. Library Linkage by LINK86 121616-2

1-3

Introduction iAPX 86,88 Family Utilities

Relative Addressing

The relative addresses of instructions and data in program modules are assigned by
the source translator. The addresses are relative to the beginning of the segment in
which they reside. The relative address is actually the number of bytes from the
beginning of the segment.

After LINK86 combines all the input segments, LOC86 can be used to assign
absolute memory addresses to all relative addresses. The resulting output module
can only be executed when its segments are loaded at the absolute addresses assigned
by the command. If LINK86 is used to create a bound object module, LOCS86 is not
needed to execute the program.

The LINK86/LOC86 Process

Although controls are not required for LINK86 and LOC86 execution, the com-
mands invoking them may contain controls that affect their output. The controls
make it possible to change the defaults for module combination, address assign-
ment, and output information.

The inputs are object modules in disk files. The input modules can contain relative
addresses, absolute addresses, external references, and public symbols. The input
modules must be in the 8086 object module format such as is generated by 8086
translators and LINK86 and LOC86 themselves.

LINK86 combines segments from the input modules, and for LTL object modules
LINK86 orders segments in groups and assigns offsets. LOC86 orders the segments
and assigns absolute addresses according to the controls specified with the command
and/or the default algorithms. Both commands output the module when processing
is completed along with any error messages and diagnostic information. Figure 1-3
shows the LINK86/LOC86 process.

LINK86 / LOC86
INPUTS outeuts/ INPUT
LINK86 LOCS6
COMMAND COMMAND
AND AND
ABSOLUTE CONTROLS L CONTROLS
MODULES LTL LOCATED
ABSOLUTE
SINKED OBJECT
! / MODULE ; / MODULE
RELOCATABLE
MODULES LINK86
: ERROR ERROR
. MESSAGES MESSAGES
PUBLIC SYMEOL]
EXTERNAL Ve Ve
REFERENCES
- 8086-BASED
SYSTEM
DIAGNOSTIC DIAGNOSTIC
INFORMATION INFORMATION

LIBRARIES | V_\

Figure 1-3. The LINK86/LOC86 Process 121616-3

iAPX 86,88 Family Utilities Introduction

An 8086 Overview

To use the R&L commands you must have an understanding of the following
concepts:

® Addresses, given as offsets into segments, which must be translated into
absolute memory addresses, or base offsets

* Segment definitions, which identify contiguous pieces of information, usually
code or data

¢ Class definitions, which identify segments that share common attributes and
should be kept together

¢ Group definitions, which identify segments that must be kept within a 64K byte
range of memory

¢ Overlay definitions, which identify modules that will be loaded in memory at
different times during execution.

¢ Load-time-locatable object modules

Memory

The 8086 can address up to a maximum of a megabyte of memory. In decimal a
megabyte is 1,048,576 bytes. Memory addresses are always shown in hexadecimal. A
megabyte of memory has the addresses: OH through OFFFFFH.

Not all 8086-based systems will have a full megabyte of memory. Many systems will
have gaps in the memory that is available. The different portions of memory will
probably be implemented with different types of memory chips. The system monitor
or supervisor is usually stored in ROM or PROM chips. Because it is not modified
by execution it can be a permanent part of the system. This prevents the need to load
it each time the system is turned on. The data that is referenced often is kept in high-
speed RAM because it is modified frequently. It may be practical to keep data that is
referenced less often in slower-speed memory. The size and composition of a
system’s memory is totally dependent on the application the system serves.

Linkage and relocation is designed to handle the linking and locating of your pro-
gram, no matter how your 8086-based system memory is implemented. It provides
very flexible segment placement within any given memory configuration.

8086 Addressing Techniques

The 8086 addresses memory with a 20-bit address that is constructed from a segment
address and a 16-bit offset from that segment address. This means that with a single
segment address, 64K bytes of memory is directly addressable by changing only the
offset.

A hardware segment address is a 20-bit address. But the segment address is con-
strained such that the segment is placed on a boundary that is a multipie of 16 (10H).
The segment address can be set to any hexadecimal address ending in O:

OH

010H
020H

OFFFFOH

1-5

Introduction iAPX 86,88 Family Utilities

Because the low four bits of the 20-bit segment address are always zero, the segment
address can be represented with only 16 bits.

The segment address is kept in one of four 16-bit segment registers. Because there
are four segment registers, the 8086 can, at any moment, access 256K (4 x 64K) bytes
of memory. The full megabyte of memory is accessed by changing the values in the
segment registers. Figure 1-4 shows the 8086 addressing concept.

SEGMENT
REGISTER OFFSET
|1234H' I aooaHI
I 12340H
+8003H +— |
EFFECTIVE 20-BIT ADDRESS
MEMORY
FFFFFH
84K BYTES CAN BE | F ____________
ADDRESSED BY
CHANGING THE | | _ _ SeKeviEs
OFFSET ONLY]
oH
Figure 1-4. 8086 Addressing 639-4

Segments

Programs comprise pieces called segments, which are the fundamental units of
linkage and relocation. The basic divisions have functional purposes related to the
hardware configuration of memory. The portions of programs that are to be kept in
ROM or PROM can be put in separate segments from the portions that will be kept
in RAM.

The 8086 Assembler allows the programmer to name the segments of the program
being developed. The PL/M-86 compiler may generate predefined names for
segments.

A segment is a contiguous area of memory that is defined at translation time
(assemble or compile). When defined, a segment does not necessarily have a fixed
address or size. A fixed address is assigned to a segment during the locate function.
The size can be changed by combining segments and by a control that specifies a
specific size. Some translations may produce absolute object information, with
absolute addresses and a specific segment size.

1-6

iAPX 86,88 Family Utilities Introduction

LINKS86 combines all segments with the same complete (segment, class and overlay)
name and combination type (memory, stack, etc.) from all input modules. The
ordering of segments is done on the basis of these combined segments. The manner
in which segments are combined depends on the alignment of the segments (which is
described in the next topic) and a combining attribute associated with the segment.

When we refer to combining segments, we are talking about how the segments will
be loaded in memory, not how they will be stored in the output module. The
segments in the LOC86 output module contain addresses-that determine where they
will be loaded in memory. The segments reside in the output module in the same
order as they were in the input modules. Figure 1-5 shows the physical relationships
between the input modules, output module, and loaded program.

OUTPUT OUTPUT MODULE
INPUT MODULE LOADED IN
MODULES ON DISKETTE MEMORY

SEG A SEG A

SEG B
SEG C

e fses afses cfses of
SEG D

SEG E
SEG E
SEG F SEG F

Figure 1-5. Segment Physical Relationships 6395
Segment Alignment

A segment can have one (and in the case of the inpage attribute, two) of five align-
ment attributes:

e Byte, which means a segment can be located at any address

e Word, which means a segment can be located only at an address that is a
multiple of two, starting from address OH

e Paragraph, which means a segment can be located only at an address that is a
multiple of 16, starting from address 0

s Page, which means a segment can be located only at an address that is a multiple
of 256, starting from address 0

* Inpage, which means a segment can be located at whichever of the preceding
attributes apply, plus must be located so that it does not cross a page boundary

Figure 1-6 shows the segment alignment boundaries.

Any alignment attribute except byte can result in a gap between combined segments.
For'example, when two page-aligned segments are combined, there will always be a
gap, unless the first happens to be an exact multiple of 256 bytes in length.

Introduction

1-8

iAPX 86,88 Family Utilities

nEa0DnEnonnARaL

~—~— AL
| BYTE
WORD = 2 BYTES
A o
N
PARAGRAPH = 16 BYTES
~ a(

50

60

70

—_ = >PAGE = 256 BYTES
80

90

A0

Iso

CO

F2|F3[F4IF5 | FGIF?IFB Iss |FAIFBIFCIFD|FEIFF

-

[FOF

Figure 1-6. Segment Alignment Boundaries 639-6

Segment Combining

Segments containing data and code are combined end to end. There may be a gap
between the segments if the alignment characteristics require it. The relative
addresses in the segments are adjusted for the new longer segment.

There are two special cases of segment combination: stack segments and memory
segments. Such translators as PL/M-86 define these segments with the names
STACK and MEMORY. With ASM86 you must define them by adding the STACK
or MEMORY parameter to the SEGMENT directive.

When stack segments are combined, they are overlaid but their lengths are added
together.

When memory segments are combined, they are overlaid with their low addresses at
a common address. The length of the combined memory segment is the length of the
largest segment that was combined. No relative address adjusting is necessary. Nor-
mally the memory segment is located above (at a higher memory address) the rest of
the program segments if no controls are used to override this.

To make sure that stack segments are combined correctly, you should always give
them the same segment name in each module. The same is true of memory segments.
If you are going to link assembly language routines to PL./M-86 routines you should
give them the names STACK and MEMORY to be compatible with PL/M-86.

Segment Locating

Segments are located in the order in which they are encountered in the input
modules. If classes (described in the next section) are defined, the segments from a
class are located together. The locating algorithm can be changed by using LOC86
locating controls.

iAPX 86,88 Family Utilities Introduction

One variation to the sequential locating of segments is how the MEMORY segment
is located. When the first segment with the memory attribute is encountered, it is
placed last in the list of segments. This means that after all other segments are
located, the MEMORY segment will be assigned the highest address in the output
module.

NOTE

The MEMORY segment may not get located at the top of the module if its
name or class name appears in any LOC86 control (other than SEGSIZE) or
it has the absolute attribute.

Classes

A class is a collection of segments. When segments are defined in assembly
language, a class name can be specified. The segments generated by such translators
as PL/M-86 are generated with predefined class names. Any number of segments
can be given the same class name. Class names can extend beyond module bound-
aries; the same class name can be used in different modules that are to be combined.

The primary purpose of classes is to collect together (in an arbitrary order) segments
that share a common attribute and to manipulate this collection at locate-time by
specifying only the class name.

All segments with the same class name are located together in the memory address
space of the output module. (You can override class collection by specifying the
location of segments with the LOC86 ORDER control or LOC86 ADDRESSES
control.)

Classes give you a second means of collecting like segments in the output module.
The first is giving segments the same name. If you are developing several modules
that are to be combined, you may want to give the segment containing executable
code the name CODE in each module. If there are several differently named
segments within a module that contain executable code, you may want to give these
segments the class name of CODE that causes them to be located together but not
combined. (The same name can be used for segments and classes.)

Groups

A group is also a collection of segments. Groups define addressing range limitations
in 8086 object modules. A group specifies a collection of segments that must be
located within a 64K byte range. This means that the entire group of segments can be
addressed with offsets from a single segment register. Or, to put it another way, the
segment register need not be changed when addressing any segment in a group. This
permits efficient addressing within the module.

Group addressing always begins at an address that is a multiple of 16 (i.e., a
paragraph boundary). R&L does not manipulate segments of a group to make sure
they fall within a 64K byte range. However, if they do not fit in the range, a warning
message is issued.

The segments included in a group do not have to be contiguous in the output

module. The only requirement is that all the segments defined in the group must
totally fall within 64K bytes of the beginning address of the group.

1-9

Introduction iAPX 86,88 Family Utilities

Overlays

Sometimes your 8086 program is too large to fit into the memory available on the
system. Overlays permit programs to be larger than the available memory.

Typically, an overlay is composed of code and data that is executed in one phase of a
program’s execution, but not used at any other time. Once executed the memory
used by this code can be overwritten with code and data used in an other phase.
Sections of code that occupy the same part of memory at different times during
execution are called overlays.

Part of an overlaid program is always resident in memory; it usually comprises the
main program module, frequently used routines, and the overlay loader. This part
of the program is called the root. Figure 1-7 illustrates the memory configuration of
one program that uses overlays.

/ RESERVED
L >-——-

/ FORROOT

L7___

/ MODULE

L _

Figure 1-7. Memory Configuration of Program with Overlays 639-7

Position-Independent Code and Load-Time-
Locatable Code

An LTL (load-time-locatable) program can be loaded anywhere in memory (assum-
ing alignment attributes are honored). Code and data addresses are assigned by the
system loader. References to segment bases (segment registers) are permitted. The
loader, when it determines where to locate each segment, must resolve these
references to the segment bases. Before executing the LTL program, the loader must
also initialize the segment registers.

A PIC (position-independent-code) program is an LTL program, but it contains no
references to segment bases.. To execute these programs the loader need only place
the program in memory (recognizing alignment attributes) and initialize the segment
registers and go. No fixup of segment bases is required.

1-10

CHAPTER 2
LINK86

LINK86 combines 8086 object modules and resolves references between
independently translated modules. LINK86 takes a list of files and controls as input
and produces two output files: a print file and an object file.

Figure 2-1 illustrates the linkage process. The input files may be any object module
(output from a translator, LINK86, LOC86 or an 8086 library file). The print file
contains diagnostic information. The output object file is a bound load-time-
locatable module or simply a relocatable module.

This chapter provides details concerning the LINK86 invocation, controls, and print
file. For definition of file-naming and syntax notation conventions used in this
chapter, refer to Notational Conventions following the Preface. For a summary of
the LINK86 controls and information on error and warning messages that may be
produced, refer to Appendix D. For details concerning symbol table space limita-
tions, refer to Appendix C.

CONSOLE
MESSAGES
BOUND
»| osJECT
MODULE
INVOCATION ,
LINE CONTROLS
PRINT FILE
- WITH SYMBOL
L ':__J—’ TABLE “.MP1”
ogect | o _BIND_
MODULE LiNkss | NO BIND
| —
L__ _ I LINKED
OBJECT
MODULE
s
CONSOLE
MESSAGES PRINT
»| FILE
A
Figure 2-1. LINK86 Input and Output Files 121616-4

LINK86 Invocation Line

The general syntax for the invocation line is:
ldirectory-name]L 1NK86 input list[T 0 output file][controls]

The input list is one or more modules to be linked together into a single object
module:

pathname((module name(, ...][, ...]

Unless a module name is specified, all modules in a pathname are included. If the
pathname is a library file, any modules named in parentheses are included in the out-
put file even if they do not contain public symbol definitions for external symbols
declared elsewhere in the input list.

2-1

LINKS86 iAPX 86,88 Family Utilities

The input list may also contain the control PUBLICSONLY before selected
pathnames. If you wish to include a file called PO or PUBLICSONLY, ensure that
the filename is preceded by a directory-name in order to distinguish it from the con-
trol or its abbreviation.

The order of modules in the input list affects the order of segments in the output file.

TO output file designates the file to receive the linked object module. If output file is
not specified, then output is directed to a file that has the same pathname as the first
element in the input list, but its extension is .LNK. If the first element in the list is a
PUBLICSONLY control, then the first pathname in its argument is used for the
default name.

If the BIND control is specified, then the default name for the output file has no
extension, and the object module can be executed without locating.

The controls can be any subset of the controls specified in the next section.

LINK86 Controls

The controls are described in table 2-1.
Table 2-1. Summary of LINK86 Controls

Control Abbrev. Default
ASSIGN({variable(address)}{,...]) AS Not applicable
ASSUMEROOT(pathname) AR Not applicable
BIND Bi NOBIND
NOBIND NOBI
COMMENTS CM COMMENTS
NOCOMMENTS NOCM
FASTLOAD FL NOFASTLOAD
NOFASTLOAD NOFL
INITCODE IC Not applicabie
LINES _ L LINES
NOLINES NOLI
MAP MA MAP
NOMAP NOMA
MEMPOOL(min-size|,max-size)) MP Not applicable
NAME(module name) NA Not applicable
OBJECTCONTROLS(oC Not applicabie

{LINES | NOLINES |
COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS [EXCEPT(symbol [,...)] |
NOPUBLICS [EXCEPT(symbol [,...])] |
TYPE | NOTYPE | .
PURGE | NOPURGE}{,...})
ORDER({group({segment[\class[\overlay]}} oD Not applicable
LD}
LD

2-2

iAPX 86,88 Family Utilities LINK86

Table 2-1. Summary of LINK86 Controls (Cont’d.)

Control Abbrev. Defauit
OVERLAY([(overiay)] ov NOOVERLAY
NOOVERLAY NOOV
PRINT{(pathname)] PR PRINT(object file.MP1)
NOPRINT NOPR
PRINTCONTROLS(PC Not applicable

{LINES | NOLINES |

COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS[EXCEPT(symbol[,...]] |
NOPUBLICS [EXCEPT(symboi [,...])] |
TYPE | NOTYPE |

PURGE | NOPURGE3}(,...])

PUBLICS [EXCEPT(symbol |,...])] PL [EC] PUBLICS
NOPUBLICS [EXCEPT(symboli,...1)] NOPL[EC]
PUBLICSONLY(pathname|,...]) PO Not applicable
PURGE PU NOPURGE
NOPURGE NOPU
RENAMEGROUPS({group TO group}|,...]) RG Not applicable
SEGSIZE({segment[\class|\overlay]] SS Not applicable
(min-size(,[max-size]})}|,...])
SYMBOLS SB SYMBOLS
NOSYMBOLS NOSB
SYMBOLCOLUMNS({1]2]3]4)}) SC SYMBOLCOLUMNS(2)
TYPE TY TYPE
NOTYPE NOTY

If you specify a control more than once in a single invocation line, only the last ver-
sion entered counts. For example, if you enter NOMAP on the invocation line and
then later decide you want a link map, you can specify MAP. The ASSIGN control,
however, is an exception to this general rule.

The following controls are effective only when the BIND control is specified:

FASTLOAD
MEMPOOL

ORDER
PRINTCONTROLS
SEGSIZE
SYMBOLCOLUMNS

The following control is effective only when the BIND control is NOT specified:
INITCODE

The following control is effective only when the OVERLAY control is specified:
ASSUMEROOT

At the end of this document you will find operating system-specific examples of the

LINK86 controls. Fold out the pages containing the examples relevant to your

operating environment and use them in conjunction with the syntax conventions
provided in this chapter.

2-3

ASSIGN iAPX 86,88 Family Utilities

Syntax

ASSI1GN ({variable-name (address) }[,...])

Abbreviation

AS

Default
Not applicable

Definition

ASSIGN makes it possible to define absolute addresses for symbols at LINK time.
The absolute address associated with the variable-name is specified in address,
which should be an absolute 20-bit memory address that conforms to PL/M-86
notation. The variable-name is internally defined as a PUBLIC symbol.

Notes

¢ This control is particularly useful for memory-mapped I/0.

e If the variable-name has a matching public definition in another module, the
public definition in that module is flagged as as duplicate. Whenever a reference
to the variable-name occurs, the variable defined in the ASSIGN control
governs.

e If multiple ASSIGN specifications are provided in one LINK86 invocation, all
will be effective (not only the final entry).

iAPX 86,88 Family U;ilities A S s U M E R 0 OT

Syntax
ASSUMEROOT (pathname)

Abbreviation

AR

Default
Not applicable

Definition

ASSUMEROOT suppresses the inclusion of any library module(s) in an overlay if
the library module(s) have already been included in a root file identified by
pathname. When this control is used, the root file is scanned, and all external,
undefined symbols in the overlay modules which have a matching definition in the
root file are marked ‘‘temporarily resolved.”” This marking means that while a
library search for the symbols will not be made, their status remains externally
undefined until the overlays are linked with the root.

Notes
e This control should be used only in conjunction with the OVERLAY control
and libraries.

» This control will not eliminate common library modules from overlay to
overlay. .

¢ This control may not be used when an input module already has an overlay
record.

2-5

BIND/NOBIND iAPX 86,88 Family Utilities

2-6

Syntax

BIND
NOBIND

Abbreviation

BI
NOBI

Default
NOBIND

Definition

BIND combines the input modules into a load-time-locatable (LTL) module. An
LTL module may be loaded and executed, and any logical reference to a segment or
group base can be resolved at load time. The load-time-locatable output cannot be
loaded by the ICE-86 loader or UPM.

Notes

e FASTLOAD, MEMPOOL, ORDER, SEGSIZE, and SYMBOLCOLUMNS
have no effect when NOBIND is specified.

* When NOBIND is in effect, [NO]JLINES, [NO]JSYMBOLS, [NO]PUBLICS,
and [NO]PURGE affect only the output object module.

e When BIND is specified, the default object file name has no extension.

iAPX 86,88 Family Utilities COMMENTS/NOCOMMENTS

Syntax

COMMENTS
NOCOMMENTS

Abbreviation

CM
NOCM

Default

COMMENTS

Definition

COMMENTS allows object file comment records to remain in the output module.
The NOCOMMENTS control removes all comment records except those designated
as nonpurgable.

Comment records are added to the object module for various reasons. All
translators add a comment record, identifying the compiler or assembler that pro-
duced it.

Comment records are superfluous to the production of executable code and may be
removed at any time during the development process.

Notes

¢ See PURGE, PRINTCONTROLS and OBJECTCONTROLS.

¢ COMMENT records should not be removed when you submit an object file in a
Software Problem Report.

¢ NOCOMMENTS will decrease the size of the output object file.

FASTLOAD/NOFASTLOAD 1APX 86,88 Family il

Syntax

FASTLOAD
NOFASTLOAD

Abbreviation

FL
NOFL

Default
NOFASTLOAD

Definition

FASTLOAD reduces program loading time by causing data record concatenation.
The data records are concatenated to a maximum length of 64K. FASTLOAD also
makes the object file compact by removing such information as local symbols,
public records, comments, and type information (unless the object file contains
unresolved external symbols).

Notes

e This control is effective only when BIND is specified.

e Qutput produced with this control in effect may be incompatible with LINK86
versions earlier than 2.0.

2-8

iAPX 86,88 Family Utilities.

Syntax
INITCODE

Abbreviation

IC

Default
Not applicable

Definition

INITCODE

INITCODE causes LINK86 to create a new segment that contains code to initialize
the segment registers. The equivalent assembly language code is shown below:

STACKFRAME
DATAFRAME
EXTRAFRAME

Notes

DW
DW
bW
CLI
LI
MoV
Mov
MOV
JMP

stack frame
data frame
extra frame

$S, CS:STACKFRAME
SP, stack offset

DS, CS:DATAFRAME
ES, CS:EXTRAFRAME
program start

e The initialization code segment is created only if a register intialization record
for 8086 segment registers exists in the input. These register initialization
records are automatically produced by 8086-based translators for main

modules.

e BIND and OVERLAY controls used in conjunction with INITCODE will cause
LINKS86 to ignore the INITCODE control and issue a warning message.

e INITCODE should be used to ensure compatibility with 8085-based LINK86,
LOCS86, and LIB86 products.

e The name of the new segment, if created, is ??INITCODE.

29

LINES/NOLINES iAPX 86,88 Family Utilities

Syntax

2-10

LINES
NOLINES

Abbreviation

LI

NOLI

Default

LINES

Definition

LINES allows line number information to remain in the object file. ICE-86 and
other debuggers use this information. The line number information is not needed to
produce executable code. The NOLINES control removes this information from the
output file.

Notes

See PRINTCONTROLS and OBJECTCONTROLS.

See the PURGE control.

NOLINES will decrease the size of the output object file.

Unless BIND is in effect, LINES/NOLINES affects only the object module.

LINES has no effect on local symbols; the inclusion of local symbol records in
the object file is controlled by SYMBOLS.

iAPX 86,88 Family Utilities M A P / N 0 M A p

Syntax

MAP
NOMAP

Abbreviation

MA
NOMA

Default
MAP

Definition

MAP produces a link map and inserts it in the PRINT file. The link map contains
information about the attributes of logical segments in the output module. This
includes size, class, alignment attribute, address (if the segment is absolute) and
overlay name (if the segment is a member of an overlay).

NOMAP inhibits the production of the link map.

Notes

* MAP can be overridden by the NOPRINT control.
e See the discussion of the link map at the end of this chapter.

MEMPOOL iAPX 86,88 Family Utilities

Syntax

MEMPOOL (minimum-size[, maximum-size))

Abbreviation

Me

Default
Not applicable.

Definition

MEMPOOL specifies the dynamic memory requirements of the program. This
allows the loader to check free memory at load time, and prevent a run-time error.

The minimum size is a 20-bit number. There are three ways of specifying this value:

* + indicates that the number should be added to the current dynamic memory
requirements.

® — indicates that the number should be subtracted from the current dynamic
memory requirements.

® o sign indicates that the number should become the new minimum dynamic
memory requirement.

The maximum size is a 20-bit number. There are two ways of specifying this value:

* + indicates that the number should be added to the current minimum dynamic
memory requirement.

* o sign indicates that the number should become the new maximum dynamic
memory requirement.

Notes

* The minimum-size must be less than or equal to the maximum-size.
¢ MEMPOOL has no effect unless the BIND control is also specified.

2-12

iAPX 86,88 Family Utilities NAME

Syntax

NAME (module name)

Abbreviation

NA

Default

The module name of the first element in the input list.

Definition

NAME assigns the specified module name to the output module. If NAME is not
specified, then the output module will have the name of the first module in the input
list.

The module name may be up to 40 characters long. It may be composed of any of
the following characters in any order:

? (question mark),
@ (commercial at),
: (colon),

. (period),

__ (underscore),
A,B,C,...,Zor
0,1,2,...,9.

Lower-case letters may be used, but they are automatically converted to uppercase.

Notes

e NAME does not affect the output file’s name. Only the module name in the
output module’s header record is changed.

OBJECTCONTROLS iAPX 86,88 Family Utilities

Syntax

OBJECTCONTROLSC{LINES | NOLINES |
COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS [EXCEPT (symboll,...])] |
NOPUBLICS [EXCEPT (symbol[,...])]]
TYPE | NOTYPE |
PURGE | NOPURGED [, ...]
)

Abbreviation

oc

Default
Controls apply to both the print file and the object file.

Definition

OBJECTCONTROLS causes the controls specified in its arguments to be applied to
the object file only. Comment records, line number records, local and public symbol
records, and symbol type records are selectively included or excluded from the
object file. This will not affect the print file nor the information contained in it.

Notes

e Abbreviations for the controls within the parentheses may be given.

* A control specified in both OBJECTCONTROLS and PRINTCONTROLS has
the same effect as specifying it once outside of these controls.

2-14

iAPX 86,88 Family Utilities ORDER

Syntax

ORDER ({group name ({segment name

{\class name[\overiay name]]}
[,
...

Abbreviation

0D

Default

Segments are placed into object file in the same order in which they were
encountered in the input list.

Definition
ORDER specifies a partial or complete order for the segments in one or more
groups.

The group name identifies the group whose segments are to be ordered.

The segment name identifies the segments to be ordered. The \class name and
\overiay name may be used to resolve conflicts with duplicate segment names. If
\overlay name is specified, the \class name is required.

Notes

* ORDER has no effect unless BIND is also specified.

* If one of the segments specified is not contained in the designated group, an
error message is generated.

¢ See discussion of module combination at the end of the chapter for details of the
default ordering.

2-15

OVERLAY/NOOVERLAY iAPX 86,88 Family Utilities

Syntax

OVERLAY[(overfay name)]
NOOVERLAY

Abbreviation

ov
NOOV

Default
NOOVERLAY

Definition

OVERLAY specifies that all of the input modules shall be combined into a single
overlay module. When the optional overlay name argument is specified, all
segments contained within the overlay module have that name in addition to their
segment names and class names. When over/ay name is not specified, LINK86 uses
the module name of the first module in the input list.

Notes
e Each overlay in a given program must be linked separately before they are all
linked into a single object module.

e The overlay specified in the argument must be the same as the overlay name
used when calling the operating system to load the overlay.

e When linking root and overlay files, LINK86 assumes the first file in the
invocation line is the root.

¢ The ASSUMEROOT control can be specified in conjunction with the
OVERLAY control.

2-16

iAPX 86,88 Family Utilities PRINT/NOPRINT

Syntax

PRINT[(pathname)]
NOPRINT

Abbreviation

PR
NOPR

Default

PRINT Cobject file .MP1)

Definition

PRINT allows you to direct the link map and other diagnostic information to a
particular file. If the PRINT control is not specified or if the control is given without
an argument, the print file will have the same pathname as the output file except the
extension will be . MP1. NOPRINT prevents the creation of this file.

Notes

* The discussion at the end of this chapter describes the contents of the print file.

e MAP, SYMBOLCOLUMNS, LINES, SYMBOLS, PUBLICS and
PRINTCONTROLS affect the contents of the print file.

2-17

P R I N TC 0 N T R o L S iAPX 86,88 Family Utilities

2-18

Syntax

PRINTCONTROLSC{LINES | NOLINES |
COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS [EXCEPT (symbol[,...)] |
NOPUBLICS [EXCEPT (symboll,...])]|
TYPE | NOTYPE |
PURGE | NOPURGE}[,...]
)

Abbreviation

PC

Default
Controls apply to both the print file and the object file.

Definition

PRINTCONTROLS causes the controls specified in its arguments to be applied to
the print file only. Line number information, and local and public symbol informa-
tion are selectively included or excluded from the print file. This will not affect the
object file or the information contained in it.

Notes

* When a control is specified in both the PRINTCONTROLS and the
OBJECTCONTROLS, it has the same effect as specifying it once outside of
these controls.

* Abbreviations to the parenthesized controls may be used.

e Unless BIND is specified, PRINTCONTROLS and its arguments have no
effect.

iAPX 86,88 Family Utilities PUBLICS/NOPUBLICS

Syntax

PUBLICS [EXCEPT (public symbol{,...]}]
NOPUBLICS[EXCEPT (public symbol [, ...])]

Abbreviation

PL [EC]
NOPL [EC)

Default

PUBLICS

Definition

PUBLICS causes the public symbol records to be kept in the object file and the
corresponding information to be placed in the print file. Public symbol records are
needed to resolve external symbol definitions in other files. The EXCEPT sub-
control allows you to modify the control. Public records are used by LINK86 to
resolve external references.

Notes
¢ The scope of PUBLICS can be modified by PRINTCONTROLS and
OBJECTCONTROLS.

¢ Unless BIND is specified PUBLICS/NOPUBLICS affect only the object file.
¢ NOPUBLICS will decrease the size of the output object file.

2-19

p U B |_ | C S O N LY iAPX 86,88 Family Utilities

Syntax

PUBLICSONLY (pathname |, ...})

Abbreviation

PO

Default
Not applicable

Definition
PUBLICSONLY is an input list control. When used it must appear in the input list
and not the control list.

PUBLICSONLY indicates that only the absolute public symbol records of the argu-
ment files will be used. The other records in the module will be ignored. This can be
used to resolve external references to 8089 files and overlays when a multifile overlay
system is desired.

Notes

* Although it is possible to create overlays using PUBLICSONLY, it is easier to
use the OVERLAY control to create overlays.

2-20

iAPX 86,88 Family Utilities PURGE/NOPURGE

Syntax

PURGE
NOPURGE

Abbreviation

PU
NOPU

Default
NOPURGE

Definition

PURGE in the control list is exactly the same as specifying NOLINES,
NOSYMBOLS, NOCOMMENTS, NOPUBLICS, and NOTYPE. NOPURGE in
the control list is the same as specifying LINES, SYMBOLS, COMMENTS,
PUBLICS, and TYPE.

PURGE removes all of the debug or public records from the object file and their
information from the print file. It will produce the most compact object file
possible.

The records that would be included by NOPURGE are useful to debuggers, but
otherwise they are unnecessary for producing executable code.

Notes
e PRINTCONTROLS and OBJECTCONTROLS can be used to modify the
scope of PURGE.

e Unless BIND is specified, PURGE affects only the output object file.

2-21

RENAMEGROUPS iAPX 86,88 Family Utilities

Syntax
RENAMEGROUPS ({group name TO group namel} [,...])

Abbreviation

RG

Default
All groups keep the name they already have.

Definition

RENAMEGROUPS allows you to change the group names assigned by the
translator. The first group name must be an existing group in one of the modules in
the input list.

Notes

None

2-22

iAPX 86,88 Family Utilities SEGSIZE

Syntax

SEGSIZE ({segment name[\class name[\overlay namel]]
(minimum size[, [maximum sizel]) }

[..D

Abbreviation

SS

Default
Not applicable

Definition

SEGSIZE allows you to specify the minimum memory space needed for any seg-
ment. If you specify the maximum size for a segment, that segment must either not
be a member of any group or be the last segment in the group.

The segment name identifies the segment whose size is to be changed.

The minimum size is a 16-bit number. There are three ways of specifying this value:
¢ +indicates that the number should be added to the current segment length.

e — indicates that the number should be subtracted from the current segment
length.

* no sign indicates that the number should become the new segment length.

The maximum size is a 16-bit number. There are two ways of specifying this value:
¢ +indicates that the number should be added to the minimum segment length.

® po sign indicates that the number should become the new maximum segment
length.

Notes

¢ The maximum segment size must always be greater than or equal to the
minimum segment size.

¢ Segment lengths are initially assigned by the translator.
e Unless BIND is also specified SEGSIZE has no effect.

2-23

SYMBOLS/NOSYMBOLS iAPX 86,88 Family Utilities

Syntax

SYMBOLS
NOSYMBOLS

Abbreviation

SB
NOSB

Default
SYMBOLS

Definition

SYMBOLS specifies that all local symbol records shall be included in the object file.
Local symbol records are used by debuggers.

Notes

¢ Unless BIND is also specified, SYMBOLS affects only the output object file.
¢ NOSYMBOLS will decrease the size of the output object file.

e SYMBOLS has no effect on line numbers; the inclusion of line numbers in the
object file is controlled by the LINES control.

2-24

iAPX 86,88 Family Utilities SYMBOLCOLUMNS

Syntax
SYMBOLCOLUMNS({1 | 2 | 3 | 4}

Abbreviation

SC

Default
SYMBOLCOLUMNS (2)

Definition

SYMBOLCOLUMNS indicates the number of columns to be used when producing
the symbol table for the object module. Two columns fit on a 78-character line; four
columns fit on a single 128-character line printer line.

Notes
e SYMBOLCOLUMNS has no effect unless BIND is also specified.

2-25

TY P E / N OTY P E iAPX 86,88 Family Utilities

Syntax

TYPE
NOTYPE

Abbreviation

TY
NOTY

Default
TYPE

Definition

TYPE specifies that type checking is to be performed on the object file. Symbol type
records produced by the translator are used by LINK86 to perform type checking on
modules. Symbol type records should be kept in the file if it may be relinked with
another file.

Notes

¢ NOTYPE will decrease the size of the ouput object file without affecting
run-time operation.

2-26

iAPX 86,88 Family Utilities LINKS86

LINK86’s Print File

The print file is always created unless you specify NOPRINT. The optional argu-
ment to PRINT designates the name of the print file. The default print file is the
object file with the extension .MP1.

The print file may contain as many as five parts:

1. A header (always in the print file)

2. Alink map (requires MAP)

3. A group map (requires BIND)

4, A symbol table (requires BIND and PUBLICS, LINES, or SYMBOLS)
5. An error message list (always included when they occur)

The Header

The header is self-explanatory; it identifies the 8086 linker by version number and
gives the important details about the input and output files used during this execu-
tion. Figure 2-2 shows an example of LINK86’s print file header.

system-4d 8086 LINKER, Vr.y

INPUT FILES: : pathnamet,pathname2

OUTPUT FILE: : pathname3

CONTROLS SPECIFIED IN INVOCATION COMMAND:
BIND

DATE: MM/DD/YY TIME: HH:MM:SS

\

Figure 2-2. LINK86 Print File Header

The Link Map

The link map supplies useful information about segments in the object file — order,
size, alignment attribute, and segment, class, and overlay names. Figure 2-3 shows

LINK86’s link map.
LINK MAP OF MODULE ROOT]
LOGICAL SEGMENTS INCLUDED:
LENGTH ADDRESS ALIGN SEGMENT CLASS OVERLAY
W CODE CODE
W CONST CONST
w DATA DATA
w STACK STACK
w MEMOKY MEMOKY
G ??SEG

INPUT MODULES INCLUDED:
pathname1(ROOT)

\ —

Figure 2-3. LINK86 Link Map

2-27

LINK86

2-28

iAPX 86,88 Family Utilities

The map consists of three parts:
® Segment map

e Input module list

* Unresolved symbol list

The segment map describes all of the segments included in the object file. Each seg-
ment description includes five entries: length, the address (if the segment is
absolute), alignment attribute, segment name, class name and overlay name, if any.

A segment may have any one of the following alignment attributes:

absolute

byte

paragraph

member of an LTL group
page

word

in-page

VDE OUVEXZO®>

In-page alignment means that the entire segment must be resident within a single
256-byte page. The address of the first byte in any page has zeros in the first 2-
hexadecimal digits (0OH, 100H, 200H,...0FFFOOH).

The module list identifies the order of modules included in the output file. LINK86
gives both the file containing the module and the module name for each entry in the
list.

The unresolved symbol list itemizes each external symbol whose public definition
was not encountered. The module that references the unresolved symbol is also
indicated. The printed message that appears under the heading UNRESOLVED
EXTERNAL NAMES is as follows:

o symbolname IN pathname (module name)
e If ASSUMEROOT is specified, the message would read:
symbolname (DEFINED IN ROOT-FILE,pathname)
e [f PUBLICS/NOPUBLICS EXCEPT is specified, .the message would read:

symbolname IN LINK86 COMMAND LINE

The Group Map

LINK86 produces a group map when the BIND control is specified. Each group
name and all segments contained in that group are listed. The offset from the group
base for each segment appears to the right of the segment name. Figure 2-4 shows an
example of the group map.

GROUP MAP
o

GROUP NAME: CGROUP
OFFSET SEGMENT NAME
0000H CODE

GROUP NAME: DGROUP
OFFSET SEGMENT NAME
0000H CONST
0016H DATA
OB4EH STACK
OF90H MEMORY

Figure 2-4. LINK86 Group Map

iAPX 86,88 Family Utilities

The Symbol Table

LINKS86 produces a symbol table only when the following conditions are true:

1. BIND is specified
2. PRINT and MAP controls are in effect.

3. At least one of the following controls is in effect: PUBLICS, LINES, or

SYMBOLS.

Figure 2-5 shows LINK86’s symbol table with the SYMBOLCOLUMNS set at two
(the default). The symbol table is shown in two parts: the top section contains the
public symbol information; the lower section contains line and local symbol

information.

--_—_-_---—--_—---_—-'"“‘--—-.___‘

SYMBOL TABLE OF MODULE ROOT

BASE OFFSET TYPE SYMBOL BASE
G(2) 0166H PUB BINDCONTROL G(2)
G(2) 0018H FPUB BUFBASE G(2)
G(2) OO4EH PUB CLASHNODEBASE G(2)
6(2) 015AH PUB COMMENTSCONTROL G(2)
G(2) 0175 PUB DEBUGTOGGLE G(2)
G(2) 00628 PUB EXCEPTION 6(2)
G(2) 006EH PUB FBLOCKBASE G(2)
G(2) 006CH PUB FBLOCKLISTTAIL G(2)
G(2) O04AH PUB FBNODEBASE G(2)
G(2) 0044H PUB FENODEBASE G(2)
G(2) 0034H PUB FIRSTBNODEP G(2)
G(2) 002CH PUB FIRSTGRNODEP G(2)
G(2) 0030H PUB FIRSTOVNODEP G(2)
G(2) 0020 PUB FIRSTSGNODEP G(2)
G(2) 0038H PUB GRNODEBASE G(2)

MODULE NAME = ROOT

BASE OFFSET TYPE SYMBOL BASE
G(2) OF90R SYM MEMORY G(2)
-6(2) 0016h SYM BUFLEN G(2)
G(1) OOFTH SYHM ERROR G(1)
G(2) 001AK SYM LASTNMNODEP G(2)
G(2) 001EB SYM LASTSGNODEP G(2)
G(2) 0022H SYM LASTTDNODEP G(2)
6(2) 0026H SYM LASTEXNODEP G(2)
G(2) 002AH SYM LASTGRNODEP G(2)
G(2) 002Ek SYM LASTOVNODEP G(2)
G{(2) 0032H SYM LASTBNODEP G(2)
G(2) 0036H SYM SGNODEBASE G(2)
G(2) 003AH SYM SYNODEBASE G(2)
G(2) 003EH SYM TDNODEBASE G(2)
G(2) 0042H SYM OVNODEBASE 6(2)
G(2) 0046H SYM FDNODEBASE G(2)
G(2) OO4AH SYM FBNODEBASE G(2)
G(2) O0O4EH SYM CLASHNODEBASE G(2)

—]

OFFSET TYPE SYMBOL

O04CH PUB BNODEBASE

0016 PUB BUFLEN

0060H PUB COCONN

0171H PUB CURRENTOVERLAYNU
-M

00A7TH PUB DEFAULTPRTFILENA
-ME

0048H PUB FANODEBASE

006AH PUB FBLOCKLISTHEAD

013DH PUB FBLOCKSEQUENCENU
-MBER

0046H PUB FDNODEBASE

0040H PUB FFNODEBASE

00284 PUB FIRSTEXNODEP

001CH PUB FIRSTNMNODEP

0050H PUB FIRSTRENAMEBLOCK
-P

0024H PUB FIRSTTDNODEP

OB4CH PUB HIGHESTDATALOCAT
-ION

e
e}

OFFSET TYPE SYMBOL

00008 SYM COPYRIGHT

0018H SYM BUFEBASE

OOFEH SYM WARNIXG

001CH SYM FIRSTNMMODEP

0020H SYM FIRSTSGNODEP

0024H SYM FIRSTTONODEP

0028H SYM FIRSTEXNODEP

002CH SYM FIRSTGRNODEP

0030H SYM FIRSTOVNODEP

0034H SYM FIRSTBNODEP

0038H SYM GHRNODEBASE

003CH SYM NMNODEBASE

0040H SYM FFNODEBASE

0044H SYM FENODEBASE

0048H SYM FANODEBASE

004CH SYM BNODEBASE

0050H SYM FIRSTRENAMEBLOCK
-P

Figure 2-5. LINK86 Symbol Table

LINKS86

2-29

LINKS86 iAPX 86,88 Family Utilities

\4———'1

G(2) 01A4H SYM S1GNONMSG G(1) O174H SYM PRINTNAME
G(1) 01A3H SYM INITIALIZEINPUT G(1) 0148k SYM OPENFBLOCKFILE
G6(1) 01F6H SYM CLOSEFBLOCKFILE G(1) 00F7H LIN 7
G(1) 00FAH LIN 10 G(1) 00FEH LIN 1
G(1) 0101H LIN 14 G(1) 0105H LIN 73
G(1) 0108H LIN 75 G(1) 010FR LIN 76
G(1) 0116H LIN 77 G(1) 011DH LIN 78
G(1) 0126H LIN 79 G(1) 012aH LIN 80
G(1) 012DH LIN 84 G(1) 0136H LIN 85
G(1) 013DH LIN 86 G(1) 0144H LIN 87
G(1) 0151H LIN 88 G(1) 0158H LIN 89
G(1) 0168H LIN 90 G(1) 0170H LIN 91
G(1) 01744 LIN 94 G(1) 0177H LIN 96
G(1) 018EH LIN 97 G(1) 0198H LIN 98
G(1) 019FH LIN 99 G(1) 01A3H LIN 100
G(1) 01A6H LIN 103 G(1) 01A8H LIN 105
G(1) 01ABH LIN 106 G(1) O1BEH LIN 107
G(1) 01C8H LIN 108 G(1) 01CFH LIN 109

REFERENCES TO SEGMENT BASES EXIST IN INPUT MODULES:
ROOT

Figure 2-5. LINK86 Symbol Table (Cont’d.)

BASE is usually a symbolic group or segment index. If the base is the stack, then
STACK is used instead of the index.

OFFSET is a four-digit hexadecimal number that is the offset of the symbol or line
from BASE, or from the current BP for stack symbols.

TYPE describes the kind of symbol it is. There are four possible entries in the TYPE
column:

BAS based on an other symbol’s value

LIN line (not a symbol)

PUB public symbol (alphabetized within each separate BASE)
SYM local symbol

SYMBOL refers to the name of the symbol or number of the line. If the
SYMBOLCOLUMNS value is one, this field is 40 characters wide. Otherwise, this
field is 16 characters wide. If the symbol name is longer than the width of the field,
then the name is hyphenated and continued on the next line.

If there are any references to segment bases in the input modules (if the output
module is an LTL program), LINK86 prints the following message at the bottom of
figure 2-5. The message identifies all input modules containing such references.
These references are to be resolved by the system loader or LOC86.

Error Messages

The warning messages are listed consecutively as warning situations are
encountered. They may appear before or after the link map. Errors always terminate
processing—an error message will always be the last line in the print file.

See the discussion of the interpretation of individual messages in Appendix C.

2-30

CHAPTER 3
CREF86

CREF86 scans 8086 object modules to provide a cross-reference among external and
public symbols in multiple modules. CREF86 accepts a list of files and controls as
input and produces one output file: a print file.

Figure 3-1 illustrates the types of input accepted and output produced. The input
modules may include one or more of the following 8086 object modules:

e Unlinked modules from one or more translators
e Library files or specific library modules
e Linked modules

The output file consists of information about files and modules, plus an
alphabetically sorted list of external and public symbols. Information printed for
each symbol includes the name of the module defining the symbol and the name(s)
of the module(s) declaring the symbol as external.

This chapter provides details concerning the CREF86 invocation, controls, and
cross-reference listing. For definition of file-naming and syntax notation conven-
tions used in this chapter, refer to Notational Conventions following the Preface.
For a summary of the CREF86 controls and information on error and warning
messages which may be produced, refer to Appendix E. For details concerning
CREF86 symbol table space limitations, refer to Appendix C.

[E—
TRANSLATED|
OBJECT INVOCATION
MODULE(S) LINE CONTROLS
p===lomm .
L .
LIBRARY PRINT FILE
MODULE(S) »! CREF86 E————-—-——-» prp il
—
| o]
[EE—
LINKED CONSOLE
OBJECT MESSAGES
MODULE() ||
Figure 3-1. CREF86 Input and Output Files 1216165

3-1

CREF86 iAPX 86,88 Family Utilities

CREF86 Invocation Line

The general syntax for invocation is:
[directory-name|CREF86 input list[controls]

The input list is one or more modules to be scanned for external-public cross-
references:

pathname[(module name|, ...])][, ...]

Unless a module name is specified, all modules in a pathname are included in the
cross-reference listing produced. If the pathname is a library file, any modules
named in parentheses are included in the cross-reference listing, even if they do not
contain public symbol definitions for external symbols declared elsewhere in the
inputlist.

Either all or none of the pathnames may contain overlay records (produced by
LINK86 with the OVERLAY control). If the input modules do contain overlay
records, the first file named in the invocation is considered to be the root file; the
rest are treated as overlays.

The controls can be any subset of the controls described in the next section.

CREF86 Controls

The controls specify cross-reference listing attributes such as print file name, the
title at the top of each listing page, and the amount of information printed on each
page. The controls are described in table 3-1.

Table 3-1. Summary of CREF86 Controls

Control Abbrev. Default
PAGELENGTH(number) PL PAGELENGTH(60)
PAGEWIDTH(number) PW PAGEWIDTH(120)
PRINT[(pathname)] PR PRINT(first input file.CRF)
TITLE(character-string) 1T Not applicable

If there are multiple occurrences of any control in the invocation line, the rightmost
occurrence governs.

At the end of this document you will find operating system-specific examples of the
CREF86 controls. Fold out the pages containing the examples relevant to your
operating environment and use them in conjunction with the syntax conventions
provided in this chapter.

iAPX 86,88 Family Utilities P A G E L E N G T H

Syntax
PAGELENGTH (number)

Abbreviation

PL

Default
PAGELENGTH(60)

Definition

PAGELENGTH specifies the number of lines to be printed on each page. The
number must be a decimal value between 10 and 255, inclusive.

Notes .

None

3-3

PAG EWI DT H iAPX 86,88 Family Utilities

Syntax
PAGEWIDTH Chumber)

Abbreviation

PW

Default
PAGEWIDTH(120)

Definition

PAGEWIDTH specifies the maximum number of characters to be printed on a
single line. The number must be a decimal value from 80 to 132, inclusive.

Notes

e PAGEWIDTH truncates the TITLE if TITLE is greater than the number of
unused character locations on the title line.

e If the specified PAGEWIDTH does not allow enough space to print the
referring module name(s) on the same line as the defining module name, the
referring module names(s) will be printed on separate lines.

iAPX 86,88 Family Utilities

Syntax
PRINT[(pathname)]

Abbreviation

PR

Default

PRINT (firstinputfile . CRF)

Definition

PRINT provides the ability to specify a pathname for the cross-reference listing.
The pathname identifies the destination of the listing. If the PRINT control is not
specified or if the control is given without an argument, the print file will have the
same pathname as the first file in the input list, except the extension will be .CRF.

Notes

e If no PRINT control is specified, output goes to a default file. The name of the
default file is the name of the first file in the invocation command with the
extension .CRF.

e If PRINT is specified with no pathname, output goes to the default file.

PRINT

3-5

T IT L E iAPX 86,88 Family Utilities

Syntax

TITLE (character string)

Abbreviation

TT

Default
Not applicable

Definition

TITLE may be used to specify a heading having a character string of null to 80
characters, inclusive. This heading appears on the first line of every page of the
cross-reference listing.

Notes

* The TITLE string is truncated if the PAGEWIDTH control is not large enough
to accommodate the entire string.

e If the character string contains any characters defined by the operating system
as special, the string must be delimited in accord with operating system conven-
tions for special characters and string delimiters.

3-6

iAPX 86,88 Family Utilities CREF86

CREF86’s Print File

The print file is a cross-reference listing of external and public symbols in the input
modules. This listing consists of the following parts:

* A header

e Warnings (if any)

® Module list

e Cross-reference information

Header

Figure 3-2 illustrates the components printed in this part of the cross-reference

listing:

e A title line output by CREF86, usually consisting of a program identifier
(CREF86), any user-defined TITLE, date of listing, and the page number

e A line identifying the CREF86 environment (operating system and version
number)

® One or more lines summarizing the pathnames of input files
e A line for identifying the print file pathname

e One or more lines giving the controls specified at invocation, present only if
controls were specified

Warnings

Figure 3-3 illustrates how warning messages appear on the cross-reference listing
when CREF86 detects such conditions as mismatched types, modules not found, etc.
Refer to Appendix E for information on CREF86 error and warning messages.

CREF86 EXAMPLE OF CROSS REFERENCE USING CREFb6 MM/DD/YY PAGE 1

system-id CKEFBo vx.y

INPUT FILES: pathname? pathname2 pathname3 pathnamed pathname5 pathnamet
pathname? pathname8 pathname9 pathname10 pathnamet! pathnamei2
pathname13 pathname1s pathnamel?

OUTPUT FILE: pathname18

CONTROLS SPECIFIED: PR(OUT) TT(EXAMPLE OF CROSS REFERENCE USING CREF86) PW(120) PL(60)

V——""i e ———— -

Figure 3-2. Header of Cross-Reference Listing

WARNING 19: TYPE MISMATCH

FILE: pathname15
MODULE: MISMATCH

SYMBOL: ENAMEID
WARNING 19: TYPE MISMATCh
FILE: pathname15
MODULE: MISMATCH
SYMBOL: FOUR
WARNING 20: SPECIFIED MODULE NOT FOUND
FILE: pathnamel6
MODULE: UNKNOWN_MODULE

| ———— ‘___/

Figure 3-3. Warning Messages on CREF86 Listing

CREF86

Module List

iAPX 86,88 Family Utilities

The module list, shown in figure 3-4, is a tabulated summary of all input files and
corresponding modules included from these files.

After the module list is printed, the rest of the page is skipped, so that the symbol
cross-references begin on the next new page.

MODULES INCLUDED:

FILE NAME

pathname?
pathname2
pathname3
pathnamed
pathname5
pathname6
pathname?
pathname8
pathname9
pathname10
pathname11
pathname12
pathnamel3
pathname14
pathname15
pathname16
pathnamel7

MODULE NAME(S)

CREF86

PARSE

SIGNON
NEXTSTATE
ERROR
UTILITIES
MEMORYMANAGEMENT
SCANMODULES
PROCESSRECORDS
SCANUTILITIES
LISTOUTPUT
LISTUTILITIES
SYMBOLSORT

OBJMAN
MISMATCH

DQALLOCATE
DQDETACH
DQGETTIME
SYSTEMSTACK

—_— _/

DQATTACH DQCHANGEEXTENSION DQCREATE DQDECODEEXCEPTION
DQEXIT DQFREE DQGETARGUMENT DQGETSYSTEMID
DQOPEN DQREAD DQSEEK DQWRITE

Figure 3-4. Module List on CREF86 Listing

Symbol Cross-Reference Information

Figure 3-5 illustrates the format for listing data for all external and public symbols
referenced in the Module List.

The first column contains the names of the external and public symbols, in
alphabetical order.

The second column identifies the type of each symbol, as declared in the external or
public reference. The following tabulation identifies the entries which may occur in
this column:

CREF86 Entry Symbol Type
BYTE 8-bit unsigned
WORD 16-bit unsigned
DWORD 32-bit unsigned
LWORD 64-bit unsigned
INTEGER(n) n=1,2,4,or8bytes
REAL(n) n=1,2, 4, or8 bytes
POINTER
STRUCTURE
ARRAY OF
UNKNOWN null
FILE
LABEL
PROCEDURE

(NEAR, FAR)

CONSTANT
SELECTOR

The symbol type that appears in the second column is that associated with the first
occurrence of that symbol in the input list.

3-8

iAPX 86,88 Family Utilities CREF86

CREF86 EXAMPLE OF CROSS REFERENCE USING CREF86 MM/DD/YY PAGE 3

SYMBOL NAME SYMBOL TYPE DEFINING MODULE; REFERRING MODULE(S)

ACCESS_PAGE « . UNKNOWN OBJMAN

ALLOCATE. UNKNOWN OBJMAN

APPENDNODE. PROCEDURE NEAR UTILITIES

APPENDUDSMNODE. PROCEDURE NEAR UTILITIES; PARSE SCANMODULES PROCESSRECORDS

ARRAYBASE ., POINTER SYMBOLSORT; LISTOUTEUT

ATOI. & & o« o o o o o o & PROCEDURE WORD NEAR UTILITIES; PARSE

BTOX. « o ¢« o « o o o & o PROCEDURE WORD NEAR UTILITIES; LISTUTILITIES

BUBBLESORTVARNAMES. . . . PROCEDURE NEAR SYMBOLSORT; LISTOUTPUT

BUMPLINECOUNT PROCEDURE NEAR LISTUTILITIES; LISTOUTPUT

CHECKHEADER PROCEDURE NEAR SCANUTILITIES; SCANMODULES

CHECKOVERLAY. PROCEDURE NEAR SCANUTILITIES; SCANMODULES

CHECKVARTYPE. PROCEDURE BYTE NEAR SCANUTILITIES; PROCESSRECORDS

CMPNAMES. . . . « . + . . PROCEDURE BYTE NEAR LISTUTILITIES; SYMBOLSORT

CMPSTRNGS . . « « + « + » PROCEDURE BYTE NEAR UTILITIES; NEXTSTATE SCANMODULES SCANUTILITIES

CNCTI ¢ o & v o o o o o o WORD UTILITIES; MISMATCH

CHNCTO . « « ¢ « « o« & « « WORD UTILITIES; SIGNON ERROR MISMATCH

CONTROLIDCOORDINATE . . . WORD PARSE; UTILITIES

CONTROLOFFSETCOORDINATE . BYTE PARSE; UTILITIES

CONTROLSARESPECIFIED. . . BYTE PARSE; UTILITIES

CREATEOBJECT. PROCEDURE WORD NEAR OBJMAN; PARSE SCANMODULES PROCESSRECORDS
SCANUTILITIES SYMBOLSORT

CURRENTOVLNUM BYTE PROCESSRECORDS; SCANUTILITIES

CURRENT_PAGE. UNKNOWN OBJMAN

DEBUGTOGGLE . . +. . + o+ « BYTE PARSE; ERROR

DEBUGTOGGLE « . . BYTE ##8%DUPLICATE DECLARATION®%2%: MISMATCH

DQALLOCATE. PROCEDURE WORD NEAR DQALLOCATE; MEMORYMANAGEMENT SYMBOLSORT OBJMAN

DQATTACH. & &« o o o o o« &« PROCEDURE WORD NEAR DQATTACH; UTILITIES SCANUTILITIES

DQCHANGEEXTENSION PROCEDURE NEAR DQCHANGEEXTENSION; PARSE

DQCREATE. PROCEDURE WORD NEAR DQCREATE; UTILITIES

DQDECODEEXCEPTION PROCEDURE NEAR DQDECODEEXCEPTION; ERROR

DQDETACH. . « + ¢ & & o« o PROCEDURE NEAR DQDETACH; SCANMODULES

DQEXIT. + 4 o « ¢ o o o« » PROCEDURE NEAR DQEXIT; CREF86 ERROR

DQFREE. . . « ¢« ¢ & & o &« PROCEDURE NEAR DQFREE; LISTOUTPUT

DQGETARGUMENT PROCEDURE BYTE NEAR DQGETARGUMENT; PARSE

DQGETSYSTEMID « PROCEDURE NEAR DQGETSYSTEMID; SIGNON

DQGETTIME « « + & PROCEDURE NEAR DQGETTIME; LISTOUTPUT

| — _— I

Figure 3-5. Symbol Cross-Reference Information

The third column contains the following for each symbols listed:

¢ The name of the module in which the symbol is defined public (defining
module)

¢ A semicolon (;), if there are external references to the symbol in any of the input
modules

¢ The name(s) of the modules(s) in which the symbol is declared external
(referring module(s))

The third column is also used to flag unresolved and duplicate references. In the case
of unresolved external references, the string ***UNRESOLVED*** appears before
the semicolon. In the case of duplicate references, i.e., when a symbol has two or
more public definitions, the first public declaration is considered legal, and the rest
are flagged as duplicates. The string ***DUPLICATE DECLARATION***
appears, followed by a colon (1) and the name of the module containing the
duplicate public declaration.

If the input files contain overlays, CREF86 produces a symbol cross-reference that
consolidates all the symbols from all overlay and root modules. The first file in the
input list is considered to be the root file. CREF86 distinguishes between public
symbols with the same name in different overlays and does not flag these symbols as
duplicates. However, CREF86 does flag duplicate public declarations within any
one root/overlay combination.

CHAPTER 4

LIB86

LIB86 allows you to create, modify, and examine library files. It is an interactive
program.

This chapter provides details concerning LIB86 invocation and commands. For
definition of file-naming and syntax notation conventions used in this chapter, refer
to Notational Conventions following the Preface. For a summary of the LIB86 com-
mands and information on error and warning messages that may be produced, refer

to Appendix F. For details concerning LIB86 symbol table space limitations, refer to
Appendix C.

LIB86 Invocation

The general syntax for the invocation line is:

[directory-name]L1B86[comment]

LIB86 Commands

Once LIB86 has begun execution, it displays an asterisk (*) and waits for a com-
mand. Table 4-1 lists all of LIB86’s commands.

Table 4-1. Summary of LIB86 Commands

Command Abbrev. Description

ADD {pathname((module name |,...])}} A Adds modules to a library

[,...] TO pathname
CREATE pathname C Creates library files
DELETE pathname(module name [,...]) D Deletes modules from a library file
EXIT E Terminates session with LIB86
LIST {pathname[(module name |,...])]} L Lists modules contained in a library

[,...] [TO pathname] [PUBLICS] P] file, and optionally lists all publics

At the end of this document you will find operating system-specific examples of the
LIB86 commands. Fold out the pages containing the examples relevant to your
operating environment and use them in conjunction with the syntax conventions
provided in this chapter.

4-1

A D D iAPX 86,88 Family Utilities

Syntax

ADD {pathnamel[{module name[, ...]}]1}[,...]T0 pathname2

Abbreviation

A

Definition
ADD adds modules to a library file.

The pathname1 can be an object file or a library file.

The pathname? is the destination library file. The library must exist before the ADD
command is given; it may contain other modules.

If pathname1 is an object file produced by a translator, LINK86, or LOCS86, then all
modules contained within the object file will be added to the designated library.

If pathname?2 is a library file, it may be specified with or without the module name
list. If no module name list is specified, all modules contained in the source library
will be added to the destination library. If the module name list is specified, then
only the modules specified within the parentheses are added to the destination
library.

iAPX 86,88 Family Utilities C R E AT E

Syntax

CREATE pathname

Abbreviation

c

Definition
CREATE creates a library file with the specified pathname.

Notes

e If a file with the specified pathname already exists, the library will not be
created and an error message will be provided.

43

D E L ET E iAPX 86,88 Family Utilities

Syntax

DELETE pathname (module name [, ...])

Abbreviation

D
Definition
DELETE removes modules from a library file. Modules can be deleted from only

one library at a time.

Notes

None

4-4

iAPX 86,88 Family Utilities E X lT

Syntax
EXIT

Abbreviation

E

Definition

EXIT terminates a session with LIB86 and returns control to the operating system.

Notes

e LIB86 disassembles libraries into an internal form. The library is not
reconstituted until the EXIT command is processed. Therefore significant 1/0
will take place following an EXIT command.

4-5

LIST

iAPX 86,88 Family Utilities

Syntax

LIST {pathnamet|(module name]|,...])]1} [,...][TO pathname2]
[PUBLICS]

Abbreviation

L [P]

Definition

LIST prints the names of modules, and optionally the public symbols contained in
those modules, to the specified output pathname.

The pathnamet is the library whose modules are to be listed.
The module name, if specified, identifies the modules to be listed.

TO pathname?2 identifies the device or file to receive the listing. If it is not specified,
the listing is directed to the console output device.

PUBLICS indicates that, in addition to the module names, all public symbols con-
tained within the module will also be listed. PUBLICS may be abbreviated as ‘P’.

Notes

None

CHAPTER 5
LOC86

LOCB86 changes a relocatable 8086 object module into an absolute object module.
As figure 5-1 illustrates, LOCS86 takes a single 8086 object module as input and out-
puts a located object file and, optionally, a print file. The print file output contains
diagnostic information. The object file contains absolute object code.

This chapter provides details concerning the LOC86 invocation, controls, and print
file. For definition of file-naming and syntax notation conventions used in this
chapter, refer to Notational Conventions following the Preface. For a summary of
the LOCS86 controls and information on error and warning messages that may be
produced, refer to Appendix G. For details concerning LOC86 segment support
capabilities, refer to Appendix C.

INVOCATION
LINE CONTROLS

[

ABSOLUTE
ot b———= toces F———] “oBicCT
| MODULE

e

PRINT
FILE
.mp2T

CONSOLE
MESSAGES

Figure 5-1. LOC86 Input and Output Files 1216166

LOCS86 Invocation Line

The general syntax for the invocation line is:

[directory-name]LOC86 input file [TO object file][controls]

The input file is a file containing an object module to be located. It is usually, but
not necessarily, the output from LINK86.

TO object file specifies the file to receive the located object module. In most cases
this is an executable file. If object file is not specified, then output will be directed to
a file that has the same pathname as the input file, except it will have no extension.

The controls may be any subset of the controls described in the next section.

LOC86 Controls

The controls are described in table 5-1.

If you specify the same control more than once in the same invocation line, only the
last version entered counts. For example, if you enter NOMAP, and then later
decide you want a locate map, you can enter the MAP control without error. The
second version of the control is recognized and the first is ignored.

At the end of this document you will find operating system-specific examples of the
LOCS86 controls. Fold out the pages containing the examples relevant to your
operating environment and use them in conjunction with the syntax conventions
provided in this chapter.

5-1

LOCB86

5-2

iAPX 86,88 Family Utilities

Table 5-1. Summary of LOC86 Controls

Control Abbrev. Default
ADDRESSES(AD Not applicable
{SEGMENTS({segment[\class[\overlay]] (SM|
) (addr)},.. | CS|GR)
CLASSES({class(addr)}|,...]) |
GROUPS({group(addr)}|,...]) >
-
BOOTSTRAP BS Not applicable
COMMENTS CM COMMENTS
NOCOMMENTS NOCM
INITCODE((address)) IC INITCODE(200H)
NOINITCODE NOIC
LINES L LINES
NOLINES NOLI
MAP MA MAP
NOMAP NOMA
NAME(module) NA Not applicable
OBJECTCONTROLS(oC Not applicable
{LINES | NOLINES |
COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS | NOPUBLICS |
PURGE | NOPURGEZ1}{,...])
ORDER(oD Not applicable
{SEGMENTS({segment[\class|\ overlay])} (SM|CS)
[--DI
CLASSES({class|(segment [,...)]} [,...D} [,-..]) CS
PRINT[(pathname)) PR PRINT(object file.MP2)
NOPRINT NOPR
PRINTCONTROLS({LINES | NOLINES } PC Not applicable
COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS | NOPUBLICS |
PURGE | NOPURGE}[,...])
PUBLICS PL PUBLICS
NOPUBLICS NOPL
PURGE PU NOPURGE
NOPURGE NOPU
RESERVE({addrTOaddr} |,...}) RS Not applicable
SEGSIZE({segment[\class[\overlay]] SS Not applicable
(size)} [,-..])
START({symbol | paragraph offset}) ST Not applicable
SYMBOLS SB SYMBOLS
NOSYMBOLS NOSB
SYMBOLCOLUMNS({1121314}) SC SYMBOLCOLUMNS(2)

iAPX 86,88 Family Utilities ADDRESSES

Syntax

ADDRESSES ({SEGMENTS ({segment name[\class name
[\overlay name]} (address) }
b
CLASSES ({class name (address) }|,...]) |
GROUPS ({group name (address) }{,...]) }

(-]
)

Abbreviation

AD(SM|CS|GR)

Default
Not applicable

Definition

ADDRESSES allows you to override LOC86’s default address assignment
algorithm. You may assign a beginning address to segments, classes, or groups. All
addresses must follow Intel rules for integer representation. (These rules are the
same as those used by ASM86 and PL/M-86.) The subcontrols, SEGMENTS,
CLASSES, and GROUPS, identify exactly what elements of the input module are
being assigned addresses. When assigning an address with the SEGMENTS sub-
control, you may also specify the class name and overlay name of the particular
segment.

LOC86 attempts to detect and avoid conflicts whenever possible. If the specified
address does not agree with the alignment attribute of the specified segment or the
first segment in the specified class, then the address is ignored. If an absolute seg-
ment is located at the address assigned to a class, then the class begins at the first free
address after the absolute segment. If you assign a non-paragraph address to a
group, LOCS86 will assign the first paragraph address below the specified address.

Notes

e The subcontrols SEGMENTS, CLASSES, and GROUPS can be specified
multiple times in a single ADDRESSES control.

e If an address assignment causes a conflict with an ORDER control, a
RESERVE control or an absolute segment, LOCS86 generates an error message.

* When locating bound object modiles, you may not assign an address to a
segment in a group.

5-3

BOOTSTRAP iAPX 86,88 Family Utilities

Syntax
BOOTSTRAP

Abbreviation

BS

Default
Not applicable

Definition

BOOTSTRAP indicates that the code for a long jump to the module’s start address
should be placed at location OFFFFOH, when the module is loaded. This is the first
instruction executed by the 8086 after reset. If the input module has no start address
and none is specified in the START control, LOCS86 will generate an error message.

Notes
e Seealso the START and INITCODE controls.

IAFX 36,88 Family Dtiltes COMMENTS/NOCOMMENTS

Syntax

COMMENTS
NOCOMMENTS

Abbreviation

CM
NOCM

Default
COMMENTS

Definition

COMMENTS allows object file comment records to remain in the output module.
The NOCOMMENTS control removes all comment records except those designated
as non-purgable.

Comment records are added to the object module for various reasons. All
translators add a comment record to the object files they produce. The record iden-
tifies the compiler or assembler that produced the object file.

Comment records are superfluous to the production of executable code and may be
removed at any time during the development process, or left in the file.

Notes

* See PRINTCONTROLS, OBJECTCONTROLS, and PURGE.

e Comment records should not be removed when you submit an object file in a
Software Problem Report.

e NOCOMMENTS will decrease the size of the output object module.
e COMMENTS has no effect on the print file.

INITCODE/NOINITCODE iAPX 86,88 Family Utilities

5-6

Syntax

INITCODE[(address)]

NOINITCODE
Abbreviation
IC

NOIC

Default
INITCODE(200H)

Definition

INITCODE causes LOCS86 to create a new segment that contains code to initialize
the segment registers. The optional address argument specifies the physical address
of the code that performs this initialization. If no address is specified, the initializa-
tion code will be placed at 200H. The equivalent assembly language code is shown

below:

STACKFRAME DM

DATAFRAME DW

EXTRAFRAME DW
CLI
MoV
MOV
Mov
MOV
JMP

Notes

stack frame
data frame
extra frame

SS, CS:STACKFRAME
SP, stackoffset

DS, CS:DATAFRAME
ES, CS:EXTRAFRAME
program start

¢ The initialization code segment is created only if a register initialization record
for 8086 segment registers exists in the input. These register initialization
records are automatically produced by 8086-based translators for main

modules.

e If the area of memory used by the INITCODE default is reserved, LOCS86
places the initialization code above the reserved space.

* If created, the new segment is called 7?7LOC86__INITCODE.

iAPX 86,88 Family Utilities LINES/NOLINES

Syntax

LINES
NOLINES

Abbreviation

LI
NOLI

Default

LINES

Definition

LINES allows line number information to remain in the object file. In-circuit
emulators and other debuggers use this information; it is not needed to produce
executable code. The NOLINES control removes this information from the output
file.

Notes

® The scope of the LINES control can be modified with PRINTCONTROLS and
OBJECTCONTROLS.

e See the PURGE control.
e NOLINES will decrease the size of the output object file.

5-7

M A P / N 0 M A p iAPX 86,88 Family Utilities

Syntax

MAP
NOMAP

Abbreviation
MA
NOMA

Default

MAP

Definition

MAP causes LOC86 to produce a locate map for the output module and add it to the
print file. For all segments in the module the map shows the complete name (seg-
ment name, class name, and overlay name), size, alignment, start address, and stop
address. A more complete description of the locate map and the rest of the print file
is at the end of this chapter.

Notes
e MAP can be overridden by the NOPRINT control.

5-8

iAPX 86,88 Family Utilities

Syntax

NAME (module name)

Abbreviation

NA

Default

Module retains its current name.

Definition

NAME assigns the specified module name to the output module. If NAME is not
specified, then the output module retains its current name.

The module name may be up to 40 characters long. It may be composed of any of
the following characters in any order:

? (question mark)
@ (commercial at)
: (colon)

. (period)

__ (underscore)
A,B,C,...,Z
0,1,2,...,9.

Lower case letters may be used, but they are automatically converted to upper case.

Notes

¢ NAME does not affect the output file’s name, only the module name in the
output module’s header record.

NAME

OBJECTCONTROLS iAPX 86,88 Family Utilities

5-10

Syntax

OBJECTCONTROLS({LINES | NOLINES |
COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS | NOPUBLICS |
PURGE | NOPURGE}

[...]
)

Abbreviation

ocC

Default
Controls apply to both the print file and the object file.

Definition

OBJECTCONTROLS causes the controls specified in its arguments to be applied to
the object file only. Comment records, line number records, local and public symbol
records, and symbol type records are selectively included or excluded from the
object file. This will not affect the print file and the information contained in it.

Notes

¢ If you specify an invalid control in the arguments to OBJECTCONTROLS,
LOCS86 generates an error message.

* You may specify a control or control pair more than once within
OBJECTCONTROLS, but only the last version specified counts.

* You may abbreviate the controls used within OBJECTCONTROLS.

* When you specify a control in both OBJECTCONTROLS and
PRINTCONTROLS, it will have the same effect as specifying it once outside of
these controls.

iAPX 86,88 Family Utilities ORDER

Syntax

ORDER({SEGMENTS ({segment name[\class name[\overlay name]]}
Lo |
CLASSES (\{class name[(segmentname [,...D]} [,...])}
.-

i

Abbreviation

0D(SM|CS|)

Default
Not applicable

Definition

ORDER specifies a partial or complete order for segments, classes, and the segments
within a class. Segments and classes listed in ORDER are located before any other
relocatable segment.

The subcontrol SEGMENTS indicates that the list of segment names shall be
ordered.

The segment name identifies the specific segments to be ordered. The \class name
and \overlay name may be used to resolve conflicts with duplicate segment names.
If \overiay name is specified, the \class name is required.

If one of the segments specified is not contained in the designated group, an error

message is generated.

Notes
e See ““LOCS86’s Algorithm for Locating Segments’’ at the end of this chapter.

P R I N T / N 0 P R ' N T iAPX 86,88 Family Utilities

Syntax

PRINT[(pathname)]
NOPRINT

Abbreviation

PR
NOPR

Default

PRINT (object file . MP2)

Definition

PRINT allows you to direct the locate map symbol table and other diagnostic
information to a particular file. If the PRINT control is not specified or if the con-
trol is given without an argument, the print file will have the same pathname as the
output file except the extension will be .MP2. NOPRINT prevents the creation of
this file.

Notes

* Thediscussion at the end of this chapter describes the contents of the print file.

e See also MAP, SYMBOLCOLUMNS, LINES, SYMBOLS, PUBLICS, and
PRINTCONTROLS.

iAPX 86,88 Family Utilities PRINTCONTROLS

Syntax

PRINTCONTROLSC({LINES | NOLINES |
COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS | NOPUBLICS |
PURGE | NOPURGE}

(o]
)

Abbreviation

PC

Default
Controls apply to both the print file and the object file.

Definition

PRINTCONTROLS causes the controls specified in its arguments to be applied to
the print file only. Line number information, and local and public symbol informa-
tion are selectively included or excluded from the print file. This will not affect the
object file or the information contained in it.

Notes

¢ If you specify an invalid control in the arguments to PRINTCONTROLS,
LOCS86 generates an error message.

* You may specify a control in OBJECTCONTROLS more than once, but only
the last version specified counts.

* You may abbreviate the controls used within PRINTCONTROLS.

¢ When you specify a control in both PRINTCONTROLS and
OBJECTCONTROLS, it will have the same effect as specifying it once outside
of these controls.

5-13

PUBL'CS/NOPUBLICS iAPX 86,88 Family Utilities

Syntax
PUBLICS
NOPUBLICS
Abbreviation
PL

NOPL

Default
PUBLICS

Definition

PUBLICS causes the public symbol records to be kept in the object file and the
corresponding information to be placed in the print file.

Notes
e The scope of PUBLICS can be modified by PRINTCONTROLS and
OBJECTCONTROLS.

e NOPUBLICS will reduce the size of the output object file; however, public
symbol records are used by debuggers.

e See the PURGE control.

5-14

iAPX 86,88 Family Utilities PURGE/NOPURGE

Syntax

PURGE
NOPURGE

Abbreviation

PU
NOPU

Default
NOPURGE

Definition

PURGE is exactly the same as specifying NOLINES, NOSYMBOLS,
NOCOMMENTS, and NOPUBLICS. NOPURGE in the control list is the same as
specifying LINES, SYMBOLS, COMMENTS, and PUBLICS.

PURGE removes all of the public and debug information from the object file and
the print file. It will produce the most compact object file possible. The records that
would be included by NOPURGE are useful to debuggers and in-circuit emulators,
but otherwise they are unnecessary for producing executable code.

Notes
e PRINTCONTROLS and OBJECTCONTROLS can be used to modify the
scope of PURGE.

5-15

RESERVE iAPX 86,88 Family Utilities

Syntax

RESERVE ({address? 10 address2} [,...])

Abbreviation

RS

Default

All of memory is assumed available.

Definition

RESERVE prevents LOC86 from locating segments in certain areas of memory.
LOC86 will not use all memory addresses from address? to address2 inclusive;
address1 must be less than or equal to address2.

Notes
e If an absolute segment uses a reserved memory area, a warning message is
generated.

* Reserved areas may overlap.

5-16

iAPX 86,88 Family Utilities SEGSIZE

Syntax

SEGS IZE ({segment name|\class name[\overiay name]] (size)}

L..D

Abbreviation

SS

Default
Not applicable

Definition
SEGSIZE allows you to specify the memory space used by a segment.

The segment name may be any segment contained in the input module.

The size is a 16-bit number that LOC86 uses to change the size of the specified seg-
ment. There are three ways of specifying this value:

¢ +indicates that the number should be added to the current segment length.

* — indicates that the number should be subtracted from the current segment
length.

® No sign indicates that the number should become the new segment length.

Notes
e LOCS86 issues a warning message when SEGSIZE decreases the size of a
segment.

5-17

START iAPX 86,88 Family Utilities

Syntax

START ({public symbol | paragraph , offset})

Abbreviation

ST

Default

The start address designated in the input module

Definition

START allows you to specify the start address of your program.

If you specify public symbol, that symbol must be defined within the input module.
The paragraph value initializes the CS register and the offset value initializes the IP

in an 8086 long jump when your program is started.

Notes
¢ See the BOOTSTRAP and INITCODE controls.

5-18

iAPX 86,88 Family Utilities SYMBOLS/NOSYMBOLS

Syntax

SYMBOLS
NOSYMBOLS

Abbreviation

SB
NOSB

Default
SYMBOLS

Definition

SYMBOLS specifies that all local symbol records shall be included in the object file,
and information concerning local symbols will also appear in the symbol table con-
tained in the print file. Local symbol records are used by debuggers and in-circuit
emulators.

Notes

¢ The scope can be modified by OBJECTCONTROLS and PRINTCONTROLS.
e NOSYMBOLS will decrease the size of the output object file.
¢ See the PURGE control.

SYMBO |_C OLUMNS iAPX 86,88 Family Utilities

Syntax
SYMBOLCOLUMNS({1]2]3]|4])

Abbreviation

SC

Default

SYMBOLCOLUMNS (2)

Definition

SYMBOLCOLUMNS indicates the number of columns to be used when producing
the symbol table for the object module. Two columns fit on a 78-character line; four
columns fit on a single 128-character line printer line.

Notes

None

5-20

iAPX 86,88 Family Utilities LOC86

LOC86’s Print File

The print file is always created unless you specify NOPRINT. The optional argu-
ment to PRINT designates the name of the print file. The default print file is the
object file with the extension .MP2.

The print file may contain as many as three parts:
e Asymbol table

* A memory map

¢ An error message list

The symbol table is included in the print file when a PUBLICS, LINES, or
SYMBOLS control is in effect. The memory map is controlled by the
MAP/NOMAP control. Error and warning messages, if any, are always added to
the print file.

The Symbol Table

LOCS86 produces a symbol table when any or all of the symbol controls (LINES,
SYMBOLS, and PUBLICS) are in effect. No symbol table will be produced when
PURGE is in effect for the print file.

Figure 5-2 shows LOC86’s symbol table with the SYMBOLCOLUMNS set at 2 (the
default).

BASE is usually a 4-digit hexadecimal number that is the base address of the group
that contains the symbol. If the base is the stack, then STACK is used instead of a
number. If the symbol is based on another symbol’s value, then the BASE and
OFFSET values for that symbol are given.

OFFSET is a 4-digit hexadecimal number that is the offset of the symbol or line
from BASE, or from the current BP for stack symbols.

To compute the physical address of the specified symbol you would use the follow-
ing equation:

(BASE * 10H) + OFFSET = Physical Address

Of course, the physical address of the symbols whose base is the STACK, or symbols
that are based on another symbol’s value, cannot be computed until run-time.

TYPE describes the kind of symbol it is. There are four possible entries in the TYPE
column:

BAS based on another symbol’s value
LIN line (not a symbol)

PUB public symbol

SYM local symbol

SYMBOL field contains the name of the symbol or number of the line. If the
SYMBOLCOLUMNS value is 1, this field is 40 characters wide. If the
SYMBOLCOLUMNS value is 2 or more, then this field is 16 characters wide. If the
symbol name is longer than the width of the entry, then the name is hyphenated and
continued in the SYMBOL field on the next line.

5-21

LOC86 iAPX 86,88 Family Utilities

system-id 8Q86 LOCATER, Vx.y

INPUT FILE: pathnamel

OUTPUT FILE: pathname2

CONTROLS SPECIFIED IN INVOCATION COMMAND:

DATE: MM/DD/YY TIME: HH:MM:SS

SYMBOL TABLE OF MODULE ROOT

BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL

00BLH 016CH PUB BINDCONTROL 00BBH 0052H PUB BNODEBASE

00BBh 001Eh PUB BUFBASE 00EBH 001CH PUB BUFLEN

00BBH 0054H PUB CLASHNODEBASE 00BBh 0066H PUB COCONN

00BEH 0160E PUb COMMENTSCONTROL 00BBH 01778 PUb CURRENTOVERLAYNU
-M

00EBH 0179H PUB DEBUGTOGGLE OO0BBH 00ADH PUB DEFAULTPRTFILENA
-ME

00BBH 0068H PUB EXCEPTION 0GBBH OO4EE PUB FANODEBASE

00BBH 0074H rUB FBLOCKBASE 00BBH 0070H PUB FBLOCKLISTHEAD

00BBH 0072H PUB FBLOCKLISTTAIL 00BBH 0143H PUB FBLOCKSEQUENCENU
-MBER

00BBH 0050H PUB FBNODEBASE 00BBH OO04CH PUB FDNODEBASE

00BBH OO4AE PUB FENODEBASE 00BBH 0046H PUB FFNODEBASE

00BBH 003AH PUB FIRSTBNODEP 00BBH 002EH PUB FIRSTEXNODEP

00BBH 0032H PUB FIRSTGRNODEP 00BBH 0022H PUB FIRSTNMNODEP

00BBH 0036H PUB FIRSTOVNODEP 00BBH 0056H PUB FIRSTRENAMEBLOCK
-P

00BBH 0026H PUB FIRSTSGNODEP 00BBH 0024AH PUB FIRSTTDNODEP

00BBH O03EH PUB GRNODEBASE 00BBH 0B52H PUB HIGHESTDATALOCAT
~ION

— o
— -

MODULE = ROOT

BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
00BBH OFAOH SYM MEMORY COBBH 0006H SYM COPYRIGHT
00BBH 001CH SYM BUFLEN 00BBH O01EH SYM BUFBASE
0020H O0F7H SYM ERROR 0020H OOFEHR SYM WARNING
00BBH 0020H SYM LASTNMNODEP 00BBH 0022H SYM FIRSTNMNODEP
00BBH 0024H SYM LASTSGNODEP 00BBH 0026H SYM FIRSTSGNODEP
00BBH 0028H SYM LASTTDNODEP 00BBH 002AH SYM FIRSTTDNODEP
00BBH 002CH SYM LASTEXNODEP 00BBH 002EH SYM FIRSTEXNODEP
00BBH 0030H SYM LASTGRNODEP 0OBBH 0032H SYM FIRSTGRNODEP
00BBH 0034H SYM LASTOVNODEP 00BBH 0036H SYM FIRSTOVNODEP
00BBH 0038H SYM LASTENODEP 00BBH 003AH SYM FIRSTBNODEP
COBBH 003CH SYM SGNODEBASE 00BBH O03EH SYM GRNODEBASE
00BBH OO40H SYM SYNODEBASE 00BBH 0042H SYM NMNODEBASE
OO0BBH 0044H SYM TDNODEBASE O00BEH 0O46H SYM FFNODEBASE
QOBBH 0048H SYM OVNODEBASE OOBEH 0Q4AH SYM FENODEBASE
Q0BBH Q04CH SIM FDNODEBASE 00BBH OO4EH SYM FANODEBASE
OOBBH 0050H SYM FBNODEBASE 00BBH 0052H SYM BNODEBASE
00BEhR Q0544 SIM CLASHNODEBASE O0OBER 0056H SYM FIRSTRENAMEBLOCK
-P

—_—
—_—

00BBH 01AAH SYM SIGNONMSG 0020H 0174H SYM PRINTNAME
0020H 01A3H SYM INITIALIZEINPUT 0020H 01A8H SYM OPENFBLOCKFILE
0020H 01F6H SYM CLOSEFBLOCKFILE 0020H 00F7H LIN 7
0020H OOFAH LIN 10 0020H OOFEH LIN 1
0020H 01014 LIN 14 0020H 0105H LIN 73
0020H 0108H LIN 75 0020H 010FH LIN 76
0020H 0116H LIN 77 0020H 011DH LIN 78
0020H 0126H LIN 79 0020H 01zAH LIN 80
0020H 012DH LIN 84 0020k 0136H LIN 85
0020h 013Dk LIN 1 00204 0144H LIN 57
0020H 01514 LIN 5o 0020h 015AH LIN 89
0020H Olooh LIN 90 0020H 0170H LIN 91
0020k 0174H LIN 9k 0020H 0177H LIN 56
0020H 018ER LIN 97 00204 019s6H LIN g8
0020h O19FE LIN 9y 0620H 01A3H LIN 100
0020H 0146k LIN 103 0020H 01AdH LIN 105

- s

Figure 5-2. LOC86 Symbol Table

5-22

iAPX 86,88 Family Utilities LOCS86

The Memory Map

The memory map supplies useful information about segment placement and address
assignment. Figure 5-3 shows LOC86’s memory map.

The map consists of three parts:
* Header

¢ Segment map

¢ Group map

The header includes the input module name and the start address.

The segment map is a table with six columns. From left to right the columns show:
e the START address of the segment

* the STOP address of the segment

¢ the LENGTH of the segment

¢ the ALIGNMENT attribute of the segment

* the NAME of the segment

¢ the CLASS of the segment

¢ the OVERLAY of the segment

A ““C” printed between the STOP and LENGTH columns indicates that two
segments have overlapping memory locations; a warning message is also issued.

A segment may have any one of the following alignment attributes:

absolute

byte

paragraph

member of an LTL group
page

word

in-page

DVDE DX >

—_— -

MEMORY MAP OF MODULE ROOT

MODULE START ADDRESS PARAGRAPH = 0020H OFFSET = 0002H
SEGMENT MAP

START STOP LENGTH ALIGN NAME CLASS OVERLAY
00200H 00BB5H 09Bb6H W CODE CODE

O0BB6H O00BCBH 0016RH w CONST CONST

Q0BCCH 01703H 0B38H w DATA DATA

017044 o 1B45H 04421 w STACK STACK

01B50h 01B50H 0000H G ?2?SEG

01B50H 01850k 0000H w MEMORY MEMORY

GROUP MAP

ADDRESS GROUP OR SEGMENT NAME
00200H CGROUP

CODE
O0BBOH DGROUP

CONST

DATA

STACK

MEMORY

Figure 5-3. LOC86 Memory Map

5-23

LOC86 iAPX 86,88 Family Utilities

In-page alignment means that the entire segment must be resident within a single
256-byte page. The address of the first byte in any page has zeros in the first two
hexadecimal digits (00H, 100H, 200H, ... OFFFOOH).

The group map has two columns: the first is the physical address (five-digit hexa-
decimal number) of the beginning of the group; the second column is the group
name, followed by the segments contained in that group. The segment names con-
tained within a given group are listed in the same column but indented slightly.

Error and Warning Messages

The error and warning messages are listed consecutively as the error situations are
encountered.

See the discussion of the interpretation of individual messages in Appendix F.

LOCB86’s Algorithm for Locating Segments

Assuming that there are no errors in the invocation line or input module, LOC86
locates an input module in three stages.

1. All absolute segments are removed from the list of segments contained in the
module.

The remaining relocatable segments are ordered into a sequential list.

3. The relocatable segments are then given absolute addresses according to each
segment’s alignment, size, and memory attribute.

Absolute Segments

When LOC86 encounters an absolute segment, LOC86 removes the segment from a
list of input segments and reserves the memory area used by that segment. LOC86
maintains a map of free memory. Each time an absolute segment is encountered, the
memory space used by that segment is removed from the memory map. A segment
can become absolute in one of three ways:

1. It may be assigned an absolute address by the translator.
2. It may be explicitly specified in an ADDRESSES control.

3. It may become absolute implicitly. If an absolute segment is specified in an
ORDER control, then all other segments referred to in that control, either by
segment name or by class name, are treated as absolute.

Segment Ordering

After all memory used by absolute segments has been removed from LOC86’s free
memory map and before LOC86 begins assigning addresses to the remaining
relocatable segments, LOC86 prepares an ordered list of all relocatable segments.

All relocatable segments specified in an ORDER control are placed at the head of
the list.

5-24

iAPX 86,88 Family Utilities LOCS86

After all ORDER controls, if any, have been processed, LOC86 adds the relocatable
segments that remain to the end of the list. If the first segment not previously used
has a class name, then all other segments with the same class name are added to the
list. After all segments of the class have been added to the list, then the next segment
is added to the list.

This process continues until all segments have been added to the ordered list.

NOTE

Memory segments do not adhere to this process — a memory segment is
always located at the top of memory, if possible. If an input module con-
tains more than one memory segment, only the first is placed at the top of
memory; the other segments are treated as any other relocatable segment.

Assigning Addresses to Relocatable Segments

Once LOC86 completes the ordered list of relocatable segments, it begins assigning
addresses. LOC86 will never assign addresses that conflict with the location of
absolute segments or the RESERVE control or between 00H and 200H, since that
area is reserved for interrupt routines.

Starting at location 200H, LOCS86 scans free memory to find an area in which the
first segment will fit. When LOCS6 finds a suitable address, it assigns it to the seg-
ment and removes that area from free memory. LOC86 then scans free memory for
an area that will fit the next segment in the ordered list. LOC86 begins scanning at
the end of the previous segment.

IF LOCB86 reaches the end of memory and all of the relocatable modules have not
been located, it makes an additional scan through free memory. The scanning pro-
cess continues until all modules have been located.

LOC86’s Algorithm for Locating Modules
Containing Overlays

LOCS86 locates programs with overlays in much the same way as it handles programs
that do not contain overlays. However, there are some differences.

1. Segments contained in the root and each overlay are ordered separately.

2. Segments that are common to both the root and overlays (e.g.,STACK and
MEMORY) are put at the end of the list of relocatable segments.

3. Segments in the root are located at the lowest available addresses in memory.

Segments contained in the overlays are located at the first available address
above the root.

5. Segments common to the root and overlays are located immediately above the
largest overlay in the file.

Figure 5-4 illustrates how LOC86 treats two PL./M-86 programs that use overlays.
Figure 5-4a shows how segments are located when the modules are compiled with the
LARGE model. Figure 5-4b shows how segments are located when the modules are
compiled with the SMALL model of segmentation.

5-25

LOC86 iAPX 86,88 Family Utilities

ROOT OVERLAY 1 OVERLAY 2

A.CODE A.CODE

A.CODE
B. CODE B. CODE
C. DATA

C.DATA B.CODE

C.DATA

cs > A

A. CODE/ROOT

B. CODE/ROOT

A. CODE/OVL1

A. CODE/OVL2 } CLASS CODE
8. CODE/OVL1

/ B. CODE/OVL2
DS — Z /
C.DATA/ROOT I

C. DATA/OVL2 ‘ CLASS DATA

722227 |

C.DATA/OVL1

a. LARGE Model

Figure 5-4. LOC86’s Address Assignments for Overlays 121616-7

5-26

iAPX 86,88 Family Utilities LOCS86

ROOT OVERLAY 1 OVERLAY 2
[cooe J
CODE
CODE C GROUP
CONST CONST CONST A
DATA DATA
DATA
STACK STACK } D GROUP
MEMORY STACK
MEMORY
J
MEMORY
|
cs . v R
L CODE FOR ROOT l
CODEFOR
CODE FOR OVERLAY 2 > C GROuP
OVERLAY 1
DS,SS — <
CONST FOR ROOT
DATAFOR ROOT
CONST FOR OVERLAY 1 CONST FOR OVERLAY 2
DATA FOR OVERLAY 2
DATAFOR
OVERLAY 1
» D GROUP
SIZE OF ROOT STACK
STACK
MAXIMUM SIZE
OVERLAY STACK
SP -
MAXIMUM SIZE
MEMORY OF MEMORY (OVERLAY 1)
S
b. SMALL Model
Figure 5-4. LOCB86’s Assignments for Overlays (Cont’d.) 1216168

5-27

CHAPTER 6

OH86

OHB86 converts 8086 absolute object modules to 8086 hexadecimal format. The
‘input module must be in absolute format, and it may not contain overlays or register
initialization records.

Figure 6-1 illustrates the object-to-hexadecimal conversion process. Any errors
encountered during execution are displayed at the console output device.

For definition of file-naming conventions and syntax notation, refer to Notational
Conventions following the Preface. For information on error and warning messages
which may be produced, refer to Appendix H.

The general syntax for the invocation line is:

[directory-namel0H86 input file[TO output file]

The input file contains an 8086 absolute object module.

TO output file designates the file to receive the 8086 hexadecimal format. If output
file is not specified, then output is directed to a file that has the same pathname as

the input list, but its extension is HEX.

At the end of this document you will find operating system-specific examples of the
OHS86 invocation.

|" |
ABSOLUTE | I ABSOLUTE
OBJECT |—————| OHs6 B P&
MODULE | HEx
[
CONSOLE
MESSAGES
Figure 6-1. OH86 Input and Output Files 121616-9

6-1

APPENDIX A

IAPX 86.88 ABSOLUTE OBJECT
FILE FORMATS

Introduction

The 8086 Absolute Object File Format herein described is a proper subset of the full
8086 Object File Formats. An absolute object file consists of a sequence of records
defining a single absolute module. An absolute module is defined as a collection of
absolute object information that is specified by a sequence of object records.

Definitions

This section defines certain terms fundamental to 8086 Relocation and Linkage
(R&L). The terms are ordered not alphabetically, but so you can read forward
without forward references.

Definition of Terms
OMF—acronym for Object Module Formats
R&L—acronym for Relocation and Linkage

MAS—acronym for Memory Address Space. The 8086 MAS is one megabyte
(1,048,576 bytes). Note that the MAS should be distinguished from actual memory,
which may occupy only a portion of the MAS.

MODULE—an ‘““inseparable’’ collection of object code and other information pro-
duced by a translator or by the LINK86 program. When a distinction must be made:

T-MODULE—denotes a module created by a translator, such as PL/M-86 or
ASMS86, and

L-MODULE—denotes a module created by LINK86 from one or more constituent
modules. (Note that modules are not ‘‘created”’’ in this sense by the iAPX86,88
Locater, LOC86; the output module from LOC86 is merely a transformation of the
input module).

Two observations about modules must be made:

1. Every module must have a name, so that the iAPX86,88 Librarian, 1.I1B86, has a
handle for the module for display to the user. (If there is no need to provide a
handle for LIB86, the name may be null.) Translators provide names for T-
modules, providing a default name (possibly the file name or a null name) if
neither source code nor user specifies otherwise.

2. Every T-module in a collection of modules linked together may have a different
name, so that symbolic debugging systems can distinguish the various symbols.
This restriction is not required by R&L and is not enforced by it.

FRAME—a contiguous region of 64K of MAS, beginning on a paragraph boundary
(i.e., on a multiple of 16 bytes). This concept is useful because the content of the
four 8086 segment registers define four (possibly overlapping) FRAME’s; no 16-bit
address in the 8086 code can access a memory location outside of the current four
FRAME’s. The FRAME starting at address 0000H is FRAME 0.

iAPX 86,88 Absolute Object File Formats iAPX 86,88 Family Utilities

Module Identification

In order to determine that a file contains an object program, a module header record
will always be the first record in a module. There are two kinds of header records
and each provides a module name. The additional functions of the header records
are explained below.

A module name may be generated during one of two processes: translation or link-
ing. A module that results from translation is called a T-MODULE. A T-MODULE
will have a T-MODULE HEADER RECORD (THEADR). A name may be
provided in the THEADR record by a translator. This name is then used to identify
the progenitor of all debug information found in the T-MODULE. The name may
be null, i.e., of length zero.

A module that results from linking and locating is called an L-MODULE. An
L-MODULE will always have an L-MODULE HEADER RECORD (LHEADR) or
an R-MODULE HEADER RECORD (RHEADR). In the LHEADR or RHEADER
record a name is also provided. This name is available for use to refer to the module
without using any of its constituent T-MODULE names. An example would be two
T-MODULES, A and B, linked together to form L-MODULE C. L- MODULE C
will contain two THEADR records and will begin with an LHEADR record with the
name C provided by the linker as a directive from the user. The L- MODULE C can
be referred to by other tools such as the library manager without having to know
about the originating module’s names, yet the originating module’s names are
preserved for debugging purposes.

Module Attributes

In addition to a name, a module may have the attribute of being a main program as
well as having a specified starting address.

If a module is not a main module yet has a starting address, then this value has been
provided by a translator, possibly for debugging purposes. A starting address
specified for a non-main module could be the entry point of a procedure, which may
be loaded and initiated independent of a main program.

Physical Segment Definition

A module is defined as a collection of data bytes defined by a sequence of records
produced by a translator. The data bytes represent contiguous regions of memory
whose contents are determined at translation time.

Physical Segment Addressability

The 8086 addressing mechanism provides segment base registers from which a 64K
byte region of memory, called a Frame, may be addressed. There is one code seg-
ment base register (CS), two data segment base registers (DS, ES), and one stack seg-
ment base register (SS).

iAPX 86,88 Family Utilities

Data

The data that defines the memory image represented by a module is maintained in
two varieties of DATA records: PHYSICAL ENUMERATED DATA RECORD
(PEDATA) and PHYSICAL ITERATED DATA RECORD (PIDATA). Both
records specify the data to be loaded into a contiguous section of memory. The start
address of this contiguous section is given in the record. PEDATA records contain
an exact byte-by-byte copy of the desired memory image. The PIDATA record dif-
fers in that the data bytes are represented within a structure that must be expanded
by the loader. The purpose of the PIDATA record is to reduce module size by
encoding repeated data rather than explicitly enumerating each byte, as the
PEDATA record does.

Record Syntax

The following syntax shows the valid orderings of records to form an absolute
module. In addition, the given semantic rules provide information about how to
interpret the record sequence. The syntactic description language used herein is
defined in Wirth: CACM, November 1977, V20, N 11, pg. 822-823.

absolute__object__file =module.
module =tmod | Imod | omod.
tmod =THEADR [REGINT]content__def mod__tail.
imod =LHEADR [REGINT]t__component mod__tail.
omod =RHEADR {OVLDEF2}[REGINT] o__component
{OVLDEF?} mod__tail.
o__component =t__component ENDREC.
t_component =[THEADR] content__def
content__def =PEDATA | PIDATA.
mod__tail =[REGINT] MODEND.
NOTE

The character strings represented by capital letters above are not literals but
are identifiers that are further defined in the section defining the Record
Formats.

One module may not contain more than one REGINT record and more than one
OVLDEF sequence. If a REGINT record and an OVLDEF sequence exist, the
REGINT record must immediately follow the OVLDEF sequence.

A proper Absolute Object File produced by Intel products will contain at least the
above record types. It may also contain other record types which, if present, will
follow the Module Header record and precede the Module End record. These other
record types fall into two categories:

1. Extraneous, containing information not pertinent to an absolute loader. The
record numbers in this category are:

12H, 74H, 7AH, 7CH, 7EH, 88H, 8CH, 8EH, 90H, 92H, 94H, 96H, 98H, 9AH, 9CH

2. Erroneous, containing information about relocation, indicating that the object
module is not yet in absolute form or that erroneous record types exist. The
record numbers in this category are all other record type numbers.

iAPX 86,88 Absolute Object File Formats

A-3

iAPX 86,88 Absolute Object File Formats

A-4

Record Formats

The following pages present diagrams of Record Formats in schematic form. Here is
a sample, to illustrate the various conventions: |

/

Sample Record Format (SAMREC)

REC RECORD NAME CHK
TYP LENGTH SUM
xxH

-~

Title and Official Abbreviation

At the top is the name of the Record Format described, together with an official
abbreviation. To promote uniformity among various programs, the abbreviation
should be used in both code and documentation. The abbreviation is always six
letters.

The Boxes

Each format is drawn with boxes of two sizes. The narrow boxes represent single
bytes. The wide boxes represent two bytes (or one word) each. In the object file, the
low order byte of a word value comes first. The wide boxes with four vertical bars in
the top and bottom represent 4-byte fields. The wide boxes with three dots in the top
and bottom represent a variable number of bytes, one or more, depending upon
content.

Rec Typ

The first byte in each record contains a value between 0 and 255, indicating the type
of record.

Record Length

The second field in each record contains the number of bytes in the record, exclusive
of the first two fields.

Name

Any field that indicates a ‘““NAME”’ has the following internal structure: the first
byte contains a number between 0 and 40, inclusive, that indicates the number of
remaining bytes in the field. The remaining bytes are interpreted as a byte string;
each byte must represent the ASCII code of a character drawn from this set:

[?7@ :.__0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ |

Most translators will choose to constrain the character set more strictly; the above
set has been chosen to ‘‘cover’’ that required by all current processors.

iAPX 86,88 Family Utilities

iAPX 86,88 Family Utilities iAPX 86,88 Absolute Object File Formats

Repeated Fields

Some portions of a Record Format contain a field or series of fields that may occur
an indefinite number of times (zero or more). Such fields are indicated by the
“repeated’’ or ‘‘rpt”’ brackets below the boxes.

Similarly, some portions of the Record Format are present only if some given condi-
tion obtains; these fields are indicated by similar ‘‘conditional’’ brackets below the
boxes.

Chk Sum

The last field in each record is a check sum, which contains the two’s complement of
the sum (modulo 256) of all other bytes in the record. Therefore, the sum (modulo
256) of all bytes in the record equals 0.

Bit Fields

Descriptions of contents of fields will sometimes get down to the bit level. Boxes
with vertical lines drawn through them represent bytes or words; the vertical lines in-
dicate bit boundaries; thus this byte has three bit-fields of three, one, and
four bits:

. 1 1

Ignored Records

REC RECORD IGNORE CHK
TYP LENGTH THIS SuMm
PART

All record types that may be in an object module that provide information not perti-
nent to an absolute loader must be ignored. They may all be treated as if they have
the above format. Records in this category have REC TYP in the set 72H, 74H,
7AH, 7CH, 7EH, 88H, 8CH, 8EH, 90H, 92H, 94H, 96H, 98H, 9AH, 9CH.

T-Module Header Record (THEADR)

REC RECORD T CHK
TYP LENGTH MODULE SUM
80H NAME

Every module output from a translator must have a T-MODULE HEADER
RECORD. Its purpose is to provide the identity of the original defining module for
all debug information encountered in the module up to the following T-MODULE
HEADER RECORD or MODULE END RECORD.

This record can also serve as the header for a module; i.e., it can be the first record
and will be for modules that are output from translators.

A-5

iAPX 86,88 Absolute Object File Formats

T-Module Name
The T-MODULE NAME provides a name for the T-MODULE.

L-Module Header Record (LHEADR)

REC RECORD L CHK
TYP LENGTH MODULE SUM
82H NAME

A module created by LINK86 and LOC86 may have an L-MODULE HEADER
RECORD. This record serves only to identify a module that has been processed
(output) by LINK86 and/or LOC86. When several modules are linked to form
another module, the new module requires a name, perhaps unique from those of the
linked modules, by which it can be referred to (by the LIB86 program, for example).

L-Module Name
The L-MODULE NAME provides a name for the L-Module.

R-MODULE HEADER RECORD (RHEADR)

L X X J LEX X]
REC RECORD R-MODULE OVERLAY CHK
TYP LENGTH NAME INFO SUM
6EH

XX] LR 4

Every module with overlays created by LINK86/LOC86 will have an R-MODULE
HEADER RECORD. This record serves to identify a module that has been pro-
cessed (output) by LINK86/LOCS6. It also specifies the overlay count and the loca-
tion of the Overlay Definition records. When several modules are linked to form
another module, the new module requires a name, perhaps unique from those of the
linked modules, by which it can be referred to.

R-MODULE NAME

The R-MODULE NAME provides a name for the R-Module.

OVERLAY INFO

The OVERLAY INFO field provides information on overlays in the module and has
the following format:

iAPX 86,88 Family Utilities

| l
LR J I I I l LEL J
IGNORE OVERLAY OVERLAY IGNORE
THIS RECORD RECORD THIS
PART COUNT OFFSET PART
o0e { I I F LA L]

The first subfield is a 5-byte field that should be ignored.

iAPX 86,88 Family Utilities iAPX 86,88 Absolute Object File Formats

The OVERLAY RECORD COUNT subfield indicates the number of Overlay
Definition Records in the module.

The OVERLAY RECORD OFFSET subfield is a 4-byte field. It contains a 32-byte
unsigned number indicating the location in bytes, relative to the start of the object
file, of the first Overlay Definition Record in the Module.

The last subfield is a 16-byte field that should be ignored.

OVERLAY DEFINITION RECORD (OVLDEF)

{11

REC RECORD OVERLAY OVERLAY z CHK
TYP LENGTH NAME LOCATION SUM
76H

This Record provides the overlay name, the location of the overlay in the object file.

A loader may use this record to locate the data records of the overlay in the object
file.

OVERLAY NAME

The OVERLAY NAME field provides a name by which a collection of data records
may be referenced for loading.

OVERLAY LOCATION

The OVERLAY LOCATION is a 4-byte field which gives the location in bytes
relative to the start of the file of the first byte of the records in the overlay.

Z

The Z field is a reserved field. This field is required to be zero.

END RECORD (ENDREC)

REC RECORD END CHK
TYP LENGTH TYP SUM
78H

This record is used to denote the end of a set of records such as records in an
overlay.

A-7

iAPX 86,88 Absolute Object File Formats

A-8

ENDTYP

This field specifies the type of the set. It has the following format:

iAPX 86,88 Family Utilities

TYP

TYP is a two bit subfield that specifies the following types of ends:

REGISTER INITIALIZATION RECORD (REGINT)

TYP

W N = o

TYPE OF END

End of overtay
(Reserved)
(litegal)
(lllegal)

REC
TYP
70H

RECORD
LENGTH

eoee

REG REGISTER
TYP CONTENTS

CHK
SUM

l—— repeated ——-l

This record provides information about the 8086 registers/register-pairs: CS and
IP, SS and SP, DS and ES. The purpose of this information is for a loader to set the
necessary registers for initiation of execution.

REG TYP

The REG TYP field provides the register/register-pair name. It has the following

format:

REGID

REGID is a two bit subfield that specifies the name of the registers/register-pairs as

follows:

REGID

w NN = o

REGISTER/REGISTERPAIR

CSandIP
SSand SP
DS
ES

iAPX 86,88 Family Utilities iAPX 86,88 Absolute Object File Formats

REGISTER CONTENTS

The REGISTER CONTENTS field has the following format:

V4 4 FRAME REGISTER
NUMBER OFFSET

|— c<>nditiona|——-|

The Z fields are reserved fields. They are required to be zero.

The FRAME NUMBER field specifies a frame number that must be used to
initialize the base register indicated by the REGID value.

The REGISTER OFFSET field, present only if REGID <= 1, specifies an offset

relative to the FRAME. This value is appropriate for the initialization of either the
IP register (REGID = 0) or the SP register (REGID = 1).

Module End Record (MODEND)

REC RECORD MOD START CHK
TYP LENGTH TYP ADDRS SUM
8AH

|— conditional —,

This record serves two purposes. It denotes the end of a module and indicates
whether the module just terminated has a specified entry point for initiation of
execution. If the latter is true, then the execution address is specified.

Mod Typ

This field specifies the attributes of the module. The bit allocation and their
associated meanings are as follows:

MATTR|O0fO]JO}JO}JO}O

MATTR is a two-bit subfield that specifies the following module attributes:

MATTR MODULE ATTRIBUTE
0 Non-main module with no starting address
1 Non-main module with starting address
2 (invalid value for MATTR)
3 Main module with starting address

A-9

iAPX 86,88 Absolute Object File Formats iAPX 86,88 Family Utilities

Start Addrs
The START ADRS field has the following format:

FRAME OFFSET
NUMBER

FRAME NUMBER. This field specifies a frame number relative to which the
module will begin execution. This value is appropriate for insertion into the CS
register for program initiation.

OFFSET. This field specifies an offset relative to the FRAME NUMBER that
defines the exact location of the first byte at which to begin execution. This value is
appropriate for insertion into the IP register for program initiation.

Physical Enumerated Data Record (PEDATA)

REC RECORD FRAME OFF CHK
TYP LENGTH NUMBER SET DAT SUM
84H

L]

This record provides contiguous data, from which a portion of an 8086 memory
image may be constructed.

Frame Number

This field specifies a Frame Number relative to which the data bytes will be loaded.

Offset

This field specifies an offset relative to the FRAME NUMBER which defines the
location of the first data byte of the DAT field. Successive data bytes in the DAT
field occupy successively higher locations of memory. The value of OFFSET is con-
strained to be in the range 0 to 15 inclusive. If an OFFSET value greater than 15 is
desired, then an adjustment of the FRAME NUMBER should be done.

Dat

This field provides consecutive bytes of an 8086 memory image. The number of
DAT bytes is constrained only by the RECORD LENGTH field. The address of
each byte must be within the frame specified by FRAME NUMBER.

Physical lterated Data Record (PIDATA)

REC RECORD FRAME OFF ITERATED CHK
TYP LENGTH NUMBER SET DATA SuM
86H BLOCK

oee
I—- repeated——-l
This record provides contiguous data, from which a portion of an 8086 memory
image may be constructed. It allows initialization of data segments and provides a

mechanism to reduce the size of object modules when there are repeated data to be
used to initialize a memory image.

A-10

iAPX 86,88 Family Utilities iAPX 86,88 Absolute Object File Formats

Frame Number

This field specifies a frame number relative to which the data bytes will be loaded.

Offset

This field specifies an offset relative to the FRAME NUMBER which defines the
location of the first data byte in the ITERATED DATA BLOCK. Successive data
bytes in the ITERATED DATA BLOCK occupy successively higher locations of
memory. The range of OFFSET is constrained to be between 0 and 15 inclusive. If a
value larger than 15 is desired for OFFSET, then an adjustment of FRAME
NUMBER should be done.

Iterated Data Block

This repeated field is a structure specifying the repeated data bytes. It is a structure
that has the following format:

REPEAT BLOCK
COUNT COUNT CONTENT

Repeat Count. This field specifies the number of times that the CONTENT portion
of this ITERATED DATA BLOCK is to be repeated, and must be greater than zero.

Block Count. This field specifies the number of ITERATED DATA BLOCKS that
are to be found in the CONTENT portion of this ITERATED DATA BLOCK. If
this field has value zero then the CONTENT portion of this ITERATED DATA
BLOCK is interpreted as data bytes.

If BLOCK COUNT is non-zero then the CONTENT portion of this ITERATED
DATA BLOCK is interpreted as that number of ITERATED DATA BLOCKS.

Content. This field may be interpreted in one of two ways, depending on the value
of the previous BLOCK COUNT field.

If BLOCK COUNT is zero, then this field is a one-byte count followed by the
indicated number of data bytes.

If BLOCK COUNT is non-zero, then this field is interpreted as the first byte of
another ITERATED DATA BLOCK.

NOTE

From the outermost level, the number of nested ITERATED DATA
BLOCKS is limited to 17; i.e., the number of levels of recursion is limited
to17.

The address of each data byte must be within the frame specified by
FRAME NUMBER.

Hexadecimal Object File Format
Hexadecimal object file format is a way of representing an object file in ASCII.

The function of the utility program, OH86, is tp convert 8086 absolute object
modules to 8086 hexadecimal object modules.

iAPX 86,88 Absolute Object File Formats iAPX 86,88 Family Utilities

The hexadecimal representation of binary is coded in ASCII. For example, the eight-
bit binary value 0011 1111 is 3F in hexadecimal. To code this ASCII, one eight-bit
byte containing the ASCII code for 3(00110011 or 33H) and one eight-bit byte con-
taining the ASCII code for F(0100 0110 or 46H) are required. This representation
(ASCII hexadecimal) requires twice as many bytes as the binary.

There are four different types of records that may make up an 8086 hexadecimal
object file. They are:

e Extended Address Record
e Start Address Record

* Data Record

e End of File Record

Each record begins with a RECORD MARK field containing 3AH, the ASCII code
for colon (2).

Each record has a REC LEN field which specifies the number of bytes of informa-
tion or data which follows the RECTYP field of each record. Note that one byte is
represented by two ASCII characters.

Each record ends with a CHECKSUM field that contains the ASCII hexadecimal
representation of the two’s complement of the eight-bit sum of the eight-bit bytes
that result from converting each pair of ASCII hexadecimal digits to one byte of
binary, from and including the RECORD LENGTH field to and including the last
byte of the DATA field. Therefore, the sum of all the ASCII pairs in a record after
converting to binary, from the RECORD LENGTH field to and including the
CHECKSUM field, is zero.

Extended Address Record

RECD REC REC CHK
MARK LEN ZEROES TYP USBA SUM
o ‘02 ‘0000’ ‘02’

The 8086 EXTENDED ADDRESS RECORD is used to specify bits 4-19 of the Seg-
ment Base Address (SBA) where bits 0-3 of the SBA are zero. Bits 4-19 of the SBA
are referred to as the Upper Segment Base Address (USBA). The absolute memory
address of a content byte in a subsequent DATA RECORD is obtained by adding
the SBA to an offset calculated by adding the Load Address Field of the containing
DATA RECORD to the index of the byte in the DATA RECORD (0, 1, 2, ... n).
The offset addition is done modulo 64K, ignoring a carry, so that offset wrap-
around loading (from OFFFFH to 00000H) results in wrapping around from the end
to the beginning of the 64K segment defined by the SBA. The address at which a par-
ticular data byte is loaded is calculated as:

SBA + ([DRLA + DRI] MOD 64K)
where
DRLA is the DATA RECORD LOAD ADDRESS.

DRI is the data byte index within a DATA RECORD.

A-12

iAPX 86,88 Family Utilities iAPX 86,88 Absolute Object File Formats

When an EXTENDED ADDRESS RECORD defines the value of SBA, the
EXTENDED ADDRESS RECORD may appear anywhere within an 8086 hexa-
decimal object file. This value remains in effect until another EXTENDED
ADDRESS RECORD is encountered. The SBA defaults to zero until an
EXTENDED ADDRESS RECORD is encountered.

Recd Mark
The RECD MARK field contains 03AH, the hex encoding of ASCII *:’.

Rec Len
The Record Length field contains 3032H, the hex encoding of ASCII ‘02°.

Zeroes
The Load Address field contains 30303030H, the hex encoding of ASCII ‘0000°.

Rec Typ
The Record Type field contains 3032H, the hex encoding of ASCII ‘02’.

USBA

The USBA field contains four ASCII hexadecimal digits that specify the 8086 USBA
value. The high-order digit is the 10th character of the record. The low order digit is
the 13th character of the record.

Chk Sum
This is the check sum on the REC LEN, ZEROES, REC TYP, and USBA fields.

Data Record

RECD REC LOAD REC CHK
MARK LEN ADDRESS TYP DATA SUM
oo 00’

The DATA RECORD provides a set of hexadecimal digits that represent the ASCII
code for data bytes that make up a portion of an 8086 memory image. The method
for calculating the absolute address for each byte of DATA is described in the
discussion of the Extended Address Record.

Recd Mark
The RECD MARK field contains 03AH, the hex encoding of ASCII ¢:’.

Rec Len

The REC LEN field contains two ASCII hexadecimal digits representing the number
of data bytes in the record. The high-order digit comes first. The maximum value is
‘FF’ or 4646H (255 decimal).

iAPX 86,88 Absolute Object File Formats iAPX 86,88 Family Utilities

Load Address

The LOAD ADDRESS field contains four ASCII hexadecimal digits representing
the offset from the SBA (see EXTENDED ADDRESS RECORD) defining the
address at which byte 0 of the DATA is to be placed. The LOAD ADDRESS value is
used in calculation of the address of all DATA bytes.

Rec Typ

The REC TYP field in a DATA record contains 3030H, the hex encoding of
ASCII ¢00’.

Data

The DATA field contains a pair of hexadecimal digits that represent the ASCII code
for each data byte. The high order digit is the first digit of each pair.

Chk Sum

This is the check sum on the REC LEN, LOAD ADDRESS, REC TYPE, and
DATA fields.

Start Address Record

RECD REC REC CHK
MARK LEN ZEROES TYP Cs P SUM
o ‘04’ ‘0000 ‘03’

The START ADDRESS RECORD is used to specify the execution start address for
the object file. Values are given for both the Instruction Pointer (IP) and Code Seg-
ment (CS) registers. This record can appear anywhere in a hexadecimal object file.

If a START ADDRESS RECORD is not present in an 8086 hexadecimal file, a
loader is free to assign a default start address.

Recd Mark
The RECD MARK field contains 03AH, the hex encoding for ASCII “:’.

Rec Len
The REC LEN field contains 3034H, the hex encoding for ASCII ‘04’.

Zeroes
The ZEROES field contains 30303030H, the hex encoding for ASCII ‘0000°.

Rec Typ
The REC TYP field contains 3033H, the hex encoding for ASCII ‘03’.

iAPX 86,88 Family Utilities iAPX 86,88 Absolute Object File Formats

CS

The CS field contains four ASCII hexadecimal digits that specify the 8086 CS value.
The high-order digit is the 10th character of the record; the low-order digit is the
13th character of the record.

IP

The IP field contains the four ASCII hexadecimal digits that specify the 8086 IP
value. The high-order digit is the 14th character of the record, the low order digit is
the 17th character of the record.

Chk Sum
This is the check sum on the REC LEN, ZEROES, RECTYP, CS, and IP fields.

End of File Record
RECD REC REC CHK
MARK LEN ZEROES TYP SUM

o’ ‘00 ‘0000’ ‘01’ ‘FF’

The END OF FILE RECORD specifies the end of the hexadecimal object file.

Recd Mark
The RECD MARK field contains 03AH, the ASCII code for colon (:).

Rec Len
The REC LEN field contains two ASCII zeroes (3030H).

Zeroes
The ZEROES field contains four ASCII zeroes (30303030H).

Rec Typ
The REC TYP field contains 3031H, the ASCII code for 01H.

Chk Sum

The CHK SUM field contains 4646H, the ASCII code for FFH, which is the check
sum on the REC LEN, ZEROES and REC TYP fields.

A-15

iAPX 86,88 Absolute Object File Formats iAPX 86,88 Family Utilities

A-16

Examples

Sample Absolute Object File

The following is an example of an absolute object file. The file contains eight
records. The eight records perform the following functions:

(1)
)
A3)

@)

®)

©®

Q)]

®)

Record Function

1 LHEADR record begins the object module and defines the module
name.

2 THEADR record defines the translator-generated module name
which is the same as the name in the LHEADR record..

3 PEDATA record defines a contiguous memory image from 00200H
to 00215H.

4 PEDATA record defines a contiguous memory image from 00360H
to 00377H.

5 PEDATA record defines a contiguous memory image from 00415H
to 0042BH.

6 PEDATA record defines a contiguous memory image from
051620H to 051633H.

7 PIDATA record defines a contiguous memory image from

051BOOH to 051B1DH. The iterated data consists of three repeti-
tions of ‘““ABC’’ (414243H), followed by three repetitions of (four
repetitions of ‘‘D’’ (44H)), three repetitions of “E’’ (45H).

8 MODEND record specifies that the module should be started with
CS =5162H and IP = 0005H.

82 0008 0653414D504C45 AE

80 0008 0653414D504C45 BO

84 001A 0020 00
004992DB246DB6FF4891 DA236CB5FE47
90D9226BB4FD 63

84 001C 0036 00
0062C42688EA4CAE1072D43698FASCBE
2082E446A80A6CCE 82

84 001B 0041 05
001D3A577491AECBES805223F5C7996B3
DOEDOA2744617E 72

84 0018 5162 00
00850A8F14991EA328AD32B73CC146CB
50D5S5ADF FB

86 001C 51B0 00

0003 0000 03 414243

0003 0002

0004 0000 01 44

0003 0000 01 45 FA

8A 0006 C0O 5162 0005 F8

NOTE

The blank characters and carriage return and line feed characters are
inserted here to improve readability. They do not occur in an object
module. This file has been converted to ASCII hex so that it may be printed
here. All word values (RECORD LENGTH, REPEAT COUNT, etc.) have
been byte-reversed to improve readability.

iAPX 86,88 Family Utilities iAPX 86,88 Absolute Object File Formats

Sample Absolute Hexadecimal Object File

The following is the hexadecimal object file representation of the object file given in
the example above:

:020000020020DC

:10000000004992DB246DB6FF4891 DA236CBSFE47B8
:0600100090D9226BB4FD43

:020000020036C6
:100000000062C42688EA4CAE1072D43698F ASCBEOO
:080010002082E446A80A6CCE30

:020000020041 BB

:10000500001D3A577491 AECBE805223F5C7996B353
:07001500DOEDOA2744617ED3

:02000002516249

:1000000000850A8F14991EA328 AD32B73CC146CB98
:0400100050D5SADFSE

:0200000251BOFB
:1000000041424341424341424344444444454545BF
:0E001000444444444545454444444445454524
:040000035162000541

:00000001 FF

APPENDIX B
HEXADECIMAL-DECIMAL CONVERSION

The following table is for hexadecimal-to-decimal and decimal-to-hexadecimal con-
version. To find the decimal equivalent of a hexadecimal number, locate the hexa-
decimal number in the correct position and note the decimal equivalent. Add the
decimal numbers.

To find the hexadecimal equivalent of a decimal number, locate the next lower
decimal number in the table and note the hexadecimal number and its position. Sub-
tract the decimal number from the table from the starting number. Find the dif-
ference in the table. Continue this process until there is no difference.

BYTE BYTE BYTE
HEX DEC | HEX DEC | HEX DEC | HEX DEC | HEXDEC | HEXDEC
0 6jo 010 010 010 010 0
1 1,048,576 | 1 65,536 | 1 4,096 |1 256 |1 16 | 1 1
2 2,097,152 | 2 131,072 | 2 8,192 | 2 512 | 2 3212 2
3 3,145,728 | 3 196,608 | 3 12,288 | 3 768 | 3 48 | 3 3
4 4,194,304 | 4 262,144 | 4 16,384 | 4 1,024 | 4 64 | 4 4
5 5,242,880 | 5 327,680 | 5 20,480 | 5 1,280 | 5 80 | 5 5
6 6,291,456 | 6 393,216 | 6 24,576 | 6 1,536 | 6 9% | 6 6
7 7,340,032 | 7 458,752 | 7 28,672 |7 1,792 | 7 112 | 7 7
8 8,388,608 |8 524,288 | 8 32,768 [8 2,048 [8 128 | 8 8
9 9,437,184 | 9 589,824 | 9 36,864 | 9 2,304 |9 144 1 9 9
A 10,485,760 | A 655,360 | A 40,960 | A 2,560 | A 160 | A 10
B 11,534,336 | B 720,896 | B 45,056 | B 2,816 | B 176 | B 1
C 12,682,912 | C 786,432 | C 49,152 | C 3,072 | C 192 | C 12
D 13,631,488 | D 851,968 | D 53,248 |1 D 3,328 | D 208 | D 13
E 14,680,064 | E 917,504 | E 57,344 | E 3,584 | E 224 | E 14
F 15,728,640 | F 983,040 | F 61,440 | F 3,840 | F 240 | F 15

B-1

APPENDIX C
THE EFFECT OF AVAILABLE MEMORY
ON LINK86, CREF86, LIB86, AND LOC86

The system resources required by LINK86, CREF86, LIB86, or LOC86 depend on
the number of symbols, modules, or segments in the input file(s). The greater the
number of symbols in the input, the greater the memory requirements.

LINK86, CREF86, AND LIB86

These utilities can take advantage of up to 512K of available memory space. When
the number of symbols in the input list requires more memory than is available,
these utilities use disk resources to accommodate the remainder. Available memory
means RAM which the utilities have available to them exclusively. Once a utility has
run out of memory and has to use disk, performance will become impaired.

The following table defines the number of symbols or modules which these utilities
may process without performance degradation, given several levels of available
memory. The available memory depends on the hardware and software environment
under which the utilities are running on your system. Note that the relationship
between number of symbols or modules and the amount of available memory is
linear, up to a maximum. The following assumptions were used to calculate the
figures provided:

® Variable and module names average 10 characters.
e Each symbol has five references (CREF86).
e Each module has 1.4 public names (LIB86).

e A symbol as used here is an abstract representation of an 8086 object module
format record:

LINK86 CREF86 LIB86

Maximum number of symbols or

modules which can be processed

without performance penalty:

With 100K available memory 1,700 symbols 1,900 symbols 450 modules
With 164K available memory 2,900 symbols 3,300 symbols 1,000 modules
With 228K available memory 4,200 symbols 4,700 symbols 1,700 modules
With 484K available memory 10,000 symbols 11,000 symbols 4,000 modules
Theoretical maximum number of

symbols or modules, regardless of

available memory: 10,000 symbols 11,000 symbols 4,000 symbols

LOC86

With 96K of available memory, LOC86 will support up to 900 segments.

C-1

APPENDIX D
LINK86 CONTROLS
AND ERROR MESSAGES

Table D-1 lists all of LINK86’s control syntax, abbreviations, and default settings.

Table D-1. Summary of LINK86 Controls

Control Abbrev. Default
ASSIGN({variable(address)}|,...]) AS Not applicable
ASSUMEROOT(pathname) AR Not applicable
BIND Bl NOBIND
NOBIND NOBI
COMMENTS CM COMMENTS
NOCOMMENTS NOCM
FASTLOAD FL NOFASTLOAD
NOFASTLOAD NOFL
INITCODE IC Not applicable
LINES LI LINES
NOLINES NOL!

MAP . MA MAP
NOMAP NOMA
MEMPOOL(min-size(,maxsizel) MP Not applicable
NAME(module name) NA Not applicable
OBJECTCONTROLS(

{LINES | NOLINES | ocC Not applicable

COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS [EXCEPT(symbol [,...])] |
NOPUBLICS [EXCEPT(symbo! [,...))] |
TYPE | NOTYPE |

PURGE | NOPURGE? [,...])

ORDER((group((segmen}t[\class[\ overlay |} oD Not applicable
r)

OVERLAY/((overlay))] ov NOOVERLAY
NOOVERLAY NOOV
PRINT[(pathname)] PR PRINT(object file . MP1)
NOPRINT NOPR
PRINTCONTROLS(

{LINES | NOLINES | PC Not applicable

COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS [EXCEPT(symbol |,...})] |
NOPUBLICS [EXCEPT(symbo! [,...])] |
TYPE | NOTYPE |

PURGE | NOPURGE} [,...])

LINK86 Controls and Error Messages

D-2

iAPX 86,88 Family Utilities

Table D-1. Summary of LINK86 Controls (Cont’d.)

Control Abbrev. Default

PUBLICS [EXCEPT(symbol [,...])] PL [EC] PUBLICS
NOPUBLICS [EXCEPT(symbol |,...])] NOPL [EC]
PUBLICSONLY(pathnamef,...]) PO Not applicable
PURGE PU NOPURGE
NOPURGE NOPU NOPURGE
RENAMEGROUPS({group TOgroup} {,...]) RG Not applicable
SEGSIZE(SS Not applicable

{segment{\class|\overlay]]

(min-size[,[max- size]])}

)]
SYMBOLS SB SYMBOLS
NOSYMBOLS NOSB
SYMBOLCOLUMNS({1]|2]3]4}) SC SYMBOLCOLUMNS(2)
TYPE TY TYPE
NOTYPE NOTY

The following are descriptions of all LINK86 error and warning messages. The

description of each message has up to four parts:

® Meaning—how to interpret the message

® Cause—the usual reason for the error or warning condition

[

e Effect—the state of LINK86 and the object file(s) after the message is issued

e User Action—what you can do to correct the condition

Not all these parts are given for each message. However, parts excluded are self-

explanatory.

Error messages are always fatal, but warning messages are not. In the event of a
warning, read the EFFECT of the warning carefully to determine whether the

resulting code is valid.

Error and warning messages are displayed at the console device, but printed only if a

listing would otherwise be printed.

ERROR 1: I/0 ERROR
operating system error message
FILE: pathname

ERROR 2: 1/0 ERROR
operating system error message
FILE: pathname

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

ERROR 3: I/0 ERROR
operating system error message
FILE: pathname

ERROR 4: CONSOLE I/0 ERROR
operating system error message
FILE: pathname

Meaning

An I/0 error was detected by the operating system. The error number identifies the
file that caused the error:

1. Theinput file

2. The print file

3. The object file

4. The console file (usually the console)

Refer to the documentation for your operating system for a complete list of all
possible messages.

Effect

LINK 86 immediately terminates processing, all open files are closed. The contents
of the print and object files are undefined.

User Action
Correct the error and restart LINK86.

ERROR 5: INPUT PHASE ERROR
FILE: pathname
MODULE: module name

Meaning

LINK86 encountered a record during the second phase of linkage that does not agree
with information gathered during the first phase of linkage.

Cause

This error is caused by a data transmission error or a LINK86 error.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Contact Intel immediately. Forward a copy of the object file, the LINK86 invoca-
tion line, and your version of LINK86.

D-3

LINKS86 Controls and Error Messages iAPX 86,88 Family Utilities

ERROR 6: CHECK SUM ERROR
FILE: pathname
MODULE: module name

Meaning

The check sum field at the end of one of the object module records indicates a
transcription error.

Cause

Any one of many possible data encoding or communication errors could be at fault.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Retranslate the source that produced the specified module and relink.

ERROR 7: COMMAND INPUT ERROR

Meaning
LINK86 encountered an error while attempting to read the complete invocation line.

Cause

Possibly an end-of-file while reading from the console input device.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action
Examine the invocation line, and reinvoke LINK86 correctly.

iAPX 86,88 Family Utilities LINKS86 Controls and Error Messages

WARNING 8: SEGMENT COMBINATION ERROR
FILE: pathname
MODULE: module name
SEGMENT: segmentname
CLASS: class name

Meaning

Two segments with the same name have been found to be uncombinable.

Cause

The specified segments have different combination attributes or incompatible align-
ment attributes.

Effect

Although LINK86 will continue processing pass 1, pass 2 will not be started. The
object file will be useless and the print file will contain limited information.

User Action

Retranslate the source that produced the specified file and module.

WARNING 9: TYPE MISMATCH
FILE: pathname
MODULE: module name
SYMBOL: symbol name

Meaning

LINKS86 has found a public/external symbol pair for which the type definitions do
not agree.

Effect

LINKS86 continues processing using the first definition only. The object file and the
print file should be valid, except the second definition is ignored.

User Action

Modify the public or external declaration and recompile and relink the source file.

D-5

LINK86 Controls and Error Messages iAPX 86,88 Family Utilities

WARNING 10: DIFFERENT VALUES FOR
FILE: pathname
MODULE: module name
SYMBOL: symbolname
Meaning
LINKS86 encountered the same symbol declared public in two different modules. The
specified file and module contains the second definition encountered.
Cause

Two modules have used the same symbol name for different public definitions.

Effect

LINK86 continues processing using the value of the first public definition; the
second definition is ignored. Both the print file and the object file will be valid.

User Action

Change the name of the symbol in either the specified file or the file containing the
earlier definition.

ERROR 11: INSUFFICIENT MEMORY
FILE: pathname
MODULE: module name
Meaning
There is insufficient memory in your system for LINK86 to build its internal tables
and data structures.
Cause

You are using too many public symbols.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

If expanding system memory is not possible, try incremental linkage (i.e., link
smaller sets of files together using the NOPUBLICS control, then link the resulting
composite modules together).

D-6

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

WARNING 12: UNRESOLVED SYMBOLS
FILE: pathname
MODULE: module name

Meaning

There are declarations of external symbols that were not resolved during this
linkage.

Cause

This is very common when performing an incremental linkage.

Effect

The print file is valid. The object file must be linked to resolve the external
references.

User Action

Link object file to a file that will resolve the external references.

WARNING 13: IMPROPER FIXUP
FILE: pathname
MODULE: module name

Cause

The external reference makes assumptions about the segment register that do not
agree with the assumption made for the public definition.

Effect

LINKS86 continues processing. The object file will not be usable, but the print file
will be complete and accurate.

User Action

Depending on the cause of the error: change your ORDER control, recompile with a
different model of segmentation, or change the source and reassemble.

D-7

LINKS86 Controls and Error Messages iAPX 86,88 Family Utilities

WARNING 14: GROUP ENLARGED
FILE: pathname
GROUP: group name
MODULE: module name

Meaning

The specified group name has been defined twice in two different modules. The
segments contained in the two definitions are different.

Effect

The two groups are combined into one. All segments that were in either group are
included in the resulting group. Segments with the same segment name, class name,
and overlay name are combined. LINK86 continues processing. Both the print file
and object file are valid.

User Action

No user action should be necessary.

ERROR 15: LINK86 ERROR
FILE: pathname
MODULE: module name

User Action

Contact Intel immediately. Forward a copy of the object file, the LINK86 invoca-
tion line, and your version of LINK86.

ERROR 16: STACK OVERFLOW
FILE: pathname
MODULE: module name

Meaning

LINK86’s run time stack used for type matching has overflowed.

Cause

The type definition of one of your symbols is overly complex.

Effect

LINKS86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Try incremental linkage — if error persists, contact Intel.

D-8

iAPX 86,88 Family Utilities LINKS86 Controls and Error Messages

WARNING 17: SEGMENT OVERFLOW
SEGMENT: segment name
CLASS: class name

Meaning

The combination of two or more segments has resulted in a segment that exceeds
64K.

Effect

LINK86 continues processing during the current pass, but the print and object files
are not useable.

User Action

Reorganize your segments and reassemble.

WARNING 18: IMPROPER START ADDRESS
FILE: pathname
MODULE: module name

Meaning

A start address was found in one of the overlay modules, and none was found in the
root module.

Cause

This error is often caused by misordering the input modules in the input list.

Effect

LINKS86 ignores the start address in the specified overlay module and continues
processing.

User Action

If you want the module containing the start address to be the root, relink with that
module first in the input list.

ERROR 19: TYPE DESCRIPTION TOO LONG
FILE: pathname
MODULE: module name

Meaning
The type definition is too long to fit in LINK86’s symbol table.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Contact Intel immediately. Forward a copy of the object file, the LINK86 invoca-
tion line, and your version of LINK86.

LINK86 Controls and Error Messages iAPX 86,88 Family Utilities

WARNING 20: NO SUCH GROUP
NAME: group name

Cause

You have attempted to rename a nonexistent group.

Effect
LINKS86 ignores the RENAME control and continues processing.

User Action

Reinvoke LINK86 with the correct invocation line.

WARNING 21: RENAME ERROR
NAME: name

Meaning

The new group name specified is the same as an existing group.

Effect

The group is not renamed. LINKS86 continues as if the rename control was not given.

User Action

Reinvoke LINK86 with the correct invocation line.

ERROR 22: INVALID SYNTAX
ERROR IN COMMAND TAIL NEAR #
partial command tail

Cause

This is usually the result of a typo in the invocation line. The partial command tail
up to the point where the error was detected is printed.

Effect

LINKS6 terminates processing and closes all open files. The contents of the print file
and the object file are undefined.

User Action

Reinvoke LINK86 more carefully this time.

D-10

iAPX 86,88 Family Utilities LINKS86 Controls and Error Messages

ERROR 23: BAD OBJECT FILE
FILE: pathname
MODULE: module name

Meaning

LINK86 has discovered an inconsistency in the fields of a record in the specified
input file.

Cause

This could be an error by the translator or a data transmission error.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Retranslate the source file. If the problem persists contact Intel.

WARNING 24: CANNOT FIND MODULE
FILE: pathname
MODULE: module name

Meaning

The specified module cannot be found in the specified library file.

Effect

LINKS86 continues processing as if the specified module was not in the list.

User Action

If the module is important, you can link it into the output object file later.

WARNING 25: EXTRA START ADDRESS IGNORED
FILE: pathname
MODULE: module name

Meaning

LINKS86 has encountered a start address in more than one module.

Cause

This will occur any time you specify more than one main module in the input list.

Effect

LINKS86 uses the start address encountered earlier and ignores the start address in
the specified module. LINK86 continues processing with no other side effects.

User Action

None, if the start address in the specified module was intended to be ignored.

D-11

LINKS86 Controls and Error Messages iAPX 86,88 Family Utilities

ERROR 26: NOT AN OBJECT FILE
FILE: pathname
Meaning

The specified file is not an object file.

Cause

This is usually the result of a typo when entering. However, certain data trans-
mission errors can also cause this error.

Effect

LINKS86 terminates processing and closes all open files.

User Action

Reinvoke LINKS86 typing the line more carefully. If error resulted from a data
transmission error, retranslate and then relink.

ERROR 27: OPERATING SYSTEM INTERFACE ERROR
FILE: pathname
Effect
LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.
User Action

Refer to the documentation for your operating system. If you cannot correct the
error condition, contact Intel; forward a copy of the object file, the LINK86 invoca-
tion line, and your version of LINK86.

WARNING 28: POSSIBLE OVERLAP
FILE: pathname
MODULE: module name
SEGMENT: segment name
CLASS: class name
Meaning

LINKS86 issues this warning when it combines two absolute segments.

Effect

LINKS86 continues processing with no side effects.

User Action
If there is a conflict LOCS86 or the loader will detect the overlap.

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

WARNING 29: GROUP HAS BAD EXTERNAL REFERENCE
GROUP: group name
SEGMENT: segmentname

Meaning

This error occurs if the public symbol corresponding to an external reference has
been specified by its absolute address, and the address does not reside in any
segment.

Effect

LINK86 continues processing and the print and object files will be valid except the
external reference has not been properly resolved.

User Action

Either remove the reference to the public symbol or do not allow the symbol to be
absolute.

ERROR 30: LIBRARY IS NOT ALLOWED WITH PUBLICSONLY CONTROL
FILE: pathname
Meaning

The specified file is a library and libraries are not allowed in a PUBLICSONLY
control.

Effect

LINKS86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action
Remove library file from PUBLICSONLY argument list and reinvoke LINKS§6.

WARNING 31: REFERENCED LOCATION OFFSET UNDERFLOW
FILE: pathname
MODULE: module name
Meaning
While computing the offset for an 8089 self relative reference, LINK86 had a
negative result.
Cause

Either with the ORDER control or the order of files in the input list, the reference
was separated from its target, or the 8089 segment is too large.

Effect

LINK86 continues processing; however, the invalid offset computation is used.

User Action

Examine the ORDER control in the invocation line and modify its arguments.
Reinvoke LINK86 carefully.

LINKS86 Controls and Error Messages iAPX 86,88 Family Utilities

WARNING 32: EXTRA REGISTER INITIALIZATION RECORD IGNORED
FILE: pathname
MODULE: module name

Cause

You have included two main modules in your input list.

Effect

LINKS86 uses the first register initialization record and ignores the second. Process-
ing continues.

User Action

If the register initialization information in the specified file and module should be
used, then modify your input list; otherwise, no user action is necessary.

ERROR 33: ILLEGAL USE OF OVERLAY CONTROL
FILE: pathname
MODULE: module name

Meaning

LINKS86 has found an overlay definition in the specifed file and module, while pro-
cessing input modules for an overlay.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Remove the specified file from the input list and relink.

ERROR 34: TOO MANY OVERLAYS IN INPUT FILE
FILE: pathname
MODULE: module name
Meéning
The specified file and module above contains more than one overlay definition.
Effect
LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.
User Action
Remove the specified file from the input list and relink.

iAPX 86,88 Family Utilities LINKS86 Controls and Error Messages

ERROR 35: SAME OVERLAY NAME IN TWO OVERLAYS
FILE: pathname
MODULE: module name
NAME: name

Meaning

The specified file contains an overlay that has the same name as an overlay
encountered in the input list.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Remove one of the duplicate names from the input list and relink. If both overlays
are necessary, relink one overlay specifying a different overlay name.

ERROR 36: ILLEGAL OVERLAY CONSTRUCTION
FILE: pathname
MODULE: module name

Meaning

Some of the modules in the input list contain overlay definitions while others do not.
This is not permitted — all modules in the input list must be the same with respect to
overlays.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Remove the non-overlay files and relink.

WARNING 37: DIFFERENT PUBLICS FOR EXTERNAL IN ROOT
FILE: pathname
MODULE: module name

Meaning

LINK86 has found two symbol definitions in the overlay modules that resolve an
external symbol definition in the root.

Effect

LINKS86 ignores the definition in the specified file and module, and continues pro-
cessing with no side effects.

User Action

Remove the unwanted symbol definition and relink.

LINKS86 Controls and Error Messages iAPX 86,88 Family Utilities

ERROR 38: INVALID OVERLAPPING GROUPS
FILE: pathname
MODULE: module name
SEGMENT: segmentname
GROUP: group name
Meaning

While binding the input list LINK86 found a segment that was defined to be within
two groups.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Either modify the source to remove the segment from one of the groups or do not
link with the BIND control.

ERROR 39: SPECIFIED GROUP NOT FOUND IN INPUT MODULE
GROUP: group name

Cause

Often this is the result of a typographical error in the invocation line.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Correct the invocation line and relink.

ERROR 40: SPECIFIED SEGMENT NOT FOUND IN THE GROUP
SEGMENT: segment name
GROUP: group name

Cause
Usually this is the result of a typographical error in the ORDER control.

Effect

LINKS86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Correct the invocation line and relink.

iAPX 86,88 Family Utilities LINKS86 Controls and Error Messages

ERROR 41: SPECIFIED SEGMENT NOT FOUND IN INPUT MODULE
SEGMENT: segmentname
CLASS: class name

Cause
Usually this is the result of a typographical in the SEGSIZE control.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Find the module that contains the specified segment and add it to the input list.

WARNING 42: DECREASING SIZE OF SEGMENT
SEGMENT: segmentname

Meaning

The size change specified in SEGSIZE has caused LINKS86 to decrease the size of the
specified segment.

Effect

Decreasing the size of a segment can cause sections of code to be unaccounted for
during the memory allocation process. LINK86 continues processing with no side
effects. :

User Action

None if the size decrease was intended.

ERROR 43: SEGMENT SIZE OVERFLOW; OLD SIZE + CHANGE > 64K
SEGMENT: segmentname
CLASS: class name

Meaning

The size change specified in the SEGSIZE control caused the segment to become
greater than 64K.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action
Reinvoke LLINK86 with the correct SEGSIZE control.

LINKS86 Controls and Error Messages iAPX 86,88 Family Utilities

ERROR 44: SEGMENT SIZE UNDERFLOW; OLD SIZE + CHANGE < 0
SEGMENT: segment name
CLASS: class name
Meaning
The size change specified in the SEGSIZE control caused the segment’s size to be
less than zero.
Effect
LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.
User Action
Reinvoke LINK86 with the correct SEGSIZE control.

ERROR 45: THE SEGMENT MAXIMUM SIZE IS LESS THAN THE
SEGMENT MINIMUM SIZE
SEGMENT: segment name
CLASS: class name
Cause

Usually this is the result of a typographical error in the SEGSIZE control.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Correct the invocation line and relink.

ERROR 46: ILLEGAL USE OF SEGSIZE CONTROL
SEGMENT: segment name
CLASS: class name

Cause

A maximum size was specified for either a stack segment, an absolute segment, or a
segment that is not the highest component of its group.

Effect

LINKS86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Remove the specified segment from the SEGSIZE control and relink.

iAPX 86,88 Family Utilities

WARNING 47: GROUP HAS NO CONSTITUENT SEGMENTS
GROUP: group name

Meaning

The group has no segments and is not placed in the output object file.

Cause

Often this is the result of a typographical error in the invocation line.

Effect

LINKS86 does not place the specified group in the object file and continues process-
ing with no side effects.

‘User Action

Unless there is some particular need for the specified group, no user action is
necessary.

WARNING 48: SIZE OF GROUP EXCEEDS 64K
GROUP: group name

Meaning

All of the segments that belong to the specified group do not fit within the physical
segment defined for that group.

Cause

This error is usually caused by misuse of the SEGSIZE or ORDER controls.

Effect

LINKS6 includes all segments in the object file and continues processing the input
module. The output module will be executable, although addressing errors may
occur.

User Action

Examine the invocation line and reinvoke LINK86 using the SEGSIZE or ORDER
control more carefully.

LINK86 Controls and Error Messages

D-19

LINK86 Controls and Error Messages iAPX 86,88 Family Utilities

WARNING 49: MAXIMUM SIZE OF GROUP EXCEEDS 64K
GROUP: group name
Meaning
The maximum segment size for the segments contained in the specified group
exceeds 64K.
Cause

This error is usually caused by misuse of the SEGSIZE control.

Effect

LINKS86 reduces the maximum size of the group and its constituent segments.
LINK86 continues processing the input module. The output module will be
executable.

User Action

No action is necessary. If you want to remove the error, examine the invocation line
and reinvoke LINK86 using the SEGSIZE control more carefully.

WARNING 50: MORE THAN ONE SEGMENT WITH THE MEMORY
ATTRIBUTE
SEGMENT: segment name
Meaning

After the first memory segment is found, LINK86 issues this warning each time it
finds a segment with the memory attribute.

Effect

LINKS86 ignores the memory attribute on the segment specified in the message.
Processing continues with LINK86 treating the additional memory segment as just
another segment.

User Action

Depending on your intentions, this message may be ignored or you may wish to
change the segment definition and relink.

WARNING 51: SEGMENT WITH MEMORY ATTRIBUTE NOT PLACED
HIGHEST IN MEMORY
SEGMENT: segment name
Meaning

The specified memory segment was not located at the highest offset in its group.

Cause

This can only occur when you explicitly request this organization through the
ORDER control.

Effect

Since this can only occur by user request, LINK86 continues processing without side
effects.

D-20

iAPX 86,88 Family Utilities LINKS86 Controls and Error Messages

WARNING 52: OFFSET FIXUP OVERFLOW
FILE: pathname
MODULE: module name

Meaning

While computing an offset from a base, LINK86 found that the offset was greater
than 64K. '

Cause

One of the segments of a group is outside the 64K frame of reference defined by its
group base.

Effect

LINKS86 continues processing. The print file will be valid, but the output file with
regard to the out of place segment will not be usable.

User Action

Modify the group definitions in your source and retranslate.

WARNING 53: OVERFLOW OF LOW BYTE FIXUP VALUE
FILE: pathname
MODULE: module name

Meaning

An 8-bit displacement value, when calculated, exceeded 255.

Cause

This type of error often occurs when a page resident segment crosses a page
boundary.

Effect

LINK86 continues processing. The contents of both the print file and the object file
will be valid. However, the fixup value will remain invalid.

User Action

Organize your segments so that the addressing error will not be encountered.

ERROR 54: ILLEGAL USE OF ORDER CONTROL
GROUP: group name

Meaning

The specified group’s segments have already been ordered.

Cause
You are attempting to relink a file that has been linked with the BIND control.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Relink using the unbound input modules.

D-21

LINKS86 Controls and Error Messages iAPX 86,88 Family Utilities

ERROR 55: ILLEGAL FIXUP
FILE: pathname
MODULE: module name

Meaning

While processing a fixup record, LINK86 found that the base for the reference and
target are different.

Cause

This is usually a coding error.

Effect

LINKS86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Examine your assembly language source and retranslate.

ERROR 56: DATA ADDRESS OUTSIDE SEGMENT BOUNDARIES
FILE: pathname
MODULE: module name
SEGMENT: segment name
Meaning
One of the data records associated with the specified segment contains an address
outside of the segment’s boundary.
Cause

This error can occur when you decrease the size of a segment.

Effect

LINKS86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action
Change SEGSIZE control and relink.

ERROR 57: MAXIMUM DYNAMIC STORAGE LESS THAN MINIMUM
DYNAMIC STORAGE

Meaning

The size change specified in MEMPOOL has caused the maximum dynamic storage
to be less than the minimum dynamic storage.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action
Reinvoke LINK86 with correct arguments to MEMPOOL.

D-22

iAPX 86,88 Family Ultilities LINKS86 Controls and Error Messages

WARNING 58: NO START ADDRESS SPECIFIED IN INPUT MODULES

Meaning

The BIND control was specified, and none of the input modules has a start address.

Cause

The input list contains no main module.

Effect

The CS and IP registers remain uninitialized, and their values are dependent on your
system loader. The object module will be valid.

User Action
Reinvoke LINK86 with a main module or execute LOCS6 with the START control.

ERROR 59: I1/0 ERROR WITH ROOT-FILE IN ASSUMEROOT CONTROL
FILE: pathname
operating system message

Meaning

The ASSUMEROOT control was specified, but the root file identified by pathname
in the invocation could not be accessed.

Effect

LINK86 immediately terminates processing.

User Action

Refer to your operating system documentation to correct the condition, then rein-
voke LINK86.

ERROR 60: OQUTPUT FILE IS SAME AS INPUT FILE
FILE: pathname

Meaning
LINK86 detected an output pathname identical to an input pathname.

Cause

The pathnames of the specified input file and the output file were identical.

Effect

LINK86 terminates processing immediately.

User Action

Reinvoke LINKS86 after fixing the duplicate-name situation.

D-23

LINKS86 Controls and Error Messages iAPX 86,88 Family Utilities

ERROR 61: ROOT-FILE IN ASSUMEROOT CONTROL IS NOT PROPER
0BJECT FILE
FILE: pathname
Meaning
The ASSUMEROOT control was specified, but the root file is not found to have an
overlay record in it.
Cause

The root file needs an overlay record.

Effect

LINKZ86 terminates processing immediately.

User Action
Relink the root file using the OVERLAY control.

WARNING 62: ASSUMEROOT CONTROL MEANINGFUL ONLY WITH
OVERLAYS

Meaning

The ASSUMEROOT control should be used only when the input modules do not

contain overlay records.

Cause

ASSUMEROOT was specified, but not in conjunction with the OVERLAY control.

Effect
LINKS86 ignores the ASSUMEROOQOT control. The object code is valid.

User Action
Reinvoke LINK86, using the OVERLAY and ASSUMEROOT controls.

WARNING 63: BAD SEGMENT ALIGNMENT
FILE: pathname
MODULE: module name
SEGMENT: segment name

Meaning

The segment is not paragraph/page-aligned.

Cause

The object code has references to the base of the specified segment, and the segment
is not declared as paragraph/page-aligned.

Effect

Although the object module will be valid, the loader may not load the program
correctly.

User Action

Declare the specified segment to be paragraph/page-aligned.

D-24

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

WARNING 64: PUBLIC SYMBOLS NOT SORTED DUE TO INSUFFICIENT
MEMORY

Meaning

The amount of memory required to sort the public symbols for the LINK86 print file
listing is insufficient.

Cause

The number of public symbols in the input-list modules is too large for LINKS86 to
sort with the available memory resources.

Effect

The LINKS86 print file listing provides public symbols in the order in which they were
encountered in the input files. This condition has no effect on the correctness or
validity of the output module.

User Action

Increase the amount of available RAM or decrease the number of public symbols.

WARNING 65: ILLEGAL FIXUP: INCORRECT DECLARATION OF
EXTERNAL SYMBOL
FILE: pathname containing external declaration
MODULE: name of module containing external declaration
SYMBOL: name of external symbol
FRAME : identification of reference location
TARGET : identification of target location

Meaning

The declaration of the specified SYMBOL was found to be inconsistent with a
corresponding public symbol definition, and LINK86 could not resolve the
reference.

Cause

This condition may exist for several reasons. The modules containing the external
and public symbols may have been compiled under different translator controls
(e.g., SMALL, LARGE). In the case of assembly language programs, the SYMBOL
may be defined in a group, segment, or frame different from that in which it is
declared as external. Or an attempt has been made to access absolute entry points
from pre-located code without using the PUBLICSONLY control explicitly.

Effect

LINKS86 internally converts these illegal fixups to legal formats to identify all
occurrences in a single execution. Thus the output object module may not be cor-
rect, although it will be a valid 8086 object module.

User Action

If the warning occurred because of an attempted access of absolute entry points
from pre-located code, use the PUBLICSONLY control in conjunction with the file
that contains public definitions for those entry points. Otherwise, use the FRAME
and TARGET information given in the warning message to pinpoint the source of
the error, then correct the code.

D-25

LINK86 Controls and Error Messages iAPX 86,88 Family Utilities

For example:

WARNING 65: ILLEGAL FIXUP: INCORRECT DECLARATION OF
EXTERNAL SYMBOL
FILE: EXTFIL
MODULE: EXTMODULE
SYMBOL: EXTSYM
FRAME: GROUP - GROUP1
TARGET: SEGMENT - SEGMENTS

The symbol EXTSYM is declared to be in SEGMENTS. The external-public resolu-
tion specified that the calculations be made with respect to the base of GROUPI,
but the segment SEGMENTS5 is not in GROUP1.

WARNING 66: CS AND IP REGISTERS ARE NOT INITIALIZED

Meaning

The INITCODE control was specified, and the register initialization record does not
contain information for initialization of 8086 registers. CS means code segment
register, and IP means instruction pointer.

Cause

This condition is usually the result of an incomplete END directive in your assembly
language module or a translation error.

Effect

The values of CS and IP at the beginning of program execution are entirely depen-
dent on the loader of your system. The object code will be valid.

User Action

Retranslate your code, then reinvoke LINK86.

WARNING 67: SS AND SP REGISTERS ARE NOT INITIALIZED

Meaning

The INITCODE control was specified, and the register initialization record does not
contain information for initialization of 8086 registers. SS means stack segment and
SP means stack pointer.

Cause

This condition is usually the result of an incomplete END directive in your assembly
language module or a translation error.

Effect

The values of SS and SP at the beginning of program execution are entirely depen-
dent on the loader of your system. The object code will be valid.

User Action

Correct your code if necessary, then reinvoke LINK86.

D-26

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

WARNING 68: DS REGISTER NOT INITIALIZED

Meaning

The INITCODE control was specified, and the register initialization record does not
contain information for initialization of the 8086 DS (data segment) register.

Cause

This condition is usually the result of an incomplete END directive in your assembly
language module or a translation error.

Effect

The value of the DS register at program execution is entirely dependent on the loader
of your system.

User Action

Correct your code if necessary, then reinvoke LINK86.

WARNING 69: OVERLAPPING DATA RECORDS

Meaning

The FASTLOAD control was specified, and two data records belonging to the same
segment have offsets which make them overlapping.

Cause

This warning is usually the result of a translation error, unless you have intentionally
overlapped data records.

Effect

LINKS86 ignores the second record and does not include it in the output file. The
code will be unusable.

User Action

If you want an overlap condition to exist, reinvoke, but do not use the FASTLOAD
control. Otherwise, retranslate, then reinvoke LINK86.

WARNING 70: INITCODE CONTROL INEFFECTIVE WITH BIND
CONTROL

Meaning
The INITCODE and BIND controls were combined in one invocation statement.

Effect
The INITCODE control will be ignored by LINK86.

User Action

Do not invoke LINK86 using both of these controls at the same time. To invoke
them separately, use the INITCODE control first, then the BIND control during a
second invocation.

D-27

LINK86 Controls and Error Messages iAPX 86,88 Family Utilities

WARNING 71: TOO MANY MAIN MODULES IN INPUT
FILE: pathname
MODULE: module name

Meaning

LINKS86 discovered two or more main modules (modules with start addresses) in the
input list.

Cause

The input list contains too many main modules.

Effect

LINK86 uses the start address of the first main module it reads and ignores the
others. The object code will be valid.

User Action

Ensure that the LINK86 interpretation is suitable to your objectives. If not, modify
the input list, and reinvoke LINK86.

WARNING 72: REGISTER INITIALIZATION CODE EXISTS, NEW
INITIALIZATION IGNORED
FILE: pathname
MODULE: module name

Meaning

Two or more initialization codes for 8086 registers were encountered in the input
list.

Cause

This condition resulted from a translation or linkage problem.

Effect

LINKS86 uses the first initialization code and ignores the others. The object code will
be valid.

User Action

If retranslating or relinking does not correct the error, contact Intel.

WARNING 73: INITCODE CONTROL INEFFECTIVE WITH OVERLAYS

Meaning
Both INITCODE and OVERLAY controls were specified.

Effect
The INITCODE control is ignored. The object code will be valid.

User Action

Reinvoke LINK86, using the INITCODE control. In a second invocation, specify
the OVERLAY control.

D-28

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

ERROR 74: PRINT FILE SAME AS INPUT FILE
FILE: pathname

Meaning

The pathnames of the print file and one of the input files are identical.

Effect

LINKS86 terminates processing immediately.

User Action
Reinvoke LINK86 after fixing the duplicate-name situation.

ERROR 75: PRINT FILE SAME AS OUTPUT FILE

Meaning

The names of the print and output files are identical.

Cause

The invocation line included duplicate names.

Effect

LINKB86 terminates processing immediately.

User Action
Correct the invocation line and reinvoke LINKS86.

WARNING 76: BASE OF REFERENCED SEGMENT DIFFERS FROM BASE
OF CONTAINING GROUP
FILE: pathname
GROUP: group name
MODULE: module name
SEGMENT: segment name

Meaning

An assembly language reference to the base of the specified segment in the specified
group exists. However, the specified segment is not the first segment in the group.
This warning occurs only when BIND is in effect.

Cause

Unless you have deliberately created this reference, this warning is most likely the
result of an incorrect ASSUME directive or an incorrect OFFSET operator
specification.

Effect
LINK86 will process the specified reference to the segment base rather than to the
group base. The output module will be valid.

User Action

If the reference to the segment base was deliberate, continue debugging your
assembly language code as planned. Otherwise, check the correctness of the code,
particularly the ASSUME directives and OFFSET operator specifications; then
reassemble and relink.

D-29

LINKS86 Controls and Error Messages iAPX 86,88 Family Utilities

WARNING 77: REFERENCED OFFSET IN SEGMENT DIFFERS FROM
OFFSET FROM GROUP BASE
FILE: pathname
GROUP: group name.
MODULE: module name
SEGMENT: segmentname

Meaning

An assembly language reference to an offset from the base of the specified segment
in the specified group exists. However, the specified segment is not the first segment
in the group. This warning occurs only when BIND is in effect.

Cause

Unless you have deliberately created this reference, this warning is most likely the
result of an incorrect ASSUME directive or an incorrect OFFSET operator
specification.

Effect
LINKS86 will process the specified reference as an offset from the segment base
rather than the group base. The output module will be valid.

User Action

If the reference to the offset in the segment was deliberate, continue debugging your
assembly language code as planned. Otherwise, check the correctness of the code,
particularly the ASSUME directives and OFFSET operator specifications; then
reassemble and relink.

D-30

APPENDIX E
CREF86 CONTROLS
AND ERROR MESSAGES

Table E-1 lists all of CREF86’s control syntax, abbreviations, and default settings.

Table E-1. Summary of CREF86 Controls

Control Abbrev. Default
PAGELENGTH(number) PL PAGELENGTH(60)
PAGEWIDTH(number) PW PAGEWIDTH(120)
PRINT (pathname) . PR PRINT (first input file .CRF)
TITLE(character-string) 1T Not applicable

The following are descriptions of all CREF86 error and warning messages. The
description of each message has up to four parts:

e Meaning—how to interpret the message

¢ Cause—the usual reason for the error or warning condition

o Effect—the state of CREF86 and the object file(s) after the message is issued
¢ User Action—what you can do to correct the condition

Not all these parts are given for each message. However, parts excluded are self-
explanatory.

Error messages are always fatal, but warning messages are not.

Error and warning messages are displayed at the console device, but printed only if a
listing would otherwise be printed.

ERROR 1: I/0 ERROR
operating system message explaining the cause of this erorr
FILE: pathname

Meaning

An 170 error was detected. See the appropriate operating system documentation for
interpretation.

Effect

CREF86 immediately terminates processing; all open files are closed. The contents
of the print file are undefined.

User Action
Correct the error and restart CREF86.

CREF86 Controls and Error Messages iAPX 86,88 Family Utilities

ERROR 2: SYNTAX ERROR IN INPUT COMMAND

Meaning

An error in the syntax of the invocation line was detected.

Cause

This condition is usually the result of a typographical error or transposition.

Effect

The invocation command line, to the point it is parsed, is written to the console with
a # following this string.

User Action
Correct the syntactic error and retransmit the invocation line(s).

ERROR 3: OUT OF MEMORY

Meaning

CREF86 does not have enough memory to create its internal data structures, tables,
etc. This condition may also occur because of inadequate disk space for temporary
files.

Cause

The input list contains too many symbols and/or too many references among them.

Effect

CREF86 immediately terminates processing, closing all open files. The contents of
the print file are undefined.

User Action

Ensure that adequate resources are available to run CREF86.

ERROR 4: I1/0 ERROR
operating system error message
FILE: pathname

Meaning

An /0 error was detected. See the appropriate operating system documentation for
interpretation.

Effect

CREF86 processing is immediately terminated.

User Action
Correct the error and restart CREF86.

E-2

iAPX 86,88 Family Utilities CREF86 Controls and Error Messages

ERROR 5: IMPROPER OBJECT MODULE
FILE: pathname
MODULE: module name

Meaning

The specified module does not meet 8086 object module requirements.

Cause

This condition may be caused by the translator or by an error in data transmission.

Effect

CREF86 processing is immediately terminated.

User Action

Try retranslating the source file. If the problem persists, call Intel.

ERROR 6: PREMATURE EOF
FILE: pathname

Meaning

CREF86 expects more input data, but encounters an end-of-file (EOF) condition.

Cause

This condition usually results from a translator error.

Effect

CREF86 processing is immediately terminated.

User Action

Return to the previous step in program development, then retranslate or relink.

ERROR 7: LIBRARY SEEK ERROR
FILE: pathname
MODULE: module name

Meaning

CREFB86 did not encounter a proper library record when scanning a library file.

Cause
The library file or the disk may be corrupted.

Effect

CREF86 immediately terminates processing.

User Action
Reinvoke CREF86 after replacing the file or the disk.

E-3

CREF86 Controls and Error Messages iAPX 86,88 Family Utilities

ERROR 8: LIBRARY IN OVERLAY MODE
FILE: pathname
Meaning
An input list contains object file(s) with an overlay record count greater than zero
and a library file.
Cause

Libraries cannot contain overlay records. CREF86 can process either all modules or
no modules with overlay records.

Effect

CREF86 immediately terminates processing.

User Action
Reinvoke CREF86 using a valid input list.

ERROR 9: IMPROPER MODULE SEQUENCE
FILE: pathname
MODULE: module name

Meaning

A combination of modules containing overlay records with those containing
nonoverlay records was encountered in the input list.

Cause

CREF86 can process input lists consisting of either all modules with overlay records
or no modules with overlay records.

Effect

CREF86 immediately terminates processing.

User Action
Reinvoke CREF86 with a valid input list.

iAPX 86,88 Family Utilities CREF86 Controls and Error Messages

ERROR 10: MORE THAN 255 OVERLAYS NOT SUPPORTED

Meaning

The input list contains over 255 files with overlay records.

Cause

CREF86 does not support more than 255 overlay files. In the case of input lists
without overlays, however, there is no limit (except available memory) on the
number of files CREF86 can process.

Effect

CREF86 immediately terminates processing.

User Action
Reinvoke CREF86 using fewer than 255 overlay files.

ERROR 11: TOO MANY OVERLAYS
FILE: pathname
MODULE: module name

Meaning

The input file contains more than one overlay.

Cause

CREF86 can support files with only one overlay record each.

Effect

CREF86 terminates processing immediately.

User Action

Reinvoke CREF86 with an input list containing files with no more than one overlay
each.

E-5

CREF86 Controls and Error Messages iAPX 86,88 Family Utilities

E-6

ERROR 12: I/0 ERROR
operating system error message
FILE: pathname

Meaning

An I/0 error was detected. See the appropriate operating system documentation for
interpretation.

Effect
CREF86 terminates processing immediately.

User Action
Correct the error and restart CREF86.

ERROR 13: IMPROPER PAGE WIDTH SPECIFICATION

Meaning

The PAGEWIDTH control specification includes a number outside the valid
syntactic range.

Effect
CREF86 terminates processing immediately.

User Action

Correct the syntax error and reinvoke CREF86. CREF86 accepts a PAGEWIDTH
number in decimal form from 80 to 132, inclusive, in the following format:

PAGEWIDTH Cnumber)

iAPX 86,88 Family Utilities CREF86 Controls and Error Messages

ERROR 14: TIMPROPER PAGE LENGTH SPECIFICATION

Meaning

The PAGELENGTH control specification includes a number outside the valid
syntactic range.

Effect

CREF86 terminates processing immediately.

User Action

Reinvoke CREF86 using the proper PAGELENGTH syntax. CREF86 accepts a
PAGELENGTH number in decimal form from 10 through 255, in the following
format:

PAGELENGTH Chumber)

ERROR 15: ILLEGAL LIBRARY FILE
FILE: pathname

Meaning

CREFS86 did not encounter a proper library record in the proper location.

Cause
The library file or disk may be corrupted.

Effect

CREF86 terminates processing immediately.

User Action
Reinvoke CREF86 after replacing the file or the disk.

CREF86 Controls and Frror Messages

E-8

ERROR 16: IMPROPER OBJECT FILE
FILE: pathname
MODULE: module name

Meaning

iAPX 86,88 Family Utilities

CREF86 did not encounter an 8086 object module record in the proper location.

Cause
The object file may be corrupt or the file may not be an 8086 object file.

Effect

CREF86 terminates processing immediately.

User Action

Determine whether the integrity of the object file is intact and whether the file is a
proper input file for CREF86. Reinvoke CREF86 with a valid and usable object file.

ERROR 17: OUTPUT FILE SAME AS INPUT FILE
FILE: pathname
MODULE: module name

Meaning

CREF86 detected an output pathname identical to an input pathname.

Cause

The invocation line specified two identical pathnames.

Effect

CREF86 terminates processing immediately.

User Action

Reinvoke CREF86 after fixing the duplicate-name situation.

iAPX 86,88 Family Utilities CREF86 Controls and Error Messages

ERROR 18: CREF86 INTERNAL ERROR
FILE: pathname
MODULE: module name

User Action

Contact Intel immediately. Forward a copy of the object file, the CREF86 invoca-
tion line, and your version of CREF86.

WARNING 19: TYPE MISMATCH
FILE: pathname
MODULE: module name
SYMBOL: symbol name

Meaning

CREF86 detected a type mismatch between two symbols with the same name.

Cause

Two symbols are declared to have identical names but different types, and the
symbols are not in different overlay modules.

CREF86 does not check the entire TYPE declaration for any given symbol. For
example, dimension values for arrays, number of parameters in procedure calls, etc.
are not compared. Only simple types (e.g., byte, word, structure) are checked.

Effect

CREF86 flags the condition in the cross-reference listing.

User Action

Ensure that the condition is not damaging to your programming objectives.

E-9

CREF86 Controls and Error Messages iAPX 86,88 Family Utilities

WARNING 20: SPECIFIED MODULE NOT FOUND
FILE: pathname
MODULE: module name

Meaning

A module explicitly included in the input list of the invocation is not found by
CREF8e6.

Cause
The specified module is not part of the file specified by the pathname.

Effect
CREF86 continues processing the modules it is able to find.

User Action

Determine why the module is missing, then reinvoke CREF86.

ERROR 21: OPERATING SYSTEM INTERFACE ERROR
operating system error message

Meaning
CREF86 cannot open its temporary file.

Effect

CREF86 terminates processing immediately.

User Action

Refer to the documentation on the operating system to help diagnose any possible
operating system malfunction.

E-10

APPENDIX F
LIB86 COMMANDS
AND ERROR MESSAGES

The table below shows all of LIB86’s commands.

Table F-1. Summary of LIB86 Commands

Command Abbrev. Description
ADD {pathname{(module namef|,...])]} A Adds modules to a library
[,...] TO pathname
CREATE pathname C Creates a library file
DELETE pathname(module name |,...]) D Deletes modules from a library
file
EXIT E Terminates session with LIB86
LIST {pathname[(module name [,...})]} L Lists modules contained ina
[,...]1[TO pathname] [PUBLICS] [P} library file, and optionally lists
all publics

The following are descriptions of all LIB86 error and warning messages. The
description of each message has up to four parts:

e Meaning—how to interpret the message

e Cause—the usual reason for the error or warning condition

o Effect—the state of LIB86 and the object file(s) after the message is issued
e User Action—what you can do to correct the condition

Not all these parts are given for each message. However, parts excluded are self-
explanatory.

Error and warning messages are displayed at the console device.

MODULE NOT FOUND
MODULE: module name
FILE: pathname

Meaning

The specified module could not be found in the specified library.

Cause

There is a typographical error in the command line.

Effect

LIB86 ignores the module in the list and continues processing.

User Action

No user action is necessary.

F-1

LIB86 Commands and Error Messages

F-2

RIGHT PARENTHESIS EXPECTED
partial command tail

LEFT PARENTHESIS EXPECTED
partial command tail

INVALID MODULE NAME
partial command tail

MODULE NAME TOO LONG
partial command tail

INVALID SYNTAX
partial command tail

'TO' EXPECTED
partial command tail

Meaning

iAPX 86,88 Family Utilities

All of the above errors are syntax errors. For each of the above errors LIB86 issues
the associated error message and displays the partial command up to the point of the

€ITor.

Cause

There is a typographical error in the command line.

Effect

LIB86 immediately terminates processing the command, displays the error message,

and issues the prompt character (*).

User Action

Examine the command line, make the necessary corrections and reissue the

command.

iAPX 86,88 Family Utilities LIB86 Commands and Error Messages

UNRECOGNIZED COMMAND

Cause
You mistyped a command (ADD, CREATE, DELETE, EXIT, or LIST).

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Examine the command line and enter the corrected command.

INSUFFICIENT MEMORY

Meaning

There is not enough memory available to execute the command.

Cause

Exceptionally long and complex commands can cause this error.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (¥).

User Action

Simplify your command line and reexecute.

COMMAND LINE TOO LONG
partial command tail

Meaning

The length of the LIB86 command you tried to execute exceeded the size limit of the
system’s command buffer.

Effect

LIB86 immediately terminates processing the command, displays this error message
plus the portion of the command it would accept, then issues the prompt character

*).
User Action

Simplify your command line and reexecute.

F-3

LIB86 Commands and Error Messages iAPX 86,88 Family Utilities

LIB86 ERROR

Meaning

LIB86 failed an internal consistency check.

Effect

LIB86 immediately terminates processing. The results of previous commands on the
library being manipulated when this error occurred may have been lost.

User Action

Contact Intel. Forward a copy of the libraries and object files used during the
session in which the error occurred.

FILE ALREADY EXISTS

FILE: pathname

Meaning

The file specified in the CREATE command already exists.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Specify a nonexistent file in the CREATE command.

DUPLICATE SYMBOL IN INPUT

SYMBOL: symbolname

MODULE: module name

FILE: pathname

Meaning

The specified public symbol conflicts with a public symbol defined in one of the files
given earlier in the input list. This error occurs only during the ADD command.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*). The library being manipulated returns to the
state it was in prior to the ADD command that prompted this message.

User Action
Correct the ADD command and reinvoke LIB86.

F-4

iAPX 86,88 Family Utilities LIB86 Commands and Error Messages

NOT A LIBRARY
FILE: pathname

Cause
The file that the command requests LIB86 to DELETE or LIST is not a library file.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Reissue the command specifying a library file.

ILLEGAL RECORD FORMAT
MODULE: module name
FILE: pathname

Cause

This error is usually caused by a transcription error or translation error in some part
of an object file examined by LIB86.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Return to the last step in program development, then retranslate, relink, or relocate.

PREMATURE EOF
MODULE: module name
FILE: pathname

Meaning

Due to some transcription error or other the specified file has no module end record.

Cause

This is usually the result of a transcription error or translator error.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (¥).

User Action

Return to the last step in program development, then restranslate, relink, or
relocate.

F-5

LIB86 Commands and Error Messages iAPX 86,88 Family Utilities

CHECKSUM ERROR
MODULE: module name
FILE: pathname
Meaning

The specified file has an error in one of its checksum fields.

Cause

This is the result of a transcription error.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Return to the last step in program development, then retranslate, relink, or relocate.

ATTEMPT TO ADD DUPLICATE MODULE
MODULE: module name
Meaning

A module with the specified module name already exists in the library.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Remove the duplicate module from the list and reissue the command.

ATTEMPT TO ADD MODULE CONTAINING OVERLAYS
MODULE: module name

FILE: pathname

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*). All modules in the input list up to the erroneous
file are added to library.

User Action

Reissue the command with all elements in the input list except those that contain
overlays.

F-6

iAPX 86,88 Family Utilities LIB86 Commands and Error Messages

PUBLIC SYMBOL ALREADY IN LIBRARY
SYMBOL: symbol name

MODULE: input module name

FILE: inputpathname

Meaning

The library already contains the public symbol identified in the error message.

Cause

This error occurs when a module is added that has a symbol definition already in the
library.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Reexecute the command without the file that contains the duplicate symbol.

F-7

APPENDIX G
LOC86 CONTROLS
AND ERROR MESSAGES

Table G-1 lists all of LOCS86’s control syntax, abbreviations, and default settings.

Table G-1. Summary of LOC86 Controls

Control Abbrev. Default
ADDRESSES(AD Not applicable
{SEGMENTS({segment[\class{\overlay]] (SM|
(addn},..p | CS|GR)

CLASSES({class(addr)}|,...] |
GROUPS({group(addr)}|,...]) }
L)

BOOTSTRAP BS Not applicable
COMMENTS CM COMMENTS
NOCOMMENTS NOCM
INITCODE[(address)) IC INITCODE(200H)
NOINITCODE NOIC
LINES LI LINES
NOLINES NOLI
MAP MA MAP
NOMAP NOMA
NAME(module name) NA Not applicable
OBJECTCONTROLS(

{LINES | NOLINES | oC Not applicable

COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS | NOPUBLICS |
PURGE | NOPURGE? [,...])

ORD:ZR(oD Not applicable
{SEGMENTS({segment[\class[\overiay]]} (SM|
o) Cs)
CLASSES({class{(segment [,...)]} [,...]}}
[
PRINT[(pathname)] PR PRINT(objectfile. MP2)
NOPRINT NOPR

PRINTCONTROLS(
. {LINES | NOLINES | PC Not applicable
COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS | NOPUBLICS |
PURGE | NOPURGE} |,...])

PUBLICS PL PUBLICS
NOPUBLICS NOPL
PURGE PU NOPURGE
NOPURGE NOPU

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

Table G-1. Summary of LOC86 Controls (Cont’d.)

Control Abbrev. Default
RESERVE({addr TO addr?} [,...]) RS Not applicable
SEGSIZE({segment[\class[\overlay]] SS Not applicable

(size)},...])

START({symbol | paragraph,offset}) ST Not applicable
SYMBOLS SB SYMBOLS
NOSYMBOLS NOSB
SYMBOLCOLUMNS({1]2]3] 4}) SC SYMBOLCOLUMNS (2)

The following are descriptions of all LOC86 error and warning messages. The
description of each message has up to four parts:

¢ Meaning—how to interpret the message

e Cause—the usual reason for the error or warning condition

o Effect—the state of LOC86 and the object file(s) after the message is issued
» User Action—what you can do to correct the condition

Not all these parts are given for each message. However, parts excluded are self-
explanatory.

Error messages are always fatal, but warning messages are not. In the event of a
warning, read the EFFECT of the warning carefully to determine whether the code
is valid.

Error and warning messages are displayed at the console device, but printed only if a
listing would otherwise be printed.

ERROR 1: I/0 ERROR:
operating system error message

Meaning

An 170 error was detected. Refer to the documentation for your operating system
for interpretation.

Effect

LOCS86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action
Correct the error and restart LOC86.

G-2

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

ERROR 2: INVALID SYNTAX
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

A syntax error was detected in the invocation line. LOC86 repeats the invocation
line up to the point of the error.

Cause

This is usually the result of a typographical error in the invocation line.

Effect

LOCB86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Reenter the invocation line more carefully.

ERROR 3: MISSING INPUT FILE NAME
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

LOCS86 was unable to find the input file name in the invocation. LOC86 repeats the
invocation line up to the point of the error.

Cause

This is usually the result of a typographical error in the invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action
Reinvoke LOC86 more carefully.

G-3

LOCS86 Controls and Error Messages iAPX 86,88 Family Utilities

ERROR 4: INSUFFICIENT MEMORY

Meaning

The memory available on your system has been used up by LOCS86.

Cause

This can be caused by an input module that has a very large number of segments or
an impossibly long invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

This may require changing the source file to reduce the number of segments and
retranslating.

ERROR 5: BAD RECORD FORMAT
MODULE: module name

Meaning

There is a record in the specified input module that has an incorrect format.

Cause

This is usually a transcription error.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Retranslate and relink the input files before attempting to locate the input module
again.

G-4

iAPX 86,88 Family Utilities LOCB86 Controls and Error Messages

ERROR 6: INVALID KEY WORD
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

One of the controls or subcontrols in the invocation line is incorrect. LOC86 repeats
the invocation line up to the point of the error.

Cause

This is usually the result of a typographical error in the invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action
Reinvoke LOC86 more correctly.

ERROR 7: NUMERIC CONSTANT LARGER THAN 20 BITS
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

You have specified an address greater than 1,048,575 (OFFFFFH). LOCB86 repeats
the invocation line up to the point of the error.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and invoke LOCR86 with the correct address.

ERROR 8: NON NUMERIC CHARACTER IN NUMERIC CONSTANT
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

This is a type of syntax error. LOCS86 repeats the invocation line up to the point of
the error.

Cause

This is usually caused by a typographical error in the invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Enter the invocation more carefully.

G-5

LOCS86 Controls and Error Messages iAPX 86,88 Family Utilities

ERROR 9: NUMERIC CONSTANT LARGER THAN 16 BITS
ERROR IN COMMAND TAIL NEAR #:
partial command tail
Meaning
You have specified an offset greater than 65,536 (OFFFFH). LOC86 repeats the
invocation line up to the point of the error.
Effect
LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.
User Action

Retype the invocation line more carefully.

ERROR 10: INVALID SEGMENT NAME
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

LOCS86 was expecting a segment name when it found a token that does not cor-
respond to a valid segment name. LOCS86 repeats the invocation line up to the point
of the error.

Cause

This is usually the result of a typographical error.

Effect

LOCB6 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action
Reinvoke LOC86 more carefully.

iAPX 86,88 Family Utilities

ERROR 11: INVALID CLASS NAME
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

LOCS86 was expecting a class name when it found a token that does not correspond
to a valid class name. LOCR86 repeats the invocation line up to the point of the error.

Cause

This is usually the result of a typographical error.

Effect

LOCB86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action
Reinvoke LOC86 more carefully.

ERROR 12: INVALID INPUT MODULE
MODULE: module name

Meaning

The input module is invalid. It could mean that object module records are out of
order, or LOC86 has found an invalid field within a record, or a required record is
missing.

Cause

This is usually caused by a translator error or an attempt to locate something other
than an object file (e.g., a source file).

Effect

LOCS86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Retranslate source and relink, then try to locate again. If this error continues contact
Intel.

LOCS86 Controls and Error Messages

LOCS86 Controls and Error Messages 1APX 86,88 Family Utilities

WARNING 13: MORE THAN ONE SEGMENT WITH THE MEMORY
ATTRIBUTE
SEGMENT: segment name
Meaning
After the first memory segment is found, LOC86 issues this warning each time it
finds a segment with the memory attribute.
Effect

LOCS86 ignores the memory attribute on the segment specified in the message. Pro-
cessing continues with LOC86 treating the additional memory segment as just
another segment.

User Action

Depending on your intentions, this message may be ignored or you may wish to
change the attribute for the segments and relink them.

WARNING 14: GROUP DEFINED BY AN EXTERNAL REFERENCE
NAME: external name
GROUP: group name

Meaning

The specified group is defined by an external reference. This is a type of unresolved
external reference.

Effect

LOC86 continues processing without side effects.

User Action

Find the module that defines the specified symbol and relink the input module.

WARNING 15: PUBLIC SYMBOL NOT ADDRESSABLE
NAME: public symbol name
Meaning

The specified symbol is more than 64K from its base. This error occurs when the seg-
ment containing the public symbol is not completely contained within the 64K
physical segment defined by the symbol’s base.

Effect

LOC86 continues processing. The object file will be executable. However, any
attempt to access the specified public symbol will not produce the desired results.
Debug symbols with this attribute will not be added to the object file.

User Action

Change the ORDER or ADDRESSES control so that the segment containing the
public symbol will be within range of the symbol’s base.

iAPX 86,88 Family Utilities

WARNING 16: LOCAL SYMBOL NOT ADDRESSABLE
NAME : Jocal symbol name
Meaning

The specified symbol is more than 64K from its base. This error occurs when the seg-
ment containing the local symbol is not completely contained within the 64K
physical segment defined by the symbol’s base.

Effect

LOCB86 continues processing. The object file will be executable. However, any
attempt to access the specified symbol will not produce the desired results. Debug
symbols with this attribute will not be added to the object file.

User Action

Change the ORDER or ADDRESSES control so that the segment containing the
local symbol will be within range of the symbol’s base.

WARNING 17: LINE NUMBER NOT ADDRESSABLE
NAME: line number
Meaning

The specified line is more than 64K from its base. This error occurs when the seg-
ment containing the line number is not completely contained within the 64K physical
segment defined by the line’s base.

Effect

LOCS86 continues processing. The object file will be executable. However, any
attempt to access the specified line number will not produce the desired results.
Debug symbols with this attribute will not be added to the object file.

User Action

Change the ORDER or ADDRESSES control so that the segment containing the line
number will be within range of the line’s base.

LOC86 Controls and Error Messages

G9

LOCS86 Controls and Error Messages iAPX 86,88 Family Utilities

WARNING 18: SIZE OF GROUP EXCEEDS 64K
GROUP: group name
Meaning
Some of the segments of the specified group are not contained within the physical
segment defined by the group’s base.
Cause
This error is usually caused by misuse of the ORDER or ADDRESSES control.

Effect

LOC86 continues processing the input module. The output module will be
executable, but addressing errors may result.

User Action

Examine the invocation line and reinvoke LOCS86 wusing the ORDER or
ADDRESSES control more carefully.

WARNING 19: BOOTSTRAP SPECIFIED FOR MODULE WITHOUT START
ADDRESS

Meaning

You have specified BOOTSTRAP when locating a module that has no start address.

Effect
LOC86 continues processing as if no BOOTSTRAP control was specified.

User Action

If you wish initialization code in the program, relocate the input module specifying
both BOOTSTRAP and START.

ERROR 20: INVALID NAME
NAME : bad name
Cause

This is the result of a typographical error in the NAME control. A valid name is
composed of up to forty of the following characters in any order:

¢ Alphabetic (A, B, C, ..., 7)
e Numeric(0,1,2,...,9)
e Special(@,?,:,.,_)

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action
Reinvoke LOC86 more carefully.

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

ERROR 21: SEGMENT REGISTER DEFINED BY SPECIFIED EXTERNAL
NAME
NAME: external name

Meaning

A segment register or register pair is defined using the specified external symbol
name.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Relink and relocate your object modules.

ERROR 22: SEGMENT SIZE OVERFLOW; OLD SIZE + CHANGE > 64K
SEGMENT: segmentname
CLASS: class name

Meaning

The size change specified in the SEGSIZE control caused the segment to become
greater than 64K.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Look at the segment’s size in the link map and reinvoke LOC86 with the correct
SEGSIZE control.

ERROR 23: SEGMENT SIZE UNDERFLOW; OLD SIZE - CHANGE < 0
SEGMENT: segmentname
CLASS: class name

Meaning

The size change specified in the SEGSIZE control caused the segment’s size to be
less than zero.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Look at the segment’s size in the link map and reinvoke LOC86 with the correct
SEGSIZE control.

LOCS86 Controls and Error Messages iAPX 86,88 Family Utilities

ERROR 24: INVALID ADDRESS RANGE

Meaning
The arguments to the RESERVE control are invalid.

Cause

The usual cause of this error is that the low address is larger than the high address.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and reinvoke LOC86 correctly.

ERROR 25: PUBLIC SYMBOL NOT FOUND
NAME: public symbol name
Meaning
The symbol specified in the START control was not found.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Either specify the argument to START with paragraph and offset, or specify an
existing public symbol.

WARNING 26: DECREASING SIZE OF SEGMENT
SEGMENT: segment name
Meaning
The size change specified in SEGSIZE has caused LOC86 to decrease the size of the
specified segment.
Effect

Decreasing the size of a segment can cause sections of code to be unaccounted for
during the locating process. This is only a warning message. LOC86 continues pro-
cessing with no side effects.

User Action

If the size decrease was not intended, examine the SEGSIZE control in the invoca-
tion line and relocate.

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

ERROR 27: SPECIFIED SEGMENT IS ABSOLUTE
SEGMENT: segmentname
Meaning

You attempted to assign an address to an absolute segment.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Reinvoke LOC86 without using absolute segments in the ADDRESSES control.

WARNING 28: PAGE RESIDENT SEGMENT CROSSES PAGE BOUNDARY
SEGMENT: segmentname
Cause

If you have changed the specified segment’s size, it may be too large to fit within a
256 byte page, or if you have specifed an address for the segment, it may force the
segment to cross a page boundary.

Effect

Since this error can only occur when you have intentionally specified the segment in
a control, LOC86 ignores the page resident attribute and continues to process the
module as if no error has occurred.

User Action

If you have invoked LOC86 correctly, then the message is only verifying your inten-
tions — no action is necessary.

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

WARNING 29: OFFSET FIXUP OVERFLOW

MODULE: module name

REFERENCED LOCATION: 20-bitaddress

FRAME OF REFERENCE: 20-bitaddress
Meaning
While computing an offset from a base (FRAME OF REFERENCE), LOC86 found
that the REFERENCED LOCATION was more than 64K bytes away from the base.
Cause

This error usually occurs as a result of misuse of the ORDER or ADDRESSES
control. One of the segments of a group is outside the 64K byte physical segment
defined by its group base.

Effect

LOC86 continues processing. The print file will be valid, but the output file with
regard to the out-of-place segment will not be usable.

User Action

Find the symbol that corresponds to the referenced location, and change the
ORDER or ADDRESSES control.

WARNING 30: UNRESOLVED EXTERNAL REFERENCE TO NAME
AT SPECIFIED ADDRESS

NAME: symbol name

SEGMENT: segmentname

ADDRESS: 20-bitaddress
Meaning
There is no public definition for the specified public symbol. There is an unresolved
external reference to that symbol in the specified segment.
Cause

You are locating a module that is not completely linked.

Effect

LOC86 continues processing with no side effects. The print file will be valid, and
except for the unresolved references the object file should be executable.

User Action

No action is necessary if the unresolved reference is known. Otherwise, you must
relink and resolve the external reference.

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

WARNING 31: UNRESOLVED EXTERNAL REFERENCE TO NAME NEAR
SPECIFIED ADDRESS
NAME: symbol name
SEGMENT: segment name
ADDRESS: 20-bitaddress
Meaning
There is no public definition for the specified public symbol. There is an unresolved
external reference to that symbol in the specified segment.
Cause

You are locating a module that has not been completely linked.

Effect

LOC86 continues processing with no side effects. The print file will be valid, and
except for the unresolved references the object file should be executable.

User Action

No action is necessary if the unresolved reference is known. Otherwise, you must
relink to resolve the external reference.

WARNING 32: OVERFLOW OF LOW BYTE FIXUP VALUE
MODULE: module name
REFERENCED LOCATION: 20-bitaddress
FRAME OF REFERENCE: 20-bitaddress

Meaning

An 8-bit displacement value, when calculated, exceeded 255.

Cause

This type of error often occurs when a page resident segment crosses a page
boundary. '

Effect

LOC86 continues processing. The contents of both the print file and the object file
will be valid. However, the fixup value will remain invalid.

User Action

Find the symbol that corresponds to the REFERENCED LOCATION and organize
your segments so that the addressing error will not be encountered.

LOCS86 Controls and Error Messages iAPX 86,88 Family Utilities

WARNING 33: GROUP HAS NO CONSTITUENT SEGMENTS
GROUP: groupname

Meaning

The group has no segments and is not placed in the output object file.

Cause

Often this is the result of a typographical error in the invocation line. However, it
may be a linking error that has not shown up until now.

Effect

LOC86 continues processing with no side effects.

User Action

Unless there is some particular need for the specified group, no user action is
necessary.

ERROR 34: SPECIFIED CLASS NOT FOUND IN INPUT MODULE
CLASS: class name
Effect
LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.
User Action

Find the module that contains the specified class and link it into the module to be
located.

ERROR 35: SPECIFIED SEGMENT NOT FOUND IN INPUT MODULE
SEGMENT: segmentname
CLASS: class name

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Find the module that contains the specified segment and link it into the module to be
located.

G-16

iAPX 86,88 Family Utilities

WARNING 36: SEGMENTS OVERLAP
SEGMENT: segment name
SEGMENT: segmentname
LOW OVERLAP ADDRESS: 20-bitaddress
HIGH OVERLAP ADDRESS: 20-bitaddress
Meaning

The two segments overlap in the specified address range.

Cause

This can be caused by any number of things: mistake in the SEGSIZE control,
misuse of ADDRESSES, or two absolute segments that overlap.

Effect

LOC86 continues processing the input module. The print file is valid, and the object
file, with the exception of the overlap, should be usable.

User Action

If overlap was intended, no action is necessary. Otherwise, depending on the cause
of the message, it may be necessary to relocate or even modify the source, and
retranslate, relink, and relocate.

ERROR 37: INPUT MODULE EXCEEDS 8086 MEMORY
SEGMENT: segment name
Meaning

While attempting to locate the specified segment, LOCS86 ran out of available 8086
address space.

Cause

Although it is possible to write a program that uses a full megabyte of memory, this
error usually results from an error in the arguments to the RESERVE control.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined. .

User Action

Examine the RESERVE control. If, in fact, your program requires more than
1,048,576 bytes of memory, try optimizing with ASM86 or use overlays.

LOC86 Controls and Error Messages

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

WARNING 38: SEGMENT WITH MEMORY ATTRIBUTE NOT PLACED
HIGHEST IN MEMORY
SEGMENT: segment name
Meaning

The specified memory segment was not located at the highest address in memory.

Cause

This can only occur when you explicitly request this organization through the
ORDER or ADDRESSES control, or when you implicitly request it by assigning
another segment to the top of memory.

Effect

Since this can only occur by user request, LOC86 continues processing without side
effects.

ERROR 39: NO MEMORY BELOW SEGMENT FOR SPECIFIED SEGMENT
SEGMENT: segment name
SEGMENT: segmentname

Meaning

In the ORDER control you have requested that the first segment be located below
the second segment. LOC86 found that there is not enough memory to maintain this
order.

Cause

This error can only occur when one of the segments in an ORDER control is
absolute. The absolute segment is not necessarily either of the segments specified in
the command.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action
Modify the order control.

iAPX 86,88 Family Utilities LOCS86 Controls and Error Messages

WARNING 40: CANNOT MAINTAIN SPECIFIED ORDERING
SEGMENT: segmentname

Meaning
LOCR86 cannot locate all of the segments in the ORDER contro! consecutively.

Cause

This is usually caused by specifying absolute segments in the ORDER control or by
specifying the same segments in ORDER and ADDRESSES. The conflict might not
be immediately obvious. For example, the specified segment may be specified in the
ORDER control by its segment name and specified in the ADDRESSES control by
its class name.

Effect

LOCS86 continues processing. The print and object files are valid. However, the
requested segment ordering is not maintained.

User Action

Carefully examine your invocation line to find the conflict and relocate the input
module.

ERROR 41: SPECIFIED CLASS OUT OF ORDER
CLASS: class name

Meaning
The ORDER control and ADDRESSES control for the specified class disagree.

Cause

Either you have assigned an address to the specified class or one of its constituent
segments, or the translator has made one of its constituent segments absolute. In
either case, the ORDER control cannot be realized.

Effect

LOCS86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action
Modify the ADDRESSES control or modify the ORDER control.

LOCS86 Controls and Error Messages iAPX 86,88 Family Utilities

ERROR 42: SPECIFIED SEGMENT OUT OF ORDER
SEGMENT: segmentname
Meaning
The ORDER control and ADDRESSES control for the specified segment disagree.

Cause

Either you have assigned an address to the specified segment or the translator has
made the segment absolute. In either case, the ORDER control cannot be realized.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Modify the ADDRESSES control or modify the ORDER control.

ERROR 43: ADDRESS FOR CLASS SPECIFIED MORE THAN ONCE
CLASS: classname
Cause

This is often caused by a typographical error or some other mechanical error while
entering the invocation line.

Effect

LOCS86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and reinvoke LOC86 correctly.

ERROR 44: SEGMENT ADDRESS PREVIOUSLY SPECIFIED IN INPUT
MODULE OR COMMAND LINE
SEGMENT: segmentname
CLASS: classname
Cause
Either the specified segment is absolute or it has been listed twice in the same
ADDRESSES control.
Effect
LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.
User Action

Examine the invocation line. If the translator has made it an absolute segment,
either use the translator-assigned address or retranslate the segment.

G-20

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

ERROR 45: SEGMENT SPECIFIED MORE THAN ONCE IN ORDER
SEGMENT: segmentname
CLASS: class name

Cause

This error can be caused by either of two errors in the invocation line. You have
simply specified the same segment twice in the ORDER control.

Effect

LOCB86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and ORDER control and reinvoke LOC86.

ERROR 46: CLASS SPECIFIED MORE THAN ONCE IN ORDER
CLASS: class name

Cause

You have specified the same class more than once in the same ORDER control.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and reinvoke LOC86 correctly.

ERROR 47: SPECIFIED SEGMENT NOT IN SPECIFIED CLASS
SEGMENT: segmentname
CLASS: class name

Cause

This error is usually caused by a typographical error in the arguments to an ORDER
control.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and reinvoke LOCS86 correctly.

G-21

LOCS86 Controls and Error Messages iAPX 86,88 Family Utilities

G-22

ERROR 48: INVALID COMMAND LINE

Meaning

LOCS86 has encountered an end-of-file or an I/O error while reading the invocation
line.

Cause

You probably terminated the invocation line in the middle of a control argument.
Most likely you forgot to type the ampersand before you typed the carriage return.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and reinvoke LOC86 correctly.

WARNING 49: SEGMENT ALIGNMENT NOT COMPATIBLE WITH
ASSIGNED ADDRESS

SEGMENT: segmentname
Meaning
The alignment attribute does not agree with the address specified in the
ADDRESSES control.
Effect
LOCR86 ignores the address assignment and treats the segment as any other
relocatable segment.
User Action

If the address that LOCR86 assigns is satisfactory, then no action is necessary. Other-
wise, examine the print file and assign an address that will agree with the alignment
attribute.

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

ERROR 50: INVALID COMMAND LINE; TOKEN TOO LONG
ERROR IN COMMAND LINE NEAR #:
partial command tail
Meaning

An invocation line ‘‘token’’ is impossibly long. A token is a series of characters that
are not broken by a parenthesis, a comma or a blank (space, carriage-return, line-
feed or tab). Tokens are syntactic units used in invocation line parsing. Depending
on how it is used, a token can be a control word, a symbol name, a segment name, a
filename, etc.

Cause

This is often the result of a typographical error in the invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and reinvoke LOCS86 correctly.

WARNING 51: REFERENCING LOCATION IS OUTSIDE 64K FRAME OF
REFERENCE
MODULE: module name
ADDRESS: 20-bitaddress
FRAME OF REFERENCE: 20-bitaddress
Meaning

The address of a self-relative reference lies outside of the 64K frame of reference of
the jump or call. This error occurs while locating the module containing the self-
relative instruction.

Cause
This error occurs as a result of misuse of the ORDER or ADDRESSES control.

Effect

LOC86 continues processing. The print file is valid, but the object file with respect
to the module containing the self-relative reference is not executable.

User Action

Examine the locate map and reinvoke LOC86 modifying your ORDER and
ADDRESSES control to correct the error.

G-23

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

WARNING 52: REFERENCED LOCATION OUTSIDE 64K FRAME OF
REFERENCE
MODULE: module name
REFERENCED LOCATION: 20-bitaddress
FRAME OF REFERENCE: 20-bitaddress
Meaning

The target of a self-relative reference lies outside of the 64K frame of reference of
the jump or call. This error occurs while locating the module containing the target of
a self-relative instruction.

Cause

This error occurs as a result of misuse of the ORDER or ADDRESSES control.

Effect

LOC36 continues processing. The print file is valid, but the object file with respect
to the module containing the self-relative reference is not executable.

User Action

Examine the locate map and reinvoke LOC86 modifying your ORDER and
ADDRESSES control to correct the error.

WARNING 53: CANNOT ALLOCATE CLASS AT SPECIFIED ADDRESS
ADDRESS: 20-bitaddress
CLASS: class name

Meaning

The specified class cannot be located at the address requested. This is the result of a
conflict with another address assignment, or an absolute segment, or an address less
than 200H.

Effect

LOCS86 assigns the class to the nearest address that will not cause conflict. LOC86
continues processing, and both the print and object file are valid.

User Action

If the alternate address suits your purpose, then no action is necessary. Otherwise,
examine the locate map and modify your invocation line.

G-24

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

ERROR 54: DATA ADDRESS OUTSIDE SEGMENT BOUNDARIES
SEGMENT: segment name
MODULE: module name
Meaning
One of the data records associated with the specified segment contains an address
outside of the segment’s boundary.
Cause

This error can occur when you assign an address or an order to an absolute segment,
or a size to a segment. Under some circumstances this can be the result of a linkage
or translation error.

Effect

LOCR86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action
Change the ADDRESSES, ORDER, or SEGSIZE control and relocate.

WARNING 55: UNDEFINABLE SYMBOL ADDRESS
SEGMENT: segment name
MODULE: module name

Meaning

A local symbol, line number, or public symbol has been found in the specified seg-
ment that is addressed relative to the specified group’s base address. However, the
segment containing the symbol is not within the 64K frame of reference that is
defined for that group.

Cause

This is usually the result of an address assignment error in the invocation line.

Effect

LOCS86 continues processing with no other side effects. The print file and object files
are valid. However, you cannot use the symbols contained in the specified segment.

User Action

Examine the invocation line and reinvoke LOCS86.

G-25

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

WARNING 56: SEGMENT IN RESERVE SPACE
SEGMENT: segment name
Cause

Either an absolute segment uses the area reserved in the invocation line or you
assigned an address to a segment or class that forces the specified segment to be
located in the reserved area.

Effect

The specified segment is located in the reserved area, and LOC86 continues process-
ing with no other side effects. Both the print file and object file are usable.

User Action

If the assigned address is acceptable for the segment, no action is necessary.

ERROR 57: INVALID GROUP NAME
ERROR IN COMMAND TAIL NEAR #:
partial command tail.

Meaning

LOCS86 was expecting a group name when it found a token that did not correspond
to a valid group name. LOCS86 repeats the invocation line up to the point of the
error.

Cause

This is often caused by a typographical error in the invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and reinvoke LOCS86 correctly.

ERROR 58: SPECIFIED GROUP NOT FOUND IN INPUT MODULE
GROUP: group name

Cause

This is often caused by a typographical error in the invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line to LOC86 and the link map for the input module.
Reinvoke LOCS86 correctly.

G-26

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

ERROR 59: GROUP ADDRESS PREVIOUSLY SPECIFIED IN INPUT
MODULE OR COMMAND LINE
GROUP: group name

Cause

Either you gave a single group an address twice in the same ADDRESSES control or
the group already had an address (due to a previous locate).

Effect

LOCB86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and either use the previously assigned address or assign
the group one address per ADDRESSES control.

WARNING 60: REFERENCED LOCATION IS NOT WITHIN 32K OF
SPECIFIED ADDRESS
MODULE: module name
REFERENCED LOCATION: 20-bitaddress
FRAME OF REFERENCE: 20-bitaddress

Meaning

An 8089 self-relative reference is not within 32K bytes of its target address.

Cause

Either with the ORDER or ADDRESSES control you have separated the reference
from its target or the 8089 segment is too large.

Effect

LOCS86 leaves the invalid reference and continues processing with no other side
effects. Both the print file and the object file will be valid.

User Action

Examine the invocation line and reinvoke LOCS86 correctly.

ERROR 61: OVERLAY ERROR

Meaning

An internal LOC86 error has occurred.

User Action

Contact Intel immediately.

G-27

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

WARNING 62: CS AND IP REGISTERS NOT INITIALIZED

Meaning

This warning occurs when INITCODE is specified and the input register initializa-
tion record does not specify intialization of the 8086 code segment (CS) register and
the 8086 instruction pointer (IP) register.

Cause

This condition is usually the result of an incomplete END directive in your assembly
language module or a translation error.

Effect

The values of CS and IP at the beginning of program execution are completely
dependent on the loader of your system.

User Action

Invoke LOC86 with the START control if desired.

WARNING 63: SS AND SP REGISTERS NOT INITIALIZED

Meaning

The INITCODE control was specified, but the register initialization record does not
contain information for initialization of stack segment (SS) and stack pointer (SP)
records.

Cause

This condition is usually the result of an incomplete END directive in your assembly
language modulé or a translation error.

Effect

The values of SS and SP at the beginning of program execution are entirely depen-
dent on the loader of your system.

User Action

If you will need to use the stack, retranslate your code, then relink and relocate.

G-28

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

WARNING 64: DS REGISTER NOT INITIALIZED

Meaning

INITCODE was specified, but the data segment (DS) register initialization record is
incomplete.

Cause

This condition is usually the result of an incomplete END directive in your assembly
language module or a translation error.

Effect

The value of the CS register at program execution is entirely dependent on the
system loader.

User Action
Correct your code if necessary, then reinvoke LINK86 and LOCS86.

WARNING 65: SEGMENT ORDER IN ORDER-CONTROL CANNOT BE
MAINTAINED
SEGMENT: segmentname
Meaning

The ADDRESSES and ORDER control specifications for a segment are in conflict
and/or the segment cannot be allocated space in accordance with the ORDER
control.

Effect

The conflicting segment is allocated space after all other segments in the target 8086
memory.

User Action

If desired, reinvoke LOCS86, using the appropriate ADDRESSES and ORDER
controls.

G-29

LOCS86 Controls and Error Messages iAPX 86,88 Family Utilities

WARNING 66: START ADDRESS NOT SPECIFIED IN OUTPUT MODULE

Meaning
The CS (code segment) and IP (instruction pointer) registers are not initialized.

Cause

The input module does not have an explicit start address, and the START control
was not specified.

Effect

The values of these registers upon initial program execution are entirely dependent
on the loader. ’
User Action

Either reinvoke LOC86 using the START control or relink to include a main
module.

G-30

APPENDIX H
OH86 ERROR MESSAGES

The following are descriptions of all OH86 error and warning messages. The
description of each message has up to four parts:

® Meaning—how to interpret the message

e Cause—the usual reason for the error or warning condition

o Effect—the state of OH86 and the object file(s) after the message is issued
e User Action—what you can do to correct the condition

Not all these parts are given for each message. However, parts excluded are self-
explanatory.

Error messages are always fatal, but warning messages are not. In the event of a
warning, read the EFFECT of the warning carefully to determine whether the
resulting code is valid.

Error and warning messages are displayed at the console device.

pathname, PREMATURE END-OF-FILE ENCOUNTERED

Meaning

OHB86 has scanned the entire input file without finding the record that signals the
end of the module.

Cause

There is a transcription error in the specified file.

Effect

OHB86 immediately terminates processing and closes all open files. The contents of
the output file are undefined.

User Action

Return to the last step in the program development process that did not generate this
error and relocate, relink, or even retranslate.

OHB86 Error Messages iAPX 86,88 Family Utilities

pathname, EXPECTED MODULE HEADER NOT FOUND

Meaning

The first record in the input file was not a module header record.

Cause

This is usually caused by specifying an input file that does not contain an 8086 object
module.

Effect

OHB86 immediately terminates processing and closes all open files. The contents of
the output file are undefined.

User Action

Check the invocation line; if you specified the input file incorrectly, then reinvoke
OH86 more carefully. Otherwise, return to the last step in the program development
process and reexecute.

pathname, ILLEGAL RELOCATION RECORD ENCOUNTERED

Cause

This error occurs whenever you specify a non-absolute 8086 object module as the
input file.

Effect

OHB86 immediately terminates processing and closes all open files. The contents of
the output file are undefined.

User Action
Locate the object module with LOC86 before reinvoking OH86.

pathname, INSUFFICIENT MEMORY TO PROCESS DATA RECORD

Meaning

There is insufficient memory in your system for OH86 to process your input file.

Cause

You are trying to convert a file that is too complex for the available memory in your
system.

Effect

OHB86 immediately terminates processing and closes all open files. The contents of
the output file are undefined.

User Action

Expand the memory on your system.

iAPX 86,88 Family Utilities OHB86 Error Messages

pathname, TLLEGAL REGISTER INITIALIZATION RECORD ENCOUNTERED

Cause

Your input module contains a register initialization record.

Effect

OHB86 immediately terminates processing and closes all open files. The contents of
the output file are undefined.

User Action
Relocate with INITCODE in effect.

pathname, TLLEGAL OVERLAY INFORMATION ENCOUNTERED

Cause

You attempted to convert a file containing overlay information.

Effect

OHB86 immediately terminates processing and closes all open files. The contents of
the output file are undefined.

User Action

If overlays are necessary, create root and overlay in separate files.

H-3

APPENDIX |
ADDITIONAL INFORMATION
FOR INTELLEC® SERIES Il USERS

Environmental Considerations

The iIAPX 86,88 Family utilities run on and can be used to produce code executable
on the Intellec Series 111 Microcomputer Development System. Resulting code is also
compatible with the ICE-86 Emulator and DEBUG-86.

The following conventions of the Series Il operating system (ISIS-1I) are
encountered in running the utilities:

® The utilities must be executed when the Series III is in the 8086 mode. This
operating mode is activated by entering the RUN command, either in conjunc-
tion with a utility program invocation or by itself (to enter the ‘“‘interactive’’
8086 mode):

tF1:L0C86 :F3:MYPROG.LNK<cr>

pd:F1:L0C86 :F3:MYPROG.LNK<cr>

e The :Fn: portion of the pathname is the Series III directory-name. In this
configuration, the directory-name is the equivalent of a device name, the device
on which the filename is located. If the file is located on the system disk (:FO:),
the directory-name may be omitted from the pathname.

e Continuation lines are necessary when a command or invocation will not fit on
one line. The following example illustrates the line-end conventions to use and
the continuation characters to expect:

MLINK86 :F3:TEST.0BJ,SMALL.LIB,USER.LIB &<cr>
70 :F3:TEST.86 BIND<cr>
>

e The LIB86 utility presents an exception to these prompt conventions. Because
this program is interactive, it has its own prompts:

mRUN LIB&6<cr>

SERIES-III 8086 LIBRARIAN Vx.y
JJADD :F1:SEC.LNK, :F1:CSC.LNK,

Gl : F1:TAN.LNK TO TRIG.LIB<cr>
*

&<er>

The following table defines compatible software version combinations.

I1S1S-l I1S1S-11(D)
V1.0 or later
V4.0 V4.1 V4.2
RUN — V1.0 V1.0 V1.3 V1.2 V1.3
Vi1 Vii or later or later
V1.2
LINK86 — V1.0 V1.0 V2.0 V1.0 V2.0
or later or later
CREF86 — V1.0 or later
LI1B86 — V1.0 or later
LOC86 — V1.0 or later
OH86 — V1.0 or later

Change 1 I-1

Additional Information for Intellec Series 111 Users iAPX 86,88 Family Utilities

I-2

Related Publications

The following manuals may be helpful during various aspects of your work with
iAPX 86,88 utilities on the Series 111:

Intellec Series III Microcomputer Development System Product Overview,
order number 121575

IAPX 86,88 User’s Manual, order number 210201

Intellec Series III Microcomputer Development System Console Operating
Instructions, order number 121609

Intellec Series III Microcomputer Development System Programmer’s
Reference Manual, order number 121618

PASCAL-86 User’s Guide, order number 121539

PL/M-86 User’s Guide, order number 121636

ASM86 Language Reference Manual, order number 121703

ASM86 Macro Assembler Operator’s Manual, order number 121628
8089 Macro Assembler User’s Guide, order number 9800938
FORTRAN-86 User’s Guide, order number 121570

Program Development Examples

The following examples are programming problems solved by using one or more of
the iIAPX 86,88 utilities on the Series 111 to develop code for an 8086-based host.

Example 1: Preparing to Use DEBUG-86

There are only two steps to preparing your code for execution: translating the code,
then linking it with BIND.

First you must translate your code. Any of the 8086 translators will work. An
example of one such translation is shown below:

mRUN PLM86

tF6:TEST.SRC DEBUG SMALL<cr>

Once the program has been translated, you must then link the program with the
BIND control. LINK86 with BIND produces an LTL module — the loader assigns
addresses to the LTL modules at load time. This operation can be performed by the
8086 loader, RUN. The operation and control of both of these programs is given in
the Intellec Series III Microcomputer Development System Console Operating
Instructions.

The invocation line for LINK86 when linking the program shown above might
appear as follows:

BRUN LINK86 :F6:TEST.O0BJ,
by : F6:SMALL.LIB TO

tF6:UTILS.0BJ, &<cr>

tF6:TEST.86 BIND<Lcr>

In the above example note that all of the symbol information (LINES, SYMBOLS,
PUBLICYS) is left in the output object file. This will aid you while debugging your
program. DEBUG-86 uses the symbol information to produce diagnostic informa-
tion on the program.

This information is also included in the symbol table. Figure I-1 shows the print file
from the invocation above.

iAPX 86,88 Family Ultilities

Additional Information for Intellec Series III Users

The libraries specified resolve all of the external references in TEST.OBJ.

After the above linkage, the program can be executed with the following command

to the Series 1II:

MRUN DEBUG :F6:TEST.86<cr>

SERIES-1

INPUT FI

OUTPUT F

CONTROLS
BIND

11 8086 LINKEK, Vry

LES: :F6:TEST.OBJ, :Fb:UTILS.OBJ, :F6:SMALL.LIB

ILE: :F6:TEST.86
SPECIFIED IN INVOCATION COMMAND:

DATE: MM/DD/YY TIME:

LINK MAP OF MODULE ROOT
LOGICAL SEGMENTS INCLUDED:
LENGTH ADDRESS ALIGN SEGMENT CLASS OVERLAY
0351H ------ W CODE CODE
0014H - W CONST CONST
0196H - W DATA DATA
03F8H - W STACK STACK
0000H - W MEMORY MEMORY
0000H ====== G ??SEG
INPUT MODULES INCLUDED:
:F6:TEST.0BJ (RUOT)
tF6:UTILS.0BJ(UTILITIES)
:Fb:SMALL.LIB(DQATTACH)
$F6:SMALL .LIB(DQCLUSE)
:F6:SMALL .LIB(DQCREALE)
/
GROUP MAP
GROUP NAME: CGROUP
OFFSET SEGMENT NAME
0000H CODE
GROUP NAME: DGROUP
OFFSET SEGMENT NAME
0000H CONST
CO14H DATA
01AAH STACK
05A2H MEMORY
SYMBOL TABLE OF MODULE ROOT
BASE OFFSET TYPE SYMBOL BASE OFFSET TYFE SYMBOL
a(2) 0164H PUB BINDCONTROL G(2) 004AH PUB BNODEBASE
G(2) 0016H PUB BUFBASE a(2) 0014H PUB BUFLEN
a(2) 0U4CH PUB CLASHNODEBASE a(2) 005EH PUB COCONN
a(2) 0158H PUB COMMENTSCONTROL G(2) 016FH PUB CURRENTOVERLAYNU
-M
a(2) 0171H PUB DEBUGTOGGLE G(2) 00A5H PUB DEFAULTPRTFILENA
-ME
]
MODULE NAME = ROOT
' BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
G(2) 05A2H SYM MEMORY G(2) 0000H SYM COPYRIGHT
G(2) 0014H SYM BUFLEN G(2) 0016H SYM BUFBASE
G(1) O00FTH SYM ERROR G(1) OOFEH SYM WARNING
G(2) 0018H SYM LASTNMNODEP G(2) 001AH SYM FIRSTNMNODEP
G(2) 001CH SYM LASTSGNODEP G(2) 001EH SYM FIRSTSGNODEP
G(2) 0020H SYM LASTTDNODEP G(2) 0022H SYM FIRSTTDNODEP
G(2) 0024H SYM LASTEXNODEP G(2) 0026H SYM FIRSTEXNODEP
\\‘/
G(1) 00AbH LIN 141 G(1) 00B3H LIN 143
G(1) 00BEh LIN 144 G(1) 00C8H LIN 145
G(1) COCFH LIN 146 G(1) 00D2H LIN 148
G(1) 00DDh LIN 149 G(1) O00E7H LIN 150
G(1) OOEEH LIN 152 G(1) COFSH LIN 153
REFERENCES TO SEGMENT BASES EXIST IN INPUT MODULES:
ROOT

Figure I-1. LINKS86 Print File for Bound Object Module

Additional Information for Intellec Series III Users

iAPX 86,88 Family Utilities

Although we do not recommend it, it is possible to execute an absolute object
module with DEBUG-86. However, the module must be located in free user
memory. DEBUG-86 uses the address from OFCO00H to OFFFFFH, and RUN uses
the address from 00H to 77FFH. All other memory is available. However, if your
system does not have a full megabyte of memory, there may be other areas that must
be reserved. You can use the RESERVE control to prevent LOC86 from using these

are¢as.

The following invocation line is an example of how :F6:TEST.86 might be located;
although :F6:TEST.86 has been bound, programs that are to be located for execu-
tion on the Series I1I need not be bound:

QRUN LOC86 :F6:TEST.86 RESERVE(OOH TO 77FFH,0FCO000H &<cr>
bR4TO OFFFFFH)<cr>

The print file produced from the above invocation is shown in figure I-2.

DATE:

SERIES-III 8086 LOCATER,

INPUT FILE:
OUTPUT FILE:
CONTROLS SPECIFIED IN INVOCATION COMMAND:

RESERVE(OOR TO 77FFH,0FCOO0H TO OFFFFFH)
MM/DD/YY

Vx.y

:Fb:TEST.86
:FOo:TEST

TIME:

SYMBOL TABLE OF MOOULE ROOT

BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
07B8H 014CH PUB BINDCONTROL 07B8H 0032H PUB BNODEBASE
07B8H 0034H PUB CLASHNODEBASE 07B8H 0046H PUB COCONN
07B8H 0140H PUB COMMENTSCONTROL 07BbH 0157H PUB CURRENTOVERLAYNU
-M
07B8H 0159H PUB DEBUGTOGGLE 07B8&H 008DH PUB DEFAULTPRTFILENA
-ME
07B8H O048H PUB EXCEPTION 07B8H 002EH PUB FANODEBASE
07B8H 0054H PUB FBLOCKBASE 07B8H 0050H PUB FBLOCKLISTHEAD
07B8H 0052H PUB FBLOCKLISTTAIL 07B&H 0123H PUB FBLOCKSEQUENCENU
-jiii—_—__—_———“‘J
MEMORY MAP OF MODULE ROOT
MODULE START ADDRESS PAKRAGRAPH = O811H OFFSET = 0006H
SEGMENT MAP
START STOP LENGTH ALIGN NAME CLASS OVERLAY
07800H 07B7CH 0370H M CODE CODE
07B8OH 07B8OH 0000H M CONST CONST
07BbOH 07D11H 01921 M DATA DATA
07D12H 06109H 03FbH M STACK STACK
0810AR 0810AH 0000H M MEMORY MEMORY
08110H 06128H 0019n G ??LOCOWO6_INITCO CODE
-DE
08130H 0813048 0oo0H G ?2SEG
GROUP MAP
ADDRESS GROUP OR SEGMENT NAME
07800H CGROUP
CODE
07B8OH DGROUP
CONST
DATA
STACK
MEMORY

Figure I-2. LOCS86 Print File for Bound Object Module

I-4

iAPX 86,88 Family Utilities Additional Information for Intellec Series IIT Users

Example 2: Preparing to Use an ICE-86 System

Another way to test and debug software is using in-circuit emulation (ICE) system.
The ICE-86 loader can load only absolute object modules. Therefore, you cannot
use the output from LINK86 immediately; it must be located too.

The whole process of preparing a program for ICE-86 execution takes three steps.
The first two are the same as in Example 1: the program must be translated and

linked:
MRUN PLM86 :F6:ICETST.SRC SMALL<cr>
SRUN LINK86 :F6:ICETST.OBJ,:F6:SMALL.LIB<Lcr>

The above example shows a straightforward linkage with no change to the default
control setting. Note that NOOVERLAY and NOBIND, the defaults, are set. The
ICE-86 loader has no facility for dealing with overlay modules created by using the
LINK86 OVERLAY control. In this case there are no unresolved external references
in the object module. If the module did contain unresolved references, it could still
be executed by the ICE-86 system. However, as with execution under DEBUG-86,
executing instructions that contain unresolved references will produce undefined
results.

Figure I-3 shows the print file produced during the invocation shown above.
LINK86 does not produce a symbol table with NOBIND is in effect.

The last step before ICE-86 execution is transforming the relocatable object module
into an absolute object module with LOC86. The invocation line shown below
would produce an object file that could be loaded and executed by the ICE-86
Emulator:

MRUN LOC86 :FO6:ICETST.LNK<cr>

SERIES-1I1 8086 LINKER, vxy

INPUT FILES: :F6:ICETST.0BJ, :F6:SMALL.LIB
QUTPUT FILE: :F6:ICETST.LNK

CONTROLS SPECIFIED IN INVOCATION COMMAND:
DATE: MM/DD/YY TIME:

LINK MAP OF MODULE LOANER

LOGICAL SEGMENTS INCLUDED:

LENGTH ADDRESS ALIGN SEGMENT CLASS OVERLAY
037DH ~====- w CODE CODE

0000H --=---- w CONST CONST

0192H -==--- w DATA DATA

O3F8H ==~==~- W STACK STACK

0000H -====- W MEMORY MEMORY

0000H -=-=-- G ??SEG

INPUT MODULES INCLUDED:
:F6:ICETST.O0BJ(LOANER)
$F6:SMALL.LIB(DQATTACH)
:F6:SMALL.L1B(DQCLOSE)
:F6:SMALL LIB(DQCREATE)
:F6:SMALL.LIB(DQDETACH)
:F6 :SMALL .LIB(DQEXIT)
:F6:SMALL.LIB(DQGETSYSTEMID)
:F6:SMALL .LIB(DQOPEN)
:1F6:SMALL.LIB(DQOVERLAY)
:F6:SMALL.LIB(DQWRITE)

:F6 :SMALL.LIB(SYSTEMSTACK)

Figure I-3. LINK86 Default Print File

I-5

Additional Information for Intellec Series III Users

iAPX 86,88 Family Utilities

This invocation line shows LOC86 invoked with the default control setting. Note
that the INITCODE control is in effect by default.

The PL/M-86 program ICETST.SRC is ready for execution on an ICE-86 system.

Example 3: Using CREF86

Figure 1-4 illustrates a CREF86 cross-reference listing for an input list of 15 files,
one of which contains several modules. The output print file pathname OUT and a
title for the listing were specified in the controls. Although PAGEWIDTH (PW) and
PAGELENGTH (PL) specifications were also noted in the controls, the numbers
specified are the same as those provided by default.

CREF86 EXAMPLE OF CROSS REFERENCE USING CREF86

SERIES-III CREF86 wvxy

INPUT FILES: :F1:RO0T.0BJ :F1:PARSE.OBJ
:F1:MEMMAN.OBJ
:F1:SORT.OBJ

ouT

$F1:UDSMA .LNK
OUTPUT FILE:
CONTROLS SPECIFIED:

MODULES INCLUDED:

:F1:SCANNR.OBJ

MM/DD/YY

:F1:SIGNON.OBJ
{F1:PROCES.OBJ
COMPAC.LIB

:F1:STATE.OBJ
$F1:SCUTIL.OBJ

PR(OUT) TT(EXAMPLE OF CROSS REFERENCE USING CREF56) PW(120) PL(60)

:F1:ERROR.OBJ
:F1:LIST.0BJ

PAGE 1

:F1:UTILS.QBJ
¢F1:LSUTIL.OBJ

FILE NAME MODULE NAME(S)
:F1:ROOT,.0BJ: CREF86
:F1:PARSE.OBJ: PARSE
:F1:SIGNON.OBJ: SIGNON
:F1:STATE.OBJ: NEXTSTATE
:F1:ERROR.OBJ: ERROR
:F1:UTILS.OBJ: UTILITIES
:F1:MEMMAN.OBJ: MEMORYMANAGEMENT
:F1:SCANNR.OBJ: SCANMODULES
:F1:PROCES.OBJ: PROCESSRECORDS
:F1:SCUTIL.OBJ: SCANUTILITIES
:F1:LIST.OBJ: LISTOUTPUT
:F1:LSUTIL,OBJ: LISTUTILITIES
:F1:SORT.0BJ: SYMBOLSORT
:F1:UDSMA.LNK: OBJMAN
COMPAC.LIB: DQALLOCATE DQATTACH DQCHANGEEXTENSION DQCREATE DQDECODEEXCEPTION
DQDETACH DQEXIT DQFREE DQGETARGUMENT DQGETSYSTEMID
DQGETTIME DQOPEN DQREAD DQSEEK DQWRITE
SYSTEMSTACK
REF36 EXAMPLE OF CKUSS REFEKENCE USING CREFo6 MM/DDIYY PAGE 2
SIMBOL NAME SYMBOL TYPE DEFINING MODULE; REFERRING MODODLE(S)
ACCESS_PAGE UNKNOWN OBJMAN
ALLOCATE. . . + « UNKNOWN OBJMAN
APPENDNODE. PROCEDURE NEAR UTILITIES
APPENDUDSMNODE. PROCEDURE NEAR UTILITIES; PARSE SCANMODULES PROCESSRECORDS
ARRAYBASE . . .« . . . POINTER SYMBOLSORT; LISTOUTPUT
ATOI. « « . . PROCEDURE WORD NEAR UTILITIES; PARSE
BTOX. . « « « « « « « . . PROCEDURE WORD NEAR UTILITIES; LISTUTILITYIES
BUBBLESORTVARNAMES. . . PROCEDURE NEAR SYMBOLSORT; LISTOUTPUT
BUMPLINECOUNT PROCEDURE NEAR LISTUTILITIES; LISTGUTPUT
CHECKHEADER PROCEDURE NEAR SCANUTILITIES; SCANKODULES
CHECKOVEKLAY . .+ « . . PHOCEDURE NEAR SCANUTILITIES; SCANMGDULES
CHECKVARYYFE, . o . . . PWOCEDURE BYTE NEAR SCANUTILITIES; PROLESSHECUKDS
CREF86 EXAMPLE OF CKROSS REFERENCE USING CREF&6 MM/DD/YY PAGE 6
UNLOAD_PAGE UNKNOWN OBJMAN
VARAKEAP, PUINTER HEMORYMANAGEMENT ; PROCESSRECORDS LISTOUTPUT SYMBOLSORT
VBLOCKL1STHEADEK. WORD PROCESSKECORDS; UTILITIES LISTOUTPUT SYMBOLSORT
WAKNING PROCEDURE NEAR EKROR; SCANMODULES PROCESSRECORDS
WRITEDATA PROCEDURE NEAR LISTUTILITIES; ERROR UTILITIES LISTOUTPUT
WRITEINITLINEBUF. PROCEDURE NEAR LISTUTILITIES; ERROR UTILITIES LISTOUTPUT
WRITELINE PROCEDURE NEAR LISTUTILITIES; LISTOUTPUT
WRITENEWLINE. PROCEDURE NEAR LISTUTILITIES; UTILITIES LISTOUTPUT
WRITETOCOMMANDBUF PROCEDURE NEAR PARSE
WRITETOFILE PROCEDURE NEAR LISTUTILITIES; ERROR LISTOUTPUT
ZERO. . - WORD UTILITIES

Figure I-4. CREF86 Cross-Reference Listing

I-6

iAPX 86,88 Family Utilities Additional Information for Intellec Series 111 Users
Example 4: Building and Using Library Files

A library is a file that contains object modules. Libraries allow you to collect
commonly used pieces of software into one file. The library file can be included in a
LINKS86 invocation,-and LINK86 will use the modules to resolve references.

You can add the output from a translator, LINK86, or LOCS86 to a library. The
modules added may be relocatable or absolute; they can have unresolved references
or be completely linked.

Let’s consider the following scenario — we have created six routines (SINE,
COSINE, TANGENT, COSECANT, SECANT, and COTANGENT). We want to
create a library file that will allow each routine to be linked to programs separately.

The first step necessary to create the library is to translate each routine separately. If
we were to put them in a single source module, the translator would translate them
into one module with six public symbols. We could add this module to a library, but
when we tried to link one of the routines into a program, all six would be included.

Once the routines are translated, LIB86 can be used to create a library file and add
modules. The LIST command is used to display the contents of the library and the
publics contained within it.

RRUN LIB86<Cr>]
SERIES-III 8086 LIBRARIAN Vx.y
(ICREATE TRIG.LIB<cr>
(4ADD :F1:SIN.OBJ,:F1:C0S.08J TO TRIG.LIB<Lcr>
4L IST TRIG.LIB PUBLICS<cr>
:FO:TRIG.LIB
SIN
SINE
cos
COSINE
(ADD :F1:SEC.LNK, :F1:CSC.LNK,
e Ry F1: TAN.LNK TO TRIG.LIB<cr>
4JLIST TRIG.LIB PUBLICS<cr>
:FO:TRIG.LIB
SIN
SINE
€os
COSINE
SEC
SECANT
CsC
COSECANT
coT
COTANGENT
TAN
TANGENT

 ldEXIT<cr>

tF1:COT.LNK, &<cr>

I-7

Additional Information for Intellec Series III Users

I-8

Example 5: Linking and Locating Programs with
Overlays Using OVERLAY Control

The easiest way to build an 8086 program that contain overlays is with LINK86’s
OVERLAY control. Overlay modules built with this control reside in the same file
as the root. The operating system supplies routines that will load the overlays con-
structed in this way. See Intellec Series III Microcomputer Development System
Programmer’s Reference.

After the program modules that will constitute the root and its overlays are
translated, each of the overlays and the root must be linked separately. Then the
root and all of the overlays are linked together.

The example below shows the first step toward linking overlays—linking all of the
modules that will constitute each overlay and the root separately:

mRUN LINK86 OV1.0BJ,0V1A.0BJ,0V1B.0BJ &<cr>
IPJOVERLAY (OVERLAY1) <cr>

mRUN LINK86 OV2A.0BJ,0V2B.0BJ,0V2C.0BJ TO &<cr>
J0V2.LNK OVERLAY(OVERLAYZ2)<cr>

gRUN LINKB6 OV3.08J,0V3A.08J OVERLAY(OVERLAY3)<cr>

mRUN LINKB6 OV4,08BJ,0V4A.0BJ OVERLAY(OVERLAY4)<cr>

BRUN LINK86 ROOT.OBJ,RO0TA.OBJ,RO0TB.OBJ, &<cr>

PISMALL.LIB OVERLAY(ROOT)<cr>

Notice that all of the modules, including the root, are linked with the OVERLAY
and NOBIND controls. The overlay name for the root is not as critical as for the
overlays, since the overlay name is used when calling the loader.

Finally, the overlays and root must be linked together. Since any one of the files
could be the root, LINK86 requires that for the final link the file containing the root
must be first in the input list. During this final the OVERLAY control is not used:

BRUN LINK86 ROOT.LNK, 0V1.LNK,
S 0V4 . LNK TO PROG.86<cr>

0V2.LNK, OV3.LNK, &<cr>

In the invocation, the optional BIND control is specified. The resulting object file is
executable on a Series I11.

Figure I-5 shows the LINK86 print file listing for the above invocation.

There is nothing special about the invocation line to LOC86 when locating a file that
contains overlays or that has been bound:

MRUN LOC86 PROG.86 RESERVE (0H TO 77FFH, &<cr>
MI0FCOO0H TO OFFFFFH)<cr>

The RESERVE control prevents LOC86 from assigning memory addresses reserved
for the operating system. Figure I-6 illustrates the printout from this invocation.

iAPX 86,88 Family Utilities

iAPX 86,88 Family Utilities Additional Information for Intellec Series III Users

SEKIES~IL1I b0Obb LINKER, Vxy

INPUT FILES: ROOT.LNK, OV1i.LNK, OV2.LNK, OV3.LNK, OVA4,LNK
OUTPUT FILE: PROG.86
CONTROLS SPECIFIED IN 1NVOCATION COMMARD:
BIND
DATE: MM/DD/YY TIME:

LINK MAP OF MODULE ROOT

LOGICAL SEGMENTS INCLUDED:

LENGTH ADDRESS ALIGN SEGMENT CLASS OVERLAY
G CODE CODE ROOT
G CONST CONST ROOT
G DATA DATA ROOT

INPUT MODULES INCLUDED:
ROOT.LNK(ROOT)
OV1.LNK(PARSE)
OV2.LNK(ILUDE)
OV3.LNK(PICILUDE)

OV4 . LNK(FASTLOAD)

GROUP MAP

GROUP NAME: CGROUP
OFFSET SEGMENT NAME
0000H CODE\CODE\RQOT
3CE8hH CODE\CODE\P ASS?
3CEbBH CODE\CODE\PASS2

-
]

SYMBOL TABLE OF MODULE ROOT

BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
G(2) 251CH PUB ACTUAL G(2) OFODH PUB ASSUMEROCOTCONTRO
-L

G(2) QF22H PUB BASEFIXUPSEXIST G(2) QFOChH PUB BINDCONTKOL

G(2) OD26H PUB bNODEID G(2) 24EAH PUB BUFBASE

G(2) OD28H PUB CLASHNODEID G(2) OD5AH PUB COCONN

G(2) OFOO0H PUB COMMENTSCONTROL G(2) OF50H PUB CURRENTFILNUM

G(2) OF1AH PUB CURRENTOVERLAYNU G(2) OFBEH PUB CURRENTRECINDEX
-M

4____—————’—‘———

;_____—————’—“—
OVERLAY NAME = ROOT, MODULE NAME = ROOT
BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
G(2) 4A20H SYM MEMORY G(2) 0002H SYM COPYRIGHT
G(2) ODOOH SYM LASTNMNODEID G(2) 0DO2H SYM FIRSTNMNODEID
G(2) ODO4LH SYM LASTSGNODEID G(2) 0DO6H SYM FIRSTSGNODEID
G(2) 0D08H SYM LASTIDNODEID G(2) ODOAH SYM FIRSTTDNODEID
G(2) ODOCH SYM LASTEXNODEID G(2) ODOEH SYM FIRSTEXNODEID
G(2) OD10H SYM LASTGRNODEID G(2) 0D12H SYM FIRSTGRNODEID
G(2) OD14H SYM LASTOVNODEID G(2) 0D16H SYM FIRSTOVNODEID
G(2) OD18H SYM LASTGNODEID G(¢2) 0D1AH SYM FIRSTBNODEID

—_—

OVERLAY NAME = ROOT, MODULE NAME = LIT

BASE OFFSET TYPE SYMBOL BASE OFFSET TYFao SYMBOL

G(2) 4A20H SYM MEMORY G(2) 003CH BAS SGNODE

G(2) OF56H SYM LITBASE G(2) 0F58H SYM LITID

G(2) OF56H BAS LITNODE G(2) OFS5AH SYM FIRSTNODEIDS
G(2) OF64H SYM FIRSTNODE G(2) OF8EH SYM CURRENTRECINDEX
G(2) OF96H SYM TEMPLATE G(2) OFBYH SYM II

G(1) O16EH SYM GETLIT STACK 0006H SYM INDEX

STACK 0O004H sSYM I G(1) 0207H SYM SGLIT

Figure I-5. LINKS86 Listing for Program with Overlays

I-9

Additional Information for Intellec Series III Users iAPX 86,88 Family Utilities

SERIES-I11 80bb LOCAlEK, Vxy
INPUT FILE: PROG.b6
OUTPUT FILE: PROG
CONTROLS SPECIFIED IN INVOCATION COMMAND:
RESERVE(OH TO 77FFH,0FCO00H TO OFFFFrH)
DATE: MM/DD/YY TIME:
SYMBOL TABLE OF MODULE ROOT
BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
1034H 251CH PUB ACTUAL 10348 OFODH PUB ASSUMERCOTCONTRO
=L
1034H OF22H PUB BASEFIXUPSEXIST 10344 OFOCH PUB BINDCONTROL
1034H 0D26H PUB BNODEID 1034H 24EAH PUB BUFBASE
1034H 0D28H PUB CLASHNODEID 1034H ODSAH PUB COCONN
1034H QF00H PUB COMMENTSCONTROL 1034H OF50H PUB CURRENTFILNUM
1034H OF1An PUE CURRENTOVERLAYNU 1034H OF8EH PUB CURRENTRECINDEX
-M
ey
|
e
OVERLAY = ROOT, MODULE = ROOT
BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
1034H 4420H SYM MEMORY 1034H 0002H SYM COPYRIGHT
1034H 0DOOH SYM LASTNMNODEID 10348 0DO2H SYM FIRSTNMNODEID
1034H ODO4H SYM LASTSGNODEID 1034H 0DO6H SYM FIRSTSGNODEID
1034n ODO8H SYM LASTTDNODEID 1034k ODOAH SYM FIRSTTDNODEID
10340 0DOCH SYM LASTEXNODEID 10348 ODOEH SYM FIRSTEXNODEID
1034H OD10H SYM LASTGRNODEID 1034H 0D12H SYM FIRSTGRNODEID
1034H OD14H SYM LASTOVNODEID 1034R OD16H SYM FIRSTOVNODEID
1034H OD18H SYM LASTBNODEID 1034H OD1AH SYM FIRSTBNODEID
1034H OD1CH SYM SGNODEID 1034H OD1EH SYM GRNODEID
IS
e
]
OVERLAY = ROOT, MODULE = LIT
BASE OF FSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
1034H 4A20H SYM MEMORY 1034H 003CH SYM SGNODE
1034H OF56H SYM LITBASE 1034H OF58H SYM LITID
10341 OF56H SYM LITNODE 1034H OF5AH SYM FIRSTNODEIDS
10348 QF64H SYM FIRSTNODE 1034H OFBEH SYM CURRENTKECINDEX
1054H 0F96H SYM TEMPLATE 10344 OFB9H SYM Il
07804 010EH SYM GETLIT STACK 0006H SYM INDEX
STACK 0004H S5YM I 07b0H 0207H SYM SGLIT
e
s
MEMORY MAP OF MODULE ROOT
MODULE START ADDRESS PARAGRAPH = 14D6H OFFSLT = 0006n
SEGMENT MAP
START STOP LENGTH ALIGN NAME CLASS OVERLAY
07800H OB4E6H 3CE7H M CODE CODE ROOT
OBUESH OF9BAH 44D 3H M CODE CODE PASS1
OBUESH OEQCEH 2BETH M CODE CODE PASS2
OBUESH 10337H 4ES0H M CODE CODE PIC_PASS2
]
GROUP MAP
ADDRESS GROUP OR SEGMENT NAME
07800H CGROUP
CODE\CODE\ROOT
CODE\CODE\PASS1
CODE\CODE\PASS2
CODE\CODE\PIC_PASS2
CODE\CODE\FASTLOAD
10340H DGROUP
CONST\CONST\ROOT
DATA\DATA\ROOT
STACK\STACK\
"

Figure I-6 LOCS86 Listing for Program with Overlays

1-10

iAPX 86,88 Family Utilities Additional Information for Intellec Series I11 Users

Example 6: Linking and Locating Programs with Overlays
Without OVERLAY Control

It is harder to produce overlay modules without using the OVERLAY control.
However, sometimes it is necessary to build programs in this way, for example,
building a program for running under an operating system that does not support
overlay modules contained in the same file as the root module.

But regardless of the reason, building overlays in this fashion places an extra burden
on the programmer. He must do some of the work that would be left to LINK86
(and LOC86) if he were to use the OVERLAY control. In the following example we
prepare a root and two overlay modules in separate files.

First we must compile all modules. Examples of the invocation lines are shown
below:

MRUN PLM86 :F1:RO0T.SRC SMALL<cr>
mRUN PLM86 :F1:0V1.SRC SMALL<cr>
mRUN PLMB6 :F1:0V2.SRC SMALL<cr>

In the next step we must link the root module to resolve external symbols with a
library and to obtain a link map:

MRUN LINKBG

:F1:R00T.0BJ,USER.LIB MAP<cr>

We will need the link map for locating purposes. The link map, shown in figure 1-7,
shows the size of each segment in the root. Since the overlays are self-contained
except for references to the root, we do not need a link map for them. The PL/M-86
listing files will show the size of each overlay’s segments, as illustrated in figure 1-8.

Note that the length of the root’s code segment and OV1’s code segment must fit
within 64K. This means that the code for the overlays must be in a part of memory
contiguous with the root (to avoid altering the CS register during execution). OV2’s
CONST and DATA segments are larger than OV1’s so that the STACK segment
must be placed to leave room for OV2’s CONST and DATA segments. If the
overlays share the STACK and MEMORY segments with the root, they must be
located at the same address.

SERIES-III 8086 LINKER, vxy

INPUT FILES: :F1:R00T.OBJ,USER.LIB

OUTPUT FILE: :F1:ROOT.LNK

CONTROLS SPECIFIED IN INVOCATION COMMAND:
MAP

DATE: MM/DD/YY TIME:

LINK MAP OF MODULE LOANER

LOGICAL SEGMENTS INCLUDED:

LENGTH ADDRESS ALIGN SEGMENT CLASS OVERLAY
BA9BH ------ w CODE CODE

0381H -~---- W CONST CONST

0291H wm==== w DATA DATA

0030H --==-==- W STACK STACK

0000H =====- W MiEMORY MEMORY

INPUT MODULES INCLUDED:
:F1:RO0T.0BJ(ROOT)
:FO:USEH.LIB(LOADER)
:FO:USER.LIB(EXIT)

:F0:USER.LIB(ERROR)
tFO:USER.LIB(TIME) 4________________—.~,——J

Figure I-7. LINK86 Map for Root File

Additional Information for Intellec Series II1 Users iAPX 86,88 Family Utilities

OV1's segment size information
MODULE INFORMATION:

CODE AREA SIZE = 7531H 30001D this is the CODE segment
CONSTANT AREA SIZE = 0081H 1290 this is the CONST segment
VARIABLE AREA SIZE = 0181H 385D this is the DATA segment
MAXIMUM STACK SIZE = 0040H 640 this is the STACK segment
918 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

_—-—/

0v2's segment size information
MODULE INFORMATION

CODE AREA SIZE = 1B9AH 7066D this is the CODE segment
CONSTANT AREA SIZE = 0101H 257D this is the CONST segment
VARIABLE AREA SIZE = 0454H 11080D this 7s the DATA segment
MAXIMUM STACK SIZE = 0067H 103D this is the STACK segment
918 LINES READ
0 PROGRAM ERROR(S)
END OF PL/M-86 COMPILATION
-
L

Figure I-8. Module Information for Overlays

After computing the required location for the root’s DGROUP and STACK, we can
locate the root module. The resulting file will not be executable, but it allows us to
resolve references to the root’s code and data symbols in the overlays. The following
LOCS86 invocation will leave room for the overlays’ code segments and place the
DGROUP in the first unused memory location. (In the command line below, the DS
register is initialized to OFFCEH, and the CS register is initialized to 0.) The STACK
and MEMORY segments will be located above OV2’s DATA segment:

RUN LOC86 :F1:RO0T.LNK &<cr>
PPIADDRESSES(GROUPS(CGROUP(OH) ,DGROUPC(OFFCEH)), &<cr>

SEGMENTS(CODE(OH) ,CONSTCOFFCEH),STACK(10B34H))) &<cr>
PRJORDER(SEGMENTS(CODE, CONST,DATA,STACK,MEMORY)) &<cr>
PISEGSIZE(STACK(T100H) Y <cr>

Once the root is located, we can use it to resolve external references in the overlay
modules. The overlay modules cannot call each other, since only one is resident in
memory at any time. The link commands are shown below. The NOPUBLICS with
the EXCEPT control is used to avoid conflicts when we use the located overlays to
resolve external references in the root:

:F1:0V1.0BJ,PUBLICSONLY(:F1:R00T) &<cr>

OVIDATA) <cr>

mRUN LINKB6
PRINOPUBLICS EXCEPT(OVICODE,

mRUN LINK86 :F1:0V2.0BJ,PUBLICSONLY(:F1:R00T) &<cr>

pRINOPUBLICS EXCEPT(OV2CODE, OV2DATA) <cr>

The PUBLICSONLY control resolves references to public symbols contained in the
root.

I-12

iAPX 86,88 Family Utilities Additional Information for Intellec Series III Users

After the overlays have been linked, they must be located. The code and data
segments must be placed in the memory locations that were reserved when we first
located the root. In this case the STACK and MEMORY segments must be the same
for the overlays and the root:

mRUN LOC86 :F1:0V71.LNK &<cr>
PPIADDRESSES(GROUPS(CGROUP(OH) ,DGROUP(OFFCEH)), &<cr>
SEGMENTS(CODE(8AYCH) ,CONST(105E0H) ,STACK(10B34H))) &<cr>

MRUN LOCB6 :F1:0V2.LNK &<cr>

' SEGMENTS(CODE(8A9CH) ,CONST(105EQH) ,STACK(10B34H))) &<cr>
PPJORDER (SEGMENTS (CODE,CONST,DATA,STACK,MEMORY)) &<cr>
PRASEGSIZE(STACK(100H)) <cr>

The CGROUP and DGROUP base address must be specified in order to compute
offset information. The final base address assigned to DGROUP by LOC86 will be
rounded up to OFFDOH.

Once the overlays are located, the root is linked and located into an executable form.
The PUBLICSONLY control will resolve references to symbols in the overlay
modules. Other than the addition of this input control, the LINK86 and LOC86
command must be identical to those used previously:

MRUN LINK86 :F1:R00T.OBJ,USER.LIB, &<cr>
PPUBLICSONLY(:F1:0V1,tF1:0V2)<cr>

MRUN LOC86 :F1:ROOT.LNK &<cr>

IPIADDRESSES (GROUPS(CGROUPCOH) ,DGROUP(OFFCEH)), &<cr>

SEGMENTS(CODECOH) ,CONSTC(OFFCEH) ,STACK(10B34H))) &<cr>
IPORDER (SEGMENTS(CODE,CONST,DATA,STACK, MEMORY)) &<cr>
PRASEGSIZE(STACK(100H))<cr>

The executable forms of the root and its overlay files are contained in :F1:ROOT,
:F1:,0V1, and :F1:0V2. Figure 1-9 shows the resulting layout of memory.

L LO<———C5
ROOT CODE
T SPACE T
8A9B
8A9C
N OVERLAY R
' CODE T
SPACE
OFFC0O ««———DS.SS
OFFCE
R ROOT DATA r
SPACE
105DF
105E0
N OVERLAY
r DATA ~
SPACE
10B33
10834
o STACK AREA W:
10C33
10C34 ®———-gp
MEMORY
\|'* A
Figure I-9. Memory Organization for Example 6 121616-10

I-13

Additional Information for Intellec Series III Users iAPX 86,88 Family Ultilities

Example 7: Linking 8089 Programs with 8086 Programs

The process of linking and locating 8086 programs with 8089 programs that use 8089
local memory is very similar to creating overlay modules in separate files.

Let us consider the following example: we have created an 8086 program and two
8089 program modules. The 8089 programs reference each other’s symbols and
public symbols in the 8086 program. In addition, one of the 8089 programs must be
resident in 8089 local memory.

The first step is to translate the programs. The 8089 program modules must be
translated separately, since they will be located in different 8089 address spaces. The
following lines illustrate the invocation lines to the translators:

MRUN ASMB6 :F1:PROGB6.ABGLCr>

mASM89 :F1:TASK1T.A89<cr>
BASM89 :F1:TASK2.A89<cr>

TASK?2 should be linked and located first for 8089 local memory. This linkage will
leave unresolved external references, but it is needed to resolve the references in
TASK1:

mRUN LINK86 :F1:TASK2.08J,8089.LIB<cr>

mRUN LOC86 :F1:TASKZ2.LNK RESERVE(10000H TO OFFFFFH)<cr>

The RESERVE control in the locate above is a precaution to avoid exceeding 64K.

The next step is to link and locate the object modules that will reside in the 8086’s
address space. The external references to the 8089 program module that is resident in
8089 local memory are resolved with the PUBLICSONLY control. The invocation
lines for linking and locating the modules are:

mRUN LINK86 :F1:PROG8S.0BJ, &<cr>
Y8086 . LIB, :F1:TASK1.0B4,8089.LI8, &<cr>
PP UBLICSONLY (:F1:TASK2) TO :F1:86N89.LNK<cr>

MRUN LOCB6 :F1:86NB9.LNK<cr>

:F1:86N89 contains an absolute object module that includes PROGS86 and TASK1.
It may be loaded and executed on an 8086-based system. However, the 8089 pro-
gram to be located in 8089 local memory still has some unresolved external
references. To resolve those references we must relink with PUBLICSONLY and
relocate. The invocation lines to LINK86 and LOC86 shown below are identical to
those used earlier. This is necessary to guarantee that the references resolved earlier
are not invalidated:

MRUN LINKBS :F1:TASK2.08J,8089.L18, &<cr>

PP UBLICSONLY (:F1:86N89)<cr>

mRUN LOCB6 :F1:TASK2.LNK RESERVE(10000H TO OFFFF

NOTE
The example above makes many assumptions about the 8089 and 8086 code
that it deals with. In most practical situations it is usually necessary to use a
more complex LINK86 and LOCS86 invocation. However, the example
above illustrates the key linking and locating principles underlying
ASM86/ASM89 module combination.

I-14

iAPX 86,88 Family Utilities Additional Information for Intellec Series 111 Users

Invocation Examples

The following foldout pages contain examples of the iAPX 86,88 Family utility con-
trols and commands. The examples, all in the “‘interactive 8086’ mode, may be used
in conjunction with syntax specifications given:

. In~Chapter 2 for LINK86
¢ In Chapter 3 for CREF86
¢ In Chapter 4 for LIB86

¢ In Chapter 5 for LOC86

When using the directions in theése chapters, fold out the page in this appendix con-
taining examples of the command or control you are interested in.

The following is a sample Series 111 OH86 invocation:

pJCHRE F3:DONE TC

TF3CFINT REX S

I-15

iAPX 86,88 Family Utilities

Comments

This example defines two public symbols, VARONE
and VARTWO, with absolute addresses 50H and
2000H, respectively.

in this exampie the root file is RTFILE and LIB1 and
LIB2 are library files.

This line creates an LTL module. The output object
fileis TEST with no extension.

This example specifies default to avoid ambiguity.

LINES is the default, so it need not be specified.

This MEMPOOL example will increase the minimum
dynamic memory requirements by 20H bytes, and by
default the maximum size will increase, if necessary,
to equal the minimum.

The minimum dynamic memory requirement is 100H.
The maximum dynamic memory requirement is
300H.

Control
ASSIGN

ASSUMEROOT

BIND/NOBIND

COMMENTS/NOCOMMENTS

FASTLOAD/NOFASTLOAD

INITCODE
LINES/NOLINES

MAP/NOMAP

MEMPOOL

SERIES 111 LINK86 EXAMPLES

Examples

NLINK86 FILET,
Y (VARONE (50H) ,

FILE2, FILE3 ASSIGN &<cr>
VARTWO(2000)) <cr>

dLINK86 ROOT1.0BJ, ROOT2.0ByJ,
4L 182 TO RTFILE OVERLAY<cr>

LIB1, &<cr>

MLINKE6 OV11.08BJ, OV12.0B4, LIB1,
ML IB2 TO OV1.0BJ OVERLAY &<cr>
bP4AS SUMERCOT(RTFILE) <cr>

&<er>

MdLINK86 OV21.0BJ, OV22.0BJ, LIBT1, &<cr>
MJLIB2 TO OV2.0BJ OVERLAY &<cr>

IPAAS SUMEROOT(RTFILE) <cr>

MLINK86 RTFILE, 0V2.0BJ &<cr>

bITO0 PROG<cr>

0V1.08J,

MLINK86 TEST.OBJ,USER.LIB BIND PRINT<cr>

MLINK86 GEN.OBJ NOBIND<cr>
bLINKB6 :F1:SOURCE.OBJ NOCOMMENTS <cr>

ML INK86 :F1:PROG.OBJ TO &<cr>
pRd: F1:TEMP.TST COMMENTS<cr>

MLINK8S PROG.OBY, LIB2 BIND &<cr>

PPEFASTLOAD<c >

gL INK86 FT:MYPROG INITCODE<cr>]
gLINK86 FT:RUN.OBJ NOLINES<Cr>)
gLINKBO FT:TEST.0BJ LINES<Cr]
gLINKEO :FT:TESTER. OBJ MAP<CP)

pLINKB6.86 :F3:MAIN.OBJ,USER.OBJ, &<cr>
bPIPUBLICSONLY(:F2:8089.L0C) NOMAP<cr>

LIB1,

NI INK86 :F1:TEST.0BJ,USER.LIB, &<cr>
P ASCAL.LIB BIND MEMPOOL(+20H) <cr>

bL INK8S :F1:TESTED.OBJ MEMPOOL &<cr>
b4 (100H,+200H) BIND<cr>

I-17/1-18

iAPX 86,88 Family Utilities

Comments

The LINK86 output module will have the name
specified in parentheses in the control.

This example removes all debug and public records
from the object file.

The EXCEPT in the NOPUBLICS overrides the
PURGE.

This use of ORDER specifies the order of segments
for two groups.

This example will create an overlay record, and the
name of the overlay wil be OVERLAY1.

First the constituent files must be linked to form
overlays.

The print file is :F1: TEMP1.MP1.

The print file is :F1:PROG.MP1.

The print file is :F1: THE.MAP.

This example removes information about Iline
numbers, local symbols, and comments from the

print file.

This statement removes all but the segment informa-
tion and error messages from the print file.

Control
NAME

OBJECTCONTROLS

ORDER

OVERLAY/NOOVERLAY

PRINT/NOPRINT

PRINT CONTROLS

SERIES 11l LINK86 EXAMPLES

Examples

N INK86 :F1:TOM.0BJ,SYS.LIB NAME &<cr>
N (THIS IS A VERY LONG MODULEANAME.)<cr>

MLINK86 :F1:SRC1.0BJ,:F1:SRC2.08BJ,
b : F3:USER.LIB NAME(TEST 5.3)<cr>

&<cr>

MLINK86 :F1:FINAL, USER.LIB, &<cr>
pPISYS.LIB OBJECTCONTROLS(PURGE) <cr>

MLINK8S :F3:PASCLT1.0BJ &<cr>
PYOBJECTCONTROLS(PURGE,NOPUBLICS &<cr>
PRIEXCEPT(START, DATAT, DATAZ2))<cr>

MLINK86 :F6:PLMPRG.OBJ, PLMB6.LIB, &<cr>

PPYSMALL.LIB, USER.LIB &<cr>
PPJORDER(DGROUP(SEGT,SEG2\CLASST, &<cr>
PDASEG2\CLASST\OVERLAYT), &<cr>
bP4CGROUP(CSEGYT,CSEG2,CSEG3)) <cr>

M| INK86 FILET,FILE2,FILE3 TO &<cr>
by : F1:0V1.LNK OVERLAYCOVERLAY1)<cr>
MLINK86 FILE&4,FILES,FILE6 TO &<cr>
b F1:0V2.LNK OVERLAY(OVERLAYZ2) <cr>

ML INK86 FILE7,FILE8,FILE9 TO &<cr>
b F1:ROOT.LNK OVERLAY(ROOT)<cr>

pdLINK86 :F1:ROOT.LNK,:F1:0V1.LNK,
bY:F1:0V2. LNK<cr>

&<cr>

MLINK&86 :F1:PROG.OBJ TO &<cr>
pPd: F1:TEMP1.TST PRINT<cr>

ML INK86 :F1:PROG.0BJ<cr>

ML INK86 :F1:PROG.OBJ, &<cr>
MPAUSER.LIB PRINT(:F1:THE.MAP)<cr>}

b INK86 :F2:TEMP.OBJ &<cr>
MIBIND PRINTCONTROLS(NOLINES, &<cr>
IANOCOMMENTS, NOSYMBOLS)<cr>

ML INKB6 :F3:PASCL1.0BJ &<cr>

MPRINTCONTROLS (PURGE) <cr>

1-19/1-20

iAPX 86,88 Family Utilities

Comments

Public information concerning only DATA1, DATAZ2,
LABEL3, and PROC4 is placed in the object file and
print file.

All public symbol information will be included in both
the print file and output file.

This example will produce a file containing only the
absolute public symbol records from :F1:8089.LOC.
The object file will be :F1:8089.LNK.

This will resolve the references in ROOT.OBJ to
absolute public symbols in the separately linked and
located overlays OV1 and OV2.

This produces an object file containing no debug or
public information.

This confirms that the line and symbol information
should be keptin the printfile.

This will change the translator-assigned name
CGROUP to THE@CODE. A subsequent linkage
would not combine THE@CODE with a group named
CGROUP.

This changes the name of the CODE group to
CGROUP.

This tells the loader that 15FFH bytes of code is the
minimum requirement for MEMORY. The new max-
imum size of MEMORY is 35FFH.

This increments MEMORY’s minimum size by 1FFH
(7951D) bytes. The maximum size of MEMORY is
equal to the old minimum size plus 3FEH (15902D).

The local symbol records will be included in the
object file.

PURGE is a shorthand for NOSYMBOLS,
NOCOMMENTS, NOPUBLICS, NOTYPE, and
NOLINES.

SYMBOLCOLUMNS has no effect, since BIND was
not specified.

The symbol table will be printed on a line printer.

LIBMOD will retain its type information.

Control
PUBLICS/NOPUBLICS

PUBLICSONLY

PURGE/NOPURGE

RENAMEGROUPS

SEGSIZE

SYMBOLS/NOSYMBOLS

SYMBOLCOLUMNS

TYPE/NOTYPE

SERIES 111 LINK86 EXAMPLES

Examples

NLINK86 :F1:TEST.O0BJ,USER.LIB &<cr>
INOPUBLICS EXCEPT(DATAT, DATA2, &<cr>
N ABEL3,PROCAL) <cr>

NLINK86 :FL:TEMP.OBJ,SMALL.LIB, &<cr>

IR4USER.LIB PUBLICS<cr>

MdLINK8S PUBLICSONLY(:F1:8089.L0C)<cr>

MLINK86 :F1:R00T.0BJ, &<cr>
PIPUBLICSONLY (:F1:0V1,:F1:0V2)<cr>

MLINK86 :F1:INDEX.OBJ PURGE<cr>

MLINK86 :F3:FINAL.OBJ PRINTCONTROLS &<cr>
MY (NOPURGE) <cr>

ML INK8S :F1:PLMPRG.0OBJ RENAMEGRQUPS &<cr>
P4 (CGROUP TO THEQCODE) <cr>

MLINK86 :F9:ASMPRG.OBJ &<cr>
IPIRENAMEGROUPS(CODE TO CGROUP)<cr>

MLINK86 :F7:GEORGE.OBJ, USER.LIB, &<cr>
PPISYSTEM.LIB BIND SEGSIZE(MEMORY &<cr>
PRI (15FFH,+2000H))<cr>

MLINK86 :F4:PROJCT.OBYJ, &<cr>
MPJREST.LIB SEGSIZE(MEMORY(+1FF,+1FF))<cr>

MLINK8S :F1:TEMP.OBJ,USER.LIB &<cr>
PPNCSYMBOLS SYMBOLS<cr>

MLINK8S

tF3:TEST.O0BJ,USER.LIB PURGE<cr>

MqLINK86 :F1:TEST.0BJ SYMBOLCOLUMNS(1)<cr>

MLINK8S :F1:ROO0T.LNK,:F1:0V1.LNK, &<cr>
pPY: F1:0V2.LNK,PUBLICSONLY(:F3:8089) &<cr>
PPISYMBOLCOLUMNS (4) BIND PRINT(:LP:)<cr>

MLINK86 :F1:LIBMOD.0BJ TYPE<cr>

1-21/1-22

iAPX 86,88 Family Utilities

Comments

The cross-reference listing will have 35 lines on each
page.

The cross-reference listing will be 100 characters
wide maximum per page.

The pathname of the print file will be :F1:MYFILE.
The message in the TITLE control must be placed on

one line. If the message contains specia! characters,
it must be enclosed in single quotes (’).

Control
PAGELENGTH

PAGEWIDTH

PRINT

TITLE

SERIES Il CREF86 EXAMPLES

Examples

MCREF86 :F1:FILET, FILE.LIB &<cr>
PP AGELENGTH(35)<cr>

MCREF86 :F1:PROG, :F1:LIB(MODT)
MAPAGEWIDTH(100)<cr>

&<cr>

MCREF86 :F2:FILES(MODULET,MODULEZ) &<cr>
PRAPRINT(:F1:MYFILE)<cr>

MCREF86 MYPROG,HISPROG,HERPROG, &<cr>
bRqMYLIB,HISLIB,HERLIB TITLE &<cr>
IP4('A CROSS-REFERENCE') &<cr>
IRPAGEWIDTH(105) <cr>

1-23/1-24

iAPX 86,88 Family Ultilities

Comments

Three object files are added to the USER.LIB.

Three modules from the library LIB.ABC are added
to :F3:PROJ.TOM.

This command will produce an empty library file
called TOMS.LIB.

Four modules are deleted from the library USER.LIB.

Control
ADD

CREATE

DELETE

EXIT

LIST

SERIES 111 LIB86 EXAMPLES

Examples

JdADD :FT1:SIN,:F1:C0S,:F1:TAN TO &<cr>
L&d: FO:USER.LIB<cr>

* L) MOD3) &<cr>

370

tF1:LIB.ABC(MODT,
:F3:PROJ.TOM<cr>

MOD2,

WCREATE :F3:TOMS.LIB<cr>

*

WCREATE :FO:USER.LIB<cr>

*

WDELETE :F3:USER.LIB(TEMPT, &<cr>
LR TEMP3, TEM_TMP,TEST?)<cr>

*
(DELETE :FO0:IO0.LIB(FLOPPY, CRT, &<cr>

LPAPER TAPE)<cr>
*

(EXIT<cr>
>
WJLIST USER.LIB<cr>
USER.LIB
TEMP
TEST
EXEC
MAIN
LOOP
dLIST USER.LIB(TEMP,TEST)<cr>
USER.LIB
TEMP
TEST
gL IST USER.LIB,TEMP.LIB<cr>
USER.LIB
TEMP
TEST
EXEC
MAIN
LoOP
TEMP.LIB
MODULE1
MODULE3
MODULETC

1-25/1-26

iAPX 86,88 Family Utilities

Comments

If SEG1 is byte alignable, it will be located at 15FFH.
if SEG2 is byte or word alignable, it will be at 4F5AH.

Address assignment of groups, segments, and
classes can be in any order, unless they are
absolute.

A long jump to GO will be placed at location
OFFFFOH.

The initialization code is placed at address 32768
decimal (8000H).

No initialization code will be produced.

LINES is the default, so it need not be specified.

This statement removes all debug records from the
object file, but keeps the information in the print file.

NOPUBLICS is implied by PURGE, but PUBLICS
overrides it.

SEG@A of CLASS1 will be the first relocatable
segment located. SEG@B will be next, followed
immediately by any other segments contained within
CLASS1. The extra segments in CLASS1 (and all of
the segments in CLASS2) are located in the order in
which they are encountered. Finally, the list in the
SEGMENTS subcontrol is handled.

Control
ADDRESSES

BOOTSTRAP

COMMENTS/NOCOMMENTS

INITCODE/NOINITCODE

LINES/NOLINES

MAP/NOMAP

NAME

OBJECTCONTROLS

ORDER

SERIES 111 LOC86 EXAMPLES

Examples

4LOCBS6 :F7:COME.LNK TO :F8:WENT &<cr>
IRdADORESSES (SEGMENTS(SEGT\CLASS2\ &<cr>

IPQOVERLAY3(15FFH), SEG2(4F5AH))<cr>

M4L0C86 :FB:IST.LNK TO LOCIST.RDY &<cr>
IPJADDRESSES(SEGMENTS(SEGT\CLASST &<cr>
M4 (23H)), GROUPS(CGROUP(OOH),DGROUP &<cr>
b4 (10000H)), CLASSESCMEMORY(15000H)))<cr>

M4L0C86 :F3:TEST.LNK START(GOQ) &<cr>

ML 0C86 :F1:SOURCE.LNK NOCOMMENTS<cr>
M4LOCB6 :F1:TEMP.LNK COMMENTS<cr>

qL0C86 :F1:FORK.LNK INITCODE(32768)<cr>

MLOC86 :F1:TEST.LNK NOINITCODE<cr>

MLOC86 :F1:RUN.LNK NOLINES<cr>
MLOC86 :F1:TEST.LNK<cr>
MLOC86 :F1:TESTER.LNK MAP<cr>

ML0OC86 :F3:GONE.LNK TO &<cr>
bPd: F2:HERMAF.OVY NOMAP<cr>

N1 0C86 :F4:SHORT.LNK NAME &<cr>
I (THIS IS A VERY LONG:MODULEANAME.)<cr>

ML0C86 :F1:UPWARD.LNK &<cr>
IP4OBJECTCONTROLS (NOLINES, &<cr>
IPANOCOMMENTS, NOSYMBOLS)<cr>

MJL0C86 :F3:PASCLT.LNK &<cr>
PPJOBJECTCONTROLS (PURGE,PUBLICS)<cr>

bgL0C86 :FO:SPCSEQ.LNK ORDER &<cr>
IR (CLASSES(CLASST1(SEGAA,SEGAB), &<cr>
IPGCLASS2) ,SEGMENTS(SEGT\CLASS3 &<cr>
bR \OVERLAY1,SEG22,SEGTIO\CLASS5))<cr>

1-27/1-28

iAPX 86,88 Family Utilities

Comments
The print fileis :F1: TEMP.MP2.

The print file is :F5:INTERPL.MP2.
The print file is :F1:MAP.

Information about line numbers is removed from the
print file.

All but the segment information is removed from the
print file.

No public information is included in the output files
(:F7:PRIVAT.MP2 and :F7:PRIVAT).

All public symbol information will be included in both
the print file and output file.

The object file contains no public or debug informa-
tion, and the symbol table does not appear in the
print file.

The line and symbol information will be kept in the
print file and object file.

This control reserves the high order 64K of memory.
A 200H and a 100H section of memory at the top and
bottom of memory are reserved.

The size of segment MEMORY will be increased by
2000 bytes.

The size of segment FREUD will be decreased by
511 bytes.

The new segment size for XENDA is 7770 bytes.

:F9:AUTO will start at IGNITION.

‘F7:HALTS will start at location 200H.

This statement will include the local symbol records
in the object file and the symbol information in the
print file.

PURGE is a shorthand for NOSYMBOLS,
NOCOMMENTS, NOPUBLICS, and NOLINES.

The symbol table will be printed on a line printer. A
line printer fine can hold a four-column symbol table.

Control
PRINT/NOPRINT

PRINTCONTROLS

PUBLICS/NOPUBLICS

PURGE/NOPURGE

RESERVE

SEGSIZE

START

SYMBOLS/NOSYMBOLS

SYMBOLCOLUMNS

SERIES 111 LOC86 EXAMPLES

Examples

MLOC86 :F1:PROG.LNK TO &<cr>
Y F1:TEMP1.TST PRINT<cr>

ML 0C86 :FS5:INTERP.LNK<cr>
pL0OCB6

:F4:PROG.LNK PRINT(:F1:MAP)<cr>

M 0C86 :F1:LINEAR.LNK &<cr>
PIPRINTCONTROLS(NOLINES)<cr>

ML 0C86 :F3:PROG.LNK PRINTCONTROLS &<cr>

M1L0C86 :F7:PRIVAT.LNK NOPUBLICS<cr>

MLOC86 :FO:TEXT.LNK NOPUBLICS &<cr>
pIPUBLICS<cr>

ML 0OC86 :F3:PROJS.LNK PURGE<cr>

MdL0C86 :F5:B0209.LNK PURGE &<cr>
MPIPRINTCONTROLS (NOPURGE)<cr>

L0C86 :F3:LOWMEM.LNK RESERVE &<cr>

M (OFO000H TO OFFFFFH)<cr>

MLOC86 :F2:HUGOS.LNK RESERVE &<cr>
pPI(00H TO 0200H, OFFFOOH TO OFFFFFH)<cr>
1.0C86 :F6:GROW.LNK SEGSIZE &<cr>

P (MEMORY (+2000)) <¢cr>

ML0C86 :F1: SHRINK.LNK SEGSIZE &<cr>
MY (FREUD(-1FFH))<cr>

ML 0C86 :F1:RPLACE.LNK SEGSIZE &<cr>
MBI (XENDA(7770))<cr>

ML0C86 :F9:AUTO.LNK STARTCIGNITION)<cr>
ML 0C86 :F7:HALTS.LNK START(OOH,200H)<cr>

bLOC8B6 GESHTA.LNK SYMBOLS<cr>

ML0OC86 :F3:TEST.LNK PURGE<cr>

ML 0C86 :F1:TEST.LNK SYMBOLCOLUMNS(1)<cr>

4L 0C86 :F5:LINKED.LNK &<cr>
PPYSYMBOLCOLUMNS (4) PRINT(:LP:)<cr>

1-29/1-30

APPENDIX J
ADDITIONAL INFORMATION
FOR iRMX™ 86 USERS

Environmental Considerations

The IAPX 86,88 Family utilities run on and can be used to produce code executable
on the iRMX 86-based systems. Resulting code is also compatible with the ICE-86
Emulator and the iSBC 957B Interface and Execution Package.

To run the utilities on an iRMX 86-based system, you must have the following hard-

ware and software:

* TheiRMZX 86 Human Interface (and other iRMX 86 layers necessary to support
the Human Interface).

e At least one mass storage device. The installation of the utilities always requires
a single- or double-density diskette drive, since the product is delivered in

diskette form.

* Enough memory to run the utilities (above and beyond that required for the
Operating System). Table J-1 lists the memory requirements for the individual
utilities. The minimum required column indicates the minimum amount of
memory needed to run the utilities, assuming connection to only six files. The
maximum usable column indicates the largest amount of memory the utilities

can use.
Table J-1. iIRMX 86 Memory Requirements
Utility Minimum Required Maximum Usable
LINK86 105K 512K
CREF86 129K 512K
LIB86 128K 512K
LOC86 120K 120K
OH86 90K 90K

When you run the utilities on an iRMX 86-based system, you must obey the follow-

ing conventions:

e To invoke a utility, you must enter the pathname of the file that contains the
utility. An example of this is:

:PROG:LOCBS

:FDO:PROGDIR/MYPROGRAM.LNK <cr>

J-1

Additional Information for iRMX 86 Users iAPX 86,88 Family Utilities

® The portion of the pathname delimited with colons (:) is an iRMX 86 logical
name. A logical name identifies the device that contains the file; in some cases it
also identifies a portion of the directory tree. In this example, LOC86 resides in
a directory identified by the logical name :PROG:; MYPROGRAM.LNK
resides in a subdirectory of a device identified by the logical name :FDO:. If you
omit the logical name from the command (in this case, LOC86), the Operating
System automatically searches several directories for the command. The direc-
tories searched and the order of search are iRMX 86 configuration parameters.
If you omit the logical name from a file used as a parameter (in this case
PROGDIR/MYPROGRAM.LNK), the Operating System assumes that the file
resides in the default directory (:$:).

¢ Slashes (/) and up-arrows or circumflexes (A) separate individual components of
the pathname. A file’s pathname can consist of several compouents, depending
on where the file exists in the overall directory tree. To identify a file, you start
with a logical name (or assume the default), continue through the directory tree
specifying as many directory names as necessary, and finally specify the name of
the file with which you are concerned. You use separators between the
individual components of the pathname (except immediately after the logical
name). The slash separator tells the Operating System to search down one level
in the directory tree for the next component. The circumflex separator tells the
Operating System to search up one level in the directory tree. For example, if
file TEXTFILE.P86 resides in directory PROGRAMS, and if directory
PROGRAMS resides on a device identified by logical name :FD1:, you can
identify the file by specifying the following pathname:

:FD1:PROGRAMS/TEXTFILE.P86

® Continuation lines are necessary when a command or invocation will not fit on
one line. The following example illustrates the line-end conventions to use and
the continuation characters to expect:

ML INK86 :WD1:PROG/TEST.OBJ, :WD1:PROG/SMALL.LIB,
LBJUSER.LIB TO :WD1:PROG/TEST BIND<cr>

&<cr>

¢ The LIB86 utility presents an exception to these prompt conventions. Because
this program is interactive, it has its own prompts:

SL1586<c)
iRMX 86 8086 LIBRARIAN Vx.y
ADD :F1:SEC.LNK, :F1:CSC.LNK, &<cr>
B : F1:TAN.LNK TO :PROG:LIBRARY/TRIG.LIB<cr>

Related Publications

The following manuals may be helpful during various aspects of your work with the
iAPX 86, 88 utilities on an iRMX 86-based system:

® [Introduction to the iIRMX 86 Operating System, order number 9803124
® JRMX 86 Human Interface Reference Manual, order number 9803202
® JAPX 86, 88 User’s Manual, order number 210201

e PASCAL-86 User’s Guide, order number 121539

s PL/M-86 User’s Guide, order number 121636

® ASMS86 Language Reference Manual, order number 121703

® ASMS86 Macro Assembler Operating Instructions for 8086-Based Development
Systems, order number 121628

e FORTRAN-86 User’s Guide, order number 121570

J-2

iAPX 86,88 Family Utilities Additional Information for iRMX 86 Users

Generating Code to Run on aniRMX 86-Based

System

To generate code that runs on an iRMX 86-based system, perform the following

steps:

1. Translate the program into object code by using the appropriate compiler or
assembler.

2. Use LINKS86 to link the program with other routines or libraries as necessary.
When doing this, remember the following:

e If you wrote your program in FORTRAN or Pascal, or if you invoked
specific universal development interface (UDI) calls, you must link your
program to the iRMX 86 UDI library that corresponds to the model of
segmentation for your program. These libraries are:

Library Model of Segmentation
URXLRG.LIB LARGE or MEDIUM
URXCOM.LIB COMPACT
URXSML.LIB SMALL

e Do notuse FASTLOAD control. Currently, the iRMX 86 Operating System
cannot load programs linked with this control.

e To produce LTL code, use the BIND control. In this case, also specify the
MEMPOOL and SEGSIZE controls to allocate memory for the memory
pool and stack. If you do not use BIND, you must specify SEGSIZE with
the LOC86 command.

3. If you did not specify the BIND control in the LINK86 command, use LOC86 to
assign absolute addresses to your program. In order to run this program in an
iRMX 86 environment, you must also reserve the program’s memory locations
during iRMX 86 configuration.

4. To invoke the program from a terminal, enter the pathname of the file that
contains the program’s linked (if LTL code) or located object code.

Program Development Examples

The following examples are programming problems solved by using one or more of
the IAPX 86,88 utilities on an iRMX 86-based system.

Example 1: Using CREF86

Figure J-1 illustrates a CREF86 cross-reference listing for an input list of 15 files,
one of which contains several modules. The output print file pathname OUT and a
title for the listing were specified in the controls. Although PAGEWIDTH (PW) and
PAGELENGTH (PL) specifications were also noted in the controls, the numbers
specified are the same as those provided by default.

J-3

Additional Information for iRMX 86 Users

iAPX 86,88 Family Utilities

CREF86

iRMX 86 CREF86 Vxy

INPUT FILES:

OUTPUT FILE:
CONTROLS SPECIFIED:

MODULES INCLUDED:

FILE NaME

EXAMPLE OF CROSS REFERENCE USING CREF86

:F1:R00T.0OBJ
:F1:MEMMAN.OBJ
:F1:SURT.0BJ
QuT

PR(OUT) TT(EXAMPLE OF CROSS REFERENCE USING CREF56) Pw(120) PL(60)

MODULE NAME(S)

:F1:PARSE.OBJ
:F1:SCANNR.OBJ
:F1:UDSMA.LNK

:F1:SIGNON.OBJ
:F1:PROCES.COBJ
URXCOM.LIB

:F1:STATE.OBJ iF
:F1:SCUTIL.OBJ

MM/DD/YY PAGE 1

:F1:UTILS.0BJ
:F1:LSUTIL.OBJ

ERROR.0BJ
:F1:LIST.O0BJ

:F1:R00T.0BJ: CREF&6
:F1:PARSE.OBJ: PARSE
tF1:SIGNON.OBJ: SIGNON
tF1:STATE.OBJ: NEXTSTATE
:F1:ERROR.OB ERROR
sF1:UTILS.OBJ: UTILITIES
:F1:MEMMAN.OBJ: MEMORYMANAGEMENT
tF1:SCANNR.OBJ: SCANMODULES
:F1:PROCES.0BJ: PROCESSRECORDS
:F1:SCUTIL.OBJ: SCANUTILITIES
tF1:LIST.OBJ: LISTOUTPUT
:F1:LSUTIL.OBJ: LISTUTILITIES
:F1:SORT,.0BJ: SYMBOLSORT
:F1:UDSMA.LNK: OBJMAN
URXCOM.LIB DQALLOCATE DQATTACH DQCHANGEEXTENSION DQCREATE DQLECUDEEXCEPTION
DQDETACH DQEXIT DQFREE DQGETARGUMENT DQGETSYSTEMID
DQGETTIME DQOPEN DQREAD DQSEEK DQWRITE
SYSTEMSTACK
———sEEFZZ-—_:::;::;-or CKUSS KEFEHRENCE uSING CREFo6 MM/DD/YY PAGE 2
SYIMBOL NAME SIMBOL TYPE DEFINING MUDULE; REFERRING MODULE(S)
ACCESS_PAGE UNKNOWN OBJMAN
ALLOCATE., UNKNOWN GBJMAN
APPENDNODE. , ., . PROCEDURE NEAR UTILITIES
APPENDUDSMNODE. . ., . . . PROCEDURE NEAR UTILITIES; PARSE SCANMODULES PROCESSRECORDS
ARRAYBASE POINTER SYMBOLSORT; LISTOUTPUT
ATOI. PROCEDURE WORD NEAR UTILITIES; PARSE
BTOX. + PROCEDURE WOKD NEAR UTILITIES; LISTUTILIT1ES
BUBBLESORTVARNAMES . . . PROCEDURE NEAR SYMBOLSORT; LISTOUTPUT
BUMPLINECOUNT ., . ., . . . PROCEDURE NEAR LISTUTILITIES; LISTOUTPUT
CHECKHEADER PROCEDURE NEAK SCANUTILITIES; SCANMODULES
CHECKOVEKLAY., PROCEDURE NEAR SCANUTILITIES; SCANMGDULES
CHECKVAKTYIFE., PROCEDURE BYTE NEAK SCANUTILITIES; PROCESIRECUKDS
mcnoss REFERENCE USING CREF&66 MM/DD/YY PAGE 6
UNLOAD_PAGE UNKNOWN OBJMAN
VARAKEAP., . . PUINTER MEMORYMANAGEMENT; PROCESSRECORDS LISTOUTPUT SYMBOLSORT
VBLOCKL1SThEADEK, WORD PROCESSKECORDS; UTILITIES LISTGUTPUT SYMBOLSORT
WAKNING PROCEDURE NEAR EKROR; SCANMODULES PROCESSRECORDS
WRITEDATA PROCEDURE NEAR LISTUTILITIES; ERROR UTILITIES LISTOUTPUT
WRITEINITLINEBUF. PROCEDURE NEAR LISTUTILITIES; ERROR UTILITIES LISTOUTPUT
WRITELINE PRUCEDURE NEAR LISTUTILITIES; LISTOUTPUT
WRITENEWLINE. PROCEDURE NEAR LISTUTILITIES; UTILITIES LISTGUTPUT
WRITETOCOMMANDBUF PROCEDURE NEAR PARSE
WRITETOFILE PROCEDURE NEAR LISTUTILITIES; ERROR LISTOUTPUT
ZERO. WORD UTILITIES

Figure J-1. CREF86 Cross-Reference Listing

34

iAPX 86,88 Family Utilities Additional Information for iRMX 86 Users

Example 2: Building and Using Library Files

A library is a file that contains object modules. Libraries allow you to collect
commonly-used pieces of software into one file. The library file can be included in a
LINKS86 invocation, and LINK86 will use the modules to resolve references.

You can add the output from a translator, LINK86, or LOCS86 to a library. The
modules added may be relocatable or absolute; they can have unresolved references
or be completely linked.

Let’s consider the following scenario—we have created six routines (SINE,
COSINE, TANGENT, COSECANT, SECANT, and COTANGENT). We want to
create a library file that will allow each routine to be linked to programs separately.

The first step necessary to create the library is to translate each routine separately. If
we were to put them in a single source module, the translator would translate them
into one module with six public symbols. We could add this module to a library, but
when we tried to link one of the routines into a program, all six would be included.

Once the routines are translated, LIB86 can be used to create a library file and add
modules. The LIST command is used to display the contents of the library and the
publics contained within it.

gLiBao<cr>
iRMX 86 8086 LIBRARIAN Vx.y

WCREATE :PROG:LIBRARY/TRIG.LIB<cr>
JADD :FDC:SIN.OBJ, :FDO:C0S.0BJ TO :PROG:LIBRARY/TRIG.LIB<cr>
fLIST :PROG:LIBRARY/TRIG.LIB PUBLICS<cr>

:PROG:LIBRARY/TRIG.LIB
SIN
SINE
€0s
COSINE

MADD :FDO:SEC.LNK, :FDO:.CSC.LNK, :FDO:COT.LNK, &<cr>
% FDO:TAN.LNK TO :PROG:LIBRARY/TRIG.LIB <cr>

il IST :PROG:LIBRARY/TRIG.LIB PUBLICS<cr>

:PROG:LIBRARY/TRIG.LIB
SIN

COSECANT
coT

COTANGENT
TAN

TANGENT

BE; <o)

Additional Information for iRMX 86 Users

J-6

Example 3: Linking and Locating Programs with Overlays
Using OVERLAY Control

The easiest way to build an 8086 program that contains overlays is with LINK86’s
OVERLAY control. Overlay modules built with this control reside in the same file
as the root. The operating system supplies routines that will load the overlays con-
structed in this way. See the iRMX 86 Loader Reference Manual or the Run-Time
Support Manual for iAPX 86,88 Applications.

After the program modules that will constitute the root and its overlays are
translated, each of the overlays and the root must be linked separately. Then the
root and all of the overlays are linked together.

The example following shows the first step toward linking overlays—linking all of
the modules that will constitute each overlay and the root separately:

BLINK86 OV1.0BJ, OV1A.0BY,
LRJOVERLAY (OVERLAYT) <cr>

OV1B.0BJ &<cr>

S INK86 OV2.0BJ, OV2B.0BJ, OV2C.0BJ &<cr>

LBJOVERLAY (OVERLAY2) <cr>

el INK86 OV3.0BJ, OV3A.0BJ OVERLAY(OVERLAY3)<cr>

mlLINKB6 OV4.0BJ, OV4A.0BJ OVERLAY(OVERLAY4)<cr>

L INK86 ROOT.0BJ, ROOTA.0BJ, ROOTB.OBJ,
WRJURXSML.LIB OVERLAY(ROOT)<cr>

&<er>

Notice that all of the modules, including the root, are linked with the OVERLAY
and NOBIND controls. The overlay name for the root is not as critical as for the
overlays, since the overlay name is used when calling the loader.

Finally, the overlays and root must be linked together. Since any one of the files
could be the root, LINK86 requires for the final link the file containing the root
must be first in the input list. During this final link, the OVERLAY control is not
used:

L INK86 ROOT.LNK, OV1.LNK, 0OV2.LNK, &<cer>

LR JOV4 . LNK TO PROG.86 BIND<cr>

0V3.LNK,

In the invocation, the BIND control is specified. The resulting object file is exe-
cutable on an iRMX 86-based system.

Figure J-2 shows the LINK86 print file listing for the previous invocation.

There is nothing special about the invocation line to LOC86 when locating a file that
contains overlays or that has been bound:

§L0C86 PROG.86 RESERVE (OH TO 77FFH, &<cr>
(B0 FCO00H TO OFFFFFH)<cr>

The RESERVE control prevents LOC86 from assigning memory addresses reserved
for the Operating System. However, the values you enter with the RESERVE con-
trol must depend on the size and location of your Operating System and other
application software. Figure J-3 illustrates the printout from this invocation.

iAPX 86,88 Family Utilities

iAPX 86,88 Family Utilities

Additional Information for iIRMX 86 Users

BIND
DATE: MM/DD/YY

3CETH --

TIME

G

iRMX 86 8086 LINKER,Vx.y

LINK MAP OF MODULE ROOT

LOGICAL SEGMENTS INCLUDED:
LENGTH ADDRESS ALIGN SEGMENT

CODE
CONST
DATA

INPUT FILES: ROOT.LNK, OV1.LNK, OV2.LNK, OV3.LNK,
OUTPUT FILE: PROG.86
CONTROLS SPECIFLED IN 1NVOCATION COMMAND:

CLASS
CODE
CONST
DATA

OV4 .LNK

OVERLAY
ROOT
ROOT
ROOT

ROOT.LNK(ROOT)
OV1.LNK(PARSE)
OV2.LNK(ILUDE)

BASE OFFSET
G(2) 251CH
G(2) OF22H
G(2) OD26H
G(2) 0D28H
G(2) OFQOH
G(2) OF 1AH

OVERLAY NAME =

BASE OFFSET

G6(2) 4A20H
6(2) ODOOH
G(2) ODO4H
G(2) ODO8H
G(2) 0DOCH
6(2) OD10H
G(2) OD14H
G(2) 0D18H

OVERLAY NAME =
BASE OFFSET

G(2) 4A20H
G(2) OF56H
G(2) OF56H
G(2) OF64H
G(2) OF96RH
e(1) 016EH
STACK DOO04H

OV3.LNK(PICILUDE)
OVA4 .LNK(FASTLOAD)

INPUT MODULES INCLUDED:

GROUP MAP

GROUP NAME: CGROUP
OFFSET SEGMENT NAME
0000H CODE\CODE\ROOT
3CE8H CODE\CODE\PASS1
3CEbH CODE\CODE\PASS2

SYMBOL TABLE OF MODULE ROOT

TYPE SYMBOL

PUB

PUB
PUB
PUB
PUB
PUB

TYPE

SYM
SYM
SYM
SYM
SYM
SIM
SYM
SYM

BASE OFFSET TYPE SYMBOL

ACTUAL G(2) OFODH PUB ASSUMEROOTCONTRO
~-L
BASEFIXUPSEXIST G(2) OFCCH PUB BINDCONTKOL
bLNODEID G(2) 24EAH PUB BUFBASE
CLASHNODEID G(2) OD5AH PUB COCONN
COMMENTSCONTROL G(2) OF50H PUB CURRENTFILNUM
CURRENTOVERLAYNU G(2) OFBEH PUEB CURRENTRECINDEX
M
ROOT, MODULE NAME = ROOT

SYMBOL BASE OFFSET TYPE SYMBOL
MEMORY G(2) 0002H SYM COPYRIGHT
LASTNMNODEID G(2) 0D02H SYM FIRSTNMNODEID
LASTSGNODEID G(2) ODO6E SYM FIRSTSGNODEID
LASTIDNODEID G(2) ODOAH SYM FIRSTTDNODEID
LASTEXNODEID G(2) ODOEH SYM FIRSTEXNODEID
LASTGRNODEID G(2) OD12H SYM FIRSTGRNODEID
LASTOVNODEID G(2) OD16H SYM FIRSTOVNODEID
LASTGNODEID G(2) O0DYAH SYM FIRSTBNODEID

ROOT,
TYPE

SYM
SYM
BAS
SYM
SYM
SYM
SYM

—

E—--_-—_-_-_-_—_--_-—‘_————___;
—

‘/
/

\

MODULE NAME = LIT

SYMBOL

MEMORY
LITBASE
LITNODE
FIRSTNODE
TEMPLATE
GETLIT

I

BASE

G(2)
G(2)
G(2)
G(2)
G(2)
STACK
G(1)

4_____________—‘

‘_________———ﬂ

OFFSET TYPE SYMBOL

003CH BAS SGNODE

OF58H sSYM LITID

OFS5AH SYM FIRSTNODEIDS
OF8EH SYM CURRENTRECINDEX
OFB9H SYM II

0006H SYM INDEX

0207H SYM SGLIT

Figure J-2. LINKS86 Listing for Program with Overlays

Additional Information for iRMX 86 Users

iAPX 86,88 Family Utilities

iRMX 86 8086 LOCATOR, Vx.y
INPUT FILE: PROG.b6
OUTPUT FILE: PROG
CONTROLS SPECIFIED IN INVOCATION COMMAND:
RESEKVE(OH TO 77FFH,OFCO00H TO OFFFFrH)
DATE: MM/DD/YY TIME:
SYMBOL TABLE OF MODULE ROOT
BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
1034H 251CH PUB ACTUAL 1034H OFCDH PUB ASSUMERCOTCONTRO
-L
1034H OF22H PUB BASEFIXUPSEXIST 1034H OFOCH PUB BINDCONTROL
1034H 0D26H PUB BNODEID 1034H 24EAH PUB BUFBASE
1034H 0D28H PUB CLASHNODEID 10348 OD5AH PUB COCONN
1034k OF00HE PUB COMMENTSCONTROL 10348 OFS50H PUB CURRENTFILNUM
1034H OF1Ah PUE CURRENTOVERLAYNU 1034H OF8EH PUB CURRENTRECINDEX
-M
e
—
OVERLAY = ROOT, MODULE = ROOT
BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
1034H 4A20H SYM MEMORY 1034H 0002H SYM COPYRIGHT
1034H O0DOOH SYM LASTNMNODEID 10348 0DO2H SYM FIRSTNMNODEID
1034H ODO4H SYM LASTSGNODEID 1034H 0D06H SYM FIRSTSGNODEID
10348 ODO8BH SYM LASTTDNODEID 103440 O0DOAH SYM FIRSITDNODEID
10348 0DOCh SYM LASTEXNODEID 1034H ODOEH SYM FIRSTEXNODEID
1034H OD10E SYM LASTGRNODEID 1034H OD12H SYM FIRSTGRNODEID
10344 OD14H SYM LASTOVNCODEID 1034R OD16H SYM FIRSTOVNODEID
1034H OD18H SYM LASTBNODEID 1034H OD1AH SYM FIRSTBNODEID
10348 OD1CH SYM SGNODEID 1034H OD1EH SYM GRNODEID
e
e
et
e
QVERLAY = ROOT, MODULE = LIT
BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
1034H 4LA20H SYM MEMORY 1034H 003CH SYM SGNODE
1034H OF56H SYM LITBASE 1034H 0F58H S8YM LITID
1034H OF56H SYM LITNODE 1034H OF5AH SYM FIRSTNODEIDS
1034H OF6u4H SYM FIRSTNODE 1034H OFVEH SYIM CURRENTRECINDEX
1054H OF96H SYM TEMPLATE 1034H OFB9H SYM II
0780H 010EH SYM GETLIT STACK 0006H SYM INDEX
STACK 0004H SYM I 07b60H 0207H S¥M SGLIT /
IRy
MEMORY MAP OF MUDULE ROOT
MODULE START ADDRESS PARAGKAPH = 14D6H OFFSET = 0006n
SEGMENT MAP
START sTOP LENGTH ALIGN NAME CLASS OVERLAY
07800k 0BY4E6H 3CETH M CODE CODE ROOT
OBY4EBH OF9BAH 44D3H M CODE CODE PASS?
OBLEBH OEOCEH 2BETH M CODE CODE PASS2
OBUESH 10337H 4E50H M CODE CODE PIC_PASS2
SR
"]
GROUP MAP
ADDRESS GROUP OR SEGMENT NAME
07800H CGROUP
CODE\CODE\ROOT
CODE\CODE\PASS1?
CODE\CODE\PASS2
CODE\CODE\PIC_PASS2
CODE\CODE\FASTLOAD
10340H DGROUP
CONST\CONST\ROOT
DATA\DATA\ROOT
STACK\STACK\
e
e

Figure J-3. LOCS86 Listing for Program with Overlays

iAPX 86,88 Family Utilities

Example 4: Linking and

Additional Information for iRMX 86 Users

Locating Programs with Overlays

Without OVERLAY Control

It 1s harder to produce overlay modules without using the OVERLAY control.
However, sometimes it is necessary to build programs in this way, for example,
building a program for running under an operating system that does not support
overlay modules contained in the same file as the root module.

But regardless of the reason, building overlays in this fashion places an extra burden
on the programmer. He must do some of the work that would be left to LINK86
(and LOC86) if he were to use the OVERLAY control. In the following example we
prepare a root and two overlay modules in separate files.

First we must compile all modules. Examples of the invocation lines are shown

below:
P LM86 :F1:R00T.SRC SMALL<cr>
PLM86 :F1:0V1.SRC SMALL<cr>

P LM86 :F1:0V2.SRC SMALL<cr>

In the next step we must link the root module to resolve external symbols with a

library and to obtain a link map:

ML INKBE

:F1:RO00T.0BJ,USER.LIB MAP<cr>

We will need the link map for locating purposes. The link map, shown in figure J-4,
shows the size of each segment in the root. Since the overlays are self-contained

except for references to the root,

we do not need a link map for them. The PL/M-86

listing files will show the size of each overlay’s segments, as illustrated in figure J-5.

Note that the length of the root’s code segment and OV1’s code segment must fit
within 64K. This means that the code for the overlays must be in a part of memory
contiguous with the root (to avoid altering the CS register during execution). OV2’s
CONST and DATA segments are larger than OV1’s so that the STACK segment

must be placed to leave room
overlays share the STACK and
located at the same address.

for OV2’s CONST and DATA segments. If the
MEMORY segments with the root, they must be

iRMX 86 8086 LINKER, Vx.y

INPUT FILES:
OUTPUT FILE: :F1:ROOT.LNK
MAP

DATE: MM/DD/YY TIME:

LINK MAP OF MODULE LOANER

LOGICAL SEGMENTS INCLUDED:
LENGTH ADDRESS ALIGN
------ CODE
______ DATA

INPUT MODULES INCLUDED:
:F1:RO0T.0BJ(ROOT)
:FO:USER.LIB(LOADER)
:FO:USER.LIB(EXIT)
:FO:USER.LIB(ERROR)
:FO:USER.L1IB(TIME)

:F1:RO0T.OBJ,

CONTROLS SPECIFIED IN INVOCATION COMMAND:

SEGMENT
CONST

STACK
MEMORY

USER.LIB

CLASS OVERLAY
CODE

CONST

DATA

STACK

MEMORY

44——_——-——_‘——__—_____,—

Figure J-4

. LINK86 Map for Root File

Additional Information for iRMX 86 Users

iAPX 86,88 Family Utilities

MODULE INFORMATION:

0V1's segment size information

CODE AREA SIZE = 7531H 300010 this is the
CONSTANT AREA SIZE = 0081H 129D this is the
VARIABLE AREA SIZE = 0181H 385D this is the
MAXIMUM STACK SIZE = 0C40H 64D this is the
918 LINES READ

0 PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION
e

CODE segment
CONST segment
DATA segment
STACK segment

|

MODULE INFORMATION

0V2's segment size

information

CODE AREA SIZE = 1B9AH 70660 this is the
CONSTANT AREA SIZE = 0101H 2570 this is the
VARIABLE AREA SIZE = 0454H 11080 this is the
MAXIMUM STACK SIZE = 0067H 103D this is the
918 LINES READ

0 PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION
L

CODE segment
CONST segment
DATA segment
STACK segment

Figure J-5. Module Information for Overlays

After computing the required location for the root’s DGROUP and STACK, we can
locate the root module. The resulting file will not be executable, but it allows us to
resolve references to the root’s code and data symbols in the overlays. The following
LOCS86 invocation will leave room for the overlays’ code segments and place the
DGROUP in the first unused memory location. (In the command line below, the DS
register is initialized to OFFCEH, and the CS register is initialized to 0.) The STACK
and MEMORY segments will be located above OV2’s DATA segment:

mL0C86

:F1:RO0T.LNK &<cr>

LBIADDRESSES (GROUPS(CGROUP (OH) ,DGROUP(OFFCEH)),

&<er>
SEGMENTS(CODE(QOH) ,CONSTC(OFFCEH) ,STACK(10B34H)))

&<er>

LBORDER CSEGMENTS (CODE, CONST,DATA,STACK,MEMORY)) &<cr>
RIS EGSIZE(STACK(T100H)) <cr>

Once the root is located, we can use it to resolve external references in the overlay
modules. The overlay modules cannot call each other, since only one is resident in
memory at any time. The link commands are shown below. The NOPUBLICS with
the EXCEPT control is used to avoid conflicts when we use the located overlays to
resolve external references in the root:

SLINK&6 :F1:0V1.0BJ,PUBLICSONLY(:F1:R00T) &<cr>
EEINOPUBLICS EXCEPT(OV1ICODE,

ELINKBO

:F1:0V2.0BJ,PUBLICSONLY (:F1:R00T)
WEINOPUBLICS EXCEPT(QV2CODE, DV2DATA)<cr>

OVIDATAY<cr>

&<er>

The PUBLICSONLY control resolves references to public symbols contained in the

root.

iAPX 86,88 Family Utilities Additional Information for iRMX 86 Users

After the overlays have been linked, they must be located. The code and data
segments must be placed in the memory locations that were reserved when we first
located the root. In this case the STACK and MEMORY segments must be the same
for the overlays and the root:

&<er>

SHL0C84 :F1:0V2.LNK &<cr>

EEIADDRESSES (GROUPS(CGROUP(OH) ,DGROUP(OFFCEH)), &<cr>
* % SEGMENTS(CODE(8AQCH) ,CONST(105EQH) ,STACK(10B34H))) &<cr>
ERdORDER (SEGMENTS(CODE,CONST,DATA,STACK,MEMORY)) &<cr>
ERISEGSIZE(STACK(100H) Y <cr>

The CGROUP and DGROUP base address must be specified in order to compute
offset information. The final base address assigned to DGROUP by LOC86 will be
rounded down to OFFCOH.

Once the overlays are located, the root is linked and located into an executable form.
The PUBLICSONLY control will resolve references to symbols in the overlay
modules. Other than the addition of this input control, the LINK86 and LOCS86
command must be identical to those used previously:

MLINK86 :F1:R00T.0BJ,USER.LIB, &<cr>
ERIPUBLICSONLY (:F1:0VY,tF1:0V2)<er>

mL0C86 :F1:ROO0T.LNK &<cr>

LBIADDRESSES (GROUPS (CGROUPC(OH) ,DGROUPCOFFCEH)), &<cr>

SEGMENTS(CODECOH) ,CONSTC(OFFCEH) ,STACK(10B34H))) &<cr>
LRJORDER(SEGMENTS(CODE,CONST,DATA,STACK, MEMORY)) &<cr>
RRISEGSIZE(STACK(100H)) <cr>

The executable forms of the root and its overlay files are contained in :F1:ROQT,
:F1:0V1, and :F1:0V2. Figure J-6 shows the resulting layout of memory.

L Lo «+—CS
A ROOT CODE ~
SPACE
8A9B
8A3C
5 OVERLAY R
O CODE <
SPACE
0FFC0 -————DS, SS
OFFCE
r ROOT DATA A
SPACE wr
105DF
105E0
- OVERLAY -
~ DATA 1
SPACE
10B33
10B34
A STACK AREA A
10C33
10C34 *———3p
MEMORY
4 b
Figure J-6. Memory Organization for Example 4 121616-10

Additional Information for iRMX 86 Users iAPX 86,88 Family Utilities

Invocation Examples

The following foldout pages contain examples of the iAPX 86,88 Family utility con-
trols and commands. The examples may be used in conjunction with syntax
specifications given:

¢ In Chapter 2 for LINK86
¢ In Chapter 3 for CREF86
¢ In Chapter 4 for LIB86

* In Chapter 5 for LOCS86

When using the directions in these chapters, fold out the page in this appendix con-
taining examples of the command or control in which you are interested.

The following is a sample iRMX 86 OH86 invocation:
:FDO:FINISH.HEX<cr>

MOH86 :FDO:FINALPROGRAM to

iAPX 86,88 Family Utilities

Comments

This example defines two public symbols, VARONE
and VARTWO, with absolute addresses 50H and
2000H, respectively.

In this example, the root file is RTFILE, and LIB1 and
LIB2 are library files.

This line creates an LTL module. The output object
file is :FDO:TEST with no extension.

This example specifies default to avoid ambiguity.

Do not use the FASTLOAD control when producing
code for an iRMX environment.

LINES is the default, so it need not be specified.

This MEMPOOL example will increase the minimum
dynamic memory requirements by 20H bytes, and by
default the maximum size will increase, if necessary,
to equal the minimum.

The minimum dynamic memory requirement is 100H.
The maximum dynamic memory requirement is
300H.

Control
ASSIGN

ASSUMEROOT

BIND/NOBIND

COMMENTS/NOCOMMENTS

FASTLOAD/NOFASTLOAD

INITCODE
LINES/NOLINES

MAP/NOMAP

MEMPOOL

iRMX 86 LINK86 EXAMPLES

Examples

ML INK86 FILET, FILEZ,
LA SSIGN (VARONE(50H),
LBV ARTWO(2000))<cr>

FILE3 &<cr>
&<cr>

ROOT1.0BJ, ROOTZ.0BJ, &<cr>
LIBZ TO RTFILE OVERLAY<cr>

0v11.08J, 0V12.0BJ, &<cr>
LIBZ2 TO 0V1.084 &<cr>
LBJOVERLAY ASSUMERQOOT(RTFILE)<cr>

wLINK86 0V21.0BJ, 0V22.0BJ, &<cr>
Rl BT, LIBZ2 TO Ov2.0BJ &<cr>
LRJOVERLAY ASSUMERQOT(RTFILE)<cr>

MLINK86 RTFILE, OV1.0BJ, &<cr>
L3I0V 2.0BJ TO PROGKcr>

BLINKBS :SYSTEM:GENERAL.OBJ &<cr>
LEINOBIND<cr>

MLINK86 :F1:SOURCE.OBJ &<cr>
LRINOCOMMENTS<cr>

MLINK86 :WDO:SYSTEM/PROG.OBJ &<cr>
LB370 :WDO:SYSTEM/TEMP.TST &<cr>
LRICOMMENTS<cr> ‘

oL INK86 PROG.OBJ, LIBT, LIB2 &<cr>
LB IND FASTLOAD<cr>

mLINK86 :PROG:MYPROG INITCODE<cr>
MLINK86 :F1:TEST/RN.OBJ NOLINES<cr>

L INK86 :F1:TEST/RN.OBJ LINES<cr>

mINK86 :F1:TESTER.OBJ MAP<cr>

MLINK86 :FD1:MAIN.OBJ, &<cr>
(2d: PROG: USER.OBJ, &<cr>
L P UBLICSONLY(:FD0:8087.L0C) &<cr>

BLINKB6 :FDO:TEST.O0BJ, &<cr>
LRJUSER.LIB, PASCAL.LIB BIND &<cr>
LRIMEMPOOL (+20H)<cr>

:WDO:USER/TEST.0BJ &<cr>
+200H) BIND<cr>

BLINK86
LBIMEMPOOL(T100H,

J-13/3-14

iAPX 86,88 Family Ultilities

Comments

The LINK86 output module will have the name
specified in parentheses in the control.

This example removes all debug and public records
from the object file.

The EXCEPT in the NOPUBLICS overrides the
PURGE.

This use of ORDER specifies the order of segments
for two groups.

This example will create an overiay record. The
name of the overlay will be OVERLAY1.

First the constituent files must be linked to form
overlays.

The print fite is :FDO:USER/TEMP1.MP1.

The printfile is :F1:PROG.MP1.
The printfile is :F1: THE.MAP.

This example removes information about line
numbers, local symbols, and comments from the
printfile.

This statement removes all but the segment informa-
tion and error messages from the print file.

Control
NAME

OBJECTCONTROLS

ORDER

OVERLAY/NOOVERLAY

PRINT/NOPRINT

PRINT CONTROLS

iRMX 86 LINK86 EXAMPLES

Examples

L INK86 :USER:TOM.LBJ, &<cr>
L]/ SYS.LIB NAME &<cr>

LRI (THIS IS A VERY LONG MODULEQ@NAME.)<cr>

ELINK86 :F1:SRC1.0BJ, &<cr>
L&d:F1:SRC2,0BJ, :WDO:USER.LIB &<cr>
ERINAME (TEST 5.3)<cr>

mLINK86 :F1:FINAL, &<cr>
R FO1:USER.LIB, SYS.LIB &<cr>
LRJOBJECTCONTRALS (PURGE) <cr>

mLINK86 :PROG:PASCL1.0BJ &<cr>
LRI0BJECTCONTROLS(PURGE,
LRINOPUBLICS EXCEPT(START,
LRIDATAT, DATAZ2))<cr>

MLINK86 :F1:PLMPRG.OBJ,
P LM.LIB, URXSML.LIB,

MLINK86 FILET1, FILEZ2, FILE3 &<cr>
70 :FDO:0VT1.LNK &<cr>

MLINK&6 FILE4L, FILES, FILEG &<cr>

WL INK86 FILE7, FILE8, FILE9 &<cr>
:FDO:ROOT.LNK OVERLAY &<cr>

M LINK86 :FDO:ROOT.LNK, &<cr>
i8d: FDO:0V1.LNK, :FDO:0VZ2.LNK<cr>

ML INK86 :FDO:USER/PROG.0OBJ &<cr>

mlLINK86 :F1:PROG.0OBJ<cr>

aLINK86 :PROG:PROG.OBJ, &<cr>
tRd: PROG:USER.LIB PRINT &<cr>
LBd (:F1:THE.MAP)<cr>

ML INK86 :WDO:TEMP.0BJ BIND &<cr>
LBIPRINTCONTROLS(NOLINES, &<cr>
L BENOCOMMENTS , NOSYMBOLS) <cr>

MLINK86 :WDO:PASCL1.0BJ &<cr>

LRdPRINTCONTROLS (PURGE) <cr>

J-15/J-16

iAPX 86,88 Family Ultilities

Comments

Public information concerning only DATA1, DATA2,
LABEL3, and PROCA4 is placed in the object file and
printfile.

All public symbol information will be included in the
print file and output file.

This example will produce a file containing only the
absolute public symbol records from :F1:8087.LOC.
The object file will be :F1:8087.LNK.

This wili resolve the references in ROOT.OBJ to
absolute public symbols in the separately linked and
located overlays OV1 and OV2.

This produces an object file containing no debug or
public information.

This confirms that the line and symbol information
should be kept in the print file.

This will change the translator-assigned name
CGROUP to THE@CODE. A subsequent linkage
would not combine THE@ CODE with a group named
CGROUP.

This changes the name of the CODE group to
CGROUP.

This tells the loader that 15FFH bytes of code is the
minimum requirement for MEMORY. The new max-
imum size of MEMORY is 35FFH.

This increments MEMORY’s minimum size by 1FFH
(7951D) bytes. The maximum size of MEMORY is
equal to the old minimum size plus 3FEH (15902D).

The local symbol records will be included in the
object file.

PURGE is a shorthand for NOSYMBOLS,
NOCOMMENTS, NOPUBLICS, NOTYPE, and
NOLINES.

SYMBOLCOLUMNS has no effect, since BIND was
not specified.

The symbol table will be printed on a line printer.

LIBMOD will retain its type information.

Control
PUBLICS/NOPUBLICS

PUBLICSONLY

PURGE/NOPURGE

RENAMEGROUPS

SEGSIZE

SYMBOLS/NOSYMBOLS

SYMBOLCOLUMNS

TYPE/NOTYPE

iRMX 86 LINK86 EXAMPLES

Examples

L INKB6 :F1:TEST.O0BJ, &<cr>
RRJUSER.LIB NOPUBLICS EXCEPT &<cr>
LB (DATAT, DATAZ, LABEL3, PROC&4)<cr>

ML INK86 :F2:TEMP.QOBJ, &<cr>
PRJURXSML . LIB, USER.LIB PUBLICS<cr>

BLINKBS PUBLICSONLY &<cr>
4 (:F1:8087.L0C)<cr>

&<er>
tF1:0v2)<cer>

MLINK86 :F1:R00T.0BJ,
P UBLICSONLY (:F1:0V1,

MLINKBS :F1:INDEX.OBJ PURGE<cr>
ML INK8S6 :WDO:FINAL.OBJ &<cr>
LEIPRINTCONTROLS(NOPURGE) <cr>

ML INK86 :F1:PLMPRG.OBJ &<cr>
ERIRENAMEGROUPS (CGROUP TO <cr>
LRITHEQCODE) <cr>

aLINK86 :WD1:ASMPRG.OBJ &<cr>
ERARENAMEGROUPS(CODE TO CGROUP)<cr>

Ml INK86 :FD1:GEORGE.OBJ, &<cr>

RRJUSER.LIB, SYSTEM.LIB BIND &<cr>
LRISEGSIZE(MEMORY (15FFH, &<cr>

ulINK86 :WFDO:PROJECT.OBJ, &<gr>
LB : WDO:REST.LIB SEGSIZE &<cr>
LRl (MEMORY (+1FF,+1FF))<cr>

alLINK86 :F1:TEMP.OBJ, &<cr>
bhd: F1:USER.LIB NOSYMBOLS &<cr>
RIS YMBOLS<cr>

MLINK8S :FDO:TEST.O0BJ, &<cr>
(3d: FD1:SYSTEM/USER.LIB &<cr>

MLINK86 :F1:TEST.0BJ &<cr>
(RdS YMBOLCOLUMNS (1) <cr>

MLINK86 :F1:RO0OT.LNK, &<cr>
(g F1:0V1.LNK, :F1:0V2.LNK, &<cr>

L BdPUBLICSONLY (:WD1:8087) &<cr>
LE4S YMBOLCOLUMNS (4) BIND &<cr>
WBdPRINT (:LP:)<cr>

mLINK86 :F1:LIBMOD.0BJ TYPE<cr>

J-17/J-18

iAPX 86,88 Family Ultilities

Comments

The cross-reference listing will have 35 lines on each
page.

The cross-reference listing will be 100 characters
wide maximum per page.

The pathname of the print file will be :FX1:MYFILE.

The message in the TITLE control must be placed on
one line. If the message contains special characters,
it must be enclosed in single quotes ().

Control
PAGELENGTH

PAGEWIDTH

PRINT

TITLE

iRMX 86 CREF86 EXAMPLES

Examples

WCREF86 :F1:FILEY, FILE.LIB &<cr>
EPAGELENGTH (35)<cr>

BCREF86 :PROG:PROGRAM, &<cr>
(4 : PROG:LIB(MODT) &<cr>
BJPAGEWIDTH(100) <cr>

MCREF86 :FX1:FILES(MODULET,MODULEZ2) &<cr>
WP RINT C:FXT1:MYFILE) <cr>

SCREF86 MYPROG,HISPROG,HERPROG, &<cr>
MY LIB, HISLIB,HERLIB TITLE &<cr>
2]('A CROSS-REFERENCE') &<cr>

P AGEWIDTH(105) <cr>

J-19/3-20

iAPX 86,88 Family Utilities

Comments

Three object files are added to the USER.LIB.

Three modules from the library LIB.ABC are added
to :FDO:PROJ.TOM.

This command will produce an empty library file
called TOMS.LIB.

Four modules are deleted from the library USER.LIB.

Control
ADD

CREATE

DELETE

EXIT
LIST

iRMX 86 LIB86 EXAMPLES

Examples

RADD :F1:SIN,:F1:C0S,:F1:TAN TO &<cr>
**;FO:USER.LIB<cr>

WADD :FDO:LIB.ABC(MODT,
LRIT0 :FDO:PROJ.TOM<cr>

MOD2, MOD3) &<cr>

{CREATE :WDO:SYSTEM/TOMS.LIB<cr>

:FO:USER.LIB<cr>

DELETE :FX1:USER.LIB(TEMP1T,
(RJTEMP3, TEM TMP,TEST?)<cr>

&<cr>

WDELETE :FO0:I0.LIB(FLOPPY,
WP APER TAPE)<cr>

EXIT<Cr]

E >
LIST USER.LIB<cr>
USER.LIB

TEMP
TEST
EXEC
MAIN
LOOP
gLIST USER.LIB(TEMP,TEST)<cr]
USER.LIB
TEMP
TEST
gL ST USER.LIB, TEMP.LIB<Cr>
USER.LIB
TEMP
TEST
EXEC
MATN
LOOP
TEMP.LIB
MODULE
MODULE3
MODULETC

CRT, &<cr>

*
*

J21/3-22

iAPX 86,88 Family Utilities

Comments

If SEG1 is byte alignable, it will be located at 15FFH.
If SEG2 is byte or word alignable, it will be at 4F5AH.

Address assignment of groups, segments, and
classes can be in any order, as long as addresses do
not conflict with existing absolute addresses.

A long jump to GO will be placed at location
OFFFFOH.

The initialization code is placed at address 32768
decimal (8000H).

No initialization code will be produced.

LINES is the default, so it need not be specified.

This statement removes all debug records from the
object file, but keeps the information in the print file.

NOPUBLICS is implied by PURGE, but PUBLICS
overrides it.

SEG@A of CLASS1 will be the first relocatable
segment located. SEG@B will be next, followed
immediately by any other segments contained within
CLASS1. The extra segments in CLASS1 (and all of
the segments in CLASS2) are located in the order in
which they are encountered. Finally, the list in the
SEGMENTS subcontrol is handled.

Control
ADDRESS

BOOTSTRAP

COMMENTS/NOCOMMENTS

INITCODE/NOINITCODE

LINES/NOLINES

MAP/NOMAP

NAME

OBJECTCONTROLS

ORDER

iRMX 86 LOCS86 EXAMPLES

Examples

@l 0C86 :FDT:COME.LNK TO WENT &<cr>
LRJADDRESSES(SEGMENTS(SEGT\CLASS2Y &<cr>
LBCVERLAY3(15FFH), SEG2(LFS5AH))<cr>

gL 0C86 :F1:IST.LNK TO LOCIST.RDY &<cr>
LBJADDRESSES (SEGMENTS (SEGT\CLASST &<cr>
Ld (23H)), GROUPS(CGROUP(O0H),DGROUP &<cr>
bl (10000H)), CLASSES(MEMORY(15000H)))<cr>

ML0C86 :WDT:USER/TEST.LNK &<cr>
S TART (GO) BOOTSTRAP<Lcr>

LOC86 :F1:SOURCE.LNK NOCOMMENTS<cr>
LOC86 :F1:TEMP.LNK COMMENTS<cr>

L 0C86 :FXT:PROGDIR/FORK.LNK &<cr>
LA INITCODE(32768)<cr>

L 0C86 :F1:TEST.LNK NOINITCODE<cr>

pL0C86 :F1:RUN.LNK NOLINES<cr>
wL0C86 :F1:TEST.LNK<cr>
WL0C86 :F1:TESTER.LNK MAP<cr>

oL 0C86 :FDO:GONE.LNK TO &<cr>
LR3: FDO: HERMAF.OVY NOMAP<cr>

L
L

WL0C86 :F4:SHORT.LNK NAME &<cr>
ERd(THIS IS A VERY LONG:MODULE)<cr>

RL0C86 :F1:UPWARD.LNK &<cr>
LBJCBJECTCONTROLS (NOLINES, &<cr>
LN O COMMENTS , NOSYMBOLS) <cr>

WL 0C86 :F3:PASCALT.LNK &<cr>

LE0BJECTCONTROLS (PURGE,PUBLICS)<cr>

al 0C86 :FO:SPCSEQ.LNK ORDER &<cr>

B (CLASSES(CLASST(SEGRA,SEGAB), &<cr>
LBdCLASS2) , SEGMENTS(SEGT\CLASS3 &<cr>
LB\ OVERLAYT,SEG22,SEGTO0NCLASSS5) Y <cr>

3-23/)-24

iAPX 86,88 Family Utilities

Comments
The print file is :F1. TEMP1.MP2.

The print file is :FDDO:INTERRUPT.MP2.
The print file is :F1:MAP.

information about line numbers is removed from the
print file.

All but the segment information is removed from the
print file.

No public information is included in the output files
(:USER:PRIVATE.MP2 and :USER:PRIVATE).

All public information will be included in both the
print file and output file.

The object file contains no public or debug informa-
tion, and the symbol table does not appear in the
printfile.

The line and symbol information will be kept in the
print file.

This control reserves the high-order 64K of memory.
A 200H and a 100H section of memory at the top and
bottom of memory are reserved.

The size of segment MEMORY will be increased by
2000 bytes.

The size of segment MYSEG will be decreased by
511 bytes.

The new segment size for XENDA is 7770 bytes.

‘FD1:AUTO will start at IGNITION.
‘PROG:HALTS will start at location 200H.

This statement will include the local symbol records
in the object file and the symbol information in the
print file.

PURGE is a shorthand for NOSYMBOLS,
NOCOMMENTS, NOPUBLICS, and NOLINES.

The symbol table will be printed on a line printer. A
line printer line can hold a four-column symbol table.

Control
PRINT/NOPRINT

PRINTCONTROLS

PUBLICS/NOPUBLICS

PURGE/NOPURGE

RESERVE

SEGSIZE

START

SYMBOLS/NOSYMBOLS

SYMBOLCOLUMNS

iRMX 86 LOC86 EXAMPLES

Examples

L 0C86 :F1:PROG.LNK TO &<cr>
(R F1:TEMPT.TST PRINT<cr>

mL0C86

TFDDO:INTERRUPT.LNK<cr>

ML0C86 :WDO:PROG.LNK PRINT(:F1:MAP)<Ccr>

HL0C86 :FT1:LINEAR.LNK &<cr>
LBJPRINTCONTROLS (NOLINES) <cr>

B 0C86 :WD1:DIR1/SBDIR/PR.LNK &<cr>
M RINTCONTROLS (PURGE) <cr>

L0C86 :USER:PRIVATE.LNK NOPUBLICS<cr>

MLO0C86 :PROG:TEXT.LNK &<cr>
(BN OPUBLICS PUBLICS<cr>

§L0C86 :F3:PROJS.LNK PURGE<cr>

ML0C86 :FX0:B0209.LNK PURGE &<cr>
LBdPRINTCONTROLS (NOPURGE) <cr>

ML0C86 :F1:LOWMEM.LNK RESERVE &<cr>
LR (0F0000H TO OFFFFFH)<cr>

§L0C86 :F2:HUGOS.LNK RESERVE &<cr>
(R (00H T0 0200H, OFFFOOH TO OFFFFFH)<cr>

ML0C86 :WDV1:DIREC/GROW.LNK SEGSIZE &<cr>
(R (MEMORY (+2000)) <cr>

ML0C86 SEGPROB.LNK SEGSIZE &<cr>
LRI (MYSEG(-1FFH))<cr>

BL0C86 :F1:RPLACE.LNK SESIZE &<er>
LRd (XENDA(7770))<cer>

yL0C86 :FD1:AUTO.LNK STARTC(IGNITION)<cr>

mL0C86
(00H,

:PROG:HALTS.LNK START &<cr>
200H) <cr>

BL0C86 GESHTA.LNK SYMBOLS<cr>

wL0C86 :F3:TEST.LNK PURGE<cr>

NL0C86 :F3:DIR2/TEST.LNK &<cr>
LS YMBOLCOLUMNS (1) <cr>

ML0C86 :USERTLINKED.LNK &<cr>
RS YMBOLCOLUMNS(4) PRINT(:LP:)<cr>

J25/1-26

APPENDIX K
ADDITIONAL INFORMATION
FOR INTELLEC® SERIES IV _USERS

Environmental Considerations

The iIAPX 86,88 Family utilities run on the Series IV Microcomputer Development
System. These utilities can be used to produce code for an 8086-based host; the code
can be executed on the Series IV if the code is load-time locatable (LTL). Resulting
code is also compatible with DEBUG-86 and DEBUG-88 debuggers (if it is LTL
code) and with ICE-86 and ICE-88 emulators (if it is absolute code).

The following conventions of the Series IV operating system (iNDX) are
encountered when running the utilities:

e Each of the utilities is invoked by entering the name of the file in which the
utility resides:

ML INK86 MYPROG.OBY,
>

M/ SYSTEMDRIVE/LOC86 /WORKDRIVET/PROG.LNK<cr>

>

HERPRO.0BJ, HISPRO.0BJ TO OURPRO<cr>

¢ The Series IV pathname consists of path components, each preceded by a slash
(/):
/SYSA/JOHN/FILE.ABC

® The directory-name is one or more path components consisting of 1 to 14
characters, inclusive. One of the directory-name path components may be a
“‘logical name.” A logical name must be the first path component in a
pathname and not preceded by a slash:

SYSJOHN/FILE.ABC

* A logical name for some directory may be defined as a null string. Null logical
names do not appear in the pathname:

FILE.ABC
Examples in this appendix employ all these pathname variations.

¢ Continuation lines are necessary when a command or invocation will not fit on
one line. The following example illustrates the line-end conventions to use and
continuation characters to expect:

ML INK&6 MYPROG.OBJ,/WORKFILET/PAS86/HERPRO.OBJ, &<cr>
bd/ WORKFILE2/PASB6/HISPRO.OBJ, /WORKFILE3/FOR86/HERPRO.OBJ<cr>

Pathnames may not be split between lines.

o The LIB86 utility presents an exception to these prompt conventions. Because
this program is interactive, it has its own prompts:

>

iNDX 8086 LIBRARIAN Vx.y
dADD LIBT/PLM/SEC.LNK, LIB1/PLM/CSC.LNK, &<cr>
t&JL IB1/PLM/TAN.LNK TO LIB1/PLM/TRIG.LIB<Lcr>

Additional Information for Intellec Series IV Users iAPX 86,88 Family Utilities

The following versions of the iAPX 86,88 Family utilities may be executed on the
Series [V:

LINK86: V2.0 or later
CREF86: V1.0 or later
LIB86: V2.0 or later
LOC86: V2.0orlater
OHB6: V1.0 or later

Related Publications

The following manuals may be helpful during various aspects of your work with
1APX 86,88 utilities on the Series IV:

® Intellec Series 1V Microcomputer Development System Overview, order number
121752

* JAPX 86,88 User’s Manual, order number 210201

e Intellec Series IV ISIS-1V User’s Guide, order number 121880

e Intellec Series IV Operating and Programming Guide, order number 121753
e DEBUG-88 User’s Guide, order number 121758

e PASCAL-86 User’s Guide, order number 121539

e PL/M-86 User’s Guide, order number 121636

e ASMS86 Language Reference Manual, order number 121703

* ASM86 Macro Assembler Operator’s Manual, order number 121628

o 8089 Macro Assembler User’s Guide, order number 9800938

e FORTRAN-86 User’s Guide, order number 121570

Program Development Examples

The following examples are programming problems solved by using one or more of
the IAPX 86,88 utilities on the Series IV to develop code for an 8086-based host.

Example 1: Preparing to Use DEBUG-88

There are only two steps to preparing your code for DEBUG-88 execution:
translating the code, then linking it with BIND.

First you must translate your code. Any of the 8086 translators will work. An
example of one such transiation is shown below:

pMlP M86 TEST.SRC DEBUG SMALL<cr>

Once the program has been translated, your must link the program with the BIND
control. LINK86 with BIND produces an LTL module. The Series IV assigns
addresses to LTL modules at load time. The invocation line for LINK86 when link-
ing the program shown above might appear as follows:

L INK86 TEST.OBJ, UTILS.OBJ,
pP4TO0 TEST.86 BIND<Lcr>

SMALL.LIB &<cr>

iAPX 86,88 Family Utilities

In the above example note that all of the symbol information (LINES, SYMBOLS,
PUBLICS) is left in the output object file. This will aid you while debugging your
program. DEBUG-88 uses the symbol information to produce diagnostic information
on the program. This information is also included in the symbol table. Figure K-1

shows the print file from the invocation above.

Additional Information for Intellec Series IV Users

The libraries specified resolve all of the external references in TEST.OBJ.

After the above linkage, the program can be executed with the following command

to the Series IV:

MDEBUG TEST.86<cr>

iNDX

INPUT FILES:
OUTPUT FILE:
CON1KOLS SPECIFIED IN INVOCATIUN COMMAND:
BIND
DATE:

0086 LINKER,

MM/DD/YY

vV xy

TIME: HH:MM:SS

LINK MAP OF MODULE ROOT

LOGICAL SEGMENTS INCLUDED:

TkST.0BJ, UT1LS.0BJ, SMALL.LIB
TEST.56

Figure K-1.

LENGTH ADDRESS ALIGN SEGMENT CLASS OVERLAY
037DH =m==mm W CODE CODE
0000H =m=wm- W CONST CONST
0192H --==== W DATA DATA
03F8H ~--mu- W STACK STACK
0000H ====m- W MEMORY MEMORY
0000H ====m= G ??SEG
INPUT MODULES INCLUDED:
TEST.0BJ(ROOT)
UTILS.OBJ(UTILITIES)
SMALL.L1B(DQATTACH)
SMALL .LIB(DQCLOSE)
SMALL.LIB(DQCREATE)
—
GROUP MAP
GROUP NAME: CGROUP
OFFSET SEGMENT NAME
0000H CODE
GROUP NAME: DGROUP
OFFSET SEGMENT NAME
0000H CONST
0014H DATA
O1AAH STACK
05A2H MEMORY
SYMBEOL TABLE OF MODULE ROOT
BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
G(2) 0164H PUB BINDCONTROL G(2) O04AH PUB BNODEBASE
G(2) 0016H PUB BUFBASE G(2) 0014H PUB BUFLEN
G(2) 004CH PUB CLASHNODEBASE G(2) 005EH PUB COCONN
G(2) 0158H PUB COMMENTSCONTROL G(2) 016FH PUB CURRENTOVERLAYNU
-M
G(2) 0171H PUB DEBUGTOGGLE G(2) 00ASH PUB DEFAULTPRTFILENA
-ME
MODULE NAME = ROOT —
BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
G(2) 0542H SYM MEMORY G(2) 0000H SYM COPYRIGHT
G(2) 0014H SYM BUFLEN G(2) 0016H SYM BUFBASE
G(1) OOFTH SYM ERROR G(1) OOFEH SYM WARNING
G(2) 0018H SYM LASTNMNODEP G(2) 001AH SYM FIRSTNMNODEP
G(2) 001CH SYM LASTSGNODEP G(2) O001EH SYM FIRSTSGNODEP
G(2) 0020H SYM LASTTDNODEP G(2) 0022H SYM FIRSTTDNODEP
G(2) 0024H SYM LASTEXNODEP G(2) 0026H SYM FIRSTEXNODEP
G(2) 0028H SYM LASTGRNODEP G(2) 002AH SYM FIRSTGRNODEP

LINK86 Print File for Bound Object Module

Additional Information for Intellec Series IV Users

K-4

iAPX 86,88 Family Utilities

e ———
G(1) 00AbH LIN 141 G(1) 00B3H LIN 143
G(1) OOBEH LIN 144 G(1) 00C8H LIN 145
G(1) 00CFH LIN 146 G(1) 00D2H LIN 148
G(1) 00DDh LIN 149 G(1) Q0E7H LIN 150
G6(1) Q0EEH LIN 152 G(1) OOFSH LIN 153

REFERENCES TO SEGMENT BASES EXIST IN INPUT MODULES:
ROOT

Figure K-1. LINKS86 Print File for Bound Object Module (Cont’d.)

Example 2: Preparing to Use an ICE System

Another way to test and debug software is using an in-circuit emulation (ICE)
system. The ICE-86 or ICE-88 loader can load only absolute object modules.
Therefore, you cannot use the output from LINK86 immediately; it must be located,
too.

The whole process of preparing a program for ICE system execution takes three
steps. In the first two, the program must be translated and linked:

paP LM86 ICETST.SRC SMALL<cr>

> LINK86 ICETST.OBJ, SMALL.LIB<cr>

The above example shows a straightforward linkage with no change to the default
control setting. Note that NOOVERLAY and NOBIND, the defaults, are set. The
ICE loader has no facility for dealing with overlay modules created by using the
LINK86 OVERLAY control. In this case there are no unresolved external references
in the object module. If the module did contain unresolved references, it could still
be executed by the ICE system. However, as with execution under DEBUG-88,
executing instructions that contain unresolved references will produce undefined
results.

Figure K-2 shows the print file produced during the invocation shown above. LINK86
does not produce a symbol table when NOBIND is in effect.

The last step before ICE system execution is transforming the relocatable object
module into an absolute object module with LOC86. The invocation line shown
below would produce an object file that could be loaded and executed by an ICE-86
or ICE-88 system:

P 0C86 ICETST.LNK<cr>

This invocation line shows LOCS86 invoked with the default control setting. Note
that the INITCODE control is in effect by default.

iAPX 86,88 Family Utilities

Additional Information for Intellec Series IV Users

iNDx BOB6 LINKER, V xy

INPUT FILES: ICETST.OBJ, SMALL.LIB
OUTPUT FILE: ICETST.LNK

CONTROLS SPECIFIED IN INVOCATION COMMAND:
DATE: MM/DD/YY TIME: HH:MM:SS

LINK MAP OF MODULE LOANER

LOGICAL SEGMENTS INCLUDED:

LENGTH ADDRESS ALIGN SEGMENT CLASS OVERLAY
w CODE CODE
W CONST CONST
W DATA DATA
w STACK STACK
w MEMORY MEMORY
G ??SEG

INPUT MODULES INCLUDED:
ICETST.OBJ(LOANER)
SMALL.LIB(DQATTACH)
SMALL .L1B(DQCLOSE)
SMALL.LIB(DQCREATE)
SMALL.LIB(DQDETACH)
SMALL.LIB(DQEXIT)

SMALL .LIB(DQGETSYSTEMID)
SMALL.LIB(DQOPEN)
SMALL.LIB(DQOVERLAY)
SMALL .LIB(DQWRITE)
SMALL .LIB(SYSTEMSTACK)

Figure K-2. LINK86 Default Print File

Example 3: Using CREF86

Figure K-3 illustrates a CREF86 cross-reference listing for an input list of 15 files,
one of which contains serveral modules. The output print file pathname 1/OUT1 and
a title for the listing were specified in the controls. Although PAGEWIDTH (PW)
and PAGELENGTH (PL) specifications were also noted in the controls, the numbers
specified are the same as those provided by default.

iNDX CREF86 Vxy

INPUT FILES:

OUTPUT FILE:
CONTROLS SPECIFIED:

MODULES INCLUDED:
FILE NAME

1/RO0T.0BJ:
1/PARSE.OBJ:
1/SIGNON.OBJ :
1/STATE.OBJ:
1/ERROR.OBJ:
1/UTILS.OBJ:
1/MEMMAN.OBJ:
1/SCANNR.OBJ:
1/PROCES.OBJ:
1/SCUTIL.OBJ:
1/LIST.O0BJ:
1/LSUTIL.OBJ:
1/S0RT.OBJ:
1/UDSMA ,LNK:
0/COMPAC.LIB:

CREF86 EXAMPLE OF CROSS REFERENCE USING CREF86

1/R0O0T.0OBJ 1/PARSE.OBJ 1/SIGNON.OBJ 1/STATE.OBJ 1/ERROR.OBJ
1/SCANNR.OBJ 1/PROCES.OBJ 1/SCUTIL.OBJ 1/LIST.OBJ 1/LSUTIL.OBJ
0/COMPAC.LIB

1/00T1

PR(1/0UT1) TT(EXAMPLE OF CROSS REFERENCE USING CREF86) PW(120) PL(60)

MODULE NAME(S)

CREF86

P ARSE

SIGNON

NEXTSTATE

ERROR

UTILITIES

MEMORYMANAGEMENT

SCANMODULES

PROCESSRECORDS

SCANUTILITIES

LISTOUTPUT

LISTUTILITIES

SYMBOLSORT

OBJMAN

DQALLOCATE DQATTACH DQCHANGEEXTENSION DQCREATE
DQDETACH DQEXIT DQFREE DQGETARGUMENT
DQGETTIME DQOPEN DQREAD DQSEEK

/

SYSTEMSTACK

MM/DD/YY HH:MM:SS PAGE 1

1/UTILS.0BJ 1/MEMMAN .0BJ
1/SORT.O0BJ 1/UDSMA .LNK

DQDECODEEXCEPTION
DQGETSYSTEMID
DQWRITE

/

Figure K-3. CREF86 Cross-Reference Listing

Additional Information for Intellec Series IV Users

iAPX 86,88 Family Utilities

—

CREF86

SIMBEOL NAME

ACCESS_PAGE . . . + . « UNKNOWN

ALLOCATE. . . . « « « « . UNKNOWN

APPENDNODE. . + + + & & & PROCEDURE
APPENDUDSMNODE PRGCEDURE
ARRAYBASE POINTER

ATOI. . o+ o ¢ o o & & & PROCEDURE
BTOXe o v ¢« o v v ¢« o & & PROCEDURE
BUBBLESORTVARNAMES. . . . PROCEDURE
BUMPLINECOUNT PROCEDURE
CHECKHEADER . . . « . . . PROCEDURE
CHECKOVERLAY. . . .+ « .+ PROCEDURE
CHECKVARTYPE. PROCEDURE

_

EXAMPLE OF CROSS REFERENCE USING

SYMBOL TYPE

NEAR
NEAR

WORD

WORD
NEAR
NEAR

NEAR
NEAR
BYTE

—

- —

e

CREF86

NEAR

NEAR

NEAR

CREF86 EXAMPLE OF CROSS REFERENCE USING CREF86
UNLOAD_PAGE . « « « « . & UNKNOWN
VARAREAP. POINTER
VBLOCKLISTHEADER. WORD

WARNING . . . +. + . « . . PROCEDURE NEAR
WRITEDATA « . . PROCEDURE NEAR
WRITEINITLINEBUF. PROCEDURE NEAR
WRITELINE « « « & PROCEDURE NEAR
WRITENEWLINE, PROCEDURE NEAR
WRITETOCOMMANDBUF PROCEDURE NEAR
WRITETOFILE« PROCEDURE NEAR
ZERO. . « + v &+ « o o o WORD

DEFINING MODULE;

___———"'"'——”’4

MM/DD/YY

REFERRING MODULE(S)

OBJMAN
OBJMAN
UTILIT1ES
UTILITIES;
SYMBOLSORT;
UTILITIES;

UTILITIES;
SYMBOLSORT;
LISTUTILITIES;

SCANUTILITIES;
SCANUTILITIES;
SCANUTILITIES;

OBJMAN

MEMORYMANAGEMENT;
PROCESSRECORDS;

ERROR;
LISTUTILITIES;
LISTUTILITIES;
LISTUTILITIES;
LISTUTILITIES;
PARSE
LISTUTILITIES;

UTILITIES

PARSE

SCANMODULES

LISTQUTPUT

PARSE

LISTUTILITIES
LISTOUTPUT
LISTOUTPUT

SCANMODULES
SCANMODULES
PROCESSRECORDS

PROCESSRECORDS
UTILITIES

SCANMODULES

ERROR
ERROR

HH:MM:SS PAGE 2

PROCESSRECORDS

/

/

MM/DD/YY

UTILITIES
UTILITIES

LISTOUTPUT

UTILITIES

ERROR

LISTOUTPUT

LISTOUTPUT
LISTOUTPUT

PROCESSRECORDS

LISTOUTPUT

HH:MM:SS PAGE 6 .

SYMBOLSORT
SYMBOLSORT

LISTOUTPUT
LISTOUTPUT

Figure K-3. CREF86 Cross-Reference Listing (Cont’d.)

Example 4: Building and Using Library Files

A library is a file that contains object modules. Libraries allow you to collect com-
monly used pieces of software into one file. The library file can be included in a
LINKS86 invocation, and LINK86 will use the modules to resolve references.

You can add the output from a translator, LINK86, or LOCS86 to a library. The
modules added may be relocatable or absolute; they can have unresolved references
or be completely linked.

Let’s consider the following scenario—we have created six routines (SINE,
COSINE, TANGENT, COSECANT, SECANT, and COTANGENT). We want to
create a library file that will allow each routine to be linked to programs separately.

The first step necessary to create the library is to translate each routine separately. If
we were to output them in a single source module, the translator would translate
them into one module with six public symbols. We could add this module to a
library, but when we tried to link one of the routines into a program, all six would be

included.

K-6

iAPX 86,88 Family Utilities Additional Information for Intellec Series IV Users

Once the routines are translated, LIB86 can be used to create a library file and add
modules. The LIST command is used to display the contents of the library and the
publics contained within it:

M/ SYSTEMDISK/FRED/LIB86<cr>

iNDX 8086 LIBRARIAN Vx.y
MCREATE /WORKDISK/FRED/TRIG.LIB<cr>
gJADD /WORKDISK/FRED/SIN.OBJ, /WORKDISK/FRED/COS.0BJ &<cr>
3470 /WORKDISK/FRED/TRIG.LIB<cr>
4L I1ST /WORKDISK/FRED/TRIG.LIB PUBLICS<cr>
/WORKDISK/FRED/TRIG.LIB
SIN
SINE
(I
COSINE
BJADD /HISDISK/SEC.LNK, /HERDISK/CSC.LNK, &<cr>
(k] /WORKDISK/FRED/COT.LNK, /WORKDISK/NANCY/TAN.LNK, &<cr>
LRd70 /WORKDISK/FRED/TRIG.LIB<cr>
L I1ST /WORKDISK/FRED/TRIG.LIB PUBLICS<cr>
/WORKDISK/FRED/TRIG.LIB
SIN
SINE
cos
COSINE
SEC
SECANT
csSc
COSECANT
coTv
COTANGENT
TAN
TANGENT

WEXIT<cr>

>

Example 5: Creating Programs with Overlays Using OVERLAY
Control

The easiest way to build an 8086 program that contains overlays is with LINK86’s
OVERLAY control. Overlay modules built with this control reside in the same file
as the root. The operating system supplies routines that will load the overlays con-
structed in this way. See the Intellec Series IV Operating and Programming Guide.

After the program modules that will constitute the root and its overlays are
translated, each of the overlays and the root must be linked separately. Then the
root and all the overlays are linked together.

The example below shows the first step toward linking overlays—Iinking the root
and all of the modules that will constitute each overlay separately.

Additional Information for Intellec Series IV Users

b INK86 OV1.08BJ,0VIA.0BJ,0V1B.0BJ OVERLAY(OVERLAY1)<cr>

bl INKB6 /MYPROG/OVZ2A.0BJ, /THEPROG/LIB/PRO.OBJ &<cr>
bPIT0 OVZ2.LNK OVERLAY(OVERLAYZ2)<cr>

ML INKB6 0V3.08J, OV3A.0BJ OVERLAYCOVERLAY3)<cr>

bl INKB86 OV4.0BJ,0V4A.0B) OVERLAY (OVERLAY4)<cr>

bl INK86 NROOT.0BJ,RO0TA.OBJ,RO0TB.0OBJ,SMALL.LIB OVERLAY(ROOT)<cr>

Notice that all of the modules, including the root, are linked with the OVERLAY
and NOBIND controls. The overlay name for the root is not as critical as is that for
the overlays, since the overlay name is used when calling the loader.

Finally, the overlays and root must be linked together. Since any one of the files
could be the root, LINK86 requires that for the final link, the file containing the
root must be first in the input list. During this final linkage, the OVERLAY control
is not used:

ML INK86 NROOT.LNK, OV1.LNK, OVZ2.LNK, &<cr>

bPAOV 4, LNK TO 1/PR0OG.86 BIND<cr>

OV3.LNK,

In this invocation, the optional BIND control is specified. The resulting object file is
executable on a Series IV.

Figure K-4 shows the LINKS86 print file listing for the above invocation.

There is nothing special about the invocation line to LOC86 when locating a file that
contains overlays or that has been bound:

M 0C86 1/PR0OG.86 TO PROG &<cr>
PPIRESERVE (OH TO 77FFH,Q0FCO00H TO OFFFFFH)<cr>
The RESERVE control prevents LOC86 from assigning memory addresses that the

user wishes to reserve for the target system. Figure K-5 illustrates the printout from
this invocation.

iNDX 8086 LINKER, Vxy

INPUT FILES: NRUOT.LNK, OV1.LNK, OV2.LNK, OV3.LNK, OV4.LNK
OUTPUT FILE:
CONTROLS SPECIFIED IN INVOCAT1ON COMMAND:
BIND
DATE: mm/pp/vy TIME: HHMM:SS

LINK MAP OF MODULE ROOT

LOGICAL SEGMENTS INCLUDED:

LENGTH ADDRESS ALIGN SEGMENT CLASS OVERLAY
3CETH =====- G CODE CODE ROOT
O0DOOH -=w=-e G CONST CONST ROOT

Figure K-4. LINKS86 Listing for Program with Overlays

iAPX 86,88 Family Utilities

iAPX 86,88 Family Utilities Additional Information for Intellec Series IV Users

—
INPUT MODULES INCLUDED:
ROOT .LNK(ROOT)
OV1.LNK(PARSE)
OV2.LNK(ILUDE)
OV3.LNK(PICILUDE)
OVY4.LNK(FASTLOAD)
GROUP MAP
GROUP NAME: CGROUP
OFFSET SEGMENT NAME
0000H CODE\CODE\ROOT
3CESk CODE\CODE\PASS1
SR
et
SYMBOL TABLE OF MODULE ROOT
BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
G(2) 251CH PUB ACTUAL G(2) OFODH PUB ASSUMEROOTCONTRO
-L
G(2) OF22H PUB BASEFIXUPSEXIST G(2) OFOCH PUB BINDCONTKOL
G(2) O0D26H PUB BNODEID G(2) 24EAH PUB" BUFEASE
G(2) 0D26H PUB CLASHNODEID G(2) 0D5AH PUB COCONN
G(2) OFOOH PUB COMMENTSCONTROL G(2) OF50H PUE CURRENTFILNUM
G(2) 0F1AH PUB CURRENTOVERLAYNU G(2) OF8EH PUE CURRENTRECINDEX
-M
e ———
— -
OVERLAY NAME = ROOT, MODULE NAME = ROOT 4—__—_W
BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
G(2) 4A20H SYM MEMORY G(2) 0002 SYM COPYRIGHT
G(2) ODOOH SYM LASTNMNODEID G(2) 0DO2H SYM FIRSTNMNODEID
G(2) ODO4H SYM LASTSGNODEID G(2) 0D0O6H SYM FIRSTSGNODEID
G(2) 0DOBE SYM LASTIDNODEID G(2) ODOAH SYM FIRSTTDNODEID
G(2) ODOCH SYM LASTEXNODEID G(2) ODOEK SYM FIRSTEXNODEID
G(2) OD10H SYM LASTGRNODEID G(2) 0D12F SYM FIRSTGRNODEID
G(2) OD14H SYM LASTOVNODEID G(2) OD16H SYM FIRSTOVNODEID
G(2) OD18H SYM LASTGNODEID Ge2) 0D1AH SYM FIRSTBNODEID
OVERLAY NAME = ROQT, MODULE NAME = LIT
BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
G(2) 4A20H SYM MEMORY G(2) 003CH BAS SGNODE
G(2) OF56H SYM LITBASE G(2) OF58H SYM LITID
G(2) OF56E BAS LITNODE G(2) OF5AH SYM FIRSTNODEIDS
G(2) OF64H SYM FIRSTNODE G(2) OF8EH SYM CURRENTRECINDEX
6(2) OF96H SYM TEMPLATE G(2) OFB9H SYM II
G(M) 016EH SYM GETLIT STACK 0006H SYM INDEX
STACK O00KH SYM I G(1) 0207H SYM SGLIT

Figure K-4. LINKS86 Listing for Program with Overlays (Cont’d.)

Additional Information for Intellec Series IV Users

K-10

iAPX 86,88 Family Utilities

iNDX 8086 LOCATOR, Vixy

INPUT FILE: 1/PROG.&6
OUTPUT FILE: PROG
CONTROLS SPECIFIED IN INVOCATION COMMAND:
TO PROG RESERVE(OH TO 77FFH,0FCO00H TO OFFFFFH)
DATE: MM/DD/¥Y TIME: HH:MM:SS

SYMBOL TABLE OF MODULE ROOT

BASE OFFSET TYPE SYMBOL BASE QOFFSET TYPE SYMBOL
1034H 251CH PUB ACTUAL 1034H OFODH PUB ASSUMEROOTCONTRO
-L
1034H OF22H PUB BASEFIXUPSEXIST 1034H OFOCH PUB BINDCONTROL
1034H 0OD26H PUB BNODEID 1034H 24EAH PUB BUFBASE
1034H OD28H PUB CLASENODEID 1034H OD5AH PUB COCONN
1034H OFOOH PUB COMMENTSCONTROL 1034H OF50H PUB CURRENTFILNUM
—
OVERLAY = ROOT, MODULE = ROOT
BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
10348 4A20H SYM MEMORY 1034H 0002H SYM COPYRIGHT
1034H ODOOH SYM LASTNMNODEID 1034H ODO2H SYM FIRSTNMNODEID
10348 ODO4H SYM LASTSGNODEID 1034H OD0O6H SYM FIRSTSGNODEID
1034H ODOBH SYM LASTTDNODEID 1034H ODOAH SYM FIRSTTDNODEID
1034H 0DOCH SYM LASTEXNODEID 1034H ODOEH SYIM FIRSTEXNODEID
1034H ODIOH SYM LASTGRNODEID 1034H OD12H SYM FIRSTGRNODEID
1034H OD14H SYM LASTOVNODEID 1034H OD16H SYM FIRSTOVNODEID
1034H OD18H SYM LASTBNODEID 1034H OD1AH SYM FIRSTBNODEID
1034H ODICH SYM SGNODEID 1034H OD1EH SYM GRNODEID
OVERLAY = ROOT, MODULE = LIT
BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
1034H 4A20H SYM MEMORY 10344 O003CH SYM SGNODE
1034H OF56H SYM LITBASE 1034H OF58H SYM LITID
1034H OF56H SYM LITNODE 10344 OF5AH SYM FIRSTNODEIDS
1034H OF64H SYM FIRSTNODE 1034R OFBEH SYM CURRENTRECINDEX
1034H OF96H SYIM TEMPLATE 1034H OFB9H SYM 1II
0780K 016EH SYM GETLIT STACK 0006E SYM INDEX
STACK 0O004H SYM I 0780H 0207H SYM SGLIT
MEMORY MAP OF MODULE ROOT
MODULE START ADDRESS PARAGRAPH = 14D6H OFFSET = 0006H
SEGMENT MAP
START sTop LENGTH ALIGN NAME CLASS OVERLAY
07800H OBYE6R 3CETH M CODE CODE ROOT
OBMESH OF9BAH 44D3H M CODE CODE PASS1
OBY4ESBH O0EOCEH 2BETH M CODE CODE PASS2
OBYLESH 10337H 4E50H M CODE CODE PIC_PASS2
-
GROUP MAP

ADDRESS GROUP OR SEGMENT NAME

07800H CGROUP
CODE\CODE\ROOT
CODE\CODE\PASS1
CODE\CODE\PASS2
CODE\CODE\PIC_PASS2
CODE\CODE\FASTLOAD

103400 DGROUP
CONST\CONST\ROOT
DATANDATA\ROOT
STACK\STACK\

Figure K-5. LOCS86 Listing for Program with Overlays

iAPX 86,88 Family Utilities

Additional Information for Intellec Series IV Users

Example 6: Linking and Locating Programs with Overlays
Without OVERLAY Control

It is harder to produce overlay modules without using the OVERLAY control.
However, sometimes it is necessary to build programs in this way, for example, for
running under an operating system that does not support overlay modules contained

in the same file as the root module.

But regardless of the reason, building overlays in this fashion places an extra burden
on the programmer. He must do some of the work that would be left to LINK86
(and LOCS6) if he were to use the OVERLAY control. In the following example we
prepare a root and two overlay modules in separate files.

First we must compile all modules. Examples of the invocation lines are shown

below:

P L M86 ROOT.SRC SMALL<cr>
P LM86 OV1.SRC SMALL<cr>
P LM86 OV2.SRC SMALL<cr>

The next step is to link the root module to resolve external symbols with a library

and to obtain a link map:

b INKB6 ROOT.OBJ, USER.LIB MAP<cr>

We will need the link map for locating purposes. The link map, shown in figure K-6,
shows the size of each segment in the root. Since the overlays are self-contained except
for references to the root, we do not need a link map for them. The PL/M-86 listing
files will show the size of each overlay’s segments, as illustrated in figure K-7.

iNDX 6086 LINKER, Vxy

INPUT FILES: ROOT.OBJ,USER.LIB
OUTPUT FILE: ROOT.LNK

MAP
DATE: MM/DD/YY — TIME: HH.MM.SS
LINK MAP OF MODULE LOANER

LOGICAL SEGMENTS INCLUDED:
LENGTH ADDRESS ALIGN SEGMENT

8AYBH W CODE
03811 —===e-=~ W CONST
02G1H ===em- L] DATA
0030H =-=-=-- W STACK
0000H W MEMORY

INPUT MODULES INCLUDED:
ROOT.OBJ (ROQT)
USER.LIB(LOADER)
USER.LIB(EXIT)
USER.LIB(ERROR)
USER.LIB(TIME)

CONTROLS SPECIFIED IN INVOCATION COMMAND:

CLASS OVERLAY
CODE

CONST

DATA

STACK

MEMORY

Figure K-6. LINK86 Map for Root File

K-11

Additional Information for Intellec Series I'V Users iAPX 86,88 Family Utilities

0V1's segment size information
MODULE INFORMATION:

CODE AREA SIZE = 75314 300010 this is the CODE segment

CONSTANT AREA SIZE = 0081H 1290 this is the CONST segment
VARIABLE AREA SIZE = 0181H 385D this 1s the DATA segment

MAXIMUM STACK SIZE = 0040H 64D this is the STACK segment
918 LINES READ

0 PROGRAM ERROR(S)

F PL/

END O L/M-86 COMPILATION A_______,—J
|

0v2's segment size information
MODULE INFORMATION

CODE AREA SIZE = 1B9AH 70660 this is the CODE segment
CONSTANT AREA SIZE = 0101H 257D this is the CONST segment
VARIABLE AREA SIZE = 0454H 1108D this is the DATA segment
MAXIMUM STACK SIZE = 0067H 103D this is the STACK segment
918 LINES READ
0 PROGRAM ERROR(S)
END OF PL/M-86 COMPILATION
| e ——

Figure K-7. Module Information for Overlays

Note that the length of the root’s code segment and the larger overlay’s (OV1’s) code
segment must fit within 64K. This means that the code for the overlays must be in a
part of memory contiguous with the root (to avoid altering the CS register during
execution). OV2’s CONST and DATA segments are larger than OV1’s so that the
STACK segment must be placed to leave room for OV2’s CONST and DATA
segments. If the overlays share the STACK and MEMORY segments with the root,
they must be located at the same address.

After computing the required location for the root’s DGROUP and STACK, we can

“locate the root module. The resulting file will not be executable, but it allows us to
resolve references to the root’s code and data symbols in the overlays. The following
LOCS86 invocation will leave room for the overlays’ code segments and place the
DGROUP in the first unused memory location. (In the command line below, the DS
register is initialized to OFFCH, and the CS register is initialized to 0.) The STACK
and MEMORY segments will be located above OV2’s DATA segment:

ML 0C86 ROOT.LNK &<cr>
MPJADDRESSES (GROUPS(CGROUP(OH) ,DGROUPCOFFCEH)), &<cr>
IS EGMENTS (CODECOH) ,CONSTCOFFCEH) ,STACK(10B34H))) &<cr>
IJORDER (SEGMENTS (CODE, CONST,DATA,STACK,MEMORY)) &<cr>
PISEGSTZE(STACK(100H)) <cr>

Once the root is located, we can use it to resolve external references in the overlay
modules. The overlay modules cannot call each other, since only one is resident in
memory at any time. The link commands are shown below. The NOPUBLICS with
the EXCEPT control is used to avoid conflicts when we use the located overlays to
resolve external references in the root:

M INK86 OV1.0BJ,PUBLICSONLY(ROOT) &<cr>
pR4NOPUBLICS EXCEPT(OVICODE, OVIDATA)<cr>

bl L INK86 OV2.0BJ,PUBLICSONLY(ROOT) &<cr>
pANOPUBLICS EXCEPT (OV2CODE, OV2DATA)<cr>

The PUBLICSONLY control resolves references to public symbols contained in the
root.

K-12

iAPX 86,88 Family Utilities Additional Information for Intellec Series IV Users

After the overlays have been linked, they must be located. The code and data
segments must be placed in the memory locations that were reserved when we first
located the root. In this case the STACK and MEMORY segments must be the same
for the overlays and the root:

M 0C86 OV1.LNK &<cr>
PAADDRESSES(GROUPS(CGROUP(OH) ,DGROUP(OFFCEH)), &<cr>
PRASEGMENTS (CODE(BAGCH) ,CONSTC(105EQOH) ,STACK(10B34H))) &<cr>
PAORDER(SEGMENTSC(CODE,CONST,STACK,MEMORY)) &<cr>
MPISEGSIZE(STACK(I00H)Y) <cr>

P 0CB6 OV2.LNK &<cr>
MMAADDRESSES(GROUPS(CGROUP(OH) ,DGROUPCOFFCEH)), &<cr>
IS EGMENTS (CODE(BAQCH) ,CONST(105E0H) ,STACK(T10B34H))) &<cr>
PJORDER(SEGMENTS(CODE, CONST,DATA,STACK,MEMORY)) &<cr>
PASEGSIZE(STACK(100H))<cr>

The CGROUP and DGROUP base address must be specified in order to compute
offset information. The final base address assigned to DGROUP by LOCS86 will be
rounded up to OFFDOH.

Once the overlays are located, the root is linked and located into an executable form.
The PUBLICSONLY control will resolve references to symbols in the overlay
modules. Other than the addition of this input control, the LINK86 and LOC86
command must be identical to those used previously:

ML INK86 ROOT.OBJ,USER.LIB, &<cr>
4P UBLICSONLY (OV1,0V2)<cr>

b 0C86 ROOT.LNK &<cr>
MPAADDRESSES (GROUPS(CGROUPCOH) ,DGROUP(OFFCEH)), &<cr>
IS EGMENTS (CODECOH) ,CONST(OFFCEH) ,STACK(10B34H))) &<cr>
MPAORDER(SEGMENTS (CODE,CONST,DATA, STACK,MEMORY)) &<cr>
IMASEGSIZE(STACK(T100H)) <cr> ‘

The executable forms of the root and its overlay files are contained in ROOT, OV,
and OV2. Figure K-8 shows the resulting layout of memory.

L 0 «—CS
N ROOT CODE A
SPACE
8A9B
8A9C
R OVERLAY |
9 CODE A
SPACE
0FFCO ««——DS. SS
OFFCE
oA ROOT DATA &
1 SPACE
105DF
105E0
R OVERLAY Jn
A DATA r
1 SPACE
10833
10834
~ STACK AREA A
10C33
10C34 *——gp
MEMORY
A b
Figure K-8. Memory Organization for Example 6 121616-10

K-13

Additional Information for Intellec Series IV Users iAPX 86,88 Family Utilities

Example 7: Linking 8089 Programs with 8086 Programs

The process of linking and locating 8086 programs with 8089 programs that use 8089
local memory is very similar to creating overlay modules in separate files.

Let us consider the following example. We have created an 8086 program and two
8089 program modules. The 8089 programs reference each other’s symbols and
public symbols in the 8086 program. In addition, one of the 8089 programs must be
resident in 8089 local memory.

The first step is to translate the programs. The 8089 program modules must be

translated separately, since they will be located in different 8089 address spaces. The
following lines illustrate the invocation lines to the translators:

bASMB86 /JOE/ASM/PROG86.ABI<cr>
MASM89 /HARRIET/TASK1.A89<cr>
M ASMB9 /STEVE/TASK2.A89<cr>

TASK2 should be linked and located first for 8089 local memory. This linkage will
leave unresolved external references, but it is needed to resolve the references in
TASKI1:

ML INK86 /STEVE/TASKZ2.0BJ, 8089.LIB<cr>

M 0C86 /STEVE/TASKZ2.LNK RESERVE(10000H TO OFFFFFH)<cr>

The RESERVE control in the locate above is a precaution to avoid exceeding 64K.

The next step is to link and locate the object modules that will reside in the 8086’s
address space. The external references to the 8089 program module that is resident in
8089 local memory are resolved with the PUBLICSONLY control. The invocation
lines for linking and locating the modules are:

Ml INK86 /JOE/ASM/PROG86.0BJ, &<cr>
pP48086.LIB, /HARRIET/TASK1.0BJ, 8089.LIB, &<cr>
IPAPUBLICSONLY(/STEVE/TASKZ) TO B86NB9.LNK<cr>

M 0C86 B6NB9.LNK<cr>

The file 86N89 contains an absolute object module that includes PROGS86 and
TASKI1. It may be loaded and executed on an 8086-based system. However, the 8089
program to be located in 8089 local memory still has some unresolved external
references. To resolve those references, we must relink with PUBLICSONLY and
relocate. The invocation lines to LINK86 and LOC86 shown below are identical to
those used earlier—to guarantee that the references resolved earlier are not
invalidated:

bl INK86 /STEVE/TASK2.0BJ, 8089.LIB,
pRIP UBLICSONLY (B6N8B9) <cr>

&<er>

ML OC86 /STEVE/TASK2.LNK RESERVE(T10000H TO OFFFFFH) <cr>

NOTE

The example above makes many assumptions about the 8089 and 8086 code
that it deals with. In most practical situations it is usually necessary to use a
more complex LINK86 and LOCS86 invocation. However, the example
above illustrates the key linking and locating principles underlying
ASM86/ASM89 module combination.

K-14

iAPX 86,88 Family Utilities Additional Information for Intellec Series IV Users

Invocation Examples

The following foldout pages contain examples of the iAPX 86,88 Family utility con-
trols and commands. The examples illustrate conventions you are likely to encounter
while using the Series IV. They may be used in conjunction with syntax specifica-
tions given:

* In Chapter 2 for LINK86
® In Chapter 3 for CREF86
® In Chapter 4 for LIB86

* In Chapter 5 for LOC86

When using the directions in these chapters, fold out the page in this appendix con-
taining examples of the command or control you are interested in.

The following is a sample Series IV OH86 invocation:

bl / SYSTEM/CHARLIE/OH86 /MYCODE/DONE TO /MYCODE/FINI.HEX<cr>

K-15

iAPX 86,88 Family Utilities

Comments

This example defines two public symbols, VARONE
and VARTWO, with absolute addresses 50H and
2000H, respectively.

In this example, the root file is RTFILE, and
SYSTEM/LIB1, /SYSTEMB/LIB2, LIB1, and LIB2 are
library files.

This line creates an LTL module. The output object
file is WORK/TEST with no extension.

This example specifies default to avoid ambiguity.

LINES is the default, so it need not be specified.

This MEMPOOL example will increase the minimum
dynamic memory requirements by 20H bytes, and by
default the maximum size will increase, if necessary,
to equal the minimum.

The minimum dynamic memory requirement is 100H.
The maximum dynamic memory requirement is
300H.

Control
ASSIGN

ASSUMEROOT

BIND/NOBIND

COMMENTS/NOCOMMENTS

FASTLOAD/NOFASTLOAD

INITCODE
LINES/NOLINES

MAP/NOMAP

MEMPOOL

SERIES IVLINK86 EXAMPLES

Examples

b INK86 SYS/FILE1, WORKDISK/FILE?Z,
IR4FILES ASSIGN(VARONE(50H), &<cr>
b4VARTWO(2000)) <cr>

&§<cr>

b INK86 CHARLES/ROOT1.0BJ, &<cr>
IP4RO0T2.0BJ, SYSTEM/LIB1, &<cr>
P4/ SYSTEMB/LIB2 TO RTFILE &<cr>
MPOVERLAY<cr>

S INKS6 OV11.08J,0V12.08J,L181, &<cr>
L1B2 TO OV1.0BJ OVERLAY &<cr>
B34S SUMEROOT (RTFILE) <cr>

b INK86 O0V21.08J, WORK/OV22.0BJ, &<cr>
IPESYSTEM/LIBT, /SYSTEMB/LIBZ TO &<cr>
pp40V?2.0BJ OVERLAY ASSUMEROOT(RTFILE)<cr>

b INK86 RTFILE, OV1.0BJ, OV2.0BJ &<cr>
bIT0 PROG<Lcr>

MBS Y STEM/LINK86 WORK/TEST.O0BJ, &<cr>
b4 SER.LIB BIND PRINT<cr>

b SYSTEM/LINKBG6 WORK/GEN.OBJ NOBIND<cr>

ML INK86 SOURCE.OBJ NOCOMMENTS<cr>

ML INK86 PROG.OBJ TO TEMP.TEST &<cr>
IPYCOMMENTS<cr>

SSYSTEM/LINK&6 PROG.OBJ, &<cr>
MNUSERA/LIBT, LIB2 BIND FASTLOAD<cr>

ML INK86 MYDISK/PLM/MYPROG INITCODE<cr>
M INK86 RUN.OBJ NOLINES<cr>
L

INK86 TEST.0BJ LINES<cr>

>

b/ SYSTEM/LINK86 WORK/TESTER.OBJ &<cr>
PAMAP<cr>

b/ SYSTEM/LINKBS /WORK/MAIN.OBJ, &<cr>
b4/ WORK/USER.0BJ, PUBLICSONLY &<cr>
P2 (8089.L0C) NOMAP<cr>

S YSTEM/LINKSS TED/TEST.OBJ, &<cr>
NUSER.LIB, PASCAL.LIB BIND &<cr>
PIMEMPOOL (+20H) <cr>

b [NK86 TESTED.OBJ MEMPOOL &<cr>
b4 (100K, +200H) BIND<cr>

K-17/K-18

iAPX 86,88 Family Utilities

Comments

The LINK86 output module will have the name
specified in parentheses in the control.

This example removes all debug and public records
from the object file.

The EXCEPT in the NOPUBLICS overrides the
PURGE.

This use of ORDER specifies the order of segments
for two groups.

This example will create an overlay record, and the
name of the overlay will be OVERLAY1.

First the constituent files must be linked to form
overlays.

The print file is WORKDISK/TEMP1.MP1.

The print file is PROG.MP1.

The printfile is THE.MAP.

This example removes information about line
numbers, local symbols, and comments from the

print file.

This statement removes all but the segment informa-
tion and error messages from the print file.

Control
NAME

OBJECTCONTROLS

ORDER

OVERLAY/NOOVERLAY

PRINT/NOPRINT

PRINTCONTROLS

SERIES IVLINK86 EXAMPLES

Examples

b/ SYSTEM/LINK86 WORK/TOM.OBJ, &<cr>
b4/ SYSTEM/SYSTEM.LIB NAME &<cr>

N (THIS IS A VERY LONGANAME)<cr>

ML INK86 SRC1.0BJ, SRC2.0BJ, &<cr>

PPJUSER.LIB NAME(TEST 5.3)<cr>

Pl INKB6 TOM/FINAL,MARY/USER.LIB, &<cr>
IPIEVERYONE/SYSTEM.LIB &<cr>
b@40BJECTCONTROLS (PURGE) <cr>

M INK86 PASCL1.0BJ &<cr>
PP40BJECTCONTROLS (PURGE,NOPUBLICS &<cr>
PAEXCEPT(START, DATA1, DATAZ2))<cr>

pINSYSTEM/LINK86 PLM/PROG.OBJ, &<cr>
pPPLM/PLMB6.LIB, SMALL.LIB, &<cr>
MJUSER.LIB &<cr>

PIORDER(DGROUP(SEGT,SEG2\CLASST,
PRISEGZ2\CLASST\OVERLAYT), &<cr>
M GROUP(CSEGT, CSEG2, CSEG3)) <cr>

&<er>

b INK86 FILET, FILEZ2, FILE3 TO &<cr>
bP4OV 1. LNK OVERLAY(OVERLAY1)<cr>

b INK86 FILE4, FILES, FILE6 TO &<cr>
bP4OV 2. LNK OVERLAY(OVERLAY2)<cr>

B INK86 FILE?, FILER, FILE9 T0 &<cr>
PNROOT.LNK OVERLAY (ROOT) <cr>

b INK86 ROOT.LNK,OV?1.LNK,OVZ2.LNK<cr>

bIES Y STEM/LINK86 PROG.OBJ TO &<cr>
bAWORKDISK/TEMPT.TST PRINT<cr>

b INK86 PROG.OBJ<cr>

ML INK86 PROG.OBJ, USER.LIB &<cr>
bPAPRINT (THE.MAP) <cr>

PANSYSTEM/LINK8S MYDISK/TEMP.OBJ &<cr>

bPdBIND PRINTCONTROLS(NOLINES, &<cr>
PRINOCOMMENTS, NOSYMBOLS)<cr>

bl INKB6 PAS/PASCLT.0BJ &<cr>
PPIPRINTCONTROLS (PURGE) <cr>

K-19/K-20

iAPX 86,88 Family Utilities

Comments

Public information concerning only DATA1, DATAZ2,
LABELS3, and PROC4 is placed in the object file and
print file.

All public symbol information will be included in both
the print file and the output file.

This example will produce a file containing only the
absolute public symbol records from 8089.LOC. The
object file will be 8089.LNK.

This example will resolve the references in
WORK/PLM/ROOT.OBJ to absolute public symbols
in the separately linked and located overlays
WORK/PLM/OVL1 and WORK/PLM/OVL2.

This example produces an object file containing no
debug or public information.

This confirms that the line and symbol information
should be keptin the print file.

This will change the transiator-assigned name
CGROUP to THE@CODE. A subsequent linkage
would not combine THE@CODE with a group named
CGROUP.

This example changes the name of the CODE group
to CGROUP.

This tells the loader that 15FFH bytes of code is the
maximum requirement for MEMORY. The new max-
imum size of MEMORY is 35FFH.

This example increments MEMORY’s minimum size
by 1FFH (7951D) bytes. The maximum size of
MEMORY is equal to the old minimum size plus 3FEH
(15902D).

The local symbol records will be included in .the
object file.

Purge is a shorthand for NOSYMBOLS, NOCOM-
MENTS, NOPUBLICS, NOTYPE, and NOLINES.

SYMBOLCOLUMNS has no effect, since BIND was
not specified.

The symbol table will be printed on a line printer.

WORK/LIBMOD.OBJ will retain its type information.

Control
PUBLICS/NOPUBLICS

PUBLICSONLY

PURGE/NOPURGE

RENAMEGROUPS

SEGSIZE

SYMBOLS/NOSYMBOLS

SYMBOLCOLUMNS

TYPE/NOTYPE

SERIES IVLINK86 EXAMPLES

Examples

USER.LIB &<cr>
DATAZ,

ML INK86 TEST.OBJ,
PRANOPUBLICS EXCEPT(DATAT,
IJLABEL3, PROC&)<cr>

MNSYSTEM/LINK8S WORK/TEMP.OBJ, &<cr>
bPYSYSTEM/SMALL.LIB, WORK/USER.LIB &<cr>
IR4PUBLICS<cr>

bl INK86 PUBLICSONLY(8089.L0C)<cr>

§<cr>

§<cr>
&<cr>

PR INK86 WORK/PLM/ROOT.OBJ,
PIPUBLICSONLY (WORK/PLM/OVLT,
bAWORK/PLM/QVLZ2)<cr>

MBS YSTEM/LINK86 WORK/INDEX.OBJ PURGE<cr>

ML INK86 FINAL.OBJ PRINTCONTROLS &<cr>
b4 (NOPURGE) <cr>

M INK86 PLMPRG.OBJ RENAMEGROUPS &<cr>
4 (CGROUP TO THEACODE)<cr>

bl INK86 ASMPRG.OBJ &<cr>
PPYRENAMEGROUPS(CODE TO CGROUP)<cr>
MBS YSTEM/LINK86 WORK/GEORGE.OBJ, &<cr>
IPJWORK/PETER/USER.LIB, &<cr>

IPYSYSTEM/SYSTEM. LIB BIND SEGSIZE &<cr>
MY (MEMORY (15FFH,+2000H)) <cr>

ML INK86 PROJCT.OBJ, &<cr>
REST.LIB SEGSIZE(MEMORY &<cr>
N (+1FF,+1FF))<cr>

M| INK86 TEMP.OBJ, USER.LIB &<cr>
IPANOSYMBOLS SYMBOLS<cr>
MSYSTEM/LINK8S USER/TEST.O0BJ, &<cr>
bP4SYSTEM/USER.LIB PURGE<cr>

ML INK86 TEST.OBJ SYMBOLCOLUMNS(1)<cr>

ML INK86 ROOT.LNK, OV1.LNK, &<cr>
M40V 2. LNK, PUBLICSONLY(8089) &<cr>
MRS YMBOLCOLUMNS (4) BIND PRINT(:LP:)<cr>

S YSTEM/LINKBS WORK/LIBMOD.OBJ TYPE<cr>

K-21/K-22

iAPX 86,88 Family Utilities SERIES IV CREF86 EXAMPLES

Comments Control Examples

The cross-reference listing will have 35 lines on each PAGELENGTH MCREF86 FILET, FILE.LIB &<cr>

page. PPIPAGELENGTH(35)<cr>

The cross-reference listing will be 100 characters PAGEWIDTH bMSYSTEM/CREF86 WORK/PROG, &<cr>

wide maximum per page. PP4SYSTEM/LIB(MODT) PAGEWIDTH(100)<cr>

The pathname of the print file will be MYFILE. PRINT MMCREF86 FILES(MODULET, &<cr>
PIMODULEZ2) PRINT(MYFILE)<cr>

The message in the TITLE control must be placed on TITLE SIS YSTEM/CREF86 MINE/PROGA, &<cr>

one line. If the message contains special characters, bIHIS/PROGB, HERS/PROGC, &<cr>

it must be enclosed in single quotes (). bR IBA/MYLIB, LIBB/HISLIB, &<cr>
b4 IBC/HERLIB TITLE &<cr>
b4 ('A COMBINED CROSS-REFERENCE') &<cr>
IPAPAGEWIDTH(105)<cr>

K-23/K-24

iAPX 86,88 Family Utilities

Comments

Three object files are added to the USER.LIB.

Three modules from the library WORK/LIB.ABC are
added to SYSTEM/PROG.TOM.

This command will produce an empty library file
called SYSTEM/TOMS.LIB.

Four modules are deleted from the library USER.LIB.

Control
ADD

CREATE

DELETE

EXIT

LIST

SERIESIVLIB86 EXAMPLES

Examples

JADD SIN, COS, TAN TO USER.LIB<cr>
*

WADD WORK/LIB.ABC(MOD1, MOD2, &<cr>
WM 0D3) TO SYSTEM/PROG.TOM<cr>

*

WCREATE SYSTEM/TOMS.LIB<cr>
*
WCREATE WORK/USER.LIB<cr>
*

WOELETE USER.LIB(TEMPT,
R TEMP TMP, TEST?)<cr>

*
WDELETE WORK/IO.LIB(FLOPPY,CRT, &<cr>
WBdPAPER _TAPE)<cr>

* B
‘&f

EXIT<cr>

TEMP3, &<cr>

*
>
gLIST USER.LIB<Cr)]
USER.LIB
TEMP
TEST
EXEC
MAIN
LOOP
gL IST USER.LIB(TEMP,TEST) <cr>]
USER.LIB
TEMP
TEST
MLIST USER.LIB,TEMP.LIB<Cr>
USER.LIB
TEMP
TEST
EXEC
MAIN
LOOP
TEMP.LIB
MODULEY
MODULE3
MODULETC

K-25/K-26

iAPX 86,88 Family Utilities

Comments

If SEG1 is byte alignable, it will be located at 15FFH. If
SEG2 is byte or word alignable, it will be at 4F5AH.

Address assignment of groups, segments, and
classes can be in any order, unless they are
absolute.

A long jump to GO will be placed at location
OFFFFOH.

The initialization code is placed at address 32768
decimal (8000H).

No initialization code will be produced.

Lines is the default, so it need not be specified.

This statement removes all debug records from the
object file, but keeps the information in the print file.

NOPUBLICS is implied by PURGE, but PUBLICS
overrides it.

SEG@A of CLASS1 will be the first relocatable seg-
ment located. SEG@B will be the next, followed
immediately by any other segments contained within
CLASS1. The extra segments in CLASS1 (and all of
the segments in CLASS2) are located in the order in
which they are encountered. Finally, the list in the
SEGMENTS subcontrol is handled.

Control
ADDRESSES
BOOTSTRAP
COMMENTS/NOCOMMENTS

INITCODE/NOINITCODE

LINES/NOLINES

MAP/NOMAP

NAME

OBJECTCONTROLS

ORDER

SERIES IVLOCB86 EXAMPLES

Examples

MlLOC86 COME.LNK TO WENT &<cr>
IPADDRESSES (SEGMENTS (SEGI\CLASS2\&<cr>
IR4OVERLAY3(15FFH), SEG2(4F5AH))<cr>

ML OC86 IST.LNK TO LOCIST.RDY &<cr>
IPJADDRESSES (SEGMENTS &<cr>
I (SEGTVCLASST1(23H)), &<cr>
IR4GROUPS (CGROUP(OOH), &<cr>
I4DGROUP(10000H)), &<cr>
IR4CLASSES (MEMORY (15000H))) <cr>

IS YSTEM/LOCB6 WORK/TEST.LNK &<cr>
IS TART(GO) BOOTSTRAP<cr>

MR 0C86 SOURCE.LNK NOCOMMENTS<cr>
ML 0C86 TEMP.LNK COMMENTS<cr>

MBS YSTEM/LOC86 HISDISK/PLM/FORK.LNK &<cr>
IR4INITCODE(32768)<cr>

glL0C86 TEST.LNK NOINITCODE<Cr]

L0C86 RUN.LNK NOLINES<cr>

gl 0C86 TEST.LNK<Cr)]

gllS YSTEM/LOC86 WORK/TESTER.LNK MAP<cr>

gl 0C86 GONE.LNK TO HERMAF.OVY NOMAP<cr)]

S 0C86 SHORT.LNK NAME &<cr>
I(THIS IS A VERY LONG MODULEGNAME.)<cr>

Ml 0C86 UPWARD.LNK OBJECTCONTROLS &<cr>
IR (NOLINES,NOCOMMENTS ,NOSYMBOLS) <cr>

ML 0C86 PASCLT.LNK OBJECTCONTROLS &<cr>
4 (PURGE, PUBLICS)<cr>

M 0C86 SPCSEQ.LNK ORDER &<cr>
IR (CLASSES(CLASST(SEGQA, SEGAB), &<cr>
IPACLASS2), SEGMENTS &<cr>
IR (SEGI\CLASS3\OVERLAYT, &<cr>
IS EG22,SEGTONCLASS5)) <cr>

K-27/K-28

iAPX 86,88 Family Utilities

Comments
The print file is TEMP1.MP2.
The print file is WORK/INTERP.MP2.
The print file is MAP.

Information about line numbers is removed from the
print file.

All but the segment information is removed from the
print file.

No public information is included in the output files
(PRIVAT.MP2 and PRIVAT).

All public symbol information will be included in both
the print file and the output file.

The object file contains no public or debug informa-
tion, and the symbol table does not appear in the
print file.

The line and symbol information will be kept in the
print file and object file.

This control reserves the high order 64K of memory.

A 200H and a 100H section of memory at the top and
bottom of memory are reserved.

The size of segment MEMORY will be increased by
2000 bytes.

The size of segment FREUD will be decreased by 511
bytes.

The new segment size for XENDA is 7770 bytes.

AUTO will start at IGNITION.

HALTS will startat location 200H.

This statement will include the local symbol records
in the object file and the symbol information in the
print file.

PURGE is a shorthand for NOSYMBOLS, NOCOM-
MENTS, NOPUBLICS, and NOLINES.

The symbol table will be printed on a line printer. A
line printer line can hold a four-column symbol table.

Control
PRINT/NOPRINT

PRINTCONTROLS

PUBLICS/NOPUBLICS

PURGE/NOPURGE

RESERVE

SEGSIZE

START

SYMBOLS/NOSYMBOLS

SYMBOLCOLUMNS

gy TmE

SERIESIVLOC86 EXAMPLES

Examples

ML 0C86 PROG.LNK TO TEMP1.TST PRINT<cr>
MINSYSTEM/LOCBS WORK/INTERP.LNK<cr>
MLOCB6 PROG.LNK PRINT(MAP)<cr>

ML 0C86 LINEAR.LNK &<cr>
bRdPRINTCONTROLS(NOLINES) <cr>
MNSYSTEM/HIS/LOC8B6 PLM/PROG.LNK &<cr>
PR4PRINTCONTROLS (PURGE) <cr>

ML 0C86 PRIVAT.LNK NOPUBLICS<cr>

ML 0CB6 TEXT.LNK NOPUBLICS PUBLICS<cr>

ML0C86 PROJS .LNK PURGE<c>

ML 0C86 80209.LNK PURGE &<cr>
IPPRINTCONTROLS (NOPURGE) <cr>

ML 0C86 LOWMEM.LNK &<cr>
PPYRESERVE(OFOO00H TO OFFFFFH)<cr>
IS YSTEM/LOCBS ASM/HUGOS.INK &<cr>

MPIRESERVE(OOH TO 0200H, &<cr>
IPJOFFFOOH TO OFFFFFH)<cr>

ML 0C86 GROW.LNK SEGSIZE &<cr>

M4 (MEMORY (+2000)) <cr>

ML 0C86 SHRINK.LNK SEGSIZE &<cr>

b4 (FREUD(-TFFH))<cr>

IS YSTEM/LOC86 SAL/RPLACE.LNK &<cr>
IPASEGSIZE(XENDACT770)) <cr>

ML 0C86 AUTO.LNK STARTCIGNITION)<cr>

) 0C86 HALTS.LNK START(O0OH, 200H)<cr>

b/ SYS/LOCB6 GERTIE/GESTA.LNK SYMBOLS<cr>

ML 0CB86 TEST.LNK PURGE<cr>

Pl OC86 LINKED.LNK SYMBOLCOLUMNS(4) &<cr>
PAPRINT (:LP:)<¢cr>

K-29/K-30

INDEX

absolute object file formats, A-1
absolute object modules, 1-2
AD, 5-3
address,
in ADDRESSES control, 5-3
in ASSIGN control, 2-4
in INITCODE control, 5-6
in RESERVE control, 5-16
ADDRESSES, 5-3
addressing,
A, 42
absolute, 1-4, 2-4
ADD, 4-2
8086, 1-5
relative, 1-4
alignment,
boundaries, 1-8
of segments, 1-7
AR, 2-5
AS, 2-4
ASSIGN, 2-4
available memory, effect of, C-1

BI, 2-6

BIND, 2-6

BOOTSTRAP, 5-4

bound modules (see L TL modules)
BS, 54

C,4-3
class, 8086, 1-9
CLASSES, 5-3, 5-11
class name,
in ADDRESSES control, 5-3
in ORDER control,
LINKS6, 2-15
LOCS86, 5-11
in SEGSIZE control,
LINKS6, 2-23
LOCS86, 5-17
CM, 2-7
COMMENTS,
in OBJECTCONTROLS,
LINKS6, 2-14
LOCS86, 5-10
in PRINTCONTROLS,
LINKS6, 2-18
LOC86, 5-13
LINKS86 control, 2-7
LOCS85 control, 5-5
control summary,
CREF86, E-1
LIB86, F-1
LINK86, D-1
LOCS86, G-1
CREATE, 4-3

CREF86,
controls,
PAGELENGTH, 3-3
PAGEWIDTH, 34
PRINT, 3-5
TITLE, 3-6
control summary, 3-2
error messages, E-1
in development process, 1-1
input, 3-1
invocation, 3-2
iRMX 86 invocation examples, J-19/J-20
output, 3-1
print file, 3-7
Series I1I invocation examples, 1-23/1-24
Series IV invocation examples, K-23/K-24
use of libraries, 1-3
cross-reference listing, 3-7
CS, 5-3, 5-11

D, 4-3

data records, 8086, A-3

debug records,
LINKS86, 2-21
LOCS86, 5-15

DELETE, 4-3

E, 44
ENDREC, A-7
error messages,
CREF86, E-1
LIB86, F-1
LINKS86, D-2
LOC86, G-2
OH86, H-1
examples, iRMX 86
invocation,
CREF86, J-19/]-20
LIB86, J-21/]-22
LINKS86, J-13/J-14
LOCS86, J-23/J-24
OHB6, J-12
program development
CREF86, 1-3
LIB86, J-5
LINKS6, J-6, J-9
LOCS86, J-10
examples, Series I1I,
invocation,
CREF86, 1-23/1-24
LIB86, 1-25/1-26
LINKS6, 1-17/1-18
LOCS86, 1-27/1-28
OHB86, I-15
program development,
CREF86, 1-6
LIB86, I-7
LINKS6, 1-2, 1-5, 1-8, I-11, I-14
LOCS86, 1-4, 1-5, 1-8, 1-12

Index-1

Index

Index-2

examples, Series IV
invocation,
CREF86, K-23/K-24
LIB86, K-25/K-26
LINKS86, K-17/K-18
LOC86, K-27/K-28
OHS86, K-15
program development,
CREF86, K-5
LIB86, K-6
LINKS6, K-2, K-4, K-8, K-11, K-12,
K-14
LOC86, K-4, K-8, K-12
EXIT, 4-4
external references,
cross-reference listing, 3-7
definition of, 1-2
resolution of, 1-3

FASTLOAD, 2-8
FL, 2-8

GR, 5-3
group,
addressing, 1-9
8086, 1-9
group map, 2-27
group name,
in ADDRESSES control, 5-3
in LINK86 ORDER control, 2-15

in LINK86 RENAMEGROUP control, 2-22

GROUPS, £ 3

hexadecimal-decimal conversion, B-1
hexadecimal object file format,
conversion to, 6-1
records of,
data, A-13
end of file, A-15
extended address, A-12
start address, A-14

IC,
LINKS6, 2-9
LOC86, 5-6

INITCODE,
LINKS6, 2-9
LOC86, 5-6

initialization code,
LINK86, 2-9
LOCS86, 5-6

input list control, 2-20

iRMX 86 information,
continuation-line characters, J-2
environmental conditions, J-1
examples, J-12
file-naming conventions, J-2
generation of code, J-3
invocation, J-1
memory requirements, J-1
program development examples, J-3
prompts, J-2
related publications, J-2

iAPX 86,88 Family Ultilities

L,4-6
LHEADR, A-6
LI,
LINKS86, 2-10
LOCS86, 5-7
LIB86,
commands,
ADD, 4-2
CREATE, 4-3
DELETE, 4-4
EXIT, 4-5
LIST, 4-6
command summary, 4-1, F-1
error messages, F-1
in development process, 1-1
input, 4-1
invocation, 4-1
iRMX 86 invocation examples, J-21/J-22
Series I1I invocation examples, I-25/1-26
Series IV invocation examples, K-25/K-26
librarian (see LIB86)
libraries,
adding to, 4-2
creating, 4-3
deleting from, 4-4
listing contents of, 4-6
use of by CREF86, 1-3
use of by LINK86, 1-3
line number control,
LINKS6, 2-10
LOCS86, 5-7
LINES,
in OBJECTCONTROLS,
LINKS6, 2-14
LOC86, 5-10
in PRINTCONTROLS,
LINK86, 2-18
LOC86, 5-13
LINKS6, 2-10
LOC86, 5-7
link map, 2-27
linkage (see LINK86)
LINKS86,
and LOCS6, 14
controls,
ASSIGN, 2-4
ASSUMEROOT, 2-5
BIND, 2-6
COMMENTS, 2-7
FASTLOAD, 2-8
INITCODE, 2-9
LINES, 2-10
MAP, 2-11
MEMPOOL, 2-12
NAME, 2-13
NOBIND, 2-6
NOCOMMENTS, 2-7
NOFASTLOAD, 2-8
NOLINES, 2-10
NOMAP, 2-11
NOOVERLAY, 2-16
NOPRINT, 2-17
NOPUBLICS, 2-19
NOPURGE, 2-21

iAPX 86,88 Family Utilities

NOSYMBOLS, 2-24
NOTYPE, 2-26
OBJECTCONTROLS, 2-14
ORDER, 2-15
OVERLAY, 2-16
PRINT, 2-17
PRINTCONTROLS, 5-12
PUBLICS, 2-19
PUBLICSONLY, 2-20
PURGE, 2-21
RENAMEGROUPS, 2-22
SEGSIZE, 2-23
SYMBOLCOLUMNS, 2-25
SYMBOLS, 2-24
TYPE, 2-26
control summary, 2-2, D-1
erorr messages, D-2
in development process, 1-1
input,1-4, 2-1, 2-20
invocation, 2-1
iRMX 86 invocation examples, J-13/J-14
output, 1-4, 2-1
print file, 2-27
segment combination, 1-7
Series III invocation examples, I-17/1-18
Series IV invocation examples, K-17/K-18
use of libraries, 1-3
LIST, 4-6
load-time-locatable module (see L TL module)
location (see LOC86)
location algorithm,
for modules with overlays, 5-25
for segments, 5-24

LOCS6,
and LINKS86, 1-4
controls,
ADDRESSES, 5-3
BOOTSTRAP, 5-4
COMMENTS, 5-5
INITCODE, 5-6
LINES, §5-7
MAP, 5-8
NAME, 5-9
NOCOMMENTS, 5-5
NOINITCODE, 5-6
NOLINES, 5-7
NOMAP, 5-8
NOPRINT, 5-12
NOPUBLICS, 5-14
NOPURGE, 5-15
NOSYMBOLS, 5-19
OBJECTCONTROLS, 5-10
ORDER, 5-11
PRINT, 5-12
PRINTCONTROLS, 5-13
PUBLICS, 5-14
PURGE, 5-15
RESERVE, 5-16
SEGSIZE, 5-17
START, 5-18
SYMBOLS, 5-19
SYMBOLCOLUMNS, 5-19
control summary, 5-2, G-1
error messages, G-2

in development process, 1-1

input, 1-4, 5-1

invocation, 2-1

iRMX 86 invocation examples, J-23/J-24

output, 1-4, 5-1

print file, 5-21

Series I1I invocation examples, 1-27/1-28

Series IV invocation examples, K-27/K-28
LTL controls,

BIND, 2-6

FASTLOAD, 2-8

MEMPOOL, 2-12

ORDER, 2-15

PRINTCONTROLS, 2-18

SEGSIZE, 2-23

SYMBOLCOLUMNS, 2-25
LTL modules, 1-2, 1-4, 1-10

MA,
LINKS86, 2-11
LOCS86, 5-8
MAP,
LINKS6, 2-11
LOCS6, 5-8
maximum-size,
in MEMPOOL control, 2-12
in SEGSIZE control, 2-23
memory,
configuration with overlays, 1-10
8086, 1-5
memory map, 5-23
memory requirements controls,
LINK86 MEMPOOL, 2-12

SEGSIZE,
LINKS6, 2-23
LOC86, 5-17

MEMPOOL, 2-12
minimume-size,
in MEMPOOL control, 2-12
in SEGSIZE control, 2-23
MODEND, A-9
module attributes, A-2
module identification, A-2
module name,
in LINK86 NAME control, 2-13
in LOC86 NAME control, 5-9
MP, 2-12

NA,
LINKS6, 2-13
LOCS86, 5-9
NAME
LINKSS, 2-13
LOC86, 5-9
naming output module,
LINKS6, 2-13
LOCS86, 5-9
NOBI, 2-6
NOBIND, 2-6
NOCM, 2-7

Index

Index-3

Index

NOCOMMENTS,
in OBJECTCONTROLS,
LINKS6, 2-14
LOCS6, 5-10
in PRINTCONTROLS,
LINK8S6, 2-18
LOCS86, 5-13
LINKSe6, 2-7
LOC86, 5-5
NOFASTLOAD, 2-8
NOFL, 2-8
NOIC, 5-6
NOINITCODE, 5-6
NOLI,
LINKS6, 2-10
LOC86, 5-7
NOLINES,
in OBJECTCONTROLS,
LINKS6, 2-14
LOC86, 5-10
in PRINTCONTROLS,
LINK86, 2-18
LOCS6, 5-13
LINKS6, 2-10
LOC86, 5-7
NOMA,
LINK8S6, 2-11
LOCS86, 5-8
NOMAP
LINKS6, 2-11
LOCR6, 5-8
NOOV, 2-16
NOOVERLAY, 2-16
NOPL,
LINKS6, 2-19
LOCS86, 5-14
NOPR,
LINKS6, 2-17
LOCS6, 5-12
NOPRINT,
LINKS6, 2-17
LOCB86, 5-12
NOPU,
LINKS6, 2-21
LOC86, 5-15
NOPUBLICS,
in OBJECTCONTROLS,
LINKS6, 2-14
LOC86, 5-10
in PRINTCONTROLS,
LINKS6, 2-18
LOCS86, 5-13
LINKS86, 2-19
LOCS6, 5-14
NOPURGE,
in OBJECTCONTROLS,
LINKS6, 2-14
LOCS86, 5-10
in PRINTCONTROLS,
LINKS6, 2-18
LOCS6, 5-13
LINKS6, 2-21
LOC86, 5-15

Index-4

iAPX 86,88 Family Utilities

NOSB,
LINKS6, 2-24
LOCS86, 5-19
NOSYMBOLS,
in OBJECTCONTROLS,
LINKSe6, 2-14
LOCS86, 5-10
in PRINTCONTROLS,
LINK86, 2-18
LOCS6, 5-13
LINKS86, 2-24
LOCS6, 5-19
NOTY, 2-26
NOTYPE,
in OBJECTCONTROLS, 2-14
in PRINTCONTROLS, 2-18
LINKS6, 2-26

OBJECTCONTROLS,
LINKS8S6, 2-14
LOC86, 5-10
object module format, 1-4, A-1
0ocC,

LINKSS6, 2-14

LOC86, 5-10
oD,

LINKS86, 2-15

LOC86, 5-11
offset, 5-18
OHS86,

error messages, H-1
in development process, 1-1
input, 6-1
invocation, 6-1
iRMX 86 invocation examples, J-12
output, 6-1
Series I1I invocation example, I-15
ORDER,
LINKS86, 2-15
LOCS86, 5-11
0OV, 2-16
OVERLAY, 2-16
overlay controls,
ASSUMEROOT, 2-5
OVERLAY, 2-16
overlay, 8086, 1-10
overlay name,
ADDRESSES, 5-3
LINK86 ORDER control, 2-15
LINK86 OVERLAY control, 2-16
SEGSIZE,
LINKS6, 2-23
LOC86, 5-17
overlays and location, 5-25
OVLDEF, A-7

PAGELENGTH, 3-3
PAGEWIDTH, 3-4
paragraph, 5-18

iAPX 86,88 Family Utilities

pathname,
in ASSUMEROOT control, 2-5
in LIB86 commands, 4-1
in PRINT control,
LINKS6, 2-17
LOCS86, 5-12
in PUBLICSONLY control, 2-20
PC,
LINK&g6, 2-18
LOC86, 5-13
PEDATA, A-10
performance-memory relationship, C-1
PIC, 1-10
PIDATA, A-10
PL,
CREFS86, 3-3
LINKS6, 2-19
LOCS6, 5-14
PO, 2-20
position-independent code (see PIC)
PR,
CREFS86, 3-5
LINKS6, 2-17
LOCS86, 5-12
PRINT,
CREFS86, 3-5
LINKS6, 2-17
LOCS86, 5-12
PRINTCONTROLS,
LINK86, 2-18
LOCS86, 5-13
print file,
controls,
CREF86, 3-2
LINKS6, 2-18
LOCS86, 5-13
CREF86,
cross-reference information, 3-8
header, 3-7
moduie list, 3-8
warnings, 3-7
LINKS6,
e:.or messages, 2-30
group map, 2-28
header, 2-27
link map, 2-11, 2-27
symbol table, 2-29
LOCS8S6,
errors and warniags, 5-24
memory map, 5-23
symbol table, 5-21
print file name,
LINKES, 2-17
LOCS86, 5-12
program development, 1-1
PU,
LINKS6, 2-21
LOC86, 5-15
PUBLICS,
in LIB86 LIST control, 4-6
in OBJECTCONTROLS,
LINKS86, 2-14
LOCS86, 5-10

Index

in PRINTCONTROLS,
LINKS86, 2-18
LOCS86, 5-13
LINKS6, 2-19
LOC86, 5-14
PUBLICSONLY, 2-20
public symbol, 1-2, 5-18
public symbol cross-references, 3-7
public symbol records,
in libraries, 4-6
LINKSS6,
PUBLICS/NOPUBLICS, 2-19
PUBLICSONLY, 2-20
LOCS6, 5-14
PURGE,
in OBJECTCONTROLS,
LINKS6, 2-14
LOCS86, 5-10
in PRINTCONTROLS,
LINKS6, 2-18
LOCS86, 5-13
LINKS6, 2-21
LOC86, 5-15
PW, 34

record formats,
end, A-7
L-module header, A-6
module end, A-9
overlay definition, A-7
physical enumerated data, A-10
physical iterated data, A-10
register initialization, A-8
R-module header, A-6
sample, A-4
T-module header, A-5
record syntax, A-3
REGINT, A-8
register initialization, 2-9, 5-6, A-8
relocatable object module, 1-2
relocation (see LOCS6)
RENAMEGROUPS, 2-22
RESERVE, 5-16
RG, 2-22
RHEADR, A-6
RS, 5-16

SAMREC, A-4
SB,
LINKS6, 2-24
LOCS86, 5-19
SC,
LINKS6, 2-25
LOC86, 5-20
segment,
alignment, 1-7, 2-28
combining, 1-8

Index-5

Index

Index-6

8086, 1-6, A-2
locating, 1-8, 5-24
memory, 1-8, 2-23, 5-17

ordering,
LINKS6, 2-15
LOCS86, 5-11, 5-24
stack, 1-8

segment addressability, A-2
segment location algorithm,
absolute segments, 5-24

relocatable segments, 5-25
segment ordering, 5-24
segment map, 2-29
segment name,
in ADDRESS control, 5-3
in ORDER control,
LINKS86, 2-15
LOCS86, 5-11
in SEGSIZE control,
LINKS86, 2-23
LOCS6, 5-17
SEGMENTS, 5-3
SEGSIZE,
LINKS6, 2-23
LOCS86, 5-17
Series III information,
continuation-line characters, I-1

environmental considerations, I-1

ISIS-II conventions, I-1

program development examples, I-2

prompts, I-1
related publications, 1-2

software version compatibilities, 1-1

Series IV information,
continuation-line characters, K-1
environmental considerations, K-1
iNDX conventions, K-1
pathnames, K-1

program development examples, K-2

prompts, K-1
related publications, K-2

software version compatibilities, K-2

iAPX 86,88 Family Utilities

size, 5-17
SM, 5-3, 5-11
SS,
LINKS86, 2-23
LOCS86, 5-17
ST, 5-18
START, 5-18
start address, 5-4, 5-18
SYMBOLCOLUMNS,
LINK86, 2-25
LOCS86, 5-20
SYMBOLS,
in OBJECTCONTROLS,
LINKS6, 2-14
LOC86, 5-10
in PRINTCONTROLS,
LINK86, 2-18
LOC86, 5-13
LINK86, 2-24
LOCS86, 5-19
symbol table,
LINKS6, 2-25, 2-29
LOCS86, 5-20, 5-21

THEADR, A-5

TITLE, 3-6

TT, 3-6

TY, 2-26

TYPE,
in OBJECTCONTROLS, 2-14
in PRINTCONTROLS, 2-18
LINK86 control, 2-26

type checking, 2-26

variable name, 2-4

- ® iAPX 86,88 Family Utilities User’s Guide
Inlu 121616-004

REQUEST FOR READER’S COMMENTS

Intel’s Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact your Intel
representative. If you wish to order publications, contact the Intel Literature Department (see page ii of this
manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. s this the right type of publication for your needs? Is it at the right level? What other types of publications
are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating)

NAME DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

cITY STATE ZiP CODE
(COUNTRY)

Please check here if you require a written reply. (]

WE’D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All

comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.1040 SANTA CLARA,CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation

Attn: Technical Publications M/S 6-2000
3065 Bowers Avenue

Santa Clara, CA 95051

NO POSTAGE
NECESSARY
IF MAILED
INU.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	6-01
	6-02
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	D-29
	D-30
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	G-20
	G-21
	G-22
	G-23
	G-24
	G-25
	G-26
	G-27
	G-28
	G-29
	G-30
	H-01
	H-02
	H-03
	H-04
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	I-18
	I-19
	I-20
	I-21
	I-22
	I-23
	I-24
	I-25
	I-26
	I-27
	I-28
	I-29
	I-30
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	J-07
	J-08
	J-09
	J-10
	J-11
	J-12
	J-13
	J-14
	J-15
	J-16
	J-17
	J-18
	J-19
	J-20
	J-21
	J-22
	J-23
	J-24
	J-25
	J-26
	K-01
	K-02
	K-03
	K-04
	K-05
	K-06
	K-07
	K-08
	K-09
	K-10
	K-11
	K-12
	K-13
	K-14
	K-15
	K-16
	K-17
	K-18
	K-19
	K-20
	K-21
	K-22
	K-23
	K-24
	K-25
	K-26
	K-27
	K-28
	K-29
	K-30
	index-1
	index-2
	index-3
	index-4
	index-5
	index-6
	replyA
	replyB
	xBack

